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Random effects models with deep neural network
basis functions: methodology and computation

Minh-Ngoc Tran∗, Nghia Nguyen, David J. Nott and Robert Kohn

Abstract

Deep neural networks (DNNs) are a powerful tool for functional approx-
imation. We describe flexible versions of generalized linear and generalized
linear mixed models incorporating basis functions formed by a deep neural net-
work. The consideration of neural networks with random effects seems little
used in the literature, perhaps because of the computational challenges of in-
corporating subject specific parameters into already complex models. Efficient
computational methods for Bayesian inference are developed based on Gaus-
sian variational approximation methods. A parsimonious but flexible factor
parametrization of the covariance matirx is used in the Gaussian variational
approximation. We implement natural gradient methods for the optimization,
exploiting the factor structure of the variational covariance matrix to perform
fast matrix vector multiplications in iterative conjugate gradient linear solvers
in natural gradient computations. The method can be implemented in high
dimensions, and the use of the natural gradient allows faster and more stable
convergence of the variational algorithm. In the case of random effects, we
compute unbiased estimates of the gradient of the lower bound in the model
with the random effects integrated out by making use of Fisher’s identity. The
proposed methods are illustrated in several examples for DNN random effects
models and high-dimensional logistic regression with sparse signal shrinkage
priors.

Keywords. Factor models; Reparametrization gradient; Stochastic optimiza-
tion; Variational approximation.

1 Introduction

Deep neural network modeling provides a powerful technique for approximating mul-
tivariate functions, and has become increasingly popular recently. DNNs have been
applied successfully in fields such as image processing, computer vision and language

∗Corresponding author: minh-ngoc.tran@sydney.edu.au
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recognition. See Schmidhuber (2015) for a historical survey of DNNs and Goodfel-
low et al. (2016) for a more comprehensive recent discussion. Polson and Sokolov
(2017) provide a Bayesian perspective on DNN methodology and explain its connec-
tion to statistical techniques such as principal component analysis and reduced rank
regression.

This paper considers generalized linear models (GLMs) and generalized linear
mixed model (GLMMs) using DNNs as a way to efficiently transform a vector of p
raw covariates X = (X1, ..., Xp)

> into a new vector of m predictors Z in the model.
We refer to these DNN-based versions of GLM and GLMM as flexible GLM (fGLM)
and flexible GLMM (fGLMM), respectively. A conventional GLM uses a link function
that links the conditional mean of the response variable Y to a linear combination of
the predictors Z = φ(X) = (φ1(X), ..., φm(X))>, with each φj(X) a function of X.
We refer to the original raw input variables Xj as covariates, and refer to the trans-
formations φj(X) as predictors. Usually in conventional GLMs the φj(X) are chosen
a priori in some way, but here we are concerned with learning an appropriate Z from
data, and in the machine learning literature the predictors Z are commonly referred
to as learned features. If a deep multi-layer perceptron is used for transforming the
covariates, then Z has the form

Z = fL

(
WL, fL−1

(
WL−1, · · · f1(W1, X) · · ·

))
. (1)

which is often graphically represented by a network as in Figure 1. Each vector-valued

●
●
●
●
●
●
●
●
●

x1

x2

x3

x4

x5

x6

x7

x8

x9

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

● Output

Figure 1: Graphical representation of a layered composition function with L = 4
hidden layers. The input layer represents 9 raw covariates X. The last hidden layer
(hidden layer 4) represents the predictors Z.

function Zj=fj(Wj,Zj−1), j=1,2,... is called a hidden layer, L is the number of hidden
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layers in the network, w=(W1,...,WL) is the set of weights, and we define Z0 =X. The
function fj(Wj,Zj−1) is assumed to be of the form hj(WjZj−1) where Wj is a matrix
of weights for layer j and hj(·) is a scalar function, called the activation function.
Applying hj to a vector should be understood component-wise. For a discussion of
alternative kinds of architectures for deep neural networks see for example Goodfellow
et al. (2016). The architecture (1) provides a powerful way to transform the raw
covariate data X into summary statistics Z that have some desirable properties. In
the fGLM, we link the conditional mean of the response ξ = E(Y |X) to a linear
combination of Z

g(ξ)=β0+Z>β̃.

and the model parameters consist of w, β and other possible parameters such as any
dispersion parameters. Section 2.2 defines fGLMM models by adding random effects
to fGLM models. Such models are designed to model within-subject dependence. The
use of neural network basis functions in the context of mixed effects models seems
not considered much in the literature. Lai et al. (2006) is the earliest work that we
know of that deals with a neural network basis and random effects, in the context
of modelling pharmacokinetic data. They consider neural networks with only one
hidden layer, however.

Estimating complex and high-dimensional models like fGLM and fGLMM is chal-
lenging. This article develops Bayesian inference based on variational approximation,
which provides an approach to approximate Bayesian inference that is useful for many
modern applications involving complex models and large datasets. When the approx-
imation of the posterior distribution is Gaussian, parsimonious but flexible methods
for parametrizing the covariance matrix are needed if the approach is to be useful for
problems with a high-dimensional parameter. Here we consider factor parametriza-
tions (Bartholomew et al., 2011) which are often effective for describing dependence in
high dimensional settings. We discuss efficient methods for performing the variational
optimization in this context using the natural gradient (Amari, 1998) by leveraging
the factor structure and using iterative conjugate gradient methods for solving large
linear systems. In the “isotropic” case with a one-factor decomposition and constant
variance for the idiosyncratic noise components, we show that the natural gradi-
ent can be computed analytically and efficiently without iterative conjugate gradient
methods which leads to a particularly simple Gaussian variational method for fitting
high-dimensional models that can often be adequate for predictive inference.

Ong et al. (2017a) recently considered Gaussian variational approximation with a
factor covariance structure using stochastic gradient approaches to the optimization.
Their approach uses the so-called reparametrization trick (Kingma and Welling, 2013;
Rezende et al., 2014) and its modification by Roeder et al. (2017) for estimating gra-
dients of the variational objective. However, for certain models where the variational
objective is very challenging to optimize, first-order optimization methods such as
those considered in Ong et al. (2017a) may be very slow to converge. Ong et al.
(2017b) earlier considered natural gradient methods for Gaussian variational approx-
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imations using a factor covariance structure. However, their work was in the context
of likelihood-free inference methods with a parameter of dimension at most a few
hundreds, and the approach they develop does not scale to larger problems. The cur-
rent work shows how the natural gradient Gaussian variational approximation with
factor covariance can be implemented even in very high dimensions.

Much of the recent literature relevant to our training method occurs in the field of
deep learning. Martens (2010) considers second-order optimization methods in deep
learning and describes Hessian-free optimization methods, adapting a long history
of related methods in the numerical analysis literature to that context. A detailed
discussion of the connections between natural gradient methods and second order
optimization methods is given in Martens (2014). Pascanu and Bengio (2014) con-
siders the use of the natural gradient in deep learning problems and its connections
with Hessian-free optimization, but like Martens (2010) their work is not specifically
concerned with variational objectives. Fan et al. (2015) consider how to implement
Hessian-free methods for the case of a variational objective function and Gaussian
approximating family. Similarly to our development here, they consider using conju-
gate gradient linear solvers as an efficient solution to the difficult matrix calculations
that occur in a naive formulation of second-order methods. By a reparametrization
approach they are able to obtain estimates of Hessian vector products. They do
not consider factor parametrizations of the covariance structure, however. Here we
leverage the factor covariance structure to calculate the matrix vector products we
need directly, without the need to store large matrices. Recently Regier et al. (2017)
consider a second order trust region method for black box variational inference. They
show that while their approach may be more expensive per iteration than common
first-order methods for variational Gaussian approximation such as those implemented
in Titsias and Lázaro-Gredilla (2014) and Kucukelbir et al. (2017), it reduces total
computation time and provably converges to a stationary point. It may be useful to
consider how to exploit a factor parametrization of the covariance structure in the
framework they develop, but this is not considered here.

We illustrate the DNN-based flexible models and the training method in a range
of experimental studies and applications, with a focus on models involving complex
hierarchically structured priors and datasets of only moderate size where quantifica-
tion of uncertainty is important. Many successful applications of DNN are in image
processing and speech recognition, where the datasets are large and have some spe-
cial domain-application characteristics such as association between the local pixels in
an image. Skepticism has sometimes been expressed about whether DNN methods
are useful for applications involving limited data where uncertainty quantificaiton is
the focus. The main conclusion in our examples is that the DNN-based regression
models fGLM and fGLMM perform very well in terms of prediction accuracy, pro-
vided appropriate attention is paid to regularization methods, prior distributions and
computational algorithms.

The next section describes the two new classes of flexible statistical models fGLM
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and fGLMM. Section 3 describes the natural gradient Gaussian variational approxi-
mation method, Section 4 highlights advantages of our Bayesian treatment. Section 5
presents experimental studies and applications. Section 6 concludes. The Appendix
gives details of the VB natural gradient computation and more details of an example.

2 Flexible regression models with DNN

2.1 Flexible generalized linear models

Consider a dataset D={(yi,xi),i=1,...,n} with yi the response and xi=(xi1,...,xip)
>

the vector of p covariates. We also use y and x to denote a generic response and
a covariate vector, respectively. Consider a neural net with the input vector x and
a scalar output as represented in Figure 1. Denote by zj =φj(x,w), j= 1,...,m, the
units in the last hidden layer, where w is the weights up to the last hidden layer, and
β=(β0,β1,...,βm)> are the weights that connect the zj to the output

N(x,w,β)=β0+β1z1+...+βmzm=β0+β̃>z

with β̃=(β1,...,βm)> and z=(z1,...,zm)>.
We assume that the conditional density p(y|x) has an exponential family form

p(y|x) = exp

(
y$ − b($)

φ
+ c(φ, y)

)
(2)

with the canonical parameter $ and the dispersion parameter φ. Let g(·) be the
link function that links the conditional mean ξ= ξ(x) =E(y|x) to a function of the
covariates x. In the conventional GLM, g(ξ) is assumed to be a linear combination
of x. In order to achieve flexibility and capture possible non-linear effects that x has
on ξ, we propose the more flexible model

g(ξ) = β0 + β̃>z = N(x,w, β). (3)

In our later examples we use the canonical link function where $=g(ξ), which is the
log link for Poisson responses and the logit link for binomial responses. The predictors
(learned features) zj efficiently capture the important non-linear effects of the original
raw covariates x on g(ξ).

The model (3) is flexible, but can be hard to interpret. It may be useful in
this respect to introduce additional structure. We might partition the covariates as

x=(x(1)T ,x(2)T )T so that x(1) and x(2) have non-linear and linear effects respectively
on g(ξ), so that

g(ξ) = N(x(1), w, β(1)) + β(2)>x(2) (4)
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where β(1) parametrizes a nonlinear effect w.r.t. the covariates x(1) and β(2) parametrizes
the linear effects w.r.t. the covariates x(2). Write β=(β(1),β(2)). We refer to the gen-
eral regression model with the exponential family form response distribution (2) and
the mean model (3) or (4) as flexible GLM (fGLM).

The vector of model parameters θ consists of w, β and possibly dispersion pa-
rameters φ if φ is unknown. The density p(y|x) in (2) is now a function of θ:
p(y|x)=p(y|x,θ). Given a dataset D, the likelihood function is

L(θ) =
n∏
i=1

p(yi|xi, θ), (5)

and likelihood-based inference methods, including Bayesian methods, are easily ap-
plied.

2.2 Flexible generalized linear mixed models

Consider a panel dataset D = {(yit,xit),t = 1,...,Ti,i = 1,...,n} with yit the response
and xit the vector of covariates of subject i at time t. Generalized linear mixed
models (GLMM) use random effects to account for within-subject dependence. Let
zit,j = φj(xit,w), j = 1,...,m, be the units in the last hidden layer of a neural net,
zit=(zit,1,...,zit,m)>. Similarly to GLMM, to account for within-subject dependence,
we propose to link the conditional mean of yit, given xit, to the predictors zit,j as
follows

g(ξit) = β0 + αi0 + (β1 + αi1)zit,1 + ...+ (βm + αim)zit,m

= N(xit, w, β + αi) (6)

where αi=(αi0,...,αim)> are random effects that reflect the characteristics of subject
i. The variation between the subjects is captured in the distribution of αi. Our paper
assumes αi ∼N (0,Γ) but more flexible distributional specifications for the random
effects can also be considered.

Similarly to the previous section, a more interpretable model can be developed if

some additional structure is assumed. Partition the covariates xit as (x
(1)
it

T
,x

(2)
it

T
)T

where x
(1)
it and x

(2)
it have non-linear and linear effects respectively on g(ξit):

g(ξit) = N(x
(1)
it , w, β

(1)) + (αi + β(2))>x
(2)
it (7)

where β(1) parametrizes fixed non-linear effects for x
(1)
it , and β(2) and αi are fixed and

random linear effects w.r.t. the covariates x
(2)
it . Write β = (β(1),β(2)). The model

parameters θ include w, β, Γ and any dispersion parameters φ if unknown. We refer
to the panel data model with the distribution (2) and the link (6) or (7) as flexible
GLMM (fGLMM).

6



The likelihood for the fGLMM is

L(θ) =
n∏
i=1

Li(θ) (8)

with the likelihood contribution

Li(θ) = p(yi|xi, θ) =

∫
p(yi|xi, w, β, φ, αi)p(αi|Γ)dαi

=

∫ Ti∏
t=1

p(yit|zit, β, φ, αi)p(αi|Γ)dαi. (9)

Section 3 describes a VB algorithm for fitting the fGLMM.
The likelihood for the fGLMM described in (8) and (9) is intractable, because

the integral in (9) cannot be computed analytically, except for the case where the
conditional distribution of yit given zit is normal. However, we can estimate each
likelihood contribution Li(θ) unbiasedly using importance sampling, and this allows
estimation methods for intractable likelihoods, such as the block pseudo-marginal
MCMC of Tran et al. (2016) or the VB method of Tran et al. (2017), to be used.
We consider here an alternative VB method based on the reparametrization trick
in Section 3.1, which utilizes the information of the gradient of the log-likelihood
computed by the back-propagation algorithm. By Fisher’s identity (Gunawan et al.,
2017), the gradient of the log-likelihood contribution ∇θ`i(θ), `i(θ) = logLi(θ) with
Li(θ) in (9), is

∇θ`i(θ) =

∫
∇θ

(
log

Ti∏
t=i

p(yit|zit, β, φ, αi)p(αi|Γ)

)
p(αi|θ, yi, xi)dαi, (10)

where p(αi|θ,yi,xi) is the conditional distribution of the random effects αi given
data (yi,xi) and θ. The gradient inside the integral (10) can be computed by back-
propagation, and then the integral can be estimated easily by importance sampling.

3 Gaussian variational approximation with factor

covariance structure

This section describes the natural gradient Gaussian variational approximation method.
Let D be the data and θ∈Θ the vector of unknown parameters. Bayesian inference
about θ is based on the posterior distribution with density function

π(θ)=p(θ|D)=
p(θ)L(θ)

p(D)
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with p(θ) the prior, L(θ) = p(D|θ) the likelihood function and p(D) =
∫
p(θ)L(θ)dθ

the marginal likelihood. In all but a few simple cases the posterior π(θ) is unknown,
partly because p(D) is unknown, which makes it challenging to carry out Bayesian
inference.

In this work, we are interested in variational approximation methods, which are
widely used as a scalable and computationally effective method for Bayesian compu-
tation (Bishop, 2006; Blei et al., 2017). We will approximate the posterior π(θ) by
a distribution with density qλ(θ) within some family of standard distributions. For
example, if qλ(θ) =N (θ;µ,Σ), the density of a multivariate normal distribution with
mean vector µ and covariance matrix Σ, then λ= (µ,Σ). The best λ is chosen by
minimizing the Kullback-Leibler divergence between qλ(θ) and π(θ)

KL(λ) =

∫
qλ(θ) log

qλ(θ)

π(θ)
dθ =

∫
qλ(θ) log

qλ(θ)

p(θ)L(θ)
dθ + log p(D)

= −LB(λ) + log p(D), (11)

where

LB(λ)=

∫
qλ(θ)log

p(θ)L(θ)

qλ(θ)
dθ

is a lower bound on logp(D). Minimizing KL(λ) is therefore equivalent to maximizing

the lower bound LB(λ). If we can obtain an unbiased estimator ̂∇λLB(λ) of the
gradient of the lower bound, then we can use stochastic optimization to maximize
LB(λ), as in Algorithm 1 below.

Algorithm 1. • Initialize λ(0) and stop the following iteration if the stopping
criterion is met.

• For t=0,1,..., compute λ(t+1) =λ(t)+at∇̂λLB(λ(t)).

The learning rate sequence {at} in Algorithm 1 should satisfy the Robbins-Monro
conditions, at>0,

∑
tat=∞ and

∑
ta

2
t <∞ (Robbins and Monro, 1951). Choice of at

is discussed later on in some detail.

3.1 Reparametrization trick

As is typical of stochastic optimization algorithms, the performance of Algorithm
1 depends greatly on the variance of the noisy gradient. Techniques for variance
reduction are needed. We will use the so-called reparametrization trick (Kingma and
Welling, 2013; Rezende et al., 2014) in this paper, and its modification by Roeder
et al. (2017), who generalized ideas considered in Han et al. (2016) and Tan and Nott
(2017).

Suppose that for θ∼ qλ(·), there exists a deterministic function g(λ,ε) such that
θ=g(λ,ε)∼ qλ(θ) where ε∼pε(ε), which is independent of λ. For example, if qλ(θ)=
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N (θ;µ,Σ) then θ=µ+Σ1/2ε with ε∼N (0,I) and I the identity matrix. Writing LB(λ)
as an expectation with respect to p(ε) gives

LB(λ)=Eε

(
h(g(ε,λ))−logqλ(g(ε,λ))

)
,

where Eε(·) denotes expectation with respect to pε(ε), h(θ) := log(p(θ)L(θ)). Differ-
entiating under the integral sign and simplifying as in Roeder et al. (2017) gives

∇λLB(λ)=Eε

(
∇λg(λ,ε)∇θ{h(g(ε,λ))−logqλ(g(ε,λ))}

)
. (12)

The gradient (12) can be estimated unbiasedly using i.i.d samples εs∼pε(·), s=1,...,S,
as

∇̂λLB(λ)=
1

S

S∑
s=1

∇λg(λ,εs)∇θ

{
h(g(λ,εs))−logqλ(g(λ,εs))

}
. (13)

The gradient estimator (13) has the advantage that if the variational family is rich
enough to contain the exact posterior, so that exp(h(θ))∝ qλ(θ) at the optimal λ,
then the estimator (13) is exactly zero at this optimal value even for s=1 where we
use just a single Monte Carlo sample from pε(ε). Reparametrized gradient estimators
are much more efficient than alternative approaches to estimating the lower bound
gradient, partly because they take into account information from ∇θh(θ). For further
discussion we refer the reader to Roeder et al. (2017).

3.2 Natural gradient

It is well-known that the ordinary gradient ∇λLB(λ) does not adequately capture
the geometry of the approximating family qλ(θ) (Amari, 1998). A small Euclidean
distance between λ and λ′ does not necessarily mean a small Kullback-Leibler diver-
gence between qλ(θ) and qλ′(θ). Rao (1945) was the first to point out the importance
of using the geometrical information on the manifold of a statistical model, and in-
troduced the Riemannian metric on this manifold induced by the Fisher information
matrix. Amari (1998) shows that the steepest direction for optimizing the objective
function LB(λ) on the manifold formed by the family qλ(θ) is directed by the so-called
natural gradient which is defined by pre-multiplying the ordinary gradient with the
inverse of the Fisher information matrix

∇λLB(λ)natural = I−1
F (λ)∇λLB(λ), (14)

with IF (λ)=covqλ(∇λlogqλ(θ)).
The use of the natural gradient in VB algorithms is considered, among others,

by Sato (2001), Honkela et al. (2010), Hoffman et al. (2013), Salimans and Knowles
(2013) and Tran et al. (2017). A simple demonstration of the importance of the
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natural gradient can be found in Tran et al. (2017). The use of the natural gradient
in deep learning problems is considered in Pascanu and Bengio (2014), who show the
connection between natural gradient descent and other second-order optimization
methods such as Hessian-free optimization.

The main difficulty of using the natural gradient is the computation of IF (λ), and
the solution of linear systems involving this matrix, which is required to compute (14).
The problem is more severe in high dimensional models because this matrix often has
a large size. Some approximation methods, such as the truncated Newton approach,
may be needed (Pascanu and Bengio, 2014). We consider in the next section an
efficient method for computing IF (λ)−1∇λLB(λ) based on the use of iterative conju-
gate gradient methods for solving linear systems when the covariance matrix of the
Gaussian variational approximation is parametrized by a factor model. We compute
(14) by solving the linear system IF (λ)x=∇λLB(λ) for x using only matrix-vector
products involving IF (λ) where the matrix vector products can be done efficiently
both in terms of computation time and memory requirements by using the factor
structure of the variational covariance matrix. In the special case of one factor with
isotropic idiosyncratic noise the natural gradient in (14) can be computed analytically
and efficiently.

3.3 Gaussian variational approximation with factor covari-
ance

We now describe in detail the Gaussian variational approximation with factor co-
variance (VAFC) method of Ong et al. (2017a). The VAFC method considers the
multivariate normal variational family qλ(θ)=N(µ,Σ) where Σ is parametrized as

Σ = BB> +D2. (15)

Here B is a d×f matrix (the factor loadings matrix) with d the dimension of
θ and f the number of factors, f � d, and D is diagonal with diagonal entries
∆ = (∆1,...,∆d)

>. ∆ is a vector of idiosyncratic noise standard deviations. Factor
structures are well known to provide useful parsimonious representations of depen-
dence in high-dimensional settings (Bartholomew et al., 2011). We assume B is lower
triangular, i.e., Bij =0 for j >i. Although imposing the constraint Bii>0 makes the
factor representation identifiable (Geweke and Zhou, 1996), we do not impose this
constraint to simplify the optimization. The variational optimization simply locks
onto one of the equivalent modes. An intuitive generative representation of the fac-
tor structure that is the basis of our application of the reparametrization trick is
the following: if we consider θ ∼ qλ(θ) =N(µ,BB>+D2), then we can represent θ
as θ=µ+Bε1+∆◦ε2 where ε= (ε>1 ,ε

>
2 )>∼N(0,I), ε1 and ε2 have dimensions f and

d respectively, and ◦ denotes the Hadamard (element by element) product for two
matrices of the same size. We can see from this representation that the latent vari-
ables ε1 (the “factors”, which are low-dimensional) explain all the correlation between

10



the components, whereas component-specific idiosyncratic variance is being captured
through ε2.

The variational parameters are λ = (µ>,vec(B)>,∆>)> where we have written
vec(B) for the vectorization of B obtained by stacking its columns from left to right.
Ong et al. (2017a) show that the gradient of the lower bound takes the form

∇µLB(λ)=Eε

(
∇θh(µ+Bε1+∆◦ε2)+(BB>+D2)−1(Bε1+∆◦ε2)

)
, (16)

∇BLB(λ)=Eε

(
∇θh(µ+Bε1+∆◦ε2)ε>1 +(BB>+D2)−1(Bε1+∆◦ε2)ε>1

)
, (17)

and

∇∆LB(λ)=Eε

(
diag

(
∇θh(µ+Bε1+∆◦ε2)ε>2 +(BB>+D2)−1(Bε1+∆◦ε2)ε>2

))
, (18)

where we have written diag(A) for the diagonal elements of a square matrix A. Here,
the inverse matrix (BB>+D2)−1 can be computed efficiently; see (19). We note
that in the expression for the gradient of B above, we should set to zero the upper
triangular components which correspond to elements of B which are fixed at zero.
Unbiased estimation of gradients for stochastic gradient ascent can proceed based
on these expressions by drawing one or more samples from pε(ε) to estimate the
expectations.

3.4 Efficient natural gradient VAFC method

We now describe how to efficiently implement natural gradient optimization for the
VAFC method. Ong et al. (2017b) have also considered a natural gradient method for
Gaussian variational approximation with factor covariance. However, this was in the
context of likelihood-free inference methods where the dimension of θ is low compared
to the models of interest here, and they simply used naive methods for solving the
linear systems involving IF (λ) required to compute the natural gradient. This is
impractical in high-dimensional problems, and here we demonstrate how to implement
natural gradient VAFC when θ is high-dimensional using conjugate gradient methods
(see, for example, Stoer (1983)).

Write IF (λ) in partitioned form as

IF (λ)=

 I11 I>21 I>31

I21 I22 I>32

I31 I32 I33

,
where the blocks in the partition follow the partition of λ as λ=(µ>,vec(B)>,∆>)>.
Because the upper triangle of B is fixed at zero the corresponding rows and columns
of IF (λ) should be omitted. Ong et al. (2017b) show that I11 =Σ−1, I21 =I31 =0, I22 =
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2(B>Σ−1B⊗Σ−1) (where ⊗ denotes the Kronecker product), I33 =2(DΣ−1)◦(Σ−1D)
and I32 = 2(B>Σ−1D⊗Σ−1)E>d where Ed is the d×d2 matrix that picks out the
diagonal elements of the d×d matrix A from its vectorization, so that Edvec(A) =
diag(A). To use a conjugate gradient linear solver to compute IF (λ)−1∇λLB(λ) we
simply need to be able to compute matrix vector products of the form IF (λ)x for any
vector x quickly without requiring to store the elements of IF (λ).

This can be done provided we can do matrix vector products for the matrices I11,
I22, I33 and I32. This is still difficult so we further approximate IF (λ) by setting I32=0
and replacing I33 with Ĩ33 =2(DΣ̃−1)◦(Σ̃−1D) where Σ̃ is the diagonal approximation
to Σ obtained by setting its off-diagonal elements to zero. Using this approximation
and I32 =0 we obtain a positive definite approximation ĨF (λ) to IF (λ) which we use
instead of IF (λ) in the natural gradient.

Multiplications involving Ĩ33 are simple since this matrix is diagonal, but we still
need efficient methods to compute matrix vector products for I11 and I22. Considering
I11 first, we note that by using the Woodbury formula

I11 = Σ−1 = D−2 −D−2B(I +B>D−1B)−1B>D−2, (19)

and then noting that D is diagonal, and (I+B>D−2B) is f×f , f�d, we can calculate
I11x= Σ−1x without needing to store any d×d matrix or do any dense d×d matrix
multiplications. Next, consider I22x for some vector x. We note that

I22 =2(B>Σ−1B⊗Σ−1)x=2vec(Σ−1x∗B>Σ−1B)

where x∗ denotes the d×f matrix such that x=vec(x∗) and where we have used the
identity that for conformable matrices X,Y,Z, vec(XY Z) = (Z>⊗X)vec(Y ). Then
Σ−1x∗ is easily computed efficiently by the Woodbury formula, and similarly for
B>Σ−1B.

3.4.1 Special case of isotropy factor decomposition

We now consider the special case where the covariance matrix Σ is parameterized as
Σ =BB>+c2Id with B a vector and c a constant. In this case, the natural gradi-
ent (14) can be computed in closed form and the computational complexity is O(d).
The detailed derivation can be found in the Appendix. This estimation method is
computationally attractive, especially for cases where the dimension d is extremely
large. Our experimental studies in Section 5 suggest that in some applications this
method is able to produce a prediction accuracy comparable to the accuracy ob-
tained by methods that use more flexible factor decomposition structures of Σ. A
recent discussion of the phenomenon of richer variational families producing inferior
performance in terms of predictive loss for neural networks models is given in Trippe
and Turner (2018), with some theoretical insights into this phenomenon.
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4 Practical recommendations in training DNN mod-

els

Our natural gradient Gaussian variational approximation method can be used as a
general estimation method for any model. However, this section focuses on estimat-
ing DL-based models, and discusses some implementation recommendations that we
found useful in practice.

4.1 Bayesian treatment

Selecting the tuning parameters in DNN models can be challenging and we now
develop some Bayes and empirical Bayes methods for this task for the models we
consider. In fGLM and fGLMM we use ridge-type regularization priors, one for the
inner weights w with shrinkage hyperparameter γw, and one for the output weights
β with shrinkage hyperparameter γβ. Adaptive regularizations that use different
shrinkage for different weights can also be used but we do not consider them here.
Let β̃ be β without the bias (also called intercept) β0, and w̃ be w without the biases.
Let vec(w̃) be the vectorized version of w̃. We use the following priors

p(w)∝exp
(
−γw

2
vec(w̃)>vec(w̃)

)
, p(β)∝exp

(
−γβ

2
β̃>β̃

)
.

To select the hyperparameters γw and γβ we use an empirical Bayes approach within
the iterative VB estimation method. Writing the Bayesian hierarchical model in the
generic form

y|ψ, θ ∼ p(y|θ, ψ)

θ|ψ ∼ p(θ|ψ),

with y the data, θ the model parameters and ψ the hyperparameters to be selected.
The marginal likelihood for ψ is p(y|ψ)=

∫
p(θ|ψ)p(y|θ,ψ)dθ, which can be maximized

using an EM-type algorithm (Casella, 2001). Given an initial value ψ(0),

ψ(k+1) =argmaxψ
{
Eθ|y,ψ(k) logp(y,θ|ψ)

}
.

Here Eθ|y,ψ(k)(·) is the expectation with respect to the posterior distribution p(θ|y,ψ(k)).
It can be shown that the updating rule for γw and γβ is

γ(k+1)
w =

dw̃
Eθ|y,ψ(k)(vec(w̃)>vec(w̃))

, γ
(k+1)
β =

dβ̃

Eθ|y,ψ(k)(β̃>β̃)
, (20)

where dw̃ and dβ̃ denote the dimension of vec(w̃) and β̃, respectively. In our VB
framework, the expectation Eθ|y,ψ(k)(·) can be naturally approximated by the expec-
tation w.r.t. the current VB approximation qλ(k)(θ), then the updates in (20) can be
computed in closed form.
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4.2 Other practical recommendations

We often use a fixed learning rate

at = ε0
τ

t
(21)

where ε0 is a small value, e.g. 0.01 and τ is some threshold from which the learning
rate is reduced, e.g. τ=200. It might also be useful to use some adaptive learning rate
methods, and later we consider one method adapted from Ranganath et al. (2013)
which is described in Ong et al. (2018). This learning rate is suitable for use with the
natural gradient.

As a method of accelerating the stochastic gradient optimization we also consider
use of the momentum method (Polyak, 1964). The update rule is

∇λLB = α∇λLB + (1− α)∇̂λKL(λ(t))natural,

λ(t+1) = λ(t) + at∇λLB,

where α ∈ [0,1] is the momentum weight. The use of the moving average gradient
∇λLB helps remove some of the noise inherent in the estimated gradients of the lower
bound. See Goodfellow et al. (2016), Chapter 8, for a detailed discussion on the
usefulness of the momentum method.

It is common in modern deep learning applications of neural network methods to
implement early stopping in the optimization to avoid overfitting, even if regulariza-
tion priors are used. We often observe that the training loss decreases steadily over
the VB updates, while the validation loss starts increasing at some point. Therefore
we also implement early stopping of the variational inference algorithm if the valida-
tion loss on a test set has not decreased after a certain number of iterations, and the
set of model parameters with respect to the lowest validation loss is stored.

For initialization of variational parameters λ(0) =(µ(0),B(0),∆(0)), we follow Glorot

and Bengio (2010) and initialize each weight in µ(0) by U(−
√

6
m+n

,
√

6
m+n

) where the

weight connects a layer with m units to a layer with n units. The elements in B(0)

are initialized by N (0,0.0012) and the elements in ∆(0) are initialized by 0.001. It is
advisable to first standardize the input data so that each column has a zero sample
mean and a standard deviation of one. Finally, we use the rectified activation function

h(x)=

{
x, if x>0,

0, else

in all examples, if not otherwise stated.

5 Experimental studies and applications

To illustrate the prediction accuracy of fGLM and fGLMM, and the efficiency of our
natural gradient training algorithms we consider a range of experimental studies and
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applications. All the examples are implemented in Matlab and run on a desktop
computer with i5 3.3 Ghz Intel Quad Core.

5.1 Experimental studies

5.1.1 Efficiency of the natural gradient

We use a German credit dataset with 1000 observations, of which 750 are used as the
training data and the rest as the test data. This dataset is obtained from the UCI
Machine Learning Repository, http://archive.ics.uci.edu/ml. The data consist
of a binary response variable, credit status, which is good credit (1) or bad credit (0),
together with 30 covariate variables such as education, credit amount, employment
status, etc. We consider a simple logistic regression model for predicting the credit
status, based on the covariates. We use an improper flat prior for the coefficients θ,
i.e. p(θ)∝1.

We first study the performance of the natural gradient method compared to the
ordinary gradient method. Figure 2 shows the convergence of the lower bound of
the ordinary gradient method and the natural gradient method using a single factor
and isotropic idiosyncratic noise, i.e. Σ =BB>+c2I where B is a column vector as
described in Section 3.4.1. For the ordinary gradient, we use the adaptive learning
rate method ADADELTA of Zeiler (2012). For the natural gradient, we use both the
fixed learning rate in (21) and the adaptive learning rate of Ong et al. (2018) (which
is based on a similar method in Ranganath et al. (2013)). The figure shows that using
both the natural gradient and adaptive learning rate speeds convergence. Figure 3
shows similar results for a one factor model with non-isotropic idiosyncratic noise, i.e.
Σ =BB>+D2 for D diagonal. The results have a similar interpretation to before -
the natural gradient speeds up convergence and the adaptive learning rate is helpful.

Figure 4 compares lower bounds for the one-factor parameterization with and
without isotropic noise - the difference in the lower bounds evident in the figure
shows the improvement in the posterior approximation brought by the more general
variational family but Figure 5 shows that the predictive loss is similar.

5.1.2 Prediction accuracy of DL models

We generate data from two models

(M1) y = 5 + 3(X1 + 2X2)2 + 5X3X4 + 2X5 + ε

(M2) y = 5 + 10X1 + 10
X2

2+1
+ 5X3X4 + 2X4 + 5X2

4 + 5X5 + ε

where ε∼N (0,1). For each model, we generate a training dataset of ntrain =100,000
observations and a test dataset of ntest = 100,000 observations. For the first model
the Xi are generated from the uniform distribution U(−1,1), for the second model
X = (X1,...,X5)> are generated from a multivariate normal distribution with mean
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Figure 2: Lower bound versus iteration number for the ordinary gradient and natural
gradient methods: the variational family uses a covariance matrix with one factor
and isotropic idiosyncratic noise.

zero and covariance matrix (0.5|i−j|)i,j. In both models the relationship between y
and the Xi is non-linear, and it is more difficult to predict the response in the second
model.

To measure the prediction accuracy, we use partial predictive score (PPS)

PPS=− 1

ntest

∑
(xi,yi)∈test data

logp(yi|xi,θ̂),

with θ̂ a point estimate of the model parameters, and mean squared error (MSE)

MSE=
1

ntest

∑
(xi,yi)∈test data

(yi−ŷi)2,

with ŷi a prediction of yi. In our fGLM, for the dataset generated from M1, we use
a neural net with the structure (5,10,10,1), i.e. the input layer has 5 variables, two
hidden layers each has 10 units and one scalar output. For the dataset generated
from M2, we use a neural net with the structure (5,10,10,10,10,1), i.e. there are four
hidden layers each with 10 units. This selection was done after some experimental
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Figure 3: Lower bound versus iteration number for the ordinary gradient and natural
gradient methods: the variational family uses a covariance matrix with one factor
and non-isotropic idiosyncratic noise.

exploration. We use the one factor variational family with isotropic idiosyncratic
noise and the natural gradient training method with fixed learning rate in (21). We
compare the performance of fGLM to that of a linear model. Table 1 summarizes the
results, which shows that fGLM outperforms the linear model in term of prediction
accuracy. The RMSE of fGLM is close to 1, which is the best RMSE under the true
model.

M1 M2

Method PPS MSE PPS MSE
GLM 2.26 5.84 2.98 11.62
fGLM 0.83 1.34 0.86 1.39

Table 1: Performance of fGLM v.s. GLM in term of the partial predictive score (PPS)
and the mean squared error (MSE). Both are evaluated on the test dataset.
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Figure 4: Lower bound versus iteration number for the natural gradient method:
comparison of variational families using covariance matrices with one factor and with
and without isotropic diosyncratic noise.

5.1.3 Binary panel data simulation

We study the fGLMM on a simulation binary panel datasetD={(xit,yit); t=1,...,20; i=
1,...,1000} with xit the vector of covariates and yit the response of subject i at time
t. The response yit is generated from the following model:

ait = 2 + 3(xit,1 − 2xit,2)2 − 5
xit,3

(1 + xit,4)2
− 5xit,5 + bi + εit,

yit =

{
1, if ait > 0,

0, otherwise,

where bi∼N (0,0.1) is a random effect intercept representing charactersistics of subject
i and εit∼N (0,1) is random noise associated with reponses yit. The xit,j,j= 1,...,5,
are generated from a uniform distribution U(−1,1).

We fit use the following flexible logistic regression model with random effects to
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Figure 5: Prediction loss versus iteration number for the natural gradient method:
comparison of variational families using covariance matrices with one factor and with
and without isotropic diosyncratic noise.

this dataset

yit|xit ∼ Binomial(1, µit)

log

(
µit

1− µit

)
= N(xit, w, β + αi),

where N(xit,w,β+αi) is the scalar output of a neural net with input xit, inner weights
w and output weights β+αi. We assume that the random effects αi∼N (0,Γ) with
Γ = diag(γ0,...,γm). The model parameters are θ= (w,β,γ0,...,γm). We use Gamma
priors on the γj, γj∼Gamma(a0,b0), and set the hyperparameters a0 =1 and b0 =0.1
in this example. The Appendix gives further details on training this model.

For each subject, we use the first 14 observations for training, next 3 observations
for validation and the last 3 observations for testing. That is, we are interested in the
within-subject prediction. The neural network has one hidden layer with 10 nodes,
and we compare the fGLMM model with the logistic regression model with a random
intercept.

We use two measures of predictive performance. The first is the partial predictive
score (PPS), which is the average of the negative log-likelihood values. The second
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is the misclassification rate. Let θ̄ be the mean of the VB approximation qλ(θ) after
convergence. Let µ̂αi in (31) be the mode of p(αi|yi,xi,θ̄), which can be used as the
prediction of the random effects αi of individual i. Let (yit0 ,xit0) be a future data pair
and

µ̂it0 =
1

1+exp(−N(xit0 ,w,β+µ̂αi))
.

We set the prediction of yit0 as

ŷit0 =1 if and only if N(xit0 ,w,β+µ̂αi)≥0.

The classification error is

MCR=
∑

Iŷit0 6=yit0/total number of future observations

with the sum over the test data points (yit0 ,xit0).
Table 2 summarizes the comparison of fGLMM and GLMM performance. The

results clearly show that modelling covariate effects in a flexible way using the neural
network basis functions is helpful here in terms of improving both PPS and MCR.

Model PPS MCR
GLMM 1.24 17.57%
fGLMM 0.13 5.27%

Table 2: Simulation binary panel dataset: Performance of fGLMM v.s. GLMM in
term of the partial predictive score (PPS) and the misclassification rate (MCR). Both
are evaluated on the test dataset.

5.2 Applications

5.2.1 High-dimensional logistic regression using the horseshoe prior

This application is concerned with high-dimensional logistic regression using a sparse
signal shrinkage prior, the horseshoe prior (Carvalho et al., 2010). Here the variational
optimization is challenging because of the strong dependence between local variance
parameters and the corresponding coefficients. Using three real datasets we show that
the natural gradient estimation method improves the performance of the approach
described in Ong et al. (2017a).

Let yi ∈ {0,1} be a set of binary responses with corresponding covariates xi =
(xi1,...,xip)

>, i=1,...,n. We consider a logistic regression model

log
µi

1−µi
=β0+x>i β,
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where µi = P(yi = 1|xi), β0 is an intercept and β = (β1,...,βp)
> are coefficients. We

consider the setting where p is large, possibly p�n, and use a shrinkage prior for β,
the horseshoe prior (Carvalho et al., 2010). Specifically we assume β0∼N(0,10) and

βj|λj∼N(0,λ2
jg

2) λj∼C+(0,1),

j= 1,...,p, where C+(0,1) denotes the half-Cauchy distribution. The parameters λj,
j=1,...,p are local variance parameters providing shrinkage for individual coefficients,
and the parameter g is a global shrinkage parameter which can adapt to the overall
level of sparsity. For g a half-Cauchy prior is assumed, g∼C+(0,1). The above prior
settings are the same as those considered in Ong et al. (2017a).

The parameter θ consists of θ=(β0,β
>,δ>,γ)>, where δ=(δ1,...,δp)

>=(logλ1,...,logλp)
>,

and γ = logg. We consider Gaussian variational approximation for the posterior of
θ, using a factor covariance structure, for 3 gene expression datasets, the Colon,
Leukaemia and Breast cancer datasets found at http://www.csie.ntu.edu.tw/

~cjlin/libsvmtools/datasets/binary.html. These three datasets Colon, Leukaemia
and Breast have training sample sizes of 42, 38 and 38 and test set sizes of 20, 34 and
4 respectively. The number of covariates is p=2000 for the Colon data, and p=7120
for the Leukaemia and Breast datasets. This means that for the Leukaemia and
Breast datasets the dimension of θ is 14,242 so these are very high-dimensional ex-
amples in terms of the parameter. These data were also considered in Ong et al.
(2017a) where slow convergence in the variational optimization was observed using
their method; we show here that a natural gradient approach offers a significant
improvement.

VAFC of Ong et al. (2017a) Natural gradient VAFC
Train Error Test Error CPU Train Error Test Error CPU

Colon 0/42 0/20 4.92 0/42 0/20 0.17
Leukemia 0/38 6/34 61 0/38 1/34 0.56

Breast 0/38 1/4 61.6 0/38 0/4 0.56

Table 3: Performance of the ordinary gradient VAFC and natural gradient VAFC
methods on three cancer datasets. Training and test errors rates are reported as the
ratio of misclassified data points over the number of data points. Computational time
CPU (per 100 iterations) is measured in second.

Table 3 compares the performance of VAFC of Ong et al. (2017a) and our natural
gradient VAFC training methods. The table shows the predictive performance and
computational time on three cancer datasets. We ran VAFC with f=4 factors and use
only a single sample to estimate the gradient of lower bound (S=1) in two methods.
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5.2.2 Flexible Poisson regression: bike sharing data

Bike-rental behavior is highly correlated to environmental and seasonal settings.
Fanaee-T and Gama (2013) collected a dataset where the response data are hourly
counts of rental bikes and the seven covariates are season (1: spring, 2: summer, 3:
fall, 4: winter), holiday (1: if the day is holiday, 0: not), weekly day (1 if weekly day, 0
if weekend), weather, temperature, humidity and wind speed. The dataset is availalbe
at the UCI Machine Learning Repository http://archive.ics.uci.edu/ml. To
analyse this dataset, we use the following flexible Poisson regression model

yi|xi ∼ Poisson(µi)

log(µi) = N(xi, w, β).

The total 17379 observations are divided into a training dataset with 15000 observa-
tions, and a test dataset with 2379 observations.

We consider a neural network with 8 layers, each with 7 units. The model is fitted
using the isotropy natural gradient variational inference approach. The fitted model
provides a PPS on the test set of −1005.2. Compared to a conventional Poisson linear
generalized model whose PPS is -820.4, which suggests that the more flexible model
is warranted.

5.2.3 A continuous panel data set: Cornwell and Rupert data

This section analyzes a continuous panel data set originally analyzed in Cornwell
and Rupert (1988). This is a balanced panel dataset with 595 individuals and 4165
observations, in which each individual was observed for 7 years. The dataset is
available from the website of the textbook Baltagi (2013). The variables are listed in
Table 4.

We are interested in predicting the wage (on the log scale) of each individual,
given the covariates. Let yit be a continuous variable indicating the log of wage of
person i with the vector of covariates xit in year t, t= 1,...,7. We use the following
flexible linear regression model with random effects

yit|xit ∼ N (µit, σ
2)

µit = N(xit, w, β + αi),

where N(xit,w,β+αi), β and αi have the same interpretation as in Section 5.1.3, and
σ2 is the variance of noise.

Since we are interested in within-subject prediction, for each individual, we use
the first 4 observations as training data, the next 1 observation for validation data
and the last 2 observations for test data. We use a neural network with 2 hidden
layers 5 nodes each; this structure was selected after some experiments. We compare
the performance of fGLMM to the linear regression model with a random effect, using
PPS and MSE as evaluation metrics.
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Variable Meaning
EXP Years of full-time work experience
WKS Weeks worked
OCC blue-collar occupation = 1;otherwise = 0
IND manufacturing industry=1;otherwise = 0
SOUTH south residence =1;otherwise = 0
SMSA metropolitan residence=1,otherwise = 0
MS married = 1; otherwise = 0
FEM female = 1; otherwise = 0
UNION Union contract wage = 1; otherwise = 0
ED Years of education
BLK black = 1; otherwise = 0
LWAGE log of wage

Table 4: Cornwell and Rupert data: variables and their meaning

Table 5 summarizes the results, which again show that using the neural network
as the basis functions to model covariate effects in a flexible way can significantly
improve both PPS and MSE.

Model PPS MSE
GLMM 0.05 0.18
fGLMM -0.87 0.05

Table 5: Cornwell and Rupert data: Performance of fGLMM v.s. GLMM in term
of the partial predictive score (PPS) and the mean square error (MSE). Both are
evaluated on the test dataset.

6 Discussions and conclusions

This paper is concerned with flexible versions of generalized linear and generalized
linear mixed models where DNN methodology is used to automatically choose trans-
formations of the raw covariates. The challenges of Bayesian computation have been
addressed using variational approximation methods with a parsimonious factor co-
variance structure. In the case of random effects models we are able to estimate
the gradient of the log likelihood unbiasedly with the random effects integrated out
efficiently using Fisher’s identity. We have demonstrated that a natural gradient ap-
proach to the variational optimization with this family of approximations is feasible
even in high dimensions using iterative conjugate gradient methods for solving large
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positive definite linear systems in computation of the natural gradients. Using simu-
lation and real datasets and several different models we show that the improvement
that these methods can bring in terms of speed of convergence and computation time
are substantial, and that the use of neural network basis functions with random effects
is a class of models that deserve more consideration in the literature.

Appendix

Isotropic natural gradient VB estimation method

This section presents in detail the isotropic natural gradient VB estimation method for
estimating a posterior distribution π(θ)∝ exp(h(θ)), h(θ) = log(p(θ)L(θ)). With the
VB approximation qλ(θ)=N (θ;µ,Σ), Σ=bb>+c2Id, the vector of the VB parameters
is λ=(µ>,b>,c)>. The lower bound

LB(λ)=Eθ∼qλ
(
h(θ)−logqλ(θ)

)
=Eε

(
h(g(ε,λ))−logqλ(g(ε,λ))

)
,

where θ=g(λ,ε)=µ+bε1+cε2 with a scalar ε1 and d-vector ε2, ε=(ε1,ε
>
2 )>∼N (0,Id+1).

The ordinary gradient of the lower bound

∇λLB(λ) = Eε
(
∇λg(λ, ε)∇θ {h(θ)− log qλ(θ)} |θ=g(ε,λ)

)
,

which is estimated unbiasedly using i.i.d samples εs∼N (0,Id+1), s=1,...,S as

∇̂λLB(λ) =
1

S

S∑
s=1

∇λg(λ, εs)∇θ

{
h(θ)− log qλ(θ)

}
|θ=g(εs,λ). (22)

It’s easy to see that

∇λg(λ,ε)=

 Id
ε1Id
ε>2

,
while the gradient ∇θh(θ) depends on the model being estimated, and finally by (29)

∇θlogqλ(θ)=−Σ−1(θ−µ)=− 1

c2
(θ−µ)+

b>(θ−µ)

c2+b>b
b.

In order to implement the natural gradient VB algorithm we need the information
matrix IF (λ)=covqλ(∇λlogqλ(θ)), where

logqλ(θ)∝−
1

2
log|Σ|− 1

2
(θ−µ)>Σ−1(θ−µ).
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Let U =U(x) be a matrix-valued function of a scalar x, and g(U) be a real-valued
function of U . By the chain rule (Petersen and Pedersen, 2012)

∇x

(
g(U(x))

)
=tr

[
∇U

(
g(U)

)>∇x

(
U(x)

)]
.

Note that ∇U(a>U−1b)=−U−1ab>U−1 (Petersen and Pedersen, 2012), we have

∇b

(
(θ − µ)>Σ−1(θ − µ)

)
= −2Σ−1(θ − µ)(θ − µ)>Σ−1b. (23)

Because ∇U(log|U |)=U−1, we have ∇x(log|U |)=tr(U−1∇xU). Then

∇b

(
log |Σ|

)
= 2Σ−1b. (24)

Similarly,

∇c

(
log |Σ|

)
= 2c× tr(Σ−1) (25)

and
∇c

(
(θ − µ)>Σ−1(θ − µ)

)
= −2c(θ − µ)>Σ−2(θ − µ). (26)

So

∇λ log qλ(θ) =

∇µ log qλ(θ)
∇b log qλ(θ)
∇c log qλ(θ)

 =

 Σ−1(θ − µ)
−Σ−1b+ Σ−1(θ − µ)(θ − µ)>Σ−1b
−c× tr(Σ−1) + c(θ − µ)>Σ−2(θ − µ)

 . (27)

Let X = Σ−1(θ−µ)∼N (0,Σ−1), and using the results on cubic and quadratic forms
of a Gaussian random vector (Petersen and Pedersen, 2012), it can be shown that

IF (λ) =

Σ−1 Od×d Od×1

Od×d Σ−1bb>Σ−1 + (b>Σ−1b)Σ−1 2cΣ−2b
O1×d 2cb>Σ−2 2c2tr(Σ−2)

 . (28)

Now note that

Σ−1 = (bb> + c2I)−1 =
1

c2

(
I − 1

c2 + b>b
bb>
)

=
1

c2

(
I − αbb>

)
(29)

and
Σ−1b=αb,

with α=1/(c2+b>b). The Fisher information matrix in (28) can be written as

IF (λ)=

Σ−1 Od×d Od×1

Od×d A u
O1×d u> ω
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with

A = Σ−1bbTΣ−1 + (bTΣ−1b)Σ−1 =
α(b>b)

c2
Id + α2

(
1− b>b

c2

)
bb>

u = 2cΣ−2b = 2cα2b

ω = 2c2tr(Σ−2) =
2

c2

[
d− 1 + (

c2

c2 + b>b
)2

]
=

2

c2

[
d− 1 + (c2α)2

]
.

Hence,

I−1
F (λ)=

 Σ−1 Od×(d+1)

O(d+1)×d

(
A u
u> ω

)−1


with (

A u
u> ω

)−1

=

(
A−1+ 1

ω−u>A−1u
A−1uu>A−1 − 1

ω−u>A−1u
A−1u

− 1
ω−u>A−1u

u>A−1 1
ω−u>A−1u

)
.

After some algebra, it can be seen that I−1
F (λ) is

I−1(λ) =

bb> + c2Id Od×d Od×1

Od×d κ3bb
> + κ4Id −κ1

κ2
b

O1×d −κ1
κ2
b> 1/κ2

 . (30)

with

κ1 =

[
(1 +

c2

b>b
)− 1

2
(1 +

c2

b>b
)2

]
2c(b>b)

(c2 + b>b)2
+

2c3

b>b(c2 + b>b)

κ2 =
2

c2

(
d− 1 +

( c2

c2 + b>b

)2
)
− 2cκ1

(c2 + b>b)2
b>b

κ3 = (1 +
c2

b>b
)− 1

2
(1 +

c2

b>b
)2 +

κ1

κ2

κ4 = c2

(
1 +

c2

b>b

)
.

It’s important to note that it’s unnecessary to store the matrix I−1(λ). All we need
is the matrix-vector product ∇λKL(λ)natural = I−1(λ)∇λKL(λ). Write ∇λKL(λ) =
(g>1 ,g

>
2 ,g3)> with g1 the vector formed by the first d elements of ∇λKL(λ), g2 the

vector formed by the next d elements, and g3 the last element in ∇λKL(λ). The
natural gradient is

∇λKL(λ)natural =

 (g>1 b)b+c
2g1(

κ3(g>2 b)−g3
κ1
κ2

)
b+κ4g2

g3
κ3
−(g>2 b)

κ1
κ2

.
The complexity of computing the natural gradient is O(d).
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Further details for the example in Section 5.1.3

The likelihood contribution w.r.t. panel (yi,xi) is

Li(θ) =

∫
p(yi|xi, w, β, αi)p(αi|Γ)dαi

=

∫
exp

(
Ti∑
t=1

yitN(xit, w, β + αi)− log
(
1 + eN(xit,w,β+αi)

))
p(αi|Γ)dαi.

By Fisher’s identity (Gunawan et al., 2017)

∇θ`i(θ)=

∫
∇θ

{
logp(αi|Γ)+

Ti∑
t=1

yitN(xit,w,β+αi)−log
(
1+eN(xit,w,β+αi)

)}
p(αi|yi,xi,θ)dαi.

We have

p(αi|yi, xi, θ) ∝ p(αi|Γ)p(yi|xi, w, β, αi)

∝ exp

(
Ti∑
t=1

[
yitz

>
it (β + αi)− log(1 + ez

>
it (β+αi))

]
− 1

2
α>i Γ−1αi

)
= exp(f(αi)).

∇αif(αi)=Z>i (yi−pi)−Γ−1αi, pi=pi(αi)=(pi1,...,piTi)
>

∇αiα>i
f(αi)=−Z>i diag(pi◦(1−pi))Zi−Γ−1

Let µ̂αi be the maximizer of f(αi) which can be obtained by the Newton-Raphson
method, and let

Σ̂αi =
(
−∇αiα>i

f(αi)|αi=µ̂αi
)−1

=
(
Z>i diag(pi � (1− pi))Zi + Γ−1

)−1
, pi = pi(µ̂αi)

(31)
We note that for the Gaussian flexible linear mixed model in Section 5.2.3, µ̂αi and

Σ̂αi can be derived analytically.
The gradient ∇θ`i(θ) can be estimated as follows.

• Generate N samples α
(j)
i ∼N (µ̂αi ,Σ̂αi), j=1,...,N .

• Compute the weights

W
(j)
i =exp

(
f(α

(j)
i )+

1

2
(α

(j)
i −µ̂αi)>Σ̂−1

αi
(α

(j)
i −µ̂αi)

)
and W

(j)
i =W

(j)
i /
∑N

k=1W
(k)
i .

• Compute the estimate

∇̂θ`i(θ)=
N∑
j=1

∇θ

{
logp(α

(j)
i |Γ)+

Ti∑
t=1

[
yitz

>
it (β+α

(j)
i )−log(1+ez

>
it (β+α

(j)
i ))
]}

W
(j)
i .
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Because the parameters γj>0, a suitable transformation is needed before applying
the Gaussian VB approximation. We use the transformation θγj =log(γj), j=0,...,M .

Let θ̃=(w,β,θγ0 ,...,θγM ), then

θ=θ(θ̃)=(w,β,exp(θγ0),...,exp(θγM )).

The posterior distribution of θ̃ is

p(θ̃|D)∝

∣∣∣∣∣∂θ(θ̃)∂θ̃

∣∣∣∣∣p(θ(θ̃))p(θ(θ̃)|D)=exp(θγ0 +...+θγM +θγw+θγβ))p(θ(θ̃))p(θ(θ̃)|D)

We then approximate p(θ̃|D) by qλ(θ̃).
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