BUSINESS ANALYTICS WORKING PAPER SERIES

Consistent Estimation of Linear Regression Models
 Using Matched Data

Masayuki Hirukawa, Artem Prokhorov

Abstract

Economists often use matched samples, especially when dealing with earnings data where a number of missing observations need to be imputed. In this paper, we demonstrate that the ordinary least squares estimator of the linear regression model using matched samples is inconsistent and has a nonstandard convergence rate to its probability limit. If only a few variables are used to impute the missing data, then it is possible to correct for the bias. We propose two semiparametric bias-corrected estimators and explore their asymptotic properties. The estimators have an indirect-inference interpretation and they attain the parametric convergence rate if the number of matching variables is no greater than three. Monte Carlo simulations confirm that the bias correction works very well in such cases.

Keywords: Bias correction; indirect inference; linear regression; matching estimation; measurement error bias.

March 2017

BA Working Paper No: BAWP-2018-02
http://sydney.edu.au/business/business analytics/research/working papers

Consistent Estimation of Linear Regression Models Using Matched Data*

Masayuki Hirukawa ${ }^{\dagger}$ Artem Prokhorov ${ }^{\ddagger}$
Setsunan University University of Sydney

16 March 2017

Abstract

Economists often use matched samples, especially when dealing with earnings data where a number of missing observations need to be imputed. In this paper, we demonstrate that the ordinary least squares estimator of the linear regression model using matched samples is inconsistent and has a nonstandard convergence rate to its probability limit. If only a few variables are used to impute the missing data, then it is possible to correct for the bias. We propose two semiparametric bias-corrected estimators and explore their asymptotic properties. The estimators have an indirect-inference interpretation and they attain the parametric convergence rate if the number of matching variables is no greater than three. Monte Carlo simulations confirm that the bias correction works very well in such cases.

Keywords: Bias correction; indirect inference; linear regression; matching estimation; measurement error bias.

JEL Classification Codes: C13; C14; C31.

[^0]
1 Introduction

Suppose that we are interested in estimating a linear regression model

$$
\begin{equation*}
Y=\beta_{0}+X_{1}^{\prime} \beta_{1}+X_{2}^{\prime} \beta_{2}+Z^{\prime} \gamma+u:=W^{\prime} \theta+u, E(u \mid W)=0 \tag{1}
\end{equation*}
$$

using a random sample, where $X_{1} \in \mathbb{R}^{d_{1}}, X_{2} \in \mathbb{R}^{d_{2}}$ and $Z \in \mathbb{R}^{d_{3}}$. The reason for distinguishing between the regressors X_{1}, X_{2} and Z will become clear shortly. In addition, while $d_{1}=0$ is allowed, $d_{2}, d_{3}>0$ must be the case in our setup. When $W=\left(1, X_{1}^{\prime}, X_{2}^{\prime}, Z^{\prime}\right)^{\prime} \in \mathbb{R}^{d+1}$, where $d:=d_{1}+d_{2}+d_{3}$, is exogenous and a single random sample of (Y, X_{1}, X_{2}, Z) can be obtained, the ordinary least squares (OLS) estimator of $\theta=\left(\beta_{0}, \beta_{1}^{\prime}, \beta_{2}^{\prime}, \gamma^{\prime}\right)^{\prime}$ is consistent and even best linear unbiased when the error term u is conditionally homoskedastic.

In reality, however, we often face the problem that $\left(Y, X_{1}, X_{2}, Z\right)$ cannot be taken from a single data source. It is not uncommon that economists who use survey data for empirical analysis must collect all necessary variables from more than one source. Examples include Lusardi (1996), Björklund and Jäntti (1997), Currie and Yelowitz (2000), Dee and Evans (2003), Borjas (2004), Bover (2005), Fujii (2008), Bostic et al. (2009), and Murtazashvili et al. (2015), to name a few. Ridder and Moffitt (2007) provide an excellent survey. This is the setting in which we are interested. Specifically, suppose that instead of observing a complete data set $\left(Y, X_{1}, X_{2}, Z\right)$, we have the following two overlapping subsets of data, $\left(Y, X_{1}, Z\right)$ and $\left(X_{2}, Z\right)$. That is, some of the regressors are not available in the initial data set, where the initial data set is the one containing observations on the dependent variable along with a few other regressors. In such a setting, it is natural to construct a matched data set via exploiting the proximity of the common regressor(s) Z across the two samples. This is often called "probabilistic record linkage". Here are two examples of the setting.

Example 1. (Earnings data) Matching is currently used for imputing missing records of earnings in important economic data sets. For example, the U.S. Cur-
rent Population Survey (CPS) files use the so called "hot deck imputation" procedure of the Census (see, e.g., Little and Rubin, 2002; Hirsch and Schumacher, 2004; Bollinger and Hirsch, 2006), which allocates to nonrespondents the reported earnings of a matched respondent who has similar recorded attributes. ${ }^{1}$ The share of imputed values is as high as 30%. The resulting earnings data have been used to uncover much of what is known about the labor market dynamics and outcomes.

Example 2. (Returns to schooling) Let Y denote (the logarithm of) earnings, X_{1} individual characteristics, X_{2} ability measured by test scores, and Z education. Although (Y, X_{1}, Z) is available in the Panel Study of Income Dynamics (PSID), for instance, it is often the case that $\left(X_{2}, Z\right)$ can be found only in a different, psychometric data set. Utilizing the proximity of the common variable Z, we must construct a matched data set of $\left(Y, X_{1}, X_{2}, Z\right)$.

There are many algorithms that can be used to construct matched data sets (see, e.g., Smith and Todd, 2005; Ridder and Moffitt, 2007). We focus on the nearest neighbor matching (NNM) because of its simplicity and wide use. Abadie and Imbens $(2006,2012)$ use it in the context of treatment effect estimation. Chen and Shao (2001) and Shao and Wang (2008) study the problem of variance estimation after a nearest neighbors based imputation. The NNM can be used as a building block in construction of more complicated matching algorithms, most notably the single index or propensity score matching, but we do not pursue these extensions here.

We demonstrate that the OLS estimator of (1) using NNM-based matched samples is inconsistent. The source of the inconsistency is a non-vanishing bias term, which can be viewed as a measurement error bias stemming from replacing unobservable

[^1]X_{2} with a proxy in the matched data. In this sense, the paper is related to the literature on the classical problem of generated regressors and missing data (see, e.g., Pagan, 1984; Prokhorov and Schmidt, 2009). Moreover, we show that the rate of convergence to the probability limit of OLS depends on the number of common, matching variables and the divergence patterns of two sample sizes.

In line with these findings, we propose two semiparametric bias-corrected estimators. The first, one-step estimator is designed exclusively for the cases with at most two matching variables. On the other hand, the second one attempts to remedy the curse of dimensionality with respect to the number of matching variables. It is a two-step estimator, and in the second step it eliminates the second-order bias due to the so called matching discrepancy (Abadie and Imbens, 2006) asymptotically in a similar manner to the one studied by Abadie and Imbens (2011). It is demonstrated that both estimators attain the parametric convergence rate as long as $d_{3} \leq 3$. The estimators can be also interpreted as indirect inference estimators (Gouriéroux, Monfort and Renault, 1993; Smith, 1993) in the sense that they can be obtained by taking the probability limit of the OLS estimator from the regression (1) as the "binding" function.

The paper contributes to three important areas. First, we provide new asymptotic results for regression analysis using matched data. In particular, we explicitly handle the issue of biases due to matching errors, which has been often ignored in the literature as if there were no mismatches; see Ridder and Moffitt (2007, p.5480) for a discussion and Bover (2005) and Bostic et al. (2009) for regression analysis using matched data. Available results are limited to the case of matching in average treatment effect (ATE) estimation. For example, Abadie and Imbens (2006) show that when there is only one matching covariate, the bias in NNM-based matching estimators of the ATE may be asymptotically ignored; they attain the parametric convergence rate in that case. To the best of our knowledge, bias-corrected estima-
tion using matched data and the convergence properties of estimators in these settings have not been explored in the literature before.

Second, the estimation theory we develop provides guidance on repeated survey sampling when some covariates are found to be completely or partially missing after the initial survey. Our theory suggests (approximately) how many observations should be collected in a follow-up survey and how to estimate the linear regression model of interest consistently using the matched data from two surveys.

Finally, the paper offers an alternative to some well-known estimation methods based on two samples. A number of such methods have been designed within the framework of instrumental variables (IV) or generalized method of moments (GMM) estimation, where we can construct required moments from the two samples individually so no matching is required (e.g., Angrist and Krueger, 1992, 1995; Arellano and Meghir, 1992; Inoue and Solon, 2010; Murtazashvili et al., 2015). These approaches are not applicable in the setting of a linear regression where some regressors are missing and two-sample moment based estimation is infeasible.

Throughout we assume that the two samples jointly identify the regression models. There are other two-sample estimators that cover the cases where the first sample alone identifies the models and the second sample is used for efficiency gains (see, e.g., Imbens and Lancaster, 1994; Hellerstein and Imbens, 1999). These are not the settings we consider.

The remainder of this paper is organized as follows. Section 2 shows inconsistency of the OLS estimation of the regression model (1) using matched samples. Section 3 proposes two bias-corrected estimators and explores their convergence properties. We also discuss consistent estimation of their asymptotic covariance matrices. Section 4 conducts Monte Carlo simulations and examines how the bias correction works in finite samples. As an empirical example, in Section 5, we apply the bias-corrected two-sample estimation to a version of Mincer's (1974) wage regression. Section 6
concludes with a few questions for future research. All proofs are given in the Appendix. Gauss codes implementing the estimators are available from the authors upon request.

The paper adopts the following notational conventions: $\|A\|=\left\{\operatorname{tr}\left(A^{\prime} A\right)\right\}^{1 / 2}$ is the Euclidean norm of matrix $A ; \mathbf{1}\{\cdot\}$ denotes an indicator function; $0_{p \times q}$ signifies the $p \times q$ zero matrix, where the subscript may be suppressed if $q=1$; and the symbol $>$ applied to matrices means positive definiteness.

2 Inconsistency of OLS Estimation Using Matched Samples

2.1 Setup

In order to explain how a matched sample is constructed, we need more notations. Denote the two random samples by \mathcal{S}_{1} and \mathcal{S}_{2}. Also let n and m be sample sizes of \mathcal{S}_{1} and \mathcal{S}_{2}, respectively. Then, the two samples can be expressed as $\mathcal{S}_{1}=\mathcal{S}_{1 n}=$ $\left\{\left(Y_{i}, X_{1 i}, Z_{i}\right)\right\}_{i=1}^{n}$ and $\mathcal{S}_{2}=\mathcal{S}_{2 m}=\left\{\left(X_{2 j}, Z_{j}\right)\right\}_{j=1}^{m}$. A natural way of matching based on Z is to use the NNM based on some metric. For a vector x and some symmetric matrix $A>0$, a vector norm is denoted by $\|x\|_{A}=\left(x^{\prime} A x\right)^{1 / 2}$. While there may be numerous choices of A, following Abadie and Imbens (2011), we adopt the Mahalanobis metric $A_{M}=\left\{(1 / N) \sum_{i=1}^{N}\left(Z_{i}-\bar{Z}\right)\left(Z_{i}-\bar{Z}\right)^{\prime}\right\}^{-1}$ and the normalized Euclidean metric $A_{N E}=\operatorname{diag}\left(A_{M}^{-1}\right)^{-1}$, where $N:=n+m$ and $\bar{Z}=(1 / N) \sum_{i=1}^{N} Z_{i}$.

Furthermore, let $j_{k}(i)$ be the index of the k th match in \mathcal{S}_{2} to the unit i in \mathcal{S}_{1}, i.e., for each $i \in\{1, \ldots, n\}, j_{k}(i)$ satisfies

$$
\sum_{j=1}^{m} 1\left\{\left\|Z_{j}-Z_{i}\right\|_{A} \leq\left\|Z_{j_{k}(i)}-Z_{i}\right\|_{A}\right\}=k
$$

Also let $\mathcal{J}_{K}(i)=\left\{j_{1}(i), \ldots, j_{K}(i)\right\}$ denote the set of indices for the first K matches for the unit i. The NNM constructs the matched data set

$$
\mathcal{S}=\left\{\left(Y_{i}, X_{1 i}, X_{2 j_{1}(i)}, \ldots, X_{2 j_{K}(i)}, Z_{i}, Z_{j_{1}(i)}, \ldots, Z_{j_{K}(i)}\right)\right\}_{i=1}^{n} .
$$

We also write $X_{2 j(i)}:=(1 / K) \sum_{j \in \mathcal{J}_{K}(i)} X_{2 j}$ and $Z_{j(i)}:=(1 / K) \sum_{j \in \mathcal{J}_{K}(i)} Z_{j}$.
It is worth noting that X_{2} is missing entirely but only from the first sample. When considered in the context of the imputed sample, it is missing only the values corresponding to the first sample. Thus formally, this problem can be viewed as both value imputation and variable imputation. However, in what follows we view the problem as a missing variable (rather than missing values) imputation.

In our NNM, the number of matches K remains fixed, as in Abadie and Imbens (2006). While it is possible to achieve consistency as in the K-nearest neighbor (K NN) method by letting K diverge at a slower rate than n and m, there are two reasons why we keep K fixed. First, this is what is done in practice. In many applications, the NNM is implemented with small values of K, and $K=1$ (i.e., NNM with a single match) is often chosen even for large n and m. Second, if we allow K to diverge, then an additional finite-sample bias will be induced by incorporating matches with poor quality, as argued in Abadie and Imbens (2006, 2011). It is also confirmed numerically in Section 4 that the quality of bias-corrected estimators deteriorates remarkably due to poor matches. So we find this strategy impractical.

A few additional remarks on NNM are in order. First, matching is made with replacement, and each element of the matching vector Z is assumed to be continuous. Hence, our setting can be viewed as a foundation for more complicated methods of kernel-based matching (see, e.g., Busso, DiNardo and McCrary, 2014; Abadie and Imbens, 2006). Second, matching with replacement, allowing each unit to be used as a match more than once, seems to be standard in the econometric literature, whereas inclusion of discrete matching variables with a finite number of support points does not affect the subsequent asymptotic results. Third, for simplicity, we ignore ties in the NNM, which happen with probability zero as long as Z is continuous.

Throughout it is assumed that we estimate θ by regressing Y_{i} on $W_{i, j(i)}:=$ $\left(1, X_{1 i}^{\prime}, X_{2 j(i)}^{\prime}, Z_{i}\right)^{\prime}$. It is possible to use $Z_{j(i)}$ in place of Z_{i} and run the regres-
sion of Y_{i} on $W_{i, j(i)}^{\dagger}:=\left(1, X_{1 i}^{\prime}, X_{2 j(i)}^{\prime}, Z_{j(i)}\right)^{\prime}$. However, we focus exclusively on the former scenario because of the following two reasons. First, the two scenarios yield first-order asymptotically equivalent results. To see this, observe that $W_{i, j(i)}^{\dagger}=W_{i, j(i)}+\left[\begin{array}{ll}0_{1 \times\left(d_{1}+d_{2}+1\right)} & \left.\left(Z_{j(i)}-Z_{i}\right)^{\prime}\right]^{\prime}=W_{i, j(i)}+O_{p}\left(m^{-1 / d_{3}}\right) \text { by Lemma }\end{array}\right.$ A1, i.e., the second term serves merely as an extra second-order bias term. It is noteworthy that the identification condition is derived from the latter scenario. Second, as illustrated in Section 4, bias-corrected estimators based on $W_{i, j(i)}$ exhibits better finite-sample properties.

We start our analysis from running OLS for the regression of Y_{i} on $W_{i, j(i)}$. The OLS estimator

$$
\hat{\theta}_{O L S}:=\hat{Q}_{W}^{-1} \hat{R}_{W}:=\left(\frac{1}{n} \sum_{i=1}^{n} W_{i, j(i)} W_{i, j(i)}^{\prime}\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} W_{i, j(i)} Y_{i}
$$

is referred to as the matched-sample OLS (MSOLS) estimator hereinafter.

2.2 Regularity Conditions

In what follows, we develop the asymptotic theory of estimation of θ in the regression (1) as n and m diverge while K is fixed. All of the estimation theory, including the bias-corrected estimation methods and their convergence properties, is new to the literature.

It will be shown shortly that the MSOLS estimator is inconsistent. Demonstrating this result and deriving the bias-corrected, consistent estimators of θ require the following assumptions.

Assumption 1. Two random samples $\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)=\left(\mathcal{S}_{1 n}, \mathcal{S}_{2 m}\right)$ are drawn independently from the joint distribution of $\left(Y, X_{1}, X_{2}, Z\right)$ with finite fourth-order moments.

Assumption 2. The matching variable Z is continuously distributed with a convex and compact support \mathbb{Z}, with the density bounded and bounded away from zero on
its support.

Assumption 3.

(i) The regression error u satisfies $E(u \mid W)=0$ and $\sigma_{u}^{2}(W):=E\left(u^{2} \mid W\right) \in(0, \infty)$.
(ii) Let $g(Z):=\left[g_{1}(Z)^{\prime} g_{2}(Z)^{\prime}\right]^{\prime}:=\left[E\left(X_{1} \mid Z\right)^{\prime} E\left(X_{2} \mid Z\right)^{\prime}\right]^{\prime}$ and let $\eta:=$ $\left[\begin{array}{ll}\eta_{1}^{\prime} & \eta_{2}^{\prime}\end{array}\right]^{\prime}:=\left[X_{1}^{\prime}-g_{1}(Z)^{\prime} \quad X_{2}^{\prime}-g_{2}(Z)^{\prime}\right]^{\prime} . \quad$ Then, $\Sigma_{1}:=E\left(\eta_{1} \eta_{1}^{\prime}\right)>0$, $\Sigma_{2}:=E\left(\eta_{2} \eta_{2}^{\prime}\right)>0, E\left(\eta_{1} \eta_{2}^{\prime}\right)=0_{d_{1} \times d_{2}}$, and $g_{2}(\cdot)$ is a first-order Lipschitz continuous, strictly nonlinear function on \mathbb{Z}.

These regularity conditions are largely inspired by those in the literature on semiparametric, partial linear regression models (e.g., Robinson, 1988; Yatchew, 1997), matching estimators for the ATE (e.g., Abadie and Imbens, 2006), and regression estimation based on two samples (e.g., Angrist and Krueger, 1992; Inoue and Solon, 2010). In particular, equivalents to Assumption 1 (the common distribution assumption) are often imposed in the literature (e.g., Assumption 3 of Abadie and Imbens, 2006; Assumption a of Inoue and Solon, 2010). This is a strong assumption which simplifies the subsequent derivations considerably. It implies that the matched sample \mathcal{S} behaves as a pseudo-population, from which the two samples are drawn. Assumption 2 plays a key role in controlling the order of magnitude in the matching discrepancy. Nonlinearity of $g_{2}(\cdot)$ in Assumption 3(ii) will be discussed in Remark 1 below in relation to identification.

Zero correlation between η_{1} and η_{2} in Assumption 3(ii) may appear to be a key identification assumption. Because we never observe X_{1} and X_{2} jointly, it may seem that there is no way to estimate $E\left(\eta_{1} \eta_{2}^{\prime}\right)$ and that unless we assume uncorrelatedness of η_{1} and η_{2} it is impossible to estimate the coefficients. However, once we have obtained the matched sample of $X_{2 j(i)}$, we can use it jointly with $X_{1 i}$ to estimate $E\left(\eta_{1} \eta_{2}^{\prime}\right)$. For example, nonparametric regression residuals $\hat{\eta}_{1 i}$ and $\hat{\eta}_{2 j(i)}$ can be obtained using $\left(X_{1 i}, Z_{i}\right)$ and $\left(X_{2 j(i)}, Z_{i}\right)$, respectively, and they can provide information
about the correlation. Such an estimator will in turn need to be bias-corrected before use. Therefore, in principle we can relax the assumption $E\left(\eta_{1} \eta_{2}^{\prime}\right)=0_{d_{1} \times d_{2}}$ at the expense of having to estimate the matrix and using a bias-corrected estimate in our asymptotic derivations. We prefer to make the restrictive assumption because it simplifies subsequent analysis considerably.

2.3 Inconsistency of MSOLS

Our asymptotic analysis is built on rewriting Y_{i} in a 'partial linear'-like format. A straightforward calculation yields

$$
\begin{equation*}
Y_{i}:=W_{i, j(i)}^{\prime} \theta+\lambda_{i, j(i)}+\epsilon_{i, j(i)}, i=1, \ldots, n \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda_{i, j(i)}=\lambda\left(Z_{i}, Z_{j(i)}\right)=\left\{g_{2}\left(Z_{i}\right)-\frac{1}{K} \sum_{j \in \mathcal{J}_{K}(i)} g_{2}\left(Z_{j}\right)\right\}^{\prime} \beta_{2}, \text { and } \\
& \epsilon_{i, j(i)}=u_{i}+\left(\eta_{2 i}-\frac{1}{K} \sum_{j \in \mathcal{J}_{K}(i)} \eta_{2 j}\right)^{\prime} \beta_{2}:=u_{i}+\left(\eta_{2 i}-\eta_{2 j(i)}\right)^{\prime} \beta_{2} .
\end{aligned}
$$

The reason why this is not exactly a partial linear model is that there is a common regressor $Z_{j(i)}$ included in $W_{i, j(i)}$ and $\lambda_{i, j(i)}$. In this formulation, $W_{i, j(i)}$ is employed as the regressor of the fully parametric part $W_{i, j(i)}^{\prime} \theta$. On the other hand, the semiparametric part $\lambda_{i, j(i)}$ generates the second-order bias that will be discussed shortly, and thus it could be viewed as an analogue to the conditional bias discussed in Abadie and Imbens (2006). A key difference from the partial linear regression models studied in Robinson (1988) and Yatchew (1997) is that the matched regressor $X_{2 j(i)}$ is endogenous, i.e., $X_{2 j(i)}$ and the composite error $\epsilon_{i, j(i)}$ are correlated. The theorem below is established for the model in (2); it provides the probability limit of $\hat{\theta}_{O L S}$ and its associated rate of convergence.

Theorem 1. If Assumptions 1-3 hold, then $\hat{\theta}_{O L S}=Q_{W}^{-1} P_{W} \theta+O_{p}\left(m^{-1 / d_{3}}+n^{-1 / 2}\right)$ as $n, m \rightarrow \infty$, where $Q_{W}:=E\left(W_{i, j(i)} W_{i, j(i)}^{\prime}\right)$ and $P_{W}:=Q_{W}-(1 / K) \Sigma$ and Σ is a
$(d+1) \times(d+1)$ block-diagonal matrix of the form $\Sigma:=\operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)}, \Sigma_{2}, 0_{d_{3} \times d_{3}}\right\}$.

Remark 1. Basic identification assumptions for MSOLS follow from the identification assumptions of the standard OLS. Fundamentally, they require that η_{1} and η_{2} are not in the linear span of each other and that X_{1} and X_{2} are not in the linear span of Z. As in the standard OLS, we need $E\left(W W^{\prime}\right)$ to be of full rank. In our setting, the additional issue is whether \hat{Q}_{W} and Q_{W} are invertible. While we implicitly assume non-singularity of the former, the invertibility of the latter can be examined explicitly.

For simplicity and concreteness, consider the regression model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\gamma_{1} Z+u
$$

where $X_{1}, X_{2}, Z \in \mathbb{R}$. The identification condition in question can be derived from the regression of Y_{i} on $W_{i, j(i)}^{\dagger}=\left(1, X_{1 i}, X_{2 j(i)}, Z_{j(i)}\right)^{\prime}$. The same condition is valid for the regression of Y_{i} on $W_{i, j(i)}=\left(1, X_{1 i}, X_{2 j(i)}, Z_{i}\right)^{\prime}$, because $\hat{Q}_{W^{\dagger}}:=$ $(1 / n) \sum_{i=1}^{n} W_{i, j(i)}^{\dagger} W_{i, j(i)}^{\dagger \prime}$ and \hat{Q}_{W} are first-order asymptotically equivalent in that $\hat{Q}_{W}=$ $\hat{Q}_{W^{\dagger}}+O_{p}\left(m^{-1 / d_{3}}\right)$ by Lemma A1. Let $Q_{W^{\dagger}}:=E\left(W_{i, j(i)}^{\dagger} W_{i, j(i)}^{\dagger \prime}\right)$. Then,

$$
Q_{W^{\dagger}}
$$

$$
=\left[\begin{array}{cccc}
1 & E\left(X_{1}\right) & E\left(X_{2}\right) & E(Z) \\
E\left(X_{1}\right) & E\left(X_{1}^{2}\right) & E\left(X_{1}\right) E\left(X_{2}\right) & E\left(X_{1}\right) E(Z) \\
E\left(X_{2}\right) & E\left(X_{1}\right) E\left(X_{2}\right) & E^{2}\left(X_{2}\right)+\operatorname{Var}\left(X_{2}\right) / K & E\left(X_{2}\right) E(Z)+\operatorname{Cov}\left(X_{2}, Z\right) / K \\
E(Z) & E\left(X_{1}\right) E(Z) & E\left(X_{2}\right) E(Z)+\operatorname{Cov}\left(X_{2}, Z\right) / K & E^{2}(Z)+\operatorname{Var}(Z) / K
\end{array}\right],
$$

and $\operatorname{det}\left(Q_{W^{\dagger}}\right)=\operatorname{Var}\left(X_{1}\right) \operatorname{Var}\left(X_{2}\right) \operatorname{Var}(Z)\left\{1-\operatorname{Corr}^{2}\left(X_{2}, Z\right)\right\} / K^{2}>0$ with no additional restrictions. Hence, $Q_{W^{\dagger}}$ is invertible. Furthermore, the identification of bias-corrected estimators that will be proposed in the next section requires us to ensure non-singularity of $P_{W^{\dagger}}:=Q_{W^{\dagger}}-(1 / K) \Sigma$. It is easy to obtain $\operatorname{det}\left(P_{W^{\dagger}}\right)=$ $\operatorname{Var}\left(X_{1}\right) \operatorname{Var}\left\{g_{2}(Z)\right\} \operatorname{Var}(Z)\left[1-\operatorname{Corr}^{2}\left\{g_{2}(Z), Z\right\}\right] / K^{2}$, and $\operatorname{det}\left(P_{W^{\dagger}}\right)>0$ if and only if $g_{2}(\cdot)$ is strictly nonlinear, as assumed in Assumption 3(ii).

So far we have maintained the assumption that the vector of common variables Z is employed for both matching and estimation. It is possible that at least one common variable is used exclusively for matching (and thus not included in the regression (1)). ${ }^{2}$ In this case the variable can be used to form yet another identification condition, which would allow us to relax somewhat our identification restrictions and/or improve efficiency. For example, in the presence of an outside matching variable, $g_{2}(\cdot)$ can be allowed to be linear. But we do not pursue this point here.

Remark 2. Theorem 1 implies that MSOLS is inconsistent in general. The term $(1 / K) \Sigma$ in P_{W}, which is the source of inconsistency, is generated by misspecifying the regression of Y_{i} on W_{i} as the one of Y_{i} on $W_{i, j(i)}$, or equivalently, employing $X_{2 j(i)}$ as a proxy of the latent variable $X_{2 i}$. Therefore, the non-vanishing bias in MSOLS can be thought of as a measurement error bias. The measurement error interpretation is revisited in Section 2.4 below. A straightforward calculation also shows that the OLS estimator of β_{2} is biased toward zero in the limit. Furthermore, a quick inspection reveals that $\hat{\theta}_{O L S}$ would be consistent if either (i) $\beta_{2}=0$, i.e., X_{2} were irrelevant in the correctly specified model; or (ii) $\Sigma_{2}=0$, i.e., X_{2} were a deterministic function of Z.

Remark 3. The convergence rate of $\hat{\theta}_{O L S}$ is affected by the $O_{p}\left(m^{-1 / d_{3}}\right)$ term, which corresponds to the second-order bias term $\lambda_{i, j(i)}$ due to the matching discrepancy. The rate can be determined by three different divergence patterns of (n, m), namely, $n / m \rightarrow \kappa \in(0, \infty), n / m \rightarrow 0$, and $n / m \rightarrow \infty$ as $n, m \rightarrow \infty$, and there exists a curse of dimensionality with respect to the matching variable Z for each divergence pattern.

When $n / m \rightarrow \kappa, \hat{\theta}_{O L S}=Q_{W}^{-1} P_{W} \theta+O_{p}\left(n^{-\min \left\{1 / 2,1 / d_{3}\right\}}\right) . \quad$ For $d_{3}=1$, a central limit theorem (CLT) implies that $\sqrt{n}\left(\hat{\theta}_{O L S}-Q_{W}^{-1} P_{W} \theta\right)$ has a normal limit. For $d_{3}=$

[^2]2, $\hat{\theta}_{O L S}$ is still \sqrt{n}-convergent, but we could only demonstrate asymptotic normality of $\hat{\theta}_{O L S}$ after subtracting the second-order bias term, i.e., the best we can do in this case is to apply the CLT to $\sqrt{n}\left(\hat{\theta}_{O L S}-Q_{W}^{-1} P_{W} \theta-B_{O L S 2}\right)$, where

$$
B_{O L S 2}:=\hat{Q}_{W}^{-1} B_{R_{W} 2}:=\hat{Q}_{W}^{-1} \frac{1}{n} \sum_{i=1}^{n} W_{i, j(i)} \lambda_{i, j(i)}
$$

These limiting distributions would reduce to the usual one of OLS if a complete data set of $\left(Y, X_{1}, X_{2}, Z\right)$ were available. For $d_{3} \geq 3$, the convergence rate of $\hat{\theta}_{O L S}$ is slower than the parametric one, and it becomes slower as d_{3} increases.

When $n / m \rightarrow 0, m^{-1 / d_{3}}=o\left(n^{-1 / 2}\right)$ for $d_{3} \leq 2$. Hence, $\hat{\theta}_{O L S}=Q_{W}^{-1} P_{W} \theta+$ $O_{p}\left(n^{-1 / 2}\right)$, and $\sqrt{n}\left(\hat{\theta}_{O L S}-Q_{W}^{-1} P_{W} \theta\right)$ has a normal limit in this case. However, for $d_{3} \geq 3$, the convergence rate of $\hat{\theta}_{O L S}$ can be determined only if an extra divergence pattern of (n, m) is imposed. For instance, when $d_{3}=3, \hat{\theta}_{O L S}$ is \sqrt{n}-convergent if $n^{3}=O\left(m^{2}\right)$ and its convergence rate is a nonparametric one if $n^{3} / m^{2} \rightarrow \infty$.

When $n / m \rightarrow \infty$, a \sqrt{n}-convergent of $\hat{\theta}_{O L S}$ can be attained only if $d_{3}=1$ and $n=O\left(m^{2}\right)$. Moreover, $\sqrt{n}\left(\hat{\theta}_{O L S}-Q_{W}^{-1} P_{W} \theta\right)$ has a normal limit when $d_{3}=1$ and $n / m^{2} \rightarrow 0$. On the other hand, if $d_{3}=1$ and $n / m^{2} \rightarrow \infty$ or if $d_{3} \geq 2$, then $\hat{\theta}_{O L S}=Q_{W}^{-1} P_{W} \theta+O_{p}\left(m^{-1 / d_{3}}\right)$, and the convergence rate $m^{1 / d_{3}}$ is slower than \sqrt{n}.

2.4 A Measurement Error Interpretation

Before moving to our proposal for bias-corrected estimation, it is helpful to consider the problem of imputation as a measurement error problem arising from using a proxy. ${ }^{3}$ Write the model in (1) as

$$
Y=\beta_{0}+X_{1}^{\prime} \beta_{1}+g_{2}(Z)^{\prime} \beta_{2}+Z^{\prime} \gamma+e
$$

where $e:=\left\{X_{2}-g_{2}(Z)\right\}^{\prime} \beta_{2}+u$. Then, $g_{2}(Z)$ can be viewed as a proxy for X_{2} and if we could observe $g_{2}(Z)$ then the model could be estimated by OLS as long as X_{1} is uncorrelated with $\left\{X_{2}-g_{2}(Z)\right\}$ and $g_{2}(Z)$ is not in the linear span of Z.

[^3]However, $g_{2}(Z)$ is not observed and needs to be estimated. There are two complications here. One is that we need to use an estimator $\hat{g}_{2}(Z)$ based on another sample. The other is that the estimator uses matched values of X_{2} obtained using nearest-neighbors of Z from the other sample, not the Z itself. Suppose that $\hat{g}_{2}(Z)$ is the estimate via the $K-\mathrm{NN}$ method for the moment. ${ }^{4}$ Rewriting the model as

$$
Y=\beta_{0}+X_{1}^{\prime} \beta_{1}+\hat{g}_{2}(Z)^{\prime} \beta_{2}+Z^{\prime} \gamma+v
$$

where $v:=\left\{X_{2}-\hat{g}_{2}(Z)\right\}^{\prime} \beta_{2}+u$, we attempt to estimate this regression by OLS. If $\hat{g}_{2}(Z)$ were estimated from the same sample, then the correlation between $\hat{g}_{2}(Z)$ and $\left\{X_{2}-\hat{g}_{2}(Z)\right\}$ would be near zero because of orthogonality of $g_{2}(Z)$ and $\left\{X_{2}-g_{2}(Z)\right\}$. We actually employ a different sample to estimate (or impute) $g_{2}(Z)$, and thus the correlation does not equal zero, which causes a non-negligible bias in the OLS estimator. This can be interpreted as a classical measurement error problem.

As is well known in the literature on measurement error problems, the bias of OLS can be corrected if the variance of the measurement error can be obtained analytically, given that the matching discrepancy from $K-\mathrm{NN}$ is bounded. Our bias correction methods in the next section basically follow this idea, although the nearest-neighbor algorithm that we use is intended only to find K closest matches to Z and not to estimate $g_{2}(Z)$.

3 Bias-Corrected Estimation

This section develops bias-corrected estimation of θ. Taking it into account that the order of magnitude of the second-order bias term varies with divergence patterns of (n, m), we classify our estimation problem as the following two cases:

Case 1: $d_{3}=1$ for $n / m \rightarrow \kappa \in(0, \infty)$ or $n / m \rightarrow \infty$; or $d_{3} \leq 2$ for $n / m \rightarrow 0$.

Case 2: $d_{3} \geq 2$ for $n / m \rightarrow \kappa \in(0, \infty)$ or $n / m \rightarrow \infty$; or $d_{3} \geq 3$ for $n / m \rightarrow 0$.

[^4]Remark 3 implies that the second-order bias must be removed explicitly in Case 2, whereas this is not required in Case 1. As demonstrated shortly, as long as $n / m \rightarrow \kappa$ or $n / m \rightarrow 0$, the bias-corrected estimators attain \sqrt{n}-consistency. However, when $n / m \rightarrow \infty$, the bias-corrected estimators are actually shown to be \sqrt{m}-consistent. To achieve consistency, the bias correction unavoidably slows down the convergence rate when the sample size of \mathcal{S}_{2} is much smaller than that of \mathcal{S}_{1}.

3.1 One-Step Bias Correction for Case 1

Our analysis starts with Case 1. As suggested by the proof of Theorem 1 in the Appendix, inconsistency of MSOLS comes from the fact that $\hat{Q}_{W} \xrightarrow{p} Q_{W}$ whereas $\hat{R}_{W} \xrightarrow{p} P_{W} \theta=\left\{Q_{W}-(1 / K) \Sigma\right\} \theta$. Therefore, the non-vanishing bias in MSOLS can be eliminated if either
(1a) the denominator \hat{Q}_{W} is replaced by a consistent estimator of P_{W} with the numerator \hat{R}_{W} left unchanged; or
(1b) an extra term consistent for $(1 / K) \Sigma \theta$ is added to \hat{R}_{W} with \hat{Q}_{W} held as it is.

Bias correction in each strategy is semiparametric in that a consistent estimate of Σ_{2} (covariance matrix of the nonparametric regression error η_{2}) is required. Moreover, implementing (1b) requires a two-step estimation with an initial consistent estimate of θ plugged in. However, if the plug-in estimator is the one using strategy (1a), then the two step estimation will produce a numerically identical result. To see why, let an initial estimator of θ using strategy (1a) be $\hat{\theta}_{(1 a)}=\hat{P}_{W}^{-1} \hat{R}_{W}$, where $\hat{P}_{W} \xrightarrow{p} P_{W}$. Given $\hat{\theta}_{(1 a)}$, we obtain the second-step estimator as

$$
\begin{equation*}
\hat{\theta}_{(1 b)}:=\hat{Q}_{W}^{-1}\left(\hat{R}_{W}+\frac{1}{K} \hat{\Sigma} \hat{\theta}_{(1 a)}\right)=\hat{Q}_{W}^{-1}\left(I_{d+1}+\frac{1}{K} \hat{\Sigma} \hat{P}_{W}^{-1}\right) \hat{R}_{W} \tag{3}
\end{equation*}
$$

where $\hat{\Sigma}$ is a consistent estimate of Σ. Post-multiplying both sides of $\hat{P}_{W}+(1 / K) \hat{\Sigma}=$ \hat{Q}_{W} by \hat{P}_{W}^{-1} yields $I_{d+1}+(1 / K) \hat{\Sigma} \hat{P}_{W}^{-1}=\hat{Q}_{W} \hat{P}_{W}^{-1}$. Substituting this into the righthand side of (3) immediately establishes that $\hat{\theta}_{(1 b)}=\hat{\theta}_{(1 a)}$. Therefore, there is no point
in pursuing strategy (1b) separately; strategy (1b) is interesting only if an alternative consistent estimator of θ (other than $\hat{\theta}_{(1 a)}$) is chosen.

Now we turn to the bias correction based on strategy (1a). The idea behind the strategy comes from indirect inference (II) estimation by Gouriéroux, Monfort and Renault (1993) and Smith (1993). Take the probability limit of $\hat{\theta}_{O L S}$ as the binding function $b(\theta)$, i.e., $b(\theta)=Q_{W}^{-1} P_{W} \theta .{ }^{5} \quad$ Because P_{W}^{-1} exists as discussed in Remark 1, the II estimator can be built on the inverse mapping of $\hat{\theta}_{O L S}=b(\theta)$, i.e., $\theta=P_{W}^{-1} Q_{W} \hat{\theta}_{O L S}$. The interpretation then follows from replacing P_{W} with its \sqrt{n}-consistent estimator \hat{P}_{W} and regarding \hat{R}_{W} as a 'sample analog' of $Q_{W} \hat{\theta}_{O L S}$. Accordingly, we call this estimation method the matched-sample indirect inference (MSII) estimation. We formally define the MSII estimator as

$$
\hat{\theta}_{I I}:=\hat{P}_{W}^{-1} \hat{R}_{W}
$$

which has been called $\hat{\theta}_{(1 a)}$ before. ${ }^{6}$
Our remaining task is to deliver a consistent estimator of P_{W}. Obviously, \hat{Q}_{W} is a natural estimator of Q_{W}. Furthermore, it turns out that when estimating $\Sigma=\operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)}, \Sigma_{2}, 0_{d_{3} \times d_{3}}\right\}$, we can do without a nonparametric estimation of $g_{2}(\cdot)$. To do so, we first reorder \mathcal{S}_{2} with respect to Z by the following recursion:

1. Define $Z_{(1)}$ as the observation that has the smallest first element, i.e., $(1)=$ $\arg \min _{1 \leq j \leq m} Z_{j 1}$.
2. For $j=2, \ldots, m$, choose $(j)=\arg \min _{j \neq(1), \ldots,(j-1)}\left\|Z_{j}-Z_{(j-1)}\right\| .^{7}$
[^5]Given the reordered sample $\mathcal{S}_{2}=\left\{X_{2(j)}, Z_{(j)}\right\}_{j=1}^{m}, \Sigma_{2}$ can be consistently estimated by

$$
\begin{equation*}
\hat{\Sigma}_{2}=\frac{1}{2(m-1)} \sum_{j=2}^{m} \Delta X_{2(j)} \Delta X_{2(j)}^{\prime} \tag{4}
\end{equation*}
$$

where $\Delta X_{2(j)}:=X_{2(j)}-X_{2(j-1)}$. This is known as the difference-based variance estimator; see von Neumann (1941) and Rice (1984) for univariate and Yatchew (1997) and Horowitz and Spokoiny (2001) for multivariate cases. It follows from Lemma of Yatchew (1997) that as long as Assumptions 1 and 2 hold and $d_{3} \leq 3$, we have $\hat{\Sigma}_{2}=\Sigma_{2}+O_{p}\left(m^{-1 / 2}\right)$. In the end, the estimator of P_{W} is given by

$$
\hat{P}_{W}:=\hat{Q}_{W}-\frac{1}{K} \hat{\Sigma}=\hat{Q}_{W}-\frac{1}{K} \operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)}, \hat{\Sigma}_{2}, 0_{d_{3} \times d_{3}}\right\} .
$$

It immediately follows that when $d_{3} \leq 3, \hat{\theta}_{I I} \xrightarrow{p} \theta$ as $n, m \rightarrow \infty$ under Assumptions $1-3$, regardless of the divergence patterns of (n, m).

Before proceeding, we make an additional assumption. Like Assumption c of Inoue and Solon (2010), Assumption 4 makes derivations of asymptotic variances in the limiting distributions easier. The subsequent theorem establishes the limiting distributions of $\hat{\theta}_{I I}$ under a variety of divergence patterns of (n, m).

Assumption 4. In the nonparametric regression $X_{2}=g_{2}(Z)+\eta_{2}, g_{2}(Z)$ and η_{2} are independent, and third-order moments of η_{2} are zeros.

Theorem 2. Suppose that Assumptions 1-4 hold. Then, as $n, m \rightarrow \infty$,

$$
\begin{aligned}
& \begin{cases}\sqrt{n}\left(\hat{\theta}_{I I}-\theta\right) \xrightarrow{d} N\left(0, V_{I}\right):=N\left(0, P_{W}^{-1} \Omega P_{W}^{-1}\right) & \text { if } n / m \rightarrow \kappa \in(0, \infty) \\
& \text { and } d_{3}=1 \\
\sqrt{n}\left(\hat{\theta}_{I I}-\theta\right) \xrightarrow{d} N\left(0, V_{I I}\right):=N\left(0, P_{W}^{-1} \Omega_{11 A} P_{W}^{-1}\right) & \text { if } n / m \rightarrow 0 \text { and } d_{3} \leq 2 \\
\sqrt{m}\left(\hat{\theta}_{I I}-\theta\right) \xrightarrow{d} N\left(0, V_{I I I}\right):=N\left(0, P_{W}^{-1} \Omega_{22} P_{W}^{-1} / K^{2}\right) & \text { if } n / m \rightarrow \infty \text { and } d_{3}=1\end{cases} \\
& \ldots \leq Z_{(m)} .
\end{aligned}
$$

where

$$
\begin{aligned}
\Omega & :=\Omega_{11}+\frac{\sqrt{\kappa}}{K}\left(\Omega_{12}+\Omega_{12}^{\prime}\right)+\frac{\kappa}{K^{2}} \Omega_{22}:=\left(\Omega_{11 A}+\Omega_{11 B}\right)+\frac{\sqrt{\kappa}}{K}\left(\Omega_{12}+\Omega_{12}^{\prime}\right)+\frac{\kappa}{K^{2}} \Omega_{22}, \\
\Omega_{11 A} & :=E\left\{\left(W_{i, j(i)} \epsilon_{i, j(i)}+\frac{1}{K} \Sigma \theta\right)\left(W_{i, j(i)} \epsilon_{i, j(i)}+\frac{1}{K} \Sigma \theta\right)^{\prime}\right\}, \\
\Omega_{11 B} & :=\kappa\left[\left(\beta_{2}^{\prime} \Sigma_{2} \beta_{2}\right) E(W) E(W)^{\prime}+\frac{1}{K^{2}} \operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)},\left(\beta_{2}^{\prime} \Sigma_{2} \beta_{2}\right) V_{g_{2}}+\Xi, 0_{d_{3} \times d_{3}}\right\}\right], \\
\Omega_{12} & :=-\frac{\sqrt{\kappa}}{K} \operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)}, \Xi, 0_{d_{3} \times d_{3}}\right\}, \\
\Omega_{22} & :=\operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)}, \Xi+\frac{1}{2} \Psi, 0_{d_{3} \times d_{3}}\right\}, \\
V_{g_{2}} & :=\operatorname{Var}\left\{g_{2}(Z)\right\}, \Xi:=E\left\{\left(\eta_{2} \eta_{2}^{\prime}-\Sigma_{2}\right) \beta_{2} \beta_{2}^{\prime}\left(\eta_{2} \eta_{2}^{\prime}-\Sigma_{2}\right)\right\}, \text { and } \\
\Psi & :=\left(\beta_{2}^{\prime} \Sigma_{2} \beta_{2}\right) \Sigma_{2}+\Sigma_{2} \beta_{2} \beta_{2}^{\prime} \Sigma_{2} .
\end{aligned}
$$

Observe that Ω collapses to

$$
\begin{aligned}
\Omega & =E\left\{\left(W_{i, j(i)} \epsilon_{i, j(i)}+\frac{1}{K} \Sigma \theta\right)\left(W_{i, j(i)} \epsilon_{i, j(i)}+\frac{1}{K} \Sigma \theta\right)^{\prime}\right\} \\
& +\kappa\left[\left(\beta_{2}^{\prime} \Sigma_{2} \beta_{2}\right) E(W) E(W)^{\prime}+\frac{1}{K^{2}} \operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)},\left(\beta_{2}^{\prime} \Sigma_{2} \beta_{2}\right) V_{g_{2}}+\frac{1}{2} \Psi, 0_{d_{3} \times d_{3}}\right\}\right] .
\end{aligned}
$$

Theorem 2 also suggests that the convergence rate of $\hat{\theta}_{I I}$ is determined by the sample size of the smaller sample. In particular, when $n / m \rightarrow \infty$ or \mathcal{S}_{1} is much larger than \mathcal{S}_{2}, the convergence rate of $\hat{\theta}_{I I}$ slows down to $\sqrt{m}=o(\sqrt{n})$. The \sqrt{m}-consistency is thought of as the price paid by estimating θ by incorporating a considerably small sample \mathcal{S}_{2} via the NNM. As a result of the bias correction, the order of magnitude in the estimation error of Σ_{2} dominates.

3.2 Two-Step Bias Correction for Case 2

While MSII yields a consistent estimate of θ, its apparent deficiency is that it can attain the parametric rate of convergence only for the cases with at most two matching variables. The curse of dimensionality in the NNM can be commonly observed in other applications. With regards to the ATE estimation, Abadie and Imbens (2006, Corollary 1), for instance, show that the matching discrepancy bias can be safely ignored only when matching is made on a single variable.

To overcome the curse of dimensionality, we should find a way of eliminating the second-order bias, or equivalently, the effect of $\lambda_{i, j(i)}$ asymptotically from (2). There are two possible strategies, namely,
(2a) taking the first-order difference of (2); and
(2b) subtracting a consistent estimate of $\lambda_{i, j(i)}$ from the dependent variable Y_{i}.
Yatchew (1997) advocates (2a) in semiparametric regression estimation, whereas Robinson (1988) and Abadie and Imbens (2011) adopt a similar strategy to (2b) in semiparametric regression and ATE estimations, respectively. In our settings, we have found that the strategy (2a) has a few disadvantages. First, differencing (2) leaves β_{0} and γ unidentified. Second, our preliminary Monte Carlo study suggests that MSII estimates from the differenced regression are numerically quite unstable. For these reasons we focus on strategy (2b).

Estimating $\lambda_{i, j(i)}$ requires consistent estimates of θ and $g_{2}(\cdot)$. For the former, it suffices to employ the MSII estimate $\hat{\theta}_{I I}$. For the latter, as in Abadie and Imbens (2011), we adopt a nonparametric power-series estimation. Let $v=\left(v_{1}, \ldots, v_{d_{3}}\right)$ be a multi-index of dimension d_{3}, which is a d_{3}-dimensional vector of nonnegative integers with $|v|=\sum_{l=1}^{d_{3}} v_{l}$. Also denote $z^{v}=\prod_{l=1}^{d_{3}} z_{l}^{v_{l}}$, where z_{l} is the l th element of z. Consider a series $\{v(\mathcal{K})\}_{\mathcal{K}=1}^{\infty}$ containing distinct vectors such that $|v(\mathcal{K})|$ is non-decreasing. Let $p_{\mathcal{K}}(z)=z^{v(\mathcal{K})}$ and $p^{\mathcal{K}}(z)=\left(p_{1}(z), \ldots, p_{\mathcal{K}}(z)\right)^{\prime}$. Then, a nonparametric series estimator of the regression function $g_{2 r}(z), r=1, \ldots, d_{2}$, is given by

$$
\hat{g}_{2 r}(z):=p^{\mathcal{K}(m)}(z)^{\prime}\left\{\sum_{j=1}^{m} p^{\mathcal{K}(m)}\left(Z_{j}\right) p^{\mathcal{K}(m)}\left(Z_{j}\right)^{\prime}\right\}^{-} \sum_{j=1}^{m} p^{\mathcal{K}(m)}\left(Z_{j}\right) X_{2 r, j}
$$

where $X_{2 r, j}$ is the r th element of $X_{2 j}$ in $\mathcal{S}_{2},(\cdot)^{-}$denotes the generalized inverse, and $\mathcal{K}=\mathcal{K}(m)$ signifies the dependence of \mathcal{K} on the sample size of \mathcal{S}_{2}.

The entire estimation procedure based on the strategy (2b) can be summarized in the following two steps:

1. Run MSII using the original matched sample \mathcal{S} to obtain the initial estimate $\hat{\theta}_{I I}^{(1)}=\left(\hat{\beta}_{I I, 0}^{(1)}, \hat{\beta}_{I I, 1}^{(1) \prime}, \hat{\beta}_{I I, 2}^{(1) \prime}, \hat{\gamma}_{I I}^{(1) \prime}\right)^{\prime}$.
2. Construct adjusted dependent variables $\left\{Y_{i}^{+}\right\}_{i=1}^{n}:=\left\{Y_{i}-\hat{\lambda}_{i, j(i)}\right\}_{i=1}^{n}$, where

$$
\hat{\lambda}_{i, j(i)}=\left\{\hat{g}_{2}\left(Z_{i}\right)-\frac{1}{K} \sum_{j \in \mathcal{J}_{K}(i)} \hat{g}_{2}\left(Z_{j}\right)\right\}^{\prime} \hat{\beta}_{I I, 2}^{(1)}
$$

and $\hat{g}_{2}(z)=\left(\hat{g}_{21}(z), \ldots, \hat{g}_{2 d_{2}}(z)\right)^{\prime}$, and rerun MSII using the modified matched sample $\mathcal{S}^{+}:=\left\{\left(Y_{i}^{+}, X_{1 i}, X_{2 j_{1}(i)}, \ldots, X_{2 j_{K}(i)}, Z_{i}, Z_{j_{1}(i)}, \ldots, Z_{j_{K}(i)}\right)\right\}_{i=1}^{n}$ to obtain the final estimator

$$
\hat{\theta}_{I I-F M}:=\hat{P}_{W}^{-1} \hat{R}_{W}^{+}:=\hat{P}_{W}^{-1} \frac{1}{n} \sum_{i=1}^{n} W_{i, j(i)} Y_{i}^{+} .
$$

The idea behind the above procedure is as follows. The initial MSII estimate $\hat{\theta}_{I I}^{(1)}$ is consistent but inefficient, because the slow convergence rate $m^{1 / d_{3}}$ of the secondorder bias dominates. Then, in the second step, we (asymptotically) eliminate the source of the inferior rate by subtracting $\hat{\lambda}_{i, j(i)}$ from the dependent variable and reestimate θ by MSII using the bias-adjusted data to obtain a \sqrt{n}-consistent estimate. The entire procedure is reminiscent of the fully-modified least squares estimation for cointegrating regressions by Phillips and Hansen (1990). In this sense, we call the estimator the fully-modified MSII (MSII-FM) estimator hereinafter.

In order to deliver convergence results for $\hat{\theta}_{I I-F M}$, we must additionally impose the following regularity conditions. These are analogous to conditions (i)-(iii) in Theorem 2 of Abadie and Imbens (2011).

Assumption 5. \mathbb{Z} is a Cartesian product of compact intervals.

Assumption 6. $\mathcal{K}(m) \asymp m^{\nu}$ for some constant $\nu \in\left(0, \min \left\{2 /\left(4 d_{3}+3\right), 2 /\left(4 d_{3}^{2}-d_{3}\right)\right\}\right)$.

Assumption 7. There is a constant C such that for each multi-index v, the v th partial derivative of $g_{2}(z)$ exists and its norm is bounded by $C^{|v|}$.

It follows from Lemma A2 and the asymptotic properties of $\hat{\Sigma}_{2}$ that when $d_{3} \leq 3$, $\hat{\theta}_{I I-F M} \xrightarrow{p} \theta$ as $n, m \rightarrow \infty$ under Assumptions 1-7, regardless of the divergence patterns of (n, m). The theorem below refers to the limiting distributions of $\hat{\theta}_{I I-F M}$ under a variety of divergence patterns of (n, m). It is worth emphasizing that the asymptotic variance of $\sqrt{n}\left(\hat{\theta}_{I I-F M}-\theta\right)$ or $\sqrt{m}\left(\hat{\theta}_{I I-F M}-\theta\right)$ takes the same form as the one for $\sqrt{n}\left(\hat{\theta}_{I I}-\theta-B_{O L S 2}\right)$ or $\sqrt{m}\left(\hat{\theta}_{I I}-\theta-B_{O L S 2}\right)$, i.e., the FM procedure removes the bias without inflating the variance.

Theorem 3. Suppose that Assumptions 1-7 hold. Then, as $n, m \rightarrow \infty$,

$$
\left\{\begin{array}{ll}
\sqrt{n}\left(\hat{\theta}_{I I-F M}-\theta\right) \xrightarrow{d} N\left(0, V_{I}\right) & \text { if } n / m \rightarrow \kappa \in(0, \infty) \text { and } d_{3}=2,3 \\
\sqrt{n}\left(\hat{\theta}_{I I-F M}-\theta\right) \xrightarrow{d} N\left(0, V_{I I}\right) & \text { if } n / m \rightarrow 0 \text { and } d_{3}=3 \\
\sqrt{m}\left(\hat{\theta}_{I I-F M}-\theta\right) \xrightarrow{d} N\left(0, V_{I I I}\right) & \text { if } n / m \rightarrow \infty \text { and } d_{3}=2,3
\end{array},\right.
$$

where $V_{I}, V_{I I}$ and $V_{I I I}$ are defined in Theorem 2.
An important practical question when implementing MSII-FM is how to choose the number of terms in the series approximation, $\mathcal{K}(m)$. We will return to this question in Section 4.

3.3 Covariance Estimation

We conclude this section by discussing covariance estimation, which is essential for inference. Theorems 2 and 3 indicate that the MSII and MSII-FM estimators are first-order asymptotically equivalent. Because \hat{P}_{W} is consistent for P_{W}, the problem of estimating $V_{I}, V_{I I}$ and $V_{I I I}$ consistently is boiled down to proposing consistent estimators of $\Omega, \Omega_{11 A}$ and Ω_{22}. The next proposition presents the consistent estimators. Notice that the proposition is built on the assumption that $\hat{\theta}_{I I}$ is employed as a consistent estimator for θ; it is easy to see that the result equally holds after it is replaced by $\hat{\theta}_{I I-F M}$.

Proposition 1. Let the estimators of $\Omega_{11 A}, \Omega_{22}$ and Ω be

$$
\begin{aligned}
\hat{\Omega}_{11 A} & =\frac{1}{n} \sum_{i=1}^{n}\left(W_{i, j(i)} \hat{\epsilon}_{i, j(i)}+\frac{1}{K} \hat{\Sigma} \hat{\theta}_{I I}\right)\left(W_{i, j(i)} \hat{\epsilon}_{i, j(i)}+\frac{1}{K} \hat{\Sigma} \hat{\boldsymbol{\theta}}_{I I}\right)^{\prime} \\
\hat{\Omega}_{22} & =\operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)}, \hat{\Gamma}(-1)+\hat{\Gamma}(0)+\hat{\Gamma}(1), 0_{d_{3} \times d_{3}}\right\}, \text { and } \\
\hat{\Omega} & =\hat{\Omega}_{11 A}+\frac{n}{m}\left[\left(\hat{\beta}_{2, I I}^{\prime} \hat{\Sigma}_{2} \hat{\beta}_{2, I I}\right) \bar{W} \bar{W}^{\prime}\right. \\
& \left.+\frac{1}{K^{2}} \operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)},\left(\hat{\beta}_{2, I I}^{\prime} \hat{\Sigma}_{2} \hat{\beta}_{2, I I}\right) \hat{V}_{g_{2}}+\hat{\Gamma}(0)-\{\hat{\Gamma}(-1)+\hat{\Gamma}(1)\}, 0_{d_{3} \times d_{3}}\right\}\right]
\end{aligned}
$$

where $\hat{\epsilon}_{i, j(i)}=Y_{i}-W_{i, j(i)}^{\prime} \hat{\theta}_{I I}$ is the MSII residual, $\hat{\beta}_{2, I I}$ is the MSII estimator of β_{2}, $\hat{\Gamma}(\ell)$ is the eth sample autocovariance of $\left\{\left(\Delta X_{2 j} \Delta X_{2 j}^{\prime} / 2\right)-\hat{\Sigma}_{2}\right\} \hat{\beta}_{2, I I}$, i.e.,

$$
\begin{aligned}
\hat{\Gamma}(\ell) & =\frac{1}{m-1} \sum_{j=\max \{2,2+\ell\}}^{\min \{m, m+\ell\}}\left(\frac{\Delta X_{2 j} \Delta X_{2 j}^{\prime}}{2}-\hat{\Sigma}_{2}\right) \hat{\beta}_{2, I I} \hat{\beta}_{2, I I}^{\prime}\left(\frac{\Delta X_{2 j-\ell} \Delta X_{2 j-\ell}^{\prime}}{2}-\hat{\Sigma}_{2}\right), \\
\bar{W} & =\left[\begin{array}{c}
1 \\
\bar{X}_{1} \\
\bar{X}_{2} \\
\bar{Z}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\frac{1}{n} \sum_{i=1}^{n} X_{1 i} \\
\frac{1}{m} \sum_{j=1}^{m} X_{2 j} \\
\frac{1}{N} \sum_{i=1}^{N} Z_{i}
\end{array}\right], \text { and } \\
\hat{V}_{g_{2}} & =\frac{1}{m-1} \sum_{j=1}^{m}\left(X_{2 j}-\bar{X}_{2}\right)\left(X_{2 j}-\bar{X}_{2}\right)^{\prime}-\hat{\Sigma}_{2} .
\end{aligned}
$$

Then, under Assumptions $1-4$ and $d_{3} \leq 3, \hat{\Omega}_{11 A} \xrightarrow{p} \Omega_{11 A}, \hat{\Omega}_{22} \xrightarrow{p} \Omega_{22}$ and $\hat{\Omega} \xrightarrow{p} \Omega$ as $n, m \rightarrow \infty$.

4 Finite-Sample Performance

4.1 Monte Carlo Setup

In this section we conduct Monte Carlo simulations to examine finite-sample properties of proposed bias-corrected estimators. The simulation study takes a unified approach in the sense that the same regression model is employed regardless of the number of matching variables d_{3}. The model considered throughout is

$$
\begin{equation*}
Y=\beta_{0}+X_{1}^{\prime} \beta_{1}+X_{2}^{\prime} \beta_{2}+Z^{\prime} \gamma+u \tag{5}
\end{equation*}
$$

where $X_{1}=\left(X_{11}, X_{12}\right)^{\prime}, \beta_{1}=\left(\beta_{11}, \beta_{12}\right)^{\prime} \in \mathbb{R}^{2}, X_{2}=\left(X_{21}, X_{22}\right)^{\prime}, \beta_{2}=\left(\beta_{21}, \beta_{22}\right)^{\prime} \in$ \mathbb{R}^{2}, and $Z=\left(Z_{1}, \ldots, Z_{d_{3}}\right)^{\prime}, \gamma=\left(\gamma_{1}, \ldots, \gamma_{d_{3}}\right)^{\prime} \in \mathbb{R}^{d_{3}}$ for $d_{3}=1,2,3$. It is assumed
that two samples, namely, $\mathcal{S}_{1}=\left\{\left(Y_{i}, X_{1 i}, Z_{i}\right)\right\}_{i=1}^{n}$ and $\mathcal{S}_{2}=\left\{\left(X_{2 j}, Z_{j}\right)\right\}_{j=1}^{m}$, are only observable. The complete sample $\mathcal{S}^{*}=\left\{\left(Y_{i}, X_{1 i}, X_{2 i}, Z_{i}\right)\right\}_{i=1}^{n}$ is the sample that would not be observed in practice.

The data are generated in the following manner. First, $Z^{*}=\left(Z_{1}^{*}, Z_{2}^{*}, Z_{3}^{*}\right)^{\prime}$ is generated by

$$
Z \stackrel{i i d}{\sim} N\left(\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{ccc}
1 & 1 / \sqrt{2} & 1 / \sqrt{3} \\
1 / \sqrt{2} & 1 & \sqrt{2} / \sqrt{3} \\
1 / \sqrt{3} & \sqrt{2} / \sqrt{3} & 1
\end{array}\right]\right)
$$

Each $Z_{p}^{*}(p=1,2,3)$ is transformed to $Z_{p}=4 \Phi\left(Z_{p}^{*}\right)-2$, where $\Phi(\cdot)$ is the cdf of $N(0,1)$. Observe that the Z_{p} are mutually correlated $U[-2,2]$ random variables. Then, for a given d_{3}, the $Z_{p}\left(p \leq d_{3}\right)$ are used as matching variables.

Second, $X_{1}=\left(X_{11}, X_{12}\right)^{\prime}$ is generated by $X_{1 q}=\sum_{p=1}^{d_{3}} Z_{p}+\eta_{1 q}(q=1,2)$, where $\eta_{1}=\left(\eta_{11}, \eta_{12}\right)^{\prime} \stackrel{\text { iid }}{\sim} N\left(0_{2 \times 1}, I_{2}\right)$. Third, $X_{2}=\left(X_{21}, X_{22}\right)^{\prime}$ is generated by $X_{2 r}=$ $\sum_{p=1}^{d_{3}} g_{2 r}\left(Z_{p}\right)+\eta_{2 r}(r=1,2)$ for some nonlinear function $g_{2 r}(\cdot)$, where $\eta_{2}=\left(\eta_{21}, \eta_{22}\right)^{\prime} \stackrel{i i d}{\sim}$ $N\left(0_{2 \times 1}, I_{2}\right)$. While $g_{21}(z)=z+(5 / \tau) \phi(z / \tau), \tau=0.25$ is employed throughout, one of the following three functional forms is chosen as $g_{22}(z)$:

$$
g_{22}(z)=\left\{\begin{array}{ll}
z+(5 / \tau) \phi(z / \tau), \tau=0.75 & {[\text { Model A] }} \\
2|z| & \text { [Model B] } \\
4 \sqrt{|z / 2|(1-|z / 2|)} \sin \{2 \pi(1+\epsilon) /(|z / 2|+\epsilon)\}, \epsilon=0.05 & \text { [Model C] }
\end{array} .\right.
$$

Both $g_{21}(\cdot)$ and Model A, which are inspired by the Monte Carlo design of Horowitz and Spokoiny (2001), can be viewed as a linear function with a bump. Model A is a smooth function, whereas Models B and C have a kink at the origin. Strictly speaking, these models violate the smoothness condition given in Assumption 7. Nonetheless we investigate them to see how the violation affects finite-sample properties of MSII-FM. In addition, Model C is (a mirror image of) the Doppler function, which is a rapidly oscillating, spatially inhomogeneous function, as illustrated in Figure 1 of Donoho and Johnstone (1994). Therefore, the model may be thought of as the most difficult case among the three. This is the model for which we report the results here. A more comprehensive report of the simulation results is prepared as a supplement
to this paper and is available on the authors' web pages. The results for Models A and B that are reported there are even more favorable.

Finally, Y is generated by setting all coefficients in (5) equal to 1 with $u \stackrel{i i d}{\sim}$ $N(0,1)$.

The above procedure provides us with two observable samples $\mathcal{S}_{1}=\left\{\left(Y_{i}, X_{1 i}, Z_{i}\right)\right\}_{i=1}^{n}$ and $\mathcal{S}_{2}=\left\{\left(X_{2 j}, Z_{j}\right)\right\}_{j=1}^{m}$, and one complete sample \mathcal{S}^{*}. Finally, the matched sample $\mathcal{S}=\left\{\left(Y_{i}, X_{1 i}, X_{2 j_{1}(i)}, \ldots, X_{2 j_{K}(i)}, Z_{i}, Z_{j_{1}(i)}, \ldots, Z_{j_{K}(i)}\right)\right\}_{i=1}^{n}$ is constructed via the NNM with respect to Z, where the NNM is based on the Mahalanobis metric. We focus only on small numbers of matches and examine $K \in\{1,2,4,8\} .{ }^{8}$

With regards to sample sizes, for each of $n \in\{1000,2000\}, m$ is chosen as one of $m \in\{n / 2, n, 2 n\}$ so that the values of κ are $\kappa=2,1$ and $1 / 2$, respectively. For each combination of sample sizes (n, m) and the functional form of $g_{22}(z)$, we generate 1000 Monte Carlo samples. The following five estimators are examined: (i) the infeasible OLS estimator using the complete sample $\mathcal{S}^{*}\left[\mathrm{OLS}^{*}\right]$; (ii) the MSOLS estimator using the matched sample \mathcal{S} and $W_{i, j(i)}[$ MSOLS-A]; (iii) the MSOLS estimator using the matched sample \mathcal{S} and $W_{i, j(i)}^{\dagger}$ [MSOLS-B]; (iv) the MSII(-FM) estimator using the matched sample \mathcal{S} and $W_{i, j(i)}[\operatorname{MSII}(-\mathrm{FM})-\mathrm{A}]$; and (v) the MSII(-FM) estimator using the matched sample \mathcal{S} and $W_{i, j(i)}^{\dagger}[\operatorname{MSII}(-F M)-B]$. Second-, third- and fourthorder polynomials are investigated in the power-series approximation for MSII-FM, and these specifications are denoted as "2nd", " $3 r d$ " and " 4 th" in the row "Poly.", respectively. Results on the initial MSII are also available as "initial" for reference. Moreover, the consistent estimator of the second-order bias term for MSII-FM-B is $\hat{\lambda}_{i, j(i)}^{\dagger}=\hat{\lambda}_{i, j(i)}+\left\{Z_{i}-(1 / K) \sum_{j \in \mathcal{J}_{K}(i)} Z_{j}\right\}^{\prime} \hat{\gamma}_{I I}^{(1) \prime}$.

We focus on finite-sample properties of estimators of β_{22} and γ_{1}. For each estimator, the following performance measures are computed: (i) Mean (simulation average of the parameter estimate); (ii) $S D$ (simulation average of the parameter estimate);

[^6](iii) $R M S E$ (root mean-squared error of the parameter estimate); (iv) $\overline{S E}$ (simulation average of the standard error); and (v) $C R$ (coverage rate for the nominal 95% confidence interval). Since MSOLS is inconsistent and limiting distributions of the initial MSII for $d_{3}=2,3$ are not available, their standard errors are not well defined. Accordingly, $\overline{S E}$ and $C R$ are not computed for these estimators.
$$
\text { "TABLE } 1 \text { ABOUT HERE }
$$

4.2 Results

Simulation results are summarized in Table 1. To save space, we present only the results from most difficult case (Model C) for $(n, m)=(1000,1000)$ and $(2000,2000)$.
(a) For $d_{3}=1$: Panel (a) reports the results for a single matching variable. Because of conditional homoskedasticity of the error term u, OLS* is the best linear unbiased estimator. The results indicate that it is unbiased and yields small standard deviations. However, OLS* is an infeasible, oracle estimator. Instead, we should make a realistic comparison between MSOLS and MSII and use OLS* as the benchmark to measure the efficiency loss when all variables cannot be taken from a single data source.

For MSOLS, whether $W_{i, j(i)}$ or $W_{i, j(i)}^{\dagger}$ is used as the regressor has almost no difference; this reflects the fact that the extra second-order bias induced by replacing Z_{i} with $Z_{j(i)}$ is $O_{p}\left(n^{-1}\right)=o_{p}\left(n^{-1 / 2}\right)$. As predicted in Theorem 1, the bias of the MSOLS estimate decreases with the number of matches K. However, it is inconsistent in that its bias does not vanish with the sample size n. Also observe that the standard deviation of each MSOLS estimate shrinks with n, as Theorem 1 suggests.

Now we turn to MSII. At a glance, we can find that the proposed bias-correction method works remarkably well, and that the choice of the regressor again does not change the results. However, unlike MSOLS, increasing K has little effect at best,
which suggests that MSII works well across small values of K. The results also confirm consistency of MSII; as n increases, the simulation average of each MSII estimate gets closer to the truth and its standard deviation shrinks. In addition, $\overline{S E}$ is reasonably close to $S D$, which indicates that the (properly-scaled) covariance estimator $\hat{\Omega}$ yields good estimates of standard deviations of MSII. Coverage rates are also close to the nominal level of confidence, and the single match case appears to have advantage from the viewpoint of coverage accuracy.

Comparing MSII with OLS*, we have the following two findings. First, unlike OLS*, MSII is not unbiased. However, it is nearly unbiased for large sample sizes. Second, standard deviations of the latter are always greater than those of the former. The relative efficiency loss can be thought of as the price to pay for identifying and estimating the regression using two samples jointly. It is worth noting that while standard deviations of MSOLS are greater than those of OLS*, they are smaller than those of MSII. This can be explained by the fact that the asymptotic variance of $\sqrt{n}\left(\hat{\theta}_{O L S}-Q_{W}^{-1} P_{W} \theta-B_{O L S 2}\right)$ is $Q_{W}^{-1} \Omega_{11} Q_{W}^{-1}$, which tends to be smaller (in the matrix sense) than $P_{W}^{-1} \Omega P_{W}^{-1}$.
(b) For $d_{3}=2$: Next, we look into Panel (b), which presents the results from two matching variables. Only results of MSII-FM for $K=1$ are provided, because those for $K \geq 2$ are quite poor. As in the case for $d_{3}=1$, employing $W_{i, j(i)}$ or $W_{i, j(i)}^{\dagger}$ has little effect on MSOLS or MSII-FM; although the extra second-order bias generated by switching Z_{i} to $Z_{j(i)}$ is $O_{p}\left(n^{-1 / 2}\right)$, its effect appears to be minor at best.

Even after the number of matching variables increases, the general tendency remains unchanged. Performance of MSOLS varies with K. MSII-FM successfully corrects the bias generated by MSOLS, at the expense of precision in estimation. Standard deviations of MSII-FM are close to that of the initial MSII, which reflects that the FM procedure corrects the second-order bias of MSII without inflating the
variance. However, FM works only for $K=1$. The rationale could be that FM requires both the initial MSII and second-order bias estimates to be of good quality. This requirement is unlikely to be satisfied with many matches, which include poor ones and thus inevitably affect the performance of MSII-FM. In terms of the power-series approximation, results from the second- and third-order polynomials look similar, and those from the fourth-order polynomial differ slightly. Coverage accuracy in estimates of β_{22} may be a concern. However, it seems that the under-coverage is due to finite-sample bias of MSII-FM.
(c) For $d_{3}=3$: In Panel (c), only results of MSII-FM for $K=1$ are provided again in view of quality. An apparent difference is that once the number of matching variables increases to three, results from using $W_{i, j(i)}$ or $W_{i, j(i)}^{\dagger}$ differ substantially for each of MSOLS and MSII-FM. Observe that MSII-FM using $W_{i, j(i)}$ exhibits much better finite-sample properties. In contrast, MSII-FM based on $W_{i, j(i)}^{\dagger}$ generates considerable biases in estimates of γ. The extra second-order bias when $Z_{j(i)}$ is used in place of Z_{i} becomes as slow as $O_{p}\left(n^{-1 / 3}\right)$, and its adverse effect is no longer negligible in finite samples. Coverage rates of MSII-FM are improved from those for $d_{3}=2$. In terms of the series approximation, results from the second-and third-order polynomials are again similar. However, those from the fourth-order polynomial look inferior in the presence of non-smoothness in $g_{22}(\cdot)$, in particular, for Model B.
(d) Summary: Simulation results confirm that the bias-corrected estimation proposed in this paper works remarkably well. Simulation averages of MSII(-FM) for $d_{3}=1\left(d_{3}=2,3\right)$ tend to be closer to the truths as n increases, even in the most difficult case. Judging from the Monte Carlo evidence, we recommend setting $K=1$, employing $W_{i, j(i)}$ as the regressor, and applying the second- or third-order polynomials for the series approximation in MSII-FM. It follows that making MSOLS consistent by use of $K-\mathrm{NN}$ method (i.e., by letting K diverge at a slower rate than n and m) does
not appear to be a solution in the setting of matched sample estimation. Rather, it looks promising to pursue the strategy of constructing a matched sample based on a single match and then correcting the non-negligible bias of the estimate analytically.

5 An Empirical Application: Returns to Schooling

We now apply our proposed estimation methods to a version of Mincer's (1974) wage regression. As argued in Card (1995), the estimation result may suffer from the "ability bias" unless it includes a variable representing ability as a regressor. Therefore, we consider the following wage regression

$$
\begin{align*}
\log (\text { wage }) & =\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+\beta_{4} \text { abil } \\
& +\beta_{5} \text { feduc }+\beta_{6} \text { meduc }+\beta_{7} \text { black }+\beta_{8} \text { smsa }+\beta_{9} \text { south }+u \tag{6}
\end{align*}
$$

where educ is years of education, exper is work experience, abil is an ability measure, $f e d u c$ and meduc are years of father's and mother's education, and black, smsa and south are indicator variables that take one if the individual is black, lives in the urban area and south, respectively.

We estimate regression (6) using three data sets, namely, those used in Card (1995), Blackburn and Neumark (1992), and Heckman, Tobias and Vytlacil (2000). The data sets are available under the names "card", "wage2" and "htv", respectively, as supplemental materials for Wooldridge (2013). Each of the three data sets is drawn from the National Longitudinal Survey (NLS) and contains some ability measure; to be precise, while both card and wage 2 include scores of IQ and Knowledge of the World of Work ($k w w$) tests, htv has the " g " measure constructed from 10 component tests of the Armed Services Vocational Aptitude Battery.

We conduct two exercises that address the following questions:
(Q1) How would the estimation result change if $k w w$ in card were missing and instead taken from wage2?
(Q2) What would happen if $k w w$ in card were replaced by g from htv?

For these exercises, the OLS result using 2191 male observations in card with $k w w$ chosen as abil can be viewed as the benchmark result from the infeasible OLS*. Because each of Q1 and Q2 requires a matched sample, we regard card as \mathcal{S}_{1} and wage2 or htv as \mathcal{S}_{2}. The NNM is made in the following manner. When wage2 is employed as \mathcal{S}_{2}, (educ, feduc, meduc, black, smsa, south) are chosen as matching variables, where the first three variables are treated as continuous. On the other hand, htv contains only white-male observations. Accordingly, when using it as \mathcal{S}_{2}, we choose five matching variables excluding black. Not surprisingly, there are several ties of the matching variables in \mathcal{S}_{2}. Then, we take an average of $k w w$ or g within ties and assign the average as the unique value of the ability measure to each combination of matching variables. As a consequence, 466 and 589 distinct combinations of matching variables remain in male samples of wage 2 and htv, respectively. In both cases, the NNM is based on the Mahalanobis metric, and we set the number of matches $K=1$ (single match) based on the simulation results.

Given the matched sample, we estimate (6) by MSOLS and MSII-FM. Specifically, MSOLS-A and MSII-FM-A (i.e., estimators with $W_{i, j(i)}$ used as the regressor) are chosen, and the third-order polynomial is applied for the power-series approximation of MSII-FM, again based on the simulation results; estimation results from secondand fourth-order polynomials are qualitatively similar.

TABLE 2 ABOUT HERE

Table 2 presents estimation results and standard errors (in parentheses). White's (1980) heteroskedasticity-robust standard errors are computed for OLS*, whereas 'standard errors' for MSOLS are square-roots of diagonal elements of $\hat{Q}_{W}^{-1} \hat{\Omega}_{11} \hat{Q}_{W}^{-1} / n:=$

$$
\begin{aligned}
& \hat{Q}_{W}^{-1}\left(\hat{\Omega}_{11 A}+\hat{\Omega}_{11 B}\right) \hat{Q}_{W}^{-1} / n, \text { where } \\
& \hat{\Omega}_{11 B}=\frac{n}{m}\left[\left(\hat{\beta}_{2, I I}^{\prime} \hat{\Sigma}_{2} \hat{\beta}_{2, I I}\right) \bar{W} \bar{W}^{\prime}\right. \\
& \left.\quad+\frac{1}{K^{2}} \operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)},\left(\hat{\beta}_{2, I I}^{\prime} \hat{\Sigma}_{2} \hat{\beta}_{2, I I}\right) \hat{V}_{g_{2}}+2\{\hat{\Gamma}(-1)+\hat{\Gamma}(1)\}, 0_{d_{3} \times d_{3}}\right\}\right]
\end{aligned}
$$

for (n, m) given in the corresponding column of Table 2 . The latter should be interpreted with caution; because $\hat{\theta}_{O L S}$ is inconsistent (and even its convergence rate is slower than the parametric one), the numbers merely indicate measures of dispersion at the same scale as other estimates and are not intended for inference.

The benchmark OLS* result using card is provided in the first column. Signs of the coefficient estimates on educ, exper, exper 2, and $a b i l(=k w w)$ are as expected, and they are significant at the 5% level. To answer Q1, we run MSOLS and MSII-FM using the matched sample with wage2. The results are reported in columns 2 and 3 . Signs of the coefficient estimates by MSII-FM are the same as those by OLS*. On the other hand, MSOLS overestimates returns to schooling due to failure to correct for matching results. It also yields a negative estimate of the ability effect, whereas the one from MSII-FM is positive (but insignificant due to the large standard error).

Furthermore, to answer Q2, we replace the ability measure with g by constructing the matched sample with htv. Results from MSOLS and MSII-FM using this sample are presented in columns 4 and 5. There is still the tendency that MSII-FM estimates are closer to those of OLS*. MSOLS again tends to inflate returns to schooling. The estimated ability effect turns positive, but its magnitude is much smaller than the one from MSII-FM.

6 Conclusion

Regression estimation using samples constructed via the NNM from two sources is not uncommon in applied economics. This paper has demonstrated that such OLS estimators are generally inconsistent and thus an appropriate bias correction is re-
quired. It has also been shown that the convergence rate to the probability limit of the OLS depends on the number of matching variables and the divergence pattern of two sample sizes.

Two versions of bias-corrected estimators have been proposed, and each can be interpreted as a variant of indirect inference estimators. The MSII estimator attains the parametric convergence rate for the cases with at most two matching variables, whereas the MSII-FM estimator achieves the parametric convergence rate when the number of matching variables does not exceed three. Monte Carlo results suggest that a small number of matches works well in practice, and in particular, we should consider the single match when the number of matching variables is two or three.

Unfortunately, when the number of matching variables is greater than or equal to four, we do not have much to say. The problem is that the law governing the maximum matching discrepancy is not available. The moment bounds, which are available, are not enough to derive the limit law for our estimators when $d_{3} \geq 4$.

Consistent estimation of Σ_{2} is also an issue when there are four or more matching variables. It follows from Lemma of Yatchew (1997) that the difference-based variance estimator admits the asymptotic expansion

$$
\hat{\Sigma}_{2}=\frac{1}{2(m-1)} \sum_{j=2}^{m} \Delta X_{2(j)} \Delta X_{2(j)}^{\prime}=\Sigma_{2}+O_{p}\left(m^{-\min \left\{2(1-\delta) / d_{3}, 1 / 2\right\}}\right)
$$

for some arbitrarily small $\delta>0$, and thus $\hat{\Sigma}_{2}$ has the parametric convergence rate if and only if $d_{3} \leq 3$. Once the number of matching variables exceeds three, the convergence rate becomes $m^{-2(1-\delta) / d_{3}}$. As a consequence, we must compare the nonparametric rate with that of the maximum matching discrepancy and examine whether a CLT applies if the former dominates. We may turn to an alternative variance estimator, e.g., one based on the residuals from a nonparametric regression. But again in this scenario applicability of a suitable CLT should be ensured. We leave this for future research.

Several other extensions would be fruitful. First, we may adopt propensity score matching as a means of dimension reduction using multiple matching variables. This would involve using the observable variables to estimate a selection model for observations that are imputed, and obtaining the (imputation) propensity score. In a closely related paper, Abadie and Imbens (2016) deliver asymptotic properties of the matching estimators of average treatment effects using an estimated propensity score as a plug-in. It may be worth pursuing a similar idea for matched-sample regression estimation.

Second, combining our matched-sample estimation theory with IV/GMM estimation would be also of interest in the presence of endogeneity in regressors. This is particularly relevant to empirical studies using earnings data, which are thought to include measurement errors and imputation biases.

Third, the estimation theory may be extended to kernel estimation of varying coefficient models using matched samples. It is not difficult to see that kernel estimators of the varying coefficients are also inconsistent, and appropriate bias-correction methods similar to those proposed in this paper are worth investigating.

A Appendix: Technical Proofs

A. 1 A Useful Lemma

Before proceeding, we present a lemma about the error bounds from NNM, which is repeatedly applied in the technical proofs below. To do so, we provide the formal definition of the matching discrepancy from Abadie and Imbens (2006).

Let $z \in \mathbb{Z}$ be a fixed value of the matching variable Z, where, in practice, z is one of $\left\{Z_{i}\right\}_{i=1}^{n}$ in \mathcal{S}_{1}. Then, the k th closest matching discrepancy $U_{k}=U_{k}(z), k=1, \ldots, K$ is defined as $U_{k}:=Z_{j_{k}(z)}-z$ if $Z_{j_{k}(z)}$ is the k th closest match to z among all $\left\{Z_{j}\right\}_{j=1}^{m}$ in \mathcal{S}_{2}. The following lemma states uniform moment bounds of the matching discrepancy.

Lemma A1. (Abadie and Imbens, 2006, Lemma 2) Under Assumptions 1-2, all the moments of $m^{1 / d_{3}}\left\|U_{k}\right\|$ are uniformly bounded in m and $z \in \mathbb{Z}$.

A. 2 Proof of Theorem 1

It is easy to see from (2) that $\hat{R}_{W}:=\hat{Q}_{W} \theta+B_{R_{W} 1}+B_{R_{W} 2}+E_{R_{W}}$, where

$$
\begin{aligned}
B_{R_{W} 1} & =E\left(W_{i, j(i)} \epsilon_{i, j(i)}\right) \\
B_{R_{W} 2} & =\frac{1}{n} \sum_{i=1}^{n} W_{i, j(i)} \lambda_{i, j(i)}, \text { and } \\
E_{R_{W}} & =\frac{1}{n} \sum_{i=1}^{n}\left\{W_{i, j(i)} \epsilon_{i, j(i)}-E\left(W_{i, j(i)} \epsilon_{i, j(i)}\right)\right\} .
\end{aligned}
$$

It follows that $\hat{\theta}_{O L S}:=\theta+B_{O L S 1}+B_{O L S 2}+E_{O L S}$, where $B_{O L S 1}=\hat{Q}_{W}^{-1} B_{R_{W} 1}, B_{O L S 2}=$ $\hat{Q}_{W}^{-1} B_{R_{W} 2}$ and $E_{O L S}=\hat{Q}_{W}^{-1} E_{R_{W}}$ correspond to the first-order (or leading) bias, the second-order bias due to the matching discrepancy and the weighted average of errors, respectively.

We begin with evaluating $B_{O L S 1}$. First note that $E\left(X_{1 i} \eta_{2 i}^{\prime}\right)=E\left\{g_{1}(Z) \eta_{2}^{\prime}\right\}+$ $E\left(\eta_{1} \eta_{2}^{\prime}\right)=0_{d_{1} \times d_{2}}, E\left(X_{2 j(i)} \eta_{2 j(i)}^{\prime}\right)=(1 / K) \Sigma_{2}$, and that the i th and $j_{k}(i)$ th observations are independent. Then,

$$
B_{R_{W} 1}=\left[\begin{array}{c}
0_{\left(d_{1}+1\right) \times 1} \\
-(1 / K) \Sigma_{2} \beta_{2} \\
0_{d_{3} \times 1}
\end{array}\right]=-\frac{1}{K} \operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)}, \Sigma_{2}, 0_{d_{3} \times d_{3}}\right\} \theta:=-\frac{1}{K} \Sigma \theta .
$$

Because $\hat{Q}_{W}=Q_{W}+O_{p}\left(n^{-1 / 2}\right)$, we obtain $B_{O L S 1}=-(1 / K) Q_{W}^{-1} \Sigma \theta+O_{p}\left(n^{-1 / 2}\right)$. Next, Lemma A1 implies that $\max _{1 \leq i \leq n}\left\|Z_{j(i)}-Z_{i}\right\|=O_{p}\left(m^{-1 / d_{3}}\right)$. Then, by the Cauchy-Schwarz inequality and Lipschitz continuity of $g_{2},\left\|B_{R_{W} 2}\right\|$ is bounded by $O_{p}\left(m^{-1 / d_{3}}\right)$. Hence, $B_{O L S 2}=O_{p}\left(m^{-1 / d_{3}}\right)$. Finally, $E_{R_{W}}=O_{p}\left(n^{-1 / 2}\right)$ by CLT, and thus $E_{O L S}=O_{p}\left(n^{-1 / 2}\right)$. Therefore, $\hat{\theta}_{O L S}=\theta-(1 / K) Q_{W}^{-1} \Sigma \theta+O_{p}\left(m^{-1 / d_{3}}\right)+$ $O_{p}\left(n^{-1 / 2}\right)=Q_{W}^{-1} P_{W} \theta+O_{p}\left(m^{-1 / d_{3}}+n^{-1 / 2}\right)$ by denoting $P_{W}:=Q_{W}-(1 / K) \Sigma$.

A. 3 Proof of Theorem 2

By the proof of Theorem 1,

$$
\begin{equation*}
\hat{R}_{W}=\left(\hat{Q}_{W}-\frac{1}{K} \Sigma\right) \theta+B_{R_{W} 2}+E_{R_{W}}=\hat{P}_{W} \theta+\frac{1}{K}(\hat{\Sigma}-\Sigma) \theta+B_{R_{W} 2}+E_{R_{W}} . \tag{A1}
\end{equation*}
$$

When $n / m \rightarrow \kappa$ or $n / m \rightarrow 0$, we consider

$$
\sqrt{n}\left(\hat{\theta}_{I I}-\theta\right)=\hat{P}_{W}^{-1}\left\{\frac{1}{K} \sqrt{n}(\hat{\Sigma}-\Sigma) \theta+\sqrt{n} B_{R_{W} 2}+\sqrt{n} E_{R_{W}}\right\} .
$$

If $n / m \rightarrow \kappa$ and $d_{3}=1$ or if $n / m \rightarrow 0$ and $d_{3} \leq 2$, then $\sqrt{n} B_{R_{W} 2}=n^{1 / 2} O_{p}\left(m^{-1 / d_{3}}\right)=$ $o_{p}(1)$ is the case. Because $\hat{P}_{W}^{-1}=P_{W}^{-1}+o_{p}(1)$ and each of $\sqrt{n} E_{R_{W}}$ and $\sqrt{m}\left(\hat{\Sigma}_{2}-\Sigma_{2}\right) \beta_{2}$ is asymptotically normal by a CLT,

$$
\begin{aligned}
& \sqrt{n}\left(\hat{\theta}_{I I}-\theta\right) \\
& = \begin{cases}P_{W}^{-1}\left\{\sqrt{n} E_{R_{W}}+\frac{\sqrt{\kappa}}{K} \sqrt{m}\left(\hat{\Sigma}_{2}-\Sigma_{2}\right) \beta_{2}\right\}+o_{p}(1) \xrightarrow{d} N\left(0, V_{I}\right) & \text { if } n / m \rightarrow \kappa \text { and } d_{3}=1 \\
P_{W}^{-1} \sqrt{n} E_{R_{W}}+o_{p}(1) \xrightarrow{d} N\left(0, V_{I I}\right) & \text { if } n / m \rightarrow 0 \text { and } d_{3} \leq 2\end{cases}
\end{aligned}
$$

for some $(d+1) \times(d+1)$ covariance matrices V_{I} and $V_{I I}$.
On the other hand, when $n / m \rightarrow \infty$, we have

$$
\sqrt{m}\left(\hat{\theta}_{I I}-\theta\right)=P_{W}^{-1}\left\{\frac{1}{K} \sqrt{m}(\hat{\Sigma}-\Sigma) \theta+\sqrt{m} B_{R_{W} 2}+\sqrt{m} E_{R_{W}}\right\}
$$

where $\sqrt{m} B_{R_{W} 2}=O_{p}\left(m^{1 / 2-1 / d_{3}}\right)=o_{p}(1)$ for $d_{3}=1$. Hence, in this case,

$$
\sqrt{m}\left(\hat{\theta}_{I I}-\theta\right)=P_{W}^{-1} \frac{1}{K} \sqrt{m}(\hat{\Sigma}-\Sigma) \theta+o_{p}(1) \xrightarrow{d} N\left(0, V_{I I I}\right)
$$

for some $(d+1) \times(d+1)$ covariance matrix $V_{I I I}$.
Our remaining task is to provide analytical expressions of $V_{I}, V_{I I}$ and $V_{I I I}$. Let Ω_{11} and Ω_{22} be the long-run variance matrices of $\sqrt{n} E_{R_{W}}$ and $\sqrt{m}(\hat{\Sigma}-\Sigma) \theta$, respectively. Also let Ω_{12} be the long-run covariance matrix between $\sqrt{n} E_{R_{W}}$ and $\sqrt{m}(\hat{\Sigma}-\Sigma) \theta$. Then, $V_{I}=P_{W}^{-1} \Omega P_{W}^{-1}, V_{I I}=P_{W}^{-1} \Omega_{11} P_{W}^{-1}$ and $V_{I I I}=\left(1 / K^{2}\right) P_{W}^{-1} \Omega_{22} P_{W}^{-1}$, where

$$
\Omega:=\Omega_{11}+\frac{\sqrt{\kappa}}{K}\left(\Omega_{12}+\Omega_{12}^{\prime}\right)+\frac{\kappa}{K^{2}} \Omega_{22} .
$$

In what follows, we derive Ω_{11}, Ω_{12}, and Ω_{22}.
(i) Ω_{22} : Assume without loss of generality that \mathcal{S}_{2} is an ordered sample, i.e., $\mathcal{S}_{2}=$ $\left\{X_{2 j}, Z_{j}\right\}_{j=1}^{m}=\left\{X_{2(j)}, Z_{(j)}\right\}_{j=1}^{m}$. It follows from Lemma of Yatchew (1997) that $\hat{\Sigma}_{2}=(m-1)^{-1} \sum_{j=2}^{m}\left(\Delta \eta_{2 j} \Delta \eta_{2 j}^{\prime} / 2\right)+o_{p}\left(m^{-1 / 2}\right)$ as long as $d_{3} \leq 3$, we have

$$
\sqrt{m}\left(\hat{\Sigma}_{2}-\Sigma_{2}\right) \beta_{2}=\sum_{j=2}^{m} \frac{1}{\sqrt{m}}\left(\frac{\Delta \eta_{2 j} \Delta \eta_{2 j}^{\prime}}{2}-\Sigma_{2}\right) \beta_{2}+o_{p}\left(m^{-1 / 2}\right)
$$

Because $\left\{\left(\Delta \eta_{2 j} \Delta \eta_{2 j}^{\prime} / 2\right)-\Sigma_{2}\right\} \beta_{2}$ is one-dependent, it is easy to see that $\Omega_{22}=$ $\operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)}, \Gamma(-1)+\Gamma(0)+\Gamma(1), 0_{d_{3} \times d_{3}}\right\}$, where

$$
\Gamma(\ell)=E\left\{\left(\frac{\Delta \eta_{2 j} \Delta \eta_{2 j}^{\prime}}{2}-\Sigma_{2}\right) \beta_{2} \beta_{2}^{\prime}\left(\frac{\Delta \eta_{2 j-\ell} \Delta \eta_{2 j-\ell}^{\prime}}{2}-\Sigma_{2}\right)\right\}
$$

is the ℓ th autocovariance of $\left\{\left(\Delta \eta_{2 j} \Delta \eta_{2 j}^{\prime} / 2\right)-\Sigma_{2}\right\} \beta_{2}$. Furthermore, a straightforward calculation yields
$\Gamma(0)=\frac{1}{2} E\left\{\left(\eta_{2} \eta_{2}^{\prime}-\Sigma_{2}\right) \beta_{2} \beta_{2}^{\prime}\left(\eta_{2} \eta_{2}^{\prime}-\Sigma_{2}\right)\right\}+\frac{1}{2}\left\{\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right) \Sigma_{2}+\Sigma_{2} \beta_{2} \beta_{2}^{\prime} \Sigma_{2}\right\}:=\frac{1}{2} \Xi+\frac{1}{4} \Psi$ and $\Gamma(\pm 1)=(1 / 4) \Xi$. Therefore,

$$
\Omega_{22}=\operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)}, \Xi+\frac{1}{2} \Psi, 0_{d_{3} \times d_{3}}\right\}
$$

(ii) $\Omega_{11}: \quad$ Define $\phi_{i, j(i)}:=W_{i, j(i)}\left(u_{i}+\eta_{2 i}^{\prime} \beta_{2}\right)$ and

$$
\psi_{i, j(i)}:=W_{i, j(i)} \eta_{2 j(i)}^{\prime} \beta_{2}-\frac{1}{K} \Sigma \theta=\left[\begin{array}{c}
\eta_{2 j(i)}^{\prime} \beta_{2} \\
X_{1 i}^{\prime} \eta_{2 j(i)}^{\prime} \beta_{2} \\
\left(X_{2 j(i)}^{\prime} \eta_{2 j(i)}^{\prime}-\frac{1}{K} \Sigma_{2}\right) \beta_{2} \\
Z_{i} \eta_{2 j(i)}^{\prime} \beta_{2}
\end{array}\right]:=\left[\begin{array}{c}
\psi_{i, j(i), 0} \\
\psi_{i, j(i), 1} \\
\psi_{i, j(i), 2} \\
\psi_{i, j(i), 3}
\end{array}\right]
$$

Then,

$$
\sqrt{n} E_{R_{W}}=\sum_{i=1}^{n} \frac{1}{\sqrt{n}} \phi_{i, j(i)}-\sum_{i=1}^{n} \frac{1}{\sqrt{n}} \psi_{i, j(i)} .
$$

It is easy to check that $E\left(\phi_{i, j(i)} \phi_{h, j(h)}^{\prime}\right)=E\left(\phi_{i, j(i)} \psi_{h, j(h)}^{\prime}\right)=0_{(d+1) \times(d+1)}$ for $i \neq h$. Hence, $\Omega_{11}=\Omega_{11 A}+\Omega_{11 B}$, where

$$
\Omega_{11 A}:=\operatorname{Var}\left(\phi_{i, j(i)}-\psi_{i, j(i)}\right)=E\left\{\left(W_{i, j(i)} \epsilon_{i, j(i)}+\frac{1}{K} \Sigma \theta\right)\left(W_{i, j(i)} \epsilon_{i, j(i)}+\frac{1}{K} \Sigma \theta\right)^{\prime}\right\}
$$

and $\Omega_{11 B}$ is the long-run variance of $\psi_{i, j(i)}$ minus $\operatorname{Var}\left(\psi_{i, j(i)}\right)$.

To derive $\Omega_{11 B}$, suppose that $\psi_{i, j(i)}$ and $\psi_{h, j(h)}(i \neq h)$ have the unit j in \mathcal{S}_{2} in common. Because the probability that they have no other units in \mathcal{S}_{2} in common, conditional on sharing the unit j, is $1-(K-1) /(m-1)=1+O\left(m^{-1}\right)$, we may safely concentrate on the case in which the unit j is the only source of generating the covariance between them. Then, we find the terms involving the unit j that have non-zero expectations in $\psi_{i, j(i)} \psi_{h, j(h)}^{\prime}$. Obviously, $\eta_{2 j}^{\prime} \beta_{2} \beta_{2}^{\prime} \eta_{2 j} / K^{2}$ in $\psi_{i, j(i), 0} \psi_{h, j(h), 0}^{\prime}$, $X_{1 i} \eta_{2 j}^{\prime} \beta_{2} \beta_{2}^{\prime} \eta_{2 j} X_{1 h} / K^{2}$ in $\psi_{i, j(i), 1} \psi_{h, j(h), 1}^{\prime}, \quad X_{1 i} \eta_{2 j}^{\prime} \beta_{2} \beta_{2}^{\prime} \eta_{2 j} Z_{h} / K^{2}$ in $\psi_{i, j(i), 1} \psi_{h, j(h), 3}^{\prime}$, and $Z_{i} \eta_{2 j}^{\prime} \beta_{2} \beta_{2}^{\prime} \eta_{2 j} Z_{h} / K^{2}$ in $\psi_{i, j(i), 3} \psi_{h, j(h), 3}^{\prime}$ have non-zero expectations, which are $\beta_{2} \Sigma_{2} \beta_{2}^{\prime} / K^{2}$, $\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right) E\left(X_{1}\right) E\left(X_{1}\right)^{\prime} / K^{2},\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right) E\left(X_{1}\right) E(Z)^{\prime} / K^{2}$, and $\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right) E(Z) E(Z)^{\prime} / K^{2}$, respectively. For $\psi_{i, j(i), 0} \psi_{h, j(h), 2}^{\prime}, \psi_{i, j(i), 1} \psi_{h, j(h), 2}^{\prime}$ and $\psi_{i, j(i), 3} \psi_{h, j(h), 2}^{\prime}$, write $g_{2 j(i)}=$ $(1 / K) \sum_{j \in \mathcal{J}_{K}(i)} g_{2}\left(Z_{j}\right)$. The terms with non-zero expectations are $\eta_{2 j}^{\prime} \beta_{2} \beta_{2}^{\prime} \eta_{2 j} g_{2 j(h)}^{\prime} / K^{2}$, $X_{1 i} \eta_{2 j}^{\prime} \beta_{2} \beta_{2}^{\prime} \eta_{2 j} g_{2 j(h)}^{\prime} / K^{2}$ and $Z_{i} \eta_{2 j}^{\prime} \beta_{2} \beta_{2}^{\prime} \eta_{2 j} g_{2 j(h)}^{\prime} / K^{2}$, and their expectations are $\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right) E\left(X_{2}\right)^{\prime} / K^{2}$, $\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right) E\left(X_{1}\right) E\left(X_{2}\right)^{\prime} / K^{2}$ and $\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right) E(Z) E\left(X_{2}\right)^{\prime} / K^{2}$, respectively, due to $X_{2 j(h)}=$ $g_{2 j(h)}+\eta_{2 j(h)}$. Finally, recognizing that the terms including the unit j in $\psi_{i, j(i), 2}$ are

$$
\frac{1}{K^{2}}\left\{g_{2}\left(Z_{j}\right) \eta_{2 j}^{\prime} \beta_{2}+\sum_{\ell \in \mathcal{J}_{K}(i), \ell \neq j} g_{2}\left(Z_{\ell}\right) \eta_{2 j}^{\prime} \beta_{2}+\left(\eta_{2 j} \eta_{2 j}^{\prime}-\Sigma_{2}\right) \beta_{2}+\eta_{2 j} \sum_{\ell \in \mathcal{J}_{K}(i), \ell \neq j} \eta_{2 \ell}^{\prime}\right\}
$$

we obtain the terms with non-zero expectations in $\psi_{i, j(i), 2} \psi_{h, j(h), 2}^{\prime}$ as

$$
\begin{aligned}
& \frac{1}{K^{4}}\left\{g_{2}\left(Z_{j}\right) \eta_{2 j}^{\prime} \beta_{2} \beta_{2}^{\prime} \eta_{2 j} g_{2}\left(Z_{j}\right)+\sum_{\ell \in \mathcal{J}_{K}(i), \ell \neq j} g_{2}\left(Z_{\ell}\right) \eta_{2 j}^{\prime} \beta_{2} \beta_{2}^{\prime} \eta_{2 j} g_{2}\left(Z_{j}\right)\right. \\
& +g_{2}\left(Z_{j}\right) \eta_{2 j}^{\prime} \beta_{2} \beta_{2}^{\prime} \eta_{2 j} \sum_{\ell \in \mathcal{J}_{K}(h), \ell \neq j} g_{2}\left(Z_{\ell}\right)+\sum_{\ell \in \mathcal{J}_{K}(i), \ell \neq j} g_{2}\left(Z_{\ell}\right) \eta_{2 j}^{\prime} \beta_{2} \beta_{2}^{\prime} \eta_{2 j} \sum_{\ell \in \mathcal{J}_{K}(h), \ell \neq j} g_{2}\left(Z_{\ell}\right) \\
& \left.+\left(\eta_{2 j} \eta_{2 j}^{\prime}-\Sigma_{2}\right) \beta_{2} \beta_{2}^{\prime}\left(\eta_{2 j} \eta_{2 j}^{\prime}-\Sigma_{2}\right)\right\},
\end{aligned}
$$

which has the expected value

$$
\frac{1}{K^{2}}\left[\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right) E\left(X_{2}\right) E\left(X_{2}\right)^{\prime}+\frac{1}{K^{2}}\left\{\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right) \operatorname{Var}\left(g_{2}(Z)\right)+\Xi\right\}\right]
$$

Let $N_{K}(j)$ be the number of times the unit j in \mathcal{S}_{2} is chosen as a match, i.e., $N_{K}(j):=\sum_{i=1}^{n} \mathbf{1}\left\{j \in \mathcal{J}_{K}(i)\right\}$. Then, the unit j appears $N_{K}(j)\left\{N_{K}(j)-1\right\}$ times
among all covariance calculations as above. Since $N_{K}(j) \sim \operatorname{Bin}(n, K / m)$,

$$
E\left[N_{K}(j)\left\{N_{K}(j)-1\right\}\right]=K^{2}\left(\frac{n}{m}\right)\left(\frac{n}{m}-\frac{1}{m}\right) .
$$

In conclusion,

$$
\begin{aligned}
\Omega_{11 B} & =\lim _{n, m \rightarrow \infty} \sum_{j=1}^{m} K^{2}\left(\frac{n}{m}\right)\left(\frac{n}{m}-\frac{1}{m}\right)\left(\frac{1}{\sqrt{n}}\right)^{2} \\
& \times \frac{1}{K^{2}}\left[\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right)\left[\begin{array}{c}
1 \\
E\left(X_{1}\right) \\
E\left(X_{2}\right) \\
E(Z)
\end{array}\right]\left[\begin{array}{lll}
1 & E\left(X_{1}\right)^{\prime} & E\left(X_{2}\right)^{\prime} \\
E(Z)^{\prime}
\end{array}\right]\right. \\
& +\frac{1}{K^{2}} \operatorname{diag}\left\{0_{\left.\left(d_{1}+1\right) \times\left(d_{1}+1\right),\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right) \operatorname{Var}\left\{g_{2}(Z)\right\}+\Xi, 0_{d_{3} \times d_{3}}\right\}}\right]\left[1+O\left(m^{-1}\right)\right\} \\
& =\left\{\begin{array}{ccc}
\kappa\left[\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right) E(W) E(W)^{\prime}\right. & \left.\begin{array}{c}
1 \frac{1}{K^{2}} \\
\operatorname{diag}\left\{0_{\left(d_{1}+1\right) \times\left(d_{1}+1\right)},\left(\beta_{2} \Sigma_{2} \beta_{2}^{\prime}\right) \operatorname{Var}\left\{g_{2}(Z)\right\}+\Xi, 0_{d_{3} \times d_{3}}\right\}
\end{array}\right] & \text { if } n / m \rightarrow \kappa \\
0_{(d+1) \times(d+1)} & \text { if } n / m \rightarrow 0
\end{array}\right.
\end{aligned}
$$

which implies that $\Omega_{11}=\Omega_{11 A}$ if $n / m \rightarrow 0$.
(iii) Ω_{12} : Obviously, $E\left[\phi_{i, j(i)} \beta_{2}^{\prime}\left\{\left(\Delta \eta_{2 \ell} \Delta \eta_{2 \ell}^{\prime} / 2\right)-\Sigma_{2}\right\}\right]=0_{(d+1) \times d_{2}}$ for any i, ℓ. On the other hand, when $\psi_{i, j(i)}$ includes the unit j, $\psi_{i, j(i)} \beta_{2}^{\prime}\left\{\left(\Delta \eta_{2 j} \Delta \eta_{2 j}^{\prime} / 2\right)-\Sigma_{2}\right\}$ and $\psi_{i, j(i)} \beta_{2}^{\prime}\left\{\left(\Delta \eta_{2 j+1} \Delta \eta_{2 j+1}^{\prime} / 2\right)-\Sigma_{2}\right\}$ have terms with non-zero expectations. For each of these, the only correlated term is $\left(2 K^{2}\right)^{-1}\left(\eta_{2 j} \eta_{2 j}^{\prime}-\Sigma_{2}\right) \beta_{2} \beta_{2}^{\prime}\left(\eta_{2 j} \eta_{2 j}^{\prime}-\Sigma_{2}\right)$. Because the unit j appears $N_{K}(j)$ times among all such covariance calculations and $E\left\{N_{K}(j)\right\}=K(n / m)$, (the negative of) the $(2,2)$ block of Ω_{12} is given by

$$
\lim _{n, m \rightarrow \infty, n / m \rightarrow \kappa} \sum_{j=1}^{m} K\left(\frac{n}{m}\right) \frac{1}{\sqrt{m n}} 2 \cdot \frac{1}{2 K^{2}} \Xi\left\{1+O\left(m^{-1}\right)\right\}=\frac{\sqrt{\kappa}}{K} \Xi
$$

which completes the proof.

Remark A1. The fact that $\Omega_{11 B}=0_{(d+1) \times(d+1)}$ when $n / m \rightarrow 0$ can be interpreted as follows. If $m \gg n$, then there are quite a few candidates of matches in \mathcal{S}_{2} for the unit i in \mathcal{S}_{1}. Sets of K matches chosen for units i and $h(\neq i)$ become different, and as a consequence $N_{K}(j)$ becomes at most one. In this environment, $\psi_{i, j(i)}$ and $\psi_{h, j(h)}$ tend to have no units from \mathcal{S}_{2} in common, and $\Omega_{11 B}=0_{(d+1) \times(d+1)}$ follows.

A. 4 Proof of Theorem 3

The proof requires the following lemma.

Lemma A2. If Assumptions 1-7 hold, then

$$
\begin{aligned}
& \max _{1 \leq i \leq n}\left|\hat{\lambda}_{i, j(i)}-\lambda_{i, j(i)}\right| \\
& =\left\{\begin{array}{ll}
o_{p}\left(n^{-1 / 2}\right) & \text { if } n / m \rightarrow \kappa \text { and } d_{3}=2,3 \text { or if } n / m \rightarrow 0 \text { and } d_{3}=3 \\
o_{p}\left(m^{-1 / 2}\right) & \text { if } n / m \rightarrow \infty \text { and } d_{3}=2,3
\end{array} .\right.
\end{aligned}
$$

A.4.1 Proof of Lemma A2

It is easy to see that $\hat{\lambda}_{i, j(i)}:=R_{1 i}+R_{2 i}+R_{3 i}+\lambda_{i, j(i)}$, where

$$
\begin{aligned}
R_{1 i} & =\frac{1}{K} \sum_{j \in \mathcal{J}_{K}(i)}\left[\left\{\hat{g}_{2}\left(Z_{i}\right)-g_{2}\left(Z_{i}\right)\right\}-\left\{\hat{g}_{2}\left(Z_{j}\right)-g_{2}\left(Z_{j}\right)\right\}\right]^{\prime}\left(\hat{\beta}_{I I, 2}^{(1)}-\beta_{2}\right) \\
R_{2 i} & =\frac{1}{K} \sum_{j \in \mathcal{J}_{K}(i)}\left[\left\{\hat{g}_{2}\left(Z_{i}\right)-g_{2}\left(Z_{i}\right)\right\}-\left\{\hat{g}_{2}\left(Z_{j}\right)-g_{2}\left(Z_{j}\right)\right\}\right]^{\prime} \beta_{2}, \text { and } \\
R_{3 i} & =\frac{1}{K} \sum_{j \in \mathcal{J}_{K}(i)}\left\{g_{2}\left(Z_{i}\right)-g_{2}\left(Z_{j}\right)\right\}^{\prime}\left(\hat{\beta}_{I I, 2}^{(1)}-\beta_{2}\right)
\end{aligned}
$$

Hence, the proof is boiled down to demonstrating that each of $\max _{1 \leq i \leq n}\left|R_{\ell i}\right|, \ell=$ $1,2,3$ is bounded by either $o_{p}\left(n^{-1 / 2}\right)$ or $o_{p}\left(m^{-1 / 2}\right)$, depending on the divergence pattern of (n, m) and d_{3}.

We first work on $R_{3 i}$. To derive the bounds for $R_{1 i}$ and $R_{3 i}$, we may apply the following result:

$$
\begin{aligned}
\hat{\theta}_{I I}^{(1)} & =\theta+O_{p}\left(m^{-\min \left\{1 / d_{3}, 1 / 2\right\}}+n^{-1 / 2}\right) \\
& =\theta+ \begin{cases}O_{p}\left(n^{-1 / d_{3}}\right) & \text { if } n / m \rightarrow \kappa \text { and } d_{3}=2,3 \\
O_{p}\left(m^{-1 / d_{3}}+n^{-1 / 2}\right) & \text { if } n / m \rightarrow 0 \text { and } d_{3}=3 \\
O_{p}\left(m^{-1 / d_{3}}\right) & \text { if } n / m \rightarrow \infty \text { and } d_{3}=2,3\end{cases}
\end{aligned}
$$

It follows from Lemma A1 and Lipschitz continuity of $g_{2}(\cdot)$ that $\max _{1 \leq i \leq n}\left|R_{3 i}\right|$ is bounded by

$$
\left\{\begin{array}{ll}
O_{p}\left(m^{-1 / d_{3}}\right) O_{p}\left(n^{-1 / d_{3}}\right)=o_{p}\left(n^{-1 / 2}\right) & \text { if } n / m \rightarrow \kappa \text { and } d_{3}=2,3 \\
O_{p}\left(m^{-1 / d_{3}}\right) O_{p}\left(m^{-1 / d_{3}}+n^{-1 / 2}\right)=o_{p}\left(n^{-1 / 2}\right) & \text { if } n / m \rightarrow 0 \text { and } d_{3}=3 \\
O_{p}\left(m^{-1 / d_{3}}\right) O_{p}\left(m^{-1 / d_{3}}\right)=o_{p}\left(m^{-1 / 2}\right) & \text { if } n / m \rightarrow \infty \text { and } d_{3}=2,3
\end{array} .\right.
$$

The remaining task is to demonstrate that for $k=1, \ldots, K$,

$$
\begin{align*}
& \max _{1 \leq i \leq n}\left\|\left\{\hat{g}_{2}\left(Z_{i}\right)-g_{2}\left(Z_{i}\right)\right\}-\left\{\hat{g}_{2}\left(Z_{j_{k}(i)}\right)-g_{2}\left(Z_{j_{k}(i)}\right)\right\}\right\| \\
& = \begin{cases}o_{p}\left(n^{-1 / 2}\right) & \text { if } n / m \rightarrow \kappa \text { and } d_{3}=2,3 \text { or if } n / m \rightarrow 0 \text { and } d_{3}=3 \\
o_{p}\left(m^{-1 / 2}\right) & \text { if } n / m \rightarrow \infty \text { and } d_{3}=2,3\end{cases} \tag{A2}
\end{align*}
$$

However, Lemma A. 2 of Abadie and Imbens (2011) holds under Assumptions 1-7. Therefore,
$\max _{1 \leq i \leq n}\left|\left\{\hat{g}_{2 r}\left(Z_{i}\right)-\hat{g}_{2 r}\left(Z_{j_{k}(i)}\right)\right\}-\left\{g_{2 r}\left(Z_{i}\right)-g_{2 r}\left(Z_{j_{k}(i)}\right)\right\}\right|=o_{p}\left(m^{-1 / 2}\right), r=1, \ldots, d_{2}$, and thus (A2) immediately follows. Then, each of $\max _{1 \leq i \leq n}\left|R_{1 i}\right|$ and $\max _{1 \leq i \leq n}\left|R_{2 i}\right|$ is also bounded by either $o_{p}\left(n^{-1 / 2}\right)$ or $o_{p}\left(m^{-1 / 2}\right)$. This completes the proof.

A.4.2 Proof of Theorem 3

To save space, we focus on the case with $n / m \rightarrow \kappa$. It follows from $Y_{i}^{+}=W_{i, j(i)}^{\prime} \theta+$ $\epsilon_{i, j(i)}+\left(\lambda_{i, j(i)}-\hat{\lambda}_{i, j(i)}\right)$ and Lemma A2 that

$$
\hat{R}_{W}^{+}=\hat{P}_{W} \theta+\frac{1}{K}(\hat{\Sigma}-\Sigma) \theta+E_{R_{W}}+o_{p}\left(n^{-1 / 2}\right)
$$

as in (A1). Then,

$$
\sqrt{n}\left(\hat{\theta}_{I I-F M}-\theta\right)=\hat{P}_{W}^{-1}\left\{\sqrt{n} \frac{1}{K}(\hat{\Sigma}-\Sigma) \theta+\sqrt{n} E_{R_{W}}\right\}+o_{p}(1)
$$

The asymptotic normality of $\sqrt{n}\left(\hat{\theta}_{I I-F M}-\theta\right)$ with its asymptotic variance can be established in the same manner as in the proof of Theorem 2.

A.4.3 Proof of Proposition 1

Clearly, $\hat{\Omega}_{11 A} \xrightarrow{p} \Omega_{11 A}$. In addition, it holds that

$$
\begin{aligned}
\hat{\Gamma}(\ell) & =\frac{1}{m-1} \sum_{j=\max \{2,2+\ell\}}^{\min \{m, m+\ell\}}\left(\frac{\Delta \eta_{2 j} \Delta \eta_{2 j}^{\prime}}{2}-\hat{\Sigma}_{2}\right) \hat{\beta}_{2, I I} \hat{\beta}_{2, I I}^{\prime}\left(\frac{\Delta \eta_{2 j-\ell} \Delta \eta_{2 j-\ell}^{\prime}}{2}-\hat{\Sigma}_{2}\right) \\
& +o_{p}\left(m^{-1 / 2}\right)
\end{aligned}
$$

for $d_{3} \leq 3$. It follows from the proof of Theorem 2 that

$$
\hat{\Gamma}(\ell) \xrightarrow{p}\left\{\begin{array}{ll}
\frac{1}{2} \Xi+\frac{1}{2} \Psi & \text { for } \ell=0 \\
\frac{1}{4} \Xi & \text { for } \ell= \pm 1
\end{array} .\right.
$$

Moreover, $\hat{V}_{g_{2}} \xrightarrow{p} \operatorname{Var}\left(X_{2}\right)-\operatorname{Var}\left(\eta_{2}\right)=\operatorname{Var}\left\{g_{2}(Z)\right\}$. Then, $\hat{\Omega}_{22} \xrightarrow{p} \Omega_{22}$ and $\hat{\Omega} \xrightarrow{p} \Omega$ by recognizing that $n / m=\kappa+o(1)$.

References

[1] Abadie, A., and G. W. Imbens (2006): "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, 74, 235-267.
[2] Abadie, A., and G. W. Imbens (2011): "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business E3 Economic Statistics, 29, 111.
[3] Abadie, A., and G. W.Imbens (2012): "A Martingale Representation for Matching Estimators," Journal of the American Statistical Association, 107, 833-843.
[4] Abadie, A., and G. W. Imbens (2016): "Matching on the Estimated Propensity Score," Econometrica, 84, 781-807.
[5] Angrist, J. D., and A. B. Krueger (1992): "The Effect of Age at School Entry on Educational Attainment: An Application of Instrumental Variables with Moments from Two Samples," Journal of the American Statistical Association, 87, 328-336.
[6] Angrist, J. D., and A. B. Krueger (1995): "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business \mathcal{B} Economic Statistics, 13, 225-235.
[7] Arellano, M., and C. Meghir (1992): "Female Labour Supply and on the Job Search: An Empirical Model Estimated Using Complementary Data Sets," Review of Economic Studies, 59, 537-559.
[8] Blackburn, M., and D. Neumark (1992): "Unobserved Ability, Efficiency Wages, and Interindustry Wage Differentials," Quarterly Journal of Economics, 1077, 1421-1436.
[9] Björklund, J., and M. Jäntti (1997): "Intergenerational Income Mobility in Sweden Compared to the United States," American Economic Review, 87, 10091018.
[10] Bollinger, C. R., and B. T. Hirsch (2006): "Match Bias from Earnings Imputation in the Current Population Survey: The Case of Imperfect Matching," Journal of Labor Economics, 24, 483-519.
[11] Borjas, G. J. (2004): "Food Insecurity and Public Assistance," Journal of Public Economics, 88, 1421-1443.
[12] Bostic, R., S. Gabriel, and G. Painter (2009): "Housing Wealth, Financial Wealth, and Consumption: New Evidence from Micro Data," Regional Science and Urban Economics, 39, 79-89.
[13] Bover, O. (2005): "Wealth Effects on Consumption: Microeconometric Estimates from the Spanish Survey of Household Finances," Documentos de Trabajo No.0522, Banco de España.
[14] Busso, M., J. DiNardo, and J. McCrary (2014): "New Evidence on the Finite Sample Properties of Propensity Score Reweighting and Matching Estimators," Review of Economics and Statistics, 96, 885-897.
[15] Card, D. (1995): "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," in L. N. Christophides, E. K. Grant, and R. Swidinsky (eds.), Aspects of Labour Market Behavior: Essays in Honour of John Vanderkamp. Toronto: University of Toronto Press, 201-222.
[16] Carrasco, M., and J.-P. Florens (2002): "Simulation-Based Method of Moments and Efficiency," Journal of Business \& Economic Statistics, 20, 482-492.
[17] Chen, J., and H. Shao (2001): "Jackknife Variance Estimation for NearestNeighbor Imputation," Journal of the American Statistical Association, 96, 260269.
[18] Currie, J., and A. Yelowitz (2000): "Are Public Housing Projects Good for Kids?" Journal of Public Economics, 75, 99-124.
[19] Dee, T. S., and W. N. Evans (2003): "Teen Drinking and Educational Attainment: Evidence from Two-Sample Instrumental Variables Estimates," Journal of Labor Economics, 21, 178-209.
[20] Donoho, D. L., and I. M. Johnstone (1994): "Ideal Spacial Adaptation by Wavelet Shrinkage," Biometrika, 81, 425-455.
[21] Fujii, T. (2008): "Two-Sample Estimation of Poverty Rates for Disabled People: An Application to Tanzania," Singapore Management University Economics \& Statistics Working Paper No.02-2008.
[22] Gouriéroux, C., A. Monfort, and E. Renault (1993): "Indirect Inference," Journal of Applied Econometrics, 8, S85-S118.
[23] Heckman, J., J. L. Tobias, and E. Vytlacil (2000): "Simple Estimators for Treatment Parameters in a Latent Variable Framework with an Application to Estimating the Return to Schooling," NBER Working Paper No. 7950.
[24] Hellerstein, J. K., and G. W. Imbens (1999): "Imposing Moment Restrictions from Auxiliary Data by Weighting," Review of Economics and Statistics, 81, 1-14.
[25] Hirsch, B. T., and E. J. Schumacher (2004): "Match Bias in Wage Gap Estimates due to Earnings Imputation," Journal of Labor Economics, 22, 689-722.
[26] Horowitz, J. L., and V. G. Spokoiny (2001): "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative," Econometrica, 69, 599-631.
[27] Imbens, G. W., and T. Lancaster (1994): "Combining Micro and Macro Data in Microeconometric Models," Review of Economic Studies, 61, 655-680.
[28] Inoue, A., and G. Solon (2010): "Two-Sample Instrumental Variables Estimators," Review of Economics and Statistics, 92, 557-561.
[29] Little, R. J. A., and D. B. Rubin (2002): Statistical Analysis with Missing Data, Second Edition. New York: John Wiley \& Sons.
[30] Lusardi, A. (1996): "Permanent Income, Current Income, and Consumption: Evidence from Two Panel Data Sets," Journal of Business \mathfrak{b} Economic Statistics, 14, 81-90.
[31] Mincer, J. A. (1974): Schooling, Experience and Earnings. New York: National Bureau of Economic Research.
[32] Murtazashvili, I., D. Liu, and A. Prokhorov (2015): "Two-Sample Nonparametric Estimation of Intergenerational Income Mobility in the United States and Sweden," Canadian Journal of Economics, 48, 1733-1761.
[33] Pagan, A. (1984): "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, 25, 221-247.
[34] Phillips, P. C. B., and B. E. Hansen (1990): "Statistical Inference in Instrumental Variables Regression with I(1) Processes," Review of Economic Studies, 57, 99125.
[35] Prokhorov, A., and P. Schmidt (2009): "GMM Redundancy Results for General Missing Data Problems," Journal of Econometrics, 151, 47-55.
[36] Rice, J. (1984): "Bandwidth Choice for Nonparametric Regression," Annals of Statistics, 12, 1215-1230.
[37] Ridder, G., and R. Moffitt (2007): "The Econometrics of Data Combination," in J. J. Heckman and E.E. Leamer (eds.), Handbook of Econometrics, Vol. 6, Part B. Amsterdam: Elsevier, Chapter 75, 5469-5547.
[38] Robinson, P. M. (1988): "Root- N-Consistent Semiparametric Regression," Econometrica, 56, 931-954.
[39] Shao, J., and H. Wang (2008): "Confidence Intervals Based on Survey Data with Nearest Neighbor Imputation," Statistica Sinica, 18, 281-297.
[40] Smith, A. A., Jr. (1993): "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, 8, S63-S84.
[41] Smith, J. A., and P. E. Todd (2005): "Does Matching Overcome LaLonde's Critique of Nonexperimental Estimators," Journal of Econometrics, 125, 305-353.
[42] von Neumann, J. (1941): "Distribution of the Ratio of the Mean Square Successive Difference to the Variance," Annals of Mathematical Statistics, 12, 367-395.
[43] White, H. (1980): "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, 48, 817-838.
[44] Wooldridge, J. M. (2013): Introductory Econometrics: A Modern Approach, 5th Edition. Mason, OH: South-Western Cengage Learning.
[45] Yatchew, A. (1997): "An Elementary Estimator of the Partial Linear Model," Economics Letters, 57, 135-143.

Table 1: Monte Carlo Results for Model C
Panel (a): $d_{3}=1$

(n, m)	Estimator		β_{22}				γ_{1}			
(1000, 1000)	OLS*	Mean	1.0003				0.9970			
		$S D$	0.0202				0.0529			
		RMSE	0.0202				0.0529			
		$\overline{S E}$	0.0207				0.0527			
		$C R$	96\%				95\%			
		K	1	2	4	8	1	2	4	8
	MSOLS-A	Mean	0.5556	0.7148	0.8355	0.9203	1.0513	1.0272	1.0145	1.0091
		$S D$	0.0512	0.0546	0.0582	0.0611	0.1134	0.1052	0.1019	0.1008
		RMSE	0.4474	0.2903	0.1745	0.1004	0.1245	0.1087	0.1029	0.1012
	MSOLS-B	Mean	0.5556	0.7148	0.8355	0.9203	1.0513	1.0271	1.0145	1.0092
		$S D$	0.0512	0.0546	0.0582	0.0611	0.1135	0.1052	0.1020	0.1008
		RMSE	0.4474	0.2903	0.1745	0.1005	0.1245	0.1087	0.1030	0.1012
		K	1	2	4	8	1	2	4	8
	MSII-A	Mean	1.0251	1.0142	1.0126	1.0221	0.9970	0.9980	0.9993	1.0013
		SD	0.1141	0.0906	0.0774	0.0711	0.1231	0.1098	0.1040	0.1019
		RMSE	0.1168	0.0917	0.0784	0.0744	0.1231	0.1098	0.1040	0.1019
		$\overline{S E}$	0.1040	0.0740	0.0633	0.0609	0.1199	0.1064	0.0994	0.0961
		$C R$	94\%	89\%	88\%	90\%	95\%	94\%	93\%	93\%
	MSII-B	Mean	1.0251	1.0142	1.0126	1.0221	0.9970	0.9979	0.9993	1.0013
		$S D$	0.1141	0.0906	0.0774	0.0711	0.1231	0.1098	0.1040	0.1019
		RMSE	0.1168	0.0917	0.0784	0.0744	0.1231	0.1099	0.1040	0.1019
		$\overline{S E}$	0.1040	0.0740	0.0633	0.0609	0.1199	0.1064	0.0994	0.0962
		$C R$	94\%	89\%	88\%	89\%	95\%	94\%	93\%	93\%
(2000, 2000)	OLS*	Mean	0.9995				0.9988			
		$S D$	0.0145				0.0372			
		RMSE	0.0145				0.0372			
		$\overline{S E}$	0.0147				0.0374			
		$C R$	96\%				94\%			
	MSOLS-A	K	1	2	4	8	1	2	4	8
		Mean	0.5602	0.7204	0.8406	0.9191	1.0502	1.0263	1.0137	1.0063
		SD	0.0359	0.0380	0.0399	0.0416	0.0814	0.0758	0.0729	0.0716
		RMSE	0.4413	0.2821	0.1643	0.0909	0.0956	0.0803	0.0742	0.0719
	MSOLS-B	Mean	0.5602	0.7204	0.8406	0.9191	1.0502	1.0263	1.0137	1.0063
		$S D$	0.0359	0.0380	0.0399	0.0416	0.0814	0.0758	0.0729	0.0716
		RMSE	0.4413	0.2821	0.1643	0.0909	0.0956	0.0803	0.0742	0.0719
	MSII-A	K	1	2	4	8	1	2	4	8
		Mean	1.0144	1.0100	1.0099	1.0135	0.9961	0.9975	0.9986	0.9985
		SD	0.0745	0.0614	0.0519	0.0478	0.0879	0.0790	0.0744	0.0724
		RMSE	0.0758	0.0622	0.0528	0.0496	0.0880	0.0790	0.0745	0.0724
	MSII-B	$\overline{S E}$	0.0712	0.0512	0.0436	0.0413	0.0843	0.0750	0.0700	0.0676
		$C R$	94\%	90%	90\%	91\%	94\%	94\%	94\%	93%
		Mean	1.0144	1.0100	1.0099	1.0135	0.9961	0.9975	0.9987	0.9985
		SD	0.0745	0.0614	0.0519	0.0478	0.0879	0.0790	0.0744	0.0724
		RMSE	0.0758	0.0622	0.0528	0.0496	0.0880	0.0790	0.0745	0.0724
		$\overline{S E}$	0.0712	0.0512	0.0436	0.0413	0.0843	0.0750	0.0700	0.0676
		$C R$	94\%	90\%	90\%	91\%	95\%	94\%	94\%	93%

Table 1: Continued
Panel (b): $d_{3}=2$

(n, m)	Estimator		β_{22}				γ_{1}			
(1000, 1000)	OLS*	Mean	0.9986				0.9977			
		$S D$	0.0165				0.0571			
		RMSE	0.0166				0.0572			
		$\overline{S E}$	0.0164				0.0588			
		$C R$	95\%				95\%			
		K	1	2	4	8	1	2	4	8
	MSOLS-A	Mean	0.4733	0.6337	0.7856	0.9459	1.0597	1.0291	1.0100	0.9780
		$S D$	0.0528	0.0571	0.0662	0.0847	0.1767	0.1725	0.1766	0.1967
		RMSE	0.5294	0.3707	0.2243	0.1005	0.1865	0.1749	0.1769	0.1979
	MSOLS-B	Mean	0.4735	0.6340	0.7858	0.9461	1.0123	0.9931	0.9795	0.9457
		$S D$	0.0529	0.0573	0.0664	0.0850	0.1782	0.1731	0.1786	0.1991
		RMSE	0.5292	0.3705	0.2242	0.1006	0.1786	0.1732	0.1798	0.2064
		Poly.	(initial)	$2 n d$	3 rd	4 th	(initial)	$2 n d$	3 rd	4 th
	MSII-FM-A	Mean	1.1785	1.1803	1.1805	1.1588	0.9740	0.9723	0.9725	0.9667
		$S D$	0.1768	0.1772	0.1773	0.1750	0.2100	0.2123	0.2133	0.2165
		RMSE	0.2512	0.2528	0.2530	0.2363	0.2116	0.2141	0.2150	0.2191
		$\overline{S E}$	-	0.1688	0.1689	0.1679	-	0.1869	0.1871	0.1891
		$C R$	-	87\%	87\%	90\%	-	92\%	92\%	92\%
	MSII-FM-B	Mean	1.1791	1.1803	1.1805	1.1587	0.9272	0.9710	0.9714	0.9654
		$S D$	0.1770	0.1772	0.1773	0.1750	0.2114	0.2153	0.2160	0.2185
		RMSE	0.2518	0.2528	0.2530	0.2363	0.2236	0.2173	0.2179	0.2212
		$\overline{S E}$	-	0.1688	0.1689	0.1679	-	0.1866	0.1868	0.1887
		$C R$	-	87\%	87\%	90\%	-	90\%	90\%	91\%
(2000, 2000)	OLS*	Mean	0.9997				1.0009			
		$S D$	0.0116				0.0405			
		RMSE	0.0116				0.0406			
		$\overline{S E}$	0.0116				0.0415			
		$C R$	95\%				95\%			
	MSOLS-A	K	1	2	4	8	1	2	4	8
		Mean	0.5365	0.6953	0.8374	0.9698	1.0429	1.0200	1.0000	0.9811
		SD	0.0350	0.0372	0.0421	0.0502	0.1095	0.1049	0.1071	0.1160
		RMSE	0.4648	0.3070	0.1680	0.0586	0.1176	0.1068	0.1071	0.1175
	MSOLS-B	Mean	0.5365	0.6953	0.8374	0.9699	1.0192	1.0020	0.9844	0.9656
		$S D$	0.0351	0.0372	0.0421	0.0503	0.1105	0.1055	0.1077	0.1171
		RMSE	0.4648	0.3069	0.1679	0.0587	0.1121	0.1055	0.1089	0.1220
	MSII-FM-A	Poly.	(initial)	$2 n d$	3 rd	4 th	(initial)	2nd	3 rd	4 th
		Mean	1.1229	1.1242	1.1243	1.1132	0.9787	0.9778	0.9776	0.9752
		$S D$	0.0932	0.0933	0.0933	0.0924	0.1250	0.1254	0.1256	0.1274
		RMSE	0.1543	0.1553	0.1554	0.1461	0.1268	0.1274	0.1276	0.1298
		$\overline{S E}$	-	0.0894	0.0894	0.0892	-	0.1183	0.1183	0.1198
		$C R$	-	63%	63\%	69\%	-	87\%	87\%	88\%
	MSII-FM-B	Mean	1.1230	1.1242	1.1243	1.1131	0.9548	0.9774	0.9772	0.9753
		SD	0.0933	0.0933	0.0933	0.0924	0.1258	0.1267	0.1269	0.1288
		RMSE	0.1544	0.1553	0.1554	0.1461	0.1337	0.1287	0.1289	0.1312
		$\overline{S E}$	-	0.0894	0.0894	0.0892	-	0.1182	0.1182	0.1196
		$C R$	-	63\%	63\%	69\%	-	86\%	86\%	87\%

Table 1: Continued
Panel (c): $d_{3}=3$

(n, m)	Estimator		β_{22}				γ_{1}			
(1000, 1000)	OLS*	Mean	0.9994				0.9997			
		$S D$	0.0135				0.0580			
		RMSE	0.0135				0.0580			
		$\overline{S E}$	0.0139				0.0585			
		$C R$	96\%				96\%			
		K	1	2	4	8	1	2	4	8
	MSOLS-A	Mean	0.2193	0.3687	0.5758	0.8942	1.1498	1.0658	0.9978	0.9333
		$S D$	0.0748	0.0887	0.1163	0.1528	0.3103	0.3050	0.3246	0.3601
		RMSE	0.7843	0.6375	0.4398	0.1859	0.3445	0.3121	0.3246	0.3663
	MSOLS-B	Mean	0.2205	0.3703	0.5788	0.8994	0.6439	0.6835	0.6775	0.6299
		$S D$	0.0755	0.0895	0.1168	0.1542	0.3176	0.3146	0.3406	0.3837
		RMSE	0.7832	0.6360	0.4371	0.1842	0.4772	0.4463	0.4691	0.5332
		Poly.	(initial)	2nd	3 rd	4 th	(initial)	2nd	3 rd	4 th
	MSII-FM-A	Mean	1.1151	1.0889	1.0901	1.0651	0.9763	0.9550	0.9534	0.9404
		SD	0.4064	0.4009	0.4005	0.3953	0.3698	0.3751	0.3770	0.3712
		$R M S E$	0.4224	0.4106	0.4105	0.4007	0.3705	0.3778	0.3799	0.3760
		$\overline{S E}$	-	0.3718	0.3726	0.3669	-	0.3288	0.3304	0.3245
		$C R$	-	92\%	92\%	91\%	-	85\%	85\%	86\%
	MSII-FM-B	Mean	1.1217	1.0890	1.0903	1.0649	0.4709	0.8358	0.8318	0.8200
		$S D$	0.4099	0.4012	0.4009	0.3954	0.3777	0.4210	0.4249	0.4136
		RMSE	0.4275	0.4110	0.4110	0.4007	0.6501	0.4519	0.4570	0.4511
		$\overline{S E}$	-	0.3722	0.3730	0.3673	-	0.3273	0.3290	0.3200
		$C R$	-	92\%	92\%	91\%	-	77\%	77\%	76%
(2000, 2000)	OLS*	Mean	1.0002				0.9991			
		$S D$	0.0096				0.0419			
		RMSE	0.0096				0.0419			
		$\overline{S E}$	0.0099				0.0415			
		$C R$	96\%				94\%			
	MSOLS-A	K	1	2	4	8	1	2	4	8
		Mean	0.2994	0.4653	0.6632	0.9149	1.1037	1.0492	0.9910	0.9347
		SD	0.0454	0.0541	0.0657	0.0877	0.2007	0.1904	0.1946	0.2169
		RMSE	0.7021	0.5374	0.3432	0.1222	0.2259	0.1967	0.1948	0.2265
	MSOLS-B	Mean	0.3003	0.4664	0.6648	0.9175	0.7534	0.7911	0.7804	0.7366
		$S D$	0.0459	0.0546	0.0664	0.0886	0.2033	0.1931	0.1977	0.2235
		RMSE	0.7012	0.5364	0.3417	0.1211	0.3195	0.2845	0.2955	0.3454
	MSII-FM-A	Poly.	(initial)	2nd	3 rd	4 th	(initial)	2nd	3rd	4 th
		Mean	1.0576	1.0477	1.0481	1.0191	0.9800	0.9667	0.9663	0.9617
		$S D$	0.1826	0.1816	0.1818	0.1787	0.2277	0.2305	0.2307	0.2239
		RMSE	0.1915	0.1877	0.1881	0.1797	0.2286	0.2328	0.2332	0.2271
		$\overline{S E}$	-	0.1800	0.1802	0.1771	-	0.1985	0.1989	0.1961
		$C R$	-	97\%	97\%	96\%	-	90\%	90\%	91\%
	MSII-FM-B	Mean	1.0608	1.0477	1.0481	1.0189	0.6300	0.9094	0.9094	0.9032
		$S D$	0.1840	0.1817	0.1819	0.1788	0.2328	0.2526	0.2530	0.2438
		RMSE	0.1938	0.1879	0.1882	0.1798	0.4371	0.2683	0.2687	0.2623
		$\overline{S E}$	-	0.1801	0.1802	0.1772	-	0.1996	0.2000	0.1955
		$C R$	-	96\%	96\%	96\%	-	84\%	85\%	85\%

Note: \quad Mean $=$ simulation average of the parameter estimate; $S D=$ simulation average of the parameter estimate; $R M S E=$ root mean-squared error of the parameter estimate; $\overline{S E}=$ simulation average of the standard error; and $C R=$ coverage rate for the nominal 95% confidence interval.

Table 2: Estimation Results of Wage Regressions with Ability Measures
Dependent Variable: \log (wage)

	(1)	(2)	(3)	(4)	(5)
Regressors	OLS*	MSOLS	MSII-FM	MSOLS	MSII-FM
educ	0.0612	0.0736	0.0690	0.0724	0.0693
	(0.0054)	(0.0050)	(0.0074)	(0.0050)	(0.0165)
exper	0.0787	0.0875	0.0847	0.0876	0.0876
	(0.0084)	(0.0082)	(0.0083)	(0.0081)	(0.0082)
exper 2	-0.0022	-0.0023	-0.0022	-0.0023	-0.0023
	(0.0004)	(0.0004)	(0.0004)	(0.0004)	(0.0004)
abil	0.0056	-0.0007	0.0016	0.0006	0.0070
	(0.0013)	(0.0014)	(0.0046)	(0.0049)	(0.0356)
feduc	-0.0018	-0.0006	-0.0007	-0.0007	-0.0010
	(0.0031)	(0.0031)	(0.0031)	(0.0032)	(0.0038)
meduc	0.0071	0.0080	0.0073	0.0079	0.0072
	(0.0037)	(0.0037)	(0.0039)	(0.0037)	(0.0041)
black	-0.1321	-0.1664	-0.1559	-0.1630	-0.1607
	(0.0258)	(0.0259)	(0.0331)	(0.0249)	(0.0283)
smsa	0.1517	0.1602	0.1576	0.1595	0.1612
	(0.0179)	(0.0183)	(0.0186)	(0.0181)	(0.0198)
south	-0.1111	-0.1126	-0.1125	-0.1125	-0.1104
	(0.0178)	(0.0179)	(0.0178)	(0.0180)	(0.0216)
intercept	4.6861	4.6491	4.6540	4.6425	4.6818
	(0.0841)	(0.0861)	(0.1107)	(0.0849)	(0.1945)
abil?	$k w w$	$k w w$	$k w w$	g	g
Matching?	No	Yes	Yes	Yes	Yes
(n, m)	$(2191,-)$	$(2191,466)$	$(2191,466)$	$(2191,589)$	$(2191,589)$

Note: Numbers in parentheses are standard errors. White's (1980) heteroskedasticityrobust standard errors are calculated for OLS*, whereas 'standard errors' for MSOLS are square-roots of diagonal elements of $\hat{Q}_{W}^{-1} \hat{\Omega}_{11} \hat{Q}_{W}^{-1} / n$.

[^0]: *The first author gratefully acknowledges financial support from Japan Society of the Promotion of Science (grant numbers 23530259 and 15K03405).
 \dagger Faculty of Economics, Setsunan University, 17-8 Ikeda Nakamachi, Neyagawa, Osaka 572-8508, Japan; phone: (+81)72-839-8095; fax: (+81)72-839-8138; e-mail: hirukawa@econ.setsunan.ac.jp.
 ${ }^{\ddagger}$ Discipline of Business Analytics, Business School, University of Sydney, H04-499 Merewether Building, Sydney, NSW 2006, Australia; phone: (+61)2-9351-6584; fax: (+61)2-9351-6409; e-mail: artem.prokhorov@sydney.edu.au.

[^1]: ${ }^{1}$ The distinction between hot and cold deck imputation seems to primarily refer to which sample (of punch cards) to use for matching, a current sample (hot) or an earlier sample (cold). Hence, hot deck imputation often means imputation of missing values of an existing variable, whereas cold deck imputation means imputation of entire missing variables. In this respect, this paper may be closer to cold rather than hot deck imputation.

[^2]: ${ }^{2}$ We thank an anonymous referee for pointing out this possibility to us.

[^3]: ${ }^{3}$ We thank an anonymous referee for suggesting this interpretation to us.

[^4]: ${ }^{4}$ We adopt a power-series approximation to estimate $g_{2}(Z)$; see Section 3.2 for details.

[^5]: ${ }^{5}$ Typically the binding function is unknown, and it must be approximated via simulations. However, when the function has a closed form, there is no need for simulations; see Carrasco and Florens (2002) for another example.
 ${ }^{6}$ The estimator $\hat{\theta}_{I I}$ also has a method-of-moment interpretation, where the moment is

 $$
 E\left(W_{i, j(i)} \epsilon_{i, j(i)}\right)=-\frac{1}{K} \Sigma \theta
 $$

 From the viewpoint of likelihood-based methods MSII may leave some information (or moment restrictions) unused, and thus there may be room for efficiency improvement. But pursuing this point is beyond the scope of this paper.
 ${ }^{7}$ If Z is a scalar, then the recursion reduces to rearranging $\left\{Z_{j}\right\}_{j=1}^{m}$ in an ascending order $Z_{(1)} \leq$

[^6]: ${ }^{8}$ In our preliminary Monte Carlo study larger values of matches (e.g., $K=16,32,64,128$) have been also investigated. However, the results are quite poor.

