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Abstract

Like their classical counterparts, quantum codes are designed to protect quantum in-
formation from noise. From the perspective of information theory one considers the op-
erations required to restore the encoded information given a syndrome which diagnoses
the noise. From a more physics perspective, one considers systems whose energetically
protected groundspace encodes the information. In this work we show that standard
error correction procedures can be applied to systems where the noise appears as non-
abelian Fibonacci anyons. In the case of a Hamiltonian with non-commuting terms,
we build a theory describing the spectrum of these models, with particular focus on
the 3D gauge color code model. Numerics support the conjecture that this model is
gapped, which one would expect for a self-correcting quantum memory.
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CHAPTER 0

Overview

An error correcting code aims to store information that can survive the effects of noise.
A classical code will store bits of information, robust against bitflip noise. A quantum
code stores qubits of information, robust against quantum noise.

Presented as a code we have a set of check operators: measuring these gives the
syndrome which is used to diagnose the noise and hopefully restore the system in such
a way as to preserve the encoded information. This is active error correction. But we
can also put the check operators in a Hamiltonian. Now the protected state is found
in the groundstate of the system, and we can ask how this state is effected by thermal
noise. This is passive error correction, where the encoded information is protected
energetically.

In Chapter 1 we introduce the quantum stabilizer codes. These are abelian quantum
codes: the check operators all commute with each other. When we turn the check
operators into the terms of a Hamiltonian, we can easily find all the eigenvectors and
the spectrum. In this chapter, we connect quantum codes to classical (linear) codes
using the viewpoint of homology theory.

The remainder of this thesis aims to generalise these ideas to the non-abelian case,
and is made up of two parts. The first part is Chapter 2, which investigates qubit
Hamiltonian models with non-commuting terms. The second part is Chapter 3 and
4, where we study topological systems without reference to any underlying spins. As
Hamiltonians these will have commuting terms, but the associated algebra of observ-
ables is non-commutative.

In Chapter 2 we study the spectra of Hamiltonians built from Pauli spin (qubit)
operators. These spin operators lead a double life: both as the energetic terms of a
Hamiltonian model, and as the operators in a quantum error correcting code. When
these operators commute, the code is known as a stabilizer code. When they don’t
commute, the code is known as a subsystem code or gauge code. The resulting Hamil-
tonian groundstate becomes frustrated. For such a Hamiltonian to have any ability to
act as a quantum code we would expect a spectral gap between the groundspace and
first excited states. The goal of Chapter 2 is to study this spectral gap.

In Section 2.1 we show graphical depictions of some simple Hamiltonions and in-
troduce the action of the Pauli X and Z operators. In Section 2.2 we study the group
representation theory of subgroups of the (real) Pauli group on n qubits. We apply this
to the 2D compass model and the Kitaev honeycomb model in section 2.3. In Section
2.4 we find the irreducible representations of an arbitrary CSS gauge (subsystem) code.
This is a new result, and involves solving a quadratic system of equations over a finite
field.
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In the computational basis, CSS gauge code Hamiltonians have positive off-diagonal
entries and so can be viewed as the adjacency matrix of a weighted graph. This moti-
vates the ideas in Section 2.6, where we use Perron-Frobenius theory to describe the low
energy spectrum of such Hamiltonians. These are new results. In Section 2.7 we intro-
duce the 3D gauge color code Hamiltonian. Sections 2.8 and 2.9 discuss further ideas of
symmetry in these Hamiltonians: the orbigraph and the structure of finite dimensional
semi-simple Lie algebras. Using this we find that the gauge color code Hamiltonian
decomposes into six mutually commuting ideals. This gives an exponential reduction
in the numerical difficulty of exactly diagonalizing this Hamiltonian, results of which
we present in Section 2.10. These numerics show some evidence of a spectral gap,
which is contrasted against models that are known to be gapless: the two and three
dimensional compass model, the one dimensional XY -model and the one dimensional
transverse field Ising model. The chapter concludes with Section 2.11 where we suggest
a relation between the size of stabilizers and the gapped nature of the Hamiltonian.
This is further application of the Perron-Frobenius theory in the context of Cheeger
inequalities.

In Chapters 3 and 4 we investigate a quantum code built from a system supporting
anyonic excitations. These anyons are quasi-particles that live in a two dimensional
system and have exotic exchange statistics. Understanding these statistics involves
an appreciation of how the three-dimensional world-lines of these particles become
tangled, or braided together. This is a Schrödinger picture of the state, and there
is a corresponding Heisenberg picture of the observables that involves deforming the
underlying two-dimensional manifold. These ideas are discussed using the language of
modular functors in Chapter 3. The chapter builds up to a general theorem that allows
us to manipulate these states and observables in arbitrary ways.

In Chapter 4 we consider a quantum code whose protected quantum information is
stored in the fusion space of a torus. This is an active error correction scenario: noise
acts to create anyon excitations, the decoder then measures these charges and tries to
restore the system to the vacuum state by manipulating the anyons. Simulating this
on a classical computer is not expected to be possible, as these systems are sufficient
for performing arbitrary quantum computing. However, by decomposing the system
into non-interacting parts, we can access the low-noise regime. We show numerically,
in Section 4.5, that this code has a threshold for noise, below which error correction
succeeds asymptotically as the code size increases. Much of this work relies on the
theory developed in the previous chapter.
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CHAPTER 1

Introduction

In this chapter we give a brief introduction to the theory of quantum error correcting
codes [30, 35]. This will form the foundation for the rest of the thesis, in terms of being
the “easy” version of all that follows.

1.1 Homology of a surface

We begin with a consideration of “size”, or “counting”. To denote the size of something
A we write µ(A). Size is additive in the sense of µ(A ∪B) = µ(A) + µ(B) except that
A and B may have intersection. In this case we would have counted the size of the
intersection twice and so we modify this formula as

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

We can continue this idea to find the size of the union of three pieces

A

B

C

In this case the formula reads:

µ(A ∪B ∪ C) = µ(A) + µ(B) + µ(C)

− µ(A ∩B)− µ(A ∩ C)− µ(B ∩ C)

+ µ(A ∩B ∩ C). (1.1)

The point here is the alternating signs: each time we try to count a size we overcount
by one intersections worth, subtracting those intersections goes too far in the opposite
direction and so we need to add intersections of intersections, and so on.

We now wish to apply this idea to count the size of a sphere. The trick here is to
tile the sphere with the faces of a cube:
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=

So we have six faces and one might suggest that µ(S2) = 6 but these are closed faces, so
they intersect on their edges, of which we have 12. But these edges intersect at vertices
and there are 8 of these. We extend the above formula (1.1) to calculate:

µ(S2) = 6− 12 + 8 = 2.

So the sphere has “size” two! The magic here is that any other convex polyhedron
would give the same answer of two. This, of course, is known as the Euler characteristic,
and for a sphere this is indeed two. This approach to defining Euler characteristic is
discussed in the fascinating book [65].

We repeat this calculation for another surface, a torus.

=

This time we use four faces, eight edges and four vertices:

µ(S1 × S1) = 4− 8 + 4 = 0.

The Euler characteristic has many equivalent definitions, and we now turn to one
of these, which is the idea of a homology. This theory goes back to Poincaré who was
trying to deal with topological issues as they arise in complex analysis [67].

We are going to replace sets of things by vector spaces whose basis is the original
set. And just to keep things simple we will take our vector spaces over the finite field
with two elements F = {0, 1}. This has the distinct advantage of eliminating all sign
errors!

From the set of faces we form a vector space C2 with basis the set of faces. Similarly,
the one-dimensional pieces are the basis of C1 and the zero-dimensional pieces are the
basis of C0:

C2 : faces,

C1 : edges,

C0 : vertices.
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The formula for Euler characteristic now reads:

µ(C•) = dim(C2)− dim(C1) + dim(C0). (1.2)

But now things get more interesting, because we have the following linear operators:

C2
∂2−−−−→ C1

∂1−−−−→ C0. (1.3)

These are defined to take the “boundary” of a shape. The operator ∂2 gives the
boundary of a face f ∈ C2 which is just the sum of edges incident to (contained by)
that face:

∂2(f) =
∑

e∈edges,
e∼f

e.

where we use ∼ to indicate incidence, and we extend ∂2 to all of C2 by linearity.
Similarly, ∂1 is defined to take an edge to the sum over its vertex endpoints:

∂1(e) =
∑

v∈vertices,
v∼e

v.

Now with a small amount of thought one finds that

∂1 ◦ ∂2 = 0.

This is because each vertex around a face gets counted twice, and this is zero in F-linear
arithmetic.

∂2∂2∂2∂2 ∂1∂1∂1∂1

In other words, the boundary of the boundary is empty! Or equivalently,

im(∂2) ⊂ ker(∂1).

The subspace ker(∂1) of C1 will be sums of edges that form closed loops, and we call
these cycles. The subspace im(∂2) is the space of boundaries. So the above formula
says the space of boundaries is contained within the space of cycles. This allows us to
define the following quotient, known as the first homology group:

H1 := ker(∂1)/im(∂2).

These are the cycles modulo boundaries.

With a bit more work we can extend the above sequence (1.3) to

0
∂3−−−−→ C2

∂2−−−−→ C1
∂1−−−−→ C0

∂0−−−−→ 0

5



so that ∂i ◦ ∂i+1 = 0 for i = 0, 1, 2 and then define

Hi := ker(∂i)/im(∂i+1), for i = 0, 1, 2.

Now we have a new formula for the Euler characteristic,

µ(H•) = dim(H2)− dim(H1) + dim(H0), (1.4)

which follows from an application of the rank-nullity theorem 1 to equation (1.2).

Going back to the torus example, with four faces, eight edges and four vertices:

we see that the sum over all faces in C2 has zero boundary,

∂2(
∑

f∈faces

f) = 0

and this is the only vector with zero boundary so that that dim(H2) = 1. The space
H1 is two dimensional, with representative cycles given by a vertical or horizontal loop
of edges. Finally, the space H0 is one dimensional: these are single points. Putting this
together we get

µ(S1 × S1) = dim(H2)− dim(H1) + dim(H0) = 1− 2− 1 = 0,

which agrees with our previous calculation for the Euler characteristic of the torus.

1.2 Classical and quantum codes

This is all great but what does it have to do with quantum codes? Well, before we
talk about the quantum case, it is worth first going over what we mean by a code in
the classical sense of the word. We wish to communicate a single bit of information,
but the communication channel we use suffers from random noise. This noise acts to
randomly toggle bits. One way to mitigate against this effect is to just send multiple
copies of each bit we wish to communicate. For example, we send either 000 or 111.
Once again it is useful to think of this as a three dimensional vector over F . When the
message is received any noise can be diagnosed using the check matrix, S : F3 → F3 :

S =




1 1 0
0 1 1
1 0 1


 .

1The rank-nullity theorem of linear algebra states that given a linear map f : V → W on a finite-
dimensional vector space V , we have dim(im(f)) + dim(ker(f)) = dim(V ).
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The codewords belong in the kernel of this operator. Any failure to be in the kernel
is presumed to come from a noise process. Notice that this matrix is rank degenerate.
There is a reason for this: we can view it as the boundary operator for the homology
of a circle!

In this case, there is one bit for each of the three edges, and the S matrix will record
a boundary vertex between non-identical bits.

0 −−→ C1
S=∂1−−−−−−→ C0 −−→ 0.

Thinking of the finite field F = {0, 1} as a classical bit would suggest that the
passage to quantum codes involves taking superpositions over these two bit values.
Indeed this is what we do. The two dimensional complex Hilbert space that we get is
known as a qubit :

C[F ] = {α|0〉+ β|1〉, α, β ∈ C}.
Notice how we put the F-linear values inside the ket. Taking n−fold tensor products
of a qubit corresponds to superpositions over n dimensional F-linear values. This basis
we call the computational basis.

Using this basis, we write matrices for the two important operators, Pauli X and Z:

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
.

These two operators generate the (real) single qubit Pauli group P1. We call these
bitflip and phaseflip operators, respectively. For the n-qubit Pauli group Pn we take
n-fold tensor products of I,X, and Z, where I is the single qubit identity operator. We
suppress the tensor symbol in such products, for example writing XII for X ⊗ I ⊗ I.

Now we take the classical repetition code and try the following quantum version:

α|0〉+ β|1〉 7→ α|000〉+ β|111〉.

To detect any single bitflip error, such as XII, IXI or IIX we measure the check
operators ZZI, IZZ. The outcome of such measurements we call a syndrome because
these serve to diagnose an error process.

However, bitflip errors are not the only unitary operators that we would like to
detect. Indeed, any single bit phaseflip operator, ZII, IZI or IIZ has the effect

α|000〉+ β|111〉 7→ α|000〉 − β|111〉

which goes unnoticed by our syndrome measurements. Effectively we still have a clas-
sical code.

In order to move towards the solution to this problem, we examine more closely the
action of the check operators. Given any state

|ψ〉 = α|000〉+ β|111〉

7



we have
g|ψ〉 = |ψ〉

for g ∈ {III, ZZI, IZZ,ZIZ}. In other words, |ψ〉 is stabilized by the group generated
by ZZI and IZZ. This motivates the following definition. A stabilizer code is specified
by a commutative subgroup S of Pn such that −I /∈ S. We define the subgroup PXn
to be generated by n-fold tensor products of the I and X operators. Similarly, PZn is
generated by n-fold tensor products of the I and Z operators.

We now make the restriction that the generators of the stabilizer group come from
either PXn or PZn . This is known as a CSS stabilizer code [49, 30].

Both of PXn and PZn are abelian and isomorphic as groups to the n-fold product of
Z2. But Z2 is more than an abelian group, it’s also a field, which we have been notating
as F . In this way, we identify these groups with the n-dimensional vector space over
the field F :

PXn ∼= Fn, PZn ∼= Fn.
Using this identification, the commutativity of operators u ∈ PXn and v ∈ PZn is equiv-
alent to the F-linear inner product of u and v being zero.

So the theory of CSS stabilizer codes becomes amenable to the theory of finite
dimensional vector spaces. But there’s more than this. It turns out that such a stabilizer
code is essentially equivalent to a homology!

We show how this works by using the above example of torus homology. This
example is known as the Kitaev toric code [35]. Here we separately number the faces,
edges and vertices as

1

1

2

1

2

2

4

3

3

3

6

5

4

4

8

7

Using this ordering we write the boundary operators as the following matrices, with
zero entries indicated by dots:

SX = ∂>2 =




1 1 1 . . 1 . .
1 . 1 1 . . . 1
. 1 . . 1 1 1 .
. . . 1 1 . 1 1


 ,

SZ = ∂1 =




1 1 . 1 1 . . .
. 1 1 1 . . 1 .
1 . . . 1 1 . 1
. . 1 . . 1 1 1


 .

The rows of ∂>2 become the X type generators of the stabilizer group, and the rows
of ∂1 are Z type generators. It follows that the homology condition ∂1∂2 = 0 is exactly
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the commutativity requirement SZS
>
X = 0 for a stabilizer code. Writing mX for the

rows of SX and mZ for the rows of SZ we have the following sequence:

FmX S>X−−−−→ Fn SZ−−−−→ FmZ . (1.5)

The SZ operators detect bitflip errors u ∈ Fn via F-linear multiplication on the
left:

v = SZu.

This vector is the syndrome vector. We now dissect the space Fn according to the
kernel of SZ . Writing Fn, the space of bitflip operators, as a direct sum:

Fn = ker(SZ)⊕ TX

where the kernel of SZ are the undetectable errors, or cycles. Everything else is in the
space TX , which are the detectable errors. The undetectable errors contain the X type
stabilizers, or boundaries, which don’t effect the codespace. Also in the kernel of SZ
are the X type logical operators, which we write as LX . These operators are cycles that
are not boundaries, and so they represent elements of the homology H1.

We already know SZS
>
X = 0 so that vectors in the row space of SX are undetectable

by SZ . Note that SX and SZ are rank degenerate matrices, so we make the non-
degenerate matrices S̃X and S̃Z by deleting rows:

S̃X =




1 1 1 . . 1 . .
1 . 1 1 . . . 1
. 1 . . 1 1 1 .


 , S̃Z =




1 1 . 1 1 . . .
. 1 1 1 . . 1 .
1 . . . 1 1 . 1


 .

We find a right inverse to S̃Z and form the matrix TX :

S̃ZT
>
X = I

where I here is the appropriate F-linear identity. This TX matrix has as rowspace the
detectable errors:

TX =




. . . . 1 . . 1

. . . . . . 1 .

. . . . . . . 1


 .

The rows of this matrix, together with those from S̃X , form a six dimensional subspace
of Fn. The other two dimensions are spanned by operators LX such that L>XSZ = 0 :

LX =

(
1 . . . 1 . . .
. 1 . 1 . . . .

)
.

Together this forms an (L, S, T )-decomposition of the CSS stabilizer code S [39, 92].
We summarize this in the following dictionary that relates the language of F2-linear
algebra, homology and CSS stabilizer codes:

9



F2-linear algebra homology quantum code

SZS
>
X = 0 ∂1∂2 = 0 commutativity of S

SZ boundary operator ∂1 bitflip parity checks

ker(SZ) 1-dim cycles undetectable bitflips

〈TX〉 detectable bitflips

〈SX〉 1-dim boundaries no effect on codespace

〈LX〉 cycles minus boundaries effect the codespace

To see the error correction process more vividly, we expand the code dimensions.
Here we show a tiling of the torus, with mX = 5× 5 tiles. There are two edges per tile,
so this code has n = 50 qubits:

noise & syndrome

+

error correction

=

success

We show a noise process that acts by bitflip errors and the resulting syndrome. The
noise process acts on qubits, this is a vector in Fn :

c ∈ Fn = C1.

So the error process is represented as some collection of edges. The syndrome operator
SZ gives the boundary of these edges, shown as black vertices. The error correction
procedure takes these boundary vertices as input and attempts to reconstruct the most
likely collection of edges with this boundary. This then is the operator c′ ∈ Fn that is
applied to correct the error. Note that c+ c′ is a cycle because the vertices of c and c′

cancel out. If the resulting operator c+ c′ is in the image of SX , ie. a boundary, then
the error correction has succeeded.

Otherwise, c+ c′ is not a boundary and represents a non-trivial operator in H1 and
will therefore alter the encoded qubits:

noise & syndrome

+

error correction

=

fail

To detect phase-flip errors, we can perform a change of basis on each qubit using
the Hadamard transform:

H =
1√
2

(
1 1
1 −1

)
.

10



This swaps the roles of the X and Z operators:

H†XH = Z,

H†ZH = X.

Applying this to our matrices SZ and SX we get two new matrices S̃X and S̃Z :

SZ 7→ S̃X

SX 7→ S̃Z ,

The above sequence (1.5) becomes:

Fm̃Z S̃Z
>

−−−−−→ Fn S̃X−−−−→ Fm̃X .

Taking the transpose of the operators gives:

Fm̃X S̃X
>

−−−−−→ Fn S̃Z−−−−→ Fm̃Z

and we repeat the same bitflip error correction analysis as above on this new quantum
code.

This transpose idea also applies in the homology context. Given any homology
∂1∂2 = 0 we get another homology, or co-homology, by taking the transpose: ∂>2 ∂

>
1 = 0.

∂>
1∂
>
1∂
>
1∂
>
1 ∂>

2∂
>
2∂
>
2∂
>
2

1.3 The energetic viewpoint

So far we have been considering how to protect quantum information using the frame-
work of error correction. An alternative perspective arises by considering energetic
protection. This works by considering the stabilizer generators G0 as the terms of a
Hamiltonian:

H =
∑

g∈G0

g.

Note that in this thesis we use a neg-Hamiltonian convention, so that the groundspace
belongs to the top eigenvalue of H. Because all the terms in H commute, we can
label the eigenspaces of this Hamiltonian uniquely by the eigenvalues of the stabilizers.
The groundspace is the simultaneous +1 eigenspace of the stabilizers and therefore
corresponds exactly to the stabilized codespace above.
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In terms of error correction, we think of noise processes as being diagnosed by a
syndrome. But here the effects of noise are now interpreted energetically, as particle
creation. Any bitflip error “creates” particles at the vertex endpoints. In other words,
the syndrome is interpreted as a collection of particles. These particles are called anyons
because of their unusual exchange statistics.

We can write down elements of a basis for the groundspace by summing over the
orbit of the stabilizer code, ∑

gX∈SX
gX |lX〉,

where lX is any logical bitflip operator, written as a computational basis element (inside
the ket). Such a basis element looks like a so-called string-net condensate [68]:

+ + + ...

It is clear from this picture that the state is stabilized and hence belongs in the
groundspace of H : the SZ stabilizers act as +1 on this state because there are no
vertex endpoints, and the SX stabilizers act to permute the terms of the sum.

1.4 Two roads to non-abelian codes

There are two approaches to non-abelian codes explored in this thesis. The first in-
volves relaxing the commutativity of the Hamiltonian terms. These are the gauge code
Hamiltonians discussed in chapter 2. While these Hamiltonians are no longer easily
diagonalizable, we still find the stabilizers playing an important role. In particular, we
generalize the (L, S, T )-decomposition to these Hamiltonians, and show how this relates
to the string-net condensation picture. Building states by summing over the orbit of
the terms of the Hamiltonian is the basic idea behind group representation theory.

With commuting Hamiltonian terms it is easy to find the spectral gap, which is
the difference between the groundspace eigenvalue and the first excited eigenvalue. In
chapter 2 we make progress understanding the spectrum of the non-commuting gauge
code Hamiltonians, with particular attention payed to the gap.

The second approach to non-abelian codes can be understood from an algebraic
topology perspective. A practitioner of these arts would likely describe the fundamental
group of a topological space as being the non-abelian version of its homology. And this
is indeed closely related to the theory of anyons and modular functors which we describe
in chapter 3. Then in chapter 4, we go on to show how error correction can be simulated
in these systems.

In the abelian theory the following two processes are equivalent (homologous), but
for general anyon theories this is not the case:

12
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While chapter 4 relies on chapter 3, chapter 2 is independent of these.

1.5 Discussion

It seems that physics has a long history of surprising encounters with advanced mathe-
matical concepts, long after the mathematicians themselves have finished being excited
by them. Homology theory was originally invented by 19th century mathematicians to
help with complex analysis and number theory. The Euler characteristic is even older.
This would suggest that to be successful in theoretical physics would involve looking
closely at what mathematicians were getting excited about several decades ago. This
is somewhat the philosophy of the present thesis. The downfall of this is perhaps
that some concepts are elucidated in an overly technical manner. However, the author
feels this approach can still be useful as it makes contact with a shared mathematical
language.
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CHAPTER 2

Representations and Spectra of Gauge
Code Hamiltonians

2.1 Introduction

Physicists often like to solve Hamiltonians using a change of basis, or spin transform.
But we can also work with transformations on the level of a group of operators, and
later on figure out the spin transform (if needed). This is in line with the thinking of
Gottesman who proposed a Heisenberg picture for quantum computing [50]. Here states
are specified by the operators that act on them, instead of expicitly working with the
states themselves. This is often harder than just manipulating the states themselves,
but when it works it can yield new perspectives on the dynamics of the system. This
is also the philosophy of category theory, where the goal is to lift information about
elements of some mathematical object up to the level of the operators (morphisms) on
the objects themselves. However, forgetting about the meaning of the symbols in this
way leaves one with the question: “What is an operator?”

From the perspective of a quantum code these are the things that we use to diagnose
errors and perform error correction. We can also interpret these operators as the
terms of a Hamiltonian, whose groundspace corresponds to the energetically protected
codespace. In the case of mutually commuting operators we can easily diagonalize the
Hamiltonian, but for other systems of interest this does not hold.

The mathematicians have a name for this question “what is an operator?” This is
known as representation theory. We examine three different notions of such represen-
tations, with a view to extracting spectral information about the Hamiltonian. Group
theory representations give a block diagonalization of the Hamiltonian: these are the
irreducible representations and in our case can be labelled by stabilizer eigenvalues.
The coarser tool of Perron-Frobenius theory [77, 46, 8] gives information about the
spectral layout of these blocks in the case of CSS gauge codes. At the finest level,
the operators in each of these blocks form a semisimple Lie algebra and ideals in this
algebra correspond to tensor products of representations.

While there are some hints of this theory in the literature [6, 92] here we spell out
in detail how this works and much more. Partly it’s because these models are new and
we don’t have many examples.

Using all of these tools we perform exact diagonalization on some large instances of
the 3-dimensional gauge color code Hamiltonian [14, 15, 66]. These numerics support
the conjecture that these models are gapped, which in turn lends weight to the pos-
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sibility that these may be self-correcting quantum memories. Having a constant gap
(bound from below) is part of the story of topologically ordered phases [64, 26].

2.1.1 Some motivating examples

Example 1. We start our journey considering a two-dimensional state space. This
space is blessed with two basis vectors |0〉 and |1〉. The Z and X operators act on these
states as:

|0〉 |1〉Z :

+1 −1

|0〉 |1〉X :

+1

+1

From this picture we can see that Z acts by stabilizing the state |0〉 and anti-stabilizing
the |1〉 state. The Z operator has been reduced to two operators each acting on a
one dimensional subspace: Z = +1⊕−1. The X operator serves to “bitflip” the state
between these two subspaces.

But what happens if we get confused and end up swapping the X and Z operators?
We would like to see the X operator as stabilizing / anti-stabilizing two subspaces,
together with the Z operator as bitflipping between these. The trick is to consider the
orbits of the operator we hope to act as a stabilizer. In this case there is only one
orbit, |0〉+ |1〉 and indeed, the Z operator bitflips this to another state |0〉− |1〉 that is
anti-stabilized by X.

We are going to be considering Hamiltonians built from summing operators of this
form. In this paper we use a “neg-Hamiltonian” convention, to save complicating ex-
pressions with negative signs. The ground space corresponds to the highest eigenvalue.

So building a Hamiltonian from a single X or Z term, we find the ground space
as the stabilized space by summing over the orbit of that term. The other operator,
which we call the adjacent operator, acts to bitflip between the eigenspaces.

Example 2. To further elucidate this idea we turn to another example, which is a
Hamiltonian built from three commuting and independent operators:

H = XXI + IXX + ZZZ.

Starting with |000〉 the terms of the Hamiltonian generate an orbit given by

Orbit(|000〉) = {|000〉, |011〉, |110〉, |101〉}.

Notice that the ZZZ term fixes all these states. Summing over this orbit we get the
following ground state:

GS = |000〉+ |011〉+ |110〉+ |101〉.

We select three adjacent operators ZII, IIZ, and IXI, one for each of the stabilizer
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operators:

ZII : GS 7→ |000〉+ |011〉 − |110〉 − |101〉 anti-stabilized by XXI,

IIZ : GS 7→ |000〉 − |011〉+ |110〉 − |101〉 anti-stabilized by IXX,

IXI : GS 7→ |010〉+ |001〉+ |100〉+ |111〉 anti-stabilized by ZZZ.

These adjacent operators form an abelian group of order 23 = 8 and by applying
each element of this group to the ground state we get a basis of our state space, which
we call a symmetry invariant basis.

The adjacent operators are not unique in general. For this example we could have
also chosen IZZ,ZZI,XXX.

Example 3. Now we consider a four qubit example:

H = XXII + IIXX + ZIZI + IZIZ.

This time the terms of the Hamiltonian do not generate an abelian group. We will
call this group, as generated by the terms in the Hamiltonian, the gauge group, G.
The stabilizer subgroup of G will be the elements of G that commute with every other
element in G. By inspection we see this group is generated by S0 = {XXXX,ZZZZ}.
We can extend these generators to a complete independent generating set for G using
the operators R0 = {XXII, ZIZI}. These R0 operators generate the reduced gauge
group R. The operators adjacent to S0 we call the error operators T0. We choose
T0 = {ZZZI, IIIX}. (Once again, these are not unique.) The logical operators are
the n-qubit Pauli operators outside of the group G that commute with G. In this case
they are generated by L0 = {XIXI,ZZII}. All of this can be summarized in a table
of adjacent pairs:

R

S T

L

G

=

ZIZI

ZZZZ

XXXX

ZZI I

XXI I

I I IX

ZZZI

XIXI

=

Z̃4

Z̃3

Z̃2

Z̃1

X̃4

X̃3

X̃2

X̃1

where the number of rows equals n, each operator commutes with operators on other
rows, and anticommutes with the operator on the same row. There is no need to include
any phases (±I) in these tables because phases commute with everything. If we take
all the entries in the left column we get the operators {ZZII,XXXX,ZZZZ,ZIZI}.
These generate an abelian group that stabilizes the state |ψ〉 = |0000〉 + |1111〉. Let r
be the gauge operator XXII adjacent to the stabilizer ZIZI, The state |ψ〉 then lies
in the G−orbit

{|ψ〉, r|ψ〉} = {|0000〉+ |1111〉, |1100〉+ |0011〉}.

We use the T0 operators t1 = ZZZI and t2 = IIIX to list three other G−orbits:

{t1|ψ〉, t1r|ψ〉}, {t2|ψ〉, t2r|ψ〉}, {t1t2|ψ〉, t1t2r|ψ〉}.
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So now we have sixteen vectors, forming an orthogonal basis for the state space. This
is the symmetry invariant basis for this Hamiltonian.

We can now arrange these basis vectors on the vertices of a four dimensional hyper-
cube, such that each dimension corresponds to one of the adjacent X̃i bitflip operators.
Such an arrangement has a cartesian product structure which induces a tensor product
decomposition of the original state space that corresponds to the X̃i :

|0000〉+ |1111〉

|1100〉+ |0011〉
|0000〉 − |1111〉

|1100〉 − |0011〉

|0001〉+ |1110〉

|1101〉+ |0010〉
|0001〉 − |1110〉

|1101〉 − |0010〉

|1010〉+ |0101〉

|0110〉+ |1001〉
|1010〉 − |0101〉

|0110〉 − |1001〉

|1011〉+ |0100〉

|0111〉+ |1000〉
|1011〉 − |0100〉

|0111〉 − |1000〉

X̃3 = IIIX

X̃1 = XIXI

X̃2 = ZZZI

X̃4 = XXII

The Hamiltonian acts on states by left multiplication. Because this action is a sum of
gauge group elements, it will decompose into blocks, one for each G−orbit. We depict
this action as a weighted graph, where we omit edges with zero weight:

|0000〉+ |1111〉

|1100〉+ |0011〉

−2

+2

+2+2

|0000〉 − |1111〉

|1100〉 − |0011〉

−2

+2

|0001〉+ |1110〉

|1101〉+ |0010〉
+2+2

|0001〉 − |1110〉

|1101〉 − |0010〉

|1010〉+ |0101〉

|0110〉+ |1001〉

−2

+2

+2+2

|1010〉 − |0101〉

|0110〉 − |1001〉

−2

+2

|1011〉+ |0100〉

|0111〉+ |1000〉
+2+2

|1011〉 − |0100〉

|0111〉 − |1000〉

Equivalently we use this basis to write the matrix for the Hamiltonian in block
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diagonal form:

H =




2(X + Z) 0 0 0
0 2X 0 0
0 0 2Z 0
0 0 0 0


⊗ I

This block diagonal form will be worked out for general gauge group G below and
summarized in Section 2.2.6.

2.2 Group representations

2.2.1 The Pauli group

The Pauli group P1 is normally defined as a set of matrices closed under matrix mul-
tiplication,1 but we can define it abstractly as the group generated by the (abstract)
elements {ω,X,Z} with relations as follows:

ω2 = I, X2 = I, Z2 = I, ωXωX = I, ωZωZ = I, and ωZXZX = I,

where I is the group identity. Actually, ω is generated by X and Z, so it is not necessary
to include ω in the generating set, but here it simplifies the relations. This group has
eight elements, and is isomorphic to the dihedral group D4, the symmetry group of a
square.

To define the n-qubit Pauli group Pn, we use the 2n+ 1 element generating set

{ω,X1, .., Xn, Z1, .., Zn}

with relation ω2 = I as before, and

X2
i = I, Z2

i = I, ωXiωXi = I, ωZiωZi = I, ωZiXiZiXi = I, for i = 1, ...n,
XiXjXiXj = I, ZiZjZiZj = I, ZiXjZiXj = I, for i, j = 1, .., n, i 6= j.

(2.1)

This abstract approach to the definition of a group is known as a group presentation.
In general, this is a set of generators together with a set of relations satisfied by these
generators.

Note that each of the generators squares to the identity, and of these, only ω com-
mutes with every element of Pn. Therefore we will write ω as −I, similarly ±I will
denote the set {ω, I}, and −X is ωX, etc.

We write the group commutator as [[g, h]] := ghg−1h−1 and note the important
commutation relation:

[[Zi, Xj ]] =

{
−I if i = j,
I if i 6= j.

If we take an arbitrary g ∈ Pn written as a product of the generators, it follows that
we can rewrite this product uniquely as g = ±g1...gn where each gi is one of I, Zi, Xi

or XiZi for i = 1, .., n. Therefore, the size of the Pauli group is

|Pn| = 22n+1.

The subgroup of Pn generated by the elements {X1, ..., Xn} is denoted PXn . These

1The original definition of the Pauli group also includes an imaginary unit i, which we do not include.
So perhaps this should be called the real Pauli group.
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are the X-type elements. Similarly, {Z1, ..., Zn} generates the subgroup of Z-type
elements PZn .

2.2.2 Subgroups of the Pauli group

We now define an n−qubit gauge group to be any non-abelian subgroup G of Pn, defined
by a set of generators G0 ⊂ Pn,

G := 〈G0〉.
Because G is not abelian, it follows that −I ∈ G. We also restrict G0 to only contain
Hermitian operators, which is equivalent to requiring that g2 = I for all g ∈ G0.

Now let S be the largest subgroup of G not containing −I. S is then an abelian
subgroup, also known as the stabilizer subgroup. G decomposes as a direct product:

G = S ×R,

where R ∼= Pr for some 1 ≤ r ≤ n, and S ∼= Zm2 for 0 ≤ m < n. Therefore,

|G| = |S||R| = 2m+2r+1.

We call R the reduced gauge group. We consider both S and R to be subgroups of G.
Let φ : R→ Pr be a group isomorphism, then R0 := {φ−1(Xi), φ

−1(Zi)}i=1,..,r is a set
of independent generators of R. We also let S0 be a set of m independent generators of
S.

To find the cosets of G in Pn we take the group closure of Pn − G; when this is
non-empty we only need to add I and −I. This is another gauge group, whose reduced
gauge group is known as the logical operators L, and whose stabilizer subgroup is known
as the error operators T. Now any coset of G can be written as ltG with l ∈ L and
t ∈ T. The size of T equals the size of S: |T | = |S| = 2m. If we let L0 be an independent
generating set for L then we have the important formula:

n =
1

2
|L0|+ |S0|+

1

2
|R0| (2.2)

= k +m+ r (2.3)

We summarize the information in this section in a table of Pauli group elements ar-
ranged in two columns and n rows:

Rr

S Tm

Lk

n

G

Here we show the 2n generators of Pn arranged so that each row contains a pair of
generators, where each such generator anti-commutes with the operator on the same
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row and commutes with all the other operators in the table. Note that this is exactly
the definition of the Pauli group via a presentation given in the previous section. Fur-
thermore, the table shows 2k generators of L, m generators each for S and T, and 2r
generators of R. The gauge group G encloses R and S, and one can immediately see
how L and T also form a gauge group.

2.2.3 Representations of the Pauli group

We now define the Pauli representation of the Pauli group as a group homomorphism:

ρpauli : Pn → GL(C[2n])

where C[2n] is the 2n-dimensional state space of n qubits. On the independent gener-
ators {X1, .., Xn, Z1, .., Zn}, ρpauli is defined as the following tensor product of 2 × 2
matrices:

ρpauli(Xi) :=
n⊗

j=1





(
0 1
1 0

)
for j = i

(
1 0
0 1

)
for j 6= i

ρpauli(Zi) :=
n⊗

j=1





(
1 0
0 −1

)
for j = i

(
1 0
0 1

)
for j 6= i

Normally the image of ρpauli is thought of as the Pauli group itself, and we are
indeed free to think that way because ρpauli is a group isomorphism.

Given a group representation ρ : G → GL(V ) the character of ρ is a function
χρ : G→ C given by

χρ(g) = Tr ρ(g).

Given two functions u, v : G→ C we define the following inner product:

〈u, v〉 :=
1

|G|
∑

g∈G
u(g)v(g).

The character of the Pauli representation, χpauli : Pn → C is given by:

χpauli(g) =
∑

v∈basis
〈v|ρpauli(g)|v〉 =

{
±2n if g = ±I
0 otherwise

Since |Pn| = 22n+1 it follows that 〈χpauli, χpauli〉 = 1 and so ρpauli is an irreducible
representation of Pn.

The only other irreps of Pn are the 1-dimensional irreps ρ : Pn → C defined on the
independent generators as:

ρ(Xi) = ±1, ρ(Zi) = ±1.

So we have 22n many 1-dimensional irreps, and a single 2n-dimensional irrep. Sum-
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ming the squares of the dimensions shows that we have a complete set of irreps of
Pn.

2.2.4 Representations of gauge groups

Although ρpauli restricted to a gauge group G ⊂ Pn serves as a representation of G it
is no longer irreducible. Our aim will be to decompose ρpauli into irreps of G.

The 1-dimensional irreps ρ : G → C, are now defined by specifying the action of ρ
on the independent generators:

ρ(h) = ±1 for h ∈ S0, ρ(φ−1(Xi)) = ±1, ρ(φ−1(Zi)) = ±1.

This gives all 2m+2r of the 1-dimensional irreps.

The 2r-dimensional irreps are given by:

ρ(h) = ±I⊗r for h ∈ S0, ρ(φ−1(Xi)) = Xi, ρ(φ−1(Zi)) = Zi.

We are free to choose the signs of the ρ(h) for each h ∈ S0. Hence there are 2m

many of these irreps. Each such choice corresponds to the choice of a syndrome vector
s(h) = ±1, for h ∈ S0, or alternatively, choice of an element t ∈ T :

ρ1
t (h) =

{
I⊗r if th = ht
−I⊗r if th = −ht

Because G decomposes into a direct product G = S × Pr we have the following
representations:

ρt(g) = ρ1
t (h)ρrpauli(g

′),

where g = hg′, h ∈ S, g′ ∈ Pr and ρrpauli is the r-qubit Pauli representation. The
character for this representation is:

χt(hg
′) = ρ1

t (h)
∑

v∈basis
〈v|ρrpauli(g′)|v〉 =

{
±2rρ1

t (h) if g′ = ±I
0 otherwise

We have that |G| = 22r+m+1 and so 〈χt, χt〉 = 1 and ρt is an irreducible represen-
tation of G. We now count the occurrences of this representation in ρrpauli:

〈χrpauli, χt〉 =
1

|G|
∑

g∈G
χrpauli(g)χt(g)

=
1

22r+m+1

∑

g=±I
2n2r =

2n+1+r

22r+m+1
= 2k

where k is the number of logical qubits so that n = r +m+ k.

In summary, the Pauli representation decomposes into 2m many irreps ρt, each with
dimension 2r, and appearing with multiplicity 2k :

ρpauli =
⊕

t∈T
ρt ⊗ I⊗k
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2.2.5 Symmetry invariant basis

In general, given a representation ρ : G→ GL(V ) and the character of some irreducible
representation χ : G→ C the following operator P : V → V projects onto the subspace
on which this irreducible representation acts:

P :=
d

|G|
∑

g∈G
χ(g)ρ(g).

where d is the dimension of the irreducible representation. We can use this to calculate
projectors onto the irreps ρt in ρpauli:

Pt =
d

|G|
∑

g∈G
χt(g)ρpauli(g)

=
d

|G|
∑

h∈S

∑

g∈R
χt(hg)ρpauli(hg)

=
d

|G|2
2r
∑

h∈S
ρ1
t (h)ρpauli(h)

=
1

2m

∑

h∈S
ρ1
t (h)ρpauli(h).

We can also write this as a product of projectors onto the ±1 eigenspaces of sta-
bilizers ρpauli(h) for h ∈ S. Choose generators h1, ..., hm of S and then the projectors
onto the ±1 eigenspace of ρpauli(hi) are

P it =
1

2

(
I⊗n ± ρpauli(hi)

)

and we see that

Pt =
∏

i=1,...,m

P it =
1

2m
(
I⊗n ± ρpauli(h1)

)
...
(
I⊗n ± ρpauli(hm)

)
.

This projector will have rank 2k+r and

U :=
∑

t∈T
Pt

is a unitary transformation that sends physical qubits to encoded qubits.

2.2.6 The Hamiltonian

The Hamiltonian of interest is an operator H : C[2n]→ C[2n]:

H :=
∑

g∈G0

ρpauli(g).
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Using the above decomposition we find:

H =
∑

g∈G0

⊕

l∈L,t∈T
ρt(g)

=
⊕

l∈L,t∈T

∑

g∈G0

ρt(g).

We will notate each block as Ht :=
∑

g∈G0
ρt(g) for each irrep ρt appearing in H.

The Hamiltonian is block diagonalized, with blocks indexed by
operators t in the abelian group T and multiplicity 2k :

H =
⊕

t∈T
Ht ⊗ I⊗k.

More generally, we can assign real valued weights Jg ∈ R to each operator g ∈ G0,

H =
∑

g∈G0

Jgρpauli(g) =
⊕

l∈L,t∈T

∑

g∈G0

Jgρt(g).

In other words, using weights does not change the block structure of H.

In the following sections we will forget the distinction between g and ρpauli(g), so
terms such as Z and X can be understood as the corresponding Pauli linear operators.

2.3 Applications

We now use the tools built so far to analyze two examples of gauge code Hamiltonians.
The above procedure is not entirely automatic, it relies on extracting the isomorphism
φ, but when this can be made to work it works surprisingly well.

2.3.1 The 2D compass model

Here we consider the two-dimensional compass model [5]. We coordinatize the qubits
on a square lattice of l × l sites, (i, j) for 1 ≤ i, j ≤ l. This gives n = l2. For the single
qubit Pauli operators acting on site (i, j) we coordinatize with subscripts ij, with i and
j understood modulo l. The generators of the gauge group are

G0 =
{
XijXi,j+1, ZijZi+1,j for 1 ≤ i, j ≤ l

}
.

We write generators of the reduced gauge group in anti-commuting pairs:

R0 =
{
Xi1Xij , Z1jZij for 2 ≤ i, j ≤ l

}
.

This makes it clear the isomorphism φ : R → Pr to use, and we again use pairs i, j to
coordinatize Pr:

φ(Xi1Xij) = Xi−1,j−1, φ(Z1jZij) = Zi−1,j−1, for 2 ≤ i, j ≤ l.
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The generators for the stabilizers are

S0 =
{ l∏

i=1

XijXi,j+1,
l∏

i=1

ZjiZj+1,i for 1 ≤ j ≤ l − 1
}
.

The logical operators are generated by L0 =
{∏

iXi1,
∏
j Z1j}. These sets have cardi-

nalities:
|G0| = 2l2, |R0| = 2(l − 1)2, |S0| = 2(l − 1).

And we note that k+m+r = n is satisfied. Now we write down the values of the irreps
on the gauge operators. Here we define each irrep using a pair of syndrome vectors sX
and sZ :

ρ(Xi1Xi2) = Xi−1,1 ρ(Z1iZ2i) = Z1,i−1

for 2 ≤ i ≤ l
ρ(XilXi1) = Xi−1,l−1 ρ(ZliZ1i) = Zl−1,i−1

for 2 ≤ i ≤ l
ρ(XijXi,j+1) = Xi−1,j−1Xi−1,j ρ(ZjiZj,i+1) = Zj−1,i−1Zj,i−1

for 2 ≤ i ≤ l, 2 ≤ j < l

ρ(X1jX1,j+1) = sX(j − 1)
l−1∏

i=1

Xi,j−1Xij ρ(Zj1Zj+1,1) = sZ(j − 1)
l−1∏

i=1

Zj−1,iZji

for 2 ≤ j < l

ρ(X11X12) =
l−1∏

j=1

sX(j)
l−1∏

i=1

Xi1 ρ(Z11Z21) =
l−1∏

j=1

sZ(j)
l−1∏

i=1

Z1i.

Note the transposition symmetry between the X and Z-type operators. We sum all
these terms to find the form of the Hamiltonian in each block:

Hρ =
∑

g∈G0

ρ(g) =
∑

1≤i,j<l
ρ(XijXi,j+1) + ρ(ZijZi+1,j).

We note that in [27], they perform a spin transformation of the compass model which
also results in an (l− 1)× (l− 1) lattice of spins and identical Hamiltonian up to some
signs.

2.3.2 The Kitaev honeycomb model

The Kitaev honeycomb model [62] is built from spins on the sites of a hexagonal lattice.
The lattice of linear size l has n = 2l2 sites which we coordinatize using integer triples
i, j, k with 1 ≤ j, k ≤ l and k = 1, 2. We use periodic boundary conditions so i, j are
to be taken modulo l. Gauge generators have support on the edges of the honeycomb
lattice, and we depict qubits here as circles:
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Y Z
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Y Z

X
YZ

X
Y Z

X
YZ

X
Y Z

X
YZ

X
Y Z

X
YZ

X
Y Z

X
YZ

X
Y Z

The edges of the lattice are in one-to-one correspondence with the generators G0:

G0 :=
{
Xij1Xij2, Zij2Zi+1,j1, Yij1Yi−1,j+1,2 for 1 ≤ i, j ≤ l

}
.

Note that we make the definition Y := XZ for each site.2 Stabilizers are generated
from closed strings of gauge operators. For example, each hexagon gives a stabilizer

hij : = Xij1Xij2Zij2Zi+1,j1Yi+1,j1Yi,j+1,2Xi,j+1,2Xi,j+1,1Zi,j+1,1Zi−1,j+1,2Yi−1,j+1,2Yij1

= Zij1Yij2Xi+1,j1Zi,j+1,2Yi,j+1,1Xi−1,j+1,2.

And the two homologically non-trivial loops give stabilizers:

hv :=
l∏

i=1

Yi11Yi12, hh :=
l∏

j=1

X1j2X2j1.

This gives independent stabilizer generators S0 from each hexagon, less one, as well
as hv and hh. The number of hexagons is 1

2n and so we find |S0| = 1
2n + 1. There are

no logical operators, so we must have |R0| = n− 2.

Now we construct a set of string operators R0, one for each site on the lattice,
except for the two sites (1, 1, 1) and (1, 1, 2). Each string gijk ∈ R0 is constructed as the
product of gauge operators along a path starting at (1, 1, 1) and terminating at (i, j, k).

Two elements of the set R0 corresponding to i = 3, j = 4 and k = 1, 2.

2This operator Y is not Hermitian, but it only appears in a tensor pair in the Hamiltonian and so
these terms will be Hermitian.
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Each such path is built from two “straight” path segments, first in the i direction
and then in the j direction. The paths for operators gij1 and gij2 coincide along the i
direction but become disjoint in the j direction: the gij1 path goes around the bottom of
the hexagons and the gij2 path goes around the top. With periodic boundary conditions
R0 forms an independent generating set of R of size n− 2.

We construct an isomorphism φ : R→ Pr by sending elements of R0 bijectively to
the following independent generating set of Pr:

{
c2j := Z1...Zj−1Xj , c2j+1 := Z1...Zj−1Yj for 1 ≤ j ≤ r

}
.

The bijection is constrained by setting φ(gij1) := c2j′+1 and φ(gij2) := c2j′ where j′ is
chosen uniquely for each i, j. The cj are paired Majorana fermion operators [58, 62].

We check this is a group homomorphism by showing that relations satisfied by
elements of R0 are satisfied by their images under φ. All such relations are either of the
form g2 = ± I, gg′ = ± g′g, or products thereof. So it is sufficient to check squares
of elements and commutation relations. Every element of R0 anticommutes with every
other element of R0, and this is true also of the cj . Also, g2

ij1 = −I and g2
ij2 = I is

preserved by φ because c2
2j = I and c2

2j+1 = −I. Finally, φ is an isomorphism because
it is a bijection of two independent generating sets.

The next step is to write each element of G0 as a product of reduced gauge operators
and stabilizers. The key thing to note is that the product of two operators gijk, gi′j′k′ ∈
R0 gives a string operator between the sites (i, j, k) and (i′, j′, k′). And any string
operator between these two sites can then be generated by using stabilizers to “deform”
the string gijkgi′j′k′ . For example, taking the product of two operators from R0 that
differ by one path segment gives the following:

Zij2Zi+1,j,1 = gij2gi+1,j,1

Yi+1,j,1Yi,j+1,2 = gi+1,j,1gi,j+1,2

We need the homologically non-trivial stabilizers to get these:

Zlj2Z1j1 = hvglj2g1j1 for 2 ≤ j ≤ l

And the Xij1Xij2 gauge operators can be generated by the product of gij1gij2 and the
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enclosed hexagon stabilizers:

Xij1Xij2 = gij1gij2

j−1∏

j′=1

hij′ .

The only G0 operators that are not quadratic in R0 operators are the five operators
that touch either of the sites (1, 1, 1) or (1, 1, 2).

So each block in the Hamiltonian is seen to be quadratic in the cj plus five other
Pauli operator terms which we denote as Λρ:

Hρ =
∑

ij

Γij(ρ)cicj + Λρ

The coefficients Γij are dependant on the irrep ρ.

In [61] they introduce a similar set of mutually anti-commuting string operators R0.

2.4 Symplectic representations

This is a way of “brute-forcing” the representations when we cannot find a way of writ-
ing them down in a closed form expression. For finite systems this yields an algorithm
that is efficiently implementable.

In this section, and the remainder of this chapter, we restrict our attention to gauge
groups formed from terms in PXn ∪ PZn . We call these CSS gauge codes. We next turn
to a discussion of the symplectic structure of these operators.

Let F denote the finite field with two elements 0 and 1. Both PXn and PZn are abelian
groups, and can be identified with the additive group structure of the n dimensional
vector space over F :

PXn ∼= Fn, PZn ∼= Fn.
We do this in the obvious way by sending Xi to the basis vector with 1 in the i−th entry,
and similarly for each Zi. We also identify the computational basis of our statespace
C[2n] with Fn in the obvious way:

C[2n] ∼= C[Fn].

This has the potential to be very confusing, and so where appropriate we use X and Z
subscripts.

X-type operators act on the C[Fn] basis vectors using F addition:

gX ∈ PXn ∼= Fn, gX : v 7−→ gX + v

Z-type operators act on the C[Fn] basis vectors using F inner product:

gZ ∈ PZn ∼= Fn, gZ : v> 7−→ gZv
>

This is an F scalar, just zero or one. We think of this as a “syndrome”. This suggests
that actually these Z-type operators live in the dual vector space Fn. Because of the
underlying symmetry (and notational confusion) between the X and Z-type operators,
we make the convention that by default all our F-vectors come as row vectors (ie. dual
vectors). This means we use the transpose operator > to indicate a primal (column)
vector.
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It doesn’t make sense to add an X-type operator and a Z-type operator:

gZ + gX don’t do this!!!

but it does make sense to take the inner product:

gZg
>
X = gXg

>
Z .

This is an F scalar which gives the commutator of the two operators.

An F-linear operator such as A : Fn → Fm acts on the left as u> 7→ Au>. It also
acts on dual vectors as A : Fm → Fn which corresponds to acting on the right: v 7→ vA.
We call the rowspace of A the span and denote it as

〈A〉 = {vA|v ∈ Fm}

The kernel of A is defined as

ker(A) = {u>|u> ∈ Fn, Au> = 0}.

We wish to use this language to decompose a CSS gauge group G. First we write
the gauge group generators in terms of X-type and Z-type operators:

G0 = GX ∪GZ .

Following the theory from the previous section, we are going to rewrite the gauge
group generators as a union of stabilizer generators S0 = SX ∪ SZ and reduced gauge
generators R0 = RX ∪ RZ . Similarly, the error operators will be split into X-type
and Z-type operators TX and TZ and finally the logical operators LX and LZ . We
summarize all of these sets in the following table:

RX RZr

TX SZmZ

SX TZmX

LX LZk

n

The solid rectangles indicate operators that span the X and Z parts of the gauge group,
and the dashed rectangles indicate operators that do not live inside the gauge group.

We consider each of these blocks LX , LZ , SX , TZ , TX , SZ , RX , RZ , as well asGX , GZ ,
as either a set of Fn vectors (the rows) or as an F-linear operator. For example, we
write u ∈ RX to mean u is a row of the matrix RX .

We first find the stabilizers SZ . These are built out of Fn vectors from the span of
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GZ that commute with the rows of GX :

〈SZ〉 = { vGZ | vGZG>X = 0, v ∈ F|GZ | }
= { vGZ | v> ∈ ker(GXG

>
Z ) }.

The generators (rows of SZ) are then extracted from this span by row reduction. We
swap the role of X and Z to find SX .

Once we have the stabilizers, in order to complete the above table as a presentation
of the Pauli group we solve the following F-linear block matrix equation,




LX
SX
TX
RX







LZ
TZ
SZ
RZ




>

= I,

subject to the restriction that the rows of RX lie in the span of GX and the rows of LX
do not. Similarly for RZ and LZ . This set of 16 equations is quadratic in the unknown
variables and so it is not obvious how to proceed, but it turns out a systematic way
can be found.

We begin by finding LZ . These operators satisfy the following homology condition:

lZ ∈ LZ is given by l>Z ∈ ker(GX) mod 〈SZ〉.

In other words, LZ is formed from a basis for the kernel of GX row-reduced using SZ .
To be more specific we take any direct sum decomposition

Fn = 〈SZ〉 ⊕ V

then the operation of mod 〈SZ〉 is the projection onto V. We can explicitly write such
a projector as the n× n matrix given by

PZ = I +A>SZ

where the matrix A is the mZ × n matrix consisting of the leading 1’s in any row-
reduction of SZ . We define PX similarly for the operation of mod 〈SX〉.

To find LX we solve the following F-linear system:

(
LZ
GZ

)
L>X =

(
I
0

)

The reduced gauge group matrix RX is found as a row-reduction of GXPX . We
cannot merely set RZ to be GZPZ because we also require RXR

>
Z = I. Instead we

define the auxiliary matrix R̃Z to be a row-reduction of GZPZ .

The error operators TX are then found as the solution to the F-linear system:




LZ
SZ
R̃Z


T>X =




0
I
0
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And then the operators TZ solve the F-linear system:




LX
SX
TX
RX


T>Z =




0
I
0
0




Finally at this point RZ is given as the solution to




LX
SX
TX
RX


R>Z =




0
0
0
I




Note that RZ and R̃Z have identical span and so we have RZT
>
X = 0.

We call this array of eight F-linear matrices an (L, S, T,R)-decomposition of the
gauge group. In general this will not be unique for any given gauge group.

2.4.1 The Hamiltonian

The complex Hilbert state space of our Hamiltonian has 2n dimensions and we write this
space as C[2n]. This notation is meant to suggest that we are forming a C vector space
using 2n “points” as basis vectors. Working in the computational basis, we do indeed
have 2n such points; these are the elements of Fn. And so we make the identification

C[2n] ∼= C[Fn].

In other words, we are labeling our basis vectors with elements of Fn and therefore
such notation as

〈u|H|v〉
with u, v ∈ Fn makes sense. We will make further use of this below, by writing F-vector
space computations inside the Dirac brackets.

Returning to the code (L, S, T,R)-decomposition above, given the Pauli operator
t ∈ T such that t = tXtZ (in Pn) we get a basis for the irrep ρt:

{|vRX + tX〉 such that v ∈ Fr}.

In other words, the basis of the irrep ρt is an affine subspace of Fn. Each such affine
subspace is indexed by an element of Fr and all of these are translates of each other,
so we make the following identification:

C[{vRX + tX}v∈Fr ] ∼= C[Fr].

This will allow us to write the matrix entries of each block Ht of the Hamiltonian as
〈u|Ht|v〉 for u, v ∈ Fr. We make this identification of affine subspaces not out of laziness
but because it will help us to compare each of the Hamiltonian blocks Ht below.
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The computational basis identifies basis vectors of C[2n] with el-
ements of a finite vector space Fn:

C[2n] ∼= C[Fn].

The (L, S, T,R)-decomposition naturally decomposes Fn into
2mZ+k affine subspaces:

{vRX + tX + lX}v∈Fr

for each tX ∈ 〈TX〉, lX ∈ 〈LX〉. Each such affine subspace forms a
symmetry invariant basis for the irreducible blocks HtX ,tZ of H,
and can be naturally identified with Fr :

HtX ,tZ : C[Fr]→ C[Fr].

We now wish to understand the action of the gauge group on each of its irreps.
Starting with the tX , tZ = 0, 0 irrep, this is where each of the stabilizers has a trivial
action. In Fn this corresponds to the additive action of the zero vector.

States u ∈ 〈RX〉 can be built from a vector matrix product

u = vRX

with v ∈ Fr. Since RXR
>
Z = I we can write v = uR>Z . Each gX ∈ GX acts on u to give

u1 = (u+ gX) mod 〈SX〉
= (u+ gX)PX

= (vRX + gX)PX .

writing u1 = v1RX we then have

v1 = (vRX + gX)PXR
>
Z

= v + gXR
>
Z .

So we have that working in the computational basis, the action of the X part of the
gauge group in the tX , tZ = 0, 0 irrep is to send v ∈ Fr to v + gXR

>
Z . In summary, we

have the following contributions from the GX terms of the Hamiltonian:

〈
v
∣∣H0,0

∣∣ v + gXR
>
Z

〉
+= 1, for gX ∈ GX , v ∈ Fr

where we use the += notation because there may be other contributions to the same
entry. These terms will always be off the diagonal unless gX is a stabilizer.

The action of the GZ gauge group contributes to the diagonal of H. These diagonal
terms apply a kind of “potential energy” penalty to the basis states that depends on
the syndrome vector:

syndrome(u) = GZu
>

for u> ∈ Fn. This is an F-vector that has one entry for each row of GZ . Writing
|GZ | for the number of these rows, and using a weight function w that just counts the
number of non-zero entries in any F-vector we have the following contributions to the
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Hamiltonian: 〈
v
∣∣H0,0

∣∣ v
〉

+= |GZ | − 2w(GZR
>
Xv
>),

for v ∈ Fr.
Adding up all of the above we have in summary,

H0,0 =
∑

v∈Fr
gX∈GX

∣∣ v + gXR
>
Z

〉〈
v
∣∣+

∑

v∈Fr

(
|GZ | − 2w(GZR

>
Xv
>)
) ∣∣ v

〉〈
v
∣∣. (2.4)

For any tX ∈ 〈TX〉 the Hamiltonian block HtX ,0 has entries indexed by basis vectors:

u = vRX + tX

this means that the GX gauge terms have the same effect on HtX ,0 as H0,0 and only
the diagonal has changed:

HtX ,0 =
∑

v∈Fr
gX∈GX

∣∣ v + gXR
>
Z

〉〈
v
∣∣+

∑

v∈Fr

(
|GZ | − 2w(GZR

>
Xv
> +GZt

>
X)
) ∣∣ v

〉〈
v
∣∣ (2.5)

The general form of each Hamiltonian block is:

HtX ,tZ =
∑

v∈Fr
gX∈GX

η(tZg
>
X)
∣∣ v + gXR

>
Z

〉〈
v
∣∣+
∑

v∈Fr

(
|GZ |−2w(GZR

>
Xv
>+GZt

>
X)
) ∣∣ v

〉〈
v
∣∣

(2.6)
Here we use η to send tZg

>
X which is an F value to the multiplicative subgroup {±1}

of C :
η(0) = 1, η(1) = −1.

The η(tZg
>
X) term is a kind of parity check that picks up one phase flip for (some of)

the X-type stabilizers found in gX . This works because TZ is a left inverse of S>X . The
tZ ∈ 〈TZ〉 selects which X-type stabilizers act as −1 in this irrep.

In summary, we have the complete representation theory for CSS gauge code Hamil-
tonians.

2.5 Gapless 1D models

In this section we briefly introduce two important one dimensional models that fit into
the CSS gauge code framework.

The XY -model [79] lives on a one dimensional chain of n qubits. We write the
gauge group generators as

G0 = {XiXi+1, ZiZi+1 for i = 1, ..., n}

with periodic boundary conditions. For n even this model has no logical operators, one
X-type stabilizer and one Z-type stabilizer. With n odd, there are no stabilizers and
k = 1. Normally the gauge operators are written as {XiXi+1, YiYi+1 for i = 1, ..., n}
but note that there is an automorphism of the Pauli group that sends G0 to these
operators. For n even, this model is exactly solvable, and the gap goes to zero as the
system size grows [69].
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For the one dimensional transverse field Ising model, we have

G0 = {Xi, ZiZi+1 for i = 1, ..., n},

with periodic boundary conditions. This model has one X-type stabilizer and no logical
operators. This model is also exactly solvable, with gap going to zero as the system
size grows [79].

2.6 Perron-Frobenius theory

In this section we present applications of Perron-Frobenius theory to finding bounds
on the spectrum of CSS gauge code Hamiltonians. These are new results.

A non-negative matrix is a real matrix Γ with entries Γij ≥ 0. A positive vector |v〉
is a real vector with all-positive entries. Similarly, a non-negative vector has all entries
real and non-negative.

Given a non-negative matrix Γ : C[V ] → C[V ] we will also view this as a weighted
graph on a set of vertices V. This associates a directed edge i 7→ j for every positive
entry Γij > 0.

A non-negative matrix Γ : C[V ]→ C[V ] is called irreducible if the following holds:
for any pair u, v ∈ V with u 6= v there is a sequence {ui}i=1,...,n such that u1 = u and
un = v and

〈ui+1|Γ|ui〉 > 0 for i = 1, ..., n− 1.

This says that viewed as a weighted graph, Γ is “connected”. That is, we can find a
directed path in Γ from any vertex u to any other vertex v. In general, this is a coarser
notion than the (vector space) reducibility used in the representation theory above.
The reason why is that when reducing a matrix we work with a fixed basis.

The following theorem originally appeared in the work of Frobenius [46], who was
building on previous results of Perron [77]. See also the recent book [8].

Theorem (Perron-Frobenius) Let Γ be a non-negative irreducible matrix. Then
Γ has a positive real eigenvalue λ equal to its spectral radius, this eigenvalue is non-
degenerate and can be associated with a positive eigenvector |v〉. Furthermore, any
other non-negative eigenvector of Γ is a scalar multiple of |v〉.

Therefore, when Γ is a symmetric non-negative irreducible matrix, we see that this
theorem implies that the top eigenvalue of Γ is non-degenerate and associated with a
positive eigenvalue.

Given a matrix Γ with Γij ≥ 0, i 6= j we can find a spectral shift operator which
is a constant multiple of the identity +cI, such that Γ + cI is a non-negative matrix.
We refer to such a matrix Γ as stoquastic [21, 20]. When Γ is also irreducible we can
therefore apply the Perron-Frobenius theorem with the proviso that the eigenvalues are
shifted by some constant.

For a linear operator A we will use notation λ1(A), λ2(A), etc., to denote the (real)
eigenvalues of A, ordered as:

λ1(A) ≥ λ2(A) ≥ ...
Similarly, the notation v1(A), v2(A), etc., refers to the associated eigenvectors.

Given a CSS gauge code Hamiltonian H, let the matrix for H in the computational
basis be Γ. We see that the diagonal entries of Γ come from the Z-type operators and
the off-diagonal entries come from X-type operators. Therefore, the off-diagonal entries
of Γ are non-negative and so this matrix is stoquastic. In the language of graph theory,
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Γ has vertices the 2n computational basis elements, and edges:

|v〉 7→ gX |v〉, for all v ∈ Fn, gX ∈ GX .

These are undirected edges because g2
X = I. We also add weighted loops corresponding

to the Z-type gauge operators:

|v〉 7→
∑

gZ∈GZ
gZ |v〉, for all v ∈ Fn.

We can think of the Z-type operators as potential energy, and the X-type operators
as kinetic energy. This is consistent with the classical use of the (real) symplectic group,
where dynamical variables come in position and momentum pairs.

Lemma 2.1 Given a CSS gauge code Hamiltonian H, writing the matrix for H in the
computational basis as Γ, this matrix decomposes into irreducible stoquastic matrices
ΓtX indexed by tX ∈ 〈TX〉 with multiplicity 2k:

Γ =
⊕

tX∈〈TX〉
lX∈〈LX〉

ΓtX .

Proof: Once again, we identify the computational basis with the elements of Fn. As
a graph, Γ has vertices |v〉 for v ∈ Fn, and edges |v〉 7→ g|v〉 for v ∈ Fn, g ∈ GX . This
means that paths starting from |v〉 are given by words gi...g1 built from the elements
of the group GX :

|v〉 7→ g1|v〉 7→ ... 7→ gi...g1|v〉.
Switching to the additive Fn notation, we therefore have that vertices |v〉 and |u〉 are
in the same component of Γ iff |u〉 = |v + gX〉 for some gX ∈ 〈GX〉. The vertices

{∣∣ tX + lX
〉}

tX∈〈TX〉, lX∈〈LX〉

each live in one component of Γ, and each component of Γ contains one of these vertices.
This shows that these components are in bijective correspondence with pairs (tX , lX)
where tX ∈ 〈TX〉, lX ∈ 〈LX〉. We write each such component as ΓtX ,lX . The vertices
contained in the ΓtX ,lX component are given by a coset of GX in Fn :

{∣∣ vSX + uRX + tX + lX
〉}

v∈FmX ,u∈Fr
.

When comparing these different components of Γ, we will identify these cosets, and so
consider ΓtX ,lX as an operator:

ΓtX ,lX : C[FmX ⊕Fr]→ C[FmX ⊕Fr].

Because each of these components is independant of lX we write it as ΓtX .

Lemma 2.2 Given a CSS gauge code Hamiltonian H, and matrix Γ in the computa-
tional basis with irreducible components ΓtX , with tX ∈ 〈TX〉, the first eigenvalue of
each ΓtX is non-degenerate and is associated with an eigenvector with positive entries.

Proof: We already established that Γ and therefore ΓtX is stoquastic. By the previous
lemma ΓtX is irreducible. We apply the Perron-Frobenius theorem and the result
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follows.

Any stabilizer that acts as −1 in a given block of the Hamiltonian we will call a
frustrated stabilizer (with respect to the given block.) Similarly, a satisfied stabilizer
acts as +1 in a given block of the Hamiltonian. We will call a vector stabilized if it is
a +1 eigenvector of every stabilizer in the given gauge group.

Lemma 2.3 Given a CSS gauge code Hamiltonian H, every groundstate of H is
stabilized.

Proof: The set of top eigenvectors

{
v1(ΓtX )

}
tX∈〈TX〉

must contain a basis for the groundspace of H. Let such a basis vector be |v〉 = v1(ΓtX )
for some tX . This vector is positive by Lemma 2.2. Any stabilizer commutes with every
element of the gauge group and so must have |v〉 as an eigenvector. Because any X-
type operator acts by permuting the computational basis elements and |v〉 is positive
it must be stabilized by the X-type stabilizers. Therefore, we can find a basis for the
groundspace of H consisting of vectors that are fixed by X-type stabilizers.

We repeat this argument for H switching to the |±〉 basis. This will give a basis for
the groundspace consisting of vectors that are fixed by the Z-type stabilizers. Therefore
the entire groundspace must be stabilized.

Proposition 2.4 For any CSS gauge code Hamiltonian H we have:

λ1(H) = λ1(H0,0)

and for tX ∈ 〈TX〉, tZ ∈ 〈TZ〉 with tX 6= 0 or tZ 6= 0,

λ1(H) > λ1(HtX ,tZ ).

Proof: The vectors in the space that HtX ,tZ operates on are stabilized iff tX = 0 and
tZ = 0, and so the result follows as a consequence of the previous lemma.

The following lemma is used in section 2.8 below.

Lemma 2.5 Given a CSS gauge code Hamiltonian H and tX ∈ 〈TX〉, the matrices for
HtX ,0 in the symmetry invariant basis are irreducible stoquastic.

Proof: From equation (2.5) we see that the nonzero, nondiagonal entries of the matrices
HtX ,0 are +1, and so this matrix is stoquastic. This matrix is irreducible because as
an operator it is irreducible.

So far, the Perron-Frobenius theory has been fruitful, telling us that the first eigen-
value of H resides in the spectrum of the block H0,0. The next goal is to search for the
second eigenvalue of H.

Lemma 2.6 Let H be a CSS gauge code Hamiltonian, with matrix Γ in the compu-
tational basis and irreducible components ΓtX . We have

ΓtX =
⊕

tZ∈〈TZ〉
HtX ,tZ .

Proof: Irreducibility of matrices is a coarser property than irreducibility of represen-
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tations. The result follows by considering eigenspaces of stabilizers.

Proposition 2.7 For a gauge code Hamiltonian H,

λ1(HtX ,0) > λ1(HtX ,tZ ) and

λ1(H0,tZ ) > λ1(HtX ,tZ ),

where tX 6= 0 and tZ 6= 0.

Proof: Let H be a CSS gauge code Hamiltonian. Let Γ be the matrix for H in the
computational basis, with ΓtX the irreducible matrix components. From Lemma 2.6,

ΓtX =
⊕

tZ∈〈TZ〉
HtX ,tZ .

And, by Lemma 2.2 the first eigenvector of ΓtX is non-degerate and positive. This will
be an eigenvector of each stabilizer, and in particular must be fixed by the X-type
stabilizers. Therefore, this eigenvalue is in the spectrum of HtX ,0 and no other HtX ,tZ

with tZ 6= 0. This shows λ1(HtX ,0) > λ1(HtX ,tZ ). We switch to the |±〉 basis and repeat
this argument to obtain the second inequality.

A CSS gauge code is self-dual when the X-type and Z-type gauge generators are
equal:

GX = GZ .

The XY -model is an example of a self-dual CSS gauge code. A CSS gauge code is
weakly self-dual when there is a permutation P on the set of n qubits that induces
equality of the gauge generators:

GXP = GZ ,

where we write P as an n× n permutation matrix. The compass model is then weakly
self-dual when we transpose the square lattice of l × l qubits.

To find the spectral gap of a weakly self-dual gauge code Hamiltonian H, we need
only examine the top two eigenvalues of H0,0 and the top eigenvalue of HtX ,0 for each
tX ∈ TX . We summarize this in the theorem:

Theorem 2.8 For a weakly self-dual gauge code Hamiltonian H, the spectral gap is
given by:

min
{
λ1(H0,0)− λ2(H0,0), min

tX∈〈TX〉
{λ1(H0,0)− λ2(HtX ,0)}

}

Proof: Combine Proposition 2.4 with Proposition 2.7. By weak self-duality, the spec-
trum of HtX ,tZ equals the spectrum of Ht′X ,t

′
Z

for some t′X ∈ 〈TX〉, t′Z ∈ 〈TZ〉.

2.7 The gauge color code model

We now turn to the central animal that motivated the theory developed in this chapter.

The three dimensional gauge color code [14, 15, 66] is a self-dual CSS gauge code.
It is based on the following geometric construction known as a colex [17]. We begin
with a tetrahedron and subdivide it into finitely many convex 3-dimensional polytopes,
or bodies. Each body has a boundary consisting of 0-dimensional cells which we call
vertices, 1-dimensional cells called edges and 2-dimensional cells called faces. By a cell
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we mean any of these 0,1,2 or 3-dimensional convex polytopes. Any two bodies in this
tetrahedral subdivision will have either empty intersection or otherwise intersect on a
common vertex, edge or face. When the intersection is on a face these two bodies are
called adjacent. Two vertices in the same edge will also be called adjacent. Each body
is colored by one of four colors, either taken to be red, green, blue, yellow or otherwise
an element of the set {1, 2, 3, 4}. The four exterior triangular faces of the bounding
tetrahedron are called regions, the intersection of two regions is called a border and the
intersection of three regions is called a corner. A cell not contained within any region
is called an interior cell.

This colored cellulation is required to have the following further properties:

1. Adjacent bodies have different colors.

2. Each region has a unique color such that no bodies intersecting that region has
that color.

3. All vertices are adjacent to four other vertices, except for the corner vertices which
are adjacent to three other vertices.

Here we show some instances of this construction, along with the colors of the
unobscured bodies. Each instance is labeled by the number of vertices n.

n = 15 n = 39

n = 65 n = 175
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We note the following consequences of the above conditions. Every face supports an
even number of vertices. We now think of each region as corresponding to a “missing”
body. Each edge is then contained in the boundary of three bodies. This means we can
associate a unique color to each edge, which is also the color of two bodies intersecting
a vertex of the edge. That is, each edge joins two bodies of the same color. Each face
bounds two bodies, and so we color each face with the two colors of these bodies.

Using this cellulation we now construct the gauge code. Qubits are associated
with the n vertices. We associate operators to other cells, or union of cells, by using
the contained vertices as support. Because this is a self-dual code, the same goes
for both the X-type and Z-type operators. The X/Z−type gauge group is generated
by X/Z−type operators supported on each face. The X/Z−type stabilizer group is
generated by X/Z−type operators supported on each body. There is one X/Z−type
logical operator and these are generated by X/Z−type operators supported on any
region.

2.8 The orbigraph

So far we have seen how the group structure of a gauge code Hamiltonian gives rise
to operators that commute with the Hamiltonian. These are symmetries of the system
given by stabilizers and logical operators. Performing numerics on small gauge code
Hamiltonians makes it evident that there is a great deal more symmetry to be found.
In particular, the entries of eigenvectors often have repeated values. This motivates
investigating the symmetries of the Hamiltonian that permute the basis vectors.

The orbigraph idea is also found in the spectral graph theory literature, see Ref.
[33]. The orbigraph also appears in disguise in Ref. [37] chapter 5, see in particular
the example on page 148-149. Lemma 2.11 and Theorem 2.12 below appear to be new
results.

Let Γ be a weighted graph on a set of vertices V :

Γ : C[V ]→ C[V ].

Given a permutation of the vertices σ : V → V we extend by linearity to form the
permutation matrix:

C[σ] : C[V ]→ C[V ].

A graph automorphism of Γ is a permutation σ : V → V that “commutes” with Γ :

ΓC[σ] = C[σ]Γ.

The set of all such graph automorphisms of Γ is denoted A. The set of orbits of A is
written V/A. These are equivalence classes on V, where two vertices v1, v2 are deemed
equivalent iff there is a graph automorphism that sends v1 to v2.

An A-invariant vector |v〉 ∈ C[V ] is such that C[σ]|v〉 = |v〉 for all σ ∈ A. These
vectors are characterized as those vectors that are constant on the A-orbits. In other
words, an A-invariant vector is defined by its value on each A-orbit. Let C : C[V/A]→
C[V ] be this defining map, and D : C[V ]→ C[V/A] any left inverse of C:

DC = I.
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We define the orbigraph of Γ as:

Γ/A := DΓC.

As a commutative square we have:

C[V ] C[V ]

C[V/A] C[V/A]

Γ

DC

Γ/A

In the proofs below we make repeated use of the fact that if |v〉 ∈ C[V ] is A-
invariant, then Γ|v〉 is also A-invariant. We first show that the apparent arbitrariness
in the choice of D does not lead to different orbigraphs.

Lemma 2.9 The definition of the orbigraph Γ/A = DΓC does not depend on the
choice of D, a left inverse of C.

Proof: Let D and D′ be left inverses of C, so that DC = I and D′C = I. Then
(D′−D)C = 0, which means that im(C) ≤ ker(D−D′). This says that any A-invariant
vector |v〉 ∈ C[V ] is in the kernel of D′−D. Since Γ preserves the A-invariant property,
im(ΓC) ≤ ker(D −D′). That is, (D′ −D)ΓC = 0 and so D′ΓC = DΓC and the result
follows.

The following lemma is demonstrated in the numerics in section 2.8.1 and section
2.8.2.

Lemma 2.10 Given a weighted graph Γ with graph automorphism group A :

Spec(Γ/A) ⊆ Spec(Γ).

Proof: Let |u〉 be an eigenvector of the orbigraph with eigenvalue λ,

DΓC|u〉 = λ|u〉.

Then ΓC|u〉 is A-invariant because C|u〉 is A-invariant. Let |u′〉 ∈ C[V/A] be such that

ΓC|u〉 = C|u′〉.

Multiplying on the left by D,

DΓC|u〉 = DC|u′〉 = |u′〉,

and so |u′〉 = λu, and
ΓC|u〉 = λC|u〉

showing that λ ∈ Spec(Γ).

In the next lemma we make use of an explicit formula for the orbigraph. The
definition of C gives

C =
∑

a∈V/A,v∈a
|v〉〈a|,

where we treat the orbits a ∈ V/A as equivalence classes of vertices so the notation
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v ∈ a makes sense. Another way to write this uses the function

f : V → V/A

that sends each vertex to the A-orbit containing it. This gives

C =
∑

v∈V
|v〉〈f(v)|. (2.7)

We also let the function
g : V/A → V

be a right inverse of f. In other words, g picks a representative vertex from each A-orbit.
We now let

D =
∑

a∈V/A
|a〉〈g(a)|, (2.8)

and the equation DC = I follows from fg being the identity on V/A. A direct compu-
tation gives a formula for the orbigraph as

DΓC =
∑

a∈V/A,v∈V
〈g(a)|Γ|v〉 |a〉〈f(v)|. (2.9)

Lemma 2.11 The orbigraph of an irreducible stoquastic matrix is also irreducible
stoquastic.

Proof: Let Γ : C[V ]→ C[V ] be an irreducible stoquastic matrix with graph automor-
phism group A. We first show that the orbigraph of Γ is stoquastic. Let a, b ∈ V/A,
be distinct A-orbits. We use equation (2.9):

〈a|DΓC|b〉 =
∑

v∈V
〈g(a)|Γ|v〉〈f(v)|b〉

=
∑

v∈b
〈g(a)|Γ|v〉

≥ 0

because Γ is stoquastic. To show that the orbigraph is irreducible we need to construct
a sequence of orbits {a1 = a, a2, ..., an = b} such that

〈ai+1|DΓC|ai〉 > 0 for i = 1, ..., n− 1.

Using the fact that Γ is irreducible, there is a sequence in V ,

{u1 = g(a), u2, ..., un = g(b)},

such that
〈ui+1|Γ|ui〉 > 0 for i = 1, ..., n− 1.

Now we examine the sequence {f(ui) ∈ V/A}. We already see that f(u1) = a and
f(un) = b. By passing to a subsequence if necessary, we can assume that f(ui) 6=
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f(ui+1). Computing as follows

〈f(ui+1)|DΓC|f(ui)〉 =
∑

v∈f(ui)

〈gf(ui+1)|Γ|v〉 by equation (2.9)

=
∑

v∈f(ui)

〈ui+1|Γ|v〉 using σ ∈ A, σ : gf(ui+1) 7→ ui+1

≥ 〈ui+1|Γ|ui〉 because Γ is stoquastic

> 0

by assumption, and so DΓC is irreducible. There is a slight wrinkle in the above
argument in that we passed to a subsequence of the {ui} in order to assume f(ui) 6=
f(ui+1). This is no obstruction because A is transitive on its orbits. In the term

∑

v∈f(ui)

〈ui+1|Γ|v〉

we sum over an orbit f(ui) and so we may replace the vertex ui+1 by any other vertex
in its orbit.

Theorem 2.12 The top eigenvalue of an irreducible stoquastic matrix

Γ : C[V ]→ C[V ]

equals the top eigenvalue of its orbigraph:

λ1(Γ) = λ1(Γ/A).

Proof: We apply the Perron-Frobenius theorem to the matrix Γ to find the top eigen-
value λ is non-degenerate with eigenvector |v〉 :

Γ|v〉 = λ|v〉.

This vector is positive and the automorphisms of Γ act by permuting basis vectors, so
|v〉 must be constant on the orbits of A. Therefore, there is a vector |u〉 ∈ C[V/A] such
that

C|u〉 = |v〉.
Then we have,

DΓC|u〉 = DΓ|v〉
= λD|v〉
= λDC|u〉
= λ|u〉

This shows λ is an eigenvalue for Γ/A. By the previous lemma Γ/A is irreducible
stoquastic and since |u〉 is positive it must correspond to the top eigenvalue of Γ/A by
the Perron-Frobenius theorem.

Here is a simple example. We take as gauge group

G = {XII, IXI, IIX,ZII, IZI, IIZ}.
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The Hamiltonian H =
∑

g∈G g has matrix:

Γ =




3 1 1 1 . . . .
1 1 . . 1 1 . .
1 . 1 . 1 . 1 .
1 . . 1 . 1 1 .
. 1 1 . −1 . . 1
. 1 . 1 . −1 . 1
. . 1 1 . . −1 1
. . . . 1 1 1 −3




where we indicate zero entries with a dot. The graph automorphisms come from per-
muting the three qubits, and so this group is A = S3. There are four A−orbits, and

C =




1 . . .
. 1 . .
. 1 . .
. 1 . .
. . 1 .
. . 1 .
. . 1 .
. . . 1




, D =




1 . . . . . . .
. 1 . . . . . .
. . . . 1 . . .
. . . . . . . 1


 .

Each column of C sums over an orbit, and each row of D chooses one member from
each orbit. This gives orbigraph

Γ/A = DΓC =




3 3 . .
1 1 2 .
. 2 −1 1
. . 3 −3


 .

We see here that even though Γ is Hermitian, the orbigraph is not Hermition, and not
even a normal operator.

For the remainder of this section 2.8, we will be applying Theorem 2.12 to the
Hamiltonian blocks HtX ,0 which are irreducible stoquastic by Lemma 2.5.

2.8.1 The compass model

For the next example we take the l = 3 compass model. H0,0 acts on a 16 dimensional
space. The order of A is 72, and we find three A−orbits. The orbigraph method can
be applied in the case where the Hamiltonian weights for X and Z are uniform as wX
and wZ . We separate the X and Z terms of the orbigraph to show how this works:

H0,0/A =




. 9 .
1 4 4
. 6 3


+




9 . .
. 1 .
. . −3


 =




9 9 .
1 5 4
. 6 .




This can be solved analytically and we find λ1 = 4 + 2
√

13 ∼= 11.21110255. Keep in
mind that the original state space has dimension 29 = 512 so we have come a long way
down to 3.

By exact numerical diagonalization we get the spectrum of H0,0 and note that the
orbigraph lifts all degeneracy as well as missing some excited eigenspaces:
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λ H0,0 degeneracy H0,0/A degeneracy

11.2111025509 1 1
6.0 1 1
2.0 4
0.0 4

-3.21110255093 1 1
-4.0 4
-6.0 1

The reason we miss some excited spaces is that they do not contain any trivial irrep of
A. Note that we miss the eigenspace with λ = −6 even though this is one dimensional.
It must contain some other non-trivial one dimensional irrep. If we want to make an
orbigraph for these other spaces we would construct the orbigraph by summing over
orbits using different characters of A (these are momenta in the abelian terminology).
See [37] chapter 5 for more details.

2.8.2 The gauge color code model

The smallest gauge color code has n = 15 qubits, G0 has 18 each of X/Z-type gauge
operators, and 4 each of X/Z-type stabilizer generators. H0,0 acts on a 64 dimensional
space, and A has order 720. We find 7 orbits:

H0,0/A =




18 18 . . . . .
3 12 15 . . . .
. 6 6 12 . . .
. . 9 . 9 . .
. . . 12 −6 6 .
. . . . 15 −12 3
. . . . . 18 −18




The eigenvalue equation results in the recurrence relation:

λak = 3kak−1 + (18− 6k)ak + (18− 3k)ak+1,

which has largest solution λ1 = 18
√

2 ∼= 25.4558441.

Numerics give the full spectrum of H0,0 and we note that the orbigraph lifts all
degeneracy as well as preserving every eigenvalue:

λ H0,0 degeneracy H0,0/A degeneracy

25.4558441227 1 1
16.9705627485 6 1
8.48528137424 15 1

0.0 20 1
-8.48528137424 15 1
-16.9705627485 6 1
-25.4558441227 1 1

The second eigenvalue of H comes from a recurrence relation in two variables which
has solution λ2 = 9

√
2 + 3

√
10 ∼= 22.21475504. So the gap for this Hamiltonian is

λ1 − λ2 = 9
√

2− 3
√

10 ∼= 3.24108908.
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2.8.3 A table of orbigraphs

Here we tabulate the order of the graph automorphism group A of HtX ,0 and the
resulting orbigraph sizes, which is the number of A−orbits. We use the software library
nauty[70] for computing graph automorphisms.

model n r tX |A| |A − orbits| |Aut(code)|
1D XY 9 8 0 18 23 18

10 8 0 200 10 20
11 10 0 22 63 22
12 10 0 288 36 24

2D compass 9 4 0 72 3 36
9 4 12 4
16 9 0 128 24 64
16 9 16 48
25 16 0 200 430 100
25 16 20 3418

3D compass 27 22 0 216 20609
27 22 72 60283

3D gauge color 15 6 0 720 7 |S4| = 24
15 6 36 16
39 18 0 36 14400 |Z3| = 3
65 32 0 |Z4| = 4

The rows without tX specified correspond to a choice of tX 6= 0 such that a single
stabilizer generator is frustrated. We also show the order of Aut(code) which is the
automorphism group of the gauge code, defined as follows. Elements of this group
act by permuting the n qubits. Such an action is given by the F-linear permutation
matrices Pn, PZ and PX , such that the following F-linear equations hold:

PXGXPn = GX ,

PZGZPn = GZ .

This implies that the action of Aut(code) commutes with the Hamiltonian and so
preserves eigenvalues of the stabilizers. Therefore this group action restricts to an
action on H0,0.

Mystery: the graph automorphism group is often bigger, some-
times much bigger, than the automorphism group of the underly-
ing code. So where is the extra symmetry coming from?

A crucial hint is provided by the fact that these graph symmetries respect the
symplectic structure in the following sense. Recall that we defined graph symmetries
via permutation matrices P such that P>HP = H. In other words, P is a permutation
on the set of basis vectors Fn. It turns out that not only are these maps F-linear, but
they also preserve syndromes. By this we mean we can find an F-linear map Q such
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that the following diagram commutes:

Fn F |GZ |

Fn F |GZ |

Gz

P Q

Gz

That P has this extra F-linear behaviour is not true in general, but it holds for the
orbigraphs in the above table.

All this suggests a further examination of the commutation structure of the code.
Indeed, this is captured by the notion of a Lie algebra, which we turn to next.

2.9 Lie algebra theory

We outline the classification of finite-dimensional semi-simple Lie algebras [47] and
show how this applies to CSS gauge code Hamiltonians.

An abstract Lie algebra g is a vector space together with a bilinear form:

[ , ] : g× g→ g

such that [A,B] = −[B,A] and [A, [B,C] + [B, [C,A]] + [C, [A,B]] = 0.

A representation of a Lie algebra g on a vector space V is a linear map

ρ : g→ GL(V )

that sends the abstract bracket to the concrete one:

ρ([A,B]) = ρ(A)ρ(B)− ρ(B)ρ(A).

A Lie algebra requires us to “forget” about multiplication of operators, and only
allow the taking of brackets (and linear combinations.) This is not as crazy as it may
at first seem. The fundamental calculation in the theory of quantum stabilizer codes
is actually a Lie algebra calculation. Consider a state |ψ〉 that is stabilized by some
operator s ∈ S :

s|ψ〉 = |ψ〉,
We wish to understand the effect of an error operator t ∈ T on our state |ψ〉, where we
have st = −ts :

st|ψ〉 = ts|ψ〉+ [s, t]|ψ〉 = −ts|ψ〉 = −t|ψ〉,
which shows that t|ψ〉 is a −1 eigenvalue of s. The key point here is that nowhere did
we need to multiply (compose) two operators, it was all done using the bracket.

We continue the analysis of CSS gauge code Hamiltonians. The terms of the Hamil-
tonian block HtX ,tZ form a Lie algebra which we denote gtX ,tZ . The basis for this Lie
algebra is formed from all iterated brackets of the terms in HtX ,tZ . This is a concrete
Lie algebra, or in other words, it comes with a representation on the vector space C[Fr].

The simplest such example of this is the one qubit Lie algebra which is generated
by X and Z. This will have basis {X,Z, 2XZ = [X,Z]} and so is a three dimensional
Lie algebra. In fact, it is isomorphic to sl2(C) the Lie algebra of traceless two by two
matrices. Notice that we do not include I in these algebras as this is associated to
the multiplicative (group) structure of the operators. Moreover we never need consider
Hamiltonians with such terms as these just shift the spectrum by a constant. Notice
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also that if we try to build a larger Lie algebra from taking iterated brackets of the
n-qubit operators {Xi, Zi} we still only get a direct sum of n copies of sl2(C). So while
the group generated by products of {Xi, Zi} is the whole Pauli group Pn, as a Lie
algebra we get something finer. This reflects the fact that these terms break up into n
commuting “pieces”, which motivates the following definition.

An ideal of a Lie algebra g is a Lie subalgebra h ⊂ g that “consumes” all the other
elements of g :

[A,B] ∈ h, for all A ∈ h, B ∈ g.

In general the structure of the Lie algebra gtX ,tZ will be more complicated than the
corresponding group structure. But we do have the following:

The Lie algebra gtX ,tZ is a semi-simple Lie algebra.

This follows from the characterization of semi-simple Lie algebras as those having no
nonzero abelian ideals. Any such ideal would correspond to the existence of stabilizers,
and we already got rid of these.

We also have a ready made Cartan subalgebra of gtX ,tZ . This is the algebra htX ,tZ
generated by the Z−type terms of HtX ,tZ . The weight spaces are the simultaneous
eigenspaces of the operators in the Cartan subalgebra. These eigenspaces are labeled
by what we called syndromes previously, and these are all one dimensional because the
span of RX does not intersect the kernel of RZ . Therefore the representation of gtX ,tZ
on C[Fr] is irreducible.

Note that a decomposition of a Lie algebra into disjoint (apart from zero) ideals will
give a direct sum decomposition of the Lie algebra. Also, any irreducible representation
of a direct sum of Lie algebras can be considered as the tensor product of irreducible
representations of the individual summands. This is key to the numerical algorithms
below: we examine the ideals generated by the terms in the Hamiltonian block HtX ,tZ .
Each such ideal corresponds to a direct summand of gtX ,tZ and so the spectrum ofHtX ,tZ

can be written as a sum over spectra of smaller gauge code Hamiltonians corresponding
to each ideal.

2.9.1 Ideal structure of gauge codes

Ideals are generated by anti-commuting operators, and so to find these ideals we search
for a partition of the gauge group operators such that operators from different partitions
commute.

The XY -model has gauge group terms XiXi+1, ZiZi+1 for i = 1, ..., n. When n = 2k
is even these terms generate two Lie algebra ideals. For i = 1, ..., k the terms X2iX2i+1

and Z2i+1Z2i+2 generate one ideal, and the other ideal comes from switching X and Z.

We next examine the Lie algebra ideal structure of the gauge color code. Two faces
operators, of X-type and Z-type, will anti-commute only when they intersect on a
single vertex. This only happens when such faces have disjoint coloring. Here we show
an example of this in the n = 39 model:
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There are three of these arrangements, each corresponding to the three ways of parti-
tioning the set of colors into two sets of two. It follows that gtX ,tZ is the direct sum
of 6 disjoint ideals, and specifically, that each Hamiltonian term in HtX ,tZ lies in a
single one of these ideals. This result is crucial for obtaining the exact diagonalization
numerical results below.

2.9.2 Lie algebra classification

Here we explicitly compute decompositions of g0,0 into the direct sum of simple Lie
algebras. First we review the classificiation of simple Lie algebras.

Let n be the rank of a simple lie algebra g. This is the dimension of the Cartan
subalgebra h.

The simple Lie algebras are classified into four infinite series An, Bn, Cn, Dn as well
as five other exceptional Lie algebras that we will not need.

The An series can be constructed as sln+1 which are the traceless (n+ 1)× (n+ 1)
matrices. Therefore the algebra dimension is n2 + 2n.

For n ≥ 2 the Bn series comes from the Lie algebras so2n+1. These can be con-
structed as (2n+ 1)× (2n+ 1) matrices in block form




P Q T
R S U
V W 0




with Q,R anti-symmetric and P> = −S, T = −W>, U = −V >. This algebra therefore
has dimension 2n2 + n.

For n ≥ 3 the Cn series comes from the Lie algebras sp2n. These can be constructed
as 2n× 2n matrices in block form

(
P Q
R S

)

with Q,R symmetric and P> = −S. It follows that this algebra has dimension 2n2 +n.

For n ≥ 4 the Dn series is so2n. These can be constructed as 2n × 2n matrices in
block form (

P Q
R S

)
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with Q,R anti-symmetric and P> = −S. Therefore this algebra has dimension 2n2−n.

2.9.3 A table of gauge code Lie algebras

Using brute-force computation we now find the dimension of the ideals in g0,0 and
therefore which simple Lie algebra these correspond to. Note that here we switch back
to using n to denote the number of qubits, which in general is not the rank of the Lie
algebra.

model n r tX gtX ,0
1D XY 9 8 0 D9

10 8 0 D5 ⊕D5

11 10 0 D11

12 10 0 D6 ⊕D6

1D Ising 4, ..., 16 n− 1 0 Dn

2D compass 9 4 0 A15

16 9 0 D256

3D gauge color 15 6 0 6A1

39 18 0 6A7

65 32 0 4A31 ⊕ 2A63

This verifies the ideal decompositions we found in the previous section, and also
corroborates the large amount of symmetry found with the orbigraph method. For
example, the S6 symmetry of the n = 15 gauge color code corresponds to permutations
of the six A1 ideals.

There is a remaining mystery of where the extra Z2 symmetry of the 2D com-
pass model is coming from. This symmetry was found with the orbigraph method in
section 2.8.3.

2.10 Numerical results

Here we show tables for the first and second eigenvalues of the compass and gauge color
code models. These results are obtained using exact diagonalization methods. For each
instance we indicate the groundspace eigenvalue λ1 which is obtained from H0,0. Then
we list the second eigenvalue of H0,0 as well as the first eigenvalue of HtX ,0 for tX 6= 0.
The weight of the corresponding frustrated stabilizer is w(sZ). The eigenvalue closest to
λ1(H0,0) is marked with a tick, along with the value of the gap, λ1− λ2. We only show
the results for a single frustrated stabilizer generator, as it was confirmed numerically
that adding further frustrated stabilizers never produces a better candidate for λ2.
(This involved performing exact diagonalization on the top eigenvalues of every HtX ,0

block in the Hamiltonian.) Also, we only show non-isomorphic stabilizer generators,
under the lattice symmetry of the model. We use the iterative solvers in software library
SLEPc [52] to find these eigenvalues.
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2D compass code model

n tX w(sZ) λ1 λ2 ? gap

16 0 19.012903 16.335705
8 18.369300 X 0.643603

25 0 29.076200 27.597280
10 28.624004 X 0.452196

36 0 41.410454 40.585673
12 41.094532 X 0.315922

Such numerics for the 2D compass model have been previously found using similar
methods [27].

3D compass code model

n tX w(sZ) λ1 λ2 ? gap

27 0 60.295471 58.382445
18 59.757677 X 0.53779

3D gauge code model

n tX w(sZ) λ1 λ2 ? gap

15 0 25.455844 16.970563
8 22.214755 X 3.241089

65 0 104.076026 99.014097
8 100.429340
12 100.585413
12 101.602340
18 102.382483 X 1.693543

175 0 267.197576 264.250644
8 263.171190
8 263.324858
8 263.340832
12 264.269635
12 264.617135
12 264.745548
18 264.843629
18 265.413935
18 265.754772
24 266.148188 X 1.04939

The gap of the 3D gauge color code is clearly far more robust than the other models,
see Figure 2.1. It does decrease with n, but note also that the stabilizers in the code
are also growing, up to weight 24. To emphasize this point we show in Figure 2.2
the ground eigenvalues of all of these blocks HtX ,0. For larger codes in this family the
stabilizers do not get bigger than weight 24. It is not clear to what extent these results
are representative of larger code sizes, but we can already see from Figure 2.2 evidence
that the weight of the frustrated stabilizer generator plays a more important role than
the size of the code itself.

There are two main points to make about these numerics. The first is that the gap
of the compass model is decreasing much faster than the gap in the gauge color model.
In fact, there is strong evidence [36] that the gap of the compass model tends to zero
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Figure 2.1: The spectral gap of four different gauge code Hamiltonians, versus the
number of qubits n. The gap is defined as the difference between the ground eigenvalue
and the first excited eigenvalue. These results are obtained by exact diagonalization.
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Figure 2.2: Here we show the spectral gap for each Hamiltonian block HtX ,0 of the
3D gauge color code models of sizes n = 15, n = 65 and n = 175. This gap is defined
as λ1(H) − λ1(HtX ,0). Each point is colored according to the weight of the frustrated
stabilizer generator.
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as the lattice size grows. The second point to make is that the gap always corresponds
to frustrating a stabilizer (tX 6= 0.) Moreover, the stabilizer that gives rise to the gap is
the one with largest weight. This is a crucial connection to make because the stabilizers
of the compass model grow with the linear size of the model while those of the gauge
color model do not need to grow beyond a constant bound. This would suggest that if
this is the mechanism for gapless behaviour that the gauge color model may be gapped.

The above numerics reach the limit of presently available computational resources.
To find eigenvalues for each Hamiltonian block HtX ,0 we need to operate on wavefunc-
tions with 2r real coefficients. The iterative solvers in SLEPc need to store at least two,
but ideally more, of these wavefunctions. For r = 32 this is about 32 Gigabytes for
one wavefunction (using double precision coefficients) and so this value for r is roughly
the upper limit on these numerical techniques. Without decomposing the gauge color
code into six disjoint ideals it would be impossible to obtain the results for the n = 175
code, as this code has r = 94.

2.11 Cheeger cuts

In this final section of Chapter 2 we give some heuristic arguments for why the size of
the stabilizers is related to the gap of the Hamiltonian.

The Perron-Frobenius structure theory places strong constraints on the first and
second eigenvectors of ΓtX : the first eigenvector has all positive entries, and therefore
all vectors orthogonal to the first eigenvector will have both positive and negative
entries. In general, the set of edges of ΓtX where such a vector changes sign we call a
Cheeger cut [31, 32]. (We ignore the possibility that this vector may have zero entries.)
The Cheeger cut associated to the second eigenvector is particularly important, and we
next show an example of how this cut relates to the gap.

2.11.1 The double well model is gapless

We consider a linear graph Hamiltonian with a “double-well” potential. This does not
correspond to any gauge code Hamiltonian. The state space will be d dimensional with
basis vectors numbered |1〉, ..., |d〉. We take H = A+ U with

Aij =

{
1 if |i− j| = 1,
0 otherwise

and Uij =

{
2 if i = j = 1 or i = j = n,
0 otherwise.

A here is a kind of transition matrix, and U is a diagonal potential energy term.

For d� 1, the largest eigenvalue is λ1
∼= 5

2 . The corresponding eigenvector |v1〉 has
all positive entries that decay exponentially away from the well sites at |1〉 and |d〉 :

〈i|v1〉 ∼= 2i−1〈1|v1〉 for i� d

2
.

For the second eigenvalue, λ2 we also have λ2
∼= 5

2 and indeed, as d grows the gap
λ1 − λ2 → 0 and so this model is gapless.

Here we depict the wavefunctions for the first two eigenvectors for a system with
d = 12 :
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cut

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉 |8〉 |9〉 |10〉 |11〉 |12〉

|v1〉

|v2〉

The simplest way to show this model is gapless is using a variational argument. Any
another vector |u〉 that is orthogonal to the groundspace vector will have 〈u|H|u〉 ≤ λ2.
To construct a candidate for |u〉 partition the basis vectors into two parts:

Γ = ΓA ∪ ΓB

and write |v1〉 = |vA〉 ⊕ |vB〉 as well as Hamiltonian with this decomposition as

H =

(
HAA HAB

HBA HBB

)
.

Now let
|u〉 = |vA〉 ⊕ −|vB〉

And then

λ2 ≥ 〈u|H|u〉 = 〈vA|HAA|vA〉+ 〈vB|HBB|vB〉 − 〈vB|HBA|vA〉 − 〈vA|HAB|vB〉
= λ1 − 4〈vB|HBA|vA〉.

So if we can show that 〈vB|HBA|vA〉 tends to zero we are done. This term involves
the dynamical coupling between the groundstate wavefunction along the cut between
A and B. To succeed we must find such a cut where the wavefunction is small. In
general this appears to be quite difficult, even though in the models we are considering
numerics show that not only is the wavefunction small away from potential wells but
it is exponentially small.

2.11.2 The cut and symmetry

We now study the cut associated to the second eigenvector of a weakly self-dual gauge
Hamiltonian H, and relate this to the stabilizers of the code. The key realization is
that ΓtX is like the double well potential above, but now we have 2mX such wells, that
is, one for every sX ∈ 〈SX〉. This is clear from examining the basis vectors for ΓtX .
These are

|vSX + uRX + tX〉, where v ∈ FmX , u ∈ Fr
and those that satisfy the most GZ terms are precisely those with u = 0.

We already know this is either the second eigenvector of H0,0 or otherwise the first
eigenvector of HtX ,0 for some tX 6= 0. To relate this to the Perron-Frobenius theory we
note the decomposition from Lemma 2.6:

ΓtX =
⊕

tZ∈〈TZ〉
HtX ,tZ .
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This gives the spectral decomposition of each graph ΓtX in terms of “momenta” tZ .

We focus on Γ0. This must contain the second eigenvector of H by weak self-duality
of the code. X-type stabilizers sX ∈ SX act on the 0, tZ irreps in Γ0 by ±1 according
to the commutator [[sX , tZ ]]. Suppose the second eigenvector of H lives in H0,tZ for
tZ 6= 0. Let sX ∈ SX with [[sX , tZ ]] = −1. Then we must have an odd number of
Cheeger cuts on every Γ0 path between |v〉 and sX |v〉 for all basis vectors |v〉, that is,
v ∈ 〈SX〉 ⊕ 〈RX〉.

In a similar vein, if the second eigenvector of H lives in H0,0 then we must have an
even number of Cheeger cuts on every Γ0 path between |v〉 and sX |v〉 for all stabilizers
sX ∈ SX and basis vectors |v〉.

In summary, the idea is that large stabilizers lead to widely separated well potentials
and hence gapless behaviour, while stabilizers of bounded weight force the cuts to
appear close to the wells and hence maintain a gap. Even though numerics show
the wavefunction becoming exponentially small away from well potentials, it is also
exponentially wide. So making these arguments rigorous appears to be difficult.

The following fact would appear to be true under certain conditions, but is not at
all true for example when T is trivial:

Proto-fact: For a sufficiently “well-behaved” weakly self-dual
gauge code Hamiltonian H

λ2(H) = min
tX 6=0

λ1(HtX ,0)

= min
tZ 6=0

λ1(H0,tZ ).

Indeed, contrary to this proto-fact we suspect that H0,0 will not be gapped in the
generic case. Numerics suggest that there is no lower bound on the gap of randomly
constructed stabilizer-less gauge code Hamiltonians. Perhaps double well behaviour
can still be imitated even without stabilizers: merely having a large region of almost-
stabilizer behaviour (large shallow well) could be enough to send the gap to zero.

There are also results that state that generic local Hamiltonians are gapless [73].

2.11.3 Cheeger inequalities

We saw above how the Cheeger cut gives a variational ansatz for building a second
eigenvector to the Hamiltonian and hence an upper bound on the gap.

In this section we show how the Cheeger cut also yields a lower bound on the gap.

In [45], they derive the following Cheeger inequality by considering bi-partitions of
the graph. We will do the same, but using matrix block notation.

Let v2 be a second eigenvector, Hv2 = λ2v2 and ||v2|| = 1. We bi-partition the
space so that v2 has (vector) blocks:

v2 =

(
x
y

)

with x ≥ 0 and y ≤ 0, entry-wise. Let the blocks of H under the same partition be:

H =

(
A C
C> B

)
.
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If we denote λ1(A) as the top eigenvalue of A and λ1(B) as the top eigenvalue of B,
then

λ2 = v>2 Hv2 = x>Ax+ 2x>Cy + y>By

≤ x>Ax+ y>By ≤ ||x||2λ1(A) + ||y||2λ1(B)

≤ min(λ1(A), λ1(B)) ≤ λ1.

Defining the following constant as a maximization over all bi-partitions of H :

ν(H) := max
A,B

min(λ1(A), λ1(B))

the above calculation shows that

λ2 ≤ ν(H) ≤ λ1.

2.12 Discussion

The goal of this chapter is to understand the spectra of certain frustrated qubit Hamil-
tonians. Of particular interest is to understand how the gap between the first two
eigenvalues behaves as we increase the number of qubits. For a system to maintain a
topologically ordered groundstate we would expect this gap to be bounded away from
zero, or “gapped”.

The numerical results obtained show some evidence for this gapped behaviour for
the 3D gauge color code Hamiltonian. To get these numerics we rely on several key
results. The first is to decompose the Hamiltonian into a direct sum of operators
labelled by stabilizer eigenvalues. This is essentially group representation theory as
applied to gauge codes. The second result was obtained using Perron-Frobenius theory,
as the Hamiltonians of interest are stoquastic. This theory shows where the first and
second eigenvalue is to be found in the block decomposition of the Hamiltonian which
leads to a polynomial reduction in the numeric workload. Also, the Perron-Frobenius
theory gives geometric reasons as to why the size of stabilizers is related to the gap.

The third main result of this chapter is the decomposition of each Hamiltonian
block into mutually commuting “pieces”. This is explained using the theory of finite-
dimensional semi-simple Lie algebras. In the case of the 3D gauge color code Hamilto-
nian, this decomposition yields an exponential reduction in the numeric workload, by
dividing the number of qubits by 6.

Finally, the connection between stabilizer size and the gap is further investigated
via the idea of the Cheeger cut. This builds on the Perron-Frobenius theory results.
If the groundstate wavefunction is sufficiently concentrated into potential wells, then
we can construct an excited state that has eigenvalue close to the ground eigenvalue.
And the distance between potential wells is controlled by the size of stabilizers. The
conjecture we would like to make would state how this spectral gap is controlled by the
size of the frustrated stabilizers: large stabilizers lead to gappless behaviour while small
stabilizers maintain a gap. However, it is not clear how to formulate this conjecture,
and even less clear how to prove it. More numerics need to be performed, with the
specific goal of understanding the shape of the groundspace wavefunction, and how this
relates to the geometry of the underlying code.

54



CHAPTER 3

A Short Guide to Anyons and Modular
Functors

To the working physicist, anyon theory is meant to describe certain quasi-particle ex-
citations occurring in two dimensional topologically ordered systems. A typical calcu-
lation using this theory will involve operations such as ⊗ to combine anyons, F abcd to
re-associate such combinations, and Rabc to commute or braid these anyons. Although
there is a powerful string-diagram notation that greatly assists these manipulations,
we still appear to be operating on particles arranged on a one-dimensional line, al-
gebraically ordered from left to right. The obvious question is, where is the other
dimension? The topological framework for considering these anyons as truly living in
a two dimensional space is known as a modular functor, or topological quantum field
theory. In this work we show how the apparently one-dimensional algebraic anyon
theory is secretly the theory of anyons living in a fully two-dimensional system. The
mathematical literature covering this secret is vast, and we try to distill this down into
something more manageable.

3.1 Overview

In this work we describe the theory of two-dimensional topologically ordered systems
with anyonic excitations. There are two main approaches to defining these, one being
more algebraic and the other more topological.

The algebraic side is known to mathematicians as the study of braided fusion ten-
sor categories, or more specifically, modular tensor categories. This algebraic language
appears to be more commonly used in the physics literature, such as the well cited
Appendix E of Kitaev [62]. Such algebraic calculations can be interpreted as manipu-
lations of string diagrams [7], or skeins. These strings encode connections in the algebra,
for example the Einstein summation convention. But they also faithfully encode the
twisting that occurs when anyons are re-ordered or braided around each other. And
these kinds of spatial relationships are fruitfully studied using topological methods.

Working from the other direction, one starts with a topological space (of low dimen-
sion) and attempts to extract a combinatorial or algebraic description of how this space
can be built from joining smaller (simpler) pieces together. These topologically rooted
constructs are known as modular functors, or the closely related topological quantum
field theories (TQFT’s).

That these two approaches – algebraic versus topological – meet is one of the great
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surprises of modern mathematics and physics.

Modular functors can be constructed from skein theory. In the physics literature,
this appears as skeins growing out of manifolds [78], or as motivated by renormal-
ization group considerations [68]. A further physical motivation is this: if a skein is
supposed to correspond to the (2 + 1)-dimensional world-lines of particles as in the
Schrödinger picture, modular functors would correspond to the algebra of observables,
as in a Heisenberg picture.

In the physics literature, modular functors are explicitly used in Refs. [44, 43]. Also,
Refs. [12] and [63] use the language of modular functors but they call them TQFT’s.
This is in fact reasonable because a modular functor can be seen as part of a TQFT, but
is quite confusing to the novice who attempts to delve into the mathematical literature.

The definition of a modular functor appears to be well motivated physically. Unfor-
tunately, there are many such definitions in the mathematical literature [83, 82, 9, 81].
According to [10] section 1.2 and 1.3, there are several open questions involved in
rigorously establishing the connection between these different axiomatizations. In par-
ticular, what physicists call anyon theory, and mathematicians call a modular tensor
category, has not been established to correspond exactly (bijectively) to any of these
modular functor variants. We try not to concern ourselves too much with these details,
but merely note these facts as a warning to the reader who may go searching for the
“one true formulation” of topological quantum field theory.

Of the many variants of modular functor found in the literature, one important
distinction to be made is the way anyons are labeled. In the mathematical works
[82, 9, 81] we see that anyons are allowed to have superpositions of charge states.
However, in this work we restrict anyons to have definite charge states, as in [83, 43, 12].

The main goal of the present work is to sketch how a braided fusion tensor category
arises from a modular functor. In the mathematical literature, this is covered in [82,
81, 9] but as we just noted they use a different formulation for a modular functor.

3.2 Topological Exchange Statistics

In this section we begin with the familiar question of particle exchange statistics in three
dimensions, whose answer is bosons and fermions. We then show how in restricting the
particles to two dimensions many more possibilities arise. Our focus will be on the close
connection between the algebraic and the topological viewpoints, aiming to motivate
the definition of a modular functor given in the next section.

In three spatial dimensions, the process of winding one particle around another, a
monodromy, is topologically trivial. This is because the path can be deformed back to
the identity; there is no obstruction:

The square root of this operation is a swap:
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For identical particles this is a symmetry of the system. Continuing with this line of
thought leads to consideration of the symmetric group on n letters, Sn. This group is
generated by the n− 1 swap operations s1, ..., sn−1 that obey the relations

s2
i = 1,

sisj = sjsi for |i− j| > 1,

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2.

Writing the Hilbert space of the system as V we would then expect Sn to act on this
space via unitary transformations U(V ) :

H : Sn → U(V ).

This is the first example of the kind of functor we will be talking about. In this case it
is a group representation; H is a homomorphism between two groups.

When the above monodromy is constrained to two dimensions we can no longer
deform this process to the identity:

6=

and so in two dimensions we cannot expect a swap to square to the identity. To see
this more clearly, we must examine the entire (2+1)-dimensional world-lines of these
particles. For an example, here we show the world-lines of three particles undergoing
an exchange and then returning to their original positions:

t0

t1

time

Note that if we allow the particles to move in one extra dimension then we can untangle
these braided world lines. The question is now, what is the group that acts on the state
space from t0 to t1? Examining the structure of these processes more closely, we see
that we can compose them by sequentially performing two such braids, one after the
other:
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=

And, by “reversing time”, we can undo the effect of any braid:

=

This shows that these processes do form a group, known as the braid group. For n
particle world-lines we denote this group as Bn. For identical particles this group acts
as symmetries of the state space:

H : Bn → U(V ).

What we have given is a topological description of the group Bn. More formally,
we can describe these braid world lines as paths in the configuration space of n points.
This space is defined as the product of a two dimensional space M for each point, minus
the subspace where points overlap:

Cn =
( n∏

1

M
)
−∆, ∆ = {(x1, ..., xn)|xi = xj for some i 6= j}.

Because we are considering identical particles (so far) we use the unlabelled configuration
space UCn which is the quotient of Cn by the natural action of the permutation group
Sn :

UCn = Cn/Sn.
The geometric braid group as we have so far informally described it can now be rigor-
ously defined as the fundamental group:

Bn = π1(UCn, x)

where x is some reference configuration in UCn. See Ref. [48] for further discussion.

This group also has a purely algebraic description via generators and relations, as
was shown by Artin in 1947, [4, 13]. In this description, Bn is generated by n − 1
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elements σ1, .., σn−1 that satisfy the following relations:

σiσj = σjσi for |i− j| > 1,

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2.

These relations are the same as for Sn above, except we do not require σ2
i = 1.

It is easy to see that the geometric braid group satisfies these relations. Here we
show the braids corresponding to the generators σi :

σi =

1 2 ...

...

i i+ 1 ...

...

n

with inverses:

σ−1
i =

1 2 ...

...

i i+ 1 ...

...

n

Note that σiσj = σjσi for |i− j| > 1 because the two braids are operating on disjoint
world-lines. The second relation is also easy to see:

σiσi+1σi =

... ...i i+ 1 i+ 2

= = σi+1σiσi+1

... ...i i+ 1 i+ 2

There is another important geometric representation of the braid group which is
purely two-dimensional. We pick an n-point finite subset Qn ⊂M and consider diffeo-
morphisms f : M →M that map Qn to itself. The mapping class group of M relative
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to Qn is the set of all such diffeomorphisms up to an equivalence relation ∼iso:

MCG(M,Qn) = {f : M →M such that f(Qn) = Qn}/ ∼iso

The equivalence relation ∼iso is called isotopy which allows for any continuous defor-
mation of f : M →M that fixes each point in Qn. Each generator σi of the braid group
is found in MCG(M,Qn) as a half-twist that swaps two points i, i+ 1 ∈ Qn:

σi

... i i+ 1 ... ... i+ 1 i ...

In order to show the action of this half-twist we have decorated the manifold with a a
checkered pattern, but there is a more important object that lives on the manifold itself.
An observable is a simple closed curve in M that does not intersect Qn. Such a closed
curve is called an observable because these will be associated to measurements of the
total anyonic charge on the interior of the curve. The importance of understanding the
braid group as identical to the mapping class group is now manifest: whereas geometric
braids act on states as in a Schrödinger picture, elements of the mapping class group
act on the observables as in a Heisenberg picture.

This diagram should give the reader some idea as to why these two definitions of the
braid group are equivalent, but the actual proof of this is somewhat involved. We cite
Ref. [60] for an excellent contemporary account that fills in these gaps.

The definition given above for the geometric braid group and the mapping class
group make sense for any two dimensional manifold M but for concreteness we consider
M to be a flat disc. The corresponding algebraic definition of the braid group will in
general be altered depending on the underlying manifold M.

So far we have been studying the exchange statistics for n identical particles. With-
out this restriction, one needs to constrain the allowed exchange processes so as to
preserve particle type. For example, if all particles are different we would use the pure
braid group PBn. The geometric description of this group is as the fundamental group
of the labelled configuration space

PBn = π1(Cn, x).
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Loops in Cn correspond to braids where each world-line returns to the point it started
from. The algebraic description of this group is somewhat complicated and we omit
this. In terms of the mapping class group, we can describe PBn as the pure mapping
class group:

PMCG(M,Qn) = {f : M →M such that f(x) = x for x ∈ Qn}/ ∼iso .

One further complication arises when particles have a rotational degree of freedom:
ie., they can be rotated by 2π in-place and this effects the state of the system. To
capture this action, we use the framed braid group FBn. This group can be presented
algebraically using the same generators and relations as for the braid group Bn, along
with “twist” generators θi for i = 1, .., n. These must satisfy the further relations

θiθj = θjθi

θiσj = σjθi if i < j or i ≥ j + 2

θi+1σi = σiθi

θiσi = σiθi+1.

Here we show four geometric approaches to representing a twist. Any person that
has struggled to untangle their headphone cable will immediately see what is going on
here.

On the left we have a loop; it is not a braid because it travels backwards in time. If we
pull on this loop to make it straight, we introduce a twist. This is shown in the next
figure, where we show a framing which is a non-degenerate vector field along the world-
lines of a braid. The initial and final vectors in the vector field must be the same. By
non-degenerate we mean that the vector field is everywhere non-zero and non-tangent
to the world-line. In the next figure we show a ribbon: instead of point particles we
have short one-dimensional curves in M . On the right the particle is represented as
a boundary component (a hole) of M with a distinguished point. In this picture the
world-line looks like a tube.

All these representations of twists carry essentially the same information. In the
sequel we will stick to thinking of particles as boundary components because this fits
well with the way we are formulating observables as simple closed curves in M .

At this point in the narrative we are close to our next destination. All of these
considerations, of framed or unframed, labelled or not, with possibly different underly-
ing manifolds, together with observables, is mean to be captured by the formalism of
a modular functor which we turn to next.
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3.3 Modular Functors

We list the axioms for a 2-dimensional unitary topological modular functor.
For our purposes a surface will be a compact oriented 2-dimensional differentiable

manifold with boundary. We will not require surfaces to be connected. By a hole of M
we mean a connected component of its boundary. Each hole will inherit the manifold
orientation, contain a distinguished base point, and be labeled with an element from a
fixed finite set A. This is the set of “anyon labels”, and comes equipped with a vacuum
element I and an involution ̂ such that Î = I. The involution maps an anyon label to
the “antiparticle” label.

We will mostly be concerned with planar such surfaces, that is, a disc with holes
removed from the interior. Such surfaces will be given a clockwise orientation, which
induces a counterclockwise orientation on any interior hole and a clockwise orientation
on the exterior hole.

...

Although it helps to draw such a surface as a disc with holes, we stress that there is
no real distinction to be made between interior holes and the exterior hole. That is, a
disc with n interior holes is (equivalent to) a sphere with n+ 1 holes. We merely take
advantage of the fact that a sphere with at least one hole can be flattened onto the
page by “choosing” one of the holes to serve as the exterior hole.

By a map of surfaces f : M → N we mean a diffeomorphism that preserves manifold
orientation, hole labels, and base points. Note that we also deal with maps of various
other objects (vector spaces, sets, etc.) but a map of surfaces will have these specific
requirements.

Two maps of surfaces f : M → N and f ′ : M → N will be called isotopic when one
is a continuous deformation of the other. In detail, we have a continuously parametrized
family of maps ft : M → N for t ∈ [0, 1] such that f0 = f, f1 = f ′ and the restriction
of ft to the set of marked points X ⊂ ∂M is constant: ft|X = f |X for t ∈ [0, 1]. Such
a family {ft}t∈[0,1] is called an isotopy of f. This is an equivalence relation on maps
M → N , and the equivalence class of f under isotopy is called the isotopy class of f.
The weaker notion of homotopy of maps will not be used here, but for the maps we use
it turns out that homotopy is equivalent to isotopy. Furthermore, we can weaken the
requirement that maps be differentiable, because every continuous map f : M → N is
(continuously) isotopic to a differentiable map [41].

A modular functor H associates to every surface M a finite dimensional complex
vector space H (M), called the fusion space of M . For each map f : M → N the mod-
ular functor associates a unitary transformation H (f) : H (M) → H (N) that only
depends on the isotopy class of f. Functoriality requires that H respect composition
of maps.

We have the following axioms for H .
Unit axioms. The fusion space of an empty surface is one dimensional, H (φ) ∼= C.

For Ma a disc with boundary label a we have H (MI) ∼= C and H (Ma) ∼= 0 for a 6= I.
For an annulus Ma,b with boundary labels a, b we have H (Ma,â) ∼= C and H (Ma,b) ∼= 0

for a 6= b̂.

62



Monoidal axiom. The disjoint union of two surfaces M and N is associated with
the tensor product of fusion spaces:

H (M qN) ∼= H (M)⊗H (N).

This is natural from the point of view of quantum physics, where the Hilbert space of
two disjoint systems is the tensor product of the space for each system.

Gluing axiom. Denote a surface M with (at least) two holes labeled a, b as Ma,b.
If we constrain b = â then we may glue these two holes together to form a new surface
N . To construct N we choose a diffeomorphism from one hole to the other that maps
base point to base point and reverses orientation. Identifying the two holes along this
diffeomorphism gives the glued surface N . (There is a slight technicality in ensuring
that N is then differentiable, but we will gloss over this detail.) The image of these
holes in N we call a seam. The fusion space of Ma,â then embeds unitarily in the fusion
space of N . Moreover, there is an isomorphism called a gluing map:

⊕

a∈A
H (Ma,â)

∼=−→H (N)

and this isomorphism depends only on the isotopy class of the seam in N.

Unitarity axiom. Reversing the orientation of the surface M to form M we get
the dual of the fusion space. That is, we have the following isomorphism:

H (M)
∼=−→H (M)∗.

Compatibility axioms. Loosely put, we require that the above operations play
nicely together, and commute with maps of surfaces. For example, a sequence of gluing
operations applied to a surface can be performed regardless of the order (gluing is
associative) and we require the various gluing maps for these operations to similarly
agree. For another example, we require H to respect that gluing commutes with
disjoint union.

Observables. The seam along which gluing occurs can be associated with an
observable as follows. We take a gluing map g and projectors Pa onto the summands
in the above direct sum:

Pa :
⊕

b∈A
H (M

b,̂b
)→H (Ma,â).

then the observable will be the set of operators {Pag−1}a∈A. For each a ∈ A we call the
image of Pa a charge sector for that observable. Note that in the glued surface N the
seam has no preferred orientation (or base point). If we choose an orientation for the
seam this corresponds to choosing one of the two boundary components in the original
surface Ma,â. If these boundary components come from disconnected components of
Ma,â the seam cuts N into two pieces and the orientation chooses an interior: following
the orientation around the seam presents the interior to the left. We intentionally
confuse the distinction between an observable as a set of operators, and the associated
seam along which gluing occurs.

Consequences of axioms. A common operation is to glue two separate surfaces.
We can do this by first taking disjoint union (tensoring the fusion spaces) and then
gluing. Here we show this process applied to two surfaces M and N .
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⊕

a

H
(

...

M

a
q ...

N

â
)

H
(∼=

N ...

M

)

We display the surface N with the â boundary on the outside, to show more clearly
how N fits into M . In the glued surface we indicate the placement of M and N and
the seam along which gluing occurred, as well as the identification of base points.

We note two other consequences of the axioms. A hole of M labeled with I can
be replaced with a disk (by gluing) and this does not change the fusion space of M.
That is, a hole that carries no charge can be “filled-in”. And, the dimensionality of the
fusion space of a torus is the cardinality of A. This can be seen by gluing one end of
an annulus (cylinder) to the other.

Fusion. When a surface can be presented as the gluing of two separate surfaces,
we have projectors onto the fusion space of either glued surface:

H
(

N ...

M

)
H
(

...

M

a )

In this case, we define the operation of fusion to replace the interior of an observable
by a single hole. This is an operation on the manifold itself, and we will only do this
when the interior piece is a disc with zero or more holes.

F-move. The fusion space of the disc and annulus are specified by the axioms, and
we define the fusion space of the disc with two holes, or pair-of-pants as:

V ab
c := H

( a b

c

)

The F -move is constructed from two applications of a gluing map (one in reverse)
as the following commutative diagram shows:

a b c

d

H
( )

a y b c
ŷd

⊕

y∈A
H
( )F abc

da b x c
x̂ d

⊕

x∈A
H
( )

∼= ∼=

Here we have a surface Mabc
d with four labeled boundary components, as well as two

separate ways of gluing pairs-of-pants to get Mabc
d . We can also write this out in terms

of the fusion spaces of pair-of-pants:

F abcd :
⊕

x∈A
V ab
x̂ ⊗ V xc

d →
⊕

y∈A
V ay
d ⊗ V bc

ŷ .
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By using gluing, and summing over charge sectors, we can extend this operation to
apply where any of the boundary components a, b, c or d are merely seams in a larger
manifold.

POP decomposition. Given a manifold M which is a disc with two or more
holes, we show how to present M as the gluing of various pair-of-pants (POP). Such
an arrangement will be termed a POP decomposition. (We refer to Ref. [56] for more
details on this construction, and Ref. [48] for a leisurely description of Morse theory.)
This will yield a decomposition of H (M) into a direct sum of fusion spaces of pair-
of-pants. The key idea is to choose a “height” function h : M → R with some specific
properties that allow us to cut the manifold up along level sets of h. First, we need
that critical points of h are isolated. This is the defining condition for h to be a Morse
function. Also, we need that h is constant on ∂M, and the values of h at different critical
points are distinct. Now choose a sequence of non-critical values a1 < a2 < ... < an in R
such that every interval [ai−1, ai] contains exactly one critical value of h and the image
of h lies within [a1, an]. Each component of h−1([ai−1, ai]) is then either an annulus,
a disc, or a pair-of-pants depending on the index of (any) critical point it contains.
We then re-glue any annuli or discs until there are no more of these and we have only
pair-of-pants.

Clearly such a POP decomposition is not unique, and the goal here is to understand
how to switch between decompositions, and in particular, given an observable γ, and
a given POP decomposition, find a sequence of “moves” such that γ is in the resulting
POP decomposition:

γ

One way to achieve this is via Cerf theory, which is the theory of how one may
deform Morse functions into other Morse functions and the kind of transitions involved
in their critical point structure. This was the approach used in Ref. [43]. In this work
we use a simpler method, which is essentially the same as skein theory. This is the
refactoring theorem that we describe below.

Dehn twist. Consider a surface Ma,â with two boundary components, a and â.
Let f be a map Ma,â → Ma,â which performs a clockwise 2π full-twist or Dehn twist.
Here we show the action of f by highlighting the equator of the annulus:
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â

a
f

â

a

We define the induced map on fusion spaces as θa := H (f). Because H (Ma,â) is one-
dimensional this will be multiplication by a complex number which we also write as
θa.

If we now take M to be an arbitrary surface, and γ an observable on M, we can
consider a neighbourhood of γ which will be an annulus, and perform a Dehn twist
there, which we denote as fγ : M → M. Writing M as a gluing along γ of another
manifold Na,â, the action of H (fγ) will decompose as a direct sum over charge sectors:

⊕

a∈A
θaH (Na,â).

Standard surfaces. For each n = 0, 1, ... and every ordered sequence of anyon
labels a1, ..., an, b we choose a standard surface. This is a surface with n+ 1 boundary
components labeled a1, ..., an, b which we denote Ma1...an

b .

For concreteness we define this surface using the following expression for a closed
disc less n open discs:

{
(x, y) ∈ R2 st.

∣∣∣(x, y)−
(1

2
, 0
)∣∣∣ ≤ 1

2

}
−
{

(x, y) ∈ R2 st.
∣∣∣(x, y)−

(2i− 1

2n
, 0
)∣∣∣ < 1

4n

}
i=1,...n

.

We then label the interior holes a1, ..., an in order of increasing x coordinate, and the
exterior hole is labeled b. The base points are placed in the direction of negative y
coordinate. As a notational convenience we highlight the equator of the surface which
is the intersection of the x axis with the surface:

a1 ... an

b

Each standard surface comes with a collection of standard POP decompositions:
these will be POP decompositions where we require each observable to cross the equator
twice and have counterclockwise orientation. Up to isotopy, a given standard surface
will have only finitely many of these. On a standard surface with three interior holes
there are two standard POP decompositions, and one F -move that relates these. On a
standard surface with four interior holes there are five standard POP decompositions
and five F -moves that relate these. In this case the F -moves themselves satisfy an
equation that is an immediate consequence of the way we have defined F -moves. This
is known as the pentagon equation, which we depict as the following commutative
diagram:
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F

F

F

F

F

We are now starting to confuse the notation for the topological space M and the fusion
space H (M). Also, each of these F -moves is referring to an isomorphism that is block
decomposed according to the charge sectors of the indicated observables.

We define the vector spaces V a1...an
b := H (Ma1...an

b ). We now choose a basis for each
of the V a1a2

b to be {va1a2b,µ }µ. For every standard POP decomposition of Ma1...an
b , we get

a decomposition of V a1...an
b into direct sums of various V

a′1a
′
2

b′ . This then gives a standard
basis of V a1...an

b relative to this standard POP decomposition using the corresponding

{va
′
1a
′
2

b′,µ }µ for each of the V
a′1a
′
2

b′ .
Note that for any standard surface Ma1...an

b and any choice of k contiguous holes
aj , ..., aj+k−1 we can find an observable that encloses exactly these holes in at least one
of the standard POP decompositions of Ma1...an

b .
We next show how to glue the exterior hole of a standard surface M to an interior

hole of another standard surface N. To do this within R2 we rescale and translate the
two surfaces so that the exterior hole of M coincides with the interior hole of N. At
this point the union is not in general going to produce another standard surface, and
so we remedy this by applying any isotopy within R2 that fixes the x-axis while moving
the surface to a standard surface.

Curve diagram. We next study maps from standard surfaces to arbitrary surfaces.
The reader should think of this as akin to choosing a basis for a vector space. The set of
all maps from Ma1...an

b to a surface N will be denoted as Hom(Ma1...an
b , N). We call each

such map a curve diagram, or more specifically, a curve diagram on N . The reason for
this terminology is that we can reconstruct (up to isotopy) any map f : Ma1...an

b → N
from the restriction of f to the equator of Ma1...an

b . In other words, we can uniquely
specify any map f : Ma1...an

b → N by indicating the action of f on the equator. (This
reconstruction works because a simple closed curve on a sphere cuts the sphere into
two discs.) We take full advantage of this fact in our notation: any figure of a surface
with a “green line” drawn therein is actually notating a diffeomorphism, not a surface!

Any curve diagram will act on a standard POP decomposition of Ma1...an
b sending

it to a POP decomposition of N. Surprisingly, the converse of this statement also holds:
any POP decomposition of N (a disc with holes) comes from some curve diagram acting
on a standard POP decomposition. The proof of this is constructive, and we call this
the refactoring theorem below.

The operation of gluing of surfaces can be extended to gluing of curve diagrams as
long as we are careful with the way we identify along the seam: the identification map
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needs to respect the equator of the curve diagram. (Keep in mind that a curve diagram
is really a map of surfaces, and so gluing two such maps involves two separate gluing
operations.)

We note in passing two connections to the mathematical literature. Such curve
diagrams have been used in the study of braid groups [34], and this is where the name
comes from, although our curve diagrams respect the base points and so could be
further qualified as “framed” curve diagrams. And, we note the similarity of curve
diagrams and associated modular functor to the definition of a planar algebra [57], the
main difference being that planar algebras allow for not just two but any even number
of curve intersections at each hole.

Z-move. We let z be a diffeomorphism of standard surfaces z : Ma1...an
b →Ma2...anb

a1
that preserves the equator. (Considering the standard surface as a sphere with holes
placed uniformly around a great circle, z is seen to be a “rotation”.) This acts by pre-
composition to send a curve diagram f ∈ Hom(Ma1...an

b , N) to fz ∈ Hom(Ma2...anb
a1 , N).

This we call a Z-move of f.

In this way, any curve diagram can be seen as another curve diagram that has a
cyclic permutation of the labels of the underlying standard surface.

R-move. Given anyon labels a, b and c, and arbitrary surface N, we now define
the following map of curve diagrams on N :

Rabc : Hom(Mab
c , N)→ Hom(M ba

c , N).

This map works by taking a curve diagram f : Mab
c → N to the composition fσ where

σ : M ba
c → Mab

c is a counterclockwise “half-twist” map that exchanges the a and b
holes. Here we show the action of Rabc on one particular curve diagram:

a

b

c

Rab
c

b

a

c

Such an application of Rabc to a particular curve diagram we call an R-move. As noted
above, a curve diagram serves to pick out a basis for the fusion space, and the point of
this R-move is to switch between different curve diagrams for the same surface. This
is highlighted to draw the readers attention to the fact that the R-move does not swap
the labels on the holes: the surface itself stays the same.

As we extended Dehn twists under gluing, and F -moves under gluing, we also do
this for R-moves.

Skeins. The previous figure can be seen as a “top-down” view of the following
three dimensional arrangement:

c

b a

Rab
c

c

b a
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This figure is intended to be topologically the same as the previous flat figure, with
the addition of a third dimension, and the c boundary has been shrunk. Also note thin
black lines connecting the base points. The black lines do not add any extra structure,
they can be seen as a part of the hexagon cut out by the green line and boundary
components. But notice this: the black lines are “framed” by the green lines. These
are the ribbons used in skein theory! [82] Note that all the holes are created equal: there
is no distinction between “input” holes and “output” holes (as there is with cobordisms
or string diagrams.)

Hexagon equation. For a surface with three interior holes there are infinitely
many POP decompositions (up to isotopy). These are all made by choosing an ob-
servable that encloses two holes. The F -moves allow us to switch between these POP
decompositions, and the axioms for the modular functor make these consistent. Here
we show two such triangle consistency requirements (they are reflections of each other):

F

F

F F

F

F

Given a POP decomposition of a surface N there are various curve diagrams on N that
produce this decomposition from a standard POP decomposition, and there are certain
R-moves that will map between these. Once again, these moves must be consistent, and
here we note the two “hexagon equations” corresponding to the above two triangles:

R−1

F

R−1F

R

F F

R−1

FR

F

R

Note that we have neglected to indicate the base points here. Given a curve diagram,
we can agree that base points occur “to the right” of the image of the equator. But in
notating diagrams such as these, there is still an ambiguity: the position of the base
points should be the same in each surface in the diagram. If we try to correct for this
post-hoc by rotating individual holes, we will then be correct only up to possible Dehn
twist(s) around each hole. We can certainly track these twists if we wanted to, but in
the interests of simplicity we do not. This introduces a global phase ambiguity into the
calculations.

The reason why we mention the pentagon and hexagon equations is that these
become important in an algebraic description of the theory. Because we have defined
everything in terms of a modular functor we get these equations “for free”.
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3.4 Refactoring theorem

In this section we specialize to considering planar surfaces only. The theorem we
are building towards shows that the R-moves act transitively on curve diagrams. By
transitive we mean that given two curve diagrams f and f ′ on N we can find a sequence
of R-moves that transform f to f ′. The key idea is to consider the (directed) image
of the equator under these curve diagrams. As mentioned previously, this image is
sufficient to define the entire diffeomorphism (up to isotopy) and so we are free to work
with just this image, or curve, and we confuse the distinction between a curve diagram
(a diffeomorphism) and its curve.

The construction proceeds by considering adjacent pairs of holes along f ′ and then
acting on the portion of f between these same two holes so that they then become
adjacent on the resulting curve. Continuing this process for each two adjacent holes of
f ′ will then show a sequence of R-moves that sends f to f ′.

To this end, consider a sequence of holes a1, ..., an appearing sequentially along f
such that a1 and an appear sequentially on f ′. We may need to apply some Z-moves
to f to ensure that a1 appears sequentially before an. Now consider the case such that
along f ′ between these two holes there is no intersection with f. We form a closed
path ξ by following the f ′ curve between a1 and an and then following the f curve in
reverse from an back to a1. (Note that to be completely rigorous here we would need to
include segments of path contained within boundary components.) The resulting closed
path bounds a disc. If ξ has clockwise orientation we apply the following sequence of
R-moves to f :

Ra1a2b1
, Ra1a3b2

, ..., R
a1an−1

bn−1
.

Depicted here is the first such move:

f

f ′

a1 a2 an...

b1

Ra1a2

b1

Ra1a2

b1
f

f ′

a1

a2
an...

b1

After each of these R-moves the closed path formed by following the f ′ curve between
a1 and an and then following the R-moved f curve back to a1 will traverse one less
hole, and still bound a disc. After all of the R-moves this path will only touch a1 and
an, and bound a disc. Therefore, we have acted on the f curve so that the resulting
curve has a1 and an adjacent and the bounded disc gives an isotopy for that segment
of the curve.

When the closed curve ξ has anti-clockwise orientation we use the same sequence
of R-moves but with R replaced by R−1.

Generalizing further, when the f ′ curve between a1 and an has (transverse) inter-
sections with f we use every such intersection to indicate a switch between using R
and R−1.

We continue in this way moving backwards (from head to tail) sequentially applying
this procedure.
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3.5 Discussion

The formalism of modular functors is needed to justify and explain the simulation used
in the next chapter. Anyon simulations in the physics literature are typically conceived
of as one-dimensional arrays of anyons, but for our simulation we really do need to
consider these anyons as living in a two-dimensional system, and also to account for
observables that wind arbitrarily around the anyons.

In the next chapter we will use as underlying manifold for our system a torus. As
we have seen the modular functor axioms force the dimensionality of the fusion space
of a torus to be equal to the number of charges. This can be seen by gluing one end
of a cylinder (annulus) to the other, and applying the gluing axiom. This fusion space
contains the protected quantum information.

The noise processes will be modelled by replacing small patches of the torus with
pair-of-pants that have vacuum total charge. Physically accessible observables will be
associated with fixed “tiles” on the torus, whose observation outcomes will serve to
diagnose the noise process.

In order to calculate the probabilities for these observation outcomes we will need
to be able to move curve diagrams around until the observables of the curve diagram
(these are the standard POP decompositions) contain the desired observable. That we
can always do this (at least for planar surfaces) was shown by the refactoring theorem.
This will be re-formalized in a combinatorial way below as the paperclip algorithm.

71



CHAPTER 4

Error Correction in a Non-Abelian
Topologically Ordered System

The work in this chapter is based on the collaboration [29].

In this chapter we apply the methods of Chapter 3 to develop a simulation of noise
processes in a two dimensional system with non-abelian anyons.

Topologically ordered quantum systems in two dimensions show great promise for
long-term storage and processing of quantum information [64, 35, 74]. The topological
features of such systems are insensitive to local perturbations [22, 23, 71], and they
have quasiparticle excitations exhibiting anyonic statistics [87]. These systems can
be used as quantum memories [64, 35] or to perform universal topological quantum
computation [44, 74].

Quantum error correction is vital to harnessing the computational power of topo-
logically ordered systems. When coupled to a heat bath at any non-zero temperature,
thermal fluctuations will create spurious anyons that diffuse and quickly corrupt the
stored quantum information [76]. Thus, the passive protection provided by the mass
gap at low temperature must be augmented by an active decoding procedure.

In order to efficiently classically simulate an error-correction protocol for a topologi-
cally ordered quantum memory, it is necessary to simulate the physical noise processes,
the decoding algorithm, and the physical recovery operations. Decoding algorithms are
typically designed to run efficiently on a classical computer, but there is generally no
guarantee that the noise and recovery processes should be classically simulable. Be-
cause of this, almost all of the sizable research effort on active quantum error correction
for topological systems has focused on the case of abelian anyons [35, 38, 39, 85, 84, 40,
19, 16, 91, 3, 86, 55, 24, 88, 42, 2], which can be efficiently simulated due to the fact
that they cannot be used for quantum computation.

Recent investigations have begun to explore quantum error correction for non-
abelian anyon models [25, 89, 53, 90, 54]. Non-abelian anyon models are especially
interesting because braiding and fusion of these anyons in general allows for the im-
plementation of universal quantum computation. However, the initial studies of error-
correction in non-abelian anyon systems have focused on specific models, such as the
Ising anyons [25, 54] and the so-called Φ-Λ model [89, 53] that, while non-abelian,
are not universal for quantum computation. The general dynamics of these particular
anyon models is known to be efficiently classically simulable, a fact that was exploited
to enable efficient simulation of error correction in these systems. When considering
more general anyon models, their ability to perform universal quantum computation
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would seem a significant barrier to their simulation on a classical computer. While
simulation of general dynamics does indeed seem intractable, we argue that the kinds
of processes that are typical of thermal noise are sufficiently structured to allow for
their classical simulation in the regimes where we expect successful error correction to
be possible. This insight allows us to simulate the noise and recovery processes for a
quantum code based on a universal anyon model.

Concretely, we consider quantum error correction in a two-dimensional system with
Fibonacci anyons, a class of non-abelian anyons that are universal for quantum com-
putation [44, 74]. Fibonacci anyons are experimentally motivated as the expected
excitations of the ν = 12

5 fractional quantum Hall states [80], and can be realized in
several spin models [68, 18, 59, 75] and composite heterostructures [72]. Any of these
physical systems could be used to perform universal topological quantum computation,
and can be modelled by our simulations. Natural sources of noise from thermal fluctu-
ations or external perturbations will be suppressed by the energy gap but must still be
corrected to allow for scalable computation.

We use a flexible phenomenological model of dynamics and thermal noise to describe
a system with Fibonacci anyon excitations. Within this model, we apply existing gen-
eral topological error-correction protocols, and simulate the successful preservation of
quantum information encoded in topological degrees of freedom. Topological quantum
computation protocols using non-abelian anyons typically implicitly assume the exis-
tence of an error-correction protocol to correct for diffusion or unwanted creation of
anyons. The ability to simulate the details of how and when these techniques succeed
on finite system sizes has not previously been available, and so our results are the first
explicit demonstration that such a scheme will be successful when applied to a universal
topological quantum computer.

4.1 Fibonacci anyons

The defining difference between abelian and non-abelian anyon theories is that in an
abelian theory particle content alone uniquely determines the outcome of joint charge
measurements. In contrast, outcomes for non-abelian charge measurements depend on
the history of the particles as well as their type. We consider a system supporting
non-abelian Fibonacci anyon excitations, denoted by τ . Two such anyons can have
total charge that is either τ or I (vacuum), or any superposition of these, and so the
fusion space in this case is 2-dimensional.

For Fibonacci anyons, the non-trivial R and F moves are

RττI = e
−4πi

5 , Rτττ = e
3πi
5 , F ττττ =

(
φ−1 φ−

1
2

φ−
1
2 −φ−1

)
,

where the matrix is given in a basis labelled (I, τ) and φ = 1+
√

5
2 is the golden ratio.

In terms of skeins we write the F-moves as:

= φ−1 +φ−
1
2

= φ−
1
2 −φ−1

The solid lines represent Fibonacci world-lines. The dotted lines represent vacuum
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Decoder
(classical)

noise

measure

syndrome

measure

empty syndrome

System
(quantum)

Figure 4.1: The simulation of a single round of error correction involves two compo-
nents: the classical decoder, and the quantum system. After the noise process has been
applied to the system, the simulation proceeds as a dialogue between the decoder and
the system. Decoding is successful when all charges have been eliminated, resulting in
an empty syndrome.

charges, and we are free to include these lines or not. We leave these anyon paths as
undirected because Fibonacci anyons are self-inverse. The non-trivial R-moves are:

= Rττ
I , = Rττ

τ

For more details of the Fibonacci anyon theory, see e.g. Ref. [74] and references
therein.

4.2 Physical model

We consider encoding quantum information in the fusion space of a torus. As we saw
in the previous chapter, the dimension of this space is equal to the number of charges
(the cardinality of A). For Fibonacci anyons, we have two charges, I and τ , so this
gives a fusion space equal to one qubit. In this work we do not consider the logical
operators that act on the encoded state, but merely note that it is sufficient to protect
the state if all operations remain local. 1

We endow the torus with an L× L square lattice of observables 2:

Λ :=
{
γij
}
i,j=1,...,L

These observables are the physically accessible observables of the noise reduction pro-
cedure we call the decoder. We call each such γij a tile. In the diagrams below there is
a small gap between the tiles but this is not meant to reflect an actual physical gap.

1For an example of a non-local operation we create a pair of charges and take one of the charges
around a non-contractible loop of the torus.

2We defined the observables associated to a modular functor in section 3.3.
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We also use these observables to construct an idealized Hamiltonian of the form
H = −∑γ∈Λ |I〉〈I|γ , where |I〉〈I|γ is the projector to vacuum charge at tile γ. Therefore,
the ground space of the model has vacuum total charge on each tile. Typical thermal
noise processes would act to create charges locally on the manifold. This has the effect
of populating the manifold with a randomly distributed set of pair creation processes,
whose size is much smaller than the resolution of the lattice. In the case of abelian
anyons, this agrees with prior work (such as Ref. [35]). For non-abelian anyons we
could also consider other noise processes such as braiding or hopping of anyons, but for
simplicity we don’t consider this here. 3

We model this noise by randomly replacing small patches of the surface with pair-
of-pants:

Each such pair will have vacuum total charge and so the observables γij will only see
pairs that intersect, ie. we need only consider distributing these pairs transversally
along edges of the tiles.

In order to compute measurement outcomes for the γij we first need to concatenate
any two curve diagrams that participate in the same γij . Because each curve has vacuum
total charge this can be done in an arbitrary way:

3It was seen in Ref. [25] that the pair-creation-only setting was sufficient to capture the qualitative
features of an error-correction simulation for the Ising anyons and we have no reason to expect that
this would change when considering the Fibonacci anyon model.
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Working in the basis picked out by the resulting curve diagrams, we can calculate
measurement probabilities for each tile. The measurement outcomes are then randomly
sampled, and the results recorded on the original curve:

As another example of the kind of calculation that needs to be performed, here we
zoom-in and show an example involving just two tiles (inside a larger tiling):

(a) (b)

(c)

(d)

In (a) we have two pair-creation events, each crossing the boundary of a tile. One
observable (tile) is solid black, and the other observable is dashed. The problem we
solve here is that these observables are different from the observables making up the
pair-creation events. In (b) we join the participating curve diagrams arbitrarily into
a single curve diagram. The curve diagram (c) is the same as (b), we just pulled the
curve straight (an isotopy). Now we braid anyons around each other until all charges
within a tile are neighbors on the curve, as in (d). The red lines then correspond to
the worldlines for these braids. The state (d) is equivalent to the original state (a),
but now the observables we need (the solid and dashed black lines) are at most a few
F−moves away.

If the reader finds this confusing, that’s because it is confusing. This is why so
much care and detail was taken in chapter 3. The systematic implementation of these
calculations relies on all the machinery developed in chapter 3, in particular the refac-
toring theorem of section 3.4. The data structure we will use is called a combinatorial
curve diagram and is described in section 4.4.1. The algorithm that operates on this
data is called the paper-clip algorithm and will be described in section 4.4.2. This data
structure and algorithm is a combinatorial version of the theory of modular functors
suitable for implementation on a classical computer.

We consider this treatment of anyon dynamics to be a phenomenological model
in that it neglects any microscopic details of the system. This is consistent with the
principles of topologically ordered systems and anyonic physics, where the key universal
features describing the anyon model correspond to large length-scale physics, while the
microscopic physics plays a less important (and non-universal) role. Note also that our
analysis applies equally well to either a continuum setting, or to discrete lattice models
supporting anyonic excitations.
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1: def decode():

2: syndrome = get_syndrome()

3:

4: # build a cluster for each charge

5: clusters = [Cluster(charge) for charge in syndrome]

6:

7: # join any neighbouring clusters

8: join(clusters, 1)

9:

10: while clusters:

11:

12: # find total charge on each cluster

13: for cluster in clusters:

14: fuse_cluster(cluster)

15:

16: # discard vacuum clusters

17: clusters = [cluster for cluster in clusters if non_vacuum(cluster)]

18:

19: # grow each cluster by 1 unit

20: for cluster in clusters:

21: grow_cluster(cluster, 1)

22:

23: # join any intersecting clusters

24: join(clusters, 0)

25:

26: # success !

27: return True

Figure 4.2: Pseudo-code listing for the (classical) decoding algorithm.

In order to perform a logical error on our code, a noise process must have support on
a a region of the manifold that is non-local, (cannot be contracted). These correspond
to processes in which anyonic charge is transported around a non-trivial loop before
annihilating to vacuum. We do not consider these processes as we regard the decoding
to have failed if any such non-local process would occur.

4.3 Decoding algorithm

After the noise process is applied to the system, the error correction proceeds as a dia-
logue between the decoder and the system. In this section we describe the decoder side
of this dialogue, the quantum side is much more difficult and is discussed in the follow-
ing sections. The decoder measures succesively larger and larger regions of the lattice
until there are no more charges or a topologically non-trivial operation has occured
(an operation that spans the entire lattice.) In Figure 4.1 we show this in a process
diagram, with time running up the page. Note that unlike the case of abelian anyons,
the decoder cannot determine the charge of each cluster given only the syndrome in-
formation (as in Ref. [19]), and so must repeatedly physically query the system to
measure these charges.
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In Figure 4.2 we show a pseudo-code listing for the decoder algorithm, and we ex-
plain each step via an example below. This decoder is based on a hierarchical clustering
algorithm [51, 90], and follows a similar strategy to the hard-decision renormalization
group decoder [19].

First, we show the result of the initial call to get syndrome(), on line 2. The
locations of anyon charges are indicated by the thick black circles. For each of these
charges we build a Cluster, on line 5. Each cluster is shown as a gray shaded area in
the following diagrams.

The next step is the call to join(clusters, 1), on line 8, which joins clusters that
are separated by at most one lattice spacing. We now have seven clusters:

Each cluster is structured as a rooted tree, as indicated by the arrows which point
in the direction from the leaves to the root of the tree. This tree structure is used in
the call to fuse cluster(), on line 14. This moves anyons in the tree along the arrows
to the root, fusing with the charge at the root.
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For each cluster, the resulting charge at the root is taken as the charge of that
cluster. Any cluster with vacuum total charge is then discarded (line 17). In our
example, we find two clusters with vacuum charge and we discard these. The next step
is to grow the remaining clusters by one lattice spacing (line 20-21), and join (merge)
any overlapping clusters (line 24).

Note that we can choose the root of each cluster arbitrarily, as we are only interested
in the total charge of each cluster.

We repeat these steps of fusing, growing and then joining clusters (lines 10-24.) If at
any point this causes a topologically non-trivial operation, the simulation aborts and a
failure to decode is recorded. Otherwise we eventually run out of non-vacuum clusters,
and the decoder succeeds (line 27). For simplicity we have neglected the boundary of
the lattice in this example.

4.4 Simulation of the quantum system

It is known that the process of braiding and fusing Fibonacci anyons is sufficient to
implement universal quantum computing, so at first sight it seems foolish to try to
simulate this using classical computers.

However, it turns out to indeed be possible, up to some reasonably large system
sizes. The reasons why are outlined in a heuristic manner as follows. The decoding
threshold (see Figure 4.3) occurs far below the bond percolation threshold. Below this
percolation threshold, error processes decompose into separate components of average
size O(log(L)) and variance O(1) [11]. Each such component can be simulated sepa-
rately, ie. each component corresponds to a tensor factor of the Hilbert space of the
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system (this is the monoidal axiom, Section 3.3). Because the average size of such a
component is O(log(L)) the corresponding fusion space will have dimension O(poly(L)).

Working against this system separability is the action of the decoder, which will tend
to join (fuse) nearby anyons and thereby also at times connect separate components.
All is not lost, however, as this act of fusing also reduces the number of anyons needed
to be simulated.

At some point, with high enough error rate, the combined action of noise plus
decoder will become exponentially difficult to simulate. Nevertheless, we are able to
simulate error-correction in the regime around the error-correction threshold for linear
lattice sizes up to L = 128. See Figure 4.3 below.

We now turn to a description of the data-structures and algorithm used to simulate
the quantum system. This relies heavily on the theory developed in Chapter 3.

4.4.1 Combinatorial curve diagrams

The basic data structure involved in the simulation of the quantum system we term
a combinatorial curve diagram. This is essentially a combinatorial formulation of the
theory of modular functors presented in Chapter 3. The sole purpose of this formulation
is to be able to simulate fusion outcomes for each of the observables in the lattice
Λ :=

{
γij
}
i,j=1,...,L

. For each tile in this lattice, we store a combinatorial description of

the curve(s) intersected with that tile.

Each component of such an intersection we call a piece-of-curve. We follow essentially
the same approach as taken in Ref. [1] to describe elements of a Temperley-Leib algebra,
but with some extra decorations. Firstly, we will require each curve to intersect the
edges of tiles transversally, and in particular a curve will not touch a tile corner. The
key idea is to store a word for each tile, comprised of the letters

〈
and

〉
. Reading in

a clockwise direction around the edge of the tile from the top-left corner, we record
our encounters with each piece-of-curve, writing

〈
for the first encounter, and

〉
for the

second. We may also encounter a dangling piece-of-curve (the head or the tail), so we
use another symbol ∗ for this. The words for the above two tiles will then be

〈〈〉〉〈〉
and〈〉

∗
〈〈〉〉

. When the brackets are balanced, each such word will correspond one-to-one
with an intersection of a curve in a tile, up to a continuous deformation of the interior
of the tile. Ie. the data structure will be insensitive to any continuous deformation of
the interior of the tile, but the simulation does not need to track any of these degrees
of freedom.

=

We will also need to record various other attributes of these curves, and to do this
we make this notation more elaborate in the paragraphs (I), (II) and (III) below.
Each symbol in the word describes an intersection of the curve with the tile boundary,
and so as we decorate these symbols these decorations will apply to such intersection
points.
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(I) We will record the direction of each piece-of-curve, this will be either an in

or out decoration for each symbol. Such decorations need to balance according to the
brackets. The decorated symbols ∗in and ∗out will denote respectively either the head or
the tail of a curve. The words for the diagrams above now read as

〈
in

〈
out

〉
in

〉
out

〈
out

〉
in

and
〈
in

〉
out
∗in
〈
out

〈
in

〉
out

〉
in
.

(II) We will record, for each intersection with the tile edge, a numeral indicating
which of the four sides of the tile the intersection occurs on. Numbering these clockwise
from the top as 1, 2, 3, 4 we have for the above curves:

〈
1

〈
2

〉
2

〉
3

〈
3

〉
4

and
〈

1

〉
1
∗2
〈

3

〈
3

〉
4

〉
4
.

(III) Finally, we will also decorate these symbols with anyons. This will be an
index to a leaf of a (sum of) fusion tree(s). This means that anyons only reside on the
curve close to the tile boundary, and so we cannot have more than two anyons for each
piece-of-curve. The number of such pieces is arbitrary, and so this is no restriction on
generality.

In joining tiles together to make a tiling we will require adjacent tiles to agree on
their shared boundary. This will entail sequentially pairing symbols in the words for
adjacent tiles and requiring that the in and out decorations are matched. Because
the word for a tile proceeds counter-clockwise around the tile, this pairing will always
reverse the sequential order of the symbols of adjacent tiles. For example, given the
above two tiles we sequentially pair the

〈
out,2

〉
in,2

and
〉
out,4

〉
in,4

symbols with opposite

order so that
〈
out,2
∼
〉
in,4

and
〉
in,2
∼
〉
out,4

.

Note that in general this data structure will store many disjoint curve diagrams
ci : [0, 1]→ Dni within a disc Dm where

∑
ni = m.

For each piece-of-curve, apart from a head or tail, there is an associated number
we call the turn number. This counts the number of “right-hand turns” the piece-of-
curve makes as it traverses the tile, with a “left-hand turn” counting as −1. (To be
more rigorous, we would define this number using the winding number of the simple
closed curve formed by the piece-of-curve adjoined to a segment of the boundary of
the tile traversed in a clockwise direction.) This number will take one of the values
−2,−1, 0, 1, 2 :

+1 0

+2

−1

+1

−2
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4.4.2 The paperclip algorithm

In the description of the refactoring theorem in Section 3.4 we thought of R-moves
as acting on the basis of the system as in the Heisenberg picture. Now we switch to
an equivalent perspective and consider R-moves as transport of anyon charges as in
a Schrodinger picture. The anyons will be transported around the lattice by moving
them along tile edges. In general, such a transport will intersect with a curve diagram
in many places. Each such intersection is transverse, and we use each intersection point
to cut the entire transport into smaller paths each of which touch the curve diagram
twice. The origin and destination of such an anyon path now splits the curve diagram
c : [0, 1] → Dn into three disjoint pieces which we term head, body and tail, where the
head contains the point c(1), the tail contains c(0) and the body is the third piece.
These arise with various arrangements, but here we focus on one instructive case, the
other cases are similar: transporting along one edge of a tile forwards (from tail to
head) along a curve diagram:

This arrangement is equivalent (isotopic) to one of four “paperclips”, which we
distinguish between by counting how many right-hand turns are made along the body
of the curve diagram. We also show an equivalent (isotopic) picture where the curve
diagram has been straightened, and the resulting distortion in the anyon path:

−2 :
=

−4 : =

+4 : =

+6 :
=

The sequence of anyons along the head, body and tail, we denote as H,B and T,
respectively. These sequences have the same order as the underlying curve diagram,
and we use Hr, Br and T r to denote the same anyons with the reversed order. Using
the above diagram, we can now read off the R-moves for each of the four paperclips:

−2 : R[B]

−4 : R[Hr] R[H] R[B]

+4 : R[B] R[T ] R[T r]

+6 : R[Hr] R[H] R[B] R[T ] R[T r]
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Figure 4.3: Results of monte-carlo sampling of the decoding simulation for various
lattice sizes L and expected pair-creation events per edge tsim.

where notation such as R[B] is understood as sequentially clockwise braiding around
each anyon in B.

That these four paperclips exhaust all possibilities can be seen by considering the
winding number of the simple closed curve made by combining the body of the curve
diagram with the path followed by the anyon (appropriately reversing direction as
needed).

4.5 Numerical results

The results of simulating the noise plus decoder are shown in Figure 4.3. We run a
monte-carlo simulation, for various lattice sizes L, and error rate per edge tsim. The
number of pair-creation processes accross each edge of the lattice is sampled from a
Poisson process, and tsim indicates the expected value of this Poisson process.

The decoder failure rate shows a clear threshold at around tsim = 0.125 ± 0.003.
Below this threshold errors are increasingly suppressed as the lattice size grows.

4.6 Discussion

In this chapter we simulated a non-abelian anyon system acting as a quantum error
correcting code.

The algorithms for simulating non-abelian anyons in general require the machinery
of modular functors which was described in Chapter 3. We reformulated this theory in
a combinatorial way suitable for simulation on a classical computer.

Because the anyons involved are universal for quantum computing it would at first
sight appear to be too difficult to simulate, but we are able to succeed anyway by
decomposing the system into smaller non-interacting parts. This turns out to work
sufficiently well in the regime of interest, where there are few anyons widely separated.
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We use a standard error correction algorithm that involves clustering together
nearby anyons, and fusing these until there are no anyons remaining.

We present numerical evidence of threshold behaviour: below a certain noise rate,
the code error rate decreases as the system size grows.

The simulation algorithms used here would apply to any other anyon system by
merely replacing the F and R matrices. Higher genus surfaces could also be simulated,
these would store more qubits, but would involve a more complicated tiling structure.

Quantum information can also be stored in the fusion space of four widely separated
anyons, but this may be computationally harder to simulate as the system does not
decompose into non-interacting parts in an obvious way as above.
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CHAPTER 5

Conclusion

Rule-of-thumb says that quantum phenomena occupy the realm of the very small and
very short-lived. The existence of quantum encoded information is a direct confronta-
tion with this rule-of-thumb, being neither small nor short-lived.

In this thesis we have presented two approaches to non-abelian quantum codes.
The first involves energetic protection of a groundstate in a frustrated Hamiltonian.
These Hamiltonians are typically gapless and so are not expected to work as stable
quantum memories, but we find some numerical evidence that the 3D gauge color code
Hamiltonian is gapped. The second approach to non-abelian quantum codes involves
a two dimensional topologically ordered system supporting anyon excitations. Here we
demonstrate that an active error correction procedure (a decoder) can act to restore
the system to its groundstate. We perform numerics that show that if the noise is
below a threshold, this decoder succeeds with probability going to one as the system
size increases.

The theoretical machinery developed in this thesis is primarily aimed at enabling
numerical exploration of these systems. We certainly succeed in this, by simulating the
behaviour of systems previously thought to be too difficult to simulate. But hopefully
these new theoretical advances will also lead to new insights into the existence and
stability of these protected quantum states.

Much of the theory developed in the field of quantum many-body physics resembles
the drunkard searching for his keys under the streetlight: he has no idea where his
keys are but at least this part of the street is illuminated. Faced with these massively
entangled quantum states, our techniques are feeble indeed. We may need a quantum
computer before we can really understand how these systems behave, and what they
are capable of. As with the current technology of classical computers, it takes one to
build one; they have been bootstrapped into existence.
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