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Abstract

Neuronal bursting, an oscillatory pattern consisting of repeated spikes interspersed with pe-
riods of rest, is a pervasive phenomenon in brain function which is used to relay information
between neurons and other cells in the body. Mathematical models of bursting typically
take the form of singularly perturbed systems of ordinary differential equations, which are
well suited to analysis by geometric singular perturbation theory (GSPT). There are nu-
merous types of bursting models, which are classified by a slow/fast decomposition and
identification of fast subsystem bifurcation structures. Of particular interest are so-called
fold/fold-cycle bursters, where burst initiation and termination occurs at a fold of equilibria
and fold of periodic orbits, respectively. Such bursting models permit torus canards, special
solutions which track a repelling manifold of periodic orbits of the fast subsystem.

In this thesis we analyse two fold/fold-cycle bursters, the Wilson-Cowan-Izhikevich
model and the Butera model. Using numerical averaging in combination with GSPT, we
construct an averaged slow subsystem and identify the bifurcations corresponding to the
transitions between bursting and spiking activity patterns. In both models we find that
the transition involves toral folded singularities (TFS), the averaged counterparts of folded
singularities. In the WCI model, we show that the transition occurs at a degenerate TFS,
resulting in a torus canard explosion, reminiscent of the classic canard explosion in the van
der Pol oscillator. The TFS identified in the Butera model are generic (i.e. occurring on
open parameter intervals), and using numerical continuation methods, we continue them
and construct averaged bifurcation diagrams. We identify three types of folded-saddle node
(FSN) bifurcations which mediate the transition between various activity patterns: FSN
type I, II, and III. Type I and II are common in neural applications and have been studied
extensively; both possess canards and give rise to the delay phenomenon. On the other
hand, type III is novel and studied here for the first time. In the final part of this thesis,
we utilise the blow-up technique and dynamic bifurcation theory to extend current canard
theory to the FSN III case.
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Chapter 1

Introduction

Neuronal bursting, a pattern characterised by alternating periods of rapid spiking and rest,
is an ubiquitous phenomenon via which neurons communicate and relay information to
various parts of the body. As bursting is a multi-scale phenomenon, mathematical models
typically take the form of slow/fast (or singularly perturbed) ordinary differential equations.
Such multi-scale models can be decomposed into fast and slow subsystems, and classified
based on the fast subsystem bifurcation structures. This thesis focuses on a particular
type of bursting model, the fold/fold-cycle burster. Using techniques from averaging and
geometric singular perturbation theory, we investigate special solutions of fold/fold-cycle
bursters, known as torus canards, in various neural models.

1.1 Motivation: Neural Dynamics

Neurons are the basic signalling unit of the brain, and the average human brain consists of
around 1011 neurons. The primary role of a neuron is to transmit information to other neu-
rons, muscle and gland cells within the nervous system. Indeed, each neuron receives input
from about 10, 000 other neurons. Networks of interconnected neurons work together to
coordinate movement, modulate heart and breathing rhythms, control hormone production
and much more.

A typical mammalian neuron consists of a cell body or soma, axon, and dendrites;
see Figure 1.1. When stimulated past a threshold, neurons produce action potentials –
electrical transmembrane currents which alter the membrane potential of the neuron. The
electrical activity is caused by the movement of charged ions across the cell membrane via
structures known as ion channels, proteins embedded in the membrane which create pores.
The channels are ion selective, but some are permeable to more than one type of ion, which
for example may share a common positive (or negative) charge. Ion channels are typically
gated, and these gates open and close in response to various stimuli like membrane voltage,
mechanical stress and ligand binding. Electrical signals or action potentials propagate down
the length of a neuron’s axon, to the branching axon terminals which form chemical synapses
with other neurons. Many axons are covered with an insulating myelin sheath, which
accelerates the propagation of electrical signals along the axon. Chemical synapses are the
junction or contact points were the electrical signal of one neuron is transmitted via chemical
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Figure 1.1: Structure of a neuron and synaptic transmission. Neurons typically receive stimu-
lus from other neurons at the dendrites. Electrical signals then propagate down the axon to the
terminals, which connect with neighbouring neuron’s dendrites, forming a chemical synapse. There
neurotransmitters are released which facilitate communication with other cells. Figure adapted from
[57].

neurotransmitters to the dendrites of another receiving neuron. Once the action potential
reaches the synapse of a sending neuron, it triggers the release of neurotransmitters. These
chemical agents traverse the synaptic cleft (or gap) and bind to receptors on the receiving
neuron. Typically, the binding of the neurotransmitter induces a synaptic current which
may alter the membrane potential of the receiving neuron. This process facilitates the relay
of information from one neuron to another.

The binding of neurotransmitters to a receiving neuron induces the opening/closing of
specific gated ion channels, which in turn generates a flux of ions. This ion flux produces
changes in the receiving neuron’s membrane potential called post synaptic potentials (PSP).
The strength of a PSP is proportional to the strength of the propagating action potential.
Depending on the type of neurotransmitter, these PSP can be inhibitory (IPSP) or exci-
tatory (EPSP). Significant EPSPs trigger the propagation of the action potential in the
receiving neuron. Neurons which produce an action potential in response to stimuli are
termed excitable, and the study of factors which affect the generation of such an action
potential is known as neural excitability.

Neurons can exhibit a wide variety of electrical activity patterns which are useful in
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Figure 1.2: Resting, excitable, periodic spiking and periodic bursting activity patterns. The
membrane potential is plotted on the y-axis versus time on the x-axis. Figure adapted from [55].

relaying information; see Figure 1.2. These patterns include:

• Quiescence or resting: the membrane potential is at rest, or exhibits small amplitude
‘subthreshold’ oscillations.

• Excitable: a single action potential (or series of action potentials) are generated in
response to stimuli.

• Periodic spiking: the periodic firing of action potentials or spikes.

• Periodic bursting: periods of fast spiking (the active phase) interspersed with quies-
cence (the silent phase).

Most neurons are capable of bursting through stimulation or manipulation (for example,
pharmacologically), however, others are intrinsically capable of bursting. Some well known
examples of intrinsic bursters include cat primary visual cortical neurons [81], thalamic
reticular neurons [97], cat thalamocortical relay neurons [73], mammalian respiratory neu-
rons in the pre-Bötzinger complex [20], and trigeminal interneurons from the rat brainstem
[27]. Typically, bursting occurs because of the interplay between fast and slow membrane
currents. During the active phase of bursting, the intrinsic slow membrane currents build
up and eventually hyperpolarise the cell, resulting in the termination of the active phase.
In the silent phase, these currents slowly decay until the neuron has recovered and is ready
to burst again.

1.2 Mathematical Modelling of Neuronal Dynamics

As bursting is ubiquitous in neuroscience, many mathematical models of the phenomenon
have been developed. One method of obtaining bursting behaviour in neuronal models is
via timescale separation. In other words, the models are singularly perturbed systems (of
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ordinary differential equations) which take the the form

ẋ = εg(x, z),

ż = f(x, z),
(1.1)

where the small parameter ε creates a timescale separation. Much of this thesis focuses
on analysing such systems. The vector z ∈ Rm models the fast variables which generate
spiking during the active phase (for example, the membrane potential). The vector x ∈ Rn
models the slow variables which are responsible for the slow modulation of the spiking
behaviour. Slow/fast bursting models of the form (1.1) are well suited to analysis using
geometric singular perturbation theory (GSPT).

The basic premise of GSPT is to dissect (1.1) into slow and fast subsystems, which are
of lower dimension than the original model. Setting ε = 0 in (1.1) gives the fast subsystem

ż = f(x, z), (1.2)

where the slow variables are treated as parameters. Many underlying mechanisms of burst-
ing can be understood by analysing the fast subsystem (1.2) and treating x ∈ Rn as slowly
varying bifurcation parameters. This method was pioneered by Rinzel [85] who grouped
the variables such that there was only one slow variable. The transition from the active
phase to the silent phase of bursting occurs as the slow variation of x drives the fast sub-
system through bifurcations of equilibria and periodic orbits. Depending on the type of
bifurcations, various kinds of bursting with distinctive qualitative features are possible.

1.3 Classification of Bursting Models

The classification of bursters according to fast system bifurcations was first suggested by
Rinzel [86], who identified three kinds of bursters; later Bertram et al. [10] identified another.
However, it was Izhikevich [54] who provided a comprehensive classification. Izhikevich
classified bursting models according to codimension-one bifurcations of the fast subsystem
(1.2), with respect to x, which were involved in the initiation and termination of the active
phase. More specifically, bursters are qualitatively distinguished based on the following
topology:

• Initiation: the bifurcation of the quiescent state (usually an equilibrium) that results
in the transition to an oscillatory state (usually a periodic orbit).

• Termination: the bifurcation of the attracting oscillator which results in termination
of the active phase and transition to quiescence.

The driving force behind bursting behaviour is bistability, i.e. the coexistence of quiescent
and oscillatory states. Slow variation of x moves the fast subsystem through the bifurcations
associated with initiation/termination of bursting. These bifurcations essentially ‘kick’
solutions from one attractor to another. When the quiescent state is an equilibrium and
the oscillatory state is a limit cycle of the fast subsystem, the model is said to exhibit point-
cycle bursting. Based on Izhikevich’s classification scheme, there are 16 different types of
point-cycle bursters for m = 2 (i.e. two fast variables), and 120 different types for m > 2.
We refer the reader to [54, 55] for details concerning all the different bursting types.
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PF

Pa

Figure 1.3: A: Bifurcation structure of the fast subsystem (with respect to the slow variable) of
the WCI model. Plotted on the y-axis is one of the fast variables which represents the membrane
potential V . Branches of equilibria are shown in red, while branches of periodic orbits are shown
in blue. Solid lines denote stable branches and dashed lines denote unstable branches. A time
trace of the full system (for ε 6= 0) is overlayed in green. Bursting is initiated at the saddle-node
(fold) bifurcation Fl, where trajectories transition to the attracting family of periodic orbits Pa.
Termination of the active phase occurs at the fold of periodic orbits, labelled PF . The WCI model
exhibits fold/fold cycle bursting. B: Time trace of the bursting trajectory.

This thesis focuses on the analysis of one particular type of point-cycle burster: the
fold/fold-cycle burster. A classic example of a minimal fold/fold-cycle burster is the 2-
fast/1-slow Wilson-Cowan-Izhikevich (WCI) model, which we will study in detail in Chap-
ter 4. The fast subsystem bifurcation structure (with respect to the slow variable) of this
model can be seen in Figure 1.3A. It is evident from this figure the fast subsystem exhibits
the essential ingredient for bursting: bistability of an equilibrium and periodic attractor.
The active phase of bursting is initiated at fold bifurcation of equilibria (labelled Fl). Burst-
ing solutions in the silent phase (on the equilibrium attractor) ‘fall off’ near the fold and
transition to the active phase (an attracting family of periodic orbits). The termination of
the active phase occurs at a fold of periodic orbits (labelled PF ) where trajectories ‘jump
off’ and return to the equilibrium attractor. The fold of the family of periodic orbits in the
fast subsystem creates a distinctive ‘top-hat’ appearance, and hence this type of bursting
is sometimes referred to as ‘top-hat bursting’.

One of the main goals in studying these bursting models from a slow/fast perspective
is understanding the underlying dynamics in the quiescent and active phases, as well as
the transition between the two, for non-zero ε. In the silent phase, the dynamics of the
full system (for ε 6= 0) are well understood as a slow drift along the equilibrium attractor
of the fast subsystem (1.2). As solutions approach the equilibrium fold bifurcation, they
transition from a slow to a fast timescale (via an intermediate timescale), and ‘jump’ to the
periodic attractor. Naturally, the jumping behaviour facilitates the transition between the
quiescent and active phases; this phenomenon is well understood in the context of GSPT
[64, 100]. During the active phase of bursting, solutions of the full system rapidly oscillate
near the fast subsystem periodic attractor, but this fast motion is accompanied by a slow
drift. Classical GSPT fails to quantify this slow drift in the active phase; to remedy this
issue, other techniques must be used.
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Figure 1.4: Time traces of a model burster (the INaP + IK + IK(M) burster). The top panel shows
the time trace of the membrane potential V . The bottom panel shows the time traces of the original
slow variable (solid) compared to the averaged slow variable (dashed). Figure adapted from [55].

1.4 Averaging

How can we approximate the slow evolution of x during the active oscillatory phase of burst-
ing? The averaging technique is powerful tool which can be used in conjunction with GSPT
to address this question. In brief, the averaging procedure is carried out by integrating the
slow equation in (1.1) over a periodic solution of the fast subsystem (1.2), yielding a new
subsystem

Ẋ =
ε

T (X)

∫ T (X)

0
g(X, z)dt. (1.3)

which is referred to as the averaged slow subsystem. Note that X distinguishes the averaged
variable from the original variable x; the two are not equivalent. To be mathematically pre-
cise, averaging is carried out via a near-identity coordinate transformation, which transforms
the original system (1.1) to (1.3). The use of averaging in ordinary differential equations
(so-called classical averaging) dates back as far as the works of Laplace and Lagrange [71]
on celestial mechanics. However, the theory of averaging in the context of singularly per-
turbed systems was developed in the 1960s by Pontryagin and Rodygin [83]. They proved
that the slow motion x(t) and the averaged slow motion X(t) are O(ε) close under certain
conditions. One caveat of Pontryagin and Rodygin’s theory is the restriction to hyperbolic
periodic orbits of the fast subsystem. From a GSPT point of view, Pontryagin and Rody-
gin’s work is the periodic equivalent of Fenichel theory [40, 56], which explains the slow
motion on hyperbolic equilibrium manifolds. Recent work [104] has made progress towards
extending averaging theory to non-hyperbolic periodic orbits, such as a fold bifurcation of
periodic orbits, which is an essential feature of a fold/fold-cycle burster.

Intuitively, the averaging procedure ‘smooths out’ the wiggling behaviour of the slow
variables during the active oscillatory phase of bursting (see Figure 1.4). However, the
averaged slow subsystem (1.3) provides an approximation to the slow x dynamics near
the oscillatory attractor which responsible for spiking behaviour during the active phase of
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bursting. From a GSPT point of view, it is more productive to think of averaging in this
manner. Returning to Figure 1.3A, we see that during the active phase of bursting solutions
move slowly left along the oscillatory attractor until they fall off near the fold (of periodics).
Averaging allows us to quantify this slow motion which is essential in generating the bursting
pattern. Mathematically speaking, hyperbolic equilibria of (1.3) correspond to hyperbolic
periodic orbits (which have the same stability type) of the original system (1.1) [47]. In other
words, stable equilibria of the averaged subsystem correspond to periodic spiking states of
the full system. Similar conclusions also extend to more complicated hyperbolic attractors.
Periodic bursting typically corresponds to the absence of (stable) averaged equilibria, and
thus the averaged slow subsystem is a useful tool in distinguishing periodic bursting and
spiking. Like the fast subsystem, the averaged slow subsystem reduces the complexity of
the original system (in this case the slow dynamics) and aids our understanding of the
underlying dynamic mechanisms that govern bursting.

1.5 Canard Theory

Associated with GSPT is canard theory, the study of canards which are special solutions
of singularly perturbed systems that connect attracting and repelling invariant manifolds.
These curious creatures were first discovered by a group of French mathematicians [7] in
their study of the van der Pol oscillator [103] with constant forcing. The etymology of
‘canard’ will become apparent when we investigate the van der Pol oscillator in Section
2.7.1. Historically, canards have been studied using various methods such as non-standard
techniques [7, 33], matched asymptotics [38, 75] and GSPT [37, 65]. This thesis focuses on
analysing canards and their properties from a GSPT standpoint.

Seemingly counter-intuitively, canards typically track a repelling invariant manifold for
a significant amount of time. In the case of ‘classical canard theory’, these invariant man-
ifolds involve equilibria. Canards can act as separatrices and organise the dynamics in
phase space. They often generate rich and complex behaviour in neural models, and many
other applications. Recent studies of neural models [60, 18] and other singularly perturbed
systems have identified a new flavour of canards, so-called torus canards, solutions which
instead drift across a fold of periodics, connecting attracting and repelling manifolds of
periodic orbits. Efforts to extend well-known results of ‘classical’ canard theory to torus
canards are ongoing [104]. Some progress has been made via extension of the averaging
technique to non-hyperbolic folds of periodic orbits. This is exactly the type bifurcation
involved in the termination of bursting for fold/fold-cycle bursters, and they are the perfect
candidates for torus canards. Much of this thesis focuses on identifying torus canards in
two particular neural models, the Wilson-Cowan-Izhikevich model and the Butera model,
a model of two coupled respiratory neurons. In these models, torus canards facilitate the
transition from bursting to spiking (via a torus canard explosion), and this thesis aims to
unravel the associated complex dynamics through a combination of GSPT and numerical
averaging.

Closely related to canards are folded singularities, degenerate fold bifurcations of the fast
subsystem which allow canards to cross between attracting and repelling manifolds [99, 111].
The averaged counter parts of folded singularities are called toral folded singularities, and
their dynamics have been formally analysed in systems with two fast variables [104]. Using a
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numerical continuation approach, we identify toral folded singularities in the Butera model,
which has more than two fast variables. The numerical detection of toral folded singularities
in higher dimensional models is an important (and novel) procedure. Furthermore, we
numerically implement the averaged slow subsystem of both the Butera and WCI model.
This allows for the detection and crucially the continuation of averaged equilibria, another
important extension of current numerical averaging techniques. As a result, we are able to
construct bifurcation diagrams of the averaged slow subsystem which elucidates the genesis
of various activity patterns and the transition between them.

Bifurcations involving fold singularities are known as folded saddle-node (FSN) bifurca-
tions and they come in three types. The FSN type I and II are common in neural models
and have already been analysed in detail [66, 108]. Our study of the Butera model lead to
the discovery of the novel FSN III bifurcation in the context of the averaged slow subsystem.
Another main objective of this thesis is to extend the results of the FSN I and II to the FSN
III case. In particular, we prove the existence of canards and faux canards, show that there
is delayed loss of stability due to the slow passage through an Andronov-Hopf bifurcation,
and provide maximal delay estimates.

1.6 Outline

The remainder of this thesis is outlined as follows: In Chapter 2, we introduce GSPT, the
mathematical framework used to analyse singularly perturbed systems. In particular, we
provide a complete description of the pertinent results from canard theory. In Chapter
3, we provide an overview of the mathematical tools related to periodic solutions. We
review Floquet’s main theorems on linearised periodic systems and the stability properties
of their solutions. We summarise averaging theory from a classical and singularly perturbed
standpoint. Finally, we describe in detail the numerical implementation of averaging in
slow/fast systems.

In Chapter 4, we pressent a study of a minimal bursting model, the Wilson-Cowan-
Izhikevich model. We provide a brief analysis of the reduced and layer problems. We
numerically implement the averaged reduced system and construct an averaged bifurcation
diagram. Our analysis shows that the transition from bursting to spiking occurs via a
torus canard explosion. In Chapter 5, we proceed with a study of the Butera model. We
present a bifurcation analysis of the full system and the averaged reduced system. The latter
provides new insights into the genesis of the different kinds of bursting and spiking patterns
observed, as well as the transitions. Analysis of the averaged reduced problem reveals the
novel FSN III bifurcation, as well as a higher codimension bifurcation, an organising centre,
which dictates the dynamics of the model. In Chapter 6, we analyse a canonical model of
the organising centre observed in our study of the Butera model. It encapsulates all the
required structures and bifurcations and supports the numerical results of Chapter 5. In
Chapter 7, we consider a canonical model of the FSN III bifurcation and analyse the local
dynamics. Using a combination of the blow-up technique and complex time path analysis,
we prove the existence of canards and faux canards. Using the way-in/way-out function, we
quantify the delay phenomenon and provide maximal delay estimates. We conclude with a
discussion and outline of future work in Chapter 8.
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Chapter 2

Geometric Singular Perturbation
Theory

Many physiological phenomena evolve over multiple timescales. For example, when neurons
are stimulated past a threshold, ion channels open and there is a rapid inflow of positively
charged ions that generates a spike in the membrane potential. This also triggers the slow
closing of the ion channels (and the opening of other channels) which results in a rapid
decrease of the membrane potential. This is followed by a slow refractory period where
the neuron’s membrane potential returns to a resting state. The sequence of fast and slow
events described above constitutes the well known action potential. Naturally, the mathe-
matical models of such multiscale phenomena, such as the famous Hodgkin-Huxley model,
are singularly perturbed. The collection of mathematical tools used to dissect and anal-
yse these models from a geometric standpoint, is known as geometric singular perturbation
theory (GSPT).

Chapter 2 of this thesis is devoted to reviewing this important mathematical tool. In
Section 2.1 we introduce Fenichel theory and state the main theorems. Fenichel theory
breaks down at points along the critical manifold where normal hyperbolicity is lost. This
occurs at generic fold points, which we discuss in Section 2.2. In Sections 2.3 and 2.4.1, we
examine special structures which may occur at the fold, known folded singularities, and the
resulting singular canards. Given its pervasive use in extending GSPT to nonhyperbolic
points, we provide an outline of the blow-up technique in Section 2.5. In Section 2.6, we
state the results for a regular fold. Finally, in Section 2.7 we present a summary of canard
theory for folded singularities and folded saddle-nodes.

2.1 Fenichel Theory

This thesis is concerned with singularly perturbed systems of ordinary differential equations
which take the form

ẋ = g(x, z, ε),

εż = f(x, z, ε),
(2.1)

where (x, z) ∈ Rn×Rm, and the functions f, g : Rn×Rm×R→ Rm are sufficiently smooth.
The variables x and z are considered slow and fast, respectively, and 0 < ε � 1 is a small
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parameter which induces the time scale separation between the variables. The overdot in
(2.1) denotes differentiation with respect to ‘slow time’ τ , and hence we refer to (2.1) as the
slow system. The time rescaling τ = εt leads to the fast system

x′ = εg(x, z, ε),

z′ = f(x, z, ε),
(2.2)

where the prime denotes differentiation with respect to the ‘fast time’ t. When ε 6= 0,
systems (2.1) and (2.2) are equivalent, and differ only in the speed that orbits are traversed.
Solutions of systems (2.1) and (2.2) consist of a mixture of slow and fast behaviour which
cannot be approximated in a single limit. The slow and fast behaviour may be approximated
by taking the so-called singular limit ε → 0 of the slow (2.1) and fast (2.2) systems,
respectively. Taking the singular limit in (2.2), yields the m-dimensional layer problem

x′ = 0,

z′ = f(x, z, 0),
(2.3)

where the slow variables act as parameters. The layer problem approximates (2.2) by
allowing the fast variables to evolve independently of the slow variables, which are assumed
to evolve so slowly that they are treated as parameters. Alternatively, taking the singular
limit in (2.1) gives the n-dimensional differential-algebraic system

ẋ = g(x, z, 0),

0 = f(x, z, 0),
(2.4)

known as the reduced problem, where the flow is restricted to the so-called critical manifold
f = 0.

Definition 2.1 (Critical Manifold). The critical manifold is defined as the set of equilibria
of the layer problem

S := {(x, z) ∈ Rn × Rm : f(x, z, 0) = 0}. (2.5)

The reduced problem approximates (2.1) by allowing the slow variables to evolve while
assuming that the fast variables evolve so rapidly that they instantaneously equilibrate to
S. Notice that the flow on S in the layer problem (2.3) is trivial, while the flow away from
S is undefined in the reduced system (2.4). The critical manifold is an important geometric
structure as it acts as an interface between the fast and slow dynamics of (2.3) and (2.4).
The goal of geometric singular perturbation theory (GSPT) [40, 56] is to consolidate the slow
and fast dynamics of the lower dimensional sub-systems (2.3) and (2.4), and thus elucidate
the dynamics of the full (m+ n)-dimensional system for ε > 0.

2.1.1 The layer problem

In general, the critical manifold S defines an n-dimensional manifold, i.e. the Jacobian
D(x,z)f |S has full rank. Since we assume that f is sufficiently smooth, S is a differentiable
manifold. The critical manifold is one of the most important objects in any GSPT analysis,
and singularly perturbed systems are classified based on the properties of S.
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Definition 2.2 (Normal hyperbolicity). A subset of the critical manifold Sh ⊆ S is normally
hyperbolic if all the eigenvalues of the Jacobian Dzf |Sh have non-zero real part, i.e. all
equilibria (x, z) ∈ Sh of the layer problem (2.3) are hyperbolic. Normally hyperbolic subsets
of Sh are further classified based on their stability properties:

(i) Sa ⊆ Sh is attracting if all eigenvalues of Dzf |Sa have negative real part,

(ii) Sr ⊆ Sh is repelling if all eigenvalues of Dzf |Sr have positive real part,

(iii) Ss ⊆ Sh is of saddle type if it is neither attracting or repelling.

For normally hyperbolic manifolds Sh, there exists a uniform splitting of the the eigenvalues
of Dzf |Sh . For each p ∈ Sh, there are ms eigenvalues with negative real part such that mu

eigenvalues with positive real part and ms+mu = m. This naturally leads to the definition
of local stable and unstable manifolds of Sh.

Definition 2.3. The local stable and unstable manifolds of Sh, denoted by W s
loc(Sh) and

W u
loc(Sh) respectively, are given by the unions

W s
loc(Sh) =

⋃
p∈Sh

W s
loc(p), W u

loc(Sh) =
⋃
p∈Sh

W u
loc(p). (2.6)

The locally invariant manifolds W s
loc(p) and W s

loc(p) are known as fast fibers with base point
p ∈ Sh. The family of fast fibers form a fibration or foliation of W s

loc(Sh) and W u
loc(Sh),

emanating from Sh, where dim W s
loc(Sh) = n+ms and dim W u

loc(Sh) = n+mu.
For singularly perturbed problems with normally hyperbolic critical manifolds, Fenichel

theory [40, 56] provides the fundamental tools necessary to analyse such systems from a
geometric standpoint. Before stating the theorems we define the Hausdorff distance.

Definition 2.4. The Hausdorff distance between two non-empty sets V, W ⊂ Rm+n is
defined by

dH(V,W ) = max

{
sup
v∈V

inf
w∈W

‖v − w‖, sup
w∈W

inf
v∈V
‖v − w‖

}
Fenichel’s first theorem guarantees the persistence of normally hyperbolic manifolds,

and their corresponding local stable and unstable manifolds, for sufficiently small ε > 0.

Theorem 2.1 (Fenichel’s Theorem 1 [40, 56]). Suppose that Sh is a compact normally
hyperbolic critical manifold, possibly with boundary, of system (2.1). Assume that f, g ∈ Cr,
for 1 ≤ r <∞. Then for sufficiently small ε > 0, the following holds:

(i) There exists a Cr-smooth, locally invariant slow manifold Sεh that is diffeomorphic to
Sh.

(ii) The slow manifold Sεh has a Hausdorff distance O(ε) from Sh.

(iii) Sεh is not usually unique, but all representations of the manifold lie at a Hausdorff
distance O(e−K/ε) away from each other for some K > 0.
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(iv) There exist Cr-smooth, locally invariant stable and unstable manifolds of Sεh

W s
loc(Sεh) =

⋃
pε∈Sεh

W s
loc(p

ε), W u
loc(Sεh) =

⋃
pε∈Sεh

W u
loc(p

ε), (2.7)

that are O(ε) close (in terms of the Hausdorff distance) and diffeomorphic to W s
loc(Sh)

and W u
loc(Sh) respectively.

2.1.2 The reduced problem

The layer problem (2.3) provides an approximation of the fast flow toward/away from the
critical manifold S, but at the price of trivial dynamics on S. We now turn our attention to
the reduced problem (2.4), from which we can approximate the slow flow on S. Conversely,
the trade-off is that now the flow is undefined away from S.

Recall that for normally hyperbolic critical manifolds Sh, the Jacobian Dzf |Sh is non-
singular. Thus the implicit function theorem implies that f(x, z, 0) = 0 has a local graph
representation z = h(x), such that f(x, h(x), 0) = 0. This means that Sh can be represented
over a single coordinate chart given by the slow variable base x ∈ Rn. Then the reduced
flow (2.4) on Sh is given by

ẋ = g(x, h(x), 0). (2.8)

Remark 2.1. A coordinate chart on an n-dimensional manifold S ∈ Rn+m is given by the
pair (U,ϕ), where U is an open set of S, and ϕ : U → V is a diffeomorphism from U to
the open set V = ϕ(U) ⊂ Rn. In other words, the n-dimensional manifold S is locally
diffeomorphic to the Euclidean space of dimension n.

Fenichel’s second theorem guarantees the persistence of a slow vector field on the slow
manifold Sεh that is close (in a limiting sense) to the reduced vector field on Sh.

Theorem 2.2 (Fenichel’s Theorem 2 [40, 56]). Suppose that Sh is a compact normally
hyperbolic critical manifold, possibly with boundary, of system (2.1). Assume that f, g ∈ Cr,
for 1 ≤ r <∞. Then for sufficiently small ε > 0, the following holds:

(i) The slow vector field on Sεh converges to the reduced vector field on Sh as ε→ 0.

Since Sh has a local graph representation z = h(x), it follows from Theorem 2.1 that Sεh
also has a graph representation zε = h(x, ε), for sufficiently small ε > 0. Thus the slow flow
on Sεh is given by

ẋ = g(x, h(x, ε), ε). (2.9)

In other words, for normally hyperbolic critical manifolds, we can reduce our singularly
perturbed problem to a regularly perturbed problem on Sεh. Thus we have the following
corollary:

Corollary 2.1. Hyperbolic equilibria of the reduced problem (2.4) persist as hyperbolic
equilibria of full system (2.1) for sufficiently small ε > 0.
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For ε > 0, the evolution of the base points pε ∈ Sεh of the fast fibres W s
loc(p

ε) and W u
loc(p

ε) is
governed by (2.9). Thus the individual fast fibres are not invariant under the flow of (2.1).
However, the families of fast fibres W s

loc(Sεh) and W u
loc(Sεh) are invariant in following way:

Theorem 2.3 (Fenichel’s Theorem 3 [40, 56]). Suppose that Sh is a compact normally
hyperbolic critical manifold, possibly with boundary, of system (2.1). Assume that f, g ∈ Cr,
for 1 ≤ r < ∞. Let ·t denote the solution operator of (2.1). Then for sufficiently small
ε > 0, the following holds:

(i) The foliation {W s
loc(p

ε) : pε ∈ Sεh} is positively invariant i.e.

W s
loc(p

ε) · t ⊂W s
loc(p

ε · t),

for all t ≥ 0 such that pε · t ∈ Sεh.

(ii) The foliation {W u
loc(p

ε) : pε ∈ Sεh} is negatively invariant i.e.

W u
loc(p

ε) · t ⊂W u
loc(p

ε · t),

for all t ≤ 0 such that pε · t ∈ Sεh.

Theorem 2.3 implies that a trajectory in the stable manifold W s
loc(Sεh) decays exponentially

towards its base point pε ∈ Sεh, and this decay is inherited from the unperturbed case. The
same is true for a trajectory in the unstable manifold W u

loc(Sεh), except in backward time.
Finally, we have the following corollary:

Corollary 2.2 ([40, 56]). Let αs < 0 be an upper bound for the real part of the stable
eigenvalues of the critical manifold Sh. Then there exists a constant κs > 0 such that, if
pε ∈ Sεh and qε ∈W s

loc(p
ε), then

||qε · t− pε · t|| ≤ κs exp(αst),

for all t ≥ 0, such that pε · t ∈ Sεh.
Similarly, let αu > 0 be an upper bound for the real part of the unstable eigenvalues

of the critical manifold Sh. Then there exists a constant κu > 0 such that, if pε ∈ Sεh and
qε ∈W u

loc(p
ε), then

||qε · t− pε · t|| ≤ κu exp(αut),

for all t ≤ 0, such that pε · t ∈ Sεh.

When the critical manifold is a normally hyperbolic attracting manifold, i.e. Sh = Sa,
Fenichel theory implies that after an initial transient time, the dynamics of (2.1) are com-
pletely described by the slow dynamics on the n-dimensional slow manifold Sεh, which to
leading order may be approximated by the reduced flow on Sa. Note that the Sh = Sa
case was originally dealt with by Tikhonov [102], without the geometric context and the
corresponding existence theory.

In summary, Fenichel theory guarantees that normally hyperbolic segments of the critical
manifold, i.e. normally hyperbolic manifolds of equilibria of the layer problem (2.3), persist
as locally invariant slow manifolds Sεh of the full problem (2.1) for sufficiently small ε > 0.
Furthermore, the slow vector field on Sεh is an O(ε) smooth perturbation of the reduced
vector field (2.4).
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2.2 Folded Critical Manifolds

For normally hyperbolic critical manifolds, Fenichel theory provides a fairly complete picture
of the dynamics of the full system. However, Fenichel theory breaks down at points along S
where normal hyperbolicity fails, i.e. where Dzf |S has at least one eigenvalue with zero real
part. These points correspond to bifurcations of the layer problem (2.3) under variation of
the parameter x.

Common examples of loss of normal hyperbolicity include fold or saddle-node bifurca-
tions [64, 65, 99, 100, 110], Andronov-Hopf bifurcations [51, 79, 80], as well as points of
self-intersection of S [63]. These non-hyperbolic regions can generate interesting dynamics.

Definition 2.5. The n-dimensional critical manifold S is locally folded if there exists an
(n− 1)-dimensional manifold F ⊂ S defined by

F :={(x, z) ∈ S | rank(Dzf)(x, z, 0) = m− 1, (2.10)

l · [D2
zzf(x, z, 0)(r, r)] 6= 0, l · [(Dxf)(x, z, 0)] 6= 0}, (2.11)

where l and r are the left and right nullvectors of the Jacobian (Dzf)(x, z, 0), respectively.
The set F is the set of fold points of the critical manifold, i.e. the set of saddle-node
bifurcations of the layer problem. The first condition (2.10) defines a bifurcation of the
layer problem; the last two conditions (2.11) involving the left and right nullvectors define
the saddle-node bifurcation which is interpreted geometrically as a fold.

Remark 2.2. The expression (D2
zzf)(x, z, 0)(r, r) is a symmetric multilinear vector function

[70] such that

l · [(D2
zzf)(x, z, 0)(r, r)] =

m∑
i=1

li

m∑
j=1

m∑
k=1

∂2fi
∂zj∂zk

rjrk. (2.12)

For a single fast variable (m = 1), the set of fold points is simply

F := {(x, z) ∈ S | fz(x, z, 0) = 0, fzz(x, z, 0) 6= 0, l · [(Dxf)(x, z, 0)] 6= 0}. (2.13)

The reduced problem (2.4) describes the slow flow restricted to the critical manifold
S, which necessarily lies in the tangent bundle TS of S. The total time derivative of the
algebraic constraint f(x, z, 0) = 0 is given by

Dxf · ẋ+Dzf · ż = 0,

which provides the definition of a tangent vector (ẋ, ż) of an integral curve (x(t), z(t))
constrained to the tangent bundle TS. Thus the reduced problem can be recast in the
following form:

ẋ = g(x, z, 0),

−Dzf · ż = Dxf · g(x, z, 0),
(2.14)

where (x, z) ∈ S. For normally hyperbolic segments of S, the Jacobian matrix Dzf is
non-singular, i.e. det(Dzf) 6= 0. Thus the inverse (Dzf)−1 exists and is well defined for
(x, z) ∈ Sh. Applying (Dzf)−1 to both sides of the equation for ż in (2.14) gives

ẋ = g(x, z, 0),

ż = −(Dzf)−1 ·Dxf · g(x, z, 0),
(2.15)
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where (x, z) ∈ Sh. System (2.15) can then be represented in any local coordinate chart.
In a neighbourhood of the fold F , the Jacobian Dzf is singular and the inverse (Dzf)−1

does not exist. In such cases we cannot write the reduced problem in the form of (2.15).
Instead, we employ the classical adjoint (or adjugate) of Dzf , which exists and is well
defined along F . The adjoint of a matrix A, denoted by adj(A), is defined as the transpose
of the cofactor matrix of A, i.e.

adj(A) ·A = A · adj(A) = det(A) · I.

Remark 2.3. The adjoint of any square matrix A is well defined when A has full rank and
when A is rank one deficient. If A has full rank, then so does adj(A). If A is rank one
deficient, then the rows of adj(A) are either the left nullvectors of A or the zero vector.
Similarly, the columns of adj(A) consist of either right nullvectors or the zero vector. In
other words, adj(A) is rank one. When m = 1, A = det(A) is a scalar and adj(A) = 1.

By applying adj(Dzf) to both sides of the second equation in (2.14), the reduced problem
can be written as

ẋ = g(x, z, 0),

−det(Dzf) · ż = adj(Dzf) ·Dxf · g(x, z, 0).
(2.16)

Note that along F we have det(Dzf) = 0 and system (2.16) is necessarily singular, which
generically leads to a finite time blow-up. This is problematic as we want to understand
the reduced dynamics in a neighbourhood of F . The singularity along F can be avoided by
applying the space-dependant rescaling dτ = −det(Dzf)dτ̄ to (2.16), which gives

ẋ = −det(Dzf)g(x, z, 0),

ż = adj(Dzf) ·Dxf · g(x, z, 0),
(2.17)

where the overdot now denotes differentiation with respect to τ̄ . System (2.17) is known
as the desingularised reduced problem. Notice that in regions of phase space (i.e. S) where
det(Dzf) > 0, the direction of the flow in the desingularised problem (2.17) must be reversed
to maintain consistency with the reduced flow (2.16). Otherwise, systems (2.16) and (2.17)
are topologically equivalent.

2.3 Singularities of the Reduced Problem

With the goal of studying the reduced dynamics near F in mind, we define the different
types of singularities of the desingularised system:

Definition 2.6. The set of regular singularities of (2.17) is given by

E := {(x, z) ∈ S \ F : g(x, z, 0) = 0}. (2.18)

Definition 2.7. The set of regular fold points p ∈ F of (2.17) satisfy the transversality
condition (or normal switching condition)

adj(Dzf) ·Dxf · g 6= 0. (2.19)
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Definition 2.8. The set of folded singularities of (2.17) is given by

M := {(x, z) ∈ F : adj(Dzf) ·Dxf · g(x, z, 0) = 0}. (2.20)

In other words, folded singularities violate the transversality condition (2.19).

Generically, ordinary singularities form equilibria of both the reduced and desingularised
systems. In contrast, folded singularities are equilibria of the desingularised system, but not
of the reduced system. Instead they are points where both the left and right-hands sides of
the ż-equation in (2.16) are zero, and a simple cancellation of zeros can occur. As a result,
the reduced flow may cross the fold (via the folded singularity) in finite time. Thus folded
singularities facilitate the movement of trajectories from one sheet of the critical manifold
to another of differing stability type. This unique behaviour leads us to the definition of
canards:

Definition 2.9 (Singular canards and canard Point). Trajectories of the reduced problem
(2.16) that move from the attracting sheet Sa, across F via a folded singularity, and onto
the repelling sheet Sr of the critical manifold, are known as singular canards. Trajectories
of (2.16) that move instead from the repelling sheet Sr to the attracting sheet Sa of the
critical manifold, are known as singular faux canards. The folded singularity is called a
canard point.

Geometrically speaking, the violation of transversality (2.19) is actually equivalent to a
tangency condition. A folded singularity is defined by the condition

adjDzf ·Dxf · g(x, z, 0) = 0, (2.21)

where (x, z) ∈ F . From Remark 2.3, left multiplication by adj(Dzf) is equivalent to left
multiplication by l, the left nullvector of Dzf . In essence, left multiplication by l ensures
that we are looking in the correct fast direction to identify the fold F . Furthermore, by
the definition of F in (2.11), we have l · Dxf 6= 0. Note that for one fast variable, (2.21)
simplifies to Dxf · g(x, z, 0) = 0, which clearly indicates that g is orthogonal to Dxf (which
is orthogonal to S). Thus (2.21) implies that along the fold F , at a folded singularity, the
reduced flow g(x, z, 0) projected onto the slow base x is tangent to F ⊂ S. The tangency
condition at a folded singularity is illustrated in Figure 2.1. Panel A shows the reduced flow
near a folded (node) singularity. Panel B shows the projection into the slow (x1, x2)-plane,
and we can see that the reduced flow is tangent to the fold precisely at the folded singularity.

2.3.1 One slow variable

For n = 1 slow variables, S is a one dimensional manifold and F is a zero-dimensional
manifold. In other words, the set F consists of isolated fold points which lie on the critical
manifold. On the other hand, the set of folded singularities M, defined by (2.20), satisfies
three conditions: f = 0, det(Dzf) = 0, and adj(Dzf) ·Dxf · g = 0. Since there are only two
unknown variables x and z, the above conditions cannot be fulfilled in general and M is
degenerate. Thus an extra condition (typically involving a system parameter) is needed to
make M generic. From Definition 2.5 and Remark 2.3 it follows that adj(Dzf) ·Dxf 6= 0.
Thus the only way condition (2.20) can be satisfied is if g = 0. In other words, for n = 1
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A B

Figure 2.1: Illustrative diagram of the reduced flow near a generic folded node singularity in various
projections. A: The critical manifold S (grey) is plotted in (z1, x1, x2) space, with the reduced flow
(black) near the folded singularity (solid purple circle). The attracting and repelling sheets of the
critical manifold Sa and Sr meet at a fold (thick black line). B: Projections of the fold and reduced
flow into the (z1, x1) and (x1, x2)-planes. In the slow (x1, x2) subspace, the reduced flow is tangent
to the fold precisely at the fold singularity.

the set of folded singularities in fact consists of ordinary singularities interacting with F ,
i.e. a bifurcation of equilibria.

In planar systems, folded singularities occur when, under the variation of a parameter,
the fold point and the slow nullcline intersect. This necessarily corresponds to a bifurcation
of the full system wherein an equilibrium switches stability. Linearisation of the full system
about the folded singularity reveals an Andronov-Hopf bifurcation which is singular. This
underpins the classic canard explosion which explains the rapid transition from quiescence
to relaxation oscillations via canard cycles in the van der Pol oscillator. More details will
be given in Section 2.7.1.

2.3.2 Two or more slow variables

For n ≥ 2 slow variables, the set of folded singularities is a codimension-one subset of
the fold F . Thus M forms an (n− 2)-dimensional set of equilibria of (2.17), and the
linearisation of (2.17) always has (n−2) zero eigenvalues (whose corresponding eigenvectors
are tangent toM). Folded singularities are then classified based on the two remaining non-
zero eigenvalues:

Definition 2.10. Let n ≥ 2, and let ν1, ν2 denote the non-zero eigenvalues of the lineari-
sation of (2.17) about a folded singularity q ∈ M. The folded singularity q is classified as
a

• folded node if ν1, ν2 ∈ R, and ν1 · ν2 > 0,

• degenerate folded node if ν1, ν2 ∈ R, and ν1 = ν2,

• folded saddle if ν1, ν2 ∈ R, and ν1 · ν2 < 0,

• folded saddle-node if ν1, ν2 ∈ R, and ν1, ν2 = 0,

• folded focus if ν1, ν2 ∈ C.
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Figure 2.2: Reduced flow projected into the (y, z)-plane, in a neighbourhood of A: a folded node,
B: a folded saddle, and C: a folded focus. In each figure, the fold is the y-axis, which separates Sa
(z < 0) and Sr (z > 0). The folded node has a singular strong canard γs (shown in blue) and a
singular weak canard γw (cyan). The fold and γs form a sector known as a funnel (the shaded blue
region). The funnel is filled with singular canards that rotate around γw and cross the folded node
tangent to it. The folded saddle has a singular (true) canard γt (green) and a singular faux canard
γf (red). The folded focus has no singular canards.

Folded saddles, nodes and foci are generic singularities. On the other hand, folded
saddle-nodes and degenerate folded nodes are codimension-one subsets of M. Folded node
singularities have two singular canards, the strong canard γs and the weak canard γw, which
correspond to the strong and weak eigendirections of the desingularised flow. The region
enclosed by the fold and γs is known as the singular funnel, and it is filled with singular
canards which are ‘funnelled’ through the folded node tangent to γw. In comparison, the
folded saddle singularity only has two singular canards, a (true) canard γt and a faux canard
γf . See Figure 2.2 for a comparison of the reduced flow in a neighbourhood of the three
different folded singularities.

Remark 2.4. A folded focus singularity has no singular canards or singular faux canards.

2.4 Local Normal forms

For systems with m ≥ 2 fast variables, the (m − 1) fast hyperbolic eigendirections do not
significantly alter the local dynamics near the fold. It follows that, by a centre manifold
reduction, the system can be locally reduced to an (n+ 1)-dimensional system:

Theorem 2.4 (Centre manifold reduction [16, 111]). Suppose system (2.1) has a criti-
cal manifold which is locally folded, as in Definition 2.5. Then there exists an (n + 1)-
dimensional centre manifold WC in a neighbourhood of (x∗, z∗) ∈ F , with the following
properties:

(i) WC is tangent to the (n+1)-dimensional space spanned by the slow directions and the
left nullvector of Dzf(x∗, z∗, 0).

(ii) System (2.1) reduced to WC has the form

ẋ = g̃(x, z1, ε),

εż1 = x1(d1 +O(x, z1)) + z2
1(d1 +O(x, z1)) + εO(x, z1, ε),

(2.22)

where x ∈ Rn, z1 ∈ R, and d1, d2 are non-zero constants.
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Furthermore, for n ≥ 2 slow variables, the local dynamics near a folded node or saddle
singularity is described (to leading order) by the following normal form:

Theorem 2.5 (Folded saddle and folded node normal form [111]). Suppose system (2.1)
has a critical manifold which is locally folded, as defined in Definition 2.5, and possess a
folded singularity p ∈ M of either saddle or node type. Then there exists a smooth change
of coordinates that transforms (2.22) to the canonical form

ẋ1 =
1

2
µ(x3, . . . , xn)− (1 + µ(x1, . . . , xn))z +O(x1, (x2+z)2, ε),

ẋ2 = 1 +O(x1, x2, z, ε),

ẋj = aj + gj,1(x3, . . . , xn) +O(x1, x2, z, ε), j = 3, . . . , n

εż = x1(1 + zO(x2, . . . , xn)) + z2(1 +O(x1, z) + εO(x1, x2, z, ε)),

(2.23)

where aj are constants, gj,1(0, . . . , 0) = 0, and µ(x3, . . . , xn) is the eigenvalue ratio of the
folded singularity p (with respect to the desingularised reduced system).

Setting n = 2 in system (2.23) gives the following normal form [110] for systems with a
single fast variable:

ẋ =
1

2
µy − (1 + µ)z +O(x, ε, (y + z)2),

ẏ = 1 +O(x, y, z, ε),

εż = x+ z2 +O(xyz, xz2, z3, ε(x+ y + z), ε2).

(2.24)

The corresponding desingularised reduced system is given by

ẏ = −2z (1 +O(y, z)) ,

ż =
1

2
µy − (1 + µ)z +O((y + z)2),

(2.25)

and the associated Jacobian evaluated at the folded singularity (y, z) = (0, 0) is

A(0, 0) =

(
0 −2

1
2µ −(1 + µ)

)
.

Thus linearisation of the desingularised flow (2.25) about the origin yields eigenvalues λ1 =
−1, λ2 = −µ, with eigenvectors ν1 = (2, 1)T , ν2 = (2, µ)T . If µ < 0, the folded singularity
at the origin is of saddle type, and if µ > 0 the folded singularity is of node type. Notice
that the parameter µ = λ1/λ2 represents the eigenvalue ratio of the folded singularity.

2.4.1 Bifurcations of folded singularities

Bifurcations involving folded singularities are called folded saddle-node (FSN) bifurcations,
which come in different varieties. The first type, FSN I, can be observed in system (2.24)
by taking the limit µ → 0. Linearisation of the desingularised flow (2.25) at the origin
now yields eigenvalues λ1 = −1, λ2 = 0 with eigenvectors ν1 = (2, 1)T , ν2 = (2, 0)T . The
singularity at the origin is in fact a saddle-node bifurcation of a folded node and a folded
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Figure 2.3: Reduced flow in a neighbourhood of a A: FSN I (with centre manifold WC on Sa),
B: FSN II (with WC transverse to the fold), and C: FSN III (with WC on Sa), projected into the
(y, z)-plane. In all figures, the centre manifold is shown in purple and the singular canard γs is in
green.

saddle singularity. Furthermore, the centre manifold at the origin is tangent to the fold, and
there exists a singular canard (which corresponds to the eigenvector ν1) that is transverse
to both the y and z coordinate axes (see Figure 2.3A).

To observe the other types of FSN bifurcations, we employ two rescalings: Firstly, we
rescale ỹ = µy in (2.24), which gives

ẋ = y − (1 + µ)z +O(x, ε, (y + z)2),

ẏ =
1

2
µ+O(x, y, z, ε),

εż = x+ z2 +O(xyz, xz2, z3, ε(x+ y + z), ε2),

(2.26)

where we have dropped the tildes. Secondly, we rescale ỹ = sgn(µ)
√
|µ|y in (2.24), which

gives

ẋ =
√
|µ|y − (1 + µ)z +O(x, ε, (y + z)2),

ẏ =
1

2
sgn(µ)

√
|µ|+O(x, y, z, ε),

εż = x+ z2 +O(xyz, xz2, z3, ε(x+ y + z), ε2),

(2.27)

where we have once again dropped the tildes. Note that all three normal forms (2.24),
(2.26) and (2.27) are equivalent for µ 6= 0, and linearisation of the desingularised flow at
the origin yields eigenvalues −1 and −µ. However, taking the limit µ→ 0 in systems (2.26)
and (2.27) now leads to different types of FSN singularities, with a distinct geometry and
structure.

Taking the limit µ → 0 in (2.26) gives the FSN II bifurcation, which is a transcritical
bifurcation of an ordinary singularity and a folded singularity. The centre manifold of the
FSN II is transverse to the fold and the singular canard is tangent to the z-axis. Taking
the limit µ → 0 in (2.27) gives the FSN III bifurcation, which is a pitchfork bifurcation of
two folded singularities and an ordinary singularity. The centre manifold of the FSN III is
tangent to the fold, and the singular canard is also tangent to the z-axis. See Figure 2.3 for
a comparison of the reduced flow near all three FSN bifurcations.

The FSN I and II are both common in applications, and can generate interesting dynam-
ics. The FSN I occurs in various neural models [101, 106, 112], and generates mixed-mode
oscillations (MMOs) in the forced van der Pol oscillator [12, 46, 49, 100]. The FSN II is
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the unfolding of the two dimensional singular Andronov-Hopf bifurcation seen in planar
slow/fast systems with degenerate folded singularities, such as the van der Pol oscillator
[37, 64]. Like the FSN I, the FSN II also frequently occurs in cell models [88, 90, 91, 105, 50],
and plays a role in the creation of MMOs [5, 13, 45]. Note that both types of bifurcations
can occur in the same model [39, 101]. The FSN I and II have been studied in detail in
[66, 76, 78, 108], and have been shown to possess canards for ε > 0. The FSN III bifurcation
was observed for the first time, in the context of slow/fast averaging, in our study of the
Butera model (a coupled neural model) [87]. The Butera model will be analysed in detail
in Chapter 5 of this thesis, while Chapter 7 will be devoted to analysing a normal form of
the FSN III, and formally proving the existence of canards.

2.5 The Blow-Up Technique

Recall that Fenichel theory breaks down in a neighbourhood of the fold F and other nilpo-
tent singularities (i.e. singularities with a zero eigenvalue). The key to understanding the
dynamics nearM⊂ F is the blow-up technique. This method was first applied to slow/fast
systems by Dumortier et al. [37] who studied canard cycles in the planar van der Pol system.
The blow-up is a coordinate transformation which restores sufficient hyperbolicity to degen-
erate equilibria (such as folded singularities) to allow the use of standard dynamical systems
tools. The literature is replete with examples of the application of the blow-up technique
to slow-fast systems with k = 1, 2 slow variables; see for example [64, 65, 66, 108, 99, 110].
In [111] the blow-up technique is used to analyse a folded node/saddle singularity for k ≥ 2
slow variables. For a rigorous formulation of the blow-up technique in a general context,
see [29, 36, 89].

In this section we will outline the blow-up for a general 1-fast/2-slow system whith a
folded critical manifold, trivially extended by ε′ = 0:

x′ = εg1(x, y, z, ε),

y′ = εg2(x, y, z, ε),

z′ = x(1+O(x, y, z)) + z2(1+O(x, y, z)) +O(ε) =: f(x, y, z, ε),

ε′ = 0.

(2.28)

It is necessary to consider the extended system as ε will be explicitly included in the blow-up
transformation. In the extended phase space, away from the fold curve F , the linearisation
of (2.28) along the manifold of equilibria S ×{0} yields three zero eigenvalues and one non-
zero eigenvalue. On the other hand, the linearisation along F yields four zero eigenvalues,
i.e. the entire fold and set of folded singularities M ⊂ F is a degenerate set of equilibria
of (2.28). Let X denote the vector field of (2.28), and without loss of generality, assume
that the origin is a degenerate equilibrium, i.e. X(0, 0, 0, 0) = 0, fz(0, 0, 0, 0) = 0. We define
two blow-up transformations, the cylindrical blow-up for regular folds, and the spherical
blow-up for folded singularities.

Definition 2.11. The cylindrical blow-up ΦF : BF → R4 of (2.28) is the mapping

(x, y, z, ε) =
(
r̄αx̄, ȳ, r̄β z̄, r̄γ ε̄

)
=: ΦF (x̄, ȳ, z̄, ε̄, r̄), (2.29)
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where BF = S2 × R × [0, ρ], ρ > 0, with appropriate weights (α, β, γ) ∈ N3. The y-axis is
blown up by ΦF to a cylinder with

x̄2 + z̄2 + ε̄2 = 1.

Definition 2.12. The spherical blow-up ΦM : BM → R4 of (2.28) is the mapping

(x, y, z, ε) =
(
r̄αx̄, r̄β ȳ, r̄γ z̄, r̄δ ε̄

)
=: ΦM (x̄, ȳ, z̄, ε̄, r̄), (2.30)

where BM = S3 × [0, ρ], ρ > 0, with appropriate weights (α, β, γ, δ) ∈ N4. The folded
singularity at the origin is blown up by ΦM to a 3-sphere with

x̄2 + ȳ2 + z̄2 + ε̄2 = 1.

The spherical blow-up inflates the degenerate folded singularity at the origin to 3-sphere.
On the other hand, the set of regular fold points F forms a manifold that must be dealt
with uniformly. Thus the cylindrical blow-up treats all regular fold points simultaneously in
directions transverse to the fold, and y is not rescaled. The cylindrical blow-up is essentially
a trivial extension of the planar blow-up for a single regular fold point along F .

Let Φ denote the map ΦF or ΦM , and let B denote BF or BM . Notice that Φ is proper
and surjective. Furthermore, Φ defines the induced map Φ∗ : TB → TR4 between the
appropriate tangent bundles [99]. Since X(0, 0, 0, 0) = 0, there exists a vector field X̄ on
B such that Φ∗X̄ = X. The idea is to then analyse the vector field X̄ on the manifold B;
one could utilise spherical coordinates to do this, but coordinate charts are far more useful
as they simplify calculations. Coordinate charts lead to the notion of directional blow-ups
and directional charts.

Definition 2.13 ([99]). Let I := {1, . . . , 2m}, m ∈ N. Then directional blow-ups Φi, i ∈ I
are obtained by setting one variable on Sm−1 to ±1 in the definition of the mapping Φ.
Directional charts κi : Bi → R4, i ∈ I are homeomorphic maps such that B =

⋃
i∈I Bi. In

chart κi, the blown up vector field X̄ is described by the vector field Xi. Note that m = 4
in the spherical blow-up, while m = 3 in the cylindrical blow-up.

The directional charts κi cover the 3-sphere (or cylinder) with m-planes which are or-
thogonal to the coordinate axes. Generally, it is sufficient to consider only a few directional
charts to construct a complete picture of the blow-up dynamics. For singularly perturbed
problems, the so-called classical chart κ2 : ε = +1 is the most important directional chart.
In chart κ2 of the spherical blow-up, r̄ = ε−δ, i.e. Φ2 is simply an ε-dependent rescaling of
(2.28). For this reason, the classical chart is also referred to as the rescaling chart.

Remark 2.5. We define the following notation: Let Ȳ denote an object associated with
(2.28), within the blow-up, i.e. on the blown up locus B. Let Yi denote the object in the
directional chart κi.

Within each directional chart κi, the ri = 0 hyperplane corresponds to the blown-up
image of the set of degenerate equilibria, i.e. S2 × R× {0} or S3 × {0}. It follows that the
associated vector field Xi vanishes in the ri = 0 hyperplane. We thus define a local vector
field and local division, which are required to desingularise the blown up vector field and
obtain non-trivial dynamics.
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Definition 2.14 ([99]). A local vector field X is defined on a compact smooth manifold B
by a finite open covering {Bi} of B with some smooth vector field Xi on each Bi, such that
for each pair of indices i, j ∈ I with Bi ∩ Bj 6= 0, there exists a strictly positive, smooth
function gij defined on Bi ∩Bj such that Xi = gijXj on Bi ∩Bj .

Definition 2.15 ([99]). Let {Bi} be a finite open covering of B, on which local vector fields
X and X̃ are given by Xi and X̃i. Then X̃ is the result of local division of X if there exist
smooth functions fi : Bi → R such that Xi = fiX̃i in Bi.

In our application, the functions fi are typically powers of ri so that fi only vanishes on
B where Φ fails to be a diffeomorphism (i.e. S2 × R × {0} for the cylindrical blow-up and
S3×{0} for the spherical blow-up). Local division is then performed by rescaling time by a
power of ri to give the desingularised vector fields X̃i. The vector fields Xi and X̃i have the
same phase portrait for ri > 0, but X̃i may reveal non-trivial dynamics on the set ri = 0.

We also define the change of coordinates which enables the tracking of objects and
solutions in different charts.

Definition 2.16. Let κij denote the change of coordinates that takes solutions in chart κj
and maps them to chart κi. Then

κij := κj ◦ κ−1
i . (2.31)

An ‘appropriate choice’ of weights (α, β, γ, δ) ∈ N4 should satisfy the following require-
ments [99]:

(i) Local division is possible to obtain the vector fields X̃i;

(ii) The dynamics in the ri = 0 plane can be analysed;

(iii) Perturbation methods can be used to obtain the dynamics for ri > 0;

(iv) The vector fields X̃i only have hyperbolic (or semi-hyperbolic) equilibria.

The choice of weights is problem dependent and often best determined in the classical
chart. Note that if any degenerate singularities remain after one blow-up, a succession
of additional blow-ups can be used to desingularise them and obtain (semi-)hyperbolic
equilibria; see for example [48, 59]. In light of this, the blow-up technique can be summarised
as follows:

Definition 2.17 ([99]). Let X ⊂ R4 be a vector field with a nilpotent or degenerate
singularity X(0) = 0, and let X̃ be the result of local division of X. Then a desingularisation
of X is a blow-up transformation Φ : B → R4 with blown-up locus Z = Φ−1(0) and suitable
weights (α, β, γ, δ) such that for all local vector fields Xi induced by Φ and any point p ∈ Zi
with X̃i(p) = 0, the point p is a hyperbolic or semi-hyperbolic singularity of X̃i.

Table 2.1 provides a summary of the weights used in the blow-up of several 3-dimensional
normal forms, including the regular fold, folded node, folded saddle (see Sections 2.6 and
2.7.3–2.7.4) and different types of FSN singularities. Note that the FSN cases are degenerate
and require additional parameters that need to be included in the blow-up transformation;
this will become apparent in Sections 2.7.5–2.7.7.

23



3D Normal Form Type of Blow-Up Transformation/Weights

Regular Fold Cylindrical (x, y, z, ε) = (r̄2x̄, ȳ, r̄z̄, r̄3ε̄)

Folded Node/Saddle Spherical (x, y, z, ε) = (r̄2x̄, r̄ȳ, r̄z̄, r̄2ε̄)

FSN I Spherical (x, y, z, ε) = (r̄4x̄, r̄ȳ, r̄2z̄, r̄4ε̄)

FSN II Spherical (x, y, z, ε) = (r̄2x̄, r̄ȳ, r̄z̄, r̄2ε̄)

FSN III Spherical (x, y, z, ε) = (r̄4x̄, r̄ȳ, r̄2z̄, r̄4ε̄)

Table 2.1: Blow-up weights used in the analysis of various three dimensional normal forms.

2.6 The Regular Fold

In Section 2.2 we defined three special structures of the reduced problem: regular singu-
larities, regular fold points, and folded singularities. The latter led to the phenomenon
of singular canards. Naturally, one might wonder if these special structures and solutions
persist under small perturbations in ε. We first consider the flow past a regular fold for
small ε > 0.

Consider a system with a two dimensional folded critical manifold, as per Definition
2.7. Then by the centre manifold reduction theorem 2.4, the local flow near the regular fold
(denoted by L) is described by the three-dimensional canonical system

x′ = 1 + g1(x, y, z, ε),

y′ = g2(x, y, z, ε),

εz′ = x+ z2 +O(z3, xyz, x2z, ε),

(2.32)

where gi(0, y, 0, 0) = 0 for i = 1, 2, and 0 < ε� 1. The reduced flow of (2.32) is given by

y′ = g2(x, y, z, ε), (2.33)

−2zz′ = 1 + g1(x, y, z, 0) +O(xz, yz, x2y, x3, z4). (2.34)

Note that the 1 in the z′ equation dictates that the reduced flow moves toward the fold (see
Figure 2.4).

We now blow up a segment of the fold curve L in (2.32) to a cylinder S2 × I × R,
where (x̄, z̄, ε̄) ∈ S2, ȳ ∈ I, and r̄ ∈ R. The cylindrical blow-up transformation is given
by (x, y, z, ε) = (r̄2x̄, ȳ, r̄z̄, r̄3ε̄). Specifically, the transformation in the rescaling chart
κ2 : ε̄ = 1 is given by

x = ε2/3x2, y = y2, z = ε1/3z2, ε = r3
2. (2.35)

Since ε is included in the blow-up transformation, we apply (2.35) to the extended system
{(2.32), ε′ = 0} and desingularise by a factor of ε1/3

(
1 +O(ε1/3)

)
, which gives

x′2 = 1,

y′2 = O(ε),

z′2 = x2 + z2
2 +O(ε1/3).

(2.36)
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Figure 2.4: Projection of the critical manifold (dark blue) and sections. Fast fibres are indicated
in red. Figure adapted from [76].

System (2.36) describes the flow on the cylinder in an O(ε1/3) neighbourhood of the fold
L. Notice that the blow-up has transformed the original singularly perturbed system (2.32)
into a regularly perturbed system (2.36). Setting ε1/3 = 0 in (2.36), restricted to (x2, z2),
yields a Riccati equation which has a unique solution γ. This solution γ is asymptotic to
the lower branch of the parabola x2 + z2

2 = 0 for x2 → −∞, and asymptotic to Ω > 0 for
z2 →∞ [100].

For small positive ρ and suitable rectangles J1, J2 ∈ R2, we define the sections

Σin := {(−ρ2, y, z) : (y, z) ∈ J1}, Σout := {(x, y, ρ) : (x, y) ∈ J2}, (2.37)

which are transverse to Sa and the fast fibres, respectively. The sections are shown in Figure
2.4. Let ΠL : Σin → Σout be the transition map for the flow of (2.32). Piecing together
the dynamics in the rescaling chart, as well as an entry an exit chart, gives the following
results:

Theorem 2.6 (Flow near a regular fold [100]; see also [64]). For the regular fold in the
canonical form (2.32), there exists a ρ > 0 and ε0 > 0 such that for ε ∈ (0, ε0], the following
holds:

1. There exists an interval Iout such that for y ∈ Iout, the slow manifold Sεa intersects
Σout in a smooth curve, which is a graph, i.e. xout = hout(y, ε).

2. The section Σin is mapped to an exponentially thin strip around Sεa ∩ Σout, i.e. its
width in the x-direction is O(exp(−c/ε)), where c is a positive constant.

3. The map ΠL : Σin → Σout has the form

ΠL

(
y
z

)
=

(
hout(GL(y, z, ε), ε) +O(exp(−c/ε))

GL(y, z, ε)

)
, (2.38)

where hout(GL(y, z, ε), ε) = O(ε2/3) and GL(y, z, ε) = GL,0(y) +O(ε ln ε). The func-
tion GL,0(y) = y +O(ρ3) is induced by the reduced flow on Sa from Σout to L.
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Theorem 2.6 demonstrates that solutions, and hence the attracting and repelling slow man-
ifolds, leave a neighbourhood of the regular fold L via the fast fibres O(ε2/3) close the
weakly unstable fibre of the layer problem; see Figure 2.4. Since solutions leave the critical
manifold in a neighbourhood of L, regular fold points are referred to as jump points.

2.7 Canard Theory

We now turn our attention to the persistence of singular canards away from the singular
limit. Recall that by Fenichel’s theorems, normally hyperbolic segments of S perturb to
non-unique (but exponentially close) slow manifolds Sε, which inherit the same stability
properties.

Definition 2.18. For a fixed choice of Sε, a maximal canard is a solution of the full system
(2.1) which corresponds to the intersection between the attracting and repelling/saddle-type
manifolds Sεa and Sεr/Sεs , extended by the flow of (2.1) into a neighbourhood of the folded
singularity.

Remark 2.6. Since the slow manifolds are non-unique, it follows that each maximal canard
is associated with a family of canards, which are exponentially close to the maximal canard.
Moving to the singular limit, the family of canards collapses to a unique singular canard.

2.7.1 Planar canards

Recall that for n = 1 slow variables, folded singularities are degenerate. In such cases, we
require the variation of at least one system parameter to observe the folded singularity.
For planar singularly perturbed systems, we state the following classical result (for further
details see [32, 33, 37, 65]):

Theorem 2.7 ([65]; see also [31]). Suppose a planar slow/fast system

x′ = εg(x, z, ε),

z′ = f(x, z, I, ε),

has a generic fold point p∗ = (xp, zp) ∈ S, i.e.

f(p∗, I, 0) = 0, fz(p∗, I, 0) = 0, fzz(p∗, I, 0) 6= 0, fx(p∗, I, 0) 6= 0,

as per Definition 2.7. Assume that the critical manifold is locally attracting for z < zp and
locally repelling for z > zp, and there exists a non-degenerate folded singularity for I = 0 at
p∗, namely

g(p∗, 0, 0) = 0, gx(p∗, 0, 0) 6= 0, gI(p∗, 0, 0) 6= 0.

Then a singular Andronov-Hopf bifurcation and a canard explosion occur at

IAH = H1ε+O(ε2/3),

Ic = (H1 +K1)ε+O(ε2/3),

respectively. The coefficients H1 and K1 can be calculated explicitly from normal form
transformations, or by considering the the first Lyapunov coefficient of the Andronov-Hopf
bifurcation [67].
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Figure 2.5: Canard explosion and singular Andronov-Hopf (AH) bifurcation of the VdP oscillator
(2.39). A: Solutions of the full system (shown in green) for various values of a which are indicated
on the diagram. The critical manifold is shown in blue, and the equilibrium of the full system is
indicated by a black dot. B : Bifurcation diagram of the full system with respect to a. The singular
AH bifurcation is indicated by a grey dot. The inset diagram shows the small amplitude oscillations
near AH.

Remark 2.7 (see [31]). In the singular limit IAH = Ic. For any ε > 0 and sufficiently
small, the linearised system at the Andronov-Hopf bifurcation point has a pair of singular
eigenvalues

λ(I; ε) = α(I; ε) + iβ(I; ε),

with α(IAH ; ε) = 0, αI(IAH ; ε) 6= 0, and

(i) limε→0 β(IAH ; ε) =∞ on the slow time scale τ ,

(ii) limε→0 β(IAH ; ε) = 0 on the fast time scale t.

One of the most well-know examples of a planar canard explosion is the classic van der
Pol (VdP) oscillator with constant forcing a [103], which is given by

εẋ = z − x3/3 + x,

ż = a− x. (2.39)

Figure 2.5B shows the bifurcation diagram of the full VdP system with singular AH bifur-
cation (see inset) and canard explosion. Figure 2.5A shows the progression from quiescence
to relaxation oscillations through various canard cycles. The second figure in row A shows
a small amplitude oscillation near the singular AH, which is known as a ‘canard without
head’. The next figure shows the famous ‘duck’ shaped ‘canard with head’. Notice that the
canard cycles all occur in an exponentially small parameter window; this makes it very dif-
ficult to locate them numerically with initial value solvers. Thus these elusive duck shaped
creatures were named ‘canards’ by the early French mathematicians who discovered them
in studies of the VdP oscillator [7].
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2.7.2 Folded node/saddle blow-up

Recall that system (2.24) is a normal form for both the folded node (0 < µ < 1) and
folded saddle (µ < 0). By blowing up the folded singularity at the origin, we can prove
the existence of canards for ε 6= 0 and study their properties for both cases. The spherical
blow-up transformation for the folded node/saddle is given by (x, y, z, ε) = (r̄2x̄, r̄ȳ, r̄z̄, r̄2ε̄),
where (x̄, ȳ, z̄, ε̄) ∈ S3. It suffices to study the dynamics in three directional charts: the entry
chart κ1, the rescaling chart κ2, and the exit chart κ3. The transformation in the rescaling
chart κ2 : ε̄ = 1 is given by

x = εx2, y = ε1/2y2, z = ε1/2z2, ε = r2. (2.40)

Applying transformation (2.40) to system (2.24) gives

x′2 =
1

2
µy2 − (µ+ 1)z +O(

√
ε),

y′2 = 1,

z′2 = x2 + z2
2 +O(

√
ε).

(2.41)

Similar to the regular fold case, the blow-up in the rescaling chart has transformed the
original singularly perturbed system (2.24) into a regularly perturbed system (2.41). Setting√
ε = 0 in (2.41) gives the unperturbed system, which has two explicit algebraic solutions:

γ1(t) =

(
−µ

2

4
t2 +

µ

2
, t,

µ

2
t

)
,

γ2(t) =

(
−1

4
t2 +

1

2
, t,

1

2
t

)
.

The special solutions γ1 and γ2 correspond to the eigenvalues λ1 = −µ and λ2 = −1,
respectively. These solutions are important as they connect the attracting slow manifold
(for ε̄ > 0) to the repelling slow manifold, and vice versa. Thus (γ1, γ2) can be viewed as
extensions of the singular canards. Note that the unbounded branches of (γ1, γ2) connect
to the singular canards of the reduced problem in chart κ1.

2.7.3 Folded node canards

Consider system (2.24) in the case of a folded node with real eigenvalues λ1 ≤ λ2 < 0.
Again, let µ = λ1/λ2 be the eigenvalue ratio of the folded singularity so that 0 < µ < 1.

Theorem 2.8 (Existence of maximal canards [16, 76, 99, 110, 111]). Suppose system (2.24)
has a folded node with eigenvalue ratio 0 < µ < 1. Then for sufficiently small 0 < ε � 1
and µ bounded away from zero, we have the following results:

(i) The singular strong canard perturbs to a maximal canard γs, called the primary strong
canard.

(ii) For µ−1 /∈ N, the singular weak canard perturbs to a maximal canard γw, called the
primary weak canard.
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(iii) If 2k + 1 < µ−1 < 2k + 3, k ∈ N and µ−1 6= 2k + 2, then there exist k additional
maximal canards γi, i = 1, 2, . . . , k, called secondary canards. These k secondary
canards, positioned between γs and γw, are O(ε(1−µ)/2) close to γs at a distance O(1)
from the fold curve F .

(iv) For odd µ−1 ∈ N, the secondary canards bifurcate from γw in a transcritical bifurcation.

(v) For even µ−1 ∈ N, the secondary canards bifurcate from γw in a pitchfork bifurcation.

Theorem 2.8 (i)–(ii) follows by extending the attracting and repelling slow manifolds
along the strong and weak canards for µ−1. Since they intersect transversally, the intersec-
tion will persist under small perturbations [99, 110]. Theorem 2.8 (iii)–(iv) was proven in
[110] using an extension of Melnikov theory [109], and Theorem 2.8 (v) was postulated (but
later formally proven in [76]).

Theorem 2.9 (Rotational properties of canards [16, 99, 110, 111]). Suppose system (2.24)
has a folded node with eigenvalue ratio 0 < µ < 1. Then for sufficiently small 0 < ε � 1
and µ bounded away from zero with 2k + 1 < µ−1 < 2k + 3, k ∈ N and µ−1 6= 2k + 2, we
have the following results:

(i) The primary strong canard γs twists once around the primary weak canard γw in an
O(
√
ε) neighbourhood of the folded node.

(ii) The jth secondary canard, 1 ≤ j ≤ k, twists 2j + 1 times around γw in an O(
√
ε)

neighbourhood of the folded node.

Here a twist corresponds to half a rotation (180 degrees). Thus each maximal canard has a
distinct rotation number.

Corollary 2.3 ([110]). Under the assumptions of Theorem 2.9, there exist smax − 1 sec-
ondary canards, where

smax :=

⌊
1 + µ

2µ

⌋
,

and b·c is the floor function. The definition of smax is valid away from resonances µ−1 ∈
N. The kth secondary canard γk, k = 1, . . . , smax − 1, makes k full rotations about γw.
Furthermore, the number of oscillations, denoted by s, that solutions make in an O(

√
ε)

neighbourhood of the folded node is bounded above by smax, i.e. 0 ≤ s ≤ smax.

From a geometric viewpoint, the primary weak canard γw acts as a local axis of rotation
for the slow manifolds Sεa and Sεr (and hence also the strong canard and set of secondary
canards contained therein). The strong canard forms the separatrix on Sεa that divides
trajectories which oscillate from those which do not. The funnel region Sεa is split by
the secondary canards into smax subsectors Ik, k = 1, . . . , smax, with distinct rotational
properties. Trajectories with initial conditions in Ik make (2k+ 1)/2 twists (half-rotations)
about γw. In the singular limit, the set of secondary canards collapses onto γs.
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2.7.4 Folded saddle canards

Consider system (2.24) in the case of a folded saddle with real eigenvalues λ1 < 0 < λ2.
Again, define the eigenvalue ratio µ = λ1/λ2.

Theorem 2.10 (Existence of maximal true canard [99]). Suppose system (2.24) has a folded
saddle with eigenvalue ratio µ < 0. Then for sufficiently small 0 < ε � 1 and µ bounded
away from zero, the singular true canard γt perturbs to a maximal canard called the true
canard.

Theorem 2.11 (Existence of faux canards [99]). Suppose system (2.24) has a folded saddle
with eigenvalue ratio µ < 0. Then for sufficiently small 0 < ε� 1 and µ bounded away from
zero, a singular faux canard implies the existence of a 2-parameter family of faux canards.

Until recently, Theorem 2.11 was the only result for faux canards. In [76, 78], the
authors provide a comprehensive study of the folded saddle singularity and associated faux
canards. In particular, they identify and classify different types of secondary faux canards,
their rotational properties, as well as their bifurcations from the primary faux canard.

Theorem 2.12 (Existence and bifurcations of primary and secondary faux canards [76, 78]).
Suppose system (2.24) has a folded saddle with eigenvalue ratio µ < 0. Then secondary
faux canards are defined as faux canards which lie within the fast manifolds W s/u(γf ) of
the primary faux canard as t→ ±∞. For sufficiently small 0 < ε� 1 and µ bounded away
from zero, the following holds:

(i) There exist

nα := 2 ·max

{
0,

⌊
− 1

2µ

⌋
− 1

}
+ 1,

secondary faux canards of type α (α-faux canards) for µ ∈ (−1, 0). There are no
secondary α-faux canards for µ ∈ (−∞,−1).

(ii) Secondary α-faux canards bifurcate from the primary faux canard in transcritical bi-
furcations for even −µ−1 ∈ N.

(iii) There exist no more than

nβ := 2 ·max

{
0,

⌊
−µ+1

2µ

⌋}
+ 2 ·max

{
0,

⌊
−2µ+1

2µ

⌋}
+

2 ·max

{
0,

⌊
−4µ+1

2µ

⌋}(
max

{
0,

⌊
−4µ+ 1

2µ

⌋}
+1

)
secondary faux canards of type β (β-faux canards) for µ ∈ (−1, 0). There are no
secondary β-faux canards µ ∈ (−∞,−1).

(iv) Secondary β-faux canards bifurcate from the primary faux canard in pitchfork bifurca-
tions for odd −µ−1 ∈ N.
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Theorem 2.13 (Rotational properties of secondary faux canards [76, 78]). Suppose system
(2.24) has a folded saddle with eigenvalue ratio µ < 0. Then for sufficiently small 0 < ε� 1
and µ bounded away from zero, the following holds:

(i) The set of secondary faux canards rotate about the primary faux canard in an O(
√
ε)

neighbourhood of the folded saddle.

(ii) The number of rotations that a secondary faux canard can make is bounded above by

smax :=

⌊
µ− 1

2µ

⌋
.

Remark 2.8. In [76, 78], the authors also proved the existence of switching solutions. These
are trajectories which follow either γt or γf towards the folded saddle, switch near the folded
singularity, and then follow the other canard away from the singularity. We refer the reader
to [76, 78] for further details concerning switching solutions, their rotational properties and
bifurcations.

2.7.5 Folded saddle-node type I canards

The following normal form [66]

ẋ = −z + δ(α− y2) +O(x, y, yz, z2, ε),

ẏ = 1 +O(x, y, z, ε),

εż = x+ z2 +O(z3, xz2, xyz, ε(x+y+z), ε2),

(2.42)

with parameters α ∈ R, δ = ±1, describes the local dynamics near a FSN I bifurcation.
The additional higher order terms in (2.42) are required to explicitly generate a saddle-node
bifurcation of folded singularities under the variation of the bifurcation parameter α. Note
that system (2.42) can be transformed into system (2.24) by translating one of the folded
singularities (x, y, z) = (0,±√α, 0) to the origin.

The blow-up transformation to the classical chart κ2, which is simply an ε-dependent
zoom near the FSN I, is given by

x = εx2, y = ε1/4y2, z = ε1/2z2, α = ε1/2α2. (2.43)

Notice that the parameter α is also rescaled such that limε→0 α = 0. Applying transforma-
tion (2.43) to system (2.42) yields

ẋ2 = −z2 + δ(α2 − y2
2) +O(ε1/4),

ẏ2 = ε1/4
(

1 +O(ε1/4)
)
,

ż2 = x2 + z2
2 +O(ε1/4).

(2.44)

Thus the 1-fast/2-slow system (2.42) has been transformed into a 2-fast/1-slow system
(2.44), which describes the dynamics in an O(ε1/4) neighbourhood of the FSN I singularity.
In contrast, recall that the blow-up of the regular fold and folded node/saddle normal form
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yielded a regularly perturbed system in chart κ2. The layer problem of (2.44), which is
given by

ẋ2 = −z2 + δ(α2 − y2
2),

ż2 = x2 + z2
2 ,

(2.45)

has a one-dimensional critical manifold

CM :=
{

(x2, y2, z2) =
(
−
(
α2 − y2

2

)2
, y2, δ

(
α2 − y2

2

))
, y ∈ R

}
, (2.46)

with two Andronov-Hopf bifurcations at y2 = ±√α2. The reduced flow of (2.44) simply
describes the slow motion on CM , toward larger values of y2. In particular, trajectories move
slowly through the Andronov-Hopf bifurcations and experience a delayed loss of stability,
i.e. trajectories follow CMr for sometime before being repelled.

The critical manifold CM is a very important geometric object which connects the
attracting and repelling manifolds Sa and Sr of (2.44) in the unperturbed case. It can be
interpreted as the concatenation of the primary weak canard of the folded node and the
primary faux canard of the folded saddle, i.e. the centre manifold WC in Figure 2.3A. Away
from CM , two explicit algebraic solutions of the layer problem (2.45) are known:

γ±(t2) =

(
−1

4
t22 +

1

2
,±√α2,

1

2
t2

)
,

which are extensions of the strong canard of the folded node (at y2 = −δ√α2) and the true
canard of the folded saddle (at y2 = δ

√
α2) of the reduced flow of (2.42).

Theorem 2.14 (Existence of primary maximal canards [66, 108]). Consider system (2.42),
with α2 > 0. For sufficiently small 0 < ε � 1, the solutions γ± of (2.45) always perturb
to a maximal strong canard associated with the folded node, and a maximal true canard
associated with the folded saddle.

Trajectories exponentially close to the maximal strong or true canard will cross the fold
and follow the repelling slow manifold for O(1) times before falling off. All other trajectories
are quickly attracted to CM .

Theorem 2.15 (Existence of canards and faux canards [108]). Consider system (2.42),

with α2 > 0, α2 = O(1) and δ = ±1. Let Sε1/4a and Sε1/4r denote the attracting and repelling
slow manifolds of (2.44). For sufficiently small 0 < ε� 1, the following holds:

(i) There exists a canard solution O(ε1/4) close to CM , passing through a point in Sε1/4a ,

and continuing on to a point in Sε
1/4

r .

(ii) There exists a faux canard solution O(ε1/4) close to CM , passing through a point in

Sε1/4r , and continuing on to a point in Sε
1/4

a .

Theorem 2.16 (Number of canards and faux canards [108]). Consider system (2.42), with
α2 > 0 and δ = ±1. Suppose that a (faux) canard solution exists. Then for sufficiently
small 0 < ε� 1, there are O(ε−1/4) (faux) canards.
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2.7.6 Folded saddle-node type II canards

The local dynamics near a FSN II singularity has been studied extensively in [25, 45, 66].
Near the FSN II singularity, there exists a full system singular Andronov-Hopf bifurcation
whose periodic orbits can undergo secondary bifurcations and significantly impact the local
dynamics. Guckenheimer [45] studied the periodic orbits and their bifurcations in the
µ = O(ε) regime. Krupa and Wechselberger et al. [66] added to this by studying the
µ = O(

√
ε) regime, where the periodic orbits (and their associated bifurcations) can be

ignored. Finally the transition between the two regimes was dealt with in [25]. Here we
summarise the results of [66], in the O(

√
ε) regime.

The local behaviour near an FSN II singularity is captured in the normal form [66]

ẋ = y − (µ+ 1)z +O(x, y2, yz, z2, ε),

ẏ =
1

2
µ+ a1y + a2z +O(x, y2, yz, z2, ε),

εż = x+ z2 +O(z3, xz2, xyz, ε(x+y+z), ε2),

(2.47)

where the explicit higher order terms guarantee a transcritical bifurcation of a folded sin-
gularity and a regular equilibrium. We assume that (a1 + a2) < 0, which ensures that the
ordinary singularity is a stable node on Sa for µ < 0, and a saddle on Sr for µ > 0.

The blow-up transformation to the classical chart κ2 is given by

x = εx2, y =
√
εy2, z =

√
εz2, µ =

√
εµ2, (2.48)

where (similar to the FSN I case) the parameter µ must also be rescaled. The blow-up
transformation once again converts a 1-fast/2-slow system (2.47) to a 2-fast/1-slow system

ẋ2 = y2 − z2 +O(
√
ε),

ẏ2 =
√
ε

(
1

2
µ2 + a1y2 + a2z2 +O(

√
ε)

)
,

ż2 = x2 + z2
2 +O(

√
ε),

(2.49)

which is singularly perturbed. The layer problem of (2.49), which is given by

ẋ2 = y2 − z2,

ż2 = x2 + z2
2 ,

(2.50)

has a one-dimensional critical manifold

CM :=
{

(x2, y2, z2) = (−y2
2, y2, y2), y ∈ R

}
, (2.51)

and an Andronov-Hopf bifurcation at the origin. The reduced flow of (2.49) on the manifold
CM is given by

ẏ2 =
1

2
µ2 + (a1 + a2)y2, (2.52)

which has an attracting equilibrium y2,p = −µ2/2(a1 + a2). Similar to the FSN I case, the
reduced flow (2.52), for µ2 > 0, moves solutions through the bifurcation at the origin and
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they experience a delayed loss of stability. Away from CM , an explicit algebraic solution
of the layer problem (2.50) is given by

γ+(t2) =

(
−1

4
t22 +

1

2
, 0,

1

2
t2

)
,

which for µ > 0 (µ < 0), is an extension of the singular canard γs (γt) of the folded node
(folded saddle) of the reduced flow of (2.47).

Theorem 2.17 (Existence of Primary Maximal Canard [66]). Consider system (2.47). For
sufficiently small 0 < ε� 1, the solution γ+ of (2.45) always perturbs to a maximal strong
canard associated with the folded node for µ > 0, and a maximal true canard associated with
the folded saddle for µ < 0.

Trajectories which are exponentially close to the maximal canard will cross the fold
and follow the repelling slow manifold for O(1) times before falling off. All other trajecto-
ries between the maximal strong canard and the fold are quickly attracted to CM , which
corresponds to the primary weak canard in the folded node case, i.e. WC in Figure 2.3B.

Theorem 2.18 (Existence of Canards [66]). Consider system (2.47), with µ = O(
√
ε).

Let S
√
ε

a and S
√
ε

r denote the attracting and repelling slow manifolds of (2.49). Then for
sufficiently small 0 < ε � 1, there exists a canard solution O(

√
ε) close to CM , passing

through a point in S
√
ε

a , and continuing on to a point in S
√
ε

r .

Theorem 2.19 (Number of Canards [66]). Consider system (2.47), with µ = O(
√
ε). Then

for sufficiently small 0 < ε� 1, there are O(ε−1/2) canards.

2.7.7 Folded saddle-node type III canards

A canonical model of the FSN III bifurcation is given by

ẋ = −z + δ1(α− y2) +O(ε, x, z2, zy2, y4)

ẏ = δ2y(1 +O(ε, x, z, y2))

εż = x− z2 +O(xz2, z3, ε(x+ z), ε2, εy2)

(2.53)

where 0 < ε� 1, δ1 = δ2 = ±1. The higher order terms generate a pitchfork bifurcation of
two folded singularities and an ordinary singularity, under the variation of the parameter α.
In Chapter 7 of this thesis, we will employ techniques similar to those used in the analysis
of the FSN I and II [66, 108] to unravel the dynamics of system (2.53). In particular, we will
establish the existence of canards and faux canards and study the delayed loss of stability
phenomenon.
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Chapter 3

Averaging and Floquet Theory

Neural bursting behaviour consists of a quasi steady state on a slow time scale (the silent
phase), interspersed with dramatic changes on the fast time scale (the active phase of rapid
oscillations). Models of bursting phenomena are typically singularly perturbed, with a
natural partitioning of variables into fast and slow. Combined with GSPT, averaging is a
useful tool which approximates the motion of the slow variables over the active oscillatory
phase of bursting. Essentially, the averaging technique involves ‘averaging out’ the fast
oscillations to distil the slow motion on the fast subsystem oscillatory manifold. Most
importantly, the technique allows us to identify familiar objects from canard theory (such
as canards, folded singularities and FSN bifurcations), but in an averaged context. The
averaged counterparts of canards and folded singularities are known as torus canards and
toral folded singularities, respectively.

This chapter will be devoted to a review of averaging. The structure is as follows: In
Section 3.1 we first discuss basic Floquet theory, the stability of periodic orbits and their
bifurcations. We then move onto classical averaging in Section 3.2, where we state and
prove several fundamental theorems. In Section 3.3 we discuss how the classical averaging
theorems can be applied to generic singularly perturbed systems of the form (2.2), with hy-
perbolic periodic orbits. In Section 3.4 we tackle the more problematic non-hyperbolic case,
which leads to averaged folded singularities (toral folded singularities) and torus canards.
We conclude in Section 3.5 with a description of numerical techniques used to identify and
continue averaged equilibria and folded singularities.

3.1 Floquet Theory

Before we begin a review of averaging, we first present some results from Floquet the-
ory, which deals with the stability of periodic systems in continuous time. Consider an
autonomous ordinary differential equation of the form

ẋ = f(x), (3.1)

where x ∈ Rk, f : Rk → Rk, and we assume that (3.1) has a periodic solution Γ(t) with
period T . Applying the transformation y(t) = x(t) − Γ(t) and expanding f in a Taylor
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series along Γ(t) gives

ẏ = A(t)y, (3.2)

where A(t) := Dxf |Γ(t), and we have neglected the higher order terms. We refer to the
above as the linearised equation, or the variational equation along the periodic orbit Γ(t).
The variable y represents a small perturbation away from Γ(t). Note that since Γ(t) is
T -periodic, A(t) is also T -periodic, i.e. A(t+T ) = A(t). Gaston Floquet [42, 52] developed
the theory that describes solutions of periodic systems of the form (3.2). Before stating the
main theorems, we establish some important definitions.

Definition 3.1 (Transition matrix [24, 74]). Let Y (t) be any fundamental matrix of (3.2),
i.e. the k columns of Y (t) are comprised of k linearly independent solutions of (3.2). Then
the transition matrix or principal fundamental matrix solution of system (3.2) is the matrix-
valued function Φ(t, t0) := Y (t)Y −1(t0), where t > t0, which is the unique solution of the
matrix initial value problem

d

dt
Φ = A(t)Φ, Φ(t0, t0) = I. (3.3)

Additionally, we have the following results:

(i) Given Φ(t, t0), the solution of (3.2) with initial value y(t0) = y0 is simply y(t) =
Φ(t, t0)y0.

(ii) Since Y (t) is invertible, so is Φ(t, t0) and its inverse is given by

Φ−1(t, t0) =
[
Y (t)Y −1(t0)

]−1
= Y (t0)Y −1(t) = Φ(t0, t). (3.4)

(iii) Due to uniqueness, Φ(t, t0) satisfies

Φ(t, r) = Φ(t, s)Φ(s, r), (3.5)

for all t, s, r ∈ R.

Remark 3.1. When A is a constant matrix, Φ(t, t0) = e(t−t0)A, but this is not true in the
non-autonomous case, i.e. when A = A(t).

Lemma 3.1. The transition matrix Φ(t, t0) of the T -periodic linearised equation (3.2) sat-
isfies

Φ(t+ T, 0) = Φ(t, 0)Φ(T, 0), (3.6)

for all t ∈ R.

Proof. Both Φ(t + T, 0) and Φ(t, 0)Φ(T, 0) satisfy equation (3.3). In particular, the two
equations will coincide at t = 0, and equating the right hand sides gives

Φ(t+ T, 0)
∣∣
t=0

= Φ(t, 0)Φ(T, 0)
∣∣
t=0

. (3.7)

But the solution to equation (3.3) must be unique. Thus (3.7) must hold for all t ∈ R.
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The value of the transition matrix Φ at period one is known as the monodromy matrix ;
its structure and eigenvalues play an important role in characterizing periodic solutions of
(3.2).

Definition 3.2 (Monodromy matrix [52, 74]). The monodromy matrix M is defined as the
transition matrix at period one, i.e.

M := Φ(T, 0). (3.8)

Definition 3.3 (Floquet multipliers and exponents [52, 74]). The eigenvalues of the mon-
odromy matrix M , denoted by µi, for i = 1, . . . , k, are known as the Floquet multipliers.
The exponents ρi, defined by µi = eρiT , are called Floquet exponents or Poincaré-Lyapunov
exponents.

Remark 3.2. Note that both the Floquet multipliers µi and exponents ρi may be complex
for i = 1, . . . , k. Furthermore, the Floquet exponents are not unique since µi = eρiT =
e(ρi+2πij/T )T for j ∈ Z. On the other hand, the Floquet multipliers are unique and an
intrinsic property of system (3.2).

To understand why the monodromy matrix is so important, consider the following argu-
ment. Given an initial condition y(0) = y0, the solution to (3.2) at time T is x(T ) = My0.
To extend the solution y(t) beyond t = T , we solve a new initial value problem

ẏ = A(t)y, y(T ) = My0. (3.9)

By defining the variable τ̄ = t − T , system (3.9) can be transformed to system (3.2), with
initial condition y(0) = My0. Thus y(2T ) = M2y0, and by extension, y(nT ) = Mny0. In
other words, the long term behaviour of solutions is determined by Mn.

For systems of the form (3.2), where A(t) is periodic, the monodromy matrix M always
has one Floquet multiplier that is trivially equal to one.

Theorem 3.1. The monodromy matrix M , associated with the variational equation (3.2)
along the periodic solution Γ(t), always has one trivial eigenvalue µ1 = 1. The corresponding
eigenvector v1 is given by

v1 = Γ̇(0), (3.10)

which is tangent to the periodic orbit Γ(t) at the point Γ(0).

Proof. Differentiating Γ̇(t) gives

d

dt

[
Γ̇(t) = f(Γ(t))

]
= Dxf

∣∣
Γ(t)

Γ̇(t) = A(t)Γ̇(t), (3.11)

which shows that Γ̇(t) is a solution of the variational equation (3.2). By Definition 3.1, we
can write Γ̇(t) = Φ(t, 0)Γ̇(0). Since Γ(t) is periodic, Γ̇(0) = Γ̇(T ) and

Γ̇(0) = Φ(T, 0)Γ̇(0). (3.12)

Thus v1 = Γ̇(0) is an eigenvector of the monodromy matrix, with corresponding eigenvalue
(Floquet multiplier) µ1 = 1. The eigenvector v1 = Γ̇(0) is tangent to Γ at the point Γ(0).
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Consider the solution y(t) of (3.2). Then by Definition 3.1 and Lemma 3.1, y(t+ T ) =
Φ(t, 0)Φ(T, 0)y0, where y0 = y(0). If y0 is an eigenvector of the monodromy matrix M with
associated non-trivial Floquet multiplier µ, then

y(t+ T ) = µΦ(t, 0)y0,

= µy(t).
(3.13)

After one period T , the solution y(t) will either expand (µ > 1) or contract (µ < 1) in
the direction of y0. Intuitively, the magnitude of the Floquet multiplier µ determines the
stability of periodic solutions.

Definition 3.4 (Stability of periodic orbits [74]). Suppose we have a periodic solution Γ(t)
of (3.1). Let µi, k = 1, . . . , k, denote the Floquet multipliers of Γ(t), and ρi the Floquet
exponents. Without loss of generality, we assume that µ1 = 1 is the trivial Floquet multiplier
equal to unity; note that there is a corresponding trivial exponent ρ1 = 0. Then the periodic
orbit Γ(t) is linearly stable if |µi| ≤ 1 (Re(ρi) ≤ 0), for i = 1, . . . , k. On the other hand, the
orbit is linearly asymptotically stable if |µi| < 1 (Re(ρi) < 0), for i = 2, . . . , k.

Definition 3.5 (Local bifurcations of periodic orbits). Suppose we have a periodic solution
Γ(t) of (3.1). Let µi, k = 1, . . . , k, denote the Floquet multipliers of Γ(t), and ρi the
Floquet exponents. Without loss of generality, we assume that µ1 = 1 is the trivial Floquet
multiplier equal to unity. Then we have the following results:

(i) A saddle-node bifurcation of periodic orbits (SNPO bifurcation) occurs when a real
non-trivial Floquet multiplier crosses the unit circle at +1.

(ii) A period doubling bifurcation occurs when a real Floquet multiplier crosses the unit
circle at −1.

(iii) A torus bifurcation occurs when a pair of complex conjugate Floquet multipliers cross
the unit circle.

The following theorem establishes a relationship between the Floquet multipliers and
the trace of the matrix A(t):

Theorem 3.2 (Abel’s Theorem [74]). The determinant of the transition matrix is

det(Φ(t, t0)) = exp

(∫ t

t0

tr(A(s))ds

)
. (3.14)

Since det(M) =
∏
i µi, we have the following relation for the product of the Floquet multi-

pliers (or equivalently, the sum of the Floquet exponents):

µ1 . . . µk = exp

(∫ T

0
tr(A(s))ds

)
,

ρ1 + . . .+ ρk =
1

T

∫ T

0
tr(A(s))ds.

(3.15)
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Theorem 3.2 implies that in the planar case (k = 2), the non-trivial Floquet multiplier

of (3.2) is simply µ2 = exp
(∫ T

0 tr(A(s))ds
)

.

In the remainder of this section, we state and prove Floquet’s two main theorems. The
first theorem provides an alternative formulation of the fundamental solution matrix:

Theorem 3.3 (Floquet [52, 74]). Consider the T -periodic linear system (3.2) with Mon-
odromy matrix M . Let TK = lnM denote the logarithm of M , where K is a constant
matrix. Then there exists a T -periodic matrix F (t) such that the transition matrix is

Φ(t, 0) = F (t)etK . (3.16)

Furthermore, F (t) is nonsingular for all t and continuous.

Proof. Let Ψ(t) = Φ(t+T, 0). Since A(t) is T -periodic, Ψ satisfies (3.2), i.e.

d

dt
Ψ = A(t)Ψ, Ψ(0) = M.

Because Φ is the transition matrix, all solutions Ψ can be written in the form Ψ(t) =
Φ(t, 0)Ψ(0) = Φ(t, 0)M . By Lemma 3.1,

Φ(t+ T, 0) = Φ(t, 0)M = Φ(t, 0)eTK . (3.17)

Define

F (t) = Φ(t, 0)e−tK , (3.18)

which is non-singular since Φ and e−tK are non-singular. Using (3.17),

F (t+ T ) = Φ(t+ T, 0)e−(t+T )K = Φ(t, 0)eTKe−(t+T )K = F (t).

Thus the transition matrix of (3.2) is

Φ(t, 0) = F (t)etK ,

where F (t) is non-singular and T -periodic. It is evident from (3.18) that F (t) is continuous.

If A(t) is real, then the transition matrix Φ(T, 0) will also be real; however, K will
generally be complex. Floquet’s second theorem asserts that, at the cost of doubling the
period, a real analogue of (3.16) can be found:

Theorem 3.4 (Floquet [52, 74]). Consider the T -periodic linear system (3.2) with transition
matrix Φ(t, t0). Then

Φ(t, 0) = F̂ (t)etK̂ , (3.19)

where F̂ (t) is a real 2T -periodic matrix, and K̂ is a real constant matrix. Furthermore,
F̂ (t) is non-singular for all t and continuous.
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Proof. The proof is similar to Theorem 3.3. For any non-singular matrix M , there exists a

real matrix K̂ such that M2 = eTK̂ [74]. Define

F̂ (t) = Φ(t, 0)e−tK̂ , (3.20)

and thus we have

F̂ (t+ 2T ) = Φ(t+ 2T, 0)e−(t+2T )K̂ = Φ(t, 0)M2M−2e−tK̂ = F̂ (t),

which proves that F̂ (t) is 2T -periodic. The remaining properties of F̂ (t) follow from defi-
nition (3.20).

3.2 Classical Averaging

3.2.1 Notation

Classical averaging is concerned with systems of the form

ẋ = f(x, t, ε), x(t0) = a, (3.21)

where x, a ∈ D ⊂ Rn, t, t0 ∈ [0,∞), ε ∈ (0, ε0], and f is sufficiently smooth. The function
f can be approximated by its Taylor polynomial of degree k about the point ε = 0:

f(x, t, ε) = f0(x, t) + εf1(x, t) + . . .+ εkfk(x, t) + εk+1f[k+1](x, t, ε),

with remainder term Rk+1(x, t, ε) =: εk+1f[k+1](x, t, ε). Employing a notation similar to
[92], the coefficients of the polynomial terms Pk(x, t, ε) are given by

fk(x, t) :=
f (k)(x, t, 0)

k!
,

and the coefficient of the remainder term is

f[k+1](x, t, ε) :=
f (k+1)(x, t, ε)

(k + 1)!
, 0 < ε < x.

Thus the square brackets are used to differentiate the remainder term from a regular Taylor
polynomial term.

3.2.2 Periodic averaging

Although averaging can be applied to quasi-periodic and even aperiodic systems, we restrict
our attention to the periodic case. The goal of classical periodic averaging is to solve a
perturbation problem (3.21) in so-called standard form,

ẋ = εf1(x, t) + ε2f[2](x, t, ε), x(0) = a, (3.22)

where f1 and f[2] are T -periodic functions of time t. We also assume that f1 is Lipschitz on

the domain D, with Lipschitz constant Lf1 .
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Definition 3.6. Given system (3.22), the truncated averaged equation is defined as

ż = εf̄1(z), z(0) = a, (3.23)

where

f̄1(z) =
1

T

∫ T

0
f1(z, s)ds. (3.24)

Note that z is fixed in the above integration.

Does the solution z(t) of (3.23) provide a good approximation to the solution x(t) of
the original system (3.22)? In short, the main averaging theorem establishes that, under
appropriate conditions, z(t) remains O(ε) close to x(t) for times that are O(1/ε). In the
remainder of this section we will state the averaging theorems from [92], and associated
lemmas needed to prove them. Note that there are different proofs of the averaging theo-
rems. We will focus on the classical proof which utilises near-identity transformations, as
this will become useful in subsequent sections of this thesis.

Definition 3.7 (Near-identity transformation [92]). A near identity transformation is a
family of transformations, which depend on ε, and reduce to the identity when ε = 0. In
the context of averaging, a near-identity transformation for (3.22) is given by

x = y + εu1(y, t, ε) =: U(y, t, ε), (3.25)

where u1 is T -periodic function of time.

The following lemmas and theorems will deal with proving that an appropriate function
u1 exists, such that (3.25) transforms the original system (3.22) into what is called the full
averaged equation.

Definition 3.8. For an appropriate function u1, the near-identity transformation (3.25)
transforms the original system (3.22) into the full averaged equation

ẏ = εf̄1(y) + ε2f∗[2](y, t, ε), (3.26)

for some T -periodic function f∗[2] generated by (3.25). Notice that the truncated averaged

equation (3.23) is obtained by neglecting the O(ε2) term in (3.26).

Lemma 3.2 ([92]). Consider the near-identity transformation (3.25) as a smooth mapping
y 7→ U(y, t, ε), y ∈ D, which depends on t and ε. For any bounded and connected open
set D ⊂ Rn there exists an ε0 such that for all t ∈ R and all 0 ≤ ε ≤ ε0, the mapping is
injective (one-to-one). The inverse mapping is given by

y = x+ εv1(x, t, ε) =: V (x, t, ε), (3.27)

and is smooth in (x, t, ε).
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Remark 3.3. The proof below makes use of the fact if f1 is Lipschitz on D with constant
Lf1 , then u1 is Lipschitz on D with constant 2TLf1 , where T is the period. This is formally
proved in Lemma 3.3.

Proof. Suppose U(y1, t, ε) = U(y2, t, ε). Then y1 + εu1(y1, t, ε) = y2 + εu1(y2, t, ε) and

‖y2 − y1‖ = ε‖u1(y1, t, ε)− u1(y2, t, ε)‖,
≤ εLu1‖y1 − y2‖.

If Lu1ε < 1, we have shown that unless ‖y2 − y1‖ vanishes, it is less than itself. Thus for
sufficiently small 0 ≤ ε ≤ 1/Lu1 , we have a contradiction, and U must be injective. Hence
U maps D invertibly onto U(D, t, ε), and the inverse V exists. Now we check the form of
the inverse and its smoothness.

Since DyU(y, t, 0) = In, we can use the implicit function theorem to prove that x =
U(y, t, ε) has a locally smooth inverse. Each y0 ∈ D ⊂ Rn has a neighbourhood on which U
is invertible for ε in some interval which depends on y0. Since the closure of D is compact,
it can be covered by a finite number k of these neighbourhoods, with bounds ε1, . . . , εk on
ε. If we define ε0 := min{1/Lu1 , ε1, . . . , εk}, then the local inverses (which are smooth and
have the form (3.27)) exist and must coincide with the global inverse V .

Lemma 3.3 ([92]). There exist non-unique mappings U such that (3.25) transforms (3.22)
to (3.26). In particular, u1 may be taken to have Lipschitz constant 2TLf1, where T is the
period.

Proof. First assume that the desired u1 exists, and that equations (3.22) and (3.26) are
related by the coordinate transformation x = U(y, t, ε). Then by the chain rule

ẋ = U̇(y, t, ε) +DyU(y, t, ε)ẏ,

= εu̇1(y, t, ε) + [I + εDyu1(y, t, ε)]
[
εf̄1(y) + ε2f∗[2](y, t, ε)

]
.

Taylor expanding f1(U(y, t, ε), t) about ε = 0 yields

εf1(y, t) +O(ε2) = εu̇1(y, t, ε) + εf̄1(y) +O(ε2),

and extracting leading order term in ε gives

u̇1(y, t, ε) = f1(y, t)− f̄1(y), (3.28)

which is known as the homological equation of averaging theory. Integrating (3.28), we
obtain the solution

u1(y, t, ε) =

∫ t

0

[
f1(y, s)− f̄1(y)

]
ds+ κ1(y, ε). (3.29)

Notice that the right hand side of (3.28) has zero mean (when integrating over the period
T ). It follows that (3.29) will be T -periodic in time for any choice of the function κ1.
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To formally prove the lemma, we simply reverse our steps. Given equation (3.22) and
taking u1 as in (3.29), we seek an equation for ẏ. If follows that the equation in ẏ must
have the form (3.26) for some f∗[2]. Finally we prove that if κ1(y, ε) = 0, then u1 is Lipschitz

with constant 2TLf1 . It can be easily shown that f̄1 has the same Lipschitz constant as
f1. Since u1 is periodic, for each t there exists a t̃ ∈ [0, T ] such that u1(y, t, ε) = u1(y, t̃, ε).
Thus ∥∥u1(y1, t, ε)− u1(y2, t, ε)

∥∥ =
∥∥u1(y1, t̃, ε)− u1(y2, t̃, ε)

∥∥,
≤
∫ t̃

0

(∥∥f1(y1, s)− f1(y2, s)
∥∥+

∥∥f̄1(y1)− f̄1(y2)
∥∥) ds,

≤
∫ t̃

0
2Lf1

∥∥y1 − y2

∥∥ = 2Lf1 t̃
∥∥y1 − y2

∥∥,
≤ 2Lf1T

∥∥y1 − y2

∥∥,
which finishes the proof of the lemma.

Remark 3.4. Taking κ1(y, ε) = 0 is advantageous since U(y, 0, ε) = y. In other words, initial
conditions at time t = 0 don’t need to be transformed when changing coordinates from x
to y. Due to the periodicity of u1, U(y,mT, ε) = y at each stroboscopic time mT , m ∈ Z.
Thus choosing κ1(y, ε) = 0 is known as stroboscopic averaging.

Lemma 3.4 ([92]). Let x(t, ε) denote the solution of (3.22) with initial condition x(0, ε) =
a, let y(t, ε) denote the solution of the full averaged equation (3.26) with initial condition
y(0, ε) = V (a, 0, ε) = a + εv1(a, 0, ε), and let z(t, ε) denote the solution of the truncated
averaged equation (3.23) with z(t, 0) = a. Then y(t, ε) and z(t, ε) satisfy

‖y(t, ε)− z(t, ε)‖ = O(ε), (3.30)

for time O(1/ε). The solution z(t, ε) is called the first approximation to x(t, ε).

Proof. Writing y(0, ε) = a+εv1(a, 0, ε) = a+εb(ε), the solutions y(t, ε) and z(t, ε) are given
by

y(t, ε) = a+ εb1(ε) +

∫ t

0

(
εf̄1(y(s, ε), s) + ε2f∗[2](y(s, ε), s, ε)

)
ds,

z(t, ε) = a+

∫ t

0
εf̄1(z(s, ε))ds.

Define E(t, ε) = y(t, ε) − z(t, ε). Since f1 is Lipschitz on D with constant Lf1 (and f̄1 has
the same Lipschitz constant), we have

‖E(t, ε)‖ ≤ ε‖b(ε)‖+ εLf1

∫ t

0
‖E(s, ε)‖ds+ ε2Mt, (3.31)

where M is the bound for f∗[2] on D̄. The result follows by applying the specific Gronwall
inequality from Lemma 3.6 in Section 3.6.

Building on the above Lemma, we can finally prove the classical averaging theorem.
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Theorem 3.5 (Classical averaging theorem [92]; see also [47]). Let x(t, ε) denote the solu-
tion of (3.22) with initial condition x(0, ε) = a, and let z(t, ε) denote the solution of (3.23)
with z(t, 0) = a. Then the solutions x(t, ε) and z(t, ε) satisfy the estimate

‖x(t, ε)− z(t, ε)‖ = O(ε),

for time O(1/ε).

Proof. By the triangle inequality,

‖x(t, ε)− z(t, ε)‖ ≤ ‖x(t, ε)− y(t, ε)‖+ ‖y(t, ε)− z(t, ε)‖.

The second term is O(ε) for time O(1/ε) by Lemma 3.4. Since x(t, ε) = U(y(t, ε), t, ε), the
first term is O(ε) for all time.

3.3 Averaging in a Slow/Fast Context

Recall the generic singularly perturbed system (2.2)

x′ = εg(x, z, ε),

z′ = f(x, z, ε),

from Section 2.1. Even though (2.2) is not in the so-called standard form (3.22) to which
classical averaging might be applied, averaging is still a very useful tool in understanding
the slow dynamics near a family of layer problem periodic orbits. We assume that the layer
problem of (2.2), which is given by

z′ =
dz

dt
= f(x, z, 0), (3.32)

has periodic solutions z(t, x) = γ(t, x) with period T (x), which depend on x. We assume
that the set of all periodic solutions forms a continuous family or manifold, parametrised
by the slow variable x,

P :=
{

(x, z) ∈ Rn+m : z = γ(t;x), γ′(t;x) = f(x, γ(t;x), 0), γ(t;x) = γ(t+ T ;x)
}
, (3.33)

where the period T (x) is finite and non-zero, i.e. T (x) is bounded above and below by some
constants TL and TU . We assume that each orbit γ(t, x) is hyperbolic (with all non-trivial
Floquet multipliers |µ| 6= 1); in other words, each orbit is asymptotically stable, unstable
or of saddle type, and there are no bifurcations such as a SNPO.

Now we may substitute z(t, x) = γ(t, x) into the equation for ẋ in the reduced problem
(2.3), and integrate (or average) over the period T (y),

Ẋ =
1

T (X)

∫ T (X)

0
g(X, γ(s,X), 0)ds =: ḡ(X). (3.34)

We refer to (3.34) as the averaged reduced problem. Intuitively, the averaging procedure
‘averages out’ the fast rotations of γ to distil out the slow dynamics (3.34) near the manifold
of periodic orbits P.

44



3.3.1 Two fast variables

In this section we will prove the classical averaging theorem [83] for singularly perturbed
systems with z ∈ R2. Note that [83] and other frequently cited literature [8, 68] apply a
change of variables t = T (X)θ to (3.34). While convenient in other settings (e.g. adding
stochastic forcing), it is not essential and we omit this step in the theorem and subsequent
proof. The pertinent aspect of the theorem is that z and x remain O(ε) close to γ and X,
respectively.

Theorem 3.6 ([83]; see also [8, 68]). Consider a singularly perturbed system of form (2.2)
with z ∈ R2. Assume that the layer problem (3.32) has a family of periodic orbits (3.33),
which are stable. Assume that the solution x(τ) on the slow time scale, with initial condition
x(0) = x0, stays inside D0 for 0 ≤ τ ≤ τ1. Let z0 be sufficiently close to γ(θ0, x0) for some
θ0. Then the following estimates hold:

x(τ) = X(τ) +O(ε),

z(τ) = γ(θ(τ), X(τ)) +O(ε),
(3.35)

for ε| log ε| ≤ τ ≤ τ1.

Remark 3.5. Much of this proof is adapted from [104], which deals with averaging near an
SNPO bifurcation. This case will be addressed later in Section 3.4.

Proof. Define the unit tangent p(t, x) ∈ R2 and unit normal n(t, x) ∈ R2 vectors to the
periodic orbit z = γ(t, x) as follows:

p(t, x) =
f(x, γ(t, x), 0)∥∥f(x, γ(t, x), 0)

∥∥ , n(t, x) = Jp(t, x), (3.36)

where J is the skew-symmetric matrix

J =

(
0 1
−1 0

)
.

We begin with the coordinate transformation

z = γ(t, x) + rn(t, x), (3.37)

where r ∈ R represents a small radial perturbation away from the periodic orbit γ(t, x), in
the direction of the unit normal vector n(t, x). Differentiating (3.37) gives

z′ = f(x, γ, 0) + r′n+ rn′, (3.38)

since γ satisfies (3.32), i.e. γ′ = f(x, γ, 0). Using (3.38) and Taylor expanding f(x, z, ε) and
g(x, z, ε) in (2.2) about (z, ε) = (γ, 0) yields the following system:

x′ = ε
(
g(x, γ, 0) +Dzg(x, γ, 0)nr +O

(
ε, r2

))
,

r′n+ rn′ = Dzf(x, γ, 0)nr +O
(
ε, r2

)
.

(3.39)
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Notice that since n · n = 1, it follows that n · n′ = 0. Thus to eliminate n′ we project the
fast variables onto the unit normal vector, i.e. left multiply the equation in r′ and n′ by nT ,
which gives

x′ = ε
(
g(x, γ, 0) +Dzg(x, γ, 0)nr +O

(
ε, r2

))
,

r′ = nTDzf(x, γ, 0)nr +O
(
ε, r2

)
.

(3.40)

For ease of notation, we define the coefficients

a(t;x) = nTDzf(x, γ, 0)n,

b̃(t;x) = Dzg(x, γ, 0)n.

Now we average the fast radial motion in (3.40) over the period T (x). Formally, there exists
a near-identity coordinate transformation of the form

r = α(t;x)R+O(R2), α ∈ R,

where R is small, which transforms (3.40) to

x′ = ε
(
g(x, γ, 0) + b̃αR+O

(
ε,R2

))
,

R′ = āR+O
(
ε,R2

)
,

(3.41)

where ā(x) is the average of a(t;x) over the period T (x). The coefficient α is chosen so that

1

α

dα

dt
= a(t;x)− 1

T (x)

∫ T (x)

0
a(t;x)dt, α(0) = 1.

Let b := b̃α. We average the slow motion by introducing the near-identity coordinate
transformation

x = u+ εw(t, R, u). (3.42)

In a similar fashion to the radial averaging, the function w can be expanded as a power
series in R, and the coefficients chosen such that (3.43) transforms (3.41) to

u′ = ε
(
ḡ + b̄R+O

(
ε,R2

))
,

R′ = āR+O
(
ε,R2

)
.

(3.43)

Specifically, the components of w are chosen such that

dwj
dt

= gj − ḡ + (bj − b̄j)R+O(ε,R2), j = 1, 2.

The averaging procedure has produced a slow/fast system (3.43) with critical manifold
S := {R = 0}. If follows from Lemma 3.7 that ā = ρ2, the non-trivial Floquet exponent. We
assume that ρ2 6= 0, i.e. P is not folded. Since we assumed that the periodic orbit γ is stable,
ρ2 < 0 and the critical manifold is attracting. Fenichel theory guarantees the existence of
a slow manifold O(ε) close to S. Thus in an O(ε) neighbourhood of the critical manifold,
the classical averaging theorem applies (see Theorem 3.5) and the estimates follow.
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Remark 3.6. When the periodic orbit γ is unstable, the proof can be similarly constructed,
except in reverse time. Thus trajectories will approach the critical manifold R = 0, and the
classical averaging estimates still hold.

When γ is of saddle type, the statement of Theorem 3.6 needs to be modified slightly. In-
stead of the initial condition z0 being sufficiently close to γ(θ0, x0), the trajectory (x, γ(t;x))
must be contained in the fibers of the stable or unstable manifold of P. In other words,
let (x, γ(t;x)) ∈ W s(P) or (x, γ(t;x)) ∈ W u(P). With that minor modification, the proof
follows. Note that in the case (x, γ(t;x)) ∈ W u(P), time needs to be reversed as discussed
above.

3.4 Averaging in the Non-Hyperbolic Case

The averaging procedure outlined in Section 3.3.1 relies on the fact that the periodic orbit
γ is hyperbolic. Clearly this breaks down at an SNPO bifurcation, i.e. when P is folded.
In a recent study, Vo [104] (see also [107]) addressed this issue for m = 2 fast variables and
any number of slow variables n ∈ N. Here we provide a summary of the essential results.

Consider system (2.1) with m = 2 fast variables. We make the following assumptions:

(i) Assume that the layer problem (2.3) has a manifold of limit cycles P, as defined by
(3.33), with finite non-zero period T .

(ii) Assume that P is folded, i.e. possess a manifold of SNPOs,

PF := {(x, z) ∈ P : ρ2 = 0} ,

where ρ2 is the non-trivial Floquet exponent. Furthermore, assume that P is non-
degenerate, and can be partitioned into attracting (ρ2 < 0) and repelling (ρ2 > 0)
subsets (separated by PF ), i.e. P = Pa ∪ PF ∪ Pr.

(iii) Assume that the critical manifold S of (2.3) and P are disjoint.

Theorem 3.7 ([104]). Consider system (2.2), with n = 2 slow variables, under assumptions
(i)–(iii). Let (x, γ(t;x)) ∈ PF . Then there exists sequence of near-identity transformations
which, in a neighbourhood of (x, γ(t;x)), transform (2.2) to the (n+1)-dimensional slow/fast
system

u′ = ε
(
ḡ + d̄R+ ēu+O

(
ε,R2, Ru, u2

))
=: G(R, u, ε),

R′ = āTu+ b̄R2 + c̄TRu+O
(
ε,R3, R2u, u2

)
=: F (R, u, ε).

(3.44)

Proof. The proof is similar to the hyperbolic case in Theorem 3.6, which we have already
proven in detail. We give a short outline:

As in the hyperbolic case, the idea is to make a coordinate transformation (3.37) to
switch to a coordinate frame that moves with the limit cycle γ, and Taylor expand f and
g about (x, z, ε) = (0, γ, 0). It follows from Lemma 3.7 that the average of the linear radial
term is zero, and it can be removed via another coordinate transformation. Finally, the fast
oscillations are averaged out via a series of near-identity coordinate transformations. We
refer the reader to [104] for further details.
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As a result of Theorem 3.7, we can study the properties of the averaged radial system
(3.44) using Fenichel theory and other familiar techniques from Chapter 2. Objects such
as the critical manifold S and the manifold of fold bifurcations F are defined in the usual
manner:

S :=
{

(R, u) ∈ R1+m : F (R, u, 0) = 0
}
,

F := {(R, u) ∈ S : FR(R, u, 0) = 0} .

Definition 3.9 (Toral folded singularities [104]). The set of folded singularitiesM of (3.44)
is defined as

M := {(R, u) ∈ F : (DuF )G = 0} .

Thus the original system (2.2) possess a folded singularity of periodic orbits or toral folded
singularity, if it has a periodic orbit (x, γ(t;x)) ∈ PF such that

ā · ḡ = 0, (3.45)

where ā and ḡ are the averaged coefficients in (3.44).
In the same manner as folded singularities, toral folded singularities are classified based

on the two non-zero eigenvalues of the desingularised flow of (3.44); see Definition 2.10.

Condition (3.45) is the averaged analogue of the violation of transversality (2.19): the
projection of the averaged flow along P onto the averaged slow variable subspace is tangent
to the projection of PF . The toral folded singularity allows the averaged radial flow to cross
the fold, just like a folded singularity. This leads to the definition of singular torus canards.

Definition 3.10 (Singular torus canards [104]). Suppose system (2.2), under Assumptions
(i)–(ii), possess a toral folded singularity. A singular (faux) torus canard is a singular (faux)
canard solution of the averaged radial system (3.44).

While the results of [104] are an important theoretical step forward in the extension
of canard theory to the torus canard case, many open problems remain. Most notable is
the fact that the proof of Theorem 3.7 breaks down for systems with more than two fast
variables.

3.5 Numerics: Averaging in slow/fast systems

The averaging procedure outlined in Theorem 3.7 produced an explicit averaged reduced
normal form (3.44), which is an essential step needed in the proof of the theorem. From
this normal form, toral folded singularities are easily defined (see Definition 3.9). However,
computing the averaged coefficients of (3.44) can prove cumbersome and tedious (though
it has been done for a selection of models [104]). In light of this, we return to the original
definition of the averaged reduced system given in (3.34). In an effort to find a more simple
and robust numerical implementation of averaging, we focus on directly simulating the
averaged slow vector field. Numerical continuation facilitates the computation of averaged
nullclines and equilibria as zeros of the averaged vector field. Since we are not computing
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the averaged coefficients in (3.45), the definition of toral folded singularities needs to be
tweaked before we can detect them.

Consider a standard singularly perturbed system of the form (2.1), with slow variable
x ∈ R2, and fast variable z ∈ Rm. Assume that the layer problem has a family of periodic
orbits (3.33).

3.5.1 Averaged nullclines

The averaged nullclines can be computed by reformulating the layer problem of (2.1) as a
boundary value problem (BVP), with m periodic boundary conditions,

ż = T · f(x, z, 0), z(0) = z(1), (3.46)

where t ∈ [0, 1]. Since the interval of periodicity is rescaled to the unit interval, the period
T becomes an explicit parameter in (3.46). To guarantee uniqueness and fix the phase of a
periodic solution, we impose the integral phase condition∫ 1

0
(z(t;x)− z̃(t;x))T z̃t(t;x)dt = 0, (3.47)

where z̃(t;x) refers to the layer problem solution at the previous continuation step. Finally,
we impose one of the following integral constraints:∫ 1

0
g1 (x1, x2, z(t;x1, x2), 0) dt = C1, (3.48)∫ 1

0
g2 (x1, x2, z(t;x1, x2), 0) dt = C2, (3.49)

where C1,2 = 0. System (3.46), subject to constraints (3.47)–(3.48) with C1 = 0, defines the
x1 averaged nullcline, in the slow (x1, x2)-plane. The problem is easily implemented in the
software package AUTO [34] as a two-point BVP, with three free continuation parameters
{T, x1, x2}. The x2 averaged nullcline is computed by swapping constraint (3.48) for (3.49),
with C2 = 0.

3.5.2 Averaged equilibria

In any phase plane analysis, the intersection of nullclines naturally define equilibria of
the system. The same is true in this case with regard to the averaged nullclines – their
intersections give averaged equilibria. Using a similar boundary value set up as in the
previous section, we can easily identify and continue the averaged equilibria with respect
to a system parameter.

Consider the BVP defined by equations (3.46) and (3.47), subject to integral constraints
(3.48) and (3.49), with C1,2 = 0. Appropriate starting data can be obtained by identifying
an intersection of the averaged nullclines and sampling a solution from AUTO (or continuing
until C1,2 = 0). The implementation described above naturally facilitates the continuation
of any averaged equilibria with respect to a system parameter λ; the active continuation
parameters would be {T, x1,2, λ}. Any additional bifurcations flagged by AUTO while
continuing in λ can easily be continued with respect to a second system parameter, thus
enabling the construction of two-parameter bifurcation diagrams.
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3.5.3 Toral folded singularities

Computing the averaged (toral) folded singularities is more complicated. For manifolds
of equilibria, we know that at a folded singularity the transversality condition (2.19) is
violated. Recall that violation of transversality is geometrically equivalent to a tangency
of the reduced flow and the fold (projected onto the slow subspace); see Section 2.3. The
averaged version of this tangency condition is given by (3.45) – although this only formally
holds for m = 2 fast variables. We adapt the geometric interpretation of (toral) folded
singularities to facilitate their detection in AUTO. Note that the method described below
only works for n = 2 slow variables.

Let n̂(x1, x2) be the unit normal vector to PF , the SNPO curve from the layer problem,
projected onto the slow (x1, x2)-plane. Let a(x1, x2) := (a1(x1, x2), a2(x1, x2))T denote the
averaged slow vector field (3.48)–(3.49), and â the normalised vector. Then, using a dot
product condition, we define the set of averaged (toral) folded singularities as

M := {(x1, x2, z) ∈ PF
∣∣D := n̂(h1, h2)T â(h1, h2) = 0}, (3.50)

where D : R2 → R. For n = 2 slow variables, PF is a one-dimensional manifold, and
projected onto the slow subspace it is simply a curve in the (x1, x2)-plane. Thus the normal
vector can be written as

n(x1, x2) =

(
dx2

−dx1

)
.

To identify a toral folded singularity, we implement system (3.46) extended by

y′1 = 0,

y′2 = 0,
(3.51)

where y1 and y2 act as dummy variables. Once again we impose the integral phase condition
(3.47), and the integral constraints (3.48)–(3.49), which keep track of the averaged slow
vector field. Using two integral constraints, we assign the value of x1 and x2 to the dummy
variables y1 and y2: ∫ 1

0
y1 dt = x1,

∫ 1

0
y2 dt = x2, (3.52)

which alternatively could be achieved using boundary conditions. Finally we implement the
dot product condition (3.50) via the integral constraint∫ 1

0
((y2 − ỹ2)C1 − (y1 − ỹ1)C2) dt = C̃, (3.53)

where ỹ denotes the solution y (i.e. x) at the previous continuation step. Note that for a
sufficiently small step size, (y − ỹ) ≈ dx. We refer to {(3.46) − (3.49), (3.51) − (3.53)} as
the extended system.

In AUTO, we first identify the fold in the BVP {(3.46)− (3.49)}, which corresponds to
the SNPO of (2.3). This fold curve is continued in (x1, x2) under the extended system, with
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active continuation parameters {T, C̃, C1,2, x1,2}. A toral folded singularity is flagged when
C̃ = 0. The above implementation provides a quick and easy way to locate a toral folded
singularity for a fixed set of system parameters. However, the toral folded singularities do
not form solutions of the zero problem and thus it is not possible to continue them with
respect to a system parameter in AUTO. Alternatively, we can set up a grid in parameter
space, locate the toral folded singularity at each grid point, and then interpolate to produce
a smooth ‘bifurcation curve’. This is not ideal for toral folded singularity continuation, and
we turn our attention to formulating a better numerical continuation method.

3.5.4 Continuation of toral folded singularities

The basic approach to toral folded singularity continuation is to set up two copies of the layer
problem period orbit γ(t;x), with a fixed (small) distance between them. This allows for
the computation of the normal vector n while continuing along the SNPO curve. However,
simultaneously continuing two periodic orbits requires an explicit implementation of an
SNPO condition for both orbits in AUTO. To resolve this issue, we first implement the
variational equation and compute the Floquet multipliers (and eigenvectors).

Recall that any solution y(t) of the variational equation (3.2) satisfies y(T ) = My(0),
and a multiplier (eigenvalue) µ of M satisfies u(T ) = µu(0). Let µi be the ith Floquet
multiplier associated with γ(t;x), and let ui ∈ Rm be the associated eigendirection of the
monodromy matrix. Then it follows that (µi, ui) is a solution of the following BVP:

u̇(t) = T (x)Dzf(x, z(t;x), 0)u(t),

u(1) = µu(0),

u(0)Tu(0) = h,

(3.54)

where t ∈ [0, 1], and z(t;x) is the periodic orbit segment generated by implementing
{(3.46), (3.47)}.

Setting µi = eρi and wi(t) = eρitui(t) transforms (3.54) to the equivalent BVP

ẇ(t) = T (x)Dzf(x, z(t;x), 0)w(t) + ln |µ|w(t),

w(1) = sgn(µ)w(0),

w(0)Tw(0) = h,

(3.55)

which improves the numerical stability of the computation. The above BVP has a trivial
solution (µ,w) = (0, 0) for h = 0, which forms the starting point. As µ is continued,
Floquet multipliers µi are flagged as branch points, from which emanate secondary solution
families (µi, w) with h 6= 0. For this particular problem, we continue until µ2, the non-
trivial Floquet multiplier closest to the unit circle, is flagged. The normalization h = 1
uniquely determines the solution (µ2, w2). The method described above is utilised in the
continuation of point-to-cycle connections; we refer the reader to [35, 61] for further details.

After normalization, we continue in µ2 until we reach the SNPO, which is defined by
ln |µ2| = 0. We then extend system {(3.46), (3.47), (3.55)} and create a ‘second copy’ of the
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problem,
żc = Tc(xc)f(xc, zc, 0),

zc(0) = zc(1),∫ 1

0
(zc(t;xc)− z̃c(t;xc))T z̃ct(t;xc)dt = 0,

ẇc(t) = Tc(xc)Dzcf(xc, zc(t;xc), 0)wc(t) + ln |µ2|wc(t),
wc(1) = sgn(µ2)wc(0),

wc(0)Twc(0) = h,

(3.56)

with the additional boundary condition

dx = ‖(x− xc)‖2. (3.57)

A periodic orbit sampled from system {(3.46), (3.47), (3.55)} is used as starting data for the
extended system, with dx = 0. Note that dx represents the distance in x between the two
solutions of our problem. Since µ2 = 0, h = 1 will remain fixed for both solutions in future
continuations (i.e. both solutions will be constrained to the SNPO curve), we do not create
copies of those parameters. Next, we grow the two copies apart by continuing in dx until
we reach a suitable small, non-zero value. By fixing dx 6= 0 in {(3.46), (3.47), (3.55), (3.56)},
we essentially create a ‘trailing’ periodic orbit, restricted to the SNPO curve. Using the
difference (x − xc), we can approximate the normal vector n to the SNPO curve in the
x-plane. We extend our system once again by implementing the slow averaged vector field
and the dot product condition ∫ 1

0
g (x, z(t;x), 0) dt = C,∫ 1

0
n̂TC dt = C̃,

(3.58)

where C, x, xc ∈ R2. The final extended system defined by {(3.46), (3.47), (3.55)− (3.58)}
consists of 4m differential equations, (4m+3) boundary conditions, and 5 integral constraints.
Thus we require 9 active continuation parameters. Next, we continue in {T, Tc, x, xc, C, C̃}
until we reach the toral folded singularity at C̃ = 0. Finally, with C̃ fixed, we continue in
an additional system parameter to generate the toral folded singularity bifurcation curve.

Remark 3.7. For one slow variable, the above numerical implementation can be greatly
simplified. Similar to folded singularities with one slow variable (see Section 2.3.1), toral
folded singularities occur when the averaged nullcline intersects the SNPO. In this case,
toral folded singularities can be identified in the BVP {(3.46), (3.47)}, while continuing
along the SNPO curve, coupled with the condition

∫ 1
0 g(x, z) dt = 0. In other words, a toral

folded singularity is flagged as an equilibrium of the system and can be easily continued
with respect to a system parameter.
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3.6 Appendix

Lemma 3.5 (General Grönwall Lemma [92]). Suppose that for t0 ≤ t ≤ t0 + T we have

ϕ(t) ≤ α+

∫ t

t0

β(s)ϕ(s)ds, (3.59)

where ϕ and β are continuous and β(t) > 0. Then

ϕ(t) ≤ α exp

∫ t

t0

β(s)ds,

for t0 ≤ t ≤ t0 + T .

Proof. Define

Φ(t) = α+

∫ t

t0

β(s)ϕ(s)ds.

Then ϕ(t) ≤ Φ(t), and Φ̇(t) = β(t)ϕ(t). Since β(t) > 0, we have

Φ̇(t)− β(t)Φ(t) ≤ 0.

Using an integrating factor, the above differential inequality can be rewritten as

d

dt

(
Φ(t) exp

(
−
∫ t

t0

β(s)ds

))
≤ 0,

and integrated to obtain

Φ(t) exp

(
−
∫ t

t0

β(s)ds

)
− α ≤ 0, (3.60)

where α = Φ(t0). Rearranging (3.60) gives the required result.

Lemma 3.6 (Specific Grönwall Lemma [92]). Suppose that for t0 ≤ t ≤ t0 + T we have

ϕ(t) ≤ δ2(t− t0) + δ1

∫ t

t0

ϕ(s)ds+ δ3, (3.61)

with ϕ continuous for t0 ≤ t ≤ t0 + T , and constants δ1 > 0, δ2 ≥ 0, δ3 ≥ 0. Then

ϕ(t) ≤
(
δ2

δ1
+ δ3

)
eδ1(t−t0) − δ2

δ1
,

for t0 ≤ t ≤ t0 + T .
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Proof. Rearranging equation (3.61) gives

ϕ(t) +
δ2

δ1
≤ δ1

∫ t

t0

(
ϕ(s) +

δ2

δ1

)
ds+ δ3 +

δ2

δ1
,

which is of the same form as (3.59), i.e.

ϕ̂(t) ≤ α̂+

∫ t

t0

β̂ϕ̂(s)ds,

where ϕ̂(t) = ϕ(t) + δ2/δ1, α̂ = δ3 + δ2/δ1, and β̂ = δ1. Applying the general form of
Grönwall’s Lemma and rearranging gives the desired result.

Lemma 3.7 (see [104]). Let (x, γ(t, x)) ∈ P, and let n(t, x) denote the unit normal vector
to the periodic orbit γ(t, x). Then

1

T (x)

∫ T (x)

0
nT (Dzf)nds =

1

T (x)

∫ T (x)

0

(
trDzf −

fT (Dzf)f

‖f‖2
)
ds = ρ2,

where f and its derivatives are evaluated along (x, γ(t, x), 0), and ρ2 is the non-trivial Flo-
quet exponent. When (x, γ(t, x)) ∈ PF , we have

1

T (x)

∫ T (x)

0
nT (Dzf)nds = 0.

Proof. A simple calculation shows that

nT (Dzf)n =
1

‖f‖2
(

f2

−f1

)T (
f1x1

f1x2
f2x1

f2x2

)(
f2

−f1

)
,

=
1

‖f‖2
(
f1

f2

)T (
f2x2

−f1x2
−f2x1

f1x1

)(
f1

f2

)
,

=
1

‖f‖2 f
T adj(Dzf)f,

where adj denotes the classical adjoint or adjugate matrix. Since Dzf is invertible along γ,
the adjoint matrix can be rewritten as

adj(Dzf) = det(Dzf) · (Dzf)−1. (3.62)

The Cayley-Hamilton theorem states that any n × n invertible matrix A satisfies its own
characteristic equation, that is

An + cn−1A
n−1 + . . .+ c1A+ (−1)ndet(A)In = 0.

Rearranging the above equation gives an expression for the inverse of A:

A−1 =
(−1)n−1

det(A)

(
An−1 + cn−1 + . . .+ c1In

)
.

54



For a 2× 2 matrix, the coefficient c1 = −tr(A). Applying the Cayley-Hamilton theorem to
(3.62) gives

adj(Dzf) = tr(Dzf)I2 −A,

and thus

nT (Dzf)n = tr(Dzf)− fT (Dzf)f

‖f‖2 . (3.63)

Averaging the first term over the period T (x) gives the sum of the Floquet exponents; since
z ∈ R2, the sum is simply ρ2, the non-trivial exponent. The average of the second term is
zero since

fT (Dzf)f

‖f‖2 =
1

2

d

dt

(
ln

(
1

2
fT f

))
,

and f is T (x)-periodic.
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Chapter 4

Torus Canards in the
Wilson-Cowan-Izhikevich Model

In this chapter we present a brief study of the Wilson-Cowan-Izhikevich (WCI) model, a
minimal neural bursting model which is known to posses torus canards [18, 104]. The aim
of this chapter is to demonstrate how the tools and techniques outlined in Chapters 2 and
3 are utilised to dissect the phenomenon of torus canards. The extended version of the
Wilson-Cowan model [113], first proposed by Izhikevich [54], is given by the set of ordinary
differential equations

ẋ = −x+ S(rx + ax− by + u) =: f1(x, y, u),

ẏ = −y + S(ry + cx− dy + fu) =: f2(x, y, u),

u̇ = ε(k − x) =: εg(x),

(4.1)

where S(z) = 1/(1 + exp(−z)) and 0 < ε � 1. System (4.1) is known as the WCI model.
The small parameter ε creates a timescale separation, and (x, y) ∈ R2 are fast while u ∈ R
is slow. Wilson and Cowan [113] originally used a mean-field approach to construct a two-
dimensional ODE system describing the dynamics and interactions of simple excitatory and
inhibitory model neurons. The variable x(t) represents the proportion of excitatory cells
firing per unit time (at time t), while y(t) represents the proportion of inhibitory cells.
The sigmoid function S(x) is the firing rate or response function, which gives the expected
proportions of the subpopulations receiving at least threshold excitation. Izhikevich [54]
extended the Wilson-Cowan model by adding a slow sub-system u̇ = εg(x). This addition
creates bistability and thus allows for bursting behaviour, which is not possible in the
original model. Following [18], we set g(x) = k − x and treat k and rx as the primary and
secondary bifurcation parameters, respectively. Unless otherwise stated, the values of the
remaining parameters are given in Table 4.1.

4.1 Full System Bifurcation Analysis

Before we present a GSPT analysis of the WCI model, we briefly review the full system
bifurcation structure. Figure 4.1 shows the bifurcation diagram of (4.1), with respect to
the parameter k. For large values of k we have a stable branch of equilibria which loses
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Parameter Value Parameter Value

a 10.5 f 0.3

b 10 ry −9.7

c 10 ε 0.03

d −2

Table 4.1: Parameter values of the WCI model 4.1, as in [18].
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Figure 4.1: Bifurcation analysis of the full system (4.1), with respect to k, for rx = −4.76.

stability at a subcritical Andronov-Hopf bifurcation (AH). The periodic orbits emanating
from AH are split into four branches, separated by three SNPO bifurcations (labelled PF ).
The second and fourth branches are stable. These stable branches of periodics correspond to
the two spiking solutions of the model; see Figure 4.7C. As k is decreased, the lower fourth
branch loses stability at a supercritical torus bifurcation (TR) where a phase space torus is
born (see [82, 69, 53] for more examples of torus bifurcations in slow/fast systems). Notice
that the model exhibits bistability for values of k between the two lower PF bifurcations.
As k is decreased below TR, the torus grows in amplitude. The torus structure can be
seen in the Poincaré map in Figure 4.2A. The return map is constructed by setting up a
Poincaré section (y = constant), and recording when the flow of (4.1) crosses the section
transversally. The value of x is then plotted versus its value at the previous crossing to
produce the map. In Figure 4.2B, we see that the torus quickly begins to break down as k
is decreased, and the full system transitions to bursting (see Figure 4.3C).

Torus breakdown is a complex phenomenon which can generate chaos. The breakdown
is preceded by a loss of smoothness [41] and the torus becoming resonant [1], which leads
to the disintegration of the torus in a number of different ways. Some of these pathways
include homoclinic tangencies, a SNPO bifurcation where the unstable set of the saddle-node
periodic orbit forms a non-smooth manifold homeomorphic to the torus, period doubling
bifurcations, and other bifurcations involving periodic orbits (see [2] for further details).
The complexities and mode of torus breakdown in the WCI model (and the Butera model
studied later in Chapter 5) are left for future analysis.

From the full system bifurcation analysis, it is not obvious why the full system transitions
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Figure 4.2: Poincaré return maps of the full system for rx = −4.76 and A: k = 0.7574, and B:
k = 0.75738145407.

from spiking to bursting. We see that TR is correlated with this transition, but that is all
we can glean. To better understand this transition, and the genesis of the spiking and
bursting patterns, we switch to a GSPT/averaging approach, as outlined in Chapters 2 and
3.

4.2 The Layer Problem

Setting ε = 0 in system (4.1) yields the layer problem

x′ = f1(x, y, u),

y′ = f2(x, y, u),
(4.2)

where the slow variable u is treated as a parameter. The Jacobian of (4.2) is given by

A(x, y;u) =

(
−1+aS̄(rx + ax− by + u) −bS̄(rx + ax− by + u)
cS̄(ry + cx− dy + fu) −1−dS̄(ry + cx− dy + fu)

)
, (4.3)

where S̄(z) = exp(−z)/(1 + exp(−z))2. The set of equilibria of (4.2) form the critical
manifold

S := {(x, y, u) ∈ R3 : f1 = f2 = 0},

which, since we only have one slow variable, is a one-dimensional manifold embedded in
R3. A projection of S into the (x, u)-plane is shown in Figure 4.3A in red. The stability of
S would typically be determined by linearising about S (evaluating the Jacobian A|S) and
examining the eigenvalue structure. However, f1 = f2 = 0 cannot be solved explicitly and
so we use numerical software to determine the stability and identify any bifurcations of S.

The critical manifold is partitioned by two fold bifurcations (labelled Fu and Fl) into
three branches. The lower branch is attracting and the middle branch is of saddle type. For
large u, the upper branch is attracting, but as u is decreased the branch loses stability at
a supercritical Andronov-Hopf bifurcation (labelled AH), from which we see the emergence
of periodic orbits. Let γ(t;u) denote a particular periodic orbit of the layer problem (4.2),
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Figure 4.3: A: Bifurcation analysis of the layer problem (4.2) with (respect to u) for k = 0.6 and
rx = −4.76. The critical manifold is shown in red, while branches of periodic orbits are shown in blue.
Solid lines denote stable branches and dashed lines denote unstable branches. The u-nullcline x = k
is shown in grey. The grey arrows indicate the direction of the reduced flow (4.4). B: Bifurcation
analysis of the layer problem with a trajectory of the full system (4.1) overlayed in green. C: Time
trace of the bursting trajectory.

with period T (u). As in Sections 3.3 and 3.4, let P denote the family of all periodic orbits
γ, i.e.

P := {(x, y, u) ∈ R3 : (x, y) = γ(t;u), γ̇(t;u) = f(γ(t;u), u), γ(t;u) = γ(t+ T (u);u)},

and let Pa (Pr) denote the attracting (repelling) branches, respectively. Let PF denote
a SNPO bifurcation. Returning to Figure 4.3, the periodic branch emanating from AH is
initially stable, but coalesces with a second unstable branch at a SNPO bifurcation (labelled
PF ). The unstable branch of periodics terminates in homoclinic bifurcation (labelled HC)
on the middle branch of S.

Notice that the layer problem (which corresponds to the original WC model) exhibits
bistability of equilibrium and periodic solutions. In the interval (PF , Fl), the lower branch
of equilibria (i.e. S) and the manifold of periodic orbits Pa are both attracting. Izhikevich’s
extension of the original WC model allows for the slow variation of u, and thus the possibility
of fold/fold-cycle bursting.
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4.3 The Reduced Problem

Switching to the slow timescale τ = εt and setting ε = 0 in (4.1) yields the reduced problem

0 = f1(x, y, u),

0 = f2(x, y, u),

u̇ = g(x, y, u),

(4.4)

which approximates the slow flow along the critical manifold S. Let z = (x, y)T and
f = (f1, f2)T . As outlined in Section 2.2, we can reformulate the reduced problem by taking
the total time derivative of f = 0 and multiplying by adj(Dzf). After desingularisation,
we obtain the desingularised reduced system which is given by

u̇ = −det(Dzf) · g(z, u),

ż = adj(Dzf) ·Duf · g(z, u),
(4.5)

where z ∈ S. As defined in (2.18), equilibria or regular singularities of (4.5) are given
by g(z, u) = 0 for all z ∈ S \ F . Visually, we can identify any equilibria by plotting the
g-nullcline x = k and looking for it’s intersections with S. In Figure 4.3A, there is a single
unstable equilibrium on the middle branch of S at x = 0.6.

In a typical GSPT analysis, the reduced flow is often calculated from the desingularised
reduced system in an appropriate coordinate chart. However, since we only have one slow
variable, it is easiest to calculate the reduced flow from (4.4) directly. This can be done
by considering where points along S lie in relation to the u-nullcline x = k. Above the
nullcline, the reduced flow is decreasing in u, while below the nullcline, the reduced flow is
increasing in u. Thus in Figure 4.3A, the reduced flow along S moves toward both Fl and
Fu. Note that as k is increased, the u-nullcline moves to higher values of x while S remains
fixed (as it is independent of k).

The two fold points Fl and Fu numerically identified in Section 4.2 are jump (or regular
fold) points if they satisfy the transversality condition

adj(Dzf) ·Duf · g 6= 0, (4.6)

from Definition 2.7 in Section 2.3. By Remark 2.3, the rows of the adjoint matrix adj(Dzf)
consist of either the zero vector or l, the left nullvector of Dzf . Furthermore, from Definition
2.5, we know that l ·Duf 6= 0 at the fold points. Since u, g ∈ R, the transversality condition
(4.6) is satisfied when g 6= 0. Geometrically speaking, condition (4.6) is satisfied if the u-
nullcline does not intersect Fl and Fu. This is the case in Figure 4.3 for k = 0.6, and hence
both folds are jump points.

Examining Figure 4.3B more closely, we observe that for small values of u, trajectories
of the full system converge to the lower attracting branch of S. Below the u-nullcline,
trajectories move toward Fl (which is a jump point; see Section 2.6) where they fall off and
converge to the attracting branch of periodics Pa. Based on Figure 4.3B, one might argue
that trajectories oscillating near Pa move slowly left as Pa is (almost) always above the
u-nullcline. As a result, oscillating trajectories move slowly left until they reach PF ; here
trajectories fall down to the lower attracting branch of S and the cycle repeats. Thus we see
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Figure 4.4: Bifurcation analysis of the layer problem (4.2), with slow averaged dynamics, for
(k, rx) = (0.6,−4.76), the same parameter values as in Figure 4.3. The u-nullcline is plotted in grey,
while the curve (u, 〈x〉) is plotted in black. The unstable equilibrium of the averaged reduced system
(4.8) is denoted by an open black circle. The black arrows indicate the direction of the averaged
slow motion.

a fold/fold-cycle (or top-hat) bursting pattern; see Figure 4.3C. However, as k is increased
the u-nullcline moves further up into the middle of Pa, and it is no longer immediately
obvious what the slow u dynamics are. In such cases we employ the averaging technique
to approximate the slow motion in u over a periodic orbit of the layer problem. Note that
for systems with more than one slow variable, it becomes impossible to estimate the slow
motion based on the positioning of nullclines.

4.4 Averaged Reduced System

As in Sections 3.3 and 3.4, we approximate the slow motion in u over a periodic orbit
γ of the layer problem by averaging the slow equation in (4.1). Formally, there exists a
near-identity coordinate transformation which transforms (4.1) to

U̇ =
ε

T (U)

∫ T (U)

0
g(γ(t;u), u) dt, (4.7)

where we assume (γ(t;u), u) ∈ P. We refer to (4.7) as the averaged reduced system. Since
g is a simple linear function in x, equation (4.7) simplifies to

U̇ = ε(k − 〈x〉) =: εG(〈x〉, k), (4.8)

where 〈x〉 denotes the time average of x over the course of a periodic orbit, i.e. 〈x〉 =(∫ T
0 x dt

)
/T . Setting the right hand side of (4.8) to zero yields averaged equilibria, whose

stability is determined by the sign of the function G(〈x〉, k). Formally, the averaged nullcline
is defined as the curve (G(〈x〉, k), 〈x〉). However, we do not plot this curve as it is easier to
visualise the averaged equilibria as intersections of the curve (u, 〈x〉) and the line u = k (i.e.
the u-nullcline). Below the equilibrium (〈x〉 < k) U increases, and above the equilibrium
(〈x〉 > k) U decreases.
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Figure 4.5: Bifurcation diagram of the averaged reduced problem (4.8), with respect to the pa-
rameter k, for rx = −4.76. A: Branches of equilibria are shown in black and grey, where solid
(dashed) branches are stable (unstable), respectively. Black (grey) branches indicate that the av-
eraged equilibria lie on Pa (Pr), the attracting (repelling) branch of layer problem periodic orbits.
The continuation of the Andronov-Hopf and SNPO (PF ) bifurcations of the layer problem (4.2) are
shown in blue and red, respectively. The upper unstable branch of averaged equilibria terminate
at the point labelled AH, beyond which there are no periodic orbits in (4.2). B: Zoom near the
black box in panel A. Various saddle-node or fold bifurcations are denoted by F . The lower (grey)
unstable branch of equilibria intersects the PF branch at the point FS, which is a (toral) folded
singularity. The solid grey circle T marks the point where the unstable periodic orbit (of saddle
type) aligns with the fold of equilibria Fl.

The linear structure of the slow equation u̇ = εg facilitates a simplified averaged reduced
system (4.8), which can be easily implemented in a variety of software packages to identify
averaged equilibria. A similar method is used in a study of the Hindmarsh-Rose model [94],
which also has a linear slow equation.

Remark 4.1. For systems with more complicated non-linear slow equations, we implement
the averaging procedure in the software package AUTO, as outlined in Section 3.5.2. There
are many other studies of neural models with one slow variable which make use of averaging
[19, 26, 93], including the WCI model [104]. For systems with two slow variables, averaging
becomes more complex to implement numerically (see Section 3.5). In Section 5 we will
study a coupled neuron model with two slow variables.

Figure 4.4 shows a plot of the averaged slow motion for k = 0.6 (the same parameter
value as Figure in 4.3). The curve (u, 〈x〉) is plotted in black; its intersection with the
g-nullcline (shown in grey) corresponds to the equilibrium of (4.8), which in this case is
unstable. Notice that the averaged equilibrium lies on the unstable branch of P. The slow
averaged motion is indicated along (u, 〈x〉) by black arrows. Utilising information from the
averaged reduced problem (4.8), we can immediately justify the bursting pattern seen in
Figures 4.3B and 4.3C: during the active phase of bursting (near the attracting branch of
P, between Fl and PF ), the averaged slow motion is always decreasing.

What happens as k is increased or decreased? Using the numerical technique outlined
in Section 3.5.2, we continue the averaged equilibria and construct an ‘averaged bifurcation
diagram’ – see Figure 4.5. Our numerical implementation distinguishes between equilibria
which lie on Pa (shown in black) and Pr (grey). However, we can only infer the stability
of equilibria from the structure of the bifurcations and simulations of the full system. As
k is increased from 0.6, two branches of equilibria emerge from a saddle-node bifurcation
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Figure 4.6: Two-parameter bifurcation diagram of the averaged reduced problem (4.8), projected
into the (k, rx)-plane. The continuation of the three fold bifurcations F1, F2 and F3 are shown
in blue, green and black, respectively. The toral folded singularity branch is shown in red. The
grey dashed line rx ≈ −4.7406 indicates the value at which a Bautin bifurcation occurs in the layer
problem. A: The fold bifurcation curves meet at two cusp bifurcations, labelled C1 and C2. B: Zoom
near the black box in panel A. The toral folded singularity branch terminates at a Bautin bifurcation
(labelled B). For values of rx greater than B, the layer problem SNPO vanishes and the system no
longer exhibits fold/fold-cycle bursting. Note that although the red and black branches both cross
the blue branch, these crossings are not bifurcations. They simply indicate that the bifurcations
occur at the same value of k, but they do not intersect.

labelled F2, the upper (lower) branch being stable (unstable), respectively. As k is fur-
ther increased, the lower (grey) unstable branch of equilibria intersects the branch of layer
problem PF bifurcations at FS. The unstable equilibria move from Pr to Pa, through
PF , and become stable. Recall from Section 2.3.1 that for singularly perturbed systems
with one slow variable, folded singularities are degenerate and require the variation of a
system parameter to detect. Furthermore, folded singularities are in fact points where or-
dinary singularities interact with the fold. The same is true for toral folded singularities.
At k = 0.7644, the lower branch of averaged equilibria collide with PF at a toral folded
singularity FS. As k is increased past FS, the two lower branches of equilibria collide in
another saddle-node bifurcation (labelled F3). Beyond F3, an unstable branch of equilibria
emerge from the layer problem Andronov-Hopf bifurcation (labelled AH). Finally, the two
upper branches of equilibria collide in a saddle-node bifurcation (F1).

4.4.1 Two-parameter continuation

Using the numerical methods outlined in Section 3.5.4 and 3.5.2, we can continue the toral
folded singularity and the fold bifurcations of the averaged reduced system with respect to
an additional system parameter. Figure 4.6 shows a bifurcation diagram of the averaged
reduced system projected into the (k, rx)-plane. The F1 and F2 branches coalesce in a
cusp bifurcation C1, and the F2 and F3 branches coalesce at a second cusp bifurcation
C2. The grey dashed line rx ≈ −4.7406 is the continuation of a Bautin bifurcation B of
the layer problem (recall that the layer problem is independent of k). There the SNPO
collides with AH and is annihilated. Naturally, the red toral folded singularity branch
terminates at B. Moving in the direction of decreasing k, the toral folded singularity branch
eventually terminates at an SNPO-HC bifurcation of the layer problem (not shown). At
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Figure 4.7: Bifurcation analysis of the layer problem (4.2), with slow averaged dynamics, for
(k, rx) = (0.77,−4.76). A: Bifurcation diagram of the layer problem; the labelling of the bifurcations
follows the conventions of Figure 4.3A. The curve (u, 〈x〉) is plotted in black. The intersections of
the black curve and the u-nullcline (grey) are equilibria of (4.8). Open black circles indicate unstable
equilibria, while closed black circles are stable. Note that the full system exhibits bistability: the two
spiking trajectories are shown in green. B : Zoom of the averaged reduced dynamics on (u, 〈x〉) near
the SNPO bifurcation (which is indicated by a black cross). C: Time trace of the spiking solution
at u ≈ −0.143, near PF .

this bifurcation, the SNPO and homoclinic bifurcations collide and the SNPO disappears.
The region enclosed by SNPO-HC and B is where the WCI model exhibits fold/fold-cycle
bursting. Beyond this region, the full system can exhibit fold/homoclinic, fold/hopf and
other complex bursting patterns [18, 30]. An analysis of these regions using averaging
techniques is left for future work.

4.5 Torus Canards

Consider the transition from spiking to bursting, as k is decreased through TR, which occurs
at k = 0.758034. Figures 4.7A and 4.7B show the structure of the layer problem, as well
as the averaged reduced dynamics, for k = 0.77. We see three averaged equilibria, two of
which are stable. The two stable equilibria correspond to stable spiking solutions of the full
system. Note that one of the stable equilibria lies very close to PF .

As k is decreased to 0.7574, we move through several singular limit bifurcations. Firstly,
the equilibrium closest to PF moves through it (at the folded singularity FS) and onto the
lower repelling branch Pr; see Figure 4.8A. Note that for k ∈ (T, FS), from a singular limit
perspective, the system cannot exhibit bursting. This is due to the fact that the unstable
periodic orbit still lies at values of u which are less than Fl. As a result, when trajectories
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Figure 4.8: Bifurcation analysis of the layer problem (4.2), with slow averaged dynamics, for
(k, rx) = (0.7574,−4.76). Figure follows the same conventions as Figure 4.7. Notice the amplitude
modulated spiking (AMS) pattern in panel D.

jump off S near Fl and transition to Pa, the averaged reduced flow moves trajectories to
the right towards the stable periodic orbit. Past the global bifurcation labelled T in Figure
4.5B, the unstable periodic orbit lies at values of u which are greater than Fl. Finally,
the two averaged equilibria furthest away from PF collide and disappear in a saddle-node
bifurcation F2; see Figure 4.8C. As a result of these three bifurcations, the full system
has transitioned from a bistable spiking state to an amplitude modulated spiking (AMS)
pattern, which can be seen in Figure 4.8D. In (x, u) phase space (see Figure 4.8B), we see
that the AMS trajectory traverses both the attracting and repelling branches Pa and Pr in
a canard-like fashion.

Remark 4.2. While bursting is theoretically possible for k < T from the singular limit
structure, it is not observed in the full system until k is further decreased. This is due to
the canard dynamics, resulting from the phase space torus born out of TR, which give rise
to AMS. Once the torus begins to break down (see Figure 4.2B – breakdown begins near
k ≈ 0.75738), the system transitions to a bursting pattern.

As k is decreased a little further to 0.757, the system transitions to a bursting pattern,
with a very long active phase, which can be seen in Figure 4.9D. The slow averaged dynamics
are almost identical as k has hardly changed (cf. Figures 4.8C and 4.9C). Notice that the
bursting trajectory in Figure 4.9B also exhibits canard behaviour as it traverses the repelling
branch Pr for a significant amount of time.
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Figure 4.9: Bifurcation analysis of the layer problem (4.2), with slow averaged dynamics, for
(k, rx) = (0.757,−4.76). Figure follows the same conventions as Figure 4.7.

4.6 Discussion

In this chapter, we studied the Wilson-Cowan-Izhikevich (WCI) model using a combination
of full system bifurcation analysis and GSPT/averaging. In particular, we examined the
transition from spiking to bursting, which occurs near a full system singular torus bifurca-
tion.

We showed that the transition from spiking to bursting is reminiscent of the transition
from quiescence to relaxation oscillations in the van der Pol oscillator (VdP); see Section
2.7.1. There the transition occurs via a canard explosion: In an exponentially small param-
eter window we see the rapid increase in amplitude of small amplitude oscillations (‘canards
without head’) to duck shaped ‘canards with head’. Nearby in the full system there is a
singular Andronov-Hopf bifurcation. In the WCI model, the amplitude modulated spik-
ing solutions resemble canards without head, and bursting trajectories which follow the
repelling branch Pr resemble canards with head. These solutions which track the repelling
branch of periodic orbits are called torus canards, aptly named due to the nearby torus
bifurcation in the full system. In a similar manner to the VdP oscillator, the transition
from spiking to bursting occurs in a small parameter window, via a torus canard explosion
[18].

To aid our understanding of the observed torus canards, we constructed an averaged
reduced system, which approximates the slow motion near the layer problem manifold
of periodic orbits P. We showed that the singular torus bifurcation in the full system
corresponds to a degenerate folded singularity of the averaged reduced system, wherein the
averaged nullcline collides with the fold of periodic orbits. Using an averaged normal form,
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Vo [104] numerically continued the (toral) folded singularity in two-parameter space, thereby
demarcating the singular limit bursting and spiking regions. In a similar manner to [104],
we continued the folded singularity in two parameters. However, we improved upon past
work by also continuing the averaged equilibria, and providing a complete two-parameter
continuation of the averaged reduced structures in the WCI model.

Torus canards were first discovered in a model for neuronal activity in cerebellar Purkinje
cells [60]. Following their discovery, they have been observed in many other neural models
such as the Politi-Höfer model [104], an elliptic burster known as the FitzHugh-Nagumo-
Rinzel model [114], the Morris-Lecar-Terman and Hindmarsh-Rose models [18], where they
mark the transition from spiking to bursting. Other examples include a rotated planar
van der Pol system with symmetry breaking [6] and a chemical oscillator [98]. In [30], the
authors show that the WCI model also exhibits complex canard dynamics, known as canards
of mixed type (CMT), which involve torus canard behaviour. The numerical averaging
methods we employed in this chapter could provide additional insights into CMTs, as well
as other oscillatory solutions in neural models. We show in Chapter 5 that torus canards
also occur in the Butera model, a coupled neuron model, near the transition from spiking
to bursting. However, the Butera model has two slow variables, and this naturally leads to
the possibility of generic toral folded singularities and torus canards which exist on open
parameter intervals.
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Chapter 5

Torus Canards in the Butera
Model

Author’s Contributions: The majority of this chapter is published in [87]. The numerical
analysis was performed KR, and all figures were produced by KR. The manuscript was
written and edited by all authors. The numerical identification and continuation of toral
folded singularities, which was not published, was later contributed by KR.

5.1 Introduction

Rhythmic breathing patterns in mammals are generated by networks of neurons in the
lower brain stem. In particular, experiments have shown that neurons in a region of the
medulla known as the pre-Bötzinger complex (pre-BötC) play a vital role in respiration
[43, 84, 95]. Butera and colleagues presented a model for two synaptically coupled pre-
BötC neurons in [20, 21]. The model is conductance based, where each neuron is described
by four non-linear ODEs,

v′i = (−INaP − INa − IK − IL − Itonic−e − Isyn−e)/C =: f1(vi, ni, hi, si),

n′i = (n∞(vi)− ni)/τn(vi) =: f2(vi, ni),

h′i = ε(h∞(vi)− hi)/τh(vi) =: g(vi, hi),

s′i = αs(1− si)s∞(vi)− si/τs =: f3(vi, si),

(5.1)

where i = 1, 2, and 0 < ε � 1. The first equation in (5.1) describes the evolution of
the membrane potential vi, which depends on various ionic currents (see Table 5.1 for a
description of each current). The steady-state voltage dependent (in)activation function
of x is given by x∞(v) = (1 + exp((v − θx)/σx))−1 for each x ∈ {hi,m,mP , ni, si}. The
voltage-dependent time constant τx(v) = τ̄x/ cosh((v − θx)/(2σx)) for x ∈ {hi, ni}, is a
sigmoid with a half (in)activation at v = θx and a slope proportional to 1/σx(v). Model
parameter values, taken from [20, 21] and also used in [11, 87], are listed in Table 5.2.

Each neuron receives sustained excitation in the form of a background tonic drive
Itonic−e = gton(vi − Esyn), as well as an excitatory synaptic current Isyn−e = gsynsj(vi −
Esyn). The parameters gton and gsyn, which represent the mean conductance of the respec-
tive currents, play an important role in determining the type of activity patterns observed.
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Current Description Equation

INa Sodium current gNam∞(vi)(1− n)(vi − ENa)
INaP Persistent sodium current gNaPmP,∞(vi)hi(vi − ENa)
IK Potassium current gKn

4
i (vi − EK)

IL Leak current gL(vi − EL)

Itonic−e Background tonic drive gton(vi − Esyn)

Isyn−e Excitatory synaptic current gsynsj(vi − Esyn)

Table 5.1: Currents in the Butera model 5.1, where i = 1, 2 and j = 3−i.

Parameter Value Parameter Value Parameter Value Parameter Value

gNaP 2.8 nS ENa 50.0 mV θm,P -40 mV σm,P -6 mV

τ̄h/ε 10000 msec θh -48 mV σh 6 mV

gNa 28 nS θm -34 mV σm -5 mV

gK 11.2 nS EK -85.0 mV

τ̄n 10 msec θn -29 mV σn -4 mV

gL 2.8 nS EL -65.0 mV C 21 pF Esyn−e 0 mV

αs 0.2 msec−1 τs 5 msec θs -10.0 mV σs -5 mV

Table 5.2: Parameter values used in the Butera model 5.1.

Model (5.1) can exhibit quiescence, periodic (or tonic) spiking, and bursting; see Figure
5.2. The single-neuron version of (5.1) exhibits square-wave, or fold/homoclinic bursting
according to Izhikevich’s bursting classification scheme, where the active phase of bursting
terminates at a homoclinic bifurcation of the layer problem of (5.1). In contrast, the active
phase of bursting in the two-neuron model (5.1) may terminate at a SNPO bifurcation of
the layer problem, resulting in top-hat [11] or fold/fold cycle bursting. The SNPO bifur-
cation will play a crucial role in our subsequent analysis since it can lead to toral folded
singularities and hence generate complex torus canard behaviour

In this chapter, we consider issues that are associated with transitions between various
activity patterns in the Butera model. Our work identifies torus canards as playing a key
role in the bifurcations underlying the bursting to spiking transition in the model neuron
pair. Unlike the 1-slow/2-fast WCI model studied in Chapter 4, the torus canard behaviour
observed in the 2-slow/6-fast Butera model occurs on open parameter intervals. The addi-
tion of a second slow variable in the Butera model unfolds the torus canard phenomenon,
making it robust and generic [104]. We employ the technique of averaging to study a two-
dimensional averaged reduced system, which approximates the slow dynamics near periodic
solutions of the layer problem. We identify toral folded node and saddle singularities, the
averaged counterparts of folded singularities that are typically associated with the canard
structure in singularly perturbed systems with two or more slow variables. Codimension-
one bifurcations of the generic folded singularities (i.e. FSN bifurcations) in the averaged
reduced problem turn out to be closely related to the observed transitions between activity
patterns. In particular, we find three different kinds of FSN bifurcations: FSN II and III
(which are both associated with singular torus bifurcations in the full system), and FSN
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Figure 5.1: Boundaries of activity regimes for model (5.1). A: Bursting region in (gton, gsyn)
parameter space, as identified by Butera et al., colour-coded by burst duration; figure adapted from
[20]. B: The bursting and spiking regions identified by Best et al.; figure adapted from [11].

I. The FSN III bifurcation, which arises as a consequence of the symmetry induced by
coupling a pair of identical neurons, is novel and studied for the first time in this work.

The remainder of this chapter is organised as follows. In Section 5.1, we briefly describe
the model (5.1) and associated structures that play a role in our analysis and we concisely
review the main findings of the earlier analysis of activity patterns in the two-neuron case
[11]. In Section 5.2, we consider the bifurcation structure of the full two-neuron model
system as particular parameters, also considered in past work, are varied. Identified bifur-
cations are observed to correspond to changes in model dynamics, and several bifurcation
curves are found to coalesce at an organising centre. To better understand the source of
the emergent dynamics, in Section 5.3 we use a geometric singular perturbation approach
and explore the parameter dependence of equilibria, folded singularities, and their bifurca-
tions in an averaged reduced problem via numerical continuation. Finally, we close with a
discussion in Section 5.4.

5.2 Full System Bifurcation Analysis

5.2.1 One parameter diagrams and associated activity patterns

Butera et al. [20] used simulations on a grid in (gton, gsyn) parameter space to approximate
the boundaries of the bursting regime (see Figure 5.1A). Through additional numerical
simulations, Best et al. [11] refined the diagram and added additional boundaries (see Figure
5.1B) that distinguished between two different types of bursting and spiking: symmetric
and asymmetric. The time traces of the different activity patterns from 5.1B are shown
in Figure 5.2. In both bursting regimes, the bursts are synchronised but the neurons fire
out of phase; in the spiking regimes, the spikes are also out of phase. The classification of
symmetric versus asymmetric is based on the dynamics of the slow variables: in symmetric
regimes, the slow variables evolve in a similar manner, while in asymmetric regimes they
are noticeably different. Our first goal is to identify full system bifurcation structures of
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Figure 5.2: Activity patterns of model (5.1) with gsyn = 3.0. 1A-1D: Time traces of v1 (blue)
and v2 (red) for symmetric bursting (gton = 0.45), asymmetric bursting (gton = 0.75), asymmetric
spiking (gton = 0.877) and symmetric spiking (gton = 0.99). In the bursting cases, only a single
burst is shown. 2A-2D: Time traces of the slow variables h1 (blue) and h2 (red) for the same values
of gton as in 1A-1D.

(5.1) that are associated with the transitions between different activity patterns.
The bifurcation structure of the full Butera model (5.1) is very complex; we only focus

on the bifurcations that play a role in the transitions between activity patterns. Figure 5.3
shows the bifurcation diagram with respect to gton, for fixed gsyn = 3. For large values of
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Figure 5.3: One parameter bifurcation diagram (with respect to gton) of the full system (5.1) for
gsyn = 3. Equilibria are indicated with grey lines and periodic orbits with black ones (solid for
stable, dashed for unstable). For low gton, the branch of equilibria loses stability in a subcritical
singular AH bifurcation (black dot) and subsequently goes through an incomplete canard explosion
terminating in a homoclinic (Hom, grey dot). Further on, the equilibrium branch goes through two
saddle-node bifurcations (only one shown here) and for large gton another subcritical AH bifurcation
arises (also not shown). The emanating unstable branch of periodic orbits goes through a SNPO
bifurcation and finally stabilises in a pitchfork bifurcation. The resulting primary stable family of
periodic orbits (SS) is the one shown for gton ≈ 1. Bifurcations of this branch of periodic orbits
are described in the text (red dot: PF, supercritical pitchfork bifurcation; green dot: TRa, torus
bifurcation; blue dot: TRs, torus bifurcation). Note there are other bifurcations past TRa along
the asymmetric branch as well as after the TRs along the symmetric branch and eventually both
branches terminate (with the primary periodic orbit branch terminating in a homoclinic bifurcation
quite close to the black dot), but these bifurcations are not relevant in our analysis. Insets: Zoomed
views near PF/TRa and HB.

gton, we are able to identify a family of stable periodic orbits, which corresponds to the
symmetric spiking patterns observed in the model (see Figure 5.2, gton = 0.99, panels 1D
and 2D); let SS denote this branch of solutions. As gton is decreased, the SS branch loses
stability at a supercritical pitchfork bifurcation (PF). The secondary stable branches of
periodic orbits bifurcating from PF correspond to the asymmetric spiking (AS) patterns,
and PF marks the transition from symmetric spiking to asymmetric spiking (SS to AS). We
only continue one of the branches that bifurcate from PF since the second branch is identical,
i.e. has the same L2-norm, due to the symmetry in system (5.1) arising from coupling two
identical cells. Figure 5.2 (gton = 0.877, panels 1C and 2C) shows one realisation of the AS
pattern. By symmetry, the second realisation is obtained by switching the colours.

As gton is decreased further, the AS branch loses stability in a supercritical torus bifur-
cation (TRa), where an attracting torus in phase space is created. The AS solutions shown
in Figure 5.4 bifurcate to an amplitude modulated spiking (AMS) pattern shown in Figure
5.5 as trajectories switch to the new torus attractor. The torus structure can be clearly
identified in the return map shown in Figure 5.6A. The return map is constructed by setting
up a Poincaré section and recording when the flow crosses the section. In phase space, this
section is a codimension-one (codim-1) surface through the torus attractor constructed by
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Figure 5.4: Trajectory of the full system (green) for (gton, gsyn) = (0.87, 3), just before TRa

occurs. For this particular choice of parameters, the full system exhibits asymmetric spiking. A:
Trajectory of the full system projected into the slow phase plane. The black curve is the continuation
of the SNPO bifurcation of the layer problem (see Section 5.3). B: Voltage time trace of one of the
cells; we observe asymmetric spiking, with voltage spikes of the other cell occurring in anti-phase
with these (not shown).

0.1925 0.193 0.1935 0.194

0.1594

0.1596

0.1598

0.16

0.1602

0.1604

h
2

h1

A

0 2,000 4,000 6,000 8,000 10,000
−47.6

−47.58

−47.56

−47.54

−47.52

−47.5

v
1

t

B

Figure 5.5: Trajectory of the full system (green) for (gton, gsyn) = (0.85679, 3), with gton just
below TRa (as also shown in Figure 5.6A). For this particular choice of parameters, the full system
exhibits amplitude modulated spiking (AMS). A: Trajectory of the full system projected into the
slow phase plane along with the layer problem SNPO bifurcation curve (black). B: Voltage time
trace of trajectory, zoomed to focus on spike troughs. As a result of the phase space torus, we see
an AMS pattern in the voltage.

fixing one variable of (5.1). We evolve the full system and, after a suitable transient time,
record when trajectories cross the Poincaré section transversally. The Poincaré map itself
is constructed by plotting the value of one variable, which is not constant on the Poincaré
section, at one crossing versus that variable’s value at the previous crossing.

As gton is decreased further still, the torus quickly breaks down; see Figure 5.6B-D.
Complex firing patterns are observed (see Figures 5.7-5.8), which mark the transition from
asymmetric spiking to asymmetric bursting (AS to AB). For small enough gton, the AB
patterns become more regular; see Figures 5.2 (panels 1B and 2B) and 5.9 for gton = 0.75.
There is a delay between the TRa bifurcation and the onset of AB due to the AMS patterns
before the torus is destroyed. The breakdown of the torus clearly corresponds to the AS to
AB transition, and hence the associated TRa bifurcation is closely related to the AS/AB
boundary.

The AB patterns observed (e.g., Figure 5.9) are not actually periodic and we are not
able to continue these bursting solutions in continuation software packages such as AUTO
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Figure 5.6: Return maps of the flow of the full system (5.1). A: (gton, gsyn) = (0.85679, 3).
The full system exhibits AMS; see Figure 5.5. We can clearly see the formation of a torus. B:
(gton, gsyn) = (0.856765, 3). The torus begins to break down. C: (gton, gsyn) = (0.85676, 3), just
after the torus begins to break down. D: (gton, gsyn) = (0.8565, 3). For panels C and D, the full
system exhibits complex bursting patterns.
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Figure 5.7: Trajectory of the full system (green) for (gton, gsyn) = (0.8565, 3), for gton just
below TRa (as also shown in Figure 5.6D). A: Trajectory of the full system projected into the slow
phase plane along with the layer problem SNPO bifurcation curve (black). B: Voltage time trace
of trajectory, zoomed in to focus on spike troughs. We observe a complicated pattern in which
amplitude modulation occurs towards the end of each burst.

[34]. Nonetheless we are able to identify a bifurcation structure that is closely related to the
transition from asymmetric bursting to symmetric bursting (AB to SB). Recall the unstable
symmetric spiking (SS) pattern created in the PF bifurcation. As we continue this unstable
SS branch in the direction of decreasing gton, it undergoes a torus bifurcation (TRs) as
well (see Figure 5.3). This bifurcation occurs in close proximity to where we numerically
observe the AB to SB transition. Since two Floquet multipliers destabilise as we decrease
gton through the TRs bifurcation, and the numerically observed transition from SB to AB
happens close by but for a larger gton value than the TRs bifurcation, we conjecture that
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Figure 5.8: Trajectory of the full system (green) for (gton, gsyn) = (0.85, 3), below the TRa

bifurcation. A: Trajectory of the full system projected into the slow phase plane along with the
layer problem SNPO bifurcation curve (black). Note that the true attractor is quite chaotic, and
we only show a portion of it here. B: Voltage time trace of trajectory, zoomed to focus on spike
troughs.
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Figure 5.9: Trajectory of the full system (green) for (gton, gsyn) = (0.75, 3) where the model shows
a typical AB pattern. A: Trajectory of the full system projected into the slow phase plane along
with the layer problem SNPO bifurcation curve (black). The h1 = h2 symmetry axis is indicated
by the black dashed line. The thin grey line is the continuation of Fl (the fold of equilibria from
the layer problem; see Section 5.4.1) in (h1, h2), which approximates the end of the silent phase. B:
Voltage time trace of trajectory. The inset diagram in the bottom right corner shows a zoom of the
bottom region.

the TRs bifurcation contributes to the transition and is subcritical. Similarly as before, we
expect a torus breakdown nearby (although the torus is unstable and we cannot observe
this breakdown as we did near TRa), which would then be involved in the emergence
of an unstable symmetric AMS pattern as well as the stable SB pattern, as suggested
by our numerical observations. The relationship between the TRa bifurcation and the
AS/AB transition will become much clearer in Section 5.3, where we identify corresponding
bifurcations in the context of GSPT.

Decreasing gton further, we observe the final transition from SB to quiescence. As we
approach the transition, numerics indicate that the silent phase of the SB pattern becomes
longer and longer, which suggests that the termination involves a homoclinic bifurcation. On
the other hand, for very low gton there is a stable branch of equilibria that correspond to the
quiescent state of the Butera model. For increasing gton, the stable equilibrium loses stability
in a (subcritical) AH bifurcation (see Figure 5.3). The emerging small amplitude oscillations
quickly bifurcate through an incomplete canard explosion that terminates in a homoclinic.
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This type of progression is indicative of the singular nature of the AH bifurcation, and
creates a small window of bistability (which we observe numerically) between the SB and
quiescent states. The exact bifurcation sequence towards the stable, highly irregular SB
pattern is unknown.

In summary, we have identified four important bifurcations (AH, TRa, TRs, PF) that
can be related to the boundaries of the five observed activity patterns in Figure 5.1B (quies-
cent, SB, AB, AS, SS). Figure 5.10A shows a continuation of the four codim-1 bifurcations in
(gton, gsyn) parameter space, which was completed using AUTO. A first comparison between
Figures 5.1B and 5.10A shows good agreement, except for low gsyn values. Discrepancies
arise because of the different techniques used to find the boundaries between the various
regions of activity. The boundaries in Figure 5.10A are based upon a full system bifurcation
analysis, while those in Figure 5.1B were generated from brute force simulations, leading to
difficulties in distinguishing between bursting and spiking for low gsyn. In Section 5.3, we
present a GSPT analysis in the context of averaging and further discuss where our results
break down and how this could lead to discrepancies between Figures 5.1B and 5.10A. Fur-
thermore, we emphasise that while the PF bifurcation curve in Figure 5.10A clearly marks
the transition from symmetric spiking to asymmetric spiking, the torus bifurcation curves
serve only as proxies that are close to transitions between the other activity patterns.

5.2.2 Two parameter continuation

Having identified the relevant bifurcations in a one parameter continuation, we now turn our
attention to a two-parameter continuation in (gton, gsyn) parameter space. Certain codim-2
bifurcations naturally partition (gton, gsyn) space into six distinct Cases (see Figure 5.12).
In this section we identify the codim-2 bifurcations associated with the boundaries and
discuss the transition between the different Cases.

There is additional bifurcation structure in the Butera model that has not been pre-
viously identified. As we continue the PF branch in (gton, gsyn) towards larger values of
gsyn (starting from Case 1 in Figure 5.11), we observe a codim-2 bifurcation (a degenerate
pitchfork bifurcation) where the PF changes its criticality from supercritical to subcritical
(see also Figure 5.10C). At this codim-2 point, which marks the boundary between Cases
1 and 2, a branch of codim-1 SNPO bifurcations emerge. The numerically generated bi-
furcation curves (see Figure 5.10C) are difficult to distinguish due to their proximity, and
a qualitative sketch of their positioning is shown in Figure 5.11 (SNPO shown in black).
Figure 5.12 shows the corresponding one-parameter bifurcation diagram for fixed gsyn = 6,
where the PF bifurcation has switched to subcritical and we see the associated SNPO bifur-
cation; compare with the supercritical case in Figure 5.3. This SNPO bifurcation was not
identified in the initial analysis of Best et al. [11] and it has some important implications.
In particular, for a fixed value of gsyn above the degenerate PF, there exists a small interval
of gton values for which the SS and AS branches coexist. Thus the model exhibits bistability
of the symmetric and asymmetric spiking patterns (see Figure 5.12) for large enough gsyn.

As gsyn is increased, the TRa branch exchanges position with the PF branch. Note
that this is not a codim-2 bifurcation as TRa and PF do not collide, but it nonetheless
marks the transition from Case 2 to 3 in Figure 5.11. Further increasing gsyn leads to
the collision of the TRa and SNPO branches in another codim-2 bifurcation, a fold-torus
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Figure 5.10: Continuation results for the full system. Panels A to D show two-parameter bi-
furcation diagrams of the full system (5.1) for ε/τ̄h = 10−5. Different colours indicate different
bifurcations (blue, TRs; green, TRa; red, PF; black, SNPO; grey, AH). A: Bifurcation curves over
the full range of parameter values considered. B: Zoom near the organising centre (marked with
a grey circle), where the TRs, TRa and SNPO curves collide. C: Zoom showing the change in
criticality of the PF bifurcation. We see the SNPO branch emerging from the co-dimension two
bifurcation (marked with a grey circle). Unfortunately, the angle between the red and the black
curves is so small that one cannot distinguish the curves by eye (compare with the sketch in Figure
5.11). D: Zoom near codimension-two TRa-SNPO bifurcation. Again, the angle between the green
and the black curves is so small that one cannot distinguish the curves by eye although one might
be convinced that the curves get closer around gton ≈ 0.67 (compare with the sketch in Figure 5.11).
In all panels, the red and black dashed lines indicate regions where the SNPO and PF bifurcation
curves have no impact on the observed activity patterns.

bifurcation (TRa-SNPO). This codim-2 bifurcation marks the boundary between Cases 3
and 4. Again, the numerically generated bifurcation curves (Figure 5.10A,D) are difficult
to distinguish due to their proximity. On the other hand, Figure 5.13 (a one-parameter
bifurcation diagram for fixed gsyn = 7) clearly shows that the TRa bifurcation has passed
through the SNPO bifurcation (compare with Figure 5.12). After this bifurcation, the AS
family becomes completely unstable, and hence the switch from solid to dashed green in
Figure 5.11. The one-parameter bifurcation diagrams associated with the TRa and the
SNPO branches no longer involve any stable oscillations (see Figure 5.13). Hence, we show
these two branches as dashed in Figure 5.11 above the codim-2 point.

We observe another codim-2 bifurcation (which forms the boundary of Cases 4 and
5) where the TRs and PF branches cross and the TRa branch terminates (a pitchfork-
torus bifurcation). This bifurcation can also be observed in the numerically generated
bifurcation curves (Figure 5.10B). Note that the PF branch remains subcritical on both
sides of this codim-2 point; the switch from solid to dashed indicates that there are no
stable oscillations associated with the PF bifurcation. Similar to the transition diagram
produced by Best et al. (see Figure 5.1B), our identified codim-1 bifurcation curves appear
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Figure 5.11: Schematic zoom of Figure 5.10 highlighting the codim-2 points (grey circles) and the
structure near the organising centre. See Figure 5.10 for a description of the bifurcations. The red
and black dashed lines indicate regions where the SNPO and PF bifurcation curves have no impact
on the observed activity patterns, while the dashed green is used to show where no stable solution is
involved in the TRa bifurcation. The PF changes criticality where the SNPO and PF curves meet.
Thin black dashed lines indicate the boundaries between six different cases, discussed in detail in
Section 5.3.

to coalesce near gsyn ≈ 7.5 at an organising centre, which is the codim-2 pitchfork-torus
bifurcation point. The organising centre obviously plays a central role in regulating the
dynamics of the model in (gton, gsyn) parameter space, in particular whether we observe
symmetric or asymmetric activity patterns. As gsyn is further increased, the PF and TRa

bifurcation exchange positions. Once again, this point is not a bifurcation, but it does form
the boundary of Cases 5 and 6.

In the next section we shift our focus to a GSPT framework and identify for each of the
codim-1 bifurcations (TRs, TRa, PF, SNPO) a corresponding singular limit bifurcation,
that expands our explanation of how the changes observed in bursting/spiking patterns
(SB, AB, AS, SS) occur. The singular limit bifurcations will involve both regular and
folded singularities of an averaged system, i.e. our work links to the concept of toral folded
singularities and torus canards.

5.3 Averaging in the Context of GSPT

While the full system bifurcation analysis is useful, such an analysis does not shed much
light on the genesis of the complex bursting and spiking patterns that arise in the model.
Although we do not present a thorough dimensional analysis here, the small size of ε/τ̄h
leads to a significant separation between the rates of change of h1, h2 and those of the other
variables in model (5.1). Thus the Butera model (5.1) can be treated as slow/fast system,
with a six-dimensional layer problem consisting of the equations for vi, ni, si with both hi
fixed. Given the time scale separation in the model, it is useful to consider the complex
patterns and the bifurcations observed in the full model from a GSPT standpoint.
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Figure 5.12: One parameter bifurcation (with respect to gton) of the full system for gsyn = 6,
Case 2. Stable families of periodic orbits are indicated with solid black lines, while unstable families
are indicated with dashed lines. For large gton, we see the primary stable family of periodic orbits
(SS) that emanate from a subcritical AH bifurcation (not shown). The pitchfork bifurcation (PF) is
now subcritical and an unstable family of periodic orbits emerge from the bifurcation. These orbits
coalesce with a stable family (corresponding to AS) at an SNPO bifurcation, yielding bistability for
an interval of gton values above the PF. As gton is decreased, the AS branch loses stability at TRa.
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Figure 5.13: One parameter bifurcation diagram (with respect to gton) of the full system for
gsyn = 7, Case 4. A stable family of periodic orbits is indicated with a solid black line, while
unstable families are indicated with dashed lines. For large gton, we see the primary stable family
of periodic orbits (SS) that emanate from a subcritical AH bifurcation (not shown). There is a
subcritical PF, and two unstable branches of periodic orbits merge at an SNPO. Notice that in
this case, TRa occurs on the lower branch of periodic orbits emanating from PF. Consequently, all
solutions other than SS are unstable.

5.3.1 The layer problem

As is the standard approach in GSPT, we study first the layer problem, which is given by
setting ε = 0 in (5.1):

79



v′i = f1(vi, ni, hi, si),

n′i = f2(vi, ni),

s′i = f3(vi, si).

(5.2)

The set of critical points of the layer problem forms the two-dimensional critical manifold

S := {(vi, ni, hi, si) : f1 = f2 = f3 = 0}, (5.3)

which is embedded in R8. Figure 5.14 shows a bifurcation diagram of the layer problem,
with h1 = h2 = h as the bifurcation parameter, projected into the (v1, h) plane. The critical
manifold consists of three branches, Su, Sm and Sl, separated by two saddle-node or fold
bifurcations (Fl and Fu). The upper branch Su is stable for large h, but loses stability
as h is decreased through an AH bifurcation. The periodic orbits emanating from AH
correspond to in-phase solutions (labelled IP), which are always unstable, and hence we
ignore them. Close to the first AH, a second AH bifurcation occurs, from which a family of
anti-phase periodic orbits (AP) emerges. Initially, the branch of periodic orbits emanating
from this second AH bifurcation is unstable, but this branch coalesces with a second stable
branch (Ps) at a saddle-node of periodic orbits bifurcation. As h is decreased, Ps undergoes
another saddle-node of periodic orbits bifurcation (labelled SNPO) where it merges with
a third branch of unstable periodic orbits (Pu). This unstable branch Pu terminates in a
homoclinic bifurcation on Sm. This middle branch is of saddle type and has, by symmetry, a
pair of unstable and two pairs of stable eigenvalues (at the homoclinic, the unstable pair has
larger magnitude than the leading pair of stable eigenvalues). The lower branch Sl is stable.
Hence, between the lower fold of equilibria (Fl) and the fold of periodics (SNPO), we have
bistability. Such bistability and the fold of periodics are key ingredients for fold/fold cycle
(or top hat) bursting (see Figure 5.14B). We continue these codim-1 bifurcations, SNPO
and Fl, away from the symmetry axis h1 = h2 into (h1, h2)-space. Both continuations can
be seen, e.g., in Figure 5.9, while segments of the SNPO continuation also appear in several
earlier figures.

5.3.2 The (averaged) reduced problem

Switching to the slow timescale t = τ/ε in (5.1) and then setting ε = 0 gives the reduced
problem,

0 = f1(vi, ni, hi, si),

0 = f2(vi, ni),

ḣ = (h∞(vi)− hi)/τh(vi),

0 = f3(vi, si).

(5.4)

The flow of the reduced problem is restricted to the double-folded critical manifold S, the set
of critical points of the layer problem. For low gton values, there exists a stable equilibrium
on the lower attracting branch Sl (almost) independent of gsyn, which defines the resting
membrane potential of the neuron. As gton increases, this stable equilibrium bifurcates via
the lower fold Fl to the unstable middle branch Sm. Solutions transition from the silent
phase near Sl to the active phase near Su, creating a bursting pattern. Normal hyperbolicity
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Figure 5.14: One parameter bifurcation diagram (with respect to h1 = h2 = h) of the layer problem
for (gton, gsyn) = (0.45, 3). A: Bifurcation structures. The critical manifold is shown in black. Two
families of periodic orbits emerge from two AH bifurcations (not labelled) - the anti-phase (AP)
family is shown in blue while the unstable in-phase (IP) family is shown in red. Stable (unstable)
families of periodic orbits and equilibria are indicated with solid (dashed) lines, respectively. The
inset diagram shows the interval of bistability bounded by the fold of periodics (SNPO) and fold of
equilibria (Fl). B: Zoomed view including the projection of a symmetric bursting solution (green).

is lost at Fl where solutions leave S in a neighbourhood of Fl, and jump to the active phase.
The lower fold Fl is a jump point where solutions switch from the slow to the fast time scale
via an intermediate time scale; see Section 2.6 and [65, 100] for further details.

On the other hand, during the active phase of bursting, solutions oscillate in the vicinity
of S. This oscillatory motion is restricted closely to the manifold of periodic orbits Ps of the
layer problem. The fast oscillations are accompanied by a slow drift in (h1, h2)-space. The
slow motion near Ps is crucial in distinguishing between bursting and spiking behaviour,
and we employ the technique of averaging to study it.

As in past work [11], we use the technique of averaging (see Section 3.3) to obtain an
averaged reduced system

〈ḣ1〉 ≡
1

T (h1, h2)

∫ T (h1,h2)

0
g(v1p(h1, h2; t), h1) dt =: a1(h1, h2),

〈ḣ2〉 ≡
1

T (h1, h2)

∫ T (h1,h2)

0
g(v2p(h1, h2; t), h2) dt =: a2(h1, h2),

(5.5)

where T (h1, h2) denotes the period of the layer problem periodic orbit that exists at (h1, h2),
and v1p , v2p are the time courses of v1, v2 around this orbit. The averaged reduced system
gives a first-order approximation of the slow (h1, h2) dynamics of trajectories of the full
system near Ps. Specifically, we focus on the so-called averaged nullclines of (5.5) given by

A1 := {(h1, h2) : a1(h1, h2) = 0},
A2 := {(h1, h2) : a2(h1, h2) = 0}. (5.6)

The intersections of A1 and A2 yield averaged equilibria. If an averaged equilibrium is a
hyperbolic fixed point of (5.5), then for ε > 0 but sufficiently small, there exists a unique
hyperbolic periodic orbit in the full system (5.1). The stability type of this periodic orbit,
with respect to the slow variables (h1, h2), is given by the stability of the averaged equilib-
rium in the context of the averaged reduced system, while stability in the fast directions is
determined by the stability of the corresponding periodic orbit of the layer problem [83, 26].
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We also identify special structures of the averaged reduced system (5.5), which live
on the SNPO, called averaged folded singularities or toral folded singularities. Recall the
geometric condition for a toral folded singularity from Section 3.4: in the averaged slow
variable (〈h1〉, 〈h2〉) subspace, the projection of the averaged slow flow (5.5) is tangent to
the projection of the SNPO. Note that we assume that this condition holds for m > 2
fast variables; see Section 3.4 for further details. In a similar fashion to regular folded
singularities, toral folded singularities allow the averaged reduced flow (5.5) to cross the
SNPO. This naturally leads to torus canards: solutions which cross the SNPO and track
the repelling branch of periodics Pu for O(1) time before being repelled.

We utilise the software package AUTO [34] to compute the average nullclines by con-
tinuation, continue the averaged equilibria and toral folded singularities with respect to
the parameters gton and gsyn (see Sections 3.5.1–3.5.3 for a description of the numerical
implementation). Our numerical implementation of the averaged equilibria and toral folded
singularities facilitates the detection of bifurcations of the averaged reduced problem, which
is central to our analysis. In the past, numerical averaging methods for fast-slow systems
have mainly been implemented for systems with a single slow variable [26, 93], with a few
exceptions [23, 96, 11]. We extend the standard averaging techniques, particularly with the
continuation of averaged equilibria and detection of their bifurcations.

Key to our analysis of the averaged reduced problem is the existence of the folded
structure of periodic orbits in the layer problem (SNPO in Figure 5.14), which forms the
boundary of the active oscillatory phase for gsyn away from zero. We denote the continua-
tion of this boundary in (h1, h2)-space by B. Best et al. [11] approximated B numerically
through simulations. Furthermore, they restricted their analysis of the averaged nullclines
to the domain O in the (h1, h2) plane, in which the layer problem exhibits stable periodic
oscillations, i.e. to the stable branch Ps. We also take the unstable oscillation branch Pu
into account, which is crucial for understanding the bifurcations responsible for the observed
transitions between activity patterns.

Remark 5.1. It is a striking result that coupling two tonically spiking model neurons with
gsyn > 0 can cause bursting to emerge in the neuron pair. While such bursting can already
arise for quite weak gsyn, bifurcation structures may start to break down for small gsyn; for
example, the SNPO of the layer problem will not persist for sufficiently low gsyn since in the
uncoupled case we have a pair of fold/homoclinic (square wave) bursters, as detailed in [11].
Hence we avoid the weak coupling limit and restrict our analysis to gsyn ≥ 1, where the
distinction between bursting and tonic spiking is clearer as the neurons affect each other
more significantly. Furthermore, for gsyn ≥ 1, the folded structure of the layer problem
manifold of periodic orbits (i.e. the SNPO) exists for all relevant values of gton.

5.3.3 Bifurcation analysis of the averaged reduced problem

In Figure 5.15 we see a bifurcation diagram of the averaged reduced problem, with respect
to the parameter gton, for fixed gsyn=5.5. We refer to this as Case 1 (see also Figure
5.10B for this and other cases discussed below). We identify four bifurcations: a pitchfork
bifurcation (PF), two folded saddle-node type I (FSN I) bifurcations, two folded saddle-
node type II (FSN II) bifurcations and a folded saddle-node type III (FSN III) bifurcation.
Recall from Section 2.3.2 that there is a well known singularity structure associated with
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Figure 5.15: A: Continuation of averaged equilibria (black/grey) and folded singularities (pur-
ple) for gsyn = 5.5, Case 1, projected into the (gton, h2) plane. Bifurcations of average equilibria
are labelled in the diagram and stable (unstable) equilibria are indicated by solid (dashed) lines,
respectively. Branches coloured black (grey) indicate that the branch of equilibria lie on Ps (Pu), re-
spectively. Solid purple branches denote averaged folded node singularities, while the purple dashed
denote folded saddles. B: Summary of all the averaged equilibria (black/grey) and folded singu-
larities (purple) in Case 1. Each panel shows the structure of the averaged reduced system for (in
order of increasing gton): symmetric bursting (SB), asymmetric bursting (AB), asymmetric spiking
(AS) and symmetric spiking (SS). Averaged equilibria are coloured black/grey while folded singu-
larities are purple. Closed (open) circles are stable (unstable) nodes while the triangle indicates a
saddle equilibrium. The purple circles and triangles are folded node and folded saddle singularities,
respectively. The horizontal axis represents the fold or SNPO curve in the (h1, h2) plane, while the
vertical axis represents the symmetry axis h1 = h2.

folds, known as folded singularities. The FSN I bifurcation is a saddle-node bifurcation
of folded singularities (one folded saddle and one folded node). The FSN II bifurcation is
a transcritical bifurcation of a folded singularity and a regular equilibrium of the reduced
problem. See Sections 2.4.1 and 2.7.5–2.7.6 for further details regarding FSN bifurcations.
The FSN III bifurcation, which is novel and will be analysed in greater detail in Chapter
7, is a pitchfork bifurcation of two folded singularities and one equilibrium of the averaged
reduced problem. Note that we infer the type/stability of the numerically identified toral
folded singularities based on the constraint of achieving consistency across scenarios and
perform numerical simulations that show results consistent with our inferences. In Section
6, we present an analysis of a canonical system that encompasses exactly the collection of
structures and interactions inferred here.
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Figure 5.16: Phase plane for the averaged reduced system (5.5) for (gton, gsyn) = (5.5, 0.62),
Case 1a, where the full system exhibits symmetric bursting. A: Average nullcline configuration; the
average nullclines A1 and A2 are shown in blue and red respectively. The continuation of the SNPO
(the boundary curve B) is shown in solid black while the symmetry axis h1 = h2 is shown in dashed
black. A1 and A2 intersect along the symmetric axis resulting in an unstable node equilibrium,
indicated by an open grey circle. There are also two asymmetric saddle equilibria, indicated with
solid black triangles. Note that there are two outer folded node singularities, which lie outside the
range of the diagram (see Figure 5.15). B: Zoom near the unstable node. The full system trajectory
(green) approaches the SNPO from the upper right along the symmetry axis, exhibiting a path with
small wiggles reflecting the active phase of the burst. Notice that the trajectory appears to pass
straight through the node, unaffected. This is in fact a result of the projection onto the slow phase
plane - the node lies on the unstable manifold of periodic orbits (Pu), while the trajectory of the
full system oscillates near the stable manifold of periodic orbits (Ps). Their apparent crossing is an
artefact of the projection (see Figure 5.17). As the trajectory crosses the SNPO curve (black), it
leaves the active phase of the burst and enters the silent phase where it returns back towards the
upper right (without wiggles; not visible here since the ranges of h1, h2 values traversed in the active
and silent phases are the same).

With gsyn fixed, the identified bifurcations partition the gton axis into four intervals or
subcases, which we refer to as Cases 1a through d. Utilising the average nullclines and
resulting equilibria, we now present an analysis of each subcase for gsyn = 5.5 to elucidate
the genesis of observed activity patterns. A summary of the averaged equilibrium structure
and folded singularities for each subcase is provided in Figure 5.15B. Again, note that the
properties of folded singularities are inferred here and corroborated in a canonical system
in Section 6.

In Figure 5.16 we see the structure of the averaged reduced problem for gsyn = 5.5
and gton = 0.62 (Case 1a). For these parameter values, the full system exhibits symmet-
ric bursting. Previously, Best et al. [11] characterised the symmetric bursting regime by
〈ḣ1〉, 〈ḣ2〉 < 0, i.e. the absence of any averaged nullclines in O. As can be seen in Figure
5.16, the averaged nullclines clearly exist within O for this particular case, and we find three
averaged equilibria: a symmetric (i.e. h1 = h2) node, which is unstable, and two asymmet-
ric saddles. Another interesting observation is the fact that bursting trajectories of the full
system appear to pass straight through the node, unaffected. Careful consideration of our
projection onto the (h1, h2) plane will help clarify theses nuances.

Recall that in the layer subsystem, there exists a stable manifold of periodic orbits (Ps)
that coalesces with an unstable manifold of periodic orbits (Pu) at an SNPO bifurcation.
It is the continuation of the SNPO, projected into the slow phase plane, which forms the
boundary of the oscillatory region. A complication arising in this projection is that the
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Figure 5.17: Illustration of how projecting from higher dimensions into the slow phase plane can
be misleading. Illustrative average nullclines are shown in blue and red and their intersection (i.e.
averaged equilibrium) is indicated with a black dot. Any trajectory travelling near Ps toward the
SNPO curve (illustrated in green) will appear to cross the averaged equilibrium in the projection.

regions in (h1, h2) corresponding to Ps and Pu overlap. The unstable node found in the
symmetric bursting regime actually lies on Pu, while the bursting trajectory of the full
system (5.1) passes along Ps (see also Figure 5.17). The projection onto the slow phase
plane causes the two to seemingly overlap, but in reality they do not. Best et al. [11]
computed the average nullclines via numerical simulations and did so only along Ps, not
Pu. This explains why no averaged nullclines or equilibria were previously found for the
symmetric bursting regime in Case 1.

If gton is increased to gton = 0.7, then the full system switches to an asymmetric bursting
pattern, which we call Case 1b. The average nullcline structure for this case can be seen
in Figure 5.18. In addition to the two outer folded singularities from Case 1a, we find an
additional pair of folded singularities along the SNPO curve. The two asymmetric saddle
equilibria from Case 1a persist, and we see the appearance of a symmetric saddle equilibrium
on Ps. As a result, trajectories of the full system now turn away from the symmetry axis
near the saddle equilibrium and continue to burst until crossing the boundary. This regime
is characterised by a much longer burst duration compared to Case 1a, which is caused by
the long excursion away from the symmetry axis during the active phase (see also Figure
5.1A and [11]).

Note that the symmetric equilibrium has bifurcated from Pu via the SNPO curve to
Ps, and in doing so it must have exchanged its stability with a folded singularity. Due to
the symmetry of our system (and the presence of two inner folded singularities), we infer
the occurrence of a pitchfork bifurcation of folded and ordinary singularities, namely the
FSN III that we mentioned earlier (also see Section 6). Based on the structure of the FSN
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Figure 5.18: Phase plane for the averaged reduced system (5.5) for (gton, gsyn) = (0.7, 5.5), Case
1b. A: Nullcline configuration, with the h1-average nullcline in blue and the h2-average nullcline in
red. The symmetry axis h1 = h2 is indicated by a black dashed line. The solid black line is the
continuation of the layer problem SNPO projected into the slow phase plane. The symmetric saddle
equilibrium is denoted by a solid black triangle, while the two outer saddles are denoted by solid
grey triangles. The solid squares mark meeting points of the projections of the average nullclines
to the slow phase plane that are not true equilibria of averaged slow subsystem. Along the SNPO,
there are two folded node singularities, marked by purple circles. Once again, there are two outer
folded node singularities, which lie outside the range of the diagram (see Figure 5.15). B : Zoom near
the symmetric saddle equilibrium point for Case 1b. An asymmetric bursting trajectory of the full
system is shown in green. The two phases of the bursting solution are clearly visible: the segment
of the trajectory with small wiggles indicates the active phase while the segment without wiggles
the silent phase. Note the apparent crossing of the averaged nullclines at the solid squares, which is
a ‘fake intersection’ of the nullclines (see Figure 5.20).
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Figure 5.19: Transient behaviour for Case 1b, (gton, gsyn) = (0.7, 5.5), near a folded node singular-
ity. As in previous figures, the red and blue curves are averaged nullclines and the solid black curve
is the continuation of the layer problem SNPO, while the dashed black curve is the symmetry axis.
A: Segments of trajectories of the full system are shown in purple and brown. The two phases of
these bursting solutions are clearly visible: segments of trajectories with small oscillations or wiggles
correspond to the active phase, while segments without wiggles correspond to the silent phase. The
small amplitude oscillations near the fold (SNPO) in the active phase of the burst provide further
numerical evidence of the existence of the nearby folded node. B: Due to the folded node, tran-
sients in different regions of the slow phase plane have different rotational properties. Transients in
grey show no small amplitude oscillations in the active phase, while those in other colours make an
excursion along the fold and exhibit small amplitude oscillations (as shown in Panel A).

III bifurcation, we also infer that the pair of inner folded singularities must be folded node
singularities. Past work attributed the SB/AB transition to the abrupt appearance of the
saddle equilibrium in the oscillatory region O. We now understand the true genesis of
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Figure 5.20: Illustration of how projecting from higher dimensions into the slow phase plane
can lead to fake intersections of the average nullclines. Schematic average nullclines are shown in
blue and red and their true intersections (i.e. averaged equilibria) are marked with black circles in
the projection. Note that when the average nullclines are equidistant from the fold curve, but on
opposite sheets of the fold, the average nullclines appear to intersect in the projection. These fake
intersections are marked with solid squares.

the transition: an equilibrium always existed in the symmetric bursting regime, but as an
unstable node on Pu, and this node crosses the fold onto Ps through a FSN III bifurcation
as we transition to asymmetric bursting. Note that we are actually able to locate the
FSN type III singularity via continuation of the averaged equilibria by monitoring Floquet
multipliers, i.e. we are able to identify when the averaged equilibria cross the SNPO (see
Figure 5.15).

In the FSN III bifurcation, two folded node singularities are born on the symmetry axis
concurrently with the change of stability of the symmetric equilibrium. As gton is increased,
these folded nodes move along the SNPO, away from the symmetry axis. Apart from the
numerical techniques used to identify the toral folded singularities (see Section 3.5.3), we
find further evidence of their existence in the behaviour of nearby transient trajectories.
Figure 5.19 shows transient small amplitude oscillations near the toral folded node, which
are a hallmark of a regular folded node singularity [99, 110]. Typically, a folded node forms
several separatrices through canards that partition the phase space into regions with various
rotational properties. The closer trajectories lie to the axis of rotation formed by the weak
canard, the smaller the amplitude of the oscillations they exhibit. Furthermore, outside of
the funnel, trajectories undergo no rotations. Examples of trajectories outside the funnel
are given by the grey orbits in Figure 5.19B, which immediately reverse direction upon
reaching the SNPO curve, rather than experiencing an excursion along the curve, as the
coloured trajectories within the funnel do. Note that due to the symmetry properties of the
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Figure 5.21: Average nullcline configuration for (gton, gsyn) = (0.74985, 5.5), Case 1c. A: The h1
and h2-average nullclines are shown in blue and red, respectively. Note that the nullclines are nearly
identical and it is very difficult to distinguish them. In this case the system has a symmetric saddle
equilibrium on the symmetry axis (indicated by a solid black triangle) as well as two asymmetric
stable node equilibria (solid black circles). There are also two folded saddle singularities (solid
purple triangles) and two folded node singularities (not shown in this diagram). B : Zoom near the
left asymmetric stable node. The stable spiking solution trajectory of the full system is shown in
green. This pattern of spiking is called asymmetric, because the solution converges to the asymmetric
stable node, away from the h1 = h2 symmetry axis in the slow phase plane.

system, we find similar small amplitude oscillations on the other side of the symmetry axis
as well (not shown).

Remark 5.2. In the context of averaging, Vo [104] formally proved that some well known
results of canard theory (such as the rotational properties of folded node canards and the
existence of maximal canards) carry over to toral folded singularities. However, some results
(such as the dynamics of faux toral saddle canards) were left for future work. Furthermore,
Vo’s results only hold for systems with m = 2 fast variables. As the Butera model has
m = 6 fast variables, our numerics suggests that the results of [104] should extend naturally
to higher dimensions, but it remains to formally justify this.

Upon closer examination of Figure 5.18A, we find another artefact of the projection:
it appears that we have 5 intersections of the averaged nullclines, i.e. two more than in
the previous case. As in the Case 1a, we see that the asymmetric bursting trajectory
appears to pass through one of these (new) intersections (see Figure 5.18B). This time, the
projection onto the slow phase space provides yet another deceptive view, because in fact,
the nullclines do not intersect at all. Nullclines which are equidistant from the SNPO curve,
but on opposite sheets of P, appear to intersect in the projection; see the sketch in Figure
5.20. Thus we refer to these intersections in the projection only as ‘fake intersections’.

Increasing gton to 0.74985 (Case 1c), the system transitions to asymmetric spiking. This
activity pattern is characterised by the appearance of a pair of stable, asymmetric node
equilibria along Ps, while the symmetric saddle equilibrium (also on Ps) from Case 1b
persists (Figure 5.21). Additionally, the pair of inner folded node singularities from the
previous case have switched to saddle type, while the outer pair of folded node singularities
persist. The full system exhibits asymmetric spiking, as trajectories are quickly attracted
to one of the asymmetric stable nodes on P2, where they remain. The asymmetric node
equilibria have bifurcated from Pu via the SNPO curve to Ps, and exchanged stability with
a pair of folded singularities singularities in a FSN bifurcation. As seen in Figure 5.15, the
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Figure 5.22: Transient trajectories near a folded saddle singularity (solid purple triangle) for Case
1c (asymmetric spiking), gton = 0.74985. Trajectories clearly show the existence of a separatrix, a
hallmark of a folded saddle, which partitions the slow phase plane. Trajectories (grey) above the
folded saddle burst until reaching the SNPO, fall off Ps, and then enter the silent phase. Trajectories
(green) below the folded saddle instead turn at the fold and converge to the stable node equilibrium
(not shown), in the direction of decreasing h2.

transition can be attributed to a transcritical bifurcation of folded and ordinary singularities,
a FSN type II bifurcation (and thus we infer that the inner folded singularities must be of
saddle type). This bifurcation, which was reviewed in Section 2.7.6, has been studied in
other work [45, 66] and is well understood (in the context of equilibrium manifolds).

While toral folded node singularities existed in Case 1b, we found toral folded saddle
singularities in Case 1c. One of the distinctive features of a regular folded saddle is the
formation of a separatrix (canard), which partitions the phase space into two different
regions. Trajectories in these two regions may exhibit very different behaviour. For example,
Figure 5.22 shows transient trajectories with two distinctive behaviours. Grey trajectories
burst until crossing the SNPO, after which they enter the silent phase. On the other hand,
green trajectories burst while moving towards the SNPO, but make a sharp turn close to
the SNPO and then converge to an asymmetric stable node equilibrium (not shown). This
motion towards the stable equilibrium near the SNPO can be attributed to the presence of
a faux that prevents the cell from reaching the SNPO and hence from leaving the active
phase. Once again, our numerical simulations provide further evidence of the existence of a
toral folded saddle, resulting in a separatrix that partitions the (h1, h2) plane (again, due to
symmetry, the same structure is present near the second folded saddle). The role of folded
saddle canards (in an equilibrium context) has been highlighted in a neural model study
of observed paradoxical excitation due to propofol anaesthesia [77] as well as in modelling
neural excitability in general [112].

Increasing gton to 0.785 (Case 1d), the system transitions to symmetric spiking. This ac-
tivity pattern is characterised by the presence of a single stable, symmetric node equilibrium
along Ps (Figure 5.24). Here, the symmetric equilibrium has bifurcated via a supercritical
PF bifurcation of the symmetric saddle equilibrium and the pair of stable asymmetric equi-
libria. This transition has been described in detail in [11]. Notice that the inner pair of
folded saddle singularities and the outer pair of folded node singularities from the previous
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Figure 5.23: Average nullcline configuration for (gton, gsyn) = (0.785, 5.5), Case 1d. A: The h1-
average nullcline is shown in blue while the h2-average nullcline is shown in red. The symmetry
axis h1 = h2 is indicated by a black dashed line, while the solid black line is the continuation of the
layer problem SNPO projected into the slow phase plane. The symmetric stable node is indicated
by a solid black circle, and the two pairs of folded singularities, are indicated by purple circles
(folded node) and triangles (folded saddle). Once again, the solid black squares mark intersections
of the average nullclines in the projection to the slow phase plane, which are not true intersections.
Note that due to numerical difficulties, the continuation of the averaged nullclines terminates near
(h1, h2) = (0.121, 0.22), (0.22, 0.121). B : Zoom near the symmetric stable node equilibrium for Case
1d. A stable periodic orbit of the full system, corresponding to symmetric spiking, is shown in green.

case persist.
Finally, increasing gton to 0.8 (Case 1e), we see that the system still exhibits symmetric

spiking. While there has been no transition in activity patterns, the two pairs of folded
singularities from the previous case have disappeared, while the symmetric node equilibrium
on Ps persists; see Figure 5.23. The folded singularities have collided in two saddle-node
bifurcations and annihilated each other. Thus the transition to Case 1d is marked by a
FSN I bifurcation. We emphasise that there is no change in the stable attractor (i.e. the
symmetric spiking state) of the model, however, the behaviour of transient trajectories could
differ between Cases 1d and 1e.

5.3.4 Continuation for Cases 2 through 6

Next, we present continuations in gton for other cases corresponding to increasing values of
gsyn. If gsyn is increased to gsyn = 6 (Case 2, see Figure 5.25), the bifurcation diagram of
the averaged equilibria and folded singularities remains much the same as in Case 1, except
for the appearance of two saddle node bifurcations (SN) and a change in criticality of the
pitchfork, which occur together as gsyn increases. Now each branch of asymmetric equilibria
that emerges at PF is unstable and coalesces with a second, stable, outer asymmetric branch
at an SN, with one SN on each side of the symmetry axis. As gsyn is further increased,
we move through the additional Cases 3-6. These cases are distinguished by the relative
positions of the FSN II, PF, SN, and FSN III bifurcations. For example, in Case 3 (see Figure
5.26), FSN II lies between PF and SN along the outer branch of asymmetric equilibria. Also
notice that FSN III and PF move closer together, compared to Case 2. As we transition
to Case 4 (see Figure 5.27), FSN II moves over SN onto the inner branch of asymmetric
equilibria. If we further increase gsyn, the FSN II collides with PF and is annihilated
while FSN III moves through PF; these bifurcations arise together at the codimension-two
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Figure 5.24: Average nullcline configuration for (gton, gsyn) = (0.8, 5.5), Case 1e. A: The h1-
average nullcline is shown in blue while the h2-average nullcline is shown in red. The symmetry
axis h1 = h2 is indicated by a black dashed line, while the solid black line is the continuation of the
layer problem SNPO projected into the slow phase plane. The symmetric stable node is indicated
by a solid black circle, and the solid black squares mark intersections of the average nullclines in the
projection to the slow phase plane. The nullclines do not actually intersect at these latter points,
however, which result from the projection. B : Zoom near the symmetric stable node equilibrium for
Case 1d. A stable periodic orbit of the full system, corresponding to symmetric spiking, is shown in
green.

organising centre. The only difference between Case 5 and 6 (see Figures 5.28 and 5.29) is
the position of FSN III relative to SN. In Case 5, FSN III lies between PF and SN, while
in Case 6 it occurs at values of gton larger than SN.

Note that FSN II and III bifurcations in this singular limit approximation correspond
to the torus bifurcations identified in the full system. It is well known that the FSN II
singularity is the dynamic unfolding of the 2D singular Andronov-Hopf bifurcation, i.e.
the FSN II indicates a singular AH bifurcation in the full system [31, 45]. We show in
Section 6 that the same is true for a FSN III bifurcation. Unlike the FSN II and III, the
FSN I bifurcation has no full system AH bifurcation [108]. In the context of the averaged
reduced problem, the bifurcating ‘equilibrium’ state is actually a periodic orbit, and each AH
bifurcation implies the creation of a torus. Thus Vo conjectures (and provides numerical
evidence) in [104] that the FSN II bifurcation of the averaged reduced problem unfolds
(in ε) to a singular torus bifurcation of the full system; we conjecture that the same is
true for the FSN III. In classical planar singularly perturbed problems, the singular AH
is always accompanied by a canard explosion [37, 65], an explosive growth in amplitude
along a family of periodic orbits within an exponentially small parameter interval, which
facilitates the rapid transition from small amplitude oscillations to relaxation oscillations.
In the averaged setting that we consider, these singular bifurcations indicate the breakdown
of a torus, as discussed in Section 5.2, and rapid transitions between the observed bursting
patterns (SB, AB).

In the transitions between certain cases, we observe three codim-2 bifurcations in the
averaged reduced problem, which are strongly related to the codim-2 bifurcations identified
in the full system bifurcation analysis (see Figure 5.12). At the transition from Case 1 to 2,
we see that PF changes its criticality from supercritical to subcritical and SN bifurcations
emerge as gsyn is increased. This bifurcation corresponds to the degenerate PF observed
in the full system, except that there a SNPO bifurcation emerged as gsyn was increased,
since we were dealing with periodic orbits. As we move from Case 3 to Case 4, the FSN
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Figure 5.25: Bifurcations for gsyn = 6, Case 2. A: Continuation of averaged equilibria (black/grey)
and folded singularities (purple), projected into the (gton, h2) plane. Bifurcations of averaged equi-
libria are labelled in the diagram and stable (unstable) equilibria are indicated by solid (dashed)
lines, respectively. Branches coloured black (grey) indicate equilibria that lie on Ps (Pu), respec-
tively. Solid purple branches denote averaged folded node singularities, while the purple dashed
denote folded saddles. The inset diagram shows a zoom near the PF bifurcation. B: Summary
of all the averaged equilibria and folded singularities of Case 2. Averaged equilibria are coloured
black/grey while folded singularities are purple. Closed (open) circles are stable (unstable) nodes
while the triangle indicates a saddle equilibrium. The purple circles and triangles are folded node
and saddle singularities, respectively. The horizontal axis represents the fold or SNPO curve in the
(h1, h2) plane, while the vertical axis represents the symmetry axis h1 = h2.

II and SN bifurcations coalesce at a second codim-2 bifurcation, similar to the collision of
TRa and SNPO (fold-torus bifurcation, TRa-SNPO) in the full system. The final codim-2
bifurcation occurs at the organising centre between Cases 4 and 5, where FSN II, FSN III
and PF collide. This bifurcation is similar to the pitchfork-torus bifurcation (PF-TRa-TRs)
observed at the organising centre in the full system.

5.4 Discussion

In this work, we studied activity patterns, and transitions between them, in a model for
an identical pair of respiratory neurons coupled with synaptic excitation. This model was
originally introduced by Butera et al. [20, 21, 22] and it describes neurons in the pre-Btzinger
complex, a brain stem region that plays a central role in respiratory rhythm generation.
While model neurons can be quiescent, bursting, or tonically spiking, simulations revealed
that the parameter regime over which bursting occurs in a pair of model neurons coupled
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Figure 5.26: Bifurcations for gsyn = 6.5, Case 3. A: Continuation of averaged equilibria projected
into the (gton, h2) plane. Inset diagram shows a zoom near PF. B: Summary of all the averaged
equilibria and folded singularities of Case 3.

by synaptic excitation is broader than that for a single, isolated neuron [20, 21]. Best et
al. refined this investigation by uncovering different types of bursting and spiking regimes
in a two-neuron network [11]. Their analysis used geometric singular perturbation theory
and averaging techniques to illustrate the dynamic regimes in a reduced phase space that
are responsible for these different activity patterns. They also used numerical simulations
to establish the boundary curves separating these solution types in parameter space.

Our work builds on these earlier studies in several significant directions. We provided
the first use of numerical continuation methods to follow bifurcation curves associated with
the full two-neuron system. Our numerical analysis established that certain bifurcations
correspond precisely to transitions between particular types of activity patterns, while others
approximately indicate where such transitions occur (as long as we stay away from the
weak coupling regime corresponding to small gsyn). The continuation results from the full
system thus provided an improved view of where within parameter space the transitions
between activity patterns occur, relative to earlier simulation results. Furthermore, our
direct simulations, guided by results of the bifurcation analysis, also identified interesting
variations on activity patterns, such as amplitude modulated spiking, which arise near these
transitions and had not been observed previously.

While bifurcation analysis of the full system allowed us to estimate closely where ac-
tivity transitions occur, it provided limited information about the properties of solutions
involved and the dynamic mechanisms responsible for solution behaviours. We obtained
a more precise representation of the structures that may be associated with the model’s
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Figure 5.27: Bifurcations for gsyn = 7, Case 4. A: Continuation of averaged equilibria projected
into the (gton, h2) plane. Inset diagram shows a zoom near PF. B: Summary of all the averaged
equilibria and folded singularities of Case 4.

activity patterns and the dynamic events associated with transitions between them by us-
ing a GSPT approach wherein numerical continuation is performed, using the continuation
software AUTO [34], on the averaged reduced system that Best et al. simulated [11]. Con-
tinuation in this setting allowed us to track equilibrium states of the averaged reduced
equations in parameter space and to unravel the underlying bifurcation structure that leads
to activity pattern changes in that system. Our numerical continuation methods also en-
abled us to identify folded singularities of the averaged reduced system (i.e. toral folded
singularities), and utilising interpolation, we constructed a continuation curve in parameter
space of the toral folded singularities. This approach leads us to the new observation that
equilibrium and folded singularity curves of the averaged reduced system interact in various
FSN bifurcations. We identified three different types: the FSN I, FSN II and FSN III.
The detection of folded singularities and corresponding bifurcations in such coupled neuron
models is a novel step, presented here for the first time. Moreover, the FSN III is itself novel
and is a consequence of Z2-symmetry arising from coupling two identical cells. A detailed
analysis of the FSN III bifurcation will be tackled in Chapter 7 of this thesis.

Also open for subsequent studies is the rigorous establishment of the relation between the
averaged reduced system and the full model. In the past, averaging theory was developed for
singularly perturbed systems with hyperbolic periodic orbits of the layer problem (known
as Pontryagin-Rodygin Theory [83]), and applied to bursting in models with one or two
slow variables [55, 86, 44], excluding solutions which pass near an SNPO bifurcation curve.
Our numerical simulations show the existence of torus canards, special solutions which
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Figure 5.28: Bifurcations for gsyn = 7.528, Case 5. A: Continuation of averaged equilibria
projected into the (gton, h2) plane. Inset diagram shows a zoom near PF. B: Summary of all the
averaged equilibria and folded singularities of Case 5.

drift across a SNPO curve and track a repelling family of periodic orbits, in the Butera
model. Furthermore, our computational evidence suggests that torus canards, as well as
an associated torus breakdown and torus canard explosion, mediate the transition between
bursting and tonic spiking. Using a combination of GSPT and numerical averaging, we
inferred the dynamics and behaviour of torus canards and toral folded singularities in the
Butera model. The torus canard phenomenon has been observed in numerous neural models
such as the WCI, Hindmarsh-Rose and Purkinje cell model. Only recently has averaging
theory been extended to singularly perturbed systems where solutions pass near a SNPO
bifurcation of the layer problem [104]. Vo [104] rigorously established for a general singularly
perturbed model with any number of slow variables, up to two fast variables, and a layer
problem family of periodic orbits with SNPO bifurcation, that the averaged reduced system
is an O(ε) approximation of the full system; in other words, the average of a torus canard is
indeed a folded singularity canard. Furthermore, Vo proved that many well know results of
canard theory (such as the rotational properties of folded node canards and the existence of
maximal canards) carry over to toral folded singularities. As the Butera model has six fast
variables, our numerics suggests that the results of [104] should extend naturally to higher
dimensions, but it remains to formally justify this.
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SN

PF FSN III

Figure 5.29: Bifurcations for gsyn = 7.565, Case 6. A: Continuation of averaged equilibria
projected into the (gton, h2) plane. Inset diagram shows a zoom near PF. B: Summary of all the
averaged equilibria and folded singularities of Case 6.
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Chapter 6

Canonical Model of the Organising
Centre

Author’s Contributions: This chapter is published as part of [87]. The canonical model
was conceived by JR and MW, and analysed by all authors. The manuscript was written
and edited by all authors.

In the previous chapter, we showed that the averaged reduced problem (5.5) holds the
key to the understanding of the different activity patterns observed in the Butera model
(5.1). We identified a variety of averaged equilibria and numerically identified various toral
folded singularities, many of which interact in bifurcations as gton is varied, the order of
which depends on gsyn. In particular, the analysis in Chapter 5 identified four important
codim-1 bifurcation curves in (gton, gsyn) space – PF, FSN III, FSN II, and SN – as well
as three related codim-2 bifurcations (see Figure 5.10B) that arise due to the interaction
of these codim-1 bifurcation curves. Since these codim-2 points lie in close proximity of
each other, these observations suggest that we are dealing with a particular unfolding of a
codim-3 (or higher) organising centre in the underlying problem. The aim of this chapter
is to support the numerical results of Chapter 5 by proposing and analysing a canonical
model system that can be seen analytically to encompass the key structures and bifurcations
identified in the averaged reduced problem.

We now formulate a local canonical system that describes the dynamics of (5.5) near
the fold of the critical manifold for parameter values close to such an organising centre for
all of the cases we have considered. For this canonical system, we can analytically establish
that all of the putative singularities and bifurcations do indeed exist, along with pathways
in parameter space that cover the six cases found for system (5.5). The local canonical
system is given by

ẋ = −z + α− y2,

ẏ = −y
(
β − γy2 + y4

)
,

εż = x− z2,

(6.1)

where (x, y) are slow variables and z is a fast variable, 0 < ε� 1 is the singular perturbation
parameter, and (α, β, γ) ∈ R3 are the bifurcation parameters. Note that system (6.1) has
the Z2 symmetry y ↔ −y. Hence, y represents deviation from the symmetry axis, and y = 0
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corresponds to h1 = h2 in the Butera model (5.1). The fast variable z should be seen as a
representative of the original 6D fast system. While bursting and spiking activity patterns
are not possible in system (6.1) and we do not provide a mapping between (α, β, γ) and
(5.1), this local canonical system encodes all the mechanisms needed to explain the dynamics
associated with observed transitions of activity patterns in system (5.5).

6.1 Bifurcation Structure in the Reduced Problem

Setting ε = 0 in system (6.1) gives the reduced problem

ẋ = −z + α− y2,

ẏ = −y
(
β − γy2 + y4

)
,

0 = x− z2,

which is a differential-algebraic system that describes the evolution of the slow variables
(x, y) restricted to the folded critical manifold {x = z2}. Since the critical manifold is a
graph over (y, z) coordinate space (although independent of y), we can study the reduced
flow in a neighbourhood of the fold by first differentiating the algebraic constraint x = z2

with respect to time to obtain

ẏ = −y
(
β − γy2 + y4

)
,

2zż = −z + α− y2.
(6.2)

Desingularisation (i.e. rescaling time dt = 2zds) of (6.2) removes the singular term at the
fold z = 0, and yields the desingularised system

ẏ = −2zy
(
β − γy2 + y4

)
,

ż = −z + α− y2,
(6.3)

where the overdot denotes differentiation with respect to the rescaled time s. In both
systems, (6.2) and (6.3), z represents deviation from the fold z = 0 on the critical manifold.
Note that the direction of the flow in the desingularised system (6.3) must be reversed on the
repelling sheet of the critical manifold (z < 0) to obtain a flow equivalent to (6.2). While
system (6.2) describes the reduced flow on the critical manifold, it is straightforward to
compute conditions for the existence of equilibria, folded singularities and their bifurcations
from the desingularised system (6.3). Symmetric and asymmetric equilibria are given by

(ys, zs) = (0, α),

(ya, za) = (±
√
ξ±, α− ξ±),

where ξ± := (γ ±
√
γ2 − 4β)/2, assuming that the quantities under the radicals are non-

negative Thus system (6.3) has four asymmetric equilibria when β < 0, two asymmetric
equilibria when γ > 0 and 0 < β < γ2/4, and zero asymmetric equilibria when these
conditions fail.
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The Jacobian matrix for system (6.3) is given by

J =

(
−2z(β − 3γy2 + 5y4) −2y(β − γy2 + y4)

−2y −1

)
. (6.4)

Evaluating J for a symmetric equilibrium yields a diagonal matrix with eigenvalues λ1 =
−2αβ, λ2 = −1. As we move through quadrants I, II, III and IV in the (α, β) plane, the
symmetric equilibrium switches from a stable node to a saddle to stable node to saddle,
independent of γ. For an asymmetric equilibrium, J becomes a lower triangular matrix,
with eigenvalues λ1 = −1 and λ2 = −2(α− ξ±)(β − 3γξ± + 5ξ2

±). Note that

β − 3γξ± + 5ξ2
± =

√
γ2 − 4β

(√
γ2 − 4β ± γ

)
,

with γ2 > 4β for (γ, β) values where asymmetric equilibria exist. Away from the fold z = 0,
we observe two different bifurcations of equilibria:

• a pitchfork (PF) bifurcation for β = 0 and

• a pair of saddle-node (SN) bifurcations for β = γ2/4 where γ > 0 .

Folded singularities are given by

(yf , zf ) =
(
±√α, 0

)
.

Note that folded singularities are not equilibria of the reduced problem (6.2), but nonetheless
can generate interesting dynamics; see Section 2.3. At these folded singularities, which only
exist for α > 0, trace(J) = −1 and det(J)=−2α(β−γα+α2). Thus the folded singularities
can switch from node to saddle type. These changes are due to two types of bifurcations
that involve both folded singularities and equilibria:

• a pair of folded saddle-node type II (FSN II) bifurcations away from the symmetry
axis at α = ±ξ± > 0 (or γ = β/α + α for α > 0, which always satisfies γ2 > 4β),
each of which corresponds to a transcritical bifurcation of an equilibrium and a folded
singularity, and

• a folded saddle-node type III (FSN III) bifurcation at the origin α = 0, which corre-
sponds to a pitchfork bifurcation of an equilibrium and two folded singularities. The
FSN III bifurcation is due to the underlying Z2-symmetry and has not been reported
before in the literature.

We illustrate bifurcation curves for system (6.3) and their dependence on α, β, and γ picto-
rially, as shown in Figure 6.1. These diagrams come directly from the formulas above. We
can pick out paths in these diagrams that correspond one-to-one to the cases derived from
parameter continuation of gton in Section 5.3, as labelled in Figure 5.10B. Importantly, the
sets of singularities present in the regions traversed by each path match those presented
below the continuation diagrams in Figures 5.15B, 5.25B-5.29B. We leave it to the reader
to check this equivalence.

Similar to the Butera model, we observe multiple different symmetric bursting regimes,
i.e. there are several different singularity configurations in which there are no singularities
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Figure 6.1: Bifurcation curves for system (6.3) in the (α, β) parameter plane for γ > 0 (top)
and γ < 0 (bottom). The text within the figure indicates the bifurcation types separating regions
(largest, colour-coded font) and the activity patterns within each region (intermediate-sized black
font). Paths through (α, β) parameter space correspond to the numbered cases in Section 5.3 (see
also Figure 5.10B). All paths start in quadrant III and progress initially in the direction of increasing
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Figure 6.2: Bifurcation curves for system (6.3) in the (β, γ) parameter plane for α > 0. The text
within the figure indicates the bifurcation types separating regions (largest, colour-coded font) and
the activity patterns within each region (intermediate-sized black font), as in Figure 6.1. Black dots
denote codim-2 points. The case for α < 0 features the same PF and SN curves as appear for α > 0
but no FSN II curve (not shown).

on the attracting sheet of the critical manifold (e.g., with γ > 0 and α < 0, compare β < 0
versus 0 < β < γ2/4 versus β > γ2/4); cf. Figures 5.28 and 5.29. There are also multiple
symmetric spiking regimes, all with a symmetric stable node on the attracting sheet of the
critical manifold, as well a regime with bistability of asymmetric and symmetric spiking
found for γ, α > 0 and αγ − α2 < β < γ2/4 (cf. Figures 5.12, 5.25, 5.26). Moreover, the
results in Figure 6.1 make very clear that for parameter regimes corresponding to γ > 0,
which include gsyn values corresponding to Cases 2-6 in our earlier results, generic transitions
between symmetric and asymmetric spiking involve regimes of bistability between the two
solution types (see Cases 2-3).

We also identify the three codim-2 bifurcation curves in (α, β, γ) parameter space as
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described for the averaged reduced flow of the Butera model at the end of Section 5.3:

• {(0, 0, γ)} where the FSN III and PF bifurcations collide and the FSN II bifurcation
terminates (Figure 6.1),

• {(α, 0, 0)} where the SN bifurcation terminates at the PF bifurcation, and PF changes
criticality (Figure 6.2), and

• {(α, α2, 2α)} within {α > 0}, where the SN and FSN II bifurcations meet (Figures
6.1 and 6.2).

These three codim-2 curves are born out of the codim-3 point at the origin.

6.2 Bifurcation Structure in the Full System

To understand the relationship between the FSN III bifurcation in the reduced problem and
the singular AH bifurcation in system (6.1), one has to consider the Jacobian of the full
system (6.1) with ε > 0, evaluated along the symmetric equilibrium (xs, ys, zs) = (α2, 0, α).
This Jacobian is given by  0 0 −1

0 −β 0
1/ε 0 −2α/ε

 (6.5)

and the corresponding eigenvalues are

λ1 = −β,
λ2/3 =

(
−α±

√
α2 − ε

)
/ε.

Thus we have an AH bifurcation for α = 0. Notice that the onset frequency of the bifur-
cating limit cycles is O(1/

√
ε), which is an intermediate time scale of the slow-fast problem

(6.1). Furthermore, λ2/3 are only complex conjugate eigenvalues for |α| < √ε. Thus we
conclude that the AH bifurcation is in fact singular. Clearly, the singular AH bifurca-
tion at (xahs , y

ah
s , zahs ) = (0, 0, 0) corresponds to the FSN III point of the reduced flow for

(β 6= 0, γ 6= 0).
The Jacobian of the full system (6.1) with ε > 0, evaluated along one of the possible

asymmetric equilibria (xa, ya, za) = ((α− ξ±)2,±
√
ξ±, α− ξ±), is given by 0 ∓2

√
ξ± −1

0 −2ξ±(2ξ± − γ) 0
1/ε 0 −2(α− ξ±)/ε

 (6.6)

and the corresponding eigenvalues are

λ1 = −2ξ±(2ξ± − γ),

λ2/3 = (α− ξ±)±
√

(α− ξ±)2 − 1/ε.

Similarly, we identify two AH bifurcations for α = ξ±. Once again, the AH bifurcations are
singular since the onset frequency of the bifurcating limit cycles is O(1/

√
ε). The pair of
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singular AH bifurcations at (xaha , y
ah
a , zaha ) = (0,±√α, 0) for α > 0 and β = α(γ−α) ≤ γ2/4

corresponds to the pair of FSN II bifurcations discussed previously. We also identify the
two previously found codim-1 bifurcation of equilibria:

• a PF bifurcation at (xpf , ypf , zpf ) = (α2, 0, α), which occurs for β = 0 and α 6= 0, and

• a SN bifurcation at (xsn, ysn, zsn) = ((α − γ/2)2,±
√
γ/2, α − γ/2), which occurs for

β = γ2/4 and γ > 0.

Together, these codim-1 bifurcations are involved in three codim-2 bifurcations. Away
from the symmetry axis, we have for γ = 2α , β = α2 and γ > 0 a pair of SN/singular AH
bifurcation points, i.e. we have a zero eigenvalue and a pair of purely imaginary eigenvalues
(Figures 6.1, 6.2). At the symmetry axis, we have for β = γ = 0 and α 6= 0 a degenerate
PF bifurcation, i.e. we have a single zero eigenvalue and the coefficient of the nonlinear
term that determines the criticality of the PF bifurcation vanishes. Thus the pitchfork
bifurcation changes from super to subcritical and the corresponding branch of saddle-node
points terminates (Figure 6.2). For α = β = 0, a PF/singular AH bifurcation occurs due to
Z2-symmetry (Figures 6.1, 6.2). Note that this Z2-symmetric codim-2 point involves both
singular AH bifurcations (FSN II/III) and the PF bifurcation (β = 0), i.e. we have a zero
eigenvalue and a pair of purely imaginary eigenvalues as well as Z2 symmetry.

Finally, in the case α = β = γ = 0, we are dealing with a codim-3 degenerate
PF/singular AH bifurcation, i.e. we have a zero eigenvalue and a pair of purely imagi-
nary eigenvalues, and the coefficient of the nonlinear term that determines the criticality
of the PF bifurcation also vanishes. This codim-3 point forms the organising centre of the
various activity patterns, either symmetric or asymmetric in nature, that we have identified.

Remark 6.1. While such codim-3 bifurcations have been studied for regular perturbation
problems (for example, see [3, 62]), these have not been analysed so far in the context of
singularly perturbed systems. A detailed study of the canonical model (6.1) (including a
blow-up analysis) goes well beyond the aim of this work and is left for the future.

6.3 Discussion

In this chapter we presented and analysed via direct calculation what we call a canoni-
cal system, which features three parameters and encompasses all of the equilibria, (toral)
folded singularities, and bifurcations observed and in the averaged reduced problem (5.5)
of the Butera model. We found that the canonical system dynamics agree with the activity
patterns observed in the GSPT/averaging framework and in the full system (5.1), in all
of the parameter regimes that were considered. Furthermore, we found paths in param-
eter space for the canonical system that correspond to all of the paths between activity
patterns attained by parameter variation in the neuronal model. These results validate
the suggestions from the GSPT/averaging analysis of Chapter 5 concerning the dynamical
mechanisms underlying model activity patterns and transitions between them.
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Chapter 7

The Folded Saddle-Node Type III

In Chapter 5, we studied the transition between various bursting and spiking states in the
Butera model, a coupled two neuron model. Using a combination of GSPT and numer-
ical averaging, we were able to analyse an averaged reduced system and identify various
(toral) folded singularities and their associated FSN bifurcations. Near the asymmetric to
symmetric bursting transition, we observed the novel FSN type III, a pitchfork bifurcation
of two folded singularities and an ordinary singularity, arising as a consequence of the Z2-
symmetry of the Butera model. This FSN III corresponded to a singular torus bifurcation
of the full system.

The more well known FSN bifurcations, type I and II, are common in a variety of
applications and can lead to complex dynamics. The FSN I occurs in various neural models
[101, 106, 112], and generates mixed-mode oscillations (MMOs) in the forced van der Pol
oscillator [12, 46, 49, 100]. The FSN II, which is the dynamic unfolding of the 2D singular
Andronov-Hopf bifurcation, generates the canard explosion in planar singularly perturbed
systems [37, 64], which mediates the transition from quiescence to relaxation oscillations.
The FSN II also frequently occurs in cell models [88, 90, 91, 105, 50], and plays a role in the
creation of MMOs [5, 13, 45]. We also see neural models were both the FSN I and II occur,
and they demarcate the region in parameter space where MMOs are observed [39, 101].

The local dynamics near both the FSN I and II has been studied extensively in R3. In the
case of the FSN II, the full system singular Andronov-Hopf bifurcation generates periodic
orbits that can undergo secondary bifurcations. In [45], these periodic orbits and their
associated bifurcations were studied in the µ = O(ε) regime. Krupa et al. [66] added to this
by studying the µ = O(

√
ε) regime, where the periodic orbits can be ignored. Finally the

transition between the two regimes was dealt with in [25, 31]. Using similar techniques to
[66], Vo et al. [108] analysed the dynamics near the FSN I in the µ = O(εk), k ≥ 1/4 regime.
Note that although the FSN I does not posses a full system Andronov-Hopf bifurcation,
oscillatory dynamics still arise. Of particular interest is that these various studies prove
that both the FSN I and II generate canards for 0 < ε � 1. The goal of this chapter is
to combine techniques from GSPT (the blow-up) and dynamic bifurcation theory (analytic
continuation into the complex plane) to extend the current FSN I and II canard theory to
the FSN III case.

The remainder of this chapter is outlined as follows. In Section 7.1 we study a canoni-
cal model of the FSN III and briefly examine the local dynamics of the reduced and layer
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problems. Taking inspiration from classic integrate-and-fire neural models, we modify the
canonical model and create a return mechanism which generates interesting MMO be-
haviour. In Section 7.2 we perform a blow-up analysis of the canonical model and study
the dynamics in the entry chart and the rescaling chart (which is an O(

√
ε) zoom of the

dynamics in a small neighbourhood of the FSN III singularity). In the rescaling chart,
we identify two layer problem Andronov-Hopf (AH) bifurcations; the reduced flow moves
trajectories slowly through these bifurcations, causing a delayed loss of stability. In Section
7.3, we sate our main results on the existence of canards and faux canards (for Case 1),
and define the way-in/way-out function that quantifies the expected delay caused by slow
passage through the AH bifurcations in the rescaling chart. Taking a similar approach to
[64, 108], we study the dynamics of trajectories during the slow passage through the AH by
analytically extending the rescaling chart into the complex plane. In Section 7.4, we anal-
yse the properties of the linearised complex flow along special paths called elliptic contours,
where solutions neither grow or decay. These results are extended to the non-linear case
in Section 7.5. In Section 7.6, we utilise the elliptic paths to track invariant manifolds and
formally prove the existence of canards. In Section 7.7, we expand the main theorems and
proofs to include all four cases of the FSN III. We conclude with a discussion in Section 7.8.

7.1 Canonical Model

Drawing from the canonical model of the organising centre (6.1) in Section 6, we formulate
a canonical form of the FSN III

ẋ = −z + δ1(α− y2) +O(ε, x, z2, zy2, y4),

ẏ = δ2y(1 +O(ε, x, z, y2)),

εż = x− z2 +O(xz2, z3, ε(x+ z), ε2, εy2),

(7.1)

where ε� 1, δ1, δ2 = ±1, and (x, y) ∈ R2 are slow, while z ∈ R is fast. Note that the only
difference between (6.1) and (7.1) arises in the ẏ equation: the FSN III does not explicitly
require the O(y2) and O(y4) terms. To leading order the canonical model is Z2-equivariant,
i.e. y ↔ −y. The higher order terms seen in (7.1) are also symmetric; this restriction
ensures that the critical manifold is invariant up to O(ε) perturbations, which will become
important in later proofs. Various combinations of the parameters δ1 and δ2 create four
different cases, which will be referred to throughout the rest of this chapter. The cases are
defined as follows:

• Case 1 : δ1 = δ2 = 1,

• Case 2 : δ1 = 1, δ2 = −1,

• Case 3 : δ1 = −1, δ2 = 1,

• Case 4 : δ1 = δ2 = −1.

Locally near the origin, the critical manifold of (7.1) is a 2D parabolic cylinder

S := {(x, y, z) : x = z2 +O(z3)},
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δ1 δ2 E F

Case 1 1 1
α < 0 UN (Sr) -

0 < α < 1
16 S (Sa) FN

α > 1
16 S (Sa) FF

Case 2 1 -1
α < 0 S (Sr) -
α > 0 SN (Sa) FS

Case 3 -1 1
α < 0 S (Sa) -
α > 0 UN (Sr) FS

Case 4 -1 -1
α < 0 SN (Sa) -

0 < α < 1
16 S (Sr) FN

α > 1
16 S (Sr) FF

Table 7.1: A summary of the type/stability of the ordinary singularities E and folded singularities
F of (7.2) for various values of δ1, δ2 and α. FN and FS denote folded node and folded saddle, while
SN, UN and S denote stable node, unstable node and saddle, respectively. The dashes indicates
parameter regions where the folded singularities do not exist.

which has an attracting sheet Sa (z > 0) and a repelling sheet Sr (z < 0), separated by the
fold curve

L := {(x, y, z) : x = z = 0},

which is simply the y-axis. The desingularised reduced system of (7.1) is given by

ẏ = δ2y(2z +O(z2, y2z, z3)), (7.2)

ż = −z + δ1(α− y2) +O(z2, z3, yz2, y4).

System (7.2) has an ordinary singularity (or equilibria) E := (α2, 0, δ1α), and two folded
singularities F± := (0,±√α, 0). Clearly the folded singularities only exist for α > 0, and
when α = 0, two folded singularities collide with the ordinary singularity at a FSN III
bifurcation. The Jacobian of (7.2) is given by

A(y, z) =

(
2δ2z +O(z2, y2z) 2δ2y +O(yz, y3)
−2δ1y +O(z2, y3) −1 +O(z, yz)

)
, (7.3)

and linearising about E , we find that the eigenvalues are

λ1 = 2δ1δ2α+O(α2),

λ2 = −1 +O(α).

At the folded singularities F±, we find that

Tr(A) = −1,

Det(A) = 4δ1δ2α+O(α2),

∆ = 1− 16δ1δ2α+O(α2).
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Figure 7.1: Flow of the desingularised reduced system (7.2) for Cases 1 through 4 (corresponding
to rows A through D). The parameter α varies between the three columns: α = −0.05 for figures
in the left column, α = 0 for figures in the middle column, and α = 0.05 for figures in the right
column. In all figures, the fold is the y-axis, Sa is the region z > 0, and Sr is the region z < 0.
For folded node singularities, the strong canard (shown in blue) is labelled γs, and the weak canard
(cyan) is γw. The funnel region is shaded blue. Note that for Case 4, the funnel region persists in
the α = 0 limit, while in Case 1 it vanishes. For folded saddle singularities, the true canard (green)
is labelled γt, while the faux canard (red) is γf . The eigendirections (grey) of ordinary singularities
are indicated in the figure. See also Table 1.

The type and/or stability of the singularities depends on the parameters δ1, δ2 and α. Table
7.1 shows a summary of the regular and folded singularities, as well as their type/stability,
for each case. A complete picture of the reduced flow for each case can be seen in Figure
7.1. The left column shows the flow for α < 0, the middle column α = 0, and the right
column α > 0.
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Figure 7.2: A canard solution of (7.1) for α = 1/30 and ε = 0.025, Case 1 (cf. Figure 7.11). The
attracting and repelling sheets of the critical manifold are shown in blue and red, respectively. The
fold L is simply the y-axis. The green dots mark the folded node singularities of the reduced system
(7.2).

Figure 7.2 shows a canard solution of system (7.1), for Case 1, oscillating near one
of folded nodes. After oscillating near the origin and passing through the canard point,
the solution eventually falls off the critical manifold near the origin, and follows the fast
fibres of the layer problem away from S. Similar to classic integrate-and-fire neural models
[72, 58, 14, 17], we set up a ‘global return mechanism’. After a solution spikes, i.e. crosses
a threshold, all variables are reset to allow the solution to return to the funnel on Sa. We
define the spiking threshold zth = −1, and reset values xre = x(0), yre = y(0), zre = z(0).
The local canonical model (7.1), combined with the global return mechanism described
above, allows for complex oscillatory patterns; see Figures 7.3 and 7.12 for examples of
MMOs [16, 15, 91, 28, 105].

When α = 0, the centre manifold W c at the origin is given by z = −δ1y
2 +O(y4) and

the flow on WC is ẏ = −2δ1δ2y
3 +O(y5). Thus δ1 controls the position of WC ; when δ = 1,

WC lies on Sr, and when δ1 = −1, WC lies on Sa. The product δ1δ2 dictates the direction
of the flow along WC locally near the origin. If δ1δ2 > 0, then the flow is towards the origin;
if δ1δ2 < 0, the flow is away from the origin (however, the flow must be reversed in Cases 1
and 2 when WC lies on on Sr). See Figure 7.1, middle column, which shows the positioning
and flow on WC for each case. The FSN III identified in the study of the Butera model [87]
corresponds to Case 1.

7.2 Folded Saddle-Node Type III Blow-Up

We now shift our attention to formally proving the existence of canards in (7.1), near the
FSN III limit (α = 0). We will focus on Case 1, and address Cases 2–4 later in Section 7.7.
Note that due to the structure of the FSN III, there are only faux canards in Cases 2 and
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Figure 7.3: MMO solutions of (7.1), for Case 1 (δ1 = δ2 = 1), ε = 0.025 and various values of α,
which are indicated on the respective plot. For all these plots zth = −0.5, xre = 0.25, zre = 0.5,
while the value of yre varies. Row A: yre = 0.015, Row B: yre = 0.001, Row C: yre = 10−7. Compare
with Figure 7.12 which shows similar patterns for Case 4.

3; theorems on their existence will be dealt with in Section 7.7. In this section we define
the map induced by the flow of (7.1) and perform a (partial) blow-up analysis.

7.2.1 Transition map and cross-sections

Naturally, we are interested in analysing the flow of (7.1) in a neighbourhood of the fold L,
near the FSN III singularity. To this end, we introduce the transition map Π : Σ1 → Σ2,
induced by the flow of (7.1), with cross-sections

Σ1 := {(x, y, z) : x = σ1, σ1 > 0} ,
Σ4 := {(x, y, z) : z = −σ4, σ4 > 0} . (7.4)

To analyse Π in the vicinity of the FSN III singularity, we define two intermediate ε-
dependent (i.e. singular) cross-sections

Σ2 := {(x, y, z) : x = εσ2, σ2 > 0} ,
Σ3 :=

{
(x, y, z) : z = −√εσ3, σ3 > 0

}
,

(7.5)

which are used in the blow-up analysis of folded singularities (see [15, 99, 110]). Figure 7.4
shows all four cross-sections in the (x, z)-plane. At O(1) distances away from L, the flow of
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Figure 7.4: Cross-sections Σ1–Σ4, projected onto the (x, z)-plane. The manifolds Sa and Sr are
plotted in blue and red, respectively.

(7.1) for 0 < ε� 1 is completely described by Fenichel theory. In other words, there exist
invariant slow manifolds Sεa and Sεr , which are O(ε) close to their singular counterparts Sa
and Sr (see Chapter 2). Blow-up analysis enables the extension of Fenichel theory O(ε)
close to the fold L. Thus the slow manifolds Sεa and Sεr can be extended up to sections Σ2

and Σ3, respectively. We have the following result:

Proposition 7.1 (see [109, 66]). For system (7.1), the sets S
√
ε

a and S
√
ε

r are smooth locally
invariant normally hyperbolic manifolds, and O(

√
ε) smooth perturbations of S. The flow

on S
√
ε

a and S
√
ε

r is an O(
√
ε) perturbation of the reduced flow. Furthermore, S

√
ε

a and S
√
ε

r

consist of solutions which grow algebraically in backward and forward time, respectively.

7.2.2 Blow-up transformation

The first step in our analysis of the map Π involves the blow-up technique. Recall from
Section 2.5 that the blow-up [36, 37, 99, 111] is a co-ordinate transformation which inflates
the degenerate singularities of (7.2) to a k-sphere (for this problem k = 3). As a result of the
transformation, sufficient normal hyperbolicity is gained to allow analysis using standard
techniques. Note that ε must be included in the blow-up analysis, and so we extend system
(7.1) and switch to the fast timescale

x′ = ε(−z + δ1(α− y2) +O(ε, x, z2, zy2, y4),

y′ = εδ2y(1 +O(ε, x, z, y2)),

z′ = x− z2 +O(xz2, z3, ε(x+ z), ε2, εy2),

ε′ = 0.

(7.6)

For the FSN III, the blow-up is a mapping Φ : B = S3 × R1 → R4 given by

(x, y, z, ε) = (r̄4x̄, r̄ȳ, r̄2z̄, r̄4ε̄), (7.7)

with (x̄, ȳ, z̄, ε̄) ∈ S3×R1. The parameter α is also rescaled as α =
√
εα2 so that limε→0 α =

0, and thus we have a FSN III singularity for all α = O(
√
ε).

To avoid using spherical co-ordinates, we instead study the dynamics in co-ordinate
charts ū = ±1, ū ∈ {x, y, z, ε}. For this particular problem it is sufficient to consider two
charts, the entry chart κ1 : x̄ = 1, and the rescaling chart κ2 : ε̄ = 1. Let κpk denote the
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change of coordinates that takes solutions in chart κk and maps them to chart κp. Thus
κ12 and κ21 are given by

κ12 : (r1, y1, z1, ε1) =
(
r2(x2)1/4, y2(x2)−1/4, z2(x2)−1/2, (x2)−1

)
,

κ21 : (r2, z2, y2, x2) =
(
r1(ε1)1/4, z1(ε1)−1/4, y1(ε1)−1/2, (ε1)−1

)
.

(7.8)

7.2.3 Entry chart

In chart κ1 the coordinate transformation is given by

(x, y, z, ε) =
(
r4

1, r1y1, r
2
1z1, r

4
1ε1

)
, (7.9)

and, after substituting this into (7.6) and rescaling time by a factor of 4r2
1, we obtain

r′1 = ε1r1R,
y′1 = ε1y1(4δ2r

2
1 +O(r2

1(z1 + y2
1 + r2

1 + r2
1ε1))−R),

z′1 = 4(1− z2
1) +O(r4

1(ε1z1 + z3
1 + ε1y

2
1))− 2ε1z1R,

ε′1 = −4ε2
1R,

(7.10)

where
R := −z1 + δ1(α2

√
ε1 − y2

1) +O(r2
1(1 + ε1 + z2

1 + y2
1z1)).

System (7.10) has two invariant subspaces, ε1 = 0 and r1 = 0, which intersect along lines of
equilibria given by La,1 = (0, y1, 1, 0) and Lr,1 = (0, y1,−1, 0) that have non-zero eigenvalue
∓8, respectively. Contained in the ε1 = 0 invariant subspace are normally hyperbolic
surfaces of equilibria Sa,1 and Sr,1, defined by (r1, y1, z1, ε1) = (r1, y1,±1, 0). These surfaces
correspond to the attracting and repelling sheets of the critical manifold S.

If we restrict ourselves to the invariant subspace r1 = 0 and examine the resulting 3D
system, there exist 2D centre manifolds Ca,1 and Cr,1 of the lines of equilibria La,1 and Lr,1,
respectively. The ε1 ≥ 0 branch of Ca,1 is unique for −1 + δ1(α

√
ε1 − y2

1) < 0, while the
ε1 ≥ 0 branch Cr,1 is unique for 1 + δ1(α

√
ε1 − y2

1) > 0.

Proposition 7.2. For system (7.10), we have the following results:

1. There exists a 3D attracting centre manifold Ma,1 of the line of equilibria La,1. The
manifold Ma,1 contains the surface of equilibria Sa,1 and the centre manifold Ca,1, and
is given by za1(r1, y1, ε1) = 1 +O(ε1, (r1 + y1 + ε1)2).

2. There exists a 3D repelling centre manifold Mr,1 of the line of equilibria Lr,1. The
manifold Mr,1 contains the surface of equilibria Sr,1 and the centre manifold Cr,1, and
is given by zr1(r1, y1, ε1) = −1 +O(ε1, (r1 + y1 + ε1)2).

Substituting za1 = 1 + O(ε1, (r1 + y1 + ε1)2) into (7.10) and desingularising, we obtain
the flow on the attracting centre manifold Ma,1

r′1 = r1R̃,
y′1 = y1

(
4δ2r

2
1 − R̃

)
,

ε′1 = −4ε1R̃,
(7.11)
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Figure 7.5: Dynamics of system (7.11), i.e. the flow on the attracting centre manifold Ma,1, for Case
1, α2 = 0.5. The stream plots in the r1 = 0 and ε1 = 0 invariant planes are shown in red, and their
equilibria are indicated by black dots, while the solid black lines correspond to the eigendirections
of the respective equilibria. Branches of equilibria are shown in solid dark green, and trajectories of
(7.11), with non-zero ε = r41ε1, are shown in blue.

where R̃ := −1 + δ1(α2
√
ε1 − y2

1) + O(r2
1(1 + ε1 + y2

1)). System (7.11) has three invariant
subspaces, r1 = 0, ε1 = 0, and y1 = 0 (which corresponds to the pole). In the r1 = 0 plane,
the flow on Ma,1 is given by

y′1 = y1

(
1− δ1

(
α
√
ε1 − y2

1

))
,

ε′1 = 4ε1

(
1− δ1

(
α
√
ε1 − y2

1

))
.

(7.12)

On the other hand, the flow on Ma,1 in ε1 = 0 plane is given by

r′1 = −r1(1 + δ1y
2
1),

y′1 = y1(1 + δ1y
2
1 + 4δ2r

2
1).

(7.13)

It is important to realise that the above flow, i.e. flow on Ma,1 in the ε1 = 0 invariant
plane, corresponds to the desingularised flow (7.2) on Sa for α = 0. As such, the strong
eigendirection of the origin in (7.13) corresponds to the singular strong canard γs of the FSN
III bifurcation (see Figure 7.1, middle column). Note that for Case 1, the centre direction
WC lies on Sr, and hence there is no corresponding structure on Ma,1. Linear stability
analysis of systems (7.12) and (7.13) gives the following results:

• In the r1 = 0 plane, there is an unstable node at the origin and branches of equilibria
(ȳ1, ε̄1) = (±

√
α
√
ε1 − 1, ε1), originating at (0, 1/α2).

• In the ε1 = 0 plane, there is a saddle equilibrium at the origin, and the strong
eigendirection of the saddle corresponds to γs of the FSN III singularity.

The dynamics on Ma,1 for Case 1 is shown in Figure 7.5. See Appendix A for a description
of the dynamics on Ma,1 for Cases 2–4.

7.2.4 Transition from chart κ1 to κ2

Before we study the dynamics in chart κ2, we discuss how trajectories transition from
chart κ1 to κ2, and estimate transition times from Σ1 to Σ2. Define the transition map

111



Π1 : Σ1 → Σ2. In terms of chart κ1 coordinates, the cross-sections are given by

Σ1 :=
{

(r1, y1, z1, ε1) : r1 = σ
1/4
1

}
,

Σ2 :=
{

(x1, y1, z1, ε1) : r1 = (εσ2)1/4
}
.

Linearising (7.11) about the origin yields a decoupled system (independent of δ1,2, and thus
valid for all cases) with solutions

r1(t) = r̃1 exp(−t),
y1(t) = ỹ1 exp(t),

ε1(t) = ε̃1 exp(4t),

(7.14)

with initial condition q̃1 = q1(0), for q1 = {r1, y1, ε1}. Thus the transition time from

r̃1 = σ
1/4
1 to r1 = (εσ2)1/4, i.e. Σ1 ∩Ma,1 → Σ2, for Case 1 is

Ts = ln(O(ε−1/4)).

Consider an initial condition in Σ1, an O(ε1/4) distance away from γs, the strong eigendi-
rection of the saddle in (7.13). Then Π1 : Σ1 → Σ2 maps the initial point to an O(1)
neighbourhood of γs in Σ2. We define the auxiliary exit cross section

Σout
2 :=

{
(r1, y1, z1, ε1) : ε1 = σ−1

2

}
,

where trajectories leave κ1 and enter κ2. If ε1(Ts) = σ−1
2 , then it follows from system (7.14)

that ε̃1 = O(ε). The additional constraint ε̃1 = O(ε) gives the restricted map

Πout
1 : Σ1 ∩Ma,1 → Σ2 ∩ Σout

2 .

The transition times for Cases 2–4 are calculated in Appendix C.

Remark 7.1. The above analysis implies that only trajectories an O(ε1/4) distance away
from γs in Σ1 enter the attracting region of CM in chart κ2. For Case 1, the domain
of attraction of CM in κ2 is the interval y2 ∈ (−√α,√α) := d, where d = O(1) since
α2 = O(1) by assumption (see Section 7.2.5 and Figure 7.6A). Let D be the domain in Σ2

defined by (x2, y2, z2) = (σ2, d,
√
σ2). Applying the change of coordinates κ12 gives

κ12(D) : (r1, y1, ε1) = (εσ2)1/4, dσ
−1/4
2 , σ−1

2 ),

= O(ε1/4)×O(1)×O(1).

Hence, only trajectories in an O(ε1/4) neighbourhood of γs in Σ1 transition to κ12(D) in
Σ2.

7.2.5 Rescaling chart

The next chart we will examine is the classical or rescaling chart, ε̄ = 1. The coordinate
transformation is given by

(x, y, z, ε) =
(
r4

2x2, r2y2, r
2
2z2, r

4
2

)
. (7.15)
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Notice that r2
2 =

√
ε and thus the classical chart is simply an ε-dependent rescaling (or

zoom) of the full system (7.6). Substituting (7.15) into (7.6) and desingularising by a factor
of
√
ε, we obtain

x′2 = −z2 + δ1(α2 − y2
2) +O(

√
ε(1+x2+z2

2 +y2
2z2)),

y′2 =
√
εδ2y2(1 +O(

√
ε(z2+y2

2), ε(1+x2))),

z′2 = x2 − z2 +O(
√
ε(z2 + y2

2 + z3
2), ε(1 + x2 + x2z

2
2)).

(7.16)

We have converted the 1-fast/2-slow system (7.6) into a 2-fast/1-slow system (7.16), which
describes the dynamics in an O(

√
ε) neighbourhood of the FSN III singularity. The layer

problem of (7.16) is given by

ẋ2 = −z2 + δ1(α2 − y2
2),

ż2 = x2 − z2
2 ,

(7.17)

where y2 ∈ R is a parameter. The critical manifold CM is defined as

CM := {(x2, y2, z2) : ((α2 − y2
2)2, y2, δ1(α2 − y2

2)) : y2 ∈ R}, (7.18)

which is the set of equilibria of the layer problem. By linear stability analysis, the eigenvalues
along CM are

λ = −δ1(α2 − y2)±
√

(α2 − y2)2 − 1, (7.19)

which is independent of δ2. The stability properties of CM for Case 1 is summarised in
Figure 7.6. It is clear from Figure 7.6 that for α2 < 0, the stability of CM is the same
for all values of y2; we ignore this case and instead focus on α2 > 0. For a fixed value of
α2 > 1, the eigenvalues along the y2-axis alternate between between a real and complex
structure; see Figure (7.6), bottom panel. Note that when 0 < α < 1, the region around
the origin where λ is real disappears. The stability of CM changes at y2 = ±√α2 via a
Hopf bifurcation (except when α2 = 0). The structure of CM for Cases 2–4 is discussed in
Appendix D.

The critical manifold CM is an important geometric object because it connects the
attracting and repelling slow manifolds, Sa,2 and Sr,2, of (7.16) for ε = 0. Note that CM
returns to the manifold on which it started. As discussed in [66, 108], CM is the orbital
limit of the folded node primary weak canard (Cases 1 and 4), or the folded saddle faux
canard (Cases 2 and 3). Away from CM , there exist two explicit solutions of (7.17) given
by

γ±(t2) : (x2, y2, z2) =

(
1

4
t22 −

1

2
,±√α2,−

1

2
t2

)
. (7.20)

The solutions γ± represent a connection from Sa to Sr, which are defined as the ε→ 0 limit
of Sa,

√
ε and Sa,

√
ε in (7.16). Thus γ± can be considered an extension of the folded node

singular strong canard (Cases 1 and 4), or the folded saddle singular true canard (Cases 2
and 3), of the reduced flow (7.2).

Proposition 7.3 (See [66, 99]). The singular strong canards γ± of the FSN III singularity
always perturb to maximal strong canards (of folded node/saddle type) for 0 < ε � 1
sufficiently small.
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Figure 7.6: Structure of the eigenvalues λ of (7.17) along CM , for Case 1. The top panel shows
the stability in the (y2, α2)-plane. The type and sign of the real part of the eigenvalues in various
regions are indicated on the figure. Blue (red) regions are (un)stable, while the light (dark) shading
indicates a real (complex) eigenvalue structure. The solid black line is the curve y22 = α2. The
bottom panel shows the stability along the positive y2-axis, for a fixed value of α2 > 1. Compare
with Figure 7.14, which shows all four cases.

Solutions exponentially close to the maximal strong canards cross to the repelling sheet
of the critical manifold Sr, and follow it for O(1) time. All other trajectories in Σ2 within
the funnel of the folded nodes are quickly attracted to CM . Transforming γ± back to chart
κ1 gives

κ12(γ±(t2)) : (r1, y1, z1, ε1) =

(
0,±√α2t̃2

−1/4
,−1

2
t2t̃2

−1/2
, t̃2
−1
)
,

where t̃2 = 1
4 t

2
2 − 1

2 . Consider the limit t2 → ±∞, and define the points

pa : lim
t2→−∞

κ12(γ±(t2)) = (0, 0, 1, 0) ,

pr : lim
t2→∞

κ12(γ±(t2)) = (0, 0,−1, 0) .

Notice that pa/r ∈ La/r = (0, y1,±1, 0). In particular, γ± emanate from the origin in (7.11);
see Figure 7.5. Thus the strong canards γ± connect the point pa ∈ La,1 to pr ∈ Lr,1 (for
all Cases). Recall that in chart κ1 we defined centre manifolds Ca/r,1 of La/r which were
unique under certain conditions. We have the following result:

Proposition 7.4. Let β be sufficiently large. Then γ±(t2), for t2 ∈ (−∞, β), forms part
of the unique centre manifold Ca,1 in the r1 = 0 invariant plane, with ε1 > 0. Similarly,
γ±(t2), for t2 ∈ (β,∞) forms part of the unique centre manifold Cr,1 in the r1 = 0 invariant
plane, with ε1 > 0.

114



Proof. Recall that the ε1 ≥ 0 branch of Ca,1 is unique for −1 + δ1(α
√
ε1 − y2

1) < 0, while
the ε1 ≥ 0 branch Cr,1 is unique for 1+ δ1(α

√
ε1−y2

1) > 0. Thus Ca,1 is unique at the point
pa, while Cr,1 is unique at pr. In chart κ1, the tangent vectors at the points are given by

pa : lim
t2→−∞

d
dy2
κ12(γ±(t2))

||κ12(γ±(t2))|| = (0,±1, 0, 0) ,

pr : lim
t2→∞

d
dy2
κ12(γ±(t2))

||κ12(γ±(t2))|| = (0,∓1, 0, 0) .

Linearising (7.10) about La/r in the r1 = 0 invariant plane yields two zero eigenvalues
(as well as a non-zero eigenvalue) with one of the corresponding zero eigenvectors being
(y1, z1, ε1) = (1, 0, 0). Thus the trajectories γ± are tangent to the centre manifolds Ca/r,1
at the points pa/r.

Returning to the analysis of (7.16), the associated reduced problem is

0 = −z2 + δ1(α2 − y2
2),

ẏ2 = δ2y2,

0 = x2 − z2
2 ,

(7.21)

which describes the slow evolution of y2 restricted to CM . Since the equation for y2 is
decoupled, the equilibrium is simply y2 = 0. The reduced (slow) flow near this equilibrium
is determined by the sign of δ2, with δ2 = −1 resulting in attraction, and δ2 = 1 repulsion.

7.3 Statement of Main Results

Through the blow-up transformation in chart κ2, we converted the original 1-fast/2-slow
system (7.1) to the 2-fast/1-slow system (7.23), where y2 is a slow variable. The direction
of the slow flow along CM , on either side of the equilibrium y2 = 0, is determined by the
sign of δ2. Recall that in the layer problem (7.17) we identified two Hopf bifurcations at
y2 = ±√α2. For ε 6= 0, y2 slowly tracks through the Hopf bifurcations and a bifurcation
delay is observed; trajectories pass over the Hopf bifurcation point, but do not immediately
leave the repelling section of CM . In this section we present the main results on this delayed
loss of stability and canards, using the way-in/way-out function.

7.3.1 Preliminary setup

We can straighten CM by making a co-ordinate transformation

(x̃2, z̃2) =
(
x2 − (α2 − y2

2)2, z2 − δ1(α2 − y2
2)
)
. (7.22)

Differentiating (7.22), we find that

˙̃x2 = ẋ2 + 4y2ẏ2(α2 − y2
2),

˙̃z2 = ż2 + 2δ1y2ẏ2,
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and thus (7.16) becomes, after dropping the tilde notation,

ẋ2 = −z2 +O(
√
ε(1+x2+z2+y2

2 +z2
2)),

ẏ2 =
√
εδ2y2(1 +O(

√
ε(1+z2+y2

2), ε(1+x2+y2
2))),

ż2 = x2 − 2δ1z2γ − z2
2 +O(

√
ε(1+z2+y2

2), ε(1+x2+z2+y2
2)),

(7.23)

where CM is now simply the y2-axis.

Proposition 7.5. There is a smooth change of coordinates that transforms system (7.23)
to

ẋ2 = −z2 +O(
√
ε(x2 + z2), ε),

ẏ2 =
√
εδ2y2,

ż2 = x2 − 2δ1z2γ − z2
2 +O(

√
ε(x2 + z2), ε).

(7.24)

Proof. See Appendix E.

In equation (7.24), the y2-axis (i.e. CM) is invariant up to O(ε), while in (7.23) it is only
invariant up to O(

√
ε). This will become important in our subsequent analysis. We define

λ1(y2, α2, δ1,
√
ε) = −δ1γ − i

√
1−γ2 +

√
εh1(y2)

λ2(y2, α2, δ1,
√
ε) = −δ1γ + i

√
1−γ2 +

√
εh2(y2)

(7.25)

where λ1,2(y2, α2, δ1, 0) corresponds to the eigenvalues of the layer problem of system (7.24).
Note that straightening the critical manifold (or any other smooth change of coordinates)
does not alter the structure of the eigenvalues along CM. Next, we rescale time via the
transformation t =

√
εδ2y2τ , and rewrite (7.24) as a two-dimensional system with y2 as

‘slow time’:

δ2

√
εy2

dx2

dy2
= −z2 +O(

√
ε(x2 + z2), ε),

δ2

√
εy2

dz2

dy2
= x2 − z2

2 − 2δ1z2γ +O(
√
ε(x2 + z2), ε).

(7.26)

The eigenvalues of (7.26) are simply

Λ1,2(y2, α2, δ1,2,
√
ε) := δ2λ1,2(y2, α2, δ1,

√
ε)/y2.

It is important to note that when δ2y2 < 0, the transformation t =
√
εδ2y2τ is orientation

reversing, and we will need to reverse time in system (7.26) to obtain trajectories equivalent
to (7.24). Figure 7.7 shows the structure of the eigenvalues Λ1,2 for Case 1, where Λ1,2 has
been reflected across the y2-axis for δ2y2 < 0. We refer the reader to Figures 7.15 and 7.16
for similar diagrams of Λ1,2 for Cases 2–4. Due to the division by y2, or y2 appearing on
the left-hand side of equation (7.26), y2 = 0 is a pole of the system.

The integrals

IΛ1 (yin, yout, α2, δ1,2) =
1√
ε

∫ yout

yin

Re Λ1(y2, α2, δ1,2) dy2,

IΛ2 (yin, yout, α2, δ1,2) =
1√
ε

∫ yout

yin

Re Λ2(y2, α2, δ1,2) dy2,

(7.27)
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Figure 7.7: Real part of the eigenvalues Λ1,2 of (7.26), for Case 1, α2 = 0.25 (left) and α2 = 1.25
(right). The eigenvalues Λ1 and Λ2 are shown in blue and orange, respectively. The arrows on the
y2-axis indicate the direction of the reduced flow along CM . Note that for y2 < 0, the eigenvalues
have been reflected in the y2-axis to preserve the orientation of trajectories in (7.24).

measure leading order expansion and contraction along CM . When the eigenvalues are
elliptic (complex), IΛ1 = IΛ2 , but this does not hold when the eigenvalues are hyperbolic
(real). The way-in/way-out function yout(yin, α2, δ1,2) is defined implicitly by

IΛi (yin, yout, α2, δ1,2) = 0, i = 1, 2, (7.28)

and measures the point where the accumulative contraction on CMa counter-balances the
accumulative repulsion on CMr, i.e. when trajectories leave a small neighbourhood of CM
(via a fast fibre in the hyperbolic regions). For ease of notation, we suppress the α2 and
δ1,2 dependence. For generic solutions starting near CM that experience a delayed loss of
stability, (7.28) measures the balance of weak contraction and strong repulsion. Thus we
set i = 1, and the way-in/way-out function yout(yin) is defined implicitly by

IΛ1(yin, yout) = 0, α2 > 0, (7.29)

for all Cases. For canard solutions (which also experience a form of delay), equation (7.28)
measures the balance of weak contraction and weak repulsion. Thus for α2 < 1, we set
i = 1 for Cases 1 and 2, and i = 2 for Cases 3 and 4; refer to Figures 7.15 and 7.16 for the
eigenvalue structure of Cases 2–4. When α2 > 1, we must branch switch at α2 =

√
α2 + 1.

In summary, yout(yin) is defined implicitly by

IΛ2(yin, yout) = 0, 0 < α2 < 1, Cases 1 & 2,

IΛ1(yin, yout) = 0, 0 < α2 < 1, Cases 3 & 4,

IΛ1(yin,
√
α2+1) + IΛ2(

√
α2+1, yout) = 0, α2 > 1.

(7.30)

7.3.2 Canards

In the blow-up analysis, we identified the singular strong canards and showed that they
persist under small perturbations. Furthermore, we established that solutions within the
funnel that are not exponentially close to the strong canard become exponentially close
to CM in Σ2. Thus we now turn our attention to solutions near CM , i.e. we want to
understand the behaviour of the weak and secondary canards. For Case 1 and α2 < 1,
consider a trajectory starting at some point y2 = yin ∈ CMa. As we move forward in
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time, how long does the trajectory remain close to CM , before separating and following the
fast directions? In this section and the following, we present theorems on the existence of
canards and the delay phenomenon to address this question.

In hyperbolic regions of CM , there exists a weak stable foliation W s along CMa and
a weak unstable foliation W u along CMr. These foliations are equivalent to the invariant
manifolds Sa,2 and Sr,2, locally near CM in system (7.24). By Fenichel theory, these
invariant manifolds will persist as Sa,

√
ε and Sr,

√
ε. We can use the linear subspaces to track

the trajectory along the hyperbolic segment of CMr. However, CMa is elliptic and we
can not track the manifold using conventional methods. In such cases we must use special
properties of the layer flow to understand the dynamics near CMa.

Remark 7.2 (Remark on notation). In the following section, yin denotes the ‘entry point’,
or the initial y2 point of a trajectory on CM , while yout denotes the ‘exit point’ where the
trajectory leaves a small neighbourhood of CM . For canards, yin ∈ CMa and yout ∈ CMr.
For faux canards the opposite is true, yin ∈ CMr and yout ∈ CMa. In the theorems and
proofs that will follow, it is critical to distinguish between entry and exit points that lie
on hyperbolic and elliptic segments of CM . Let y2,0 be the entry/exit point in the region
where CM is hyperbolic. Similarly, let y2,∗ be the entry/exit point in the elliptic region of
CM . When both the entry and exit point lie in hyperbolic regions of CM , let yin = y2,0

and yout = y2,∗.

In addition to Σ1–Σ4, we define the auxiliary cross sections

Σ±2 :=

{
(x2, y2, z2) : y2 = y2,0, y2,0 ≈ ±

√
α2 +

√
σ2

}
,

Σ̃∗ := {(z2, y2, z2) : y2 = ỹ2,∗} ,

such that Σ±2 ≈ Σ2∩CM . We are now in a position to state the Theorems on the existence
of canards and faux canards.

Theorem 7.1. (Existence of Canards) Let 0 < α2 < 1 and Σ̃∗ : y2 = ỹ2,∗, for some
ỹ2,∗ ≈ y2,∗. For Case 1 and |y2,0| >

√
α2 + 1 chosen to define Σ±2 such that

IΛ1(y2,∗, y2,0) = 0,

with |y2,∗| ∈ (δ,
√
α2), there exists a canard solution O(

√
ε) away from CM , connecting

S
√
ε

a ∩ Σ̃∗ to S
√
ε

r ∩ Σ±2 , and continuing to a point in Sεr ∩ Σ1.

Idea of Proof. The proof is similar to the FSN I [108] and II [66]. Here we provide only
an outline of the proof; see Section 7.6.1 for a details. Define an invariant subset of the

repelling manifold Sεr ∩Σ1 and show that Π1(Sεr ∩Σ1) is a ray in S
√
ε

r ∩Σ2. The ray can be
extended into the complex plane and transported, via a suitable elliptic path in backward
time, to a line segment O(

√
ε) close to CM in Σ2. Using the linearisation of the layer flow

near a stable focus, it can be shown that the line segment winds out in backward time and

intersects S
√
ε

a transversally.
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We now consider the case α2 > 1. Trajectories which have an entry point yin in a
hyperbolic region of CM , and exit point yout in an elliptic region of CM (or vice versa) –
we refer to this as the elliptic case. In the elliptic case, the results for existence of canards
is similar to that of Theorem 7.1, and the proof is the same.

Theorem 7.2. (Existence of canards: Elliptic case) Consider Case 1 with α2 > 1.

i) For |y2,0| >
√
α2 + 1 chosen to define Σ±2 such that

IΛ2(y2,∗, y2,0) = 0,

with |y2,∗| ∈ (
√
α2 − 1,

√
α2), there exists a canard solution O(

√
ε) away from CM ,

connecting S
√
ε

a ∩ Σ̃∗ to S
√
ε

r ∩ Σ±2 , and continuing to a point in Sεr ∩ Σ1.

ii) For |y2,0| ∈ (δ,
√
α2 − 1) chosen to define Σ±2 such that

IΛ1(y2,0, y2,∗) = 0,

with |y2,∗| ∈ (
√
α2,
√
α2 + 1), there exists a canard solution originating in Sεa ∩ Σ1,

passing through S
√
ε

a ∩Σ±2 an O(
√
ε) distance away from CM , and connecting to S

√
ε

r ∩
Σ̃∗.

Proof. The proof is the same as in Theorem 7.1; see Section 7.6.2.

When both yin and yout are in hyperbolic regions of CM (we refer to this as the hyper-
bolic case), we can prove the existence of canards for most values of α2.

Theorem 7.3. (Existence of canards: Hyperbolic case) Consider Case 1 with α2 > 1, and
Σ∗ : y2 = y2,∗. Let |y2,0| ∈ (δ,

√
α2 − 1) define Σ±2 such that

IΛ1(y2,0,
√
α2+1) + IΛ2(

√
α2+1, y2,∗) = 0,

where |y2,∗| >
√
α2 + 1. Then for most α2 ∈ A (an open set of almost full measure), there

exists a canard solution, uniformly O(
√
ε) close to CM , that connects S

√
ε

a ∩Σ+
2 to S

√
ε

r ∩Σ∗.

Idea of Proof. Define an elliptic path that connects y2,0 to y2,∗, and two invariant bundles,

S
√
ε

a ∩ Σ2 and S
√
ε

r ∩ Σ∗. We transport S
√
ε

a ∩ Σ2 forward along the elliptic path, while

S
√
ε

r ∩Σ∗ is transported backwards along the same path. It can be shown that the bundles
rotate in opposite directions, and therefore they will intersect transversally for almost all
values of α2 ∈ A. See Section 7.6.2 for further details.
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7.3.3 Bifurcation delay and buffer points

Recall that the way-in/way-out function, defined in (7.29) and (7.30), balances the accu-
mulative contraction and repulsion along CM . Thus the delay or distanced travelled by
a trajectory along CMr depends on the prior accumulative contraction. Using the way-
in/way-out function, we can quantify both the minimal and maximal delay.

Theorem 7.4. (Minimal delay estimates) Consider Case 1 with α2 > 0. Let (x2, y2, z2)
denote a trajectory of (7.24) with initial condition (x2, y2, z2)(0) that is O(

√
ε) close to CM ,

and let y2(0) = yin. Let yout(yin) be defined by IΛ1(yin, yout) = 0, and let y2,0 = yout define
Σ±2 . Then the trajectory (x2, y2, z2) stays O(

√
ε) close to CM for all yin ≤ y2 ≤ yout+o(1).

Idea of Proof. Use the way-in/way-out function to balance weak contraction and strong
repulsion. Using an elliptic path and properties of the complexified system, it can be shown
that the trajectory stays O(

√
ε) close to CM . See Section 7.6.3 for more details.

The maximal distance trajectories can travel on CMr before leaving a small neighbour-
hood, is known as the buffer point.

Definition 7.1. (Buffer Points) Consider Case 1 with α2 > 0. For α2 < 1, the buffer point
y2,B is

|y2,B| := lim
|yin|→b

yout(yin),

for some b > 0, where yout(yin) is defined in (7.29). The canard buffer point y2,C is

|y2,C | := lim
|yin|→c

yout(yin),

where 0 < b < c, and yout(yin) is defined in (7.30). For α2 > 1, the definition of the buffer
points is the same, except b and c are replaced with b̃ and c̃.

Lemma 7.1. For Case 1, |y2,B| = |y2,C | =∞.

Proof. Consider Case 1 with α2 < 1. Given a general trajectory with entry point 0 < yin <√
α2, the way-in/way-out function yout, or exit point, is defined implicitly by IΛ1(yin, φ) = 0.

In the case of a canard trajectory, with entry point 0 < ycin <
√
α2, the exit point ycout is

defined implicitly by IΛ2(ycin, y
c
out) = 0. When yin = ycin, due the form of the eigenvalues,

yout < ycout, i.e. the canard trajectory travels further along CMr. Taking limit yout, y
c
out →

∞, we observe that yin → b, and yin → c, where 0 < b < c. Thus the maximal delay for
a general trajectory (or canard) is infinity. Similar arguments can be made when α2 > 1,
with different constants b̃ and c̃.

Remark 7.3. We know that b, b̃ > 0 since there is no elliptic contour that connects to the
pole y2,P = 0. See Lemma 7.3.
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Note that Lemma 7.1 implies that trajectories that start sufficiently close the pole on
CMa experience an ‘infinite delay’. They track the entire length of CMa, which stretches
to |y2| =∞, on either side of the pole. This kind of infinite delay is not possible in the FSN
I or II.

For Case 1 and 2, define an open subset J+ ⊂ Sεa ∩ Σ1. Note that J+ is a curve
parametrised by y ⊂ I+, for some interval I+. Let the closure of J+ be contained in the
open interval defined by −K√ε < y < K

√
ε, for some positive constant K, i.e. O(

√
ε) close

to the strong canard γs. Similarly for Case 3 and 4, define an open subset J− ⊂ Sεa ∩ Σ1,
that is parametrised by y ⊂ I−. Let the closure of J− be contained in the open interval

0 < |y| < σ
1/4
1 , i.e. between the centre manifold and the strong canard. The following

theorem gives an estimate of the maximal delay trajectories in J+ and J− experience,
before leaving CM and entering Σ3.

Theorem 7.5. (Maximal delay estimates) Let α2 > 0. Given any solution starting in J±,
there exists a function d(ε) satisfying limε→0 d(ε) = 0, such that the endpoint of the solution
in Σ3 satisfies y2 < y2,B + d(ε).

Proof. See Section 7.6.3.

7.4 Linearised Complex Flow and Elliptic Paths

We are interested in proving the existence of canards in system (7.26), which are defined as

the intersection of the attracting and repelling slow manifolds S
√
ε

a and S
√
ε

r . Naturally, it
becomes important to track the slow manifolds. Due to the complex eigenvalue structure,
this is not possible with standard techniques like Melnikov theory. To solve this problem,
in this section we analytically extend the vector field (7.26) into the complex plane (as in
FSN I and II analysis). We then identify special elliptic contours of the linearised complex
flow that connect two points on the real y2-axis. Finally, we study the rotational properties
as well as the rates of expansion/contraction along the elliptic contours.

7.4.1 Complexification

In order to track the invariant attracting and repelling manifolds across complex regions of
CM , we extend the vector field into the complex domain by letting (x2, y2, z2) ∈ C3. For
ease of notation, let γ := α2 − y2

2. We linearise about CM using the complex co-ordinate
transformation

u2 = z2 + i
x2 − δ1γz2√

1− γ2
+O(

√
ε),

v2 = z2 − i
x2 − δ1γz2√

1− γ2
+O(

√
ε),

(7.31)

which brings the linear part of (7.26) into Jordan normal form. Note that this transfor-
mation is singular (to leading order) at the branch points of the square root, i.e. when

121



a

b

−

√

δ1α+1

√

δ1α+1

−

√

1−δ1α

√

1−δ1α

+++ −−−

−−− +++

+
+
+

−
−
−

−
−
−

+
+
+

a

b

−

√

δ1α+1

−

√

δ1α−1

√

δ1α−1

√

δ1α+1

+++ −−−

−−− +++

+
+
+

−
−
−

−
−
−

+
+
+

Figure 7.8: Branch cuts for left: 0 < α2 < 1 and right: α2 > 1. The positive and negative signs
indicate the sign of the square root

√
γ2 − 1 = i

√
1− γ2.

|α2 − y2
2| = 1. The domain of analyticity must exclude these points. Applying transforma-

tion (7.31) to (7.26) gives

δ2

√
εy2u

′
2 = λ1u2 −

1

4
(u2+v2)2

(
1−i δ1γ√

1−γ2

)
+O(ε,

√
ε(|u2+v2|2)),

δ2

√
εy2v

′
2 = λ2v2 −

1

4
(u2+v2)2

(
1+i

δ1γ√
1−γ2

)
+O(ε,

√
ε(|u2+v2|2)).

(7.32)

Note that not all solutions of (7.32) correspond to real solutions of (7.23).
Now let y2 = a+ ib, and define the complex function y2 →

√
1− γ2 using the standard

definition of
√
z. Let θ = Arg(z) where θ ∈ [−π, π), and take the branch cut along the

negative real axis, i.e. θ = π. Thus z = |z| exp(iθ) and

√
z =

√
|z| exp

(
i
θ

2

)
,

where θ
2 ∈

[
−π

2 ,
π
2

)
. Applying this to y2 →

√
1− γ2, the modulus and argument of the

square root are given by∣∣∣√1− γ2
∣∣∣ = {

(
1− [α2 − a2 + b2])2 + 4a2b2

)
×(

1 + [α2 − a2 + b2])2 + 4a2b2
)
}1/4

Arg
(√

1− γ2
)

=


π
4 − 1

2 arctan
(

Re(1−γ2)
Im(1−γ2)

)
∈
(
0, π2

)
, if Im(1− γ2) > 0,

−π
4 − 1

2 arctan
(

Re(1−γ2)
Im(1−γ2)

)
∈
[
−π

2 , 0
]
, if Im(1− γ2) ≤ 0,

(7.33)

where Re(1− γ2) := 1 + 4a2b2 − (α2 − (a2 − b2))2 and Im(1− γ2) := −4ab(α2 − (a2 − b2))
are the real and imaginary parts of 1 − γ2, respectively. The branch cut of y2 →

√
1− γ2

is defined by Arg(1− γ2) = π and Re(1− γ2) ≤ 0, which gives the α2-dependent system

Im(1−γ2) = −4ab(α2 − (a2 − b2)) = 0,

Re(1−γ2) = 1 + 4a2b2 − (α2 − (a2 − b2))2 < 0.
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The branch cuts along the a and b-axis can be summarised as follows (see Figure 7.8):

a = 0 : =⇒
{
|b| > √1− α2, if 0 < α2 < 1,

b ∈ R, if α2 > 1,

b = 0 : =⇒
{
|a| > √α2 + 1, if 0 < α2 < 1,

|a| < √α2 − 1, |a| > √α2 + 1, if α2 > 1.

7.4.2 Linearisation

The linear, homogeneous flow of (7.32) is given by

√
εδ2y2

du2

dy2
= λ1(y2, δ1, α2,

√
ε)u2,

√
εδ2y2

dv2

dy2
= λ2(y2, δ1, α2,

√
ε)v2,

(7.34)

where y2 is treated as complex slow time. Alternatively, we study (7.34) with the leading
order eigenvalues λ1,2(y2, δ1, α2, 0)

√
εδ2y2

du2

dy2
= λ1(y2, δ1, α2, 0)u2,

√
εδ2y2

dv2

dy2
= λ2(y2, δ1, α2, 0)v2.

(7.35)

We will establish later in this section that solutions of (7.35) and their behaviour persist
under small O(

√
ε) perturbations, justifying our use of the leading order eigenvalues. Fur-

thermore, we will prove that the inclusion of non-linear terms in (7.34) does not significantly
alter the dynamics. Notice that system (7.35) is decoupled, and so we only study the first
complex ODE given by

√
εδ2y2

du

dy2
= λ1(y2, δ1, α2, 0)u. (7.36)

Solutions u2(y2) can be easily obtained by elementary methods,

√
εδ2y2

du2

dy2
= λ1(y2, δ1, α, 0)u2,

=⇒
∫ u2

ũ2

1

u2
du2 =

δ2√
ε

∫
Γ

λ1(w, δ1, α2, 0)

w
dw,

=⇒ u2(y) = ũ2 exp

[
δ2√
ε

∫
Γ

λ1(w, δ1, α2, 0)

w
dw

]
, (7.37)

where u2(ỹ2) = ũ2 is the initial condition, and Γ is a contour connecting ỹ2 to y2. The
behaviour of the solution u2(y2) depends on the properties of the exponent

ψ(y2) := δ2

∫
Γ

λ1(w, δ1, α2, 0)

w
dw, (7.38)
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along contours of integration Γ. Define a contour parametrization

y2(τ) = a(τ) + ib(τ), τ ∈ R, (7.39)

such that y2(0) = a(0)+ib(0) = ỹ2. We identify two special contours, elliptic and hyperbolic
contours.

Definition 7.2. Elliptic contours of (7.37) are level curves of ψ with constant growth, i.e.
Re(ψ) = const.

Definition 7.3. Hyperbolic contours of (7.37) are level curves of ψ with constant oscillatory
growth, i.e. Im(ψ) = const.

Define Λ1 and ϕ

Λ1(a+ ib, δ1,2, α2, 0) := ϕ(δ2, a+ ib)λ1(a+ ib, δ1, α2, 0),

ϕ(δ2, a+ ib) :=
δ2

a+ ib
.

Taking the derivative of Re(ψ) = const, with respect to τ , yields

Re (Λ1(a+ ib, δ1,2, α2, 0))
da

dτ
− Im (Λ1(a+ ib, δ1,2, α2, 0))

db

dτ
= 0, (7.40)

which can be rewritten as a system of equations

a′ = − Im (Λ1(a(τ)+ib(τ), δ1,2, α2, 0)) ,

b′ = −Re (Λ1(a(τ)+ib(τ), δ1,2, α2, 0)) ,
(7.41)

where ′ = d/dτ . Taking the derivative of Im(ψ) = constant gives

Im (Λ1(a+ ib, δ1,2, α2, 0))
da

dτ
+ Re (Λ1(a+ ib, δ1,2, α2, 0))

db

dτ
= 0,

which can be rewritten as

a′ = Re (Λ1(a(τ)+ib(τ), δ1,2, α2, 0)) ,

b′ = − Im (Λ1(a(τ)+ib(τ), δ1,2, α2, 0)) .

7.4.3 Elliptic contours

In studying elliptic or hyperbolic contours, our objective is to identify contours that connect
different points on the y2-axis, which enables us to ‘circumvent’ the elliptic regions of CM
where we cannot track invariant manifolds. It turns out that there are no hyperbolic
contours that connect two points on the y2-axis. Thus we only study the elliptic contours,
which are solutions of the differential equation (7.41).
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Proposition 7.6. For 0 < α2 < 1, (7.41) has the following properties along the real y2-axis
(b = 0):

sgn a′ =

{
0, for |a|≥√α2 + 1,

sgn(δ2a), for |a|<√α2 + 1,

sgn b′ =


−sgn(δ1δ2a), for |a|>√α2,

0, for |a|=√α2,

sgn(δ1δ2a), for |a|<√α2.

For α2 > 1, (7.41) has the following properties along the real y2-axis (b = 0):

sgn a′ =

{
0, for |a|≥√α2 + 1, |a|≤√α2 − 1,

sgn(δ2a), for
√
α2 − 1< |a|<√α2 + 1,

sgn b′ =


−sgn(δ1δ2a), for |a|>√α2,

0, for |a|=√α2,

sgn(δ1δ2a), for |a|<√α2.

Proof. See Appendix F.

Proposition 7.7. For 0 < α2 < 1, system (7.41) has the following properties along the
imaginary y2-axis (a = 0):

sgn a′ =
{
−sgn(δ1δ2b), for b ∈ R,

sgn b′ =

{
0, for |b|≥√1−α2,

sgn(δ2b), for |b|<√1−α2.

For α2 > 1, system (7.41) has the following properties along the imaginary y2-axis (a = 0):

sgn a′ =
{
−sgn(δ1δ2b), for b ∈ R,

sgn b′ =
{

0, for b ∈ R.

Proof. See Appendix F.

Proposition 7.8. Let α2 > 0 and y2 = a + ib, with |y2| � 1. Consider first Case 1 and
2. In the first and third quadrants, the elliptic contours are asymptotic to the family of
Lemniscate curves [9, 4]

(b2 + a2)2 =
1

C1
(a2 − b2), (7.42)

where 0 < C1 � 1. In the second and fourth quadrants, the elliptic contours are asymptotic
to the family of hyperbolic curves

a2 − b2 = C2, (7.43)

where C2 � 1. Now consider Cases 3 and 4. In the first and third quadrants, the ellip-
tic contours are asymptotic to the hyperbolic curves (7.43), and in the second and third
quadrants, the elliptic contours are asymptotic to the Lemniscate curves (7.42).
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Figure 7.9: Stream plot (blue) of (7.41) for Case 1 and α2 = 0.5. Trajectories, i.e. elliptic contours,
are shown in purple. Initial conditions for trajectories are taken along the real y2−axis (b = 0), with
a > 0. Branch cuts and branch points are indicated by solid black lines and circles, respectively.
The two Hopf bifurcation of the layer problem y2 = ±√α2 are indicated by the red circles.

Proof. See Appendix G.

Figure 7.9 shows a stream plot of (7.41), including various elliptic contours that connect
points on the positive y2-axis.

7.4.4 Hamiltonian properties

In this section, we present some of the basic properties of the elliptic contours. In particular,
we show that the elliptic contours are level curves of a Hamiltonian system, and as a result
they cannot connect to the pole y2,p = 0.

Proposition 7.9. The elliptic contours are the level curves of the Hamiltonian

H(y2, δ1,2, α2) = Re

(∫
Γ

Λ1(z, δ1,2, α2, 0)

)
dz. (7.44)

Proof. See Appendix H.
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Lemma 7.2. Let Γe be and elliptic path connecting two points y2,0 < y2,∗ on the real y2-axis.
Then we have ∫

Γe

ReΛ1(z)dz = 0.

Proof. Along any elliptic path, the Hamiltonian H must be constant and hence H(y2,0) =
H(y2,∗). Since integration is a linear operation, we can swap the integral and taking the
real part: ∫

Γ0
e

ReΛ1(z)dz −
∫

Γ∗e

ReΛ1(z)dz = 0,

⇒
∫

Γe

ReΛ1(z)dz = 0.

Lemma 7.3. Let Γe be and elliptic path connecting two points y2,0 < y2,∗ on the real y2-
axis. Then y2,0 stays out of a small neighbourhood of the pole, y2,p = 0. In other words,
there is no elliptic path connecting to the pole.

Proof. Suppose there is an elliptic path Γpe connecting to y2,p = 0. Then,∫
Γp
e

ReΛ1(z)dz =∞,

since the eigenvalue Λ1 blows up at the pole. For an elliptic path Γe connecting to any
other point y2,0 on the real y2-axis we know that∫

Γe

ReΛ1(z)dz <∞.

Thus H(y2,p) 6= H(y2,0), which contradicts Proposition 7.9.

7.4.5 Rotation and expansion/contraction along elliptic contours

We wish to study the flow of (7.35) along the elliptic paths defined by (7.41). Note that we
can rewrite (7.34) as

√
ε
du2

dy
= Λ1(y(τ), δ1,2, α2, 0)u2,

√
ε
dv2

dy
= Λ2(y(τ), δ1,2, α2, 0)v2,

(7.45)

where Λ1,2 = ϕλ1,2. Using the chain rule and (7.41),

dy

dτ
=
da

dτ
+ i

db

dτ
,

= −ImΛ1 − iReΛ1,

⇒ dy = −i (ReΛ1 − iImΛ1) ,

= −iΛ1.
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Hence we can transform (7.45) along the elliptic paths:

√
ε
du2

dτ
= −iΛ1(y(τ), δ1,2, α2, 0)Λ1(y(τ), δ1,2, α2, 0)u2,

√
ε
dv2

dτ
= −iΛ2(y(τ), δ1,2, α2, 0)Λ1(y(τ), δ1,2, α2, 0)v2.

(7.46)

The real and imaginary parts of the eigenvalues of (7.46) determine the rate of growth (or
decay) and the amount rotation along an elliptic path. By construction, the eigenvalue of
the u2 equation is purely imaginary and the growth rate is zero. However, the growth rate
is not zero for v2.

Proposition 7.10. The real and imaginary parts of the v2 equation in system (7.46) are
given by

Re(−iΛ2Λ1) = − 2δ1

a2 + b2

(
Re(γ)Re(

√
1−γ2) + Im(γ)Im(

√
1−γ2)

)
,

Im(−iΛ2Λ1) =
1

a2 + b2

(√
1−γ2

√
1−γ2 − γγ

)
.

Proof. See Appendix I.

Let Ω := Re(−iΛ2Λ1). The sign of Ω determines whether v2 grows or decays along the
elliptic paths. Let H be the hyperbola defined by

H := {y2 = a+ ib : a2 − b2 = α2}. (7.47)

Proposition 7.11. The sign of Ω depends on δ1 and is given by

sgn(Ω) =

{
−sgn(δ1), a2 − b2 < α2,

sgn(δ1), a2 − b2 > α2.

Furthermore, Ω = 0 along the Hyperbola H, as well as the branch cuts (see Figure 7.8).

Proof. See Appendix J.

The sign of Ω in different regions of the complex plane is shown in Figure 7.10. In
general, we can define a path y2 = y2(τ) in the complex plane, parametrised by τ ∈ [0, T ].
The amount of rotation (in u2) along such a path is

R :=
1√
ε

∫ T

0
Im
(

Λ1(y2(τ), δ1,2, α2, 0)dy2dτ

)
dτ. (7.48)

It is important to note that R is path independent, and we can evaluate the integral along
the real y2-axis, or any convenient path. We compute the amount of rotation along an
elliptic path Γe by evaluating (7.48) along the real axis and H, thus proving that R is
bounded and that there are O(ε−1/2) rotations.
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a

b

H

Ω<0

Ω>0

Figure 7.10: Regions of growth/decay of v2 in (7.46) for Case 1. The Hyperbola H is shown in
red, while the branch cuts are thick black lines. Along both of these Ω = 0. The shading of the plot
indicates the sign of Ω. In the grey region Ω > 0 (growth), while Ω < 0 (decay) in the white region.

Proposition 7.12. Assume that α2 > 0. Let y2,0 <
√
α2 and y2,∗ >

√
α2 be two points on

the real y2-axis joined by an elliptic path Γe. Then there exist constants m, M ∈ R, with
0 < m < M <∞, such that

mε−1/2 ≤ R ≤Mε−1/2.

Proof. Consider the Case 1 with 0 < α2 < 1, where y2,∗ ∈
(
δ̄,
√
α2

)
and y2,0 >

√
1+α2. Let

(a, b) = (aH , bH) be the point in the complex plane where the elliptic contour Γe intersects
the hyperbola H.

First, we calculate the amount of rotation R+ from (y2,0, 0) to (aH , bH) by integrating
backwards along the real y2-axis from (y2,0, 0) to (

√
α2, 0), and then integrating along H

from (
√
α2, 0) to (aH , bH). Thus R+ is given by

R+ :=
1√
ε

∫ √α2

y2,0

ImΛ1(s)ds+
1√
ε

∫ aH

√
α2

ImΛ1(a+ibH(a))
dbH
da

ds.

Next, we calculate the amount of rotation R− from (a, b) = (y2,∗, 0) to (aH , bH) by inte-
grating forwards along the real y2-axis from (y2,∗, 0) to (

√
α2, 0) and then integrating along

H from (
√
α2, 0) to (aH , bH). Thus R− is given by

R− :=
1√
ε

∫ √α2

y2,∗

ImΛ1(s)ds+
1√
ε

∫ aH

√
α2

ImΛ1(a+ibH(a))
dbH
da

ds.
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Hence the total amount of rotation RT is given by

RT := R+ −R−,
= −

∫ y2,0

y2,∗

ImΛ1(s)ds,

= −
∫ √α2+1

y2,∗

ImΛ1(s)ds,

= −δ2

∫ √α2+1

y2,∗

√
1− γ(s)2

s
ds,

where the third line is obtained by noting that there is no rotation outside the elliptic
regions of Λ1, i.e. 1− γ2 > 0. Since we stay out of a small neighbourhood of the pole, and
the domain on which we evaluate the integral is compact, we can prove that the integral
is bounded above (below) by the maximum (minimum) multiplied by the length of the
domain. The result then follows.

7.5 Non-Linear Flow

From Proposition 7.6, there always exist elliptic contours Γe which cross the real y2-axis
transversally. Note that at y2 = ±√α2, the contour Γe is tangential to the real y2-axis. It
follows that under small O(

√
ε) perturbations of the vector field, the elliptic contours will

persist. Thus for the perturbed linear system

√
ε
du2

dy
= Λ1(y(τ), δ1,2, α2,

√
ε)u2,

√
ε
dv2

dy
= Λ2(y(τ), δ1,2, α2,

√
ε)v2,

(7.49)

we can find elliptic contours Γεe which are solutions of

a′ = −ImΛ1(a(τ)+ib(τ), δ1,2, α2,
√
ε),

b′ = −ReΛ1(a(τ)+ib(τ), δ1,2, α2,
√
ε).

(7.50)

Hence the perturbed elliptic contours Γεe are O(
√
ε) close to the unperturbed contours Γe.

Transforming system (7.32) along an elliptic contour Γεe, with ε 6= 0, gives

√
ε
du2

dτ
= −iΛ1(τ,

√
ε)Λ1(τ,

√
ε)u+G1(τ, δ1,2, u2, v2),

√
ε
dv2

dτ
= −iΛ2(τ,

√
ε)Λ1(τ,

√
ε)v +G2(τ, δ1,2, u2, v2),

(7.51)

where G1,2(u2, v1, ε) = O(ε,
√
ε(|u2|2 + |v2|2)), and we have suppressed the δ1,2 and α2

dependence in Λ1,2 for ease of notation. Note that the growth and decay properties of the
linear part are the same as in the unperturbed case (see Propositions 7.10 and 7.11 and
Figure 7.10).

For solutions of (7.51) to exist and be unique, we require that the vector field be analytic,
bounded and Lipschitz in a closed disc around the initial condition. Solutions can be
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analytically continued along a path, as long as the vector field can also be extended along
the path. We have existence and uniqueness for paths everywhere inside the domain of
analyticity; this excludes a small neighbourhood of the pole and the branch points.

Proposition 7.13. The linear flow of (7.51) is given by the transition matrix

Φ(τ, τ0) :=

exp
(
−i√
ε

∫ τ
τ0

Λ1(σ)Λ1(σ)
)

0

0 exp
(
−i√
ε

∫ τ
τ0

Λ2(σ)Λ1(σ)
) ,

and (7.51) can be rewritten in integral form as

U(τ) = U0Φ(τ, 0) +
1√
ε

∫ τ

0
G(U, σ)Φ(τ, σ)dσ,

where U = (u2, v2), U0 = U(0) = (u2(0), v2(0)) and G = (G1, G2).

Proof. See Appendix K.

Proposition 7.14. Let 0 < c < 1
2 be a constant, and assume that |U0| = O(ε1/2+c). Let

y2(τ) parametrise an elliptic path Γεe where Re(−iΛ2Λ1) < 0 (i.e. where v2 decays). Then

U(τ, U0) = O(
√
ε).

Proof. First, we rewrite the nonlinearities G(U, τ) = g1(ε) + g2(U,
√
ε), where g1 = O(ε)

and g2 = O(U2,
√
εU2). Hence,

|U(τ, U0)| ≤ |U0Φ(τ, 0)|+ |g1(ε)|√
ε

∫ τ

0
|Φ(τ, σ)|dσ +

1√
ε

∫ τ

0
|g2(U2, ε)Φ(τ, σ)|dσ. (7.52)

Assuming that |U0| = O(ε1/2+c) and Re(−iΛ2Λ1) < 0 (u2 has no growth or decay, and we
restrict ourselves to regions where v2 decays), we conclude that |U0Φ(τ, 0)| = O(ε1/2+c).
The condition Re(−iΛ2Λ1) < 0 depends on the position in the complex y2(τ)-plane relative
to H, as well as δ1; see Proposition 7.11 and Figure 7.10. From the form of Φ, we deduce
that

∫ τ
0 Φ(τ, σ)dσ = O(

√
ε), for O(1) times τ . Applying this to equation (7.52), we find

that

|U(τ, U0)| ≤ C1ε
1/2+c + C2ε+

1√
ε

∫ τ

0
|g2(U2, ε)Φ(τ, σ)|dσ. (7.53)

Let U = ε1/2+cU , where U = O(1). Hence, g2(U,
√
ε) = ε1+2cg2(U,

√
ε), where g2 = O(1).

Equation (7.53) becomes

|U | ≤ C1 + C2ε
1/2−c +

C3ε
1/2+c

√
ε

∫ τ

0
|Φ(τ, σ)|dσ,

≤ C1 + C2ε
1/2−c + C3ε

1/2+c, (7.54)

which implies that U is indeed O(1), for 0 < c < 1
2 . Hence U(τ, U0) = O(

√
ε).

Remark 7.4. The same result is obtained for Re(−iΛ2Λ1) > 0 by reversing time.

131



7.6 Proof of Main Results

In this section we will formally prove the existence of canards and faux canards for the two
sub-cases of Case 1: 0 < α2 < 1 and α2 > 1. However, we first summarise some important
properties of the layer problem of (7.16) that will be needed in the proofs. The results
stated here have been adapted from [66].

The layer problem of (7.16) is
ẋ2 = δ1γ − z2,

ż2 = x2 − z2
2 ,

(7.55)

where γ := α2 − y2
2. The equilibria (x̄2, z̄2) = (γ2, δ1γ) have complex conjugate eigenvalues

when 0 < γ2 < 1, which have negative real part when δ1γ > 0. Thus for Case 1 (and 2),
the equilibria of the layer problem are stable foci when y2 < α2. Furthermore, for every
fixed γ, (7.55) has a unique trajectory Sa,γ that is algebraic in backward time. The union

of Sa,γ over γ provides a close approximation of S
√
ε

a . Define the return map Πγ , and the
cross-section Σγ

Πγ : Σγ :=
{

(x2, z2) : z2 = δ1γ, x2 > γ2
}
→ Σγ . (7.56)

In backward time, the stable foci exponentially expand the distance between points in a
neighbourhood of CM . Given any point (x2, δ1γ) ∈ Σγ , it takes m =

⌊
− ln |x2 − γ2|

⌋
iterations of the map Πγ to be a distance d > 0 away from the equilibrium (γ2, δ1γ). In
other words, there exists a constant d > 0 such that for any (x2, δ1γ) ∈ Σγ and m =⌊
− ln |x2 − γ2|

⌋
, we have

dist
(
Πm
γ (x2, δ1γ), (γ2, δ1γ)

)
≥ d.

Furthermore, if (x2,0, δ1γ), (x2,1, δ1γ) ∈ Σγ and (x2,1, δ1γ) is on the forward orbit of

(x2,0, δ1γ) and does not return to Σγ , then there exists a point (x2,∗, δ1γ) ∈ S
√
ε

a with
x2,0 < x2,∗ < x2,1.

Remark 7.5. Note that similar properties hold for Cases 3 and 4 (δ1 = −1). The equilibria
of the layer problem are unstable foci for y2 < α2, and for every fixed γ, (7.55) has a unique
trajectory Sr,γ , which is algebraic in forward time. The union of Sr,γ over γ provides a close

approximation of S
√
ε

r . Thus in forward time, the unstable foci exponentially expand the
distance between points near CM , and all the results discussed above hold.

7.6.1 Canards for 0 < α < 1

We are now in a position to formally prove Theorem 7.1.

Proof. (Theorem 7.1) Consider Case 1 with a set of initial conditions J1 ∈ Σ1 ∩ Sεr , with
end points p and q. The repelling critical manifold CMr perturbs to CM ε

r . Due to the
exponential contraction (in backward time) of Π1 : Σ1 → Σ2, Π1(p) must be O(ε) close
to CM . Choose the other end point q such that Π1(q) is O(ε1/2+c) close to CM in Σ+

2 .
Thus J2 = Π1(J1) is O(

√
ε) close to CM . Next, we transport J2 to Σ∗ (backwards in time)

via an elliptic path. By Proposition 7.2, J∗ = Σ∗(J2) is a curve of length O(
√
ε) in Σ∗
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(i.e. J∗ is O(
√
ε) close to CM). Transforming back to (x2, y2, z2)-coordinates, we now use

properties of the layer problem (7.55), in backward time, to show that J∗ will intersect S
√
ε

a

transversally. Without loss of generality, we may assume that J∗ is a line segment contained
in Σ∗. We know that one end point of J∗ is O(ε) close to CM , while the other end point
satisfies x2 − γ2

∗ < k
√
ε, where k is a positive constant. By properties of the layer problem

(7.55) near CM , there exist points x̃2,0 and x̃2,1 ∈ J∗ and a constants d1,2 > 0 such that

dist
(
Πm
γ∗(x̃2,0, γ∗), (γ

2
∗ , γ∗)

)
≥ d1, dist

(
Πm
γ∗(x̃2,1, γ∗), (γ

2
∗ , γ∗)

)
≥ d2,

where

m =
⌊
− ln |x2 − γ2

∗ |
⌋
,

= O(− ln(ε1/2)),

= O(− ln ε).

Then the points x2,0 and x2,1 defined by

x2,0 = Πγ∗(x̃2,0, γ∗), x2,1 = Πγ∗(x̃2,1, γ∗).

are such that x2,1 is on the forward orbit of x2,0, and does not return to Σγ∗ . Thus there
exists a point x2,∗ ∈ Sa,γ∗ , with x2,0 < x2,∗ < x2,1. For γ close to γ∗, let x2,∗(γ) =
(x2,∗(γ), δ1γ) denote the unique point in Σγ ∩Sa,γ . Varying γ(y2), we can construct a curve
(x2,∗(γ), δ1γ) which will intersect the interval Πm

γ∗(J∗) transversally. In other words, it takes
m iterations for the interval J∗ to wind out (or expand sufficiently) to an O(1) distance d
away from the equilibrium and intersect the attracting critical manifold.

It can be easily shown that the transverse intersection will persist under small pertur-
bations. Let Π̃ be the return map

Π̃ : Σ̃→ Σ̃,

under the flow of (7.16) (for ε 6= 0), defined on the cross-section

Σ̃ = {(x2, y2, z2) : z2 = δ1γ(y2), x2 > γ2(y2)}.

Note that the map Π̃ is a small perturbation of Πγ∗ . From equation (7.16), ẏ2 = δ2
√
εy2(1+

O(
√
ε)), and thus y2 will vary by O(

√
ε ln ε) over m = O(− ln ε) iterations of Π̃. It follows

that Π̃m is O(
√
ε ln ε) close to Πm, and the curve (x2,∗(γ(y2)), y2, γ(y2)) intersects Π̃m(J∗)

transversally.

Remark 7.6. The proof for Case 1 is constructed in backward time, starting from the point
y2,0 = yout. A similar proof for Case 4 can be constructed by integrating forward in time
from y2,0 = yin.

7.6.2 Canards for α2 > 1

For α2 > 1, we identified two further sub-cases: the elliptic and hyperbolic cases. In
the elliptic regime, the real segments of CMa/r have no impact on the canard dynamics
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(Theorems 7.2 and 7.9), and we can construct similar proofs as in the 0 < α2 < 1 case.
In the hyperbolic regime, the real segments of CMa/r do impact the dynamics of canards,
and proofs of their existence in Theorem 7.3 must be altered – the invariant manifolds are
tracked using their linear subspaces.

Proposition 7.15. Consider Case 1 with α2 > 1. Let R+ be the amount of rotation from
y2,0 >

√
α2 + 1 backwards along an elliptic path Γe to the hyperbola H. Let R− be the

amount of rotation from y2,∗ ∈ (δ,
√
α2 − 1) along Γe to H. Thus the amount of rotation

backward along Γe from y2,0 to y2,∗ would be R+−R−. Then

d

dα2
(R+−R−) 6= 0.

Proof. Similar to previous calculations,

R+−R− = −δ2

∫ √α2+1

√
α2−1

√
1− γ(s)2

s
ds, (7.57)

where γ(s) = α2 − s2. Calculating the derivative, we find that

d

dα2
(R+−R−) =

∫ √α2+1

√
α2−1

γ(s)

s
√

1− γ(s)2
ds,

=
π

2

(
α2√
α2

2 − 1
− 1

)
,

> 0.

Remark 7.7. For Case 4, δ1 = δ2 = −1, the amount of rotation forward along Γe from y2,0

to y2,∗ is given by (7.57), i.e. it is the same as in Case 1 and the result still holds.

Let u2,0(τ, α2) be a solution of (7.36) along an elliptic path Γe parametrised by y(τ),
with y2(0) >

√
α2 + 1. Let uH2,0(α2) = u2,0(τH , α2), where τH is chosen such that y2(τH) ∈

H. Similarly, let u2,∗(τ, α2) be a solution of (7.36) with u2,∗(T ) ∈ (δ,
√
α2 − 1), and let

uH2,∗(α2) = u2,∗(τH , α2). The solutions uH2,0(α2) and uH2,∗(α2) are interpreted as vectors in
R2, with θ(α2) defined as the angle between the two vectors, and θ(α2) ∈ [0, 2π]. Define
the interval A = [α2,0, α2,1] with 1 < α2,0 < α2,1 and

Ad := {α2 : θ(α2) ≥ d, for all α2 ∈ A and d > 0}.

Proposition 7.16. Let Acd be the compliment of Ad in A. There exists a constant K > 0
such that for each d > 0 and 0 < ε� 1 sufficiently small, the total length of Acd is bounded
by Kd.

Proof. Consider Case 1, δ1 = δ2 = 1. Integrating backwards in time, the amount of rotation
along Γe from y2,0 to H is

1√
ε
R+ mod 2π, (7.58)
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while the amount of rotation along Γe from H to y2,∗ is

− 1√
ε
R− mod 2π. (7.59)

From Proposition 7.15, θ(α2) increases monotonically in α2 with non-zero derivative until
it reaches 2π, and then is reset to zero. It follows from (7.58) and (7.59) that there are
O(1/

√
ε) intervals in Acd, each of length dO(

√
ε).

Remark 7.8. A similar proof can be constructed for Case 4 in forward time.

For ε-dependent elliptic paths Γεe, let Aεd and Aε,cd denote the analogues of Ad and Acd,
respectively.

Proposition 7.17. There exists a constant K > 0 such that for each d > 0 and 0 < ε� 1
sufficiently small, the total length of Ac,εd is bounded by Kd.

Proof. Γεe is uniformly O(
√
ε) close to Γe. At lowest order, Γεe = Γe, and hence each of the

intervals which make up Ac,εd change in length by at most O(ε).

As a result of Propositions 7.15 and 7.17, for most values of α2, the solution vectors
uH2,0(α2) and uH2,∗(α2) will intersect transversally (the vectors rotate in opposite directions).
We are now in position to prove the existence of canards for α2 > 1, in the hyperbolic case
(Theorem 7.3).

Outline of Proof. (Theorem 7.3) Take a set of initial conditions in S
√
ε

a ∩Σ±2 that is O(
√
ε)

close to CM and evolve it forward in time along the elliptic path Γεe up to the hyperbola

H. Similarly, take a set of initial conditions in S
√
ε

r ∩ Σ∗ that is O(
√
ε) close to CM and

evolve it backward in time along the elliptic path Γεe up to H. By Propositions 7.15 and
7.17, these invariant bundles rotate in opposite directions and will intersect transversally
for most α2.

7.6.3 Delay estimates

Having proved the existence of canards, we now turn our attention to general solutions
which experience a delayed loss of stability. In this section we provide more detailed proofs
of the delay estimates (Theorems 7.4 and 7.5), i.e. how long trajectories remain close to
CM before escaping. First, we consider trajectories which start close to CM .

Outline of Proof. (Theorem 7.4; see Theorem 3.4 of [66] and 4.10 of [108]) We present the
proof for Case 1, α2 < 1. Consider solutions (u2, v2, y2) of (7.32) which correspond to real so-
lutions of (7.26). In particular, let U2 = (u2(τ), v2(τ), y2(τ)) and U∗2 = (u∗2(τ), v∗2(τ), y∗2(τ))
denote two solutions of (7.32), with initial conditions (u2,0, v2,0, y2,0) and (u2,∗, v2,∗, y2,∗)
chosen such that (u2,∗, v2,∗) = O(

√
ε). Assume that y2,0 >

√
α2 + 1 and δ < y2,∗(T ) <

√
α2,

where (−δ, δ) defines a small neighbourhood of the pole y2 = 0.
Now consider an elliptic path which connects U2 and U∗2 . We follow U2 backward and

U∗2 forward in τ along the elliptic path, up to the Hyperbola H. It follows from Proposition
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7.14 that the two solutions are O(
√
ε) close. Next we follow the solutions (backward in τ)

down H to the point y2 =
√
α2. Solutions of (7.32) experience exponential contraction (in

backward time) in the u2 coordinate such that the distance between U2 and U∗2 is given by

|u2 − u2,∗|y2=
√
α2

= O
(

exp
(
ε−1/2IΛ1(y2,

√
α2)
))

.

Since U2 and U∗2 correspond to real solutions of (7.26), v2 = ū2 and v2,∗ = v̄2,∗. Thus the
above estimate also holds for v2 and v2,∗ at y2 =

√
α2. The maximal expansion (in backward

time) along a solution from y2 =
√
α2 to any δ < y2 <

√
α2 is

exp
(
ε−1/2IΛ1(

√
α2, y2)

)
.

Thus for δ < y2 <
√
α2 such that IΛ2(y2,0, y2) < 0, the corresponding solution of (7.32) on

the interval (y2, y2,0) must be O(
√
ε). Similar proofs can be constructed for α2 > 1 and

Case 4.

Now we estimate the maximal delay experienced by trajectories, before leaving CM and
transitioning to Σ3.

Outline of Proof. (Theorem 7.5; see Theorem 3.5 of [66] and 4.12 of [108]) Consider Case 1
with α2 > 1. Suppose that y2,B ∈ (

√
α2,
√
α2 + 1) where CMr is complex (elliptic). Fix a

constant K > 0. Suppose we have a trajectory of (7.51) with

|(u2, v2)| ≥ K√ε, for all y2,B + d(ε), (7.60)

and (u2, v2) is not exponentially close to S
√
ε

r . Returning to the coordinates of (7.16), the
above implies that (x2, y2, z2) is O(

√
ε) close to CM. Thus the trajectory follows the layer

dynamics and reaches Σ3 in O(−lnε) time (see Theorem 3.1 of [66]). It remains to prove
that (7.60) holds for most trajectories.

Suppose that p ∈ J+ such that

|(u2, v2)| < K
√
ε, for all y2,B + d(ε). (7.61)

Then to leading order, the flow about Π1(p) from Σ2 to the section defined by y2 = y2,B+d(ε)
is an expansion with an expansion rate given by

exp
(√
εIΛ1(y2,0, y2,∗ + d(ε))

)
. (7.62)

We can show that the maximal contraction rate of Π1 is smaller that the contraction rate
(7.62); see Lemma 5.4 of [66]. Thus the transition from J+ to the section defined by
y2 = y2,∗ + d(ε) exponentially expands the distance between p and any other point q ∈ J+.
It follows that q can only satisfy (7.61) if it is exponentially close to p, i.e. (7.60) must be
satisfied for all points which are not exponentially close to p. Thus the result holds for all
points in J+, possibly with the exception of an exponentially small interval.

Now suppose that y2,B >
√
α2 + 1 where CMr is real (hyperbolic). Consider a solution

(u2, v2) of (7.32), with an initial condition that is not exponentially close to the weak canard.

By Theorem 7.3 (see also Propositions 7.15 and 7.17), the invariant manifolds S
√
ε

a and S
√
ε

r
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intersect transversally for most α2 ∈ A, and hence the angle between them is bounded
below by some positive constant. It follows that (u2(τH), v2(τH)) has a large component in
the strongly expanding direction, where y2(τH) ∈ H. By linearising (7.32) along CM , we
can measure the evolution of the strongly expanding component. Continuing the solution
down the hyperbola H to y2 =

√
α2 on the real y2-axis, the strongly expanding component

shrinks by the factor

exp
(√
εIΛ1(y2,0,

√
α2)
)
.

Continuing the solution along the real y2-axis results in the expansion of the strong unstable
direction up to O(1) when y2 reaches a neighbourhood of the point y2,∗.

7.7 Cases 2 to 4

In this section we restate the theorems on the existence of canards (Theorems 7.1–7.3) in
full to cover all cases, and add new theorems to address the existence of faux canards for
Cases 2 and 3. We also expand the minimal delay (Theorem 7.4) and buffer point results
(Definition 7.1 and Lemma 7.1) to include all cases.

Theorem 7.6. (Existence of canards) Let 0 < α2 < 1 and Σ̃∗ : y2 = ỹ2,∗, for some
ỹ2,∗ ≈ y2,∗. Then,

i) For Case 1, and |y2,0| >
√
α2 + 1 chosen to define Σ±2 such that

IΛ1(y2,∗, y2,0) = 0,

with |y2,∗| ∈ (δ,
√
α2), there exists a canard solution O(

√
ε) away from CM , connecting

S
√
ε

a ∩ Σ̃∗ to S
√
ε

r ∩ Σ±2 , and continuing to a point in Sεr ∩ Σ1.

ii) For Case 4, and |y2,0| >
√
α2 + 1 chosen to define Σ±2 such that

IΛ2(y2,0, y2,∗) = 0,

with |y2,∗| ∈ (δ,
√
α2), there exists a canard solution originating in Sεa ∩ Σ1, passing

through S
√
ε

a ∩ Σ±2 an O(
√
ε) distance away from CM , and connecting to S

√
ε

r ∩ Σ̃∗.

Proof. The proof for Case 4 is the same as Case 1, only constructed in forward time; see
Section 7.6.1 for details.

Theorem 7.7. (Existence of faux canards) Let 0 < α2 < 1 and Σ̃∗ : y2 = ỹ2,∗, for some
ỹ2,∗ ≈ y2,∗. Then,

i) For Case 2, and |y2,0| >
√
α2 + 1 chosen to define Σ±2 such that

IΛ2(y2,0, y2,∗) = 0,

with |y2,∗| ∈ (δ,
√
α2), there exists a faux canard solution originating in Sεr ∩Σ1, passing

through S
√
ε

r ∩ Σ±2 an O(
√
ε) distance away from CM , and connecting to S

√
ε

a ∩ Σ̃∗.
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ii) For Case 3, and |y2,0| >
√
α2 + 1 chosen to define Σ±2 such that

IΛ1(y2,∗, y2,0) = 0,

with |y2,∗| ∈ (δ,
√
α2), there exists a faux canard solution O(

√
ε) away from CM , con-

necting S
√
ε

r ∩ Σ̃∗ to S
√
ε

a ∩ Σ±2 , and continuing to a point in Sεa ∩ Σ1.

Proof. For Case 2, the proof is the same as Theorem 7.6(ii). On the other hand, the proof
of Case 3 is the same as Theorem 7.6(i). See Section 7.6.1 for more details

Theorem 7.8. (Existence of canards: Elliptic case) Let α2 > 1.

i) For Case 1, and |y2,0| >
√
α2 + 1 chosen to define Σ±2 such that

IΛ2(y2,∗, y2,0) = 0,

with |y2,∗| ∈ (
√
α2 − 1,

√
α2), the results of Theorem 7.6(i) hold.

ii) For Case 1, and |y2,0| ∈ (δ,
√
α2 − 1) chosen to define Σ±2 such that

IΛ1(y2,0, y2,∗) = 0,

with |y2,∗| ∈ (
√
α2,
√
α2 + 1), the results of Theorem 7.6(ii) hold.

iii) For Case 4, and |y2,0| >
√
α2 + 1 chosen to define Σ±2 such that

IΛ1(y2,0, y2,∗) = 0,

with |y2,∗| ∈ (
√
α2 − 1,

√
α2), the results of Theorem 7.6(ii) hold.

iv) For Case 4, and |y2,0| ∈ (δ,
√
α2 − 1) chosen to define Σ±2 such that

IΛ2(y2,∗, y2,0) = 0,

with |y2,∗| ∈ (
√
α2,
√
α2 + 1), the results of Theorem 7.6(i) hold.

Proof. The proof is the same as in Theorem 7.6; see Section 7.6.2.

Theorem 7.9. (Existence of faux canards: Elliptic case) Let α2 > 1.

i) For Case 2, and |y2,0| >
√
α2 + 1 chosen to define Σ±2 such that

IΛ2(y2,0, y2,∗) = 0,

with |y2,∗| ∈ (
√
α2 − 1,

√
α2), the results of Theorem 7.7(i) hold.

ii) For Case 2, and |y2,0| ∈ (δ,
√
α2 − 1) chosen to define Σ±2 such that

IΛ1(y2,∗, y2,0) = 0,

with |y2,∗| ∈ (
√
α2,
√
α2 + 1), the results of Theorem 7.7(ii) hold.
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iii) For Case 3, and |y2,0| >
√
α2 + 1 chosen to define Σ±2 such that

IΛ1(y2,∗, y2,0) = 0,

with |y2,∗| ∈ (
√
α2 − 1,

√
α2), the results of Theorem 7.7(ii) hold.

iv) For Case 3, and |y2,0| ∈ (δ,
√
α2 − 1) chosen to define Σ±2 such that

IΛ2(y2,0, y2,∗) = 0,

with |y2,∗| ∈ (
√
α2,
√
α2 + 1), the results of Theorem 7.7(i) hold.

Proof. The proof is the same as in Theorem 7.6; see Section 7.6.2.

Theorem 7.10. (Existence of canards: Hyperbolic case) Let α2 > 1 and Σ∗ : y2 = y2,∗. For
most α2 ∈ A (an open set of almost full measure), there exists a canard solution, uniformly
O(
√
ε) close to CM , that

i) for Case 1, and |y2,0| ∈ (δ,
√
α2 − 1) chosen to define Σ±2 such that

IΛ1(|y2,0|,
√
α2+1) + IΛ2(

√
α2+1, |y2,∗|) = 0,

where y2,∗ >
√
α2 + 1, connects S

√
ε

a ∩ Σ+
2 to S

√
ε

r ∩ Σ∗.

ii) for Case 4, and |y2,0| >
√
α2 + 1 chosen to define Σ±2 such that

IΛ1(|y2,0|,
√
α2+1) + IΛ2(

√
α2+1, |y2,∗|) = 0,

where |y2,∗| ∈ (δ,
√
α2 − 1), connects S

√
ε

a ∩ Σ±2 to S
√
ε

r ∩ Σ∗.

Proof. The proof for Case 4 is the same as Case 1. See Section 7.6.2 for further details.

Theorem 7.11. (Existence of faux canards: Hyperbolic case) Let α2 > 1 and Σ∗ : y2 = y2,∗.
For most α2 ∈ A (an open set of almost full measure), there exists a faux canard solution,
uniformly O(

√
ε) close to CM , that

i) for Case 2, and |y2,0| >
√
α2 + 1 chosen to define Σ±2 such that

IΛ2(|y2,0|,
√
α2+1) + IΛ1(

√
α2+1, |y2,∗|) = 0,

where |y2,∗| ∈ (δ,
√
α2 − 1), connects S

√
ε

r ∩ Σ±2 to S
√
ε

a ∩ Σ∗.

ii) for Case 3, and |y2,0| ∈ (δ,
√
α2 − 1) chosen to define Σ±2 such that

IΛ2(|y2,0|,
√
α2+1) + IΛ1(

√
α2+1, |y2,∗|) = 0,

where y2,∗ >
√
α2 + 1, connects S

√
ε

r ∩ Σ±2 to S
√
ε

a ∩ Σ∗.

Proof. The proof is the same as in Theorem 7.10; see Section 7.6.2.
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Theorem 7.12. (Minimal delay estimates) Let α2 > 0 and consider a trajectory of (7.24)
with initial condition (x2, y2, z2)(0) that is O(

√
ε) close to CM . We have the following

results:

i) For Case 1, let y2(0) = yin. Let yout(yin) be defined by IΛ1(yin, yout) = 0, and let
y2,0 = yout define Σ±2 . Then the trajectory (x2, y2, z2) stays O(

√
ε) close to CM for all

yin ≤ y2 ≤ yout + o(1).

ii) For Case 4, let y2(0) = yin, and let y2,0 = yin define Σ±2 . Let yout(yin) be defined by
IΛ1(yin, yout) = 0. Then the trajectory (x2, y2, z2) stays O(

√
ε) close to CM for all

yin ≤ y2 ≤ yout + o(1).

Proof. The proof for Case 4 is the same as Case 1, only it is constructed in forward time.
See Section 7.6.3 for more details.

Definition 7.4. (Buffer points) Let α2 > 0.

i) For Case 1 and α2 < 1, the buffer point y2,B is

|y2,B| := lim
|yin|→b

yout(yin),

for some b > 0, where yout(yin) is defined in (7.29). The canard buffer point y2,C is

|y2,C | := lim
|yin|→c

yout(yin),

where 0 < b < c, and yout(yin) is defined in (7.30). For α2 > 1, the definition of the
buffer points is the same, except b and c are replaced with b̃ and c̃.

ii) For Case 4, the buffer point y2,B is

|y2,B| := lim
|yin|→∞

yout(yin),

where yout(yin) is defined in (7.29). The canard buffer point y2,B is

|y2,B| := lim
|yin|→∞

yout(yin),

where yout(yin) is defined in (7.30).

Lemma 7.4. For Case 1, |y2,B| = |y2,C | = ∞. For Case 4 and α2 < 1, |y2,B| = |y2,C | =
c > 0. For Case 4 and α > 1, we have the result |y2,B| = b̄, |y2,C | = c̃, where 0 < c̃ < b̄.

Proof. The results for Case 1 have already been proven; see Lemma 7.1. For Case 4, notice
that the eigenvalues are the same as in Case 1, only they have been reflected across the
y2-axis (and Λ1 and Λ2 are interchanged); compare Figures 7.15 and 7.16. This structure
gives the result |y2,B| = |y2,C | = c for α2 < 1, and |y2,C | = c̃ for α2 > 1.

Remark 7.9. The difference in buffer points across the different cases arises because of the
positioning of CMa relative to the pole. For Case 1, CMa lies in the interval |y2| <

√
α2.

Note that trajectories with yin ∈ (0, b), or yin ∈ (0, b̃) for α2 > 1, will still reach infinity.
For Case 4, CMa stretches to infinity on either side of the pole. Case 4 is similar to the
FSN II in that the pole lies in the repelling region of CM , and it acts as a strict upper
bound on the maximal delay.
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7.8 Discussion

Generic folded singularities occur in singularly perturbed systems with at least two slow
variables. When viewed as equilibria of the reduced flow, they are naturally classified
as saddles, nodes or foci. Folded nodes and saddles are special structures that generate
canards, trajectories that follow a repelling invariant manifold for O(1) times, which leads
to complex behaviour. The dynamics near a folded node and saddle has been studied in
depth for eigenvalue ratios µ bounded away from zero. Two types of co-dimension one
bifurcations involving folded singularities, folded-saddle node (FSN) type I and II, have
already been analysed in detail. Canard theory has been extended to the FSN II case for
various regimes: µ = O(ε) [45], µ = O(

√
ε) [66], as well as the transition between the

two regimes [25, 31]. Similar theory has been established for the FSN I in the µ = O(εk),
k ≥ 1/4 regime [108].

The final type of folded saddle-node bifurcation, the FSN III, was first discovered in a
study [87] of the Butera model, a coupled two-neuron model. While the bifurcation was
originally identified in a system where averaging was applied near family of periodic orbits
of the layer problem, we proposed a canonical model of the bifurcation in an equilibrium
manifold setting. In a similar manner to past work [66, 108], we utilised techniques from
GSPT (the blow-up) and dynamic bifurcation theory (complex time path analysis) to anal-
yse the dynamics in an α = O(

√
ε) neighbourhood of the FSN III singularity. We proved

the existence of O(
√
ε) canards and faux canards as intersections of stable and unstable

invariant manifolds. These canards solutions rotate about the primary weak canard in the
folded node case, or the primary faux canard in the folded saddle case.

In addition to the proving the existence of canards, we also analysed the growth and de-
cay properties of both generic solutions and canards. We defined a way-in/way-out function
to measure the delayed loss of stability, a phenomenon characteristic of dynamic Hopf bifur-
cations, experienced by trajectories passing through the FSN III singularity. We found that
differences in the structure of the rescaling charts of the various FSN bifurcations impacted
the maximal delay estimates. In the FSN II case, there is an ordinary singularity which
creates a pole along the repelling manifold CMr in the complexified system. Trajectories
cannot pass the pole, and hence there is a strict upper bound on the delay. On the other
hand, there is no pole in the FSN I case, and trajectories may traverse the entire length of
CMr. Like the FSN II, the FSN III has a pole which trajectories cannot cross, but it lies
along the symmetry axis. Depending on parameter values, the pole may be situated in the
middle of the attracting manifold CMa with disjoint segments of CMr on either side (Cases
1), or vice versa (Cases 4). For Case 1, both generic trajectories and canards can trace the
entire length of (a disjoint segment of) CMr, which stretches off to infinity. This infinite
delay seems counter-intuitive since trajectories only trace a finite distance along CMa, but
this arises naturally from the pole’s effect on the way-in/way-out function. For Case 4, tra-
jectories can only trace CMr a finite distance before they are repelled. Using Hamiltonian
properties of the complexified system, we proved that in both cases, trajectories must stay
out of a small neighbourhood of the pole.

Our analysis of the FSN III has left some open questions. With the exception of the
Butera model, we are not aware of any other model which possess a FSN III bifurcation.
Such a model would need to satisfy symmetry conditions (at least locally), like the Butera
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model. We presented a brief numerical study of the canonical model coupled with a reset
mechanism (inspired by classic integrate-and-fire neural models), and illustrated the exis-
tence of MMOs for the folded node case. However, it remains to find more ‘applicable’
examples of the FSN III. A recent study of the folded saddle singularity by Mitry et al.
[76, 78] uncovered a myriad of different faux canard solutions, with distinct behaviour and
rotational properties. In particular, the folded saddle has secondary faux canards of type α
and β, as well as switching solutions where trajectories switch between the faux and true
canard. While we proved the existence of the primary faux canard (and hence a family
of secondary faux canards) for the FSN III, it remains to formally establish the existence
of the various types of secondary faux canards. Such faux canards could yield interesting
behaviour for Cases 2 and 3 of the FSN III.
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7.9 Appendix

A Additional plots of the integrate-and-fire model

Figure 7.11: A canard solution of (7.1) for α = 1/30 and ε = 0.025, Case 4 (cf. Figure 7.2). The
attracting and repelling sheets of the critical manifold are shown in blue and red. The fold L is
simply the y-axis. The green dots mark the folded node singularities of the reduced system (7.2).
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Figure 7.12: MMO solutions of (7.1), for Case 4 (δ1 = δ2 = −1), ε = 0.025 and various values of α,
which are indicated on the respective plot. For all these plots zth = −1, xre = 0.0125, yre = 0.416
and zre = 0.5. Compare with Figure 7.3 which shows similar patterns for Case 1.
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Figure 7.13: Dynamics of system (7.11), i.e. the flow on the attracting centre manifold Ma,1, for
A: Case 1, B: Case 2, C: Case 3, D: Case 4. In all Cases, α2 = 0.5. The stream plots in the
r1 = 0 and ε1 = 0 invariant planes are shown in red, and their equilibria are indicated by black
dots, with the solid black lines being the eigendirections of the respective equilibria. Nullclines are
shown in dashed grey and branches of equilibria in solid dark green. Finally, trajectories of (7.11)
with non-zero ε = r4ε1 are shown in blue.

B Flow on the attracting manifold Ma,1 in chart κ1

We summarise the dynamics of systems (7.12) and (7.13) for the various cases. For Case 2,
we have the following results:

• In the r1 = 0 plane, there is an unstable node at the origin and branches of equilibria
(ȳ1, ε̄1) = (±

√
α
√
ε1 − 1, ε1), originating at (0, 1/α2).

• In the ε1 = 0 plane, there is a saddle equilibrium at the origin, and the strong
eigendirection of the saddle corresponds to γs of the FSN III singularity.

• In the ε1 = 0 plane, there is a parabolic nullcline r2
1 = y2

1/4 + 1/4, originating at
(r1, y1) = (1/2, 0).

Note that the only difference between Case 1 and 2 is that the later, in the ε1 = 0 plane, has
the additional parabolic nullcline. However, the local dynamics near the origin (r1 < 1/2)
are the same. For Cases 3 and 4 we have the following results:

• In the r1 = 0 plane, there is an unstable node at the origin and two disjoint parabolic
branches of equilibria (ȳ1, ε̄1) = (±

√
α
√
ε1 + 1, ε1), originating at (±1, 0).
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• In the ε1 = 0 plane, there is a saddle equilibrium at the origin, and the strong
eigendirection corresponds to γs of the FSN III singularity.

• In the ε1 = 0 plane, there are two saddle-nodes (r̄1, ȳ1) = (0,±1), with attracting
centre manifolds WC

± given by

y1 = ±1± 2δ2r
2
1 +O(r4

1). (7.63)

The centre manifolds WC
± correspond to the centre eigendirections WC of the FSN III

singularity. The blow-up has effectively split the strong and centre eigendirections.

For both Cases 3 and 4, in the ε1 = 0 plane, we also find the nullcline

y2
1 − 4δ2r

2
1 = 1.

For Case 3, the nullcline comprises of two disjoint, parabolic branches originating at (r1, y1) =
(0,±1). In Case 4 the nullcline is a half-ellipse, centred at the origin, with semi-major axis
y1 = 1, and semi-minor axis r1 = 1/2. Thus the local dynamics near the origin is consistent
across all four cases for 4r2

1 + y2
1 ≤ 1.

The dynamics on Ma,1 for Cases 2–4 (and Case 1 for comparison) is shown in Figure
7.13.

C Transition times from chart κ1 to κ2

Recall that linearisation of (7.11) about the origin yielded system (7.14), which was inde-
pendent of δ1,2. Thus the transition time Ts = ln(O(ε−1/4)) for Σ1 ∩Ma,1 → Σ2 is valid for
all cases.

For Case 4, we can estimate the transition time Σ1 → Σ2 by linearising (7.13) about the
saddle-nodes at y1 = ±1. The leading order flow on the centre manifold (7.63) is given by

r′1 = 4δ2r
3
1 +O(r5

1),

⇒ r2
1(t) = − 1

2(4δ2t+ β)
,

where δ2 = −1 and β = −1/(2r̃1
2). Hence the transition time Tc, for Σ1 → Σ2, is given by

Tc = O(ε−1/2).

Given an initial condition O(1) away from the centre eigendirection in Σ1 (but not O(ε1/4)
close to γs), then Π1 maps the initial point to an O(

√
ε) neighbourhood of the centre

eigendirection in Σ2.
Note that we only calculate the transition time Tc for Case 4. In Case 3, the centre

manifold obtained by linearising about the saddle-nodes exists for |y1| > 1. Any trajectory
starting outside of a O(ε1/4) neighbourhood of γs will eventually reach WC

± and flow away
from the origin, with r1 increasing. In general, the trajectory will never reach Σ2.
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Figure 7.14: Eigenvalue structure of (7.17) along CM for A: δ1 = 1 (Cases 1 and 2), and B :
δ1 = −1 (Cases 3 and 4). The top row shows the stability in the (y2, α2)-plane. The type and sign
of the real part of the eigenvalues in various regions are indicated on the figure. Blue (red) regions
are (un)stable, while the light (dark) shading indicates a real (complex) eigenvalue structure. The
solid black line is the curve y22 = α2. The bottom row shows the stability along the positive y2-axis,
for a fixed value of α2 > 1.

D Structure of CM for Cases 2–4

The structure and stability properties of CM for Cases 1 and 2 are the same. However, for
Cases 3 and 4 we see a switch in stability. Figure 7.14 shows a comparison of the stability
properties of CM for all cases. Furthermore, CM connects to the pair of saddle-nodes
identified in chart κ1, for Cases 3 and 4.

Lemma 7.5. For Cases 3 and 4, CM emanates from the pair of saddle-nodes y1 = ±1
on Ma,1 (in the ε1 = 0 invariant plane) in chart κ1 and approaches them tangent to the
y1-axis.

Proof. Recalling that r2 = ε1/4 = 0 in κ2, we apply the change of coordinates κ12, which
gives

κ12(CM) : (r1, y1, z1, ε1) =

(
0,

y2

(γ̃2)1/4
,

δ1γ̃

(γ̃2)1/2
,

1

γ̃2

)
, (7.64)

where γ̃ = α2 − y2
2. If we restrict κ12(CM) to Ma,1, then z1 = −1 and thus for δ1 =

−1, we have γ̃ < 0. Recall that the branch of equilibria in κ1 is defined by (ȳ1, ε̄1) =(
±
√
α2
√
ε1 − 1, ε1

)
. A simple calculation involving the y1 and ε1 components of (7.64)
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Figure 7.15: Real part of the eigenvalues Λ1,2 of (7.26), for Cases 1 and 2, where the blue and
orange curves indicate Λ1 and Λ2, respectively. The arrows on the y2-axis indicate the direction of
the reduced flow along CM . Top row: Case 1, α2 = 0.25 (left) and α2 = 1.25 (right). Note that for
y2 < 0, the eigenvalues have been reflected in the y2-axis to preserve the orientation of trajectories
in (7.24). Bottom row: Case 2, α2 = 0.25 (left) and α2 = 1.25 (right). For y2 > 0, the eigenvalues
have been reflected in the y2-axis.

gives

α2
√
ε1 − δ1 =

α2 + sgn(γ̃)γ̃

(γ̃2)1/2
,

=
y2

2

(γ̃2)1/2
,

= y2
1,

which shows that CM lies on the branch of equilibria. Furthermore,

lim
y2→±∞

κ12(CM) : (r1, y1, z1, ε1) = (0,±1, 0, 0) ,

i.e. CM originates from the pair of saddle-nodes in κ1. The tangent vectors at the saddles-
nodes are

lim
y2→±∞

d
dy2
κ12(CM)

||κ12(CM)|| = (0,−1, 0, 0) ,

and hence CM approaches tangent to the y1-axis.

Closely related to CM are the eigenvalues Λ1,2 of system (7.26), where y2 is treated as
‘slow time’. The structure of Λ1,2 is very important as its integral (7.27) forms the way-
in/way-out function. Figures 7.15 and 7.16 shows a comparison of the real part of Λ1 and
Λ2 for all four cases.
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Figure 7.16: Real part of the eigenvalues Λ1,2 of (7.26), for Cases 3 and 4, where the blue and
orange curves indicate Λ1 and Λ2, respectively. The arrows on the y2-axis indicate the direction of
the reduced flow along CM . Top row: Case 3, α2 = 0.25 (left) and α2 = 1.25 (right). Note that for
y2 < 0, the eigenvalues have been reflected in the y2-axis to preserve the orientation of trajectories
in (7.24). Bottom row: Case 4, α2 = 0.25 (left) and α2 = 1.25 (right). For y2 > 0, the eigenvalues
have been reflected in the y2-axis.

E Proof of Proposition 7.5

Proof. We can rewrite (7.23), grouping together all the O(
√
ε(1+y2

2+. . .)) terms in ẋ2 and
ż2:

ẋ2 = −z2 +
√
εN1(y2) +O(

√
ε(x2 + z2)),

ẏ2 =
√
εδ2y2(1 +O(

√
ε)),

ż2 = x2 − 2δ1z2γ − z2
2 +
√
εN2(y2) +O(

√
ε(z2), ε(1+x2+z2+y2

2)),

(7.65)

where N1,2(y2) = O(1 + y2
2 + . . .). We transform the system in three steps. First, let

z̃2 = z2 −
√
εN1(y2). Applying this transformation yields the system

ẋ2 = −z̃2 +O(
√
ε(x2 + z̃2), ε(1 + y2

2)),

ẏ2 =
√
εδ2y2(1 +O(

√
ε)),

˙̃z2 = x2 − 2δ1z̃2γ − z̃2
2 +
√
εÑ2(y2) +O(

√
ε(z̃2), ε(1 + x2 + z̃2 + y2

2)),

where Ñ2(y2) = O(1+y2
2+. . .). Next, applying the transformation x̃2 = x2 +

√
εÑ2(y2), and

dropping the tildes, gives

ẋ2 = −z2 +O(
√
ε(x2 + z2), ε),

ẏ2 =
√
εδ2y2(1 +O(

√
ε)),

ż2 = x2 − 2δ1z2γ − z2
2 +O(

√
ε(z2), ε).

Lastly, setting Φ := (1+O(
√
ε))−1 = 1+O(

√
ε) and rescaling time by Φ yields the result.
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F Proof of Proposition 7.6 and 7.7

Proof. To determine the direction of the flow of (7.41) along the axes, we must first derive
expressions for the real and imaginary parts of Λ1. From the definition of Λ1 (7.33), we
have that

ReΛ1 =
δ2a

a2 + b2

[
δ1(a2−b2−α2) +

∣∣∣√1− γ2
∣∣∣ sin(Arg√1− γ2

)]
+

δ2b

a2 + b2

[
2δ1ab−

∣∣∣√1− γ2
∣∣∣ cos

(
Arg

√
1− γ2

)]
,

ImΛ1 =
δ2a

a2 + b2

[
2δ1ab−

∣∣∣√1− γ2
∣∣∣ cos

(
Arg

√
1− γ2

)]
− δ2b

a2 + b2

[
δ1(a2−b2−α2) +

∣∣∣√1− γ2
∣∣∣ sin(Arg√1− γ2

)]
.

(7.66)

Substituting b = 0 into the above expressions, and carefully evaluating Arg
√

1− γ2 along
the various intervals of the a-axis, yields the desired results of Proposition 7.6. Likewise,
substituting a = 0 into (7.66) and evaluating Arg

√
1− γ2 along the b-axis yields the results

of Proposition 7.7.

G Proof of Proposition 7.8

Proof. From Appendix E in [66], we have

√
1− γ2 =

−iδ1γ
√

1− 1
γ2
, Im(δ1γ) > 0,

iδ1γ
√

1− 1
γ2
, Im(δ1γ) < 0,

(7.67)

where z has been replaced with δ1γ = δ1(α2 − y2
2). Using (7.67) and (7.25), we can rewrite

Λ1 = δ2λ1/y2,

Λ1 =

−δ1δ2

(
α2−y22
y2

)(
1 +

√
1− 1

(α2−y22)2

)
, δ1Re(y2)Im(y2) < 0,

−δ1δ2

(
α2−y22
y2

)(
1−

√
1− 1

(α2−y22)2

)
, δ1Re(y2)Im(y2) > 0,

(7.68)

and expand for large |y2| � 1,

Λ1 =

δ1δ2

(
2y2 − 2α2

y2
+O

(
1
y32

))
, δ1Re(y2)Im(y2) < 0,

δ1δ2

(
1

2y32
+ α2

2y52
+O

(
1
y72

))
, δ1Re(y2)Im(y2) > 0.

(7.69)

Consider δ1 = 1 (Cases 1 and 2), and y2 = a + ib in the first or third quadrant. Using
the appropriate expansion from (7.69), the system of ODEs (7.41) describing the elliptic
contours becomes

a′ = −2δ2b,

b′ = −2δ2a,
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where ′ = d/dτ . Eliminating τ and integrating gives the set of hyperbola (7.43). On the
other hand, for y2 in the second or third quadrant, (7.41) becomes

a′ = − δ2

2|y3
2|2

(b3 − 3a2b),

b′ = − δ2

2|y3
2|2

(a3 − 3ab2).

Eliminating τ gives

db

da
=
a(a2 − 3b2)

b(b2 − 3a2)
. (7.70)

Utilising the substitution b = av, db
da = v + advda , equation (7.70) transforms to

a
dv

da
=

1− v4

v3 − 3v
,

which is separable. Thus

a+ C =

∫
v3

1− v4
dv − 3

2

∫ (
v

1− v2
+

v

1 + v2

)
dv,

=
1

2
ln(1− v2)− ln(1 + v2),

⇒ C1a
2 =

1− v2

(1 + v2)2
, (7.71)

where C1 = e2C . Substituting v = b/a into (7.71) and rearranging leads to the set of
Lemniscate curves (7.42). Note that for δ1 = −1 (Cases 3 and 4), the conditions in (7.69)
switch, but the resulting families of asymptotic curves are the same as those obtained for
δ1 = 1.

H Proof of Proposition 7.9

Proof. Let F (y2) =
∫

Γ Λ1(z)dz, where we have suppressed the δ1,2 and α2 dependence in
Λ1 for ease of notation. Like Λ1, F is analytic everywhere except at the pole (y2,p = 0), and
along the branch cuts (see Figure 7.8). We can write F as the sum of its real and imaginary
parts

F (a+ ib) = H(a, b) + iG(a, b),

where the functions H and G are defined as

H(a, b) = Re

(∫
Γ

Λ1(z)dz

)
,

G(a, b) = Im

(∫
Γ

Λ1(z)dz

)
.

Since F is analytic, it must satisfy the Cauchy-Riemann equations, and the complex deriva-
tive is given by

dF

dy2
= Ha + iGa, (7.72)

= Ha − iHb.
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From the fundamental theorem of calculus, we know that

dF

dy2
= Λ1(z). (7.73)

Comparing (7.72) and (7.73), we find that

Ha = ReΛ1(z),

Hb = −ImΛ1(z).

Substituting the above into (7.41) gives the Hamiltonian system

a′ = Hb,

b′ = −Ha.

I Proof of Proposition 7.10

Proof. To calculate the growth rate, first note that

λ1,2 = z ∓ i
√

1− z2,

= Re(z)± Im(
√

1− z2) + i[Im(z)∓Re(
√

1− z2)],

where z = −δ1γ, and γ = α2 − y2
2. Then

−iλ2λ1 = −i
(
Re(−δ1γ)− Im(

√
1−γ2) + i

[
Im(−δ1γ) +Re(

√
1−γ2)

])
×(

Re(−δ1γ) + Im(
√

1−γ2)− i
[
Im(−δ1γ)−Re(

√
1−γ2)

])
,

⇒ Re(−iλ2λ1) =
(
Im(−δ1γ) +Re(

√
1−γ2)

)(
Re(−δ1γ) + Im(

√
1−γ2)

)
−(

Re(−δ1γ)− Im(
√

1−γ2)
)(

Im(−δ1γ)−Re(
√

1−γ2)
)
,

= −2δ1

[
Re(γ)Re(

√
1−γ2) + Im(γ)Im(

√
1−γ2)

]
,

⇒ Im(−iλ2λ1) = −
[
Re(γ)2 + Im(γ)2 −Re(

√
1−γ2)2 − Im(

√
1−γ2)2

]
,

=
√

1−γ2
√

1−γ2 − γγ.

Finally, note that these real and imaginary parts need to be multiplied by ϕϕ = 1/(a2 +
b2).

J Proof of Proposition 7.11

Proof. We wish to calculate the sign of

Ω = − 2δ1

a2 + b2
ω(γ),
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in different regions of complex (a, b)-plane, where

ω(y) := Re(γ)Re(
√

1−γ2) + Im(γ)Im(
√

1−γ2).

Clearly 1/(a2 + b2) is positive for all a, b ∈ R, and it does not affect the sign of Ω. Now,
using Lemmas 4.4 and 4.5 in [66], we know that

1. If y = α+ iβ is in the first quadrant, then ω(y) > 0.

2. If y = α+ iβ is in the second quadrant, then ω(y) < 0.

Replacing y with γ = α2 − y2
2 = α2 − (a+ ib)2, we

α = Re(γ) = α2 − (a2 − b2),

β = Im(γ) = −2ab.

Hence we have the following results:

1. If y2 = a+ ib is in the second quadrant and a2− b2 < α2, then α, β > 0 and ω(γ) > 0;

2. If y2 = a + ib is in the second quadrant and a2 − b2 > α2, then α < 0, β > 0 and
ω(γ) < 0;

3. If y2 = a+ ib is in the fourth quadrant and a2− b2 < α2, then α, β > 0 and ω(γ) > 0;

4. If y2 = a + ib is in the fourth quadrant and a2 − b2 > α2, then α < 0, β > 0 and
ω(γ) < 0.

Note that sgn Ω = −sgn (δ1ω) and that due to the Z2-symmetry in y2, we can obtain the
sign of Ω in the first and third quadrants.

K Proof of Proposition 7.13

Proof. We can make (7.51) integrable by multiplying through by an integrating factor
exp(V (τ, τ0)), where

V (τ, τ0) =

(
i√
ε

∫ τ
τ0

Λ1(σ)Λ1(σ)dσ 0

0 i√
ε

∫ τ
τ0

Λ2(σ)Λ1(σ)dσ

)
.

Notice that

exp(V (τ, τ0)) = Φ(τ0, τ),

where Φ is the transition matrix, or fundamental solution matrix. Multiplying (7.51) by
the integrating factor, we obtain

√
εUΦ(τ0, τ)−A(τ)Φ(τ0, τ) = G(U, τ)Φ(τ0, τ), (7.74)

where A(τ) is the linear part of (7.51), i.e.

A(τ) =

(
−iΛ1Λ1 0

0 −iΛ2Λ1

)
.
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Recall that the transition matrix has several useful properties: Φ(0, 0) = I, Φ−1(τ0, τ) =
Φ(τ, τ0) and Φ(τ, τ0)Φ(τ0, σ) = Φ(τ, σ). Solving equation (7.74) leads to the solution

d

dτ

(√
εΦ(τ0, τ)U

)
= G(U, τ)Φ(τ0, τ),

⇒ Φ(τ0, τ)U(τ) = Φ(τ0, 0)U(0) +
1√
ε

∫ τ

0
G(U, σ)Φ(τ0, σ)dσ,

⇒ U(τ, U0) = U0Φ(τ, 0) +
1√
ε

∫ τ

0
G(U, σ)Φ(τ, σ)dσ,

where τ0 = 0.
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Chapter 8

Conclusion and Future Work

In this thesis, we combined techniques from geometric singular perturbation theory (GSPT)
and averaging to analyse torus canards and related problems in neural models. Torus
canards are a relatively new phenomenon, which were first discovered in a model of neuronal
activity in cerebellar Purkinje cells [60]. They are special solutions that follow a repelling
manifold of periodic orbits of the layer problem for a significant amount of time and can
be viewed as the averaged counterparts of canards. The main contribution of this thesis is
two-fold. Firstly, we developed novel numerical averaging techniques that allow for a more
precise study of torus canards, and oscillatory solutions in general, in singularly perturbed
neural models. Secondly, our rigorous blow-up analysis of a novel FSN bifurcation (type
III) expands current theory on the existence and behaviour of canards. We now provide a
detailed summary of the main contributions and implications of this work with regards to
each chapter. We also discuss open questions and future directions.

8.1 The Wilson-Cowan-Izhikevich Model

The Wilson-Cowan-Izhikevich (WCI) model is an extended version of the Wilson-Cowan
model [113], first proposed by Izhikevich [54]. For a range of parameter values, the WCI
model exhibits fold/fold-cycle bursting. Burke et al. [18] studied the WCI model in the
fold/fold bursting regime, and numerically identified torus canards. Via a sequence of
full system simulations, the authors demonstrated the existence of a torus canards ex-
plosion through the bursting to spiking transition. Finally, the authors also provided a
two-parameter continuation of the layer problem bifurcation structures, thereby identifying
parameter regimes corresponding to other types of bursting. Based on an averaged normal
form, Vo [104] numerically identified the toral folded singularity responsible for the explo-
sion and provided a continuation in two-parameter space that demarcated the singular limit
bursting and spiking regions.

Like [104], our numerical methods enabled the identification and continuation of the
toral folded singularity with respect to two system parameters. However, we were also
able to continue equilibria of the averaged reduced system. Thus we improved on the
work of Burke et al. and Vo by providing a complete two-parameter continuation of the
averaged reduced structures in the WCI model. Our study focused on the fold/fold-cycle
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bursting regime where torus canards were found. We showed that the transition from
bursting to spiking occurred via a sequence of torus canards in an exponentially small
parameter window (i.e. a torus canard explosion). However, the WCI model also exhibits
fold/hopf and fold/homoclinic bursting in other parameter regimes. Desroches et al. [30]
showed that complex bursting patterns known as canards of mixed type (CMT) occur at
the transition from fold/hopf-cycle bursting to a state of fixed activity. Our numerical
continuation methods could be used to identify the exact region in the (k, rx)-plane where
CMTs occur in the WCI model. From a more general point of view, numerical averaging
may provide new insights into CMT and other types of bursting behaviour in a variety of
neural models.

8.2 The Butera Model

The second model studied in this thesis, formulated by Butera et al. [20, 21], describes two
synaptically coupled neurons in the pre-Bötzinger complex. Neurons in this region of the
brainstem are essential to respiratory rhythm generation in mammals. While the single
neuron version of the model exhibits fold/homoclinic (square wave) bursting, coupling with
a second identical neuron produces fold/fold (top hat) bursting for a range of parameter
values. Butera and colleagues showed that model neurons can exhibit quiescent, spiking
and bursting behaviour. Furthermore, they used direct simulations on a grid to establish
the regions in (gton, gsyn) parameter space where bursting occurred. Best et al. [11] refined
this analysis by identifying additional types of bursting and spiking regimes of the two-
neuron model. By combining geometric singular perturbation theory and averaging, Best et
al. [11] formulated an averaged reduced model which they analysed. Numerical simulations
were used to track nullclines of the averaged reduced system and identify intersections, i.e.
averaged equilibria. By varying parameter values, they approximated boundary curves in
(gton, gsyn) space which separated qualitatively different averaged reduced problem features,
and corresponding solutions of the full system.

Our study builds on past work in several ways. Using numerical continuation in the
software package AUTO [34], we identified and continued various bifurcations of the full
two neuron model in (gton, gsyn) parameter space for the first time. Away from the weak
coupling regime gsyn ≤ 1, our numerical analysis established the connection between certain
full system bifurcations and the transitions between different activity patterns. In particu-
lar, we found that some bifurcations were directly correlated with transitions, for example,
the pitchfork bifurcation marked the transition between asymmetric and symmetric spik-
ing. Other bifurcations, such as the two torus bifurcations, only approximately indicated
the region where transitions occurred. Compared to earlier simulations, our full system con-
tinuation results provide an improved understanding of the boundaries in parameter space
which mark the transitions between observed activity patterns. Furthermore, we also iden-
tified activity patterns near the bursting to spiking transition that were previously missed.
Examples include amplitude modulate spiking and bursting, both hallmarks of torus canard
behaviour [107].

In an effort to better understand the dynamic mechanisms responsible for activity pat-
terns and transitions between them, we turned our attention to the averaged reduced system
studied by Butera et al. While past analysis of this subsystem relied on numerical simula-
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tions, we implemented a numerical continuation scheme in AUTO to locate and continue the
averaged equilibria with respect to a system parameter. Subsequent bifurcation diagrams
allowed us to identify the averaged reduced structures connected with each activity pattern
of the full model. Our numerical methods also enabled the identification and continuation
of toral folded singularities. This approach led to the new observation that the averaged
equilibria and folded singularities interact in various folded saddle-node (FSN) bifurcations.
We identified three different types of FSN bifurcations: type I, II and III. The FSN type
III, a pitchfork bifurcation of two folded singularities and an ordinary singularity, arises due
to the symmetry induced by coupling two identical neurons in the Butera model. To the
best of our knowledge, this type of FSN bifurcation is novel and identified for the first time
in our work. It remains to find more examples of the FSN III in other neural models.

Similar to the WCI model, we identified torus canards near the spiking to bursting
transition in the Butera model. The transition occurs near a supercritical torus bifurcation
of the full system, which corresponds to the FSN II bifurcation of the averaged reduced
system. Unlike the WCI model, the Butera model has two slow variables; the addition of a
second slow variable results in generic torus canards that occur on open parameter intervals.
In the full system, the transition begins at the supercritical torus bifurcation, which gives
birth to a phase space torus attractor, as shown in return maps. The attracting torus
generates amplitude modulated spiking solutions. Under variation of gton, the torus quickly
breaks down, and the system transitions to bursting via complex amplitude modulated
bursting trajectories. We also identified a second (subcritical) torus bifurcation in the full
Butera model that is associated with the FSN III, and approximates the symmetric to
asymmetric bursting transition. As the torus bifurcation is supercritical, and we cannot
numerically continue nearby quasi-periodic bursting solutions, little is known about how
the bifurcation actually facilitates the transition.

Many more open problems have arisen from our study of the Butera model. Based on
our full system analysis (and the canonical model – see the following section) we expect
the pitchfork (PF), FSN II and FSN III bifurcations to coalesce at a codimension-two bi-
furcation. Ideally, we would like to construct a two-parameter bifurcation diagram of the
averaged reduced system to further support this. In theory, the FSN II and III should be
flagged by AUTO as bifurcations during the one-parameter continuation of averaged equi-
libria (a Floquet multiplier crosses the unit circle when the averaged equilibria interact with
the SNPO). This would easily enable continuation in two parameters. Although AUTO’s
built in algorithms compute the Floquet multipliers, it fails to flag the the FSN II or III bi-
furcation. This problem can be circumvented by implementing the variational equation and
explicitly calculating the Floquet multiplier µ2, as was done in the toral folded singularity
continuation (see Section 3.5.4). The FSN I, a saddle-node of two folded singularities, is far
more problematic as it doesn’t involve any equilibria. Althoughwe computed the FSN I for
fixed values of gsyn corresponding to Cases 1-6, it remains to formally check via continuation
if this bifurcation interacts with any other curves in the two-parameter continuation away
from the organising centre (e.g., in the strong coupling regime).

Very little is understood about the weak coupling regime. As gsyn decreases, excursions
away from the h1 = h2 symmetry axis in the asymmetric bursting regime become shorter and
shorter. As such, it becomes increasingly difficult to qualitatively distinguish symmetric and
asymmetric bursting. Furthermore, there seems to be a limited correlation between some
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full system bifurcation curves and the transitions between activity patterns in the weak
coupling regime. Although we can continue averaged reduced structures from gsyn > 1
into the weak coupling region, due to numerical difficulties, we cannot directly compute the
averaged equilibria or folded singularities for gsyn . 1. Naturally, there may be equilibria
or folded singularities that only exist in this region, which we have missed. Shedding light
on the intricate dynamics of the weak coupling regime may require an altogether different
approach.

8.3 Canonical Model of the Organising Centre

Our investigation of the Butera model identified four important codim-1 bifurcations, PF,
FSN II, FSN III, and SN, as well as three related codim-2 bifurcations, PF–SN, FSN II–
SN, and PF–FSN II–FSN III. Due to the proximity of the codim-2 points in (gton, gsyn)
parameter space, we hypothesised that these three bifurcations were in fact the unfolding
of a higher codimension bifurcation, the so-called organising centre. To support this theory,
we formulated a canonical model, which comprised all the necessary bifurcations in the
averaged reduced system. We found that the canonical system dynamics were consistent
with the activity patterns observed in the full Butera model and it’s associated averaged
reduced system. We also identified paths in parameter space which corresponded to paths
between activity patterns (under parameter variation) in the Butera model. Our results
validate the GSPT/averaging analysis of the Butera model. While we identified a codim-3
bifurcation of the canonical model where all three codim-2 bifurcations coalesced, we did not
provide any further analysis. A detailed blow-up of the canonical model, and in particular
the codim-3 point, still needs to be tackled.

8.4 Folded Saddle-Node Type III

Folded node and folded saddle canards have been studied extensively in R3. Codimension-
one bifurcations of folded singularities, folded saddle-nodes (FSN), come in three varieties.
The FSN type I corresponds to a true saddle-node bifurcation of a folded node and folded
saddle. The FSN type II corresponds to a transcritical bifurcation of an ordinary singularity
(or equilibria) and a folded singularity. The third type, the FSN III, arises due to symmetry:
it is a pitchfork bifurcation of two folded singularities and an ordinary singularity. The FSN
I and II are common in neural applications and can generate complex behaviour. Both can
play a role in the creation of MMO patterns [12, 46, 45, 13]. The FSN II is the dynamic
unfolding of the 2D singular Andronov-Hopf bifurcation, which mediates the transition from
small amplitude oscillations to relaxation oscillations in planar singularly perturbed systems
[37, 64]. On the other hand, the FSN III is novel and was discovered in our study of the
Butera model.

The local dynamics near the FSN I and FSN II limit has been analysed, and the existence
of canards has been proven in both cases [108, 66]. Using a similar approach to past work, we
performed a partial blow-up of the FSN III singularity and analytically extended the system
into the complex plane. Using elliptic contours and other properties of the complexified
system, we proved the existence of O(

√
ε) canards and faux canards as intersections of
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stable and unstable invariant manifolds. These canard solutions rotated about the primary
weak canard of the folded node (Cases 1 and 4), or the primary faux canards of the folded
saddle (Cases 2 and 3). Similar to the other FSN bifurcations, the FSN III gave rise to
delay phenomena. Using a way-in/way-out function, we calculated maximal and minimal
delay estimates. Like the FSN II, we showed that the FSN III possessed a pole in the
complexified system which impacted the delay estimates. The positioning of this pole
relative to attracting and repelling manifolds created some interesting points of difference
with the other two cases. For example, trajectories with initial conditions sufficiently close
to the pole experience an ‘infinite delay’, i.e. they trace the length of an infinite repelling
manifold, having only tracked the attracting manifold for a finite amount of time. This sort
of behaviour is not possible in the FSN I and II.

While our study of the novel FSN III is an important addition to the growing com-
pendium of canard theory, it is by no means a complete analysis. Recent work [76, 78] has
expanded our understanding of folded saddle canards and their behaviour. In particular,
the authors identify new types of secondary folded saddle faux canards, characterise their
rotational behaviour, and detail numerical methods for computing them. In addition, the
authors also demonstrate how the secondary faux canards can generate complex dynamics
near the FSN I limit in various neural models. As Cases 2 and 3 of the FSN III possess two
folded saddles, it could be worthwhile to consider the dynamics of various secondary faux
canards near the FSN III limit.

158



References

[1] V. Afraımovich and L. Shilnikov, Invariant two-dimensional tori, their break-
down and stochasticity, methods of the qualitative theory of differential equations,,
Gos. Univ., Gorki, (1983), pp. 3–26.

[2] V. Afraimovich and L. P. Shilnikov, Invariant two-dimensional tori, their break-
down and stochasticity, Amer. Math. Soc. Transl, 149 (1991), pp. 201–212.

[3] A. Algaba, E. Freire, E. Gamero, and A. Rodr̀ıguez-Luis, A three-parameter
study of a degenerate case of the hopf-pitchfork bifurcation, Nonlinearity, 12 (1999),
pp. 1177–1206.

[4] R. Ayoub, The Lemniscate and Fagnano’s Contributions to Elliptic Integrals, Archive
for history of Exact Sciences, 29 (1984), pp. 131–149.

[5] S. M. Baer and T. Erneux, Singular Hopf bifurcation to relaxation oscillations II,
SIAM Journal on Applied Mathematics, 52 (1992), pp. 1651–1664.

[6] G. N. Benes, A. M. Barry, T. J. Kaper, M. A. Kramer, and J. Burke, An
elementary model of torus canards, Chaos, 21 (2011).
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nales scientifiques de l’École normale supérieure, 12 (1883), pp. 47–88.

[43] P. A. Gray, W. A. Janczewski, N. Mellen, D. R. McCrimmon, and J. L.
Feldman, Normal breathing requires pre-Bötzinger complex neurokinin-1 receptor-
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