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PB-22   1-pentyl-1H-indole-3-carboxylic acid 8-quinolinyl ester 

THCA   tetrahydrocannabinolic acid 

THC-COOH  11-nor-9-carboxy-Δ9-tetrahydrocannabinol 

THCV   tetrahydrocannabivarin 

TNFα   tumor necrosis factor alpha  

THJ-018  1-naphthalenyl(1-pentyl-1H-indazol-3-yl)-methanone 

TRP   transient receptor potential  channel 

UR-144 1-(pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)-

methanone  

VEH   vehicle 

WIN-48,098 pravadoline; (4-methoxyphenyl)[2-methyl]-1-[2-(4-

morpholinyl)ethyl]-1H-indol-3-yl]-methanone 

XLR-11 1-(5-fluoropentyl)-1H-indol-3-yl)(2,2,3,3-

tetramethylcyclopropyl)methanone 

WIN-55,212-2 [(3R)-2,3-dihydro-5-methyl-3-(4-

morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-

naphthalenyl-methanone 
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Thesis abstract 

Over recent years, the rapid proliferation of novel psychoactive substances 

(NPS) has presented significant challenges to health professionals, regulators, and 

forensic scientists alike. Of the many different classes of NPS, synthetic cannabinoids 

comprise an increasingly prevalent and diverse class of compounds that are used by 

many people around the world for recreational purposes. These compounds act on CB  

and CB  cannabinoid receptors, similar to endogenous cannabinoid receptor ligands 

and to the prototypical cannabis‐derived receptor agonist ∆ ‐tetrahydrocannabinol 

(∆ ‐THC). Recreationally used synthetic cannabinoids tend to produce psychoactive 

effects similar to, but stronger than, those of ∆ ‐THC. The majority of modern 

synthetic cannabinoids have never been systematically assessed for their effects in 

humans, meaning that their psychopharmacological and toxicological effects remain 

largely uncharacterised. Unfortunately, but perhaps not surprisingly, these 

compounds are implicated in scores of toxic and fatal episodes worldwide. 

This thesis presents a series of studies aimed at building new knowledge 

regarding the behavioural and physiological effects of specific synthetic cannabinoids, 

their potency and metabolism, their long‐term effects on cognitive function and brain 

neurochemistry, and analytical techniques that may be useful in the development of 

agonist substitution therapies to assist with synthetic cannabinoid withdrawal.  

Chapter   consists of a comprehensive review of what is currently known and 

unknown about modern synthetic cannabinoids. It presents an outline of general 

cannabinoid pharmacology and reviews the acute effects and toxicity of synthetic 

cannabinoids, their metabolism, potential for thermal degradation, and the limited 
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data available regarding their long‐tern health‐related effects. This review introduces 

the rationale for the studies presented in the subsequent chapters. 

Chapter   presents three studies that describe the synthesis of twelve novel 

synthetic cannabinoids, the affinity and efficacy of these compounds at CB  and CB  

receptors, and their in vivo effects on body temperature and heart rate across specific 

dose ranges. These in vivo dose‐response relationships were used to inform dosing in 

subsequent chapters. Radiotelemetric probes were surgically implanted into adult 

male rats to enable the real‐time monitoring of body temperature and heart rate 

following synthetic cannabinoid administration. All of the tested compounds 

produced hypothermic effects, although the required dose, magnitude of effect, and 

duration of effect varied as a function of molecular structure. In some cases, in vivo 

potency exceeded or fell short of predictions derived from in vitro cannabinoid 

receptor binding assays and user reports. These findings suggest that while 

cannabinoid receptor binding is an important determinant of in vivo efficacy of 

synthetic cannabinoids, metabolic transformation and thermolytic degradation into 

cannabinoid receptor active compounds most likely play additional important roles in 

determining in vivo potency.  

Accordingly, Chapter   focuses on the metabolism of the two recently identified 

synthetic cannabinoids CUMYL‐PICA and  F‐CUMYL‐PICA, aiming to establish 

pharmacokinetic parameters and metabolic pathways for these compounds. A total of 

 novel metabolites were described. Major and minor metabolic pathways were 

postulated, and useful analytical targets were identified as putative markers of 

consumption. Additionally, this study compared in vitro pharmacokinetic parameters, 

obtained with in vitro microsomal and hepatocyte assays, to data collected in vivo in 
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rats, finding that in vitro clearance estimates greatly exceeded actual in vivo 

elimination rates. It is argued that lipid solubility and protein binding are factors that 

may require consideration during interpretation of similar in vitro estimates in the 

wider literature. 

Given the dearth of information regarding the long‐term consequences of 

synthetic cannabinoid use, Chapter   investigates the acute and long‐term effects of 

repeated administration of synthetic cannabinoids AB‐PINACA and AB‐FUBINACA to 

adolescent male rats. These effects were compared to those of ∆ ‐THC.  Acute effects 

included dose‐dependent reductions in locomotor activity, increases in anxiety and an 

absence of conditioned place preference or aversion. Weeks after the cessation of 

dosing, long‐term residual deficits in recognition memory are described, as well as 

complex ligand‐specific effects on cerebellar endocannabinoids and plasma cytokines. 

Interestingly, most effects caused by either synthetic cannabinoid were similar to 

those of ∆ ‐THC, and no unusual toxidrome was observed in Chapters  ,   or   with 

synthetic cannabinoid administration. The inability of rodent models to capture the 

human toxicity described in numerous case studies in puzzling, and may reflect 

factors specific to human use, such as product contamination, use of extreme doses, or 

species differences in pharmacokinetics. 

Reports of synthetic cannabinoid withdrawal and addiction are increasingly 

found in media reports and case studies, suggesting a need for novel clinical 

treatments for these conditions. One option is agonist substitution therapy, which 

might involve products such as nabiximols (Sativex™), a buccal spray consisting of 

equal parts ∆ ‐THC and cannabidiol (CBD). CBD is a non‐psychoactive constituent of 

cannabis with anxiolytic and neuroprotective properties.  The viability of this 
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approach depends on being able to administer the treatment at appropriate 

concentrations, and being able to accurately monitor patient pharmacokinetics. 

Chapter   reports use of a novel method of cannabinoid urinalysis in a population of 

cannabis‐dependent treatment‐seeking users treated with nabiximols during inpatient 

withdrawal. β‐glucuronidase hydrolysis was used to increase the concentrations of key 

cannabinoids and metabolites in urine samples, allowing for enhanced detection of 

∆ ‐THC and CBD. The study provides evidence that cannabinoid urinalysis can 

substitute for plasma analysis, which may provide a less invasive sampling method for 

future studies. Moreover, this study showed that after hydrolysis cannabinoid 

concentrations were greater in urine than in plasma, such that cannabinoid urinalysis 

could be used for analysis of trace cannabinoids that may go undetected in blood. This 

technique might also prove useful for the analysis of urinary synthetic cannabinoid 

metabolites in future studies.  

Chapter   provides a general discussion of the results obtained in this thesis 

and describes how the results represent an advance in several areas of cannabinoid 

research. The results obtained from Chapters  ,  , and the wider literature are 

combined to identify in vivo structure‐activity and structure‐metabolism relationships 

for a wide variety of synthetic cannabinoids. These relationships may prove useful for 

the prediction of the psychopharmacological properties and metabolic pathways of 

future novel synthetic cannabinoids that are detected by authorities, reducing the 

burden involved in testing large numbers of novel compounds individually. Second, 

potential implications of chronic synthetic cannabinoid use in humans are discussed. 

Specifically, long‐lasting cognitive impairments and subtle biochemical modulations 

are predicted in chronic synthetic cannabinoid users. Finally, analytical techniques for 
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evaluating and monitoring agonist replacement therapy for synthetic cannabinoid 

withdrawal are established. Taken together, the research presented in this thesis sheds 

light on the physiological, psychopharmacological, and pharmacokinetic properties of 

several recreationally used synthetic cannabinoids, and establishes key methodology 

for future research into specific and efficacious treatments for synthetic cannabinoid 

withdrawal. 
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Chapter 1. General introduction and literature review 
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1.1 Preface 

As our understanding of pharmacological processes evolves, so do the tools 

used to carry out pharmacological investigations. For example, we can design more 

targeted and efficacious agonists, antagonists, and modulators of systems of interest. 

These tools may further boost our pharmacological understanding and even provide 

superior therapeutics for injuries or diseases. Sometimes, these new discoveries 

involve systems that can produce psychoactive effects. And sometimes, the syntheses 

of novel, targeted, ultra-potent compounds are published for the world to see. And 

sometimes, chemists get creative with their business practices. 

Thus it comes as little surprise that recent decades have seen the emergence of 

vast numbers of novel psychoactive substances – compounds that are specifically 

designed to act on neural systems to produce psychoactive effects (Power, 2014). 

Scientists, health professionals, and  legislators are faced with the emergence of 

hundreds of such drugs, each possessing largely uncharacterised psychopharmalogical 

and toxicological properties (EMCDDA, 2015). From “bath salts” to “fake weed” to the 

misnomer “synthetic LSD”, recent evolutions in psychoactive drugs have challenged 

health systems, drug legislation, and our understanding of recreational drug use. 

Novel drugs are nothing new – improved medications, for example, are 

introduced all the time. But the typical modern therapeutic has years of research 

behind it: in vitro screening, controlled trials in animals, extensive toxicological and 

metabolic studies, and often long-term follow-ups (Balunas & Kinghorn, 2005). Each 

drug, barring exceptional circumstances, has undergone extensive screening before 

ever being used by a person. For emerging novel psychoactive substances, this process 

is reversed – the first major discovery is that people are using the substance. From 
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there, researchers must work backwards, deriving the basic pharmacological 

properties of the substance after the fact. 

Of the many classes of novel psychoactive substances, this thesis focuses on 

synthetic cannabinoids – compounds designed to act on cannabinoid receptors. In 

particular, it focuses on a range of synthetic cannabinoids that produce psychoactive 

effects and that are frequently used recreationally for that purpose. While these drugs 

are superficially innocuous compared to other novel psychoactive substances like 

synthetic opiates or designer cathinones, some compounds (but intriguingly, not all) 

have nevertheless produced toxic and even fatal outcomes worldwide (Louh & 

Freeman, 2014; Schwartz et al., 2015; Trecki, Gerona, & Schwartz, 2015). 

When a novel synthetic cannabinoid is first detected in recreational products, 

there exist a number of very important but unanswered questions. How does this 

compound produce its effects? Is there a safe dose, and what is it? Is it inherently 

toxic? If so, what is the mechanism underlying that toxicity? How is it metabolised? 

How can it be identified forensically? Does it degrade when heated? How long do the 

effects last, and are they harmful in the long term? Is it addictive, and if so, can that 

addiction be treated? The work presented in this thesis is designed to answer some of 

these questions. 

Synthetic cannabinoids exert their effects - at least partially - via mimicry of the 

action of exogenous phytocannabinoids found in Cannabis sativa and the endogenous 

cannabinoids (“endocannabinoids”) occurring naturally throughout the body. 

Therefore, this introductory chapter begins with a brief review of the history of 

cannabinoid science, endocannabinoid science and general cannabinoid 

pharmacology. Following this, the emergence of synthetic cannabinoids as 
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recreationally used and abused novel psychoactive substances is explored. The 

chemical structures, structure-activity relationships, and recreational use of synthetic 

cannabinoids are discussed, before moving to a review of what is currently understood 

about the psychopharmacology of synthetic cannabinoids. This discussion focuses on 

their acute physiological and behavioural effects, their toxicity, metabolism and 

thermal stability, and the limited data concerning their long-term effects. The chapter 

then moves to a discussion of legislative and forensic responses to the emergence of 

synthetic cannabinoids, and possible treatments for those burdened with their 

multifarious adverse effects. Finally, a variety of research is introduced, which is 

designed to answer important questions surrounding the psychopharmacology and 

toxicity of synthetic cannabinoids. 
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1.2 A brief history of Cannabis sativa and cannabinoid 

pharmacology 

 

1.2.1 The discovery and classification of cannabinoids 

Cannabis sativa (cannabis; marijuana) is a robust dioecious annual plant that 

has been utilised for a range of human purposes. It has seen use as a textile (i.e. 

hemp), as herbal medicine, in religious ceremonies, and as a psychoactive drug. The 

plant’s origins can be traced to Central Asia, wherefrom it spread via trade to India, 

Western Asia, and eventually Europe and beyond (Zuardi, 2006). It was used in Egypt 

for pain relief around 1500 BC and in China for recreational purposes as early as 2737 

BC (Russo, 2007). The success of the plant, which can now be found growing in every 

inhabited continent, speaks to the historical value of cannabis to human populations. 

It is therefore somewhat surprising that a basic pharmacological understanding of 

cannabis has only been achieved recently compared to other psychoactive plants such 

as the opium poppy (Papaverus somniferum) or coca bush (Erthoxylum coca). 

The delayed development of cannabis pharmacology is underpinned by the 

chemical properties of the “cannabinoids”, which were first defined as a “group of 

oxygen containing C21 aromatic hydrocarbon compounds typical of and present in 

Cannabis sativa” (Mechoulam & Gaoni, 1967, p. 177). Compared to opium or coca 

constituents like morphine and cocaine, respectively, cannabinoids are difficult to 

purify and separate. Cannabinoids are numerous and structurally similar, and 

generally lack distinct functional groups which are easily manipulated in order to 

chemically separate them from one another (ElSohly & Slade, 2005; Mechoulam et al., 
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2014). While opium and coca constituents and derivatives were isolated, purified, and 

medically studied (e.g. codeine, an opioid medication used as for pain relief; or 

lignocaine, a local anaesthetic, structurally related to cocaine), cannabis could only be 

classed as a “drug” with unknown pharmacology for most of the 20th century.  It took 

until the 1960s for analytical techniques to advance sufficiently to correctly identify 

the psychoactive components of cannabis, and until the 1990s to identify the 

molecular targets of exogenous cannabinoids and endocannabinoids within the brain 

and body (Devane et al., 1992; Gaoni & Mechoulam, 1964). It was only then that the 

pharmacological properties of cannabinoids could be studied directly.  

Cannabidiol (CBD) and cannabinol (CBN) were the first cannabinoids isolated 

from Cannabis sativa (Wollner et al., 1942). However, the molecular structures of 

these cannabinoids could not be accurately elucidated at the time, and they were 

mistakenly thought to be the psychoactive components of cannabis. The synthetic 

compound Δ6a,10a-tetrahydrocannabinol possessed pharmacological activity similar to 

cannabis extracts, so it was assumed that it must be structurally related to the true 

psychoactive compound(s) (Mechoulam et al., 2014). Finally, in 1964, ∆9-

tetrahydrocannabinol (∆9-THC) was correctly identified as the primary psychoactive 

component of cannabis, and the correct structures of ∆9-THC and CBD were 

elucidated (Gaoni & Mechoulam, 1964).  

Since this early work, growing understanding of cannabinoid pharmacology has 

necessitated a broadening of the definition of cannabinoids to include several 

additional chemical classes beyond the components first identified in the cannabis 

plant. Cannabinoids now include the carboxylic acid precursors of THC, CBD, and 

other cannabis-derived cannabinoids (together termed “phytocannabinoids”), 
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cannabinoid metabolites, synthetic cannabinoids, and endogenous cannabinoids 

(endocannabinoids). Of these, discovery of the endocannabinoids was a particularly 

significant breakthrough in cannabinoid pharmacology. 

  

1.2.2 The endocannabinoid system  

When ∆9-THC was first isolated, it had no established molecular target or 

mechanism of action, although it was clear that phytocannabinoids must act on some 

endogenous system in order to produce their effects. The basic components of the 

endocannabinoid system - cannabinoid receptors and their endogenous ligands – were 

subsequently discovered in the early 1990s (Devane et al., 1992; Matsuda et al., 1990). 

The endocannabinoid system is comprised of two G-protein coupled receptors termed 

cannabinoid 1 (CB1) and 2 (CB2) receptors, and the endocannabinoids that act on those 

receptors (Matsuda et al., 1990). The CB1 receptor was first cloned in 1990 followed 

shortly by CB2 receptors in 1993 (Matsuda et al., 1990; Munro, Thomas, & Abu-Shaar, 

1993). Both proved resistant to crystallisation, such that the crystal structure of the 

human CB1 receptor was only obtained in 2016 (Hua et al., 2016).  The 

endocannabinoid system can be further expanded to include enzymes that synthesise 

or degrade endocannabinoids (e.g. monoacylglyceral lipase, diacylglycerol lipase) and 

membrane transporters (Reggio, 2010). G-protein coupled receptor 55 (GPR55) is also 

activated by some exogenous and endogenous cannabinoid ligands and can be 

considered a putative cannabinoid receptor (Ryberg et al., 2007).  

The first endocannabinoid to be discovered was N-arachidonoylethanolamide 

(AEA; anandamide)(Devane et al., 1992). AEA is a fatty acid neurotransmitter that is a 

partial agonist for CB1 and CB2 receptors, and is primarily degraded by fatty acid amide 
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hydrolase (FAAH) (Deutsch & Chin, 1993; Mechoulam et al., 2014). A second 

endocannabinoid, 2-arachidonoylglycerol (2-AG), was identified shortly after the 

discovery of AEA (Mechoulam et al., 1995; Sugiura et al., 1995). 2-AG acts as a full 

agonist at CB1 and CB2 receptors, and has been found at brain concentrations 170 times 

that of AEA (Gonsiorek et al., 2000; Stella, Schweitzer, & Piomelli, 1997). 

CB1 receptors are highly expressed throughout the central nervous system, such 

that CB1 is one of the most abundantly expressed receptors identified in mammalian 

brain (Mackie, 2005). It is also found less abundantly in peripheral tissues (Tsou et al., 

1998). CB1 receptor expression is particularly dense in the hippocampus, amygdala, 

molecular layer of the cerebellum, periaqueductal gray, and dorsal horn of the spinal 

cord (Farquhar-Smith et al., 2000; Glass, Faull, & Dragunow, 1997; Herkenham et al., 

1991; Westlake et al., 1994).  

In neural systems, endocannabinoids (particularly 2-AG) activate CB1 receptors 

via retrograde (post-synaptic to pre-synaptic) transmission (Freund, Katona, & 

Piomelli, 2003; Wilson & Nicoll, 2001). Endocannabinoids are synthesised and 

released when intracellular calcium concentrations rise, such that synaptic 

endocannabinoid concentrations increase alongside neuronal activation (Mechoulam 

et al., 2014; Wilson & Nicoll, 2001). Endocannabinoids then bind to presynaptic CB1 

receptors, which inhibit presynaptic firing. Accordingly, the endocannabinoid system 

appears to be important for maintaining homeostasis across a number of physiological 

systems. These include appetite (Colombo et al., 1998; Mattes et al., 1994), pain 

regulation (Guindon & Hohmann, 2009), anxiety (Hill & Tasker, 2012), memory 

formation and learning (Marsicano & Lafenetre, 2009), mood (Witkin, Tzavara, & 

Nomikos, 2005), and sleep (Gates, Albertella, & Copeland, 2014; Mechoulam et al., 
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1997). However, it should be noted that presynaptic CB1 receptor activation does not 

necessarily produce net inhibition across a neural system – for example, inhibition of 

GABAergic neurons could produce net excitation. 

The endocannabinoid system is probably involved in such a plethora of 

physiological functions because cannabinoid receptors are abundantly distributed 

(Malfitano et al., 2014; Svizenska, Dubovy, & Sulcova, 2008). It should also be noted 

that AEA and 2-AG may also act on non-cannabinoid receptors, including transient 

receptor potential (TRP) channels (Di Marzo & De Petrocellis, 2010), specifically 

TRPV1 (Ross et al., 2001), peroxisome proliferator-activated receptors (Rockwell et al., 

2006), and GPR55 (Ryberg et al., 2007). Consequently the total “footprint” of the 

endocannabinoid system may extend beyond that of systems presently known to 

express cannabinoid receptors. 

Crucially, CB1 receptor activation produces the psychoactive effects associated 

with cannabis. Frequently reported effects of CB1 receptor agonists in humans are 

lethargy, increased appetite, xerostomia, and mild euphoria (Heishman et al., 1990; 

Wachtel et al., 2002). In rodents, CB1 receptor agonists produce a well-defined 

behavioural “tetrad”: catalepsy, analgesia, hypomotility, and hypothermia (Martin et 

al., 1991). Tetrad effects can typically be blocked by CB1 receptor antagonists (Huestis 

et al., 2001; Rinaldi-Carmona et al., 1995), and are largely absent in CB1 genetic 

knockout models (Zimmer et al., 1999). Thus CB1 receptors are well established as the 

molecular target underlying these effects. These effects are further reviewed in 

Sections 1.2.3 and 1.4.1. 

CB2 receptor-mediated effects are less well established than those of CB1, but 

nevertheless CB2 receptors may be involved in the regulation of  a large number of 
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bodily systems and disease states (Malfitano et al., 2014). CB2 receptors have been 

found in microglial cells within the CNS, and somewhat controversially, in neuronal 

tissue (Onaivi, 2011; Stempel et al., 2016). However, CB2 receptors are generally found 

in peripheral immune tissues (Svizenska et al., 2008). In particular, CB2 receptors are 

highly expressed in tonsils, spleen, and thymus. Although CB2 receptor activation 

could theoretically be problematic for immune responses against infectious diseases, 

some researchers have found evidence for a therapeutic role for CB2 receptor agonists 

in treating autoimmune disorders or injury where inflammation plays a major role 

(Maresz et al., 2007; Zhang et al., 2007). For example, selective CB2 receptor agonists 

O-3853 and O-1966 can decrease cerebral infarction following ischemic stroke in mice 

(Zhang et al., 2007). The therapeutic potential of CB2 receptors remains an emerging 

and active area of research. 

 

1.2.3 ∆9-tetrahydrocannabinol, the prototypical CB1 receptor agonist 

Since its discovery in 1964, the effects of ∆9-THC (psychoactive or otherwise) 

have been extensively studied. It was first identified in a hexane extract of hashish, 

from which it was chromatographically separated from other phytocannabinoids, 

purified and tested for psychoactivity in dogs (Gaoni & Mechoulam, 1964). Similar 

assessments revealed that ∆8-tetrahydrocannabinol is also psychoactive, but that ∆9-

THC is more potent in vivo and more prevalent in cannabis (Pertwee, 1988). ∆9-THC is 

therefore generally considered the principle psychoactive component of cannabis. 

The complete biosynthesis of ∆9-THC and other phytocannabinoids in the 

plant is complex and beyond the scope of this thesis (for review see Flores-Sanchez 

and Verpoorte (2008)), but briefly, the carboxylic acid precursor to ∆9-THC, 
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tetrahydrocannabinolic acid (THCA), is biosynthesised from cannabigerolic acid 

(CBGA) by THCA synthase, and concentrated in the glandular trichomes of cannabis 

(Flores-Sanchez & Verpoorte, 2008; Taura et al., 2007). THCA, which is not 

psychoactive, is readily converted by light and heat to ∆9-THC, and this typically 

occurs when cannabis or cannabis extracts are smoked, vaporised, or baked 

(McPartland et al., 2015).  

∆9-THC content (including THCA) typically ranges from 0 - 35 % of dry plant 

weight (Bruci et al., 2012; Burgdorf, Kilmer, & Pacula, 2011; Swift et al., 2013). This 

variance is a result of plant genetics (including plant gender), growing conditions, and 

the portion of the plant analysed. Repeated selection of plant strains with high ∆9-

THC content for recreational purposes has produced an increase in cannabis potency 

(i.e. ∆9-THC content) in Europe, the US, the UK, New Zealand, and Australia (Cascini, 

Aiello, & Di Tanna, 2012; Swift et al., 2013).  

After intake of ∆9-THC via smoking, vaporisation, or ingestion, ∆9-THC 

circulates in blood, crosses the blood-brain-barrier and activates CB1 receptors, 

producing the classic cannabis “high”. As reviewed in the previous section, CB1 

receptor activation affects a variety of physiological systems, such that ∆9-THC can 

increase appetite, reduce pain, modulate anxiety, impair memory formation and 

learning, and alter mood (Pertwee & Cascio, 2014). It also produces “tetrad” effects in 

rodents (Compton et al., 1993; Martin et al., 1991; Wiley et al., 2007).  

In humans and rodents, ∆9-THC is metabolised to a variety of oxidized 

derivatives by cytochrome P450 2C9 and 2C19 isoenzymes (Watanabe et al., 2007). 

The predominant metabolic pathway proceeds via hydroxylation to 11-hydroxy-∆9-

THC (11-OH-THC) and then further oxidation to 11-nor-9-carboxy-THC (THC-COOH) 
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(Huestis, 2007). Interestingly, 11-OH-THC is more potent at CB1 receptors than ∆9-

THC, whereas THC-COOH lacks psychoactive effects (Lemberger et al., 1971; 

Watanabe et al., 1990). 11-OH-THC is more readily formed following oral 

administration of ∆9-THC, and as a major metabolite, 11-OH-THC likely contributes to 

the overall psychoactive effects usually ascribed to ∆9-THC (Huestis, 2007).  

∆9-THC produces rewarding effects, as demonstrated by user reports and by 

animal studies showing self-administration (Braida et al., 2004; Tanda, Munzar, & 

Goldberg, 2000). Approximately 10% of cannabis users develop dependence (Crean, 

Crane, & Mason, 2011). The rewarding effects of  ∆9-THC appear to be mediated by 

activation of dopaminergic reward circuitry involving the ventral tegmental area 

(VTA) and nucleus accumbens (NAc) (Gardner, 2014). In brief, dopaminergic neurons 

in the VTA innervate neurons in the NAc, and activation of this circuitry underlies the 

rewarding effects of a number of drugs of abuse (Fields & Margolis, 2015). ∆9-THC 

increases firing of dopaminergic VTA neurons, which may occur indirectly via 

inhibition of GABAergic projections onto those neurons (Gardner, 2014). However, 

excitatory glutamatergic neurons that express presynaptic CB1 also project onto 

dopaminergic neurons in the VTA (Lupica, Riegel, & Hoffman, 2004). Activation of 

these receptors would tend to decrease dopaminergic firing. Therefore, the effects of 

∆9-THC in the VTA are likely mediated by a complex interaction between competing 

neural circuitry. Nevertheless, antagonist studies provide some valuable mechanistic 

information. For example, the effects of ∆9-THC in the VTA can be blocked with CB1 

receptor antagonists, pointing to a CB1-dependent mechanism and involvement of the 

endocannabinoid system. Infusions of ∆9-THC directly into the NAc also increases 

NAc dopamine, which can be blocked not only by CB1 receptor antagonists but also by 
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opioid antagonist/inverse agonist naloxone (Tanda, Pontieri, & Chiara, 1997). Thus, 

multiple receptor systems are involved in mediating cannabinoid reward.  

Repeated ∆9-THC exposure can produce homeostatic compensations in the 

endocannabinoid system, leading to tolerance. Animal studies show that repeated ∆9-

THC administration decreases CB1 receptor density in hippocampal and striatal 

regions (Sim-Selley et al., 2006). Similarly, human cannabis users show down-

regulation of cortical CB1 receptors as measured by positron emission tomography, 

which positively correlates with the number of years of cannabis use (Hirvonen et al., 

2012). AEA concentrations in cerebrospinal fluid are also reduced by cannabis use in 

humans, in proportion to the amount of cannabis used (Morgan et al., 2013). However, 

these changes are reversible following cessation of ∆9-THC (Hirvonen et al., 2012; Sim-

Selley et al., 2006), and are less clearly characterised in other biological matrices. 

Although the precise mechanism underlying cannabinoid reward is not fully 

understood, it is noteworthy that abrupt cessation of cannabis use can produce a 

withdrawal syndrome (Allsop et al., 2011; Volkow et al., 2014). This is usually mild 

compared to opioid or alcohol withdrawal, but can present an obstacle to the 

reduction of cannabis use and impair normal daily activities (Allsop et al., 2012). 

Symptoms include irritability, cravings, decreased appetite, sleep disturbance, 

depression, anxiety, and headache (Allsop et al., 2015). These symptoms usually 

resolve after an extended period of cannabis/∆9-THC abstinence, perhaps related to 

the normalisation of receptor density and endocannabinoid concentrations as 

discussed above. 

∆9-THC can influence neuronal plasticity and associated learning, likely as a 

result of high CB1 receptor density in the prefrontal cortex and hippocampus. In 
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particular, ∆9-THC exposure can reduce neuron size and synaptic density in rat 

hippocampus (Scallet, 1991), and impairs episodic and working memory in infrequent 

cannabis users (Curran et al., 2002). This may occur via a reduction of blood flow to 

these brain regions (or conversely, inhibition of the prefrontal cortex and 

hippocampus may reduce blood flow). In rodents, these effects are more pronounced 

and enduring in adolescents (Higuera-Matas, Ucha, & Ambrosio, 2015). Adolescent 

rats show greater residual memory deficits than adults following chronic 

administration of ∆9-THC (Quinn et al., 2008).  

Peripherally, ∆9-THC produces tachycardia in humans via increases in diastolic 

blood pressure. Increases in resting heart-rate occur in a dose-dependent manner 

(Mittleman et al., 2001; Weiss et al., 1972). However, ∆9-THC can also produce 

bradycardia in tolerant human users. Moreover, in rodents, CB1 agonists including ∆9-

THC produce bradycardia in non-tolerant animals (Banister et al., 2013). Thus, the 

effect of ∆9-THC and cannabinoids generally on heart-rate is not fully understood. 

∆9-THC can also bind to CB2 receptors, although the outcomes of CB2 

activation are less established than for CB1. However, the action of ∆9-THC on CB2 

receptors with respect to immune and inflammatory responses has received some 

attention. For example, ∆9-THC can decrease the growth rate of CB1 and CB2 receptor 

expressing breast cancer tumors (Caffarel et al., 2010). This effect was blocked with 

CB2-selective antagonist SR144528, but not CB1-selective inverse agonist/antagonist 

rimonabant (SR141716A), indicating a specifically CB2 mediated mechanism. ∆9-THC 

can also reduce signs of paw pain in a rat arthritis model, and this effect is reduced by 

SR144528. However, this effect is also partially CB1-dependent as it is also attenuated 

by rimonabant (Cox, Haller, & Welch, 2007).  
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∆9-THC does not exist in isolation within cannabis, and a variety of research 

focuses on potential interactions between ∆9-THC, other phytocannabinoids, and 

phytochemicals generally. These interactions are numerous and seem to occur via a 

number of indirect modulatory mechanisms. Because ∆9-THC is a CB1 receptor 

agonist, these interactions are potentially relevant to synthetic CB1 agonists, and are 

briefly reviewed in the following sections. 

 

1.2.4 Interactions between ∆9-tetrahydrocannabinol and cannabidiol 

Cannabis biosynthesises over one hundred phytocannabinoids beyond ∆9-THC 

(ElSohly & Gul, 2014). Of these, CBD has recently moved to the forefront of 

therapeutic cannabinoid research. Ongoing research has indicated applications in the 

treatment of anxiety (Blessing et al., 2015), epilepsy (Friedman & Devinsky, 2015), 

schizophrenia (Zuardi et al., 2012), pain (Notcutt et al., 2004), and cannabis 

withdrawal (Allsop et al., 2015). 

CBD is biosynthesied in a similar manner to ∆9-THC. CBGA (the precursor to 

THCA) is also a substrate for cannabidiolic acid (CBDA) synthase, which produces 

CBDA. Like THCA, CBDA is most concentrated in the glandular trichomes of 

cannabis, and can be decarboxylated to CBD via light and heat (Flores-Sanchez & 

Verpoorte, 2008). The molecular structure of CBD differs only slightly from ∆9-THC, 

yet this difference is sufficient to completely alter its pharmacology. Unlike ∆9-THC, 

CBD has poor binding affinity on both CB1 and CB2 receptors. CBD does not produce 

psychoactive effects in humans, and does not produce tetrad effects in rodents (Cascio 

& Pertwee, 2014). Instead, CBD appears to act via a range of mechanisms on several 

alternate molecular targets. It may indirectly modulate the effects of CB1 and CB2 
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agonists, is an antagonist at GPR55 (Ryberg et al., 2007), a partial agonist on serotonin 

(5-HT)1A receptors (Russo et al., 2005), and an allosteric modulator of µ and δ-opioid, 

dopamine D2, and γ-aminobutyric acid (GABA)A receptors (Kathmann et al., 2006).  

The interaction of CBD with ∆9-THC is an area of continuing research. Animal 

studies have suggested that CBD can both potentiate and attenuate the effects of ∆9-

THC (Cascio & Pertwee, 2014; Klein et al., 2011). CBD has been shown to dose-

dependently increase the effects of ∆9-THC on locomotor activity, rectal temperature, 

and spatial memory (Hayakawa et al., 2008; Reid & Bornheim, 2001). It can also 

potentiate ∆9-THC-produced inhibition of weight gain, anxiogenic effects, and 

decreases in social interaction in rats (Klein et al., 2011). Potentiation of ∆9-THC 

effects may occur through inhibition of enzymes belonging to the cytochrome P450 

2C and 3A subfamilies (Bornheim & Correia, 1989, 1990, 1991). On the other hand, 

CBD has been sometimes shown to attenuate the effects of ∆9-THC on operant 

behaviour (Zuardi et al., 1981), social interaction (Malone, Jongejan, & Taylor, 2009), 

and conditioned place aversion (Vann et al., 2008).  

In humans, a similar mix of potentiation and attenuation is observed. Studies 

have shown that CBD can attenuate some, but not all, of the psychoactive effects of 

∆9-THC. For example, CBD reduces anxiety and subjective ratings of intoxication 

produced by ∆9-THC in adults, but does not block tachycardic effects (Zuardi et al., 

1982). Studies have also shown that CBD can potentiate pleasurable ∆9-THC effects 

(Karniol et al., 1974), in addition to cardiac effects (Hollister & Gillespie, 1975). 

However, a more recent study found no difference in subjective or cardiac effects 

between ∆9-THC and a 50:50 mix of ∆9-THC and CBD (Sativex®) (Karschner et al., 

2011). The doses of ∆9-THC and CBD and the timing of dosing in the aforementioned 
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studies also vary widely. Thus, it appears that the relationship between CBD and ∆9-

THC is complex and can change based on the specific effect studied (e.g. anxiety vs 

heart-rate), on the dose of CBD and/or ratio of CBD to ∆9-THC, on the timing of 

dosing, and between species (e.g. human vs rat).  

It remains an interesting possibility that CBD could interact with other CB1 

agonists, including synthetic cannabinoids. If CBD can reduce some of the negative 

effects of ∆9-THC, then perhaps it can do the same for synthetic CB1 agonists, 

providing a possible intervention for synthetic cannabinoid intoxication. Conversely, 

the absence of CBD from synthetic cannabinoid preparations could possibly be 

detrimental. Continued research on the interaction between CBD and CB1 agonists 

could prove fruitful.   

 

1.2.5 Interactions between ∆9-tetrahydrocannabinol and other 

phytochemicals in Cannabis sativa 

 Beyond the phytocannabinoids, cannabis produces an extensive range of 

terpenoid compounds. Unlike phytocannabinoids, terpenoids are found in a wide 

variety of flowering plants. Interestingly, these compounds may pharmacologically 

interact with ∆9-THC, CBD, and other phytocannabinoids. By extension, they could 

also interact with synthetic cannabinoids. 

Terpenoids are diverse and abundant compounds that are largely responsible 

for the characteristic odours of most flowering plants (Knudsen et al., 1993), including 

cannabis. In addition to providing possible anti-fungal and pesticidal benefits for the 

plant (Gershenzon and Dudareva, 2007; Langenheim, 1994), terpenoid compounds 

have a variety of putative beneficial properties in humans and produce analgesic 
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(Lorenzetti et al., 1991), anxiolytic (Komiya et al., 2006), and sedative effects (do Vale 

et al., 2002). Like the phytocannabinoids, terpenoids are concentrated in the 

trichomes of the plant, and interestingly, phytocannabinoids and terpenoids are 

biosynthetically related. Terpenes are biosynthesised via combinations of five carbon 

isoprene units, and these same units are used in the biosynthesis of 

phytocannabinoids. Indeed, phytocannabinoids are “terpenophenolic” compounds; 

that is, they are synthesised via the combination of terpenes and phenols.  

Terpenoids may act directly or indirectly to modulate phytocannabinoid effects 

(Russo, 2011). For example, the terpene β-caryophyllene is a CB2 agonist in vitro 

(Gertsch et al., 2008). Direct action of terpenoids on CB1 receptors is unlikely, since a 

comparison of pure ∆9-THC and cannabis smoke (containing terpenoids) yielded no 

overall difference in CB1 binding in vitro (Fischedick et al., 2010a), and the subjective 

effects of pure ∆9-THC and cannabis are similar at low doses (Cooper et al., 2013; 

Wachtel et al., 2002). Nevertheless, interactions between terpenoids and 

phytocannabinoids via indirect mechanisms have been reported; for example, β-

linalool shows antinociceptive effects via adenosine A1 and A2A receptors (Peana et al., 

2006), as does β-myrcene via PGE-2 (Lorenzetti et al., 1991). These interactions have 

been collectively termed “the entourage effect” (Russo, 2011), although more research 

is needed to conclusively determine if terpenoids produce physiologically relevant 

interactive effects at concentrations found in cannabis. Nevertheless, if terpenoids can 

modulate the effects of ∆9-THC, then they may also modulate the effects of synthetic 

cannabinoids. Thus, as was the case for CBD, the total pharmacological effect of 

synthetic preparations may be influenced by the presence or absence of terpenoids. 
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1.3 The discovery and evolution of synthetic cannabinoids 

 

1.3.1 Early bicyclic synthetic cannabinoids 

 The structures of ∆9-THC and similar phytocannabinoids were used as 

templates for the first synthetic, i.e. human-designed, cannabinoids. These 

compounds were designed in order to investigate the endocannabinoid system, with 

the goals of building a mechanistic understanding of the system and discovering novel 

therapeutics. The earliest compounds were bicyclic synthetic cannabinoids that 

resulted from alterations to the chemical structure of ∆9-THC (Figure 1A). These 

include HU-210 and CP-47,497 (Figure 1B and 1C) which both possess greater affinity 

for CB1 and CB2 receptors than ∆9-THC (Stern & Lambert, 2007; Titishov, Mechoulam, 

& Zimmerman, 1989; Weissman, Milne, & Melvin, 1982). Compounds of this type 

usually contain two six-membered rings and a hydrocarbon “tail” in a configuration 

similar to that of ∆9-THC. 

These compounds have been used with success in scientific investigations of 

cannabinoid pharmacology (Ottani & Giuliani, 2001). For example, competitive 

binding assays with radiolabelled CP-55,940 (a potent CB1 and CB2 receptor agonist) 

have been used to characterise the binding strength of a range of cannabinoid agonists 

(Thomas et al., 1998). Moreover, radiolabelled CP-55,940 was used to localise 

cannabinoid receptors in the central nervous system (Herkenham et al., 1990).  

The psychopharmacology of the early bicyclics has also been investigated, 

largely using rodent models. As expected, HU-210 and CP-55,940 produce tetrad 

effects in rats (Fox et al., 2001), which can be blocked by rimonabant (Chaperon & 

Thiébot, 1999). HU-210 can also impair rat learning in the water maze task when 
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administered daily at 50 µg/kg or higher (Ferrari et al., 1999), and can produce 

anxiogenic-like effects following sub-chronic treatment (Giuliani, Ferrari, & Ottani, 

2000). CP-55,940 can produce aversive effects in rats, as measured by conditioned 

place preference and conditioned taste aversion (McGregor, Issakidis, & Prior, 1996), 

although some studies have found mild rewarding effects, depending on dose and 

testing schedule (Braida et al., 2001). Chronic dosing with CP-55,940 can also produce 

lasting memory impairments in adolescent rats (O'Shea et al., 2004).  

Overall, the early bicyclic synthetic cannabinoids act similarly to ∆9-THC via 

action at CB1 receptors, although the available evidence suggests that some can 

produce more extreme effects, particularly on learning and memory (Higuera-Matas et 

al., 2015). This is presumably a result of the high potency of these compounds at CB1 

receptors. However, this relatively simplistic picture has since been complicated by 

the discovery of additional classes of cannabimimetic compounds that are structurally 

dissimilar to ∆9-THC and the early bicyclic synthetic cannabinoids. Such discoveries 

produced large increases in both the number and potency of synthetic cannabinoids, 

which has seemingly broadened the range of potential psychopharmacological and 

toxicological effects produced by these compounds.  
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Figure 1. Molecular structures of ∆9-THC and early synthetic cannabinoids. Note the 

structurally similarities between (A) ∆9-THC, (B) HU-210, and (C) CP-47,497, which 

each possess six-membered rings and hydrocarbon chains in similar configurations. 

Pravadoline (D) is also a cannabinoid receptor agonist, despite substantial structural 

differences from the early bicyclic synthetic cannabinoids. See Section 1.3.2 for further 

detail. 

 

1.3.2 Pravadoline and the aminoalkylindoles 

The synthetic cannabinoid landscape diversified with the development of 

pravadoline (WIN-48,098; (4-methoxyphenyl)[2-methyl]-1-[2-(4-morpholinyl)ethyl]-

1H-indol-3-yl]-methanone) in the 1980s. Pravadoline was developed as an anti-
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inflammatory cyclooxygenase inhibitor, but unexpectedly produced strong analgesic 

effects at doses ten times below its effective anti-inflammatory dose. Antagonist 

studies with naloxone and opioid receptor binding studies demonstrated that this 

analgesic effect was not opioid dependent (Haubrich et al., 1990). Further research 

revealed that pravadoline was in fact a CB1 receptor agonist (D'Ambra et al., 1992).  

The chemical structure of pravadoline differs substantially from that of the 

phytocannabinoids and phytocannabinoid-based synthetic cannabinoids (Figure 1D). 

Pravadoline is an aminoalkylindole, and further experimentation with variants of this 

structure revealed that many compounds of this class act on cannabinoid receptors as 

agonists or antagonists (Aung et al., 2000; D'Ambra et al., 1992; Huffman et al., 1994). 

An early example of this class is WIN-55,212-2 ([(3R)-2,3-dihydro-5-methyl-3-(4-

morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-

methanone), an aminoalkylindole with strong cannabinoid receptor binding affinity 

(CB1 Ki = 1.9 nM, CB2 Ki = 0.28 nM) (Kuster et al., 1993). An important property of 

WIN-55,212-2 and many aminoalkylindole synthetic cannabinoids is that they are full 

agonists; that is, they have maximum efficacy at cannabinoid receptors (Fantegrossi et 

al., 2014). This is in contrast to ∆9-THC, which is a partial agonist that cannot activate 

CB1 receptors to the same extent regardless of concentration. It is therefore possible 

that aminoalkylindole synthetic cannabinoids may produce effects beyond or entirely 

different to that of ∆9-THC. 

This aminoalkylindole framework underwent extensive development in the 

1990s. Of particular note is the development of the “JWH” and “AM” series of synthetic 

cannabinoids, named after their creators John W. Huffman and Alexandros 

Makriyannis respectively (Huffman et al., 1994; Makriyannis & Deng, 2005). Together, 
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these series are comprised of over 200 unique compounds with varying cannabinoid 

receptor binding affinity. Of these compounds, JWH-018 (1-pentyl-3-(1-

naphthoyl)indole) possessed strong CB1 receptor affinity and was relatively easy to 

synthesise, and became the most well-known synthetic cannabinoid in recreational 

products. However, it should be noted from the outset that synthetic cannabinoid 

products contain an enormous variety of synthetic cannabinoids with diverse yet 

related molecular structures. 

 

1.3.3 Synthetic cannabinoids as recreational drugs 

By the mid-2000s, a large collection of synthetic CB1 agonists had been 

identified in scientific literature. Their syntheses were readily available, and were also 

straightforward for many aminoalkylindoles. Moreover, these compounds were largely 

unknown outside of the research community and were consequently legal, or at least 

not explicitly illegal, to possess or manufacture in most countries. In light of these 

factors, it is of little surprise that synthetic cannabinoids have been used recreationally 

as novel psychoactive substances. 

Synthetic cannabinoids experienced a spike in popularity in 2004, when the 

product “Spice” commenced sale in European markets. Initially, synthetic 

cannabinoids were sold in online marketplaces, often under the guise of “research 

chemicals”. In this setting, compounds could be ordered in a powdered or crystalline 

form, albeit with little to no testing of purity or confirmation of chemical identity. 

Alternatively, products were packaged and sold as “natural”, “herbal”, or “legal highs”. 

These products proved to be immensely popular, and profitable – the first company to 
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commence sale in Europe, “The Psyche Deli”, reportedly made profit of £700,000 

between 2006 and 2007 (Schifano et al., 2009). 

The packaging of early herbal products listed up to 14 different types of plants, 

two of which had potential psychoactive effects (Seely et al., 2011). However, the two 

plants - Pedicularis densiflora (indian warrior) and Leonotis leonuris (lion’s ear) – were 

not known to be able to produce the intense highs described by users. This prompted 

researchers to analyse the products for additionally psychoactive ingredients. It was 

quickly discovered that in reality, these “herbal” products contained a number of 

synthetic cannabinoids, primarily JWH-018 (EMCDDA, 2009). These products were 

produced by dissolving synthetic cannabinoid compounds of unknown purity in a 

volatile solvent and then spraying the mixture onto largely inert plant material. This 

process was not mentioned on the product packaging, nor was there any mention of 

synthetic cannabinoids. Often products were labelled “not for human consumption” in 

an attempt to circumvent legislation (Figure 2). 

After this discovery, recreational synthetic cannabinoid products were 

monitored by the European Monitoring Centre for Drugs and Drug Addiction 

(EMCDDA). However, synthetic cannabinoid products quickly spread to other 

markets and were found in the USA in 2008, containing the older, phytocannabinoid 

derived HU-210. Similarly synthetic cannabinoids were detected in Japan in 2008, and 

in Australia in 2011, although it is possible that synthetic cannabinoid use began 

several years before they were detected (Barratt, Cakic, & Lenton, 2012).  
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Figure 2. Front and back of a typical synthetic cannabinoid product “Banana Cream 

Nuke”, as published by Schneir, Cullen, and Ly (2011). Note that a variety of ingredients 

are listed, none of which are synthetic cannabinoids, and that it displays the warning 

“NOT FOR HUMAN CONSUMPTION”. This particular product contained JWH-018 and 

JWH-073 ((1-butyl-1H-indol-3-yl)-1-naphthalenyl-methanone), and produced tachycardia 

and severe anxiety in two people admitted to an emergency department. 

 

During this time, the pharmacological and legal situation remained unclear, 

among both synthetic cannabinoid users and concerned members of the public. The 

pharmacology of synthetic cannabinoid use in humans was unknown until the 

publication of case studies focusing on acute toxicity, and some studies using animal 

models (reviewed in Section 1.3). The legislative and forensic responses to synthetic 

cannabinoid products varied widely between countries, and are reviewed in Section 

1.4.  
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1.3.4 Common structures and modifications 

Modern synthetic cannabinoids are comprised of a variety of chemical classes 

beyond the aminoalkylindoles. The complexity of synthetic cannabinoid nomenclature 

can be seen in their increasingly long abbreviations (for example, AB-CHMINACA is 

short for N-[(1S)-1-(aminocarbonyl)-2-methylpropyl]-1-(cyclohexylmethyl)-1H-

indazole-3-carboxamide). However, the composition of most synthetic cannabinoids 

can be simplified, such that most structures can be decomposed into four broad 

components (EMCDDA, 2016; Figure 3): 

1) A core, typically an indole or indazole moiety 

2) A “bulky” structure that varies widely, often utilising ring structures, including 

but not limited to naphthyl, adamantyl, or cyclopropyl moieties 

3) A linker or “bridge”, often a carboxamide, carboxylate, or methanone moiety, 

connecting the core and bulky structure 

4) A tail, extending from the core, often an N-pentyl chain, which is frequently 

terminally halogenated 

These components can be combined in various configurations in order to 

generate large numbers of novel compounds. For example, JWH-018 is composed of 

an indole core, a naphthyl bulky structure, a methanone linker, and an N-pentyl tail 

(Figure 3A). Terminal fluorination of the N-pentyl chain yields AM-2201 (1-(5-

fluoropentyl)-3-(1-naphthoyl)indole; Figure 3B). Alternatively, the indole moiety of 

JWH-018 could be replaced with an indazole to yield THJ-018 (1-naphthalenyl(1-

pentyl-1H-indazol-3-yl)-methanone; Figure 3D), or the naphthyl moiety could be 

exchanged for an adamantyl group to give AB-001 (1-pentyl-3-(1-adamantoyl)indole; 

Figure 3C), a compound first detected in Irish recreational products in 2010 
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(Grigoryev, Kavanagh, & Melnik, 2012). Substitution of the methanone linker of AB-

001 for a carboxamide results in SDB-001 (also known as APICA; N-(1-adamantyl)-1-

pentyl-1H-indole-3-carboxamide; Figure 3E) found in Japan in 2012 (Uchiyama et al., 

2013). SDB-001 can then be modified; for example, swapping the adamantyl moiety for 

an α,α-dimethylbenzyl group yields CUMYL-PICA (N-(1-methyl-1-phenylethyl)-1-

pentyl-1H-indole-3-carboxamide; Figure 3F), which was detected in Europe in 2014 

(EMCDDA, 2014).  

Note that there are many alternate pathways and connections between the 

structures of these and other synthetic cannabinoids, and some exceptions to this 

general framework. For example, EG-018 (naphthalen-1-yl(9-pentyl-9H-carbazol-3-

yl)methanone) is an analogue of JWH-018, with a benzene ring directly attached to 

the aminoalkylindole group. This modification is rarely seen elsewhere. However, for 

the majority of synthetic cannabinoids, the above framework is useful in the 

conceptualisation of the relationships between large numbers of compounds, and for 

understanding of various structure-activity relationships (SARs) that exist within the 

many classes of synthetic cannabinoids. 
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Figure 3. Molecular structures of synthetic cannabinoids (A) JWH-018, (B) AM-2201, 

(C) AB-001, (D) THJ-018, (E) SDB-001, and (F) CUMYL-PICA. All structures have a core, 

linker, tail, and bulky structure, which can be altered to produce many diverse yet 

structurally related compounds (see text for further detail). 
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1.3.5 Structure-activity relationships 

 The use of SARs to predict the pharmacological properties of novel synthetic 

cannabinoids is an important area of research. Rather than individually testing each 

and every novel compound, it may be possible to predict the pharmacology of novel 

synthetic cannabinoids by understanding the effects of common structural alterations. 

Specifically, understanding how certain components of synthetic cannabinoids (e.g. 

tail length, bulky group composition) impact cannabinoid receptor binding strength 

and in vivo responses is an important area of research. 

 Some SARs have been established within specific classes of cannabinoids. 

Bicyclic synthetic cannabinoids (e.g. CP-47,497 and the early ∆9-THC –derived 

compounds) exhibit maximum binding affinity with a six or seven membered ring 

structure in place of the cyclohexyl ring of ∆9-THC (Melvin et al., 1993). Alkyl 

extensions from the cyclohexyl ring do not affect binding, but hydroxyalkyl extensions 

of three or four carbons improve binding strength at CB1 receptors (Figure 4). 

Additionally, bicyclic synthetic cannabinoids bind to cannabinoid receptors most 

strongly when their alkyl chains have seven or eight carbons (Melvin et al., 1993). In 

aminoalkylindoles, the length of the alkyl “tail” also profoundly affects cannabinoid 

receptor binding. A tail length of at least three carbons is necessary for high binding 

affinity at CB1 and CB2 receptors, and a length of five carbons is optimal (Aung et al., 

2000). Extension of the tail to seven or more carbons results in a sharp decrease in 

binding affinity at both cannabinoid receptors.  

 Other SARs are at present partly characterised or uncharacterised. For example, 

many synthetic cannabinoids with N-pentyl tails are terminally fluorinated, forming 

pairs of fluorinated and non-fluorinated compounds. AM-2201 is the 5-fluoropentyl 

Chapter 1 29



 
 

analogue of JWH-018, XLR-11 (1-(5-fluoropentyl)-1H-indol-3-yl)(2,2,3,3-

tetramethylcyclopropyl)methanone) is the 5-fluoropentyl analogue of UR-144 (1-

(pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)-methanone), and 5F-PB-22 (1-

(5-fluoropentyl)-8-quinolinyl ester-1H-indole-3-carboxylic acid) is the 5-fluoropentyl 

analogue of PB-22 (1-pentyl-8-quinolinyl ester-1H-indole-3-carboxylic acid). Terminal 

bromination or iodination of the N-pentyl chain is known to increase cannabinoid 

receptor binding in ∆9-THC analogues (i.e. early bicyclic synthetic cannabinoids), and 

fluorination produces a smaller increase in affinity (Compton et al., 1993). This is less 

well characterised in aminoalkylindoles and it is unknown whether any such increases 

in binding affinity carry through to improve in vivo efficacy. Similarly, the effect of 

modification of the “bulky” groups of synthetic cannabinoids is also yet to be fully 

characterised. For example, the in vivo pharmacological effect of the substitution of 

the naphthyl group in JWH-018 for the adamantyl group in SDB-001 is unknown. 

Further research is needed to establish the in vivo and in vitro consequences of such 

structural alterations. 
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Figure 4. Structure-activity relationships for (A) aminoalkylindoles, with AM-2201 as 

an example, and (B) bicyclic synthetic cannabinoids, with CP-55,940 as an example. 

Structural components that improve cannabinoid receptor binding affinity are labelled. 

The effects of aminoalkylindole halogenation and bulky group composition on in vivo 

pharmacology are presently uncharacterised. 
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1.4 The psychopharmacology of synthetic cannabinoids 

  

1.4.1 Acute effects  

Recreationally used synthetic cannabinoids are usually strong CB1 receptor 

agonists, so it would be expected that they would produce effects similar to, or 

possibly exceeding, that of ∆9-THC. Indeed, the overall effects of synthetic 

cannabinoids in humans are typically described as being somewhat similar to that of 

cannabis, with additional, often negative, side effects (Winstock & Barratt, 2013). A 

global survey of synthetic cannabinoid users revealed that synthetic cannabinoid 

products reportedly had a shorter onset of effects as compared to cannabis (Winstock 

& Barratt, 2013). Moreover, users reported that synthetic cannabinoids produced more 

negative effects, hangover effects, and paranoia. Anecdotal online user reports 

describe similar effects, including anxiety and paranoia, vomiting, catalepsy, 

convulsions, agitation, and addiction. For example: 

 

“After about 10 minutes and only about 3 hits of the 'Smiley Dog' herbal incense 

we are so high we cannot stand or walk... I lose motor control and can no longer 

stand after 20 minutes. My heart feels as if it is going to explode, I become 

convinced I could die at any moment. A tingling feeling starts at the tips of my 

fingers and slowly works its way up to my hands, then up my arm… At this point I 

lose it, and have my friend call an ambulance… I'm vomiting and the tingling 

feeling has moved terrifyingly close to my heart. When the ambulance arrives 

they cannot bring me under control and I cannot stop my body from convulsing, 

shaking, and screaming … They had to strap me to a gurney and put me in an 
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ambulance… They administered 10 milligrams of [lorazepam] to try to calm me 

down but nothing really works until I'm at the emergency room and they put me 

down with [ziprasidone]. I'm convinced JWH-018 triggered a full psychotic break 

in me.” (Evilpoptart, 2011) 

 

This user seems to describe motor function impairment and tachycardia 

followed by a panic attack produced by a synthetic cannabinoid (which the user 

assumes to be JWH-018). Similar case reports are abundant across various internet 

forums, and closely mirror symptoms described in emergency room case studies 

(Schneir et al., 2011; Schwartz et al., 2015). 

In rodents, synthetic cannabinoids with high CB1 affinity produce classic 

“tetrad” effects, the same as those produced by ∆9-THC. Hypothermia can be reliably 

produced by JWH-018, SDB-001, UR-144, and XLR-11 in rodent models (Banister et al., 

2013; Wiley et al., 2015). This effect is dose-dependent, blocked by rimonabant, and 

absent in CB1 knockout mice. In general, recreationally abused synthetic cannabinoids 

are several times more potent than ∆9-THC in rodent models, as would be expected 

given their strong binding affinity and full agonism at CB1 receptors. The remaining 

three tetrad effects – analgesia, catalepsy, and hypomotility – are also observed in 

rodents following synthetic cannabinoid administration (Wiley et al., 2013). However, 

large numbers of synthetic cannabinoids have never been assessed for their in vivo 

effects. 

Tetrad assessment is a widely used screening tool, but it is limited in some 

aspects. Importantly, CB1 receptor agonism requires confirmation using antagonists or 

CB1 genetic knockouts, because all four tetrad measures are non-specific – that is, they 
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can be produced by other pharmacological mechanisms. Additionally, tetrad effects do 

not necessarily reflect psychoactivity – i.e. the cannabis “high”. To assess suspected 

psychoactive effects in rodents, drug discrimination paradigms have been utilised 

(Wiley et al., 2015; Wiley et al., 2013). In these paradigms, rodents are trained to 

respond in a certain way (e.g. lever press on a particular lever) when administered a 

drug (e.g. ∆9-THC). Drugs that produce similar subjective effects (e.g. synthetic 

cannabinoids) should elicit the same response. UR-144, XLR-11, AB-CHMINACA, AB-

PINACA ((S)-N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-

carboxamide), FUBIMINA ((1-(5-fluoropentyl)-1H-benzo[d]imidazol-2-yl)(naphthalen-

1-yl)methanone), JWH-018, and several 1-pentyl-3-phenylacetylindoles substitute for 

∆9-THC in drug discrimination assessments (Wiley et al., 2015; Wiley et al., 2013; 

Wiley et al., 2012).  

Another issue with the tetrad assessment is that measurement of each effect 

requires experimenter manipulation of the animal. For example, commonly used 

rectal temperature measurement can produce artifactual hyperthermic effects due to 

stress. In recent years, technological advancement in implantable radiotelemetric 

probes have permitted the measurement hypothermia in real time, allowing a high 

rate of sampling while avoid confounding effects from animal handling. Application of 

these radiotelemetric probes to synthetic cannabinoid screening has been 

demonstrated, and has shown that JWH-018 and SDB-001 produce hypothermic 

effects that last for at least 5 hours post-drug administration (Banister et al., 2013). 

Additionally, implantable radiotelemetric probes can measure heart-rate in real time. 

As reviewed in Section 1.2.3, the effect of cannabinoids on heart rate is undefined 

compared to standard tetrad effects. In humans, tachycardia is usually observed 
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following synthetic cannabinoid or ∆9-THC administration (Lapoint et al., 2011; 

Renault et al., 1971; Schneir et al., 2011), yet in rodents, CB1 receptor agonists produce 

bradycardia as measured via radiotelemetry probes (Banister et al., 2013). It is not 

clear whether this bradycardic effect is a direct action of CB1 activation or instead a by-

product of hypothermia or locomotor suppression. Nevertheless, these alternate 

measurement techniques are potentially useful for high throughput screening of the 

acute effects of novel synthetic cannabinoids in vivo. 

 

1.4.2 Acute toxicity  

In addition to the acute behavioural and physiological effects described in the 

previous section, severe toxicity has also been reported following synthetic 

cannabinoid administration. These include acute kidney injury, cardiotoxicity, 

cerebral ischemia, and seizures.  

Multiple case reports detail acute kidney injury following use of synthetic 

cannabinoids (Bhanushali et al., 2012; Buser et al., 2014; Pendergraft et al., 2014; 

Thornton et al., 2013). Generally, these cases concern individuals who have been 

admitted to emergency wards following the use of one or more synthetic cannabinoid 

products, often in conjunction with other drugs or alcohol. Histological examination 

has revealed acute injury to tubules in the renal cortex and increased inflammation in 

the renal medulla (Buser et al., 2014). It should be noted, however, that no case study 

has been able to confirm whether these injuries are produced by a synthetic 

cannabinoid in isolation, or an interaction of one or more synthetic cannabinoids with 

each other or other substances, by the product medium, or contaminants.  
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Cardiovascular side effects have been reported in numerous case studies 

reporting synthetic cannabinoid effects (Hermanns-Clausen et al., 2012; Mir et al., 

2011; Schwartz et al., 2015; Young et al., 2012). Tachycardia and hypertension seem 

particularly common, which might be expected given that ∆9-THC reliably increases 

heart rate in humans (Ashton, 2001). Beyond tachycardia and hypertension, 

palpitations have been reported (Schneir et al., 2011). It is unclear whether these 

palpitations are a direct pharmacological effect or if they are more closely linked to the 

anxiogenic features of synthetic cannabinoids. Most alarmingly, there is also evidence 

that suggests the involvement of synthetic cannabinoids in cases of acute myocardial 

infarction (Mir et al., 2011; Schwartz et al., 2015). 

Ischemic stroke following synthetic cannabinoid use has been reported on 

several occasions (Degirmenci, Kececi, & Olmez, 2016; Freeman et al., 2013; Inal et al., 

2014). For example, Bernson-Leung, Leung, and Kumar (2014) reported cases of 

ischemic stroke in two women, aged 22 and 26. Similarly, Dogan et al. (2016) reported 

the occurrence of strokes in two men aged 28 and 35 while using synthetic 

cannabinoids. In some cases, the locations of strokes indicate an embolic aetiology, 

such that hypertension, tachycardia and arrhythmia could expose a pre-existing 

vulnerability in certain people (Degirmenci et al., 2016; Dogan et al., 2016).  

Interestingly, to the author’s knowledge, there are no published studies that 

report acute toxicity in animals following synthetic cannabinoid administration. 

Moreover, in humans, only 3.5 % of synthetic cannabinoid users experience acute 

toxic effects requiring urgent medical care, although this statistic rises to 12.5 % for 

regular (weekly or more) users (GDS, 2016). That is, synthetic cannabinoid products as 

a whole do not seem to produce toxicity in a reliable manner. Reasons for this 
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variability may include unique toxidromes for each compound, specific drug 

interactions, dosage, user vulnerability, and product contamination. In some cases, 

specific compounds have been implicated in a number of poisoning cases. For 

example, a recent cluster of toxicity in New York has been attributed to AMB-

FUBINACA (methyl (1-(4-fluorobenzyl)-1H-indazole-3-carbonyl)-L-valinate), which 

was found in both the suspected product and blood of several patients (Adams et al., 

2017). In other cases, contamination of a particular batch of products may be the root 

cause. Contamination of synthetic cannabinoid products with caffeine, O-

desmethyltramadol (an opioid analgesic), eugenol, and nicotine has been documented 

(Dresen et al., 2010). In sum, the available evidence indicates that some synthetic 

cannabinoid compounds or products may be substantially more toxic than others. 

Identification of toxic compounds before they reach large numbers of users is 

therefore a crucial area of research. 

 

1.4.3 Metabolism  

Synthetic cannabinoid metabolism appears to proceed in a similar manner to 

phytocannabinoids – predominantly undergoing oxidative transformations (e.g. 

hydroxylations) before phase II glucuronidation. These hydroxylations occur in most 

reports of synthetic cannabinoid metabolism (Sobolevsky, Prasolov, & Rodchenkov, 

2010; Takayama et al., 2014; Thomsen et al., 2014). Other phase II transformations 

(e.g. sulfation) are generally not observed.  

For synthetic cannabinoids containing a carboxamide or ester bulky group, 

metabolic transformations other than hydroxylation appear to be favourable. Available 

studies suggest that in these cases, hydrolysis is a primary metabolic pathway.  For 
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example, indazole carboxamides AB-PINACA and AB-FUBINACA are hydrolysed 

primarily by carboxylesterase 1 (Thomsen et al., 2014). A similar hydrolysis occurs for 

quinolinol synthetic cannabinoids PB-22 and 5F-PB-22 (Takayama et al., 2014; 

Thomsen et al., 2014). Hydroxylation then precedes on the hydrolysis products. 

Importantly, minor metabolic transformations can produce metabolites that 

retain CB1 binding affinity. For example, JWH-018 can be hydroxylated to form a 

metabolite that retains CB1 binding affinity (Seely, Brents, et al., 2012). 

Glucuronidation then forms a metabolite which is an antagonist at CB1 receptors. 

Thus, in vitro assessments of potency of the parent compound in isolation may not 

accurately reflect potency following metabolic transformations in vivo.  

Closely structurally related synthetic cannabinoids (e.g. fluorinated analogues) 

may produce identical metabolites (Andersson et al., 2016). This has the potential to 

thwart forensic attempts to identify a unique compound in biological samples. This 

problem may be compounded if the metabolic pathways that produce such 

metabolites are highly favoured. Thus, careful choice of forensic targets may be 

required, but for many new synthetic cannabinoids, these metabolic pathways are 

uncharacterised. 

Most studies that characterise synthetic cannabinoid metabolism do so using 

microsomal and hepatocyte incubations (Andersson et al., 2016; Takayama et al., 2014; 

Thomsen et al., 2014; Wohlfarth et al., 2014). Relatively few studies have been 

conducted using in vivo models (Carlier et al., 2016). Interestingly, metabolism often 

appears to be rapid in microsomal incubations, particularly for compounds possessing 

less stable functional groups like esters (Andersson et al., 2016; Takayama et al., 2014). 

Yet human case studies and radiotelemetric data indicate that the effects of synthetic 
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cannabinoids persist over several hours (Banister et al., 2013; Lapoint et al., 2011), and 

that in some cases, the parent compound remains detectible in adipose tissue for an 

extended period of time (Hasegawa et al., 2015). Therefore, there appears to be a 

discrepancy between in vivo and in vitro pharmacokinetic data. Future studies that 

directly compare in vivo and in vitro models of synthetic cannabinoid 

pharmacokinetics may prove valuable. 

 

1.4.4 Thermal degradation 

Smoking or vaporising synthetic cannabinoids involves heating to high 

temperatures. Burning a cigarette or joint produces temperatures of approximately 

700 °C, which can increase up to 900 °C during puffs (Baker, 1974). At these 

temperatures, there is emerging evidence that some synthetic cannabinoids thermally 

decompose, forming a variety of thermolysis products. For example, UR-144 and XLR-

11 contain a tetramethylcyclopropyl ring system that is sterically strained and opens 

when heated when burnt (Figure 5) (Adamowicz, Zuba, & Sekuła, 2013; Grigoryev et 

al., 2013). These ring-opened degradants retain affinity and efficacy at CB1, and can 

substitute for ∆9-THC in drug discrimination tests (Thomas et al., 2017). Thus, like 

synthetic cannabinoid metabolites, pyrolysis products may play a role in the total 

effect of synthetic cannabinoids. 

There is also the possibility that some synthetic cannabinoids could form toxic 

thermal degradants. For example, a common constituent of synthetic cannabinoids is 

a naphthyl group, which in isolation (i.e. naphthalene) is a suspected human 

carcinogen. If that group is thermally liberated from the remaining structure and 

inhaled, it could theoretically produce toxicity over and above that of the parent 
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Figure 5. (A) UR-144 and (B) UR-144 thermal degradant formed after heating to 800 °C. 

Note that the degradant not only retains cannabinoid receptor binding affinity, but binds 

more strongly to CB1 and CB2 receptors than the parent compound. Binding values 

determined via [3H]CP-55,940 displacement (Thomas et al., 2017). 

 

compound. Similarly, carboxamide synthetic cannabinoids could thermally 

decompose into a range of amides and nitriles (Davidson & Karten, 1956; Metcalfe et 

al., 1983). Even fluorinated degradants, including hydrofluoric acid, could theoretically 

be liberated from fluorinated synthetic cannabinoids (Hutter et al., 2013).  

Crucially, thermal degradants and their effects will not be detected in studies 

using other routes of administration (e.g. injections or infusions). If a synthetic 

cannabinoid produces thermal degradants that retain cannabinoid receptor affinity, as 

appears to be the case with UR-144 above, then the pharmacological impact of that 

compound may be under or overestimated. It is noteworthy that the thermal 

degradants of several classes of synthetic cannabinoids, such as the increasingly 

detected and potentially toxic carboxamides, are presently unknown.  
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1.4.5 Long-term effects and toxicity 

 As synthetic cannabinoid use is a relatively recent phenomenon, there are very 

few reports of the long-term effects of synthetic cannabinoid use in humans. Some 

users anecdotally report addiction, although a specific synthetic cannabinoid is rarely 

specified and multiple drug use is frequently reported, for example: 

 

“I have been clean for 14 days now from the synthetic weed. I was addicted to it 

for a year. The only way I got clean was when all smoke shops here … were raided 

and shut down. I was so angry when this happen cause the cravings were 

unbarable [sic]. This drug has turn [sic] me in to [sic] a depressed person with 

anxietx [sic]... I still get the urge every now and then to smoke but it usllay [sic] 

goes away within 10 min... I would say this addiction is up there in the crack 

addiction. I would know because I was addicted to crack from 2006 to 2007.” 

(brittney_burch, 2013) 

 

Tolerance and withdrawal following repeated use of synthetic cannabinoid 

products has also been reported in scientific literature (Macfarlane & Christie, 2015; 

Zimmermann et al., 2009). Common symptoms of synthetic cannabinoid withdrawal 

are irritability, agitation, anxiety, depression, and mood swings. This symptomology 

appears to be similar to cannabis withdrawal syndrome, which as mentioned in 

Section 1.1.2, can also produce irritability, agitation, and anxiety (Allsop et al., 2012). 

However users (as above) describe synthetic cannabinoid withdrawal as more severe 

than for cannabis (Winstock & Barratt, 2013), sometimes comparing it to cocaine or 

opiate withdrawal. 
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 Unfortunately, physiological and toxicological data are extremely limited 

beyond acute case reports. A very recent study has reported impairments to executive 

function in chronic synthetic cannabinoid users, compared to both cannabis and non-

cannabis users (Cohen et al., 2017). However, the authors could not focus on any one 

specific synthetic cannabinoid, nor could they rule out additional drug or medication 

use or the impact of socioeconomic status. Unfortunately, to the author’s knowledge, 

there are no controlled studies concerning long-term toxic outcomes of synthetic 

cannabinoid use using animal models.   
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1.5 Legislation, forensics, and treatments  

 

1.5.1 Reasons for synthetic cannabinoid use/abuse 

In spite of the apparent dangers discussed in the previous sections, people 

continue to use synthetic cannabinoids. Using products of unknown potency and 

composition with a number of negative side-effects, and a high possibility of toxicity 

or addiction, does not seem appealing. However, like other drugs of abuse, the use of 

synthetic cannabinoids appears to be mediated by a wide array of factors (Figure 6). 

Understanding these factors is important for the design of effective legislation and 

treatments. 

User surveys have found that the most commonly stated reason for using 

synthetic cannabinoids is simple curiosity, or as an alternative to cannabis use 

(Vandrey et al., 2012; Winstock & Barratt, 2013). Nearly all surveyed synthetic 

cannabinoid users report having used cannabis previously (Winstock & Barratt, 2013). 

However, most users do report a preference for cannabis over synthetic cannabinoid 

products (Winstock & Barratt, 2013), citing adverse side-effects as a dissuading factor.  

Workplace drug testing has been identified as a strong motivating factor for 

synthetic cannabinoid use (Gunderson et al., 2014). There is a delay between first 

detection of a novel synthetic cannabinoid, the development of forensic analyses, and 

the widespread implementation of these analyses. These delays create a period of time 

in which drug tests may fail to detect use of novel synthetic cannabinoids. These same 

tests are generally capable of detecting cannabis use, thereby encouraging synthetic 

cannabinoid use over cannabis, despite a higher risk of adverse side-effects. Although 
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Figure 6. Self-reported reasons for first using synthetic cannabinoids from 316 

Australian synthetic cannabinoid users (Barratt et al., 2012). 

 

blood and urine screens for synthetic cannabinoids have developed in recent years in 

response to increasing data regarding synthetic cannabinoid pharmacokinetics and 

metabolism (Hutter et al., 2012; Marino et al., 2016), newly discovered synthetic 

cannabinoids can remain undetected in drug screens for a substantial period of time. 

This is discussed further in Section 1.5.3. 

In places where synthetic cannabinoids are not yet banned, or where 

enforcement of legislation is lax or impractical, real or implied legality might be 

interpreted as a tacit guarantee of product safety. Products sold in physical “bricks and 

mortar” stores may be assumed to have met the product safety requirements of that 

jurisdiction. In reality, synthetic cannabinoid products have undergone no 
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toxicological testing. Additionally, in places where cannabis is illegal, so called “legal 

highs” provide an attractive alternate to illicit drug use. In a survey of Australian 

synthetic cannabinoid users, the second most common reason for use (behind 

curiosity) was that “synthetic cannabinoids are/were legal” (Barratt et al., 2012, p. 4). 

The legal status of synthetic cannabinoids is reviewed in Section 1.5.2. 

The ease with which products can be obtained through stores and online 

marketplaces also contributes to the popularity of synthetic cannabinoid products 

(Barratt et al., 2012). Synthetic cannabinoids, along with some other designer and 

non-designer drugs of abuse, can be packaged and shipped discreetly, because most 

can be powdered, stored at room temperature, and do not possess a strong odour. 

Users have reported that synthetic cannabinoids are easier to obtain than cannabis 

(Barratt et al., 2012). 

And finally, as reviewed in Section 1.4.5, addiction and withdrawal symptoms may 

contribute to the development of chronic synthetic cannabinoid use. This does not 

account for first use, but likely accounts for a substantial portion of total synthetic 

cannabinoid sales. Effective treatment of chronic users may therefore be particularly 

important for reducing the size of the synthetic cannabinoid market. 

 

1.5.2 Legislation and the “chemical arms race” 

In response to the psychoactive and potentially toxic effects reviewed in the 

previous sections, many countries have implemented legislation to curb the use of 

synthetic cannabinoids. International drug scheduling legislation (i.e. the UN 

Convention on Psychotropic Substances of 1971) contained no provisions concerning 

structural analogues of scheduled drugs, so the precise method of drug control fell to 
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individual jurisdictions. The scope and implementation of such legislation varies 

widely between and within countries. In many cases (e.g. Japan and the US) early 

legislation banned individual compounds, which triggered a “chemical arms race” that 

rapidly replaced banned compounds via structural alterations (Section 1.3.4). 

Subsequent laws attempted to ban substances based on chemical class (e.g. belonging 

to the aminoalkylindole class), effect (e.g. producing cannabimimetic effects), or 

action (e.g. binding to CB1), in order to capture novel synthetic cannabinoid variants. 

In Europe, a number of countries (Austria, Estonia, France, Germany, 

Lithuania, Luxembourg, Poland, Sweden, and the UK) implemented controls on 

synthetic cannabinoids in 2009, such that all synthetic cannabinoid products were 

banned from head shops and online stores (Seely, Lapoint, et al., 2012). Similar bans 

were expanded to Denmark, Ireland, Italy, Latvia, and Romania by 2011, and to 

Finland, Russia, and Switzerland by 2014 (Thomas et al., 2014). 

In the United States in 2011, the DEA placed JWH-018, JWH-200 ([1-[2-(4-

morpholinyl)ethyl]-1H-indol-3-yl]-1-naphthalenyl-methanone), JWH-073, CP-47,497, 

and cannabicyclohexanol into Schedule I for one year (Fattore & Fratta, 2011). This was 

followed by the Food and Drug Administration Safety and Innovation Act (2012) that 

banned substances via the placement of any CB1 agonist into Schedule I. Canada 

implemented similar controls on all “synthetic preparations of cannabis” (CCENDU, 

2014, p. 3).  

In 2013, Australia implemented a 3 month interim ban on the possession or sale 

of synthetic drug products in response to high-profile cases of toxicity produced by a 

range of synthetic drugs beyond synthetic cannabinoids. Following expiration of the 

ban, most Australian states implemented legislation regulating synthetic products. In 
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particular, New South Wales enacted “analogue laws” that banned substances based 

on chemical class or cannabimimetic activity. Additionally, Queensland, New South 

Wales, and South Australia  placed a blanket ban on possessing or selling any 

psychoactive substance other than alcohol, tobacco, and food (ADF, 2016). New 

Zealand originally allowed synthetic products to be sold if their safety could be 

demonstrated, but subsequently banned the sale and possession of designer drugs 

following concern about their addictive potential (The Guardian, 2014).  

The use of analogue laws such as those present in Australia or the United States 

are intended to counter circumvention via structural alterations, however loopholes 

remain. For example, if a structure falls outside established classes of CB1 agonists, 

binding studies must be performed to demonstrate CB1 efficacy before that structure 

can be legislated against. This takes time, during which a particular synthetic 

cannabinoid can be technically legal, or at least not explicitly illegal. In some cases, 

cannabimimetic activity may also need to be established before prosecutions can take 

place, even if the compounds belong to a known cannabimimetic class. Consequently, 

cases of poisoning caused by synthetic cannabinoid products sold from stores have 

persisted even after legislation has been enacted, and structural alterations are still 

used to circumvent legislation (Brook, 2016). Surveys of synthetic cannabinoid 

products show that over the last decade popular synthetic cannabinoids have emerged 

in waves as a result of legislative bans (Schwartz et al., 2015). In 2010-2012, JWH-018 

and AM-2201 were frequently detected in synthetic cannabinoid products, but their 

popularity declined sharply as they were specifically banned in several countries 

(NFILS, 2014). They were replaced by various indole carboxylates and indole or 

indazole carboxamides (Schwartz et al., 2015). Despite these legal difficulties, it should 
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be noted that legislation has been effective in reducing synthetic cannabinoid use. For 

example, synthetic cannabinoid use in New Zealand fell sharply following bans in 2014 

(GDS, 2016).  

 

1.5.3 Forensic detection and identification of synthetic cannabinoids 

 The frequently changing synthetic cannabinoid landscape has proven 

challenging for forensic chemists. Constantly emerging novel compounds necessitate 

the development of analytical methods that are broad, so as to detect as many 

compounds as possible, and adaptable, so that newly discovered compounds can be 

added to the method. Two common analytical approaches to the problem are 

immunoassay screens and mass spectrometric analysis (Thomas et al., 2014).  

Immunoassay screens involve mixing samples with solutions of antibodies that 

react to a specific drug or a class of drug (Cone et al., 2002). These screens can be 

designed to detect large numbers of structurally-related compounds, including 

synthetic cannabinoids. However, immunoassays require frequent updating and can 

be non-specific. False positives can occur with closely related structures, even though 

they may not have any CB1 affinity or produce any psychoactive effects. Therefore, 

confirmation with other methods and further testing for cannabimimetic activity is 

usually still required for enforcement of legislation (Mule & Casella, 1988). 

Mass spectrometric testing is increasingly used to detect and confirm the 

identity of synthetic cannabinoids. Mass spectra and retention time measurements in 

chromatographic systems can provide more specific information regarding compound 

identity than immunoassay screens. Recent years have seen the publication of generic 

methods designed to detect as many synthetic cannabinoids as possible (Hess et al., 
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2016; Scheidweiler, Jarvis, & Huestis, 2015). Both gas chromatography (GC)- and liquid 

chromatography (LC)-mass spectrometry (MS) have been implemented for the 

detection of synthetic cannabinoids and their metabolites in blood and urine (Hess et 

al., 2016; Paul & Bosy, 2015). However, analytical standards are still required to 

confirm compound identity.  

Advanced mass spectrometric techniques may be useful for screening novel 

synthetic cannabinoids. For example, mass defect filtering has been somewhat 

successful as a screening tool for detecting a wide range of synthetic cannabinoids 

(Grabenauer et al., 2012). A mass defect is the difference between a compound’s 

nominal mass and its exact mass; for example, PB-22 has a nominal mass of 358 Da 

and an exact mass of 358.1754 Da, yielding a mass defect of 0.1754 Da (Wohlfarth et 

al., 2014). This mass defect will tend to be similar to compounds of similar, but not 

necessarily identical, composition. Scanning a sample for compounds of similar mass 

defect to a known compound can potentially detect novel synthetic cannabinoids 

while excluding noise from irrelevant substances. This approach is particularly useful 

for analysing samples with complex biological matrices like blood or urine. 

Additionally, non-targeted mass spectrometric techniques have been 

implemented for detection of novel compounds and for characterisation of 

metabolites. These techniques usually involve using high resolution and mass accurate 

time of flight (TOF) or orbitrap instruments (Thomas et al., 2014). High mass accuracy 

instruments can, in some cases, be used to distinguish between isomers, and the high 

resolution of orbitrap instruments can improve identification of compounds in 

complex biological matrices. Ultimately however, all analytical methods require 
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frequent updates based on new research as novel compounds continue to be 

developed. 

  

1.5.4 Treatments for synthetic cannabinoid toxicity and dependence 

 While the acute effects of synthetic cannabinoid intoxication have been the 

subject of numerous reports, no specific antidotes for acute synthetic cannabinoid 

intoxication have been established. Theoretically, CB1 antagonists/inverse agonists 

could be used to reverse acute symptoms. However, the preeminent CB1 

antagonist/inverse agonist rimonabant is well known for its deleterious psychiatric 

side-effects, including depressed mood disorders and anxiety (Moreira & Crippa, 

2009; Sam, Salem, & Ghatei, 2011). Case studies report treatment of acute synthetic 

cannabinoid symptoms with close monitoring coupled with administration of fluids 

and sedatives as appropriate (Hermanns-Clausen et al., 2012; Lapoint et al., 2011; 

Schneir et al., 2011; Schwartz et al., 2015). 

 In case reports, withdrawal has been managed with benzodiazepines 

(diazepam) and antipsychotics (quetiapine) (Macfarlane & Christie, 2015). This 

approach is similar to treatment of cannabis withdrawal, which has been 

pharmacological treated with antidepressants, mood stabilizers, anticonvulsants, and 

anxiolytics (Allsop et al., 2015). However, these treatments produce minimal benefits 

in clinical populations (Marshall et al., 2014), and cannabis withdrawal symptoms are 

thought to increase the likelihood of relapse to cannabis use (Allsop et al., 2012). 

Similarly, it is conceivable that synthetic cannabinoid withdrawal, which appears to be 

more severe than cannabis withdrawal, may increase the likelihood of relapse to 

synthetic cannabinoid use.  
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  An alternative to the aforementioned treatments is agonist replacement 

therapy. Agonist replacement therapy has been used successfully in the treatment of 

opiate withdrawal, and involves replacing a hazardous agonist (e.g. heroin) with a less 

hazardous one (e.g. methadone).  The dose is gradually tapered downward until the 

user is free of both the drug and withdrawal symptoms. Alternatively, the agonist can 

be the same as the abused drug (e.g. nicotine patches or gum for treatment of nicotine 

addiction), and gradually reduced over time. This approach helps to control 

withdrawal symptoms and thereby reduces the likelihood of relapse caused by a desire 

to reduce withdrawal symptoms. In the case of cannabis dependence, ∆9-THC and 

nabiximols (Sativex®; a buccal spray consisting of equal parts ∆9-THC and CBD) have 

shown promise as an agonist substitution therapy (Allsop et al., 2015; Balter, Cooper, 

& Haney, 2014; Budney et al., 2007; Haney et al., 2013). Appropriate doses of 

nabiximols reduced withdrawal symptoms and rates of patient dropout in a double-

blind, inpatient study of cannabis dependent users (Allsop et al., 2014). 

A similar treatment might be viable for synthetic cannabinoid withdrawal 

symptoms. However, the viability of such an approach depends on being able to 

administer the treatment at appropriate concentrations, and being able to accurately 

monitor patient pharmacokinetics. Specifically, being able to accurately monitor 

concentrations of the replacement agonist (e.g. ∆9-THC) and the previously abused 

drug (a given synthetic cannabinoid) is essential. If daily monitoring is required, then 

urinalysis is also desirable as a less invasive alternative to repeated blood draws. At 

present, the trajectory of ∆9-THC concentrations during multiple days of agonist 

replacement therapy is uncharacterised. It is also unclear if urinalysis can be used as 

an accurate substitute for plasma analysis. These issues need clarification before the 
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widespread implementation of agonist replacement therapy for the treatment of 

cannabis withdrawal, and possibly synthetic cannabinoid withdrawal. 
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1.6 Thesis overview 

This thesis is comprised of investigations that were designed to build 

knowledge and understanding in several keys areas reviewed in this chapter. 

Specifically, the studies presented in this thesis aimed to: 

1. Characterise the in vivo potency and basic physiological effects of several 

synthetic cannabinoids that are in current use as recreational drugs (Chapter 2).  

2. Identify structure-activity relationships for aminoalkylindoles and related 

synthetic cannabinoids using in vivo measures (Chapter 2).  

3. Establish metabolic pathways and identify valid analytical targets among 

novel synthetic cannabinoids and their metabolites (Chapter 3). 

4. Identify and discuss the discrepancy between in vitro and in vivo synthetic 

cannabinoid pharmacokinetic data, where, for example, in vitro data predicts rapid 

clearance while in vivo data describes long durations of action (Chapter 3).  

5. Explore the long-term residual effects (e.g. cognitive effects, toxicological 

effects) arising from repeated synthetic cannabinoid exposure in rats (Chapter 4). 

6. Establish accurate and practical urinalysis techniques to accompany agonist 

replacement therapies (involving ∆9-THC) for cannabis and/or synthetic cannabinoid 

dependence and withdrawal (Chapter 5). 

Accordingly, Chapter 2 features in vivo physiological assessment of twelve 

synthetic cannabinoids of varying structure via biotelemetry. Hypothermic and 

bradycardic effects are characterised in vivo for the first time, and structure-activity 

relationships are established, addressing points 1 and 2.  

Chapter 3 examines the metabolism of two synthetic cannabinoids in vitro 

using rat and human liver microsomes and hepatocytes, in addition to in vivo 
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assessment in rats. Analytical methods for detecting these synthetic cannabinoids and 

their metabolites using LC-MS/MS are described. Relationships between compound 

structure and metabolism are identified, and in vitro and in vivo pharmacokinetic 

models are compared, addressing points 3 and 4. 

Chapter 4 details the acute and chronic effects of two synthetic cannabinoids in 

adolescent rats, addressing point 5. Acute increases in anxiety-like behaviour coupled 

with decreases in locomotor activity are observed. Long term impairment of object 

recognition memory, and down-regulation of cytokines are described. The effects 

produced by these synthetic cannabinoids are compared directly to ∆9-THC. 

Chapter 5 explores urinary monitoring of cannabinoids in humans, following 

inpatient treatment of cannabinoid withdrawal with nabiximols. Although this work 

did not focus on a synthetic cannabinoid using population, it establishes the viability 

of urinary monitoring of cannabinoids in clinical settings, addressing point 6. A 

similar approach, monitoring both phytocannabinoids and synthetic cannabinoids 

(using the metabolic data established in Chapter 4 and by other research groups) may 

be useful in treating synthetic cannabinoid dependence and withdrawal in the future. 

Finally, Chapter 6 contains a general discussion of the preceding work. The 

work presented in Chapters 2 – 5 is combined to illustrate the value of SARs and 

common metabolic pathways for predicting the crucial properties of novel synthetic 

cannabinoids, the potential impacts of chronic synthetic cannabinoid use, and the 

potential for agonist substitution therapy for treating synthetic cannabinoid 

dependence and withdrawal. 
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ABSTRACT: Synthetic cannabinoid (SC) designer drugs
featuring bioisosteric fluorine substitution are identified by
forensic chemists and toxicologists with increasing frequency.
Although terminal fluorination of N-pentyl indole SCs is
sometimes known to improve cannabinoid type 1 (CB1)
receptor binding affinity, little is known of the effects of
fluorination on functional activity of SCs. This study explores
the in vitro functional activities of SC designer drugs JWH-018,
UR-144, PB-22, and APICA, and their respective terminally
fluorinated analogues AM-2201, XLR-11, 5F-PB-22, and STS-
135 at human CB1 and CB2 receptors using a FLIPR
membrane potential assay. All compounds demonstrated
agonist activity at CB1 (EC50 = 2.8−1959 nM) and CB2
(EC50 = 6.5−206 nM) receptors, with the fluorinated analogues generally showing increased CB1 receptor potency (∼2−5
times). Additionally, the cannabimimetic activities and relative potencies of JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-
PB-22, APICA, and STS-135 in vivo were evaluated in rats using biotelemetry. All SCs dose-dependently induced hypothermia
and reduced heart rate at doses of 0.3−10 mg/kg. There was no consistent trend for increased potency of fluorinated SCs over
the corresponding des-fluoro SCs in vivo. Based on magnitude and duration of hypothermia, the SCs were ranked for potency
(PB-22 > 5F-PB-22 = JWH-018 > AM-2201 > APICA = STS-135 = XLR-11 > UR-144).

KEYWORDS: Cannabinoid, THC, JWH-018, AM-2201, XLR-11, PB-22

Synthetic cannabinoids (SCs) are the most rapidly growing
class of recreational “designer drugs”. The European

Monitoring Centre for Drugs and Drug Addiction (EMCDDA)
reports that, as of March 2015, 134 new SCs have been
identified in the European Union (EU) since 2008, with 30
novel SCs formally notified in 2014 alone.1 In the United States
(US) in 2010, the Drug Enforcement Administration’s National
Forensic Laboratory Information System (NFLIS) reported 19
distinct SCs across 3286 samples, but by 2012, there were 61
SC variants identified in 41 458 cases.2 In the EU in 2013, there

were over 21 000 seizures of SCs, a more than 200-fold increase
since 2008.1 Many SCs have no precedent in the scientific
literature yet bear hallmarks of rational design.
Like Δ9-tetrahydrocannabinol (Δ9-THC, 1; Figure 1), the

principal bioactive component of cannabis, SCs typically exert
agonist activity at both cannabinoid receptor subtypes, namely,
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CB1 and CB2 receptors, with psychoactivity attributed to
activation of the former.3 Generally, SCs are found as
adulterants in smoking mixtures of otherwise nonpsychoactive
herbal blends and are intended to substitute for the intoxicating
effects of Δ9-THC. Although these products are disingenuously
marketed as incense and labeled “not for human consumption”,
consumers are aware of the psychoactivity of such products and
use them as technically legal cannabis substitutes. One of the
earliest SC products, branded “Spice”, was analyzed in 2008
and found to contain the C8-homologue of CP 47,497 (CP
47,497-C8, 2) and an (aminoalkyl)indole analogue of WIN
55,212-2 (3)4 known as JWH-018 (4), thereby accounting for
the anecdotal cannabimimetic effects of this product.5 After the
active ingredients of Spice were identified, many governments
prohibited CP 47,497-C8 and JWH-018, forcing manufacturers
of Spice to circumvent restriction by substituting the active
constituents with other unregulated SCs. The iterative cycle of
SC identification, prohibition, and substitution has produced
hundreds of differently branded products, with names like
“Kronic”, and “K2”, containing one or more SCs.
A popular design trend in the SC market currently is the

incorporation of a terminal fluorine atom in variously
substituted N-pentylindoles.6 The terminally fluorinated
analogue of JWH-018, AM-2201 (5), was one of several

nanomolar affinity SCs (CB1 Ki = 1.0 nM; CB2 Ki = 2.6 nM)
reported by Makriyannis and colleagues in 2001,7 and was
identified in consumer products by forensic researchers in
several countries in 2011.8,9 Anecdotal reports that AM-2201
possesses psychoactivity at submilligram doses in humans likely
instigated the trend of bioisosteric fluorine substitution in other
structurally related SC designer drugs. For example, South
Korea’s National Forensic Service reported no fluorinated SCs
in 2010, but 90% of all seized SCs were fluorinated by 2013.10

Several dozen terminally fluorinated SCs have been reported by
forensic laboratories worldwide, and the rate of emergence
appears to be increasing.6

The SC sold as UR-144 (7, CB1 Ki = 150 nM; CB2 Ki = 1.8
nM) was first reported by Abbott Laboratories in 2010 during
their exploration of CB2-selective ligands11,12 and has since
been identified in numerous forensic samples.9,13−15 The 5-
fluoro analogue of UR-144, sold as XLR-11 (8), has also been
identified in consumer products, despite no prior reports of its
structure in the scientific literature.16−19 In Korea, XLR-11 first
appeared in 2012 and was the most frequently encountered SC
by 2013.10 XLR-11 use is associated with adverse health effects,
including acute kidney injury (AKI)20,21 and cerebral
ischemia.22 Wiley and colleagues recently showed that XLR-
11 (CB1 Ki = 24 nM; CB2 Ki = 2.1 nM) has binding affinities

Figure 1. Selected natural and synthetic cannabinoids.
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and functional activities at cannabinoid receptors that are
comparable to UR-144 (CB1 Ki = 29 nM; CB2 Ki = 4.5 nM)
and that both compounds show a preference for CB2

receptors.23 UR-144 and XLR-11 also showed similar
cannabimimetic potencies, greater than Δ9-THC, in mice.23

The indole-3-carboxylate derivative PB-22 (QUPIC, 10) and
its 5-fluoropentyl analogue, 5F-PB-22 (11), were similarly
unprecedented when discovered by forensic scientists in
2013.24−26 Like AM-2201,27 PB-22 and 5F-PB-22 were
implicated in clinical reports of seizure,28,29 and the latter was
detected in several fatal intoxications in the USA.30 The
metabolism of PB-22 and 5F-PB-22 has been investigated, but
little else is known about the effects of these SCs.31−33 The
adamantane-derived indole-3-carboxamide APICA (2NE1,
SDB-001, 12) was also unprecedented when discovered in
SC products,34 and 5-fluoro-APICA (sold as STS-135, 13) was
identified shortly thereafter.26 The phase I metabolism of
APICA and STS-135 was recently published,35 and the
pharmacology of APICA was explored (CB1 IC50 = 175 nM;
CB2 IC50 = 176 nM),17,36 but like PB-22 and 5F-PB-22, there
are no scientific reports regarding the activity of STS-135.
The increasing popularity of N-(5-fluoropentyl)indole SCs is

concerning because of the limited information regarding their

pharmacology and toxicity, as well as those of their metabolites.
Oxidation of JWH-018 produces several bioactive hydroxylated
metabolites, some of which exhibit cannabinoid activity as
potent as the parent compound, raising concerns about their
toxicity and ultimate fate in the human body.37−40 Many
terminally fluorinated N-pentylindole SCs undergo thermolytic
defluorination due to the route of administration (smoking), as
well as metabolic oxidative defluorination in vivo.33,41−44 For
example, the 5-hydroxylated metabolite 6 is common to both
JWH-018 and AM-2201.9,38,43,45 Similarly, UR-144 and XLR-11
share a common 5-hydroxylated metabolite (9).9,42 There is
also justifiable concern regarding the fate of N-dealkylated
metabolites of fluorinated SCs, given their potential for
metabolism to toxic fluorinated metabolites like fluoroacetic
acid.

■ RESULTS AND DISCUSSION

The aim of the present study was to address the paucity of data
in the scientific literature regarding the pharmacology of
fluorinated SCs. To this end, JWH-018, UR-144, PB-22, and
APICA were compared to the corresponding 5-fluoropentyl
analogues AM-2201, XLR-11, 5F-PB-22, and STS-135,
respectively. The cannabinoid activity of 5-OH-UR-144, a

Scheme 1. Synthesis of Synthetic Cannabinoids 7−23a

aReagents and conditions: (a) 25, Me2AlCl, CH2Cl2, 0 °C to rt, 3 h, 82%; (b) NaH, Br(CH2)4X, DMF, 0 °C to rt, 1 h, 67−91%; (c) aq. NaOH,
MeOH,-THF, rt, 16 h, 94%; (d) NaH (2.0 equiv), Br(CH2)4X, DMF, 0 °C to rt, then (CF3CO)2O, 0 °Cto rt, 1 h; (e) KOH, MeOH, PhMe, reflux, 2
h, 79−88% (over 2 steps); (f) (COCl)2, DMF (cat.), CH2Cl2, rt, 1 h, quant.; (g) 32, Et3N, CH2Cl2, rt, 24 h, 78−86%; (h) R(CH2)nNH2, Et3N,
CH2Cl2, rt, 14 h, 73−90%.
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common metabolite of UR-144 and XLR-11, was also assessed.
To more fully examine the effects of terminal fluorination on
the cannabinoid activity of SCs, the 5-fluoropentyl congeners of
previously described APICA analogues SDB-002 (14), -003
(16), -004 (18), -005 (20), and -006 (22) were also

synthesized and subjected to pharmacological evaluation.
Although there are no literature reports of the identification
of 5F-SDB-002 (15), -003 (17), -004 (19), or -005 (21), both
SDB-006 and 5F-SDB-006 (23) were recently identified in
Finland.46

Figure 2. ORTEP diagram of the crystal structure of UR-144 (7) with thermal ellipsoids at the 50% probability level.

Table 1. Functional Activity of Δ9-THC and Indole SCs 4, 5, and 7−23 at CB1 and CB2 Receptors

hCB1 hCB2

compound pEC50 ± SEM (EC50, nM) max ± SEM (% WIN 55,212-2) pEC50 ± SEM (EC50, nM) max ± SEM (% WIN 55,212-2)
CB1

selectivitya

1 (Δ9-THC) 6.60 ± 0.11 (250) 51 ± 3 5.94 ± 0.57 (1157) 13 (at 10 μM) 4.6
3 (WIN 55,212-2) 6.55 ± 0.06 (284) 7.21 ± 0.09 (62) 0.2
4 (JWH-018) 6.99 ± 0.09 (102) 107 ± 6 6.88 ± 0.06 (133) 95 ± 5 1.3
5 (AM-2201) 7.43 ± 0.09 (38) 111 ± 6 7.23 ± 0.10 (58) 102 ± 7 1.5
7 (UR-144) 6.38 ± 0.06 (421) 94 ± 4 7.15 ± 0.05 (72) 104 ± 3 0.2
8 (XLR-11) 7.01 ± 0.07 (98) 110 ± 4 7.08 ± 0.15 (83) 117 ± 10 0.8
9 (5-OH-UR-144) 5.71 ± 0.12 (1959) 159 ± 11 8.18 ± 0.11 (6.5) 102 ± 5 0.003
10 (PB-22) 8.30 ± 0.06 (5.1) 114 ± 3 7.43 ± 0.08 (37) 101 ± 5 7.3
11 (5F-PB-22) 8.55 ± 0.10 (2.8) 108 ± 5 7.97 ± 0.07 (11) 101 ± 3 3.9
12 (APICA) 6.89 ± 0.11 (128) 100 ± 6 7.54 ± 0.11 (29) 91 ± 5 0.2
13 (STS-135) 7.29 ± 0.12 (51) 123 ± 8 7.88 ± 0.26 (13) 114 ± 13 0.3
14 (SDB-002) 6.58 ± 0.08 (264) 53 ± 3 7.24 ± 0.26 (57) 23 ± 4 0.2
15 (5F-SDB-002) 6.56 ± 0.16 (273) 87 ± 8 6.69 ± 0.12 (206) 39 ± 3 0.8
16 (SDB-003) 6.78 ± 0.06 (166) 82 ± 3 6.99 ± 0.08 (102) 95 ± 5 0.6
17 (5F-SDB-003) 7.13 ± 0.12 (75) 104 ± 7 7.53 ± 0.06 (29) 84 ± 3 0.4
18 (SDB-004) 6.68 ± 0.05 (207) 104 ± 3 6.67 ± 0.09 (216) 71 ± 5 1.0
19 (5F-SDB-004) 7.39 ± 0.06 (41) 107 ± 4 7.20 ± 0.12 (63) 62 ± 4 1.5
20 (SDB-005) 6.94 ± 0.07 (116) 99 ± 4 6.86 ± 0.12 (140) 74 ± 6 1.2
21 (5F-SDB-005) 6.83 ± 0.13 (148) 92 ± 7 6.87 ± 0.09 (136) 69 ± 4 0.9
22, SDB-006) 6.94 ± 0.09 (115) 96 ± 5 6.88 ± 0.22 (134) 68 ± 9 1.2
23, 5F-SDB-006 7.30 ± 0.09 (50) 87 ± 4 6.91 ± 0.11 (123) 61 ± 4 2.5
aCB1 selectivity expressed as CB2 EC50 divided by CB1 EC50.
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JWH-018 and AM-2201 were purchased from the National
Measurement Institute (NMI), Australia. The synthesis of 7 to
23 is shown in Scheme 1. The synthesis of 7−9 started from
indole (24), which was acylated with 2,2,3,3-tetramethylcyclo-
propyl-1-carbonyl chloride (25, freshly prepared from the
corresponding carboxylic acid) under Okauchi conditions47 to
give 26 in 82% yield. Alkylation of 26 with 1-bromopentane or
1-bromo-5-fluoropentane gave 7 or 8, respectively. Attempts to
reverse the order of operations by performing the alkylation
and then acylation were successful for the preparation of 7 but
not 8, due to incompatibility of the fluoroalkyl group with
Lewis acids. Alkylation of 26 with the 5-bromopentyl acetate
under the same conditions gave 27, and saponification of the
ester cleanly furnished 9.
The synthesis of PB-22 and 5F-PB-22 started from indole,

which was alkylated with either 1-bromopentane or 5-fluoro-1-
bromopentane in the presence of excess sodium hydride and
treated with trifluoroacetic anhydride to generate the
intermediate N-alkylated 3-(trifluoroacetyl)indole in one pot,
the hydrolysis of which provided either carboxylic acid 28 or
29, respectively. Treating 28 or 29 with oxalyl chloride gave
acid chlorides 30 and 31, respectively, each of which was
treated with 8-hydroxyquinoline (32) to yield esters 10 and 11.
Alternative, treating 30 and 31 with the appropriate amines
gave the desired carboxamides 12−23 in yields of 73−90%.
Several of these novel SCs formed large prismatic crystals

during recrystallization, especially the 2,2,3,3-tetramethylcyclo-
propanone derivatives 7 and 8. A single crystal of 7 was
obtained by slow evaporation of an isopropanol−water mixture,
and an X-ray crystal structure was obtained. An ORTEP
diagram of the crystal structure of 7 is shown in Figure 2. All
bond lengths and angles were as expected, with the pentyl chain
in a fully extended conformation. Full details of X-ray data
collection and tables of bond lengths and angles are available in
the Supporting Information.

All synthesized SCs were screened against CB1 and CB2

receptors in a fluorometric imaging plate reader (FLIPR)
membrane potential assay to provide basic structure−activity
relationships for agonist activity at each CB receptor subtype
(see Table S8 of the Supporting Information for comparisons
to available binding affinity data). Additionally, selected fluoro/
des-fluoro-SC pairs were evaluated in vivo to allow direct
comparison of the relative potency of JWH-018, AM-2201, UR-
144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135.
The cannabimimetic activity of indoles 4, 5, and 7−23 at

CB1 and CB2 receptors was compared with the activity of
established agonist Δ9-THC, and the results are shown in Table
1. Mouse AtT20 neuroblastoma cells were stably transfected
with human CB1 or CB2 receptors, and activities of Δ9-THC
and 7−23 were evaluated using a FLIPR membrane potential
assay whereby endogenously expressed G protein-gated
inwardly rectifying K+ channels (GIRKs) are activated by
agonists at the coexpressed CB1 or CB2 receptors.48,49 The
maximum effects of 4, 5, and 7−23 were compared with the
high efficacy CB1/CB2 receptor full agonist WIN 55,212-2,
which produced a maximal decrease in fluorescence, corre-
sponding to cellular hyperpolarization, of 29% ± 2% in AtT20-
CB1 cells and 31% ± 3% in AtT20-CB2 cells. None of the
compounds produced a significant change in the membrane
potential of wild-type AtT-20 cells, which do not express CB1
or CB2 receptors.
All SCs activated CB1 and CB2 receptors and, with few

exceptions, did so with greater potency than Δ9-THC (250
nM) for CB1 receptor-mediated activation of GIRK (Table 1).
The psychoactivity of cannabinoid ligands is largely attributed
to activation of the CB1 receptor,3 focusing our attention to
structure−activity relationships (SAR) for this series of SCs
around the CB1 receptor-mediated activation of GIRK. Δ9-
THC is a low efficacy CB2 agonist, and in the assay of GIRK
activation in AtT20-CB2, its effects at 10 μM were only 13% of

Figure 3. Hyperpolarization of CB1 receptors induced by (A) JWH-018 (4) and AM-2201 (5), (B) UR-144 (7) and XLR-11 (8), (C) PB-22 (10)
and 5F-PB-22 (11), and (D) APICA (12) and STS-135 (13) as a proportion of that produced by 1 μM WIN 55,212-2. Membrane potential was
measured using a fluorescent dye, as outlined in the Methods. Each point represents the mean ± SEM of at least five independent determinations,
each performed in duplicate. Data was fitted with a four parameter logistic equation in Graphpad Prism.
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CB1/CB2 agonist WIN 55,212-2. WIN 55,212-2 showed an
approximately 4-fold preference for stimulating a cellular
hyperpolarization in AtT-20-CB2 compared with AtT-20-CB1
cells.
The most potent compounds in the series were PB-22 (CB1

EC50 = 5.1 nM; CB2 EC50 = 37 nM) and 5F-PB-22 (CB1 EC50

= 2.8 nM; CB2 EC50 = 11 nM), both possessing nanomolar
potency at CB1 receptors. PB-22 and 5F-PB-22 were an order
of magnitude more potent at CB1 receptors than the next most

potent SCs AM-2201 (CB1 EC50 = 38 nM), STS-135 (CB1

EC50 = 51 nM), 5F-SDB-004 (CB1 EC50 = 41 nM), and 5F-
SDB-006 (CB1 EC50 = 50 nM). Most SCs in the series
demonstrated little selectivity for either CB receptor subtype,
with the exception of 5-OH-UR-144, a UR-144 metabolite,
which was a potent and selective CB2 receptor agonist (EC50 =
6.5 nM, 300-fold selectivity).
Excluding two des-fluoro/fluoro analogue pairs (14/15 and

20/21), for which there was little change, terminal fluorination

Figure 4. Effects of (A) JWH-018, (B) AM-2201, (C) UR-144, (D) XLR-11, (E) PB-22, (F) 5F-PB-22, (G) APICA, and (H) STS-135 on rat body
temperature. Dashed line denotes time of intraperitoneal injection. Each point represents the mean ± SEM for three animals.
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produced a roughly 2−5-fold increase in CB1 receptor potency.
This was most pronounced moving from UR-144 (EC50 = 421
nM) to XLR-11 (EC50 = 98 nM) and from 18 (EC50 = 207
nM) to 19 (EC50 = 41 nM). Interestingly, 14 possessed the
lowest efficacy at CB1 and CB2 receptors in the series, and while
fluorination to give 15 did not improve potency, it did increase
efficacy at CB1 and CB2 receptors. The relative potency change
for des-fluoro/fluoro pairs JWH-018/AM-2201, UR-144/XLR-
11, PB-22/5F-PB-22, and APICA/STS-135 is depicted in
Figure 3.

Our results with UR-144, XLR-11, and common metabolite
5-OH-UR-144 are broadly consistent with previous studies. In
an assay of GTPγS binding in HEK 293 cell membranes, Wiley
and colleagues found that UR-144 showed a preference for
CB1, in contrast to our findings of a CB2 preference for UR-
144.23 Wiley and colleagues found that XLR-11 had a similar
potency at CB1 and CB2 receptors, consistent with XLR-11 in
our assay.23 A definitive explanation for these differences is not
possible, but it should be noted that HEK 293 cells are thought
to express a significantly different complement of G proteins

Figure 5. Effects of (A) JWH-018, (B) AM-2201, (C) UR-144, (D) XLR-11, (E) PB-22, (F) 5F-PB-22, (G) APICA, and (H) STS-135 on rat heart
rate. Dashed line denotes time of intraperitoneal injection. Each point represents the mean ± SEM for three animals.
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from AtT-20 cells,50 and any signaling differences between
ligands might be magnified by the cumulative nature of the
GTPγS binding assay when compared with the acute, peak
effect measurements made for GIRK activation. Consistent
with our data from the GIRK assay, UR-144/XLR-11 common
metabolite 5-OH-UR-144 was previously reported to be highly
CB2 preferring in binding assays, significantly more so than UR-
144 and XLR-11.12,23

Although the potency of any drug effect depends on the
number of receptors expressed in the system under study, and
we have not directly measured the number of receptors in our
AtT-20-CB1 and -CB2 cells at the time of these assays, WIN
55,212-2 is recognized as having a higher affinity for CB2
receptors than CB1 receptors in binding assays,11,12 so it is
likely that CB2 preference of the SCs is genuine and not an
artifact of our expression systems.
Various Internet drug forums contain anecdotal reports by

SC consumers regarding the potency and psychoactivity of
these compounds. For more well-studied SCs, like JWH-018,
cross-substitution with Δ9-THC has been demonstrated.51−53

However, for the majority of SCs, there are little to no
pharmacological data or formal in vivo evaluations available.
The ability to induce hypothermia and bradycardia in rats is
common to phytocannabinoid Δ9-THC and newer, non-
classical synthetic cannabinoids such as JWH-018.23,36,54,55

The cannabimimetic activities of des-fluoro/fluoro SC pairs
JWH-018/AM-2201, UR-144/XLR-11, PB-22/5F-PB-22, and
APICA/STS-135 were therefore evaluated using biotelemetry
in male Wistar rats, and the effects of various doses of JWH-
018/AM-2201, UR-144/XLR-11, PB-22/5F-PB-22, and
APICA/STS-135 on body temperature (Figure 4) and heart
rate (Figure 5) are presented.
Body temperature 1 h prior to intraperitoneal (ip) injection

and 6 h postinjection of JWH-018, AM-2201, UR-144, XLR-11,
PB-22, 5F-PB-22, APICA, and STS-135 are presented in 15
min bins in Figure 4. The dashed line on the figures represents
the time of SC injection. Doses were escalated from 0
(baseline) to 3 mg/kg for all compounds. If a large magnitude
effect on body temperature was not evident at a 3 mg/kg dose
(defined as an approximate mean maximal drop in body
temperature of 1.5 °C) then a further 10 mg/kg dose was
tested. Each SC was investigated in an ascending dose sequence
using a single cohort of three or four rats, with a new cohort of
rats used for each SC.
Results showed a dose-dependent hypothermia for all SCs,

with statistically significant treatment or treatment by time
effects at the specified doses (ANOVA, planned contrasts, SC
dose versus vehicle, P < 0.05). A large hypothermic effect
(mean >1.5 °C) was evoked by 3 mg/kg of JWH-018, AM-
2201, PB-22, and 5F-PB-22. However, doses of 10 mg/kg of
APICA, STS-135, UR-144, and XLR-11 were required to
induce more modest hypothermia, indicating lower in vivo
potency of these compounds. Terminal fluorination had no
obvious effect on in vivo potency in any of the pairs of SCs
examined. This can be clearly seen in Figure S5, Supporting
Information, which displays the mean maximal decrease in
body temperature induced by different doses of each
compound, and Figure S6, Supporting Information, which
shows the area under the curve (AUC) for body temperature
for each dose of each compound relative to baseline. Formal
statistical comparison of each pair of fluorinated versus
nonfluorinated compounds showed no significant statistical
difference between any of these pairs.

On the basis of the mean maximal hypothermia and AUC
obtained with a 3 mg/kg dose of each compound (Figures S5
and S6, Supporting Information), it is possible to rank SCs in
decreasing order of potency: PB-22 > 5F-PB-22 = JWH-018 >
AM-2201 > APICA = STS-135 = XLR-11 > UR-144.
Results for heart rate are presented in 30 min bins in Figure 5

with the dashed line on the figures again representing the time
of ip injection of each SC. Results were generally consistent
with body temperature data, although data were generally more
variable than with body temperature data, reflecting the
multiple determinants of heart rate including locomotor
activity, stress, and direct cardiovascular pharmacological
effects. All doses shown produced a significant decrease in
heart rate, with statistically significant treatment or treatment
by time effects at these doses (ANOVA, planned contrasts, SC
dose versus vehicle, P < 0.05).
There is variability in the duration of effects for each SC, as

determined by hypothermic and bradycardic responses. A point
of interest is the potential two-stage hypothermic and
bradycardic response demonstrated by JWH-018 and AM-
2201. Given their several common metabolites, it is possible
that the second hypothermic and bradycardic reponse
oberserved for JWH-018 and AM-2201 around 4−5 h
postinjection may be due to the combination of active parent
compounds and active metabolites.

■ CONCLUSION

This study is the first to pharmacologically characterize the
effect of terminal fluorination across structurally diverse classes
of 3-subsituted N-pentylindole SC designer drugs, exemplified
by JWH-018/AM-2201, UR-144/XLR-11, PB-22/5F-PB-22,
and APICA/STS-135. A synthetic route to UR-144, XLR-11,
and their common metabolite 5-OH-UR-144 was established.
The synthesis of PB-22, 5F-PB-22, APICA, STS-135, and
several analogues of the latter was achieved. These routes may
prove useful to forensic chemists and pharmacologists
interested in the cannabinoid activity of novel N-alkyl-3-
acylindoles, N-alkylindole-3-carboxylates, and N-alkylindole-3-
carboxamides. All synthesized SCs acted as agonists of CB1 and
CB2 receptors in a FLIPR membrane potential assay and thus
are cannabinoids.
Preliminary structure−activity relationships suggest that

terminal fluorination of the N-pentyl substituent of these SCs
generally enhances potency of CB1 receptor activation,
consistent with previously demonstrated improvements to
binding affinity conferred by such a change, as well as anecdotal
reports of the potent psychoactive effects of fluorinated SCs.
However, in rats, although JWH-018/AM-2201, UR-144/XLR-
11, PB-22/5F-PB-22, and APICA/STS-135 were able to dose-
dependently decrease body temperature and heart rate at doses
of 0.3−10 mg/kg, depending on the SC, there was no obvious
effect of fluorination on in vivo potency. The reasons for the
discrepancy between in vitro and in vivo results is not entirely
clear but may reflect pharmacokinetic factors, species-related
differences in ligand affinity and efficacy, or an inability of body
temperature and heart rate measures to detect subtle
differences in overall potency. Nonetheless, the in vivo results
confirm that all of the SCs explored have cannabimimetic
effects that parallel those of Δ9-THC, albeit with a wide range
of differing potencies across compounds.
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■ METHODS
General Chemical Synthesis Details. All reactions were

performed under an atmosphere of nitrogen or argon unless otherwise
specified. Toluene was dried over sodium wire and distilled from
sodium benzophenone ketyl. Dichloromethane and methanol were
distilled from calcium hydride. Anhydrous DMF (Sigma-Aldrich) was
used as purchased. Commercially available chemicals (Sigma-Aldrich)
were used as purchased. Analytical thin layer chromatography (TLC)
was performed using Merck aluminum-backed silica gel 60 F254 (0.2
mm) plates, which were visualized using shortwave (254 nm)
ultraviolet fluorescence. Flash chromatography was performed using
Merck Kieselgel 60 (230−400 mesh) silica gel. Melting points were
measured in open capillaries using a Stuart SMP10 melting point
apparatus and are uncorrected. Nuclear magnetic resonance spectra
were recorded at 300 K using either a Bruker AVANCE DRX400
(400.1 MHz) or AVANCE III 500 Ascend (500.1 MHz) spectrometer.
The data are reported as chemical shift (δ ppm) relative to the residual
protonated solvent resonance, relative integral, multiplicity (s = singlet,
br s = broad singlet, d = doublet, t = triplet, q = quartet, sep = septet,
m = multiplet), coupling constants (J, Hz), and assignment.
Assignment of signals was assisted by COSY, DEPT, HSQC, and
HMBC experiments where necessary. Low resolution mass spectra
(LRMS) were recorded using electrospray ionization (ESI) on a
Finnigan LCQ ion trap spectrometer. Elemental analysis was obtained
from the Chemical Analysis Facility in the Department of Chemistry
and Biomolecular Sciences, Macquarie University, Australia.
General Procedure A: N-Alkylation of 1H-Indole-3-yl(2,2,3,3-

tetramethylcyclopropyl)methanone. A cooled (0 °C) solution of 26
(241 mg, 1.0 mmol) in DMF (2 mL) was treated portionwise with
sodium hydride (60% dispersion in mineral oil, 80 mg, 2.0 mmol, 2.0
equiv), stirred for 10 min, allowed to warm to ambient temperature,
and stirred for 1 h. The mixture was cooled to 0 °C and treated with
the appropriate bromoalkane (1.05 mmol, 1.05 equiv) in a single
portion, allowed to warm to ambient temperature, and stirred for 1 h.
The mixture was poured portionwise onto cooled (0 °C) half-
saturated aq. NH4Cl (40 mL) and extracted with EtOAc (3 × 10 mL).
The combined organic layers were washed with H2O (20 mL) and
brine (20 mL) and dried (MgSO4), and the solvent was evaporated
under reduced pressure to give crude products. The crude products
were purified using flash chromatography or recrystallization.
(1-Pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)-

methanone (7). Treating 26 (241 mg, 1.0 mmol) with 1-
bromopentane (130 μL, 1.05 mmol) according to general procedure
A gave, following recrystallization from isopropanol, 7 (283 mg, 91%)
as prismatic colorless crystals. Rf 0.41 (hexane−EtOAc, 65:35); mp (i-
PrOH−H2O) 72−74 °C. 1H NMR (500 MHz, CDCl3): δ 8.42−8.40
(1H, m, ArH), 7.66 (1H, s, ArH), 7.35−7.33 (1H, m, ArH), 7.29−7.24
(2H, m, ArH), 4.14 (2H, t, J = 7.5 Hz, NCH2), 1.95 (1H, s, CH), 1.89
(2H, quin., J = 7.5 Hz, CH2), 1.40−1.33 (10H, m, 2 × CH2, 2 × CH3),
1.31 (6H, s, 2 × CH3), 0.91 (3H, t, J = 7.0 Hz, CH3).

13C NMR (125
MHz, CDCl3): δ 194.7 (CO), 136.8 (quat.), 133.6 (CH), 126.5
(quat.), 123.0 (CH), 122.8 (CH), 122.2 (CH), 119.8 (quat.), 109.8
(CH), 47.1 (NCH2), 41.8 (CH), 31.6 (Cquat.), 29.8 (CH2), 29.2
(CH2), 24.2 (CH3), 22.4 (CH2), 17.2 (CH3), 14.0 (CH3). LRMS
(+ESI) m/z 644.80 ([2M + Na]+, 80%), 622.40 ([2M]+, 55%), 312.07
([M + H]+, 100%). Anal. (C21H29NO) Calcd: C 80.98, H 9.38, N 4.50.
Found: C 80.99, H 9.54, N 4.49.
( 1 - ( 5 - F l u o r o p e n t y l ) - 1 H - i n d o l - 3 - y l ) ( 2 , 2 , 3 , 3 -

tetramethylcyclopropyl)methanone (8). Treating 26 (241 mg, 1.0
mmol) with 1-bromo-5-fluoropentane (177 mg, 1.05 mmol) according
to general procedure A, followed by purification using flash
chromatography (hexane−EtOAc, 90:10), gave 8 (287 mg, 87%) as
a white crystalline solid. Rf 0.47 (hexane−EtOAc, 80:20); mp (i-
PrOH−H2O) 76−77 °C. 1H NMR (500 MHz, CDCl3): δ 8.41−8.39
(1H, m, ArH), 7.65 (1H, s, ArH), 7.33−7.32 (1H, m, ArH), 7.29−7.24
(2H, m, ArH), 4.43 (2H, dt, 2JH−F = 47.0 Hz, 3JH−H = 6.0 Hz, CH2F),
4.17 (2H, t, J = 7.3 Hz, NCH2), 1.97−1.91 (3H, m, NCH2CH2, CH),
1.77−1.69 (2H, m, CH2CH2F), 1.52−1.47 (2H, m, NCH2CH2CH2),
1.35 (6H, s, CH3), 1.30 (6H, s, CH3).

13C NMR (125 MHz, CDCl3):
δ 194.8 (CO), 136.7 (quat.), 133.5 (CH), 126.5 (quat.), 123.1 (CH),

122.9 (CH), 122.3 (CH), 119.9 (quat.), 109.7 (CH), 83.8 (d, 1JC−F =
165.0 Hz, CH2F), 47.0 (NCH2), 41.8 (CH), 31.8 (Cquat.), 30.1 (d,
2JC−F = 19.7 Hz, CH2), 29.8 (CH2) 24.2 (CH3), 23.0 (d, 3JC−F = 4.8
Hz, CH2), 17.2 (CH3). LRMS (+ESI) m/z 680.73 ([2M + Na]+,
100%), 658.53 ([2M]+, 42%), 330.20 ([M + H]+, 98%). Anal.
(C21H28NOF) Calcd: C 76.56, H 8.57, N 4.25. Found: C 76.65, H
8.58, N 4.31.

( 1 - ( 5 - H y d r o x y p e n t y l ) - 1 H - i n d o l - 3 - y l ) ( 2 , 2 , 3 , 3 -
tetramethylcyclopropyl)methanone (9). A solution of 27 (185 mg,
0.5 mmol) in THF (2.5 mL) was treated dropwise with a solution of
NaOH (40 mg, 1.0 mmol, 2.0 equiv) in MeOH−H2O (80:20, 2.5
mL), and the mixture was stirred for 16 h. The solvent was evaporated
under reduced pressure, and the residue was partitioned between half-
saturated aq. NaHCO3 (10 mL) and CH2Cl2 (10 mL). The layers
were separated, and the aqueous layer was washed with CH2Cl2 (2 × 5
mL). The combined organic phases were washed with brine (10 mL)
and dried (MgSO4), and the solvent was evaporated. The crude
product was purified using flash chromatography (hexane−EtOAc,
50:50, Rf 0.22) from 8 (154 mg, 94%) to give 9 as a white crystalline
solid. Mp 80−81 °C. 1H NMR (500 MHz, CDCl3): δ 8.41−8.39 (1H,
m, ArH), 7.66 (1H, s, ArH), 7.34−7.33 (1H, m, ArH), 7.28−7.24 (2H,
m, ArH), 4.16 (2H, t, J = 7.5 Hz, NCH2), 3.64 (2H, t, J = 6.5 Hz,
CH2OH), 1.95 (1H, s, CH), 1.92 (2H, quin., J = 7.5 Hz, CH2), 1.64−
1.58 (2H, m, CH2), 1.55 (1H, br s, OH), 1.47−1.43 (2H, m, CH2),
1.35 (6H, s, 2 × CH3), 1.31 (6H, s, 2 × CH3).

13C NMR (125 MHz,
CDCl3): δ 194.8 (CO), 136.7 (quat.), 133.6 (CH), 126.5 (quat.),
123.1 (CH), 122.8 (CH), 122.2 (CH), 119.8 (quat.), 109.7 (CH),
62.6 (CH2OH), 47.1 (NCH2), 41.8 (CH), 32.3 (CH2), 31.8 (Cquat.),
29.9 (CH2), 24.2 (CH3), 23.4 (CH2), 17.2 (CH3). LRMS (+ESI) m/z
676.73 ([2M + Na]+, 89%), 654.47 ([2M]+, 79%), 350.00 ([M + Na]+,
32%), 328.00 ([M + H]+, 100%). Anal. (C21H29NO2) Calcd: C 77.02,
H 8.93, N 4.28. Found: C 76.64, H 9.27, N 4.32.

General Procedure B: Esterification of 1-Alkylindole-3-carboxylic
Acids. A suspension of the appropriate 1-alkylindole-3-carboxylic acid
(28 or 29, 1.0 mmol) in CH2Cl2 (2 mL) was treated with oxalyl
chloride (170 μL, 2.0 mmol, 2.0 equiv) followed by DMF (1 drop).
After stirring for 1 h, the solution was evaporated in vacuo. A solution
of the crude acid chloride and Et3N (490 μL, 3.5 mmol, 3.5 equiv) in
CH2Cl2 (5 mL) was slowly treated with a solution of 8-hydroxyquino-
line (32, 174 mg, 1.2 mmol, 1.2 equiv) in CH2Cl2 (5 mL). The
mixture was stirred for 24 h, the solvent was evaporated, and the
residue was partitioned between EtOAc (75 mL) and H2O (25 mL).
The layers were separated, and the organic phase was washed with sat.
aq. NaHCO3 (3 × 25 mL) and brine (25 mL) and dried (MgSO4),
and the solvent was evaporated under reduced pressure. The crude
products were purified using flash chromatography.

Quinolin-8-yl 1-Pentyl-1H-indole-3-carboxylate (10). Treating 28
(230 mg, 1.0 mmol) with 8-hydroxyquinoline (174 mg, 1.2 mmol, 1.2
equiv) according to general procedure B gave, following purification by
flash chromatography (hexane−EtOAc, 50:50, Rf 0.50), 10 (280 mg,
78%) as an off-white crystalline solid. Mp 111−112 °C. 1H NMR (500
MHz, CDCl3): δ 8.92 (1H, dd, J = 4.1, 1.3 Hz), 8.33 (1H, dd, J = 7.7,
1.4 Hz), 8.19 (1H, dd, J = 8.4, 1.3 Hz), 8.17 (1H, s) 7.75 (1H, dd, J =
7.8, 1.3 Hz) 7.63−7.57 (2H, m), 7.43−7.40 (2H, m) 7.34−7.29 (2H,
m), 4.20 (2H, t, J = 7.3 Hz), 1.94 (2H, quin., J = 7.1 Hz), 1.40−1.37
(4H, m), 0.93 (3H, t, J = 6.7 Hz). 13C NMR (125 MHz, CDCl3): δ
163.4 (COO), 150.7 (CH), 147.8 (Cquat.), 142.2 (Cquat.), 136.9
(Cquat.), 136.1 (CH), 135.6 (CH), 129.7 (Cquat.), 127.5 (Cquat.), 126.4
(CH), 125.7 (CH), 123.0 (CH), 122.21 (CH), 122.19 (CH), 122.16
(CH), 121.7 (CH), 110.2 (CH), 106.1 (Cquat.), 47.3 (CH2), 29.8
(CH2), 29.2 (CH2), 22.4 (CH2), 14.0 (CH3). LRMS (+ESI) m/z
738.73 ([2M + Na]+, 53%), 716.73 ([2M]+, 100%), 358.93 ([M +
H]+, 60%), 214.07 (M − C9H7N − OH, 17%). Anal. (C23H22N2O2)
Calcd: C 77.07, H 6.19, N 7.82. Found: C 77.29, H 6.19, N 7.89.

Quinolin-8-yl 1-(5-Fluoropentyl)-1H-indole-3-carboxylate (11).
Treating 29 (249 mg, 1.0 mmol) with 8-hydroxyquinoline (174 mg,
1.2 mmol, 1.2 equiv) according to general procedure B gave, following
purification by flash chromatography (hexane−EtOAc, 50:50, Rf 0.38),
11 (324 mg, 86%) as an off-white/tan crystalline solid. Mp 116−117
°C. 1H NMR (500 MHz, CDCl3): δ 8.91 (1H, dd, J = 4.1, 1.5 Hz),
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8.33 (1H, dd, J = 6.9, 1.7 Hz), 8.19 (1H, dd, J = 8.3, 1.4 Hz), 8.17 (1H,
s) 7.75 (1H, dd, J = 7.8, 1.5 Hz), 7.63−7.57 (2H, m), 7.43−7.40 (2H,
m), 7.34−7.29 (2H, m), 4.45 (2H, dt, 2JCF = 47.3, 3JHH = 5.9 Hz,
CH2F), 4.22 (2H, t, J = 7.2 Hz), 1.99 (2H, quin., J = 7.5 Hz), 1.80−
1.70 (2H, m), 1.56−1.49 (2H, m). 13C NMR (125 MHz, CDCl3): δ
163.4 (COO), 150.7 (CH), 147.8 (Cquat.), 142.1 (Cquat.), 136.8
(Cquat.), 136.1 (CH), 135.5 (CH), 129.7 (Cquat.), 127.5 (Cquat.), 126.4
(CH), 125.7 (CH), 123.1 (CH), 122.29 (CH), 122.25 (CH), 122.16
(CH), 122.7 (CH), 110.1 (CH), 106.3 (Cquat.), 83.8 (d, 1JCF = 166.0
Hz, CH2F), 47.2 (CH2), 30.1 (d, 2JCF = 18.9 Hz, CH2CH2F), 29.8
(CH2), 23.0 (d, 3JCF = 5.0 Hz, CH2CH2CH2F). LRMS (+ESI) m/z
774.73 ([2M + Na]+, 66%), 752.60 ([2M]+, 100%), 399.00 ([M +
Na]+, 33%), 376.87 ([M + H]+, 99%), 232.00 (M − C9H7N − OH,
23%). Anal. (C23H21N2O2F) Calcd: C 73.39, H 5.62, N 7.44. Found:
C 73.46, H 5.46, N 7.37.
General Procedure C: Amidation of 1-Alkylindole-3-carboxylic

Acids. A suspension of the appropriate 1-alkylindole-3-carboxylic acid
(28 or 29, 2.0 mmol) in CH2Cl2 (5 mL) was treated with oxalyl
chloride (420 μL, 5.0 mmol, 2.0 equiv) followed by DMF (1 drop).
After stirring for 1 h, the solution was evaporated in vacuo. A solution
of the crude acid chloride in CH2Cl2 (5 mL) was added dropwise to a
solution of the appropriate amine (2.4 mmol, 1.2 equiv) and Et3N
(700 μL, 5.0 mmol, 2.5 equiv) in CH2Cl2 (20 mL). The mixture was
stirred for 14 h, the solvent was evaporated, and the residue was
partitioned between EtOAc (200 mL) and 1 M aq. HCl (50 mL). The
layers were separated, and the organic phase was washed with 1 M aq.
HCl (2 × 50 mL), sat. aq. NaHCO3 (3 × 50 mL), and brine (50 mL)
and dried (MgSO4), and the solvent was evaporated under reduced
pressure. The crude products were recrystallized from i-PrOH or i-
PrOH−H2O. The preparation of 12, 14, 16, 18, 20, and 22 was
described previously.36

N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxa-
mide (13). Treating (5-fluoropentyl)indole-3-carboxylic acid (499 mg,
2.0 mmol, 1.0 equiv) with 1-aminoadamantane (363 mg, 2.4 mmol, 1.2
equiv) according to general procedure C gave 13 (663 mg, 87%) as
fine white needles. Mp (i-PrOH−H2O) 138−140 °C. 1H NMR (500
MHz, CDCl3): δ 7.88 (1H, d, J = 7.5 Hz), 7.64 (1H, s), 7.36 (1H, d, J
= 7.5 Hz), 7.28−7.22 (2H, m), 5.69 (1H, br s, NH), 4.41 (2H, dt, 2JCF
= 47.0, 3JHH = 6.0 Hz, CH2F), 4.14 (2H, t, J = 7.2 Hz), 2.19 (6H, br s),
2.14 (3H, br s), 1.90 (2H, quin., J = 7.8 Hz), 1.78−1.62 (8H, m),
1.48−1.41 (2H, m). 13C NMR (125 MHz, CDCl3): δ 164.5 (CO),
136.7 (quat.), 131.3 (CH), 125.4 (quat.), 122.4 (CH), 121.3 (CH),
120.1 (CH), 112.6 (quat.), 110.3 (CH), 83.8 (d, 1JCF = 165.0 Hz,
CH2F), 52.2 (quat.), 46.7 (CH2), 42.4 (CH2), 36.7 (CH2), 30.1 (d,
2JCF = 19.9 Hz, CH2CH2F), 29.8 (CH2), 29.7 (CH), 23.0 (d,

3JCF = 5.0
Hz, CH2CH2CH2F). LRMS (+ESI) m/z 764.80 ([2M]+, 100%),
383.13 ([M + H]+, 41%). Anal. (C24H31N2OF) Calcd: C 75.36, H
8.17, N 7.32. Found: C 75.37, H 8.43, N 7.42.
N-(Adamantan-1-ylmethyl)-1-(5-fluoropentyl)-1H-indole-3-car-

boxamide (15). Treating (5-fluoropentyl)indole-3-carboxylic acid
(499 mg, 2.0 mmol, 1.0 equiv) with 1-(aminomethyl)adamantane
(397 mg, 2.4 mmol, 1.2 equiv) according to general procedure C gave
15 (579 mg, 73%) as a white crystalline solid. Mp (i-PrOH−H2O)
148−150 °C. 1H NMR (500 MHz, CDCl3): δ 7.88 (1H, d, J = 7.5
Hz), 7.74 (1H, s), 7.39 (1H, d, J = 7.5 Hz), 7.29−7.26 (2H, m), 6.01
(1H, br s, NH), 4.42 (2H, dt, 2JCF = 47.5, 3JHH = 5.5 Hz, CH2F), 4.16
(2H, t, J = 7.0 Hz), 3.22 (2H, d, J = 6.0 Hz), 2.02 (3H, br s), 1.92 (2H,
quin., J = 7.0 Hz), 1.75−1.62 (14H, m), 1.49−1.43 (2H, m). 13C NMR
(125 MHz, CDCl3): δ 164.5 (CO), 136.8 (quat.), 131.8 (CH), 125.3
(quat.), 122.5 (CH), 121.5 (CH), 120.0 (CH), 111.6 (quat.), 110.5
(CH), 83.8 (d, 1JCF = 165.0 Hz, CH2F), 51.0 (CH2), 46.8 (CH2), 40.6
(CH2), 37.2 (CH2), 34.1 (quat.), 30.1 (d,

2JCF = 19.9 Hz, CH2CH2F),
29.8 (CH2), 28.5 (CH), 23.0 (d, 3JCF = 5.0 Hz, CH2CH2CH2F).
LRMS (+ESI) m/z 793.00 ([2M]+, 100%), 397.13 ([M + H]+, 60%).
Anal. (C25H33N2OF) Calcd: C 75.72, H 8.39, N 7.06. Found: C 75.46,
H 8.69, N 7.09.
N-Cyclohexyl-1-(5-fluoropentyl)-1H-indole-3-carboxamide (17).

Treating (5-fluoropentyl)indole-3-carboxylic acid (499 mg, 2.0
mmol, 1.0 equiv) with cyclohexylamine (275 μL, 2.4 mmol, 1.2
equiv) according to general procedure C gave 17 (488 mg, 74%) as

fine white needles. Mp (i-PrOH) 145−147 °C. 1H NMR (500 MHz,
CDCl3): δ 7.89 (1H, d, J = 7.0 Hz), 7.69 (1H, s), 7.37 (1H, d, J = 7.0
Hz), 7.29−7.23 (2H, m), 5.82 (1H, d, J = 7.5 Hz, NH), 4.42 (2H, dt,
2JCF = 47.0, 3JHH = 6.0 Hz, CH2F), 4.15 (2H, t, J = 7.0 Hz), 4.10−4.02
(1H, m), 2.10−2.07 (2H, m), 1.91 (2H, quin., J = 7.6 Hz), 1.78−1.67
(5H, m), 1.50−1.42 (4H, m), 1.33−1.20 (3H, m). 13C NMR (125
MHz, CDCl3): δ 164.4 (CO), 136.7 (quat.), 131.4 (CH), 125.5
(quat.), 122.5 (CH), 121.4 (CH), 120.1 (CH), 111.6 (quat.), 110.4
(CH), 83.8 (d, 1JCF = 165.0 Hz, CH2F), 48.1 (CH), 46.8 (CH2), 33.7
(CH2), 30.1 (d, 2JCF = 19.7 Hz, CH2CH2F), 29.8 (CH2), 25.9 (CH2),
25.1 (CH2), 23.0 (d,

3JCF = 4.9 Hz, CH2CH2CH2F). LRMS (+ESI) m/
z 660.73 ([2M]+, 100%), 331.13 ([M + H]+, 78%). Anal.
(C20H27N2OF) Calcd: C 72.70, H 8.24, N 8.48. Found: C 72.38, H
8.46, N 8.42.

N-(Cyclohexylmethyl)-1-(5-fluoropentyl)-1H-indole-3-carboxa-
mide (19). Treating (5-fluoropentyl)indole-3-carboxylic acid (499 mg,
2.0 mmol, 1.0 equiv) with (aminomethyl)cyclohexane (310 μL, 2.4
mmol, 1.2 equiv) according to general procedure C gave 19 (578 mg,
84%) as fine white crystals. Mp (i-PrOH) 114−116 °C. 1H NMR (500
MHz, CDCl3): δ 7.89 (1H, d, J = 7.0 Hz), 7.71 (1H, s), 7.38 (1H, d, J
= 7.0 Hz), 7.30−7.24 (2H, m), 6.00 (1H, br s, NH), 4.42 (2H, dt, 2JCF
= 47.0, 3JHH = 6.0 Hz, CH2F), 4.15 (2H, t, J = 7.0 Hz), 3.36 (2H, t, J =
6.5 Hz), 1.91 (2H, quin., J = 7.8 Hz), 1.85−1.82 (2H, m), 1.78−1.60
(6H, m), 1.48−1.42 (2H, m), 1.31−1.17 (3H, m), 1.04 (2H, ddd, J =
24.3, 12.3, 3.0 Hz). 13C NMR (125 MHz, CDCl3): δ 165.4 (CO),
136.7 (quat.), 131.6 (CH), 125.4 (quat.), 122.5 (CH), 121.5 (CH),
120.1 (CH), 111.5 (quat.), 110.4 (CH), 83.8 (d, 1JCF = 165.0 Hz,
CH2F), 46.8 (CH2), 45.8 (CH2), 38.4 (CH), 31.2 (CH2), 30.1 (d,

2JCF
= 19.9 Hz, CH2CH2F), 29.8 (CH2), 26.6 (CH2), 26.1 (CH2), 23.0 (d,
3JCF = 4.9 Hz, CH2CH2CH2F). LRMS (+ESI) m/z 710.93 ([2M +
Na]+, 95%), 688.73 ([2M]+, 100%), 345.07 ([M + H]+, 48). Anal.
(C21H29N2OF) Calcd: C 73.22, H 8.49, N 8.13. Found: C 72.97, H
8.62, N 8.01.

N-Phenyl-1-(5-fluoropentyl)-1H-indole-3-carboxamide (21).
Treating (5-fluoropentyl)indole-3-carboxylic acid (499 mg, 2.0
mmol, 1.0 equiv) with aniline (220 μL, 2.4 mmol, 1.2 equiv)
according to general procedure C gave 21 (584 mg, 90%) as a white
powder. Mp (i-PrOH) 116−119 °C. 1H NMR (500 MHz, CDCl3): δ
8.07−8.05 (1H, m), 7.79 (1H, s), 7.71 (1H, br s, NH) 7.67 (2H, d, J =
8.0 Hz), 7.42−7.36 (3H, m), 7.34−7.29 (2H, m), 7.13 (1H, t, J = 7.5
Hz), 4.42 (2H, dt, 2JCF = 47.0, 3JHH = 6.0 Hz, CH2F), 4.18 (2H, t, J =
7.0 Hz), 1.93 (2H, quin., J = 7.5 Hz), 1.76−1.68 (2H, m), 1.50−1.44
(2H, m). 13C NMR (125 MHz, CDCl3): δ 163.3 (CO), 138.6 (quat.),
136.8 (quat.), 131.8 (CH), 129.2 (CH), 125.6 (quat.), 124.0 (CH),
122.9 (CH), 121.9 (CH), 120.4 (CH), 120.2 (CH), 111.4 (quat.),
110.5 (CH), 83.8 (d, 1JCF = 165.0 Hz, CH2F), 46.9 (CH2), 30.1 (d,
2JCF = 19.9 Hz, CH2CH2F), 29.7 (CH2), 23.0 (d, 3JCF = 4.9 Hz,
CH2CH2CH2F). LRMS (+ESI) m/z 670.73 ([2M + Na]+, 90%),
648.67 ([2M]+, 89%), 325.00 ([M + H]+, 100). Anal. (C20H21N2OF)
Calcd: C 74.05, H 6.53, N 8.64. Found: C 74.20, H 6.69, N 8.65.

N-Benzyl-1-(5-fluoropentyl)-1H-indole-3-carboxamide (23).
Treating (5-fluoropentyl)indole-3-carboxylic acid (499 mg, 2.0
mmol, 1.0 equiv) with benzylamine (260 μL, 2.4 mmol, 1.2 equiv)
according to general procedure C gave 23 (549 mg, 81%) as fine white
needles. Mp (i-PrOH) 128−130 °C. 1H NMR (500 MHz, CDCl3): δ
7.94 (1H, d, J = 8.0 Hz), 7.72 (1H, s), 7.42−7.34 (5H, m), 7.31−7.22
(3H, m), 6.25 (1H, br s, NH), 4.71 (2H, d, J = 5.5 Hz), 4.41 (2H, dt,
2JCF = 47.5 Hz, 3JHH = 6.0 Hz, CH2F), 4.14 (2H, t, J = 7.5 Hz), 1.91
(2H, quin., J = 8.0 Hz), 1.76−1.64 (2H, m), 1.48−1.41 (2H, m). 13C
NMR (125 MHz, CDCl3): δ 165.2 (CO), 139.0 (quat.), 136.7 (quat.),
131.5 (CH), 128.9 (CH), 128.0 (CH), 127.6 (CH), 125.6 (quat.),
122.6 (CH), 121.6 (CH), 120.4 (CH), 111.0 (quat.), 110.3 (CH),
83.8 (d, 1JCF = 165.0 Hz, CH2F), 46.8 (CH2), 43.7 (CH2), 30.1 (d,
2JCF = 19.9 Hz, CH2CH2F), 29.8 (CH2), 23.0 (d, 3JCF = 4.9 Hz,
CH2CH2CH2F). LRMS (+ESI) m/z 698.73 ([2M + Na]+, 100%),
676.87 ([2M]+, 31%), 339.13 ([M + H]+, 29). Anal. (C21H23N2OF)
Calcd: C 74.53, H 6.85, N 8.28. Found: C 74.59, H 6.94, N 8.36.

1H-Indole-3-yl(2,2,3,3-tetramethylcyclopropyl)methanone (26).
A solution of 2,2,3,3-tetramethylcyclopropanecarboxylic acid (25,
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1.19 g, 8.4 mmol) in CH2Cl2 (20 mL) was treated with (COCl)2 (1.4
mL, 2.4 mmol, 2.0 equiv) followed by DMF (1 drop). After stirring for
1 h, the solution was evaporated in vacuo, and the crude acid chloride
was used immediately in the following step.
A cooled (0 °C) solution of 24 (820 mg, 7.0 mmol) in CH2Cl2 (15

mL) was treated dropwise with a solution of 1 M Me2AlCl in hexane
(10.5 mL, 10.5 mmol, 1.5 equiv) and stirred for 30 min. To this
solution was added dropwise a solution of the freshly prepared acid
chloride in CH2Cl2 (15 mL), and the reaction was stirred for 3 h. The
reaction was quenched by dropwise addition to a solution of 1 M aq.
HCl (30 mL), the layers were separated, and the aqueous phase was
extracted with CH2Cl2 (2 × 30 mL). The combined organic layers
were washed with sat. aq. NaHCO3 (2 × 30 mL) and dried (MgSO4),
and the solvent was evaporated under reduced pressure. The crude
product was purified by flash chromatography (CHCl3, Rf 0.26), to
give 26 as a pale yellow solid (1.38 g, 82%). 1H NMR (500 MHz,
CDCl3): δ 9.51 (1H, br s, NH), 8.44−8.41 (1H, m, ArH), 7.75 (1H, d,
J = 2.5 Hz, ArH), 7.39−7.37 (1H, m, ArH), 7.25−7.22 (2H, m, ArH),
1.97 (1H, s, CH), 1.37 (6H, s, CH3), 1.30 (6H, s, CH3).

13C NMR
(125 MHz, CDCl3): δ 196.1 (CO), 136.6 (quat.), 131.2 (CH), 125.5
(quat.), 123.4 (CH), 122.4 (CH), 122.2 (CH), 120.9 (quat.), 111.7
(CH), 41.9 (CH), 32.0 (quat.), 24.1 (CH3), 17.2 (CH3). All spectral
data were consistent with those published previously.11,12

( 1 - ( 5 - A c e t o x y p e n t y l ) - 1 H - i n d o l - 3 - y l ) ( 2 , 2 , 3 , 3 -
tetramethylcyclopropyl)methanone (27). Treating 26 (362 mg, 1.5
mmol) with 5-bromopentyl acetate (275 μL, 1.65 mmol, 1.1 equiv)
according to the general procedure gave, following purification by flash
chromatography (hexane−EtOAc, 65:35, Rf 0.30), 27 (371 mg, 67%)
as a white crystalline solid. Mp (i-PrOH−H2O) 57−59 °C. 1H NMR
(400 MHz, CDCl3): δ 8.42−8.39 (1H, m, ArH), 7.65 (1H, s, ArH),
7.35−7.31 (1H, m, ArH), 7.29−7.24 (2H, m, ArH), 4.17 (2H, t, J =
7.2 Hz, NCH2), 4.05 (2H, t, J = 6.6 Hz, CH2OAc), 2.02 (3H, s, Ac),
1.97−1.89 (3H, m, CH, CH2), 1.71-.164 (2H, m, CH2), 1.46−1.40
(2H, m, CH2), 1.35 (6H, s, 2 × CH3), 1.31 (6H, s, 2 × CH3).

13C
NMR (100 MHz, CDCl3): δ 194.7 (CO), 171.2 (C(O)OCH3) 136.7
(quat.), 133.4 (CH), 126.5 (quat.), 123.1 (CH), 122.9 (CH), 122.3
(CH), 119.9 (quat.), 109.7 (CH), 64.1 (CH2OAc), 47.0 (NCH2) 41.8
(CH), 31.8 (Cquat.), 29.8 (CH2), 28.3 (CH2), 24.2 (CH3), 23.5 (CH2),
21.1 (CH3), 17.2 (CH3). LRMS (+ESI) m/z 760.67 ([2M + Na]+,
72%), 370.07 ([M + H]+, 100%). Anal. (C23H31NO3) Calcd: C 74.76,
H 8.46, N 3.79. Found: C 74.43, H 8.58, N 3.93.
General Procedure D: Synthesis of 1-Alkylindole-3-carboxylic

Acids. A cooled (0 °C) mixture of sodium hydride (60% dispersion in
mineral oil, 2.00 g, 50.0 mmol, 2.0 equiv) in DMF (30 mL) was
treated slowly with a solution of indole (2.93 g, 25 mmol) in DMF (3
mL), warmed to ambient temperature, and stirred for 10 min. The
mixture was cooled in an ice−water bath and then treated slowly with
the appropriate bromoalkane (26.3 mmol, 1.05 equiv). The mixture
was warmed to ambient temperature and stirred for 1 h, at which point
TLC analysis indicated complete consumption of indole. The solution
was cooled to 0 °C and treated slowly with trifluoroacetic anhydride
(8.70 mL, 62.5 mmol, 2.5 equiv). The resultant clear, red solution was
warmed to ambient temperature and stirred for 1 h, at which point
TLC analysis indicated the complete conversion of the 1-alkylindole to
1-alkyl-3-trifluoroacetylindole. The reaction was poured portionwise
onto stirred ice−water (500 mL), and the mixture was vigorously
stirred at 0 °C until complete solidification of the oil layer had
occurred. The precipitate was collected by filtration and air-dried to
give crude 1-alkyl-1H-3-trifluoroacetylindoles as pink solids.
A solution of crude 1-alkyl-1H-3-trifluoroacetylindole (25.0 mmol)

in toluene (22 mL) was slowly added to a refluxing solution of KOH
(4.63 g, 82.5 mmol, 3.3 equiv) in MeOH (8 mL), and the mixture was
heated at reflux for 2 h. The mixture was cooled to ambient
temperature, and H2O (80 mL) was added. The layers were separated,
and the organic layer was extracted with 1 M aq. NaOH (25 mL). The
combined aqueous phases were acidified to pH 1 with 10 M aq. HCl,
extracted with Et2O (3 × 50 mL) or CH2Cl2 (3 × 50 mL), and dried
(MgSO4), and the solvent was evaporated. The crude products were
recrystallized from isopropanol to give analytically pure materials.

1-Pentylindole-3-carboxylic Acid (28). Treating indole with 1-
bromopentane according to general procedure D gave, after
recrystallization from i-PrOH, 28 as colorless crystals (4.57 g, 19.8
mmol, 79%). Mp (i-PrOH) 106−108 °C. 1H NMR (500 MHz,
CDCl3): δ 8.27−8.24 (1H, m), 7.93 (1H, s), 7.40−7.38 (1H, m),
7.33−7.29 (2H, m), 4.17 (2H, t, J = 7.2 Hz), 1.90 (2H, quin., J = 7.2
Hz), 1.39−1.32 (4H, m), 0.91 (3H, t, J = 7.0 Hz). 13C NMR (125
MHz, CDCl3): δ 170.7 (COOH), 136.9 (quat.), 135.6, 127.2 (quat.),
123.0, 122.3, 122.1, 110.2, 106.4 (quat.), 47.3 (CH2), 29.7 (CH2), 29.1
(CH2), 22.4 (CH2), 14.0. Anal. (C14H17NO2) Calcd: C 72.70, H
7.41, N 6.06. Found: C 72.67, H 7.77, N 5.93

1-(5-Fluoropentyl)indole-3-carboxylic Acid (29). Treating indole
with 1-bromo-5-fluoropentane according to general procedure D gave,
after recrystallization from i-PrOH (twice), 29 as colorless crystals
(5.28 g, 21.2 mmol, 85%). Mp (i-PrOH−H2O) 120−122 °C. 1H
NMR (500 MHz, CDCl3): δ 8.29−8.25 (1H, m), 7.93 (1H, s), 7.40−
7.37 (1H, m), 7.34−7.30 (2H, m), 4.43 (2H, dt, 2JCF = 47.3, 3JHH = 5.9
Hz, CH2F), 4.18 (2H, t, J = 7.1 Hz), 1.98−1.92 (2H, m, CH2), 1.78−
1.68 (2H, m, CH2), 1.51−1.45 (2H, m, CH2).

13C NMR (125 MHz,
CDCl3): δ 170.9 (CO), 136.8 (quat.), 135.5 (CH), 127.1 (quat.),
123.1 (CH), 122.3 (CH), 122.1 (CH), 110.1 (CH), 106.6 (quat.),
83.8 (d, 1JCF = 166.0 Hz, CH2F), 47.1 (CH2), 30.0 (d,

2JCF = 20.1 Hz,
CH2CH2F), 29.6 (CH2), 22.9 (d,

3JCF = 5.0 Hz, CH2CH2CH2F). Anal.
(C14H16FNO2) Calcd: C 67.45, H 6.47, N 5.62. Found: C 67.31, H
6.60, N 5.46.

X-ray Data Collection. The solid was crystallized from i-PrOH−
H2O to give colorless crystals by slow evaporation at ambient
temperature.

The single-crystal X-ray diffraction experiments were carried out at
the Faculty of Pharmacy, University of Sydney, using a Bruker APEX-
II CCD-based diffractometer with an X-ray wavelength of 0.71073 Å
(Mo Kα) and at an experimental temperature of 150 K. The single
crystal of 7 was mounted on the tip of a thin glass fiber with a
minimum amount of Paratone N oil, which acted as both an adhesive
and a cryoprotectant, and inserted in the cold N2 stream of an Oxford
Cryosystem COBRA cooler. X-ray diffraction data were collected
using 0.3° Δω-scans, maintaining the crystal-to-detector distance at 6.0
cm. A total of 1588 frames were collected. The diffraction data were
integrated using SAINT+,56 which included corrections for Lorentz,
polarization, and absorption effects. Unit cell parameters for 7 at 150 K
were refined from 999 reflections.

The structure was solved using direct methods (SHELX-S)57 and
refined using full-matrix least-squares (SHELXL).57 All non-hydrogen
atoms were treated as anisotropic, while hydrogen atoms were placed
in idealized positions, with Ueq set at 1.5 times that of the parent atom.

empirical formula C21H29NO
formula wt 311.45
temp (K) 150.15
cryst syst monoclinic
space group P21/n
unit cell dimensions
a (Å) 12.112
α (deg) 90
b (Å) 10.799
β (deg) 93.69
c (Å) 13.920
γ (deg) 90
Z 4
GOF on F2 1.050
final R indices [I > 2σ(I)]
R1 0.0398
wR2 0.1019
R indices (all data)
R1 0.0478
wR2 0.1077

In Vitro Pharmacological Assessment of SCs. Mouse AtT-20
neuroblastoma cells stably transfected with human CB1 or human CB2
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have been previously described36 and were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% fetal bovine
serum (FBS), 100 U of penicillin/streptomycin, and 300 μg/mL
G418. Cells were passaged at 80% confluency as required. Cells for
assays were grown in 75 cm2

flasks and used at 90% confluence. The
day before the assay, cells were detached from the flask with trypsin/
EDTA (Sigma) and resuspended in 10 mL of Leibovitz’s L-15 media
supplemented with 1% FBS, 100 U of penicillin/streptomycin, and 15
mM glucose (membrane potential assay and Ca5 calcium assay). The
cells were plated in volume of 90 μL in black-walled, clear bottomed
96-well microplates (Corning), which had been precoated with poly(L-
lysine) (Sigma, Australia). Cells were incubated overnight at 37 °C in
ambient CO2.
Membrane potential was measured using a FLIPR membrane

potential assay kit (blue) from Molecular Devices, as described
previously.49 The dye was reconstituted with assay buffer of
composition (mM): NaCl 145, 4-(2-hydroxyethyl)-1-piperazineetha-
nesulfonic acid (HEPES) 22, Na2HPO4 0.338, NaHCO3 4.17,
KH2PO4 0.441, MgSO4 0.407, MgCl2 0.493, CaCl2 1.26, glucose
5.56 (pH 7.4, osmolarity 315 ± 5). Prior to the assay, cells were loaded
with 90 μL/well of the dye solution without removal of the L-15,
giving an initial assay volume of 180 μL/well. Plates were then
incubated at 37 °C at ambient CO2 for 45 min. Fluorescence was
measured using a FlexStation 3 (Molecular Devices) microplate reader
with cells excited at a wavelength of 530 nm and emission measured at
565 nm. Baseline readings were taken every 2 s for at least 2 min, at
which time either drug or vehicle was added in a volume of 20 μL. The
background fluorescence of cells without dye or dye without cells was
negligible. Changes in fluorescence were expressed as a percentage of
baseline fluorescence after subtraction of the changes produced by
vehicle addition, which was less than 2% for drugs dissolved in assay
buffer or DMSO. The final concentration of DMSO was not more
than 0.1%.
Data were analyzed with PRISM (GraphPad Software Inc., San

Diego, CA), using four-parameter nonlinear regression to fit
concentration−response curves. In all plates, a maximally effective
concentration of WIN 55,212-2 was added to allow for normalization
between assays.
In Vivo Pharmacological Assessment of SCs. Eight cohorts of

three or four adult male Wistar rats (Animal Resources Centre, Perth,
Australia) initially weighing between 200 and 230 g were used for
biotelemetric assessment of each compound. The rats were singly
housed in an air-conditioned testing room (22 ± 1 °C) on a 12 h
reverse light/dark cycle (lights on from 21:00 to 09:00). Standard
rodent chow and water were provided ad libitum. All experiments were
approved by The University of Sydney Animal Ethics Committee.
Biotelemetry transmitters (TA11CTA-F40, Data Sciences Interna-

tional, St. Paul, MN) were implanted as previously described.36 Briefly,
following anaesthetization (isoflurane, 3% induction, 2% mainte-
nance), a rostro-caudal incision was made along the midline of the
abdomen, and a biotelemetry transmitter (TA11CTA-F40, Data
Sciences International, St. Paul, MN) was placed in the peritoneal
cavity according to the manufacturers protocol. The wound was
sutured closed, and the rats were allowed 1 week of recovery before
data collection.
The rats were habituated over multiple days to injections of vehicle

(5% EtOH, 5% Tween 80, 90% physiological saline) at a set time of
day (11:00 am). Each cohort then received intraperitoneal injections
of each compound at the same time of day in an ascending dose
sequence (0.1, 0.3, 1, 3 mg/kg). This ascending sequence reduces the
risk posed to the animals in assessing hitherto untested compounds,
and the use of multiple cohorts limits the potential development of
tolerance to the compound. Two washout days were given between
each dose. If only a modest or negligible hypothermic response was
seen at 3 mg/kg, then a further 10 mg/kg dose of the compound was
given. Two washout days were given between each dose.
Data for heart rate and body temperature was gathered continuously

at 1000 Hz, organized into 15 or 30 min bins using Dataquest A.R.T.
software (version 4.3, Data Sciences International, St. Paul, MN), and
analyzed using PRISM (Graphpad Software Inc., San Diego, CA).
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ABSTRACT: Synthetic cannabinoid (SC) designer drugs based on
indole and indazole scaffolds and featuring L-valinamide or L-tert-
leucinamide side chains are encountered with increasing frequency by
forensic researchers and law enforcement agencies and are associated
with serious adverse health effects. However, many of these novel SCs
are unprecedented in the scientific literature at the time of their
discovery, and little is known of their pharmacology. Here, we report
the synthesis and pharmacological characterization of AB-FUBINA-
CA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINA-
CA, 5F-ADB-PINACA, ADBICA, 5F-ADBICA, and several ana-
logues. All synthesized SCs acted as high potency agonists of CB1
(EC50 = 0.24−21 nM) and CB2 (EC50 = 0.88−15 nM) receptors in a
fluorometric assay of membrane potential, with 5F-ADB-PINACA showing the greatest potency at CB1 receptors. The
cannabimimetic activities of AB-FUBINACA and AB-PINACA in vivo were evaluated in rats using biotelemetry. AB-FUBINACA
and AB-PINACA dose-dependently induced hypothermia and bradycardia at doses of 0.3−3 mg/kg, and hypothermia was
reversed by pretreatment with a CB1 (but not CB2) antagonist, indicating that these SCs are cannabimimetic in vivo, consistent
with anecdotal reports of psychoactivity in humans.

KEYWORDS: Cannabinoid, THC, JWH-018, FUBINACA, PINACA

Synthetic cannabinoids (SCs) are the most rapidly growing
class of recreational designer drugs. Since the identification

of the first SC designer drugs in 2008, more than 130 SCs have
been reported to the European Monitoring Centre for Drugs
and Drug Addiction (EMCDDA).1 Of the 101 new psycho-
active substances notified by the EMCDDA during 2014, 30
were SCs.1 Although these products are often mislabeled as
research chemicals or incense and include disclaimers stating
that the products are not for human consumption, SCs are
recreational designer drugs intended to mimic the effects of Δ9-
tetrahydrocannabinol (Δ9-THC, 1, Figure 1) while circum-
venting the law.
The phytocannabinoid Δ9-THC is the principal bioactive

component of marijuana (Cannabis sativa), the most widely
used illicit substance in the world. Δ9-THC exerts its
psychoactive effects by acting as a partial agonist at cannabinoid
type-1 (CB1) receptors,

2 although it is also a partial agonist at

type-2 (CB2) receptors. CB1 and CB2 receptors are classical G
protein-coupled receptors (GPCRs). While CB1 receptors are
found primarily at the terminals of central and peripheral
neurons, where they inhibit neurotransmitter release, CB2

receptors are mainly located in immune cells within and
outside the central nervous system (CNS).3,4 Due to the role of
the CB receptor system in numerous diseases, early
pharmaceutical drug discovery programs explored many
phytocannabinoid analogues like CP 47,497 (2) and CP
55,940 (3), disclosed by Pfizer in the 1970s and 1980s.5,6

Following structural leads from the pharmaceutical industry,
Huffman and co-workers at Clemson University have
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discovered many indole SCs with potent cannabimimetic
activity, including JWH-018 (4).
In 2008, a recreational herbal blend was found to contain the

C8 homologue of CP 47,497 and JWH-018.7 Following the
prohibition of CP 47,497-C8 and JWH-018 by many
governments, other structurally diverse indole SCs began to
appear.8−11 Recently, numerous SCs with clandestine design
origins and no precedent in the scientific literature have been
detected in forensic samples. For example, indole-3-carbox-
amide SC 2NE1 (APICA, SDB-001, 5) was identified along
with its indazole analogue AKB48 (APINACA, 6).12 Presum-
ably intended to mimic the alphanumeric format of compound
codes used throughout the pharmaceutical industry, 2NE1 and
AKB48 were named after Japanese and Korean female pop
music groups, respectively, by their clandestine designers.
Current popular design trends for modification of the N-pentyl
group include terminal fluorination and replacement with
cyclohexylmethyl or 4-fluorobenzylic moieties.13,14

In 2013, novel indazole SCs AB-FUBINACA (7, Figure 2)
and ADB-FUBINACA (8) were identified in recreational
products by Japanese forensic scientists.10,15,16 Although many
recent SCs have no precedent in the scientific literature prior to
their identification as designer drugs, 7 and 8 were both
described by Pfizer in a 2009 patent claiming CB1 ligands as
potential therapeutic agents.17 The binding affinity and
functional activity in a GTPγS binding assay of 7 (Ki = 0.9
nM, EC50 = 23.2 nM) and 8 (Ki = 0.36 nM, EC50 = 0.98 nM) at
hCB1 receptors was reported, indicating that both compounds
are potent CB1 agonists, but no further pharmacology was
described. The stereochemistry of the isopropyl and tert-butyl
side chains of illicit 7 and 8, respectively, is unresolved.
However, the Pfizer patent reports activity exclusively for the
(S)-enantiomers, and it is likely that the Pfizer compounds and
the illicit SCs are (S)-enantiomers derived from the abundant
and inexpensive L-amino acids L-valine and L-tert-leucine.
AB-PINACA (9) was identified alongside 7, representing a

hybrid of 7 and N-pentyl SCs like 4 and 6.10,15 Although
previously unreported in the scientific literature, ADB-PINACA
(10) exposure was associated with severe adverse reactions,
including neurotoxicity and cardiotoxicity in the USA in late
2013,18−20 and was recently linked to a cluster of cases of
severe delirium.21 The 5-fluorinated analogues of 9 and 10, 5F-
AB-PINACA (11) and 5F-ADB-PINACA (12), respectively,
have also been identified on the Japanese market.22,23 By 2014,
7−11 and 16 had been formally notified by the EMCDDA as a
result of seizures in Belgium, Germany, Turkey, the United
Kingdom, and Sweden.24

AB-FUBICA (13), ADB-FUBICA (14), AB-PICA (15), and
5F-AB-PICA (17) represent the indole analogues of indazoles
7, 8, 9, and 11 and have not appeared in the scientific literature.
However, the indole analogue of 10, ADBICA (16) was
identified in Japan,16 and its 5-fluoro analogue, 5F-ADBICA
(18), was notified by the EMCDDA after law enforcement
agencies in the U.S. implicated 18 in a series of non-fatal
intoxications.24

Despite their widespread use and frequency of adverse
reactions requiring hospitalization, very little is known about
the activity of indole and indazole SCs comprising an L-
valinamide or L-tert-leucinamide subunit. In addition to reports
of the detection of SCs 7−11, 16, and 18 by forensic
researchers, the metabolic profiles of 7−9 and 11 were recently
published.25−28

Figure 1. Selected phytocannabinoids and synthetic cannabinoids.

Figure 2. Indole- and indazole-3-carboxamide synthetic cannabinoid
designer drugs.
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The aim of the present study was to address the paucity of
data regarding the pharmacology of indole and indazole SCs by
synthesizing 7−18, evaluating their activity at human CB1 and
CB2 receptors, and assessing the behavioral pharmacology of
these novel SCs in rats using biotelemetry.

■ RESULTS AND DISCUSSION
The original patent by Pfizer describing AB-FUBINACA and
ADB-FUBINACA utilized enantiopure amino acids L-valina-
mide (19, Figure 3) and L-tert-leucinamide (20) to give
products with (S) stereocenters.

While L-valinamide is available from numerous commercial
sources as its hydrochloride salt, L-tert-leucinamide is derived
from a non-natural amino acid, and the synthesis of 20 is shown
in Scheme 1. Treatment of L-tert-leucine (21) with benzyl
chloroformate gave Cbz-protected amine 22. The free acid of
22 was converted to the corresponding amide (23) using the
coupling reagents EDC and HOBt, and subsequent depro-
tection by catalytic hydrogenation afforded 20. The three-step
procedure proved to be operationally convenient, and analyti-
cally pure L-tert-leucinamide was obtained on a multigram scale
following recrystallization.
The synthesis of indazole SCs 7−12 is shown in Scheme 2.

Fischer esterification of indazole-3-carboxylic acid (24) gave 25,
which was deprotonated with potassium tert-butoxide and
alkylated with either 4-fluorobenzyl bromide, 1-bromopentane,
or 1-bromo-5-fluoropentane to afford the corresponding N-
alkylindazole-3-carboxylic acid methyl esters 26−28. Alkylation
proceeded regioselectively to give 1-substituted 1H-indazoles as
the major products; however, small quantities of 2-alkylated
indazoles were obtained as minor products and separated by
flash chromatography. Saponification of the methyl ester of
26−28 to give free acids 29−31 was followed by amide
coupling with EDC-HOBt and either L-valinamide or L-tert-
leucinamide to give 7−12.
Access to the corresponding indole SCs (13−18) required

an alternative synthetic route, shown in Scheme 3. Excess
sodium hydride was added to indole (33), which was
subsequently alkylated with the appropriate bromoalkane and
then treated with trifluoroacetic anhydride to give the
corresponding N-alkyl-3-(trifluoroacetyl)indole (34−36) in a
one-pot process. Alkaline hydrolysis induced fluoroform

elimination29 and furnished, upon workup and recrystallization,
the corresponding N-alkylindole-3-carboxylic acids (37−39) of
analytical purity. Coupling of 37−39 with 19 or 20 using EDC-
HOBt yielded 13−18. Indole SCs derived from L-valinamide
(13, 15, 17) were recrystallized from isopropanol to analytical
purity, whereas those comprising L-tert-leucinamide (14, 16,
18) were purified by flash chromatography owing to their
superior solubility in a range of alcoholic solvents.
The activity of synthesized indazole (7−12) and correspond-

ing indole (13−18) SCs at CB1 and CB2 receptors was
evaluated using a fluorometric imaging plate reader (FLIPR)
assay to provide structure−activity relationship (SAR) data
regarding the choice of heteroaromatic core, amino acid side-
chain, and alkyl substituent within this class of SCs.
Additionally, the in vivo activity of 7 and 9 was compared
using biotelemetry in rats to provide information regarding the
increasingly common 4-fluorobenzyl motif in SCs.
The cannabimimetic activities of 7−18 were compared to

those of phytocannabinoid Δ9-THC (a partial agonist at CB1
and CB2) and indole SC JWH-018 (a full agonist at CB1 and
CB2), and the data is presented in Table 1. Murine AtT-20
neuroblastoma cells were stably transfected with human CB1 or
CB2 receptors, and activities of Δ9-THC, JWH-018, and 7−18
were evaluated using a FLIPR membrane potential assay
whereby endogenously expressed G protein-gated inwardly
rectifying K+ channels (GIRKs) are activated by agonists at the
expressed CB1 or CB2 receptors. The maximum effects of Δ9-
THC, JWH-018, and 7−18 were compared to high efficacy
CB1/CB2 receptor agonist CP 55,490, which produced a
maximal decrease in fluorescence, corresponding to cellular
hyperpolarization, at a concentration of 1 μM in AtT-20-CB1
and AtT-20-CB2 cells. None of the compounds produced a
significant change in the membrane potential of wild-type AtT-
20 cells, which do not express CB1 or CB2 receptors.
All indole and indazole SCs activated CB1 and CB2 receptors.

All compounds had greater potency (0.24−21 nM) than Δ9-
THC (172 nM) for CB1 receptor-mediated activation of GIRK.
Δ9-THC is a low-efficacy CB2 agonist, and in the assay of GIRK
activation in AtT-20-CB2, its effects at 30 μM were only 32 ±
1% of that mediated by CP 55,940. CP 55,940 was more potent
at stimulating a cellular hyperpolarization in AtT-20-CB2 cells
than AtT-20-CB1 cells, displaying an approximately 2-fold CB2
preference. All indazole and indole SCs had a similar maximal
effect to CP 55,940 at CB1 and CB2 receptors, suggesting that
these SCs are also high efficacy agonists. With the exception of
13, all novel SCs showed a mild preference for CB1 receptors,
and it is activation of CB1 receptors that is associated with the
psychoactive effects of cannabinoids.2

The least potent compound in the series (indole 13) was 11-
fold more potent than Δ9-THC at CB1 receptors, and the most
potent compound (indazole 12) showed more than 1000 times

Figure 3. Amino acid derivatives L-valinamide (19) and L-tert-
leucinamide (20).

Scheme 1. Synthesis of L-tert-Leucinamidea

aReagents and conditions: (a) NaOH, BnOC(O)Cl, 0 °C to rt, 2 h, 99%; (b) NH4Cl, Et3N, HOBt, EDCI, DMF, rt, 16 h, 84%; (c) 10% Pd/C, THF,
48%.
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the potency of Δ9-THC, making 5F-ADB-PINACA one of the
most potent SC designer drugs reported to date. Excluding 7
and 8, indazoles and indoles containing the L-tert-leucinamide
group were more potent at both CB1 and CB2 receptors than
the corresponding SC featuring an L-valinamide substituent. In
the most dramatic example, the additional methyl group of 16
(EC50 = 0.68 nM) conferred a 17-fold increase in potency over

15 (EC50 = 12 nM) at CB1 receptors. The same trend was
observed for CB2 receptors, but potency enhancement was
more moderate, with 18 (EC50 = 1.2 nM) showing a 7-fold
improvement over 17 (EC50 = 1.2 nM).
Surprisingly, there were no clear trends for differences of

potency or efficacy between indazole SCs 7−12 and the
corresponding indoles 13−18. Similarly, choice of N-alkyl

Scheme 2. Synthesis of Indazole SCs 7−12a

aReagents and conditions: (a) conc. H2SO4, MeOH, reflux, 4 h, 76%; (b) BrR1, t-BuOK, THF, 0 °C to rt, 48 h, 67−77%; (c) NaOH, MeOH, rt, 24
h, 76−96%; (d) EDC·HCl, HOBt, DIPEA, 19 or 20, DMF, rt, 24 h, 31−63%.

Scheme 3. Synthesis of Indole SCs 13−18a

aReagents and conditions: (a) (i) NaH, BrR1, DMF, 0 °C to rt, 1 h, (ii) (CF3CO)2O, DMF, 0 °C to rt, 1 h; (b) KOH, MeOH, PhMe, reflux, 2 h
54−68% (over two steps); (d) EDC·HCl, HOBt, DIPEA, 19 or 20, DMF, rt, 24 h, 65−86%.

Table 1. Functional Activity of Δ9-THC, CP 55,940, JWH-018, and Novel SCs 7−18 at CB1 and CB2 Receptors

hCB1 hCB1 hCB2 hCB2

compound pEC50 ± SEM (EC50, nM) nax ± SEM (% CP 55,940) pEC50 ± SEM (EC50, nM) nax ± SEM (% CP 55,940) CB1 sel.
a

Δ9-THC (1) 6.76 ± 0.09 (172) 58 ± 3 32 ± 1 at 30 μM
CP 55,490 (3) 7.63 ± 0.09 (24) 7.88 ± 0.08 (13) 0.5
JWH-018 (4) 7.74 ± 0.16 (18) 116 ± 9 7.66 ± 0.16 (22) 87 ± 7 1.2
AB-FUBINACA (7) 8.76 ± 0.10 (1.8) 108 ± 7 8.50 ± 0.20 (3.2) 95 ± 12 1.8
ADB-FUBINACA (8) 8.92 ± 0.16 (1.2) 152 ± 11 8.46 ± 0.13 (3.5) 104 ± 7 2.9
AB-PINACA (9) 8.91 ± 0.09 (1.2) 103 ± 4 8.60 ± 0.16 (2.5) 104 ± 8 2.1
ADB-PINACA (10) 9.28 ± 0.08 (0.52) 117 ± 6 9.06 ± 0.31 (0.88) 107 ± 16 1.7
5F-AB-PINACA (11) 9.32 ± 0.10 (0.48) 94 ± 6 8.59 ± 0.25 (2.6) 110 ± 13 5.4
5F-ADB-PINACA (12) 9.61 ± 0.19 (0.24) 91 ± 7 8.68 ± 0.11 (2.1) 94 ± 5 8.8
AB-FUBICA (13) 7.67 ± 0.14 (21) 115 ± 7 7.84 ± 0.27 (15) 99 ± 10 0.7
ADB-FUBICA (14) 8.58 ± 0.15 (2.6) 113 ± 8 8.52 ± 0.16 (3.0) 96 ± 7 1.2
AB-PICA (15) 7.92 ± 0.07 (12) 99 ± 3 7.92 ± 0.21 (12) 94 ± 9 1.0
ADBICA (16) 9.16 ± 0.16 (0.69) 98 ± 7 8.75 ± 0.18 (1.8) 94 ± 7 2.6
5F-AB-PICA (17) 8.28 ± 0.21 (5.2) 123 ± 13 8.05 ± 0.53 (8.9) 121 ± 24 1.7
5F-ADBICA (18) 9.12 ± 0.14 (0.77) 110 ± 7 8.91 ± 14 (1.2) 92 ± 6 1.6

aCB1 selectivity expressed as the ratio of CB1 EC50 to CB2 EC50.
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group had little effect on potency. However, indoles containing
the L-valinamide group (13, 15, 17), the least potent SCs
identified in this series, were each less potent than the
corresponding indazoles (7, 9, 11). Taken together, these
results suggest that the heteroaromatic core and indole nitrogen
substituent of these SCs contribute less to the activity of these
compounds than the pendant amide group. The difference in
CB1 activity between L-valinamide and L-tert-leucinamide
derivatives featuring a 1-pentyl group and containing an
indazole core (9 and 10, respectively) or an indole core (15
and 16, respectively) is depicted in Figure 4.
Very little is known about the potency and psychoactivity of

newer SCs in humans. Having demonstrated that 7−18 are
potent and efficacious cannabimimetic agents in vitro, we
sought to demonstrate activity of some of these SCs in vivo.
Cross-substitution of older SCs, like JWH-018, with Δ9-THC
has been demonstrated.30−32 Cannabinoids are known to
induce hypothermia and bradycardia in rats, effects that are
common to phytocannabinoids like Δ9-THC and heteroar-
omatic SCs such as JWH-018.33−35 We have previously
evaluated the hypothermic and bradycardic potencies of Δ9-
THC and numerous structurally diverse SCs including JWH-
018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA,
and STS-135.14,36 The cannabimimetic activities AB-FUBINA-
CA and AB-PINACA were evaluated using radiotelemetry in
male Wistar rats, and the effects of these SCs on body
temperature (Figure 5) and heart rate (Figure 6) are presented
below.
Rat body temperature 1 h prior to intraperitoneal (i.p.)

injection and 6 h postinjection of AB-FUBINACA and AB-
PINACA are presented in 15 min bins in Figure 5. For each
drug, these data are presented for 1 h before (baseline) and 6 h
after injection of various doses. The dashed line on the figures
represents the time of SC injection. Each SC was investigated
using a cohort of 3−4 rats, with a different cohort used for the
two compounds. Doses were escalated from 0 mg/kg (baseline)
to 0.1, 0.3, 1, and 3 mg/kg for each compound, with at least
two washout days between each dose. The 0.1 mg/kg doses of
each compound were without significant effects on body
temperature and heart rate, so data for these doses are not
presented.
A substantial hypothermic effect was evoked by 0.3−3 mg/kg

of both drugs, with the peak reduction in body temperature
generally greater with AB-FUBINACA (>2 °C) than AB-
PINACA (>1.5 °C). As Figure 5 shows, the 4-fluorobenzyl-
substituted AB-FUBINACA appeared to confer a hypothermic

effect of greater magnitude and duration (∼4 h) than that
observed for the pentyl-substituted AB-PINACA (∼2 h) at the
same dose (3 mg/kg). This was verified by a statistical analysis
showing a significantly greater area under the curve for body
temperature (relative to vehicle baseline) for AB-FUBINACA
doses compared to that for AB-PINACA at 3 mg/kg (P < 0.05).
Results for heart rate are presented in 30 min bins in Figure

6, with the dashed line on the figures again representing the
time of SC injection. Results were consistent with body
temperature data, although data were generally more variable
than they were with body temperature data, reflecting the
multiple determinants of heart rate including locomotor
activity, stress, and direct cardiovascular pharmacological
effects. All doses shown produced a significant decrease in
heart rate, with statistically significant treatment or treatment
by time effects at these doses (ANOVA, planned contrasts, SC
dose versus vehicle, P < 0.05).
To confirm that the observed effects were mediated through

CB1 or CB2 receptors, the reversibility of the effects of AB-
PINACA and AB-FUBINACA on body temperature and heart
rate in rats following pretreatment with either CB1 receptor
antagonist rimonabant (SR141176, 40, Figure 7) or CB2
receptor antagonist SR144528 (41) was assessed. Rimonabant
is a potent, selective, CB1 receptor neutral antagonist that
reverses CB1-mediated cannabinoid agonist effects in rodents
and humans,2,37,38 whereas SR144528 is selective CB2
antagonist/inverse agonist.39,40

Rat body temperatures after injection (i.p.) with vehicle, CB1
antagonist (rimonabant, 3 mg/kg), or CB2 antagonist
(SR144528, 3 mg/kg) 30 min prior to treatment with either
AB-FUBINACA (3 mg/kg) or AB-PINACA (3 mg/kg) are
presented in 15 min bins in Figure 8. For each treatment
condition, these data are presented for 1 h before (baseline)
and 6 h after injection of various doses. The first dashed line on
the figure represents the time of vehicle/antagonist injection,
and the second dashed line represents time of SC injection.
Each SC was investigated using a cohort of 3−4 rats, with a
different cohort used for the two compounds. The dose of each
antagonist was 3 mg/kg, and the dose of each SC was also 3
mg/kg.
Pretreatment with rimonabant was able to completely reverse

the hypothermic effects of AB-FUBINACA, whereas pretreat-
ment with SR144528 had no effect on the body temperature
decrease induced by AB-FUBINACA (Figure 8A). Similarly,
rimonabant partially reversed the decreased body temperature
effected by AB-PINACA, but SR144528 had negligible effect on

Figure 4. Hyperpolarization of CB1 receptors induced by (A) AB-PINACA (9) and ADB-PINACA (10) and (B) AB-PICA (15) and ADBICA (16)
as a proportion of that produced by 1 μM CP 55,940. Membrane potential was measured using a fluorescent dye, as outlined in the Methods. Each
point represents the mean ± SEM of at least five independent determinations, each performed in duplicate. Data was fitted with a four-parameter
logistic equation in GraphPad Prism.
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AB-PINACA-induced hypothermia (Figure 8B). These inter-
pretations are confirmed by a statistical analysis of the areas
between each drug treatment and baseline (Figure S13,
Supporting Information). This suggests a CB1-mediated
hypothermic mechanism. Similar trends were observed for
the reversal of AB-FUBINACA- or AB-PINACA-induced
bradycardia by rimonabant but not SR144528; however, these
differences did not reach significance (data not shown). This is
likely due to a combination of the relatively smaller magnitude

of SC-induced bradycardic effects and high variability of the
heart rate data.

■ CONCLUSIONS

This study is the first to pharmacologically characterize the
emergent class of recreational SC designer drugs based on
indole and indazole scaffolds and featuring L-valinamide or L-
tert-leucinamide side chains. Synthetic routes to identified SCs
of forensic interest (AB-FUBINACA, ADB-FUBINACA, AB-
PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA,

Figure 5. Effects of (A) AB-FUBINACA and (B) AB-PINACA on rat body temperature. Dashed line denotes time of intraperitoneal injection. Each
point represents the mean ± SEM for three animals.
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ADBICA, 5F-ADBICA), as well as several undetected
analogues, were developed. These synthetic routes are general
for 1-alkyl-1H-indazole-3-carboxamides and 1-alkyl-1H-indole-
3-carboxamides and enable forensic chemists to proactively
develop reference standards for structurally related SCs
expected to appear in the future. All synthesized SCs acted as
agonists of CB1 and CB2 receptors in a FLIPR membrane
potential assay and thus are functional cannabinoids.
Preliminary SARs suggest that L-tert-leucinamide derivatives
possess greater potency at CB1 receptors in vitro than the
corresponding L-valinamide analogues. The most potent of

these was 5F-ADB-PINACA. In rats, AB-FUBINACA and AB-
PINACA were able to dose-dependently decrease body
temperature and heart rate at doses of 0.3−3 mg/kg, indicating
that these SCs are also cannabimimetic in vivo. AB-FUBINACA
had more potent effects on body temperature than AB-
PINACA. The hypothermic effects of AB-FUBINACA and AB-
PINACA appear to be mediated through CB1 receptors and
could be reversed by pretreatment with CB1 antagonist
rimonabant but not CB2 antagonist SR144528. Both in vitro
and in vivo results confirm that all of the SCs explored have

Figure 6. Effects of (A) AB-FUBINACA and (B) AB-PINACA on rat heart rate. Dashed line denotes time of intraperitoneal injection. Each point
represents the mean ± SEM for three animals.
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cannabimimetic effects that parallel those of Δ9-THC, but with
greater potency.

■ METHODS
General Chemical Synthesis Details. All reactions were

performed under an atmosphere of nitrogen unless otherwise
specified. Commercially available chemicals were used as purchased.
Flash column chromatography was performed using Merck Kieselgel
60 (230−400 mesh) silica gel. Melting points were measured in open
capillaries using a Gallenkamp 5A 6797 melting point apparatus and
are uncorrected. Nuclear magnetic resonance spectra were recorded at
300 K using a Bruker 300, 400, or 500 MHz spectrometer. The data
are reported as chemical shift (δ ppm) relative to the residual
protonated solvent resonance, relative integral, multiplicity (s = singlet,
bs = broad singlet, d = doublet, t = triplet, q = quartet, quin. = quintet,
m = multiplet, dd = doublet of doublets, dt = doublet of triplets, qd =
quartet of doublets), coupling constants (J Hz), and assignment. Low-
resolution mass spectra (LRMS) were recorded using electrospray
ionization (ESI) recorded on a Finnigan LCQ ion trap spectrometer.
HPLC analysis of the organic purity of the compounds submitted for
in vivo testing (4−7) was conducted on a Waters e2695 separations
module using a Waters Sunfire C18 5 μm, 2.1 × 150 mm column and
detected using a Waters 2489 UV/vis detector set at 254 nm.
Separation was achieved using water with 0.1% formic acid (solvent A)
and acetonitrile with 0.1% formic acid (solvent B) at a flow rate of 0.2
mL/min and a gradient of 5% B for 1 min, then 5−100% B over 30
min. Elemental analysis was obtained from the Chemical Analysis
Facility in the Department of Chemistry and Biomolecular Sciences,
Macquarie University, Australia.
General Procedure A: Amidation of 1-Alkyl-1H-indazole-3-

carboxylic Acids and 1-Alkylindole-3-carboxylic Acids. A
solution of the appropriate carboxylic acid 29, 30, 31, 37, 38, or 39
(7.5 mmol, 1.5 equiv) in DMF (50 mL) was treated with EDC (7.5
mmol, 1.5 equiv), HOBt (7.5 mmol, 1.5 equiv), DIPEA (25.5 mmol,
5.1 equiv), 19·HCl, or 20 (5 mmol) and stirred for 24 h. The mixture
was partitioned between and H2O (100 mL) and EtOAc (50 mL), the
layers were separated, and the aqueous layer was extracted with EtOAc
(2 × 50 mL). The combined organic phases were dried (MgSO4), and
the solvent was evaporated under reduced pressure. The crude
products were purified by flash chromatography and/or recrystalliza-
tion.
(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-

1H-indazole-3-carboxamide (AB-FUBINACA, 7). Treating 29 (1.20 g,
4.4 mmol) with 19 (1.04 g, 6.8 mmol) according to general procedure
A gave, following purification by flash chromatography (hexane−
EtOAc, 10:90), 7 (0.94 g, 57%) as a white solid. Recrystallization from
i-PrOH−H2O yielded material of analytical purity. mp 151−152 °C;
1H NMR (500 MHz, CDCl3): δ 8.33 (1H, d), 7.54 (1H, d, J = 8.9
Hz), 7.37 (1H, m), 7.32 (1H, m), 7.27 (1H, m), 6.39 (1H, bs), 5.69
(1H, bs), 5.57 (2H, s), 4.58 (1H, dd, J = 8.9 Hz, 6.8 Hz), 2.35 (1H,
dq., J = 13.6 Hz, 6.8 Hz), 1.09 (6H, dd, J = 7.2 Hz, 5.1 Hz); 13C NMR
(125 MHz, CDCl3): δ 173.7 (CO), 162.9 (CO), 162.6 (d, 1JC−F =
249.1 Hz, quat.), 140.9 (quat.), 137.3 (quat.), 131.7 (d, 4JC−F = 3.4 Hz,

quat.), 129.2 (d, 3JC−F = 8.3 Hz, CH), 127.3 (CH), 123.4 (quat.),
123.1 (CH), 122.8 (CH), 116.0 (d, 2JC−F = 21.6 Hz, CH), 109.7
(CH), 58.0 (CH), 53.1 (CH2), 30.8 (CH), 19.6 (CH3), 18.4 (CH3);
19F NMR (470 MHz, CDCl3): δ −113.9 ppm; LRMS (+ESI): m/z
323.9 ([M − CONH3]

+, 100%), 351.8 ([M − NH3]
+, 50%), 368.8

([M + H]+, 20%); Anal. Calcd for C20H21N4O2F: C, 65.20; H, 5.75; N,
15.21. Found: C, 65.28; H, 5.73; N, 15.21; HPLC purity: 99.2%.

(S)-N-(1-Amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluoroben-
zyl)-1H-indazole-3-carboxamide (ADB-FUBINACA, 8). Treating 29
(0.51 g, 1.9 mmol) with 20 (0.37 g, 2.8 mmol) according to general
procedure A gave, following purification by flash chromatography
(hexane−EtOAc, 10:90), 8 (0.22 g, 31%) as a white solid. mp 135−
137 °C; NMR (500 MHz, CDCl3): δ 8.21 (1H, d, J = 8.0 Hz), 7.72
(1H, d, J = 9.7 Hz), 7.27 (1H, m), 7.19 (1H, m), 7.14 (2H, dd, J = 8.3
Hz, 5.4 Hz), 6.99 (1H, bs), 6.93 (2H, t, J = 8.6 Hz), 6.16 (1H, bs),
5.52 (2H, s), 4.74 (1H, d, 9.6 Hz), 1.15 (1H, s), 1.11 (9H, s); 13C
NMR (125 Hz, CDCl3): δ 173.5 (CO), 162.6 (CO), 162.6 (d,

1JC−F =
245.8 Hz, quat.), 140.9 (quat.), 137.3 (quat.), 131.8 (d, 4JC−F = 3.1 Hz,
quat.), 129.1 (d, 3JC−F = 8.3 Hz, CH), 127.1 (CH), 123.4 (quat.),
123.0 (CH), 122.6 (CH), 115.9 (d, 2JC−F = 21.6 Hz, CH), 109.7
(CH), 59.7 (CH), 53.1 (CH2), 34.8 (quat.), 26.9 (CH3);

19F NMR
(470 MHz, CDCl3): δ −113.9; LRMS (+ESI): m/z 337.9 ([M −
CONH3]

+, 100%), 365.8 ([M − NH3]
+, 50%), 382.7 ([M + H]+,

21%); Anal. Calcd for C21H23N4O2F: C, 65.95; H, 6.06; N, 14.65.
Found: C, 65.38; H, 6.08; N, 14.38.

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-inda-
zole-3-carboxamide (AB-PINACA, 9). Treating 30 (0.50 g, 2.2 mmol)
with 19 (0.50 g, 3.3 mmol) according to general procedure A gave,
following purification by flash chromatography (hexane−EtOAc,
50:50), 9 (0.44 g, 62%) as a white solid. Recrystallization from
EtOAc−hexane yielded material of analytical purity. mp 125−126 °C;
1H NMR (500 MHz, CDCl3): δ 8.30 (1H, d, J = 8.3 Hz), 7.51 (1H, d,
J = 8.8 Hz), 7.45−7.37 (2H, m), 7.26 (1H, m), 6.51 (1H, bs), 5.75
(1H, bs), 4.86 (1H, m), 4.38 (2H, t, J = 7.2 Hz), 2.36 (1H, dq., J =
13.6 Hz, 6.9 Hz), 1.94 (2H, quin., J = 7.4 Hz), 1.43−1.25 (4H, m),
1.08 (6H, m), 0.89 (3H, t, J = 7.1 Hz); 13C NMR (125 MHz, CDCl3):
δ 173.9 (CO), 163.2 (CO), 141.0 (quat.), 136.5 (quat.), 126.8 (CH),
123.0 (quat.), 122.8 (CH), 122.7 (CH), 109.5 (CH), 57.9 (CH), 49.7
(CH2), 30.7 (CH), 29.5 (CH2), 29.1 (CH2), 22.4 (CH2), 19.6 (CH3),
18.3 (CH3), 14.0 (CH3); LRMS (+ESI): m/z 258.9 ([M − CONH3]

+,
100%), 313.9 ([M − NH3]

+, 88%), 330.8 ([M + H]+, 46%) ; Anal.
Calcd for C18H26N4O2: C, 65.43; H, 7.93; N, 16.96. Found: C, 65.75;
H, 8.11; N, 16.98; HPLC purity: 97.6%.

(S)-N-(1-Amino-3,3-dimethyl-1-oxobutan-2-yl)-1-pentyl-1H-inda-
zole-3-carboxamide (ADB-PINACA, 10). Treating 30 (0.50 g, 2.2
mmol) with 20 (0.43 g, 3.3 mmol) according to general procedure A
gave, following purification by flash chromatography (hexane−EtOAc,
50:50), 10 (0.46 g, 63%) as a white solid. mp 135−137 °C; NMR (400
MHz, CDCl3): δ 8.27 (1H, m), 7.71 (1H, d, J = 9.5 Hz), 7.45−7.36
(2H, m), 7.29−7.22 (1H, m), 6.65 (1H, bs), 5.80 (1H, bs), 4.69 (1H,
d, J = 9.5 Hz), 4.38 (2H, t, J = 7.2 Hz), 1.95 (2H, quin., J = 7.2 Hz),
1.45−1.25 (4H, m), 1.16 (9H, s), 0.89 (3H, t, J = 7.0 Hz); 13C NMR
(100 MHz, CDCl3): δ 173.2 (CO), 162.8 (CO), 141.0 (quat.), 136.5
(quat.), 126.7 (CH), 123.0 (quat.), 122.7 (CH), 122.5 (CH), 109.5
(CH), 59.7 (CH), 49.6 (CH2), 34.8 (quat.), 29.5 (CH2), 29.0 (CH2),
26.9 (CH3), 22.3 (CH2), 14.0 (CH3); LRMS (+ESI): m/z 299.9 ([M
− CONH3]

+, 100%), 327.9 ([M − NH3]
+, 59%), 344.8 ([M + H]+,

19%) ; Anal. Calcd for C19H28N4O2: C, 66.25; H, 8.19; N, 16.27.
Found: C, 66.45; H, 8.40; N, 16.29.

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-
1H-indazole-3-carboxamide (5F-AB-PINACA, 11). Treating 31 (1.10
g, 4.4 mmol) with 19 (1.00 g, 6.7 mmol) according to general
procedure A gave, following purification by flash chromatography
(hexane−EtOAc, 10:90), 11 (0.56 g, 37%). Recrystallization from
EtOAc−hexane yielded material of analytical purity. mp 110−111 °C;
1H NMR (500 MHz, CDCl3): δ 8.30 (1H, m), 7.51 (1H, d, J = 8.9
Hz), 7.45−7.39 (2H, m), 7.27 (1H, m), 6.48 (1H, bs), 5.74 (1H, bs),
4.58 (1H, dd, J = 9.1 Hz, 6.7 Hz), 4.47 (1H, t, J = 6.0 Hz), 4.43−4.36
(3H, m), 2.35 (1H, dq, J = 13.6 Hz, 6.8 Hz), 2.00 (2H, m), 1.80−1.66
(2H, m), 1.51−1.41 (2H, m), 1.08 (6H, dd, J = 7.1 Hz, 5.2 Hz); 13C

Figure 7. Structures of selective CB1 receptor antagonist rimonabant
(SR141176, 40) and selective CB2 receptor antagonist SR144528
(41).
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NMR (125 MHz, CDCl3): δ 173.8 (CO), 163.0 (CO), 141.0 (quat.),
136.6 (quat.), 126.9 (CH), 122.99 (quat.), 122.91 (CH), 122.7 (CH),
109.4 (CH), 83.8 (CH2, d,

1JC−F = 164.0 Hz), 57.9 (CH), 49.3 (CH2),
30.7 (CH), 30.0 (CH2, d,

2JC−F = 20.1 Hz), 29.4 (CH2), 22.8 (CH2, d,
3JC−F = 5.1 Hz), 19.6 (CH3), 18.3 (CH3);

19F NMR (470 MHz,
CDCl3): δ −218.6; LRMS (ESI): m/z 303.9 ([M − CONH3]

+,
100%), 331.9 ([M − NH3]

+, 59%), 348.9 ([M + H]+, 48%); Anal.
Calcd for C18H25N4O2F: C, 62.05; H, 7.23; N, 16.08. Found: C, 61.96;
H, 7.26; N, 15.83.

(S)-N-(1-Amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropen-
tyl)-1H-indazole-3-carboxamide (5F-ADB-PINACA, 12). Treating 31
(0.40 g, 1.6 mmol) with 20 (0.32 g, 2.4 mmol) according to general
procedure A gave, following purification by flash chromatography
(hexane−EtOAc, 10:90), 12 (0.27 g, 47%) as a white solid. mp 135−
137 °C; 1H NMR (400 MHz, CDCl3): δ 8.28 (1H, d, J = 8.2 Hz), 7.70
(1H, 9.4 Hz), 7.45−7.38 (2H, m), 7.30−7.23 (1H, m), 6.53 (1H, bs),
5.75 (1H, bs), 4.66 (1H, d, J = 9.6 Hz), 4.45−4.33 (3H, m), 2.18 (1H,
bs), 2.00 (2H, quin., J = 7.7 Hz), 1.84−1.64 (2H, m), 1.48 (2H, m),
1.16 (9H, s); 13C NMR (100 MHz, CDCl3): δ 173.1 (CO), 162.8

Figure 8. Effects of 3 mg/kg of (A) AB-FUBINACA or (B) AB-PINACA on rat body temperature following pretreatment (30 min prior) with
vehicle, 3 mg/kg rimonabant (CB1 antagonist), or 3 mg/kg SR144528 (CB2 antagonist). The first dashed line denotes time of intraperitoneal
injection of vehicle or antagonist. Second dashed line represents time of intraperitoneal injection of SC. Each point represents the mean ± SEM for
three animals.
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(CO), 141.0 (quat.), 136.8 (quat.), 126.9 (CH), 123.0 (quat.), 122.8
(CH), 122.7 (CH), 109.4 (CH), 83.9 (d, 1JC−F = 164.6, CH2), 59.8
(CH), 49.4 (CH2), 34.8 (quat.), 30.0 (d, 2JC−F = 19.7 Hz, CH2), 29.4
(CH2), 26.9 (CH3), 22.8 (d, 3JC−F = 5.1 Hz, CH2);

19F NMR (376
MHz, CDCl3): δ −218.3; LRMS (+ESI): m/z 317.9 ([M −
CONH3]

+, 100%), 345.9 ([M − NH3]
+, 50%), 362.8 ([M + H]+,

17%); Anal. Calcd for C19H27N4O2F: C, 62.96; H, 7.51; N, 15.46.
Found: C, 63.12; H, 7.57; N, 15.29.
(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-

1H-indole-3-carboxamide (AB-FUBICA, 13). Treating 37 (1.20 g, 4.5
mmol) with 19 (1.03 g, 6.7 mmol) according to general procedure A
gave, following recrystallization from i-PrOH, 13 (1.28 g, 82%) as a
white solid. mp 212−214 °C; 1H NMR (300 MHz, DMSO-d6): δ 8.53
(1H, bs), 8.11 (1H, m), 7.64−7.50 (2H, m), 7.48 (1H, bs), 7.41−7.27
(2H, m), 7.24−7.10 (4H, m), 7.07 (1H, bs), 5.45 (2H, m), 4.36 (1H,
m), 2.09 (1H, m), 0.94 (6H, dd, J = 6.7 Hz, 2.7 Hz); 13C NMR (75
MHz, DMSO-d6): δ 173.5 (CO), 164.0 (CO), 161.6 (quat., d,

1JC−F =
243.18 Hz), 136.0 (CH), 133.7 (quat., d, 4JC−F = 2.87 Hz), 131.6
(quat.), 129.3 (d, 3JC−F = 8.1 Hz, CH), 126.7 (CH), 122.1 (CH),
121.1 (CH), 120.8 (CH), 115.5 (d, 2JC−F = 21.4 Hz, CH), 110.6
(quat.), 110.0 (CH), 57.4 (CH), 48.7 (CH2), 30.4 (CH), 19.5 (CH3),
18.5 (CH3);

19F NMR (282 MHz, DMSO-d6): δ −114.9 (m); LRMS
(+ESI): m/z 350.9 ([M − NH3]

+, 100%), 367.8 ([M + H]+, 70%);
Anal. Calcd for C21H22N3O2F: C, 68.65; H, 6.04; N, 11.44. Found: C,
68.88; H, 6.15; N, 11.37; HPLC purity: 99.4%.
(S)-N-(1-Amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluoroben-

zyl)-1H-indole-3-carboxamide (ADB-FUBICA, 14). Treating 37 (0.63
g, 2.3 mmol) with 20 (0.46 g, 3.5 mmol) according to general
procedure A gave, following purification by flash chromatography
(hexane−EtOAc, 10:90), 14 (0.76 g, 86%) as a white solid. mp 107−
108 °C; 1H NMR (400 MHz, CDCl3): δ 8.03 (1H, d, J = 7.7 Hz), 7.73
(1H, s), 7.31−7.20 (4H, m), 7.14−7.06 (2H, m), 6.99 (2H, t, J = 8.6
Hz), 6.77 (1H, d, J = 9.2 Hz), 6.54 (1H, bs), 5.71 (1H, bs), 5.27 (2H,
s), 4.71 (1H, d, J = 9.2 Hz), 1.14 (9H, s); 13C NMR (100 MHz,
CDCl3): δ 173.4 (CO), 165.0 (CO), 162.6 (d, 1JC−F = 247.2 Hz,
quat.), 136.8 (CH), 132.0 (d, 4JC−F = 3.2 Hz, quat.), 131.8 (quat.),
128.8 (d, 3JC−F = 8.1 Hz, CH), 125.8 (quat.), 123.1 (CH), 122.1
(CH), 120.5 (CH), 116.6 (d, 2JC−F= 21.6 Hz, CH), 111.4 (quat.),
110.7 (CH), 59.9 (CH), 50.1 (CH2), 34.9 (quat.), 27.0 (CH3);

19F
NMR (376 MHz, CDCl3): δ −113.9; LRMS (+ESI): m/z 363.9 ([M
− NH3]

+, 100%), 381.8 ([M + H]+, 42%); Anal. Calcd C22H24N3O2F:
C, 69.27; H, 6.34; N, 11.02. Found: C, 69.68; H, 6.02; N, 10.95.
(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indole-3-

carboxamide (AB-PICA, 15). Treating 38 (0.50 g, 2.2 mmol) with 19
(0.50, 3.3 mmol) according to general procedure A gave, following
purification by flash chromatography (hexane−EtOAc, 10:90), 15
(0.58 g, 81%) as a white solid. mp 214−215 °C; 1H NMR (400 MHz,
DMSO-d6): δ 8.25 (1H, s), 8.11 (1H, d, J = 7.7 Hz), 7.61−7.39 (3H,
m), 7.20 (1H, m), 7.13 (1H, t, J = 7.6 Hz), 7.06 (1H, bs), 4.35 (1H,
m), 4.19 (2H, m), 2.09 (1H, dq, J = 13.5 Hz, 6.8 Hz), 1.08 (2H, quin.,
J = 7.3 Hz), 1.39−1.19 (4H, m), 0.94 (6H, dd, J = 6.6 Hz, 3.1 Hz),
0.85 (3H, t, J = 7.0 Hz); 13C NMR (100 MHz, DMSO-d6): δ 173.6
(CO), 164.0 (CO), 136.1 (CH), 131.2 (quat.), 126.5 (quat.), 121.8
(CH), 121.0 (CH), 120.6 (CH), 110.3 (quat.), 109.3 (CH), 57.3
(CH), 45.8 (CH2), 30.3 (CH), 29.3 (CH2), 28.4 (CH2), 21.7 (CH2),
19.5 (CH2), 18.5 (CH3), 13.8 (CH3); LRMS (+ESI): m/z 312.87 ([M
− NH2]

+, 100%), 329.80 ([M + H]+, 60%); Anal. Calcd for
C19H27N3O2: C, 69.27; H, 8.26; N, 12.76. Found: C, 69.21; H, 8.66;
N, 12.55; HPLC purity: 99.1%.
(S)-N-(1-Amino-3,3-dimethyl-1-oxobutan-2-yl)-1-pentyl-1H-in-

dole-3-carboxamide (ADBICA, 16). Treating 38 (0.57 g, 2.5 mmol)
with 20 (0.49 g, 3.7 mmol) according to general procedure A gave,
following purification by flash chromatography (hexane−EtOAc,
10:90), 16 (0.64 g, 75%) as a white solid. mp 138−139 °C; 1H
NMR (400 MHz,CDCl3): δ 8.01 (1H, m), 7.72 (1H, s), 7.38 (1H, m),
7.33−7.22 (2H, m), 6.74 (1H, d, J = 8.9 Hz), 6.60 (1H, bs), 5.71 (1H,
bs), 4.73 (1H, d, J = 8.9 Hz), 4.11 (2H, t, J = 7.2 Hz), 1.85 (2H, m),
1.42−1.25 (4H, m), 1,15 (9H, s), 0.89 (3H, t, J = 7.0 Hz); 13C NMR
(100 MHz, CDCl3): δ 173.5 (CO), 165.2 (CO), 136.8 (CH), 131.6
(quat.), 125.6 (quat.), 122.6 (CH), 121.8 (CH), 120.4 (CH), 110.6

(quat.), 110.4 (CH), 59.9 (CH), 47.1 (CH2), 34.9 (quat.), 29.8
(CH2), 29.1 (CH2), 27.0 (CH2), 22.4 (CH3), 14.0 (CH3); LRMS
(+ESI): m/z 326.9 ([M − NH3]

+, 100%), 343.9 ([M + H]+, 31%);
Anal. Calcd for C20H29N3O2: C, 69.94; H, 8.51; N, 12.23. Found: C,
70.23; H, 8.65; N, 12.17.

(S)-N-(1-Amino-3-methyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-
1H-indole-3-carboxamide (5F-AB-PICA, 17). Treating 39 (1.53 g, 6.5
mmol) with 19 (1.50 g, 9.8 mmol) according to general procedure A
gave, following recrystallization from i-PrOH, 17 (1.56 g, 69%) as a
white solid. mp 210−211 °C; 1H NMR (400 MHz, DMSO-d6): δ 8.25,
(1H, s), 8.11, (1H, d, J = 7.8 Hz), 7.61−7.39 (3H, m), 7.25−7.10 (2H,
m), 7.07 (1H, bs), 4.47 (1H, t, J = 6.0 Hz), 4.35 (2H, m), 4.21 (2H,
m), 2.09 (1H, dq, J = 13.5 Hz, 6.8 Hz), 1.84 (2H, m), 1.67 (2H, m),
1.35 (2H, m), 0.93 (6H, dd, J = 6.5 Hz, 2.9 Hz); 13C NMR (100 MHz,
DMSO-d6): δ 173.7 (CO), 164.1 (CO), 136.1 (CH), 131.3 (quat.),
126.5 (quat.), 121.9 (CH), 121.0 (CH), 120.7 (CH), 110.4 (quat.),
109.4 (CH), 83.7 (d, 1JC−F = 161.7 Hz, CH2), 57.4 (CH), 45.78
(CH2), 30.5 (CH), 29.5 (CH2), 29.3 (d,

3JC−F = 3.8 Hz, CH2), 22.2 (d,
2JC−F = 5.3 Hz, CH2), 19.5 (CH3), 18.5 (CH3);

19F NMR (376 MHz,
DMSO-d6): δ −216.86; LRMS (+ESI): m/z 330.9 ([M − NH3]

+,
100%), 347.8 ([M + H]+, 67%); Anal. Calcd for C19H26N3O2F: C,
65.68; H, 7.54; N, 12.09. Found: C, 65.83; H, 7.66; N, 11.99.

(S)-N-(1-Amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropen-
tyl)-1H-indole-3-carboxamide (5F-ADBICA, 18). Treating 39 (1.14 g,
4.9 mmol) with 20 (0.95 g, 7.3 mmol) according to general procedure
A gave, following purification by flash chromatography (hexane−
EtOAc, 90:10), 18 (1.14 g, 65%) as a white solid. mp 130−131 °C; 1H
NMR (400 MHz, CDCl3): δ 8.02 (1H, m), 7.71 (1H, s), 7.37 (1H,
m), 7.32−7.23 (2H, m), 6.76 (1H, d, J = 9.2 Hz), 6.67 (1H, bs), 5.74
(1H, bs), 4.74 (1H, d, J = 9.2 Hz), 4.47 (2H, dt, 2JH−F = 48, 3JH−H =
6.0 Hz), 4.13 (2H, t, J = 7.1 Hz), 1.90 (2H, m), 1.70 (2H, m), 1.45
(2H, m), 1.15 (9H, s) ppm; 13C NMR (100 MHz, CDCl3): δ 173.5
(CO), 165.1 (CO), 136.7 (CH), 131.5 (quat.), 125.7 (quat.), 122.7
(CH), 121.8 (CH), 120.5 (CH), 110.8 (quat.), 110.3 (CH), 83.8 (d,
1JC−F = 164.8 Hz, CH2), 59.9 (CH), 46.9 (CH2), 34.9 (quat.), 30.1 (d,
2JC−F = 19.9 Hz, CH2), 29.8 (CH2), 27.0 (CH3), 23.0 (d, 3JC−F = 5.1
Hz, CH2);

19F NMR (376 MHz, CDCl3): δ −218.53; LRMS (+ESI):
m/z 344.9 ([M − NH3]

+, 100%), 361.8 ([M + H]+, 26%); Anal. Calcd
for C20H28N3O2F: C, 66.46; H, 7.81; N, 11.63. Found: C, 66.20; H,
7.94; N, 11.19.

L-tert-Leucinamide (20). To a solution of 23 (15.6 g, 59 mmol) in
THF (150 mL) was added 10% Pd/C (3.0 g), and the mixture was
stirred under an atmosphere of H2 for 12 h. The suspension was
filtered through a pad of Celite, and the filtrate was evaporated under
reduced pressure. The resulting solid was recrystallized from EtOAc−
hexane to yield 20 (4.74 g, 48%) as a white solid. mp 105−106 °C; 1H
NMR (500 MHz, DMSO-d6): δ 7.17 (1H, bs), 6.81 (1H, bs), 3.35
(1H, bs), 2.79 (1H, s), 1.5 (2H, bs), 0.88 (9H, s); 13C NMR (125
MHz, DMSO-d6): δ 176.17 (CO), 62.83 (CH), 33.56 (quat.), 26.53
(CH3); LRMS (+ESI): m/z 130.9 ([M + H]+, 100%).

N-Cbz-L-tert-leucine (22). A cooled (0 °C) solution of L-tert-leucine
(21, 10.0 g, 76 mmol) and 5 M aq. NaOH (15 mL, 75 mmol, 1.0
equiv) in H2O (25 mL) was treated dropwise with benzyl
chloroformate (12 mL, 84 mmol, 1.1 equiv) and 2 M aq. NaOH
(42 mL, 84 mmol, 1.1 equiv), simultaneously. The mixture was
warmed to rt and stirred for 2 h, and the pH was adjusted to 10 by the
addition of sat. aq. NaHCO3. The aqueous layer was washed with Et2O
(3 × 50 mL), acidified to pH 3 with 2 M aq. HCl, and extracted with
Et2O (4 × 50 mL). The combined organic phases were dried
(MgSO4), and the solvent was evaporated under reduced pressure to
give a 22 (20 g, 99%) as a colorless oil. 1H NMR (400 MHz, CDCl3):
δ 7.43−7.29 (5H, m), 5.78 (1H, bs), 5.36 (1H, d, J = 9.5 Hz), 5.12
(2H, m), 4.21 (1H, d, J = 9.5 Hz), 1.02 (9H, s); 13C NMR (100 MHz,
CDCl3): δ 176.0 (CO), 156.4 (CO), 136.3 (quat.), 128.7 (CH), 128.4
(CH), 128.3 (CH), 67.4 (CH), 62.3 (CH2), 34.7 (quat.), 26.6 (CH3);
LRMS (−ESI): m/z 528.9 ([2M − H] −, 100%), 263.9 ([M − H]−,
76%).

N-Cbz-L-tert-leucinamide (23). To a solution of 22 (20.2 g, 76
mmol) in DMF (400 mL) were added NH4Cl (4.95 g, 93 mmol, 1.2
equiv), Et3N (32 mL, 229 mmol, 3.0 equiv), HOBt (13.2 g, 98 mmol,
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1.3 equiv), and EDC·HCl (18.8 g, 98 mmol, 1.3 equiv). After stirring
for 16 h, the reaction was quenched with sat. aq. NaHCO3 (100 mL),
and the aqueous phase was extracted with EtOAc (3 × 200 mL). The
combined organic phases were washed with H2O (3 × 200 mL) and
brine (100 mL) and dried (MgSO4), and the solvent removed under
reduced pressure. The obtained crude solid was recrystallized from
EtOAc−hexane to give 23 (16.9 g, 84%) as a white solid. mp 138−140
°C; 1H NMR (300 MHz, CDCl3): δ 7.40−7.29 (5H, m), 6.11 (1H,
bs), 5.75 (1H, bs), 5.62 (1H, d, J = 9.5 Hz), 5.08 (2H, m), 4.03 (1H, d,
J = 9.5 Hz), 1.01 (9H, s); 13C NMR (75 MHz, CDCl3): δ 175.1 (CO),
156.7 (CO), 136.4 (quat.), 128.7 (CH), 128.3 (CH), 128.1 (CH),
67.2 (CH), 62.4 (CH2), 34.4 (quat.), 26.6 (CH3); LRMS (+ESI): m/z
264.8 ([M + H]+, 100%).
Methyl 1H-Indazole-3-carboxylate (25). A solution of indazole-3-

carboxylic acid (24, 2.00 g, 12.3 mmol) in MeOH (30 mL) was treated
with conc. H2SO4 (2 mL) and heated at reflux for 4 h. The mixture
was concentrated in vacuo and dissolved in EtOAc (50 mL). The
organic phase was washed with sat. aq. NaHCO3 (20 mL), H2O (20
mL), and brine (20 mL) and dried (MgSO4), and the solvent was
evaporated under reduced pressure. The crude solid was recrystallized
from EtOAc−hexane to give 25 (1.65 g, 76%) as a white solid. mp
168−170 °C; 1H NMR (300 MHz, CDCl3): δ 8.23 (1H, m), 7.77
(1H, m), 7.49 (1H, m), 7.35 (1H, m), 4.08 (3H, s); 13C NMR (75
MHz, CDCl3): δ 163.41 (CO), 141.42 (quat.), 136.27 (quat.), 127.73
(CH), 123.60 (quat,), 122.50 (CH), 121.92 (CH), 111.35 (CH),
52.31 (CH3); LRMS (ESI): m/z 176.8 ([M + H]+, 100%).
General Procedure B: Alkylation of Methyl 1H-Indazole-3-

carboxylate. To a cooled (0 °C) solution of 25 (2.17 g, 12.3 mmol)
in THF (60 mL) was added t-BuOK (1.52 g, 13.5 mmol, 1.1 equiv).
The mixture was warmed to rt, stirred for 1 h, and cooled (0 °C), and
the appropriate bromoalkane (19.7 mmol, 1.6 equiv) was added
dropwise. The mixture was warmed to rt and stirred for 48 h, and H2O
(60 mL) was added. The layers were separated, the aqueous layer was
extracted with EtOAc (2 × 50 mL), and the combined organic phases
were washed with H2O (3 × 50 mL) and brine (20 mL) and dried
(MgSO4), and the solvent was evaporated under reduced pressure.
Methyl 1-(4-Fluorobenzyl)-1H-indazole-3-carboxylate (26).

Treating 25 (2.30 g, 13.1 mmol) with 4-fluorobenzyl bromide (1.78
mL, 14.3 mmol) according to general procedure B gave, following
purification by flash chromatography (hexane−EtOAc 70:30), 26
(2.50 g, 67%) as a clear glass-like solid. 1H NMR (300 MHz, CDCl3):
δ 8.24 (1H, dt, J = 8.1 Hz, 1.1 Hz), 7.44−7.27 (3H, m), 7.25−7.16
(2H, m), 7.03−6.93 (2H, m), 5.67 (2H, s), 4.05 (3H, s); 13C NMR
(75 MHz, CDCl3): δ 163.1 (CO), 162.6 (d, 1JC−F = 247.3 Hz, quat.),
140.6 (quat.), 135.3 (quat.), 131.6 (d, 4JC−F = 3.0 Hz, quat.), 129.2 (d,
3JC−F = 8.1 Hz, CH), 127.3 (CH), 124.3 (CH), 123.5 (quat.), 122.5
(CH), 116.0 (d, 2JC−F = 22.1 Hz, CH), 110.0 (CH), 53.5 (CH2), 52.3
(CH3);

19F NMR (282 MHz, CDCl3): δ −113.8 (m); LRMS (+ESI):
m/z 284.8 ([M + H]+, 100%).
Methyl 1-Pentyl-1H-indazole-3-carboxylate (27). Treating 25

(1.57 g, 8.9 mmol) with 1-bromopentane (1.75 mL, 14.1 mmol)
according to general procedure B gave, following purification by flash
chromatography (hexane−EtOAc 70:30), 26 (1.46 g, 77%) as a clear
glass-like solid. 1H NMR (400 MHz, CDCl3): δ 8.22 (1H, m), 7.50−
7.39 (2H, m), 7.30 (1H, m), 4.47 (2H, t, J = 7.4 Hz), 4.04 (3H, s),
1.97 (2H, quin., J = 7.2 Hz), 1.40−1.25 (4H, m), 0.88 (3H, m); 13C
NMR (100 MHz, CDCl3): δ 163.0 (CO), 140.7 (quat.), 134.9 (quat.),
126.8 (CH), 123.9 (quat.), 123.1 (CH), 122.5 (CH), 109.8 (CH),
61.1 (CH2), 50.1 (CH3), 29.7 (CH2), 29.1 (CH2), 22.4 (CH2), 14.0
(CH3); LRMS (+ESI): m/z 246.9 ([M + H]+, 100%).
Methyl 1-(5-Fluoropentyl)-1H-indazole-3-carboxylate (28). Treat-

ing 25 (2.30 g, 13.1 mmol) with 1-bromo-5-fluoropentane (2.42 g,
14.3 mmol) according to general procedure B gave, following
purification by flash chromatography (hexane−EtOAc 70:30), 28
(2.39 g, 69%) as a colorless glass-like solid. 1H NMR (400 MHz,
CDCl3): δ 8.24 (1H, m), 7.50−7.41 (2H, m), 7.32 (1H, m), 4.54−
4.43 (3H, m), 4.35 (1H, t, J = 5.9 Hz), 4.04 (3H, s), 2.03 (2H, quin., J
= 7.6 Hz), 1.80- 1.64 (2H, m), 1.52−1.41 (2H, m); 13C NMR (100
MHz, CDCl3): δ 163.2 (CO), 140.7 (quat.), 134.8 (quat.), 127.0
(CH), 123.9 (CH), 123.3 (quat.), 122.5 (CH), 109.7 (CH), 83.8 (d,

1JC−F = 165.1 Hz, quat.), 52.2 (CH2), 49.9 (CH3), 30.1 (d, 2JC−F =
19.7, CH2), 29.6 (CH2), 22.9 (d,

3JC−F = 5.1 Hz, CH2);
19F NMR (376

MHz, CDCl3): δ −218.7; LRMS (+ESI): m/z 264.8 ([M + H]+,
100%).

General Procedure C: Hydrolysis of Methyl 1-Alkyl-1H-
indazole-3-carboxylates. A solution of the appropriate methyl 1-
alkyl-1H-indazole-3-carboxylate (12.3 mmol) in MeOH (100 mL) was
treated with 1 M aq. NaOH (18.5 mL, 18.5 mmol, 1.5 equiv) and
stirred for 24 h. The solvent was reduced in vacuo, and the residue was
dissolved in H2O, acidified with 1 M aq. HCl, and extracted with
EtOAc (2 × 50 mL). The organic phase was dried (MgSO4), and the
solvent was evaporated under reduced pressure to afford the free acid,
which was used in the subsequent coupling step without further
purification.

1-(4-Fluorobenzyl)-1H-indazole-3-carboxylic Acid (29). Subjecting
26 (2.30 g, 8.1 mmol) to general procedure C gave 29 (2.10 g, 96%)
as a white solid. mp 200−203 °C; 1H NMR (300 MHz, DMSO-d6): δ
13.02 (1H, bs), 8.09 (1H, m), 8.47 (1H, m), 7.47 (1H, m), 7.39−7.27
(3H, m), 7.16 (2H, m), 5.76 (2H, s); 13C NMR (75 MHz, DMSO-d6):
δ 163.4 (CO), 161.7 (d, 1JC−F = 244.8 Hz, quat.), 140.4 (quat.), 135.1
(quat.), 132.9 (d, 4JC−F = 2.8 Hz, quat.), 129.7 (d, 3JC−F = 8.3 Hz,
CH), 126.9, 123.2, 123.0, 121.6, 115.5 (d, 2JC−F = 21.3 Hz, CH), 110.7
(CH), 51.8 (CH2);

19F NMR (282 MHz, CDCl3): δ −114.6; LRMS
(+ESI): m/z 270.9 ([M + H]+, 100%).

1-Pentyl-1H-indazole-3-carboxylic Acid (30). Subjecting 27 (0.96
g, 3.9 mmol) to general procedure C gave 30 (0.65 g, 72%) as a white
solid. mp 81−82 °C; 1H NMR (300 MHz, CDCl3): δ 9.85 (1H, bs),
8.26 (1H, m), 7.56−7.41 (2H, m), 7.34 (1H, m), 4.49 (2H, t, J = 7.3
Hz), 1.99 (2H, m), 1.45−1.25 (4H, m), 0.88 (3H, t, J = 6.9 Hz); 13C
NMR (75 MHz, CDCl3): δ 167.3 (CO), 140.9 (quat.), 134.0 (quat.),
127.0 (CH), 124.0 (quat.), 123.6 (CH), 122.5 (CH), 109.9 (CH),
50.2 (CH2), 29.6 (CH2), 29.0 (CH2), 22.4 (CH2), 14.0 (CH3); LRMS
(+ESI): m/z 323.9 ([M + H]+, 100%).

1-(5-Fluoropentyl)-1H-indazole-3-carboxylic Acid (31). Subjecting
28 (2.2 g, 8.3 mmol) to general procedure C gave 31 (1.9 g, 91%) as a
white solid. mp 80−82 °C; 1H NMR (300 MHz, CDCl3): δ 9.88 (1H,
bs), 8.27 (1H, m), 7.55−7.43 (2H, m), 7.36 (1H, m), 4.60−4.45 (3H,
m), 4.34 (1H, t, J = 5.9 Hz), 2.06 (2H, m), 1.86−1.62 (2H, m), 1.58−
1.39 (2H, m); 13C NMR (75 MHz, CDCl3): δ 167.4 (CO), 140.2
(quat.), 134.2 (quat.), 127.2 (CH), 124.0 (CH), 123.7 (CH), 122.5
(quat.), 109.8 (CH), 83.8 (d, 1JC−F = 165.1 Hz, CH2), 50.0 (CH2),
30.1 (d, 2JC−F = 19.8 Hz, CH2), 29.5 (CH2), 22.8 (d, 3JC−F = 4.9 Hz,
CH2);

19F NMR (282 MHz, CDCl3): δ −218.6; LRMS (+ESI): m/z
187.1 (100%), 250.9 ([M]+, 49%).

General Procedure D: One-Pot Synthesis of 1-Alkyl-3-
(trifluoroacetyl)indoles. A cooled (0 °C) suspension of NaH
(60% dispersion in mineral oil, 0.68 g, 17.1 mmol, 2.0 equiv) in DMF
(10 mL) was treated with a solution of indole (33, 1.00 g, 8.5 mmol)
in DMF (2 mL), warmed to rt, and stirred for 10 min. The mixture
was cooled to 0 °C, treated slowly with the appropriate bromoalkane
(1.05 equiv), warmed to rt, and stirred for 1 h. The solution was
cooled to 0 °C, treated with (CF3CO)2O (3.00 mL, 21.3 mmol, 2.5
equiv), warmed to rt, and stirred for 1 h. The mixture was poured onto
ice−water (120 mL) and stirred vigorously. The mixture was filtered,
and the precipitate was dried to give the crude product as a red solid,
which was used in the following step without purification.

1-(4-Fluorobenzyl)-3-(trifluoroacetyl)indole (34). Subjecting 4-
fluorobenzyl bromide (1.13 mL, 9.0 mmol) to general procedure D
gave 34 as a red crystalline solid (2.72 g, 100%). mp 83−86 °C; 1H
NMR (400 MHz, CDCl3): δ 8.43 (1H, m), 7.96 (1H, m), 7.38 (1H,
m), 7.43−7.29 (2H, m), 7.22−7.12 (2H, m), 7.11−7.00 (2H, m), 5.38
(2H, s); 13C NMR (100 MHz, CDCl3): δ 175.1 (q, 2JC−F = 34.9 Hz,
CO), 162.9 (d, 1J C−F = 247.5 Hz, quat.), 137.5 (q, 3JC−F = 4.9 Hz,
CH), 136.9 (quat.), 130.7 (d, 3JC−F = 3.4 Hz, quat.), 129.7 (d, 2JC−F =
8.1 Hz, CH), 127.3 (quat.), 125.0 (quat.), 124.3 (CH), 123.0 (CH),
117.1 (q, 1JC−F = 291.8 Hz, quat.), 116.4 (d, 2JC−F = 22.2 Hz, CH),
110.8 (CH), 110.2 (CH), 50.8 (CH2);

19F NMR (282 MHz, CDCl3):
δ −112.9 (m), −72.3; LRMS (+ESI): m/z 321.9 ([M + H]+, 100%).

1-Pentyl-3-(trifluoroacetyl)indole (35). Subjecting 1-bromopentane
(1.11 mL, 8.96 mmol) to general procedure D gave 35 as a red
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crystalline solid (2.41 g, 100%). mp 56−57 °C; 1H NMR (400 MHz,
CDCl3): δ 8.42 (1H, m), 7.93 (1H, d, J = 1.5 Hz), 7.47−7.33 (3H, m),
4.20 (2H, t, J = 7.21), 1.93 (2H, quin., J = 7.16 Hz), 1.46−1.31 (4H,
m), 0.92 (3H, t, J = 7.02 Hz); 13C NMR (75 MHz, CDCl3): δ 174.9
(q, 2JC−F = 34.7 Hz, CO), 137.4 (q, 3JC−F = 4.9 Hz, CH), 136.8
(quat.), 127.3 (quat.), 124.6 (quat.), 124.0 (CH), 122.9 (CH), 117.3
(q, 1JC−F = 291.5 Hz, quat.), 110.5 (CH), 109.6 (CH), 47.8 (CH2),
29.6 (CH2), 29.0 (CH2), 22.3 (CH2), 14.0 (CH3);

19F NMR (376
MHz, CDCl3): δ −72.2; LRMS (ESI): m/z 284.0 ([M + H]+, 100%).
1-(5-Fluoropentyl)-3-(trifluoroacetyl)indole (36). Subjecting 1-

bromo-5-fluoropentane (1.51 g, 9.0 mmol) to general procedure D
gave 36 as a red solid (2.59 g, 100%). mp 55−57 °C; 1H NMR (500
MHz, CDCl3): δ 8.41 (1H, m), 7.93 (1H, m), 7.46−7.32 (3H, m),
4.45 (2H, dt, 2JH−F = 45, 3JH−H = 5.8 Hz), 4.23 (2H, t, J = 7.2 Hz),
1.99 (2H, m), 1.75 (2H, m), 1.52 (2H, m); 13C NMR (125 MHz,
CDCl3): δ 174.9 (q, 2JC−F = 34.8 Hz, CO), 137.4 (q, 3JC−F = 5.0 Hz,
CH), 136.7 (quat.), 127.3 (quat.), 124.7 (CH), 124.1 (CH), 122.9
(CH), 117.2 (q, 1JC−F = 291.3 Hz, quat.), 110.4 (CH), 109.7 (quat.),
83.7 (d, 1JC−F = 165.1 Hz, CH2), 47.7 (CH2), 30.0 (d, 2JC−F 19.9 Hz,
CH2), 29.5 (CH2), 23.0 (d, 3JC−F = 4.5 Hz, CH2);

19F NMR (470
MHz, CDCl3): δ −72.2, −218.9; LRMS (+ESI): m/z 302.0 ([M +
H]+, 100%).
General Procedure E: Synthesis of 1-Alkylindole-3-carbox-

ylic Acids. To a refluxing solution of KOH (1.57 g, 28.1 mmol, 3.3
equiv) in MeOH (3 mL) was added, portionwise, a solution of the
appropriate crude 1-alkyl-3-trifluoroacetylindole (8.5 mmol) in toluene
(7 mL). After heating at reflux for 2 h, the mixture was cooled to
ambient temperature, and H2O (30 mL) was added. The layers were
separated, and the organic layer was extracted with 1 M aq. NaOH (8
mL). The combined aqueous phases were acidified to pH 1 with 10 M
aq. HCl, extracted with Et2O (3 × 10 mL), and dried (MgSO4), and
the solvent was removed under reduced pressure. The crude solid was
recrystallized from i-PrOH to give the appropriate 1-alkylindole-3-
carboxylic acid as colorless crystals.
1-(4-Fluorobenzyl)indole-3-carboxylic Acid (37). Subjecting 34

(2.74 g, 8.5 mmol) to general procedure E gave 37 (1.51 g, 66%) as a
colorless crystalline solid. mp 205−208 °C; 1H NMR (400 MHz,
DMSO-d6): δ 8.22 (1H, s), 8.02 (1H, m), 7.54 (1H, m), 7.40−7.31
(2H, m), 7.24−7.11 (4H, m), 5.48 (2H, s); 13C NMR (100 MHz,
DMSO-d6): δ 165.5 (CO), 161.6 (d, 1JC−F = 243.3 Hz, quat.), 136.2
(CH), 135.4 (quat.), 133.4 (d, 3JC−F = 3.2 Hz, quat.), 129.5 (d, 3JC−F =
8.3 Hz, CH), 126.6 (quat.), 122.4 (CH), 121.4 (CH), 120.9 (CH),
115.4 (CH, d, 2JC−F = 21.7), 111.0 (CH), 107.0 (quat.), 48.7 (CH2)
ppm; 19F NMR (282 MHz, DMSO-d6) δ −114.80 (m) ppm; LRMS
(+ESI): m/z 283.9 (100%), 269.9 ([M + H]+, 10%).
1-Pentylindole-3-carboxylic Acid (38). Subjecting 35 (2.00 g, 7.1

mmol) to general procedure E gave 38 (0.88 g, 54%) as a colorless
crystalline solid. mp 101−102 °C (lit mp 106−108 °C);28 1H NMR
(300 MHz, CDCl3): δ 9.87 (1H, bs), 8.26 (1H, m), 7.93 (1H, s), 7.39
(1H, m). 7.35−7.27 (2H, m), 4.17 (2H, t, J = 7.1 Hz), 1.90 (2H, quin.,
J = 7.1 Hz), 1.46−1.25 (4H, m), 0.91 (3H, t, J = 6.8 Hz); 13C NMR
(75 MHz, CDCl3): δ 170.7 (CO), 136.9 (CH), 135.6 (quat.), 127.2
(quat.), 123.0 (quat.), 122.3 (CH), 122.1 (CH), 110.2 (CH), 106.4
(CH), 47.3 (CH2), 29.7 (CH2), 29.1 (CH2), 22.4 (CH2), 14.0 (CH3);
LRMS (+ESI): m/z 245.9 (100%), 231.9 ([M + H]+, 16%).
1-(5-Fluoropentyl)indol-3-carboxylic Acid (39). Subjecting 36

(2.57 g, 8.5 mmol) to general procedure E gave 39 (1.36 g, 68%) as
a colorless crystalline solid. mp 117−118 °C; 1H NMR (400 MHz,
CDCl3): δ 8.26 (1H, m), 7.93 (1H, s), 7.38 (1H, m), 7.35−7.28 (2H,
m), 4.43 (2H, dt, 2JH−F = 48, 3JH−H = 5.9 Hz), 4.19 (2H, t, J = 7.1 Hz),
1.95 (2H, m), 1.73 (2H, m), 1.48 (2H, m); 13C NMR (100 MHz,
CDCl3): δ 170.8 (CO), 136.8 (CH), 135.5 (quat.), 127.2 (quat.),
123.1 (CH), 122.3 (CH), 122.1 (CH), 110.1 (CH), 106.6 (quat.),
83.8 (d, 1JC−F = 164.9 Hz, CH2), 47.2 (CH2), 30.1 (d,

2JC−F = 20.0 Hz,
CH2), 29.7 (CH2), 23.0 (d, 3JC−F = 5.0 Hz, CH2);

19F NMR (376
MHz, CDCl3): δ −218.6; LRMS (+ESI): m/z 263.9 (100%), 249.9
([M + H]+, 18%).
In Vitro Pharmacological Assessment of SCs. Mouse AtT-20

neuroblastoma cells stably transfected with human CB1 or human CB2
have been previously described14,36,41 and were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) containing 10% fetal bovine
serum (FBS), 100 U penicillin/streptomycin, and 300 μg/mL G418.
Cells were passaged at 80% confluence, as required. Cells for assays
were grown in 75 cm2

flasks and used at 90% confluence. The day
before the assay, cells were detached from the flask with trypsin/
EDTA (Sigma) and resuspended in 10 mL of Leibovitz’s L-15 media
supplemented with 1% FBS, 100 U penicillin/streptomycin, and 15
mM glucose (membrane potential assay and Ca5 calcium assay). The
cells were plated in a volume of 90 μL in black-walled, clear-bottomed
96-well microplates (Corning) that had been precoated with poly-L-
lysine (Sigma, Australia). Cells were incubated overnight at 37 °C in
ambient CO2.

Membrane potential was measured using a FLIPR membrane
potential assay kit (blue) from Molecular Devices, as described
previously.42 The dye was reconstituted with assay buffer of the
following composition (mM): NaCl 145, HEPES 22, Na2HPO4 0.338,
NaHCO3 4.17, KH2PO4 0.441, MgSO4 0.407, MgCl2 0.493, CaCl2
1.26, and glucose 5.56 (pH 7.4, osmolarity 315 ± 5). Prior to the
assay, cells were loaded with 90 μL/well of the dye solution without
removal of the L-15, giving an initial assay volume of 180 μL/well.
Plates were then incubated at 37 °C at ambient CO2 for 45 min.
Fluorescence was measured using a FlexStation 3 (Molecular Devices)
microplate reader, with cells excited at a wavelength of 530 nm and
emission measured at 565 nm. Baseline readings were taken every 2 s
for at least 2 min, at which time either drug or vehicle was added in a
volume of 20 μL. The background fluorescence of cells without dye or
dye without cells was negligible. Changes in fluorescence were
expressed as a percentage of baseline fluorescence after subtraction of
the changes produced by vehicle addition, which was less than 2% for
drugs dissolved in assay buffer or DMSO. The final concentration of
DMSO was not more than 0.1%.

Data were analyzed with PRISM (GraphPad Software Inc., San
Diego, CA), using four-parameter nonlinear regression to fit
concentration−response curves. In all plates, a maximally effective
concentration of CP 55,940 was added to allow for normalization
between assays.

In Vivo Pharmacological Assessment of SCs. Four cohorts of
3−4 adult male Wistar rats (Animal Resources Centre, Perth,
Australia) initially weighing between 168 and 186 g were used for
biotelemetric assessment of body temperature and heart rate changes
following each compound or following either compound administered
with a CB1 and CB2 antagonist. The rats were singly housed in an air-
conditioned testing room (22 ± 1 °C) on a 12 h reverse light/dark
cycle (lights on from 21:00 to 09:00). Standard rodent chow and water
were provided ad libitum. All experiments were approved by The
University of Sydney Animal Ethics Committee.

Biotelemetry transmitters (TA11CTA-F40, Data Sciences Interna-
tional, St. Paul, MN) were implanted as previously described.14,36

Briefly, following anesthetization (isoflurane, 3% induction, 2%
maintenance), a rostro-caudal incision was made along the midline
of the abdomen, and a biotelemetry transmitter (TA11CTA-F40, Data
Sciences International, St. Paul, MN) was placed in the peritoneal
cavity according to the manufacturer’s protocol. The wound was
sutured, and the rats were allowed 1 week of recovery before data
collection.

The rats were habituated over multiple days to injections of vehicle
(5% EtOH, 5% Tween 80, 90% physiological saline) at a set time of
day (11:00 am). The first two cohorts then received injections of each
compound at the same time of day in an ascending dose sequence
(0.1, 0.3, 1, 3 mg/kg). This ascending sequence reduces the risk posed
to the animals in assessing hitherto untested compounds, and the use
of multiple cohorts limits the potential development of tolerance to
the compound. Two washout days were given between each dose. If
only a modest or negligible hypothermic response was seen at 3 mg/
kg, then a further 10 mg/kg dose of the compound was given. At least
two washout days were given between each dose.

For the antagonist studies (Figure 8), the third and fourth cohorts
of drug-naiv̈e rats were used for each compound, with a 48 h washout
period between each dose. Each cohort received injections of either
vehicle, CB1 antagonist (rimonabant, 3 mg/kg), or CB2 antagonist
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(SR144528, 3 mg/kg), followed by AB-FUBINACA (3 mg/kg) or AB-
PINACA (3 mg/kg). The vehicle or antagonist injections were given
to rats 30 min prior to the AB-FUBINACA or AB-PINACA injection.
Data for heart rate and body temperature was gathered continuously

at 1000 Hz, organized into 15 or 30 min bins using Dataquest A.R.T.
software (version 4.3, Data Sciences International, St. Paul, MN), and
analyzed using Prism (GraphPad Software Inc., San Diego, CA).
We calculated the area between baseline and drug-treatment body

temperature curves for each rat as a measure of compound potency.
Briefly, for any time point, the area between baseline data points (Bt)
and drug-treatment data points (Dt) and the subsequent time points
(Bt+1 and Dt+1) forms a trapezoid, the area of which can be calculated
via the formula

= − + −+ +B D B D
area

( ) ( )
2

t t t t1 1

These areas were summed from the time of injection to 6 h
postinjection. This data was analyzed using a two-way mixed model
ANOVA with Bonferroni corrected contrasts comparing the
compounds at each dose.
For the antagonist studies, the area between the vehicle−vehicle

baseline and the vehicle−SC (i.e., vehicle−AB-FUBINACA or
vehicle−AB-PINACA), rimonabant−SC, and SR144528−SC treat-
ments was calculated over a 3 h time period postinjection of SC. These
areas were analyzed using a one-way repeated measures ANOVA with
planned Dunnet’s contrasts comparing the antagonist areas to the
vehicle−drug area.
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ABSTRACT: Indole and indazole synthetic cannabinoids
(SCs) featuring L-valinate or L-tert-leucinate pendant group
have recently emerged as prevalent recreational drugs, and
their use has been associated with serious adverse health
effects. Due to the limited pharmacological data available for
these compounds, 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-
FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and
their analogues were synthesized and assessed for cannabimi-
metic activity in vitro and in vivo. All SCs acted as potent,
highly efficacious agonists at CB1 (EC50 = 0.45−36 nM) and CB2 (EC50 = 4.6−128 nM) receptors in a fluorometric assay of
membrane potential, with a general preference for CB1 activation. The cannabimimetic properties of two prevalent compounds
with confirmed toxicity in humans, 5F-AMB and MDMB-FUBINACA, were demonstrated in vivo using biotelemetry in rats.
Bradycardia and hypothermia were induced by 5F-AMB and MDMB-FUBINACA doses of 0.1−1 mg/kg (and 3 mg/kg for 5F-
AMB), with MDMB-FUBINACA showing the most dramatic hypothermic response recorded in our laboratory for any SC (>3
°C at 0.3 mg/kg). Reversal of hypothermia by pretreatment with a CB1, but not CB2, antagonist was demonstrated for 5F-AMB
and MDMB-FUBINACA, consistent with CB1-mediated effects in vivo. The in vitro and in vivo data indicate that these SCs act
as highly efficacious CB receptor agonists with greater potency than Δ9-THC and earlier generations of SCs.

KEYWORDS: Cannabinoid, THC, JWH-018, AMB, MDMB

Synthetic cannabinoids (SCs) are the most rapidly growing
class of “designer drugs”, or new psychoactive substances

(NPSs).1 Consumer products available since about 2004 and
intended as “legal cannabis substitutes” were found in 2008 to
contain JWH-018 (1, Figure 1) and CP 47,497-C8 (2).2,3 In
2014, 177 different SCs were reported to the United Nations
Office on Drugs and Crime (UNODC) Early Warning
Advisory (EWA).4 Many novel SCs have already been
discovered in 2016, and the structural diversity of these
substances is increasing.5−14

SCs are typically found to function as agonists of
cannabinoid receptor type 1 (CB1) and type-2 (CB2), with
activation of the former accounting for the psychoactivity of
these substances.15 However, many SCs are unknown prior to
first detection by forensic chemists, and nothing is known of
their activity in humans. The scarcity of data regarding the
pharmacological and toxicological properties of emergent SCs

poses an ongoing challenge for scientists, healthcare workers,
and lawmakers across the globe.16−26

We have previously described the in vitro and in vivo
pharmacology of SCs based on 3-benzoylindoles (e.g., RCS-4,
3), 3-naphthoylindoles (e.g., AM-2201, 4), 3-alkanoylindoles
(e.g., XLR-11, 5), indole-3-carboxylates (e.g., 5F-PB-22, 6), and
indole-3-carboxamides (e.g., STS-135, 7).27−32 One of the most
prevalent, recent groups of SCs are 1-alkyl-1H-indazole-3-
carboxamides featuring pendant valinamide and tert-leucina-
mide groups, exemplified by AB-FUBINACA (8) and ADB-
PINACA (9), respectively. Following the designation of several
members of this class as Schedule I substances by the Drug
Enforcement Administration (DEA) in the United States
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(US),33,34 newer indole- and indazole-3-carboxamide variants
have appeared featuring currently popular 5-fluoropentyl, 4-
fluorobenzyl, cyclohexylmethyl, or pentyl substituents at the 1-
position, and valinate and tert-leucinate methyl ester side chains
(10−25, Figure 2).
5F-AMB-PICA (MMB-2201, 5F-AMBICA, 10) was reported

to the European Monitoring Centre for Drugs and Drug

Addiction (EMCDDA) following its identification in Hungary
and Sweden in 2014, and its indazole analogue, 5F-AMB-
PINACA (5F-AMB, 12), was found in Hungary contempora-
neously.35 The tert-leucinate analogue of 12, 5F-MDMB-
PINACA (5F-ADB, 13), was notified to the UNODC EWA
in Hungary and Japan in 2015. The indole derivative MDMB-
FUBICA (15) was discovered in Hungary and Sweden in 2015,
according to UNODC EWA, and AMB-FUBINACA (16) was
reported to the EMCDDA in Sweden around the same time.35

MDMB-FUBINACA (17) was identified following media
monitoring by EMCDDA after it was responsible for dozens
of deaths and hundreds of hospitalizations in the Russian
Federation in 2015.35,36 MDMB-CHMICA was first identified
in Hungary in 2014, but has since been reported to the EWA in
France, Mauritius, Serbia, Turkey, and the UK.35

SC use is associated with serious adverse reactions,37−53 and
the most recent SCs appear to possess greater dependence
liabilities54−57 and toxicities58−64 than earlier examples. AMB-
FUBINACA was clinically confirmed in a case of rhabdomol-
ysis,65 and fatal intoxications have been attributed to
consumption of 5F-AMB,44,66,67 5F-ADB,68 and MDMB-
CHMICA.69−71

Aspects of the spectral properties of selected members of this
class of SCs have been reported,72−76 and details of the
metabolism of AMB-PICA and 5F-AMB were recently
published,77 but little is known about the pharmacology of
these compounds in vitro or in vivo.
A systematic library of indole and indazole SCs featuring a

valinate or tert-leucinate functional group was prepared and
screened for cannabinoid activity in vitro and in vivo, in order
to elucidate the hitherto unknown structure−activity relation-
ships within this class.

■ RESULTS AND DISCUSSION
The synthesis of indole and indazole SCs required a different
strategy for each heteroaromatic core. The synthesis of indole
SCs 10, 11, 14, 15, 18, 19, 22, and 23 is shown in Scheme 1,
and the synthesis of indazole SCs 12, 13, 16, 17, 20, 21, 24,
and 25 is shown in Scheme 2.
As shown in Scheme 1, indole was subjected to a one-pot

procedure in the presence of excess base whereby N-alkylation
with the appropriate alkyl bromide was followed treatment with
trifluoroacetic anhydride and gave trifluoroacetylindoles 27−
30. Base-mediated hydrolysis of the trifluoroacetyl groups of
27−30 gave the corresponding carboxylic acids 31−34. Finally,
amide bond formation was achieved by subjecting 31−34 to
HOBt/EDC coupling with methyl L-valinate or methyl tert-L-
leucinate to afford 10, 11, 14, 15, 18, 19, 22, and 23.
As depicted in Scheme 2, the synthesis of indazole analogues

started from methyl 1H-indazole-3-carboxylate (35), which was
regioselectively alkylated with the suitable bromoalkane to give
the 1-alkyl-1H-indazole-3-carboxylate methyl esters 36−39.
Saponification of esters 36−39 afforded the corresponding
acids 40−43, which were coupled to methyl L-valinate or
methyl tert-L-leucinate using the HOBt/EDC method described
above, to furnish 1-alkyl-1H-indazole-3-carboxamides 12, 13,
16, 17, 20, 21, 24, and 25.
The activity of synthesized indole and indazole SCs 10−25 at

CB1 and CB2 receptors was assessed in a fluorometric imaging
plate reader (FLIPR) assay to elucidate structure−activity
relationships (SARs) for this class. The activities of 10−25 at
CB1 and CB2 were compared to phytocannabinoid Δ9-THC (a
low efficacy agonist at CB1 and CB2), and CP 55,940 (an

Figure 1. Selected synthetic cannabinoids.

Figure 2. Emergent indole and indazole SCs featuring pendant methyl
valinate and methyl tert-leucinate functional groups.
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Scheme 1. Synthesis of Indole SCs 10, 11, 14, 15, 18, 19, 22, and 23a

aReagents and conditions: (a) (i) NaH, BrR1, DMF, 0 °C−rt, 1 h; (ii) (CF3CO)2O, DMF, 0 °C−rt, 1 h, 72−94%; (b) 1 M aq. NaOH, MeOH,
reflux, 24 h, 67−92%; (c) methyl L-valinate or methyl L-tert-leucinate, EDC·HCl, HOBt, DIPEA, DMSO, rt, 24 h, 63−81%.

Scheme 2. Synthesis of Indazole SCs 12, 13, 16, 17, 20, 21, 24, and 25a

aReagents and conditions: (a) t-BuOK, BrR1, THF, 0 °C−rt, 48 h; 65−84%; (b) 1 M aq. NaOH, MeOH, reflux, 24 h, 76−91%; (c) methyl L-valinate
or methyl L-tert-leucinate, EDC·HCl, HOBt, DIPEA, DMSO, rt, 24 h, 60−77%.

Table 1. Functional Activity of Δ9-THC, CP 55,940, and Novel SCs 10−25 at CB1 and CB2 Receptors

hCB1 hCB2

compd pEC50 ± SEM (EC50, nM) max ± SEM (% CP 55,940) pEC50 ± SEM (EC50, nM) max ± SEM (%CP 55,940) CB1 sel.
a

Δ9-THC 6.77 ± 0.05 (171) 50 ± 11 20 ± 3 at 10 μM
CP 55,490 7.47 ± 0.05 (42) 7.17 ± 0.07 (68) 1.6
5F-AMBICA (10) 8.62 ± 0.06(2.4) 107 ± 4 8.34 ± 0.07 (4.6) 94 ± 3 1.9
5F-MDMB-PICA (11) 9.35 ± 0.07(0.45) 110 ± 4 8.13 ± 0.05 (7.4) 94 ± 3 16.4
5F-AMB (12) 8.71 ± 0.04(1.9) 109 ± 3 7.99 ± 0.13 (10) 103 ± 7 5.3
5F-ADB (13) 9.23 ± 0.11(0.59) 108 ± 5 8.12 ± 0.06 (7.5) 94 ± 3 12.7
AMB-FUBICA (14) 7.45 ± 0.05(36) 106 ± 3 7.85 ± 0.09 (14) 86 ± 4 0.4
MDMB-FUBICA (15) 8.57 ± 0.05(2.7) 109 ± 3 7.60 ± 0.12 (25) 92 ± 6 9.3
AMB-FUBINACA (16) 8.71 ± 0.10(2.0) 103 ± 5 7.75 ± 0.05 (18) 92 ± 3 9.0
MDMB-FUBINACA (17) 8.41 ± 0.04 (3.9) 108 ± 3 7.26 ± 0.14 (55) 101 ± 9 14.1
AMB-CHMICA (18) 8.45 ± 0.08(3.5) 114 ± 4 7.93 ± 0.07 (12) 88 ± 4 3.4
MDMB-CHMICA (19) 8.00 ± 0.05 (10) 112 ± 3 7.15 ± 0.05 (71) 103 ± 3 7.1
AMB-CHMINACA (20) 8.29 ± 0.07(5.1) 109 ± 4 7.54 ± 0.13 (29) 92 ± 7 5.7
MDMB-CHMINACA (21) 7.99 ± 0.04 (10) 111 ± 2 6.89 ± 0.04 (128) 96 ± 3 12.8
AMBICA (22) 7.74 ± 0.10(18) 111 ± 6 7.63 ± 0.08 (23) 90 ± 4 1.3
MDMB-PICA (23) 8.77 ± 0.06 (1.7) 109 ± 4 7.78 ± 0.13 (17) 90 ± 5 10
AMB-PINACA (24) 8.48 ± 0.05 (3.3) 110 ± 3 7.79 ± 0.11 (16) 96 ± 5 4.8
MDMB-PINACA (25) 8.84 ± 0.06 (1.4) 112 ± 4 7.56 ± 0.06 (28) 91 ± 4 20

aCB1 selectivity expressed as the ratio of CB1 EC50 to CB2 EC50.
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efficacious agonist at CB1 and CB2), in an assay of CB receptor-
dependent membrane hyperpolarization (Table 1). The assay
used murine AtT20-FlpIn neuroblastoma cells stably expressing
human CB1 or CB2 receptors. Activation of CB receptors
resulted in opening of endogenous G protein-gated inwardly
rectifying potassium channels (GIRKs) that produced a
hyperpolarization of the cells which was reflected in a decrease
in the fluorescence of a proprietary membrane potential dye.
The maximum effects of Δ9-THC and 10−25 were compared
to the high efficacy CB1/CB2 agonist CP 55,490. Data for each
experiment were normalized to the change in fluorescence
produced by a maximally effective concentration of CP 55,940
(1 μM). CP 55,940 (1 μM) decreased fluorescence by 31 ± 1%
in CB1-expressing cells, and 26 ± 1% in CB2 expressing cells
(n = 18 each). None of 10−25 produced a significant change in
the membrane potential of wild type AtT-20 cells (n = 5 each,
data not shown), which do not express CB1 or CB2 receptors.
Consistent with a predominant coupling of CB1 and CB2
receptors to Gi/Go family G proteins, the effects of 10−25
were abolished by overnight treatment of the cells with
pertussis toxin (200 ng/mL), which blocks the coupling of
GPCR to Gi/Go family G proteins (n = 3 each, data not
shown).
All indole and indazole SCs 10−25 activated CB1 and CB2

receptors. All compounds had greater potency (0.45−36 nM)
than either Δ9-THC (171 nM) or CP 55,940 (42 nM) for CB1
receptor-mediated activation of GIRK. Consistent with our
previous studies using this assay, Δ9-THC was found to be a
low efficacy agonist at CB2 receptors, and its effects on GIRK
activation in AtT20-CB2 at 10 μM were only 20 ± 3% of that
mediated by a maximally effective concentration of CP 55,940
(1 μM). Compounds 10−25 had a similar maximal effect to CP
55,940 at CB1 and CB2 receptors, suggesting that these SCs are
also high efficacy agonists. Excluding 14, all SCs showed a
preference for CB1 receptors over CB2 receptors, ranging from
low (e.g., 22; 1.3 times) to moderate (e.g., 25; 20 times). The
psychoactivity of cannabinoids is attributed to activation of CB1
receptors,15 and our data are consistent the anecdotally
reported psychoactive effects of members of this class of SCs.
With the exception of several pairs of nearly equal potency

(16 and 17; 20 and 21), all tert-leucinate-functionalized SCs
were more potent CB1 agonists than the corresponding valinate
analogues, a trend that was also observed for tert-leucinimde
and valinamide analogues in our previous work.30

CB1 EC50 values for 10−25 ranged from 0.45 to 36 nM, but
only two of the 16 SCs had EC50 values greater than 10 nM (14

and 22), and two demonstrated subnanomolar potencies (11
and 13). The least potent SC in this class (AMB-FUBICA; 14)
was roughly 4 times more potent than Δ9-THC at CB1
receptors, while the most potent compound (5F-MDMB-
PICA; 11) was 380 times more potent than Δ9-THC.
Consistent with our previous work on other indole and

indazole SCs, there were no obvious trends for differences in
potency or efficacy when moving between these heteroaromatic
cores for corresponding pairs of compounds. However, within
the tert-leucinate-flunctionalized compounds, the nature of N-
alkyl substituent had a consistent effect on CB1 potency for
compounds containing either an indole or indazole core.
For the tert-leucinate functionalized indoles, CB1 potency

decreased as a function of N-alkyl substituent in the order of 5-
fluoropentyl (11), pentyl (23), 4-fluorobenzyl (15), and
cyclohexylmethyl (19), and this trend is depicted in Figure
3a. The same trend was found for corresponding indazoles 13,
25, 17, and 21, respectively (Figure 3b). Although no such clear
trend was evident for valinate-containing SCs, it is notable that
three of the five least potent SCs contained a cyclohexylmethyl
group at the 1-position (19, 20, and 21), and three of the five
most potent SCs contained a 5-fluoropentyl substituent (11,
12, and 13) regardless of heteroaromatic core or amino acid
ester side-chain.
Having demonstrated that 10−25 are potent and efficacious

cannabimimetic agents in vitro, we sought to demonstrate
activity of several of the most prevalent and toxic SCs in vivo.
Both 5F-AMB and MDMB-FUBINACA have been linked with
numerous incidents of adverse effects, including death, in
humans.35,36,44,66,67 The in vivo activity of 5F-AMB (12) and
MDMB-FUBINACA (17) were compared using biotelemetry
in rats to provide information regarding the activity of these
newer SCs in a living system. Biotelemetry provides a high
resolution, high fidelity alternative to the classical cannabinoid
tetrad, and has the capacity to show both the magnitude and
time-course of cannabinoid effects on rodent physiology.
In rodents, cross-substitution of older SCs, like JWH-018,

and Δ9-THC has been demonstrated, indicating that these
classes produce similar pharmacological effects despite
structural dissimilarity.78−81 Cannabinoids induce hypothermia
and bradycardia in rats, and these physiological changes are
common to phytocannabinoids like Δ9-THC and structurally
distinct indole and indazole SCs.82−84 We have previously
determined the hypothermic and bradycardic potencies of Δ9-
THC and numerous structurally diverse SCs, including JWH-
018, AM-2201, UR-144, XLR-11, APICA, STS-135, PB-22, 5F-

Figure 3. Hyperpolarization mediated by CB1 receptors induced by differently 1-substituted (a) indoles 11, 15, 19, and 23, and the corresponding
(b) indazoles 13, 17, 21, and 25 as a proportion of that produced by 1 μM CP 55,940. Membrane potential was measured using a fluorescent dye, as
outlined in the Methods. Each point represents the mean ± SEM of at least five independent determinations, each performed in duplicate. Data was
fitted with a four-parameter logistic equation in GraphPad Prism.
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PB-22, AB-PINACA, and AB-FUBINACA in rats.27,28,30 The
cannabimimetic activities of 5F-AMB and MDMB-FUBINACA
were assessed using radiotelemetry in male Long Evans rats,
and the effects of these SCs on body temperature (Figure 4)
and heart rate (Figure 5) are presented below.

Rat body temperatures 1 h prior to intraperitoneal (i.p.)
injection and 6 h post injection of 5F-AMB and MDMB-
FUBINACA are presented in 15 min bins in Figure 4. For each
drug, these data are presented for 1 h before (baseline) and 6 h
after injection of various doses. The dashed line on the figures
represents the time of SC injection. Each SC was investigated
using a cohort of 3−4 rats, with a different cohort used for the
two compounds. Doses were escalated from 0 mg/kg (baseline)
to 0.1, 0.3, 1, and 3 mg/kg for each compound with at least 2
washout days with no injections between each dose.
Both 5F-AMB and MDMB-FUBINACA evoked a substantial

hypothermic effect at doses of 0.1−1 mg/kg, and up to 3 mg/
kg in the case of 5F-AMB (Figure 4). The peak reduction in
body temperature was generally greater with MDMB-
FUBINACA (>3 °C) than 5F-AMB (>2 °C). The hypothermic
effects of MDMB-FUBINACA were so dramatic at a dose of
0.3 mg/kg, and differed so little from the increased dose of 1
mg/kg, that no higher doses were explored. These data indicate
that MDMB-FUBINACA is one of the most potent SCs
evaluated in rats in our laboratories thus far. Interestingly, the
0.1 mg/kg dose of MDMB-FUBINACA produced a strong
hypothermic response (>3 °C) in two of the four rats tested,

while the remaining pair did not respond. At higher doses, all
four rats responded consistently. When compared to 5F-AMB,
MDMB-FUBINACA induced a prolonged hypothermia at all
doses, with mean core body temperature returning to baseline
after more than 8 h at the smallest dose tested (0.1 mg/kg, data
shown in SI). This was verified by a statistical analysis showing
a significantly greater area under the curve for body
temperature (relative to vehicle baseline) for MDMB-
FUBINACA doses compared to 5F-AMB at 0.3 mg/kg (P <
0.05) and 1 mg/kg (P < 0.05) (see Figure S33, Supporting
Information).
Data for heart rate changes effected by 5F-AMB and MDMB-

FUBINACA are presented in 15 min bins in Figure 5, with the
dashed line on the figures representing time of SC injection. A
two-way mixed-model ANOVA with planned contrasts revealed
that 5F-AMB produced a significant decrease in heart rate over
the 6 h immediately following dosing at 0.3 mg/kg (P < 0.05),
1 mg/kg (P < 0.05), and 3 mg/kg (P < 0.01) compared to
vehicle. MDMB-FUBINACA did not significantly reduce heart
rate compared to vehicle at any dose over the same time period.
However, heart rate was reduced in the first 2 h following
injection with 0.3 mg/kg MDMB-FUBINACA (P < 0.05). It
should be noted that heart rate data were generally more
variable than those for body temperature. Variability in heart
rate data is expected due to multiple determinants; locomotor
activity, stress, and direct pharmacological cardiovascular
effects.
To confirm that the observed effects were mediated through

CB1 or CB2 receptors, the reversibility of the effects of 5F-AMB

Figure 4. Effects of (a) 5F-AMB and (b) MDMB-FUBINACA on rat
body temperature. Dashed line denotes time of intraperitoneal
injection. Each point represents the mean ± SEM for four animals.

Figure 5. Effects of (a) 5F-AMB and (b) MDMB-FUBINACA on rat
heart rate. Dashed line denotes time of intraperitoneal injection. Each
point represents the mean ± SEM for four animals.
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and MDMB-FUBINACA on body temperature and heart rate
in rats following pretreatment with either CB1 receptor
antagonist rimonabant or CB2 receptor antagonist SR144528
was assessed. Rimonabant is a potent and selective CB1
receptor antagonist, and reverses CB1-mediated cannabinoid
agonist effects in rodents85 and humans,15 while SR144528 is a
selective CB2 functional antagonist.

86

Rat body temperatures after injection (i.p.) with vehicle, CB1
antagonist (rimonabant, 3 mg/kg), or CB2 antagonist
(SR144528, 3 mg/kg) 30 min prior to treatment with either
5F-AMB (3 mg/kg) or MDMB-FUBINACA (1 mg/kg) are
presented in 15 min bins in Figure 6. For each treatment

condition, the data are presented for 1 h before (baseline) and
6 h after injection of various doses. The first dashed line on the
figure represents the time of vehicle/antagonist injection, and
the second dashed line represents time of SC injection. Each
SC was investigated using a cohort of 3−4 rats, with a different
cohort used for the two compounds.
Rimonabant pretreatment completely reversed the body

temperature decrease induced by 5F-AMB or MDMB-
FUBINACA, while pretreatment with SR144528 had no effect
on the hypothermic effects of 5F-AMB or MDMB-FUBINACA
(Figure 6a). These interpretations are confirmed by a statistical
analysis of the areas between each drug treatment and baseline

(Figure S35, Supporting Information), and suggest a CB1-
mediated hypothermic mechanism. Similar trends were
observed for the reversal of 5F-AMB- or MDMB-FUBINA-
CA-induced bradycardia by rimonabant but not SR144528,
however, these differences did not reach significance (data not
shown). This is likely due to a combination of the relatively
smaller magnitude of SC-induced bradycardic effects and high
variability of the heart rate data.

■ CONCLUSION
The proactive pharmacological evaluation of emergent SCs is
essential to harm minimization and law enforcement efforts
targeting these compounds. This study is the first to
pharmacologically characterize the most recent, prevalent
class of SC designer drugs based on 1-alkylindole-3-
carboxamide and 1-alkyl-1H-indazole-3-carboxamide scaffolds
featuring pendant methyl L-valinate or methyl L-tert-leucinate
functional groups. Synthetic routes to identified SCs of forensic
interest (5F-AMBICA, 5F-AMB, AMB-FUBINACA, MDMB-
FUBINACA, MDMB-CHMICA), as well as several anticipated
but hitherto undetected analogues, were developed. These
synthetic routes are general for 1-alkyl-1H-indole-3-carbox-
amides and 1-alkyl-1H-indazole-3-carboxamides and facilitate
the proactive development of reference standards for SCs
expected to appear in future. All synthesized SCs acted as
agonists of CB1 and CB2 receptors in the nanomolar range in a
FLIPR membrane potential assay, and are potent, functional
cannabinoids. In rats, 5F-AMB and MDMB-FUBINACA dose-
dependently effected hypothermia and bradycardia at doses of
0.1−1 mg/kg (and up to 3 mg/kg in the case of the former),
demonstrating that these SCs are potently cannabimimetic in
vivo. The dramatic reduction of body temperature induced by
MDMB-FUBINACA at doses as low as 0.1 mg/kg positions
this compounds as one of the most potent SCs explored in our
laboratories. The hypothermic effects of 5F-AMB (3 mg/kg)
and MDMB-FUBNACA (1 mg/kg) could be reversed by
pretreatment with CB1 antagonist rimonabant (3 mg/kg), but
not CB2 antagonist SR144528 (3 mg/kg), and appear to be
mediated through CB1 receptors. Taken together, in vitro and
in vivo data confirm that SCs 10−25 are cannabimimetic agents
of greater potency than Δ9-THC and earlier SCs.

■ METHODS
General Chemical Synthesis Details. All reactions were

performed under an atmosphere of nitrogen or argon unless otherwise
specified. Commercially available chemicals were used as purchased.
Analytical thin-layer chromatography was performed using Merck
aluminum-backed silica gel 60 F254 (0.2 mm) plates (Merck,
Darmstadt, Germany), which were visualized using shortwave (254
nm) UV fluorescence. Flash chromatography was performed using
Merck Kieselgel 60 (230−400 mesh) silica gel. Melting point ranges
(m.p.) were measured in open capillaries using a Stuart SMP10
melting point apparatus (Bibby Scientific, Staffordshire, UK) and are
uncorrected. Nuclear magnetic resonance spectra were recorded at 300
K using either a Bruker AVANCE DRX400 (400.1 MHz) or AVANCE
III 500 Ascend (500.1 MHz) spectrometer (Bruker, Bremen,
Germany). The data are reported as chemical shift (δ ppm) relative
to the residual protonated solvent resonance, relative integral,
multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet,
quart. = quartet, quin. = quintet, m = multiplet), coupling constants (J
Hz), and assignment. Assignment of signals was assisted by correlation
spectroscopy (COSY), distortionless enhancement by polarization
transfer (DEPT), heteronuclear single quantum coherence (HSQC),
and heteronuclear multiple-bond correlation (HMBC) experiments
where necessary. Low-resolution mass spectra (LRMS) was recorded

Figure 6. Effects of (a) 3 mg/kg 5F-AMB or (b) 1 mg/kg MDMB-
FUBINACA on rat body temperature following pretreatment (30 min
prior) with vehicle (VEH), 3 mg/kg rimonabant (CB1 antagonist), or
3 mg/kg SR144528 (CB2 antagonist). The first dashed line denotes
time of intraperitoneal injection of vehicle or antagonist. Second
dashed line represents time of intraperitoneal injection of SC. Each
point represents the mean ± SEM for three animals.
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using electrospray ionization (ESI) recorded on a Finnigan LCQ ion
trap mass spectrometer (ThermoFisher Scientific, Waltham, MA).
High-resolution mass spectra (HRMS) were run on a Bruker 7T Apex
Qe Fourier Transform Ion Cyclotron resonance mass spectrometer
equipped with an Apollo II ESI/APCI/MALDI Dual source by the
Mass Spectrometry Facility of the School of Chemistry at the
University of Sydney. IR absorption spectra were recorded on a Bruker
ALPHA FT-IR spectrometer as solid or thin film from ethanol, and the
data are reported as vibrational frequencies (cm−1). Please see the
Supporting Information for 1H and 13C NMR spectra and Fourier
transform infrared (FTIR) spectra of all final compounds.
General Procedure A: Amidation of 1-Alkylindole-3-carbox-

ylic Acids and 1-Alkyl-1H-indazole-3-carboxylic Acids. To a
solution of the appropriate 1-alkylindole-3-carboxylic acid or 1-alkyl-
1H-indazole-3-carboxylic acid (0.39 mmol), methyl L-valinate hydro-
chloride (69 mg, 0.41 mmol, 1.05 equiv) or methyl L-tert-leucinate
hydrochloride (75 mg, 0.41 mmol, 1.05 equiv), EDC·HCl (150 mg,
0.78 mmol, 2.0 equiv), and HOBt (119 mg, 0.78 mmol, 2.0 equiv) in
DMSO (5 mL) was added DIPEA (340 μL, 1.95 mmol, 5.0 equiv)
dropwise and the mixture was stirred for 14 h. The reaction was
quenched by the addition of sat. aq. NaHCO3 (75 mL) and extracted
with EtOAc (3 × 75 mL). The combined organic layers were washed
with brine (100 mL), dried (MgSO4), and evaporated under reduced
pressure. The pure amides were obtained following purification by
flash chromatography.
Methyl (S)-2-(1-(5-Fluoropentyl)-1H-indole-3-carboxamido)-3-

methylbutanoate (5F-AMB-PICA, 10). Subjecting 31 (100 mg, 0.40
mmol) and methyl L-valinate hydrochloride (70 mg, 0.42 mmol, 1.05
equiv) to general procedure A gave, following purification by flash
chromatography (hexane-EtOAc, 80:20), 10 (92 mg, 63%) as a white
solid. mp 146−148 °C; Rf. 0.30 (hexane/EtOAc, 80:20); 1H NMR
(300 MHz, CDCl3): δ 7.96 (1H, d, J = 8.1 Hz), 7.70 (1H, s), 7.34
(1H, d, J = 8.7 Hz), 7.25−7.22 (2H, m), 6.44 (1H, d, J = 8.7 Hz), 4.83
(1H, dd, J = 8.7, 4.8 Hz), 4.46 (1H, t, J = 5.7 Hz), 4.30 (1H, t, J = 6.0
Hz), 4.12 (2H, t, J = 6.9 Hz), 3.75 (3H, s), 2.27 (1H, m), 1.88 (2H,
quin., J = 7.5 Hz), 1.80−1.62 (2H, m), 1.42 (2H, quin., J = 8.4 Hz),
1.00 (6H, t, J = 6.9 Hz); 13C NMR (75 MHz, CDCl3): δ 173.3 (CO),
165.0 (CO), 136.7 (quat.), 131.8 (CH), 125.5 (quat.), 122.7 (CH),
121.8 (CH), 120.3 (CH), 110.8 (quat.), 110.4 (CH), 83.8 (CH2F, d,
1JCF = 163.5 Hz), 57.1 (CH), 52.3 (CH2), 46.9 (CH3), 31.9 (CH),
30.1 (CH2, d,

2JCF = 20.3 Hz), 29.8 (CH2), 23.0 (CH2, d,
3JCF = 5.3

Hz), 19.2 (CH3), 18.2 (CH3);
19F NMR (282 MHz, CDCl3): − 218.6

(1F, m); LRMS (+ESI): m/z 385.14 ([M + Na]+, 100%); HRMS
(+ESI): m/z calculated [M + Na]+ 399.2060, found 399.2054; IR
(diamond cell, thin film) 3343 (w), 2977 (m), 2962 (m), 2877 (w),
1736 (s), 1625 (s), 1509 (s), 1465 (s), 1225 (s), 1198 (s), 1167 (s),
1147 (s), 751 (s).
Methyl (S)-2-(1-(5-Fluoropentyl)-1H-indole-3-carboxamido)-3,3-

dimethylbutanoate (5F-MDMB-PICA, 11). Subjecting 31 (100 mg,
0.40 mmol) and methyl L-tert-leucinate hydrochloride (76 mg, 0.42
mmol, 1.05 equiv) to general procedure A gave, following purification
by flash chromatography (hexane-EtOAc, 80:20), 10 (112 mg, 74%) as
a white solid. mp 82−84 °C; Rf. 0.35 (hexane/EtOAc, 80:20); 1H
NMR (300 MHz, CDCl3): δ 7.99 (1H, m), 7.74 (1H, s), 7.38 (1H,
m), 7.31−7.27 (2H, m), 7.52 (1H, d, J = 9.3 Hz), 4.78 (1H, d, J = 9.3
Hz), 4.40 (2H, dt, J = 41.4 Hz, 6.0 Hz), 4.15 (2H, t, J = 7.2 Hz), 3.76
(3H, s), 1.91 (2H, quin., J = 7.2 Hz), 1.81−1.62 (2H, m), 1.46 (2H,
quin., J = 6.3 Hz), 0.93 (9H, s); 13C NMR (75 MHz, CDCl3): δ 172.8
(CO), 164.8 (CO), 136.7 (quat.), 131.9 (CH), 125.4 (quat.), 122.6
(CH), 121.8 (CH), 120.1 (CH), 110.8 (quat.), 110.4 (CH), 83.7
(CH2F, d,

1JCF = 164.3 Hz), 59.9 (CH), 51.9 (CH2), 46.8 (CH3), 35.2
(quat.), 30.1 (CH2, d,

2JCF = 19.5 Hz), 29.7 (CH2), 26.9 (CH3), 22.9
(CH2, d,

3JCF = 5.3 Hz); 19F NMR (282 MHz, CDCl3): δ − 218.5 (1F,
m); LRMS (+ESI): m/z 399.14 ([M + Na]+, 100%); HRMS (+ESI):
m/z calculated [M + Na]+ 399.2060, found 399.2056; IR (diamond
cell, thin film) 3437 (w), 2971 (m), 2959 (m), 1730 (s), 1639 (s),
1499 (s), 1234 (s), 1186 (s), 773 (m), 751 (s).
Methyl (S)-2-(1-(5-Fluoropentyl)-1H-indazole-3-carboxamido)-3-

methylbutanoate (5F-AMB-PINACA, 12). Subjecting 40 (100 mg,
0.42 mmol) and methyl L-valinate hydrochloride (75 mg, 0.45 mmol,

1.1 equiv) to general procedure A gave, following purification by flash
chromatography (hexane/EtOAc, 80:20), 12 (105 mg, 69%) as a white
solid. mp 68−70 °C; Rf. 0.50 (hexane/EtOAc, 60:40); 1H NMR (300
MHz, CDCl3): δ 8.35 (1H, d, J = 8.1 Hz), 7.47 (1H, d, J = 9.0 Hz),
7.42−7.39 (2H, m), 4.80 (1H, dd, J = 8.7, 5.1 Hz), 4.51 (1H, t, J = 5.7
Hz), 4.42 (2H, t, J = 6.9 Hz), 4.36 (1H, t, J = 5.7 Hz), 3.78 (3H, s),
2.30 (1H, m, J = 6.6 Hz), 2.05 (2H, quin., J = 7.5 Hz), 1.83−1.62 (2H,
m), 1.48 (2H, quin., J = 7.5 Hz), 1.04 (6H, t, J = 6.0 Hz); 13C NMR
(75 MHz, CDCl3): δ 172.8 (CO), 162.6 (CO), 141.0 (quat.), 136.9
(quat.), 126.9 (CH), 123.1 (quat.), 123.0 (CH), 122.8 (CH), 109.3
(CH), 84.0 (CH2, d,

1JCF = 149.3 Hz), 56.9 (CH), 52.3 (CH2), 49.3
(CH3), 31.7 (CH), 30.0 (CH2, d,

2JCF = 19.9 Hz), 29.5 (CH2), 22.8
(CH2, d,

3JCF = 5.0 Hz), 19.3 (CH3), 18.2 (CH3);
19F NMR (282

MHz, CDCl3): δ − 218.5 (1F, m); LRMS (+ESI): m/z 386.11 ([M +
Na]+, 100%); HRMS (+ESI): m/z calculated [M + Na]+ 386.1856,
found 386.1849; IR (diamond cell, thin film): 3415 (w), 2960 (m),
1740 (s), 1667 (s), 1526 (s), 1491 (s), 1710 (m), 752 (m).

Methyl (S)-2-(1-(5-Fluoropentyl)-1H-indazole-3-carboxamido)-
3,3-dimethylbutanoate (5F-MDMB-PINACA, 13). Subjecting 40
(150 mg, 0.63 mmol) and methyl L-tert-leucinate hydrochloride (97
mg, 0.67 mmol, 1.05 equiv) to general procedure A gave, following
purification by flash chromatography (hexane-EtOAc, 80:20), 13 (151
mg, 63%) as a white solid. mp 64−66 °C; Rf. 0.60 (hexane/EtOAc,
60:40); 1H NMR (300 MHz, CDCl3): δ 8.35 (1H, d, J = 8.1 Hz), 7.54
(1H, d, J = 9.6 Hz), 7.42−7.39 (2H, m), 4.73 (1H, d, J = 9.6 Hz), 4.52
(1H, t, J = 5.7 Hz), 4.42 (2H, t, J = 7.2 Hz), 4.36 (1H, t, J = 6.0 Hz),
3.76 (3H, s), 1.99 (2H, quin., J = 7.8 Hz), 1.84−1.67 (2H, m), 1.48
(2H, quin., J = 8.1 Hz), 1.09 (9H, s); 13C NMR (300 MHz, CDCl3): δ
172.3 (CO), 162.5 (CO), 141.0 (quat.), 137.0 (quat.), 126.9 (CH),
123.1 (quat.), 123.0 (CH), 122.8 (CH), 109.3 (CH), 83.9 (CH2, d,
1JCF = 163.5 Hz,), 59.6 (quat.), 51.9 (CH2), 49.3 (CH3), 35.2 (quat.),
30.3 (CH2, d,

2JCF = 19.5 Hz), 29.5 (CH2), 26.8 (CH3), 22.8 (CH2, d,
3JCF = 4.5 Hz); 19F NMR (282 MHz, CDCl3): δ − 218.5 (1F, m);
LRMS (+ESI): m/z 400.14 ([M + Na]+, 100%); HRMS (+ESI): m/z
calculated [M + Na]+ 400.2012, found 400.2007; IR (diamond cell,
thin film): 3420 (w), 2960 (m), 2870 (w), 1737 (s), 1671 (s), 1524
(s), 1491 (s), 1262 (m), 1216 (s), 752 (m).

Methyl (S)-2-(1-(4-Fluorobenzyl)-1H-indole-3-carboxamido)-3-
methylbutanoate (AMB-FUBICA, 14). Subjecting 32 (100 mg, 0.37
mmol) and methyl L-valinate hydrochloride (65 mg, 0.39 mmol, 1.05
equiv) to general procedure A gave, following purification by flash
chromatography (hexane/EtOAc, 80:20), 14 (110 mg, 78%) as a white
solid. mp 151−153 °C; Rf. 0.30 (hexane/EtOAc, 80:20); 1H NMR
(300 MHz, CDCl3): δ 8.05 (1H, d, J = 7.8 Hz), 7.78 (1H, s), 7.35−
7.28 (3H, m), 7.15 (2H, t, J = 5.4 Hz), 7.03 (2H, t, J = 7.5 Hz), 5.33
(2H, s), 4.90 (1H, dd, J = 8.7, 4.8 Hz), 3.82 (3H, s), 2.33 (1H, m, J =
6.0 Hz), 1.07 (6H, t, J = 7.2 Hz); 13C NMR (75 MHz, CDCl3): δ
173.3 (CO), 164.9 (CO), 162.6 (quat., d, 1JCF = 247.2 Hz), 136.9
(quat.), 132.0 (CH), 131.9 (quat., d, 4JCF = 3.1 Hz), 129.0 (CH, d, 3JCF
= 8.3 Hz), 125.7 (quat.), 123.0 (CH), 122.1 (CH), 120.4 (CH), 116.1
(CH, d, 2JCF = 21.9 Hz), 111.5 (quat.), 110.7 (CH), 57.1 (CH2), 52.3
(CH3), 50.1 (CH), 31.8 (CH), 19.2 (CH3), 18.2 (CH3);

19F NMR
(282 MHz, CDCl3): δ − 113.9 (1F, m); LRMS (+ESI): m/z 405.11
([M + Na]+, 100%); HRMS (+ESI): m/z 405.1590, found 405.1583;
IR (diamond cell, thin film): 3327 (m), 2944 (m), 2875 (w), 1738 (s),
1630 (s), 1510 (s), 1125 (s), 766 (s), 566 (m).

Methyl (S)-2-(1-(4-Fluorobenzyl)-1H-indole-3-carboxamido)-3,3-
dimethylbutanoate (MDMB-FUBICA, 15). Subjecting 32 (50 mg, 0.19
mmol) and methyl L-tert-leucinate hydrochloride (42 mg, 0.23 mmol,
1.2 equiv) to general procedure A gave, following purification by flash
chromatography (hexane/EtOAc, 80:20), 15 (58 mg, 77%) as a white
solid. mp 132−134 °C; Rf. 0.40 (hexane/EtOAc, 80:20); 1H NMR
(300 MHz, CDCl3): δ 8.02 (1H, d, J = 7.8 Hz), 7.77 (1H, s), 7.32−
7.26 (3H, m), 7.14 (2H, t, J = 6.3 Hz), 7.01 (2H, t, J = 6.3 Hz), 6.55
(1H, d, J = 9.3 Hz), 5.32 (2H, s), 4.79 (1H, d, J = 9.6 Hz), 3.78 (3H,
s), 1.10 (9H, s); 13C NMR (75 MHz, CDCl3): δ 172.8 (CO), 164.7
(CO), 162.6 (quat., d, 1JCF = 246.0 Hz), 136.9 (quat.), 132.2 (CH),
131.9 (quat., d, 4JCF = 3.0 Hz), 128.9 (CH, d, 3JCF = 8.3 Hz), 125.6
(quat.), 123.0 (CH), 122.1 (CH), 120.2 (CH), 116.1 (CH, d, 2JCF =
21.8 Hz), 111.5 (quat.), 110.8 (CH), 59.9 (CH2), 52.0 (CH3), 50.1
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(CH), 35.2 (quat.), 26.9 (CH3);
19F NMR (282 MHz, CDCl3): δ −

113.9 (1F, m); LRMS (+ESI): m/z 419.13 ([M + Na]+, 100%);
HRMS (+ESI): m/z calculated [M + Na]+ 419.1747, found 419.1740;
IR (diamond cell, thin film): 3440 (w), 2961 (w), 1725 (s), 1637 (s),
1537 (s), 1327 (s), 815 (m).
Methyl (S)-2-(1-(4-Fluorobenzyl)-1H-indazole-3-carboxamido)-3-

methylbutanoate (AMB-FUBINACA, 16). Subjecting 41 (100 mg, 0.37
mmol) and methyl L-valinate hydrochloride (65 mg, 0.39 /EtOAc,
90:10), 16 (85 mg, 60%) as a colorless oil. Rf. 0.65 (hexane/EtOAc,
80:20); 1H NMR (300 MHz, CDCl3): δ 8.36 (1H, d, J = 7.8 Hz), 7.50
(1H, d, J = 9.0 Hz), 7.42−7.27 (2H, m), 7.23−7.19 (2H, t, J = 6.9 Hz),
7.01 (2H, t, J = 7.8 Hz), 5.61 (2H, s), 4.83 (1H, dd, J = 8.7, 5.1 Hz),
3.78 (3H, s), 2.30 (1H, m, J = 6.6 Hz), 1.05 (6H, t, J = 5.4 Hz); 13C
NMR (75 MHz, CDCl3): δ 172.7 (CO), 162.6 (quat., 1JCF = 245.3
Hz), 162.5 (CO), 140.9 (quat.), 137.5 (quat.), 131.9 (quat., d, 4JCF =
3.1 Hz), 129.1 (CH, d, 3JCF = 8.3 Hz), 127.2 (CH), 123.5 (quat.),
123.1 (CH), 123.0 (CH), 116.0 (CH, d, 2JCF = 21.8 Hz), 109.6 (CH),
56.9 (CH), 53.1 (CH2), 52.3 (CH3), 31.8 (CH), 19.3 (CH3), 18.2
(CH3);

19F NMR (282 MHz, CDCl3): δ − 114.0 (1F, m); LRMS
(+ESI): m/z 406.08 ([M + Na]+, 100%); HRMS (+ESI): m/z
calculated [M + Na]+ 406.1543, found 406.1537; IR (diamond cell,
thin film): 3415 (w), 2964 (m), 1740 (s), 1667 (s), 1527 (s), 1511 (s),
1492 (s), 1261 (s), 1172 (s), 1158 (s), 750 (m).
Methyl (S)-2-(1-(4-Fluorobenzyl)-1H-indazole-3-carboxamido)-

3,3-dimethylbutanoate (MDMB-FUBINACA, 17). Subjecting 41
(100 mg, 0.37 mmol) and methyl L-tert-leucinate hydrochloride (81
mg, 0.41 mmol, 1.1 equiv) to general procedure A gave, following
purification by flash chromatography (hexane/EtOAc, 80:20), 17 (96
mg, 65%) as a white crystalline solid. mp 120−122 °C; Rf. 0.60
(hexane/EtOAc, 60:40); 1H NMR (300 MHz, CDCl3): δ 8.21 (1H, d,
J = 7.8 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.44 (1H, t, J = 7.8 Hz), 7.33−
7.27 (3H, m), 7.06 (2H, t, J = 8.4 Hz), 5.72 (2H, s), 4.61 (1H, s), 3.77
(3H, s), 1.09 (9H, s); 13C NMR (75 MHz, CDCl3): δ 172.3 (CO),
162.6 (quat., d, 1JCF = 245.3 Hz), 162.3 (CO), 140.9 (quat.), 137.5
(quat.), 131.9 (quat., d, 4JCF = 3.3 Hz), 129.1 (CH, d, 3JCF = 8.3 Hz),
127.2 (CH), 123.5 (quat.), 123.1 (CH), 123.0 (CH), 116.0 (CH, d,
2JCF = 21.8 Hz), 109.6 (CH), 59.7 (CH), 53.1 (CH2), 51.95 (CH3),
35.2 (quat.), 26.8 (CH3);

19F NMR (282 MHz, CDCl3): δ − 114.00
(1F, m); LRMS (+ESI): m/z 419.12 ([M + Na]+, 100%); HRMS
(+ESI): m/z calculated [M + Na]+ 420.1699, found 420.1694; IR
(diamond cell, thin film): 3419 (w), 2966 (m), 1737 (s), 1670 (s),
1526 (s), 1511 (s), 1222 (s), 1166 (s), 749 (m).
Methyl (S)-2-(1-(Cyclohexylmethyl)-1H-indole-3-carboxamido)-3-

methylbutanoate (AMB-CHMICA, 18). Subjecting 33 (50 mg, 0.20
mmol) and methyl L-valinate hydrochloride (35 mg, 0.21 mmol, 1.05
equiv) to general procedure A gave, following purification by flash
chromatography (hexane/EtOAc, 90:10), 18 (60 mg, 81%) as a white
solid. mp 137−139 °C; Rf. 0.55 (hexane/EtOAc, 80:20); 1H NMR
(300 MHz, CDCl3): δ 7.99 (1H, m), 7.70 (1H, s), 7.38 (1H, m),
7.31−7.27 (2H, m), 6.47 (1H, d, J = 8.7 Hz), 4.87 (1H, dd, J = 8.7, 4.8
Hz), 3.96 (2H, d, J = 7.2 Hz), 3.77 (3H, s), 2.31 (1H, m, J = 5.1 Hz),
1.88 (1H, m), 1.74−1.60 (5H, m), 1.25−1.18 (3H, m), 1.06−0.98
(8H, m); 13C NMR (75 MHz, CDCl3): δ 173.3 (CO), 165.1 (CO),
137.1 (quat.), 132.7 (CH), 125.4 (quat.), 122.5 (CH), 121.6 (CH),
120.1 (CH), 110.8 (CH), 110.5 (quat.), 57.0 (CH), 53.5 (CH2), 52.3
(CH3), 38.7 (CH), 31.9 (CH), 31.2 (CH2), 26.3 (CH2), 25.8 (CH2),
19.3 (CH3), 18.3 (CH3); LRMS (+ESI): m/z 393.16 ([M + Na]+,
100%); HRMS (+ESI): m/z calculated [M + Na]+ 393.2154, found
393.2147; IR (diamond cell, thin film): 3327 (w), 2929 (m), 2849
(w), 1735 (s), 1618 (s), 1539 (s), 1518 (s), 1257 (s), 735 (s).
Methyl (S)-2-(1-(Cyclohexylmethyl)-1H-indole-3-carboxamido)-

3,3-dimethylbutanoate (MDMB-CHMICA, 19). Subjecting 33 (50
mg, 0.20 mmol) and methyl L-tert-leucinate hydrochloride (40 mg,
0.21 mmol, 1.05 equiv) to general procedure A gave, following
purification by flash chromatography (hexane/EtOAc, 90:10), 19 (55
mg, 72%) as a white solid. mp 136−138 °C; Rf. 0.70 (hexane/EtOAc,
80:20); 1H NMR (300 MHz, CDCl3): δ 8.09 (1H, d, J = 5.7 Hz), 8.00
(1H, s), 7.46 (1H, d, J = 8.1 Hz), 7.27−7.16 (2H, m), 4.64 (1H, s),
4.04 (2H, d, J = 6.9 Hz), 3.75 (3H, s), 1.89 (1H, m), 1.71−1.57 (5H,
m), 1.28−1.02 (14H, m); 13C NMR (75 MHz, CDCl3): δ 172.9 (CO),

164.9 (CO), 137.1 (quat.), 132.8 (CH), 125.3 (quat.), 122.5 (CH),
121.7 (CH), 120.0 (CH), 110.8 (CH), 110.5 (quat.), 59.8 (CH), 53.5
(CH2), 52.0 (CH3), 38.7 (quat.), 35.2 (CH), 31.1 (CH2), 26.9 (CH3),
26.3 (CH2), 25.8 (CH2); LRMS (+ESI): m/z ([M + Na]+, 100%);
HRMS (+ESI): m/z calculated [M + Na]+ 407.2311, found 407.2304;
IR (diamond cell, thin film): 3320 (w), 2928 (m), 2851 (w), 1738 (s),
1614 (s), 1536 (s), 1512 (s), 1141 (s), 739 (s).

Methyl (S)-2-(1-(Cyclohexylmethyl)-1H-indazole-3-carboxami-
do)-3-methylbutanoate (AMB-CHMINACA, 20). Subjecting 42 (75
mg, 0.29 mmol) and methyl L-valinate hydrochloride (56 mg, 0.31
mmol, 1.05 equiv) to general procedure A gave, following purification
by flash chromatography (hexane/EtOAc, 80:20), 20 (83 mg, 77%) as
a colorless oil. Rf. 0.75 (hexane/EtOAc, 60:40); 1H NMR (300 MHz,
CDCl3): δ 8.34 (1H, d, J = 8.1 Hz), 7.47 (1H, d, J = 9 Hz), 7.42−7.36
(2H, m), 4.80 (1H, dd, J = 9.1 Hz, 5.7 Hz), 4.22 (2H, d, J = 7.2 Hz),
3.78 (3H, s), 2.31 (1H, m), 2.04 (1H, m), 1.72−1.58 (5H, m), 1.30−
0.97 (11H, m); 13C NMR (300 MHz, CDCl3): δ 172.7 (CO), 162.7
(CO), 141.5 (quat.), 136.7 (quat.), 126.6 (CH), 122.83 (quat.),
122.77 (CH), 122.6 (CH), 109.6 (CH), 56.8 (CH), 55.8 (CH2), 52.2
(CH3), 38.8 (CH), 31.7 (CH), 31.0 (CH2), 26.3 (CH2), 25.7 (CH2),
19.2 (CH3), 18.2 (CH3); LRMS (+ESI): m/z 394.15 ([M + Na]+,
100%); HRMS (+ESI): m/z calculated [M + Na]+ 394.2107, found
394.2100; IR (diamond cell, thin film): 3411 (w), 2927 (s), 2852 (m),
1741 (s), 1670 (s), 1525 (s), 1491 (s), 1176 (m), 751 (m).

Methyl (S)-2-(1-(Cyclohexylmethyl)-1H-indazole-3-carboxami-
do)-3,3-dimethylbutanoate (MDMB-CHMINACA, 21). Subjecting 42
(100 mg, 0.39 mmol) and methyl L-tert-leucinate hydrochloride (69
mg, 0.41 mmol, 1.05 equiv) to general procedure A gave, following
purification by flash chromatography (hexane/EtOAc, 80:20), 21 (110
mg, 73%) as a colorless oil. Rf. 0.85 (hexane/EtOAc, 60:40);

1H NMR
(300 MHz, CDCl3): δ 8.34 (1H, d, J = 8.1 Hz), 7.55 (1H, d, J = 9.6
Hz), 7.40−7.36 (2H, m), 4.73 (1H, d, J = 9.9 Hz), 4.22 (2H, d, J = 7.2
Hz), 3.76 (3H, s), 2.03 (1H, m), 1.75−1.58 (5H, m), 1.30−1.04 (14H,
m); 13C NMR (300 MHz, CDCl3): δ 172.4 (CO), 162.6 (CO), 141.5
(quat.), 136.8 (quat.), 126.7 (CH), 122.91 (quat.), 122.87 (CH),
122.6 (CH), 109.6 (CH), 59.6 (CH), 55.8 (CH2), 51.9 (CH3), 38.9
(quat.), 35.2 (CH), 31.1 (CH2), 26.8 (CH3), 26.4 (CH2), 25.8 (CH2);
LRMS (+ESI): m/z 408.17 ([M + Na]+, 100%); HRMS (+ESI): m/z
calculated [M + Na]+ 408.2263, found 408.2257; IR (diamond cell,
thin film): 3417 (w), 2927 (s), 2852 (m), 1738 (s), 1672 (s), 1524 (s),
1491 (m), 1164 (m), 1134 (m), 751 (m).

Methyl (S)-2-(1-(Pentyl)-1H-indole-3-carboxamido)-3-methylbu-
tanoate (AMB-PICA, 22). Subjecting 34 (100 mg, 0.43 mmol) and
methyl L-valinate hydrochloride (76 mg, 0.45 mmol, 1.1 equiv) to
general procedure A gave, following purification by flash chromatog-
raphy (hexane/ethyl acetate, 85:15), 22 (98 mg, 66%) as a white solid.
mp 148−150 °C; Rf. 0.50 (hexane/ethyl acetate, 80:20); 1H NMR
(300 MHz, CDCl3): δ 7.99 (1H, d, J = 6 Hz), 7.74 (1H, s), 7.38 (1H,
d, J = 8.7 Hz), 7.29−7.26 (2H, m), 6.48 (1H, d, J = 8.4 Hz), 4.86 (1H,
dd, J = 8.7, 4.8 Hz), 4.13 (2H, t, J = 6.9 Hz), 3.78 (3H, s), 2.31 (1H,
m), 1.86 (2H, quin., J = 6.9 Hz), 1.33 (4H, m), 1.04 (6H, t, J = 6.9
Hz), 0.89 (3H, t, J = 6.9 Hz); 13C NMR (75 MHz, CDCl3): δ 173.3
(CO), 165.1 (CO), 136.8 (quat.), 132.0 (CH), 125.5 (quat.), 122.6
(CH), 121.7 (CH), 120.2 (CH), 110.6 (quat.), 110.5 (CH), 57.0
(CH), 52.3 (CH3), 47.0 (CH2), 31.9 (CH), 29.8 (CH2), 29.1 (CH2),
22.4 (CH2), 19.2 (CH3), 18.2 (CH3), 14.0 (CH3); LRMS (+ESI): m/z
367.14 ([M + Na]+, 100); HRMS (+ESI): m/z calculated [M + Na]+

367.1998, found 367.1992; IR (diamond cell, thin film) 3338 (w),
2952 (m), 2928 (m), 2868 (w), 1739 (s), 1630 (s), 1508 (s), 1195 (s),
1157 (s), 751 (s).

Methyl (S)-2-(1-(Pentyl)-1H-indole-3-carboxamido)-3,3-dimethyl-
butanoate (MDMB-PICA, 23). Subjecting 34 (75 mg, 0.32 mmol) and
methyl L-tert-leucinate hydrochloride (61 mg, 0.39 mmol, 1.2 equiv) to
general procedure A gave, following purification by flash chromatog-
raphy (hexane/EtOAc, 90:10), 21 (82 mg, 71%) as a white solid. mp
70−72 °C; Rf. 0.60 (hexane/EtOAc 80:20); 1H NMR (300 MHz,
CDCl3): δ 8.00−7.95 (2H, m), 7.75 (1H, s), 7.42−7.37 (1H, m),
7.31−7.26 (2H, m), 6.53 (1H, d, J = 9.3 Hz), 4.79 (1H, d, J = 9.4 Hz),
4.13 (2H, t, J = 7.2 Hz), 3.76 (3H, s), 1.86 (2H, quin., J = 7.1 Hz),
1.39−1.26 (4H, m), 1.09 (9H, s), 0.89 (3H, t, J = 6.8 Hz); 13C NMR
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(75 MHz, CDCl3): δ 172.9 (CO), 164.9 (CO), 136.8 (quat.), 132.1
(CH), 125.4 (quat.), 122.5 (CH), 121.7 (CH), 120.1 (CH), 110.6
(quat.), 110.5 (CH), 59.8 (CH), 51.9 (CH3), 47.0 (CH2), 35.2
(quat.), 29.8 (CH2), 29.1 (CH2), 26.9 (CH3), 22.4 (CH2), 14.0
(CH3); LRMS (+ESI): m/z 381.15 ([M + Na]+, 100%); HRMS
(+ESI): m/z calculated [M + Na]+ 381.2154, found 381.2149; IR
(diamond cell, thin film): 3434 (w), 2952 (m), 2927 (m), 2868 (w),
1732 (s), 1641 (s), 1530 (s), 1498 (s), 1214 (s), 1185 (s), 1157 (s),
1129 (s), 751 (s).
Methyl (S)-2-(1-(Pentyl)-1H-indazole-3-carboxamido)-3-methyl-

butanoate (AMB-PINACA, 24). Subjecting 43 (100 mg, 0.46 mmol)
and methyl L-valinate hydrochloride (80 mg, 0.48 mmol, 1.05 equiv)
to general procedure A gave, following purification by flash
chromatography (hexane/EtOAc, 85:15), 24 (108 mg, 68%) as a
colorless oil. Rf. 0.75 (hexane/EtOAc, 60:40); 1H NMR (300 MHz,
CDCl3): δ 8.35 (1H, d, J = 8.1 Hz), 7.47 (1H, d, J = 8.7 Hz), 7.44−
7.37 (2H, m), 4.81 (1H, dd, J = 9.0, 5.1 Hz), 4.39 (2H, t, J = 7.5 Hz),
3.78 (3H, s), 2.31 (1H, m), 1.40−1.26 (4H, m), 1.04 (6H, t, J = 6.0
Hz), 0.90 (3H, t, J = 6.0 Hz); 13C NMR (300 MHz, CDCl3): δ 172.8
(CO), 162.7 (CO), 141.0 (quat.), 136.7 (quat.), 126.7 (CH), 123.1
(quat.), 122.9 (CH), 122.7 (CH), 109.4 (CH), 56.9 (CH), 52.3
(CH3), 49.6 (CH2), 31.7 (CH), 29.6 (CH2), 29.1 (CH2), 22.4 (CH2),
19.3 (CH3), 18.2 (CH3), 14.1 (CH3); LRMS (+ESI): m/z 368.12 ([M
+ Na]+, 100%); HRMS (+ESI): m/z calculated [M + Na]+ 368.1950,
found 368.1944; IR (diamond cell, thin film): 3419 (w), 2959 (m),
2932 (m), 2873 (w), 1742 (s), 1670 (s), 1526 (s), 1491 (s), 1181 (s),
752 (m).
Methyl (S)-2-(1-(Pentyl)-1H-indazole-3-carboxamido)-3,3-dime-

thylbutanoate (MDMB-PINACA, 25). Subjecting 43 (100 mg, 0.46
mmol) and methyl L-tert-leucinate hydrochloride (71 87 mg, 0.48
mmol, 1.05 equiv) to general procedure A gave, following purification
by flash chromatography (hexane/EtOAc, 85:15), 25 (125 mg, 76%)
as a colorless oil. Rf. 0.85 (hexane/EtOAc, 60:40); 1H NMR (300
MHz, CDCl3): δ 8.34 (1H, d, J = 8.1 Hz), 7.55 (1H, d, J = 9.6 Hz),
7.41−7.36 (2H, m), 4.73 (1H, d, J = 9.9 Hz), 4.39 (2H, t, J = 7.5 Hz),
3.76 (3H, s), 1.95 (2H, quin., J = 6.9 Hz), 1.41−1.30 (4H, m), 1.09
(9H, s), 0.90 (3H, t, J = 7.2 Hz); 13C NMR (300 MHz, CDCl3): δ
172.3 (CO), 162.5 (CO), 141.0 (quat.), 136.7 (quat.), 126.7 (CH),
123.1 (quat.), 122.9 (CH), 122.7 (CH), 109.4 (CH), 59.6 (CH), 51.9
(CH3), 49.6 (CH2), 35.2 (quat.), 29.6 (CH2), 29.1 (CH2), 26.8
(CH3), 22.4 (CH2), 14.1 (CH3); LRMS (+ESI): m/z 382.07 ([M +
Na]+, 100%); HRMS (+ESI): m/z calculated [M + Na]+ 382.2107,
found 382.2101; IR (diamond cell, thin film): 3419 (bs), 2960 (m),
2873 (w), 1738 (s), 1672 (s), 1525 (s), 1492 (m), 1163 (m), 751 (m).
General Procedure B : Synthes is of 1-A lkyl -3-

(trifluoroacetyl)indoles. To a cooled (0 °C) suspension of sodium
hydride (60% dispersion in mineral oil, 137 mg, 3.42 mmol, 2.0 equiv)
in DMF (6 mL) was added indole (200 mg, 1.71 mmol) portionwise
and the mixture stirred for 10 min. The mixture was treated dropwise
with the appropriate bromoalkane (1.80 mmol, 1.05 equiv) and stirred
at ambient temperature for 1 h. The cooled (0 °C) mixture was treated
dropwise with trifluoroacetic anhydride (600 μL, 4.28 mmol, 2.5
equiv) and stirred at ambient temperature for 1 h. The reaction was
poured into ice water (75 mL) and extracted with CH2Cl2 (3 × 75
mL). The combined organic extracts were washed with H2O (100
mL), brine (100 mL), dried (MgSO4) and the solvent evaporated
under reduced pressure. The pure 1-alkyl-3-trifluoroacetylindoles were
obtained following purification by flash chromatography.
2,2,2-Trifluoro-1-(1-(5-fluoropentyl)-1H-indol-3-yl)ethanone (27).

Subjecting indole (500 mg, 4.27 mmol) and 1-bromo-5-fluoropentane
(560 μL, 4.48 mmol, 1.05 equiv) to general prcoedure B gave,
following purification by flash chromatography (hexane/EtOAc,
90:10), 27 as a red solid (920 mg, 72%). mp 42−44 °C; Rf 0.53
(hexane/EtOAc, 80:20); 1H NMR (300 MHz, CDCl3): δ 8.42−8.39
(1H, m), 7.93 (1H, s), 7.42−7.33 (3H, m), 4.43 (2H, dt, J = 47.1, 5.8
Hz), 4.21 (2H, t, J = 6.6 Hz), 1.97 (2H, quin., J = 6.0 Hz), 1.74 (2H,
dquin., J = 26.1 Hz, 5.2 Hz), 1.50 (2H, quin., J = 6.6 Hz); 13C NMR
(75 MHz, CDCl3): δ 174.8 (q,

2JCF = 34.5 Hz, quat.), 137.4 (q, 3JCF =
4.9 Hz, CH), 136.7 (quat.), 127.2 (quat.), 124.7 (CH), 124.0 (CH),
122.8 (CH), 117.2 (q, 1JCF = 289.5 Hz, CF3), 110.4 (CH), 109.6

(quat.), 83.7 (d, 1JCF = 164.3 Hz, CH2), 47.6 (CH2), 29.9 (d, 2JCF =
19.5 Hz, CH2), 29.5 (CH2), 22.9 (d, 3JCF = 4.5 Hz, CH2);

19F NMR
(282 MHz, CDCl3): δ − 72.2 (3F, s), − 218.7 (1F, m); LRMS
(+ESI): m/z 324.00 ([M + Na]+, 100%); IR (diamond cell, thin film):
3154 (w), 2956 (m), 2922 (m), 2862 (w), 1658 (s), 1526 (s), 1280
(s), 1176 (s), 1133 (s), 876 (s), 759 (s), 726 (s).

2,2,2-Trifluoro-1-(1-(4-fluorobenzyl)-1H-indol-3-yl)ethanone (28).
Subjecting indole (250 mg, 2.13 mmol) and 4-fluorobenzyl bromide
(290 μL, 2.35 mmol, 1.1 equiv) to general prcoedure B gave, following
purification by flash chromatography (hexane/EtOAc, 90:10), 28 as a
red solid (518 mg, 76%). mp 82−84 °C; Rf 0.57 (hexane/EtOAc,
80:20); 1H NMR (300 MHz, CDCl3): δ 8.40 (1H, d, J = 7.7 Hz), 7.95
(1H, s), 7.38−7.29 (3H, m), 7.17−7.06 (2H, m), 7.06−7.00 (2H, m),
5.35 (2H, s); 13C NMR (75 MHz, CDCl3): δ 175.1 (q,

2JCF = 35.3 Hz,
CO), 162.8 (d, 1JCF = 246.8 Hz, quat.), 137.6 (q, 4JCF = 4.9 Hz, CH),
136.8 (quat.), 130.7 (d, 4JCF = 3.2 Hz, quat.), 128.9 (d, 3JCF = 8.2 Hz,
CH), 127.3 (quat.), 125.0 (CH), 124.3 (CH), 122.8 (CH), 117.1 (q,
1JCF = 291.1 Hz, quat.), 110.8 (CH), 110.1 (quat.), 50.8 (CH2);

19F
NMR (282 MHz, CDCl3): δ − 72.3 (3F, s), − 113.0 (1F, m); LRMS
(+ESI): m/z 344.01 ([M + Na]+, 100%); IR (diamond cell, thin film):
3130 (w), 3080 (w), 2943 (w), 2866 (w), 1654 (s), 1525 (s), 1509 (s),
1392 (s), 1281 (m), 1157 (s), 1131 (s), 1046 (s), 876 (s), 747 (s), 728
(s).

2,2,2-Trifluoro-1-(1-(cyclohexylmethyl)-1H-indol-3-yl)ethanone
(29). Subjecting indole (200 mg, 1.71 mmol) and (cyclohexyl)methyl
bromide (250 μL, 1.80 mmol, 1.05 equiv) to general prcoedure B gave,
following purification by flash chromatography (hexane/EtOAc, 93:7),
29 as a pale brown solid (425 mg, 80%). mp 87−89 °C; Rf 0.79
(hexane/EtOAc, 80:20); 1H NMR (300 MHz, CDCl3): δ 8.42 (1H, d,
J = 4.1 Hz), 7.89 (1H, s), 7.45−7.32 (3H, m), 4.02 (2H, d, J = 6.9 Hz),
1.90 (1H, m), 1.74−1.62 (5H, m), 1.24−1.00 (5H, m); 13C NMR (75
MHz, CDCl3): δ 174.8 (q, 2JCF = 34.5 Hz, CO), 138.1 (CH), 137.1
(quat.), 127.1 (quat.), 124.5 (CH), 123.9 (CH), 122.7 (CH), 117.2
(quat.), 110.7 (CH), 109.3 (quat.), 54.2 (CH2), 38.3 (CH), 30.9
(CH2), 26.1 (CH2), 25.6 (CH2);

19F NMR (282 MHz, CDCl3): δ −
72.2 (3F, s); LRMS (+ESI): m/z 332.06 ([M + Na]+, 100%); IR
(diamond cell, thin film): 3118 (w), 2925 (m), 2854 (w), 1650 (s),
1531 (s), 1397 (m), 1284 (m), 1179 (s), 1130 (s), 1048 (m), 875 (s),
748 (s), 725 (s).

2,2,2-Trifluoro-1-(1-(pentyl)-1H-indol-3-yl)ethanone (30). Subject-
ing indole (200 mg, 1.71 mmol) and 1-bromopentane (225 μL, 1.80
mmol, 1.05 equiv) to general prcoedure B gave, following purification
by flash chromatography (hexane/ethyl acetate 94:6), 30 as a yellow
oil (450 mg, 94%). Rf 0.81 (hexane-ethyl acetate 80:20); 1H NMR
(300 MHz, CDCl3): δ 8.43 (1H, d, J = 8.7 Hz), 7.93 (1H, s), 7.42−
7.36 (3H, m), 4.21 (2H, t, J = 6.9 Hz), 1.95 (2H, quin., J = 7.2 Hz),
1.43−1.32 (4H, m), 0.92 (3H, t, J = 6.6 Hz); 13C NMR (75 MHz,
CDCl3): δ 174.8 (q, CO, 2JCF = 34.5 Hz), 137.5 (d, CH, 4JCF = 4.5
Hz), 136.8 (quat.), 127.3 (quat.), 124.6 (CH), 124.0 (CH), 122.8
(CH), 117.3 (q, CF3,

1JCF = 289.5 Hz), 110.5 (CH), 109.5 (quat.),
47.8 (CH2), 29.5 (CH2), 29.0 (CH2), 22.3 (CH2), 14.0 (CH3);

19F
NMR (282 MHz, CDCl3): δ − 72.2 (3F, s); LRMS (+ESI): m/z
306.03 ([M + Na]+, 100%); IR (diamond cell, thin film): 3124 (w),
2959 (m), 2933 (m), 2863 (w), 1662 (s), 1527 (s), 1397 (m), 1286
(m), 1181 (s), 1132 (s), 878 (m), 751 (m).

General Procedure C: Synthesis of 1-Alkyl-1H-indole-3-
carboxylic Acids and 1-Alkyl-1H-indazole-3-carboxylic Acids.
To a solution of the appropriate 1-alkyl-3-(trifluoroacetyl)indole or
methyl 1-alkyl-1H-indazole-3-carboxylate (2.58 mmol) in MeOH (20
mL) was added 1 M aq. NaOH (3.87 mL, 3.87 mmol, 1.5 equiv) and
the solution heated at reflux for 18 h. The mixture was cooled to
ambient temperature, solvent was evaporated in vacuo, and the
mixture was poured onto sat. aq. NaHCO3 (75 mL). The aqueous
phase was washed with Et2O (75 mL) and the pH adjusted to 2 with 1
M aq. HCl. The aquoeus phase was extracted with Et2O (3 × 75 mL)
and the combined organic layers were washed with brine (150 mL),
dried (MgSO4) and concentrated in vacuo to give the crude products.
Analytical purity for 1-alkyl-1H-indazole-3-carboxylic acids was
achieved by recrystallization from i-PrOH.
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1-(5-Fluoropentyl)-1H-indole-3-carboxylic Acid (31). Subjecting
27 (500 mg, 1.66 mmol) to general procedure C gave 31 (338 mg,
82%) as a white solid. mp 120−122 °C; 1H NMR (75 MHz, CD3OD):
δ 8.08 (1H, d, J = 7.8 Hz), 7.96 (1H, s), 7.48 (1H, d, J = 7.8 Hz),
7.28−7.17 (2H, m), 4.38 (2H, dt, J = 47.4, 6.0 Hz), 4.25 (2H, t, J = 6.9
Hz), 1.91 (2H, quin., J = 7.8 Hz), 1.77−1.63 (2H, dquin., J = 25.8, 7.2
Hz), 1.42 (2H, quin., J = 7.8 Hz); 13C NMR (75 MHz, CD3OD): δ
168.8 (CO), 138.1 (quat.), 136.3 (CH), 128.3 (quat.), 123.6 (CH),
122.6 (CH), 122.5 (CH), 111.4 (CH), 107.8 (quat.), 84.6 (d, 2JCF =
162.8 Hz, CH2), 47.6 (CH2), 31.1 (d, 3JCF = 9.5 Hz, CH2), 30.7
(CH2), 23.7 (CH2);

19F NMR (282 MHz, CD3OD): δ − 221.8 (1F,
m); LRMS (−ESI): m/z 248.29 ([M − H]−, 100%); IR (diamond cell,
thin film): 3043 (w), 2962 (m), 2895 (w), 2704 (w), 2585 (w), 1635
(s), 1523 (s), 1467 (s), 1397 (s), 1272 (s), 1170 (s), 920 (s), 742 (s),
618 (s), 427 (s).
1-(4-Fluorobenzyl)-1H-indole-3-carboxylic Acid (32). Subjecting

28 (500 mg, 1.56 mmol) to general procedure C gave 32 (282 mg,
67%) as a white solid. mp 207−209 °C; 1H NMR (300 MHz,
CD3OD): δ 8.10 (1H, dd, J = 6.3, 3.3 Hz), 8.03 (1H, s), 7.39 (1H, dd,
J = 5.7, 2.1 Hz), 7.26−7.19 (4H, m), 7.05 (2H, t, J = 8.4 Hz), 5.43
(2H, s); 13C NMR (75 MHz, CD3OD): δ 168.7 (CO), 163.8 (d, 1JCF
= 243.8 Hz, quat.), 138.2 (quat.), 136.5 (CH), 134.2 (quat.), 130.2 (d,
3JCF = 8.3 Hz, CH), 128.5 (quat.), 123.8 (CH), 122.8 (CH), 122.5
(CH), 116.6 (d, 2JCF = 21.8 Hz, CH), 111.7 (CH), 108.5 (quat.), 50.6
(CH2);

19F NMR (282 MHz, CD3OD): δ − 118.3 (1F, m); LRMS
(−ESI): 268.22 ([M − H]−, 100%); IR (diamond cell, thin film): 3108
(w), 2938 (w), 2587 (bs), 1652 (s), 1525 (m), 1508 (m), 1277 (m),
1225 (s), 1185 (s), 830 (s), 753 (s), 744 (s), 428 (s).
1-(Cyclohexylmethyl)-1H-indole-3-carboxylic Acid (33). Subject-

ing 29 (400 mg, 1.29 mmol) to general procedure C gave 33 (305 mg,
92%) as a white solid. mp 180−182 °C; 1H NMR (400 MHz, CDCl3):
δ 8.19−8.16 (1H, m), 7.81 (1H, s), 7.32−7.28 (1H, m), 7.25−7.20
(2H, m), 3.92 (2H, d, J = 7.2 Hz), 1.87−1.76 (1H, m), 1.68−1.56
(5H, m), 1.19−1.03 (3H, m), 1.00−0.90 (2H, m); 13C NMR (100
MHz, CDCl3): δ 170.6 (CO), 137.1 (quat.), 136.3 (CH), 127.1
(quat.), 122.9 (CH), 122.2 (CH), 122.0 (CH), 110.5 (CH), 106.2
(quat.), 53.8 (CH2), 38.5 (CH), 31.1 (CH2), 26.3 (CH2), 25.8 (CH2);
LRMS (−ESI): m/z 256.52 ([M − H]−, 100%); IR (diamond cell,
thin film): 2926 (w), 2852 (w), 1652 (s), 1523 (m), 1467 (m), 1395
(m), 1236 (s), 754 (s), 744 (s).
1-(Pentyl)-1H-indole-3-carboxylic Acid (34). Subjecting 30 (450

mg, 1.59 mmol) to general procedure C gave 33 (323 mg, 88%) as a
white solid. mp 106−108 °C; 1H NMR (300 MHz, CD3OD): δ 8.09
(1H, dd, J = 6.5, 1.9 Hz), 7.93 (1H, s), 7.42−7.28 (3H, m), 4.17 (2H,
t, J = 7.2 Hz), 1.90 (2H, quin., J = 7 Hz), 1.40−1.32 (4H, m), 0.90
(3H, t, J = 6.6 Hz); 13C NMR (75 MHz, CD3OD): δ 168.8 (CO),
138.1 (quat.), 136.3 (CH), 128.3 (quat.), 123.6 (CH), 122.6 (CH),
122.4 (CH), 111.3 (CH), 107.7 (quat.), 47.7 (CH2), 30.7 (CH2), 30.0
(CH2), 23.3 (CH2), 14.2 (CH3); LRMS (−ESI): m/z 230.32 ([M −
H]−, 100%); IR (diamond cell, thin film): 3106 (w), 2925 (m), 2856
(w), 2525 (bs), 1649 (s), 1526 (s), 1461 (m), 1273 (m), 1204 (s),
1117 (m), 940 (m), 731 (s).
1-(5-Fluoropentyl)-1H-indazole-3-carboxylic Acid (40). Subjecting

36 (750 mg, 2.84 mmol) to general procedure C gave 40 (580 mg,
81%) as a white solid. mp 89−91 °C; 1H NMR (300 MHz, CD3OD):
δ 8.36 (1H, d, J = 7.8 Hz), 7.52 (2H, m), 7.33 (1H, t, J = 7.5 Hz),
4.53−4.49 (3H, m), 4.34 (1H, t, J = 5.7 Hz), 2.03 (2H, quin., J = 7.2
Hz), 1.82−1.65 (2H, m), 1.50 (2H, quin., J = 6.9 Hz); 13C NMR (75
MHz, CD3OD): δ 165.5 (CO), 142.2 (quat.), 136.1 (quat.), 128.1
(CH), 124.7 (quat.), 124.2 (CH), 123.0 (CH), 111.2 (CH), 84.6 (d,
1JCF = 162.8 Hz, CH2), 50.3 (CH2), 31.0 (d, 2JCF = 20.3 Hz, CH2),
30.4 (CH2), 23.6 (d, 3JCF = 5.3 Hz, CH2);

19F NMR (282 MHz,
CD3OD): δ − 221.8 (1F, m); LRMS (−ESI): m/z 249.12 ([M − H]−,
100%); IR (diamond cell, thin film): 3052 (bs), 2941 (m), 2866 (w),
1685 (s), 1480 (s), 1167 (s), 1120 (s), 751 (s).
1-(4-Fluorobenzyl)-1H-indazole-3-carboxylic Acid (41). Subjecting

37 (560 mg, 1.97 mmol) to general procedure C gave 41 (480 mg,
91%) as a white solid. mp 203−205 °C; 1H NMR (300 MHz,
CD3OD): δ 8.17 (1H, d, J = 8.1 Hz), 7.62 (1H, d, J = 8.7 Hz), 7.44
(1H, t, J = 7.5 Hz), 7.31 (3H, m), 7.04 (2H, t, J = 8.4 Hz), 5.71 (2H,

s); 13C NMR (75 MHz, CD3OD): δ 165.5 (CO), 163.9 (d, 1JCF =
244.5 Hz, quat.), 142.1 (quat.), 136.7 (quat.), 133.7 (d, 4JCF = 3 Hz,
quat.), 130.6 (d, 3JCF = 8.3 Hz, CH), 128.3 (CH), 125.0 (quat.), 124.3
(CH), 123.1 (CH), 116.5 (d, 2JCF = 21.8 Hz, CH), 111.4 (CH), 53.6
(CH2);

19F NMR (285 MHz, CD3OD): δ − 118.0 (1F, m); LRMS
(−ESI): m/z 269.07 ([M − H]−, 100%); IR (diamond cell, thin film):
3058 (bs), 2926 (w), 1696 (s), 1510 (s), 1481 (s), 1224 (s), 1170 (s),
1157 (s), 749 (s).

1-(Cyclohexylmethyl)-1H-indazole-3-carboxylic Acid (42). Sub-
jecting 38 (475 mg, 1.74 mmol) to general procedure C gave 42 (388
mg, 86%) as a white solid. mp 124−126 °C; 1H NMR (300 MHz,
CD3OD): δ 8.16 (1H, d, J = 8.1 Hz), 7.66 (1H, d, J = 8.4 Hz), 7.47
(1H, t, J = 7.2 Hz), 7.31 (1H, t, J = 7.8 Hz), 4.34 (2H, d, J = 7.2 Hz),
2.05 (1H, m), 1.72−1.66 (3H, m), 1.56 (2H, d, J = 12.9 Hz), 1.26−
1.02 (5H, m); 13C NMR (75 MHz, CD3OD): δ 165.5 (CO), 142.6
(quat.), 135.9 (quat.), 128.0 (CH), 124.5 (quat.), 124.1 (CH), 123.0
(CH), 111.4 (CH), 56.5 (CH2), 40.0 (CH), 31.7 (CH2), 27.7 (CH),
26.7 (CH2); LRMS (−ESI): m/z 257.16 ([M − H]−, 100%); IR
(diamond cell, thin film): 3060 (bs), 2926 (s), 2851 (m), 1707 (s),
1479 (s), 1230 (s), 1174 (s), 752 (s).

1-(Pentyl)-1H-indazole-3-carboxylic Acid (43). Subjecting 39 (600
mg, 2.58 mmol) to general procedure C gave 43 (510 mg, 85%) as a
white solid. mp 76−78 °C; 1H NMR (300 MHz, CD3OD): δ 8.26
(1H, d, J = 8.1 Hz), 7.52−7.44 (2H, m), 7.35 (1H, t, J = 7.8 Hz), 4.48
(2H, t, J = 7.2 Hz), 1.99 (2H, quin., J = 7.2 Hz), 1.34 (4H, m), 0.89
(3H, t, J = 6.0 Hz); 13C NMR (75 MHz, CD3OD): δ 165.4 (CO),
142.0 (quat.), 135.9 (quat.), 127.9 (CH), 124.5 (quat.), 124.0 (CH),
122.9 (CH), 111.0 (CH), 49.7 (CH2), 30.4 (CH2), 29.8 (CH2), 23.1
(CH2), 14.1 (CH3); LRMS (−ESI): m/z 231.12 ([M − H]−, 100%);
IR (diamond cell, thin film): 3053 (bs), 2956 (m), 2931 (m), 2860
(w), 1687 (s), 1503 (s), 1218 (s), 1176 (s), 1121 (s), 752 (s).

General Procedure D: Synthesis of Methyl 1-Alkyl-1H-
indazole-3-carboxylates. To a cooled (0 °C) solution of methyl
1H-indazole-3-carboxylate (35, 500 mg, 2.84 mmol) in THF (15 mL)
was added potassium tert-butoxide (350 mg, 3.12 mmol, 1.1 equiv),
and the mixture warmed to ambient temperature and stirred for 1 h.
The cooled (0 °C) mixture was treated dropwise with the appropriate
bromoalkane (2.98 mmol, 1.05 equiv) and stirred for 48 h. The
reaction was quenched by pouring onto H2O (100 mL) and the layers
separated. The aqueous phase was extracted with EtOAc (3 × 100
mL), and the combined organic layers were washed with brine (150
mL), dried (MgSO4), and the solvent evaporated under reduced
pressure. The crude materials were purified by flash chromatography.

Methyl 1-(5-Fluoropentyl)-1H-indazole-3-carboxylate (36). Sub-
jecting 35 (500 mg, 2.84 mmol) and 1-bromo-5-fluoropentane (370
μL, 2.98 mmol, 1.05 equiv) to general procedure D gave, following
purification by flash chromatography (hexane/EtOAc, 80:20), 36 (560
mg, 75%) as a colorless oil. Rf 0.30 (hexane/EtOAc, 80:20);

1H NMR
(300 MHz, CDCl3): δ 8.24 (1H, d, J = 8.1 Hz), 7.49−7.45 (2H, m),
7.32 (1H, t, J = 6.3 Hz), 4.52−4.47 (3H, m), 4.33 (1H, t, J = 5.7 Hz),
4.04 (3H, s), 2.03 (2H, quin., J = 7.2 Hz), 2.00−1.63 (2H, m), 1.46
(2H, quin., J = 12.0 Hz); 13C NMR (75 MHz, CDCl3): δ 163.2 (CO),
140.6 (quat.), 134.8 (quat.), 127.0 (CH), 123.9 (quat.), 123.2 (CH),
122.4 (CH), 109.6 (CH), 83.8 (d, 1JCF = 163.5 Hz, CH2F), 52.1
(CH2), 49.8 (CH3), 30.0 (d, 2JCF = 19.5 Hz, CH2), 29.6 (CH2), 22.8
(d, 3JCF = 4.5 Hz, CH2);

19F NMR (282 MHz, CDCl3): δ − 218.6 (1F,
m); LRMS (+ESI): m/z 287.03 ([M + Na]+, 100%); IR (diamond cell,
thin film): 2950 (m), 2867 (w), 1729 (s), 1710 (s), 1478 (s), 1163 (s),
1118 (s), 752 (s).

Methyl 1-(4-Fluorobenzyl)-1H-indazole-3-carboxylate (37). Sub-
jecting 35 (500 mg, 2.84 mmol) and 4-fluorobenzyl bromide (371 μL,
2.98 mmol, 1.05 equiv) to general procedure D gave, following
purification by flash chromatography (hexane/EtOAc, 80:20), 37 (570
mg, 71%) as a white solid. mp 83−84 °C; Rf 0.35 (hexane/EtOAc,
80:20); 1H NMR (300 MHz, CDCl3): δ 8.25 (1H, d, J = 7.8 Hz),
7.42−7.29 (3H, m), 7.21 (2H, t, J = 6.9 Hz), 6.99 (2H, t, J = 8.1 Hz),
5.67 (2H, s), 4.06 (3H, s); 13C NMR (75 MHz, CDCl3): δ 163.1
(CO), 162.6 (d, 1JC−F = 245.3 Hz, quat.), 140.6 (quat.), 135.3 (quat.),
131.6 (d, 4JCF = 3.8 Hz, quat.), 129.2 (d, 3JCF = 8.3 Hz, CH), 127.3
(CH), 124.3 (quat.), 123.5 (CH), 122.5 (CH), 116.0 (d, 2JCF = 21.8
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Hz, CH), 53.5 (CH2), 52.2 (CH3);
19F NMR (282 MHz, CDCl3): δ −

113.8 (1F, s); LRMS (+ESI): m/z 307.00 ([M+ Na]+, 100%). IR
(diamond cell, thin film): 3071 (w), 2952 (w), 1712 (s), 1510 (s),
1479 (s), 1268 (s), 1157 (s), 749 (s).
Methyl 1-(Cyclohexylmethyl)-1H-indazole-3-carboxylate (38).

Subjecting 35 (500 mg, 2.84 mmol) and (bromomethyl)cyclohexane
(415 μL, 2.98 mmol, 1.05 equiv) to general procedure D gave,
following purification by flash chromatography (hexane/EtOAc,
80:20), 38 (505 mg, 65%) as a colorless oil. Rf 0.60 (hexane/
EtOAc, 80:20); 1H NMR (300 MHz, CDCl3): δ 8.22 (1H, dt, J = 8.1,
0.9 Hz), 7.48−7.39 (2H, m), 7.33−7.28 (1H, m), 4.28 (2H, d, J = 7.5
Hz), 4.03 (3H, s), 2.08 (1H, m), 1.74−1.52 (5H, m), 1.32−0.98 (5H,
m); 13C NMR (75 MHz, CDCl3): δ 163.3 (CO), 141.3 (quat.), 134.6
(quat.), 126.8 (CH), 123.7 (quat.), 123.1 (CH), 122.3 (CH), 110.0
(CH), 56.1 (CH2), 52.1 (CH3), 38.9 (CH2), 31.7 (CH), 26.3 (CH2),
25.7 (CH2); LRMS (+ESI) m/z 295.05 ([M + Na]+, 100%); IR
(diamond cell, thin film): 2925 (s), 2851 (m), 1710 (s), 1477 (s),
1441 (m), 1224 (s), 1161 (s), 1121 (s), 751 (s).
Methyl 1-(Pentyl)-1H-indazole-3-carboxylate (39). Subjecting 35

(500 mg, 2.84 mmol) and 1-bromopentane (370 μL, 2.98 mmol, 1.05
equiv) to general procedure D gave, following purification by flash
chromatography (hexane/EtOAc, 80:20), 39 (585 mg, 84%) as a
colorless oil. Rf. 0.50 (hexane-EtOAc, 80:20); 1H NMR (300 MHz,
CDCl3): δ 8.24 (1H, d, J = 8.0 Hz), 7.50−7.44 (2H, m), 7.35−7.27
(1H, m), 4.47 (2H, t, J = 7.4 Hz), 4.04 (3H, s), 1.97 (2H, quin., J = 7.0
Hz), 1.32 (4H, m), 0.87 (3H, t, J = 6.6 Hz); 13C NMR (75 MHz,
CDCl3): δ 163.3 (CO), 140.6 (quat.), 134.6 (quat.), 126.8 (CH),
123.9 (quat.), 123.1 (CH), 122.3 (CH), 109.7 (CH), 52.1 (CH3), 50.1
(CH2), 29.7 (CH2), 29.0 (CH2), 22.4 (CH2), 14.0 (CH3); LRMS
(+ESI): m/z 269.03 ([M + Na]+, 60%), 515.16 ([2 M + Na]+, 100%);
IR (diamond cell, thin film): 2954 (m), 2932 (m), 2860 (w), 1709 (s),
1477 (s), 1215 (s), 1159 (s), 1117 (s), 751 (s).
In Vitro Pharmacological Assessment of SCs. Mouse AtT-20

pituitary tumor cells engineered to express a FLP recombination site
were transfected with HA-tagged human CB1 or human CB2 receptors
(Genscript, Piscataway, NJ) as previously described for opioid
receptors in the same cells.87 Cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% fetal bovine
serum (FBS), 100 U penicillin/streptomycin ml−1, and 80 μg/mL
hygromycin. Wild type AtT-20 FlpIn cells were grown without
hygromycin. Cells were passaged at 80% confluency as required. Cells
for assays were grown in 75 cm2

flasks and used at 90% confluence.
The day before the assay cells were detached from the flask with
trypsin/EDTA (Sigma-Aldrich) and resuspended in 10 mL of
Leibovitz’s L-15 media supplemented with 1% FBS, 100 U
penicillin/streptomycin ml−1 and 15 mM glucose. The cells were
plated in volume of 90 μL in black walled, clear bottomed 96-well
microplates (Corning, Oneonta, NY). For experiments where cells
were treated with pertussis toxin (PTX), the cells were plated as
normal and PTX (200 ng/mL final concentration, List Biological
Laboratories, Campbell, California) was added to the wells
immediately afterward. Cells were incubated overnight at 37 °C in
ambient CO2.
Membrane potential was measured using a FLIPR membrane

potential assay kit (blue) from Molecular Devices (Sunnyvale, CA), as
described previously.88 The dye was reconstituted with assay buffer of
composition (mM): NaCl 145, HEPES 22, Na2HPO4 0.338, NaHCO3
4.17, KH2PO4 0.441, MgSO4 0.407, MgCl2 0.493, CaCl2 1.26, glucose
5.56 (pH 7.4, osmolarity 315 ± 5). Prior to the assay, cells were loaded
with 90 μL/well of the dye solution without removal of the L-15,
giving an initial assay volume of 180 μL/well. Plates were then
incubated at 37 °C at ambient CO2 for 60 min. Fluorescence was
measured using a FlexStation 3 (Molecular Devices) microplate reader
with cells excited at a wavelength of 530 nm and emission measured at
565 nm. Baseline readings were taken every 2 s for 60−120 s, after
which either drug or vehicle was added in a volume of 20 μL. The
background fluorescence of cells without dye or dye without cells was
negligible. Changes in fluorescence were expressed as a percentage of
baseline fluorescence after subtraction of the changes produced by
vehicle addition. Drug solutions were made up in assay buffer

containing 0.01% BSA (Sigma) and 1% DMSO, thus the final
concentration of dimethyl sulfoxide was always 0.1%.

Data were analyzed with PRISM (GraphPad Software Inc., San
Diego, CA), using four-parameter nonlinear regression to fit
concentration−response curves. In all plates, a maximally effective
concentration of CP 55,940 (1 μM, Cayman Chemical, Ann Arbor,
MI) was added to allow for normalization between assays.

In Vivo Pharmacological Assessment of SCs. Two cohorts of
four adult male Long Evans rats (Animal Resources Centre, Perth,
Australia) initially weighing between 168 and 186 g were used for
biotelemetric assessment of body temperature and heart rate changes
following each compound. The rats were singly housed in an air-
conditioned testing room (22 ± 1 °C) on a 12 h reverse light/dark
cycle (lights on from 21:00 to 09:00). Standard rodent chow and water
were provided ad libitum. All experiments were approved by The
University of Sydney Animal Ethics Committee.

Biotelemetry transmitters (TA11CTA-F40, Data Sciences Interna-
tional, St. Paul, MN) were implanted as previously described.27 Briefly,
following anesthetization (isoflurane, 3% induction, 2% maintenance)
a rostro-caudal incision was made along the midline of the abdomen,
and a biotelemetry transmitter (TA11CTA-F40, Data Sciences
International, St. Paul, MN) was placed in the peritoneal cavity
according to the manufacturers protocol. The wound was sutured
closed and the rats were allowed 1 week of recovery before data
collection.

The rats were habituated over multiple days to injections of vehicle
(5% EtOH, 5% Tween 80, 90% physiological saline) at a set time of
day (11:00 am). Each cohort then received injections of each
compound at the same time of day in an ascending dose sequence
(0.1, 0.3, 1, mg/kg). This ascending sequence reduces the risk posed
to the animals in assessing hitherto untested compounds, and the use
of multiple cohorts limits the potential development of tolerance to
the compound. Two washout days were given between each dose. If
only a modest or negligible hypothermic response was seen at 1 mg/
kg, then a further 3 mg/kg dose of the compound was given. At least
two washout days were given between each dose.

For the antagonist studies (Figure 6), the third and fourth cohort of
drug-naiv̈e rats were used for each compound, with a 48 h washout
period between each dose. Each cohort received injections of either
vehicle, CB1 antagonist (rimonabant, 3 mg/kg), or CB2 antagonist
(SR144528, 3 mg/kg), followed by 5F-AMB (3 mg/kg) or MDMB-
FUBINACA (1 mg/kg). The vehicle or antagonist injections were
given to rats 30 min prior to the 5F-AMB or MDMB-FUBINACA
injections.

Data for heart rate and body temperature was gathered continuously
at 1000 Hz and organized into 15 min bins using Dataquest A.R.T.
software (version 4.3, Data Sciences International, St. Paul, MN), and
analyzed using PRISM (Graphpad Software Inc., San Diego, CA).

We calculated the area between baseline and drug-treatment body
temperature curves for each rat as a measure of compound potency.
Briefly, for any time point, the area between baseline data points (Bt)
and drug-treatment data points (Dt) and the subsequent time points
(Bt+1 and Dt+1) forms a trapezoid, the area of which can be calculated
via the formula:

= − + −+ +B D B D
area

( ) ( )
2

t t t t1 1

These areas were summed from the time of injection to 6 h
postinjection. MDMB-FUBINACA and 5F-AMB AUC data were
compared at each dose level with independent samples t tests.

For the antagonist studies, the area between the vehicle−vehicle
baseline and the vehicle−SC (i.e., vehicle−5F-AMB or vehicle−
MDMB-FUBINACA), rimonabant-SC, and SR144528-SC treatments
was calculated over a 3 h time period postinjection of SC. These areas
were analyzed using a one-way repeated measures ANOVA with
planned Dunnet’s contrasts comparing the antagonist areas to the
vehicle-drug area.
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Abstract CUMYL-PICA [1-pentyl-N-(2-phenylpropan-2-

yl)-1H-indole-3-carboxamide] and 5F-CUMYL-PICA [1-

(5-fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-indole-3-car-

boxamide] are recently identified recreationally used/

abused synthetic cannabinoids, but have uncharacterized

pharmacokinetic profiles and metabolic processes. This

study characterized clearance and metabolism of these

compounds by human and rat liver microsomes and hep-

atocytes, and then compared these parameters with in vivo

rat plasma and urine sampling. It also evaluated

hypothermia, a characteristic cannabimimetic effect.

Incubation of CUMYL-PICA and 5F-CUMYL-PICA with

rat and human liver microsomes suggested rapid metabolic

clearance, but in vivo metabolism was prolonged, such that

parent compounds remained detectable in rat plasma 24 h

post-dosing. At 3 mg/kg (intraperitoneally), both com-

pounds produced moderate hypothermic effects. Twenty-

eight metabolites were tentatively identified for CUMYL-

PICA and, coincidentally, 28 metabolites for 5F-CUMYL-

PICA, primarily consisting of phase I oxidative transfor-

mations and phase II glucuronidation. The primary meta-

bolic pathways for both compounds resulted in the

formation of identical metabolites following terminal

hydroxylation or dealkylation of the N-pentyl chain for

CUMYL-PICA or of the 5-fluoropentyl chain for 5F-

CUMYL-PICA. These data provide evidence that in vivo

elimination of CUMYL-PICA, 5F-CUMYL-PICA and

other synthetic cannabinoids is delayed compared to

in vitro modeling, possibly due to sequestration into adi-

pose tissue. Additionally, the present data underscore the

need for careful selection of metabolites as analytical tar-

gets to distinguish between closely related synthetic

cannabinoids in forensic settings.

Keywords Synthetic cannabinoid � Pharmacokinetics �
Metabolism � CUMYL-PICA � 5F-CUMYL-PICA �
Delayed clearance in vivo

Introduction

Synthetic cannabinoid receptor 1 (CB1) agonists comprise

a large and growing class of recreationally used novel

psychoactive substances. These synthetic chemicals pro-

duce psychoactive ‘‘cannabimimetic’’ effects in humans

and rodents [1–5], and their use as recreational drugs has

been linked to a number of adverse health effects [6–9].

The molecular structures of these compounds are regularly

altered in an attempt to evade drug detection and legisla-

tion [10], and consequently users of synthetic cannabinoids

are frequently exposed to novel substances with unknown

pharmacokinetic and pharmacodynamic properties.

Two such novel synthetic cannabinoids are CUMYL-

PICA [1-pentyl-N-(2-phenylpropan-2-yl)-1H-indole-3-car-

boxamide] and its fluorinated analogue 5F-CUMYL-PICA

[1-(5-fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-indole-3-

carboxamide]. These synthetic cannabinoids are a,a-
dimethylbenzyl analogues of SDB-006 and 5F-SDB-006,

which are in turn analogues of SDB-001 (APICA) and

STS-135 (Fig. 1). They are also structurally related to a
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number of other carboxamide synthetic cannabinoids such

as AMB and 5F-AMB. CUMYL-PICA was detected first in

European synthetic cannabinoid products in 2014 [11], and

5F-CUMYL-PICA was recently detected in toxicological

analyses of blood samples in Germany [12].

To our knowledge, the pharmacokinetics of CUMYL-

PICA and 5F-CUMYL-PICA have not been characterized.

A thorough understanding of these processes is important

for determining drug toxicology and for identifying these

compounds in biological matrices where they are likely

extensively metabolized [13–15]. A precise understanding

of metabolic pathways is necessary, because closely

structurally related synthetic cannabinoids can produce

identical metabolites, which can increase the difficulty of

forensic identification of a unique compound [13, 15]. In

addition, some synthetic cannabinoid metabolites retain

cannabinoid receptor efficacy and therefore may be rele-

vant to the overall pharmacological profile following drug

administration [16, 17].

Thus, the present study aimed to characterize the phar-

macokinetics related to metabolism and clearance of

CUMYL-PICA and 5F-CUMYL-PICA. First, these com-

pounds were assessed in vitro using rat and human liver

microsomes and hepatocytes, in order to measure clearance

and to establish metabolic pathways. These assays were

followed by in vivo kinetic assessment in rat blood and

urine sampled at several time points following drug

administration and measurement of body temperature.

These data were used to propose metabolic pathways for

CUMYL-PICA and 5F-CUMYL-PICA in rats and humans,

to examine the predictive utility of in vitro approaches to

synthetic cannabinoid metabolic studies, and to suggest

viable analytical targets for forensic analysis.

Materials and methods

Chemicals and reagents

CUMYL-PICA and 5F-CUMYL-PICA were obtained from

Cayman Chemicals (Ann Arbor, MI, USA). Acetonitrile

and formic acid were purchased from Fisher Scientific

(Raleigh, NC, USA). Rat and human liver microsomes and

hepatocytes were obtained from XenoTech (Kansas City,

KS, USA). Polysorbate 80 was purchased from Fisher

Scientific (Pittsburgh, PA, USA) and saline from Patterson

Veterinary Supply (Devens, MA, USA). All chemicals and

solvents were at least ACS or high-performance liquid

chromatography grade, respectively.

In vitro incubations

Rat and human liver microsomes

CUMYL-PICA and 5F-CUMYL-PICA were incubated at

1 lM with male human (pooled) or rat (pooled IGS

Sprague–Dawley) liver microsomes at 37 �C, in triplicate,

with gentle shaking. A solution of each compound was

prepared in acetonitrile at a concentration of 0.1 mM. An

assay mixture containing microsomes (1 mg protein/mL

final concentration), nicotinamide adenine dinucleotide

phosphate reduced form (NADPH; 1 mM final) and a

buffer consisting of 50 mM potassium phosphate buffer,

pH 7.4, with 3 mM MgCl2 was prepared and pre-incubated

at 37 �C for 5 min. Ten microliters of the 0.1 mM drug

solutions was added to 990 lL of assay mixture in a glass

test tube in a 37 �C water bath to initiate the assay; 100-lL
samples were removed at 0, 5, 10, 30, and 60 min and

added to 100 lL acetonitrile. Samples were centrifuged

and stored at -80 �C until analysis.

Fig. 1 Structures of CUMYL-PICA and 5F-CUMYL-PICA com-

pared to benzyl analogues SDB-006 and 5F-SDB-006 and to

adamantyl analogues SDB-001 and STS-135
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Rat and human hepatocytes

Incubation of CUMYL-PICA and 5F-CUMYL-PICA at

10 lM with male human or rat hepatocytes was performed

in triplicate, with 1 mL cell suspension (rat: 0.86 9 106

cells/mL, 80% viability; human: 0.80 9 106 cells/mL,

81.6% viability) in 24-well polystyrene cell culture plates

in a 37 �C incubator with 5% CO2 atmosphere. Both

compounds were formulated in acetonitrile at 10 mM and

further diluted to 1 mM in acetonitrile so that the final

concentration of acetonitrile in the incubation was 1% after

the addition of 10 lL drug solution to 990 lL of hepato-

cyte suspension. Incubation was conducted simultaneously

using 1 mL incubation cell blank containing live cells and

solvent blank; this incubation was treated exactly as the

cell incubations. At 0, 10, 60, and 180 min, a 100-lL
sample was removed and terminated with 100 lL ace-

tonitrile, vortexed (11,000 g for 1 min) and stored at

-80 �C until analysis.

In vivo dosing and sampling in rats

Animals

Twelve 49-day-old male Long–Evans rats (226.8–286.7 g)

with jugular vein catheters were purchased from Charles

River Laboratories (Raleigh, NC, USA). Different groups

of rats (n = 4 per group) were used to test each compound

and vehicle control. Prior to testing, all animals were kept

in a temperature-controlled environment (20–22 �C) on a

12-h light–dark cycle (lights on at 6 a.m.), with access to

food and water ad libitum. All in vivo work was carried out

in accordance with guidelines published in the Guide for

the Care and Use of Laboratory Animals (National

Research Council 2011), and were approved by the RTI

International Institutional Animal Care and Use

Committee.

Procedures

The animals were placed individually into glass metabolic

cages (Prism Research Glass, Raleigh, NC, USA). Ani-

mals were administered intraperitoneal injections, in case

of 3 mg/mL CUMYL-PICA or 3 mg/mL 5F-CUMYL-

PICA dissolved in vehicle solution comprising 7.8%

polysorbate 80 NF (Fisher Scientific, Pittsburgh, PA,

USA) and 92.2% saline USP (Patterson Veterinary Sup-

ply, Devens, MA, USA), with an injection volume of

1 mL/kg of rat body weight. Blood samples (200 lL)
were drawn 15 min pre-injection and 15 min, 30 min,

1 h, 2 h, 4 h, 8 h, and 24 h post-injection, put into chilled

K3EDTA collection tubes, and centrifuged at 2800 g for

10 min at 4 �C. The plasma supernatant was decanted and

stored at -80 �C until further analysis. Rectal tempera-

ture was also recorded at these time points using a digital

thermometer (Physitemp Instruments Inc., Clifton, NJ,

USA). Urine was collected at 8 and 24 h post-injection.

At 24 h post-injection, rats were euthanized via CO2

asphyxiation, and blood was rapidly collected and stored

as specified above.

Analyte extraction

Extractions of all analytes (parent compounds and

metabolites) from all matrices (microsomes, hepatocytes,

plasma, and urine) was performed as follows. Acetonitrile

was added in a 3:1 ratio to the sample volume (micro-

somes/hepatocytes sample volume 50 lL; plasma 25 lL;
urine 100 lL) and centrifuged at 4000 g for 15 min at

4 �C. Supernatants were transferred to vials for immediate

analysis via liquid chromatography–tandem mass spec-

troscopy (LC–MS/MS).

LC–MS/MS analyses

Parent compounds CUMYL-PICA and 5F-CUMYL-PICA

in the media following incubation with rat and human liver

microsomes and in rat plasma were quantified using LC–

MS/MS. The LC–MS/MS system consisted of a Waters

Acquity UPLC system, equipped with a Waters BEH C18

column (100 mm 9 2.1 mm i.d., particle size 1.7 lm;

Waters Corp., Milford, MA, USA), coupled to an API 5000

tandem mass spectrometer (AB Sciex, Framingham, MA,

USA). Gradient elution was used with mobile phase solu-

tions 0.1% formic acid in water (A) and acetonitrile (B),

which started at 10% B for 0.5 min and was then ramped to

95% B over 10 min, held until 12.5 min and then returned

to 10% B for 2.5 min, with a total run time of 15 min. The

mass spectrometer was operated in positive electrospray

ionization mode with multiple reaction monitoring. The

monitored transitions were m/z 349.1 ? 231.1 for

CUMYL-PICA and m/z 367.1 ? 249.1 for 5F-CUMYL-

PICA.

Metabolites were also identified using LC–MS/MS, with

a Thermo Fisher LTQ Orbitrap Velos mass spectrometer

(Thermo Fisher Scientific, Waltham, MA, USA) coupled to

a Waters Acquity UPLC system (Waters Corp.). Chro-

matographic conditions were identical to those specified

above. The mass spectrometer was operated in positive

electrospray ionization mode, with scan range of m/z

100–910 and capillary temperature of 250 �C. Because

during method development, poor fragmentation was

observed across a range of collision energies, higher-en-

ergy collisional dissociation was implemented, with a

collision energy at 35 eV.
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Data analysis

Hypothermic effects were statistically analyzed using a

two-factor mixed ANOVA with drug treatment (vehicle,

3 mg/kg CUMYL-PICA, or 3 mg/kg 5F-CUMYL-PICA)

as the between-subject factor and time (pre-dose, 15 min,

30 min, 1 h, 2 h, 4 h, 8 h, and 24 h) as the within-subject

factor. Simple effects of drug treatment were then analyzed

using Dunnett’s tests (a = 0.05), which compared the

CUMYL-PICA or 5F-CUMYL-PICA cohort to the vehicle

cohort at each time point.

Microsomal intrinsic clearance (CLint,micr) and half-life

were calculated from plots of chromatographic peak areas

against time. Intrinsic clearance (CLint) was calculated by

scaling CLint,micr to whole-liver dimensions for rats and

humans [18, 19]. Hepatic clearance (CLH) and extraction

ratios (ER) were estimated based on the corresponding rat

and human CLint values and estimates of liver blood flow

rate (rat 13.8 mL/min; human 1400 mL/min) [20]. Plasma

concentrations of CUMYL-PICA and 5F-CUMYL-PICA

were calculated via a standard curve of the corresponding

calibrator samples using a reference standard. Plasma kinetic

parameters were then computed from plasma concentrations

of each compound via non-compartmental analysis per-

formed with WinNonlin� (Certara, Princeton, NJ, USA).

Metabolites were identified in hepatocyte incubations,

rat plasma, and rat urine using Compound Discoverer 2.0

software (Thermo Fisher Scientific) and manual inspection

and interpretation of mass spectra.

Results

Body temperature

Compared to vehicle injection, 3 mg/kg CUMYL-PICA

and 5F-CUMYL-PICA produced hypothermic effects in

rats (Fig. 2). The mean rectal body temperature was sig-

nificantly reduced following treatment with CUMYL-PICA

at 15 and 30 min and 1, 2, and 4 h post-injection. Simi-

larly, significant hypothermic effects were observed fol-

lowing 5F-CUMYL-PICA treatment at 15 and 30 min and

1, 2, and 4 h post-injection.

Liver microsome clearance

Clearance of CUMYL-PICA and 5F-CUMYL-PICA was

rapid in rat and human liver microsome incubations

(Fig. 3a–d; Table 1). However, both compounds were still

detectible after 3 h incubations. Kinetic parameters were

similar across all incubations except for CUMYL-PICA in

human liver microsomes, which had a substantially longer

half-life and correspondingly reduced extraction ratio.

Plasma kinetics

Following intraperitoneal administration of 3 mg/kg

CUMYL-PICA or 5F-CUMYL-PICA, plasma concentra-

tions of the parent compounds rose quickly, followed by

gradual and incomplete elimination over the following 24 h

(Fig. 3e, f). Table 1 contains parameters generated from

non-compartmental analysis of the pharmacokinetic data.

Overall, the pharmacokinetics of both compounds in rat

plasma were similar, although the maximum concentration

of CUMYL-PICA was greater and occurred earlier than that

of 5F-CUMYL-PICA. CUMYL-PICA had a shorter half-life

than 5F-CUMYL-PICA, and the apparent clearance (CL/F)

values for both compounds were lower than clearance values

predicted by microsome preparations.

CUMYL-PICA metabolism

Phase I metabolites

Phase I metabolism of CUMYL-PICA was extensive, with

oxidation occurring at numerous sites (Figs. 4a, 5;

Table 2). Parent CUMYL-PICA eluted at 8.94 min, and

was confirmed by matching fragmentation and retention

times with an analytical standard (Fig. 4a). The [M?H]?

molecular ion of CUMYL-PICA was m/z 349.2258, and

produced product ions at m/z 231.1472, 214.1220, and

188.1449, corresponding to fragmentation along the car-

boxamide linking group, and 119.0848 and 91.0542, cor-

responding to fragmentation of the a,a-dimethylbenzyl

moiety and subsequent formation of a tropylium ion.

Six monohydroxylated metabolites (C21, C22, C24–C27)

with m/z 365.2210 were identified in rat hepatocytes.

Metabolites C26 and C27 were likely hydroxylated on the

benzene ring of the a,a-dimethylbenzyl moiety, as they

produced product ions at m/z 135.0791 and 107.0493,

15.99 Da higher than product ions at m/z 119.0848 and

91.0542 of the parent molecule, respectively. However, C26

and C27 were not observed in human hepatocyte incuba-

tions. Metabolites C21 and C22 produced an ion at m/z

161.0707, suggesting that hydroxylation did not occur on the

indole moiety, and also produced a product ion at m/z

119.0848, excluding the a,a-dimethylbenzyl moiety, leaving

the N-pentyl chain as the likely hydroxylation location. C24

and C25 lacked the ion at m/z 161; thus hydroxylation may

have occurred on the indole moiety for these metabolites,

although the expected product ions at m/z 160 and 177

(144 ? 16 and 161 ? 16) were not observed.

Although fragmentation was insufficient to localize each

hydroxylation to the exact molecular site, corresponding

data from 5F-CUMYL-PICA incubations were informa-

tive. A metabolite (F22) with retention time and frag-

mentation identical to that of C21 was also formed
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following hepatocyte incubation or rat dosing with 5F-

CUMYL-PICA. Because this metabolite could only occur

following oxidative defluorination of 5F-CUMYL-PICA,

we conclude that metabolite C21 is hydroxylated at the

terminal position of the N-pentyl chain. C21 was further

oxidized to form a carboxylic acid metabolite C20

([M?H]? m/z 379.2005). Product ions at m/z 200.1076 and

119.0848 exclude this transformation from the indole and

a,a-dimethylbenzyl moieties, strongly suggesting forma-

tion of the carboxylic acid on the N-pentyl chain. Similar

hydroxylation and carboxylation has been reported for

AMB, 5F-AMB, JWH-018, AM-2201, RCS-4, UR-144,

JWH-073, JWH-210, and others [15, 16, 21–24].

The monohydroxylated metabolites underwent further

hydroxylation to form two dihydroxylated metabolites

(C11 and C13) with m/z 381.2261 (Fig. 5; Table 2). Sim-

ilar to metabolites C26 and C27, metabolite C11 was

hydroxylated once on the a,a-dimethylbenzyl moiety based

on product ion at m/z 135.0791, while the ion at m/z

144.0444 suggests that the other hydroxylation occurred on

the N-pentyl chain. C13 produced product ions at m/z

263.1379 and 246.1144, 32 Da higher than CUMYL-PICA

product ions at m/z 231.1472 and 214.1220, respectively,

and also produced a product ion at m/z 119.0848, but not at

m/z 135.0791, indicating that both hydroxylations occurred

on the indole and/or N-pentyl moieties. In 5F-CUMYL-

PICA preparations, we observed a metabolite (F15) with

retention time and mass identical to those of C13; however

product ions differed substantially, suggesting formation of

a similar but non-identical dihydroxylated metabolite.

CUMYL-PICA was also carbonylated, forming

metabolite C23 with [M?H]? m/z 363.2056. The product

ions at m/z 245.1312 and 228.1023 were 13.98 Da larger

than the corresponding CUMYL-PICA product ions at m/z

231.1472 and 214.1220 (i.e., ?O–2H). Ions at m/z

119.0848 and 144.0444 indicate that this carbonylation did

not occur on the a,a-dimethylbenzyl or indole moieties,

respectively, while the product ion at m/z 85.0646 localized

this transformation to the N-pentyl chain. Metabolite C28

had a molecular ion at m/z 347.2103, 2.0155 Da less than

CUMYL-PICA, suggesting a dehydrogenation. Product

ions at m/z 229.1315, 212.1048, 186.1290, and 119.0848

indicate that dehydrogenation occurred on the indole or N-

pentyl moieties; however, this likely occurred on the N-

pentyl chain, given the lack of suitable sites for dehydro-

genation on the indole moiety, and in light of similar

reports of dehydrogenation on the N-pentyl chain for other

synthetic cannabinoids [15].

Additionally, CUMYL-PICA appears to undergo

dealkylation of the N-pentyl chain, producing metabolite

C18 with m/z 279.1978. The product ions at m/z 161.0707,

144.0444, 119.0848, 118.0642, and 91.0542 are consistent

with this interpretation. Similar dealkylation occurred in

some synthetic cannabinoids containing an N-pentyl or N-

fluoropentyl chain [23, 25]. Four monohydroxylations of

this metabolite were identified (m/z 295.1429). Two of

these (C9 and C10) occurred on the indole moiety, evi-

denced by product ions at m/z 177.0669 and 160.0407,

16 Da higher than 161.0707 and 144.0444, respectively.

The other two hydroxylations (C7 and C8) lacked these

ions, and instead produced a product ion at m/z 135.0791

while retaining ions at m/z 161.0707 and 144.0444,

strongly indicating that hydroxylation occurred on the a,a-
dimethylbenzyl moiety.

Fig. 2 Mean rectal body

temperature of male rats

following administration of

vehicle solution or 3 mg/kg

CUMYL-PICA or 5F-CUMYL-

PICA (n = 4 per group).

Dashed line denotes time of

intraperitoneal (i.p.) injection.

The error bars represent

standard error of the mean

(SEM). *P\ 0.05, **P\ 0.01,

***P\ 0.001,

****P\ 0.0001, comparing

CUMYL-PICA to vehicle at

each time point. �P\ 0.05,

��P\ 0.01, ���P\ 0.001,

����P\ 0.0001, comparing

5F-CUMYL-PICA to vehicle at

each time point. PD pre-dose,

15 min before injection; VEH

vehicle
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Phase II metabolites

No direct phase II transformations of CUMYL-PICA were

observed, but several phase I metabolites underwent

glucuronidation. Five discrete peaks at m/z 541.2510 were

identified in rat and human hepatocytes (C12, C14, C15,

C17, and C19), 176 Da greater than monohydroxylated

metabolites (m/z 365.2210), indicating glucuronidation. A

Fig. 3 Mean chromatographic peak areas of CUMYL-PICA and 5F-

CUMYL-PICA following incubation with rat and human liver

microsomes (panels a–d, n = 3), and mean plasma concentrations

of CUMYL-PICA and 5F-CUMYL-PICA following a 3-mg/kg i.p.

injection in male rats (panels e and f, n = 4). Error bars are SEM
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metabolite identical to C15 in mass, retention time, and

product ions was observed in 5F-CUMYL-PICA incuba-

tions (F19), indicating that this metabolite is the glu-

curonide of C21. C19 was found following incubation

with human hepatocytes, which likely excludes it as a

glucuronide of the a,a-dimethylbenzyl hydroxylated

metabolites (C26 and C27), because these metabolites

were not found in human hepatocyte incubations

(Table 2).

Dihydroxylated metabolites were glucuronidated to four

identifiable glucuronides (C3–C5, C16). Mass spectral data

were not sufficient to assign each glucuronide to a specific

dihydroxylated metabolite. Interestingly, C16 was far more

abundant and eluted much later than C3–C5 (Fig. 4a),

indicating a substantially less polar structure. Carboxylic

acid metabolite C20 formed glucuronide C6 (m/z

555.2334). Either C7 or C8 formed glucuronidated

metabolite C1, which had a mass of m/z 471.1746 and

product ions at m/z 161.0707, 144.0444, and 135.0791.

Similarly, C9 or C10 was glucuronidated to C2 ([M?H]?

m/z 471.1746, product ions at m/z 177.0669, 160.0407, and

119.0848). No sulfation or other phase II transformations

were observed.

5F-CUMYL-PICA metabolism

Phase I metabolites

Similar to CUMYL-PICA, 5F-CUMYL-PICA was exten-

sively oxidized and glucuronidated (Fig. 6; Table 3). The

[M?H]? molecular ion was m/z 367.2161 for the unaltered

compound, and major product ions were m/z 249.1417,

232.1116, and 206.1317, all 17.99 Da higher than corre-

sponding CUMYL-PICA ions (i.e., ?F-H), in addition to

identical ions at m/z 119.0848 and 91.0542. Compound

identity was also confirmed by matching retention time and

fragmentation to the reference standard (retention time

8.11 min; Fig. 4b).

Six monohydroxylations of 5F-CUMYL-PICA were

identified (F23–F28, m/z 383.2103, 15.99 Da larger than

parent). Metabolites F23–F25 and F27 produced a product

ion at m/z 119.0848, suggesting hydroxylation on the

indole or N-fluoropentyl moiety, while metabolites F26 and

F28 produced an ion at m/z 135.0791, indicating hydrox-

ylation on the a,a-dimethylbenzyl moiety. Unfortunately,

metabolites F23–F25 and F27 did not produce product ions

that might be used to distinguish between indole or N-

fluoropentyl chain oxidations (e.g., 144 vs 160, or 161 vs

177). However, we suggest that 5F-CUMYL-PICA

hydroxylation likely proceeds in a manner similar to

CUMYL-PICA, and that these metabolites are likely

5-fluoropentyl analogues of CUMYL-PICA metabolites

C22, C24, and C25.

Dihydroxylated metabolites F14 and F17 were also

detected. F14 produced a product ion at m/z 135.0791

suggesting that one hydroxylation occurred on the a,a-
dimethylbenzyl moiety, while ions at m/z 265.1363 and

248.1018 indicate that the other hydroxylation occurred on

the indole or N-fluoropentyl portion of the molecule. F17

produced ion at m/z 119.0848 instead of m/z 135.0791,

suggesting both hydroxylations occurred on the indole or

N-fluoropentyl portion of the molecule. This interpretation

is supported by the presence of ions at m/z 281.1266 and

264.1018 (15.99 Da higher than ions at m/z 265.1363 and

248.1107, respectively).

Oxidative defluorination was a predominant metabolic

pathway, forming metabolite F22 at m/z 365.2210 and

product ions at m/z 247.1448, 230.1149, 204.1378, and

119.0848, identical to CUMYL-PICA metabolite C21.

Similar dehalogenation has been reported as a major

metabolic pathway for AM-2201, 5F-AMB, XLR-11, and

AM-694 [15, 22, 26]. Additional hydroxylation of F22

produced dihydroxylated metabolite F15 ([M?H]? m/z

381.2169), which produced ions at m/z 263.1379,

246.1144, 202.1207, and 119.0848, indicating that the

second hydroxylation occurred on the pentyl chain or

indole moiety. Oxidation of F22 formed carboxylic acid

Table 1 Pharmacokinetic parameters of CUMYL-PICA and 5F-

CUMYL-PICA incubated in rat and human liver microsomes in vitro

and in rat plasma in vivo

Pharmacokinetic parameter CUMYL-PICA 5F-CUMYL-PICA

Rat liver microsomes

Half-life (min) 2.24 1.19

CLint,micr (mL/min/mg) 0.31 0.58

CLint (mL/min/kg body wt.) 556.88 1048.24

CLH (mL/min/kg body wt.) 50.22 52.44

ER 0.91 0.95

Human liver microsomes

Half-life (min) 5.92 1.77

CLint,micr (mL/min/mg) 0.12 0.39

CLint (mL/min/kg body wt.) 135.46 453.05

CLH (mL/min/kg body wt.) 17.43 19.15

ER 0.87 0.96

Rat plasma

Half-life (h) 7.26 12.00

CL/F (mL/min/kg body wt.) 43.31 147.88

Cmax (ng/mL) 130.50 65.25

Tmax (h) 0.50 0.50

AUC 0–24 h (h ng/mL) 1086.57 581.78

AUC 0–? (h ng/mL) 1214.85 843.28

AUC area under the curve, CL/F observed apparent clearance, CLH
estimated hepatic clearance, CLint estimated intrinsic clearance,

CLint, micr intrinsic microsome clearance, Cmax mean maximum

observed concentration, ER extraction ratio, Tmax mean time of Cmax
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metabolite F21, identical to CUMYL-PICA metabolite

C20. F21 was then hydroxylated, forming metabolites

F11 and F13 ([M?H]? m/z 395.1937). F11 produced

product ion at m/z 135.0791, indicating hydroxylation on

the a,a-dimethylbenzyl moiety, and ion at m/z 200.1076

further localized this modification to the benzene ring.

F13 produced ions at m/z 277.1163, 260.0936, 216.1009,

and 119.0848, suggesting hydroxylation of the indole

Fig. 4 Combined extracted ion chromatograms of a CUMYL-PICA and b 5F-CUMYL-PICA metabolites after 3-h incubation with rat

hepatocytes, obtained by liquid chromatography–single-stage mass spectrometry
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moiety. Interestingly, these hydroxylation reactions were

not detected in CUMYL-PICA incubations. Oxidative

defluorination may occur more readily than terminal

hydroxylation of the N-pentyl chain, thereby increasing

concentrations of subsequent metabolites. This is sup-

ported by our chromatographic data that show a larger

extracted ion peak (m/z 365.2) for F22 compared to C21

(Fig. 4).

Fig. 5 Proposed CUMYL-PICA metabolic pathways in rats and humans. Dashed arrows between compounds denote formation of metabolites

that were not observed in human hepatocyte incubations. Unlocalized transformations are shown as Markush structures
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Table 2 CUMYL-PICA metabolites following incubation with rat and human hepatocytes, and their presence in rat plasma and urine following

a 3-mg/kg intraperitoneal (i.p.) injection

Metabolite RT

(min)

Transformation Molecular ion

[M?H]? (m/z)

Major product

ion(s) (m/z)

Rat

hepatocyte

Human

hepatocyte

Rat

plasma

Rat

urine

C1 4.15 N-Pentyl dealkylation ? hydroxylation

(a,a-dimethylbenzyl) ? glucuronidation

471.17 177, 161, 135 4 4

C2 4.51 N-Pentyl dealkylation ? hydroxylation

(indole) ? glucuronidation

471.17 177, 119 4 4 4

C3 4.68 Dihydroxylation ? glucuronidation 557.24 381, 263 4 4

C4 4.83 Dihydroxylation ? glucuronidation 557.24 381, 263 4 4

C5 4.95 Dihydroxylation ? glucuronidation 557.24 381, 263 4 4

C6 5.01 Carboxylation ? glucuronidation 555.23 379 4 4 4

C7 5.11 N-Pentyl dealkylation ? hydroxylation

(a,a-dimethylbenzyl)

295.14 161, 144, 135 4 4 4

C8 5.17 N-Pentyl dealkylation ? hydroxylation

(a,a-dimethylbenzyl)

295.14 161, 144, 135 4 4

C9 5.30 N-Pentyl dealkylation ? hydroxylation

(indole)

295.14 177, 160 4 4

C10 5.34 N-Pentyl dealkylation ? hydroxylation

(indole)

295.14 177, 160 4 4 4

C11 5.65 Dihydroxylation (a,a-dimethylbenzyl, N-

pentyl)

381.22 247, 230, 144,

135

4 4

C12 5.78 Hydroxylation ? glucuronidation 541.25 365, 230 4 4

C13 5.87 Dihydroxylation (N-pentyl, indole) 381.22 263, 246, 220,

119

4 4 4

C14 5.92 Hydroxylation ? glucuronidation 541.25 365, 230 4

C15 6.02 Hydroxylation (N-pentyl,

terminal) ? glucuronidation

541.25 423, 247, 230,

204, 119

4 4 4

C16 6.12 Dihydroxylation ? glucuronidation 557.24 381, 263 4 4

C17 6.30 Hydroxylation ? glucuronidation 541.25 365, 230 4

C18 6.41 N-Pentyl dealkylation 279.19 161, 144, 119,

118, 91

4 4

C19 6.50 Hydroxylation ? glucuronidation 541.25 365, 230 4 4 4

C20 6.68 Carboxylation 379.20 261, 244, 218,

200, 119, 91

4 4 4

C21 6.76 Hydroxylation

(N-pentyl, terminal)

365.22 247, 230, 204,

119

4 4 4 4

C22 7.11 Hydroxylation (N-pentyl) 365.22 247, 230, 161,

119

4 4 4

C23 7.13 Carbonylation (N-pentyl) 363.21 245, 228, 144,

119, 85

4 4 4

C24 7.37 Hydroxylation (indole) 365.22 247, 230, 204,

119

4 4 4 4

C25 7.46 Hydroxylation (indole) 365.22 247, 230, 204,

119

4 4 4

C26 7.80 Hydroxylation (benzene ring) 365.22 231, 214, 135 4

C27 7.86 Hydroxylation (benzene ring) 365.22 231, 214, 135 4 4

C28 8.52 Dehydrogenation (N-pentyl) 347.21 229, 212, 186,

119, 91

4 4 4

CUMYL-

PICA

8.94 Parent compound 349.22 231, 214, 188,

119, 91

4 4 4

Ticks denote detection of compounds in a given matrix

RT retention time
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Similar to CUMYL-PICA, the N-fluoropentyl chain of

5F-CUMYL-PICA was eliminated, leaving metabolite F20,

identical in retention time and fragmentation to CUMYL-

PICA metabolite C18. As was the case for C18, F20 was

further oxidized on the a,a-dimethylbenzyl moiety (F7 and

F8, product ions at m/z 161.0707, 144.0444, 135.0791) or

indole moiety (F9 and F10, product ions at m/z 177.0669,

160.0376, 119.0848).

Fig. 6 Proposed 5F-CUMYL-PICA metabolic pathways in rats and humans. Dashed arrows between compounds denote formation of

metabolites that were not observed in human hepatocyte incubations. Unlocalized transformations are shown as Markush structures
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Phase II metabolites

As was the case for CUMYL-PICA, 5F-CUMYL-PICA did

not undergo direct phase II metabolism. Monohydroxylated

metabolites formed three glucuronides of mass 559.2445

(F12, F16, and F18). Like monohydroxylated CUMYL-

PICA glucuronides, mass spectra were not sufficient to

localize each glucuronidation to a specific monohydroxy-

lated metabolite.

Oxidatively defluorinated metabolite F22 was glu-

curonidated to F19, which was identical in retention time

and fragmentation to CUMYL-PICA metabolite C12. F15,

the hydroxylated metabolite of F22, was also glu-

curonidated. Interestingly, three distinct glucuronidations

were identified (F2, F4, and F5). It is likely that glu-

curonidation occurred on either hydroxyl group of F15,

which accounts for two glucuronides, but the presence of a

third glucuronidated compound suggests that an additional

dihydroxylated metabolite may have been formed but not

detected.

F9 and F10 were glucuronidated to F3 and F6 ([M?H]?

m/z 471.1746, product ions at m/z 177.0669, 160.0407, and

119.0848), while either F7 or F8 was glucuronidated to F1

([M?H]? 471.1746, product ions at m/z 161.0707,

144.0444, and 135.0791). No sulfation or other phase II

transformations were observed.

Discussion

This study examined the metabolism and clearance of syn-

thetic cannabinoids CUMYL-PICA and 5F-CUMYL-PICA

in rat and human liver microsomes and hepatocytes

(in vitro), and in whole animals following administration of

each compound in adult male rats. Both compounds pro-

duced moderate hypothermic effects at an intraperitoneal

dose of 3 mg/kg. While rapid clearance for both compounds

was predicted by in vitro data, actual elimination in vivo

occurred slowly (Fig. 3). Both compounds were extensively

metabolized via oxidative transformations and subsequent

glucuronidation, and produced several identical metabolites.

CUMYL-PICA and 5F-CUMYL-PICA produced

hypothermic effects of similar magnitude across a 4–8-h

period (Fig. 2). For the most part, the magnitude of

hypothermia was mirrored by blood drug concentration,

although therewas somedelaybetweenpeakhypothermia and

peak blood concentration. Rats dosed with CUMYL-PICA

also returned to baseline body temperature more rapidly than

might be expected frombloodconcentration.This could be the

result of homeostatic mechanisms including rapid receptor

internalization or down-regulation. Analogous hypothermic

effects in rodents have been observed following administra-

tion of a wide variety of number of CB1 agonists, including

other synthetic cannabinoids [1, 2, 27–29] and phyto-

cannabinoids [30]. These effects are blocked by the CB1

antagonist rimonabant (SR141716), indicating a CB1-depen-

dent mechanism [2, 31]. Although we did not block

hypothermia with rimonabant in this study, it is likely that

CUMYL-PICA and 5F-CUMYL-PICA produce hypothermia

via CB1 given their structural similarity to several synthetic

cannabinoids assessed in previous reports.

Although rapid clearance of CUMYL-PICA and 5F-

CUMYL-PICA was observed in microsomal incubations, rat

plasma half-lives were 7 and 12 h, respectively, and both

untransformed compounds were detectible in plasma at 24 h

post-dosing (Fig. 3; Table 1). In addition, apparent in vivo

clearance was substantially slower than clearance values

predicted by microsomal incubations. Several factors may

account for this discrepancy; lipophilicity seems to be the

most likely contributor. These compounds, including D9-

tetrahydrocannabinol (D9-THC), are largely non-polar and

dissolve poorly in aqueous solutions. In rats and humans,

D9-THC is sequestrated into adipose tissue and appears to

passively and slowly diffuse back into blood during satiety

[32, 33], or more rapidly during periods of food deprivation

[34]. In a case of fatal poisoning involving synthetic

cannabinoids AB-CHMINACA and 5F-AMB, unaltered

parent compounds were found at higher levels in adipose

tissue than in blood [35]. Thus it is plausible that similar

sequestration of CUMYL-PICA and 5F-CUMYL-PICA in

adipose tissue, followed by slow passive diffusion back into

blood, could be at least partly responsible for the long half-

lives of these compounds in vivo. Analysis of adipose tissue

following synthetic cannabinoid administration may prove

fruitful in future studies. It should also be noted that our

in vitro calculations ignored protein binding, because it is

presently uncharacterized for CUMYL-PICA and 5F-

CUMYL-PICA. Regardless of the mechanisms, the rapid

clearance of synthetic cannabinoids in microsomal incuba-

tions observed in this and similar studies should be inter-

preted with caution in light of rodent data and human case

studies that point to long elimination periods in vivo.

A total of 28 metabolites of CUMYL-PICA and 28

metabolites of 5F-CUMYL-PICA were identified in hepa-

tocyte preparations. However, some metabolites produced

small peaks (Fig. 4), and subsets of 18 and 22 metabolites

were detectable in rat plasma or urine for CUMYL-PICA

and 5F-CUMYL-PICA, respectively (Tables 2, 3).

CUMYL-PICA and 5F-CUMYL-PICA were generally

metabolized similarly by rat and human hepatocytes,

although a notable exception was that hydroxylation of the

a,a-dimethylbenzyl moiety was rarely observed using

human hepatocytes. Unsurprisingly, a greater number of

phase I metabolites were detected in plasma than in urine,

and most metabolites detected in urine were glucuronides.

For urinalysis, glucuronide hydrolysis is recommended in
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order to increase urinary metabolite concentrations to aid

detection and identification. Extensive glucuronidation

appears to be common in the metabolism of other synthetic

cannabinoids [14, 15, 36] and phytocannabinoids [37, 38].

The terminally hydroxylated metabolite of CUMYL-

PICA was abundant (as measured semi-quantitatively by

peak area; Fig. 4), but it was identical to the oxidatively

defluorinated metabolite of 5F-CUMYL-PICA. Similarly,

the carboxylated metabolite of 5F-CUMYL-PICA was

abundant but identical to the corresponding CUMYL-PICA

metabolite. Consequently, CUMYL-PICA and 5F-CUMYL-

PICA cannot be distinguished from each other using either

of their most abundant metabolites. Additionally, elimina-

tion of the N-pentyl or 5-fluoropentyl chains of CUMYL-

PICA and 5F-CUMYL-PICA, respectively, formed identical

metabolites. Similar metabolic convergence has been

observed with other pairs of structurally related compounds,

including AMB and 5F-AMB, JWH-018 and AM-2201, and

UR-144 and XLR-11 [15, 23].

Considering these data, analytical targets for forensic

purposes must be selected with care. Long elimination

periods in vivo suggest that screening for parent com-

pounds in blood may be sufficient in cases of acute expo-

sure. For less recent exposure, monohydroxylated

metabolites are potentially useful analytical targets in these

matrices, because they (or their glucuronides) were

observed at levels well above detection thresholds. For

CUMYL-PICA, a reasonable strategy would be to target

monohydroxylations occurring on the indole moiety (con-

sidering that a,a-dimethylbenzyl hydroxylation was not

observed in human hepatocyte preparations). Such

hydroxylation was difficult to distinguish from the termi-

nally hydroxylated metabolite, but the presence of more

than one monohydroxylated metabolite at m/z 365 would

be selective for CUMYL-PICA. For 5F-CUMYL-PICA,

monohydroxylated metabolites retaining the terminal flu-

orine may be useful analytical targets.

Conclusions

CUMYL-PICA and 5F-CUMYL-PICA produced moderate

hypothermic effects in male rats, and both compounds were

metabolized primarily via oxidative transformations fol-

lowed by glucuronidation in both rat and human models.

In vivo clearance of CUMYL-PICA and 5F-CUMYL-

PICA was substantially longer than predicted by in vitro

incubations, possibly due to the high lipophilicity of these

compounds or blood-protein binding. As is the case for

other structurally related pairs of synthetic cannabinoids,

formation of identical metabolites necessitates careful

selection of analytical targets in order to differentiate

between CUMYL-PICA and 5F-CUMYL-PICA.
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Introduction

The emergence of synthetic cannabinoids (SCs) as recreational 

drugs over recent years is a significant health concern, with 

their increasing use linked to a variety of adverse health effects 

(Trecki et al., 2015). SCs comprise a large, growing family of 

compounds with efficacy for cannabinoid receptors (cannabi-

noid receptor 1 and 2; CB1 and CB2). Many different SCs have 

been detected in ‘herbal’ products sold worldwide (Seely et al., 

2012b). These compounds produce psychoactive effects similar 

to cannabis use or Δ9-tetrahydrocannabinol (THC) via actions at 

CB1 (Wiley et al., 2012).

SC use has been associated with a toxidrome that in some 

ways resembles that of herbal cannabis itself, with features such 

as panic attacks, elevated blood pressure, and tachycardia 

(Schneir et al., 2011). Of greater concern are reports of severe 

toxic features that go beyond those of cannabis, including acute 

kidney injury, acute myocardial infarction, and generalised sei-

zures (Brents and Prather, 2014). It is unclear at present whether 

such features reflect a more potent action of these compounds 

than THC at CB1 or if there is some additional mechanism 

involved. Many SCs are also potent CB2 agonists and this could 

also influence toxicity given the expression of the CB2 receptor 

on immune and other cells (Malfitano et al., 2014). SCs may 

additionally act on G protein-coupled receptor 55 (GPR55) and 

transient receptor potential channels (Pertwee, 2010). Although 

actions on CB1 and CB2 vary widely between different SCs 

(Huffman et al., 1994; Rajasekaran et al., 2013), SCs generally 

tend to be full agonists with greater efficacy than the partial ago-

nist THC (Spaderna et al., 2013).

Systematic research into the effects of SCs is complicated 

by their rapid evolution and the sheer number of compounds 

available (EMCDDA, 2016; UNODC, 2015). Identification of 
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specific SCs in illicit products leads to their prohibition, which 

in turn reduces their popularity and leads to replacement by 

novel uncharacterised compounds. Thus, over the past decade 

SC compounds have emerged in waves (Schwartz et al., 2015). 

For example, the naphthoylindole compounds JWH-018 and 

AM-2201 were popular from 2010 to 2012, but now appear in 

few SC products (NFILS, 2014). More recent waves of popular 

compounds include indole carboxylates and indazole carboxa-

mides (Schwartz et al., 2015). It cannot be assumed that newly 

developed SCs will have the same effects as the older com-

pounds in vivo, given substantial differences in chemical struc-

ture, cannabinoid receptor efficacy and metabolism (Takayama 

et al., 2014; Thomsen et al., 2014).

Existing reports of SC effects in humans mostly fall into three 

categories: case studies reporting acute toxicity, user self-reports, 

and large surveys of SC users (Castaneto et al., 2014). Such stud-

ies are useful for identifying usage trends and potential com-

pounds or products of particular concern, but many reports do not 

include verification of chemical identity (e.g. via toxicological 

analysis of blood serum or urine), and those that do often reveal 

that multiple SC compounds have been used simultaneously 

(Musshoff et al., 2014). Use of SCs in conjunction with other 

types of recreational drugs and alcohol is also common (Barratt 

et al., 2012; Wilkins et al., 2016). Consequentially, the adverse 

effects observed in these reports cannot always be unambigu-

ously attributed to any single compound.

A limited number of SCs have been examined in preclinical 

studies in rodents, using some or all of the classic ‘tetrad’ meas-

ures of CB1 activation (decreased locomotor activity, catalepsy, 

hypothermia, antinociception). Such studies have revealed clas-

sic cannabimimetic effects of JWH-018 (Brents et al., 2012; 

Macri et al., 2013; Wiebelhaus et al., 2012), UR-144 and XLR-

11 (Wiley et al., 2013), and recently AB-CHMINACA, 

AB-PINACA, and FUBIMINA (Wiley et al., 2015). Dose-

dependent hypothermia and bradycardia have also been reported 

by our group with JWH-018, UR-144, PB-22, APICA and their 

fluorinated analogues (Banister et al., 2015b), as well as a vari-

ety of indazole SCs including AB-PINACA and AB-FUBINACA 

(Banister et al., 2015a).

More enriched studies of behavioural and physiological 

responses to novel SCs are sparse, with the exception of the large 

number of studies involving the very early SCs from the 1990s 

such as WIN-55,212-2, CP 55,940 and HU-210. A consistent 

finding among this research is the vulnerability of adolescent rats 

to lasting residual adverse effects of SCs and THC (for review 

see Higuera-Matas et al., 2015). Adolescent rats show greater 

residual memory deficits than adults following chronic THC 

administration (Quinn et al., 2008), and rats chronically treated 

with CP 55,940 during adolescence exhibit impaired working 

memory and social interaction compared with rats treated during 

adulthood (O’Shea et al., 2004). Similarly, chronic administra-

tion of WIN55,212-2 impaired recognition memory in adolescent 

but not adult rats (Schneider and Koch, 2003). These findings are 

of particular concern because adolescents constitute a substantial 

portion of SC users, with the median age of a global sample of 

users reported as 23 years (Winstock and Barratt, 2013) and 

recent studies showing that 10% of USA teenagers have tried SCs 

at least once (Palamar and Acosta, 2015). The dearth of behav-

ioural and toxicological data regarding the effects of the most 

currently prevalent SCs means that potentially large numbers of 

people from a vulnerable population are being exposed to drugs 

with unknown long-term effects.

Therefore we sought here to examine in vivo data regarding 

the lasting residual effects of currently emerging SCs in adoles-

cent animals. Two widely used indazole carboxamide SCs are 

N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-

3-carboxamide (AB-PINACA), and N-(1-amino-3-methyl-1-

oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide 

(AB-FUBINACA; NFILS, 2015). These two compounds were 

first identified in herbal products in Japan (Uchiyama et al., 

2013), have since been found in Sweden (Vikingsson et al., 

2015), Germany (Langer et al., 2016), the United States 

(Monte et al., 2014), and elsewhere. Both AB-PINACA and 

AB-FUBINACA are highly potent CB1 agonists, and also pos-

sess appreciable CB2 potency (Banister et al., 2015a). Compounds 

in this class of have been implicated in recent poisonings causing 

intense anxiety, psychosis, and aggression (Schwartz et al., 2015; 

Trecki et al., 2015), resulting in their scheduling in the United 

States and elsewhere (DEA, 2015). We selected these compounds 

for this study on the basis of their prevalence and also their 

known dose-response relationship relative to THC and other can-

nabinoids in causing hypothermia and bradycardia in rats 

(Banister et al., 2015a; NFILS, 2015).

Here we examined the effects of these SCs in adolescent rats 

during and following repeated exposure relative to THC. Because 

the behavioural effects of most SCs are poorly characterised, we 

adopted an exploratory approach that utilised a variety of general 

behavioural measures. In line with human case reports and the 

known anxiogenic effects and memory deficits produced by 

other cannabinoid compounds in rats (e.g. THC, CP 55,940), we 

targeted anxiety-like behaviours and memory performance. 

Given user reports of unpleasant effects (e.g. physical discom-

fort, nausea, anxiety; Schwartz et al., 2015) we also tested for 

conditioned place aversion and measured vocalisations following 

drug administration. Social behaviours were also examined 

because these behaviours show lasting residual reductions in 

adolescent rats following THC or CP 55,940 administration 

(O’Shea et al., 2004; Quinn et al., 2008).

We also examined changes in a number of biomarkers after 

chronic administration, again adopting an exploratory approach. 

Plasma cytokines were assessed on the basis that cannabinoids 

have been shown to modulate cytokine production, typically 

decreasing levels of cytokines involved in pro-inflammatory pro-

cesses while increasing levels of anti-inflammatory cytokines 

(Katchan et al., 2016; Klein et al., 2003). Corticosterone was ana-

lysed as a general marker of stress and immune response, with 

the hypothesis that this analyte might be elevated following SC 

treatment, based on reports of anxiety in addition to encephalopa-

thy, acute kidney and cardiac injury (Bhanushali et al., 2012; 

Louh and Freeman, 2014; Mir et al., 2011). In addition we ana-

lysed plasma and cerebellar ethanolamides to examine any last-

ing modulation of endocannabinoid tone, which is thought to be 

generally decreased by chronic cannabinoid administration (Di 

Marzo et al., 2000; Rubino et al., 2015). The cerebellum was also 

targeted because human case reports have described impairment 

of movement sequences and disruption of fine motor skills fol-

lowing recreational use of a variety of SCs (Musshoff et al., 

2014). Together, these measures provide a broad examination 

of systems which have previously shown sensitivity to cannabi-

noid receptor agonists. We also compared these effects with 
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equivalent treatment with THC, anticipating that the SCs might 

produce more severe behavioural and biochemical effects.

Materials and methods

Subjects

A total of 64 experimentally naïve outbred male albino Wistar 

rats (Rattus norvegicus; Animal Resources Centre, Perth, 

Australia) were used for this experiment. Following their arrival 

at the laboratory, all rats were handled daily for 5 min each for 7 

days before the commencement of testing on post-natal day 

(PND) 31, at which point they weighed an average of 147 g 

(range 130–178 g). Rats were housed in groups of four with food 

and water available ad libitum, on a 12 h reverse light cycle 

(lights off at 09:00) with temperature maintained at 21 ± 1°C. 

Rats were assigned to one of four drug-treatment conditions: 

vehicle, THC, AB-PINACA, or AB-FUBINACA (n = 16 per con-

dition). One rat in the vehicle treatment condition was excluded 

from the experiment due to illness. All procedures were approved 

by the University of Sydney Animal Ethics committee in accord-

ance with the Australian Code of Practice for the Care and Use of 

Animals for Scientific Purposes.

Dose selection and preparation

AB-PINACA and AB-FUBINACA were synthesised as previ-

ously reported (Banister et al. 2015a). A stock solution of 25 

mg/mL THC in ethanol was obtained from Sigma Aldrich 

(Castle Hill, NSW, Australia).

Our dosing regimen consisted of six ‘low’ doses followed by 

six ‘high’ doses of each drug, with one drug dose administered 

every second day. This regimen was designed to mimic the escala-

tion of dosage commonly observed during chronic drug use. All 

rats received vehicle injections on the days between drug treat-

ments. We first selected THC doses used by Quinn et al. (2008), (1 

and 5 mg/kg), and then selected approximately equivalent doses of 

AB-PINACA and AB-FUBINACA (0.2 and 1 mg/kg for both). 

These doses were selected based on in vivo biotelemetry data – 

specifically, the peak hypothermia and bradycardia following drug 

administration in adolescent rodents (Banister et al., 2013, 2015a).

Drugs were prepared in a vehicle solution consisting of ethanol, 

Tween 80, and physiological saline (5:5:90). For the low THC dose 

(1 mg/kg), ethanol was added to an appropriate amount of 25 mg/mL 

THC in ethanol stock solution before addition of the Tween 80 and 

saline. For the higher dose (5 mg/kg), the THC stock solution was 

first concentrated to 50 mg/mL by evaporation of excess ethanol 

under a stream of nitrogen then prepared as for the low dose. All 

drugs were injected intraperitoneally at a volume of 1 mL/kg.

Behavioural assessment

Behavioural assessment was conducted over two phases – an ‘on-

drug’ phase during repeated drug administration during adoles-

cence (PNDs 31–55), and a ‘residual’ phase following a 2-week 

washout during adulthood (PNDs 69–94). These ages are consist-

ent with the adolescent ontogenetic window of 28–55 days for 

rats (Spear, 2000). A schematic of the assessment sequence is 

presented in Figure 1. All on-drug behavioural assessments com-

menced 15 min following injection.

Figure 1. Schematic of behavioural assessment over the entire experiment.
CPP: conditioned place preference; LOC: locomotor; NOR: novel object recognition; EM: emergence test; PND: Post-natal day; SI: social interaction.
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On-drug measures

Locomotor activity (PNDs 31 and 53). Individual rats were 

placed into a dark chamber with acrylic walls and a grid floor 

measuring 600 × 250 × 350 mm (L × W × H) for 15 min where 

they could explore freely. An infrared camera was mounted 

above the chamber, and the distance travelled by each rat was 

recorded and scored using automated tracking software (Track-

matePro v1.01, Motion Mensura, NSW, Australia).

Emergence (PNDs 33 and 55). The emergence test, a test of 

anxiety-like behaviour (Crawley and Goodwin, 1980; Quinn 

et al., 2008), was conducted in a 1200 × 1200 × 900 mm wooden 

arena painted matte black. A black hide box (400 × 240 × 170 

mm) with a red Perspex lid was positioned against the centre of 

one wall. The arena was illuminated by two floodlights (150 W 

white globes). Rats were tested individually for 5 min after being 

placed into the hide box. A camera mounted above the arena 

allowed recording of the test session that was scored offline by 

a blinded experimenter. The scored behaviours were (1) risk 

assessment (head protruding from the hide box while centre of 

mass remained inside the box), (2) latency to emerge (centre of 

mass outside the hide box), and (3) time spent in the open field 

(outside of the hide box). After each test the arena was cleaned 

with 50% ethanol.

Place conditioning (PNDs 34–52). Place conditioning was 

performed as previously described with minor modification 

(Quinn et al., 2008). The place conditioning chambers (Med 

Associates, St Albans, VT) consisted of two large side compart-

ments (280 × 210 × 210 mm), separated by a smaller central com-

partment (120 × 210 × 210 mm). Each side compartment had 

different textural, visual, and olfactory cues. One had black and 

white striped walls, a grid mesh floor, and 1 mL white vinegar in 

the waste pan beneath the floor. The other side had black walls, a 

metal rod floor, and 1 mL vanilla essence beneath the floor. Com-

partments could be isolated with guillotine doors. Odours were 

refreshed between each session.

Testing consisted of five phases: Baseline (PND 34), low-

dose conditioning (PNDs 35–42), low-dose test (PND 43), high-

dose conditioning (PNDs 44–51), and high-dose test (PND 52). 

For the conditioning days, rats were given drug injections every 

second day (totalling four low-dose and four high-dose injec-

tions) and vehicle every other day (except for the vehicle group 

which always received vehicle injections). Rats were placed in 

alternate sides of the chamber for 15 min each day, such that one 

side (counterbalanced between and within drug conditions) was 

always paired with drug treatment and the other with vehicle 

treatment. For the baseline and test days, rats were placed in the 

central compartment and allowed to freely explore all compart-

ments for 15 min and the time spent in each was recorded and 

scored via a camera mounted above the chamber. Preference 

scores were calculated as the amount of time spent in the drug-

conditioned side minus the amount of time spent in the vehicle-

conditioned side.

In addition, rat vocalisations were recorded as a supplemen-

tary measure of drug aversion (Giuliani et al., 2000; Henriksson 

and Jarbe, 1971; Quinn et al., 2008). Specifically, a blinded 

experimenter recorded the number of rats per group that emitted 

any audible vocalisation while being picked up and placed into 

the chambers during conditioning days (i.e. 15 min following 

drug administration). Each rat received a score of 0 for no vocali-

sations or 1 for any vocalisation, generating a total score ranging 

from 0 to 16 for each group on each day.

Residual measures

Novel object recognition (PNDs 69–72). The novel object rec-

ognition (NOR) testing occurred in a circular black plastic tub 

(diameter = 750 mm, height = 550 mm), in which two objects 

could be placed and secured with Velcro. Rats were first individu-

ally habituated to the arenas without objects for 10 min on PNDs 

69 and 70. The following day, rats were placed in the arenas for 3 

min before two identical objects (matte black painted spray bot-

tles or sauce pourers) were placed in the arena and rats were 

allowed to explore for 3 min. Rats were removed from the arena 

for 2 min (the inter-trial interval, ITI) and returned to a holding 

cage while the one of the two identical objects was swapped for a 

novel one. Rats were then returned to the arena for 3 min and the 

time spent investigating each object was recorded. The short 

2-min ITI was selected to minimise working memory demand in 

order to detect possible severe impairment to object recognition 

memory caused by drug exposure. The following day this test was 

repeated with a new set of objects (matte black painted salt shak-

ers or blue egg-shaped object) using a longer 60-min ITI. This 

increased task difficulty allowed detection of more subtle impair-

ments to object recognition memory, if present.

Social interaction (PNDs 73–74). The social interaction test 

was performed as previously described (Ramos et al., 2013). 

Briefly, rats were individually habituated for 20 min in a black 

plastic arena (780 × 520 × 470 mm) on PND 73. The following 

day, they were returned to the arena with a novel conspecific from 

the same drug-treatment group, and allowed to explore and inter-

act freely. Anogenital sniffing (sniffing the anogenital region of 

the conspecific), general investigation (sniffing of non-anogenital 

regions of the conspecific), pinning (one rat lying on with its 

dorso-lateral surface to the floor with the other rat above it), and 

rearing (standing on hind legs, including leaning on the arena 

walls) was recorded via a camera mounted above the arena. These 

behaviours were selected because they are general behaviours that 

are frequently expressed by healthy animals, and are widely used 

in existing literature with similar social interaction tests including 

assessments of cannabinoid modulation of social behaviour (File 

and Seth, 2003; Trezza and Vanderschuren, 2008). Total interac-

tion was calculated as the sum of anogenital sniffing, general 

investigation, and pinning. These behaviours were scored by an 

experimenter blinded to the experimental conditions.

Locomotor activity (PND 77). As described above, without 

any drug treatment.

Emergence (PND 78). As described above, without any drug 

treatment.

Post-mortem plasma and cerebellum analyses

Sample collection (PND 103). Individual rats from each treat-

ment condition were taken to a separate room in a dark holding 
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box and killed by rapid decapitation without anaesthesia on PND 

103. The rats were extensively habituated to the handling proce-

dure up on the 3 days before decapitation to minimise any stress 

or novelty effects on steroid levels. Immediately following 

decapitation trunk blood was collected in a chilled EDTA-coated 

collection tube and immediately centrifuged at 4°C at 4000 g for 

10 min. Plasma was collected in 1 mL aliquots while cerebellum 

was dissected with a razor blade and flash frozen with liquid 

nitrogen, prior to storage at −80°C until analysis.

Steroids. Plasma corticosterone, testosterone, and progesterone 

were analysed via liquid chromatography-tandem mass spec-

trometry (LC-MS/MS) as previously described (Bowen et al., 

2014). Corticosterone was the primary analyte of interest, with 

testosterone and progesterone included because the method 

allows for simultaneous quantitation of these analytes. Briefly, 

steroids were extracted from 250 μL plasma (analysed in dupli-

cate) into 1 mL methyl tert-butyl ether and dried under a gentle 

stream of nitrogen. Steroid residue was then reconstituted in ini-

tial mobile phase (0.1% formic acid in 10% methanol and 90% 

water) and analysed via LC-MS/MS.

Ethanolamides. Cerebellar and plasma ethanolamides were 

assessed as a measure of endocannabinoid tone, and also in light 

of reports of impaired movement sequences in humans following 

SC use (Di Marzo et al., 2000; Musshoff et al., 2014; Rubino 

et al., 2015). Ethanolamides (anandamide, AEA; palmitoyletha-

nolamide, PEA; 2-arachidonoylglycerol, 2-AG; oleoylethanol-

amide, OEA; and linoleoyl ethanolamide, LEA) in cerebellum 

were extracted as follows, based on a previous method (Stuart 

et al., 2013). The right cerebellum was dissected from whole cer-

ebellum and weighed, then 6 mL of MeOH and 10 μL of internal 

standard 1 μm deuterium labelled anandamide (d4-AEA) was 

added. Left cerebellum was preserved for possible future assays. 

Tissue was homogenised and centrifuged at 19,000 g for 20 min 

at 4°C. The resultant supernatant was decanted and 24 mL milli-

Q water was added, forming a 20% organic final supernatant. 

Analytes were extracted from the supernatant using solid phase 

extraction (SPE) with 500 mg C18 columns preconditioned with 

5 mL MeOH followed by 2.5 mL milli-Q water. Supernatant 

solution was loaded onto each column, washed with 2.5 mL 

milli-Q water, then 2 mL 40% MeOH, and analytes were washed 

with a final 1.5 mL 85% MeOH and eluted with 100% MeOH.

Plasma ethanolamides were also analysed. Briefly, 8 mL of 

1:1 ice cold ACN/MeOH was added to 250 μL of plasma, 20 μL 

of d4-AEA was added, and samples were left covered in the dark 

for 2 h at 4°C. Following centrifugation, the supernatant was 

treated as described above for the cerebellar extraction, with 

washes of 2.5 mL milli-Q water, 2 mL 50% MeOH and 1.5 mL of 

60% MeOH before the analytes were eluted from the SPE col-

umn with 100% MeOH. The SPE eluates for all samples were 

analysed via LC-MS/MS.

Cytokines. Plasma cytokine levels (granulocyte macrophage 

colony-stimulating factor, GM-CSF; interferon gamma, IFNγ; 

interleukins (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-12, and tumour 

necrosis factor alpha, TNF-α) were measured using a commer-

cially available multiplex bead immunoassay kit (Rat Cytokine 

10-Plex Panel kit, Invitrogen, Camarillo, CA). The assay was 

performed according to the manufacturer’s instructions, with 

minor modifications. In brief, all reagent and sample volumes 

were scaled down to 20% of recommended values, and washes 

were performed by centrifugation in a 96-well v-bottomed plate. 

The assay was read on an LSR Fortessa-X20 flow cytometer 

(Becton Dickinson, Sydney, NSW, Australia) and data were ana-

lysed using FlowJo software v9.8.5 (FlowJo, Ashland, OR).

Data analysis

Data were analysed using SPSS version 20 (IBM, Chicago, IL) 

with significance set at 0.05. Place conditioning was analysed 

using mixed-model ANOVA, with treatment group (vehicle-, 

THC-, AB-PINACA-, or AB-FUBINACA-treatment) as the 

between-subjects factor and dosing phase (baseline, low-dose 

test, and high-dose test) as the within-subjects factor. For the 

emergence test, latency to emerge data were not normally distrib-

uted as several rats remained inside the hidebox for the entire test 

duration. Similarly, vocalisation data were not normally distrib-

uted as it was a binary measure. In these cases, non-parametric 

Kruskal–Wallis H tests with Bonferroni-corrected Mann–

Whitney tests were used in place of one-way ANOVAs. In all 

other cases, treatment groups were compared using a one-way 

ANOVA. In cases where the ANOVA reached statistical signifi-

cance, the treatment groups were compared pairwise using 

Tukey’s HSD tests.

Results

‘On-drug’ measures

Locomotor activity. There was a significant overall effect of 

low-dose drug treatment on locomotor activity (F(3,59) = 3.65, p < 

0.05). Tukey’s HSD tests found that the distance travelled was 

reduced by AB-PINACA and AB-FUBINACA compared with 

vehicle (all p < 0.05), but not by THC (p > 0.05) although it pro-

duced a strong tendency towards reduced activity (Table 1). No 

other comparisons were significant (all p > 0.05).

Similarly, there was a significant overall effect of high-dose 

drug treatment on locomotor activity (F(3,59) = 12.16, p < 0.001). 

Post-hoc tests found that all drugs reduced distance travelled 

compared with vehicle (all p < 0.001; Table 1), and no other pair-

wise comparisons reached significance (all p > 0.05).

Emergence. There was no overall significant effect of low-dose 

treatment on the latency to emerge (χ2(3) = 6.05, p > 0.05). High 

doses produced a significant overall effect (χ2(3) = 30.47, p < 

0.001), with all drugs increasing latency relative to vehicle treat-

ment (all p < 0.05).

There was a significant overall effect of treatment on time 

spent in the open field for high (F(3,59) = 5.16, p < 0.01) but not 

low doses (F(3,59) = 0.97, p > 0.05). Tukey’s HSD tests showed 

that THC and AB-PINACA significantly reduced open field time 

at a high dose compared with vehicle (all p < 0.05).

Risk assessment was also significantly affected by low 

doses (F(3,59) = 10.76, p < 0.001), such that all drug treatments 

significantly decreased risk assessment behaviour compared 

with vehicle (all p < 0.05) at a low dose. The same was true for 

high doses (F(3,59) = 24.26, p < 0.001; all pairwise comparisons 

with vehicle p < 0.001). No other pairwise comparisons 

reached statistical significance.
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Place conditioning. The results of the place conditioning test 

are presented in Figure 2. Overall, there was no main effect of 

drug treatment on preference scores (time in drug-conditioned 

side – time in vehicle-conditioned side; F(3,59) = 0.61, p > 0.05) or 

dosing phase (F(2,118) = 1.51, p > 0.05), nor was there a significant 

interaction effect (F(6,118) = 1.04, p > 0.05). Although there was a 

strong trend towards a preference for the drug-conditioned side 

following low-dose AB-FUBINACA treatment compared with 

vehicle, this failed to reach statistical significance (p = 0.06). 

There was no significant baseline preference for striped compart-

ments over blank (t(62) = 1.52, p > 0.05), nor vanilla scented over 

vinegar scented (t(62) = 0.53, p > 0.05).

Vocalisations on ‘no drug’ vehicle injection days of place 

preference testing did not differ between treatment groups (χ2(3) 

= 2.82, p > 0.05). There were overall treatment effects on vocali-

sations for low (χ2(3) = 11.01, p < 0.01) and high-dose phases 

(χ2(3) = 13.02, p < 0.0001). Post-hoc tests showed that signifi-

cantly more rats vocalised following AB-FUBINACA low-dose 

treatment compared with vehicle (p < 0.01), as was the case for 

high-dose THC (p < 0.001), AB-PINACA (p < 0.05) and 

AB-FUBINACA (p < 0.05) compared with vehicle. No other 

pairwise comparisons reached statistical significance.

Residual measures

Novel object recognition. When tested with a 2-min ITI, there 

was an overall effect of drug pre-treatment (F(3,59) = 3.04, p < 0.05), 

and AB-FUBINACA pre-treated rats spent a smaller percentage of 

time investigating the novel object compared with vehicle (p < 

0.05). With a 60-min ITI there was a significant overall effect 

(F(3,59) = 9.43, p < 0.001) and the percentage of time spent investi-

gating the novel object was reduced by all three cannabinoid pre-

treatments compared with vehicle (all p < 0.01; Figure 3). No other 

comparisons reached statistical significance (all p > 0.05).

Social interaction. For the social interaction test, there were 

significant overall effects of drug pre-treatment on rearing (F(3,59) 

= 3.03, p < 0.05), general investigation (F(3,59) = 5.77, p < 0.05), 

total interaction (F(3,59) = 3.50, p < 0.05) but not for anogential 

sniffing (F(3,59) = 0.40, p > 0.05) or pinning (F(3,59) = 2.52, p > 

0.05; Table 2). THC pre-treated rats showed less total social 

interaction with novel conspecifics compared with vehicle pre-

treated rats (p < 0.05) and less general investigation than AB-

FUBINACA pre-treated rats (p < 0.05). No other pairwise 

comparisons were statistically significant (all p > 0.05).

Locomotion. There were no significant residual effects on loco-

motor activity as a function of drug pre-treatment (F(3,59) = 0.82, 

p > 0.05; Table 1).

Emergence. There were no significant differences in latency to 

emerge (χ2(3) = 1.14, p > 0.05), time spent in the open field (F(3,59) 

= 0.04, p > 0.05), or risk assessment (F(3,59) = 0.85, p > 0.05).

Body weight. Body weight data are summarised in Table 3. 

There were no significant differences between treatment condi-

tions in weight at the beginning (PND 31) of the study (F(3,59) = 

0.35, p > 0.05). Over the dosing phase (PNDs 31–55), there was 

a significant overall treatment effect (F(3,59) = 8.97, p < 0.001), 

and all cannabinoid treatment groups gained significantly less 

weight than vehicle-treated rats (all p < 0.01). No other pairwise 

comparisons reached significance (all p > 0.05). Over the resid-

ual testing phase (PNDs 56–103), there were no significant dif-

ferences in weight gain (F(3,59) = 1.52, p > 0.05), and at the end of 

residual testing (PND 103), there was no significant difference in 

weight (F(3,59) = 1.42, p > 0.05).

Steroids. There were no significant effects of drug pre-treatment 

on plasma corticosterone (F(3,44) = 0.22, p > 0.05), testosterone 

(F(3,44) = 0.20, p > 0.05), or progesterone (F(3,44) = 0.02, p > 0.05) 

levels (Table 4).

Cytokines. Levels of IL-1β, IL-4, GM-CSF, TFNα, and IFNg in 

all samples across all drug-treatment conditions fell below limits 

Table 1. Locomotor and emergence results for all experimental phases.

VEH THC AB-PINACA AB-FUBINACA

Low-dose effects  
Locomotor (m) 27.5 (1.2) 20.2 (2.4) 19.5 (2.1)* 20.0 (1.9)*
LTE (s) 140.9 (35.5) 217.1 (32.2) 191.4 (36.3) 264.1 (24.5)*
Risk assessment (s) 52.2 (5.6) 30.9 (3.8)* 22.3 (6.2)*** 15.7 (2.9)***
Open time (s) 48.8 (16.4) 30.4 (15.4) 34.8 (19.8) 11.0 (9.8)
High-dose effects  
Locomotor (m) 34.4 (1.5) 17.8 (3.2)*** 19.5 (2.6)*** 14.1 (2.4)***
LTE (s) 189.8 (23.4) 300.0 (0.0)*** 287.5 (12.5)*** 265.1 (23.7)*
Risk assessment (s) 62.2 (8.3) 4.4 (1.1)*** 14.0 (7.0)*** 6.4 (2.1)***
Open time (s) 57.5 (16.4) 0.0 (0.0)** 1.8 (1.8)** 22.9 (16.8)
Residual effects  
Locomotor (m) 44.4 (2.7) 39.9 (2.2) 41.2 (1.6) 41.1 (1.7)
LTE (s) 75.8 (24.5) 69.6 (18.7) 46.1 (11.6) 74.5 (20.7)
Risk assessment (s) 32.0 (4.5) 38.7 (6.7) 36.3 (4.6) 36.3 (5.0)
Open time (s) 160.7 (18.7) 161.1 (16.7) 165.6 (11.4) 158.3 (16.9)

Data represent means (SEM). LTE: Latency to emerge. *p < .05, **p < .01, ***p < .001 compared with vehicle. Locomotor data are given in metres (m); LTE, risk assess-
ment, and open time are given in seconds (s).
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Figure 2. (a) Place conditioning following six low then six high doses of THC, AB-PINACA, and AB-FUBINACA. (b) Mean number of rats vocalising 
during placement in the CPP chambers during each training day. Vocalisations were significantly elevated following low doses of AB-FUBINACA and 
high doses of THC, AB-PINACA, and AB-FUBINACA compared with vehicle injections. Data are means ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001 
compared with vehicle at the same dose level.

Figure 3. Mean ± SEM data for the novel object recognition test, 2 weeks post drug administration, with (a) a 2-min inter-trial interval (ITI) or (b) 
a 60-min ITI. AB-FUBINACA pre-treated rats spent significantly less time investigating the novel object compared with vehicle for the 2-min ITI 
test, and all cannabinoid treatments reduced novel investigation with a 60-min ITI. *p < 0.05, **p < 0.01, ***p < 0.001 compared with vehicle.
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of detection (Table 4). There was no overall group difference in 

levels of IL-2 (F(3,44) = 1.62, p > 0.05), IL-6 (F(3,44) = 0.40, p > 

0.05), or IL-10 (F(3,44) = 0.97, p > 0.05). However, there were 

overall treatment effects for IL-1α (F(3,44) = 3.32, p < 0.05) and 

IL-12 (F(3,44) = 4.91, p < 0.01), with AB-FUBINACA treated rats 

showing significantly lower plasma levels of IL-1α compared 

with vehicle (p < 0.05) and IL-12 compared with both vehicle 

and AB-PINACA (p < 0.05).

Ethanolamides. There were significant overall effects of drug 

pre-treatment on most cerebellar ethanolamides: AEA, F(3,44) = 

16.96, p < 0.0001; PEA, F(3,44) = 9.91, p < 0.0001; 2-AG, F(3,44) = 

2.85, p < 0.05; OEA, F(3,44) = 10.69, p < 0.0001, but not LEA 

F(3,44) = 2.57, p > 0.05.

Tukey’s HSD tests showed that THC pre-treatment reduced 

AEA, PEA, 2-AG, and OEA when compared with vehicle (all  

p < 0.05), and reduced AEA, PEA, and OEA compared with 

AB-FUBINACA (all p < 0.05; Table 4). AEA, PEA, and OEA 

were reduced by AB-PINACA pre-treatment compared with 

vehicle (all p < 0.05) and AB-FUBINACA (all p < 0.05). No 

other comparisons were significant (all p > 0.05).

There were no significant differences in plasma ethanolamide 

levels as a function of treatment group (AEA, F(3,44) = 0.64, p < 

0.05; PEA, F(3,44) = 1.16, p < 0.05; 2-AG, F(3,44) = 1.46, p < 0.05; 

OEA, F(3,44) = 0.55, p < 0.05; LEA, F(3,44) = 1.21, p < 0.05).

Discussion

The present study examined various acute and long-lasting 

impacts of AB-PINACA and AB-FUBINACA relative to the pro-

totypical cannabinoid THC in adolescent rats. During dosing, all 

three cannabinoids produced locomotor suppression, anxiogenic 

effects in the emergence test and inhibition of body weight gain. 

Following drug administration, a residual impairment of object 

recognition memory was detected with all three drug pre-treat-

ments at a timepoint of 2 weeks. Six weeks post drug, a reduction 

in some cytokines was observed in the plasma of AB-FUBINACA 

pre-treated rats and a reduction in cerebellar ethanolamides in 

THC and AB-PINACA pre-treated rats. To our knowledge, this is 

the first investigation of long-term behavioural and biochemical 

effects of emerging SCs. Somewhat contrary to our expectations, 

THC administration produced similar acute effects, and only sub-

tle differences in long-term effects, relative to the two SC com-

pounds. Indeed, THC produced residual reductions in social 

interaction, an effect not seen with either SC.

Acute behavioural effects of chronic AB-
PINACA and AB-FUBINACA

The acute responses to AB-PINACA and AB-FUBINACA were 

typical of those observed with other cannabinoid agonists such as 

THC, CP 55,940, and JWH-018. This included locomotor hypo-

activity, inhibition of weight gain, and increased anxiety-like 

behaviours (Arevalo et al., 2001; O’Shea et al., 2004; Quinn 

et al., 2008). AB-PINACA, AB-FUBINACA and THC caused 

dose-dependent reductions in locomotor activity, consistent with 

previous reports of locomotor suppression in rodents adminis-

tered indazole SC compounds including AB-PINACA (Wiley 

et al., 2015), and earlier SCs such as JWH-018 (Macri et al., 

2013). There have also been observations of impairment of 

movement sequences and disruption of fine motor skills follow-

ing human recreational use of SCs (Musshoff et al., 2014). 

Weight gain was inhibited by all three cannabinoid compounds 

in the present study, consistent with earlier reports involving 

Table 2. Behaviour in the social interaction test 19 days post drug administration.

Behaviour Vehicle THC AB-PINACA AB-FUBINACA

Exploratory behaviour  
 Rearing 133.0 (10.4) 130.3 (10.0) 105.8 (7.9) 103.6 (7.2)
Social behaviour  
 Anogenital sniffing 25.2 (5.2) 20.8 (2.3) 26.5 (3.9) 23.1 (4.3)
  General investigation 37.6 (3.1) 27.1 (1.7) 38.1 (4.3) 46.6 (3.8)
 Pinning 19.8 (4.2) 3.8 (1.6) 22.5 (9.0) 9.8 (4.1)
 Total social interaction 82.6 (9.3) 51.8 (3.3)*† 87.0 (12.4) 79.5 (6.9)

Data are means (SEM) in seconds; *p < 0.05 compared with vehicle, †p < 0.05 compared with AB-FUBINACA.

Table 3. Effects of chronic administration of THC, AB-PINACA, and AB-FUBINACA on rat body weight.

VEH THC AB-PINACA AB-FUBINACA

Initial weight (g; PND 31) 148.8 (3.8) 147.4 (2.8) 149.3 (2.8) 145.6 (1.6)
Dosing phase weight gain
(g; PNDs 31–55)a

186.1 (4.9) 155.2 (3.8)*** 164.5 (5.3)** 162.9 (3.1)**

Residual phase weight gain
(g; PNDs 56–103)a

122.7 (3.7) 131.0 (4.4) 118.8 (7.3) 133.4 (6.3)

Final weight (g; PND 103) 457.2 (8.9) 433.6 (8.5) 432.7 (11.4) 441.9 (8.6)

Data represent means (SEM). aWeight gain during the dosing phase was calculated by subtracting weights on PND 31 from PND 55, and weight gain during the residual 
phase was calculated by subtracting weights on PND 56 from PND 103. **p < 0.01, ***p < 0.001 compared with vehicle.
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chronic administration of THC or CBD/ THC to adolescent rats 

(Klein et al., 2011), or chronic administration of HU-210 in 

adults rats (Dalton et al., 2009).

All three cannabinoids increased anxiety-like behaviours in 

the emergence test, similar to the effects of CP 55,940 (Arevalo 

et al., 2001; Marco et al., 2004) and THC Quinn et al. (2008). 

There were also large increases in audible vocalisations follow-

ing drug administration, a measure previously used to index can-

nabinoid aversion (Giuliani et al., 2000; Henriksson and Jarbe, 

1971). We previously showed that rat vocalisations during han-

dling increases following administration of 5 mg/kg THC (Quinn 

et al., 2008), an effect replicated here. The acute anxiogenic and 

aversive effects of these compounds may be consistent with the 

anxiogenic effects of cannabinoids reported in some human case 

studies (Schwartz et al., 2015).

Despite these apparent increases in anxiety-like behaviours and 

vocalisations, neither SC nor THC produced conditioned place 

aversion. Quinn et al. (2008) found that only adult rats showed 

conditioned place aversion to THC, as has been described with 

other drugs such as nicotine (Wilmouth and Spear, 2004). These 

THC-treated adolescent rats also showed anxiety-like behaviours 

in the emergence test. Therefore adolescent rats may be less prone 

to acquiring conditioned aversion from cannabinoids even when 

they produce anxiety-like effects, and this could conceivably 

increase the abuse potential of SCs in adolescent populations. 

Adolescents appear to be more vulnerable to cannabinoid-induced 

memory impairments as compared with adults (Higuera-Matas 

et al., 2015; Quinn et al., 2008; Viveros and Marco, 2015), which 

may consequently impair the acquisition of place conditioning.

The development of preference and aversion to cannabinoids 

in the conditioned place preference paradigm depends to a large 

extent on dose (Tanda, 2016). Place preference data regarding 

recent SCs are limited, but JWH-073, JWH-81, and JWH-210 

produce a place preference at low doses (0.5 mg/kg for JWH-

073, and 0.1 mg/kg for JWH-81 and JWH-210) that is not present 

at 1 mg/kg (Cha et al., 2014). It is possible that our low doses 

were a little too high to demonstrate a place preference, although 

0.2 mg/kg AB-FUBINACA pre-treatment trended towards pro-

ducing such an effect. Future studies exploring a range of low 

doses may prove instructive in this regard.

Table 4. Plasma steroid, cytokine, and ethanolamides with cerebellar ethanolamides 6 weeks post drug administration.

VEH THC AB-PINACA AB-FUBINACA

Plasma  
 Steroids (ng/mL)  
  Corticosterone 117.9 (13.6) 131.9 (16.2) 118.4 (13.5) 123.7 (11.7)
  Testosterone 2.4 (0.3) 2.1 (0.4) 2.1 (0.3) 2.0 (0.3)
  Progesterone 1.2 (0.2) 1.2 (0.1) 1.2 (0.1) 1.2 (0.2)
 Cytokines (pg/mL)  
  IL-1 71.7 (13.0) 51.2 (7.5) 57.8 (7.3) 30.4 (8.9)*
  IL-1 – – – –
  IL-2 66.7 (7.1) 75.7 (9.6) 72.0 (5.8) 54.3 (6.4)
  IL-4 – – – –
  IL-6 5.6 (0.7) 4.9 (0.4) 4.9 (0.4) 5.5 (0.8)
  IL-10 21.2 (0.8) 21.8 (1.0) 20.5 (0.5) 20.3 (0.3)
  IL-12 496.2 (58.8) 473.2 (41.2) 546.2 (38.9) 303.5 (48.8)*‡
  IFN – – – –
  GM-CSF – – – –
  TNF – – – –
 Ethanolamides (ng/mL)  
  AEA 0.33 (0.03) 0.39 (0.03) 0.34 (0.04) 0.36 (0.04)
  PEA 13.4 (0.8) 13.2 (0.9) 14.0 (0.6) 15.1 (1.0)
  2-AG 21.8 (4.4) 15.6 (4.7) 13.7 (2.6) 23.5 (3.6)
  OEA 7.7 (0.8) 7.7 (0.5) 7.2 (0.5) 8.3 (0.7)
  LEA 1.2 (0.1) 1.5 (0.1) 1.3 (0.1) 1.3 (0.1)
Cerebellum  
 Ethanolamides (ng/g)  
  AEA 46.6 (2.5) 32.8 (0.6)****†††† 34.7 (1.1)****††† 45.0 (2.0)
  PEA 330.3 (20.2) 238.9 (12.0)***†† 258.1 (12.3)**† 320.1 (10.8)
  2-AG 3316.7 (196.0) 2642.4 (156.3)* 2961.5 (163.9) 3144.0 (164.1)
  OEA 351.1 (21.5) 246.3 (12.0)***††† 280.1 (13.2)*† 344.0 (13.4)
  LEA 26.1 (1.3) 22.8 (0.7) 23.2 (0.6) 24.3 (0.8)

Data are means (SEM).
* p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared with vehicle; ‡p < 0.05 compared with AB-PINACA; †p < 0.05, ††p < 0.01, †††p < 0.001, ††††p < 0.0001 
compared with AB-FUBINACA; – all samples < limit of detection.

2-AG: 2-arachidonoylglycerol; AEA: anandamide; GM-CSF: granulocyte macrophage colony-stimulating factor; IFN : interferon gamma; IL: interleukin; LEA: linoleoyl 
ethanolamide; OEA: oleoylethanolamide; PEA: palmitoylethanolamide; TNF : tumour necrosis factor alpha.

Chapter 4 144



10 Journal of Psychopharmacology  

Residual effects of chronic AB-PINACA and 
AB-FUBINACA administration

Residual recognition memory impairment was observed with 

all three cannabinoid pre-treatments 2 weeks following cessa-

tion of drug administration. Moreover, AB-FUBINACA pre-

treated rats showed impaired NOR performance even with a 

short 2-min ITI, suggesting a more substantial impairment with 

this compound. Since SC compounds appear to be quickly 

metabolised (Paul and Bosy, 2015; Wohlfarth et al., 2015) and 

biotelemetry data demonstrates a return to baseline body tem-

perature and heart rate approximately 3 and 5 h after drug 

administration for AB-PINACA and AB-FUBINACA, respec-

tively (Banister et al., 2015a), it is unlikely that these residual 

effects are due to SCs persisting in the body. Residual impair-

ment has been reported in previous studies of THC and CP 

55,940 (O’Shea et al., 2004, 2006; Quinn et al., 2008). The 

underlying mechanism is unclear, but reduced NOR perfor-

mance accompanies hippocampal (Barker and Warburton, 

2011), and perirhinal cortex insult (Bussey et al., 1999; Norman 

and Eacott, 2004).

AB-PINACA and AB-FUBINACA had no residual effects on 

social interaction. In contrast, THC produced a lasting residual 

impairment, consistent with previous findings with chronic THC 

and CP 55,940 (O’Shea et al., 2004; Quinn et al., 2008). The 

absence of lasting social impairment with AB-PINACA and 

AB-FUBINACA treatment in the presence of a clear impairment 

with THC was unexpected, and suggests that mechanisms other 

than those arising from simple CB1 activation may be involved. 

There is increasing evidence of an interaction between cannabi-

noids and oxytocin in social reward, which could play a role in 

the effects seen here. It is notable that chronic daily administra-

tion of 1.5 mg/kg THC to rats down-regulates expression of the 

prosocial neuropeptide oxytocin in nucleus accumbens and ven-

tral tegmental areas (Butovsky et al., 2006). Further, social inter-

action or pharmacological activation of the oxytocin receptor 

(OTR) stimulates AEA mobilisation in the nucleus accumbens, 

which enhances social reward, while blockade of the OTR 

prevents this effect (Wei et al., 2015). Consequentially, a com-

parison of endocannabinoid or oxytocin levels in the nucleus 

accumbens following SC pre-treatment to THC pre-treatment 

may prove fruitful.

It was predicted that cytokines involved in pro-inflamma-

tory processes (IL-1α, IL-1β, IL-2, IL-12, IFNγ, GM-CSF, 

TNFα; see Kopf et al. (2010) for review) might be decreased 

by SC pre-treatment, perhaps due to an influence on CB2 

receptors. This prediction was partially confirmed by reduc-

tions observed in plasma concentrations of cytokines IL-1α 

and IL-12 with AB-FUBINACA pre-treatment. CB2 receptors 

are commonly expressed on immune cells and play a major 

role in inflammation (Galiegue et al., 1995; McPartland et al., 

2015) and repeated stimulation with CB2 agonists tends to 

reduce inflammation and related neuropathic pain (Guindon 

and Hohmann, 2008). Cytokines associated with anti-inflam-

matory processes (IL-4, IL-6, IL-10) were unaffected, although 

we note that the concentrations of most cytokines were low, or 

below limits of detection, as might be expected in healthy ani-

mals assessed a long time after drug administration (Cannon, 

2000). Together with the lack of any long-term increase in  

corticosterone, these data indicate that the long-term impact  

of these SCs on immune or stress responses may be relatively 

minor, reflecting human case reports detailing acute injury fol-

lowed by good recovery (Hermanns-Clausen et al., 2012; 

Schwartz et al., 2015). An analysis of plasma during acute dos-

ing with SCs would be informative, particularly if combined 

with CB2 inverse agonist SR144528 to isolate CB2-mediated 

effects.

A lasting reduction of cerebellar ethanolamides following 

THC and AB-PINACA pre-treatment indicates some residual 

reduction in central endocannabinoid tone that is of potential 

concern. A similar reduction in AEA in the prefrontal cortex of 

female rats occurs following chronic THC administration in 

adolescence (Rubino et al., 2015), in the striatum of adult male 

THC-tolerant rats (Di Marzo et al., 2000), and in human cere-

brospinal fluid following frequent cannabis use by schizo-

phrenic patients (Leweke et al., 2007). The functional 

importance of such decreases are unclear but could potentially 

link to reported disruptions in fine motor skills reported in 

humans following SC use (Musshoff et al., 2014). Although 

the long-term effects of chronic cannabinoid treatment on the 

endocananbinoid system remain controversial (Higuera-Matas 

et al., 2015), a number of studies demonstrate a downregula-

tion of CB1 receptor expression in rodents (Breivogel et al., 

2003; Sim-Selley et al., 2006) following chronic cannabinoid 

administration. The decreases in ethanolamides in the present 

and previous studies could be a consequence of a similar 

homeostatic compensation in endocannabinoid signalling that 

persists in the long term.

It was surprising that AB-FUBINACA pre-treatment failed to 

decrease cerebellar endocannabinoids given the otherwise strong 

effects produced by this compound. Similarly, it is unclear  

why AB-FUBINACA alone reduced plasma cytokine levels.  

At this time, the mechanisms underlying these idiosyncrasies are 

unknown, particularly while possible non-cannabinoid receptor 

targets of these compounds remain uncharacterised. AB-PINACA 

and AB-FUBINACA are known to differ markedly in metabo-

lism despite their structural similarities. In human liver micro-

somes, hydroxylation occurs primarily at the 1-pentyl moiety for 

AB-PINACA, and at the N-(1-amino-alkyl-1-oxobutan) moiety 

for AB-FUBINACA (Takayama et al., 2014). Several metabo-

lites of JWH-018, AM-2201, and JWH-073 retain cannabinoid 

receptor activity (Rajasekaran et al., 2013; Seely et al., 

2012a). The cannabinoid receptor activity of AB-PINACA and 

AB-FUBINACA metabolites is presently uncharacterised, but it 

may be that some of these metabolites retain cannabinoid recep-

tor activity. The potency of these metabolites could differ 

markedly given the difference in hydroxylation location. 

Ongoing studies in our laboratory are aimed at addressing this 

hypothesis.

Effects of AB-PINACA and AB-FUBINACA 
compared with THC

SC case reports generally describe adverse outcomes and toxicity 

that are more severe compared with cannabis use, yet in this 

study AB-PINACA and AB-FUBINACA produced effects very 

similar to THC on most measures. Overall differences between 

THC and the two SCs were only evident on two residual meas-

ures: social interaction (where THC alone produced an adverse 

Chapter 4 145



Kevin et al. 11

residual effect on social interaction), and in cerebellar ethanola-

mide levels (where THC and AB-PINACA reduced cerebellar 

AEA, PEA, and OEA but AB-FUBINACA did not). Moreover, 

we observed no obvious illness in any drug-treated rat at any 

point during the study.

This general failure to separate SCs from THC, despite 

numerous case reports of greater adverse effects of SCs, might 

reflect the fact that these case reports arise from persons seeking 

hospital treatment and consequentially reflect the most extreme 

cases (Khan et al., 2016; Trecki et al., 2015). Alternatively, there 

could be interspecies differences in SC pharmacokinetics, phar-

macodynamics and toxicity. The co-use/abuse of other drugs 

with SCs is common; in particular tobacco, energy drinks, and 

alcohol could be relevant (Winstock and Barratt, 2013).

It is also possible that severe adverse reactions to SCs may be 

modulated by dose factors, with the high potency of SC compounds 

increasing the risk of accidental overdose and toxicity compared 

with cannabis. SC products have no established manufacturing 

standards, and dose may vary between batches or be unevenly dis-

tributed within the product (Musah et al., 2012). This makes it dif-

ficult for users to determine a safe dose, even if they have used that 

product previously. Moreover, contamination of SC products with 

other compounds including caffeine, nicotine, and eugenol has been 

reported (Dresen et al., 2010). Such contamination could account 

for some toxicity, particularly in the cases where toxicity is clus-

tered around a specific batch of products (Monte et al., 2014; 

Schwartz et al., 2015). Finally, because many SCs are full cannabi-

noid receptor agonists, an overdose could produce more severe and 

qualitatively different effects to a similarly large dose of a partial 

agonist such as THC (Spaderna et al., 2013). With these factors in 

mind, it is perhaps not surprising that SC toxicity occurs in some 

but not all users, and often in clusters (Bhanushali et al., 2012).

Conclusion

In summary, the present study identifies both short-term and last-

ing residual behavioural impairments arising from chronic 

administration of AB-PINACA and AB-FUBINACA. Acute 

responses to both SCs resembled those observed with THC,  

but there were some subtle differences in the long term. 

AB-FUBINACA reduced some cytokine levels and produced 

more marked recognition memory impairments, THC alone 

produced lasting social impairment, while cerebellar endocan-

nabinoids were reduced by THC and AB-PINACA, but not 

AB-FUBINACA. These results highlight that while acute 

responses to different cannabinoid agonists may be similar, the 

long-term behavioural or biochemical impacts effects may differ. 

This emphasises the need for ongoing assessment of long-term 

effects of emerging SCs, particularly in vulnerable adolescent 

populations where negative effects may be amplified.
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Abstract Nabiximols (Sativex�) is a buccal spray con-

taining both D9-tetrahydrocannabinol (THC) and cannabid-

iol (CBD). It has shown promise as an agonist substitution

therapy for treating cannabis withdrawal and dependence.

Monitoring urinary cannabinoid levels during treatment is

important for determination of cannabinoid pharmacoki-

netics and for treatment adherence during clinical trials.

Here, we use a recently described hydrolysis method to lib-

erate urinary CBD from its glucuronide conjugate, and

describe the trajectory of urinary CBD, THC, 11-nor-9-car-

boxy-THC (THC-COOH), and 11-hydroxy-THC (11-OH-

THC) in patients receiving nabiximols treatment (or pla-

cebo) during cannabis withdrawal. Urine and plasma sam-

pleswere taken before and during a 6-day inpatient treatment

regime and during a 3-day drug-free washout. Urine was

hydrolysed with red abalone b-glucuronidase, and CBD,

THC, THC-COOH, and 11-OH-THC were quantified in

daily urine using liquid chromatography-tandem mass

spectrometry. Overall, urine and plasma cannabinoid levels

followed similar trajectories and closely reflected the dosing

schedule. During nabiximols treatment, CBD levels in urine

and plasma rose markedly, while concentrations of THC and

its metabolites remained at, or slightly above, pre-treatment

levels. Following hydrolysis, urinary CBD was detected at

levels 50 and 200 times as high as those in non-hydrolysed

plasma and non-hydrolysed urine, respectively. THC, THC-

COOH, and 11-OH-THC concentrations were also amplified

by urinary hydrolysis. This method allows sensitive assess-

ment of urinary CBD, and may prove useful in clinical

studies involving nabiximols or other cannabinoid therapies.

Keywords Nabiximols � Sativex � Cannabinoid �
Cannabidiol � Urine � Withdrawal

Introduction

Problems relating to cannabis dependence are a significant

cause of drug and alcohol treatment episodes worldwide

[1]. Cannabis dependence is thought to affect approxi-

mately 10 % of all cannabis users, amounting to roughly 13

million people globally [2]. Sudden abstinence from can-

nabis in dependent users can lead to a withdrawal syn-

drome with symptoms such as irritability, insomnia,

restlessness, weight loss, tremors, depression, and anxiety

[3, 4]. This can present a major obstacle to the reduction or

cessation of cannabis use [5–7]. Attempts to manage these

symptoms using conventional pharmacotherapies such as

antidepressants and mood stabilisers have met with only

limited success [8, 9]. However, the use of agonist

replacement therapy involving a variety of cannabinoid

receptor agonists shows considerable promise [10–13].

Nabiximols (Sativex�) is a buccal spray derived from

Cannabis sativa plants which provides an approximate 1:1
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ratio of D9-tetrahydrocannabinol (THC) and cannabidiol

(CBD), with additional trace phytocannabinoids and ter-

penoids. It was developed primarily for the treatment of

muscle spasticity and pain in multiple sclerosis [14]. Our

group recently reported that nabiximols was efficacious in

treating cannabis withdrawal [11]. The THC component of

nabiximols provides an agonist substitution effect, while

the addition of CBD may functionally minimise some of

the negative effects of THC such as anxiety, cognitive

impairments, and memory deficits, and provide intrinsic

anxiolytic, hypnotic, and antipsychotic effects [15–17].

This could afford an advantage over pure THC prepara-

tions. Although CBD has poor affinity for cannabinoid

receptors, it may act as an allosteric modulator at CB1

receptors [18], can increase endocannabinoid levels [19]

and may act at non-cannabinoid receptors such as 5-HT1A,

PPARc, and TRP channels [20–22].

Measurement of CBD, THC, and THC metabolites

during and following nabiximols administration is impor-

tant for dose titration, safety, and for monitoring treatment

adherence, particularly over an extended treatment period.

THC is predominantly metabolised via cytochrome P450

2C9 and 2C19 isoenzymes to 11-hydroxyl-THC (11-OH-

THC) and 11-nor-9-carboxy-THC (THC-COOH) [23, 24].

These metabolites can undergo phase II glucuronidation by

various UDP-glucuronosyltransferases [25]. The metabo-

lism of CBD is less well understood, but CBD appears to

be a better substrate for human UDP-glucuronosyltrans-

ferases than THC, and is excreted both directly and in

glucuronidated form in urine, together with 7-hydroxy-

CBD (7-OH-CBD) and oxidised derivatives as major

metabolites [26, 27].

These compounds can be measured in plasma, but uri-

nalysis would provide easier and less invasive sampling in

clinical studies. Until recently, sensitive and accurate

analysis of CBD in urine has been challenging, due to

uncharacterised phase II metabolites. A method optimised

for analysing CBD and its secondary glucuronidated or

sulfated metabolites using enzymatic hydrolysis with red

abalone b-glucuronidase, followed by gas chromatogra-

phy–mass spectrometry analysis, has been described, pro-

ducing a 250-fold increase in urinary CBD levels compared

to non-hydrolysed samples [28]. This method has the

potential to greatly improve the viability of CBD

urinalysis.

Here, we employed this method, adapted to liquid

chromatography–tandem mass spectrometry (LC–MS/

MS), in a clinical study involving cannabis withdrawal.

It is unclear how well urine and plasma cannabinoid

levels correlate during multiple days of nabiximols

treatment, and how well this method detects THC and its

metabolites; thus the method requires further validation

in clinical settings. In addition, the levels of CBD, THC,

and its metabolites during multiple days of nabiximols

treatment are largely uncharacterised in terms of overall

time course and peak concentration. Therefore, the pre-

sent study demonstrates the trajectory of CBD levels, as

well as THC and its primary metabolites, during treat-

ment with nabiximols across an inpatient cannabis

withdrawal episode in a clinical population of cannabis-

dependent treatment-seekers [29]. We also examine the

relationship between urine and plasma cannabinoid levels

to validate the utility and sensitivity of urinary CBD

monitoring in a clinical setting, using an enzymatic

hydrolysis approach.

Materials and methods

Participants and dosing

Urine and blood samples were provided by 51 participants

from a double-blind randomised clinical inpatient trial of

nabiximols for cannabis withdrawal management (see Ref.

[29]). Briefly, they were individuals aged 18–65 years who

had a desire to reduce or halt cannabis use and had a his-

tory of cannabis withdrawal, but no current alcohol or other

drug dependence except for nicotine or caffeine. Samples

from 22 patients were selected for analysis based on the

criterion that they had provided at least 5 daily urine

samples across the 9 days of inpatient treatment. Of these,

11 were placebo-treated and 11 were nabiximols-treated.

Patients were asked to abstain from cannabis use for at

least 6 h before admission.

The first nabiximols dose was administered at 4 p.m. on

day 1 (eight sprays, for a total of 21.6 mg THC and 20 mg

CBD), and again at 10 p.m. (eight sprays). Maximal doses

(eight sprays four times daily, for a total of 86.4 mg of

THC and 80 mg CBD) were administered on days 2 and 3.

The dose was tapered on subsequent days to six sprays four

times daily on day 4 (64.8 mg THC and 60 mg CBD), four

sprays four times daily on day 5 (43.2 mg THC, 40 mg

CBD), and two sprays four times daily on day 6 (21.6 mg

THC, 20 mg CBD). Days 7–9 were drug-free washout

days. Placebo participants received a matched placebo (a

spray with similar smell and taste) developed by GW

Pharmaceuticals, Porton Down Science Park, UK. This

research was approved by the Hunter New England Human

Research Ethics Committee.

Plasma and urine sampling

Blood was taken on days 1 (pre-treatment), 3 (peak dose),

and 7 (14.5 h after last nabiximols dose). Blood samples

were was not taken daily, in order to limit the invasiveness

of the study. Blood was drawn at 12:30 p.m. into an EDTA-
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coated collection tube and centrifuged at 1500 g for

10 min. Plasma was stored at -20 �C until analysis. We

obtained daily urine samples, collected at the first void of

the day and stored at -20 �C until analysis. The urine

sample on day 1 was taken before the first nabiximols dose.

Reagents

Cannabinoid standards and deuterated internal standards

(THC, THC-d3, CBD, CBD-d3, 11-OH-THC, 11-OH-THC-

d3, THC-COOH, and THC-COOH-d9) were obtained from

Cerilliant� (Round Rock, TX, USA); methanol, acetoni-

trile, n-hexane, aqueous ammonia, and anhydrous sodium

acetate from Merck Millipore (Bayswater, VIC, Australia);

monobasic/dibasic potassium phosphate from Ajax Fine

Chemicals (Sydney, NSW, Australia); glacial acetic acid

from Fisher Scientific (Melbourne, VIC, Australia); and red

abalone b-glucuronidase from PM Separations (Capalaba,

QLD, Australia). All chemicals and solvents were at least

ACS or HPLC grade, respectively.

Cannabinoid urinalysis

Urine samples (0.5 mL) were analysed in duplicate using a

previously described method [28], adapted to LC–MS/MS

as detailed in the following sections.

Enzyme hydrolysis

Following fortification with internal standard solutions, the

samples were adjusted to pH 5 with 1 mL 0.2 M sodium

acetate buffer, then hydrolysed with 25 lL red abalone b-
glucuronidase ([100,000 units/mL) and incubated for 15 h

at 37 �C. Calibrator and quality control samples, prepared

using blank urine spiked with cannabinoid standards, were

treated identically. Following incubation, protein precipi-

tation was performed via addition of 1 mL ice-cold ace-

tonitrile, followed by centrifugation and aspiration of the

supernatant. Samples were adjusted to pH 6 with 2 mL

0.1 M phosphate buffer in preparation for solid-phase

extraction.

Solid-phase extraction

Hydrolysed samples were directly loaded onto 3 mL UCT

Styre Screen SSTHC063 SPE columns (United Chemical

Technologies [UCT], Inc., Bristol, PA, USA), washed with

1 mL of water/acetonitrile/ammonia (84:15:1, v/v/v), and

then dried under a vacuum for 20 min. Cannabinoid ana-

lytes were eluted from the columns with 3 mL of n-hexane/

ethyl acetate/glacial acetic acid (49:49:2, v/v/v). Eluates

were evaporated to dryness under a stream of high-purity

nitrogen at 60 �C, and then reconstituted in 1 mL initial

mobile phase (40 % methanol and 60 % 10 mM ammo-

nium acetate) for LC–MS/MS analysis.

LC–MS/MS analysis

A Shimadzu Nexera� ultra-high-performance liquid chro-

matograph (Shimadzu Corp., Kyoto, Japan) with a Pinnacle

DB Biphenyl column (100 9 2.1 mm i.d., particle size

1.9 lm; Restek Corp., Bellefonte, PA, USA) was used for

chromatographic separation. This was performed via gra-

dient elution with methanol and 10 mM ammonium acetate

at a flow rate of 0.3 mL/min at 40 �C. A Shimadzu LCMS-

8030 triple quadrupole mass spectrometer, operated in

positive atmospheric pressure chemical ionisation mode

with multiple reaction monitoring, was used for analyte

identification and quantification.

Non-hydrolysed samples

To investigate the effect of hydrolysis with red abalone b-
glucuronidase on all cannabinoid analytes, the urine sam-

ples of a single nabiximols-treated patient were analysed

without the enzyme hydrolysis step. These results were

compared to the analysis of the same samples using

enzyme hydrolysis.

Validation

Although this hydrolysis method was validated previously

for GC–MS [28], we determined selectivity, linearity,

accuracy, precision, limits of quantification (LOQ), and

limits of detection (LOD) for our LC–MS/MS adaptation.

Selectivity was verified by analysing blank urine samples

provided by an experimenter who had not used or been

exposed to any cannabis in the last year. Linearity was

assessed using calibrators at seven ascending concentration

levels. Accuracy was determined using quality control

(QC) samples at low and high concentrations relative to the

calibration range, with bias calculated as percent deviation

from the nominal analyte concentration. Precision was

calculated using the same low and high QC samples, with

percent relative standard deviation calculated from three

runs on the same day (intraday) and on three separate days

(interday). LOQ was selected on the basis of accuracy and

precision of QC samples, while LOD was set as the lowest

calibrator concentration, with a signal-to-noise ratio of C3.

Cannabinoid plasma analysis

Plasma was analysed as reported previously [29]. Briefly,

cannabinoids were extracted from plasma using solid-phase

extraction following protein precipitation with acetonitrile,

dried under nitrogen, reconstituted in initial mobile phase,
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and analysed with LC–MS/MS as specified in the previous

section.

Data analysis

Raw chromatographic data were analysed using LabSolu-

tions version 5.60 software (Shimadzu Corp., Kyoto,

Japan). Quantified analytical data were analysed with SPSS

version 22 software (IBM Corp., Armonk, NY, USA). The

analysis considered the main effects of treatment (nabixi-

mols or placebo) and time (days 1–9), and their interaction

in a linear mixed model for repeated measures with first-

order autoregressive covariance structure [30]. We exam-

ined significant effects with two sets of planned contrasts.

The first set of contrasts compared the levels of each analyte

between nabiximols and placebo patients on each day of the

inpatient study (e.g., day 3 nabiximols urine compared to

day 3 placebo urine). The second set compared the levels of

analytes on each day to day 1 levels within each treatment

group (e.g., day 3 nabiximols urine compared to day 1

nabiximols urine). All contrasts were adjusted for multiple

comparisons using the Bonferroni method. Effect sizes

were calculated using the bias-corrected Hedges g (raw

difference between two means divided by standard devia-

tion adjusted for population size [31]).

We also computed Pearson’s correlations between plasma

and hydrolysed urinary concentrations of each analyte to

investigate whether urinalysis, a less invasive procedure,

could be used as a proxy for plasma drug levels. All data

across placebo and nabiximols treatment groups on days 1, 3,

and 7 (plasma sampling days) were pooled to achieve suffi-

cient statistical power. In addition, we computed correlations

between plasma on days 1, 3, and 7 with urinary data on the

days following plasma sampling (days 2, 4, and 8), in an

attempt to account for any delay in analyte excretion. In all

cases, data where either urine or plasma concentrations fell

below the limits of quantification were excluded.

Finally, we calculated the ratios of hydrolysed urinary

THC to CBD, THC-COOH to CBD, and 11-OH-THC to

CBD at peak dosing (day 3) for nabiximols-treated par-

ticipants, to investigate the consistency of analyte ratios

during nabiximols treatment, theorising that deviation from

a consistent ratio could be useful for identifying relapse to

recreational cannabis use in outpatient settings.

Results

Patient demographics and prior substance use

Patient characteristics are presented in Table 1. Patients

were on average 39 years of age, had used cannabis for an

average of 24.4 years, and had used an average 19.3 g of

cannabis per week in the month preceding treatment. There

were no significant differences between nabiximols- and

placebo-treated patients in demographics or substance use

history. A greater number of urine and plasma samples

were provided over the course of the study by nabiximols-

treated participants, corresponding to greater treatment

retention [29].

Table 1 Demographics and

substance use history by

treatment group

Characteristic Nabiximols

(n = 11)

Placebo

(n = 11)

Total

(n = 22)

P valuea

Demographics, no. (%)

Age, mean (SD) 38.4 (9.58) 39.6 (6.99) 39.0 (8.21) 0.73

Male 8 (72.7) 9 (81.8) 17 (77.2) 0.61

Aboriginal or Torres Strait Islander 0 (0) 1 (9.1) 1 (4.5) 0.31

Substance use history, mean (SD)

Cannabis use g/weekb 13.2 (6.92) 25.4 (32.2) 19.3 (23.6) 0.23

Years of cannabis use 23.7 (9.94) 25.0 (6.32) 24.4 (8.16) 0.72

Alcohol use, U/weekb 4.60 (10.8) 5.83 (7.21) 5.21 (8.99) 0.76

Cigarettes/weekb 69.8 (59.5) 50.8 (55.9) 60.3 (57.1) 0.29

Tobacco use g/weekb 9.54 (2.37) 11.2 (2.83) 10.4 (8.48) 0.67

Samples, no.

Urine samples provided 88 77 165 0.04

Plasma samples provided 31 24 55 \0.01

Remaining at day 9, no. (%) 7 (63.6) 5 (45.5) 12 (54.5) 0.41

SD standard deviation
a Statistical comparisons were independent samples t-tests for continuous variables, or v2 tests for cate-

gorical variables
b Weekly use in the month before entering the study, measured by modified timeline follow-back

Alcohol measured in units (1 U = 8 g ethanol)
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Method validation

Validation and quantification parameters for the LC–MS/

MS urinary hydrolysis method are presented in the sup-

plementary material (Table S1). All analytes produced a

linear response in the appropriate range, and precision and

accuracy were within acceptable limits [32]. No interfering

signals were detected in blank samples.

CBD

All but one placebo participant had undetectable CBD

levels in plasma and urine for the duration of inpatient

treatment. In contrast, in those patients receiving nabixi-

mols treatment (Fig. 1a), plasma and urinary CBD

appeared upon commencement of medication, rising to

asymptote in urine on day 4. CBD levels decreased fol-

lowing reductions in dosing on day 4, and decreased

towards zero over days 7, 8, and 9 (Fig. 1a), when

nabiximols was withdrawn. Overall, CBD levels in

hydrolysed urine were approximately 50 times those of

plasma CBD.

In urine samples, levels of CBD were significantly

higher in the nabiximols-treated group (treatment 9 time:

F8,102.93 = 3.285, P\ 0.01) across all 9 days, and con-

trasts demonstrated that CBD levels were higher in

nabiximols patients on days 2–6, with maximal differences

observed on day 4 (all P\ 0.05; Hedges g = 0.68;

Fig. 1a). On these days in nabiximols-treated patients,

CBD levels were significantly elevated compared to pre-

treatment levels (all P\ 0.05), while no differences from

pre-treatment were observed in placebo-treated patients.

Similarly, overall plasma CBD levels were significantly

greater in nabiximols-treated patients than in those treated

with placebo (treatment 9 time: F2,40.68 = 38.42,

P\ 0.0001), and contrasts revealed that CBD levels were

higher in nabiximols-treated patients on days 3 and 7 (all

P\ 0.05; Fig. 1a), with the greatest difference occurring

on day 3 (Hedges g = 2.99). Compared to day 1 levels,

plasma CBD levels were elevated in nabiximols-treated

patients on days 3 and 7 (all P\ 0.05), while no differ-

ences from pre-treatment levels were found in placebo-

treated patients. Day 1 adjusted data are presented in the

supplementary material (Fig. S1).

Fig. 1 Mean cannabidiol (CBD), D9-tetrahydrocannabinol (THC),

11-nor-9-carboxy-THC (THC-COOH), and 11-hydroxy-THC (11-

OH-THC) in plasma (non-hydrolysed) and urine of patients treated

with placebo (n = 11) and nabiximols (n = 11). Shaded background

area indicates the tapered nabiximols dosing schedule. Note that

samples were taken in the morning and that day 1 samples were taken

before the first nabiximols or placebo dose. Peak dosing occurred on

days 2 and 3, and washout occurred on days 7–9. Asterisk (*)

indicates nabiximols urine concentration significantly greater than

placebo urine concentration. Hash symbol (#) indicates nabiximols

plasma concentration significantly greater than placebo plasma

concentration
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THC

THC levels in urine were low compared to the other ana-

lytes, and were variable on day 1 (Fig. 1b). Overall, urinary

THC was elevated across the inpatient period in nabixi-

mols-treated patients (treatment 9 time: F8,96.22 = 3.41,

P\ 0.01), and contrasts showed higher urinary THC in

patients treated with nabiximols compared to placebo on

day 4 (P\ 0.05; Hedges g = 0.82; Fig. 1b). Urinary THC

did not significantly differ from day 1 levels on any day for

nabiximols-treated patients, but THC levels for placebo-

treated patients decreased below initial levels on all sub-

sequent days (all P\ 0.05).

Overall, plasma THC was elevated by nabiximols treat-

ment compared to placebo (treatment 9 time:

F2,29.56 = 10.517, P\ 0.001), and contrasts showed higher

THC in participants treated with nabiximols versus placebo

on day 3 (P\ 0.05; hedges g = 1.41; Fig. 1b). Compared

to day 1 levels, THC decreased on day 7 for nabiximols-

treated participants, and the THC levels for placebo-treated

participants decreased on days 3 and 7 (all P\ 0.05).

THC-COOH

THC-COOH urine levels rose steadily during nabiximols

treatment, before declining rapidly as treatment ceased

(Fig. 1c). In the placebo group, THC-COOH levels gen-

erally declined across all 9 days, but did not reach zero.

Contrasts revealed that nabiximols treatment significantly

increased THC-COOH levels on days 3–7, with the

greatest difference occurring on day 5 (all P\ 0.05;

Fig. 1c; Hedges g = 0.54).

Plasma THC-COOH was higher in patients treated with

nabiximols compared to placebo over the course of the

study (treatment 9 time: F2,32.50 = 17.36, P\ 0.0001),

and contrasts showed that plasma THC-COOH was higher

in nabiximols-treated patients on days 3 and 7 compared to

those treated with placebo (all P\ 0.05; Fig. 1c). This

difference was greatest on day 3 (Hedges g = 1.40). Rel-

ative to day 1 levels, plasma THC-COOH increased on day

3 for nabiximols-treated patients, and THC-COOH in the

placebo-treated group decreased on days 3 and 7 (all

P\ 0.05).

11-OH-THC

11-OH-THC levels followed a pattern similar to those of

THC-COOH, albeit at lower concentrations (Fig. 1d).

Urinary 11-OH-THC was higher in nabiximols-treated

versus placebo-treated patients throughout the duration of

the inpatient study (treatment 9 time: F8,113.55 = 4.64,

P\ 0.0001), and contrasts showed higher 11-OH-THC in

patients treated with nabiximols compared to placebo on

days 3–5 (all P\ 0.05; Fig. 1d). The greatest increase

occurred on day 4 (Hedges g = 1.38). Compared to day 1

levels, urinary 11-OH-THC levels were elevated on days 3

and 4 in nabiximols-treated patients, while placebo levels

decreased relative to day 1 levels on all subsequent days

(all P\ 0.05).

Overall, plasma 11-OH-THC was significantly higher

in nabiximols-treated compared to placebo-treated

patients (treatment 9 time: F2,33.63 = 31.79, P\ 0.0001).

Contrasts revealed that on day 3, plasma 11-OH-THC was

significantly greater in nabiximols-treated patients relative

to those treated with placebo (P\ 0.05; g = 3.20;

Fig. 1d). Compared to pre-treatment levels, 11-OH-THC

increased on day 3 for nabiximols-treated participants,

and placebo levels decreased on days 3 and 7 (all

P\ 0.05).

b-Glucuronidase hydrolysis

Hydrolysis of urine samples with b-glucuronidase pro-

duced large increases in concentrations of all analytes

(Fig. 2). CBD levels were approximately 200 times greater

in hydrolysed urine, peaking at 245 ng/mL on day 3 in

hydrolysed urine, compared to 1.2 ng/mL in non-hydrol-

ysed urine on day 5. THC-COOH levels were several times

higher in hydrolysed urine across the 9 days. Without

hydrolysis, THC and 11-OH-THC levels fell below limits

of quantification on all days.

Relationship between urine and plasma analyte

concentrations

Scatter plots of urinary and plasma analyte concentrations

are presented in Fig. 3. Urine–plasma Pearson correlations

for pooled data from plasma sampling days 1, 3, and 7 were

strong and statistically significant for CBD (r = 0.87,

P\ 0.001; Fig. 3) and THC (r = 0.74, P\ 0.001), and

moderate and statistically significant for THC-COOH

(r = 0.47, P\ 0.001) and 11-OH-THC (r = 0.44,

P\ 0.05). The urine–plasma correlation was improved for

THC-COOH by using urinary data from the days following

plasma sampling (i.e., days 2, 4, and 8; r = 0.67,

P\ 0.001), but CBD, THC, and 11-OH-THC correlations

fell compared to same-day plasma and urine correlations

(CBD: r = 0.03, P[ 0.05; THC: r = 0.30, P\ 0.05;

11-OH-THC: r = 0.29, P[ 0.05).

Analyte ratios

Ratios of THC to CBD, THC-COOH to CBD, and 11-OH-

THC to CBD for nabiximols-treated patients at peak dosing

(day 3) are presented in Table 2. Relative standard devi-

ations were high for all analyte ratios in both hydrolysed
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urine and non-hydrolysed plasma, indicating substantial

variability in analyte ratios between individual patients.

Discussion

The current study examined urine and plasma cannabinoid

concentrations during inpatient cannabis withdrawal,

where participants received 6 days of nabiximols or pla-

cebo treatment followed by 3 washout days. All cannabi-

noid analytes of interest (THC, THC-COOH, 11-OH-THC,

CBD) were detectable following b-glucuronidase hydrol-

ysis. The hydrolysis method utilised was particularly

effective in liberating urinary CBD.

CBD levels in urine were negligible before treatment,

reflecting the low or non-existent CBD content of typical

Australian street cannabis [33]. By contrast, THC, THC-

COOH, and 11-OH-THC were readily detectible initially,

although highly variable across individuals. Plasma THC-

COOH was more abundant than its parent compound THC,

consistent with cannabinoid pharmacokinetic studies

following smoking or oral administration [34, 35]. More-

over, in day 2 placebo urine, THC and 11-OH-THC levels

fell in comparison to day 1 levels, while THC-COOH did

not, possibly reflecting the conversion of THC and/or

11-OH-THC to THC-COOH [34]. The concentrations of all

cannabinoids in nabiximols-treated patients peaked shortly

after peak dosing, and declined steadily over multiple days

following cessation of dosing (Fig. 1), closely reflecting

the tapered dosing schedule. However, urinary THC and

THC-COOH was detectable in several patients on day 9,

even in the placebo group, concordant with the long period

of elimination of these analytes in heavy cannabis users

[36]. Slow elimination of cannabinoids has been well

characterised previously [37, 38], and may be partly due to

the long-term sequestration of cannabinoids in fat tissue

[36, 39, 40].

In participants receiving nabiximols treatment, CBD

was detected at high levels in urine subsequent to hydrol-

ysis of the urinary samples with red abalone b-glu-
curonidase. This produced urinary CBD at concentrations

50 times those seen in plasma, and approximately 200

Fig. 2 Effect of hydrolysis with red abalone b-glucuronidase on

urinary CBD, THC, THC-COOH, and 11-OH-THC in a single

nabiximols-treated patient. The background shaded area indicates the

tapered nabiximols dosing schedule. Note that samples were taken in

the morning and that day 1 samples were taken before the first

nabiximols or placebo dose
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times those in non-hydrolysed urine, similar to the 250-fold

increase reported previously [28]. Given that CBD is

increasingly recognised as a potential treatment for a

variety of conditions, including schizophrenia [17], epi-

lepsy [41], and anxiety [42], this analytical technique could

be useful across a range of situations in which CBD itself,

or CBD-containing therapeutics such as nabiximols, are

being administered.

THC, THC-COOH, and 11-OH-THC concentrations

were also amplified by urinary hydrolysis (Fig. 2). We

observed a fivefold increase in urinary THC-COOH fol-

lowing hydrolysis, and without the hydrolysis step, urinary

Fig. 3 Scatter plots of plasma (non-hydrolysed) and urine (hydrol-

ysed) concentrations of a CBD (n = 17), b THC (n = 51), c THC-

COOH (n = 51), and d 11-OH-THC (n = 24). Data were pooled

across treatment groups and across days 1, 3, and 7 (plasma sampling

days). White dots indicate data from placebo-treated patients; solid

black dots indicate data from nabiximols-treated participants. The e is

a THC-COOH scatter plot using urinary data from the days following

plasma sampling (days 2, 4, and 8; n = 47). Only data points where

both plasma and urine concentrations were above limits of quantifi-

cation are included. Lines were fitted via linear regression. *P\ 0.05,

***P\ 0.001
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THC and 11-OH-THC concentrations fell below limits of

quantification. Hydrolysed concentrations of both THC-

COOH and 11-OH-THC in urine were approximately 10

times those in plasma (Fig. 1), potentially reflecting

improved sensitivity for these analytes compared to the

standard plasma assay. We also noted that THC-COOH

was more concentrated even in non-hydrolysed urine than

in plasma (Figs. 1c, 3c), as might be anticipated, given the

polarity and long urinary half-life of this metabolite

[43, 44]. Thus, although this method is optimised for CBD

sensitivity, it also improves the analysis of other major

cannabinoid analytes.

Importantly, urinary cannabinoid levels correlated with

plasma levels for all analytes (Fig. 3). These correlations

were stronger for CBD and THC than for metabolites

THC-COOH and 11-OH-THC. Our plasma samples did not

undergo hydrolysis; this variability in THC metabolites

might arise from differences in the proportion of free and

glucuronidated THC-COOH and 11-OH-THC in plasma

and urine for some patients, or a delay in excretion of

analytes from plasma into urine. Indeed, using urinary data

from the days following plasma sampling improved the

urine–plasma correlation for THC-COOH (Fig. 3e),

although this correction reduced correlations for all other

analytes. Creatinine normalisation might improve these

correlations overall, but urinary dilution cannot account for

the increased variability of THC metabolites compared to

CBD and THC, since all analytes would be similarly

impacted by dilution. Overall, these correlations suggest

that, following suitable hydrolysis procedures, urinary

cannabinoid measurement might find use as a proxy for

plasma sampling in future clinical trials where CBD or

THC are administered, although some correction for a

delay in urinary excretion may be necessary for THC-

COOH. This may prove useful for a variety of clinical

trials where CBD and other cannabinoids are used, such as

pediatric epilepsy [45].

There is increasing interest in the use of nabiximols as

an agonist substitution therapy to treat persons who are

cannabis-dependent [11, 29, 46]. An important technical

issue thus arises as to whether any recreational use of

smoked or vaporised cannabis (i.e., relapse) taken in

addition to nabiximols treatment can be detected analyti-

cally, so that treatment efficacy can be accurately dis-

cerned. In oral fluid, analysis of cannabinoid ratios can

distinguish nabiximols treatment from stand-alone smoked

cannabis use via elevated CBD to THC ratios, but addi-

tional research is required to determine whether relapse to

cannabis smoking in addition to nabiximols treatment can

be accurately detected in oral fluid [47]. We have similarly

considered the possibility of using urinary cannabinoid

ratios to detect such relapse to recreational use during

nabiximols treatment. In the current study, levels of CBD

on day 1 and in the placebo group across all 9 days were

low or negligible, reflecting the common lack of CBD in

recreational cannabis consumed by users in multiple

countries [33, 48–50]. Initiation of nabiximols therapy

corresponds to a sustained increase in urinary CBD levels.

It is possible that additional unsanctioned cannabis use

during nabiximols treatment may produce a sudden

Table 2 Urinary and plasma

analyte ratios in nabiximols-

treated patients at peak dosing

(on day 3)

Patient THC : CBD THC-COOH : CBD 11-OH-THC : CBD

Urine Plasma Urine Plasma Urine Plasma

1 0.06 1.54 19.8 28.0 0.00 1.31

2 0.02 3.07 9.56 116 0.19 3.83

3 0.05 3.35 9.52 72.4 0.36 3.09

4 0.05 2.38 12.0 71.2 0.39 1.83

5 0.13 2.01 20.0 37.9 1.02 1.71

6 0.05 2.11 4.57 67.7 0.62 2.73

7 0.05 2.17 6.11 51.3 0.33 1.56

8 0.27 2.15 31.9 23.1 3.17 1.94

9 0.04 1.84 3.34 17.8 0.39 1.54

10 0.04 4.84 11.4 135 0.40 3.53

11 –a 2.13 –a 90.5 –a 3.83

Range [0.02–0.27] [1.54–4.84] [3.34–31.9] [17.8–135] [0–3.17] [1.31–3.83]

Mean 0.08 2.51 12.8 64.6 0.69 2.45

RSD 9.37 0.37 0.68 0.59 1.33 0.40

THC D9-tetrahydrocannabinol, CBD cannabidiol, THC-COOH 11-nor-9-carboxy-THC, 11-OH-THC

11-hydroxy-THC, RSD relative standard deviation, calculated as the standard deviation divided by the

mean
a Urinary data for nabiximols-treated patient 11 on day 3 were unavailable
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increase in THC and its metabolites THC-COOH and

11-OH-THC relative to CBD in urine.

However, computation of urinary THC to CBD on day 3

(peak dosing) for nabiximols-treated patients produced a

large range of ratios, as was the case for ratios of THC-

COOH to CBD and 11-OH-THC to CBD (Table 2). Sim-

ilar variability was present to a smaller but still substantial

extent in ratios calculated from plasma concentrations.

These ranges may be too broad for detection of additional

cannabis use, although longer-term treatment (i.e., constant

nabiximols treatment over several additional days) might

produce more consistent ratios. Ongoing studies by our

group are aimed at addressing this hypothesis.

There are some caveats to consider. The lack of crea-

tinine-corrected estimates of urinary analytes is a limita-

tion, although the strong correlations between urinary and

plasma levels of CBD and THC suggest that the impact of

urinary dilution was minor. We were unable to collect

plasma every day, due to the invasiveness of daily sam-

pling; we could not calculate meaningful urine–plasma

correlations for individual participants. Placebo data were

impacted to a greater degree than nabiximols data by

patient dropout (Table 1), and while this underscores the

efficacy of nabiximols treatment for cannabis withdrawal,

it reduced the reliability of placebo data and increased the

difficulty in obtaining statistically significant results on

later days. It should be noted that the dosing regimen in this

study involved high doses of nabiximols, with peak doses

at 32 sprays per day (86.4 mg THC, 80 mg CBD), several

times higher than doses used in other clinical conditions

(e.g., pain, multiple sclerosis) in non-cannabis dependent

populations [51]. Replication of this study in patients using

lower doses of nabiximols may be warranted. Finally,

future studies could examine urinary levels of CBD

metabolites (e.g., 7-OH-CBD) in addition to THC

metabolites.

Conclusions

This study demonstrates a clinical application of urinary

hydrolysis to determine urinary CBD, THC, and THC

metabolites over multiple days of nabiximols treatment,

which may be applicable to a wide range of emerging

THC- and/or CBD-based treatments and clinical trials.

Urinary concentrations of CBD, 11-OH-THC, and THC-

COOH were greatly improved by hydrolysis with b-glu-
curonidase compared to the standard plasma assay and to

non-hydrolysed urine. Urine and plasma concentrations of

CBD, THC, THC-COOH and, to a lesser extent, 11-OH-

THC followed similar trajectories that reflected the dosing

schedule, suggesting that urine screening using this method

may be an appropriate and less invasive proxy for blood

testing.
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6.1 Chapter overview 

 The studies presented in this thesis were designed to build further knowledge 

and understanding in several key areas of cannabinoid research, as reviewed in 

Chapter 1. Specifically, these studies aimed to:  

1. Characterise the in vivo potency and basic physiological effects of several 

synthetic cannabinoids that are in current use as recreational drugs (Chapter 2).  

2. Identify structure-activity relationships for aminoalkylindoles and related 

synthetic cannabinoids using in vivo measures (Chapter 2).  

3. Establish metabolic pathways and identify valid analytical targets among 

novel synthetic cannabinoids and their metabolites (Chapter 3). 

4. Identify and discuss the discrepancy between in vitro and in vivo synthetic 

cannabinoid pharmacokinetic data, where, for example, in vitro data predicts rapid 

clearance while in vivo data describes long durations of action (Chapter 3).  

5. Explore the long-term residual effects (e.g. cognitive effects, toxicological 

effects) arising from repeated synthetic cannabinoid exposure in rats (Chapter 4). 

6. Establish accurate and practical urinalysis techniques to accompany agonist 

replacement therapies (involving ∆9-THC) for cannabis and/or synthetic cannabinoid 

dependence and withdrawal (Chapter 5). 

Overall, the studies presented in Chapters 2, 3, 4 and 5 successfully addressed 

these aims. The final chapter of the thesis provides a discussion of these studies, and is 

divided into two main sections. The first section provides a summary and discussion of 

the primary findings along with limitations and caveats from each experimental 

chapter. The latter section discusses the wider implications and significance of these 

findings and provides potential directions for future research. 
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6.2 Summary of findings 

 

6.2.1 Chapter 2: Physiological dose-response effects of synthetic 

cannabinoids as measured by biotelemetry 

The publications featured in Chapter 2 used adult male rats with surgically 

implanted radiotelemetric probes to measure the dose-response characteristics of 

twelve synthetic cannabinoids (JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, 

SDB-001, STS-135, AB-PINACA, AB-FUBINACA, 5F-AMB, and MDMB-FUBINACA) on 

body temperature and heart rate. The molecular structures of these compounds are 

diverse but interrelated; the list encompasses synthetic cannabinoids with fluorinated 

and non-fluorinated N-pentyl chains, indoles and indazoles, methanone, carboxylate 

and carboxamide linkers, and a variety of “bulky” groups (Section 1.3.4).  

There were several interesting outcomes of this work. First, dose-dependent 

hypothermia and bradycardia were established for all twelve compounds when 

delivered via the intraperitoneal route of administration. The in vivo dose-response 

relationships established in Chapter 2 proved useful in choosing doses for subsequent 

experiments (e.g. Chapter 4). Second, it was observed that bradycardic effects and 

hypothermic effects occurred over similar timeframes, although bradycardic effects 

were more subtle and were potentially masked by inherently noisy heart rate data. For 

screening purposes, body temperature appears to be the superior measure. Finally it 

was demonstrated that the CB1 receptor selective antagonist rimonabant, but not the 

CB2 receptor selective antagonist SR144528, blocked hypothermia produced by the 

small subset of these compounds that were subjected to antagonist testing (AB-
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PINACA, AB-FUBINACA, 5F-AMB, and MDMB-FUBINACA). This indicates a CB1 

receptor dependent mechanism of action in the hypothermic response.  

More generally, these studies enabled preliminary structure-activity 

relationships (SARs) to be established in vivo (Table 1). Of the twelve compounds 

studied, eight contained an indole core while four contained an indazole core. Overall, 

the indazoles were more potent both in vitro and in vivo, suggesting that this 

structural element confers an increase in efficacy, at least in terms of the classic 

“tetrad” component of hypothermia. Alternatively, all four indazoles also contained a 

carboxamide linker, which could also potentially account for their superior potency. 

However, of the eight indoles, two also contained a carboxamide linker (SDB-001 and 

STS-135), but neither of these compounds were particularly potent in vitro and both 

required relatively high doses to produce threshold hypothermia in vivo (3 and 1 

mg/kg, respectively). Thus, the carboxamide linker is probably not the key feature 

underpinning the greater potency of the indazole/carboxamide compounds in vivo. 

Instead, it is likely that the indazole substituent tends to increase potency compared 

to the indole moiety.  

Interestingly, the effect of fluorination of the N-pentyl chain was minimal in 

vivo. Although fluorination increased CB1 receptor binding activity in vitro, there were 

no consistent differences in elicited hypothermia for fluorinated versus non-

fluorinated ligands. Although the fluorinated compound XLR-11 was active at lower 

doses than its non-fluorinated analogue UR-144 in producing hypothermia, as was 

STS-135 compared to SDB-001, this was not the case for pairings of AM-2201 versus 

JWH-018 or 5F-PB-22 versus PB-22. Moreover, the maximal magnitude of 

hypothermia tended to be similar for fluorinated and non-fluorinated pairs (e.g. JWH-
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018 and AM-2201; Chapter 2). This indicates a discrepancy between predictions 

derived from in vitro binding studies and actual in vivo hypothermic responses.  

Explanation of this discrepancy may require consideration of some of the 

metabolism results presented in Chapter 3. Specifically, this chapter, and other 

published studies, indicate that many 5-fluoropentyl synthetic cannabinoids undergo 

rapid and extensive oxidative defluorination (Chapter 3; Section 6.2.3; Andersson et 

al., 2016; Grigoryev, Kavanagh, & Melnik, 2013; Sobolevsky, Prasolov, & Rodchenkov, 

2012; Wohlfarth et al., 2014). That is, while the 5-fluoropentyl compounds may bind 

more strongly to CB1 receptors than their N-pentyl counterparts, they may also 

undergo rapid biotransformation into the corresponding 5-hydroxy metabolite. These 

metabolites may themselves possess CB1 receptor binding activity greater than the 

parent compound (Seely et al., 2012), and are identical to the 5-hydroxy metabolites of 

the non-fluorinated N-pentyl analogues (Chapter 3). This metabolic convergence may 

contribute to the similarity in in vivo efficacy of fluorinated and non-fluorinated pairs. 

Direct assessment of the physiological effects of some of the 5-hydroxy metabolites 

using the biotelemetry paradigm could help to better substantiate this hypothesis. 

In any case, the effect of fluorination was clearly of smaller magnitude relative 

to alterations in the “bulky” group, which appears to be a major determinant of 

potency (Table 1). For example, substitution of the naphthyl group of JWH-018 and 

AM-2201 for the 2,2,3,3-tetramethylcyclopropyl group of UR-144 and XLR-11 

substantially reduced both in vitro and in vivo potency. Focusing on the indazole 

carboxamides, a (1S)-1-(aminocarbonyl)-2-methylpropyl group (present in AB-PINACA 

and AB-FUBINACA) confers a small potency increase compared to a methyl  
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isovalerate group (5F-AMB and MDMB-FUBINACA). Other relevant examples are 

provided in Table 1.  

Interestingly, JWH-018 and AM-2201 were more potent in vivo than might be 

expected given their in vitro binding profile at CB1 receptors. For example, JWH-018 

acts on human CB1 receptors with an EC50 of 102 nM, but only requires a dose of 0.3 

mg/kg to produce hypothermia in rats, and produces very substantial hypothermia at 

higher doses (Chapter 2; Table 1). Consider that AB-PINACA, which is far more potent 

at human CB1 (EC50 1.2 nM), also required a dose of 0.3 mg/kg to elicit hypothermia 

and produced a lesser maximal hypothermic effect compared to JWH-018 at 1 mg/kg.  

One possibility is that human CB1 receptors could differ markedly from rat CB1 

receptors in terms of binding activity for JWH-018 and AM-2201. However, human 

and rat CB1 receptors are 90% identical in terms of nucleotide sequence and are 98% 

identical in amino acid sequence (Gerard et al., 1990), indicating high receptor 

homology. Alternatively, JWH-018 metabolites are known to retain in vitro and in vivo 

affinity and activity at CB1 receptors (Brents et al., 2011). AM-2201 can also form some 

of these metabolites via oxidative defluorination (Hutter et al., 2013). These CB1 

receptor active metabolites could potentially contribute to the unexpected in vivo 

potency of JWH-018 and AM-2201. However, it should be noted that some JWH-018 

metabolites appear to be antagonists or neutral antagonists at CB1 receptors (Seely et 

al., 2012). So, to the extent that metabolites are responsible for this effect, it probably 

occurs via a complex interaction between several metabolites. 

 The 2,2,3,3-tetramethylcyclopropyl bulky group of UR-144 and XLR-11 was 

associated with a smaller magnitude hypothermia than that obtained with close 

analogues. Similarly, the human CB1 receptor potency of these two compounds was 
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low (UR-144 EC50: 421 nM; XLR-11 EC50: 98 nM), particularly for UR-144 which had an 

EC50 that was weaker than all of the other compounds tested in Chapter 2. This was 

surprising because UR-144 and XLR-11 have been very popular among users in recent 

years and are anecdotally reported as strongly efficacious (NFILS, 2015).  

This discrepancy may be explained by consideration of active metabolites or 

thermal degradants formed during consumption of UR-144 and XLR-11 (Section 1.4.4). 

In our biotelemetric assessments, we injected UR-144 and XLR-11 intraperitoneally, but 

human consumption occurs via inhalation after these compounds are heated to high 

temperatures. UR-144 and XLR-11 form ring-opened thermal degradants upon heating, 

which possess human CB1 binding 4.6– to 8-fold higher than the parent compounds, 

and substitute for JWH-018 as a discriminative stimulus in the drug discrimination 

paradigm in laboratory mice (Thomas et al., 2017). Therefore, future studies using 

intraperitoneal injection should consider thermal degradants before arriving at firm 

conclusions regarding the translation of results into human populations. 

A caveat worth noting is that the hypothermic and bradycardic effects observed 

in Chapter 2 do not necessarily correspond to human psychoactive effects. It is 

assumed that the CB1-mediated hypothermic effects in rats would strongly correlate 

with CB1-mediated intoxication in humans, but this remains an assumption and is an 

inherent limitation of this experimental approach. It is therefore encouraging to note 

that drug discrimination studies have indicated that mice appear to experience the 

effects of synthetic cannabinoids as being similar to those of ∆9-THC, or well-

established psychoactive synthetic cannabinoids like JWH-018. For example, AB-

PINACA substitutes for ∆9-THC at 3 mg/kg (Wiley et al., 2015), a dose at which we 

observed substantial hypothermia. Similarly, as mentioned above, UR-144 and XLR-11 
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ring-opened thermal degradants substitute for JWH-018 (Thomas et al., 2017), 

indicating a similar subjective effect.   

 To summarise, the work presented in Chapter 2: 

1. Established that a variety of modern synthetic cannabinoids are tolerated and 

efficacious in rats at an intraperitoneal dose between 0.1 and 3 mg/kg, but in some 

cases doses of up to 10 mg/kg are required for substantial hypothermia. 

2. Found that terminal fluorination of the N-pentyl chain of indole or indazole 

synthetic cannabinoids will generally increase CB1 receptor efficacy and potency in 

vitro. However, this is not always reflected in potency observed in vivo, at least in 

terms of hypothermic and bradycardic effects. This could be due to rapid and 

converging metabolic transformations, particularly oxidative defluorination. 

3. Showed that indazole synthetic cannabinoids appear to be more potent both 

in vitro and in vivo than indole synthetic cannabinoids. 

4. Established that the composition of the “bulky” group has a substantial 

influence on both in vitro and in vivo potency.  

5. Suggests that in some cases, consideration of thermal degradants may be 

necessary before translation of results into human populations. For example, the 

potency of UR-144 and XLR-11 may be underestimated by using intraperitoneal 

injection as the route of administration as opposed to heating and inhalation, which 

can produce thermolytic products that may bind strongly to CB1 receptors. 
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6.2.2 Chapter 3: In vitro and in vivo pharmacokinetics and metabolism of 

synthetic cannabinoids CUMYL-PICA and 5F-CUMYL-PICA 

 In Chapter 3, two carboxamide synthetic cannabinoids, CUMYL-PICA and 5F-

CUMYL-PICA, were incubated with rat and human liver microsomes and hepatocytes 

in vitro. These microsome and hepatocyte incubations were used to generate basic 

pharmacokinetic parameters including half-life and clearance rate of the parent 

compound, and to establish metabolic pathways, respectively, through identification 

of metabolites. Additionally, CUMYL-PICA and 5F-CUMYL-PICA were administered 

to rats (at 3 mg/kg, i.p.) in order to compare the results obtained in vitro with 

pharmacokinetic and metabolic results obtained in vivo. Hypothermia was also 

quantified as a characteristic cannabinoid effect using rectal body temperature. This 

study was performed with the aim of establishing valid analytical targets to allow 

detection of consumption of CUMYL-PICA and 5F-CUMYL-PICA in humans. This 

could be of use in future studies (e.g. characterisation of metabolites in other matrices 

like hair or adipose tissue), in emergency medicine (e.g. identification of these 

compounds following episodes of toxicity), in the forensic context (e.g. in deaths 

associated with synthetic cannabinoid use), or for confirming cessation of drug use 

during treatment programmes, discussed further in Section 6.3.3.  

Chapter 3 proposed specific metabolic pathways for CUMYL-PICA and 5F-

CUMYL-PICA which involved extensive phase I oxidative transformations followed by 

phase II glucuronidation. In particular, CUMYL-PICA was terminally hydroxylated on 

the N-pentyl chain (nominally forming 5-OH-CUMYL-PICA), while 5F-CUMYL-PICA 

was oxidatively defluorinated to form the same metabolite. 5-OH-CUMYL-PICA was 

then further oxidised to a carboxylic acid metabolite. This metabolic convergence may 
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cause difficulty in differentiating CUMYL-PICA and 5F-CUMYL-PICA in biological 

samples, so other hydroxylated metabolites were identified as potentially useful 

analytical targets. 

The metabolic transformations detailed in Chapter 3 are in agreement with 

metabolic data concerning other synthetic cannabinoids. For example, oxidative 

defluorination of the 5-fluoropentyl chain is also a major metabolic pathway for AM-

2201, XLR-11, 5F-PB-22, 5F-AMB, and AM-694 (Andersson et al., 2016; Grigoryev et al., 

2013; Sobolevsky et al., 2012; Wohlfarth et al., 2014). Additionally, it was noted that 

human and rat metabolic processes for CUMYL-PICA and 5F-CUMYL-PICA were 

similar, except that human hepatocytes generally failed to produce oxidations on the 

α,α-dimethylbenzyl moiety. Besides glucuronidation, no other phase II 

transformations, such as sulphation or acetylation, were observed in Chapter 3.  

It is noteworthy, although quite possibly coincidental, that metabolism of 

phytocannabinoids occurs in much the same way. For example, ∆9-THC is oxidised to 

11-OH-THC and then to THC-COOH, which is subsequently glucuronidated. In 

contrast to ∆9-THC metabolism, the specific metabolic enzymes responsible for 

synthetic cannabinoid metabolism remain largely uncharacterised. One exception is 

the case of the carboxamide synthetic cannabinoids (AB-PINACA, AB-FUBINACA, PB-

22, and 5F-PB-22) which are primarily metabolised by carboxylesterase 1. This is very 

different to the cytochrome p450 (CYP)-dominated (e.g. CYP 2C9 and 2C19 

isoenzymes) metabolism of ∆9-THC (Thomsen et al., 2014).  

The research presented in Chapter 3 focused on identification of metabolites in 

order to understand overall metabolic pathways and to identify useful analytical 

targets, rather than on identification of specific metabolic enzymes. Future studies 
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could focus on identifying relevant enzymes using specific microsomal isoforms. Such 

data could be used to better understand potential drug-drug interactions. For 

example, synthetic cannabinoids might inhibit or induce key enzymes responsible for 

the metabolism of other drugs (e.g. illicit drugs, prescription medications, natural 

products), potentially leading to toxicity in humans. In support of this hypothesis, a 

very recent study shows that AM-2201 can inhibit several CYP enzymes, specifically 

CYP 2C8, 2C9 and 3A4 (Kim et al., 2017), which are involved in the metabolism of a 

wide array of drugs and medications. Similar assessment of newer synthetic 

cannabinoids could prove valuable. 

A key finding from Chapter 3 was that the clearance rates predicted by 

microsomal incubations were substantially more rapid than the results obtained from 

actual in vivo experiments in rats. Prior studies using microsomal incubation to 

generate kinetic parameters have also reported rapid clearance: for example, the half-

lives of AMB and 5F-AMB were reported as 1.1 and 1.0 min, respectively (Andersson et 

al., 2016). As discussed in Chapter 3, sequestration of synthetic cannabinoids into 

adipose tissue and subsequent release into blood over time may delay elimination in 

vivo (Gunasekaran et al., 2009; Hasegawa et al., 2015; Johansson et al., 1989). 

Alternatively, or additionally, plasma protein binding may also account for this delay. 

Protein binding is presently uncharacterised for CUMYL-PICA, 5F-CUMYL-PICA, and 

most modern synthetic cannabinoids, and could be a key factor mediating long 

elimination times in vivo. Regardless of mechanism, these data highlight the need for 

careful comparisons of in vivo and in vitro pharmacokinetic data in ongoing studies 

with synthetic cannabinoids. 
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The hypothermic effects of CUMYL-PICA and 5F-CUMYL-PICA were largely as 

expected; a decrease of 2-3 °C and a return to baseline approximately 8 hours later. 

Compared to the biotelemetry data reported in Chapter 2, CUMYL-PICA and 5F-

CUMYL-PICA were approximately as potent in vivo as AB-FUBINACA, PB-22, and 5F-

PB-22. Further assessment of CUMYL-PICA and 5F-CUMYL-PICA at other doses (i.e. 

0.3 mg/kg and 1 mg/kg) using the biotelemetry paradigm could prove informative. 

In sum, the study presented in Chapter 3: 

1.  Identified the major and minor metabolic pathways for CUMYL-PICA and 

5F-CUMYL-PICA. 

2. Quantified the hypothermia produced by CUMYL-PICA and 5F-CUMYL-

PICA in rats at a dose of 3 mg/kg i.p. 

3. Established analytical methods for the measurement of CUMYL-PICA, 5F-

CUMYL-PICA, and metabolites in blood and urine, and identified useful analytes for 

future clinical and forensic purposes. 

4. Compared in vitro kinetic predictions with in vivo data, finding that in vitro 

data overestimated in vivo drug elimination, possibly due to sequestration of 

compounds in adipose tissue and/or due to protein binding. 

 

6.2.3 Chapter 4: Acute and residual effects in adolescent rats resulting 

from exposure to the novel synthetic cannabinoids AB-PINACA and AB-

FUBINACA 

 While Chapters 2 and 3 focused on the immediate physiological effects and 

metabolism of synthetic cannabinoids, Chapter 4 featured an exploratory study 

primarily concerned with identification of long-term (residual) effects produced by 
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repeated use of synthetic cannabinoids AB-PINACA and AB-FUBINACA. In this study, 

adolescent rats were employed in recognition of the predominance of the late 

adolescent/early adulthood age group among synthetic cannabinoid users  (Winstock 

& Barratt, 2013). The rats were dosed every second day for two weeks to partially 

mimic patterns of chronic or sub-chronic use in humans.  

The primary findings of this work were that AB-PINACA, AB-FUBINACA, and 

∆9-THC produced substantial and lasting recognition memory impairments. These 

impairments were most severe following AB-FUBINACA treatment. It was notable that 

a long-term residual deficit was seen in social interaction in rats following ∆9-THC 

pre-treatment, but not with either of the two synthetic cannabinoids.  Other findings 

included that AB-FUBINACA caused lasting changes in plasma cytokine 

concentrations, and that AB-PINACA and ∆9-THC caused lasting residual changes in 

cerebellar endocannabinoids. Overall, it was notable that the three cannabinoid 

compounds produced similar acute effects, and, as with Chapters 2 and 3, no serious 

or unique toxicity was observed with synthetic cannabinoids. 

 AB-PINACA and AB-FUBINACA produced typical cannabimimetic effects 

during acute administration, including reduced locomotor activity, increased anxiety-

like behaviour, and an inhibition of body weight gain. Similar effects have been 

observed following administration of ∆9-THC, CP-55,940, and JWH-018 (Arevalo, de 

Miguel, & Hernandez-Tristan, 2001; Macri et al., 2013). Locomotor suppression has 

also been reported with AB-PINACA, AB-CHMINACA and FUBIMINA in mice (Wiley 

et al., 2015). Although these acute effects were expected given previous reports, 

observation of these effects following AB-PINACA and AB-FUBINACA served as 
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preliminary confirmation that these compounds were representative of the wide 

variety of synthetic cannabinoids used by humans. 

 During acute dosing with the cannabinoids, perhaps the most intriguing 

finding was that although AB-PINACA, AB-FUBINACA, and ∆9-THC increased 

anxiety-like behaviours, none of the compounds produced conditioned place aversion. 

Several potential factors underlying this observation were identified in the discussion 

of Chapter 4 (Section 4.5). It is possible that adolescent rats are less sensitive to the 

aversive effects of cannabinoids, such that memory deficits could impair acquisition of 

conditioned place aversion, or that lower doses might have been more effective in 

producing aversion. Clearly, future studies that explore repeated synthetic 

cannabinoid administration using a more extensive dose range, or with adult rats for 

comparison with adolescents, could be enlightening. 

 Of the residual effects, of particular note were the lasting recognition memory 

impairments produced by AB-PINACA, AB-FUBINACA, and ∆9-THC. These 

impairments were most severe for AB-FUBINACA. Similar lasting residual impairment 

to recognition memory has been previously reported for CP-55,940 and ∆9-THC 

(O'Shea, McGregor, & Mallet, 2006; O'Shea et al., 2004; Quinn et al., 2008). Given 

that the hippocampus and perirhinal cortex have been implicated in recognition 

memory impairment (Barker & Warburton, 2011; Bussey, Muir, & Aggleton, 1999; 

Norman & Eacott, 2004), histological assessment of these areas following sub-chronic 

synthetic cannabinoid administration could prove instructive. Subtle 

endocannabinoid modulation was also observed following AB-PINACA and ∆9-THC 

administration, which may point to long-term homeostatic compensations in the 

endocannabinoid system resulting from the repeated use synthetic cannabinoids. 
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 Interestingly, neither AB-PINACA nor AB-FUBINACA produced any obvious 

toxicity in any animal. No animals showed signs of distress between drug doses (e.g. 

abnormal gait, coat abnormalities, seizures, etc). Indeed, no clear toxicity was 

observed in any animal tested with any of the compounds in Chapters 2, 3 or 4. This is 

in stark contrast with numerous case studies that detail toxicity arising from synthetic 

cannabinoid use (Adams et al., 2017; Bhanushali et al., 2012; Hermanns-Clausen et al., 

2012; Khan et al., 2016; Lapoint et al., 2011; Louh & Freeman, 2014; Mir et al., 2011; 

Schneir, Cullen, & Ly, 2011; Schwartz et al., 2015; Thornton et al., 2013). In the case of 

the biotelemetry assessments, the dosing regimen was selected to minimise potential 

harms (e.g. the ascending dose sequence), which may have reduced the likelihood of 

observing any toxic outcomes. Conversely, human case studies may reflect only the 

most severe cases following admittance to emergency departments, representing only 

a tiny and perhaps atypical minority of synthetic cannabinoid users in the community. 

It is also possible that animal toxicity is very transient, much as is reported in case 

studies where adverse symptoms in users often quickly dissipate, or are too subtle and 

hidden to observe (for example, minor kidney damage). Accordingly, to deconvolute 

these potential factors, an experiment examining kidney damage and neurotoxicity 

following AB-PINACA and AB-FUBINACA is presently ongoing in our laboratory. 

 In sum, the study presented in Chapter 4: 

1. Confirmed acute ∆9-THC-like cannabimimetic effects following 

administration of AB-PINACA and AB-FUBINACA. 

2. Identified lasting recognition memory deficits with all three cannabinoid 

pre-treatments, which were most severe for AB-FUBINACA pre-treated rats. 
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3. Identified subtle modulations in cytokine and endocannabinoid 

concentrations that persisted in the long-term (at least six weeks) and varied across 

treatments. The functional significance of these is unclear at present. 

4. Noted that the psychopharmacological effects of dose-matched ∆9-THC, AB-

PINACA, and AB-FUBINACA were largely similar, and that contrary to human case-

reports, no obvious toxicity was observed. A follow-up study concerning acute and 

residual toxic effects in brain and kidney may clarify this issue. 

 

6.2.4 Chapter 5: Urinary cannabinoid levels during nabiximols (Sativex®)-

medicated inpatient cannabis withdrawal 

 Chapter 5 presented an analysis of cannabinoid concentrations in the plasma 

and urine of twenty-two inpatients being treated for cannabis dependence and 

associated withdrawal symptoms with nabiximols (Sativex™) substitution therapy. 

Nabiximols comprises a 1:1 mix of ∆9-THC and CBD, and is administered as a buccal 

spray. The dosing protocol used in the study involved relatively strong doses (peaking 

at daily doses of 86.4 mg THC and 80 mg CBD on days 2 and 3) before tapering to 

zero by treatment day 7. Blood was taken from patients on treatment days 1, 3 and 7, 

while urine was sampled daily (days 1 – 9). Importantly, the study was conducted in an 

inpatient setting to obviate unsanctioned use of cannabis or other drugs.  

 The primary outcome of Chapter 5 was the clinical validation of a cannabinoid 

urinalysis method involving β-glucuronidase hydrolysis. Plasma and urinary CBD, ∆9-

THC, THC-COOH, and 11-OH-THC concentrations closely reflected the dosing 

schedule and could be used to monitor or titrate dosing. Indeed, the results indicated 

that doses of nabiximols could probably be reduced slightly in future studies, given 
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that concentrations of ∆9-THC and 11-OH-THC rose above initial values during the 

early stages of treatment (Appendix 2; Fig. S1). Additionally, the placebo group was 

useful for characterising elimination periods of analytes following heavy cannabis use, 

although elimination of ∆9-THC and THC-COOH was incomplete over the course of 

the study. Blood and urine concentrations of these ∆9-THC and THC-COOH remained 

above detection thresholds at the end of the inpatient period (day 9).  

A key finding was that plasma concentrations of CBD and ∆9-THC were 

positively and strongly correlated with urinary concentrations, providing evidence that 

cannabinoid urinalysis is a valid alternative to assays involving whole blood or plasma 

analysis. However, plasma and urinary ∆9-THC metabolite concentrations were less 

well correlated, and it was necessary to adjust results and interpose a urinary delay of 

one day in order to achieve a moderate urine-plasma correlation for THC-COOH. 

Nevertheless, urine sampling is potentially advantageous as it is less invasive than 

blood sampling, and urinary concentrations of all analytes were greater than in plasma 

following hydrolysis. Urinary sampling could enable cannabinoid analysis using less 

sensitive instruments, or analysis of trace cannabinoids where plasma concentrations 

fall below limits of detection or quantitation.  

The value of β-glucuronidase hydrolysis was also empirically demonstrated 

over several days of treatment. Without hydrolysis, concentrations of 11-OH-THC and 

∆9-THC often fell below limits of detection or quantitation. THC-COOH and CBD 

concentrations were also much lower. Given that synthetic cannabinoids are also 

extensively glucuronidated (Chapter 3; Andersson et al., 2016; Diao et al., 2016; 

Kavanagh, Grigoryev, & Krupina, 2017), this technique may prove valuable for 
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boosting detection of synthetic cannabinoids in urine. This possibility is discussed 

further in Section 6.3.3. 

 In sum, the study presented in Chapter 5: 

 1. Clinically validated a cannabinoid urinalysis method for monitoring 

nabiximols treatment of cannabis dependent inpatients 

2. Validated cannabinoid urinalysis as an alternative to blood analysis in a 

clinical population and inpatient setting, which could be used in conjunction with the 

methodology presented in Chapter 3 for the monitoring of patients undergoing 

synthetic cannabinoid withdrawal (see Section 6.3.3). 

3. Demonstrated that urinary cannabinoid concentrations (following 

hydrolysis) are substantially greater than plasma concentrations, such that urine may 

be useful for detecting trace concentrations of cannabinoids that may otherwise go 

undetected. 

4. Demonstrated the utility of β-glucuronidase hydrolysis for increasing analyte 

concentrations, which may be a similarly useful technique to apply to detection and 

quantification of synthetic cannabinoids and their metabolites in urine.  
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6.3 Wider implications and future directions 

6.3.1 Potency and metabolism prediction based on molecular structure 

 The rate at which novel psychoactive substances are being detected by 

monitoring agencies has arguably outstripped the rate at which regulators, researchers 

and forensic chemists can respond meaningfully to their threat. Between 2009 and 

2015, 157 novel synthetic cannabinoids were detected in recreational products in 

Europe alone, in addition to 93 novel cathinones, 58 novel phenethylamines, and over 

100 novel compounds belonging to several other drug classes (EMCDDA, 2016). The 

delay between when a compound is first discovered in recreational products and when 

that compound is characterised pharmacologically creates a window during which 

many people may be exposed to a compound with unknown potency, metabolism, and 

toxicity. Therefore, tools for predicting these key attributes may be of vital 

importance. Predictive tools could help to ease the burden of testing large numbers of 

newly discovered compounds, allowing researchers to focus on the most recent or the 

most toxic discoveries. 

For example, it may be possible to use SARs to predict potency of novel 

synthetic cannabinoids. Based on the results presented in Chapter 2, pairs of 5-

fluoropentyl and N-pentyl synthetic cannabinoids appear to produce similar 

physiological effects in vivo, at least in terms of body temperature and heart rate. In 

future, researchers could prioritise screening only one compound in each pair, 

predicting that in vivo efficacy will be similar for the remaining compound. Similarly, a 

newly discovered indazole synthetic cannabinoid could be predicted to possess 

somewhat higher potency in vivo compared to its indole analogue. Of course, in cases 

where a particular compound becomes popular in recreational products, or when a 

Chapter 6 181



 
 

compound appears anomalously potent compared to predictions, it could be 

prioritised for confirmatory screening. 

 The rate at which researchers can characterise the metabolites of novel 

synthetic cannabinoids also appears to be much slower than the rate of emergence of 

novel compounds. Therefore, predictive tools for synthetic cannabinoid metabolism 

and identification of likely metabolites of a parent molecule may be of value. 

Fortunately, metabolic pathways have already been identified for a variety of synthetic 

cannabinoids, as described in Chapter 3 and the broader literature (Table 2). Similar 

to the SARs identified in Chapter 2, structure-metabolism relationships (SMRs) are of 

potential future utility in clinical and forensic settings. 

For example, the primary metabolic pathway for synthetic cannabinoids with 

an N-pentyl chain tends to be terminal hydroxylation of that chain (Table 2). 

Similarly, synthetic cannabinoids possessing a 5-fluoropentyl chain are usually 

oxidatively defluorinated, forming an identical metabolite to their non-fluorinated 

counterparts. It seems reasonable to predict that these metabolic patterns will 

continue for newly identified synthetic cannabinoids with N-pentyl or 5-fluoropentyl 

moieties. In this case, these compounds could be forensically identified (although not 

necessarily differentiated from each other) using 5-hydroxyl metabolites even before 

they are characterised via metabolic studies. 

Similarly, synthetic cannabinoids with ester moieties are de-esterified to 

carboxylic acid metabolites (Table 2). This transformation is generally the 

predominant metabolic pathway, such that these carboxylic acid metabolites are 

potentially useful forensic markers. A practical example of this metabolite prediction 

can be found in a recent study that identified an AMB-FUBINACA metabolite in 
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multiple blood and urine samples following a mass intoxication in New York City 

produced by a specific synthetic cannabinoid product (Adams et al., 2017). This study 

used the de-esterified carboxylic acid metabolite of AMB-FUBINACA as a forensic 

target. At the time, this metabolite had not been identified in the scientific literature, 

but similar de-esterified carboxylic acid metabolites were known for AMB and 5F-AMB 

(Andersson et al., 2016). In this way, SMR-based prediction of synthetic cannabinoid 

metabolism has the potential to speed detection of novel synthetic cannabinoids in 

forensic and clinical settings, providing important information regarding novel 

products associated with a distinctive and localised toxidrome. 

However, in some cases complex interactions between structural elements may 

increase the difficulty of metabolite prediction. For example, when a carboxamide 

group is present as a linker (as in CUMYL-PICA and 5F-CUMYL-PICA, as opposed to 

when it is also located terminally, as in AB-PINACA), it is only converted to the 

corresponding amide in some circumstances (Figure 1). In Chapter 3, no such 

transformation was observed for CUMYL-PICA or 5F-CUMYL-PICA, nor has it been 

reported for AB-PINACA or AB-FUBINACA (Takayama et al., 2014; Thomsen et al., 

2014). However this transformation is observed for SDB-006, ADB-FUBINACA, and 

MDMB-FUBINACA (Diao et al., 2017; Kavanagh et al., 2017). Given that SDB-006 only 

differs from CUMYL-PICA in “bulky” group composition, it seems that an interaction 

between the bulky group and catabolic enzymes determines whether this specific 

transformation occurs on the linking group. This is presently difficult to predict for 

novel compounds, but further research into the metabolism of carboxamide synthetic 

cannabinoids may reveal the mechanism behind this selective pattern of metabolic 

transformation. 
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Figure 1. In some cases, metabolic biotransformations can be difficult to predict. The 

linking carboxamide group in (B) SDB-006 and (D) MDMB-FUBINACA is converted to 

the corresponding amide, but this transformation is not observed for (A) CUMYL-PICA 

and (C) AB-PINACA. Interactions between the “bulky” group and catabolic enzymes 

presumably produce this pattern. See text for further detail. 
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By combining the present understanding of SARs and SMRs, a simplified 

testing scheme can be proposed, as detailed in Figure 2. Under this scheme, rather 

than testing each and every novel compound, new compounds are first compared to  

existing ones. If SARs or SMRs are unknown, the new compound can be prioritised for 

testing. Otherwise, they are assumed to possess properties based on established SARs 

or SMRs and other more structurally unique or popular compounds can be prioritised.  

Further research that characterises or clarifies additional SARs/SMRs may be valuable 

in this regard. In cases where a compound is unexpectedly potent, has many 

thermolytic degradants, or presents potentially hazardous drug-drug interactions, it 

may require additional consideration.  
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Figure 2. Flow chart for the streamlined testing of novel synthetic cannabinoids. Under 

this scheme, the properties of new synthetic cannabinoids are predicted based on shared 

structural elements, unless discrepant data becomes available or a compound becomes 

particularly popular. Potential influences of thermolytic degradation or polydrug use 

may also require consideration. 
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6.3.2 Implications of chronic use of synthetic cannabinoids 

 The long-term effects of synthetic cannabinoid administration identified in 

Chapter 4 persisted well beyond the period of drug administration. Therefore, 

treatment of chronic synthetic cannabinoid users may require consideration of lasting 

residual effects in addition to acute symptomology. Drug treatment and rehabilitation 

programs may need to consider the possibility that a person may test negative on drug 

screens (i.e. synthetic cannabinoids undetectable in blood or urine), yet suffer from 

lasting impairment or emotional disturbances resulting from prior use. 

Neuropsychological assessments during the treatment and rehabilitation of chronic 

synthetic cannabinoid users might determine whether cognitive function slowly 

improves with abstinence. 

 This of course assumes that the results of Chapter 4 will translate from rodent 

models into human populations. In this regard, it is worth noting that a very recent 

study found impaired executive function (assessed via the Stroop test, n-back task, and 

free-recall memory tasks) in synthetic cannabinoid users relative to both recreational 

cannabis users and non-users (Cohen et al., 2017). Thus, the preclinical findings 

concerning impaired recognition memory in Chapter 4 may well be an accurate 

portrait of impairments in human users. 

 A consistent finding from Chapter 4 and the wider cannabinoid literature is 

that adolescents are more vulnerable than adults to deleterious cognitive effects 

produced by synthetic cannabinoids and ∆9-THC. For example, chronic CP-55,940 or 

∆9-THC administration during adolescence impairs social interaction and working 

memory to a greater degree than in rats treated during adulthood (O'Shea et al., 2004; 

Quinn et al., 2008). Future studies that specifically include adolescent human 
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populations of synthetic cannabinoid users could be particularly valuable in assessing 

potential long-term adverse effects of these drugs at this vulnerable developmental 

stage. 

 Additionally, the inhibitory effect of AB-FUBINACA (and possibly other 

synthetic cannabinoids) on pro-inflammatory cytokines uncovered in Chapter 4 is 

worthy of further investigation. In particular, it would be interesting to verify whether 

these cytokines are also elevated acutely, or whether a lasting downregulation is 

subsequent to acute upregulation following repeated drug administration. If cytokines 

are modulated acutely, then antagonist studies could quickly reveal systems (e.g. CB2 

receptors) that mediate the effect. Alternatively, transgenic rodents, specifically CB1 

and CB2 receptor null mice, could be utilised to elucidate underlying mechanisms.  

Future studies are also necessary to elucidate why AB-FUBINACA inhibited 

pro-inflammatory cytokines but the closely related AB-PINACA did not. AB-PINACA 

contains an N-pentyl chain in place of the N-(4-fluorobenzyl) group in AB-

FUBINACA. It may be interesting to determine if this relationship holds for similar 

pairings, like AMB (which contains an N-pentyl group) and AMB-FUBINACA (which is 

identical except for an N-(4-fluorobenzyl) group). 

Finally, it is important to acknowledge that some synthetic cannabinoids may 

have potential therapeutic applications. While the synthetic cannabinoids featured in 

this thesis were assessed with a view towards uncovering toxicological or deleterious 

effects, many early synthetic cannabinoids were developed by pharmaceutical 

companies as potential therapeutics. For example, the “CP” series of synthetic 

cannabinoids (e.g. CP-55,940) were developed by Pfizer as novel analgesics. The same 
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is true for both AB-PINACA and AB-FUBINACA, which were both developed by Pfizer 

and patented in 2009 (Buchler et al., 2009).  

Moving forward, cytokine modulation and CB2 receptor agonist effects have 

potential applications in areas where modulation of inflammatory or immune 

responses is desired. In addition to their action on CB1 receptors, AB-PINACA and AB-

FUBINACA are also potent CB2 receptor agonists (Chapter 2). If these compounds 

were modified to reduce their CB1 receptor affinity (and consequently their 

hypothermic and psychoactive effects), they could feasibly find use as therapeutic 

agents with reduced potential for recreational use. As reviewed in Chapter 1, some 

studies have shown therapeutic applications for CB2 receptor selective agonists O-

3853 and O-1966 in decreasing cerebral infarction following ischemic stroke in mice 

(Zhang et al., 2007). The clinical efficacy of other CB2 receptor agonists in treatment 

of neuropathic pain is also being assessed, although in many cases encouraging 

preclinical findings have failed to translate into human populations (Dhopeshwarkar & 

Mackie, 2014). Continuing research using a variety of recently discovered CB2 agonists, 

ranging from bicyclic-based molecular structures to indole-,  benzimidazole-, γ-

carboline-, and 1,4-diazepane carboxamide-based structures may fuel further research 

and development into CB2 receptor mediated therapeutics (Nevalainen, 2014). 

 

 

6.3.3 Agonist substitution therapy for synthetic cannabinoid withdrawal 

 Chronic synthetic cannabinoid users report a withdrawal syndrome similar to, 

but exceeding, that of cannabis withdrawal. For example, consider a user’s self-report 
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of synthetic cannabinoid withdrawal that occurred after the user’s daily supply was 

severed due to international travel: 

 

“That week was a nightmare. During the first 3 days I didn't sleep at all, I had 

insane cravings … and I thought I was going to die, on the 4th night I fell asleep 

from exhaustion only to dream about Spice for 2 hours and wake up with cold 

sweat and difficulty breathing, the worst thing was that I had nausea all the time, 

even when I made myself throw up the nausea would return in about 10 minutes 

to make me miserable, I couldn't talk to anyone … I wasn't sure I could hold down 

my food anyway. By the 5th day I was smoking some random flowers I picked 

outside in a bong … just to try and satisfy my cravings. Today I'm 2 months clean, 

I feel better than I did 2 months ago but still quite [bad]. I still get panic attacks, 

my stomach is still [expletive] and so I can't go outside my house, I still can't 

sleep properly and I still dream about Spice and crave it 24/7…” (MikePatton, 

2011) 

 

As reviewed in Section 1.5.4, specific treatments for synthetic cannabinoid 

dependence and withdrawal are limited and often non-existent. Users are generally 

forced to cease drug use without specific supportive medical interventions for 

withdrawal symptoms and craving. This may well increase the likelihood of relapse to 

synthetic cannabinoid use. As mentioned in earlier sections, agonist replacement 

therapy for synthetic cannabinoid withdrawal using nabiximols could be an efficacious 

intervention to assist with withdrawal and craving. However, before such efficacy can 

be assessed in clinical settings, basic monitoring techniques need to be established, 
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such as the monitoring of synthetic cannabinoids, ∆9-THC, CBD, and metabolites in 

biological samples to allow tracking of treatment adherence and optimal dose 

titration. 

Chapter 5 primarily focused on urinalysis of phytocannabinoids and their 

metabolites in a clinical sample of treatment-seeking cannabis dependent users. 

However, synthetic cannabinoids could conceivably be analysed using a similar 

methodology. Certainly, synthetic cannabinoids can be measured in plasma, as was 

performed in Chapter 3, but for the same reasons that urinalysis is useful for 

monitoring agonist substitution therapy during cannabis withdrawal, urinalysis may 

be of use in monitoring synthetic cannabinoid withdrawal.  Both synthetic 

cannabinoids and phytocannabinoids tend to be metabolised similarly via extensive 

oxidations and glucuronidations (Chapters 4,  5; Andersson et al., 2016; Williams & 

Moffat, 1980; Wohlfarth et al., 2014), so it follows that similar analytical methods can 

be applied to each cannabinoid class. Moreover, urinary synthetic cannabinoid 

metabolites have been detected in prior studies (Grigoryev et al., 2012, 2013), and 

some urinary metabolites of CUMYL-PICA and 5F-CUMYL-PICA were elucidated in 

Chapter 3.  

 Therefore, by combining techniques from Chapters 3 and 5, and from other 

relevant publications (Table 2), urinary and plasma synthetic cannabinoid and 

phytocannabinoid concentrations could be measured accurately and simultaneously, 

allowing verification of the cessation of synthetic cannabinoid use while monitoring 

and titrating concentrations of agonist replacement (i.e. ∆9-THC and CBD). 

Application of glucuronidase hydrolysis using β-glucuronidase could also boost 

concentrations of key phase I metabolites for synthetic cannabinoids and 
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phytocannabinoids simultaneously, potentially improving detection rates (Chapters 4, 

5; Wohlfarth et al., 2015). 

 Direct verification of the efficacy of agonist substitution therapy for synthetic 

cannabinoid dependence and withdrawal may be an important future step for 

progression of this area of research and treatment. A clinical validation focusing on 

synthetic cannabinoid dependent treatment-seeking inpatients would be an ideal 

follow-up study to the work presented in this thesis. 
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6.4 Conclusions 

 The research presented in this thesis commenced with the characterisation of 

in vivo physiological effects (hypothermia and bradycardia) of a wide range of 

contemporary synthetic cannabinoids in rats. For the first time, in vivo dose-response 

relationships of these compounds were elucidated and doses ranges with functional 

effects were established for future experiments. The use of radiotelemetric probes in 

rats enabled collection of body temperature and heart rate data in real time without 

experimental artefacts associated with the stress of animal handling. This work 

enabled the identification of in vivo SARs, which may be used to predict potency of 

future novel synthetic cannabinoids. 

 The thesis then moved to the characterisation of metabolic pathways for the 

recently detected synthetic cannabinoids CUMYL-PICA and 5F-CUMYL-PICA. This 

study identified dozens of metabolites, providing useful analytical targets for future 

forensic and scientific investigations. Additionally, this study found that in vitro 

predictions of kinetic parameters, which have also been reported to be rapid for 

several other synthetic cannabinoids, overestimated the rate of actual in vivo 

elimination in rats. In vivo synthetic cannabinoid sequestration in adipose tissue and 

blood protein binding may be important factors to consider when interpreting in vitro 

synthetic cannabinoid kinetic data. 

 The long-term effects of repeated administration of AB-PINACA, AB-

FUBINACA and ∆9-THC were then assessed in adolescent rats. This revealed several 

well-established acute impacts (e.g. increases in anxiety-like behaviours, decreases in 

locomotor activity), but also revealed subtle long-term alterations to several 

biochemical and cognitive systems. AB-PINACA and ∆9-THC modulated 
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endocannabinoid concentrations while AB-FUBINACA decreased concentrations of 

some pro-inflammatory cytokines. AB-PINACA, AB-FUBINACA, and ∆9-THC all 

produced recognition memory impairments in the long-term, which were notably 

more severe for AB-FUBINACA. These previously uncharacterised effects may have 

important implications in confronting the sequelae of synthetic cannabinoid use in 

humans, who may exhibit cognitive impairment even after cessation of drug use.  

 Finally, this thesis validated a cannabinoid urinalysis in a population of 

cannabis-dependent treatment-seeking users. It was found that cannabinoid urinalysis 

can substitute for plasma analysis, potentially reducing the invasiveness of sampling in 

future studies. Moreover, cannabinoid concentrations were greater in urine than in 

plasma, suggesting that cannabinoid urinalysis could be used for analysis of trace 

cannabinoids that may go undetected in blood. The utility of β-glucuronidase 

hydrolysis for increasing concentrations of phase I metabolites was demonstrated, 

which may also be useful for the analysis of urinary synthetic cannabinoid metabolites.  

 The work presented in this thesis culminated in the establishment of SARs and 

SMRs for the prediction of the pharmacological properties and metabolism of novel 

synthetic cannabinoids. It is hoped that a wider understanding of these processes will 

enable streamlined assessment of novel synthetic cannabinoids, allowing researchers, 

clinicians, and forensic chemists to prioritise the compounds that require the most 

attention from a public health perspective. Additionally, implications of chronic 

synthetic cannabinoid use for human users were identified - in particular, the lasting 

cognitive impact of synthetic cannabinoid use should be taken into account when 

designing treatments for chronic synthetic cannabinoid users. Finally, analytical 

methods were established for the future clinical validation of agonist replacement 
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therapy using ∆9-THC and CBD for the treatment of synthetic cannabinoid 

withdrawal. Future studies are required to directly establish the efficacy of this 

approach, but it is hoped that the research presented here will constitute a first step 

towards the effective treatment of synthetic cannabinoid dependent populations.  
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S37 

 

Figure S33. Mean normalized area under the vehicle baseline curve (AUC ± SEM) for (a) body 
temperature and (b) heart rate over the 6 hours immediately following doses of 0.1, 0.3, and 1 
mg/kg MDMB-FUBINACA and 5F-AMB. MDMB-FUBINACA produced a larger hypothermic 
response compared to 5F-AMB  at 0.3 and 1 mg/kg. * P < .05. 
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S39 

 

Figure S35. Mean area under the vehicle-vehicle baseline curve (AUC ± SEM) for body 
temperature for (a) 5F-AMB (3 mg/kg) and (b) MDMB-FUBINACA (1 mg/kg), following 
pretreatment with vehicle, rimonabant (CB1 antagonist, 3 mg/kg), or SR144528 (CB2 antagonist, 
3 mg/kg). The area was significantly reduced for both 5F-AMB and MDMB-FUBINACA by 
rimonabant but not SR144528. * p < .05 compared to vehicle. 
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S2 
 

Table S1 Method validation and quantification parameters for urinary cannabinoid analysis 

using LC-MS/MS 

          Parameter CBD THC THC-COOH 11-OH-THC 

          Internal Standard CBD-d3 THC-d3 THC-COOH-d9 11-OH-THC-d3 

          LOQ (ng/mL) 1.0 1.0 125 10.0 

          LOD (ng/mL) 0.5 0.5 20.0 1.0 

          Linearity 

                 Quantification range (ng/mL) 1-1000 1-100 125-5000 10-500 

             r2  .999 .996 .992 .993 

          Accuracy (%) 

                Low QC 102 96.4 95.0 92.7 

            High QC 91.0 100 99.1 90.0 

          Precision %RSD, intra-day (n=3) 

                Low QC 7.8 3.5 6.3 2.0 

            High QC 6.2 6.7 6.4 9.8 

          Precision %RSD, inter-day (n=3) 

                Low QC 7.3 3.0 5.4 9.9 

            High QC 1.3 9.2 6.6 11.5 

          LOQ Limit of quantification, LOD limit of detection, RSD relative standard deviation. QCs were  

samples spiked to concentrations of each analyte at the top (high QC) and bottom (low QC) of  

the quantification range  
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S3 
 

 

Fig. S1. Day 1 adjusted cannabidiol (CBD), Δ9-tetrahydrocannabinol (THC), 11-nor-9-

carboxy-THC (THC-COOH) and 11-hydroxy-THC (11-OH-THC) in plasma and urine of 

placebo (n=11) and nabiximols (n=11) treated patients. Shaded area indicates the tapered 

nabiximols dosing schedule, note that samples were taken in the morning and that day 1 

samples were taken before the first nabiximols or placebo dose. * nabiximols urine 

significantly different from day 1 levels; # nabiximols plasma significantly different from day 

1 levels; † placebo urine significantly different from day 1 levels; ‡ placebo plasma 

significantly different from day 1 levels.  
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