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Abstract

The physics that emerges when large numbers of particles interact can be complex and exotic.
The collective behaviour may not reflect the underlying constituents, for example fermionic quasi-
particles can emerge from models of interacting bosons. Due to this emergent complexity, many-
body phenomena can be very challenging to study, but also very useful. A theoretical understanding
of such systems is important for robust quantum information storage and processing.

The emergent, macroscopic physics can be classified using the idea of a quantum phase. All
models within a given phase exhibit similar low-energy emergent physics, which is distinct from
that displayed by models in different phases. In this thesis, we utilise tensor networks to study
many-body systems in a range of quantum phases. These include topologically ordered phases,
gapless symmetry-protected phases, and symmetry-enriched topological phases.
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Chapter 1

Introduction

From the standard model of particle physics to condensed matter and quantum chemistry to quan-
tum information, the study of large numbers of interacting quantum particles is at the centre of
modern science. From simple constituent particles and local interactions, complex phenomena such
as magnetism, superconductivity and topological order can emerge. Understanding these emergent,
low energy properties of a given many-body Hamiltonian can be incredibly challenging.

In the limit where the constituent particles are weakly interacting, perturbation theory has
proven very successful. Away from this limit, the perturbative approach breaks down and other
techniques must be employed. One of the most widely utilised methods is (quantum) Monte Carlo
sampling. Although this class of methods is very powerful, Monte Carlo techniques are also limited
in their applicability. In particular, the sign problem occurs when the partition function obtained
from a quantum-to-classical mapping does not correspond to a sum of positive weights [1]. When this
occurs, the sampling time is exponential in the system size and so precludes accurate approximation
of physical quantities. Many physically interesting models exhibit a sign problem, including systems
of interacting fermions such as the standard model, and frustrated quantum magnets. At low
temperatures, these frustrated magnets can exhibit topological order, a kind of long-range ordering
without symmetry breaking, which can be utilised for quantum computing applications [2–5].

In this thesis, we use a new family of methods, collectively known as tensor networks methods,
to study a range of physical systems in one and two dimensions. These techniques aim to provide a
framework for efficiently computing physical quantities without requiring weak interactions or the
lack of a sign problem.

1.1 Many-body spin models

Many-body spin models are toy models for physical systems, which attempt to realise the physical
phenomena of interest without taking into account the full complexity of the real system. For
example, vibrational degrees of freedom may be neglected if they are expected to decouple from the
spin degrees of freedom. The most basic example of such a toy model is the Ising ferromagnet

HIsing = −J
∑
〈i,j〉

ZiZj − λ
∑
i

Xi, (1.1)

where Zi is the Pauli Z operator at lattice site i and Xi is the Pauli X operator. This Hamiltonian
models a quantum (anti-)ferromagnet for (J < 0) J > 0 in a transverse field with interaction
strength J and field strength λ. In one (spatial) dimension, this model exhibits a quantum phase
transition at J = λ. At this point, the gap between the lowest energy state and the excited states

1



CHAPTER 1. INTRODUCTION

Figure 1.1: A many-body spin model is defined by a local Hamiltonian on some lattice of finite dimensional
spins. The interaction terms (indicated) are usually taken to be geometrically local, as defined by the
underlying lattice.

closes. This gap-closing allows the physics in the low energy space to change dramatically, in
this case the ground state degeneracy changes. Despite the apparent simplicity of this model, the
location of the quantum phase transition in two-dimensions is not known analytically. One way
to study this model is by considering the low energy excitations out of the ground state. When
λ � J , the ground state is the state |Ω〉 = |+〉⊗N , and a local excitation at site j can be created
by applying Zj . When λ � J , excitations correspond to loops created by applying X to all sites
within some region. As discussed in Sec. 1.1.4, the excitation is located at the perimeter of the
region.

In this thesis, we will discuss models with more exotic behaviour than the Ising model. A key
property of these models will be their locality structure. More generally, a spin model is described
by a finite dimensional Hilbert space Cd at each ‘site’ defined using some lattice (or more generally
graph) which we will refer to as Λ. The energy of each state is specified using a local Hamiltonian

H =
∑
j∈Λ

hj , (1.2)

where hj is some hermitian operator acting on a small number (constant in the lattice size) of spins.
The locality structure of the underlying lattice is usually used to impose locality on the Hamiltonian
terms as shown in Fig. 1.1, meaning that the spins only interact with their neighbours.

Despite the apparent simplicity of such models, they can realise a wide range of physical phe-
nomena. These include magnetic behaviours [6], gauge theories [7–9], emergent fermions [2] and
even more exotic emergent quasi-particles [10], and resource states for quantum computing requiring
only measurement [11].

Due to the complexity inherent in studying many-particle systems, it is convenient to find ways
to extract relevant properties of a system of interest without fully solving the model. In classical
statistical mechanics, much of the essential physics can be understood by analysing the structure
of (thermal) phases and phase transitions. This can be generalised to quantum systems using the
concept of a quantum phase.

1.1.1 Quantum phases

At the macroscopic scale we are often not concerned with the microscopic details of a system, rather
we are interested in the emergent, macroscopic, low energy physics. This leads us to the concept of
a quantum phase. These phases are equivalence classes of states or Hamiltonians which have similar
coarse-grained, long-wavelength, or low-energy, physics. To remove any thermal effects which might
wash out the quantum fluctuations, a quantum phase is defined in the zero temperature limit [6].

2



CHAPTER 1. INTRODUCTION

In this limit, the free energy density becomes the ground state energy

lim
β→∞

− 1

β
log Tr exp(−βH) = E0. (1.3)

In the thermal case, a (continuous) phase transition occurs when the free energy becomes nonan-
alytic. For quantum systems, this corresponds to the ground state energy becoming a nonanalytic
function of the Hamiltonian parameters. Two Hamiltonians are therefore said to be in the same
quantum phase if they can be continuously deformed into each other without closing the gap be-
tween the (possibly degenerate) ground space and the excited space. States are in the same phase
if they are the ground states of such Hamiltonians.

Whilst the gap remains open, the physics of the low energy space cannot change drastically.
In particular, the entanglement structure is essentially unchanged and the ground space degener-
acy is unchanged (in the thermodynamic limit). Quasi-particle excitations become locally dressed
when the Hamiltonian is deformed, but their general properties, such as exchange statistics, are
unchanged. At the phase transition, when the gap closes, the macroscopic physics can change
drastically.

The simplest example of a quantum phase transition occurs in the Ising model of Eqn. 1.1, where
we assume spins on a one-dimensional chain. When λ� J , there is a unique ground state (|+〉⊗N )
which is symmetric under the Hamiltonian symmetry

∏
Xj . In the other limit (λ� J), the ground

space is doubly degenerate, spanned by |0〉⊗N and |1〉⊗N . The degenerate phase spontaneously
breaks the symmetry, and corresponds to the ordered phase.

Most classical (thermal) phase transitions are understood through symmetry breaking in this
way1. Other mechanisms can be used to distinguish quantum phases, in particular the structure
of entanglement in the ground space [13]. Intrinsic topological phases have long range entangled
ground spaces, which cannot be related to unentangled product states without closing the gap.
Such phases are distinct without any symmetry being imposed. Other quantum phases are known
as symmetry-protected and symmetry-enriched topological phases. These have an entanglement
pattern in the ground space which is protected by the symmetry; the entanglement cannot be
removed without either closing the gap or breaking the symmetry.

Given two Hamiltonians H0 and H1, we say that they are in the same phase if H0 can be
continuously deformed into H1 without ever closing the gap. We say two states |ψ0〉 and |ψ1〉
are in the same phase if they are ground states of Hamiltonians which are in the same phase. In
the absence of any symmetry considerations, this defines the intrinsic topological phase. When
symmetries are imposed, symmetry-breaking and symmetry-protected phases emerge as shown in
Fig. 1.2.

In this thesis, we will study symmetry-breaking, symmetry-protected, and intrinsic topological
phases, in addition to the transitions between them.

1.1.2 Symmetries in many-body models

As discussed above, symmetries can greatly constrain the behaviour of physical systems. In the
context of phases, imposing symmetries leads to a far richer and more detailed classification. Here,
we briefly introduce group-like symmetries.

We say a quantum system defined by a Hamiltonian H is symmetric under a group G if

UgH = HUg, (1.4)

1Although other mechanisms exist, such as the Kosterlitz-Thouless transition in the two-dimensional XY model [12].
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H0

H1

gapless

symmetric

Figure 1.2: Hamiltonians are in the same phase if they can be continuously deformed into one another
without closing the gap. When only considering Hamiltonians which respect a symmetry (blue band), the
classification of phases becomes more refined. Imposing that the Hamiltonians remain symmetric along the
interpolating path may cause them to become gapless.

where Ug forms a representation of G. Due to the locality structure of the model, we usually assume
that Ug is transversal or on-site. This means that it acts independently on each spin

Ug =
⊗
j∈Λ

u(j)
g , (1.5)

where u
(j)
g itself forms a representation of G.

Although we can frequently think about blocking sites together until any symmetry becomes
on-site, some symmetries cannot be made to act in this way. These include anomalous symmetries
(the topic of Chapter 4), and spatial symmetries such as translation. More generally, one may
assume the symmetry action is merely locality preserving (as studied in Chapter 5). This class
includes group actions realised as constant (in the system size) depth quantum circuits, and spatial
symmetries such as translations and rotations, and any other action which does not increase the
support of any local operator by more than a constant amount.

1.1.3 Phases with no broken symmetry: Topological order

As in the traditional case, the phase transition in the quantum Ising model described above is
associated with the breaking of a symmetry. Quantum models permit richer classes of phases,
referred to as intrinsic topological phases, which are not associated with any broken symmetry. The
simplest model realising such a phase is the two-dimensional toric code [2]. This model can be
defined on a square lattice with qubits (spin-1/2s) placed on the edges. The Hamiltonian for the
model is

H = −
∑

v∈vertices

Z Z
Z

Z

−
∑

p∈plaquettes

X X
X

X

. (1.6)

Since all the terms in this Hamiltonian commute, have eigenvalues ±1, and the model is un-
frustrated, the excitations are relatively simple to obtain. The ground state is the mutual +1
eigenstate of every Hamiltonian term, while local excitations correspond to −1 eigenstates of a
given term. These excitations are created using string-like operators as shown in Fig. 1.3a. Along
their length, these strings commute with all Hamiltonian terms, and so do not contribute to the
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Figure 1.3: Excitations of the toric code.
a) The excitations of the toric code are created using string operators. Away from their end points, these

strings commute with the Hamiltonian and therefore do not carry energy. The end points anti-commute
with H, so correspond to localised quasi-particles. We refer to the particle living on vertices (created by a
string of Xs) as an e or electric particle. Particles living on plaquettes (created by Z strings) are called m
or magnetic particles. There is no way to remove the strings without creating or removing excitations.

b) The process of braiding an e around an m allows us to understand the exchange statistics of the
particles. Due to the crossing of the strings, this process differs from the ‘trivial’ braid (not enclosing the m)
by a factor of −1.

energy of the state. At the end points, the operator anti-commutes with a term, leading to an
energy of 2 units above the ground space. The end points of the strings therefore correspond to
localised quasi-particles.

The excitations of the toric code have several interesting properties. Firstly, the paths of the
strings can be deformed by multiplying by Hamiltonian terms. Since these terms act as +1 on the
state, this does not transform the state in any way. Although the existence of the string cannot be
avoided, the path can be deformed arbitrarily. Only the end points, where the particles are located,
are fixed in place. Since a string must have two ends, excitations of the toric code always occur in
pairs, and are their own anti-particles. There are three kinds of particles in the toric code, electric
or e excitations living on the plaquettes, magnetic or m particles on the vertices, and a particle em
obtained by fusing an e with an m.

The existence of the string operators leads to interesting exchange statistics. If we consider
the process of braiding an e around an m, as depicted in Fig. 1.3b, we can understand the mutual
statistics of these particles. When this process occurs, the strings must cross. The red (Z) string is
applied to the ground state first, followed by the blue (X) string. Since XZ = −XZ, this process
contributes a phase of −1 to the wavefunction compared to moving the e around first, then moving
the m to the centre of the loop. The particles are therefore mutual fermions. The composite particle
em acts as a self-fermion. This is different to the Ising model (Eqn. 1.1), where the excitations are
local spin flips and are therefore bosonic. Since the particles statistics are an invariant of the
phase [14], this demonstrates that the toric code is in a distinct phase from those in the 2D Ising
model.

The e and m particles are the simplest examples of anyons [2]. These quasi-particles can have
exchange statistics far more exotic than those of bosons and fermions. Braiding can introduce
general phases into the wavefunction, or even be used to enact unitary transformations on the
ground space [15, 16]. In Chapter 3, we introduce a numerical scheme for finding the exchange
phases of the excitations for general two-dimensional Hamiltonians. Since the particular path chosen
in Fig. 1.3b is not important, only whether it encircles the other particle, these topological phases
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a)

A B

b) c)

A1

A2

A3

Figure 1.4: Gapped domain walls between topological phases.
a) When two topological phases A and B are placed next to each other, a domain wall occurs between

them. Some excitations (particles) can move across the wall, a process which may transform both the particles
and the wall.

b) Domain walls can be understood as boundaries of folded systems. Particles ‘condense’ into the
vacuum when moving across the boundary. Only particles with bosonic self- and mutual- statistics can
undergo condensation.

c) Defect or twists can be created when multiple copies of the same phase are placed next to each other.
The dashed line indicates the ‘trivial’ boundary, whilst the solid black line is some boundary which exchanges
particles. At the end of the boundary, generalised excitations occur. Braiding around this defect exchanges
particle types.

are a promising platform for quantum computational tasks. The topological nature of the phases
provides a natural protection against local, environmental noise.

Boundaries in topological models

So far we have discussed topological models without considering boundary conditions. We will
now discuss how domain walls between topological phases can be introduced. This is particularly
important from a quantum computational perspective, since the inclusion of domain walls leads to
the incorporation of point-like defects or twists. These twists can be used to increase the computa-
tional power of a topological phase, and the storage capacity of the phase when used as a quantum
memory [17].

Consider placing a topological material in phase A next to another phase B as shown in Fig. 1.4a.
The regions A and B can be thought of as distinct domains of order, in analogy to the magnetic
domains that form in ferromagnetic materials, or the crystalline domains in solid materials. At the
interface, a domain wall occurs. The physics of these domain walls alters the topological properties of
the material, in particular the domain wall can alter the behaviour of the quasi-particle excitations.
Since the excitations in phases A and B may be distinct, if an excitation is moved across the wall
from phase A to phase B, it may be transformed. In general, such a process may also transform
the wall itself [18]. For such a process to be possible, the braiding relations of the particles crossing
the wall should be unchanged. The simplest case is when phase B is the vacuum. In this case,
any particles crossing the boundary ‘condense’. Since the vacuum is a bosonic state, the self- and
mutual- statistics of any set of quasi-particles should also be bosonic. In the case of the toric code
discussed above, this means that a boundary can condense e or m, since they are both self bosons,
but cannot condense em or {e,m}, since em is a self fermion, and {e,m} are mutual semions (phase
of −1 under a full braid). There are therefore two kinds of condensing boundary for this phase. All
domain walls can be thought of as boundaries by considering the bilayer phase Ā × B obtained by
folding along the wall [18] as shown in Fig. 1.4b.

Perhaps the most interesting properties of domain walls occur when more than two phases are
placed next to each other. Consider the situation depicted in Fig. 1.4c, where three copies of phase
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Figure 1.5: The energy cost required to flip a domain of spins is proportional to the perimeter of the region.
The cost to flip all of the spins scales as the linear system size, so classical information can be protected by
making the system size bigger. At low temperatures, the creation on domains of flipped spins is suppressed,
so the encoded information is protected.

A are brought together. Between A1|A2 and A2|A3 we use the ‘trivial’ domain wall. This interface
is invisible and performs no transformation on the excitations. Between A1|A3, place an interface
that exchanges two particles a↔ b. In the toric code there is such a wall, which implements e↔ m.
At the meeting point of the three phases there is a point-like defect, which we refer to as a twist.
This point acts similarly to the anyons in the phase, however the braiding statistics can be far more
exotic. When we braid a particle of type a around the twist, its is changed to a type b particle
when crossing the wall A1|A3. The particle therefore must be braided twice before it can be fused
with its antiparticle back to the vacuum. The study of such domain walls and twists is the topic of
Chapter 5.

1.1.4 Many-body models and computation

One of the primary motivations to study the exotic materials considered in this thesis is their
potential use as platforms for quantum computation. There is a long history of using the physics
of many-body systems for information storage and processing. The simplest case occurs in classical
computation, where the 2D Ising model of Eqn. 1.1 with λ = 0 (i.e. a ferromagnet) can be used
as a robust memory. By aligning all of the spins in a particular direction, a single logical bit can
be redundantly encoded into many physical spins. The logical state can be read out be measuring
the average magnetisation. The energy cost to flip a domain of spins (Fig. 1.5) is proportional to
the number of anti-aligned neighbours, and so the perimeter of the region. To corrupt the encoded
information, more than half the spins must be flipped, which carries an energy cost proportional
to the (linear) system size. At low temperature, the entropy gained by adding flipped domains
is not sufficient to offset the energy gain and the system orders. In this phase, the system is a
self-correcting classical memory. At higher temperatures, the system undergoes a Curie transition
from ferro- to para-magnetism, and ceases to be magnetised and therefore ceases to self-correct.

This example demonstrates the intricate connection between the physics of phases and phase
transitions, and the usefulness of materials for information storage, and more generally information
processing tasks. One of the most important questions in quantum information theory is find-
ing a self-correcting quantum memory, analogous to the Ising model in the classical case. The
4-dimensional generalisation of the toric code is known to have this property [19], and there has
been a large effort to realise this in fewer dimensions [20–25]. Many of these proposals are inspired
by the statistical mechanics of the models, for example Ref. 23 attempted to use an entropic barrier
to prevent excitations spreading to the point where the encoded information is corrupted. Unfor-
tunately, such approaches have been shown to be impossible, with a growing energy barrier (just
like the classical Ising model) being essential [26]. There are a range of no-go results to realising
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self-correcting memories, however many are linked to the special case of stabiliser codes [4]. Due to
their special structure, stabiliser codes are relatively simple (compared to general Hamiltonians) to
analyse. It is therefore important to develop techniques that allow analysis beyond this restricted
class. One such technique for detecting topological order is introduced in Chapter 3.

1.2 Thesis overview

In this thesis, we explore the properties of various many-body models using a variety of tensor
network methods. Some of these models have topological orders, others have exotic symmetries,
and others combine both topological order and symmetry. We primarily study models which are well
understood, thereby learning about the strengths and weaknesses of the tensor network methods
themselves.

In Chapter 2, we review the conventional notation for tensor networks. With this notation
established, we then review a range of common tensor networks and some of the key results of the
field. Written as a series of lectures, this chapter aims to bring the non-expert to the point where
research papers are accessible.

In Chapter 3, we propose and implement a variational technique to identify (abelian) topological
order in two-dimensional spin models. By using matrix product operators (MPOs), this technique
aims to numerically optimise operators which move anyons around the lattice. By avoiding ground
state optimisation, this technique bypasses the prohibitive computational complexity of finding
ground states [27, 28]. Additionally, this method is naturally one-dimensional, which leads to a far
more efficient algorithm in practice. By using this technique, we are able to find ribbon operators in
the Kitaev honeycomb model [3]. To the best of our knowledge, nobody has found these operators
previously.

In Chapter 4, we design a variational subclass of the multiscale entanglement renormalisation
ansatz (MERA) states which realise an exotic symmetry action. These states are designed to
simulate the ground states of gapless, one-dimensional Hamiltonians. The symmetries supported
by our subclass are represented using MPOs with an obstruction to reducing the bond dimension.
This class of symmetries arises naturally when studying two-dimensional SPT state, and self-dual
critical points in one-dimension. Both of these classes of models are expected to be gapless, and it
is therefore important that they can be simulated in a fully symmetric manner using a technique
tailored to gapless models. For a particular model, we optimise over the variational class and extract
the full topological data of the model, in addition to the conformal data.

In Chapter 5, we combine topological order and symmetry. Using projected entangled pair
states (PEPS) and MPOs, we investigate anyon permuting domain walls and symmetry defects. By
working on the virtual level of a topologically ordered PEPS, we are able to construct operators
realising the topological symmetries of the associated anyon model without reference to a Hamilto-
nian. Further, we are able to construct states with symmetry defects and construct Hamiltonians
with such defect states as their ground states.

Finally, in Chapter 6, we provide an overview of the thesis, discuss possible extensions of this
line of research, and provide concluding remarks.

Each chapter (2-5) is self contained, and begins with a review of the relevant literature.
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Hand-waving and Interpretive Dance:
An Introductory Course on Tensor
Networks

Jacob C. Bridgeman1,2 and Christopher T. Chubb1,2
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Abstract

The curse of dimensionality associated with the Hilbert space of spin systems
provides a significant obstruction to the study of condensed matter systems.
Tensor networks have proven an important tool in attempting to overcome this
difficulty in both the numerical and analytic regimes.
These notes form the basis for a seven lecture course, introducing the basics
of a range of common tensor networks and algorithms. In particular, we cover:
introductory tensor network notation, applications to quantum information, ba-
sic properties of matrix product states, a classification of quantum phases using
tensor networks, algorithms for finding matrix product states, basic properties
of projected entangled pair states, and multiscale entanglement renormalisation
ansatz states.
The lectures are intended to be generally accessible, although the relevance
of many of the examples may be lost on students without a background in
many-body physics/quantum information. For each lecture, several problems
are given, with worked solutions in an ancillary file.
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2.0 Introduction

One of the biggest obstacles to the theoretical and numerical study of quantum many-body systems
is the curse of dimensionality, the exponential growth of the Hilbert space of quantum states. In
general this curse prevents efficient description of states, providing a significant complexity barrier
to their study. Despite this, physically relevant states often possess additional structure not found
in arbitrary states, and as such do not exhibit this pathological complexity, allowing them to be
efficiently described and studied.

Tensor networks have proven to be an incredibly important technique in studying condensed
matter systems, with much of the modern theory and numerics used to study these systems involving
tensor networks.

In the numerical regime, tensor networks provide variational classes of states which can be
efficiently described. By, for example, minimising the energy over one of these classes, one can learn
a great deal about the low-energy behaviour some physical system of interest. The key variational
classes are: matrix product states (MPS), projected entangled pair states (PEPS), and multiscale
entanglement renormalisation ansatz (MERA). Due to their importance, and prevalence in the
literature, we devote a chapter to each of these.

By studying the structure and properties of classes tensor networks, for example MPS, one can
learn a great deal about the types of states which they can describe. Tensor network states therefore
provide an important analytic framework for understanding the universal properties of classes of
states which possess particular properties, such as those which only support certain entanglement
or correlation structures.

In addition to their application to many-body physics, tensor networks can also be used to
understand many of the foundational results in quantum information. The understanding of con-
cepts such as quantum teleportation, purification, and the church of the larger Hilbert space, can
be understood relatively simply when the tensor network framework is utilised. Some examples of
this are presented in Section 2.2. These lectures aim to introduce, and make familiar, the notation
conventionally used for tensor network calculations. As a warm up, we present some key quantum
information results in this notation.

After introducing the class of MPS, we present some of the key properties, as well as several
analytic matrix product states examples, which can serve as useful toy models. To demonstrate
the analytic power of MPS we will then consider a key result in condensed matter theory: the
classification of one-dimensional phases. This serves as an example of a result which, within the
tensor network formalism, can be much more succinctly and clearly explained than it can in more
standard linear algebraic notation.

When utilising tensor networks numerically, algorithms must be designed which, for example,
minimise the energy of some Hamiltonian over the variational class. We introduce two such algo-
rithms, namely DMRG and TEBD, which are particularly prevalent. These have become standard
tools in numerical many-body physics.

We then introduce the class of PEPS, a class designed for two-dimensional many-body systems.
We discuss some of the properties, and some of the challenges to simulating using this class of
networks.

Finally, we introduce another class, MERA, which can be utilised for the study of gapless
one-dimensional (and higher!) systems. This class has many interesting properties, including an
interpretation as a renormalisation group. This has sparked interest in a wide range of field, from
quantum information to string theory.
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2.1 Introduction to Tensor Network Notation

One of the primary reasons that tensor networks are so useful is the straightforward and transparent
notation usually used to describe them. Using a graphical language, the structure is manifest. Many
general properties of the objects under study, particularly quantum states, can be identified directly
from the structure of the network needed to describe them.

Tensor network notation (TNN) can be considered a generalisation of Einstein summation no-
tation. In this lecture we will define tensor networks, starting with an introduction to tensors and
the operations we can perform upon them.

2.1.1 Tensors

Tensors are a generalisation of vectors and matrices. A d-dimensional vector can be considered an
element of Cd, and a n × m-dimensional matrix an element of Cn×m. Correspondingly a rank-r
tensor of dimensions d1×· · ·×dr is an element of Cd1×···×dr . We can clearly see that scalars, vectors
and matrices are all therefore rank 0, 1 and 2 tensors respectively.

In tensor network notation a single tensor is simply represented by a geometric shape with legs
sticking out of it, each corresponding to an index, analogous to the indices of Einstein notation.
For example a rank-four tensor R would be represented as

Rρσµν =⇒ R . (2.1.1)

In some contexts the shape used and direction of the legs can imply certain properties of the
tensor or index — for a general network however, neither carry any special significance. When
representing quantum states, it is often convenient to use the direction of legs to denote whether
the corresponding vectors live in the Hilbert space (‘kets’) or its dual (‘bras’). By adhering to this
convention, certain prohibited contractions can be easily disallowed, such as contraction between
two kets. This is notationally analogous to the convention of upper and lower denoting co- and
contra-variant indices in Einstein or Penrose notation (a specialised form of TNN) employed in the
study of general relativity or quantum field theory.

Because quantum mechanics, in contrast to general relativity, is complex, care has to be taken
with complex conjugation. This is usually indicated either by explicitly labelling the tensor or
adopting some index convention, such as flipping a network (upward and downward legs being
echanged) carrying an implicit conjugation.

2.1.2 Tensor operations

The main advantage in TNN comes in representing tensors that are themselves composed of several
other tensors. The two main operations we will consider are those of the tensor product and trace,
typically used in the joint operation of contraction. As well as these two operations, the rank of a
tensor can be altered by grouping/splitting indices.

Tensor product

The first operation we will consider is the tensor product, a generalisation of the outer product of
vectors. The value of the tensor product on a given set of indices is the element-wise product of
the values of each constituent tensor. Explicitly written out in index notation, the binary tensor
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product has the form:

[A⊗B]i1,...,ir,j1,...,js :=Ai1,...,ir ·Bj1,...,js . (2.1.2)

Diagrammatically the tensor product is simply represented by two tensors being placed next to
each other. As such the value of a network containing disjoint tensors is simply the product of the
constituent values.

A B := A⊗B (2.1.3)

Trace

The next operation is that of the (partial) trace. Given a tensor A, for which the xth and yth
indices have identical dimensions (dx = dy), the partial trace over these two dimensions is simply a
joint summation over that index:

[Trx,y A]i1,...,ix−1,ix+1,...,iy−1,iy+1,...,ir =

dx∑
α=1

Ai1,...,ix−1,α,ix+1,...,iy−1,α,iy+1,...,ir (2.1.4)

Similar to Einstein notation, this summation is implicit in TNN, indicated by the corresponding
legs being joined. An advantage over Einstein notation is that these summed-over indices need not
be named, making the notation less clunky for large networks. For example, consider tracing over
the two indices of a rank-3 tensor:

:= TrRight

( )
=
∑
i

i

i
(2.1.5)

One property of the trace we can trivially see from this notation is that of its cyclic property.
By simply sliding one of the matrices around – which only changes the placement of the tensors
in the network, and therefore not the value – we can cycle the matrices around (being careful of
transpositions), proving Tr(AB) = Tr(BA).

Tr(AB) = A B =
A

B

=
A

BT

= B A = Tr(BA) (2.1.6)

Whilst this serves as a trivial example, the higher rank equivalents of this statement are not
always so obvious, and the fact that these properties hold ‘more obviously’ in TNN is often useful.

Contraction

The most common tensor operation used is contraction, corresponding to a tensor product followed
by a trace between indices of the two tensors. An example would be the contraction between two
pairs of indices of two rank-3 tensors, which is drawn as:
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:=
∑
i,j

i

j j

i
(2.1.7)

Familiar examples of contraction are vector inner products, matrix-vector multiplication, matrix-
matrix multiplication, and the trace of a matrix:

Conventional Einstein TNN

〈~x, ~y〉 xαy
α x y

M~v Mα
βv

β M v

AB AαβB
β
γ A B

Tr(X) Xα
α

X

Grouping and splitting

Rank is a rather fluid concept in the study of tensor networks. The space of tensors Ca1×···×an and
Cb1×···×bm are isomorphic as vector spaces whenever the overall dimensions match (

∏
i ai =

∏
i bi).

Using this we can extend concepts and techniques only previously defined for vectors and matrices
to all tensors. To do this, we can group or split indices to lower or raise the rank of a given tensor
respectively.

Consider the case of contracting two arbitrary tensors. If we group together the indices which
are and are not involved in this contraction, this procedure simply reduces to matrix multiplication:

= = (2.1.8)

It should be noted that not only is this reduction to matrix multiplication pedagogically handy, but
this is precisely the manner in which numerical tensor packages perform contraction, allowing them
to leverage highly optimised matrix multiplication code.

Owing to the freedom in choice of basis, the precise details of grouping and splitting are not
unique. One specific choice of convention is the tensor product basis, defining a basis on the product
space simply given by the product of the respective bases. The canonical use of tensor product
bases in quantum information allows for the grouping and splitting described above to be dealt
with implicitly. Statements such as |0〉 ⊗ |1〉 ≡ |01〉 omit precisely this grouping: notice that the
tensor product on the left is a 2×2 dimensional matrix, whilst the right hand-side is a 4-dimensional
vector. The ‘tensor product’ used in quantum information is often in fact a Kronecker product, given
by a true tensor product followed by just such a grouping.

More concretely, suppose we use an index convention that can be considered a higher-dimensional
generalisation of column-major ordering. If we take a rank n+m tensor, and group its first n indices
and last m indices together to form a matrix

TI,J := Ti1,...,in;j1,...,jm (2.1.9)

where we have defined our grouped indices as

I := i1 + d
(i)
1 · i2 + d

(i)
1 d

(i)
2 · i3 + · · ·+ d

(i)
1 . . . d

(i)
n−1 · in, (2.1.10)

J := j1 + d
(j)
1 · j2 + d

(j)
1 d

(j)
2 · j3 + · · ·+ d

(j)
1 . . . d

(j)
m−1 · jm, (2.1.11)

14
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where d
(i)
x (d

(j)
x ) is the dimension of the xth index of type i(j). When such a grouping is given, we

can now treat this tensor as a matrix, performing standard matrix operations.
An important example is the singular value decomposition (SVD), given by TI,J =

∑
α UI,αSα,αV̄J,α.

By performing the above grouping, followed by the SVD, and then splitting the indices back out,
we get a higher dimensional version of the SVD

Ti1,...,in;j1,...,jm =
∑
α

Ui1,...,in,αSα,αV̄j1,...,jm,α.

So long as we choose them to be consistent, the precise method by which we group and split is
immaterial in this overall operation. As a result we will keep this grouping purely implicit, as in
the first equality Equation (2.1.8). This will be especially useful for employing notions defined for
matrices and vectors to higher rank objects, implicitly grouping then splitting. Graphically the
above SVD will simply be denoted

T SVD−−−→ U S V † , (2.1.12)

where U and V are isometric (U †U = V †V = 1) across the indicated partitioning, and where the
conjugation in V † is included for consistency with conventional notation and also taken with respect
to this partitioning. We will refer to such a partitioning of the indices in to two disjoint sets as a
bisection of the tensor.

Aside 1 : Why do we care so much about the singular value decomposition?

One of the main uses of tensor networks in quantum information is representing states
which belong to small but physically relevant corners of an otherwise prohibitively large Hilbert
space, such as low-entanglement states. The central backbone of this idea is that of low matrix-
rank approximations. Suppose we have some matrix, and we want the ideal low matrix-rank
approximation thereof. Eckart and Young [2.1.1] showed that if we measure error in the
Frobenius norm, then trimming the singular value decomposition is an ideal approximation.
Specifically take X = USV † to be the SVD of X, then the trimmed version of X is given by

X(k) = US(k)V †

where S(k) has had all but the largest k singular values set to zero (i.e. has matrix-rank k),
then Eckart-Young theorem says that

∥∥X −X(k)
∥∥
F
≤ ‖X − Y ‖F for all Y of matrix-rank

k. Mirsky further generalised this result in Ref. [2.1.2] to show optimality in all unitarily
invariant norms. Whenever we use the term trim, we are referring to this very method of
low-rank approximation.

2.1.3 Tensor networks

Combining the above tensor operations, we can now give a single definition of a tensor network. A
tensor network is a diagram which tells us how to combine several tensors into a single composite
tensor. The rank of this overall tensor is given by the number of unmatched legs in the diagram.
The value for a given configuration of external indices, is given by the product of the values of the
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constituent tensors, summed over all internal index labellings consistent with the contractions. A
generic example of this is given below:

=
ji

where

ji

:=
∑
α,β,γ,δ
ε,ζ,η

∏


α

α

β
β

γ γ

δ
δ

ε
ε
ζ

ζ

η

η

i j


(2.1.13)

2.1.4 Bubbling

Whilst tensor networks are defined in such a way that their values are independent of the order in
which the constituent tensors are contracted, such considerations do influence the complexity and
practicality of such computations. Tensor networks can be contracted by beginning with a single
tensor and repeatedly contracting it against tensors one-at-a-time. The order in which tensors are
introduced and contracted is known as a bubbling. As the bubbling is performed the network is
swallowed into the stored tensor, until only the result remains.

Many networks admit both efficient and inefficient bubblings, highlighting the need for prudence
when planning out contractions. Take for example a ladder-shaped network (we’ll see a few of these
in the following lectures). One bubbling we may consider is to contract along the top of the ladder,
then back along the bottom. Showing both this bubbling, as well as the partially contracted tensor
that is kept in memory (in red), we see this bubbling looks like:

→ → → → → (2.1.14)

→ → → → → (2.1.15)

The scaling of this procedure is however quite unfavourable; consider a ladder of length n. At the
midpoint of this contraction, when the top has been contracted, the tensor being tracked has rank
n, and thus the number of entries is scaling exponentially with n. As such the memory and time
footprints of this contraction are also exponential, rendering it infeasible for large n. If however
we contract each rung in turn, the tracked tensor has a rank never more than 3, giving constant
memory and linear time costs.

→ → → → → (2.1.16)

→ → → → → (2.1.17)

The memory footprint at any step during the contraction corresponds to the product of the
dimensions of each leg passing through the boundary of the contracted region (see the red legs
in Eqn. (2.1.18)). Whilst the above ladder arrangement possesses both good and bad bubblings,
some networks possess an underlying graph structure that does not admit any efficient contraction
ordering. A good example of this is the 2D grid; due to the 2D structure of this lattice, it is clear
that the contracted region must, somewhere near the middle of the contracting procedure, have
a perimeter on the order of

√
n where n is the number of tensors. As a result such contractions
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generically take exponential time/memory to perform. An example of a high cost step during such
a bubbling is shown below, with the prohibitively large perimeter indicated by the red legs.

(2.1.18)

Although the bubblings we have depicted here involve picking a single tensor and contracting
others into it one-by-one, this will frequently not be the most efficient order; often a multibubbling
approach is faster. Ref. [2.1.3] provides code which allows for finding optimal bubbling order for net-
works of up to 30-40 tensors. This code interfaces with that provided in Ref. [2.1.4] and Ref. [2.1.5],
providing a complete tensor network package.

2.1.5 Computational Complexity

Above we’ve described that there exist networks which stymie the specific contraction procedures
we’ve outlined. In this section we’ll see that there also exist networks for which there are complexity
theoretic obstructions which do not allow for any contraction procedure to be efficient.

We will now consider the computational complexity associated with tensor network contractions.
Whilst all of the tensor networks we will consider in later lectures constitute memory-efficient
representations of objects such as quantum states, not all permit efficient manipulation. This
demonstrates that how one wishes to manipulate a tensor network is an important part of considering
them as ansätze.

Whilst algorithms which can speed up tensor network contractions by optimising the bubbling
used [2.1.3–2.1.5], as discusssed above, the underlying computational problem is NP-complete [2.1.6,
2.1.7]

Even ignoring the specific bubbling used, the complexity of the overall contraction procedure
can also be shown to be prohibitive in general. Consider a network made from the binary tensors
e and n. The value of e is 1 if and only if all indices are identical, and zero otherwise, whilst n
has value 1 if and only if all legs differ and 0 otherwise. Take an arbitrary graph, and construct a
tensor network with an e tensor at each vertex and n tensor in the middle of each edge, with the
connectedness inherited from the graph.

−→

ee

e

e

e

e
n

n

n

n
n

n

n

(2.1.19)

By construction, the non-zero contributions to the above tensor network correspond to an as-
signment of index values to each vertex (enforced by e) of the original graph, such that no two
neighbouring vertices share the same value (enforced by n). If each index is q-dimensional this is a
vertex q-colouring of the graph, and the value of the tensor network corresponds to the number of
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such q-colourings. As determining the existence of a q-colouring is an NP-complete problem [2.1.8],
contracting this graph is therefore #P-complete [2.1.9]. Indeed similar constructions exist for tensor
networks corresponding to #SAT and other #P-complete problems [2.1.10]. As we will see later in
Section 2.6, there also exists a quantum hardness result which shows approximate contraction to be
Post-BQP-hard, putting it inside a class of problems not believed to be efficiently solvable on even
a quantum computer.

Problems 1

Solutions in Appendix 2.B

1. Consider the following tensors, in which all indices are three-dimensional, indexed from
0:

A i

j
= i2 − 2j,

B

i j

k
= −3ij + k, (2.1.20)

Ci

j

= j
Di

j
k

= ijk. (2.1.21)

Calculate the value of the following tensor network:

A

B C

D
(2.1.22)

2. In this question we are going to consider expanding out a contraction sequence, in a
manner which would be needed when coding up contractions. Given a network, and
an associated bubbling, we wish to write out a table keeping track of the indices of the
current object, the tensor currently being contracted in, the indices involved in that
contraction, and new indices left uncontracted. For example for the network

A C

B

β

α γ

δ (2.1.23)

where the bubbling is performed in alphabetical order, then the table in question looks
like

Current Tensor Contract New

– A – α, β
α, β B α γ
β, γ C β, γ δ
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For the tensor network

A

B C

D

Eα

β

γ

δ

ε

, (2.1.24)

construct a corresponding table, where contraction is once again done in alphabetical
order.

3. (a) Calculate the contraction of the tensor network in Equation (2.1.19) for bond di-
mension 3, i.e. calculate the number of three-colourings of the corresponding graph.

(b) Using the e and n tensors from Section 2.1.5, come up with a construction for a
tensor network which gives the number of edge colourings. For a planar graphs,
construct an analogous network to count face colourings.

(c) Using tensor networks, determine the minimum number of colours required to ver-
tex and edge colour the below graph (known as the chromatic number and index
respectively).

(2.1.25)

4. Much like the singular value decomposition, given a bisection of the indices we can
consider norms of tensors.

(a) Does the operator norm depend on the bisection, i.e. are the operator norms across
any two bisections of the same tensor necessarily equal?

(b) What about the Frobenius norm? If they can differ, give an example, if not draw a
tensor network diagram that shows it to be manifestly independent of bisection.

5. Write out the Einstein notation corresponding to the network in Equation (2.7.1).
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2.2 Quantum information examples

In this lecture we will cover a few examples of concepts in quantum information which can be
better understood in tensor network notation. This lecture won’t serve as much as an introduction
to these concepts, but instead as a Rosetta stone for those familiar with quantum information
and not with TNN. For a more thorough introduction to quantum information see the textbooks of
Refs. [2.2.1–2.2.3] or lecture notes of Refs. [2.2.4,2.2.5]. We note that for the study of open quantum
systems, a more specialised form of TNN was developed in Ref. [2.2.6].

2.2.1 Bell state and the Bell basis

The Bell basis forms a convenient orthonormal set of two qubit states that exhibit maximal entan-
glement. The standard notation for this basis is

|Φ±〉 :=
(
|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉

)
/
√

2 and |Ψ±〉 :=
(
|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉

)
/
√

2.

The first of this basis, |Φ+〉, we shall denote |Ω〉 and simply refer to as the Bell state. Thought of
as a matrix, Ω is proportional to the one qubit identity,

|Ω〉 =
1√
2


1
0

0
1

 Vectorise
↼−−−−−−−−−−⇁
Matricise

1√
2

(
1 0
0 1

)
= I/

√
2. (2.2.1)

In tensor network notation, this is represented simply as a line connecting its two legs.

Ω =
1√
2

(2.2.2)

Next we will define Ω(O) to be the vectorisation of an operator O, such that |Ω(O)〉 = (O ⊗ I)|Ω〉.

Ω(O) =
1√
2

O
(2.2.3)

Given this definition, we can see that the Bell basis simply corresponds to a vectorisation of the
Pauli operators

|Φ+〉 = |Ω(I)〉, |Φ−〉 = |Ω(Z)〉, |Ψ+〉 = |Ω(X)〉, |Ψ−〉 ∝ |Ω(Y )〉.

Thus we see that the Bell basis is intimately linked to the Pauli operators, with the Euclidean inner
product on Bell basis states corresponding to the Hilbert-Schmidt inner product on Paulis.

2.2.2 Quantum Teleportation

Given this notation for the Bell basis, we can now understand Quantum Teleportation in TNN. The
idea here is for two parties (Alice and Bob, say) to share a Bell state. Given this shared resource
of entanglement, we then allow Alice to perform local operations on her half of the pair, and an
arbitrary fiducial qubit. After transmitting only two classical bits, Bob can then correct his half of
the pair such that he recovers the state of the original fiducial qubit, successfully teleporting the
data within.
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The procedure for teleportation goes as follows. First Alice performs a projective measurement
in the Bell basis on both the fiducial qubit and her Bell qubit, receiving outcome |Ω(p)〉. The
result of this measurement is then (classically) transmitted to Bob, requiring two communication
bits. Bob then performs the corresponding Pauli p on his Bell qubit, correcting the influence of
the measurement. Taking the fiducial state to be |ψ〉, and supposing the measurement outcome
corresponds to |Ω(p)〉, then this procedure gives Bob a final state of |φ〉 = |ψ〉/2:

|φ〉 =

Correction︷ ︸︸ ︷(
pB

) Teleportation︷ ︸︸ ︷(
〈ΩA1A2(p)|

) Setup︷ ︸︸ ︷(
|ψA1〉 ⊗ |ΩA2B〉

)
= |ψ〉/2 (2.2.4)

where A1 and A2 correspond to the single qubit registers of Alice, and B to Bob’s qubit. In tensor
network notation this can be clearly seen:

|φ〉 =

ψ

1√
2

1√
2

p†

p Bob

Alice

(2.2.5)

=
1

2
ψp†p

(2.2.6)

= |ψ〉/2 (2.2.7)

where the dashed line indicates the physical separation of the two parties.
As such we can see that |ψ〉 is correctly transmitted for any measurement outcome p, each of

which is seen with probability 1/4. Thus we see that in spite of the non-deterministic intermediary
states, the overall procedure is deterministic. Analogous procedures can work for p being elements
of any set of operators which are orthonormal with respect to the Hilbert-Schmidt inner product,
e.g. higher dimensional Paulis.

Gate Teleportation

The idea behind gate teleportation is similar to regular teleportation, but utilises a general maxi-
mally entangled state instead of the Bell state specifically. Suppose we prepare a maximally entan-
gled state |Ω(UT )〉 corresponding to a unitary U , and post select on a Bell basis measurement of
|Ω(p)〉, followed by a correcting unitary Cp, then Bob ends up with the state:

|φ〉 =

Correction︷ ︸︸ ︷(
Cp

) Teleportation︷ ︸︸ ︷(
〈ΩA1A2(p)|

) Setup︷ ︸︸ ︷(
|ψA1〉 ⊗ |ΩA2B

(
UT )〉

)
(2.2.8)

=

ψ

UT
1√
2

1√
2

Alice

Bob

p†

Cp

(2.2.9)

=
1

2
ψp†UCp (2.2.10)

= CpUp
†|ψ〉/2 (2.2.11)
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If we take Cp := UpU † then Bob receives U |ψ〉 for all measurement outcomes, i.e. |φ〉 ∝ U |ψ〉.
If U is a Clifford operator1, this correction is also a Pauli, making the procedure no more resource
intensive in terms of the gates used than standard teleportation.

An example of where this is useful is in the case where Paulis can be reliably performed, but
Cliffords can only be applied non-deterministically. Gate teleportation allows us to prepare the |UT 〉
first, simply retrying the non-deterministic procedure until it succeeds. Once this has succeeded, we
can use gate teleportation to apply this unitary on the data state using only Pauli operations. As
such we can avoid needing to apply non-deterministic gates directly on our target state, endangering
the data stored within.

2.2.3 Purification

For a given mixed state ρ, a purification is a pure state |ψ〉 which is extended into a larger system
(the added subsystem is known as the purification system), such that the reduced density on the
original system is ρ. One such purification is given by |ψ〉 ∝ (

√
ρ⊗ I)|Ω〉 = |Ω(

√
ρ)〉, which can be

simply seen by considering the corresponding tensor networks. The definition of the state is

ψ =

√
ρ

(2.2.12)

which gives a reduced density of

Tr2

(
|ψ〉〈ψ|

)
= ψψ =

√
ρ

√
ρ

=
ρ

(2.2.13)

By dimension counting, it can be shown that the above purification is unique up to an isometric
freedom on the purification system, i.e. all purifications are of the form

(√
ρ⊗ U

)
|Ω〉 where U †U =

1. Equivalently all purifications can be considered to be proportional to (
√
ρ⊗ I)|Ω〉, where |Ω〉 is

some maximally entangled state other than the Bell state.

2.2.4 Stinespring’s Dilation Theorem

Stinespring’s Theorem says that any quantum channel E – a completely positive trace preserving
(CPTP) map – can be expressed as a unitary map V acting on a larger system followed by a partial
trace, i.e.

E(ρ) = Tr1

[
V † (ρ⊗ |0〉〈0|)V

]
. (2.2.14)

Physically this means that dynamics of an open system is equivalent to those of a subsystem
of a larger, closed system — the founding tennet of the Church of the Larger Hilbert Space. Any
CPTP map can be represented by a set of Kraus operators Ki such that

E(ρ) =
∑
i

K†i ρKi where
∑
i

KiK
†
i = I. (2.2.15)

1The Cliffords are the group of unitaries which map Paulis to Paulis under conjugation.
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In TNN this looks like

ρ

E
= ρK† K where K†K = (2.2.16)

where the transposition in the Hermitian conjugate is done with respect to the horizontal legs, and
the upper leg corresponds to the virtual index i.

Next we define the tensor U as

U := K† (2.2.17)

where we can see that U is an isometry (U †U = I), which we can think of as a unitary V with an
omitted ancilla

U = V
|0〉

. (2.2.18)

Using this, and partial tracing over the upper index, we get the Stinespring Dilation Theorem as
desired:

E(ρ) =
∑
i

K†i ρKi = ρK† K (2.2.19)

= ρK† K (2.2.20)

= ρU U † (2.2.21)

= ρ
|0〉〈0|

V V † (2.2.22)

= Tr1

[
V † (ρ⊗ |0〉〈0|)V

]
(2.2.23)

Problems 2

Solutions in Appendix 2.C

1. Consider the inverse of teleportation. Alice wishes to send classical bits to Bob, and
possesses a quantum channel through which she can send Bob qubits. How many bits
of information can be communicated in a single qubit? For simplicity consider the case
where Bob can only perform projective measurements.

2. Suppose Alice and Bob initially shared a Bell pair. Does this pre-shared entanglement
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resource boost the amount of classical information that can be successfully communi-
cated, and if so by how much? Hint: Notice that the four possible Bell states differ by a
Pauli acting on a single qubit.
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2.3 Matrix Product States

Now that we have established the notation, the remaining lectures will examine some key tensor
networks and algorithms for strongly interacting quantum many body systems. We begin with one
dimensional models.

Matrix product states (MPS) are a natural choice for efficient representation of 1D quantum
low energy states of physically realistic systems [2.3.1–2.3.6]. This lecture will begin by motivating
and defining MPS in two slightly different ways. We will then give some analytic examples of MPS,
demonstrating some of the complexity which can be captured with this simple network. Some simple
properties of MPS will then be explained, followed by a generalisation of the network to operators
rather than pure states.

Let |ψ〉 =
∑d−1

j1j2...jN=0Cj1j2...jN |j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jN 〉 be the (completely general) state of N
qudits (d dimensional quantum system). The state is completely specified by knowledge of the
rank-N tensor C.

By splitting the first index out from the rest, and performing an SVD, we get the Schmidt
decomposition

|ψ〉 =
∑
i

λi|Li〉 ⊗ |Ri〉, (2.3.1)

where λi are the Schmidt weights and {|Li〉} and {|Ri〉} are orthonormal sets of vectors. Graphically
this looks like

ψ = RλL , (2.3.2)

where λ is a diagonal matrix containing the Schmidt weights.
The α-Rényi entropy is given by

Sα(ρ) =
1

1− α log Tr ρα, (2.3.3)

where ρ is some density matrix. Note that the entanglement rank S0 is simply the (log of the)
number of nonzero Schmidt weights and the von Neumann entropy is recovered for α→ 1. We also
note that the Schmidt weights now correspond precisely to the singular values of the decomposition
Equation (2.3.2), and so these values capture the entanglement structure along this cut.

We can now perform successive singular value decompositions along each cut in turn, splitting
out the tensor into local tensors M , and diagonal matrices of singular values λ quantifying the
entanglement across that cut.

ψ = R(1)λ(1)M(1) (2.3.4)

= R(2)λ(1) λ(2)M(1) M(2) (2.3.5)

= M(3)λ(1) λ(2) λ(3)M(1) M(2) M(4) (2.3.6)
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By now contracting2 the singular values tensors λ(i) into the local tensors M (i) we get the more
generic form

|ψ〉 = A(1) A(2) A(3) A(4)

.
(2.3.7)

This is the matrix product state. It is not yet clear that we have done anything useful. The
above construction is both general and exact, so we have the same number of coefficients in an
arguably much more complicated form.

Suppose however we consider states for which the entanglement rank across any bisection of
the chain is bounded. In particular, suppose that only D of the Schmidt weights were non-zero.
Then we can use the MPS form to take advantage of this by truncating the λ matrix to make use
of this property. In particular, any state with a so-called strong area law such that S0 ≤ log c for
some constant c along any bipartition can be expressed (exactly) using an MPS with only O(dNc2)
coefficients. As discussed in Section 2.5, there are many relevant states for which an area law for
the von Neumann entropy (S1 = O(1)) is sufficient to guarantee arbitrarily good approximation
with an MPS of only poly(N) bond dimension [2.3.1–2.3.3].

In TNN, the name matrix product state is a misnomer, as most tensors involved are in fact
rank-3. The uncontracted index is referred to as the physical index, whilst the other two are virtual,
bond or matrix indices. For reasons of convenience, as well as to capture periodic states most
efficiently, the MPS ansatz is usually modified from Eqn. (2.3.7) to∣∣∣ψ [A(1), A(2), . . . , A(N)

]〉
=

∑
i1i2...iN

Tr
[
A

(1)
i1
A

(2)
i2
. . . A

(N)
iN

]
|i1i2 . . . iN 〉, (2.3.8)

or in the translationally invariant case

|ψ[A]〉 =
∑

i1i2...iN

Tr [Ai1Ai2 . . . AiN ] |i1i2 . . . iN 〉. (2.3.9)

Note that in this form the matrix indices are suppressed and matrix multiplication is implied. The
graphical form of this MPS is

|ψ[A]〉 =
.

(2.3.10)

2.3.1 1D Projected Entangled Pair States

In addition to the above construction, MPS can (equivalently) be viewed as a special case of the
projected entangled pair states (PEPS) construction [2.3.2,2.3.7,2.3.8]. This proceeds by laying out
entangled pair states |φ〉 on some lattice and applying some linear map P between pairs

|ψ〉 = P P P P P P P P P
,

(2.3.11)

where

|φ〉 = (2.3.12)

2Into precisely which tensor the singular values are contracted can be important, and relates to gauge fixing the
MPS, see Section 2.3.3.
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is the chosen entangled pair. In Lecture 2.6, we will generalise this construction to arbitrary
dimensions and arbitrary lattices.

It is clear that this construction is equivalent to the tensor network construction by letting
|φ〉 =

∑d−1
j=0 |dd〉. We can write the linear map P as

P =
∑
i,α,β

Ai;α,β|i〉〈αβ|. (2.3.13)

The tensor A is exactly the MPS tensor introduced above, and the choice of entangled pair ensures
that the A tensor corresponding to a pair of PEPS ‘projectors’ applied to the Bell state above is
exactly the contraction of the corresponding A tensors:

P(1) ⊗ P(2)|φ〉2,3 =
∑

i1,i2;α1,β1,α2,β2,j

A
(1)
i1;α1,β1

A
(2)
i2;α2,β2

|i1i2〉〈α1β1α2β2|(1⊗ |jj〉 ⊗ 1) (2.3.14)

=
∑

i1,i2;α1,β1,β2

A
(1)
i1;α1,β1

A
(2)
i2;β1,β2

|i1i2〉〈α1β2|. (2.3.15)

Thus, we see that the two descriptions are equivalent, and interchanged through the applications
of local unitaries to the virtual indices of A or equivalently changing the maximally entangled pair
in the PEPS.

We note that this should not generally be seen as a practical preparation procedure. Generically
the PEPS tensors will map states down into a non-trivial subspace, with the physical implementation
of this requiring post-selected measurements. If one of these fails, we need to go back and begin
the construction from the start, meaning this procedure is not generally scalable.

2.3.2 Some MPS states

Product State

Let

A0 =
(
1
)
, A1 =

(
0
)
. (2.3.16)

This gives the state |00 . . . 0〉, as does

A0 =

(
1 0
0 0

)
, A1 =

(
0 0
0 0

)
. (2.3.17)

W State

What state do we get when we set

A0 =

(
1 0
0 1

)
, A1 =

(
0 1
0 0

)
, (2.3.18)

and we choose the boundary conditions of the MPS to be

|ψ[A]〉 = X
?

(2.3.19)

We have A0A0 = A0, A0A1 = A1, A2
1 = 0 and Tr[A1X] = 1, so we get

|W 〉 =

N∑
j=1

|000 . . . 01j000 . . . 0〉, (2.3.20)

the W-state [2.3.2].
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GHZ State

If we choose |φ〉 = |00〉+ |11〉 and P = |0〉〈00|+ |1〉〈11|, or the equivalent MPS tensor

A0 =

(
1 0
0 0

)
, A1 =

(
0 0
0 1

)
, (2.3.21)

then we get the Greenberger-Horne-Zeilinger (GHZ) state [2.3.2]

|GHZ〉 = |00 . . . 0〉+ |11 . . . 1〉. (2.3.22)

AKLT State

Suppose we wish to construct an SO(3) symmetric spin-1 state [2.3.5, 2.3.6, 2.3.9]. Let |φ〉 =
|01〉− |10〉 be the SO(3) invariant singlet state. Let P : C2×2 → C3 be the projector onto the spin-1
subspace

P = |1̃〉〈00|+ |0̃〉〈01|+ 〈10|√
2

+ |−1̃〉〈11|. (2.3.23)

The advantage is that the spin operators on the corresponding systems pull through P, meaning it
commutes with rotations. Let (Sx, Sy, Sz) be the spin vector on the spin-1 particle, and (Xi, Yi, Zi)/2
the spin vector on the ith qubit, then this means:

SZP =
(
|1̃〉〈1̃| − |−1̃〉〈−1̃|

)(
|1̃〉〈00|+ |0̃〉〈01|+ 〈10|√

2
+ |−1̃〉〈11|

)
(2.3.24)

= |1̃〉〈00| − |−1̃〉〈11| (2.3.25)

= PZ1 + Z2

2
(2.3.26)

SXP =
|0̃〉
(
〈1̃|+ 〈−1̃|

)
+
(
|1̃〉+ |−1̃〉

)
〈0̃|√

2

(
|1̃〉〈00|+ |0̃〉〈01|+ 〈10|√

2
+ |−1̃〉〈11|

)
(2.3.27)

=

(
|0̃〉 (〈00|+ 〈11|)√

2
+

(
|1̃〉+ |−1̃〉

)
(〈01|+ 〈10|)

2

)
(2.3.28)

= PX1 +X2

2
, (2.3.29)

with the same holding for SY . Thus the state obtained after this projection is fully SO(3) symmetric,
but has a nontrivial entanglement structure (which would not be obtained if the state was simply
a singlet at each site for example).

This state has many interesting properties. We can write a 2-local Hamiltonian for which this is
the ground state. Let Π2 be the projector onto the spin-2 subspace of a pair of spin-1 particles. This
operator has eigenvalues {0, 1}. Π2 annihilates an adjacent pair of spin-1 particles, since they are
built from two spin-1/2s and a spin-0, so have no overlap with the spin-2 subspace. It is simple to
check that on periodic boundary conditions the ground state of H =

∑
Π2 is unique (and gapped).

If we examine the action of rotations about the three axes of the spin-1, we see that

Rn̂(θ)P = PRn̂(θ)⊗Rn̂(θ). (2.3.30)

In particular, Rx̂(π) 7→ −XX, Rŷ(π) 7→ −Y Y , Rẑ(π) 7→ −ZZ. In Sec. 2.4 we will see that this
tells us the AKLT state is in a nontrivial symmetry protected topological (SPT) phase.
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Cluster State

It is convenient to write a bond dimension 2 MPS for this state where a physical site contains a
pair of spins. Let

A00 =

(
1 0
1 0

)
A01 =

(
0 1
0 1

)
A10 =

(
1 0
−1 0

)
A11 =

(
0 −1
0 1

)
, (2.3.31)

or equivalently the map from virtual to physical spin-1/2 particles

P =


1 0 1 0
0 1 0 1
1 0 −1 0
0 −1 0 1

 , (2.3.32)

where the entangled pairs are in the Bell state |φ〉 = |00〉 + |11〉. The map P corresponds to the
circuit

H
(2.3.33)

Notice in this case our PEPS tensor P simply corresponds to unitary circuit. As such this is one
of the exceptional cases in which the PEPS description can be considered a scalable preparation
procedure.

Given an explicit MPS description of this state, we can now back out a Hamiltonian for which
it is a ground state, allowing us to infer certain properties.

The initial state is constructed from entangled pairs
∏ |φ〉2j,2j+1, and is the unique ground state

of the Hamiltonian

H = −
∑
j

(X2jX2j+1 + Z2jZ2j+1) . (2.3.34)

Applying the circuit (between Bell pairs with first qubit odd and second even), we see that this
transforms to

H ′ = −
∑
j

(Z2j−1X2jZ2j+1 + Z2jX2j+1Z2j+2) (2.3.35)

= −
∑
k

Zk−1XkZk+1. (2.3.36)

This is precisely the cluster state Hamiltonian. The physical symmetry of this model is Z2 × Z2,
where S1 =

∏
j X2j−1 and S2 =

∏
j X2j . Pushing this backwards through the circuit, we see that it

is equivalent to act on the virtual spins with S1 =
∏
j Z2jZ2j+1 and S2 =

∏
j X2jX2j+1.

This action tells us that, just like the AKLT state, the cluster state possesses SPT order.

2.3.3 MPS Properties

MPS form a vanishingly small corner of the full Hilbert space, and thus we cannot hope to use them
to approximate arbitrary states. If physically relevant states correspond to those which can be well
approximated by MPS, and MPS manifest the same non-generic properties as these physical states,
then they represent an extremely useful tool to study these systems.
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Decay of Correlations

We have already seen that MPS have bounded levels of entanglement, manifesting as strict area
laws. We will now investigate the type of correlations which can be represented. Let O be some
operator for which we wish to compute the two point correlator

〈ψ[A]|O0Oj+1|ψ[A]〉, (2.3.37)

where the subscript denotes the site at which the operator O is applied. Graphically this expectation
value is written as:

. . .

. . .

(2.3.38)

We refer to the object

EO =
d−1∑
i,j=0

Oi,jAi ⊗ Āj = O (2.3.39)

as the O-transfer matrix. Note that we usually just refer to E1 as the transfer matrix and simply
denote it E.

The correlator (in the thermodynamic limit) can then be written as

〈ψ[A]|O0Oj+1|ψ[A]〉 = Tr
(
E∞EO0EjEOj+1E

∞) (2.3.40)

∝ V †LEjVR. (2.3.41)

where VL and VR are the dominant left and right eigenvectors of E respectively. The only change
required when calculating longer range correlators is inserting higher powers of E in Eqn. (2.3.41).
The decay of correlators is therefore controlled by the eigenvalues of E. We can normalise A so that
the dominant eigenvalue of E is 1, with the rest lying inside the unit disk. Thus any correlator can
either decay exponentially with distance or be constant. Thus we see that MPS can only capture
states with exponentially decaying correlations [2.3.6].

Gauge Freedom

Not all MPS represent different physical states [2.3.2]. The set of transformations of the description
(i.e. the MPS) which leaves the physical state invariant are known as gauge transformations. In
the case of MPS, these correspond to basis transformations on the virtual level:

|ψ[A]〉 =
M−1M M−1M M−1M M−1M M−1M M−1M

(2.3.42)

= B B B B B B (2.3.43)

31



CHAPTER 2. HAND-WAVING AND INTERPRETIVE DANCE

= |ψ[B]〉, (2.3.44)

where Bj = MAjM
−1. Note that M is only required to have a left inverse, so can be rectangular

and enlarge the bond dimension.
Another freedom is blocking. We can combine several MPS tensors Ai1 , Ai2 , . . . , Aij into a single

effective tensor Bk, on a larger physical region
A number of canonical forms exist which partially gauge fix the MPS description. One of the

most common is the left-isometric or left-canonical form (with right-isometric or right-canonical
defined analogously). Here the MPS tensors obey

d−1∑
j=0

A†jAj = 1D×D, (2.3.45)

= . (2.3.46)

This is most useful on open boundary systems where a simple algorithm exists to put any
MPS into this form. It is frequently used in numerical applications, in particular when using
variational minimisation to optimise an MPS description of a ground state (DMRG), a mixed
left/right isometric form is used.

Putting an MPS into this form is a partial gauge fixing. The remaining freedom is that of a
unitary3 on the virtual level, rather than general invertible matrix. This technique is heavily used
in tensor network algorithms as a method of increasing numerical stability.

2.3.4 Renormalising Matrix Product States

When we renormalise a system, we usually think about attempting to write down an effective model
at a longer length scale which captures the low energy portion of the original model. This can be
achieved by blocking sites together, then discarding degrees of freedom to ensure the description
remains useful. In the MPS, blocking can be achieved by simply contracting tensors together. How
to discard only high energy degrees of freedom is a challenging question. MPS allows us to avoid
having to answer this question all together [2.3.10].

Since we care only about expectation values of operators, we can work entirely in the transfer
matrix picture. Blocking sites together simply consists of taking products of transfer matrices

Ẽ = EEEEE . . .E, (2.3.47)

with sandwiched operators EO being renormalised similarly. Note that the dimension of Ẽ remains
D4 at all times, so we never need to worry about discarding degrees of freedom. We can also use
transfer matrices formed from different MPS to get off-diagonal terms of the form 〈ψ|O|φ〉.

2.3.5 Mixed States and Many Body Operators

As described above, an MPS can be used to represent a pure state. How is a mixed state represented
in this language?

3If you include the ability to expand the bond dimension then this grows to an isometric freedom.
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Let |ψ[A]〉 be some (pure) MPS state. We can write the density matrix corresponding to |ψ[A]〉
as

ρ[A] = |ψ[A]〉〈ψ[A]| (2.3.48)

= · · · · · · . (2.3.49)

The reduced density matrix on some subset of spins R will therefore be represented as

ρ[A]R = |ψ[A]〉〈ψ[A]| (2.3.50)

= , (2.3.51)

where we have used the left and right normal forms to bring in the boundary terms.
The above network is an example of what is referred to as matrix product operators (MPOs)

[2.3.5, 2.3.11,2.3.12]. The general form of MPOs we will be considering is

vL vRM M M M M M . (2.3.52)

In addition to being used to represent density matrices, MPOs can be used to represent a large
class of many body operators, including small depth quantum circuits and local Hamiltonians. For
example, the transverse field Ising Hamiltonian

H = −J
∑

XjXj+1 − h
∑

Zj (2.3.53)

can be represented on a line with the (operator valued) matrix

M =

 1 0 0
X 0 0
−hZ −JX 1

 (2.3.54)

and end vectors

vL =
(
0 0 1

)
and vR =

1
0
0

 . (2.3.55)

The Hamiltonian on N sites is then obtained as

H = vLM
NvR. (2.3.56)

The Heisenberg model

H = −JX
∑

XjXj+1 − JY
∑

YjYj+1 − JZ
∑

ZjZj+1 − h
∑

Zj (2.3.57)
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can be obtained in the same fashion with

vL =
(
0 0 0 0 1

)
, M =


1 0 0 0 0
X 0 0 0 0
Y 0 0 0 0
Z 0 0 0 0
−hZ −JXX −JY Y −JZZ 1

, vR =


1
0
0
0
0

 . (2.3.58)

More generally, an MPO can be used to represent any operator which does not increase the
Schmidt rank of any state too much. An existing explicit analytic construction of MPOs for 1D
local Hamiltonians, as well as a new generalisation for higher dimensional Hamiltonians, is covered
in more detail in Section 2.A.

Problems 3

Solutions in Appendix 2.D

1. Describe the state given by an MPS with tensor

A =

0 1


00 1 0
10 0 1
01 1/2 −1/2
11 1/2 −1/2

1

2

3A
, (2.3.59)

where index ordering is as shown and indices 1 and 2 are combined. Boundary conditions
require inserting a Pauli Z before closing periodic BCs, similar to Equation (2.3.19).

2. Describe the state given by the MPS whose only nonzero components are

0

0

0A
=

1

0

1A
=

0

1

1A
=

1

1

0A
= 1, (2.3.60)

where the left and right boundary conditions are |0〉.
Hint: Writing out the matrices corresponding to fixing the physical index might help!

3. Describe the qudit state given by the MPS

i

j

i⊕ jA
= 1 (2.3.61)

where i, j ∈ Zd, ⊕ denotes addition mod d, the left boundary condition is |0〉, and the
right boundary is |q〉 for some q ∈ Zd.
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4. Let G be some group. Describe the operator given by the MPO with

g

h

h

g · hM = 1 (2.3.62)

where the left boundary condition is |1〉, the right boundary is |q〉 for some q ∈ G, and
g · h denotes group multiplication.

5. Suppose the local basis is labelled by particle number. What is the action of the following
operator (bond dimension linearly increasing left to right)?

n

m

m

n+mM = 1 (2.3.63)

with left vector L = |0〉 and right vector R =
∑N

i=0 i|i〉.

6. Write an MPO for the transverse-field-cluster Hamiltonian

H = −J
∑
j

Zj−1XjZj+1 − h
∑
j

Xj . (2.3.64)

Hint: This can be done with bond dimension 4.

7. Use the ideas of MPSs and MPOs to prove that log depth quantum circuits can be
simulated efficiently on a classical computer.
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2.4 Classifying Gapped Phases in 1D

Matrix product states are extremely useful in both analytic and numerical applications. One of the
most powerful results in the field of tensor network analytics is a complete classification of gapped
phases in 1D.

To begin this lecture, we will introduce quantum phases. We will then argue that in the absence
of symmetry constraints, all MPS are in the same phase. Finally, we will show how symmetries
change this classification. Whilst interesting in it’s own right, this material also serves to demon-
strate the analytic power of TNN.

2.4.1 Quantum Phases

The classical definition of a phase, or more particularly a phase transition, is usually associated to
some nonanalytic behaviour of the free energy density

f(β,v) = − log tr e−βH(v)

β
, (2.4.1)

where v is some vector of parameters of the model (pressures, masses, coupling strengths, etc.) and
H the Hamiltonian of our system. Clearly when we take the quantum limit (β → ∞), the free
energy is simply the ground state energy. A quantum phase transition is thus associated with the
ground state [2.4.1].

At a classical phase transition, correlations become long ranged

〈O0Ox〉 − 〈O0〉〈Ox〉 ∼ |x|−ν , (2.4.2)

where the averages are taken with respect to some thermal distribution. We therefore say that a
thermal (classical) phase transition is driven by thermal fluctuations, where the variance measures
the increasingly long range of these fluctuations. A quantum phase transition also has divergent
correlation length, however there is no thermal average — the statistics are purely quantum in
origin [2.4.1].

A classical phase corresponds to a range of deformations of H and β which can be made without
causing nonanalyticities in the free energy f . Likewise, a quantum phase transition occurs where
the ground state energy becomes nonanalytic (in the thermodynamic limit) as a function of some
Hamiltonian parameters (not temperature this time!). Suppose we have a continuous family of
quantum Hamiltonians H(λ). The lowest energy levels generically act in one of the following
ways [2.4.1]:

λ

E

λ

E

On the left, there is no phase transition, whilst on the right a transition occurs when the roles
of the ground and first excited states cross.

For our purposes, a phase transition will be associated with a gapless point in the spectrum.
Therefore, we will say that two states |ψ0〉 and |ψ1〉 are in the same phase if there is a continuous
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family of Hamiltonians H(λ) such that |ψ0〉 is the ground state of H(0), |ψ1〉 is the ground state of
H(1), and the gap remains open for all λ ∈ [0, 1].

An equivalent notion is finite time evolution under a local Hamiltonian [2.4.2]. Two states are
in the same phase if they can be interconverted by time evolution for a finite period. This is linked
to the possibility of one state naturally evolving into the other.

It is simpler, and essentially equivalent, to ask which states can be interconverted by a local quan-
tum circuit of depth constant in the system size [2.4.3, 2.4.4]. We will work within this framework.
One may also ask the more complicated question of how phases change if we impose a symmetry;
if we insist that all of the Hamiltonians H(λ) commute with some symmetry group Ug(λ). In the
circuit picture, this corresponds to restricting the gate set to only gates which commute with this
symmetry [2.4.4–2.4.6].

2.4.2 Injective MPS

In this lecture, we will restrict ourselves to the case of injective MPS [2.4.7,2.4.8]. If we assume the
MPS is in left canonical form

d−1∑
j=0

A†jAj = 1D×D or = , (2.4.3)

then injective MPS are those for which the identity is the unique eigenvalue 1 left eigenvector of the
transfer matrix. Moreover this means that there exists a unique full-rank4 density matrix ρ which
is a 1 right eigenvector, i.e.

d−1∑
j=0

AjρA
†
j =: E(ρ) = ρ (2.4.4)

ρ = ρ . (2.4.5)

These MPS correspond to unique gapped ground states of local Hamiltonians [2.4.9]. The
arguments we will present here generalise to non-injective MPS, however they become very technical.

2.4.3 No Topological Order

We will refer to states which cannot be connected by any constant depth local circuit as being in
distinct topological phases, or having distinct topological order. This is to distinguish them from
the symmetric phases we will discuss later in this lecture. In fact, we will see that there are no
nontrivial topological phases in 1D [2.4.3].

Let Aj define some injective MPS, and construct the transfer matrix E5

E = . (2.4.6)

As discussed in the previous lecture, this can be used to renormalise the MPS. Taking products of
this transfer matrix corresponds to blocking sites of the original MPS. Since the MPS is injective,

4Were ρ not full rank we could reduce the bond dimension such that it were without changing any observables in
the thermodynamic limit.

5Note that E is the ‘Liouville superoperator’ form of the channel E (Eqn. 2.4.4)
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the leading eigenvalue of E is 1 and all other eigenvalues are strictly smaller. Therefore, by taking
the kth power of the transfer matrix, we obtain a new transfer matrix which is

E
k = ρ + Õ

(
|λ2|k

)
, (2.4.7)

where |λ2| < 1 is the second eigenvalue of the transfer matrix and ρ is the fixed point of the
channel. This transfer matrix can be decomposed to give a new effective MPS tensor describing the
long wavelength physics

Ã =
√
ρ . (2.4.8)

On the regions we blocked together, we could have first applied a unitary to the state without
changing the blocked transfer matrix. Since we only required a constant number of sites to be
blocked to achieve this MPS tensor, this unitary freedom is restricted to a constant depth unitary
circuit – precisely the equivalence we wish to allow. Now, let V be some unitary which acts as∑

j,k

√
ρ
j,k
|j, k〉 → |0, 0〉 on the state given by

√
ρ and arbitrarily on the rest of the space. We can

now use this to apply two circuit layers to the MPS

√
ρ

√
ρ

V

√
ρ

V

√
ρ

V

√
ρ

V

√
ρ

V

√
ρ

V

, (2.4.9)

which completely disentangles the MPS, giving the state |00 · · · 0〉.
Notice that this was all achieved by simply blocking a constant number of sites together, so we

have only used a constant depth quantum circuit. Therefore, all injective MPS are in the same
(topological) phase as the product state, and therefore each other.

2.4.4 Symmetry Respecting Phases

The proofs in this section are translated into TNN from Ref. [2.4.8].

Since there are no nontrivial topological phases, we will now examine what happens when a
symmetry restriction is imposed on the allowed gates. Let G be some symmetry group for a state
which acts on-site as Ug := u⊗ng for each g ∈ G, where ug is a unitary representation of G acting on
a single site. Recall that for ug to be a representation, we must have

uguh = ugh (2.4.10)

for all g, h ∈ G.
Let A be an MPS tensor such that |ψ[A]〉 is symmetric, meaning that Ug|ψ[A]〉 = eiφg |ψ[A]〉 for

all g ∈ G. We will now examine how this symmetry is realised on the MPS tensor itself.
We require an understanding of the action of unitaries on the physical level of an MPS, and

when they can be ‘pushed through’ to act on the virtual level. There, they won’t be touched by the
action of constant depth symmetric circuits on the physical legs, so any properties associated with
the virtual action of the symmetry will be an invariant of the phase.

We require two lemmas.
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Lemma 1. Let u be some unitary and A an injective MPS tensor. Then the largest eigenvalue λ
of the u-transfer matrix

Eu = u (2.4.11)

is contained within the unit disk.

Proof. Let v† (note that we are not assuming that this is unitary) be a left eigenvector of Eu

v†

u = λ

v†

. (2.4.12)

We therefore get for some density matrix ρ

λ
v† v

ρ =

v† v

u ρ . (2.4.13)

Once again let ρ be the (unique) right eigenvector of E with eigenvalue 1. We can view the
above expression as an inner product between two vectors

λ
v†

v

ρ =

v†

v

√
u

√
u

√
ρ

√
ρ
. (2.4.14)

We can now apply the Cauchy-Schwarz inequality across the dotted line, giving∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ v†

v

√
u

√
u

√
ρ

√
ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

≤

v†

v

√
u

√
u
†

√
ρ

√
ρ

×

v

v†

√
u
†

√
u

√
ρ

√
ρ

(2.4.15)

=

v†

v

ρ ×
v

v†

ρ (2.4.16)

=

v†

v

ρ ×
v†

v

ρ (2.4.17)
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where the vertical lines indicate absolute value. Thus we have

|λ|
v†

v

ρ ≤
v†

v

ρ , (2.4.18)

and so |λ| ≤ 1. �

Lemma 2. Equality is achieved in Lemma 1 if and only if there exists a unitary v and an angle θ
such that

u = eiθ
v v†

. (2.4.19)

Proof. First we prove the ‘if’ direction. Assume that Eqn. 2.4.19 holds. Then

v†

u = eiθ
v†

(2.4.20)

=⇒
v†

u = eiθ
v†

(2.4.21)

=⇒
v†

u = eiθ
v†

, (2.4.22)

and so we have found a left eigenvector v† of Eu with a modulus 1 eigenvalue of λ = eiθ.

Now we prove the ‘only if’ direction. Assume there exists a left eigenvector v† with eigenvalue
of modulus 1, then the Cauchy-Schwarz inequality Eqn. 2.4.15 must become an equality. Therefore,
there is some scalar α such that

v

√
u

√
ρ

= α

v

√
u
†

√
ρ

. (2.4.23)

Taking the norm of each side as vectors, we have

v

√
u

v†

√
u
† √

ρ

√
ρ

= |α|2

v

√
u
†

v†

√
u

√
ρ

√
ρ

(2.4.24)

=⇒
v†

v

ρ = |α|2
v†

v

ρ (2.4.25)
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=⇒
v†

v

ρ = |α|2
v†

v

ρ . (2.4.26)

Therefore, |α| = 1, so α = eiθ.
Since ρ is full rank, it is invertible, so

v

√
u

= eiθ

v

√
u
† . (2.4.27)

Now, rearranging this and left multiplying by v†, we have

v† v

u = eiθ
v† v

(2.4.28)

=⇒
v† v

u = eiθ
v† v

(2.4.29)

=⇒ λ
v† v

= eiθ
v† v

. (2.4.30)

We therefore see that v†v is a left eigenvector of the transfer matrix E with norm-1 eigenvalue. By
assuming injectivity however we require that the only norm-1 eigenvalue is the non-degenerate +1
eigenvalue, whose left eigenvector is the identity. Thus we conclude v is, after rescaling, unitary,
and that Eqn. 2.4.19 therefore holds. �

So far, we have established that a unitary u can be ‘pushed through’ the MPS tensor if and
only if the u-transfer matrix has an eigenvalue of unit magnitude. We will now show that u is a
local symmetry if and only if it can be pushed through. This will complete our understanding of
the action of local symmetries on MPS tensors.

Theorem 1 (Symmetries push through). Let G be a group. A unitary representation ug is a local
symmetry if and only if

ug = eiθg
vg v†g

(2.4.31)

for vg unitary and θg ∈ [0, 2π).

Proof. If Eqn. 2.4.31 holds, it is clear that ug is a symmetry since vg is simply a gauge transfor-
mation on the MPS.

Let

σk = ρ

· · ·

· · ·
(2.4.32)

42



CHAPTER 2. HAND-WAVING AND INTERPRETIVE DANCE

be the reduced density matrix on k sites, where ρ is the right fixed point of E. By construction,
tr(σk) = 1, but σk will generically be mixed, so tr(σ2

k) ≤ 1. Recall that the purity of a density matrix
is lower bounded by the inverse of the matrix-rank, i.e. tr(σ2

k) ≥ 1/rank(σk). Since our reduced
density matrix is obtained from a bond dimension D MPS, it has rank at most D2. Therefore

1

D2
≤ tr

(
σ2
k

)
=

ρ

· · ·

· · ·

ρ

· · ·

· · ·
(2.4.33)

=

ρ

· · ·

· · ·

ρ

· · ·

· · ·
ug

u†g

ug

u†g

ug

u†g

ug

u†g

(2.4.34)

=

ug

u†g

ug

u†g

ug

u†g

ug

u†g

· · ·

· · ·

ρ ρ

· · ·

· · ·
, (2.4.35)

where the second equality holds because ug is a local symmetry.
Here, the left and right boundary vectors (1 and ρ) are independent of the number of sites upon

which σk is supported, so this inequality holds for all k. This can only be the case if Eug has an
eigenvalue of magnitude 1, as it would otherwise have to possess exponential decay. From Lemma
2, this implies that there exists some unitary vg and an angle θg such that

ug = eiθg
vg v†g

(2.4.36)

which completes the proof. �
We now investigate the properties of the virtual action of the symmetry. As discussed above, if

we apply a constant depth circuit with symmetric gates to the MPS (i.e. mapping us to any other
state in the phase), we can push the symmetry action first through the circuit and then onto the
virtual level. Therefore, any properties it has will be an invariant of the phase.
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Aside 2 : Projective representations

Let G be some group. A (linear) representation ug obeys

uguh = ugh ∀g, h ∈ G. (2.4.37)

This is not the most general way of acting with a group however. We could also ask for

vgvh = ω[g, h]vgh ∀g, h ∈ G, (2.4.38)

where ω[g, h] = eiφ[g,h] is a scalar which depends on both g and h independently. This is known
as a projective representation. One might ask whether this is simply a more complicated way
of writing a linear representation. Maybe we can rephase vg to obtain Eqn. 2.4.37. Let β[g]
be some phase depending only on g then after a rephasing vg 7→ β[g]vg, we have

vgvh = ω[g, h]
β[gh]

β[g]β[h]
vgh = ω′[g, h]vgh. (2.4.39)

We say that ω and ω′ are equivalent if they are related in this way, so

ω ∼ ω′ ⇐⇒ ∃β : ω′[g, h] =
β[gh]

β[g]β[h]
ω[g, h]. (2.4.40)

A projective representation is therefore equivalent to a linear representation if the phases can
be completely removed, i.e. there exists a β such that

ω[g, h] =
β[g]β[h]

β[gh]
. (2.4.41)

As you will show in Problems 4, there are projective representations which are not equivalent
to any linear representation.

Suppose we act with ug followed by uh on the MPS tensor, then

ug

uh

= eiθg
vg v†g

uh
= eiθgeiθh

vh v†h
vg v†g

. (2.4.42)

We could also have combined uguh = ugh before pushing through, which tells us

ugh
= eiθgh

vgh v†gh

. (2.4.43)

Therefore

(vg ⊗ v†g)(vh ⊗ v†h) =
eiθgh

eiθgeiθh
vgh ⊗ v†gh, (2.4.44)
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so (vg ⊗ v†g) is equivalent to a linear representation. We can split this across the tensor product,
telling us that in general

vgvh = ω[g, h]vgh, (2.4.45)

where ω is some phase. We cannot say anything about the phase in this case, since anything would
be cancelled by tensoring with the conjugate.

The only freedom we have to change vg within a phase is local rephasing, therefore the equiv-
alence classes of ω label the different phases of injective MPS with a symmetry restriction. These
equivalence classes are indexed by the so-called second group cohomology class of the group G, an
object usually written as H2(G, U(1)) [2.4.2, 2.4.10].

Problems 4

Solutions in Appendix 2.E

1. The group Z2 × Z2 has the presentation Z2 × Z2 = 〈x, z|x2 = z2 = e, xz = zx〉. Show
that the Pauli matrices form a projective representation of Z2 × Z2.

Hint: let vx = X, vz = Z, vxz=zx = Y and show that vgvh = ω[g, h]vgh, where ω is some
phase.

2. Determine the factor system ω[g, h] for the Pauli matrices.

3. Show that the Pauli projective representation is not equivalent to a linear representation.

Hint: xz = zx, can we rephase vx and vz to make vxvz − vzvx = 0?

4. Recall from Sec. 2.3.2 that the symmetry of the cluster state is Z2 ×Z2, with the action
on the MPS tensor being

X
=

Z Z

,
X

=
X X

. (2.4.46)

What can we conclude about the cluster state?
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2.5 Tensor network algorithms

One area in which tensor networks have had exceptional practical success is in low-temperature
simulation of condensed matter systems. A relatively well-understood toy model is finding ground
states of one-dimensional spin systems. Even under the assumption of a local Hamiltonian, this
seemingly narrow problem retains QMA-completeness [2.5.1] (a quantum analogue of NP), dashing
any hope of general simulation, even on a quantum computer. Whilst this may at first seem like
a significant problem, many ‘physically realistic’ systems don’t exhibit this prohibitive complexity.
Tensor networks can be used to exploit, and to a certain extent understand, this structure.

As discussed previously, states of low entanglement are well represented in the form of MPS.
If we consider the case of local and gapped Hamiltonians, it has been shown that the relevant
ground states cannot be highly entangled [2.5.2–2.5.5, 2.5.12] (see Ref. [2.5.6] for a review). This
restricted entanglement means that such states admit efficient MPS approximations [2.5.7], and
moreover that they may be efficiently approximated [2.5.8–2.5.12], showing that the presence of the
gap causes the complexity to plummet from QMA-complete all the way down to P, removing the
complexity barrier to simulation. We note that despite the challenges, both complexity theoretic
and physical, in applying MPS to gapless models, they have been successfully utilised for this
purpose [2.5.13–2.5.15].

More concretely, the way in which we plan to approximate the ground state is by minimising
the Rayleigh quotient of the Hamiltonian H (the energy) over some restricted domain D to yield
an approximate ground state |Γ〉 given as

|Γ〉 := arg min
|ψ〉∈D

〈ψ|H|ψ〉
〈ψ|ψ〉 . (2.5.1)

As we know that the exact solution is well-approximated by MPS, we will restrict ourselves to
the domain D of MPS of a bounded bond dimension. The idea behind DMRG and TEBD is to
start in some MPS state6 then variationally move along this domain, minimising the energy as we
go. The difference between both methods is the manner in which this variation step is performed,
with DMRG and TEBD taking more computational and physical approaches respectively.

Although the algorithms we discuss here are designed for finding MPS ground states, they can
be adaped to simulate time evolution [2.5.16, 2.5.17], find Gibbs states [2.5.18], or optimise other
operators acting on a statespace of interest [2.5.19].

2.5.1 DMRG (The Computer Scientist’s approach)

By far the most studied and successful of the algorithms in the field is DMRG. For clarity we will be
restricting ourselves to finite DMRG, though there do exist thermodynamic variants. DMRG is an
umbrella term which encompasses several similar algorithms, the algorithm we will discuss here is
a simplified but nonetheless effective example. As the introduction of this algorithm in Ref. [2.5.20]
pre-dates TNN, its description has historically been presented in a far more physically motivated
and technically complicated manner. Due to the corresponding shift in interpretation, the original
acronym now holds little relevance to the modern tensor network interpretation of DMRG, and so
for clarity we intentionally omit defining precisely the expansion of DMRG as an acronym7. For a
full review in pre-TNN notation see Ref. [2.5.21], and see Ref. [2.5.22] for a TNN treatment.

6Typically a random MPS is sufficient in practice, though one could use an educated guess if available.
7Though a curious reader is free to Google it, at their own peril.
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Representing the Hamiltonian by an MPO, optimising the Rayleigh quotient over MPS looks
like the following:

arg min

1

1

2

2

3

3

4

4

5

5

···

···

n

n

/
1

1

2

2

3

3

4

4

5

5

···

···

n

n
(2.5.2)

The difficulty is that as we need the contraction of these MPS tensors; the overall objective function
is highly non-linear, but it does however only depend quadratically on each individual tensor. The
key heuristic behind DMRG is to exploit the simplicity of these local problems, approximating the
multivariate (multi-tensor) optimisation by iterated univariate (single tensor) optimisations.

Note that while the DMRG algorithm we are going to outline only calculates ground states,
related generalisations exist which can be used to simulate excited states, dynamics etc.

One-site

The simplest interpretation of the above sketch of DMRG is known as DMRG1 (or one-site DMRG).
For a fixed site i, the sub-step involves fixing all but a single MPS tensor, which is in turn optimised
over, i.e.

Ai ←− arg min
Ai

〈ψ(Ai)|H|ψ(Ai)〉
〈ψ(Ai)|ψ(Ai)〉

. (2.5.3)

In TNN these step look like:

i ←− arg min
i

i

i

/ i

i

(2.5.4)

Next we define the environment tensors

Hi := , (2.5.5)

Ii := , (2.5.6)

which correspond to taking closed tensor networks — the expectation values of H and the I re-
spectively — and removing the objective tensor. Given these environments, the sub-step in Equa-
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tion (2.5.4) becomes

i ←− arg min
i

Hi

i

i

/
Ii

i

i

. (2.5.7)

Vectorising this equation yields

Ai ←− arg min
Ai

〈Ai|Hi|Ai〉
〈Ai|Ii|Ai〉

. (2.5.8)

Finally we can simplify the denominator of this objective function by appropriately gauge-fixing
our MPS to be in canonical form. By putting the parts of the MPS left of our site in left-canonical
form, and those to the right in right-canonical form, then we get that Ii simply reduces to the
identity:

Ii = = = · · · = (2.5.9)

Given this canonicalisation, the problem thus reduces to

Ai ←− arg min
Ai

〈Ai|Hi|Ai〉
〈Ai|Ai〉

. (2.5.10)

As Hi is Hermitian, this optimisation has a closed form solution given by the minimum eigenvector8

of Hi. By sweeping back and forth along the chain, solving this localised eigenvector problem, and
then shifting along the canonicalisation as necessary, we complete our description of the algorithm.

The main advantage of DMRG1 is that the state stays within the MPS manifold without the
bond dimension growing, meaning that the algorithm is greedy9. This strict restriction on the bond
dimension can however be a double-edged sword; this means that there is no particularly convenient
method of gently growing the bond dimension as the algorithm runs10, and no information is gained
regarding the appropriateness of the choice of bond dimension. Both of these problems are addressed
in turn by the improved, albeit slightly more complicated, DMRG2 algorithm.

Two-site

The idea with DMRG2 is to block two sites together, perform an optimisation in the vein DMRG1,
then split the sites back out. This splitting process gives DMRG2 its power, allowing for dynamic
control of the bond dimension, as well as providing information about the amount of error caused
by trimming, which helps to inform the choice of bond-dimension.

8If we had not canonicalised the MPS then a closed form solution still exists in the form of the generalised
eigenvector of Hi and Ii, but in general the cost of canonicalisation is well-justified by the increased stability it yields.

9A greedy algorithm is one which solves local problems, such that the cost function (energy in this case) monoton-
ically decreases.

10There are however somewhat involved methods that allow for auxiliary data to be injected in a non-local fashion
such as Refs. [2.5.23,2.5.24] (see Ref. [2.5.25] for a review), achieving a similar goal.
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First an optimisation is performed:

i,i+1i,i+1 ←− arg min
i,i+1

i,i+1

i,i+1

/ i,i+1

i,i+1

(2.5.11)

which can once again be solved by taking the minimum eigenvector of an environment tensor with
respect to two sites, Hi,i+1, once again in mixed canonical form. After this the two-site tensor is
split apart by performing an SVD11 and a bond trimming:

i,i+1i,i+1 SVD−−−→
Trim

i i+1

This trimmed SVD has two key features. Firstly the bond dimension to which we trim could
be higher than that we originally started with, allowing us to gently expand out into the space of
higher bond dimension MPS. Secondly we can use the truncated singular values to quantify the error
associated with this projection back down into the lower bond dimension space, better informing
our choice of bond dimension.

2.5.2 TEBD (The Physicist’s approach)

Time-evolving block decimation (TEBD) [2.5.27, 2.5.28] is a tensor network algorithm that allows
the dynamics of 1D spin systems to be simulated. By simulating imaginary-time-evolution low-
temperature features such as the ground state may be calculated as well.

To simulate imaginary-time-evolution, we need to approximate the imaginary-time-evolution
operator U(τ) = exp(−τH). The problem here is that whilst we may have an efficient representation
of H, any exponential of it will not necessarily have a succinct representation. Take the example of
a two-body Hamiltonian with corresponding imaginary-time-evolution operator

U(τ) = e−τ
∑
i hi where H =

∑
i

hi

and hi is an interaction term acting on spins i and i + 1. Whilst H has a constant Schmidt rank,
admitting an efficient representation as an MPO, U(τ) generically has exponential bond dimension
for almost all τ .

Let Ho(He) denote the sum of terms hi for odd(even) i. As all the terms within Ho(He) are
commuting, e−τHo(e−τHe) can be efficiently computed and represented. The problem of approxi-
mating U(τ) can therefore be reduced to the problem of approximating e−t(A+B) when only terms
of the form e−τA and e−τB can be computed.

The central mathematical tool to TEBD are the exponential product approximations. The first
order of these approximation is the Suzuki-Trotter formula, which approximates the total evolution
by simply evolving each subsystem:

e−τ(A+B) = e−τAe−τB +O(τ2) .

11Whilst other factorisations such as QR and LU can also be used, SVD is preferred over other rank-revealing
decompositions due to the optimality of singular value truncation as a low-rank approximation (see Aside 1).
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It turns out there exist entire families of such approximations [2.5.29], though for our purposes we
will just illustrate the procedure for Suzuki-Trotter.

The TEBD algorithm works by approximating the imaginary-time-evolution operator by the
above exponential product formulae, applying it to a given MPS, and trimming the bond dimension
to project back down into the space of MPS.

Our approximation to the imaginary-time-evolution operator is given by a product of layers
containing only nearest-neighbour two-site operators, meaning we need only be able to contract
these operators into our MPS. Suppose we want to apply an operator U to the spins at sites i and
i + 1. The idea is to apply the operator, contract everything into a single tensor, then once again
use an SVD trimming to truncate the bond dimension back down.

i i+1

U
Cont.
== i,i+1 SVD−−−→

Trim

i i+1
(2.5.12)

The benefits this trimming procedure gave to DMRG2 — namely control over bond dimension
growth and quantification of trimming errors — are also seen in TEBD. As the above procedure
is entirely localised, TEBD also admits a large amount of parallelisation, not typically available to
DMRG.

2.5.3 Implementation

From-scratch implementation of these simple algorithms can be achieved with relative ease, however
several high performance libraries exist for research level simulations. We direct the interested reader
to investigate ITensor [2.5.30] (C++), evoMPS [2.5.31] (Python), Matrix Product Toolkit [2.5.32]
(C++), uni10 (C++) [2.5.33], Tensor Operations [2.5.34] (Julia) among others. A simple tensor
class can also be easily written in MATLAB.

Problems 5

Solutions in Appendix 2.F

1. Consider the critical transverse Ising model

H = −
n−1∑
i=1

XiXi+1 −
n∑
i=1

Zi. (2.5.13)

For open boundary conditions, it is known that the ground state energy as a function of
n has the form [2.5.35]

E(n) = 1− csc

(
π

αn+ β

)
(2.5.14)

for some integers α and β. Using either DMRG or TEBD, estimate the ground state
energy for several chain lengths and calculate α and β.
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2. It is known that the Local Hamiltonian problem is in P for 1D gapped Hamiltoni-
ans [2.5.8–2.5.12]. DMRG and TEBD are the most common techniques for numerically
finding the ground states of such systems. For a gapped and 1D local Hamiltonian, prove
that DMRG or TEBD converge.
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2.6 Projected Entangled Pair States

Many of the ideas behind MPS generalise to higher dimensions via projected entangled pair states
or PEPS [2.6.1, 2.6.2]. We will see how this is a misnomer in two ways, there is not necessarily a
projector and there is not necessarily an entangled pair.

We begin by recalling the PEPS description of matrix product states, then generalise this to
two dimensional models. After giving several examples, we will examine the properties of PEPS,
identifying both the similarities and differences to MPS.

2.6.1 One Dimensional Systems: MPS

We have already seen the PEPS construction in 1D. Let |φ〉 ∈ CD⊗CD be some (usually) entangled
pair and P : CD ⊗ CD → Cd some linear map. Then

|ψ〉 = P P P P P P P P P
,

(2.6.1)

where

|φ〉 = (2.6.2)

is the chosen entangled pair. As we saw, we have a large choice in the exact description we use. We
can transform the local basis of each spin in the entangled pair by any (left) invertible matrix

|φ〉 → (A⊗B)|φ〉, (2.6.3)

since we can modify P to compensate

P → P(B−1 ⊗A−1). (2.6.4)

One thing to note is that |φ〉 does not necessarily need to be a valid quantum state. We usually
leave it unnormalised for convenience.

In addition to this gauge freedom, we have additional choices in the description. We could use
entangled triplets for example. Let |ψ〉 = |000〉+ |111〉, then we could choose our PEPS to be

|ψ〉 =

P P P P P
.

(2.6.5)

Clearly this doesn’t offer any more descriptive power than using entangled pairs. Suppose we have
some PEPS projector Q acting on pairs, then we can extend this to a P acting on triplets by

P = Q (1⊗ (|0〉〈00|+ |1〉〈11|)) . (2.6.6)

In the other direction, we can build a product of triplets using a minor modification of the GHZ
MPS presented above and then use Q to build our state of interest.
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2.6.2 Extending to Higher Dimensions

The extension from one to higher dimensional systems proceeds straightforwardly. We will discuss
the simple case of a hypercubic lattice, but the framework can be carried out on any graph. In
particular, we will restrict to 2D.

As before, we allow |φ〉 to be some entangled pair. The PEPS is built as the natural generalisation
to 2D

|ψ〉 =

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

,

(2.6.7)

where

P :
(
CD
)⊗4 → Cd (2.6.8)

is some linear operator from the virtual to the physical space.
Clearly there is a large amount of gauge freedom in this description as there was in the 1D case.

Any invertible transformation of each virtual spin can be compensated in the definition of the PEPS
‘projector’ P, analogous to Equation (2.6.4).

As in the MPS, one may ask whether using different entanglement structures leads to greater
descriptive power. It is easy to see that this is not the case in general. Suppose we choose to lay
down plaquettes in a GHZ state and then act with PEPS projectors between plaquettes.

|ψ〉 = , where =
∑
i

∣∣∣∣i i
i i

〉
. (2.6.9)

We can use a standard PEPS to prepare this resource state, so any state which can be prepared from
this ‘projected entangled plaquette’ construction can be prepared from a PEPS at small additional
cost.
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2.6.3 Some PEPS examples

We will now look at several example PEPs.

Product State

We have already seen this example in 1D. Exactly the same thing works in 2D, for example take

P = |0〉
〈

0
0 0

0

∣∣∣∣ . (2.6.10)

GHZ State

Directly generalising the 1D case, we can use

P = |0〉
〈

0
0 0

0

∣∣∣∣+ |1〉
〈

1
1 1

1

∣∣∣∣ (2.6.11)

to build the GHZ state.

RVB State

Let D = 3 be the bond dimension and let

2

2

2

α

α

= 1 (2.6.12)

for α ∈ {1, 2}, as well as all rotations on the virtual level, be the only nonzero elements of the PEPS
tensor. Suppose we tile these tensors and project the dangling indices onto the |2〉 state. What is
the resulting physical state?

This state is known as the resonating valence bond state [2.6.2–2.6.4] and consists of a super-
position of all complete tilings of the lattice with maximally entangled pairs∣∣∣∣∣

〉
+

∣∣∣∣∣
〉

+

∣∣∣∣∣
〉

+

∣∣∣∣∣
〉

+ · · · ,

where

= |00〉+ |11〉.

Aside 3 : Kitaev’s Toric code

Kitaev’s Toric code [2.6.5] is a canonical example of a topologically ordered model Here
we will construct a Hamiltonian with the code space as the ground space of the model. The
ground state of this Hamiltonian is the superposition of all closed loops of flipped spins.
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We place qubits on the edges of a square lattice.

We wish to create a Hamiltonian with closed loop states (of flipped spins) as the ground
state. Suppose all spins are initially in the |0〉 state. Then around every vertex v place an
interaction

Av = − Z Z
Z

Z
. (2.6.13)

To be in the ground state of this term, the number of edges flipped to |1〉 neighbouring a given
vertex must be even. Drawing edges carrying flipped spins in red, we can trace the effect of
this on the lattice

.

We can see that on a square graph, requiring an even number of edges incident on each vertex
enforces that all of our loops are closed.

At this point, our ground space contains all states with only closed loops. We want an
equal superposition of all closed loop states. This is achieved by placing an interaction around
plaquettes or squares on the lattice, which convert between loop states. To be an eigenstate, all
loop states reachable from the vacuum state must be in the superposition. At each plaquette
p, place an interaction

Bp = −
X

X
X X . (2.6.14)

This has the desired effect. Placing the interaction at the indicated plaquette performs the
following transformation of loops

?
→ ? → ? → .
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It’s not hard to convince yourself that all loop states can be reached from the empty state, so
all closed loop patterns must be in the superposition. The final Hamiltonian is

HTC = −
∑

v∈vertices

Z Z
Z

Z
−

∑
p∈plaquettes X

X
X X (2.6.15)

and the ground state is an equal superposition over all closed loop states:

∣∣∣ 〉
+
∣∣∣ 〉

+

∣∣∣∣∣
〉

+

∣∣∣∣ 〉
+

∣∣∣∣∣
〉

+ · · · (2.6.16)

Note that the Toric code Hamiltonian is usually presented in the |+〉/|−〉 basis rather than the
|0〉/|1〉 basis.

Toric code ground state

The simplest way to construct a PEPS for the toric code uses the structure of the ground state.
The PEPS tensor is constructed to ensure the superposition of closed loop patterns is achieved
upon contraction. The most natural way to achieve this it to write a single tensor for every second
plaquette rather than each site.

We begin by adding new edges to the lattice. These edges will become the bonds in the tensor
network.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

→

1 2

5

3 4

76 8

9 10

13

11 12

1514 16

17 18

21

19 20

2322 24

,

where the plaquettes are numbered for clarity.
Recall that the ground state is built using loops of |1〉 in a background of |0〉. We choose the
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state of the added edges such that the loop pattern is preserved

→ ,

where indicates a spin in the |1〉 state on that edge. We choose the following convention when
it is ambiguous

→ ,

which makes everything consistent.
Interpreting these added edges as bonds in a tensor network, we obtain a PEPS tensor for every

second plaquette in the original lattice with four physical indices. The nonzero components are

i+ j

k + ll + i

j + k

i

j

k

l

= 1, (2.6.17)

where i, j, k, l ∈ Z2. In this tensor the straight legs indicate virtual indices, and the wavy legs
physical indices, specifically the four qubits on the given plaquette. The network looks as below,
with the dotted lines representing the original lattice:

(2.6.18)
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This tensor simply ensures that if adjacent physical indices are in the |1〉 state, i.e. carrying a
loop, then the virtual index between them does not carry a loop which would leave the plaquette.
Conversely, if only one is in the |1〉 state, the loop must leave the plaquette.

Since an even number of the virtual bonds must be in the |1〉 state for the tensor entry to be
nonzero, the PEPS tensor has a property called G-injectivity [2.6.6]. This means that there is a
symmetry on the virtual level

Z

ZZ

Z

= . (2.6.19)

This turns out to be closely related to the topological order present in this model.

2.6.4 2D Cluster State and the complexity of PEPS

Let D = 2 be the bond dimension and let

α

α

β

γ

α

=

{
1, if α = 0

(−1)β+γ , if α = 1
(2.6.20)

be the only nonzero elements of the PEPS tensor. The physical state generated is the 2D cluster
state, a universal resource for measurement based quantum computing [2.6.7, 2.6.8].

If we could efficiently take the inner product between PEPS (i.e. contract a square grid net-
work), then we can clearly classically simulate single qubit post selected measurements by simply
contracting rank 1 projectors onto the physical indices of these PEPS tensors. This shows us that
we cannot contract even simple PEPS states efficiently, unless post-selected quantum computing
can be classically simulated (Post-BQP=BPP) [2.6.9].

Numerical PEPS

Although we will not discuss the details of numerical implementation of PEPS algorithms, we note
that the status is not as dire as the previous section would imply. In many practical situations,
approximate contraction of PEPS networks can be achieved in both the finite [2.6.10] and infinite
[2.6.11,2.6.12] system size limits.

2.6.5 Properties of PEPS

Above, we saw a number of properties of 1D PEPS or MPS. We will now see which properties hold in
two dimensions. One might näıvely expect MPS and more general PEPS to share similar properties.
As we will see below, these two tensor network states share qualitatively different properties, both
in terms of the physics the corresponding states exhibit, and in the computational power of the
tensor networks.
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Aside 4 : Tensor network for classical partition function

Let H[s] =
∑
〈i,j〉 h[si, sj ] be some classical Hamiltonian. We frequently want to cal-

culate the partition function Z =
∑
{s} e

−βH[s] for such a system at a temperature β. We can
use a simple tensor network to help.

Define the two tensors

i

j

k

lD = δi,j,k,l, i jM = e−βh[si,sj ]. (2.6.21)

Placing a D tensor at every classical spin and an M tensor corresponding to each interaction,
the following network evaluates to the partition function.

Z = (2.6.22)

Thermal expectation values can be calculated by inserting local tensors into this network. For
example

Z × 〈sn〉 =
∑
{s}

sne
−βH[s] = , (2.6.23)

where

= σZ , (2.6.24)

has been inserted at site n.
Notice that by combining D and M tensors, the partition function can be described with
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a single tensor

i

j

k

lQ =
∑
sa

e−
β
2

(h[si,sa]+h[sj ,sa]+h[sk,sa]+h[sl,sa]). (2.6.25)

Let

H = −J
∑
〈i,j〉

sisj , (2.6.26)

where s ∈ {±1}, the classical Ising model. The tensor Q then simplifies to

i

j

k

lQ = 2 cosh

(
βJ

2
(si + sj + sk + sl)

)
. (2.6.27)

Algebraic decay of correlations

As we saw above, MPS can only capture states with exponential decay of correlations (or constant
correlations of course). We will now see if this holds in the case of PEPS. We can build a PEPS
state corresponding to a classical partition function by modifying the above construction [2.6.3].
Let

i

j

k

l

x

D = δi,j,k,l,x, i jM = e−
β
2
h[si,sj ], (2.6.28)

or equivalently combine these into

i

j

k

l

x

Q = e−
β
4

(h[si,sx]+h[sj ,sx]+h[sk,sx]+h[sl,sx]). (2.6.29)

This defines a PEPS state
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|ψ〉 =

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

. (2.6.30)

Note this is a pure state, and not a thermal state. It is however not normalised, with 〈ψ|ψ〉 =
Z. Correlation functions computed using this state are equal to those computed using classical
statistical physics. Suppose we were to consider a classical model with a thermal phase transition
(such as the Ising model above). Such a model will exhibit algebraic decay of correlations at the
critical temperature, implying that the corresponding PEPS does as well. Thus we can see that
unlike MPS, the states described by PEPS can exhibit algebraic decay of correlations.

Gauge freedom

The gauge freedom of a PEPS tensor is a simple generalisation of the MPS freedom. As before,
we can block tensors together without changing the global state. In addition, we can perform the
following transformation (on a translationally invariant PEPS):

→ M−1 M

N−1

N

, (2.6.31)

where N and M are invertible matrices.
Recall that in the MPS case, we could use this freedom to bring the tensors into a canonical

form. This cannot be done exactly in the case of PEPS, though there do exist numerical methods
to bring PEPS into approximate canonical forms [2.6.13].

Problems 6

Solutions in Appendix 2.G

1. What is the PEPS tensor required to build the GHZ state on the honeycomb lattice
where spins reside on vertices?
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2. Which 2 qubit gate is obtained by contracting the following tensors along the horizontal
index?

u

i

j

k = δi,j
(
δk,0 + (−1)iδk,1

)
, v

x

y

z = δx,y,z. (2.6.32)

3. The cluster state can be prepared from the all |+〉 state by applying CZ between all
adjacent spins. Show that Equation (2.6.20) indeed gives the cluster state.

Hint: Consider the decomposition of a gate given in the above problem.

4. Investigate how logical operators on the physical spins of the Toric code can be pulled
onto the virtual level of the PEPS. Can you see why G-injectivity is so important for
topologically ordered PEPS?

5. Convince yourself that evaluating expectation values on the PEPS constructed from a
classical partition function indeed reproduces the thermal expectation values.
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2.7 Multiscale Entanglement Renormalisation Ansatz

MPS are extremely useful for understanding low energy states of 1D quantum models. Despite
this, they cannot capture the essential features of some important classes of states. In particular,
they cannot reproduce the correlations seen in gapless ground states. Recall that MPS always have
exponentially decaying correlations, whereas gapless ground states generically support correlations
with power law decay. Similarly MPS also have a strict area law for entanglement entropy, where
gapless states admit a logarithmic divergence. The multiscale entanglement renormalisation ansatz
is a tensor network designed to overcome these problems.

As mentioned in lecture 2.5, although MPS do not naturally support the kind of correlations
expected in critical models, they have been successfully applied for the study of such systems
nonetheless. Using MPS for this purpose requires a family of MPS of increasing bond dimension to
examine how the correlations behave. The MERA state functions differently. As we will discuss, a
single MERA state can naturally capture the physics of a gapless ground state.

Here, we will present the tensor network as an ansatz and argue that it is well suited to repre-
senting ground states of gapless Hamiltonians in 1D. Suppose the state can be written as

|ψ〉 = , (2.7.1)

where

u

u†
= ,

w

w†
= . (2.7.2)

As we will see, these constraints on the tensors have both a physical and computational impact.
Note that the u and w tensors do not have to be identical, although we frequently restrict to
this case if we expect translationally and scale invariant states. The class of states which are
expressed as Eqn. 2.7.1 are known as Multiscale Entanglement Renormalisation Ansatz (MERA)
states [2.7.1–2.7.5].

Although we will not discuss it here, the MERA can be straightforwardly generalised to higher
dimensional systems [2.7.6–2.7.9]. Unlike PEPS, the network can be efficiently optimised in higher
dimensions, although the scaling makes the numerics very challenging!

2.7.1 Properties of MERA

Logarithmic violation of the area law

One of the key properties realised in the MERA which cannot be realised in MPS is a scaling of
entanglement entropy. This is easily seen by bond counting. Recall that if n bonds must be broken
to separate a region from the rest of the network, the maximum entanglement entropy that can be
supported is n logD, where D is the bond dimension. Recall that in the case of MPS any reduced
state on a contiguous region can be removed by cutting n = 2 bonds.
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By inspecting the diagram

N

, (2.7.3)

it is straightforward to see that to remove a block of N physical indices from the rest of the
network, O(logN) bonds must be cut. This shows that the maximum entropy scales as logN logD
[2.7.1, 2.7.2].

Power law decay of correlations

Using the constraints on the tensors (Eqn. 2.7.2), we can simplify the evaluation of a two point
correlator on a MERA state [2.7.3].

〈ψ|OjOj+N |ψ〉 = (2.7.4)

= (2.7.5)

= (2.7.6)
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= . (2.7.7)

Note that the length scale behaviour of the correlator is completely determined by the application
of a superoperator

S(φ) = φ , (2.7.8)

where the w tensor can be viewed as a set of Kraus operators

Mk =

k

(2.7.9)

obtained by grouping the indices indicated.
Thus, S is a completely positive, unital map and all eigenvalues λ of S are |λ| ≤ 1. We can bring

operators separated by N sites together by applying S ∼ logN times. Considering eigenoperators
of the S superoperator, the correlator acts as

〈AjBk〉 ∼
〈A0B1〉

|j − k|∆A+∆B
, (2.7.10)

where ∆φ = − log3 λφ, ∆φ ≥ 0 are known as scaling dimensions, where λφ is the corresponding
eigenvalue of S. Therefore, a MERA state can support algebraic decay of correlations. Although
this discussion required the operators to be placed at special sites, it can be easily generalised.

Efficient Manipulation

As described in Section 2.1.5, a good tensor network ansatz should fulfil two properties. First, it
should be efficiently storable. All of the networks we have discussed thus far have this property, as
only a small number of coefficients are required to represent these states. The second property is
more subtle; one should be able to extract physical data efficiently. Although this works for the 1D
MPS network, it fails for 2D PEPS states; the contractions required to calculate expectation values
of local operators is incredibly hard.

It turns out the MERA has both of these properties. One can efficiently store the state data,
and, thanks to the constraints in Eqn. 2.7.2, one can efficiently compute local expectation values
and correlators. We have already seen how this works. The isometric constraints ensure that
local operators on the physical level of the network are mapped to local operators on the higher
levels [2.7.10]. Therefore, computing expectation values only requires manipulation of a small
number of tensors in the causal cone of the operator
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〈O〉 = , (2.7.11)

where the shaded region indicates the causal cone of the five site operator on the physical level
indicated in yellow. Notice that the number of tensors on each subsequent level does not grow.
Indeed, after a single layer of tensors, the operator becomes a three site operator, and the range
never grows. Thus, we see that the layers of the MERA act to map local operators to local operators.

2.7.2 Renormalisation Group Transformation

Much of the discussion above concerned interpretation of the layers of the MERA as Kraus op-
erators, defining a unital CP map on local operators. Evaluating expectation values can be seen
as application of many superoperators followed by the inner product with some state on a smaller
number of sites

〈ψ0|O|ψ0〉 = 〈ψk+1|Ak ◦ · · · ◦ A1 ◦ A0(O)|ψk+1〉, (2.7.12)

where Aj is a map from 3N−j spins to 3N−j/3 spins. This can be seen as a renormalisation group
or scale transformation. The state |ψj〉 is supported on 3N−j spins, and contains only the physical
data necessary to understand the physics on that length scale. As we saw, if O is a local operator,
A(O) is easy to evaluate. This allows us to understand the effective operator as a function of length
scale [2.7.1, 2.7.3, 2.7.4].

The thermodynamic or macroscopic observables can be seen as the operators obtained by apply-
ing a formally infinite number of MERA layers to the high energy or microscopic observables. Thus,
the macroscopic physics, or phase structure, is determined by fixed points of the maps A. Some
particularly interesting states are the scale invariant states. If the MERA tensors are all the same
after some layer, the state is scale invariant. For these states, we do not expect the physics to change
as a function of length or energy scale. The fixed point observables of these states are particularly
simple to understand, and distinct scale invariant states characterise the different phases.

Since there is no characteristic length scale set by either the spectral gap or correlation length,
gapless ground states are expected to be scale invariant. The MERA therefore allows us to un-
derstand the long range physics of these states incredibly efficiently [2.7.3, 2.7.10]. Another way to
achieve a scale invariant state is to have zero correlation length — these states characterise gapped
phases.

2.7.3 AdS/CFT

In the appropriate limit, the low energy physics of the gapless spin chains considered here is described
by a conformal field theory (CFT) [2.7.12,2.7.13]. The physics of CFTs is thought to be related to
gravitational theories in one additional dimension [2.7.14–2.7.16].
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This duality can be observed in the MERA network [2.7.17–2.7.19]. Imposing the graph metric
on the MERA, we find a discretised anti-de Sitter (AdS) metric [2.7.17], whilst the edge theory
is a ‘discretised’ CFT. In addition to being a concrete realisation of the holographic principle, the
MERA/CFT duality provides avenues towards designing quantum error correcting codes [2.7.20].

We note that the AdS/MERA connection remains an open research question. Limits on the
ability of MERA states to replicate physics on scales less than the AdS radius have been shown
[2.7.19]. Additionally, whether the geometry is best understood as anti-de Sitter [2.7.17] or de
Sitter [2.7.18] is currently unclear. Whatever the status, the connection is intriguing. We encourage
the interested reader to explore the rapidly expanding literature on the topic [2.7.19–2.7.28].

2.7.4 Some Simple MERA States

Product State

Let

w =

0 1



000 1/2 0
100 1/2 0
010 0 1/2
110 0 1/2
001 1/2 0
101 1/2 0
011 0 1/2
111 0 1/2

(2.7.13)

and u = 1.
If we build log3N layers using these tensors, we end up with a state on N sites. The network

still has a free index at the top, so we need to define a one-index ‘top tensor’ T to obtain the final
state. Let T = |+〉. The state obtained is |+〉⊗N .

GHZ State

Let

j

l

i k

= δi,j,k,l, (2.7.14)

and u = 1. Let the top tensor be T = |+〉. The state obtained is |0〉
⊗N+|1〉⊗N√

2
.
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Figure 2.7.1: a) Ground state energy density extracted from a ternary MERA after optimising the tensors
to locally minimise the energy.
b) Correlation decay exponents for the transverse field cluster model obtained from a ternary MERA.
Figures reproduced from Ref. [2.7.29].

Cluster State

It is more convenient to define the cluster state on a binary MERA than a ternary. Place two spins
at each site and let

=
H

, (2.7.15)

where is a controlled-Z gate and H is the Hadamard. If we pick a top tensor T = |++〉, we
obtain the cluster state on periodic boundary conditions.

Gapless states

Recently, a family of analytic MERA for the critical point of the transverse field Ising model was
proposed [2.7.11]. One can also use numerical techniques to obtain a MERA approximation to the
ground state of a local Hamiltonian however. Here, we will present some physical data obtained
for a model known as the transverse field cluster model [2.7.29]. In particular, we will present the
ground state energy and the decay exponents (∆φ in Eqn. 2.7.10).

This model is most straightforwardly defined with a pair of spin half particles at each site. The
Hamiltonian for this model is

H =−
∑
j

(
X

(1)
j +X

(2)
j + Z

(2)
j−1X

(1)
j Z

(2)
j + Z

(1)
j X

(2)
j Z

(1)
j+1

)
− λ

∑
j

(
X

(1)
j X

(2)
j + Z

(1)
j Y

(2)
j Y

(1)
j+1Z

(2)
j+1

)
. (2.7.16)

This is the cluster state Hamiltonian with transverse fields and an additional interaction with
variable strength. The Hamiltonian remains gapless for a range of values of λ, over which the
ground state energy varies continuously as seen in Fig. 2.7.1a). The decay exponents also vary over
this range, meaning that the thermodynamic physics or RG fixed point is dependent on λ. These
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exponents can easily be extracted from an optimised MERA by finding the eigenvalues of the S
superoperator in Eqn. 2.7.8. The MERA results are shown in Fig. 2.7.1b).

Problems 7

Solutions in Appendix 2.H

1. Can you find a MERA for the W state?

2. What state is given by the MERA with

= , (2.7.17)

u = 1 and top tensor T = 1√
2
(|00〉+ |11〉)?

3. The above state is the ground state of the Hamiltonian

H = −
N/2∑
j=1

(X2jX2j+1 + Z2jZ2j+1) (2.7.18)

on periodic boundary conditions. Is that clear? Can you find a unitary U2j−1,2j which
transforms this Hamiltonian into

H = −
N/2∑
j=1

(Z2j−1X2jZ2j+1 + Z2jX2j+1Z2j+2)? (2.7.19)

4. Act with the above transformation U on the MERA tensor to obtain another MERA
tensor. What is this state?

5. What is the maximum range of thermodynamic observables in a ternary MERA scheme?

6. What does the reduced density matrix on a few sites of the MERA look like? Notice
that it corresponds to the top tensor being passed through a CPTP map several times,
this is usually called the descending superoperator.

7. Do tree tensor networks (i.e. MERA for u = 1) have any area law violation on contiguous
regions?
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2.7.18 C. Bény, Causal structure of the entanglement renormalization ansatz, New Journal of
Physics 15, 023020, arXiv:1110.4872, (2013).

2.7.19 N. Bao, C. Cao, S. M. Carroll and A. Chatwin-Davies, Consistency Conditions for an
AdS/MERA Correspondence, Physical Review D 91, 125036, arXiv:1504.06632, (2015).

74

http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://arxiv.org/abs/quant-ph/0610099
http://dx.doi.org/10.1103/PhysRevA.79.040301
http://arxiv.org/abs/0810.0580
http://dx.doi.org/10.1103/PhysRevB.79.149903
http://arxiv.org/abs/1201.1144
http://dx.doi.org/10.1201/b10273
http://arxiv.org/abs/0912.1651
http://dx.doi.org/10.1103/PhysRevB.81.235102
http://dx.doi.org/10.1103/PhysRevB.81.235102
http://arxiv.org/abs/0710.0692
http://dx.doi.org/10.1103/PhysRevLett.100.240603
http://arxiv.org/abs/0710.3829
http://dx.doi.org/10.1103/PhysRevLett.100.070404
http://dx.doi.org/10.1103/PhysRevLett.100.070404
http://arxiv.org/abs/0712.0348
http://dx.doi.org/10.1103/PhysRevLett.102.180406
http://dx.doi.org/10.1103/PhysRevLett.102.180406
http://arxiv.org/abs/0811.0879
http://dx.doi.org/10.1007/978-3-642-35106-8
http://arxiv.org/abs/1109.5334v1
http://dx.doi.org/10.1103/PhysRevLett.116.140403
http://dx.doi.org/10.1103/PhysRevLett.116.140403
http://arxiv.org/abs/1602.01166
http://dx.doi.org/10.1007/978-1-4612-2256-9
http://dx.doi.org/10.1007/978-3-540-47575-0
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.4310/atmp.1998.v2.n2.a2
http://dx.doi.org/10.4310/atmp.1998.v2.n2.a2
http://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1016/s0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://dx.doi.org/10.1103/PhysRevD.86.065007
http://arxiv.org/abs/0905.1317
http://dx.doi.org/10.1088/1367-2630/15/2/023020
http://dx.doi.org/10.1088/1367-2630/15/2/023020
http://arxiv.org/abs/1110.4872
http://dx.doi.org/10.1103/PhysRevD.91.125036
http://arxiv.org/abs/1504.06632


CHAPTER 2. HAND-WAVING AND INTERPRETIVE DANCE

2.7.20 F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting
codes: Toy models for the bulk/boundary correspondence, Journal of High Energy Physics
6, 149, arXiv:1503.06237, (2015).

2.7.21 G. Evenbly and G. Vidal, Tensor network states and geometry, Journal of Statistical Physics
145, 891, arXiv:1106.1082, (2011).

2.7.22 M. Nozaki, S. Ryu, and T. Takayanagi, Holographic Geometry of Entanglement Renormaliza-
tion in Quantum Field Theories, Journal of High Energy Physics 2012, 193, arXiv:1208.3469,
(2012).

2.7.23 B. Swingle, Constructing holographic spacetimes using entanglement renormalization,
arXiv:1209.3304, (2012).

2.7.24 T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole
Interiors, Journal of High Energy Physics 2013, 014, arXiv:1303.1080, (2013).

2.7.25 M. Miyaji, S. Ryu, T. Takayanagi, and X. Wen, Boundary States as Holographic Duals of
Trivial Spacetimes, Journal of High Energy Physics 2015, 152, arXiv:1412.6226, (2015).

2.7.26 M. Miyaji and T. Takayanagi, Surface/State Correspondence as a Generalized Holography,
Progress of Theoretical and Experimental Physics 2015, 073B03, arXiv:1503.03542, (2015).

2.7.27 M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, and K. Watanabe, cMERA
as Surface/State Correspondence in AdS/CFT, Physical Review Letters 115, 171602,
arXiv:1506.01353, (2015).

2.7.28 W. -C. Gan, F. -W. Shu, and M. -H. Wu, Thermal geometry from CFT at finite temperature,
Physics Letters B 750, 796, arXiv:1506.01353, (2015).

2.7.29 J. C. Bridgeman, A. O’Brien, S. D. Bartlett, and A. C. Doherty, Multiscale entanglement
renormalization ansatz for spin chains with continuously varying criticality, Physical Review
B 91, 165129, arXiv:1501.02817, (2015).

75

http://dx.doi.org/10.1007/JHEP06(2015)149
http://arxiv.org/abs/1503.06237
http://dx.doi.org/10.1007/s10955-011-0237-4
http://arxiv.org/abs/1106.1082
http://dx.doi.org/10.1007/JHEP10(2012)193
http://arxiv.org/abs/1208.3469
http://arxiv.org/abs/1209.3304
http://dx.doi.org/10.1007/JHEP05(2013)014
http://arxiv.org/abs/1303.1080
http://dx.doi.org/10.1007/JHEP05(2015)152
http://arxiv.org/abs/1412.6226
http://dx.doi.org/10.1093/ptep/ptv089
http://arxiv.org/abs/1503.03542
http://dx.doi.org/10.1103/PhysRevLett.115.171602
http://arxiv.org/abs/1506.01353
http://dx.doi.org/10.1016/j.physletb.2016.07.073
http://arxiv.org/abs/1605.05999
http://dx.doi.org/10.1103/PhysRevB.91.165129
http://dx.doi.org/10.1103/PhysRevB.91.165129
http://arxiv.org/abs/1501.02817


Appendices

2.A PEPOs for local Hamiltonians: The ‘particle decay’ construc-
tion

In numerical algorithms such as DMRG, operators such as Hamiltonians are often represented in the
form of Matrix Product Operators (MPO) in 1D, and Projected Entangled Pair Operators (PEPO)
in 2D and higher, as seen below. For highly structured Hamiltonians, such as those which are local
and translation invariant, an analytic MPO construction of such operators is known in 1D [2.1.1].
In this section we review this, and outline a generalisation which allows for local Hamiltonians (and
even slightly less structured operators) to be optimally expressed as a PEPOs in arbitrary spatial
dimensions.

Much like in Equations (2.3.54) and (2.3.58) we are going to omit the physical indices, as such
we will consider MPO tensors to be (operator-valued) matrices, and PEPO tensors to be (operator-
valued) rank-2D tensors in D spatial dimensions.

In this section we will need to specify individual tensor values, as well as the values of a tensor
network for a specific index designation. For brevity, we will therefore omit the legs in our diagrams,
indicating specific entries in a tensor by a �� surrounded by the index values. For example the
identity is given by i �� i = 1 for all i. To make the constructions more clear we will also allow for
non-numeric index values, and denote the index set by I.

2.A.1 1D

In this notation, if we label our indices I = {·, 1,→}, then the transverse Ising model Hamiltonian
given in Equation (2.3.54) is given by

· �� · =→ ��→= 1 (2.A.1)

→ �� · = −hZ → �� 1 = X 1 �� · = −JX (2.A.2)

where the boundary terms fix the far left and right indices to |→〉 and |·〉 respectively.
One common interpretation of this construction is in terms of finite-state automata, with the

index values corresponding to the automaton states, and the non-zero index values to the transition
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rules. The automaton moves from left to right12 , with the boundary vectors setting the initial state
to |→〉 and final state to |·〉. With only these restrictions, the automaton can transition from |→〉
to |·〉 either directly (giving the field term −hZ), or via 1 (giving the Ising term −JXX) at any
location.

To make the higher dimensional generalisation clear we will slightly modify this finite-state
automata language, to that of particles and their decay. We can think of → as a right-moving
particle, and · as the vacuum. The first two transition rules (2.A.1) correspond to both the vacuum
and particle being stable states, with the remaining transitions (2.A.2) to valid decay routes of the
particle. Thus we can interpret the value of the overall MPO as being a superposition over all
decays, with each corresponding to a term in the Hamiltonian.

Heisenberg Model

Suppose we wish to construct a Hamiltonian containing multiple two-body terms, such as the
Heisenberg anti-ferromagnet, which contains the terms −JXXX, −JY Y Y , −JZZZ, as well as a
field −hZ. An MPO of this model is given in standard notation in Equation (2.3.58).

Added Hamiltonian terms can be accommodated in this construction by extra decay chains.
Take our index set to be I = {·, x, y, z,→} and our MPO to have terms:

· �� · = 1 → ��→ = 1 (2.A.3)

→ �� x = X x �� · = −JXX (2.A.4)

→ �� y = Y y �� · = −JY Y (2.A.5)

→ �� z = Z z �� · = −JZZ (2.A.6)

→ �� · = −hZ (2.A.7)

Again Equations 2.A.3 correspond to stable vacuum and particles, and each of the transition rules
Equations (2.A.4) to (2.A.7) to each term in the Hamiltonian.

Cluster Model

The Cluster Hamiltonian contains three body terms of the form ZXZ. Larger terms such as this
can be accommodated by longer decay chains. Take an index set I = {·, 1, 2,→} and include the
standard stable vacuum/particle terms as well as

→ �� 2 = Z 2 �� 1 = X 1 �� · = Z. (2.A.8)

By combining the above two techniques, we can construct arbitrary local Hamiltonians.

2.A.2 2D and higher

In higher dimensions we can use a similar construction. Suppose we want to construct a 2D field
Hamiltonian, consisting of a Z at every site. Take our index set to be I = {→, ·}. Our typical
stable vacuum/particle terms that we will always include now become

·
· �� ·
·

=
·

→ �� →
·

= 1. (2.A.9)

12Though a right-to-left convention is more commonly used in this 1D construction, a left-to-right convention will
prove useful for consistency with the higher dimensional construction.
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For the field Hamiltonian we need only allow for a simple particle decay of

·
→ �� ·
·

= Z (2.A.10)

As for the boundary conditions, along the top, right and bottom boundaries we will once again
fix the only non-zero indices to be the vacuum |·〉. Along the left edge, the boundary condition
is a virtual W-state (c.f. Equation (2.3.18)) on indices {→, ·}, i.e. the equal superposition of all
single-particle states. As such we can see that all the non-zero contributions to the Hamiltonian are
of the form:

· · · · ·
· �� · �� · �� · �� · �� ·
· · · · ·

→ �� → �� → �� → �� · �� ·
· · · · ·

· �� · �� · �� · �� · �� ·
· · · · ·

=
1 1 1 1 1

1 1 1 Z 1

1 1 1 1 1

As with 1D, by introducing intermediary states and different decay rules, arbitrary local Hamil-
tonians in any dimension can be similarly constructed. For example suppose we wanted a 9-body
plaquette term of the form:

J K L
M N O
P Q R

Take I = {·, 1, 2,→} and our non-trivial decay modes to be

·
→ �� 2

2
= J,

·
2 �� 1

2
= K,

·
1 �� ·

2
= L,

2
· �� 1

1
= M,

2
2 �� 1

1
= N,

2
1 �� ·

1
= O,

1
· �� 2
·

= P,
1

2 �� 1
·

= Q,
1

1 �� ·
·

= R.

then we can see that the non-zero contributions to the Hamiltonian are of the form

· · · · · · ·
· �� · �� · �� · �� · �� · �� · �� ·
· · · · · · ·

→ �� → �� → �� 2 �� 1 �� · �� · �� ·
· · 2 2 2 · ·

· �� · �� · �� 2 �� 1 �� · �� · �� ·
· · 1 1 1 · ·

· �� · �� · �� 2 �� 1 �� · �� · �� ·
· · · · · · ·

· �� · �� · �� · �� · �� · �� · �� ·
· · · · · · ·

=

1 1 1 1 1 1 1

1 1 J K L 1 1

1 1 M N O 1 1

1 1 P Q R 1 1

1 1 1 1 1 1 1
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2.A.3 Other examples

Below are several more example of Hamiltonian constructed by the above method.

Toric code (Wen Plaquette)

I = {·, 1,→}
·

→ �� 1
1

=
1

1 �� ·
·

= X
·

1 �� ·
1

=
1

· �� 1
·

= Y

Quantum Compass model/Bacon-Shor code

I = {·, 1,→}
·

→ �� 1
·

=
·

1 �� ·
·

= X
·

→ �� ·
1

=
1

· �� ·
·

= Y

2D Transverse Ising

I = {·, 1,→}
·

→ �� ·
·

= hZ
·

→ �� 1
·

=
·

→ �� ·
1

= JX
·

1 �� ·
·

=
1

· �� ·
·

= −X

2D Cluster state

I = {·, 1, 2,→}
·

→ �� 2
·

=
·

1 �� ·
·

=
1

· �� ·
·

=
·

· �� ·
1

= Z
1

2 �� 1
1

= X
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2.B Solutions: Introduction to Tensor Networks

Solutions 1

Solutions to problems in section 2.1.5

1. Consider the following tensors, in which all indices are three-dimensional, indexed from
0:

A i

j
= i2 − 2j,

B

i j

k
= −3ij + k, (2.B.1)

Ci

j

= j
Di

j
k

= ijk. (2.B.2)

Calculate the value of the following tensor network:

A

B C

D
(2.B.3)

First we begin by picking a global designation of the indices which is consistent with
the contractions required:

A β

α
= β2 − 2α,

B

α γ

δ
= −3αγ + δ, (2.B.4)

Cδ

ε

= ε
Dβ

γ
ε

= βγε. (2.B.5)

Now that our indices have been matched up, the overall value of the tensor network
T is given by the product of the above values, summed over all index labelling

T =
2∑

α,β,γ,δ,ε=0

Aα,βBα,γ,δCδ,εDβ,γ,ε (2.B.6)

=

2∑
α,β,γ,δ,ε=0

(β2 − 2α)(−3αγ + δ)βγε2 (2.B.7)

= 1080. (2.B.8)
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2. In this question we are going to consider expanding out a contraction sequence, in a
manner which would be needed when coding up contractions. Given a network, and
an associated bubbling, we wish to write out a table keeping track of the indices of the
current object, the tensor currently being contracted in, the indices involved in that
contraction, and new indices left uncontracted. For example for the network

A C

B

β

α γ

δ (2.B.9)

where the bubbling is performed in alphabetical order, then the table in question looks
like

Current Tensor Contract New

– A – α, β
α, β B α γ
β, γ C β, γ δ

For the tensor network

A

B C

D

Eα

β

γ

δ

ε

, (2.B.10)

construct a corresponding table, where contraction is once again done in alphabetical
order.

Current Tensor Contract New

– A – α, β
α, β B α γ
β, γ C γ δ,ε
β, δ, ε D β, δ
ε E ε –

3. (a) Calculate the contraction of the tensor network in Eq. (2.1.19) for bond dimen-
sion 3, i.e. calculate the number of three-colourings of the corresponding graph.

Numerically contracting the tensor network given in the notes gives a total
number of vertex 3-colourings of 30.

(b) Using the e and n tensors from Sec. 2.1.5, come up with a construction for a tensor
network which gives the number of edge colourings. For a planar graphs, construct
an analogous network to count face colourings.
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First we note that index values already correspond to edges, thus by simply
placing an n tensor at every vertex of a graph, the tensor network given counts
edge colourings.

As for a face colouring, we can simple apply the vertex colouring construction
to the dual graph. As such we place e tensors on each face, and n on each
edge, as below.

n n

n n

n

e

e

e

e

(2.B.11)

(c) Using tensor networks, determine the minimum number of colours required to ver-
tex and edge colour the below graph (known as the chromatic number and index
respectively).

(2.B.12)

This is the Grötzsch Graph, it has chromatic number and index 4 and 5 re-
spectively.

4. Much like the singular value decomposition, given a bisection of the indices we can
consider norms of tensors.

(a) Does the operator norm depend on the bisection, i.e. are the operator norms across
any two bisections of the same tensor necessarily equal?
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Yes it does depend on the bisection. A simple example is given by a generic
matrix M . Treating it as a matrix, it has operator norm ‖M‖∞. If however
we vectorise M , treating it as a vector, then the operator norm of this vector
corresponds to the Frobenius norm of the matrix ‖M‖F . In general these two
norms differ, and thus the operator norm is bisection-dependent.

(b) What about the Frobenius norm? If they can differ, give an example, if not draw
a tensor network diagram that shows it to be manifestly independent of bisec-
tion.

For a matrix M , the square of the Frobenius norm is Tr(MM ′). Taking a
rank-3 tensor this looks like

AĀ . (2.B.13)

By simply wrapping the external leg around however we can see that this
simply equals

AĀ (2.B.14)

which is the squared Frobenius norm of the vectorisation. By a similar argu-
ment the Frobenius norm in any grouping can be shown to be equal to that of
the vectorisation. Thus the Frobenius norm of a tensor is independent of the
bisection with respect to which it is calculated.

‖A‖F =

√ ∑
i1,...,ir

|Ai1,...,ir |2

5. Write out the Einstein notation corresponding to the network in Eq. (2.7.1).

The purpose of this exercise is to show that for networks for which the number of
indices is too high for Einstein notation, TNN can remain legible.
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2.C Solutions: Quantum information examples

Solutions 2

Solutions to problems in section 2.2.4

1. Consider the inverse of teleportation. Alice wishes to send classical bits to Bob, and
possesses a quantum channel through which she can send Bob qubits. How many bits
of information can be communicated in a single qubit? For simplicity consider the case
where Bob can only perform projective measurements.

As we are dealing with a qubit the only non-trivial projective measurements are
projectors on to pure states. As a result, after performing such a measurement
the state is entirely fixed, i.e. only the first measurement actually yields useful
information. As such a maximum of 1 bit can be extracted in this way. This bound
is saturated by the trivial (classical) encoding. This is a specific case of a more
general bound known as Holevo’s Theorem, which states that only n bits may be
extracted from n qubits under a slightly more general setting.

2. Suppose Alice and Bob initially shared a Bell pair. Does this pre-shared entanglement
resource boost the amount of classical information that can be successfully communi-
cated, and if so by how much? Hint: Notice that the four possible Bell states differ by a
Pauli acting on a single qubit.

Yes, indeed 2 bits may be transferred by leveraging this pre-shared entanglement.
Suppose that Alice has two bits, i and j. She performs on her Bell qubit the Pauli
p := XiZj , and then transmits her qubit back to Bob. The state which Bob now
possesses is |ψ〉:

ψ = Ω
p

Alice

Bob

= Ω(p) (2.C.1)

If Bob now measures in the Bell basis, he will recover the outcome p, from which he
can back out i and j. As such Alice has successfully transmitted two bits to Bob.
This procedure is known as superdense coding.
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2.D Solutions: Matrix Product States

Solutions 3

Solutions to problems in section 2.3.5

1. Describe the state given by an MPS with tensor

A =

0 1


00 1 0
10 0 1
01 1/2 −1/2
11 1/2 −1/2

1

2

3A
, (2.D.1)

where index ordering is as shown and indices 1 and 2 are combined. Boundary con-
ditions require inserting a Pauli Z before closing periodic BCs, similar to Eq. (2.3.19).

Consider the self-inverse Hadamard gate. Performing a gauge transformation cor-
responding to contracting Hadamards onto each virtual bond, we end up with with
a new MPS tensor

B =

0 1


00 1 0
10 0 1
01 0 1
11 0 0

. (2.D.2)

and a boundary condition now corresponding to closing on an X gate. We can
recognise this as the MPS of Eq. (2.3.18), meaning that this described the W-state.

2. Describe the state given by the MPS whose only nonzero components are

0

0

0A
=

1

0

1A
=

0

1

1A
=

1

1

0A
= 1, (2.D.3)

where the left and right boundary conditions are |0〉.
Hint: Writing out the matrices corresponding to fixing the physical index might help!
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We have that

A0 =

(
1 0
0 1

)
= 1, A1 =

(
0 1
1 0

)
= X. (2.D.4)

Therefore, if we begin on the left end in the 〈0| state, we must insert an even number
of A1 before we reach the right |0〉. Thus, we obtain the state

|ψ[A]〉 =
∑
|even number of 1s〉. (2.D.5)

3. Describe the qudit state given by the MPS

i

j

i⊕ jA
= 1 (2.D.6)

where i, j ∈ Zd, ⊕ denotes addition mod d, the left boundary condition is |0〉, and the
right boundary is |q〉 for some q ∈ Zd.

We have that

A1 =



0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1
1 0 0 · · · 0 0 0


(2.D.7)

We can recognise A1 as the (transpose of) the generalised Pauli X matrix and
Ak = Ak1. Therefore, if we begin on the left end in the 〈0| state, we must insert Aks
such that the sum of the string (mod d) is q before we reach the right |q〉. Thus, we
obtain the state

|ψ[A]〉 =
∑
|strings summing to q〉. (2.D.8)

4. Let G be some group. Describe the operator given by the MPO with

g

h

h

g · hM = 1 (2.D.9)
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where the left boundary condition is 0, the right boundary is some group element q and
· denotes group multiplication.

This is a generalisation of problem 3. Rather than a state, we end up with an
operator. Rather than summing to q, the operator terms should multiply to q
(under the group operation). We end up with the operator which projects onto
states which multiply to q.

5. Suppose the local basis is labelled by particle number. What is the action of the following
operator (bond dimension linearly increasing left to right)?

n

m

m

n+mM = 1 (2.D.10)

with left vector L = |0〉 and right vector R =
∑N

i=0 i|i〉.

This is similar to the operator in problem 4, however rather than projecting onto a
subspace, the operator multiplies a state summing to j by the number j. Therefore,
taking expectations of this operator returns the expected particle number.

6. Write an MPO for the transverse-field-cluster Hamiltonian

H = −J
∑
j

Zj−1XjZj+1 − h
∑
j

Xj . (2.D.11)

Hint: This can be done with bond dimension 4.

We can use the construction in Appendix 2.A, we obtain

M =


1 0 0 0
Z 0 0 0
0 X 0 0
−hX 0 −JZ 1

 , (2.D.12)

with left and right vectors

L =
(
0 0 0 1

)
R =

(
1 0 0 0

)T
. (2.D.13)

7. Use the ideas of MPSs and MPOs to prove that log depth quantum circuits can be
simulated efficiently on a classical computer.
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Suppose we have a log depth circuit acting on |0〉⊗N . Breaking U down in to circuit
elements, the state we wish to know has the form

ψ = U

0 0 0 0 0

=

0 0 0 0 0

log(n)
(2.D.14)

Net we decompose our gates into single qubit tensors:

= = (2.D.15)

We now use this factorisation, and vertically group our tensors together. The re-
sulting state is an MPS.

0 0 0 0 0

= (2.D.16)

As our circuit has only logarithmic depth, the bond dimension is at most polynomial,
allowing our classical simulation to be efficient.
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2.E Solutions: Classifying Gapped Phases in 1D

Solutions 4

Solutions to problems in section 2.4.4

1. The group Z2 × Z2 has the presentation Z2 × Z2 = 〈x, z|x2 = z2 = e, xz = zx〉. Show
that the Pauli matrices form a projective representation of Z2 × Z2.

Hint: let vx = X, vz = Z, vxz=zx = Y and show that vgvh = ω[g, h]vgh, where ω is some
phase.

Let vx = X, vz = Z and vxz = Y . We can then calculate ω[g, h], obtaining

e x z xz


e 1 1 1 1
x 1 1 −i i
z 1 i 1 −i
xz 1 −i i 1

. (2.E.1)

2. Determine the factor system ω[g, h] for the Pauli matrices.

See Problem 1 above.

3. Show that the Pauli projective representation is not equivalent to a linear representation.

Hint: xz = zx, can we rephase vx and vz to make vxvz − vzvx = 0?

If we had a linear representation, we would have uxuz−uzux = 0. Consider rephas-
ing the vs

vg → eiφgvg. (2.E.2)

The commutator then becomes

ei(φx+φz) (vxvz − vzvx) . (2.E.3)

Therefore no rephasing can bring this to 0, so the Paulis do not form a linear
representation.
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4. Recall from Section 2.3.2 that the symmetry of the cluster state is Z2 × Z2, with the
action on the MPS tensor being

X
=

Z Z

,
X

=
X X

. (2.E.4)

What can we conclude about the cluster state?

Since the Paulis form a nontrivial projective representation of Z2 × Z2, we know
that the cluster state is in a nontrivial phase. That is, it cannot be transformed
into a product state using a constant depth local circuit with Z2 × Z2 symmetry.
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2.F Solutions: Tensor network algorithms

Solutions 5

Solutions to problems in section 2.5.3

1. Consider the critical transverse Ising model

H = −
n−1∑
i=1

XiXi+1 −
n∑
i=1

Zi. (2.F.1)

For open boundary conditions, it is known that the ground state energy as a function of
n has the form

E(n) = 1− csc

(
π

αn+ β

)
(2.F.2)

for some integers α and β. Using either DMRG or TEBD, estimate the ground state
energy for several chain lengths and calculate α and β.

Running this for moderate system sizes, bond dimensions, and time-scales, with
either DMRG or TEBD, it is relatively easy to calculate that α = 4, β = 2.

2. It is known that the Local Hamiltonian problem is in P for gapped Hamiltonians.
DMRG and TEBD are the most common techniques for numerically finding the ground
states of such systems. For a gapped and 1D local Hamiltonian, prove that DMRG or
TEBD converge.

This was a somewhat of trick question. Despite the complexity of the underlying
problem and the practical power of these algorithms both being well understood,
a satisfactory theoretical understanding of the effectiveness of DMRG/TEBD is an
elusive open problem. Even a concrete statement of the convergence properties that
these algorithms possess is still a topic of debate.
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2.G Solutions: Projected Entangled Pair States

Solutions 6

Solutions to problems in section 2.6.5

1. What is the PEPS tensor required to build the GHZ state on the honeycomb lattice
where spins reside on vertices?

Let the PEPS tensor be the ‘delta-tensor’, the tensor which is 1 if all indices are
equal and zero otherwise. Fixing boundary conditions to be |+〉 on each index give
the GHZ state.

2. Which 2 qubit gate is obtained by contracting the following tensors along the horizontal
index?

u

i

j

k = δi,j
(
δk,0 + (−1)iδk,1

)
, v

x

y

z = δx,y,z. (2.G.1)

Performing the contraction over the horizontal bond, we obtain

00 10 01 11


00 1 0 0 0
10 0 1 0 0
01 0 0 1 0
11 0 0 0 −1

, (2.G.2)

where the row indices are (ix) and the column indices are (jy). We recognise this
as the CZ gate.

3. The cluster state can be prepared from the all |+〉 state by applying CZ between all
adjacent spins. Show that Eq. (2.6.20) indeed gives the cluster state.

Hint: Consider the decomposition of a gate given in the above problem.
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We have a decomposition of the CZ operator in 2. It remains to build a PEPS
tensor from this. The only tricky part is ensuring that when the bonds link up,
each ‘u’ tensor connects to a ‘v’ tensor. The PEPS tensor is therefore

|+〉

u

u

v

v

. (2.G.3)

Contracting this, we obtain the tensor in Eq. (2.6.20).

4. Investigate how logical operators on the physical spins of the Toric code can be pulled
onto the virtual level of the PEPS. Can you see why G-injectivity is so important for
topologically ordered PEPS?

The logical operators of the Toric code are build from strings of Zs and Xs. Consider
placing a single Z on a physical bond of the PEPS tensor in Eq. (2.6.17). It is not
hard to see that

Z

=

Z

Z . (2.G.4)

We can use this to understand how the physical Z string pulls through to the virtual
level.

Z

Z
Z

Z Z

Z →

Z

Z

Z Z

Z
. (2.G.5)
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Which has two physical Zs corresponding to the end points of the string, and a
virtual string of Zs. This string can be moved around using the rules of Eq. (2.6.19).

We can do the same exercise for the X string and obtain

X

=

XX

, (2.G.6)

X

X
X

X

X

→
X

X

. (2.G.7)

Thus, the X string pulls through to an isolated pair of Xs acting on the virtual
level at the ends of the string.

The G−injectivity property is the ability to pull the Z string through the PEPS
tensor, which means the presence of a Z string is not locally observable.

5. Convince yourself that evaluating expectation values on the PEPS constructed from a
classical partition function indeed reproduces the thermal expectation values.

Play with the network! Pull the expectation up to the virtual level and flatten.
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2.H Solutions: Multiscale Entanglement Renormalisation Ansatz

Solutions 7

Solutions to problems in section 2.7.4

1. Can you find a MERA for the W state?

For this we are going to construct a tree (u = 1) that takes the W-state n qubits
to the W-state on 2n qubits.

0

0 0

=

1

1 0

=

1

0 1

= 1 (2.H.1)

It can be seen that by applying this isometry to a W-state will expand it. Thus if
we take a tree with top tensor T = |1〉, then we recover the full W-state.

2. What state is given by the MERA with

= , (2.H.2)

u = 1 and top tensor T = 1√
2
(|00〉+ |11〉)?
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Firstly note that the top tensor T ∝ |00〉+ |11〉 is simply the Bell state, i.e. T = .

Drawing the tree out for 8 sites (16 qubits), we have:

= (2.H.3)

We therefore have the periodic state consisting of Bell states shared between each
neighbouring site, i.e. the state on which PEPS is based. As a result we can see that
any MPS state can therefore be prepared from a MERA by modifying one single
layer.

3. The above state is the ground state of the Hamiltonian

H = −
N/2∑
j=1

(X2jX2j+1 + Z2jZ2j+1) (2.H.4)

on periodic boundary conditions. Is that clear? Can you find a unitary U2j−1,2j which
transforms this Hamiltonian into

H = −
N/2∑
j=1

(Z2j−1X2jZ2j+1 + Z2jX2j+1Z2j+2)? (2.H.5)

Let U2j−1,2j = (1⊗h)CZ, where h is the Hadamard gate, and let U =
⊗

j U2j−1,2j ,

then U †HU is as desired.

4. Act with the above transformation U on the MERA tensor to obtain another MERA
tensor. What is this state?
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We want this to be a ground state of the transformed Hamiltonian, so we need
U †|ψ〉. If we transform the lower indices on the second layer of the MERA with
U † (so that each tensor is identical), then we must transform the upper indices of
the lower layer (i.e. ensure that above the physical layer, U is acting as a gauge
transformation). The tensor we obtain is

H
, (2.H.6)

so this is the cluster state.

5. What is the maximum range of thermodynamic observables in a ternary MERA scheme?

We can easily see this by examining the causal cones (indicated by a line) of various
sized operators in the MERA. We see that there is one special location where 3 site
operators are maintained (red line). Elsewhere, each operator eventually shrinks to
two sites (blue lines).

, (2.H.7)

6. What does the reduced density matrix on a few sites of the MERA look like? Notice
that it corresponds to the top tensor being passed through a CPTP map several times,
this is usually called the descending superoperator.
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Consider taking the MERA in Eq. (2.7.11), and look at the reduced density matrix
on the support of the operator.

ρ = (2.H.8)

Note that in the above diagram, the five pairs of leg near the centre of the diagram
are unconnected, corresponding to the reduced density matrix – all other physical
legs are connected corresponding to the partial trace. Firstly we notice that ev-
erything outside of the light code (red shaded region) cancels out. Using this, and
flipping the diagram inside out, we get that the reduce density matrix has the form:

(2.H.9)

where the blue circle is the top tensor T . We can see that this simply corresponds
to applying the map dual to the descending super-channel multiple times

E∗(σ) = σ . (2.H.10)

Thus we see that reduced density matrices generally take the form

ρ = (E∗)n (|T 〉〈T |) . (2.H.11)
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7. Do tree tensor networks (i.e. MERA for u = 1) have any area law violation on contiguous
regions?

(2.H.12)

The indicated region (and any similar subtree) can be removed by cutting a single
bond. Therefore, the area law is not violated on such regions.
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Abstract

We introduce a numerical method for identifying topological order in two-
dimensional models based on one-dimensional bulk operators. The idea is to
identify approximate symmetries supported on thin strips through the bulk that
behave as string operators associated to an anyon model. We can express these
ribbon operators in matrix product form and define a cost function that allows
us to efficiently optimize over this ansatz class. We test this method on spin
models with abelian topological order by finding ribbon operators for Zd quan-
tum double models with local fields and Ising-like terms. In addition, we identify
ribbons in the abelian phase of Kitaev’s honeycomb model which serve as the
logical operators of the encoded qubit for the quantum error-correcting code.
We further identify the topologically encoded qubit in the quantum compass
model, and show that despite this qubit, the model does not support topo-
logical order. Finally, we discuss how the method supports generalizations for
detecting nonabelian topological order.

Despite the apparent simplicity of quantum spin models, they can exhibit a wide variety of
interesting and potentially useful phenomena. These range from conventional magnetic order to
the more novel topological [3.1] and symmetry-protected [3.2] and symmetry-enriched [3.3] topolog-
ical orders which are of interest in both condensed matter physics [3.4] and quantum information
theory. [3.5] These states are disordered in the sense of Landau-Ginzburg-Wilson, however they do
exhibit properties distinct from the usual disordered phases. For example, topological phases pos-
sess quasiparticle excitations, known as anyons, whose braid relations can be far more exotic than
those of fermions or bosons. [3.6] These phases also have ground state degeneracy which depends
on the topology of the lattice. [3.7] This protected degeneracy has prompted the investigation of
topologically ordered models as quantum memories. [3.5, 3.8] Quantum information stored in the
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degenerate subspace can be protected from arbitrary local noise when error correction techniques
are employed. [3.9–3.11]

Distinguishing topological phases can be an especially challenging task precisely because of
their topological nature: there is no broken symmetry and no local order parameter signalling
the phase transition. [3.1] There has been a large amount of previous work which attempts to
identify topological order (TO). The existing key techniques, such as the topological entanglement
entropy, [3.12–3.17] the entanglement Hamiltonian [3.18], topological degeneracy [3.19] and associ-
ated properties, [3.16,3.20] symmetries of particular representations of the ground states, [3.21–3.25]
and specific properties of particular TO states, [3.26, 3.27] have been highly successful in various
domains of applicability. We review these methods below. A common feature of these methods is
that they utilize the ground state of the model, which is unfortunately a challenging computational
task in general.

Here we propose a numerical method that we call the ribbon operators method for identifying
TO in the ground state of a given 2D Hamiltonian using only the Hamiltonian, without reference to
the ground state. We reduce the search for TO to a 1D problem through the bulk of the material,
and we present a variational approach based on standard DMRG [3.28] to identify certain operators
– the ribbon operators – supported in the bulk that satisfy the commutation relations relevant for
a candidate anyon model. We demonstrate the power of this approach by identifying TO in both
integrable and non-integrable models, and contrast this with topologically trivial Hamiltonians.
We also demonstrate the ability to identify topologically encoded qubits and logical operators of
quantum error-correcting codes, even in a non-integrable model. All of our calculations are focused
on the case of abelian TO in spin models, however the ribbon operators method suggests several
natural extensions beyond this case, which we leave open for future work.

The following subsection reviews prior approaches, while Section 3.1 reviews anyon models. The
expert reader can skip to Section 3.2.

3.0.1 Prior Approaches

One important tool is the topological entanglement entropy (TEE) [3.12, 3.13] of the ground state
wave function. Given the reduced density matrix ρR of some many-body ground state on a region
R, the von Neumann entropy S(ρR) = −Tr (ρR log ρR) typically obeys the area law

S(ρR) = α|∂R| − γ +O
(

1

|R|

)
, (3.1)

where |R| and |∂R| are the number of spins in the region R and on the boundary of the region R
respectively, and −γ is the TEE.

In a topologically ordered model, a physical argument suggests that γ = log
(√∑

c d
2
c

)
, where

dc is the quantum dimension of the anyon with charge c in the associated anyon model. The TEE is
clearly nonzero if the ground state is topologically ordered, [3.12] so γ can be used as a signal of such
ordering. [3.15–3.17] One can compute γ by obtaining an explicit ground state wavefunction, for
example as a PEPS. Additionally, a Rényi entropy variant of γ [3.14] can be computed by sampling
the ground state wavefunctions using quantum Monte Carlo. [3.15]

There are two major challenges associated with this approach. Firstly, there exist examples
of topologically trivial states for which computing γ leads to nonzero values. [3.29] Secondly, any
two topological phases whose associated anyon models have the same total quantum dimension
D =

∑
c d

2
c will have the same TEE, and so it cannot be used to distinguish them. This second

problem has already led to difficulty in fully identifying the phase of physically interesting models
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including the Heisenberg antiferromagnet on the Kagome lattice, a model thought to describe the
low-energy physics of several naturally occurring and synthetic minerals. [3.17]

A less coarse approach is to investigate the full entanglement spectrum, that is, the spectrum
of the effective Hamiltonian defined by ρR = e−Heff . [3.18] It has been suggested that the universal
properties of Heff are intimately linked to the structure of the physical edge state of the model,
however Heff can undergo phase transitions without the physical model doing so, [3.30] and at least
for models in the same phase as a string-net model [3.31] the spectrum is expected to contain the
same universal information as the TEE. [3.14]

One of the characteristic features of topologically ordered models is the topology-dependent
ground state degeneracy. [3.7] After obtaining a full set of ground states, one can observe transitions
out of topological phases via loss of topological degeneracy, [3.19] and, in the topological phase,
compute the S and U matrices defining the braiding relations in the associated anyon theory. [3.16,
3.20] Unfortunately, demonstrating topology-dependent ground state degeneracy is not sufficient to
ensure robust topological order. [3.32,3.33]

Given a projected entangled pair state (PEPS) description of the ground state, one can identify
the topological order by understanding the symmetry properties of the parent Hamiltonian [3.22]
or the environment tensor. [3.25] One can also use the PEPS formalism to identify matrix product
operators (MPOs) that ‘pull through’ the PEPS tensors on the virtual level. [3.23,3.24] These MPOs
are in close analogy to the physical operators that act to create and transport anyons. As we will
describe, these physical operators are central to our approach.

Finally, given access to a ground state, specific structure such as certain correlation functions
or distribution of bond energies can provide evidence for topological ordering. [3.26,3.27]

As a prerequisite for each of these methods, one must obtain an efficient description of the
ground space (e.g. via tensor networks) or obtain expectations with respect to ground states (e.g.
via Monte Carlo sampling). Tensor network (TN) methods have proven very useful for this pur-
pose, [3.17, 3.25–3.27, 3.34] however in many cases the result does not conclusively determine the
topological order. [3.27] The TN states obtained suffer from several drawbacks. In particular, they
are usually computed on infinite cylinders of small circumference. They can also be biased towards
low-entanglement states. [3.26] Additionally, properties of a ground state alone are not sufficient to
identify a gapped topological phase. For example, a one can obtain a gapless Hamiltonian sharing
the toric code ground space. [3.35]

Of these methods, the ones closest in spirit to our current approach are the tensor network-
based methods, [3.22–3.24] however our approach differs substantially in that we do not require a
PEPS description of the ground state wavefunction. We instead variationally create tensor network
representations of certain ribbon operators that are supported on 1D strips through the truly two-
dimensional bulk; this dimensional reduction is what makes our method numerically tractable.
In contrast to state-based variational approaches, where a similar reduction is often included for
numerical convenience, we will argue that in our operator-based approach this reduction is an
expected feature of the operators. Additionally, if one wishes to use the topologically protected
ground space as a quantum memory, knowledge of these ribbon operators is required for information
manipulation and extraction. Thus, this method could be used to augment a state-based approach
to obtain this additional data.

This paper is organized as follows. In Section 3.1, we review some of the features of anyon models
which describe the low energy excitations of topologically ordered spin models. In Section 3.2, we
define a ribbon operator, and use the properties of the anyons to define a cost function which
quantifies how well a candidate ribbon realizes their behavior. We then describe how the cost
function can be minimized numerically in Section 3.4. Using this algorithm, in Section 3.5 we
obtain ribbon operators in a number of topologically ordered and topologically trivial models. These
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numerics demonstrate that the cost function we define allows identification of abelian topological
order in nonintegrable spin models. In Section 3.6, we prove that, under certain assumptions,
ribbon operators can be used as approximate logical operators in quantum error correcting codes.
We conclude in Section 3.7 with a discussion of extensions of the method to nonabelian topological
order and more complex spin models.

3.1 Properties of Anyons

In this section, we review the physical properties of anyon models that characterize a topological
phase. Of course, not all topological phases have an associated anyon model, for example the
cubic code, [3.36] however we will tailor our method to those phases with anyonic excitations. This
discussion of anyon models will motivate our definition in the subsequent section of a ribbon operator
for a spin model defined by some local Hamiltonian H =

∑
j hj on a lattice in two dimensions.

We will argue that this definition captures the essential features outlined below of a topologically
ordered model by thinking about anyons as quasiparticle excitations of the spin model. The simplest
realization of this is Kitaev’s toric code, [3.5, 3.37] and we will refer to that model to clarify key
features.

Creating a pair of anyons, and moving them to the boundary of the lattice leaves no excitations,
and so maps the vacuum to the vacuum. In the toric code, anyons are created and transported
using string operators, as shown in Fig. 3.1. These operators commute with the Hamiltonian in the
bulk, but have excitations localized to the ends. In this way, if the anyons are moved off the edge
of the lattice or are fused together, the system remains in its ground state.

More generally, we expect anyonic excitations to be particle like, but to have nontrivial braiding
relations. On sufficiently large length scales, it is expected that these braid statistics are governed
solely by an anyon model. [3.37] For this reason, the creation operators in this limit should be one
dimensional with the particles localized around the end points. Away from a renormalization-group
fixed point, we expect these operators to be dressed, and supported on slightly fattened regions,
though still effectively one-dimensional. More precisely, the width of these ribbons should be set by
the microscopic details of the model, and should not scale with system size.

The family of local commuting projector codes (LCPC) generalizes the toric code and provides
a concrete instantiation of these ideas. The LCPCs are families of Hamiltonians where the terms
are pairwise commuting projectors onto an unfrustrated ground state. In these models the string
operators described above always exist. [3.39] This class of models includes exactly solvable points
of most known topological phases [3.40] including the Levin-Wen string nets. [3.31] Away from these
exactly solvable points, we can dress the string operators using quasiadiabatic continuation. [3.41]
Given a point in a phase for which an initial string operator exists, such as an LCPC, we can dress
this operator to any other point in the phase. Generically this operator will have extensive support,
however the error made in truncating the width is exponentially small in w/ξ, where w is the width
and ξ is the correlation length. Thus string-like operators with width proportional to the correlation
length can be found anywhere within the phase.

Since the string operators act as creation operators for pairs of anyons, we argue that they
should be only slightly entangling operators. [3.39] These are operators whose Schmidt rank is inde-
pendent of the system size on any bipartition that cuts the string into two contiguous pieces. In the
LCPC case, the string operators are known to be slightly entangling. [3.39] Since the quasiparticles
are simply dressed by moving away from these fixed points, we expect this property to remain
throughout the phase; although the required Schmidt rank can increase substantially, it will still
be independent of the system size. When we remove the dressed quasiparticles from the lattice (by
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Figure 3.1: The prototypical ribbon operators are the string operators shown above for the toric code.
The toric code is defined by X-type and Z-type four-body interactions on alternate plaquettes of a square
lattice, and the (exact) ribbon operators are the string-like products of X and Z shown above. These ribbon
operators commute with the Hamiltonian terms but anticommute with each other, thus identifying a phase
with Z2 topological order.

annihilating them or bringing them out to infinity), the system returns to its ground space, which
is expected to obey the area law of Eqn. (3.1). This also supports the slightly entangling nature of
such operators.

Some of the defining features of an anyon model are the relations that are encoded in the
topological S matrix and the R matrices. Let {a, b, c, . . .} label the anyonic particles in the anyon
model describing the low energy excitations of the Hamiltonian H. The R matrices are defined by

c

b a

= Rab
c

c

b a

, (3.2)

and the S matrix is

Sab =
1

D ā b
, (3.3)

where the lines trace out the worldlines of the particles.
Another approach is to consider the related S̃ matrix that can be obtained via the twist product.

[3.42] If the S matrix is an object that captures dynamical information from braiding anyons in
2+1 dimensions, then the S̃ matrix is a static object that captures correlations of ground states in
2+0 dimensions. If πa is an operator supported on an annulus that projects onto a state with total
charge a inside, then

S̃ab = 〈ψ|πa∞πb|ψ〉 =
dadb
D Sab , (3.4)

where |ψ〉 is any ground state of the spin model. For bipartite operators X =
∑

i,j X
A
i ⊗XB

j and

Y =
∑

k,l Y
A
k ⊗ Y B

l , the twist product with respect to the partition A|B is defined as

X∞Y =
∑
i,j,k,l

XA
i Y

A
k ⊗ Y B

l X
B
j , (3.5)

where the order is reversed on the B region relative to the A partition. This is clearly closely related
to Eqn. (3.3), where the worldline loops are replaced by the corresponding closed loop operators on
the lattice. For abelian models where da = 1 for all particle types a, the S and S̃ matrices coincide
up to a multiple of D.
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Finally, anyonic quasiparticles should be able to move around the lattice, and the state should
not depend upon any smooth deformations of the path they take. In particular, when they are fused
back together or moved off the lattice, the system should return to a vacuum state. This is realized
in the toric code since the string operators can be deformed by dressing with local operators that
are symmetries of the Hamiltonian. This preserves commutativity with H and the S̃ matrix and
clearly creates the same particle at the ends.

3.2 Definition of Ribbon Operators

Let us summarize the physical intuition that we’ve gained in the previous section into a few simple
properties that the string-like operators seem to possess in general. These properties hold for known
exactly solvable models with TO.

Given a two-dimensional quantum system with TO, we expect that there are operators R sup-
ported on one-dimensional strips through the bulk where the following four properties hold, at least
approximately:

1. R commutes with the bulk Hamiltonian in the low energy sector.

2. R is supported on a strip of spins with bounded width w.

3. Distinct ribbons R and L should respect the data (e.g. the R or S matrix) for an underlying
anyon model in the low energy sector.

4. R is smoothly deformable, that is, the ability to satisfy 1-3 should not depend on the chosen
strip of spins defining the support of R, given sufficient width.

Since finding a low energy projector appears to be a challenging task, we make the following
assumption. Rather than asking for 1-4 to hold only in the low energy sector, we ask for them to
hold on the whole spectrum. At first glance, this seems to be too strong for characterizing TO away
from an exactly solvable RG fixed point. Nonetheless, by making this assumption, we can arrive
at an effective numerical procedure for detecting TO in 2D models. Moreover, in Section 3.3, we
provide a heuristic physical justification of this assumption, and some natural avenues for relaxing
it in Section 3.7.

3.2.1 The Method of Ribbon Operators

Here we introduce what we call the ribbon operator method for detecting TO. The strategy is
simple: we will write a cost function that tries to satisfy the above requirements simultaneously.
Since the support of a string-like operator is on a 1D strip, and is expected to be only slightly
entangling, we will use the ansatz class of MPOs [3.43] to describe candidate operators. We will
then use the highly successful methods of 1D systems such as DMRG [3.28] for optimizing over this
ansatz class to find the lowest cost MPO.

We can then define a ribbon operator as any MPO supported on any one-dimensional strip of
some fixed width. By drawing on the lattice Hamiltonian and an underlying anyon model, we can
define a cost function quantifying the fitness of candidate ribbons given the above criteria. A good
ribbon operator then corresponds to a local minimum of the cost function.

There is clearly considerable scope within this method for how to use it. The art will be to
choose a cost function that is tractable to optimize and gives clear signals of TO when appropriate,
such that the distinction between which local minima are “good” and “bad” is obvious. We do not
claim to have a unique or best choice of cost function or optimization routine. The remainder of this
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section details one particular choice of cost function, and as we show in Section 3.5 this particular
choice performs quite well for a variety of simple models.

3.2.2 Our Cost Function

We now define our proposed cost function that quantifies how well a candidate ribbon satisfies
the above criteria. Let H =

∑
j hj be some local Hamiltonian and R some candidate ribbon with

‖R‖ = 1 (the Schatten 2-norm, or Frobenius norm ‖R‖2 = Tr(R†R)) and width w, which ideally
should be chosen to be comparable to the correlation length. We will also use the symbol R to
denote the region of support of the ribbon R since no confusion should result.

The first condition is that the ribbon should commute with the Hamiltonian of the model. This
gives us two terms in the cost function. We can quantify the violation of this condition using
‖[R,H]‖2. This can be decomposed into two distinct contributions by writing the Hamiltonian as

H = HR +HRc +H∂R

=
∑
j∈R

hj +
∑
j∈Rc

hj +
∑
j∈∂R

hj , (3.6)

where the first term contains Hamiltonian terms whose support is completely within the support of
R, the second contains those whose support has no overlap with R and are hence supported entirely
in the complementary region Rc. The final sum contains all those terms in the Hamiltonian with
support on both R and Rc. Clearly the second term trivially commutes with R as a consequence
of our second condition.

Commutation with the first term cannot be simplified further. However, the term on the bound-
ary ∂R can be simplified as follows. Let hj be some term on the boundary of the ribbon. Then
using the operator Schmidt decomposition, we can split the operator hj into a sum over interior
and exterior components

hj =
∑
k

hin
j,k ⊗ hout

j,k , (3.7)

where Tr
(
hout
j,k
†hout
j,k′

)
= δk,k′ .

Using the orthonormality of the hout
j,k terms and the definition of the Frobenius norm, we find

that

‖[R, hj ]‖2 =

∥∥∥∥∥∑
k

[
R, hin

j,k

]
⊗ hout

j,k

∥∥∥∥∥
2

=
∑
k

∥∥[R, hin
j,k

]
⊗ hout

j,k

∥∥2

=
∑
k

∥∥[R, hin
j,k

]∥∥2
, (3.8)

By appropriate grouping of boundary terms, we can ensure that Tr
(
hout
j,k
†hout
j′,k′

)
= δk,k′δj,j′ . (This

is equivalent to applying the Schmidt decomposition to H∂R instead of just one term.) Thus, we
can express the boundary contribution as∑

j∈∂R

∑
k

∥∥[R, hin
j,k

]∥∥2
. (3.9)
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We find that the commutation condition together with the bounded width condition gives us a term
in the cost function proportional to

‖[R,H]‖2 = ‖[R,HR]‖2 +
∑

j,k∈∂R

∥∥[R, hin
j,k

]∥∥2
. (3.10)

Because commutation with the Hamiltonian can always be achieved by choosing the ribbon to
be the identity operator, we require a competing term to enforce the topological properties such as
having a nontrivial S or R matrix. For the moment, suppose that we already have a given nontrivial
ribbon operator L that crosses R as in Fig. 3.1. (We will discuss how to relax this prior-knowledge
assumption below.) We can incorporate anyon data with the following term in the cost function,∥∥[R,L]η

∥∥2
= ‖RL− ηLR‖2 , (3.11)

where η is a complex number different from 1.
This choice of topological term in the cost function intuitively reminds us of the R matrix

relations of Eqn. (3.2). We can see that such a term is in fact sufficient to give a nontrivial R
matrix as follows. Here we specialize to an abelian model, but the discussion could be generalized.
Using the R matrix relation for an abelian model with a fixed total anyon charge c = a× b, we have
the relation

c

b a

= Rab
c

c

b a

= Rab
c Rba

c

c

b a

= η
c

b a

. (3.12)

Thus if η 6= 1 then Rabc and Rbac cannot both be 1. Note that in the abelian case, Sab̄ can be written
as [3.37] RabRba/D, so η is related to the S matrix and is therefore gauge invariant (invariant under
a change of basis of the fusion space).

Since the anyon charge c is fixed already by the labels a and b in an abelian model, this switching
relation should hold even when considering this as just a different operator product order, analogous
to the case of a twist product for the S̃ matrix:

L R

= η
L R

. (3.13)

Since there are many equivalent strips on which L and R can be supported, the cost should
be computed for all possible intersection regions. This is achieved by summing

∥∥[R,L]η
∥∥2

over
all translates of L, labelled T (L), that lead to an inequivalent intersection with R. This transla-
tion invariance gives us an additional motivation for our choice of topological term: we can use
translation-invariant MPOs in our optimization routines. By comparison, an a priori equally at-
tractive term would be to encode the S matrix relations, but then finite-size effects from the periodic
boundary conditions might add additional complications to the numerics.

Now, we define the η-cost of a ribbon R given some fixed secondary ribbon L as

C(R; η) =
1

|R|

(
‖[R,HR]‖2 +

∑
j,k∈∂R

∥∥[R, hin
j,k

]∥∥2
+
∑
T (L)

∥∥[R,L]η
∥∥2
)
, (3.14)

where |R| is the number of spins on which R is supported. Note that due to the nonsymmetric
nature of [ · , · ]η, it is convenient to define the η-cost of L as

C(L; η) =
1

|L|

(
‖[L,HL]‖2 +

∑
j,k∈∂L

∥∥[L, hin
j,k

]∥∥2
+
∑
T (R)

∥∥[R,L]η
∥∥2
)
, (3.15)
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where the appropriate Hamiltonian terms are taken. Here the normalization term is chosen so that
the cost of a ribbon is approximately independent of the volume.

One could consider summing these two terms to build a total cost function for the pair of
ribbons, however we linearize the problem for a fixed L (or fixed R) and instead do an alternating
minimization algorithm.

In the case of the exact toric code, the form of the cost function is relatively simple and gives a
concrete instantiation of the translation operation T . It is easy to check that the standard logical
operators of this code have zero η-cost when η = −1, as expected. We present the explicit cost
function derivation in Appendix 3.A for illustration.

Although this cost function only involves a pair of ribbons, it is possible to incorporate braid
relations with other particle types by adding terms of the form of Eqn. (3.11) with additional ribbon
operators. In this way, it is possible to completely reconstruct the S matrix of the anyon model
up to a column permutation. This ambiguity is due to the difficulty of identifying equivalence of
operators on incomparable supports (i.e. those with vertical and horizontal supports in Fig. 3.1).
We discuss possible avenues to removing this freedom in Section 3.7.

3.3 Heuristic Justification for the Norm

As discussed in Section 3.2, a key assumption which enables our method to be numerically efficient is
that the commutation relations, which are expected to hold only on a topologically ordered ground
space, hold on the entire spectrum. While this appears to be a very strong assumption, we believe
that our method should continue to work even when this assumption breaks. In this section, we
will provide a physically motivated, heuristic justification for this assumption.

At high energies, we expect a gas of short-range interacting anyons. When ribbon operators are
used to create additional anyons, braid them, and fuse them in a specific way, the resulting process
will in general be affected by the presence of the background anyon gas. Specifically, the expectation
value of the braid can be affected by 1) dynamical phases acquired from short range interactions
with the background anyons, and 2) topological terms caused by the background anyons enclosed
in the braid. To eliminate these effects, we need to make sure that 1) there are no background
anyons near the support of the ribbon operator, and 2) the topological charge enclosed in the braid
is trivial.

It happens that both of these conditions can be enforced with small width operators. Indeed,
1) requires projecting on the local ground state (LGS), i.e. the subspace with no charges. Similarly,
it is possible to fix the topological charge of a region using an operator which acts only on the
boundary of this region and is described by a finite bond dimension MPO. [3.42] Let ΠC denote the
corresponding projector.

Suppose that R is an MPO ribbon operator which obeys the right commutation relations on the
ground space, but not on the entire spectrum. Then, R′ = ΠCRΠC should be a slightly wider and
larger-bond-dimension MPO ribbon operator which obeys the commutation on the entire spectrum.
Thus, while our approach cannot find R, it should be able to find R′ without any assumptions.

We stress that the above argument is not key to our method, and no ground state projectors
are incorporated directly in our algorithm or in the numerical results presented in Section 3.5. One
could alter the method to explicitly make use of information about the low energy space. We discuss
this further in Section 3.7.
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3.4 Finding Ribbon Operators

In many exactly solvable models, an analytic form for the ribbon operators can be found. In more
general models, for example ones with a noncommuting Hamiltonian, the ribbons must be found
numerically. In this section, we describe how to find ribbon operators using DMRG. [3.28]

We parameterize a width w ribbon by a block-translationally invariant infinite MPO. This
MPO is “snaked” along the support of the ribbon to cover the two-dimensional region. That is, the
coordinates of the ribbon are treated in a linearized lexicographic order moving along the ribbon
lengthwise. This MPO can be vectorized, i.e. interpreted as a vector instead of a matrix. An MPO
is also built for the cost function, with the same snaking pattern, and standard DMRG can then be
applied to find the ribbon that minimizes the constraints.

This vectorization procedure corresponds to the following transformation, written in tensor
network diagram notation:

→ →
.

Given any operator O in MPO form, we can explicitly write the form of the constraint term ‖[R,O]‖2
for one site of the MPO as

R
O
O†

R†

− − + . (3.16)

By concatenating this expression and closing the boundaries appropriately, we see that this is equiv-
alent to the expectation of some MPO for some matrix product “state” given by the vectorization
of R.

The total cost function can be obtained by summing up the MPOs defining each cost term,
corresponding to direct sum on the MPO matrices. The cost function MPO will not generally
correspond to a local Hamiltonian, which is the regime where DMRG is usually applied. Indeed,
due to the squaring required on the internal commutator, we will have terms like hjhk for every pair
j, k. Despite this potential challenge, we will demonstrate that DMRG is an effective algorithm for
this minimization.

3.4.1 Optimizing

We attempt to optimize C(R; η) for various choices of η. In particular, we restrict ourselves to the
unit disk as this is sufficient for the models below, although extending to other η does not change
any of the results obtained.

When attempting to optimize a pair, we used alternating minimization. First C(R1; η) was
minimized in the presence of a random R2. Then C(R2; η) was optimized given the R1 obtained
from the previous optimization. The R2 obtained was then used to seed the next iteration. This
process was repeated until convergence.

For each choice of η, several (usually 5 or 10) ribbons or pairs of ribbons were optimized from
random initial pairs and the lowest cost pair was retained. This proved necessary to avoid premature
convergence to a local minimum, particularly in the alternating minimization, leading to a pair that
was orthogonal to the optimal solution. In most cases a total of 5-10 restarts appeared sufficient to
ensure that an optimal pair was obtained. For each value of η, an independent random start was
generated, rather than using a warm start from the previous nearby values of η.
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Figure 3.2: Cost for ribbons in topologically trivial phases the QDI2 model with η = eiφ. A pair of ribbons
were optimized on two w = 1 strips with bond dimension 1 for the paramagnet and 2 in the other cases. We
observe two distinct failures to observe topological order. In the case of the paramagnet, a zero-cost ribbon
can be found for all φ. In fact, this can be extended to all η. In the other cases (closeup in inset plot),
there is no η for which a nontrivial low-cost ribbon can be obtained. It is possible that this could be due to
insufficient width, although we have not observed this to be the case. Note that averaging over many trials
(20) to give a typical picture of the algorithms performance. In the case where the variational minimum is
used instead, still no signal of topological order is observed.

3.5 Numerical Results

In this section we use ribbon operators to study several standard models that exhibit both topo-
logically ordered and trivial phases. We demonstrate the efficacy of ribbon operators in identifying
TO both at exactly solvable points and away from such points.

3.5.1 Zd Quantum Double-Ising model

We define the Zd Quantum Double-Ising (QDId) model as follows. [3.5,3.9] Let Λ be the bicolorable
lattice shown in Fig. 3.1. Place a qudit (d level quantum system) at each vertex and define the
generalized unitary Pauli operators X and Z such that ZX = ωXZ, Xd = Zd = 1, and ω = e2πi/d.
We define plaquette operators a and b as

a =

X†

X

X

X† b =

Z

Z

Z†
Z† , (3.17)

on the dark and light plaquettes respectively. The Hamiltonian is given by

HZd =− J
∑
p∈{ }

Pp − J
∑
p∈{ }

Qp (3.18a)

− h

2

∑
j

(Xj +X†j ) (3.18b)

− λ

4

∑
〈j,k〉

(Zj + Z†j )(Zk + Z†k), (3.18c)

where at each plaquette p we have the operators

P =

d−1∑
k=1

ak , Q =

d−1∑
k=1

bk . (3.19)
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The Hamiltonian contains the topological terms in Eqn. (3.18a) with strength J , a transverse onsite
X field in Eqn. (3.18b) with strength h, and a ferromagnetic Ising-type term in Eqn. (3.18c) with
strength λ.

When h = λ = 0, this is a topologically ordered commuting model which reduces to the toric
code when d = 2. This model also captures a number of other models, including the paramagnet
({J, h, λ} = {0, 1, 0}) and a ferromagnet ({J, h, λ} = {0, 0, 1}). These latter correspond to distinct
topologically trivial phases. At the fixed point of each of these phases, the model is exactly solvable.
In the d = 2 case, the generic model with J = 0 is given by the Hamiltonian

H = −h
∑
j

Xj − λ
∑
〈j,k〉

ZjZk . (3.20)

At the RG fixed points of these phases (corresponding to either h = 0 or λ = 0), we can set
R1 =

∏ |↑〉〈↑| and R2 =
∏ |↓〉〈↓|, where |↑〉/|↓〉 correspond to the +1/−1 eigenstates of the relevant

operator (i.e. the eigenstates of X when λ = 0 and of Z when h = 0). These ribbons commute
with the Hamiltonian. Since R1R2 = R2R1 = 0, their η-commutation relation is not unique, so
they do not correspond to good ribbon operators. We therefore expect to be able to find zero-cost
ribbons for all η at these points. We note that constraining the ribbons to be unitary would be a
natural way to eliminate these spurious solutions in the trivial phases, but this is computationally
expensive; we discuss this point further in Section 3.7.

Costs for ribbons at various non-topological points in the QDId model are shown in Fig. 3.2. We
observe two distinct ways in which trivial order can be signalled. As we have already discussed, one
of these corresponds to mutually annihilating operators as in the para- and ferromagnetic phases.
In the other case we simply fail to observe any low cost ribbons which form a nontrivial algebra.
There are two explanations for this. Either there are no ribbon operators to be found or the chosen
width w is too narrow.

The phase which includes the point {J, h, λ} = {1, 0, 0} is topologically ordered, and we expect
it to show a signal of Zd-topological order. We therefore expect to observe low cost ribbons only
when η = eiφ is a dth root of 1. This property is expected to persist away from the exactly solvable
point. In Fig. 3.3 we show the data obtained at the fixed points of the Z5 and Z2 models and when
an X field is turned on in the latter. As expected, at the fixed point a very strong signal is observed.
Using a large density of points we see that the cost drops dramatically over a very narrow region
around the dth root of unity. When we turn on the field term, the signal decreases in magnitude but
is still unmistakable, with more than two orders of magnitude in total contrast. Despite the clear
signal, we observe that the value of the cost function at the minimum is comparable to the (square
of) the perturbation strength. This may lead one to suspect that the method is simply returning
the analytically obtainable fixed point ribbon. To refute this hypothesis, in Fig. 3.3c, we compare
the cost of numerically obtained ribbons to those of the fixed point strings. Encouragingly, we see
that the cost is smaller for the optimized ribbon, indicating that the method is finding a nontrivial
result.

In Fig. 3.4, we present cost data for the fixed point of the QDI3 model over the entire unit disk.
As expected, low cost ribbons can only be found around the third root of unity, with no minima
occurring inside the disk. This property persists even when an X field is turned on as shown in
Fig. 3.5. This figure shows the cost of ribbons in the QDI2 model with {J, h, λ} = {1, 0.05, 0}. Even
at this nonintegrable point, no low cost ribbons can be found anywhere away from the dth roots of
unity.
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Figure 3.3: a) Cost for a width 1 ribbon found in the QDI5 model of Eqn. (3.18) with {J, h, λ} = {1, 0, 0}
using bond dimension 5 and plotted with η = eiφ. The other ribbon was kept as a string of Zs as shown in
Fig. 3.1.
b) Cost for ribbons found using alternating minimization on the QDI2 model with J = 1. In the h = 0 case
a pair of w = 1, bond dimension 1 ribbons were sought, in the other cases, the pair consisted of a w = 1 and
a w = 2 ribbon with bond dimensions 1 and 5 respectively. At the exactly solvable points (h = 0), we see
a dramatic cost decrease at dth roots of unity, signalling both the presence of and type of topological order
present in these models. This feature remains even with the addition of an X field or Ising type term which
destroys the solvability of the model.
c) Cost of a width 4 ribbon of bond dimension 2 in the QDI2 model. The cost obtained from our numerical
optimization is smaller than that of the fixed point string for all (nonzero) values of h. This demonstrates
the nontrivial nature of the ribbon operators we obtain, even in this perturbative regime.
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Figure 3.4: Cost for ribbons found using alternating minimization on the QDI3 model with {J, h, λ} =
{1, 0, 0}. A pair of w = 1 ribbons with bond dimension 1 were optimized. We observe a signal of topological
order only at η = e2πik/3.
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Figure 3.5: Cost for ribbons found using alternating minimization on the QDI2 model with {J, h, λ} =
{1, 0.05, 0} where η runs over points in the complex unit disk. A pair of ribbons with w = 1 and w = 2
and bond dimensions 1 and 5 respectively were optimized and the total cost is shown. We observe a signal
of topological order at η = −1. Note that Fig. 3.3b corresponds to the edge of this disk. The raw data is
displayed, but some contours were subjected to gaussian smoothing for clarity in the nearly flat region where
the noise in the data and the gradient of the function are comparable in magnitude.
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Figure 3.6: Topologically ordered models should support low-cost ribbons on both the horizontal and the
rotated blue regions (or some widening of them). This corresponds to insensitivity of the anyon braid relations
to the specific worldlines they trace out. Models with specific lattice symmetries such as the quantum compass
model might provide false signatures of topological order if ribbon operators are sought only on non-generic
strips of the lattice.

3.5.2 The Quantum Compass Model

It is interesting to consider the 2D quantum compass (QC) or Bacon-Shor model [3.44,3.45] in the
context of ribbon operators. This model is defined on a square lattice Λ with Hamiltonian

HQC = −J
∑
i,j∈Λ

(Xi,jXi,j+1 + Zi,jZi+1,j) . (3.21)

This model fails to exhibit many of the features expected of a topologically ordered model.
For example, the ground state degeneracy does not depend on the underlying lattice topology.
Moreover, this appears to be a gapless model with exponential ground state degeneracy. [3.44] Thus,
this Hamiltonian is usually described as not having topological order. However, this model can be
used to encode a qubit which is protected against arbitrary local errors, having a code distance
extensive in the (linear) lattice size, [3.45] a property which is clearly required of a topological
code. This qubit can be defined by the pair of logical operators Z̃i =

∏
j Zi,j and X̃j =

∏
iXi,j .

These operators commute with each Hamiltonian term, and intersect at a single point, hence they
anticommute, [Z̃i, X̃j ]−1 = 0, and therefore almost fulfill the conditions we give to be good ribbon
operators. We will see below that they are rigid objects that exist due to special lattice symmetries,
and they are not deformable.

The Hamiltonian Eqn. (3.21) also commutes with all elements of the stabilizer group

G =

〈∏
j

Zi,jZi+1,j ,
∏
j

Xj,kXj,k+1

〉
. (3.22)

It is therefore clear that Z̃j(X̃j) is related to Z̃k(X̃k) by application of a stabilizer element, and so
defines the same encoded qubit in the ground space. Hence, the logical operators can be moved
along to parallel strips.

To investigate topological order in the QC model, we seek to find logical operators supported
on rotated regions as shown in Fig. 3.6 or widened versions thereof. We compare this to the Z2

quantum double model where topological order is well understood.
In Fig. 3.7 we show the cost for ribbons obtained in these two models where the vertical ribbons

are fixed to be
∏
Zj and a bond dimension ≤ 5 ribbon is optimized with both horizontal and rotated

support. As discussed above, zero cost ribbons can be obtained for both models in the unrotated
case when η = −1. Thus we see that each model supports a topologically encoded qubit. Once we
rotate the ribbons, we find that in both cases the ribbon disappears when we restrict to w = 1. In
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Figure 3.7: Subfigures a) and b) show the cost of ribbons with supports oriented as shown in Fig. 3.6 for
two models: a) the quantum compass model and b) the QDI2 model. The cost is parameterized with η = eiφ,
and all ribbons were found using bond dimension 5.
a) Cost of ribbons in the quantum compass model of Eqn. (3.21). Because ribbons in this model are sensitive
to their support, we conclude that they do not represent genuine topological order.
b) Cost of ribbons in the QDI2 model of Eqn. (3.18) using {J, h, λ} = {1, 0, 0}. Note that the unit cell in
the rotated case is 4w− 2 rather than 2w for convenience. Low cost ribbons can be found on both unrotated
and rotated supports indicating genuine topological order.

the QDI2, the ribbon is recovered once we allow the support to grow to w = 2, however in the QC
model there is no indication of a good ribbon existing even when we allow ribbons of width 3. This
indicates that the low cost ribbons in the QC model are anomalies associated to lattice symmetries
instead of genuine signatures of topological order.

3.5.3 Kitaev’s Honeycomb Model

The honeycomb model [3.37] is a frustrated spin model on the honeycomb lattice with Hamiltonian

H = −JX
∑

i,j∈X links

XiXj − JY
∑

i,j∈Y links

YiYj − JZ
∑

i,j∈Z links

ZiZj , (3.23)

where the X, Y , and Z links refer to the three orientations of edges on the lattice. For 0 < JX+JY <
JZ , this model supports a phase with the same order as the Z2 quantum double model. [3.37]
Writing a pair of anticommuting logical operators for this phase is a nontrivial task however, since
they cannot both be symmetries of the Hamiltonian and will hence not have completely localized
support. We can instead attempt to describe them with ribbons having some width w.

In Fig. 3.8, we investigate ribbon operators for the honeycomb model. As before, we observe the
characteristic dip at η = −1 signalling a topologically ordered phase (Fig. 3.8a). We also observe
the effect of increasing the allowed ribbon width in Fig. 3.8a. As expected the cost goes down as the
width increases, although this is not a smooth decrease. We suggest that this is due to the nature
of the widening. Each time the width is increased by three, an additional plaquette lies completely
within the support of R. These plaquettes commute with the Hamiltonian, and so correspond to
conserved quantities. In the perturbative regime, these plaquettes become those in the toric code
model, which are associated with the location of anyonic charge. We note that the correlation
length for JX = JY = JZ/10 is approximately .21, [3.38] so all of the widths correspond to several
correlation lengths.

We also investigate how restricting the bond dimensions affects the cost. In Fig. 3.8b, we use
a fixed width (3) and a fixed strength of JX = JY = JZ/10. At this point, we see that the cost
rapidly saturates to a minimum for a small bond dimension of 4-5. This justifies the relatively small
bond dimensions used in this work.
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Figure 3.8: Cost of ribbons in the Honeycomb model. Strong indications of the Z2 topological order known
to be present in this phase are visible. As expected, the cost decreases as the allowed width or bond dimension
is increased, however the cost rapidly saturates with increasing bond dimension.
a) Cost for a bond dimension 5 ribbon on the honeycomb model of Eqn. (3.23) with JX = JY = JZ/10 using
η = eiφ. A second ribbon can be obtained analytically, and was fixed as a product of Zs along the X and
Y links of the lattice. The dip at φ = π is characteristic of Z2 order, and indicates the topological nature of
this phase.
b) Cost for a width 2 ribbon at η = −1 on the Honeycomb model with JX = JY = JZ/10 as a function of
bond dimension. The cost rapidly saturates to a minimum, justifying our assumption that only small bond
dimension is required.
c) As we increase the strength of J = JX = JY , we eventually cross a phase transition to a gapless phase at
J = JZ/2 (indicated by ×). Approaching this point, the signal of Z2 topological order essentially vanishes.
Here the strength of J is increased in steps of 1/30 from J = 0 (◦) to J = 1 (+). Note that the line marked
by ? corresponds to plots a, b and a bond dimension of 4 is used for a width 3 ribbon.
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Finally, we examine the effect of increasing the strength of J = JX = JY in Fig. 3.8c. When
JX = JY = JZ/2, the model undergoes a transition from a phase supporting Z2 topological order
to a gapless phase. The latter supports Ising anyons if a time reversal symmetry breaking term is
added. [3.37] Although we do not see a strong signal, such as a discontinuity, at this point, we see
that the dip associated with η = −1 becomes very shallow. We expect the width of the required
ribbons to be comparable to the correlation length, which we expect to increase as we move out of
the perturbative regime. Thus the width 3 ribbon used here is expected to be inadequate for large
JX even within the phase. It remains to be seen whether ribbon operators can be used to identify
phase transitions, possibly using a scaling analysis of ribbon width and bond dimension.

3.6 Ribbons As Logical Operators

One of the motivations for the ribbon operator methods is an application to quantum error correcting
codes. In this section we show how nontrivial ribbon operators with sufficiently low cost can be
used to certify the existence of an approximate topological quantum error correcting code in the
ground space of the model. The ribbon operators function as approximate logical operators for
these approximate codes. For gapped phases, this will also provide a natural justification for the
method, although to apply this justification to the numerical results of Section 3.5 would require
similar proofs with weaker assumptions than we are currently able to make here.

Let H be a Hamiltonian with gap ∆ and suppose that for some ε > 0, δ > 0 and η, there exist
ribbon operators L and R such that ‖[H,R]‖op ≤ ε, ‖[H,L]‖op ≤ ε, and

∥∥[R,L]η
∥∥

op
≤ δ. Here

‖R‖op = ‖L‖op = 1, we restrict to hermitian ribbons, and we let ‖·‖op denote the operator norm.
Let |g〉 be some ground state of H with energy E0. Then the expected energy of |h〉 = R|g〉 is

〈g|R†HR|g〉 = 〈g|R†RH|g〉+ 〈g|R† [H,R] |g〉
≤ E0 + ε. (3.24)

Thus, |h〉 is a low energy state, and we can interpret R as a generator for a unitary approximate
logical operator.

It is important to check that R is not mapping out of the ground space, so we need to ensure
that there is a large overlap. Let Π denote the ground space projector for H. By assumption the
model has a spectral gap ∆, so we find that

E0 + ε ≥ 〈h|H|h〉
≥ E0〈h|Π|h〉+ (E0 + ∆)〈h|1−Π|h〉 . (3.25)

Rearranging this, and noting that E0 can always be set to 0, we obtain

〈h|Π|h〉
〈h|h〉 ≥ 1− ε

〈h|h〉∆ . (3.26)

Thus, the action of the ribbon operators approximately preserves the ground space as long as they
approximately preserve the norm of the individual ground states (〈h|h〉 ≈ 1). If this condition does
not hold, R is annihilating the ground space.

Given an almost commuting pair of hermitian operators R and H, we can perturb to an exactly
commuting hermitian pair R̃ and H̃ such that the following holds: [3.46,3.47]

∥∥R− R̃∥∥
op
≤ γ(ε) and∥∥H − H̃∥∥

op
≤ γ(ε), where γ(ε) can be taken to be at most ε1/30. It is convenient to work with H̃

and R̃ since they can be simultaneously exactly diagonalized. We need to check that the assumed
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twisted commutation relation between R and L is approximately maintained when we consider R̃
and L.

δ ≥ ‖RL− ηLR‖op

=
∥∥(R− R̃+ R̃)L− ηL(R− R̃+ R̃)

∥∥
op

≥
∥∥R̃L− ηLR̃∥∥

op
−
∥∥(R− R̃)L− ηL(R− R̃)

∥∥
op
. (3.27)

Rearranging and using standard inequalities, we find∥∥R̃L− ηLR̃∥∥
op
≤ δ + (1 + |η|)γ, (3.28)

and so the twisted commutator is approximately preserved. The same argument shows that L
approximately commutes with H̃ and thus approximately preserves its ground space.

We now check that the action of L on eigenstates of R̃ maps to a nearly orthogonal state and can
therefore be used to manipulate information in the code space. Since H̃ and R̃ exactly commute,
we can find a joint eigenstate |g̃〉 such that R̃|g̃〉 = g̃|g̃〉 and H̃|g̃〉 = E0|g̃〉, then

δ ≥ |〈g̃|RL− ηLR|g̃〉| , (3.29)

and therefore

|〈g̃|L|g̃〉| ≤ δ

|g̃||1− η| . (3.30)

We have already assumed that R maps a ground state to an approximately normalized state, so
|g̃| ≈ 1. Therefore, the action of L maps |g̃〉 to an approximately orthogonal state.

Thus, even approximate ribbon operators preserve the ground space (or annihilate it). Together,
these results provide a certificate of topological order, at least when the strong assumptions of the
derivation are met. In addition to providing such a certificate, this also shows that the method of
ribbon operators can be used to obtain approximate logical operators even if the topological phase
is already known. The ribbons can be used to enact logical operations on encoded qudits even
when the underlying model is not an exact topological quantum code, such as in the case of the
honeycomb model.

Recent work has investigated the possibility of certifying degeneracy in the ground space of
a Hamiltonian using “approximate symmetries”. [3.48] In the case of unitary ribbons and η =
exp(iθ), the authors showed that if ‖[H,R]‖, ‖[H,L]‖, and

∥∥[R,L]η
∥∥ are sufficiently small, then the

degeneracy of the ground space can indeed be certified as larger than some integer specified by θ. In
the nontrivial case (i.e. ground space degeneracy larger than 1), the operators act as approximate
logical operators when restricted to the ground space. One could utilize this result, along with the
numerical procedures outlined in this work, to prove topological degeneracy by investigating the
behavior of the cost function on different manifolds.

3.7 Summary and Outlook

We have introduced the method of ribbon operators for detecting topological order. By identifying
features expected in topologically ordered spin models, we have defined a cost function which
quantifies the extent to which operators on the lattice realize these features.

Using a variational minimization algorithm on this cost function over the space of matrix product
operators, we have demonstrated that this method can distinguish nontrivial topological order from
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non-topological phases in various models, both integrable and nonintegrable. We have also shown
how, with additional assumptions, ribbon operators can be used as approximate logical operators
in topological quantum error correcting codes, which provides a specific sense in which they can
certify the presence of topological order.

The most obvious open question is to extend these methods to other models, including those with
nonabelian topological order. These nonabelian models are particularly interesting from a quantum
information perspective as they can be utilized for universal quantum computation. [3.5,3.6] Another
open question is whether this method can be extended to detect symmetry-protected or symmetry-
enriched topological order, but this would seem to require new ideas.

Even without generalizing the method to deal with nonabelian models, there are several natural
ways in which our approach can be improved and extended. One could proceed by either changing
the cost function, the variational class, or the optimization method. We begin by discussing a
natural restriction on the allowed MPOs.

As shown in Section 3.5.1, some topologically trivial models support zero-cost ribbon operators
when the variational class is all MPOs of a given bond dimension. These operators corresponded
to products of projectors onto local ground states. Although such operators have low cost, they are
not good signals of topological order, since the η for which [R,L]η = 0 is not unique because R and
L mutually annihilate. This behavior could be removed by insisting that the ribbon operators be
unitary. In addition to removing these false signals, a unitary constraint would ensure that ribbon
operators properly preserve the norm of states on which they act. As discussed in Section 3.6, this
property is important if the ribbons are to be interpreted as approximate logical operators for a
quantum error correcting code.

A potential failure mode for this method is ‘high-temperature topological order’. Suppose there
is some gapped state high up in the spectrum of the Hamiltonian, for example, at the top of the
spectrum. It is conceivable that such a state could posess a ‘topological order’ distinct from the
low-energy space. In this case, the method may find signals of TO which are originating from the
high-energy portion of the spectrum. Such a failure mode could be combated by incorporating a
low-temperature thermal state into the cost function. This would bias the norm towards the low-
energy space, without the need for computing the ground state itself. Note that low temperature
thermal states have efficient PEPS descriptions, [3.49, 3.50] so the computational benefits of this
method may remain.

One may also consider applying the method to seek out such high-energy topologically ordered
subspaces in models with trivial ground spaces. This may provide an avenue towards interesting
thermal physics with a topological flavor.

There are various alterations which can be made to the cost function defined in Section 3.2.2.
Recall that our cost function used the η-commutator to incorporate the topological data. This is
associated with the R matrix of the anyon model. A natural replacement for, or addition to, this
term would be a term involving the S̃ matrix. It is an open question if the current method or any
of these suggested generalizations can be used to obtain the complete S and R matrices of a model.
Recall from Section 3.2 that in the abelian case, there is a column permutation of S which cannot
be fixed. This could be addressed by ensuring all ribbons lie on comparable supports, for example
circles or L shaped regions.

As discussed in Section 3.2, insisting that a ribbon R commute with the Hamiltonian on all
eigenspaces (e.g. using the Frobenius norm ‖[R,H]‖) is probably too strong to identify the topo-
logical order present in all models. One usually discusses topological order only with respect to the
low-energy sector of the model. We propose that rather than taking the norm of the commutator,
a variational low-energy state, for example in PEPS [3.22] or MERA [3.51] form, could be used
to supplement the algorithm. Alternatively, one could use a low-energy thermal state as discussed
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above. Rather than evaluating norms, one could evaluate expectation values on these low energy
states. This bypasses problems associated with finding ground states of 2D Hamiltonians, since the
state need only be low energy and supported on a strip only just wider than the ribbon itself. Access
to a state may be required for the extension to nonabelian models, where the excited spectrum is
expected to be more exotic than in the abelian case and reflect the structure of the fusion space of
the underlying anyons.

It would be interesting to apply the method to models where the topological order is still debated,
for example the Heisenberg model on the Kagome lattice. When our cost function is encoded into
an MPO for minimization using DMRG, it has a large bond dimensions since it is quadratic in
the Hamiltonian of the model. This makes it computationally expensive to minimize. To approach
these more complex models, it may be necessary to make use of properties of this MPO, such as
sparsity, to reduce this cost. Alternatively, one could modify the cost function to reduce the bond
dimension, or use another method to minimize it.

The assumptions used in Section 3.6 are stronger than the constraints imposed in our numerical
work. Understanding how to weaken these assumptions would provide additional justification for
this method, and may provide insight into possible additional constraints which a ribbon operator
should obey to ensure it is truly certifying topological order. It would also be interesting to blend
our algorithm with the results of [3.48] with a view to certifying topological degeneracy.
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and topology, Annals of Physics 325, 2153–2192 (2010), arXiv:1001.3807 .
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Appendices

3.A Z2 Quantum Double

The cost function for a pair of width 1 ribbon operators in the Z2 quantum double model defined
in Eq. 3.18 (with (J, h, λ) = (1, 0, 0)) can easily be written. Define the lattice as in Fig. 3.1, and let
the strings R and L have supports on the horizontal and vertical strips respectively. Beginning with
ribbon R, we see that there are no Hamiltonian terms contained completely within the support.
Thus the first term in the cost vanishes. The same happens for ribbon L.

The next term concerns those Hamiltonian terms which cross the boundary. There are two
classes, those with support on a single spin inside R and those supported on a pair of spins in R.
Each dark plaquette ( ) contributes to a term in the first class, with each spin j in R being touched
by a pair of such plaquettes. Therefore at this stage we have an initial cost function C0 for the
commutator part given by

C0(R) =

2
N∑
j=1

‖[R,Xj ]‖2
 , (3.31)

where N is the number of spins on which R is supported. Each light plaquette ( ) contributes a
two-spin term, so the costs become

C0(R) =

2

N∑
j=1

‖[R,Xj ]‖2 +

N∑
j=1

‖[R,ZjZj+1]‖2
 . (3.32)

For convenience, assume two-site translationally invariant product operators for both R =
· · · abab · · · and L = · · · cdcd · · · . This cost function becomes

C0(R) =2
N

2
‖[a,X]‖2 + 2

N

2
‖[b,X]‖2 +

N

2
‖[ab, ZZ]‖2 +

N

2
‖[ba, ZZ]‖2 , (3.33)

since N/2 of the sites of R support operator a and N/2 sites support operator b.
There are no more terms contributed by the commutator with the Hamiltonian. It remains to

include the twisted commutator terms. The ribbon L can intersect R with either a c site or a d
site. Recall that we require that all translations of L are considered, so we obtain

C1(R; η) =
∑
j

∥∥∥[rj , c]η

∥∥∥2
+
∑
j

∥∥∥[rj , d]η

∥∥∥2
, (3.34)

where rj is the operator at site j of ribbon R. Notice that each rj is required to η−commute with
both c and d. In this way, the insensitivity of this term to the particular support of L is ensured.
This term gives

C1(R; η) =
N

2

∥∥∥[a, c]η

∥∥∥2
+
N

2

∥∥∥[b, c]η

∥∥∥2
+
N

2

∥∥∥[a, d]η

∥∥∥2
+
N

2

∥∥∥[b, d]η

∥∥∥2
. (3.35)
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Combining these two costs, we obtain the total cost function for ribbon R

C(R; η) =
1

N
(C0(R) + C1(R; η)) (3.36)

= ‖[a, Z]‖2 + ‖[b, Z]‖2 +
1

2
‖[ab,XX]‖2 +

1

2
‖[ba,XX]‖2

+
1

2

∥∥∥[a, c]η

∥∥∥2
+

1

2

∥∥∥[b, c]η

∥∥∥2
+

1

2

∥∥∥[a, d]η

∥∥∥2
+

1

2

∥∥∥[b, d]η

∥∥∥2
. (3.37)

The cost for ribbon L can be obtained analogously, giving

C(L; η) = ‖[c, Z]‖2 + ‖[d, Z]‖2 +
1

2
‖[cd,XX]‖2 +

1

2
‖[dc,XX]‖2

+
1

2

∥∥∥[a, c]η

∥∥∥2
+

1

2

∥∥∥[b, c]η

∥∥∥2
+

1

2

∥∥∥[a, d]η

∥∥∥2
+

1

2

∥∥∥[b, d]η

∥∥∥2
. (3.38)

Notice that C1(R; η) = C1(L; η). Care should be taken with this term since [ · , · ]η is not symmetric
in its arguments.

It is easy to check that, as expected, these cost functions are both zero when we set a = b = X,
c = d = Z and η = −1, corresponding to the known string operators for this model.
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Abstract

We study ’t Hooft anomalies of discrete groups in the framework of (1+1)-
dimensional multiscale entanglement renormalization ansatz states on the lat-
tice. Using matrix product operators, general topological restrictions on con-
formal data are derived. An ansatz class allowing for optimization of MERA
with an anomalous symmetry is introduced. We utilize this class to numeri-
cally study a family of Hamiltonians with a symmetric critical line. Conformal
data is obtained for all irreducible projective representations of each anomalous
symmetry twist, corresponding to definite topological sectors. It is numerically
demonstrated that this line is a protected gapless phase. Finally, we implement
a duality transformation between a pair of critical lines using our subclass of
MERA.

Quantum many-body models of strongly interacting spins display surprisingly complex emergent
physics. Understanding general classes of collective behaviors corresponds to understanding which
phases of matter can be realized through local interactions. The universal behavior of phases, and
their transitions, is determined by the fixed points under renormalization group (RG) flows [4.1,4.2].

Symmetries play a fundamental role in the understanding of phases, due to constraints they
impose on RG. Indeed, the conventional classification of phases describes how a symmetry can be
broken [4.3]. Distinct quantum phases emerge even without a broken symmetry [4.4–4.8]. In the
absence of intrinsic topological order, these phases are known as symmetry protected topological
(SPT) phases [4.9–4.12]. Despite having no topological order and no local order parameter, SPT
phases are resources for quantum computation [4.13–4.17].

On the lattice, symmetries are usually assumed to act independently on each site. More exotic
symmetries, which cannot be made on-site, have recently been studied in chains of anyons [4.18–4.22]
and at the boundary of SPT phases [4.23–4.32]. In fact, a classification of SPTs can be obtained
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by considering possible boundary actions of the symmetry. Equivalence classes of such symmetries
are labeled by the ’t Hooft anomalies [4.33] of a discrete group. Such anomaly labels are preserved
by symmetric RG transformations, so restrict the possible fixed points [4.34].

Tensor network methods [4.35–4.37] allow anomalous symmetries to be realized directly on the
lattice. In (1 + 1) dimensions, matrix product operators (MPOs) capture all ’t Hooft anomalies of
discrete groups [4.23–4.26]. Within the framework of tensor networks, phases are classified at the
level of states. For example, matrix product states (MPS) have proven particularly successful for
the study of gapped spin chains [4.38–4.47]. Despite substantial complications arising for tensor
networks in higher dimensions; significant progress has been made, particularly in the study of
topological states [4.48–4.57].

Imposing on-site symmetries on tensor network representations of quantum states is well un-
derstood [4.58–4.60]. Far less effort has been made to study the effect of anomalous group actions
on these states. Such group actions naturally arise as the effective edge symmetries of (d + 1)D
SPTs [4.28–4.30]. In (2 + 1)D, the edge theory must either spontaneously break this symmetry or
be gapless. Since all MPS break the symmetry [4.23], to study gapless, symmetric edge theories we
turn to another class of tensor networks known as multiscale entanglement renormalization ansatz
(MERA) [4.61]. These networks draw on ideas from RG to represent the low energy states of gapless
Hamiltonians [4.61–4.63].

In this work we define a variational subclass of MERA which can be used to simulate SPT edge
physics in a manifestly symmetric way. This subclass allows us to investigate the interplay between
RG and anomalies in the framework of tensor networks. We use tensor network methods to derive
general consequences of an anomalous symmetry on the conformal field theory (CFT) data of an RG
fixed point. For a family of Hamiltonians, corresponding to a line of fixed points, we numerically
optimize within our variational class to find the lowest energy states and extract conformal data
[4.64,4.65]. We observe the effects of the anomaly in these results. Furthermore, we demonstrate that
as a consequence of the anomaly these Hamiltonians admit no relevant, symmetric perturbations.
The Hamiltonians therefore support a gapless phase which is protected by an anomalous symmetry.

More generally, RG fixed points may transform non-trivially under an anomalous group action.
Our variational class accommodates this possibility, and hence permits the study of gapless models
which are not symmetric. We utilize this in a numerical simulation of two critical lines that are
related by a duality transformation, which we implement at the level of a single tensor.

This paper is organized as follows: In Section 4.1, we introduce background material on anoma-
lies, symmetries and tensor networks. In particular, we introduce the ’t Hooft anomaly of a discrete
symmetry. We then briefly review the MERA and what it means for it to be symmetric under
an on-site group action. The difficulties in enforcing anomalous MPO symmetries locally are then
discussed. In Section 4.2, we derive general consequences of an anomalous symmetry on a MERA,
which are later utilized in the numerical simulations. We study anomalous symmetry twists and
the projective representations under which they transform. From these ingredients, projectors onto
definite topological sectors are constructed. Consequences for fields within a sector are discussed. In
Section 4.3, we define a variational subclass of MERA which is later used for manifestly symmetric
simulations. We present a disentangling unitary capable of decoupling a local piece of an anomalous
Z3
N group action. This allows the unconstrained variational parameters of any symmetric MERA

scheme to be isolated, and therefore optimized over. In Section 4.4, we bring together tools devel-
oped in the preceding sections to simulate a family of Hamiltonians with three critical lines. One
of these lines possesses an anomalous symmetry, whilst the other two are dual under the anoma-
lous group action. We present conformal data for these critical lines obtained from a numerically
optimized MERA, including two nontrivial topological sectors for the symmetric line. Additionally,
we demonstrate that the symmetric line is in fact a protected gapless phase. In Section 4.5 we
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summarize the results and suggest several possible extensions of this work.
We have included several appendices for completeness. In Appendix 4.A we provide conformal

data obtained from a symmetric MERA in all topological sectors for the symmetric line of our
example model. Additionally, we present fusion rules for these topological sectors computed using
a symmetric MERA. In Appendix 4.B we review the notion of third cohomology for an MPO rep-
resentation of a finite group. In Appendix 4.C we provide details of our ansatz for MPO symmetric
MERA including example tensors for two MERA schemes. In Appendix 4.D we describe a general-
ization of the CZX model [4.23] to arbitrary finite groups G, such that the bulk symmetry acts as
an MPO duality of G-SPT phases on the boundary.

4.1 Symmetries and anomalies in MERA

This section introduces the main tools and concepts utilized in the remainder of this manuscript. We
begin by discussing ’t Hooft anomalies of group actions, including some historical context. Lattice
realizations of these anomalies, and their influence on tensor network states, are our primary objects
of study. Readers unfamiliar with this terminology may skip to Section 4.1.1 for the definition of
anomaly used throughout this work. We then review the MERA, the tensor network designed for
critical behavior, and define what it means for it to be symmetric under a unitary group action.
We briefly explain how one enforces an on-site symmetry via a local constraint before moving on to
discuss the difficulties in enforcing an anomalous symmetry in a similar fashion.

Recently anomalies have played an important role in the classification and study of topological
phases of matter [4.27, 4.66, 4.67]. Particularly relevant are ’t Hooft anomalies, which describe ob-
structions to gauging a global symmetry [4.33]. SPT phases, and their higher symmetry generaliza-
tions [4.68–4.70], can be classified by the possible ’t Hooft anomalies on their boundaries [4.28–4.31].
Conversely one can think of the possible ’t Hooft anomalies as being classified by what is known as
anomaly inflow from one dimension higher [4.27–4.29,4.31,4.32].

A global symmetry with an ’t Hooft anomaly has an interesting interplay with the renormaliza-
tion group (RG). For a connected Lie group symmetry, an ’t Hooft anomaly restricts the possible
RG fixed points, even if the symmetry is spontaneously broken [4.71,4.72]. In the case of a broken
discrete symmetry, this is no longer true. For a symmetry respecting RG flow, however, the ’t Hooft
anomaly can not change and hence constrains the possible fixed points [4.28].

Symmetry actions which can be realized independently on each site have trivial ’t Hooft anomaly
because they can be gauged directly on the lattice [4.26,4.73,4.74]. Conversely, this gauging proce-
dure cannot be applied directly to symmetries which cannot be made on site. Therefore, we treat
the ’t Hooft anomaly as an obstruction to making a symmetry action on-site [4.25,4.27,4.32].

For a discrete symmetry group G in (1 + 1)D, all ’t Hooft anomalies of bosonic unitary repre-
sentations occur on the boundaries of (2 + 1)D SPT phases, in other words they arise from anomaly
inflow. The anomalies can therefore be classified by H3(G,U(1)), the same set of labels as the
SPT phases [4.23,4.29,4.30]. In the next section, we describe how matrix product operators can be
utilized to represent these anomalous actions.

4.1.1 Symmetries on the lattice

In this work, we consider unitary representations of finite groups on the lattice. We say a state |ψ〉
is symmetric under a group G if Ug|ψ〉 = |ψ〉 for all g ∈ G, where Ug is some unitary representation
of the group.

The symmetry is on-site if the representation can be decomposed as Ug = ⊗Nj=1(ug)j , where
each (ug)j is a (local) unitary representation.
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Although group actions are usually considered to be on-site, this is not the most general way a
symmetry can be represented. A more general class of group actions can be represented by matrix
product operators (MPOs). Using the conventional tensor network notation [4.35–4.37], these are
denoted

Ug = g , (4.1)

where g next to the MPO indicates which group element it represents. We refer to the dimension
of the horizontal indices as the bond dimension of the MPO. The on-site case corresponds to bond
dimension 1, whilst arbitrary bond dimension allows representation of any unitary. We consider the
case of a constant bond dimension in the length of the MPO.

To form a representation, the MPOs must obey

g
h

= gh , (4.2)

for all lengths. In contrast to on-site representations, for bond dimensions larger than one this
does not hold at the level of the local tensors. Rather there is a tensor X(g, h), referred to as the
reduction tensor [4.23,4.42,4.44] (Appendix 4.B) such that

gh

X(g, h)†X(g, h)

g

h

X(g, h)X(g, h)†
= g

h

X(g, h)†X(g, h)

gh

. (4.3)

The reduction procedure need not be associative. When reducing three tensors, there are two
distinct orders of reduction which may differ by a phase φ

f

g

h X(g, h)

X(f, gh)
= φ(f, g, h)

h

g

f

X(f, g)

X(fg, h)

. (4.4)

As discussed in Appendix 4.B, φ is a 3-cocycle with [φ] ∈ H3(G,U(1)). Since on-site repre-
sentations are locally associative they have a trivial cocycle. Hence a nontrivial [φ] indicates an
obstruction to making the symmetry action on-site. We can therefore regard a nontrivial [φ] as a
nontrivial ’t Hooft anomaly for G in (1 + 1)D. We remark that each class of ’t Hooft anomaly can
be realized using MPOs in this way [4.26,4.53].

4.1.2 MERA and symmetry

In its most general form [4.61,4.62], the MERA can be thought of as a series of locality preserving
isometric maps

L(i) :
(
Cdi+1

)⊗Ni+1 →
(
Cdi
)⊗Ni

, (4.5)

where d
Ni+1

i+1 ≤ dNii . Since the size of the lattice decreases at each step, these maps can be thought
of as enacting a renormalization group on the real-space lattice. At the base (layer 0), the high
energy, short-wavelength, lattice scale Hamiltonian H(0) is defined, with subsequent layers defining
increasingly low-energy, long-wavelength effective theories

H(i+1) := L†(i)H
(i)L(i). (4.6)
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L(0)

L(1)

L(2)

L(3)

Figure 4.1: The MERA represents a quantum state using layers of isometric tensors. Together, these tensors
define a quantum circuit of logarithmic depth which can be used to prepare an entangled state from a product
state. If the tensors are chosen appropriately, the network is thought to be able to accurately represent the
ground state of gapless one-dimensional Hamiltonians. Throughout the paper we use a convention such that
tensor network diagrams read bottom-to-top correspond to matrix multiplication read left-to-right.

To correctly describe the physical RG fixed points, the MERA layers must be chosen to preserve
the low-energy physics of H(0).

For concreteness, in this discussion we specialize to the MERA depicted in Fig. 4.1, which we
refer to as the 4:2 MERA. This MERA is built from a single kind of tensor, an isometry from 4
sites to 2 sites. In general, these tensors may all contain distinct coefficients, although space-time
symmetries such as scale invariance can be imposed by, for example, forcing the tensors on each
layer to be identical. We remark that our results are not specific to this choice, rather they work
for all MERA schemes. In particular, in Appendix 4.C, we describe how the results apply to the
commonly used ternary MERA [4.62,4.63].

In the MERA the fundamental constraint that a symmetry is preserved under renormaliza-
tion is that each coarse-graining circuit acts as an intertwiner of G representations. That is, the
renormalized symmetry

U (i+1)
g := L†(i)U

(i)
g L(i), (4.7)

is again a representation of G. When this condition is satisfied the third cohomology anomaly
label of the symmetry does not change along the renormalization group flow [4.28, 4.31]. Hence
the presence of an anomaly does not introduce any additional constraints on the renormalization
process (which is to be expected for a discrete group).

For both practical and physically motivated reasons it is common to require further restrictions
on the form of a symmetry throughout renormalization. For example, at a scale invariant renormal-
ization group fixed point, the symmetry is also required to be scale invariant [4.63]. Furthermore,
along an RG flow one may require that the bond dimension of an MPO symmetry remain constant,
or grow subexponentially with the renormalization step. An extreme case is that of an on-site
symmetry where the bond dimension is always required to be one, such that the symmetry remains
strictly on-site.

4.1.3 On-site symmetry

In the case of a trivial ’t Hooft anomaly, a physical symmetry can be realized by an on-site repre-
sentation. For a MERA satisfying Eqn. 4.7, the ’t Hooft anomaly is preserved and hence it should
remain possible to realize the symmetry in an on-site fashion at each RG step. This additional

constraint is imposed by insisting that U
(i+1)
g remains an on-site representation. Therefore the

symmetry constraint becomes completely local [4.59].
The symmetry can then be enforced on a MERA state by ensuring that the local tensors are
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Figure 4.2: By applying the MPO to a half infinite chain, one can insert a domain wall between two dual
theories. If the MPO acts as a symmetry, this corresponds to putting the theory on boundary conditions
which have been twisted by the group element.

locality preserving intertwiners for the group action

ug ug ug ug

vg vg

=
ug ug ug ug

vg vg

, (4.8)

where the representation on each bond may be distinct. Standard results in representation theory
allow one to impose the conditions Eqn. 4.8.

4.1.4 Anomalous MPO symmetries

Generally (2 + 1)D SPT states are gapped in the bulk (on a closed manifold), but, on a manifold
with a boundary they either spontaneously break the ‘protecting’ symmetry, or possess gapless
excitations in the vicinity of the boundary [4.23]. Since the low energy physics is confined to the
edge, it is interesting to consider the low energy, effective edge theory. When restricting the on-site
bulk symmetry to the edge, it becomes anomalous with anomaly label [φ] ∈ H3(G,U(1)) matching
the bulk SPT [4.23,4.25,4.30]. An on-site representation of the bulk symmetry cannot be recovered
by any local operations on the edge.

Since anomalous symmetries cannot be made on-site, the condition in Eqn. 4.7 is no longer
strictly local. If the bond dimension of an MPO is allowed to grow at each renormalization step,
the only constraint in Eqn. 4.7 is that the symmetry remains a global representation.

So long as this constraint is satisfied, the nontrivial anomaly label [φ] ∈ H3(G,U(1)) of an MPO
representation, discussed in Appendix 4.B, is invariant under renormalization [4.28].

For anomalous symmetries the natural analogue to Eqn. 4.8 is

g

g

=
g

g

, (4.9)

which is a sufficient condition for a symmetric MERA, but is not necessarily implied by Eqn. 4.7.
We remark that this condition does not correspond to a local group action unless further assump-

tions are made. Consequently conventional techniques from representation theory do not suffice to
enforce the constraint. Despite this, in Section 4.3 we define a class of MERA which allow Eqn. 4.9
to be imposed via a strictly local condition.

Although Eqn. 4.9 generically allows the MPO to change one may wish to insist that the MPO
is fixed under the RG. For instance, at an RG fixed point where identical tensors are used at each
layer of the MERA.

Unlike an on-site symmetry, an MPO can act as a duality transformation between a pair of
critical models. This can be realized in MERA by allowing the MERA tensors themselves to change
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in Eqn. 4.9. We demonstrate such an action in Section 4.4.3. One can also use the MPO to create
a domain wall between the two critical theories by applying the MPO to a half-infinite chain. In
the case where the dual theories coincide (i.e. the MPO acts as a symmetry) this corresponds to
a symmetry twist (topological defect) or twisted boundary condition. This will be the subject of
Section 4.2.

4.1.5 Physical data from MERA

Once a MERA has been obtained, a variety of physical data can be extracted. The most straight-
forward of these is the energy of the MERA, which simply requires evaluation of 〈ψ|H|ψ〉.

For a MERA representing the ground state of a gapless Hamiltonian, one can also extract a
variety of data about the associated conformal field theory (CFT) [4.64, 4.65]. One can compute
the central charge as discussed in Refs. 4.63, 4.75 using the scaling of entanglement entropy in the
state. One can also obtain the scaling dimensions of the associated CFT [4.63, 4.75] by seeking
eigenoperators of the scaling superoperator

S1( ) = = λ . (4.10)

The scaling dimensions describe the decay of correlations in the theory. We will refer to ∆ =
− log2(λ) as the scaling dimension corresponding to a particular scaling field.

The scaling fields obtained from the scaling superoperator correspond to local fields in the CFT.
Given a symmetric MERA, one can also obtain nonlocal scaling fields by constructing the ‘symmetry
twisted’ scaling superoperators

Sg( ) = = λ , (4.11)

where is the symmetry MPO for the group element g. These fields correspond to a half infinite
symmetry twist, as in Fig. 4.2, terminated by a local tensor. Previously, nonlocal scaling operators
with a tensor product structure have been obtained in the same way [4.76], but this more general
class involving an anomalous symmetry was not investigated.

4.2 Symmetry twists and topological sectors

Once a symmetric MERA is optimized to represent the ground state of a critical model, conformal
data can be obtained as discussed in Section 4.1.5. In this section, we investigate the impact
that an anomalous symmetry has on such conformal data. In particular, we use the properties
of MPO group representations to obtain possible topological corrections to the conformal spins
when a symmetry twist is applied. We observe these corrections in our example model, as shown in
Table 4.1. Additionally, we construct the projective representations under which the nonlocal scaling
fields (as defined in Eqn. 4.11) transform. These allow us to construct projectors onto irreducible
topological sectors, extending the usual decomposition into symmetry sectors. We discuss the
constraints that this decomposition imposes on the operator product expansion of the CFT. For
our example model, we observe these constraints in Table 4.2.

Throughout this section, for simplicity of presentation, we treat the case of scale invariant
MERA with scale invariant MPO symmetry. Furthermore, we assume the technical condition that
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the MPO representation satisfies the zipper condition [4.26]

g

h
gh

X(g, h)†X(g, h)
=

gh

X(g, h)†X(g, h)

g

h

. (4.12)

These assumptions imply that the MPOs can be deformed freely through a symmetric MERA
network. We remark that representative MPOs satisfying the zipper condition have been given for
all anomalous discrete symmetries in (1 + 1)D [4.26]. Additionally, we have suppressed possible
orientation dependencies of the MPOs, although this effect is accounted for in our results. For a
full treatment of the intricacies that arise due to orientation dependence see Ref. 4.26. We note
that similar reasoning applies to MPOs not satisfying these simplifying assumptions.

4.2.1 Symmetry twist and topological correction to conformal spin

For a model described by symmetric Hamiltonian H, a symmetry twist can be created by acting
with an element of the group on a half-infinite chain. Hamiltonian terms far away from the end of
the twist are left invariant and the only remnant is a single twisted Hamiltonian term crossing the
end. This is captured by the MERA in Fig. 4.2 with uniform tensors.

The twisted Hamiltonian term can be used to close a chain into a ring of length L. In the case
of a trivial (identity) twist this yields periodic boundary conditions. For a nontrivial group element
this corresponds to a flux insertion through the ring as there is now a nontrivial monodromy around
the ring given by the group element.

The introduction of an MPO twist by group element g leads to a twisted translation operator

τg = · · · · · ·
g , (4.13)

which translates the system by one site without moving the end of the twist (previously noted in
Refs. 4.77,4.78). We will see that this leads to corrections to the conformal spin.

The untwisted translation operator for periodic boundary conditions satisfies τL1 = 1 which
implies that local fields have integer conformal spin [4.79]. The twisted translation operator satisfies
τLg = Tg where

Tg = g
· · · · · · (4.14)

is the Dehn twist operator. For a faithful on-site representation of g the order of Tg is simply
the order of g, denoted ng. Hence the conformal spins of g-twisted fields may have a topological
correction leading them to take values [4.79] in 1

ng
Z.

We now consider anomalous representations and show that the order of Tg is 2ng in some cases,
reflecting a further correction due to the anomaly. We observe this additional correction in our
numerical example, as shown in Table 4.1.

First we define

M
(g)
h = h

X(h, g)

X(g, h)†
, (4.15)

which corresponds to the action of h on the g twisted MERA shown in Fig. 4.2. It was shown in
Ref. 4.26 that

TgM
(g)
h = φ(g, h, g)M

(g)
gh , (4.16)
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where φ is the 3-cocycle of the MPO representation. Applying the Dehn twist ng times results in a
phase

T
ng
g M

(g)
1 =

ng−1∏
i=1

φ(g, gi, g)M
(g)
1 , (4.17)

where again ng denotes the order of g. Since g generates a subgroup Zng 6 G and

φg(i, j, k) := φ(gi, gj , gk) (4.18)

defines a 3-cocycle of Zng . Denote the relevant cohomology class by [φg] ∈ H3(Zng ,U(1)) ∼= Zng .
For simplicity, assume it has been brought into the normal form [4.80]

φg(i, j, k) = ω[φg ]i(j+k−j⊕k)/ng , (4.19)

where ω is a primitive nth
g root of unity and ⊕ denotes addition modulo ng. Hence

ng−1∏
i=1

φ(g, gi, g) = ω[φg ] (4.20)

and

T
ng
g = ω[φg ]

1. (4.21)

Consequently an anomaly [φ] for g-twisted fields may induce a further topological correction to their
conformal spins. In particular, the correction to the conformal spins take values in

1

ng
Zng +

[φg]

n2
g

. (4.22)

To make this argument we fixed a particular representative of φ, however the topological cor-
rection to conformal spin is a gauge invariant quantity and should not depend on this choice.

For the case of G = Z3
2, we observe this anomalous correction in our numerical example, where

we see quarter- and three-quarter- integer conformal spins (displayed in Table 4.1).

4.2.2 Projective representations and topological sectors

We proceed to construct topological sectors that have a definite topological correction to the con-
formal spin. These topological sectors are an extension of the usual symmetry sectors used to block
diagonalize a Hamiltonian.

Topological sectors are labeled by a conjugacy class C ⊂ G, indicating twist symmetry twist, and
a (projective) irreducible representation (irrep.) χµg of the centralizer of a representative element
g ∈ C. The topological sectors are mathematically described by Dφ(G), the quantum double of the
symmetry group G twisted by the 3-cocycle anomaly φ. This category determines all topological
properties of the sectors.

Since the MPO symmetry commutes with the MERA tensors, one can simultaneously diagonalize
the twisted scaling superoperator Sg(·) and the action of the symmetry. The vector space spanned

by g-twisted scaling fields (see Eqn. 4.11) transforms under a projective representation V
(g)
h of the

centralizer Zg. This projective representation has 2-cocycle φ(g) defined by

φ(g)(h, k) =
φ(g, h, k)φ(h, k, g)

φ(h, g, k)
, (4.23)
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which is the slant product of φ. The action is explicitly given by [4.26]

V
(g)
h =

h
X(h, h−1gh)

X(g, h)†

, (4.24)

where h−1gh = g for h ∈ Zg.
The g-twisted scaling superoperator commutes with the projective representation

Sg(V (g)
h (·)) = V

(g)
h (Sg(·)), (4.25)

and hence can be block diagonalized into projective irreps.
Topological sectors that contribute a definite correction to the conformal spin can be constructed

following the approach of Ref. 4.55. The first step is to form projectors |g, µ〉〈g, µ| onto the projective
irreps of Zg. For a twist g and projective irrep µ with 2-cocycle φ(g)

|g, µ〉〈g, µ| := dµ
|Zg|

∑
h∈Zg

χ̄µg (h)V
(g)
h , (4.26)

where dµ its dimension, χµg its character and ·̄ denotes complex conjugation.
The full scaling superoperator, taking into account all sectors, is given by

SG(·) :=
⊕
g

Sg(·). (4.27)

This commutes with the full |G|2 dimensional algebra spanned by V
(g)
h (note V

(k)
l V

(g)
h = 0 unless

k = h−1gh). This is a C∗ algebra [4.55] and can be diagonalized into blocks. The simple central
idempotents that project onto each irreducible block are given by

|Cg, µ〉〈Cg, µ| :=
∑
k∈Cg
|k, µ〉〈k, µ|, (4.28)

where Cg is the conjugacy class of g in G. These projectors block diagonalize SG(·) into irreducible
topological sectors. For the numerical example in Appendix 4.A, all conformal data is decomposed
into these sectors.

The topological sectors thus constructed have definite topological spin [4.55] (correction to con-
formal spin), which we observe in our example in Table 4.1. Additionally, these sectors obey a set
of fusion rules, and support a notion of braiding monodromy and exchange statistics. The full set of
topological data can be extracted from the idempotents constructed in Eqn. 4.28 via the procedure
outlined in Ref. 4.55.

In the MERA, with an MPO symmetry, the operator product expansion (OPE) [4.64, 4.65] for
scaling fields a and b in topological sectors labeled (C0, µ0) and (C1, µ1) can be computed using
[4.63,4.76]

a× b =
∑
g∈C0
h∈C1

a
bX(g, h)†

=
∑
c

Ccabc, (4.29)
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where the sum is over scaling fields c. Eqn. 4.29 is a tensor network realization of a pair of pants
topology with a and b at the feet and c at the waist. The fusion rules imply topological restrictions
on the OPE of scaling fields, generalizing symmetry constraints on the local fields. In particular,
Ccab = 0 unless the sector labeling c appears in the fusion product

(C0, µ0)× (C1, µ1) =
∑

(C2,µ2)

N
(C2,µ2)
(C0,µ0)(C1,µ1)(C2, µ2). (4.30)

We observe the constraints directly in the numerical MERA in Table 4.2.
Technically the symmetry twists and their fusion structure are described by the unitary fusion

category (UFC) VecφG while the topological sectors are given by its Drinfeld center Z(VecφG) —

equivalently the twisted quantum double Dφ(G) — which is a modular tensor category (MTC)
[4.81–4.86]. The mathematical structure of this MTC determines all topological properties of the
fields in each sector, including the topological correction to their conformal spin (equivalently the
exchange statistics), topological restriction on the OPE and monodromies (braiding) [4.87–4.91].

Interestingly the fusion rules for the topological sectors can be nonabelian, even when the sym-
metry group is abelian. This requires a nontrivial anomaly φ. This occurs in our numerical example
as discussed in Section 4.4 and Table 4.2.

4.3 A class of MPO symmetric MERA

To enforce a constraint on a MERA state requires an identification of the remaining variational
parameters in such a way that it is possible to optimize over them. In this section we describe an
approach that relies on a property of the MPO symmetry: the existence of a local unitary capable of
disentangling a contiguous region of each MPO into an inner part that forms a local representation
of the symmetry and is decoupled from the original MPO on the outer section. Given such a
local representation, conventional techniques can be used to ensure the MERA is symmetric. We
construct a large class of MPOs with this property and find the resulting constraints on the form
of symmetric MERA tensors.

4.3.1 Disentangling an MPO

For scale invariant MERA, where the MPO symmetry is required to be identical at all layers, the
goal is to identify a family of MERA circuits which locally coarse grains each MPO to itself. If
the MPOs form an on-site symmetry, standard techniques of representation theory allow this to
be achieved. For MPOs with bond dimension greater than one it is unclear how to apply these
techniques. Our approach involves disentangling a local piece out of each MPO. We can then use
representation theory to coarse grain this piece, allowing us to identify the desired family of MERA
circuits.

This approach may seem counter-intuitive since no local constant depth circuit is capable of
disentangling an MPO representation with a nontrivial third cohomology label into an on-site rep-
resentation. This does not rule out the possibility of disentangling a contiguous region without
decoupling the tensors in its complement. More precisely, there may exist constants b, k ∈ N such
that for all n ∈ kN (where k accounts for possible blocking of sites), and MPOs of arbitrary length
N , sufficiently larger than n, there exists some unitary Dn+2b acting on n + 2b sites (where b is a
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buffer depending on the correlation length of the MPO) such that

D†
n+2b

Dn+2b

=

ug

, (4.31)

for a local representation u
(n)
g acting on n sites.

This leads to a special form for a MERA tensor that coarse grains i sites into j sites, given by

D†
i

Dj

. (4.32)

In this form the MPO symmetry condition in Eqn. 4.9 becomes

u(i−2b)
g

=
u(j−2b)
g

, (4.33)

which can be handled using standard techniques from representation theory.

4.3.2 A class of anomalous Z3
N MPO symmetries

We now define a class of anomalous symmetries for the groups Z3
N . These symmetries exemplify

the role played by an anomalous symmetry both at the boundary of a two dimensional SPT phase
and as a duality of distinct one dimensional SPT phases [4.92–4.95]. They occur as the boundary
symmetry actions of Z3

N SPTs labeled by a type-III anomaly in two spatial dimensions [4.80].
In addition, they can be seen to act transitively on the set of one dimensional SPT phases with
Z2
N symmetry. This particular example is an instance of a more general relation between a two

dimensional G × H2(G,U(1)) SPT and the set of dualities of one dimensional G SPTs. Further
details about the specifics of the Z3

N models, including a fixed point bulk model, bulk to boundary
mapping and boundary Hamiltonian, as well as the more general case are contained in Appendix 4.D.

We consider a spin chain with a pair of N -dimensional spins at each site. For this discussion, we
label the first spin in red and the second in blue. Let ω = exp(2iπ/N) and define the generalized
Pauli operators via ZX = ωXZ. Below we work in the basis where Z is the diagonal clock matrix
and X is the shift matrix. We define the generalized controlled X and Z operators as

=
( )†

=
1

N

N−1∑
i,j=0

ωijZiXj (4.34a)

=
( )†

=
1

N

N−1∑
i,j=0

ωijZiZj (4.34b)

respectively.
Using the notation (α1, α2, α3) for an element of Z3

N , the group action is defined by the generators

(1, 0, 0)→
⊗
j

X
(1)
j (4.35a)

(0, 1, 0)→
⊗
j

X
(2)
j (4.35b)

137



CHAPTER 4. ANOMALIES AND ENTANGLEMENT RENORMALIZATION

(0, 0, 1)→ C, (4.35c)

where C is defined by the (periodic) circuit

C =

site

. (4.36)

The symmetry operators can be realized using a translationally invariant MPO with on-site
tensor defined by

(α1, α2, α3)

i j

i+ α1 j + α2

=
N−1∑
k=0

ωjα3(k−i)|i〉〈k|, (4.37)

with all other elements being zero. The reduction tensor (defined in Appendix 4.B) associated to
these MPOs is given by

X(α, β) =
N−1∑
x=0

ω−xα2β3

∣∣∣∣x+ α1

x

〉
〈x|. (4.38)

From this, one can verify that this MPO representation has cocycle φ(α, β, γ) = ωα1β2γ3 which is a
representative of the root ‘type-III’ anomaly [4.80].

4.3.3 Symmetric MERA tensors

The disentangling circuit, as defined in Eqn. 4.31, for this representation is given by

D2K =

K−1∏
j=1

CX1,2j+1CX2K,2j , (4.39)

and the residual local symmetry is given by

u
(2K−2)
(α1,α2,α3) =

(K−1∏
j=1

CZ2j,2j+1

K−1∏
j=2

CZ†2j−1,2j

)α3

. (4.40)

For further details see Appendix 4.C. This leads to the ansatz for MERA tensors

= , (4.41)

which allows the symmetry to be enforced by a local condition on each tensor.
The symmetry can then be enforced by ensuring the residual tensors obey the local conditions

= , (4.42)

which can be achieved using standard techniques of representation theory. We remark that the
on-site Z2

N symmetry is automatically enforced, without any further constraints.
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Since the action can be applied locally, this ansatz class can also be used to investigate how the
group acts on numerically optimized states which have not been constrained to be invariant. This
allows investigation of theories which are dual under anomalous group actions.

The constraint in Eqn. 4.41 was used in an exact renormalization scheme introduced in Ref. 4.96
for the case of a Z2 × Z2 symmetry [4.97]. The form of the information transmitted to the next
scale of renormalization is extremely restricted in this case. By considering more spins per site we
find a less restrictive ansatz, described in Appendix 4.C, capable of attaining accurate results as
demonstrated in Section 4.4. The scheme described in Ref. 4.96 does not see similar improvement
at larger blocking on a model which is unitarily equivalent to the one considered here [4.97]. After
blocking at least two spins per site, our ansatz cannot be captured by the approach of Ref. 4.96.

Analogous circuits exist for all MERA such that the number of ingoing/outgoing N -dimensional
indices is even. This leads to a family of symmetric MERA with increasing bond dimension and a
larger number of variational parameters. Eqn. 4.41 can also be generalized to other MERA schemes,
such as the ternary MERA as discussed in Appendix 4.C.

4.4 Example: A Z3
2 symmetric model

In this section we focus on the N = 2 case of the ansatz described in the previous section. We
consider a particular Hamiltonian which transforms under the type-III anomalous Z3

2 group action.
This Hamiltonian has three critical lines, one is symmetric and the other two are dual under the
group action. We numerically optimize over the ansatz class presented in the previous section along
these three lines. We present resulting conformal data for the local fields along each line, and for
two nontrivial topological sectors along the symmetric line. Furthermore, we numerically implement
the duality on the remaining pair of lines. Finally, we demonstrate that the symmetric line is a
gapless phase protected by the anomalous symmetry and translation.

For a MERA with bond dimension 8 corresponding to three qubits per site, the ansatz for the
tensors is

= , (4.43)

with symmetry constraint

= . (4.44)

This tensor contains all degrees of freedom which are not fixed by the symmetry, so can be
optimized over.

4.4.1 Family of Hamiltonians

The Hamiltonian we study is

H = −a∑(X
(1)
j +X

(2)
j )− b∑(Z

(1)
j Z

(1)
j+1 + Z

(2)
j Z

(2)
j+1)− c∑(Z

(1)
j X

(2)
j Z

(1)
j+1 + Z

(2)
j X

(1)
j+1Z

(2)
j+1), (4.45)
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a = 3 b = 3

c = 3

a = 0b = 0

c = 0

Para SB

SPT

ISING

MPO KT

Figure 4.3: Phase diagram of the abc model where a+ b+ c = 3. SB=Symmetry breaking, ferromagnetic
phase. SPT=Z2×Z2 symmetry protected topological phase. Para=Paramagnetic/disordered phase. RG fixed
points are indicated in red, and the dashed blue lines indicate the unitary mappings between the phases.
ISING=Ising duality map, KT=(Generalized) Kennedy-Tasaki transformation [4.98, 4.99], MPO=action of
(1,1,1) defined in Eqn. 4.35.

for positive values of (a, b, c). Here X
(1)
j (Z

(1)
j ) and X

(2)
j (Z

(2)
j ) are the qubit Pauli operators action

on the first and second qubit on site j. This model, which we refer to as the abc model, has a rich
phase diagram as depicted in Fig. 4.3, possessing fully symmetric disordered and SPT phases, in
addition to a fully symmetry breaking phase. For all values of (a, b, c), this Hamiltonian has an
on-site Z2×Z2 symmetry corresponding to Eqn. 4.35a and Eqn. 4.35b, whilst the anomalous action
exchanges the terms with strength a and c, so is only a symmetry when a = c. The SPT phase is
protected by the on-site symmetry.

We note that unitarily equivalent models have previously been studied [4.100–4.105]. The critical
lines in this model can all be exchanged by (nonlocal) unitary transformations, so all are known
to be described by a conformal field theory (CFT) with central charge 1. Additionally, the ground
state energy along each of these lines is known [4.103–4.105].

In Fig. 4.4, we study the model with a = c (referred to as the b line) using a MERA with full
anomalous symmetry enforced. For convenience, we allow a single transitional layer followed by
a scale invariant portion. This leaves a pair of tensors which completely specify the state. After
optimizing these residual degrees of freedom (2 × 16376 real parameters) within this symmetric
manifold, we obtain a good approximation to the ground state for all values of b, as evidenced
by the ground state energy in Fig. 4.4a (relative error O(10−4)). When the symmetry operator is
applied to the state, we see that the state is unchanged (a property which was explicitly enforced).
The central charge remains within 4.2% of the analytic value for all values of b, comparable to that
found in Ref. 4.105.

4.4.2 Scaling dimensions and topological sectors

From our optimized MERA tensors, we have obtained the scaling dimensions of the associated CFT
in each symmetry sector using Eqn. 4.10. The data is shown in Fig. 4.4b. As expected, the scaling
dimensions vary continuously with the parameter b.

The local fields are those of the compactified boson CFT at a radius

R2 =
π

2 cos−1( 2b
b−3)

. (4.46)
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Figure 4.4: MERA data for the abc model along the ‘b line’. This line is symmetric under the full Z3
2. CFT

data, including averaging process, is discussed in more detail in Appendix 4.A.
a) The energy of the optimized MERA state. The state remains a ground state when the anomalous symmetry
operator is applied.
b) Scaling dimensions of the associated CFT. These vary continuously with the parameter b. Points are
averaged MERA data, whilst black lines correspond to Eqn. 4.47a for integer e andm. Distinct colors/markers
indicate under which irrep. the fields transform.
c) Scaling dimensions of nonlocal operators corresponding to applying an anomalous symmetry (for group
element (1, 1, 1) defined in Eqn. 4.35) twist to half of the chain. Points are averaged MERA data, whilst black
lines correspond to Eqn. 4.47a for e,m ∈ Z + 1/2. Distinct colors/markers indicate under which projective
irrep. the fields transform.

The fields can be labeled by a pair of integers, and have scaling dimension ∆ and conformal spin s
given by [4.64,4.65]

∆e,m =
e2

R2
+
m2R2

4
, (4.47a)

se,m = em, (4.47b)

e,m ∈ Z.

Finally, we investigate the effect of (1, 1, 1) symmetry twist in Fig. 4.4c. By applying the symme-
try to half of the infinite chain we create the twist, and a set of nonlocal (with respect to the original
theory) twisted fields can be obtained [4.76]. These operators correspond to eigenoperators of the
‘symmetry twisted’ scaling superoperator (Eqn. 4.11). Since the symmetry acts projectively on the
twisted fields, they can be decomposed into projective irreps corresponding to definite topological
sectors. We can then diagonalize Sg(·) within each sector, allowing us to label the twisted fields by
the projective irrep under which they transform.

Again we can compare the numerically calculated twisted scaling dimensions to the analytic
results to identify conformal spins of the twisted fields. As displayed in Table 4.1, within each
topological sector, all conformal spins receive the same correction.

From the MERA data, we can identify the fields with a (1, 1, 1) twist as carrying scaling dimen-
sion and conformal spin given by Eqn. 4.47a and Eqn. 4.47b respectively, but with e,m ∈ Z + 1

2 ,
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Figure 4.5: MERA data for the abc model along the ‘a’ and ‘c’ lines. These are exchanged by the symmetry
action.
a) Ground state energy of the optimized MERA. By applying the symmetry operator to a state optimized for
the Hamiltonian with (a, b, b), we obtain a state which is the ground state of the Hamiltonian with parameters
(b, b, a). This demonstrates that the states are transforming properly.
b) The local fields in the CFTs describing these two lines are identical, but distinct from those on the ‘b’ line.

leading to quarter- and three-quarter- integer spins in this sector.
To examine the effect of the anomalous symmetry on the OPE, we computed fusion rules for

the topological sectors using Eqn. 4.29 for a symmetric MERA tensor. Despite the fact that the
symmetry group is abelian, we observe nonabelian fusion for all sectors with nontrivial twist. For
example, fusion of sectors with twist (1, 1, 1) results in only half of the trivial twist sectors. The
full set of fusion rules is given in Table 4.2 (Appendix 4.A).

In this example, the modular tensor category describing the topological sectors is Dφ(Z3
2). This

category is known to be equivalent to D(D4), where D4 is the symmetry group of a square. The
fusion table obtained from MERA matches that of Dφ(Z3

2) ∼= D(D4) [4.80,4.106–4.109].
The data for all topological sectors is displayed in full in Appendix 4.A.

4.4.3 Duality and domain walls

We have also studied the ‘a’ and ‘c’ lines which are not symmetric under the anomalous Z2, but are
exchanged by its action. We optimize over tensors of the form Eqn. 4.43, but do not enforce the
symmetry constraint on the residual degrees of freedom.

The ground state energy obtained after optimization along the b = c line is shown in Fig. 4.5a.
If the symmetry MPO corresponding to group element (1, 1, 1) is applied to the optimized state (via
local application of Eqn. 4.44), the result is an excited state. If the energy of this state is measured
using the Hamiltonian with parameters a and c switched, we see that it is a ground state. This
confirms that the state is transforming as expected under the anomalous action, that is, the MPO
is acting as a duality transformation of the ‘a’ and ‘c’ critical lines.

We also show the scaling dimensions of the CFTs corresponding to the two dual lines (Fig. 4.5b).
We observe that the local field content is identical, indicating that the same CFT describes these
two lines. This CFT is distinct (in its local content) from that describing the ‘b’ line, although it
still has central charge 1.

4.4.4 An anomaly protected gapless phase

In Ref. 4.23 it was shown that a phase with anomalous MPO symmetry can either be gapped and
spontaneous break the symmetry, or be gapless. Furthermore it is known from Refs. 4.18–4.20,
4.110, 4.111 that a topological symmetry, together with translation, can protect a gapless phase.
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Figure 4.6: Finite size scaling data for the fully symmetric sector of the model.
a) After rescaling the spectrum so that the lowest excitation is consistent with the lowest nontrivial primary
of the CFT, the fully symmetric states can be extracted. Fitting the data and extrapolating to the thermo-
dynamic limit gives the scaling dimension.
b) For almost the whole ‘b’ line, we observe that there are no fully symmetric states with scaling dimension
less than 2 (RG relevant). This implies that no local, symmetric, translationally invariant terms can be added
to the Hamiltonian to gap it out, thus the gapless phase is protected.

An anomalous MPO symmetry is in fact an example of a topological symmetry. Hence one may
suspect that there exist gapless phases protected by such a symmetry.

Here we demonstrate that under an anomalous Z3
2 symmetry, along with translations, the gap-

lessness of the Hamiltonian along the ‘b’ line is protected. That is, there are no translation invariant
terms which are both symmetric under the full anomalous symmetry and are relevant in the renor-
malization group sense, and would therefore gap the Hamiltonian.

Since the effect of translations cannot be tested in the MERA framework, we performed a finite
size scaling analysis [4.79] to test this. Using the ALPS MPS library [4.112, 4.113], the lowest
40 eigenstates of the Hamiltonian (Eqn. 4.45) along the ‘b’ line were obtained. Bond dimensions
were capped at 100 and lengths of between 6 and 55 sites (12-110 qubits) were considered. Scaling
dimensions are obtained by first normalizing the Hamiltonian such that the ground state has energy
0 and the first excited state has energy corresponding to the smallest nonzero scaling dimension of
the CFT [4.114]. The energy levels are then fitted as a function of 1/N and extrapolated to N =∞.
This is shown in Fig. 4.6a for b = .6.

The Hamiltonian and symmetry operators were then simultaneously diagonalized within this
subspace. In the fully symmetric sector (all symmetries acting as +1), the translation operator was
diagonalized, allowing the momentum to be extracted.

Under the combined action of the anomalous symmetry group and translations by a single spin,
there are no fully symmetric states with scaling dimension less than 2 (Fig. 4.6b). This implies there
are no local symmetric terms which can gap the Hamiltonian, thus the gapless phase is protected.
We remark that under the operator which translates by a full site; an RG relevant, fully symmetric
state with momentum zero does exist and therefore the Hamiltonian can be gapped by a staggered
term. A similar effect was observed in Ref. 4.18.

4.5 Conclusions

We have studied anomalous MPO symmetries in the framework of MERA. Following Ref. 4.28, the
third cohomology class of an MPO representation of a finite group was identified with an ’t Hooft
anomaly.
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The properties of a fully MPO symmetric MERA were derived, including anomalous symmetry
twists and the projective representations they carry. These were used to construct all topological
sectors. This construction allows the complete set of topological data to be extracted, including
a definite topological correction to the conformal spins of the fields in each sector and topological
restrictions on the OPE.

A local condition to enforce the symmetry in the MERA was formulated, which allows for
optimization of states with an anomalous symmetry. This ansatz works by locally disentangling the
symmetry action, decoupling degrees of freedom on which the action can be expressed locally.

By way of an example, MERA states were optimized for a Hamiltonian with an anomalous Z3
2

symmetry. We have obtained accurate energy and conformal data for states optimized over our
ansatz class, and demonstrated that the states transform as expected. All topological sectors were
constructed and the resultant topological data was extracted. The conformal data was computed
within each topological sector, and the projective action of the symmetry on the scaling fields was
found. Furthermore, a correction to the conformal spin was identified, and shown to match the
topological spin.

We applied the ansatz to study a duality of two critical lines. By extracting conformal data from
optimized MERA the local content of the dual CFTs was shown to match. It was demonstrated
that the action of the MPO mapped MERA ground-states optimized for Hamiltonians along one
line to ground-states of the dual Hamiltonians. This required the ability to apply the MPO in a
local fashion, which our ansatz permits.

We performed a finite size scaling analysis of the anomalous Z3
2 symmetric line for large sys-

tem sizes. It was numerically demonstrated that the anomalous MPO symmetry, together with
translation, protects a gapless phase.

There are several extensions of this work which suggest themselves. Our restricted MERA ansatz
was only constructed for a particular class of anomalous group actions. It would be interesting
to extend this to other MPOs, such as: nonabelian group representations with different cocycle
anomalies, the Ising duality map or the translation operator.

The most general extension conceivable is to a set of MPOs described by a unitary fusion
category [4.55, 4.115, 4.116]. While the construction of topological sectors is known in this general
case [4.55, 4.83, 4.84, 4.115–4.119], an ansatz which allows the symmetry to be enforced locally in
the MERA remains to be found.

It would be interesting to determine which of these general symmetries protects a gapless phase
such as the one observed in this work and those in Refs. 4.18–4.20,4.110,4.111.

One could adapt these results to the recent tensor network renormalization (TNR) [4.120–4.123]
scheme, constraining the RG flow to remain MPO symmetric. We remark that the Ising duality
has previously been studied both numerically, using TNR but without manifestly enforcing the
symmetry, in Ref. 4.77 and theoretically in Ref. 4.78.

It would also be interesting to consider the influence of an MPO symmetry on the entanglement
entropy. We remark that by considering MPO symmetries of topologically ordered tensor network
states in (2 + 1)D one recovers the topological entanglement entropy [4.54,4.55,4.124–4.126].

A particularly interesting future direction is to generalize our MPO symmetric MERA ansatz to
a (2 + 1)D MERA describing a topologically ordered state that is symmetric under an anomalous
PEPO symmetry.
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4.36 R. Orús, A practical introduction to tensor networks: Matrix product states and projected
entangled pair states, Annals of Physics 349, 117, arXiv:1306.2164 (2014).

4.37 J. C. Bridgeman and C. T. Chubb, Hand-waving and Interpretive Dance: An Introductory
Course on Tensor Networks, Journal of Physics A: Mathematical and Theoretical 50, 223001,
arXiv:1603.03039 (2017).

4.38 S. R. White, Density matrix formulation for quantum renormalization groups, Physical Re-
view Letters 69, 2863 (1992).
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Appendices

4.A Conformal data in all topological sectors

In this appendix, we present the full set of scaling dimensions extracted from the bond dimension 8
MERA with full anomalous symmetry enforced. The data is shown in Fig. 4.7 for the trivial twist,
and Fig. 4.8 and Fig. 4.9 for the nontrivial twists. Each subplot in these figures corresponds to a
distinct topological sector.

When examining the gray points, one notices a broken degeneracy. This was previously noted
in Ref. 4.105. We conjecture that this occurs via coupling of states which, in the field theoretic
limit, would be forbidden from coupling due to the full conformal symmetry. As such, we conjecture
that the scaling dimensions corresponding to degenerate fields obtained from the MERA experience
a splitting ∆MERA = ∆CFT ± ε, where the size of the splitting ε decreases with increased bond
dimension as the full conformal symmetry is effectively recovered.

To combat this splitting, we average the MERA scaling dimensions in an attempt to recover
the CFT values. When choosing which lines should be averaged together, we have taken all lines
of similar gradient and position on the plot. The result of this procedure is indicated in red, and
closely matches the CFT values.

The scaling dimensions and conformal spins in each topological sector are given in Table 4.1.
Table 4.2 shows the fusion rules for the sectors, computed using the symmetric MERA.

The irreps are given explicitly in Eqn. 4.48. Those below the line are nontrivial projective
representations.

χ1
±(100) = +1 χ1

±(010) = +1 χ1
±(001) = ±1 (4.48a)

χ2
±(100) = −1 χ2

±(010) = +1 χ2
±(001) = ±1 (4.48b)

χ3
±(100) = +1 χ3

±(010) = −1 χ3
±(001) = ±1 (4.48c)

χ4
±(100) = −1 χ4

±(010) = −1 χ4
±(001) = ±1 (4.48d)

α1
±(100) = ±1 α1

±(010) = X α1
±(001) = Z (4.48e)

α2
±(100) = Z α2

±(010) = ±1 α2
±(001) = X (4.48f)

α3
±(100) = X α3

±(010) = Z α3
±(001) = ±1 (4.48g)

β1
±(100) = Z β1

±(010) = X β1
±(001) = ±X (4.48h)

β2
±(100) = ±X β2

±(010) = Z β2
±(001) = X (4.48i)

β3
±(100) = X β3

±(010) = ±X β3
±(001) = Z (4.48j)

γ±(100) = ±X γ±(010) = ±Y γ±(001) = ±Z (4.48k)
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Topological Sector
Topological spin Scaling Dimension Conformal spin Parameters

Twist Proj. Irrep.

(000)

χ1
+ 0 e2

R2 + m2R2

4 em e,m ∈ 2Z

χ4
+ 0 { e2

R2 + m2R2

4 , 1} em e,m ∈ 2Z, em 6= 0

χ2
+ 0

e2

R2 + m2R2

4
em

e ∈ 2Z,m ∈ 2Z + 1

χ3
+ 0 e ∈ 2Z,m ∈ 2Z + 1

χ1
− 0 e ∈ 2Z + 1,m ∈ 2Z

χ2
− 0 e ∈ 2Z + 1,m ∈ 2Z + 1

χ3
− 0 e ∈ 2Z + 1,m ∈ 2Z + 1

χ4
− 0 e ∈ 2Z + 1,m ∈ 2Z

(100)
α1

+ 0
h+ h̄ h− h̄ h, h̄ ∈ { 1

16 ,
9
16}

h− h̄ ∈ Z

α1
−

1
2 h− h̄ ∈ Z + 1

2

(010)
α2

+ 0
h+ h̄ h− h̄ h, h̄ ∈ { 1

16 ,
9
16}

h− h̄ ∈ Z

α2
−

1
2 h− h̄ ∈ Z + 1

2

(110)
β3

+ 0
e2

R2 + m2R2

4
em e ∈ Z + 1

2 ,m ∈ Z
em ∈ Z

β3
−

1
2 em ∈ Z + 1

2

(001)
α3

+ 0
e2

R2 + m2R2

4
em e ∈ Z,m ∈ Z + 1

2

em ∈ Z

α3
−

1
2 em ∈ Z + 1

2

(101)
β2

+ 0
h+ h̄ h− h̄ h, h̄ ∈ { 1

16 ,
9
16}

h− h̄ ∈ Z

β2
−

1
2 h− h̄ ∈ Z + 1

2

(011)
β1

+ 0
h+ h̄ h− h̄ h, h̄ ∈ { 1

16 ,
9
16}

h− h̄ ∈ Z

β1
−

1
2 h− h̄ ∈ Z + 1

2

(111)
γ+

3
4 e2

R2 + m2R2

4
em e,m ∈ Z + 1

2

em ∈ Z + 3
4

γ− 1
4 em ∈ Z + 1

4

Table 4.1: Primary fields in each topological sector labeled by a twist (an element of G = Z3
2) and an

irreducible (projective) representation. These sectors are the simple objects of Dφ(Z3
2) ∼= D(D4).

Note that the choices of e and m allowed for each representation under the trivial twist corresponds to
(−1)e = χ(001) and (−1)m = χ(110), where χ is the representation being considered.
Projective representations in each topological sector are indicated in Eqn. 4.48, reproduced from Ref. 4.80.
The fusion table, computed using the symmetric MERA, for these sectors is explicitly presented in Table 4.2.
All sectors with a nontrivial twist have quantum dimension 2, and so are nonabelian.

155



CHAPTER 4. ANOMALIES AND ENTANGLEMENT RENORMALIZATION

Raw SDs Averaged SDs CFT

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

b

S
D
s

(000;+ + +)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

b

S
D
s

(000;−++)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

b

S
D
s

(000;+−+)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

b

S
D
s

(000;−−+)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

b

S
D
s

(000;+ +−)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

b

S
D
s

(000;−+−)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

b

S
D
s

(000;+−−)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

b

S
D
s

(000;−−−)

Figure 4.7: MERA scaling dimensions for the trivial twist of the abc model along the ‘b’ line. This line is
symmetric under the anomalous action of Z3

2.
Figure titles label: (twist label; irreducible representation label).
Grey points are the raw data extracted from the MERA. Red points correspond to averaged data as discussed
in Appendix 4.A. Black lines correspond to local fields of the compactified free boson CFT.
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Figure 4.8: Scaling dimensions for topological sectors with twists of the form (x, y, 0).
Figure titles label: (twist label; irreducible projective representation label).
Grey points are the raw data extracted from the MERA. Red points correspond to averaged data as discussed
in Appendix 4.A. Black lines correspond to equations in Table 4.1.
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Figure 4.9: Scaling dimensions for topological sectors with twists of the form (x, y, 1).
Figure titles label: (twist label; irreducible projective representation label).
Grey points are the raw data extracted from the MERA. Red points correspond to averaged data as discussed
in Appendix 4.A. Black lines correspond to equations in Table 4.1.
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Table 4.2: Fusion rules for Dφ(Z3
2) sectors computed from symmetric MERA. Cell entries denote the allowed

fusion outcome sectors for a × b. The OPE coefficients defined in Eqn. 4.29 are zero if the resultant field c
does not lie in an allowed sector.
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4.B MPO group representations and third cohomology

In this appendix we recount the definition of the third cohomology class of an injective MPO
representation of a finite group G, as first introduced in Ref. 4.23. MPO representations appear
in the study of (2 + 1)D SPT tensor network states and it was shown in Ref. 4.26 that they are
always injective. The presence of such an MPO symmetry has an important physical consequence;
all short range entangled states must break the symmetry, either explicitly or spontaneously. For
details about group cohomology theory in the context of SPT order we refer the reader to Ref. 4.12.

In an MPO representation of G, multiplying a pair of MPOs labeled by the group elements g0

and g1 is equal to the MPO labeled by g0g1 for every length. For injective MPOs there exists a
gauge transformation on the virtual indices that brings both representations into the same canonical
form [4.42, 4.44, 4.47]. This implies that there exists an operator (the reduction tensor) X(g0, g1) :
(Cχ)⊗2 → Cχ such that

g1

g0

X(g0, g1)X†(g0, g1)
= g0g1 , (4.49)

where X(g0, g1) is only defined up to multiplication by a complex phase β(g0, g1).
If we now multiply three MPOs labeled by g0, g1 and g2 there are two ways to reduce the

multiplied MPOs to the MPO labeled by g0g1g2. When only acting on the right virtual indices
these two reductions are equivalent up to a complex phase

g0

g1

g2 X(g1, g2)

X(g0, g1g2)
= φ(g0, g1, g2)

g2

g1

g0 X(g0, g1)

X(g0g1, g2)

. (4.50)

When multiplying four MPOs, one observes that φ has to obey certain consistency conditions.
By performing a series of moves (changing order of reduction), one can achieve the same reduction

g3

g2

g1

g0

= φ(g1, g2, g3)

g3

g2

g1

g0

= φ(g1, g2, g3)φ(g0, g1g2, g3)

g3

g2

g1

g0

= φ(g1, g2, g3)φ(g0, g1g2, g3)φ(g0, g1, g2)

g3

g2

g1

g0
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=
φ(g1, g2, g3)φ(g0, g1g2, g3)φ(g0, g1, g2)

φ(g0g1, g2, g3)

g3

g2

g1

g0

=
φ(g1, g2, g3)φ(g0, g1g2, g3)φ(g0, g1, g2)

φ(g0g1, g2, g3)φ(g0, g1, g2g3)

g3

g2

g1

g0

, (4.51)

implying that
φ(g0, g1, g2)φ(g0, g1g2, g3)φ(g1, g2, g3)

φ(g0g1, g2, g3)φ(g0, g1, g2g3)
= 1. (4.52)

This condition is known as the 3-cocycle condition and identifies φ as a 3-cocycle. As mentioned
above X(g0, g1) is only defined up to a complex phase β(g0, g1). This freedom can change the φ,
giving the equivalence relation

φ′(g0, g1, g2) = φ(g0, g1, g2)
β(g1, g2)β(g0, g1g2)

β(g0, g1)β(g0g1, g2)
, (4.53)

so φ is only defined up to a 3-coboundary. For this reason the single block MPO group representation
is endowed with the label [φ] from the third cohomology group H3(G,U(1)). One can check that
multiplying any larger number of MPOs does not give additional conditions/equivalences on φ.

One can use a similar argument to demonstrate that no injective MPS can possess an anomalous
symmetry. Assuming an injective MPS with tensor A is symmetric under an MPO symmetry for all
lengths, similar reasoning that lead to Eqn. 4.49 implies the existence of another reduction tensor
Y (g) satisfying

A

g

Y (g)Y †(g)

= A . (4.54)

Similar to Eqn. 4.50 we find that acting with multiple group elements leads to a complex phase
β(g0, g1)

g0

g1

A Y (g1)

Y (g0)
= β(g0, g1)

A

g1

g0 X(g0, g1)

Y (g0g1)

. (4.55)

We now consider the application of three group elements

A

g2

g1

g0

= β(g1, g2)

A

g2

g1

g0

= β(g1, g2)β(g0, g1g2)

A

g2

g1

g0
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= β(g1, g2)β(g0, g1g2)φ(g0, g1, g2)

A

g2

g1

g0

=
β(g1, g2)β(g0, g1g2)φ(g0, g1, g2)

β(g0g1, g2)

A

g2

g1

g0

=
β(g1, g2)β(g0, g1g2)φ(g0, g1, g2)

β(g0g1, g2)β(g0, g1)

A

g2

g1

g0

, (4.56)

which leads to a consistency equation

φ(g0, g1, g2) =
β(g0g1, g2)β(g0, g1)

β(g1, g2)β(g0, g1g2)
, (4.57)

implying φ is a coboundary. Therefore φ ∼ 1, is in the trivial cohomology class. Hence no injective
MPS can be symmetric under an anomalous MPO symmetry. This leaves open the possibility of a
non-injective MPS, describing a state which spontaneously breaks the symmetry. Alternatively a
symmetric state may be gapless and hence have no MPS description (with a fixed bond dimension).
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4.C Ansatz for MERA tensors with type-III Z3
N symmetry

In this appendix, we describe an ansatz for the tensors in a MERA with type-III Z3
N symmetry. Let

G = Z3
N , with action as defined in Eqn. 4.35. Let T be an isometric tensor with 2A upper indices

and 2B (B ≥ A) lower indices

T : (CN )⊗2A → (CN )⊗2B, (4.58)

T †T = 1
⊗2A
N . (4.59)

Define the decoupling circuit on 2K indices as

D2K =

K−1∏
j=1

CX1,2j+1CX2K,2j . (4.60)

Allowed MERA tensors are those given by

T = D†2B (1N ⊗ t⊗ 1N )D2A, (4.61)

where

t : (CN )⊗2(A−1) → (CN )⊗2(B−1), (4.62)

t†t = 1
⊗2(A−1)
N . (4.63)

The X portion of the symmetry is automatically enforced by this circuit. To enforce the CZ
part, one must ensure thatB−1∏

j=1

CZ†2j−1,2j

B−2∏
j=1

CZ2j,2j+1

 t = t

A−1∏
j=1

CZ†2j−1,2j

A−2∏
j=1

CZ2j,2j+1

 . (4.64)

4.C.1 4:2 MERA

For clarity, we now include the form of the constraint on the 4:2 MERA (introduced in Fig. 4.1)
with bond dimension N , N2 and N3:

= , (4.65a)

= , (4.65b)

= . (4.65c)
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Figure 4.10: The ternary MERA represents a quantum state using two types of tensors; unitary ‘disentan-
glers’ (rectangles) and isometric tensors (triangles).

4.C.2 Ternary MERA

For completeness, we show how our ansatz is applied to the ternary MERA shown in Fig. 4.10.
The ternary ansatz is commonly seen in the literature due to its relatively low optimization cost. A
ternary MERA is built from two kinds of tensors; unitary ‘disentanglers’ v (rectangles in Fig. 4.10)
and isometric tensors w (triangles in Fig. 4.10). In the general case, these tensors may all contain
distinct coefficients, although symmetries such as scale invariance can be imposed by, for example,
forcing the tensors on each layer to be identical.

For bond dimension N2 and N4, the constraint on the tensors is

= , = , (4.66a)

= , = , (4.66b)

with the obvious generalization to other bond dimensions.
We remark that although our examples drawn here map χ dimensional sites to χ dimensional

sites, this can be relaxed. This allows the effective dimension of the sites to be increased as desired.
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4.D Generalized ZN CZX model and its gapless boundary theory

The CZX model was introduced in Ref. 4.23 as a simple exactly solvable representative of the
nontrivial Z2 SPT phase in two spatial dimensions. In this paper we have considered the larger
symmetry group Z3

2 of the model for which it is a representative of the Z3
2 type-III SPT phase. In

this appendix we describe a simple generalization of the CZX model to a Hamiltonian with Z3
N

symmetry that is a representative of the root type-III Z3
N SPT. We then outline how this fits into

the more general setting of (1+1)D G-SPT dualities at the edge of a particular G×H2(G,U(1))-SPT
bulk in (2 + 1)D.

4.D.1 Definitions

The model is defined on a two dimensional square lattice with four ZN spins per site. For concrete-
ness we label them counterclockwise as follows

4

1 2

3

. (4.67)

Before stating the Hamiltonian, ground-state, and symmetries of the model we establish some
definitions:

P2 =

N−1∑
i=0

|i〉⊗2〈i|⊗2 (4.68)

X4 =

N−1∑
i=0

|i+ 1〉⊗4〈i|⊗4 (4.69)

|GHZ4〉 =
1√
N

N−1∑
i=0

|i〉⊗4 (4.70)

u−X = X1 ⊗X3 (4.71)

u+
X = X2 ⊗X4 (4.72)

uCZ = CZ12CZ
†
23CZ34CZ

†
41, (4.73)

where X,CZ are defined in Section 4.3.

4.D.2 Hamiltonian and ground state

The Hamiltonian is a sum of local terms acting on each plaquette of a square lattice H =
∑

p hp.
The terms are given by

hp = −
N−1∑
i=0

Xi
4 ⊗ P2 ⊗ P2 ⊗ P2 ⊗ P2, (4.74)
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which act on the lattice as

X4

P2

P2

P2 P2 . (4.75)

The ground state is unique for closed boundary conditions and is given by a tensor product of the
state |GHZ4〉 on the four spins around each plaquette

|ΨGS〉 =
⊗
p

|GHZ4〉. (4.76)

Note that this ground state is not a product state with respect to the locality structure we have
chosen by our grouping of spins into sites (if sites were instead defined to group the spins around
each plaquette it would be a product state).

4.D.3 Symmetry

To describe the Z3
N symmetry of the Hamiltonian in Eqn. 4.74 we first bipartition the lattice into

black (b) and white (w) sites, as indicated in Fig. 4.11. The generators are then given by

UX(1) =
⊗
b

u−X
⊗
w

u+
X (4.77)

UX(2) =
⊗
b

u+
X

⊗
w

u−X (4.78)

UCZ =
⊗
b

u†CZ
⊗
w

uCZ . (4.79)

One can verify that each of these operators is of order N and that they mutually commute. Fur-
thermore each local Hamiltonian term commutes with all symmetries and they leave the ground
state invariant. Note the UCZ symmetry is an on-site symmetry for our definition of site but would
not be if sites were instead defined by grouping the spins around each plaquette.

4.D.4 Boundary theory

In the presence of an open boundary the bulk Hamiltonian is extensively degenerate as it only
projects pairs of spins along the edge into the support subspace of P2. We identify effective ZN
edge spins with the N states in this subspace via the projector

∑
i
|i〉〈ii|. This identification is

indicated by { in Fig. 4.11. An edge site is formed by a pair of these spins, as shown in Fig. 4.11.
This identification provides an exact mapping from bulk operators to the boundary. The symmetry
acts on the edge as follows

UX(1) 7→
⊗
j

X
(1)
j (4.80)

UX(2) 7→
⊗
j

X
(2)
j (4.81)
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...
...

...

· · ·· · ·

i− 1 i i+ 1

2i− 3 2i− 2 2i− 1 2i 2i+ 1 2i+ 2 2i+ 3

Figure 4.11: Identification of the edge degrees of freedom.

UCZ 7→ C =

site

. (4.82)

Due to the grouping of edge spins into sites only the subgroup generated by UX(1) and UX(2) acts
on-site.

The bulk to boundary mapping can be used to find the edge action of certain operators that
leave no residual effect on the bulk of the ground state. In particular

(Z1)b2i 7→ Z
(1)
i (4.83)

(Z2)w2i−1 7→ Z
(1)
i (4.84)

(Z1)w2i+1 7→ Z
(2)
i (4.85)

(Z2)b2i 7→ Z
(2)
i (4.86)

(X2)w2i−1(X1)b2i 7→ X
(1)
i (4.87)

(X2)b2i(X1)w2i+1 7→ X
(2)
i , (4.88)

where the numbering is indicated in Fig. 4.11. We find an effective edge Hamiltonian by considering
symmetric perturbations in the bulk with minimal support.

(Z†1Z3)b2i(Z2Z
†
4)w2i+1 7→ Z†iZ

(1)
i+1 (4.89)

(Z1Z
†
3)w2i+1(Z†2Z4)b2i+2 7→ Z

(2)
i Z̃†i+1 (4.90)

(X2)w2i−1(X1)b2i + (Z1X2Z
†
3)w2i−1(X1Z

†
2Z4)b2i 7→ X

(1)
i + Z

(2)
i−1X

(1)
i Z̃†i (4.91)

(X2)b2i(X1)w2i+1 + (Z†1X2Z3)b2i(X1Z2Z
†
4)w2i+1 7→ X

(2)
i + Z†iX

(2)
i Z

(1)
i+1. (4.92)
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The edge Hamiltonian is given by

HEdge =−
∑
i

N−1∑
k=0

ck

N−1∑
j=0

(Z†i
jkX

(2)
i

jZ
(1)
i+1

jk + Z
(2)
i−1

jkX
(1)
i

jZ̃†i
jk)

−
∑
i

N−1∑
k=0

bk(Z
†
i
kZ

(1)
i+1

k + Z
(2)
i

kZ̃†i+1
k). (4.93)

where bk = bN−k. The Hamiltonian is fully symmetric under UX(1) and UX(2) while the parameters
transform as follows under C

ck 7→ ck−1, (4.94)

bk 7→ bk. (4.95)

When ck is the only nonzero parameter the Hamiltonian is in the [k] ∈ H2(G,U(1)) SPT phase,
while for bk = bN−k the only nonzero parameters it describes a symmetry broken phase. Hence the
C operator cycles the SPT phases [k] 7→ [k + 1] and the Hamiltonian is fully symmetric when all
ck = c0. This may correspond to an SPT critical point or a symmetry breaking point depending
upon the relative strength of the bk parameters.

4.D.5 General (1 + 1)D G SPT duality at the edge of a (2 + 1)D G × H2(G,U(1))
SPT

The above construction for Z3
N is a specific instance of a general connection between duality of

(1 + 1)D edge G SPT phases and a (2 + 1)D bulk G × H2(G,U(1)) SPT phase. This connection
may be of independent interest. The action of the bulk H2(G,U(1)) symmetry can be though of as
pumping G SPTs onto the edge.

Similarly to the case above, the Hilbert space of each spin is given by C[G] and 4 spins are
grouped per site of a square lattice. Rg denotes the right regular representation, we fix a choice
of representative for a set of generators of H2(G,U(1)) ∼=

∏
k ZNk (their products fix all other

representatives) and

R⊗4
g P4 :=

∑
g∈G
|hg−1〉⊗4〈h|⊗4 (4.96)

Cω12 :=
∑
g0,g1

ω(g0g
−1
1 , g1)|g0, g1〉〈g0, g1| (4.97)

uω := Cω12Cω23Cω34Cω41 (4.98)

for [ω] ∈ H2(G,U(1)).
The local Hamiltonian terms are given by

hp = −
∑
g∈G

R⊗4
g P4 ⊗ P2 ⊗ P2 ⊗ P2 ⊗ P2 (4.99)

acting on the square lattice similarly to the term in Eqn. 4.75. The ground state is again given by

|ΨGS〉 =
⊗
p

|GHZ4〉. (4.100)
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The global on-site symmetry is generated by

Ug =
⊗

R⊗4
g (4.101)

Uω =
⊗
b

u†ω
⊗
w

uω (4.102)

which can be seen to mutually commute and also commute with hp. These symmetries also leave
the ground state invariant.

As above, the effective edge spins are identified with the ground state subspace of plaquettes
crossing the boundary, via the projector

∑
g
|g〉〈gg|. The action of the symmetry on the edge is given

by

Ug 7→
⊗
i

Rg (4.103)

Uω 7→
∏
i

Cω2i,2i+1Cω
†
2i−1,2i. (4.104)

This forms a matrix product operator representation of G ×H2(G,U(1)) with 3-cocycle

α((g0, ω0), (g1, ω1), (g2, ω2)) = ω2(g0, g1). (4.105)

The edge action of Uω maps a G SPT phase [β] to [β+ω]. This can be seen by examining the effect
of Uω on a fixed point local Hamiltonian such as the G-paramagnet

H = −
∑
v

∑
g

(Rg)v. (4.106)

Alternatively, note the edge action of Uω restricted to an open chain is an MPO with two dangling
virtual indices associated to its boundaries. Denote this MPO Mω. Mω obeys the following com-
mutation rules R⊗Lg MωR

†⊗L
g = VgMωV

†
g . Here Vg is a projective representation of G, with cocycle

ω, given by

Vg =
∑
h

ω(h, g)|hg〉〈h|, (4.107)

which acts on one dangling virtual bond of the MPO. Hence applying Mω to a unique symmetric
ground state, such as |+〉⊗N , maps it to a state in the SPT phase [ω].
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Abstract

We study the realization of anyon-permuting symmetries of topological phases
on the lattice using tensor networks. Working on the virtual level of a projected
entangled pair state, we find matrix product operators (MPOs) that realize all
unitary topological symmetries for the toric and color codes. These operators
act as domain walls that enact the symmetry transformation on anyons as they
cross. By considering open boundary conditions for these domain wall MPOs,
we show how to introduce symmetry twists and defect lines into the state.

The low energy states of strongly interacting spin models can exhibit complex and exotic physics.
A particularly interesting class of models are those that are topologically ordered [5.1–5.3]. The
ground spaces of these models are promising candidates for robust storage of quantum information
[5.4–5.8].

If quantum information is encoded in the degenerate ground space of topologically ordered
systems, the action of anyon-permuting symmetries (APS) can be used to apply logical transforma-
tions [5.4]. These symmetries map among quasi-particle excitations without changing the topological
phase. Large classes of symmetry actions give the potential for fault-tolerant logic manipulation, a
prerequisite for effective quantum computation. Additionally, the introduction of symmetry defects
can increase the functionality of the code for quantum computation [5.9]. It is therefore important
to understand the interplay of symmetry and topological order in such spin models [5.10–5.16].

Recently, a connection has been made between fault-tolerant logical gates, locality-preserving
symmetries and anyon-permuting domain walls. In particular, an equivalence was established be-
tween such logical gates and domain walls for topological stabilizer codes [5.17–5.20].

In this paper, we take this connection as our starting point and investigate realizations of
such domain walls in two-dimensional topologically ordered models using projected entangled pair
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states (PEPS) and matrix product operators (MPOs) [5.21–5.24]. These tools allow the efficient
representation of ground states of topologically ordered models [5.25–5.29], and provide a useful
framework for the construction of domain walls.

By working with two important examples, the toric and color codes, we show how to construct
the domain walls corresponding to all APS and investigate their properties. In particular, we
do this without modifying the underlying PEPS description of the state. We are further able to
construct states containing APS defects [5.12–5.14, 5.30–5.34]. These defects enrich the properties
of the underlying topological model. In particular, they may allow more exotic fusion and braiding
than the original anyons [5.12, 5.13, 5.30], which can lead to increased computational power within
a model of topological quantum computing. The defects can also be used to introduce additional
encoded qubits, increasing the storage capacity of a code [5.9].

Although our discussion centers around two exactly solvable spin systems, the framework we are
advocating should be far more general. PEPS make it straightforward to move away from simple
fixed point models (models with zero correlation length). On the physical lattice, one expects the
string operators associated to the anyons to ‘spread out’ into wider ribbons [5.35,5.36], which makes
the local action of the APS operators much more complicated, whilst on the virtual level of the
PEPS these anyon string operators remain fully localized [5.29].

This paper is organized as follows: In Section 5.1 we review some ideas important to this work,
and introduce some notation for the remainder of the paper. In Section 5.2 we introduce the toric
code, including the anyon-permuting symmetries. We then introduce a PEPS for the ground states
of this model and discuss the realization of an anyon-permuting domain wall on this PEPS. Finally,
we show how to introduce APS defects carrying a definite generalized charge, and discuss fusion and
parent Hamiltonians of such defects. In Section 5.3 we discuss the color code, a topological model
with far richer symmetries than the toric code. We construct all domain walls of this topological
phase, and the corresponding defects. In Section 5.4 we summarize the results and discuss possible
extensions. For completeness, we include stabilizers for topological states with symmetry twists in
Appendix 5.A, and construct the domain wall MPOs for the ZN generalizations of the toric code
in Appendix 5.B.

5.1 Review: Topological order and PEPS

In this section, we review some key concepts, notation and conventions required for the remainder
of the paper.

We begin with a discussion of topologically ordered phases, the kind of symmetries they sup-
port and the connections to fault-tolerant quantum computation. This motivates the discussion of
locality preserving APS actions, domain walls, and defects. These topics form the primary objects
of study in this paper.

We introduce PEPS, the main tool used in this work, and a streamlined notation we use through-
out the paper. Following this, we discuss how local symmetries can be realized in PEPS for systems
without topological order. This motivates our realization of APS domain walls using matrix product
operators. We then describe topologically ordered PEPS, which form the basis of the remainder of
the paper.

5.1.1 Topological order and anyon-permuting symmetries

For our purposes, an intrinsic topological phase is defined by a set of anyon labels {ai} and their
braiding and fusion rules. These quasi-particles are a generalization of bosons and fermions, and
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ai

aP (i)
SP

Figure 5.1: Domain walls SP induce a permutation P on the set of anyons {ai} when they cross. To ensure
the topological phase is the same on both sides of the wall, only permutations that preserve the matrices S
and T of Eqn. 5.1 are allowed.

can exhibit more complex braid relations. These relations are captured by the T and S matrices of
the theory

Ta =
1

da
a , Sa,b =

1

D ā b
, (5.1)

where da is the quantum dimension of anyon a and D =
√∑

a d
2
a is the total quantum dimension.

These matrices define the self- and mutual- braid relations of the particles respectively [5.11], and
implicitly define the fusion rules.

We consider symmetries of the topological phase corresponding to a permutation of the anyon
labels that preserves these braiding relations [5.12,5.14–5.16,5.18,5.30–5.34]. We call this an anyon-
permuting symmetry (APS). As a consequence, the fusion rules are also preserved. In particular,
this means the vacuum must be invariant under any APS.

An anyon model can arise as the low energy spectrum of a gapped many-body spin model. On
the microscopic spin model, the APS may be realized via some complicated operator. The essential
features, however, are captured by the action on the emergent quasi-particles 1.

In general, the action of an APS has no locality constraints, however it is natural to assume
they will respect the underlying locality of the model. This means that the action of the symmetry
should map local operators to local operators. The most simple example is a transversal (on-site)
action, but more generally the APS may be realized as finite depth quantum circuits and spatial
transformations such as translations.

Domain walls

When a locality preserving APS acts on some region R of the lattice, it must act trivially far away
from the boundary of R. This is because, from the point of view of any operator within R with
support far from the boundary, the symmetry has been applied to the entire system. If the state
to which the symmetry was applied was a ground state, far from the boundary the state still looks
locally like a ground state. Conversely, if there was an anyon of type ai within the region R, it
is transformed to an anyon of type aP (i), where P is some permutation. The symmetry operator
can then be identified with a transparent domain wall in the vicinity of the boundary [5.18] of R.
Anyons are transformed when they cross such a domain wall as shown in Fig. 5.1.

1A given spin model may break the APS, leading to a richer theory of symmetry enriched topological phases
[5.12–5.16,5.34]. We will focus on models that do not break the symmetry.
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Topological order and fault-tolerant quantum computation

Topologically ordered models are of great interest in quantum information theory. Logical informa-
tion can be encoded in the degenerate ground space of the model [5.4–5.8], and is protected from
local noise processes by the topological properties of the model. A logical gate is any transformation
that maps among the allowed logical states. In the case of a topological code this is any transforma-
tion that preserves the ground space. Since any APS preserves the ground space of a topologically
ordered spin model, the action of such symmetries can be used to enact logical operations. Locality
preserving APS are particularly interesting from a quantum information perspective. This kind of
locality preservation means that the action does not spread errors in the code to the point where
encoded information is corrupted, and is referred to as a fault-tolerant logical gate [5.6, 5.7]. A
key question in quantum information is how to identify sets of fault-tolerant logic gates for a given
quantum error correcting code [5.37–5.40]. The identification of anyon-permuting domain walls
attempts to address this question for topological codes [5.18,5.19].

5.1.2 Projected entangled pair states

In this section we review some of the key properties of PEPS representations of symmetric states, and
some aspects of topologically ordered PEPS. For simplicity, we will assume translation invariance,
although this is not crucial.

A PEPS representation of a state is described using a set of tensors A, which we represent as

Aiα,β,γ,δ = α γ

β

δ i

, (5.2)

where the greek indices are referred to as virtual, and the roman index is ‘physical’. A PEPS
corresponds to a network of these tensors

|ψ[A]〉 = , (5.3)

where a line joined to a pair of tensors indicates contraction of indices, and some choice of boundary
conditions should be chosen. For a review of tensor network notation and PEPS, we refer the reader
to Ref. 5.24. A tensor may have more than one physical index attached to it, and we will usually
neglect drawing these to simplify the diagrams. Frequently, we will also suppress drawing the tensors
themselves. They will be implied at the intersection of indices. The notation for the above state
will therefore be

|ψ[A]〉 = . (5.4)

We now review the inclusion of local, physical symmetries in PEPS without intrinsic topological
order, and the inclusion of topological order via a virtual symmetry. In Section 5.2, we show how
these two properties can be combined.

173



CHAPTER 5. TENSOR NETWORKS WITH A TWIST

Local symmetries in PEPS

Consider, for the moment, the class of PEPS describing ground states of systems with no topological
order, and no spontaneous breaking of the symmetry. Within this class of PEPS, the action of a
transversal symmetry on a region R can be realized by an MPO domain wall acting on the virtual
bonds around the edge [5.41] of R

ug

ug

ug

ug

ug ug

=

g

, (5.5)

where the MPO tensors occur at the intersection of a red and black line. The four-index MPO
tensors have two (black) indices acting on the virtual bonds of the PEPS, and two (red) ‘virtual’
indices. These virtual indices are contracted to give the operator. The MPOs are labelled by a
group element g, and the collection of MPOs forms a representation of the symmetry group, so

g
h

=

gh

. (5.6)

The MPO can be pulled through the PEPS, leaving behind the physical symmetry action

g

=
g

ug , (5.7)

thereby allowing the symmetry transformed domain to be enlarged. In this way, we can propagate
the domain wall across the lattice, at the expense of a physical action. This ‘pulling through’
condition ensures the domain wall/symmetry correspondence holds on all regions.

This framework of virtual MPO representations allows for all symmetry protected topological
phases with on-site symmetry action to be realized in PEPS [5.41]. As discussed in Section 5.1.2,
a similar framework allows for the construction of PEPS with intrinsic topological order but no
symmetry. The aim of this paper is to combine these two properties in familiar PEPS states,
without altering the underlying topologically ordered state.

Topologically ordered PEPS

In this section, we briefly review a class of PEPS supporting intrinsic topological order. We restrict
our discussion to G-injective PEPS, which describe the ground states of quantum double models
[5.25].

Unlike the PEPS discussed in Section 5.1.2, a G-injective PEPS does not necessarily have any
physical symmetry, but does support a virtual symmetry

ug u†
g

ug

u†
g

= ug u†
g

ug

u†
g

, (5.8)
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→

Figure 5.2: The toric code is defined on a square lattice, with spins on edges. It is convenient to write
a PEPS tensor for each shaded plaquette. By inserting a bond at the vertex connecting adjacent gray
plaquettes, a 4.8.8 lattice is obtained.

when sufficiently many PEPS tensors have been blocked together. This is not a gauge transformation
as it holds at the single tensor level rather than u and u† being applied to adjacent tensors. This
condition is encoding a version of Gauss’ law for the anyons.

The PEPS is said to be injective if the tensor realizes an injective map from the virtual to
physical indices. A PEPS with a virtual symmetry cannot be injective (if the representation ug
is not the trivial representation), but can be G-injective, meaning the map is injective on the G-
invariant subspace.

Anyons can be represented on the virtual level of the PEPS [5.25,5.42,5.43] . Magnetic particles,
labelled by a conjugacy class containing g, can be inserted into the PEPS by inserting open strings
of ug on the virtual level . The bulk of these strings can be deformed using Eqn. 5.8, but the
end points are pinned in place and can therefore be measured. Electric (e) charges, labelled by an
irreducible representation χ, can also be included. For simplicity, assume that G is abelian. An e
particle can then be inserted using an operator Xχ on the virtual level such that Xχug = χ(g)ugXχ,
which ensures the correct braiding relations. We remark that the insertion of an electric particle is
not associated to a string. One can therefore define a state with a single e, but there is no physical
operator that can construct such a state. We will describe this for the special case G = Z2 in
Section 5.2.

5.2 Anyon-permuting symmetries of the toric code

In this section, we find an MPO that realizes the Z2 APS of the simplest topological phase, the
toric code [5.5]. This model describes a phase with a topological order known as the Z2 quantum
double. We will first introduce the model and a PEPS realizing this topological order.

The topological phase is defined by four anyons, conventionally labelled {1, e,m, em}. The fusion
rules are a× a = 1 for all anyons and e×m = em. The only nontrivial element of the T matrix is
Tem = −1, whilst all nontrivial S matrix elements are obtained from Se,m = −1/2. The only APS
is a Z2 symmetry defined by the action D(e) = m and D(e) = m. Note that this APS is distinct
from the Z2 symmetry defining the phase, which preserves the charge mod 2.

5.2.1 Topological PEPS

To construct the minimal square lattice PEPS realizing the Z2 quantum double topological order,
we consider Eqn. 5.8 with ug = Z, the qubit Pauli Z operator. To construct a Z2-injective PEPS
with this symmetry, we must ensure the dimension of the PEPS tensor in Eqn. 5.8 is at least 24/2,
since there are four virtual bonds each with dimension 2 and half of the virtual space is symmetric
(the even-parity subspace). It is therefore convenient to construct a PEPS tensor for each shaded
plaquette in Fig. 5.2, so that there are four physical qubits per tensor.
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Due to the topological order, the tensor must have a local, virtual Z2 symmetry

Z

Z

Z

Z

= , (5.9)

and must be an injective map (on the Z2-invariant subspace) from virtual to physical indices [5.25].
It is straightforward to check that a PEPS with nonzero elements

i + j

j + kk + l

l + i
i

j

k

l = 1, (5.10)

has this symmetry. Here, we place a physical spin on each horizontal/vertical edge, diagonal edges
correspond to the virtual indices, and all additions are taken modulo 2.

Anyons can be represented directly on the virtual bonds of the PEPS. As discussed in Sec-
tion 5.1.2, a state with a pair of m particles is created by

Z

Z Z

Z Z

, (5.11)

where the path of the string is arbitrary since the virtual symmetry Eqn. 5.9 can be used to move
it. A state with two e anyons is created by

X

X

, (5.12)

where the X operators are only placed at the end points of the string, corresponding to the location
of the excitations. Unlike the m type anyons, there is no string associated to the e particles on
the virtual level of the PEPS. In this sense, the e anyons are ‘localized’ since the presence of an
X operator signals the location of a particle. On the other hand, a Z does not signal the location
of an m since strings of Z operators can be fluctuated through the PEPS using Eqn. 5.9. It is
therefore possible to define a single e particle, by inserting a single X operator, although there is
no operation on the physical bonds that creates such a state. Conversely, no state with a single m
excitation can be defined.

5.2.2 Anyon-permuting symmetry

The only APS of this model is the transformation e ↔ m. On the virtual level, this can be
implemented by an operator that transforms pairs of X operators to strings of Zs. We recognize
this transformation as the Ising duality map D(o)

D(o)†XjD(o) =
∏
k≤j

Zk (5.13)
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D(o)†ZjD(o) = XjXj+1 (5.14)

performs has the desired action. On a line, this can be implemented by the circuit

D(o) =
HHHHHH

, (5.15)

where H is the Hadamard operator and is the controlled-X operator.
Since domain walls act around closed paths, corresponding to the boundary of a domain of

symmetry action, it is important to define a periodic version of this circuit. This can be done by
noting that the circuit D is realized by the MPO

D(o) =
H̃

H

H

H
H̃

H

H

H
H̃

H

H

H
H̃

H

H

H
H̃

H

H

H
H̃

H

H

H

, (5.16)

where H̃ =
√

2H, and

i

j

k

=

{
1 if i = j = k

0 otherwise
. (5.17)

The virtual indices of this MPO can be connected to produce a periodic operator that will be
referred to as D. The translationally invariant domain wall MPO is defined by

D =

H

H

H
H̃

, (5.18)

where the arrow indicates that in Eqn. 5.14 we made a choice Zj → XjXj+1 rather than Zj →
Xj−1Xj .

Since this MPO tensor is injective (as a map from virtual to physical indices), the tensor is
unique up to gauge transformations [5.44]. One such gauge transformation is the choice to block H̃
on the right, rather than the left, of the tensor in Eqn. 5.16.

On periodic boundaries, this operator ceases to be unitary, but remains an isometry up to a
rescaling of 1/

√
2. This can be seen by noting that

D

D†
= Fu u† , (5.19)

where

F =


1 0 0 0
0 Z 0 0
X 0 0 0
0 XZ 0 0

 , (5.20)

and u is a unitary gauge transformation. The notation here identifies left (right) virtual indices to
row (column) indices of the matrix and up (down) physical indices (black) correspond to operator
indices of matrix entries.
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R R′

a)

→ R R′

b)

R∪R′

d)

→R∪R′

c)

= =

Figure 5.3: Applying a transversal (on-site) symmetry to regions R and R′ (a) corresponds to domain walls
at the boundaries ∂R and ∂R′ (b). If the symmetry is transversal, is the same as applying the symmetry
to R∪R′ (c), so the domain walls should merge (d). For a non-transversal symmetry, a nontrivial operator
will remain along the merge.

The matrix u is unitary, so on periodic MPOs, these cancel with u† from the neighboring tensor.
The off-diagonal elements of F do not contribute on periodic MPOs since the trace (with respect
to the virtual indices) is taken. The MPO on N sites is therefore 1⊗N + Z⊗N , corresponding to
(twice) the projector onto the even parity subspace. On this subspace, which corresponds to the
support of the PEPS, D is unitary. We remark that the wall defined by D† permutes the set of
anyons in the same way as D, so corresponds to the same topological symmetry action.

By using the representation of anyons on the PEPS, along with the Z2 APS, we have constructed
an explicit MPO realizing the APS. For the remainder of this section we describe the properties of
this domain wall MPO, including how to terminate open walls to create APS twists with definite
generalized topological charge.

Algebra of domain walls

It is important to understand the algebra of the domain walls so that the action of multiple walls
can be computed. As an example, we will study the effect of applying the APS operator to disjoint
regions of the lattice. The MPOs form a representation the APS group when multiplied along
their whole length, as in Eqn. 5.6, but not at the local tensor level. Therefore, the multiplication
of domain walls on regions such as that in Fig. 5.3b) cannot be deduced directly from the group
multiplication.

Consider applying an APS to adjacent regionsR andR′ as depicted in Fig. 5.3. This corresponds
to applying domain walls around the two boundaries ∂R and ∂R′. For a transversal (on-site) action,
the action on the full region R∪R′, so the domain walls should merge, leaving a single wall around
∂(R∪R′). For a non-transversal action, corresponding to a finite depth circuit, acting on R and R′
separately is not equivalent to acting on R∪R′ (i.e. Fig. 5.3a and Fig. 5.3c are not equal). There
are missing gates along the shared boundary.

We study this merging effect using the domain wall constructed in Eqn. 5.18. To determine the
difference between Fig. 5.3b and Fig. 5.3d, we proceed by applying the inverse of the larger wall (d),
followed by the action on the smaller regions (b). If the APS is realized transversally these actions
will cancel out, but if the symmetry is merely locality preserving there will be an action along the
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Figure 5.4: When merging two domain walls, the lattice geometry is altered along the wall. This is because
the symmetry does not act transversally. Along the interface, a lattice translation is implemented. The colors
correspond to those in the tensor network of Eqn. 5.22.

‘join’. Denoting D† by a blue line and D by a red line, the action on the PEPS is

=

1∑
i,j=0

Xi

Xj

i j (5.21)

= , (5.22)

where

i

j

k

=

{
1 if i+ j = k mod 2

0 otherwise
. (5.23)

Recall that our notation only indicates virtual indices, with a tensor at each vertex. The colors in
the PEPS diagram of Eqn. 5.22 are included for comparison with the lattice diagram in Fig. 5.4
as described below. The presence of a nontrivial operation along the line where the MPOs were
merged indicates the symmetry is not transversal.

The end points of this line correspond to lattice dislocations as shown in Fig. 5.4a. The state
(5.22) is the ground state of the toric code defined on this lattice. By performing unitary gates
and adding/removing ancilla qubits along the defect line, the lattice geometry can be restored. We
remark that this line has no effect on the anyons, and so corresponds to a topologically trivial
symmetry.

In this section, we have identified the behavior of MPO domain walls corresponding to symmetry
action on adjacent regions of the toric code. From this we observed that the physical APS action
is not transversal (on-site), rather the merging of walls leads to a lattice dislocation.

Symmetry action on excited states

The domain wall constructed in Eqn. 5.18 corresponds to the action of the symmetry on the vacuum.
We want to understand how to transform other low energy states, namely those with anyons inserted.
This will allow us to propagate the domain wall across the lattice. From a quantum computing
perspective, this will allow us to understand the action of fault-tolerant logic gates on states with
local errors. Since the APS action permutes the set of anyons, we expect the anyons in the interior
of the domain to be transformed appropriately.
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a) b) c)

Figure 5.5: To apply the APS to a region containing anyons, for example a pair of e excitations (a), we
need to deform the domain wall (using Eqn. 5.24) so that the interior contains only vacuum (b). Once the
domain wall MPO has been inserted, the anyon operators can be pushed through to the interior (c).

If there is an anyon within the region to which the APS is applied, as in Fig. 5.5a, there is an
obstruction to placing the wall around the boundary. One can use the relation

D

D†
= (5.24)

to deform the wall so as to avoid the excitation as shown in Fig. 5.5, leaving the interior in the
vacuum. We remark that the meeting of red and blue lines corresponds to an identity tensor. The
anyon string can now be commuted through the domain wall, leaving the transformed state in the
interior.

5.2.3 Symmetry defects and twists

So far, we have discussed closed domain walls, corresponding to applying the APS to some region
of the lattice. Given a symmetry, one can also consider inserting a defect line, which corresponds
to allowing the domain wall to have open boundaries. Anyons crossing this line are transformed as
usual, however we allow the line to terminate. We call this termination point a twist [5.9,5.30–5.32],
and it corresponds to a generalized topological charge [5.12,5.13,5.31].

The domain wall operator can be used to insert an APS defect into the PEPS

. (5.25)

Since the MPO has a nontrivial bond dimension, merely inserting an open MPO into the PEPS
would introduce additional physical (uncontracted) degrees of freedom. To retain the original spin
lattice, appropriate boundary conditions for the MPO need to be chosen. We can do this by
considering the following process [5.30]. Create a pair of e particles and move one of them around
the end point. If we move it around once, the particle crosses the defect line once and becomes an
m. Braiding it a second time recovers an e, which can be fused with the other particle

. (5.26)
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Following Ref. 5.30, we define a generalized charge as a twist that is invariant under this process.
For the toric code, Eqn. 5.26, reduces to

D D XZ v = λ D D v . (5.27)

The ends should therefore be chosen to be eigenstates of XZ. We will refer to the twist with v = |±i)
as the end vector as σ± for consistency with Ref. 5.30. Choosing other end points corresponds to a
superposition of σ+ and σ−.

We will now explore the topological properties of the twist defects resulting from this construc-
tion.

Fusion

We can use the twist MPOs to compute the enriched fusion rules. Fusing a twist with an m
excitation

σ±

=

σ±
Z

=

σ∓

, (5.28)

changes the type of twist at the end point. The same is true when an e is fused with a twist

σ±

=

σ±
X

= ±i
σ∓

. (5.29)

The situation is more complicated when two twists are fused. Following the discussion of domain
wall mergers in Section 5.2.2, we consider fusing a twist at the end of a D line with one that
terminates a D† wall. If one instead attempted to fuse a pair of D, there would be some topologically
trivial transformation (corresponding to a lattice translation) which may conceal the nontrivial
action. The result is

σ±

σ±

D†

D

=
a±

, (5.30)

σ∓

σ±

D†

D

=
b±

, (5.31)

where

=

(
1 0
0 Z

)
(5.32)

=


1 0
0 1
0 0
0 0

 (5.33)
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a± =
1√
2

(
1

±iZX

)
(5.34)

b± =
1√
2

(
X
±iZ

)
. (5.35)

The notation here identifies left (right) virtual indices to row (column) indices of the matrix and up
(down) physical indices (black) correspond to operator indices of matrix entries. Therefore, fusing
σ± with σ± leaves a superposition of: a string of 1 terminated at the location of the tensor marked
a± by a 1 (i.e. vacuum), and a string of Z terminated by ZX (i.e. an m and e at the same place,
so therefore an em particle). The fusion of σ± with σ∓ gives a superposition of: a string of 1
terminated by an X (an e), and a string of Z terminated by a Z (an m). The full set of fusion rules
(neglecting phases) of the defects are therefore

σ± × e = σ∓ σ± ×m = σ∓ (5.36)

σ± × σ± = 1 + em σ± × σ∓ = e+m. (5.37)

These rules are consistent with the known rules for this enriched model [5.30]. This shows that
the MPO construction gives an explicit realization of these defects.

Hamiltonian terms for twists

Using the domain wall/twist MPOs, one can construct Hamiltonians whose ground states correspond
to the PEPS with twists inserted. One such set of Hamiltonian terms is

S =

{ X

X

XX ,
Z

Z

ZZ ,
X

X

Z

Z ,
Z

Z

X

X ,
X X

X

Z

Z ,
Z

ZX ,∓
σ± XX

X

Y

Z

,∓ σ±
Y

X

X X

Z }
, (5.38)

where the final two terms correspond to the location of a twist of type σ±. By contracting these
terms against the PEPS tensors, one can check that the PEPS is a +1 eigenstate of each. Since
these terms are commuting stabilizers, the PEPS is the ground state of H = −∑h∈S h. We remark
that this Hamiltonian was constructed without needing knowledge of the physical action of the APS
on the underlying spin model, only the action on the anyon theory. Since the ground states of the
toric code with twist defects gives increased functionality for quantum computation compared with
the bare model [5.9], it is important to know how to prepare such states. The parent Hamiltonian
construction for PEPS [5.25, 5.45] may provide a way to find such Hamiltonians away from fixed
point models, where the physical APS action may be complicated.

5.3 Color Code

As a second illustrative example, we now construct the domain wall MPOs for a model with a richer
APS group than that of the toric code: the color code or Z2 × Z2 quantum double. This phase is
particularly interesting from a quantum computing viewpoint, since the APS group is sufficiently
rich that the full logical Clifford group can be implemented. This is the largest group of gates that
can be fault-tolerantly implemented on a 2D qubit stabilizer or subsystem code [5.39,5.46].

The color code is locally equivalent to two copies of the toric code [5.38, 5.40]. We will make
extensive use of this equivalence. The color code phase therefore has 16 abelian anyons, referred
to as eT , eB, mT , mB and their fusion products. The anyons labeled T (top) and those labeled B
(bottom) independently generate two copies of the toric code particles. The T matrix of the theory
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×

×

×

×

×

×

×

×

×

×

×

Figure 5.6: The color code is defined on a three-colorable lattice. In this work, we consider the 4.8.8 lattice
for simplicity. Qubits are located on the vertices. By applying a unitary transformation to each green square
of qubits, the color code can be decoupled into a pair of toric codes (located on the dashed lattice) and a
pair of local qubits. The PEPS tensors end up centered on the plaquettes indicated by ‘×’.

is defined by Teimj = −δi,j , where eimj := ei ×mj and δi,j = 1 if i = j. The S matrix is defined by
Sei,mj = −δi,j/4. Unlike the toric code, the symmetry group of this theory is nonabelian, and has
72 elements. We will discuss the APS in detail in Section. 5.3.1.

A stabilizer Hamiltonian that realizes the two dimensional color code can be defined on any
three-colorable, three-valent lattice. In particular, we specify to the 4.8.8 lattice (Fig. 5.6) for
simplicity. The Hamiltonian defining the code is

HCC = −
∑

p∈plaq.

(
X̄p + Z̄p

)
, (5.39)

where P̄p indicates the tensor product of P acting on all spins in plaquette p.
On the lattice, the equivalence to two copies of the toric code can be seen by acting with a local

unitary circuit. This circuit acts independently on each green (square) plaquette. It is convenient
to number the qubits

1 2

3 4

1 3

2 4
, (5.40)

where the dotted lines correspond to those in Fig. 5.6. The circuit then acts as

H

H

1

2

3

4

T

B

L1

L2

, (5.41)

with the leftmost gate being applied first. In this transformed code, the ‘L’ qubits are fully localized,
with the ground state being |0〉⊗N , so can be discarded. On the remaining spins, the Hamiltonian
corresponds to two independent toric codes, one defined on the ‘top’ T qubits and the other on the
‘bottom’ B spins. As mentioned above, the color code is interesting despite this equivalence as the
full Clifford group can be implemented transversally.

At all (green) plaquettes, the output qubits are labelled

T B

L1 L2
. (5.42)

Following this transformation, the stabilizers of the color code become

X̄R 7→
XT

XTZL1

XTZL1

XT Z̄R 7→
XB

XBZL2

XBZL2

XB (5.43)
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X̄B 7→
ZBZL1

ZB

ZB

ZBZL1 Z̄B 7→
ZTZL2

ZT

ZT

ZTZL2 (5.44)

X̄G 7→ ZL1 , Z̄G 7→ ZL2 , (5.45)

where the new code is defined on the dotted lattice in Fig. 5.6 with four spins per edge. The PEPS
tensor for this code is simply two copies of that in Eqn. 5.10

:= . (5.46)

To construct the full PEPS tensor for the color code, the discarded L qubits need to be inserted
and the (inverse of) the circuit Eqn. 5.41 applied.

5.3.1 Excitations, anyon-permuting symmetries and domain wall operators

We now introduce a generating set of APS transformations for the color code anyons [5.18], and
then construct domain wall MPOs implementing the appropriate transformation. The color code
supports four anyons and their fusion products. Generating anyons correspond to violating either
a Z or X type plaquette of color red or blue. We will refer to these particles using these labels,
for example the anyon corresponding to a violation of a red Z type stabilizer will be labelled rz,
whilst bx will refer to a violation of a blue X type plaquette. The green particles can be seen as a
fusion of these, for example gz = rz× bz. We can use the circuit (5.41) to find the toric code anyons
corresponding to those in the color code

rx 7→ eT bz 7→ mT (5.47)

rz 7→ eB bx 7→ mB. (5.48)

The permuting symmetries of these particles correspond to permutations of Pauli labels and
exchanging Pauli labels and colors. Following the notation of Ref. 5.18, we label the symmetry
elements as Wi. The APS group is generated by the 3-cycle z → x→ xz

W1 :

Color code Toric codes

rz 7→ rx eB 7→ eT
bz 7→ bx mT 7→ mB

rx 7→ rxrz eT 7→ eT eB
bx 7→ bxbz mB 7→ mTmB

, (5.49)

the 2-cycle x↔ z

W2 :

rz 7→ rx eB 7→ eT
bz 7→ bx mT 7→ mB

rx 7→ rz eT 7→ eB
bx 7→ bz mB 7→ mT

, (5.50)

and the Pauli/color exchanging transformation r ↔ x, b↔ z

W5 :

rz 7→ bxrx eB 7→ mB

bz 7→ bz mT 7→ mT

rx 7→ rx eT 7→ eT
bx 7→ rz mB 7→ eB

. (5.51)
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We have already seen that the toric code supports an e ↔ m APS. The color code therefore
supports this symmetry too. Applying this duality to the bottom toric code corresponds to W5.
The transformation W2 corresponds to swapping the two toric codes. The operator W1 corresponds
to a transversal controlled X gate from the top toric code to the bottom, followed by a swap. It
will be more convenient to work with the generators {W̃1 = W2W1, W2, W5}.

Domain wall operators

It is very straightforward to construct domain wall MPOs for the color code PEPS. The wall
corresponding to W5 is simply the one constructed in Eqn. 5.18 on the second toric code, with
identity on the first. The wall operator for W̃1 is a controlled X operator on each doubled bond,
controlled on the top toric code. Finally, the wall for W2 is a swap gate applied to each doubled
bond.

W̃1 → , (5.52)

W2 → . (5.53)

5.3.2 Anyon-permuting symmetry twists for the color code

The APS twists for W̃1 and W2 are straightforward to construct as the MPO already has trivial bond
dimension and the twists correspond to definite generalized charges. Using the same arguments as
in Sec. 5.2.3, one can check that the modified Hamiltonian terms for W̃1 are{

Y Y
X

X
XX

Y

Y

,
X X

Y

Y
YY

X

X

,−
Y Y

Y

Y
XX

Y

Y

,−
X X

X

X
YY

X

X

,
Z Z

Z

Z
ZZ

Z

Z

}
, (5.54)

where the X type term at the location of the twist is removed. For the twists associated with W2,
the modified terms are{

Z Z
X

X
XX

Z

Z

,
X X

Z

Z
ZZ

X

X

,
X X

Z

Z
ZZ

X

X

,
Z Z

X

X
XX

Z

Z

,
X X

X

X
ZZ

X

X

,
Z Z

Z

Z
XX

Z

Z

,
X X

X

X
ZZ

X

X

,
Z Z

Z

Z
XX

Z

Z

,
Y Y

Y

Y
YY

Y

Y

}
, (5.55)

where the Y type operator at the twist location is the only term there. For W5, the modified terms
are { Z Z

Z

Z

X

X
XX

,

X X

X

X

Z

Z
ZZ

,

Z Z
Z

ZZ

Z

X

X
XX

,

X X
X

XX

X

Z

Z
ZZ

,±
Z Z

Z

Z
ZY

Z

Z

X
XX

σ±

,±
X X

Z
Y

X

Z

Z
ZZ

Z

Z σ±

}
. (5.56)

Although these Hamiltonians were not constructed using the usual parent Hamiltonian approach,
we posit that such a construction could be used to find gapped Hamiltonian for more general APS
twists. The Hamiltonian terms for these states at the level of the doubled toric code are provided
in Appendix 5.A.
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5.3.3 Symmetry protected nature of the domain wall

It was noted in Ref. 5.18 that the domain wall W̃1 is associated with a one-dimensional Hamiltonian
in a nontrivial Z2 × Z2 symmetry protected topological (SPT) phase. Given the MPOs we have
constructed, we can explore this correspondence in the MPO framework. On the physical lattice, this
required the definition of an ‘excitation basis’. Using this basis required care as a state corresponding
to a single anyon is unphysical. In the framework of PEPS, this observation becomes straightforward.

Since the W̃1 domain wall acts on the top toric code with only 1 and Z, it can only create 1
and m anyons. On the bottom toric code, only 1 and e particles can be created.

Looking at Eqn. 5.12, we notice that the e particle becomes ‘localized’ on the PEPS. By this we
mean that the occurrence of an X operator on the virtual level signals the location of an excitation,
with no string attached to it. When looking for the presence on an m particle, it is not enough to
look at a single bond since a Z may be part of a string. By modifying the PEPS, we can ‘localize’
all particles to a single bond in this sense. The modified PEPS is

:= , (5.57)

where the top (red) PEPS tensor is that in Eqn. 5.10 with a Hadamard gate contracted onto each
index, both virtual and physical. The bottom (blue) tensor is left unchanged. Red bonds of this new
PEPS correspond to plaquettes in the top toric code. On this PEPS, mT excitations are created
by inserting X onto the appropriate red bond, whilst mB still corresponds to X on the appropriate
blue bond. There are no strings for either type of excitation, and in this way the existence of an X
directly corresponds to an excitation.

On this PEPS, we can write the W̃1 wall as

, (5.58)

where the virtual gate is a controlled phase gate in the X basis. This circuit can be recognized as
the one that creates the cluster state [5.47,5.48] from the vacuum |0〉⊗N . The domain wall therefore
has nontrivial SPT order with respect to a Z2 × Z2 symmetry. On this modified PEPS, the virtual
symmetry identifying the topological phase is

=

Z

ZZ

Z

=

X

X

X

X

, (5.59)

which commutes with the circuit Eqn. 5.58. We therefore see that the SPT nature of this domain
wall is protected by the virtual symmetry present throughout the phase, rather than being associated
with any property of the stabilizer code.

A similar analysis could be performed for other walls, for example W2W̃1W2. In this case, we
would also identify the wall as having an SPT property since the MPO is as in Eqn. 5.52, but with
the control and target qubits exchanged. We believe that this framework of virtual MPOs provides
a promising avenue to understanding the origin and nature of this SPT.
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5.4 Conclusions

We have investigated the interplay between topological order and anyon-permuting symmetries in
projected entangled pair states. By finding anyon-permuting domain walls, in the form of matrix
product operators, we have realized the full APS in two models of interest.

Using these MPOs, we have shown how to introduce APS defect (twists) into the PEPS by
finding appropriate boundary conditions for the MPO. This allows the defect fusion rules to be
obtained directly on the PEPS. Further, Hamiltonians that realize the PEPS with twist insertions
can easily be constructed.

The most obvious extension of this work is to the more general class of MPO-injective PEPS
[5.28,5.29,5.49]. This class realizes all known topological orders, by using virtual MPO symmetries
in place of the virtual group symmetry in Eqn. 5.8. The examples we have discussed generalize
straightforwardly to that framework, but a general condition for permuting anyons is unclear. In
particular, we do not know how to formulate a local rule for finding an MPO tensor such that the
full MPO performs the appropriate permutation of anyon sectors.

This work aimed to construct domain wall operators without otherwise altering the PEPS. In
particular, we did not require that the APS acts in a transversal manner. Using a generalization
of the string-net PEPS tensors [5.28, 5.29], one can construct states and MPO domain walls for
symmetry enriched topological orders with an transversal symmetry action [5.50]. Ref. 5.50 requires
that the symmetry action can be made transversal. As a result of our work, we conjecture that the
restriction to transversal APS is not required.

It would be interesting to deform the PEPS away from the fixed point and observe the effect
on the domain wall operators. In particular, we expect the SPT discussed in Section 5.3.3 to be
a property of the topological phase. It would be interesting to investigate the breakdown at the
phase transition to a trivial phase.

One of the primary uses of PEPS is as a variational class for numerical optimization. The
identification of domain wall MPOs in numerically obtained tensors would provide a way to identify
the logical gates in models away from the fixed point.

The Hamiltonians in Eqns. 5.38, 5.54-5.56 and Appendix 5.A did not make use of the parent
Hamiltonian [5.25,5.45] construction. It may be possible to extend the proofs of gapped parents to
the case of PEPS with MPO twist insertions, which would allow construction of gapped Hamilto-
nians for states with twist defects away from fixed point models.

In this paper, we have focused on the simplest topologically ordered models: the toric and
color codes. The general approach is not limited to these models, and we see no obstruction to
generalizing general quantum double models. In Appendix 5.B, we construct domain walls for some
of the symmetries of the cyclic quantum doubles. The extension to all abelian phases follows by
stacking layers, in the same way that the color code is built from stacked toric codes. The extension
to general groups is extremely interesting.
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straete, Characterizing Topological Order with Matrix Product Operators, arXiv:1409.2150
(2014).
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Appendices

5.A Hamiltonians for twists

In this appendix, we provide complete stabilizer Hamiltonians for the color code symmetry twisted
states, both on the doubled toric code and color code level.

The symmetry twists for W̃1 and W2 are straightforward to construct as the MPO already has
trivial bond dimension and the twists correspond to definite generalized charges. The toric code
Hamiltonian for the W̃1 twist is given by the stabilizers{

XT
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XTXT ,
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, (5.60)

and on the color code{
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For W2, the stabilizers are{
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on the toric code. On the color code, these become{
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For W5, the toric code terms are{
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along with all of the stabilizers of the top toric code, which remain unchanged. For the color code,
we obtain
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(5.65)
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5.B Abelian quantum double models

In this appendix, we generalize the domain walls to the case of the ZN toric code [5.5]. There are
N2 anyons in this theory which we label as eαmβ. The fusion rules for these particles are

egmα × ehmβ = eg+hmα+β, (5.66)

where + denotes addition mod N . The T and S matrices are given by [5.51,5.52]

Tegmα = χα(g), (5.67)

= ωαg, (5.68)

Segmα, ehmβ =
1

N2

(
χα(h)χβ(g)

)∗
, (5.69)

where χi is the ith irreducible representation of ZN , ω = exp(2πi/N), and ·∗ denotes complex
conjugation.

The symmetry group of these particles is rather complicated [5.13, 5.53–5.55], so we restrict to
a Z2 × Z2 subgroup generated by

D : egmα 7→ eαmg (5.70)

C : egmα 7→ e−gm−α, (5.71)

which we will refer to as the duality and charge conjugation symmetry respectively. As we have
discussed, this collapses to a Z2 when N = 2 since C the particles are self inverse.

5.B.1 Lattice Hamiltonian and PEPS

The Hamiltonian for which Eqn. 5.10 is the ground state can be generalized to the ZN topological
order by replacing the two dimensional spins with N dimensional ones. Define the generalized Pauli
operators so that

Z|j〉 = ωj |j〉 (5.72)

X|j〉 = |j − 1〉, (5.73)

where j ∈ ZN . The fixed point Hamiltonian we consider is

HZN = −1

2

∑(
XX

X

X
+ X†X†

X†

X†

)
− 1

2

∑(
Z†Z†

Z

Z
+ ZZ

Z†

Z†

)
. (5.74)

Define the generalized Hadamard gate as

H =
1√
N

N−1∑
j,k=0

ωjk|j〉〈k|, (5.75)

which acts on the Pauli operators as

HXH† = Z† (5.76)

HZH† = X. (5.77)
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One can readily verify that

j − i

j − kk − l

i − l
i

j

k

l = 1, (5.78)

defines a ground state for Eqn. 5.74. This PEPS has a ZN virtual symmetry generated by

Z

Z†

Z

Z†
= . (5.79)

A state with an m, m−1 pair is given by

Z

Z† Z†

Z† Z†

, (5.80)

where the path of the string is arbitrary since the virtual symmetry can be used to move it. A state
with an e, e−1 pair is created by

X†

X

. (5.81)

5.B.2 Domain wall operators

We begin with the MPO for the C symmetry, which implements charge conjugation on both e and
m anyons. On the level of the virtual strings, this can be implemented using

H2

H2

H2

H2

, (5.82)

where

H2 =

N−1∑
j=0

|j〉〈−j|. (5.83)

is the square of the ZN Hadamard operator (Eqn. 5.75).
The domain wall constructed for the Z2 case in Eqn. 5.18 can be generalized to the ZN case.

Since the symmetry generator is no longer self-inverse, we need two MPO tensors

D =
√
N ×

H

H

H
H†

(5.84)

195



CHAPTER 5. TENSOR NETWORKS WITH A TWIST

D =
√
N ×

H†

H†

H†
H

, (5.85)

where the PEPS tensors are dressed with arrows

, (5.86)

indicating which bonds the symmetry in Eqn. 5.79 acts as Z (outgoing) and which it acts as Z†

(ingoing).
Definite symmetry twists can be found by eigenstates of the double braiding process depicted

in Eqn. 5.26, which results in eigenvectors of Z†X being used to close the MPOs. There are N
distinct D twists, differing by the absorption of an e or m particle: σj × e = σj+1, σj ×m = σj+1.

5.B.3 Prime dimension codes

For the special case of Zp toric codes, with p prime, we can characterize the full symmetry group.
Consider the transformations

D : egmα 7→ eαmg (5.87)

Qn : egmα 7→ engmαin , (5.88)

where in is the modular inverse of n so in · n = 1 mod p. These transformations define a group
G = Z×p o Z2

∼= Dihp−1 of order 2(p − 1), where Z×p is the multiplicative group of integers modulo
p, DQnD = Qin and Dihn is the dihedral group of order 2n.

One can check that the S and T are preserved by this group. The symmetry C described above
corresponds to Qp−1.

The domain wall MPO for the transformation Qn is described by the matrix

Qn :=

p−1∑
j=0

|nj〉〈j|, (5.89)

where nj is taken modulo p.

196



Chapter 6

Conclusion

Tensor network methods have proven to be extremely useful for the study of strongly interacting
quantum systems. In this thesis, we have used techniques to study models in a variety of quantum
phases.

In Chapter 2, we reviewed the notation commonly used for tensor networks. We then discussed
some of the key tensor networks used in both quantum information theory and the study of many-
body spin models. Finally, we described some of the key results and techniques of the field.

In Chapter 3, we introduced a technique designed to identify the topological order from a given
spin Hamiltonian. This method aimed to bypass the hardness of finding ground states by working
directly with operators. Motivated by features of anyons, this algorithm attempts to optimise logical
operators for a ground-space quantum code. We demonstrated that this technique could efficiently
diagnose topological order in the nonperturbative regime.

In Chapter 4, we studied one dimensional spin models with exotic symmetry actions. We
considered spin models describing the low energy physics of two dimensional SPT states, where
the inherited symmetry exhibits an anomaly or obstruction to being made to act on-site. The
models could also be understood as self-dual one dimensional systems. We showed how to write
a tensor network with manifest anomalous symmetry using MERA and MPOs. We showed how
to variationally optimise over this class of symmetric networks. Given the optimised state, we
extracted the conformal and topological data of the spin model.

In Chapter 5, we brought together symmetry and topological order within a PEPS description
of the ground state of a spin model. We identified MPOs acting on the virtual level of the PEPS
which performed a permutation of anyons corresponding to a topological symmetry. We then showed
how to introduce symmetry twists into the tensor network by finding boundary conditions on the
MPOs. This allowed us to compute fusion rules for symmetry defects, and parent Hamiltonians for
the PEPS states with defects inserted.

Tensor networks have proven to be an incredibly powerful tool for the study of strongly-correlated
matter. For gapped Hamiltonians in one-dimension, matrix-product states have proven incredibly
powerful. In addition to the heuristic techniques such as DMRG (described in Sec. 2.5), there
are provably efficient algorithms for obtaining MPS ground states of 1D Hamiltonians [29–32].
Unfortunately, the overhead associated with these rigorous algorithms currently makes their imple-
mentation impractical. It would be extremely useful to find ways to reduce these overheads. The
use of heuristic algorithms such as DMRG is extremely prevalent in many-body physics, and look
set to become an important tool in other disciplines such as quantum chemistry [33, 34] and ma-
chine learning [35–38]. Finding algorithms which certify convergence to a global extremum would
be extremely useful in these applications.

The applications of tensor networks have, so far, been mostly limited to one-dimensional systems.
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One of the main challenges to their use in higher dimensions is finding the ‘correct’ class of network.
In one dimension, MPS and MERA are efficiently contractable, so they can be optimised and
physical data extracted. Unfortunately the most natural two-dimensional generalisation, PEPS,
seems to be too large. Computationally hard problems can be embedded into these networks, so they
cannot be efficiently contractable. The 2D version of the MERA network can be contracted [39,40],
but although the contraction is efficient in a complexity theoretic sense, the scaling makes their
application very limited. The primary methods employed to study two dimensional models are
‘snaked’ MPS [41, 42] and approximate contraction of PEPS [43–48]. In Chapter 3, we proposed
a physically motivated algorithm which attempts to bypass some of these issues for topologically
ordered models.

A great deal of progress has been made in the understanding of quantum phases via tensor
networks. Fixed point (zero correlation length) tensor network state have been found for many
phases, including topologically ordered [49–53], symmetry-protected [54,55] and symmetry-enriched
states [54,56]. These fixed point models teach us a great deal about the physics of these phases, but
it is important to know how to identify the special structure which characterises these networks in
more general tensor networks, such as those obtained by numerical optimisation. In Chapter 5, we
show how to identify the symmetry defects of a symmetry enriched phase without building it into
the PEPS.

One of the most important strongly-interacting models we know is the standard model of par-
ticle physics. Tensor network techniques have allowed us to study condensed matter systems in a
nonperturbative way, and people are now turning to the continuum [57–67]. Just as in spin models,
progress so far has been largely restricted to one-dimensional models. Although there are many
obstacles to the study of the full (3+1) dimensional standard model, tensor networks seem like a
promising framework.

Perhaps one of the most surprising applications of tensor networks is the study of the AdS/CFT
conjecture. First noted using the MERA network in Ref. 68, the connection has become a major
area of research in its own right [69–75]. By providing a concrete playground for study of the
conjecture in regimes (low central charge CFTs) that are challenging for more traditional methods,
tensor networks promise to shed light on theories of quantum gravity.
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pair states algorithm improved: Fast full update and gauge fixing, Physical Review B 92, 035142,
arXiv:1503.05345 (2015).

201

http://dx.doi.org/ 10.1007/s00220-017-2973-z
http://arxiv.org/abs/1602.08828
http://arxiv.org/abs/1405.1225
http://arxiv.org/abs/1405.1225
http://dx.doi.org/10.1140/epjd/e2014-50500-1
http://arxiv.org/abs/1407.2040
http://arxiv.org/abs/1612.06505
http://arxiv.org/abs/1612.06505
http://dx.doi.org/10.1561/2200000059
http://arxiv.org/abs/1609.00893
http://arxiv.org/abs/1605.05775
http://arxiv.org/abs/1605.05775
http://arxiv.org/abs/1605.03795
http://arxiv.org/abs/1605.03795
http://dx.doi.org/10.1103/PhysRevLett.102.180406
http://dx.doi.org/10.1103/PhysRevLett.102.180406
http://arxiv.org/abs/0811.0879
http://dx.doi.org/10.1103/PhysRevLett.104.187203
http://dx.doi.org/10.1103/PhysRevLett.104.187203
http://arxiv.org/abs/0904.3383
http://dx.doi.org/10.1126/science.1201080
http://arxiv.org/abs/1011.6114
http://dx.doi.org/ 10.1103/PhysRevLett.109.067201
http://arxiv.org/abs/1205.4858
http://dx.doi.org/10.1103/PhysRevLett.101.250602
http://arxiv.org/abs/cond-mat/0703788
http://dx.doi.org/10.1088/1742-5468/2009/09/P09006
http://arxiv.org/abs/0905.4880
http://www.romanorus.com/JordanThesis.pdf
http://dx.doi.org/10.1103/PhysRevB.90.064425
http://arxiv.org/abs/1405.3259
http://dx.doi.org/10.1103/PhysRevB.92.035142
http://arxiv.org/abs/1503.05345


BIBLIOGRAPHY

48 J. O. Iregui, M. Troyer, and P. Corboz, Infinite Matrix Product States vs Infinite Projected
Entangled-Pair States on the Cylinder: a comparative study, arXiv:1705.03222 (2017).
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