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ABSTRACT 

Transport infrastructure investments are typically justified largely on the basis of 

their ability to increase travel speeds. However, new bicycle facilities, such as 

separated cycleways, may result in slower journeys. Economic appraisals of 

proposed bicycle facilities therefore tend to focus on the social benefits, in 

particular, improvements in public health resulting from increased physical 

activity. Yet, some welfare benefit must also accrue to the users of the new 

facilities, given they willingly choose to use them over faster alternatives.  

This thesis explores how discrete choice modelling can be used to analyse the trade-

offs people make when choosing how they travel, and thereby (a) forecast changes 

in travel demand resulting from bicycle network improvements, and (b) quantify 

and monetise the resulting benefits to users. Despite the theory having been 

established in the 1970s, there have been few practical applications of this 

methodology, and it is yet to be used to value the user benefits of new bicycle 

facilities in a car-centric city. This thesis also assesses the short-term reliability of 

such assessments, by analysing changes in travel demand and preferences 

following an actual infrastructure intervention. 

It is found that bicycle network improvements offer substantial welfare benefits to 

users, in terms of improved accessibility, comfort, perceived safety, and transport 

choice – even though their journeys may end up being slower. Furthermore, these 

benefits amplify when links are connected into a network. By ignoring such 

benefits in project appraisal, bicycle facilities may be significantly undervalued, 

and transport investment decisions inadequately informed.
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1 INTRODUCTION 

1.1 Why is bicycle use in Australia declining, and what should/can be done 

about it? 

Cycling for transport has clear social, health and environmental benefits (Bauman 

et al., 2008). It can also be an enjoyable way to travel. However, in Australia, 

bicycle use has fallen dramatically over the last century (R. Lee, 2010). The 2017 

National Cycling Participation Survey (Munro, 2017) shows a statistically 

significant decline in the proportion of the population who use a bicycle in a typical 

month – from 27.1 per cent (95% confidence interval (CI) 26.4 to 27.8) in 2011, to 

21.8 per cent (95% CI 20.6 to 23.0) in 2017 (see Figure 1.1). Of those who do use a 

bicycle in a typical month, 80.6 per cent use it for recreation, while only 30.7 per 

cent use it for transport (i.e., with an activity destination in mind, e.g., work, study 

or shopping).2   

 

Figure 1.1: Cycling participation in Australia 2011 to 2017 (Munro, 2017) 

The declining level of transport cycling could be attributed to a number of factors. 

Motor vehicle traffic volumes have grown in towns and cities, helped by 

governments continually trying to optimise the flow of cars, at the expense of 

                                            

2 Some respondents reported using a bicycle for both transport and recreation. 
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people using other transport modes (R. Lee, 2010). With urban speed limits 

generally set at 50 or 60 km/h, it is perhaps not surprising that fear of motorised 

traffic is the most commonly stated reason for not wanting to cycle (Fishman, 

Washington, & Haworth, 2012). In addition, Australia has laws mandating the use 

of bicycle helmets, and police actively enforce them, with current fines ranging up 

to AUD 330 in New South Wales (NSW).3 Other possible factors include low-

density urban sprawl and increasing travel distances, development of retail 

centres designed to be accessed by car, and the increasing propensity for parents 

to enrol their children in non-local private schools (Rowe, 2016). 

Given the fear of motorised traffic is a major barrier, a proven strategy for giving 

more people the opportunity to use a bicycle for transport is to provide a network 

of low-stress bicycle routes – comprising bicycle paths physically or spatially 

separated from traffic, and low-speed streets (Pucher & Buehler, 2008). Australian 

state roads authorities are not generally supportive of the latter (Lahausse, Van 

Nes, Fildes, & Keall, 2010), meaning investment in bicycle paths is the principal 

built environment intervention available. 

1.2 How expenditure on transport projects is prioritised 

Although the per-kilometre cost of bicycle infrastructure is low compared to that 

for public transport or private car infrastructure (Department of Infrastructure 

and Transport, 2013), government finances are limited and there are many other 

demands on them. To help government decision makers and other stakeholders 

decide between, and prioritise, alternative transport project proposals, social cost 

benefit analysis (SCBA) can be used to assess their net welfare benefits to society 

(see OECD, 2011).4 In a SCBA, net welfare benefits over a project’s anticipated 

lifetime are valued in monetary units, and divided by the lifetime project cost to 

                                            

3 These laws may not have had such an impact on sport cycling, because higher risk sport cyclists 

tend to use helmets regardless of any laws. 

4 In practice, governments announce many projects before they are assessed, and then use SCBA 

to justify the decision (Terrill, 2016). 
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give a benefit-cost ratio (BCR). In theory, projects with a BCR above 1.0 are 

worthwhile, provided there are no better options. Projects with the highest BCRs 

provide the best value for society, and should be prioritised. 

For a road or rail project, the main welfare benefit is usually an increase in travel 

speed (though the quality of the journey time is starting to be considered, e.g., 

crowding levels on public transport). This is generally expressed in terms of ‘travel 

time savings’, but in practice tends to materialise as an increase in travel 

distances, while the average daily travel time changes little in the long term 

(Marchetti, 1994). Thus, individual travellers benefit from greater home location 

choice (e.g., a larger home in a cheaper suburb farther from work), and being able 

to access more distant destinations (Metz, 2008; Van Wee & Rietveld, 2008). 

However, encouraging urban sprawl in this way is not always the most efficient 

and sustainable way to plan a city (Newman & Kenworthy, 1999). Access to 

economic and social opportunities (hereafter defined as ‘accessibility’) can be 

provided by proximity, as well as “by velocity” (Rode et al., 2014, p. 4). 

Assessing bicycle infrastructure proposals using travel speed as the yardstick 

presents particular difficulties. Although cycling can sometimes be faster than 

driving or public transport for short trips (R. B. Ellison & Greaves, 2011), it has 

been found that some people will opt to cycle, even if there are faster options 

available (Wardman, Tight, & Page, 2007). Additionally, some people will opt for a 

low-stress cycling route, even if there are more direct options available (Sener, 

Eluru, & Bhat, 2009). If travel time is used as the only welfare measure, these 

people would be considered worse-off, even though they have willingly chosen the 

slower option. 

Mokhtarian & Salomon (2001) argue time spent travelling for transport is not 

always just a means to an end (accessing a destination). In some cases, a person 

can have a positive affinity for travel, because it gives them “a sense of speed, 

motion, control, enjoyment of beauty” (p.695), and transition time between work 

and home in which to relax, work, read, etc. In the case of walking and cycling, it 

is also an opportunity for exercise. 
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1.3 The slow movement 

The notion that speed is all-important is being challenged in other aspects of 

modern life: the slow food movement was founded in 1989, with the aim “to prevent 

the disappearance of local food cultures and traditions, counteract the rise of fast 

life and combat people’s dwindling interest in the food they eat” (Slow Food 

International, 2015). It spawned a broader slow movement that, according to 

Lumsdon and McGrath (2011, p. 266), “rails against structures in western society 

that encourage fast consumption”. The movement has spread to include slow 

television (Puijk, 2015), slow journalism (Ball, 2016), and even slow fashion 

(Pookulangara & Shephard, 2013). 

The concept of slow travel is not a new one; the desire to wander is part of human 

nature. The existing literature on slow travel focuses on holiday and leisure travel, 

with Lumsdon and McGrath (2011, p. 265) observing an increasing desire amongst 

tourists for “slowing down, travelling shorter distances and enriching the travel 

experience both en route to and at the destination”. Catering to this demand, 

Affirm Press has published a series of Slow Guide Books, including the Slow Guide 

to Sydney (Hawkes, 2007) and the Slow Guide to Melbourne (Egger & Hughes, 

2010). 

Some of the notions of slow tourism could also apply to utilitarian transport. The 

journey experience can have intrinsic value, while excessive speed creates a 

detachment from one's surroundings and community – two neighbours driving 

along their street in opposite directions at 50 km/h are not likely to stop for a chat 

(Speakman, 2005). High traffic speeds are also associated with increased 

crash/injury risk (Aarts & Van Schagen, 2006) and increased traffic noise (Ouis, 

2001). 

However, any positive affinity that people have for travel time and journey 

experience is not well captured by existing SCBA approaches. Rather, they 

discriminate against transport modes that offer a more pleasant journey 

experience, or an opportunity to be productive while travelling (due to the travel 
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time savings for these modes being valued lower). Should the focus be on the 

quality of time spent travelling, rather than just its duration? 

1.4 Can social cost benefit analysis be made more suitable for assessing 

bicycle projects? 

Perhaps because bicycle infrastructure projects do not appear to offer significant 

benefit to users when assessed through a travel speed/time lens, attention has 

shifted to forecasting and valuing the social benefits of cycling instead. In 

particular, the health benefits that result from increases in physical activity (see 

Mulley, Tyson, McCue, Rissel, & Munro, 2013), and anticipated reductions in 

motor vehicle externalities, due to people switching from driving to cycling. The 

NSW Government’s appraisal guidelines assume the value of travel time savings 

for bicycle projects to be zero, because “choosing to ride a [bicycle] is aimed at 

improving health and gaining other social benefits but not to reach a destination 

faster” (Transport for NSW, 2013a, p. 157). The guidelines value health benefits at 

AUD 1.11 per additional bicycle kilometre travelled (BKT), and reduced motor 

vehicle externalities at AUD 0.58 per additional BKT. 

However, the low cost of bicycle projects means they are rarely subjected to a SCBA 

alongside other transport proposals, even though they might offer substantial 

welfare benefits. (The NSW Treasury recommends SCBA should be carried out for 

projects with a capital cost of AUD 10 million or more.) 

Van Wee & Börjesson (2015) suggest some other reasons why SCBA is rarely used 

to appraise cycling projects. There are challenges in estimating and valuing the 

effects of cycling interventions: data on cycling behaviour are scarce, while 

forecasting and valuing social benefits, such as improved health, is not 

straightforward. In addition, cycling projects are typically undertaken by local 

governments, whereas SCBA has traditionally been undertaken at a state or 

national government level. 

Notwithstanding these barriers, van Wee & Börjesson (2015) argue SCBA should 

be applied more routinely to cycling projects, to help ensure better allocation of 

public funding. However, they identify a number of research needs to improve the  
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valuation of user and social benefits (capital and operational costs are fairly well 

known). Among other recommendations, they suggest that:  

Research is needed to improve the possibilities of evaluating all the 

accessibility-related impacts of cycling policies. Such impacts include travel 

times, effort, the option value, the impact on social exclusion levels, the 

appreciation of the ‘freedom to move’, mode dependent wellbeing, etc. (p. 123). 

In addition, they call for improved models for predicting cycling behaviour, as these 

inform the magnitude of many costs and benefits (e.g., improved accessibility and 

health). 

1.5 Aim and scope 

This thesis aims to address the research gaps discussed above, primarily the need 

for improved methods and models for forecasting and valuing the user/accessibility 

benefits of new bicycle infrastructure. 

It was funded by an Australian Research Council Linkage Project grant (Number 

LP120200237), with the broader remit of making major contributions to the 

assessment of the transport, health and economic impacts of bicycle infrastructure 

(The University of Sydney, 2012). To address the question of assessing 

accessibility-related impacts, the use of discrete choice analysis (DCA) to forecast 

and value changes in utility is explored, using a proposed new cycleway in Sydney 

as a case study. The theory for DCA-based valuation was established in the 1970s 

(see de Jong, Daly, Pieters, & van der Hoorn, 2007), but there have been few 

applications to bicycle project appraisal.  

To address the question of improved models, DCA-based travel demand forecasts 

made prior to the cycleway opening are evaluated by assessing changes in actual 

travel demand. In addition, the hypothesis that cycling preferences remain stable 

over time – which underpins DCA-based forecasting – is tested using longitudinal 

travel survey data collected from residents living near the cycleway, and in a 

separate control area. 
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The primary data source for this research is The Sydney Travel and Health Study 

(Rissel et al., 2013), which is described in detail in Chapter 1. Secondary data 

include a post-intervention survey of users of the new cycleway, and biannual 

bicycle traffic counts. 

1.6 Thesis outline 

This thesis is organised as follows. Chapter 2 reviews the literature on the costs 

and benefits of cycling projects, and existing methods of assessing them. 

Chapter 3 outlines the theory of DCA-based demand forecasting and project 

appraisal. This is followed by a review of the literature on bicycle choice analysis, 

and preference transferability. 

Chapter 1 begins with a statement of key research questions and hypotheses, 

followed by an outline of the experimental design, and a description of the case 

study (new cycleway) and data sources. 

Chapter 5 describes the analytical approach, while Chapter 6 presents the results. 

These two chapters follow a similar structure. They begin with the pre-

intervention modelling, forecasting and economic valuation (appraisal), then deal 

with the post-intervention assessment of actual changes, and conclude with the 

temporal preference transferability tests.  

Chapter 7 presents a discussion of the findings in this thesis. This includes: 

addressing the research questions and hypotheses; detailing contributions to the 

literature; acknowledging the study limitations; identifying possibilities for future 

research; and outlining implications for transport policy and practice. This is 

followed by some concluding remarks.
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2 THE WELFARE BENEFITS AND COSTS OF BICYCLE PROJECTS 
AND POLICIES  

This chapter reviews the current state of practice of, and the literature on, 

assessing bicycle projects and policies – specifically, how the various benefits and 

costs are estimated, valued and incorporated (or not) during assessment. 

It begins with a discussion of bicycle policy objectives, and the various 

interventions used to achieve them (Section 2.1). The following section (2.2) 

outlines high-level approaches for assessing the merits of these interventions, both 

ex-ante (appraisal) and ex-post (evaluation). The predominant appraisal method 

used in Australia, social cost benefit analysis (SCBA), is outlined in Section 2.3. 

Sections 2.4 and 2.5 detail how the social and user benefits and costs of 

interventions may be quantified and valued in the SCBA framework. Some 

alternative appraisal methods are reviewed in Section 2.5.5, while post-project 

evaluation and longitudinal (before-after) assessment are discussed in Sections 2.7 

and 2.8 respectively. The chapter concludes with a summary and a discussion of 

the research gaps (Section 2.9). 

For this literature review, Scopus 5  and Google Scholar 6  were searched for 

publications concerned with the assessment of bicycle projects and policies. Search 

terms included ‘bicycle’, ‘cycling’, ‘cost benefit analysis’, ‘appraisal’, ‘evaluation’, 

‘safety’, ‘health’, ‘equity’, ‘accessibility’, ‘longitudinal’ and ‘natural experiment’. 

2.1 Bicycle projects and policies 

Given the clear environmental, health and economic benefits of cycling as a mode 

of transport (Bauman et al., 2008), governments worldwide have outlined policies 

to make cycling more attractive and accessible. Two common policy objectives are 

(a) to increase bicycle ridership (usually in terms of mode share), and (b) to improve 

rider safety (Lumsdona & Tolley, 2001). 

                                            

5 An abstract and citation database (https://www.scopus.com). 

6 A search engine for scholarly literature (https://scholar.google.com.au). 
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The NSW Government's bicycle strategy (Transport for NSW, 2013b, p. 5) includes 

an objective to “increase the mode share of cycling”, though it gives no target level 

or timeframe against which to measure progress. It also includes an objective to 

“increase safety”, again with no target level or timeframe (or even a unit of 

measurement). The City of Sydney's bicycle strategy (City of Sydney, 2007, p. 3) 

has a well-defined target to “increase the number of bicycle trips made in the City 

of Sydney, as a percentage of total trips, from less than 2 per cent in 2006 to … 10 

per cent by 2016”. On the other hand, its safety objective, to “achieve a reduction 

in the number of incidents”, has no target level or timeframe. Some overseas 

governments have objectives that are more ambitious. In 2007, the City of 

Copenhagen set goals of increasing the bicycle commuting mode share from 36 per 

cent to 50 per cent by 2015, and reducing serious crashes involving bicycle riders 

by 50 per cent (Gössling & Choi, 2015).  

Pucher et al. (2010) outline five broad categories of intervention used to achieve 

bicycle policy objectives: infrastructure; integration with public transport; 

education and marketing programs; bicycle access programs; and law changes. 

Some example policies in each category are listed in Table 2.1. To this list could be 

added financial and tax incentives, such as the United Kingdom government’s 

Cycle to Work scheme (Cycling UK, 2016). 

Table 2.1: Examples of bicycle policy interventions 

Category Policy examples 

Infrastructure  Bicycle paths, lanes and bridges 

 Signage 

 Bicycle parking 

Integration with public transport  Bicycle storage on trains and buses 

 Short-term bicycle hire at train stations 

Education and marketing programs  Ride to work days 

 Bicycle rider training 

Bicycle access programs  Short-term public bicycle hire/share 

Laws  Lower speed limits 

 Helmet laws 

 Strict liability laws 
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2.2 Assessing the costs and benefits of bicycle projects and policies 

The assessment of bicycle projects and policies can be performed ex-ante, to provide 

decision makers and stakeholders with information about the relative benefits and 

costs of alternative project proposals, and to allow projects competing for finite 

public funding to be prioritised (appraisal). Alternatively, assessment can be 

performed ex-post, to measure the impacts or success of a project (evaluation). 

Rarely is assessment done both ex-ante and ex-post. 

In his review article on the benefits and costs of investing in non-motorised 

transport projects, Litman (2014) makes the distinction between those that accrue 

to users – both existing and potential – and those that accrue to society 

(externalities). In both cases, he notes that the benefits of non-motorised transport 

tend to be overlooked or undervalued in conventional transport project assessment. 

Potential benefits and costs of non-motorised transport investments are 

summarised in Table 2.2. Some benefits accrue to both users and society (e.g., 

health), and care must be taken to avoid double-counting (Börjesson & Eliasson, 

2012). 

Table 2.2: Potential benefits and costs of investing in bicycle projects (after Litman, 
2014) 

 User Society 

Benefits Improved convenience and comfort 

Improved accessibility 

Option value (i.e., the value that a person may place 
on having an option available to them, even if they 
do not expect to use it) 

Lower travel costs 

Enjoyment 

Improved health and fitness 

Increased community cohesion and interaction 

Business benefits (e.g., for local retailers and tourism 
operators) 

Reduced road and parking congestion 

Road and parking facility cost savings 

Reduced chauffeuring burdens 

Less road trauma 

Reduced public healthcare costs 

Increased community cohesion and interaction 

Improved passive security 

Energy conservation 

Reduction in local air pollution and stormwater 
contamination 

Reduction in noise pollution 

Reduction in greenhouse gas emissions 

Reduced sprawl 

Preservation of public and open space 

More liveable communities 

Improved equity 

Costs Increased risk of physical injury 

Generally slower travel 

Equipment costs 

Project/facility costs 
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2.3 Social cost benefit analysis 

Transport projects are often appraised using social cost benefit analysis (SCBA), 

in which the future welfare benefits and costs are estimated for the expected 

lifetime of the project, converted to monetary values if necessary using non-market 

valuation techniques, then discounted to present values. The net welfare benefit is 

then divided by the implementation cost to give a benefit-cost ratio (BCR). In 

theory, projects with the highest BCRs have the greatest population welfare 

benefit per dollar of expenditure, and should be prioritised (P. Stopher & Stanley, 

2014). 

There are four general criticisms of SCBA, and the way it tends to be used in 

practice. First, it does not consider how disbenefits, benefits and costs are 

distributed among the population (Levinson, 2002). 

Second, BCRs are often misunderstood by decision makers, stakeholders and the 

public, who may be led to believe that the forecast ‘economic benefits’ represent 

real benefits to the national/state economy – i.e., GDP growth, increased 

productivity, deficit reduction, etc. – when they are largely social welfare benefits 

valued in dollar terms using economic valuation methods (Standen, 2015). 

Third, there is significant scope at each stage of a SCBA for analysts to manipulate 

it to give the result the project proponents want to see (optimism bias) (Flyvbjerg, 

2009): they can ignore social disbenefits that would lower the BCR, e.g., health 

impacts; they can include questionable benefits that would raise the BCR, e.g., 

agglomeration benefits (see Dobes and Leung (2015)); they can overestimate the 

magnitude of benefits and underestimate the magnitude of disbenefits (e.g., 

overestimate traffic forecasts for a toll road); and they can undervalue disbenefits 

and overvalue benefits (e.g., overestimate how much motorists would be willing to 

pay to use a faster road). Varying the appraisal period and discount rate can also 

affect the BCR significantly. 

Fourth, a SCBA considers only the incremental impacts of an individual project, 

which may be considered by stakeholders to be acceptable in isolation (Tricker, 

2007). Rarely are the cumulative impacts of multiple or successive projects 
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considered, meaning human, social and environmental capital can be eroded over 

time through a “death by a thousand cuts” (Morrison-Saunders, Pope, Bond, & 

Retief, 2014, p. 40). This can be prevented by setting limits for environmental or 

social impacts, e.g., setting an air quality threshold for a city, and rejecting 

outright any project that would cause that threshold to be exceeded.    

SCBA has been used to appraise road and public transport projects for many 

decades, but is not routinely used for bicycle projects. Lowry et al. (2016) note that 

using SCBA to appraise bicycle projects will always involve non-market benefits 

that are difficult to measure, monetise and communicate to stakeholders, so 

professional judgement and public opinion will invariably influence decisions. 

Asplund and Eliasson (2016) found that forecasts of project costs and demand have 

been very inaccurate in SCBAs conducted for road and rail projects in Norway and 

Sweden. However, they conclude that SCBA is still “able to fairly consistently 

separate the wheat from the chaff and hence contribute to substantially improved 

infrastructure decisions” (Asplund & Eliasson, 2016, p. 195). 

Van Wee and Börjesson (2015) acknowledge the challenges of estimating and 

valuing non-market benefits, adding that SCBA may not be considered cost-

effective for low-cost bicycle projects, which are generally undertaken by local 

authorities that lack the requisite resources or expertise. They also highlight the 

concern that SCBA does not inform stakeholders about equity impacts, or the 

distribution of benefits and costs.  

Nonetheless, they make some arguments for not a priori rejecting the use of SCBA 

for the appraisal of bicycle projects. First, while the cost of undertaking a SCBA 

may be considered high when compared to the low construction costs (relative to 

road and rail), it may appear more cost-effective in the context of the welfare 

benefits, which may far outweigh the infrastructure costs. Second, SCBA offers an 

objective method to prioritise projects competing for finite funding. Third, all the 

major benefits and costs of bicycle projects can, in theory, be estimated and valued, 

and in this regard bicycle projects are no different from other transport 
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investments that are more routinely appraised with SCBA (e.g., road and public 

transport projects).   

That said, van Wee and Börjesson identify a number of areas where SCBA of 

bicycle projects can be improved and refined. Among these are: better transport 

demand models to predict the impacts of new bicycle infrastructure on traveller 

behaviour; and – of particular relevance for this thesis – more research on the user 

benefits of bicycle policies, including the option value (refer to Table 2.2). 

Unsurprisingly (given its high bicycle mode share), the Netherlands has been at 

the forefront of bicycle policy appraisal, and SCBA has been used to appraise a 

variety of projects. Recent applications include appraisals of an intercity bicycle 

highway between Cuijk and Nijmegen (Decisio, 2015), and of a bicycle bridge and 

parking station for 22,000 bicycles in Utrecht (van Ommeren, Lelieveld, & de 

Pater, 2012). The Dutch government has even developed a web tool for rapid SCBA 

of bicycle projects (CROW Fietsberaad, n.d.). 

There are a number of steps involved in undertaking a SCBA. These include 

deciding which costs and benefits to include/exclude, and deciding how they are to 

be quantified and valued. These steps are reviewed in turn below. 

2.3.1 Selection of costs and benefits 

According to welfare economic theory, if any person’s wellbeing is likely to be 

affected in any way by a project, then the impact (negative or positive) should be 

included in the SCBA (P. Stopher & Stanley, 2014). 

In their systematic review of 32 SCBAs of non-motorised transport policy 

interventions, Brown et al. (2016) noted considerable inconsistency in the benefits 

and costs included (see Table 2.3). This contributed to a large range in the reported 

BCRs, from -31.9:1 to 59:1. Other contributing factors were differences in non-

market valuation methods, and differences between the interventions themselves. 
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Table 2.3: Benefits and costs included in past SCBAs of active transport 
interventions (Brown et al., 2016) 

 

 

2.3.2 Quantification of costs and benefits 

The magnitude of the welfare costs and benefits of a bicycle infrastructure project 

is generally assumed to be correlated with the resulting change in demand for 

bicycle travel, with demand typically measured in units of bicycle kilometres 
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travelled (BKT).7 To forecast the change in demand, it is necessary to (a) know the 

baseline bicycle travel demand, and (b) estimate how the project might affect that 

demand, relative to a ‘Do nothing’ scenario (Ortúzar & Willumsen, 2011). Baseline 

demand data can be obtained from travel surveys, while the change in demand is 

typically forecast using a transport demand model. Existing transport demand 

models for motor vehicles and public transport are usually inadequate for 

assessing the impact of bicycle projects, because their spatial scale is too large to 

model short distance bicycle trips, and they do not include enough detail about 

bicycle facilities, such as cycleways (van Wee & Börjesson, 2015). A number of 

bespoke transport demand models have been developed for forecasting the effects 

of bicycle network improvements (e.g., Hopkinson & Wardman, 1996; Ortúzar, 

Iacobelli, & Valeze, 2000; Yi, Feeney, Adams, Garcia, & Chandra, 2011). 

A limitation common to most transport demand models is that they assume 

people’s home and work location choices will not be affected by a transport 

intervention. In the case of road and rail projects, people in general move farther 

from work when faster transport options become available, cancelling out the 

forecast travel time savings and contributing to urban sprawl (Guranton & Turner, 

2009; Metz, 2008). In the case of bicycle infrastructure, this is not likely to be an 

issue, though people with a preference for bicycle tend to self-select 

neighbourhoods with good cycling facilities (Pinjari, Eluru, Bhat, Pendyala, & 

Spissu, 2009). 

To give an idea of the baseline cycling demand in a major Australian city, the 

Sydney Cycling Survey (BTS, 2013) reports cycling participation, trip rates, trip 

distances, trip purposes and mode share. In 2012, the cycling trip rate in the 

Sydney Greater metropolitan region was 0.071 trips per person per day, and the 

average bicycle trip distance was 5.01 km, giving an annual BKT per person of 130 

km. This compares to 105 BKT per person in 2011. 

                                            

7 Or bicycle miles travelled, in countries using Imperial distance measurements. 
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2.3.3 Valuation of costs and benefits 

The various benefits and costs of bicycle policies are quantified using different 

units. For example, improvements in health and life expectancy may be measured 

in quality adjusted life years (QALYs). Converting all these benefits and costs into 

monetary units is useful for comparing the net benefit of different projects, but 

placing a monetary value on non-market goods such as QALYs is problematic 

because they are generally not traded in competitive markets. For this reason, 

various valuation methods have been developed to monetise such non-market 

benefits and costs. These include hedonic pricing, where the impact on nearby 

property prices is measured, and contingent valuation, where people are asked how 

much they are willing to pay for an improvement (or to avoid a loss) (Litman, 2012). 

Willingness to pay can also be estimated using stated choice surveys, where 

respondents are asked to make trade-offs between the attributes of two or more 

alternatives (Hensher, Rose, & Greene, 2005). 

The usual approach for a bicycle project SCBA has been to estimate the change in 

demand in units of BKT (as discussed in Section 2.3.2 above). Social benefits/costs 

(e.g., public health) are then calculated by multiplying the forecast change in 

demand (BKT) by the per BKT value. User benefits (e.g., travel time savings and 

journey utility) are estimated using the rule of half, whereby 100 per cent of the 

estimated per BKT benefit accrues to existing bicycle users (the area bounded by 

P1, P2 and Q1 in Figure 2.1), while half the estimated per BKT benefit accrues to 

new bicycle users (the green shaded area in Figure 2.1. 

The per BKT value has varied considerably in bicycle project SCBAs undertaken 

in Australia to date. Yi et al. (2011) calculated a net benefit of A$0.84 per BKT, 

while the Commonwealth Government cites a value of $A1.43 per BKT 

(Commonwealth of Australia, 2013), and consultants PricewaterhouseCoopers 

(2009) calculated $0.48 per BKT. The breakdown of these values is shown in Table 

2.4. The variation can be explained by differences in the benefits and costs 

included/excluded, valuation methods used, and differing assumptions. 
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Figure 2.1: The rule of half (AECOM, 2010) 

Table 2.4: Valuation of BKT in Australia (in cents per BKT) 

 
Yi et al. (2011) 

Commonwealth of 
Australia (2013)   PwC et al. (2009) 

Pricing year 2010 2010 2008 

Benefit/cost    

Decongestion 11.34 20.70 24.28 

Vehicle operating cost savings 12.42 35.00 16.39 

Parking cost savings 3.10 1.60 1.00 

Travel time savings 13.20 - 0.00 

Journey ambience – on road 
bicycle lanes 

8.91 - - 

Journey ambience – separated 
bicycle path 

11.86 - - 

Absenteeism savings 16.70 - - 

Health benefits 6.00 112.00 1.42 

Injury costs -13.55 -37.00 -2.03 

Improved air quality 1.60 2.80 1.73 

Noise pollution reduction 0.43 0.90 0.85 

Greenhouse gas reduction 1.12 2.20 0.66 

Water pollution 0.16 - - 

Urban separation 0.25 - - 

Avoided infrastructure and 
services costs 

10.42 5.20 3.91 

Net benefit per BKT 84 143 48 

 

2.3.4 Other considerations 

The outcome of a SCBA can be significantly influenced by the choice of appraisal 

period and discount rate. Using a short appraisal period and high discount rate, 

future benefits and costs are undervalued, which will favour projects with short 

construction timeframes, and those with long term social and environmental costs 
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(Litman, 2009). In NSW, a discount rate of 7 per cent is used (Transport for NSW, 

2013a). 

2.4 Social benefits and costs 

This section reviews the literature on some key social benefits and costs 

(externalities) of bicycle projects and policies, and the methods proposed/used to 

estimate and value them. 

2.4.1 Road safety 

In Australia, data on cycling crashes are collected by police and hospitals, though 

many minor injuries are not reported. In the five years to 2015, there were on 

average 1,225 road fatalities per annum across Australia, of which, on average, 39 

(3 per cent) were bicycle riders (BITRE, 2015). Over this period, there was an 

upward trend in bicycle rider fatalities of 2 per cent per annum, while the trend 

for all other road users was downward. On average, there were 5,321 bicycle rider 

injuries per annum requiring hospitalisation over the same period. 

The figure of 3 per cent of road fatalities being bicycle users may appear small, but 

bicycle trips account for a small amount of overall travel in Australia, with only 

1.5 per cent of commuting trips made by bicycle in the 2009 Census (Australian 

Bicycle Council, 2010). To quantify the risk of injury whilst cycling, the injury rate 

should be divided by an exposure variable, usually distance travelled or number of 

trips. 

When using distance as the exposure variable, cycling can appear riskier than 

other transport modes. For example, in the Sydney Metropolitan Area, Garrard et 

al. (2010) estimate there were 5.31 fatalities and 557.25 injuries per 108 BKT 

between 2002 and 2005. For car occupants, they estimate 0.37 fatalities and 34.02 

injuries per 108 vehicle kilometres travelled (VKT) over the same period. 

Nationally, the fatality rates for light vehicle drivers and motorcyclists have been 

calculated as 0.39 and 12.04 per 108 VKT respectively (2003 to 2007 average) 

(Johnston, Brooks, & Savage, 2008). It should be noted that the figures for bicycle 
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include both transport and sporting use, whereas the figures for motor vehicles 

exclude sporting use (e.g., motor racing).   

However, Teschke (2014) reasons that number of trips, rather than distance, 

should be used as the exposure variable, because travel distance is dependent on 

transport mode. On this basis, Teschke et al. (2013) concluded that the risk of 

cycling in British Columbia (Canada) or the United States is comparable with that 

of walking or driving. All have a much lower risk than motorcycling, but a higher 

risk than travelling by bus (see Figure 2.2). 

 

Figure 2.2: Fatality and injury rates per 100 million person-trips by road user class, 
British Columbia and the United States (Teschke et al., 2013) 

Given that bicycle riders are vulnerable road users, a principle motivation for 

investing in bicycle infrastructure is to improve safety, not just to protect existing 

riders, but also to reduce fear, and thereby attract greater ridership.  

Current best practice for improving road safety is the 'safe systems' approach, 

whereby it is acknowledged that humans will make mistakes, and infrastructure 

and regulations should be designed to minimise their likelihood and consequences 

(ARRB, 2015). For cycling, safe system measures such as separating bicycle and 

motorised traffic, and 30 km/h urban speed limits, have proved very effective in 
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countries such as the Netherlands (Wegman, Zhang, & Dijkstra, 2012). The safety 

benefits of separated bicycle paths can be negated to some extent if intersections 

are not well designed, or if they are built along major roads and encourage riders 

to switch route from roads with lower traffic volumes (Scheepers et al., 2015). 

State road authorities in Australia have made little progress in creating safe 

cycling environments (Garrard et al., 2010). In the 1990s, in an apparent 

acceptance that people are at high risk of being injured whilst cycling, they enacted 

laws requiring bicycle users to wear helmets. However, the efficacy of bicycle 

helmets, and the public health benefits of these laws, have been the subject of much 

debate (Curnow, 2005, 2007; Macpherson & Spinks, 2008; Sieg, 2016). 

Unfortunately, studies that associate helmet use with a significant reduction in 

injuries aggregate data from low-speed/low-risk transport cycling and high-

speed/high-risk sport cycling. Meanwhile, there is evidence to suggest Australia’s 

helmet laws are a barrier to higher cycling participation (Rissel & Wen, 2011), and 

may even make crashes more likely, because riders take more risks when helmeted 

(Gamble & Walker, 2016).  

Road authorities also encourage bicycle users to wear high visibility clothing 

(Roads and Maritime Services, 2015), despite research which shows that contrast 

of clothing with the background is a greater determinant of daytime visibility  

e.g., dark clothing is more visible than light clothing against a light background 

(Gershon, Ben-Asher, & Shinar, 2012; Roge, Douissembekov, & Vienne, 2012). 

Many cycling advocates argue safety measures that may result in decreased 

cycling participation (such as helmet laws) are counter-productive, because they 

diminish the 'safety in numbers' effect. A number of studies have demonstrated 

that bicycle/pedestrian crash rates do not increase linearly with bicycle/pedestrian 

traffic volumes (e.g., Brüde & Larsson, 1993; Jacobsen, 2003). In a review of several 

such studies, Elvik (2009) calculated that the number of bicycle crashes increases 

with an exponent of between 0.31 and 0.65, relative to increases in bicycle use. The 

phenomenon has been observed at all spatial scales, from individual intersections 

(Brüde & Larsson, 1993), to entire countries (Jacobsen, 2003).  
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However, there is some uncertainty about the causal mechanism, or indeed, 

whether one exists. Jacobsen (2003) reasons it is unlikely that individual 

pedestrians and bicycle riders become more cautious when their numbers grow; 

therefore, the most plausible explanation is that motorists change their behaviour. 

Bhatia and Wier (2011) question this inference, and discuss possible confounding 

factors.8 First, a safer environment (e.g., physical separation from traffic or better 

enforcement of traffic laws) may explain both volumes and safety increasing  

although the effect has been observed with temporal fluctuations in bicycle 

volumes at the same location (Bonham, Cathcart, Petkov, & Lumb, 2006). Second, 

more people walking/cycling means fewer people driving and therefore lower traffic 

volumes  although there is no clear evidence an increase in bicycle usage leads 

directly to a decrease in motor vehicle traffic (see Section 2.4.4). Given these 

uncertainties, Bhatia and Wier caution against pursuing improvements in 

vulnerable road user safety through ‘safety in numbers’ alone. 

Even taking into account ‘safety in numbers’, there remains the ethical dilemma 

that increased bicycle use will likely result in an increase in the absolute number 

of rider injuries and fatalities. On the other hand, the fact most injuries to bicycle 

riders are caused by motor vehicle drivers leads Gössling and Choi (2015, p. 111) 

to argue that “the cost [of bicycle rider injuries] should be attributed to [drivers] 

rather than cycling, as is currently the case”. In other words, drivers crashing into 

bicycle riders could be considered a ‘spillover externality’ (Jansson, 1994) – as could 

perceived danger (Section 2.5.3) and air toxin exposure (Section 2.4.2).  

There is considerable variation in the way the social cost of crashes and injuries is 

treated in economic assessments of bicycle projects. Injury costs were ignored in 

half of the of the 36 economic assessments reviewed by Brown et al. (2016) (Table 

2.3). In Australia, the general approach is to calculate total injury cost, by 

multiplying the forecast increase in BKT by the expected number of injuries per 

                                            

8 Bhatia and Wier limit their discussion to pedestrian safety, but the arguments apply equally to 

cycling safety. 
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BKT by the average cost per injury. Elsewhere, number of bicycle riders is 

sometimes used instead of BKT as the unit of demand. Table 2.5 compares injury 

valuations from a number of economic analyses found in the academic and grey 

literature. 

 Table 2.5: Valuation of bicycle injury costs9 

Study author Study type Location 
Bicycle injury 
rate 

Cost per injury 
(AUD) 

Pricing 
year 

Injury 
cost rate 
(AUD) 

Transport for 
NSW (2013a) 

Government 
appraisal 
guidelines 

NSW, 
Australia 

 $6,698,897 (fatal) 

$496,286 (serious) 

$82,717 (other) 

$119,516 (average) 

2014  

Yi et al. (2011) Project 
appraisal 

NSW, 
Australia 

2.4158 
per million BKT 

$67,720 (average) 2010 $0.16 per 
BKT 

Pricewaterhouse 
Coopers (2009) 

Project 
appraisal 

NSW, 
Australia 

2.4158 per 
million BKT 

$63,100 2009 $0.15 per 
BKT 

Sinclair Knight 
Merz and 
Pricewaterhouse 
Coopers (2011) 

Appraisal 
guidelines 

Queensland, 
Australia 

0.03 (fatal) 

0.98 (serious) 

1.71 (other) 
per million BKT 

$1,811,164 (fatal) 

$435,593 (serious) 

$17,310 (other) 

2010 $0.37 per 
BKT 

Rabl and de 
Nazelle (2012) 

Academic 
policy 
appraisal 

Netherlands 2.5x10-5 (fatal) 
per year per 
bicycle rider 

$2,456,625 

 (fatal) 

2010 $61 per 
year per 
bicycle 
rider 

France 6.5x10-5 (fatal) 
per year per 
bicycle rider 

$2,456,625 

 (fatal) 

2010 $160 per 
year per 
bicycle 
rider 

Department for 
Transport (2014) 

Government 
Appraisal 
guidelines 

UK  $2,853,047 (fatal) 

24,716 
(slight) 

2010  

Lind et al. (2005) Appraisal 
guidelines 

Sweden  $147,145 to 
$331,077 

2005  

Macmillan et al. 
(2014) 

Academic 
policy 
appraisal 

New 
Zealand 

 $2,419,229 (fatal) 

$253,629 (serious) 

2010  

 

The NSW Government uses an average injury cost of AUD 119,516 (2014 prices), 

which was calculated using a stated preference study that estimated people's 

willingness to pay for fewer injuries (Transport for NSW, 2013a). 

In appraising City of Sydney’s proposal for a 230-kilometre network of cycleways 

for inner-city Sydney, Yi et al. (2011) estimated the cost of increased bicycle 

                                            

9 All costs converted to AUD using the average exchange rate for the pricing year.  
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crashes at AUD 16.3 million over 30 years, against economic benefits totalling 

AUD 682.3 million. The average injury cost of AUD 67,720 was estimated using a 

human capital approach, which aims to capture actual costs such as medical 

expenses and lost workdays. To account for the ‘safety in numbers’ effect, Yi et al. 

assumed the bicycle injury rate would decline by 0.4 per cent for every 1 per cent 

increase in bicycle mode share. They also assumed an increase in BKT would be 

matched by a corresponding decrease in VKT by other modes, resulting in an injury 

saving of AUD 22.7 million for car occupants, and AUD 4.1 million for bus 

occupants. However, the proposed project was for a congested inner-city area, and 

did not involve the removal of any general traffic lanes, so capacity freed up by 

people switching form car to bicycle would be expected to be consumed within a 

short time by latent driving demand, meaning no lasting reduction in car VKT 

(Ortúzar & Willumsen, 2011).  

Another consideration is potential injuries caused to other road or path users by 

bicycle riders, particularly in Australia where state and local road authorities often 

opt for building shared pedestrian and bicycle paths (this is seen as a cost-effective 

way of providing safe paths for bicycle riders, without the need to repurpose 

general traffic lanes or on-street car parking). In practice, the risk of a bicycle user 

injuring another road or path user has been found to be so low that it does not 

warrant inclusion in SCBA (Grzebieta, McIntosh, & Chong, 2011). However, 

pedestrians do perceive shared paths to be unsafe, and can feel intimidated or 

startled by less courteous bicycle riders (Taverner Research, 2009), so the issue 

does warrant consideration – though it is perhaps more appropriately dealt with 

during the development of facility design standards, or during individual project 

design.  

While there is variation in the way increases in bicycle injuries are estimated and 

valued, the fact that more cycling injuries are likely with increased participation 

cannot be ignored. That said, a number of studies have found that, at the 

population level, the physical and mental health benefits of increased bicycle use 

far outweigh the injury costs (de Hartog, Boogaard, Nijland, & Hoek, 2010; Rojas-
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Rueda & Nazelle, 2011; Woodcock, Tainio, Cheshire, O’Brien, & Goodman, 2014). 

These public health benefits are considered in the next section. 

2.4.2 Public health 

Physical inactivity is known to increase the risk of non-communicable diseases  

including obesity, heart disease, stroke, breast cancer, colon cancer and diabetes  

as well as dementia and depression (Brown et al., 2016; Reiner, Niermann, Jekauc, 

& Woll, 2013). Globally, physical inactivity is responsible for 6 per cent of global 

deaths, behind only high blood pressure (13 per cent), tobacco use (9 per cent) and 

high blood glucose (6 per cent) in the list of leading mortality risk factors (World 

Health Organization, 2009). 

Encouraging active transport such as cycling and walking (including walking 

to/from public transport) is often suggested as a way to increase physical activity 

levels, and therefore improve public health. However, measuring the health 

benefits of new bicycle projects and policies presents a number of challenges 

(Mulley et al., 2013). First, changes in both mortality and morbidity need to be 

considered. Second, a person who increases their cycling activity because of an 

intervention may substitute other forms of physical activity. Third, the health 

benefit of increased physical activity will be much less for those who are 

sufficiently active to begin with. 

In addition to changes in physical activity, there are other health impacts of bicycle 

interventions. Separated bicycle paths that laterally separate bicycle riders from 

motorised traffic may reduce their exposure to toxic vehicle exhaust emissions, but 

if built alongside major roads can increase exposure as a result of riders changing 

route from roads with lower traffic levels (Bigazzi & Figliozzi, 2015; Schepers et 

al., 2015). In hot climates, there are health risks associated with increased heat 

exposure (Karner, Hondula, & Vanos, 2015). Changes in injury risk are discussed 

above (Section 2.4.1). 

Mulley et al. (2013) describe two existing approaches for quantifying the health 

benefits of new bicycle infrastructure. The first is to estimate the benefit for each 

traveller switching from an inactive travel mode to bicycle. The second is to 
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estimate the benefit for each additional BKT resulting from an intervention. In 

both cases, the benefit is calculated in terms of the avoided costs to society of 

inactivity-related mortality and morbidity. 

Brown et al. (2016) conducted a systematic review of 36 economic assessments of 

active transport interventions that included physical activity benefits (Table 2.3), 

and agree that many methodological challenges remain. First, little attention has 

been paid to morbidity impacts (the focus has been on mortality). Second, there is 

uncertainty about the effectiveness of interventions on physical activity levels. 

Third, none of the assessments controlled for substitution – i.e., increases in 

walking and cycling activity leading to reductions in other types of physical activity 

– nor fully addressed the issue of health benefits accruing more to individuals who 

are less active to begin with. Finally, they note variation in the assumed delay 

between an intervention and its maximum effect (between 0 and 10 years), and 

variation in assumed effectiveness decay (from 0 per cent to 10 per cent per year). 

There have been attempts to standardise the assessment of public health benefits 

for active transport interventions. The World Health Organization has developed 

a tool for assessing the mortality impacts (Kahlmeier et al., 2014). It does not 

include morbidity impacts, and is based on the Danish population, so may not be 

generalizable to countries with different population health characteristics. 

To value the public health benefits of bicycle projects, the general approach in 

Australia is to multiply the forecast increase in BKT by a dollar value per BKT. 

Mulley et al. (2013) estimate the per BKT health benefit to be AUD 1.12 (2010 

prices), but others have estimated values ranging from AUD 0.06 (Yi et al., 2011) 

to AUD 1.42 (PricewaterhouseCoopers, 2009). The NSW Government's appraisal 

guidelines (Transport for NSW, 2013a) suggest AUD 1.11 per BKT (2014 prices). 

Börjesson and Eliasson (2012) argue that bicycle riders already take health 

benefits into account when making their travel choices, so they are already 

included in any estimates of user benefits (see Section 2.5.3), and including both 

user benefits and public health benefits in a SCBA would be double-counting. 

However, this reasoning assumes bicycle riders are able to assess correctly the 
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benefits to their own health, which is difficult to prove. Furthermore, society will 

also benefit from avoided health and mortality costs, e.g., reduced public 

expenditure on healthcare, reduced sickness and disability payments, and 

increased labour productivity.   

In appraising City of Sydney’s 230-kilometre cycleway network proposal, Yi et al. 

(2011) estimated the public health benefits (excluding injuries) would amount to 

AUD 147.3 million over 30 years, which was 53 per cent of the total economic 

benefit of AUS$277.1 million, and nine times the estimated cost of injuries (AUD 

16.3 million). This estimate was based on reduced mortality being valued at AUD 

0.06 per BKT, and reduced morbidity (in the form of employee absenteeism 

savings) being valued at AUD 0.17 per BKT. 

Brown et al. (2016) concluded their systematic review by acknowledging much 

progress has been made in quantifying and valuing the public health benefits of 

non-motorised transport, but noting there are many opportunities for further 

progress. In particular, the assessment of health benefits could be expanded to 

include mental health and quality of life (QoL) impacts. Some progress has been 

made in this area, with recent studies suggesting cycling offers physical and 

psychological QoL benefits for men (Crane, Rissel, Standen, & Greaves, 2014), and 

people who commute to work or study by bicycle enjoy their commutes more than 

those who drive (Rissel, Crane, Wen, Greaves, & Standen, 2015). 

2.4.3 Transport equity and disadvantage 

In recent decades there has been much written about the relationship between 

transport and social justice, and how transport improvements tend to favour those 

who are already most mobile (e.g., Preston & Rajé, 2007). However, these studies 

have been limited to describing the unjust outcomes, with little attention paid to 

the planning and policy processes which lead to them. 

Equity impacts are not usually considered in SCBA in Australia. Benefit-cost 

ratios and NPVs are aggregate measures of welfare change for a whole population; 

they do not reveal who stands to benefit and who stands to lose out from a transport 
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investment, or whether it is a Pareto improvement (i.e., one where losers are fully 

compensated). 

Investing in bicycle infrastructure can improve access to economic and social 

opportunities for people who are unable to drive for financial or other reasons, e.g., 

young age, old age, illness, disability (Litman, 2016). In NSW, 31 per cent of the 

population does not have a driver licence (Roads and Maritime Services, 2014). 

On the other hand, Welch et al. (2015) observed a possible positive correlation 

between proximity to bicycle paths and housing prices in Portland (Oregon, United 

States), suggesting that such investments may contribute to gentrification and 

displacement of low income households (John, 2015), if they are not balanced with 

effective affordable housing policies. 

There are ways to enhance SCBA to capture potential equity impacts. Stanley et 

al. (2012) propose a method for valuing the ability of people at risk of social 

exclusion to make additional trips, based on the cost of a policy, program or project 

needed to facilitate those additional trips. They estimate that each additional trip 

by a person with average household income has a value of AUD 17  more for a 

person with a lower income. 

Another approach is disaggregate assessment of impacts, whereby the benefits and 

costs accruing to specific groups are identified, e.g. female or low income (de Jong 

et al., 2007). A disaggregate assessment approach is described in Chapter 3. 

In the United Kingdom, distributional weighting is used, whereby it is assumed 

the marginal utility of consumption halves as income doubles (P. Stopher & 

Stanley, 2014). In other words, one additional dollar would improve the welfare of 

a poor person more than it would the welfare of a wealthy person.  

Alternatively, SCBA can be complemented with other types of assessment, such as 

the capability approach, which assesses the impact on individuals' freedoms and 

opportunities, taking into account their needs, values and abilities (Beyazit, 2011). 
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2.4.4 Reduced motor vehicle externalities 

Bicycle advocates often claim that one of the benefits of increasing bicycle usage 

and mode share is a consequent decrease in road congestion and other driving 

externalities – air pollution, noise pollution, fear and intimidation, crashes, 

greenhouse gas emissions, water contamination, etc. – because every person on a 

bicycle is “one less car” (Furness, 2010). 

A study by the Institute for Transportation and Development Policy (Mason, 

Fulton, & McDonald, 2015) suggested a significant worldwide increase in bicycle 

and electric bicycle mode share from 6 per cent to 11 per cent could cut global 

carbon dioxide emissions from urban passenger transport by 7 per cent by 2030, 

relative to a 'Do minimum' scenario. 

Gössling and Choi (2015) estimated that, in Copenhagen (Denmark), the cost of 

car driving to society is EUR 0.50 per kilometre, six times higher than the cost of 

cycling (EUR 0.08 per kilometre). 

In appraising City of Sydney’s AUD 153.4 million cycleway network proposal, Yi 

et al. (2011) estimated the value of reduced motor vehicle externalities to be AUD 

213.3 million over 30 years  31 per cent of the total economic benefit of AUD 682.3 

million. A breakdown of these benefits is shown in Table 2.6. 

However, a significant reduction in motor vehicle externalities would depend on a 

high cross-elasticity between driving and cycling. In practice, the bicycle competes 

mostly with public transport (Börjesson & Eliasson, 2012)  although reduced 

crowding on public transport may then encourage some mode switching from 

driving to public transport. Furthermore, in cities where there is high latent 

demand for driving, any congestion relief will likely be short-lived (Guranton & 

Turner, 2009; Metz, 2008). That said, a significant reduction in the number of 

drivers might make it easier for political leaders to repurpose public space 

currently used for traffic and parking, thereby reducing motor vehicle 

externalities. 
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Table 2.6: Estimated benefits of inner-city Sydney cycleway network due to 
reduced motor vehicle use (after Yi et al., 2011) 

Benefit Value (AUD million) 

Decongestion benefit 97.8 

Air pollution reduction 12.3 

Noise pollution reduction 3.3 

Greenhouse gas reduction 8.6 

Water pollution reduction 1.2 

Vehicle operating cost savings 53.3 

Parking cost savingsa 14.1 

Reduction in motor vehicle crashes 22.7 

Total 213.3 
a Parking expenditure is a transfer payment, so would normally be excluded from SCBA. 

 

Cities with a high bicycle mode share, such as Copenhagen, still have road 

congestion (Prato, Rasmussen, & Nielsen, 2014). It is therefore questionable 

whether decreases in motor vehicle externalities should be included in bicycle 

project assessment, especially where the road network is congested (indicating the 

presence of latent demand). Where there is a policy objective to reduce congestion 

or other driving externalities, there are more effective policy instruments, such as 

mobility and demand management (Olszewski & Xie, 2005; P. R. Stopher, 2004). 

2.4.5 Economic growth and development 

SCBA informs stakeholders about the economically valued welfare benefits of a 

transport project. However, these economic benefits are often misunderstood (or 

misrepresented) by non-economists to mean economic growth or other 

macroeconomic benefits (e.g., increased productivity and employment, or reduced 

national debt). Referring to a proposal to build a new AUDD$16.8 billion motorway 

in inner-city Sydney, Australia's former Assistant Minister for Infrastructure, 

Jamie Briggs, claimed it would “inject AUD 20 billion worth of benefits into the 

national economy” (Saulwick, 2015b). However the AUD 20 billion of ‘economic 

benefits’ to which he was referring comprised mostly welfare benefits, e.g., 

hypothetical personal travel time savings (Sydney Motorways Project Office, 2013). 

Banister and Berechman (2001) note the relationship between transport 

investment and economic development is complex and not well understood. They 

argue additional transport investment will not on its own result in economic 
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growth in developed countries that already have well-connected transport systems. 

Looking at the relationship between urban transport-land use patterns and 

transport expenditure, Newman and Kenworthy (1999) calculated that sprawling 

and car-dependent Australian and United States cities spend more than 12 per 

cent of their wealth – in terms of gross regional product (GRP) – on passenger 

transport, while more compact and public transport oriented cities in Europe and 

wealthy Asian nations spend 8.1 per cent and 4.8 per cent of GRP respectively. 

This suggests transport projects that result in increases in motor vehicle use and 

urban sprawl may significantly hinder economic development. 

Economic development benefits have traditionally not been included in transport 

project appraisal. Recently, there have been attempts to incorporate ‘wider 

economic benefits’ (WEBs), such as agglomeration effects – productivity gains from 

firms clustering together and sharing knowledge (Graham, 2007) – and increased 

labour market supply. The SCBA for the aforementioned AUD 16.8 million Sydney 

motorway scheme includes AUD 1.7 billion of agglomeration benefits and AUD 0.5 

billion of labour market supply benefits (NSW Government, 2015). However, 

methods for estimating WEBs are still in their infancy, and their inclusion in 

transport project appraisal remains controversial, with empirical data indicating 

they are likely to be exaggerated (Dobes & Leung, 2015).  

There has been less interest in capturing possible ‘wider economic costs’, for 

example, where new transport infrastructure contributes to gentrification and 

displacement of low-income workers (Beyazit, 2015). In the case of a major road 

project, a forecast that it will increase productivity and labour market supply 

would seem to be at odds with Newman and Kenworthy's (1999) finding, that car-

based sprawling cities have higher transport costs and poorer accessibility. 

For bicycle infrastructure projects, previous assessments of economic development 

impacts have focused largely on benefits to local retailers (in the case of urban 

transport infrastructure) and regional tourism (in the case of recreational 

infrastructure such as rail trails). An evaluation of new bicycle parking facilities 

in Melbourne found that each square metre allocated to bicycle parking generated 
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income of AUD 31 per hour for local retailers, compared to AUD 6 generated by a 

square metre of car parking (Lee and March, 2010). In an intercept survey of 

bicycle riders using new separated bicycle paths in United States cities, Monsere 

et al. (2014) found that 19 per cent stopped more frequently at businesses along 

the bicycle paths after they were built, with only 1 per cent stopping less 

frequently. 

In her evaluation of recreational rail trails in Victoria (Australia), Beeton (2003) 

notes seven potential economic development benefits: job creation during and after 

construction; direct expenditure; induced and indirect regional income; increased 

tax revenue; land value uplift; opportunities for local enterprises; and increasing 

the general attraction of a region. She calculated that rail trail users spent on 

average AUD 132 per person per day during their visits. 

Again, little attention has been paid to potential ‘wider economic costs’ of bicycle 

infrastructure. Its possible role in gentrification and displacing low-income 

households has been acknowledged (John, 2015), though this impact could be 

mitigated with effective affordable housing policies (Beyazit, 2015). 

2.5 User benefits and costs 

Appraisals of bicycle projects tend to be dominated by the social benefits, 

particularly public health benefits. However, as noted by Poorfakhraei and 

Rowangould (2015), benefits also accrue to individuals in the form of increased 

welfare, where individuals' wellbeing is improved because of increases in their 

enjoyment, perceived health, perceived safety, transport options, mobility and 

accessibility. However, the economic value of these non-market goods is difficult to 

estimate, meaning they do not often find their way into SCBAs. 

2.5.1 Mobility 

Conventional SCBA for major transport projects (road and public transport) is 

dominated by estimates of mobility benefits, measured in terms of the value that 

travellers place on being able to reach destinations quicker, or being able to reach 

more distant destinations in the same amount of time as before (Metz, 2008). 
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New bicycle infrastructure can reduce journey travel times in two ways. First, if 

the infrastructure enables travellers to switch to bicycle from other travel modes, 

these travellers may enjoy quicker journeys, ceteris paribus.10 A European study 

found that cycling is generally quicker than driving for trips up to 5 kilometres, 

and quicker than public transport for trips up to 8 kilometres (Dekoster & 

Schollaert, 2000). Ellison and Greaves (2011) analysed GPS data from 36,858 car 

trips of 0 to 5 kilometres in Sydney, and estimated that an inexperienced bicycle 

rider would be able to make 90 per cent of those trips by bicycle within 10 minutes 

of the time taken by car. 

Second, new infrastructure may allow bicycle riders to take a more direct route 

than before, for example a bridge over a geographic barrier (van Ommeren et al., 

2012), a contra-flow bicycle path/lane on a one-way street, or a bicycle path through 

a road closure (Melia, 2012). 

On the other hand, previous bicycle route choice studies (e.g., Sener et al., 2009; 

Wardman et al., 2007) show that riders will divert quite some distance to use a 

safe or pleasant bicycle facility, implying that new infrastructure can actually 

increase travel times. Furthermore, time spent cycling can have positive intrinsic 

utility – in terms of enjoyment, exercise and perceived health benefits – meaning 

that bicycle riders will sometimes opt for a longer travel time (Mokhtarian & 

Salomon, 2001). For instance, anecdotal evidence suggests a number of bicycle 

commuters in Sydney do laps of the 3.8-kilometre Centennial Park circuit on their 

way to or from work (Smale, 2003). 

Previous studies have estimated a value of travel time saving (VTTS) for bicycle 

travel using stated preference surveys (Table 2.7). The VTTS has been found to 

depend on the type of bicycle facility, being significantly higher for roads with 

mixed traffic than for bicycle paths  confirming that people, in general, prefer the 

latter. In Sweden, the ratio of these values (mixed traffic to bicycle path) is less 

than two; in the United Kingdom, it is over three, suggesting that riding in mixed 

                                            

10 In practice, destination and other travel choices may also change (Greaves et al., 2015). 
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traffic is perceived as more onerous in the United Kingdom. Börjesson and Eliasson 

(2012) also looked at how VTTS varies by trip time, and found it is higher for trips 

under 40 minutes. No bicycle VTTS studies for the Australian context could be 

found in the literature. 

Table 2.7: VTTS estimates for bicycle travel 

Study Location 

Pricing 
currency 
(year) 

VTTS/hour for 
street with mixed 
traffic 

VTTS/hour for 
bicycle path 

VTTS ratio (mixed 
traffic street:  
bicycle path) 

Wardman et al. 
(1997) 

UK GBP (1997) 5.7 1.7 3.4 

Wardman et al. 
(2007) 

UK GBP (1999) 11.5 3.3 to 3.6 3.2 to 3.5 

WSP (2007) Stockholm 
(Sweden) 

SEK 159 105 1.5 

Börjesson and 
Eliasson (2012) 

Central 
Stockholm 
(Sweden) 

EUR (2008) 10.5 to 14.3 5.4 to 10.0 1.4 to 1.9 

 

A travel time savings benefit was included in 10 of the 32 economic assessments of 

active transport interventions reviewed by Brown et al. (2016) (Table 2.3). Among 

these is the Yi et al. (2011) appraisal of City of Sydney’s cycleway network proposal, 

which included a travel time benefit valued at AUD 143.6 million over 30 years – 

21 per cent of the total economic benefit. Yi et al. assumed a VTTS of AUD 12.20 

(the value recommended at the time by the NSW Government for all private travel) 

for both mixed traffic streets and bicycle paths. They estimated the user benefit of 

using a bicycle path separately, using a willingness to pay (WTP) approach (see 

Section 2.5.3).  

The NSW Government’s economic appraisal guidelines advise against including 

travel time savings in bicycle facility appraisal, because “choosing to ride a [bicycle] 

is aimed at improving health and gaining other social benefits but not to reach a 

destination faster“ (Transport for NSW, 2013a, p. 157). However, this claim is not 

supported by available evidence. Numerous studies have estimated a VTTS for 

new bicycle facilities (Table 2.7). It has been shown that commuters are less willing 

to divert than are non-commuters to use a cycleway, suggesting saving time is 

somewhat important to bicycle riders when they have time constraints (e.g., 

arriving at work on time) (Standen et al., 2016). If mobility benefits are included 
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in appraisals of road and public transport infrastructure, there is no logical reason 

for them not to be included in appraisals of bicycle infrastructure. The fact that 

bicycle facilities generate additional user and social benefits is no justification for 

ignoring the mobility benefits. 

2.5.2 Accessibility 

Most travel is undertaken to access economic and social opportunities: work, study, 

recreation, shopping, socialising, etc., although sometimes travel is the end rather 

than the means (or both) (Mokhtarian & Salomon, 2001). As such, it can be argued 

the principle aim of transport investment should be to improve accessibility, rather 

than mobility. Geurs and van Wee (2004, p. 128) define accessibility as “the extent 

to which land use and transport systems enable individuals to reach activities in 

different locations”. 

Various methods have been developed for measuring accessibility. Geurs and van 

Wee (2004) classify these into four categories: Infrastructure-based measures 

consider only the performance of the transport component, for example, average 

travel speed. Because they ignore the land use component, they are more measures 

of mobility than of accessibility per se. Location-based measures are aggregate 

counts of the number of activities within reach of a given residential location, or 

the number of residents that can reach a given activity destination. Person-based 

measures analyse accessibility from an individual’s perspective, taking into 

account their time constraints. Utility-based measures attempt to measure the 

utility that individuals derive from the destination and mobility choices available 

to them. Previous studies of bicycle accessibility have mostly used location-based 

measures, of which there are two main variants: the gravity model and the 

cumulative opportunities model.  

The gravity-based accessibility measure, developed by Hanson (1959), has the 

following form: 

𝐴𝑖 =  ∑ 𝑎𝑗𝑓(𝑡𝑖𝑗)
𝑗

. 2.1 
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𝐴𝑖 is the accessibility for people living in zone i, 𝑎𝑗 is the activity intensity (e.g., 

number of restaurants) in zone j, and 𝑓(𝑡𝑖𝑗) is a travel impedance function, which 

represents the generalised cost of travel between i and j. Conventional estimations 

of the impedance function 𝑓(𝑡𝑖𝑗) attempt to measure how willingness to travel 

between i and j decreases with increasing travel distance, time and cost, and are 

often fitted to a negative exponential curve.  

The cumulative opportunities model is a special case of the gravity model, where 

the impedance function is equal to unity within a given time or distance, and zero 

outside it: 

𝐴𝑖 =  ∑ 𝑎𝑗𝑊𝑗
𝑗

. 2.2 

𝑊𝑗 is unity for all zones j within a given travel time or distance from i, and zero for 

all zones j beyond. It is, therefore, simply a measure of the number of activities 

that can be reached within a given travel time or distance.  

Iacono et al. (2010) developed a gravity model for measuring bicycle accessibility 

in Minneapolis (United States). The results for accessibility to shopping 

destinations are presented graphically in Figure 2.3, with the shading for each 

zone (grid cell) representing the level of shopping accessibility for that zone. Iacono 

et al. acknowledge their model does not take into account individual or 

environmental factors that can have significant effects on willingness to bicycle, 

and therefore bicycle accessibility (they measure willingness to bicycle based only 

on travel distance or time). As such, new bicycle infrastructure would tend not to 

affect their measured accessibility, except where it results in reduced travel times 

or distances (e.g., a new bicycle bridge that crosses a freeway). 

McNeil (2011) used a cumulative opportunities model to measure cycling 

accessibility in Portland (United States), using the assumption that travellers 

would be willing to cycle up to 2.5 miles (4 kilometres) to access an activity 

destination. However, instead of using shortest path network distances, he used 

effective distances obtained by applying a weighing factor to each network link, 

with the weighting factor depending on the type of bicycle facility on each link. 
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Weighting factors were derived from a previous route choice study (Broach, Gliebe, 

& Dill, 2009). The weighting factor for separated bicycle paths was 1.35, implying 

that people would be willing to cycle up to 5.4 km (4 km × 1.35) to reach an activity 

destination, if riding exclusively on separated bicycle paths. Thus, bicycle facility 

improvements would tend to increase the number of activity destinations deemed 

accessible by bicycle in his model. 

 

Figure 2.3: Bicycle accessibility to shopping in Minneapolis (Iacono et al., 2010) 

Lowry et al. (2016) developed a GIS-based tool for measuring accessibility to a 

basket of non-work destinations, which took into account  in addition to distance 

 the ‘cycling stress’ of different roadway configurations, and the provision of 

bicycle facilities on each network link, as well as people's tolerance to this stress. 

With this tool, they were able to quantify (and present graphically) the accessibility 

benefits of alternative bicycle network improvement scenarios proposed for Seattle 

(United States) and, importantly, assess the contribution of individual projects 
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(e.g., a new bicycle path) to the overall accessibility improvement (see Figure 2.4), 

allowing projects to be prioritised. However, they acknowledge that the assessed 

contribution of each project assumes all other projects in the scenario would also 

be implemented, rendering the priority ranking less useful. Furthermore, the 

assumptions on which cycling stress and tolerance to stress are rated are 

somewhat arbitrary, resulting in some unintuitive constraints  for example, that 

a person with low tolerance to cycling stress would not tolerate riding along a four-

lane road with a 48-km/h speed limit, even if a physically separated bicycle path 

were provided. Finally, they weight destination attractiveness according to the 

number of employees, meaning that destinations with no/few employees (e.g., 

public parks) would be less attractive in their model. 

While potentially useful for informing policymakers and stakeholders about the 

need for, and relative merits of, different bicycle infrastructure projects, 

accessibility benefits measured using location-based measures are difficult to 

monetise. As such, they are currently not suitable for inclusion in a SCBA  though 

they could complement one. None of the 32 economic assessments of active 

transport interventions reviewed by Brown et al. (2016) (Table 2.3) included 

accessibility improvements as a benefit. However, accessibility improvements can 

be valued using utility-based measures – this is covered in Chapter 3. 

2.5.3 Journey utility 

As discussed in Section 2.5.1, time spent travelling can have intrinsic value, and 

this is particularly true of bicycle travel. Some individuals will choose bicycle over 

faster modes, and choose a longer bicycle route over a more direct one, for a variety 

of reasons: enjoyment, exercise, scenery, or simply for variety (Mokhtarian & 

Salomon, 2001). 

In his exploration of the positive utility of travel, Singleton (2017) shows that 

ability to multitask and travel satisfaction/enjoyment increase utility by differing 

amounts for different modes, and that including measures of these benefits in a 

mode choice model increases its explanatory power. 
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Figure 2.4: Contribution of individual network links to bicycle accessibility for (a) 
existing conditions, and (b) full implementation of Seattle Bicycle Master Plan 

(Lowry et al., 2016) 
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The positive utility of travel time can be increased (or the disutility of travel time  

decreased) in a number of ways. Travel time can be made more reliable/predictable 

(Li, Hensher, & Rose, 2010). For drivers, the proportion of their journey time spent 

in stop-start traffic can be reduced (Hensher, 2001). For public transport 

passengers, crowding levels can be reduced (Li & Hensher, 2011). For bicycle 

riders, separated bicycle paths can be provided (to reduce fear of traffic and 

increase comfort levels), among other interventions. 

2.5.3.1 Factors affecting journey utility 

Before discussing how the utility of a bicycle trip can be measured or valued, it is 

worth considering which factors, other than time or distance, might affect it. 

Mokhtarian and Salomon (2001) suggest enjoyment and perceived health benefit 

may both make a positive contribution. On the other hand, perceived danger is 

likely to decrease utility for many people, especially in Australia, where there are 

few bicycle paths and high urban speed limits (Pucher, Garrard, & Greaves, 2011).  

To date, little attention has been paid to journey enjoyment in the transport 

literature. In a recent study of Sydney inner-city residents (Rissel et al., 2015), 52 

per cent of those who commuted by bicycle claimed they enjoy their commute  

despite Sydney having a hostile cycling environment, and a sparse and 

disconnected bicycle network. For comparison, 49 per cent of walkers, 14 per cent 

of car drivers and only 10 per cent of public transport users reported enjoying their 

commute. 

The potential public health benefits of cycling were discussed in Section 2.4.2. 

However, it is the perceived health benefit to individuals that will affect their 

decision to cycle, and the utility they derive from doing so. Studies in the United 

States, United Kingdom and Netherlands have found an association between 

bicycle use and better perceived health (Bopp, Kaczynski, & Campbell, 2013; 

Humphreys, Goodman, & Ogilvie, 2013; Scheepers et al., 2015). Börjesson and 

Eliasson (2012) conducted a survey of regular bicycle riders in Stockholm 

(Sweden), in which 52 per cent stated that exercise was the main reason they chose 

to travel by bicycle.  
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Börjesson and Eliasson (2012) suggest that perceived health benefits are 

internalised in bicycle riders' travel choices and, therefore, captured in valuations 

of  travel time savings (VTTS). However, they found no significant difference 

between the VTTS of bicycle riders who said that exercise was the most important 

reason to choose bicycle, and that of those who did not. They interpret this finding 

to mean the latter group do not disregard the health benefits; another 

interpretation could be that the perceived health benefits are tiny in comparison 

to other user benefits (e.g., enjoyment) in both groups. Alternatively, the perceived 

health impacts (e.g., from air pollution exposure or injury) could be equal in 

magnitude to the perceived health benefits – so they cancel each other out – in both 

groups.  

The road safety impacts of bicycle use were discussed in Section 2.4.1. As with 

health benefits/impacts, the perceived crash/injury risk may be different from the 

objectively measured crash/injury risk (Reinhardt-Rutland, 2011). 

In their evaluation of new separated bicycle paths in five United States cities, 

Monsere et al. (2014) used resident surveys and rider intercept surveys to assess 

changes in perceived danger. They found significant decreases in perceived danger 

associated with the new bicycle paths, with 96 per cent of bicycle riders and 79 per 

cent of residents agreeing the paths increased the safety of cycling. Parkin et al. 

(2007) analysed the risk perceptions of people shown video recordings of a variety 

of cycling scenarios. They found that people who never use a bicycle perceive 

residential roads and traffic-free routes to be more dangerous than people who do. 

Fitch et al. (2016) measured physiological stress (heart rate variability) in 

inexperienced bicycle riders exposed to different road environments, with initial 

pilot data appearing to confirm a positive correlation between rider stress and 

traffic volume/speed. 
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2.5.3.2 Estimation and valuation of journey utility 

Journey utility benefits were included in nine of the 36 economic assessments 

reviewed by Brown et al. (2016) (Table 2.3).11 Various methods have been used for 

estimating and valuing these benefits. In assessments that include travel time 

savings with different VTTS estimates for different bicycle facility types, the 

journey utility will be reflected in these values (Börjesson & Eliasson, 2012). 

Yi et al. (2011), who used the same VTTS for all facility types, estimated the 

willingness to pay (WTP) for on-road bicycle paths over mixed traffic streets to be 

AUD 0.05 per minute or AUD 0.12 per BKT (assuming an average speed of 25 

km/h). 12  This estimate was derived from Hopkinson and Wardman's (1996) 

analysis of the stated route choice preferences of bicycle riders in the United 

Kingdom. Using this WTP estimate, and applying the rule of half to new bicycle 

riders, they estimated a ‘journey ambiance’ benefit of AUD 128.9 million, which 

was 19 per cent of the total economic benefit.  

If perceived health and perceived safety benefits are fully captured in the 

assessment of user benefits, then including the road safety and public health 

impacts could be considered double counting – with the exception of benefits that 

accrue to society in general. Elvik (2000, p. 40) suggests the correct approach in 

welfare economics is to value the perceived benefits: 

Most economists tend to accept observed demand for a commodity (which is 

based on the costs as perceived by purchasers) as the correct basis for 

estimating the value of the commodity, even if demand may in part be based 

on incomplete information or irrational behaviour. 

Separated bicycle paths may also improve the journey utility of other road users. 

In a survey of road users’ perceived comfort levels in the San Francisco Bay Area 

                                            

11 Brown et al. use the term ‘comfort and security’. 

12 Yi et al. may have overestimated average cycling speed. 25 km/h would be at the upper end of 

the design speed of Sydney’s bi-directional bicycle paths, and average speed would be brought 

down by intersection delays. 
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(United States), motor vehicle drivers as well as bicycle riders reported greater 

comfort levels on multi-lane roads with separated bicycle paths, than on ones 

without (Sanders, 2016). 

2.5.4 Option and non-use value 

So far, this section has covered the assessment of benefits and costs that accrue to 

actual users of new infrastructure. However, welfare benefits can also accrue to 

non-users in two distinct ways: option value and non-use value (P. Stopher & 

Stanley, 2014).   

Option value is the value individuals place on having the option to use a facility 

they do not use regularly. For example, habitual drivers having a railway station 

nearby in case they are ever unable to drive. Geurs et al. (2006, p. 616) interpret 

option value as “a risk premium that individuals with uncertain demand are 

willing to pay over and above their expected user benefit for the continued 

availability of a transport facility”. An alternative view is put forward by Schwartz 

in his book The Paradox of Choice (2005), in which he suggests that having too 

much choice may decrease welfare, causing  “bad decisions, … anxiety, stress, and 

dissatisfaction”. He focuses more on retail choices  for example, having to choose 

from 175 types of salad dressing in a supermarket  and does not discuss transport 

options specifically. 

Non-use value is the value individuals place on infrastructure they never envisage 

using themselves. This can be for altruistic reasons, i.e., recognising the benefit 

the infrastructure has to their community. Alternatively, there may be indirect 

user benefits, e.g., where a transport facility can be used by an individual's friends 

or relatives, who might otherwise depend on them for chauffeuring.   

Option and non-use values are not included in conventional transport project 

assessment. Geurs et al. (2006) used a stated preference experiment to estimate 

option value and non-use value, in terms of willingness to pay (WTP), for two 

regional rail links in the Netherlands. They estimated people living near the rail 

links, and who did not use them, were hypothetically willing to pay EUR 12 per 

month to maintain them. 
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No previous studies assessing the option value of bicycle infrastructure could be 

found in the literature. Van Wee and Börjesson (2015) have highlighted the need 

for more research in this area as one important step in making SCBA more suitable 

for assessing bicycle projects. They suggest that the option value for bicycle 

infrastructure may be greater than that for road infrastructure, in places where a 

large proportion of the population does not ride a bicycle regularly, but would value 

the option of doing so. 

2.6 Other appraisal methods 

An alternative approach to SCBA is cost-effectiveness analysis, which can be used 

to identify the lowest cost way to achieve a policy objective. Wang et al. (2004) used 

this method to measure the cost-effectiveness of bicycle/walking paths in Lincoln 

(United States), against a target of increasing population physical activity levels. 

Various alternative and complementary methodologies have been proposed for 

assessing equity impacts, e.g., multi-criteria analysis (MCA) and the capability 

approach (Beyazit, 2011), though these are yet to gain much traction in practice. 

2.7 Post project evaluation 

With historical mode share data for many jurisdictions readily available, 

measuring changes in bicycle mode share following an intervention is relatively 

cheap and straightforward. In addition, bicycle policy objectives and targets are 

often based on mode share. The problem with measuring changes in mode share 

lies in determining how much of the observed change is attributable to the 

intervention, and how much is attributable to background/exogenous factors.  

Counting bicycle movements at various points in a network, which can be done 

manually, or automatically using induction loop or infrared detectors, can provide 

some indication of the impact of new infrastructure. For instance, in their 

evaluation of new separated bicycle paths in five cities in the United States, 

Monsere et al. (2014) found that bicycle traffic on the new facilities increased by 

between 21 and 171 per cent within one year of opening.  
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There are a number of issues with using this method for measuring changes in 

bicycle use. First, it is difficult to know if a change in a bicycle count is due to 

existing riders diverting from an existing route to use a new facility, existing riders 

making more trips, or new riders switching from other modes. Second, it is difficult 

to determine to what extent any change is due to new infrastructure, rather than 

other factors, e.g., cost increases for other transport modes. Third, bicycle counts 

do not provide any information about changes in bicycle travel durations and 

distances. Fourth, they do not provide any information about who is using the new 

facilities. 

Monsere et al. (2014) did conduct bicycle rider intercept surveys to help them 

understand the reasons for the ridership increases they observed  in which 10 per 

cent of riders reported they would have used a different mode before the facility 

was constructed, while 1 per cent would not have made the trip in the first place. 

The remaining 89 per cent said they would have cycled on the same route or on a 

different route. 

There are no examples in the literature of policy evaluations in which actual 

changes in BKT have been measured, and compared to what was forecast at the 

appraisal stage. Rather, evaluations have tended to be based on changes in mode 

share and bicycle counts. 

2.8 Before-after studies 

While there have been a number ex-ante appraisals of bicycle policies (Brown et 

al., 2016), and many ex-post evaluations (Pucher et al., 2010), no studies have 

looked at how actual welfare benefits compared with what was forecast, in an 

empirical setting. Actual welfare benefits may differ from those forecast for three 

principle reasons. First, the actual demand may be more or less than forecast. The 

most sophisticated transport demand models struggle to make accurate forecasts: 

actual traffic volumes on Australian toll roads are on average 45 per cent lower 

than forecast (Li & Hensher, 2010), with optimism bias on the part of the modellers 

likely to play a part (Flyvbjerg, 2009). Bicycle transport demand models are 

nowhere near as mature as those for road and public transport (van Wee & 
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Börjesson, 2015). Second, the value that people place on non-market benefits/costs 

may change over time, or in response to the intervention itself. For example, once 

bicycle riders have experienced using a separated bicycle path, they may become 

even more averse to riding on a mixed traffic street. Third, there may be 

consequential impacts that reduce the magnitude of forecast benefits. For example, 

urban motorways encourage people to move further from work, which tends to 

cancel out forecast travel time saving benefits (Metz, 2008). 

There have been some before-after studies of bicycle policy interventions, with 

many calls for more such studies in the literature (e.g., K. J. Krizek, Handy, & 

Forsyth, 2009; Parkin, Wardman, & Page, 2008). The few studies that have been 

done have mostly adopted a repeat cross-sectional design with only one follow-up 

wave (Yang, Sahlqvist, McMinn, Griffin, & Ogilvie, 2010). A controlled 

longitudinal panel study was undertaken in England by Goodman et al. (2013) to 

assess the outcomes of the Cycling Demonstration Towns program, in which 18 

towns and cities were granted substantial funding to invest in cycling facilities and 

programs between 2005 and 2011. Using census data, they found a statistically 

significant difference in bicycle mode share increase between the 18 funded towns 

(0.97 per cent), and a control group of 18 unfunded towns with similar 

demographics (0.29 per cent) (i.e., the increase in mode share in the funded towns 

was 234 per cent more than in the unfunded towns, albeit off a low base).  

2.9 Summary and research gaps 

Governments worldwide are aiming to make cycling safer and increase its mode 

share. With finite financial resources available, decision makers and stakeholders 

need information about the relative merits of alternative projects and policies, to 

help ensure those that benefit society the most are prioritised. Social cost benefit 

analysis (SCBA) is an appropriate method for making objective comparisons of the 

overall benefits of infrastructure projects, although it is not as well developed for 

bicycle projects as it is for roads and public transport. There is a clear need for 

better travel demand forecasting capabilities and more rigorous and convincing 

valuations of non-market costs/benefits, and for longitudinal assessments where 
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actual outcomes can be compared with those forecast. Other appraisal methods can 

be used instead or as well as SCBA, e.g., multi-criteria analysis or the capability 

approach. Cost-effectiveness analysis makes sense where there is a single 

overriding objective. 

There is no standardised way of conducting SCBAs for bicycle projects, with much 

variation in the costs/benefits included, and the way they are measured and 

valued. There is a large body of work on the assessment of public health benefits, 

but much uncertainty remains, resulting in a large range of valuations. The 

assessment of road safety impacts is more settled, having been a part of road 

project appraisal for decades  though forecasts may be confounded by the possible 

‘safety in numbers’ effect. Economic development benefits have mostly been 

considered in assessments of recreational (as opposed to transport) bicycle 

facilities, while equity impacts have largely been ignored. Some assessments have 

considered the benefits of reduced motor vehicle use and externalities, although 

there is no empirical evidence yet that this is a direct benefit of increased bicycle 

usage. 

Much less attention has been paid to the benefits and costs perceived from the user 

perspective, even though this is the theoretically correct way of measuring 

consumer surplus (that is, the willingness to pay minus the perceived cost) in 

welfare economics. 

Road and rail project appraisals are dominated by user benefits in the form of 

expected travel time savings, and some bicycle project appraisals have followed 

suit. There is a paradox here, in that new bicycle infrastructure can actually 

increase travel time, both for existing bicycle riders who may divert to use a more 

pleasant facility, and for new bicycle riders who switch from a faster mode. 

Furthermore, time spent cycling has intrinsic value, so minimising it may not 

always be desirable or the main goal. 

An alternative to valuing travel time savings is to consider improvements in 

accessibility to economic and social opportunities, which is the ultimate purpose of 

most travel. Changes in accessibility can be assessed using gravity models or 
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cumulative opportunities models, but this is difficult to monetise. Better suited to 

economic assessment are utility-based accessibility measures, which are covered 

in the next chapter. 

As well as improving a person’s accessibility, bicycle facilities can improve the 

utility of time spent travelling, through increased enjoyment, perceived health 

benefits and increases in perceived safety. Research on valuing journey utility 

improvements for bicycle riders is limited, and non-existent in the Australian 

context. Another overlooked benefit is option/non-use value, that is, the benefit 

individuals derive from having more transport options available to them or their 

community, even if they do not intend or expect to use them. 

The next chapter reviews the literature on disaggregate assessment of user 

benefits, which in theory can be used to value improvements in both journey utility 

and option value, as well as accessibility. The disaggregate approach also 

facilitates assessment of the equity impacts of an intervention. 
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3 ECONOMETRIC ASSESSMENT OF USER BENEFITS 

In Chapter 2, existing approaches for assessing the welfare impacts of bicycle 

projects and policies are critiqued. Both the social impacts (externalities) and the 

user benefits and costs are considered. It is concluded that existing approaches do 

not adequately capture potential user benefits, because they tend to assume time 

spent cycling is purely a cost to be minimised. 

In this chapter, an alternative method for assessing and valuing user benefits is 

discussed – one that employs discrete choice analysis to investigate the trade-offs 

people make when choosing whether or not to cycle for transport. This approach is 

well suited to bicycle project assessment, because it considers overall journey 

utility and enjoyment, i.e., it can take into account the positive aspects of time 

spent cycling. 

The chapter begins with an overview of discrete choice analysis – covering theory, 

outcomes and data requirements – with a focus on the aspects relevant to this 

thesis (Section 3.1). Section 3.2 is a review of the literature on the application of 

discrete choice analysis for understanding and predicting cycling choices. Section 

3.3 describes how discrete choice models can be used to estimate and monetise the 

user benefits of a project or policy proposal. Previous applications in a transport 

context are reviewed. In Section 3.4, the issue of transferability is considered, that 

is, whether models developed to explain past choices can accurately predict future 

choices and welfare gains/losses – given that people’s tastes and preferences may 

change over time, or in response to a policy intervention. The chapter concludes 

with a summary and a discussion of the research gaps (Section 3.5). 

3.1 Discrete choice analysis 

3.1.1 Theory 

Discrete choice analysis (DCA) is an econometric method that models human 

decision making, in cases where there are a limited number of mutually exclusive 

alternatives from which to choose, e.g., choosing which transport mode to use for a 

trip. It is a disaggregate modelling method, whereby individual decision makers 
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are the units of analysis. The advantages of disaggregate modelling include 

smaller prediction errors and lower sample size requirements (Horowitz, 

Koppelman, & Lerman, 1986). 

DCA is grounded in utility theory, and Lancaster’s (1966) proposition that 

consumers derive utility from the attributes of products, rather than the products 

themselves. The first practical applications were facilitated by McFadden’s (1974) 

derivation of the conditional logit model. DCA is now used in a number of fields, 

including transport, marketing, health and environmental economics. The 

following overview is based on the texts of Train (2009) and Hensher et al. (2005).  

In welfare economics, utility is a measure of the relative ability of different 

alternatives in a choice situation to satisfy a decision maker’s wants and needs. 

The decision maker can be an individual, a household or even an organisation. In 

travel behaviour analysis, the choices that can be modelled include residential 

location, trip generation (make trip/stay home), destination, transport mode, 

departure time and route. DCA generally assumes decision makers choose the 

alternative that maximises their utility. 

For a given choice situation, the analyst can observe various attributes of each 

alternative, the characteristics of the decision maker, and contextual factors that 

might influence the relative utilities of each alternative (see Table 3.1). However, 

there will always be influences that the analyst cannot observe, as well as random 

variation that cannot be explained. 

Table 3.1: Some influences on transport choices 

Attributes of the alternatives 
Characteristics of the decision 
maker Contextual factors 

Travel time/distance Age Trip purpose (e.g., business/personal) 

Cost Gender Weather 

Brand or label (e.g., airline) Income  

 

Thus, given a set of alternatives J that are mutually exclusive, collectively 

exhaustive and feasible, the utility 𝑈𝑛𝑗 that decision maker n derives from each 
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alternative j consists of a systematic utility 𝑉𝑛𝑗 observed by the analyst, plus an 

unobserved error term 𝜀𝑛𝑗 (Equation 3.1). 

𝑈𝑛𝑗 = 𝑉𝑛𝑗 + 𝜀𝑛𝑗 3.1 

The systematic (observed) utility takes the form: 

𝑉𝑛𝑗 = 𝛼𝑗 + 𝛽′𝑥𝑛𝑗, 3.2 

where 𝑥𝑛𝑗 is a vector of independent variables, including attributes of alternative 

j, characteristics of decision maker n, and contextual factors. 𝛽′  is a vector of 

preference parameters to be estimated, and 𝛼𝑗 are (optional) alternative specific 

constants.13 

Examples of observed utility expressions for a transport mode choice situation are 

given in Table 3.2. 

Table 3.2: Example choice set for a transport mode choice situation 

Alternative (j) Attributes (𝒙𝒋) 

Individual 
characteristics 
(𝒙𝒏) 

Contextual 

factors (𝒙) Observed utility (𝑉𝑛𝑗) 

Walk Travel time (Timewalk) Gendern Rain  𝛼𝑤𝑎𝑙𝑘 + 𝛽1𝑇𝑖𝑚𝑒𝑤𝑎𝑙𝑘 + 𝛽2𝐺𝑒𝑛𝑑𝑒𝑟 + 𝛽3𝑅𝑎𝑖𝑛  

Bicycle Travel time (Timebicycle) Gendern Rain  𝛽4𝑇𝑖𝑚𝑒𝑏𝑖𝑐𝑦𝑐𝑙𝑒 + 𝛽5𝐺𝑒𝑛𝑑𝑒𝑟 + 𝛽6𝑅𝑎𝑖𝑛  

Bus Travel time (Timebus) Gendern   𝛼𝑏𝑢𝑠 + 𝛽7𝑇𝑖𝑚𝑒𝑏𝑢𝑠 + 𝛽8𝐺𝑒𝑛𝑑𝑒𝑟  

Car Travel time (Timecar)    𝛼𝑐𝑎𝑟 + 𝛽9𝑇𝑖𝑚𝑒𝑐𝑎𝑟 + 𝛽10𝐺𝑒𝑛𝑑𝑒𝑟  

 

Assuming the error terms 𝜀𝑛𝑗  have a Generalized Extreme Value Type I 

distribution, then the probability of decision maker n choosing alternative j is given 

by the multinomial logit (MNL) model14 (Equation 3.3). 

𝑃𝑛𝑖 =
exp(𝑉𝑛𝑗)

∑ exp(𝑉𝑛𝑗)𝐽
𝑗

 3.3 

If actual choices and variable values are known across a sample of decision makers 

and choice situations, then the parameters 𝛽′  and constants 𝛼𝑗  for each utility 

                                            

13 With the constant for one of the J alternatives normalised to zero. 

14 Or the binomial/binary logit model, if there are only two alternatives. 
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function 𝑉𝑛𝑗  can be estimated, typically by maximum likelihood estimation. 

Parameters can be specified to be generic across multiple alternatives, or specific 

to one alternative. 

The basic MNL model is relatively easy and quick to estimate because it has a 

closed-form solution, but it has three notable limitations. First, the error term 𝜀𝑛𝑗 

for each alternative is assumed to be independent and identically distributed (IID), 

i.e., error terms for different alternatives are not correlated, but have the same 

variance. The behavioural implication of this assumption is that a change to the 

utility of one alternative will affect the utilities of the other alternatives in equal 

measure. For example, if an express bus service were to be ceased or made more 

expensive, an MNL model would predict that passengers would be just as likely to 

switch to normal bus, as they would be to switch to private car. Intuitively, 

however, one would expect most passengers would switch to regular bus. 

Second, the MNL model produces point estimates for each parameter. However, 

parameters cannot be assumed to be the same for all decision makers, given that 

people’s tastes and preferences are heterogeneous. Systematic sources of 

preference heterogeneity can be identified by interacting attributes with individual 

characteristics. For example, in a mode choice analysis, distance can be interacted 

with gender to test whether women are more sensitive to trip distance than are 

men, or vice versa. However, there will likely be some residual heterogeneity due 

to unobserved influences, or because people simply have different tastes. In the 

MNL model, this heterogeneity is accounted for in the random error terms 𝜀𝑛𝑗.    

Third, the MNL model cannot take into account correlations between multiple 

choices made by a single decision maker – for example, transport mode choices 

reported in a multi-day travel diary. 

To address these limitations, more advanced discrete choice models have been 

developed. In the mixed logit model, for example, one or more of the parameters 

can be randomly distributed over the sample of decision makers. This can account 

for some of the preference heterogeneity that would otherwise end up in the 
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random error term 𝜀𝑛𝑗.15 The type of distribution is chosen by the analyst, and may 

be specified so as to limit it to behaviourally realistic values – for example, a cost 

parameter would normally be forced to be negative, perhaps with the use of a 

lognormal distribution. Parameter values can be fixed to be the same value along 

the distribution for all choices by an individual decision maker. These properties 

make the mixed logit model particularly suitable for analysing panel choice data 

(e.g., multi-day travel diary data).  

In addition, the mixed logit model allows random parameters to be associated with 

a subset of alternatives. This is achieved by introducing error components 𝐸𝑛𝑗 into 

the utility functions, which are normally distributed with a mean of zero and 

standard deviations 𝜃𝑗. The greater the estimated standard deviation 𝜃𝑗 of an error 

component, the greater the likelihood decision makers will substitute between the 

alternatives associated with that error component. In other words, the mixed logit 

model relaxes the IID property of the MNL model, and allows flexible substitution 

patterns between alternatives.16 

In the mixed logit model, the observed utility 𝑉𝑛𝑗𝑡 that decision maker n derives 

from each alternative j in choice situation t is given by Equation 3.4. 

𝑉𝑛𝑗𝑡 = 𝛼𝑛𝑗 + 𝛽′𝑛𝑥𝑛𝑗𝑡 + 𝜃𝑗𝐸𝑛𝑗 3.4 

If random parameters are normally distributed, they take the form:  

𝛽𝑛 = 𝛽𝑘 + 𝜎𝑘𝑣𝑛𝑘, 3.5 

                                            

15 Another way to account for preference heterogeneity is with the latent class logit model, in 

which the population is disaggregated into two or more classes, with an individual decision 

maker’s class membership dependent on their characteristics (e.g., age and/or gender). Utility 

function parameters are then allowed to vary between classes (Greene & Hensher, 2003).  

16 Other models have been developed that relax the IID assumption, including those of the 

generalised extreme value (GEV) family – of which the nested logit model is the most widely 

used. 
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where 𝛽𝑘 is the population mean, 𝑣𝑛𝑘 is individual-specific heterogeneity and 𝜎𝑘 is 

the standard deviation of 𝛽𝑘. Other distributions can be specified, e.g., lognormal, 

uniform or triangular.  

A mixed logit model cannot be estimated using maximum likelihood estimation, 

because the resulting probability expression is an integral without a closed-form 

solution. Estimation is therefore performed using simulation, as detailed by Train 

(2009). 

With both MNL and mixed logit analyses, care must be taken when comparing 

parameters estimated form different datasets, because the magnitude of the 

random error term 𝜀𝑛𝑗  can change. For example, with longitudinal data, a new 

systematic influence on utility may emerge between data collection waves, which 

is unobserved by the analyst. In this case, the error term 𝜀𝑛𝑗 would grow, while the 

observed utility 𝑉𝑛𝑗  would shrink, i.e., choices would become less deterministic. 

There would be what is referred to as a scale difference between the datasets. The 

scale parameter can be estimated by pooling the data and modelling them jointly 

using a nested logit model, with one branch for each dataset (Hensher & Bradley, 

1993). As explained in the next section (3.1.2), some model outputs, e.g., elasticities 

and marginal rates of substitution, are scale-free.  

3.1.2 Model outcomes 

An estimated discrete choice model provides information about the relative 

influence of different factors affecting choices, and the probability of an individual 

choosing a given alternative. In addition, it can be used to: 

 forecast how market shares may be affected by a change to the attributes of 

one or more alternatives, or a change in population demographics; 

 estimate marginal rates of substitution, for example, the willingness to pay 

(WTP) for a change in one or more attributes (discussed further in Section 

3.3.1); and 
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 estimate the consumer surplus associated with a choice situation, and forecast 

how this will be affected by a policy intervention (discussed further in Section 

3.3.2). 

3.1.3 Data sources 

Discrete choice models require choice data, where the dependent variable for each 

observation is the choice made by the decision maker (e.g., transport mode 

choice), 17  and the independent variables can include attributes of the choice 

alternatives (e.g., travel distance), characteristics of the decision makers (e.g., 

gender), and attributes of the choice context (e.g., whether it is raining at the time 

the choice is made). 

Choice data can be collected in two ways. Revealed preference (RP) data reflect 

choices made by people in the real world, and are obtained through surveys or 

observation, e.g., travel diaries. Stated preference (SP) data reflect choices made by 

people in hypothetical situations, and are obtained through stated preference 

surveys. Hensher et al. (2005) outline the advantages and disadvantages of each 

approach; these are summarised in Table 3.3. 

Table 3.3: Comparison of RP and SP data (after Hensher et al., 2005) 

Revealed preference (RP)  Stated preference (SP) 

 Choices are made in real market situations; they have 
actually occurred. 

 Cannot be used to analyse alternatives that do not yet 
exist. 

 Choices are bound by the real-world constraints faced 
by decision makers, e.g., income. 

 There is limited variation in attribute levels between 
alternatives, which can make it difficult to explain 
variation in choice.  

 With travel surveys, decision makers usually report only 
the attributes of the alternatives they actually chose; the 
attributes of other alternatives need to be imputed (see 
Section 3.1.3.1). 

 Data collection can be costly, except where data 
already exist, e.g., a household travel survey or census. 

 Choices are hypothetical; decision-makers may behave 
differently in the real world. 

 Useful for considering alternatives that do not yet exist. 

 Decision makers can choose options that may not be 
available to them in real life, e.g., choosing a Ferrari 
over a Toyota. 

 Attribute levels can be varied beyond existing levels 
(though they should be feasible for decision-makers if 
they are to make rational responses). 

 Attributes of all alternatives are specified by, and 
therefore known by, the analyst. 

 Data collection is relatively cheap. 

 

                                            

17 It is also possible to estimate discrete choice models using aggregate market share as the 

dependent variable. 
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When collecting and analysing RP data, an important consideration is the 

distinction between objective and perceptual data (Hensher et al., 2005). When 

faced with a choice situation in the real world, decision makers will choose from 

the set of alternatives they are actually aware of, based on what they perceive the 

attributes of those alternatives to be (Adamowicz, Swait, & Boxall, 1997; 

Lancaster, 1966). 18  However, the analyst will often only know the objectively 

measured attribute levels of the alternatives, which may differ from those 

perceived by decision makers. In addition, when responding to surveys, 

respondents may report different values from those that they truly perceive, 

because of rounding, uncertainty or recall errors. As such, there may be three 

values for an attribute: objective, perceived and reported. 

3.1.3.1 Attribute imputation for RP travel surveys 

There is a particular issue when modelling transport mode choice using RP data 

obtained using a travel survey: respondents typically only provide information 

about the alternative they chose in each choice situation. Consider the case where 

a respondent reported making a trip by public transport, and provided the origin, 

destination, and travel time. The analyst would not know the travel times for the 

alternative modes the respondent did not choose (walk, bicycle, car, etc.), yet these 

data are necessary for model estimation. 

Washington el al. (2014) describe five approaches for imputing the travel time (or 

distance) for a non-chosen transport mode: 

1. Estimate the travel time for the given origin-destination pair using a transport 

demand model. 

2. Identify trips in the dataset with the same origin and destination zones, but 

where the non-chosen mode was used, and average the reported travel times of 

these trips. 

                                            

18 An interesting implication here is that utility and welfare can be changed simply by changing 

perceptions. 
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3. Identify respondents in the dataset who travelled between the origin and 

destination zones using both the chosen mode and the non-chosen mode, and 

average the reported travel times for the non-chosen mode. 

4. Use Bayesian imputation, conditioned on known inter-zonal travel times and 

socio-demographic characteristics. 

5. Ask respondents to report the travel times of the non-chosen modes. 

To model short walking and bicycle trips, origin and destination zones need to be 

as small as possible, meaning methods 2 to 4 would require a very large sample. 

Method 5 places additional burden on respondents, but does capture the perceived 

attributes of the alternatives, which are ultimately what determines their utilities. 

Similarly, in route choice studies, the analyst does not know the attributes of the 

route alternatives respondents did not choose. As Broach et al. (2012; 2009) 

explain, these can be imputed using a variety of algorithms. However, if 

alternative routes have overlapping segments, the MNL or mixed logit model 

should not be used, because the error terms will be correlated. In this case, the 

path-size logit (PSL) model can be used instead (Frejinger & Bierlaire, 2007). 

3.1.4 Decision processes 

DCA assumes decision makers act rationally, examine all alternatives and all their 

attributes, and choose the alternative that maximises their utility. 

However, in practice, humans tend to choose the same alternative habitually – a 

phenomenon described by Uttley and Lovelace (2014) as ‘behavioural inertia’. 

Making choices involves mental effort, so people are prone to taking mental 

shortcuts (Gigerenzer & Gaissmaier, 2011). There is an emerging literature on the 

incorporation of such decision heuristics into choice models (see Leong & Hensher, 

2012). 

There is also evidence that decision makers ignore certain attributes when 

choosing (attribute nonattendance), and this can bias model outputs if not 

accounted for (Collins, 2012). 
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Alternative decision processes to utility maximisation have been suggested, 

including regret minimisation (whereby decision makers aim to avoid making 

choices they might later regret) (Chorus, Arentze, & Timmermans, 2008) and 

elimination by aspects (whereby attributes are considered in descending order of 

importance) (Tversky, 1972). 

3.2 Bicycle choices and the factors that influence them 

This section presents a review of the literature on bicycle choice studies. Scopus 

and Google Scholar were searched for choice studies specifically concerned with 

bicycle ownership and use. Search terms included ‘bicycle’, ‘cyclist’, ‘logit’, ‘mode 

choice’, ‘route choice’, ‘destination choice’, ‘departure time choice’ and ‘speed 

choice’. Sixteen relevant studies were identified – these are presented in Table 3.4. 

Both SP and RP choice data have been modelled. The rationale for choosing SP or 

RP is never explicitly stated, though it can usually be inferred. For example, 

Hopkinson and Wardman (1996) wanted to forecast the impact of a hypothetical 

user charge for using protected bicycle paths. Such a user charge did not exist in 

the real world, so its potential impact could only be assessed within a hypothetical 

SP framework. 

Wardman et al. (2007) combined both RP and SP data in a nested logit model, with 

which they forecast that a package of measures – including separated bicycle 

paths, financial incentives and end-of-trip facilities – could have a significant 

impact on cycling demand in the United Kingdom. They note, however, the need 

for validation: “There remains a need to monitor the impact of … improvements in 

facilities on demand and to assess this against predicted increases” (Wardman et 

al., 2007, p. 349).
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Table 3.4: Previous bicycle choice studies 

Study Location Choice model(s) Trip/tourb purpose(s) RP SP 
Mode 
choice 

Route 
choice Other choice(s) 

Rodrıǵuez and Joo (2004) Chapel Hill, USA MNL, nested logit, HEV Commute X  X   

Hunt and Abraham (2006) Edmonton, Canada Binary logit Business, social  X  X  

Tilahun et al. (2007) Minnesota, USA Mixed logit Commute  X  X  

Stinson and Bhat (2003) USA Binary logit Commute  X  X  

Wardman et al. (2007) UK Nested logit Commute X X X   

Ortúzar et al. (2000) Santiago, Chile MNL All  X X   

Sener et al. (2009) Texas, USA Mixed logit All  X  X  

Broach et al. (2012, 2009) Portland, USA Path-size logit All X   X  

Hopkinson and Wardman 
(1996) 

Bradford, UK MNL All  X  X  

Pinjari et al. (2009) San Francisco, USA Binary logit, ordered logit N/A X    
Bicycle ownership; residential 
location  

Soltani and Allan (2006) Adelaide, Australia MNL Not stated X  X   

Börjesson and Eliasson 
(2012) 

Stockholm, Sweden Mixed logit, MNL Commute  X X X  

Hood et al. (2011) San Francisco, USA Path-size logit All X   X  

Cherry et al. (2016) Kunming, China Mixed logit All X    
Second choice mode for e-bike 
users 

González et al. (2016) Santiago, Chile Path-size logit All X   X Destination 

Zimmermann et al. (2017) Eugene, USA Recursive logit All X   X  

Total (n = 16)    8 8 5 9  
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The bicycle choices most commonly analysed are mode choice and route choice. 

Börjesson and Eliasson (2012) developed both a mode choice and a route choice 

model: the former to estimate values of travel time savings for cycling in mixed 

traffic and on bicycle paths; the latter to value end-of-trip parking facilities, 

waiting time at intersections and number of intersections along the route. Others 

have examined destination choice (González et al., 2016) and bicycle ownership 

choice (Pinjari et al., 2009). 

Many studies model only commuting trips/tours;19 others combine all trip purposes 

in the same model (sometimes with trip purpose as an attribute). However, the 

preferences of commuters and non-commuters differ to such an extent that it may 

be appropriate to model them separately – as is the norm when modelling driving 

and public transport use (Ortúzar & Willumsen, 2011). 

No studies of the choice of bicycle type (road, mountain, hybrid, electric, etc.) could 

be found in the literature, although Cherry et al. (2016) did model the second 

preference modes of electric bicycle users in China. There have been no studies of 

bicycle riders’ choice of departure time or speed. No previous study has modelled 

bicycle choice data (whether SP or RP) collected over multiple years, or before and 

after a policy intervention. 

When designing a DCA study, it is useful to know which independent variables 

have previously been tested and found to be significant. Previous bicycle choice 

studies have examined a range of individual characteristics, trip attributes and 

contextual factors. Sections 3.2.1, 3.2.2 and 3.2.3 respectively discuss these 

variables in more detail. 

3.2.1 Individual characteristics 

Table 3.5 summarises the individual characteristics that have been tested in 

previous bicycle mode and route choice studies. They include socio-demographic 

characteristics (e.g., age, gender, income), and others believed to affect cycling 

                                            

19 A tour is a sequence of one or more trips beginning and ending at the same location. 
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choices (e.g., fitness, cycling ability). These are discussed below, along with other 

potential factors identified elsewhere in the literature.  

Table 3.5: Bicycle mode and route choice studies  individual characteristics 

Study Choice 
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Wardman et al. (2007) 

Mode 

– + – +  ±     

Ortúzar et al. (2000) ± +   + – ±  + ± 

Rodrıǵuez and Joo (2004) –          

Soltani and Allan (2006)      –     

Börjesson and Eliasson (2012) ± +    +     

Sener et al. (2009) 

Route 

+ +  –       

Tilahun et al. (2007) ± ±  ±  +  –   

Hunt and Abraham (2006)  ±  –       

+ More likely to choose bicycle/low-stress route (p < 0.05) 

– Less likely choose bicycle/low-stress route (p < 0.05) 

± Not significant (p ≥ 0.05) 

 

Gender 

In many countries, including Australia, travel surveys show that cycling for 

transport is significantly more common amongst men than amongst women. 

Notable exceptions to this pattern include the Netherlands, Germany, Denmark 

and Sweden (Pucher & Buehler, 2007). 

These data are consistent with transport mode choice studies that predict men in 

the United Kingdom and United States are more likely to travel by bicycle than 

women (Sener et al., 2009; Wardman et al., 2007); and one that predicts no 

difference in Stockholm (Sweden) (Börjesson & Eliasson, 2012). In Santiago 

(Chile), males are more likely to choose bicycle (90 per cent confidence level) 

(Ortúzar et al., 2000). 

                                            

20 Number of bicycles in household divided by household size. 
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Garrard et al. (2012) discuss two possible reasons why the propensity to cycle for 

transport may differ between genders. First, women may have more complex trip 

patterns and less time, due to additional domestic responsibilities (e.g., childcare 

and chauffeuring). However, this is also true in the countries where cycling 

participation does not differ between genders. Second, women may feel less 

comfortable and safe riding in mixed traffic, even though their actual crash/injury 

risk is no greater than that of men. This may explain why gender is not a 

significant factor in those Northern European countries that have networks of 

bicycle paths physically separating bicycle riders from high-speed, high-volume 

traffic. Higher perceived danger may also explain why women are more likely than 

men to avoid routes with on-street parking (Sener et al., 2009). 

Age 

Transport mode preference for bicycle increases with age, and older people place a 

greater value on the perceived health benefits of cycling (Börjesson & Eliasson, 

2012; Ortúzar et al., 2000; Wardman et al., 2007). 

In terms of route choice, older riders prefer streets with angled on-street parking 

to ones with parallel parking, while younger riders are indifferent (Sener et al., 

2009). In Sydney, older riders are more likely to change their route to use a new 

bicycle path (Standen et al., 2016). 

Household size 

Individuals from larger households (more than two persons) are less likely to go 

out of their way to use a lower stress route (e.g., one with better separation from 

traffic) – possibly because they have parenting responsibilities and more time 

constraints (Tilahun et al., 2007). 

Household income/education level 

The effect of household income on propensity to cycle varies by country. In Santiago 

(Chile) and Adelaide (Australia), people from low-income households are more 

likely to cycle (Ortúzar et al., 2000; Soltani & Allan, 2006). In Stockholm (Sweden), 

people from high-income households are more likely to do so (Börjesson & Eliasson, 
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2012). This could be due to the way bicycle transport is viewed in different cultures. 

In Chile, for example, the bicycle is seen as a mode of transport for less successful 

people, with a famous 1980 television advertisement showing a man being 

ridiculed for riding one (Long, 2016). Similarly, a government road safety 

campaign in South Australia suggested that men who are banned from driving will 

have difficulty attracting women, if they use a bicycle instead (Milnes, 2011). 

Despite a positive correlation between household income and education level, 

Ortúzar and Willumsen (2011) found that education level is not significant, while 

household income is, in Santiago (Chile). However, In Dublin (Ireland), Commins 

and Nolan (2011) found – using RP (census) data – that highly educated people are 

more likely to cycle (or walk) to work. They suggest that educated people may be 

more aware of the social impacts of driving, or can afford to live within cycling 

distance of work. 

In terms of route choice, people from high-income households are more likely to 

choose low-stress bicycle routes (Tilahun et al., 2007). 

Tiredness and cycling experience/frequency 

As one would expect, lower tiredness and more cycling experience are associated 

with greater propensity to cycle (Wardman et al., 2007).  

Route choice studies show that less experienced riders tend to favour lower stress 

routes (Hunt & Abraham, 2006; Sener et al., 2009). 

Bicycle and car availability 

People from households with greater bicycle availability (number of bicycles 

divided by household size) are more likely to cycle, while the number of cars in the 

household is not significant (Ortúzar et al., 2000). 

Psychosocial factors 

As discussed in Chapter 2 (Section 2.5.3.2), the utility of cycling to an individual 

may be affected by the extent to which they believe they will derive a health 

benefit. 
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In studying people’s motivations for cycling in the United Kingdom, Gatersleben 

and Appleton (2007) found there is general agreement that cycling is healthy, but 

perceived health benefit is not one of the major motivations for cycling. They 

suggest this may be because health benefits are generally detected over the long 

term, whereas other benefits can be experienced on a daily basis. 

On the other hand, 52 per cent of bicycle commuters surveyed in Stockholm 

(Sweden) stated that exercise is the most important reason to choose bicycle 

(Börjesson & Eliasson, 2012). However, this group had the same sensitivity to 

travel time as the other respondents, which Börjesson and Eliasson suggest could 

be because (a) health was not a factor in their mode choice, or (b) the other group 

also considered perceived health benefit, but it was not their primary motivation 

for cycling. Another explanation is that sensitivity to travel time is determined at 

the margins: whereas a 30-minute bicycle commute may be preferred to a 40 

minute one, both might be perceived as sufficient to offer a health benefit.   

In Belgium, regular bicycle riders have higher self-reported levels of self-efficacy, 

social support (relatives who will accompany them when cycling), modelling 

(relatives who cycle), and environmental awareness. Non-riders report having less 

time, and less interest in cycling (De Geus, De Bourdeaudhuij, Jannes, & Meeusen, 

2008).  

3.2.2 Trip attributes 

Table 3.6 summarises the various attributes of bicycle trips that have been tested 

in previous mode and route choice studies. They include typical generalised cost 

components (e.g., travel time, distance, financial cost), and others specific to 

cycling (e.g., gradient). These are discussed in more detail below, along with other 

potential factors identified elsewhere in the literature.
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Table 3.6: Bicycle mode and route choice studies  trip attributes 

Study Choice 

T
rip

 d
is

ta
n

c
e

 

T
ra

v
e
l tim

e
 

F
in

a
n

c
ia

l c
o

s
t/in

c
e
n

tiv
e

 

N
u

m
b

e
r o

f 

tu
rn

s
/in

te
rs

e
c
tio

n
s

 

R
o

u
te

 d
ire

c
tn

e
s

s
 

G
ra

d
ie

n
t 

A
ir p

o
llu

tio
n

 

N
o

is
e

 

P
e
rs

o
n

a
l s

e
c
u

rity
 

S
u

rfa
c
e
 ty

p
e
/c

o
n

d
itio

n
 

P
re

s
e
n

c
e
/ty

p
e
 o

f 

b
ic

y
c
le

 fa
c
ility

 

B
ic

y
c
le

 fa
c
ility

 

c
o

n
tin

u
ity

 

P
re

s
e
n

c
e
/ty

p
e
 o

f o
n

-

s
tre

e
t p

a
rk

in
g

 

M
o

to
r v

e
h

ic
le

 tra
ffic

 

v
o

lu
m

e
 

M
o

to
r v

e
h

ic
le

 s
p

e
e
d

 

lim
it 

E
n

d
-o

f-trip
 fa

c
ilitie

s
 

(s
h

o
w

e
rs

, p
a
rk

in
g

) 

T
rip

 p
u

rp
o

s
e

 

Wardman et al. (2007) 

Mode 

 S S   NS NS NS NS  S     S  

Ortúzar et al. (2000)  S 

 
              S 

Rodrıǵuez and Joo (2004)  S    S            

Soltani and Allan (2006)  S   S             

Börjesson and Eliasson 
(2012) 

 S  S       S       

Stinson and Bhat (2003) 

Route 

 S  S  S    S S S S     

Hood et al. (2011) S   S       S       

Sener et al. (2009) S S    S     S S S S S  S 

Tilahun et al. (2007)  S         S       

Hunt and Abraham (2006)  S  S       S     S  

Hopkinson and Wardman 
(1996) 

 S S        S       

Börjesson and Eliasson 
(2012) 

 S  S            S  

Broach et al. (2012, 2009) S   S  S     S   S   S 

Zimmermann et al. (2017) S   S  S     S   S    

S: Significant at the 95% confidence level (p < 0.05) 

NS: Not significant at the 95% confidence level (p ≥ 0.05) 
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Trip distance/time 

There is general agreement that bicycle utility decreases as travel time or distance 

increases. Disutility is higher for time spent riding on high-stress links/routes, and 

for commuting trips (Börjesson & Eliasson, 2012; Ortúzar et al., 2000; Rodríguez 

& Joo, 2004; Soltani & Allan, 2006; Wardman et al., 2007; Zimmermann et al., 

2017). 

Usually, disutility is assumed to increase linearly with trip distance/time. Broach 

et al. (2012, 2009) used the natural log of distance in their route choice model – 

implying that the marginal disutility diminishes as distance increases – but did 

not give any justification for doing so. Börjesson and Eliasson (2012) estimated a 

lower marginal disutility of travel time for bicycle riders whose total commute time 

is 40 minutes or more. They attributed this difference to long-distance commuter 

bicyclists having fewer time constraints to begin with (i.e., self-selection). 

Financial cost/incentive 

Trip costs  such as fuel, tolls and fares  have long been known to affect the utility 

of driving and public transport (Hensher et al., 2005). However, the operating costs 

of a bicycle are negligible. There are no fuel costs or direct user charges, except in 

the case of (a) bicycle share schemes, where time charges apply, usually after an 

initial free period (Fishman, Washington, & Haworth, 2013), and (b) casual use of 

commercial end-of-trip facilities. 

Hopkinson and Wardman (1996) included in their SP route choice model a 

hypothetical cost to use a separated bicycle facility, and found this cost to 

negatively affect cycling utility. Wardman et al. (2007) included a hypothetical 

financial incentive to cycle in their joint RP-SP mode choice model. Respondents 

valued the incentive at twice the magnitude of the cost of driving or public 

transport. Wardman et al. suggest the difference may be the result of respondents 

having differing sensitivities to gains and losses – although prospect theory 

suggests they would be more sensitive to losses (costs) than to gains (incentives) 

(Tversky & Kahneman, 1992). From this model, Wardman et al. estimated that 
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paying people GBP 2 a day21 to cycle to work would double the commuting mode 

share for bicycle in the United Kingdom.  

Turns and route directness 

Using RP data collected with personal GPS devices, both Broach et al. (2012, 2009) 

and Hood et al. (2011) found that a route with more turns has a lower utility than 

one with fewer turns, ceteris paribus. Broach et al. estimated that each turn per 

mile (1.61 km) has the same disutility as a 4.2 per cent increase in commuting 

distance. They also estimated that each left turn22 per mile has an additional 

disutility equivalent to between 5.9 per cent and 32.2 per cent of commuting 

distance, depending on traffic volume. Hood et al. estimated that each turn (left or 

right) has a disutility equivalent to an additional 0.17 km of travel.  

Other studies show that the utility of a bicycle route decreases with the number of 

traffic signals, stop signs and major cross streets (Börjesson & Eliasson, 2012; 

Stinson & Bhat, 2003). Additionally, propensity to cycle increases with route 

directness (calculated as the quotient of straight-line distance and network 

distance) (Soltani & Allan, 2006). 

Gradient/hilliness 

Cycling up hills requires additional physical effort and travel time, so would be 

expected to decrease the utility of cycling, or of a hilly bicycle route – except in the 

case of recreational or sport cycling, where hills are sometimes sought out for the 

physical challenge or the scenery (Belbin, 2016). 

Cole-Hunter et al. (2015) found that a more elevated work/study location was 

associated with a lower propensity to commute by bicycle in Barcelona (Spain). 

They estimated work/study location elevation as the average elevation of a 400-

metre buffer around the geocoded work/study location. 

                                            

21 2007 prices. 

22 The data were from Portland (United States), which has right-hand traffic  making left turns 

more difficult.  
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Using an RP mode choice model, Rodrı ́guez and Joo (2004) determined that 

increased hilliness between a respondent’s origin and destination significantly 

decreases cycling utility. However, their model assumed hills have no deterrent 

effect other than the increase in travel time, i.e., travellers do not consider the 

additional physical effort required. In their RP mode choice study, Wardman et al. 

(2007) found that hilliness is not significant, although their data were obtained 

from relatively flat study areas.  

A number of previous route choice studies predict that bicycle riders will opt for a 

less hilly route, ceteris paribus (Broach et al., 2012, 2009; Sener et al., 2009; 

Stinson & Bhat, 2003; Zimmermann et al., 2017).  

All these studies assumed that respondents use a conventional bicycle. However, 

in recent years, there has been an increasing uptake of electric-assist bicycles (e-

bikes), fuelled by improvements in battery technology and lower costs (Weiss, 

Dekker, Moro, Scholz, & Patel, 2015). When using an e-bike, it is possible to climb 

hills with minimal physical effort – though they are still slowed down by hills. 

Surface type/condition 

Bicycler riders, particularly older ones, prefer a smooth pavement to a rough or 

sandy one, according to a SP route choice study conducted in the United States 

(Stinson & Bhat, 2003). 

Presence/type of bicycle facility 

Mode and route choice studies, both SP and RP, have consistently shown that the 

presence of bicycle facilities that separate riders from high speed/high volume 

traffic is one of the most important determinants of cycling utility (Börjesson & 

Eliasson, 2012; Broach et al., 2012, 2009; Hood et al., 2011; Hopkinson & 

Wardman, 1996; Hunt & Abraham, 2006; Stinson & Bhat, 2003; Tilahun et al., 

2007; Wardman et al., 2007; Zimmermann et al., 2017). The utility of cycling 

increases with the level of separation: physically separated bicycle paths offer the 

greatest utility, followed by marked bicycle lanes, followed by mixed traffic. 
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For United Kingdom commuters, Wardman et al. (2007) estimated the marginal 

rate of substitution (MRS) between time spent in mixed traffic and time spent on 

bicycle paths to be 3.2 (implying people will ride for 3.2 minutes on a bicycle path 

to avoid riding for one minute in mixed traffic). For commuters in Stockholm 

(Sweden), the MRS is 1.4 for trips less than 40 minutes, and 1.9 for trips of 40 

minutes or more. 

However, in modelling SP route choice data from Texas (United States), Sener et 

al. (2009) found that bicycle users prefer mixed traffic to bicycle lanes. They note 

their respondents were more likely to be enthusiastic riders who subscribe to the 

‘vehicular cycling’ philosophy, in which it is believed bicycle users have as much 

right to use public roads as anyone else, and the onus is on other road users to 

adapt to their presence, rendering separation unnecessary (Forester, 2001). 

In the United Kingdom, bicycle riders are permitted to use bus lanes. These are 

preferred to roads with no facilities, but preference for separated bicycle paths is 

much greater (Hopkinson & Wardman, 1996).  

Bicycle facility continuity 

According to Krizek and Roland (2005, p. 56), a bicycle route can be viewed as a 

system that is “only as good as its weakest link”, and interruptions in bicycle 

facilities significantly affect self-reported comfort levels. In order of increasing 

negative impact on comfort levels, the interruptions they analysed included: 

bicycle lanes that end mid-block and deposit riders into mixed traffic flow; bicycle 

lanes that terminate just before an intersection; and contra-flow bicycle lanes that 

end abruptly and deposit riders into oncoming traffic. 

Modelling SP route choices, Stinson and Bhat (2003) found that a discontinuous 

bicycle route (defined as one where there is no bicycle lane for 25 per cent or more 

of the route) has a lower utility than a continuous one. Similarly, Sener et al. (2009) 

found a significant preference for continuous bicycle routes (defined as ones with 

a bicycle lane for 100 per cent of their length). In neither study is it clear how the 

disutility of discontinuity is distinguished from the disutility of riding in mixed 

traffic. 
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On-street parking 

Bicycle routes with parallel on-street parking are less preferred than ones without, 

while angle parking is preferred over parallel parking. The utility of a route 

decreases with increases in the parking occupancy rate and parking zone length 

(Sener et al., 2009; Stinson & Bhat, 2003). 

Motor vehicle traffic volume and speed 

Roads with lower average daily traffic volumes are preferred by bicycle riders, 

especially commuters who typically ride during peak times when traffic volumes 

are at their highest (Broach et al., 2012, 2009; Sener et al., 2009; Zimmermann et 

al., 2017). 

Most riders prefer roads with a lower posted speed limit (Sener et al., 2009). An 

exception is experienced riders commuting long distances, who prefer roads with a 

moderate speed limit (32 to 56 km/h). However, even they avoid roads with a high 

speed limit (over 56 km/h). 

It is likely that rider comfort levels are affected more by a road’s operating speed 

than by its posted speed limit, although the latter is usually a reasonable proxy for 

the former (Fitzpatrick, Carlson, & Wooldridge, 2003), and easier to ascertain.  

End-of-trip facilities 

The lack of end-of-trip facilities (showers and secure parking) is often cited as a 

structural barrier to bicycle use, especially for commuting trips (Gatersleben & 

Appleton, 2007; Pucher et al., 2010). 

In their commuting mode choice study, Wardman et al. (2007) found that secure 

bicycle parking is valued the same as a 4.3 minute reduction in travel time, while 

secure parking plus shower/changing facilities are together valued the same as a 

6.0 minute reduction in travel time. Similarly, Börjesson and Eliasson (2012) found 

that bicycle routes with bicycle parking facilities at the destination are preferred 

to those without, with parking valued as equivalent to a 3.7 minute reduction in 

travel time. 
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Air toxin and traffic noise exposure 

Bicycle riders are exposed to air toxins and noise pollution from motor vehicles, 

with exposure increasing with traffic volumes (Bigazzi & Figliozzi, 2015; Tang & 

Wang, 2007). Air toxin levels also depend on the volume of trucks and buses, 

emission standards, fuel quality, and prevalence of diesel-powered vehicles (P. F. 

Nelson, Tibbett, & Day, 2008).  

It is not known to what extent air toxin and noise exposure affect mode and route 

choices. Where bicycle paths are built along high-traffic roads, there may be a 

trade-off between the desire to minimise air toxin inhalation and noise exposure, 

and the desire for physical separation from traffic (Bigazzi, Broach, & Dill, 2015). 

Perceived accessibility 

As discussed in Section 3.1.3, the utility of an alternative to an individual depends 

on how they perceive the attributes of that alternative. According to Dill and Voros 

(2007), people often overestimate the time needed to travel somewhere by bicycle, 

and they may not be aware of the existence of a low-stress bicycle route, if they are 

only familiar with the major roads. Scheepers et al. (2016) found that propensity 

to cycle decreases as perceived accessibility by car increases (odds ratio (OR) range: 

0.09 to 0.66), while it increases as perceived accessibility by bicycle increases (OR 

range: 2.18 to 10.43). 

This implies that cycling utility can be increased simply by changing perceptions 

of accessibility, e.g., through route signage. Equally, it could change through 

experience (temporal preference instability is discussed further in Section 3.4)  

3.2.3 Contextual factors 

Table 3.7 summarises the various contextual factors have been examined in 

previous mode and route choice studies. These are discussed in more detail below. 
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Table 3.7: Bicycle mode and route choice studies  contextual factors 

Study Choice Season Weekday/weekend Weather Trip purpose 

Ortúzar et al. (2000) 
Mode 

  
S S 

Soltani and Allan (2006) 

 
S 

  

Sener et al. (2009) 

Route 

   
S 

Tilahun et al. (2007) S 
   

Broach et al. (2012, 2009)    S 

S = Significant at the 95% confidence level (p < 0.05) 

 

Trip purpose 

Many previous choice studies have included only commuting trips (e.g., Börjesson 

& Eliasson, 2012; Rodríguez & Joo, 2004; Stinson & Bhat, 2003; Tilahun et al., 

2007; Wardman et al., 2007). Others have pooled multiple trip purposes in the 

same model. In a couple of studies, a trip purpose variable was interacted with 

other attributes to test whether sensitivity to those attributes varies by trip 

purpose. Using this approach, it has been found that commuters are more sensitive 

than are non-commuters to travel time and traffic volume (Broach et al., 2012, 

2009). Furthermore, long distance commuters are more sensitive to on-street 

parking and bicycle facility discontinuity, and less sensitive to moderate speed 

limits, while non-commuters are less sensitive to hills and traffic volume (Sener et 

al., 2009). 

Climate 

Bicycle users are exposed to the elements, and adverse weather (e.g., wind, rain, 

extreme cold, extreme heat and humidity) is often cited as a barrier to cycling 

(Gatersleben & Appleton, 2007). Nankervis (1999) studied the commuting patterns 

of students in Melbourne (Australia), which has a temperate climate. He concluded 

that cycling does decline in the winter months, and on days with adverse weather. 

The decline in winter may be partly attributable to fewer daylight hours. 

Few bicycle choice studies have included weather or climate variables. In one SP 

mode choice study conducted in Santiago (Chile), hot weather was found to 

significantly decrease cycling utility (Ortúzar et al., 2000). 
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Darkness 

The crash risk for bicycle riders increases in darkness, by 55 per cent according to 

Johansson et al. (2009) based on data from Sweden, Norway and the Netherlands 

(see Figure 3.1). In addition, cycling in darkness requires lights with batteries that 

need regular charging or replacing (or a dynamo system). 

 

Figure 3.1: Bicycle rider crash risk in darkness (Johansson et al., 2009) 

Using a generalised estimating equation to model self-reported commuting data 

from the Netherlands, Heinen et al. (2011) found that women are more sensitive 

than are men to cycling in the dark. 

Darkness and street/path lighting were not included as contextual factors in any 

of the bicycle choice studies found in the literature. 

3.3 Derived welfare measures 

A useful feature of discrete choice models is that they can be used to forecast 

changes in welfare (user benefits) resulting from an intervention that will improve 

(or worsen) the choices available to individuals. Both changes in willingness to pay 

(WTP) and consumer surplus can be estimated.  

A criticism of both these approaches is that attempting to maximise individual 

utility/welfare can lead to suboptimal social and environmental outcomes, and 
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inter-generational inequity. In an example of Hardin’s (1968) ‘tragedy of the 

commons’, attempts to satisfy motorists’ preferences to drive in free-flowing traffic 

(by expanding road capacity) have led to increases in motor vehicle traffic and 

consequential social and environmental impacts. 

3.3.1 Marginal rate of substitution and willingness to pay 

3.3.1.1 Theory 

In choosing between the alternatives in a discrete choice situation, decision makers 

are assumed to make trade-offs between their attributes. For example, a driver 

may opt to pay more money (less utility) to use a faster toll road (more utility). The 

rate at which a decision maker will substitute one attribute for another is the 

marginal rate of substitution (MRS). It is defined as the ratio of the change in the 

marginal utility of one attribute to the change in marginal utility for another 

(Hensher et al., 2005). In the simplest case, where the attribute has a linear 

influence on utility, unmoderated by any other variable, this simplifies to the ratio 

of the attributes’ parameter estimates (Equation 3.6). Scale factors cancel out, so 

MRS values can be compared across datasets with error terms of differing 

magnitude. 

𝑑
𝑑𝑥𝑎

𝛽𝑎𝑥𝑎

𝑑
𝑑𝑥𝑏

𝛽𝑏𝑥𝑏

=
𝛽𝑎

𝛽𝑏
 3.6 

In welfare economics, an important MRS ratio is willingness to pay (WTP), which 

is defined as the maximum price a consumer is willing to pay for a good or service 

(Mankiw, 2007). It is widely used for valuing goods that are not traded in a free 

market. In environmental economics, WTP values have been estimated for a 

variety of environmental goods, e.g., wilderness (Lienhoop & MacMillan, 2007). In 

transport economics, considerable attention is paid to estimating the WTP for 

travel speed increases (see Section 2.5.1) – arguably too much attention, given the 

negative environmental and social consequences of faster vehicle speeds (Cervero, 

2011). 
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For estimating WTP from a discrete choice model, the denominator 𝑥𝑏 in Equation 

3.6 would be a cost attribute – normally a monetary cost, but not necessarily so. 

For example, it could be a distance cost, in which case WTP could be interpreted 

as the willingness to pay in terms of a longer trip distance, in exchange for an 

improvement in attribute 𝑥𝑎. An example here is the distance bicycle riders are 

willing to go out of their way to use a more pleasant or safe facility. 

It is important to note that parameter estimates are just that, and have confidence 

intervals. It follows that a MRS or WTP estimate, being the ratio of two parameter 

estimates, must also have a confidence interval. Methods for calculating these 

include the bootstrap method, the Krinsky and Robb method, and the Delta method 

(Hole, 2007). The formula for the latter is: 

𝑉𝑎𝑟 (
𝛽𝑎

𝛽𝑏
) =

1

𝛽𝑏
2 [𝑉𝑎𝑟(𝛽𝑎) −

2𝛽𝑎

𝛽𝑏
𝐶𝑜𝑣(𝛽𝑎, 𝛽𝑏) + (

𝛽𝑎

𝛽𝑏
)

2

𝑉𝑎𝑟(𝛽𝑏)] 3.7 

A further consideration is how to estimate MRS or WTP in the mixed logit model, 

where a randomly distributed cost parameter (denominator) could take a value of 

zero, resulting in a singularity with a MRS or WTP of infinity. Hensher et al. (2005) 

suggest some ways of avoiding this issue: 

1. Specify the cost parameter to be non-random. 

2. Specify a cost parameter distribution that is constrained to be non-zero, e.g., 

lognormal or constrained triangular. 

3. Calculate MRS/WTP values for each individual respondent, using parameter 

estimates conditioned on their actual choices.   

There is some debate in the literature as to whether WTP does actually measure 

welfare or wellbeing. Sagoff (2003, 2004) contends that WTP measures only 

preferences, not welfare, and that there is no empirical or testable correlation 

between them. To say that WTP measures welfare is tautologous, if welfare is 

measured in terms of WTP  in other words, WTP measures WTP. Furthermore, 

preference satisfaction may lead to both good and bad social outcomes. In response, 

Zerbe et al. (2006) asks: who should decide which preferences are good, and which 

are bad? 
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An emerging question in the literature is whether WTP differs between short-term 

travel choices and long-term ones (Beck, Hess, Cabral, & Dubernet, 2017). For 

example, when an individual is deciding where to live, WTP for lower travel time 

may be relatively low. When they are running late for work and deciding which 

transport mode to use, they may value travel time savings much higher. Then, 

when they are held up in traffic, they may value travel time savings even higher, 

to the extent they will switch route to use a toll road. It is debatable which value 

of VTTS should be used for calculating the time saving benefit of policies aimed at 

increase travel speeds. 

3.3.1.2 Application 

Few attempts have been made to value new or improved bicycle facilities using the 

WTP approach. Using data from a SP survey, Poorfakhraei and Rowangould (2015) 

calculated WTP for bicycle paths, bicycle lanes and street lighting. Based on a 

reference scenario of a 20-minute trip on an unimproved road, they estimated that 

respondents are willing to pay USD 1.76 to 2.47 for bicycle paths, USD 1.37 to 1.90 

for street lighting, and USD 0.86 to 1.40 for bicycle lanes along the whole route. 

WTP values were higher for older respondents, and lower for those with more 

cycling experience. Poorfakhraei and Rowangould’s model did not include a 

monetary cost parameter, but it did include travel time, which they valued as 50 

per cent of respondents’ hourly wage rate. 

Similarly, Krizek (2006) estimated that bicycle users in Minneapolis (United 

States) are willing to ride for an additional 16.3 minutes, if a bicycle lane is 

provided along their entire route. Multiplying this by a VTTS of USD 12 per hour,23 

they estimated a WTP of USD 3.26 for a 20-minute bicycle trip – which is 

considerably more than the USD 0.86 to 1.40 estimated by Poorfakhraei and 

Rowangould, even before taking inflation into account. 

                                            

23 This was the value recommended by the Minnesota Department of Transportation. 
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There are some issues with using this approach to value the welfare benefits of 

new bicycle infrastructure. First, there is the potential for hypothetical bias 

associated with SP surveys (Hensher, 2010). Second, a uniform trip time is 

assumed, and trips are assumed to be 100 per cent on the new facility. This issue 

could be overcome by presenting respondents with route alternatives involving a 

mixture of facility types, though this would increase survey complexity and 

respondent burden. 

3.3.2 Consumer surplus 

3.3.2.1 Theory 

A general problem with using WTP as a measure of the welfare benefit of new 

transport infrastructure is that user charges are considered a transfer payment, 

and are therefore not included in economic assessment. For example, if 1,000 

motorists are willing to pay $5 to use a toll road that saves them each 10 minutes 

of travel time, and they each do pay $5 to use the toll road, then from their 

perspective the net welfare benefit would be nil. However, from an economist’s 

perspective, the net welfare benefit would be $5,000 ($5 x 1,000).  

For this reason, it may be more appropriate to measure changes in consumer 

surplus, which is defined as the difference between consumers’ WTP for something, 

and the price they actually pay for it (Mankiw, 2007). Changes in consumer surplus 

can therefore take into account additional costs to consumers, financial or 

otherwise, of a project or policy. 

For transport projects, the consumer surplus has traditionally been estimated 

using the rule of half (as described in Section 2.3.3). However, it can also be 

estimated from a discrete choice model. The following summary is based on the 

work of Train (2009), de Jong et al. (2005) and de Jong et al. (2007). 

The natural log of the denominator of the choice probability (Equation 3.3), known 

as the logsum or inclusive value, gives the maximum expected utility available to 

an individual. In other words, it is a measure of an individual’s expected utility 

associated with a choice situation. The inclusive value increases with the number 
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of alternatives, but with decreasing marginal utility owing to the logarithmic form 

– it can therefore capture changes in option value (see Section 2.5.4). 

The expected value of the consumer surplus 𝐶𝑆𝑛𝑡
𝑠  for an individual n in scenario s 

can be calculated by dividing the inclusive value by the marginal utility of income 

α𝑛 (Equation 3.8). By definition, α𝑛 is the negative of any cost parameter in the 

utility functions 𝑉𝑛𝑗𝑡
𝑠 . The unknown constant 𝐶  is added because the inclusive 

value includes only observed utility. 

𝐸(𝐶𝑆𝑛𝑡
𝑠 ) = (1/α𝑛) ln (∑ 𝑒𝑉𝑛𝑗𝑡

𝑠

𝑗

) + 𝐶 3.8 

For a mixed logit (random parameters) model, the inclusive value is calculated as 

the average of all random draws. If the cost parameter used to calculate α𝑛  is 

randomly distributed, then the division by α𝑛 must be done before the average is 

taken (Kristoffersson & Engelson, 2009). 

As an aside, if destination choice is also included in the model, then the consumer 

surplus can be interpreted as a measure of accessibility (Ben-Akiva and Lerman, 

1985). This is the basis of utility-based accessibility measurement (discussed in 

Section 2.5.2). 

The change in consumer surplus for a policy intervention Δ𝐸(𝐶𝑆𝑛𝑡) is calculated as 

the difference in inclusive value between the before and the after scenarios (b and 

a respectively), divided by α𝑛 (Equation 3.9). The unknown constant 𝐶 drops out. 

Δ𝐸(𝐶𝑆𝑛𝑡) = (1/αn) [ln (∑ 𝑒𝑉𝑛𝑗𝑡
s=a

𝑗

) − ln (∑ 𝑒𝑉𝑛𝑗𝑡
s=b

𝑗

)] 3.9 

Thus, if an attribute 𝑥𝑝𝑖𝑗  of the observed utility 𝑉𝑛𝑗𝑡  improves because of the 

intervention, then 𝑉𝑛𝑗𝑡
s=b will be greater than 𝑉𝑛𝑗𝑡

s=a and Δ𝐸(𝐶𝑆𝑛𝑡) will be positive. 

The change in population consumer surplus can then be calculated by applying 

expansion factors representing the number of people of each type n affected by the 

intervention. 
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This approach assumes that the marginal utility of income αi is the same before 

and after the intervention, and that error terms between the before and after 

scenarios are perfectly correlated. Zhao et al. (2012) found that changes in 

consumer surplus are robust to a relaxation of the latter assumption. A third 

assumption is that the intervention does not cause decision makers’ tastes and 

preferences (represented by the model parameters) to change. This assumption is 

critiqued in Section 3.4. 

A major advantage of this discrete choice/inclusive value approach is that it is 

disaggregate and can therefore take into account heterogeneity in the preferences 

of individuals (Dong et al., 2006). This is particularly important when assessing 

cycling projects, because preferences underlying bicycle utility are very dependent 

on individual characteristics such as age, gender, income and risk-perception 

(Wardman et al., 2007). 

Table 3.8: Applications of consumer surplus estimation 

Study Objective Choice(s) Location Data sources 
Bicycle 
included? 

Geurs et al. (2010) Forecast the user 
benefits of land 
use/transport 
strategies for adapting 
to climate change. 

Transport 
mode/destination 
(simultaneous) 

The 
Netherlands 

TRIGIS XL 
transport/land use 
model 

Bicycle and 
walk 
combined 
into one 
mode 

Geurs et al. (2012) Forecast the user 
benefits of three land 
use and six rail 
alternatives for 
development of 
Almere growth area.  

Transport 
mode/destination 
(simultaneous) 

Randstad 
region, the 
Netherlands 

TRIGIS XL 
transport/land use 
model 

Bicycle and 
walk 
combined 
into one 
mode 

Niemeier (1997) Value current 
employment 
accessibility for 
different population 
groups. 

Transport 
mode/destination 
(simultaneous) 

Puget Sound, 
Washington, 
US 

Household travel 
survey, census, 
Puget Sound 
Transportation 
Model 

No 

Dong et al. (2006) Forecast the user 
disbenefits of a peak 
period toll, for different 
population groups. 

Daily activity 
schedule 

Portland, 
Oregon, US 

Not stated Not stated 

Robson (2014) Forecast the user 
benefits of a proposed 
metro network.  

Transport mode Sydney, 
Australia 

Census (journey to 
work data) 

Not stated 

Zorn et al. (2012) Measure the user 
benefits of new 
bicycle lanes. 

Bicycle route San 
Francisco, 
California, US 

GPS traces Yes 
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3.3.2.2 Application 

While the theoretical basis for estimating consumer surplus based on changes in 

inclusive value is well established, there have been relatively few applications in 

practice. Table 3.8 lists relevant examples found in the literature. 

 

Figure 3.2: Change in cycling inclusive value to downtown San Francisco after 
introduction of Valencia Street bicycle lanes (Zorn et al., 2012)  

No examples could be found in the literature of the inclusive value approach being 

used to monetise the user benefits of bicycle projects or policies. Zorn et al. (2012) 

developed a route choice model using RP data from San Francisco (United States), 

in which the chosen routes were obtained from existing bicycle users using a 

smartphone tracking app, and the non-chosen routes were generated using a 

doubly stochastic shortest path algorithm. Their model generated inclusive value 

parameters representing the maximum expected utility of cycling between any 

given origin-destination pair. They used this model to assess (retrospectively) the 
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change in bicycle accessibility to the city centre when new bicycle lanes were 

installed along a major cycling route in 1999. Figure 3.2 illustrates how bicycle 

accessibility to the city centre changed for each origin zone: people living in the 

darker shaded zones experienced the greatest increase in bicycle accessibility. Zorn 

et al. did not attempt to value these accessibility improvements. 

Using a route choice model as opposed to a mode choice model means that only the 

impact on existing bicycle users is measured (Hopkinson, 1996). Inclusive values 

of bicycle route choice situations could potentially be used in place of the 

generalised cost of cycling in a mode choice model (Hood et al., 2011). Alternatively, 

if factors affecting cycling utility are included directly in the mode choice model, 

then consumer surplus can be evaluated across the whole population – and 

therefore incorporate the option value that people who do not currently use a 

bicycle derive from gaining the possibility of doing so. 

3.4 Transferability 

An implicit assumption in DCA – whether it is used to forecast changes in demand, 

future market shares, WTP or consumer surplus – is that the parameters of the 

utility functions remain constant over time, and are not affected by an 

intervention. In other words, it is assumed that preferences are transferable, and 

models developed to explain past behaviour can be used to predict future behaviour 

(Fox & Hess, 2010). 

However, it is feasible that preferences could change over time, or be affected by 

experience of a new alternative, or a significant change to an existing alternative. 

For example, an economy class aeroplane seat may be less appealing after 

experiencing business class. Similarly, if a city builds some new bicycle paths, 

users may become accustomed to the comfort and perceived safety they offer, and 

more averse to riding in mixed traffic. In this example, models estimated using ex-

ante data would underestimate the user benefits of the intervention. 

In the context of transport mode and destination choices, Fox and Hess (2010) 

reviewed six articles (covering 11 studies) that statistically compared models 

estimated before and after an intervention (Table 3.9). They found four of the six 



 

 

110 

 

articles supported the hypothesis that preferences are transferable over time. 

Models that included socioeconomic variables performed better than those that did 

not. 

Table 3.9: Temporal mode choice transferability studies 

Study Location Intervention 
Timeframe 
(years) 

Data 
sourcesa 

Choice(s) 
analysed 

Trip purposes 
analysed Modes 

Train 
(1978) 

California 
(US) 

New train line 
(BART) 

3 Not stated 
(RP 
presumed) 

Mode Commuting Car, carpool, 
bus, train 

McCarthy 
(1982) 

California 
(US) 

New train line 
(BART) 

1.5 RP Mode Commuting Car, bus, 
train 

Karasmaa 
and 
Pursula 
(1997) 

Helsinki 
(Finland) 

None 7 RP Mode and 
destination 

Commuting Walking, 
bicycle, car, 
public 
transport 

Gunn 
(2001) 

Netherlands None 10 RP Mode and 
destination 

Commuting, 
shopping, 
social/recreation 

Car, public 
transport, 
slow (walk or 
bicycle) 

Netherlands None None RP 

 

Mode and 
destination 

Commuting, 
shopping, 
social/recreation 

Car, public 
transport, 
slow (walk or 
bicycle) 

France None None RP 

 

Mode and 
destination 

Commuting, 
shopping, 
social/recreation 

Car, public 
transport, 
slow (walk or 
bicycle) 

Netherlands None None SP Not stated 
(mode only 
presumed) 

Commuting, 
business, other 

Car, public 
transport 

Netherlands None None SP Not stated 
(mode only 
presumed) 

Commuting, 
business, other 

Car, public 
transport 

United 
Kingdom 

None None SP Not stated 
(mode only 
presumed) 

Commuting, 
business, other 

Car, public 
transport 

Silman 
(1981) 

Tel-Aviv 
(Israel) 

1973 oil crisis, 
reduced tax 
concessions 
for car travel 

4 RP Mode Commuting Car, bus 

Badoe and 
Miller 
(1995) 

Toronto 
(Canada) 

Not stated 22 Not stated 
(RP 
presumed) 

Mode Commuting Car, public 
transport, 
walk 

a RP = revealed preference; SP = stated preference 

 

However, they note all but one of the studies they reviewed focused on a single trip 

purpose (commuting), and most were conducted over a short time frame (up to 10 

years), relative to typical forecasting and appraisal periods (up to 30 years). They 

also note all the studies used a simple model (MNL), and suggest future research 

could test whether transferability is improved with more advanced models, such 

as mixed logit. However, in the case of one long-term (22-year) study (Badoe & 
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Miller, 1995), a simple MNL model (specified with just constants and trip 

attributes) was found to be more transferable than one with individual 

characteristics added – even though the latter gave a better model fit. 

Most of the studies used RP data. However, Gunn (2001) used SP data to 

investigate changes in the value of travel time savings (VTTS) in the Netherlands 

and the UK between 1988 and 1997. They found that the VTTS for business travel 

by rail decreased significantly, which they attribute to the availability of mobile 

phones allowing rail travel time to be used more productively. (Perversely, this 

makes investment in new railways less attractive from a social cost benefit 

analysis perspective, meaning funding could be directed instead to infrastructure 

that provides less opportunity to use travel time productively, e.g., motorways.) 

In the same publication, Fox and Hess (2010) reviewed four validation studies that 

compared modelled predictions of mode shares with actual future mode shares. In 

two of these, overall predictive performance was good. In another (Silman, 1981), 

future shares for major modes (car driver and bus) were accurately predicted, but 

that for the minor mode (car passenger) was not.   

Forsey et al. (2014) investigated the temporal transferability of a RP mode choice 

model of commuting trips in Ontario (Canada) between 2001 and 2006, during 

which time a new transport mode was introduced (rapid bus transit). They did find 

a significant change in model parameters (preferences). However, their 2001 model 

did perform well in forecasting 2006 mode shares. It is not discussed whether the 

change in preferences may have been caused by the introduction of BRT. 

None of these previous preference transferability studies included bicycle as an 

alternative in the mode choice model (however, Karasmaa & Pursula (1997) 

combined walk and bicycle as a single alternative). None assessed preference 

transferability in the context of bicycle project/policy interventions.  

The preference transferability assumption has been tested in other fields. Mueller 

and Remaud (2010) conducted a SP experiment to understand factors affecting 

wine purchase choice in the year 2009, and compared the results with those from 

an identical experiment conducted in 2007 (with a different cross-sectional 
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sample). They observed small changes in sensitivity to price and region of origin, 

and a strong increase in sensitivity to organic labelling. 

In the healthcare field, Miguel et al. (2002) conducted a SP experiment to 

understand parents’ preferences in relation to out-of-hours healthcare for their 

children. After re-surveying the same sample two months later, they found 

preferences had remained stable. Similarly, Severin et al. (2001) found evidence of 

stability in preferences underlying shopping centre and supermarket choice, using 

repeat cross-sectional survey data collected over four years. 

Investigating the choice to purchase an electric vehicle (EV) or internal combustion 

vehicle (ICV), Jensen et al. (2013) found that preferences changed significantly 

after consumers had experienced using an EV for three months. Using a hybrid 

choice model to jointly estimate SP data collected from respondents before and 

after they had experienced an EV, they found sensitivity to an EV’s range and top 

speed almost doubled after experience with it. In addition, sensitivity to an ICV’s 

fuel cost increased after EV experience. Jensen et al. did not survey a control group 

of respondents who did not experience an EV, so there is no certainty that the 

changes in senstivity they observed were a result of EV experience. There may 

have been background factors that affected preferences, for example, publicity 

about EVs. 

In a different approach to investigating the impact of changes in attribute levels 

on preferences, Vij and Walker (2014) developed a latent class logit model with 

feedback, in which an individual’s class membership (set of preferences) could be 

influenced by attribute level changes in one or more alternatives. They assumed 

latent class membership to be a function of the inclusive values of the underlying 

class-specific choice models (as well as of individual characteristics). Using this 

model with cross-sectional RP mode choice data from San Francisco (United 

States), they were able to forecast changes in the class membership distribution 

(i.e., the propensity of people to adopt a different set of preferences) in response to 

increases in car travel time and cost. This class membership redistribution 

resulted in the forecast mode shift away from car being significantly lower than 
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that forecast with a conventional latent class logit or nested logit model. 

Accordingly, they stress the need for future research that addresses “the question 

of how preference endogeneity [to the choice situation] might best be reconciled 

with existing frameworks of welfare analysis and policy [appraisal]” (p. 104), 

highlighting the need for longitudinal studies: 

The hypothesis that travel demand models currently in use by [metropolitan 

planning organisations] could be improved through the inclusion of 

endogenous preferences cannot be fully tested without fairly long panel data 

over periods where urban infrastructure and travel costs change significantly 

(Vij & Walker, 2014, p. 104, emphasis added).  

No previous research has investigated whether preferences underlying bicycle 

mode or route choice are stable over time, or following improvements to the bicycle 

alternative. A finding that cycling preferences change after supporting 

infrastructure is provided would raise concerns over using DCA to predict changes 

in demand or consumer surplus, but would lend weight to the ‘build it and they 

will come’ argument often used by cycling advocates (A. Nelson & Allen, 1997). 

Conceptually, it is feasible that some people’s preferences for transport cycling 

might change once they have experienced it as an activity than can be undertaken 

without the need to mix with traffic. 

Another type of transferability to consider is spatial, whereby behaviour and 

preferences in one location are used to explain or predict behaviour and 

preferences in another. The review of bicycle choice studies (Section 3.2) indicates 

there is wide variation in preferences between and within countries, suggesting a 

model estimated using data in one location might not be particularly reliable for 

predicting demand or welfare changes elsewhere.    

3.5 Summary and research gaps 

This chapter demonstrates that discrete choice analysis is a potentially useful tool 

for understanding choices relating to bicycle use, and estimating the user benefit 

of new bicycle infrastructure. 
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There have been a number of studies of cycling choices in a variety of countries, in 

which both observed (RP) and hypothetical (SP) mode and route choices have been 

modelled. A range of independent variables (individual characteristics, trip 

attributes and contextual factors) have been tested in these models, and estimated 

parameters have largely had the expected sign. 

Model parameter estimates (preferences), and marginal rates of substitution 

between them, vary considerably between locations – indicating they are not 

spatially transferable. The hypothesis of temporal transferability before and after 

an intervention – which underpins forecasts made using these models – has, to 

date, not been tested. The temporal transferability hypothesis has been tested for 

other transport modes, and in other fields of study (e.g., healthcare), but these 

studies used rather simple model specifications (e.g., MNL), and did not control for 

background factors which may have affected preferences. 
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4 RESEARCH DESIGN AND DATA COLLECTION 

Chapters 2 and 3 reviewed the literature on cycling project assessment, and on the 

application of discrete choice analysis (DCA) to understanding cycling behaviour. 

Much scope for improvement in bicycle project appraisal (both theory and practice) 

was identified, particularly in terms of assessing and valuing user benefits – such 

as improved accessibility, confort and option value. DCA was identified as a 

potential tool for addressing these needs: as well as modelling changes in travel 

demand for a project proposal, it can be used to forecast changes in consumer 

surplus, for inclusion in welfare economic appraisal (cost-benefit analysis). DCA-

based forecasts assume people’s preferences do not change over time, yet there has 

been little research on whether, or how, cycling-related preferences may change.  

This chapter begins with a statement of the research questions and hypotheses for 

this thesis (Section 4.1). An overview of the experimental design proposed to 

address them is provided in Section 4.2. The case study intervention (George Street 

Cycleway) and its setting are described in Section 4.3. Details of the primary data 

source, the Sydney Travel and Health Study, are provided in Section 4.4. 

Secondary data sources are described in Section 4.5, followed by a chapter 

summary (Section 4.6). 

4.1 Research aims, questions and hypotheses 

This research was funded by an Australian Research Council Linkage Project 

grant, with the broad aim to make major contributions to the assessment of the 

transport, health and economic impacts of bicycle infrastructure (The University 

of Sydney, 2012). Following a review of the relevant literature (Chapters 2 and 3), 

the following two research questions and two hypotheses were formulated. 

Research question 1 

Which trip attributes, individual characteristics and contextual factors affect 

people’s decisions to travel by bicycle or not, in a car-oriented Australian city? 
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Research question 2 

How can discrete choice analysis be used to measure and value the user benefits of 

new bicycle facilities, in a way that fits into existing infrastructure appraisal 

frameworks? 

How do these benefits compare in magnitude to other benefits normally attributed 

to cycling projects (e.g., public health benefits)? 

Are there any implementation issues? 

What are the implications for the economic assessment of future cycling projects? 

Hypothesis 1 (Null) 

Following the construction of a new bicycle path, measured changes in bicycle travel 

are no different from those that are forecast using a discrete mode choice model. 

Hypothesis 2 (Null) 

Preferences underlying bicycle mode choice are stable over time. 

4.2 Experimental design 

A high-level overview of the experimental design framework is presented in Figure 

4.1. Travel survey (revealed preference) data are obtained from residents living 

near the proposed intervention (George Street Cycleway), and from residents living 

in a control area with similar characteristics, but where no new cycling 

infrastructure is planned (Wave 1). The travel data are analysed using a discrete 

mode choice model, which is then used to forecast the travel demand and consumer 

surplus for the four future scenarios listed in Table 4.1. 

Table 4.1: Economic appraisal scenarios 

Identifier Name Year Description 
Corresponding data 
collection wave 

A ‘Do nothing’ 2013 No changes to the transport network. 1 

B George St 
Cycleway 

2014 Construction of the George Street Cycleway (see Section 
4.3.4). 

2 

C George St + 
CBD Cycleways 

2015 Scenario B, plus new cycleways in the CBD providing a 
continuous route between the George Street Cycleway 
and the Sydney Harbour Bridge. 

3 

D Complete 
Network 

2017 Full implementation of the City of Sydney’s Cycle 
Strategy and Action Plan (City of Sydney, 2007). 

N/A 
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Figure 4.1: High-level experimental design 

The same residents are re-surveyed 12 months later (Wave 2), four months after 

the George Street Cycleway opens (corresponding with Scenario B). They are re-

surveyed again at 24 months (Wave 3), at which time new cycleways in the CBD 

have opened (corresponding with Scenario C). Actual changes in travel demand 

among the resident panel are compared with what was forecast. Finally, travel 

data from all three data collection waves are combined and analysed to test for 

temporal preference stability. 

4.3 Study area and intervention 

4.3.1 Geography and land use 

The City of Sydney is a local government area (LGA) within the Greater Sydney 

metropolitan region, the capital city of the state of NSW. It has an area of 27 square 

kilometres, and in the 2011 Census had a residential population of 169,501 (63.4 

persons per hectare) (ABS 2011b). Sydney's Central Business District (CBD), a 

major employment, tourism and retail centre, is located in the northern part of the 

LGA. To the north of the CBD is Port Jackson (Sydney Harbour). To the immediate 

east, south and west of the CBD are gentrified inner-city residential suburbs. The 

Redfern-Waterloo public housing community is in the centre of the LGA. The 
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southern part of the LGA contains the Green Square urban renewal area: 278 

hectares of former light industrial land that is being redeveloped as high-density 

residential and commercial. Land use planning is largely the responsibility of the 

City of Sydney, with employment and housing growth targets set by the NSW 

Government.  

4.3.2 Transport 

Transport planning in Greater Sydney is mainly the responsibility of the NSW 

Government, which controls public transport, taxis, arterial roads and all traffic 

signals. The management of local roads (including speed limits, on-street parking, 

traffic calming and bicycle infrastructure) is the responsibility of councils, but 

changes require approval by the state government roads authority, Roads and 

Maritime Services (RMS). Councils are also responsible for paths in most parks 

and other public spaces. 

An important component of the metropolitan transport system is the Sydney 

Harbour Bridge (opened 1932), which connects the CBD to North Sydney on the 

other side of Port Jackson, and acts as a funnel for private/freight vehicles and 

numerous bus services. It also has a double-track railway (T1 Line) and segregated 

pedestrian and bicycle paths. Starting in the 1970s, motorways began to sprout 

from the southern and northern ends of the bridge into the suburbs. In 1992, the 

Sydney Harbour Tunnel was opened, increasing cross-harbour road traffic 

capacity. 

In addition to these motorways, the City of Sydney LGA also has an extensive 

network of arterial and local roads. There is no congestion charge, although there 

are southbound-only tolls on the harbour crossings. 

Commercial car parks are costly in the CBD, with an average daily rate of AUD 

70.85 (Farren, Milou, & Volakos, 2015). In other parts of the LGA, most roads have 

free on-street parking. This creates a buffer between footpaths and traffic lanes, 

but poses a hazard for bicycle riders (vehicle doors being opened into their path). 

On-street parking is prohibited on many arterial roads during peak times, to create 

space for additional vehicle traffic. 
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New residential and commercial developments are built with off-street parking, 

even if well-served by public transport (City of Sydney, 2017). Shopping centres 

offer free customer parking. 

Fuel is inexpensive by international standards (Australian Institute of Petroleum, 

2015), with an average petrol price of AUD 1.34/litre in March 2015 (Caltex 

Australia, 2016). 

 

Figure 4.2: Passenger volumes entering CBD 08:00 to 09:00 (Transport for NSW, 
2013c) 

By Australian standards, the LGA is well served by public transport, with a 

number of frequent heavy rail, light rail, ferry and bus services radiating from the 
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CBD. However, with few bus priority lanes, high traffic congestion, and dozens of 

bus routes sharing some corridors, bus travel can be slow and unreliable. There 

are few non-radial services, making public transport often inconvenient for people 

not travelling to/from the CBD or along radial corridors. In 2014, the rollout of the 

Opal smartcard ticketing system was completed. However, the system retained 

some of the problems of the previous paper-based one, including a penalty for 

travellers for changing mode. Figure 4.2 shows the car and public transport 

passenger volumes entering the CBD along major corridors during the morning 

peak (08:00 to 09:00). 

People walking in the City of Sydney experience narrow footpaths, high motor 

vehicle traffic volumes and speeds, vehicle exhaust and noise, and low priority and 

long waits at intersections. 

4.3.3 Cycling environment 

Sydney is car-oriented and not conducive to everyday cycling for a large part of the 

population. The speed limit on most arterial roads is 60 km/h, while for residential 

streets the default is 50 km/h. Bicycle lanes are often situated in the ‘door zone’ 

between parked vehicles and traffic lanes, and the few separated cycleways are 

disconnected and lack continuity. There are some recreational paths (shared with 

pedestrians) alongside motorways and waterways, but these are not planned with 

access to destinations or public transport in mind. Inner-city Sydney has a number 

of hills, and sales of electric-assist bicycles are growing (Charleston, 2016). The 

current climate is temperate, with warm summers and mild winters, and an 

average of 144 rainy days per year (Weatherzone, 2016). 

The centrepiece of cycling safety policy since the early 1990s has been laws that 

mandate the wearing of helmets for all types of cycling, including low-speed 

transport and recreational riding, with a fine of AUD 330 for non-compliance (NSW 

Centre for Road Safety, 2016). Despite this policy, the injury risk for bicycle riders 

has remained high by international standards (Garrard et al., 2010; Poulos et al., 

2015). 
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While Australians buy more bicycles than cars (Austroads, 2014), suggesting a 

desire to ride, most do not in practice. In the Greater Sydney metropolitan region, 

the bicycle mode share for trips under 10 kilometres was 2.5 per cent in 2012 

(Bureau of Transport Statistics, 2013). According to the same source, in the 15 to 

49 age category, the mode share for males (3.3 per cent) was three times that for 

females (1.1 per cent). The vast majority of bicycle trips under 10 kilometres were 

for sport/recreation (63 per cent), rather than utilitarian transport purposes (e.g., 

work or shopping). In the City of Sydney, transport cycling is more common, with 

3.5 per cent of workers (but only 2.2 per cent of women) commuting by bicycle 

(Australian Bureau of Statistics, 2011). 

As part of a policy to give more people the option to use a bicycle for everyday 

transport, City of Sydney released a Cycle Strategy and Action Plan in 2007 (City 

of Sydney, 2007). This included a target to increase the cycling mode share for all 

trips from 2 per cent in 2006 to 10 per cent by 2016. The centrepiece of this strategy 

is a planned 200-kilometre bicycle network, including 55 kilometres of separated 

cycleways. The first cycleway, along King Street in the CBD, opened in 2009. Since 

then, progress has been slow, largely due to opposition by the state roads authority. 

As of 2015, 110 kilometres of the network, including 10 kilometres of separated 

cycleways, had been completed (City of Sydney, 2015). 

4.3.4 The George Street Cycleway 

One of the new cycleway links, and the one chosen as the case study for this 

research, is the 2.4-kilometre George Street Cycleway, which was constructed 

between June 2013 and June 2014 in the suburbs of Redfern and Waterloo, south 

of the CBD. The cycleway is bidirectional and is separated from motor vehicle 

traffic by raised kerbs. It was complemented by new traffic speed restrictions (40 

km/h), improved footpaths, pedestrian crossings and additional tree coverage. 

The cycleway provides a continuous route between Central Station in the CBD and 

the Green Square urban renewal area to the south, and passes through the 

Redfern-Waterloo public housing community. At its southern end, the cycleway 

connects with the existing Bourke Road Cycleway, providing access to Sydney 
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Airport, and the suburbs of Botany and Mascot (another urban renewal area). 

When it opened, there were no connecting bicycle facilities at its northern end, 

meaning anyone wanting to ride into the CBD beyond Central Station had to mix 

with traffic. This changed in September 2015, with the opening of new cycleways 

along Castlereagh Street South and Liverpool Street. This provided access to 

western parts of the CBD, as well as the Sydney Harbour Bridge. However, low 

priority at intersections makes travel through the CBD slow – it is significantly 

faster to ride in the general traffic lanes, for those with the confidence to do so. 

Changes to the bicycle network from 2013 to 2015 are shown in Figure 4.3.  

 

Figure 4.3: Changes to the inner-city Sydney bicycle network 2013 to 2015 

A variety of path treatments is used along the cycleway (Figure 4.4), with differing 

intersection treatments used, depending on the nature of the cross or side street: 

signalised crossings at major cross streets (Figure 4.5(a)); marked crossings with 

priority for bicycles (Figure 4.5(b)); unmarked crossings without priority (Figure 

4.5(c)); bend out intersections, which provide storage space for vehicles entering or 
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leaving the side road (Figure 4.5(d)); shared environments with raised thresholds 

(Figure 4.5(e)); and driveways (Figure 4.5(f)). 

  

(a) Interrupted median   (b) Interrupted median   

  

(c) Two step   (d) Shared path   

 
Figure 4.4: George Street Cycleway path treatments  
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(a) Signalised (b) Marked (c) Unmarked 

   

(d) Bend out (e) Shared environment (f) Driveway 

 
Figure 4.5: George Street Cycleway intersection treatments 

In terms of other transport options along the George Street corridor, there is a 

suburban railway line (T2) running underground directly beneath the cycleway, 

with stations at both ends, providing services to and from the city centre that are 

swift and frequent, but increasingly crowded at peak times. There are a number of 

bus routes serving the area, though services can be overcrowded and impacted by 

traffic congestion during peak times. Despite road space allocation and traffic 
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signals prioritising driving over walking and (non-vehicular) cycling,24 the area 

experiences typical inner-city road congestion. Walking the length of the cycleway 

takes about 30 minutes along lit paths, and involves passing through the Redfern-

Waterloo public housing community.  

The cycleway is the subject of other studies focusing on: community development 

and engagement (Crane et al., 2015); changes in bicycle use and destination choice 

(Crane, Rissel, Greaves, et al., 2017; Greaves et al., 2015; Standen et al., 2016); 

quality of life (Crane, Rissel, Greaves, & Gebel, 2016; Crane et al., 2014; Rissel et 

al., 2015); and broader health, transport and economic benefits (Rissel et al., 2013). 

4.4 Sydney Travel and Health Study 

The primary data source for this research is the Sydney Travel and Health Study 

(STAHS), a quasi-experimental study to evaluate the transport, health and 

economic impacts of new bicycle infrastructure in Sydney, Australia (specifically, 

the George Street Cycleway).25 The aim of the study was to develop improved 

methods for evaluating the transport, environmental, health, and economic 

impacts of new bicycle infrastructure. The study is described in a previously 

published protocol paper (Rissel et al., 2013); details relevant for this thesis are 

provided in this section. 

Briefly, the travel behaviour, health and quality of life of a panel of residents living 

within the expected catchment area for the cycleway, and of a control group, were 

assessed in September to November 2013, eight months before the cycleway 

opened (Wave 1). Respondents were assessed again 12 months later (September to 

                                            

24 Non-vehicular cycling is the practice of riding a bicycle on dedicated infrastructure (i.e., 

avoiding general traffic lanes). 

25 The Sydney Travel and Health Study was funded as an ARC Linkage Project (number 

LP120200237) between the University of Sydney, City of Sydney Council, Transport for NSW, 

National Heart Foundation of Australia, NSW Health and NSW Premier’s Council for Active 

Living. The Chief Investigators were Professor Chris Rissel, Professor Stephen Greaves, 

Associate Professor Li Ming Wen and Professor Anthony Capon. The project team comprised Dr 

Melanie Crane, Christopher Standen, Dr Adrian Ellison, Dr Richard Ellison and Dean Rance. A 

market research company was engaged to assist with recruiting and managing respondents, and 

programming the online questionnaire. 
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November 2014), by which time the cycleway had been open for four months (Wave 

2). A final wave of data collection was undertaken at 24 months, in September to 

November 2015 (Wave 3). A timeline showing the dates of the data collection 

waves, and other relevant events, is provided in Figure 4.6. Of particular relevance 

is the phased rollout of the Opal smartcard ticketing system for public transport 

services. Other noteworthy events include the Sydney launch of the Uber 

ridesharing service in April 2014. 

Ethics approval for the study was granted by the University of Sydney's Human 

Research Ethics Committee (Project No. 2012/2411). 

 

 Figure 4.6: Sydney Travel and Health Study project timeline 

4.4.1 Survey components 

Four survey instruments were used for the STAHS: an online questionnaire 

covering health, quality of life, transport and demographics; an online travel diary 

completed by respondents for seven consecutive days; a smartphone tracking app; 

and personal GPS devices. They were supported by a relational database for data 

storage and retrieval, and a web-based administration interface. The system 

architecture is shown in Figure 4.7. Further details are provided in Sections 4.4.1.1 

to 4.4.1.6. 
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 Figure 4.7: Sydney Travel and Health Study system architecture 

4.4.1.1 Online questionnaire 

In Wave 1, the online questionnaire included questions on: 

 socio-demographic characteristics (including age, gender, educational 

attainment, income, marital status, household structure, driver licence type, 

bicycle availability and car ownership); 

 physical activity (based on the validated Active Australia questionnaire (AIHW 

2003)); 

 quality of life (based on the validated WHOQOL-BREF instrument developed 

by the World Health Organization (WHOQOL Group, 1998)); 

 transport use and perceived accessibility to work, education, leisure and 

services;  

 perceptions of community cohesion; 

 exposure to messages promoting cycling; and 

 availability and perceived safety of bicycle facilities. 

The questionnaire also included anchoring vignettes, to correct for scale perception 

bias in responses to the questions on quality of life and perceived cycling safety 
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(Rissel et al., 2014). In Waves 2 and 3, respondents were also asked about 

awareness and use of the new George Street Cycleway. 

The way respondents first accessed the Wave 1 questionnaire varied depending on 

how they were recruited (see Section 4.4.3). In subsequent waves, each respondent 

was sent an email with a link containing a unique identifier, allowing responses to 

be matched to respondents. Daily reminder emails were sent to respondents until 

they completed the questionnaire. If a respondent did not complete the 

questionnaire after one week, an SMS reminder was sent to their mobile phone; 

after two weeks, they were called by telephone. Anyone not completing the 

questionnaire after four weeks was removed from the study. Upon completing the 

questionnaire, respondents were redirected to the online travel diary. 

4.4.1.2 Online travel diary 

The online travel diary was designed as an activity-based diary to capture travel 

over seven consecutive days (see Greaves, Ellison, Ellison, & Standen, 2014). It 

comprised a succession of web forms for each day.26 Form 1 asked the respondent 

if he/she had travelled on the day. If yes, the respondent was asked about their 

first activity (Form 2). Table 4.2 lists the activities from which the respondent 

could choose, in the order in which they were listed. If the respondent selected as 

their final activity one not allowed to be the final activity of a day, they would be 

asked to confirm that this was indeed the final activity of the day before completing 

the diary day. Form 3 captured trip origin, trip destination and trip departure/ 

arrival times. Form 4 asked which travel modes were used for the trip. If a public 

transport mode was selected, respondents were prompted to provide the access and 

egress modes. Form 5 captured additional information about each mode, including 

duration and, where applicable, bus route number, origin station or wharf, and 

destination station or wharf. Form 6 asked about intermediate stops, and if there 

had been any more activities that day. If yes, the respondent was taken back to 

Form 2 to enter details of the next activity. If no, the respondent was taken to Form 

                                            

26 Example screenshots of the online travel diary are provided in Appendix A. 
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7, which provided a summary of all activities entered that day, and asked for 

confirmation that the information was complete. Trips could be saved as 'favourite 

trips' to save time filling in the details of regular trips. Table 4.3 summarises the 

data collected for each trip reported in the online travel diary. 

Table 4.2: Trip activities in travel diary 

Trip purpose Allowed to be final activity of day? 

Returned Home Yes 

Commuted to Work No 

Work-related No 

Attended College/University No 

Shopping/Personal Business No 

Other Social/Recreation Yes 

Religious/Community No 

Dropped Off/Picked Up a Passenger Yes 

Holiday/Vacation Yes 

Filled up with Fuel Yes 

Went For a Walk/Run Yes 

Went For a Bike Ride Yes 

Returned to Work No 

Children's Activity No 

Eating Out No 

Visiting Friends/Family Yes 

Working Out/Playing Sport No 

 

Table 4.3: Data collected about each trip 

Attribute 

Trip purpose 

Departure date 

Departure time 

Origin address 

Destination address 

Transport mode(s) used 

Access mode (for public transport trips) 

Egress mode (for public transport trips) 

Travel time per mode 

Cycleways used 

Bus routes used 

 

Daily email reminders were sent to respondents to remind them to start or to fill 

in their travel diaries. Respondents who did not start the travel diary within one 

week of completing the online questionnaire were sent a reminder by SMS. 

Respondents who did not start the travel diary within two weeks of completing the 

online questionnaire were called by telephone. 
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4.4.1.3 Smartphone tracking app 

Respondents with an iPhone or Android smartphone were invited to download and 

install an app that tracked their position during each data collection wave (A. B. 

Ellison, Ellison, Rance, Greaves, & Standen, 2014). Location data from the app 

were presented to respondents while they were completing their online travel 

diaries (in the form of daily travel maps), to assist them in recalling the places they 

had visited (see Figure 4.8). 

 

Figure 4.8: Travel diary with daily travel map 

4.4.1.4 GPS 

In Wave 1, 151 early recruits were invited to take a personal GPS device. Those 

who agreed (n = 62) were sent a GPS device by courier and asked to take it with 

them wherever they went during the seven-day travel diary,27 and to recharge it 

every day. GPS data could be uploaded to the database in two ways. Firstly, the 

respondent could download and install an upload utility on their computer. Then, 

                                            

27 Respondents were advised to attach the GPS device to their home/vehicle keys so they 

remembered to take it with them. 
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whenever they plugged the GPS device into the computer's USB port, the data 

were automatically uploaded over the Internet (if connected) to the database. In 

this case, the respondent would be able to view a map of their daily travel when 

completing the travel diary (Figure 4.8). Alternatively, data could be uploaded by 

a project team member when the GPS device was returned (in the pre-

paid/addressed satchel provided). 

However, analysis of these respondents’ GPS data, and those of pilot study 

participants (n = 35), revealed that the quality was poor. In particular, recording 

would often start many minutes after a trip started, due to the time required to 

acquire a fix (the 'cold start' issue). Furthermore, accuracy levels were low in built-

up areas, due to the urban canyon effect caused by signals bouncing off high-rise 

buildings (Clifton & Muhs, 2012). Many short walking and cycling trips recorded 

in the travel diary were not recorded at all by the GPSs. Because these types of 

trip were of particular interest for the study and this research, the decision was 

made to discontinue this component of the data collection. However, the data were 

used to assess the accuracy of imputed bicycle trip attributes (see Section 5.1.2.1).          

Nine respondents who took a GPS also downloaded and used the smartphone app, 

allowing the two tracking approaches to be compared (A. B. Ellison et al., 2014, p. 

1). It was found that the smartphone app provided “data of equal, and in many 

cases, better quality than the GPS device, [particularly] in heavily built-up areas 

and on short trips”.  

4.4.1.5 Database 

Data from all four survey instruments were stored in a relational database on 

commercially hosted servers, offering a high level of security and geographical 

redundancy. For data cleaning and analysis purposes, a copy of the database was 

maintained on a secure local server. 

Questionnaire data (collected by a market research company) were delivered in 

spreadsheet format and then imported into the database. Data collected with the 

online travel diary were uploaded directly to the database after every form 
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submission. Data collected by the smartphone app were uploaded to the database 

at regular intervals, whenever the device had a working Internet connection.  

4.4.1.6 Administration interface 

A web-based administration interface allowed project team members to access and 

view key respondent data stored in the database in a convenient format (Figure 

4.9). For each respondent, the interface could display details of trips recorded in 

the travel diary, GPS or smartphone app data (if available), and general status 

information. The interface could be accessed only by members of the project team 

using a strong password. It facilitated a number of administrative tasks, including: 

monitoring respondent progress; determining reward eligibility; and investigating 

issues reported by respondents. 

 

Figure 4.9 Travel diary administration interface 

4.4.2 Measures 

The measures obtained through the various STAHS survey instruments are 

summarised in Table 4.4. 



 

 

133 

 

Table 4.4: Summary of Sydney Travel and Health Study measures 

Survey 
instrument Measures Purpose 

Online 
questionnaire 

Self-reported: 

 socio-demographic 
characteristics; 

 driver licence type; 

 bicycle availability and car 
ownership; 

 physical activity; 

 quality of life; 

 transport use; 

 perceived accessibility to 
work, education, leisure and 
services; 

 perceptions of community 
cohesion; 

 exposure to messages 
promoting cycling; 

 availability and perceived 
safety of bicycle facilities; 

 awareness and use of the 
new George Street Cycleway 
(Waves 2 and 3). 

The questionnaire data were used in the mode choice data 
generation (5.1.2) and modelling (5.1.4), economic appraisal (5.3) 
and before-after analysis (5.4.2.1). 

 

Online travel 
diary 

Self-reported travel over a seven-
day period: 

 activities; 

 intermediate activities; 

 origin address; 

 destination address; 

 transport mode(s); 

 bus route(s); 

 start and end times; 

 trip duration. 

The travel diary data were used for mode choice modelling (5.1), 
before-after analysis (5.4.2.2) and temporal preference stability 
tests (5.5). 

Smartphone 
app 

Location data from smartphone 
sensors (mobile network location, 
Wi-Fi and GPS). 

The smartphone app and GPS location data were displayed to 
respondents to assist them in recalling their travel while they were 
completing their travel diaries. The data were also used to validate 
the bicycle travel demand model (5.1.2.1). GPS Second-by-second GPS location 

data. 

 

4.4.3 Respondent recruitment and retention 

The sample was recruited from an intervention area corresponding with the 

expected catchment area for the new cycleway, and from a control area with a 

similar demographic profile and land use pattern to the intervention area  but 

where no new cycleways were planned during the study period. These areas are 

shown in Figure 4.10. Origin/destination data from a separate intercept survey of 

users of the new cycleway, conducted in March 2015 (see Section 4.5.2), indicated 

that a large number of trips originated or terminated in the intervention area, 

while few originated or terminated in the control area (see Figure 4.10). This 

suggests that the boundaries of the intervention and control areas were reasonably 
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well selected, although the number of trip origins/destinations immediately south 

and west of the intervention area suggests that it could have been expanded into 

these areas. (The area north of the intervention area is the CBD, a major 

employment and commercial centre. Therefore, the numerous trip 

origins/destinations recorded in this area are likely to indicate work, study, 

shopping or leisure destinations, rather than home locations.) 

 

Figure 4.10 Sydney Travel and Health Study areas and intercept survey 
origins/destinations  

To be eligible to participate in the study, respondents had to be living in one of the 

study areas, speak sufficient English to complete the questionnaire and travel 

diary, be aged 18 to 55,28 have ridden a bicycle in their lifetime and have no 

                                            

28 This age range was chosen because (a) it was anticipated people in this age range would be 

most likely to take up cycling for transport and (b) there was a limited budget. Given a larger 

budget, the maximum age could have been increased to 65 years. While many people over 65 do 

cycle, few take up cycling for transport over this age. 
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disability preventing them from riding a bicycle. The target sample size was 900 

individuals (450 in each area), based on being able to detect a 12 per cent increase 

in bicycle kilometres travelled (BKT) with type I error of 0.05 and power of 0.8, and 

assuming an attrition rate of 15 per cent at each follow-up (Waves 2 and 3). 

Multiple respondents per household were allowed. Respondents were offered a 

financial reward of up to AUD 70, comprising AUD 20 for completing the 

questionnaire, AUD 30 for completing the travel diary (increasing to AUD 35 in 

Wave 3) and AUD 15 for downloading and activating the smartphone tracking app. 

To minimise selection and response bias, the purpose of the study was masked: it 

was promoted as a general travel and health survey, aiming to investigate how the 

way people get around affects population health and wellbeing. 

Initial recruitment was through online consumer panels.29 When this method was 

exhausted, random digit dialling (RDD) was used. The study was also advertised 

using letterbox drops, social media and electronic mailing lists (primarily aimed at 

tertiary students). Finally, respondents were recruited at two Ride2Work Day 

breakfast events organised by the City of Sydney.  

Figure 4.11 shows the distribution of recruitment method for the 608 respondents 

completing both the questionnaire and travel diary in Wave 1. RDD was the most 

successful method, in both the intervention and control areas. 

During initial recruitment, quotas were set for each gender and age group, to 

ensure that the sample was representative of the study area population. When it 

became apparent that the target sample would not be reached, these quotas were 

relaxed, resulting in a convenience sample not representative of the population. 

 

                                            

29 These are lists, maintained by market research companies, of respondents who have expressed 

a willingness to participate in online market and/or social research. 
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Figure 4.11: Recruitment method by study area (n = 608) 

4.4.4 Completion rates 

A total of 846 people completed the initial questionnaire, of which 608 went on to 

complete the travel diary (32 per cent below the 900 target). Completion rates for 

each wave are shown in Table 4.5. Most analyses for this research required both 

questionnaire and travel diary data; the relevant completion rates are shown in 

bold. The attrition rate of those completing both the questionnaire and diary was 

25 per cent between Waves 1 and 2, and 20 per cent between Waves 2 and 3. This 

was considerably more than the anticipated 15 per cent. 

The baseline (Wave 1) sample was already very physically active, with 84.2 per 

cent meeting the National Physical Activity Guidelines recommendation of 150 

minutes of physical activity over five or more separate sessions per week (AIHW 

2003). The intervention and control samples were similar in the regard, with 85.8 

per cent and 83.0 per cent respectively meeting the recommendation. For the state 

of NSW, only 44.9 per cent of adults meet the recommendation (ABS 2014). This 

difference is not overly surprising, given (a) the sample was recruited from an 

inner-city area where physical activity levels tend to be higher than in outer-

suburban, regional or rural areas (ABS 2013), and (b) cycling and walking 

commuters were over-represented in the sample. It is also possible that the study, 

which was promoted as a 'travel and health study', attracted respondents who were 
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more health-conscious and physically active. Data on physical activity levels for 

the study area population are not available.   

Table 4.5: Survey completion rates 

Wave 
 Intervention 

area 
Control 

area 
Total Attrition rate vs. previous 

wave 

1 

Valid questionnaire completions 398 448 846 - 

Valid questionnaire and travel diary 
completions 

267 341 608 - 

2 

Valid questionnaire completions 240 272 512 39% 

Valid questionnaire and travel diary 
completions 

203 251 454 25% 

3 

Valid questionnaire and travel diary 
completions 

183 228 411 20% 

Valid questionnaire and travel diary 
completions 

148 215 363 20% 

 

4.5 Secondary data 

4.5.1 Bicycle counts 

The City of Sydney commissioned manual counts of bicycle riders at 100 

intersections across the LGA in March and October, from 2010 to 2016. Two of 

these sites were along the route of the George Street Cycleway, which opened in 

June 2014. One of these (Site A) was at the northern (CBD) end of the cycleway; 

the other (Site B) was at an intersection near the southern end. Counts were 

undertaken on weekdays during the times of 06:00 to 09:00 and 16:00 to 19:00. All 

bicycle movements through the intersections were counted, whether or not the 

cycleway was being used. 

4.5.2 Intercept survey 

An intercept survey of bicycle riders and pedestrians using the George Street 

Cycleway was conducted in March 2015, nine months after opening).30  

There were two intercept sites. Site 1 was near the southern end and Site 2 was at 

the northern end (see Figure 4.10). Pairs of interviewers were positioned at both 

                                            

30 Data collection was supported by City of Sydney (Grant number 2014/39637). The Chief 

Investigator was Dr Melanie Crane. 
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sides of signal-controlled crossings to engage waiting bicycle riders and 

pedestrians travelling in both directions. Surveys were conducted during a variety 

of three to five hour timeslots between 07:00 and 18:00 over a two-week period, 

including weekdays and weekends. The schedule was designed to capture a wide 

cross-section of users travelling at different times and for different purposes, and 

was spread over two weeks to account for variability in weather. Surveys were 

interviewer-administered, with observations and survey responses recorded on 

paper forms. To minimise interview duration, the forms had pre-coded response 

categories. (For details of the questions and pre-coded response categories, see 

Appendix B.) 

Trained research staff recorded each respondent's approximate age, gender, and 

attire, as well as the date and time. Respondents were asked for their origin, 

destination and trip purpose. They were then asked what mode of travel they 

would have used for their trip before the cycleway opened. Those who said they 

previously used a bicycle were asked if they had changed their route since the 

cycleway opened. (Hereafter, the term ‘existing rider’ is used to describe a 

respondent who stated they used a bicycle before the cycleway opened.) 

To measure bicycle riding experience, respondents were asked: ‘How long have you 

been riding regularly?’. This question was used because, in pilot testing, it was 

found that respondents were likely to exaggerate if simply asked about their level 

of riding experience. The qualifier ‘regularly’ was included in the question to 

discourage respondents who had resumed riding in adulthood from including the 

time they spent riding as a child. Hereafter, the term ‘length of time riding 

regularly’ is used for this measure. The measures obtained through the intercept 

survey are summarised in Table 4.6. 

All responses were given anonymously and no financial or other inventive was 

offered or given. For practical reasons, only verbal consent was obtained. Ethics 

approval for the survey was granted by The University of Sydney's Human 

Research Ethics Committee (Project No. 2015/056). 



 

 

139 

 

Table 4.6: Intercept survey measures  

Provided by respondent Trip origin 

Trip destination 

Trip purpose 

What transport mode the respondent would have used for the trip before the cycleway opened 

Length of time riding regularly 

Whether respondent’s bicycle route has changed since the cycleway opened 

Observed by interviewer Attire 

Gender 

Approximate age 

 

4.5.3 Meteorological data 

Daily precipitation data for central Sydney (Observatory Hill, station number 

66062) during the three data collection waves were obtained from the Bureau of 

Meteorology. A logbook was kept during the three data collection waves, in which 

extreme metrological events that might affect travel were recorded (e.g., extreme 

heat, bushfires, and storms). 

4.6 Summary 

This chapter began by enumerating the research questions and hypotheses for this 

thesis. It then described the experimental design, case study and data used to 

address them.   

The primary data source for the research is the Sydney Travel and Health Study 

(STAHS), a natural experiment designed to evaluate the transport, health and 

economic impacts of new bicycle infrastructure in Sydney, Australia. Secondary 

data include official bicycle counts and an intercept survey of users of the new 

infrastructure. 
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5 ANALYSIS METHODS 

This chapter describes how the Sydney Travel and Health Study data were 

analysed using discrete modelling, to (a) understand the factors affecting bicycle 

mode choice in inner-city Sydney, (b) estimate/value the user benefits of new 

bicycle infrastructure, and (c) test the hypothesis of temporal preference stability.   

Section 5.1 describes how the baseline mode choice models were estimated. Section 

5.2 explains how these models were used to forecast the transport impacts and 

user benefits of a new cycleway in inner-city Sydney (the George Street Cycleway), 

as well as other scenarios. Section 5.3 describes how these user benefits were 

incorporated into an economic appraisal. Section 5.4 details how changes in actual 

travel behaviour were measured. Finally, section 5.5 describes how temporal 

preference stability, a key assumption underpinning the forecasts, was tested. 

5.1 Baseline mode choice modelling 

The mode choice analysis of the baseline travel diary data involved the following 

steps: selection of model variables; attribute imputation for all transport mode 

alternatives; data cleaning and formatting; and model estimation. Each of these 

steps is described below. The analysis involved a recursive process, with a number 

of iterations required to optimise the models. 

5.1.1 Selection of variables 

The dependent (choice) variable was the main transport mode for each trip, 

categorised as walk, bicycle, public transport, or car. 31  Where a trip involved 

multiple modes, the ‘main transport mode’ was taken to be the one with the highest 

priority in Table 5.1. This hierarchy is based on that used by the NSW Bureau of 

Transport Statistics (2014). There were very few trips by taxi32 or ‘other mode’, and 

these were excluded from the analysis. 

                                            

31 ‘Car’ includes driver or passenger in a private car. 

32 ‘Taxi’ includes ridesharing services, e.g., UberX. 
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Table 5.1: Main transport mode hierarchy  

Transport mode Priority 

Train Highest 

Bus  

Ferry  

Light rail  

Car/truck/motorcycle  

Bicycle  

Walk/run Lowest 

 

The selection of dependent variables was guided by the literature review of 

previous choice studies (Section 3.2), and by the research aims. It was constrained 

by the data available from the Sydney Travel and Health Study and other sources 

(described in Chapter 1). 

Table 5.2 lists the individual characteristics, trip attributes, and contextual factors 

that were available for each mode choice situation (trip). Some variables are 

applicable to all transport modes, and some to a subset (identified in the second 

column). The columns on the right indicate whether a variable has been found to 

be significant (S) in previous bicycle mode or route choice studies,33 and in which 

context(s). 

Given the aims of this research, it was important to choose bicycle trip attributes 

that varied sufficiently as a result of a cycling project intervention (i.e., the George 

Street Cycleway), such that any resulting changes in bicycle utility (and therefore 

bicycle demand and consumer surplus) could be predicted and measured. Various 

approaches were tested; the one that gave the best behavioural interpretation was 

to partition the bicycle distance for each trip into two discrete distance variables: 

cycleway distance (CW distance) and non-cycleway distance (Non-CW distance). 

                                            

33 Those included in the literature review (Section 3.2). 
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Table 5.2: Candidate dependent variables 

Dependent variables 
Applicable 
modes 

Previous studies of bicycle 
route choice 

Previous studies of bicycle 
mode choice 

Stated 
preference 

Revealed 
preference 

Stated 
preference 

Revealed 
preference 

Individual characteristics      

Age All S  S S 

Gender All S S S S 

Education level All     

Driver licence type All     

Household income All S  S S 

Car available All   S  

Bicycle available All   S  

Proximity of home to nearest 
cycleway 

All     

Proximity of work location to 
nearest cycleway 

All     

End of trip facilities at 
workplace 

All S    

Body-mass index All     

Employment status All     

Household size All S  S  

Number of children All     

Relationship status All     

Bicycle rider type All     

Trip attributes      

Travel time (duration) All S  S S 

Travel distance All S S   

Distance on cycleway Bicycle     

Non-cycleway distance Bicycle     

Bicycle facility provision/type Bicycle S S S  

Gradient Bicycle S   S 

Trip ends/starts in CBD All     

Contextual factors      

Travel on weekend or public 
holiday 

All     

Travel during peak time All     

Rainfall Walk,  

bicycle 

  S  

Tour purpose All     

 

Thus, the observed utility expression for the bicycle alternative takes the form: 

𝑉𝑏𝑖𝑐𝑦𝑐𝑙𝑒 = 𝛼𝑏𝑖𝑐𝑦𝑐𝑙𝑒 + 𝛽1CW distance + 𝛽2Non-CW Distance + 𝛽′𝑥, 5.1 

where 𝛽1  and 𝛽2  are the preference parameters for CW distance and Non-CW 

Distance respectively, 𝑥  is a vector of other independent variables (individual 

characteristics, trip attributes and contextual factors), 𝛽′ is a vector of associated 

preference parameters, and 𝛼𝑏𝑖𝑐𝑦𝑐𝑙𝑒 is the alternative specific constant. 
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5.1.2 Choice data imputation 

As discussed in Chapter 3, a discrete choice model requires information about the 

attributes of the alternatives available to decision makers, both chosen and non-

chosen. In a transport mode choice model, the key attribute is typically the 

‘generalised cost’, which comprises the travel time or distance, and financial costs 

(e.g., fuel, tolls, fares), of a given trip. However, the online travel diary asked 

respondents to report only the travel time for the transport mode they actually 

chose for each trip (see Table 4.3). Respondents were not asked to report the 

attributes of the transport modes they did not choose. It was therefore necessary 

to impute the attributes of the non-chosen modes. Of the five potential imputation 

methods described in Section 3.1.3.1 (and recapped in Table 5.3), the first method, 

namely using a transport demand model, was considered the most appropriate. 

Given the need for a fine level of spatial resolution to model short non-motorised 

travel with reasonable accuracy, the sample size was not sufficiently large to 

impute attributes using methods 2 to 4. Method 5 (asking respondents to state the 

attribute values of non-chosen modes) would have been ideal, but would have 

placed an unacceptable burden on respondents. 

Table 5.3: Attribute imputation methods (after Washington et al., 2014) 

1 Use a transport demand model to estimate travel times/distances between origins and destinations. 

2 Average the travel times/distances reported by respondents who did use a given mode for the origin-destination pair. 

3 Use attribute values provided by respondents who used different modes for the same origin-destination pair at different 
times. 

4 Bayesian imputation. 

5 Ask respondents to report the attributes of non-chosen modes. 

 

While respondents did report the travel time for their chosen transport modes, 

using these data would have meant mixing reported and imputed attributes, which 

have differing biases and errors (Adamowicz et al., 1997; Hensher et al., 2005). For 

consistency, the attributes of the chosen alternative for each trip were imputed 

also (as opposed to using reported values). 

To begin with, the reported origin and destination addresses for all trips were 

geocoded – i.e., converted into geographic coordinates (degrees of latitude and 

longitude) in the WGS 84 coordinate system – using the Google Maps Geocoding 
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Application Programming Interface (API)34 (Google Inc., 2016). Error checking was 

done by plotting each geocoded location in ArcGIS35 (ESRI, 2013b), and checking 

that it was within the boundary of the stated post code. Post code boundary data 

were obtained from the Australian Bureau of Statistics (2011a). 

Next, travel distances or times were imputed for each origin-destination pair, via 

bicycle (see Section 5.1.2.1), walking, public transport and driving (see Section 

5.1.2.2). 

5.1.2.1 Imputation of bicycle distance 

A number of existing transport demand models were considered for estimating 

cycling distances between trip origins and destinations; these are compared in 

Table 5.4. None fulfilled all requirements, these being: the ability to edit network 

data to model past or future scenarios; the ability to modify the routing algorithm, 

to assign lower impedances to links with bicycle facilities; and a very fine spatial 

resolution needed to model short trips with reasonable accuracy. Therefore, a 

bespoke bicycle demand model was developed for the Greater Sydney metropolitan 

region using ArcGIS software with the Network Analyst extension (ESRI, 2013c). 

Any demand model used to assess the impact of an intervention on bicycle travel 

requires network data that accurately replicate the bicycle network (van Wee & 

Börjesson, 2015). Given that coding a bicycle network for the whole Greater Sydney 

metropolitan region would have been very time consuming, open source network 

data from OpenStreetMap were used, and modified using ArcGIS Editor for 

OpenStreetMap (ESRI, 2013a). 

                                            

34 The Geocoding API is one of a number of Google Maps APIs, which allow custom applications to 

query Google Maps data. More details can be found on the web page: 

https://developers.google.com/maps/web-services/overview.   

35 Geographical Information System (GIS) software. 

https://developers.google.com/maps/web-services/overview
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Table 5.4: Available bicycle transport models 

 Existing models Bespoke GIS-based model 

Sydney Strategic 
Transport Model (BTS 
2011) 

Google Maps 
Directions API 
(Google Inc., n.d.) 

RideTheCity (Ride the 
City, n.d.) 

ArcGIS Network 
Analyst plus 
OpenStreetMap 

Type Desktop PC-based Web-based Web-based Desktop PC-based 

Underlying 
network data 

Bespoke Google Maps OpenStreetMap OpenStreetMap 

Ability to edit 
network data to 
model past or 
future 
scenarios 

Yes No OpenStreetMap 
network data can be 
edited to model past or 
future scenarios, but 
doing so would affect 
other users of the data. 

Yes. The 
OpenStreetMap data 
can be downloaded 
and edited. 

Spatial 
resolution  

Variable. Origins and 
destinations 
approximated to zone 
centroids. 

Infinite. Exact origin 
and destination 
coordinates used. 

Infinite. Exact origin 
and destination 
coordinates used. 

Infinite. Exact origin 
and destination 
coordinates used. 

Routing 
algorithms) 

Shortest path. Routing algorithm gives 
preference to bicycle 
facilities, but the exact 
algorithm has not been 
made public, and 
cannot be modified. 

Three routing 
algorithms: direct route 
(true shortest path); 
safe route (shortest 
path, but links with 
bicycle facilities are 
treated as shorter than 
they actually are); safer 
route (shortest path, 
but links with bicycle 
facilities are treated as 
much shorter than they 
actually are). Routing 
algorithms have not 
been made public, and 
cannot be modified. 

Modifiable shortest 
path algorithm. 

Batch 
processing of 
multiple origin-
destination 
pairs 

Yes Yes No API available for 
batch processing. 

Yes 

 

OpenStreetMap data for the Greater Sydney metropolitan region 36 were 

downloaded on 6 March 2015 from the BBBike.org website and imported into 

ArcGIS. The data were then cleaned and corrected, informed by a mixture of local 

knowledge and bicycle maps published by local authorities, with a particular focus 

on bicycle facilities in the study area. This mainly involved adding missing 

cycleway links, and reclassifying links that had been coded incorrectly. A link was 

classified as a cycleway if it was either (a) an exclusive bicycle path physically 

separated from motor vehicle traffic (in or not in a road reserve) (see examples in  

Figure 5.1(a) and in Figure 5.1(b)), or (b) a shared bicycle and pedestrian path with 

                                            

36 The area bounded by latitude -34.6 to -32.8 and longitude 149.9 to 151.9 in the WGS 84 

coordinate system. 
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reasonable continuity and minimal friction (see example in Figure 5.1(c)). 

Footpaths designated as shared paths,37  but with poor continuity and/or high 

friction (e.g., high pedestrian volumes, street furniture or other obstructions, 

inadequate width, and/or abutting property entrances), were not classified as 

cycleways (see example in Figure 5.1(d)). In reality, the distinction between bicycle 

facility types is not so binary, but previous analyses of bicycle route choice (e.g., 

Wardman et al., 2007) indicate that physical separation has the greatest effect on 

cycling utility. There is relatively little difference in utility between roads with a 

marked bicycle lane, and those without. 

The network data were converted into a routable bicycle network dataset, which 

included all cycleways and all roads in the OpenStreetMap data. Each link in the 

network dataset was assigned a highway type, a distance, a speed and a travel time. 

The highway type (e.g., cycleway, trunk road, primary road, secondary road, 

tertiary road or residential road) was copied from the equivalent OpenStreetMap 

tag. 

Figure 5.2 shows a portion of the network dataset, illustrating the different 

highway types. Distance was calculated as the great circle distance between the 

vertices that defined each link. The speed for all non-cycleway links was set to 16 

km/h. The speed for cycleway links was set to 3.1 times this value (49.6 km/h), to 

reflect route preference for cycleways, such that a Dijkstra shortest path route 

calculation between two points on the network (with travel time as the impedance 

variable) would treat 3.1 km of cycleway as having the same impedance as 1 km of 

any other type of link.38 The value of 3.1 was derived from Wardman's (2007) 

finding that the value of travel time saving for segregated bicycle paths is 31 per 

                                            

37 In NSW, adults may not legally cycle on a footpath, unless it is a designated shared path, or 

they are accompanying children under 12 years of age. 

38 Provided that the ratio of speed (cycleway) to speed (non-cycleway) was 3.1, the actual speed 

values used were arbitrary, because travel time was not used as an attribute of the bicycle 

alternative during model estimation (only the bicycle distance was used). The only reason for 

assigning a speed to a link was to model bicycle routes, from which cycling distances were 

estimated.   
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cent of the value of travel time saving for roads with mixed traffic. Figure 5.3 

illustrates the effect of this weighting on the shortest path calculation between an 

example origin-destination (OD) pair. The unweighted shortest path (a) is 2.4 km 

via a main road, while the weighted shortest path (b) is 2.8 km via a cycleway. 

Higher and lower weightings were tested, but had little effect on model outputs. 

  

(a) Bicycle path in a road reserve (Bourke Street) (b) Bicycle path not in a road reserve (Sydney Harbour 
Bridge) 

  

(c) Good quality shared path classified as a cycleway 
(Moore Park) 

(d) Poor quality shared path not classified as a cycleway 
(Victoria Road) 

Figure 5.1: Categorisation of bicycle facilities 
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Figure 5.2: Bicycle network dataset detail 

After the GIS-based bicycle demand model had been developed and tested, bicycle 

distances for all OD (trips) reported in the online travel diary were estimated using 

the following procedure: 

1. The network dataset for the baseline bicycle network (2013) was loaded into 

ArcGIS.  

2. Geocoded origin and destination coordinates for OD pairs were loaded into 

ArcGIS. 

3. The ArcGIS Network Analyst Directions tool (ESRI, 2013c) was used to 

generate turn-by-turn directions for each OD pair, using  Dijkstra’s shortest 

path algorithm with travel time as the impedance variable (ESRI, 2017). Turn 

restrictions and one-way restrictions were ignored, given that in NSW bicycle 

riders are often exempted from them. 
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4. The turn-by-turn directions were parsed using a PHP39 script to obtain the total 

cycling distance (Distance), distance on cycleway (CW distance), and non-

cycleway distance (Non-CW distance) for each OD pair. 

   

Figure 5.3: (a) Unweighted bicycle route; (b) Weighted bicycle route 

This modelling approach facilitated the forecasting of changes in utility when new 

cycleways were added to the network. For many trips, adding a new cycleway to 

the network would result in CW distance increasing and Non-CW distance 

decreasing. If the parameter for Non-CW distance is significantly more negative 

than the parameter for CW distance, then it can be seen (from Equation 5.1) that 

bicycle utility can increase, even if the total distance increases (because people may 

take a longer route to use a cycleway).     

It is acknowledged that the attributes of the routes generated using this (or any 

other) demand model will not always match those of the routes respondents would 

                                            

39 PHP is a widely-used general-purpose scripting language. More details can be found on the web 

page: http://php.net/manual/en/intro-whatis.php.   

http://php.net/manual/en/intro-whatis.php
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have used in practice. Nor does the model take into account inter-person and intra-

person variation in route choice (some people may have greater preference for 

cycleways; some may prefer an indirect route via cycleways one day, and a more 

direct route using main roads the next). 

To test whether the modelled routes were a reasonable approximation of the 

bicycle routes respondents actually used, modelled routes were compared with 

traces from those respondents who used the smartphone app or GPS device (see 

Sections 4.4.1.3 and 4.4.1.4). Although the exact routes tended to differ, the total 

trip distances were found to be similar. Dalton et al. (2014, p. 227) conducted a 

similar analysis in the United Kingdom, and concluded: “The use of GIS to model 

routes may be acceptable when an approximate estimate of travel distance is 

required or when estimates of the features of potential routes that could be taken 

are needed”. They also examined trips made by other transport modes, and found 

that GIS-modelled bicycle routes are more accurate than GIS-modelled driving 

routes. 

5.1.2.2 Imputation of walking, public transport and driving travel times 

Travel times for walking, public transport and driving were estimated using the 

Google Maps Directions API (Google Inc., n.d.). This approach was previously 

employed by Ellison and Greaves (2011) for estimating bicycle travel times in 

Sydney, and by Wang and Xu (2011) for estimating driving times in Baton Rouge 

(United States). A PHP script was developed to (a) query the API with the 

parameters listed in Table 5.5, (b) parse the response, and (c) extract the travel 

time for each trip by walking, public transport and driving.  

Table 5.5: Google Maps Directions API query parameters  

Parameter Description 

Origin Geocoded latitude/longitude of reported origin.  

Destination Geocoded latitude/longitude of reported destination. 

Transport mode Walking, transit (public transport) or driving. 

Departure time Departure time (for public transport only). 

 

Google has published few details of how the Directions API calculates routes and 

travel times. Public transport travel times are based on published timetables, and 
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access and egress by walking are assumed. Driving travel times assume free-

flowing traffic.  

Travel times for walking, public transport and driving for trips reported in the 

travel diary were imputed on 18 September 2015. There were no major changes to 

the walking, road and public transport networks between the time trips were 

reported, and the time travel times were imputed. 

It is acknowledged that the travel times estimated with the Google Directions API 

are not likely to match actual or perceived travel times. Nor do they take into 

account population or temporal heterogeneity (some people walk faster than 

others; on some days road congestion is worse than on other days). 

5.1.2.3 Other variables 

Previous studies suggest that gradient (hilliness) is a significant factor in bicycle 

mode/route choice (see Section 3.2). However, the elevation data in the 

OpenStreetMap data were incomplete and unreliable. Therefore, the average 

elevation of a 400-metre buffer around each origin and destination was used in the 

mode choice model. This approach was previously used by Cole-Hunter et al. (2015) 

in a study of bicycle mode choice in Barcelona (Spain). Elevation data were 

extracted from the Geoscience Australia Digital Elevation Model with one arc 

second (~30 metre) resolution (Geoscience Australia, 2000), 40  and matched to 

origins and destinations using ArcGIS Spatial Analyst (ESRI, 2016). 

Another consideration was whether a trip involved travel in Sydney’s central 

business district (CBD). Riding a bicycle in the CBD can be particularly 

intimidating, due to heavy motor vehicle traffic throughout the day, a lack of 

bicycle paths or quiet laneways, and high traffic speeds (the posted speed limit is 

40 to 50 km/h). Riding on footpaths is illegal, and otherwise generally impractical 

due to their narrowness and high pedestrian volumes. Whether a trip involved 

                                            

40 The accuracy of the Digital Elevation Model is reported to be 90 percent of heights accurate to 

within 9.8 metres (Geoscience Australia, 2011). 



 

 

153 

 

travel in the CBD was determined in ArcGIS, using a spatial join of 

origin/destination coordinates with the area for postcode 2000. 

To help account for the effect of peak-time road congestion on driving utility, an 

additional Peak variable was created, with its value based on the reported start 

and end times of each trip. If any part of a trip occurred during peak travel times 

(weekdays41 7:00 to 10:00 and 16:00 to 19:00), then the Peak variable for that trip 

was set to one (or zero otherwise).  

Other variables were created to indicate whether the trip took place on a weekend 

or public holiday, and whether it had rained on the day of the trip. These variables, 

and the ways they were calculated, are summarised in Table 5.6. 

Table 5.6: Other imputed variables  

Variable Type Calculation 

Origin elevation Ratio Average elevation of a 400-metre buffer around the trip origin. 

Destination 
elevation 

Ratio Average elevation of a 400-metre buffer around the trip destination. 

CBD Dummy True (1) if trip started or finished in Sydney’s central business district (postcode 2000). 
False (0) otherwise.  

Peak Dummy True (1) if departure or arrival was on a weekday (except public holidays) between 07:00 
and 10:00 or between 16:00 and 19:00 (local time). False (0) otherwise. 

Weekend/holiday Dummy True (1) if the trip departure was on a Saturday, Sunday or public holiday. False (0) 
otherwise. 

Rain Ratio Millimetres of rain recorded at the Sydney Observatory Hill weather station (number 66062) 
on the day of the trip departure. 

Rain 0mm Dummy True (1) if there was any rain on the day of the trip departure. False (0) otherwise. 

Rain 3mm Dummy True (1) if there was more than 3 mm of rain on the day of the trip departure. False (0) 
otherwise. 

 

5.1.3 Choice data formatting  

Choice data were extracted from the database (see Section 4.4.1.5) using MySQL,42 

then formatted using a PHP script. Every trip reported in the travel diary was 

considered a discrete mode choice situation, with an alternative for each transport 

mode (walk, bicycle, public transport, car). A trip was discarded if it met one or 

more of the conditions listed in Table 5.7. 

                                            

41 Excluding public holidays. 

42 Software for updating or querying relational databases.  
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Table 5.7: Excluded trips (Wave 1) 

Reason for exclusion  Number of trips % of trips 

Round trip (origin and destination the same) 1322 8.26 

Main transport mode was not walk, bicycle, public transport or drive 864 5.40 

Destination address could not be geocoded 307 1.92 

Origin address could not be geocoded 305 1.90 

Origin or destination outside Greater Sydney metropolitan regiona 16 0.10 

Trip purpose was: Went for a walk/run 798 4.98 

Trip purpose was: Went for a bike ride 75 0.47 

Trip purpose was: Holiday/vacation 75 0.47 

Trip purpose was: Filled up with fuel 26 0.16 

Trip purpose was: None 8 0.05 

Origin or destination was on an island not reachable by road 2 0.01 

Pre-exclusion total 16,013 100 

Total excludedb 3213 20.1 

Post-exclusion total 12,800 79.9 
a The area bounded by latitude -34.6 to -32.8 and longitude 149.9 to 151.9 in the WGS 84 coordinate system. 
b Trips could be excluded for multiple reasons. 

 

The individual characteristics for each choice situation were based on responses to 

the online questionnaire (Section 4.4.1.1). Trip attributes and contextual factors 

were imputed as described in Section 5.1.2. Categorical variables with more than 

two categories (e.g., age group) were dummy coded. 

The number of alternative modes in each choice situation varied between two and 

four, depending on which modes were considered feasible for the trip. There were 

very few transport walking trips over 5 kilometres reported in the travel diary, so 

walking was assumed unfeasible for trips with an estimated network distance over 

5 kilometres. Similarly, very few transport cycling trips over 15 kilometres were 

reported, so bicycle was assumed unfeasible for trips with an estimated network 

distance over 15 kilometres. Public transport or driving was assumed unfeasible 

only if a route could not be found using the Google Directions API (Section 5.1.2.2). 

An example of the resulting choice data is presented in Table 5.8, showing four 

trips made by two respondents (100 and 101). A ‘1’ in the Choice column indicates 

which alternative the respondent actually chose. The number in the Observations 

column is the total number of choice situations (trips) for each respondent. This 

allows correlation between multiple trips by the same respondent to be accounted 

for during model estimation.  
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Table 5.8: Example choice data format  

Respondent Trip no. Alternative Choice Alternatives Observations Weight Independent variables  

100 1 Walk 1 4 3    

100 1 Bicycle 0 4 3    

100 1 PT 0 4 3    

100 1 Car 0 4 3    

100 2 PT 1 2 3    

100 2 Car 0 2 3    

100 3 Bicycle 1 3 3    

100 3 PT 0 3 3    

100 3 Car 0 3 3    

101 4 Walk 0 4 1    

101 4 Bicycle 0 4 1    

101 4 PT 0 4 1    

101 4 Car 1 4 1    

 

The Weight variable was used for exogenous weighting during model estimation, 

to account for differences between the age and gender profiles of the sample and 

the population. The population age/gender profile for the study area was obtained 

from the 2011 Census (ABS 2015) and the resulting weights are shown in Table 

5.9. A weight above 1.0 indicates a demographic that was under-represented in the 

sample, while a weight below 1.0 indicates a demographic that was over-

represented. 

Table 5.9: Sample weights 

Age Male Female 

18 to 19 1.65 0.61 

20 to 24 1.36 0.84 

25 to 29 1.78 1.39 

30 to 34 1.79 1.02 

35 to 39 1.57 1.09 

40 to 44 1.16 0.75 

45 to 49 0.96 0.68 

50 to 55 0.64 0.41 

 

5.1.4 Model estimation 

Models were estimated using NLOGIT version 5 choice modelling software 

(Econometric Software Inc., 2009). Exploratory modelling was performed using a 

simple multinomial logit model (see Section 3.1.1). Subsequently, the mixed logit 

model was used, because it (a) can reveal random intra-sample preference 
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heterogeneity, (b) allows flexible substitution patterns between alternatives, and 

(c) can account for panel data (i.e., correlation between multiple choice situations 

for one respondent).  

Commuting and non-commuting trips were modelled separately, because the 

factors affecting bicycle mode choice have been found to differ with trip purpose 

(Börjesson & Eliasson, 2012). 

For each trip (mode choice situation), it was assumed that the utility of transport 

mode alternative j to individual n in choice situation t is given by:  

𝑉𝑛𝑗𝑡 = 𝛼𝑛𝑗 + 𝛽′𝑛𝑥𝑛𝑗𝑡 + 𝜃𝑗𝐸𝑛𝑗 , 𝑡 = 1, … , 𝑇𝑖, 5.2 

where 𝑥𝑛𝑗𝑡 is a vector of individual characteristics, trip attributes and contextual 

factors, 𝛽′ is a vector of parameters to be estimated, and 𝛼𝑛𝑗 are alternative specific 

constants. The alternative specific constant for the walk alternative was 

arbitrarily normalised to zero. 𝐸𝑛𝑗  are error components, which account for 

correlation between error terms of groupings of alternatives, while 𝜃𝑗  are the 

standard deviations of these error components. 

The probability 𝑃𝑛𝑗𝑡 of individual n choosing mode j is then given by: 

𝑃𝑛𝑗𝑡 =
𝑒𝑥𝑝(𝑉𝑛𝑗𝑡)

∑ 𝑒𝑥𝑝(𝑉𝑛𝑗𝑡)𝐽
𝑗

. 5.3 

To begin with, parameters for all variables were specified as random, and various 

distributions were tested. The lognormal distribution produced some erratic 

parameter estimates with long tails. There were sign issues with the normal 

distribution, i.e., positive cost parameters being estimated for a large proportion of 

respondents. The censored normal distribution produced erratic parameter 

estimates. Ultimately, it was found that a symmetric triangular distribution gave 

the best behavioural interpretation. 

The spread of the triangular distribution was constrained to be half the mean, 

ensuring that all values in the distribution had the same sign, and were nonzero. 
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(As discussed in Section 3.3.1.1, calculation of a marginal rate of substitution is 

problematic if the parameter used as the denominator can take a value of zero.) 

Parameters were changed to be non-random if doing so produced an improved 

model fit. Parameter values were constrained to be equal for all trips made by an 

individual respondent. Variables not significant at the 95 per cent confidence level 

were dropped. 

To identify systematic sources of preference heterogeneity, attributes and 

contextual factors were interacted with individual characteristics, and interaction 

terms found to be statistically significant (p < 0.05) were retained. 

Various error component structures were tested, to explore substitution patterns 

between alternatives. Error components with a statistically significant standard 

deviation (p < 0.05) were retained. Heteroscedasticity of error components was 

examined, by testing whether error component variance differed between 

demographic groups. 

Halton intelligent random draws were used for simulation. For exploratory 

modelling, 20 draws per error component and 20 draws per random parameter 

were used. For the final models, 2,000 draws were used. Estimation time using an 

Intel Core i5 3.00 GHz processor was about two hours for the final commuting 

model, and four hours for the final non-commuting model. 

Model fit was assessed in terms the McFadden pseudo-R2 (where a higher value 

indicates a better fit) and the Akaike Information Criterion (AIC) (where a lower 

value indicates a better fit). Where two dependent variables were found to be 

correlated (e.g., Gender and Bicycle rider type), only one was included at a time, 

and the one that gave the best model fit was retained. 

The means of the parameter estimates for cycleway distance (CW distance) and 

non-cycleway distance (Non-CW distance) were compared using t-tests. Cross 

elasticities were calculated to estimate the effect on mode share of a one per cent 

decrease in non-cycleway distance.  
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Marginal rates of substitution were calculated between cycleway distance and (a) 

non-cycleway distance, (b) walking travel time, (c) pubic transport travel time, and 

(c) driving travel time. Confidence intervals for these marginal rates of 

substitution were calculated using the Delta method (Equation 3.7). Individual 

marginal rates of substitution for each respondent were computed using 

conditional parameter estimates, i.e., respondent-specific parameter estimates, 

conditioned on the alternatives they actually chose (see Revelt & Train, 1999). 

5.2 Forecasting changes in travel demand and consumer surplus  

The baseline mode choice models and conditional parameter estimates were used 

to forecast the impacts of new cycleways being built in the City of Sydney. 

Forecasting was undertaken for the scenarios listed in Table 5.10. The ‘Do nothing’ 

Scenario A corresponded with the baseline (pre-intervention) data collection wave 

of the Sydney Travel and Health Study. Scenarios B and C corresponded with the 

two post-intervention data collection waves (2 and 3) of the Sydney Travel and 

Health Study. Scenario D assumed completion of all new cycleways proposed in 

City of Sydney’s Cycle Strategy and Action Plan (City of Sydney, 2007). The 

cycleway networks for the four scenarios are shown in Figure 5.4. 

Table 5.10: Scenarios 

Scenario Year 

Corresponding data 
collection wave in 
the Sydney Travel 
and Health Study 

A (‘Do nothing’) 2013 1 

B (George St 
Cycleway) 

2014 2 

C (George St + CBD 
Cycleways) 

2015 3 

D (Complete Network) 2017 N/A 

 

To model these scenarios, three additional versions of the bicycle network data 

were created, corresponding with Scenarios B, C and D. In each version, cycleway 

links were added or deleted to reflect the state of the bicycle network in the given 

scenario. 
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The travel demand in all four scenarios was based on that reported by intervention 

area respondents in Wave 1 of the Sydney Travel and Health Study, and was 

assumed the same for all scenarios. That is to say, it was assumed respondents 

would make the same number of trips, with the same origins and destinations, in 

all four scenarios. It was also assumed there was no change to walking, public 

transport or driving travel times. Thus, the only variables that could change 

between each scenario were cycleway distance (CW distance) and non-cycleway 

distance (Non-CW distance). 

Figure 5.5 and Table 5.11 illustrate how the bicycle distance variables for an 

example trip could change after the addition of a new cycleway (the George Street 

Cycleway) to the network. In this example, cycleway distance increases, while non-

cycleway distance decreases. If the parameter for the former is sufficiently more 

negative than that for the latter, then the utility of the bicycle alternative 𝑉𝑏𝑖𝑐𝑦𝑐𝑙𝑒 

for this trip increases (see Equation 5.1). Because the utility of the other 

alternatives does not change, then the probability of the respondent choosing 

bicycle increases – even though the total bicycle distance has increased (because of 

the diversion to use the cycleway). 
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Figure 5.4: Scenarios 

 



 

 

161 

 

Figure 5.5: Modelled bicycle routes  

Table 5.11: Changes in bicycle distance variables for example trip 

 Pre-intervention Post-intervention Change 

Cycleway distance (km) 0.7 2.0 +1.3 

Non-cycleway distance (km) 1.7 0.7 -1.0 

Total distance (km) 2.4 2.7 +0.3 

 

To estimate the transport mode shares, BKT and consumer surplus for each 

scenario, a simulation model was developed using Microsoft Excel and Visual 

Basic. In each iteration of the simulation, the probability of a respondent n 

choosing mode j for a trip t was calculated using the mixed logit model: 

𝑃𝑛𝑗𝑡𝑠 =
𝑒𝑥𝑝(𝑉𝑛𝑡𝑗

𝑠 )

∑ 𝑒𝑥𝑝(𝑉𝑛𝑡𝑗
𝑠 )𝐽

𝑗

 5.4 

The systematic utility 𝑉𝑛𝑡𝑗
𝑠

 of each mode j in scenario s was calculated based on the 

conditional parameter estimates obtained from the baseline (Wave 1) model 

estimation (see Section 5.1), and the variables (𝑥𝑛𝑡𝑗
𝑠 ) for the given scenario. It was 

  

(a) Pre-intervention (b) Post-intervention 
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assumed that individual characteristics and preferences did not change between 

scenarios, and the only trip attributes to change were cycleway distance and non-

cycleway distance (due to changes to the bicycle network). It was also assumed 

there would be no congestion on cycleways. 

Where the utility expression for an alternative included a daily rainfall variable, 

its value was simulated at random, based on rainfall data from the Sydney 

Observatory (station number 066062) (Bureau of Meteorology, 2017), averaged 

over the 10 years from 2007 to 2016 (Table 5.12). 

Table 5.12: Daily rainfall at Sydney (Observatory Hill) 2007 to 2016 

 > 0 mm > 3 mm 

Number of days 1,426 698 

Probability 0.390 0.191 

 

The mode choice for each trip was simulated using the estimated probabilities for 

each mode, using Halton pseudo-random draws from a uniform distribution. In 

each iteration of the simulation, mode shares were estimated by aggregating the 

simulated mode choices for all trips. BKT was calculated as the sum of bicycle 

distances, for all trips where the simulated mode choice was bicycle.  

Following Train (2009) and de Jong et al. (2007), the expected consumer surplus 

𝐸(𝐶𝑆𝑛𝑡𝑠) for each trip t by respondent n in scenario s was calculated using Equation 

5.5.  

𝐸(𝐶𝑆𝑛𝑡𝑠) = (1/α𝑛) ln (∑ 𝑒𝑉𝑛𝑗𝑡
𝑠

𝑗

) + 𝐶 5.5 

The natural log of the term in parentheses is the inclusive value, or logsum, of the 

choice situation, which gives the maximum expected utility to the decision maker. 

𝑉𝑛𝑗𝑡𝑠 are the mode-specific utility functions, the form and parameters of which were 

previously estimated (Section 5.1), and 𝛼𝑛 is the respondent’s marginal utility of 

income. C is an unknown constant. 

The marginal utility of income 𝛼𝑛 is, by definition, the negative of the parameter 

of any price variable in the mode choice model, e.g., toll road cost or public 
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transport fare (Train, 2009). Because there were no price variables in this 

particular model, a time variable with a well-established monetary valuation was 

chosen, namely the value of travel time savings for private car occupants, which 

the NSW Government values at an average of AUD 15.14 per hour (Transport for 

NSW, 2013a). 𝐸(𝐶𝑆𝑛𝑡𝑠) was thus estimated in terms of hours of driving travel time 

savings, and converted to AUD by multiplying by AUD 15.14. The change in 

consumer surplus between two scenarios (s = 1 and s = 2) was calculated using 

Equation 5.6. The unknown constant C drops out. 

Δ𝐸(𝐶𝑆𝑛𝑡) = (1/α𝑛) ln (∑ 𝑒𝑉𝑛𝑡𝑗
𝑠=2

𝑗

) − (∑ 𝑒𝑉𝑛𝑡𝑗
𝑠=1

𝑗

) 5.6 

For each scenario, the mode shares, BKT and consumer surplus for the sample 

were averaged over 10,000 iterations of the simulation. 

The estimated mode share, BKT and consumer surplus for the intervention area 

population (ages 18 to 55) were estimated by applying expansion factors, weighted 

as per Table 5.9. Population data were obtained from the 2011 Census (Australian 

Bureau of Statistics, 2011b). 

5.3 Economic appraisal 

Economic appraisals of Scenarios B and D (relative to the ‘Do nothing’ Scenario A) 

were performed following the NSW transport project appraisal guidelines 

(Transport for NSW, 2013a), with the following adjustments. 

1. Public transport fare and motorway toll savings were not included, because 

these are transfer payments. 

2. Reductions in congestion and other motor vehicle externalities were not 

included, for two reasons. First, the intervention area is a densely populated 

and congested inner-city area with high latent driving demand, so any mode 

shift from car to bicycle would be expected to induce more driving demand (see 

Section 2.4.4). Second, none of the scenarios involves a reduction in roadway 

capacity, or any other demand management measures. 
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3. Crash/injury costs were not included. Most injuries to people cycling for 

transport are caused by motor vehicle drivers (Lindsay, 2013), and including 

such spillover externalities in SCBA – while theoretically correct – biases it 

against cycling. To address this bias, Gössling & Choi (2015) suggest it is 

appropriate to exclude crash/injury costs in bicycle project appraisal. 

4. Public health benefits (reduced mortality and morbidity) are valued at $1.21 

per BKT, and $1.68 per walking kilometre, as recommended by Mulley et al. 

(2013) (adjusted from 2010 to 2013 prices). These valuations have been 

subjected to peer-review, whereas the value of $1.11 per bicycle or walking 

kilometre recommended in the NSW guidelines is based on a cursory review of 

grey literature.  

Table 5.13 compares the appraisal parameters used in the present analysis, with 

those recommended in the NSW guidelines, and those used by consultants AECOM 

in their appraisal of the proposed Inner Sydney Regional Bicycle Network 

(AECOM, 2010; Yi et al., 2011). 

The construction cost for Scenario B was obtained from City of Sydney. 

Construction cost for Scenario D was estimated based on the per-kilometre rate of 

Scenario B.43 Annual maintenance costs were assumed to be 1 per cent of the 

construction cost. 

The economic viability of Scenarios B and D, relative to the ‘Do nothing’ Scenario 

A, was expressed in terms of the following measures: 

 Net present value (NPV): the 2013 value of net benefits. 

 Benefit-cost ratio (BCR): the 2013 value of net benefits, divided by the 2013 

value of investment and maintenance costs. 

                                            

43 In general, transport infrastructure costs are higher in Australia than in most high-income 

countries (Coultan, 2016). In the case of cycling infrastructure, over-engineering is a factor 

(Urban Movement & Phil Jones Associates, 2014). 
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Table 5.13: Economic appraisal parameters 

 NSW guidelines 
(Transport for NSW, 
2013a) 

Appraisal of Inner Sydney 
Regional Bicycle Network 
(Yi et al., 2011) Present analysis 

Capital costs Construction $100,000 to $400,000 per 
kilometre 

Construction 

Recurring costs 1% of construction 
cost 

1% of construction cost 1% of construction cost 

Annual population growth 1.1% Provided by Transport for 
NSW 

1.1% 

Trips included Not specified Commuting to work Commuting to work/study, 
and non-commuting 
transport trips 

Cost/benefit streams (AUD per 
kilometre, 2013 prices) 

   

Social costs/benefits    

Public health benefits 
(reduced mortality and 
morbidity) - bicycle 

1.11 0.0649 1.21 

Public health benefits 
(reduced mortality and 
morbidity) - walking 

1.67  1.80 

Absenteeism and 
productivity benefits 

– 0.1730 – 

Crash/injury costs -0.19 -0.1769 – 

Reduced motor vehicle externalities    

Congestion cost savings 0.32 0.2926 – 

Vehicle operating cost 
savings 

0.29 0.1343 – 

Air pollution  0.0308 0.0300 – 

Greenhouse gas emissions 0.024 0.0236 – 

Noise 0.010 0.0097 – 

Water pollution 0.0047 0.0045 – 

Nature and landscape 0.00055  – 

Urban separation 0.0071 0.0069 – 

Roadway provision cost 
savings 

0.05 0.0157 – 

Parking cost saving 0.013 0.5738 – 

User costs/benefits    

Public transport fare cost 
savings  

0.12 – – 

Tolling cost savings  0.38 – – 

Travel time savings 0 0.1427 – 

Journey ambience – 0.1261 – 

Improved accessibility and 
transport options 
(consumer surplus) 

– – Valued as described in 
Section 5.2. 

Discount rate 7% (±3%) 7% 7% (±3%) 

Appraisal period 30 years 30 years 30 years 

 

For comparison, economic appraisals of Scenarios B and D were also performed 

following the NSW appraisal guidelines (Transport for NSW, 2013a), using the 

Transport for NSW Bicycle Facility Cost benefit Analysis Tool (Transport for NSW, 

2016),   
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5.4 Analysis of actual changes in travel behaviour/demand 

5.4.1 Bicycle counts and intercept survey 

Statistical analyses of the peak-time bicycle count data (described in Section 5.3) 

were performed using Microsoft Excel 2013 (Microsoft Corp., 2013). 

Statistical analyses of the intercept survey data (described in Section 5.4) were 

performed using SPSS version 22 (IBM Corp., 2013). Data from both intercept sites 

were pooled for analysis. Logistic regression models were developed to identify 

factors associated with respondents who had (i) changed transport mode, and (ii) 

changed their usual bicycle route since the intervention. The initial models 

included as independent variables: observed gender, estimated age, trip purpose, 

length of time riding regularly (coded as ‘two years and less’ or ‘more than two 

years’), and intercept site. In the final models, variables with p > 0.20 were omitted. 

In addition to pooled models for all trips, separate models were estimated for 

commuting and non-commuting trips. 

The distance each respondent had diverted to use the cycleway was estimated as 

the difference between the shortest network distance between the stated origin 

and destination (see the example in Figure 5.6(a)), and the shortest network 

distance via the intercept site (see the example in Figure 5.6(b)). 

To calculate these network distances, the GIS-based bicycle demand model was 

used (see Section 5.1.2.1 for details). 

For every trip, the reported origin and destination were geocoded using the Google 

Maps Geocoding API (Google Inc., 2016), and the resulting geographic coordinates 

were loaded into the GIS model. Intercept site locations were added manually. The 

ArcGIS Network Analyst Directions tool (ESRI, 2013c) was used to generate turn-

by-turn directions for each origin-destination pair, and each origin-intercept-

destination triplet, using a Dijkstra shortest path algorithm, with travel time as 

the impedance variable (ESRI, 2017). Turn restrictions and one-way restrictions 

were ignored, given that in NSW bicycle riders are often exempted from them. The 
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turn-by-turn directions were parsed using a PHP script to extract the network 

distances for each trip. 

  

Figure 5.6: Example shortest path calculations 

Multiple linear regression was used to identify factors predicting the estimated 

distance respondents had diverted to use the cycleway. The initial models included 

as independent variables: observed gender, estimated age, trip purpose, shortest 

path network distance, length of time riding regularly, intercept site and attire as 

independent variables, plus interactions. Non-significant (p > 0.05) variables were 

removed from the model in a stepwise fashion. Again, separate models were 

estimated for commuting and non-commuting trips. 

5.4.2 Longitudinal resident survey 

Statistical analyses of the three waves of questionnaire and travel diary data 

(described in Sections 4.4.1.1 and 4.4.1.2) were conducted using STATA Version 13 

(StataCorp, 2015). 

(a) Shortest path (b) Shortest path via site 1 
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5.4.2.1 Questionnaire 

Characteristics of the baseline (Wave 1) and post-intervention (Wave 2) samples 

were compared using chi-square tests. Changes over time in travel behaviour 

reported in the questionnaire (weekly cycling frequency, usual commuting mode, 

bicycle ownership) were investigated using mixed effects logistic regression.  

Logistic regression was used to examine differences between intervention and 

control area respondents in Wave 2. The model included, as independent variables, 

respondents’ interaction with the cycleway (awareness, actual use, and future 

intention to use) and their neighbourhood perceptions, and was adjusted for 

differences in age, gender, income and education. 

When it was found that some control area respondents reported having used the 

new cycleway at Wave 2, an alternative exposure variable was specified, namely 

residential proximity to the new cycleway. To estimate proximity, respondents’ 

residential addresses were geocoded using the Google Maps Geocoding API (Google 

Inc., 2016). Then, the shortest network distance between each respondent’s 

residential address, and the closest point along the cycleway, was estimated using 

ArcGIS Network Analyst (ESRI, 2013c), with OpenStreetMap network data 

downloaded on 20 December 2014 from the BBBike.org website. The resulting 

network distances were rescaled to increments of 500 metres and 100 metres, with 

the cycleway coded as zero, and every increment farther from the cycleway coded 

as a negative value. 

This proximity variable was included in a logistic regression analysis of cycleway 

users versus non-users in Wave 2. The model included as covariates: age, gender, 

income, education, cycling frequency, and bicycle rider type.  

5.4.2.2 Travel diary 

Changes in cycling behaviour reported in the travel diary were assessed for those 

respondents who had satisfactorily completed all three waves of the diary. Non-

transport trips (e.g., going for a walk) and trips starting or finishing outside the 
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Greater Sydney metropolitan region 44  were excluded. Cycling participation 

(whether respondents used a bicycle during the seven-day reporting period) in the 

intervention and control areas was compared across the three years using 

McNemar’s test for binary outcomes. Changes in the average number of bicycle 

trips, and the average time spent cycling, were evaluated using paired sample t-

tests. Differential effects in the intervention group versus the control group were 

assessed using differences-in-differences (balanced panel), which takes into 

account background factors that may have affected both groups (Angrist & 

Pischke, 2009). Finally, changes in weekly cycling minutes by proximity to the 

cycleway were examined using multilevel modelling for repeated measures, with 

proximity categorised into three groups (< 1.00 km, 1.00 to 2.99 km, and > 3.00 

km) (full details in Crane, et al. 2017). 

5.5 Analysis of temporal preference stability 

To test for temporal preference stability, choice data for all three waves of the 

Sydney Travel and Health Study (2013, 2014 and 2015) were combined. These 

choice data were imputed and formatted in the same way as were the baseline 

choice data (Sections 5.1.2 and 5.1.3). Only trips reported by respondents who had 

satisfactorily completed the online travel diary in all three waves were included in 

this analysis. 

For each wave, the bicycle distance variables were again estimated using the GIS-

based bicycle demand model (described in Section 5.1.2.1), loaded with the 

corresponding bicycle network data for that wave. Travel time variables for 

walking, public transport and driving were again imputed using the Google 

Directions API (see Section 5.1.2.2). Travel times for trips reported in Wave 2 were 

generated on 18 September 2015. Travel times for trips reported in Wave 3 were 

generated on 23 March 2016. 

                                            

44 The area bounded by latitude -34.6 to -32.8 and longitude 149.9 to 151.9 in the WGS 84 

coordinate system. 
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It is not recommended to directly compare parameter estimates between data sets 

collected at different times, because the variance of the unknown error term  may 

have changed, resulting in a difference in scale between the data sets (Swait & 

Louviere, 1993). Therefore, other methods were used to test temporal preference 

stability:  

 comparison of marginal rates of substitution between waves; 

 joint estimation using nested logit and mixed logit; and 

 joint estimation with interaction terms. 

These methods are explained in more detail in Sections 5.5.1 to 5.5.3.   

5.5.1 Changes in marginal rates of substitution 

Marginal rates of substitution can be calculated by dividing one parameter 

estimate by another (Equation 3.6), meaning that scale parameters cancel out. 

For each wave, two mixed logit mode choice models were estimated – one for 

commuting trips and another for non-commuting trips. Model specification was 

based on the final baseline models (Section 5.1), with random parameters to 

account for preference heterogeneity, and error components to allow for flexible 

substitution patterns. Estimation was by simulated maximum log likelihood, with 

2,000 Halton draws. 

Marginal rates of substitution were calculated between cycleway distance and non-

cycleway distance, between non-cycleway distance and driving travel time, and 

between cycleway distance and driving travel time. Confidence intervals were 

calculated using the Delta method (Equation 3.7). Differences between waves were 

evaluated using t-tests. 

5.5.2 Combined choice model 

Data from all three waves were combined and estimated using both a nested logit 

model and a mixed logit model. In the nested logit model, a separate branch was 

specified for each wave, with the scale parameter for the Wave 1 branch normalised 

to a value of 1.0. In the mixed logit model, an error component was specified for 
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each wave, and all parameters were specified as non-random. Estimation for the 

latter was performed using simulated maximum log likelihood, with 100 Halton 

draws. 

In both models, parameters specific to the walking, public transport and driving 

alternatives were specified to be generic across waves (assumed stable). After 

accounting for any scale differences, parameters for the bicycle alternative were 

compared across waves using the t-test formula given in Equation 5.6. This 

formula tests the null hypothesis that the mean parameter estimate in Wave A 

(�̂�𝐴) is equal to the mean parameter estimate in Wave B (�̂�𝐵). The null hypothesis 

can be rejected with 95 per cent confidence if the t-statistic (𝑡𝐴) is greater than 1.96. 

𝐶𝑜𝑣(�̂�𝐴, �̂�𝐵) is the covariance between �̂�𝐴 and �̂�𝐵. 

𝑡𝐴 =
�̂�𝐴 − �̂�𝐵

√𝑉𝑎𝑟(�̂�𝐴) + 𝑉𝑎𝑟(�̂�𝐵) − 2𝐶𝑜𝑣(�̂�𝐴, �̂�𝐵)

 
5.7 

5.5.3 Interaction of variables with wave 

Again, data from all three waves were combined. New dummy variables were 

created to identify trips made in Waves 2 and 3, and these were interacted with 

bicycle trip attributes, to test whether the wave had any systematic influence on 

bicycle preferences. A mixed logit model with error components was used, with all 

parameters specified as non-random. Estimation was by simulation, with 100 

Halton draws. 

5.6 Summary 

This chapter has described the methods used for forecasting and valuing the 

transport impacts and user benefits of new bicycle infrastructure using discrete 

choice analysis, and for testing the assumption of preference stability on which 

such forecasts depend.   

Central to this analysis was the development of a transport mode choice model, in 

which utility functions for four transport modes (walk, bicycle, public transport 

and private car) were estimated from baseline travel diary data. 
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For each trip reported in the baseline travel diary, the attributes of the four 

alternative modes were imputed using two transport models: a GIS-based model 

with open source network data for bicycle; and the Google Maps Directions API for 

other modes. 

To forecast the transport impacts of new bicycle infrastructure, the bicycle distance 

attributes (cycleway distance and non-cycleway distance) were recalculated for 

each scenario using the GIS-based bicycle demand model. Resulting improvements 

in accessibility and transport choice were then monetised for the purposes of 

economic appraisal. 

Actual changes in travel behaviour were assessed by analysing post-intervention 

travel diary data, data from an intercept survey of users of the new infrastructure, 

and bicycle traffic counts. 

The assumption of temporal preference stability – on which demand forecasting 

and resulting economic appraisals depend – was tested by modelling travel diary 

data obtained before and after the intervention. 
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6 RESULTS 

This chapter begins with the results of the mode choice analysis performed on the 

baseline (pre-intervention) data from the Sydney Travel and Health Study (Section 

6.1). The outputs of this analysis were used to forecast the transport (Section 6.2) 

and economic (Section 6.3) impacts of a new cycleway in the City of Sydney local 

government area. 

Following the opening of the new cycleway, actual changes in travel 

behaviour/demand were assessed using data from bicycle traffic counts, a post-

project intercept survey, and subsequent waves of the Sydney Travel and Health 

Study (Section 6.4). 

An inherent assumption of the forecasting/valuation approach is that preferences 

underlying personal transport choices (i.e., mode choice model parameters) remain 

stable over time. The results of various analyses used to test this hypothesis are 

presented in Section 6.5. 

6.1 Baseline mode choice analysis 

6.1.1 Sample characteristics 

A total of 608 respondents satisfactorily completed the baseline (Wave 1) travel 

diary. The age and gender profile of this sample is compared with that of the study 

area population in Table 6.1. The population profile is based on the 2011 Census 

(ABS 2015). The proportion of females in the sample is significantly larger than 

that in the population (59.9 per cent versus 49.4 per cent; p < 0.01), and 

significantly larger in the control group than in the intervention group (64.2 per 

cent versus 54.3 per cent; p < 0.01). The age profile of the baseline sample is skewed 

towards older age groups, relative to the population; this is mostly due to the large 

number of respondents aged 45 to 55 in the control group. The age profile of the 

intervention group is reasonably representative of the population. To account for 

these differences between the sample and population characteristics, appropriate 

weightings were used for the baseline choice analysis, demand assessment and 

economic appraisal. 
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Table 6.1: Age and gender profile of baseline sample versus study area population 

Gender 
Age 
group 

Study area population 
ages 18 to 55) (N = 
74,618a) (%) 

Intervention 
sample (n = 267) 
(%) 

Control sample 
(n = 341) (%) 

Intervention + control 
samples (n = 608) (%) 

Male 18 to 24 7.2 4.9 5.3 5.1 

Male 25 to 34 17.3 14.6 5.9 9.7 

Male 35 to 44 15.1 14.2 8.8 11.2 

Male 45 to 55 11.0 12.0 15.8 14.1 

Male 18 to 55 50.6 45.7 35.8 40.1 

Female 18 to 24 7.5 10.1 9.1 9.5 

Female 25 to 34 17.8 20.2 11.1 15.1 

Female 35 to 44 13.8 10.5 18.8 15.1 

Female 45 to 55 10.3 13.5 25.2 20.1 

Female 18 to 55 49.4 54.3 64.2 59.9 

Both 18 to 24 14.7 15.0 14.4 14.6 

Both 25 to 34 35.1 34.8 17.0 24.8 

Both 35 to 44 28.9 24.7 27.6 26.3 

Both 45 to 55 21.2 25.5 41.1 34.2 

Both 18 to 55 100.0 100.0 100.0 100.0 
a Population statistics for the study area are based on the 2011 Census (ABS 2015). 

 

Bicycle users are over-represented in the baseline sample (see Figure 6.1), because 

they were specifically targeted during recruitment for the Sydney Travel and 

Health Study. The travel demand forecasts were calibrated against actual 

transport mode shares for the study area. 

 

Figure 6.1: Commuting mode45 of sample versus population 

                                            

45 Usual commute mode reported by respondents in the baseline questionnaire. Excludes 

respondents who did not commute to work or study. 
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6.1.2 Final mode choice models 

6.1.2.1 Commuting trips 

Of the 608 respondents who completed the travel diary in Wave 1, 504 reported 

some commuting travel, and they made 3,763 trips between them. The final mode 

choice model for these trips is presented in Table 6.2. The model is a significant 

improvement on a constants only model (chi-square 6221.671, 16 degrees of 

freedom, p < 0.01), and fits the data well (pseudo-R2 0.57). 

The two bicycle distance parameters have the expected negative sign, and 

specifying them as random improves model fit, indicating non-systematic 

preference heterogeneity among the sample. The parameter for cycleway distance 

(CW distance) is significantly smaller than that for non-cycleway distance (Non-

CW distance) (t-statistic 2.36; marginal rate of substitution 1.41, 95% CI 1.01 to 

1.80), suggesting that commuters will, on average, cycle for 1.41 km on cycleways 

instead of riding for 1 km in mixed traffic. 

The parameters for the daily rainfall and CBD dummy variables (Rain 3mm-

bicycle and CBD-bicycle) are negative and have statistically significant spreads, 

indicating differing levels of aversion to bicycle commuting on days with more than 

3 mm of rain, or to/from the CBD.  

Self-reported rider type has a significant influence on sensitivity to non-cycleway 

distance, with low-intensity riders having a higher sensitivity (Non-cycleway 

distance x Low intensity). In an alternative model specification, gender had a 

similar influence on sensitivity to non-cycleway distance, with women having a 

higher sensitivity. Because the gender and rider type variables are strongly 

correlated (women are more likely to identify as low-intensity riders), only rider 

type is retained in the final model, as it gives a marginally better model fit.



 

 

 

 

1
7
6

 

Table 6.2: Mixed logit model of mode choice for Wave 1 commuting trips (3,763 trips, 504 respondents, 2,000 Halton draws) 

 Coefficient t-statistic 95% CI Distribution Spread t-statistic 95% CI 

Constants        

Bicycle -5.768 -15.600 -6.492 to -5.043     

PT -4.634 -13.240 -5.320 to -3.948     

Car -3.660 -18.910 -4.039 to -3.280     

Random parameters        

CW distance -0.952 -13.390 -1.092 to -0.813 Triangular 0.476 13.390 0.406 to 0.546 

Non-CW distance -1.340 -11.400 -1.570 to -1.109 Triangular 0.670 11.400 0.555 to 0.785 

Rain 3mm-bicycle -0.590 -2.950 -0.982 to -0.198 Triangular 0.295 2.950 0.099 to 0.491 

CBD-bicycle -2.966 -12.320 -3.438 to 2.494 Triangular 1.483 12.320 1.247 to 1.719 

Time-walk -0.342 -32.280 -0.362 to -0.321 Triangular 0.171 32.280 0.160 to 0.181 

Time-PT -0.304 -38.760 -0.319 to -0.288 Triangular 0.152 38.760 0.144 to 0.160 

Time-car -0.782 -41.290 -0.819 to -0.744 Triangular 0.391 41.290 0.372 to 0.409 

CBD-car -5.448 -15.440 6.139 to 4.756 Triangular 2.724 15.440 2.378 to 3.070 

Non-random parameters        

Non-CW distance x Low intensity -1.259 -13.930 1.435 to 1.081     

CBD-bicycle x Low intensity 1.988 8.520 1.530 to 2.445     

Children-car 1.417 7.900 1.065 to 1.768 
    

Age 45-55-car 1.078 5.310 0.680 to 1.475 
    

Error component     Std. deviation   

E1 (Bicycle, PT)    Normal 3.684 12.140 3.089 to 4.278 

Model fit statistics        

Log likelihood -2350.499       

Chi-square 6221.671       

Degrees of freedom 16       

Pseudo-R2 0.57       

AIC 4733.0       
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The travel time parameters for other modes (Time-walk, Time-PT and Time-car) 

are, as expected, negative. T-test comparisons of the travel time parameters for 

walk, public transport and car indicate they are statistically different from each 

other (Error! Not a valid bookmark self-reference.). Sensitivity to travel time 

is lowest for public transport, and highest for car. All have statistically significant 

spreads, indicating that preferences are heterogeneous 

Table 6.3: Comparison of parameters for distance and time  commuting 

Variable A A Variable B B t-statistic 

Non-CW distance -1.340 CW distance -0.952 2.36 

Time-walk  -0.342 Time-PT -0.304 -3.05 

Time-walk -0.342 Time-car -0.782 23.49 

Time-PT -0.304 Time-car -0.782 27.53 

 

The constants for bicycle, public transport and car are all negative; this implies 

that, after the observed variables are accounted for, there are unobserved effects 

that reduce the utility of all these modes, relative to walking. Respondents aged 

45 to 55, or with children under 18 years of age living at home, have a greater 

preference for car travel. 

The parameters for area (intervention/control), household income, education level, 

end of trip facilities, origin elevation, and destination elevation are not statistically 

significant; these variables are omitted in the final model. 

The error component for bicycle and public transport has a significant standard 

deviation (p < 0.01), indicating that commuters are more likely to substitute 

between these two modes than between others, i.e., the Independence of Irrelevant 

Alternatives (IIA) assumption is relaxed. There is no evidence of heteroscedasticity 

in this error component, i.e., its magnitude is not affected by individual 

characteristics. 
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The utility functions for the four modes are as follows: 

𝑈𝑊𝑎𝑙𝑘 = (−0.342 + 0.171 × 𝑡) × ′Time′ 

+ ε𝑗=𝑊𝑎𝑙𝑘 
6.1 

𝑈𝐵𝑖𝑐𝑦𝑐𝑙𝑒 = −5.768 

+(−1.340 + 0.670 × 𝑡) × ′Non-CW Distance′ 

+(−0.952 + 0.476 × 𝑡) × ′CW distance′ 

+(−0.590 + 0.295 × 𝑡) × ′Rain 3mm′ 

+(−2.966 + 1.483 × 𝑡) × ′CBD′ 

−1.259 × ′Non CW distance′ × ′Low intensity′ 

+1.988 ×′ CBD′ × ′Low intensity′ 

+3.684 × 𝑁𝐸1 

+ε𝑗=𝐵𝑖𝑘𝑒 

6.2 

𝑈𝑃𝑇 = −4.634 

+(−0.304 + 0.152 × 𝑡) × ′Time′ 

+3.684 × 𝑁𝐸1 

+ε𝑗=𝑃𝑇 

6.3 

𝑈𝐶𝑎𝑟 = −3.660 

+(−0.782 + 0.391 × 𝑡) × ′Time′ 

+(−5.448 + 2.724 × 𝑡) × ′CBD′ 

+1.417 × ′Children′ 

+1.078 × ′Age 45-55' 

+ε𝑗=𝐶𝑎𝑟, 

6.4 

where 𝑡 has a triangular distribution, 𝑁𝐸1 has a normal distribution, and ε𝑗 have a 

Generalized Extreme Value Type I distribution. 

6.1.2.2 Non-commuting trips 

Of the 608 respondents who completed the travel diary in Wave 1, 600 reported 

some non-commuting travel, and they made 8,716 trips between them. The final 

mode choice model for these trips is presented in Table 6.4. The model is a 

significant improvement on a constants only model (chi-square 14844.335, 20 

degrees of freedom, p < 0.01), and fits the data well (pseudo-R2 0.61). 
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Table 6.4: Mixed logit model of mode choice for Wave 1 non-commuting trips (8,716 trips, 600 respondents, 2,000 Halton draws) 

 Coefficient t-statistic 95% CI Distribution Spread t-statistic 95% CI 

Constants        

Bicycle -6.413 -24.29 -6.931 to -5.896     

PT -6.831 -29.51 -7.285 to -6.377     

Car -4.347 -22.85 -4.72 to -3.974     

Random parameters        

CW distance -0.251 -4.18 -0.369 to -0.134 Triangular 0.126 4.18 0.067 to 0.184 

Non-CW distance -0.662 -6.62 -0.858 to -0.466 Triangular 0.331 6.62 0.233 to 0.429 

Rain 3mm-bicycle -0.735 -4.09 -1.087 to -0.383 Triangular 0.368 4.09 0.192 to 0.544 

CBD-bicycle -2.187 -6.63 -2.834 to -1.54 Triangular 1.093 6.63 0.77 to 1.417 

Time-walk -0.229 -36.71 -0.241 to -0.217 Triangular 0.114 36.71 0.108 to 0.121 

Rain 0mm-walk -0.545 -6.06 -0.721 to -0.369 Triangular 0.272 6.06 0.184 to 0.36 

Time-PT -0.049 -8.37 -0.06 to -0.037 Triangular 0.024 8.37 0.019 to 0.03 

Time-car -0.111 -11.07 -0.131 to -0.092 Triangular 0.056 11.07 0.046 to 0.065 

CBD-car -4.412 -26.16 -4.742 to -4.081 Triangular 2.206 26.16 2.041 to 2.371 

Non-random parameters        

Non-CW distance x Low intensity -0.487 -5.69 -0.655 to -0.319     

CBD-bicycle x Low intensity -1.201 -2.59 -2.109 to -0.293     

Children-car 1.177 4.59 0.674 to 1.680     

Error components     Std. deviation   

E1 (Bicycle, PT)    Normal 1.718 12.58 1.45 to 1.985 

E2 (Transit, Car)    Normal 1.611 14.30 1.39 to 1.832 

E3 (Walk, PT)    Normal 2.467 16.26 2.17 to 2.764 

Heteroscedastic effects        

E1 x Children 0.369 3.50 0.163 to 0.576     

E3 x Children -0.393 -3.24 -0.631 to -0.155     

Model fit statistics        

Log likelihood -4706.320       

Chi-square 14844.335       

Degrees of freedom 20       

Pseudo-R2 0.61       

AIC 9452.6       
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The two bicycle distance parameters have the expected negative sign, and 

specifying them as random improves model fit, indicating non-systematic 

preference heterogeneity among the sample. The parameter for cycleway distance 

is significantly smaller than that for non-cycleway distance (t-statistic 3.02; 

marginal rate of substitution of 2.64, 95% CI 0.89 to 4.38), suggesting that non-

commuters will, on average, cycle for 2.64 km on cycleways instead of riding for 1 

km in mixed traffic. This is almost twice the substitution rate estimated for 

commuting trips (1.41, 95% CI 1.01 to 1.80) 

The parameters for the daily rainfall and CBD dummy variables are negative and 

have statistically significant spreads, indicating differing levels of aversion to 

riding on days with more than 3 mm of rain, or to/from the CBD.  

Again, self-reported rider type has a significant influence on sensitivity to non-

cycleway distance, with low-intensity riders having a higher sensitivity (Non-

cycleway distance x Low intensity). In an alternative model specification, gender 

had a similar influence on sensitivity to non-cycleway distance, with women 

having a higher sensitivity. Because the gender and rider type variables are 

strongly correlated (women are more likely to identify as low-intensity riders), only 

rider type is retained in the final model, as it gives a marginally better model fit. 

The travel time parameters for the other modes are, as expected, negative. T-test 

comparisons of the travel time parameters for walk, public transport and car 

indicate they are statistically different form each other (Table 6.5). Sensitivity to 

travel time is lowest for public transport, and highest for walking. All have 

statistically significant spreads, indicating that preferences are heterogeneous. 

Table 6.5: Comparison of parameters for distance and time  non-commuting 

Variable A A Variable B B t-statistic 

Distance non-CW -0.662 Distance CW -0.251 3.01 

Time-walk  -0.229 Time-PT -0.049 -26.64 

Time-walk -0.229 Time-car -0.111 -12.78 

Time-PT -0.049 Time-car -0.111 10.75 
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The constants for bicycle, public transport and car are all negative; this implies 

that, after the observed variables are accounted for, there are unobserved effects 

that reduce the utility of all these modes, relative to walking. Respondents with 

children under 18 years of age living at home have a greater preference for car 

travel. Daily rainfall above 0 mm reduces the utility of walking. 

The parameters for area (intervention/control), age, income, education level, origin 

elevation, and destination elevation are not statistically significant; these 

variables are omitted in the final model.  

The error components for public transport and car, bicycle and public transport, 

and walk and public transport all have statistically significant standard deviations 

(p < 0.01), suggesting that non-commuters are more likely to substitute between 

these pairs of modes than between others, i.e., the Independence of Irrelevant 

Alternatives (IIA) assumption is relaxed. Substitution is most likely between walk 

and public transport. Examination of the heteroscedastic effects suggests 

respondents with children under 18 years of age are more likely to substitute 

between bicycle and public transport, and less likely to substitute between walk 

and public transport. 

The utility functions for the four modes are as follows: 

𝑈𝑊𝑎𝑙𝑘 = (−0.229 + 0.114 × 𝑡) × ′Time′ 

+ (−0.545 + 0.272 × 𝑡) × ′Rain 0mm′ 

+ 2.467 × 𝑁𝐸3 

+ ε𝑗=𝑊𝑎𝑙𝑘 

6.5 

𝑈𝐵𝑖𝑐𝑦𝑐𝑙𝑒 = −6.413 

+ (−0.662 + 0.331 × 𝑡) × ′Non-CW distance' 

+ (−0.251 + 0.126 × 𝑡) × ′CW distance′ 

+ (−0.735 + 0.368 × 𝑡) × ′Rain 3mm′ 

+ (−2.187 + 1.093 × 𝑡) × ′CBD′ 

− 0.487 ×′ Non CW distance′ × ′Low intensity′ 

− 1.201 ×′ CBD′ × ′Low intensity′ 

+ 1.718 × 𝑁𝐸1 

+ ε𝑗=𝐵𝑖𝑐𝑦𝑐𝑙𝑒 

6.6 
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𝑈𝑃𝑇 = −6.831 

+ (−0.049 + 0.024 × 𝑡) × ′Time′ 

+ 1.718 × 𝑁𝐸1 + 1.611 × 𝑁𝐸2 + 2.467 × 𝑁𝐸3 

+ ε𝑗=𝑃𝑇 

6.7 

𝑈𝐶𝑎𝑟 = −4.347 

+ (−0.111 + 0.056 × 𝑡) × ′Time′ 

+ (−4.412 + 2.206 × 𝑡) × ′CBD′ 

+ 1.177 × ′Children′ 

+ 1.611 × 𝑁𝐸2 

+ ε𝑗=𝐶𝑎𝑟, 

6.8 

where 𝑡 has a triangular distribution, 𝑁𝐸1, 𝑁𝐸2 and 𝑁𝐸3 have a normal distribution, 

and ε𝑗 have a Generalized Extreme Value Type I distribution. 

6.1.3 Model outputs 

6.1.3.1 Elasticities 

Table 6.6 shows the forecast effect on mode choice probabilities of decreasing the 

non-cycleway distance for all trips by 1 per cent. For both commuting and non-

commuting trips, the probability of bicycle being chosen increases with relative 

elasticity, while the probability of other modes being chosen decreases with 

relative cross-elasticity. Commuters are more likely to switch to bicycle from 

walking, while non-commuters are more likely to switch to bicycle from public 

transport. 

Table 6.6: Elasticity with respect to a 1 per cent decrease in non-cycleway distance 

 
Walk Bicycle 

Public 
transport Car 

Commuting -0.252 0.901 -0.229 -0.134 

Non-commuting -0.021 0.621 -0.037 -0.026 

 

Table 6.7 shows the forecast impact on mode shares of a 10 per cent increase in 

cycleway distance, together with a 10 per cent decrease in non-cycleway distance, 

for all trips. For commuting, 45 per cent of new cycling trips are forecast to replace 

public transport trips. For non-commuting, 60 per cent of new cycling trips are 
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forecast to replace car trips. This flexible substitution pattern is facilitated by the 

specification of error components in the mixed logit models. 

6.1.3.2 Marginal rates of substitution 

Marginal rates of substitution between the unconditional parameter estimates for 

travel time and distance are shown in Table 6.8, with confidence intervals 

calculated using the Delta method (Equation 3.7). Based on these estimates, 

commuters, on average, will ride 1.0 km on a cycleway in exchange for: riding 0.7 

km not on a cycleway; walking for 2.8 minutes; or driving for 1.2 minutes. Non-

commuters, on average, will ride 1.0 km on a cycleway in exchange for: riding 0.38 

km not on a cycleway; walking for 1.1 minutes; or driving for 2.3 minutes. 

Table 6.7: Forecast effect of a 10 per cent increase in cycleway distance and a 10 
per cent decrease in non-cycleway distance 

 
Walk Bicycle 

Public 
transport Car Total 

Commuting      

Baseline mode share (%) 19.753 13.190 36.795 30.262 100 

Baseline trips 743 496 1,385 1,139 3,763 

Forecast mode share (%) 19.623 13.757 36.534 30.085 100 

Forecast trips 738 518 1,375 1,132 3,763 

Change in mode share (pp) -0.13 +0.57 -0.26 -0.18 0.00 

Change in trips -5 +22 -10 -7 0 

Non-commuting      

Baseline mode share (%) 37.669 3.843 13.528 44.960 100 

Baseline trips 3,283 335 1,179 3,919 8,716 

Forecast mode share (%) 37.632 4.01 13.493 44.866 100 

Forecast trips 3,280 350 1,176 3,910 8,716 

Change in mode share (pp) -0.04 +0.17 -0.04 -0.09 0.00 

Change in trips -3 +15 -3 -9 0 

pp: percentage points      
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Table 6.8: Marginal rates of substitution between unconditional parameter 
estimates 

  Marginal rate of substitution (95% CI) 

Variable A Variable B Commuting Non-commuting 

Non-CW distance CW distance  1.41 (1.01 to 1.8) 2.64 (0.89 to 4.38) 

Non-CW distance Time-walk 3.92 (3.19 to 4.65) 2.89 (2.02 to 3.76) 

Non-CW distance Time PT 4.41 (3.58 to 5.24) 13.64 (8.86 to 18.41) 

Non-CW distance Time-car 1.71 (1.4 to 2.03) 5.95 (4.09 to 7.81) 

CW distance Non-CW distance 0.71 (0.51 to 0.91) 0.38 (0.13 to 0.63) 

CW distance Time-walk 2.79 (2.36 to 3.22) 1.1 (0.58 to 1.61) 

CW distance Time-PT 3.14 (2.69 to 3.58) 5.18 (2.75 to 7.6) 

CW distance Time-car 1.22 (1.04 to 1.4) 2.26 (1.22 to 3.29) 

Time-walk  Time-PT 1.13 (1.04 to 1.21) 4.72 (3.66 to 5.78) 

Time-walk Time-car 0.44 (0.41 to 0.47) 2.06 (1.72 to 2.39) 

Time-PT Time-car 0.39 (0.37 to 0.41) 0.44 (0.38 to 0.49) 

 

Marginal rates of substitution between the parameter estimates for non-cycleway 

distance and cycleway distance for individual respondents (conditioned on their 

actual choices) are plotted in Figure 6.2 (for commuting) and Figure 6.3 (for non-

commuting). For most respondents, their marginal rate of substitution is close to 

the unconditional rate. For commuting, there are three respondents whose 

conditional rate is outside the 95 per cent confidence interval of the unconditional 

rate. There are no obvious relationships between these respondents, in terms of 

their sociodemographic characteristics, or their reported travel behaviour.  
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Figure 6.2: Individual marginal rates of substitution for commuting trips (n = 504) 

  

Figure 6.3: Individual marginal rates of substitution for non-commuting trips (n = 
600)  
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6.2 Forecast changes in travel behaviour/demand 

This section presents the travel demand forecasts for the four bicycle network 

scenarios (Table 5.10 and Figure 5.4), which were simulated using the parameter 

estimates obtained from the baseline mode choice models (Section 6.1). 

6.2.1 Mode shares 

Forecast transport mode shares for the intervention group in each scenario are 

shown in Table 6.9. The forecast ‘Do nothing’ (2013) mode shares differ slightly 

from the actual 2013 mode shares for two reasons. First, actual rainfall during the 

baseline data collection was higher than the 10-year average value used in the 

simulation. Second, prediction success for both baseline choice models is less than 

100 per cent – as is generally the case with regression-type modelling. 

Table 6.9: Forecast mode shares (sample) 

  Mode shares (%) Versus ‘Do nothing’ (percentage points) 

Scenario Year Walk Bicycle PT Car Walk Bicycle PT Car 

Commuting          

Actual mode shares 2013 24.0 12.5 43.1 20.4 - - - - 

‘Do nothing’ (A) 2013 21.8 14.3 40.8 23.0 - - - - 

George St Cycleway (B) 2014 21.4 18.1 38.3 22.2 -0.4 +3.7 -2.6 -0.7 

George St + CBD Cycleways (C) 2015 21.0 21.2 36.0 21.8 -0.8 +6.9 -4.9 -1.2 

Complete Network (D) 2017 18.6 34.5 28.0 18.9 -3.2 +20.2 -12.9 -4.1 

Non-commuting          

Actual mode shares 2013 43.8 5.7 10.6 40.0 - - - - 

‘Do nothing’ (A) 2013 44.8 4.2 12.3 38.7 - - - - 

George St Cycleway (B) 2014 44.7 4.7 12.2 38.4 -0.1 +0.5 -0.1 -0.3 

George St + CBD Cycleways (C) 2015 44.7 4.9 12.1 38.3 -0.1 +0.6 -0.2 -0.4 

Complete Network (D) 2017 44.1 7.3 11.7 36.9 -0.7 +3.1 -0.7 -1.7 

 

To correct for the over-representation of bicycle users in the sample, the 2013 ‘Do 

nothing’ forecast was calibrated to the actual 2013 mode shares for the 

intervention area adult population (ages 18 to 55). The resulting mode shares for 

each scenario are as shown in Table 6.10. The bicycle mode share is predicted to 

increase, largely at the expense of public transport in the case of commuting, and 

largely at the expense of car trips in the case of non-commuting. Again, this flexible 

substitution pattern is facilitated by the inclusion of error components in the mixed 

logit models. The bicycle mode share increase is greater for commuting trips than 
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for non-commuting trips, in terms of both percentage points and percentage 

change. This is intuitive, given the proposed cycleways are primarily designed to 

connect residential areas with the employment-rich CBD.  

Table 6.10: Forecast mode shares (calibrated) 

  Mode shares (%) Versus ‘Do nothing’ (percentage points) 

Scenario Year Walk Bicycle PT Car Walk Bicycle PT Car 

Commuting          

‘Do nothing’ (A) 2013 12.9 4.5 40.9 38.8 - - - - 

George St Cycleway (B) 2014 12.6 5.6 38.3 37.5 -0.2 +1.2 -2.6 -1.2 

George St + CBD Cycleways (C) 2015 12.4 6.6 36.0 36.8 -0.5 +2.1 -4.9 -2.0 

Complete Network (D) 2017 11.0 10.7 28.0 31.9 -1.9 +6.3 -12.9 -6.9 

Non-commuting          

‘Do nothing’ (A) 2013 51.1 2.7 14.2 34.4 - - - - 

George St Cycleway (B) 2014 51.0 3.0 14.1 34.2 -0.1 +0.3 -0.1 -0.2 

George St + CBD Cycleways (C) 2015 51.0 3.1 14.0 34.1 -0.1 +0.4 -0.2 -0.3 

Complete Network (D) 2017 50.3 4.6 13.4 32.9 -0.8 +2.0 -0.8 -1.6 

 

6.2.2 Bicycle kilometres travelled 

Forecast BKT for the intervention area population (ages 18 to 55) for each scenario 

are shown in Table 6.11. The forecast BKT increases are due to a combination of 

(a) people changing mode to bicycle, and (b) existing bicycle users diverting from 

their previous route to use cycleways. Most of the change in BKT is forecast to be 

from commuting travel. 

Table 6.11: Forecast annual BKT 

  
Commuting 
(N = 18,742) 

Non-commuting 
(N = 30,388)  Total 

Scenario Year BKT (km) 
Versus ‘Do 
nothing’ BKT (km) 

Versus ‘Do 
nothing’ BKT (km) 

Versus ‘Do 
nothing’ 

‘Do nothing’ (A) 2013 1,301,765 - 1,224,215 - 2,525,980 - 

George St Cycleway 
(B) 

2014 1,702,996 401,231 
(+31%) 

1,446,985 222,770 
(+18%) 

3,149,981 624,001 

(+25%) 

George St + CBD 
Cycleways (C) 

2015 2,097,039 795,273 
(+61%) 

1,558,456 334,241 
(+27%) 

3,655,495 1,129,514 

(+45%) 

Complete Network 
(D) 

2017 2,986,654 1,684,889 
(+129%) 

2,204,799 980,584 
(+80%) 

5,191,454 2,665,473 

(+182%) 
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6.3 Economic appraisal 

6.3.1 User benefits 

Consumer surplus estimates for each scenario are presented in Table 6.12 (for 

commuting) and Table 6.13 (for non-commuting). The inclusive value (second 

column) is a measure of the disutility of travel in each scenario – an increase can 

be interpreted as an improvement in accessibility and transport options. 

In the third column, these inclusive values are converted into average hours of 

driving travel time per respondent. Thus, the average disutility of commuting over 

seven days is equivalent to 1.88 hours of driving in the ‘Do nothing’ scenario (A), 

decreasing to 1.77 hours in the ‘Complete Network’ scenario (D). The average 

disutility of non-commuting travel over seven days is equivalent to 6.85 hours of 

driving in Scenario A, decreasing to 6.82 hours in Scenario D. 

In the fourth column, hours of travel time are monetised using the NSW 

Government’s 2013 value of travel time savings for private car occupants (AUD 

15.14) (Transport for NSW, 2013a). Expansion factors are applied to give a 

weighted estimate for the intervention area’s adult population (ages 18 to 55). 

The improved accessibility and transport options afforded to the intervention area 

adult population (ages 18 to 55) by the George Street Cycleway (Scenario B) are 

valued at almost $300,000 per annum. The improved accessibility and transport 

options afforded by the Complete Network (Scenario D) are valued at over $2.3 

million per annum. However, the Complete Network covers the whole City of 

Sydney local government area (population aged 18 to 55: 129,755), not just the 

intervention area for the Sydney Travel and Health Study (population aged 18 to 

55: 30,388). Assuming the benefit of the Complete Network to the average 

intervention area resident is representative of the benefit to the average City of 

Sydney resident, then the improved accessibility and transport options can be 
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valued at almost $10 million per annum.46 The user benefit per kilometre for the 

single George Street Cycleway is $124,782, whereas for the Complete Network it 

is $219,883. This suggests the user benefits of individual cycleway links are 

amplified when they are connected into a network. 

Table 6.12: Forecast change in consumer surplus – commuting trips 

  
Sample (n = 
229) 

Average 
respondent 

Intervention area commuters ages 18 to 55 
(N = 18,742) 

City of Sydney 
commuters ages 18 
to 55 (N = 80,027) 

Scenario 

Inclusive 
value 
(logsum) 

Hours of 
driving time (7 
days) 

Consumer 
surplus valuation 
(48 weeks) 

Change in annual 
consumer surplus 
versus ‘Do nothing’ 

Change in annual 
consumer surplus 
versus ‘Do nothing’ 

‘Do nothing’ 
(A) 

-20,202 1.88 -$26,218,204 - - 

George St 
Cycleway 
(B) 

-20,045 1.87 -$26,019,879 +$198,325 - 

Complete 
Network (D) 

-18,990 1.77 

 

-$24,660,114 +$1,558,090 +$6,652,952 

 

Table 6.13: Forecast change in consumer surplus – non-commuting trips 

  
Sample (n = 
259) 

Individual 
respondent (n 
= 1) 

Intervention area residents ages 18 to 55 
(N = 30,338) 

City of Sydney 
residents ages 18 to 
55 (N = 129,755) 

Scenario 

Inclusive 
value 
(logsum) 

Hours of 
driving time (7 
days) 

Consumer surplus 
valuation (48 
weeks) 

Change in annual 
consumer surplus 
versus ‘Do nothing’ 

Change in annual 
consumer surplus 
versus ‘Do nothing’ 

‘Do nothing’ 
(A) 

-11,847 6.85 -$157,145,700 - - 

George St 
Cycleway 
(B) 

-11,840 6.85 -$157,052,449 +$93,251 - 

Complete 
Network (D) 

-11,790 6.82 -$156,386,493 +$759,207 +$3,241,770 

 

6.3.2 Social cost benefit analysis 

The economic appraisals of the George Street Cycleway (Scenario B) and the 

Complete Network (Scenario D) are presented in Table 6.14, with discount rates of 

4, 7 and 10 per cent. For Scenario B, all construction costs are assumed to be 

incurred in the base year (2013). For Scenario D, construction costs are phased 

                                            

46 In addition, people living outside the City of Sydney local government area would also benefit, 

if they travel to or through the City if Sydney. 
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over five years (2013 to 2017 inclusive), with future costs discounted at the 

applicable rate. The annual maintenance cost in both scenarios is assumed to be 1 

per cent of the construction cost. 

Annual public health benefits are estimated by multiplying forecast BKT increases 

(Section 6.2.2) by the Mulley et al. (2013) valuation of $1.21 per BKT. From this is 

subtracted the value of diverted walking trips, using the Mulley at al. (2013) 

valuation of $1.80 per walking kilometre. Annual user benefits are valued as 

described in Section 6.3.1. Public health and user benefits accrue from the time a 

cycleway opens, until the end of the 30-year appraisal period (2042), and are 

discounted at the applicable rate. 

At the discount rate of 7 per cent recommended by Transport for NSW, the George 

Street Cycleway has a benefit-cost ratio of 2.61, indicating this project is very 

worthwhile from a welfare economic perspective. Almost one third (32 per cent) of 

the benefit stream comprises user benefits. The Complete Network has a higher 

benefit-cost ratio (3.42), with 43 per cent of the benefit stream comprising user 

benefits. 

Due to data restrictions, this economic appraisal does not include potential benefits 

accruing to residents aged under 18 or over 55, nor to people living outside the City 

of Sydney local government area who may derive a benefit from the new 

infrastructure. As such, these economic indicators are conservative estimates. 

However, three key observations can be made. First, the user benefits are of a 

similar order of magnitude to the public health benefits. Second, investment in 

cycleways is much more worthwhile from a welfare economic perspective if they 

are developed as part of a connected network, i.e., the value of a cycleway network 

is greater than the sum of its parts – and the user benefits increase at a greater 

rate than the public health benefits. Third, the welfare economic benefit of the 

proposed cycleways derives mostly from residents having improved accessibility to 

work/study (as opposed to access to other activities).
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 Table 6.14: Economic appraisal of George Street Cycleway – user benefits estimated using DCA 

Scenario George Street Cycleway (B) Complete Network (D) 

Discount rate 4% 7% 10% 4% 7% 10% 

Present value of investment $4,673,365 $4,673,365 $4,673,365 $95,012,503 $89,196,038 $83,925,743 

Present value of maintenance costs $793,711 $573,781 $437,876 $16,570,392 $12,043,119 $9,187,177 

Present value of welfare costs/benefits       

Public health benefits accruing from increased BKT  $15,054,002 $10,578,193 $7,894,455 $306,943,364 $220,811,544 $167,321,056 

Public health costs from reduced walking -$2,687,326 -$1,888,339 -$1,409,258 -$54,793,196 -$39,417,598 -$29,868,883 

Net public health benefits $12,366,676 $8,689,854 $6,485,197 $252,150,169 $181,393,946 $137,452,173 

User benefits $5,813,434 $4,085,002 $3,048,618 $190,674,173 $137,386,314 $104,211,313 

Total $18,180,110 $12,774,856 $9,533,815 $442,824,342 $318,780,260 $241,663,487 

Decision criteria       

NPV $12,923,306 $7,870,982 $4,887,232 $336,623,777 $225,457,875 $158,332,330 

NPVI $2.77 $1.68 $1.05 $3.54 $2.53 $1.89 

BCR 3.46 2.61 2.05 4.17 3.42 2.90 

Pricing year: 2013 

Appraisal period: 30 years (2013-2042) 

Population growth: 1.1% per annum 
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For comparison, an economic appraisal of the George Street Cycleway (Scenario 

B), undertaken following the Transport for NSW guidelines (Transport for NSW, 

2013a), is presented in Table 6.15. 

Again, the appraisal includes only adults aged 18 to 55 living in the intervention 

area, with the change in bicycle demand as previously estimated (see Section 6.2). 

As discussed in Section 2.3, Transport for NSW includes road tolling and public 

transport fare savings, which are (by definition) transfer payments and, therefore, 

do not belong in a social cost benefit analysis. Transport for NSW also includes 

reduced motor vehicle externalities, despite there being no clear empirical evidence 

that a marginal increase in bicycle use will result in a sustained decrease in motor 

vehicle use. 

Benefits are offset by an increase in bicycle rider injuries; though it could be argued 

much of this cost should be attributed to motor vehicles (see Section 2.4.1). 

Excluding injury costs, the public health benefits account for 80 per cent of all 

benefits. There are no benefits to users of the new infrastructure, unless it is 

assumed some portion of the public health benefit accrues to users. However, the 

guidelines imply people choose to cycle for altruistic reasons, stating that “choosing 

to ride a [bicycle] is aimed at improving health and gaining other social benefits 

but not to reach a destination faster” (Transport for NSW, 2013a, p. 157). In this 

appraisal, the estimated benefits of the project do not justify the cost, whichever 

discount rate is used. 
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Table 6.15: Economic appraisal of George Street Cycleway – NSW guidelines  

Costs and benefits 
Value over project 
life 

Present Value over 
project life 
(discounted at 7%) 

Percentage of 
Present Value 
costs and benefits 

Costs       

Construction cost -$4,673,365 -$4,673,365 89% 

Maintenance cost -$1,402,020 -$579,924 11% 

Operating costs $0 $0 0% 

Other costs $0 $0 0% 

Total cost -$6,075,385 -$5,253,289 100% 

Benefits       

Parking cost savings $1,771 $695 0% 

Congestion cost savings $44,272 $17,372 7% 

Reduction in motor vehicle operating costs (incl. 
fuel) 

$44,272 $17,372 7% 

Roadway provision cost savings $6,325 $2,482 1% 

Public transport fare cost savings (bus) $29,816 $11,700 5% 

Public transport fare cost savings (train) $3,329 $1,306 1% 

Tolling cost savings $4,933 $1,936 1% 

Bicycle accident cost savings -$103,156 -$40,479 -17% 

Reduced noise from cars $1,265 $496 0% 

Reduced air pollution from cars $3,997 $1,568 1% 

Reduced greenhouse gas emissions from cars $3,162 $1,241 1% 

Reduced water pollution from cars $607 $238 0% 

Improved health $561,616 $220,379 93% 

Total benefits $602,207 $236,307 100% 

Decision criteria    

Discount rate 4% 7% 10% 

Present value of costs -$5,481,491 -$5,253,289 -$5,113,922 

Present value of benefits $336,293 $236,307 $176,355 

NPV -$5,145,198 -$5,016,982 -$4,937,567 

BCR 0.1 0.0 0.0 

NPVI -1.10 -1.07 -1.06 

FYRR 0% 0% 0% 

  

6.4 Actual changes in travel behaviour/demand 

6.4.1 Bicycle traffic counts 

Changes in peak-time bicycle traffic counts along the George Street corridor are 

presented in Table 6.16. At Site A (closest to the CBD), there was a 23 per cent 

increase in bicycle traffic at the time of Wave 2, falling back to 9 per cent at the 

time of Wave 3 (relative to Wave 1). At Site B, there was a 102 per cent increase 

at the time of Wave 2, increasing to 124 per cent at the time of Wave 3 (relative to 

Wave 1). 
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Table 6.16: Changes in bicycle counts 2012 to 2016 

   Wave 1  Wave 2  Wave 3  

 
October 
2012 

March 
2013 

October 
2013 

March 
2014 

October 
2014 

March 
2015 

October 
2015 

March 
2016 

George Street: Site A 
(North) 

774 713 812 972 1001 923 886 888 

Change from Wave 1     +23%  +9%  

Population increase since 
Wave 1a 

    +4.5%  +10.2%  

George Street: Site B 
(South) 

242 237 201 369 406 450 450 588 

Change since Wave 1     +102%  +124%  

Population increase since 
Wave 1b 

    +7.7%  +19.5%  

Other 98 count sites 
(average) 

488 553 552 600 566 519 472 464 

Change since Wave 1     +3%  -14%  

Population increase since 
Wave 1c 

    +3.3%  +10.0%  

a For the suburb of Redfern (Australian Bureau of Statistics, 2017). 
b For suburb of Green Square (Australian Bureau of Statistics, 2017). 
c For the City of Sydney local government area (Australian Bureau of Statistics, 2017).  

 

Comparing the traffic counts at these sites with the average for the other 98 count 

sites in the City of Sydney local government area (Figure 6.4), it appears that 

bicycle traffic along the George Street corridor increased after the cycleway opened, 

despite a general decline in peak-time bicycle use in the City of Sydney. 

It should be noted that the residential population increased more in the suburbs 

through which the cycleway passes than in the City of Sydney as a whole. 

Furthermore, it is possible some new residents chose to move to these suburbs 

because of the new cycleway (i.e., residential self-selection). However, in the March 

2015 intercept survey, only 2.3 per cent of intercepted riders stated they had moved 

to the area after the cycleway opened (Table 6.17), suggesting population growth 

and residential self-selection had little effect on the bicycle counts. 
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Figure 6.4: Change in peak-time bicycle traffic 

6.4.2 Intercept survey 

6.4.2.1 Sample characteristics 

In total, 1,079 bicycle riders were intercepted at the two sites over the two-week 

survey in March 2015. Of these, 783 (73 per cent) agreed to being surveyed, 127 

(12 per cent) advised they had been surveyed previously doing the same trip (so 

were not re-surveyed), and 169 (16 per cent) declined. The characteristics and 

responses of the final sample (n = 783) are summarised in Table 6.17. The majority 

of respondents appeared to be male (71 per cent), and more than half (56 per cent) 

had an estimated age of between 30 and 60 years. The majority were dressed in 

casual clothing (60 per cent); fewer were wearing cycling-specific attire (31 per 

cent) or business attire (8 per cent). The majority (61 per cent) reported they had 

been riding regularly for more than two years. The purpose of most trips (59 per 

cent) was commuting to work. The majority of respondents (63 per cent) lived or 

worked in the suburbs through which the George Street Cycleway passes. 



 

 

196 

 

Table 6.17: Sample summary statistics (n = 783) 

Variable Category Frequencya % 

Trip purpose  Commuting to work 

Shopping/personal business 

Other 

465 

82 

225 

59.4 

10.5 

28.7 

Transport mode used before cycleway opened Bicycle 

Train 

Other 

Would not have made trip 

Moved to area after cycleway opened 

433 

105 

180 

32 

18 

55.3 

13.4 

23.0 

4.1 

2.3 

Changed bicycle route after the cycleway opened Yes 

No 

N/Ac 

336 

228 

168 

42.9 

29.1 

21.4 

Length of time riding regularly (years) ≤ 2 

> 2 

308 

475 

36.1 

60.7 

Observed attire Cycling-specific 

Causal 

Business 

240 

469 

66 

30.7 

59.9 

8.4 

Observed gender Male 

Female 

553 

218 

70.6 

27.8 

Estimated age (years) 18 to 29 

30 to 60 

> 60 

296 

436 

43 

37.8 

55.7 

5.5 
a Some totals do not add up to 783 due to missing observations. 
b Would not have made trip, or recently moved. 
c Did not use bicycle before cycleway opened, or recently moved. 

 

6.4.2.2 Changes in transport mode 

For the mode change analysis, complete data were available for 691 (88 per cent) 

of the 783 respondents. Of these, 40 per cent said they had switched from another 

mode of travel to bicycle since the cycleway opened. Of those who had previously 

used another mode, 21 per cent stated they had previously driven, 59 per cent said 

they had used public transport, and 20 per cent had walked. 

The logistic regression model of mode change for all trip purposes (Table 6.18) 

shows that those who had changed mode to bicycle were more likely to have been 

riding regularly for two years or less (adjusted odds ratio (AOR) 8.73, 95% 

confidence interval (CI) 5.86 to 13.00) and have an estimated age of 30 years or 

more (AOR 1.75, 95% CI 1.17 to 2.62). A chi-square test of the full model against a 

constant only model is statistically significant (p < 0.01), indicating that the 

independent variables as a set reliably distinguish between mode switchers and 

non-switchers. Prediction success is also better in the full model (73.8 per cent 
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versus 60.0 per cent). Nagelkerke’s R2 of 0.27 indicates a moderate relationship 

between prediction and grouping. 

The model for commuting trips shows that mode changers were more likely to be 

female (AOR 1.68, 95% CI 1.10 to 2.77), have been riding regularly for two years 

or less (AOR 8.45, 95% CI 5.38 to 13.27), and have an estimated age of 30 years or 

more (AOR 1.74, 95% CI 1.10 to 2.77). In the model for non-commuting trips, mode 

changers are again more likely to have been riding regularly for two years or less 

(AOR 9.80, 95% CI 3.81 to 25.19). Model fit statistics for the partitioned models 

are similar to those for the pooled model. 

6.4.2.3 Changes in bicycle route 

Overall, 48 per cent of the 415 existing riders said they had changed route since 

the cycleway opened, with the proportion higher at Site 1 (further from the city 

centre) than at Site 2 (61 per cent versus 45 per cent). 

The logistic regression model of route change for all trip purposes (Table 6.19) 

shows that route changers were most likely to have been intercepted at Site 1 (AOR 

2.07, 95% CI 1.19 to 3.62). There is also some indication that route changers were 

more likely to be male and not commuting. A chi-square test of the full model 

against a constant only model is statistically significant (p = 0.01). Prediction 

success is also better in the full model (55.9 per cent versus 51.8 per cent). 

Nagelkerke’s R2 of 0.05 indicates a poor relationship between prediction and 

grouping.



 

 

 

 

1
9
8 

Table 6.18: Logistic regression model of cycleway users who had changed mode compared with those who had not 

 All trips (n = 618) Commuting trips (n = 462) Non-commuting trips (n = 156) 

 AOR 95% CI p value AOR 95% CI p value AOR 95% CI p value 

Observed gender          

Female    1.68 1.10 to 2.77 0.02 0.547 0.22 to 1.35 0.19 

Male (reference)    1.00      

Estimated age          

≥ 30 years 1.75 1.17 to 2.62 < 0.01 1.74 1.10 to 2.77 0.02 1.95 0.79 to 4.84 0.15 

< 30 years (reference) 1.00   1.00   1.00   

Length of time riding regularly          

≤ 2 years 8.73 5.86 to 13.00 < 0.01 8.45 5.38 to 13.27 < 0.01 9.80 3.81 to 25.19 < 0.01 

> 2 years (reference) 1.00   1.00   1.00   

Intercept site          

Site 1       2.53 0.93 to 6.91 0.07 

Site 2 (reference)       1.00   

Model fit statistics          

Chi-square p < 0.01 p < 0.01 p < 0.01 

Nagelkerke’s R2 0.27 0.28 0.27 

Prediction success (full model) 73.8% 73.2% 76.9% 

Prediction success (constant only) 60.0% 56.7% 69.9% 
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The model for commuting trips is similar to the pooled model, with route changers 

most likely to have been intercepted at Site 1 (AOR 2.65, 95% CI 1.41 to 4.98), and 

a similar model fit. The model for non-commuting trips is not significantly different 

from a constant only model (p = 0.77).  

Table 6.19: Logistic regression model of cycleway users who had changed route 
compared with those who had not 

 All trips (n = 371) Commuting trips (n = 262) 

 AOR 95% CI p value AOR 95% CI p value 

Observed gender       

Female 0.70 0.44 to 1.13 0.14 0.60 0.34 to 1.09 0.09 

Male (reference) 1.00   1.00   

Estimated age       

≥ 30 years 1.43 0.92 to 2.21 0.11 1.45 0.86 to 2.47 0.17 

< 30 years (reference) 1.00   1.00   

Intercept site       

Site 1 2.07 1.19 to 3.62 0.01 2.65 1.41 to 4.98 < 0.01 

Site 2 (reference) 1.00   1.00   

Trip purpose       

Commuting to work or study 0.70 0.44 to 1.10 0.12    

Other (reference) 1.00      

Model fit statistics   

Chi-square p = 0.01 p < 0.01 

Nagelkerke’s R2 0.05 0.07 

Prediction success (full model) 57.4% 59.5% 

Prediction success (constant only) 52.8% 53.8% 

 

6.4.2.4 Diversion to use cycleway 

Of the 783 respondents, 643 (82 per cent) were riding for transport purposes and 

gave sufficient information about their trip origins and destinations for network 

distances to be estimated in the GIS model. The average estimated distance 

respondents had diverted to use the cycleway was 351 metres (σ = 870), with 

commuters diverting by 252 metres on average (σ = 411), and non-commuters by 

544 metres on average (σ = 1372). Descriptive statistics for the estimated diversion 

distance are provided in Table 6.20. 
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Table 6.20: Descriptive statistics for estimated diversion distance (metres) 

 Commuting trips 
(n = 485) 

Non-commuting trips 
(n = 246) 

All trips 
(n = 643) 

Mean 252 505 315 

Standard deviation 411 1481 822 

First quartile 26 40 26 

Median 140 197 150 

Third quartile 283 428 333 

 

The final multiple linear regression model to predict diversion distance suggests 

that only trip purpose (p < 0.01) and shortest path network distance (p < 0.01) are 

significant, with observed gender, estimated age, length of time riding regularly, 

and intercept site not significant. The regression equation is: 

Diversion distance (km) = 0.295 + 0.050 ×  Network distance (km) − 0.321 ×  Commute, 
R2 = 0.08, p < 0.01. 6.9 

In the model for commuters, only shortest path network distance (p < 0.01) is 

significant. The regression equation is: 

Diversion distance (km) = 0.171 + 0.015 ×  Network distance (km), 
R2 = 0.02, p < 0.01. 6.10 

In the model for non-commuters, shortest path network distance (p < 0.01) and 

intercept location (p = 0.01) are significant, with predicted diversion distance 

greater for respondents intercepted at Site 1 (furthest from the CBD). The 

regression equation is: 

Diversion distance (km) = −0.622 + 0.240 ×  Network distance (km) + 0.746 ×  Site 1, 
R2 = 0.32, p < 0.01. 

6.11 

6.4.3 Longitudinal resident survey 

6.4.3.1 Sample characteristics 

In total, 363 respondents satisfactorily completed the seven-day travel diary in all 

three waves of the Sydney Travel and Health Study (148 from the intervention 

area and 215 from the control area), allowing changes in their travel behaviour 

following the opening of the George Street Cycleway to be assessed. The 
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demographic profile of this panel is summarised, and compared with that of the 

study area population, in Table 6.21 and Figure 6.5. 

Table 6.21: Characteristics of resident panel  

 Panel 
n = 363 (%) 

Baseline sample 
n = 604 (%) 

Population (Census) 
N = 46,459 (%) 

Gender    

Male 37.5 40.1 50.6 

Female 62.5 59.9 49.4 

Age    

18 to 24 10.2 14.6 14.7 

25 to 34 17.4 24.8 35.1 

35 to 44 29.5 26.3 28.9 

45 to 55 43.0 34.2 21.2 

Commuting mode    

Walk 22.4 21.3 12.6 

Bicycle 12.2 14.2 4.4 

Public transport 36.4 37.5 37.5 

Car 28.9 27.0 45.5 

 

Compared to the population, the panel has fewer males and more people aged 45 

to 55. These differences must be noted, but are not a major concern for panel 

analysis, because they are constant over time. In terms of usual commuting mode, 

walking and cycling is more prevalent in the panel than the population. 

The final logistic regression model comparing the intervention and control groups 

in Wave 2 (Table 6.22) shows that awareness, use of, and intention to use the new 

cycleway were significantly higher in the intervention group compared with the 

control group. Of respondents who reported having used the cycleway, 75 per cent 

lived in the intervention area. Three times as many respondents in the 

intervention group were aware of the new cycleway (60 per cent) compared with 

the control group (19 per cent) (adjusted odds ratio (AOR) = 5.99, 95% CI 3.87 to 

9.27). Use of the cycleway was significantly higher in the intervention group 

(24 per cent) than in the control group (7 per cent) (AOR = 3.58, 95% CI 2.01 to 

6.40). Intention to use the cycleway among the intervention group (36 per cent) 

was more than double that among the control group (16 per cent) (AOR = 2.77, 95% 

CI 1.76 to 4.37). 
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(a) Age profile of panel versus population 

  

(b) Gender profile of panel versus population 

  

(c) Commuting mode shares of panel versus population 

Figure 6.5: Characteristics of resident panel (at Wave 1) 
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Respondents in the intervention group were significantly more likely than 

respondents in the control group to agree/strongly agree that, compared to 

12 months previously: their neighbourhood was more pleasant (48 per cent versus 

30 per cent) (AOR = 2.44, 95% CI 1.63 to 3.66); there were more people walking in 

their local area (54 per cent versus 38 per cent) (AOR = 2.04, 95% CI 1.37 to 3.03); 

and there were more people cycling in their local area (75 per cent versus 59 per 

cent) (AOR = 2.48, 95% CI 1.62 to 3.79) (see Table 6.22). There was no significant 

difference in respondents reporting they felt more connected to their neighbours. 

In the Wave 2 questionnaire, 15 per cent of respondents reported they had used 

the new cycleway since it opened six months previously. However, 24 per cent of 

these lived in the control area, suggesting the binary exposure measure 

(intervention/control) is not ideal (or the control area was too close to the 

intervention). 

Therefore, in the logistic regression model of cycleway use for Wave 2 (Table 6.23), 

residential proximity to the cycleway was used as the exposure variable instead. 

As distance from the cycleway decreases (500 metre increments), likelihood of 

using the cycleway increases significantly (AOR = 1.24, 95% CI 1.13 to 1.37). In 

addition, those who reported having used the cycleway were most likely to identify 

as a high-intensity recreational rider (AOR = 4.38, 95% CI 1.53 to 12.59) or as a 

low-intensity transport rider (AOR = 2.42, 95%  to 1.17–5.04), and to have ridden 

a bicycle in the past week (AOR = 7.50, 95% CI 3.93 to 14.31).
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Table 6.22: Comparison between intervention and control groups in Wave 2 (n = 512) 

 
Control (%) Intervention (%) 

Odds ratio 
(intervention vs. control) Adjusted odds ratio (95% CI)a p value 

Bicycle path interaction      

Awareness 18.8 60.0 6.49 5.99 (3.87 to 9.27) < 0.001 

Use of bicycle path 7.0 23.8 4.15 3.58 (2.01 to 6.40) 0.001 

Intention to use (Very likely/likely) 15.8 35.8 2.97 2.77 (1.76 to 4.37) < 0.001 

Neighbourhood factors      

Compared with 12 months ago (agree/strongly agree):      

I feel more connected with my neighbours 40.2 37.6 0.88 1.09 (0.72 to 1.58) 0.612 

My neighbourhood is more pleasant 29.5 47.5 2.14 2.44 (1.63 to 3.66) < 0.001 

There are more people walking in my local area  37.6 53.7 1.94 2.04 (1.37 to 3.03) < 0.001 

There are more people cycling in my local area  58.7 74.8 2.04 2.48 (1.62 to 3.79) < 0.001 

Agree/strongly agree that:       

It is easy to ride a bicycle around your local area  64.0 71.3 1.39 1.37 (0.90 to 2.08) 0.201 

There are bicycle facilities in my local area 74.6 85.4 2.12 2.08 (1.26 to 3.42) < 0.001 

Cycling frequency      

Bicycled in past week  23.2 25.8 1.16 1.07 (0.67 to 1.69) 0.767 
a Adjusts for age, gender, income and education.  
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Table 6.23: Factors associated with respondents who used new cycleway in Wave 
2 versus those who had not 

 % Odds ratio (95% CI) Adjusted odds ratio (95% CI)a p value 

Age     

18 to 24 15.5 1.0 1.0  

25 to 34 20.9 1.44 (0.62 to 3.36) 0.54 (0.18 to 1.57) 0.890 

35 to 44 18.4 1.23 (0.53 to 2.85) 0.73 (0.25 to 2.15) 0.953 

45 to 55 9.6 0.58 (0.25 to 1.34) 0.42 (0.14 to 1.24) 0.192 

Gender     

Female 13.9 1.0 1.0  

Male 16.3 1.21 (0.74 to 1.99) 0.64 (0.34 to 1.21) 0.306 

Education     

Less than tertiary 13.0 1.0 1.0  

Tertiary or higher 15.5 1.23 (0.69 to 2.20) 0.83 (0.39 to 1.77) 0.908 

Income     

Less than AUD 80K 13.2 1.0 1.0  

AUD 80K or more 17.0 1.34 (0.75 to 2.39) 1.26 (0.63 to 2.54) 0.551 

Weekly cycling frequency     

Less than weekly  1.0 1.0  

At least weekly  7.44 (4.41 to 12.56) 7.50 (3.93 to 14.31) < 0.001 

Bicycle rider type     

Low-intensity recreational  7.0 1.0 1.0  

High-intensity recreational 30.3 5.79 (2.45 to 13.68) 4.38 (1.53 to 12.59) 0.026 

Low-intensity transport 25.4 4.54 (2.50 to 8.22) 2.42 (1.17 to 5.04) 0.032 

High-intensity transport 31.0 5.97 (2.72 to 13.09) 2.40 (0.90 to 6.44) 0.598 

 Residential proximity to cycleway      

500m intervalsb  1.21 (1.12 to 1.31) 1.24 (1.13 to 1.37) < 0.001 

100m intervalsb  1.04 (1.02 to 1.05) 1.04 (1.02 to 1.06) < 0.001 
a Adjusted for all other variables in the model.  

b One or the other included in the model at one time.  

 

6.4.3.2 Travel diary 

Of the 29,168 valid trips reported in the three waves of the travel diary, 26,983 

(92.5 per cent) were for transport purposes and fully within the Greater Sydney 

metropolitan region. At the aggregate level, there was little change in travel 

behaviour. The average daily trip rate remained stable, and was higher in the 

intervention area than the control area (see Table 6.24). 

Table 6.24: Aggregate changes in travel behaviour 

 
Intervention (n = 148) Control (n = 215)  

Wave 1 Wave 2 Wave 3 Wave 1 Wave 2 Wave 3 Total 

Total transport trips within Sydney 3,379 3,385 3,375 5,666 5,576 5,602 26,983 

Trips per respondent per day 3.26 3.27 3.26 3.76 3.70 3.72 3.54 
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Overall, the number of respondents who reported at least one bicycle trip increased 

marginally, from 79 (21.8 per cent) in Wave 1, to 81 (22.3 per cent) in Wave 3. In 

the intervention group, 14 respondents who did not use a bicycle for transport in 

Wave 1 did so in Wave 2 and/or Wave 3. One respondent who did use a bicycle in 

Wave 1 did not do so in Wave 2 or Wave 3. Overall, the number of intervention 

group respondents who used a bicycle for transport increased from 35 to 39. 

However, changes over time in cycling participation, bicycle trips and cycling 

minutes are not statistically significant in either the intervention group or the 

control group (see Table 6.25). Similarly, the differences-in-differences estimators, 

which isolate the effect of the intervention from trend or background effects 

present in both the intervention and control groups, are not statistically 

significant. Overall, the intervention had no measurable effect on bicycle use 

among the resident panel, when assessed using a binary exposure variable 

(intervention/control group).  

Table 6.25: Changes in reported bicycle use 

 Intervention (n = 148) Control (n = 215) 

Wave 1 Wave 2 Wave 3 Wave 1 Wave 2 Wave 3 

Cycling participation       

Respondents who used a bicycle 35 (23.6%) 37 (25.0%) 39 (26.4%) 44 (20.5%) 43 (20.0%) 42 (19.5%) 

McNemar’s repeated measures 
test (vs. Wave 1) 

--- p = 0.80 p = 0.42 --- p = 1.00 p = 0.84 

Differences-in-differences 
estimator for intervention group 
(vs. Wave 1) 

--- +1.8pp (p = 
0.60) 

+3.6pp 
(0.29) 

--- --- --- 

Bicycle trips per respondent       

Average 1.65 1.56 1.67 1.34 1.26 1.49 

Paired sample t-test (vs. Wave 1) --- p = 0.68 p = 0.51 --- p = 0.59 p = 0.37 

Differences-in-differences 
estimator for intervention group 
(vs. Wave 1) 

--- 0.00 (p = 
0.99)  

 -0.32 (p = 
0.29) 

--- --- --- 

Cycling time per respondent 
(minutes) 

      

Average 41.6 48.6 50.35 33.8 30.9 44.0 

Paired sample t-test (vs. Wave 1) --- p = 0.24 p = 0.20 --- p = 0.54 p = 0.12 

Differences-in-differences 
estimator for intervention group 
(vs. Wave 1) 

--- +9.99 (p = 
0.20) 

-1.43 (p = 
0.88) 

--- --- --- 

pp = percentage points       

 

Using the shortest network distance between a respondent’s home and the 

cycleway as the exposure variable, those who lived between 1.00 and 2.99 km from 

the cycleway were more likely to have increased the time they spent cycling in 
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Waves 2 and 3, compared to those who lived more than 2.99 km away (see Table 

6.26 and Figure 6.6). For those who lived less than 1.00 km from the cycleway, 

there was no significant change in cycling duration. 

Table 6.26: Multilevel linear regression analysis of cycling duration associated with 
exposure to cycling infrastructure 

  ∆ Cycling (minutes per week)a 

  n β (95% CI) p value 

Distance from cycleway < 1.00 km    

Wave 1 43 9.1 (-48.3 to 66.4) 0.007 

 2 33 30.5 (-36.6 to 97.6)  

 3 30 -37.1 (-105.9 to 31.7)  

Distance from cycleway 1.00 to 2.99 km    

Wave  1 37 -2.8 (-63.0 to 57.4)  

 2 25 76.8 (4.8 to 148.9)  

 3 18 96.2 (19.0 to 173.4)  
a Reference category is > 3.00 km from the cycleway.  

Adjusts for age and gender and previous waves in the model.   

 

Figure 6.6: Changes in weekly cycling (minutes) by distance from the cycleway 

Changes in transport mode shares are shown in Table 6.27. In the intervention 

group, there were some significant changes in mode shares. The bicycle mode share 

fell over the three waves. The walking mode share initially increased in Wave 2, 

but then fell markedly in Wave 3 (see Figure 6.7). The public transport mode share 

increased. There was no significant change in the mode shares in the control group. 
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Table 6.27: Changes in mode shares (trips) 

 Intervention Control 

Wave 1 Wave 2 Wave 3 Wave 1 Wave 2 Wave 3 

Car 34.9 31.6 34.6 52.6 52.9 51.8 

Walk 33.8 35.3 31.3 27.6 28.6 28.0 

Public transport 19.1 22.3 23.5 13.0 12.5 13.0 

Bicycle 8.2 7.9 6.8 4.3 3.9 4.9 

Othera 3.9 2.9 3.8 2.2 2.4 2.5 

Pearson’s chi-square (vs. Wave 1) --- p < 0.01 p < 0.01 --- p = 0.35 p = 0.61 
a Includes motorcycle, taxi, other. 

 

 

Figure 6.7: Changes in intervention group mode shares 

6.5 Temporal preference stability 

The travel demand forecasts and economic appraisals for the future scenarios use 

parameters estimated from the baseline (Wave 1) travel diary data (Section 6.1), 

and assume these parameters will not change over the 30-year lifetime of the 

assessed projects. This section presents the results of the temporal preference 

stability tests, used to test this assumption. 

The characteristics of the sample used for these analyses are described in Section 

6.4.3.1.  
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6.5.1 Interaction with wave 

Final models of the pooled (Waves 1 to 3) data, with bicycle-specific variables 

interacted with the wave, are presented in Table 6.28 (commuting) and Table 6.29 

(non-commuting). The models are a significant improvement on constants only 

ones (p < 0.01) and fit the data well (pseudo-R2 > 0.48). All parameters have the 

expected sign. Error components are significant (p < 0.01), indicating flexible 

substitution patterns. 

Table 6.28: Error components logit model with wave interactions  commuting 
 

Coefficient t-statistic 95% CI 

Constants 
   

Bicycle -4.193 -23.250 -4.546 to -3.839 

PT -3.544 -19.240 -3.905 to -3.183 

Car -2.553 -68.660 -2.626 to -2.48 

Non-random parameters 
   

CW distance -0.128 -5.260 -0.176 to -0.08 

CW distance x Wave 2 -0.060 -1.660 -0.13 to 0.011 

CW distance x Wave 3 -0.009 -0.300 -0.065 to 0.048 

Non-CW distance -0.378 -13.560 -0.432 to -0.323 

Non-CW distance x Wave 2 -0.125 -3.350 -0.199 to -0.052 

Non-CW distance x Wave 3 -0.146 -4.870 -0.204 to -0.087 

Rain 3mm-bicycle -0.357 -3.460 -0.559 to -0.155 

CBD-bicycle 0.751 6.070 0.508 to 0.993 

CBD-bicycle x Wave 2 0.079 0.380 -0.326 to 0.484 

CBD-bicycle x Wave 3 0.514 3.290 0.208 to 0.821 

CBD-bicycle x Low intensity -2.717 -50.270 -2.823 to -2.611 

Time-walk -0.122 -74.660 -0.125 to -0.118 

Time-PT -0.048 -19.850 -0.053 to -0.043 

Time-car -0.143 -25.900 -0.154 to -0.132 

CBD-car -2.728 -54.670 -2.825 to -2.63 

Children-car 0.768 24.710 0.707 to 0.829 

Age 45-55-car 0.264 8.270 0.202 to 0.327 

Error component Std. deviation t-statistic 95% CI 

E1 (Bicycle, PT) 3.431 17.070 3.037 to 3.824 

Model fit statistics 
   

Log likelihood -4770.066 
  

Chi-square 9937.304 
  

Degrees of freedom 21 
  

Pseudo-R2 0.51 
  

AIC 9582.1 
  

 

None of the parameters for the interactions of cycleway distance and wave is 

statistically significant, suggesting no change over time in preference for using 

cycleways. However, some of the parameters for the interaction of non-cycleway 

distance and wave are significant, suggesting greater aversion to mixed traffic in 

Waves 2 and 3 for commuting, and lower aversion to mixed traffic in Wave 3 for 
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non-commuting (relative to Wave 1). Preference for commuting by bicycle to the 

CBD increases in Wave 3, perhaps due to the opening of new cycleways in the CBD 

between Waves 2 and 3. 

Table 6.29: Error components logit model with wave interactions  non-commuting 
 

Coefficient t-statistic 95% CI 

Constants 
   

Bicycle -5.787 -45.230 -6.038 to -5.536 

PT -5.880 -59.840 -6.072 to -5.687 

Car -3.444 -42.840 -3.601 to -3.286 

Non-random parameters    

CW distance -0.194 -2.380 -0.353 to -0.034 

CW distance x Wave 2 0.014 0.140 -0.174 to 0.202 

CW distance x Wave 3 -0.019 -0.200 -0.205 to 0.167 

Non-CW distance -0.699 -12.060 -0.813 to -0.585 

Non-CW distance x Wave 2 -0.003 -0.030 -0.157 to 0.152 

Non-CW distance x Wave 3 0.206 2.970 0.07 to 0.342 

Rain 3mm-bicycle -0.263 -1.990 -0.523 to -0.004 

CBD-bicycle -2.381 -5.000 -3.314 to -1.447 

CBD-bicycle x Wave 2 0.441 1.100 -0.345 to 1.228 

CBD-bicycle x Wave 3 -0.488 -1.140 -1.328 to 0.352 

CBD-bicycle x Low intensity 0.120 0.290 -0.69 to 0.93 

Time-walk -0.192 -79.330 -0.197 to -0.187 

Time-PT -0.025 -6.900 -0.032 to -0.018 

Time-car -0.056 -8.310 -0.069 to -0.043 

CBD-car -3.785 -57.290 -3.914 to -3.655 

Children-car 0.311 3.620 0.142 to 0.479 

Error components Std. deviation t-statistic 95% CI 

E1 (Bicycle, PT) 1.786 26.190 1.653 to 1.92 

E2 (Transit, Car) 1.545 25.700 1.427 to 1.663 

E3 (Walk, PT) -1.836 -35.650 -1.937 to -1.735 

Model fit statistics    

Log likelihood -8340.749   

Chi-square 28215.032   

Degrees of freedom 23   

Pseudo-R2 0.63   

AIC 16727.5   
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6.5.2 Nested logit 

The final nested logit models of the pooled data (Waves 1 to 3), with a branch for 

each wave, are presented in Table 6.30 (for commuting) and Table 6.31 (for non-

commuting). The models are a significant improvement over constant only ones (p 

< 0.01) and fit the data well (pseudo-R2 > 0.62). All parameters have the expected 

sign. Scale parameters are relatively stable across branches/waves, except for a 

significant difference between Waves 1 and 3 (t-ratio -2.55) in the non-commuting 

model, meaning choices in Wave 3 are less deterministic.47  

Commuting model parameters and constants are compared within and between 

waves (model branches) in Table 6.32. As in the baseline model, the parameter for 

non-cycleway distance is larger than that for cycleway distance in all three waves. 

There are no significant changes between Waves 1 and 2. In Wave 3, preference 

for cycleway, and for cycling to/from the CBD, increases. 

Non-commuting model parameters and constants are compared within and 

between waves (model branches) in Table 6.33. As in the baseline model, the 

parameter for non-cycleway distance is larger than that for cycleway distance in 

all three waves. Between Waves 1 and 2, preference for riding to/from the CBD 

increases. Preference for non-cycleway distance appears to be higher in Waves 2 

and 3. There is no change in preference for cycleway distance.

                                            

47 However, parameter estimates in a nested logit model account for scale differences, meaning 

parameters can be directly compared between branches.  
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Table 6.30: Joint nested logit model  commuting 
 

Wave 1     Wave 2     Wave 3     

  Coefficient t-statistic 95% CI Coefficient t-statistic 95% CI Coefficient t-statistic 95% CI 

Constants 
         

Bicycle -2.959 -14.380 -3.362 to -2.556 -3.244 -12.630 -3.747 to -2.741 -3.381 -15.380 -3.812 to -2.95 

PT -2.666 -17.410 -2.966 to -2.366 -2.499 -16.800 -2.791 to -2.207 -2.143 -14.910 -2.425 to -1.862 

Car -2.870 -20.620 -3.143 to -2.597 -2.855 -19.770 -3.139 to -2.572 -2.436 -18.020 -2.7 to -2.171 

Non-random parameters 
         

CW distance -0.162 -4.080 -0.24 to -0.084 -0.203 -4.500 -0.291 to -0.115 -0.097 -2.860 -0.163 to -0.031 

Non-CW distance -0.471 -7.010 -0.603 to -0.34 -0.523 -6.150 -0.689 to -0.356 -0.433 -7.190 -0.55 to -0.315 

Rain 3mm-bicycle -0.121 -0.980 -0.362 to 0.121 -0.121 -0.980 -0.362 to 0.121 -0.121 -0.980 -0.362 to 0.121 

CBD-bicycle -1.277 -8.160 -1.584 to -0.97 -0.917 -5.180 -1.265 to -0.57 -0.655 -4.050 -0.973 to -0.338 

Time-walk -0.115 -26.330 -0.123 to -0.106 -0.115 -26.330 -0.123 to -0.106 -0.115 -26.330 -0.123 to -0.106 

Time-PT -0.051 -13.600 -0.059 to -0.044 -0.051 -13.600 -0.059 to -0.044 -0.051 -13.600 -0.059 to -0.044 

Time-car -0.099 -13.910 -0.113 to -0.085 -0.099 -13.910 -0.113 to -0.085 -0.099 -13.910 -0.113 to -0.085 

CBD-car -2.375 -20.370 -2.603 to -2.146 -2.375 -20.370 -2.603 to -2.146 -2.375 -20.370 -2.603 to -2.146 

Children-car 0.640 9.710 0.511 to 0.769 0.640 9.710 0.511 to 0.769 0.640 9.710 0.511 to 0.769 

Age 45-55-car 0.423 6.610 0.298 to 0.549 0.423 6.610 0.298 to 0.549 0.423 6.610 0.298 to 0.549 

IV parameter 1.000 - - 1.084 19.080 0.973 to 1.195 1.047 18.710 0.937 to 1.157 

Std. deviation 1.283 - - 1.183 19.080 1.062 to 1.305 1.225 18.710 1.097 to 1.353 

Wald test vs. Wave 1     1.480   0.842  

Model fit statistics 
         

Log likelihood -6542.599 
        

Chi-square 21827.741 
        

Degrees of freedom 27 
        

Pseudo-R2 0.63 
        

AIC 13139.2 
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Table 6.31: Joint nested logit model  non-commuting 
 

Wave 1     Wave 2     Wave 3     

  Coefficient t-statistic 95% CI Coefficient t-statistic 95% CI Coefficient t-statistic 95% CI 

Constants 
         

Bicycle -3.48307 -27.93 -3.728 to -3.239 -3.4135 -23.85 -3.694 to -3.133 -3.6413 -25.69 -3.919 to -3.363 

PT -4.17551 -38.99 -4.385 to -3.966 -4.1778 -31.13 -4.441 to -3.915 -4.0052 -30.73 -4.261 to -3.75 

Car -2.47443 -32.32 -2.624 to -2.324 -2.5746 -31.86 -2.733 to -2.416 -2.4931 -29.96 -2.656 to -2.33 

Non-random parameters          

CW distance -0.23524 -3.21 -0.379 to -0.092 -0.1921 -3.7 -0.294 to -0.09 -0.2192 -6.12 -0.289 to -0.149 

Non-CW distance -0.64893 -8.3 -0.802 to -0.496 -0.6797 -8.9 -0.829 to -0.53 -0.406 -7.87 -0.507 to -0.305 

Rain 3mm-bicycle -0.13118 -1.07 -0.371 to 0.109 -0.1312 -1.07 -0.371 to 0.109 -0.1312 -1.07 -0.371 to 0.109 

CBD-bicycle -2.3919 -7.93 -2.983 to -1.801 -1.5268 -7.32 -1.936 to -1.118 -1.9922 -8.99 -2.427 to -1.558 

Time-walk -0.14452 -37.92 -0.152 to -0.137 -0.1445 -37.92 -0.152 to -0.137 -0.1445 -37.92 -0.152 to -0.137 

Rain 0mm-walk -0.03124 -0.63 -0.129 to 0.067 -0.0312 -0.63 -0.129 to 0.067 -0.0312 -0.63 -0.129 to 0.067 

Time-PT -0.02955 -9.63 -0.036 to -0.024 -0.0296 -9.63 -0.036 to -0.024 -0.0296 -9.63 -0.036 to -0.024 

Time-car -0.06349 -10.86 -0.075 to -0.052 -0.0635 -10.86 -0.075 to -0.052 -0.0635 -10.86 -0.075 to -0.052 

CBD-car -2.71558 -31.5 -2.885 to -2.547 -2.7156 -31.5 -2.885 to -2.547 -2.7156 -31.5 -2.885 to -2.547 

Children-car 0.78233 18.51 0.699 to 0.865 0.78233 18.51 0.699 to 0.865 0.78233 18.51 0.699 to 0.865 

IV parameter 1 - - 0.951 29.17 0.887 to 1.015 0.91974 29.22 0.858 to 0.981 

Std. deviation 1.28255 - - 1.34864 29.17 1.258 to 1.439 1.39447 29.22 1.301 to 1.488 

Wald test vs. Wave 1     -1.503   -2.550  

Model fit statistics          

Log likelihood -10925.705         

Chi-square 58624.777         

Degrees of freedom 27         

Pseudo-R2 0.73         

AIC 21905.4         
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Table 6.32: Comparison of parameter estimates  commuting 

Parameter/constant A Coefficient A Parameter/constant B Coefficient B t-statistic 

Wave 1 
 

 
  

CW distance -0.16 Non-CW distance -0.47 -3.60 

Wave 2 
 

 
  

CW distance -0.20 Non-CW distance -0.52 -3.50 

Wave 3 
 

 
  

CW distance -0.10 Non-CW distance -0.43 -4.50 

Wave 1 versus Wave 2 
  

Bicycle (constant) -2.96 Bicycle (constant) -3.24 -0.99 

CW distance -0.16 CW distance -0.20 -0.70 

Non-CW distance -0.47 Non-CW distance -0.52 -0.49 

CBD-bicycle -1.28 CBD-bicycle -0.92 1.55 

PT (constant) -2.67 PT (constant) -2.50 1.48 

Car (constant) -2.87 Car (constant) -2.86 0.13 

Wave 1 versus Wave 3 
  

Bicycle (constant) -2.96 Bicycle (constant) -3.38 -1.67 

CW distance -0.16 CW distance -0.10 1.29 

Non-CW distance -0.47 Non-CW distance -0.43 0.45 

CBD-bicycle -1.28 CBD-bicycle -0.66 2.81 

PT (constant) -2.67 PT (constant) -2.14 4.52 

Car (constant) -2.87 Car (constant) -2.44 3.90 

Wave 2 versus Wave 3 
  

Bicycle (constant) -3.24 Bicycle (constant) -3.38 -0.48 

CW distance -0.20 CW distance -0.10 1.94 

Non-CW distance -0.52 Non-CW distance -0.43 0.90 

CBD-bicycle -0.92 CBD-bicycle -0.66 1.11 

PT (constant) -2.50 PT (constant) -2.14 3.00 

Car (constant) -2.86 Car (constant) -2.44 3.62 
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Table 6.33: Comparison of parameter estimates  non-commuting 

Parameter/constant A Coefficient A Parameter/constant B Coefficient B t-statistic 

Wave 1 
 

 
  

CW distance -0.24 Non-CW distance -0.65 -3.16 

Wave 2     

CW distance -0.19 Non-CW distance -0.68 -4.47 

Wave 3     

CW distance -0.22 Non-CW distance -0.41 -2.60 

Wave 1 versus Wave 2   

Bicycle (constant) -3.48 Bicycle (constant) -3.41 0.41 

CW distance -0.24 CW distance -0.19 0.49 

Non-CW distance -0.65 Non-CW distance -0.68 -0.29 

CBD-bicycle -2.39 CBD-bicycle -1.53 2.38 

PT (constant) -4.18 PT (constant) -4.18 -0.02 

Car (constant) -2.47 Car (constant) -2.57 -1.71 

Wave 1 versus Wave 3   

Bicycle (constant) -3.48 Bicycle (constant) -3.64 -0.95 

CW distance -0.24 CW distance -0.22 0.20 

Non-CW distance -0.65 Non-CW distance -0.41 2.68 

CBD-bicycle -2.39 CBD-bicycle -1.99 1.08 

PT (constant) -4.18 PT (constant) -4.01 1.75 

Car (constant) -2.47 Car (constant) -2.49 -0.31 

Wave 2 versus Wave 3   

Bicycle (constant) -3.41 Bicycle (constant) -3.64 -1.46 

CW distance -0.19 CW distance -0.22 -0.44 

Non-CW distance -0.68 Non-CW distance -0.41 3.09 

CBD-bicycle -1.53 CBD-bicycle -1.99 -1.56 

PT (constant) -4.18 PT (constant) -4.01 1.74 

Car (constant) -2.57 Car (constant) -2.49 1.36 

 

6.5.3 Marginal rates of substitution 

Separate mode choice models for all three waves are presented in Table 6.34 (for 

commuting) and Table 6.35 (for non-commuting). All six models are a significant 

improvement over constants only ones (p < 0.01) and fit the data well (pseudo-R2 

> 0.57). All parameters have the expected sign, and random parameters have 

statistically significant spreads, indicating intra-sample preference heterogeneity. 

The bicycle-specific parameter for the rainfall dummy variable is not significant in 

Waves 2 and 3. There was less rainfall during these data collection waves than in 

Wave 1, making it more difficult to estimate a parameter for this variable. The 

error components are significant (p < 0.01), indicating a flexible substitution 

pattern. 
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Table 6.34: Mixed logit model partitioned by wave  commuting 
 

Wave 1 
  

Wave 2 
  

Wave 3 
  

 
Coefficient t-statistic 95% CI Coefficient t-statistic 95% CI Coefficient t-statistic 95% CI 

Constants 
         

Bicycle -5.815 -11.060 -6.845 to -4.784 -6.917 -12.060 -8.04 to -5.793 -5.807 -10.950 -6.847 to -4.768 

PT -5.627 -10.670 -6.661 to -4.594 -5.744 -10.200 -6.848 to -4.641 -3.298 -6.550 -4.286 to -2.311 

Car -3.255 -12.750 -3.755 to -2.755 -3.529 -9.550 -4.254 to -2.804 -3.084 -10.210 -3.676 to -2.492 

Non-random parameters 
        

Children-car 1.516 6.610 1.067 to 1.966 1.033 3.280 0.416 to 1.651 0.564 2.290 0.08 to 1.047 

Age 45-55-car 0.543 2.620 0.136 to 0.949 0.685 2.200 0.073 to 1.296 -0.046 -0.190 -0.532 to 0.44 

Random parametersa 

CW distance -0.816 -8.000 -1.016 to -0.616 -1.673 -11.030 -1.971 to -1.376 -1.285 -11.120 -1.511 to -1.058 

Non-CW distance -2.789 -11.790 -3.253 to -2.325 -2.793 -9.920 -3.345 to -2.241 -2.328 -9.760 -2.796 to -1.861 

Rain 3mm-bicycle -0.995 -3.350 -1.576 to -0.413 -0.197 -0.200 -2.12 to 1.727 0.211 0.810 -0.301 to 0.724 

CBD-bicycle -2.402 -7.270 -3.05 to -1.754 -0.802 -3.130 -1.305 to -0.3 -2.285 -5.910 -3.044 to -1.527 

Time-walk -0.344 -24.320 -0.371 to -0.316 -0.387 -22.270 -0.421 to -0.353 -0.360 -23.090 -0.39 to -0.329 

Time-PT -0.298 -27.180 -0.319 to -0.276 -0.360 -33.530 -0.381 to -0.339 -0.347 -26.920 -0.372 to -0.322 

Time-car -0.813 -31.460 -0.864 to -0.763 -0.980 -30.830 -1.042 to -0.918 -0.717 -30.150 -0.764 to -0.671 

CBD-car -5.300 -10.780 -6.263 to -4.337 -4.790 -8.520 -5.891 to -3.688 -5.586 -10.900 -6.591 to -4.582 

Error component 
        

E1 (Bicycle, PT) 4.309 10.570 3.51 to 5.108 4.615 9.440 3.657 to 5.573 4.866 9.810 3.893 to 5.838 

Model fit statistics 
         

Log likelihood -1301.199 -1241.416 -1259.716 

Chi-square 3685.833 4127.020 4059.920 

Degrees of freedom 14 
  

14 
  

14 
  

Pseudo-R2 0.59 
  

0.62 
  

0.62 
  

AIC 2630.4 
  

2510.8 
  

2547.4 
  

a Triangular distribution with spread equal to half the mean. Spreads of random parameters not shown. 
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Table 6.35: Mixed logit model partitioned by wave  non-commuting 
 

Wave 1 
  

Wave 2 
  

Wave 3 
  

 
Coefficient t-statistic 95% CI Coefficient t-statistic 95% CI Coefficient t-statistic 95% CI 

Constants 
         

Bicycle -6.355 -19.060 -7.009 to -5.702 -6.773 -21.080 -7.403 to -6.143 -6.967 -21.020 -7.617 to -6.317 

PT -7.316 -23.990 -7.914 to -6.718 -7.092 -20.780 -7.76 to -6.423 -6.965 -23.710 -7.541 to -6.389 

Car -4.246 -18.250 -4.702 to -3.79 -4.878 -18.020 -5.409 to -4.347 -4.645 -17.910 -5.154 to -4.137 

Non-random parameter 
         

Children-car 1.012 3.140 0.381 to 1.642 1.703 5.520 1.099 to 2.308 1.509 5.040 0.922 to 2.097 

Random parametersa 

CW distance -0.284 -3.170 -0.46 to -0.108 -0.364 -5.360 -0.497 to -0.231 -0.289 -4.320 -0.421 to -0.158 

Non-CW distance -1.072 -7.630 -1.347 to -0.796 -1.336 -9.750 -1.604 to -1.067 -0.825 -8.750 -1.01 to -0.64 

Rain 3mm-bicycle -1.298 -3.240 -2.082 to -0.514 0.080 0.160 -0.873 to 1.032 0.326 1.600 -0.073 to 0.726 

CBD-bicycle -3.806 -7.320 -4.825 to -2.787 -2.230 -5.650 -3.004 to -1.457 -3.386 -8.380 -4.178 to -2.595 

Time-walk -0.258 -30.540 -0.275 to -0.242 -0.271 -32.600 -0.287 to -0.255 -0.242 -28.490 -0.258 to -0.225 

Rain 0mm-walk -0.316 -2.810 -0.536 to -0.096 0.416 4.270 0.225 to 0.607 -0.138 -1.470 -0.322 to 0.046 

Time-PT -0.039 -5.600 -0.053 to -0.025 -0.075 -8.550 -0.092 to -0.058 -0.043 -6.260 -0.057 to -0.03 

Time-car -0.095 -7.680 -0.119 to -0.071 -0.141 -11.170 -0.166 to -0.117 -0.086 -6.960 -0.11 to -0.062 

CBD-car -4.636 -22.190 -5.046 to -4.227 -4.831 -16.770 -5.395 to -4.266 -4.775 -18.310 -5.286 to -4.264 

Error components 
         

E1 (Bicycle, PT) 2.080 9.830 1.665 to 2.495 2.264 9.810 1.811 to 2.716 2.091 8.010 1.579 to 2.603 

E2 (Transit, Car) 1.442 9.310 1.138 to 1.745 2.042 11.090 1.681 to 2.402 1.858 11.420 1.539 to 2.177 

E3 (Walk, PT) 2.654 12.540 2.239 to 3.069 2.178 10.430 1.769 to 2.588 2.177 10.570 1.773 to 2.581 

Heteroscedastic effects 
         

E3 x Children -0.385 -2.900 -0.646 to -0.125 -0.572 -3.960 -0.855 to -0.288 -0.208 -1.400 -0.5 to 0.084 

Model fit statistics 
         

Log likelihood -2790.558 -2570.958 -2756.252 

Chi-square 9837.251 9483.489 9340.254 

Degrees of freedom 18 
  

18 
  

18 
  

Pseudo-R2 0.64 
  

0.65 
  

0.63 
  

AIC 5617.1 5177.9 5548.5 
a Triangular distribution with spread equal to half the mean. Spreads of random parameters not shown. 
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Parameter values cannot be compared directly between waves, because of possible 

scale differences between the datasets. However, marginal rates of substitution 

can be compared between waves, as they are free of scale. 

For commuting trips, marginal rates of substitution for all three waves are shown 

in Table 6.36. The ratio of the non-cycleway distance and cycleway distance 

parameters declines from 3.42 (95% CI 2.19 to 4.64) in Wave 1 to 1.67 (95% CI 1.18 

to 2.16) in Wave 2, and the difference is significant (t-ratio -2.65). The non-cycleway 

distance parameter remains stable – relative to the time parameters for other 

modes – while the cycleway distance parameter increases. This suggests that 

preference for using a cycleway for commuting declined between Waves 1 and 2; 

however, cycleway distance was still preferred over non-cycleway distance. A 

possible explanation for this decline is that some respondents were not aware of 

the new George Street Cycleway in Wave 2, and chose not to cycle believing they 

would have to mix with traffic while riding along the George Street corridor – 

whereas the imputed distance variables took the new cycleway into account. For 

non-commuting trips, marginal rates of substitution for all three waves are shown 

in Table 6.37. Marginal rates of substitution did not change, indicating preferences 

were stable for non-commuting travel. 

Additional models were estimated with data partitioned by area 

(intervention/control); however, the smaller sample sizes meant parameter values 

had large standard errors, making it difficult to compare them across waves. 
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Table 6.36: Changes in marginal rates of substitution – commuting 

Parameter A Coefficient A 
Parameter 
B Coefficient B MRS t-ratio 95% CI t-test vs. Wave 1 

Wave 1        

Non-CW distance -2.79 CW distance -0.82 3.42 5.58 2.191 to 4.643 - 

Non-CW distance -2.79 Time-walk -0.34 8.12 10.75 6.606 to 9.625 - 

Non-CW distance -2.79 Time-PT -0.30 9.37 11.28 7.712 to 11.037 - 

Non-CW distance -2.79 Time-car -0.81 3.43 11.34 2.825 to 4.035 - 

CW distance -0.82 Time-walk -0.34 2.37 7.90 1.774 to 2.976 - 

CW distance -0.82 Time-PT -0.30 2.74 7.86 2.046 to 3.441 - 

CW distance -0.82 Time-car -0.81 1.00 8.01 0.753 to 1.254 - 

Wave 2 
       

Non-CW distance -2.79 CW distance -1.67 1.67 6.78 1.177 to 2.161 -2.65 

Non-CW distance -2.79 Time-walk -0.39 7.23 9.36 5.682 to 8.768 -0.82 

Non-CW distance -2.79 Time-PT -0.36 7.75 9.48 6.115 to 9.385 -1.39 

Non-CW distance -2.79 Time-car -0.98 2.85 9.95 2.277 to 3.422 -1.39 

CW distance -1.67 TIMEW -0.39 4.33 10.26 3.486 to 5.173 3.77 

CW distance -1.67 Time-PT -0.36 4.64 11.48 3.835 to 5.452 3.56 

CW distance -1.67 Time-car -0.98 1.71 10.85 1.393 to 2.022 3.50 

Wave 3 
       

Non-CW distance -2.33 CW distance -1.28 1.81 6.24 1.231 to 2.394 -2.37 

Non-CW distance -2.33 Time-walk -0.36 6.47 8.94 5.026 to 7.923 -1.57 

Non-CW distance -2.33 Time-PT -0.35 6.71 9.49 5.298 to 8.128 -2.44 

Non-CW distance -2.33 Time-car -0.72 3.25 10.03 2.598 to 3.893 -0.42 

CW distance -1.28 Time-walk -0.36 3.57 10.36 2.883 to 4.262 2.62 

CW distance -1.28 Time-PT -0.35 3.70 11.23 3.044 to 4.363 2.00 

CW distance -1.28 Time-car -0.72 1.79 11.22 1.471 to 2.11 3.88 
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Table 6.37: Changes in marginal rates of substitution – non-commuting 

Parameter A 
Coefficient 
A 

Parameter 
B Coefficient B MRS t-ratio 95% CI t-test vs. Wave 1 

Wave 1        

Non-CW distance -1.07 CW distance -0.28 3.77 2.67 0.948 to 6.594 - 

Non-CW distance -1.07 Time-walk -0.26 4.15 7.84 3.09 to 5.206 - 

Non-CW distance -1.07 Time-PT -0.04 27.35 5.16 16.758 to 37.938 - 

Non-CW distance -1.07 Time-car -0.10 11.27 6.55 7.83 to 14.717 - 

CW distance -0.28 Time-walk -0.26 1.10 3.18 0.409 to 1.792 - 

CW distance -0.28 Time-PT -0.04 7.25 3.10 2.573 to 11.932 - 

CW distance -0.28 Time-car -0.10 2.99 3.22 1.135 to 4.845 - 

Wave 2 
       

Non-CW distance -1.34 CW distance -0.36 3.67 4.22 1.931 to 5.404 -0.06 

Non-CW distance -1.34 Time-walk -0.27 4.93 10.16 3.957 to 5.896 1.08 

Non-CW distance -1.34 Time-PT -0.08 17.77 8.41 13.545 to 22.004 -1.68 

Non-CW distance -1.34 Time-car -0.14 9.44 10.26 7.603 to 11.284 -0.94 

CW distance -0.36 TIMEW -0.27 1.34 5.24 0.83 to 1.856 0.56 

CW distance -0.36 Time-PT -0.08 4.85 4.60 2.738 to 6.954 -0.94 

CW distance -0.36 Time-car -0.14 2.57 4.88 1.519 to 3.631 -0.39 

Wave 3 
       

Non-CW distance -0.83 CW distance -0.29 2.85 3.56 1.251 to 4.45 -0.57 

Non-CW distance -0.83 Time-walk -0.24 3.41 9.09 2.662 to 4.163 -1.13 

Non-CW distance -0.83 Time-PT -0.04 19.10 5.93 12.653 to 25.542 -1.33 

Non-CW distance -0.83 Time-car -0.09 9.60 6.22 6.513 to 12.686 -0.72 

CW distance -0.29 Time-walk -0.24 1.20 4.42 0.655 to 1.739 0.22 

CW distance -0.29 Time-PT -0.04 6.70 4.51 3.73 to 9.668 -0.20 

CW distance -0.29 Time-car -0.09 3.37 5.11 2.05 to 4.685 0.33 

 

6.5.4 Comparison of preference stability tests 

In the commuting models, the non-cycleway distance parameter remained larger 

than the cycleway distance parameter in all three waves. However, the ratio 

between them changed. The MRS models suggest the ratio contracted (owing to a 

more negative cycleway distance parameter), while the nested logit model suggests 

it enlarged (owing to a more positive cycleway distance parameter). The interaction 

model also suggests the ratio enlarged, but owing to a more negative non-cycleway 

distance parameter. 

In the non-commuting models, the non-cycleway distance parameter remained 

larger than the cycleway distance parameter in all three waves. Both the 

interaction and nested logit models suggest the ratio contracted, due to a more 

positive non-cycleway distance parameter. However, the MRS models suggest 

there was no significant change in the ratio. 



 

 

221 

 

6.6 Summary 

In the mode choice analysis of the Wave 1 (baseline) travel diary data, it was found 

that respondents prefer riding on cycleways to riding in mixed traffic, but to a 

lesser extent when they are commuting to work or study. On average, women and 

low-intensity riders are more averse to riding in mixed traffic than are men and 

high-intensity riders, and aversion to cycling increases on rainy days, or when the 

trip involves travel to/from the CBD. However, there was notable variation in 

preferences among the sample. 

From the baseline models, it was forecast that the new George Street Cycleway 

would result in bicycle mode share for the intervention area increasing by 1.1 

percentage points for commuting trips, and by 0.3 percentage points for non-

commuting trips. Annual bicycle kilometres travelled were forecast to increase by 

25 per cent. The resulting public health benefits were valued at AUD 12.5m over 

30 years, and the user benefits (improvements in accessibility and transport 

choice) were valued at AUD 4.1m, leading to a benefit-cost ratio of 3.4. 

In terms of how travel behaviour/demand changed in practice, the bicycle traffic 

counts showed a significant increase in peak-time bicycle traffic along the 

cycleway, and a decline elsewhere in the City of Sydney LGA. In the intercept 

survey, 40 per cent of cycleway users reported having changed mode to bicycle 

since it opened, while 48 per cent of those who had cycled previously had changed 

their route. However, there was little change in bicycle use among the resident 

panel after the cycleway opened, in either the intervention group or the control 

group. 

In analysing how the preferences of the resident panel changed over the three data 

collections waves, it was found that sensitivity to non-cycleway distance remained 

higher than sensitivity to cycleway distance. However, the ratio between these 

parameters did change, though in different ways depending on the modelling 

method used. 
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7 DISCUSSION AND CONCLUSION 

This chapter discusses the results presented in Chapter 6, in terms of (a) 

answering the research questions and testing the hypotheses stated in Chapter 1, 

and (b) implications for future research, policy and practice. For the benefit of the 

reader, the purpose and aims of the research are restated (Section 7.1). Next, each 

research question and hypothesis is addressed in turn (Section 7.2). Contributions 

and limitations of the research are acknowledged in Sections 7.3 and 7.4 

respectively. Potential directions for future research are outlined in Section 7.5, 

followed by implications for practice and policy (Section 7.6). Finally, some 

concluding remarks are made in Section 7.7. 

7.1 Purpose and aims 

By way of recall, this research was funded by an Australian Research Council 

Linkage Project grant, with the broad remit of making major contributions to the 

assessment of the transport, health and economic impacts of bicycle infrastructure. 

Various methods for assessing and valuing the social impacts (externalities) of 

bicycle infrastructure, particularly the public health benefits, are described in the 

literature, and have been adopted in practice. However, the user benefits have 

received less attention – perhaps because user benefits of transport infrastructure 

are typically assessed in terms of potential travel speed increases, and new bicycle 

infrastructure can sometimes result in slower journeys. 

However, empirical observation shows some people willingly choose to travel by 

bicycle when there are faster alternatives available, and will choose a longer, low-

stress bicycle route when there are options that are more direct. For them to make 

these choices, there must be some benefit or utility to these individuals. It has also 

been suggested that people value having more transport options available to them, 

even if they do not intend to use them (option value) (K. Geurs et al., 2006). 

The primary aim of this thesis, therefore, was to develop a framework for 

forecasting and valuing the user benefits of low-stress, separated cycleways, by 

analysing the trade-offs people make when choosing which transport mode to use 
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for their journeys. This assessment framework was applied to a new cycleway 

being built in inner-city Sydney, using travel survey data obtained from local 

residents before it opened. The assessment framework was evaluated by (a) re-

surveying the same residents after the cycleway opened, and (b) analysing bicycle 

traffic counts and data from a post-intervention intercept survey of cycleway users. 

7.2 Research questions and hypotheses 

7.2.1 Research Question 1 

Which trip attributes, individual characteristics and contextual factors affect 

people’s decisions to travel by bicycle or not, in a car-oriented Australian city? 

Variables found to be statistically significant in the mode choice model of the pre-

intervention travel diary data (Section 6.1) are listed in Table 7.1 (with their 

parameter signs). It was found that the utility of cycling decreases with increasing 

trip distance, consistent with previous mode choice studies (e.g., Rodríguez & Joo, 

2004).  

Table 7.1: Factors affecting cycling mode choice 

Variable Commuting Non-commuting 

Variables   

Cycleway distance - - 

Non-cycleway distance - - 

Daily rainfall > 3 mm - - 

Trip starts or ends in CBD - - 

Interaction terms   

Non-cycleway distance x low intensity rider - - 

Trip starts or ends in CBD x low intensity rider - - 

 

Previous choice studies have shown that bicycle riders, in general, prefer separated 

cycleways to mixed traffic, implying they will take a longer route to use them. From 

a mode choice study in the United Kingdom, Wardman et al. (2007) estimated that 

commuters, on average, will ride for up to 3 km on cycleways to avoid riding 1 km 

in mixed traffic. Using stated preference data from commuters in Stockholm 

(Sweden), Börjesson and Eliasson (2012) estimated that commuters will ride for 

up to 1.4 km (1.9 km for trips of 40 minutes and above) to avoid riding 1 km in 

mixed traffic. (Neither study looked at non-commuting travel.) 
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In the present mode choice analysis, it was found that commuters will ride for up 

to 1.4 km to avoid riding 1 km in mixed traffic. In a separate model, it was 

estimated that non-commuters would ride for up to 2.6 km to avoid riding 1 km in 

mixed traffic. 

These findings were mirrored in the post-intervention intercept survey (Section 

6.4.2). More than one third (38 per cent) of cycleway users had diverted by more 

than 5 per cent from the shortest path to use the new cycleway, which is at the 

upper end of the 6 to 42 per cent range estimated by Monsere et al. (2014) across 

eight cycleways in the United States. The average diversion of 351 metres was 

somewhat more than the 277 metres estimated by Krenn et al. (2014, p. 2) in a 

similar study undertaken in the “bike-friendly city” of Graz (Austria). There was a 

significant relationship between the estimated distance users had diverted, and 

both trip distance and trip purpose. On average, non-commuters had diverted 

further to use the cycleway than had commuters. 

It has previously been established that car and public transport commuters place 

a higher value on travel time savings than non-commuters (Li et al., 2010) – 

possibly due to the need to arrive for work on time, and the monotony of making 

the same trip multiple times per week.  These results indicate this is true of bicycle 

commuters also – however, commuters are still willing to divert from the shortest 

path to use a lower-stress route. 

The mode choice model parameters for origin and destination elevation were not 

found to be statistically significant. Previous bicycle choice studies (e.g., Broach et 

al., 2012, 2009; Sener et al., 2009; Stinson & Bhat, 2003; Zimmermann et al., 2017) 

have shown that hilliness is a deterrent to cycling; and inner-city Sydney is 

certainly hilly. However, using origin and destination elevation is a somewhat 

coarse approach to measuring the effect of gradient. A better approach may have 

been to use the total elevation gain along the modelled bicycle route. 

In terms of gender, it was found that men and women have the same sensitivity to 

cycleway distance. However, women are significantly more sensitive than are men 

to non-cycleway distance, consistent with previous studies that have found women 
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are more averse than men to riding in mixed traffic (Garrard, Rose, & Lo, 2008). 

This may explain why previous mode choice studies undertaken in countries with 

limited bicycle facilities (e.g., United Kingdom and United States) have shown 

women are less likely to cycle (Sener et al., 2009; Wardman et al., 2007); whereas 

those undertaken in cities with extensive bicycle facilities (e.g., Stockholm 

(Sweden)), have found that gender is not significant (Börjesson & Eliasson, 2012). 

Interestingly, using self-reported rider type instead of gender gave a slightly 

improved model fit, with low-intensity riders more sensitive to non-cycleway 

distance than high-intensity riders. This seems intuitive: a high-intensity sport 

cyclist may feel more confident riding in traffic than a low-intensity transport 

rider, irrespective of their gender. However, there was a strong positive correlation 

between respondents identifying as a low-intensity rider and identifying as female, 

and the differences in model fit were marginal. Furthermore, the self-reported 

rider type variable is prone to scale perception bias, whereby respondents may 

have interpreted low- and high-intensity differently. 

Otherwise, the choice model parameters and their signs were largely as expected, 

e.g., rain is a deterrent to cycling.  

7.2.2 Research Question 2 

How can discrete choice analysis be used to measure and value the user benefits of 

new bicycle facilities, in a way that fits into existing infrastructure appraisal 

frameworks? 

How do these benefits compare in magnitude to other benefits normally attributed 

to cycling projects (e.g., public health benefits)? 

Are there any implementation issues? 

What are the implications for the economic assessment of future cycling projects? 

The user benefits of transport project proposals are typically valued in terms of 

potential travel speed increases or time savings. The post-intervention intercept 

survey (Section 6.4.2) confirmed some people willingly change mode or route to use 

a new cycleway, even if doing so results in a slower journey. For them to make such 

a choice, the cycleway must offer them other benefits, such as greater enjoyment, 
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reduced fear and intimidation from motor vehicle drivers, or an opportunity for 

exercise. While it may be possible to measure and value all these user benefits 

individually, discrete choice analysis provides a convenient methodology for 

estimating and valuing the total increase in utility resulting from new cycling 

infrastructure – without needing to know the exact reasons for it. 

As demonstrated in this thesis, if discrete choice analysis is used for demand 

forecasting, then the user benefits are relatively straightforward to estimate from 

the resulting inclusive value (logsum) parameters. The key is to include, in the 

choice models, variables that vary sufficiently because of the intervention. In the 

present analysis, the bicycle distance was divided into ‘cycleway distance’ and ‘non-

cycleway distance’ variables – such that the former increases (and the latter 

decreases) for many trips as more cycleways are added to the network. If the choice 

model includes a cost parameter, then the inclusive value parameter can be 

converted to a monetary value (consumer surplus). 

From the pre-intervention (2013) mode choice models (Section 6.1), it was 

estimated the George Street Cycleway would have a benefit-cost ratio (BCR) of 2.6 

(range: 2.1 at a 10 per cent discount rate to 3.5 at a 4 per cent discount rate). 

Excluding the user benefits, the BCR would be only 1.8 (range: 1.4 to 2.4).48 For 

the Complete Network scenario, a BCR of 3.4 (range: 2.9 to 4.2) was estimated. 

These BCRs are likely to be conservative because, due to data limitations, they do 

not account for benefits accruing to people aged under 18 or over 55. However, it 

is notable that the BCR for the Complete Network is higher than that for the single 

cycleway. This suggests the benefits of cycleways can be maximised when they are 

connected into networks providing low-stress cycling options between multiple 

origin/destination pairs (a case of the whole being greater than the sum of its 

parts). In addition, the user benefits appear to become increasingly important as 

                                            

48 An investment is generally considered worthwhile if the BCR is greater than 1.0. 
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the network grows (32 per cent of total benefits in the single cycleway scenario; 43 

per cent of total benefits in the Complete Network scenario). 

For comparison, Table 7.2 lists the High Priority Projects and Priority Projects49 

listed in the Australian Government’s July 2017 Infrastructure Priority List 

(Infrastructure Australia, 2017). As discussed in Chapter 2, the economic benefits 

comprise mostly user benefits – predominantly forecast increases in travel speeds 

and travel time reliability. The relatively high discount rate of 7 per cent 

discriminates against passenger rail projects, which tend to have longer design and 

construction timeframes than road projects. The European Commission (2014) 

recommends a discount rate of 3 per cent for infrastructure appraisal. 

In their systematic review of economic assessments of walking and cycling projects, 

Brown et al. (2016) found the estimated BCRs ranged from -31.9 to 59 (see Figure 

7.1). However, it should be noted there was considerable variation in assessment 

methodology, including between the three bicycle project assessments undertaken 

in Australia (AECOM, 2010; PricewaterhouseCoopers, 2009; Sinclair Knight Merz 

& PricewaterhouseCoopers, 2011). 

                                            

49 High Priority Projects and Priority Projects are defined as “potential infrastructure solutions 

for which a full business case has been completed and been positively assessed by the 

Infrastructure Australia Board” (Infrastructure Australia, 2017, p. 3).  



 

 

229 

 

Table 7.2: Passenger transport projects on the Australian Government’s 
Infrastructure Priority List (Infrastructure Australia, 2017) 

Mode Project Location Capital cost ($AUD million) BCRa 

Road M1 Pacific Motorway – Gateway 

Motorway merge upgrade 

Queensland 208 6.3 

 M4 motorway upgrade NSW 853 5.3 

 Armadale Road upgrade Western Australia Undisclosed 4.2 

 Ipswich Motorway 

Rocklea–Darra Stage 1c 

Queensland 400 3.8 

 M1 Pacific Motorway upgrade – 

Mudgeeraba to Varsity Lakes 

Queensland 221 3.5 

 Bruce Highway Upgrade – Mackay 

Ring Road Stage 1 

Queensland 497 3.3 

 Bringelly Road Upgrade Stage 2 NSW 180 2.8 

 Bruce Highway Upgrade – Cooroy to 

Curra Section C 

Queensland 273 2.4 

 Perth Freight Link Western Australia 1,742 2.2 

 M80 Ring Road upgrade Victoria 515 2.0 

 WestConnex NSW 16,800 1.7 

 The Northern Road Upgrade NSW 1,752 1.3 

Passenger rail Sydney Metro: City and Southwest NSW Undisclosed 1.3 

 Melbourne Metro Rail Victoria 10,900 1.1 
a 7% discount rate. Excluding Wider Economic Benefits (e.g., agglomeration economies, increased competition, and 
improved labour supply). 

 

 

Figure 7.1: Benefit-cost ratios for active transport projects (Brown et al., 2016)50 

For the proposed Inner Sydney Regional Bicycle Network – covering the City of 

Sydney LGA and surrounding municipalities – AECOM (2010) estimated a BCR of 

3.88 and a present value of benefits totalling AUD 682.3 million (in 2010 prices), 

broken down as shown in Figure 7.2. The methodology for this appraisal is 

                                            

50 Where more than one BCR was reported, only the smallest is presented in this figure. 
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critiqued in Chapter 2. Many of the benefits derive from a forecast reduction in car 

use, even though the project involves no reduction in road capacity, nor any 

increase in driving or parking costs. Morbidity benefits are not included; however, 

user benefits are – in the form of travel time savings and “journey ambiance” 

(essentially an estimate of travellers’ willingness to pay to use a low-stress bicycle 

facility – see Section 3.3.1). 

 

 

Figure 7.2: Breakdown of discounted benefits of Inner Sydney Regional Bicycle 
Network, in 2010 prices (AUD) (Yi et al., 2011) 

In summary, the three components of this research question are answered as 

follows. 

1. This thesis has demonstrated that discrete choice analysis can be used to 

measure and value the user benefits of new bicycle facilities. The present value 

of these user benefits can then be added to the net present value for the project, 

provided no user benefits (e.g., travel time savings) have already been included 

(to avoid double-counting). The method is appealing from the analyst’s 

perspective, because the inclusive value is a by-product of discrete choice-based 

demand assessment. 

2. In the case of the George Street Cycleway, the estimated value of the user 

benefits is of a similar order of magnitude to the estimated value of the public 

health benefits. 
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3. Implementing this appraisal methodology in practice requires good quality 

bicycle network data and an appropriate source of revealed preference travel 

data (e.g., Household Travel Survey). 

There remains, however, the question of communicability. While ‘travel time 

savings’ may sound compelling and have meaning for decision makers and 

stakeholders, ‘inclusive values’, ‘logsums’ or ‘consumer surpluses’ likely would not. 

7.2.3 Hypothesis 1 (Null) 

Following the construction of a new bicycle path, measured changes in bicycle travel 

are no different from those that are forecast using a discrete mode choice model. 

In their review of four previous validation studies, Fox and Hess (2010, p. 79) 

concluded that “mode choice models were able to predict the impact of often 

substantial changes in level of service on mode share with reasonable accuracy”. 

However, there was one notable exception (Silman, 1981), in which the future 

shares for the major modes (car driver and bus) were accurately predicted, but the 

future share for the minor mode (car passenger) was not. Furthermore, these 

studies considered only commuting travel, while none of the models included a 

bicycle alternative. 

In the present analysis, it was predicted (Section 6.2) that the George Street 

Cycleway would increase the utility of cycling for many trips, and therefore the 

probability of bicycle being chosen. Consequently, it was forecast that the bicycle 

mode share in the intervention area population would increase from 4.5 per cent 

to 5.6 per cent for commuting trips, and from 2.7 per cent to 3.0 per cent for non-

commuting trips. Annual BKT were forecast to increase by 25 per cent, from 1.73 

to 2.16 km per person (as a result of the bicycle mode share increasing, and people 

taking longer routes to use the cycleway). 

Actual changes in travel demand (Section 6.4) were assessed by analysing changes 

in peak-time bicycle traffic counts, data from the post-intervention (March 2015) 

intercept study, and data from the post-intervention (2014 and 2015) resident 

panel surveys. 
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The bicycle traffic counts showed the number of bicycle riders using George Street 

during peak times increased by 90 per cent at the southern end (from 237 to 450 

per day), and by 29 per cent at the northern end (from 713 to 923 per day), after 

the cycleway opened. 

These increases occurred against the backdrop of an average 5 per cent decline in 

the bicycle count over the same period across the other 98 count sites in the City 

of Sydney LGA. Possible explanations for this decrease include: the introduction of 

the Opal smartcard ticketing system for public transport, which made public 

transport more attractive; the state government blocking the construction of more 

cycleways, and demolishing existing ones, in the City of Sydney LGA (O’Reilly, 

2014); and increased police enforcement of cycling infringements, primarily not 

wearing a helmet (Gorman, 2015). The state government also announced 

significantly increased fines for cycling infringements, and plans to force residents 

and visitors to carry government-issued photo identification when cycling 

(Saulwick, 2015a). 

The bicycle count data suggest the opening of the cycleway prompted an increase 

in bicycle traffic along the George Street corridor. However, it is not possible to 

tell, from the count data alone, whether this increase was due to people changing 

mode to bicycle, making more trips, changing destination, or changing route. 

The post-intervention intercept survey made it possible to estimate the proportion 

of cycleway users who had changed mode and route since it opened. The finding 

that 40 per cent of intercepted bicycle riders had changed mode to bicycle is much 

greater than the 6 to 21 per cent range (average 10 per cent) recorded by Monsere 

et al. (2014) in similar surveys across eight new cycleways in five cities in the 

United States. A possible explanation for this difference is that a greater number 

of people in inner-city Sydney were in what Marshall and Biddle (2001) describe 

as the ‘preparation’ stage of behaviour change, and the opening of the cycleway 

facilitated their progress to the ‘action’ stage. 

No statistically significant changes in cycling frequency or distance were observed 

in the resident panel, in either the intervention group or the control group. This 
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may be because the sample was simply too small for the forecast changes to be 

detected. Furthermore, it is known that some people in a population will have no 

interest in cycling, and will not consider switching no matter how convenient or 

comfortable it is made. Dill and McNeil (2012) describe these as the ‘no way, no 

how’ group in their typology of four types of cyclists, and estimate they comprise 

25 per cent of the population in the City of Portland (United States).51 Taverner 

Research (2007) estimate the proportion for Sydney is 20.8 per cent. Considering 

these so-called ‘non-traders’, the expected change in demand would be even 

smaller, requiring an even larger sample size to be able to detect it. 

However, using residential proximity as the exposure variable (instead of 

intervention/control area), there was found to be a statistically significant increase 

in weekly cycling minutes among respondents who lived between 1.00 and 2.99 km 

from the cycleway. There was, however, no change in weekly cycling minutes 

among respondents who lived less than 1.00 km from the cycleway. These 

respondents were clustered around the northern end of the intervention area, close 

to the CBD, and would have had less reason to use the cycleway than those living 

further south. 

Previous before-after studies of the impacts of single bicycle paths have also found 

little or no change in bicycle use (Burbidge & Goulias, 2008; Scheepers et al., 2014). 

Generally, it is only in cases where an intervention comprises multiple new 

facilities, that a statistically significant increase in bicycle travel amongst 

residents has been detected – for example, an assessment of town-wide cycling 

initiatives in the United Kingdom by Goodman et al. (2013). 

In terms of the impact on the demand for other transport modes, the majority (59 

per cent) of intercept survey respondents who had changed mode to bicycle had 

previously used public transport. This is consistent with previous studies, which 

have found the cross-elasticity between driving and cycling to be low, and that 

                                            

51 The other groups are ‘the strong and the fearless’ (6 per cent), ‘the enthused and confident’ (9 

per cent), and ‘the interested but concerned’ (60 per cent). 
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bicycle competes mostly with public transport (Börjesson & Eliasson, 2012). From 

the pre-intervention mode choice models, it was predicted most switching to bicycle 

for commuting would be from public transport, but most switching to bicycle for 

other trip purposes would be from car. Sydney’s public transport systems are 

oriented towards commuting travel, so this difference is not unexpected. 

Among the resident panel, however, the cycling mode share in the intervention 

group fell from 8.2 per cent pre-intervention (2013), to 6.8 per cent post-

intervention (2015). Over the same period, the public transport mode share 

increased from 19.1 per cent to 23.5 per cent. This unexpected increase in the 

public transport mode share might be attributed to the roll-out of smartcard 

ticketing in 2014, along with pricing incentives, e.g., cheaper fares, free travel after 

eight trips in a week, and unlimited travel on Sundays for AUD 2.50. Ideally, a 

variable for public transport fare would have been incorporated into the pre-

intervention mode choice models, and the fare reductions modelled in the future 

scenarios. However, Sydney’s public transport fare structure is very complex, 

making it difficult to impute the fare for a given choice situation (trip). In the 

temporal preference stability models (Section 6.5), the alternative specific 

constants for public transport did increase between 2013 and 2015. These 

constants capture sources of utility/disutility not accounted for by specified 

variables, and the increase in their values may, in part, be attributable to the 

ticketing and fare changes. 

This being the case, a similar increase in the public transport mode share would 

be expected among the control group. However, there was no statistically 

significant change in mode shares of this group. This might be due to differences 

in the way public transport services improved between the intervention and control 

areas. While the intervention area is well served by swift and frequent heavy rail 

services connecting to destinations throughout the Greater Sydney metropolitan 

region, the control area is largely served by buses – which are slow, indirect and 

often full  as is the single light rail line. Furthermore, control area residents 

travelling to a rail interchange by bus or light rail, and then transferring to a heavy 
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rail service, must pay an additional fare to change mode – whereas intervention 

area residents travelling by heavy rail only are not penalised for changing train 

line. 

From the pre-intervention mode choice models, it was predicted that women would 

be more likely than men to change mode to bicycle (because the provision of a low-

stress bicycle route is expected to offer greater utility gains for women than for 

men). There was no statistically significant difference between men and women 

taking up cycling among the resident panel – again, the sample size may have been 

too small to detect any difference. However, intercept survey respondents who 

reported having changed commuting mode to bicycle were more likely to be female. 

In summary, the bicycle count and intercept survey data support the rejection of 

the null hypothesis. The picture from the resident panel is less clear. There is some 

indication that cycling time increased among those living on the fringes of the 

intervention area, which may have been because they took longer routes to use the 

new cycleway. However, the cycling mode share among the intervention group 

decreased at the expense of public transport, contrary to what was forecast. This 

finding could be attributed to background factors, such as public transport 

changes, which were not modelled in the original forecasts, and affected 

intervention and control areas differently.  

7.2.4 Hypothesis 2 (Null) 

Preferences underlying bicycle mode choice are stable over time. 

In the preference stability tests for commuting, respondents preferred cycleway 

distance to non-cycleway distance in all three years (2013 to 2015). However, the 

ratio between the preference parameters changed. The marginal rate of 

substitution (MRS) model suggested the ratio contracted (owing to a greater 

aversion to cycleway distance across the waves), while the nested logit model 

suggested it enlarged (owing to a lower aversion to cycleway distance). The 

interactions model also suggested the ratio enlarged, but owing to a greater 

aversion to non-cycleway distance. 
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In the preference stability tests for non-commuting, respondents again preferred 

cycleway distance to non-cycleway distance in all three years. Both the interaction 

and nested logit models suggested the ratio contracted, due to lower aversion to 

non-cycleway distance. However, the MRS models suggested there was no 

significant change in the ratio. 

These findings do not necessarily mean respondents’ preferences changed. There 

may have been differences in the way they completed the travel diary in each wave 

(e.g., due to survey fatigue). Alternatively, there may have been differences in the 

way the diary data were cleaned (this task was undertaken by different analysts 

in each wave, albeit following a consistent set of rules). The models may have been 

mis-specified or over-specified (Badoe and Miller (1995) found that a simpler model 

gave better prediction success, even though it fitted the data less well than one 

with more variables). As such, the hypothesis cannot be rejected with confidence. 

Whatever the reasons for the changes in preference parameters, they highlight the 

issue with making travel demand forecasts, and estimating economic benefits/costs 

of a project proposal, based on parameters estimated at one point in time. 

7.3 Thesis contributions 

Social cost benefit analysis (SCBA) is the principal deicsion support tool used to 

justify and prioritise transport investments in Australia, and many other 

jurisdictions worldwide. However, SCBA typically values user benefits in terms of 

travel speed increases or time savings, which discriminates against transport 

modes where the travel time is enjoyable, or can be used for other activities.  

Notwithstanding these and other concerns, van Wee and Börjesson (2015) argued 

that SCBA can still be a useful tool for informing decision-making for cycling 

projects and policies. However, they highlighted some areas where additional 

research is needed. 

They identified the need for “a better understanding of the key variables 

determining cycling volumes and how they affect the utility and disutility of 

cycling” (van Wee & Börjesson, 2015, p. 123). The mode choice analyses undertaken 
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for this thesis largely confirm previous models used to predict bicycle demand. 

People prefer low-stress bicycle routes to high-stress ones, do not like to cycle in 

the rain, etc. However, whereas previous models for car-centric cities suggest men 

are generally more inclined to cycle than women, the present analysis shows there 

is no preference difference between the genders for distance ridden on protected 

cycleways. In other words, women like cycling just as much as men do, as long as 

they do not have to ride with traffic. Furthermore, by modelling commuting and 

non-commuting travel separately, notable differences in preferences between trip 

purposes have been identified. In particular, the willingness to travel 

farther/longer to use a cycleway diminishes when the trip purpose is commuting. 

Finally, by using mixed logit, as opposed to the more commonly used MNL model, 

it was possible to identify preference heterogeneity, and to allow flexible 

substitution patterns. 

Van Wee and Börjesson (2015, p. 123) also call for more research to “improve the 

possibilities of evaluating all the accessibility-related impacts of cycling policies”, 

including “option value”. This thesis has demonstrated how changes in consumer 

surplus for a cycling project can be estimated from a discrete choice model, 

capturing improvements in accessibility and option value,52 as well as other user 

benefits – in a way that can be incorporated into existing SCBA frameworks. 

Demand forecasts for a transport intervention are often not validated. When they 

are, they often prove to be inaccurate – possible reasons for this are that travellers’ 

preferences change over time, or they are affected by experience of the intervention 

itself. In this study, travel data were collected both before and after the 

intervention. This enabled forecasts to be validated, and the hypothesis of 

temporal preference stability to be tested. The use of additional survey methods 

(traffic counts and an intercept survey) provided a broader picture of changes in 

                                            

52 Refer to Section 3.3.2.1. In the present analysis, the value of improvements to transport mode 

options is captured. The value of improvements to destination and other options could be 

captured by incorporating these choices into the model. 
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travel behaviour and preferences, than would have been possible using travel diary 

data alone. 

Previous temporal preference stability studies in the transport field have used 

repeat cross-sectional data. This is the first known study to use panel data, and 

the first to investigate changes in cycling preferences following a bicycle 

infrastructure intervention. 

7.4 Limitations 

7.4.1 Recruitment for resident survey 

A number of challenges were experienced during recruitment for the Sydney 

Travel and Health Study. Originally, it had been anticipated that an intervention 

sample representative of the population and living within roughly 500 metres of 

the new cycleway, and a control sample from a similar area, would be recruited 

through online consumer panels. When it became clear that the target sample size 

(343 respondents from each area) would not be met, the following steps were taken.  

 The size of the intervention area was expanded to cover the expected catchment 

area of the new cycleway. The size of the control area was also increased (see 

Figure 4.10). 

 Quotas for age and gender were relaxed, resulting in a convenience sample not 

representative of the population. Notably, the pre-intervention sample was 

skewed towards older age groups. Where possible, these differences have been 

accounted for through weighting. 

 Additional recruitment methods were employed, including random digit 

dialling letterbox drops, social media, electronic mailing lists (primarily aimed 

at tertiary students) and two Ride2Work Day breakfast events (see Section 

4.4.3). These recruitment methods resulted in bicycle users being oversampled. 

Where possible, this has been accounted for in the analysis. 

People under 18 and over 55 were excluded from the study, as may have been 

people who do not identify as male or female (because no other gender options could 



 

 

239 

 

be selected). The recruitment and survey methods used may have excluded other 

groups, e.g., people without Internet access. 

To mask the purpose of the study, it was advertised as a ‘travel and health survey’. 

This may have attracted people with an interest in healthy and active living – 

analysis of reported physical activity showed the sample was more physically 

active to begin with than the general population. The specific purpose of the study 

may have become obvious to respondents during the post-intervention 

questionnaires, when they were asked a number of questions about the new 

cycleway. 

The respondent attrition rate was higher than the anticipated 15 per cent, 

resulting in a smaller than expected sample for the Wave 2 (post-intervention) data 

collection, and making it more difficult to detect statistically significant changes 

in travel behaviour. To minimise further attrition in Wave 3, the financial 

incentive was increased, and respondents who had completed Wave 1 but not Wave 

2 were contacted by telephone and invited to re-join he study. 

7.4.2 Mode choice analysis 

Modelling and forecasting human travel behaviour is both an art and a science, 

and results can be sensitive to decisions and assumptions made by the analyst.  

For this thesis, a decision was taken to use a quantitative approach, namely 

discrete choice analysis, in which it is assumed humans, when faced with choosing 

from a finite set of alternatives (a) have complete information about those 

alternatives, (b) aim to maximise their utility, and (c) act rationally. As discussed 

in Chapter 3, there are many criticisms of this approach, and the underlying 

theory. However, discrete choice analysis was considered an appealing and 

pragmatic method for gauging the user benefits of new cycling infrastructure, in a 

way that fits in with existing appraisal frameworks, and that can exploit existing 

data sources (e.g., household travel surveys). 

Next, a decision was made to focus on trip mode choice, and to assume destinations 

are fixed. The mode choice situations were constructed by modelling likely journeys 
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by different modes; the attributes of these modelled journeys are unlikely to have 

exactly matched those perceived by the respondents when making their choices. 

Another approach could have been to model the bicycle route choice for each trip, 

and then feed the estimated inclusive values (representing bicycle 

utility/accessibility) into a mode choice model, as described by Hood et al. (2011). 

However, this approach would involve collecting and processing a large amount of 

route choice data, e.g., GPS traces, so would be costly to replicate. 

Driving travel times estimated with the Google Maps Directions API assumed free-

flow traffic conditions. To account for road congestion, a ‘peak time’ dummy 

variable was included in the models. However, this is unlikely to have fully 

captured the influence of congestion on mode choice. More realistic travel times 

could be obtained using a strategic transport model, e.g., the Sydney Strategic 

Travel Model (Bureau of Transport Statistics, 2011).  

Origins and destinations were assumed to be fixed; this may be a reasonable 

assumption for commuting travel, because home, work and study destinations tend 

to be fixed – in the short term at least. However, destination choice can be affected 

by mode choice (and vice versa) (Ortúzar & Willumsen, 2011). 

A major failing of road and public transport appraisal, and one reason why forecast 

travel time savings have not been demonstrated to materialise in full, is that 

modellers often assume people will not change home location in response to a 

transport intervention – when it is known some people will move farther from work 

and other destinations, if new infrastructure gives them the opportunity to do so 

while staying within their travel time budget (Metz, 2008). There has been little 

research on the impact of new cycling infrastructure on residential location choice; 

however, it is unlikely to lead to urban sprawl in the same way that, say, urban 

freeways do, given the limited speed of bicycles. There is, however, a clear link 

between bicycle use and destination choice (Hyodo, Suzuki, & Takahashi, 2000), 

and a separate analysis shows the opening of the George Street Cycleway did have 

some effect on destination choice (Greaves et al., 2015), so future analyses could 

model destination and mode choice simultaneously. 
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Another consideration is that the mode chosen for the first trip of a tour influences 

the mode chosen for subsequent trips. For example, if bicycle is not used for the 

first trip, then the traveller may not be able to use a bicycle for subsequent trips.53 

To address this issue, tours could be modelled instead of trips. An alternative 

approach would be to use activity-based modelling, which also takes into account 

individuals’ scheduling constraints (see Bowman & Ben-Akiva, 2000). 

The selection and categorisation of variables for inclusion in the mode choice 

models was guided by the literature, and the available data. To allow the effect of 

new bicycle infrastructure to be modelled in a mode choice context, the bicycle 

distance variable was divided into cycleway distance (low stress) and non-cycleway 

distance (high stress). In reality, the distinction is not so binary – some quiet 

laneways and residential streets may offer a low-stress riding environment, yet be 

categorised in the same way as a high-stress arterial road. Future analyses could 

use crowdsourcing to gather data about perceived stress levels for all links in the 

network, as is being done in Portland (United States) with the Ride Report app 

(Streeter, 2016). 

Some potentially significant dependent variables were not included in the models, 

because the values for these could not be obtained or reliably imputed (e.g., public 

transport fare, public transport crowding, fuel cost and parking cost). However, the 

pseudo-R2 values of the final models are relatively high, indicating that mode 

choice can mostly be explained by the independent variables that were included. 

To allow for inclusion of such variables in future analyses, a separate stated 

preference study could be undertaken, and the resulting data estimated jointly 

with the revealed preference data. 

7.4.3 Travel demand forecasts and economic appraisal 

The travel demand forecasts assumed residents would be fully aware of the new 

cycleway. However, questionnaire responses showed that some respondents were 

                                            

53 Except, for example, where bicycle share schemes are available.  
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not aware of it six months after it opened. Forecasts could be improved by 

incorporating awareness, as described by Chorus and Timmermans (2009). 

It was assumed that average rainfall over the next 30 years would be the same as 

in the previous 10 years; this cannot be guaranteed in an age of rapid climate 

change. Other climate variables (e.g., heat, cold, humidity) were ignored. Data 

were collected during the spring, which is generally a pleasant time to cycle in 

Sydney, weatherwise. Summers are hot and humid, while winters have dark 

evenings.   

The Complete Network scenario was forecast to result in a significant increase in 

bicycle traffic. Given the proposed cycleway infrastructure is all single lane (mostly 

bi-directional), some links and intersections would be expected to reach capacity, 

resulting in congestion.54 This congestion was not accounted for, though perhaps 

such a scenario may result in road authorities reprioritising road space and traffic 

signals to alleviate it. 

The economic appraisal assumed only adults aged 18 to 55 and living within 

intervention area would benefit from the new cycleway. There are already reports 

of more children cycling to school, where cycleways have been built (Sydney 

Cycleways, 2017). Benefits to recreational users were not included, i.e., people just 

going for a bike ride. Benefits to multimodal transport users were not included, 

e.g., people travelling to/from a train station by bicycle. Very few such trips were 

reported in the travel diary, though bicycle could be expected to play an 

increasingly important role in public transport access/egress as the network 

develops, and with the recent introduction of dockless bicycle share schemes 

(Needham, 2017). 

Decongestion benefits were not included in the economic appraisal, because latent 

demand for driving in the study area is high, and any mode shift from driving to 

                                            

54 There are already anecdotal reports of bicycle queues not being cleared at some city centre 

intersections. 
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cycling would be expected to result in some of this latent demand becoming actual 

demand, e.g., remaining drivers driving more at peak times. For completeness, the 

value of this additional car travel could have been included in the appraisal. 

However, the value of this benefit would be expected to be negligible relative to the 

bicycle user and public health benefits. 

Health benefits for people switching from public transport to cycling may have 

been overestimated, because accessing/egressing public transport often involves 

incidental physical activity. In future appraisals, an average value of the health 

benefit for public transport access/egress could be estimated, and multiplied by the 

forecast number of reassigned public transport trips, with the product deducted 

from the benefits stream. 

Because there were no financial cost variables in the mode choice models, changes 

in consumer surplus were estimated in units of hours of driving travel time savings 

– which has an established monetary value in NSW (albeit one that has been 

debated) – and then converted into a dollar value. Ideally, a financial cost variable 

(e.g., public transport fare or road toll) would be included in the model 

specification. 

Like many economic appraisals of transport projects, equity impacts were ignored. 

It is possible that benefits accrued largely to people who already enjoyed good 

levels of accessibility and transport options. The appraisal methodology implicitly 

favours projects that increase bicycle ridership (bicycle kilometres travelled) over 

those that increase network coverage. But it could be argued building bicycle 

infrastructure for areas with high levels of transport disadvantage may be a more 

worthwhile investment, even if it doesn’t generate the same levels of ridership or 

economic benefits (Andersen, 2015; Walker, 2011).55 

                                            

55 That said, the George Street Cycleway does pass through a large public housing estate. 
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7.4.4 Intercept survey 

A major limitation of the intercept survey is that it did not include people who did 

not change mode to bicycle after the cycleway opened, nor people who used 

alternative routes and did not change route to use the new cycleway. A better 

understanding of the factors predicting route change could be achieved by 

intercepting riders on alternative routes.  

It is acknowledged that it is not possible to know from the intercept survey data 

how much, if any, influence the opening of the cycleway had on each respondent's 

decision to change mode or route. There may have been other factors that 

influenced their decision, e.g., increased crowding on public transport. 

Further, it is acknowledged that the GIS-modelled shortest paths via the intercept 

locations are unlikely to be the same as the actual routes the respondents took. 

Similarly, the GIS-modelled absolute shortest paths are unlikely to match the 

routes the respondents would have taken had the cycleway not existed. Therefore, 

the estimated diversion distances should be treated as approximations. 

It is impossible to know how much influence the presence of the cycleway had on 

each respondent's decision to divert from the shortest path route. For undirected 

travel (i.e., purely recreational/exercise trips), it is unlikely that respondents would 

have been aiming to minimise their travel time/distance. 

Respondents were asked how long they had been riding regularly as a way to gauge 

cycling experience. However, there is likely to have been some variation in the way 

‘regularly’ was interpreted. 

Finally, it was assumed that cycleway users were able to recollect accurately how 

they travelled before it opened (nine months previously). 

7.4.5 Potential researcher bias 

All researchers involved in the project, including the author, have an interest in 

transport and health. Although every effort was made to ensure this did not bias 
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the research in any way, it may have influenced various aspects of the data 

collection and analysis, including: 

1. the choice/wording of survey questions and response categories – and other 

aspects of survey design – in ways that could have affected responses, and 

possibly behaviour; 

2. choice of analysis methods; 

3. decisions and assumptions made during choice data generation and choice 

model specification; and 

4. decisions about which costs and benefits were included in the economic 

appraisal, and how they were valued. 

7.5 Future research 

In addition to the recommendations noted in Section 7.4, other research could be 

undertaken to build on the methods and ideas presented in this thesis. 

As others have found, it is difficult to detect changes in population travel behaviour 

resulting from a single link in an incomplete cycling network. Similar studies in 

future could assess multiple links, or complete networks. Given long planning, 

design and construction timeframes, and high residential mobility (in Australian 

cities at least), collecting panel data may be challenging. Repeat cross sectional 

data (e.g., household travel survey) could be used instead.  

There is the question of how to communicate the user benefits of slow travel (as 

estimated using discrete choice analysis) to decision makers and other policy 

stakeholders. ‘Travel time savings’ are something most people can relate to, but 

terms like ‘consumer surplus’, ‘inclusive value’ and ‘logsum’ have little meaning for 

the layperson. An increase in consumer surplus (calculated using the inclusive 

value approach) can be interpreted as an improvement in accessibility and 

transport choice (Dong et al., 2006). Future research could test how the use of 

different terms to describe user benefits of cycling projects affects their likelihood 

of supporting them. 
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Future research on temporal bicycle preference transferability could focus on 

eliminating influences, other than actual changes in preferences that may cause 

parameter values to change, e.g., survey fatigue. Repeated stated preference 

surveys would give more control over the survey task. 

7.6 Implications for practice and policy 

It is clear from this and prior research that individuals derive utility from cycling, 

and the level of utility increases when low-stress facilities, such as cycleways, are 

provided. Transport for NSW’s cycling project appraisal guidelines should be 

amended to value these increases in utility appropriately. This thesis has 

demonstrated how such user benefits can be estimated and valued using a discrete 

choice modelling approach, and has estimated some parameters that could be 

adopted for future projects in inner-city Sydney – though it should be noted these 

parameters were not found to be temporally stable. Care should be taken using 

these parameters in other areas; alternatively, new parameters could be estimated 

from existing data sources, e.g., Census for commuting travel,56  or household 

travel survey for all travel. The estimated user benefits can easily be incorporated 

into existing appraisal (social cost benefit analysis) frameworks. 

Of course, it is also possible to reduce the disutility of time spent travelling by other 

modes. Automated vehicles will enable individuals to work or enjoy screen time 

whilst travelling. This is likely to result in a lower valuation of travel time savings 

for car travel, meaning potentially longer journeys, and less willingness to pay for 

tolls. 

There were notable differences in parameter estimates between the choice models 

estimated for commuting and non-commuting. Those involved in modelling bicycle 

travel demand, and appraising bicycle infrastructure, should model commuting 

and non-commuting travel separately, as is usual practice for modelling driving 

and public transport. 

                                            

56 Linked Census records would be required for discrete choice analysis. 
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The finding (from both the travel diary and intercept survey analysis) that non-

commuters divert farther from the shortest path to use a cycleway than do 

commuters has implications for network design. Bicycle routes intended for 

commuting should be as direct as possible, or there is a risk they will be under-

utilised. Bicycle routes intended for other purposes can be less direct and still 

attract riders. 

Finally, the finding that cycling parameter values can change over time suggests 

caution should be used when making forecasts and economic valuations based on 

parameters estimated at a single point in time. 

7.7 Concluding remarks 

Investment in low-stress bicycle routes and networks can benefit individual 

travellers, even if their journeys end up being slower. The benefits may include 

increased comfort and perceived safety, improved accessibility and improved 

transport options. This research has demonstrated that, by analysing how 

travellers trade off the various attributes of the alternative transport modes 

available to them, these benefits can be forecast and monetised: slow travel does 

have value for those partaking in it, and there is no justification for omitting this 

value in economic appraisals of new cycling projects.  

However, this research has also highlighted some issues with forecasting bicycle 

demand and economic benefits in the short term (up to 18 months post-

intervention), let alone over a 30-year project lifetime typically used in social cost 

benefit analysis. Preferences around travel and residential/work location choice 

can change. A government hostile towards cycling can assume power. Technology 

can be hugely disruptive: apps like Google Maps have made bicycle route planning 

and navigation easier, helping less confident riders avoid high-stress routes. 

Mobile technology has facilitated ‘gig economy’ bicycle delivery services, e.g., 

Deliveroo and Uber Eats, as well as dockless bicycle share systems. On the other 

hand, automated vehicles may in future compete with bicycle, while technology 

and artificial intelligence could transform labour markets and education delivery 

in ways that dramatically reduce demand for commuting travel. 
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Of course, concern about the reliability of transport models and forecasts is not 

limited to cycling projects – few road and rail projects deliver the anticipated 

demand and benefits. 

Furthermore, there is an apparent conflict between the objective of maximising 

individual utility (an implicit objective of discrete choice analysis), and the 

objectives of (a) maximising system performance and efficiency for the greater 

public good, and (b) making cities sustainable. For a new urban motorway, the 

forecast economic benefits are typically dominated by the forecast value of personal 

travel time savings. However, instead of reducing their travel time, many 

individuals simply use the opportunity to move farther from work, where land is 

cheaper. The value to them of being able to do so is at least equal to the value of 

the travel time savings they could otherwise have enjoyed (Van Wee & Rietveld, 

2008). Though these individuals are now considered better off, the cumulative 

result of many such projects – urban sprawl, toxic air, road trauma, community 

severance, a hostile walking/cycling environment, etc. – may be considered 

unacceptable by a majority of residents. There is no mechanism, in Australia at 

least, to set a ceiling for any of these impacts. 

To make cities more liveable, sustainable and accessible for all, perhaps a different 

approach is needed to transport and land use planning. Stanley et al. (2017, p. 16) 

suggest: “start with a clear vision of the kind of city that is desired… then use 

transport and other measures to help deliver that result”, as opposed to the current 

practice of responding “to problems such as traffic congestion with narrowly 

conceived transport infrastructure approaches”. In other words, ‘backcast’ instead 

of forecast. Within such a paradigm, there would still be a role for social cost benefit 

analysis, e.g., in choosing between alternative strategies, or prioritising links 

within a network (staging).  

Pragmatically speaking, however, it is likely that social cost benefit analysis will 

remain the principle decision support tool used to justify transport strategies and 

investments. This thesis has shown how SCBA could be improved to address some 
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of its inherent bias against active transport, and better take into account the 

positive utility of travel. 

Time spent travelling should not be considered purely a cost to be minimised, 

rather something that can be enriched. Much like researching and writing a thesis, 

a journey is not always just about the destination. 
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APPENDIX A: ONLINE TRAVEL DIARY 

 

Figure A.1: Online travel diary – activity selection (Form 2) 

 

Figure A.2: Online travel diary – mode selection (Form 4) 





 

 

279 

 

APPENDIX B: INTERCEPT SURVEY 

Table B.1: Intercept survey questions and response categories 

Survey question 
Pre-coded response categories 
used by interviewers Category coding for analysis 

Where have you cycled from? Street/place and suburb Longitude and latitude (WGS 84 coordinate 
system) 

Where are you cycling to? Street/place and suburb Longitude and latitude (WGS 84 coordinate 
system) 

What is the purpose of your cycle trip 
today?  

Commute to work 

Commute to study 

Commuting to work or study 

 

Exercise 

Work related 

Visit friends/family 

Drop off/pick up kids 

Shopping/personal business 

Kids’ activity 

Other 

Dining 

Recreation 

Travel to exercise 

Other 

 

What mode of travel would you have 
used for this trip before the cycleway 
was built? 

Bicycle Respondent did not change travel mode to 
bicycle after the cycleway opened (existing 
rider) 

Walk 

Bus 

Train 

Car 

Taxi 

Motorcycle 

Respondent changed travel mode to 
bicycle after the cycleway opened  

N/A (would not have made trip) 

N/A (just moved to area) N/A 

How long have you been riding 
regularly?a 

A few weeks 

1 - 6 months 

Since cycleway opened 

1 - 2 years 

≤ 2 years 

3 - 5 years 

6 - 10 years 

10+ years 

> 2 years 

Have you changed your cycle route 
since the cycleway was built? 

Yes Respondent changed bicycle route after 
the cycleway opened 

No 

 

Respondent did not change bicycle route 
after the cycleway opened 

Sometimes 

N/A (just moved to area) 

N/A (new to bicycle riding) 

N/A (other reason) 

N/A 

Attire Cycling-specific 

Causal 

Business 

Cycling-specific 

Causal 

Business 

Observed gender Male 

Female 

Male 

Female 

Estimated age (years) 18 - 29 < 30 

30 - 60 

> 60 

≥ 30 

a If a respondent gave a duration between seven months and one year, the interviewer would ask if they started before or 
after the cycleway opened (which was nine months previously). This prompt allowed the interviewer to establish with greater 
confidence whether the respondent started before or after the cycleway opened (during pilot testing, respondents found it 
difficult to recall precisely when they started). In response to this prompt, no respondent said ‘before’. If they had, it would 
have been coded as ‘1 - 2 years’ by the interviewer. 
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