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Abstract
n

Ian Mahon Doctor of Philosophy
The University of Sydney July 2008

Vision-based Navigation for 
Autonomous Underwater Vehicles

This thesis investigates the use of vision sensors in Autonomous Underwater Vehicle (AUV) 
navigation, which is typically performed using a combination of dead-reckoning and external 
acoustic positioning systems. Traditional dead-reckoning sensors such els  Doppler Velocity 
Logs (DVLs) or inertial systems are expensive and result in drifting trajectory estimates. 
Acoustic positioning systems can be used to correct dead-reckoning drift, however they are 
time consuming to deploy and have a limited range of operation. Occlusion and multipath 
problems may also occur when a vehicle operates near the seafloor, particularly in environ­
ments such as reefs, ridges and canyons, which are the focus of many AUV applications.

Vision-based navigation approaches have the potential to improve the availability and per­
formance of AUVs in a wide range of applications. Visual odometry may replace expensive 
dead-reckoning sensors in small and low-cost vehicles. Using onboard cameras to correct 
dead-reckoning drift will allow AUVs to navigate accurately over long distances, without 
the limitations of acoustic positioning systems.

This thesis contains three principal contributions. The first is an algorithm to estimate the 
trajectory of a vehicle by fusing observations from sonar and monocular vision sensors. The 
second is a stereo-vision motion estimation approach that can be used on its own to provide 
odometry estimation, or fused with additional sensors in a Simultaneous Localisation And 
Mapping (SLAM) framework. The third is an efficient SLAM algorithm that uses visual 
observations to correct drifting trajectory estimates.

Results of this work are presented in simulation and using data collected during several 
deployments of underwater vehicles in coral reef environments. Trajectory estimation is 
demonstrated for short transects using the sonar and vision fusion and stereo-vision ap­
proaches. Navigation over several kilometres is demonstrated using the SLAM algorithm, 
where stereo-vision is shown to improve the estimated trajectory produced by a DVL.
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Chapter 1

Introduction

This thesis deals with the problem of estimating the trajectory of an Autonomous Under­
water Vehicle (AUV). In particular, vision sensors are considered to augment or replace 
traditional navigation solutions such as Doppler Velocity Logs (DVLs), Inertial Measure­
ment Units (IMUs) and acoustic positioning systems.

1.1 Motivation

In recent years, an increasing number of AUVs have been deployed in a wide range of 
applications including geological surveys [51, 70, 116], biological studies [53, 98], marine 
archeology [3, 4, 77] and defence [42-47]. The growing interest in AUVs has been motivated 
by their advantages over manned submersibles and towed sensor platforms, such as the 
possibility to be deployed from smaller ships with fewer supporting crew members, and the 
ability to follow trajectories close to the seafloor, providing high resolution sensing even in 
complex environments with uneven topography such as canyons, ridges and reefs.

Aiming to provide new capabilities for marine science in Australia, the Australian Centre 
for Field Robotics acquired a SeaBED [99] AUV in 2005. In the time since, a number of 
applications have been proposed:

• Biodiversity assessment. The Australian Institute of Marine Science and the New 
South Wales Department of Environment and Climate Change are interested in per­
forming biodiversity surveys to monitor existing marine protected areas, and to aid 
in the identification of additional environments that require protection. The selection 
of protected areas has often proceeded with little knowledge of the chosen environ­
ments, resulting in criticism from industries such as fishing and tourism that have
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been affected by the changes. The acquisition of biodiversity surveys will enable more 
informed decisions on the selection of protected areas, providing better conservation 
outcomes while minimising the effects on industry.

• Geological surveying. The Ocean Drilling Program is interested in surveying ‘drowned 
reef’ environments that have been caused by the rise in sea levels over the last twenty 
thousand years. Visual models will aid the selection of locations where core drilling is 
to be performed. Such sites are of great interest given current climate change concerns, 
and may provide insights into past variations in ocean conditions and their effect on 
coral reefs.

• Resource exploration. Oil and gas companies are interested in obtaining high resolu­
tion models of seafloor features observed in coarse bathymetric maps. The models will 
be used to decide locations for exploratory drilling in areas likely to contain valuable 
resources.

• Marine archaeology. In cooperation with conservation and tourism groups, archae­
ologists would like to perform visual surveys of shipwrecks. In addition to possible 
archaeological outcomes, the surveys could be used to monitor the impact of increasing 
tourism-related activities occurring at such sites.

1.2 U n d erw ater N av igation

Precise navigation is critical for an AUV to perform accurate trajectory following and map­
ping, and aids the recovery of the vehicle once a mission is complete. Unfortunately many 
sources of localisation for air and surface vehicles such as the Global Positioning System 
(GPS) and radio navigation beacons are unavailable underwater due to the rapid atten­
uation of electromagnetic signals. Current AUVs typically navigate using dead-reckoning 
and acoustic positioning systems, however there has recently been interest in terrain-based 
methods that are capable of inferring the position of a vehicle from observations of properties 
such as the profile or appearance of the seafloor [27, 59, 62].

1.2.1 D ead-reckoning

The most simple approach to navigation is dead-reckoning, in which the position of a vehicle 
is calculated by integrating motion observations acquired by onboard sensors. Typical dead­
reckoning sensors for underwater vehicles include IMUs, which measure accelerations and 
rotation rates of the vehicle relative to an inertial frame, and DVLs, which use acoustic



1.2 Underwater Navigation 3

signals to measure the velocity of the vehicle relative to the seafloor. Fusing the observations 
of multiple dead-reckoning instruments such as a DVL and IMU has been demonstrated to 
provide superior positioning to either sensor individually [8, 9].
Unfortunately, relying solely on dead-reckoning results in drifting navigation estimates, 
where the positioning error increases without bound the longer the vehicle operates. To 
enable accurate long-term navigation, dead-reckoning drift must be corrected by an external 
observation of the vehicle’s position.

1.2.2 A coustic P osition ing
Due to the attenuation of electromagnetic radiation in water, acoustic signals are typically 
used for communication in the ocean. A range of acoustic positioning solutions exist, 
the most common of which are Long Base-Line (LBL) and Ultra-Short Base-Line (USBL) 
systems.
LBL systems involve deploying and surveying the position of a network of acoustic transpon­
der beacons and acquiring a local sound speed profile, which can be expensive and time 
consuming. The range of the vehicle from a beacon can then be inferred by measuring 
the elapsed time between transmitting a signal and receiving a reply from a transponder. 
If multiple beacons are interrogated, the position of the vehicle can be estimated through 
triangulation. The selection of an operating frequency controls a trade-off between the res­
olution and range of an acoustic system. Most LBL systems use a frequency around 12kHz, 
proving accuracy within a few metres and a range of a few kilometres, while high-frequency 
systems operating around 300kHz can provide centimetre level positioning accuracy within 
a range of approximately 100 metres [62, 109].
In a USBL system, a transceiver containing an array of transducers is installed on a ship 
supporting the AUV deployment. The range and bearing of a transponder fixed to an 
AUV can then be estimated using phase differencing. While USBL systems may be more 
convenient than deploying a network of beacons, due to their lower accuracy they are more 
appropriate for homing, docking and recovery operations than precision navigation [62, 97, 
102].
Precise navigation using only an acoustic positioning system is difficult due to low update 
rates. For example, periods of up to 20 seconds between updates has been reported for 
an LBL system [109]. High precision positioning is commonly achieved by fusing acoustic 
systems with dead-reckoning sensors [91, 108-110], however the resulting navigation solution 
retains the restricted operating range of the acoustic system. Additional problems with 
acoustic systems are occlusion and erroneous observations caused by multipath returns,
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which are likely to occur when the vehicle is operating near the seafloor, particularly in 
the complex formations such as reefs, ridges and canyons that are the focus of many AUV 
applications.

1.2.3 Terrain-based M ethods

Due to the limitations and cost of traditional underwater navigation solutions, there has 
recently been interest in the use of terrain-based methods to either augment or replace 
existing systems.

Odometry estimation approaches based on stereo-vision have been developed for a new class 
of small, low-cost AUVs such as AQUA [20, 36, 37, 53, 54] and Starbug [21-23], for which 
the size and cost of a DVL or IMU are inappropriate. Visual odometry is performed by 
extracting a set of feature observations from stereo images, allowing the 3D position of each 
feature to be triangulated. The motion of the vehicle can then be estimated by tracking 
the features through a sequence of images. Like dead-reckoning, visual odometry provides 
a drifting trajectory estimate with errors increasing over time, however this approach has 
proved sufficient for the target application of navigating short transects.

If an accurate map is available, the position of a vehicle can be inferred by correlating ob­
servations of the environment with the map. Map-based localisation has been demonstrated 
using bathymetric maps and sonar observations of the seafloor profile, where the position 
of the vehicle is estimated by a particle filter [57, 58, 90, 111]. Navigation in small areas 
has also been demonstrated on an AUV equipped with a camera, by registering a visual 
observation of the seafloor within a previously generated image-mosaic [38-40].

Unfortunately, detailed maps suitable for localisation are not available in many applica­
tions. This has motivated research in Simultaneous Localisation And Mapping (SLAM) 
approaches, in which the position of a vehicle and a map of the environment are jointly 
estimated. The vehicle starts with no knowledge of the environment, then builds up a map 
while it operates. ‘Loop-closure’ events, in which previously visited areas of the environment 
are observed allow drifting position estimates to be corrected.

In the original SLAM formulation [100, 101], the map consists of a sparse set of features that 
are used as navigation landmarks, much like the beacons in an acoustic positioning system. 
An estimate of the vehicle pose and feature positions and the uncertainty in the estimates 
are maintained using an Extended Kalman Filter (EKF). The computational complexity of 
a straightforward implementation of this approach is quadratic in the number of features. 
While a significant amount of research has been performed on managing this complexity [7, 
41, 112, 115], scaling these techniques to long missions covering large distances remains an
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open problem. The EKF-SLAM approach has been demonstrated for an underwater vehicle 
using observations of artificial sonar reflectors [112, 114].

SLAM has also been implemented using a particle filter for an AUV performing visual 
surveys of a shallow hydrothermal vent area [69, 70]. In this application, the map consists 
of the locations of natural bubble plumes and artificial acoustic reflectors observed by a 
sonar.

Another map representation used in underwater SLAM applications is an image-mosaic [32, 
33]. Translational vehicle motions are estimated by correlating consecutive images, and over­
lapping images at loop-closure points allow dead-reckoning errors to be corrected. Complex 
vehicle motions including rotations are not supported however, and the mosaic map repre­
sentation is only suitable for environments where a planar approximation of the seafloor is 
appropriate.

A promising recent development is the Visually Augmented Navigation (VAN) frame­
work [26, 27, 29], in which the current vehicle state and a set of past poses can be estimated 
using an EKF or Extended Information Filter (EIF). The relative pose of the vehicle between 
images in a loop-closure situation is used to correct dead-reckoning drift, however unlike 
mosaic-based methods which perform dense image registration, sparse sets of features are 
associated to calculate arbitrary vehicle motions without constraints on the seafloor topol­
ogy. Performing the estimation process using an EIF results in a significant computational 
efficiency advantage over EKF-based approaches, however recovering state estimates and 
covariances is difficult due to the information-form representation of the probability distri­
bution maintained by the filter.

1.3 Objectives

In this thesis, two use-cases for vision sensors in underwater navigation are investigated.

• Firstly, the use of cameras for odometry estimation is considered. Improvements in 
visual odometry will aid the development of small, low-cost AUVs without a need 
for large and expensive sensors such as an IMU or DVL. Such developments promise 
to make AUVs more accessible for low-budget applications such as scientific surveys 
which lack the funding of applications such as the defence or oil and gas industries.

• Secondly, the use of cameras in conjunction with traditional dead-reckoning sensors 
is considered, where images are used to create loop-closure observations in a SLAM 
framework. This research has the potential the allow the development of robust AUVs 
capable of operating over larger distances and longer mission times, without the need
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to deploy a set of beacons. This is of particular importance for AUVs operating near 
the seafloor and in complex environments, where the performance of acoustic position 
systems is limited.

1.4 Contributions
Towards the objective of improving vision-based navigation for autonomous underwater 
vehicles, the following contributions are presented in this thesis:

• An approach to estimate the odometry of an underwater vehicle through the fusion 
of sonar and vision observations. Novel aspects of this work include:

> The use of a SLAM-style algorithm with a highly dynamic state vector to esti­
mate the motion of a vehicle by tracking a collection of temporarily maintained 
features.

> The use of sonar range observations to initialise the estimated positions of fea­
tures tracked by a vision system.

• A stereo-vision relative pose estimation algorithm, suitable for visual odometry or 
SLAM applications. Contributions within this work include:

> A survey and evaluation of existing motion estimation approaches, leading to 
an understanding of the assumptions and approximations in each method, their 
effects on the accuracy and speed of the algorithm, and the applications in which 
their use is appropriate.

D> An approach to efficiently calculate the maximum likelihood motion parameters 
for a stereo-rig, based on the bundle adjustment algorithm typically used in 
monocular vision problems.

> A survey and evaluation of outlier rejection frameworks, leading to an under­
standing of the robustness of each approach to the errors expected in vision 
data.

t> An outlier rejection approach based on robust estimation, allowing the removal 
of erroneous observations and associations even when only a small set of features 
is available.

• A SLAM algorithm based on the VAN framework, suitable for large-scale mapping 
applications. Contributions include:
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> The application of Cholesky modifications to a factorisation of the information 
matrix, resulting in improvements in the efficiency of state estimate and covari­
ance recovery operations.

> A method to recover optimal estimates of the current vehicle pose states in 
constant time, allowing prediction and observation operations to be performed 
efficiently without corrupting the filter with approximate estimates.

> A covariance recovery method based on the ‘sparse inverse’ matrix, which is 
used to efficiently produce the vehicle pose covariances required to generate loop- 
closure hypotheses.

1.5 Thesis Structure
C hap ter 2 provides background information on the computer vision geometry and algo­
rithms used within the visual navigation approaches presented in this thesis.
C hap ter 3 presents a novel approach for estimating the motion of an underwater vehicle 
by fusing observations from sonar and vision sensors. The algorithm is demonstrated on 
data acquired by a vehicle lacking traditional dead-reckoning sensors.
C hap ter 4 presents the development of a stereo-vision relative pose estimation algorithm, 
which is demonstrated in a visual odometry application.
C hap ter 5 presents a SLAM algorithm based on the VAN framework. The algorithm 
is demonstrated using the novel stereo-vision relative pose estimation algorithm to pro­
vide loop-closure observations that correct the drift in the estimated trajectory of an AUV 
equipped with a DVL.
Finally, C hap ter 6 provides conclusions and directions for future research.



Chapter 2

Computer Vision

2.1 Introduction

This chapter provides background information on the computer vision operations required 
by the visual navigation methods presented in this thesis. The properties of algorithms 
used to extract and associate visual features are investigated, and the camera model used 
to relate visual observation of an object to its location in the world is presented.

2.2 Feature Extraction and Association

A large number of algorithms to extract and associate visual features have been devel­
oped for a wide range of applications including robot localisation, object recognition and 
augmented reality [74, 75, 94]. A distinction is commonly made between algorithms appro­
priate for small-baseline images that are acquired from similar viewpoints, and wide-baseline 
images obtained from camera poses separated by large distances. Wide-baseline feature as­
sociation is considered the more difficult problem due to larger variations in the position 
and appearance of observed objects. In vision-based navigation applications, small-baseline 
images are acquired when performing odometry estimation, while wide-baseline images are 
likely to occur in loop-closure situations when performing SLAM.

2.2.1 Small-baseline

Examples of small-baseline feature extraction algorithms include the Harris corner detec­
tor [49], Moravec interest operator [78], and FAST corner detector [92, 93]. These algorithms 
achieve low computational complexity by assuming there will be little or no change in the
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scale of observed objects, allowing features to be extracted by evaluating the properties of 
fixed-sized windows of pixels. The limitation of this approach is the significant deterioration 
in extraction repeatability that occurs with variations in scale [94].

Simple and fast methods are also used for feature association in small-baseline applications. 
A feature is typically described by a window of pixels surrounding its location in an image, 
and tracking or matching is performed by optimising a simple cost function such as the 
Sum of Square Differences (SSD), Sum of Absolute Differences (SAD) or Normalised Cross- 
Correlation (NCC) [88], which assume the camera motion consists only of a translation.

While small-baseline algorithms provide little robustness to viewpoint and scale variations, 
excellent performance can be achieved at high frame rates when applied to their target 
application of images with small camera motion [82, 83].

For experiments presented in this thesis involving small-baseline images, implementations of 
the Harris corner detector and Lucas-Kanade [67] tracking algorithm within the OpenCV1 
library have been used to extract and associate features. An example of feature extraction 
and tracking in small-baseline images of an underwater scene is presented in Figure 2.1. In 
this example, the Harris corner detector has been configured to search for features using a 
square 5 by 5 pixel window, and the number of features is limited by requiring a minimum of 
20 pixels between extracted corners. The Lucas-Kanade tracker has been configured to use 
a 11 by 11 window of pixels to describe features, and tracking is initialised at the feature 
coordinates in the previous image. Both corner extraction and tracking is performed on 
greyscale versions of the original colour images.

Table 2.1 lists the feature extraction and tracking statistics for the images in Figure 2.1. 
The dimensions of each image is 720 by 576 pixels, and processing times were collected on 
a 2.0 GHz Pentium M processor.

Image Extracted features Tracked features Extraction time (s) Tracking time (s)
One 514 493 0.112 0.089
Two 520 501 0.086 0.121
Three 532 514 0.086 0.094

Table 2.1: Small-baseline feature extraction and association statistics. Harris corner fea­
tures were extracted in each image and tracked to the next frame using the Lucas-Kanade 
algorithm. The apparent motion between images of the features nearest to the camera is 
approximately 15 pixels. The features extracted from image three were tracked to a forth 
frame to calculate the statistics in the last row

O p e n C V  is available from Intel at h ttp ://w w w .in tel.com /tech n ology /com p u tin g /op en cv/ (last ac­
cessed March 22nd 2007)

http://www.intel.com/technology/computing/opencv/
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(a) Image one

(b) Image two

(c) Image three

Figure 2.1: Small-baseline feature extraction and tracking. Harris corner features have 
been extracted and tracked using the Lucas-Kanade algorithm. The locations of features 
are marked by red and white circles, and the red lines in images two and three show the 
tracks joining the image coordinates of a feature in the previous and current image.
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2.2.2 W ide-baseline

Rapid progress has recently occurred in the development of feature extraction and associ­
ation algorithms for wide-baseline images. Examples include Maximally Stable Extremal 
Regions (MSER) [72], the Scale Invariant Feature Transform (SIFT) [66], and Speeded-Up 
Robust Features (SURF) [5]. Wide-baseline feature extraction and association approaches 
are designed to be robust against scale, illumination and viewpoint changes, resulting in 
algorithms that are more computationally complex than small-baseline approaches.
In an evaluation of algorithms suitable for wide-baseline applications, SIFT was recom­
mended due to good association precision (the ratio of correct matches to total matches) [74, 
75]. However, for all the tested algorithms, high precision was only achieved at low recall 
rates (only a small number of features are associated). Since this survey was performed 
before the development of the SURF algorithm, a brief investigation into the properties of 
SIFT and SURF will be performed.
Figures 2.2, 2.3, 2.4 and 2.5 display sets of features extracted and associated by the SIFT2 
and SURF3 algorithms in two pairs of wide-baseline images of underwater scenes. The 
feature extraction and association statistics are listed in Table 2.2. The dimensions of each 
image is 680 by 512 pixels, and the processing times were collected on a 2.0 GHz Pentium 
M processor. The processing times for SURF are significantly lower than SIFT, however 
the small numbers of associated features is consistent with the low recall rates reported for 
other wide-baseline approaches.

Image Feature Left Right Associated Left Right Association
Pair Type Features Features Features Time (s) Time (s) Time (s)
One SIFT 727 1294 14 0.903 1.257 0.363

SURF 801 1283 19 0.286 0.423 0.153
Two SIFT 732 797 286 0.932 0.949 0.224

SURF 718 737 174 0.268 0.277 0.068
Table 2.2: Wide-baseline Feature extraction and association statistics. Image pair one is 
shown in Figures 2.2 and 2.3. Image pair two is shown in Figures 2.4 and 2.5.

2 An implementation of the SIFT algorithm has been supplied by David Lowe
3 SURF version 1.0.9 from h ttp : //w w w .v is io n .e e .e th z .c h /-su r f /  (last accessed March 22nd 2007)

http://www.vision.ee.ethz.ch/-surf/
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(a) Extracted SIFT features.

(b) Associated SIFT features

Figure 2.2: Wide-baseline feature extraction and association using the SIFT algorithm on 
example image pair one. The location of each extracted feature is marked by the tail of 
an arrow in (a). The size and direction of an arrow represents the scale and orientation of 
the corresponding feature. Lines are shown connecting the image coordinates of associated 
features in (b). Out of 727 features extracted from the left image and 1294 extracted from 
the right image, 14 features were associated between the two views.
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(a) Extracted SURF features.

(b) Associated SURF features

Figure 2.3: Wide-baseline feature extraction and association using the SURF algorithm on 
example image pair one. The location of each extracted feature is marked by the tail of 
an arrow in (a). The size and direction of an arrow represents the scale and orientation of 
the corresponding feature. Lines are shown connecting the image coordinates of associated 
features in (b). Out of 801 features extracted from the left image and 1283 extracted from 
the right image, 19 features were associated between the two views.
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(a) Extracted SIFT features

(b) Associated SIFT features

Figure 2.4: Wide-baseline feature extraction and association using the SIFT algorithm on 
example image pair two. The location of each extracted feature is marked by the tail of 
an arrow in (a). The size and direction of an arrow represents the scale and orientation of 
the corresponding feature. Lines are shown connecting the image coordinates of associated 
features in (b). Out of 732 features extracted from the left image and 797 extracted from 
the right image, 286 features were associated between the two views.
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(a) Extracted SURF features

(b) Associated SURF features

Figure 2.5: Wide-baseline feature extraction and association using the SURF algorithm on 
example image pair two. The location of each extracted feature is marked by the tail of 
an arrow in (a). The size and direction of an arrow represents the scale and orientation of 
the corresponding feature. Lines are shown connecting the image coordinates of associated 
features in (b). Out of 718 features extracted from the left image and 737 extracted from 
the right image, 174 features were associated between the two views.
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2.3 Camera Geometry

To calculate the motion of a camera from feature observations, the geometry relating image 
coordinates to a feature’s position in the world must be known. A standard pin-hole camera 
model4 is illustrated in Figure 2.6, in which the image plane and center of projection are 
separated by the focal length / ,  and the principal point p is shown at the intersection of the 
principal axis and the image plane. A feature at position ct* relative to the camera frame 
is projected to image coordinates c

Figure 2.6: Camera observation model. A feature at a position ct i in the camera reference 
frame is projected to the image coordinates c*.

4 The camera model has been adapted from the Camera Calibration Toolbox for Matlab, obtained at 
http://w w w .vision .caltech .edu/bouguetj/calib_doc/ (last accessed March 22nd 2007), which has been 
used to calibrate the cameras for the experiments presented in this thesis.

http://www.vision.caltech.edu/bouguetj/calib_doc/
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2.3.1 Intrinsic Parameters

The internal geometry of a camera is defined by its focal length and the image coordinates 
of the principal point. If the focal length in millimetres is /  and the number of pixels 
per millimetre in the image u-axis and v-axis are mu and mv respectively, the focal length 
measured in pixel units for each axis are

fu =  f m u (2.1)

fv =  fm v (2.2)

If the 3D coordinates of feature i relative to the camera frame are ctj — [c Xi c yi c Zi\T , the 
normalised coordinates of the feature are

n Ui CX i / CZi

-------1

e
____

i c V i / c Zi_
(2.3)

If the image coordinates of the principal point are p =  \pu Pv]T , the image coordinates of 
the feature observation are

Ui Pu T  f un Ui
_Vi_ Pv T  fvTlvi

(2.4)

The four values pu, pv, f u and f v are known as the intrinsic parameters of a camera. When 
arranged into the camera intrinsic parameter matrix

7 « 0 Pu
K  = 0 fv Pv (2.5)

0 0 1

Equation 2.4 can be simplified using homogeneous coordinates

Ci =  K 1(3x3) I 0(3x1) (2.6)

2.3.2 Extrinsic Parameters

The extrinsic parameters of a camera consist of its pose relative to an external reference 
frame. A camera pose is represented by the vector ep c =  [et J ,  e^ J ] T, where etc and eipc 
contain the position and orientation parameters of the camera relative to frame e. Details 
on pose and orientation representations are provided in Appendix A.
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The position of feature i in the external reference frame etj is transformed to the camera 
frame with the coordinate transformation

ctj =  £R(etj — etc) (2.7)

The function projecting the position of a feature into the image coordinates is then

Ci = proj[epc, eti]

= K

(2.8)

The Jacobians of the projected image coordinates with respect to the camera pose and 
feature position states are

<9proj [epc, etj] _  dcj d°tj 
depc dct i 8epc

dproj[epc, etj] _  dci_ d°tj 
det i “  dcti deti

in which is the Jacobian of the projection function of Equation 2.4

(2.9)

(2 .10)

dc j _  fu/ cZi 0 - ( f u cXi)/czf 
dcU 0 f v/ cZi - ( f vcyi)/cZi

(2 .11)

and and are the Jacobians of the coordinate transformation function of Equation 
2.7 relative to the camera pose and feature position states

dctj 
dePc 
ef t  i 
dHi

(2.12)

(2.13)

2.3.3 Im age D istortion

Significant deviations from the ideal projective camera model of Figure 2.6 occur due to 
lens distortion, which is typically modelled using the plumb-line [10] method consisting of 
radial and tangential distortion components.

The distorted normalised coordinates for feature i are given by the equation

2k^nUinVi + k^r2 + 2 nj.) 
fc4(r2 + 2 n2.) + 2k5nUinVi

di =  (l +  k\r2 + fc2r 4 +  k3r6) + (2.14)
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where /ci, &2 and k3 are radial distortion coefficients, and k$ are tangential distortion 
coefficients, and the radial distance from the principal axis is

r  = (2.15)

For cameras operating underwater, additional image distortion is caused by refraction as 
light passes from water to air. However, if a flat viewport is used, and a camera is oriented 
such that its principal axis is perpendicular to the viewport, the resulting image distortion 
is radially distributed [96].

In this thesis, it is assumed that all image distortions, including those due to refraction, 
can be modelled using the standard plumb-line parameters. During the camera calibration 
procedures performed for experiments presented in this thesis, the reprojection errors for 
corners of a planar checkerboard target in water were equivalent to those for calibrations 
performed in air. This suggests the standard plumb-line parameters are sufficient to model 
the distortions produced in the camera systems tested.

While the assumptions of an ideally oriented camera and purely radial distortions may 
not be perfectly met, other model parameters such as the tangential distortion parameters 
designed for poorly centered lenses may partially compensate for any remaining errors. To 
minimise any range-dependant modelling errors, the calibration process was performed with 
the cameras at a distance from the calibration target similar to the operating altitude of 
the AUVs that gathered the data used in this thesis.

2.3 .4  T w o-view  G eom etry

The intrinsic and extrinsic parameters of two cameras can be used to constrain plausible 
feature observations in two images [50]. The geometry of two views is encapsulated in the 
3 x 3  fundamental matrix, which is defined by the equation

2, and Ci and C2 are the homogeneous coordinates of a feature in two images.

If the two-view geometry is known, the fundamental matrix can be calculated with

cj  ,F  ci =  0 (2.16)

in which is the fundamental matrix mapping feature observations in image 1 to image

(2.17)

where [-]x is the skew-symmetric matrix implementing the vector cross product.
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Figure 2.7: Epipolar geometry of two views. A feature at location t is observed at coor­
dinates Ci in the image produced by the camera centered at Oi. From the first camera 
observation alone, the depth of the feature is unknown, however it must lie on the ray r. In 
the image produced by the camera centered at O2, the ray is imaged as the epipolar line 
I2, on which the feature observation C2 must lie.

The epipolar geometry constraint is illustrated in Figure 2.7, where the feature coordinates 
ci in image one restricts the possible location of the feature in a second image to an epipolar 
line I2. The epipolar line can be calculated from the fundamental matrix using the equation

12 = ?F ci (2.18)

The epipolar constraint can be used to restrict the search for a feature in a second image, 
or test the consistency of observations of a feature in two views. Figure 2.8 demonstrates 
the use of epipolar lines to reject a poorly tracked feature in a pair of images acquired from 
a stereo-rig. Since epipolar geometry only provides a one-dimensional constraint for the 
location of a feature within an image, feature observation outliers containing errors parallel 
to an epipolar line cannot be rejected using this method.
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2.4 Summary

This chapter has presented a summary of computer vision algorithms and equations that 
will be used by the vision-based navigation approaches presented in the remainder of this 
thesis.

Feature extraction and association algorithms suitable for real-time applications are avail­
able for small-baseline applications. An implementation of the Harris corner detector and 
Lucas-Kanade tracker will be used for small-baseline problems in Chapters 3 and 4.

Wide-baseline feature extraction and association algorithms are computationally expensive 
and produce low recall rates. These properties will be considered in Chapter 5 when selecting 
a framework to perform SLAM using visual features.

The epipolar geometry of two views has been demonstrated to provide a one-dimensional 
constraint on feature observations in two images. Since feature observations containing 
errors parallel to the direction of an epipolar line cannot be detected with this method. 
Additional outlier rejection methods are considered in Chapter 4.



Chapter 3

O d o m etry  from  th e  Fusion o f 

Sonar and M on ocu lar V isio n

3.1 Introduction

This chapter presents a novel approach to estimate the trajectory of the Oberon ROV, 

which is sparsely instrumented relative to most scientific vehicles. The sensor suite onboard 

Oberon consists of a mechanically scanned pencil-beam sonar, a monocular vision system, 

an integrated compass/tilt attitude sensor and a fibre-optic gyroscope measuring the yaw 

rate of the vehicle. Due to the lack of a traditional dead-reckoning sensor such as an IMU 

or DVL, the motion of the vehicle must be estimated by tracking a set of features extracted 

from observations of the environment.

3.2 Method

The sonar and vision sensors onboard Oberon possess complementary properties, that when 

combined, provide a solution to the motion estimation problem. The sonar is able to observe 

the range to features, however its sparse observations of the environment make re-observing 

features unlikely, and it cannot provide discriminating feature descriptions to enable features 

to be recognised. In contrast, the camera lacks the ability to observe the range to features, 

however the large field of view enables features to be observed multiple times through a 

sequence of images, and vision data can provide rich feature descriptions to allow data 

association.

The motion of the vehicle will be estimated by visually tracking a set of features that have 

been initialised using sonar range observations. This approach is similar to bearing-only
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Figure 3.1: Configuration of the sonar and vision sensors onboard the Oberon ROV. The 
camera is oriented to view the seafloor, while the sonar scans through a 180° arc in a vertical 
plane perpendicular to the vehicle’s direction of travel.

SLAM [2, 11, 31] in which odometry sensors are used to provide an estimate of the scale 
of motion, enabling the range of features to be calculated. In this case however, the sonar 
range-finder is used to measure the distance of features, which makes the motion of the 
vehicle observable.
The approach also has similarities to the Structure From Motion (SFM) problem, in which 
the trajectory of a camera and the location of a set of features are recovered up to a scale 
ambiguity [50, 106]. In the method presented here, the additional sonar range measurements 
allow the scale of the vehicle motion to be estimated.
The configuration of the sonar and vision sensors onboard the Oberon ROV are displayed 
in Figure 3.1. The adjacent location of the two sensors allows many sonar returns to be 
registered in images acquired by the camera. The process of initialising and observing 
features is illustrated in Figure 3.2.
The feature initialisation process is complicated by two problems leading to inexact regis­
tration of the seafloor location causing a sonar return within an image. Firstly, the sonar
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and camera observations are not synchronised, and while the motion of the vehicle between 
the times the observations are acquired can be estimated, some error will inevitably remain 
to corrupt the visual feature position estimate. Secondly, the exact location on the seafloor 
feature causing a sonar return is unknown due to the diverging sonar beam. The best option 
is to find a feature on the seafloor near the center of the sonar-beam, however the vision 
system will track a feature near, but not necessarily exactly at the location causing the 
sonar return. As a result, the range of the feature observed by the sonar will not exactly 
match the range of the feature tracked by the vision system.
The current state of the vehicle, the pose of the vehicle at the time the last image was 
acquired, and the position of a set of features are estimated in an EKF using the proce­
dure illustrated in Figure 3.3. The estimation process is similar to feature-based SLAM 
algorithms, however in this application the features are not used to generate loop-closure 
observations, but to compensate for the lack of dead-reckoning sensors by providing obser­
vations of the current vehicle motion.
To overcome the feature observation registration issues, the uncertainty of sonar range 
observations are inflated to compensate for the potential difference in the distances to the 
feature causing the sonar return and the feature tracked by the vision system. Additionally, 
maintaining the pose of the vehicle when the last image was acquired in the filter minimises 
the error in the estimated vehicle motion between the times the vision and sonar observations 
are acquired.
The state vector for this estimation problem is highly dynamic, with feature and pose states 
regularly augmented and removed. Since the features are not designed to be used for loop- 
closure situations as the would be in a SLAM application, they are removed once they 
pass out of the camera’s field of view. Similarly, since past vehicle poses are of no further 
interest once a new image has been acquired, previously augmented poses are removed from 
the filter.
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Figure 3.2: The feature initialisation and observation process. The vision and sonar sen­
sors are shown at four poses corresponding to four times at which observations have been 
acquired. The visual observation at pose A and sonar range measurement at pose B are 
used to initialise the position of a feature. Additional visual observations at poses C and D 
allow the motion of the vehicle to be estimated.
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Figure 3.3: The motion estimation process for the Oberon ROV. The current vehicle state, 
the pose of the vehicle at the time the last image was acquired, and the position of a set of 
features are estimated using the typical EKF predict, observe and update cycle.
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3.2.1 The Estimated State Vector

The estimated current vehicle state, previous vehicle poses and feature positions are repre­

sented by the state vector

x + (tk)
K (h)
x (+ (tk)

(tk)_

(3.1)

in which x+ (tk) contains parameters defining the current state of the vehicle, (tk) rep­

resents the trajectory states of a set of previous vehicle poses, and x+ (tk) represents the 

map states of a set of features.

The current state of the vehicle is represented by the vector

fa) =

nt+ (tk)
"V C  (tk)

(ife)
(3.2)

in which nt+ (tk) and n\/\ (tk) represent the position and orientation of the vehicle in the 

navigation frame, uv+  (tk) represents the velocity of the vehicle measured relative to the 

vehicle frame and (tk) contains the local body rotation rates of the vehicle at time tk.

The trajectory vector consists of m past vehicle poses

x*+ (tk) =

Xpx (tk) 
*p2 (tk)

*£ »  (**).

(3.3)

in which each vehicle pose is represented by its position and orientation relative to the 

navigation frame

x+Pi dk)
nt j  (tk)

n'ppL
(3.4)

The map vector consist of n features

*/, (tk)

4  fa )  = (3.5)
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where each feature represented by its position in the navigation frame

(3.6)

Uncertainty in the estimated states is represented by the covariance matrix

p + (t*) =
'P  t v ( t k )

p£(tk  
p iZ(tk)

K ,( th )
p î  (

P iJ  (tk)

P tm(tk)~
P tm(tk)
P mm (tk)_

(3.7)

where P+, (£&), P u(tk) and P ^ m (i^) are the covariances of the vehicle, trajectory and 
map states respectively, and P+t (tk) represents the cross-covariance between the vehicle 
and trajectory, P+m (tk) is the cross-covariance between the vehicle and map, and P ^  (tk) 
is the cross-covariance between the trajectory and map states.

3.2.2 The Estimation Process

The state estimate and covariance are updated using the three-stage EKF prediction, ob­
servation and update process.

Prediction

The evolution of the estimated states is described by a process model of the form

x(ijt) =  f[x (ifc_i),ijfc] +  w(ijb) (3.8)

in which w (tk) is a vector of process model errors at time tk. The process error sequence 
is assumed to be zero-mean, temporally uncorrelated with covariance Q (tk).

In this application, the past poses and features are assumed to be stationary, resulting in a 
process model of the form

(tk) 
X i  (tk) —

fu [Xy (tk— l) , tk\ 
X i  (tk-l) +

Wv (tk) 
0 (3.9)

xm (tk— l) 0

in which f„[-, •] is the vehicle process model and wv (tk) is the vehicle process noise vector. 
In this application, the constant velocity vehicle model presented in Appendix B.2 is used 
to predict the motion of the vehicle.
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The process model covariance has the form

Q (tk)  =

Qp (tk) 0 0
0 0 0
0 0 0

(3.10)

where (tk) is the vehicle process model covariance.

The standard EKF equations to calculate the predicted estimate and covariance are

= f[x+ (t*_i),tt] (3.11)

P - (tk) = V J  (tk) P+ (ifc_i) V jf  ( + Q (tk) (3.12)

in which V xf (tk) is the Jacobian of the process model with respect to the state vector 
evaluated at the prior estimates. In this application, the process model Jacobian has the 
form

V xf (tk)

V xf„ (tk) o 0 
0 1 0  
0 0 1

(3.13)

where the vehicle model Jacobian is defined by

v ,f„  (tk) = ^
CjX-v

(3.14)

Taking advantage of the sparse process model Jacobian, the covariance propagation formula 
of Equation 3.12 can be simplified to

•f*vv (tk) Ppf (tk)

P «  (tk)

vv

P„'tT (h)
p ,
p;

(tk)

>—T
(tk)  Pirn (tk)

vm

tm (tk)  

P mm (tk) .

Vx^v (tk) Ppti (tk— l) (tk) + Qp (tk) 
P ^ (t k - i )V Txfv(tk) 
P+J(ifc_i) v j f v(ifc)

V Xfy (tk) P ^  (tk— l )

p £(tfc-i)
Pfm" ( t k - 1 )

^ x ^ v  (tk) Pum ( tk—l)
P5nfe-l)
P mm ( t k - 1)

(3.15)

Observation

Observations are assumed to be acquired according to a model of the form

Z ( t k ) =  h[x(t*),ifc] +  v(i*) (3.16)
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in which v (tk) is an observation error, which is assumed to be from a zero-mean and 
temporally uncorrelated sequence with covariance R(ifc).
The observation model is used to generate an innovation v  (tk) and innovation covariance 
S (tk) defined by

u( tk) = z ( t k) -  h[x (ifc), tfc] (3.17)
S (tk) = V xh (ifc) P "  (tk) V jh  (tk) + R  (ifc) (3.18)

in which V xh (tk) is the Jacobian of the observation function evaluated at the predicted 
state estimate

v , h  (ifc) = x-(tk) (3.19)

In this application, observations are acquired from a depth sensor using the model in Section 
3.2.5, the attitude sensor using the model in Section B.3.2 and visual features using a model 
presented in Section 3.2.5.

U pdate

Once an observation has been performed, the state estimate and covariance are updated 
with the EKF update equations

x + (tk) = x -  (ifc) + w (ifc) v  (tk) (3.20)
P + ( tk) = P -  (tk)-  W  S ( ) W T (tk) (3.21)

where the Kalman weights are given by

W  = P -  (I*) V jh  (ifc) S-1 (ijt) (3.22)

3.2.3 Feature In itialisation

Initialisation of a new feature is performed in two steps. Firstly, registration must be 
performed by locating the image coordinates of a feature that can be initialised by a sonar 
range observation. Secondly, the state vector is augmented with the position of the new 
feature relative to the navigation frame.
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Figure 3.4: The sonar reference frame and observation states. An area of the seafloor defined 
by the sonar beamwidth is illuminated. The observed azimuth a corresponds to the center 
of the sonar beam, however the observed range r could correspond to a feature anywhere 
in the sonar beam.
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Registration

The sonar reference frame and observation states are displayed in Figure 3.4. The location of 
the feature causing the sonar return within the diverging beam is unknown. Therefore when 
attempting to find a visual feature that can be initialised with a sonar range measurement, 
a feature near the middle of the sonar footprint will be found. The estimated coordinates 
for the middle of the sonar footprint on the seafloor (represented by the symbol o) relative 
to the sonar frame are

s t o
r cos(a) 
r sin(a) 

0
(3.23)

where r is the range measurement and a is the sonar azimuth angle as shown in Figure 3.4. 

The estimated current pose of the sonar relative to the navigation frame is given by

n Ps =  np i (ifc) © "Ps (3.24)

where np+ (tk) is the estimated current pose of the vehicle, vp5 is the pose of the sonar 
relative to the vehicle frame that is known from calibration, and © is the head to tail pose 
composition operation defined in Appendix A.

The coordinates of the middle of the sonar footprint in the navigation frame are then

n±. _ nj. , nnSi
\j q  —  I o A V  \j C (3.25)

If the pose of the vehicle at the time the last image was acquired is at index j  in the 
trajectory vector, the estimated pose of the camera in the navigation frame when the last 
image was acquired is given by

nPc = nPpj (tk) ® "p c (3.26)

where np +. (tk) is the estimate of vehicle pose j  and vpc is the pose of the camera relative 
to the vehicle frame known from calibration.

The image coordinates for the middle of the sonar footprint can then be calculated using 
the image projection function of Equation 2.8

c0 (tk) =  proj [npc, ntG] (3.27)

The image coordinates calculated by Equation 3.27 are unlikely to correspond to a good 
feature for future tracking that can be well localised. Therefore, these coordinates are used
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to initialise a search for a nearby corner feature within the sonar footprint on the seafloor.

Feature Augmentation

An augmented estimate vector including the new feature states is produced using an ini­
tialisation function of the form

x*+ (¿it) =  g[x+ (tk) , z ( t k)] (3.28)

K +  ( t k ) K  ( t k )

**t+  ( t k)

M ( t k)

*;+ (tk)_ g/ [*+ ( t k ) ,Zj (**)]_

in which g/[-,-] is the feature initialisation model that relates the feature states to the 
observed and estimated states.

The observation vector used to initialise a feature i is

z* (tk)
Ui (tk) 
Vi (tk) 

J i  (tk).

(3.30)

in which Ui (tk) and Vi (tk) are the coordinates of the feature in the latest image, and r* (tk) 
is the range observed by the sonar at the current vehicle pose.

The position of the feature in the navigation frame nt * that is consistent with the observation 
vector is given by the intersection of a sphere with radius r* (tk) that is centred at the 
estimated current pose of the sonar nt5, and a ray passing through the of the previous 
camera position ntc with a direction defined by the image coordinates Ui (tk) and V{ (tk). 
The initialised feature position is not the middle of the sonar footprint as calculated in 
Equation 3.25, since the observed image coordinates Ui (tk) and Vi (tk) correspond to a 
feature near (but not necessarily exactly at) the image coordinates of the center of the 
sonar footprint as calculated in 3.27.

The sphere and ray constraints are defined by the equations

("ti -  nts) • (%  -  nts) = rf  (tk) (3.31)

nt, =  ntc + Adi (3.32)
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where the direction of the ray from the camera to feature i in the navigation frame is

d ¿ = lR
( u i  (tk) -  Vu)/fu 
{ui (¿fc) — Vv) /  fv 

1
(3.33)

in which pu, pv, f u and f u are the intrinsic camera parameters defined in Chapter 2. 
Substituting Equation 3.32 into Equation 3.31 results in the quadratic

AX2 + BX +  C = 0 (3.34)

where the coefficients are

A = di • di (3.35)
B = 2(nt c -  nt 5) • ^  (3.36)
c = ("tc -  "t,) • ("tc -  " t.)  -  r? (tk) (3.37)

The initialised feature position in the navigation frame is therefore

g/  [x+ {tk) , zi {tk) ] = nt c + Adi (3.38)

where A is the solution to the quadratic in Equation 3.34

A = - B  ±  V B 2 -  4^C
2Ä (3.39)

The augmented state covariance matrix is generated by augmenting the observation covari­
ance and propagating the result through the Jacobian of the initialisation function

p ,+ (t*) =  Vg(tfc)
p& (tk) P2i (it) P +vm {tk) 0
p  t?(tk) K  M p+* tm (̂ fc) 0
p  iZ( tk) p  ,+J  (tk) P +mm i k̂) 0

0 0 0 R-i (¿fc)
v Tg(ffc)

The initialisation function Jacobian has the form

(3.40)

i 0 0 0
0 I 0 0
0 0 I 0

Vug/ (¿fc) V tg / (¿it) 0 v 2g/ (¿fc)
V g  {tk) = (3.41)
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where V vgy (tk), V*gy (tk) and V 2gy (¿fc) and are the Jacobians of the feature initialisation 
function in Equation 3.38. with respect to the vehicle, trajectory and observation states.

W g / W  =  | f

dg /Vigy (tk) =

W g /  (it) =  dz

dx.t
dg f

(x+(ifc), z(tfc)) 

(x+(ifc),z(ifc)) 

(x+(ifc),z(ifc))

3.2.4 P ose A u gm en ta tion

(3.42)

(3.43)

(3.44)

Augmenting the state vector with the current vehicle pose is performed using the initiali­
sation function

- *+ x  ^ (tk) =  G x+ (tk)

(tk)
*t+ (*fc)

G vx+ (ijt)
(¿fc)

(3.45)

(3.46)

in which the matrix extracts the pose states from the vehicle state vector.

G v =
1 0  0 0 
0 1 0  0

(3.47)

The augmented covariance matrix is

P*+ (tk) =  G
Put) (tk) P(îi (tk)

P t t ( t k )
p  t l  (tk)

(tk) 
(tk) 

G „P+ (tk ) 
p tZ(tk)

p+vv
p+T*vt

(tk)
P Tt(tk)

p Lt (

P i .  (*t) 
PS (it) 

G vPjj (tk)
p (+J  (tk)

P tm
P L ( tk )
P +mm (tk).

P tv ( tk )G l
PttJ(tk)Gj 

G „P+ (tk) G j  
P S Î ( it )G Î

(it)P tm 
P L  (tk) 

GvPwm (tk)
P mm (tk)

(3.48)

(3.49)
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3.2.5 V isual Feature O bservations

A visual observation of feature i is made according to a model of the form

zi (tk) =  h*[x(tfc)] + Vi (tk)

The observation vector consists of the image coordinates for feature i

zi (tk) =
Ui (tk) 
Vi (tk)

and the observation covariance has the form

^2 (tk) 0Ri =
0 (tk)

(3.50)

(3.51)

(3.52)

The predicted observation is given by the image projection function of Equation 2.8

h[x (tk)] =  proj[npc (tk) , nt~ (tk)\ (3.53)

in which npc (tk) is the estimated pose of the camera in the navigation frame, given by

"p c(tk) ="p„ (<*:)© "Pc (3.54)

The Jacobian of the feature observation function with respect to the current vehicle pose is

dh
V x„h (tk) —

dnp v (*-(**))
(3.55)

^proj [npc, ntj
d Upc (nPc(tk),”i - { t k)) 01 ("Pv (ifc),"Pc)

The Jacobian of the observation function with respect to the feature states is

ahv /4h(tfc) =
a n , (x-(ifc))

(3.56)

apr°j[npc, ntj
dnU ( nPc(ifc),nt - ( i fc))
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3.3 Simulation

Due to a lack of ground truth and issues with the quality of the data acquired during field 
deployments of the Oberon ROV, simulations will form the main verification of the motion 
estimation method presented in this chapter.

The simulated environment and vehicle trajectory are illustrated in Figure 3.5. A randomly 
generated height-map is used to model the seafloor, and the vehicle traverses a roughly 
rectangular path that is approximately 65 metres in length.

The feature initialisation procedure is simulated to recreate the registration errors expected 
in real data. A visualisation of a simulation displaying the estimated states is shown in 
Figure 3.6. The errors in the registration of sonar and vision observations are represented 
by the black lines joining seafloor locations causing a sonar return and the positions of 
features tracked by the vision system.

The parameters used to generate the simulated sensor data noise are listed in Table 3.1, 
and the process and observation model parameters used by the filter are stated in Table 
3.2. The only difference is the inflated sonar range observation uncertainty used in the 
filter to compensate for errors when registering the sonar and vision data. These simulation 
parameters are based on the properties of the sensors used on the Oberon platform.

Errors in the estimated vehicle states are shown with 95% confidence bounds in Figure 3.7. 
The errors in the vehicle’s 2 coordinate position and orientation states are constrained by 
the direct observations supplied by the depth and attitude sensors, however the errors in the 
vehicle’s x and y coordinate position estimates drift in a manner typical of dead-reckoning. 
The errors in all states are well bounded by their confidence intervals, suggesting the filter 
is appropriately tuned.

The innovations from depth, yaw-rate and attitude observations are shown in Figures 3.8, 
3.9 and 3.10. The peaks in the yaw-rate innovations after approximately 100, 185 and 270 
seconds are caused by the sharp turns at the corners of the rectangular vehicle trajectory. 
The rapid angular accelerations occurring at these times significantly deviate from the 
assumptions of the constant velocity vehicle model, however the filter is able to contend 
with these maneuvers due to the global heading observations provided by the compass.

The innovations for visual feature observation are displayed in Figure 3.11. The consistency 
of the 95% confidence bounds suggest the inflated sonar range uncertainty used in the 
feature initialisation model is appropriately tuned for the simulated data.
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Figure 3.5: Simulation terrain and vehicle trajectory. The seafloor is modeled by a ran­
domly generated height-map, and the roughly rectangular vehicle path has a total length 
of approximately 65 metres.
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Figure 3.6: Simulation visualisation displaying estimated vehicle and feature states. The 
sonar is represented by a black cylinder, the camera is displayed as a blue cuboid and the 
vehicle frame origin is marked by a yellow sphere located just behind the two sensors. The 
uncertainties in the current and previous vehicle pose are represented by transparent yellow 
and green 95% confidence ellipsoids respectively, and the feature estimate uncertainties are 
shown in red. A recent sonar observation (represented by an orange ray) has been used to 
initialise a new feature. The seafloor locations that have caused sonar returns are marked by 
black spheres, while the location tracked by the vision system is shown in blue. The black 
lines joining the sonar and visual feature locations represent the data registration errors.
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Depth observation noise standard deviation 
Yaw-rate observation noise standard deviation 
Roll tilt observation noise standard deviation 
Pitch tilt observation noise standard deviation 
Heading observation noise standard deviation 
Sonar range observation noise standard deviation 
Sonar azimuth observation noise standard deviation 
Sonar elevation observation noise standard deviation 
Camera u-axis observation noise standard deviation 
Camera v-axis observation noise standard deviation

<7p 0.02 m

% 0.25 deg/s

G(f) 0.75 deg
0.75 deg

&xl> 0.75 deg
(J f 0 .0 5 m
<Tq 0.9 deg

0.9 deg
& U 0.5 p ix e ls
(7 v 0.5 p ix e ls

Table 3.1: Simulation sensor observation parameters. The values listed in this table have 
been used to generate errors in the simulated senor observations.

Vehicle model x-axis acceleration standard deviation ® vx 0.03 m /s2
Vehicle model y-axis acceleration standard deviation <TVy 0.01 m /s2
Vehicle model z-axis acceleration standard deviation &VZ 0.01 m /s2
Vehicle model x-axis angular acceleration standard deviation (Tp 0.25 deg/s2
Vehicle model y-axis angular acceleration standard deviation 0.25 deg/s2
Vehicle model z-axis angular acceleration standard deviation (J j' 0.25 deg/s2

Depth observation noise standard deviation (Tp 0.02 m
Yaw-rate observation noise standard deviation % 0.25 deg/s
Roll tilt observation noise standard deviation @(f> 0.75 deg
Pitch tilt observation noise standard deviation a o 0.75 deg
Heading observation noise standard deviation 0.75 deg
Sonar range observation noise standard deviation CJ t 0 .0 8 m
Sonar azimuth observation noise standard deviation <7a 0.9 deg
Sonar elevation observation noise standard deviation 0.9 deg
Camera u-axis observation noise standard deviation 0.5 p ix e ls
Camera v-axis observation noise standard deviation (Jy 0.5 p ix e ls

Table 3.2: Simulation process and observation model parameters. The values listed in this 
table have been used in the EKF process and observation models. The inflated sonar range 
observation uncertainty has been used to compensate for errors that occur when registering 
sonar and vision observations of a feature.
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(b) Y-position error

(c) Z-position error

(e) Pitch Euler angle error

Figure 3.7: Simulation vehicle pose estimate errors
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Figure 3.8: Simulation depth observation innovations
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Figure 3.9: Simulation yaw-rate observation innovations
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0.05r
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(b) Pitch

Time (s)

(c) Heading

Figure 3.10: Simulation vehicle attitude observation innovations



In
no

va
tio

n 
(p

ix
el

s)
 

In
no

va
tio

n 
(p

ix
el

s)

3.3 Simulation 45

x
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(b ) v-coordinate

Figure 3.11: Simulation visual feature observation innovations
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3.4 Results

The localisation approach presented in this chapter has been applied to data acquired during 
a deployment of the Oberon ROV at Ribbon Reef 3 off the coast of Queensland, Australia. 
The data consists of several transects over a set of coral bommies at a site called Tracy’s 
Wonderland.

Unfortunately, the camera onboard the Oberon ROV during these deployments was con­
figured to use an auto-focus mode resulting in varying intrinsic camera parameters. When 
processing this data, the visual feature observation covariance has been inflated to partially 
compensate for errors in the intrinsic camera calibration parameters, however the vehicle 
motion estimates are still corrupted by the poorly modelled observations.

The Harris corner detection algorithm has been used to extract features from the images, 
and the visual feature tracking process is performed using the Lucas-Kanade tracker. Figure 
3.12 demonstrates the extraction and tracking of features initialised by sonar observations.

The filter parameters used to process the data acquired at Tracy’s Wonderland are listed in 
Table 3.3. Apart from the inflated visual feature observation uncertainty, the observation 
model parameters are the same as those used in simulation. The process model uncertainties 
have been increased however, to match the large accelerations caused by surging water 
movement.

Vehicle model x-axis acceleration noise standard deviation avx 0.1 m/s2
Vehicle model y-axis acceleration noise standard deviation a Vy 0.1 m/s2
Vehicle model z-axis acceleration noise standard deviation & vz 0.1 m/s2
Vehicle model x-axis angular acceleration standard deviation <7p 0.75 deg/s2
Vehicle model y-axis angular acceleration standard deviation (Jq 0.75 deg/s2
Vehicle model z-axis angular acceleration standard deviation G j* 0.75 deg/s2

Depth observation noise standard deviation dp 0.02 m
Yaw-rate observation noise standard deviation % 0.25 deg/s
Roll tilt observation noise standard deviation & (f> 0.75 deg
Pitch tilt observation noise standard deviation 0.75 deg
Heading observation noise standard deviation 0.75 deg
Sonar range observation noise standard deviation G f 0.08 m
Sonar azimuth observation noise standard deviation (Ta 0.9 deg
Sonar elevation observation noise standard deviation 0.9 deg
Camera u-axis observation noise standard deviation 1.5 pixels
Camera v-axis observation noise standard deviation (Jy 1.5 pixels

Table 3.3: Vehicle and observation model parameters for experiments at Tracy’s Wonder­
land.
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The depth observation innovations for a first transect at Tracy’s Wonderland are shown 
in Figure 3.13. The obvious inconsistency of the innovation sequence is a result of the 
camera modelling errors (if the visual feature observations are ignored, the depth innovations 
are well bounded by the 95% confidence intervals). The large innovations are caused by 
biased visual feature observations resulting in the vehicle estimate converging to an incorrect 
solution that is incompatible with the (valid) depth observations. While not observable, the 
incorrect camera model parameters are likely to be causing similar errors in the x and y 
coordinate position estimates.

The yaw-rate and attitude observation innovations for the first transect are shown in Figures 
3.14 and 3.15. The spikes in the yaw and yaw-rate observation innovations after 130 seconds 
are caused by a rapid change of orientation.

The innovations from visual observations of features are shown in Figure 3.16. The incon­
sistency of feature observations caused by the imperfect camera calibration is shown by the 
large magnitude of the innovations. The inflated visual observation uncertainty can be seen 
to result in correspondingly large confidence bounds which allow most observations to pass 
a normalised innovation gate test.

The estimated vehicle trajectory for the first transect is shown in Figure 3.17. The irreg­
ularities of the estimated trajectory correlate well with the surge-induced vehicle motion 
apparent in the image sequence. An environment model generated for the first transect gen­
erated from the trajectory estimate is shown in Figure 3.18. The environment model was 
created by registering all sonar returns against the estimated vehicle trajectory, creating a 
surface mesh by interpolating between the sonar samples, and overlaying the vision data by 
projecting the images onto the terrain structure. While no ground truth is available for this 
deployment, the consistency of the structure and visual data suggest reasonable accuracy 
in the estimated trajectory.

The estimated trajectory for a second transect performed at Tracy’s Wonderland is pre­
sented in Figure 3.19. The relatively smooth appearance of the trajectory relative to that 
of transect one is due to a larger commanded velocity preventing the vehicle from being 
pushed backwards by the surging water movement. A reconstructed environment model for 
this transect is shown in Figure 3.20.
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(c) Previous image at time B (d) Current image at time B

(e) Previous image at time C (f) Current image at time C

Figure 3.12: Feature extraction and tracking on the Oberon ROV. The images on the left- 
hand side show sonar observations that have been used to initialise the range to features. 
The estimated sonar footprint on the seafloor is marked by a green ellipse, and the image 
coordinates of new features are marked with red and white circles. The images on the 
right-hand side demonstrate tracking of the newly initialised features.
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Innovation
95% confidence bounds

150
Time (s)

300

Figure 3.13: Depth observation innovations for Tracy’s Wonderland transect one. The large 
and correlated innovations are caused by biased visual feature observations resulting in the 
vehicle estimate converging to an incorrect solution that is incompatible with valid depth 
observations.

0.03
Innovation
95% confidence bounds

150
Time (s)

300

Figure 3.14: Yaw-rate observation innovations for Tracy’s Wonderland transect one. The 
spike after approximately 130 seconds is caused by a rapid change of vehicle orientation.
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Figure 3.15: Vehicle attitude observation innovations for Tracy’s Wonderland transect one.
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Figure 3.16: Visual feature observation innovations for Tracy’s Wonderland transect one. 
The large innovations present are due by the use of incorrect camera calibration parameters.
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Figure 3.17: Estimated vehicle trajectory for Tracy’s Wonderland transect one. The esti­
mated vehicle path has reconstructed the irregularities in vehicle motion produced by the 
surging water movement.
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(b) Close-up view of showing structure

(a) Overhead view of complete transect

Figure 3.18: Reconstructed environment model for Tracy’s Wonderland transect one.
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Figure 3.19: Estimated vehicle trajectory for Tracy’s Wonderland transect two. The rela­
tively smooth appearance of the trajectory relative to that of transect one shown in Figure 
3.17 is due to a larger commanded velocity preventing the vehicle from being pushed back­
wards by wave action.
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(a) Overhead view of complete transect

(b) Close-up view of showing structure

Figure 3.20: Reconstructed environment model for Tracy’s Wonderland transect two.
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3.5 Limitations

The motion estimation method presented in this chapter is complicated by two problems 
relating to the selection of process and observations model parameters:

1. The uncertainty of sonar range observations needs to be inflated to compensate for the 
inexact registration of sonar and vision data. The registration errors are a function 
of the seafloor topography however, so the range uncertainty will need to be tuned 
differently for operation in flat sandy areas or reef environments containing large depth 
variations.

2. The process model parameters need to be tuned to match the accelerations of the 
vehicle. In addition to intentional motion produced by the vehicle’s thrusters, this 
also includes external influences from environmental conditions such as currents and 
swell. Unfortunately, the magnitude of these external influences is unlikely to be 
known in advance and will change over time.

An additional concern with this approach is the influence of bad sonar observations. While 
visual observations of poorly initialised features can be rejected using an innovation gate if 
the motion of the vehicle is well constrained, in this application without any dead-reckoning 
sensors, a large amount of uncertainty is injected into the vehicle pose states in each pre­
diction step. It is therefore likely that observations of poorly initialised features could be 
accepted into the filter, particularly when the number of estimated features is low.

The robustness of this motion estimation method could be improved by adding a cheap 
inertial system. Using an inertial system would allow the accelerations of the vehicle to be 
observed instead of being treated as disturbances to the constant velocity vehicle model, 
making environmental conditions less influential in the selection of process model param­
eters. Additionally, the motion estimates produced by the inertial system would aid the 
rejection of poorly initialised features. In a combined system, the sonar and visual feature 
observations could constrain the dead-reckoning drift produced by integrating the inertial 
observations, and allow the biases in the inertial sensors to be estimated.

3.6 Summary

This chapter has presented a novel approach to estimate the motion of an underwater ve­
hicle. A SLAM-style algorithm is used to provide odometry from a set of natural features 
tracked using a vision system. The feature positions are initialised by fusing a visual ob­
servation with a range measurement acquired with a sonar. The vehicle pose at the time of
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the last image is maintained in the state vector to improve registration of sonar and visual 
observations.

Results have been shown for short transects in simulation and on data acquired during 
deployment of the Oberon ROV at Tracy’s Wonderland in Queensland, Australia. While 
the real-world results are corrupted by the use of camera with varying intrinsic parameters, 
simulations show the filter can be made consistent if the process and observation models 
are properly tuned.

The problem of selecting model parameters that are a dependent on environmental condi­
tions is a limitation of the proposed approach. Additional sensors such as an IMU could 
improve reliability. In such a system, the information from the sonar and vision sensors 
could be used to restrict the drift of the inertial navigation solution.

An alternative method for odometry estimation based on stereo vision will be presented in 
Chapter 4.



Chapter 4

Relative Pose Estimation from 
Stereo Vision

4.1 In tro d u c tio n

This chapter investigates methods to estimate the motion of a vehicle using stereo-vision. 

Potential applications include odometry estimation for small or low-cost AUVs, or providing 

loop-closure observations within a SLAM framework to correct dead-reckoning drift.

4.1.1 R equirem ents

The properties of an AUV are significantly different from the indoor and ground vehicles 

that have been the focus of most robotics research. Since the motion of an AUV is not 

constrained to a ground plane, a complete six degree of freedom motion solution must be 

estimated.

Additional requirements for the motion estimation algorithm result from the need for an 

AUV to supply artificial lighting when operating at depths where natural light is not avail­

able. Since lighting is a significant drain on the limited power available onboard an AUV, 

low frame-rates are typically used to prolong mission times. A requirement for the relative 

pose estimation system developed in this chapter is therefore the ability to operate using 

only two stereo image pairs containing a small amount of overlap.

To enable the stereo-vision relative pose estimates to be fused with observations from addi­

tional sensors in a SLAM algorithm, the motion estimator must be unbiased, and a consis­

tent covariance for the estimate errors must be generated. Additionally, individual visual
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motion estimates must be independent from one another, and independent from other mo­
tion observations applied to the filter.

4 .1 .2  R ela ted  R esearch

Estimating the motion of a robot using a stereo-rig has been an active research subject 
for several decades. The most common framework for solving this problem involves finding 
the motion parameters that align sparse sets of triangulated features that are associated 
using visual feature descriptions. This approach was first demonstrated on indoor research 
platforms in the 1970s with the aim of future applications in planetary exploration and 
submersible vehicles [78]. Improvement in feature association algorithms and motion es­
timation error models have resulted in recent implementations of this framework being 
applied to ground vehicles [83, 87] in addition to the originally foreseen applications of 
Mars rovers [13, 86] and underwater vehicles [23, 53].

An alternative stereo odometry approach [76] involves the use of the Iterative Closest Point 
(ICP) algorithm [6] to optimise both features associations and the motion parameters. 
From an initial motion hypothesis, ICP performs an iterative process of guessing feature 
associations (by matching closest points) and optimising the motion estimate for the cur­
rent association hypotheses until convergence occurs. ICP has often been used in robotics 
to calculate the motion of a platform using 3D range scanners such as lasers where no 
distinguishing description of each feature is available. However, since rich visual feature 
descriptions are available, repeatedly guessing associations using geometry is redundant for 
visual motion applications.

A related problem, known as ‘structure from motion’, has been extensively studied by the 
computer vision community [50]. Structure from motion typically involves estimating the 
motion of a monocular vision system and the position of a set of observed features. An 
efficient method to calculate the maximum likelihood structure from motion parameters, 
known as ‘bundle adjustment’ [50, 106], has been adapted for stereo odometry applica­
tions [24, 103].

4.1 .3  T h e R ela tive  P ose E stim ation  P rocess

A typical relative pose estimation algorithm can be divided into four stages: feature ex­
traction, feature association, outlier rejection and motion estimate optimisation. A process 
diagram illustrating the function of each stage is shown in Figure 4.1.

The first two steps in this process can be performed using the algorithms described in Chap­
ter 2. A prior motion estimate can be used to make tracking or association more efficient by



4.1 Introduction 60

Prior Motion Estimate First Pose
(Optional) Stereo Image Pair

Second Pose 
Stereo Image Pair

Outlier Feature 
Tracks

Figure 4.1: The stereo-vision relative pose estimation process

initialising a tracker with better initial location hypotheses or reducing the set of plausible 
matches evaluated in an association algorithm. The compatibility of using a motion prior 
with the independence requirements for relative pose estimates will be discussed in Section 
4.4

In the outlier rejection stage, poorly tracked or incorrectly associated feature are removed 
to prevent corruption of the final motion estimate. This is typically performed using a 
hypothesise and verify framework, in which multiple motion hypotheses are generated and 
evaluated by testing the consistency of the feature observations.

In the last stage of the relative pose estimation process, the remaining inlier features are used 
to generate a final motion estimate. Most motion estimation methods require optimisation



4.2 Relative Pose Estimation 61

of a non-linear cost function, which is performed using iterative algorithms such as Gauss- 
Newton or Levenberg-Marquardt that require an initial parameter hypothesis.
Due to the existence of satisfactory solutions, the feature extraction and association prob­
lems will not receive further attention in this chapter. Motion estimation algorithms suit­
able for the production of motion hypotheses within an outlier rejection framework and the 
calculation of a final motion estimate will be considered in Section 4.2. Outlier rejection 
frameworks are presented and evaluated in Section 4.3.

4.2 R elative Pose Estim ation
In this section, a series of motion estimation algorithms are analysed and tested in simu­
lations approximating odometry and loop-closure conditions. The simulations have been 
performed to gain insights into the consequences of approximations made in the motion es­
timation approaches, and an understanding of the conditions in which the approximations 
are valid. A new approach providing a good trade-off between computational efficiency and 
accuracy will be proposed, and the suitability of each method for the motion hypothesis 
generation and optimisation roles discussed in Section 4.1.3 will be discussed.

4 .2 .1  M e th o d s

M inim isation o f 3D R egistration  Error Euclidean D istances

Estimating the motion of a stereo-rig using by minimising Euclidean registration errors 
was first demonstrated in pioneering vision research applied to indoor robots [78], and has 
more recently been used to calculate stereo odometry on ground vehicles [61, 71] and an 
underwater vision system [53].
Figure 4.2 shows a stereo rig at two poses (a and b) and the positions of a feature relative 
to each pose (°ti and bt * respectively). The feature positions are related by the coordinate 
transformation function

\  =  ‘ R (“t, -  % ) (4.1)

If a set of at least three points are observed by the stereo-rig relative at both locations, 
the pose of frame b relative to pose a can be calculated. In this estimation problem, the 
parameter vector x consists only of the relative pose states

aPbX = (4.2)
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Stereo rig at pose a Stereo rig at pose b

Figure 4.2: The position of feature i is shown relative to two poses of a stereo-rig: a and b. 
The stereo-rig’s reference frame is shown coincident with the left camera.

Let zai and z^ be the observed positions of feature i relative to poses a and b respectively. A 
prediction for the position of feature i relative to pose b can be generated by propagating zaj 
through the coordinate transformation function in Equation 4.1 using the current relative 
pose estimate ap&. The difference between the observed and predicted feature position 
relative to frame b is the 3D registration error

ei =  zbi-  ¡R (zaj -  at6) (4.3)

The registration error measures the fit of the motion model parameters to the feature obser-
T

, the relative,T  ,T
: 1 > e 2 >

vations. For a complete vector of residuals of n features e =  
pose parameters that minimise the sum of square registration error Euclidean distances is 
defined by

x =  argmin
X

=  argmin
X

(4.4)

The most attractive property of this approach is the existence of a closed form solution,



4.2 Relative Pose Estimation 63

Input:
• The observed positions of a set of n points relative to frames a and b: {z ai, za2 , z an} 

and {z^i, z^25 •••! zbn}-
Output:

• A relative pose estimate apb =  [at^, ]T that minimises the sum of square registra­
tion errors (eJei)i where e* is defined in Equation 4.3.

Procedure:

1: a X (Zai)/n
¿=1 

n

E ^ )/ n
i=1 

n

3: C < - E ( Zbi ~ b ) ( z ™ ~  a)T

2: b

i=l
4: [ U , D V ]  «— s v d (C )

T O  0
5: S < - 0 1 0

_0 0 d e t ( U V T)_

6: U S V T
7: ai b < - a  — a R Tb
8: axl)b <— m a t r i x T o E u le r (

Algorithm 4.1: Calculation of the relative pose minimising the sum of square registration 
error Euclidean distances.

allowing for efficient calculation of the optimal parameters. Equation 4.4 is typically solved 

using an algorithm based on the singular value decomposition (SVD) matrix factorisa­

tion [48, 107]. The psuedocode of the implementation used to test this motion estimation 

method in simulation is listed in Algorithm 4.1.

Some variants of this approach weight individual registration errors with the inverse of the 

distances to the features, since distant features are triangulated less accurately than those 

closer to the cameras. In any case, this method does not correctly consider the uncertainties 

in triangulated 3D feature positions that are known to have larger errors in depth than other 

directions.

Minimisation of 3D Registration Error Mahalanobis Distances

Estimating the motion of a stereo-rig by minimising registration error Mahalanobis distances 

was proposed in [73], where it is suggested that the the least-squares Euclidean distance
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method produces noisy motion estimates due to the fact that it ignores the uncertainties in 
the triangulated feature positions. Fitting a Gaussian distribution to each triangulated fea­
ture and weighting the registration errors appropriately was shown to result in an improved 
motion estimator. This method was originally applied to indoor robots and has since been 
applied to ground vehicles on Earth [85, 87] and Mars [13].

If the distribution of errors in the triangulated 3D feature estimates relative to the stereo-rig 
frames a and b are Gaussian with covariance S ai and respectively, the covariance of the 
registration error e* defined in Equation 4.3 is

S e,[x] =  S 6i +  t R ( E 0, )aRT (4-5)

Note that the registration error covariance is a function of the estimated motion parameters 
since the uncertainty of the feature positions must be propagated to a common reference 
using the current relative pose estimate.

Assuming independent feature observations, the complete covariance of the residuals for n 
features is the block diagonal matrix

E c jx ] 0 0 0

0 S £2[x] 0 0

0 0 0

0 0 0 S €n[x]_

(4.6)

The relative pose estimate that minimise the sum of square registration error Mahalanobis 
distances is given by

x =  argmin ^eT(E €[x])-1€^ (4.7)

=  argmin V  e ^ E ^ x ] ) - ^  
x \i= l

Since no closed-form solution is available, Equations 4.7 must be solved using an iterative 
optimisation algorithm starting from an initial parameter estimate (such as the Euclidean 
solution).

Unfortunately, the objective function in Equation 4.7 is not a standard least squares problem 
like those presented in Appendix C, since the weighting matrix is a function of the estimated 
parameters. In [85, 87], this problem was alleviated by approximating the registration 
error covariance S €[x] as a constant in each iteration of an algorithm equivalent to the 
Gauss-Newton method presented in Appendix C.3.1. While this simplification results in an



4.2 Relative Pose Estimation 65

objective function that can be solved by standard optimisation algorithms, it also results 
in an approximate calculation of the objective function gradient that is used to update the 
estimated parameters.
An alternative approach is to convert the weighted least squares problem of Equation 4.7 
into an ordinary least-squares problem using the technique described in Section C.1.3. The 
conversion is performed by defining the standardised residual as

(4 -8 )

Equation 4.7 then becomes an ordinary least-squares problem

x = argmin ((e°)T (4.9)

This method is computationally inefficient because the weighting matrix y  (Eg x) needs to 
be recalculated at each iteration since it is a function of the parameters being optimised. 
In simulations presented in Section 4.2.2, this method is implemented to understand the 
consequences of the constant weight matrix approximation.
An additional issue with the minimum Mahalanobis distance approach arises when at­
tempting to calculate the covariance of the motion estimates produced by Equation 4.7. 
The Jacobian of the coordinate transformation function in Equation 4.1 with respect to 
the motion parameters is required, however this must be evaluated at some estimate of the 
feature positions. While the maximum likelihood feature parameters could be calculated 
for the estimated motion, this will not be performed since it is inconsistent with the goal of 
this approach which aims to eliminate the structure parameters from the estimation pro­
cess. Since no better feature position estimates are available, the Jacobian is evaluated at 
the observed triangulated feature positions zai

d “ ((>b (4.10)

The complete Jacobian for the estimates of all n features relative to pose b is then V = T
v7 vT vTv 1 > v  2 i • • • v  n , and the covariance of the estimated parameters is

S x = (V TS - 1V ) -1 (4.11)

In the simulations presented in Section 4.2.2, the covariance produced using this method 
will be compared to solutions where the maximum likelihood feature positions are estimated
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from the observations acquired at both poses.

M inimisation of 2D Image Reprojection Errors in One Pose

In contrast to the two previous methods that used 3D registration error residuals, image 
based quantities will now be considered to measure the fit of a motion hypothesis to the 
observed data.

If the position of a feature is triangulated from observations in images in frame a, given a 
hypothesis of the motion parameters it is then possible to reproject the 3D feature location 
into the images at frame b to obtain the expected feature coordinates. The reprojected 
image coordinates can be compared with the actual observed image coordinates to measure 
the quality of the motion estimate. Investigation of this error model has been inspired 
by the used of robustified reprojection errors in the images at one pose to score motion 
hypotheses in a ground vehicle stereo odometry application [82, 83].

As in the 3D registration methods, the parameter vector for this estimation problem consists 
only of the relative pose states

x = (4.12)

The observation vector for feature i has the form

c6r*

where and c&ri are the observed image coordinates (in pixels) of feature i in the left and
right images acquired at pose b.

The triangulated 3D position of a feature relative to frame a (za{) is reprojected into the 
left and right image of the stereo rig at pose b, forming the predicted observation

(4.13)

¿i = fi[x] (4.14)

proj[apw,z ai]
_Proj[aPbr,Zai]_

where proj[-, •] is the image projection function of Equation 2.8, and ° p and °p^ represent 
the estimated pose of the left and right cameras at pose b relative to pose a. These pose 
estimates can be calculated with

“pm = “Pb © sPi 

“Ptr =  “Pt> © “Pr

(4.15)

(4.16)
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in which sp/ and spr are the pose of the left and right cameras relative to the stereo­
rig’s reference frame (known from calibration), and © is the head to tail pose composition 
operation defined in Appendix A.

The Jacobian of the observation model in Equation 4.14 with respect to the estimated states 
is

V i  =
dfi[x]

<9x X

ap rojfap w,atil
dap 6 (aPbi=aPfaZ,at i = z ai)

dp roj[ap bi,ati]
daPb ( a p b i = a p b i , a t i = Z o i ) _

dproj[ap w,atJ T  ______
daPbi ( a P 6 Z = a P 6 i , a t i = Z a i )

#© n °P b , p u

dproj[ap6i,attl
/ - J © l ( ap b,sp r ) 
(ap bi= “ p bi,at i = z ai)daP bl

(4.17)

The residual for feature i is the reprojection error, defined as the difference between the 
observed and reprojected image coordinates

€-i —  Z j (4.18)

The optimal relative stereo pose parameters for this error model are given by

x =  argmin ^£Te  ̂ (4-19)

/ n

=  argmin
x \i=i

There is no closed form solution for Equation 4.19, therefore it must be solved using an 
iterative optimisation algorithm.

The uncertainty of the feature positions triangulated in frame a are not considered by this 
method. It can be seen from Equation 4.19 that image errors in all directions are treated 
equally (there is no non-uniform weight matrix), however it is known that the uncertainty of 
triangulated features is not equal in all directions (uncertainty in depth is typically greater). 
Errors in the triangulated feature positions are propagated to image coordinate errors, so 
it could be expected that this method will produce sub-optimal results. The effects of 
ignoring triangulated feature uncertainties will be investigated when this method is applied 
to simulated data in Section 4.2.2.



4.2 Relative Pose Estimation 68

Bundle Adjustment

Bundle adjustment [50, 65, 106] is commonly used to estimate camera motion, scene struc­
ture and camera calibration model parameters from a sequence of images. Bundle adjust­
ment has typically been used in monocular vision structure from motion problems, where 
features are observed over potentially long sequences of images. There has recently been 
interest in applying bundle adjustment to stereo odometry in [103], and [24] in which a 
robustified version of the bundle adjustment cost-function is used.

A possible reason for the lack of interest in bundle adjustment in robotics may be concern 
for the speed of large optimisation problems in applications that must run in real-time. This 
should not be a issue for the target AUV application where low frame rates mean features 
are likely to only be visible in consecutive image pairs.

In this application, the use of a calibrated stereo rig is assumed. Bundle adjustment will 
be used to calculate the maximum likelihood motion and feature position parameters. If n 
features are observed, the parameter vector is

°Pò
° t l

(4.20)

Image reprojection errors will be used to evaluate the fit of a set of model parameters to the 
observed feature image coordinates. Since the feature positions are estimated, the repro­
jection errors in the images acquired at both poses a and b are a function of the estimated 
parameters. This is in contrast to the previously presented approach that minimised image 
reprojection errors in one stereo image pair only.

The observation vector for n features is z = z 7 , z j , . . . , z j
-.T

, where each z* contains the
image coordinates of feature i in the left and right images acquired at pose a (ca;i and cari ) 
and pose b (c¿,/i and c¿,ri)

c ali

Z i =
c bli

c brt

(4.21)



4.2 Relative Pose Estimation 69

The observation model has the form

z = f [x]
Zl

¿2

in .

in which the predicted observation for each feature is

z i = fi[x]
proj[spi,ati]

proj [Spr , ati] 
proj[ap w,at f] 
p roj [apbr , atf]

(4.22)

(4.23)

The residual vector is defined as
e =  z — z (4.24)

and the maximum likelihood parameter estimate is defined by

x = argmin
X

in (4.25)

Under the assumption of independent observations, the observation covariance matrix has 
the form

0 0 0
0 0 0

0 0 0
0 0 0 Sz,

(4.26)

in which XZl is the covariance of the image coordinates for feature i. 
The estimate covariance is given by

E x = (V TE~i V )-1 (4.27)

where V is the Jacobian of the observation model with respect to the parameter states,
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which has the sparse form

V  = « [* ]
ax X

l~Al
Bi 0 0 0

A 2 0 B2 0 0

0 0 0
.A n 0 0 0 Bn

(4.28)

where each A* represents the Jacobian of the predicted observation of feature i with respect 
to the relative pose states

Ai =
dfj[x]
d ap b X

0
0

<9proj[apbi,ati]
-----3 ^ ----
dproj[ap 6r,ati]

^ :

( aP6/,at i )

( aPbr ,at i )

J©i(aPk,sPi)

J © l ( aPb,5Pr)

(4.29)

and each B; represents the Jacobian of the predicted observations of feature i with respect 
to the states of feature i

B i =
<9fj[x]
dat i

^Pr° j [ 3Pf ,Qtj] 
d̂ Ti

a p ro j[3p r ,atj] 
dat i

dprojfaPb;,at,

a p ro j[apbr,ati
d ^ ti

(“*•)

(-ti)

(°Pu,“t.)

(4.30)

The bundle adjustment optimal parameter estimate and covariance are typically performed 
using a variant of the Levenberg-Marquardt algorithm which takes advantage of the sparse 
observation Jacobian [50, 65]. A brief description of the sparse Levenberg-Marquardt algo­
rithm is provided in Appendix C.
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A New Proposai: Efficient Maximum Likelihood 3D Registration

Two issues with the minimum Mahalanobis 3D registration error were previously identi­
fied. First, it required optimisation of an objective function that was not a standard least 
squares problem. Second, the maximum likelihood parameters of the feature states were 
not calculated, forcing the system to be linearised at a suboptimal estimate when calcu­
lating the covariance of the solution. In this section, a motion estimation method that 
combines the best aspects of the 3D registration and bundle adjustment approaches will be 
presented. The proposed approach calculates the maximum likelihood motion and structure 
parameters using the 3D registration error model.
The triangulated 3D feature positions provide an accurate summary of the raw image coor­
dinate observations, therefore this method is expected to generate similar results to bundle 
adjustment. However, since the triangulated 3D feature positions are a more compact and 
convenient representation of the observations than the image coordinate data, this approach 
can be expected to have a computational efficiency advantage over bundle adjustment.
As in the bundle adjustment approach, the parameter vector will contain the motion pa­
rameters and the position states for n features

“Pò
“ti (4.31)

The observation vector consists of the feature positions relative to frame a and b calculated
Tthrough triangulation z =

' 1  5 ^2 5 • • • 1 " n ’
where

z i =
%ai 

Zbi
(4.32)

The observation model has the form

z = f [x]
Zl
¿2

_Z„.

(4.33)
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where the predicted observation for each feature consists of its position relative to frame a 
and b

z i = f*[x] (4.34)
aii

'  jR (ati -  at6)_
The observation model is relatively simple when compared to that of bundle adjustment 
in Equation 4.23. Summarising the observations of a feature using the triangulated 3D 
position results in a smaller observation vector of six states for two 3D feature positions, 
instead of the eight states for four sets of image coordinates used in bundle adjustment. 
Additionally, the observation model consists of a single transformation to the frame of the 
second stereo-rig pose, compared to bundle adjustment in which the 3D feature position 
estimate must be transformed to each of the four camera frames, and then projected to 
image coordinates.
The maximum likelihood estimate and covariance are given by

x = argmin cTE “ 1£ (4.35)
X

£ x = (V t£ - 1V ) - 1 (4.36)

The Jacobian of the observation model with respect to the parameters has the same sparse 
form as the bundle adjustment approach, allowing Equations 4.35 and 4.36 to be solved 
using the sparse Levenberg-Marquardt algorithm described in Appendix C.
The Jacobian is

9f[x]
a x X

l ~ A l B
a 2 0

! ; 0

A  n 0

(4.37)
0 0 0

B 2 0 0
0 0
0 0 B n

where the Jacobian of the predicted observations of feature i with respect to the relative
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pose states is

0 0 0 0

a (“t i - at6) d*ë~b . ,  ( ° t i - at6) 5«R
datpb ‘ Vv J

(4.38)

and the Jacobian with respect to the feature states is

B r =
df*[x]
dat i 

1

(4.39)

Note the difference in Equation 4.38 to the Jacobian of the minimum Mahalanobis distance 
algorithm in Equation 4.10. In Equation 4.10, the system was linearised around the ob­
served feature position zaj, while in Equation 4.38 the system is linearised at the maximum 
likelihood feature position at w h i c h  is produced by fusing observations from both poses.

In Section 4.2.2 the accuracy and efficiency of the maximum likelihood 3D registration 
approach will be compared to bundle adjustment to understand the effect of using the tri­
angulated feature position observation representation instead of the raw image coordinates. 
This method will also be compared to the minimum Mahalanobis distance algorithm to 
understand the consequences of eliminating the structure parameters from the estimated 
state vector.

4.2 .2  Simulation

To compare the proposed relative pose estimation methods, each has been applied to sim­
ulated data approximating odometry and loop-closure conditions.

Modelling

The simulations have been modelled on the stereo-rig onboard the Seabed AUV (see Ap­
pendix B), and the typical operating conditions of the vehicle. The stereo cameras are 
oriented to look downwards to the seafloor, have a horizontal field of view of 40°, a vertical 
field of view of 30°, and are separated by a 70mm baseline. Simulated image coordinate 
of feature observations are corrupted by Gaussian noise with a standard deviation of 0.4 
pixels.
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In all simulations, the stereo-rig is initially located 2m above the seafloor, which is a typical 
operating altitude for the SeaBED AUV. The seafloor is simulated as a plane, which is the 
least informative surface and a reasonable model for the flat sand or rock terrains often 
encountered underwater. To simulate odometry conditions, 50 features are observed as the 
stereo-rig moves forward 0.5m (a translation of -0.5m in the stereo-frame y-axis as shown in 
Figure 4.2). To simulate loop-closure conditions, 6 features are observed and the stereo-rig 
is translated 0.3 metres in each of the x, y and 2 axes, undergoes roll and pitch 10° and a 
yaw of 90°.

Im plem entation  D etails

The Euclidean distance method has been implemented using the procedure described in 
Algorithm 4.1.

Three approaches to minimising the minimum Mahalanobis registration error cost function 
have been implemented to gain an understanding of the effects of the approximate linearisa­
tion: The Gauss-Newton algorithm using the constant approximation to the weight matrix 
during each iteration as described in Section 4.2.1 (equivalent to the iterative linearisation 
algorithm used in [85, 87]), the Levenberg-Marquardt algorithm using the same approxima­
tion, and the Levenberg-Marquardt algorithm using the weighting procedure described in 
Section 4.2.1 that leads to a correct linearisation.

Minimising the image reprojection error at one pose has been implemented using the 
Levenberg-Marquardt algorithm described in Section C.3.2. The bundle adjustment and 
maximum likelihood 3D registration methods have been performed using an implementa­
tion of the sparse Levenberg-Marquardt algorithm [65].

All iterative optimisations have been performed using the minimum Euclidean distance 
solution as an initial motion parameter hypothesis. The triangulated observed feature 
positions relative to the first pose of the stereo-rig have been used as initial structure 
parameter estimates for the bundle adjustment and maximum likelihood 3D registration 
algorithms.

The minimum gradient magnitude and minimum step size relative magnitude termination 
parameter values used in all optimisations were c\ =  le~5 and 62 =  le~5 respectively, 
and the initial damping factor ¿¿0 =  le -3 was used in all applications of the Levenberg- 
Marquardt algorithm (see Appendix C for an explanation of these parameters).
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Evaluation

The odometry and loop-closure simulations have each been performed 50 times. Plots 
showing the errors for each motion estimator are presented in Appendix E. The results of 
the odometry simulations are summarised in Tables 4.1 and 4.2, which list the mean and 
root mean square errors for each motion estimation method. The results of the loop-closure 
simulations are summarised in Tables 4.3 and 4.4.

Since bundle adjustment calculates the maximum likelihood motion parameters from the 
raw observations, it will be considered the benchmark to which the alternative approaches 
are compared. As expected, no significant biases are present in the bundle adjustment 
errors in Tables 4.1 and 4.3, and the root mean square errors are equal or better than the 
other methods in Tables 4.2 and 4.4. Additionally, in the plots presented in Appendix E, 
the bundle adjustment estimator errors are well bounded by the 95% confidence intervals.

The Euclidean relative pose estimator displays significant biases in Tables 4.1 and 4.3, and 
large errors are listed in Tables 4.2 and 4.4. This is consistent with the poor accuracy 
expected from this approach, since it ignores the uncertainties in the triangulated feature 
positions. However, due to the existence of a closed form solution, the Euclidean estimator 
remains useful as an initialisation point for iterative optimisation algorithms.

To produce the summaries for the minimum Mahalanobis 3D registration error method 
in Tables 4.1, 4.2, 4.3 and 4.4, the weighting procedure resulting in correct linearisation 
has been used. Figure 4.3 compares the convergence of all three algorithms considered 
to optimise the Mahalanobis registration error objective function. The Gauss-Newton al­
gorithm using the approximate linearisation fails to converge from the initial estimate in 
Figure 4.3(a), while partial convergence is also demonstrated by both the Gauss-Newton 
and Levenberg-Marquardt algorithms in all simulations. The approximate linearisation also 
results in slower convergence towards the optimal solution. The correctly linearised method 
displays complete convergence, however the maximum likelihood 3D registration algorithm 
is a more efficient method that obtains the same solution.

Calculating the motion covariance is also a problem with the Mahalanobis distance method. 
In the odometry simulation plots of Appendix E.l, the covariances obtained by evaluating 
the observation model Jacobians at the observed feature positions do not diverge from the 
maximum likelihood solution, since the translation-only camera motion causes the obser­
vation model to be linear. However, when the camera motion includes a rotation, as in 
the loop-closure simulations plots shown in Appendix E.2, the covariances diverge from the 
maximum likelihood solutions due to the linearisation of the observation model at a poor 
estimate.
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Method x (cm) y (cm) z (cm) 0 (deg) 6 (deg) ^ (deg)
Euclidean Error -0.5844 -0.0543 0.0372 -0.0181 0.1597 -0.0109
Mahalanobis Error 0.0223 -0.0397 0.0090 -0.0162 -0.0058 0.0023
One Pose Reprojection Error -0.0083 9.5059 -1.0904 2.6983 0.0016 0.0023
Bundle Adjustment 0.0224 -0.0555 0.0090 -0.0161 -0.0058 0.0022
ML 3D Registration 0.0223 -0.0396 0.0090 -0.0162 -0.0058 0.0023

Table 4.1: Mean errors in relative pose estimates from 50 odometry simulations.

Method x (cm) y (cm) z (cm) (f) (deg) 6 (deg) (deg)
Euclidean Error 1.7813 4.6611 0.6905 1.3282 0.4909 0.0596
Mahalanobis Error 0.1899 0.3808 0.0459 0.1059 0.0525 0.0195
One Pose Reprojection Error 0.8476 9.9944 1.1429 2.8374 0.2376 0.0687
Bundle Adjustment 0.1897 0.3836 0.0459 0.1060 0.0525 0.0196
ML 3D Registration 0.1899 0.3808 0.0459 0.1059 0.0525 0.0195

Table 4.2: Root mean square errors in relative pose estimates from 50 odometry simulations.

Method x (cm) y (cm) z (cm) (f> (deg) 6 (deg) V» (deg)
Euclidean Error 1.8161 1.4390 0.6998 -0.6056 -0.5143 -0.0004
Mahalanobis Error 0.5179 -0.5800 -0.0017 -0.1797 0.1851 -0.0302
One Pose Reprojection Error -6.0672 -14.2023 2.0970 2.1482 4.7556 0.6300
Bundle Adjustment 0.4997 -0.5721 0.0105 -0.1711 0.1854 -0.0286
ML 3D Registration 0.5180 -0.5798 -0.0017 -0.1797 0.1851 -0.0302

Table 4.3: Mean errors in relative pose estimates from 50 loop-closure simulations.

Method x (cm) y (cm) z (cm) 4> (deg) 6 (deg) (deg)
Euclidean Error 10.4160 15.2057 2.0339 3.5267 5.1324 0.5655
Mahalanobis Error 3.2691 4.3823 0.5137 1.1189 1.4558 0.2492
One Pose Reprojection Error 9.4160 16.2907 2.6552 3.3206 5.4583 0.8584
Bundle Adjustment 3.2646 4.3673 0.5153 1.1173 1.4508 0.2496
ML 3D Registration 3.2690 4.3823 0.5136 1.1189 1.4558 0.2492

Table 4.4: Root mean square errors in relative pose estimates from 50 loop-closure simula­
tions.
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The relative pose estimates produced by minimising image reprojection errors at only one 
pose show significant biases in Tables 4.1 and 4.3. This is a result of the uncertainty in 
feature observations relative to frame a not being considered in the cost function. As demon­
strated in Figure 4.4, this estimator favours motion hypotheses that orient the cameras to 
look in the direction of largest uncertainty in the feature positions. Since the uncertainty 
in the depth of a triangulated feature position is much larger than in other directions, when 
applied to the odometry simulations, the estimator incorrectly explains the observations 
using a pitching motion.

Figure 4.5 shows the average errors in the x-axis position and pitch angle estimates produced 
by minimising image reprojection errors in only one pose, as the pitch of the stereo-rig is 
varied between 0° for downward looking cameras, and 90° for forward looking cameras. The 
simulations have been repeated for varying numbers of features and different variances in 
the feature z-coordinates in the world frame (deviation from a planar ground surface). As 
expected, the estimator biases are smaller with forward looking cameras whose principal 
axis is aligned with the direction of motion. While a robustified version of the one-pose 
reprojection error cost function has been used successfully to score motion hypothesis in 
a ground vehicle application with forward looking cameras [82, 83], the bias produced 
when simulating downward looking cameras operating above a planar seafloor suggests this 
approach may be unsuitable for the target AUV application.

In Tables 4.1, 4.2, 4.3 and 4.4, the maximum likelihood 3D registration method produced 
near identical results to bundle adjustment. Additionally, in the simulation plots presented 
in Appendix E, the errors are well bounded by the 95% confidence intervals. Figure 4.6 
displays the processing time required to calculate the bundle adjustment and maximum 
likelihood 3D registration estimates for both odometry and loop-closure simulations. Pro­
cessing times were collected on a 2.0 GHz Pentium M processor. As expected, the more 
compact and convenient observation representation of the maximum likelihood 3D registra­
tion method results in a significant gain in computational efficiency.

To test the assumption that the Euclidean solution is a valid initialisation point for the 
iterative optimisation algorithms, the simulations have been repeated using the true motion 
parameters as the initial estimate. In Figure 4.7, the iterative optimisation algorithms con­
verge to the same minimiser when initialised with the Euclidean solution or true parameters, 
suggesting the Euclidean solution is indeed a suitable initial parameter estimate.

Due to its ability to produce estimates similar to bundle adjustment with greater computa­
tional efficiency, the maximum likelihood 3D registration method initialised at the Euclidean 
solution will be used in relative pose estimation problems in this thesis.
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(a) (b)

(c) (d)
Figure 4.3: Convergence of Mahalanobis distance minimisation algorithms in four simula­
tions. The Gauss-Newton algorithm using the approximate linearisation fails to converge 
from the initial estimate in (a), while partial convergence is also demonstrated by both 
the Gauss-Newton and Levenberg-Marquardt algorithms in all simulations. The approx­
imate linearisation also results in slower convergence towards the optimal solution. The 
Levenberg-Marquardt algorithm using the weighting technique to produce a correct lineari­
sation converges to the correct solution, however it is computationally inefficient.



4.2 Relative Pose Estimation 79

Estimateci stereo-rig pose b

Figure 4.4: Bias caused by minimising image reprojection errors at only one pose. The 
location of a feature on the terrain is marked by a circle. The estimated feature position 
calculated by triangulating the observations at pose a is marked with a square, and the 
uncertainty is shown with an ellipse. Minimising image reprojection errors only in the 
images acquired at frame b results in an estimator favouring a rotation that causes the 
cameras to look down the direction of largest feature uncertainty. The bias is caused by the 
estimator ignoring the uncertainty in the triangulated feature position, which is not equal 
in all directions.
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Figure 4.5: Bias in the estimated relative x-position and pitch estimates produced by 
minimising image reprojection errors at only one pose. A pitch of zero degrees corresponds 
to the stereo-rig looking downwards towards the seafloor, while a pitch of 90 degrees results 
in the cameras looking forwards in the direction of motion. 50 simulations were performed, 
and the average error in the relative pose estimate states are plotted as a function of the pitch 
of the stereo-rig relative to the vehicle. The simulations have been performed with varied 
values for the number of features (n) and the standard-deviation of the z-axis positions of 
the features in the world frame (z-std).
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Figure 4.6: Comparison of the computational efficiency of the bundle adjustment and 
maximum likelihood 3D registration estimators for odometry and loop-closure simulations. 
The processing times were collected on a 2.0 GHz Pentium M processor. 50 features were 
used in the odometry simulations, while 6 features were used in the loop-closure simulations.
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(a) X-position error (b) Y-position error

(c) Z-position error (d) Roll Euler angle error

(e) Pitch Euler angle error (f) Yaw Euler angle error

Figure 4.7: Errors in relative pose estimates from iterative optimisation algorithms. The 
optimisation algorithms have been initialised at the true motion parameters and the min­
imum Euclidean error solution. The algorithms converge to the same solution, suggesting 
the Euclidean solution is a valid initial parameter hypothesis.
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4.3 O u tlie r R ejection
In Section 4.2, several motion estimation algorithms were evaluated when applied to simu­
lated data in which the feature observation errors were distributed according to a zero-mean 
Gaussian as expected by the observation model. Unfortunately, a significant portion of fea­
ture observations are often outliers that are inconsistent with the assumption of normally 
distributed errors, and the least-squares estimators previously investigated are known to be 
highly sensitive to such data. In this section, outlier rejection approaches will be investi­
gated to enable relative pose estimates to be produced from data corrupted with the types of 
errors typically found in real image data. The maximum likelihood 3D registration relative 
pose estimator previously selected for its performance on outlier-free data will provide the 
preferred method for generating motion hypotheses within the outlier rejection algorithms.
Typical causes of feature observation outliers include location errors, association errors and 
moving objects. Location errors result from failures in the extraction or tracking algorithms 
that calculate the image coordinates of a feature. Causes of location errors include varia­
tion in the visual appearance of a feature at different viewpoints and inconsistent lighting. 
Detection of location outliers can be difficult since the magnitude of their errors is typi­
cally small. Association outliers are caused by incorrect matching of features observed in 
different image frames. The image coordinate errors produced by association failures are 
typically large, and can therefore cause wildly incorrect motion hypotheses if they are not 
removed from the estimation process. The outliers produced by moving objects are similar 
to association errors, since the observed feature coordinates in each stereo image pair are 
consistent, however their apparent movement between image pairs is not compatible with 
the motion of the cameras. An additional concern with moving objects is their ability to 
produce multiple features that are inconsistent with the true camera motion, but consistent 
with each other. This is likely to result in a scenario in which one outlier masks the presence 
of others, increasing the difficulty of their detection.
The simplest form of outlier rejection when using a calibrated stereo rig is the application 
of epipolar geometry constraints on the observations of a feature within a stereo image pair. 
While epipolar geometry constraints can reject many location outliers, feature observations 
containing errors parallel to epipolar lines cannot be detected. Additionally, outliers caused 
by association errors and moving objects may contain feature coordinates that are consistent 
with epipolar geometry in each image pair. While epipolar constraints should be applied to 
features observations extracted from each stereo image pair, there is a need for an additional 
outlier rejection method that considers observations from multiple image pairs.
The outlier rejection approaches investigated in this section require two components: a 
method to generate motion hypotheses, and a test to determine if the observations of a
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feature are consistent with a motion hypothesis.

In Section 4.3.1, options for outlier classification tests will be presented. In section 4.3.2, 
two frequently used outlier rejection frameworks will be briefly summarised, and the devel­
opment of an approach to create motion hypotheses using robust estimation is presented. 
Combinations of motion hypothesis generators and outlier classification tests will be evalu­
ated on simulated data in Section 4.3.3.

4.3.1 O utlier C lassification  T ests

Outlier tests based on image reprojection errors [13, 60] and 3D point registration residu­
als [85, 87] have been proposed in stereo-vision motion estimation applications. Since the 
maximum likelihood 3D registration motion estimator was selected in Section 4.2, outlier 
classification methods based on 3D registration residuals will be considered here.

3D R egistration  Error Euclidean D istance Test

Recalling Equation 4.3, the 3D registration error for feature i is

ei =  zbi -  baR (zai -  atb)

The Euclidean inlier acceptance test for feature i is

Feature i is an
inlier,
outlier,

if ejet < ke 
if ejei > ke

(4.40)

where the scalar ke is the square Euclidean error threshold.

The selection of a threshold for the Euclidean test could be expected to be difficult, since 
registration errors are not distributed equally in all directions, and the triangulated positions 
of different features will have varying levels of uncertainty. The performance of a given 
threshold will vary with different applications and environments. A conservative threshold 
may be required to prevent the rejection of a large number of valid features, which is likely 
to result in the acceptance of misclassified outliers that will corrupt the final relative pose 
estimate.

3D R egistration  Error M ahalanobis D istance Test

In Section 4.2 it was shown that consideration of feature observation uncertainties resulted 
in an improved motion estimator. It could be expected that the consideration of the regis-
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tration error uncertainties will similarly yield an outlier classifier with superior performance 
to the Euclidean error test.

The registration error covariance for feature i was defined in Equation 4.5 to be

Sei = Sw + ‘ R E nijRT

The Mahalanobis inlier acceptance test is then

Feature i is an
inlier,
outlier,

if eTUe/ei < km 
if eJJE ~ 1e i > k m

(4.41)

where km is a scalar threshold .

While the main motivation for the Mahalanobis distance test is an expected improvement in 
classification performance, an additional benefit is theoretical justification for the selection 
of a threshold. Since the square registration error Mahalanobis distances are distributed 
according to a chi-square distribution with three degrees of freedom, the expected inlier 
acceptance rate for a given threshold can be obtained from statistical tables. For example, 
95% of inliers should be accepted with a threshold of 7.815 (accurate to three decimal 
places). In contrast to a threshold for the Euclidean error test, the expected performance 
for a Mahalanobis test threshold is constant for all environments and applications.

4.3.2 R ela tive  P ose  H yp oth esis  G eneration  Fram eworks

To classify features as inliers or outliers using the Euclidean or Mahalanobis test, a hypoth­
esis for the relative pose parameters must first be generated. The two most commonly used 
hypothesis generation frameworks in stereo odometry applications are iterative rejection 
and RANSAC. Recently an alternative method using a modified RANSAC algorithm that 
minimises a robust cost function based on image reprojection errors has been used [82, 83]. 
This approach could be considered an M-estimator evaluated using multiple initial param­
eter hypotheses.

After briefly describing the iterative rejection and RANSAC approaches, the main focus 
of this section will be the development of a robust relative pose estimator by gaining an 
understanding of the effects of the M-estimator parameters on the final solution. The 
performance of the robust estimation hypothesis generation method will then be compared 
to the iterative rejection and RANSAC frameworks under simulation in Section 4.3.3.
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Iterative Estimation and Rejection

A simple outlier rejection approach is produced by iteratively estimating the motion param­
eters using all features considered inliers (initially all features), and rejecting those features 
that are evaluated to be outliers due to inconsistency with the motion estimate. This two 
step process is repeated, generating a sequence of parameter hypotheses converging to an 
estimate produced by a consistent set of features classified as inliers.

Iterative outlier rejection approaches have been applied to ground vehicle stereo odome- 
try applications in [85, 87] in which motion estimates are generated using the minimum 
Mahalanobis registration error method, and [104] in which motion estimates are produced 
using bundle adjustment. Different strategies have been used in the selection and number 
of outliers rejected in each iteration. In [85, 87] the worst matching features with a residual 
greater than a threshold are eliminated, and in [104] the mean and standard deviation of the 
residuals are calculated, and all features with residuals more than 1.5 standard deviations 
from the mean are classified as outliers.

The iterative rejection framework will be tested by rejecting the feature with the largest 
squared error (Euclidean or Mahalanobis depending on the rejection test being used) if it 
is larger than the outlier rejection threshold. If rejecting the feature evaluated as the worst 
outlier is assumed to improve the motion estimate, the decision to discard one feature at a 
time results in the most robust possible implementation of the iterative rejection approach 
at the cost of the computational efficiency that could be achieved by rejecting multiple 
features in each iteration. The algorithm terminates if all remaining features are classified 
as inliers, or if less than three feature remain, in which case a motion hypothesis cannot be 
calculated and all remaining features are classified as outliers.

The robustness of the iterative rejection algorithm could be expected to be limited, since 
least-squares estimators are known to be highly sensitive to outliers. Feature observations 
with large errors are likely to corrupt the motion hypotheses such that the classification of 
inliers and outliers is unreliable.

RANSAC

The RANdom SAmple Consensus (RANSAC) algorithm [30, 50] aims to find a parameter 
estimate uncorrupted by outliers through the evaluation of multiple hypotheses generated 
from minimal subsets of features. Each minimal set contains the smallest number of features 
required to generate a motion hypothesis, and the support for each hypothesis is measured 
by counting the number of features with observations compatible with the motion param­
eters. The hypothesis evaluated to have the highest level of support is selected, and data
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points inconsistent with the chosen parameter estimate are rejected as outliers. Examples 
of the RANSAC approach applied to stereo odometry include [1, 13, 53, 60] in which motion 
hypotheses are generated using the Euclidean method.

The number of hypotheses generated and evaluated in a RANSAC algorithm is calculated 
to provide a specified level of certainty that at least one of the minimal sets consists only 
of inliers. If the fraction of outliers in a set of data is a, and the number of data samples 
required to generate a hypothesis is n, the probability that at least one of m sample sets 
contains inliers only is given by

p = i  — ( i  — ( i  — a ) n  ) m (4.42)

The number of iterations required to achieve a desired confidence level p that at least one 
sample set contains inliers only is then

ln(l - p )

In (l — (1 — a )n)
(4.43)

In most applications, the fraction of outliers cannot be known in advance. The adaptive 
RANSAC algorithm [50] maintains an estimate of the outlier ratio by initially assuming a 
conservatively large value, which is then updated after each hypothesis is evaluated.

While RANSAC is designed to produce a minimal set containing no outliers, even inlier 
observations contain noise that will be propagated to a motion estimate. Only the sparse 
discreet points in the parameter space generated from minimal sets can be investigated by 
RANSAC, and no minimal set is likely to produce the true motion parameters, no matter 
how many iterations are performed. For this reason, good outlier classification with the 
RANSAC approach may only be expected when a clear separation between inliers and 
outliers exists, allowing the use of a conservative test threshold that compensates for errors 
in the motion hypotheses.

The Mahalanobis test of Equation 4.41 will produce the expected inlier acceptance rate 
only when the tested motion hypothesis approaches the true motion parameters, therefore 
the RANSAC method can be expected to have a lower inlier acceptance rate than predicted 
from the chi-square distribution statistics. Reliable generation of a motion hypothesis ap­
proaching the true parameters requires some filtering or optimisation over a larger portion 
of the data than a minimal set.
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R obust E stim ation

The sensitivity of least squares estimators to erroneous data has motivated the develop­
ment of robust statistical methods that provide superior resistance to outliers. An M- 
estimator [55] (maximum likelihood type estimator) will be considered for generating rela­
tive pose estimates from feature observations containing outliers.

The maximum-likelihood 3D registration motion estimator described in Section 4.2.1 min­
imised the sum of square normalised residuals

n
x =  argmin ^  e j E '/c*  (4.44)

x  *=l

Defining the normalised residual for feature i as ri — \JeJ'EZl1€i, an M-estimator minimises 
the sum of a function of the residuals

n

x* = argmin J 2 p ^  (4-45)
x • ii=i

where p is an increasing function with a slower growth-rate than least-squares, preventing 
large outliers from dominating the objective function. Candidate p-functions can be divided 
into two categories: monotone and redescending.

A monotone p-function is convex in r. Examples include Huber’s proposal [55]

p(r) =
r *

-  ) 2 if

c ( M - § )  if

the ‘Fair’ function [89]

p(r) = c2 ------ log 1

and the least powers function [89]

P(r) =  —

|r| < c
(4.46)

|r| > c

+  t ) )
(4.47)

(4.48)

A redescending p-function has a derivative that approaches zero as the size of the residual 
approaches infinity. Redescending p-functions provide better outlier resistance than mono­
tone p-functions, however they can introduce many local minima into the objective function. 
Locating the global minima of a redescending M-estimator cost function is therefore more 
difficult.

Examples of redescending p-functions are the Cauchy function [89] (named for its optimality
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when applied to the Cauchy distribution)

Tukey’s biweight function [89]

p(r) =

pW = flog(l+02)

T ( l  -  ( l  -  ( 9 2) 3)  if
A  ^

\r\ < c 

|r| > c

and Welsch’s function [89]

p(r) =
2

(4.49)

(4.50)

(4.51)

The tuning parameter c (or v in the case of least powers) controls a trade-off between the 
statistical efficiency (variance) and robustness of the M-estimator. As c —» oo, or v —► 2, 
the M-estimator approaches the maximum likelihood estimator (efficient but not robust), 
while smaller values of c increase resistance to outliers at the cost of the lower efficiency 
(higher variance) resulting from down-weighting or even ignoring data.

The influence of a datapoint on an estimate is proportional to the objective function gra­
dient. Figures 4.8 and 4.9 show the monotone and redescending p-functions and their 
gradients (0-functions) for a selection of values of the tuning parameters c or v. In the 
•0-functions of Figures 4.8 and 4.9 all functions except least powers can be seen to bound 
the influence of an outlier (as a result least powers is considered ‘quasi-robust’ [89]). The 
0-functions in Figure 4.9 demonstrate that the influence of large outliers approaches zero 
for a redescending M-estimator.

Robust estimation has been used in a stereo odometry application in [82, 83], where the 
Cauchy function of Equation 4.49 with the tuning parameter ignored (equivalent to c =  1) 
was used as a robustification kernel for image reprojection errors. This cost function was 
optimised using multiple initial hypotheses generated using a RANSAC-style algorithm [81].

In typical robust estimation applications (e.g. [82, 83]), outliers are not truly rejected, 
instead their influence is reduced through weighting. Unfortunately this results in an esti­
mator with unknown variance, which is incompatible with the desire to produce a sequence 
of relative pose estimates suitable for data-fusion using an EKF.

Here, instead of using an M-estimator to produce a final motion estimate, it will be con­
sidered for generating motion hypotheses from which outliers are classified. The maximum 
likelihood estimate and covariance will then be produced from the remaining inlier features.
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Figure 4.8: Monotone p-functions and their first derivatives (^-functions).
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(a) The Cauchy p-function (b) The Cauchy ^-function

(c) Tukey’s biweight p-function (d) Tukey’s biweight T/t-function

(e) Welsch’s p-function (f) Welsch’s t/t-function.

Figure 4.9: Redescending p-functions and their first derivatives (^-functions).
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Selection of an M-estimator requires the specification of a p-function, tuning parameter and 
initialisation method. The selection process will be performed by gaining an understanding 
of the effect of each decision on the performance of the robust M-estimator on simulated 
data approximating vision data complete with outliers. Since visual observation errors are 
naturally bounded by the size of the images, after appropriate simulation one can have 
confidence in the robustness of an estimator since the worst-case conditions have been 
tested.

Choosing a p-function is challenging since their performance depends on the distribution 
of the outliers. Rey [89] in general recommends the least powers function with values 
of v «  1.1, while Hoaglin [52] suggests monotone functions are suitable when operating 
in the neighbourhood of the normal distribution (recommending Huber’s proposal), while 
redescending functions such as Tukey’s Biweight are preferable when extreme observations 
are present. In Section 4.3.3, the six p-functions in Equations 4.46 to 4.51 will be tested on 
simulated data approximating the location and association outliers expected in real image 
data.

To select an initialisation method, the minimum Euclidean distance and maximum likeli­
hood estimates will be considered as initial hypotheses for monotone M-estimators, while 
monotone M-estimates and the RANSAC random sampling procedure will be evaluated for 
redescending M-estimators.

4.3 .3  Sim ulation

The candidate hypothesis generation frameworks and outlier rejection tests have been ap­
plied to odometry and loop-closure simulations similar to those presented in Section 4.2, 
with the addition of location and association feature observation outliers.

Outlier M odelling

Location outliers are simulated with errors in the observation coordinates of one image (the 
left image acquired at the second stereo-rig pose has been chosen arbitrarily). An x-axis 
image coordinate error is drawn uniformly from the range between 2 and 25 standard devi­
ations of the image observation model noise (0.8 to 10 pixels). Location outliers with large 
y-axis coordinate errors are not generated since they could be removed using epipolar geom­
etry constraints (the baseline of the stereo-rig is assumed to approximately parallel to the 
image x-axes). Association outliers are modelled by swapping the second pose observations 
with those of another feature visible in all four frames.
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In odometry simulations, 5 location outliers and 5 association outliers are produced in 
addition to 50 inlier features. The feature observation errors for a single odometry simulation 
are shown in Figure 4.10. Similarly, loop-closure simulations consist of 2 location outliers 
and 2 association outliers in addition to 6 inlier features. Considering the feature association 
precision demonstrated in Chapter 2, these are conservatively large error ratios.

Selection  of a R obust E stim ator

To aid the selection of a p-function, tuning parameter and initialisation method for the 
robust M-estimator, 50 odometry and loop-closure simulations containing outliers have been 
performed.

Table 4.5 presents the root mean square errors in the robust relative pose estimates produced 
by monotone M-estimators using Huber’s, the ‘Fair’ and the least powers p-functions in 
odometry simulations. Similarly, Table 4.6 displays the errors produced by the monotone 
M-estimators when applied to loop-closure simulations. A selection of tuning parameter 
values have been tested for each p-function, and each M-estimator was initialised at the 
Euclidean and maximum likelihood motion estimates.

As expected, the M-estimators are seen to converge to the maximum likelihood estimator 
for larger tuning parameter values. The Euclidean solution proved to be the better ini­
tial estimate in the presence of outliers, with consistently lower errors than the maximum 
likelihood solution.

The results for all tested monotone p-functions and tuning parameter values are similar, 
with all estimates containing significant errors. The unsuitability of monotone p-functions 
for this application is not surprising, since the presence of association outliers causes the 
error distribution to deviate far from normality, and the monotone p-functions lack the 
resistance to large errors provided by redescending p-functions.

While monotone M-estimators will not be considered further as a means to produce a final 
motion hypothesis, one remaining possible use is the initialisation point for redescending 
M-estimators. Huber’s proposal with the tuning parameter c =  2.5 will be considered for 
this role due to its consistent convergence, however since each of the tested p-functions 
produced similar results, little difference could be expected from any of the three tested 
functions.

Table 4.7 presents the root mean square errors in the relative pose estimates produced 
by redescending M-estimators using the Cauchy, biweight and Welsch’s redescending p- 
functions applied to odometry simulations. Table 4.8 shows the redescending M-estimator 
errors when applied to loop-closure simulations. The redescending M-estimators have been
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Figure 4.10: Feature observation errors in an odometry simulation containing outliers. 5 
location outliers and 5 association outliers are simulated in addition to 50 inlier features. 
The observation errors in the images acquired at the first pose shown in (a) and (b). The 
observation errors in the images acquired at the second pose are shown in (c) and (d), where 
a different scale is used due to the presence of large errors in association outliers. The errors 
in (c) and (d) appear similar, since observations of a association outlier are consistent within 
the stereo image pair.
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initialised at the monotone estimate and using the multiple random sampling approach of 
RANSAC.

None of the tested combinations of redescending p-function and tuning parameter displayed 
reliable convergence from the monotone estimate to the true motion parameters. This is an 
unfortunate result since performing only one optimisation from a single initialisation point 
has a significant computation efficiency advantage over the random sampling approach 
involving multiple initial hypotheses.

All redescending p-functions performed well when initialised with the multiple random sam­
pling approach, however the Cauchy function stands out as the best choice due its superior 
ability to converge from a noisy initial estimate. This can best be observed by comparing 
the performance of the Cauchy p-function when initialised at the monotone estimates to 
the biweight and Welsch’s function in Table 4.7. While the M-estimator using the Cauchy 
function converged from the monotone estimate to the similar solutions to those found us­
ing random sample initialisation, the M-estimators using Tukey’s bi weight and Welsch’s 
functions were regularly unable to improve upon the initial monotone estimate. The reason 
for this difference can be seen in Figure 4.9: Tukey’s biweight and Welsch’s p-functions 
have a rejection point beyond which a datapoint has no influence on the resulting estimate. 
While this is good from an outlier resistance viewpoint, it means the objective function 
contains many constant regions containing no gradient for an optimisation algorithm to 
follow towards a minimum.

The Cauchy p-function with a tuning parameter value of c =  2.5 initialised using random­
sampling will be used when comparing the robust estimation outlier rejection framework to 
iterative rejection and RANSAC.
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Com parison o f Outlier R ejection  Approaches

To compare the novel robust estimation outlier rejection approach with iterative rejection 
and RANSAC, each has been applied to odometry and loop-closure simulations containing 
outliers. The iterative rejection and RANSAC frameworks have been tested using the 
Euclidean and maximum likelihood 3D registration estimation methods to produce motion 
hypotheses, and the Euclidean and Mahalanobis outlier tests to perform classification.

Figure 4.11 shows the Receiver Operating Characteristic (ROC) curves for the outlier clas­
sifiers applied to 50 odometry and loop-closure simulations. The curves on the ROC plots 
are produced by repeating the simulations using a range of outlier rejection thresholds. As 
expected, the maximum likelihood motion hypothesis generation method and the Maha­
lanobis classification test that consider the uncertainties of feature observations generally 
outperform the Euclidean alternatives.

While the iterative rejection algorithm matched the outlier classification performance of the 
robust estimation framework in odometry simulations in Figure 4.11(a), its performance in 
loop-closure simulations in Figure 4.11(b) was poor. Large association outliers catastroph­
ically corrupted the motion hypotheses, resulting in the rejection of many inlier features. 
In 17 out of the 50 loop-closure simulations, the iterative rejection algorithm was unable to 
converge to a minimal set of three inlier features, and was therefore unable to produce a final 
motion estimate. The classification performance of RANSAC in Figure 4.11 was steady in 
both odometry and loop-closure simulations. The novel robust estimation approach clearly 
provides the best outlier classifier, dominating the alternatives in the loop-closure simula­
tions in Figure 4.11(b).

The inlier acceptance rate for each framework using the Mahalanobis test are compared to 
the expected rate in Figure 4.12. The inlier acceptances rates for iterative rejection during 
the loop-closure simulations of Figure 4.12(b) are low, since the algorithm was unable to 
reliably converge to a minimal set of inlier features. As predicted, the number of inkers 
accepted by RANSAC was lower than could be expected from better motion hypotheses. 
The superior motion hypotheses produced by the robust estimation method are seen to 
result in inlier acceptance rates close to the expected values. The inlier acceptance rate 
converges to the expected rate from above, which is understandable since the estimator is 
optimising a function related to the acceptance test.

Tables 4.9 and 4.10 present the mean and root mean square errors produced by calculating 
the maximum likelihood motion parameters on the features classified as inliers by each 
outlier rejection framework in the 50 odometry simulations. Tables 4.11 and 4.12 present 
the mean and root mean square errors in the 50 loop-closure simulations. Plots showing 
all estimator errors are presented in Appendix F. To produces these results, the iterative



4.3 Outlier Rejection 101

rejection and RANSAC frameworks used the maximum likelihood 3D registration method 
to produce motion hypotheses, and the Mahalanobis outlier rejection test with a threshold 
of 7.815, resulting in an expected inlier acceptance rate of 95%.

The reduced inlier acceptance rate of RANSAC results in the higher estimate variances 
observed in Tables 4.10 and 4.12 when compared to the robust method. Additionally since 
more outliers are accepted in comparison to the robust approach, a relatively large number of 
estimates from the RANSAC framework exceed the 95% confidence bounds in Appendix F.

The novel outlier rejection approach based on robust estimation developed in this section has 
been demonstrated to be superior to the commonly used iterative rejection and RANSAC 
approaches. The robust method will therefore be used for all relative pose estimation 
problems in the remainder of this thesis.
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0
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RANSAC, ML motion hypotheses, Mahalanobis outlier test 
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(a) Odometry simulations

RANSAC, Euclidean motion hypotheses, Euclidean outlier test 
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(b) Loop-closure simulations

Figure 4.11: Outlier classification ROC curves for 50 odometry simulations (a) and 50 loop- 
closure simulations (b). The dotted line represents the line of no discrimination expected 
from randomly guessed classifications.
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(a) Odometry simulations

(b) Loop-closure simulations

Figure 4.12: Inlier acceptance rate of the Mahalanobis outlier test, applied to 50 odometry 
simulations (a) and 50 loop-closure simulations (b). The black line shows the expected inlier 
acceptance rate for perfect hypotheses equal to the true motion states.
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Method x (cm) y (cm) z (cm) 0 (deg) 0 (deg) 0  (deg)
RANSAC -0.0044 -0.0359 0.0064 -0.0146 0.0018 0.0063
Iterative Rejection -0.0173 -0.0969 0.0062 -0.0333 0.0041 -0.0039
Robust -0.0169 -0.0905 0.0054 -0.0315 0.0040 -0.0041

Table 4.9: Mean errors in relative pose estimates from 50 odometry simulations with outliers. 
The final motion estimates were produced using the maximum likelihood 3D registration 
method applied to all remaining features classified as inliers.

Method x (cm) y (cm) z (cm) 0 (deg) 6 (deg) 0  (deg)
RANSAC 0.1043 0.5932 0.0813 0.1661 0.0296 0.0430
Iterative Rejection 0.0776 0.3481 0.0537 0.0974 0.0206 0.0218
Robust 0.0742 0.3551 0.0542 0.0985 0.0198 0.0217

Table 4.10: Root mean square errors in relative pose estimates from 50 odometry simulations 
with outliers. The final motion estimates were produced using the maximum likelihood 3D 
registration method applied to all remaining features classified as inliers.

Method x (cm) y (cm) z (cm) 0 (deg) 6 (deg) 0  (deg)
RANSAC -0.1022 -0.0757 0.1381 0.0394 0.0214 0.0089
Iterative Rejection -11.8132 -16.2584 -6.7849 -7.0041 -4.9820 -47.4698
Robust -0.0412 -0.0445 0.1241 0.0154 0.0099 0.0005

Table 4.11: Mean errors in relative pose estimates from 50 loop-closure simulations with 
outliers. The final motion estimates were produced using the maximum likelihood 3D 
registration method applied to all remaining features classified as inliers. The iterative 
rejection method failed to find a minimum of three consistent features to produce a motion 
estimate in 17 of the 50 simulations. The statistics listed for the iterative rejection method 
are produced from the remaining 33 simulations.

Method x (cm) y (cm) z (cm) 0 (deg) 9 (deg) 0  (deg)
RANSAC 0.8547 1.0632 0.5130 0.2887 0.3485 0.2116
Iterative Rejection 45.9831 32.2236 35.0337 18.8904 10.6793 64.7483
Robust 0.6437 0.9148 0.4076 0.2201 0.2988 0.1521

Table 4.12: Root mean square errors in relative pose estimates from 50 loop-closure simula­
tions with outliers.The final motion estimates were produced using the maximum likelihood 
3D registration method applied to all remaining features classified as inliers. The iterative 
rejection method failed to find a minimum of three consistent features to produce a motion 
estimate in 17 of the 50 simulations. The statistics listed for the iterative rejection method 
are produced from the remaining 33 simulations.
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4.4 Considerations for Data Fusion

Four requirements for the relative pose estimator were established in Section 4.1 to allow 
the estimates to be used in an EKF data fusion algorithm:

1. The motion estimator must be unbiased

2. Consistent estimate covariances must be produced

3. The stereo relative pose estimates must be independent from other observations

4. Individual relative pose estimates must be independent from one another

The first two requirements have been considered in Sections 4.2 and 4.3, however the inde­
pendence requirements have not yet been addressed.

In Section 4.1 it was mentioned that a prior motion estimate is commonly used to speed 
up feature tracking or limit possible feature associations. A concern is therefore whether or 
not the use of a prior motion estimate is likely to result in a correlated stereo relative pose 
estimate. This question may best be answered by considering the events required for the 
prior estimate to bias the stereo estimate. Firstly a set of outlier features consistent with the 
prior estimate must be found in the images, the feature observations must satisfy epipolar 
geometry constraints, and finally a sufficient number of features must be consistent with a 
single motion estimate. If a reasonable minimal number of consistent features (e.g. six) are 
required to produce a trusted motion estimate, such an occurrence is highly unlikely. The 
prior motion estimate and stereo relative pose estimate can therefore be safely considered 
to be independent.

To ensure a sequence of stereo relative pose estimates are independent from each other, 
reuse of feature observations must be avoided. For example, if the pose of b relative to a 
and the pose of c relative to b are calculated, the images acquired at pose b will be used 
in both estimates. If a feature was used in the calculation of both relative pose estimates, 
they would be correlated due to the errors in the feature observations at pose b that are 
propagated to both motion estimates. To avoid correlated estimates, a new set of features 
must be used in the generation of each stereo relative pose estimate.

4.5 Overview of the Algorithm

Sections 4.2 and 4.3 of this chapter have dealt with the selection of motion estimation and 
outlier rejection approaches for a stereo vision relative pose estimation algorithm. The
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final algorithm will now be summarised, including the specification of the parameters and 
thresholds that will be used in future applications of the relative pose estimation approach.

The stereo relative pose estimation algorithms consists of four steps corresponding to the 
blocks in the process diagram presented in Figure 4.1:

1. Features are extracted in the first stereo image pair. The selection of a feature extrac­
tion algorithm will be application specific, varying with the environment and use-case 
(i.e. odometry or loop-closure).

2. The extracted features are tracked or associated with feature locations in the second 
image pair. The algorithm selected to perform this operation will also vary depending 
on the application.

3. The majority of outliers are rejected by applying epipolar constraints in each stereo 
image pair. Remaining outliers are rejected by calculating a robust relative pose 
hypothesis using the Cauchy p-function with a tuning parameter value of c =  2.5, then 
using the Mahalanobis outlier rejection test with the threshold km = 7.815 designed 
to accept 95% of inliers. The robust estimate is calculated using the random sample 
initialisation method, where each initial hypothesis is calculated by the maximum 
likelihood 3D registration method on a minimal set of 3 randomly selected features.

4. A final relative pose estimate and covariance is produced from the remaining inlier 
features by the maximum likelihood 3D registration algorithm initialised at the robust 
relative pose estimate.

4.6 Results

The stereo-vision relative pose estimation algorithm developed in this chapter has been 
applied to images acquired by the SeaBED AUV during a biodiversity assessment survey at 
Ningaloo Reef near Exmouth in Western Australia. The dataset contains images of sponge 
beds at a depth of approximately forty metres. The AUV acquired stereo image pairs at a 
rate of one hertz while travelling at a velocity of approximately half a metre per second. The 
DVL was used to maintain an altitude of two metres above the seafloor. These operating 
conditions result in features remaining within view of the cameras for two or three image 
pairs.

Feature extraction and tracking has been performed using the Harris corner detector and 
Lukas-Kanade tracker. Figure 4.13 shows the features extracted and tracked from two 
consecutive stereo image pairs. The features rejected as outliers due to epipolar constraints 
and inconsistency with the robust relative pose estimate are also shown.
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While no ground truth is available, the DVL onboard the SeaBED AUV provides an al­
ternate estimated trajectory for comparison. An initial stereo calibration was acquired in 
a swimming pool, and a rough measurement of the pose of the stereo-rig relative to the 
vehicle reference frame origin (located at the DVL) was obtained. Unfortunately, the pool 
dataset later proved insufficient to provide a good calibration, and the temporary viewport 
used in this first deployment of the stereo-rig appears to have deformed when under pres­
sure, resulting in additional uncalibrated lens distortion. The initial stereo-rig calibration 
parameters acquired from the pool dataset were therefore optimised along with the pose of 
the stereo-rig relative to the vehicle frame, by minimising the difference between the relative 
pose estimates produced by the stereo-rig and DVL. This calibration was performed using 
a 30 second section of data that has not been reused in any further tests.

Figure 4.14 shows estimated vehicle trajectories produced by the stereo relative pose esti­
mation algorithm and an EKF combining the DVL velocity, tilt sensor and compass ob­
servations. The desired vehicle path is a 100 metre linear transect heading north. The 
individual relative pose estimates between the vehicle locations of consecutive image pairs 
are shown in Figure 4.15, and the estimates of the aggregated vehicle pose relative to the 
initial vehicle pose are shown displayed in Figure 4.16. The stereo odometry estimates from 
a longer and more complex vehicle trajectory are shown in Figure 4.17, and the individual 
relative pose and aggregated pose estimates are shown in Figures 4.18 and 4.19 respectively.

The individual relative pose estimates produced by the stereo-rig in Figures 4.15 and 4.18 
show excellent consistency with the DVL-based estimates. The stereo estimates capture not 
only the general vehicle motion of half a metre forwards (as may be expected due to the 
optimisation of the stereo calibration parameters to match the DVL), but also the small 
variations in the position and orientation states.

The cumulative relative pose estimate averages in Figures 4.15 and 4.18 show small biases 
that result in slow drift in the aggregated vehicle pose estimates of Figures 4.16 and 4.19.

While the stereo calibration parameters are likely to imperfect, some of the differences be­
tween the two estimated trajectories could be attributed to the DVL and compass. The 
deviations in the estimated roll angles in Figure 4.18(d) after the turning maneuver sug­
gest a heading-dependant bias, probably due to compass errors when optimising the stereo 
calibration parameters.

When performing visual odometry, the aggregated orientation estimates will always accu­
mulate errors that propagate into large position state errors. For long trajectories, absolute 
orientation sensors (such as the tilt sensors and compass used in the DVL) will be necessary 
to provide correction for the drifting estimates.
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(c) Current pose left image (d) Current pose right image

Figure 4.13: Stereo odometry images and features. Feature positions are marked by circles, 
and tracks are drawn by lines linking the image coordinates of each feature in the previous 
and current poses. Features that could not be tracked are drawn in red, features with 
observations within a stereo pair that did not satisfy epipolar constraints are drawn in 
orange, and features that were inconsistent with the final motion estimate are drawn in 
pink. Accepted features that were used to produce the final motion estimate are drawn in 
green.
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Figure 4.14: Comparison of stereo odometry and DVL-based vehicle trajectory estimates for 
a linear transect of approximately 100 metres. The DVL-based estimate has been produced 
using an EKF fusing velocity, tilt and compass observations.
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Pose index

(b) Y-position

(c) Z-position (d) Roll Euler angle

(e) Pitch Euler angle (f) Yaw Euler angle

Figure 4.15: Comparison of stereo odometry and DVL-based estimates of the relative 
vehicle poses between successive image pairs for a linear transect of approximately 100 
metres. The DVL-based estimate has been produced using an EKF fusing velocity, tilt and 
compass observations.
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Figure 4.16: Comparison of stereo odometry and DVL-based estimates of the current 
vehicle pose relative to the initial vehicle pose for a linear transect of approximately 100 
metres. The DVL-based estimate has been produced using an EKF fusing velocity, tilt and 
compass observations.
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Figure 4.17: Comparison of stereo odometry and DVL-based vehicle trajectory estimates for 
a turning maneuver with a total path length of approximately 200 metres. The DVL-based 
estimate has been produced using an EKF fusing velocity, tilt and compass observations.
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Figure 4.18: Comparison of stereo odometry and DVL-based estimates of the relative 
vehicle poses between successive image pairs for a turning maneuver with a total path 
length of approximately 200 metres. The DVL-based estimate has been produced using an 
EKF fusing velocity, tilt and compass observations.
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Figure 4.19: Comparison of stereo odometry and DVL-based estimates of the current 
vehicle pose relative to the initial vehicle pose for a turning maneuver with a total path 
length of approximately 200 metres. The DVL-based estimate has been produced using an 
EKF fusing velocity, tilt and compass observations.
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4.7 Summary
This chapter has detailed the development of a stereo-vision relative pose estimation algo­
rithm, focusing on the motion parameter estimation and outlier rejection problems once a 
set of features have been extracted and tracked between images.
A range of relative pose estimation methods that minimise various cost functions were 
reviewed and tested under simulation. Approaches that ignore some or all observation 
uncertainties were shown to result in estimators with large errors and biases.
A novel motion parameter estimation approach based on minimising feature 3D registration 
errors was presented, and shown to result in a computationally efficient, unbiased estimator 
with known covariance. Summarising stereo observations of a feature as a triangulated 
position estimate and covariance was shown to produce similar results to bundle adjustment, 
while resulting in significant efficiency improvements due to a more compact observation 
vector and a less complex observation model.
A selection of outlier rejection methods were reviewed and tested on simulated data cor­
rupted by the types of outliers expected in vision data. It was shown that while an iterative 
outlier rejection approach produces acceptable results in the presence of outliers with only 
small errors, the algorithm fails in the presence of large outliers such as those caused by 
incorrect feature associations. RANSAC provided better results, but was shown to accept 
fewer inlier features than expected due to a lack of filtering in its motion hypotheses.
A novel outlier rejection approach based on a robust redescending M-estimator was pre­
sented. Instead of being used in a typical role to provide a final parameter estimate without 
identifying outliers, the robust estimator was used to provide motion hypotheses for an 
outlier classification test. A maximum likelihood parameter estimate and covariance was 
then be obtained from the remaining inkers. The robust estimator method was shown to 
produce better motion hypotheses than RANSAC, resulting in a superior outlier classifier 
and motion estimator.
The stereo-vision relative pose estimation algorithm was demonstrated on real data by 
estimating of the odometry of an AUV. Similar results to a trajectory produced using a 
DVL were obtained. The use of the relative pose estimator in a loop-closure application 
will be demonstrated in the Chapter 5.



Chapter 5

Simultaneous Localisation and 
Mapping using Stereo Vision

5.1 Introduction

This chapter presents a view-based SLAM algorithm suitable for large-scale exploration ap­
plications. Experimental results using the stereo-camera relative pose estimation algorithm 
developed in Chapter 4 to generate loop-closure observations are presented, demonstrating 
the ability of vision sensors to correct positioning errors accumulated from dead-reckoning.

5.2 SLAM Frameworks

Firstly, the suitability of SLAM frameworks to large-scale visual navigation will be evalu­
ated, considering the properties of the feature extraction and association operations investi­
gated in Chapter 2. The two candidate frameworks are feature-based and view-based SLAM, 
which are distinguished by the selection of variables estimated by a filter. In feature-based 
SLAM [19, 41, 63, 101, 112], the positions of features extracted from sensor observations 
are estimated, while in view-based SLAM [26-29], the state vector is augmented with a set 
of vehicle poses at locations where sensor data is acquired.

When adapting the feature-based SLAM framework to a new application, two operations 
must be implemented: feature selection and data association. Feature selection is the 
process of extracting new features from sensor data, and deciding which will be added to 
the state vector. Data association addresses the problem of matching new observations to 
existing features when the vehicle returns to a previously visited location in a situation
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known as a ‘loop-closure’. Loop-closure observations are essential to the SLAM process, 
since they provide correction of dead-reckoning drift accumulated over time. In a typical 
implementation of feature-based SLAM using an EKF, the computational complexity of 
prediction and observation operations is quadratic in the number of augmented features.

The most common platform for SLAM research has been indoor robots equipped with laser 
range-finders. Feature-based SLAM is well suited to this application, since a small set of 
reflective features or corners can be easily extracted with high repeatability from the sensor 
data. The sparse distribution of such features solves the feature selection problem, allows 
data association to be performed using geometry, and makes the quadratic complexity of 
feature-based EKF-SLAM manageable.

In contrast, the properties of the algorithms used to extract and associate features in wide- 
baseline images make feature-based SLAM poorly suited to visual navigation. While rich 
visual feature descriptions provide a solution for data association, feature selection becomes 
a difficult problem due to the large number of features that can be extracted from a single 
image, and the low extraction repeatability and association rates. Augmenting the state 
vector with huge numbers of features is infeasible due to the resulting computational com­
plexity, however if only a small set of features are selected, the probability of successfully 
associating a feature to produce a loop-closure observation is low.

The critical advantage of the view-based framework for vision application is the ability to 
use all the sensor data, rather than a sparse set of selected features. In the view-based 
framework, a loop-closure observation is applied by constraining the relative location of two 
augmented poses. Instead of guessing in advance which features are likely to be matched in 
the future, the relative pose constraint can be created using whatever portion of the sensor 
data can be matched when the association process is performed.

An additional benefit of the view-based approach is its ability to handle delayed observa­
tions. Visual feature extraction and association are time consuming processes, so a delay 
is likely to occur between the time an image is acquired and a loop-closure observation is 
produced. However, in the view-based framework, a relative pose constraint can be applied 
between two augmented poses whenever the image analysis operations are complete.

The view-based SLAM framework also has a computational efficiency advantage when the 
estimation process is performed in information form. The information matrix for a view- 
based SLAM problem is exactly sparse, resulting in a significant benefit over approaches with 
dense covariance or information matrices caused by marginalising past vehicle poses [27].

Due to avoidance of the feature selection problem, the inherent ability to handle delayed 
observations and the efficiency when using the information form, the view-based SLAM 
framework will be utilised in this thesis for large-scale visual navigation.
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5.3 Viewpoint Augmented Navigation (VAN)

5.3.1 The Estimated State Vector

In the VAN framework, the current vehicle state is estimated along with a selection of past 
vehicle poses, leading to a state estimate vector of the form

x + (tk) =

and covariance matrix of the form

p+ M  =

X m

Xp„ (tk)
A t (tk).

K  (tk) 
xi  (tk)

(5.1)

P a(tk) P t  (tk) 
P tJ(tk) PiAtk)

(5.2)

where x+ (tk) =  [x+T (tk) , . . .  ,XpnT (i/t)]T is a vector of trajectory states consisting of n 
past vehicle vectors.

In the information form, the filter maintains the information matrix Y + (tk), which is the 
inverse of the covariance matrix

Y +  (tk) [P+ (tfc)] 1 

and the information vector y + which is related to the state estimate by

y + (tk) =  Y + (it )x+  (tk)

(5.3)

(5.4)

For the VAN framework, the information vector and matrix have the form

y + (tk) =
y t  (tk) 
9 t  (tk)

Y + (tk) =
Y  + ( tk) Y +(tk)

Y  i J ( t k) Y  + ( t k)

(5.5)

(5.6)
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5.3.2 T he E stim ation  Process
The estimation process used in an Extended Information Filter (EIF) consists of the same 
predict, observe and update steps as the EKF presented in Chapter 3.

Prediction with Augmentation
When performing a prediction operation to propagate the vehicle state forwards to a new 
timestep, the current vehicle pose should be kept in the state vector if it marks the location 
where an observation such as an image which may be used in future loop-closure observations 
was acquired
The augmented predicted estimate and covariance are

X (tk)

p -  (tk)

{tk- l)
K  (tk -O

_f„ [x+ (ifc_ i)]_
p S(ifc-i) 
PtJ(tk-i)  

V xiv (tk)P IJi tk-i)

(5.7)

f>+ p+fe-O vlM i*)
P„+„(*k-i)

v rf„ (tt )P+ (tk-i) Vxf„ (tk)Pi„ Vjf„ (tk) + Q (ifc).
(5.8)

where fv [•] is the vehicle process function, V xfv (tk) is the Jacobian of the vehicle process 
function relative to the vehicle states, and Q (tk) is the vehicle process model covariance as 
defined in Section 3.2.2.
Using the relationship between the covariance and information forms stated in Equations 5.3 
and 5.4, the prediction step can be represented with the augmented prediction information 
vector and matrix

ÿ (tk) 

Y " (tk)

ÿt+ ( h - 1)
9v (tk- 1 ) -  (tk) Q-1 (tk) (ft, [x+ (ifc-i)] -  V xfv (tk) x+ (tk-i)  ) 

Q _1 (tk) (ft, [x+ (tk- i)l -  V J v (tk) x+ (tk- 1 ) )
(5.9)

Y i t ( t k - 1) Y  +(**_!) 0
Y ^T (tk-i) Y ^  (tk~i) +  V jfv (tk) Q-1 (tk) V xfv (tk) - V JJ v (tk) Q - l (tk) 

0 - Q _1 (tk) V xft; (tk) Q~'(tk)
(5.10)

Equation 5.9 requires the prior vehicle pose state estimate (tk- 1 ), and both Equations 
5.9 and 5.10 require the vehicle process function Jacobian evaluated at the prior vehicle
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Joint
p(ol,0)

Marginal
p(a) =  Jp(aL,ß)dß

Covariance
Form

x =

P =

x /3
'P,

73a
P aß

P ßß.

X = X,

P =  P,

Information ^ 
Form Y  =

Yc*
.Y/3.
Y  QQ Y  aß 
Y/3q Y  ßß

ÿ = ÿ o - Y a/3Y ^ ÿ i 

Y  =  Y aa -  YaßYßßYßa

Table 5.1: Marginalisation in covariance and information form. Adapted from [27].

pose estimate ' V x ^ v  (¿^). In an information filter the state estimates are not immediately 
available, and efficient algorithms for their recovery will be a major focus of this chapter.

Prediction without Augmentation

Only vehicle poses corresponding to the locations where data such as images were acquired 
need to be maintained in the filter. In most cases, the prediction operation should be 
performed without augmenting the state vector with an additional pose.

The equations for prediction without augmentation can be obtained through marginalisation 
of the previous vehicle pose from Equations 5.9 and 5.10. Equations for marginalisation 
in covariance and information form are presented in Table 5.1. From [27], the resulting 
prediction information vector and matrix are

y  (it)
y? (tt- 0  -  Y+ n - 1 (it) (ÿ+ (t*_o -  v lf„  (to Q -1 (to s (to )

Q-1 (ifc) V A (it) ST1 (it)y+ (it-i) +  'S (it)«(it)
(5.11)

Y -  (to = Y  tt(tt-i) -  Y+ (tfe-x) i r 1 (to Y+T (it—i) 
Q - 1 (it) v a  (tt) n - 1 (tt) y +t (tt_i)

Y+ (t t - ! ) fi - 1 (it) v j f „ (it) Q - ‘ (it) 
*(»*)

(5.12)

<5 (it) =  f« [xj (tjfc-i)] -  V A  (tO *i (tt-i) 

o  (it) =  Y+„ (tt-i) + V jf„ (it) Q_1 (it) V A  (it)

*  (it) = (q  (it) + V A  (it) [Y+ (tfc-i) ] - 1 v jf„  (it))~‘

where

(5.13)

(5.14)

(5.15)
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Observation

An observation yields an innovation vector measuring the difference between the actual and 
predicted observation

v (tk) =  z (tk) -  h [x-  (ifc)] (5.16)

Update

The information vector and matrix are updated to incorporate an observation using the 
equations

y + (tfc) = y (<-k) +  i (it) (5.17)

Y + (tt) =  Y - ( t * )  + I(t*) (5.18)

where the update vector and matrix are

¡( it)  = V xh ( t k)R~'  (tk) (v ( tk) + V jh if/tJx-  (tk)) (5.19)

I (t*) = Vzh (it) R - 1 (ft) V jh  (it) (5.20)

As was the case for prediction, state estimates are required for the observation and update 
operations in information form. A typical SLAM observation is sparse however, with only 
a few of the estimated states being observed, and only estimates of the observed states 
are required to calculate the innovation vector and update the information vector and 
information matrix.

5 .3 .3  Loop-closure H ypotheses

Each time data such as an image is acquired, the compatibility of the current and augmented 
vehicle poses for a loop closure observation should be evaluated to produce a set of loop- 
closure hypotheses. Identifying a small subset of all the possible pairs of poses is important 
to reduce the number of hypotheses that need to undergo computationally expensive image 
analysis.

Evaluating whether a pair of poses should form a loop-closure hypothesis requires their joint 
distribution. For example, the predicted joint distribution for the previous pose at index i
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and the current vehicle pose is defined by the estimate vector and covariance matrix

A suitable pair of poses for a loop-closure hypothesis have a joint distribution that suggest 
it is likely that the poses are close enough for images acquired at each pose to overlap. The 
exact test used to decide if a joint distribution is compatible for a loop-closure observation is 
dependent on the properties of the sensor. The test used for a stereo-camera rig is presented 
along with experimental results in Section 5.9.

The joint distributions for a pair of poses is formed through the marginalisation of all other 
estimated states. As shown in Table 5.1 this can be done efficiently in the covariance form 
by extracting the relevant subvectors and submatrices from the state estimate vector and 
covariance matrix. Marginalisation in the information form is computationally expensive 
however, requiring the inversion of the sections of the information matrix corresponding to 
the marginalised states.

5.3.4 Properties of the VAN Framework in the Information Form 

Sparsity of the information matrix

In information-form VAN, elements of the information matrix off the block-diagonal are 
non-zero only if an observation relating the two corresponding poses has been applied to 
the filter. Figure 5.1 shows an example of an information matrix sparsity pattern and 
Markov graph that results from dead-reckoning. Since each pose is related to the previous 
and next pose through odometry, dead-reckoning results in a block tri-diagonal matrix. The 
Markov graph provides a visual representation of the relationship between the estimated 
variables, with an edge in the graph corresponding to a non-zero block in the information 
matrix.

When loop-closure observations are applied to the filter, additional non-zero elements in the 
information matrix are created at the locations corresponding to the two observed poses. 
Figure 5.2 displays the information matrix resulting from taking the system presented in 
Figure 5.1, and adding loop closure observations between the first pose and last two poses.

The sparsity of the information matrix is important for the computational efficiency and 
storage requirements of the filter. In large-scale applications with many augmented poses,

(5.21)

_ P* (̂ fc) Pjv (tk) (5.22)
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Pi p2 p3 Pi p5
Pi □  □ □ □ □
P2 □  □ □ □ □
Ps □  □ □ □ □
Pa □  □ □ □ □
P5 □  □ □ □ □

(a) Inform ation matrix

Figure 5.1: Information matrix sparsity pattern and Markov graph for a set of five poses 
related only by odometry constraints.

Pi Pi Pj Pi P5
Pi □  □ □ □ □
P2 □  □ □ □ □
P3 □  □ □ □ □
P a □  □ □ □ □
Ps □  □ □ □ □

(a) Inform ation matrix

Figure 5.2: Information matrix sparsity pattern and Markov graph for a SLAM problem 
consisting of five poses. In this example, loop-closure observations have been applied to 
constrain the final two poses relative to the initial pose.

EKF-based SLAM approaches are infeasible due to dense covariance matrices requiring 
more memory than is available on current computers.

Efficient Observation Operations

The information-form update of Equations 5.17 and 5.18 consists of simple addition oper­
ations where only the entries in the information vector and matrix corresponding to the 
observed states are changed. Depending on the information matrix storage format used, 
an observation can be a constant time operation in information form, which is a significant 
advantage over the quadratic complexity of an EKF update.

The Need for State Estimate and Covariance Recovery

In Section 5.3.2 it was shown that state estimates are required in the information form 
prediction, observation and update operations, and in Section 5.3.3 it was shown that state 
covariances are required to generate loop-closure hypotheses. Efficient algorithms for state 
estimate and covariance recovery are critical for the performance of an information filter.



5.4 The Cholesky Factorisation 124

In a previous VAN implementation [27-29], state estimates and covariances were recovered 
using a Cholesky factorisation calculated each time an image was acquired, however the 
use of iterative methods was suggested. In this chapter, direct methods for efficient state 
estimate and covariance recovery will be further investigated through the use of Cholesky 
factorisation modifications. Using Cholesky factorisation modifications has been proposed in 
a similar information filtering problem, however was not implemented due to the complexity 
of the algorithms and the lack of an available implementation [17, 18].

5.4 The Cholesky Factorisation

The Cholesky factorisation is commonly used to solve linear systems of the form

AX = B (5.23)

where A is a positive definite symmetric matrix and X is a matrix of unknowns.

In this SLAM application, the Cholesky factorisation of the information matrix will be used 
to recover state estimates and covariances by solving the relationships

Y + ( i t )x + (tk) = y + (tk)

Y + {tk) P+ (tk) = I

where I is an identity matrix of the same dimensions as the information matrix.

The LDLJ form of the Cholesky decomposition of the matrix A is defined by

A = LDLt (5.26)

where the L is a lower triangular matrix with all elements on the diagonal equal to one, 
and D is a diagonal matrix.

The solution to a system of equations in the form of Equation 5.23 is calculated from 
the Cholesky factorisation using a two-step forwards and backward solve process. First, a 
forward solve step is performed on the lower triangular system

(5.24)

(5.25)

LZ =  B (5.27)

to recover the forward-solve result Z. In the forward solve operation, the rows of Z are 
recovered in order from first to last. The solution X can then be recovered using a backward
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Input:
• A matrix M containing the lower triangle of a symmetric positive definite matrix A. 

Output:
• The elements of M  are modified to contain the elements of L below the diagonal, and 

the elements of D on the diagonal, where L and D are as defined by the factorisation 
A =  LDLt .

Procedure:
1: for j  =  1 to n do 
2: for i =  j  + 1 to  n do
3: M ij 4-  MijMjj-
4: end for
5: for k =  j  + 1 to  n do
6: for i =  k to  n do
7: M ik 4-  M ik -  Mi jMj jMj j
8: end for
9: end for

10: end for

Algorithm 5.1: A dense, block-based right-looking Cholesky factorisation algorithm.

solve operation on the upper triangular system

DLt X =  Z (5.28)

in which the rows of X are recovered in order from last to first.

For the Cholesky decomposition of a sparse matrix, the structure of the factor L is related to 
the sparsity pattern of the original matrix A. Non-zero elements in the Cholesky factor are 
present at the locations of all non-zeros elements in the original matrix, however additional 
non-zeros known as ‘fill-in’ are introduced. Fill-in is undesirable, since additional non-zero 
elements increase the computational complexity of the factorisation and equation-solving 
processes.

Many algorithms to calculate the Cholesky decomposition exist [14]. The experiments 
presented in Section 5.9 use an efficient sparse up-looking algorithm [12], however the simpler 
right-looking approach of Algorithm 5.1 will be used here to demonstrate the process of fill- 
in. During each iteration of the algorithm, lines 2 and 3 produces the j ’th column of the 
factorisation, and lines 5 to 9 update the remaining active subset (rows and columns j  + 1 
to n) of the matrix by eliminating the j ’th variable.

Figure 5.3 illustrates each iteration of the right-looking algorithm during the factorisation 
the matrix of Figure 5.2. The fill-in produced in the Cholesky factor is equivalent to the
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additional edges produced by marginalising a variable from the Markov graph (also known 
as the elimination graph in linear algebra).

5.4.1 R educing F ill-in  w ith  Variable R eordering

Fill-in can be reduced by reordering the variables to change the sequence in which they 
are eliminated during the factorisation process. Since finding the optimal permutation that 
produces minimal fill-in is NP-hard, heuristic-based approaches are typically used [14, 56].
A popular ordering method is the Approximate Minimum Degree (AMD) algorithm [14, 56]. 
In each iteration of a right-looking Cholesky factorisation, the AMD algorithm employs the 
greedy strategy of selecting for elimination the variable corresponding to the graph node 
with the smallest degree (the number of neighbours) or equivalently the sparsest row of the 
remaining active submatrix to be factorised.
If the variable ordering is defined by a row-permutation matrix O, the permuted system of 
linear equations has the form

OAOt OX = OB (5.29)

Defining Ao =  OAOT, Xo = OX and Bo  =  OB, the permuted system of equations 
becomes AoX o = Bo, which is in the standard form of Equation 5.23 and can be solved 
using the standard forward and backward solve process.
Figure 5.4 illustrated the factorisation process for the matrix previously used in Figure 5.3 
using the variable ordering produced by AMD. The selected order in which the poses are 
eliminated is 5,4,1,2,3, corresponding to the row permutation matrix

0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

(5.30)

The benefit of variable ordering can be observed by comparing the three blocks of fill-in 
produced using the natural ordering in Figure 5.3 with the one block of fill-in when the 
AMD ordering is used in Figure 5.4.
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Cholesky Factor Active Submatrix

Pi P2 Ps Pa Ps Pi P2 Ps Pa P5

Pi Pi □ □ □ □ □
P2 P2 □ □ □ □ □
Ps Ps □ □ □ □ □
Pa Pa □ □ □ □ □
Ps Ps □ □ □ □ □
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Markov Network

Figure 5.3: Cholesky factorisation using the right-looking algorithm and the natural variable 
ordering. During each iteration of the algorithm, the j ’th column of the factor is produced 
by dividing the f  th column of the active submatrix by its element on the diagonal. The 
j ’th variable is then eliminated (marginalised) from the active submatrix. Fill-in elements 
(non-zeros at the locations of zeros in the original matrix) are shown in red.
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Cholesky Factor Active Submatrix

P5 Pa Pi P2 P3 P5 Pa Pi P2 P3

P3 P5 □ □ □ □ □
P a P a □ □ □ □ □
P i P i □ □ □ □ □
P2 P2 □ □ □ □ □
P3 P3 □ □ □ □ □

□
□ □ □ □ □

3 =  1 □ □ □ □ □
□ □ □ □ □
□ _  □ □ □ □

□
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□ □ □ □ □
□ □
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□ □
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□
□ □

3 =  5 □ □ □
□ □ □ □

Markov Network

(§)

Figure 5.4: The Cholesky factorisation of the matrix of Figure 5.3 using a fill-in reducing 
ordering produced by the AMD algorithm. Only one block of fill-in is created compared to 
the 3 blocks produced with the natural ordering.



5.4 The Cholesky Factorisation 129

5.4.2 Scalability

The computational complexity of the Cholesky factorisation of a dense n by n matrix is 
0 (n 3). For sparse matrices however, the computational complexity is dependent on the 
number of non-zeros in the Cholesky factor, which is influenced by the structure of the 
matrix being factorised and the variable ordering

To investigate the scalability of the Cholesky factorisation when applied to VAN information 
matrices, the number of augmented poses and the number of loop-closure observations 
applied to the filter are assumed to grow linearly over time. Since the structure of the 
factorised matrix affects the complexity of the factorisation process, experiments have been 
performed on simulated pose networks created using three observation generation strategies:

1. The current pose is observed relative to the first k poses

2. The current pose is observed relative to the previous k poses

3. The current pose is observed relative to k random poses

where k is an integer variable. Example pose networks for each of the observation generation 
strategies are shown in Figure 5.5.

The benefit of variable ordering is demonstrated in Figure 5.6, which displays the growth in 
the number of non-zero elements in the Cholesky factor and complexity of the factorisation 
process in experiments where each pose was linked to the first k poses. When the natural 
ordering is used, elimination of the first pose in the first iteration of the factorisation process 
results in complete fill-in. The presence of 0 (n 2) non-zero elements in the Cholesky factor 
causes the complexity of the factorisation process to be 0 (n 3). Fill-in is easy to avoid in 
this case however, by ordering the first k poses last. When the AMD algorithm is used, the 
number of non-zeros in the Cholesky factor grows linearly, causing the complexity of the 
factorisation process to be O(n).

The strategy of linking each pose to the previous k poses simulates the pose network that 
could be expected in applications such as visual odometry or range-finder scan-matching 
where new data is registered with recent observations. Such systems result in a band- 
diagonal information matrix. As shown in Figure 5.7, in this case the number of non-zeros in 
the Cholesky factor grows linearly with the number of augmented poses, and the complexity 
of the factorisation process is 0(n).

The random relative pose generating strategy is likely to be the best model for a typical 
SLAM implementation. In Figure 5.7, the AMD variable ordering significantly reduces the 
amount of fill-in, however 0 (n 2) non-zero elements are still produced in the factorisation 
resulting in a complexity of 0 (n 3).
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(a) Each pose linked to the first k poses (b) Each pose linked to the previous k poses

(c) Each pose linked to k random poses

Figure 5.5: Example pose networks for the Cholesky factorisation scalability experiments. 
Black circles mark the location of poses, and black and blue lines represent odometry and 
loop-closure relationships respectively. 25 poses are shown in each graph, with loop-closure 
observations produced by the (a) first (b) previous and (c) random linking strategies. In 
the examples shown, the location of each pose is constrained relative to one previous pose 
(corresponding to k — 1).
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(a) Number of non-zeros elements in the Cholesky factor in linear (left) and log (right) scale

(b) Number of floating point operations required in the Cholesky factorisation process in linear (left) and 
log (right) scale

Figure 5.6: Cholesky factorisation scalability results when each new pose is linked to the 
first k poses. When the natural ordering is used, removing the first pose (to which all other 
poses are linked) causes complete fill-in, resulting in 0 ( n2) non-zeros and 0 (n 3) floating 
point operations. Fill-in can easily be avoided by eliminating the first k poses last, causing 
the number of non-zeros in the Cholesky factor to grow linearly, and the complexity of the 
factorisation process to be O (n).
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(a) Number of non-zeros elements in the Cholesky factor

(b) Number of floating point operations required in the Cholesky factori­
sation process

Figure 5.7: Cholesky factorisation scalability results when each new pose is linked to the 
k most recent previous poses (except the previous pose which for which an odometry re­
lationship already exists). The AMD algorithm provides no benefit in this case since the 
natural ordering is optimal. The number of non-zeros in the Cholesky factor grows linearly, 
causing the complexity of the factorisation process to be O(n).
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(a) Number of non-zeros elements in the Cholesky factor

(b) Number of floating point operations required in the Cholesky factorisa­
tion process

Figure 5.8: Cholesky factorisation scalability results when each new pose is linked to k 
randomly selected previous poses. Fill-in is reduced by the AMD algorithm, however 0(n2) 
non-zeros are still produced in the Cholesky factor. The computational complexity of the 
factorisation process is therefore 0(n3).
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5.4.3 Factor M odification

If a previously factorised system of equations is changed, it is often possible to efficiently 
modify the existing factor instead of repeating the computationally expensive factorisation 
process. In this section, the complex equations and algorithms used to compute modified 
components of a sparse Cholesky factorisation will not be presented. Instead, the focus will 
be on illustrating which components of the factor change, and the resulting computational 
complexity of the operation. Further details on the Cholesky modification algorithms can be 
found in [15, 16], and the implementation used in the experiments presented in the chapter 
is described in [12].

Row Addition

In a VAN filter, new rows are added to the information vector and information matrix in 
the prediction with augmentation operation of Equations 5.9 and 5.10.

Suppose a new variable is to be added to the state vector at index k. The original factorised 
matrix partitioned at row and column k has the form

A = >■11 ■13
AÏ3 A 33

with factorisation

l d l t = I ' l l

1-----

Q1___ I'll I'll-----1
COCO»-Hco

___
1

-----1
COco

Q___l 1*33.

(5.31)

(5.32)

where L n  and L33 are lower triangular matrices, and D u  and D 33 are diagonal matrices. 

If the new column of A has the form

the modified matrix is

r l
r = r 2 (5 .3 3 )

,r3.

A u r l A 13

rJ T2 rTr3 (5 .3 4 )

.A  13 1*3 A33_
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with factorisation

L n D n Ft t ït f  t 1
^ 1 1  a21 ^31

l d l t = Î21 1 Î 22 1 3̂2
L31 I32 L<33_ D 33 ^33.

(5.35)

where I21 is a row vector and I32 a column vector, and the overhead bar has been used to 
identify modified matrix and factor components.

Equations and algorithms for the modified factor components can be found in [15]. The 
key result of Equation 5.35 is that L n  and L31 are unchanged, and only the elements of 
the factor in columns k + 1 to n are modified.

Row D eletion

The row deletion operation is the opposite of row addition. A two step process of row 
deletion and addition can be used to perform an arbitrary change to a row and column of 
the factorised matrix.

Starting with a matrix with the form

with factorisation

l d l t = 121

L31

A n »12 A 13

A = a 12 ^22 »23
a tLa 13 a 23 A 33

L 11 fD 11

I32 L33

<¿22

D 33

LT 11 T T
^ 3 1

I32

L33J

(5.36)

(5.37)

removing the row and column corresponding to block 2 , results in the modified matrix

A = ni l13
AÏ3 A 33

(5.38)

with factorisation

l d l t = L n

Q1__ L n  Lj!
L31 L33 D 33 L33

(5.39)

As was the case in the row addition operation, only the columns of the factorisation to the 
right of the column corresponding to the removed variable need to be modified.
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Update and Downdate

A modification of the factorised matrix of the form

Ä = A +  W W T (5.40)

where W  is an n by k matrix, is known as a rank-fc update. Similarly, a modification of 
the form

A = A -  W W T (5.41)

is known as a rank-/c downdate.

In a VAN filter, update modifications of the information matrix occur during the prediction 
operation of Equation 5.12, and downdate modifications occur in the observation update of 
Equation 5.18.

If the update or downdate modification matrix W  has the form

W  =
0

w2
0

the modified matrix is

with factorisation

l d l t =

An A i2 A 13

Ä  = ^ 1 2 a 22 ±  w 2w j  A 23

a tL/M 3 a J3 a 33

Lu Dn
L l2  L 22 d 22
L l3  L 23 L 3 3 . D 3 3

'L ii Iq 2 G
“* 

__
_1

L 22 f  T
2̂3

f' 1__
_

(5.42)

(5.43)

(5.44)

As was the case for the row addition and row deletion operations, all components of the 
factor to the left of the modified columns in Equation 5.44 are unchanged, while those to 
the right need to be recalculated. This result is logical if the Cholesky factorisation method 
presented in Section 5.4 is considered. Each variable corresponding to the columns in order 
from left to right is marginalised from the remaining system to produce the lower triangular 
factor. Therefore, if any column of the original matrix A  is modified, the columns to the 
right need to be updated to reflect the changes to the marginalised variable.
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5.4.4 Maintaining a Cholesky Factor of the VAN Information Matrix

The information-form VAN filter operations of Section 5.3.2 can all be described using the 
row addition, row deletion, update and downdate modifications.

The prediction with augmentation operation in Equations (5.9) and (5.10) can be imple­
mented with row additions for the new pose variables, and an update on the previous pose 
states. Similarly, the prediction without augmentation operation in Equations (5.11) and 
(5.12) can be implemented with row removal and row addition modifications to perform 
the changes to the current vehicle pose states, and a downdate on the previous pose states. 
The observation update in Equations (5.17) and (5.18) can be implemented with a single 
update modification.

In the VAN algorithm presented in this chapter, modifications are used to maintain an 
up-to-date factor after prediction operations and observations of the current vehicle states. 
However, when a loop-closure observations is applied between past poses, the structure of 
the information matrix is significantly changed, causing the previous variable ordering to be 
ineffective in minimising fill-in. Therefore when a loop-closure observation is applied to the 
filter, a new variable ordering is found and a new factorisation of the information matrix is 
acquired.

5.4.5 Constraining the Variable Ordering for Efficient VAN Operations

Prediction and vehicle state observations are the most common operations in a SLAM filter 
(the number of loop-closure observations is relatively small). After considering the modified 
factorisations of Equations 5.35, 5.39 and 5.44, it is obvious that ordering the vehicle states 
last will minimise the amount of work required to perform the factorisation modification 
operations. If the current vehicle states are ordered last, the number of elements in the factor 
that need to be recalculated is constant (independent of the number of augmented poses), 
allowing the Cholesky factor modifications for the prediction and vehicle state observation 
operations to be performed in constant time.

While ordering the vehicle states last may not result in the the minimal amount of fill-in, 
the benefit of constant-time prediction and observation operations outweigh the additional 
computational complexity due to the additional fill-in caused by this constraint.
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5.5 State Estimate Recovery

In this section, two methods previously used to recover state estimates from an information- 
form VAN filter will be briefly summarised. An alternative approach to recover part of the 
state vector using an updated Cholesky factor of the information matrix will be presented.

5.5.1 Complete State Recovery

The complete state vector estimate can be recovered by solving the relationship

Y + (it ) x + (ifc) =  y + (ifc) (5.45)

using the Cholesky factorisation of the information matrix and the process described in 
Section 5.4.

The efficiency of the forwards and backward solve process used to solve Equation 5.45 is 
dependent on the sparsity of the Cholesky factor L. If the Cholesky factor contains 0(n) 
non-zero elements, as is the case for VAN systems with only odometry constraints or a 
constant number of loop-closure observations, the complete state estimate vector can be 
recovered in 0(n) time. However in general where the Cholesky factor contains 0(n2) 
non-zeros, as can be expected in SLAM applications where the number of loop-closure 
observations grows linearly with the number of poses, the complexity of calculating the 
complete estimate vector is 0(n2).

5.5.2 Approximate Partial State Recovery

In a previous VAN implementation [27, 28], approximate estimates of the current vehicle 
states were produced by partitioning the state vector into a ‘local’ portion consisting of the 
states to be recovered, and the remaining ‘benign’ states for which an approximate estimate 
is available. Using the subscript / for the local subvector and b for the benign states, the 
partitioned version of Equation 5.45 is

' Y i ( t t ) Y  ti(tk) *b (**) y t  ftO
y i J(h) Y J  (ife). (tk) y/+ (**)_

If the benign states have not changed significantly since they were last recovered, providing 
a good approximation (tk) (a tilde will be used to denote all approximate estimates), an
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approximate estimate of the local states can be calculated with

(tfc) =  [Y a ( * * ) ] (y/+ (*k) ~ Y uJ (**) (tkj) (5-47)

Assuming the current vehicle pose is linked only to the previous pose (which can be en­
forced by performing vehicle state observations before any loop-closure observations), only 
one block of Y ^ T (tk) corresponding to the previous-to-current pose cross-information sub­
matrix contains non-zero elements. The approximate vehicle state estimate can therefore 
be recovered in constant time.

The assumption underlying this approximation is that the past vehicle poses have not 
been significantly updated by observations applied to the filter since the estimates of the 
benign states were last recovered. For high-frequency observations from accurate devices 
such as depth sensors, attitude sensors or a DVL, the estimates of the observed states can 
not accumulate a significant error. Therefore the updates provided by such observations 
are small and the approximation provides accurate estimates. However, loop-closures or 
observations from external positioning systems (GPS, LBL etc.) that correct large errors 
in drifting estimates cause large updates to the estimated trajectory states. After such 
an observation has been applied to the filter, the accuracy of the approximation will be 
poor, and the complete state vector including new estimates of the benign states should be 
recovered using the method of Section 5.5.1.

5.5.3 Exact Partial State Recovery

In Section 5.4.3 it was shown that a Cholesky factorisation can be efficiently modified to 
reflect changes in the factorised matrix. If the Cholesky factorisation is used to find the 
solution to a system of linear equations, the result of the forward solve step (the solution Z 
of Equation 5.27) can also be efficiently updated to reflect changes in the factorised matrix 
A and right-hand-side matrix B.

Following the convention of Section 5.4, the system of linear equations will be presented 
partitioned into three blocks. If the modification is performed to the variables ordered last, 
the modified lower-triangular system LZ =  B in the forward solve step has the form

Ln Z i ~Bi

L21 L22 Z2 = b 2
L31 L32 L33_ _Z3_ _b 3_

Since only the last block of the forward solve result is changed, the updated Z can be calcu­
lated in constant time. In the backward solve step, the upper-triangular system DLTX  =  Z
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has the form
Dn Lïi LJl ^ 3! x r z r

D22 T T  T T^ 2 2  ^32 X 2 = Z2

Ö 3 3 . ■^33. _X3. _Z3_

(5.49)

While all elements of the solution X  are changed, the backward solve operation recovers 
the variables in reverse order from last to first row. The last block of X  can therefore be 
calculated in constant time by solving

D33£J3X 3 =  Z 3 (5.50)

If the current vehicle pose variables are ordered last and the forwards substitution result is 
updated along with the Cholesky factorisation each time it is modified during a prediction 
or observation step, this approach allows the current vehicle state estimates to be recovered 
in constant time. This is an important improvement over the method of Section 5.5.2, since 
it allows prediction and observation operations to be performed without corrupting the filter 
with approximate estimates. As a result the EIF will have the same optimality properties 
as an EKF solution.

5.6 Covariance Recovery

In this section, two previously used methods to recover covariances from an information- 
form VAN filter will be briefly summarised. An alternative approach to recover the previous 
pose submatrices on the block diagonal of the covariance matrix will be presented.

5.6.1 Complete Inverse Recovery

The complete covariance matrix can be recovered by solving the equation

Y + ( t k) P + ( t k) =  I (5.51)

using the Cholesky decomposition of the information matrix. While an information ma­
trix may be sparse, the corresponding covariance matrix will be dense, resulting in long 
computation times and large storage requirements.

For VAN systems that result in a Cholesky factor with 0(n)  non-zero elements, the complete 
covariance matrix can be recovered in 0 (n 2) time. However in general where the Cholesky 
factor contains 0(n2) non-zeros, the complexity of recovering the complete covariance ma­
trix is 0 (n 3).
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Recovering the complete covariance matrix is only feasible for problems with small state 
vectors. However, in a VAN application, the complete covariance matrix is never required. 
Sections 5.6.2 and 5.6.3 present methods to recover components of the covariance matrix.

5.6.2 R ecovery o f C olum ns o f th e  Inverse

The j ’th column of the covariance matrix can be recovered by solving the equation

Y + (i*)P+.(t*) = I .j (5.52)

where P+- (t is the j 'th column of the covariance matrix, and I*; is the j 'th column of an 
identity matrix with the same dimensions as the information matrix.

For VAN systems that result in a Cholesky factor with O(n) non-zero elements, a column 
of the covariance matrix can be recovered in 0 (n ) time. However in general where the 
Cholesky factor contains 0 (n 2) non-zeros, the complexity of recovering a column is 0 (n 2).

In a previous VAN implementation [27, 28], this approach has been used to recover the 
current vehicle pose covariance and past pose to current pose cross-covariances that are 
required to assemble the joint-covariance matrices used to find loop-closure hypothesis pairs.

5.6.3 R ecovery o f th e  Sparse Inverse

In addition to the current vehicle pose covariance and previous-to-current pose cross­
covariances, creating the joint pose distributions used for loop-closure hypothesis generation 
requires the covariance of the augmented poses, which are located on the block-diagonal 
of the covariance matrix. The covariance recovery methods of Sections 5.6.1 and 5.6.2 are 
inefficient for this task, since they result in the calculation of many irrelevant elements of 
the inverse.

An alternative recovery method [25, 80, 106] can be derived from the Cholesky decompo­
sition A = LDLt using the Takahashi relationship (described in more detail in Appendix
D)

A “1 = (Lt)-1D -1 -  A -1 (L -  I) (5.53)

If Equation 5.53 is used to calculate the lower triangle of the inverse, the upper triangular 
component (LT)_1 which contains ones on its diagonal can be ignored. Individual elements 
of the inverse can therefore be calculated using the recursive relationship

n
[A ]ij = [D ]ij — [A Lkj for i < j

k=j+l
(5.54)
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Figure 5.9: The sparse inverse matrix. In general, the inverse of a sparse matrix is dense. 
The sparse inverse matrix contains the elements of the inverse at the locations of non-zeros 
in the Cholesky factor. The sparse inverse may contain more non-zero elements than the 
original matrix due to fill-in.

Equation 5.54 describes an element of the inverse in column j  in terms of other elements of 
the inverse in columns j  to n, along with the Cholesky factorisation components L and D. 
If the matrices A and L are sparse, not all elements of the inverse need to be recovered. The 
set of elements of the inverse at the locations of non-zeros in the Cholesky factor is known 
as the ‘sparse inverse’ , which is illustrated in Figure 5.9. All elements of the sparse inverse 
can be calculated using only other members of the sparse inverse and the factorisation 
components [25]. A procedure to calculate the lower triangle of the sparse inverse matrix 
is presented in Algorithm 5.2.

When applied to the factorisation of a VAN information matrix, the sparse inverse includes 
the block-diagonal, providing a method to recover the augmented pose covariances. For 
systems resulting in a Cholesky factor with O(n) non-zero elements, the sparse inverse can 
be recovered in 0(n)  time. However in general where the factor contains 0 (n 2) non-zeros, 
the complexity of recovering the sparse inverse is 0 (n 3).
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Input:
• A lower triangular matrix L and diagonal matrix D corresponding to the Cholesky 

factorisation of a matrix A.
Output:

• A sparse lower triangular matrix Z containing elements of the inverse of A at the 
locations of all non-zeros in L.

Procedure:
1: for j  = n to  1 do 
2: for i =  n to j  do
3: if Lij 7̂  0 then
4: Zi j  *— [D l ]ij

5: for k =  j  +  1 to  i do
6: if Lfcj 7̂  0 then
7: Zjj  < Z t j  ZjfcLfcj
8: end if
9: end for

10: for k =  i +  1 to  n do
11: if Lfcj /  0 then
12: Zy * Zi j Ẑ fL/̂ j
13: end if
14: end for
15: end if
16: end for
17: end for

Algorithm 5.2: Calculation of the lower triangle of the sparse inverse matrix, which consists 
of all elements of the inverse at the locations of non-zeros in the Cholesky factor L. During 
each iteration of the algorithm, the elements of the sparse inverse in column j  are calculated 
using the previously calculated elements in columns j + 1 to n.
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5.7 Conservative Covariances for Loop-closure Hypotheses

Since recovering covariances from an information filter is computationally expensive, a pre­
vious VAN implementation [27-29] has used covariances recovered at previous timesteps to 
generate loop-closure hypotheses. Since the uncertainty of augmented past poses can only 
decrease, the use of old covariances is a conservative strategy. The filter is not corrupted 
in any way, since no approximate values are used in any prediction or observation opera­
tion. The use of conservative covariances will however increase the number of loop-closure 
hypotheses generated.

The conservative pose covariances can be used to create an approximation of the predicted 
joint distribution covariance of the form

î k)
Pli (¿fc) (tk)

Pit; (tk) P̂ tj
(5.55)

where P a (tk) is the conservative covariance of pose z, and P~ (tk) and P~v (tk) are the op­
timal past-to-current cross-covariance and current pose covariances, which can be recovered 
from the vehicle columns of the covariance matrix using the method of Section 5.6.2.

To maintain the set of approximate covariances, the (presently optimal) covariance of the 
current vehicle pose is added each time a new pose is augmented to the state vector. When 
an observation such as a loop-closure that will significantly change the past pose distribu­
tions is applied to the filter, the approximate covariances should be updated.

5.7.1 Updating the Conservative Covariance of a Single Pose

In previous VAN applications [27, 29], each time a loop-closure observation is applied to 
the filter, an EKF update (as described in Section 3.2.2) is performed on the approximate 
joint distribution covariance to yield an updated covariance for the past pose.

Since all of the estimated poses are correlated, a loop-closure observation will reduce the 
uncertainty of all trajectory states. This approach however only reduces the uncertainty in 
one of the maintained pose covariances, leaving the others highly conservative.

5.7.2 Updating the Conservative Covariance of all Poses

The sparse inverse recovery method of Section 5.6.3 provides a method to efficiently update 
all the augmented pose covariances. While this operation is more computationally complex 
than the single pose EKF update, the reduction in the conservative pose uncertainties will
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cause fewer loop-closure hypotheses to be analysed. In the experiment performed in Section 
5.9, recovering the covariances of all poses using the sparse inverse method is shown to result 
in an overall reduction in processing time.

5.8 Overview of the Algorithm
The SLAM algorithm presented in this chapter maintains the following variables:

• The information vector y + (t*.) and information matrix Y + (ijt).

• The LDLt Cholesky factorisation of the information matrix and the forward solve 
result.

• A set of conservative covariances [Pi (tk), P2 (tk) , - )Pn (ifc)] for the augmented ve­
hicle poses.

• A flag specifying if the state vector should be augmented with the current pose on the 
next prediction operation.

The algorithm consists of the standard EIF three-step predict, observe and update process.
The procedure performed in a prediction operation is illustrated in Figure 5.10. If the 
augmentation flag is set, the current vehicle covariance is added to the set of approximate 
pose covariances. The information vector and information matrix are updated and the 
Cholesky factorisation and forward solve results are modified, all of which can be performed 
in constant time.
The procedure to perform a vehicle state observation and update is illustrated in Figure 
5.11. In the experiments performed in Section 5.9, this operation applies to observations 
of the current depth, attitude and velocity of the vehicle. All components of the operation 
can be performed in constant time.
The most computationally expensive task in the VAN framework is processing data that 
has the potential to create a loop-closure observation. This procedure is illustrated in 
Figure 5.12, where computational complexity figures have been listed assuming the worst- 
case scenario where the growth of the number of non-zero elements in the Cholesky factor is 
0 (n 2) in the number of augmented poses. Under this assumption, which is likely to occur 
when the number of loop closures grows linearly with the number of poses, the complexity 
of identifying loop closure hypotheses is 0 (n 2), and applying a loop-closure observation is 
0 (n 3).
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Figure 5.10: The VAN prediction process. The operation is performed in constant time.
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Figure 5.11: The vehicle-state observation and update process. This process applies to 
observations of the vehicle depth, attitude and velocity and can be performed in constant 
time.
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Figure 5.12: The VAN loop-closure observation process. Each time an image is acquired, 
a flag is set to ensure the vehicle pose is augmented during the next prediction operation. 
The computational complexity stated in each component assumes the worst-case scenario 
where the growth of the number of non-zeros in the Cholesky factor is 0 (n 2) in the number 
of poses.
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5.8.1 A  Final N o te  on Scalab ility

Throughout this chapter, the computational complexity of operations in the VAN algorithm 
have been considered by assuming that the filter runs forever and the state vector is con­
tinuously augmented with new poses. However, since AUV surveys consist of finite-length 
missions, a more appropriate measure of scalability is how the required computing power 
grows as a survey pattern is scaled to larger areas.

Two strategies to scale a reference survey pattern to larger areas as illustrated in Figure 
5.13 are considered. The scalability of the VAN algorithm will be evaluated by analysing 
the time required to process of a loop-closure observation at the end of the mission.

If the vehicle trajectory is simply scaled as demonstrated on the left-hand side of Figure 5.13, 
the number of loop closures remains constant. Therefore the growth of non-zero elements 
in the final Cholesky factorisation is linear in the surveyed area, and the complexity of all 
operations is at worst O(n).

Alternatively, if the survey is scaled by repeating the original pattern as demonstrated on 
the right-hand side of Figure 5.13, the number of loop closure constraints grows linearly 
with the area covered. In the worst case, the growth in the number of non-zeros in the 
Cholesky factor will be 0(n2) in the number of poses and the area covered, resulting in 
a complexity of 0 (n 3) for the most expensive operations (the Cholesky factorisation and 
recovery of the sparse inverse).



5.8 Overview of the Algorithm 150

Modified survey 
patterns with a 
constant number 
of loop closures, 
resulting in 
linear scalability 
in the number of 
poses and the 
area covered

Modified survey 
patterns with a 
linearly growing 
number of loop 
closures, resulting 
in cubic scalability 
in the number of 
poses and the 
area covered

Figure 5.13: Scalability of the VAN algorithm to larger survey areas.
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5.9 R esu lts

The VAN algorithm described in this chapter has been applied to data acquired by the 
SeaBED AUV, using the stereo-vision relative pose estimation algorithm developed in Chap­
ter 4 to provide loop-closure observations.

5.9.1 S tereo V ision  R ela tive  P ose O bservation

Incorporating the stereo vision data into the VAN filter requires a sensor model that relates 
the relative stereo pose observation to the estimated vehicle poses.

Figure 5.14, illustrates two vehicle poses np Vi and npVj at index i and j  in the state vector. 
If the pose of the stereo-rig relative to the vehicle frame is vps, the stereo-rig poses relative 
to the navigation frame are

np Si (tk) =  npVi (tk) © vPs (5.56)

nPsj (tk) = nPvj (tk) © VPS (5.57)

The observed relative stereo pose SipSj as a function of the estimated vehicle poses is then

h«[x(ifc)] = SlPSj (5.58)

=  e npSj © np Si

= Q(npVj © ^Ps) © (npVi © ^Ps)

The Jacobian of the observation function relative to the states of vehicle pose i is

dhs[x(tk)]
dnpVi

= J ©2
J P n in Psj

'©1
l r j  V  r\Ps

(5.59)

The Jacobian of the observation function relative to the states of vehicle pose j  is

dhs[x fa)]
^ P v ,

— J©1
Jpn,npSi lPSj) '©1

71 VPV j  » Ps
(5.60)
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Figure 5.14: Stereo-vision relative pose observation reference frames. npVi and npVj are a 
pair of vehicle poses measured relative to the navigation frame, which are estimated in the 
state vector. np Si and npSj are the poses of the stereo-rig corresponding to each vehicle 
pose. The pose of the stereo-rig relative to the vehicle is defined by nps. An observation of 
the relative stereo pose SipSj is used to improve the estimates of the vehicle poses.

5.9.2 Loop-Closure Hypothesis Generation for Stereo Vision

Since visual feature extraction and association is computationally expensive, generating a 
small set of loop-closure hypotheses on which image analysis will be performed is critical 
for the efficiency of the VAN algorithm. Deciding if a pair of poses are accepted as a 
loop-closure hypothesis is performed by evaluating their joint distributions to estimate the 
likelihood that images acquired at each pose overlap.

Since a large number of pose pairs will be evaluated, the efficiency of the hypothesis accep­
tance test is important. The likelihood of overlapping images is evaluated using the highly 
simplified environment and sensor model illustrated in Figure 5.15. The terrain is modelled 
as a planar surface, the roll and pitch of the vehicle is assumed to be zero, and the field of 
view of the stereo-rig is modelled by a bounding cone such that the heading of the vehicle 
does not affect the region of image overlap.

Under the assumptions of the simplified model, the area of the seafloor imaged by a stereo­
rig with a field of view a at an altitude of a* is a circle with radius

n  =  a; tan j (5.61)
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If the two-dimensional separation of the stereo-poses i and j  in the X-Y plane is

àij (tk) —
Sxij (tk)

5yij (tk)

the images acquired at each pose overlap if

y/Sx^ +  Syl < (r{ 4- rj)

(5.62)

(5.63)

The 2D stereo pose separation 6{j (tk) is not known exactly. Its probability distribution can 
be calculated from the predicted joint distribution of vehicle poses i and j  produced by the 
VAN filter, which has the form

V{,Vj) (tk)
x Vi (tk)
X“  (ifc)_

p (vi,vj ) (tk) =
*̂ViVi (tk)

J*vivj (tk,

*̂ViVj (tk) 
^*Vj Vj (t k )

(5.64)

(5.65)

Through linearisation of the pose composition operation, the joint distribution of stereo 
poses i and j  is defined by the mean and covariance

Si,Sj) (tk)
Vs* (*k) 
VSj (tk)

(tk)
V SiSi (tk) 

(tk)

(tk) 
v sj3j (tk)

(5.66)

(5.67)

where the estimated stereo poses are

Vsi (tk) =  x Vi (tk) © vPs (5.68)

VSj (tk) =  X "  (tk) ©  up s (5.69)

and the covariance submatrices are

V SiSi (tk) — J®1
( x Vi(ife),vp 3).

(tk) t TJ©1 (xVi(tk),VPs)m
(5.70)

V SiSj (tk) — J®1 P ViVj (tk)
t TJ©1

( x ~ ( t k ) , Vp 3)
(5.71)

V SjSj  (tk) — J®1
( * v j ( t k ) , V Ps)

(tk) t TJ©1 (Xvj(tk),v Ps)
(5.72)
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The 2D stereo pose separation distribution mean and covariance are therefore

(5.73)
(5.74)

where the matrix A extracts the x-axis and y-axis positions from a six degree of freedom
pose vector.
The likelihood of image overlap is calculated by integrating the 2D pose separation prob­
ability distribution over the circular region defined in Equation 5.63. In the experiments 
presented in this chapter, the integration is performed approximately by sampling the pose 
separation distribution on a 20 by 20 cell grid as demonstrated in Figure 5.16, and pose 
pairs with an overlap likelihood greater than 0.5% are accepted as loop-closure hypotheses.
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Stereo-rig a t pose j

' '  S x i j  
4m----------------- ¡X.

Figure 5.15: Simplified image overlap model for loop-closure hypotheses. A planar terrain 
structure is assumed, along with zero vehicle roll and pitch, and a constant radial field of 
view of a. The altitudes of the stereo rig are a¿ and a,j, resulting in circular images of
radius and ry. Under these assumptions, the overlapping images occur if \Jà + 5yf- <
(n + rj).
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Figure 5.16: Calculating the likelihood of overlapping images. In this example, the
~2~.

mean and covariance of the 2D stereo pose separation distribution are n  — „ and

4 -0 .5
-0 .5  2 The mean of the relative pose distribution is marked by a cross,

while the one and two standard deviation ellipses are drawn in black. The red circle shows 
the bounds of pose separation vectors that support overlapping images. The pose separa­
tion probability is sampled on a grid, and cells within the overlap bounds are integrated 
to estimate the likelihood of overlapping images. A 20 by 20 grid has been used, requiring 
the calculation of 400 samples. The colour of each grid cell displays the evaluated relative 
pose likelihood. In this example, the likelihood of overlapping images was estimated to be 
approximately 8.25%.
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5.9.3 E xperim en t at N ingaloo  M arine Park

The SLAM algorithm developed in this chapter has been applied to data collected at the 
Ningaloo Marine Park near Exmouth in Western Australia. In a deployment to survey sea- 
sponges, the SeaBED AUV traversed a grid pattern within a square region of 150 by 150 
metres. The desired trajectory of the vehicle is illustrated in Figure 5.17. The trajectory is 
approximately 2.2 kilometres in length, and required approximately 75 minutes to complete. 
The ocean depth at the survey site is approximately 40 metres, and the AUV maintained 
an altitude of 2 metres above the seafloor using range measurements from the DVL. Plots 
of depth and altitude observations acquired during the mission are provided in Figures 5.18 
and 5.19.

Figure 5.20 compares dead-reckoning trajectory estimates produced using the approximate 
vehicle state recovery method of Section 5.5.2, and the exact recovery method presented in 
Section 5.5.3. The dead-reckoning estimates were produced using the VAN algorithm to fuse 
DVL velocity, attitude and depth observations. The filter was augmented with the vehicle 
pose each time an image was acquired, however no loop-closure hypotheses or observations 
were generated. The trajectory of the vehicle differs from the mission plan in Figure 5.17, 
since a bug in the planning software caused no goal points to be produced for the short 
legs at the edges of the grid pattern. The vehicle is therefore observed to cut the corners 
between the longer grid legs. Due to the high-frequency observations and accurate sensors 
used in this application, corrections to the past pose estimates are small, and the accuracy 
of the approximation is surprisingly good. The maximum difference in the vehicle position 
estimates produced by the two dead-reckoning filters is nine centimetres.

A comparison of dead-reckoning processing times using each vehicle state recovery method 
is shown in Figure 5.21. When testing the approximate partial state recovery method, 
Cholesky modifications were used to keep the factorisation updated, however the forward 
solve result was not calculated or maintained. The exact partial state recovery process is 
slightly more efficient due to the complexity of the matrix inverse operation required by the 
approximate method.

The loop-closure hypothesis generation and observation process for this application is illus­
trated in Figures 5.22 and 5.23, which show the state of the VAN filter before and after 
the vehicle reaches the first cross-over point in the survey pattern. A large correction in 
the estimated trajectory and a decrease in the past pose covariances due to loop-closure 
observations are shown in Figure 5.22, while a detailed view of the pose network at the 
cross-over point is presented in Figure 5.23.

In this experiment, the SURF algorithm was used to extract and associate visual features 
for loop-closures observations. Examples of the stereo-image pairs and visual features used
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Method North (m) East (m)
GPS -39.25 -23.96
SLAM -31.43 -34.64
Dead-reckoning -17.96 -8.84

Table 5.2: Final vehicle position estimates for the Ningaloo Marine Park experiment. The 
final position estimates are shown at a time just after the AUV surfaced and a GPS position 
observation was available.

to produce loop-closure observations are presented in Figures 5.24 and 5.25. In both cases 
SURF is able to extract and associate a sufficient number of features to estimate the relative 
stereo pose.
A comparison of the estimated trajectories produced by dead-reckoning and SLAM is shown 
in Figure 5.26. A total of 111 loop-closure observations were applied to the SLAM filter, 
shown by the red lines joining observed poses. Applying the loop-closure observations results 
in a trajectory estimate that suggests the vehicle drifted approximately 30 metres south­
west of the desired survey area. While no ground truth for the survey is available, arguments 
for the superiority of the SLAM solution can be created by considering the self-consistency 
of each estimated trajectory, and the consistency of the final vehicle position estimates with 
GPS observations acquired after the vehicle surfaced at the end of the mission.
The superior self-consistency of the SLAM solution can be observed in mosaics of images 
acquired at trajectory cross-over points. Figures 5.27 and 5.28 present mosaics for the cross­
over points marked ‘A’ and ‘B’ within the dead-reckoning and SLAM trajectory estimates in 
Figure 5.26. The mosaic of the dead-reckoning cross-over point in Figure 5.27 is inconsistent, 
since images hypothesised to overlap contain no common features. In contrast, the mosaic of 
Figure 5.28 produced using vehicle pose estimates from SLAM displays accurately registered 
overlapping images, demonstrating the correction of dead-reckoning drift.
Estimates of the final vehicle position at the end of the mission produced by dead-reckoning, 
SLAM and GPS are listed in Table 5.2. The difference between the SLAM estimate and 
GPS is approximately half that of the dead-reckoned solution. It is likely that a large 
portion of the error in the SLAM solution was accumulated in the descent to the seafloor 
and ascent to the surface, since during these times no visual observations are available to 
correct drifting estimates.
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Figure 5.17: Mission plan for the Ningaloo Marine Park experiment. The plan consists of 
two overlapping grids and a final leg back to the origin in a 150 metre by 150 metre region. 
The vehicle starts at the origin located at the north-east corner of the grid. The direction 
of the vehicle is shown for each leg with an arrow.
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Figure 5.18: Vehicle depth observations for the Ningaloo Marine Park experiment. The 
depth at the survey site varied between approximately 41 and 48 metres.

Figure 5.19: Vehicle altitude observations for the Ningaloo Marine Park experiment. Range 
measurements from the DVL were used to maintain an altitude of 2 metres above the 
seafloor.
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Figure 5.20: Dead-reckoning trajectory estimates for the Ningaloo Marine Park experiment. 
The SeaBED AUV performed a survey pattern at a depth of approximately 40 metres and an 
altitude of 2 metres above the seafloor. Vehicle pose estimates produced using the optimal 
vehicle state recovery method of Section 5.5.3 are drawn in blue, and the estimates produced 
using the approximate partial state recovery method of Section 5.5.2 are shown in red. In 
this application, the accuracy of the approximate state recovery method is surprisingly 
good, with a maximum difference of 9cm from the optimal solution. The trajectory of the 
vehicle differs from the mission plan in Figure 5.17, since a bug in the planning software 
caused no goal points to be produced for the short legs at the edges of the grid pattern. 
The vehicle is therefore observed to cut the corners between the longer grid legs.
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Figure 5.21: Dead-reckoning processing times. Cumulative processing times are shown for 
dead-reckoning using the approximate and exact partial state recovery methods. The exact 
state recovery approach proves to be slightly more efficient than the approximate method 
which requires a matrix inverse operation.
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(b) After loop-closure

Figure 5.22: The stereo-vision loop-closure process. Vehicle pose estimates are represented 
by black dots, and their uncertainties are shown by 95% confidence ellipsoids drawn in 
grey. Poses linked by odometry constraints are connected by black lines. In (a), green 
lines connect pairs of poses forming loop-closure hypotheses, and in (b) red lines are drawn 
between pairs where a loop-closure observation has been applied. The loop-closure obser­
vations in (b) result in a correction of the estimated vehicle trajectory, and a decrease in 
the uncertainty of many poses.
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(b) After loop-closure

Figure 5.23: The stereo-vision loop-closure process (detail view). Loop-closure hypotheses 
for pairs of poses likely to contain image overlap are shown by green lines in (a), and poses 
linked by loop-closure observations are connected by red lines in (b).
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Figure 5.24: Stereo-vision loop-closure observation example one. The left and right stereo 
images acquired at a first pose are shown on top, while the stereo images acquired at a 
second pose are shown below. Features associated between all images are marked by lines 
joining their locations in both left and right frames.
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Figure 5.25: Stereo-vision loop-closure observation example two. The left and right stereo 
images acquired at a first pose are shown on top, while the stereo images acquired at a 
second pose are shown below. Features associated between all images are marked by lines 
joining their locations in both left and right frames.
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North (m)

Figure 5.26: Comparison of dead-reckoning and SLAM vehicle trajectory estimates. The 
SLAM trajectory is shown in black, while the dead-reckoning estimates are shown in blue. 
The SLAM estimates suggest the vehicle has drifted approximately 30 metres south-west of 
the desired survey area. Mosaics of images acquired at the the trajectory cross-over points 
marked ‘A ’ and ‘B ’ are shown in Figures 5.27 and 5.28.
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(a) Images overlaid in chronological order

Figure 5.27: Inconsistency of the dead-reckoning vehicle trajectory. Mosaics are shown 
for image acquired at the estimated trajectory cross-over point marked ‘A ’ in Figure 5.26. 
Images predicted to contain overlap do not match due to significant localisation errors.
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(a) Images overlaid in chronological order

(b) Images overlaid in reverse order

Figure 5.28: Consistency of the SLAM vehicle trajectory. Mosaics are shown for image 
acquired at the estimated trajectory cross-over point marked ‘B’ in Figure 5.26.
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Update Method Loop-closure hypotheses Loop-closure observations
None 2754 112
Single pose EKF 2596 112
Sparse inverse 1186 111
Optimal 1186 111

Table 5.3: Loop-closure statistics for conservative pose updating strategies.

The final state vector for the Ningaloo Marine Park experiment contains 25884 variables 
from 2157 poses. The sparsity pattern of the final information matrix is shown in Figure 
5.29. The information matrix contains 939528 non-zero elements and is 99.86% sparse. 
Most of the non-zero elements result from odometry constraints, however each of the 111 
loop-closure observations result in a block of non-zeros below the block tri-diagonal.
The sparsity pattern of the final Cholesky factor is shown in Figure 5.30. The advantage 
of using a fill-in reducing permutation can be observed by comparing the factors produced 
using the natural and AMD variable orderings. The variable ordering produced by the 
AMD algorithm results in a factor with approximately one-sixth of the number of non-zeros 
produced by the natural ordering.
An evaluation of strategies to update the conservative past pose covariances is presented in 
Figure 5.31, where the trace of the covariances is used as a measurement of their uncertainty. 
For comparison, optimal (non-conservative) values were produced by recovering the true 
pose covariances using the sparse inverse method. For a survey pattern with few cross-over 
points, applying a single pose EKF update after each loop-closure provides little benefit. 
The strategy of updating the conservative poses using the sparse inverse method after each 
loop-closure produces near optimal results in this application, since the dead-reckoning 
observations (depth, attitude and velocity) between loop-closure observations provide only 
small updates to past poses. The number of loop-closure hypotheses and observations 
produced when using each conservative pose update strategy are listed in Table 5.3. As 
expected, using the sparse inverse method results in a significant reduction in the number 
of generated loop-closure hypotheses.

The growth in the number of non-zero elements in the Cholesky factor for the Ningaloo 
experiment is shown in Figure 5.32. In general the number of non-zeros for SLAM is 0 (n 2) 
in the number of poses. Due to the sparse set of cross-over points in the Ningaloo experiment 
however, the number of non-zeros caused by new poses and odometry constraints (which 
grow linearly) outnumber those from loop-closure observations. As a result, in this case the 
growth in the number of non-zeros is not much worse than linear.
The processing times for prediction operations is shown in Figure 5.33. Prediction without



5.9 Results 171

Operation Count Mean (s) Minimum (s) Maximum (s)
Feature extraction from a 
single image 952 0.1631 0.0952 0.2680

Feature association between 
a stereo image pair 476 0.0214 0.0024 0.0771

Feature association between 
two stereo image pairs 1186 0.0104 0.0018 0.0339

Table 5.4: SURF image analysis statistics. Processing times were acquired on a 2.0 GHz 
Pentium M processor.

augmentation is a constant time operation, however when augmenting poses, on occasion 
the capacity of the information vector, information matrix and Cholesky factor need to be 
resized. In this implementation the capacity of the vectors and matrix are always doubled, 
leading to a decreasing frequency of resize events and amortised constant time complexity.

The processing times for vehicle state observations including depth, attitude and velocity 
observations are shown in Figure 5.34. As expected, all observations of the current vehicle 
states are constant time operations.

The processing times for the operations required to generate loop-closure hypotheses are 
shown in Figure 5.35. A total of 2303531 pose pairs were tested, producing 1186 loop-closure 
hypotheses resulting in 111 loop-closure observations. While recovering the state estimate 
vector and columns of the covariance matrix are in general 0 (n 2) operations, the growth 
of their processing times in this experiment is not much worse than linear due to the near 
linear growth in the number of non-zeros in the Cholesky factor.

The processing times for the operations required to apply loop-closures observations to the 
filter are shown in Figure 5.36. Updating the information matrix is a 0(n) operation in this 
implementation due to the use of a compressed row storage format requiring 0(n) values to 
be shifted when a new non-zero element is inserted. As expected, recalculating the Cholesky 
factorisation and recovering the sparse inverse are the most expensive operations. While 
the computational complexity of these operations in general is 0 (n 3), the growth of their 
processing times in this experiment is not much worse than linear due to the near linear 
growth in the number of non-zeros in the Cholesky factor.

Statistics for the visual feature extraction and association operations performed by the 
SURF algorithm to create loop-closure observations are listed in Table 5.4. In this experi­
ment, the images were scaled down from their original size 1360x1024 to 680x512 pixels.

If the localisation filter and image analysis is performed on the same CPU, processing 
the entire mission required 8 minutes and 9 seconds. If cached visual feature locations
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and descriptions are used, simulating the process of using dedicated hardware for image 
analysis, processing the mission required 4 minutes and 10 seconds. The processing times 
presented in this chapter have been measured on a 2.0 GHz Pentium M processor. Currently 
all processing is performed off-line on logged data, however these timing results suggest an 
on-line implementation is feasible.
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Figure 5.29: Structure of the final information matrix. The final state vector contains 25884 
variables from 2157 poses. The information matrix is 99.86% sparse, containing 939528 non­
zero elements. Most of the non-zero elements result from poses and odometry constraints, 
and are located in the block tri-diagonal. Each of the 111 loop-closure observations applied 
to the filter result in a block of non-zero elements above and below the block tri-diagonal. 
In this image, each pixel represents a 12x12 submatrix, and black pixels show non-zero 
elements. In the lower triangle, red squares have been drawn around groups of non-zero 
blocks at each of the 32 trajectory cross-over points where loop-closures were found.
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(a) Natural ordering (5165838 non-zero elements)

Figure 5.30: Structure of final Cholesky factors produced with natural and AMD variable 
orderings. In each image, a pixel corresponds to a 12x12 element submatrix. Non-zero 
elements at the location of non-zeros in the information matrix are drawn in black, while 
those produced by fill-in are shown in red. The AMD variable reordering has resulted in 
approximately one-sixth of the number of non-zeros produced by the natural ordering.
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Figure 5.31: Evaluation of conservative covariance updating strategies. The trace of the 
conservative pose covariance submatrices has been used as a measure of their uncertainty. In 
an exploration style mission with few loop-closures, updating a single pose covariance after 
each loop-closure with the EKF update method produces little benefit. Updating all pose 
covariances using the sparse inverse recovery method each time a loop-closure observation 
is applied to the filter maintains conservative covariances that are close to optimal.
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Figure 5.32: Growth of the number of non-zero elements in the Cholesky factor. The 
number of non-zeros grows linearly with the number of augmented poses between loop- 
closure observations, the first of which occurs when there are 1039 augmented past poses. 
The greedy nature of the AMD algorithm produces an irregular growth pattern, with some 
loop-closures resulting in a reduction in the number of non-zeros when a better ordering 
is found. For SLAM, the worst-case number of non-zeros is 0(n2) in the number poses, 
however the sparse set of loop-closures in the Ningaloo experiment result in a growth that 
is not much worse than linear.
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Figure 5.33: Processing times for prediction operations. In (a), prediction without aug­
mentation is performed in constant time, while in (b), prediction with augmentation is 
performed in amortised constant time due to resize events. When a matrix or vector needs 
to be resized, the capacity is doubled, resulting in increasing periods between resize events.
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Number of augmented past poses

Figure 5.34: Processing times for vehicle state observations. Observations of the current 
vehicle depth, attitude and velocity are all performed in constant time.
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Figure 5.35: Processing times for loop-closure hypothesis generation. The processing time 
for the pose-pair tests used to identify loop-closure hypotheses grows linearly with the 
number of poses. The time required to perform the state estimate and covariance column 
recovery operations is a function of the number of non-zero elements in the Cholesky factor. 
In general they are 0 (n 2) operations, however in this experiment their growth is not much 
worse than linear due to the near linear growth in the number of non-zeros in the Cholesky 
factor. The processing times in this figure were acquired on a 2.0 GHz Pentium M processor.
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Figure 5.36: Processing times for loop-closure observations. Applying an observation up­
date to the information matrix is a 0(n) operation in this application due to the use of a 
compressed row storage format. In general, the computational complexity of the Cholesky 
factorisation and sparse inverse recovery operations is 0 (n 3), and the forward solve opera­
tion is 0 (n 2). In this experiment, the growth in their processing times is not much worse 
than linear due to the near linear growth in the number of non-zeros in the Cholesky factor.
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5.10 Summary

A novel SLAM algorithm based the VAN framework was presented and demonstrated using 
data acquired by the SeaBED AUV at Ningaloo Marine Park. The stereo relative pose esti­
mation method presented in Chapter 4 has been used to generate loop-closure observations 
and correct dead-reckoning drift.

The use of Cholesky factorisation modifications to update a decomposition of the informa­
tion matrix was demonstrated, preventing the need to repeatedly perform the computation­
ally expensive factorisation process each time state estimates and covariances are recovered.

An exact partial state recovery method was presented, allowing prediction and vehicle state 
observation operations to be performed without corrupting the filter with approximate 
vehicle state estimates. Through the use of use of Cholesky modifications and an appropriate 
variable ordering, exact recovery of the vehicle state estimates can be performed in constant 
time.

An improved method to update conservative pose covariances based on recovery of the sparse 
inverse was presented. This approach was demonstrated to improve the computational 
efficiency of the VAN algorithm by reducing the number of loop-closure hypotheses requiring 
evaluation.

The scalability of the each operation in the VAN algorithm has been investigated. While 
in the worst-case the complexity of some operations is 0 (n 3) in the number of augmented 
poses, processing times for a typical underwater survey experiment suggest an on-line im­
plementation is feasible.



Chapter 6

Conclusions and Future Research

6.1 Introduction

The objective of this thesis has been the development of vision-based navigation techniques 
for underwater vehicles. Several approaches have been presented, including odometry esti­
mation from the fusion of observations from a monocular camera and a sonar range-finder, 
odometry estimation using stereo-vision, and a SLAM algorithm using cameras to augment 
traditional dead-reckoning sensors.

This chapter summarises the contributions of this thesis, and provides suggestions for further 
research. Section 6.2 provides a summary of contributions towards improving vision-based 
AUV navigation. Section 6.3 proposes directions for future research.

6.2 Summary of Contributions

Odometry using Sonar and Vision

An algorithm to estimate the odometry of an underwater vehicle through the fusion of sonar 
and vision observations has been presented. The algorithm has been demonstrated on data 
collected from a vehicle lacking traditional dead-reckoning sensors such as a DVL.

Novel aspects of this work include:

• The use of a SLAM-style algorithm with a highly dynamic state vector consisting 
of both temporary vehicle poses and features. A set of temporary natural features 
tracked using a vision system enables the odometry of the vehicle to be estimated 
without introducing artificial landmarks or beacons into the environment.
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• The use of a sonar range-finder to initialise the depth of features observed in images. 
Maintaining an estimate of the pose of the vehicle at the time the last image was 
acquired provides a method to register non-synchronised sonar and vision observations.

R elative Pose E stim ation  using Stereo-vision

A novel relative pose estimation algorithm using stereo-vision has been presented, and 
demonstrated in visual odometry and SLAM applications.

Contributions in this work include:

• A survey and evaluation of motion estimation approaches. Algorithms that ignore 
some or all observation uncertainties were shown to result in biased and noisy estima­
tors.

• A novel approach to efficiently calculate the maximum likelihood motion parameters 
by registering triangulated 3D feature positions. Summarising stereo-vision observa­
tions of a feature with triangulated position estimates and covariances was shown to 
produce equivalent results to bundle adjustment, while being more computationally 
efficient due to a more compact observation vector and a less complex observation 
model.

• A survey and evaluation of outlier rejection frameworks. The iterative outlier rejection 
approach was found to be unreliable when applied to data containing outliers with 
large errors, such as those produced by incorrect association of feature observations. 
The commonly used RANSAC algorithm was shown to accept fewer inkers than could 
be expected with better motion hypotheses.

• An outlier rejection approach based on a robust estimator. A redescending M- 
estimator is used, not in its typical role to provide a final motion estimate, but to 
create a relative pose hypothesis from which an outlier classification test is performed. 
The maximum likelihood motion parameter estimate and covariance is then calculated 
from the remaining inlier features. The robust estimator was demonstrated to provide 
superior motion hypotheses to RANSAC, resulting in an improved outlier classifier 
and motion estimator.

Sim ultaneous Localisation and M apping using V isual Loop-closures

A novel SLAM algorithm based on the VAN framework has been presented. The algorithm 
has been demonstrated using stereo-vision loop-closure observations to correct drift in the 
estimated trajectory of an AUV equipped with a DVL.
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Contributions include:

• The application of Cholesky modifications to a factorisation of the VAN information 

matrix. It has been shown that an existing factorisation of the information matrix 

can be efficiently modified to reflect changes to the filter within prediction and ob­

servation operations. If the variable reordering used during the factorisation process 

is constrained to keep the vehicle states last, the factor modifications required after 

prediction and vehicle state observation operations can be performed in constant time. 

Using cholesky modifications avoids performing many computationally expensive fac­

torisation operations, resulting in significant improvements to the efficiency of the 

VAN filter.

• A method to recover optimal estimates of the current vehicle pose states in constant 

time. Recovery of the exact vehicle states allows prediction and observation opera­

tions to be performed efficiently without corrupting the filter with the approximate 

estimates used in previous VAN implementations.

• A covariance recovery method based on the ‘sparse inverse’ matrix. Recovering the 

covariance of all estimated poses allows less conservative pose covariances to be used 

when generating loop-closure hypotheses. A reduction in the number of loop-closure 

hypotheses results in the need to perform fewer computationally expensive image 

analysis operations.

6.3 Future Research

O n -lin e  D e m o n s tra tio n

The vision-based navigation methods presented in this thesis have been demonstrated on 

data acquired from previous deployments of underwater vehicles. Developing on-line im­

plementations capable of handling real-time constraints is likely to require a significant 

effort.

A V ision  S en so r for N a v ig a tio n  A p p lic a tio n s

The cameras used in the experiments presented in this thesis have been selected to meet 

the needs of human experts such as biologists and geologists who will view the acquired 

images. The properties of a vision sensor built specifically for navigation applications may 

be significantly different from those currently used.
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Greyscale cameras could be used, since colour is typically ignored when associating features 
due to large variations that occur under different lighting conditions. A greyscale camera 
also has the advantage of producing sharper images than a colour camera that interpolates 
pixel intensities from a Bayer pattern of red, green and blue photosensors.
Cameras that produce smaller images with a larger field of view are likely to be better suited 
for navigation. Smaller images will improve the efficiency of image processing operations, 
and a larger field of view allows more features to be observed and tracked over larger 
distances.
Dedicated hardware could be used to perform feature extraction and calculate the feature 
descriptions used for association. Several algorithms such as MSER, SIFT and SURF 
could be implemented to ensure reliable performance in a range of environments. Once 
feature extraction and description have been performed, images could be discarded to reduce 
bandwidth and storage requirements.

Cam era Calibration and the A ssum ption  o f Independent O bservations

The assumption of independent visual feature observation errors is only valid if perfect 
calibration parameters have been acquired. Obtaining a good calibration is difficult, partic­
ularly in underwater applications where a camera housing may deform under high pressures. 
On the Australian SeaBED vehicle, deformation of a temporary camera viewport has been 
observed in shallow (30 metre) waters. An improved housing design will reduce deforma­
tions, however the same effects are likely occur at greater depths.
On-line estimation of the intrinsic camera parameters could be attempted, however the 
often planar structure of the seafloor may lack the geometric variation required to make 
the estimation problem observable. Since deformations are likely to be repeatable, perhaps 
an experiment where the camera-rig is placed inside a pressure chamber with a calibration 
target could be performed to generate curves for the calibration parameters with varying 
depth.

The C om putational C om plexity o f SLAM

While the SLAM algorithm presented in this thesis is suitable for many applications, there 
will be a limit to the number of poses and loop-closure observations that can be handled in 
real-time.
The most complex operation in the SLAM algorithm is the application of a loop-closure 
observation to the filter, which requires the estimate and conservative covariances of all
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poses to be updated. Perhaps the computational complexity of a loop-closure update could 
be reduced using sub-maps. Some benefits may also be gained by approximations such as 
sparsification [27, 34], in which small correlations are ignored.

In this thesis, direct solutions to systems of linear equations have been investigated for state 
estimate and covariance recovery. Iterative approaches such as the Conjugate Gradient 
method [27, 95, 105] and multilevel relaxation [35] may provide some benefits.

The size of the estimated state vector could be reduced through intelligent pose manage­
ment. For example, since a typical AUV deployment involves traversing a predefined survey 
pattern, poses in areas that will not be revisited could be removed from the filter.

While loop-closure observations are necessary to correct dead-reckoning drift, they also 
increase the computational complexity of the filter due to fill-in of the Cholesky factor. In 
situations such as a dense survey of a small region where lots of loop-closure constraints 
could be generated, many observations are likely to provide little additional information. 
A principled way to decide which observations should be applied to the filter, based on a 
trade-off between information gain and computational complexity may be advantageous.

Methods to limit the number of pose-pairs evaluated to generate loop-closure hypotheses 
should be considered. Perhaps a tree structure could be used to limit the search to poses 
in the neighbourhood of the current vehicle position.

Combining Visual Odometry and SLAM

In the experiments performed in this thesis, SLAM was performed using a DVL to provide 
odometry. Combining visual odometry and SLAM could improve the localisation of low-cost 
vehicles lacking expensive sensors such as a DVL or IMU.

Temporally Stable Features for Repeatable Surveys

An important application for AUVs is monitoring changes to fragile environments such as 
coral reefs. Ideally this should be performed by repeating the same survey pattern over 
months or years, ensuring the same locations are observed on each deployment.

A map built from data collected during previous deployments could be used to improve the 
survey repeatability. The small point features used by the navigation approaches presented 
in this thesis are unlikely to be stable over long periods of time, and location recognition 
over a larger spatial scale may be required. Since the shape of the seafloor is likely to be 
more stable than its appearance, 3D reconstructions from stereo-vision or sonar sensors may 
form a significant part of a solution to this problem.
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Geometry

A .l Euler Angle Orientation R epresentation
The orientation of a frame j  relative to a frame i is represented by a vector of Euler angles.

% (A.l)

where </> represent a rotation around the x-axis, 9 represents a rotation around the y-axis, 
and ip a rotation around the 2-axis. In this thesis, a XYZ ordering convention is used.
The Euler angle orientation representation suffers from a problem known as gimbal lock, 
which occurs when the second rotation causes the final axis of rotation to be the same as 
the first, causing an inability to rotate the frame around a third independent axis. In the 
selected Euler angle convention, Gimbal lock occurs when 9 = =b .̂ This should not pose a 
problem, since the vehicles used in the experiments presented in this thesis do not operate 
at such high pitch angles.
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A .2 R o ta tio n  M atrices

The matrix tha t rotates frame i to be aligned with frame j  is given by

i R  =  R x {i ( f ) j ]Ry[ i 0 j ] R z [ i 'il>j] (A.2)

' l 0 0 c o s  l 6 j 0 — s i n l 0j COS l l p j s in  l,t p j O'

0 COS l (p j s in  l (f)j 0 1 0 —  s i n l i p j c o s 1 Ip  j 0

_0 — s i n 1^ - COS l (f)j_ s i n 1̂ 0 c o s  l 9 j 0 0 1_

c(Vj)cC0j)
c(Vj)sC%)5(Vj) -  s(V j)cO ^)
ciVjM fyM Vj) + s(Vj)s(Vj)

* { % ) < % )  s ( l0j)
+ c (V jX V j)  c f e ^ s f y j )  

s (V j)sC ^ X V j)  -  c iV jX ^ j )  c^O jW fa)

where s(-) and c(-) have been used to represent sine and cosine respectively. 

Jacobians of the rotation matrix with respect to the Euler angles are

a ( |R )  _
d(i(pj)

0 0
c{i'ipj)s{iej )c{i(pj ) + s^xpj^cpj) s{i'4)j )s{i0j )c{i<pj ) -

0
c(Vi)s(Vj)
c f iP jW t j )  -c O ^ X V j) .

(A.3)

9 (jR )
d (% )  ■

~c(i,ipj)s(idj ) —s(j"ipj)s(pOj ) —cipOj) 
c{iTpj)c{i0] )s(i(pj ) - s ( ^ j X V j )  
c{i'ipj )c{iej )c{ixpj ) s ^ ip ^ c ^ e ^ c ^ j )  - s C ^ )c (V j) .

(A.4)

0(}R) _
d^ipj)

- s W j W O j )  c(V j)c(l6>j ) 0 

-  c C ^ )c (^ j)  c (V j)s(l^ X l0j) -  s(l^j)c(l(pj) o 
- s ( l'ipj)s(i6j )c(t(pj ) +  c (V jX V j)  c(lTpj )s(lOj )c(l(pj ) +  0.

(A.5)

The matrix tha t rotates frame j  back to be aligned with frame i is given by
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Similarly

9(|R) =  /d Q R )\

dgR) = Z5(|R)\
d { % )  { d C 8 j ) J
a(|R) /9(}R)\

T

T

T

(A.7)

(A.8)

(A.9)

The Euler angle can be extracted from the rotation matrix orientation representation with 
the function

\ p j  = m atrixToEuler[] R] (A.10)
atan2(^R3)i sin1̂ - -  ¿R3,2 c o s^ ji -¿ R2,i s m lipj + ^ 2 , 2  cos1̂  )

=  atan2(-^Ri)3,^Ri)i cos V j +  JR i,2 sinl^j)
atan2(^Ri)2, ¿Ri,i)

A .3 Converting Local Body R otation R ates to  Euler Rates
The local rotations of frame j  are represented by

UU —
Pj

Lri.
(All)

where p, q and r are the rotation rates around frame j's rr-axis, y-axis and 2-axis respectively. 
The local body rates of frame j  can be converted to Euler rates in frame i by

% = ;e (A.12)
where

5E =
1 sin(l0j) tan(l^j) cos(l0j) tan (l0j)
0 cos —sin • (A.13)
0 sin(l0j)sec (l6j) cos(l0j) sec(1̂ )

The derivatives of the conversion matrix with respect to the Euler angles representing the
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o rien ta tion  of th e  body  are

d p E )
d ( % )

0(}E)
d m

<9(*E)

W j )

0

0

0

0
0

0

0
0
0

cosi1 (f)j) t a n (l9j) 

- s i n  ( % )  

cos (10 j)  sec(l0j)

— sin (l</>j) ta n ( I^J )

— COs{l(j)j)

— sm( l(f)j) sec(*0j)

sin (l0 j)  sec2(l0j)  

0

cos (l0 j)  sec2 (l0j) 

0

sin (l0 j)  sec 0 t a n ( ^ j )  cos(l</>j) sec(l6j)  ta n ( l0j)

0 0 

0 0 

0 0

(A.14)

(A.15)

(A.16)

A .4 P ose  R ep resen ta tion

T h e pose of fram e j  re lative to  fram e i is rep resen ted  by a  vector con tain ing  tran s la tio n  and 

E uler angles o rien ta tio n  s ta te s

lXj lVj Z n l<h

(A.17)

A .5 R eference Fram e C onversions

T he position  of x  re lative to  fram e i can be transfo rm ed  to  be re la tive to  fram e j  using the  

equations

j t x =  jR * tz + j U (A .18)

j t x = Ji R ( it x - it j ) (A .19)

E q u atio n  A. 18 is useful w hen j (the pose of fram e i re la tive to  j ) is known, while A. 19 is 

useful w hen lp j  (the  pose of fram e j  re lative to  i ) is known.

T he  Jaco b ian  of th e  transfo rm ed  coord inates H x w ith  respect to  th e  original coord inates is

X

Sj t x
ò'tx

(A .20)
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The Jacobian of the transformed coordinates H x with respect to the pose of frame i relative 
to frame j  is

5 h x
SJPi

T  â? R ,  ^

1 Zx ÓJdi Zx SJxTi l x .
(A.21)

The Jacobian of the transformed coordinates H x with respect to the pose of frame j  relative 
to frame i is

6Jt x
^P j

■R (  j 4. _  I f  \  (X\. _  ¿4- \  ( i ±  j .  \
^  V̂>J v 6*e~y ix k?/ (A.22)

A .6 Pose Com position Operations

Two dimensional pose inverse, head to tail and tail to tail composition operations were 
first presented in [101]. The six degree of freedom versions listed here have been adapted 
from [27]. To illustrate the pose composition operations, three reference frames «, j  and k 
are shown in Figure A.l.

Inverse

If the pose of frame j  relative to i is known, the pose of frame i relative to j  can be obtained 
using the pose inverse operation defined by

JPi = e 'p j (A.23)

m atrixToEuler [̂  R]

The Jacobian of the pose inverse operation is

dJp i
J a =

&Pj
- Î R  N

0(3x3) Q

(A.24)
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Pi
Pit

Pit

Figure A.l: Reference frames demonstrating pose composition operations. The coordinate 
systems of three reference frames j  and k are shown, along with relative poses represented 
by dotted lines.

where

N = J Zi

—j Vi

Q =

cos lcf)j + lyj s i n + lZj cos l0j jR i¿ X j  -  jR i,i lyj 
cosl(t>i + lVj sin l<t>j) +  lZj sin l0j sin l(f)j ]R 2)2 lXj -  ¿R ^ilyj 

- i R s M ' x j  coslcf)j + lyj sin l<f>j) + lZj cosl6j coslcf)j :■ R 3j2 lXj -  JR 3,1 Vj,

(A.25)

-JR-u - ¿ R 2,i cos l (f)j ^ R 3 i 1 ^ R 3 i3

fR 2,lv/ ( l - ' R ? j3) —jR3,3 COS*̂ >j /̂(l — jR§ i) ^ 3 , 2 ^ 1 - ^ , ! )

1*  3,1 - ¿ R 3|2 COS l (t)j -i* * *
(A.26)

H ead To Tail

If the pose of frame j  relative to i, and the pose of frame k relative to j  are known, the 
pose of k relative to i can be obtained using the pose head to tail operation. As the name 
of the operation suggests, in Figure A.l the head of the arrow representing lpj is located 
at the tail of the arrow of zpfc.
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The pose head to tail operation is defined as

lPk =  lP j ® J Pk

+  Tj
matrixToEuler^R]

(A.27)

where lkR  =  J-RjR.
The Jacobian of the head to tail operation with respect to lpj  and ’̂p*; is given by

dlp k
d(lP j , j Pk)

= J © 1  ^ © 2]

1 (3 x 3 )  M j R  ° ( 3 x 3 )
0 (3 x 3 )  K i 0 (3 x 3 )  K 2

(A.28)

where

M =

K1 =

K2 =

(*Zk -  lZj) cos lipj 
(lzk -  lZj) sin 1 ipj

i x k cos l6j — {iyk sin l9j +  i zk cos l9j) sin l9j

cos l9j cos(lipk — l^j) sec l6 ic sin(lipk — lipj) sec l9k 0 
— cos l9j sin(lipk — l^j) cos(lipk ~ l^j)  0

.(*;Ri ,2 sin l<f>k +  ^R i ,3 cos l4>k) sec l9k sin(* f̂c -  tV,j) tanl0fc 1.
1 sin(l f̂c -  tyk) t&nl9k (jkR it3 sinl(f)k + jkR 2 ,3 cosl(f)k)sec l9k 
0 cos(lipk -  j xJjk) -  cos j 9k sin(Vfc -  Vfc)
0 sin(lïpk -  iÿic) sec l9k cos J9k cos(l ĵfc -  j ^ k) sec l9k

jRi,3*Vk -  5 R i , 2 J’*fc 
}R2,3J'yfc ~  ) ^ 2 , 2 j Z k  
jR z^ y k  -  )R z ^ zk -

-C iV k - iy j ) 
Cxk -  iXj)

o
(A.29) 

(A.30)

(A.31)

Tail To Tail

If the poses of frame j  and k relative to frame i are known, the pose of k relative to j  can 
be obtained using the tail to tail operation. As the name of the operation suggests, the tails 
of the arrows representing and lp k in Figure A .l are located together.
The pose tail to tail operation is defined as

J Pk =  QlPj © lPk 

=  J P i ® lPk

(A.32)
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The Jacobian of the tail to tail operation with respect to each pose is

e J ® d^pj/pk)
_  ff l'p k d(j Pi /Pk)

d^Pi^Pk) dbpjSPk)

J ©  0 ( 6 x 6 )= J
0 ( 6 x 6 )  1 (6 x 6 )  _

J ® l J ©  J © 2

(A.33)



Appendix B

Platforms, Sensors and Models

This appendix describes the two underwater vehicles that have been used in experiments 
presented in this thesis. A vehicle model for both platforms is presented along with obser­
vation models for their sensors.

B .l Platforms 

B .l.l  The Oberon ROV

Oberon, shown in Figure B .l, is a mid-sized ROV designed and built at the Australian 
Centre for Field Robotics to test novel sensing and control methods. A summary of the 
vehicle and sensor specifications are provided in Table B .l. A detailed description of the 
vehicle is presented in [113].

The vehicle is designed around two connected waterproof chambers containing electronics 
and sensors. A 30 metre tether supplies power from a supporting ship and enable remote 
control of the vehicle. A video link to a forward-looking camera is provided to monitor the 
vehicle, and an Ethernet connection is used for communications.

Oberon’s sensor suite consists of a depth sensor, a fibre-optic gyroscope measuring the vehi­
cle’s yaw rate, two low-frequency scanning sonars, an integrated tilt and compass sensor and 
a colour CCD camera oriented to look down towards the seafloor. Propulsion is performed 
by five thrusters, three of which are oriented vertically to control of the vehicle’s roll, pitch 
and vertical speed, while the remaining two are oriented horizontally to control yaw and 
forwards velocity.
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Figure B .l: The Oberon ROV

Maximum depth 20 m
Size 1.2 m (L) x 1.0 m (H) x 1.2 m (W)
Mass 110 kg
Power Supplied through tether
Propulsion Five thrusters (3 horizontal, 2 vertical)
Depth sensor Data Instruments 30 psig pressure transducer
Cameras Sony 720x576 colour CCD (down-looking) 

Pulnix color CCD (forward-looking)
Imaging sonars Tritech SeaKing 600/1200 kHz pencil-beam 

Imagenex 640 kHz fan-beam
Attitude PNI TCM2 m agnetom eter/tilt sensor
Yaw-rate Andrews fibre-optic gyroscope

Table B.l: Specifications of the Oberon ROV
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B .l .2 The SeaBED A U V

The SeaBED AUV, shown in Figure B.2, was deigned and built at the Woods Hole Oceano­
graphic Institution for high resolution optical and acoustic sensing. The original SeaBED 
vehicle is described in [98, 99]. Specifications for the slightly modified Australian SeaBED
are listed in Table B.2.

The vehicle design consists of two 1.9 metre long hulls arranged vertically 1.1 metres apart. 
The top hull contains syntactic foam flotation and an electronics housing, while the lower 
hull contains batteries and sensors. This design provides a naturally stable platform in roll 
and pitch, while three thrusters allow control of depth, heading, and forward velocity.

The main navigation sensor is a DVL. 
image the seafloor.

Stereo cameras and a mechanically scanned sonar

Maximum depth 700 m
Maximum speed 1.2 m/s
Size 2.0 m (L) x 1.5 m (H) x 1.5 m (W)
Mass 200 kg
Power 1.6 kWh Li-ion battery pack
Propulsion Three 150 W brushless DC thrusters
Depth sensor Paroscientific pressure sensor
Conductivity and temperature Seabird 37SBI
DVL RDI 1200 kHz Navigator ADCP
Camera Stereo Prosilica 12bit 1360x1024 CCD
Lighting Two PerkinElmer MVS-5000 strobes
Imaging sonar Tritech SeaKing DFS
Obstacle avoidance sonar Imagenex model 852
Surface communications Freewave RF Modem and wireless Ethernet
GPS Ashtech receiver

Table B.2: Specifications of the Australian SeaBED AUV
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Embedded
Computing

Horizontal
Thrusters

Rear DVL Mechanically Stereo Imaging Batteries Forward 
Strobe Scanned Imaging System Strobe

Sonar

Figure B.2: The SeaBED AUV
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B.2 Vehicle Models
B .2.1 C o n tin u o u s V ehicle M odel

This section details the development of a continuous vehicle model of the form

x„(£) = / v[x„(i)] + (B.l)

where xv(t) is the vector of vehicle states, xv(t) is a vector of vehicle states derivatives, f v[-] 
is the vehicle state transition function, Gv(t) is the noise transition matrix and w v(t) is the 
vector of the vehicle model errors, which is assumed to have covariance Qv(t).
A constant velocity model is used, producing the continuous vehicle model

ni v(t) 0 0
n^ ( t ) + 0 0

0 I 0
W„(t) 0 0 I

w v(t) 
wu (i) (B.2)

in which Wy(t) and w¿(t) represent translational and angular acceleration disturbances to 
the model at time t.
The continuous model covariance has the form

'< 4 «Qv(t)= o o-l(t)
(B.3)

in which

<4(0 =
vlx(t) 0 0

0 o
. 0  0

(B.4)

and

^lit) = o
o

0
(B.5)

0
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B .2.2 Discrete Vehicle Model

To derive a discreet vehicle model, the continuous model will be approximated with a 
function of the form

x„(i) = F(£)x(£) + G(t)w(t) (B.6)

Assuming the change in the orientation states over the sampling period is small,
a suitable approximation to the continuous vehicle model of Equation B.2 is

nt„(i) 0 0 S R (t*_ i) 
0 0 0

VVv(t) 0 0 0

Wv(0 0 0 0

0 ntv(t) 0 0
SE +

0 0
0 Vv,,(t) I 0
0 _«i>(0 0 I

W y ( t )  

w ù(t)

Models in the form of Equation B.6 have a solution

x(tfc) =  F(tfc)x(t*_i) +  v(tjt)

(B.7)

(B.8)

where

F (ifc) =  tk-i] (B.9)
rtk

y fa )  =  / i>[ifc,r ]G (T )v (r )d r
JtL. ,

(B. 10)
“is—  1
f tk

Q(ifc) =  / ^ [tfc ,r ]G (r )Q (r )G  (t ) $  [ifc,r]dr
•'tk-i

(B.ll)

and <£[-, •] is the state transition matrix satisfying the matrix differential equation

$[M o] =  F (i)$ [M o ], $[*o,*o] =  1 (B.12)

For constant F ( t ) ,  the state transition matrix can be calculated with

3>[i, to] =  eF ^ At (B.13)

For the approximated continuous model in Equation B.7, the discreet model components
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are

F v{tk) —

I 0 JR (ffc_ i)A t(tfc) 0
0 I 0 ;E ( t fc_ i)A t(tfc)
0 0 I 0
0 0 0 I

(B.14)

vv(ifc) =

rc R fa - i)w v fa )A* ^ 2
" E fa - i )w ù ,fa )At(*fc)2

vr^(tk)A t(tk)
v/ù(tk)A t(tk)

(B.15)

Q v(tk )
0

0

nEcr2 nETv ^ w i ;  ̂  3

c rlA t(tk) 0
0 c rlA t(tk)

(B.16)

The complete discrete vehicle model is

nt v (ifc) nt v(tk- i ) + £R(£fc_i)wv(£fc) (2fc)

n ^ v ( t k )
+

”E (ifc_ i)w cj ( ifc) (2fc)
VVv(tk) Vvv(ifc_i) VTv(tk)At( tk)

^ v i t k ) ^ v i t k —l ) w,j( tk)A t( tk)

(B.17)

The Jacobian of the vehicle model with respect to the vehicle states is

where

v x fv (tk) =

I
0 B 
0 0 
0 0

0

¡fE te -O A iftb )
0

A =

B =  I +

a^R(tfc-i) a?R (tfc-x) agR(tfc-i)
dn4>v dn0v dnipv

d w k-i) agE (tfc-x) a?E (tfc-B
dn<t>v an0t, ani/)„

uv v(ifc_ i)A i(ifc)

l) Ai(ifc)

(B.18)

(B.19)

(B.20)



B.3 Sensor Models 202

B .3  S en so r M o d e ls

B.3.1 DVL Observation Model

The observation model is required to have the form

Zd(tfc) =  hd[x(tfc)] + v d (tk) (B.21)

The DVL observes velocity relative to the seafloor, measured in its own reference frame. 
Following the model in [27], the observed velocity including the effect of the distance between 
the vehicle and sensor frames is

hrf[x (tjfe)] =  ÍR (tie) (VVv (tk) +  (tk) X vtd) 
= (¡R(tk)(vvv (tk) -  [vtd]xuv (tk))

(B.22)

in which vtd is the position of the DVL relative to the vehicle frame, which should be known 
from measurement or calibration.

The Jacobian of the DVL observation function model with respect to the vehicle states is

^ x v h d { t k ) —  0 ( 3 X3) 0 ( 3 x 3 )  y R ( i f c )  [ut d ] x (B.23)

The observation covariance has the form

Rd (tk) =
° v x ( ¿fc) 0  0

0 (tk) 0
o o (tk).

(B.24)

B.3.2 Attitude Sensor Observation Model

The observation model is required to have the form

za (tk) = ha[x (tk)] + va (tk) (B.25)

The attitude sensor observes its observation relative to some reference frame (frame r).
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Following the model in [27], the observed angles are

ha[x (tk)\ = A rpa (tk) (B.26)
=  A(rpn © npa (tk))
= A ( rp„ © (npv (tk) © vpa))

where the matrix A = [0(3X3) 1(3x3)] extracts the attitude states from a pose vector.
The Jacobian of the observation function relative to the vehicle states is

V Xvha (tk) = A (j®2|(T’pn,"pa(tfc)) J ©l|("p„(tfc),”Pa))

The observation covariance has the form
(tk)

Ra (tk) = 0
0

0
*0 (tk)

0

0
0

4  (tk)J

B .3 .3 D epth  Sensor O bservation M odel
The observation model is required to have the form

zp (tk) = hp[x (tk)] + vp (tk)

(B.27)

(B.28)

The position of the depth sensor in the navigation frame is given by

ntp (tk) = nt v (tk) +  JR  (tk) vtp (B.29)

where vtp is the position of the depth sensor in the vehicle pose, which should be known 
from measurement or calibration.
The pressure transducer measures the z-axis position of the depth sensor in the navigation 
frame

hp[x (£*.)] = A (nt v (tk) + JR  (tk) vtp)
in which the matrix A = [0 0 1] extracts the z-coordinate from a position vector.
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The Jacobian of the depth observation function with respect to the vehicle states is

^xvhp (̂ fc)
vtLp

Lp

0

0( 3x1)
0(3x1)

The depth observation covariance is

Rp (tk) =

(B.30)

(B.31)



Appendix C

Least Squares Problems and 
Solutions

This appendix describes the least squares problem and several solutions. Least-squares 
problems arise in this thesis when calculating maximum likelihood model parameters to fit 
a set of observations. More information on the algorithms listed here can be found in [50] 
which focuses on computer vision applications, and [84] which provides a general overview 
of numerical optimisation.

C .l The Least Squares Problem

The states to be estimated are represented by a parameter vector x E Some measured 
quantities related to the parameters are represented by an observation vector z E with 
covariance £ z. A function f : maps the parameter vector to an estimated
observation vector

z =  f(x) (C.l)

The difference between the actual and expected observation is the residual

e = z — z (C.2)

=  z -  f(x)
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C.1.1 W eighted Least Squares

The weighted least squares problem involves finding the optimal parameters that minimise 
the the squared residual Mahalanobis distance

x = argmine7^ “ ^  (C.3)
X

The covariance of the parameter estimate vector is

£* = (v ^ -'v ) '1
where V is the Jacobian of the observation function

(C.4)

(C.5)

C .l .2 O rdinary Least Squares

If the observation covariance is proportional to the identity matrix, Equation C.3 simplifies 
to minimising the squared residual Euclidean distance, which is typically called ordinary 
least squares.

x = argmineTe (C.6)
X

C .l .3 C onverting W eighted Least Squares to  O rdinary Least Squares

A weighted least squares problem can be transformed into an ordinary least squares problem 
by weighting the observation and predicted observation by the square root of the inverse 
observation covariance matrix.
The standardised observation and standardised predicted observation are

2° =  (C.7)
=  ^ /(E ^ J z  (C.8)

The standardised residual is then

= 7 ( E  (C.9)

When the standardised residual is substituted into the ordinary least squares objective
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function in Equation C.6 it becomes

(€°)T e°=y^^y tc.io)
= eT

=  €T S - 1 £

which is the weighted least squares objective function in Equation C.3

C.2 A Solution for Linear Problem s
If the function f [-] defined in Section C.l is linear, the predicted observation of Equation 
C.l can be simplified to

z =  Fx (C.ll)

The objective function of Equation C.3 is then

o[x] = (z -  F x )t S “ 1 (z -  Fx) (C.12)
=  zt E “ 1z -  2x t F t E “ 1z +  x t F t E “ 1F x

The derivative of the objective function with respect to the parameters is

= 2xtF tE " 1F -  2xt XJ~1F (C.13)

The solution to the least squares problem occurs when the derivative is zero, which produces 
the normal equation

( f t E J 1f ) x =  F t S ~ 1z (C.14)

If the matrix F tE ~1F is invertible, the solution of Equation C.14 can be found with

x = (F T£ - 1F ) _1 F t E z‘1z (C.15)

however methods to solve the linear system of Equation C.14 using Cholesky, QR and SVD 
matrix decomposition are favoured for numerical stability [84].
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C.3 Solutions for Non-Linear Problem s
C.3.1 T he G auss-N ew ton  A lgorithm
The residual is linearised around a parameter estimate xo

e = z — f(x) (C.16)
~  z -  f(x0) -  V<5X

where 6X =  x — xo- The parameter update Sx that minimised the linearised least squares 
system is given by the normal equation

(vTS"1v) <5X = V tE - 1€ (C.17)

The psuedocode for the Gauss-Newton implementation used in this thesis is listed in Al­
gorithm C.l. The Gauss-Newton method provides the basis for the Levenberg-Marquardt 
algorithm presented in Section C.3.2.

C .3 .2 T he Levenberg-M arquardt A lgorithm
The Gauss-Newton method converges quickly when initialised near a minimum, but often 
fails when initialised with a poor parameter estimate. The Levenberg-Marquardt algorithm 
updates the state estimated with a linear combination of Gauss-Newton and Steepest De­
scent directions. Each iteration involves solving the augmented normal equations

( v TS “ 1 V + nlj <5* = V tE~1c (C.18)

for some value of the damping factor /x. When /x is large, the algorithm approximates 
the steepest descent method, which displays slow but stable convergence when far from a 
minimum. When /x is small, Levenberg-Marquardt approximates the Gauss-Newton method 
for fast convergence.
Algorithm C.2 lists the psuedocode for the Levenberg-Marquardt implementation used on 
this thesis, based on the algorithms presented in [68] and [64]. For details on the evolution 
of the damping factor /x see [68, 79].

C .3.3 A Sparse Levenberg-M arquardt A lgorithm
A naive implementation of the Levenberg-Marquardt algorithm as described in Section 
C.3.2 has a complexity of 0 (n 3). Typical problems are somewhat sparse however, where
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observations are a function of a small subset of all parameters.
The sparse Levenberg-Marquardt algorithm described in this section is typically used to 
estimate camera motion and feature parameters (a problem known as bundle adjustment), 
and is described in more detail in [50, 65].
If the parameter vector can be partitioned in the form

aT b [ b j (C-19)

and the predicted observation and residual vectors can similarly be partitioned

z =  
e = eT2

(C.20)
(C.21)

and each z* is dependent on a and bj only, the predicted observation function Jacobian has 
the sparse form

Ai Bi 0 0 0
A2 0 b 2 0 0

0 0 0
A n 0 0 0 B n

(C.22)

where A¿ = ^  and B¿ =
It is also assumed that observations are independent, meaning the observation covariance 
matrix has is block diagonal of the form

S Z1 0 0 0
0 S Z2 0 0

0 0 0
0 0 0 E«,

(C.23)

In this thesis problems satisfying these assumptions arise when the vector a represents the 
poses of a vision rig, b* represents the position of feature i and Zj represents the predicted 
observations of feature i.

Using the sparse Jacobian, the component V 7!]“ 1 V in the left hand side of the Levenberg-
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Marquardt augmented normal equations in Equation C.18 is
u Wi w 2 W n

w j Vi 0 0 0
w j 0 V 2 0 0 (C.24)

0 0 0
W 1 0 0 0 V n

where

V  = ± A j V - ' A i
i

Vi =
W i = Aj'E~1Bi

(C.25)

(C.26)
(C.27)

Substituting the sparse Jacobian into the right hand side of Equation C.18 gives

V TSr'e =

ta

6̂2 (C.28)

Cbr.

where

e« = ^ A j 'Z Zilei
i

ebi =  B jEj/e*

(C.29)

(C.30)

Using the results of Equations C.24 and C.28, the Levenberg-Marquardt augmented normal 
equations can be represented as

'(U +  Ml) w ’¿a' ea
W T (V + /*!)_ Sb .Eb.

(C.31)
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where

V i 0 0 0 '

0 V 2 0 0

0 0 0

0 0 0 V n_

W i w 2 w

¿bi

£b =
&̂2

l eb,

Premultiplying each side of Equation C.31 by the matrix
I

W T
W (V -h ^ I) -1

I

"(U +  /¿I) -  W (V  + /xI)-1W T 0 Sa e a - w ( v + M i r V
W T (V +  Ml). 6b «6

Noting that
n

W (V  + / i l j - ' w 7 = ^ 2  W j(V , + n iy 'W ?

and
n

W (V  + Ml)-1 «!, = W i(V , +
1=1

and substituting Y * =  W j(V j +  /xl)-1 , Equation C.35 simplifies to

'(U  + MI )- E ? = i (Y iW ,T) 0 '6a i a  -  E S . , C W

W T (V  + Ml) sb « 6

The parameter update steps Sa and 6b can therefore be found by solving

/  n \ n

(U  + Ml) -  y ^(Y jW ,T) U „  = ea -  ^ (Y .e t , , )
¿=1 1=1

(C.32)

(C.33)

(C.34)

gives

(C.35)

(C.36)

(C.37)

(C.38)

(C.39)

and
<56, =  (Vi +  MI)“ ‘ (€6 ,-W ,T<5a) (C.40)
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Input:
• An initial parameter estimate xo
• A observation vector z and observation covariance £ z
• A maximum number of iterations kmax 

Output:
• An optimised parameter estimate x that minimises eJE ~le
• The parameter covariance £ x 

Procedure:
1: X  < X 0 

2: e <— z — f(x)
3: a <— vTs-1v 
4: g <- V TS - 1€
5: k <— 0 
6: stop <— false
7: while (stop = false and k < kmax) do 
8: <5X <— solve(A<5x =  g)
9: if ( ||<5X|| < 2̂11 x 11 ) then

10: stop <— true
11: else
12: X - n e w  * ^  T
13: ¿new i z f  (x neu;)
14: if (e^E-^new  < eJE~1e) then
15: X  < X-new
16: € < ¿new
17: A « - V TE " 1V
18: g <- V TS ~ 1e
19: else
20: stop <— true
21: end if
22: end if
23: k <— k +  1
24: end while
25: X  <— X

26: E x <— A -1

Algorithm C.l: The Gauss-Newton algorithm for non-linear weighted least squares.
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In p u t:
• An initial parameter estimate xo
• A observation vector z and observation covariance
• An initial damping factor po
• A maximum number of iterations fcmax
• A minimum gradient threshold e\
• A minimum step-size ratio threshold e2 

O u tp u t:
• An optimised parameter estimate x that minimises eJ Yi~le
• The parameter covariance £ x

P ro ced u re : 
1
2
3
4
5
6
7
8 
9

10 
11

12: stop <- true
13: else
14: Xnew <- x T <5X
15: ¿new <—Z f(Xnetü)
16: P «“ ((CT y - 1 ,neu> z cnew
17
18
19
20 
21 

22
23
24
25
26
27
28
29
30
31
32

X  <— X o

e <—z - f ( x )

A «-- V TS ~ 1V
g  < -

k < - 0
P <- po x max{A

2
stop <—  fa lse
w hile (stop = fa lse ) an d  (k < kr 

<5X <— solve ((A +  pi) ôx = g) 
if ( ||<Sx|| < e2||x|| ) th e n

:)  a n d  ( l l s l lo o  >  e i )  d o

- e Ti : z 1e))/(<5j(/i(5x +  g))
if ( p > 0 ) th e n

X   ̂ X tip'id 
6 

A
€new rT v-1 'V  £ z V  

g <- V t S - 1€
p
V

else
p <— V x p
V <— 2 x V 

end  if
end  if 
k <— k +  1 

end  w hile 
x <— x 
S y  4

fi x max{^, 1 — (2p — l ) 3} 
2

- l

Algorithm C.2: The Levenberg-Marquardt algorithm for non-linear weighted least squares.



Appendix D

Takahashi’s Equations for Matrix 
Inversion

The Takahashi equations [25, 80] provide a method to calculate the inverse of a matrix 
using an LDU factorisation. In chapter 5, the Takahashi equations are used to calculate a 
sparse set of elements of a covariance matrix from a sparse information matrix.

The first of the Takahashi equations can be produced by starting with the matrix inverse 
relationship A -1  A =  I and substituting in the factorisation A =  LDU where D is a 
diagonal matrix, and L and U are lower and upper triangular matrices respectively that 
contain ones on their diagonals.

A -1A =  I 

A -1LDU =  I

A -1L =  U ^ D ' 1 

A _1(L -  I) +  A -1  =  U ^ D " 1

A -1  =  U - 1D -1  -  A _1(L -  I) (D.l)

Another relation can be derived through similar manipulation of the equation A A -1  =  I

A A " 1 =  I 

LDUA -1  =  I

U A -1  =  D - 1L-1  

(U -  I)A -1  +  A -1  =  D _ 1L_1

A -1  =  D _ 1L_1 — (U — I)A -1 (D.2)
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In Equations D .l and D.2, the components U -1 D -1 and D -1 L-1 are upper and lower 
triangular matrices respectively, that contain the elements of D _1 on the diagonal. There­
fore Equation D .l allows the lower triangular elements of A -1 to be computed without 
evaluating U _1

n
[A-1]»; =  [D-1]jj -  ^ 2  [A’ 1]* L kj for i > j  (D.3)

fc=i+l

Similarly, Equation D.2 can be used to calculate the upper triangle of A -1 without L -1 .
n

[A_1](j =  [D-1]y -  Y ,  [A_1]*J for j  (D.4)
f c = i - f  1

If the matrix A is symmetric, U =  LT, and A -1 is also symmetric. Equations D .l and D.2
become

A ’ 1 =  (Lt )-1 D -1 -  A -1 (L -  I) (D.5)
A -1 =  D -1L-1 -  (Lt -  I)A _1 (D.6)



Appendix E

Stereo-Vision Relative Pose 
Estimation Simulation Results

In Chapter 4, several cost functions for estimating the motion of a stereo-rig are evaluated 
in simulations approximating odometry and loop-closure situations. This appendix presents 
a set of graphs showing the complete results of the odometry and loop-closure simulations 
that were previously summarised in Tables 4.1, 4.2, 4.3 and 4.4. The odometry simulation 
results are shown in Section E.l, and the loop-closure simulations are presented in Section 
E.2.

The following observations can be made from the graphs presented in this appendix:

• The estimator resulting from minimising the Euclidean 3D registration errors is noisy.

• Minimising the Mahalanobis 3D registration errors produces accurate motion esti­
mates when the correct linearisation is used. However, when calculating the motion 
parameter covariance, evaluating the observation Jacobian at the initial triangulated 
feature positions produces suboptimal results. This is best observed in the loop- 
closure simulations of Section E.2 where the uncertainty bounds produced by this 
method diverge from those of bundle-adjustment.

• Minimising the image reprojection errors at only one pose after triangulating the 
feature positions at the previous pose results in a biased estimator.

• The maximum likelihood 3D estimator produces equivalent results to bundle adjust­
ment.
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E .l  O dom etry  S im ulations

Min. Euclidean error
Min. Mahalanobis error (correct linearisation) 
Min. one pose image reprojection error 
Bundle adjustment 
Maximum likelihood 3d registration 

b Min Mahalanobis error 95% bounds 
*  Bundle adjustment 95% bounds 
© ~ Maximum likelihood 3d registration 95% bounds

10 15 20 25 30 35 40 45 50
Simulation number

Figure E .l: X-position errors in 50 odometry simulations.
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*  -  Bundle adjustment 95% bounds 
© -  Maximum likelihood 3d registration 95% bounds
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Figure E.2: Y-position errors in 50 odometry simulations.
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Min. Euclidean error
-b— Min. Mahalanobis error (correct linearisation) 
— -  Min. one pose image reprojection error 
-*— Bundle adjustment 
-©— Maximum likelihood 3d registration 
a -  Min Mahalanobis error 95% bounds 
*  -  Bundle adjustment 95% bounds 
Q -  Maximum likelihood 3d registration 95% bounds

10 15 20 25 30
Simulation number

35 40 45 50

Figure E.3: Z-position errors in 50 odometry simulations.
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*  -  Bundle adjustment 95% bounds 
9  -  Maximum likelihood 3d registration 95% bounds
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Figure E.4: Roll Euler angle errors in 50 odometry simulations.
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Min. Euclidean error
Min. Mahalanobis error (correct linearisation) 
Min. one pose image reprojection error 
Bundle adjustment 
Maximum likelihood 3d registration

-  b Min Mahalanobis error 95% bounds
-  *  -  Bundle adjustment 95% bounds
-  Q -  Maximum likelihood 3d registration 95% bounds

20 25 30
Simulation number

Figure E.5: Pitch Euler angle errors in 50 odometry simulations.
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Figure E.6: Yaw Euler angle errors in 50 odometry simulations.
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E.2 L oop-closure S im ulations
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-h— Min. Mahalanobis error (correct linearisation)
—— Min. one pose image reprojection error 
-*— Bundle adjustment

Maximum likelihood 3d registration 
b -  Min Mahalanobis error 95% bounds 
*  - Bundle adjustment 95% bounds 
9 -  Maximum likelihood 3d registration 95% bounds

10 15 20 25 30 35 40 45
Simulation number

Figure E.7: X-position errors in 50 loop-closure simulations.
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Figure E.8: Y-position errors in 50 loop-closure simulations.
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10
Min. Euclidean error

—a— Min. Mahalanobis error (correct linearisation)
------- Min. one pose image reprojection error
—*—  Bundle adjustment o Maximum likelihood 3d registration
-  a -  Min Mahalanobis error 95% bounds
-  *  -  Bundle adjustment 95% bounds
-  e -  Maximum likelihood 3d registration 95% bounds

-4 10 15 20 25 30
Simulation number
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Figure E.9: Z-position errors in 50 loop-closure simulations.
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Figure E.10: Roll Euler angle errors in 50 loop-closure simulations.
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----- Min. one pose image reprojection error
-*— Bundle adjustment 
-©— Maximum likelihood 3d registration 
a • Min Mahalanobis error 95% bounds 
*  -  Bundle adjustment 95% bounds 
Q ~ Maximum likelihood 3d registration 95% bounds
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re E .ll: Pitch Euler angle errors in 50 loop-closure simulations.

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

-3

Min. Euclidean error
—b— Min. Mahalanobis error (correct linearisation)
------- Min. one pose image reprojection error
—*— Bundle adjustment

o Maximum likelihood 3d registration
-  b -  Min Mahalanobis error 95% bounds
-  *  -  Bundle adjustment 95% bounds
-  © -  Maximum likelihood 3d registration 95% bounds

10 15 20 25 30
Simulation number

35 40 45 50

Figure E.12: Yaw Euler angle errors in 50 loop-closure simulations.
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Appendix F

Stereo-Vision Outlier Rejection 
Simulation Results

In Chapter 4, several outlier rejection frameworks are evaluated in simulations approxi­
mating stereo-vision odometry and loop-closure scenarios. This appendix presents a set of 
graphs showing the errors in the final motion estimates calculated from the features classi­
fied as inliers by each outlier rejection approach. A summary of this data was previously 
presented in Tables 4.9, 4.10, 4.11 and 4.12.

The odometry simulation results are shown in Section F .l, and the loop-closure simulations 
are presented in Section F.2. In the loop-closure simulation plots, the results of the iterative 
rejection approach are shown separately due to the large errors in many motion estimates. 
Additionally, gaps in the errors for the iterative rejection approach are present in 17 of 
the 50 simulations where the algorithm failed to converge to a minimum set of three inlier 
features required to generate a motion hypothesis.

The following observations can be made from the graphs presented in this appendix:

• The iterative rejection approach works well in the odometry simulations where outliers 
with only small errors are present. However, in the loop-closure simulations containing 
outliers with large errors, the motion hypotheses are significantly corrupted causing 
catastrophic failure in the classification of outliers.

• The RANSAC and robust methods produce similar results, however the more accurate 
motion hypotheses generated by the robust estimator lead to an increased number of 
accepted inliers, resulting in an estimator with lower variance.
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F .l  Odometry Simulations
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-  © -  RANSAC estimate 95% confidence error bounds
-  b -  Iterative estimate 95% confidence error bounds
-  *  -  Robust estimate 95% confidence error bounds
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Figure F.l: X-position errors in 50 odometry simulations with outliers.
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Figure F.2: Y-position errors in 50 odometry simulations with outliers.
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RANSAC, ML motion hypotheses, Mahalanobis outlier test -a— Robust motion estimation, Mahalanobis outlier test 
-<=>— Iterative rejection, ML motion estimation, Mahalanobis outlier test 
© -  RANSAC estimate 95% confidence error bounds 
a -  Iterative estimate 95% confidence error bounds 
$ -  Robust estimate 95% confidence error bounds
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3 F.3: Z-position errors in 50 odometry simulations with outliers.
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Figure F.4: Roll Euler angle errors in 50 odometry simulations with outliers.
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© -  RANSAC estimate 95% confidence error bounds 
a - Iterative estimate 95% confidence error bounds 
*  -  Robust estimate 95% confidence error bounds
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5: Pitch Euler angle errors in 50 odometry simulations with outliers.
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Figure F.6: Yaw Euler angle errors in 50 odometry simulations with outliers.
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F.2 Loop-closure Simulations

Figure F.7: X-position errors in 50 loop-closure simulations with outliers. Note that different 
scales are used in the upper and lower plots.
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Simulation number

Figure F .8: Y-position errors in 50 loop-closure simulations with outliers. Note that different 
scales are used in the upper and lower plots.
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Figure F.9: Z-position errors in 50 loop-closure simulations with outliers. Note that different 
scales are used in the upper and lower plots.
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Figure F.10: Roll Euler angle errors in 50 loop-closure simulations with outliers. Note that 
different scales are used in the upper and lower plots.
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Figure F .ll: Pitch Euler angle errors in 50 loop-closure simulations with outliers. Note 
that different scales are used in the upper and lower plots.
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Figure F.12: Yaw Euler angle errors in 50 loop-closure simulations with outliers. Note that 
different scales are used in the upper and lower plots.
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