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Abstract 

Mouse embryonic stem (ES) cells are pluripotent, undifferentiated cells that can 

differentiate into any cell of the three germ layers: the ectoderm, the mesoderm 

and the endoderm. Mammalian development is challenging to study due to the 

in utero gestation and small size of early embryos. Mouse ES cells overcome this 

hurdle by recapitulating in vivo organogenesis in an in vitro setting.  

 

There are currently no in vitro models of prostate development from mouse ES 

cells. The prostate is an endoderm derived exocrine organ that functions to 

provide the seminal constituents for sperm. The initial aim of this study was to 

differentiate mouse ES cells into mature, prostatic epithelial cells in vitro in 

stepwise manner. The prostate is derived from the urogenital sinus which in 

turn is derived from the endoderm. The endoderm and urothelium have been 

generated from mouse ES cells in vitro with the addition of Activin-A and all-

trans retinoic acid respectively. It was hypothesised that treatment of mouse ES 

cell-derived urothelial cells with dihydrotestosterone (DHT), TGFb1 and 

FGF10 would induce prostate epithelial cell differentiation. Gene expression of 

homeobox protein Nkx3.1 and prostate marker probasin (Pbsn) were identified 

in day 16 and day 22 differentiated cultures treated with the aforementioned 

growth factors. Additionally, day 22 cultures treated with DHT, TGFb1 and 

FGF10 developed cyst-like acinus structures with a lumen.  



 xii 

In conjunction with prostate epithelial cell differentiation, adipocyte-like cells 

were unexpectedly generated. Brown and white adipocytes are thought to arise 

from the mesoderm germ layer. Mouse ES cell culture conditions used to 

generate prostate epithelial cells were primed for endoderm specification. The 

question was then asked if the adipocytes generated were indicative of a 

particular adipose depot and if the endoderm could be a source of adipocytes. 

In order to identify the adipocyte-like cells differentiated in vitro, a method was 

developed to characterise brown, subcutaneous and visceral white adipocytes 

by flow cytometry. Multi-parametric flow cytometric analyses of adipocytes 

stained with Nile Red, MitoTracker Deep Red, Nile Blue, fatty acid translocase 

CD36 and laminin receptor integrins a6 and b1 established adipocyte 

heterogeneity at the single cell level. Comparisons in dye uptake and surface 

protein expression between adipocytes revealed a code that was applied to the 

adipocyte-like cells differentiated under endoderm culture conditions. 

Adipocytes generated in mouse ES cell cultures treated with DHT, TGFb1 and 

FGF10 matched the profile of gonadal adipocytes.  

 

Here, I report the first protocol describing prostate epithelial cell differentiation 

from mouse ES cells. As mouse ES cells can be genetically modified, the 

development of prostate epithelial cells may serve as an alternative approach 

for the study of prostate disease in vitro. The generation of adipocytes from 

mouse ES cells under endoderm conditions prompted the development of a 



 xiii 

flow cytometric method to characterise adipocyte heterogeneity at the single 

cell level. The method can potentially be used for the diagnosis of a range of 

metabolic disorders stemming from obesity such as diabetes. Contrary to 

reports of a mesoderm origin of adipocytes, a possible endoderm origin of 

gonadal adipocytes is hypothesised, the adipose depot closest to the prostate. 

The development of the prostate in conjunction with gonadal adipocytes has 

yet to be reported.  
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Chapter 1: Introduction 

1.1 The prostate is an endoderm-derived exocrine gland  

1.1.1 Anatomy of the prostate in mice 

The prostate is an exocrine gland of the reproductive tract of a number of male 

mammals and provides components of seminal fluid (Cunha et al., 2004b). The 

prostate gland in adult mice consists of three lobes situated around the urethra 

and defined by their anatomical location: the ventral, dorsolateral and anterior 

prostate (Figure 1.1A) (Kusama, Enami, & Kano, 1989; Marker, 2003a). The 

ventral lobe wraps around the urethra whereas the dorsolateral lobes are 

located at the base of the seminal vesicles (Figure 1.1A). The anterior prostate 

lobes (or coagulating glands) are attached to the seminal vesicles (Figure 1.1A). 

Contrary to mice, the prostate in male humans comprises of a singular organ 

with four defined zones: the central, transitional, peripheral and periurethral 

zones (Figure 1.1B) (McNeal, 1981).  
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Figure 1.1: Anatomy of the prostate in mice and men. 

(A) The mouse prostate is composed of three lobes: the anterior lobe (turquoise), the dorsolateral lobe (purple) and the ventral lobe (red). 

(B) The human prostate consists of four distinct zones: the central zone (pink), the peripheral zone (green), the transition zone (purple) and the periurethral 

zone (situated next to the urethra, uncoloured).  
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1.1.2 Histology of the mouse prostate 

Each lobe contains a distinct pattern of branching (Marker et al, 2003a). All prostatic 

lobes contain columnar luminal and cuboidal basal epithelial cells that are arranged 

to form the secretory acini (Figure 1.2) (Marker et al., 2003a; Thomson & Marker, 2006). 

The ventral lobe contains large acini while the dorsolateral lobes are composed of 

smaller acini (Marker et al., 2003a; Thomson & Marker, 2006). The acini of the anterior 

lobe is described as complex with papillary patterns (Marker et al., 2003a; Thomson & 

Marker, 2006). 

 

1.1.2.1 Epithelial cells of the prostate 

The secretory luminal layer of glandular epithelium is composed of tall columnar 

epithelial cells which are supported by a basal layer of cuboidal epithelial cells (Figure 

1.2) (Sherwood et al., 1990; Wang et al., 2001). The luminal layer consists of androgen-

dependent cells and is most commonly characterised by cytokeratins (CK) 8 and 18 

expression (Sherwood et al., 1990; Sherwood et al., 1991). The basal layer consists of 

androgen-independent cells and is characterised by CK5 and 14 expression 

(Sherwood et al., 1990; Sherwood et al., 1991). An intermediate epithelial cell type has 

been identified that expressed both luminal and basal CKs as well as CK19 (Xue et al., 

1998; Wang et al., 2001). Neuroendocrine cells are a sparse population of androgen-

independent epithelial cells situated between the basal and luminal layers (Figure 1.2) 

(van Steenbrugge et al., 1995). Neuroendocrine cells are identified by chromogranin-
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A and synaptophysin expression and lack expression of androgen receptor (Krijnen 

et al., 1993). 

 

1.1.2.2 Stromal cells of the prostate 

Situated opposite to the basal lamina is the fibromuscular stroma (Figure 1.2). The 

stroma is composed of smooth muscle actin, blood vessels and an extracellular matrix 

rich in collagen fibres (Figure 1.2) (Barron & Rowley, 2012). Additionally, the stromal 

compartment contains endothelial cells, fibroblasts and several immune cells (Figure 

1.2). The stroma of the prostate gland was once thought to be a passive structure (cited 

in: Tuxhorn et al., 2001). However, the dynamic environment influences epithelial cell 

differentiation, migration and attachment as well as promote tissue repair in response 

to injury (Tuxhorn et al., 2001). Alterations in normal prostate homeostasis such as 

infiltration of the stroma by carcinoma cells lead to a reactive stroma (expanded in 

1.1.3) (Tuxhorn et al., 2001). 
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Figure 1.2: Histology of the prostate gland.  

The prostate consists of cuboidal basal and columnar luminal epithelial cells that form the secretory 

acini. Neuroendocrine cells are sparse and situated between basal and luminal epithelial cells. The 

stroma surrounding the epithelial cells consists of smooth muscle, fibroblasts, macrophages, blood 

vessels, inflammatory cells and extracellular matrix components.  
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1.1.3 Physiology of the prostate 

The prostate is essential for the successful reproduction in mammalian species 

(Hayward & Cunha, 2000). Men without a prostate have impaired fertility (Hayward 

& Cunha, 2000). The prostate provides the components of seminal fluid which 

functions to soften, coagulate and gelatinise semen (Cunha et al., 1987). Secretory 

proteins in the seminal fluid coat spermatozoa (Aumüller & Seitz, 1990). The major 

secretory proteins released in the human prostate gland are prostate-specific antigen 

(PSA), prostate-secreted acid phosphatase (PAP) and prostatic secretory protein of 94 

aa (PSP94) (Lee et al., 1986; Lilja & Abrahamsson, 1988). PSA is the most well-known 

prostatic secretory protein in humans which functions to dissolve seminal coagulum 

(Lee et al., 1986; Hayward & Cunha, 2000). PSA is produced by the columnar epithelial 

cells of the prostate and secreted into the ductal lumina (Hayward & Cunha, 2000). 

Under physiological conditions, PSA does not cross the epithelial basement 

membrane (Hayward & Cunha, 2000). However, under pathophysiological conditions 

such as inflammation and cancer, PSA can leak into the stroma leading to elevated 

serum levels of PSA (Hayward & Cunha, 2000; reviewed in: Velonas et al., 2013).  

 

PSA and PAP are not secreted from the prostate in rodents (Fujimoto et al. 2006). 

Instead, prostatein, cystatin-related protein, PSP94, probasin and seminal vesicle 

secretory protein (Svs2) are abundant in the ventral and dorsal and lateral lobe of the 

mouse prostate (Cunha et al., 1987; Fujimoto et al., 2006). Transgenic mouse models 
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of prostate cancer are generated by expressing the SV40 antigen under a probasin 

promoter (detailed in 1.1.4.1).  

 

1.1.4 Prostate disease in the ageing man.  

Every four minutes, prostate cancer claims the life of a man (Assinder & Bhoopalan, 

2017). Prostate cancer is the most common male malignancy in Western societies and 

the second most common cause of male cancer-related death (Haas et al., 2008). Benign 

prostatic hypertrophy (BPH) is characterised as non-malignant growth of the adult 

prostate by similar processes that occur during prostate development in the embryo 

(McNeal, 1978; McNeal, 1983). BPH is not a precursor to prostate cancer 

(Chokkalingam et al., 2003). BPH arises in the transition zone of the prostate in men, 

whereas the peripheral zone of the prostate is the origin of prostate cancer (Shappell 

et al., 2004) . In the mouse, prostate cancer is thought to begin with prostatic 

hyperplasia (Shappell et al., 2004; Ittmann et al., 2013).  

 

Prostatic intraepithelial neoplasia (PIN) is the proliferation of atypical cells within the 

glands (Grabowska et al., 2014). In humans, low grade PIN may be dormant, however, 

high grade PIN is associated with progression to carcinoma (Bostwick et al., 1995; 

Bostwick et al., 2004). Similarly, mice can develop PIN (reviewed in: Shappell et al., 

2004; Ittman et al., 2013). Lesions in mouse PIN distort the fibromuscular sheath, 

disrupting smooth muscle actin and laminin (Park et al., 2002).  
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Disease progression of high grade PIN into prostate carcinoma is defined by the 

presence of epithelial migration into the stroma (Humphrey et al., 2011). The majority 

of cases are adenocarcinomas, whilst small cell (neuroendocrine) carcinomas and 

sarcomatoid carcinomas are rare (Humphrey et al., 2011). Adenocarcinomas are 

graded according to levels of disorganisation (normal to very abnormal) using the 

Gleason pattern scale (Humphrey et al., 2011). Neuroendocrine and sarcomatoid 

carcinomas, which tend to be on the very abnormal end, are normally androgen 

insensitive and do not respond well to chemotherapy (Wang et al., 2009).  

 

Unlike humans, mice develop all phenotypes of prostate cancer (adenocarcinomas, 

small cell carcinomas and sarcomatoid carcinomas) (reviewed in: Ittmann et al., 2013). 

Prostate cancer in the mouse can also be classified as invasive or microinvasive 

carcinoma (reviewed in: Grabowska et al., 2014; Ittmann et al., 2013). Both categories 

are associated with changes in the stroma in which there is proliferation beyond the 

prostatic ducts (invasive) or outside the basal layer and basement membrane 

(microinvasive) (Grabowska et al., 2014; Ittmann et al., 2013). 

 

1.1.4.1 The TRAMP mouse model of prostate cancer 

The first transgenic mouse model of prostate cancer was the transgenic 

adenocarcinoma mouse prostate (TRAMP) model (Greenberg et al., 1995). The 

TRAMP model was generated by fusing the promoter region of probasin to the early 

region of Simian Virus 40 (Greenberg et al., 1995). TRAMP mice exhibit rapid 
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development of prostatic intraepithelial neoplasia (PIN) and eventual progression to 

adenocarcinomas in the dorsolateral lobe (Shibata et al., 1996). The generation of 

adenocarcinomas in TRAMP mice is similar to adenocarcinomas in the peripheral 

zone of the human prostate (Greenberg et al., 1995). Whilst the TRAMP mouse model 

does not cover the entirety of the human disease, it has been useful in validating genes 

involved in prostate cancer progression and implementing therapeutic strategies for 

the treatment of prostate disease (Irshad et al., 2013; Harper et al., 2007; Raina et al., 

2007; Kumar et al., 2007).  

 

1.1.5 Development of the prostate in vivo 

The prostate is derived from the urogenital sinus, which constitutes an endodermally 

derived epithelial layer that is surrounded by a mesodermally derived mesenchymal 

layer (Thomson & Marker, 2006). The mesendoderm then, marks the beginning of 

prostate development. 

 

1.1.5.1 Development of the prostate begins with the mesendoderm  

The  mesendoderm is a progenitor to the endoderm and mesoderm and has been 

identified in the African claw-frog Xenopus laevis, zebrafish and mammals  

(Nieuwkoop, 1997; Agius et al., 2000; Rodaway & Patient, 2001; Nelson et al., 2014). 

The mesendoderm progenitor was discovered by fate mapping individual cells in 

early embryos that led to cell types arising from both the mesoderm and endoderm 

(Nieuwkoop, 1997; Rodaway & Patient, 2001). With the exception of ectoderm-
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derived tissues, the mesendoderm is responsible for the development of much of the 

body.  

 

Epithelial tissues derived from the endoderm consist of a mesoderm component to 

support structural integrity and provide signals for normal organogenesis (Haynes, 

1984; Walker, Hall, Hurst, & White, 1990; Lammert, Cleaver, & Melton, 2001; Goldman 

et al., 2014; Ribatti & Santoiemma, 2014; reviewed in: Boumelhem et al., 2017). 

Conversely, mesoderm derivatives such as blood, skeletal muscle and endothelium 

do not contain endoderm components (Willey et al., 2006, Buckingham et al., 2003; De 

Val & Black, 2009; Tirziu & Simons, 2009). The cell types that arise from the 

mesendoderm are outlined below (Figure 1.6). 

 

The mesendoderm is regulated by Nodal signalling (Agius et al., 2000). Nodal belongs 

to the TGFb family of signalling molecules (D'Amour et al., 2005). Nodal signalling is 

required for the specification and patterning of the primary body axes (left-right 

symmetry) during gastrulation (Shen, 2007; Schier & Shen, 1999). Nodal ligands bind 

to type I and type II serine-threonine kinase receptors and activate the Smad2/Smad3 

branch of the TGFb signalling pathway (Shen, 2007; Schier & Shen, 1999). Unique to 

the Nodal signalling parthway are the co-receptors of the EGF-CFC family of proteins 

(Shen, 2007). The EGF-CFC family of proteins are essential for Nodal signalling (Shen, 

2007). Downstream of Nodal signalling is the transcriptional regulator Eomesdermin 

(Eomes), which induces expression of T-box transcription factor Brachyury (Bry/T), 
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Mix-Like 1 (Mixl1) and Goosecoid (Gsc) (Agius et al., 2000; Costello et al., 2011; 

Costello et al., 2015). Mice embryos deficient for Mixl1 and Bry/T have an enlarged 

primitive streak and exhibit defective endoderm and mesoderm patterning (Hart et 

al., 2002; Beddington, Rashbass, & Wilson, 1992).   
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Figure 1.3: The mesendoderm is a bi-potential progenitor that gives rise to cell types from both the 

mesoderm and endoderm germ layers. 

The mesoderm (red) gives rise to support structures in the body such as vessels, connective tissue, 

blood and muscle. Derivatives of the lateral plate mesoderm include: endothelial cells, smooth muscle 

cells, red blood cells, cardiac muscle and white adipocytes. Derivatives of the intermediate mesoderm 

include skeletal muscle and brown adipocytes. Derivatives of the paraxial mesoderm include the 

kidney tubule cell. The endoderm (green) gives rise to the epithelial cells which line the major tubes in 

the body. Derivatives of the foregut endoderm include: the thyroid, the lungs, the liver and the 

pancreas. Derivatives of the midgut endoderm include the stomach and small intestine. Derivatives of 

the hindgut endoderm include the urogential sinus (including organs of the genitourinary tract) and 

the colon. Figure adapted from Boumelhem et al., 2017. 
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1.1.5.2 Prostate epithelial cells arise from the endoderm  

The endoderm is the source for the three major internal tracts: the respiratory, 

gastrointestinal and urogenital tracts (Figure 1.3) (Grapin-Botton, 2008). In mammals, 

development of definitive endoderm begins at gastrulation (embryonic day (E) 6.5) 

(Zorn & Wells, 2009). Endoderm precursors migrate from the epiblast to the anterior 

primitive streak and become embedded into the visceral endoderm (Tam & Behringer, 

1997). Movement of the definitive endoderm is facilitated by an epithelial-to-

mesenchymal transition (Blanco et al., 2007). 

 

Activin and Nodal-related proteins were shown to be crucial for endoderm formation 

as inhibition leads to improper formation in the Xenopus embryo (Thisse, Wright, & 

Thisse, 2000; Agius et al., 2000; Grapin-Botton, 2008). Like Nodal, Activin also belongs 

to the TGFb family of signalling molecules (D'Amour et al., 2005). In explant studies, 

loss of TGFb signalling in the endoderm increased expression of mesoderm and 

ectoderm markers (Henry, Brivanlou, & Kessler, 1996). Canonical Wnt signalling 

pathways activate Nodal expression during embryogenesis (Grapin-Botton, 2008). 

Specification of definitive endoderm requires both Wnt signalling and Nodal 

expression as mouse embryos lacking Nodal fail to form a primitive streak (Conlon et 

al., 1994). 
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1.1.5.3 The hindgut endoderm gives rise to the urogenital sinus 

The endoderm can be divided into three regions: the foregut, midgut and hindgut 

endoderm (Figure 1.4). The hindgut endoderm ends as a caudal expansion called the 

cloaca (Gupta et al., 2014). The cloaca is a transitory endoderm-derived cavity that 

subdivides into the urogenital sinus (UGS) and the anal canal (Gupta et al., 2014). The 

urogenital sinus (UGS) is an endoderm-derived structure that arises between E12.5-

E13.5 of development in the mouse and approximately during the 7th week of 

gestation in humans (cited in: Marker et al., 2003a; reviewed in: Cao et al., 2008). 

Determination of prostate development begins at E13.5 (Figure 1.4). Urogenital tissues 

such as the bladder and the prostate rely on paracrine signalling between the 

urogenital mesenchyme and epithelium for normal growth (Cunha et al., 1983; Tanaka 

et al., 2010; Li et al, 2008). The urothelium that lines the bladder forms an impervious 

membrane to prevent the toxic components of urine leaking onto underlying tissues 

(Moll et al., 1995; Kątnik-Prastowska, Lis, & Matejuk, 2014). The integrity of the 

membrane is dependent upon the uroplakin proteins (Upk1a, Upk1b, Upk2, Upk3) 

(Moll et al., 1995; Wu et al., 2009). Uroplakins are the first identifiable markers for 

urothelial cell differentiation in vivo (Moll et al., 1995).  

 

1.1.5.4 Branching morphogenesis of prostate epithelial cells is dependent upon 

paracrine signalling from the urogenital mesenchyme 

Initial budding of the prostate epithelial cells occurs at E16.5 (Sugimura, Cunha, & 

Donjacour, 1986). Androgen receptor signalling from the urogenital mesenchyme 
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stimulates epithelial cell budding (Thomson & Marker, 2006). Branching 

morphogenesis of the epithelial ducts is critical for normal prostate development 

(Thomson & Marker, 2006). Branching morphogenesis occurs when the budding 

epithelial ducts elongate and branch into the urogenital mesenchyme (Thomson & 

Marker, 2006). Developmental cues from the urogenital mesenchyme are critical for 

prostate ductal morphogenesis, growth and differentiation (Prins & Putz, 2008). If the 

urogenital sinus or urogenital mesenchyme are grown separately in explant cultures, 

no differentiation of prostatic epithelial buds occurs (Cunha et al, 1983). Further, 

explants of urogenital mesenchyme cultured with epithelium from embryonic or 

bladder tissue are sufficient to induce prostatic duct formation (Cunha et al., 1987). 

Implantation of human ES cells with urogenital mesenchyme into the kidney capsule 

of immunodeficient SCID mice prompt the formation of tumours with human 

prostatic tissue (Taylor et al., 2006). 

 

1.1.6 Androgens regulate prostate development 

Androgens are pivotal in forming the identity of the prostate (Cunha et al., 2004b). In 

particular, dihydrotestosterone (DHT), the more potent metabolite of testosterone, 

acts to stimulate outgrowth of the ductal epithelial buds during branching 

morphogenesis (Marker et al., 2003a). Branching of the epithelial buds is reliant upon 

androgen receptor expression on the urogenital mesenchyme, signifying the 

importance of paracrine signalling (Marker et al., 2003a). Androgens also regulate 

prostate specific genes probasin (Pbsn) and homeobox gene Nkx3.1 (Pritchard & 
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Nelson, 2008; Marker et al., 2003a). Probasin is a marker of prostate differentiation and 

androgen receptor activity (Johnson et al., 2000). Probasin is often targeted to generate 

prostate cancer models in the mouse and rat (Johnson et al., 2000; Parisotto et al., 2013; 

Sharma et al., 1999).  

 

1.1.6.1 Growth factors that are important in prostate organogenesis 

The transforming growth factor (TGF) superfamily of cytokines are important in 

mediating the interaction between stromal cells and epithelium during development 

of the prostate (Li et al., 2008). In particular, TGFb is correlated with epithelial prostate 

differentiation from the bladder (Li et al., 2008). Bladder urothelial cells cultured on 

the urogenital mesenchyme isolated from a TGFb conditional knockout mouse 

retained a bladder epithelial cell phenotype (Li et al., 2008). Conversely, bladder 

urothelial cells cultured on the urogenital mesenchyme of a control mouse yielded 

prostatic cell differentiation (Li et al., 2008). A summary outlining the timeline of 

development and gene expression of the prostate relevant for this study are outlined 

in Figure 1.4 

 

Paracrine signalling of fibroblast growth factor (FGF) 10 is also integral for the 

development of the prostate (Thomson & Cunha, 1999). Expression of FGF10 in the 

prostate is greatest during the earliest stages of organ development (during neonatal 

growth) but is low in the adult stages of development (Thomson & Cunha, 1999). 

Supplementation of ex vivo prostate organ cultures with FGF10 lead to the 
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development of prostate rudiments (Thomson & Cunha, 1999). Testosterone did not 

have exhibit a synergistic role with FGF10 in co-cultures (Thomson & Cunha, 1999). 

Thus, FGF10 is a key regulator of epithelial growth in the prostate.  

 

1.1.7 Prostate development at the molecular level 

1.1.7.1 Homeobox protein Nkx3.1 

Homeodomain transcription factor Nkx3.1 was the first identified molecular marker 

of prostate epithelium and is expressed at E15.5 in the UGS following androgen 

stimulation (Prins & Putz, 2008; Marker et al., 2003a). As branching morphogenesis 

takes place, expression of Nkx3.1 is restricted to the epithelial cells of the embryonic 

prostate buds at E17.5 (Prins & Putz, 2008). Ablation of Nkx3.1 causes abnormal 

prostate ductal morphogenesis (Abate-Shen et al., 2008). Additionally, Nkx3.1 is not 

expressed on ductal urogenital tissues such as the seminal vesicles, the bladder or the 

urethra (Abate-Shen et al., 2008). In humans, NKX3.1 expression has been detected in 

the testes, urethral epithelium and prostatic epithelium (Abate-Shen et al., 2008). Loss 

of NKX3.1 expression in the human prostate has been associated with prostate cancer 

progression (Bowen et al., 2000). 

 

1.1.7.2 Probasin 

Probasin is a prostate-specific, androgen regulated protein in rodents (Matuo et al., 

1982). Probasin is a marker of prostate differentiation and androgen receptor activity 

and is often targeted to generate prostate cancer models in the mouse and rat (Johnson 
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et al., 2000; Parisotto et al., 2013; Sharma et al., 1999). Expression of probasin is first 

detected around E17.5 as prostatic lobes undergo branching morphogenesis and 

remains expressed in the epithelium of terminally differentiated prostatic epithelial 

cells (Johnson et al., 2000; Parisotto et al., 2013; Sharma et al., 1999).  
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Figure 1.4: The developmental stages of prostate organogenesis in the mouse. 

Development of the prostate in vivo can be classified into four distinct stages. Androgen signalling from the mesenchyme (grey) leads to prostate determination 

at E13.5 of development in the mouse. Expression of mouse androgen receptor is first observed at E13.5. Budding of the ductal tips occurs between E13.5 and 

E17.5. Branching morphogenesis of the prostate occurs at E17.5 and is essential for proper prostate formation and separation into the three lobes (dorsolateral, 

ventral and anterior). Homeobox domain factor Nkx3.1 is expressed at E15.5 and remains expressed in the epithelial cells of the prostate. Expression of prostate 

specific marker Probasin is first observed at E17.5 and also remains expressed throughout the life of the mouse. Maturation of the prostatic lobes in mice occurs 

after birth. Androgens, FGF-10 and TGFβ promote the commitment, development and maturation of prostatic epithelial cells. 



 20 

1.2 Embryonic stem cells as an in vitro model of development 

The blastocyst develops at E3.5 of embryogenesis (Tam & Behringer, 1997). The 

blastocyst is composed of an outer layer of trophoblast cells which give rise to the 

extra-embryonic placenta and an inner cell population called the inner cell mass (ICM) 

(Tam & Behringer, 1997; Vazin et al, 2009). At E4.0, the embryo is implanted into the 

uterine wall of the mother and undergoes drastic structural changes (Tam & 

Behringer, 1997). Between E4.5-E6.5, the embryo develops into an elongated structure 

which consists of the ectoplacental cone, the extraembryonic ectoderm, the epiblast a 

layer of visceral endoderm (Tam & Behringer, 1997). Gastrulation commences at E6.5 

with the formation of the primitive streak as epiblast cells ingress to form the 

mesoderm and endoderm (Tam & Behringer, 1997). Epiblast cells in the proximity of 

the distal primitive streak are exposed to high concentrations of Nodal signalling 

factors. This results in their development to definitive endoderm (Lawson, Meneses, 

& Pedersen, 1991; Kwon, Viotti, & Hadjantonakis, 2008). Conversely, epiblast cells at 

the proximal end of the primitive streak are exposed to high levels of bone 

morphogenic protein (BMP), which leads to mesoderm generation (Lawson et al., 

1991; Parameswaran & Tam, 1995). Epiblast cells that do not ingress form the 

ectoderm and together with the mesoderm and endoderm, constitute the three 

primary germ layers of the body (Tam & Behringer, 1997).  

 

The ectoderm forms the external layer of the skin and the peripheral nervous system; 

the mesoderm contributes to bone, blood, ligaments, tendons, lymph nodes, cardiac 
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tissue, connective tissue, kidney tubule cells, vessels and muscle tissue (smooth and 

skeletal); and the endoderm generates the epithelial tissues of the respiratory, 

gastrointestinal and genitourinary tracts (Bronner-Fraser et al., 1995; Keller, 2005a; 

Grapin-Botton, 2008). 

 

Embryonic stem (ES) cells are derived from the inner cell mass (ICM) of the blastocyst 

and are capable of generating cell types from the ectoderm, the mesoderm and the 

endoderm (Evans & Kaufman, 1981; Martin et al., 1981; Thomson et al., 1998). 

Embryonic stem cells are generated by isolating and plating the ICM onto a 

supportive layer of non-proliferative feeder cells (Evans & Kaufman, 1981; Martin et 

al., 1981; Vazin et al., 2009). The resulting outgrowth of cells are dissociated and re-

plated onto fresh feeder layers before use as stem cells (Figure 1.5) (Evans & Kaufman, 

1981; Martin et al., 1981; Vazin et al., 2009). 

 

In 2006, Takahashi and Yamanaka generated pluripotent stem cells from adult 

fibroblasts. Induction of Oct4, Sox2, c-Myc and Klf4 into adult fibroblasts led to 

reprogramming into pluripotent stem cells (dubbed induced pluripotent stem (iPS) 

cells) (Figure 1.5B) (Takahashi & Yamanaka, 2006). The reprogrammed fibroblasts 

displayed characteristics of embryonic stem cells and subcutaneous transplantation of 

iPS cells into nude mice resulted in tumours containing tissues from all three germ 

layers (Takahashi & Yamanaka, 2006). Implantation of iPS cells into the blastocysts 

resulted in contribution towards mouse embryonic development (Takahashi & 
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Yamanaka, 2006). The generation of iPS cells from a few factors was a new milestone 

in developmental biology. 
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Figure 1.5: Embryonic and induced pluripotent stem cells are capable of differentiating into all cell types of the body. 

 (A) Embryonic stem (ES) cells are derived from the inner cell mass of the blastocyst. Isolated ES cells are plated on non-proliferative feeder cells. The resulting 

outgrowth of cells are dissociated and re-plated onto fresh feeder layers prior to germ layer specification. (B) Induced pluripotent stem (iPS) cells are generated 

from adult cells (such as skin fibroblasts) obtained from a biopsy. Adult cells are reprogrammed into pluripotent stem cells with the inductions of KLF4, c-

MYC, OCT4 and SOX2 in vitro.
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1.2.5.3 Differentiation of ES cells into the endoderm 

The use of mouse ES cell reporter lines have contributed in generating, isolating 

and characterising endoderm populations. ES cell lines with the green 

fluorescent protein (GFP) cDNA targeted to Bry/T have revealed endoderm 

generation from brachyury positive populations (Kubo et al., 2004). Changes in 

serum concentration to differentiating ES cells also affects endoderm 

differentiation (Kubo et al., 2004). Using the GFP-Bry/T ES cell line, serum-free 

cultures prolonged the expression of Sox17 and FoxA2 and reduced expression 

of Bry/T (Kubo et al., 2004). Furthermore, Activin-A promotes endoderm 

differentiation in a dose-dependent manner (Kubo et al., 2004). Greater than 

50% of the GFP-Bry/T ES cells treated with high dose Activin-A (100 ng.mL-1) 

expressed endoderm marker FoxA2 (Kubo et al., 2004).  

 

Activin-A binds to the same receptors as Nodal, triggering the signalling 

cascade to mimic Nodal activity in vitro (de Caestecker, 2004). Low levels of 

Activin promote mesoderm differentiation while high levels of Activin 

promote endoderm formation in ES cells (Kubo et al., 2004; Ogawa et al., 2007). 

The molecular response of ES cells to Activin mimic in vivo gastrulation (Kubo 

et al., 2004; Ogawa et al., 2007). Mesendoderm markers Mixl1 and Bry/T are 

expressed on day 2 of ES cell differentiation (Loebel et al., 2003). Definitive 

endoderm is confirmed by expression of Sox17, FoxA2 and Cxcr4 (Keller, 2005a; 

D'Amour et al., 2005; Murry & Keller, 2008; Loebel et al., 2003).  
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Identification of the mesendoderm progenitors in mouse ES cell differentiation 

highlights the utility of ES cells as models of in vivo development. The 

combination of mesendoderm marker Gsc and endoderm marker Sox17 in the 

reporter ES cell line ES-GscgfpSox17CD25 has distinguished between definitive, 

anterior visceral and visceral endodermal lineages (Yasunaga et al., 2005). 

Definitive endoderm is characterised by Gsc+Sox17+ expressing cells in 

differentiated ES cell cultures (Yasunaga et al., 2005). Expression of Cxcr4 

further distinguishes definitive endoderm from visceral endoderm (McGrath 

et al., 1999). ES cells as well as visceral endoderm do not express Cxcr4 

(Yasunaga et al., 2005; McGrath et al., 1999). Thus, Cxcr4 can be used to isolate 

definitive endoderm from differentiated mouse ES cell cultures.  

 

In the GFP-Bry/T ES cell line, CD4 cDNA was targeted to the FoxA2 locus to 

monitor endoderm development from the primitive streak (Gadue et al., 2006; 

Gadue et al., 2009). High concentrations of Activin-A promoted a CD4-

FoxA2HighGFP-Bry/T+ population indicative of definitive endoderm formation 

(Gadue et al., 2006). Signalling through the TGFb Nodal pathways by Activin-

A was required for the commitment of primitive streak-like cells into definitive 

endoderm (Gadue et al., 2006). Endodermal cell types differentiated from 

mouse and human ES and iPS cells are listed in Table 1.1. 

 



 26 

Table 1.1 Endoderm derived cell types successfully differentiated from 

mouse and human ES and iPS cells. 

Region Cell type Reference 

Foregut 

endoderm 

Thyroid epithelial cells 

Lung epithelial cells 

Hepatocytes 

 

Pancreatic b-cells 

Ma et al., 2015 

Ghaedi, Niklason, & 

Williams, 2015; Si-Tayeb et 

al., 2010  

Mallanna & Duncan, 2013;  

D'Amour et al., 2005; 

Murtaugh, 2006; Nostro et al., 

2015 

Midgut 

endoderm 

Enterocytes 

Small intestine epithelial cells 

Noguchi et al., 2015 

Cramer et al., 2015 

Hindgut 

endoderm 

Large intestine epithelial cells 

Bladder urothelial cells 

Cramer et al., 2015 

Osborn et al., 2014; Mauney 

et al., 2010 

 

1.2.5.4 Differentiation of prostate epithelial cell from mouse ES cells. 

There are no in vitro models of prostate development from embryogenesis. 

Studying the early developmental processes of prostate organogenesis is 

challenging due to the small size of early embryos. The development of an in 

vitro model of prostate organogenesis using mouse ES cells could reveal the 

earliest signalling processes in prostate epithelial cell commitment and 

differentiation.  
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1.3 Aims and hypotheses 

There are no reported in vitro models of prostate epithelial cell differentiation 

from mouse ES cells. This study aimed to differentiate mature, functional 

epithelial cells of the prostate from mouse ES cells in vitro. The development of 

this model could serve to replace foetal tissue. The prostate is derived from the 

urogenital sinus (UGS), which in turn is derived from the endoderm germ 

layer. Induction of endoderm differentiation from mouse ES cells is achieved 

with the addition of Activin-A and Wnt-3a in cell cultures. Urothelial cell 

specification is achieved with treatment of retinoic acid on endoderm cells. 

Paracrine signalling of DHT, TGFb1 and FGF10 from the urogenital 

mesenchyme are critical for the budding of prostatic epithelium in vivo. 

Subsequently, it was hypothesised that DHT, TGFb1 and FGF10 would drive 

prostate cell differentiation from mouse ES cell-derived urothelial cells. 

Confirmation of epithelial prostatic cells was to be confirmed by identification 

of prostate specific genes Pbsn and Nkx3.1.  

 

The development of a system to differentiate prostate epithelial cells from 

mouse ES cells will reduce the need for foetal tissue. If prostate epithelial cell 

differentiation is successful, the study could go on to model prostate 

carcinogenesis by over expressing known oncogenes critical for prostate cancer 

progression such as Nkx3.1 and PTEN in mouse ES cells.  
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Chapter 2: Materials and Methods 

2.1 Materials 

The consumables used for the experiments detailed in this study are listed in 

Table 2.1.  

 

2.2 Reagents 

The reagents used for the experiments detailed in this thesis are listed in Table 

2.2. Tables 2.3-5 display the composition of reagents, buffers and cell culture 

media used in this study. 
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Table 2.1. List of consumables used in this study. 

Product Cat. Number Company, Location 
0.2 mL flat cap PCR tubes TWI0201 Bio-Rad (Gladesville, NSW, Australia) 

1.5 mL Eppendorf tubes T9661 Eppendorf (Hamburg, Germany) 

1 mL Insulin syringe with needle SS*10M2713A Terumo (Macquarie Park, NSW, Australia) 

20G x 1.5” Needle NN*2038R Terumo (Macquarie Park, NSW, Australia) 

24mm x 24mm Cover glass GCC2424 ProSciTech (Kirwan, QLD, Australia) 

23G x 1” Needle NN*2325R Terumo (Macquarie Park, NSW, Australia) 

26G x 1.5”  NN*2613R Terumo (Macquarie Park, NSW, Australia) 

35mm petri dish 627102 Greiner bio-one (Kremsmünster, Austria) 

5 mL Stripette 4487 Sigma Aldrich (Castle Hill, NSW, Australia) 

6-well cell culture plate 657160 Greiner bio-one (Kremsmünster, Austria) 

15 mL Corning® Centrifuge tube CLS430791 Sigma Aldrich (Castle Hill, NSW, Australia) 

50 mL Corning® Centrifuge tube CLS430897 Sigma Aldrich (Castle Hill, NSW, Australia) 

Dissecting forceps + scissors E118A/E140 Australian Entomological Supplies (Murwillumbah, NSW, Australia) 

Eppendorf® Micropestle Z317314 Sigma Aldrich (Castle Hill, NSW, Australia) 

Razor blades L055 ProSciTech (Kirwan, QLD, Australia) 

Round bottom 5 mL, 75 x 12mm tubes 55.1759 Sarstedt (Nümbrecht, Germany) 

Safe-lock Tubes 0.5 mL T8911 Eppendorf (Hamburg, Germany) 

Sterile 10 mL Disposable syringe DSL010MLL Livingstone (Rosebery, NSW, Australia) 
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Table 2.2. List of reagents used in this study 

Product Cat. Number Company, Location 
1-Thioglycerol (MTG) M6145 Sigma (Castle Hill, NSW, Australia) 

5x DNA Loading Buffer Blue BIO-37045 BioLine (Eveleigh, NSW, Australia) 

Agarose BIO-41026 BioLine (Eveleigh, NSW, Australia) 

Albumin from bovine serum A9647-50G Sigma (Castle Hill, NSW, Australia) 

AmpliTaq Gold® 360 Master Mix 4398881 Applied Biosystems (Foster Hill, CA, USA) 

Cell Dissociation Buffer (Enzyme-free, PBS based) 13151-014 Gibco (North Ryde, NSW, Australia) 

Chloroform, anhydrous, >99% 372978-1L Sigma (Castle Hill, NSW, Australia) 

Collagenase Type II LS004176 Worthington (Lakewood, NJ, USA) 

DEPC treated H2O AM9916 ThermoFisher Scientific (North Ryde, NSW, Australia) 

Dimethyl suphoxide (DMSO)  122650 Sigma (Castle Hill, NSW, Australia) 

Dulbecco Modified Eagle Medium (1X) 11995-065 Gibco (North Ryde, NSW, Australia) 

Ethanol E7023-500mL Sigma (Castle Hill, NSW, Australia) 

Ethidium bromide E1510 Sigma (Castle Hill, NSW, Australia) 

Ethylenediaminetetraacetic acid (EDTA) EDS Sigma (Castle Hill, NSW, Australia) 

Foetal Bovine Serum (FBS) (Sterile) SFBS-F Bovogen (Keilor East, VIC, Australia) 

Formalin solution HT50-1-1 Sigma (Castle Hill, NSW, Australia) 

Glutamax (100X) 19140-122 Gibco (North Ryde, NSW, Australia) 

Glutaraldehyde C001 ProSciTech (Kirwan, QLD, Australia) 

High Capacity RNA-to-cDNA Kit 4387406 ThermoFisher Scientific (North Ryde, NSW, Australia) 

HyperLadder™ 100bp BIO-33029 Bioline (Eveleigh, NSW, Australia) 



 31 

Iscoves Modified Dulbecco Medium 12440061 Gibco (North Ryde, NSW, Australia) 

Knockout Serum Replacement 10828-028 Gibco (North Ryde, NSW, Australia) 

MilliQ H2O CDUFBI001 Merck Millipore (Bayswater, VIC, Australia) 

Penicillin Streptomycin (PEN/STREP) 15140122 Gibco (North Ryde, NSW, Australia) 

Phosphate Buffered Saline (PBS) 09-2051-100 Astral Scientific (Sydney, NSW, Australia) 

Recombinant Leukaemia Inhibitory Factor (LIF) -mouse 01-A1140-0010 ORF Genetic IsokineTM (Kopavogur, Iceland) 

All-Trans Retinoic acid R2625-50mg Sigma (Castle Hill, NSW, Australia) 

Reverse Osmosis H2O TANKPE030 Merck Miliipore (Bayswater, VIC, Australia) 

Sodium Pyruvate 11360-070 Gibco (North Ryde, NSW, Australia) 

Trizma Base T1503-1Kg Sigma (Castle Hill, NSW, Australia) 

TRIzol® Reagent 15596018 Life Technologies (North Ryde, NSW, Australia) 

TryplE® Express 12605-010 Gibco (North Ryde, NSW, Australia) 

Ultrapure Water with 0.1% Gelatin ES-006-B Merck Millipore (Bayswater, VIC, Australia) 
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Table 2.3. Composition of the reagents used in this study 

Name Composition 
0.1% (w/v) Type II Collagenase 1 mg of Type II Collagenase per mL of FACS buffer 
0.5 M EDTA (pH 8.0) 29.225 g EDTA 

200 mL MilliQ water 

Adjusted to pH 8.0 with concentrated NaOH. 
Ascorbic Acid 5mg of Ascorbic acid dissolved per mL of MilliQ water. 
Paraformaldehyde 4% (w/v) of paraformaldehyde powder dissolved in PBS. The 

solution was boiled at 60°C until the powder dissolved completely. 

 
 
Table 2.4: Composition of buffers used in this study.  
 

Name Composition 

Fluorescence-activated cell sorting (FACS) buffer Phosphate Buffered Saline + 0.5% FBS (v/v) 

10x Tris-Acetate-EDTA Running Buffer (10x TAE Buffer) 48.4 g Tris base 

11.42 glacial acetic acid 

20 mL 0.5 M EDTA 
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Table 2.5: Composition of cell culture media used in this study. 

Name Composition 
Mouse ES cell maintenance media DMEM supplemented to volume with: 

20% (v/v) FBS 

2 mM GlutamaxTM 

1 mM Sodium Pyruvate 

50,000 U/mL Penicillin 

50 mg/mL Streptomyocin 

150 µm 1-Thioglycerol 
Endoderm differentiation media IMDM supplemented to volume with: 

20%(v/v) Knockout Serum Replacement 

1 mM GlutamaxTM 

2.5 mM Sodium ascorbate 

50,000 U/mL Penicillin 

50 mg/mL Streptomyocin 

450 µm 1-Thioglycerol 
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2.3 Cell culture 

Reagents used for cell culture were warmed to 37°C before use. Cell culture 

was performed under sterile conditions in a laminar flow tissue culture hood 

(Edwards Instruments, Narellan, NSW, Australia). 

 

2.3.1 Maintenance of mouse embryonic stem (ES) cells 

The mouse embryonic stem (ES) cell line used in this study was obtained from 

the embryos of wild-type 129SV/J mice (Kuo et al., 2001). Mouse ES cells were 

plated on gelatin-coated 6-well plates in the absence of a feeder layer. Mouse 

ES cells were maintained in Dulbecco Modified Eagle Medium supplemented 

with 20% (V/V) foetal calf serum, 2 mM Glutamax, 1 mM sodium pyruvate, 

50,000 U.mL-1 penicillin, 50 mg.mL-1, streptomycin and 150 µm of 1-thioglycerol 

(mouse ES cell maintenance media). Addition of 100 units.mL-1 leukaemia 

inhibitory factor (LIF) inhibited the differentiation of stem cells and maintained 

undifferentiated status. Mouse ES cells were passaged every two days. 

 

2.3.2 Passaging of mouse ES cells 

Prior to passaging of mouse ES cells, 1 mL of gelatin was added to a 6-well plate 

and let to sit for 10 min at room temperature before discarded. The mouse ES 

cell maintenance media was aspirated and cells washed with 1 mL PBS. PBS 

was removed and 500 µL of TrypLE® Express added. The 6-well plate was 

placed into the incubator at 37°C to initiate dissociation. Afterwards, 1.5 mL of 
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mouse ES cell maintenance media was added to quench the TrypLE® Express 

and mouse ES cells transferred into a 15 mL Corning tube. The mouse ES cells 

were centrifuged at 240 x g for 5 minutes. The supernatant was discarded and 

100 units.mL-1 LIF was added to the mouse ES cells. The mouse ES cells were 

re-suspended in 6 mL of mouse ES cell maintenance media and plated onto 

three wells of a gelatinised 6-well plate. 

 
 
2.4 Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis  

Cells at each stage of the differentiation protocol (undifferentiated mES; 

endoderm; urothelial cell and prostate cell) were washed twice with 2 mL of 

PBS and harvested with the addition of 1 mL of cell dissociation buffer. Cells 

were incubated at 37°C for 10 minutes to initiate dissociation. Following, the 

cells were resuspended and centrifuged at 240 x g for 5 minutes and 

supernatant discarded. The pellet was then resuspended in 1 mL of Trizol and 

transferred into a 1.7 mL Eppendorf tube. 

 

For positive controls, mouse bladder and dorsolateral prostate tissue were 

washed with PBS and re-suspended in 1 mL of Trizol reagent. The tissues were 

homogenised by carefully grinding them with a micropestle. Once the tissue 

was homogenised, it was left to incubate for 5 minutes at 22°C then transferred 

into a 1.7 mL Eppendorf tube and stored at -80°C until needed. 
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Samples stored at -80°C were left to equilibrate to room temperature before 

proceeding. RNA isolated following Trizol extraction was performed 

according to manufacturer’s instructions. Following precipitation of RNA, the 

pellet was washed twice with 1 mL ice-cold 75% ethanol. The 1.7 mL Eppendorf 

tube was briefly vortexed and centrifuged at 7500g for 5 minutes at 4°C. The 

supernatant was discarded and the tube was left to air-dry. The RNA pellet 

was resuspended in 50 µL of RNase/DNase free water and incubated at 60°C 

for 10 minutes. RNA purity was determined by the 1:2:1 ratio of absorbance at 

280 nm, 260 nm and 230 nm measured on a NanoDrop ND1000 

spectrophotometer.  

 

Reverse transcription of RNA samples was performed using the RNA-to-

cDNA Kit according to manufacturer’s instructions. Volume and RNA 

concentrations of reactions are given in Table 2.6. Reaction mixes were 

prepared in 0.2 mL thin walled, domed cap PCR tubes.  
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Table 2.6. Components required for reverse transcription of RNA. 

 Component volume  

Kit component +RT -RT (control) 

2X RT Buffer 

(includes a mix of: dNTPs, random 

octamers and oligo dT-16. 

10 µL 10 µL 

20X Enzyme Mix 1 µL N/A 

RNA Sample 4 µL 

(total 1 µg RNA) 

4 µL 

(total 1 µg RNA) 

DEPC-water Up to 20 µL Up to 20 µL 

Total per reaction 20 µL 20 µL 

 

PCR tubes were briefly centrifuged and incubated at 37°C for 60 minutes, 

followed by 95°C for 5 minutes using a Bio-Rad T100 thermal cycler 

(Gladesville, NSW, Australia).  

 

One µg of cDNA was mixed with universal components of Amplitaq Gold® 

360 Master Mix as per manufacturer’s instructions (Table 2.7). Reactions were 

made to a total volume of 20 µL in thin walled 0.2 mL domed cap PCR tubes. 

To each mix, gene specific forward and reverse primers were added. Sequences 

were obtained from the Nucleotide database provided by the National Centre 

for Biotechnology Information (NCBI). Primer sequences were generated using 

Primer3 software. All forward and reverse primers were designed across 

intron-exon boundaries except for Nkx3.1, FoxA2 and Upk1b. The melting 
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temperature of the primers was 60°C. Forward and reverse primers were re-

suspended in RNase/DNase free water to a final concentration of 100 µmol.L-1. 

Stock concentrations were further diluted to 10 µmol.L-1 prior to PCR reaction 

set up. Primer sequences are provided in Table 2.8.  

 

Both no RT and no template controls were included. The reaction mixes were 

briefly centrifuged prior to reaction protocol of 1 cycle at 95°C for 10 min; 45 

cycles of 30 sec at 95°C, 30 sec at 65°C and 1 minute at 72°C; followed by 1 cycle 

at 72°C for 7 min. For nested primer sequences, PCR products were diluted in 

RNase/DNase free water in a ratio of 1:10. One µL of the diluted PCR product 

was then used to generate amplified PCR reactions using nested primer 

sequences (Table 2.8). 

 
Table 2.7. Components for RT-PCR reactions. 
 
Component Volume 

(20 µL reaction) 

Final concentration 

Amplitaq® Gold 360 

Master Mix 

10 µL N/A 

10 µM forward primer 2 µL 0.4 µM 

10 µM reverse primer 2 µL 0.4 µM 

cDNA 1 µL 1 µg/reaction 

DPEC water 5 µL N/A 
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Table 2.8. Sequences of primers used for RT-PCR analyses in this study.  
Sequences were obtained from the Nucleotide database provided by the National Centre for Biotechnology Information (NCBI 
reference). Primer sequences were generated using Primer3 software (http://primer3.ut.ee/). All forward and reverse primers were 
designed across intron-exon boundaries except for Nkx3.1, FoxA2 and Upk1b. The melting temperature of the primers was 70°C.  

Gene Forward (3’ to 5’) Reverse (5’ to 3’) Predicted amplicon 
size (bp) 

NCBI reference 

β-actin CCTCTATGCCAACACAGTGC CCTGCTTGCTGATCCACATC 120 NM_007393.3 
Oct4 CACGAGTGGAAAGCAACTCA AGATGGTGGTCTGGCTGAAC 246 NM_013633.3 
Nanog AAGTACCTCAGCCTCCAGCA GTGCTGAGCCCTTCTGAATC 163 NM_028016.2 
FoxA2 CTACACACACGCCAAACCTC GGCACCTTGAGAAAGCAGTC 201 NM_010446 
Upk1a ATCAATGAAGATGGCTGCCG GACCCTCCCTGTGATGTTGA 151 NM_026815.2 
Upk1b TCCGTCAGACTGGCAGAAAT GTCCAGGTTGAGAGGCTCTT 118 NM_178924.4 
Upk2 AGCCTGTTAATTGCCTTGCC TGTCACCTGATATGCGCTGA 195 NM_009476.2 
mAR TAAGTCGCTGTACCCCCAAC GAAATGGGGTCAGGGATTTT 450 NM_013476 
Csf-1R GACCTGCTCCACTTCTCCAG GATGTCCCTAGCCAGTCCAA 300 NM_001037859.2 
Nkx3.1 CTACCCATTCACCCACACCT TTTTCTGTTAGAGCCGGGGT 150 NM_010921.3 
Nkx3.1 (Nested) CTGGTAGAAACGTGGCCTGT CCGGGGTTTGCTAACTGATT 115 NM_010921.3 
Pbsn TGCACAGTATGAAGGGAGCA ACAGTTGTCCGTGTCCATGA 229 NM_017471.2 
Svs2 CCACACCAGGGAGTGTTCTT CTCCACTTCTGACTGCCCTC 150 NM_017390 
Svs2 (Nested) CCCTGTGACCTCTGCTTTTC GAGTGGATTTCTGCCTGCT 115 NM_017390 
Msmb GCATCACCTGTGAGCTTTGA ATAGTGGTCCTGTGCCAAGG 150 NM_020597.3 
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Amplicons generated from RT-PCR were analysed by agarose gel submarine 

electrophoresis. Ten µL of samples were mixed with 2 µL of DNA loading 

buffer (containing 30% (v/v) glycerol, 0.25% (w/v) bromophenol blue and 0.25% 

(w/v) xylene cyanol FF) and loaded onto a 2% (w/v) agarose/Tris acetate EDTA 

(pH 8.0) (TAE) buffer gel containing 0.1% (w/v) ethidium bromide. Five µL of 

the HyperLadderTM 50bp was included on each gel. Loaded samples were 

separated at 100 V for 1 hour and products were visualised under an ultra-

violet transilluminator (Bio-Rad, North Ryde, NSW, Australia). The amplicon 

was sized with reference to HyperLadderTM. 
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2.5 Animals 

Quackenbush Swiss mice were purchased from the Animal Resources Centre 

(Canning Vale, WA, Australia) and housed in filter top cages at the animal 

house facilities of the Medical Foundation Building (University of Sydney, 

NSW, Australia). Mice were kept under a 12-hour day and night cycle at 

constant temperature (21-22°C) and provided food and water ad libitum. Male 

mice were housed individually while female mice were housed in groups. The 

welfare of the animals in the housing area and experiments conducted were in 

accordance with the Australian Code of Practice and the University of Sydney 

Ethics Committee (763) for the use of animals in research. Tissue collected for 

these experiments were part of the University of Sydney tissue-sharing scheme.  

 

2.5.1 Dissection and excision of tissue from mice 

Mice were euthanised by cervical dislocation according to the University of 

Sydney Animal Ethics Committee approval. Dissection equipment used is 

listed in Table 2.1. Prior to dissection, the mouse was sprayed with 80% ethanol 

to manage the fur. 
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2.5.1.1 Genitourinary organs 

The genitourinary organs examined in this study were the bladder and the 

prostate. A midline incision was made to the ventral side of the abdomen to 

expose the abdominal cavity. The abdominal cavity was then opened to reveal 

the internal organs of the mouse.  

 

The bladder is a balloon-like organ that is distinct from the surrounding 

genitourinary organs. The prostate is situated between the bladder and the 

urethra of the mouse. While gently pinching the bladder (as it can burst when 

full of fluid), an incision was made as caudal as possible. The bladder was then 

removed along with the prostate glands.  

 

2.5.1.2 Adipose tissue  

The anatomical location of all adipose depots was demonstrated by Dr. Kim 

Bell-Anderson (School of Life and Environmental Sciences, University of 

Sydney, Australia). 

 

2.5.1.2.1 Brown adipose tissue 

The mouse was placed dorsal side up to expose the interscapular region. The 

skin was pinched gently between the scapula and an incision was made. The 

fur and skin were removed to expose the interscapular fat pad where brown 

adipose tissue (BAT) is located (Figure 2.1A). The fat pad was excised, turned 
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over and the BAT separated from the subcutaneous interscapular white 

adipose tissue (WAT).  

 

2.5.1.2.2 White adipose tissue 

The mouse was placed in a supine position. The skin was gently pinched 

around the abdomen and a midline incision was made. The exposed abdominal 

cavity was cut open to reveal the internal organs. WAT was then dissected from 

five different anatomical locations. Subcutaneous WAT was excised from the 

inguinal adipose depot located just above the femur (inguinal; WAT:ING) 

(Figure 2.1B). Visceral WAT was excised from adipose depots situated around 

the reproductive tract (gonadal; WAT:GON), the kidneys (peri-renal; 

WAT:PR), the intestines (mesenteric; WAT:MES) and the heart (epicardial; 

WAT:EC) (Figure 2.1C-F).  

 

2.5.1.3 Femoral and caudal vertebrae marrow 

The mouse was placed in a supine position. A midline incision was made and 

extended to the genito-femoral junction in the pelvic region. The fur and skin 

were removed to expose the quadriceps muscle that was separated from the 

bone via bilateral incision. The femur was removed by cutting the bone at the 

hip joint followed by the knee joint. A cut was made at both ends of the femur 

to expose the marrow. The marrow was flushed using a 23G needle attached to 

a 5 mL syringe containing 3 mL of ES maintenance medium. 
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The caudal vertebra (tail) of the mouse was removed by snipping at the base of 

the tail. Four incisions were made around the opening to allow for the removal 

of the skin surrounding the tail by forceps. Individual vertebrae were sliced by 

a razor blade and then sliced again in half to expose the marrow before 

flushing.  
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Figure 2.1: Generation of single cell suspensions from BAT, subcutaneous and visceral WAT 

depots and separation of the adipocytes from the SVF. 

Adipose tissue (dotted white box) from (A) interscapular brown (BAT), (B) subcutaneous 

inguinal (WAT:ING), (C) visceral gonadal (WAT:GON), (D) peri-renal (WAT:PR), (E) 

mesenteric (WAT:MES), and (F) epicardial (WAT:EC) depots were dissected out and further 

prepared for the generation of single cell suspensions as outlined (G). Inset photomicrographs 

(A-F) of adipocytes in the buoyant cell fraction viewed under phase contrast. Arrowheads 

indicate multi-locular adipocytes liberated from BAT. Scare bar = 50 µm. Figure adapted from 

Boumelhem et al., 2017. 
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2.6 Flow cytometry 

2.6.1 Generation of single cell suspensions from undifferentiated mouse ES 

cells and D5 embryoid bodies. 

Confluent undifferentiated mouse ES cells were washed twice with 1 mL PBS 

followed by addition of 1 mL Cell Dissociation Buffer. Undifferentiated mouse 

ES cells were placed in the incubator at 37°C for 10 minutes to initiate 

dissociation of the cells. An equal volume of FACS buffer was then added to 

inactivate the Cell Dissociation Buffer. Mouse ES cells were pipetted 

repeatedly, transferred to a 15 mL Corning tube and centrifuged for 5 minutes 

at 240 x g. The supernatant was removed and the cells re-suspended in 1 mL of 

FACS buffer, ready for staining. 

 

Mouse ES cells plated in low-adhesive culture dishes will form aggregates 

termed embryoid bodies (EB). For mouse ES cell differentiation cultures, day 5 

EBs were transferred into a 15 mL Corning tube and allowed to settle by 

gravity. After the EBs had sunk to the bottom (~10 min), the supernatant was 

removed and the cells washed with 2 mL of PBS. Once the EBs had sunk to the 

bottom, the PBS was aspirated and 1 mL Cell Dissociation Buffer was added. 

The EBs were placed in the incubator at 37°C for 10 minutes with gentle 

shaking every three minutes. Following, an equal volume of FACS buffer was 

added and the EBs centrifuged for 5 minutes at 240 x g. The supernatant was 
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removed and the cells re-suspended in 1 mL of FACS buffer, ready to be 

stained. 

2.6.2 Generation of single cell suspensions from primary tissue. 

For dissociation of primary tissue into single cells, Type II Collagenase was 

used. The methodology for breaking down the tissues used in this study is 

outlined below. 

 

2.6.2.1 Adipose tissue 

Brown and white adipose tissues (2.5.1.1) were minced into 1-3mm3 pieces in 

FACS buffer and digested with 3-5 mL of 0.1% (w/v) Collagenase Type II for 1 

hour at 37°C with vigorous shaking every 15 minutes (Figure 2.1G). Digested 

adipose tissue was dispersed further with repeated pipetting followed by 

filtration through a 350 µm polystyrene mesh. An equal volume of FACS buffer 

was added to the filtered single cell suspension to inactivate collagenase and 

then centrifuged for 7 minutes at 500g. Centrifugation pellets the stromal 

vascular fraction (SVF) while the buoyant adipocytes float at the surface of the 

suspension. The supernatant fraction containing adipocytes was transferred to 

a separate 15 mL Corning tube whilst the SVF was re-suspended in 1 mL of 

FACS buffer prior to staining (Figure 2.1G).  
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2.6.2.2 Bone marrow 

Marrow from the femur and caudal vertebrae (2.5.1.3) was gently flushed using 

a 23G needle attached to a 5 mL syringe containing 3 mL of ES maintenance 

media. Bones were flushed until translucent. The flushed marrow was gently 

re-suspended multiple times using the same syringe and needle followed by 

centrifugation for 5 minutes at 500g. The supernatant was transferred into a 

separate 15 mL Corning tube for marrow adipocyte analysis. The pellet was re-

suspended in 1 mL of FACS buffer prior to staining. Table 2.4 summarises the 

conditions used to dissociate cells and primary tissue into single cells. 
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Table 2.9. Conditions used to dissociate undifferentiated mouse ES cells, embryoid bodies and primary tissue into single cells. 

Cell type Mechanical dissociation Chemical reagent Incubation 37°C 
(min) 

Agitation 
(intervals) 

Filtration 

Mouse ES cells N/A Cell Dissociation Buffer 10 N/A N/A 
Embryoid bodies N/A Cell Dissociation Buffer 10 3 min N/A 
Primary tissue 
 

Minced into 1-3mm3 pieces 0.1% (w/v) Collagenase 
Type II 

60 15 min ~350µm 
polystyrene mesh 

Marrow Flushed using a 23G needle 
attached to a 5 mL syringe. 

N/A N/A N/A N/A 
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2.6.3 Sample preparation for flow cytometry 

2.6.3.1 Controls used for flow cytometric analyses 

The types of controls used for flow cytometric analyses are presented in Table 

2.10.   

 

2.6.3.1.1 Undifferentiated mouse ES cells 

For mouse ES cells, the following single colour controls were used: 

phycoerythin (PE) conjugated anti-mouse epithelial cell adhesion marker 

(EpCAM), and allophycocyanin (APC) conjugated anti-mouse epithelial 

cadhesion marker (ECad) antibody. The isotype controls used were PE-

conjugated rat IgG2a antibody and APC-conjugated rat IgG1 antibody.  

 

2.6.3.1.2 Primary tissue 

For single cells dissociated from primary tissue, flushed femoral marrow was 

used to establish single colour controls. The single colour controls included:  PE 

conjugated anti-mouse CD45, fluorescein isothiocyanate (FITC)-conjugated 

anti-mouse Ter119 and APC conjugated F4/80. The isotype controls used for all 

tissue types were PE-conjugated rat IgG2b antibody, FITC-conjugated rat 

IgG2b antibody and APC-conjugated rat IgG2a antibody. 
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Table 2.10: Controls used for flow cytometric analyses in this study. 

Control Purpose 
No stain/Unstained Measure auto fluorescence caused by dead or dying cells. 
Isotype Measure background signal that is normally the result of 

immunoglobluins binding non-specifically to Fc 
receptors. 

Single colour  To set the voltage of a given channel and to correct 
spectral overlap. 

Fluorescence minus one Contains all the fluorochromes in a given cocktail, minus 
the fluorochrome being analysed.    

 

2.6.3.2 Staining of cells with fluorescently-conjugated antibodies or 

fluorescent probes 

Cocktails of FITC-conjugated, PE-conjugated and APC-conjugated antibodies 

were prepared to a working concentration outlined in Table 2.11. Cocktails of 

fluorescent dyes or probes were prepared to a working concentration outlined 

in Table 2.12. The cocktail mix (100 µL) was then pipetted onto single cell 

suspensions (100 µL). The cells were then incubated at 4°C for 45 minutes in 

the dark. Following incubation, the cells were washed with 1 mL of FACS 

buffer to wash any unbound cells and centrifuged for 5 minutes at 240g. The 

supernatant was removed and the cells re-suspended in 400 µL of FACS buffer 

with propidium iodide (PI, 1:1000 dilution). The re-suspended cells were 

transferred into round-bottom tubes, ready for flow cytometric analysis. 
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Table 2.11. List of fluorescently conjugated antibodies used in this study. 

Antigen Clone Concentration Fluorophore Company, location 
α2-integrin DX5 3.25 µg.mL-1 APC BioLegend 
α4-integrin R1-2 1.3 µg.mL-1 FITC eBioscience 
α5-integrin eBioHMa5-1 3.25 µg.mL-1 APC eBioscience 
α6-integrin GoH3 3.25 µg.mL-1 APC BioLegend 
α7-integrin 3C12 3.25 µg.mL-1 APC Miltenyi Biotec 
αL-integrin M17/4 1.3 µg.mL-1 APC BioLegend 
β1-integrin HMb1-1 3.25 µg.mL-1 FITC BioLegend 
β3-integrin 2C9.G3 3.25 µg.mL-1 FITC eBioscience 
β4-integrin 346-11A 3.25 µg.mL-1 FITC AbD Serotec 
β7-integrin FIB504 3.25 µg.mL-1 FITC eBioscience 

c-Kit 2B8 3.25 µg.mL-1 APC BioLegend 
CD3e 145-2C11 6.5 µg.mL-1 FITC eBioscience 
CD4 GK1.5 3.25 µg.mL-1 APC eBioscience 

CD11b M1/70 3.25 µg.mL-1 APC eBiosience 
CD19 eBio1D3 3.25 µg.mL-1 FITC eBioscience 
CD31 390 3.25 µg.mL-1 FITC eBioscience 
CD34 RAM34 3.25 µg.mL-1 FITC eBioscience 
CD36 72-1 1.3 µg.mL-1 APC eBioscience 
CD40 1C10 3.25 µg.mL-1 APC eBioscience 
CD41 MWReg30 3.25 µg.mL-1 APC BD Bioscience 
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CD45 30-F11 1.3 µg.mL-1 APC eBioscience 
CD47 miap301 6.5 µg.mL-1 FITC eBioscience 
CD48 HM48-1 1.3 µg.mL-1 APC eBioscience 
CD71 R17217 3.25 µg.mL-1 FITC eBioscience 

CD133 315-2C11 3.25 µg.mL-1 APC BioLegend 
CD137 (4-1BB) 17B5 3.25 µg.mL-1 APC BioLegend 

CD144 BV13 3.25 µg.mL-1 APC eBioscience 
Csf-1R 12-3A3-1B10 1.3 µg.mL-1 PE eBioscience 
CXCR4 2B11 1.3 µg.mL-1 PE eBioscience 

E-Cadherin DECMA-1 3.25 µg.mL-1 APC BioLegend 
EpCAM G8.8 3.25 µg.mL-1 PE, APC BioLegend 

F4/80 BM8 1.3 µg.mL-1 APC eBioscience 
Flk-1 Avas12a1 1.3 µg.mL-1 APC eBioscience 
Gr-1 Rb6-8C5 3.25 µg.mL-1 FITC eBioscience 

I-CAM-1 HA58 3.25 µg.mL-1 APC eBioscience 
Rat IgG1 k DECMA-1 1.3 µg.mL-1 APC, FITC, PE Biolegend 

Rat IgG2a k eBR2a 1.3 µg.mL-1 APC, FITC, PE eBioscience 
Rat IgG2b k eB149/10H5 1.3 µg.mL-1 APC, FITC, PE eBioscience 

Ter119 TER-119 1.3 µg.mL-1 APC, FITC, PE BioLegend 
V-CAM-1 429 1.3 µg.mL-1 APC eBioscience 
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Table 2.12. List of probes used in this study. 

Probe/dye Cataglogue number Concentration Company, location 
Carborane coumarin N/A 0.5 µM School of Chemistry, University of Sydney, Australia 

DRAQ5 62251 5 µM Thermo Fisher Scientific (North Ryde, NSW, Australia) 
LipidTox® Green H34475 1X solution Life Technologies 
LipidTox® Red H34476 1X solution Life Technologies 

MitoTracker® Deep Red M22426 0.2 µM Life Technologies 
Nile Blue N0766 0.25 µM Sigma 
Nile Red N3013 0.1 µM Sigma 

Phenyl coumarin N/A 0.5 µM School of Chemistry, University of Sydney, Australia 
Oil Red O OREDO N/A POCD Scientific 
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2.6.3.3 Instrument settings 

Flow cytometry for cell surface protein expression and probe uptake was 

examined using a FACSCalibur 4-color flow cytometer (Becton Dickinson, San 

Jose, CA, USA) and data collected using CellQuest software. Table 2.13 

highlights the channels used by the flow cytometer and the parameter being 

measured. Table 2.13 also outlines the settings used for undifferentiated mouse 

ES cells and D5 EBs. Table 2.14 outlines the settings used for single cells 

dissociated from primary tissue. All parameters were measured on the log 

setting. For undifferentiated mouse ES cells, size and granularity (FSC-H and 

SSC-H respectively) were measured using linear settings. 

 

2.6.3.4 Compensation 

While fluorescent-conjugated antibodies have a narrow spectrum, probes may 

have spectral overlap between channels. Single colour controls can be used to 

correct spectral overlap by ensuring fluorescence is only observed in a single 

channel. Table 2.15 displays the settings used to compensate samples. 

 

2.6.3.5 Data analysis 

Flow cytometric data was analysed using the FlowJo software package 

(Version X.0.7, TreeStar, Ashland, OR, USA).  
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Table 2.13. The settings used to measure fluorescence on undifferentiated 

mouse ES cells. 

Channel Parameter Voltage Amp Gain Mode 

FSC Forward scatter (size) E00 2.45 Linear 

SSC Side scatter (granularity) 425 2.90 Linear 

FL-1 FITC-conjugated antibodies 525 1.00 Logarithmic 

FL-2 PE-conjugated antibodies 480 1.00 Logarithmic 

FL-3 Propidium Iodide 600 1.00 Logarithmic 

FL-4 APC-conjugated antibodies 750 1.00 Logarithmic 

 

Table 2.14. The settings used to measure fluorescence on single cells 

generated from primary tissue. 

Channel Voltage Amp Gain Mode 

FSC E00 9.99 Logarithmic 

SSC 400 9.99 Logarithmic 

FL-1 650 1.00 Logarithmic 

FL-2 650 1.00 Logarithmic 

FL-3 800 1.00 Logarithmic 

FL-4 750 1.00 Logarithmic 

 
 

Table 2.15. Settings used to correct spectral overlap of fluorescently-

conjugated antibodies and probes. 

 FL-1 FL-2 FL-3 FL-4 

FL-1  22% N/A N/A 

FL-2 18%  0% N/A 

FL-3 N/A 27.5%  0% 

FL-4 N/A N/A 0%  
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2.7 Imaging 

2.7.1 Light microscopy 

Light microscopy was performed on an Axiovert35 (Zeiss, Germany) 

microscopy under 20x and 32x magnification (ACROSTIMA 20x and 30x 

objective, NA: 0.40 and NA: 0.30 respectively) and imaged using ZEN 2011 

imaging software (Zeiss).  

 

2.7.2 Confocal microscopy 

Confocal images were taken with a Leica SPEII (Leica, Germany) equipped 

with four solid-state lasers (405nm, 488nm, 532nm and 625nm). Images were 

taken using an oil-immersed Leica ACS Apochromat 63x objective coupled to 

the Leica Application Suite – Advanced Fluorescence Software.  

 

2.8 Statistical analyses 

All data presented as mean ± SEM. Graphpad Prism® (Version 7.0a) was used 

to generate graphs and determine statistical significance. Where relevant, two-

tailed Student’s t-test was used to compare between two groups. A two-tailed 

one-way ANOVA with Tukey’s posthoc analysis was used to compare more 

than two groups. A two-tailed two-way ANOVA with Tukey’s multiple 

comparison test was used to compare two variables between several groups. A 

P value less than 0.05 was deemed significant.  
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Chapter 3: The differentiation of mouse embryonic stem cells into 

prostate epithelial cells. 

	
3.1 Introduction 

The prostate is an exocrine gland derived from the urogenital sinus, which in 

turn is derived from the endoderm (Marker et al., 2003b). Development of the 

endoderm, urogenital sinus and the prostate in vivo is detailed in 1.1.4. There 

are no in vitro models of prostate epithelial cell differentiation from mouse ES 

cells. Mouse ES cells are capable of differentiating into all cell types from the 

three germ layers: the ectoderm, the endoderm and the mesoderm by 

mimicking processes critical for in vivo development (Keller, 2005b). Paracrine 

signalling from the urogenital mesenchyme is critical for prostate epithelial cell 

development (outlined in 1.2.2). Androgen receptor, TGFb1 and FGF10 

signalling can be replicated in vitro to recapitulate the developmental cues 

required for normal development. A proposed timeline of prostate epithelial 

cell differentiation from mouse ES cells is depicted in Figure 3.1. 
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3.1.1 Hypothesis: 

Treatment of mouse ES cells in vitro with factors known to be important for in 

vivo prostate development in a stepwise manner (with intermediate stages of 

differentiation identified) will result in the differentiation of prostate epithelial 

cell types. Thus, the treatment of urothelial cells derived from mouse ES cells 

with dihydrotestosterone (DHT), TGFb1 and FGF10 would be sufficient to 

drive differentiation into prostate epithelial cells. 

 

3.1.2 Aims: 

1) To recapitulate the developmental processes in prostate organogenesis in 

vitro using mouse ES cells.  

2) To drive differentiation of mouse ES cells into prostatic glandular epithelial 

cells with factors reported to be critical for in vivo prostate organogenesis.   
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Figure 3.1: Proposed method of differentiation prostate epithelial cells from mouse ES cell 

in vitro.  

Pluripotency markers Oct4 and Nanog are expressed on undifferentiated mouse ES cells. The 

presence of leukemia inhibitory factor (LIF) in mouse ES cell cultures prevents spontaneous 

differentiation of mouse ES cells into cells from the three germ layers: the endoderm (green), 

the ectoderm (orange) and the mesoderm (purple). Endoderm (FoxA2 expression) induction 

from mouse ES cells is achieved by removal of LIF and addition of Activin-A and Wnt-3A in 

cell cultures. Urothelial cell (Upk1b and Upk2 expression) differentiation is driven by retinoic 

acid. Finally, the proposed method to induce prostate epithelial cell differentiation is by 

treatment of mouse ES cell derived-urothelial cells with DHT, TGFb1 and FGF10. Gene 

expression of Nkx3.1, Svs2 and Pbsn will confirm the generation of prostate epithelial cells. 
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3.2 Methods 

3.2.1 Differentiation of mouse ES cells into endoderm. 

The maintenance of mouse ES cells is outlined in 2.4.1. For differentiation of 

mouse ES cells, 1.5x104 cells.mL-1 were plated on 30 mm petri dishes in the 

absence of LIF and kept in an incubator set to 37°C and 5% CO2. Mouse ES cells 

will form aggregates termed embryoid bodies (EB). To induce endoderm 

differentiation, 100 nM of Activin-A and 25 nM of Wnt-3A were added to EB 

cultures for 5 days after the removal of LIF. Media was changed every two 

days. Endoderm differentiation was confirmed by detection of FoxA2 gene 

expression and surface protein expression of CXCR4 and c-Kit by RT-PCR and 

flow cytometry respectively as described below.  

 

3.2.2 Differentiation of endoderm to urothelium. 

Following endoderm differentiation, day 5 embryoid bodies (EBs) were plated 

on gelatin coated 6-well plates to form a monolayer. Endoderm cultures were 

treated with 10 µmol.L-1 retinoic acid for 5 days to induce urothelial cell 

differentiation. Urothelial cell generation was confirmed by the expression of 

Upk1b and Upk2 by RT-PCR as described below.   
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3.2.3 Differentiation of urothelial cells to prostate epithelial cells: 

Dihydrotestosterone (DHT), TGFb1 and FGF10, factors crucial for normal 

prostate development in vivo, were added to urothelial cultures for 12 days.  

Differentiated prostate epithelial cells were confirmed by gene expression of 

Nkx3.1, probasin (Pbsn) and Svs2. Androgen receptor (AR) was also evaluated 

by RT-PCR as described below.  

 

3.2.4 Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis  

Generation of RNA, reverse transcription into cDNA and the steps to generate 

RT-PCR reactions are outline in 2.4. The conditions and primer sets used are 

outlined in Tables 2.6-8.   

 

3.2.5 Flow cytometric analyses 

3.2.5.1 Analysis of endoderm markers c-Kit and CXCR4 by flow cytometry 

Undifferentiated mouse ES cells and D5 EBs treated with endoderm media 

alone or endoderm media with Activin-A and Wnt-3A were generated into 

single cells as described in 2.6.1 and Table 2.9. APC-conjugated c-Kit 

(BioLegend) and PE-conjugated CXCR4 (eBioscience) endoderm surface 

markers were made to 1 mL at a final concentration of 1.3 µg.mL-1 and 3.25 

µg.mL-1 respectively. Single cells were stained with 100 µL of the antibody mix 

and incubated at 4°C for 45 min and protected from light. No stain controls, 

isotype controls and single stain controls were also prepared (outlined in 2.6.3, 
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Table 2.10). Undifferentiated mouse ES cells were stained with PE-conjugated 

EpCAM and APC-conjugated E-Cad for single stain controls. All samples were 

stained with PE-conjugated rat IgG2a and APC-conjugated rat IgG1 for isotype 

controls. Following incubation, cells were washed with 1 mL of FACS buffer 

and centrifuged for 5 min at 240 x g. The supernatant was discarded and the 

cells resuspended in 400 µL of FACS buffer containing 0.01% propidium 

iodide. The cells were then transferred to round-bottom tubes for flow 

cytometric analyses.  

 

3.2.5.2 Analysis of colony stimulating factor 1 receptor (CSF-1R) by flow 

cytometry. 

Timed matings between female and stud male mice were performed by 

Chelsea Pilgrim (Blood Cell Development laboratory, University of Sydney, 

NSW, Australia). Pregnant mice were left to gestate until E18.5. The developing 

urogenital tract was dissected as reported by Staack and colleagues (2003). 

Prostate tissue was also extracted from new-born, pubertal and adult mice and 

dissociated into single cell suspensions as outlined in 2.6.2 and Table 2.9. APC-

conjugated EpCAM (BioLegend) and PE-conjugated CSF-1R (eBioscience) 

endoderm surface markers were made to 1 mL at a final concentration of 3.25 

µg.mL-1 and 1.3 µg.mL-1 respectively. Single cell suspensions were stained as 

outlined above in 3.2.5.1. 
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Flow cytometry was performed on a FACSCalibur 4-colour flow cytometer 

(Becton Dickinson, San Jose, CA, USA) and data collected using CellQuest 

software. The parameters and settings used are described in 2.6.3.3 and Table 

2.13-2.14. Cell size and granularity was measured using the forward and side 

scatter channel respectively. Surface protein expression c-Kit and CXCR4 was 

detected using the FL-4 and FL-2 channels respectively. Gates identifying 

positively labelled regions was determined by the single stain control.  

 

3.2.6. Phase contrast imaging of undifferentiated mouse ES cells and 

differentiated cultures.  

Light microscopy was conducted at all points of the differentiation time line 

(D0, undifferentiated mouse ES cells; D5 endoderm; D10-12 urothelial cells; 

D22 prostate epithelial cells) using an Axiovert35 (Zeiss, Germany) microscope 

under 20x magnification. Images were taken using ZEN 2011 imaging software. 

Scale bars represent 50 µm. 
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3.3 Results 

3.3.1 Pluripotency markers Oct4 and Nanog are detected in undifferentiated 

mouse ES cells. 

Undifferentiated mouse ES cells were maintained in a pluripotent state by the 

addition of leukaemia inhibitory factor (LIF) in media (Figure 3.2A). The 

pluripotency state of undifferentiated mouse ES cells was confirmed by the 

production of amplicons corresponding to the expected sizes for pluripotency 

markers Oct4 and Nanog in mRNA (246bp and 163bp respectively) (Figure 

3.2B). No amplicons were detected in the No RT and NTC lanes, indicating no 

amplification of genomic DNA (Figure 3.2B). 
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Figure 3.2: Undifferentiated mouse ES cells express pluripotency markers Oct4 and Nanog. 

(A) Graphical representation of mouse in vivo development mimicked by in vitro differentiation 

of mouse ES cells.  

(B) Total RNA was harvested from undifferentiated mouse ES cells and gene expression of 

pluripotency markers Oct4 and Nanog examined. Predicted amplicon sizes for Oct4 and Nanog 

were 246bp and 163bp respectively. b-actin (predicted amplicon size of 120bp) was run 

alongside as an internal control as well as No RT and NTC controls.  
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3.3.2 Activin-A and Wnt-3A promotes endoderm differentiation from mouse 

ES cells. 

Mouse ES cells were plated on non-adhesive petri dishes to form embryoid 

bodies (EB) and treated with Activin-A and Wnt-3A for 5 days (Figure 3.1). 

Definitive endoderm molecular marker FoxA2 and surface protein markers c-

Kit and CXCR4 were not detected on undifferentiated mouse ES cells (Figure 

3.3i-ii). An amplicon of predicted size for FoxA2 (201bp) was generated by RT-

PCR from total RNA of cells harvested from day 5 cultures treated with 

endoderm media alone or endoderm media with Activin-A and Wnt-3A 

(Figure3.3i). No amplicons were detected in the No RT and NTC lanes for all 

samples. Surface protein expression of c-Kit and CXCR4 was significantly 

greater in day 5 EBs treated with Activin-A and Wnt-3A (28% ± 2%) compared 

to day 5 EBs treated with endoderm media alone (10% ± 2%) (P < 0.0001) (Figure 

3.3ii). 

 

Mesoderm surface protein markers Flk-1 and platelet derived growth factor a 

(PDGFRa) were also assessed on undifferentiated mouse ES cells and day 5 

embryoid bodies treated with or without Activin-A and Wnt-3A (Figure 3.4). 

Mesoderm cell populations were not detected in undifferentiated mouse ES 

cells and day 5 embryoid bodies (Figure 3.4).  
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Figure 3.3: Activin-A and Wnt-3A promote the differentiation of mouse ES cells into 

endoderm.  

Total RNA was extracted from (i) undifferentiated mouse ES cells, day 5 embryoid bodies (EB) 

treated with endoderm media alone and day 5 EBs treated with Activin-A (AA) and Wnt-3A 

and gene expression of definitive endoderm marker FoxA2 examined (predicted amplicon size 

of 201bp). The house-keeping gene b-actin was used as an internal control (predicted amplicon 

size of 120bp). (ii) Representative flow cytometric plot assessing surface protein expression of 

endoderm markers c-Kit and CXCR4. (iii) Comparisons in the frequency of cells expressing c-

Kit and CXCR4 (blue box) between undifferentiated mouse ES cells and day 5 EBs with or 

without Activin-A and Wnt-3A. Data presented as mean ± SEM (n = 5). Significance of c-Kit+ 

CXCR4+ expression between groups was determined by a two-tailed, one-way ANOVA and 

post hoc analysis by Tukey’s HSD. Groups not sharing a numeral are significantly different from 

each other. 
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Figure 3.4: Mesoderm surface protein markers Flk-1 and PDGFRa are not expressed on day 

5 embryoid bodies cultured under endoderm conditions.  

Representative flow cytometric plot of Flk-1 and PDGFRa surface protein expression on (i) 

undifferentiated mouse ES cells and (ii) day 5 embryoid bodies treated with endoderm media 

alone (EDM) or Activin-A and Wnt-3A.  
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3.3.3 Retinoic acid promotes differentiation of mouse ES cell-derived 

endoderm into urothelium. 

Day 5 EBs were then plated on gelatin coated dishes to form a monolayer as 

described in the protocol by (Mauney et al., 2010) (Figure 3.5A). Day 5 EBs were 

treated with 10 µmol.L-1 retinoic acid for 7 days to induce urothelial cell 

differentiation (Figure 3.5A). The cell morphology in cultures treated with 

retinoic acid consistently displayed a cobblestone-like phenotype (Figure 3.5B, 

red box). A glandular-like structure was identified in the retinoic acid treated 

cultures at day 12 of differentiation (Figure 3.5B, red arrow). Conversely, the 

cell morphology in cultures treated with endoderm media alone or ethanol 

(vehicle) resembled neuron-like projections (Figure 3.5B, yellow arrows).  

 

Amplicons of predicted sizes for Upk1b (118bp) and Upk2 (195bp) were not 

detected in the RNA of cells harvested from undifferentiated mouse ES cells or 

day 12 differentiated cultures treated with endoderm media only (Figure 3.6i-

ii). Day 12 differentiated cultures treated with retinoic acid however, produced 

an amplicon of predicted sizes for Upk1b and Upk2 (Figure 3.6iii). Amplicons of 

the same size were generated from the RNA of mouse bladder tissue (positive 

control) (Figure 3.6iv). No amplicons were generated for pluripotency markers 

Oct4 and Nanog and endoderm marker FoxA2 in day 12 differentiated cultures 

(Figure 3.6ii-iii). No amplicons were detected in the No RT and No template 
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control lanes. For Upk1a (151bp), a faint band was detected only in the RNA of 

bladder tissue (Figure 3.6iv).  
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Figure 3.5: Retinoic acid induces a cobblestone-like phenotype in mouse ES cell-derived 

endoderm cultures. 

(A) Timeline of urothelial cell differentiation following endoderm specification from mouse ES 

cells. (B) Representative bright-field micrographs of day 12 differentiated mouse ES cell 

cultures treated with endoderm media alone (EDM), endoderm media and ethanol (EtOH – 

vehicle) or endoderm media and retinoic acid. The yellow arrows signify neuron-like cells. The 

red boxed region highlights the cobblestone-like cells and the red arrows indicate epithelium-

like structures. Scale bars represent 20 µm. 
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Figure 3.6: Expression of uroplakin detected in day 12 mouse ES cell cultures treated with 

retinoic acid.   

Total RNA was harvested from (i) undifferentiated mouse ES cells, (ii) day 12 cultures treated 

with endoderm media alone or (iii) 10 µmol.L-1 retinoic acid and (iv) mouse bladder tissue 

(positive control) and gene expression for urothelial cell markers Upk1a, Upk1b and Upk2 

examined. Predicted amplicon sizes for Upk1a, Upk1b and Upk2 are 151bp, 118bp and 195bp 

respectively. b-actin (predicted amplicon size of 120bp) was run alongside as an internal control 

as well as No RT and NTC controls.  
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3.3.4 DHT, TGFb1 and FGF10 drives the differentiation of prostate epithelial 

cells from mouse ES cell-derived urothelial cells. 

 

3.3.4.1 Prostate epithelial cell specific marker Nkx3.1 is detected in day 16 

cultures treated with DHT, TGFb1 and FGF10. 

Differentiated urothelial cells were then treated with DHT, TGFb1 and FGF10 

for the remainder of the differentiation protocol (Figure 3.1). At day 16 of 

differentiation, cultures treated with DHT, TGFb1 and FGF10 consisted of 

neuroendocrine-like cells, cobblestone-like cells and cyst-like structures (Figure 

3.7A, blue, red and yellow arrows respectively). Day 16 differentiated cultures 

treated with endoderm media alone displayed a neuron-like phenotype while 

cultures treated with endoderm media and methanol (vehicle) displayed 

elongated cells (Figure 3.7A). 

 

Amplicons of predicted sizes for Upk1b (118bp), mouse androgen receptor (AR) 

(400bp) and Nkx3.1 (195bp) were only detected in day 16 differentiated cultures 

treated with DHT, TGFb1 and FGF10 (Figure 3.7Bi). As the amplicon for Nkx3.1 

was faint, a nested PCR approach was used to determine expression (Figure 

3.7Bii). Furthermore, a nested primer set for Svs2 was also assessed in day 16 

differentiated cultures. An amplicon of predicted size for Svs2 (115bp) was 

detected in DHT, TGFb1 and FGF10 treated cultures (Figure 3.7Bii). No 

amplicons were detected in the No RT and no template control lanes.  
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Figure 3.7: Day 16 differentiated mouse ES cell cultures treated with DHT, TGFb1 and FGF10 

express prostate epithelial cell markers Nkx3.1 and Svs2.  

(A) Representative bright-field images of day 16 differentiated mouse ES cultures treated with 

endoderm media (EDM) only, EDM and methanol (MeOH – vehicle) or EDM and DHT, TGFb1 

and FGF10 (n=5 for each condition). Blue arrows indicate neuroendocrine-like cells. Red arrow 

indicates cobblestone-like cells. Yellow arrows indicate cyst-like structures. Scale bars 

represent 20 µm.  

(B) Total RNA was harvested from day 16 differentiated mouse ES cells treated with (i) EDM 

and methanol or (ii) EDM and DHT, TGFb1 and FGF10, and gene expression of Upk1b (118bp), 

mouse androgen receptor (AR, 400bp), Nkx3.1 (195bp) examined. Nested primers for Nkx3.1 

(115bp) and Svs2 (115bp) were used to enhance detection. b-actin (predicted amplicon size of 

120bp) was run alongside as an internal control as well as No RT and NTC controls.  
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3.3.4.2 Development of acinus-like structures in DHT, TGFb1 and FGF10 

treated mouse ES cell cultures. 

By day 22 of differentiation, mouse ES cell cultures treated with DHT, TGFb1 

and FGF10 underwent pronounced morphological changes (Figure 3.8). 

Glandular, acinus-like structures with a developing lumen was identified in 

day 22 cultures treated with DHT, TGFb1 and FGF10 (Figure 3.8). Control 

cultures treated with endoderm medium alone or endoderm medium with 

methanol (vehicle) exhibited an elongated, neuron-like morphology (Figure 

3.8). 

 

To confirm the differentiation of prostatic luminal epithelial cells from mouse 

ES cells, gene expression of androgen receptor (AR), probasin (Pbsn), Nkx3.1, 

Svs2 and Msmb was examined in day 22 differentiated cultures (Figure 3.9). An 

amplicon of predicted size for androgen receptor (450bp) was detected by RT-

PCR from total RNA of cells harvested from day 22 differentiated cultures 

(Figure 3.9A-Ci). An amplicon of predicted size for Pbsn (229bp) was identified 

in the RNA of day 22 differentiated cultures treated with DHT, TGFb1 and 

FGF10 (Figure 3.9Ci). For Nkx3.1, no amplicons of predicted sizes were initially 

detected (Figure 3.9A-Ci). However, when nested primers for Nkx3.1 and Svs2 

were used, amplicons of predicted size for Nkx3.1 (115bp) and Svs2 (115bp) 

were detected in day 22 differentiated cultures treated with DHT, TGFb1 and 

FGF10 (Figure 3.9Cii). Amplicons of the same size were generated from the 
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RNA of mouse prostate tissue (positive control (Figure 3.9D). No amplicons 

were detected in the No RT and No template control lanes. 

 

Gene expression of urothelial markers and pluripotency markers was then 

examined in day 22 differentiated cultures and adult mouse ventral prostate 

tissue (Figure 3.10). No amplicons for uroplakin proteins were identified in day 

22 differentiated cultures treated with endoderm base medium alone or 

endoderm base medium with methanol (Figure3.10A-B). Amplicons of 

predicted size for Upk1b (118bp) and Upk2 (195bp) were generated in day 22 

cultures treated with DHT, TGFb1 and FGF10 (Figure 3.10C). Amplicons of the 

same size for Upk1b and predicted size for Upk1a (151bp) were generated in the 

RNA of mouse prostate tissue (Figure 3.10Di). An amplicon of predicted size 

for Oct4 (163bp) was detected in day 22 differentiated cultures (Figure 3.10A-

C). Pluripotency markers were not expressed in the cDNA of mouse prostate 

tissue (Figure 3.10D). No amplicons were detected in the No RT and NTC lanes. 

 

Table 3.4 summarises the detection of amplicons identifying landmark lineages 

throughout mouse ES cell differentiation. 
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Figure 3.8: The formation of acinus-like structures in day 22 mouse ES cell cultures treated 

with DHT, TGFb1 and FGF10. 

Representative bright-field images of day 22 differentiated mouse ES cultures treated with 

endoderm media (EDM) only, EDM plus methanol (MeOH – vehicle) or EDM plus DHT, 

TGFb1 and FGF10 (n=5 for each condition). Red arrow indicates acinus-like structures. White 

arrow indicates adipocyte-like cells. Yellow arrow indicates lumen-like structure. Scale bars 

represent 20 µm. 
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Figure 3.9: Prostate epithelial cell markers Pbsn and Nkx3.1 are expressed in day 22 

differentiated cultures treated with DHT, TGFb1 and FGF10. 

Total RNA was harvested from day 22 differentiated mouse ES cell cultures treated with (A) 

endoderm base medium alone, (B) endoderm base medium with methanol (MeOH, vehicle), 

(C) endoderm base medium with DHT, TGFb1 and FGF10 and (D) adult mouse ventral prostate 

tissue (positive control) and gene expression for prostate epithelial cell markers examined. 

Predicted amplicon sizes for Nkx3.1, Pbsn and AR were 150bp, 229bp and 450bp respectively. 

Predicted amplicon sizes for nested Nkx3.1 and Svs2 are 115bp for each transcript. b-actin 

(predicted amplicon size of 120bp) was run alongside as an internal control as well as No RT 

and NTC controls. 
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Figure 3.10: Urothelial cell markers Upk1b and Upk2 are expressed in day 22 differentiated 

cultures treated with DHT, TGFb1 and FGF10. 

Total RNA was harvested from day 22 differentiated mouse ES cell cultures treated with (A) 

endoderm base medium alone, (B) endoderm base medium with methanol (MeOH, vehicle), 

(C) endoderm base medium with DHT, TGFb1 and FGF10 and (D) adult mouse ventral prostate 

tissue and gene expression for (i) urothelial cell and (ii) pluripotency markers examined. 

Predicted amplicon sizes for Upk1a, Upk1b, Upk2, Oct4, Nanog and FoxA2 are 150bp, 118bp, 

195bp, 246bp, 163bp and 201bp respectively. b-actin (predicted amplicon size of 120bp) was 

run alongside as an internal control as well as No RT and NTC controls.  
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Table 3.1: Summary of transcripts detected in the RNA of undifferentiated mouse ES cells, differentiated mouse ES cells and 

adult ventral prostate tissue. 

 Cell type 
 

 
 
 
Amplicon 

Mouse  
ES 

cells 

Day 5 Embryoid 
bodies 

Day 12 
Differentiated 

cultures 

Day 16 
Differentiated 

cultures 

Day 22 Differentiated 
cultures 

Adult  
ventral 
prostate 

tissue -AA 
-Wnt3A 

+AA 
+Wnt3A 

+EtOH 
(vehicle 

+RA +MeOH 
(vehicle) 

+DHT 
+FGF10 
+TGFb1 

+Base 
medium 

+MeOH 
(vehicle) 

+DHT 
+FGF10 
+TGFb1 

b-actin + + + + + + + + + + + 
Oct4 + - - - - - - + + + - 

Nanog + -  - - - - + - - - 

FoxA2 - + + - - - - - - - - 
Upk1a -  - - - - - - - - + 
Upk1b - - - - + - + - - + + 
Upk2 - - - - + - - - - - - 
mAR - - - - - - + + + + + 

Nkx3.1 - - - - - - + - - + + 
Svs2 - - - - - - + - - + + 
Pbsn - - - - - - - - - + + 
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3.3.5 Colony-stimulating factor 1 receptor (CSF-1R) is expressed on few cells in the 

developing urogenital sinus.  

Ide and colleagues (2002) published a report demonstrating immunohistochemical 

staining of mouse prostate tissue with CSF-1R (Ide et al., 2002). Staining was abundant 

in the developing (E17.5) urogenital tract but diminished by 8 weeks of development 

(Ide et al., 2002). Thus, to determine whether CSF-1R was a viable marker for 

developing prostate epithelial cells from differentiated mouse ES cells, surface protein 

expression was analysed on day 16 differentiated mouse ES cell cultures, developing 

prostate tissue from E18.5 embryos, newborn mice and 8-day-old mice and developed 

prostate tissue from pubertal and adult mice (Figure 3.11).  

 

Epithelial cell adhesion molecule (EpCAM) was used in conjunction with CSF-1R to 

determine epithelial cell expression of CSF-1R (Figure 3.11). Surface protein 

expression of CSF-1R and EpCAM was not detected in day 16 differentiated mouse 

ES cell cultures (Figure 3.11). In the developing urogenital tract, 1% of the cell 

population exhibited CSF-1R immunoreactivity (Figure 3.11). Developing and 

developed prostate tissue had fewer than 1% of cells displaying CSF-1R surface 

protein expression (Figure 3.11).  
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As CSF-1R was not detected on day 16 differentiated mouse ES cell cultures by flow 

cytometry, gene expression of Csf-1R was assessed (Figure 3.12). An amplicon of 

predicted size for Csf-1R (150bp) was detected in the RNA of day 16 mouse ES cell 

cultures treated with or without DHT, TGFb1 and FGF10 as well as adult mouse 

prostate tissue (Figure 3.12).  
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Figure 3.11: Colony-stimulating factor 1 receptor (CSF-1R) is expressed on few cells in the 

developing urogenital tract. 

Representative flow cytometric plot of CSF-1R and epithelial cell adhesion molecule (EpCAM) surface 

protein expression on: day 22 differentiated mouse ES cells treated with endoderm media (EDM) only; 

EDM and methanol (MeOH – vehicle); EDM and DHT, TGFb1 and FGF10; developing urogenital tract 

(UGT) from E18.5 embryos and newborn mice; ventral prostatic tissue from pubertal and adult mice 

and liver tissue (positive control for CSF-1R). Grey contour plot represents the isotype control while 

the blue contour plot represents the stained sample. 

  



 88 

 
Figure 3.12: Csf-1R is expressed on day 22 differentiated mouse ES cell cultures and adult mouse 

prostate tissue. 

Total RNA was harvested from day 22 differentiated mouse ES cell cultures treated with endoderm 

base medium (EDM) alone, EDM and methanol (MeOH, vehicle), EDM with DHT, TGFb1 and FGF10 

and adult mouse ventral prostate tissue and gene expression for Csf-1R (300bp) examined. b-actin 

(predicted amplicon size of 120bp) was run alongside as an internal control as well as No RT and NTC 

controls.  
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3.4 Discussion 

3.4.1 Mouse ES cells as a model of prostate organogenesis 

Presented here is the first report of differentiating prostate epithelial cells from mouse 

ES cells. Studying the signalling processes during prostate development is challenging 

due to the small size of early embryos and accessibility of tissue. Many studies rely on 

ex vivo culture explants or transplantation of prostate epithelium into the kidney 

capsule of immunodeficient mice (Cunha et al., 1983; Cunha et al., 1987; Cunha et al., 

2004; Taylor et al., 2006). As androgen signalling is critical for prostate development, 

it was hypothesised that treatment of mouse ES cell-derived urothelial cells with DHT, 

TGFb1 and FGF10 would drive differentiation towards prostatic epithelium. Mouse 

ES cell cultures treated with the aforementioned growth factors led to the 

development of cyst-like, acinus structures with a developing lumen, reminiscent of 

developing glandular prostatic epithelium.  

 

3.4.1.1 DHT, FGF10 and TGFb1 induce differentiation of prostate epithelial cells 

from mouse ES cell-derived urothelial cells. 

Mouse ES cells were differentiated along the endoderm lineage towards the 

urothelium and then further specified towards the prostate to recapitulate in vivo 

prostate development. Definitive endoderm differentiation was induced by Activin-

A and Wnt-3A as described previously (D'Amour et al., 2005). Surface protein 

expression of endoderm markers c-Kit and CXCR4 in day 5 differentiated embryoid 

bodies reflected similar levels of expression achieved by Mfopou et al. (2014) and 
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Christadoulou et al. (2011). However, mouse ES cells can undergo spontaneous 

differentiation through paracrine and autocrine signalling (Davey & Zandstra, 2006; 

Roh et al., 2017). Mesoderm markers Flk-1 and PDGFRa were not detected in 

differentiated mouse ES cell cultures indicating limited mesoderm differentiation. 

Serum-free conditions are also used to differentiate ES cells into neuronal cell types 

however, retinoic acid is required at the onset of ES cell differentiation to induce 

ectoderm differentiation (Kim et al., 2009; Engberg et al., 2010; Kawasaki et al., 2000; 

Schulz et al., 2004; Soprano et al., 2007). Therefore, there was confidence that mouse 

ES cells treated with Activin-A and Wnt-3A were differentiating into definitive 

endoderm. 

 

Retinoic acid induced urothelial cell differentiation from mouse ES cell-derived 

definitive endoderm as described in (Mauney et al, 2010; Kang, Kim, & Han, 2014; 

Osborn et al., 2014; Oottamasathien et al., 2007). Retinoic acid is the main derivative 

of Vitamin A and plays roles in embryogenesis and cell differentiation (Soprano et al., 

2007). Terminal differentiation of urothelial cells is determined by uroplakin 

expression (Moll et al., 1995). Uroplakins are specialised membrane proteins crucial 

for plaque formation on the apical surface of urothelium (Moll et al., 1995). Expression 

of uroplakin proteins on mouse ES cell-derived endoderm cells treated with retinoic 

acid confirmed urothelial cell specification. Retinoic acid also plays a role in prostate 

epithelial cell specification (Bryant et al., 2014). In the developing prostate, retinoic 

acid increases prostate epithelial cell budding (Bryant et al., 2014). Here, retinoic acid 
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may be priming urothelial cells to differentiate into prostatic epithelium.  

 

3.4.1.2 Homeobox protein Nkx3.1 is restricted to epithelial cells of the prostate and 

bulbourethral glands. 

Homeobox protein Nkx3.1 is detected at E15.5 in the urogenital sinus of mice and 

marks the onset of prostate epithelial cell differentiation (Bhatia-Gaur et al., 1999). 

Gene expression of Nkx3.1 is restricted to the endoderm derived epithelial cells of the 

prostate and bulbourethral gland (Abate-Shen et al., 2008). Wolffian duct derivatives 

such as the seminal vesicles, ductus deferens, ampullary gland and epididymis 

develop do not exhibit Nkx3.1 gene expression (Abate-Shen et al., 2008; Dutta et al., 

2016). Here, detection of Nkx3.1 in differentiated mouse ES cell cultures confirmed the 

presence of differentiated prostatic epithelial cells or bulbourethral epithelial cells and 

not cells from other male sex accessory tissues.  

 
3.4.1.3 Probasin expression confirms the differentiation of prostatic epithelial cells. 

To distinguish between epithelial cells from the prostate and the bulbourethral gland, 

gene expression of probasin was assessed. Probasin is an androgen-regulated, 

prostate-specific protein found in all lobes of the prostate gland in rodents (Johnson 

et al., 2000). Expression of probasin is first detected around E17.5 as prostatic lobes 

undergo branching morphogenesis and remains expressed in the epithelium of 

terminally differentiated prostatic epithelial cells (Johnson et al., 2000; Abbott et al., 

2003).  
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3.4.1.4 Androgen receptor is not solely expressed in the organs of the male 

reproductive tract.  

Expression of mouse androgen receptor (AR) is not restricted to the prostate (Crocoll 

et al., 1998). During mouse embryogenesis, AR mRNA is first detected at E12.5 in the 

mesonephric mesenchyme, prior to embryonic hormone production (Crocoll et al., 

1998). Expression of AR is found in the developing reproductive system of both male 

and female embryos (Crocoll et al., 1998). Mouse AR is strongly expressed in the 

urogenital mesenchyme surrounding the UGS, but is absent in the epithelial buds 

from which the prostate develops (Crocoll et al., 1998; Johnson et al., 2000). Rising 

levels of androgens during E14.5 to E17.5 act directly on the urogenital mesenchyme 

to induce prostate organogenesis (Cunha et al., 1973). Thus, it could be possible that 

detection of AR in differentiated mouse ES cell cultures was indicative of the 

urogenital mesenchyme, a crucial component for normal prostate organogenesis. 

Expression of AR has also been detected in the adrenal gland, pituitary gland, the 

liver, the bladder, the gastrointestinal tract as well as on adipocytes (de Winter et al., 

1991; Crocoll et al., 1998; Dieudonne et al., 1998).  

 

3.4.1.5 Evaluation of colony stimulating factor 1 receptor (CSF-1R) as a marker of 

prostate development. 

CSF-1R was chosen as a candidate marker for the identification of prostate epithelial 

cell differentiation from mouse ES cells at the single cell level. Ide and colleagues 

(2002) characterised CSF-1R expression in the developing prostate by 
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immunohistochemistry with staining localised on the basal epithelial cells of the 

prostate (Ide et al., 2002). Expression of CSF-1R was absent in mature prostatic tissue 

but present in prostatic tissue isolated from transgenic adenocarcinoma of the mouse 

prostate (TRAMP) (Ide et al., 2002). Here, surface protein expression of CSF-1R was 

detected on few cells in the urogenital sinus of E17.5 embryos at the single cell level. 

Gene expression of Csf-1r was also evaluated using the primer sets detailed by Ide et 

al. (2002) (Ide et al., 2002). Since Csf-1r was detected in differentiated mouse ES cells 

from all culture conditions, it was concluded that CSF-1R was not a suitable marker 

for prostate cell differentiation from mouse ES cells.  

 

3.4.1.6 Applications for prostate epithelial cell differentiation from mouse ES cells.  

So, what can the differentiated prostate epithelial cells be used for? Differentiation of 

endoderm derivatives such as pancreatic b-cells and hepatocytes propose a possible 

therapeutic approach for the treatment of diabetes and cirrhosis respectively (Jiang et 

al., 2007; Liu & Lee, 2012; Yoshida et al., 2011; Little et al., 2007). Prostate cell 

transplantation is unnecessary and ineffective in the case of androgen receptor 

insensitivity syndrome (Li et al., 2005). Instead, mouse ES cell differentiation of the 

prostate can be used to model changes in genotype and subsequent phenotype during 

progression of prostate oncogenesis. Many of the processes and signalling for in vivo 

development of the prostate are reactivated in oncogenesis (Schaeffer et al., 2008; 

Abate-Shen et al., 2008; Gingrich et al., 1996). Prostate-specific regulatory genes critical 

for normal prostate organogenesis such as Nkx3.1 and Pbsn also play roles in prostate 



 94 

carcinogenesis (Abate-Shen et al., 2008; Greenberg et al., 1994). Gene editing tools such 

as CRISPR can be utilised to over-express or knock out Nkx3.1 from mouse ES cells 

and examine how prostate epithelial cells differentiate.  

 

3.4.2 Conclusions 

In this chapter, the protocol successfully induced prostate epithelial cell 

differentiation in a stage dependent manner. Definitive endoderm was generated as 

demonstrated by c-Kit and CXCR4 surface protein expression and FoxA2 gene 

expression. Urothelial cell differentiation was induced with retinoic acid and 

confirmed through Upk1b and Upk2 gene expression. Finally, treatment of mouse ES 

cell-derived urothelial cells with DHT, FGF10 and TGFb1 led to the apparent 

differentiation of prostatic luminal epithelial cell as confirmed by gene expression of 

Nkx3.1, Svs2 and Pbsn.  

 

Alongside prostate epithelial cell differentiation, adipocyte-like cells were 

unexpectedly generated (Figure 3.8, white arrow). The development of adipocyte-like 

cells from conditions designed to promote endoderm differentiation has not been 

reported. The focus of the subsequent chapters in this study will be the 

characterisation of the differentiated adipocyte-like cells. 
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Chapter 4: Endoderm culture conditions unexpectedly drive 

differentiation of adipocyte-like cells from mouse ES cells in vitro.  

 

4.1 Introduction 

In Chapter 3, mouse ES cells were differentiated into prostate epithelial cells in vitro 

in a stepwise manner. Mouse ES cells treated with DHT, TGFb1 and FGF10 developed 

cyst-like, acinus structures resembling prostate epithelial cells. Detection of prostate 

epithelial cell-specific genes Nkx3.1 and Pbsn confirmed successful of prostatic 

epithelial cells. Unexpectedly, cell types containing lipid droplets were also observed 

in differentiated cultures (Figure 3.8). The differentiation of adipocyte-like cells is 

unexpected as they have not been reported to develop from mouse ES cells under 

conditions designed to promote endoderm differentiation.  

 

4.1.1 Developmental origins of adipocytes 

The two main classes of adipose tissue are brown and white adipose tissue (BAT and 

WAT respectively). WAT can be further divided into subcutaneous and visceral 

adipose depots. Brown and white adipocytes were originally thought to be from the 

same mesodermal precursor (Berry et al., 2013). However, lineage tracing studies 

identified brown adipocytes stemming from myogenic factor-5 (Myf5)-expressing 

precursors, a gene thought to be exclusive to the myogenic lineage (Seale et al., 2008). 

Brown adipocytes develop before white adipocytes as precursors can be distinguished 
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around E11.5 of gestation and morphologically distinct at E14.5 in the mouse 

(Chabowska-Kita & Kozak, 2016). Conversely, visceral white adipocytes reportedly 

stem from the lateral plate mesoderm (Feng et al., 2013). Wilms’ tumour (Wt1) 

expressing precursors have been proposed a source for visceral but not subcutaneous 

white adipocytes (Chau et al., 2014). Visceral white adipocytes have been identified 

from Wt1 precursors at E14.5 (Chau et al., 2014).   

 

4.1.2 Morphology of brown and white adipocytes 

Brown and white adipocytes are morphologically distinct. Brown adipocytes contain 

a central nucleus, multi-locular lipid droplets and high numbers of mitochondria 

(Cannon & Nedergaard, 2004). Conversely, white adipocytes contain a central 

unilocular lipid droplet (stored as neutral lipids) that occupies up to 95% of the cell 

volume (Lee, Wu, & Fried, 2013). The nucleus and mitochondria are eccentrically 

located. 

 

4.1.3 Aims 

Although prostate epithelial cells were differentiated from mouse ES cells, current ES 

cell differentiation protocols do not result in 100% of the final cell type desired (Zhu 

& Huangfu, 2013). In Chapter 3, spindle-like cells, neuron-like cells and epithelial cells 

were identified in cultures (Figure 3.8). The most striking cell type observed however, 

was lipid-droplet containing cells in close proximity to the acinus structures (Figure 

3.8). Here, the aim was to characterise the lipid-droplet containing cells by 
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morphology and lipophilic dye uptake to determine whether the differentiated cells 

are adipocytes. 
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4.2 Methods: 

4.2.1 Cell culture 

The conditions used for mouse ES cell differentiation are outlined in 3.2.1-3.2.3. 

Fibroblast cell line 3T3-L1-derived adipocytes were provided by Dr. Andrew Hoy 

(Lipid Metabolism Laboratory, University of Sydney, Australia) and cultured as 

described by Zebisch et al. (2012). 

 

4.2.2 Oil Red O staining 

Oil Red O was reconstituted according to manufacturer’s instructions. Differentiated 

mouse ES cells were fixed in 10% formalin for 10 minutes. Following fixation, 

differentiated mouse ES cells were washed with 60% isopropanol. Oil Red O was then 

added for 15 minutes, discarded and cells rinsed with 60% isopropanol followed by 

distilled water. Oil Red O stained cells were viewed under light microscopy. 

 

4.2.3 Nile Red staining 

Nile Red was dissolved in DMSO to a stock concentration of 10 mmol.L-1 as previously 

described (Schaedlich et al., 2010). The stock concentration was diluted to a working 

solution of 100 µmol.L-1 in DMSO. Nile Red was added to differentiated mouse ES cell 

cultures at a final concentration of 100 nmol.L-1 in FACS buffer for 10 minutes at room 

temperature. Cells were then washed with PBS and viewed under epifluorescence 

microscopy.  
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4.2.4 Imaging 

Light and epifluorescent microscopy was performed on an Axiovert35 (Zeiss, 

Germany) microscopy under 20x and 32x magnification (ACROSTIMA 20x and 30x 

objective, NA: 0.40 and NA: 0.30 respectively) equipped with a mercury lamp (Zeiss, 

Germany). Nile Red was excited at 510 nm using the Zeiss Axiovert Microscope Filter 

Slider (Zeiss, Germany). Images were taken using the ZEN 2011 imaging software 

(Zeiss, Germany).  

 

4.2.5 Measurement of lipid droplets 

Quantification of cells with lipid droplets and measurement of lipid droplet area was 

performed using Image J software (NIH, USA). To ensure there was no bias in 

measurements, cells containing lipid droplets that only intersected a 5x5 grid were 

included for analyses. Lipid droplet size was determined by measuring the diameter 

at two points. Measurements were normalised to cell area (µm2).   

 

4.2.6 Statistical analyses 

Data presented as mean ± SEM. Differences in lipid droplet number and area between 

culture conditions were determined using a two-tailed, one-way ANOVA and 

pairwise post-hoc comparison by Tukey’s HSD test. A P value less than 0.05 was 

deemed significant.  
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4.3 Results 

4.3.1 Detection of adipocyte-like cells derived from mouse ES cells in endoderm 

conditions.  

In Chapter 3, prostatic epithelial cells were differentiated from mouse ES cells in a 

stepwise manner using chemically defined serum-free medium (3.2.3). In conjunction 

to the development of acinus structures, cells that resembled adipocytes were also 

identified (Figure 3.8).  

 

4.3.1.1 Adipocyte-like cells derived from mouse ES cells first appear at day 12 of 

differentiation in endoderm culture conditions. 

Mouse ES cell cultures were imaged between day 8 and day 22 of differentiation to 

determine when the adipocyte-like cells appeared (Figure 4.1). No adipocyte-like cells 

were identified at day 8 of differentiation (Figure 4.1). Clusters of circular, lipid-

containing cells were first identified at day 12 of differentiation in all conditions and 

persisted until the end time point of day 22 (Figure 4.1, yellow arrows). Additionally, 

adipocyte-like cells were interspersed with spindle-like cells and identified within the 

neuron-like projections in the control conditions (Figure 4.1). By day 22 of 

differentiation, adipocyte-like cells were identified in specific clusters and close to 

acinus structures in the EDM with DHT, TGFb1 and FGF10 treatment group. 
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Figure 4.1: Adipocyte-like cells are first identified at day 12 of differentiation in endoderm culture 

conditions. 

Representative bright-field images of differentiated mouse ES cells treated with endoderm base 

medium (EDM) alone (left), EDM with DMSO (vehicle) or EDM with retinoic acid (RA) at day 8 of 

differentiation and EDM with methanol (MeOH) or DHT, FGF10 and TGFb1 at days 12, 16 and 22 of 

differentiation. Yellow arrows indicate adipocyte-like cells containing lipid droplets. Scale bars 

represent 20 µm.    
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4.3.1.2 Mouse ES cells treated with DHT, TGFb1 and FGF10 have the largest 

adipocyte-like cells. 

To determine whether there were differences in the adipocyte-like cells between 

endoderm conditions, the quantity and size of the lipid droplets were compared 

(Figure 4.2,4.3). Cells containing lipid droplets that intersected a 5x5 grid were used 

for analyses. The quantity and size of the lipid droplets were normalised to cell area 

(Figure 4.2,4.3). No differences were observed in the amount of lipid droplets per cell 

area (Figure 4.3i). Conversely, adipocyte-like cells derived from mouse ES cells treated 

with DHT, TGFb1 and FGF10 were larger compared to endoderm base medium (P < 

0.0001) and the vehicle control (P < 0.0001) (Figure 4.3ii).  
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Figure 4.2: Adipocyte-like cells differentiate from mouse ES cells under endodermal culture conditions.  

Representative bright-field images of differentiated mouse ES cells treated with (i) endoderm base medium (EDM) alone, (ii) EDM with methanol (MeOH) and 

(iii) EDM with DHT, FGF10 and TGFb1 at day 22 of differentiation. Yellow boxed region indicates digital magnification of boxed area. Scale bars represent  

20 µm.   
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Figure 4.3: Adipocyte-like cells derived from mouse ES cell treated with DHT, TGFb1 and FGF10 are 

larger compared to endoderm base medium and vehicle control. 

Comparisons in the (i) quantity and (ii) area of lipid droplets from adipocyte-like cells derived from 

endoderm base medium (EDM) only, EDM plus methanol (MeOH), and EDM plus DHT, TGFb1 and 

FGF10. Lipid droplet number and area were measured on cells that intersected a 5x5 grid across 10 

fields of view. At least 25 cells containing lipid droplets were measured and normalised to cell area 

(µm2). Data presented as mean ± SEM (n=3). Differences in lipid droplet number and area between 

culture conditions were determined using a two-tailed, one-way ANOVA and pairwise post-hoc 

comparison by Tukey’s HSD test. Groups not sharing a numeral are significantly different from each 

other. NS = not significantly different from each other.    
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4.3.2 Adipocyte-like cells derived from mouse ES cells resemble 3T3-L1-derived 

adipocytes and isolated primary adipocytes. 

The morphology of the adipocyte-like cells differentiated from mouse ES cells were 

then compared to adipocytes derived from the 3T3-L1 fibroblast cell line and primary 

brown and white adipocytes (Figure 4.4). The adipocyte-like cells derived from mouse 

ES cells had clusters of lipid droplets similar to those in the 3T3-L1 cell line (Figure 

4.4i-ii, yellow arrows). Further, the adipocyte-like cells derived from mouse ES cells 

contained multi-locular (red arrows) and unilocular (white arrows) lipid droplets that 

resemble brown and white adipocytes respectively (Figure 4.4iii-iv). The close 

resemblance in phenotype to an established adipocyte cell line as well as primary 

adipocytes reinforced the possibility that the differentiated cells are adipocytes.  

 

 



 106 

 
 
Figure 4.4: Adipocyte-like cells derived from mouse ES cells resemble adipocytes from the 3T3-L1 cell line and primary adipocytes. 

Representative bright-field images of (i) endoderm derived adipocyte-like cells, (ii) 3T3-L1 derived adipocytes, (iii) primary brown and (iv) white adipocytes. 

Yellow boxed region is the digital magnification of the boxed region. Yellow arrows indicate similarities to adipocytes from 3T3-L1 cells. Red arrows indicate 

multi-locular lipid droplets. White arrows indicate unilocular lipid droplets. Scale bars represent 20 µm.  
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4.3.4 Lipophilic dyes Oil Red O and Nile Red stain adipocyte-like cells derived from 

mouse ES cells.  

To confirm the adipocyte-like cells contained lipids, lipophilic dyes Oil Red O and 

Nile Red were used for staining. Oil Red O has been used to stain adipocytes 

differentiated from mouse ES cell cultures (Dani et al., 1997; Billon et al., 2007; 

Cuaranta-Monroy et al., 2015). Here, Oil Red O intensely stained the lipid droplets in 

the adipocyte-like cells derived from mouse ES cells in all culture conditions (Figure 

4.5i-iii). Upon enhancing the field of view, cells without lipid droplets were not 

stained with Oil Red O (Figure 4.5i-iii). 

 

Nile Red is a fluorescent lipophilic dye that stains neutral lipids (Smith, 1908; Smith, 

1911; Fowler & Greenspan, 1985). Nile Red has been used to stain 3T3-L1-derived 

adipocytes as well as SGBS-derived pre-adipocytes (Aldridge et al., 2013; Kim et al., 

2015, Doan-Xuan et al., 2013). Nile Red is advantageous over Oil Red O as staining 

can be applied to live cells. Similar to Oil Red O, Nile Red only stained the lipid 

droplets in the adipocyte-like cells in all culture conditions (Figure 4.6i-iii). Cells that 

did not contain lipid droplets exhibited no Nile Red staining. Nile Red also 

distinguished the smaller lipid droplets more clearly than Oil Red O (Figure 4.6ii-iii).  
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Figure 4.5: Oil Red O stains the lipid droplets in the mouse ES cell derived adipocyte-like cells. 

Representative bright-field images of Oil Red O stained differentiated mouse ES cells treated with (i) endoderm base medium (EDM) alone, (ii) EDM plus 

methanol (MeOH) and (iii) EDM plus DHT, FGF10 and TGFb1 at day 22 of differentiation. Yellow boxed region is the digital magnification of the boxed region. 

Scale bars represent 20 µm.   
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Figure 4.6: Nile Red stains the lipid droplet within the mouse ES cell derived adipocyte-like cells. 

Representative bright-field (BF) and epifluorescent images of Nile Red stained differentiated mouse ES cells treated with (i) endoderm base medium (EDM) 

alone, (ii) EDM plus methanol (MeOH) and (iii) EDM plus DHT, TGFb1 and FGF10 at day 22 of differentiation. Yellow boxed region is the digital magnification 

of the boxed region. Scale bars represent 20 µm.     
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4.4 Discussion 

4.4.1 Adipocytes arise from mouse ES cells under endodermal culture conditions. 

Presented here is the first report of adipocyte-like cells differentiated from mouse ES 

cells under conditions designed to promote endoderm differentiation. Adipocytes are 

derived from the mesoderm and in some cases the neural crest (Sanchez-Gurmaches 

& Guertin, 2014; Billon et al., 2007). Extensive interrogation of the literature failed to 

find reports of an endoderm origin of adipocytes. Adipocytes are classed as brown or 

white adipocytes (reviewed in: (Berry et al., 2013). Brown adipocytes stem from the 

paraxial mesoderm at E11.5 (Gesta, Tseng, & Kahn, 2007). White adipocytes are 

divided into subcutaneous and visceral depots and are derived from the lateral plate 

mesoderm (Chau & Hastie, 2014; Chau et al., 2014; Björntorp & Östman, 1971). The 

lateral plate mesoderm also gives rise to cardiac tissue, red blood cells, endothelial 

cells and smooth muscle (Grubb, 2006). Beating patches (indicative of cardiomyocyte 

differentiation), endothelial sheets and haematopoietic cells were not observed in the 

mouse ES cell cultures described in Chapter 3 and Chapter 4. Furthermore, as reported 

in Chapter 3, no Flk-1 or PDGFRa expression was detected under these culture 

conditions. Taken together, the adipocyte-like cells were not likely to be generated 

from the mesoderm. 

 

Adipocytes are not the only cell type to contain lipid droplets. Endoderm-derived 

hepatocytes and enterocytes are involved in lipid metabolism and secrete triglycerides 

into circulation in the form of very-low density lipoprotein (Enjoji, Kohjima, & 
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Nakamuta, 2016; Nguyen et al., 2008; Hussain, 2014). Hepatocytes and enterocytes are 

fore- and midgut endoderm derivatives respectively (reviewed in: Grapin-Botton, 

2008). The culture conditions described here were designed to induce hindgut 

endoderm as demonstrated in Chapter 3. Furthermore, hepatocytes and enterocytes 

are columnar epithelial cells with a central nucleus and connected by tight junctions 

(Grubb, 2006). Conversely, white adipocytes are circular cells with a unilocular lipid 

droplet that occupies up to 90% of the cell and an eccentrically located nucleus (Lee et 

al., 2013). Brown adipocytes have smaller lipid droplets surrounded by abundant 

amounts of mitochondria (Cannon & Nedergaard, 2004). The cells containing lipid 

droplets in the differentiated mouse ES cell cultures were clustered together and 

circular in morphology. Intense staining with lipophilic dyes Oil Red O and Nile Red 

reinforced the adipocyte-like morphology. Thus, the lipid-droplet containing cells are 

more similar to adipocytes than enterocytes or hepatocytes. Future studies will aim to 

confirm adipocyte differentiation at the molecular level by gene expression analyses 

of brown adipocyte marker Ucp1 and white adipocyte markers Fabp4, Leptin and 

Adiponectin.  

 

4.4.2 Comparisons between mouse ES cell-derived adipocytes differentiated from 

the mesoderm, neural crest and endoderm culture conditions. 

Differentiation of mesoderm-derived and neural-crest derived adipocytes from 

mouse ES cells has been reported (Cuaranta-Monroy et al., 2015; Billon et al., 2007). 

The adipocytes derived from the neural-crest have been postulated to give rise to 
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cephalic white adipose tissue found in the face (Billon et al., 2007). Conversely, 

mesoderm-derived adipocytes have been likened to subcutaneous white adipocytes 

(Cuaranta-Monroy et al., 2015). The differentiated adipocyte-like cells can be labelled 

and traced through cell lineage and fate mapping to determine which adipose depot 

they ultimately form. A similar approach could be used to reveal a possible endoderm 

origin of adipocytes. 

 

4.4.3 Conclusion 

Apparent adipocytes, cell types typically associated with the mesoderm germ layer, 

were generated in endoderm culture conditions in which prostate epithelial cells were 

differentiated. The morphology of the adipocyte-like cell closely resembles 3T3-L1 

derived adipocytes as well as adipocyte isolated from primary sources. This is the first 

report of adipocytes differentiated from mouse ES cells under endoderm culture 

conditions. To determine whether the adipocytes are representative of a specific 

adipose depot, a flow cytometric method to assess adipocytes is required and will be 

the focus of the following chapters.  
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Chapter 5: Development of a flow cytometric method to characterise 

probe uptake in adipocytes at the single cell level. 

 

5.1 Introduction 

In Chapter 4, adipocyte-like cells differentiated in vitro from mouse ES cells resembled 

the morphology of white and brown adipocytes. Molecular markers of white 

adipocytes (Fabp4, Pparg and Adiponectin) do not distinguish adipocytes from white 

adipose depots (Tang et al., 2008; Birsoy et al., 2011). Proteomic analyses by mass 

spectrometry have identified differences between brown and gonadal adipocytes 

(Forner et al., 2009). However, optimisation for the analysis of a single analyte by mass 

spectrometry is a time consuming and costly process. Furthermore, lipids must be 

extracted from biological samples resulting in the destruction of the cells (Kofeler et 

al., (2012). Flow cytometry is a powerful analytical tool that can sort live cells based 

on cell size, granularity, surface protein expression and dye uptake as outlined in 

Table 5.1.  
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Table 5.1: Characteristics of undifferentiated mouse ES cells, prostate epithelial 
cells, white adipocytes and brown adipocytes. 
 

 Mouse 
ES cell 

Prostate epithelial 
cell 

White 
adipocyte 

Brown 
adipocyte 

Size Small Intermediate Large Small - 
intermediate 

Granularity Low High High High 
Nucleus:Cytoplasm Large Small Small Intermediate 
Shape Cuboidal Cuboidal/columnar Round Round/eliptical 
Lipid content ? ? Unilocular 

lipid 
droplet 

Multi-locular 
lipid droplets 

Mitochondria Many Many Few Many 
Surface protein 
expression 

EpCAM 
eCad 
PECAM 

EpCAM 
eCad 
 

?? ?? 

 

5.1.1 There is a need for flow cytometric analyses of mature adipocytes.  

For mature adipocytes, flow cytometry has been used to assess; lipid accumulation in 

adipocytes; adipocytes derived in vitro from myeloid and bone marrow progenitors 

and adipocytes isolated from a single adipose depot (Lee, 2004; Majka et al., 2010; 

Crossno et al., 2006; Majka et al., 2014; Durandt et al., 2016; Festy et al., 2005). Reports 

characterising live, mature adipocytes from multiple adipose depots at the single cell 

level are limited. One complication in analysing adipocytes at the single cell level is 

contamination from the stromal vascular fraction (SVF) (Majka et al., 2014).  
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5.1.2 The stromal vascular fraction (SVF) of brown and white adipose tissue. 

Brown and white adipose tissues are comprised of more than just adipocytes. The SVF 

of adipose tissues consists of a subset of endothelial cells, macrophages, immune cells, 

pre-adipocytes and multipotent stem cells (Cawthorn, Scheller, & MacDougald, 2012). 

Isolation of the SVF from adipose tissue is routine (Han et al., 2015). Thus far, flow 

cytometry of adipose tissue is primarily focussed on pre-adipocytes of the SVF (Cho 

et al., 2014; Zhu et al., 2014; Zhu et al., 2013; Grant et al., 2013; Brake & Smith, 2008). 

Whilst the SVF may give an indication of the composition of cells within an adipose 

depot, the adipocytes are ignored or discarded.  

 

The aim here was to determine whether a method can be developed to analyse 

adipocytes at the single cell level by flow cytometry. If a method could be developed, 

then adipocytes could be assessed according to size, granularity and probe uptake. 

One of the defining traits of brown and white adipocytes is the number of lipid 

droplets and mitochondria they contain (Figure 5.1). Based off lipid droplet content 

and mitochondria number, the question was asked whether these two parameters 

could distinguish brown and white adipocytes.  
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Figure 5.1: Morphological characteristics of white and brown adipocytes. 

White adipocytes contain a unilocular lipid droplet which occupies up to 90% of the cell. White 

adipocytes have few mitochondria that are located eccentrically. Brown adipocytes contain multi-

locular lipids droplets and are rich in mitochondria.  
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5.2 Methods 

5.2.1 Flow cytometry of adipose tissue. 

Dissection and dissociation of adipose tissue for flow cytometric analyses is outlined 

in 2.5.1.2 and Figure 2.1. Preparation of the buoyant adipocyte fraction and SVF for 

flow cytometric analyses is outlined in 2.6.3.  

 

5.2.1.1 Flow cytometric analysis of the SVF and buoyant adipocyte fraction. 

Antibody and fluorescent dye cocktails used in this chapter were prepared to a 

working concentration outlined in Table 5.1 and 5.2. Staining of the buoyant adipocyte 

fraction and the SVF with fluorescently-conjugated antibodies or fluorescent dyes is 

outlined in 2.6.3.2. For cells from the buoyant fraction, 200 µL of buoyant adipocytes 

were taken from the top layer of the supernatant fraction following centrifugation and 

transferred into a round-bottom tube containing 200 µL of FACS buffer with 0.02% PI.  

 

Flow cytometry was performed on a FACSCalibur 4-colour flow cytometer (Becton 

Dickinson, San Jose, CA, USA) and data collected using CellQuest software. The 

parameters and settings used are described in 2.6.3.3, Table 2.13 and Table 2.15. Cell 

size and granularity was measured using the forward and side scatter channels 

respectively. Immunoreactivity and lipophilic probe uptake were analysed on live 

cells as determined by a lack of PI uptake. Gates identifying positively labelled cells 

were determined by the single antibody controls outlined in 2.6.3.1.2 and Table 2.10. 
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Compounds 5 and 7 (Carborane coumarin and phenyl coumarin respectively) are 

lipophilic probes developed by the New Lab (Faculty of Chemistry, University of 

Sydney, Australia). Both coumarin probes are excited by the UV laser line (410-

470nm). A Gallios flow cytometer (Beckman Coulter, Brea, CA, USA) was used to 

measure fluorescence of carborane and phenyl coumarin.  

 

5.2.3 Fluorescent imaging  

5.2.3.1 FLoiD microscopy of whole mount adipose tissue 

Brown, subcutaneous inguinal and visceral gonadal adipose tissue was minced into 

1-3 mm3 pieces, stained for Nile Red, Carborane coumarin or Phenyl coumarin and 

plated onto a 12-well plate. Whole mount imaging was performed on an EVOS FLoiD 

Cell Imaging System (ThermoFisher Scientific, North Ryde, Australia). Nile Red was 

excited using the green fluorescent laser (488nm) while Carborane and Phenyl 

coumarin were excited using the blue fluorescent laser (390nm). Images were taken 

with at a 20x objective.  

 
5.2.3.2 Confocal microscopy of adipocytes from the buoyant fraction 

Single cell suspensions of brown and visceral gonadal adipocytes were stained for 

Nile Red and Carborane coumarin, Phenyl coumarin or MitoTracker Deep Red, 

pipetted onto a glass slide and a 24x24 mm cover slip placed on top. The cover slip 

was sealed with nail polish and the slide protected from light until imaging. Nile Red 

was excited by the 532nm laser, carborane coumarin and phenyl coumarin were 
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excited by the 405nm laser and MitoTracker Deep Red was excited by the 625nm laser. 

All confocal images were taken on a single plane using a Leica SPEII as outlined in 

2.7.2. Scale bars represent 50 µm.  

 

5.2.4 Statistical analyses  

Statistical analyses were performed on GraphPad Prism®. All data represented as 

mean ± SEM. Differences between two groups were determined by a two-tailed, 

Student’s t-test. Differences between more than two groups were determined by a 

two-tailed, one-way ANOVA with Tukey’s post-hoc analysis.  
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Table 5.2: Fluorophore conjugated monoclonal antibodies used in this chapter.  

Listed here are the antibodies, the cell types they identify, their clone/source, the fluorophore they are conjugated to and the working concentration used.  

Antigen Detects:  Clone/Source Source Fluorophore Concentration 
CD3e T-cell (Aniansson et al., 1999) 145-2C11 eBioscience FITC 6.5 µg.mL-1 

CD34 Endothelial (Mund et al., 2012) RAM34 eBioscience FITC 3.25 µg.mL-1 
CD45 Pan-haematopoietic (van 

Lochem et al., 2004) 
30-F11 eBioscience APC 1.3 µg.mL-1 

F4/80 Macrophage (Gonçalves & 
Mosser, 2001)  

BM8 eBioscience APC 1.3 µg.mL-1 

Ter119 Erythroid (Kina et al., 2000) TER-119 BioLegend APC, FITC, PE 1.3 µg.mL-1 
Rat IgG1 k  RTK2071 BioLegend APC, FITC, PE 1.3 µg.mL-1 
Rat IgG2a k  eBR2a eBioscience APC, FITC, PE 1.3 µg.mL-1 
Rat IgG2b k   eB149/10H5 eBioscience APC, FITC, PE 1.3 µg.mL-1 
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Table 5.3: The fluorescent probes used in this chapter. 

Listed below are the fluorescent probes, the final concentration used and their source. 

Probe Detects: Catalogue 
No: 

Source Concentration 

Oil Red O Lipids (Mehlem et al., 2013) OREDO POCD Scientific N/A 
LipidTox® Red Phospholipidosis (Grandl & Schmitz, 2010) H34476 Life Technologies 1X solution 
LipidTox® Green Neutral lipids (Grandl & Schmitz, 2010) H34475 Life Technologies 1X solution 
Nile Red Neutral lipids (Smith, 1911) N3013  Sigma 0.1 µmol.L-1 

MitoTracker 
Deep Red 

Mitochondrial membrane potential 
(Cottet-Rousselle, Ronot, Leverve, & 
Mayol, 2011) 

M22426 Life Technologies 0.1 µmol.L-1 

Compound 5 
(Carborane 
coumarin) 

Neutral lipids (Wu et al., 2017) N/A  School of Chemistry, University 
of Sydney, Australia 

0.5 µmol.L-1 

Compound 7 
(Phenyl 
coumarin) 

Neutral lipids (Wu et al., 2017) N/A School of Chemistry, University 
of Sydney, Australia 

0.5 µmol.L-1 

DRAQ5 Nuclei (Smith et al., 1999) 62251  ThermoFisher Scientific 5 µmol.L-1 
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5.3 Results 

5.3.1 Cells from buoyant adipose fraction have a distinct size and granularity profile 

compared to the SVF. 

To accommodate the large variability in the size and granularity of cells, forward 

(size) and side (granularity) scatter parameters were expressed on a logarithmic scale 

(Figure 5.2A-B). The size and granularity profiles of the SVF and supernatant fraction 

from BAT, subcutaneous inguinal WAT and visceral gonadal WAT were gated into 

three populations (R1-R3) (Figure 5.2A-B). The large, granular cells gated in Region 1 

were greatest amongst the buoyant fraction of all adipose depots assayed (P < 0.05 for 

all adipose depots) (Figure 5.2, R1). Cells from Region 2 were present in both the 

buoyant fraction and the SVF, however the frequency of cells in Region 2 was greater 

amongst the buoyant fraction (P < 0.005 for all adipose depots) (Figure 5.2, R2). The 

cells gated in Region 3 were distinct for the SVF of the adipose depots assayed (P < 

0.005 for all adipose depots) (Figure 5.3, R3). 
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Figure 5.2: Flow cytometric analysis of cells from the SVF and buoyant adipocyte fraction of adipose 

depots demonstrate significant differences in their size and granularity.  

Representative flow cytometric plots of forward (size) and side (granularity) scatter of the (A) SVF and 

(B) buoyant adipocyte fraction of brown (BAT), subcutaneous inguinal (WAT:ING) and visceral 

gonadal (WAT:GON) adipose depots. Identical gates (R1-R3) of distinct cell populations (according to 

forward and side scatter) were applied. (C) The mean (± SEM, n=5) proportion of the total number of 

cells analysed for each distinct region were compared. Significant differences between each gated 

region from the SVF and buoyant adipocyte fraction were determined by a two tailed Student’s t-test. 
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5.3.2 Lipophilic probes stain cells from the buoyant adipocyte fraction.  

To confirm whether the cells from the buoyant fraction were adipocytes, a range of 

lipophilic probes were tested (Figure 5.3). Irrespective of the adipose depot assayed, 

Oil Red O staining was not detected by fluorescence analysis (Figure 5.3A-Ciii). Cells 

stained with LipidTox Red displayed low fluorescence intensities (Figure 5.3A-Civ). 

Fluorescence of LipidTox Green and Nile Red was observed across all adipose depots 

(Figure 5.3A-Cv-vi). A greater proportion of cells from the buoyant fraction took up 

Nile Red compared to LipidTox Green (P < 0.001) (Figure 5.4Ai-iii). Further, Nile Red 

had a greater mean fluorescence intensity (MFI) compared to all other lipophilic dyes 

assayed and was therefore chosen as the lipophilic probe for further use in this study 

(P < 0.0001) (Figure 5.4Bi-iii). 
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Figure 5.3: Lipophilic probes LipidTox Green and Nile Red stain cells in the supernatant fraction of 

BAT, subcutaneous inguinal and visceral gonadal WAT.  

Representative flow cytometric plot comparing lipophilic probe uptake in the buoyant fraction of (Ai) 

brown (BAT), (Bi) subcutaneous inguinal (WAT:ING) and (Ci) visceral gonadal (WAT:GON) 

adipocytes (shaded in red). (ii) Live cells were gated according to lack of propidium iodide uptake, and 

(iii) Oil Red O (ORO), (iv) LipidTox Red (LTR), (v) LipidTox Green (LTG) and (vi) Nile Red (NR) 

fluorescence measured. Uptake of lipophilic dyes expressed as a percentage of the total number of cells 

(frequency of total (%). Grey shaded plots represent the no-dye (negative) control. 
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Figure 5.4: Frequency of uptake and mean fluorescence intensity is greatest in Nile Red stained cells.  

(A) Proportion of cells taking up Nile Red and LipidTox Green in the buoyant fraction of (i) brown 

(BAT), (ii) subcutaneous inguinal (WAT:ING) and (iii) visceral gonadal (WAT:GON) adipocytes. Data 

presented as mean ± SEM (n=3). Differences in the frequency of Nile Red and LipidTox Green uptake 

across adipose depots was determined by a two tailed, Student’s t-test.   

(B) Comparisons of the mean fluorescence intensity (MFI) between Oil Red O, LipidTox Red, LipidTox 

Green and Nile Red between (i) BAT, (ii) WAT:ING and (iii) WAT:GON adipocytes. Data presented as 

mean ± SEM (n=3). Differences in the mean fluorescence intensity of lipophilic probes across the 

buoyant fraction of brown and white adipocytes were determined by two-tailed, one-way ANOVA and 

pairwise post-hoc analysis by Tukey's HSD test. Groups not sharing a numeral are significantly different 

from each other (P < 0.0001).
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5.3.3 Nile Red uptake is proportional to adipocyte size and granularity.  

Uptake of Nile Red was then analysed according to cell size and granularity. The size 

and granularity scatter plot of the buoyant fraction was divided into three regions and 

Nile Red fluorescence measured (Figure. 5.5A- R1, R2, R3). The largest, most granular 

cells in Region 1 exhibited the greatest fluorescence of Nile Red (Figure. 5.5Bi). Region 

1 was termed Nile RedHigh. Cells in Region 2 (Nile RedMid) had less Nile Red 

fluorescence than cells in Region 3 but greater than cells in Region 1 (Nile RedLow) 

(Figure 5.5C-Di). The mean fluorescence intensity was consistently higher in Region 1 

compared to Regions 2 and 3 (Figure 5.5E).  

 

To confirm that the adipocytes in the buoyant fraction were intact and contained a 

nucleus, uptake of nuclei probe DRAQ5 and cell membrane marker wheat germ 

agglutinin (WGA) was measured. Nile RedMid and Nile RedHigh cells exhibited greater 

than 90% uptake for DRAQ5 and WGA (Figure 5.5B,Cii-iii). Nile RedLow cells exhibited 

greater than 70% DRAQ5 and WGA uptake (Figure 5.5Dii-iii).  
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Figure 5.5: Nile red fluorescence is greatest amongst the largest, most granular cells in the 

supernatant fraction.  

(A) Representative forward and side scatter plot of the buoyant fraction of brown adipose tissue. The 

size and granularity of the supernatant fraction from brown adipocytes was divided into three regions 

(R1 (red), R2 (green) and R3 (blue). Live cells were gated and analysed for (i) Nile Red, (ii) DRAQ5 and 

(iii) wheat germ agglutinin (WGA) uptake in (B) R1 (Nile RedHigh), (C) R2 (Nile RedMid) and (D) R3 (Nile 

RedLow) gated cells. (E) Comparisons of the mean fluorescence intensity (MFI) of Nile Red between R1, 

R2 and R3. Data presented as mean ± SEM (n = 6). Differences in the MFI of Nile Red between R1, R2 

and R3 were determined by two-tailed, one way ANOVA and pairwise post-hoc comparison by Tukey's 

HSD test. Groups not sharing a numeral are significantly different from each other (P < 0.0001).  
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5.3.4 Cells from the SVF do not take up Nile Red. 

Nile Red was used to stain cells of the SVF to determine whether uptake was present. 

Nile Red uptake was observed in Region 1 (R1) and Region 2 (R2) of the SVF (Figure 

5.6). As Region 1 and Region 2 are also present in the buoyant fraction containing 

adipocytes, the cells in those regions could be remnants from the separation process. 

Region 3, which is distinct in the SVF and absent in the buoyant fraction, did not 

exhibit Nile Red uptake (Figure 5.6).  
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Figure 5.6: Cells in Region 3 of the SVF do not exhibit Nile Red fluorescence.  

Representative flow cytometric plot of the SVF of brown adipose tissue stained with Nile Red. Cell populations were gated according to size and granularity 

and Nile Red uptake measured in Region 1 (red shaded plot), Region 2 (green shaded plot) and Region 3 (blue shaded plot). Nile Red uptake measured as a 

proportion to the total number of cells (frequency of max (%). The grey plots represent the no-dye (negative) control. 
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5.3.5 The buoyant adipocyte fraction of brown and white adipose tissue lack cell 

surface protein expression of haematopoietic markers. 

The SVF and buoyant adipocyte fraction were assessed using a panel of fluorescently 

conjugated antibodies identifying surface protein expression of haematopoietic cell 

(CD45), T-cell (CD3e), endothelial cell (CD34), macrophage (F4/80) and erythroid cell 

(Ter119) populations (Figure 5.9-5.11). In all adipose depots assayed, only cells of the 

SVF exhibited surface expression for CD45, CD3e, CD34, F4/80 and Ter119 (Figure 5.7-

9A). No immunoreactivity for these haematopoietic and vascular cell types were 

detected in the buoyant adipocyte fraction for all adipose depots (Figure 5.7-9B).  
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Figure 5.7: Cells of the buoyant adipocyte fraction of brown adipose tissue do not express markers 

of the stromal vascular fraction. 

Representative histogram plots of the total number of cells (frequency of total (%) exhibiting 

immunoreactivity for CD45, CD3e, CD34, F4/80 and Ter119 in the (A) SVF and (B) buoyant fraction of 

brown adipose tissue (BAT). Red shaded plots indicate the antibody-stained sample while the grey 

plots indicate the no-antibody (negative) control. (C) Comparison of the frequency of cells expressing 

CD45, CD3e CD34, F4/80 and Ter119 between the SVF and buoyant fraction of BAT. Data presented as 

mean ± SEM (n=3). Differences in surface protein expression of examined markers between the SVF and 

buoyant fraction were determined by two-tailed, Student’s t-test.
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Figure 5.8: Cells of the buoyant adipocyte fraction of subcutaneous inguinal adipose tissue do not 

express markers of the stromal vascular fraction. 

Representative histogram plots of the total number of cells (frequency of total (%) exhibiting 

immunoreactivity for CD45, CD3e, CD34, F4/80 and Ter119 in the (A) SVF and (B) buoyant fraction of 

subcutaneous inguinal adipose tissue (WAT:ING). Red shaded plots indicate the antibody-stained 

sample while the grey plots indicate the no-antibody (negative) control. (C) Comparison of the 

frequency of cells expressing CD45, CD3e, CD34, F4/80 and Ter119 between the SVF and buoyant 

fraction of WAT:ING. Data presented as mean ± SEM (n=3). Differences in surface protein expression 

of examined markers between the SVF and buoyant fraction were determined by two-tailed, Student’s 

t-test. 
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Figure 5.9: Cells of the buoyant adipocyte fraction of visceral gonadal adipose tissue do not express 

markers of the stromal vascular fraction. 

Representative histogram plots of the total number of cells (frequency of total (%) exhibiting 

immunoreactivity for CD45, CD3e, CD34, F4/80 and Ter119 in the (A) SVF and (B) buoyant fraction of 

visceral gonadal adipose tissue (WAT:GON). Red shaded plots indicate the antibody-stained sample 

while the grey plots indicate the no-antibody (negative) control. (C) Comparison of the frequency of 

cells expressing CD45, CD3e, CD34, F4/80 and Ter119 between the SVF and buoyant fraction of 

WAT:GON. Data presented as mean ± SEM (n=3). Differences in surface protein expression of examined 

markers between the SVF and buoyant fraction were determined by two-tailed, Student’s t-test. 
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5.3.6 Mitochondrial membrane potential dye MitoTracker Deep Red does not 

effectively differentiate between brown, subcutaneous and visceral white 

adipocytes. 

Although Nile Red uptake was able to distinguish between adipocytes and the SVF, 

uptake of Nile Red did not discriminate between brown, subcutaneous inguinal and 

visceral gonadal adipocytes. Due to the high numbers of mitochondria in brown 

adipocytes, Nile Red was combined with MitoTracker Deep Red to determine if there 

were any differences between brown and white adipocytes. Brown, subcutaneous 

inguinal and visceral gonadal adipocytes were stained with Nile Red and MitoTracker 

Deep Red and imaged under confocal microscopy before flow cytometric analyses 

were performed (Figure 5.10). 

  

Multi-locular brown and unilocular white adipocytes were identified by Nile Red 

(red) uptake (Figure 5.10). MitoTracker Deep Red (cyan) signal was seen localised 

within the cytoplasm of brown and white adipocytes (Figure 5.10). Co-localisation of 

MitoTracker and Nile Red is presented as an intense white signal (Figure 5.10). Prior 

to this study, confocal imaging of live brown and white adipocytes stained with Nile 

Red and MitoTracker Deep Red had not been described (Boumelhem et al., 2017).  

  

Nile Red and MitoTracker Deep Red uptake was then compared between brown, 

subcutaneous and visceral adipocytes by flow cytometry (Figure 5.11). As Nile Red 

fluorescence was proportional to adipocyte size, the largest, most granular adipocytes 
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were chosen for subsequent flow cytometric analyses (Figure 5.5, 5.11). MitoTracker 

Deep Red uptake was divided into MitoTrackerLow (light blue box) and 

MitoTrackerHigh (dark blue box) populations (Figure 5.11). Adipocytes from all adipose 

depots assayed were predominantly MitoTrackerHigh (Figure 5.11). Regardless of the 

adipose depot assayed, there were no differences in MitoTracker Deep Red uptake 

between adipose depots (Figure 5.12). 
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Figure 5.10: Confocal imaging of live, intact, brown and white adipocytes stained with Nile Red and 

MitoTracker Deep Red. 

Confocal images of brown (BAT) (left), subcutaneous inguinal (WAT:ING) (centre) and visceral 

gonadal (WAT:GON) (right) adipocytes stained with MitoTracker Deep Red (cyan) and Nile Red (red). 

Images were taken on a single plane using a Leica SPEII equipped with an oil-immersed Leica ACS 

Apochromat 63x objective. WGA was excited by the 488 nm laser; Nile Red was excited by the 532 nm 

laser and MitoTracker Deep Red was excited by the 625nm laser. Scale bars represent 20 µm. 
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Figure 5.11: Nile RedHigh adipocytes have high levels of MitoTracker Deep Red. 

Representative flow cytometric plot of Nile RedHigh gated brown (BAT), subcutaneous inguinal 

(WAT:ING) and visceral gonadal (WAT:GON), peri-renal (WAT:PR), mesenteric (WAT:MES) and 

epicardial (WAT:EC) adipocytes stained with Nile Red and MitoTracker Deep Red. Uptake of Nile 

RedHigh and MitoTracker Deep Red was divided into MitoTrackerLow (light blue box) and 

MitoTrackerHigh (dark blue box) populations for subsequent analyses. Figure adapted from Boumelhem 

et al., 2017.  
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Figure 5.12: No differences observed in MitoTracker Deep Red uptake between brown and white 

adipose depots. 

Comparisons of the frequency of (i) Nile RedHigh MitoTrackerLow positive and (ii) Nile RedHigh 

MitoTrackerHigh cells between brown (BAT), subcutaneous inguinal (WAT:ING) and visceral gonadal 

(WAT:GON), peri-renal (WAT:PR), mesenteric (WAT:MES) and epicardial (WAT:EC) adipocytes. Data 

presented as mean ± SEM (n=6 for all groups). Differences in Nile Red and MitoTracker Deep Red 

uptake between adipose depots were determined by two-tailed, one-way ANOVA and pairwise post 

hoc comparison by Tukey’s HSD test. Groups not sharing a numeral are significantly different from 

each other. Figure adapted from Boumelhem et al., 2017.  
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5.3.7 Carborane coumarin and phenyl coumarin co-localise with Nile Red. 

In collaboration with the New Research Group (Faculty of Chemistry, University of 

Sydney, Australia), uptake of probes carborane coumarin and phenyl coumarin were 

assessed in brown and white adipocytes. Carborane coumarin and phenyl coumarin 

are the only lipophilic dyes that are excited by the UV laser line (410 nm – 470 nm).  

 

Whole mount imaging of brown, subcutaneous inguinal and visceral gonadal white 

adipose tissue revealed intense fluorescence of carborane and phenyl coumarin in 

adipose tissues (Figure 5.13). In small brown adipocytes, only carborane coumarin 

uptake was observed (Figure 5.13). Co-localisation of carborane coumarin and phenyl 

coumarin with Nile Red was also detected in brown and white adipose tissue 

indicated by purple colouring (Figure 5.13). Nucleic acid stain YoYo-1 was readily 

observed on adipocytes at the periphery of the tissue (Figure 5.13). Co-localisation of 

Nile Red, the coumarin probes and YoYo-1 is presented as a white or light purple 

colouring (Figure 5.13). Nile Red staining was predominant on the membrane of 

adipocytes (Figure 5.13). 

 

Single cell suspensions of brown and visceral gonadal adipocytes stained with Nile 

Red and either carborane or phenyl coumarin were then visualised by confocal 

microscopy (Figure 5.14). Confocal microscopy revealed co-localisation of Nile Red 

and coumarin probe fluorescence amongst the adipocytes (Figure 5.14A-B). Co-

localisation analysis performed on Image J by the New Research Group revealed a 
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deeper staining of lipid droplets by carborane coumarin when compared to phenyl 

coumarin (Wu et al., 2017).  

 

Flow cytometric analyses performed here revealed that only cells stained with Nile 

Red were stained with either carborane and phenyl coumarin (Figure 5.15). 

Irrespective of the adipose depot assayed, all adipocytes from the supernatant fraction 

exhibited equal fluorescence of Nile Red and the coumarin probes (Figure 5.15A-B). 

However, fluorescence intensity of carborane coumarin was greater than phenyl 

coumarin (Figure 5.15A-B). 
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Figure 5.13: Fluorescent microscopy reveals co-localisation of Nile Red and coumarin dyes in brown 

and white adipose tissue. 

Representative whole mount fluorescent microscopy images of brown (BAT), subcutaneous inguinal 

(WAT:ING) and visceral gonadal (WAT:GON) white adipose tissue stained with Nile Red (red), YoYo-

1 Iodide (green) and (i) carborane coumarin (blue) or (ii) phenyl coumarin (blue). Images were taken at 

20x objective using an EVOS FLoiD Cell Imaging System. Scale bars represent 50 µm.   



 144 

 
Figure 5.14: Confocal microscopy reveals co-localisation of Nile Red and coumarin dyes in brown and white adipocytes. 

Representative confocal microscopy images of buoyant adipocytes from (i) brown (BAT) and (ii) visceral gonadal adipose depots stained with Nile Red (red) 

and (A) carborane coumarin (blue) or (B) phenyl coumarin (blue). Images were taken on a single plane at 63x objective using a Leica SPEII confocal microscope. 

Scale bars represent 20 µm 
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Figure 5.15: Flow cytometric analysis reveal co-localisation of Nile Red and coumarin probes in 

brown and white adipocytes. 

(A) Representative flow cytometric plot of the buoyant fraction of (i) brown (BAT), (ii) subcutaneous 

inguinal (WAT:ING) and (iii) visceral gonadal (WAT:GON) adipose tissue stained with Nile Red, 

carborane coumarin and (B) phenyl coumarin. The black contour plot represents the no stain control 

while the red contour plot represents stained sample. 
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5.4 Discussion 

5.4.1 Flow cytometry is underutilised in the study of adipocyte biology. 

There is a lack of a reliable method to analyse adipocytes at the single cell level. While 

flow cytometric analyses of the stromal vascular fraction (SVF) is routine, analyses of 

mature adipocytes from the buoyant fraction of adipose tissue are largely unreported 

(Majka et al., 2014; Durandt et al., 2016; Festy et al., 2005). The SVF is not an accurate 

representation of adipose tissue as a whole. Previous flow cytometric analyses on 

adipocytes have reported lipid accumulation in adipocytes; adipocytes derived in 

vitro from myeloid and bone marrow progenitors and adipocytes isolated from a 

single adipose depot (Lee, 2004; Festy et al., 2005; Majka et al., 2010; Crossno et al., 

2006; Majka et al., 2014; Durandt et al., 2016). Here, a robust, simple method to analyse 

live, viable and intact brown and white adipocytes at the single cell level was 

demonstrated. Flow cytometry was applied to assess differences in adipocyte size, 

granularity, lipophilic and mitochondrial membrane potential probe uptake. 

 

5.4.2 The utility of Nile Red as a neutral lipid dye for flow cytometric analyses of 

adipocytes.  

Neutral lipid dye Nile Red has been used to selectively stain lipid droplets in aortic 

smooth muscle, macrophages, Leydig cells and adipocytes derived from stem cell 

cultures (Greenspan, Mayer, & Fowler, 1985; Rumin, 2015; Gocze & Freeman, 1994; 

Schaedlich et al., 2010). Prior to this study, Nile Red had not been used to analyse 

isolated adipocytes by flow cytometry (Friedman, 2015). Nile Red effectively 
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discriminated between adipocytes and the SVF. Furthermore, Nile Red fluorescence 

was proportional to adipocyte size. Since Nile Red fluorescence increased with 

adipocyte size and granularity, Nile Red may be an indicator for adipocyte 

maturation. Adipose tissue contains adipocytes of different sizes, which vary 

according to adipose depot and the stage of maturation (Sinnett-Smith et al., 1992; Jo 

et al., 2009). Flow cytometry has been used to characterise adipogenesis from 

mesenchymal stromal cell-derived adipocytes (Aldridge et al., 2013). A report 

published by Aldridge et al. (2013) demonstrated an increase in cell granularity and 

Nile Red fluorescence by flow cytometry over the course adipocyte differentiation 

from mesenchymal stromal cells (Aldridge et al., 2013). 

 

An alternative to Nile Red are coumarin-based lipophilic probes. Coumarin-based 

probes are the only lipophilic probes that are excited by the UV laser line (410 nm – 

470 nm). This offers advantages for multi-parametric flow cytometry of adipocytes. 

Coumarin-based probes could replace Nile Red, opening a channel for the addition of 

a fluorescently-conjugated antibody of interest.  

 

5.4.3 Mitochondrial membrane potential distinguishes adipocytes. 

Mitochondria in adipose tissue is crucial for lipolysis and fatty acid synthesis and 

oxidation (De Pauw et al., 2009; Boudina & Graham, 2014). In WAT, mitochondria 

serve to maintain adipogenesis, lipogenesis and lipolysis (Boudina & Graham, 2014). 

Conversely, mitochondria in BAT oxidise free fatty acids to generate heat by the action 
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uncoupling protein-1 (UCP1) (Cannon & Nedergaard, 2004). Since brown adipocytes 

are rich in mitochondria, they were anticipated to be distinct from white adipocytes 

according to mitochondrial membrane potential dye MitoTracker Deep Red uptake. 

However, mitochondrial membrane potential was greatest in epicardial adipocytes. 

Although classified as a visceral adipose depot, epicardial adipose tissue is suggested 

to be essential for normal cardiac function (Marchington, Mattacks, & Pond, 1989; 

Sacks et al., 2013; Rabkin, 2007). Compared to other adipose depots, epicardial adipose 

tissue has the greatest capacity for free fatty acid release (Marchington et al., 1989). 

Due to the close proximity to the heart, epicardial adipose tissue provides free fatty 

acids to fuel myocardial contraction as well as buffer excess free fatty acids (Bjørndal 

et al., 2011; Gaborit et al., 2011). Expression of UCP1 is present in high levels in 

epicardial adipose tissue, particularly in neonates suggesting similarities to brown 

adipose tissue (Sacks et al., 2013; Ojha et al., 2016). However, mitochondrial 

components involved with thermogenesis (including UCP1) are downregulated in 

infant humans (Ojha et al., 2016).  

 

5.4.4 Diagnostic application for Nile Red staining of adipocytes 

Adipose tissue remodelling occurs with obesity, diabetes, ageing, calorie restriction 

and cancers (cited in: Parlee et al., 2014). Adipocyte size has also been proposed to 

affect lipid metabolism and could be an indicator for the development of Type II 

diabetes (Varlamov et al., 2010). Smaller adipocytes are more sensitive to insulin than 

larger adipocytes (Varlamov et al., 2010; Smith et al., 1971; Jacobsson et al., 1972; 
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Olefsky et al., 1976). Additionally, reduced mitochondrial function in adipose tissue 

has been linked to obesity and type II diabetes (Bournat & Brown, 2010; reviewed in: 

Cedikova et al., 2016). Based on Nile Red and MitoTracker Deep Red uptake, cell size 

and granularity, the method presented could be applied to examine and characterise 

adipocytes from obese or diabetic mice and humans. The flow cytometric method 

could be used to quantify the ratio of small to large adipocytes as an indirect measure 

of adipogenesis in obese or diabetic mice.  

 

5.4.5 Conclusion 

A method to distinguish adipocytes based on adipocyte size, granularity, Nile Red 

and MitoTracker Deep Red uptake was presented. Nile Red fluorescence intensity was 

also proportional to the size and granularity of adipocytes. Although the flow 

cytometric method effectively distinguished between isolated adipocytes and the SVF, 

Nile Red uptake did not differ between brown, subcutaneous and visceral white 

adipocytes. Membrane potential measured by MitoTracker Deep Red distinguished 

epicardial adipocytes from all adipose depots examined. The next parameter to be 

examined by the developed flow cytometric method is Nile Blue. Nile Blue is the 

precursor to Nile Red and stains free fatty acids. In the following chapter, free fatty 

acid dye Nile Blue is characterised and uptake assessed in adipocytes. 
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Chapter 6: Nile Blue is a cell permeable sensor of intracellular free fatty 

acids in live cells.  

 

6.1 Introduction  

In Chapter 5, a flow cytometric method was presented that can analyse adipocytes at 

the single cell level. Nile Red effectively stained adipocytes and uptake correlated 

with cell size and granularity but was not sufficient in distinguishing adipocytes from 

brown and white adipose depots. Subsequently, Nile Red was combined with 

mitochondrial potential probe MitoTracker Deep Red to determine whether there 

were differences between brown, subcutaneous and visceral adipocytes. Together, 

Nile Red and MitoTracker Deep Red did not effectively discriminate adipocyte 

populations from different adipose depots. A further parameter to be assessed in 

conjunction with Nile Red is free fatty acid uptake. Commercially available free fatty 

acid dyes such as the BODIPY dye series share the same spectra as Nile Red. Nile Blue, 

is a far-red fluorescent dye which can be used in conjunction with Nile Red to assess 

free fatty acid uptake.  

 

6.1.1 Chemical properties of Nile Red and Nile Blue 

Nile Blue was first synthesised in 1896 by German researchers Möhlau and Uhlmann 

(cited in: Martinez & Henary, 2016). Nile Blue and Nile Red belong to the 

benzophenoxazine family (Martinez & Henary, 2016). They are both heterocyclic 
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molecules with a 6-membered ring and two double bonds (Martinez & Henary, 2016). 

Nile Blue is a cationic molecule with a charged iminium group (Figure 6.1) (Martinez 

& Henary, 2016). Nile Red is a neutral molecule with a carbonyl group instead of an 

iminium group (Figure 6.1) (Martinez & Henary, 2016). The oxazone component of 

Nile Red was first extracted by boiling Nile Blue with sulfuric acid (Smith, 1911). Nile 

Red is soluble in lipids and stains neutral lipids red by diffusion (Dunnigan et al., 

1968).  

 

 

Figure 6.1: Chemical structure of Nile Blue and Nile Red.  

 

6.1.2 Nile Blue is a benzophenoxazine dye that detects phospholipids and free fatty 

acids. 

The first reported use of Nile Blue was in 1908. Professor James Lorrain Smith reported 

Nile Blue staining of cardiac, liver and pancreatic sections (Smith, 1908). Fat globules 

containing neutral lipids stained red while fat globules containing fatty acids stained 

a deep blue (Smith, 1908; Smith, 1911). The deep blue staining of fatty acids is due to 

blue oxazine base forming a soap-like compound with the fatty acids (Smith, 1911). 
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When Nile Blue is reconstituted in water, the oxazine base oxidises to oxazone (Smith, 

1911). The oxidation process can be hastened by boiling the solution with sulfuric acid, 

which can then be extracted using xylol (Smith, 1911). The extracted oxazone base 

becomes Nile Red (Smith, 1911).  

 

6.1.3 Fatty acid metabolism  

Triglycerides are the most abundant source for energy in mammals (Berg, Tymoczko, 

& Stryer, 2002; reviewed in: Frayn, Arner, & Yki-Järvinen, 2006). Triglycerides are 

esters with a glycerol backbone and three fatty acids (Berg et al., 2002). Fatty acids are 

chains of carbon atoms with a methyl (-CH3) group at one end and a carboxylic acid 

group (-COOH) at the other end (Berg et al., 2002). Triglycerides can be hydrolysed 

into free fatty acids to be released into circulation (Berg et al., 2002). The three main 

organs which regulate triglyceride hydrolysis are adipose tissue, skeletal muscle and 

the liver (reviewed in: Frayn et al., 2006). In adipose tissue, free fatty acids may be re-

esterified into triglycerides by glyceroneogenesis (Reshef et al., 2003). 

 

After meal consumption, triglycerides bound to chylomicrons are transported into 

tissues expressing the enzyme lipoprotein lipase (LPL) (Berg et al., 2002; Goldberg, 

Eckel, & Abumrad, 2008). The leftover chylomicron-bound triglycerides are taken up 

by the liver by hepatic lipase (HL) (Cooper, 1997; Goldberg et al., 2008). Hydrolysis of 

stored triglycerides is due to the actions of hormone-sensitive lipase (HSL), which 

releases non-esterified fatty acids (NEFA) into the plasma (Berg et al., 2002). Albumin-
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bound NEFA is taken up by skeletal muscle and the liver (Berg et al., 2002; Frayn et 

al., 2006). The liver releases hydrolysed triglycerides in the form of very-low density 

lipoprotein while skeletal muscle (and cardiac tissue) consume fatty acids for 

oxidation (Berg et al., 2002; Frayn et al., 2006). Figure 6.2 outlines fatty acid 

translocation between adipose tissue, skeletal muscle and the liver.  

 

Figure 6.2: Exchange of lipids between adipose tissue, liver tissue and skeletal muscle following 

dietary fat intake. FA, fatty acid; LPL, lipoprotein lipase; TG, triglyceride; Cyt TG, cytolosic 

triglyceride; ER, endoplasmic reticulum; VLDL, very low-density lipoprotein; NEFA, non-esterified 

fatty acids.  

 

Nile Blue was first used for histochemical staining of pancreatic, cardaic and hepatic 

sections (Smith, 1908; Smith, 1911; Cain, 1947). However, specificity of Nile Blue to 

free fatty acids by spectrofluorometry has not been reported. To date, 
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spectrofluorimetric analyses of Nile Blue have only been conducted in Eremothecium 

ashbyii fungal filaments for the quantification of lipids (Vijayalakshmi et al., 2003). The 

question was asked whether Nile Blue could detect free fatty acids in adipocytes, 

myocytes and hepatocytes at the single cell level. Furthermore, the question was asked 

whether Nile Blue could be used as a parameter in characterising adipocytes from 

brown, subcutaneous and visceral adipose depots (Figure 6.3).  

 

Figure 6.3: Free fatty acid uptake measured by Nile Blue may distinguish between brown and white 

adipocytes. 
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6.2 Methods 

6.2.1 Spectrofluorometric analyses of Nile Red and Nile Blue  

Spectrofluorometric analyses were conducted using a Cary Eclipse Fluorescence 

Spectrophotometer (Agilent Technologies, Santa Clara, California, USA) with the 

assistance of Dr. Jacek Kolanowski. Palmitate (P9767, Sigma Aldrich), linoleate (L1376, 

Sigma Aldrich) and oleate (O1008, Sigma Aldrich) were reconstituted in ethanol to a 

stock concentration of 100 mmol.L-1. Nile Blue was dissolved in water to a stock 

concentration of 10 mmol.L-1. The final concentration of Nile Blue used to stain free 

fatty acids for spectrofluorometric analysis was 1 µmol.L-1. 

 

Lipids were pipetted into a cuvette containing 1 µmol.L-1 Nile Blue or Nile Red in PBS. 

The cuvette was sealed and inverted up to 15 times to mix the solution. Nile Blue was 

excited at 630 nm and emission measured between 650 to 750 nm. Nile Red was 

excited at 500 nm and emission measured between 520 to 750 nm. Data was recorded 

using the Cary Eclipse software package. 

 

6.2.2 Flow cytometry 

6.2.2.1 Adipose tissue, skeletal muscle and liver tissue 

Dissection and dissociation of adipose tissue for flow cytometric analyses is outlined 

in 2.6.1. and Figure 2.1. Preparation of the buoyant adipocyte fraction for flow 

cytometric analyses is outlined in 2.6.3 and 5.2.1.1. Skeletal muscle tissue was 

dissected from the quadriceps by bilateral incision. Skeletal muscle and liver tissue 
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were dissociated into single cell suspensions in the same manner as adipose tissue 

(outlined in 2.5.1.2, Table 2.9, Figure 2.1). The buoyant fraction of each tissue was 

stained with FACS buffer containing 100 nmol.L-1 of Nile Red and Nile Blue as 

described in 4.2.2.  

 

6.2.3 Statistical analyses 

All data presented as mean ± SEM. Statistical analyses were performed on GraphPad 

Prism®. Comparisons between Nile Red and Nile Blue fluorescence in the presence of 

lipids was determined by a two-tailed, Student’s t-test. Differences in Nile Red and 

Nile Blue uptake in adipocytes, hepatocytes and myocytes were determined by a two-

tailed, one-way ANOVA with Tukey’s post-hoc analysis. For all statistical tests, a P 

value < 0.05 was deemed significant. 

  



 157 

6.3 Results 

6.3.1 Spectrofluorometric analyses of Nile Blue and Nile Red  

6.3.1.1 The presence of oleate and linoleate but not palmitate results in increasing 

Nile Blue fluorescence.  

As there are no reports characterising Nile Blue by spectrofluorometry, fluorescence 

of Nile Blue in the presence of fatty acids was measured by spectrofluorometry. Nile 

Blue exhibited some background fluorescence in PBS but did not auto-fluoresce in the 

presence of ethanol (Figure 6.4Aii). No fluorescence was detected in Nile Blue with 

palmitate (Figure 6.4Aii). Conversely, fluorescence was greatest in the presence of 

Nile Blue with oleate or linoleate (Figure 6.4Aii). Furthermore, fluorescence increased 

linearly with increasing concentrations of palmitate and linoleate (Figure 6.4Aiii). 

Fluorescence was comparable between oleate and linoleate at all concentrations tested 

but fluorescence was greater compared to palmitate (Figure 6.4Aiii).  

 

6.3.1.2 The presence of oleate and linoleate but not palmitate results in increasing 

Nile Red fluorescence. 

Nile Red fluorescence was also measured in the presence of fatty acids. Similarly, Nile 

Red exhibited no fluorescence in the presence of ethanol (Figure 6.4Bii). Fluorescence 

intensity of Nile Red was greatest in the presence of linoleate and oleate compared to 

palmitate (Figure 6.4Bii-iii). Nile Red fluorescence increased with increasing 

concentrations of linoleate and oleate, but not palmitate (Figure 6.4Biii).   
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Figure 6.4: The presence of oleate and linoleate but not palmitate results in increasing Nile Blue 

fluorescence.  

Representative fluorescence intensity (a.u.) of (Ai) Nile Blue and (Bi) Nile Red in the presence of 

ethanol, PBS, palmitate, linoleate and oleate. Fluorescence of Nile Blue was measured between 640 nm 

to 750 nm. Fluorescence of Nile Red was measured between 560 nm to 700 nm. Fold change in 

fluorescence intensity of (Aii) Nile Blue and (Bii) Nile Red in the presence of 100 µmol.L-1, 200 µmol.L-

1 and 300 µmol.L-1 palmitate, linoleate and oleate. Data presented as mean ± SEM (n=3). Differences in 

the fold change of Nile Blue and Nile Red fluorescence in the presence of increasing concentration of 

fatty acids was determined by a two-tailed, one-way ANOVA with Tukey’s post hoc analysis. Groups 

not sharing a numeral are significantly different from each other. Differences in Nile Blue and Nile Red 

fluorescence between fatty acids was determined by a two-tailed, two-way ANOVA with Tukey’s 

comparison test. Groups not sharing a symbol (#) are significantly different from each other.  
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6.3.1.3 Nile Blue fluorescence is greater than Nile Red in the presence of free fatty 

acids in solution. 

The fluorescence intensity of Nile Blue and Nile Red were compared in the presence 

of different fatty acids in solution. Nile Blue displayed greater fluorescence in the 

presence of linoleate, oleate, l-a-phosphatidylcholine, tri-oleate and non-esterified 

fatty acids (NEFA) than Nile Red (Figure 6.5i). However, when fluorescence intensity 

was normalised to background fluorescence, Nile Red had greater fluorescence 

intensity in the presence of tri-oleate and NEFA compared to Nile Blue (Figure 6.5ii).   
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Figure 6.5: Nile Red detects tri-oleate and non-esterifed fatty acids.  

Comparisons in the (i) raw and (ii) integrated fluorescence intensity (a.u.) of Nile Red and Nile Blue in 

the presence of palmitate, linoleate, oleate, l-a-phosphatidyl choline (LaPC), tri-oleate and non-

esterified fatty acids (NEFA). Differences between Nile Red and Nile Blue fluorescence in the presence 

of fatty acids was determined by a two-tailed Student’s t-test. * = P < 0.05, ** = P < 0.01, *** = P < 0.001, 

NS = not significantly different.  
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6.3.2 Hepatocytes and adipocytes have the greatest uptake of Nile Blue  

In Chapter 5, a method was developed to analyse Nile Red uptake in single cell 

suspensions of adipocytes. Here, the buoyant fraction of dissociated liver tissue, 

skeletal muscle and brown and white adipose tissue was analysed for Nile Red and 

Nile Blue uptake (Figure 6.6i). Nile Red and Nile Blue fluorescence was observed in 

all cell types (Figure 6.6ii-iii). Brown and white adipocytes had significantly greater 

uptake of Nile Red compared to hepatocytes (P < 0.0001) and myocytes (P < 0.0005) 

(Figure 6.6ii, 6.7i). Nile Blue uptake was equivalent between hepatocytes and brown 

and white adipocytes (Figure 6.6iii, 6.7ii). Myocytes displayed lower uptake of Nile 

Blue compared to hepatocytes (P < 0.0001), brown (P < 0.005) and white (P < 0.001) 

adipocytes (Figure 6.6iii, 6.7ii). 
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Figure 6.6: Single cell suspensions from metabolically active tissues take up Nile Red and Nile Blue. 

Representative flow cytometric plot of the (i) forward (size) and side scatter (granularity) of the buoyant 

fraction of dissociated liver tissue, skeletal muscle and brown and white adipose tissue. Live cells were 

gated and fluorescence of (ii) Nile Blue (blue shaded plot) and (iii) Nile Red (red shaded plot) measured. 

Uptake of Nile Blue and Nile Red expressed as a percentage of the total number of cells (% of max). 

Grey shaded plots represent the no-dye control. 
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Figure 6.7: Adipocytes have greater Nile Red uptake than hepatocytes and myocytes. 

Comparisons in the frequency of (i) Nile Blue+ve and (ii) Nile Red+ve cells between the buoyant fraction 

of dissociated liver tissue, skeletal muscle and brown and white adipose tissue (BAT and WAT 

respectively). Data presented as mean ± SEM (n=3 for all groups). Differences in the frequency of Nile 

Blue and Nile Red positive cells between cell types were determined by two-tailed, one-way ANOVA 

and pairwise post-hoc comparison by Tukey’s HSD test. Groups not sharing a numeral are significantly 

different from each other. 
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6.3.3 Nile Red and Nile Blue uptake distinguishes adipocyte populations in brown 

and white adipocytes. 

Confident that Nile Blue was detecting free fatty acids, adipocytes from six different 

depots were stained with Nile Red and Nile Blue and uptake measured (Figure 6.8). 

Uptake of Nile Red and Nile Blue revealed four distinct cell populations according to 

fluorescence intensity (Figure 6.8). The populations were defined as: Nile Red-ve Nile 

BlueHigh (P1), Nile RedMid Nile BlueLow (P2). Nile RedMid Nile BlueHigh (P3) and Nile 

RedHigh Nile BlueHigh (P4) (Figure 6.8). 

  

Brown adipocytes had the greatest number of cells that were Nile Red-ve Nile BlueHigh 

(P1, P < 0.005) (Figure 6.9i). Mesenteric and epicardial adipocytes had more Nile RedMid 

Nile BlueLow (P2) cells compared to brown (P < 0.008, P < 0.004 respectively) and 

gonadal (P < 0.05, P < 0.006 respectively) adipocytes (Figure 6.9ii). Epicardial and 

mesenteric adipocytes had the least number of cells that were Nile RedMid Nile BlueHigh 

(P3, P < 0.05) (Figure 6.9iii). Conversely, epicardial adipocytes had the most Nile 

RedHigh Nile BlueHigh (P4) cells compared to brown (P < 0.01) and gonadal (P < 0.05) 

adipocytes (Figure 6.9iv). 
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Figure 6.8: Uptake of Nile Red and Nile Blue in adipocytes reveals distinct populations. 

Representative flow cytometric plot of Nile Red and Nile Blue uptake in (i) brown (BAT), (ii) 

subcutaneous inguinal (WAT:ING) and visceral (iii) gonadal (WAT:GON), (iv) peri-renal (WAT:PR), 

(v) mesenteric (WAT:MES) and (vi) epicardial (WAT:EC) adipocytes. Cell populations (P1-P4) were 

gated according to Nile Red and Nile Blue fluroescence. P1 represents the Nile Red-ve Nile BlueHigh 

population; P2 represents the Nile RedMid Nile BlueLow population; P3 represents the Nile RedMid Nile 

BlueHigh population and P4 represents the Nile RedHigh Nile BlueHigh population. 
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Figure 6.9: Brown and white adipocyte heterogeneity according to Nile Red and Nile Blue uptake.  

Comparisons between each adipose depot according to frequency of cells in (i) Nile Red-ve Nile BlueHigh 

(P1), (ii) Nile RedMid Nile BlueLow (P2), (iii) Nile RedMid Nile BlueHigh (P3) and (iv) Nile RedHigh Nile 

BlueHigh (P4). Data presented as mean ± SEM (n=5). Differences in cell frequency between adipose depots 

were determined by two-tailed, one-way ANOVA and pairwise post-hoc comparison by Tukey’s HSD 

test. Groups not sharing a numeral are significantly different from each other. 
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6.4 Discussion 

Nile Blue was synthesised over a century ago and has been met with criticism 

regarding its utility (cited in: Cain, 1947). German researchers Kaufmann and 

Lehmann and French researcher Lison concluded that Nile Blue was a non-specific 

lipophilic dye and was of no histological value (cited in: Cain, 1947). Despite the 

criticisms raised against Nile Blue, Cain (1947) demonstrated utility of Nile Blue in 

distinguishing between neutral lipids and fatty acids (Cain, 1947). The findings 

presented in this chapter support the findings reported by Cain (1947) and highlight 

the utility of Nile Blue as an intracellular sensor of free fatty acids. 

 

6.4.1 Nile Blue detects oleate and linoleate 

A spectrofluorometric approach was analysed to provide insight into the 

photochemical properties and utility of Nile Blue. Early reports of Nile Blue described 

an intense blue staining for phospholipids such as lecithin and an intense red staining 

for triglycerides and cholesterol esters (Smith, 1911;  Cain, 1947; Dunnigan et al., 1968). 

Staining of palmitic, oleic and linoleic acid was described to be purple, further 

supporting the observations made in this study (Cain, 1947; Dunnigan et al., 1968). 
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6.4.2 Advantages in flow cytometric analyses of Nile Red and Nile Blue uptake 

While spectrofluorometric assays are useful in the rapid screening of different fatty 

acids in a cell free system, flow cytometry can quantify changes in dye uptake at the 

single cell level. As the fluorescence spectra for Nile Blue and Nile Red do not overlap, 

they can be combined to stain for free fatty acids and neutral lipids respectively in 

single cells. Cells do not require fixation prior to staining with Nile Red and Nile Blue 

(Greenspan et al., 1985). Although current methodologies for measuring and 

identifying fatty acids such as mass spectrometry are sensitive and specific, they are 

complex, time consuming and costly. Flow cytometric analyses of Nile Red and Nile 

Blue could be utilised as a precursor to mass spectrometry to determine whether 

samples containing a combination of neutral lipids or fatty acids differ prior further 

analysis by mass spectrometry.  

 

6.4.3 Nile Red and Nile Blue uptake characterises the maturation process of 

adipocytes 

Adipose tissue contains adipocytes of different sizes, which vary according to adipose 

depot and the stage of maturation (Jo et al., 2009). In Chapter 5, Nile Red uptake was 

proposed as an indicator of adipocyte maturation as uptake was proportional to cell 

size and granularity. Uptake of Nile Red and Nile Blue provides further evidence of 

adipocyte maturation. Doan-Xuan and colleagues (2013) used laser scanning 

cytometry to assess Nile Red and Nile Blue fluorescence on the pre-adipocyte cell line 

SGBS (Doan-Xuan et al., 2013). Differentiated adipocytes exhibited greater Nile Red 
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fluorescence whilst pre-adipocytes had greater Nile Blue fluorescence (Doan-Xuan et 

al., 2013). In conjunction with the findings reported by Doan-Xuan and colleagues 

(2013), the method presented here may describe the maturation of adipocytes as they 

progress from maturing (Nile Blue only) to mature adipocytes (Nile Red and Nile 

Blue). Live cell fluorescent imaging can also be utilised to measure Nile Red and Nile 

Blue uptake in cultured primary adipocytes as they undergo adipogenesis.  

 

6.4.4 Modelling fatty acid metabolism in live cells with Nile Red and Nile Blue  

Triglyceride levels in the liver are low under physiological conditions (Kawano & 

Cohen, 2013; Frayn et al., 2006). In times of excess food consumption, the liver begins 

to accumulate triglycerides in a condition termed non-alcoholic fatty liver disorder 

(NAFLD) (Kawano & Cohen, 2013). The low uptake of Nile Red and high uptake of 

Nile Blue reported here may be indicative of triglyceride clearance in the liver.   

 

Nile Red and Nile Blue uptake in myocytes could represent the adipocytes stored 

within the muscle fibre (intramyocellular adipocytes) or the adipocytes interspersed 

with the muscle fibres. Intramyocellular adipocytes are posited to be an energy source 

for extended periods of exercise (Frayn et al., 2006). In a clinical setting, Nile Red and 

Nile Blue could be utilised to assess changes in lipid metabolism in Duchennes 

muscular dystrophy. For instance, there is a decrease in the ratio of phospholipids to 

triglycerides in Duchennes muscular dystrophy (Pearce et al., 1981). Thus, the ratio to 

Nile Blue to Nile Red could be used as a screening tool for muscular dystrophy. 
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Additionally, histopathological analysis of sections acquired from muscle biopsies 

revealed an increase in the amount of fat accumulation in the diseased muscle (Bell & 

Conen, 1968). Indeed, patients diagnosed with Duchennes muscular dystrophy 

present with an increase in fatty acid infiltration in the pelvic, thigh and gluteal 

muscles (Kim et al, 2013; Li et al, 2015). One possibility in increased adipocyte 

deposition in muscle may be due to differentiation of mesenchymal stem cells into 

adipocytes (Sienkiewicz et al, 2015). However, the mechanism behind adipocyte 

infiltration remains largely unexplored. 

 

6.4.4.1 Nile Red and Nile Blue as a diagnostic tool in fatty acid metabolism disorders 

Approximately 70% of obese individuals with type II diabetes are diagnosed with 

NAFLD (Targher et al., 2007). The hallmark of NAFLD is an increase in intrahepatic 

triglyceride accumulation, traditionally assessed by liver biopsies (Kawano & Cohen, 

2013), (Fabbrini & Magkos, 2015). NAFLD encompasses steatosis, non-alcoholic 

steatohepatitis and cirrhosis and is recognised as the leading cause for liver 

dysfunction in individuals who do not consume alcohol (Kawano & Cohen, 2013).  

 

Nile Red and Nile Blue could be used clinically as a diagnostic tool for the 

development and progression of NAFLD. In mice, NAFLD induced steatosis can be 

induced by feeding mice a high fat and high carbohydrate diet (Clapper et al., 2013; 

Kirsch et al., 2003; Fengler et al., 2015; Schultz et al., 2015). An assay can be designed 

to measure the balance between Nile Red and Nile Blue uptake in hepatocytes from 
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mice fed different diets. In this study, the hepatocytes of adult, wild-type mice fed a 

normal chow diet had low uptake of Nile Red and high uptake of Nile Blue. 

Accumulation of triglycerides, as depicted in NAFLD can be measured by the 

increased uptake of Nile Red and decreased uptake of Nile Blue.  
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6.4.5 Conclusions 

Nile Red and Nile Blue are useful lipophilic probes that can be applied to measure 

differences in lipid metabolism. Nile Red preferentially detects neutral lipids while 

Nile Blue detects fatty acids oleate and linoleate. As the fluorescence spectrum of Nile 

Red and Nile Blue do not overlap, they can be combined for staining at the single cell 

level as demonstrated by flow cytometric analyses. However, uptake of Nile Red and 

Nile Blue was not sufficient in distinguishing differences between adipose depots. In 

the following chapter, Nile Red is combined with cell surface protein markers to 

determine whether there are differences between brown and white adipocytes. 
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Chapter 7: Characterisation of adipocytes from different adipose depots 

according to cell surface protein expression.  

 

7.1 Introduction 

In Chapter 5, a method was developed to characterise buoyant adipocytes from 

dissociated adipose tissue using cell size, granularity and Nile Red uptake. Nile Red 

was combined with mitochondrial probe MitoTracker Deep Red and free fatty acid 

dye Nile Blue (Chapter 6) to determine whether adipocyte heterogeneity existed at the 

single cell level. However, neither probe was able to sufficiently distinguish 

adipocytes from brown, subcutaneous and visceral adipose depots. Here, Nile Red is 

assessed in combination with a panel of surface protein markers to determine if there 

are any differences between brown and white adipocytes (Figure 7.1).   

 
7.1.1 Heterogeneity of adipose tissue. 

Adipose tissue is considered a metabolically active endocrine organ. However, each 

distinct adipose depot differs in metabolic, hormonal and physiological profiles 

(reviewed in: Kwok, Lam, & Xu, 2016). Reflecting this is the report that the proteins 

involved in ATP generation and the metabolism of glucose, lipid and free fatty acids 

differ between adipose depots (Bjørndal et al., 2011; Sackmann-Sala et al., 2011). 

Visceral adipose depots have greater levels of glucose and lipid metabolism compared 

to subcutaneous adipose depots (Bjørndal et al., 2011; Lee et al., 2013). Subcutaneous 

adipose tissue however, has greater levels of leptin expression and is more efficient in 



 176 

taking up free fatty acids from circulation compared to visceral adipose depots 

(Coelho, Oliveira, & Fernandes, 2013; White & Tchoukalova, 2014). Brown adipocytes 

fuel non-shivering thermogenesis through uncoupling protein-1 (Nedergaard and 

Canon, 2014). Mass spectrometric analyses have identified greater amounts of 

phospholipids and free fatty acids in brown adipocytes compared to subcutaneous 

and visceral white adipocytes (Hoene et al., 2014). Conversely, white adipocytes 

contain more triglycerides than brown adipocytes (Hoene et al., 2014). 

 

7.1.1.1 Differences in the extracellular matrix between adipose depots. 

An integral component of adipose tissue is the extracellular matrix (ECM) that 

encompasses it (Mariman & Wang, 2010; Pellegrinelli et al., 2016). The ECM of adipose 

tissue is dynamic, responding to biochemical cues and mechanical force (Craft et al., 

2015). The ECM also regulates adipocyte expansion (Pellegrinelli et al., 2016). Collagen 

IV is one of the major components of the ECM of adipocytes (Craft et al., 2015). 

 

Proteomic studies have labelled 12 types of collagens in primary rodent adipocytes 

(Mariman & Wang, 2010). Interestingly, there are differences in the expression of the 

subunits of collagen differ across species (rodents and humans) and adipose depots 

(subcutaneous and visceral WAT) (Mariman & Wang, 2010). Subunits of collagen type 

II, XI and XXIII are absent in human visceral WAT (Mariman & Wang, 2010). 

Fibronectin, laminin and thrombospondin-1 have been identified in human 

subcutaneous WAT, rodent primary adipocytes and 3T3-L1 pre-adipocytes (Mariman 
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& Wang, 2010). Subcutaneous WAT has greater protein expression of collagen type I 

than visceral WAT (Pellegrinelli et al., 2016). Collagen fibres form networks with 

fibronectin and laminin, which allow integrins to dock into the membrane of 

adipocytes (Bonnans, Chou, & Werb, 2014). Integrins are composed of alpha and beta 

subunits (Barczyk, Carracedo, & Gullberg, 2010). During adipogenesis, alpha integrin 

expression shifts from a5 to a6 while b1 integrin is upregulated in mature adipocytes 

(Farnier et al., 2003; Liu et al., 2005; Noro et al., 2013). The integrin complex a6b1 

recognises laminin receptor and is expressed at greater levels in subcutaneous WAT 

compared to visceral WAT (Mori et al., 2014). Compared to white adipose tissue 

however, little is known about the extracellular matrix composition of brown adipose 

tissue (Pope et al., 2016).  

 

7.1.2 Surface protein expression of CD137 and CD40 reportedly characterise beige 

adipocytes. 

Recently, Wu et al. (2012) reported CD137 (4-1BB) and CD40 as beige adipocyte 

specific surface markers found within subcutaneous inguinal adipocytes (Wu et al., 

2012). The terms brite (brown in white) and beige are often used interchangeably to 

classify a third class of adipocytes (Cinti, 2012; Harms & Seale, 2013). Brite adipocytes 

refer to a population of brown adipocytes residing within a white adipose tissue depot 

(Rosenwald & Wolfrum, 2014). In response to cold stimuli or b3-adrenergic 

stimulation, white adipocytes may undergo a ‘browning’ process which converts 

white adipocytes into brown-like adipocytes (Park, Kim, & Bae, 2014; Harms & Seale, 
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2013). The subsequent beige adipocyte is considered a distinct class of adipocytes (Wu 

et al., 2012). The subcutaneous inguinal adipose depot is predisposed to ‘browning’ in 

response to cold stimuli whilst visceral adipose depots like gonadal are resistant 

(Harms & Seale, 2013).  

 

Since MitoTracker Deep Red and Nile Blue were not sufficient in distinguishing 

brown and white adipocytes, the aim here was to assess a panel of cell surface protein 

markers to determine if there were any differences between brown and white 

adipocytes. This work (together with the findings from Chapter 5), made up the 

majority of a recently published manuscript (Appendix 3) (Boumelhem et al., 2017).   

 

Figure 7.1: Proposed assessment of cell surface protein markers and extracellular matrix proteins in 

white, beige and brown adipocytes. 
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7.2 Methods 

7.2.1 Flow cytometry of brown, subcutaneous and visceral white adipocytes 

Dissection and dissociation of adipose tissue for flow cytometric analyses is outlined 

in 2.5.1.2 and Figure 2.1. Preparation of the buoyant adipocyte fraction for flow 

cytometric analyses is outlined in 2.6.3 and 5.2.1.1. 

 

7.2.1.1 Flow cytometry of marrow adipocytes 

Flow cytometric analyses of marrow adipocytes was performed on flushed caudal 

vertebrae (tail) marrow. The tail was removed by snipping at the base. Four incisions 

were made around the opening to allow for the removal of the skin surrounding the 

tail with forceps. Individual vertebrae were sliced by a razor blade and then sliced 

again in half to expose the marrow. The marrow was flushed using a 23G needle 

attached to a 5 mL syringe containing 3 mL of ES maintenance medium. Staining of 

marrow adipocytes performed in the same manner as brown and white adipocytes 

(2.6.3 and 5.2.1.1).   

 

7.2.2 Statistical analyses 

Statistical analyses were performed on GraphPad Prism®. All data represented as 

mean ± SEM. Where relevant, two-tailed Student’s t-test was used to compare between 

two groups. A two-tailed one-way ANOVA with Tukey’s posthoc analysis was used to 

compare more than two groups.  
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7.3 Results 

7.3.1 Adipocytes do not display immunoreactivity to a range of fluorescently-

conjugated antibodies.  

In Chapter 5, cell surface protein expression of haematopoietic markers was not 

detected on the buoyant fraction containing adipocytes (Figure 5.7-9). In Chapters 6 

and 7, mitochondrial membrane potential probe MitoTracker Deep Red and fatty acid 

dye Nile Blue did not clearly discriminate adipocytes from multiple adipose depots. 

In search of candidate markers to distinguish adipocytes, a panel of surface protein 

markers were selected based from the literature as well online database searches. 

Here, a panel of surface protein markers were assessed on brown, white and marrow 

adipocytes (Table 7.1). Surface protein markers identifying adhesion molecules 

including integrins a2, a4, a5, a7, b3, b4, b7; epithelial markers E-Cadherin and 

Epithelial Cell Adhesion Molecule; CD133 and Intracellular Adhesion Molecule 1 

were not detected on brown, white or marrow adipocytes (Table 7.1). Conversely, a6 

integrin, b1 integrin and fatty acid translocase CD36 displayed immunoreactivity. 

Thus, those markers were chosen for further evaluation in brown, subcutaneous and 

visceral white adipocytes. A complete list of all the antibodies assayed in this study is 

presented in Table 7.1.  
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Table 7.1: A list of fluorescently-conjugated monoclonal antibodies used to screen 
for surface protein expression in brown and white adipocytes. 

Antibody BAT WAT:ING WAT:GON WAT:PR WAT:MES WAT:EC 
α2-integrin - - - - - - 

α4-integrin - - - - - - 

α5-integrin - - - - - - 

α6-integrin + + + + + + 

α7-integrin - - - - - - 

αL-integrin - - - - - - 

β1-integrin + + + + + + 

β3-integrin - - - - - - 

β4-integrin - - - - - - 

β7-integrin - - - - - - 

c-Kit - - - - - - 

CD3e - - - - - - 

CD4 - - - - - - 

CD11b - - - - - - 

CD19 - - - - - - 

CD31 - - - - - - 

CD34 - - - - - - 

CD36 + + + + + + 

CD41 - - - - - - 

CD45 - - - - - - 

CD47 - - - - - - 

CD48 - - - - - - 

CD61 - - - - - - 

CD62P - - - - - - 

CD71 - - - - - - 

CD133 - - - - - - 

CD144 - - - - - - 

Csf-1R - - - - - - 

CXCR4 - - - - - - 

E-Cadherin - - - - - - 

EpCAM - - - - - - 

F4/80 - - - - - - 

Flk-1 - - - - - - 

I-CAM1 - - - - - - 

PDGFRa - - - - - - 

Sca-1 - - - - - - 

Ter119 - - - - - - 

V-Cam1 - - - - - - 



 182 

7.3.2 Immunoreactivity of fatty acid translocase CD36 differs between brown and 

white adipose depots.  

Fatty acid translocase CD36 was chosen as a candidate surface marker of adipocytes. 

CD36 is a multi-ligand receptor that shuttles fatty acids into cells (Qiao et al., 2008). 

CD36 surface protein expression has been reported on human adipocytes obtained 

from lipoaspirates (Festy et al., 2005). However, no comparisons have apparently been 

made in surface protein expression of CD36 between brown, subcutaneous and 

visceral white adipose depots (Boumelhem et al., 2017).  

  

CD36 immunoreactivity was assessed according to Nile Red uptake in brown and 

white adipocytes (Figure 7.1). Surface protein expression of CD36 was gated according 

to CD36Low (light green) and CD36High (dark green) populations (Figure 7.2, 7.3). 

CD36High positive cells were prevalent in the Nile RedHigh gated adipocytes (Figure 7.2). 

Amongst the Nile RedHigh population, brown adipocytes had significantly more 

surface CD36Low positive cells compared to epicardial adipocytes (P < 0.005) (Figure 

7.3i). In contrast, brown adipocytes had less CD36High positive cells compared to 

inguinal, gonadal and epicardial adipocytes (P < 0.01 for all groups) (Figure 7.3ii). 

 

 

 

 

 



 183 

 

 

Figure 7.2: CD36 expression distinguishes BAT from WAT. 

Representative flow cytometric plot of Nile RedHigh brown (BAT), subcutaneous inguinal (WAT:ING) 

and visceral gonadal (WAT:GON), peri-renal (WAT:PR), mesenteric (WAT:MES) and epicardial 

(WAT:EC) adipocytes stained with Nile Red and CD36. CD36 immunoreactivity was divided into 

CD36Low (light green box) and CD36High (dark green box) populations for subsequent analyses. Figure 

adapted from Boumelhem et al., 2017.  
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Figure 7.3: CD36 expression distinguishes BAT from WAT. 

Comparisons of the frequency of (i) Nile RedHigh CD36Low positive and (ii) Nile RedHigh CD36High positive 

cells between brown (BAT), subcutaneous inguinal (WAT:ING) and visceral gonadal (WAT:GON), 

peri-renal (WAT:PR), mesenteric (WAT:MES) and epicardial (WAT:EC) adipocytes. Data presented as 

mean ± SEM (n=6 for all groups). Differences in Nile Red uptake and CD36 immunoreactivity between 

adipose depots were determined by two-tailed, one-way ANOVA and pairwise post hoc comparison by 

Tukey’s HSD test. Groups not sharing a numeral are significantly different from each other. Figure 

adapted from Boumelhem et al., 2017.  
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7.3.3 Immunoreactivity of laminin receptor proteins a6 and b1 integrin 

distinguishes brown and gonadal white adipocytes. 

CD36 was the first surface protein marker to be detected on the buoyant fraction 

containing adipocytes. Following, surface protein expression of laminin receptor 

integrins a6 and b1 were assessed on Nile Red stained adipocytes. b1 integrin 

immunoreactivity was greatest in brown (P < 0.0001) and gonadal (P < 0.0003) 

adipocytes compared to subcutaneous inguinal and visceral peri-renal, mesenteric 

and epicardial adipocytes. (Figure 7.4) Brown and gonadal adipocytes exhibited 75% 

± 5% and 60% ± 3% of b1 integrin surface protein expression respectively (Figure 7.4). 

Similarly, a6 integrin surface protein expression was also greatest in brown and 

gonadal adipocytes compared to all adipocytes examined (P < 0.01) (Figure 7.5). 

Brown adipocytes displayed 50% ± 6% of a6 integrin surface protein expression while 

gonadal adipocytes displayed 55% ± 2% (Figure 7.5). No differences were observed 

between subcutaneous inguinal, visceral peri-renal and epicardial adipocytes in b1 

integrin and a6 integrin surface protein expression.  
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Figure 7.4: Surface protein expression of b1 integrin distinguishes brown and visceral gonadal white 

adipocytes. 

(i) Representative histogram plot of Nile Red+ve b1 integrin+ve cells in brown (BAT), subcutaneous 

inguinal (WAT:ING) and visceral gonadal (WAT:GON), peri-renal (WAT:PR), mesenteric (WAT:MES) 

and epicardial (WAT:EC) adipocytes. (ii) Comparisons in the frequency of Nile Red+ve b1 integrin+ve cells 

between brown and white adipocytes. Data presented as mean ± SEM (n=4). Differences between brown 

and white adipocytes was determined by a two-tailed, one-way ANOVA and Tukey’s pairwise post hoc 

analysis. P < 0.05 was deemed significant. Groups not sharing a numeral are significantly different.  
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Figure 7.5: Surface protein expression of a6 integrin distinguishes brown and gonadal white 

adipocytes. 

(i) Representative histogram plot of Nile Red+ve a6 integrin+ve cells in brown (BAT), subcutaneous 

inguinal (WAT:ING) and visceral gonadal (WAT:GON), peri-renal (WAT:PR), mesenteric (WAT:MES) 

and epicardial (WAT:EC) adipocytes. (ii) Comparisons in the frequency of Nile Red+ve a6 integrin+ve 

cells between brown and white adipocytes. Data presented as mean ± SEM (n=4). Differences between 

brown and white adipocytes was determined by a two-tailed, one-way ANOVA and Tukey’s pairwise 

post hoc analysis. P < 0.05 was deemed significant. Groups not sharing a numeral are significantly 

different.  
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7.3.4 Subcutaneous inguinal adipocytes do not display immunoreactivity for 

“beige” adipocytes markers CD40 or CD137. 

Wu et al. (2012) reported CD137 and CD40 as specific markers for beige adipocytes in 

subcutaneous inguinal adipose tissue (Wu et al., 2012). To determine whether beige 

adipocytes reside within the buoyant fraction of subcutaneous inguinal adipose tissue, 

Nile Red was combined with either CD137 or CD40 and surface protein expression 

measured. Inguinal lymph nodes exhibited immunoreactivity to both CD137 and 

CD40, confirming antibody specificity to immune cells (Figure 7.6A).  

 

Initial assessment of CD137 and CD40 immunoreactivity on subcutaneous inguinal 

adipose tissue from outbred QS mice revealed no surface protein expression. As the 

expected findings were not obtained, the mouse stain was confirmed with the original 

publication and then analyses performed with CD137 and CD40 (Wu et al., 2013). 

Subcutaneous inguinal adipose tissue was isolated from inbred 129/SV mice and 

CD137 and CD40 immunoreactivity examined. Live, viable, Nile Red stained 

subcutaneous inguinal and brown adipocytes did not exhibit CD137 or CD40 

immunoreactivity (n=3) (Figure 7.6B).  

 

CD45 is expressed on all haematopoietic cells except erythrocytes and platelets 

(Nakano et al., 1990). The SVF of subcutaneous inguinal adipocytes were assessed for 

CD45 and CD137 or CD40 immunoreactivity. The SVF of subcutaneous inguinal 

adipocytes had few cells with surface protein expression of CD137 (Figure 7.6C). 



 189 

Additionally, the cells that were positive for CD137 were also positive CD45 (Figure 

7.5C). Surface protein expression of CD40 was also observed in the SVF of 

subcutaneous inguinal adipocytes (Figure 7.6C). However, all CD40 positive cells 

exhibited surface protein expression for CD45 (Figure 7.6C).  
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Figure 7.6: Reported beige adipocyte specific markers CD40 or CD137 are not expressed on 

subcutaneous inguinal adipocytes.  

(A) Representative histogram plot of isolated inguinal lymph nodes stained with anti-CD137 antibody 

or anti-CD40 antibody. Grey shaded plot indicates the isotype control. Red shaded plot indicates the 

stained sample. (B) Representative flow cytometric plot of the buoyant fraction of dissociated 

subcutaneous inguinal adipose tissue (WAT:ING) stained with Nile Red and anti-CD137 antibody or 

anti-CD40 antibody.  (C) Representative flow cytometric plot of the stromal vascular fraction (SVF) of 

WAT:ING stained with anti-CD45 antibody and anti-CD137 antibody or anti-CD40 antibody. Samples 

from (A) – (C) acquired from 129/SV male mice (n=4). Gates determining positive cell surface protein 

expression were set according to the isotype control. 
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7.3.5 Marrow adipocytes are a distinct type of adipocyte. 

Marrow adipose tissue is recognised as an independent adipose organ with origins 

and functions distinct from both WAT and BAT (Scheller et al., 2014). At this point, 

six parameters were identified that characterised brown and white adipocytes: Nile 

Red, Nile Blue, MitoTracker Deep Red, CD36 and a6 and b1 integrins. Here, marrow 

adipocytes were isolated and the aforementioned markers examined. Strikingly, Nile 

Red+ve marrow adipocytes lacked surface protein expression of a6 integrin and b1 

integrin (Figure 7.7). Surface protein expression of CD36 was detected in 5% ± 2% of 

Nile Red positive marrow adipocytes. (Figure 7.7). Uptake of Nile Blue and 

MitoTracker Deep Red was detected on 20% ± 4% and 87% ± 7% of marrow adipocytes 

respectively (Figure 7.7).  
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Figure 7.7: Marrow adipocytes have a distinct cell surface phenotype. 

(i) Representative flow cytometric plot of marrow adipocytes stained with Nile Red and MitoTracker. The Nile Red+ve MitoTracker+ve population was gated (red 

box) and frequency measured. (ii) The frequency of Nile Red+ve and Nile Blue+ve, CD36+ve, b1-integrin+ve and a6-integrin+ve cells in marrow adipocytes. Black 

dotted line represents the isotype control. Red shaded plot indicated the stained sample. Frequency of cells expressed as mean ± SEM (n=3).  
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7.4 Discussion 

The growing rate of obesity worldwide has prompted a new outlook on the role of 

adipose tissues from distinct adipose depots. Visceral WAT is linked to an increased 

risk of developing metabolic disorders while subcutaneous WAT is implicated as a 

protective adipose depot (Porter et al., 2009; Seale et al., 2011; Wajchenberg et al., 2000; 

Donohoe et al., 2011). One of the limitations in assessing adipocytes is the lack of a 

method to characterise them at the single cell level. Here, a method to distinguish 

adipocytes from brown, subcutaneous and visceral WAT depots at the single cell level 

is reported (Boumelhem et al., 2017). 

 

7.4.1 Fatty acid translocase has discrete roles in brown and white adipose tissue.  

Fatty acid translocase CD36 belongs to the scavenger receptor family of 

transmembrane glycoproteins (Febbraio, Hajjar, & Silverstein, 2001). CD36 facilitates 

the uptake of fatty acids and lipoproteins by accelerating intracellular esterification 

into triglycerides (Jay et al., 2013). CD36 is also a receptor for oxidised lipoproteins, 

thrombospondin and collagen (Febbraio et al., 2001). Mice deficient for CD36 have 

increased serum triglyceride levels due to impaired fatty acid uptake (Goudriaan et 

al., 2005; Cai et al., 2012; Putri et al., 2015). The heart and skeletal muscle compensate 

for the lack of fatty acid uptake by increasing uptake of glucose, which leads to 

decreased serum glucose levels (Putri et al., 2015). 
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As reservoirs of adipose tissue surrounding the heart are scarce in rodents, CD36 

serves to fuel myocardial contraction by supplying fatty acids for mitochondrial 

oxidation (Cherian, Lopaschuk, & Carvalho, 2012). The role of CD36 has been posited 

to prevent cardiac lipotoxicity by reducing free fatty acid levels in the heart (Burgeiro 

et al., 2016). Obese individuals with coronary artery disease have impaired fatty acid 

metabolism, contributing to cardiac arrhythmias (Burgeiro et al., 2016; Payne, Kohr, 

& Tune, 2012). The data presented here suggests that the metabolic functions of 

epicardial adipocytes are tightly regulated, evident by the high levels of Nile Blue, 

MitoTracker Deep Red and CD36. 

 

In response to cold exposure, CD36 accelerates fatty acid uptake in BAT to contribute 

to heat production (Putri et al., 2015). Following cold exposure, CD36-/- mice have 

distinct hypothermia due to depletion of triglycerides and fatty acids in BAT (Putri et 

al., 2015).  Mice void of CD36 also have impaired uptake of the lipid co-enzyme Q 

(Anderson et al., 2015). Co-enzyme Q functions as a transporter of electrons in the 

mitochondrial transport chain (reviewed in: Crane et al., 2001). CD36 specifically 

facilitates co-enzyme Q uptake in BAT (Anderson et al., 2015). Here, the mice were 

maintained under thermoneutral conditions. To further characterise CD36 

immunoreactivity in BAT (and WAT depots), mice could be subjected to the cold to 

induce thermogenesis. Changes in CD36 immunoreactivity following thermogenesis 

in brown adipocytes could be measured using the method developed.  
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Nullizygous CD36 mice have less adiposity due to reduced uptake of fatty acids in 

adipose tissue (Vroegrijk et al., 2013). Gonadal adipose tissue in particular exhibited a 

larger pool of pre-adipocytes compared to subcutaneous and visceral mesenteric 

adipose depots (Vroegrijk et al., 2013). CD36 may serve as a regulatory mechanism to 

inhibit adipose tissue hypertrophy (Christiaens et al., 2012; Bonen et al., 2006). A 

follow up assessment on CD36 immunoreactivity in gonadal adipose tissue from 

newborn and pubertal mice can be applied here to examine changes in CD36 with age.   

 

7.4.2 Changes in the extracellular matrix of adipose tissue disrupts homeostasis   

The remodelling of adipose tissue leads to an expansion of adipose mass, primarily 

through the increase in the size (hypertrophy) and number (hyperplasia) of 

adipocytes (Pellegrinelli et al., 2016). To accommodate the increase in adipose mass, 

the extracellular matrix (ECM) undergoes structural changes (Pellegrinelli et al., 2016). 

Obesity disrupts the homeostatic mechanisms that regulate normal tissue expansion 

and causes metabolic dysfunction. Obesity-induced metabolic disorders manifest in 

the form of insulin resistance (and type II diabetes), reduced secretion of adipokines 

and abnormal adipogenesis (Pellegrinelli et al., 2016). Further problems ensue as 

obesity leads to excess infiltration of adipose tissue by inflammatory macrophages as 

well as the ECM components collagen VI and thrombospondin (Spencer et al., 2011). 

One could hypothesise that a6b1 integrin and CD36 surface protein expression would 

increase in subcutaneous and visceral adipose depots in obese individuals as they 

have the largest capacity for growth.  
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7.4.3 BReaking BEige: Challenging CD40 and CD137 as specific markers of beige 

adipocytes. 

The findings reported by Wu et al. (2012) cannot be replicated. CD137 belongs to the 

tumour necrosis factor (TNF) receptor superfamily of proteins (Alfaro et al., 2015; Kim 

et al., 2011). Expression of CD137 is abundant in immune cells including activated T 

cells and macrophages (Alfaro et al., 2015). Flow cytometric analyses with CD137 are 

routinely used to screen for activated T cells (Maerten et al., 2004; Bacher & Scheffold, 

2013; Litjens et al., 2013; Alfaro et al., 2015; Kroon et al., 2016). Recently, CD137 was 

detected in the inguinal lymph nodes in response to tumour irradiation (Kroon et al., 

2016). The inguinal lymph nodes surround the inguinal adipose tissue, the site where 

beige adipocytes are often sourced (Park et al., 2014; Garcia, Roemmich, & Claycombe, 

2016). CD40 is also a member of the TNF receptor superfamily and is expressed on a 

range of cells including haematopoietic cells, B cells, monocytes, dendritic cells and 

macrophages (Hasbold et al., 1994; Fiumara & Younes, 2001). 

 

The inguinal lymph nodes are embedded in inguinal adipose tissue (Harrell, Iritani, 

& Ruddell, 2008; Kim et al., 2008). Wu et al. (2013) did not describe the removal of the 

inguinal lymph nodes prior to analyses (Wu et al., 2012). Further, the flow cytometric 

analyses are centred on cultured inguinal SVF cells (Wu et al., 2012). If the inguinal 

lymph nodes were not removed prior to culturing, then it is possible that the 

expansion and differentiation of the contaminating inguinal lymph nodes would 

generate a false positive for CD137 and CD40 immunoreactivity. In support of this 
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argument, Alfaro and colleagues (2015) reported CD137 immunoreactivity of cultured 

lymphocytes (Alfaro et al., 2015). Here, CD137 immunoreactivity was detected on the 

inguinal lymph nodes and cells expressing CD45. Thus, the findings presented in this 

chapter suggest that CD137 and CD40 are not specific markers for beige adipocytes. 

 

7.4.4 Marrow adipocytes are distinct from white and brown adipocytes 

The unique haematopoietic microenvironment of marrow adipocytes may serve to 

explain the distinct cell surface phenotype (reviewed in: Al-Drees et al., 2015, 

Appendix IV). The integrin a6b1 anchors haematopoietic cells to the basal lamina 

which influences maturation of eosinophils and the proliferation of macrophages and 

T cells (Tourkin et al., 2009, Shaw, Messier, & Mercurio, 1990; Shimizu et al. 1990). The 

absence of integrin a6b1 integrin in marrow adipocytes could serve as a homeostatic 

mechanism to ensure adipocytes do not bind to the basal lamina, disrupting critical 

processes that influence haematopoiesis.  

 

In the bone marrow, CD36 is expressed on endothelial cells, macrophages, platelets 

and dendritic cells and has been implicated in malaria, neurotoxicity and several 

cancers including breast and prostate (Cunha-Rodrigues et al., 2007; Zhou et al., 2011; 

Gusky et al., 2016; Herroon et al., 2013). Recently, CD36 surface protein expression 

was upregulated in marrow adipocytes co-cultured with acute, monocytic leukaemia 

cells (Tabe et al., 2017). Marrow adipocytes are thought to supply fatty acids to the 

tumour microenvironment via CD36 (Tabe et al., 2017; Herroon et al., 2013; Gusky et 
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al., 2016). Similar to a6b1 integrin expression, a lack of CD36 on marrow adipocytes 

in healthy mice may serve as a homeostatic mechanism to prevent fatty acid 

accumulation in the bone marrow compartment. Characterisation of brown, white 

and marrow adipocytes according to the parameters used in this study is presented 

in Figure 7.9. 

 

Figure 7.9: Characterisation of brown and white adipocytes according to probe uptake and surface 

protein expression. 

Nile Red stained brown and white adipocytes were assessed for uptake of MitoTracker Deep Red, Nile 

Blue as well as immunoreactivity of CD36, and b1 and a6 integrins by flow cytometry. Frequency of 

dye uptake or antibody immunoreactivity in brown and white adipocytes represented as + (denotes 

<10%), ++ (denotes 10-20%), +++ (denotes 20-50%) and ++++ (denotes >50%). 
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7.4.5 Adipocyte heterogeneity in obese and diabetic mice 

Obese and diabetic individuals have pronounced adipose tissue remodelling and 

upregulation of CD36 expression in subcutaneous and visceral WAT (Bonen et al., 

2006). Additionally, reduced mitochondrial function in adipose tissue has been linked 

to obesity and type II diabetes (Bournat & Brown, 2010; reviewed in: Cedikova et al., 

2016). The flow cytometric method presented in this study can be utilised to 

characterise brown and white adipocytes from obese mice (Ob/Ob). Nile Red 

fluorescence would hypothetically be greater in the adipocytes from obese mice 

compared to their wild-type counterparts. Since obesity leads to remodelling of 

adipose tissue, surface protein expression of integrin markers a6b1 could be elevated. 

Conversely, mitochondrial membrane potential probe MitoTracker may exhibit 

reduced fluorescence in the adipocytes from obese mice. Comparisons of brown and 

white adipocytes from obese mice have not been characterised at the single cell level.   

 

7.4.6 Conclusion 

A description of adipose tissue heterogeneity at the single cell level is reported 

(Boumelhem et al., 2017). In the following chapter, the parameters used to distinguish 

adipocytes across brown and white adipose depots will be assessed on adipocytes 

derived from mouse ES cells under endoderm culture conditions.  
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Chapter 8: Endoderm-derived adipocytes from mouse ES cells resemble 

gonadal adipocytes.  

 
8.1 Introduction 

The generation of adipocyte-like cells alongside prostatic epithelial cells from mouse 

ES cells was an unexpected finding in this study (Chapters 3 and 4). To determine 

whether the differentiated adipocyte-like cells were indicative of adipocytes that 

represented those isolated from any specific adipose depot, a flow cytometric method 

was developed to characterise adipocytes at the single cell level (Chapter 5, 6 and 7). 

Adipocyte heterogeneity was profiled based on probe (Nile Red, Nile Blue and 

MitoTracker Deep Red) uptake and surface protein expression (CD36 and b1 and a6 

integrin). The aim here was to assess the parameters used to distinguish adipocytes at 

the single cell level on the adipocytes derived from mouse ES cells under conditions 

designed to promote endoderm differentiation.  
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8.2 Methods 

8.2.1 Serum starvation of undifferentiated mouse ES cells 

Undifferentiated mouse ES cells were plated on gelatin coated 6-well plates in ES 

maintenance medium without foetal calf serum. Undifferentiated mouse ES cells were 

serum-starved for 0.5, 1, 2, 6 and 12 hours before treating with 0.1% (v/v) ethanol or 

300 µmol.L-1 of palmitate, linoleate or oleate for 15 minutes prior to imaging or flow 

cytometric analyses. 

 

8.2.2 Imaging of undifferentiated mouse ES cells stained with Nile Blue 

Following lipid treatment of mouse ES cells, the media was aspirated and washed 

twice with PBS. The mouse ES cells were incubated with 100 nmol.L-1 of Nile Blue for 

10 minutes at 4°C. Nile Blue stained mouse ES cells were imaged using an Olympus 

FluoView 1000 Spectral-based Laser Scanning Confocal Microscope configured to an 

Olympus IX81 equipped with a red helium neon gas laser (635 nm).  

 

8.2.3 Flow cytometric analyses 

8.2.3.1 Undifferentiated mouse ES cells 

Treated and untreated mouse ES cells were dissociated into single cells using cell 

dissociation buffer as outlined in 2.6.1. Single cell suspensions of mouse ES cells were 

incubated with 100 nmol.L-1 Nile Red and Nile Blue solution for 15 minutes at 4°C. No 

stain controls and single stain controls were also prepared as outlined in 2.6.3.1.1.  

 



 202 

8.2.3.2 Endoderm-derived adipocyte-like cells  

Day 22 differentiated mouse ES cells were dissociated into single cell suspensions as 

outlined in 2.6.1. Cells from the buoyant fraction were taken for flow cytometric 

analyses and stained with Nile Red and MitoTracker Deep Red, Nile Blue, CD36, b1 

integrin or a6 integrin in the steps outlined in 2.6.3.2.  

 
8.2.4 Statistical analyses 

All data presented as mean ± SEM. Differences in the uptake of Nile Red and 

parameters used to distinguish adipocytes (MitoTracker Deep Red, Nile Blue, CD36, 

a6 integrin and b1 integrin) was determined by a two-tailed, one way ANOVA and 

post hoc analysis by Tukey’s comparison test. A P value less than 0.05 was deemed 

significant. Graphical visualisation of brown and white adipocyte heterogeneity in an 

unbiased manner was generated using HeatMap Generator (available from: 

https://github.com/Bohdan-Khomtchouk/HeatmapGenerator) (Khomtchouk, Van 

Booven, & Wahlestedt, 2014).  
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8.3 Results 

8.3.1 Modelling free fatty acid uptake with undifferentiated mouse ES cells  

8.3.1.1 Visualising Nile Blue uptake in fatty acid treated mouse ES cells 

Prior to flow cytometric analyses with adipocyte derived from mouse ES cells under 

endoderm culture conditions, Nile Blue and Nile Red fluorescence was measured in 

undifferentiated mouse ES cells. The aim here was two-fold: to corroborate the 

findings presented in Chapter 6 and compare uptake of Nile Red and Nile Blue 

between undifferentiated mouse ES cells and day 22 differentiated mouse ES cells. 

Undifferentiated mouse ES cells were treated with palmitate, linoleate or oleate and 

either visualised by confocal microscopy or fluorescence measured at the single cell 

level by flow cytometry. Nile Blue stained the phospholipid membrane of mouse ES 

cells in all conditions (Figure 8.1). Mouse ES cells treated with palmitate, oleate and 

linoleate had punctate staining within the cytosol compared to the ethanol treated 

mouse ES cells (Figure 8.1).  
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Figure 8.1: Nile Blue intensely stains the vesicles within the cytoplasm in fatty acid treated 

undifferentiated mouse ES cells. 

Undifferentiated mouse ES cells were treated with ethanol, palmitate, linoleate and oleate for 15 

minutes, washed with PBS and then stained with Nile Blue. Confocal images of Nile Blue stained mouse 

ES cells were taken using an Olympus FluoView 1000 equipped with a red helium neon gas laser. Nile 

Blue was excited at 620nm. Images were taken at 40x objective. Scale bars represent 20 µm. 
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8.3.1.2 Undifferentiated mouse ES cells treated with oleate have the greatest Nile 

Blue uptake. 

Mouse ES cells were then treated with free fatty acids to determine how Nile Blue 

fluorescence would be affected. Untreated mouse ES cells exhibited high levels of Nile 

Blue fluorescence, but low levels of Nile Red fluorescence (Figure 6.2Ai). Palmitate 

and linoleate treated mouse ES cells had significantly greater Nile Red fluorescence 

compared to oleate (P < 0.01 and P < 0.02 respectively), but comparable to ethanol 

treated mouse ES cells (Figure 6.2Aii, Bi). Nile Blue fluorescence however, was 

greatest in oleate treated mouse ES cells compared to palmitate (P < 0.0001), linoleate 

(P < 0.0005) and ethanol (P < 0.0001) treated mouse ES cells (Figure 6.2Aiii, Bii).  
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Figure 8.2: Undifferentiated mouse ES cells treated with oleate have the greatest Nile Blue staining.   

(Ai) Representative flow cytometric plot of mouse ES cells stained with Nile Red and Nile Blue. Mean 

fluorescence intensity of (ii) Nile Red and (iii) Nile Blue in the presence of ethanol (blue), palmitate 

(purple), linoleate (green) and oleate (red). (B) Comparisons in the mean fluorescence intensity of (i) 

Nile Red and (ii) Nile Blue of mouse ES cells in the presence of fatty acids. Data presented as mean ± 

SEM (n=3). Significance in the mean fluorescence intensity between mouse ES cells treated with fatty 

acids was determined by a two-tailed, one-way ANOVA with Tukey’s post hoc analysis. Groups not 

sharing a numeral are significantly different from each other.  
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8.3.1.2 Serum starved undifferentiated mouse ES cells have increased uptake of Nile 

Blue. 

Mouse ES cells were subjected to serum starvation over the course of 12 hours to strip 

them of cytokines, growth factors and lipids. Subsequently, Nile Red and Nile Blue 

uptake was measured at selected time points (Figure 8.3i). There was no difference in 

Nile Red and Nile Blue fluorescence between less than 1 minute serum starved and 2 

hours of serum starved mouse ES cells (Figure 8.3ii). Compared to baseline, Nile Blue 

fluorescence significantly increased at 6 and 12 hours of serum starvation (P < 0.005 

and P < 0.0001 respectively) (Figure 8.3ii). Nile Red fluorescence significantly 

decreased from 6 and 12 hours of serum starvation compared to 2 hours of serum 

starvation (P < 0.01 and P < 0.001 respectively) (Figure 8.3ii). 

 

Serum starved mouse ES cells were then treated with fatty acids (Figure 8.3ii). There 

was a significant increase in Nile Blue fluorescence after 6 hours of serum-starvation 

in all fatty acid treated cultures (Figure 8.3ii). Nile Red fluorescence decreased 

between 2 and 6 hours of serum-starvation in all conditions, but was not significantly 

different from the baseline (Figure 8.3ii). 

 

At 6 hours of serum starvation, Nile Blue fluorescence increased from 1900 ± 70 a.u. 

to 3700 ± 270 a.u. (P < 0.0001) in palmitate treated mouse ES cells (Figure 8.3ii). There 

was no change in Nile Blue fluorescence between 6 and 12 hours of serum starvation 
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(Figure 8.3ii). Nile Red fluorescence decreased from 85 ± 5 a.u. to 48 ± 1 a.u between 1 

hour and 12 hours of serum starvation (P < 0.0001) (Figure 8.3ii).  

 

Linoleate treated mouse ES cells displayed an increase in Nile Blue fluorescence from 

1800 ± 80 a.u. to 3200 ± 190 a.u. (P < 0.0001) after 6 hours of serum starvation (Figure 

8.3ii). Nile Blue fluorescence elevated to 3600 ± 300 a.u. at 12 hours of serum starvation 

(P < 0.0001) (Figure 8.3ii). Nile Red fluorescence decreased from 73 ± 2 a.u. to 48 ± 2 

a.u. between 1 hour and 12 hours of serum starvation (P < 0.0001) (Figure 8.3ii). 

 

Serum starved mouse ES cells treated with oleate exhibited an increase in Nile Blue 

fluorescence from 2300 ± 104 a.u. to 3900 ± 123 a.u. (P < 0.0001) at 6 hours of serum 

starvation (Figure 8.3ii). Nile Blue fluorescence increased further to 4610 ± 400 a.u. at 

12 hours of serum starvation (P < 0.0001) (Figure 8.3ii). Nile Red fluorescence 

decreased from 55 ± 2 a.u. to 32 ± 4 a.u. between 1 hour and 12 hours of serum 

starvation (P < 0.0001) (Figure 8.3ii). 

 

Serum starved mouse ES cells exhibited an increase in Nile Blue fluorescence in the 

presence of oleate compared to ethanol and palmitate (Appendix IV, Table 8.1). After 

6 hours of serum starvation, Nile Blue fluorescence was significantly greater in oleate 

treated mouse ES cell cultures compared to linoleate treated cultures (Appendix IV, 

Table 8.1). Nile Red fluorescence on the other hand, was reduced in oleate treated, 
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serum starved mouse ES cells compared to ethanol, palmitate and linoleate treatment 

(Appendix IV, Table 8.2).  
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Figure 8.3: Serum starved undifferentiated mouse ES cells have increased uptake of Nile Blue. 

Mean fluorescence intensity of (i) Nile Red and Nile Blue in undifferentiated mouse ES cells starved of 

serum for less than one minute (red), 30 minutes (blue), 1 hour (green), 2 hours (orange), 6 hours (cyan) 

and 12 hours (purple). (ii) Changes in mean fluorescence intensity of Nile Blue (blue) and Nile Red 

(red) over time in serum starved mouse ES cell treated with ethanol, palmitate, linoleate and oleate. 

Data presented as mean ± SEM (n=3). Significance in Nile Blue and Nile Red fluorescence over time 

was determined by a two-tailed, one-way ANOVA with Tukey’s pairwise post hoc analysis. Groups not 

sharing a numeral are significantly different from each other.   
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8.3.2 Assessing probe uptake and surface protein expression of adipocyte markers 

in adipocyte-like cells differentiated from mouse ES cells. 

 

8.3.2.1 Adipocyte-like cells differentiated from mouse ES cells treated with DHT, 

FGF10 and TGFb1 have greater Nile Red fluorescence.   

In Chapter 4, measurements were made to determine whether differences existed in 

the adipocyte-like cells treated with endoderm differentiation medium alone, 

methanol (vehicle control) or prostate epithelial cell differentiation medium (DHT, 

FGF10 and TGFb1). The lipid droplets in the adipocyte-like cells derived from the 

prostate epithelial cell differentiation medium occupied a greater cell area (Figure 4.2). 

Here, Nile Red uptake was compared between the adipocyte-like cells differentiated 

from each condition at the single cell level. There was no difference in the number of 

cells exhibiting Nile Red uptake (Figure 8.4i). However, Nile Red fluorescence 

intensity in the adipocyte-like cells derived from the prostate epithelial cell 

differentiation medium was greater compared to control conditions (810 ± 90 a.u. P < 

0.01) (Figure 8.4).  
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Figure 8.4: Nile Red fluorescence is greatest in the buoyant fraction of mouse ES cells treated with 

DHT, FGF10 and TGFb1. 

(i) Representative histogram plot of Nile Red fluorescence in the buoyant fraction of day 22 

differentiated mouse ES cells in endoderm media alone (EDM, green), EDM with methanol (MeOH, 

vehicle, blue) and EDM with DHT, FGF10 and TGFb1 (red). (ii) Comparisons in the mean fluorescence 

intensity (MFI) of Nile Red in day 22 differentiated mouse ES cells treated with EDM alone, EDM with 

MeOH or EDM with DHT, FGF10 and TGFb1. Data presented as mean ± SEM (n = 4). Significant 

differences between the MFI of Nile Red between groups was determined by a two-tailed, one way 

ANOVA with Tukey’s post hoc analysis. Groups not sharing a numeral are significantly different from 

each other.   
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8.3.2.2 Endoderm-derived adipocytes have a similar profile to gonadal adipocytes. 

Finally, the adipocyte-like cells differentiated were examined for Nile Red uptake and 

the markers used to distinguish brown and white adipocytes. Nile Red+ve cells were 

gated in the buoyant fraction of dissociated day 22 differentiated mouse ES cell 

cultures and frequency of surface protein expression (or dye uptake) measured 

(Figure 8.5). Adipocyte-like cells derived from conditions promoting prostate 

epithelial cell differentiation had more Nile Blue and MitoTracker Deep Red uptake 

and CD36 surface protein expression compared to control conditions (Figure 8.5).  

 

An unbiased approach was then used to compare brown, subcutaneous, visceral, 

marrow and endoderm-derived adipocytes according to the parameters described in 

this study. A heatmap was generated that compared frequency of surface protein 

expression or dye uptake across all adipocytes. The adipocyte heterogeneity heatmap 

revealed marrow adipocytes to be distinct from all other adipocytes (Figure 8.6). 

Brown, subcutaneous inguinal and visceral epicardial adipocytes have a distinct 

profile compared to visceral peri-renal and mesenteric adipocytes (Figure 8.6). The 

adipocyte-like cells differentiated from mouse ES cells under control conditions (base 

endoderm media alone and methanol) did not match the profile of brown, 

subcutaneous or visceral adipocytes (Figure 8.6). However, the adipocyte-like cells 

generated from prostate epithelial cell differentiation media closely resembled the 

profile of gonadal adipocytes (Figure 8.6).  
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Figure 8.5: The buoyant fraction of day 22 differentiated mouse ES cells treated with DHT, FGF10 and TGFb1.  

Representative histogram plot of a6 integrin+ve, b1 integrin+ve, CD36, Nile Blue (NB) and MitoTracker Deep Red (MTDR) positive cells in day 22 differentiated 

mouse ES cells treated with endoderm media alone (EDM, green), EDM with methanol (MeOH, vehicle, blue) and EDM with DHT, FGF10 and TGFb1 (red). 

Frequency of surface protein expression or dye uptake is presented as mean ± SEM (n = 4).
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Figure 8.6: Day 22 differentiated adipocytes from mouse ES cells treated with DHT, TGFb1 and FGF10 resemble gonadal adipocytes. 

Comparisons in the frequency of Nile Red+ve cells labelled with Nile Blue, MitoTracker Deep Red, CD36, a6 integrin and b1 integrin between brown (BAT), 

subcutaneous inguinal (WAT:ING), visceral gonadal (WAT:GON), peri-renal (WAT:PR), mesenteric (WAT:MES),epicardial (WAT:EC), marrow (MAT) and 

mouse ES cell-derived adipocytes depicted in a heatmap. Blue indicates low levels of surface protein expression while yellow indicates high levels. Heatmap 

generated using Heatmap Generator (Khomtchouk et al., 2014). 
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8.4 Discussion 

8.4.1 Questioning the embryological origin of gonadal adipocytes.  

The bulk of this study served to answer whether the adipocyte-like cells differentiated 

from mouse ES cells were representative of adipocytes from a particular adipose 

depot. Due to the close proximity of gonadal adipose tissue to the prostate, the 

hypothesis was that the adipocytes derived from mouse ES cell cultures treated with 

DHT, TGFb1 and FGF10 would be characteristic of gonadal adipocytes. Based on Nile 

Red uptake with 5 independent parameters, adipocytes derived from mouse ES cells 

treated with DHT, TGFb1 and FGF10 exhibited a profile similar to gonadal adipocytes. 

These findings raise the possibility of an endoderm origin for gonadal adipocytes.  

 

Do adipocytes support the growth and development of endoderm derivatives such as 

the prostate? The relationship between peri-prostatic adipose tissue and prostate 

cancer is well founded (Laurent et al., 2016; Freedland et al., 2004; Parikesit et al., 2016; 

Hsing et al., 2007). The increase in secretion of pro-inflammatory cytokines from 

adipocytes favours the growth of prostate cancer cells (Parikesit et al., 2016; Hsing et 

al., 2007). Outside of prostate cancer, there is a lack of understanding on the role of 

adipocytes on the development of the prostate. To date, only one group has reported 

the effect of adipocytes on prostate organogenesis (Tokuda et al., 1999). Isolated dorsal 

prostatic cells cultured with mature adipocytes had promoted the differentiation and 

proliferation of acinus-like structures in vitro (Tokuda et al., 1999).  
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8.4.2 Utility of a code to characterise adipocytes from brown and white adipose 

depots. 

The heat map generated to characterise adipocyte heterogeneity provides an 

interesting avenue to assess differences in brown and white adipocyte cell biology. 

Collectively, the code can be summarised into three sections: adipocyte morphology 

(laminin receptor a6b1 integrin), metabolism (fatty acid translocase CD36 and free 

fatty acid dye Nile Blue) and mitochondrial membrane potential (MitoTracker Deep 

Red). Aside from identifying adipocytes from multiple sources, the adipocyte 

heterogeneity code can be applied to assess changes to adipocytes in 

pathophysiological situations such as obesity and diabetes. Data visualisation tools 

such as SPADE and viSNE cluster cell populations based on phenotypic similarity 

(Leelatian, Diggins, & Irish, 2015). Both modes of data visualisation are alternative 

unbiased approaches that can also be used to assess adipocyte heterogeneity. Future 

studies could compare adipocyte heterogeneity according to SPADE or viSNE 

analyses.  

 

8.4.3 Applying the code to identify mesoderm and neural crest derived adipocytes. 

In Chapter 4, the idea was put forward to compare adipocytes differentiated from 

mouse ES cells under neural crest or mesoderm culture conditions. In a similar 

manner that was presented in this chapter, the code can be used to determine which 

adipocytes neural crest-derived or mesoderm-derived adipocytes resemble. Neural 

crest derived adipocytes are proposed to give rise to cephalic adipose tissue in the 



 218 

skull (Billon et al., 2007). Cuaranta-Monroy and colleagues (2014) describe the 

differentiation of adipocytes from mouse ES cells under mesoderm culture conditions 

have a similar gene expression identity to subcutaneous adipocytes (Cuaranta-

Monroy et al., 2014). The code developed in this study could be used in conjunction 

to support the findings presented by Cuaranta-Monroy and colleagues (2014).  

 

8.4.4 Sorting adipocytes derived from mouse ES cell cultures. 

An extension of flow cytometry is cell sorting. Based on immunoreactivity (and dye 

uptake), cells can be isolated, grown in culture or used for gene expression analyses. 

The adipocytes differentiated from mouse ES cells described here can be sorted 

according to Nile Red uptake. The sorted adipocytes can be grown in vitro whereby 

modelling adipogenesis of endoderm-derived adipocytes can be achieved.  

Furthermore, gene expression analyses can be performed on the sorted endoderm-

derived adipocytes to reveal heterogeneity at the molecular level. Alternatively, to 

confirm the possibility of endoderm-derived adipocytes, definitive endoderm can be 

sorted from mouse ES cells according to CXCR4+ and c-Kit+ surface protein expression 

and treated with the growth factors used to differentiate prostate epithelial cells. 

 

8.4.5 Conclusion 

An unbiased analysis of the data collected throughout this study revealed a code that 

characterised adipocyte heterogeneity at the single cell level. The code revealed a 

resemblance between gonadal adipocytes and adipocytes differentiated from mouse 
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ES cell under conditions that promote prostate epithelial cell differentiation. The 

findings presented demonstrate a possible endoderm origin of gonadal adipocytes 

and a supportive role of adipocytes in prostate organogenesis. 
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Chapter 9 General discussion 

9.1 Opening remarks 

The study presented aimed at differentiating prostate epithelial cells from mouse 

embryonic stem cells. By mimicking the signalling factors critical for in vivo prostate 

organogenesis, prostate luminal epithelial cells were successfully differentiated from 

mouse ES cells as determined by gene expression of Nkx3.1 and Svs2. Generation of 

prostate epithelial cells from mouse ES cells serve as an in vitro model of prostate 

development from embryogenesis. Due to the small size of early embryos and 

accessibility to developing prostatic tissue, modelling the early stages of prostate 

development is challenging. Thus, mouse ES cell-derived prostate epithelial cells 

could be used here to characterise the early stages of prostate development. The 

successful differentiation of prostate epithelial cells from mouse ES cells provides a 

new approach to model prostate disease progression and possible drug screening 

capabilities. 

 

Alongside prostate epithelial cell differentiation, adipocyte-like cells were detected. 

Since adipocytes typically arise from the mesoderm germ layer, the differentiation of 

adipocyte-like cells from endoderm culture conditions was an unexpected finding in 

this study. The study then set out to determine whether the adipocyte-like cells were 

representative of a specific adipose depot. By characterising adipocytes from brown, 

subcutaneous and visceral white adipose depots at the single cell level, the adipocytes 
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differentiated alongside prostate epithelial cells closely resembled gonadal 

adipocytes. Together, the findings suggest a possible synergistic interaction between 

adipocytes and prostate cell development and question the embryological origin of 

gonadal adipocytes. Here, I will describe the utility of differentiating prostate 

epithelial cells from mouse ES cells and evaluate the embryological origins of gonadal 

adipocytes.   

 

9.2 Recapitulation of the early developmental processes in prostate epithelial cell 

determination and differentiation from mouse ES cells. 

The prostate develops from the urogenital sinus in mice at E17.5 (Marker et al., 2003b). 

Androgen receptor signalling from the urogenital mesenchyme prompts the budding 

of epithelial cells of the prostate (Marker et al., 2003b; Prins & Putz, 2008). The earliest 

known marker for prostate development is the homeobox gene Nkx3.1 at E15.5, prior 

to ductal formation (Bhatia-Gaur et al., 1999). Additionally, Nkx3.1 is not expressed on 

ductal urogenital tissues such as the seminal vesicle, the bladder or the urethra 

(Bhatia-Gaur et al., 1999; Abate-Shen et al., 2008; Dutta et al., 2016).  

 

The molecular mechanisms mediating the inductive processes between the urogenital 

mesenchyme and urogenital epithelium are poorly defined (Shen & Abate-Shen, 

2010). Currently, there are two models that describe the role of androgens in prostate 

development (Costello & Corcoran, 2012). The andromedin model describes a ligand 

binding to androgen receptor (AR) to mediate prostate formation (Costello & 
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Corcoran, 2012). FGF10 was considered an andromedin since it can induce growth 

and development of the prostate, but FGF10 does not bind to androgen receptor 

(Costello & Corcoran, 2012; Lu et al., 1999; Huang et al., 2005) 

 

The alternative model is the smooth muscle hypothesis that proposes androgen 

receptor signalling has indirect effects on prostate epithelial cell differentiation by 

regulating the differentiation of a smooth muscle layer (Costello & Corcoran, 2012). 

The smooth muscle theory suggests that a layer of smooth muscle mediates the 

inductive capacity of the urogenital mesenchyme (Costello & Corcoran, 2012). 

However, budding of prostatic epithelial cells occurs before the development of the 

smooth muscle layer, indicating induction is independent of the smooth muscle 

layer (Thomson et al., 2002; Costello & Corcoran, 2012). Smooth muscle arises from 

the mesoderm germ layer (Majesky, 2007). Here, mouse ES cell cultures were directed 

towards definitive endoderm differentiation.  

 

The stepwise differentiation of prostate epithelial cells from mouse ES cells presented 

in this study supports the andromedin hypothesis. Endoderm differentiation was 

induced with the addition of Activin-A and confirmed by c-Kit and CXCR4 surface 

protein expression. Furthermore, mesoderm markers Flk-1 and PDGFRa were not 

expressed on Activin-A treated mouse ES cells. Mouse ES cell-derived endoderm 

treated with retinoic acid led to urothelial cell specification.  
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The strongest evidence for prostate epithelial cell differentiation was the detection of 

prostate specific genes Nkx3.1, Svs2 and Pbsn in day 16 and day 22 of differentiated 

cultures treated with DHT, TGFb1 and FGF10 respectively (herein prostate 

differentiation medium). Future studies would confirm the differentiation of luminal 

or basal epithelial cells by immunohistochemical staining with CK8 and CK18 or CK5 

and CK14 respectively (Figure 9.1) (Sherwood et al., 1990; Sherwood et al., 1991). 

Intermediate prostate epithelial cells can be characterised by luminal and basal CKs 

as well as CK19 (Xue et al., 1998; Wang et al., 2001). Additionally, cell types that 

resembled neuroendocrine cells were identified. Immunohistochemical staining with 

chromogranin-A or synaptophysin could confirm the differentiation of 

neuroendocrine cells (Figure 9.1) (Krijnen et al., 1993).  
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Figure 9.1: Epithelial and stromal cells of the prostate and markers used to identify them.  
Secretory acinus of the prostate includes the luminal (blue) and basal (yellow) epithelial cells. Neuroendocrine (orange) cells are rare epithelial cells found 
interspersed with basal and luminal epithelial cell types. Stromal cells of the prostate include lymphocytes (purple), macrophages (green), smooth muscle 
(brown), blood vessels (red) and the extracellular matrix (black).  
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9.3 Applications for prostate epithelial cell differentiation from mouse ES cells 

9.3.1 Prostate organoids derived from human iPS cells 

Prior to the onset of this study, there had only been one previous report on the 

differentiation of prostatic tissue from ES cells (Taylor et al., 2006). Taylor and 

colleagues (2006) grafted human ES cells with explants of urogenital mesenchyme into 

the renal capsule of immunodeficient SCID mice (Taylor et al., 2006). The resulting 

tumour was sectioned and stained for androgen receptor, P63 and luminal 

cytokeratins 8 and 18 (CK8 and CK18) (Taylor et al., 2006). Here, mouse ES cell 

differentiation into prostate luminal epithelial cells was achieved without tissue 

grafting, co-culture or culture on 3D matrigels.  

 

As the focus of the study shifted towards identifying and characterising the 

adipocytes generated from mouse ES cells under endoderm culture conditions, 

Calderon-Gierszal and Prins (2015) reported the differentiation of prostatic organoids 

from human ES cells (Calderon-Gierszal and Prins, 2015). Human ES cells were 

differentiated into definitive endoderm and then cultured the cells with FGF10, WNT-

10B, testosterone, EGF, Noggin, R-Spondin1 and all-trans retinoic acid to induce 

prostate organoid formation (Calderon-Gierszal and Prins, 2015). Presence of prostate 

luminal cell differentiation was determined by immunohistochemistry of CK8, CK18, 

androgen receptor and Nkx3.1(Calderon-Gierszal and Prins, 2015). The differentiated 

prostate organoids were then treated with endocrine disruptor Bisphenol-A to assess 

morphological changes to branched structures (Calderon-Gierszal and Prins, 2015). 
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Bisphenol-A led to a perturbed number of branching structures, suggesting that in 

utero exposure to Bisphenol-A may disrupt prostate organogenesis (Calderon-

Gierszal and Prins, 2015). 

 

ES cells can be utilised for drug screening and toxicity assessment (Calderon-Gierszal 

and Prins, 2015). One of the advantages of mouse ES cells is the rapid assessment and 

high throughput screening of small molecules (reviewed in: Pouton & Haynes, 2007; 

Lou, 2011). An extension of the protocol described in this study is assessing the 

efficacy and toxicity of prostate cancer drugs on mouse ES cell-derived prostate 

epithelial cells. 

 

9.3.2 Replacement of animal models 

The in vitro model of prostate epithelial cell differentiation presented here also 

presents benefits from an animal ethics standpoint. The model is completely animal 

free. This system will dramatically reduce the number of animals being used to 

develop models of prostate development and animals being tested for prostate cancer 

treatment. As mouse ES cells can be maintained almost indefinitely, it is plausible to 

accrue near infinite numbers of various cell types, otherwise impossible to achieve 

without dissecting large numbers of animals. 
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9.3.3 Modelling prostate oncogenesis in vitro with mouse ES cells 

Differentiation of other endoderm derivatives such as pancreatic b-cells and 

hepatocytes propose a possible therapeutic approach for the treatment of diabetes and 

cirrhosis respectively (Jiang et al., 2007; Liu & Lee, 2012; Yoshida et al., 2011; Little et 

al., 2007). Prostate cell transplantation is unnecessary, but mouse ES cell 

differentiation of the prostate can be used to model changes in genotype and 

subsequent phenotype during progression of prostate oncogenesis. Many of the 

processes and signalling for in vivo development of the prostate are reactivated in 

oncogenesis (Schaeffer et al., 2008; Abate-Shen et al., 2008; Gingrich et al., 1996).  

 

Androgen dependent, prostate-specific regulatory genes critical for embryonic 

prostate development such as Nkx3.1 and Pbsn also play roles in prostate 

carcinogenesis (Schaeffer et al., 2008; Abate-Shen et al., 2008; Greenberg et al., 1994). 

Loss of function of Nkx3.1 in mice leads to impaired ductal morphogenesis and 

abnormal differentiation of prostate epithelial luminal cells (Bhatia-Gaur et al., 1999;  

Abate-Shen et al., 2008; Wang et al., 2009; Dutta et al., 2016). In humans, expression of 

NKX3.1 is reduced in non-invasive and early stage prostate cancer (Abate-Shen et al., 

2008). A prominent phenotype of Nkx3.1 nullizygous mice is the histological 

appearance of prostate epithelial hyperplasia, a similar phenotype to prostate 

intraepithelial neoplasia (PIN) observed in human prostate cancer (Bhatia-Gaur et al., 

1999; Abdulkadir et al., 2002; Abate-Shen et al., 2008). Notably, the stroma is reduced, 

the basal epithelial cell layer is perturbed and markers of epithelial cell differentiation 
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are expressed heterogeneously (Kim et al., 2002). Although mice void of Nkx3.1 are 

predisposed to develop PIN, they do not develop invasive carcinoma (Abate-Shen et 

al., 2008).  

 

Tissue recombinant systems utilising prostatic tissue from Nkx3.1-/- mice have 

characterised the histopathological alterations in PIN ( Kim et al., 2002). Modelling the 

development of PIN and invasive carcinoma with mouse ES cells can be achieved with 

gene editing tools such as the CRISPR/Cas9 system. The CRISPR/Cas9 system can be 

used to replace and remove up to 10 genes (Le Cong et al., 2013). If Nkx3.1 is knocked 

out of mouse ES cells, the differentiation of prostate epithelial cells (or lack thereof) 

using the protocol described in this study can be monitored (Figure 9.2). Since Nkx3.1 

is critical for prostate development, deletion of Nkx3.1 may prevent prostate epithelial 

cell differentiation, regardless of culture conditions.  

Pten is a tumour suppressor associated with many cancers including human prostate 

cancer (Cairns et al., 1997). Pten is essential for embryogenesis as Pten nullizygous 

mice die in utero (Di Cristofano et al., 1998; Podsypanina et al., 1999). Heterozygotes 

however, display a range of phenotypes in multiple tissues (Di Cristofano et al., 1998; 

Podsypanina et al., 1999). Specifically, the prostate becomes enlarged and hyperplastic 

which suggests Pten is a regulator of prostate cancer initiation progression (Di 

Cristofano et al., 1998; Podsypanina et al., 1999). Loss of Pten with other tumour 

suppressors such as p27 and Nkx3.1 lead to more aggressive phenotypes (Guo, Zhang, 
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& Garraway, 2012; Abate-Shen et al., 2003). Prostate tissue from mice void of Pten and 

either p27 and Nkx3.1 had multifocal lesions indicative of high grade PIN and 

adenocarcinoma (Guo et al., 2012; Abate-Shen et al., 2003). Future studies could aim 

to assess deletion of Nkx3.1 as well as Pten in mouse ES cells to assess changes in 

genotype and subsequent phenotype during prostate epithelial cell differentiation. 

 

9.3.4 Prostate-on-a-chip. Characterisation of cell types differentiated under 

conditions promoting prostate epithelial cell differentiation.  

In this study, flow cytometry was utilised to characterise cell types according to size, 

granularity, probe uptake and surface protein expression. Although prostate 

epithelial cells were differentiated from mouse ES cells, ES cell populations do not 

contain 100% of the desired cell type. Could flow cytometry be utilised to distinguish 

the different cell types generated? In particular, could the different epithelial cells of 

the prostate as well as cells from the stroma be identified from differentiated mouse 

ES cell cultures? The markers used to commonly identify prostatic epithelial and 

stromal cells are outlined in Figure 9.1. Here, the adipocytes generated alongside 

prostate epithelial cells resembled gonadal adipocytes.  
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Figure 9.2: Modelling prostate development and prostate cancer progression using mouse ES cells. 

Mouse ES cells were directed towards prostate epithelial cell differentiation in a stage dependent manner in vitro. Gene editing tools such as CRISPR/Cas9 can 

be implemented to knockout or overexpress genes critical for prostate epithelial cell development such as Nkx3.1 or prostate oncogenesis such as PTEN and 

subsequent phenotype analysed. Prostate cancer (PCa) image taken from PCa cell line LnCAP. Scale bars represent 20 µm. 
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9.4 An endodermal origin of gonadal adipocytes 

There has been no consideration of a possible endoderm source of adipocytes. 

According to surface protein expression and probe fluorescence, the mouse ES cell-

derived adipocytes from prostate differentiation medium closely resembled gonadal 

adipocytes. While fate-mapping and lineage tracing studies have identified the origins 

of brown adipocytes, the embryological origins of subcutaneous and visceral white 

adipocytes remains ambiguous (Sanchez-Gurmaches & Guertin, 2014).  

 

The origin of brown adipocytes has been identified as sharing the same lineage as 

skeletal muscle (Berry et al., 2013). Myogenic factor 5 (Myf5) progenitors give rise to 

brown adipocytes and a subset of retroperitoneal and anterior subcutaneous white 

adipocytes (Figure 9.3) (Sanchez-Gurmaches & Guertin, 2014). Recently, Shao et al 

(2017) used a Cre-Lox system targeting zinc finger protein 423 (Zfp423) to assess 

deletion of Zfp423 on fetal development of adipose tissue (Shao et al., 2017). The 

Zfp423-/- mice had arrested terminal development of subcutaneous inguinal adipose 

tissue, suggesting the importance of Zfp423 in commitment of subcutaneous adipose 

tissue (Shao et al., 2017). For visceral white adipocytes, mesenteric adipocytes have 

been traced to mesothelium-derived Wilms’ tumour 1 (Wt1) progenitors (Figure 9.3) 

(Chau et al., 2014). Gonadal adipocytes are also thought to arise from Wt1 progenitors 

(Chau et al., 2014). However, the study presented proposes otherwise (Chau et al., 

2014). To ascertain whether gonadal adipocytes do arise from an endodermal origin, 

mouse ES cells transfected with a fluorescent reporter protein (such as mCherry) for 
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definitive endoderm (such as CXCR4 or Sox17) can be sorted by FACS to enrich for 

endoderm differentiation. Following, the protocol described in this study for 

differentiating prostate epithelial cells can be implemented to determine whether 

adipocytes differentiate alongside prostate epithelial cells.  
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Figure 9.3: Proposed germ layer origins of brown, subcutaneous and visceral white adipocytes.  

Brown adipocytes arise from the paraxial mesoderm while white adipocytes arise from the lateral plate 

mesoderm. Mesenchymal stem cells produce Myf5+ and Myf5- progenitors that in turn give rise to 

brown and white adipocytes respectively. Retroperitoneal and anterior subcutaneous WAT arise from 

a pool of Myf5+ and Myf5- progenitors. Visceral mesenteric white adipocytes arise from Myf5- Wt1+ 

progenitors. Mesenchymal stem cells from the neural crest give rise to an unknown progenitor cell that 

leads to cephalic white adipocyte differentiation. As adipocytes differentiated in mouse ES cell cultures 

in conjunction to prostate epithelial cells were similar to gonadal adipocytes, a possible hindgut 

endoderm origin of gonadal adipocytes is proposed. 
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9.4.1 Do adipocytes support the normal development of the prostate? 

Interactions between peri-prostatic adipose tissue and the prostate are well 

documented in the case of prostate cancer (expanded in 9.5.1) (Lughezzani et al., 2011; 

Irani et al., 2003; Rundle et al., 2013; Park et al., 2014). However, the role of adipose 

tissue in the development of the prostate is largely unexplored (Tokuda et al., 1999). 

Explant co-cultures of dorsal prostatic tissue with gonadal white adipocytes 

prompted organisation of epithelial cells into more acinus-like structures (Tokuda et 

al., 1999). In vivo adipocytes are found in the periphery of the prostate and histological 

sections of the prostate have identified adipocytes within the stroma of the prostate 

(Tokuda et al., 1999). Proliferation of prostate epithelial cells from adipocytes were 

suggested by Tokuda and colleagues (1999) to be due to the actions of adipokines like 

insulin growth factor, adipsin and leptin (Tokuda et al., 1999).  

 

While prostate epithelial cells are derived from the endoderm, adipocytes typically 

arise from the mesoderm (Cunha et al., 2004b; Sanchez-Gurmaches & Guertin, 2014). 

The mesendoderm then, is the common ancestor shared by both cell types. Could 

adipocytes differentiate along-side prostate epithelial cells to facilitate and promote 

ductal morphogenesis? Adipocytes arise before prostate epithelial cells at E14 (Wang 

et al., 2013; Berry et al., 2013). Indeed, explant studies have demonstrated the growth 

and differentiation of the urogenital sinus cultured with the urogenital mesenchyme 

(Cunha et al., 1986; Cunha, Cooke, & Kurita, 2004a). In the absence of the urogenital 

mesenchyme, adipocytes may be playing a supportive role for prostate development.  
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9.5 Obesity is a multi-faceted disease and is a risk factor for multiple cancers 

The increasing rate of obesity has reached alarming levels. Hypertrophy (increase in 

adipocyte size) and hyperplasia (increase in adipocyte number) progress throughout 

obese individuals. Obesity is a serious health problem that has been linked to the 

development of coronary artery disease, hypertension and diabetes (Criqui et al., 

1982; Hubert et al., 1983; Mokdad et al., 2003). Obesity has also been associated with 

several cancers including prostate, breast, liver and colon cancer (Bray et al., 2002). 

Several studies have reported obesity as a risk factor for prostate cancer and 

progression into high-grade disease (Lughezzani et al., 2011; Irani et al., 2003; Rundle 

et al., 2013; Park et al., 2014). 

 

Mechanisms thought to promote prostate cancer in obese individuals are alterations 

in testosterone levels and secretion of adipokines (adipocyte hormones) (Taylor et al., 

2015). Obese men have low levels of testosterone and increased levels of estradiol 

(Schneider et al., 1979). Increased secretion of the adipokine leptin causes testosterone 

levels to decrease (Soderberg et al., 2001). Leptin has also been linked to supporting 

tumour growth through the promotion of angiogenesis (Ando et al., 2014; reviewed 

in: Dutta et al., 2012). Conversely, levels of the anti-tumour adipokine adiponectin are 

reduced (Gao et al., 2014). Thus, a vicious feedback loop is generated as increased 

accumulation of adipose tissue leads to decreased testosterone levels. 
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Obesity-induced metabolic disorders manifest in the form of insulin resistance (and 

type II diabetes), reduced secretion of adipokines and abnormal adipogenesis 

(Pellegrinelli et al., 2016).  The onset of obesity leads to cellular and structural changes 

in adipose tissue (Mariman & Wang, 2010). Fasting free fatty acid (FFA) and glycerol 

levels increase, which is thought to promote insulin resistance (Greenberg et al., 2006). 

The remodelling of adipose tissue leads to an expansion of adipose mass through the 

increase in the size (hypertrophy) and number (hyperplasia) of adipocytes 

(Pellegrinelli et al., 2016). To accommodate the increase in adipose mass, the 

extracellular matrix (ECM) undergoes structural changes (Pellegrinelli et al., 2016). 

The enlargement of adipocytes within WAT depot disrupts the homeostatic 

mechanisms that regulate normal tissue expansion and causes metabolic dysfunction. 

Further problems ensue as obesity leads to excess infiltration of adipose tissue by 

inflammatory macrophages as well as the ECM components collagen VI and 

thrombospondin (Spencer et al., 2011).  

 

9.5.1 Peri-prostatic adipose tissue facilitates prostate cancer metastasis 

The relationship between peri-prostatic adipose tissue and prostate cancer is well 

founded (Laurent et al., 2016; Freedland et al., 2016; Parikesit et al., 2016; Hsing et al., 

2007). The increase in secretion of pro-inflammatory cytokines from adipocytes 

favours the growth of prostate cancer cells (Parikesit et al., 2016; Hsing et al., 2007). 

Co-cultures of androgen-dependent (LNCaP) prostate cancer cell line with mature 
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peri-prostatic adipocytes in vitro leads to significant proliferative ability (Kaneko et 

al., 2010). Conversely, androgen-independent (PC3 and DU145) prostate cancer cell 

lines cultured with mature peri-prostatic adipocytes have variable changes (Kaneko 

et al., 2010). Recently, Laurent and colleagues (2016) proposed that secretion of 

chemokine CCL7 from peri-prostatic adipocytes facilitates the migration of prostatic 

cancer cells (Laurent et al., 2016). When the CCL7 axis is inhibited, there is no 

pronounced migration of prostatic cancer cells (Laurent et al., 2016)  

 
9.5.2 Obese women have a higher risk of developing breast cancer. 

Breast cancer shares similarities with prostate cancer as both develop in tissues which 

require gonadal steroids for normal development (Risbridger, Davis, & Birrell, 2010). 

In contrast to prostate tissue, the most abundant stromal cells in human breast tissue 

are adipocytes (Fletcher et al., 2017). While the interactions between adipose tissue 

and breast cancer progression are yet to be characterised, co-cultures of human breast 

cancer cell line MCF-7 with 3T3-L1 derived adipocytes and pre-adipocytes from breast 

tissue promote cancer cell proliferation and migration (Balaban et al., 2017). The 

cancer cells stimulate the lipolysis of the triglycerides stored within adipocytes, which 

in turn fuel cancer progression (Balaban et al., 2017). 

 

9.5.3 What about carcinomas from cell types other than the prostate? 

Epidemiological studies have estimated obesity to be linked to approximately 20% of 

all cancer cases (reviewed in: De Pergola & Silvestris, 2013). Hepatocellular carcinoma 
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is the second most common cause of cancer death worldwide (Henry & Caldwell, 

2015). Excess weight gain leads to ectopic deposition of lipids in the liver which leads 

to triglyceride accumulation (Targher et al., 2007). Left unchecked, non-alcoholic fatty 

liver disease (NAFLD) progresses towards cirrhosis and is considered a risk factor for 

hepatocellular carcinoma (Reeves, Zaki, & Day, 2016).   

 

The expansion of adipocyte size in obesity hinders secretion of adiponectin (Reeves 

et al., 2016). Adiponectin promotes insulin sensitivity, fatty acid oxidation and 

suppresses lipogenesis (Reeves et al., 2016). Infiltration by macrophages contributes 

to the inflammatory state (Figure 9.4) (Reeves et al., 2016). Lipolysis liberates fatty 

acids which contribute to triglyceride accumulation in visceral adipose depots with 

reduced insulin sensitivity (Figure 9.4) (Reeves et al., 2016). As the capacity for 

mitochondrial oxidation of fatty acids crosses threshold, reactive oxygen species 

lead to damage to liver tissue (Reeves et al., 2016). Thus, a vicious cycle manifests in 

the presence of ongoing inflammation, promoting an environment for hepatocellular 

carcinoma.    
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Figure 9.4 Changes in adipose tissue function and structure in obese individuals 
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9.6 Flow cytometry as a diagnostic tool for pathophysiological conditions in 

humans. 

Flow cytometry is a useful tool for analysing heterogeneous cell populations based on 

size, granularity and surface protein immunoreactivity (Brown et al., 2000). In a 

haematological setting, flow cytometry is routinely used to phenotype leukemias and 

lymphomas (Liu et al., 2015;  Adachi et al., 2015). Flow cytometry has also been 

valuable in monitoring immune cell number in HIV patients (Saag et al., 1996; Mellors 

et al., 1996). Throughout this study, the utility of flow cytometry in the study of 

adipocyte biology has been presented. Flow cytometric analyses of adipocytes can 

discriminate between adipocytes from multiple adipose depots and characterise 

adipocytes according to Nile Red uptake and surface protein immunoreactivity.  

 
9.6.1 Lipotoxicitiy is a serious metabolic syndrome 

Under physiological conditions, triglyceride levels in non-adipose tissues is low 

(Engin, 2017). Pathophysiological conditions, such as obesity, leads to excess 

circulating lipids as the adipocytes have diminished capacity to store triglycerides 

(Engin, 2017). Failure in packaging lipids leads to ectopic deposition on non-adipose 

tissues such as the liver (NAFLD), skeletal muscle and the heart (Reeves et al., 2016; 

Engin, 2017; Duncan, 2008). Alterations in lipid metabolism and composition may 

pose as a phenotype overlooked in skeletal and cardiac muscle myopathies (Engin, 

2017). Nile Red, Nile Blue and fatty acid translocase CD36 can be implemented here 
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for benchtop flow cytometric analyses identifying changes to lipid metabolism and 

composition.  

 

 



 243 

 
Figure 9.5: Hypothetical clinical application of flow cytometric analyses of adipose tissue. 

In humans, brown adipose tissue is located in the supraclavicular region. Visceral white adipose tissue depots include epicardial, mesenteric, omental, 

retroperitoneal, peri-renal, gonadal and ectopic deposits on the liver and heart. Subcutaneous white adipose tissue is located around the abdomen and gluteal 

regions. As described in this study, adipocytes from multiple depots can be characterised from healthy individuals and compared to adipocytes from obese or 

diabetic individuals. The ‘normal adipocyte phenotype’ is based off data collected in this study. The ‘abnormal adipocyte phenotype’ is a hypothetical mock 

up based off reported changes in adipose tissue function in obesity. 
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9.7 Future endeavours 

In this study, a method was developed to analyse adipocytes at the single cell level. 

The method was utilised to assess sexual dimorphism in adipocytes as well changes 

to adipocyte biology during pregnancy (Appendix III) (Boumelhem et al., 2017). 

Furthermore, the method refuted the findings reported by Wu et al. (2012) in which 

beige adipocyte markers CD137 (4-1BB) and CD40 were not expressed on inguinal 

adipocytes. Subsequently, a code to identify adipocyte heterogeneity in healthy, wild-

type adult mice was revealed. The next step would be to determine how the code 

changes in brown, subcutaneous and visceral white adipocytes from obese and 

diabetic mice. To model obesity in mice, a high-fat diet can be used to induce obesity 

(and lipotoxicity) or genetically with Ob/Ob nullizygous mice. Ultimately, the method 

can be applied to adipocytes extracted from adipose depots in humans. A code 

developed for human adipocytes may be useful as a diagnostic tool.  

 

9.7.1 Do adipocytes support the development of other endoderm-derived cell types? 

In this study, the adipocytes differentiated in conjunction to mouse ES cell-derived 

prostate epithelial cells closely resembled gonadal adipocytes. While prostate 

epithelial cell differentiation may be supported by adipocytes, what then of other 

endoderm derived cell types such as hepatocytes, pancreatic b-cells or enterocytes? 

Those endoderm cell types are all implicated in obesity-induced metabolic disorder 

in the case of lipotoxicity. There are however no reports on the role of adipocytes for 

normal organogenesis of endoderm derivatives. The culture conditions implemented 



 245 

in this study can be modified to promote hepatocyte, pancreatic b-cell, enterocyte or 

other endoderm derivatives as previously reported (Mallanna & Duncan, 2013; 

Hannan et al., 2013; Goldman et al., 2014; D'Amour et al., 2005; Ozawa et al., 2015). 

Differentiating ES cell cultures can be assessed for the generation of adipocytes and 

characterised by the code developed in this study. The proposed undertaking could 

shed light on an unreported role for adipocytes during embryogenesis. 

 

9.8 Concluding remarks 

For the first time, a method to differentiate prostate epithelial cells from mouse ES 

cells in a stepwise manner is reported. Successful differentiation of prostate epithelial 

cells also resulted in the generation of adipocytes, a cell type conventionally associated 

with the mesoderm germ layer. A method was developed to characterise brown and 

white adipocytes at the single cell level and applied to the adipocytes differentiated 

in endoderm culture conditions. Profiling of the mouse ES cell-derived adipocytes 

revealed striking similarities to gonadal adipocytes. The study presented here 

challenges the origins of gonadal adipocytes and poses a supportive role of adipocytes 

in the development of the prostate.  
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Abstract:  Regenerative  medicine  is  centred  around  the  premise  that  progenitor
populations can be engineered to give rise to mature cell lineages forming a complex
tissue  architecture  which  in  turn  produces  functional  organs.  The  potency  of  the
starting progenitor population is therefore a critical consideration. The mesendoderm is
a  rare  population  of  cells  present  in  the  embryo  only  at  gastrulation.  This  bipotent
population gives rise to the mesoderm and the definitive endoderm and all mature cell
types  derived  from  these  germ  layers.  Mesodermal  progenitors  generate  cardiac,
smooth  and  skeletal  muscle,  as  well  as  the  blood  and  vascular  lineages,  bone  and
connective  tissue  cells.  The  endoderm is  the  source  of  numerous  cell  lineages  with
potential utility for regenerative medicine including hepatocytes, pancreatic lineages
and the epithelial cells of the respiratory, gastrointestinal and reproductive tracts. The
development  of  numerous  organs  is  dependent  upon  mesoderm-derived  lineages
interacting with endodermal-derived cell  types.  The kidney,  adrenal  gland,  pancreas
and genito-urinary tract development all require interactions between mesodermal and
endodermal derivative cell  types.  Here,  we describe the unique genetic programmes
that lead to mesendoderm formation, the pathways leading to mesoderm and endoderm
specification and examples where mature cell types from both germ layers interact to
support their mutual development. We will also show how these programmes are being
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harnessed to direct the differentiation of pluripotent cells in vitro into mesendoderm-
derived  cells  and  tissues  which  can  be  used  to  improve  the  quality  of  human  life.
Finally,  we  will  discuss  considerations  for  combining  stem cell  differentiation  with
tissue engineering through 3D bioprinting modalities.

Keywords:  3D  bioprinting,  Embryonic  development,  Embryonic  stem  cells
(ESC),  Endoderm,  Germ  layer  specification,  Induced  pluripotent  stem  cells
(iPSC),  Mesendoderm,  Mesoderm,  Regenerative  medicine,  Tissue  engineering.

INTRODUCTION

The complex adult mammalian body is derived from three simple structures early
in embryogenesis termed the germ layers. These are: the ectoderm, which forms
the  skin  and  central  nervous  system;  the  endoderm  which  gives  rise  to  the
epithelial tissues of the viscera such as the respiratory, gastrointestinal and genito-
urinary tracts; and the mesoderm, which forms all of the connective tissue, blood,
vessels and muscle tissues. These three germ layers, can be first distinguished at
the developmental stage termed gastrulation. However, it has been proposed for
some time that the mesoderm and endoderm arise from a single cell type with the
potential to form both lineages. This cell type, termed the mesendoderm, can be
identified in simpler animal models such as the frog embryo, and an equivalent
cell type can be generated from mammalian pluripotent stem cells in culture. The
mesendoderm  is,  in  the  end,  responsible  for  the  formation  of  essentially  vast
amounts of the body except for the brain, skin (derived from the ectoderm) and
other tissues derived from a structure arising later in embryogenesis termed the
neural crest.

All of the epithelial tissues contain mesoderm-derived lineages. For example, the
gastro-intestinal  epithelial  tissue  has  a  mesoderm-derived  connective  tissue
component  essential  in  maintaining  structural  integrity.  Indeed,  it  is  now  clear
that,  in  many  organs,  extensive  cross-talk  must  take  place  between  endoderm-
derived  tissues  and  mesodermal-derived  structures  during  embryogenesis  of
organogenesis to proceed. The developing pancreas and liver (endoderm) require
signals from underlying blood vessels (mesoderm) to form [1, 2]. Removal of the
blood  vessels  leads  to  a  loss  of  appropriate  signals  and  failure  of  pancreatic
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development.  In  contrast,  most  mesoderm-derived  organs  lack  epithelial
structures.  For  example,  the  heart,  skeletal  muscle  and  bone  marrow  do  not
contain  endoderm-derived  cell  types  (Table  1).

Table 1. Organs and cells derived from the mesendoderm.

Organ Endoderm-derived Lineages Mesoderm-derived Lineages

Salivary gland serous, mucosal and seromucosal
epithelial cells

connective tissue fibroblasts, macrophages
endothelial cells, adipose cells

Trachea Goblet cells
columnar epithelial cells

tracheal cartilage, lymphoid cells, macrophages

Lungs Type I and II alveolar cells
Clara/club cells, Goblet cells

endothelial cells
alveolar macrophages

Stomach surface mucous cells
mucous neck cells
entero-endocrine cells
chief cells, parietal cells

smooth muscle, adipocytes, endothelial cells
fibroblasts, lymphoid cells

Liver hepatocyte
cholangiocyte

sinusoidal endothelial cell
Kupffer cell, hepatic stellate cell

Gastrointestinal tract gastric epithelium
glands (pyloric, cardiac, fundus)

mesentric connective tissue fibroblasts
smooth muscle, endothelial cells, lymphoid
cells

Pancreas acinar cells, centroacinar cells
pancreatic α, β and δ cells

capillary endothelial cells
connective tissue fibroblasts

Kidney tubular epithelial cells glomerular endothelial cells, mesangial cells
podocytes, capsular stromal fibroblast

Prostate cuboidal epithelial cells
columnar epithelial cells

prostatic stroma fibroblasts, smooth muscle
connective tissue

Urinary bladder urothelium smooth muscle, hematopoietic cells, endothelial
cells

Bone osteocytes, osteoblasts, chondrocytes,
endothelial cells, hematopoietic cells,
adipocytes

Thymus cortical thymic epithelial cells
medullary thymic epithelial cells

thymocytes (developing T lymphocytes)
dendritic cells, thymic macrophages

Spleen capsule stromal fibroblasts, erythrocytes
lymphocytes, sinusoidal endothelium
macrophages

Gonads Leydig cells, Sertoli cells, follicular cells
thecal cells
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Understanding  the  biology  underpinning  mesendoderm  development  offers  us
insight  in  the  formation  of  a  vast  amount  of  the  human  body.  Defining  the
molecular processes that control mesendoderm formation and differentiation, as
well as the formation of other similar bi-potent populations in the embryo, can be
of great benefit to regenerative medicine. In particular, the ex vivo generation of
functional mini-organs or organoids exhibiting appropriate morphology and tissue
architecture and derived from a patient’s own stem cells offers enormous potential
for individuals with many pathological conditions. Successful 3D bioprinting and
differentiation of stem cells into functional tissue equivalents as insulin-producing
pancreatic  islets,  clusters  of  functional  hepatocytes,  lung  or  mini-kidney  tissue
will have a profound effect on a vast cohort of patients, most of whom are waiting
for  matching  organ  donors.  However,  an  understanding  of  the  embryological
processes  required  in  the  formation  of  these  tissues  is  required  before  we  can
proceed to generating new tissues in vitro. This chapter aims to inform the reader
of  the  developmental  processes  taking  place  to  form  and  differentiate  the
mesendoderm  and  to  demonstrate  how  this  basic  biological  knowledge  can  be
applied  to  regenerative  medicine  via  induced  pluripotent  stem  cells,  tissue
engineering  and  3D  bioprinting.

The Germ Layers

In contrast to the formation of bi-laminar organisms such as jellyfish, mammalian
embryogenesis  requires  the  formation  of  three  distinct  three  germ  layers;
ectoderm, endoderm and mesoderm. It is these three layers of cells that give rise
to all of the different cell lineages in the adult human body. The ectoderm gives
rise to the external layer of the skin and the central nervous system. The endoderm
forms all of the major epithelial cell lineages giving rise to the different tracts of
the body such as the respiratory, gastrointestinal and genitourinary systems. All of
these systems must form tube-like structures with tight junctions forming between
cells to seal the external environment from the internal body and yet still allow
transport  (of  oxygen  and  nutrients  from  food)  or  secretion  and  excretion  (of
carbon dioxide, urine, faeces, sperm etc.). In complex animals, such as mammals,
a third germ layer exists which forms all of the supportive structures between the
external skin, central nervous systems and internal epithelial organs. Supportive
structures  such  as  the  skeletal  system,  the  integumentary  system,  blood  and
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lymphatic  vessels,  heart,  smooth  and  skeletal  muscle  and  blood  are  all  derived
form the mesoderm.

The Mesendoderm

Investigations into the origins of the endoderm and mesoderm led to the concept
that a bi-potent progenitor cell exists early in development capable of giving rise
to each germ layer. This cell type has been termed “the mesendoderm”. Evidence
for the existence of the mesendoderm has been collecting for decades [3]. When
individual  cells  in  early  embryos  where  labelled  and  the  fate  of  these  cells
explored, it  was observed that some labelled single cells gave rise to cell  types
arising from both the mesoderm and the endoderm. In the developing nematode
C.elegans  at  the  4  cell  stage  of  development  there  is  a  single  mesendodermal
blastomere  that,  during  the  subsequent  cleavage  stage,  will  give  rise  to  two
daughter blastomeres: one a mesodermal progenitor and the other an endodermal
progenitor  [4].  Origins  of  the  mesendoderm  population  were  identified  by
removing cells fated to become ectoderm or endoderm, and then culturing both
tissues  in  close  proximity,  resulting  in  the  formation  of  cells  of  a  mesodermal
origin [5]. Studies on the nematodes and zebrafish have revealed a bi-potent cell
type that is able to generate both mesoderm and endoderm. The tissues that are
generated from the mesendoderm are shown in Fig. (1).

The existence of a bi-potent mesendodermal progenitor was supported by studies
showing shared gene expression profiles in candidate mesendodermal cells across
multiple species. The soluble factor Nodal (and related factors) was consistently
identified  as  a  key  regulator  of  mesendoderm  development  in  species  as  far
ranging as the African clawed frog Xenopus, zebrafish and the mouse [6]. Binding
of Nodal to its receptor activated phosphorylation of the Smad pathway inducing
gene  expression.  Amongst  the  downstream  targets  of  Nodal  signalling  is  the
transcriptional  regulator  Eomesodermin  (Eomes)  [7].  Eomesodermin  then
functions  in  multiple  ways  to  focus  differentiation  along  the  mesendoderm
lineages. Eomesodermin inhibits ectoderm differentiation [8]. Eomesodermin also
induces  expression  of  a  range  of  transcription  factors  critical  to  mesendoderm
development  including  Brachyury  (Bry/T),  Mix-like  1  (Mixl1)  and  Goosecoid
(Gsc).  These  form  transcriptional  complexes  that  regulate  mesendoderm
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differentiation. Lhx1, another downstream target of Eomesodermin also partners
with  other  transciptional  regulators  that  play  critical  roles  in  mesendoderm
development  [9].  A  grossly  simplified  model  of  mesendoderm  formation  is
presented  in  Fig.  (2).

Fig. (1).  Derivatives of the mesendoderm. The mesendoderm gives rise to cell types from both the mesoderm
(red) and endoderm (green) germ layers. Mesoderm derivatives include: endothelial cells, smooth muscle
cells, red blood cells and cardiac cells from the lateral plate mesoderm; kidney tubule cells from intermediate
mesoderm  and  skeletal  muscle  from  the  paraxial  mesoderm.  Endoderm  derivatives  include:  the  thyroid,
lungs, liver and pancreas from the foregut endoderm; stomach and small intestine from the midgut endoderm
and urogenital sinus and colon from the hindgut endoderm.
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Fig. (2).  A simplified model of mesendoderm formation. Rounded rectangular cells represent E-cadherin+

epithelial  cells.  Gradients  of  critical  soluble  morphogenic  and  growth  factors  are  shown  next  to  each
developmental  stage.  Transcription  factors  playing  critical  roles  in  each  lineage  are  shown  within  the
schematic nucleus.
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Mesoderm Differentiation

Eomesodermin  can  induce  expression  of  genes  which  play  critical  roles  in
mesoderm development [7]. In particular, cardiac and head mesoderm is derived
from  Eomes-expressing  progenitors  [10].  Other  transcriptional  regulators
expressed  in  the  mesendoderm  develop  more  restricted  roles  in  the  mesoderm
including Brachyury that becomes restricted to the axial mesoderm responsible for
notochord formation. The soluble factor Bone morphogenetic factor-4 (Bmp4) is
an  essential  requirement  for  mesoderm development  across  many  species  [11].
Genetic  ablation  of  the  gene  encoding  Bmp4  in  the  mouse  leads  to  early
embryonic lethality with many embryos failing to proceed through gastrulation or
form mesodermal cells [12]. A combination of soluble factor signalling through
Bmp4,  and  transcriptional  regulator  complexes  (including  Brachyury,  Mixl1,
eomesodermin  and  goosecoid)  lead  to  expression  of  mesoderm-specific
transcription factors such as Mesp1 and commit the progenitor cells which have
received these signals  to  become mesodermal  cells.  Specification of  mesoderm
into  more  committed  progenitors  requires  a  range  of  different  soluble  factors
generating a gradient of cell signalling according to cellular location within the
developing  embryo.  This  gradient  of  signalling  in  turn  initiates  differentiation
transcriptional  programmes  leading  the  specification  of  distinct  types  of
mesoderm progenitors. This is a gross simplification of a truly complex system,
however it serves to offer us a model for mimicking early embryological events in
vitro to generate cell types that may be of use for regenerative medicine.

Endoderm Specification

The endoderm gives rise to the epithelial lining of the three major internal tubes:
the respiratory, gastrointestinal and genitourinary tracts, as well as the organs that
branch off them (Fig. 1). Development of definitive endoderm (DE) in mammals
begins at gastrulation, when endoderm precursors migrate from the epiblast to the
anterior  primitive  streak  followed  by  implantation  into  the  visceral  endoderm
(VE).  This  movement  is  facilitated  by  an  epithelial-to-mesenchymal  transition
(EMT) which is dependent upon the expression of genes Snail and Slug, both of
which  momentarily  suppress  E-cadherin  [13].  In  Xenopus  and  zebrafish,
migration  of  endodermal  precursors  is  dependent  upon  mesoderm-derived
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Sdf1/Cxcl12b, which acts on endoderm expressing Cxcr4 [14].  Observations in
Zebrafish models suggest that there is a feedback check on differentiation of cells
and its neighbouring environment [15]. Inhibition of the Activin A receptor and
Nodal-related  proteins  in  Xenopus  embryo  provided  the  first  insight  into  the
underlying mechanisms of endoderm formation in vertebrates [13]. Activin and
nodal are part of the TGF-β family. Findings from explant studies suggested that
the inhibition of TGF-β signalling in the endoderm lead to increased expression of
mesodermal and ectodermal markers at the cost of endoderm marker expression.
The  separation  of  the  three  embryonic  germ  layers  is  in  part,  due  to  TGF-β
signalling [16]. Nodal signalling, a subclass of the TGF-β superfamily has been
shown  to  induce  formation  of  mesoderm  and  endoderm  in  vertebrates  [17].
Ligands that belong to the TGF-β family (including Activin A and Nodal) operate
through  the  homologous  intracellular  mediators  Smad2  and  Smad3  [18].
Mutations  of  the  Nodal  allele  led  to  the  loss  of  endoderm  differentiation  in
embryos  due  to  reductions  in  gene  expression  of  Smad2  and  Smad3  [18].
Overexpression of Activin A or Nodal-related factors in Xenopus  and zebrafish
however, confirmed mesodermal and endodermal cell fates required a gradient of
nodal and activin-related signals [6, 19]. Cells furthest from the source of Nodal
express  mesodermal  genes,  due  to  the  exposure  of  low concentration  of  Nodal
[20, 21]. The canonical Wnt signalling pathway activates Nodal expression during
embryogenesis [13]. Specification of DE requires both Wnt signalling and Nodal
expression as mouse embryos lacking Nodal fail to form a primitive streak [22].
Wnt3-/-  mice  do  not  form  a  primitive  streak  or  mesoderm  highlighting  its
importance in germ layer formation [23]. Wnt3 expression during gastrulation is
found  in  the  posterior  visceral  endoderm  shortly  before  mesendodermal  cells
begin migrating into the primitive streak [24].  Wnt3 has been shown to induce
Nodal (and vice versa) through feedback signalling which demonstrates the ability
of  the  canonical  Wnt  pathway  to  directly  enhance  endoderm  generation  in
mammals  [23].

In  the  vast  network  of  endodermal  transcription  factors,  there  are  two  key
families: the GATA family and the FoxA family of Forkhead transcription factors.
Members of  both gene families  are downstream targets  of  Nodal,  however,  the
direct mechanisms regulating them are still poorly understood. Gata4, Gata5 and
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Gata6  play  roles  in  endoderm development  [25].  Gata4-/-  and  Gata6-/-  embryos
exhibit  reduced  development  of  both  the  visceral  endoderm  and  the  definitive
endoderm however Gata5-/-  mice did not show any endoderm defects [26 - 28].
Inactivation  of  members  of  the  FoxA  family  of  Forkhead  genes  results  in  a
reduction but not a cessation of endoderm generation [29]. FoxA2 is required for
the formation of  the foregut,  but  not  the mid-  or  hindgut  [30].  Members  of  the
GATA  and  Forkhead  families  are  proposed  to  synergistically  form  a  complex
stimulating  endoderm  gene  transcription  [13,  31,  32].  Downstream  factors
stemming from the Nodal pathway Sox17 and MixL1 have also been shown to
play a part in endoderm generation [33]. In the developing mouse embryo, Sox17
expression appears in the DE between 7.5-8.5 days post coitus (dpc). Sox17-/- mice
show a reduction in DE formation with a failure of midgut expansion and elevated
levels of apoptosis in the foregut [34]. These findings suggest that Sox17 plays a
role in maintaining endoderm integrity. Mixer has been shown to regulate Sox17
and other  endodermal  genes  through feedback  loops  involving  members  of  the
GATA family [35].  Mixl1-/-  mouse embryos exhibit  reduced DE generation and
deformities  in  the  hindgut  development  [36].  Mixl1-overexpression  in  Xenopus
induced surplus formation of the endoderm with an increase in Nodal expression
[37]. These finding suggest that Mixl1 is part of a feedback loop regulating Nodal.

In vitro Models of Mesendoderm Formation

Dissecting the molecular pathways regulating the formation of the cells, tissues
and organs  derived from the  mesendoderm has  been conducted in  a  number  of
animal  models.  Simpler  organisms  such  the  nematode  C.elegans  have  proven
useful. Externally fertilising species such as the African clawed frog Xenopus and
zebrafish  have  also  been  useful  as  individual  cells  in  the  early  embryo  can  be
labelled  and  their  derivative  cell  types  assessed  for  retention  of  the  label.  The
development of null  mutant mouse strains proved a boon for understanding the
specific roles of genes in mesendoderm development. In many cases, the genes
ablated have proven essential for embryonic survival and the null mutant embryos
have died in utero. The intra-uterine development of the mouse embryo has also
proven to be a hurdle for analyzing developmental processes.
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Embryonic Stem (ES) Cell Differentiation as in vitro Model of Mesendoderm
Development

A number of research groups have capitalized on the ability of embryonic stem
(ES)  cells  to  remain  pluripotent  under  controlled  cell  culture  conditions  to
recapitulate developmental processes and events in vitro [38]. For mouse ES cells
this typically requires administration of leukemia inhibitory factor (LIF) to culture
medium. Once LIF is removed, mouse ES cells will spontaneously differentiate
according to the signals the ES cells receive from the cell culture environment.
Embryonic stem (ES) cells are derived from the inner cell mass of the blastocyst
and are extremely useful pluripotent, undifferentiated cells that have the capability
to  generate  any  cell  type  in  the  body.  ES  cells  can  also  be  used  as  an  in  vitro
model of embryogenesis. This is particularly useful as mammalian development is
challenging to study due to the in utero gestation and small size of early embryos.
ES cell  cultures  can  be  scaled  up,  genetically  modified,  exposed  to  chemically
defined  media  and  directed  along  specific  differentiation  pathways.  Some
strategies  used  for  generating  and  isolating  mesendoderm,  endoderm  and
mesoderm  progenitors  during  pluripotent  stem  cell  in  vitro  differentiation  are
presented  in  Fig.  (3).

ES cells  derived from the mouse or  humans have been used to  identify critical
stages  and  processes  in  mesendoderm  development.  Upon  withdrawal  of  any
agents maintaining self-renewal, ES cells will begin to spontaneously differentiate
in vitro. The direction of differentiation will depend upon the signals present in
the  cell  culture  system.  Soluble  growth  factors,  morphogens,  cytokines  and
chemokines can all induce differentiation. These factors, as well as components of
the media, exogenously added additives (vitamins, salts, lipids) or inhibitors can
all be included to drive differentiation along specific lineages, or to improve the
yield of specific cell  types. The surface on which the ES cells differentiate can
also influence differentiation. Different extracellular matrix components such as
fibronectin, laminin or vitronectin activate distinct integrin proteins and transduce
different signalling into the ES cell cultures. Stiffness of the matrix on which cells
are growing also influences differentiation [39]. The addition of fetal calf serum
drives ES differentiation away from ectodermal lineages towards mesendoderm.
In serum-free, chemically-defined systems, the addition of soluble Nodal directs
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ES  cell  differentiation  towards  mesendoderm  [40].  Once  ES  cells  have  been
differentiated out of their self-renewing state, genes specific for the mesendoderm
lineage will be expressed. These genes can be used as indicators of mesendoderm
differentiation either in mRNA readout systems or as tags which can be utilized to
enrich and purify mesendoderm from all other cells in the differentiation culture.

Fig. (3).  Differentiating cultures of pluripotent stem cells such as ES and iPS cells can be purified at distinct
steps of differentiation using a broad range of methodologies. Lineage- or stage-dependent surface markers
are indicated here including PDGFRα and E-cadherin for mesendoderm. Reporter transgenes (represented
within the nucleus of  each cell  type)  can be used if  coupled to  a  fluorescent  protein such as  GFP (green
fluorescent protein) or used to drive a surface protein such as human CD4 (hCD4) or human CD25 (hCD25)
on the cell surface. Fluorescently conjugated monoclonal antibodies against these human cell surface proteins
can then be used to distinguish mouse cells at different stages of differentiation allowing for purification,
transcriptome analysis or re-culture.

A  number  of  systems  have  been  developed  using  the  promoter  regions  of
mesendoderm-specific genes such as Brachyury (T), goosecoid (Gsc) or Mixl1 to
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drive fluorescent protein expression thus indicating successful differentiation into
the mesendoderm. The regulatory elements driving T, Gsc and Mixl1 have all be
used  to  drive  green  fluorescent  protein  (GFP)  expression  in  ES  differentiation
cultures. When cells expressing GFP are purified using fluorescence-activated cell
sorting  (FACS)  they  were  found  to  express  high  levels  of  mesendoderm genes
(Fig. 3). Combining this with cell surface protein expression can help improve the
purity of mesendoderm differentiation. Tada and colleagues found that Gsc-GFP+

cells  express  the  epithelial  (E)-cadherin  and  the  platelet-derived  growth  factor
receptor alpha chain and that  FACS can be used to purify this  population [41].
Similar  approaches  can  be  used  in  the  differentiation  of  human  ES  (hES)  cell
cultures  to  obtain  useful  quantities  of  purified  mesendodermal  cells  which  can
then  be  used  in  tissue  engineering  or  3D  printing.  Other  groups  have  used
mesendodermal regulatory elements to drive expression of human surface proteins
on  mouse  cells.  Species-specific  fluorescent  antibodies  against  these  non-
functional  human  surface  proteins  (CD4  or  CD25)  can  then  detect  surface
expression of these molecules and be used to monitor mesendoderm development
or purify these cells by FACS [42].

Mesendodermal cells derived in vitro from ES cultures can then be differentiated
into mesodermal cells or endoderm-derived lineages. For example, Bry-GFP+ cells
purified by FACS have been used to differentiate mesodermal lineages such as
hematopoietic and endothelial lineages as well as endodermal lineages including
pancreatic and hepatic lineages [43 - 45]. Modulating mesendoderm regulators in
ES differentiation cultures can improve the yield of desired cell types. Activation
of  inducible  Mixl1  gene accelerated generation of  mesodermal  and endodermal
cell types [46].

Following differentiation from mesendoderm,  cell-surface  markers  can identify
mesodermal progenitors. Mesodermal cells lack epithelial surface proteins during
epithelial-mesenchymal transition. The vascular endothelial growth factor-2, also
known as Flk1 or KDR (in humans) is expressed on the surface of lateral plate
mesodermal  cells  fated  to  become  blood  or  blood  vessel  progenitors  [47].
Therefore  mesodermal  differentiation  to  the  E-cadherin-  Flk1+  stage  allows  for
enriched  of  lateral  plate  mesoderm.  The  hematopoietic  committed  Flk1+

population  could  be  further  enriched  according  to  α4-integrin  or  podocalyxin
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expression [48, 49]. Vascular and cardiac mesodermal progenitors derived from
ES differentiation cultures can also be purified using a different combination of
surface  markers.  Endodermal  progenitors  can  also  be  identified  from  ES
differentiation cultures. A combination of surface of expression of CXCR4 and c-
Kit has proven to be an effective means for assessing endodermal differentiation
in vitro. In the context of embryonic stem (ES) and induced pluripotent stem (iPS)
cell cultures, feedback from the differentiating mesoderm influences the formation
and expansion of endodermal precursors. Depending on the feedback provided by
the mesoderm, endodermal precursors may differentiate within a heterogeneous
culture or die in vitro [13]. Together, this highlights the importance of mesoderm-
endoderm interactions and the development of the later during gastrulation. This
will be expanded upon in this chapter.

Induced  Pluripotent  Stem  Cells  as  a  Novel  Source  of  Mesendodermal
Progenitors for Regenerative Medicine

While  ES cells  have  been  used  extensively  since  the  early  1980s,  their  use  for
regenerative  medicine  was  limited  to  helping  define  appropriate  differentiation
conditions to generate cell types useful for regenerative therapies. The utility of
pluripotent  stem cells  for  regenerative medicine changed dramatically when,  in
2006,  Shinya  Yamanaka  and  colleagues  reported  the  generation  of  induced
pluripotent stem (iPS) cells from terminally differentiated adult fibroblasts. This
revolution led to the widespread and routine production of iPS cell lines from a
range  of  species  including  humans  [50].  Induced  pluripotent  stem cells  exhibit
very similar properties to ES cells including pluripotency, teratoma formation and
the  ability  to  differentiate  into  a  broad  range  of  cell  types  upon  receiving  the
appropriate signals in vitro. Similar to ES cells, iPS can also be potentially used
for therapies, disease models or drug screening. One advantage they have over ES
is  that  they  can  be  made  readily  from  adult  cells,  avoiding  the  ethically
challenging aspects of ES cell biology. Patient-specific iPS have been generated
in which the genetic lesion underpinning the pathology the patients experience has
then been repaired [51 - 53]. Since the discovery of iPS cells, groups have made
great strides in publishing cellular models outlining a vast multitude of conditions
and potential therapies. Here, we will show the current standings of differentiation
of mature cell types and how these can be implemented for regenerative medicine.
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Modelling  Interactions  Between  Endoderm-  and  Mesoderm-derived  Cell
Types Using Pluripotent Stem Cells

As  shown  in  Table  1,  many  endoderm-derived  tissues  and  organs  have  a
significant mesoderm-derived component. To form physiologically and medically
relevant cell types, tissues or organs for regenerative medicine, an understanding
of  how  the  mesendoderm  gives  rise  to  these  complex  biological  structures  is
required. Here, we will describe medically important organ systems that are being
mimicked  in  vitro  to  generate  useful  3D  structures  for  regenerative  medical
interventions.

Differentiation of Pancreatic β-cells as a Treatment for Diabetes

The  pancreas  is  often  described  as  two  organs  with  distinct  endocrine  and
exocrine  components  [54].  The  exocrine  acinar  cells  are  responsible  for  the
production  of  digestive  enzymes  whereas  the  endocrine  cells  of  the  islets  of
Langerhans regulate blood sugar levels [54]. The insulin-producing cell type of
the islet of Langerhans is the β-cell. Autoimmune destruction of the β-cell leads to
type-1  diabetes  [55].  Type-2  diabetes  manifests  as  resistance  to  insulin  in  the
peripheral  tissues  [55].  Collectively,  diabetes  affects  300  million  people
worldwide [56]. One of the biggest limitations in curing type-1 diabetes is finding
a renewable source of functional β-cells. Generation of mature, functional β-cells
from  embryonic  and  induced  pluripotent  stem  cells  has  raised  the  exciting
possibility  for  a  near-limitless  source  of  β-cells  for  transplantation  [38].

The pancreas is an endodermal organ at the posterior foregut level [57]. The sites
of pancreatic induction occur precisely where the endodermal epithelium contacts
the mesodermal endothelium of major blood vessels [1]. Pancreatic progenitors
are  found  at  E8.5  in  the  mouse  with  expression  of  homeodomain  transcription
factor Pdx1 [54]. Pancreatic buds will then form from Pdx1+ cells [58]. Culturing
endodermal cells with the dorsal aortae induces expression of insulin and Pdx1,
where  expression  was  found  adjacent  to  the  endothelium,  highlighting  the
importance of endothelial cells in pancreatic cell induction [1]. While Pdx1 is the
first indicator of pancreatic generation, it is not solely limited to the pancreas [38].
It  is  also  found  in  other  foregut  endodermal  tissues  such  as  the  stomach  and
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duodenum [38].  Commitment  of  pancreatic  cell  differentiation  occurs  with  co-
expression of Pdx1  with transcription factor Ptf1a  [59].  Secretion of Fibroblast
growth  factor  10  (FGF10)  from  the  mesenchyme  expands  Pdx1+/Ptf1a+  cell
number  [38].  Genetic  lineage  tracing  studies  have  found  that  Pdx1+/Ptf1a+

progenitor  cells  give  rise  to  all  mature  pancreatic  cells  [59,  60].  Furthermore,
ablation  or  mutation  of  Pdx1  and/or  Ptf1a  has  resulted  in  blunted  pancreatic
growth and differentiation [59]. There have been few studies that examine human
embryonic pancreas development, however, the similarities between rodent and
human  pancreatic  organogenesis  is  evidently  clear  [61].  Understanding  the
embryology of pancreatic development has paved the way for differentiation of
pancreatic cells from stem cells.

Equipped  with  this  knowledge,  researchers  have  been  able  to  generate  mature,
functional  β-cells  in  vitro  from  ES  and  iPS  cells.  The  protocol  established  by
D’Amour  and  colleagues  has  been  the  most  routinely  used,  however,
modifications have been made. Briefly, DE was induced by Activin-A. Pancreatic
fate  was  then  specified  through  retinoic  acid  and  FGF10  signalling  [62].
Maturation of β-cells included supplementation with IGF-1, HGF, and extendin-1
[62]. Confirmation of the differentiated cell types was sequential, with induction
of  FOXA2+,  CXCR4+,  SOX17+  endoderm,  generation  of  PDX1+/PDF1a+

pancreatic progenitors and development of NGN3+/NKX2.2+ endocrine cells [38].
Production  of  insulin  secreting  cells  was  determined  by  the  expression  of  C-
peptide,  which  is  released  when  proinsulin  is  converted  to  insulin  [38].

Transplantation  of  β-cells  for  the  purpose  of  curative  purposes  has  had  mixed
results. One of the biggest hurdles is the maturation of β-cells to produce insulin
prior to or following transplantation. In streptozocin-induced diabetic mice, Jiang
and  colleagues  transplanted  glucose-responsive  stem  cell  derived  β-cells  that
reversed  the  hyperglycemic  state  of  30%  of  mice.  Graft  analysis  showed  the
recipient mice expressed human C-peptide and PDX1 [63]. Addressing the issue
of the amount of β-cells derived from stem cells, Pagliuca and colleagues were
able  to  generate  hundreds  of  millions  of  insulin-producing  β-cells  in  vitro.
Following transplantation, the differentiated β-cells were able to secrete human
insulin in a glucose-regulated manner [56].
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Developing  New  Systems  for  Regenerative  Medical  Intervention  During
Liver Disease

The liver is a multi-purpose organ that serves roles in metabolic, endocrine and
exocrine  functions  [64].  These  functions  largely  serve  to  restore  homeostasis
through detoxification, metabolism of dietary compounds, regulation of glucose
and control of blood homeostasis [64]. The primary cell type of the liver is the
hepatocyte  [65].  Hepatocytes  and  biliary  epithelial  cells  (cholangyocytes)  are
endodermal  derivatives  supported  by  mesodermal-derived  stromal  cells,
endothelial  cells,  Kuppfer  cells  and  blood  vessels  [65].

The embryological origin of the liver begins at day 8 of gestation (E8.0), located
in  the  foregut  endoderm  [65].  At  E9.0,  the  embryonic  liver  forms  a  thickened
epithelium,  making  it  morphologically  distinguishable  [66].  The  next  stage  of
hepatogenesis  is  the  formation  of  the  liver  bud.  This  occurs  at  E9.5  when
endodermal hepatoblasts (hepatocyte progenitors) shed from the epithelium and
occupy the mesodermal septum transversum mesenchyme (STM) [66]. The STM
gives  rise  to  the  mesodermal  cell  types  of  the  liver  including:  macrophages,
stromal fibroblasts, sinusoidal endothelial cells and stellate cells [67]. At E10.5-
E11.0  of  development,  haematopoietic  progenitors  migrate  from  the  yolk  sac,
aorta-gonad-mesonephros and placenta to the foetal liver, which becomes one of
the  major  sites  of  blood  production  [68].  This  is  supplemented  as  the  liver
becomes  vascularised  and  populated  by  haematopoietic  cells  between  E10.0-
E15.0  [64].

Endothelial  cells  which  reside  between  the  epithelium  and  STM  aid  in  the
migration  of  hepatoblasts  into  the  stroma [69].  Hepatoblasts  are  bi-potential  as
they  can  differentiate  into  cholangyocytes  and  hepatocytes  depending  on  their
location in the developing liver. Hepatoblasts in the portal vein will differentiate
into  cholangyocytes  that  will  line  the  lumen  whereas  hepatoblasts  in  the
parenchyma will differentiate into hepatocytes [64]. Maturation and function of
these  cells  begins  at  E13.0  and  continues  after  birth  [69].  In  all,  hepatogenesis
demonstrates  the  sequence  of  tissue  interactions  between  the  endoderm  and
mesoderm.
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Hepatoblast  specification  and  regulation  of  liver  morphogenesis  are  dependent
upon vascular endothelial growth factor receptor 2 (KDR) [70]. Prior to hepatic
specification,  KDR+ cells  are  located  in  the  endoderm at  E8.0  with  expression
waning  throughout  hepatogenesis  [70].  KDR-/-  mouse  embryos  lacked  the
development of  endothelial  cells,  which in turn,  instruct  liver  development [2].
Endothelial  cells  have  also  been shown to  aid  in  hepatocyte  and cholangiocyte
specification  through  Wnt  and  Notch  pathways  [71].  While  KDR  expressing
endothelial  cells  were  believed  to  be  restricted  to  the  mesodermal  lineage,
Goldman and colleagues revealed the bi-potency of KDR+ cells using human and
mouse  embryonic  stem  cells  (2).  Endodermal  cells  lack  KDR  expression,
however, when cultured in media supporting differentiation of hepatic cells, two
populations  arise;  KDR+  hepatic  progenitors  and  KDR-  hepatic  cells  [2].  The
KDR+ hepatic progenitors serve to stimulate differentiation and maturation of the
KDR- hepatic cells, which further enforces the interaction between the mesoderm
and endoderm [70].

Understanding the  development  of  the  hepatic  niche  in  vivo  paved the  way for
researchers to recapitulate the development of the liver in vitro using stem cells.
Differentiation of hepatocytes from stem cells begins at the endoderm. Generating
DE from stem cells  is  routine  with  the  addition of  Activin-A and Wnt3A [72].
Next,  supplementation with FGF-2 and BMP-4 initiates  hepatic  induction [73].
Hepatoblast  maturation  and  expansion  requires  the  addition  of  hepatic  growth
factor, FGF4, Oncostatin M and Dexamethasone in cultures [64]. Differentiated
hepatic-like  cells  look  and  function  like  hepatocytes.  These  functions  include:
secretion  of  albumin,  storage  of  glycogen,  expression  of  hepatic  enzymes  and
metabolism of drugs [74].

Chronic liver diseases such as cirrhosis and hepatitis affect millions worldwide
[75]. Transplantation is the only curative means for chronic liver diseases [75].
Other means of restoration are needed. One such possibility is the transplantation
of  hepatocytes,  which  could  delay  the  progression  of  the  disease  and  act  as  a
conduit  for  patients  awaiting  a  liver  transplant  [76].  Despite  the  success  of
hepatic-like cell differentiation from stem cells, their implantation and integration
into mice with various liver injury models have shown only a modest rescue of
function. Their inability to repopulate diseased livers in vivo may be attributed to
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stem cells that have not fully maturated into hepatocytes [70]. Success was seen in
hepatectomised mouse given a bioartifical  liver  coupled with mES cell-derived
hepatocytes [77]. Liver- function and overall survival improved compared to mice
that did not receive the mES-derived hepatocytes [77]. While the use of stem cell
derived  hepatocytes  for  regenerative  purposes  is  still  being  refined,  they  have
been  a  useful  source  for  modelling  liver  diseases.  Yoshida  and  colleagues
demonstrated  the  prowess  of  induced  pluripotent  stem  cells  at  modelling  the
hepatitis C virus, which can be expanded upon for potential drug treatments [78].

Endodermal and Mesodermal Derivative Lineages in Treatment for Disease
of the Genitourinary Tract

Interactions between the mesoderm and endoderm-derivative cell lineages can be
observed  in  the  genitourinary  tract.  Derivatives  that  comprise  the  mesodermal
germ layer here include: the nephron, ureter, renal pelvis, glomerular endothelial
and mesangial cells, renal interstitial cells, adventitial fibroblasts and ureteral and
bladder  smooth  muscle  [78].  Endodermal  derivatives  include  the  luminal  and
basal epithelial cells of the bladder, urethra and prostate [78]. These mesodermal
cell types originate from a narrow strip of tissue located bilateral of the embryonic
midline termed the intermediate mesoderm [79]. Preceding the formation of the
kidney and ureter is the mesoderm-derived nephric duct. During the development
of  the  nephric  duct,  the  surrounding  intermediate  mesoderm  undergoes  a
mesenchymal-to-epithelial  (MET)  transformation  [80].  This  inductive  process
results  in  the  generation  of  mature  nephrons.

Development of the Bi-potential Gonad and Reproductive Tracts

The intermediate mesoderm gives rise to the urogenital system (kidneys, gonads
and associated ducts). The reproductive tract develops as a sexually bi-potential
structure, in close association with the urinary tract, for the first 7 weeks of human
development [81], (Fig. 1). The intermediate mesoderm extends to form bilateral
nephrogenic chords during the second week of development in the human. These
chords will eventually become bilateral urogenital ridges around 5 weeks when
development of gonadal tissue starts with the indifferent gonadal phase. At this
stage the mesothelium toward the middle of the mesonephros thickens to form the
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gonadal  urogenital  ridges.  Primary  sex  chords  (epithelial  digitations)  form and
extend into the mesenchyme and remain as undifferentiated gonadal ridges that
are invaded by migrating primordial germ cells during week 6 of gestation (see
later).  Three  weeks  of  gestation  heralds  the  formation  of  the  pronephros,  a
primitive kidney, which is continuous caudally with the mesonephros (Wolffian
duct). Around 4 weeks this caudal end meets and fuses with an endoderm lined
sinus at the caudal end of the gut tube called the cloaca. The region anterior to the
fusion  point  will  become  the  bladder  and  pelvic  urethra  of  the  neonate.  The
posterior portion of the cloaca forms the urogenital sinus and the anorectal canal.
The cranial region of the Wolffian duct regresses to form a lumened duct that will
persist in the male and form the efferent ducts, epididymides and vasa deferentia.

At  around 6 weeks of  gestation,  focal  infolding of  the intermediate  mesoderm-
derived coelomic epithelium, lateral to the mesonephric ducts occurs to generate
the  paramesonephric  ducts  [82].  These  ducts  are  the  precursors  of  the  uterus,
uterine ducts, cervix and upper portion of the vagina in the female. Hence by the
end of week six of gestation the foetus possesses two genital ridges, each on the
medial surface of a pair of patent mesonephric (Wolfian) ducts and collectively
called the urogenital ridges. Lateral to each urogenital ridge is a paramesonephric
(Müllerian)  duct.  The  metanephros,  mesonephric  ducts  and  paramesonephric
ducts all join to the bi-potential urogenital sinus. Up to this point, both male and
female  foetuses  are  indistinguishable.  Sex  determination  and  sexual
differentiation occurs after seven weeks of gestation, and once the gonadal ridges
have been populated with migrating primordial germ cells [83]. This chapter will
not deal with sexual differentiation, the reader is directed to recent reviews [84,
85].

Development  of  Kidney  Organoids  from  Human  Embryonic  and  Induced
Pluripotent Stem Cells as a Model of Kidney Development

Kidney  transplants  are  the  most  common  form  of  organ  transplantation
worldwide. There is a clear need for new medical interventions for the treatment
of  renal  disease.  The  formation  of  the  kidney  is  a  highly  complex  process
however;  recapitulation  of  renal  organogenesis  in  vitro  offers  great  hope  to
alleviate the challenges experienced by patients with renal failure. Development
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of the mammalian kidney is a product of the reciprocal interactions between the
endodermal  uretic  bud  and  mesodermal  mesenchyme  [80].  Derivatives  of  the
uretic  bud  give  rise  to  the  renal  collecting  ducts,  epithelial  lining  of  the  renal
calyces and the urothelial lining of the ureter [80]. Conversely, the mesenchyme
undergoes a mesenchyme-to-epithelial transition and leads to the differentiation of
the nephron segments, including: the glomerulus, proximal and distal tubules and
the  loops  of  Henle  [80].  Differentiation  of  embryonic  and  induced  pluripotent
stem  cells  into  renal  lineages  has  been  successful  [86  -  89].  Vigneau  and
colleagues  utilized  the  Bry-GFP  mouse  ES  cell  line  to  obtain  renal  progenitor
cells [91]. ES cells were differentiated to generate Bry-GFP+ cells that were then
purified  by  fluorescence-activated  cell  sorting  (FACS).  Bry-GFP+  progenitors
could form renal progenitors expressing marker genes such Cadherin-11 and Wt1.
Upon transplantation into live neonatal kidneys, these cells could integrate into
the renal tubules [90].

Takasato and colleagues have recently reported the successful induction of both
the uretic epithelium and metanephric mesenchyme in vitro [92]. Their system has
also been extended for induction of kidney formation in organoid cultures [91].
Briefly,  treatment  of  human  ES  and  iPS  cells  with  FGF9  and  retinoic  acid
promotes  differentiation  of  the  uretic  epithelium  with  exposed  Wnt  signalling
aiding  in  the  differentiation  of  the  metanephric  mesenchyme  [91].  Indeed,
differentiation  of  both  cells  types  have  been  made  possible  by  replicating  the
signalling and temporo-spatial development of the kidney in vivo. Generation of
kidney organoids have given rise to the exciting possibility of testing models of
kidney diseases and the ability to screen drugs for toxicity for cellular therapy.

The Urogenital Sinus and Accompanying Organs

The  urogenital  sinus  originates  initially  as  a  sub-compartment  of  the  cloaca;  a
transient  endoderm-derived  cavity,  located  at  the  posterior  end  of  the  gut  [92].
Cross  talk  between  the  mesenchyme  and  epithelium  are  critical  for  the
development of urogenital  tissues.  Secretion of Sonic hedgehog  (Shh) from the
endoderm is  key to  patterning and separation of  the  cloaca  [92].  Failure  of  the
cloaca to separate during foetal development has severe clinical consequences and
is  thought  to  underlie  the  pathogenesis  of  a  wide  range  of  urogenital
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malformations  [80].

The genitourinary  tract  (GUT) encompasses  the  entirety  of  the  genital  ridge  as
well as the organs that filter waste and fluid from the blood: the kidneys, ureters,
bladder  and  the  urethra.  The  kidneys  also  control  blood  pressure  through  the
secretion  of  hormones,  angiotensin  and  aldosterone  [93].  The  passage  of  urine
from its production by the nephron and elimination by the urethra highlights the
most critical function of the GUT [94]. The tract is susceptible to malfunctions at
any  point,  which  may  impair  the  complete  emptying  of  the  bladder.  Issues
involving the bladder are currently remedied by surgically replacing the bladder
wall  with  either  intestinal  or  stomach tissue  [95].  However,  the  transplantation
leads to eventual salt imbalances, infection, stones and in some cases, cancer [96].
Ideally,  the  replacement  of  the  bladder  wall  should  be  comprised  of  a
bioengineered  scaffold  augmented  with  stem  cells  that  promote  cell  growth,
proliferation  and  survival.

Kidney  diseases  result  in  the  degradation  of  the  microstructural  components,
which lead to an obstruction in the passage of  urine [94].  The accumulation of
urine along the tract leads to infection and scarring and eventual failure [97]. The
diseases  that  fall  under  this  category  include:  urinary  tract  infections,
glomerulonephritis, polycystic kidney disease, haemolytic uremic syndrome and
hydronephrosis  [97].  The  male  genital  tract  comprises  of  the  bladder,  urethra,
prostate,  seminal  vesicles,  gonads,  penis  and  testes  [94].  Physiologically,  they
produce  and  transport  sperm,  secrete  sex  hormones  and  facilitate  erections.
Complications  in  the  tract  may lead to  infertility  and erectile  dysfunction [95].
Correlations of the genital tract with the urinary tract lead to clashes in diagnosis,
which  also  complicates  matters.  Here,  stem  cells  can  be  used  to  model  the
development of the male genital tract, including the prostate. This would provide
insight into the mechanisms that underpin normal growth which are lacking, and
applied into a cell/scaffold graft to alleviate impairments of the genital tract.

Differentiation of Urothelium from Mouse, Human and Adult Stem Cells.

The urothelium of the bladder is unique as it lines the luminal surface and acts as
a  near  impermeable  membrane  [98].  This  tissue  is  composed  of  basal,
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intermediate and superficial cells, which express unique structural proteins called
uroplakins (UPK) [99]. Assembly of the four subtypes of UPK (UPK1a, UPK1b,
UPK2  and  UPK3)  results  in  plaque  formation  on  the  luminal  surface  [98].
Presence of UPK is a marker of urothelial differentiation. Of all the cell types that
have  been  differentiated  from  ES  and  iPS  cells,  studies  looking  into  the
differentiation of urothelial cells are limited. Differentiation of urothelium from
human ES and iPS cells  as well  as mouse ES cells  has been reported [98,  100,
101].  In mouse ES cells,  GATA4 signalling has been shown to drive urothelial
differentiation, however, in human ES cells; GATA4 signalling was shown to be
minimal [98, 101].

Fig. (4).  Timeline of in vivo development of the urogenital sinus and in vitro differentiation of urothelium
mouse embryonic stem cells. The inner cell mast of the blastocyst (in vivo, 4 days post coitus (DPC)) gives
rise  to  all  three  germ  layers:  the  ectoderm,  the  mesoderm  and  the  endoderm  (in  vivo,  7  DPC,  green).
Mimicking this in vitro with mouse embryonic stem cells, cultures treated with Activin-A and Wnt-3a lead to
definitive endoderm induction (in vitro  Day 4-5). Development of the urogenital sinus continues from 15
DPC (in  vivo)  and  matures  after  birth  (neonatal).  Differentiation  of  definitive  endoderm into  urothelium
requires treatment with retinoic acid (in vitro, D8-12, D22-onwards).

As  the  bladder  is  of  endodermal  origin,  the  first  step  in  the  generation  of
urothelium (and all endodermal cell types) is the temporal differentiation of ES
and iPS cells into DE with Activin A [72]. Following induction of DE, the above
groups  supplemented  their  cultures  with  retinoic  acid  and  urothelial-specific
medium for differentiation of urothelium in mouse and human ES and iPS cells
respectively  (Fig.  4)  [98,  101].  Confirmation  of  urothelium was  determined  by
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expression of the UPK proteins via immunohistochemical, real time RT-PCR and
flow cytometric analyses [98, 101]. Despite the limited number of studies aiming
to differentiate urothelium from ES and iPS cells, the above methodologies have
shown that is possible to do so without the need for matrices or co-cultures. For
tissue regenerative  purposes,  the  next  step would be  to  augment  scaffolds  with
differentiated urothelial cells to repair damaged tissue.

Primordial Germ Cell Development

Many  of  the  processes  of  early  specification  and  migration  in  the  human  are
assumed similar to those in other mammalian models including the mouse [102].
Primordial  germ  cells  (PGC)  in  mice  originate  from  proximal  epiblast  cells  to
form  a  cluster  of  precursor  PGCs  in  the  incipient  allantois  in  extra-embryonic
mesoderm  at  approximately  E7.25  [103,  104].  Following  specification,  their
numbers  expand  as  they  start  to  migrate  to  and  through  the  developing  gut
endoderm, into and through the mesentery to colonise the gonadal ridges [102].
Precursor  PGCs are  specified  in  the  epiblast  prior  to  gastrulation through bone
morphogenic  protein  (BMP)  signalling  between  the  extra-embryonic  ectoderm
and  visceral  endoderm  [83].  Mice  lacking  BMP2,  BMP4,  BMP8b  or  SMAD
mediators  of  BMP  receptor  signalling  all  exhibit  reduced  induction  and
proliferation  of  early  PGCs  along  with  defective  mesoderm  formation  and
allantois  development  [105,  106].  Evidences  show  that  it  is  extra-embryonic
ectoderm derived BMPs acting on BMP receptors expressed by visceral endoderm
that  results  in  the  formation  of  PGCs  in  a  dose  dependent  manner  [107].  In
addition to inducing a founding population of PGCs in the mouse, BMPs are also
important for PGC migration to, and proliferation at the genital ridge [108]. As
well as gradients of stimulatory BMPs, the induction of epiblast cells to PGCs is
also  dependent  on  gradients  of  inhibitory  factors  [109].  BMPs  subsequently
induce expression of Prdm1 that encodes the protein BLIMP1, a key regulator of
PGC specification [110]. BLIMP1 acts to repress progression to the mesodermal
somatic  lineage  [110,  111]  and  to  promote  epigenetic  reprogramming  of  early
PGCs [109].
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In vitro Generation of PGCs and Regenerative Medicine

Early  PGCs  can  undergo  de-differentiation  into  pluripotent  germ  cells  when
treated with FGF and LIF in culture due to suppression of Prdm1 expression and
BLIMP1 synthesis  [112,  113].  This  knowledge of  BLIPM1 and its  interactions
with  other  key  factors,  PRDM14  and  AP2g,  that  act  to  suppress  mesodermal
genes [109], have helped establish that the majority of epiblast cells from whole
explants are all able to be directed to a PGC fate in the presence of BMP4 in vitro
[114]. These PGCs can further differentiate to gametes that are able to produce
viable offspring [115]. Hayashi and colleagues also demonstrated that PGCs could
be  derived  from  embryonic  stem  cells  under  specific  culture  regimen.
Furthermore,  iPSCs  derived  from  somatic  cells  can  be  induced  to  form  PGCs
provides an exciting prospect in regenerative medicine [109].

As well as providing a model for the study of the molecular regulation of germ
cell  differentiation,  it  also  has  potential  for  a  source  of  unlimited  numbers  of
gametes for treatment of infertility, including transplantation. This is particularly
pertinent to induced infertility in cancer patients following certain treatments (e.g.
gametotoxic  chemotherapies,  whole  body  and  gonad  radiation  therapies).
Advancements in treatment protocols has resulted in increasing numbers of cancer
survivors and hence significant subsequent morbidities due to resulting infertility
[116].  This has led to clinical  recommendations that  sperm and egg banking to
preserve fertility be considered prior to treatment [117]. Whilst this is an option
for adolescent and adult patients, it is not an option for pre-pubertal patients. One
potential  future  is  the  transplantation  of  germ stem cells  isolated  from the  pre-
pubertal gonad or of PGCs/germ stem cells derived in culture from iPSCs [115].

In the male, spermatogonial stem cells collected prior to chemotherapy might be
transplanted  back  to  the  testis  at  a  later  appropriate  date.  Whilst  this  has  been
trialled in humans, no follow-up reports of long-term maintenance, which includes
live births  and fertility  in  these subjects  is  apparent  [118,  119].  However,  such
successful  outcome measures  have been achieved in  other  mammals,  including
non-human primates [120, 121].
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Adipogenesis and Differentiation of Adipocytes from Stem Cells.

Adipose tissue arises concurrently with the developing kidneys, urogenital sinus
and primordial germ cells.

Mammals have two types of adipose tissue, white (WAT) and brown (BAT). Both
WAT  and  BAT  serve  distinct  roles  in  energy  metabolism  with  WAT  storing
energy  in  the  form  of  triglycerides  while  BAT  expends  energy  as  heat  [122].
Lineage tracing studies have shown that BAT originates from myogenic factor 5
(Myf5)-expressing  progenitors,  compared  to  the  non-Myf5  lineage  progenitors
that give rise to WAT [123]. WAT can be further subdivided into subcutaneous
and  visceral  WAT,  with  visceral  shown  to  have  implications  in  metabolic
dysfunction  such  as  obesity  [124].

Adipose tissue is currently thought to be derived from the mesoderm germ layer
[122].  Characterisation  of  adipocyte  differentiation  has  been  described  in  two
phases, determination and terminal phase [125]. The determination phase results
in the conversion of a stem cell into a pre-adipocyte, the details of which remain
largely  unexplored  [126].  The  terminal  phase  of  differentiation  describes  the
maturation  of  pre-adipocytes  using  adipocyte  cell  lines  3T3-L1  and  3T3-F44a
[125, 127]. These cells lines are useful as they are restricted into differentiating
into other cells types and culturing primary adipocytes are difficult  to maintain
[125, 128].

Another  model  that  can be utilised to  detail  adipogenesis  is  adipocytes  derived
from ESC and iPSCs.  While  ESCs and iPSCs recreate  the key steps that  occur
during  development  in  vivo,  replicating  the  signalling  events  required  for
adipocyte  differentiation  in  vitro  is  difficult  [128].  It  is  useful  then,  to  initiate
differentiation  into  the  adipocytes  using  growth  factors  known  to  terminally
differentiate  adipocytes  [128].  Transcriptional  regulation  of  adipocyte
differentiation  is  largely  due  to  peroxisome  proliferator-activated  receptor  γ2
(PPARγ2)  [128].  Therefore,  differentiation  of  WAT  from  ESCs  and  iPSCs
routinely use PPARγ2 agonist such as rosiglitazone along with adipogenic factors
insulin and dexamethasone [128, 126]. Further inclusion of all-trans retinoic acid
aids in the differentiation of adipocytes in vitro [129, 126].
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The above process describes the differentiation of adipocytes that resemble WAT
phenotypically  and  functionally.  Conversely,  differentiation  of  brown-like
adipocytes  from  ESCs  and  iPSCs  has  only  recently  been  achieved  [130  -  132,
128]. For differentiation of BAT, a combination of PPARγ2, CCAAT/enhancer-
binding protein β (CEPBβ) and PR domain containing 16 (PRDM16) can be used
[128]. Lee and Cowan (2014) describe the addition of lentiviruses of the above
transcription  factors  for  a  high  yield  of  brown  adipocyte  differentiation  from
human  pluripotent  stem  cells  [128].  Alternatively,  addition  of  reported  brown
adipocyte inducer BMP7 can be added in cultures along with KIT ligand, tyrosine
kinase 3 ligand, interleukin-6 and vascular endothelial growth factor [133, 132].
Confirmation  of  brown  adipocyte  differentiation  from  ESCs  and  iPSCs  is
expression  of  BAT  specific  genes  UCP1  and  PRDM16  and  functional  assays
inducing  thermogenesis  from  β-adrenergic  receptor  stimulation  [132].

Mesendoderm and Tissue Engineering for Regenerative Medicine

We  have  described  the  developmental  processes  regulating  the  formation  of
organs  derived  from  the  mesendoderm.  While  pluripotent  stem  cells  offer
tremendous hope for regenerative medicine, many of the differentiation protocols
developed thus far have been lacking the architectural and three-dimensional (3D)
signals  that  are  essential  for  proper  organogenesis  in  vivo.  A  revolution  in
engineering, 3D printing, is now being applied to modelling embryonic processes
from stem cells to obtain material for transplantation that is more appropriate in
tissue and organ architecture than previously considered feasible. Here, we will
discuss the application of 3D printing to the formation of mesendoderm-derived
tissues with some insight from our own experiences.

Introduction to 3D Printing

There are few technological innovations that have been received with as much as
enthusiasm and excitement as 3D printing. The prospect of printing into the third
dimension has captivated the imaginations of scientists and laypeople alike. The
rapid  development  and  decreasing  cost  of  this  technology  has  meant  that  the
promise this technology has offered is now becoming a reality. 3D printing is the
process  of  manufacturing  a  customised  three-dimensional  object.  3D  printing,
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otherwise known as additive manufacturing, was first developed by the engineer
and scientist, Charles Hull. In the 1980s, Hull sought to improve the lengthy and
error-prone process of producing plastic prototypes from photopolymers. In 1983,
Hull produced the first 3D-printed object, a small plastic cup [134]. In 1986, Hull
obtained  the  patent  for  stereolithography  (one  3D  printing  technique  which  is
outlined below), followed by a number of others on 3D printing technology [135].
3D printing has since undergone extensive development and expansion so that a
number  of  variations  of  the  technology  are  now  available  for  applications  that
range from commercial  prototyping to  medical  implants,  the  food industry  and
weapon production in the defence forces [135].

To understand the digital workflow which gives rise to a 3D printed object, the
different  stages  of  the  printing  process  have  been  detailed  below  and  are
represented  in  Fig.  (5).  The  process  of  printing  an  object  begins  with  a  CAD
(computer  aided  design)  file.  CAD  is  a  commonplace  method  of  developing  a
digital representation of a 3D objects and can be readily performed by a number
of different available software [135]. Once a CAD file has been developed, the
CAD  model  is  converted  into  another  file  type  known  as  .STL  (standard
tessellation language). STL files store information about each surface of the object
in the form of vertices’ coordinates. The .STL file is interpreted by the printer,
which then performs another conversion to a G-file. The G-file is a deconstruction
of the object into two-dimensional cross-sections which are then printed layer by
layer on top of each other [135].

Fig. (5).  Illustration showing the digital files and conversions involved in producing a 3D printed object.
Note that the 3D CAD object may be based on a newly developed design or a scan of an existing object.

3D Printing Technologies

There is currently a number of available 3D printing techniques, six of which have
been  briefly  explained  below.  It  should  be  noted  that  while  the  following
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techniques use quite  different  technical  approaches,  the underlying principle  of
3D printing (or additive manufacturing) remains the same. Each printer produces
a specific 2D cross-sectional shape before shifting the existing layers and adding a
subsequent 2D shape on top or below. Repeated additions of cross-sections finally
result in the 3D object.

Stereolithography involves the hardening of a photopolymerizing liquid resin as
UV light is beamed at a bath of resin. The beam is projected onto the base of the
bath in the shape of a desired 2D cross-section. After the photopolymer is cross-
linked, the cross-section is lifted by a stage and the next 2D layer can be solidified
at  the  interface  between  the  resin  and  UV  light.  This  was  the  technique  first
described and patented by Charles Hull in 1986 [135]. Inkjet printing refers to the
traditional  method  of  printing  ink  onto  paper  in  2  dimensions.  Two  different
techniques  can  be  used  for  3D  inkjet  printing  as  outlined  include  “drop  on
demand”  and  “continuous  flow”  printing.  The  principle  of  a  drop  on  demand
(DOD) inkjet printer is that pulses of voltage and pressure at the paper and ink
interface  direct  the  ink  droplet  to  the  desired  place  in  the  2D  plane.  However,
through reasonably simple modifications, this technique has been adapted to print
in 3D. The adapted method works by printing ‘binding’ liquids in a way that binds
a layer of powder (substrate particles 50 - 100 µm diameter) into a specific 2D
shape. A stage is then lowered after printing each layer, a further layer of particles
is added on, and the next 2D cross-section can be added. This method of printing
is  not  confined  to  use  with  photopolymerizing  materials,  so  allows  a  greater
diversity of substrates that can be bound by the printed liquid [135]. Continuous
inkjet  printing  uses  electrically  charged  plates  as  well  as  patterns  of  pressure
waves in the printer head to direct droplets of ink to the desired site on the 2D
paper.  Once  again,  with  reasonably  simple  modifications,  the  printer  can  also
position droplets of liquids other than ink onto the 2D plane, which can then be
lowered to print subsequent 2D cross sections from the STL file. Successive stage
lowering and addition of cross-sections then produces the desired 3D construct.
The benefit of this technique is that any liquid with appropriate viscosity can be
printed.

Selective  laser  sintering  operates  under  the  same  basic  process  as  3D  Inkjet
printing. Layers of particles are hardened into 2D cross sections before lowering a
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stage.  However  rather  than  using  a  binding  liquid  to  bind  the  particles,  the
substrate particles are melted by a CO2 laser before amalgamating and solidifying
in  the  shape  of  the  desired  cross-section  [135].  Fused  Deposition  Modelling
(FDM) is perhaps the most widely used 3D printing technique when considering
personal use and commercial prototype production. Fused deposition modelling
involves depositing a melted thermoplastic filament onto a 2D plane over a stage.
The  plastic  filament  is  rolled  into  a  heating  unit  and  then  extruded  through  a
nozzle. The printer head is then guided in two dimensions by belts to produce the
specified  2D  cross-section.  Upon  completion  of  this  cross-section,  the  stage  is
lowered  and  a  further  cross-section  is  deposited  based  on  the  STL  file.  A
limitation  of  this  method  is  that  it  must  use  thermoplastic  materials  such  as
polycarbonate and polystyrene. Furthermore, heterogeneity in the plastic substrate
and the way that the STL file is sliced into a printer path introduces defects in the
model  [135].  Pressure  Based  Extrusion  (PBE)  functions  similarly  to  fused
deposition  modelling  (FDM).  A  printer  head  can  be  manipulated  in  two
dimensions to extrude 2D cross-sectional shapes, while a platform may be raised
and lowered in order to print successive cross-sections. However PBE varies from
FDM in that the extruded material originates from a syringe or reservoir that is
emptied by creating a pressure gradient. This gives the printer a wider range of
available  printing  substrates,  as  any  fluid  with  appropriate  viscosity  can  be
extruded. One such printer is the Fab@Home Model 3.0 which is described in the
section  below  [135].  Laminated  Object  Manufacturing  of  3D  printing  cuts  2D
layers out of sheets of materials such as paper, plastic or metal. Each cross-section
is cut using a laser, knife or welder and fused onto the sections below by heating
before the stage is lowered and the next sheet of material is added over the top
[135].

Note  that  all  of  these  3D  printing  techniques  have  specific  advantages  and
limitations  that  make  them suitable  for  use  in  different  fields  and  applications.
Considerations which must be undertaken before choosing a printing method in a
research setting include: the ability to print with different materials (discussed in
the next chapter), the resolution, shapes and sizes that can be achieved by each
printer  as  well  as  the  cost,  which  may  range  from  hundreds  of  dollars  for a
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desktop  printer,  to  a  cost  in  excess  of  US$250,000  for  industrial  type  printers
[135].

3D Printing of Biomaterials in Tissue Engineering

Biomaterials  were  mainly  used  as  coatings  to  support  the  transplantation  of
medical devices into patients. However, in recent times, the focus has shifted to
using  biomaterials  as  the  main  components  of  implantable  scaffolds  for
regenerative medicine applications [136]. This is due the ability of biomaterials to
promote  the  viability,  proliferation  and  differentiation  of  cells.  The  increased
interest in creating biomaterial scaffolds appears to coincide with the development
of  3D  printing  [137].  As  described  above,  various  3D  printing  processes  have
been developed and refined over the years. Consequently, due to advances in cell
biology, engineering and biomaterials science, more biomaterials with different
properties have also been fabricated [138]. This has allowed for the production of
tissue-engineered scaffolds for a wide range of applications including restoration
of anatomical  defects,  reconstruction of complex organs and tissues,  as  well  as
scaffolds for stem cell differentiation [138]. However, challenges still remain in
perfecting  the  structure  of  tissue-engineered  scaffolds  so  that  they  are  able  to
reflect  the  intricate  architecture  of  human  extracellular  matrices  as  this  will
optimise and guide the proliferation, differentiation and function of cells towards
specific  tissue  types  [137].  This  is  important  because  the  ultimate  goal  of  3D
bioprinting is to produce scaffolds with anatomically and physiologically similar
properties to specific tissues and organs for use in regenerative medicine [137].

Although the printing processes are important in developing and manipulating the
architecture of these scaffolds, factors such as the biomaterial and cell source also
have  to  be  considered.  Therefore,  this  section  will  provide  an  overview  of  the
general criteria that can be used to select biomaterials and cells for 3D bioprinting,
as well as the various modifications that can be applied to aid in the generation of
specific tissue-engineered scaffolds. Furthermore, this section will also discuss the
tests that can be employed to analyse the properties of the scaffold and observe
the progressive development of the included cells to determine the overall success
of the final product.
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Selecting the Biomaterial for 3D Bioprinting

3D bioprinting  offers  the  potential  of  a  tissue  engineering  approach  thats  even
more  comprehensive  and  widely  relevant  than  that  of  scaffolding  [139].
Bioprinting involves the printing of ‘bioinks’,  which comprise live cells  with a
fluid that acts as an extracellular matrix, most commonly a hydrogel and may also
include  biochemical  factors,  proteins  or  drugs  [140].  The  rationale  of  this
technique is that by bioprinting cells as part of an architecture, they will readily
differentiate to the range of cells which make up a functional tissue [139].  The
biological nature of the bioinks imposes a number of limitations on the printing
process. So far, 3D inkjet continuous printing and pressure-based extrusion (PBE)
have been most successfully applied to this printing approach. This technique may
be  particularly  useful  in  soft  tissues  such  as  the  cardiovascular  system.  This
approach has had limited clinical relevance but recent research has revealed that
this is a promising field. Challenges which need to be overcome include low cell
survival  after  printing,  a  lack  of  well-directed  cell  differentiation  protocols,
insufficient  vascularisation  and  the  creation  of  matrices  through  which
metabolites  will  diffuse  [140].  When  selecting  suitable  biomaterials  for  3D
bioprinting,  various  factors  have  to  be  considered,  such  as  compatibility  with
biological products as well as the printing process being utilised [137]. With more
biomaterials  being  engineered  specifically  for  3D  bioprinting,  the  criteria  for
suitable characteristics have become more detailed and precise. Therefore, some
of  the  more  essential  qualities  that  are  now  expected  in  3D  bioprinting
biomaterials  will  be  discussed.

Printability:  Printability  is  an important  factor  in  determining the  suitability  of
biomaterials  for  3D  bioprinting,  as  it  affects  the  printers  ability  to  accurately
deposit  biomaterials  when  producing  the  desired  structure  [137].  When
determining the printability of a biomaterial, the type of printer being used must
first be taken into consideration as the processing parameters and components will
vary [138]. For example, continuous inkjet (CIJ) printing involves forcing a liquid
through a small diameter orifice so that it produces a stream of smaller droplets
that can be guided accurately to print a precise structure [141]. Therefore, bioinks
are  often  used  in  CIJ  printing,  as  they  are  predominantly  liquid/gel  solutions
[142]. Another example is fused deposition modelling (FDM), which involves the
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extrusion of thermoplastic polymer filaments through a nozzle onto a platform in
a  layer-by-layer  process  [142].  Thus,  in  FMD,  thermoplastic  polymers  such  as
poly  (ε-caprolactone)  are  usually  used  for  printing.  Other  factors  affecting
printability such as viscosity, gelling methods and melting temperature, also need
to  be  considered  to  allow  for  optimal  manipulation  of  the  biomaterial  during
printing  [137].  Bioinks  must  be  gelled  almost  immediately  after  printing  by
polymer crosslinkers, photoactivation or thermal activation [143]. Thus, since this
limitation does not allow the production of self-supporting structures, bioinks are
usually  more  viscous  to  prevent  the  structure  from  collapsing  as  the  gel  is
polymerised  [144].  However,  in  FDM,  it  is  more  appropriate  to  consider  the
thermal  properties  of  the  biomaterial  such  as  melting  temperature  or  glass
transition temperature as they determine the viscosity of the extruded biomaterial
[145]. This is because viscosity decreases as temperature increases, and this will
most likely affect the ability to control the deposition of the biomaterial.

Mechanical and structural properties: The mechanical and structural properties of
the biomaterial are dependent on the tissue type it is mimicking such as skin, bone
and cardiac tissue [137]. For example, elasticity is one of the major mechanical
characteristics  of  soft  tissues  such  as  skin,  blood  vessels,  cardiac  and  skeletal
muscle,  so  elastomeric  biomaterials  such  as  α-elastin  hydrogels  have  been
developed  to  mimic  this  property  [146].  However,  it  has  become  increasingly
difficult  to  engineer  biomaterials  that  possess  the  desired  mechanical  and
structural properties without compromising its other characteristics such as cell
viability [144]. More recently, methods have been devised to modify biomaterials
to attain particular properties while maintaining other important characteristics.
For  example,  a  recent  study  by  Rutz  and  colleagues  (2015)  has  attempted  to
devise  a  bioink  method  that  produces  bioinks  from  a  variety  of  synthetic  and
natural  biomaterials  [144].  This  has  allowed  them  to  modify  the  composition,
degree of cross linking and polymer concentration to optimise the mechanical and
structural properties of the bioink, while maintaining printability.

Degradability:  In  tissue  engineering,  it  is  necessary  to  use  biomaterials  that
degrade  at  a  rate  that  is  slower  or  equal  to  the  cells  ability  to  produce  its  own
extracellular matrix (ECM) [147]. This is particularly important as 3D bioprinted
structures are intended to be temporary and only used to guide the proliferation
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and differentiation of cells that will eventually replace damaged tissue. As such,
hydrogels  are  often  used  because  along  with  other  biological,  structural  and
mechanical properties, they are biodegradable [143]. However, when comparing
naturally  derived  hydrogels  (e.g.  alginate,  gelatin  and  elastin)  and  synthetic
hydrogels  (e.g.  poly  (ethylene  glycol)  (PEG)  and  poly  (vinyl  alcohol)  (PVA)),
both types of hydrogels are biodegradable but vary in their ability to control their
rate of degradation [146]. Thus, it may be more suitable to use a combination of
both depending on the application. Furthermore, linear aliphatic polyesters such as
poly(lactic  acid)  (PLA),  poly  (glycolic  acid)  (PGA),  and  their  copolymers
poly(lactic  acid-co-glycolic  acid)  (PLGA)  are  also  used  in  printing  scaffolds
because they are both biodegradable and biocompatible [148]. When considering
the degradability of the biomaterial, the products must be non-toxic so that they
can be readily metabolised and cleared from the body [137].  Li  and colleagues
(2015)  demonstrated  that  the  DNA-based  combination  hydrogel  utilised  was
biodegradable as it could be degraded by proteases (endoproteinase Glu-C) and
nucleases (EcoRI and BamHI) [157].

Biocompatibility:  The selected biomaterials should not be immunogenic and be
able to coexist within the host since 3D-bioprinted structures are intended to be
alternative transplant  options for patients [149].  Generally,  natural  biomaterials
such  as  alginate,  collagen  and  fibrin  are  biocompatible  due  to  their  naturally
derived origin [136]. However, synthetic polymers such as poly(lactic-co-glycolic
acid) (PGA) and hydroxyapatite can also be made biocompatible by modifying
particular properties such as composition, morphology and degradation [150].

Cell  viability:  Cell  viability  should  also  be  considered  when  selecting
biomaterials,  especially  those  that  incorporate  cells  before  printing  such  as
hydrogels [151]. Certain properties are desired when maximising cell viability in
3D-printed scaffolds. Lower-viscosity biomaterials are generally preferred as they
provide a suitable environment for maintaining cell viability and function [137].
This is in contrast with high-viscosity biomaterials as they have been shown to
decrease  cell  viability  due  to  the  increased  shear  stresses  experienced  during
printing. Furthermore, biomaterials with low thermal conductivity and the ability
to  protect  cells  during  printing  may  also  increase  viability  and  function  after
printing  [152].
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Biomimicry: The selected biomaterial should be able to support the proliferation,
differentiation and function of cells by providing the appropriate signals via cell-
material  interactions  or  soluble  factors  [153].  As  such,  growth  factors  can  be
added to scaffolds via various methods to promote the differentiation of cells into
tissue-specific cell lineages [148]. This will be discussed in greater detail in the
next  section.  Alternatively,  modifying  the  architecture  of  the  scaffold  can  also
enhance cellular signalling and interaction [154]. Due to advances in engineering
and  material  science,  modifications  can  now  be  achieved  at  the  macro  (e.g.
shape),  micro  (e.g.  porosity)  and  nano  (e.g.  surface  modifications  for  cellular
adhesion)  levels  [138].  For  example,  changing  the  porosity  of  the  scaffold  has
been  shown  to  enhance  the  biomimetic  properties  of  scaffolds  as  it  increases
oxygenation throughout the scaffold to promote the viability and differentiation of
multipotent stromal cells [155]. Porosity also enhances the delivery of osteogenic
and  angiogenic  agents  in  bone  tissue-engineered  scaffolds  [156].  However,
porosity  reduces  mechanical  properties  such  as  compressive  strength  and
increases the complexity of printing [156], so the degree of porosity that can be
achieved is often limited.

Surface nanoarchitecture such as ridges, steps and grooves can also be included to
increase  biomolecule  attachment  for  cellular  adhesion,  proliferation,  and
differentiation [154]. This is because the components of tissues and organs that
cells interact with (e.g. extracellular matrices (ECM) are nanometres in dimension
so mimicking this characteristic in scaffolds will enhance and guide tissue growth
[157].  For  example,  Elias  and colleagues  demonstrated that  osteoblast  function
was  increased  in  alumina  and  carbon  fibre  biomaterials  possessing  nanometre
surface  dimensions  that  approximated  those  of  hydroxyapatite  found  in  bone
[148].  More  recently,  there  have  been  attempts  to  develop  biomaterials  with
enhanced biomimetic qualities through an understanding of the composition and
arrangement of extracellular matrices (ECM) in the targeted tissues [137]. This
has been achieved through tissue decellularisation protocols, which produce intact
ECM scaffolds for structural and physiological analysis. Tissue decellularisation
involves the lysis of cells in tissues and organs using decellularisation agents as
well as the removal of cell remnants by rinsing [158]. However, there are certain
limitations to consider when using this method including possible toxicity from
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retention  of  decellularisation  agents  and  difficulties  in  maintaining  vascular
structures [137]. Despite this, the possibility of incorporating ECM components
into scaffolds using 3D bioprinting technology would be immensely beneficial to
tissue  engineering  and  regenerative  medicine,  as  it  would  optimise
biodegradability,  biocompatibility  and  biomimicry.

Scaffolding and 3D-Bioprinting: 3D printing may currently be incorporated into
tissue  engineering  in  two different  ways,  both  of  which  will  be  outlined  in  the
section that follows. The first of these is the use of 3D printed scaffolds, which
enable the fabrication of an extracellular architecture into which stem cells may be
seeded, or the cells surrounding an implant may migrate into [159]. This approach
has been particularly successful  in the engineering of bone and tracheal  tissues
[160]. The second method of incorporating 3D printing into tissue engineering has
been through 3D bioprinting. Bioprinting refers to the fabrication of 3D structures
which  incorporate  living  cells  and  bioactive  moieties  in  a  defined  spatial
distribution  [161].  This  technique  also  lends  itself  to  stem cell  research,  where
differentiation processes under different cellular architectures can be explored. An
example of such research operating in a lab at the University of Sydney is given
later in this section. The following sections will explore and discuss the current
standing and the ongoing research with regard to 3D printing approaches in the
engineering of various mesendodermal tissues.

Once the desired biomaterial has been selected, cells then need to be combined
with the biomaterial to ultimately produce scaffolds that could potentially be used
as replacements for disease or damaged tissues [136]. When determining which
cell types to use for printing, it is firstly important to choose a cell type that is able
to rapidly expand into the required numbers  for  printing [137].  If  there  are  too
little cells, this may result in reduced cell viability, but if there are too many cells,
this may lead to hyperplasia or apoptosis [137]. Tissues and organs are complex
structures composed of multiple cell types with specific biological functions. In
tissue  engineering,  the  aim  is  to  replicate  the  structures  of  certain  tissues  or
organs, so it is important that the engineered scaffolds contain cells that mimic the
physiological properties of the targeted tissues. Thus, multiple cell types or stem
cells (which can differentiate and proliferate into the required cell types) should
be used [162].
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Since the 3D bioprinted structure will ultimately be transplanted into patients, the
structure must be biocompatible and resist rejection by the host immune system.
This can be achieved by using an autologous cell  source or tolerance-induction
strategies [163, 164]. Furthermore, the cells must be robust enough to survive the
bioprinting processes such as shear stress and pressure, and physiological stresses
after  transplantation  such  as  enzymes  and  toxins  [137].  Stem  cells  are  the
preferred  choice  of  cells  for  3D bioprinting  as  they  are  able  to  proliferate  (via
self-renewal) to generate large numbers of undifferentiated and multipotent cells
that are able to transform into multiple functional tissue-specific cell types [137].
Stem cells can be produced autologously and therefore should not be rejected after
transplantation  [163].  Since  ES  cells  and  iPS  cells  clearly  demonstrate  these
properties along with other cell-specific advantages, they are now being used for
3D bioprinting [151]. More recently, mesenchymal stromal cells have also been
successfully  isolated,  expanded  and  differentiated  for  clinical  trials  [137].  This
highlights that research into advancing cell-culture techniques could make more
stem  cell  populations  viable  as  cell  sources,  thus  increasing  the  possible
applications of 3D bioprinting. Cells can either be suspended in the biomaterial
for printing or adhered to the printed scaffold. This depends on the biomaterial
and printing processes being utilised [136]. When using softer biomaterials such
as hydrogels, the cells can be suspended in the biomaterial before printing [140].
Cells  are  able  to  retain  cell  viability  and  function  when  suspended  in  a
polymerised  gel.  However,  when  using  more  rigid  biomaterials  such  as
thermoplastic polymers, the polymerisation conditions are often too harsh for cells
to  survive  printing  [165].  Therefore,  cells  are  often  cultured  separately  and
adhered to the surface instead,  allowing them to proliferate and differentiate to
ultimately produce an extracellular matrix and functional proteins and saccharides
that compose the tissue [141].

Biomimetic products: Biomaterial scaffolds often require the delivery of soluble
factors to provide additional signals for cellular proliferation, differentiation and
function as cell-cell and cell-material interactions may not be sufficient enough to
achieve this  [153,  148].  Thus,  various methods have been developed to deliver
biological  factors  such  as  growth  factors  to  aid  in  the  development  of  tissue-
engineered  scaffolds.  Growth  factors  can  also  be  directly  added  to  printing
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solutions before constructing scaffolds [166]. TGF-β, BMP and VEGF integrated
into scaffolds promote the recruitment and differentiation of osteoprogenitor cells
leading  to  regulation  of  osteogenesis,  tissue  regeneration  and  ECM production
[156, 167].

Gelatin methacrylate microspheres have been used to delivery various biological
factors  for  tissue  engineering  applications  including  stem  cell  differentiation
within scaffolds [168, 169]. However, when using microspheres, the movement
and amalgamation of spheres often results in the inconsistent diffusion of growth
factors  throughout  the  scaffold.  Therefore,  microspheres  should  be  used  in
conjunction with macro-porous and nano-fibrous scaffolds that enhance the ability
to spatially control the release of biological factors [148]. Coating techniques can
also be used to enhance biomimicry as growth factors can be added to the surface
of scaffolds [170]. This was highlighted by Bose and colleagues, where a layer of
hydroxyl carbonate apatite (HCA) on the surface of a 3D bioglass scaffold was
able to adsorb proteins and growth factors promoting new bone formation in vivo.

3D-printed scaffolds can be tested for cell viability, differentiation and growth as
well  as  structural,  mechanical  and  degradative  properties  to  provide  important
information  towards  optimising  scaffold  design  [171].  The  biomaterial  can  be
chosen  to  maximise  cell  viability  in  tissue-engineered  scaffolds.  However,  the
printing  process  may  stress  the  cells,  and  cause  injury  or  apoptosis  [137].  In
syringe-based  printing,  the  nozzle  diameter  as  well  as  the  dispensing  pressure
have been found to affect the cell viability immediately after printing which can
result in apoptosis and necrosis [172, 173]. An increase in dispensing pressure and
decreasing nozzle diameter was found to decrease cell viability. Inkjet bioprinting
usually records cell viabilities greater than 85%, whereas microextrusion printing
reports  viabilities  range  from  40–80%  and  laser-assisted  bioprinting  reports
viabilities in excess of 90% [174, 175]. Cell viability should be monitored after
printing  to  ensure  that  sufficient  number  of  cells  remain  in  the  3D  printed
scaffolds for proliferation and differentiation into the specific tissues or organs.
Live/dead assays involve the use of different stains for both live and dead cells
(e.g.  Calcein  acetoxymethylester  stains  live  cells  bright  green  and
ethidiumhomodimer-2  stains  dead  cells red) and are often conducted at different
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periods throughout the experiment to observe changes in cell viability over time
[176].

3D-bioprinted  stem cells  must  proliferate  and  differentiate  into  the  appropriate
lineages. It is predominantly the 3D environment (which consists of the selected
biomaterial with or without biomimetic products) that affects cell differentiation
in  tissue-engineered  scaffolds  [153].  Therefore,  to  determine  if  the  3D
environment  is  promoting  or  inhibiting  the  proliferation  and  differentiation  of
cells,  gene  or  protein  expression  that  are  characteristic  to  specific  cell  types
should  be  assessed  [177].  Differentiation  of  human  satellite  cells  into
multinucleated myotubes was assessed by qRT-PCR to analyse the expression of
myogenic transcription factors as well as immunocytochemistry using monoclonal
antibodies  that  targeted  muscle-specific  proteins  [177].  Tissue-engineered
scaffolds  may  interfere  with  these  analytical  methods  [176].  Structural,
mechanical and degradative properties are often tested to determine the quality of
the  scaffold  design  in  mimicking  specific  tissues  [178].  Jeong  &  Hollister
demonstrated  that  the  porosity  of  scaffolds  could  affect  its  mechanical  and
degradative  properties.  Therefore,  similar  tests  can  be  conducted  on  the  3D-
printed  scaffolds  to  assess  its  mechanical  and  degradative  properties  [179].

Scaffolding: Scaffolding results in a 3D structure that can mimic the extracellular
matrix in which cells migrate or are seeded into the structure after printing. The
scaffold then provides support and encourages the proliferation and differentiation
of tissue specific cells [139]. More traditional techniques exist for the fabrication
of scaffolds, however these are limited by a lack of control over the structure’s
shape  and  porosity  [159].  3D  printing  overcomes  these  limitations  by  custom
manufacturing the scaffold in a layer by layer manner to optimise both the shape
and  porosity  for  potential  implantation  [180].  The  manufacture  of  3D  printed
scaffolds  has  been  incorporated  into  the  tissue  engineering  of  a  number  of
different mesendodermal-derived tissues and organs. The following sections will
describe how this has been achieved in bone and tracheal tissues.
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Applications of Scaffolding in Mesendodermal Tissues

Stem Cells, 3D Printing and Bone Healing

The tissue engineering of bone structures is perhaps the area in which 3D printing
has had the greatest tangible impact to date. Bone, as a tissue, possesses unique
properties that have been harnessed in tissue engineering approaches. Bone tissue
consists  of  cancellous  and  cortical  bone.  Together,  these  produce  complex
structures which have porosities from less than 10% in cortical bone, to 50-90%
porosity in cancellous bone [156]. At a cellular level, bone is a dynamic structure.
Osteoblast cells continuously deposit new bone matrix while old bone is resorbed
by osteoclasts.  The collection of these processes is known as bone remodelling
and  gives  bone  tissue  self-healing  properties.  Despite  this  self-healing,  severe
fractures often require external intervention [156]. Amongst these interventions to
heal the bone, tissue engineering approaches are now becoming more common.
Some  earlier  approaches  include  bone  autografts  and  allografts,  both  of  which
seek  to  incorporate  an  exogenous  structure  into  the  bone  in  an  attempt  to
strengthen and improve healing in vivo. These grafting solutions present problems
including  graft  availability,  infection,  donor  site  morbidity  and  the  need  for
additional  operations  [140].  Biocompatible  scaffolds  have  become  viable
alternatives to these approaches. The scaffolds attempt to mimic properties of the
extracellular matrix and have traditionally been produced by methods which are
limited  in  their  ability  to  specify  scaffold  shape  and  pore  size  [156].  The
incorporation  of  3D  printing  into  the  bone  tissue  engineering  approach  has
enabled  the  fabrication  of  scaffolds  without  these  shortcomings  [159].

A number of techniques have now been used to produce high precision, custom
defined, 3D scaffolds. The power of this approach lies in the ability to tailor the
3D structure to the patient, as well as the ability to produce interconnected porous
structures  that  become  vascularised  and  populated  by  osteoblasts  and
parenchymal cells. Of the available scaffold printing techniques, Drop on Demand
3D Inkjet  Printing (described above)  has  been most  commonly adopted for  the
manufacture  of  scaffolds  [156].  A  number  of  powder  and  binding  liquid
combinations  have  been  used  in  this  approach,  but  the  availability  of  a  strong
biocompatible  complex  remains  an  issue  and  a  limitation.  VEGF,  FGFs  and
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BMPs are examples of growth factors that may have the effect of encouraging and
accelerating the incorporation of desirable cells and subsequent healing of bone.
These growth factors may be used together with stem cells to engineer a tissue
that  comes  closer  in  structure  and  function  to  the  implantation  site  in  vivo.
Muscle-derived  stem  cells  have  been  cultured  and  bioprinted  onto  a  printed
scaffold containing BMP-2 resulting in more functional bone tissue [156]. Current
limitations to this approach include the viability of the cells after bioprinting as
well as that of the incorporated growth factor [156].

Stem Cells and 3D Bioprinting of the Trachea

The  trachea  is  an  organ  in  which  3D  scaffold  engineering  by  3D  printers  has
already had a major impact. The application of 3D printed tracheas has already
been demonstrated in animal models clinically to correct tracheal stenosis [181,
182].  As  scaffolding  techniques  become  elaborated,  the  tissues  printed  match
those  of  the  native  tissues  more  closely.  Park  and  colleagues  have  produced  a
tissue-engineered trachea that has mechanical properties very similar to those of
the native organ by adapting a cylindrical scaffold to the shape of a bellow [183].
A sacrificial scaffold was engineered using a micro-stereolithography technique
with  an  alkali  soluble  photopolymer  [183].  Each  layer  is  printed  to  form  a
negative  mold  of  the  trachea,  with  the  uncured  photopolymer  dissolved  with
isopropyl alcohol. Sustained release of TGFβ1, through a functionalised gelatin
sponge, induces the growth of tracheal cartilage [183]. Alternating layers of the
gelatin sponge, one with TGFβ1 and one seeded with the chondrocytes, were laid
into the sacrificial scaffold. These structures were implanted subcutaneously into
nude  mice  and  the  results  show that  the  bellow structure  were  less  resistant  to
three-point bending and more resistant to radial compression than the cylindrical
structure [183]. This mechanical outcome is comparable to that of the biological
trachea and can be further developed as an engineered substitute in the case of
tracheal  stenosis  or  other  diseases  affecting  the  airways.  In  2014,  Zopf  and
colleagues  successfully  produced  and  implanted  a  custom,  3D  printed  airway
splint  into  a  critical,  paediatric  tracheobronchomalacia  patient  under  FDA
emergency-use exemption [184]. The procedure restored patency of the bronchus
and  essentially  reversed  the  respiratory  distress  of  the  patient.  This  case
demonstrates the potential which tissue engineering holds and paves the way for
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more extensive applications in the future.

3D Bioprinting of Stem Cells for the Treatment of Cardiac Disease

Cardiovascular  structures  are  an  obvious  candidate  for  tissue  engineering
approaches with cardiovascular disease (CVD) accounting for approximately 30%
of  all  deaths  globally  [185].  As  treatment  of  myocardial  infarction  improves,
increasing numbers of CVD patients now survive cardiovascular events and live
with  partially  damaged  heart  muscle  [186].  Bioprinting  offers  an  avenue  to
manufacture tissues to replace damaged myocardium as well as other structures
such as the heart valves and vessels. Currently engineered cardiovascular tissues
are limited in their  ability  to  support  live cells,  meaning that  tissues have been
limited to thicknesses of ~ 100 µm, mainly as a result of the diffusion limitation
for oxygen [187].  3D printing may be promising way to overcome this,  as it  is
able to print thick tissues with uniformly dispensed cells, which are also porous
enough to sustain nutrient and gaseous exchange by cells. Promising research by
Gaetani and colleagues have used pressure base extrusion methods to print human
cardiac-derived cardiomyocyte progenitor cells (hCMPCs) in a sodium alginate
hydrogel  [188].  The  group  successfully  maintained  viability  after  printing,  and
demonstrated  promising  differentiation  of  cells.  hCMPCs  have  proved  to  be  a
promising substrate for cardiovascular bioprinting as these cells are committed to
the  cardiac  lineage,  can  differentiate  into  cardiomyocytes  and  can  successfully
proliferate  in  vitro.  When  these  cells  were  printed  into  a  3D  construct,  they
responded positively in comparison to 2D cultures with increased expression of
cardiomyocyte transcription factors [188]. While the sodium alginate supported
the hCMPCs in this experiment, the use of a decellularised extracellular matrix in
a  heart-derived  bioink  has  shown  great  promise.  Experiments  by  Pati  and
colleagues show that it is able to increase the expression of cardiac-specific genes
Myh6  and  Actn1  when  printed  with  human  inferior  turbinate-tissue  derived
mesenchymal  stromal  cells  (hTMSCs)  [189].

Valvular heart disease is expected to triple by 2050. Developing countries struggle
with the medical needs of those afflicted with rheumatic fever and its implications
on heart valves; 30% of those born with congenital heart defects do not survive
[190]. Heart valve malfunction as seen in stenosis or regurgitation cannot self-heal
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and  must  be  replaced  [190,  191].  The  successful  engineering  of  functional
bioprinted  heart  valves  would  have  a  similarly  revolutionary  impact  for  many
patients requiring heart valve replacement. Patients currently seeking a heart valve
replacement  are  limited  to  choosing  an  artificial  valve  which  requires  ongoing
anticoagulant therapy, or a xenograft or allograft which requires replacement 25
years at most [192]. Specifically, children and younger adults require aortic valve
replacements  that  can  grow,  regenerate,  and  remodel  with  their  still  growing
bodies.  Therefore,  an  option  for  a  fully  compatible  and  biological  heart  valve
replacement would be vital to the improvement of quality of life of the patients
and to avoid future replacement surgeries.

With 3D printing,  significant  progress  has been made on the bioengineering of
heart valves.  Duan and colleagues have successfully cultured encapsulated root
sinus  smooth  muscle  cells  (SMCs)  (81.4  +/-  3.4%  viability)  and  aortic  valve
leaflet  interstitial  cells  (VICs)  (83.2  +/-  4.0%  viability)  in  the  valve  root  and
leaflets respectively, of alginate/gelatin valve conduits [191]. SMCs added to stiff
matrix resulted in increased expression of alpha-smooth muscle actin while VICs
in soft matrix resulted in increased vimentin expression. These results suggest that
complex aortic valve hydrogel conduits are possible to construct, especially with
further advances in 3D printing technology. Although the prospect of being able
to custom print a heart valve is exciting, there are still limitations such as an unfit
construct,  long-term  malformation,  and  loss  of  anisotropic  function.  A  badly
constructed  structure  would  result  in  mechanical  stress  on  the  construct  and
ultimately, calcification, regurgitation and hemodynamic inefficiency of the heart.
A long-term transplant malformation such as a uniform reduction or increase in
thickness  or  remodelling  could  result  in  reduced  function,  regurgitation  and
calcification and will require further repair. Over time, anisotropic function may
also cease and become isotropic, which may cause calcification [190].

Bioengineering Blood Vessels

Previous attempts have been made to produce vasculature by seeding 3D printed
scaffolds. However this technique is limited by the fact that due to the printing
conditions, cells cannot be printed into the scaffold directly, and the seeding of the
scaffold at a later time poses a problem. Scaffold-free bioprinting methods have
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been  investigated.  Norotte  and  colleagues  bioprinted  blood  vessels  through  the
layering  of  various  vascular  cell  types  around  agarose  rods  [193].  Layers  of
smooth muscle cells and fibroblasts formed vasculature of 0.9-2.5mm in diameter.
The  agarose  rods  were  then  pulled  out  of  the  construct  leaving  a  cylindrical
structure  however  this  method  possessed  some  limitations.  Structurally,  only
open-ended vasculature may be constructed using this method and more complex
structures  may  be  harder  to  achieve.  Further  research  into  the  use  of
thermoreverisble  or  photosensitive  gels  could  improve  the  final  steps  of  this
process. Photolithography, a descendant of the stereolithography technique, has
been investigated as another method of scaffold free bioprinting. This technique
involves the exposure of photosensitive hydrogel to light through a photomask.
The areas of the hydrogel exposed to the light polymerise and form a cross-linked
material.  Then, the rest of the uncrosslinked gel can be washed away leaving a
polymerised  structure  designed  by  the  shape  of  the  light  shown  onto  the
photosensitive gel. This method is promising as the photosensitive hydrogel can
be prepared to have specific porosity and mechanical properties, which affect the
growth of the stem cells [194]. Bioprinted vascular structure made from GelMA
hydrogel  with  endothelial  progenitor  cells  (EPCs)  and mesenchymal  stem cells
(MSCs)  have  been  subcutaneously  transplanted  into  immunodeficient  mice.
GelMA is a unique hydrogel in that it  is  a functionalised gelatin hydrogel with
control  over  the  degree  of  porosity  and  degradability  for  optimal  cell  viability
post-printing.  The  results  show  that  7  days  post-transplantation,  lumen  was
present  throughout  the  structure  with  murine  erythrocytes  flowing  through  the
vasculature.  This  purports  that  the  transplanted  vessels  had  successfully  fused
with the host vasculature [195]. Using laser beams, the photolitography technique
selectively polymerises the hydrogel used creating 3D structures.

3D Stem Cell Bioprinting in an Undergraduate Research Laboratory

To provide an example of a 3D Bioprinter in a research laboratory, the setup of an
operational pressure based extrusion printer (PBE) has been described below. The
printer is used for the purpose of stem cell research at the University of Sydney
Charles Perkins Centre. This section will outline the general setup, operation and
uses of this printer. The printer described above is a Fab@Home Model 3.0 PBE
printer that is manufactured at Cornell University and is commercially available.
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The chassis of the printer is produced from 3D printed acrylic panes. Five motors
are  then  positioned  within  the  chassis  to  drive  either  a  belt,  to  manipulate  the
location  of  the  printer  head,  or  to  drive  one  of  two  plungers  that  generate  the
pressure required for the extrusion of the syringe contents (Fig. 6).

Fig.  (6).   Annotated set-up of  the Fab@Home Model  3.0 Bioprinter  in  the X-lab undergraduate teaching
facility of the Charles Perkins Centre. The printer is located in a biosafety cabinet (BSC) where it can be
sterilized by UV light and used to print under cell culturing conditions. The annotations depict the printer
axes of movement in 3D space.

The printer can be operated by software in one of two ways. Firstly, the motors
may be driven by a basic programming language that sends movement trajectories
directly to each motor. This gives the operator a high degree of control over the
exact  print  path  and  extrusion  speed  but  is  limited  to  producing  straight-line
structures.  Secondly,  the  printer  may  be  driven  by  ‘Fab  Studio’  and  ‘Fab
Interpreter’  software  that  allows  the  printing  of  objects  from  CAD  (computer
aided  design)  files.  In  this  mode,  the  virtual  3D  CAD  object  is  converted
automatically  into  a  printer  path  that  can  then  be  executed.

The  undergraduate  research  team  operating  this  printer  has  been  investigating
differentiation  of  the  cardiac  lineage  from  embryonic  stem  cells  (ESCs)  in  the
context  of  bioprinted  hydrogels.  The  group  has  successfully  produced  alginate
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bioinks containing ESCs,  which can be printed into a  calcium chloride (CaCl2)
bath to produce a dimerised hydrogel with precise architecture. Based on our own
practical experience, we observed that the different viscosities of non-autoclaved
and  autoclaved  alginate  affected  our  ability  to  produce  accurate  and  consistent
structures using the Fab@Home printer. More specifically, the autoclaved alginate
was  considerably  less  viscous  than  the  non-autoclaved  alginate.  Upon  further
analysis, we observed that this appeared to increase the time taken to polymerise
autoclaved  alginate  with  calcium chloride  (CaCl2)  compared  to  non-autoclaved
alginate.  We  believe  that  this  was  most  likely  due  to  the  autoclaving  process
decreasing  the  degree  of  polymerisation  in  the  alginate  [196].  Therefore,  this
highlights how the factors affecting printability also need to be considered when
selecting biomaterials for 3D bioprinting.

This  hydrogel  has  successfully  produced  viable  structures  in  vitro,  including  a
sheet of communicating contractile cardiomyocytes. The hydrogel has also been
used to produce a number of printed 3D architectures including sheets of hydrogel
(Fig. 7). The pictured sheets can be combined with different growth factors with
the rationale of differentiating different morphologies at different levels within the
gel.

Fig. (7).   This image shows an alginate-CaCl2  hydrogel,  which has been bioprinted in 2 layers which are
combined with different growth factors for differentiation of mouse embryonic stem cells into cardiovascular
lineages.
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Future Directions in Tissue Engineering

3D  bioprinting  is  the  new  frontier  of  clinical  care,  especially  in  the  case  of
transplantation and cell  therapy.  It  mitigates the risk of tissue rejection and the
need  for  immunosuppressants.  Organs  and  tissues  can  be  customised  to  each
patient and would eliminate the shortage of organ donors. At the moment, seeding
the  required  stem  cells  onto  a  decellularised  scaffold  has  been  the  closest  to
developing a whole functioning organ; however, the development of 3D printing
technology  allows  control  over  the  finer  aspects  of  the  process  such  as  cell
placement,  cell  concentration,  and diameter  of  printed cells.  3D printing layers
cells, growth factors, and the scaffold matrix (usually hydrogels), selectively to
create  tissue  or  whole  organs  [197].  These  processes  are  outlined  above.  The
clinical  application  of  3D  bioprinted  organs  and  tissues  are  still  a  couple  of
decades away, but there are a multitude of applications in the field emerging such
as live implants of organs or parts of organs, in situ printing, and replacement of
animal testing commercially and in drug discovery [137, 197].

3D  bioprinting  and  tissue  engineering  have  been  used  to  successfully  culture
bone,  vasculature,  trachea,  and  heart  tissue  with  ability  to  be  transplanted.
However,  there  are  still  issues  with  3D  bioprinting.  Many  of  the  whole  organ
bioengineering have only been produced in small scale and must be translated to
human-sized organs. Specifically, the diffusion of oxygen between the host and
transplanted  tissue  limits  the  engineered  tissue  width  to  under  200μm  [197].
However, cutting edge vascular bed tissue engineering could solve this problem as
new  studies  have  shown  successful  perfusion  of  transplanted  vasculature  in
murine models [198]. The integration of vasculature into current organ and tissue
bioengineering would be vital, as thicker tissues will need a circulatory system to
maintain  cellular  metabolic  functions,  mature,  and  fuse  together.  Tissues  will
grow in width as studies will continue to add various layers of multiple cell types
to  form a  complete  structure.  A  vascular  network  embedded  onto  the  organ  or
tissue  engineered  would  provide  the  cells  with  the  oxygen,  gas,  nutrient,  and
waste exchange required by normal healthy living tissue [197].

Unfortunately,  bifurcated  and  branched  vessels  have  been  challenging  to  grow
with only a few studies investigating this area. A protocol for developing complex
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vascular network still needs to be engineered before integration with whole organs
[199].  Kusuma and  colleagues  have  successfully  implanted  a  vascular  network
that  fused  with  the  host  vasculature  and  established  blood  flow  [200].  Their
method  involved  the  culturing  of  a  bicellular  vascular  population  from  human
pluripotent  stem  cells  (hPSCs)  in  a  synthetic  matrix.  These  mature  to  early
vascular cells (EVCs) and then to endothelial cells and pericytes, which are vital
for stable vasculature. The use of 3D printing technology could hopefully further
this research in that the development of the vascular bed could move out of the
synthetic matrix and into an engineered whole organ.

In situ printing, the direct printing of live organs or tissue during open surgery is a
leading  procedure  following  the  progress  in  3D  bioprinting  technology.  It  has
already been done with a skin lesion filled with keratinocytes and fibroblasts, but
its full potential is to be able to print an organ straight onto the patient [199]. The
development of whole organs from our skin to the bone means that we can test
drugs  and  collect  accurate  results  with  respect  to  reaction,  side  effects,  and
benefits. Currently, the results of animal testing for anything from cosmetics to
cutting  edge  cancer  treatments  must  be  translated  to  accurate  human  body
responses. Although it is expensive and labour intensive, the results normally are
unable to predict that of a normal human body response as animals and humans
would  have  differences  such  as  variable  immunogenic  make  up  and  gene
regulation [201]. Furthermore, human clinical trials must be thoroughly conducted
before  deciding  whether  the  drug  is  effective,  ineffective  or  too  toxic  [202].
Therefore, advances in 3D bioprinting of tissues and whole organs would greatly
benefit research of how various drugs affect the corresponding organs. Parameters
such  as  immunogenicity,  effect  of  environmental  factors,  and  pre-existing
diseases can be strictly set to best observe the effect of the drug on the patient. For
example,  in  the  study  to  find  a  drug  against  Duchenne  Muscular  Dystrophy
(DMD), an mdx murine model is being used. DMD is a genetic X-linked disorder
where the dystrophin protein is absent causing skeletal muscle deterioration [203].
Instead  of  the  murine  model,  skeletal  muscle  with  DMD  can  be  3D  printed,
cultured and tested against the drug in question with the results already in context
to a human response. Although human clinical trials should still be required, these
results  from  the  3D  printed  tissue  could  be  a  more  accurate  prediction  of  the
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human outcome than would the results from an animal model.

CONCLUDING REMARKS

Revolutions in both biology and engineering have taken place in the past decade.
The ability to induce pluripotent stem cells from adult cells has opened the field of
regenerative medicine enormously as it  may alleviate the difficulties associated
with transplantation such as immune rejection. Advances in 3D bioprinting have
expanded our possibilities of printing functional tissues and organs for tailor-made
regenerative medical interventions. As many of the diseases currently afflicting
patients  worldwide  involve  either  tissues  or  organs  originating  from  the
mesendoderm, understanding the underlying biological processes leading to the
formation of these tissues is crucial. Combining our biological understanding of
mesendoderm  formation  with  patient-specific  iPS  cell  generation  and  3D
bioprinting  technologies  holds  great  promise  for  the  future  of  regenerative
medicine.
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Appendix II: Macrophage colony stimulating factor receptor: A potential cell surface 

marker for prostate oncogenesis. 
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Appendix III: A new carborane-containing fluorophore as a stain of cellular lipid 

droplets. 



Cellular Markers

A Carborane-Containing Fluorophore as a Stain of Cellular Lipid
Droplets

Andrew Wu+,[a] Jacek L. Kolanowski+,[a] Badwi B. Boumelhem,[b] Kylie Yang,[a] Rebecca Lee,[a]

Amandeep Kaur,[a] Stuart T. Fraser,[b] Elizabeth J. New,*[a] and Louis M. Rendina*[a]

Abstract: The use of fluorescent markers and probes

greatly enhances biological investigations but relies on
the provision of an array of fluorophores with diverse
properties. Herein we report a novel carborane-containing
coumarin, 5, which is sufficiently lipophilic to localise in
cellular lipid droplets. In non-polar solvents which show

comparable polarities to those of a lipid environment,
compound 5 exhibits a fluorescence quantum yield two

orders of magnitude greater than found in aqueous sol-
vents, adding a further degree of selectivity to lipid drop-
let imaging. Compound 5 can stain lipid droplets in ex

vivo adipocytes as well as in cultured cells, and can be uti-
lised in flow cytometry as well as confocal microscopy.

Fluorescence techniques, such as confocal microscopy and

flow cytometry, enable the imaging of biological systems with
high sensitivity and resolution.[1] These methods usually

employ fluorophores, whether synthetic or genetically en-

coded, that may stain organelles or macromolecules, or may
respond to chemical conditions and environments.[2] Amongst

the important classes of small-molecule fluorophores are the
coumarins, which are commonly employed for imaging appli-

cations due to their good stability, water solubility and facile
synthesis.[3] The structure–photophysical relationships of cou-

marins have been extensively studied, enabling the design of

new analogues with superior properties for biological applica-
tion.

The presence of electron-donating groups at the 7-position
of coumarin or electron-withdrawing groups at the 3-position

can significantly shift the fluorescence band to longer wave-

lengths, including the NIR.[3, 4] This bathochromic shift is advan-
tageous for fluorescence applications, as longer emission

wavelengths are distinct from cellular autofluorescence, exhibit

greater tissue penetration, and typically require the use of
lower energy, less damaging excitation wavelengths. 7-Dialky-

laminocoumarins can undergo an efficient intramolecular
charge transfer (ICT) from the electron-donating amino group

to the carbonyl group of the coumarin ring, which results in
a large excited-state dipole moment, and a large Stokes-shifted

fluorescence emission, usually sensitive to the polarity of the

environment. The incorporation of electron-withdrawing sub-
stituents such as phenyl at the 3-position of coumarin facili-

tates the ICT process by stabilising the excited state, and can
therefore increase the quantum yield as well as inducing

a bathochromic shift.[5] When C-bonded, the bioisosteric closo-
carborane cage is also electron-withdrawing and highly lipo-

philic,[6] which could be advantageous in the visualisation of

lipid structures within cells, for example.[7] Carboranes have
been incorporated into a variety of organic molecules,[8] metal

complexes,[9] and polymers,[10] or C-functionalised with bulky
electron-deficient moieties such as dimesitylboryl, to afford

new luminescent materials with exquisite emission proper-
ties.[11] However, very few examples exist of carborane-contain-
ing fluorophores being used as cellular probes.[12]

To the best of our knowledge, there exists only one single
report of carborane-containing coumarins. In 2007, Justus et al.
reported the synthesis and structural characterisation of
a series of 4-substituted closo-1,2- and closo-1,7-carborane (and

[B12H12]2@) derivatives of the parent coumarin and 6,7-benzo-
coumarin.[13] However, the authors did not report the fluores-

cence properties of any of these molecules. Herein we report
the first example of a new carborane-containing coumarin
which selectively stains lipid droplets in live adipocytes and

provides a valuable, blue-emitting alternative for the common-
ly used lipid stain Nile Red.[14]

Given the sensitivity of coumarin fluorescence to the elec-
tronics of substituents at the 3-position, our probe design in-

volved incorporation of closo-carborane at this position of 7-di-

ethylaminocoumarin, to give the boronated derivative 5. Nido-
carboranes, in which one BH vertex is selectively removed

from the closo-carborane cage, typically exhibit markedly dif-
ferent electronic and physical properties to those of the

parent, and so the nido-carborane analogue 6 was also pre-
pared. Finally, since carboranes are typically incorporated into
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bioactive molecules in place of phenyl rings,[6] we prepared 7-

diethylamino-3-phenylcoumarin 7 for comparison (Figure 1).

The parent 4-(diethylamino)coumarin 1 was prepared by re-
acting 4-(diethylamino)salicylaldehyde and diethylmalonate

with piperidine by following a well-established literature
method.[15] Halogenation of the alkenyl functionality in 1 to

give the 3-bromo derivative 2 did not proceed cleanly when
Br2 or dioxane dibromide was used, with polybrominated prod-

ucts being formed in addition to the desired 2. However, when

N-bromosuccinimide (NBS) was employed as the bromination
reagent, the reaction proceeded cleanly to afford 2 in high

yield (81 %). Installation of the TMS-ethyne proceeded smooth-
ly by using standard Sonogashira conditions to give 3 in 65 %

yield.[15] Deprotection of the TMS group in 3 using TBAF in
THF/MeOH solution afforded the terminal 3-alkynyl derivative

4.[15] Treatment of 4 with nido-decaborane in the presence of

the Lewis base CH3CN gave the target closo-1,2-carboranyl de-
rivative 5 as a bright orange solid (56 %). The closo-carborane

cage was then selectively deboronated by the use of CsF in
EtOH under reflux conditions to afford the nido-7,8-carboranyl

salt Cs·6 in good yield.
Spectroscopic properties of the coumarin derivatives were

assessed in both aqueous solution (phosphate-buffered saline;

PBS; pH 7.4) and organic (dichloromethane) solvent (Table 1),
and revealed that both the absorption (Figure S1) and emis-

sion (Figure S2) profiles of the two carborane-containing com-
pounds were very similar to those of the phenylcoumarin de-

rivative, 7. However, a marked difference in the quantum yields
was observed, with the closo- and nido-carborane derivatives 5
and 6, respectively, exhibiting very low quantum yields in PBS,
when compared to the phenyl derivative 7. Interestingly, all
three coumarin derivatives showed good quantum yields in di-
chloromethane. In particular, compound 5 showed the highest

relative increase in brightness when moving from aqueous so-
lution to a hydrophobic environment (Table 1). This result indi-

cates that, of the three compounds assessed, 5 showed the
greatest discrimination between aqueous and organic solvents

in terms of its brightness. All compounds showed no signifi-
cant changes within at least the pH range of 5–8 (Figure S3).

Given the promising photophysical properties of our three
compounds 5–7, we investigated their interactions with cul-
tured cells. 3T3-L1 mouse pre-adipocytes were treated with 5–

7 (0.1–0.2 mm, 0.1 % aqueous DMSO) for 10 min prior to wash-
ing and imaging by confocal microscopy. Negligible fluores-

cence could be observed in cells treated with 6. In contrast,
cells treated with 5 and 7 exhibited very bright, punctate pat-
terns (Figures 2 a,b). Co-staining with Nile Red, a commonly
used marker of lipid droplets, confirmed that fluorescence

from 5 and 7 was localised in these regions. This lipid droplet
localisation could also be observed in other cell lines assessed
in this study: A549 adenocarcinoma cells, DLD-1 colorectal
cancer cells, and RAW 264.7 macrophages (Figures S4–S6). Co-
staining experiments with LysoTracker and MitoTracker demon-

strated no significant localisation of 5 and 7 in these organelles
(Figure S7).

The sub-cellular localisations observed are consistent with

the lipophilicities of each compound, as estimated by the par-
titioning between 1-octanol and water (logPoct) using the

shake-flask method (Table 2). These logPoct values confirm that

closo-carboranyl coumarin 5 possesses identical lipophilicity to

the phenyl coumarin 7 (within experimental error), in line with
previous observations that closo-carboranes impart very similar

lipophilicity to phenyl derivatives.[6] These values are also con-
sistent with the high lipophilicity required for lipid droplet

compartmentalisation.[16] In contrast, compound 6 was less lip-
ophilic by 2 orders of magnitude, as expected, due to its

charged, hydrophilic nature.[17]

The weak intracellular fluorescence of 6 compared to 5 and
7 is likely to be due to both the lower lipophilicity, which is ex-

pected to lead to poorer cellular uptake, as well as the weaker

Figure 1. Coumarin derivatives prepared in this study.

Table 2. LogPoct values for the coumarin derivatives, as determined by
the shake-flask method.

Derivative LogPoct

5 3.1:0.4
6 1.1:0.1
7 3.4:0.2

Table 1. Spectroscopic properties of coumarin derivatives in phosphate-buffered saline (PBS, pH 7.4) and dichloromethane (DCM).

Compound lmax (abs.) [nm] e (at 400 nm) [m@1 cm@1] lmax (em.) [nm] F (400 nm excitation) Brightness[a] [m@1 cm@1]
PBS DCM PBS DCM PBS DCM PBS DCM PBS DCM Ratio (DCM/PBS)

5 406 402 2.0 V 104 3.1 V 104 484 452 4.8 V 10@12 4.0 V 10@1 9.5 V 102 1.3 V 104 13.4
6 396 393 5.4 V 103 9.8 V 103 476 460 3.9 V 10@2 1.4 V 10@1 2.1 V 102 1.4 V 103 6.5
7 406 406 3.2 V 104 6.5 V 104 496 460 1.8 V 10@1 6.6 V 10@1 5.9 V 103 4.3 V 104 7.2

[a] Brightness was calculated according to the equation: B(l) =fe(l).
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fluorescence observed in both organic and aqueous solvents.

As a result, the nido-carborane derivative 6 was not studied
any further. Photostability studies of 5 and 7 confirmed good

stability over multiple scans, with less than a 30 % decrease in
intensity after more than 200 scans (Figure S8). Intracellular

spectra of 5 and 7 in 3T3-L1 cells (Figures 2 c and d) were com-
pared to the in vitro emission spectra of 5 and 7 in a range of

solvents of varying polarity (Figure S9, Table S1). This analysis

revealed that the emission profile of both compounds in cellu-
lo most closely matched that of dichloromethane. This result is

consistent with the estimated dielectric constant of lipid drop-
lets of ca. 7,[18] which most closely matches the dielectric con-

stant of dichloromethane (8.9 at 298 K).
To study the suitability of the compounds for single cell

analysis by flow cytometry, live adipocytes were obtained from

different adipose deposits (brown adipose, BAT; inguinal white
adipose: WAT:ING and gonadal white adipose, WAT:GON) from
adult wild-type mice. Single cell suspensions were prepared by
collagenase digestion, gated according to size and granularity

and stained with the dead-cell probe propidium iodide (Fig-
ure S10), the lipophilic probe Nile Red, and 5 or 7. Following

this protocol, bright fluorescence could be observed in both

the 450 nm and 550 nm channels after excitation at 405 nm
(Figure 3 a,b). Cells treated with either 5 or 7 showed fluores-

cence markedly higher than in untreated cells at all concentra-
tions tested, down to 0.1 mm. Cells were also stained with Nile

Red, revealing a strong correlation between the two fluores-
cent signals, and showing, on a single-cell level, that cells posi-

tive for 5 were equally positive for Nile Red (Figure 3 c,d). To

study the sub-cellular co-localisation in ex vivo adipocytes,
live-cell confocal imaging on single brown adipose or gonadal

white adipocytes from wild-type adult mice was performed
(Figure S11). While good co-localisation of Nile Red and 5 and

7 was evident, it was observed that the co-localisation across
the range of samples tested was better for 5 than 7. This result

was confirmed by co-localisation analysis (ImageJ). Pearson’s
coefficient gives an indication of the extent to which the fluo-
rescence outputs of each molecule correlate, with a value of

1 indicating complete positive correlation.[19] Manders’ overlap
coefficient indicates the proportion of coumarin fluorescence

which overlaps with Nile Red fluorescence, with a value of
1 again indicating 100 % co-localisation.[20] The results of this

analysis confirmed in both tests that 5 showed a statistically

significantly higher correlation with Nile Red than 7 (Fig-
ure 3 e).

Taken together, the observed compartmentalisation of 5 and
7, and their photophysical properties in buffer and dichlorome-

thane tell of the distinct advantages of the closo-carboranyl 5,
and provide an explanation for these observations. Since 7 is

highly fluorescent in both aqueous and organic solvents, its

ability to stain the lipid droplets relies solely upon its lipophi-
licity. However, small molecules, particularly those without tar-

geting moieties, rarely localise exclusively to a single organ-
elle,[21] so it is likely that the fluorescence of 7 will be observed

elsewhere in the cell. By contrast, 5 is sufficiently dim in aque-
ous solvents that fluorescence will only be observed in the lip-

ophilic environment of the lipid droplet.
There is much interest in the study of the lipid droplets for

their importance in a variety of biological processes including

autophagy,[22] metabolic signalling[23] and immune response.[24]

To this end, a number of synthetic fluorescent dyes with selec-

tivity for lipid droplets have been reported, including those
based on small organic molecules,[25] metal complexes,[26] and

aggregation-induced luminogens.[27]

In summary, we have reported a novel carborane coumarin
derivative 5 that selectively stains cellular lipid droplets due to

its solvent-dependent photophysical properties and lipophilic
nature. The combination of these properties ensures its superi-

or selectivity to lipid droplets over its phenyl-containing ana-
logue 7. Furthermore, 5 exhibits a blue-emitting alternative of

Figure 2. Confocal microscope images of 3T3-L1 cells treated with both Nile Red (0.5 mm) and (a) 5 (0.1 mm) or (b) 7 (0.1 mm), showing (i) coumarin fluores-
cence (405 nm excitation, lem = 415 nm @455 nm), (ii) Nile Red fluorescence (405 nm excitation, lem = 540 nm @580 nm), and (iii) overlay. Confocal microscope
spectroscopic scans of coumarin emission (c) 5 and (d) 7.

Chem. Asian J. 2017, 12, 1704 – 1708 www.chemasianj.org T 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim1706

Communication

http://www.chemasianj.org


the state-of-the-art Nile Red stain, with similar efficiency in

lipid localisation, and which may facilitate the simultaneous
use of multi-responsive sensors. Having demonstrated the

promise of incorporating carborane derivatives into fluoro-
phore scaffolds, we are now able to explore further applica-

tions of such molecules in fluorescent sensing applications.
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Appendix IV: Flow cytometric single cell analysis reveals heterogeneity between 
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ABSTRACT
Understanding adipose tissue heterogeneity is hindered by the paucity of methods to analyze
mature adipocytes at the single cell level. Here, we report a system for analyzing live adipocytes
from different adipose depots in the adult mouse. Single cell suspensions of buoyant adipocytes
were separated from the stromal vascular fraction and analyzed by flow cytometry. Compared to
other lipophilic dyes, Nile Red uptake effectively distinguished adipocyte populations. Nile Red
fluorescence increased with adipocyte size and granularity and could be combined with
MitoTracker� Deep Red or fluorescent antibody labeling to further dissect adipose populations.
Epicardial adipocytes exhibited the least mitochondrial membrane depolarization and highest fatty-
acid translocase CD36 surface expression. In contrast, brown adipocytes showed low surface CD36
expression. Pregnancy resulted in reduced mitochondrial membrane depolarisation and increased
CD36 surface expression in brown and epicardial adipocyte populations respectively. Our protocol
revealed unreported heterogeneity between adipose depots and highlights the utility of flow
cytometry for screening adipocytes at the single cell level.

KEYWORDS
adipocytes; adipose
heterogeneity; flow
cytometry; fatty acid
translocase; lipophilic dye;
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mitochondria

Introduction

The growing rates of obesity, diabetes and other meta-
bolic diseases have led to an increased interest in the cell
biology and physiology of adipocytes. Adipocytes play
central roles in energy storage, body temperature control,
blood glucose levels and insulin sensitivity.1 The primary
function of white adipose tissue (WAT) is energy storage
in the form of the neutral lipid triglyceride in unilocular
cytoplasmic lipid droplets.2,3 Brown adipocytes regulate
non-shivering thermogenesis and energy expenditure via
mitochondrial uncoupling-protein 1.3 Brown adipose tis-
sue (BAT) is primarily restricted to the intrascapular
region in adult mice. WAT is found in a range of distinct
anatomic locations including; subcutaneous depots such
as the inguinal adipose tissue; and visceral depots located
in the thorax and abdominal cavity such as the gonadal,
peri-renal, mesenteric and epicardial adipose tissues.

The anatomic and functional differences between adi-
pose depots may be due to different developmental path-
ways.4 Brown adipocytes and skeletal muscle cells arise
from Myf5-expressing mesodermal progenitors.5 Wt1-
expressing mesothelial progenitors give rise to visceral
but not subcutaneous WAT depots.6 Heterogeneity

between depots is controlled at the genetic level with dis-
tinct genetic loci influencing local adipose behavior.7

Proteomics analysis comparing different white adipose
depots in inbred mice revealed significant differences in:
the amount of protein expressed; expression profiles of
proteins involved in glucose and lipid metabolism; endo-
crine function and insulin sensitivity.8 Apolipoprotein E
expression, as well as responsiveness to metabolic and
inflammatory signals, differ across adipose tissue
depots.9,10 Adipose depot heterogeneity is also observed
in human metabolic disorders and diseases. For example,
increased visceral WAT is associated with the develop-
ment of obesity and type 2 diabetes.11

Adipose tissue consists of developing and mature
adipocytes as well as the stromal vascular fraction
(SVF) which comprises fibroblasts, immune cells,
endothelial cells and pre-adipocytes (adipocyte pro-
genitors).12 Flow cytometry can analyze complex cel-
lular heterogeneity in mixed populations at the single
cell level. While flow cytometry has been used exten-
sively to identify pre-adipocytes and to characterize
the SVF, flow cytometric analysis of mature adipo-
cytes is not routinely used.6,12 Previous reports of
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flow cytometric analyses of adipocytes focus on adi-
pocytes derived in vitro from myeloid cells or bone
marrow progenitors, or on adipocytes isolated from a
single depot.13-17 Recently, Durandt and colleagues
identified various subpopulations of adipocytes
derived from mesenchymal stromal cells using fatty-
acid translocase CD36 and lipophilic dyes Nile Red
and BODIPY.18 To improve our understanding of
adipose cell biology, a robust flow cytometric protocol
was developed to identify and characterize adipocytes
according to nuclear content, lipid content, mitochon-
drial membrane depolarization and adipocyte surface
protein phenotype of live cells. In contrast to previous
reports, this protocol does not require fixation or per-
meabilization. We have used this system to assess dif-
ferences in adipocyte biology during changes in
whole-body physiology such as pregnancy. This sys-
tem allows the robust quantification of live adipocyte
phenotype and frequency at the single cell level and
could be adapted for use in diagnostic settings in the
future.

Results

Flow cytometric analysis of the buoyant adipose
fraction

To develop a flow cytometric protocol to analyze adipo-
cyte heterogeneity, adipose tissues were dissected from
the regions outlined (Fig. 1A-F) in wild type, young adult
(6–12 weeks) male outbred mice fed a standard chow
diet ad libitum. Depots included; intrascapular BAT;
subcutaneous inguinal WAT (lymph nodes removed);
and 4 distinct visceral WAT depots namely the gonadal,
peri-renal, mesenteric and epicardial. Each tissue was
then digested with collagenase type II to obtain single
cell suspensions as outlined in Experimental Procedures
(Fig. 1G) and pictured beneath their respective depots in
Figure 1A-F. The white arrows indicate multilocular adi-
pocytes dissociated from BAT. Following centrifugation,
the buoyant adipose fraction (adipocytes) and pelleted
SVF were easily separated and analyzed by flow
cytometry.

The buoyant fraction consistently showed a forward
scatter (size) and side scatter (granularity) profile distinct
from the pelleted SVF (Fig. 1H and I). Cell viability was
consistently high as shown in Figure 1H ‘live cells’ panel.
Propidium iodideneg live cells were gated and analyzed
for the presence of contaminating blood cells. The SVF
contained CD45C haematopoietic cells, F4/80C macro-
phages and Ter119C erythrocytes (Fig. 1H). The buoyant
adipocyte fraction showed no binding to antibodies
against blood cell surface proteins (Fig. 1I).

Nile Red staining can separate buoyant adipocyte
populations by flow cytometry

To confirm the buoyant fraction contained adipocytes,
single cell suspensions (Fig. 2A) were stained with a
range of fluorescent lipophilic dyes. These included Nile
Red, Oil Red O, LipidTox� Red and LipidTox� Green.
Oil Red O is not cell permeable and did not penetrate
the live cells (Fig. 2B). In contrast, buoyant cells incu-
bated with the neutral lipid dyes LipidTox� Red,
LipidTox� Green and Nile Red all emitted a fluorescent
signal. Nile Red consistently exhibited a higher fluores-
cent signal compared with LipidTox� Red and Lip-
idTox� Green. Nile Red is also considerably more cost-
effective and hence was chosen as the optimal fluorescent
lipophilic dye for this study.

We hypothesized that Nile Red staining would corre-
late to size and granularity of the buoyant cells. The for-
ward and side scatter profile of the buoyant fraction was
subsequently divided into 3 regions. Nile Red uptake for
each population revealed highest fluorescence in the larg-
est, most granular cells (Fig. 2D, blue). The mean fluores-
cence intensity (MFI) was significantly different between
each population (Fig. 2Di). Irrespective of the adipose
depot assayed, MFI of Nile Red uptake was always great-
est in the largest, most granular cells (Nile RedHigh) com-
pared with Nile RedMid and Nile RedLow populations.
Dead cells were excluded in all studies using PI. Viability,
as determined by lack of PI uptake, was greater than 95%
in all Nile Red populations (Fig. 2Dii). DRAQ5, a cell
permeable DNA-binding dye, and wheat germ agglutinin
(WGA), a probe for cell surface glycosylated structures
on the cell membrane, were included to demonstrate the
presence of a nucleus and intact cell membranes. More
than 90% of Nile RedHigh and Nile RedMid cells were
DRAQ5C and WGAC while the Nile RedLow population,
which may include some cell debris as well as intact cells,
showed reduced levels of DRAQ5 uptake and WGA
binding (Fig. 2Diii-iv). Nile RedHigh and Nile RedMid cells
were not detected in the SVF fraction (data not shown).
This demonstrates that the buoyant fraction contains
intact, highly viable adipocytes with a high lipid and
nuclei content as indicated by the absence of PI and by
strong Nile Red, DRAQ5 and WGA staining.

Mitochondrial membrane potential varies among
adipose depots

Adipose tissues vary in mitochondrial number and
membrane potential.21 As the buoyant fraction can be
segregated by Nile Red, it was hypothesized that analysis
of combined Nile Red and mitochondrial probe
MitoTracker� Deep Red may further differentiate
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Figure 1. Single cell suspensions of buoyant adipocytes show distinct flow cytometric profiles to stromal vascular fraction cells. A – F.
Adipose tissue was excised from intrascapular brown (BAT), subcutaneous inguinal (WAT:ING), visceral gonadal (WAT:GON), peri-renal
(WAT:PR), mesenteric (WAT:MES), and epicardial (WAT:EC). G. The adipose tissue was minced in FACS buffer (PBS C 0.05% BSA) and
then digested with 0.1% (w/v) collagenase II for one hour at 37�C. The mixture was pipetted multiple times and passed through a nylon
filter. The solution was then centrifuged for 7min at 500 RCF. The buoyant, mature adipocytes were separated from the pelleted SVF
using a transfer pipette. Phase contrast images of buoyant adipocytes are placed in the corner of each respective depot in A-F. Arrow-
heads indicate multi-locular adipocytes. Scale bar represents 50 mm. H and I. Cells from the SVF and buoyant adipocytes were analyzed
according to their forward scatter (size) and side scatter (granularity) profile. Cells from both fractions were then stained for propidium
iodide (PI) to gate live cells, CD45 for hematopoietic cells, F4/80 for macrophages, and Ter119 for erythroid cells.
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adipose depots. MitoTracker� Deep Red detect changes
in mitochondrial membrane potential and measures
mitochondrial respiration. To visualize uptake of Nile
Red and MitoTracker� Deep Red in live adipocytes, con-
focal microscopic imaging of buoyant brown, inguinal
and gonadal adipocytes was performed (Fig. 3a).

Prior to using Mitotracker Deep Red for flow cytome-
try of adipocytes, we confirmed uptake in live adipocytes
by confocal microscopy (Fig. 3a). Adipocytes were dis-
persed as described previously and the buoyant fraction
stained with Nile Red for lipid droplets; FITC-conjugated

WGA for cell membrane and Mitotracker� Deep Red for
mitochondrial membrane depolarisation. Live cell confo-
cal imaging of adipocytes posed a challenge as the buoy-
ant lipid compartment typically hid the nucleus. Nile
Red clearly stained the multilocular lipid droplets of
brown adipocytes and the unilocular droplets of white
adipocytes. WGA was found to bind to the cell mem-
brane of brown and white adipocytes, however WGA
signal rapidly became clustered on the surface of living
adipocytes. To our knowledge this has not been reported
before as WGA staining is typically performed on fixed

Figure 2. Nile Red is a cell-permeable lipophilic sensor of intracellular lipid droplets useful for flow cytometry. A. Buoyant mature adipo-
cytes were analyzed according to their size and granularity. Buoyant mature adipocytes were stained with: B. Classic lipid dye Oil Red O,
C. Neutral lipid dyes; LipidTox� Red; LipidTox� Green and Nile Red. D. Buoyant mature adipocytes were gated according to their size
and granularity (R1, R2, and R3) and Nile Red, PI, DRAQ5 and WGA fluorescence measured. Di. Mean fluorescence intensity (MFI § SEM;
n D 6) of Nile RedHigh was 2053 § 152, Nile RedMid was 234 § 32 and Nile RedLow was 41 § 6.1. Dii. Cells from all 3 populations were PI
negative (> 97.5% viable). Diii-iv. DRAQ5 and WGA fluorescence was greatest in Nile RedHigh cells (> 99%), while Nile RedMid and Nile
RedLow exhibited DRAQ5 (> 87%) and WGA (> 70%) uptake.
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or frozen adipose tissue rather than dissociated adipo-
cytes.22 Mitotracker� Deep Red uptake was readily
observed by confocal imaging with an intense signal
localized eccentrically within the cytoplasm. Together,
these data, and those from the previous flow cytometric
analyses (Fig. 2Dii-iv, PI and DRAQ5), demonstrate that
the cells obtained through the dissociation technique
described are indeed live, intact, metabolically active
cells.

We were therefore confident to analyze adipocyte
populations by flow cytometry according to size, granu-
larity, Nile Red uptake and Mitotracker� Deep Red fluo-
rescence (Fig. 3B-D). No significant differences were
observed in mitochondrial membrane potential between
adipose depots for the Nile RedHigh, Nile RedMid and
Nile RedLow population of cells (Fig. 3Ai,ii-Ci,ii). How-
ever, when frequency was expressed for each adipose
depot as a proportion of body mass (fat (mg)/body

Figure 3. Mitochondrial membrane potential as assessed by Mitotracker� Deep Red fluorescence reveals heterogeneity in adipocytes
from different depots. A. Confocal images of buoyant brown (left), white inguinal (middle) and gonadal (right) adipocytes stained with
Nile Red (red), WGA (green) and MitoTracker� Deep Red (cyan). Scale bar represents 20 mm. B – D. Representative flow cytometric plot
of MitoTracker� Deep Red uptake in BAT, WAT:ING, WAT:GON, WAT:PR, WAT:MES and WAT:EC depots according to Nile Red fluores-
cence (High, Mid and Low). Gating of MitoTracker� Deep Red was defined as MitoTracker¡ve, MitoTrackerLow and MitoTrackerHigh. Bi,ii -
Di,ii. Adipocytes from the Nile RedHigh, Nile RedMid and Nile RedLow gate of the 6 adipose depots were compared according to MitoTrack-
erLow and MitoTrackerHigh uptake in male mice (n D 6). Biii-iv – Diii-iv. Frequency of MitoTrackerLow and MitoTrackerHigh positive cells
expressed as a proportion of adipose mass in the Nile RedHigh, Nile RedMid and Nile RedLow adipocyte populations. Data presented as
mean § SEM. Differences between adipose depots were determined by 2-tailed, one way ANOVA and pairwise post-hoc comparison by
Tukey’s HSD test. Groups sharing a numeral are not significantly different from each other.
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weight (g)), epicardial adipocytes exhibited less mito-
chondrial membrane depolarization compared with all
other depots. This was observed in all 3 populations of
adipose cells (Nile RedHigh, Nile RedMid and Nile RedLow;
Fig. 3Aiv, Biii-iv and Ciii respectively). Mitochondrial
membrane depolarization in Nile RedHigh brown adipo-
cytes was less than the similar population found in the
inguinal, gonadal, peri-renal and mesenteric depots
(Fig. 3Aiv). In contrast, gonadal Nile RedHigh adipocytes
had the greatest mitochondrial membrane depolarization
(Fig. 3Aiv).

Multiparametric flow cytometry reveals
heterogeneity of CD36 surface protein expression
between adipose depots

Initial flow cytometric characterization of adipocytes
centered upon surface proteins reported to be present on
SVF cells, adipose stem cells or pre-adipocytes such as
CD31, CD34, Flk1 and c-Kit.23 No expression of these
surface markers was detected on buoyant cells from any
depot. The “self-antigen” CD47 and the transferrin
receptor CD71 were also not expressed by buoyant cells.
A range of adhesion molecules were examined for
expression but were not detected including; integrins a2,
a4, a5, b3, b4, b7 and CD41; Intercellular Adhesion

Molecule 1, CD133 and the epithelial markers E-Cad-
herin and Epithelial Cell Adhesion Molecule (data not
shown).

In contrast, monoclonal antibody against the surface
fatty-acid translocase FAT/CD36 bound strongly to
buoyant adipocytes. CD36 is a multi-ligand receptor that
facilitates the movement of fatty acids into the cell.24

Nile Red staining was combined with anti-CD36 anti-
body immunoreactivity to determine whether heteroge-
neity existed between adipose depots (Fig. 4A-C).
Buoyant adipocytes showed a broad range of surface
CD36 expression from CD36neg through to CD36High

levels. In contrast to the other depots, all brown adipo-
cytes exhibited low levels of CD36 surface expression
(Fig. 4Aii- 4Cii). Surface CD36 expression was greater in
the inguinal, gonadal and epicardial adipocytes com-
pared with brown adipocytes (Fig. 4A-C). As each adi-
pose depot varies significantly in mass (Fig. 5), and the
body mass of any individual animal varies, surface
expression of CD36 was standardized to ensure that vari-
ation of fat mass due to body size is normalized. Epicar-
dial adipocytes showed the highest levels of CD36
expression whereas gonadal adipocytes showed the low-
est levels of CD36 among adipose depots examined
(Fig. 4Aiii-iv, Biii, Ciii). CD36 antibody binding can
therefore be used with Nile Red uptake to distinguish

Figure 4. CD36 surface expression profiles vary across adipose depots. A – C. Representative flow cytometric plot of CD36 uptake in BAT,
WAT:ING, WAT:GON, WAT:PR, WAT:MES and WAT:EC depots according to Nile Red fluorescence (High, Mid and Low). Gating of CD36 was
defined as CD36¡ve, CD36Low and CD36High. Ai,ii – Ci,ii. Adipocytes from the Nile RedHigh, Nile RedMid and Nile RedLow gate of the 6 adi-
pose depots were compared according to CD36Low and CD36High uptake in male mice (n D 6). Aiii-iv – Ciii-iv. Frequency of CD36Low and
CD36High positive cells expressed as a proportion of adipose mass in the Nile RedHigh, Nile RedMid and Nile RedLow adipocyte populations.
Data presented as mean § SEM. Differences between adipose depots were determined by 2-tailed, one way ANOVA and pairwise post-
hoc comparison by Tukey’s HSD test. Groups sharing a numeral are not significantly different from each other.
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adipose populations. We next asked whether there were
distinctions between the depots according to physiologic
state with particular reference to sex and pregnancy.

Adipose tissue from pregnant mice have elevated
surface CD36 and reduced mitochondrial membrane
potential compared with male and virgin female
mice

The surface expression of CD36 and mitochondrial
membrane potential of adipocytes was compared
between different adipose depots from male, virgin
female or pregnant female mice as a proportion of body
weight (Fig. 5). The adipose mass varied according to sex
and pregnancy status of the mice. Interestingly, in
healthy adult mice, when adipose mass was expressed as
a percentage of body weight, the relative proportions of
adipose tissues were not significantly different (Fig. 5A).
CD36 surface expression was elevated during pregnancy.
The frequency of CD36High adipocytes increased in the
BAT and epicardial WAT depots of pregnant mice com-
pared with virgin female or male mice (Fig. 5B). Brown
adipocytes from female mice showed less mitochondrial
membrane depolarization compared with equivalent cell
types from male mice (Fig. 5C). In contrast, virgin female
epicardial adipocytes showed greater mitochondrial
membrane depolarization than male or pregnant female
epicardial adipocytes (Fig. 5C).

Discussion

Deeper understanding of adipocyte biology is needed as
obesity and related metabolic disorders such as diabetes
and metabolic syndrome are rapidly becoming major
health burdens throughout the world. It is, therefore,

imperative that we develop assay systems to allow for
rapid and cost-effective analysis of adipose tissues to
monitor human health. Flow cytometry has proven to be
very effective in the diagnosis of hematological and
oncological diseases.25–28 Flow cytometry has also been
used to examine adipocytes derived from myeloid cells
in vitro or from single depots.13–17 Recently, Xiao and
colleagues used flow cytometry of buoyant gonadal adi-
pocytes to examine adipocyte size in relation to adipose
tissue inflammation.29 In contrast, our protocol catego-
rizes adipocyte populations in accordance to lipophilic
dye uptake. Irrespective of the depot assayed, all adipo-
cyte populations were strongly fluorescent for DRAQ5
and WGA. DRAQ5 stains nuclei while WGA is a lectin
that binds to oligosaccharides containing N-acetyl-D-
glucosamine found on the membrane of cells.30 Further-
more all adipocyte suspensions assayed had minimal
propidium iodide uptake. Together, these parameters
confirmed that the adipocytes are viable and intact with
nuclei. These steps were taken to highlight the rigor and
robustness of our approach.

In comparing a range of lipophilic dyes to label and
quantify adipocytes, we found that Nile Red was the
most cost-effective and the most effective at segregating
distinct size populations. Nile Red is a lipophilic dye that
stains neutral lipids.31,32 Flow cytometric analyses using
Nile Red have been conducted on macrophages, smooth
muscle cells and Leydig cells.32,33 Adipocytes differenti-
ated from mouse embryonic stem cells in vitro have also
been analyzed by flow cytometry using Nile Red.20 More
recently, Durandt and colleagues used Nile Red in ex
vivo cultures to identify subpopulations of adipocytes
derived from mesenchymal stromal cells.18 This is the
first study however, that expands upon these protocols
by combining Nile Red staining with surface antigen

Figure 5. Changes in adipocyte surface phenotype and mitochondrial membrane potential during pregnancy. A. Comparing the mass of
BAT, WAT:ING, WAT:GON, WAT:PR, WAT:MES and WAT:EC adipose tissue relative to bodyweight in male (n D 6), virgin (n D 6) and preg-
nant (n D 6) female mice. B. Expression of CD36 as a proportion of tissue mass in mature adipocytes. BAT, WAT:ING, WAT:GON, WAT:PR,
WAT:MES and WAT:EC from male (n D 6), virgin (n D 6) and pregnant (n D 6) female mice were compared. C. Comparing uptake of
MitoTracker� Deep Red as a proportion of tissue mass in mature adipocytes. BAT, WAT:ING, WAT:GON, WAT:PR, WAT:MES and WAT:EC
from male (n D 6), virgin (n D 6) and pregnant (n D 6) female mice were compared. Data presented as mean § SEM. Differences
between adipose depots were determined by 2-tailed, 2-way ANOVA and pairwise post-hoc comparison by Tukey’s multiple comparison
test. Groups sharing a numeral are not significantly different from each other.
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expression and mitochondrial membrane depolarisation
to compare primary mature adipocytes from multiple
adipose depots at the single cell level. Nile Red staining
can be performed rapidly (»5 minutes) on live cells and
does not require fixation or treatment with detergents as
used previously.34

Nile Red can be combined with other fluorescent probes
to obtain a more complete analysis of adipose cell biology.
MitoTracker� Deep Red is a far-red fluorescent probe
reported to represent mitochondrial membrane potential,
with increasing signal indicating a reduction in mitochon-
drial membrane depolarization.35 Brown and epicardial adi-
pocytes exhibited less membrane depolarization compared
with adipocytes from other adipose depots. The role of
mitochondria in BAT is most prevalent in cold tempera-
tures when BAT is activated to stimulate thermogenesis
through uncoupling protein-1.36 In humans, epicardial adi-
pose tissue has higher expression of uncoupling protein-1
compared with other WAT depots.37 This is supportive of
increasing evidence which suggests epicardial adipocytes
may have a similar function to BAT.37 Our findings in the
mouse support the similarities between BAT and epicardial
adipose tissue in humans.

Fatty acid translocase CD36 facilitates the uptake of
fatty acids and lipoproteins by accelerating intracellular
esterification into triglycerides.38 Surprisingly, brown
adipocytes expressed less surface CD36 than their WAT
counterparts. Mice exposed to cold temperatures have
enhanced uptake of lipoproteins in BAT.39 Mice that
lack both alleles for CD36 have impaired fatty acid, lipo-
protein and glucose uptake in BAT.39

As the animals examined here were maintained at
thermoneutrality, it is possible that the lower levels of
CD36 surface protein expression may change upon
exposure to lower temperatures and activation of BAT
non-shivering thermogenesis. Epicardial adipocytes
exhibited the highest levels of surface protein expression
of CD36. This is the first report of CD36 expression in
epicardial adipose tissue. Epicardial adipose tissue has
been proposed to play roles distinct to those of BAT,
subcutaneous WAT and other visceral WAT.37 Reser-
voirs of adipose tissue surrounding the heart are scarce
and largely serve to fuel myocardial contraction through
the storage and supply of fatty acids for mitochondrial
oxidation.40 Disturbances in this balance results in an
accumulation of triglycerides leading to cardiac lipotox-
icity.41 However, a specific role of CD36 in cardiac lipo-
toxicity is yet to be identified.

Evidence is increasing that adipose tissues exhibit sex-
ual dimorphism.42 For example, women have a higher
prevalence of BAT compared with men.43 In mice, BAT
from pregnant and virgin female mice had greater sur-
face CD36 expression and elevated mitochondrial

membrane potential compared with male mice. Preg-
nancy induced significant changes in adipocyte cell biol-
ogy. Surface expression of CD36 was elevated in adipose
tissue of pregnant mice compared with virgin female
mice. This suggests a distinct role for fatty acid translo-
case during gestation. Ogunyemi and colleagues found a
downregulation of CD36 expression in subcutaneous
WAT during pregnancy.44 Conversely, populations of
inguinal adipocytes from pregnant mice had a minor but
significant increase in CD36 surface expression com-
pared with virgin female and male mice. More strikingly
however, epicardial adipocytes showed a profound
increase in CD36 surface expression. The changes
observed may be due to the increased nutrient require-
ments of the mother during pregnancy, which is supple-
mented by the mobilization of lipid reserves.45 Further,
the changes in circulating hormones during pregnancy
may alter the cellular physiology of epicardial adipocytes.
For instance, circulating leptin is elevated during preg-
nancy.46 Enhanced expression of CD36 in epicardial adi-
pose tissue may serve to regulate leptin levels during
gestation.47 Additionally, elevated expression of CD36
has been reported in obese pregnant women with gesta-
tional diabetes mellitus.48 Gestational diabetes occurs
during pregnancy due to the increased load on the
mother by the fetus and may lead to type II diabetes
postpartum.49 This often causes a larger accumulation of
fat in the fetus as well as excess fetal growth.50

Our approach highlights the utility of flow cytometry
in assessing adipocyte phenotype and behavior at the sin-
gle cell level and relating this information to whole body
physiology. This tool could be applied for bench-top
diagnostics in adipose-related metabolism disorders such
as obesity and type 2 diabetes, 2 of the most pressing
health concerns for modern society.

Materials and methods

Mice

Young adult, wild type, outbred quackenbush Swiss mice
(Animal Resource Center, Perth, Western Australia)
were housed in filter top cages. Mice were kept under a
12-hour day-night cycle at constant temperature
(21–22�C) and provided food and water ad libitum. The
welfare of the animals in the housing area and experi-
ments conducted were in accordance with the Australian
Code of Practice for the use of animals in research.

Adipose tissue excision

Mice were killed by cervical dislocation according to
University of Sydney Animal Ethics Committee
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approval. BAT was dissected from the intrascapular
region. WAT was dissected from the subcutaneous ingui-
nal (WAT:ING), visceral gonadal (WAT:GON), peri-
renal (WAT:PR), mesenteric (WAT:MES) and epicardial
(WAT:EC) regions. Tissue was minced thoroughly
(»1–3mm3 in diameter) in fluorescence-activated cell
sorting (FACS) buffer (PBS C 0.05% bovine serum albu-
min) and digested in 0.1% (w/v) Collagenase II (Wor-
thington) for 1 hour at 37oC with occasional shaking.
Bovine serum albumin was used to maintain cell integ-
rity of the adipocytes.17,19

Isolation of mature adipocytes

Digested adipose tissue was dispersed further with
repeated pipetting before filtering through a »350 mM
polystyrene mesh to remove cell clusters. The filtered sin-
gle cell suspension was washed with 3 mL of FACS buffer
to inactivate collagenase and centrifuged at 500 RCF for 7
minutes to pellet the SVF. The buoyant adipocytes were
separated from the SVF using a plastic transfer pipette
into individual tubes. The SVF was resuspended in FACS
buffer and ready for antibody/dye labeling.

Reconstitution of Nile Red

Nile Red (Sigma) was reconstituted as described previ-
ously in DMSO to a concentration of 10 mg/mL.20 This
was diluted to a working solution 100 mg/mL in DMSO.
The final concentration used to stain the buoyant adipo-
cytes and SVF was 100 ng/mL in FACS buffer.

Flow cytometry

Buoyant adipocytes and cells from the SVF were incu-
bated with fluorescently-conjugated antibodies (Table 1)
for 30 minutes on ice in the dark. Lipophilic dyes
(Table 2) were subsequently added and incubated for 10
minutes on ice. Cells were then washed with FACS buffer
and centrifuged at 500 RCF. Cells from the buoyant frac-
tion were taken and stained with propidium iodide (PI)
to exclude dead cells from analysis. Buoyant adipocytes
were also stained with the lectin WGA conjugated to
FITC (L4895, Sigma) and nuclear probe DRAQ5 (62251,
ThermoFisher) to confirm the presence of intact adipo-
cytes with nuclei. For cells from the SVF, the supernatant
was removed before being resuspended in FACS buffer
containing PI. For single color controls, CD45 (APC and
PE, eBioscience, 17–0451–82 and 12–0451–81 respec-
tively) and Ter119 (FITC, eBioscience, 11–5921–81)
were used on flushed femoral bone marrow. The single
color controls were then used to correct compensation.
Isotype matched control was Rat IgG2b (APC,

eBioscience, 17–4031–81) and fluorescence minus one
controls were Nile Red alone (Fig. 2C, D), CD36 alone
and MitoTracker� Deep Red alone (data not shown).
Cells were gently shaken before analyses to keep them in
suspension and to avoid clumping.

Flow cytometer parameters

A Becton Dickinson FACSCalibur 4 Color Benchtop
Analytical Flow Cytometer (Becton Dickinson, San Jose,
CA, USA) was used for flow cytometric analysis. The
sheath pressure was 4.5 psi and the pressure differential
sufficient to establish a sample flow of 60 mL/min on a
high flow rate. The flow cell internal dimensions are 180
mM x 430 mM with the flow cell optically coupled to the
right angle objective lens for improved sensitivity. The
laser used was a 15 mW Argon Ion with laser wavelength
of 488 nM. The Sample Injection Port has a diameter of
1 mm. Cells were run at a max sample flow rate of
3000 events/second. Data was acquired using CellQuest
Pro� 6.0. Data was analyzed using the FlowJo software
package (TreeStar, Ashland, OR, USA).

Table 1. Antibodies used in this study.

Antigen-conjugate Clone Source

a2-integrin DX5 BioLegend
a4-integrin R1–2 eBioscience
a5-integrin eBioHMa5–1 eBioscience
b3-integrin 2C9.G3 eBioscience
b4-integrin 346–11A AbD Serotec
b7-integrin FIB504 eBioscience
c-Kit 2B8 BioLegend
CD31 390 eBioscience
CD34 RAM34 eBioscience
CD36 72–1 eBioscience
CD41 MWReg30 BD Bioscience
CD47 miap301 eBioscience
CD45 30-F11 eBioscience
CD71 R17217 eBioscience
CD133 315–2C11 BioLegend
E-Cadherin DECMA-1 BioLegend
EpCAM G8.8 BioLegend
F4/80 BM8 eBioscience
Flk-1 Avas12a1 eBioscience
Rat IgG2b K Isotype Control eB149/10H5 eBioscience
ICAM1 YN1/1.7.4 eBioscience
Ter119 TER-119 BioLegend

Table 2. Probes used in this study.

Probe Clone/Catalog Number Source

DRAQ5 62251 Thermofisher
LipidTox� Green H34475 Life Technologies
LipidTox� Red H34476 Life Technologies
MitoTracker� Deep Red M22426 Life Technologies
Nile Red N3013 Sigma
Oil Red O OREDO POCD Scientific
Wheat Germ Agglutinin L4895 Sigma
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Phase contrast microscopy

Adipocytes were dissociated into single cells as described
above. Buoyant adipocytes were transferred onto a 12-
well plate and viewed on an Axiovert35 (Zeiss) micro-
scope under 32x magnification (ACROSTIMA 32x
objective, NA: 0.40) and imaged using ZEN 2011 imag-
ing software (Zeiss). Scale bars represent 50 mm.

Confocal microscopy

Adipocytes were prepared and stained as above though
PI was not added. Stained adipocytes were pipetted onto
a glass slide and a coverslip placed on top. The coverslip
was sealed with nail polish and the slide kept in the dark
until imaging. Confocal images were taken with a Leica
SPEII (Leica, Germany) equipped with the solid-state
laser (405 nm, 488 nm, 532 nm and 625 nm). Images
were taken using an oil-immersed Leica ACS Apochro-
mat 63x objective coupled to the Leica Application Suite
– Advanced Fluorescence software. WGA was excited by
the 488 nm laser while Nile Red and MitoTracker� Deep
Red were excited by the 532 nm and 625 nm lasers
respectively. Scale bars represent 20 mm.

Statistical analysis

All data represented as mean § SEM. Statistical analyses
were performed on GraphPad Prism�. Comparison of
One-way ANOVA was used with Tukey’s post-hoc anal-
ysis to determine differences among lipophilic dye
uptake or surface expression of antibodies between adi-
pose depots. Two-way ANOVA with Tukey’s multiple
comparison test was used to determine significant differ-
ences between male, virgin female and pregnant mice.
To account for differences in body size between individ-
ual mice, raw data are expressed as a proportion of fat
mass (as a percentage of body mass) where relevant.

Abbreviations

BAT brown adipose tissue
PI propidium iodide
SVF stromal vascular fraction
WGA wheat germ agglutinin
WAT white adipose tissue
WAT:EC epicardial adipose tissue
WAT:GON gonadal adipose tissue
WAT:ING inguinal adipose tissue
WAT:MES mesenteric adipose tissue
WAT:PR peri-renal adipose tissue
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Appendix V:  

Table 8.1: Comparisons in Nile Blue fluorescence between ethanol, palmitate, linoleate and oleate treated mouse ES cells 

starved of serum over 12 hours. 

 

<1 min EtOH Palmitate Linoleate Oleate  30 min EtOH Palmitate Linoleate Oleate 

EtOH   NS NS < 0.0001  EtOH   NS NS < 0.001 

Palmitate     NS < 0.05  Palmitate     NS < 0.05 

Linoleate       NS  Linoleate       NS 

Oleate          Oleate         

           

           

1 hr EtOH Palmitate Linoleate Oleate  2 hr EtOH Palmitate Linoleate Oleate 

EtOH   NS NS < 0.01  EtOH   NS NS < 0.0001 

Palmitate     NS < 0.05  Palmitate     NS < 0.005 

Linoleate       NS  Linoleate       < 0.05 

Oleate          Oleate         

           

           

6 hr EtOH Palmitate Linoleate Oleate  12 hr EtOH Palmitate Linoleate Oleate 

EtOH   NS < 0.05 < 0.0001  EtOH   NS NS < 0.0001 

Palmitate     NS < 0.0001  Palmitate     NS < 0.0001 

Linoleate       < 0.05  Linoleate       < 0.0005 

Oleate          Oleate         
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Table 8.2: Comparisons in Nile Red fluorescence between ethanol, palmitate, linoleate and oleate treated mouse ES cells 

starved of serum over 12 hours. 

 

<1 min EtOH Palmitate Linoleate Oleate  30 min EtOH Palmitate Linoleate Oleate 

EtOH   NS NS NS  EtOH   NS NS < 0.05 

Palmitate     NS NS  Palmitate     NS NS 

Linoleate       < 0.01  Linoleate       < 0.01 

Oleate          Oleate         

           

           

1 hr  EtOH Palmitate Linoleate Oleate  2 hr  EtOH Palmitate Linoleate Oleate 

EtOH   NS 0.0002 0.0161  EtOH   < 0.0001 < 0.005 < 0.005 

Palmitate     0.0147 0.0003  Palmitate     NS NS 

Linoleate       <0.0001  Linoleate       NS 

Oleate          Oleate         

           

           

6 hr  EtOH Palmitate Linoleate Oleate  12 hr  EtOH Palmitate Linoleate Oleate 

EtOH   NS NS NS  EtOH   < 0.01 < 0.005 < 0.05 

Palmitate     NS < 0.05  Palmitate     NS NS 

Linoleate       NS  Linoleate       NS 

Oleate          Oleate         
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Approximately one-quarter of all cells in the adult human body are blood cells. The haematopoietic system is therefore massive in
scale and requires exquisite regulation to bemaintained under homeostatic conditions. Itmust also be able to respondwhen needed,
such as during infection or following blood loss, to produce more blood cells. Supporting cells serve to maintain haematopoietic
stem and progenitor cells during homeostatic and pathological conditions. This coalition of supportive cell types, organised in
specific tissues, is termed the haematopoietic niche. Haematopoietic stem and progenitor cells are generated in a number of distinct
locations during mammalian embryogenesis. These stem and progenitor cells migrate to a variety of anatomical locations through
the conceptus until finally homing to the bone marrow shortly before birth. Under stress, extramedullary haematopoiesis can take
place in regions that are typically lacking in blood-producing activity. Our aim in this review is to examine blood production
throughout the embryo and adult, under normal and pathological conditions, to identify commonalities and distinctions between
each niche. A clearer understanding of the mechanism underlying each haematopoietic niche can be applied to improving ex vivo
cultures of haematopoietic stem cells and potentially lead to new directions for transplantation medicine.

1. Introduction

Haematopoietic stem and progenitor cells (HSPC) require
signals from neighbouring cell types to maintain their self-
renewing potential. The microenvironment that is responsi-
ble for maintaining this unique property of stem and progen-
itor cells is termed the niche. HSPC originate and expand in a
number of very distinct niches in the mammalian conceptus.
Shortly before birth, HSPC home to the bone marrow (BM)
to reside there for the remainder of the mammal’s life. The
haematopoietic niche plays roles in supporting the initial
production of HSPC, the expansion of HSPC to allow the
embryo to survive, and the maintenance of HSPC in the BM
maintaining homeostasis and may be activated in peripheral
anatomical sites to respond to stress [1]. The role of the niche
may therefore vary widely according to the developmental
stage of the embryo or the stress the adult is placed under.

In contrast to embryonic stem cells and similar induced
pluripotent stem cells, we are still unable to maintain HSPC
indefinitely. Initial studies focused on stromal populations,
often fibroblastic in nature, isolated from haematopoietic
tissues such as the yolk sac, foetal liver, and BM. These
stromal cells offered signals such as soluble factors and cell-
cell interactions which supported the ex vivo or in vitro
expansion of HSPC. Defining the mechanisms that niche
cells orchestrate to maintain or expand HSPC under stress
will improve the current therapeutic uses of blood stem and
progenitor cells.

2. Blood Production or Haematopoiesis

No discussion of the haematopoietic niche can take place
without discussing the haematopoietic cells themselves.
However, we are focusing primarily on the niche rather than
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describing the blood lineages in detail. Numerous reviews
specifically discuss different blood lineage production [2–
5]. The haematopoietic system in the adult is responsible
for the production of a broad range of different cell types
from oxygen-transporting erythrocytes, the blood-clotting
platelets, to the numerous forms of granulocytes through to
the lymphoid branch with different T, B, NK, and innate
lymphocytes. Dendritic cells, of various forms, as well as
mast cells are also generated by the haematopoietic system.
The haematopoietic system is therefore a complex array of
different blood cell types performing a broad range of tasks
to maintain homeostasis [5].

In the developing embryo, blood cells are the first cell
type to become functionally mature highlighting the critical
requirement for this lineage. A range of different blood cell
types are also generated during embryogenesis which either
are unique to the conceptus (e.g., primitive erythroid cells,
foetal liver erythroid cells) or contribute to haematopoietic
lineages with low turnover in the adult (microglia, Kupffer
cells, and other tissue macrophages) [6, 7]. The first blood
cells to appear have limited progenitor activity and it is not for
several more days of embryonic development that cells with
multilineage haematopoietic stem cell (HSC) activity arise.
However, once adult-type (definitive) HSCs are generated, a
clear hierarchy appears in which rare HSCs give rise to more
frequent, lineage-committed progenitors. These progenitors
in turn becomemore lineage-restricted, eventually giving rise
to the massive numbers of mature blood cells needed. This
hierarchy is critical in maintaining life in the adult mammal.
An expansion of any stage or a blockade in differentiation
can lead to pathological conditions ranging from leukaemia
to anaemia.

In this review, we will discuss the cellular constituents
of the microenvironments that help to establish, maintain,
or reactivate this haematopoietic hierarchy from the first
appearance of blood cells in the extraembryonic yolk sac
through to the cells inhibiting blood production in the
diseased and aged BM. We will primarily focus on the
processes in the mouse as this is the best characterised model
system for investigating mammalian haematopoiesis.

3. Prenatal Haematopoietic Niches

The generation of blood cells during embryogenesis is com-
plicated by the fact that an increasing number of anatomical
sites have been proposed to give rise to blood. Figure 1
shows the complex changes in anatomical location of blood
production from the appearance of the first blood through
to aged animals. For a thorough explanation therefore,
we will be using the term conceptus, which includes the
developing embryo or foetus as well as the placenta and
the extraembryonic yolk sac. Mouse embryogenesis takes
approximately 21 days from fertilisation to birth. Embryonic
day of development will be abbreviated to E.

3.1. Initiation of Blood Production. The first site of blood
production in mouse conceptus is the yolk sac (YS) which
is a bilayered membrane that surrounds the developing
embryo (see Figure 2). Haematopoietic activity occurs in the

mesodermal layer of the vascularised visceral yolk sac (VYS),
which contains blood vessels and haematopoietic cells. In
addition to the extraembryonic mesoderm, the VYS is also
composed of an outer epithelial layer of extraembryonic
visceral endoderm (VE) made of columnar epithelial cells
with a brush border [8]. The VE layer of the YS has a large
absorptive surface and is involved in embryonic nutrition [9].
In addition to its role in transporting substances between the
maternal and foetal environments, VE cells also contribute to
haematopoiesis by secreting factors that induce commitment
ofmesodermal progenitors to the hematovascular fate [10, 11].
The developing endothelium and haematopoietic cells are in
very close proximity to the visceral endodermal cells [8]. The
VE itself is derived from an extraembryonic endodermal pro-
genitor. The specification of VE identity is dependent upon
the extraembryonic endodermal cells being exposed to bone
morphogenetic protein-4 (Bmp4), leading to gene expression
changes resulting in haematopoietic supportive activity [12].
Coculture of haematopoietic progenitors with YS-derived
endodermal cell lines results in expansion of haematopoietic
cells in vitro [13].The transcription factor GATA4 is critical to
VE formation [9]. Embryonic stem (ES) cells lacking GATA4
are unable to form blood islands demonstrating the role of
the VE in haematopoietic cell induction [9]. Factors secreted
by the VE can induce the primitive ectoderm (which is fated
to become brain) to be respecified to become haematopoietic
leading to epsilon (𝜀)-haemoglobin expression [10]. Indian
Hedgehog (Ihh) produced by the VE activates expression
of bone morphogenic protein-4 (Bmp4) in neighbouring
mesodermal cells leading to haematopoietic initiation and
patterning [10, 11]. Ihh also regulates vascular endothelial
growth factor receptor 1 and 2 (VEGFR-1 and VEGFR-2)
expression [14]. While both layers of the YS produce VEGF,
mesodermal VEGF is unable to induce blood cell formation
[15]. VEGF produced by the VE however is critical in blood
and endothelial cell development in the YS demonstrating a
clear role for the VE in the first haematopoietic niche [15, 16].

3.2. Primitive Haematopoiesis. The onset of YS haemat-
opoiesis occurs from E7.5 in the mouse conceptus [19, 20].
This initial phase of blood production is termed primitive
haematopoiesis [20–22]. During this phase, bands of prim-
itive blood cells loosely associated with endothelial cells (the
so-called blood islands) can be identified in theYS [23]. Prim-
itive erythroid cells enter the circulation at approximately
E9.0 [24]. Primitive erythroid progenitors (EryP-CFC) are
maintained in the YS for close to 48 hours in close proximity
to vascular endothelial cells and the VE described above.
EryP-CFC express receptors for soluble growth factors such
as c-Kit (receptor for stem cell factor, SCF), transforming
growth factor-𝛽 (TGF𝛽) receptor, erythropoietin receptor
(EpoR), angiopoietin (Ang) receptors, andVEGFR-2 [20]. YS
endothelial cells purified according to expression of VEGFR-
2 express SCF, TGF𝛽1, and Ang1 mRNA [20]. VE cells, iso-
lated by virtue of GFP expression driven of the 𝛼-fetoprotein
protein (AFP) promoter, express Ang1 mRNA [20]. VCAM-
1+ mesenchymal cells in the YS have also been implicated as
a niche cell controlling primitive erythroid cell maturation
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of haematopoiesis and the trafficking of haematopoietic stem cells (HSCs) and progenitor cells essential for maintaining haematopoiesis for
life. Blood production begins at the mesoderm (blue, E6.0) and yolk sac (orange, all stages). From here, the first wave is initiated at the yolk
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[25]. These cells have not been histologically identified as yet
though it is likely that they represent the thin mesothelial
layer of the YS [25]. VCAM-1 is a receptor for 𝛼4𝛽1-integrin
present on EryP-CFC at this stage of development in the YS
[20, 26]. Collectively, primitive erythropoiesis is supported
by signals from the neighbouring YS endothelial cells, signals
diffusing from the visceral endoderm and possibly through
direct cell-cell interactions with the mesothelium.

3.3. Definitive Haematopoietic Niches. The first wave of
definitive (adult-type) haematopoiesis starts at E8.25 in the
YS with erythromyeloid progenitors [22, 27]. Embryonic
definitive erythrocytes are smaller than their primitive coun-
terparts but larger than adult erythrocytes [28]. The second
wave of definitive haematopoiesis is characterised by the
production of definitive progenitor and stem cell populations
including lymphoid progenitors and HSCs capable of long-
termmultilineage reconstitution of newborn and foetal recip-
ients [29–31]. Despite the rapid changes in haematopoietic
potential in this narrowdevelopmental window, the impact of
the other YS compartments is not well defined. It is currently
unclear which signals from the YS niche are activating the
definitive haematopoietic programme within the developing
blood cells. However, we have recently observed that the
secreted peptide gastrokine-2 is upregulated, transiently, in
the YS VE cells close to the time at which haematopoietic
activity diminishes in this tissue [32]. Gastrokine-2 protein
was localised at the basal end of the VE cell facing the
neighbouring endothelial cell, suggesting that this may be
a signal from the VE influencing endothelial and possibly
haematopoietic cell behaviour [32].

3.4. The Placental Haematopoietic Niche. In vitro culture
studies showed that the embryonic component of mouse
placenta forms a niche supporting haematopoietic progen-
itors [33]. HSPC are present in the mouse and human
placenta [34–37]. Clusters of haematopoietic progenitor cells
can be observed attached to placental vascular endothelial
cells [38]. Similar to the early YS, endothelial cells in the
placenta produce SCF whilst the haematopoietic progenitors
expressed the SCF receptor c-Kit [38]. Three regions are
clearly defined in the placenta: the outer maternal decidua;
the middle spongiotrophoblast layer; and the vascularized
labyrinth. Placental trophoblasts produce platelet-derived
growth factor-𝛽 (PDGF𝛽) to prevent the premature differ-
entiation of HSPC, particularly erythroid progenitors [39].
The human placenta was identified as a niche supporting the
terminal differentiation of primitive erythroid cells through
interactions with macrophages [40].

4. Embryonic Haematopoietic Niches

4.1. Aorta-Gonad-Mesonephros (AGM). The dorsal aorta, at
the level of the developing gonadal andmesonephros (AGM),
exhibits clusters of haematopoietic cells attached to the
endothelial wall [21, 41, 42]. These haematopoietic clusters
contain definitive HSC activity [43–45]. Explant studies
confirmed that tissues located ventrally relative to the dorsal

aorta induce HSPC activity [46]. In contrast, tissues located
dorsal to the aorta lack HSPC supportive activity [46]. When
liver or BM HSPC are cultured with AGM stromal cells,
HSPC repopulating- and colony-forming potentials are pre-
served [47]. However, not all AGM endothelial populations
have the same supportive abilities. Endothelial cells derived
from the ventral region of the dorsal aorta support both HSC
maintenance and differentiation. Meanwhile, cells from the
urogenital subregion of the AGM support HSC maintenance
but fail to induce HSC activity [47, 48]. Cytokines, soluble
factors, and physical anchorage are part of theAGMmicroen-
vironment that play a role in supporting HSCs [48, 49].
Growth factors that enhance HSPC activity such as SCF,
Flt3-ligand, interleukin-3 (IL-3), and Bmp4 are all expressed
in the AGM [44, 50, 51]. Hedgehog signalling also plays a
role in regulating HSC activity in the AGM [46]. Signalling
from the nervous system also influences intraembryonic
haematopoiesis [52]. Sympathetic nervous system mediators
(catecholamines) regulate HSC emergence independent of
blood flow [52]. Furthermore, catecholamine receptors are
present on nascent HSCs, reinforcing the interplay between
nervous system and haematopoiesis [52]. Other factors, such
as retinoic acid signalling and blood shear stress, are also key
regulators of embryonic blood production [53–55].

4.2. Foetal Liver Haematopoietic Niche. By E10.5–11.0, hae-
matopoietic progenitors are migrating from the YS, AGM,
and placenta to the foetal liver (FL). HSPC activity increases
rapidly in this endoderm-derived tissue as the embryo
matures. The FL haematopoietic niche consists of a variety
of cell types including maturing haematopoietic cells them-
selves, sinusoidal endothelial cells, macrophages, stromal
fibroblasts, and hepatoblasts (progenitors of hepatocytes).
Hepatoblasts produce a broad range of haematopoietic
growth factors including SCF, erythropoietin (Epo), throm-
bopoietin (TPO), and IL-6 which all support erythroid cell
development [56]. The role of hepatoblasts in supporting
haematopoiesis is best exemplified by mice lacking the
tyrosine kinaseMap2k4.Thesemice fail to formhepatoblasts,
showing a significant reduction in Epo and SCF expression
and a concomitant impairment in blood cell production, in
particular erythropoiesis. HSPC express 𝛽1-integrin which
interacts with vitronectin and fibronectin in the extracellular
matrix produced by hepatoblasts [57]. This deposition of
extracellular matrix by hepatoblasts is regulated by autocrine
production of TGF𝛽 [57]. Hepatoblasts also produce IL-7 to
support lymphoid cell development [58]. A series of reports
detailed the surprising use of an anti-CD3e antibody to purify
a FL population which supported HSC maintenance. This
population expresses a range of soluble factors including
insulin-like growth factor-2 (IGF-2) and angiopoietin-like
proteins 2 and 3 (Angptl2 and Angptl3). These cells have
since been shown to express the hepatoblastmarkers albumin
and Dlk, GFP-driven by the AFP promoter, and surface SCF.
These cells also produce the chemokine CXCL12, also known
as stromal-derived factor (SDF) [59]. Collectively, this data
suggests these cells are likely to be hepatoblastic in origin.
The FL niche was modeled in vitro following the generation
of AFT024, a mouse FL stromal cell line. This cell line is
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highly supportive of HSPC and has been characterised at the
transcriptome level to identify regulators of HSPC activity
[60].

HSPC, expressing the surface marker Endothelial Protein
C Receptor (EPCR), interact with sinusoidal endothelial cells
[61]. These HSPC were observed in both the luminal and
parenchymal aspects of the Lyve-1+ sinusoidal endothelial
cells extracellular matrix made up of laminin and fibronectin
[61]. Very recent findings in the zebrafish show that the
arrival of blood progenitors in the perivascular niche leads to
profound changes in the niche itself. Endothelial cells actively
surround HSCs once they have entered the perivascular
space [62]. A similar process was observed in the mouse FL.
When transgenic labelled HSPC entered the FL parenchyma,
vascular endothelial cells congregated around the HSPC.The
HSPC then anchor to perivascular cells and orient their
mitotic division planes according to the perivascular cell
body they have adhered to [62]. These intriguing findings
show that the niche is responsive to the behaviour of HSPC.

FL macrophages form a supportive microenvironment
termed the erythroblastic island (EBI). Although the role of
EBI is better defined in the BM (will be described later),
FL EBI macrophages support the terminal differentiation
of primitive erythroid cells [63, 64]. This interaction is
dependent upon 𝛼4𝛽1-integrin present on the primitive
erythroid cells binding to VCAM-1 expressed by the FL
EBI macrophage [63]. The precise role is unclear; however
one important element is the engulfment and destruction of
millions of expelled erythroid nuclei. FLmacrophages lacking
DNAse II, the primary DNA-degrading enzyme, show a
massive uptake of erythroid nuclei which they are unable
to digest. This leads to the macrophage rupturing releasing
inflammatory mediators and killing the embryo [65].

5. The Bone Marrow Haematopoietic Niche

The bonemarrow (BM) is the predominant blood-producing
site of adult mammals. The migration of the haematopoietic
activity from the embryonic and foetal tissues, described
above, to the foetal BM is only now being defined at the
molecular level. Investigating foetal BM niche formation will
help us to define the essential elements of the niche as it
maintains blood production in the newborn, juvenile, and
adult mammals.

5.1. Foetal Bone Marrow Haematopoietic Niche Formation.
The long bones of the mouse foetus begin to develop at
approximately E14.5 and arise frommesodermal progenitors.
At E15.5, the mouse long bones are cartilaginous bone
templates lacking blood vessels. One day later in develop-
ment, vessels can be detected in the periosteum (the layer
surrounding the developing bone) and the epiphyseal plates
found at each end of the long bones [66]. Calcification
and vascularisation of BM cavity then begin, primarily in
the middle region of the long bone. At this stage, collagen
type 1, alpha 1- (Col1𝛼1-) expressing osteoblasts emerge in
the periosteum [66]. The middle cavity region is dominated
by CD31+ endothelial cells forming blood vessels and c-
Kit+ Sca-1+Lineageneg (KSL) HSC can be detected. By E17.5,

Col1𝛼1+ osteoblasts occupy themiddle BM cavity and expand
alongside CD31 expressing vascular endothelial cells, both
proliferating toward the epiphyseal plate [66]. The BM will
eventually fill the medullary cavities of bones throughout
the skeleton. The BM cavity can be subdivided into four
regions: endosteal, subendosteal, central, and perisinusoidal
regions. The endosteum is tissue lining the bone surface and
facing the marrow cavity or the trabeculae of the spongy
bone within the cavity and is mostly composed of osteoblasts
though osteoclasts are also important components of this
microenvironment [67].Mice lacking the transcription factor
Osterix (Osx) fail to formmature osteoblasts andmineralised
bone matrix [68]. Osx−/− foetal BM is vascularised normally
but lacks functional HSPC [66]. Osx−/− mice are therefore
a useful model for assessing the role of osteoblasts in
establishing the foetal BM niche.

Homing, adhesion, and retention of HSPC in the
haematopoietic BM niche and their migration to corre-
sponding microenvironments are controlled by chemotactic
factors. Inactivation of the genes encoding the chemokine
CXCL12 or its receptor CXCR4 led to significant decrease
of HSC frequency in E17.5 foetal BM [69]. Foetal liver HSC
frequency was not affected by Cxcr4-deficiency [69]. Cxcr4-
deficient foetal BM is hypocellular with a severe reduction
in myeloid cell frequency [70]. Mice lacking the genes
encoding serum response factor (Srf ) or myocardin-related
transcription factor (Mrtf ), which is regulated by Srf, also
show normal FL HSPC frequency and exhibit a failure of
HSPC to migrate to the foetal BM [71]. Srf -deficient HSPC
fail to respond to the chemotactic cues of CXCL12. This
foetal BM colonisation defect is phenocopied in mice lacking
eitherMrtfa orMrtfb which show defective cell motility and
actin remodelling [71]. CXCL12 and Scf gene expression was
upregulated in Osx−/− mutant E17.5 BM [66]. Collectively,
these findings suggest a BM-specific mechanism of niche
formation dependent upon the CXCL12-CXCR4 axis and
associated molecules.

5.2. The Neonatal and Juvenile Bone Marrow Haematopoietic
Niche. Profound physiological changes take place at birth.
The newborn must breathe and digest food for the first time;
the connection to the maternal circulation via the placenta
and YS has ceased and, perhaps most importantly, the new-
born is exposed to the external environment resulting in the
activation of both the innate and adaptive immune systems.
Haematopoiesis needs to accommodate these changes in
oxygen transport and immune response. Surprisingly, very
little is known about the immediate changes in the neonatal
niche in spite of the profound shift in physiological activity.
However, calcium ions originating from the bone matrix are
clearly important. Mice lacking the calcium receptor (CaR)
have hypocellular marrow just after birth [72]. CaR−/− HSPC
fail tomigrate to the endosteal niche as they cannot detect the
increase in free calcium ions released from the bone surface
[72]. CaR−/− HSPC show defects in binding to the extracel-
lular matrix proteins fibronectin and collagen type 1 [72]. As
the juvenile mouse matures, the bone matrix becomes more
heavily ossified (mineralised).This complex process is critical
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Figure 3: Cellular interactions within the adult bone marrow niche. The bone marrow niche is home to a variety of cell types that promote
or inhibit the maintenance of HSCs and haematopoietic progenitors. The endosteal niche and perivascular niche can be clearly discerned.
Adipocytes fill the marrow with age, inhibiting blood cell production.

in establishing a stable haematopoietic niche and relies on a
broad range of regulators from transcription factors such as
Runx2, phosphoproteins such as bone sialoprotein (Bsp), and
osteocyte proteins such as Saa3. Deletion of genes encoding
these proteins leads to abnormal mineralisation of the bone
matrix potentially compromising the BM.

6. The Adult Bone Marrow
Haematopoietic Niches

The BM serves as the main HSPC niche for adult eutherian
mammals though the bones do not appear to vary in their
HSC frequency [73]. The concept that there are specific cell
types that can orchestrate a BM niche was strengthened
by the discovery of a transplantable CD146-expressing cell
in the human BM which, when transplanted into mice,
could give rise to an entirely new BM niche which could
support mouse HSC activity [74]. HSC can be found in most
regions of the long bone; the trabeculated regions of the
metaphysis are the preferred site of homing compared to
the epiphysis (the endplates) or the diaphysis (the shaft of
the long bone) [75, 76]. However, it is now clear that there

are at least two anatomically distinct niches: the endosteal
niche close to the bone surface and the perivascular niche
associated with arterioles. Figure 3 simplifies the complex
cellular compartments in the adult BM nice.

6.1. The Endosteal Niche of the Adult Bone Marrow. High-
resolution cytometric analysis of the adult BM has shown
that HSCs preferentially localise to two distinct niches, the
perivascular niche and the endosteal niche [77]. Mouse
and human osteoblasts support HSPC [78]. The endosteal
niche exhibits unique physiological properties including
hypoxia and a greater concentration of free calcium ions
coming from the bone surface [72, 77]. HSCs adhere to
the osteoblasts [77, 79, 80]. Mice expressing a constitutively
active form of parathyroid hormone led to an expansion in
osteoblast number and HSC frequency [81]. Mice with con-
ditional deletion of BMPR1a possess increased numbers of
N-cadherin+ osteoblastic cells.These in turn interact directly
with HSC. This leads to an increased HSC frequency [82].
Conversely, transgenic ablation of osteoblasts led to a severe
reduction in HSC frequency [83]. Inhibition of osteoclast
function has been associated with reduced HSPC frequency
[84]. However, osteopetrotic mice, which lack functional
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osteoclasts, show overgrowth of mineralised bone matrix
and increased levels of HSPC [85]. This report challenged
previous reports suggesting that osteoclasts may play a role
in the BM haematopoietic niche.

Cooperative regulation among cytokine signals and cell
adhesionmolecules is required forHSCsmaintenance or acti-
vation. Many factors including cytokines, chemokines, adhe-
sion molecules, and transcription factors regulate the HSC
quiescence in the endosteal niche. Some of the molecules
defined in this process include Tie2 and angiopoietin-1 [86];
SCF and its receptor c-Kit [87]; CXCL12 [88]; thrombopoietin
[89], Jagged1 interactions with Notch receptors [81]; osteo-
pontin [90]; andN-cadherin which became a lightning rod of
controversy in the field. N-cadherin expression was reported
in the endosteal HSC niche [81, 82, 86] though its role
remained unclear. However, N-cadherin is not required for
HSCs maintenance though it may play a role in osteoblastic
homophilic interactions [91, 92].

6.2.The Perivascular Niche. A niche supporting HSC activity
has been identified in close proximity to the blood vessels of
the adult BM and has been termed the perivascular niche
[79]. HSCs interact with a perivascular mesenchymal cell
type which has become the focus of many research groups.
Imaging of the adult mouse BM revealed that the majority
of quiescent HSCs are situated close to arterioles [93]. Cells
expressing GFP under the control of the Nestin promoter
(Nes-GFP) localise in the perivascular region. Although they
constitute only a small fraction of BM cells, once purified
these cells were shown to contain essentially all of the
mesenchymal stem cell (MSC) activity of the marrow [94].
Even more striking, these Nes-GFP+ MSC were found to sit
adjacent toHSC.Nes-GFP+MSCproduce soluble factors that
support HSCmaintenance such as CXCL12 and SCF.This led
to the proposal that MSC form a niche with HSC directly and
maintain HSC activity [94].

Two distinct populations could be detected according to
GFP transgene expression in the BM. Cells expressing high
levels of the Nestin-GFP transgene (Nes-GFPbright) localise
to the perivascular region, exhibit pericyte-like morphology,
and express the pericyte marker NG2 and 𝛼-smooth muscle
actin. These are found exclusively around arterioles [93].
Dormant HSCs are found in close proximity to these Nes-
GFPbright cells. Genetic ablation of the NG2-expressing Nes-
GFPbright population resulted in HSC migrating away from
the arterioles. In contrast, themore abundant cells expressing
low levels of theNestin-GFP transgene (Nes-GFPdim cells) are
reticular in shape and associate with sinusoids [93].

Recently, much attention has been given to the role of
the sympathetic nervous system forming the adult BM niche.
Circadian noradrenalin secretion by the sympathetic nerves
negatively regulates CXCL12 expression in the BM. This
in turn reduces mobilisation of HSC from the BM niche
[95]. Denervation of sympathetic nerves resulted in loss of
HSC; however other BM components such as endothelial
cells, MSC, and osteoblasts remained intact [96]. These
sympathetic nerves were also found to be ensheathed by
autonomous, nonmyelinating Schwann cells which are in

direct contact with HSCs and lie parallel to blood vessels
[96]. These glial cells regulate activation of TGF𝛽 and HSC
quiescence via TGF𝛽/Smad signalling [96]. The sympathetic
nerve regulation of HSC maintenance is mediated indirectly
by Nestin+ MSC expressing the 𝛽3-adrenergic receptor [94].
Both adrenergic receptors 𝛽3 and 𝛽2 were reported to
regulate HSC mobilisation [94].

Similar haematopoietic defects were seen in trans-
genic mice with neurological abnormalities. UDP-galactose
ceramide galactosyltransferase (CGT) is required for the
synthesis of galactocerebroside and sulfatide required for
myelin [97].CGT−/−mice exhibit altered fibronectin network
in the BM and a pronounced reduction in CD45− VCAM-
1+ stromal cells numbers [97]. Diminished HSCmobilisation
from the BM was also observed in these CGT−/− mice after
following granulocyte colony-stimulating factor (G-CSF) or
fucoidan administration [98].

The molecular mechanisms regulating this niche are
becoming more clearly defined. SCF is clearly a critical factor
in regulating the adult BM niche. Ding and colleagues per-
formed an exhaustive analysis of the cell types expressing SCF
in the marrow using the 𝑆𝑐𝑓𝑔𝑓𝑝/+ mouse [99]. Endothelial
cells and perivascular cells express GFP in this transgenic
model. Conditional deletion of Scf in osteoblasts or Nestin-
expressing cells had no effect on HSC frequency. However,
specific loss of Scf in endothelial cells expressing Tie2-Cre led
to significant loss of HSC frequency. The role of perivascular
cell-derived SCF was confirmed by conditional deletion
in leptin-receptor (LepR)-Cre-expressing cells. Intriguingly,
this led to a reduction in BM HSC frequency with a con-
comitant increase in splenic HSC numbers. No change was
observed during developmental stages demonstrating that
SCF originating from the perivascular mesenchymal cells
regulates the BM niche specifically. A similar phenotype
was observed in vitamin D receptor (VDR) null mutant
mice which show reduced BMHSC frequency and enhanced
splenic HSC numbers [100].

CXCL12 is crucial to HSC homing to the BM. A popula-
tion of CXCL12-abundant reticular (CAR) cells was observed
in the vascular niche [88, 101–103]. Conditional deletion of
CXCR4 results in profound reduction inHSC frequency [88].
Conditional deletion of CXCL12 from Osx-expressing BM
CAR cells and osteoblasts resulted in HPC mobilization and
decline in B lymphoid progenitors [102].Therefore, signalling
between CXCL12 from CAR cells and CXCR4 on HSC
maintains HSC self-renewal, proliferation, and migration.
CAR cells are bipotent and are able to give rise to both
osteoblasts and adipocytes as will be discussed later in this
review [103].

6.3. Other Cells of theMarrowWhich Support Haematopoiesis.
HSCs reside in close proximity to megakaryocytes [104,
105]. Ablation of megakaryocytes reduces HSC proliferation
and engraftment [105, 106]. Thrombopoietin (TPO) admin-
istration of megakaryocyte-ablated mice restores HSC func-
tion [105]. Cxcl4, which megakaryocytes produce, inhibits
HSC proliferation, reduces HSC numbers, and decreases
engraftment [104]. An increase inHSCnumber, proliferation,
and repopulating activity was observed in Cxcl4-deficient
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mice [104]. Megakaryocytes also maintain HSC quiescence
through TGF𝛽 signalling under homeostatic conditions and
promote HSC expansion via FGF-1 production under stress
conditions [107]. High-resolution imaging in vivo revealed
the colocalisation of HSCs with FoxP3+ regulatory T (Treg)
cells on the endosteal surface [108]. However, whether this
interaction is biologically relevant in homeostatic HSPC
maintenance is unclear.

7. Haematopoietic Progenitor Niches

The expansion and maturation of committed haematopoietic
progenitors require specific microenvironments. Here, we
describe several critical niches regulating haematopoietic
progenitor development into functionally mature cells.

7.1. Erythroblastic Islands Are Essential Niches for Erythro-
poiesis. Erythroblastic islands (EBI) are a specialised niche
found where mammalian erythroblasts proliferate and differ-
entiate and are described in Figure 4. Discovered by Marcel
Bessis in the 1950s, EBI were first described as multicellular
structures with developing erythroblasts at various stages
of differentiation surrounding a central macrophage [109–
111]. EBI have also been isolated from the foetal liver
[63, 112] and spleen [113, 114]. The clinical significance of
this niche was demonstrated in animal models of human
haemoglobinopathies [115, 116]. The central macrophage of
the EBI was proposed to be a “nurse” cell for erythroid
development withmacrophages providing iron to developing
erythroblasts for heme synthesis [109]. However, there is still
no direct evidence that the central macrophage is providing
iron to the surrounding erythroblasts. Cytokines such as
RCAS [117], TRAIL [118], and IGF-2 [119] are produced by
EBI central macrophages. Another proposed function of the
EBI central macrophage is to engulf and destroy extruded
erythroid nuclei. Phosphatidylserine (PS) is exposed on
the outer leaflet of the plasma membrane of the extruded
erythroid nuclei [120]. EBImacrophages actively phagocytose
extruded erythroid nuclei via the PS receptor, Tim-4 [63,
121]. After phagocytosis, themacrophages degrade the nuclei.
DNaseII and its regulator, erythroid Kruppel-like factor-1
(Klf1), are essential in this process [65, 120, 122]. Embryos
with targeted deletions of retinoblastoma tumour suppressor
(Rb) protein, c-Maf, or the cytoskeletal protein paladin die in
utero with defects in EBI function [112, 123, 124].

7.2. B Lymphoid Niche. B lymphoid progenitors reside in
close proximity to the endosteum and migrate towards the
central blood vessels in the BM as they mature [125]. VCAM-
1+ CXCL12+ expressing reticular cells were among the first
B-cell-specific niche to be identified [101]. These cells lack
endothelial and endosteal markers and are distant from the
endosteal surface. Other cell types thought to play a role
include CXCL-12-expressing osteoblasts and IL-7-expressing
cells [83]. B-cell progenitors attach to CXCL-12-expressing
cells and then relocate and attach to IL-7-expressing cells as
they mature into pro-B-cells progenitors [101]. After naive B-
cells are sensitized by antigens in the peripheral lymphoid
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Figure 4: The erythroblastic island provides a niche for erythroid
development. Central macrophage anchors erythroblasts in the
erythroid niche via adhesion molecules. Within the EBI, the central
macrophage supports erythropoiesis in several ways, such as provid-
ing iron for haemoglobin synthesis, cytokine, and growth factors as
well as engulfing expelled erythroid nuclei.

organs, resultant plasma cells migrate to the marrow which
then serves as a specific niche for thesemature cells [101].This
niche offers prerequisite soluble factors (Blimp-1, CXCL12,
APRIL, IL-5, IL-6, and TNF-𝛼) as well as necessary cell-cell
contacts through CD44 and CD28. In the absence of IgE+
DX5+ basophils, isolated plasma cells rapidly die. Addition of
basophils enabled plasma cells survival [126]. F4/80+ Gr-1low
Siglec-F+ eosinophils associate with plasma cells and supply
IL-6 and APRIL for plasma cell survival [127]. Depletion
of eosinophils in mice results in apoptosis of plasma cells
[127]. Plasma cells also interact with megakaryocytes, which
secreteAPRIL and IL-6.Mice deficient in the thrombopoietin
receptor, c-Mpl, have impaired megakaryopoiesis and show
reduced numbers of plasma cells [128].

8. Normal versus Stressed Splenic
Microenvironments

Red blood cells, or erythrocytes, are normally generated
from erythrocyte progenitor cells residing inside the BM
in a process termed medullary erythropoiesis. The erythro-
cyte production rate increases dramatically during anaemia
[129]. To recover from anaemic stress, erythroid progenitors
migrate from the BM to extramedullary sites such as the
spleen, which act as secondary sites for erythrocyte pro-
duction. This process is termed stress erythropoiesis and
is a critical phase in the recovery from haemorrhage or
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diseases causing anaemia [130]. Stress erythropoiesis often
manifests as a dramatic increase in spleen size (termed
splenomegaly) and is most notable in chronic haemolytic
conditions such as thalassaemia and sickle cell anaemia but
is also observed in many haematological diseases such as
myelofibrosis, leukaemia, and lymphoma [129]. Bmp4 and
Hedgehog signalling act together with Epo, SCF, and hypoxia
to encourage extramedullary haematopoiesis in the spleen
during stress [131, 132]. Hedgehog signalling is also required
for the recovery from anaemia [133]. The splenic stroma
consists of vascular and lymphatic endothelial cells, marginal
zonemacrophages, follicular dendritic cells, fibroblastic retic-
ular cells, marginal reticular cells, and red pulp fibroblasts.
The erythroblastic island is the only known splenic stromal
cell which has been examined during anaemic stress. Forss-
man antigen+ F4/80+ macrophages extend their cytoplasmic
processes around erythroblasts in the spleen after irradiation
and transplantation [113]. MSS31 endothelial-like cell lines
isolated from newborn mouse spleen selectively supported
the maturation and enucleation of the erythroid progenitor
cells by direct cell-cell contact [134]. Fibroblast-like SPY3-
2 cell line expresses high levels of SCF and low levels of
granulocyte macrophage colony-stimulating factor and IL-3
and can support erythroid differentiation in vitro [135].

9. Inhibition of the Haematopoietic Niches

As mammals age, fatty marrow predominantly takes over
the BM compartment [136]. BM adipocytes, or yellow adi-
pose tissue (YAT), are often dismissed as simple “space-
fillers” that lay dormant in the marrow [137]. YAT may
also serve as an emergency energy reservoir [138]. However,
it has been recently shown that YAT plays an active role
within the haematopoietic microenvironment influencing
haematopoiesis and osteogenesis [139]. YAT originates from
BM MSC, the same precursors that give rise to osteoblasts
and haematopoietic cell types. YAT responds to systemic
changes in energy metabolism.This is most evident in ageing
where there are large changes in YAT volume. As ageing
individuals show increased BM YAT and anaemia, it was
proposed that BM adipocytes may inhibit blood production.
By comparing the haematopoietic recovery of wild-type
and fatless A-ZIP/F1 mice after lethal irradiation, it was
observed that the lack of adipogenesis in the fatless mice
enhanced haematopoietic recovery [139]. This was due to the
enhanced engraftment of short-term progenitors in the BM
compartment. Ablation of YAT also improved osteogenesis
[139]. In vitro cultures of BM-derived adipocytes yielded a
reduced expansion of haematopoietic cells, indicating that
adipocytes release diffusible inhibitors of haematopoiesis.
Secretion of neuropilin-1, lipocalin 2, adiponectin, and TNF-
𝛼 fromadipose tissue can inhibit proliferation of haematopoi-
etic cells [139].However, adiponectin can supportHSCprolif-
eration [140]. Transgenic ablation of CAR cells revealed their
essential role in the niche and demonstrated the potential of
these cells to form both osteoblasts and adipocytes [103]. The
transcriptional regulator Foxc1 is highly expressed by CAR
cells. Conditional deletion of Foxc1 led to a profound change
in CAR cell fate. Rather than giving rise to both osteoblasts

and adipocytes, a lineage bias was observed with a far greater
number of mature adipocytes forming in the BM [141]. This
in turn led to a pronounced decrease in HSPC activity. CAR
cells also expressed the adipogenesis markers leptin receptor
and peroxisome proliferator-activated-receptor-𝛾. Enforced
expression of Foxc1 in the preadipocytic cell stromal cell line
OP9 led to enhanced haematopoietic supporting activity and
loss of adipogenic activity [141]. Collectively, these findings
demonstrate that Foxc1 is acting as a rheostat within critical
niche cells, specifying whether the marrow will support or
inhibit haematopoiesis.

10. Commonalities and Distinctions between
the Different Haematopoietic Niches

Assessing the cellular and signalling components of all of
the critical haematopoietic niches throughout ontogenywas a
revealing exercise. Commonalities between these profoundly
distinct niches become obvious. Not surprisingly, SCF and
its receptor c-Kit were observed to play critical roles in
extraembryonic, embryonic, foetal, and adult blood pro-
duction as well as during recovery from stress. SCF and
Hedgehog signalling are significant players in haematopoiesis
ranging from the first primitive erythroid cells through to
extramedullary haematopoiesis in the spleen during anaemia.
Likewise, Bmp4 signalling was highlighted as being impor-
tant in numerous niches including the YS, AGM, BM, and
anaemic spleen. Hypoxia is also clearly important in a
number of niches. The role of blood flow is critical in the
AGM for HSPC development. It may also play a role in
shutting down primitive erythroid progenitor activity in the
YS. Similar rheological signals are less likely to be important
in the parenchyma of the FL or BM.The distinction between
foetal and perinatal niches was highlighted by the importance
of CXCL12 and its receptor CXCR4 in the BM.This signalling
system plays a far less significant role in the early embryonic
stages of haematopoiesis though it is critical in numerous
elements of adult haematopoietic production.

11. Application of Our Understanding of
the Haematopoietic Niche

How can we apply our understanding of the different
haematopoietic niches to medical technology and practice?
The deconstructionist approach has been flipped recently
with the development of “bonemarrow-on-a-chip.”Microflu-
idic cultures of marrow maintained HSPC in vitro for at least
1 week demonstrating that the critical microenvironment for
controlling HSC activity can be engineered [142]. This could
improve currentmodels for drug development and screening.
Animal experimentation could be reduced or replaced as
human “bone marrow-on-a-chip” systems could be used to
assess the toxicity or efficacy of novel compounds on the
human haematopoietic system. This system can be scaled up
allowing for high throughput screening of new therapeutical
compounds.

Perhaps the most medically relevant utility of the niche
is as a system for the ex vivo expansion of HSPC for
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transplantation. Currently, we cannot maintain HSPC indef-
initely in vitro or ex vivo in the same way we can maintain
embryonic stem or induced pluripotent stem cells. One of
the “holy grails” of haematology is therefore identifying the
factor or combination of factors that can maintain HSPC
indefinitely in an ex vivo setting. This would have massive
repercussions for transplantation and transfusion medicine,
as it could allow for the correction of genetic lesions inHSPC,
thus allowing for effective engraftment after transplantation.
This could be applied to a broad range of haematological
disorders affecting millions of people such as sickle cell
anaemia, 𝛽-thalassaemia, immunodeficiencies, and blood-
clotting disorders.
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