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Thesis Summary 
 

Mesophyll conductance to CO2 (gm) limits the diffusion of CO2 from sub-stomatal cavities to the 

carboxylation sites and is a significant limitation to photosynthesis. Recently there has been 

growing interest in gm for its potential to increase photosynthesis and photosynthetic water-use 

efficiency. However, there is a lack of complete understanding of gm variability and its 

regulation under different environmental conditions, and relevant studies in grain legumes are 

scarce. Grain legumes are widely recognized as having an important role in agricultural and food 

systems. Thus, my research projects aimed to characterize genetic variability in gm among 

different genotypes of important grain legumes, to characterize the response of gm to short- and 

long-term changes in environment, to understand the mechanistic bases of gm variation, and to 

assess the relationship between gm and leaf water-use efficiency. I was also interested in 

exploring if gm shares diffusion pathway with leaf hydraulic conductance (Kleaf) by examining 

the response of both traits to different growth conditions when measured simultaneously.  

 

Mesophyll conductance varied significantly between genotypes for most of the legume species 

studied under non-limiting environments. Genotypes differed in their gm response to growth 

environments including water availability and nitrogen source (biologically fixed or inorganic-

nitrogen supplied). gm increased with rapid increases in light intensity and temperature but 

decreased under short-term exposure to blue light. However, genotypes differed in their 

interactive response of gm between short- and long-term environmental changes. The mechanistic 

bases of this variability in gm are not clear. Environmentally driven variation in leaf anatomical 

traits including leaf thickness, surface area of mesophyll or chloroplasts facing intercellular air 

spaces and the fraction of intercellular air space were not the major factors determining gm, but 

genotypes differed in the degree to which leaf anatomy influenced gm. Similarly, the influence of 

leaf temperature on chloroplast ultrastructure was examined in soybean and Arabidopsis thaliana 

to understand the temperature response of gm. However, there was no clear indication of the 

formation of temperature-induced chloroplast protrusions in this study. To further assist with 

understanding gm regulation, simultaneous stable carbon (Δ13C) and oxygen isotope 

discrimination (Δ18O) techniques were used to estimate gm, and its component conductances (cell 
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wall/plasma membrane conductance and chloroplast membrane conductance). Chloroplast 

membrane conductance (gcm) was found to vary within and between legume species. Both 

components of gm varied similarly with changes in growth environments. gm and its component 

conductances were not correlated to leaf hydraulic conductance for faba bean genotypes grown 

under different environmental conditions. gm was strongly associated with leaf photosynthetic 

rate but the relationships between gm and leaf intrinsic water use efficiency and between gm and 

stomatal conductance depended on legume species and environmental conditions. Further, there 

was variability in the short-term temperature response of gm between individual leaves within a 

single genotype. This may reflect instrument noise during gm measurements or the sensitivity of 

gm calculation across different environmental conditions.  

 

The results of this project can provide useful information for crop genetic improvement 

through gm in legumes under climate change scenarios. Increasing mesophyll conductance in 

legumes will increase photosynthetic rate and possibly water-use efficiency, when there is no 

increase in stomatal conductance. Concurrent Δ18O-gm and Δ13C-gm estimates showed the 

potential to enhance understanding of gm regulation by providing better insight into the relative 

contribution of gm components, but the location of CO2-H2O equilibration needs to be identified 

to be able to correctly interpret Δ18O-gm estimates, as Δ18O-gm relates to the conductance of CO2 

to the site of CO2-H2O equilibration. More studies on gm-Kleaf relationships across different 

environmental conditions and species are needed before arriving at definite conclusion of the 

proposed coordination. Furthermore, it will be necessary in future studies to address the 

sensitivity of the model parameters used for gm calculation under a range of measurement 

conditions. 
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1. General Introduction and Outline 
Legumes are members of Leguminosae (or Fabaceae) botanical family, and are broadly defined 

by their unusual flower structure and podded fruit and their ability to fix atmospheric nitrogen 

(Graham & Vance, 2003). Different legume species include important grain, pasture, and 

agroforestry species (Graham & Vance, 2003). Grain legumes are now widely known to play an 

important role in human nutrition and sustainable agriculture (Graham & Vance, 2003, Foyer et 

al., 2016). Drought is one of the major abiotic constraints limiting legume crop productivity and 

yield stability worldwide (Daryanto et al., 2015, Farooq et al., 2017). The projected warmer and 

drier conditions under climate change (Postel, 2000, Mpelasoka et al., 2008, Rosenzweig & 

Hillel, 2008, Beebe et al., 2011) and the rapidly increasing global population (UN DESA, 2015) 

emphasize the challenges ahead for improving crop productivity and efficiency of water use.  

 

One potential strategy for concomitant increase of photosynthesis (A) and leaf-intrinsic water use 

efficiency (the ratio of photosynthetic rate to stomatal conductance to water vapour; A/gsw) would 

be to enhance the mesophyll conductance to CO2 (Barbour et al., 2010, Flexas et al., 2016). 

Mesophyll conductance to CO2, abbreviated as gm, is the ease of CO2 diffusion from the sub-

stomatal cavities to the carboxylation site in the chloroplast stroma (Evans et al., 2009). Many 

studies have shown that gm is finite and not constant, and is a significant limitation to 

photosynthesis (Flexas et al., 2008). Barbour et al. (2010) first reported a positive correlation 

between gm and A/gsw in barley and suggested that selecting for increased gm has unexplored 

potential to provide improvement in A/gsw. A large variability in gm has been found between 

plant functional groups, genera, species and genotypes (Flexas et al., 2008, Barbour et al., 2010, 

Jahan et al., 2014). gm is a dynamic leaf trait which may vary in the short term (within seconds to 

minutes) or the in long term (growth conditions) in response to different environmental factors 

(Warren et al., 2007, Loreto et al., 2009, Bunce, 2010, Douthe et al., 2011, Perez-Martin et al., 

2014, Olsovska et al., 2016) although the response may vary between species or genotypes 

(Singsaas et al., 2004, von Caemmerer & Evans, 2015, Barbour & Kaiser, 2016). There are 

conflicting results between studies for environmental response of gm, such as the short term 

response of gm to light and CO2, with some studies showing significant response but not others 

(Tazoe et al., 2009, Douthe et al., 2011). There is a considerable variability in the temperature 

response of gm between species (Flexas et al., 2008, von Caemmerer & Evans, 2015). Moreover, 
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previous studies have mostly focussed on cross-species variation, and studies in legumes are 

relatively scarce. More studies are needed to extend our knowledge of genotypic and 

environmental variation of gm and to evaluate whether this variability translates into variation in 

photosynthesis and leaf WUE. 

 

Variability in maximum values of gm observed among species and genotypes and in response to 

growth conditions could partly be explained by the variation in leaf structure and anatomical 

properties like leaf thickness, mesophyll and/or chloroplast surface area facing intercellular air 

spaces, cell wall thickness (Evans et al., 2009, Tosens et al., 2012b, Tomás et al., 2013). 

However, some studies did not find relationships between gm and leaf anatomy (Evans & Vellen, 

1996, Hanba et al., 2001, Hanba et al., 2002, Hanba et al., 2004, Miyazawa et al., 2008, Tomás 

et al., 2014). Carbonic anhydrase and aquaporins have been proposed as the potential candidates 

for the dynamic changes in gm (Flexas et al., 2013a). However, mechanisms that regulate gm 

variation remain unclear (Flexas & Diaz-Espejo, 2015, von Caemmerer & Evans, 2015). 

Simultaneous stable carbon and oxygen isotope techniques to estimate gm, and its component 

conductances, have the potential to enhance understanding of gm regulation (Gillon & Yakir, 

2000, Barbour et al., 2016b). Gillon and Yakir (2000) demonstrated that measurements of 

oxygen isotope composition (δ18O) of CO2 and water inside the leaves could be used to estimate 

conductance to CO2 diffusion from the substomatal cavities to the site of CO2-H2O isotopic 

equilibration, and the combined carbon and oxygen isotope discrimination methods allow 

partitioning of total mesophyll conductance into the components before and after CO2-H2O 

equilibrium. Recent research (Barbour et al., 2016b) coupled laser absorption spectrometers with 

gas exchange systems to partition total gm into its component conductances in C3 plants. This 

technique is in its preliminary stage and needs further studies to discern the relative importance 

of the gm components on a range of species and environments.  

 

A review by Flexas et al. (2013b) observed a general positive correlation between mesophyll 

conductance and leaf hydraulic conductance (Kleaf) across species, and suggested a potential 

coordination between these two leaf internal conductances. There are few, but conflicting studies 

on gm and Kleaf relationships. More studies on a range of species are needed to confirm the 
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generality of the proposed coordination between gm and kleaf, and whether the relationship is due 

to anatomical or biochemical properties is also not clear.  

 

 Aims 1.1.

The major aims of this thesis were to  

1. measure the degree of variation in gm among crop legume species and genotypes, 

2. assess genetic variation in the gm response to growth environment, 

3. quantify the gm response to short-term changes in temperature, light quality and light 

quantity, and determine genotypic and growth environment effects on the sensitivity of gm to 

short-term environmental changes, 

4. determine the degree to which leaf anatomy influences gm in crop legumes, 

5. measure the level of variability in chloroplast membrane conductance among crop legume 

species and genotypes and with growth environment, 

6. determine the closeness of correlation between mesophyll and leaf hydraulic conductances, 

7. assess the degree to which mesophyll conductance is related to photosynthetic rate and leaf 

intrinsic water use efficiency, and 

8. identify methodological and instrumental limitations to gm estimation. 

 

 Thesis outline 1.2.

The thesis is composed of four research chapters, preceded by a detailed introduction with 

literature review (Chapter 2), research methodology (Chapter 3) and finally a general discussion 

including a synthesis of the results and overall conclusion (Chapter 8). Chapter 3 covered 

methods used to estimate mesophyll conductance to CO2 using carbon and oxygen isotope 

techniques. Plant material, growth conditions, experimental design and other methods used 

specifically for each experiment are included in their respective research chapters. The first 

research chapter (Chapter 4) examines the variation in gm and its components (determined by 

partitioning gm into cell wall plus plasma membrane and chloroplast membrane conductance) 

within and among grain legume species under non-limiting environments. Chapter 5 investigates 

the correlation between gm and Kleaf under differing growth environments in faba bean 

genotypes. This chapter examines if the environmentally driven changes in leaf anatomy have 

any influence on the variation in gm or Kleaf and their relationship. Chapter 6 includes gm response 
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to short-term (light intensity and light quality) and long-term (water availability or nitrogen 

sources) variation in environmental conditions in different genotypes of chickpea. Chapter 7 

includes the temperature response of gm in soybean and common bean genotypes at different leaf 

age and also discusses the variability in response within a genotype. This chapter also examines 

the occurrence of chloroplast protrusions in response to temperature. The final chapter of the 

thesis synthesises the main findings of the research chapters and identifies some of the research 

gaps and future directions for understanding gm regulation. 
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2. Detailed Introduction and Literature Review 
 Grain legumes and their importance 2.1.

Grain legumes, as defined by the Food and Agriculture Organization of the United Nations, are 

annual leguminous crops harvested only for dry grain (FAO, 1994), and they play a critical role 

in human health, agriculture and environment (Graham & Vance, 2003, Foyer et al., 2016). The 

global population is continuously increasing and the current world population of 7.3 billion (mid 

2015) is expected to reach 9.7 billion by 2050 (UN DESA, 2015). The growing population will 

require 70 percent more food production between 2005/07 and 2050, while adopting efficient 

and sustainable use of limited natural resources and adapting to global climate change (FAO, 

2009). Grain legumes have an important role in food security, since they are affordable sources 

of plant-based protein for the human diet, and are significant sources of vitamins and minerals 

for millions of people around the world, especially in developing countries (Asif et al., 2013, 

Mudryj et al., 2014, Sanchez-Chino et al., 2015, Temba et al., 2016). Grain legumes contribute 

about 33% of the dietary protein nitrogen needs of humans and under subsistence conditions the 

percentage can be higher (Graham and Vance 2003).  

 

Grain legumes have the ability to fix atmospheric nitrogen (N2) by forming a symbiotic 

relationship with rhizobia bacteria (Giller, 2001, Biswas & Gresshoff, 2014),  thus playing a 

potentially significant role in enhancing the productivity and sustainability of farming systems 

(Evans et al., 1991, Howieson et al., 2000, Graham & Vance, 2003, Crews & Peoples, 2005, 

Peoples et al., 2009, Foyer et al., 2016). Nitrogen is the primary nutrient limiting plant 

production (Vitousek & Farrington, 1997, Lebauer & Treseder, 2008). The amount of nitrogen 

fixed in the roots of grain legumes has been estimated at 150-200 kg/ha, most of which is 

removed in the crop grain (Fisher, 1996). We have ample evidence of the benefits of inclusions 

of legumes in the cereal-production systems. Nitrogen stored in the legume crop residues is 

gradually released and is available to succeeding cereal crops (Vanotti et al., 1997, Espinoza et 

al., 2015, Peoples et al., 2015, Foyer et al., 2016), and there is evidence of increased biomass, N 

content and yield of cereal crops grown after legumes compared to cereals grown after cereals 

(Evans et al., 1991).  Preissel et al. (2015), in their review of different experiments in Europe, 

stated that inclusion of a grain legume in crop rotation can reduce nitrogen fertilizer requirements 
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by 23-31 kg ha−1, and cereal yields are between 0.5 and 1.6 Mg ha−1 higher than after cereal pre-

crops.  

 

The nitrogen-fixing ability of legumes provides an option for reducing the use of synthetic 

nitrogen fertilizers, thereby for reducing adverse impacts of chemical fertilizer use on 

environments (Bergeron, 2010). Globally, more than 50 percent of the fertiliser N applied to 

cropland is lost by volatilisation or leaching, wasting the resource, causing air, water and soil 

pollution, and generating greenhouse gas emissions (Luis et al., 2014). N losses from legume 

sources are lower than from fertilizers (Crews & Peoples, 2005). An analysis of the historical 

data from 1961 to 2009 from 124 countries by Luis et al. (2014) showed that cereals have greater 

nitrogen-use efficiency (NUE; mass grain dry yield divided by mass nitrogen fertilizer applied) 

when a larger proportion of nitrogen additions are from residues of a preceding legume crop than 

are from chemical fertilizers. Greenhouse gas emissions from wheat production declined by 56% 

on a per-hectare basis when a grain legume crop (lupin) was included in a cropping rotation in a 

semi-arid environment (Barton et al., 2014). Legume-cereal rotation or intercropping improves 

soil organic matter and productivity (Vanotti et al., 1997). Similarly, some grain legumes, 

through their root exudates, make phosphorus more readily available to the cereal under legume-

cereal rotation or intercropping system (Bais et al., 2006). 

 

 Grain legumes in Australian cropping system 2.2.

Grain legumes are relative newcomers in Australian cropping system (Pulse Australia, 2017a). 

Traditional Australian farming system consisted of cereal production rotated with a number of 

years of legume-based pastures which were grazed by livestock (Siddique & Sykes, 1997). 

During the 1970s and 1980s, the emphasis of farming practices shifted to inclusion of grain 

legumes in cropping rotations (Siddique & Sykes, 1997). The area under grain legume 

production has increased from less than 0.08 million ha in 1971 (Siddique et al., 2013) to about 

1.8 million hectares in 2015, producing 2.2 million metric tonnes of grain, worth A$1.2 billion in 

exports (Pulse Australia, 2017a). Australia is now one of the world's largest exporters of grain 

legumes (Pulse Australia, 2017b).  
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Nationally, grain legumes average just under 10 per cent of the total crop area, however they can 

occupy as much as 25% of the total crop area in favourable production areas (Pulse Australia, 

2017a). They are grown throughout the southern and northern regions of Australia. The six major 

grain legume groups grown in Australia are chickpea (Cicer arietinum L.), faba bean (Vicia faba 

L.), field pea (Pisum sativum L.), lentil (Lens culinaris Medikus), lupin (Lupinus angustifolius 

L.) and mungbean (Vigna radiate (L.) R. Wilczek). The grain legume industry's growth is 

important for the future sustainability of the whole Australian grains industry due to the 

importance of grain legumes in enhancing the cereal cropping system (AEGIC, 2017). The 

potential for grain legumes in Australia, assuming all constraints are overcome, is to increase its 

current size to 4.2 million tonnes (Pulse Australia, 2017a). 

 

 Grain legumes constraints 2.3.

Globally, the area planted with grain legumes has been gradually increasing in the past 50 years, 

but grain legumes lag behind cereals in terms of cultivation, productivity and genetic 

improvements (Graham & Vance, 2003, Nedumaran et al., 2015, Foyer et al., 2016). For all the 

grain legumes, production increases was primarily due to increase in the land area planted rather 

than the yield increase (Gowda et al., 2009, Foyer et al., 2016). The global demand for chickpea 

is projected to be 18.3 million tons in 2050 compared with a supply of 9.4 million tons in 2010 

(Krishnamurthy et al., 2013).  

 

Abiotic stress, which includes multiple stresses such as drought, salinity, waterlogging, high 

temperature and chilling, negatively impact legume crop productivity and cause more than 50% 

of crop loss worldwide (Reddy et al., 2012, Latef & Ahmad, 2015). Agricultural drought refers 

to conditions when plant available water is insufficient to meet potential transpiration due to high 

atmospheric demand and/or limited soil moisture, leading to below-average yields (Stone, 2011). 

Drought has been one of the major abiotic factors reducing legume crop productivity and yield 

worldwide, through adverse effects on the rate of net photosynthesis, total biomass, flowering 

and reproductive development, grain set and grain development (Siddique, 2005, Micheletto et 

al., 2007, Fang et al., 2010, Siddique et al., 2012, Daryanto et al., 2015, Pang et al., 2016, 

Farooq et al., 2017). The magnitude of drought-induced yield reduction varies with the grain 
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legume species, crop phenological stage, soil texture, and the duration and intensity of the stress 

(Daryanto et al., 2015, Fahad et al., 2017, Farooq et al., 2017); also see Table 2.1.  

 
Table 2.1 Reduction in economic yield by drought stress in some important grain legumes 
Crop Growth stage Yield reduction (%) 
Mashbean  
(Vigna mungo L.) 

Flowering 31–57 
Reproductive 26 

Chickpea  
(Cicer arietinum L.) 

Late ripening 49–54 
Anthesis 27–40 
Reproductive 45–69 

Common bean  
(Phaseolus vulgaris L.) 

Reproductive 58–87 
Flowering 49 
Pod filling 40 

Cowpea  
(Vigna unguiculata (L.) Walp.) 

Reproductive 34–66 
Pod filling 29 

Faba bean (Vicia faba L.) Grain filling 68 
Lentil  
(Lens culinaris L.) 

Reproductive 24 
Pod development 70 

Pigeon pea (Cajanus cajan L.) Flowering 42–57 
Soyabean  
(Glycine max (L.) Merr.) 

Grain filling 42 
Onset of pod set  45–50 

Source: (Farooq et al., 2017) 

 

Grain legume crops are prone to drought as, globally, more than 90% of grain legumes are grown 

under rainfed conditions (Siddique et al., 2001, Graham & Vance, 2003, Siddique, 2005, Sinclair 

& Vadez, 2012). Half of the total arable land area over Australia is regularly affected by drought 

(Smithson & Sanchez, 2001). Study has shown that most parts of Australia are vulnerable to 

climatic extremes, and Australia's agricultural ecosystems are much more susceptible to drought 

than native shrublands and grasslands (Ma et al., 2015). Drought problems for legumes are likely 

to aggravate with the predicted increase in the intensity and frequency of drought episodes and 

heat waves under ongoing global climate change (Postel, 2000, Mpelasoka et al., 2008, 

Rosenzweig & Hillel, 2008, Beebe et al., 2011). Rainfall has been predicted to decrease in the 

mid-latitudes where most food legumes are grown; and extreme precipitation events are 

predicted in tropical regions with more frequent periods of within-season drought (Christensen et 

al., 2007). Global warming, with the prediction of a 2–4°C increase in temperature over the next 
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century, will further escalate drought due to increased transpiration at higher temperatures, which 

in rain-fed agriculture can directly limit plant productivity (Lawlor & Mitchell, 2000, Peng et al., 

2004).  

 

Thus, rapidly increasing world population, global climate change, and irrigation water scarcity 

have emphasized the challenges ahead to increase the productivity and efficiency of water use 

for grain legume yield improvement.  

  

 Physiological improvement of water use efficiency 2.4.

Improving water use efficiency has been a primary target for agronomists, plant breeders, and 

plant physiologists (Sadras & Mcdonald, 2012, Kirkegaard et al., 2014). Water use efficiency 

(WUE) is an important index of the relationship between water consumption and yield of interest 

(either biomass production or grain yield) (Evans & Sadler, 2008). Complementing agronomic 

approaches (Hatfield et al., 2001, Gregory, 2004), WUE can be improved at the physiological 

level (Parry et al., 2005), by consideration of leaf-intrinsic WUE; the ratio of photosynthetic rate 

(A) to stomatal conductance to water vapour (gsw).  

 

Genotypic variation in A/gsw has been reported in different grain legume crops, including bean 

(White, 1993, Polania et al., 2016), faba bean (Khan et al., 2007), cowpea (Ismail & Hall, 1992), 

chickpea (Krishnamurthy et al., 2013, Sadras et al., 2016) and soybean (Gilbert et al., 2011b). 

Differences in A/gsw and WUE between genotypes have been reported to have a genetic basis 

(Martin et al., 1989, Masle et al., 2005). There have been considerable gains in WUE, notably in 

cereals, from improved A/gsw (Farquhar & Richards, 1984, Rebetzke et al., 2002, Richards et al., 

2002). Nevertheless, high water-use efficiency at the leaf level may not always translate into 

increased whole-plant water-use efficiency (Condon et al., 2004, Medrano et al., 2015) and the 

gap between the leaf-level and crop-level estimates of WUE might depend on photosynthate 

allocation to the harvested plant organs, crop developmental stage and the environmental 

conditions (Barbour et al., 2010). The relationship between crop yield and leaf WUE (measured 

as Δ13C) has also been shown to be highly variable (Condon et al., 2002, Vadez et al., 2012, 

Vadez & Ratnakumar, 2016). 
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The current knowledge of plant physiological responses to drought stress have been reviewed in 

agronomically important plants including some grain legumes (Turner et al., 2001, Reddy et al., 

2003, Feller & Vaseva, 2014, Osakabe et al., 2014, Farooq et al., 2017).  Mechanisms of the 

regulation of stomatal conductance (inverse of stomatal resistance) have been extensively studied 

(Farquhar & Sharkey, 1982, Collatz et al., 1991, Jones, 1998, Comstock, 2002). Under water 

stress conditions or high leaf-to-air vapour pressure deficit (VPD), stomata rapidly adjust their 

aperture so as to control the transpiration water loss, thereby providing an opportunity to increase 

WUE through decreased transpiration, but this occurs at the expense of decreased photosynthetic 

carbon fixation and, potentially, decreased yield (Flexas et al., 2004). The CO2 required for 

photosynthesis diffuses from the atmosphere into the substomatal cavities (with CO2 

concentration Ci) via the stomata, the same points at which water molecules diffuses out, and 

thus the reduced stomatal conductance simultaneously reduces transpiration and photosynthetic 

rate (Gaastra, 1959). Increasing WUE while maintaining or increasing yield would require high 

A (high rates of carbon fixation) when gsw and Ci are low (Flexas et al., 2013a). At the leaf level, 

increasing mesophyll conductance to CO2 has been suggested as one of the ways to 

simultaneously increase A and A/gsw (Barbour et al., 2010), which will be discussed further later 

in this chapter.  

 

 Mesophyll conductance to CO2 2.5.

Stomatal resistance, which restricts the diffusion of CO2 from the atmosphere (Ca) to substomatal 

cavities (Ci) via the stomata, is the first major barrier in the CO2 pathway. CO2 has to move 

further from the substomatal cavities through air spaces, cell walls, cytosol, and chloroplast 

envelopes to finally reach the site of carboxylation inside the chloroplast stroma (Cc) where it is 

fixed by Rubisco (Evans & von Caemmerer, 1996, Evans & Loreto, 2000, Evans et al., 2009). 

Together, the conductance of these pathways from the substomatal cavities to the stroma 

constitute mesophyll conductance to CO2, abbreviated as gm (Kaldenhoff, 2012). Evidence 

gathered over the past two decades suggests that gm is sufficiently small as to significantly 

decrease Cc relative to Ci (Flexas et al., 2008), (for example, Ci/Ca = 0.7 and Cc/Ca = 0.5 (Evans 

et al., 1986)). gm is a significant and variable limitation to photosynthesis, imposing diffusional 

limitations of a quantitative magnitude similar to (and in some cases greater than) that of the 
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stomatal and biochemical (CO2 carboxylation) limitations (Flexas et al., 2008, Warren, 2008c, 

Flexas et al., 2012a, Flexas et al., 2013a).  

 

gm has been studied intensively and the current understanding of gm has been reviewed several 

times in the past decade addressing different aspects of gm including variability among species, 

short-term and long-term responses to environmental changes and mechanism of gm regulation 

(Flexas et al., 2008, Warren, 2008c, Flexas et al., 2012a, Flexas et al., 2014). These studies have 

confirmed that gm is a complex leaf trait including leaf anatomical and biochemical properties 

which may vary among species and in response to short term (within seconds to minutes) or long 

term changes in different abiotic factors. In addition, specific reviews and commentary on the 

methodology (Pons et al., 2009), the potential errors in estimating gm (Gilbert et al., 2011a, 

Tazoe et al., 2011, Tholen et al., 2012, Tholen et al., 2014), and the mechanistic basis of gm 

(Tholen & Zhu, 2011, Flexas & Diaz-Espejo, 2015, von Caemmerer & Evans, 2015) have been 

published, highlighting the complexity and the controversial aspects on gm estimation and its 

regulation. Recently, there has been a growing interest in gm for increasing photosynthesis and 

photosynthetic WUE in C3 plants (Barbour et al., 2010, Flexas et al., 2013a, Flexas et al., 2016). 

More comprehensive studies on the variability and regulation of gm are required before it can be 

recommended as selection criteria for breeders for improving WUE. 

 

 Current knowledge and challenges for estimating gm and its components 2.6.

There are currently three major approaches to estimate gm, namely, the online carbon isotope 

discrimination method (Evans et al., 1986, Tazoe et al., 2009), the combined chlorophyll 

fluorescence and gas exchange method (Harley et al., 1992), and the curve-fitting method (Ethier 

& Livingston, 2004). The advantages and limitations of each method are reviewed in detail in 

Pons et al. (2009), and the selection of the appropriate method depends on the experimental 

materials, objectives and instrumentation availability (Pons et al., 2009). However, all techniques 

rely on models with different assumptions, and the reliability of the calculated gm depends on 

the validity of the model assumptions (which are not fully tested) and sensitivity of parameter 

values (Pons et al., 2009, Tholen et al., 2012, Gu & Sun, 2014). CO2 from mitochondrial 

respiration and photorespiration diffusing into the chloroplast provides an additional source of 

CO2 for photosynthesis and thus can bias measurements and CO2 and oxygen sensitivity of gm 
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(Tholen et al., 2012). Several studies have measured gm under low O2 to limit the 

photorespiration-induced uncertainties (von Caemmerer & Evans, 1991, Loreto et al., 1992, 

Flexas et al., 2007, Douthe et al., 2011, Douthe et al., 2012). Recently, Yin and Struik (2017) 

extended the framework of Tholen et al. (2012) by considering various scenarios for the 

intracellular arrangement of chloroplasts and mitochondria and suggested that the sensitivity of 

gm to the ratio of photorespiratory (F) and respiratory (Rd) CO2 release to net CO2 uptake (A) lies 

between no sensitivity in the classical method and high sensitivity in the Tholen et al. model.  
 

As mentioned in the previous section, gm is a combination of gaseous diffusion through 

intercellular air spaces and diffusion of dissolved CO2 through the cell wall, plasma membrane, 

cytosol, and chloroplast envelope to the site of carboxylation. However, the aforementioned 

techniques to quantify gm are not yet able to decompose gm into its components due to current 

technical limitations. Gillon and Yakir (2000) proposed that measurements of δ18O of CO2 and 

δ18O of water inside the leaves could be used to estimate conductance to CO2 diffusion from the 

substomatal cavities to the site of CO2-H2O isotopic equilibration, which was assumed to be at 

the chloroplast surface. Water inside leaves becomes enriched in H2
18O during transpiration 

(Cernusak & Kahmen, 2013). Carbonic anhydrase (CA) catalyses exchange of oxygen atoms 

from 18O-enriched water to leaf-dissolved CO2, so that CO2 leaving the leaf chamber is enriched 

in 18O compared to that entering the leaf chamber. Gillon and Yakir (2000) used a combination 

of 18O estimate of gm and Δ13C-gm (total conductance estimated using the carbon isotope 

discrimination method) to partition total mesophyll conductance into cell wall/plasma membrane 

and chloroplast membrane components.  

 

More recently, Barbour et al. (2016b) demonstrated that Δ13C-gm and Δ18O-gm can be rapidly and 

easily measured in C3 plants by coupling traditional gas exchange with laser absorption 

spectrometers that measure the stable carbon and oxygen isotope composition of CO2 and the 

stable oxygen isotope composition of transpired water vapour. However, they highlighted that 

the interpretation of the conductance from the Δ18O technique should be made cautiously as it 

depends on the sites of CO2- H2O equilibrium, which further depends on the location and activity 

of CA, and the partitioning technique may not be possible in all species. Simultaneous 

measurement of Δ18O-gm and Δ13C-gm has the potential to provide better understanding of the 



13 
 

relative magnitude of the gm components before and after CO2–H2O equilibration, which would 

be valuable in identifying targets to genetically manipulate gm. This technique is in preliminary 

stage and measurements in other major crops under different environmental conditions are 

imperative in the near future. Combined measurements of Δ13C-gm and Δ18O-gm in different grain 

legume genotypes will be discussed in Chapter 4 and 5. 

 

 gm variability within and among plant species 2.7.

The range of gm variation in plants was reviewed by Flexas et al. (2008), who observed general 

trends in gm when comparing different plant functional groups and significant variability in gm 

within a single group, genus and species. gm can be less than 0.1 mol CO2 m-2 s-1 bar-1 in woody 

evergreen gymnosperms, and higher than 1 mol CO2 m-2 s-1 bar-1 in fast-growing herbaceous 

crops. Significant genotypic variation in gm has been reported in important crop species, such as 

cereals (Barbour et al., 2010, Gu et al., 2012, Jahan et al., 2014), Castanea sativa (Lauteri et al., 

1997), Solanum lycopersicum (Galmés et al., 2011) and Vitis vinifera (Tomás et al., 2014) but 

the information is very limited in grain legumes. Flowers et al. (2007) observed genotypic 

variation in gm among snap bean (Phaseolus vulgaris) genotypes but only after exposure to high 

ozone concentration. This suggested that gm might be involved in the differences in the rate of 

net photosynthesis between different species and genotypes. Genotypic variability in gm among 

grain legumes will be presented in Chapter 4. 

 

 gm response to environmental changes 2.8.

In addition to being widely variable within and among species, gm varies in response to the short- 

and long-term changes in environmental conditions. Water stress has often been found to reduce 

gm (Flexas et al., 2008, Warren, 2008b, Flexas et al., 2009, Galle et al., 2009, Cano et al., 2014, 

Olsovska et al., 2016), although recent studies have shown that gm was not as sensitive to 

drought as gsw, mostly during moderate water stress (Bunce, 2009, Flexas et al., 2010, Theroux-

Rancourt et al., 2014). Genotypic variability in the gm response to nitrogen and water availability 

was observed for wheat by Barbour and Kaiser (2016). Long-term changes in gm have been 

observed under salinity (Flexas et al., 2004), nutrient supplement (Warren, 2004, Bown et al., 

2009, Li et al., 2012, Xiong et al., 2015a), and light level (Hanba et al., 2002, Piel et al., 2002, 

Laisk et al., 2005, Warren et al., 2007). Fini et al. (2016) showed that gm is maximum at the light 
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intensity at which plant species have developed. Similarly, in the long term Singsaas et al. (2004) 

reported decreased gm with higher CO2 in some species and not in others. 

 

Rapid responses of gm to changes in CO2 concentration (Flexas et al., 2007, Flexas et al., 2008, 

Douthe et al., 2011, Flexas et al., 2012a, Xiong et al., 2015a) and light intensity (Flexas et al., 

2008, Douthe et al., 2011, Douthe et al., 2012, Flexas et al., 2012a, Xiong et al., 2015a) have 

frequently been reported. Bunce (2010) observed substantial differences in the sensitivity of gm 

to Ci between two legume species (common bean and soybean) and suggested that light level 

during leaf development strongly affected their gm response to Ci. In contrast, several other 

studies have reported gm to be stable in response to changes in CO2 concentration (von 

Caemmerer & Evans, 1991, Tazoe et al., 2009) and light intensity (Tazoe et al., 2009). There has 

been speculation that the rapid changes in gm with light intensity are a methodological artefact 

(Evans, 2009, Tholen et al., 2012, Gu & Sun, 2014). Nevertheless, Douthe et al. (2012) 

concluded that the rapid response of gm to light is unlikely to be a computation artefact in the 

carbon isotope method since using different values for the parameters of the discrimination 

model in the isotope method changed the absolute values of gm but did not affect the relative 

response to light intensity in Eucalyptus species. Two studies examined the effect of light colour 

on gm (Loreto et al., 2009, Pallozzi et al., 2013) and found that exposure to blue light rapidly 

reduces gm. Positional movements of chloroplasts are known to be influenced by blue light 

(Banaś et al., 2012) which might affect gm, although gm reduction was faster than any possible 

chloroplast redistribution (Loreto et al., 2009). gsw increases strongly in response to blue light, 

but blue light induces lower photosynthetic rates than red light at the same μmol m-2 s-1 (Sharkey 

& Raschke, 1981, Pieruschka et al., 2010). 

 

gm responds to both measurement and growth temperature changes. In response to increased leaf 

temperature, gm increases linearly, or increases to an optimum, depending on the species and 

acclimation conditions, and then becomes constant or decreases thereafter (Flexas et al., 2008, 

Evans & von Caemmerer, 2013, Walker et al., 2013). von Caemmerer and Evans (2015) studied 

the temperature response of gm in nine species with contrasting characteristics grown under the 

same conditions and using a single methodology for the estimation of gm. They found that the 

responses varied from a 2-3 fold increase in gm between 15 and 40°C for some species to almost 
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no change in others. It is very important to understand gm response to temperature, light and 

[CO2] because these response functions are used to predict photosynthetic rates at higher scales, 

and at the moment, the photosynthesis models assume gm is a constant. 

 

Therefore, understanding gm variability is crucial to incorporate gm in photosynthesis models and 

thus accurately predict the carboxylation rate (Niinemets et al., 2009a); and to understand the 

mechanistic reasons behind the plant responses to different environments and the variability in 

these responses, which would be relevant in terms of maximizing crop yield and water use 

efficiency. Short-term or long-term response of gm to some of the important environmental 

variables will be briefly discussed in the subsequent chapters. 

 

 Mechanistic basis of gm variation 2.9.

Despite considerable evidence for gm variability within and among species and in response to 

environmental conditions, the mechanisms that regulate these variations are poorly understood. 

There is a lack of comprehensive understanding of the structural and molecular control of gm 

(Flexas et al., 2013a). Studies have shown that gm is more strongly influenced by the liquid phase 

compared to the gas phase conductance (Flexas et al., 2008). The variability in gm observed 

among species and genotypes and their responses to growth environments have been associated 

with leaf structure and anatomical properties particularly, leaf thickness, mesophyll (Smes) and/or 

chloroplast (Sc) surface area facing intercellular air spaces, cell wall thickness (Tcw), chloroplast 

thickness (Evans et al., 1994, Evans et al., 2009, Scafaro et al., 2011, Terashima et al., 2011, 

Tholen & Zhu, 2011, Peguero-Pina et al., 2012, Tosens et al., 2012a, Muir et al., 2014, Xiong et 

al., 2015a, Peguero-Pina et al., 2016). Reductions in chloroplast size have been shown to induce 

a decline in gm in rice under nitrate nutrition with water stress (Li et al., 2012). Two backcrossed 

inbred lines of rice had higher mesophyll conductance than their parental varieties due to higher 

number of mesophyll cells per leaf area and more highly developed lobes of mesophyll cells in 

the inbred lines (Adachi et al., 2013). 

 

Tomás et al. (2013) evaluated the relative importance of different anatomical traits in 

constraining CO2 diffusion using a quantitative model. They found that gm was most strongly 

correlated with Sc and Tcw, but the importance of different anatomical traits in the restriction of 
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CO2 diffusion varied depending on foliage structure. Gillon and Yakir (2000) were able to 

partition gm into cell wall and plasma membrane (gw) and chloroplast membrane conductance 

(gch). They showed that gw was lower than gch in thick leaves of oaks, but gch was lower than gw 

in the mesophytic leaves of soybean and tobacco. In a study by Giuliani et al. (2013), gm was not 

significantly correlated with any of the measured individual structural traits in rice and its wild 

relatives, leading the authors to suggest that changes in gm depend on covariations of multiple 

leaf and mesophyll cell structural traits. There are other studies that showed no relationship 

between gm and the observed anatomical variability. The correlations between gm and Sc were 

poor in Acer cultivars (Hanba et al., 2002) and the authors suspected that other factors including 

the structural and chemical composition of cell walls, conductance across cell and chloroplast 

membranes may contribute to the gm response to the growth light level. Similarly, Tomás et al. 

(2014) did not find any effect of water stress on the distribution of chloroplasts in grapevine 

cultivars and speculated that genotype-dependent and water stress-induced differences in cell and 

chloroplast membrane permeability could be a likely cause for the observed variations of gm.  

 

Moreover, changes in leaf structural properties cannot explain the rapid variation observed in 

response to varying environmental conditions. Changes in the leaf enzymatic processes including 

membrane permeability have been proposed to be responsible for some of the rapid response of 

gm to environments (Flexas et al., 2008, Evans et al., 2009, Tholen & Zhu, 2011).  Based on a 

temperature response coefficient (Q10) of approximately 2.2 for gm in tobacco leaves, Bernacchi 

et al. (2002) speculated that gm must be driven by an enzyme or protein-facilitated process, since 

such Q10 value is observed if enzymes such as carbonic anhydrase (CA) or aquaporin are 

involved in the CO2 diffusion to the site of carboxylation.  

 

Aquaporins are membrane proteins that can facilitate membrane water transport (Maurel & 

Chrispeels, 2001). Aquaporins are the most abundant protein in plant cell membranes and some 

aquaporins may function as CO2 channels (Uehlein et al., 2003, Uehlein et al., 2008, Uehlein et 

al., 2012, Mori et al., 2014, Groszmann et al., 2017, Uehlein et al., 2017). Deactivation of 

aquaporins with HgCl2, an inhibitor of aquaporins, reduced gm in faba bean and common bean 

leaves (Terashima & Ono, 2002) and in tobacco plants growing under long-term drought 

(Miyazawa et al., 2008), suggesting that aquaporins might enhance CO2 permeability (although 
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effects of HgCl2 were not specific). Other studies (Hanba et al., 2004, Flexas et al., 2006) 

reported that the antisense suppression and overexpression of aquaporin genes were respectively 

associated with reductions and increases in gm. Furthermore, a study by Heckwolf et al. (2011) 

on a mutation of the Arabidopsis thaliana aquaporin AtPIP1;2 gene, characterized as a non-

water transporting but CO2 permeable aquaporin in the Saccharomyces cerevisiae heterologous 

expression systems showed that AtPIP1;2 gene reduced CO2 diffusion and photosynthesis in 

leaves. However, we do not have conclusive evidence for the function of aquaporins in 

membrane permeability. Recently,  Zhao et al. (2017) measured water and CO2 permeability 

(Pos, PCO2) using stopped flow spectrofluorimetry on plasma membrane vesicles isolated from 

Pisum sativum and Arabidopsis thaliana leaves and  found a weak positive correlation between 

Pos and PCO2. They suggested that aquaporins may facilitate CO2 transport across plasma 

membranes, but probably via a different pathway than water because inhibitors of Pos did not 

alter PCO2. 

 

Carbonic anhydrase catalyses the reversible interconversion of CO2 with HCO3
−, that differ in 

their diffusivities, pH and temperature dependencies (Flexas et al., 2012a). CA could improve 

CO2 diffusion through the stroma by allowing carbon to diffuse in the form of HCO3
− (Tholen & 

Zhu, 2011, Flexas et al., 2012a). CA contributes to gm by maintaining a nearly constant CO2 

concentration throughout the stroma, allowing a more effective use of the available Rubisco 

(Tholen & Zhu, 2011). Despite the suggested involvement in gm some time ago, only a few 

studies have investigated the effect of CA activity on gm. Gillon and Yakir (2000) suggested that 

contribution of CA to gm is species dependent, and their role may become more important when 

gm is low as in sclerophyllous species. More recently, Momayyezi and Guy (2017) provided the 

first empirical evidence of an important role for carbonic anhydrase in photosynthesis. Using a 

chemical inhibitor of CA, they demonstrated that CA activity is tightly correlated with latitudinal 

variation in mesophyll conductance of Populus trichocarpa Torr. & Gray. 

 

Recent work by von Caemmerer and Evans (2015) highlighted the lack of complete 

understanding of the mechanistic bases of gm responses. They observed temperature response of 

gm differed greatly between species, and proposed this may be due to variation in the activation 

energy for membrane permeability to CO2 (suggesting the involvement of fast biochemical 
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components like aquaporins in the regulation of gm) and the effective pathlength for liquid phase 

diffusion (referring mostly to the cell wall thickness). Flexas and Diaz-Espejo (2015) 

(commentary article on von Caemmerer and Evans (2015)) summarized three potential 

mechanisms for the rapid response of gm: changes in cell wall properties (the nature of chemical 

interactions inside cell wall pores), regulation of membrane properties, and reshaping and 

redistribution of chloroplasts. Previously, Tholen et al. (2008) found that short-term chloroplast 

avoidance response, induced by blue light, reduced Sc thereby reducing gm. A few studies 

(Holzinger et al., 2007a, Buchner et al., 2015) observed an increase in chloroplast protrusions in 

leaf mesophyll cells in response to an increase in temperature, leading to a dynamic enlargement 

of the chloroplast surface area. This might explain the gm response to temperature but has not 

been demonstrated with concurrent gas exchange measurements. However, Moser et al. (2015) 

demonstrated that in Ranunculus glacialis L., chloroplast protrusions were not a result of heat or 

light stress but were most abundant under moderate temperature and non-stress irradiation 

conditions. 

 

Changes in leaf structural properties, chloroplast positioning, aquaporins and CA activity may all 

act together to control gm, while their relative importance might depend on species and 

environments. Understanding the determinants of gm is imperative to understand its regulation 

and for it to be useful as a selective trait. 

 

 Coordination of mesophyll conductance and leaf hydraulic conductance 2.10.

A review by Flexas et al. (2013b) suggested that mesophyll conductance and leaf hydraulic 

conductance (Kleaf) might share portions of their transport pathways within leaves, and thus may 

respond to changes in environmental conditions in a similar or coordinated way. Leaf hydraulic 

conductance (Kleaf, mmol m–2 s–1 MPa–1) is a measure of how efficiently water is transported 

through the leaf. Kleaf is determined as the ratio of the water flow rate per unit leaf area to the 

water potential gradient across the leaf (Sack and Holbrook, 2006). It is related to transpiration 

by following equation: Kleaf = E / (Ψstem – Ψleaf), where E is the transpiration rate, Ψstem is the 

stem water potential and Ψleaf is the leaf water potential. Kleaf has two components: the vein 

xylem hydraulic conductance (kx) and the outside-xylem hydraulic conductance (Kox). The 

outside-xylem compartment includes all living tissues (xylem parenchyma, bundle sheath, and 
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mesophyll) that transport water from xylem vessels to the point outside the xylem that 

corresponds to operational measurements of Ψleaf (Buckley et al., 2017).   

 

Kleaf and light-saturated net CO2 assimilation rate (Amax)  are correlated across the diverse range 

of plant species (Brodribb et al., 2005, Franks, 2006). Low leaf hydraulic conductance restricts 

water flow to the epidermis, which reduces stomatal conductance and photosynthesis but 

increases WUE (Sinclair et al. 2008).  Low Kleaf also restricts water flow to the mesophyll and 

thus reduces mesophyll water potential, which may in turn directly reduce photosynthetic rate. 

Kleaf varies among plant species and is dependent on the anatomy, development and age of the 

leaf. Kleaf shows rapid response to environmental variables such as leaf hydration, light, 

temperature and vapour pressure deficit (Sack et al., 2002, Brodribb & Holbrook, 2003, Sack et 

al., 2004, Cochard et al., 2007, Levin et al., 2007, Scoffoni et al., 2008, Scoffoni et al., 2011). 

The mechanisms of Kleaf response to specific environmental conditions include transcriptional 

regulation of aquaporin and changes in their abundance, trafficking, and intrinsic activity (Prado 

& Maurel, 2013). The manipulation of Kleaf could help optimize the entire plant performance and 

its adaptation to extreme conditions over short and long time scales.  

 

Flexas et al. (2013b) surveyed the coordination of gm and Kleaf and observed a generally positive 

relationship across plant species. They showed that gm and Kleaf have widely agreed trends in the 

responses to a number of environmental variables such as temperature, light level and water 

status. However, the response of Kleaf to CO2 have not been found to parallel those of gm. Locke 

et al. (2013) found no effect of growth at high CO2 on Kleaf in soybeans, while higher growth 

CO2 has mostly been shown to reduce gm (Singsaas et al., 2004) consistent with partially 

independent pathways for movement of water and CO2 inside leaves. Based on their parallel 

responses to a number of environmental variables, along with the partially distinct dynamics of 

these traits (CO2 response), Flexas et al. (2013b) proposed that gm is linked to the outside-xylem 

component of Kleaf (Kox), and the lack of correlation between Kleaf and vein density implies the  

independence of  the coordination between gm and xylem component of Kleaf. 

 

The mechanisms for coordinated dynamics of gm and Kleaf are not clear (Flexas et al., 2012a, 

Griffiths & Helliker, 2013). The outside-xylem component was found to depend on mesophyll 
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structure and physiology (Aasamaa et al., 2005), a trait which also influences gm. Nevertheless, 

water flow outside the xylem is poorly understood. Once in the bundle sheath, water may move 

apoplastically (through the cell walls), symplastically (through plasmodesmata), or 

transcellularly (through aquaporins in cell membranes) (Steudle et al., 1993) and the relative 

contribution of these pathways might affect the response of Kox to environmental variables and 

leaf anatomy (Buckley, 2015, Buckley et al., 2015). Isotopic studies also indicate some 

coordination of regulation of gm and Kleaf, particularly in aquaporin-dependent pathways. Ferrio 

et al. (2012) demonstrated a strong linear relationship between gm and Kox and the effective path 

length (L) for water transport from xylem vessels to the sites of evaporation in grapevines.  In 

another study (Theroux-Rancourt et al., 2014), Kleaf decreased in concert with gsw with drought 

stress, whereas gm remained relatively constant up to a certain gsw threshold, supporting the 

hypothesis of a partial hydraulic isolation of the mesophyll from the main transpiration pathway. 

Recently, Xiong et al. (2017) observed a linear correlation between gm and Kox across all rice 

genotypes and both were closely related to mesophyll structural traits (fraction of leaf mesophyll 

volume occupied by intercellular air space, Smes, Sc, Tcw). In contrast, Loucos et al. (2017) found 

a weak correlation between gm and Kleaf only across growth treatment in cotton (one cultivar). 

They did not find a correlation between Kleaf and chloroplast membrane conductance, estimated 

with simultaneous measurement of Δ13C-gm and Δ18O-gm. However, Δ18O-gm was significantly, 

but weakly correlated to Kleaf, suggesting limited coordinated regulation of CO2 and water 

transport across the cell wall and plasma membrane. Analysis of the relationship between gm and 

Kleaf is still at an embryonic stage with conflicting results. More studies are needed to confirm the 

gm and Kleaf relationships in other species and growth environments. Coordination between gm 

and Kleaf will be further discussed in Chapter 5. 

 

 Mesophyll conductance and water use efficiency 2.11.

There has been growing interest in gm for increasing photosynthesis (A) and leaf water use 

efficiency (A/gsw). Barbour et al. (2010) reported positive correlation between gm and A/gsw in 

barley and suggested that breeding for higher gm has the potential to increase leaf WUE. Flexas 

et al. (2013a), based on their review of values of gm in the literature, suggested that simultaneous 

improvement of A and WUE is possible by improving gm over gsw. A is strongly influenced by 

both gsw and gm; however, which of the two conductances plays the most important role may 
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depend on species and environmental conditions. Several studies have shown a correlation 

between gm and gsw (Flexas et al., 2002, Flexas et al., 2008, Centritto et al., 2009, Barbour et al., 

2010, Galmés et al., 2011, Perez-Martin et al., 2014, Olsovska et al., 2016). On the other hand, 

there are studies indicating the lack of correlation between gm and gsw (Bunce, 2009, Jahan et al., 

2014). Co-regulation between gm and gsw might differ between species and with the intensity of 

stress, as suggested by Warren (2008b). The combination of low gsw and high gm would produce 

high leaf water-use efficiency (Barbour et al., 2010, Buckley & Warren, 2014, Cano et al., 2014, 

Flexas et al., 2016). 

 

Regarding crop genetic improvement through gm, Barbour et al. (2016a) reported the first hints 

of genetic control of mesophyll conductance in bread wheat. The multigene nature of leaf 

anatomy makes it difficult to manipulate gm through leaf morphological alterations (Flexas et al., 

2016). There is evidence of increased gm through altered aquaporin expression or activity (Hanba 

et al., 2004, Uehlein et al., 2008, Secchi & Zwieniecki, 2013, Sade et al., 2014), but the 

concomitant increase in gsw cancelled any improvement in A/gsw. Flexas et al. (2016), in their 

review, speculated that same aquaporins might be involved in water transport as well as in CO2 

diffusion and control both gsw and gm. However, Zhao et al. (2017) suggested that aquaporins  

may facilitate CO2 transport across plasma membranes, but probably via a different pathway than 

for water. In legumes, the effects of varying gm on A and A/gsw have been experimentally tested 

only in soybean cultivars (Tomeo & Rosenthal, 2017), where a strong positive correlation 

between mesophyll and stomatal conductance among soybean cultivars interfere with the 

potential to improve WUE through selection on gm. Despite some complexity, the positive 

relationships between A and gm and A/gsw and gm under the growth conditions, would 

demonstrate the potential of improving A and WUE within a crop improvement program.  

 

 Summary and further research 2.12.

Grain legumes play an important role in Australian agriculture.  Drought is a major constraint in 

all grain legume growing regions of Australia, and climate change is expected to exacerbate this 

problem. Improving WUE has thus become a mandatory subject of research for sustainable 

legume production. Selection for higher WUE, generally considered in terms of gsw, often 

resulted in reduced photosynthesis and yield. Barbour et al. (2010) found that mesophyll 
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conductance to CO2 (gm), which regulates CO2 diffusion from sub-stomatal cavities to the 

carboxylation site, was positively related to both A and gsw and suggested that gm has the 

potential to further improve A/gsw while simultaneously maintaining productivity through crop 

breeding.  

 

There has been a lack of techniques to partition gm into its component conductances between the 

sub-stomatal cavities and the carboxylation site. This has made it difficult to determine the 

relative importance of the gm components. Gillon and Yakin (2000) demonstrated that the 

oxygen isotope discrimination (Δ18O) can be used to partition gm between conductance before 

and after the chloroplast surface in C3 plants. More recently, Barbour et al. (2016) demonstrated 

that Δ13C-gm and Δ18O-gm can be rapidly and easily measured by coupling traditional gas 

exchange with laser absorption spectrometers that measure the stable carbon and oxygen isotope 

composition of CO2 and the stable oxygen isotope composition of transpired water vapour. 

However, the Δ18O technique to estimate gm is in its embryonic stage, and measurements in other 

major crops are imperative in the near future. 

 

Significant genotypic variation in gm has been reported in several important crop species, but 

within grain legumes, genotypic variability in gm has only been studied in Phaseolus vulgaris 

(Flowers et al., 2007) and the variability was reported only after exposure to high ozone 

concentration. gm can also respond to short and long term changes in environmental conditions 

such as water stress, salinity, temperature, CO2 concentration, and light. However, evidence of 

rapid responses of gm to light and CO2 concentration are unclear, with positive relationship in 

some species and experiments but not others. The mechanisms of changes in gm are poorly 

understood, and relevant studies in grain legumes are scarce. The variability of maximum values 

of gm observed among species and genotypes associated with adaptive and acclimation responses 

often relate to leaf structure and anatomical properties, while the rapid responses of gm has been 

attributed to carbonic anhydrase, aquaporins or chloroplast changes.  

 

A recent review by Flexas et al. (2013b) suggested that gm and outside xylem hydraulic 

conductance might share portions of their transport pathways within leaves, and there might be a 

functional linkage between gm and Kleaf. However, recent studies showed contrasting results, with 
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a strong correlation between gm and Kleaf in some studies while none or poor relationships in 

other studies (Loucos et al., 2017). Comparisons between different species and genotypes and 

with different treatments might be a feasible approach to identify their coordination.  

 

Therefore, before gm can be recommended as selection criteria for breeders for improving WUE, 

there is a need for comprehensive research on gm of grain legumes in terms of its association 

with water use efficiency. Future research should aim to answer some of the puzzling and often 

interrelated issues discussed in the previous sections. The degree of genotypic variation and co-

variation of gm, gm components and leaf WUE in different legume crops using the concurrent 

measurements of Δ13C-gm and Δ18O-gm and their response to different short-term and long-term 

environmental parameters would be valuable. Further investigation of the coordination of gm and 

Kleaf in legumes cultivars under different growth conditions could provide new insights into the 

responses of these traits. With such an approach, development of grain legume genotypes better 

adapted to water-limited environments should progress more rapidly in the future.  
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3. Research Methodology 
Mesophyll conductance to CO2 (gm) was estimated using the online carbon discrimination (Δ13C) 

method (Evans et al., 1986, Tazoe et al., 2009), for all the experiments in this thesis. The Δ13C 

method produced estimates of mesophyll conductance from intercellular air spaces to the sites of 

carboxylation, denoted hereafter as the Δ13C-gm. In Chapter 4 and 5, CO2 diffusional 

conductance from the intercellular air spaces to the sites of CO2-H2O equilibrium was estimated 

using oxygen isotope discrimination (Δ18O) method (Gillon & Yakir, 2000, Barbour et al., 

2016b), denoted hereafter as Δ18O-gm. This chapter covers the carbon and oxygen isotope 

methods, including the equations and fractionation factors used to estimate mesophyll 

conductance to CO2.  

 

 Simultaneous gas exchange and mesophyll conductance measurements 3.1.

Gas exchange measurements and regulation of leaf environmental conditions were conducted 

using a Li6400xt portable photosynthesis system (Li-Cor Biosciences, Lincoln, NE, USA). Leaf 

chambers and leaf environmental conditions within the chamber used for each experiment are 

included in their respective chapters. Gas exchange was recorded at 1min intervals. For 

experiments which measured both Δ13C-gm and Δ18O-gm (Chapter 4 and 5), the Li6400xt was 

coupled to a Tunable-Diode Laser Absorption Spectrometer (TDL, model TGA100A, Campbell 

Scientific, Inc., Logan, UT, USA) and a Picarro water vapour isotope analyser (L1102-I, Picarro 

Inc., Sunnyvale, CA, USA). The TDL measured the stable carbon and oxygen isotope 

compositions of CO2 (13CO2, C18O16O), as described by Barbour et al. (2007). The Picarro 

measured the stable oxygen isotope composition of transpired water vapour (H2
18O), as 

described by Simonin et al. (2013). Leaf chamber inlet and outlet air streams were sub-sampled 

to the TDL and a sub-sample of the leaf chamber outlet air stream was sent to the Picarro. The 

flow rate through the leaf chambers was maintained above 300 ml min-1 to provide sufficient 

flow for the TDL (250 ml min-1) and the Picarro (25 ml min-1). All air streams were passed 

through a nafion drying tube prior to entering the TDL to obtain values at zero vapour 

concentration. For the experiments measuring Δ13C-gm (Chapter 6 and 7), the Li6400xt was 

connected only to the TDL. 
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The TDL was calibrated using two calibration cylinders (or four calibration cylinders, in Chapter 

5) spanning the range in concentrations of the isotopologues of the leaf chamber inlet and outlet 

air streams. Total CO2 concentrations and isotope compositions of the calibration cylinders were 

measured using a stable isotope mass spectrometer at the National Institute of Water and 

Atmospheric Research, Wellington, New Zealand, and their absolute values are included in their 

respective chapters. Carbon isotope ratios are presented relative to the Vienna Pee Dee belemnite 

standard, and oxygen isotope ratios of CO2 and water vapour are presented relative to the Vienna 

Standard Mean Oceanic Water (VSMOW) standard. The TDL received standards from the 

cylinders every 6 min and the raw values of the sample air streams within this time period were 

calibrated against these standards. Interchanging between calibration cylinders and the sample 

air streams was enabled by a manifold regulated by a datalogger (CR3000, Campbell Scientific 

Inc.). 

 

The Picarro was calibrated following the procedure detailed in Simonin et al. (2013) using two 

standard water samples of known isotope values of -14.6 and 1.5‰ that spanned the range in 

δ18O of leaf chamber inlet and outlet air streams (standards were measured using a stable isotope 

mass spectrometer at The Australian National University, Canberra, Australia). To account for 

the concentration dependence of δ18O, after measurements were complete, each standard water 

sample was analysed at a range of concentrations to span the observed range of concentrations, 

as described in Simonin et al. (2013). The Li6400xt data, the TDL data and the Picarro 

measurements were synchronized by matching their timestamps. For the leaves not covering the 

entire leaf chamber, after each measurement, leaf area within the chamber was calculated from 

the digitized images of the leaf using ImageJ (NIH, Bethesda, MD, USA). Gas exchange 

variables were recalculated with the corrected leaf area.  

 

Photosynthetic 13CO2 and C18O16O discrimination were calculated from the following equation 

(Evans et al., 1986): 

∆obs= ξ(δo−δe)
1+δo−ξ(δo−δe)

                (1) 

where: ξ = 𝐶e
𝐶e−𝐶o

               (2)  
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ce and δe are concentrations and isotope compositions of CO2 of dry air entering the leaf chamber 

and co and δo are concentrations and isotope compositions of CO2 of dry air exiting the chamber, 

respectively. Carbon and oxygen isotope compositions of CO2 were obtained from the TDL. 

 

 Estimation of mesophyll conductance from Δ13C 3.2.

Mesophyll conductance from the intercellular air spaces to the sites of carboxylation in the 

chloroplast stroma (Δ13C-gm, mol m-2 s-1 bar-1), was calculated from the difference between 

calculated carbon isotope discrimination assuming infinite gm (Δ13Ci), and that measured by the 

coupled system (Δ13Cobs), using equations and fractionation factors presented in Barbour et al. 

(2016b) and including the ternary corrections as described by Farquhar and Cernusak (2012): 

 

∆13Ci =  
1

1 − 𝑡
 �𝑎b 

Ca − Cs
Ca

+ 𝑎s 
Cs − Ci

Ca
� +

1 + 𝑡
1 − 𝑡

 �𝑏 
Ci
Ca
−  
αb
αé
𝑒́

𝑅d
𝐴 + 𝑅d

 
Ci − Γ∗

Ca
−
αb
αf
𝑓
Γ∗

Ca
� 

            (3) 

where Ca, Cs and Ci are the ambient, leaf surface and intercellular CO2 partial pressures, ab and as 

are the fractionations during diffusion through the leaf boundary layer (2.9‰) (Evans et al., 

1986) and the stomata (4.4‰) (Farquhar & Richards, 1984) respectively, b is the fractionation 

associated with carboxylation (30‰) (Guy et al., 1993), f is the fractionation associated with 

photorespiration (16.2‰) (Evans & von Caemmerer, 2013), αb is the fractionation factor for 

carboxylation (1 + b), αé is the fractionation factor for day respiration (1 + é), αf is the 

fractionation factor for photorespiration (1 + f). Rd is the rate of day respiration and Γ* is the 

compensation point in the absence of Rd. Both Rd and Γ* were predicted from leaf temperature 

using the approach described by Bernacchi et al. (2002).  

 

In Eqn 3, é is the fractionation associated with day respiration, corrected for source CO2 δ13C 

(Tazoe et al., 2009), and is given by: 

 

 é = 𝑒 + δ13Ctank − δ13Catmosphere        (4) 

 

where e is assumed to be -3‰ (Tcherkez et al., 2010), δ13Ctank was measured by the TDL, and 

δ13Catmosphere was measured by the Picarro. 
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In Eqn 3, t is the ternary correction factor (Farquhar & Cernusak, 2012), and is given by: 

𝑡 = 𝛼ac𝐸
2𝑔ac

            (5) 

where E is the transpiration rate (mmol m-2 s-1), αac is the fractionation factor of CO2 diffusion in 

air (1+ā), ā is the weighted fractionation through the leaf boundary layer and stomata (Evans et 

al., 1986). gac denotes the total conductance to CO2 diffusion including the boundary layer and 

stomatal conductance. 

 

Then, mesophyll resistance (rm) is given by Farquhar and Cernusak (2012): 

𝑟m =  1−𝑡
1+𝑡

 (∆13Ci − ∆13Cobs) Ca
𝐴�𝑏−𝑎m−

αb
αé
𝑒́

𝑅d
𝐴+𝑅d

�
      (6) 

∆13Cobs is calculated from Eqns 1 and 2, A is the CO2 assimilation rate (µmol m-2 s-1), am is the 

fractionation  factor for liquid phase CO2 diffusion and dissolution (‰). 

 

Mesophyll conductance (Δ13C-gm), was calculated as: 

Δ13C-gm = 1/rm          (7) 

 

Then, chloroplast CO2 partial pressure (Cc) was calculated as: 

Cc = Ci – (A/Δ13C-gm)          (8) 

 

 Estimation of mesophyll conductance from Δ18O 3.3.

CO2 diffusional conductance from the intercellular air spaces to the sites of CO2-H2O 

equilibrium (Δ18O-gm) was estimated from oxygen isotope discrimination method, as described 

in Barbour et al. (2016b). Photosynthetic oxygen isotope discrimination (Δ18Oobs) was calculated 

from TDL δ18O measurements, using Eqns 1 and 2. Water inside leaves becomes enriched in 

H2
18O during transpiration. Carbonic anhydrase catalyses the interconversion of CO2 and HCO3

−
 

allowing isotopic exchange of 18O between leaf-dissolved CO2 and 18O-enriched H2O, so that 

CO2 leaving the leaf chamber is enriched in 18O above CO2 entering the leaf chamber (Gillon & 

Yakir, 2000).  
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The oxygen isotopic composition of the CO2 being assimilated (δ18OA) (Barbour et al., 2016b) is 

given by : 

δ18OA = δ18Oo−∆18Oobs
1+∆18Oobs

         (9) 

where δ18Oo is the oxygen isotope composition of the air leaving the chamber. 

 

Here I assumed full equilibration between cytosolic CO2 and local cytosolic water, due to the 

high rate of carbonic anhydrase activity commonly observed in C3 plants. Studies to date have 

found CO2 and H2O to be close to full equilibrium (Cernusak et al., 2004, Kodama et al., 2011). 

The oxygen isotope composition of CO2 in the cytosol (δ18Oc) is given by (Cernusak et al., 

2004): 

 

δ18Oc = δ18Oe + εw         (10) 

 

where δ18Oe is the oxygen isotope composition of the cytosolic leaf water and εw is the isotopic 

equilibrium between CO2 and water (Brenninkmeijer et al., 1983), and  is given by: 

εw(‰) = 17604
𝑇l

− 17.93           (11) 

In Eqn 11, Tl is the leaf temperature in Kelvin. 

 

The cytosolic water was assumed to be isotopically the same as water at the sites of evaporation 

within leaves (Gillon & Yakir, 2000, Barbour & Farquhar, 2004, Tomás et al., 2013). The stable 

oxygen isotope composition of water at the evaporation sites within leaves was estimated using 

the modified Craig–Gordon model of evaporative enrichment (Craig & Gordon, 1965, Flanagan 

et al., 1991) for non-steady state conditions (Harwood et al., 1998): 

 

δ18Oe = δ18Otrans + 𝜀∗ + εk + 𝑒a
𝑒i

(δ18Ov − εk − δ18Otrans)    (12) 

 

δ18Otrans is the isotopic composition of transpired water vapour (measured by the Picarro) and 

δ18Ov is the vapour in the leaf chamber. In this study, the air entering the leaf chamber was dried 
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of H2O. Therefore, the humidity of the air leaving the leaf chamber was entirely derived from 

transpiration, and so δ18Ov = δ18Otrans.  

ea/ei is the ratio of ambient to intercellular vapour pressure.  

 

ε* is the equilibrium fractionation factor during evaporation  (Bottinga & Craig, 1968), and is 

given by : 

 𝜀∗ = 2.644 − 3.206 �10
3

𝑇l
� + 1.534 �10

6

𝑇l
2 �       (13) 

 

εk is the kinetic fractionation during diffusion of vapour (Merlivat, 1978, Farquhar et al., 1998, 

Luz et al., 2009), and is given by: 

 

 εk = 28𝑔s−1+19𝑔b
−1

𝑔s−1+𝑔b
−1            (14) 

where gs and gb are stomatal conductance and boundary layer conductance respectively. 

 

The oxygen isotope composition of CO2 in the intercellular air spaces, without ternary 

corrections, is given by Farquhar and Cernusak (2012): 

 

δ18Oio = δ18OA �1 − Ca
Ci
� (1 + 𝑎́18) + Ca

Ci
(δ18Oout − 𝑎́18) + 𝑎́18   (15) 

 

where 𝑎́18 = (Cs−Ci)𝑎18+(Ca−Cs)𝑎18b
Ca−Ci

        (16) 

a18 and a18b are the discriminations during diffusion through the stomata and the boundary layer 

for C18O16O, assuming fractionation factors of 8.8‰ and 5.8‰ respectively. 

 

The oxygen isotope composition of CO2 in the intercellular air spaces, including ternary 

corrections (Farquhar & Cernusak, 2012), is given by: 

 

δ18Oi =
δ18Oio+𝑡�δ18OA�

Ca
Ci
+1�−δ18Oa

Ca
Ci
�

1+𝑡
       (17) 
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The CO2 partial pressures at the sites of CO2-H2O equilibrium (CCH) may be calculated from the 

oxygen isotope composition of CO2 in the intercellular air spaces (δ18Oi) and the oxygen isotope 

composition of CO2 at the sites of CO2-H2O equilibrium (δ18Oc) (Barbour et al., 2016b), and is 

given by : 

 

CCH = Ci �
δ18Oi−𝑎18w−δ18OA(1+𝑎18w)
δ18Oc−𝑎18w−δ18OA(1+𝑎18w)

�,       (18) 

 

where a18w is the combined discriminations against C18O16O during liquid phase diffusion and 

dissolution (0.8‰).  

 

Then, CO2 diffusional conductance from the intercellular air spaces to the sites of CO2-H2O 

equilibrium (Δ18O-gm, mol m-2 s-1 bar-1) is given by (Barbour et al., 2016b): 

Δ18O-gm = A/ (Ci-CCH)         (19) 

 

 Estimation of chloroplast membrane conductance (gcm) 3.4.

The combined measurements of Δ18O-gm (from the Δ18O method) and Δ13C-gm (from the Δ13C 

method) allow partitioning of total conductance into the components before and after the sites of 

CO2-H2O equilibrium. If the CO2-H2O equilibrium occurred within the cytosol or at the 

chloroplast surface (Gillon & Yakir, 2000), Δ18O-gm would relate to cell wall and plasma 

membrane conductance. The combined measurements of Δ18O-gm and Δ13C-gm were then used to 

partition total CO2 conductance into cell wall and membrane conductance and chloroplast 

membrane conductance (gcm) (Barbour et al., 2016b), assuming no significant resistance to CO2 

diffusion in the gaseous leaf interior (Evans et al., 1994).   

 

Chloroplast membrane conductance (gcm) was calculated by: 

gcm = A/ (Cc-CCH)          (20)  

where Cc was given by Δ13C (Eqn 8) and CCH was given by Δ18O (Eqn 20). 

 

However, the interpretation of Δ18O-gm must be made with caution, as highlighted by Barbour et 

al. (2016b), since estimates of Δ18O-gm depends on the location and activity of CA. CAs are 
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ubiquitous enzymes localized to the mesophyll cell chloroplast, cytosol, mitochondria and the 

plasma membrane in C3 plants (Fabre et al., 2007, Dimario et al., 2017), and thus CO2-H2O 

equilibrium could occur  at the plasma membrane and Δ18O-gm would relate to conductance 

through the cell wall only. On the other hand, if the majority of CA activity localized to 

chloroplasts, then CO2 would be fully equilibrated with water inside the chloroplast, in which 

case the partitioning technique would not be feasible.  Assessing the location and activity of CA 

was not within the scope of this thesis, but certainly will prove useful in the future studies. I 

compared Δ18O-gm and Δ13C-gm measurements to see if Δ18O-gm were higher than or close to 

Δ13C-gm values. Higher Δ18O-gm values will provide an indication that CO2–H2O exchange sites 

are not inside the chloroplast in the species studied.   
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4. Genetic variability in mesophyll conductance among crop legumes 
 

 Introduction 4.1.

Improving crop performance under a changing climate requires concomitant increases in both 

photosynthesis and water use efficiency (Flexas et al., 2016). Mesophyll conductance to CO2 

(gm) has been shown to limit the diffusion of CO2 from sub-stomatal cavities to the carboxylation 

site and reduce rates of photosynthesis (Flexas et al., 2008, Niinemets et al., 2009b, Flexas et al., 

2013a, Flexas et al., 2016) and manipulation of gm has the potential to increase leaf intrinsic 

water-use efficiency; A/gsw (Barbour et al., 2010, Flexas et al., 2013a). gm is a dynamic leaf trait 

which may vary in the short term (within seconds to minutes) or the in long term in response to 

different abiotic factors (Warren et al., 2007, Loreto et al., 2009, Bunce, 2010, Douthe et al., 

2011, Perez-Martin et al., 2014, Olsovska et al., 2016) although the direction and sensitivity of 

the response may be species or genotype dependent (Singsaas et al., 2004, von Caemmerer & 

Evans, 2015, Barbour & Kaiser, 2016).  

 

Despite growing interest in gm for increasing photosynthesis and A/gsw, there are very limited 

studies on gm in legume species. Grain legumes have important role in food security: because, 

they are a critical and inexpensive source of plant-based protein, vitamins and minerals and they 

fix their own nitrogen and can improve soil health (Foyer et al., 2016). However, grain legume 

yields have not improved at the same rate as cereals, and grain legumes are high priorities for 

research and improvements in genetic potential (Graham & Vance, 2003, Nedumaran et al., 

2015, Foyer et al., 2016). Water use efficiency varies among legume species (Suriyagoda et al., 

2010, Herzog & Chai-Arree, 2012). Genotypic variation in A/gsw has been reported in different 

grain legume crops, including bean (White, 1993, Polania et al., 2016), faba bean (Khan et al., 

2007) cowpea (Ismail & Hall, 1992), chickpea (Krishnamurthy et al., 2013, Sadras et al., 2016) 

and soybean (Gilbert et al., 2011b). Differences in A/gsw and WUE between genotypes have been 

reported to have a genetic basis (Martin et al., 1989, Masle et al., 2005). There is considerable 

scope for improvement of grain legume yields through breeding/crop genetic improvement. 

Genetic control of gm was recently presented for common wheat for the first time by Barbour et 

al. (2016a), raising the possibility of selecting for high gm to increase A/gsw. Incorporating gm in 

any breeding program aiming to increase photosynthesis or A/gsw requires information on 
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genotypic variability of gm. Significant genotypic variation in gm has been reported in important 

crop species, including cereals (Barbour et al., 2010, Gu et al., 2012, Jahan et al., 2014), 

Castanea sativa (Lauteri et al., 1997), Solanum lycopersicum (Galmés et al., 2011) and Vitis 

vinifera (Tomás et al., 2014) but information is very limited in grain legumes. Flowers et al. 

(2007) observed genotypic variation in gm among snap bean genotypes but only after exposure to 

high ozone concentration.  

 

gm is a combination of gaseous diffusion through intercellular air spaces and diffusion through 

the cell wall, through plasma membrane, the cytosol and through chloroplast envelope to the site 

of carboxylation (Evans et al., 2009) and is thus influenced by a large number of physical and 

biochemical factors. gm variability has been associated with leaf anatomical structure, 

particularly mesophyll structure, cell wall thickness, mesophyll (Smes) and/or chloroplast (Sc) 

surface area facing intercellular air spaces (Evans et al., 2009, Tosens et al., 2012b, Tomás et al., 

2013), as well as with enzymatic processes affecting membrane permeability (Hanba et al., 2004, 

Uehlein et al., 2008, Perez-Martin et al., 2014). Mesophyll conductance has been estimated 

using combined gas exchange and chlorophyll fluorescence method or the online carbon isotope 

discrimination method (∆13C-gm) or by the curve-fitting method (Evans et al., 1986, Harley et 

al., 1992, Ethier & Livingston, 2004). These established techniques have been used to quantify 

gm, providing estimates of total conductance to the carboxylation site in C3 plants (Pons et al., 

2009). Gillon and Yakir (2000) proposed that measurements of δ18O of CO2 and δ18O of water 

inside the leaves could be used to estimate conductance to CO2 diffusion from the intercellular 

air space to the site of CO2-H2O isotopic equilibration, which was assumed to be at the 

chloroplast surface.  Further, the 18O estimate of gm (hereafter referred to as Δ18O-gm) combined 

with Δ13C-gm (total conductance estimated using the carbon isotope discrimination method) 

could allow partitioning of total conductance into cell wall and membrane components (Gillon & 

Yakir, 2000). More recently, Barbour et al. (2016b) demonstrated that Δ13C-gm and Δ18O-gm can 

be rapidly and easily measured in C3 plants (tobacco, cotton and wheat) by coupling traditional 

gas exchange with laser absorption spectrometers that measure the stable carbon and oxygen 

isotope composition of CO2 and the stable oxygen isotope composition of transpired water 

vapour. Additional information on the components of gm in C3 plants would be helpful in 

identifying targets to increase gm. The goals of the present study were to quantify the variability 
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in Δ13C-gm and Δ18O-gm in common bean, faba bean, garden pea and field pea; to determine if gm 

scales with photosynthetic rates and leaf WUE in these legume species under non-limiting 

conditions and finally to examine the utility of simultaneous carbon and oxygen isotope 

techniques to partition total gm into its components.  

 

 Materials and Methods 4.2.

 

 Plant material and growth conditions 4.2.1.

Five genotypes of common bean (Phaseolus vulgaris L.), two genotypes of faba bean (Vicia faba 

L.), three genotypes of garden pea (Pisum sativum L.) and ten genotypes of field pea (Pisum 

sativum L.) were grown in a controlled-environment growth cabinet at the University of 

Sydney, Centre for Carbon Water and Food (Camden, NSW, Australia). The growth cabinet 

was set to a 14 h photoperiod, 25/17°C day/night temperature, 75% relative humidity, 700 µmol 

m-2 s-1 photosynthetic photon flux density at plant height. Seeds were sown in 7 L pots filled 

with commercial potting mix supplemented with slow release fertilizer (Osmocote Exact, Scotts, 

NSW, Australia). After emergence, the plants were thinned to two per pot and were well 

watered throughout the experiment. The genotypes studied were (six replicate plants each) 

Common Bean: Brown Beauty, Cherokee Wax, Gourmet Delight, Vitalis, Westralia; faba bean: 

Cairo, PBA Warda; garden pea: Dwarf Sugar Snap, Blue Bantam, Greenfeast; and field pea: 

07126, 08116, Gunyah, Maki, Prlas, Twillight, Walana, Yarrum, Ovra and Para. Ovra and Para 

were morphologically different to the other field pea genotypes, possessing narrow leaflets and 

stipules exhibiting the 'tare-leaf' trait, while the others were semi-leafless bearing normal 

stipules, but with leaflets replaced by profuse bunches of tendrils. 

 

 Concurrent gas exchange and mesophyll conductance measurements  4.2.2.

Leaf gas exchange and isotope discrimination measurements were conducted 4 weeks after 

planting. The youngest fully expanded leaves were used for gas exchange measurements using a 

LI6400XT portable photosynthesis system (Li-Cor Biosciences, Lincoln, NE, USA) fitted with a 

custom-built leaf chamber of area 38 cm2 (Barbour et al., 2007) and red-green-blue light source 

(Li6400 18A). The leaf chamber conditions were controlled to provide CO2 concentration of 320 

µmol mol-1 in the sample cell, leaf temperature at 25°C, and the photosynthetic photon flux 
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density (PPFD) of 1300 µmol m-2 s-1 for all measurements. The LI-6400XT was coupled to two 

laser absorption spectrometers: Tunable-Diode Laser Absorption Spectrometer (TDL, model 

TGA100A, Campbell Scientific, Inc., Logan, UT, USA) and Picarro water vapor isotope 

analyser (L1102-I, Picarro Inc., Sunnyvale, CA, USA), as described in Chapter 3. Two 

calibration cylinders were used to calibrate the TDL. Absolute values of 12CO2, 13CO2 and 

C18O16O were, respectively, 292.05, 3.17  and 1.20 ppm for low concentrations and 483.93, 5.26  

and 1.99  ppm for high concentrations. Carbon isotope ratios are presented relative to the Vienna 

Pee Dee belemnite standard and oxygen isotope ratios relative to the VSMOW standard. The 

Picarro was calibrated using two standard water samples of known isotopic composition that 

spanned the range in δ18O of leaf chamber inlet and outlet air streams, following the procedure 

detailed in Simonin et al. (2013). For the leaves not covering the entire leaf chamber, after each 

measurement, leaf area within the chamber was calculated from the digitized images of the leaf 

using ImageJ (NIH, Bethesda, MD, USA). Gas exchange variables were recalculated with the 

corrected leaf area.  

 

Mesophyll conductance to CO2 (gm) was estimated using the online carbon isotope 

discrimination (Δ13C) method and oxygen isotope discrimination (Δ18O) method as described in 

Chapter 3. I assumed that CO2–H2O exchange occurs at the chloroplast surface, as suggested by  

Gillon and Yakir (2000), and the chloroplast membrane conductance (gcm) was calculated from 

the combined measurements of Δ18O-gm and Δ13C-gm as described in Chapter 3.   

 

 Estimation of Vcmax, Jmax and Rd 4.2.3.

Photosynthetic CO2 response curves at saturating light were measured by controlling CO2 

concentration of the reference air stream from 50 to 1200 ppm. The CO2 concentration in the leaf 

chamber started at 400 ppm, was lowered to 50 and then increased to 1200 ppm in 8 steps (400, 

50, 100, 150, 200, 300, 400, 800, 1000 and 1200 ppm). These response curves were measured in 

three replicate plants for each genotype (out of six replicates used for gm measurements). For the 

majority of plants, the response curves and gm measurements were made on the same leaf, and 

within three days of each other. Response curves were produced under PAR of 1300 µmol m-2 s-1 

and flow rate of 500 µmol s-1. Then Cc was calculated from measured A and Ci, and calculated 

values of Δ13C-gm. Maximum carboxylation rate by Rubisco (Vcmax) and electron transport rate 
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(Jmax) were fitted using the spreadsheet form (Sharkey et al., 2007), but using estimated Δ13C-gm 

for each leaf, and assuming Δ13C-gm did not vary with CO2 concentration (Tazoe et al., 2009). 

 

Photosynthetic light response curves were obtained by decreasing photosynthetic photon flux 

density (PPFD) from 100 to 0 μmol m−2 s−1 in 10 steps (100, 90, 80, 70, 60, 50, 40, 30, 20, 0 

μmol m−2 s−1), under CO2 concentrations of 400 µmol mol-1. The slope of these relationships 

typically declines abruptly at a PPFD near the light compensation point (i.e., a 'Kok' effect); the 

ordinate intercept of the regression of A vs PPFD above this slope change was assumed to be the 

rate of non-photorespiratory light respiration (Rd) (Kok, 1948).  
 

 Statistical analysis 4.2.4.

Significant differences between values were assessed using analysis of variance, as implemented 

by GENSTAT 16th edn SP1 (VSN International Ltd, London, UK), and means were compared 

using Fisher’s unprotected least significant difference test. Differences were considered 

statistically significant when p < 0.05.  

 

 Results  4.3.

 

 Variations in leaf gas exchange and mesophyll conductance 4.3.1.

There was significant variation in net CO2 assimilation rate (A) between the legume species 

(p<0.001), with the highest A measured in faba beans (genotype average = 24.3 μmol m–2 s–1) 

and the lowest in field peas (genotype average = 13.3 μmol m–2 s–1). Variation in A was 

significant between common bean genotypes (p<0.05) and between field pea genotypes (p<0.05) 

but the differences were not significant within faba beans or garden peas (Figure 4.1a). Among 

field peas, ‘Ovra’ and ‘Para’ had significantly higher A than other genotypes (but not statistically 

different from ‘Walana’ and ‘Prlas’). Overall, the highest A was observed in ‘Cairo’ (faba bean). 

Variation in stomatal conductance (gsw) was significant between the legume species (p<0.001) as 

well as between genotypes within each species (Figure 4.1b, common bean: p<0.001, faba bean: 

p<0.05, garden pea: p<0.05, field pea: p<0.016). Similarly, leaf intrinsic water use efficiency 

(A/gsw) values were significantly different between species (p<0.001) and between genotypes 

within each species (Figure 4.1c, common bean: p<0.001, faba bean: p<0.05, garden pea: 
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p<0.05, field pea: p<0.001). ‘Cherokee wax’ (common bean) had the highest A/gsw across the 

species while ‘Para’ had the highest A/gsw within field pea.  

 

The carbon isotope technique produced estimates of mesophyll conductance from intercellular 

air spaces to the sites of carboxylation (Δ13C-gm). Genotypic variation for Δ13C-gm was observed 

in faba bean (p<0.05), garden pea (p<0.05) and in field pea (p<0.001) but not in common bean 

(Figure 4.2a). The Δ13C-gm values for field peas ranged from 0.18 to 0.54 mol m-2 s-1 bar-1. Faba 

bean and garden pea genotypes had significantly higher Δ13C-gm than most of the common bean 

and field pea genotypes (p<0.001). Overall, Δ13C-gm varied by about 4-fold, with the highest 

value measured in ‘Cairo’ (0.79 mol m-2 s-1 bar-1) and the lowest in ‘Prlas’ (0.18 mol m-2 s-1 bar-1).  

 

 Partitioning resistance to CO2 diffusion  4.3.2.

Assuming the CO2-H2O equilibrium occurred at the chloroplast surface in the investigated 

genotypes, the total mesophyll conductance to CO2 was partitioned into cell wall and plasma 

membrane conductance (Δ18O-gm, Figure 4.2b) and chloroplast membrane conductance (gcm, 

Figure 4.2c). I did not find genotypic variation for Δ18O-gm across the legume species (Figure 

4.2b). Typically, Δ18O-gm values were lower in field peas compared to other legume species 

(p<0.001). Δ18O-gm was significantly higher than Δ13C-gm for most of the genotypes across the 

legume species except for ‘Ovra’ and ‘Para’ (Figure 4.2a, Figure 4.2b). I found significant 

positive correlation between Δ13C-gm and Δ18O-gm (Figure 4.4c, R2=0.51, p<0.001) and between 

Δ13C-gm and gcm (Figure 4.4d, R2=0.52, p<0.001) across all the genotypes.  

 

Resistance to CO2 diffusion was partitioned into the stomatal (L'sc), cell wall/plasma membrane 

(L'cw) and the chloroplast membrane components (L'mem) as shown in Figure 4.3. To compare 

mesophyll resistance directly to the stomatal resistance to CO2, values for the mesophyll 

conductance were multiplied by atmospheric pressure, to correct for bar-1 in the gm units. The 

fraction of stomatal resistance to CO2 was typically higher than the fraction of mesophyll 

resistance to CO2 (L'cw + L'mem) for most genotypes of common bean, faba bean and garden pea 

(except in ‘Gourmet Delight’ and ‘Vitalis’ of common bean and ‘Greenfeast’ of garden pea, 

where L'sc ≈ L'cw + L'mem). Among the field pea genotypes, L'sc was significantly lower than L'cw + 

L'mem for some genotypes, while stomatal and mesophyll resistances were of similar magnitude 
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for other genotypes (Figure 4.3d). Of the mesophyll resistance to CO2, L'cw > L'mem in faba bean 

genotypes, while L'cw ≈ L'mem for most of the genotypes in common beans, garden peas, and field 

peas. The proportion of cell wall/plasma membrane resistance was significantly higher than the 

proportion of chloroplast membrane resistance in ‘Vitalis’ and ‘Westralia’ (common beans), 

‘Greenfeast’ (garden pea) and in ‘Ovra’ (field pea). 

 

 Relationships between mesophyll conductance, photosynthetic rate and water use 4.3.3.

efficiency 

There was a significant positive relationship between Δ13C-gm and A across all the genotypes and 

species (Figure 4.4a, R2 =0.72, p<0.001). There was no significant relationship between Δ13C-gm 

and gsw or between Δ13C-gm and A/gsw (Figure 4.4b) across the genotypes. When genotype 

averages were calculated, stomatal conductance explained 57% of the observed variability in 

A/gsw (p<0.001). Within field peas, Δ13C-gm was weakly but positively correlated to A/gsw (R2 

=0.2, p=0.001), but not related to gsw across the genotypes. 

 

Genotypic variation in Vcmax was significant except for faba beans (Figure 4.5a, common beans:  

p=0.016, garden peas: p=0.003 and field peas: p <0.001). Jmax varied significantly between 

genotypes in common beans (p <0.035) and field peas (p <0.001) (Figure 4.5b). Similarly, 

variation in non-photorespiratory respiration rate was significant between genotypes in common 

beans (p <0.001) and field peas (p <0.001). Vcmax, Jmax and Rd also differed between species (p 

<0.001). Photosynthetic rate was positively related to both Vcmax (R2 = 0.60, p <0.001) and Jmax 

(R2 = 0.67, p <0.001) across all genotypes.  
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Genotype 

Figure 4.1 Light-saturated photosynthetic rate (A;a), stomatal conductance (gsw; b) and leaf-intrinsic water use 
efficiency (A/gsw; c) for common bean, faba bean, garden pea and field pea genotypes. Values are means ± s.e., n=6. 
Uppercase letters in the legend indicate significant differences (p<0.05) between species. Lowercase letters indicate 
significant differences (p<0.05) between genotypes within each species.  
The genotypes were: B1-Gourmet Delight, B2-Vitalis, B3-Westralia, B4-Brown Beauty, B5-Cherokee Wax, F1-
Cairo, F2-PBA Warda, G1- Greenfeast, G2-Dwarf Sugar Snap, G3-Blue Bantam, Fp1-Ovra, Fp2-Para, Fp3-Walana, 
Fp4-Twillight, Fp5-Yarrum, Fp6-08116, Fp7-Maki, Fp8-07126, Fp9-Gunyah and Fp10-Prlas. 
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Genotype 

Figure 4.2 Mesophyll conductance estimated from carbon isotope technique (Δ13C-gm; a), from oxygen isotope 
technique (Δ18O-gm; b) and chloroplast membrane conductance (gcm; c) for common bean, faba bean, garden pea and 
field pea genotypes. Values are means ± s.e., n=4-6. Uppercase letters in the legend indicate significant differences 
(p<0.05) between species. Lowercase letters indicate significant differences (p<0.05) between genotypes within 
each species. Asterisks mark the genotypes for which significant differences in Δ13C-gm and Δ18O-gm were found.  
The genotypes were: B1-Gourmet Delight, B2-Vitalis, B3-Westralia, B4-Brown Beauty, B5-Cherokee Wax, F1-
Cairo, F2-PBA Warda, G1- Greenfeast, G2-Dwarf Sugar Snap, G3-Blue Bantam, Fp1-Ovra, Fp2-Para, Fp3-Walana, 
Fp4-Twillight, Fp5-Yarrum, Fp6-08116, Fp7-Maki, Fp8-07126, Fp9-Gunyah and Fp10-Prlas. 
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Genotype 

 

 
 

Figure 4.3 Fractions of the stomatal, cell wall/plasma membrane and chloroplast membrane resistances to CO2 for 
common bean (a), faba bean (b), garden pea (c) and field pea genotypes (d). Values are means ± s.e., n=4-6.  
The genotypes were: B1-Gourmet Delight, B2-Vitalis, B3-Westralia, B4-Brown Beauty, B5-Cherokee Wax, F1-
Cairo, F2-PBA Warda, G1- Greenfeast, G2-Dwarf Sugar Snap, G3-Blue Bantam, Fp1-Ovra, Fp2-Para, Fp3-Walana, 
Fp4-Twillight, Fp5-Yarrum, Fp6-08116, Fp7-Maki, Fp8-07126, Fp9-Gunyah and Fp10-Prlas. 
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Figure 4.4 The relationships between mesophyll conductances estimated from the carbon isotope technique (Δ13C-
gm) and photosynthetic rate (A; a) and leaf-intrinsic water use efficiency (A/gsw; b) and between Δ13C-gm and 
mesophyll conductance from the oxygen isotope technique (Δ18O-gm; c) and the chloroplast membrane conductance 
(gcm; d) for common bean, faba bean, garden pea and field pea genotypes. Values are means ± s.e., n=4-6. Linear 
regressions are shown when significant (p<0.05). 
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Genotype 

Figure 4.5 Maximum carboxylation rate (Vcmax; a), electron transport rate (Jmax; b) and non-photorespiratory light 
respiration (Rd; c) at 25°C for common bean, faba bean, garden pea and field pea genotypes. Values are means ± 
s.e., n=3. Uppercase letters in the legend indicate significant differences (p<0.05) between species. Lowercase letters 
indicate significant differences (p<0.05) between genotypes within each species.  
The genotypes were: B1-Gourmet Delight, B2-Vitalis, B3-Westralia, B4-Brown Beauty, B5-Cherokee Wax, F1-
Cairo, F2-PBA Warda, G1- Greenfeast, G2-Dwarf Sugar Snap, G3-Blue Bantam, Fp1-Ovra, Fp2-Para, Fp3-Walana, 
Fp4-Twillight, Fp5-Yarrum, Fp6-08116, Fp7-Maki, Fp8-07126, Fp9-Gunyah and Fp10-Prlas. 
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 Discussion 4.4.

 

 gm varies within and among legume species 4.4.1.

In the present study, mesophyll conductance was estimated for different genotypes of four 

important crop legumes (common bean, faba bean, garden pea and field pea), grown and 

measured under non-limiting conditions. gm varied among the legume species, with significantly 

higher Δ13C-gm values in faba bean and garden pea than in common bean and field pea 

genotypes. Genotypic variation in Δ13C-gm was observed within each legume species except in 

common bean. Genotypic variation in gm has been reported for cereals (Centritto et al., 2009, 

Barbour et al., 2010, Gu et al., 2012, Jahan et al., 2014) and other crop species (Lauteri et al., 

1997, Galmés et al., 2011, Tomás et al., 2014). Flowers et al. (2007) found significant 

differences in gm between common bean genotypes only after exposure to high ozone 

concentration. More recently, Tomeo and Rosenthal (2017) reported genetic variation for gm in 

soybean edamame (Glycine max). gm values currently available in the literature for common 

bean show variability from 0.19 to 0.39 mol m-2 s-1 bar-1 (von Caemmerer & Evans, 1991, Hanba 

et al., 2003, Lucia et al., 2003, Singsaas et al., 2004, Flowers et al., 2007). gm values measured 

in faba bean genotypes in this study were slightly higher (0.5-0.8 mol m-2 s-1 bar-1) than the 

values reported in the other studies; 0.34 mol m-2 s-1 bar-1 (Loreto et al., 1992) and 0.46 mol m-2 

s-1 bar-1 (Terashima & Ono, 2002). These differences in gm among different studies may be due 

to the genotypes used in the studies or difference in the growth or measurement conditions or the 

gm estimation technique employed. Among field peas, A and gm values were higher in tare-leaf 

genotypes compared to the semi-leafless genotypes. Armstrong and Pate (1994) also found the 

highest mean photosynthetic rates of the leaflets or combined green area (leaflets + stipules + 

tendrils) for the tare-leaved field pea genotypes than for the semi-leafless types.  

 

Despite evidences for gm variability between and within species, regulation of gm is poorly 

understood. The observed variation in gm could result from variation in a number of leaf traits 

including leaf anatomical structure, particularly- the mesophyll structure, the surface area of 

chloroplasts exposed to the intercellular spaces (Sc), cell wall and chloroplast thickness, and 

chloroplast distributions spaces (Evans et al., 2009, Tosens et al., 2012b, Tomás et al., 2013), or 

the variation in enzymatic effects on membrane permeability (Hanba et al., 2004, Uehlein et al., 
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2008, Perez-Martin et al., 2014). Aquaporins (AQPs) are membrane proteins that facilitate 

membrane water transport (Maurel & Chrispeels, 2001). There is evidence that certain AQPs can 

facilitate CO2 permeation across the plasma and chloroplast membranes (Uehlein et al., 2003, 

Kaldenhoff, 2012, Mori et al., 2014, Maurel et al., 2015, Groszmann et al., 2017, Uehlein et al., 

2017, Zhao et al., 2017). Terashima and Ono (2002) provided indirect evidence regarding a 

possible role for aquaporins in faba beans and common beans by reducing mesophyll 

conductance to CO2 using a non-specific inhibitor of some aquaporins (HgCl2). Tomeo and 

Rosenthal (2017) reported that the genetic variation for gm was highly coordinated with leaf 

photosynthetic physiology and, to a lesser extent, with coarse leaf structure in soybean. 

 

 Genetic variation in gm may be related to chloroplast membrane conductance 4.4.2.

Gillon and Yakir (2000) proposed that the combined measurement of both Δ13C-gm and Δ18O-gm 

could be used to partition the total mesophyll conductance into cell wall/plasma membrane (gcw) 

and chloroplast conductance (gcm). In this study, Δ18O-gm was higher than Δ13C-gm for most of 

the genotypes (except Ovra genotype), indicating that CO2-H2O isotopic equilibration did not 

occur in the chloroplast. If the assumption of CO2-H2O equilibrium at the chloroplast surface 

(Gillon & Yakir, 2000) is true in these legume genotypes, then Δ18O-gm values relate to the cell 

wall and plasma membrane conductance to CO2. I did not find genetic variation for Δ18O-gm 

across the genotypes and species. The presence of genetic variation for total mesophyll 

conductance in faba bean, garden pea and field peas but no genetic variation in cell wall and 

plasma membrane conductance suggests that the variation in gm might be related to the variation 

in chloroplast membrane conductance, which might be due to variation in Sc or chloroplast 

membrane permeability via aquaporin.  

 

However, as Barbour et al. (2016b) highlighted, the interpretation of the Δ18O-gm should be 

made cautiously. Δ18O-gm relates to the conductance to CO2 from intercellular air spaces to the 

location of CO2-H2O equilibrium, which is influenced by the location and activity of carbonic 

anhydrase (CA). CA catalyses exchange of oxygen atoms from 18O-enriched water to leaf-

dissolved CO2 and has been reported to be localized to the chloroplast, the cytosol, the 

mitochondria and the plasma membrane in C3 plants (Fabre et al., 2007). If CO2 had fully 

equilibrated with H2O at the plasma membrane, then Δ18O-gm estimates in the present study 
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would relate to conductance through the cell wall only, and the observed variation in total 

mesophyll conductance in this study, might relate to plasma membrane permeability as well as 

chloroplast membrane permeability. 

 

Assuming CO2 equilibrates with water at the chloroplast surface, the results of this study 

suggested that the total diffusional resistance to CO2 is divided nearly equally between cell 

wall/plasma membrane and chloroplast membrane for most of the genotypes in common beans, 

garden peas, and field peas, while most resistance (65-70%) lies in cell wall/plasma membrane in 

faba bean genotypes. The fraction of cell wall/plasma membrane resistance was significantly 

higher in ‘Vitalis’ and ‘Westralia’ (common beans), ‘Greenfeast’ (garden pea) and in ‘Ovra’ 

(field pea).  The relative contribution of cell wall/plasma membrane and chloroplast membrane 

conductance has been found to vary among species. Gillon and Yakir (2000) have shown 

that gcw was lower than gcm in oaks, but gcm was lower than gcw in soybean and tobacco. Barbour 

et al. (2016b) calculated Δ13C-gm and Δ18O-gm in three C3 species and found that resistance is 

divided nearly equally between the cell wall/plasma membrane and the chloroplast membrane for 

tobacco, and 40% of the total resistance lies in the chloroplast membrane for cotton. Barbour et 

al. (2016b) did not find significant difference between Δ13C-gm and Δ18O-gm in wheat, and 

suggested that the assumption of equilibration at the chloroplast surface may be incorrect in 

wheat, as the chloroplast membrane must impose some resistance to diffusion in all species.  

 

Stomatal resistance played the most important role in CO2 diffusion in common bean, faba bean 

and garden pea genotypes, while mesophyll resistances were generally more important than 

stomatal resistances in field pea genotypes. Flexas et al. (2013a), in their review, also suggested 

that the most limiting of the conductances was dependent on the species and treatment. They 

reported that in grapevine genotypes, most genotypes under irrigation were most limited by gm, 

while under water stress, they were limited by stomatal conductance for CO2 (gsc); in tomato, all 

genotypes were mostly limited by gsc, while the rice genotypes were co-limited by the two 

conductances. 
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 The relationship between mesophyll conductance, photosynthetic rate and water use 4.4.3.

efficiency 

Significant positive correlations between photosynthetic rate and mesophyll conductance have 

been reported in many important crops. I also found a positive relationship between 

photosynthetic rate and mesophyll conductance across all the genotypes, as strong as reported in 

other crops (Barbour et al., 2010, Flexas et al., 2013a) and in soybean cultivars (Tomeo & 

Rosenthal, 2017). In the current study, gm was significantly, though not strongly, related to A/gsw 

across genotypes in field pea but not in other legume species or across species. Moreover, gm 

was not related to gsw within field pea or across species. Among the field pea genotypes, ‘Para’ 

had the highest A/gsw and was among the highest for A and gm and was among the lowest for gsw. 

Barbour et al. (2010) reported a positive correlation between gm and A/gsw in barley and 

suggested that breeding for higher gm has the potential to increase leaf WUE. Uncoupling gm and 

gsw would be advantageous for simultaneous increase of photosynthesis and WUE since high gm 

would allow high A but low gsw would prevent water loss (Barbour et al., 2010, Buckley & 

Warren, 2014, Cano et al., 2014, Flexas et al., 2016). Tomeo and Rosenthal (2017) found a 

strong positive correlation between mesophyll and stomatal conductance among soybean 

cultivars which may interfere with the potential to improve WUE through selection on gm in 

soybean. Correlations between gm and gsw have been found to differ between species and growth 

environments. Positive relationships between gm and gsw have been found in rice (Centritto et al., 

2009), barley (Barbour et al., 2010), tomato (Galmés et al., 2011) and wheat genotypes (Barbour 

& Kaiser, 2016), but the two conductances were unrelated in the wheat study by Jahan et al. 

(2014). In the present study, low gsw was more important in driving high A/gsw than was high gm 

across species, suggesting that increasing gm might improve A/gsw only if gsw remains unchanged.  

 

Regarding crop genetic improvement through gm, Barbour et al. (2016a) reported the first hints 

of genetic control of mesophyll conductance in common wheat. Peguero-Pina et al. (2012) 

observed that Abies alba had both larger maximum A and A/gsw than its closely related species, 

A. pinsapo, mostly due to larger gm which, in turn, was dependent on differences in leaf 

anatomical traits. Carbonic anhydrase catalyses the reversible interconversion of CO2 with 

HCO3
−, that differ in their diffusivities, pH and temperature dependencies (Flexas et al., 2012a). 

CA contributes to gm by maintaining a nearly constant CO2 concentration throughout the stroma, 
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allowing a more effective use of the available Rubisco (Tholen & Zhu, 2011, Flexas et al., 

2012a). Evidence for a correlation between CA and gm have been found (Gillon & Yakir, 2000, 

Perez-Martin et al., 2014), but genetic manipulation of CAs has resulted in small effects on gm 

and A (reviewed in Flexas et al. (2016)). Further, there is evidence of genetic manipulation of gm 

through altered aquaporin expression or activity (Hanba et al., 2004, Uehlein et al., 2008, Secchi 

& Zwieniecki, 2013, Sade et al., 2014). In most cases, manipulation of aquaporins resulted in 

increased gm and A, but with concomitant increases in gsw, which cancelled any improvements of 

A/gsw. However, Zhao et al. (2017) found very weak correlation between water and CO2 

permeability when measured using stopped flow on plasma membrane vesicles isolated from 

Pisum sativum and Arabidopsis thaliana leaves and suggested that aquaporins  may facilitate 

CO2 transport across plasma membranes, but probably via a different pathway than for water.  

 

 Conclusion 4.5.

I investigated the genotypic variability of Δ13C-gm and Δ18O-gm in important crop legume 

species. Δ13C-gm relates to the total mesophyll conductance to CO2 from the intercellular air 

spaces to the chloroplast stroma, while Δ18O-gm relates to the conductance to CO2 from the 

intercellular air spaces to the CO2–H2O equilibration, assumed to be at the chloroplast surface. 

Genotypic variability in Δ13C-gm was found in faba bean, garden pea and field pea but not in 

common bean. Δ18O-gm was mostly higher than Δ13C-gm suggesting that CO2 equilibrates with 

water outside the chloroplast for those genotypes. I did not find genetic variation in Δ18O-gm 

across species. This suggests that genetic variation in gm may be related to variation in 

chloroplast membrane conductance. The Δ18O technique has the potential to discern the relative 

importance of the gm components before and after CO2–H2O equilibration, which will advance 

our understanding of the mechanism of gm regulation. Future studies of genotypic variability in 

gm should include measurement of temperature response of Δ18O-gm or quantification and 

localization of CA activity to assess the location of CO2–H2O equilibration. Measurement of leaf 

anatomical properties including chloroplast thickness, Smes, Sc or membrane permeability to CO2 

through aquaporins would further help in assessing the importance of these traits on gm. gm was 

strongly associated with leaf photosynthetic rates, supporting the recognition of possibility of 

enhancing A through selection for increased gm. gm was significantly, though not strongly, related 

to A/gsw, but not related to gsw across genotypes within field pea, indicating that simultaneous 



49 
 

improvement of A and A/gsw may be possible in field peas.  However, gsw had a stronger effect 

on leaf water-use efficiency than did gm across species. Despite the complexity and a lack of 

complete understanding of the mechanistic basis of gm, the presence of genotypic variation in gm 

and the positive relationships between A and gm (within and among species) and A/gsw and gm (in 

field peas) demonstrate the potential of improving photosynthetic rates and leaf intrinsic water 

use efficiency within a crop improvement program.  
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5. Mesophyll conductance and leaf hydraulic conductance are not 

correlated in faba bean 
 

 Introduction 5.1.

Increasing crop yield, while improving water use efficiency (WUE), i.e., greater crop yield per 

unit water used, is one of the most important challenges for global food production under current 

and future climate conditions. Climate change predictions include altered precipitation patterns, 

rising temperatures and elevated CO2, which have markedly affected carbon and water balance 

and crop productivity (Postel, 2000, Rosenzweig & Hillel, 2008, Lobell et al., 2011, Penuelas et 

al., 2013, Bagley et al., 2015). In addition, an interaction between climate change and other 

environmental factors may intensify the adverse impacts (Penuelas et al., 2013, Xu et al., 2016). 

How plants leaves exchange and regulate water and CO2, and carbon and water balance is crucial 

to improve crop productivity and WUE. Coordination of CO2 and water exchange between the 

leaf and the atmosphere through the stomata is reasonably well understood (Collatz et al., 1991, 

Davies et al., 2002, Liu et al., 2005). However, we still lack a clear and complete understanding 

of the regulation of CO2 and water movement within the leaf, which may be useful information 

for the optimization of photosynthesis and WUE. 

 

After diffusing into the leaf through stomata, CO2 moves further from the substomatal cavities 

through intercellular air spaces then diffuses in the liquid phase through the mesophyll cell walls, 

plasma membrane, cytosol, and chloroplast envelope to finally reach the site of carboxylation 

inside the chloroplast stroma. The ease of CO2 diffusion from the substomatal cavities to the 

stroma constitute mesophyll conductance to CO2, abbreviated as gm (Evans et al., 2009). 

Mesophyll conductance is now recognized as a significant and variable limitation to 

photosynthesis (Flexas et al., 2008, Flexas et al., 2012a). Increasing gm will result in higher 

chloroplastic CO2 concentration and hence higher photosynthetic rates (A), without any effect on 

leaf transpiration rate, so may result in simultaneous increase in leaf intrinsic WUE (A/gsw) 

(Barbour et al., 2010, Flexas et al., 2010, Flexas et al., 2013a). gm varies widely between species 

or genotypes and in response to short term or long term changes in different abiotic factors 

(Flexas et al., 2008, Barbour et al., 2010, Barbour & Kaiser, 2016). The observed gm variability 

may be due to the variation in leaf anatomical properties, particularly chloroplast surface area 
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facing intercellular air spaces per unit of leaf area (Sc) and cell wall thickness (Tcw) (Evans et al., 

1994, Tosens et al., 2012a, Tosens et al., 2012b, Tomás et al., 2013) or due to changes in 

membrane permeability through plant aquaporins (Bernacchi et al., 2002, Hanba et al., 2004, 

Uehlein et al., 2008). Aquaporins (AQPs) are water channel proteins from a larger family of 

integral membrane proteins that facilitate the transport of water across membranes of plant cells 

(Maurel & Chrispeels, 2001), but certain AQPs have also been shown to facilitate CO2 transport 

across the plasma and chloroplast membranes (Terashima & Ono, 2002, Uehlein et al., 2003, 

Kaldenhoff, 2012, Mori et al., 2014, Maurel et al., 2015, Uehlein et al., 2017). 

 

Water moves through the xylem and then through the leaf mesophyll following, possibly, four 

alternative extra-xylary pathways for water movement to the sites of evaporation: liquid 

diffusion through the apoplast (cell walls), liquid diffusion through the symplast 

(plasmodesmata), transcellular transport (across membranes via aquaporin) (Steudle et al., 1993), 

and gas diffusion through the intercellular air spaces (Rockwell et al., 2014, Buckley, 2015). 

Leaf hydraulic conductance (Kleaf) is a measure of how efficiently water is transported within the 

leaf and includes the liquid water flow through xylem and extra-xylary components and vapour 

transport through internal air spaces (Sack & Holbrook, 2006, Buckley, 2015). Low Kleaf restricts 

water flow to the epidermis, which reduces stomatal conductance and photosynthesis (Brodribb 

& Holbrook, 2003, Locke & Ort, 2014). Kleaf has been shown to be highly variable, by more than 

65-fold across species, and this variation has been associated with the leaf morpho-anatomy 

including the variation in leaf thickness, leaf vein architecture, as well as the extra-xylary 

pathways through mesophyll to the sites of evaporation (Sack & Holbrook, 2006, Xiong et al., 

2015b). Kleaf has also been found to be relatively dynamic in response to various internal and 

external leaf environment e.g. temperature, irradiance and water availability (Sack & Holbrook, 

2006, Sellin & Kupper, 2007, Gortan et al., 2009, Sack & Scoffoni, 2012) either due to 

anatomical differences (Sack & Frole, 2006, Prado et al., 2013, Buckley et al., 2015) or due to 

changes in aquaporins expression and activity affecting the regulation of the transcellular 

pathway (Cochard et al., 2007, Baaziz et al., 2012, Lopez et al., 2013, Pou et al., 2013a).  

 

Within a leaf, CO2 and water vapour might share portions of their diffusion pathways (Ferrio et 

al., 2012). The outside xylem hydraulic conductance depends on mesophyll anatomy (e.g. leaf 
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thickness, airspace fraction, cell wall thickness) (Aasamaa et al., 2005, Buckley et al., 2015), 

which also influences gm. Flexas et al. (2013b) observed a generally positive relationship 

between gm and Kleaf across plant species. They showed that gm and Kleaf have widely agreed 

trends in response to a number of environmental variables such as temperature, light level and 

water status. They suggested one reason for the observed coordination may be due to the shared 

pathway for CO2 and water, most probably along the extra-xylary pathway of water. However, 

the Flexas et al. (2013b) suggestion was based on published studies measuring either gm or Kleaf 

but not both gm and Kleaf. After the review, a few studies have assessed the correlation between 

gm and Kleaf by simultaneously measuring these two parameters. Theroux-Rancourt et al. (2014) 

found that Kleaf decreased in concert with gsw with drought stress, whereas gm remained relatively 

constant up to a threshold gsw among poplar clones. On the other hand, (Xiong et al., 2017) 

observed a linear correlation between gm and Kleaf across rice cultivars and both the parameters 

were closely related to specific mesophyll structural traits such as cell wall thickness, fraction of 

leaf mesophyll volume occupied by intercellular air space, mesophyll and chloroplast surface 

area exposed to intercellular air space. More recently, Loucos et al. (2017) found a weak 

correlation between gm and Kleaf in cotton when variation was driven by leaf anatomy due to 

differing growth conditions. Analysis of the relationship between gm and Kleaf is still at an 

embryonic stage with conflicting results. Moreover, previous studies have shown that plant 

species or even genotypes differ in their response to changes in growth environments (Hanba et 

al., 2002, Barbour & Kaiser, 2016, Fini et al., 2016, Peguero-Pina et al., 2016). More studies on 

a range of species are needed to confirm the generality of the proposed coordination between gm 

and Kleaf.  

 

In this study, I assessed the responses of gm and Kleaf to changes in growth environment, created 

by varying growth irradiance and CO2 partial pressure, to create differences in leaf anatomy, 

physiology and biochemistry. The main objectives of this study were to determine if gm and Kleaf 

are correlated among faba bean (Vicia faba L.) genotypes grown under differing environments,  

and further, if Kleaf is correlated to the cell wall plus plasma membrane conductance in faba bean, 

as observed by Loucos et al. (2017) in cotton. I was also interested to see if gm scales with A and 

A/gsw under differing growth conditions. 
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 Materials and methods 5.2.

 

 Plant material and growth conditions 5.2.1.

The experiment was conducted in a controlled environment facility at the University of Sydney, 

Centre for Carbon Water and Food in Camden NSW, Australia. Seeds of five faba bean (Vicia 

faba L.) genotypes (PBA Rana, Cairo, PBA Warda, Doza and 220d) were obtained from the 

University of Sydney, I. A. Watson Grains Research Centre, Narrabri. The seeds were 

germinated in 7L pots filled with commercial potting mix supplemented with slow release 

fertilizer (Osmocote Exact, Scotts, NSW Australia). Plants were grown in two controlled 

environment rooms; with CO2 partial pressure (pa) set at 60.4 and 101 Pa respectively, and the 

average measured values of pa across the entire period were 66.4 and 126.8 Pa, respectively, 
within each room. Half of the plants in each room were covered in a shade-cloth to lower the 

irradiance levels for those plants, which produced photosynthetic photon flux density (PPFD) of 

approximately 200 μmol m-2 s-1 (low irradiance) and 600 μmol m-2 s-1 (high irradiance). Both 

rooms were set to a 16 h photoperiod, 27/19°C day/night temperature and 75% relative humidity 

(RH). The growth environments were set to be matched except for CO2 and light, however it is 

likely that temperature and RH varied a little between the environments. Hence, there was a need 

to be careful with data interpretation. After emergence, the plants were thinned to two per pot 

and were well watered throughout the experiment. Five genotypes (five individual plants each) 

were completely randomized within each growth environment.  

 

 Simultaneous gas exchange and mesophyll conductance measurements 5.2.2.

Five weeks after planting, leaf gas exchange, mesophyll conductance and leaf hydraulic 

conductance were measured under the four growth conditions. Five youngest fully expanded 

leaves per genotype per growth environment were used for gas exchange measurements using a 

LI-6400XT portable photosynthesis system (Li-Cor Biosciences, Lincoln, NE, USA) fitted with 

a custom-built leaf chamber with an area of 38cm2 (Barbour et al., 2007). The LI-6400XT was 

coupled to two laser absorption spectrometers; a Tunable-Diode Laser Absorption Spectrometer 

(TDL, model TGA100A, Campbell Scientific, Inc., Logan, UT, USA) and a Picarro water 

vapour laser (L1102-I, Picarro Inc., Sunnyvale, CA, USA), as described in Chapter 3.  
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The leaf chamber conditions were controlled to provide CO2 at a pa of 60.4 Pa or 101 Pa (using 

the Li-Cor CO2 mixer) and irradiance at 200 μmol m-2 s-1 or 600 μmol m-2 s-1 PPFD, matching the 

growth conditions. All the measurements were made at a leaf temperature of 25°C.The flow rate 

through the leaf chambers was maintained above 300 ml min-1 to provide sufficient flow for the 

TDL (250 ml min-1) and the Picarro (25 ml min-1). The airstream into the cuvette was dried of 

H2O, and thus the humidity of the air leaving the chamber was entirely derived from 

transpiration. Leaves remained in the chamber until a steady transpiration rate had been achieved 

(approximately 30 minutes). LI-6400XT data, TDL data and Picarro data were synchronized by 

matching timestamps of the measurements. After measuring the water potential, described later 

in this chapter, leaves were photographed and leaf area within the chamber was calculated from 

the digitized images of the leaf using ImageJ (1.45 s, NIH, Bethesda, MD, USA). Gas exchange 

variables were recalculated with the corrected leaf area.  

 

The TDL was calibrated using four calibration cylinders spanning the range in concentrations of 

the isotopologues of the leaf chamber inlet and outlet air streams. Absolute values of 12CO2, 
13CO2 and C18O16O were, respectively, 292.05, 3.17 and 1.20 ppm (for low concentrations), 

483.93, 5.26 and 1.99 ppm (for high concentrations), 127.79, 1.39 and 0.52ppm (for the lowest 

concentrations), 1132.43, 12.29 and 4.64 ppm  (for the highest concentrations). Carbon isotope 

ratios are presented relative to the Vienna Pee Dee belemnite standard and oxygen isotope ratios 

relative to the VSMOW standard. The Picarro water vapour laser was calibrated using two 

standard water samples of known isotopic values of -14.6 and -1.5‰ that spanned the range in 

δ18O of leaf chamber inlet and outlet air streams, following the procedure detailed in Simonin et 

al. (2013).  

 

Mesophyll conductance to CO2 (gm; μmol m-2 s-1 Pa-1) was estimated using the online carbon 

isotope discrimination (Δ13C) method and oxygen isotope discrimination (Δ18O) method as 

described in Chapter 3. CO2-H2O equilibrium was assumed to occur at the chloroplast surface, as 

suggested by  Gillon and Yakir (2000), and the chloroplast membrane conductance (gcm) was 

calculated from the combined measurements of Δ18O-gm and Δ13C-gm as described in Chapter 3.    

 

 



55 
 

 Leaf hydraulic conductance 5.2.3.

Leaf hydraulic conductance (Kleaf; mmol m-2 s-1 MPa-1) was determined using the evaporative 

flux method (Sack et al., 2002, Brodribb & Holbrook, 2003) calculated based on Ohm’s Law;  

𝐾leaf  = 𝐸
(ψstem −  ψleaf)�    

where E is the transpiration rate in mmol m-2 s-1,  Ψstem is the stem water potential in MPa and 

Ψleaf is the leaf water potential in MPa. When a steady transpiration rate was achieved at the 

conclusion of the gas exchange measurements, sample leaves were cut at the stem, removed from 

the leaf chamber and immediately wrapped in plastic film to measure Ψleaf using a Scholander 

pressure chamber (115, Soil Moisture Equipment, Santa Barbara, CA, USA). Ψstem was 

determined as the average water potential of the leaves immediately above and below the sample 

leaf. Leaves for stem water potential measurement were wrapped in plastic film and aluminium 

foil the night before measurement, and water potential was measured using the above-mentioned 

pressure chamber. 

 

 Leaf anatomy 5.2.4.

Five youngest fully expanded leaves from each genotype and growth treatment were used to 

measure leaf anatomy. Leaf samples were cut to 2 by 3 mm size, avoiding the major vein. 

Samples were fixed in 5 ml of buffer containing 2.5% glutaraldehyde, 3% formaldehyde, 0.01% 

Triton X and 2.5% sucrose using 50mM phosphate buffer solution, pH 7.2, and vacuum 

infiltrated overnight for a period of 18 hours. Samples were then washed twice for 10 minutes 

each in the phosphate buffer, and then post-fixed in 1% osmium tetroxide for 2 hours. Fixed 

sections were rinsed three times for 10 minutes each in sterile water, and dehydrated in an 

ethanol series (15, 30, 50. 75, 80, 90, 95 and 100%) for 10 min each, followed by two further 

rinses in 100% ethanol. Samples were then embedded in an LR White Resin (London Resin Co., 

London, UK) series (diluted in ethanol), first in 20% LR White overnight, then in 40, 60 and 

80% LR White for 2 hours each, followed by three 24-h periods in 100% LR White. Leaf 

sections were then placed in embedding moulds filled with LR White and oven baked at 60°C 

overnight in an oxygen free environment.  
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Embedded samples were sectioned at 0.5 μm on an ultramicrotome and imaged at 40× 

magnification on a light microscope (DM6000B, Leica Microsystems, Hesse, Germany) at the 

University of Sydney, the Australian Centre for Microscopy and Microanalysis in Camden 

NSW, Australia. A stitched image (using Adobe Photoshop; Adobe Systems Inc., San Jose, CA, 

USA), containing at least five vascular bundles, was obtained for each of three samples per leaf 

and analysed using ImageJ software (NIH, Bethesda, MD, USA). Leaf thickness, fraction of leaf 

mesophyll volume occupied by intercellular air space (fias), mesophyll surface area exposed to 

intercellular airspace (Smes), chloroplast surface area exposed to intercellular airspace (Sc) were 

estimated as described in Evans et al. (1994) using a curvature correction factor of 1.43. 

 

 Statistical analysis 5.2.5.

Leaves measured from each growth treatment were considered individuals and not replicates to 

avoid pseudo-replication (since growth treatments were not replicated). Relationships between 

the parameters were graphed for the individual leaves within each genotype using GraphPad 

Prism (Version 6.07, GraphPad Software Inc). Linear relationships and correlations were 

considered statistically significant when p < 0.05.  

 
 Results 5.3.

 

 Do genotypes differ in the degree to which leaf anatomy determines leaf internal 5.3.1.

conductances? 

Leaves from each growth treatment were considered individuals and the genotype averages of 

the measured variables and ANOVA are presented in Table 5.1 to demonstrate the general 

effects of the growth treatments on those variables. Growth environment significantly affected 

leaf anatomical properties including leaf thickness, surface area of mesophyll (Smes) and 

chloroplast exposed to the intercellular air spaces; (Sc) but did not alter the volume fraction of 

intercellular air space (fias) (Table 5.1). Overall, there was small but significant genotypic 

variability in leaf anatomy, nevertheless all the genotypes responded similarly to the growth 

environments (Table 5.1). There was a general trend of lower leaf thickness, Smes and Sc at 101 

Pa/200 PPFD and 60.4 Pa/200 PPFD compared to the leaf anatomy at 101 Pa/600 PPFD and 60.4 

Pa/600 PPFD.  There was also a considerable variability in leaf anatomical parameters between 
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the individual leaves within each genotype and growth conditions. I observed positive correlation 

between leaf thickness and Smes for all the genotypes, except for 220d; between leaf thickness 

and Sc, except for PBA Warda and 220d; and between Smes and Sc for all the genotypes.  

 

Similarly, leaf internal conductances including mesophyll conductance to CO2 measured from 

the carbon isotope method (Δ13C-gm), mesophyll conductance measured from the oxygen isotope 

method (Δ18O-gm), chloroplast membrane conductance (gcm) as well as leaf hydraulic 

conductance (Kleaf) showed significant variability among the growth environments (Table 5.1). 

Genotypes did not differ significantly for any of the leaf internal conductances across the growth 

conditions (Table 5.1). All the genotypes responded similarly to the growth conditions for the 

mesophyll conductance, with the highest measured values at 60.4 Pa/600 PPFD compared to 

other growth environmental conditions. Variation in Kleaf among the growth environment was 

significant for the genotypes PBA Warda and 220d. 

 

Genotypes differed in the relationships between environmentally driven changes in leaf anatomy 

and leaf internal conductances (Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4), with some 

genotypes showing weak but significant relationships while other genotypes showed no 

relationships.  Across growth environments, leaf thickness was positively related to Δ13C-gm 

(Figure 5.1), to Δ18O-gm (Figure 5.2) and to gcm (Figure 5.3) for PBA Rana and Cairo, but the 

relationships were not significant for other genotypes. Similarly, Smes and Sc were positively 

related to Δ13C-gm, Δ18O-gm and gcm only for Cairo, while gm was not linked to Smes or Sc in other 

genotypes. fias ranged from 0.4 to 0.8 but was not an important factor in explaining variation in 

gm. None of the genotypes showed any relationships between leaf thickness, fias or Sc with Kleaf 

(Figure 5.4). However, the relationship between Smes and Kleaf was significant for PBA Warda 

and 220d, but not for other genotypes. Overall, the present study showed that these 

environmentally driven leaf anatomical traits did not determine mesophyll conductance or leaf 

hydraulic conductance, except in some genotypes. Moreover, leaf anatomy was not the major 

factor determining gm or Kleaf in the genotypes which showed positive relationships between leaf 

anatomical traits and the internal conductances.  
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 Do genotypes differ in the importance of leaf anatomy on the relationships between 5.3.2.

gm and Kleaf?  

There was no relationship between Δ13C-gm and Kleaf or between Δ18O-gm and Kleaf across the 

growth conditions for each genotype (Figure 5.5) or all the genotypes combined. Δ13C-gm and 

Kleaf or Δ18O-gm and Kleaf were also not correlated within a growth environment. Changes in 

Δ13C-gm or Δ18O-gm due to differing growth environments were not paralleled by changes in Kleaf 

across the genotypes. Variability in Kleaf among the growth treatments was much smaller than the 

variability in Δ13C-gm or Δ18O-gm. 

 

 Are the components of gm closely correlated?  5.3.3.

Most of the Δ18O-gm measurements were significantly higher than Δ13C-gm measurements and 

the Δ13C-gm and Δ18O-gm were positively correlated (Figure 5.6). Assuming the CO2-H2O 

equilibrium occurred at the chloroplast surface, Δ18O-gm relates to cell wall and plasma 

membrane conductance and thus, chloroplast membrane conductance (gcm) was determined as 

described in Chapter 3. Δ18O-gm values were then plotted against gcm across the growth 

environment for each genotype. In general, there was a positive correlation between Δ18O-gm and 

gcm measurements but the data points were highly scattered around the 1:1 line (Figure 5.6). The 

linear regression slopes and intercepts were not significantly different between the genotypes, 

with the pooled slope=0.78 and the pooled intercept=0.47.  

 

 The relationships between gm and other leaf gas exchange parameters 5.3.4.

Growth environments significantly affected photosynthetic rate (A, p<0.001), stomatal 

conductance to water vapour (gsw, p<0.001) and leaf intrinsic water use efficiency (A/gsw, 

p<0.001), see Table 5.1.  Δ13C-gm was positively related to A (p<0.001, Figure 5.7A) and gsw 

(p<0.001, Figure 5.7B) but not related to A/gsw (Figure 5.7C) across the growth conditions and 

genotypes. Kleaf was very weakly correlated to A across growth conditions and genotypes (R2 = 

0.12, p=0.02), while the correlation was better at 60.4 Pa/600 PPFD environment (R2 = 0.44, 

p<0.001).   
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Table 5.1 Growth environment average (SE) of leaf gas exchange and leaf anatomical traits  

Growth 
environments 

A  
(µmol m-2 s-1) 

gsw  
(mol m-2 s-1) 

A/gsw 
(µmol 
mol-1) 

Δ13Cgm  
(µmol m-2 
s-1 Pa-1) 

Δ18Ogm 
(µmol m-2 
s-1 Pa-1) 

gcm (µmol 
m-2 s-1 Pa-1) 

Kleaf (mmol 
m-2 s-1 
MPa-1) 

leaf 
thickness 

(µm) 
fias 

Smes (µm2 
µm-2) 

Sc (µm2 
µm-2) 

101 Pa/600 PPFD 22.8 (0.6) 0.4 (0.03) 59 (4) 2.8 (0.3) 6.3 (0.6) 5.1 (0.8) 22.6 (0.9) 344 (13) 0.6 (0.01) 13.3 (0.5) 8.6 (0.6) 

101 Pa/200 PPFD 11.3 (0.9) 0.4 (0.02) 27 (2) 2.2 (0.2) 4.6 (0.3) 4.2 (0.5) 18.6 (0.7) 279 (9) 0.6 (0.01) 10.3 (0.3) 6.8 (0.3) 

60.4 Pa/600 PPFD 22.7 (0.8) 0.6 (0.03) 41 (2) 5.0 (0.2) 10 (0.5) 10.8 (0.8) 19.9 (0.9) 330 (9) 0.6 (0.01) 11.8 (0.3) 8.0 (0.4) 

60.4 Pa/200 PPFD 9.3 (0.2) 0.4 (0.03) 24 (2) 1.8 (0.1) 5.6 (0.5) 2.9 (0.3) 19.3 (0.7) 244 (7) 0.6 (0.01) 9.5 (0.3) 6.1 (0.5) 

ANOVA 
           Growth 

environments *** *** *** *** *** *** ** *** ns *** *** 
Genotypes ns ns ns ns ns ns ns (0.06) * * * 

Growth 
environments × 

genotypes ns ns ns ns ns ns ns ns ns ns ns 

Note: Within a genotype, leaves from each treatment are considered individuals and not replicates. Photosynthetic rate (A), stomatal conductance (gsw), leaf 
intrinsic water use efficiency (A/gsw), mesophyll conductance estimated from carbon isotope method (Δ13Cgm) and oxygen isotope method (Δ18Ogm), chloroplast 
membrane conductance (gcm), leaf hydraulic conductance (Kleaf), fraction of leaf mesophyll volume occupied by intercellular air space (fias), Surface area of 
mesophyll (Smes) and chloroplast exposed to intercellular air space (Sc). (n=15-20) 
*, p<0.05; **, p<0.01; ***, p<0.001. 
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Figure 5.1 Effects of leaf thickness, fraction of leaf mesophyll volume occupied by intercellular air space (fias), mesophyll cell surface area (Smes) and chloroplast 
surface area exposed to intercellular air space (Sc) on mesophyll conductance to CO2 (Δ13Cgm) for individual leaves of five faba bean genotypes grown under 
differing environments (n = 15-20). The solid lines indicate a significant linear regression.
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Figure 5.2 Effects of leaf thickness, fraction of leaf mesophyll volume occupied by intercellular air space (fias), mesophyll cell surface area (Smes) and chloroplast 
surface area exposed to intercellular air space (Sc) on mesophyll conductance estimated from oxygen isotope method (Δ18Ogm) for individual leaves of five faba 
bean genotypes grown under differing environments (n = 15-20). The solid lines indicate a significant linear regression.
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Figure 5.3 Effects of leaf thickness, fraction of leaf mesophyll volume occupied by intercellular air space (fias), mesophyll cell surface area (Smes) and chloroplast 
surface area exposed to intercellular air space (Sc) on chloroplast membrane conductance (gcm) for individual leaves of five faba bean genotypes grown under 
differing environments (n = 15-20). The solid lines indicate significant linear regressions.
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Figure 5.4  Effects of leaf thickness, fraction of leaf mesophyll volume occupied by intercellular air space (fias), mesophyll cell surface area (Smes) and chloroplast 
surface area exposed to intercellular air space (Sc) on leaf hydraulic conductance (Kleaf) for individual leaves of five faba bean genotypes grown under differing 
environments (n = 15-20). The solid lines indicate significant linear regressions.
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Figure 5.5 Relationship between mesophyll conductance estimated from carbon isotope method (Δ13C-gm) and 
leaf hydraulic conductance (Kleaf; a, c, e, g, i) and between mesophyll conductance estimated from oxygen 
isotope method (Δ18O-gm) and Keaf (b, d, f, h, j) for individual leaves of five faba bean genotypes grown under 
differing environments (n = 15-20). 
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Figure 5.6 Mesophyll conductance calculated using the Δ13C method (Δ13C-gm) plotted against mesophyll 
conductance calculated using the Δ18O method (Δ18O-gm; a, c, e, g, i) and chloroplastic membrane conductance 
(gcm; b, d, f, h, j) for five genotypes of faba bean. The solid line represents 1:1 line.  
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Figure 5.7 The relationships of mesophyll conductance to CO2 (Δ13C-gm) with photosynthetic rate (A, A), 
stomatal conductance to water vapour (gsw; B) and leaf intrinsic water use efficiency (A/gsw; C). 
 

 Discussion 5.4.

 

 Genotypes differed in the degree to which leaf anatomy influenced leaf internal 5.4.1.

conductances 

In the present study, five genotypes of faba bean were grown under four different 

environmental conditions, created by varying CO2 partial pressure and irradiance of the 

controlled growth rooms, in order to generate variation in leaf anatomy, physiology and 

biochemistry between the treatments. For each genotype, leaves measured from each growth 
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condition were considered individuals and not replicates to avoid pseudo-replication. I 

observed significant variability in leaf anatomical traits, mesophyll conductance to CO2 and 

leaf hydraulic conductance among the growth environmental conditions. There is substantial 

evidence for adaptive and acclimation responses of gm to growth environments such as 

irradiance, CO2 partial pressure, water stress, salinity (Flexas et al., 2008, Flexas et al., 

2012b). However, the mechanisms that regulate these variations are poorly understood. gm is 

determined by a series of physical barriers between the intercellular air space and chloroplast 

stroma, and thus leaf anatomical traits are expected to partly explain the variation in gm 

(Evans et al., 2009). In the present study, genotypes differed in the extent to which leaf 

anatomy determines gm. Leaf thickness, Smes and Sc were significantly related to Δ13C-gm and 

its components, Δ18O-gm and gcm across the growth environments for some genotypes but not 

for other genotypes. gm has been found to correlate with leaf anatomical traits in several 

studies (Evans et al., 1994, Scafaro et al., 2011, Terashima et al., 2011, Tholen & Zhu, 2011, 

Peguero-Pina et al., 2012, Tosens et al., 2012a, Xiong et al., 2015a, Peguero-Pina et al., 

2016, Xiong et al., 2017), but not in other studies (Evans & Vellen, 1996, Hanba et al., 2001, 

Hanba et al., 2002, Hanba et al., 2004, Miyazawa et al., 2008, Tomás et al., 2014).  The 

capacity to acclimate to different growth environments through changes in anatomical and 

physiological leaf traits may vary between plant species (Fini et al., 2016). In the present 

study, gm was not correlated with fias in any genotype, as reported by other studies (Evans, 

2009, Tomás et al., 2013), although recently,  a relationship between the two was found 

significant in Oryza cultivars (Xiong et al., 2017). fias measurements were higher than 

reported in other species, i.e. leaves are generally not densely packed, so these factors might 

be relatively less important in faba bean.  

 

The results of this study suggest that the studied leaf anatomical traits are not the major factor 

determining gm or its components in faba bean under the experimental conditions. The 

observed relationships in some genotypes were statistically significant but weak, implying 

that those leaf traits were not the only determining factor for gm. The observed response of gm 

to the growth conditions in this study may be due to the variation in other leaf traits like cell 

wall thickness or chloroplast thickness as observed in other studies (Tomás et al., 2013, Muir 

et al., 2014, Peguero-Pina et al., 2016). In the present study, leaf N content was significantly 

higher in 101 Pa/600 PPFD and 60.4 Pa/600 PPFD than other growth conditions, and might 

have played a role in gm response to the growth environments. Results from some studies 

indicate that gm is determined not by a single trait, but rather by trait covariation (Tosens et 
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al., 2012b, Giuliani et al., 2013, Muir et al., 2014). gm may also be affected by cell wall 

composition (Hanba et al., 2002, Flexas & Diaz-Espejo, 2015), or some biochemical factors 

affecting membrane permeability to CO2. gm response to the growth environments could also 

be due to changes in aquaporin expression and/or activity along plasma membrane and/or 

chloroplast membrane (Bernacchi et al., 2002, Hanba et al., 2004). 

 

The degree that mesophyll anatomy influences Kleaf is currently debated (Buckley et al., 

2015, Sack et al., 2015). In the current study, faba bean genotypes differed in the relationship 

between Smes and Kleaf, with some genotypes showing a weak but positive relationship across 

the growth environments but no link between the two in other genotypes. Xiong et al. (2017) 

also found significant relationship Smes and outside xylem component of Kleaf (Kox), and 

suggested that if the liquid water evaporates at the mesophyll surface along transport 

pathway, then an increase in the evaporating surface area, Smes, will increase Kox. 

Nevertheless, the site of evaporation is still not clear (Pieruschka et al., 2010, Buckley et al., 

2017), and recent modelling shows that water may evaporate deep within the leaf (cells near 

the vascular bundles) or near the stomata, and the sites of evaporation may depend on the 

resistances of different pathways through the tissues (Rockwell et al., 2014, Buckley, 2015, 

Scoffoni, 2015). 

 

Leaf thickness, Sc and fias were not related to Kleaf in any genotype of faba bean. Kleaf is 

composed of xylem and outside xylem components, and thus depends on multiple leaf 

structural traits. Water flow outside xylem is poorly understood. Once in the bundle sheath, 

water may move apoplastically (through the cell walls), symplastically (through 

plasmodesmata), or transcellularly (through aquaporins in cell membranes) (Steudle et al., 

1993) or through the intercellular air spaces in vapour phase (Buckley, 2015). The relative 

contribution of the xylem or outside xylem components to the total Kleaf as well as the relative 

contribution of different modes of water transport to flow outside the bundle sheath might 

affect the response of Kleaf to leaf anatomy (Buckley, 2015, Buckley et al., 2015, Sack et al., 

2015). In contrast to the current study, a few recent studies (Buckley et al., 2015, Xiong et 

al., 2017) have found significant effect of fias on Kleaf. A theoretical analysis by Buckley et al. 

(2015) found negative mechanistic effects of vertical pathlength (including leaf thickness) on 

the outside xylem hydraulic conductance, but no significant correlation between leaf 

thickness and simulated Kox across 14 diverse species, as the covariation of other traits 

compensated leaf thickness effects. Brodribb and Jordan (2011) reported that leaf thickness 
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could not explain the reduction in Kleaf in shade leaves of Nothofagus cunninghamii tree. 

Other studies (Sack et al., 2013, Xiong et al., 2015b) showed positive relationships between 

leaf thickness and Kleaf.  

  

Kleaf has also been shown to be related to regulation of aquaporins (Cochard et al., 2007, 

Baaziz et al., 2012). However Voicu et al. (2009) did not find correlation between light-

induced Kleaf and aquaporins in bur oak. They suggested that light may induce large ionic 

fluxes in the vascular bundles of the leaf (Shabala et al., 2002), which might influence xylem 

hydraulic conductance. Pou et al. (2013b) suggested that the role of aquaporin and the water 

pathway within a leaf also depends on the intensity and duration of stress. 

 

 Mesophyll conductance to CO2 and leaf hydraulic conductance are not related in 5.4.2.

faba bean 

Flexas et al. (2013b), a review, observed a general positive relationship between gm and Kleaf 

across species under non-limiting conditions, and suggested potential coordination between 

gm and Kleaf based on the shared pathway through the mesophyll cell walls and plasma 

membranes. Few published studies, following the review, have shown contrasting results 

(Theroux-Rancourt et al., 2014, Loucos et al., 2017, Xiong et al., 2017). Our results did not 

show any relationships between Δ13C-gm or Δ18O-gm and Kleaf across growth environments in 

faba bean genotypes. Environmentally driven leaf anatomy effects on Δ13C-gm or Δ18O-gm 

were not parallel to the anatomy effects on Kleaf. For example, in this study, Smes was related 

to gm only in Cairo but was related to Kleaf only in PBA Warda and 220d. Overall, gm and Kleaf 

did not share any of the studied anatomical determinants within each genotype. In contrary, 

Xiong et al. (2017) found a positive correlation between gm and Kleaf within Oryza genus 

across cultivars mediated by leaf anatomical and structural features. In their study, leaf 

anatomy including fias, cell wall thickness, Smes and Sc were significantly related to both gm 

and Kleaf (outside xylem). More recently, Loucos et al. (2017) found a weak correlation 

between Δ13C-gm and Kleaf in cotton (single genotype) when variation is driven by anatomy 

created by differing growth conditions (varying CO2 partial pressure and irradiance). 

Furthermore, Loucos et al. (2017) found a positive correlation between Δ18O-gm and Kleaf 

under both short-term environmental variation and growth conditions, suggesting a 

coordination between gm and Kleaf across cell wall and plasma membrane. In contrast, 

measurements of Δ18O-gm in faba bean in the current study did not show a correlation 

between cell and plasma membrane conductance and Kleaf.  
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Although mesophyll conductance for water and CO2 did not respond similarly to the growth 

conditions and gm and Kleaf were not correlated in faba bean genotypes in this study, coupling 

between water and CO2 pathways or regulation may occur in response to other environmental 

variables or in other species. Theroux-Rancourt et al. (2014) found a linear relationship 

between gm and Kleaf as drought developed in poplar, but the timing of the changes in gm and 

Kleaf were not coincident in that study, supporting the hypothesis of a partial hydraulic 

isolation of the mesophyll from the main transpiration pathway. Ferrio et al. (2012) 

demonstrated a strong linear relationship between gm and Kox and the effective path length (L) 

for water transport from xylem vessels to the sites of evaporation in grapevines only when 

Kleaf fell below certain threshold point as a result of water stress, while gm and Kox were not 

related above this point. Therefore, in the latter two studies, we can see that gm and Kleaf were 

not conclusively correlated.  

 

The lack of correlation between gm and Kleaf in this study may suggest an independent 

regulation of CO2 and water in faba bean under the growth conditions. Aquaporins are the 

most abundant protein belonging to membrane intrinsic proteins family that facilitate 

transport of water as well as dissolved gases such as CO2 (Maurel et al., 2015, Groszmann et 

al., 2017, Uehlein et al., 2017). However, the role of aquaporins in membrane CO2 transport 

is yet to be fully and conclusively determined. Recently,  Zhao et al. (2017) measured water 

and CO2 permeability (Pos, PCO2) using stopped flow spectrofluorimetry on plasma membrane 

vesicles isolated from Pisum sativum and Arabidopsis thaliana leaves and  found a weak 

positive correlation between Pos and PCO2. They suggested that aquaporins may facilitate CO2 

transport across plasma membranes, but probably via a different pathway than water since 

inhibitors of Pos did not alter PCO2. Recently, von Caemmerer and Evans (2015) confirmed 

that the temperature response of gm differed greatly between species, emphasizing the lack of 

complete understanding of the mechanistic bases of gm responses. Likewise, water movement 

pathways outside the xylem are complex and poorly understood, and potentially vary strongly 

across species due to anatomical variation including vein length per unit area and mesophyll 

anatomy (Sack & Holbrook, 2006, Buckley et al., 2015). The location of the phase change 

between liquid and vapour is still not clear (Pieruschka et al., 2010, Buckley et al., 2017). 

The differences in results for gm and Kleaf correlation between studies could also be due to the 

variation in the hydraulic conductance outside the xylem. Whether the lack of the relationship 

in our study is due to the isolation of the CO2 and water pathway or due to the independent 

regulation of CO2 and water (e.g. through aquaporins) is uncertain. 
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 Are the components of gm closely correlated?  5.4.3.

In the present study, total mesophyll conductance measured from the carbon isotope method 

(Δ13C-gm) was partitioned into conductance from the intercellular air space to the site of CO2-

H2O isotopic equilibrium (Δ18O-gm) and conductance from CO2-H2O equilibrium to the 

chloroplast stroma, using the two isotope methods (Barbour et al., 2016b). Δ18O-gm 

measurements were significantly higher than Δ13C-gm measurements across genotypes and 

growth environments, indicating that CO2-H2O isotopic equilibration did not occur in the 

chloroplast and thus the partitioning technique is feasible in faba bean under the growth 

conditions. Assuming the CO2-H2O equilibrium occurred at the chloroplast surface (as 

assumed by Gillon and Yakir (2000)), total mesophyll conductance was partitioned into cell 

wall and plasma membrane conductance (Δ18O-gm) and chloroplast membrane conductance 

(gcm). Previously, two studies (Barbour et al., 2016b, Loucos et al., 2017) had partitioned 

Δ13C-gm into Δ18O-gm and gcm on different crop species. However, as Barbour et al. (2016b) 

highlighted, the interpretation of Δ18O-gm should be made cautiously. CA has been localized 

to the chloroplast, the cytosol, the mitochondria and the plasma membrane in C3 plants (Fabre 

et al., 2007), which means that CO2-H2O isotopic equilibration can occur at the plasma 

membrane and Δ18O-gm could relate to conductance through the cell wall only. On the other 

hand, if CA activity within the leaf is mostly in the chloroplast, then CO2 would be fully 

equilibrated with chloroplastic water only, and the partitioning technique would not be 

feasible. Further, low carbonic anhydrase activity could result in incomplete equilibrium 

between CO2 and H2O leading to an underestimation of Δ18O-gm (Barbour et al., 2016b). 

 

When compared across growth environments, cell wall/plasma membrane conductance and 

chloroplast membrane conductance varied similarly with growth environmental changes 

across faba bean genotypes. In contrast,  Loucos et al. (2017) observed higher sensitivity of 

chloroplast membrane conductance to growth environment in a single cotton genotype. 

Differences in the results between the studies might be due to species-related differences. In 

the current study, Smes and Sc were weakly but significantly related to gm components only in 

Cairo, while overall, variation in leaf anatomical traits did not explain the observed variation 

in gm and its components, suggesting the gm response to the growth environment might reflect 

the changes in both plasma membrane and chloroplast membrane permeability.  

Simultaneous measurement of Δ18O-gm and Δ13C-gm is a promising area of research towards 

a better understanding of the relative magnitude of gm determinants. There are very few 

studies examining the responsiveness of gm components to different environmental condition. 
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More studies on the covariation of Δ18O-gm and gcm on a range of species and short term and 

long term environmental conditions are needed, and assessment of the location and activity of 

carbonic anhydrase would assist in correctly interpreting the results. 

 

 Water use efficiency under the growth conditions 5.4.4.

Improving water use efficiency has been a primary target for plant breeders and physiologists 

under the global climate change scenario. In line with these previous studies on elevated CO2 

(Ainsworth & Rogers, 2007, Leakey et al., 2009), I observed the highest  photosynthetic rates 

and leaf WUE (due to low gsw) for plants grown at elevated CO2/high irradiance environment 

followed by ambient CO2/high irradiance conditions. There has been growing interest in gm 

for increasing photosynthesis and leaf water use efficiency. I observed a  positive relationship 

between photosynthetic rate and mesophyll conductance across the growth environments and 

genotypes, as reviewed in Flexas et al. (2008). In the present study, gm was related to gsw but 

not related to A/gsw.  Manipulation of aquaporins has been shown to result in increased gm 

and A, but the concomitant increase in gsw may cancel any improvement in A/gsw (reviewed in 

Flexas et al. (2016)). Several studies have shown a correlation between gm and gsw (Flexas et 

al., 2002, Flexas et al., 2008, Centritto et al., 2009, Barbour et al., 2010, Galmés et al., 2011, 

Perez-Martin et al., 2014, Olsovska et al., 2016), prompting suggestions of co-regulation 

(Perez-Martin et al., 2014, Olsovska et al., 2016) while some studies did not find a 

correlation between gm and gsw (Bunce, 2009, Jahan et al., 2014). Several studies have 

highlighted that the combination of low gsw and high gm would produce high water-use 

efficiency (Barbour et al., 2010, Buckley & Warren, 2014, Cano et al., 2014, Flexas et al., 

2016). Our results suggest that gm plays an important role in regulating photosynthetic 

capacity of faba beans under varying growth conditions. However, stomatal conductance has 

a stronger effect on leaf intrinsic water-use efficiency than mesophyll conductance under the 

growth conditions.  

 

 Conclusions 5.5.

Mesophyll conductance to CO2 (gm) and leaf hydraulic conductance (Kleaf) are two important 

leaf variables that influence CO2 and water transport within the leaf respectively and thus 

have potential to improve plant productivity. Variation in gm and Kleaf was measured 

simultaneously across faba bean genotypes grown and measured under differing conditions. 

Our results showed that leaf anatomy, gm and Kleaf underwent modification in response to 

changes in growth environments but genotypes differed in the degree to which variation in 
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leaf anatomy explained variation in gm or Kleaf. Further, the effects of environmentally driven 

leaf anatomy were not parallel between gm and Kleaf. Nevertheless, the changes in leaf 

anatomical traits could not explain the observed variability in the leaf internal CO2 and H2O 

conductance, which implies that other leaf traits including biochemical changes might be 

involved. As opposed to a review across species and published studies within a genus or 

species and different environments, I did not find any correlation between Δ13C-gm and Kleaf 

or between Δ18O- gm and Kleaf across the growth conditions in faba bean genotypes. The 

differences in results for gm and Kleaf correlation between studies could be related to species 

specific differences in gm and Kleaf regulation. The lack of the relationships in our study might 

be due to the isolation of the CO2 and water pathways or due to the independent regulation of 

CO2 and water. Further research could focus on understanding the water pathways and its 

regulation, particularly outside xylem and on unravelling the mechanistic basis of gm 

regulation (which can vary within and among species) to further understand if and to what 

extent CO2 and water coordinated within a leaf. Moreover, gm was related to photosynthetic 

rates, but the co-regulation of gm and gsw might imply a trade-off between photosynthesis and 

WUE under the growth conditions.  
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6. Response of mesophyll conductance to abiotic factors in chickpeas 
 

 Introduction 6.1.

Mesophyll conductance to CO2 (gm), which regulates the diffusion of CO2 from sub-stomatal 

cavities to the carboxylation site, is now recognized as a significant and variable limitation to 

photosynthesis (Flexas et al., 2008, Flexas et al., 2012a), and affects water and nitrogen use 

efficiencies (Barbour et al., 2010, Buckley & Warren, 2014, Flexas et al., 2016). gm is a 

combination of gaseous diffusion through the intercellular airspaces and diffusion in the 

liquid phase through the mesophyll cell walls, plasma membrane, cytosol and chloroplast 

envelope to chloroplast stroma (Evans et al., 2009) and thus may be determined by complex 

traits including leaf anatomical and biochemical properties. Understanding the gm response to 

environmental and physiological changes is imperative for incorporating gm into 

photosynthesis models (which previously regarded gm as infinite) and thus to accurately 

predict the carboxylation rate (Niinemets et al., 2009a). The effects of different 

environmental factors on gm have been reported in several important crop species and are 

reviewed by Flexas et al. (2013).  

 

Light is the driving force of photosynthesis, but light intensity and light quality vary widely 

in both time and space. It is therefore important to understand whether plants have the ability 

to dynamically regulate the CO2 diffusion through the mesophyll in response to short-term 

changes in light intensity. Positive relationships between the gm and light intensity have been 

observed in several species (Gorton et al., 2003, Flexas et al., 2007, Douthe et al., 2011, 

Douthe et al., 2012, Xiong et al., 2015a) but not in others (Tazoe et al., 2009, Yamori et al., 

2010). There has been speculation that rapid change in gm with light intensity is a 

methodological artefact (Tholen et al., 2012, Gu & Sun, 2014). The two most commonly 

used methods for estimating gm are (i) gas exchange in combination with 13C isotope 

discrimination (Evans et al., 1986), and (ii) gas exchange in combination with chlorophyll 

fluorescence (Harley et al., 1992). Both methods rely on models for the calculation of gm and 

are sensitive to variation in the values of the model parameters (Pons et al., 2009). Evans 

(2009) used a multilayer leaf model to suggest that an apparent dependence of gm (calculated 

from fluorescence measurements) on irradiance or CO2 may be produced if CO2 

concentration at the sites of carboxylation within chloroplasts (Cc) varies with depth through 

the mesophyll. Douthe et al. (2012) reported that the gm response to irradiance is unlikely to 
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be a computation artefact since using different values for the parameters of the discrimination 

model did not affect the relative response to irradiance in Eucalyptus species, except for 13C–
12C fractionation during carboxylation (b).  

 

The mechanism of gm responses to rapid changes in environment is not yet clear but could be 

due to the changes in membrane permeability through CO2-transporting aquaporin or 

carbonic anhydrase (Hanba et al., 2004, Perez-Martin et al., 2014) or changes in chloroplast 

size and position (Tholen et al., 2008, Li et al., 2012). Positional movements of chloroplasts 

are known to be influenced by blue light (Kagawa & Wada, 2002, Banaś et al., 2012). 

Chloroplasts accumulate at illuminated cell areas under weak light while they move away 

from blue light under strong light. This avoidance response to blue light reduces chloroplast 

surface area facing intercellular air spaces (Sc) and might thus reduce gm. A few studies have 

examined the effect of light colour on gm (Loreto et al., 2009, Pallozzi et al., 2013) and found 

that the exposure to blue light rapidly reduces gm. However, they suggested that this gm 

reduction was faster than any possible chloroplast redistribution and thus might be related to 

aquaporin.   

 

Recent work has shown that gm response to environmental factors can be genotype- and 

species-dependent. von Caemmerer and Evans (2015) demonstrated that short-term response 

of gm to temperature differs greatly between species, with some species showing a strong 

response while others showing almost no change. Barbour and Kaiser (2016) found genotypic 

variation in the gm response to nitrogen and water availability in wheat. Genotypic variation 

in gm has been observed in other important crop species (Barbour et al., 2010, Gu et al., 2012, 

Jahan et al., 2014, Tomás et al., 2014, Olsovska et al., 2016). Moreover, plants might 

respond to multiple stresses differently to their response to an individual stress. In a study by 

Xiong et al. (2015a), rapid responses of gm to changes of CO2 concentration, temperature and 

light intensity were affected by nitrogen supplements in rice, and gm was more sensitive to 

these factors in plants with high nitrogen than with low nitrogen. Galle et al. (2009) showed 

that gm response to drought in tobacco depends on the prevailing environmental conditions. 

Under prolonged water stress, they observed long-lasting decline of gm even during the water 

stress acclimation period in outdoor plants in summer while gm recovered completely in 

plants in the growth chamber. Thus, it is important to determine if the relationship between 

gm and light intensity holds under different growth conditions and for different genotypes. 
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Generally, grain legumes have received less attention than cereals in studies of gm regulation. 

Grain legumes are the primary affordable sources of proteins and minerals and thus play a 

key role in human nutrition, particularly in developing countries (Broughton et al., 2003, 

Graham & Vance, 2003, Foyer et al., 2016, Temba et al., 2016). These crops also fix 

relatively large amounts of atmospheric nitrogen, playing an important role in enhancing the 

productivity and potential sustainability of farming systems (Evans et al., 1991, Howieson et 

al., 2000, Graham & Vance, 2003, Crews & Peoples, 2005, Peoples et al., 2009, Foyer et al., 

2016). Chickpea (Cicer arietinum L.) is the second most important legume crop in the world 

and third most important pulse crop (Kaur et al., 2016). The global demand for chickpea is 

projected to be 18.3 million tons in 2050 compared with a supply of 9.4 million tons in 2010 

(Krishnamurthy et al., 2013). Grain legumes including chickpea are mostly grown as 

intercrop with cereals, and so share the same environments. Legumes are sensitive to reduced 

light level and often suffer due to shading caused by the associated crop in the intercropping 

system (Akhter et al., 2009). The collective yield losses due to abiotic stresses (6.4 million 

tonnes) are somewhat higher than due to biotic stresses (4.8 million tonnes), as estimated by 

Ryan (1997). Among the abiotic stresses, drought is almost ubiquitous to major chickpea 

growing regions. Drought leads to a 40-50% reduction in yield globally (Ahmad et al., 2005). 

Moreover, approximately 90% of world’s chickpea is grown rain-fed (Kumar & Abbo, 2001) 

and is cultivated mostly in the arid and semiarid regions of the world (Kashiwagi et al., 

2015). Yields can be improved by increasing water use efficiency, which is lower for 

chickpeas than for other cool season pulses such as field pea and faba bean (Knight, 2000). 

Water stress has often been shown to reduce gm (Flexas et al., 2008), but recent studies have 

shown that gm is less sensitive than stomatal conductance (gsw), particularly during moderate 

water stress (Bunce, 2009, Flexas et al., 2010, Theroux-Rancourt et al., 2014). Chickpeas can 

derive their nitrogen requirements from symbiotic nitrogen fixation (Lodeiro et al., 2000). 

However, nitrogen fixation has a higher energetic cost compared to soil mineral N uptake and 

assimilation (Andrews et al., 2009). Lodeiro et al. (2000) compared drought tolerance in 

nitrogen-fixing and inorganic nitrogen-grown common beans but the response of gm to 

nitrogen source has not been examined to date.  

 

Here, I conducted two experiments on different genotypes of chickpeas to understand their 

responses to growth environment. The first experiment investigated the interactive effects of 

genotype and water availability on the response of gm to short-term changes in light intensity 

and light quality. The second experiment examined the interactive effects of genotype and 
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nitrogen source (biologically fixed or inorganic-N-supplied) on the response of gm to rapid 

changes in light intensity. I also assessed the influence of gm on leaf intrinsic water-use 

efficiency in both experiments. 

 

 Materials and Methods 6.2.

 

 Plant material and experimental arrangements  6.2.1.

Experiment 1: Water availability 

I used three chickpea genotypes: Amethyst (kabuli type), PBA Slasher and Sonali (desi type) 

for the first experiment. Seeds were obtained from the University of Sydney, I. A. Watson 

Grains Research Centre, Narrabri. Seeds were germinated in 7 L pots filled with commercial 

potting mix supplemented with slow release fertilizer (Osmocote Exact, Scotts, NSW, 

Australia). Plants were grown in a controlled-environment growth cabinet at the University of 

Sydney, Centre for Carbon, Water and Food (Camden, NSW, Australia). The growth cabinet 

was set to 25/17°C day/night temperature, 75% relative humidity, 700 µmol m-2 s-1 

photosynthetic photon flux density at plant height and 14 h photoperiod. After emergence, the 

plants were thinned to two per pot and were well-watered until two watering treatments were 

imposed. The pots in each watering treatment (3 genotypes × 3pots/6 replicate plants) were 

arranged in a completely randomized design.  The watering treatment was imposed at 18 days 

after planting (DAP) when all the plants were at the vegetative stage: (i) one-half of the plants 

were kept well-watered by daily watering (WW); and (ii) the other-half were exposed to 

water stress (WS) by withholding water until the first sign of temporary leaf wilting point. 

Leaf water potential (Ψleaf) of upper fully expanded leaves was measured to monitor the 

water-stress intensity using a Scholander pressure chamber (115, Soil Moisture Equipment, 

Santa Barbara, CA, USA) and following the precautions recommended by Turner (1988). 

The measurements were performed on lateral branches for each genotype. 

 

At the temporary wilting point (7 days after the start of the water stress treatment), average 

leaf water potentials for WW and WS plants were -0.6 and -1.2 MPa respectively, i.e. the WS 

plants were moderately stressed. The weight of each WS pot at this point was designated as 

the target weight for the pot. The soil moisture content of the WS pots was maintained 

gravimetrically throughout the measurement period by weighing each pot daily at one hour 

after the start of the light period and adding water to replace water transpired and evaporated. 
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Experiment 2: Nitrogen source 

The second experiment was carried out with three chickpea genotypes; Flip079C (kabuli 

type) and the two desi types used in the first experiment, PBA Slasher and Sonali. The study 

was conducted in a controlled growth room with environmental condition similar to 

Experiment 1 except photosynthetic photon flux density was 200 µmol m-2 s-1 at plant height. 

Plants were grown in 7 L pots, filled with washed river sand (N-free media) and lined with 

approximately 2.5 cm of gravel on the bottom of the pots. Five seeds were sown per pot and 

thinned to two seedlings per pot after 2 weeks. The two nitrogen source treatment was (i) 

inoculation with Rhizobium spp. without mineral N supply (N-fixing) and (ii) 2.5mM 

NH4NO3 supplied (N-fed). One-half of the seeds of each genotype (N-fixing treatment) were 

inoculated with a peat-based Nodule N Rhizobium immediately before sowing, while the 

other half (N-fed) were uninoculated. The plants in both N treatments were provided with 

quarter-strength Herridge N-free mineral nutrient solution (Herridge, 1977): CaCl2·2H2O 250 

µM, KCL 250 µM, KH2PO4 125 µM, K2HPO4 125 µM, MgSO4·7H2O 500 µM, FeEDDHA 

25 µM and Trace Elements 25 µM (H3BO3 2.86 mg L−1, MnCl2·4H2O 1.81 mg L−1, 

ZnCl2 0.11 mg L−1; CuCl2·2H2O 0.05 mg L−1; Na2MoO4·2H2O 0.025 mg L−1).  

 

For the first 10 days after planting, KNO3 0.5mM was included in the nutrient solution as 

“starter nitrogen” to help the plants establish until the inoculated plants were nodulated. 

Plants in both the treatments received the same nutrient solution during this period. All the 

pots were then flushed with pure water to wash away any nitrogen residues from the media. 

Thereafter, NH4NO3 2.5mM was included in the nutrient solution only for the NH4NO3-fed 

plants while the N2-fixing plants received the N-free solution. The pots in each N treatment (3 

genotypes × 3pots/6 replicate plants) were placed on separate benches to avoid mixing of the 

throughfall waters and contamination of uninoculated pots. All the plants were watered with 

the nutrient solution in excess to avoid water stress at all times.  

 

 Simultaneous gas exchange and mesophyll conductance measurements 6.2.2.

Experiment 1:  

Leaf gas exchange and mesophyll conductance measurements were conducted 5 weeks after 

planting. A LI6400XT portable photosynthesis system (Li-Cor Biosciences, Lincoln, NE, 

USA), equipped with a custom-built leaf chamber of area 38 cm2 (Barbour et al., 2007) and 

red-green-blue light source (Li6400 18A), was coupled to a Tunable-Diode Laser Absorption 

Spectrometer (TDL, model TGA100A, Campbell Scientific, Inc., Logan, UT, USA) as 
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describe in Chapter 3. Two calibration cylinders were used to calibrate the TDL. Absolute 

values of 12CO2, 13CO2 and C18O16O were, respectively, 287.07 ppm, 3.28‰ and 1.18‰ for 

low concentrations and 477.57 ppm, 5.44‰ and 1.94‰ for high concentrations. The leaf 

chamber conditions were controlled to provide CO2 concentration of 400 µmol mol-1, flow 

rate of 500 μmol s-1 and a leaf temperature of 25°C for all the measurements. For the leaf 

responses to rapidly changing light intensity and light colour, simultaneous leaf gas exchange 

and isotopic discrimination measurements were made in the order 950, 700 and 400 μmol m-2 

s-1, sequentially under red light and then under blue light. The blue light had a peak emission 

at 457 nm, with a range from 424 to 524 nm, while the red light peak emission was centred at 

636 nm, ranging from 584 to 661 nm. The leaves remained in the chamber for at least 15 

minutes at each ‘light intensity-colour’ step. The measurements were made for both the well-

watered and water-stressed plants. The uppermost fully expanded leaves of the primary 

branches were used for each set of measurements. For the leaves not covering the entire leaf 

chamber, leaf area within the chamber was calculated from the digitized images of the leaf 

using ImageJ (NIH, Bethesda, MD, USA) and the gas exchange variables were recalculated 

with the corrected leaf area. Mesophyll conductance was estimated with an online carbon 

isotope discrimination method using the experimental set-up as described in Chapter 3. Leaf 

water potential (Ψleaf) was measured for all leaves immediately after gas exchange 

measurements. 

 

Experiment 2:  

Leaf gas exchange and mesophyll conductance measurements were performed as for 

Experiment 1, except that the light colour was set to 10% blue and 90% red. The rapid 

response of gas exchange and gm was measured by varying the light intensity within the leaf 

chamber in the order 1000, 800, 600, 400, 300 μmol m-2 s-1. The measurements were made 

for plants in both N treatments. Along the entire set of measurements, CO2 concentration in 

the sample cell was maintained at 400 µmol mol-1, flow rate at 500 μmol s-1 and leaf 

temperature at 25°C.  

 

 Crop traits 6.2.3.

For Experiment 2, the youngest fully expanded leaf samples were collected after the gas 

exchange measurements and were oven dried at 65 °C for 72 hours. Samples were then 

ground to a fine powder and analysed for total N content (N%), 15N composition and 13C 

composition using isotope ratio mass spectrometry (Delta V, Thermo Fisher Scientific, 
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Bremen, Germany). The plants were harvested, cleaned of root media and roots were washed. 

Roots and nodules were separated and oven dried at 65 °C for 72 hours for measurement of 

dry weight. The proportion of N derived from N-fixation (%Ndfa) for the N-fed plants was 

determined using the δ15N Natural Abundance Method (Unkovich et al., 2008). 

 

%Ndfa =  𝛿
15N of soil N−𝛿15N of N2 fixing legume

𝛿15N of soil N−𝛿15N of N2 
 × 100

1
  

 

where δ15N of N2 fixing legume represents the δ15N value of the non-inoculated legume 

supplied with NH4NO3 , and δ15N of N2 is the δ15N value of the inoculated legume grown 

with atmospheric N2 as the sole source of N. δ15N of soil N (NH4NO3 fertilizer supplied to N-

fed plants) was estimated using isotope ratio mass spectrometry. 

 

 Statistical analyses 6.2.4.

Significant differences between values were assessed using general analysis of variance, as 

implemented by GenStat 14th edition (VSN International Ltd, London, UK), and means were 

compared using Fisher’s Unprotected least significant difference test. Differences were 

considered statistically significant when p < 0.05. Regression lines were compared using a 

general linear regression procedure.  

 

 Results 6.3.

 

 Response of leaf gas exchange and gm to growth and measurement conditions 6.3.1.

Experiment 1 

Net CO2 assimilation rate (A) was significantly affected by dynamic changes in light 

intensity, light colour and by water availability (Table 6.1, Figure 6.1). The mean value of A 

significantly declined with the decrease in light intensity across genotypes, but I found 

significant interactive effects of light intensity by light colour (p<0.05) and by water stress 

(p<0.001). Sensitivity to light intensity was greater for the WW plants measured under red 

light than for the WS plants or when the plants were measured under blue light. Switching 

from red light to blue light reduced A at all light intensities in both WW and WS plants across 

genotypes. I observed genotypic variation in the response of A to water stress (p<0.001). 

Sonali was more responsive to water stress than the other two genotypes. In PBA Slasher, 

water stress reduced A only when measured under red light, while Amethyst was not affected 
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under any light environment. Light intensity and light colour did not affect stomatal 

conductance (Figure 6.1). However, WS plants had significantly lower gsw than the WW 

plants across genotypes and the light treatments. Water stress lowered leaf water potential, 

Ψleaf (p<0.001). The average Ψleaf for WW and WS plants were -0.66 and -1.32 MPa 

respectively, but I did not find any differences between genotypes. 

 

Light intensity, light colour and water availability significantly affected gm (Figure 6.1). gm 

declined with the decrease in light intensity at each light colour for both WW and WS plants 

across three genotypes (Table 6.1). When genotypes and treatments were analysed separately, 

the linear relationships between gm and light intensity (regression fitted to the individual data) 

were significant at each light colour and water treatment except for the WS plants in PBA 

Slasher and Sonali when measured under blue light (data not shown). Blue light reduced gm 

across the genotypes and water treatments (Table 6.1). However, when genotypes and 

treatments were separately analysed, the reduction of gm under blue light was not significant 

at lower light intensities in Amethyst and for WS plants in Sonali (Figure 6.1).  

 

Similarly, there was a significant interactive effect of genotype by water stress by light colour 

(p=0.008) for gm. Water stress reduced gm only in Sonali when measured under red light. gm 

was unaffected by water availability under blue light in Sonali and under any light colour in 

the other two genotypes. Under WW conditions, significant differences among the genotypes 

were found for A, gsw and gm, and Sonali had the highest A, gsw and gm compared to the other 

genotypes. Under WS conditions, differences among the genotypes were non-significant for 

A and gsw, while average gm was the lowest for Sonali. PBA Slasher had the highest leaf 

intrinsic WUE (A/gsw) but the difference among the genotypes was statistically significant 

only under WS conditions. Overall, genotypes differed in their interactive response to water 

stress, light intensity and light colour, and Sonali was more sensitive to growth and 

measurement conditions. 

 

Experiment 2 

Photosynthetic rate (A) was significantly affected by rapid changes in light intensity and by 

nitrogen source, and there was a significant light intensity by nitrogen source effect for A, 

p=0.001 (Table 6.2, Figure 6.2). The mean value of A significantly declined with the decrease 

in light intensity across genotypes, but not when light was decreased from 1000 to 800 µmol 

m-2 s-1. N-fixing plants had lower A than N-fed plants only at higher light intensities from 600 
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µmol m-2 s-1 in Flip079C and from 800 µmol m-2 s-1in PBA Slasher and Sonali, and were 

unaffected at lower intensities. There was a genotype by light intensity effect for gsw 

(p=0.014). gsw declined with decreasing light intensity for PBA Slasher and Flip079C but 

Sonali was unaffected. Overall average gsw was higher for N-fixing plants than for N-fed 

plants but the differences were not significant for each genotype.  

 

Light intensity and nitrogen source significantly affected gm. gm declined with a decrease in 

light intensity across the genotypes and nitrogen treatments (Table 6.2, Figure 6.2); gm values 

at 300 µmol mol-1 were significantly lower than the values at 800 or 1000 µmol mol-1. When 

individual genotypes were separately analyzed, gm sensitivity to light intensity was altered by 

Nitrogen source in Flip079C and Sonali but not in PBA Slasher. The linear relationships 

between gm and light intensity (regression fitted to the individual data) were significant for N-

fed plants of each genotype (Flip079C: p<0.001, PBA Slasher: p<0.05 Sonali: p<0.001), 

while in N-fixing plants, the linear relationship between gm and light intensity was significant 

only for PBA Slasher (p<0.001) but not for the other two genotypes.  Similarly, there was a 

significant interactive effect of genotype by nitrogen source (p<0.05) for gm. Nitrogen source 

did not affect gm for PBA Slasher and Sonali across different light intensity. However, N-

fixing Flip079C plants had significantly lower gm values than N-fed Flip079C plants when 

data from all the light intensities were pooled together (p<0.05) as well as at higher light 

intensities. Genotypes differ significantly in their photosynthetic capacity as in Experiment 1. 

Sonali had higher overall average A, gm and A/gsw than the other genotypes and PBA Slasher 

had higher gsw.  

 

 Correlations among gm, photosynthetic parameters and leaf N content 6.3.2.

When genotype and treatment averages were calculated, both gm and gsw were positively 

related to A, and the correlation between A and gm (Experiment 1: p<0.001, R2=0.82 and 

Experiment 2: p<0.0001, R2=0.64; Figure 6.3, Figure 6.4) was stronger than the correlation 

between A and gsw (Experiment 1: p<0.0001, R2=0.43 and Experiment 2: p<0.006, R2=0.24). 

In Experiment 1, the regression lines were also separately fitted to the WW and WS plants. A-

gm relationships for both WW (p<0.0001, R2=0.82) and WS plants (p<0.0001, R2=0.85) were 

stronger than A-gsw relationships for WW (p<0.01, R2=0.52) and WS plants (p<0.001, 

R2=0.45). In Experiment 2, A was more closely related to gm (p<0.0001, R2=0.68) than to gsw 

(p<0.0192, R2=0.35) for N-fed plants, while A was more strongly related to gsw (p<0.0001, 

R2=0.73) than to gm (p<0.0014, R2=0.56) for N-fixing plants.  There was no relationship 
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between gm and gsw in either experiment (p>0.05). gm was positively correlated with A/gsw for 

both WS (p<0.0001, R2=0.81) and WW plants (p=0.0002, R2=0.59), when genotype and light 

treatment averages were calculated.  

 

Leaf N content (%N), calculated for Experiment 2, was affected by the nitrogen treatments 

(p<0.001) and was significantly lower for N-fixing (4.6%) than for N-fed plants (6.5%). The 

relationships between %N and A were positive when all the data were pooled together 

(p<0.0001, R2=0.51) or when averages were calculated for each nitrogen treatment (p=0.02 

for N-fed and p=0.002 for N-fixing) (Figure 6.5). I did not find any relationship between gm 

and %N (Figure 6.5).  

 

 Leaf carbon and nitrogen isotope composition  6.3.3.

Leaf carbon (δ13C) and nitrogen isotope (δ15N) compositions were measured for Experiment 

2. There was a significant interactive effect of genotype by nitrogen source for δ13C 

(p=0.015). N-fixing plants had lower δ13C than N-fed plants for Flip079C and PBA Slasher 

but not for Sonali (Figure 6.6). Across the nitrogen treatments, genotype average Δ13C 

(assuming δ13Cair was -14‰) in the leaf dry matter was not related to genotype averages of 

A/gsw, the ratio of intercellular to ambient CO2 partial pressure (Ci/Ca) and the ratio of 

chloroplastic to ambient CO2 partial pressure (Cc/Ca) (Figure 6.6).  

 

Leaf δ15N should be close to that of the leaf N source/s under ideal conditions (Ariz et al., 

2015). Leaves of N-fixing plants were depleted in 15N compared to N-fed leaves (p<0.001; 

1.8‰ N-fed and -1.8‰ for N-fixing leaves) indicating that different nitrogen sources were 

used (Figure 6.7). The δ15N value of NH4NO3 fertilizer supplied to N-fed plants was 2.4‰. 

N-fed PBA Slasher and Sonali had δ15N values close to that of the fertilizer indicating 

negligible N derived from N-fixation (%Ndfa). %Ndfa for PBA Slasher and Sonali was 6.2% 

and 9.3% respectively. The δ15N value of N-fed Flip079C (1.3‰) was lower than that of the 

fertilizer and so the proportion of N derived from N-fixation was higher, at 25%. There was 

no correlation between the leaf carbon and nitrogen isotope composition.  

 

There was no significant nitrogen source or genotype effect for root dry weight but there was 

a significant nitrogen source by genotype effect for nodule weight (p=0.003). N-fed plants 

were not inoculated but some nodulation was observed in these plants (Figure 6.7).  

However, the nodule size and number for N-fed plants was less than a tenth that in N-fixing 
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plants (p<0.001). In N-fed plants, PBA Slasher had greater nodule biomass than the other two 

genotypes but the nodule biomass did not differ between genotypes in N-fixing plants.  

 
Table 6.1 Effects of light intensity, light colour, water stress and genotypes on net photosynthetic rate (A), 

stomatal conductance to water vapour (gsw) and mesophyll conductance to CO2 (gm). 
The degree of freedom (df) for light intensity=2, light colour=1, water stress=1 and genotypes=2.  

    A gsw gm 

Light intensity F 205.78 NS 41.43 

 

p <.001 NS <.001 

Light colour F 365.35 NS 157.79 

 

p <.001 NS <.001 

Water stress F 120.97 250.92 5.96 

 

p <.001 <.001 0.016 

Genotypes F 10.7 20.32 3.18 

 

p <.001 <.001 0.044 

Light intensity × light colour F 6.19 NS NS 

 

p 0.003 NS NS 

Light intensity × water stress F 8.64 NS NS 

 

p <.001 NS NS 

Light colour × water stress F 20.02 NS 2.61 

 

p <.001 NS (0.10) 

Light intensity × genotypes F NS NS NS 

 

p NS NS NS 

Light colour × genotypes F NS NS NS 

 

p NS NS NS 

Water stress × genotypes F 21.57 3.62 22.72 

 

p <.001 0.029 <.001 

Light colour × water stress × 
genotypes 

F 2.31 NS 4.92 
p (0.1) NS 0.008 
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Figure 6.1 Leaf gas exchange of three chickpea genotypes grown under well-watered or water-stressed 
conditions and measured under varying light intensities and light colour. Means and s.e. are shown (n=5-6). 
Letters indicate significant differences (p<0.05) between the treatments within each genotypes. 
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Table 6.2 Effects of light intensity, nitrogen source and genotypes on net photosynthetic rate (A), stomatal 
conductance to water vapour (gsw) and mesophyll conductance to CO2 (gm)  
The degree of freedom (df) for light intensity=4, nitrogen source=1 and genotypes=2.  

  
A gsw gm 

Light intensity F 160.16 15.71 15.76 

 

p <.001 <.001 <.001 

Nitrogen source F 61.28 19.99 12.97 

 

p <.001 <.001 <.001 

Genotypes F 23.04 8.88 30.71 

 

p <.001 <.001 <.001 

Light intensity × nitrogen source F 4.94 NS NS 

 

p 0.001 NS NS 

Light intensity × genotypes F NS 2.55 NS 

 

p NS 0.014 NS 

Nitrogen source × genotypes F NS 2.77 3.62 

  p NS (0.067) 0.03 
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Figure 6.2 Leaf gas exchange of three chickpea genotypes grown under two nitrogen source treatments and 
measured under different light intensities. Means and s.e. are shown (n=5-6). Letters indicate significant 
differences (p<0.05) between the treatments within each genotypes. 
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Figure 6.3 The relationships between gm and photosynthetic rate (A; A) and stomatal conductance (gsw; B) for 
three chickpea genotypes grown under well-watered or water-stressed conditions and measured under varying 
light intensities and light colour. Values are means  ± s.e  at each light intensity, n = 5-6. The solid line in plot A 
indicates a significant linear regression (p ≤ 0.001, R2 =0.82). 
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Figure 6.4 The relationships between gm and photosynthetic rate (A; A) and stomatal conductance (gsw; B) for 
three chickpea genotypes grown under two nitrogen source treatments and measured under different light 
intensities. Values are means ± s.e at each light intensity, n = 3-6. The solid line in plot A indicates a significant 
linear regression (p < 0.0001, R2 =0.64). 
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Figure 6.5 Relationships between leaf N content and photosynthetic rate (A; A) and mesophyll conductance to 
CO2 (gm; B), measured at 1000 µmol m-2 s-1 PPFD, for three chickpea genotypes grown under two nitrogen 
source treatments. The solid line in plot A indicates a significant linear regression (p < 0.0001, R2 =0.51). 
 

 

 
Figure 6.6 Relationship between Δ13Cl in leaf dry matter and the instantaneous ratios Ci/Ca (A) and Cc/Ca (B) in 
three chickpea genotypes grown under two nitrogen source treatments. Gas exchange parameters were measured 
at 400 µmol m-2 s-1 PPFD. n = 3-5. 
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Figure 6.7 Crop traits of three chickpea genotypes grown under two nitrogen source treatments. Means and s.e. 
are shown (n=5-6). Letters indicate significant differences (p<0.05) between the treatments. 
 

 Discussion 6.4.

 

 Genotypes differ in their gm response to water availability and nitrogen source 6.4.1.

Two experiments were conducted to investigate the interactive effects of genotype and 

growth environment on the response of gm to measurement light intensity in chickpea. In the 

first experiment, the plants were either well-watered or water-stressed while in the second 

experiment, the plants were either NH4NO3-fed or biologically-fixing N. Two genotypes, 

Sonali and PBA Slasher, were common between the two experiments. Although the absolute 

value varied between the experiments, Sonali had the highest gm value under optimum 

growth conditions in both the experiments. Overall, gsw was higher for the plants in 

Experiment 2 than those in Experiment 1, perhaps due to the lower growth light level. 

 

In the first study, moderate water stress was imposed on four-week old plants for few days. 

Restricted CO2 diffusion across the leaves, due to reduced stomatal and mesophyll 

conductance, has been found to be one of the major causes of photosynthesis reduction under 

moderate water stress, while the responses of these two conductances have been found to 

depend on the intensity and the duration of the stress (Grassi & Magnani, 2005, Flexas et al., 

2008, Centritto et al., 2009, Loreto et al., 2009, Flexas et al., 2012b, Olsovska et al., 2016). 

Water stress resulted in a reduction in gsw by more than 2-fold in all the genotypes in this 
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study, while genotypes differed in the responses of gm and A to water stress. Water stress 

reduced gm only in Sonali and by 1.7-fold. Water stress has often been shown to reduce gm as 

reviewed by Flexas et al. (2008). Recently, gm has been found to be less sensitive than gsw to 

limited water availability, particularly during moderate water stress (Grassi & Magnani, 

2005, Perez-Martin et al., 2014, Theroux-Rancourt et al., 2014). In the study by Bunce 

(2009), water stress did not affect gm in soybean (Glycine max L. Merr.) at a stress level, 

which reduced gsw by about 80%, though gm decreased substantially under severe stress. 

Barbour and Kaiser (2016) did not find a significant effect of drought on gm in wheat 

(Triticum aestivum L.) genotypes. On the other hand, Olsovska et al. (2016) observed that 

moderate water stress conditions reduced gm twice as much as gsw in four winter wheat 

genotypes from different origins. These differences in the gm responses between the studies 

could be due to the intensity and/or duration of stress or be related to species/genotype 

specific differences. I found significant genotypic variation for gm in both well-watered and 

water-stressed plants, as reported previously in several publications (Barbour et al., 2010, Gu 

et al., 2012, Jahan et al., 2014, Tomás et al., 2014, Olsovska et al., 2016). However, the 

variability was not similar between the two water treatments. Sonali had the highest gm 

compared to the other genotypes in WW conditions, while gm was the lowest for Sonali when 

water-stressed, suggesting that Sonali is more sensitive to water stress conditions. gm for the 

other two chickpea genotypes were not affected by water stress. I also observed stronger 

correlation between A and gm than between A and gsw in both WW and WS plants. 

 

The responses of gm to water stress could be due to changes in their leaf anatomical 

properties. gm has been found to be strongly correlated with cell wall thickness (Tcw) and 

chloroplast surface area exposed to intercellular air spaces per unit of leaf area (Sc) which can 

affect effective diffusion path length and area for CO2 diffusion (Evans et al., 1994, 

Terashima et al., 2005, Tholen et al., 2008, Terashima et al., 2011, Tomás et al., 2013, 

Peguero-Pina et al., 2016). Water stress has been shown to reduce Sc and increase Tcw 

resulting in reduced gm in Populus tremula (Tosens et al., 2012a). However, gm variability 

between cultivars was not associated with leaf anatomical variability in other studies 

including Acer (Hanba et al., 2002), wheat (Evans & Vellen, 1996) and grapevine (Tomás et 

al., 2014). Tomás et al. (2014) did not find any effect of water treatments on the distribution 

of chloroplasts in grapevines (Vitis vinifera L.) and speculated that the observed variations of 

gm might be the result of genotype-dependent and water stress-induced differences in cell and 

chloroplast membrane permeability. 
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There are studies suggesting that aquaporins (AQPs), which can facilitate CO2 transport 

across the plasma and chloroplast membranes (Terashima & Ono, 2002, Uehlein et al., 2003, 

Kaldenhoff, 2012, Mori et al., 2014, Maurel et al., 2015), might be involved in gm regulation 

under water stress (Miyazawa et al., 2008, Perez-Martin et al., 2014, Han et al., 2016). 

Deokar and Tar'an (2016) performed a comprehensive genome-wide analysis of the chickpea 

aquaporin (CaAQPs) gene family and suggested a potential role of some CaAQPs in drought 

stress response in chickpea. A strong correlation has also been found between gsw and some 

particular AQPs during water stress and recovery in grapevines (Pou et al., 2013b). The 

response of aquaporin gene expression to water stress can vary considerably depending on 

the duration and intensity of stress (Tyerman et al., 2002, Galmés et al., 2007), and 

expression of different AQPs in response to drought stress may differ between genotypes 

(Almeida-Rodriguez et al., 2010). Recently, Zhao et al. (2017) found a weak positive 

correlation between water and CO2 permeability and thus suggested that aquaporins may 

facilitate CO2 transport across plasma membranes, but probably via a different pathway than 

water. These complex patterns of AQP expression complicate our understanding of the 

potential relationship between aquaporin and mesophyll conductance to CO2. In addition, 

carbonic anhydrases (CAs), which consist of a large family of proteins located in multiple 

sites within plant cells (Fabre et al., 2007), may have a role in the regulation of gm through 

the establishment of the dynamic equilibrium between CO2 and HCO3
− (Tholen & Zhu, 2011, 

Flexas et al., 2012a), but their role could be species dependent (Gillon & Yakir, 2000). 

However, the data are limited and contradictory. Perez-Martin et al. (2014) found that CA 

expression had a small but significant effect on gm in olive (Olea europaea) under water-

stress conditions, while Han et al. (2016) showed that expression of CA may not be important 

in the regulation of gm under drought pretreatment conditions in cotton (Gossypium hirsutum 

L.). Recently, CA has been shown to interact with AQP regulating stomatal closure in 

response to internal leaf CO2 concentrations (Wang et al., 2016). The coupling of CA and 

aquaporin could enhance gm by creating a CO2 concentration gradient adjacent to the 

chloroplast membranes (Groszmann et al., 2017). 

 

The second experiment showed that the genotypes differed in their gm response to nitrogen 

source. The cultivar Flip079C had higher gm when fertilized with nitrogen than when 

nitrogen was fixed by Rhizobium inocula. Nitrogen source did not affect gm for PBA Slasher 

and Sonali. There are no published studies on variability of gm between N-fixing and 

inorganic N-fed legumes, nevertheless, reduced nitrogen availability has been shown to 



94 
 

reduce gm in several species (Warren, 2004, Bown et al., 2009, Li et al., 2012, Xiong et al., 

2015a). Positive correlations between gm and leaf N content have been observed in non-N-

fixing species (Li et al., 2009, Yamori et al., 2010, Xiong et al., 2015a). I found higher A (at 

higher light intensities) and leaf N content in N-fed plants than in N-fixing plants for all three 

genotypes. Lodeiro et al. (2000) compared drought tolerance in nitrogen-fixing and inorganic 

nitrogen-grown common beans and found that growth and N content were significantly 

higher in NH4-NO3 sufficient beans than in N-fixing beans. I found a significant positive 

correlation between A and leaf N content for both N-fed and N-fixing chickpeas, as reported 

in many other studies (Evans, 1989, Reich et al., 1994, Li et al., 2009, Yamori et al., 2010), 

due to the dependence of photosynthesis on nitrogenous compounds. But recently, Adams et 

al. (2016) reported that A and gsw are not correlated to nitrogen per leaf area for most N-

fixing plants. I did not find any relationship between leaf N content and gm across the 

genotypes, although both gm and leaf N content were higher for N-fed Flip079C than for the 

N-fixing plants. Warren (2004) found a large positive response of photosynthesis to nutrient 

supply, whereas nutrient supply had a small and inconsistent effect on gm and gsw. N-gm 

relationships were generally weak when different studies were compared. Leaf N content 

explained only 11% of gm variability in wheat genotypes in the study by Barbour and Kaiser 

(2016).  

 

The mechanism of gm regulation under different nitrogen sources is unclear. There are no 

published studies to date on the response of gm to N-fixing versus NH4NO3-fed (non-

inoculated) plants. Increased gm in response to higher nitrogen availability has been shown to 

be strongly correlated to increases in Sc in rice (Xiong et al., 2015a). Chloroplast downsizing 

has also been found to play a role in the regulation of gm in response to drought and reduced 

nitrogen availability (Li et al., 2012). Leaf ultra-structural properties of the genotypes were 

not examined in this study, and future work should investigate genotypic variation in leaf 

anatomy to understand the regulation of gm in response to these growth conditions. As for the 

biochemical component of gm, Warren (2004) suggested that a correlation between nutrient 

supply and leaf contents of carbonic anhydrase and/or aquaporins seems unlikely since 

carbonic anhydrase and aquaporins have a very low N cost. On the other hand, several studies 

have shown that aquaporin gene expression in the root system (Clarkson et al., 2000, Guo et 

al., 2007, Ishikawa-Sakurai et al., 2014, Ren et al., 2015) or in the stem xylem (Hacke et al., 

2010) is affected by nitrogen supply and/or nitrogen forms in the medium. Li et al. (2009) 

speculated that chloroplast PIPs might be regulated by different N status in rice leaves. 
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Whether mesophyll conductance is limited by nitrogen investment in one or more enzymes or 

membrane proteins remains to be investigated further.  

 

Despite a lack of clear understanding of the underlying mechanisms of gm regulation under 

water stress or different nitrogen sources, genetic variability of gm observed in this study 

offers a potential target for improving photosynthetic rate and WUE simultaneously within 

crop breeding programs. 

 

 gm increases with increasing light intensity  6.4.2.

In experiment 1, leaves were measured under red or blue light, while in experiment 2, a red-

blue light source was used to measure the effect of light intensities. There was a decline in A 

and gm with decreasing light intensity for all the genotypes in both experiments, as has been 

previously reported (Flexas et al., 2008, 2011, Douthe et al., 2012). In both of my 

experiments, gm was significantly different only between the highest and the lowest light 

intensity (with an average change of ≈40% between 950 and 400 µmol mol-1 in the first 

experiment, and an average change of ≈48% between 1000 and 300 µmol mol-1 in the second 

experiment). The sensitivity of the light response in our study was different from that 

observed by Douthe et al. (2011) and Douthe et al. (2012) in Eucalyptus species. They found 

a positive relationship between gm and light intensity at low light intensities (i.e. when light 

intensity was lowered from 600 or 500 to 200 µmol mol-1) but constant at higher light 

intensities. However, some studies did not find a dependence of gm on measurement light 

intensity (Tazoe et al., 2009, Yamori et al., 2010). The dissimilarity in results may be related 

to species-specific differences and the range in light intensity used.  

 

The mechanism of gm responses to dynamic changes in light environment is not yet clear.  

Rapid responses of gm to environmental factors have been attributed to carbonic anhydrase 

and aquaporins. Nicotiana tabacum aquaporin NtAQP1 has been reported to be directly 

involved in mesophyll conductance to CO2 (Flexas et al., 2006, Uehlein et al., 2008) and 

light-regulation sites were found on the promoter sequence of NtAQP1 (Siefritz et al., 2004). 
In Juglans regia, transcript abundance of two aquaporin isoforms was substantially up-

regulated by light (associated with light-induced leaf hydraulic conductance), and this light 

effect occurred in the short term (within minutes) (Cochard et al., 2007, Baaziz et al., 2012). 
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The negative effect of blue light on A and gm in our study was in accordance with previous 

studies in Nicotiana tabacum, Platanus orientalis (Loreto et al., 2009) and Populus × 

canadensis and Quercus ilex (Pallozzi et al., 2013). gm was measured from chlorophyll 

fluorescence-based method in these two studies and Loreto et al. (2009) demonstrated that gm 

response to blue light is real although approximately half of the observed effect of blue light 

on gm might be due to experimental artefacts. Nevertheless, the two methods, which rely on 

substantially different assumptions, but produce similar results, support the observed 

response of gm to light. The reduction of gm under blue light could be related to chloroplast 

movement away from blue light, the avoidance response, to avoid photodamage to the 

photosynthetic machinery. The phototropin photoreceptor, phot2 mediates blue-light-induced 

chloroplast movement in most green plant species (Kagawa & Wada, 2002, Suetsugu & 

Wada, 2012). The avoidance response would result in lower Sc under high blue light, as 

reported by Tholen et al. (2008) in Arabidopsis thaliana. Sc has been found to be positively 

correlated with gm (Evans et al., 1994, Tholen et al., 2008, Peguero-Pina et al., 2016). 

Nevertheless, Gorton et al. (2003) did not find any effect of chloroplast movement on the 

liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis. They used pulsed 

photoacoustics to measure oxygen diffusion times as a proxy for CO2 diffusion in leaf cells. 

Another study showed that the rapid reduction of gm under blue light in Nicotiana and 

Platanus leaves was faster than any possible chloroplast movements and the response was 

still observed after the chloroplast movement inhibition (Loreto et al., 2009). The response of 

gm to blue light might have been caused by as yet unknown factors affecting aquaporin-

facilitated CO2 diffusion in the mesophyll (Kaldenhoff, 2012). 

 

 Genotypes differ in the interactive response of gm to light colour, intensity and 6.4.3.

water availability 

In the present study, there was a significant interactive effect of genotype by water stress by 

light colour for gm. Water stress reduced gm only in Sonali and the reduction was significant 

only when measured under red light. The linear relationships between gm and light intensity 

were significant at each light colour and water treatments except for the water-stressed PBA 

Slasher and Sonali when measured under blue light. Previous studies have also found that 

genotypes and species may vary in their response to environmental conditions. Recently, 

Barbour and Kaiser (2016) observed that wheat genotypes differ in the interactive response of 

gm to N and water availability. von Caemmerer and Evans (2015) observed that the 

temperature response of gm differed greatly between species, and proposed that variation in 
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the gm response may be due to variation in the activation energy for membrane permeability 

to CO2 (suggesting the involvement of fast biochemical components like aquaporins in the 

regulation of gm) and the effective pathlength for liquid phase diffusion (referring mostly to 

the cell wall thickness). Pallozzi et al. (2013) found the negative impact of blue light on gm 

depends on the light intensity and the effect was significant only at higher light intensities i.e. 

when photosynthesis was no longer light-dependent. Diversity in the gm response to 

environment emphasized the lack of complete understanding of the mechanistic bases of gm 

responses. Our results further suggest that caution must be taken when including gm as a trait 

in legume breeding programs and that screening should be done under a range of growth 

environments. 

 

 Genotypic differences in gm sensitivity to light intensity is altered by N source 6.4.4.

gm response to light intensity was found to be affected by nitrogen source in Flip079C and 

Sonali but not in PBA Slasher. In Flip079C and Sonali, gm responded to light intensity only 

in N-fed plants but not in N-fixing plants. However, the response of A to light intensity was 

significant for both N-fed and N-fixing plants in all three genotypes. Xiong et al. (2015a) 

observed that the gm response to light intensity differed with N supplement, with gm 

increasing with light in high Nitrogen leaves while remaining unaffected in low Nitrogen 

leaves, suggesting that N may play a role in the gm rapid response. I am unable to explain, at 

this point in time, the basis for the observed genotypic variability in the gm response in this 

study, nevertheless, the results are interesting and future studies should investigate the 

genotypic differences in the leaf anatomy or the integrated roles of aquaporin in carbon and 

nitrogen assimilation (Maurel et al., 2008).  

 

 gm and leaf water use efficiency 6.4.5.

The current study on chickpea grown under different water availability and nitrogen source 

did not find any relationship between gm and gsw. Several studies have shown a correlation 

between gm and gsw under optimum and water-stressed conditions (Flexas et al., 2002, Flexas 

et al., 2008, Barbour et al., 2010, Perez-Martin et al., 2014, Olsovska et al., 2016). On the 

other hand, other studies have found no correlation between gm and gsw (Bunce, 2009, Jahan 

et al., 2014). Co-regulation between gm and gsw might differ among species and the intensity 

of water stress, as suggested by Warren (2008b). Lack of corregulation between gm and gsw 

would be advantageous from the perspective of leaf water-use efficiency (Barbour et al., 

2010, Buckley & Warren, 2014, Cano et al., 2014, Flexas et al., 2016). Recently, Moualeu-
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Ngangue et al. (2016), using a modelling approach for leaves of Cucumis sativus plants 

grown under non-stress conditions, suggested that increasing mesophyll CO2 conductance 

might be more likely to increase daily WUE than increasing stomatal density and stomatal 

reaction speed to light. In the present study, I found a positive correlation between gm and 

A/gsw for both WW and WS plants (stronger correlation for WS plants), and gm seemed to 

have a stronger effect on leaf water use efficiency than gsw.  

 

 Conclusion 6.5.

Plants actively regulate CO2 assimilation as well as CO2 diffusion through the mesophyll 

with short-term changes in light intensity or light quality. However, genotypes differed in 

their interactive response to water stress, light intensity and colour, and the genotypic 

differences in the rapid response of gm to light intensity were affected by N source. This is the 

first work to examine the response of gm to N-fixing versus NH4NO3-fed (non-inoculated) 

plants. gm response to N sources differed between chickpea genotypes. Positive relationships 

between gm and A and between gm and A/gsw (relationship with A/gsw stronger in water-

stressed plants than in well-watered plants) and the lack of correlation between gm and gsw in 

our study suggests that increasing gm can provide an opportunity for simultaneous increases 

in photosynthesis and water use efficiency in water-limited environments. Our results imply 

the tendency for gm to compensate for the reductions in gsw due to water stress in these 

chickpea genotypes. Genotypic variability in the gm response, observed in this study, is useful 

information for crop improvement through gm.  
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7. Variability in the temperature response of mesophyll conductance  
 

 Introduction 7.1.

Photosynthesis is limited by the conductance of CO2 transfer from the atmosphere to the sub-

stomatal cavities via stomata (stomatal conductance) and the conductance of CO2 transfer 

from the sub-stomatal cavities to the sites of carboxylation inside the chloroplast stroma 

(mesophyll conductance to CO2, gm) in C3 plants (Farquhar & Sharkey, 1982, Evans et al., 

2009, Flexas et al., 2012a). After diffusing through stomata, CO2 molecules must travel 

through intercellular air spaces, then dissolve into liquid water and pass through the cell wall, 

plasma membrane, cytosol and the chloroplast envelope to finally reach the chloroplast 

stroma. These resistors between the sub-stomatal cavities and the stroma, including the liquid 

and membrane diffusion paths, contribute to the total mesophyll conductance (Bernacchi et 

al., 2002, Evans & von Caemmerer, 2013, von Caemmerer & Evans, 2015). gm has been 

shown to vary widely within and among species and in response to environmental conditions, 

such as water and nutrient availability, growth irradiance, CO2 concentration and temperature 

(Flexas et al., 2008, Scafaro et al., 2011, Evans & von Caemmerer, 2013, von Caemmerer & 

Evans, 2015, Xiong et al., 2015a). The mechanisms of gm regulation are poorly understood. 

The observed variability of gm has been associated with leaf anatomical properties, 

particularly chloroplast surface area facing intercellular air spaces, mesophyll cell wall 

thickness and membrane permeability to CO2 (Evans et al., 1994, Evans et al., 2009, Scafaro 

et al., 2011, Tholen & Zhu, 2011, Tosens et al., 2012a, Xiong et al., 2015a).  

 

Understanding the temperature response of gm will improve our understanding of gm 

regulation including the roles of cell wall, membrane and aquaporin in determining gm, as 

highlighted by previous work (Bernacchi et al., 2002, Evans & von Caemmerer, 2013, 

Walker et al., 2013, von Caemmerer & Evans, 2015). It is important to understand the gm 

response to temperature for photosynthesis models to accurately determine Rubisco kinetics 

(Bernacchi et al., 2002), as well as for improving the ability to manipulate gm to increase 

photosynthesis and photosynthetic WUE in C3 plants (Barbour et al., 2010, Flexas et al., 

2013a, Flexas et al., 2016). However, results of previous studies that examined the 

dependence of gm on temperature have shown a wide range of responses to increased 

temperature, including exponential increases in gm until 35°C followed by a decline at higher 

temperatures in Nicotiana tabacum (Bernacchi et al., 2002), increased gm from 10 to 35°C 
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but constant from 30 to 35°C in Eucalyptus regnans (Warren, 2008a), increased gm from 5 to 

20°C and constant from 20 to 40°C in Alocasia brisbanensis (Gorton et al., 2003), constant 

gm from 20 to 35°C in Quercus canariensis (Warren & Dreyer, 2006) and Spinacia oleracea 

(Yamori et al., 2006) and constant gm from 28 to 38°C in Eperua grandiflora  (Pons & 

Welschen, 2003).  

 

Moreover, von Caemmerer and Evans (2015) reported considerable variation in the 

temperature response of gm between species. They used a simplified two-component model 

described in Evans and von Caemmerer (2013) to suggest that the observed variation between 

species may be due to variation in both the activation energy for membrane permeability to 

CO2 (probably due to aquaporins) and the effective pathlength for liquid phase diffusion (due 

to cell wall thickness). Walker et al. (2013) also found a positive response of temperature 

between 15 to 35°C on gm in N. tabacum, but no significant response in Arabidopsis thaliana, 

and suggested that aqueous diffusion dominates gm in A. thaliana, while membrane transport 

processes play a large role in N. tabacum. The gm response to other aspects of the 

environment has been shown to differ between genotypes within a single species. Barbour 

and Kaiser (2016) reported a genotypic variability in the gm response to nitrogen and water 

availability in wheat. Because of the wide range of temperature sensitivities of gm observed in 

previous studies indicating the complex temperature response, I was interested to see how gm 

varies with temperature within and among cultivars. 

 

Temperature dependence of gm has also been found to be affected by other factors and the 

effect may depend on the species. Yamori et al. (2006) showed that the temperature 

dependence of gm in S. oleracea was affected by the growth temperature, particularly at high 

temperatures.  They showed that at high temperatures, gm declined for the low temperature 

grown plants, but not for high temperature grown plants. However, acclimation to growth 

temperature was not observed in gm in E. regnans (Warren, 2008a). Previous studies have 

found that gm decreases as leaves age (Flexas et al., 2008, Jahan et al., 2014). Thus, it would 

be interesting and useful to see if the temperature response of gm is affected by leaf age.  

 

The mechanism of rapid variation in gm with temperature is still unclear. Some studies 

(Holzinger et al., 2007a, Buchner et al., 2015) observed an increase in chloroplast protrusions 

(CPs) in leaf mesophyll cells in response to a dynamic increase in temperature. Chloroplast 

protrusions are broad peaked stroma-filled extensions of the chloroplast envelope that do not 
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contain thylakoids (diameter 3-5 µm, length 3-5 µm) (Holzinger et al., 2007a). Increases in 

temperature resulting in CPs will lead to surface extension of the chloroplast. Previous 

studies have shown positive correlation of gm with chloroplast surface area facing 

intercellular air spaces, Sc (Flexas et al., 2008, Terashima et al., 2011, Tomás et al., 2013), 

but there are also studies where gm was not related to Sc (Hanba et al., 2002, Hanba et al., 

2004). Increased chloroplast protrusions leading to increased Sc might explain the gm 

response to temperature but has not been demonstrated with concurrent gas exchange 

measurements. 

 

In this study, I compared the temperature response of gm within and between different 

genotypes of soybean, and for a single genotype of common bean. I also examined if leaf age 

has any effect on the temperature response of gm and if temperature induces chloroplast 

protrusions in soybean genotypes that can be related to the temperature response of gm. 

 

 Materials and Methods 7.2.

 

 Plant material and growth conditions 7.2.1.

Three genotypes of soybean (Glycine max (L.) Merr.); Snowy, DJakal and edamame 

(vegetable soybean harvested when the seeds are immature),  and one genotype of common 

bean (Phaseolus vulgaris L.) were grown in a controlled-environment growth room at the 

University of Sydney, Centre for Carbon Water and Food (Camden, NSW, Australia). The 

growth room was set to a 16 h photoperiod, 27/19°C day/night temperature, 75% relative 

humidity, and 800 µmol m-2 s-1 photosynthetic photon flux density at plant height. Seeds 

were sown in 7 L pots filled with commercial potting mix amended with a slow release 

fertilizer (Osmocote Exact, Scotts, NSW, Australia). After emergence, the plants were 

thinned to two per pot and were well watered throughout the experiment. Five replicates of 

each genotype were used. In a second experiment, two genotypes (DJakal and edamame) of 

soybean (Glycine max) were grown in a controlled-environment growth room in the same 

environmental conditions with five replications. These plants were used to assess the effect 

of leaf age on the temperature response of gm. Arabidopsis thaliana were grown in a 

controlled environment growth chamber at the University of Sydney, Biomedical Building 

(Eveleigh, NSW, Australia). The growth chamber was set to a 16 h photoperiod, 22°C 

day/night temperature, 40% relative humidity, 120 µmol m-2 s-1 photosynthetic photon flux 

density.  
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 Estimating mesophyll conductance from the Δ13C method  7.2.2.

Leaf gas exchange and mesophyll conductance to CO2 (gm) were estimated using the online 

carbon discrimination (Δ13C) method as described in Chapter 3. Measurements and regulation 

of leaf temperature were conducted using LI-6400XT portable photosynthesis system 

(Li6400; LiCor Biosciences, Lincoln, NE, USA) fitted with 2×6 cm leaf chamber (Li6400 

11) and red-green-blue light source (Li6400 18A). The LI-6400XT was connected to a 

Tunable-Diode Laser Absorption Spectrometer (TDL, model TGA100A, Campbell 

Scientific, Inc., Logan, UT, USA) as described in Chapter 3. The leaf chamber conditions 

were controlled to provide a CO2 concentration of 400 µmol mol-1 in the sample cell, a flow 

rate of 300 µmol s-1 and a photosynthetic photon flux density (PPFD) of 1300 µmol m-2 s-1 

for all the measurements. In the first experiment comparing the temperature response within 

and among the genotypes, five youngest fully expanded leaves per genotype of soybean and 

common bean were measured eight weeks after planting. For the leaf age experiment in two 

soybean genotypes; DJakal and edamame, measurements were made on five youngest fully 

expanded leaves of 4-week old plants, and the same leaves were measured 7 days later under 

the same leaf environmental conditions. For both experiments, leaves were measured at 

increasing temperature from 15°C to 35°C with 5°C increase in steps. 

 

 Modelling temperature dependence of gm 7.2.3.

Temperature dependence of mesophyll conductance was modelled following von Caemmerer 

and Evans (2015) for individual leaves of three soybean genotypes and one genotype of 

common bean. Mesophyll conductance to CO2 is composed of the liquid (gliq) and 

membranes (gmem) components. gliq includes diffusional conductance through cell wall, 

cytoplasm and chloroplast stroma and gmem includes conductance through the plasma 

membrane and chloroplast membrane.  

𝑔m =  1
� 1
𝑔liq

+ 1
𝑔mem

��             (1) 

 

The liquid component of gm (gliq) is given by: 

𝑔liq = 𝜌𝜌𝜌
𝑙�  ,                                                                                                      (2) 

where ρ is the molar density of water (mol m-3), H is the Henry coefficient for CO2 (bar-1), D 

is the diffusivity of CO2 in water (m2 s-1)  and l is the effective pathlength (m). 



103 
 

The solubility of CO2 in water (ρH) decreases with increasing temperature while the 

diffusivity of CO2 in water (D) increases with temperature (Evans & von Caemmerer, 2013). 

 

The temperature dependence of CO2 diffusion across the membranes is assumed to be 

exponential:  

𝑔mem =  𝜌𝜌𝑃(mem25) ×  𝑒�(𝑇−25)E/�ℛ298(273+𝑇)��,      (3) 

 

where P(mem25) is the combined membrane permeability to CO2 at 25 °C (ms-1), E is the 

activation energy (kJ mol-1), ℛ is the ideal gas constant (8.314 J K-1 mol-1) and T is the leaf 

temperature (°C). 

 
gliq (Eqn 2) and gmem (Eqn 3) are then multiplied by the chloroplast surface area facing 

intercellular airspace per unit leaf area (Sc) to express gm (Eqn 1) per unit leaf area (von 

Caemmerer & Evans, 2015).  Sc and l were assumed to be 15 and 0.68µm for the soybean 

genotypes and common bean in our study as assumed by von Caemmerer and Evans (2015) 

for soybean. 

 

The temperature responses of measured gm were fitted to a three-parameter log normal 

function (Warren & Dreyer, 2006) when gm showed an optimum temperature response.  

 

𝑔mem = 𝑔mem opt𝑒
�−��ln�𝑇/𝑇opt�/𝑏�

2
�/2�,       (4) 

 

where gmem opt is the conductance across membranes at optimum temperature, Topt is the 

optimum temperature (°C), and b is a scaling factor. The best fit was determined by allowing 

the model parameters, gmem opt, Topt and b to be varied. gmem (Eqn 4) was multiplied by Sc.  

The combination of gliq (Eqn 2) and gmem (Eqn 4) gives gm (Eqn 1) at the optimal temperature. 

  

 Assessment of chloroplast protrusions  7.2.4.

Plant material 

Three genotypes of soybean (Snowy, DJakal and edamame), which were investigated for the 

temperature response of gm in this study, were used to assess the influence of temperature on 

the dynamic formation of chloroplast protrusions (CPs) in mesophyll cells. After the 

completion of gas exchange measurements, the youngest fully expanded leaves of the same 
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plants (i.e. those used for gm measurements) were selected for the assessment of CPs. 

Arabidopsis thaliana (five replicates) was also examined in this study as the temperature-

induced CPs has been observed in transgenic A. thaliana plants. 

 

Experimental set-up and image acquisition 

Leaf sections (approximately 30-100 µm thickness) of the youngest leaves of soybean 

genotypes (DJakal and edamame) and Arabidopsis thaliana were prepared manually with a 

razor blade and collected in precooled (12°C) 0.1M phosphate-buffered saline in a glass 

bottom dish (MatTek, 35mm size, No. 1.5 thickness). The sections were investigated with  a 

Leica SP5 II Confocal microscope (Leica Microsystem, Germany) with differential 

interference contrast (DIC) optics (63×/NA 1.3 Gly) at the Australian Centre for Microscopy 

& Microanalysis (ACMM) at the University of Sydney, NSW, Australia. A cooling/heating 

stage insert (Temperable Insert P, PeCon) with a circular observation opening (Ø 35 mm) 

was installed to the microscope, and the insert was levelled in the stage by 4 screws. The 

stage insert was connected to the circulating waterbath (Lauda Ecoline RE 206) with the 

tubes with self-sealing couplings. This setting allowed for the temperature control of the leaf 

sections through a cooling/heating stage based on a closed circuit with water via the 

circulating waterbath (the temperature was regulated at the waterbath). The microscope stage 

was covered with protective enclosure to protect the sample from light. For confocal imaging, 

a 488 nm laser was used for excitation, images were collected at 560nm - 760nm for 

autoflourescence of chlorophyll. DIC images were simultaneously collected. 

 

The leaf sections were exposed to three different temperatures in succession (15, 25 and 

35°C). 5–10 leaf sections were mounted in the pre-cooled microscope stage at the first 

temperature level of 15°C. The light was switched off until the next target temperature (25°C) 

was reached and also during the image acquisition and this procedure was repeated for the 

last target temperature (35°C). A thermocouple sensor continuously monitored the 

temperature of the stage in close vicinity to the leaf sections. The total time the leaf sections 

were at each temperature was 25 minutes (including the time to reach to the set temperature). 

For each leaf sample, the same cells were imaged at different focal planes to collect the XZ 

sections. Leica Application Suite Advanced Fluorescence Lite (LAS AF Version 2.6.0 build 

7266, Leica Microsystems CMS GmbH) was used for capturing the z-series. 5-15 palisade 

cells of the three soybean genotypes (Snowy, DJakal and edamame) and A. thaliana were 

manually screened for the occurrence of chloroplast protrusions at each temperature.  
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 Statistical analysis 7.2.5.

Relationships between leaf temperature, gas exchange and mesophyll conductance were 

graphed for both experiments using GraphPad Prism (Version 7, GraphPad Software Inc). 

Linear relationships of the average values for gas exchange and gm over the temperature 

range were considered statistically significant when p<0.05. Significant differences between 

the average values were assessed using analysis of variance, as implemented by GENSTAT 

16th edn SP1 (VSN International Ltd, London, UK), and means were compared using 

Fisher’s unprotected least significant difference test.  

 Results 7.3.

 

 Effect of leaf temperature on gm  7.3.1.

The temperature response of gm was compared between three soybean genotypes: Snowy, 

Djakal and edamame and one genotype of common bean. There was an increase in leaf to air 

vapour pressure difference (vpd) with increasing temperature, with vpd ranging from 0.5 to 

2.1 kPa across the genotypes (Figure 7.1). Relative humidity (RH) ranged from 85 to 60% 

over the temperature range across the genotypes. Due to the relatively small range in vpd and 

RH (above 60%) over the temperature, I consider that the responses observed in gas 

exchange and mesophyll conductance are predominantly due to changes in temperature. 

However, the effect of vpd on mesophyll conductance cannot be disregarded completely due 

to the observed covariance between vpd and temperature. 

 
Figure 7.1 Response of leaf to air vapour pressure difference (vpd) to variation in leaf temperature in soybean 
genotypes including Snowy, DJakal and edamame and common bean. Values are means ± s.e., n=5. 
 

The mean value of photosynthetic rate (A) at 25°C did not vary between soybean genotypes, 

but the mean A was higher for soybean genotypes than for common bean (Figure 7.2a). 

However, overall the absolute values of A were low at all temperatures for both the common 

bean and the soybean genotypes. In all three soybean genotypes, photosynthetic rate 
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gradually increased from 15 to 25°C and either plateaued or declined at 30°C (p<0.05, Figure 

7.2a), but the increase in A over the temperature range was low (about 2-fold increase from 

15 to 35°C). Common bean showed a shallower response to temperature for photosynthetic 

rate, and the change in A over the temperature range was not statistically significant (Figure 

7.2a). Despite an increase in vpd with temperature, the mean value of stomatal conductance 

(gsw) increased as temperature increased up to 30°C in Snowy. In DJakal and edamame, the 

increase in mean gsw was significant only between 15°C and 30/35°C (Figure 7.2b). gsw was 

unrelated to temperature in common bean (Figure 7.2b).  

 

Across soybean genotypes, the mean values of gm increased 3-4 fold between 15 and 35°C 

(Figure 7.2c). Snowy showed monotonic increase in mean values of gm up to 35°C, and the 

standard error bars were not overlapping across the temperature range. Mean values of gm 

increased with increasing temperature in DJakal and edamame, but the standard errors were 

larger and overlapping at higher temperature, between 25 and 35°C in DJakal and between 30 

and 35°C in edamame (Figure 7.2c). Common bean showed less change in gm over the 

temperature range (Figure 7.2c). In common bean, gm increased about 1.5 fold from 15 to 

20°C but was nearly temperature-independent from 20 to 35°C, with large and overlapping 

error bars (Figure 7.2c).  

 

The regression line, fitted to measurements from individual leaves, was gm=0.02T°C–0.13 

(R2=0.85, p<0.0001) for Snowy, gm=0.01T°C–0.04 (R2=0.67, p<0.0001) for DJakal, 

gm=0.01T°C–0.11 (R2=0.69, p<0.0001) for edamame, and gm=0.005T°C+0.08 (R2=0.30, 

p<0.01) for common bean. The slopes of the linear regression lines were not significantly 

different between soybean genotypes, but the differences in the intercepts were significant 

between soybean genotypes. The mean value of mesophyll conductance (gm) at 25°C did not 

vary within and across species, while the mean gm of Snowy was significantly higher than 

that of DJakal and edamame at 35°C (p<0.05) and that of common bean at 30 and  35°C 

(p<0.05, Figure 7.2c).  

 

The temperature response of the photosynthetic rate was mostly similar among the replicates 

across the genotypes (Figure 7.7c) with few exceptions, e.g. some replicates showed 

shallower response than others. The optimum temperatures for gm were not always similar to 

those of photosynthetic rate across the genotypes (Figure 7.7a-d,i-l). There was very little 

variation in the temperature response for gsw among the replicates of Snowy and DJakal, 



107 
 

while the replicates of edamame did not follow any particular trend for gsw over the 

temperature range. The gm response to temperature was generally similar among replicates of 

Snowy (Figure 7.7i), while the response varied among replicates in DJakal (Figure 7.7j) and 

edamame (Figure 7.7k). All five replicates in DJakal and edamame showed linear increase in 

gm from 15 to 25°C, then the replicates varied in response from 25 to 35°C, with some 

replicates showing an increase in gm up to 35°C, while others showing a decline or plateauing 

gm from 25 or 30°C (Figure 7.7j,k). In common bean, there was large variability among 

replicates, with no specific trend of gm over the temperature range (Figure 7.7l).  

 

 
Figure 7.2 Response of photosynthetic rate (A; a), stomatal conductance (gsw; b) and mesophyll conductance 
(gm; c) to variation in leaf temperature in soybean genotypes including Snowy, DJakal and edamame and 
common bean. Values are means ± s.e., n=5. 
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 Effect of leaf temperature on chloroplast protrusions 7.3.2.

DIC-autoflourescence merged images were used to assess the chlorophyll-free CPs in the 

mesophyll cells. Same cells were compared between the temperatures. Small movement in Z-

axis was apparent during temperature increase from 15 to 35°C, thus for each sample, the XY 

images generated from a Z series for the three temperatures were thoroughly scanned to 

match the chloroplast position in the investigated cells at each temperature. 5-15 cells of the 

three soybean genotypes and A. thaliana were manually screened for the occurrence of 

chloroplast protrusions (CPs). Five leaves were used for each genotype. XY images (at a 

single focal place) of mesophyll cells collected at three temperatures are shown for A. 

thaliana (Figure 7.3), Snowy (Figure 7.4), edamame (Figure 7.5) and DJakal (Figure 7.6). I 

did not find chloroplast protrusions at any temperature for soybean genotypes and A. 

thaliana, and thus their presence could not be confirmed in my observations.  

 

 Effect of leaf age on the temperature response of gm  7.3.3.

A second experiment was conducted to test the effect of leaf age on the temperature response 

of two soybean genotypes: DJakal and edamame. Gas exchange and gm were measured on the 

youngest fully expanded leaves and then after 7 days on the same leaves under the same leaf 

environmental conditions. Photosynthetic rate showed a positive linear response to 

temperature for both the youngest fully expanded leaves and on the same leaves measured 

one week later (R2=0.76, p<0.001 and R2=0.70, p<0.001 respectively) in  DJakal and 

(R2=0.45, p<0.001 and R2=0.35, p<0.05 respectively) in edamame. Leaf age did not alter the 

linear regression slopes but changed the intercept in both DJakal and edamame. 

Photosynthetic rates significantly declined with leaf age in DJakal (p<0.05) and in edamame 

(p<0.05). The individual leaves responded similarly to temperature for A for DJakal (Figure 

7.8a.1,a.2) and for edamame (Figure 7.8b.1,b.2). The youngest fully expanded leaves of 

DJakal showed variability in temperature response for gsw among the replicates, with some 

replicates showing increase in gsw while the others were temperature-insensitive (Figure 

7.8c.1). For the same leaves of DJakal, measured one week later, gsw decreased from 15 to 

20°C in all the replicates, but after 20°C the response varied among the replicates (Figure 

7.8c.1). gsw was not related to temperature regardless of the leaf age in edamame (Figure 

7.8d.1, d.2). 

 

The temperature response of the mean values of gm was not significantly affected by leaf age 

in DJakal, with a linear increase with increasing temperature for both the youngest fully 
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expanded leaves (R2=0.71, p<0.0001) and when the same leaves were measured one week 

later (R2=0.67, p<0.0001). However, in edamame, the linear relationship between gm and 

temperature was weaker for leaves measured one week later (R2=0.32, p<0.01) than for the 

same leaves when they had just finished expanding (R2=0.63, p<0.0001). In DJakal, the 

individual leaves (of both ages) mostly showed similar increase in gm from 15 to 25°C, but 

the gm response varied considerably among the leaves from 25 to 35°C (Figure 7.8e.1, e.2). 

However, leaf age has little effect on the general shape of the response curve across the 

replicates in DJakal (Figure 7.8e.1, e.2). In the youngest fully expanded leaves of edamame, 

there was an increase in gm from 15 to 25°C, but the gm response varied among the replicates 

from 25 to 35°C. However, when the same leaves of edamame were measured one week 

later, they did not follow the trend of the younger leaves for gm over the temperature range. 

gm values of the older edamame leaves were mostly constant between 15 and 20°C.  

 

 Modelling temperature dependence of gm 7.3.4.

The measured values for the temperature response of gm within and across the genotypes 

were fitted to either von Caemmerer and Evans (2015) exponential model or Warren and 

Dreyer (2006) optimum gmem model as described in Materials and Methods section in this 

chapter. The von Caemmerer and Evans model assumed an exponential temperature 

dependence of gmem, but could not simulate the observed temperature response for some 

leaves where gm declined or plateaued at 25°C or higher temperatures, and thus the measured 

gm values for those leaves were fitted to the model with optimum temperature for gmem. The 

fitted parameters for the individual leaves in the first and the second experiment are given in 

Table 7.1 and Table 7.2 respectively. I used a value of 15 for chloroplast surface area facing 

intercellular airspace per unit leaf area (Sc) and 0.68µm for effective pathlength (l) for all the 

genotypes of soybean and for common bean, as assumed by von Caemmerer and Evans 

(2015) for soybean. It was necessary to vary P(mem25), which is the combined membrane 

permeability to CO2 at 25°C, to achieve reasonable model fits for all the leaves. 

 

Soybean genotypes had higher fitted membrane activation energy, E (60 to 85 kJ mol-1) 

compared to common bean (35 to 53 kJ mol-1, Table 7.1). The temperature response for the 

mean values of gm in Snowy was well fitted to von Caemmerer and Evans (2015) model 

(exponential increase of gmem), while the responses for the mean values of gm in edamame 

and DJakal were best fitted to model with temperature optima at 45°C (Table 7.1). Within 

soybean genotypes, the temperature response of all five replicates of Snowy could be fitted to 
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the von Caemmerer and Evans model, with the membrane activation energy ranging from 60 

to 85 kJ mol-1 among the replicates. However, for the youngest expanded leaves of edamame 

and DJakal, the best fit to the response of gm for some replicate leaves was obtained with 

exponential temperature dependence of gmem, but for other replicates, the best fit could be 

obtained with optimum temperature for gmem around 30°C or higher. In Djakal, the fitted 

responses of gm for a week old leaves were similar to those for the youngest expanded leaves 

(Table 7.2). In the older leaves of edamame, the fitted curve (exponential or optimum gmem) 

could not accurately reproduce the observed reponse but the residual sum of squares were 

always below 0.006. In the individual replicates of common bean, the fitted curve could not 

adequately include all gm values over the temperature range. The best fit to average 

temperature response could be obtained with maximum gm values at 35°C in common bean. 
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Figure 7.3 Leaf mesophyll cell of Arabidopsis thaliana after exposure to three different temperature steps; 15°C (a), 25°C (b), and 35°C (c).  
Each image is autoflourescence-DIC merged XY image at a single focal place. Shown is a typical mesophyll cell from 5 replicate samples from 5 individual plants. 
 
 

 
Figure 7.4 Leaf mesophyll cells of soybean (Snowy genotype) after exposure to three different temperature steps; 15°C (a), 25°C (b), and 35°C (c).  
Each image is autoflourescence-DIC merged XY image at a single focal place. Shown are typical mesophyll cells from 5 replicate samples from 5 individual plants. 
 

(a) (b) (c) 15° 25° 35° 

(a) (b) (c) 15° 25° 35° 
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Figure 7.5 Leaf mesophyll cells of soybean (edamame genotype) after exposure to three different temperature steps; 15°C (a), 25°C (b), and 35°C (c).  
Each image is autoflourescence-DIC merged XY image at a single focal place. Shown is a typical mesophyll cell from 5 replicate samples from 5 individual plants. 
 

 
Figure 7.6 Leaf mesophyll cells of soybean (DJakal genotype) after exposure to three different temperature steps; 15°C (a), 25°C (b), and 35°C (c).  
Each image is autoflourescence-DIC merged XY image at a single focal place. Shown are typical mesophyll cells from 5 replicate samples from 5 individual plants. 
 
 

(a) (b) (c) 15° 25° 35° 

(a) (b) (c) 15° 25° 35° 
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Leaf temperature (°C) 

Figure 7.7 Response of photosynthetic rate (A; a to d), stomatal conductance (gsw; e to h) and mesophyll conductance (gm; i to l) to variation in leaf temperature for the 

individual replicate leaves of Snowy, DJakal and edamame (soybean genotypes) and common bean.  
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Figure 7.8 Effects of leaf age on the temperature response of photosynthetic rate (A; a.1 to b.2), stomatal conductance (gsw; c.1 to d.2) and mesophyll conductance (gm; e.1 to 
f.2) for the individual leaves (n=5) of two soybean genotypes, DJakal and edamame. Measurements were made on the youngest fully expanded leaves and the same leaves 
were measured a week later. 
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Table 7.1 Photosynthetic rate (A), mesophyll conductance (gm) measured at 25°C and derived model parameter values fitted over the temperature range of 15-35°C for each 
replicate leaves of soybean genotypes and common bean.  

 

 Reps A (µmol m-2 s-1) gm (mol m-2 s-1 bar-1) E (kJ mol-1) P(mem25) Topt (°C) gmem opt b Sum of 
squares 

Sn
ow

y 

1 11.7 0.25 74.9 5.46E-04    0.002 
2 12.2 0.21 72.4 4.78E-04    0.002 
3 11.9 0.28 85.0 6.51E-04    0.003 
4 14.5 0.25 78.7 6.45E-04    0.002 
5 20.0 0.31 61.1 7.88E-04       0.002 
All reps 14.1 ± 1.6 0.26 ± 0.02 77.1 6.36E-04    0.0003 

D
Ja

ka
l 

1 10.1 0.20   28 0.014 0.474 0.0008 
2 9.8 0.20 76.1 4.78E-04    0.005 
3 12.1 0.25 66.4 5.78E-04    0.0003 
4 11.4 0.30   32 0.029 0.490 0.0008 
5 13.1 0.24 69.7 5.08E-04       0.002 
All reps 11.3 ± 0.6 0.24 ± 0.02   45 0.029 0.663 0.0003 

E
da

m
am

e 

1 7.5    31 0.012 0.433 0.001 
2 12.7 0.16 82.7 4.84E-04    0.006 
3 14.8 0.17 61.6 3.71E-04    0.002 
4 16.4 0.26 78.5 5.42E-04    0.003 
5 11.2 0.20 82.1 4.75E-04       0.003 
All reps 12.5 ± 1.5 0.20 ± 0.02   45 0.029 0.554 0.0002 

C
om

m
on

 B
ea

ns
 1 9.8 0.13 52.7 3.58E-04    0.002 

2 12.0 0.32   30 0.026 0.738 0.003 
3 8.6 0.27   27 0.022 0.368 0.0002 
4 11.0 0.23   26 0.018 0.425 0.0002 
5 9.8 0.18 35.0 4.36E-04       0.002 
All reps 10.3 ± 0.6 0.22 ± 0.03   35 0.020 0.748 0.002 

Note: Surface area of chloroplast facing intercellular airspace per unit leaf area and effective pathlength was assumed to be 15 and 0.68 µm as used by von Caemmerer and 
Evans (2015) in soybean 
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Table 7.2 Photosynthetic rate (A), mesophyll conductance (gm) measured at 25°C and derived model parameter values fitted over the temperature range of 15-35°C for the 
youngest fully expanded leaves and when the same leaves were measured a week later for DJakal and edamame 

 

  Reps A (µmol m-2 s-1) gm (mol m-2 s-1 bar-1) E (kJ mol-1) P(mem25) Topt (°C) gmem opt b Sum of 
squares 

DJakal  
(the youngest 
fully expanded 
leaves) 

1 24.2 0.27   36 0.023 0.690 0.002 
2 25.5 0.28 79.3 7.10E-04    0.005 
3 25.1 0.25 61.1 6.50E-04    0.004 
4 20.6 0.32   31 0.025 0.563 0.004 
5 23.6 0.29   31 0.026 0.588 0.0009 

All reps 23.8 ± 0.9 0.28 ± 0.01     41 0.030 0.659 0.0002 

DJakal  
(same leaves 
measured a week 
later) 

1 17.1 0.15   42 0.015 0.629 0.002 
2 20.6 0.25 82.3 5.54E-04    0.003 
3 21.4 0.24 65.1 5.68E-04    0.002 
4 19.6 0.24   33 0.019 0.617 0.001 
5 17.0 0.25   31 0.027 0.455 0.00007 

All reps 19.6 ± 0.8  0.23 ± 0.02     46 0.027 0.650 0.0002 

Edamame  
(the youngest 
fully expanded 
leaves) 

1 18.1 0.29   29 0.024 0.430 0.0008 
2 13.8 0.29   30 0.024 0.563 0.0001 
3 20.0 0.25   38 0.034 0.571 0.003 
4 14.3 0.21 65.7 4.67E-04    0.004 
5 11.3 0.19 55.8 4.21E-04    0.004 

All reps 15.5 ± 1.6  0.25 ± 0.02     40 0.026 0.666 0.00005 

Edamame  
(same leaves 
measured a week 
later) 

1 10.7 0.18   29 0.014 0.464 0.003 
2 9.8 0.08   39 0.016 0.659 0.00001 
3 14.9 0.21 55.6 5.23E-04    0.009 
4 9.0 0.18   25 0.012 0.493 0.002 
5 8.9 0.15 51.1 4.11E-04    0.002 

All reps 10.7 ± 1.1  0.16 ± 0.02  47.1 3.65E-04       0.003 
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 Discussion 7.4.

 

 gm response to temperature varied within and among the genotypes  7.4.1.

The temperature response of mesophyll conductance (gm) was studied for three genotypes of 

soybean and one genotype of common bean. Absolute values for gas exchange and gm at 25°C 

for the three soybean genotypes were lower than the values reported in von Caemmerer and 

Evans (2015) for soybean. The lower values for photosynthetic rate in the present study for the 

first experiment might be due to the age of the plants at the time of measurements. The youngest 

fully expanded leaves of 8 week old plants were measured for the first experiment in this study. 

Loreto et al. (1994) reported 40% decline in net photosynthesis when wheat plants age from 30 

to 45 days. In the leaf age experiment of this study, the measurements were made on 4 week old 

plants, and the youngest fully expanded leaves of DJakal had photosynthetic rates similar to that 

reported in von Caemmerer and Evans (2015) for soybean at 25°C. The values of A and  gm at 

25°C, for the youngest fully expanded leaves of edamame in the second experiment of this study, 

were within the range reported for edamame genotypes in Tomeo and Rosenthal (2017).  

 

In the present study, the temperature response of gm varied between soybean and common bean. 

There was a 3-4 fold increase in gm between 15 and 35°C in soybean genotypes, similar to the 

response observed by von Caemmerer and Evans (2015) for soybean between 15 and 40°C. 

Common bean showed less change in gm over the temperature range, with 1.5 fold increases 

from 15 to 20°C but no clear differences in gm for temperatures from 20 to 35°C. von 

Caemmerer and Evans (2015) also reported that the temperature response of gm varied 

considerably between species, from 2-3 fold monotonic increase in gm between 15 and 40 ºC for 

some species to less than a 1.5 fold change for other species. In the current study, the 

temperature response of gm (averaged for a genotype) was similar between the three genotypes of 

soybean, with no significant difference in the linear regression slope between the genotypes. 

However, there was a variation in the shape of the temperature response curve for gm between 

the individual leaves within a genotype. Broadly, some leaves showed linear increase from 15 to 

35ºC while others had temperature optima at around 30ºC. The temperature responses of gm 

between 15 and 25ºC were generally similar within a genotype in soybean, particularly when 

measured on the youngest fully expanded leaves. However, there was variation in gm response to 
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temperature between 25 and 35ºC within a genotype. In the current study, modelling the 

temperature dependence of gm for individual leaves of each genotype also showed that there was 

variability in gm response between the individual leaves within a genotype. Some leaves were 

best fitted to von Caemmerer and Evans (2015) exponential model, while the other leaves of the 

same genotype were best fitted to Warren and Dreyer (2006) optimum gmem model.  

 

Previous studies on the temperature dependence of gm in several species have reported a wide 

range of responses including increases in gm until 40°C, increase until 35°C and decline at higher 

temperatures, initial increase in gm and then constant gm from 30 to 35°C, constant from 28 to 

38°C, constant from 20 to 35 or 40°C to almost no change over the temperature range (Bernacchi 

et al., 2002, Gorton et al., 2003, Pons & Welschen, 2003, Warren & Dreyer, 2006, Yamori et al., 

2006, Warren, 2008a, Evans & von Caemmerer, 2013, Walker et al., 2013, von Caemmerer & 

Evans, 2015). The variability within a genotype in the present study together with the contrasting 

results from the previous studies on different species hints towards more diverse and complex 

CO2 diffusion processes within a leaf. Moreover, gm estimations from the current established 

methods are complicated and rely on models with several assumptions (Pons et al., 2009). 

Variation in the temperature sensitivities of the model parameters and possibly different 

sensitivities of several other unidentified processes contributing to gm might have caused a 

complex temperature response of gm. The variability in the gm response within a genotype may 

reflect the noise in measurements. However, at this point in time, I am unable to mechanistically 

explain the variability within a genotype observed in the present study. von Caemmerer and 

Evans (2015) suggested that the effective pathlength for liquid phase diffusion and gmem 

(variation in the activation energy for membrane permeability to CO2) contributes to variation in 

the temperature response of gm between species. The temperature dependence of the membrane 

phase component has not yet been completely defined; nonetheless, gmem has been proposed to 

be determined by CO2 diffusion through membranes via aquaporin-like enzymes (Flexas et al., 

2008, Evans et al., 2009, Tholen & Zhu, 2011). Flexas and Diaz-Espejo (2015) published a 

commentary on von Caemmerer and Evans (2015) and highlighted three potential mechanisms 

for the rapid response of gm: changes in cell wall properties (nature of chemical interactions 

between CO2 and cell wall components), regulation of membrane properties (aquaporins) and 

reshaping and redistribution of chloroplasts (changes in Sc). Although the chloroplast distribution 
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and thus Sc are known to be affected by rapid changes in blue light intensity (Tholen et al., 

2008), there is no confirmed evidence, to date, of the changes in Sc with temperature that can be 

related to gm. Variation in gm response in the current study suggested that gm may be determined 

by multiple processes including aquaporins or other membrane enzymes or may reflect 

instrument noise in gm measurements. 

 

 Are chloroplast protrusions responsible for the gm response to temperature 7.4.2.

In the present study, the influence of dynamic change in temperature on the formation of 

chloroplast protrusions was examined in the mesophyll cells of three soybean genotypes and A. 

thaliana. I did not find clear evidence of chloroplast protrusions at any temperature in soybean 

genotypes or in A. thaliana. Holzinger et al. (2007a) observed an increase in chloroplast 

protrusions in mesophyll cells in A. thaliana in response to an increase in temperature. However, 

studies have shown that there is no significant temperature response of gm in A. thaliana (Walker 

et al., 2013, von Caemmerer & Evans, 2015). Therefore, the increase in chloroplast protrusions 

observed by Holzinger et al. (2007a) may not be related to a gm response to temperature in A. 

thaliana. Moreover, Lütz (2010), in his review article, stated that chloroplast protrusions are not 

observed in all plant species and suggested that protrusions are mostly absent in A. thaliana. 

Chloroplast protrusions have been mostly observed in alpine and polar plants (Holzinger et al., 

2007b, Lütz, 2010, Buchner et al., 2015, Moser et al., 2015) although the occurrence of CPs are 

not exclusive to high mountain plants (Lütz, 2010). Two studies have observed salt-induced CPs 

in soybean (He et al., 2014) and rice (Yamane et al., 2012). Moser et al. (2015) also 

demonstrated that in Ranunculus glacialis L., chloroplast protrusions were not a result of heat or 

light stress but were most abundant under moderate temperature and non-stress irradiation 

conditions. Based on the lack of evidence of CPs in response to increasing temperature in the 

experiments described here, I conclude that CPs are not involved in the gm response to 

temperature. 
 

 Genotypes differ in the effect of leaf age on the temperature response of gm  7.4.3.

The influence of leaf age on the temperature response of gm was examined for DJakal and 

edamame. Genotypes differed in the effect of leaf age on gm values. There was no significant 

effect of leaf age on gm for DJakal, while for edamame, the older leaves had significantly 
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reduced gm compared to younger leaves at 20, 25 and 35°C. The differing leaf age effect on gm 

may be due to differing rates of plant growth or leaf development between the genotypes, and the 

effect of leaf age on gm in DJakal might be significant if measurements had been made on more 

mature leaves. Nonetheless, leaf age reduced photosynthetic rates and stomatal conductance in 

both the genotypes. Previous studies have found that gm decreases as leaves age (Flexas et al., 

2008, Jahan et al., 2014, Barbour et al., 2016b). Jahan et al. (2014) found a significant 

interactive effect of genotype by leaf age (5-8 days) on gm in wheat, with reduced gm for older 

leaves in one genotype but no change in the other genotype. Hanba et al. (2001) showed that 

variation in gm with leaf age is partly related to Sc in deciduous trees, maple, alder and Japanese 

poplar. However, Barbour et al. (2016b) did not find relationships between gm and Sc despite the 

reductions in both gm and Sc in the older leaves in cotton and wheat.  

 

Genotypes differed in the effect of leaf age on the temperature dependence of gm in soybean. gm 

response to temperature was similar between the youngest fully expanded leaves and when the 

same leaves were measured one week later in DJakal, while leaf age affected the temperature 

response gm in edamame. The linear relationship between gm and temperature was weaker for 

edamame leaves measured one week later than for the same leaves when they had just finished 

expanding. When the response of individual leaves of edamame was considered, the linear 

temperature response of gm observed in the youngest fully expanded leaves disappeared in the 

same leaves measured one week later. The differing response could be attributed to differences 

in enzyme activities involved in CO2 diffusion between the genotypes (not tested in the present 

study). The differing effect of leaf age on temperature response of gm between genotypes could 

be one of the reasons for the conflicting results observed for the temperature response of gm 

between studies with different species.  

 

 Conclusions 7.5.

The temperature response of mesophyll conductance to CO2 was assessed in three genotypes of 

soybean and a single genotype of common bean. gm response to temperature varied between 

soybean and common bean. All three soybean genotypes responded similarly to rapid increase in 

leaf temperature. However, I found diversity in the response among the individual leaves within 

each genotype. Some leaves showed linear increases in gm with increasing temperature, some 
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leaves showed temperature optima at around 25°C or higher, while a small number of leaves 

showed no clear trend. I do not have an explanation for the variability in the response within 

genotypes. Results from the previous studies in different species have also shown diverse range 

of temperature response for gm. Taken together, this suggests that the temperature response of gm 

is much more complex and diverse, and several other processes with different temperature 

dependencies might be contributing to gm, including aquaporins or other enzymes across 

membranes. The variability in the gm response within a genotype in this study may also be 

related to noise in the gm measurements, which rely on models with several assumptions. 

Furthermore, I found that the temperature response of gm can be affected by leaf age in some 

genotypes. The results of the current study implied that assessing the general temperature 

response of gm could be improved by including a higher number of replicates and ensuring that 

all leaves are of the same developmental age at the time of the measurements. Sensitivity 

analysis of the model parameters to a range of measurement conditions should be considered in 

future studies. 
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8. General Discussion 
Conductance to CO2 diffusion from substomatal cavities to sites of carboxylation in chloroplasts 

(mesophyll conductance; gm) has been recognized as a significant and variable limitation to 

photosynthesis; A (Flexas et al., 2008), and a potential target for improving leaf intrinsic water 

use efficiency; A/gsw (Barbour et al., 2010). gm has been extensively studied in the past few 

decades. However, there are still significant unknowns that researchers have been grappling 

with, namely (a) how gm varies within species and in response to dynamic or growth 

environments, (b) what are the potential determinants of gm, and (c) can we simultaneously 

improve A and A/gsw by increasing gm? Recently, there also has been a growing interest in 

understanding the relationship between leaf internal conductances to carbon and water i.e. the 

relationship between mesophyll conductance to CO2 and leaf hydraulic conductance (Kleaf). This 

thesis aimed to address these questions and contribute to the current body of work on 

understanding gm regulation. The studies are focussed on grain legumes because there has been 

an increasing realization of the importance of grain legumes in human health and sustainable 

cropping systems, and gm may have significant unexploited potential for genetic improvements 

in legumes. However, information on gm is limited for grain legumes compared to cereal crops. 

This thesis addressed the questions listed in Table 8.1, and found several important results (Table 

8.1) through series of experiments. This discussion chapter synthesizes the results from the 

previous chapters to provide the overall conclusions of this thesis. 
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Table 8.1  Summary of the thesis questions and the major experimental findings. 

Thesis Questions Major findings 

1. Does variation in gm exist within and 

among legume species under non-limiting 

environments? 

• gm varied between species. 

• Genotypes varied in Δ13C-gm in faba bean, 

garden pea and field pea. 

• Genotypes did not vary in Δ18O-gm.  

2. Does genetic variation exist for gm in 

response to growth environments? 

 

 

• Genotypes differed in their gm response to 

water availability.  

• Genotypes differed in the response of gm 

to nitrogen source.  

3. Does gm respond to short-term 

environmental changes, and is there an 

interactive response of gm between short- 

and long-term environmental changes? 

• gm showed a positive linear response to 

light intensity. 

• Blue light reduced gm. 

• Genotypes differed in the interactive 

response of gm to light intensity, light 

quality and water stress. 

• Genotypes differed in the interactive 

response of gm to light intensity and 

nitrogen source. 

• Temperature response of gm varied 

between species. 

• Genotypes differed in the degree to which 

leaf age influenced the temperature 

response of gm. 

4. To what degree does leaf anatomy 

influence gm? 

 

• Genotypes differed in the degree to which 

leaf anatomy influenced gm. 

• Overall, the environmentally driven leaf 

anatomical traits were not the major 

factor determining gm. 

5. How variable is chloroplast membrane 

conductance? 

• Chloroplast membrane conductance (gcm) 

varied between legume species 
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• Genotypes varied in gcm in garden pea and 

field pea 

• gcm varied with growth environments 

6. Are gm and Kleaf correlated due to leaf 

anatomy across genotypes and growth 

environments? 

• gm and Kleaf are not correlated for five 

faba bean genotypes grown under four 

environments. 

7. How well does gm scale with A and A/gsw 

under various environments for different 

species? 

• The closeness of gm and A/gsw 

relationships depended on species and 

environmental conditions.  

• gm was significantly, though not strongly, 

related to A/gsw in field pea under non-

limiting environments.  

• gm was significantly related to A/gsw in 

chickpea, particularly under water-

limiting environments. 

8. Methodological issues/measurement 

sensitivity 

• There was a large variability in the short-

term temperature response of gm between 

individual leaves within a single 

genotype. 

 

 Synthesis of the results 8.1.

 

 gm variation within and among legume species under ideal conditions 8.1.1.

Chapter 4 investigated the variability in gm within and among important legume species; 

common bean, faba bean, garden pea and field pea, grown and measured under non-limiting 

environments. I observed genotypic variability in Δ13C-gm in faba bean, garden pea and field pea 

but not in common bean. This is not a novel finding as previous studies have also shown gm 

variability among species (reviewed in Flexas et al. (2008) or within a species, but notably in 

cereals (Barbour et al., 2010, Gu et al., 2012, Jahan et al., 2014, Xiong et al., 2017) and in a few 

other crops like Castanea sativa (Lauteri et al., 1997), and Vitis vinifera (Tomás et al., 2014) and 

recently among soybean (edamame) genotypes (Tomeo & Rosenthal, 2017). But the information 
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on gm variability in legumes was limited before this study, making it difficult to include gm in 

legume crop improvement programs or in photosynthesis models.  

 

More importantly, chapter 4 also looked at the variability in gm components determined 

experimentally by partitioning gm into cell wall and plasma membrane conductance (measured 

from the oxygen isotope method; Δ18O-gm) and chloroplast membrane conductance (calculated 

from the gm estimates from carbon and oxygen isotope methods; gcm). I did not find genetic 

variation in Δ18O-gm across the species investigated here. This suggests that the observed genetic 

variation in gm may be related to the variation in chloroplast membrane conductance. gcm also 

varied between legume species. Partitioning gm also showed that the resistance to diffusion lies 

mostly in cell wall and plasma membrane in faba bean, while the resistance is divided nearly 

equally between the cell wall/plasma membrane and the chloroplast membrane for most of the 

genotypes in common beans, garden peas, and field peas. However, as discussed in chapter 4 and 

in Barbour et al. (2016b), the interpretation of the Δ18O-gm should be made cautiously as Δ18O-

gm relates to the conductance to CO2 from intercellular air spaces to the location of CO2-H2O 

equilibrium, which further depends on the location and activity of carbonic anhydrase (CA). 

Δ18O-gm was higher than Δ13C-gm for most of the grain legume genotypes in this study 

suggesting that CO2-H2O equilibrium occurred outside the chloroplast and the equilibrium was 

assumed to be at the chloroplast surface in this study, as proposed by Gillon and Yakir (2000). 

Nevertheless, CA isoforms have been localized to most intracellular compartments (Fabre et al., 

2007, Dimario et al., 2017). If the CO2-H2O equilibration had occurred at the plasma membrane, 

then Δ18O-gm would have related to conductance through the cell wall only, in which case the 

observed variation in total mesophyll conductance might relate to variability in plasma 

membrane permeability as well as chloroplast membrane permeability.  

 

Other chapters in this thesis also covered gm variability within or among other legume species. 

The genetic variation observed in faba bean (between PBA Rana and Cairo) grown and measured 

under ideal conditions (chapter 4) disappeared when they were grown and measured under 

differing environmental conditions (chapter 5). Chapter 6 showed that gm varies between 

chickpea genotypes grown under different water availability and nitrogen sources. Chapter 7, 
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which studied the temperature response of gm, showed that common bean and soybean genotypes 

had similar gm values at 25°C.  

 

 gm response to growth environment  8.1.2.

Different legume species and genotypes grown and measured under different environmental 

conditions provided a surprising diversity in gm response to environments. Chapter 5 examined 

the effect of differing growth environments on gm and its components, cell wall plus plasma 

membrane conductance (Δ18O-gm) and chloroplast membrane conductance (gcm) in five 

genotypes of faba bean. Different growth environments were created by varying only CO2 and 

light but other parameters like temperature and humidity, though set to match, might have varied 

a little between the environments. Hence, the variations in the measured parameters including gm 

were the general effects of the growth environments and not the individual effect of CO2 or light. 

gm was significantly affected by the growth environment. Both the components of gm (cell wall 

plus plasma membrane conductance and chloroplast membrane conductance) varied similarly, 

with the highest values at ambient CO2 plus high light environment compared to other growth 

environmental conditions. In contrast, Loucos et al. (2017) observed higher sensitivity of 

chloroplast membrane conductance to growth environment in a single cotton genotype. 

 

Chapter 6 covered two experiments that investigated the response of gm to measurement (light 

intensity and light quality) and growth conditions (water availability in experiment 1 and 

nitrogen source in experiment 2) in different genotypes of chickpea. Water stress decreased gm 

only in Sonali and the reduction was only significant when measured under red light. The 

genotypes responded differently to water availability. Sonali was the most sensitive to water 

stress, with the highest gm of the chickpea genotypes under well-watered conditions but the 

lowest when water-stressed. Variability in the gm response to water stress has been shown 

previously to be related to species differences and the intensity and/or duration of stress (Grassi 

& Magnani, 2005, Perez-Martin et al., 2014, Theroux-Rancourt et al., 2014). Our results further 

suggest that genotypes of a single species may vary in gm response to water stress. This result is 

particularly important when including gm as a trait in breeding programs for water-limiting 

environments.  
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Similar to water availability, genotypes differed in the sensitivity of gm to nitrogen source. 

Flip079C had higher gm when fertilized with NH4NO3 (non-inoculated) than when nitrogen was 

fixed by Rhizobium inoculate. In contrast, the genotypes responded similarly to nitrogen source 

in terms of photosynthetic rate and leaf N content. N- gm relationships have generally  been 

found to be weak (Warren, 2004, Barbour & Kaiser, 2016).  This is the first work to examine the 

response of gm to N-fixing versus N-fed legumes. It is not clear how nitrogen source could affect 

gm in some genotypes but not in others. The proportion of N derived from N-fixation is lower in 

chickpeas than in other cool-season legumes, with similar values for all the genotypes studied 

here (Dr. C. Blessings, the University of Sydney, personal communication, 07 November, 2016). 

Preferential nitrogen assimilation by either one of these routes in different genotypes might lead 

to differences in modifications in leaf architecture or in the influence of N on other physiological 

or biochemical factors contributing to gm, giving rise to differences in the gm response. 

Nevertheless, the result is interesting in the context of increasing recognition of the legume based 

farming systems and thus needs further consideration.  

 

 gm response to short-term environmental changes, and the interactive response of gm 8.1.3.

between short- and long-term environmental changes 

gm was also found to respond to short-term changes in environmental conditions, and the rapid 

responses of gm were affected by other environmental conditions. Rapid changes in light quality 

(red light or blue light) and light intensity showed significant effects on gm (chapter 6, 

experiment 1). Blue light reduced gm when measured at different light intensities for both well-

watered and water-stressed plants but the reduction was not significant for water-stressed plants 

in Sonali, and at lower light intensities in Amethyst. gm increased linearly with light intensity 

across light quality and water treatments except for the water-stressed PBA Slasher and Sonali 

measured under blue light. Similarly, genotype differences in gm sensitivity to light intensity 

were altered by N source (N-fed or N-fixing) in chapter 6, experiment 2. gm values showed linear 

increases with rapid changes in leaf temperature across soybean genotypes, while gm in common 

bean was less sensitive over the temperature range (chapter 7). Soybean genotypes differed in the 

degree to which leaf age influenced the temperature response of gm. In DJakal, the temperature 

responses of gm were similar for the youngest fully expanded leaves (R2=0.71) and when the 

same leaves were measured a week later (R2=0.64). However, in edamame, the linear 
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relationship between gm and temperature was weaker for leaves measured one week later 

(R2=0.31) than for the same leaves when they had just finished expanding (R2=0.64). When the 

response of individual leaves of edamame was considered, the linear response to temperature 

observed in the youngest fully expanded leaves disappeared in the same leaves measured one 

week later. 

 

Previous studies have shown differences between species and genotypes in the sensitivity of gm 

to environmental conditions. For example, von Caemmerer and Evans (2015) observed that the 

temperature response of gm differed greatly between species, and Barbour and Kaiser (2016) 

reported genetic variation in the interactive response of gm to N and water availability in wheat. 

The present results with different legumes species and genotypes under various growth 

environments are statistically remarkable, and they contribute to the general knowledge of the 

variability in gm, showing the gm response to environments is much more variable than 

previously recognized. These results have important implications for photosynthesis model 

parameterization and scaling, as the gas exchange responses to temperature, light, [CO2] are used 

in the model, and at present the model assumes constant gm. The present results are helpful in 

future simulation analysis for legume crops at various environments under climate change 

scenarios.  

 

 Mechanistic basis for gm variability  8.1.4.

Environmentally driven changes in leaf anatomical traits including leaf thickness, surface area of 

mesophyll (Smes) and chloroplast exposed to the intercellular air spaces (Sc) and the fraction of 

intercellular air space (fias) were not the major factors determining gm in faba bean (chapter 5). 

Genotypes differed in the effects of leaf anatomy on total gm and its components; Δ18O-gm and 

gcm.  Leaf thickness was weakly, but significantly, related to gm, Δ18O-gm and gcm for two 

genotypes but not for the three others. Similarly, Smes and Sc were weakly, but significantly, 

related to gm, Δ18O-gm and gcm for one genotype but not for the four others.  fias was not related to 

gm for any genotype. Variation in leaf thickness, Smes and Sc may affect the number of parallel 

pathways, effective pathlength and area for CO2 diffusion and thus contribute to gm. gm has been 

found to correlate with leaf anatomical traits in several studies (Evans et al., 1994, Scafaro et al., 

2011, Terashima et al., 2011, Tholen & Zhu, 2011, Peguero-Pina et al., 2012, Tosens et al., 
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2012a, Xiong et al., 2015a, Peguero-Pina et al., 2016, Xiong et al., 2017), but not in other 

(Evans & Vellen, 1996, Hanba et al., 2001, Hanba et al., 2002, Hanba et al., 2004, Miyazawa et 

al., 2008, Tomás et al., 2014).  The relationships between anatomical traits and gm vary between 

plant species (Fini et al., 2016) and the results of the current study showed that the importance of 

leaf anatomy in gm also varies between genotypes within a species. Cell wall thickness has also 

been shown as one of the important determinants of gm, particularly in species with thick leaves 

(Tomás et al., 2013). Thick cell walls would increase effective path length for CO2 diffusion, 

thus reducing gm.  

 

As discussed earlier, chapter 4 looked at the variability in Δ18O-gm and gcm between genotypes of 

different legume species. Δ18O-gm did not vary between genotypes across species, suggesting 

that the observed genetic variation in gm may be related to variation in chloroplast membrane 

conductance. Considering the weak relationships between leaf anatomy and gm in faba bean in 

the current study and among soybean genotypes reported by Tomeo and Rosenthal (2017), as 

well as the observed variation in gm in response to short-term environmental changes, I speculate 

the variation in gm may be related to leaf physiological or biochemical traits controlling the 

transport of carbon in the liquid phase from the intercellular air spaces to chloroplast stroma. 

Variation in gm in Castanea sativa, was related to differences in leaf protein content (Lautery et 

al. 1997). Aquaporins (AQPs) are membrane proteins that facilitate membrane water transport 

(Maurel and Chrispeels, 2001). There is evidence that certain AQPs can also facilitate CO2 

transport across the plasma and chloroplast membranes (Terashima & Ono, 2002, Uehlein et al., 

2003, Kaldenhoff, 2012, Mori et al., 2014, Maurel et al., 2015, Uehlein et al., 2017). Genetic 

variation in gm and its response to environment could be due to variation in aquaporin expression 

and/or activity within plasma membranes and/or chloroplast membranes (Bernacchi et al., 2002, 

Hanba et al., 2004). Carbonic anhydrase (CA) catalyses the reversible interconversion of CO2 

with HCO3
−, and could contribute to gm by maintaining a nearly constant CO2 concentration 

throughout the stroma, allowing a more effective use of the available Rubisco (Tholen & Zhu, 

2011). Gillon and Yakir (2000) suggested that the contribution of CA to gm is species dependent, 

and that CA may become more important when gm is low as in sclerophyll species. Moreover, 

CA has been recently shown to interact with aquaporin as part of a transport metabolon 

regulating stomatal closure in response to internal leaf CO2 concentrations (Wang et al., 2016). 
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The coupling of CA and aquaporin could enhance gm by creating a CO2 concentration gradient 

adjacent to the chloroplast membranes. 

 

The reduction of gm under blue light, observed in chapter 6, could be related to chloroplast 

movement away from the blue light to avoid the photodamage to photosynthetic machinery in 

the avoidance response. The avoidance response would result in lower Sc under high blue light, 

as reported by Tholen et al. (2008) in Arabidopsis thaliana. However, Loreto et al. (2009) 

showed that the rapid reduction of gm under blue light in Nicotiana and Platanus leaves was 

faster than any possible chloroplast movement and the response was still observed after the 

chloroplast movement inhibition. They suggested that the observed response of gm to blue light 

might be the effect of blue light on photosynthesis through changes in photochemical efficiency. 

Alternatively, the gm response to blue light might be related to changes in membrane 

permeability through aquaporin. 

 

As well as changes in position, changes in chloroplast shape may also affect Sc. Holzinger et al. 

(2007a) observed an increase in chloroplast protrusions in mesophyll cells in A. thaliana in 

response to an increase in temperature. However, I did not find clear indication of chloroplast 

protrusions (which if present would have increased Sc and thus affected gm) at different 

temperatures in soybean genotypes and A. thaliana (chapter 7), and studies have found no 

significant temperature response of gm in A. thaliana (Walker et al., 2013, von Caemmerer & 

Evans, 2015). Therefore, the increase in chloroplast protrusions observed by Holzinger et al. 

(2007a) could not be related to gm response to temperature. Moreover, chloroplast protrusions 

have not been observed in all plant species (Lütz, 2010), and Moser et al. (2015) demonstrated 

that in Ranunculus glacialis L., chloroplast protrusions were not a result of heat or light stress 

but were most abundant under moderate temperature and non-stress irradiation conditions.  

 

gm is a complex leaf variable and is determined not by a single trait, but rather by several 

different and often covarying structural and biochemical elements, all of which are incompletely 

understood. von Caemmerer and Evans (2015) proposed that the differences in the temperature 

response of gm between species may be due to variation in the activation energy for membrane 

permeability to CO2 (suggesting the involvement of fast biochemical components like 
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aquaporins in the regulation of gm) and the effective pathlength for liquid phase diffusion 

(referring mostly to cell wall thickness, but also to cytosol thickness). They used a simplified 

two-component model outlined in Evans and von Caemmerer (2013) to describe the temperature 

response of gm. Flexas and Diaz-Espejo (2015) published a commentary on von Caemmerer and 

Evans (2015) and highlighted three potential mechanisms for the rapid response of gm: changes 

in cell wall properties (nature of chemical interactions between CO2 and cell wall components), 

regulation of membrane properties (aquaporins) and reshaping and redistribution of chloroplasts 

(changes in Sc). gm variability observed in the current study could also be due to 

variation/covariation of afore-mentioned factors plus other as yet unknown factors.  

 

 Coordination between gm and Kleaf 8.1.5.

Chapter 5 examined the gm-Kleaf relationships in faba bean when variation in the traits was 

related to leaf anatomy through genotype and growth environment effects. I partitioned the total 

gm into cell wall/plasma membrane conductance and chloroplast membrane conductance using 

Δ18O and Δ13C techniques, assuming CO2-H2O equilibration at the chloroplast surface. Kleaf was 

not correlated to total gm or to the components of gm, and gm and Kleaf did not share any of the 

studied anatomical determinants within each genotype of faba bean. These results were contrary 

to previous studies, which reported gm and Kleaf correlation across species (Flexas et al., 2013b), 

within a single genus mediated by leaf anatomy (Xiong et al., 2017), and within a single species 

but only as drought progressed (Theroux-Rancourt et al., 2014). A recent study in cotton 

(Loucos et al., 2017) reported weak correlations between Δ18O-gm and Kleaf and between total gm 

and Kleaf through differences in leaf anatomy. The lack of a significant relationship in the present 

study might be due to separation of the CO2 and water pathways or due to the independent 

regulation of CO2 and water transport in leaves, perhaps as a result of CO2- and H2O- specific 

aquaporin. 

 

 gm as a potential target for legume crop improvement  8.1.6.

gm relationships with A and A/gsw were studied across the experiments in this thesis. gm was 

strongly correlated to leaf photosynthetic rate under a range of  environments (growth and 

measurement) for different legume species, as reported for cereal and other crops (Flexas et al., 

2008, Barbour et al., 2010, Jahan et al., 2014), supporting the suggestion of enhancing A through 
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selection for increased gm. However, the closeness of gm relationships with leaf water use 

efficiency depended on species and environmental conditions. Under non-limiting environments 

(chapter 4), gm was significantly, though not strongly, related to A/gsw across field pea genotypes. 

Of the field pea genotypes studied, Para had among the highest A, gm and A/gsw and among the 

lowest gsw. I also found a positive correlation between gm and A/gsw for chickpea genotypes 

grown under well-watered or water-stressed conditions, and the correlation was stronger under 

water-limiting environments (chapter 6). gm was not correlated to gsw in field peas under ideal 

conditions or in chickpea under different water availability. The combination of low gsw and high 

gm would produce high leaf-intrinsic water-use efficiency while maintaining or increasing 

photosynthetic rates (Barbour et al., 2010, Buckley & Warren, 2014, Flexas et al., 2016). The 

presence of genetic variation in gm and the positive relationships of gm with A and with A/gsw but 

not with gsw, especially in field peas and in chickpeas under moderate water-stress conditions, 

demonstrates the potential of gm in improving photosynthetic rates and leaf intrinsic water use 

efficiency within a crop improvement program. However, there was generally a large genotype × 

environment interaction in chickpea, as discussed earlier and in chapter 6. This suggests that 

screening for gm should be carried out under a range of environmental conditions.  

 

gm was not related to A/gsw in common bean, faba bean and garden peas grown and measured 

under non-limiting environments. Further, the study on faba bean genotypes grown and 

measured under differing irradiance and CO2 partial pressure did not find any relationship 

between gm and A/gsw, but a significant relationship gm and gsw.  Correlation between gm and gsw 

might imply a trade-off between photosynthesis and WUE in faba bean under the growth 

conditions, as also reported by Tomeo and Rosenthal (2017) in soybean cultivars grown and 

measured under ideal conditions. Positive relationships between gm and A in these species 

suggest considerable scope for improvement of A through increased gm but concurrent 

improvement in A/gsw would likely require simultaneous stabilizing selection of gsw.  

 

 Methodological issues/measurement sensitivity 8.1.7.

Variability in temperature responses of gm between individual leaves within a genotype (chapter 

7) reflects the sensitivities of the measurements/model parameters to environments and/or 

instrumentation noise in measurements. Reliability of the gm estimates from the current 
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techniques depends on model assumptions and estimates of the values of the model parameters 

for the calculation of gm. Despite some progress achieved in limiting uncertainties induced by 

model parameters (Tholen et al., 2012, Gu & Sun, 2014), mesophyll conductance estimation has 

still been technically challenging. It would be necessary in future studies to conduct sensitivity 

analysis of the model parameters to a wide range of measurement and growth conditions. 

Experimental testing of the assumptions is core to the reliability of the gm estimates, and further 

enhancement on the laser technology to limit the instrumentation noises would be of great 

benefit.  

 

 Future work 8.2.

• Simultaneous measurements of Δ18O-gm and Δ13C-gm in this study provided better 

understanding of the relative contributions of the gm components before and after CO2–H2O 

equilibration, and thus have the potential to identifying targets to genetically manipulate gm. 

Therefore this topic deserves priority in future studies, ideally, together with the assessment 

of the location and activity of CA to identify the location of the equilibration, and thus 

correctly interpret Δ18O-gm estimates. 

 

• Concurrent Δ18O-gm and Δ13C-gm estimates under differing growth environments showed 

how the different components of gm (cell wall/plasma membrane and chloroplast membrane 

conductance) were regulated. More studies on how Δ18O-gm and gcm vary in different species 

and environmental conditions would increase our mechanistic understanding of gm response 

to environments and thus would increase our ability to improve plants under stressful 

conditions.  

 

• The temperature responses of Δ18O-gm and Δ13C-gm may reveal the location of CO2–H2O 

equilibration, as highlighted by Barbour et al. (2016b). There was a variability in the 

temperature responses of Δ13C-gm between soybean and common bean in this study and 

between different species in von Caemmerer and Evans (2015). It would be interesting to 

study the temperature responses of Δ18O-gm in these species. There is an opposing effect of 

temperature on diffusivity and solubility of CO2, and therefore the temperature response of 

CO2 diffusion through liquid is negligible (Evans & von Caemmerer, 2013). Temperature 
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affects the properties of the lipids and proteins that comprise the membrane and thus directly 

affects membrane permeability in the short-term, although there is limited experimental data 

available for the temperature response of membrane permeability to CO2.  

 

• The commonly involved leaf anatomical traits for setting gm (leaf thickness, Smes, Sc) were 

not the major determinants of gm variability in faba bean in this study. Substantial evidence 

has been accumulated implying causal links between changes in aquaporins and gm, but was 

outside the scope of this thesis. More studies are needed which include procedures that 

modify aquaporin expression like knockout or antisense techniques to provide precise 

information about the role of aquaporin in membrane permeability and thus in gm regulation. 

There could be a complex integrated roles of different structural and metabolic controls in gm 

regulation, thus future studies should also look at how different traits interact with each other 

to enhance the possibility of completing our fragmentary picture of mesophyll conductance. 

 

• Genotypic variation in the sensitivity of gm to nitrogen source (NH4NO3-fed/non-inoculated 

versus N-fixing by Rhizobium inoculate) observed in this study may be of particular interest 

for future studies, given the involvement of nitrogen in leaf structure, physiology as well as 

in building or maintaining proteins like aquaporin. Investigating the link between the 

influence of N source/N assimilation on respiratory or photorespiratory processes and on 

mesophyll conductance could be helpful. Future studies could also consider integrated roles 

of aquaporins in carbon and nitrogen assimilation (Maurel et al., 2008). 

  

• Despite the lack of correlation between gm and Kleaf in faba bean observed in this study, I 

believe that more detailed studies on gm-Kleaf relationships across different environmental 

conditions and species are needed in order to arrive at definite conclusion of the proposed 

coordination. I suggest that a better approach for precisely assessing the relationships 

between gm and Kleaf would be to partition gm into different components using Δ18O and Δ13C 

techniques (as described in this study and Loucos et al. (2017)) and partition Kleaf into xylem 

and extra-xylary components. Studies on protein-mediated gm-Kleaf coordination would also 

be of great benefit. Studies to map the water movement pathways outside the xylem and the 
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location of the phase change between liquid and vapour will further elucidate the 

relationships between leaf internal conductances to CO2 and H2O. 

 

• The experiments in this study were conducted in controlled environment. The key results of 

this study, particularly the genetic variation in the gm response to water stress and the positive 

correlation between gm with leaf water use efficiency, should be tested under field conditions 

including water-limiting environments, and at the crop stages that are most sensitive to 

drought.  

 

• The contribution of increased A and A/gsw through increased gm to improvement in crop 

yield and WUE needs to be assessed under realistic field conditions. The potential scope for 

yield improvement by enhancing leaf photosynthesis in C3 crops has been demonstrated by 

the effects of CO2-enrichment on yield and biomass (Kimball et al., 2002, Ainsworth & 

Long, 2005). Barbour et al. (2010) stated that selecting for high gm to improve A/gsw will 

also improve crop WUE (so long as allocation of carbon to the harvested plant organ is not 

reduced). The recent detection of the quantitative trait locus (QTL) associated with gm in 

bread wheat hints at the genetic basis for gm (Barbour et al., 2016). Identifying QTL 

associated with gm in legumes and including this genomic information in the breeding 

program would provide additional improvements in legumes crop breeding.  
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