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Abstract

The power demand increases every year around the world with the growth of population
and the expansion of cities. Meanwhile, the structure of a power system becomes increasing
complex. Moreover, increasing renewable energy sources (RES) has linked to the power
network at different voltage levels. These new features are expected to have a negative impact
on the security of the power system. In recent years, complex network (CN) theory has been
studied intensively in solving practical problems of large-scale complex systems. A new
direction for power system security assessment has been provided with the developments in
the CN field. In this thesis, we carry out investigations on models and approaches that aim to
make the security assessment from an overview system level with CN theory.

Initially, we study the impact of the renewable energy (RE) penetration level on the
vulnerability in the future grid (FG). Data shows that the capacity of RE has been increasing
over by 10% annually all over the world. To demonstrate the impact of unpredictable
fluctuating characteristics of RES on the power system stability, a CN model given renewable
energy integration for the vulnerability analysis is introduced. The numerical simulations
are investigated based on the simplified 14-generator model of the South Eastern Australia
power system. Based on the simulation results, the impact of different penetrations of RES
and demand side management on the Australian FG is discussed.

Secondly, the distributed optimization performance of the communication network topol-
ogy in the photovoltaic (PV) and energy storage (ES) combined system is studied with CN
theory. A Distributed Alternating Direction Method of Multipliers (D-ADMM) is proposed
to accelerate the convergence speed in a large dimensional communication system. It is
shown that the dynamic performance of this approach is highly-sensitive to the commu-
nication network topology. We study the variation of convergence speed under different
communication network topology. Based on this research, guidance on how to design a
relatively more optimal communication network is given as well.



x

Then, we focus on a new model of vulnerability analysis. The existing CN models usually
neglect the detailed electrical characteristics of a power grid. In order to address the issue, an
innovative model which considers power flow (PF), one of the most important characteristics
in a power system, is proposed for the analysis of power grid vulnerability. Moreover, based
on the CN theory and the Max-Flow theorem, a new vulnerability index is presented to
identify the vulnerable lines in a power system. The comparative simulations between the
power flow model and existing models are investigated on the IEEE 118 bus system.

Based on the PF model, we improve a power system cascading risk assessment model. In
this research the risk is defined by the consequence and probabilities of the failures in the
system, which is affected by both power factors and the network structure. Furthermore, a
cascading event simulation module is designed to identify the cascading chain in the system
during a failure. This innovation can form a better module for the cascading risk assessment
of a power system.

Finally, we argue that the current cyber-physical network model have their limitations
and drawbacks. The existing "point-wise" failure model is not appropriate to present the
interdependency of power grid and communication network. The interactions between those
two interdependent networks are much more complicated than they were described in some
the prior literatures. Therefore, we propose a new interdependency model which is based on
earlier research in this thesis. The simulation results confirm the effectiveness of the new
model in explaining the cascading mechanism in this kind of networks.
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Chapter 1

Introduction

1.1 Motivation

With smart grid projects arising all over the world, more and more distributed energy
resources (DER) such as intermittent renewable energy source (RES) including wind power
(WP), PV generation and electric vehicles (EV) are connecting into the system. The evidence
shows that the stability of power grids is greatly impacted by the characteristics of RE
unpredictable fluctuating power and reduced inertia, which means the networks may be more
vulnerable, especially under attacks [1].

On the other hand, DER also affects the topology of the networks [2]. Power grids with
RE sources become more complicated and changeable. They are no longer an individual
network but dependent on different networks, such as communication, gas, logistics etc.
The research [3] shows that a broader degree distribution increases the vulnerability of
interdependent networks to random attacks, which is the opposite of how a single network
behaves. Therefore, the security assessment of power grids should be highlighted to ensure
robust networks in the future.

1.2 Power System Blackouts and Cascading Events

In the last decade, several major blackouts across the world were reported in many
research papers [4]. The causes and the results of these blackouts are listed as follow:
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A A cascaded failure was reported on 2nd July 1996 in the Western North American power
system. A flashover took place in a 345 kV transmission line and created a short circuit
that result in a 2 GW power interruption. Also the short circuit led voltage drop and
tripped several hydro generators. Finally, power swings grow and the system collapsed
after one of the 230 kV lines was tripped.[5].

B The U.S-Canadian blackout on 14th August 2003 affected about 50 million people. In
this event 63 GW load was interrupted, which was 11% of the total power supply by
the grid. The main reason was reported as two transmission lines loaded 44% and 88%
connected to trees and tripped within two hours. The protection system didn’t give
the timely feedback to the operators. The insufficient supply of reactive power cause
large numbers of generators tripping. Finally, a critical failure made a tie line lead to
reversal of power flow in the system [6].

C The Danish-Swedish power system had a blackout on 23rd September 2003. The daily
life of 4 million people was disturbed by this failure. The blackout was caused by two
independent accidents. Firstly a 1200 MW nuclear power plant disconnected to the
system in southern Sweden; 5 minutes later a fault occurred at a substation and tripped
another 1800 MW power plant. This tripping had the consequence of very high power
flow and system collapsed. The islanded system after disconnection could not maintain
the dynamic balance and collapsed [7].

D Another blackout happened in Italy on 28th September 2003. This blackout started
with a tie line between Italy and Switzerland flashover a tree. Because of the large
phase difference across the line, the auto re-closer can not rebuild the connection. The
power loss in Italy started to reduce synchronism of whole power system in Europe
power grid. The interconnection line from Italy to France, Austria and Slovenia got
overloaded and tripped within few minutes. Then the entire Italian power system
collapsed [8].

E Attacked by strong typhoon, the power grid in Hainan Province China had a blackout on
25th September 2005. Hainan grid was an isolated islanded system, mainly composed
by a 220 kV looped network. The typhoon blew over the network and a large number
of 220 kV and 110 kV lines tripped. The whole grid in Hainan collapsed within few
minutes [9].

F A large area blackout was caused on 16th January 2007 in Victoria, Australia. It was
reported that a continuous hot weather caused a bushfire thus tripping two critical
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330 kV transmission lines. Within a few seconds the Victoria system was split to
three islands due the cascaded line tripping. Load shedding interrupted 2.2 GW of
supply before restoration. And another 200 MW of power supply was lost because of
operating errors during restoration [10].

G On 22nd February 2011, an earthquake struck the city of Christchurch, New Zealand,
damaging large parts of the utility in Orion’s sub-transmission and distribution network-
s. Over 80% of the city lost power supply. It took about 10 days to restore electricity
to 90% of consumers. The direct costs were estimated at over $40 million [11].

H A thunderstorm hit the state of South Australia on 28th September 2016. The high
winds, lightning strikes, hail and heavy rainfall resulted in multiple transmission
system faults. The system lost the three major 275 kV transmission lines in north
Adelaide in 2 minutes. This lead to 315 MW of wind generation disconnected. The
uncontrolled reduction in generation increased the flow on the interconnector from
VIC which then overload. The automatic-protection mechanism activated and tripped
the interconnector. This resulted in the loss of power supply to all customer loads in
SA (approximately 1895 MW of demand) [12].

There are several lessons we can learn from these blackout records.

The first factor relates to the topology of the grid. There is usually a big electrical distance
between generators and loads in the modern power system. The inter-area transmission lines
play a very important role in offering power to the load side [7]. When these major lines
tripped, the remaining lines in the system will be forced to overload to participating the power
transition that may cause an extensive cascade falling such as in case E. Also, the electrical
distance is increased since the major connection between generator and load was lost. The
angles deviations between generator and load increase and the line voltage depressed. This
will require more reactive power to maintain the voltage and lead to loss of synchronization
of the system in case A.

The second factor is a shortcoming of protection and monitoring systems. The protection
such as relaying system is the first defence to prevent blackout, and malfunction of the
protection in case B and E caused a blackout directly.

Besides those two factors, the interconnection transmission lines between different areas
are also vulnerable parts in the system. The hidden risk of a cascading fault is not easy to
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find out during safe operating conditions, but has a great influence under urgent situations as
in cases D and H.

Overall, structural vulnerability leading to cascading failures can be considered as a
major contributing factor. From the cases mentioned above we can see most of these serious
blackouts are caused by a single event but end up with cascading failures across a large area.
For this reason, new models and methods for power system security assessment are much
necessary to prevent potential cascading events.

1.3 Security Assessment in Power Systems

The concept of a vulnerable of a system is defined as a reduced level of security that the
system renders it vulnerable to the moderate disturbances during operations [13]. The term
of vulnerability is defined in [14] with the context of power systems. The vulnerability is
defined as the level of weakness with respect to a cascading event in this thesis. The failure in
a power system is usually leads to a cascading event and therefore it is beyond the traditional
concept of N−1 system security criteria. The vulnerability mentioned in [15] is a measure of
the system’s weakness with respect to a sequence of cascading events that may include line
or generator outages, malfunctions or undesirable operations of protection relays, failures in
communication layer, and manual operation errors. In [16], the potential sources of power
grid vulnerability are discussed. It is mentioned in this research that one event may start
transient state and trigger another event. The overloaded lines may be tripped by impedance
relays due to the low voltage and high current operating conditions. Some typical patterns
of cascading events have been introduced in [17][18] including transmission line overload,
generator fault due to abnormal voltage and frequency. In this section, we want to introduce
some recent works of security assessment which can be mainly classified into two types:
traditional steady-state modelling and complex network based analysis.

1.3.1 Security Assessment with Steady-State Modelling

A continued power balance is required to maintain the stability of a power system.
Usually a power system changes from one steady state to another. That is to say, a steady
state model is adequate for assessing the security level of a power system during a cascading
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event. Therefore,power system security can be performed by power flow analysis based on
the steady state modelling such as N − x contingency analysis, hidden failure analysis and
probability risk analysis. Here we look briefly at these models.

A. N − x Contingency Analysis.

"N −1" contingency analysis is an indispensable part of power industry to analyse the
potential failures in a power system. The report [14] summarizes the N − 1 contingency
standard as a way that ensures any single contingency in the power grid will not propagate
into a cascading event. In this case, the power grid operators should run all the possible cases
and check for the intolerable consequences.

The analysis based on N −1 criterion has been a common industry practice nowadays.
However, in the real power system operating, multiple unrelated events can be occurred in
the same time and propagate into a cascading event[19]. Thus, N − x ( x equals two or even
higher) contingency events need to be analysed as well. The result of N − x contingency
analysis heavily relies on combinatorial approaches of contingencies and extremely long
computational time. The result in [20] shows that the computational resources are not fully
used during the load balancing schemes due to the uneven time in different cases. Therefore,
the CPU speed, network topology, time delay during the information exchange should be
considered in a well-designed dynamic load balancing scheme.

B. Hidden Failure Analysis.

In [21] the power system hidden failure is denoted as the permanent defects that would
cause a unexpected or false react to the disturbances in a power grid . Ref. [22][23] shows
that the hidden failures in power system are usually triggered by other events and may
have disastrous consequences. In the research of [21][24][25][26][27][28], the probabilistic
approaches of the hidden failures are modelled as follows:

Ph f = P0 exp
(
−Z
3Z3

)
(1.1)

where Ph f is the probability of hidden failure in a relay system, Z is the impedance of the
relay, and Z3 is the zone 3 setting.
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In recent years, fast simulation techniques and heuristic random search are applied to
identify critical relays that may lead to some possible cascade failures. In Ref [26] a simple
hidden failure model are proposed. In this model, each exposed line has a tripping probability
function that is modelled as an increasing function of the power flow on the line. Those
simulation shows that the maintenance of the relays is a cost-effective mitigation strategy to
cascading failure.

C. Probability and Risk Analysis.

Academics have analysed power networks failure with risk theory for several years.
The risk indicators can generally describe the two main factors in cascading failure, the
probability of cascading and severity of event. In [25][29] several simulations are employed
to demonstrate approaches. The simulation results address that one of the most effective
ways to mitigate cascading events is to control the high risk sequences. Ref. [30] verified
the overall cascading risk is basic to evaluating the benefits of mitigation efforts. Though
the models have some gaps with real events, the research with probability risk analysis has
shown the great value in detecting network security and guiding mitigation efforts.

1.3.2 Security Analysis based on Complex Network Theory

With the progress of power system security analysis, more cross-disciplinary theories
have been taken into the research. However, the power flow and network topology modelling
are not been considered in most of the probabilistic models. Thus, these probabilistic models
only capture some generic features but neglect the details of cascading mechanisms. In
recent years, CN theory is one of the most be relevant tools to analyse the vulnerability of
power system. In the power grid security assessment based on CN model, several graph
analysis techniques have been applied, such as based on small-world networks and scale-free
networks. The basis of graph analysis applications is the mapping of the power grid topology
to a CN by nodes and edges. The simplified power network is an undirected connected graph
with N nodes and K links. A simple CN model is shown in Fig.1.1[19].

A. Small-world Network.

The concept of small-world network was firstly introduced to study social networks [31].
Then electrical engineers discovered that power system have the properties of a small-world
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Fig. 1.1 IEEE 14 bus system and its graph model

network [32]. The grid has big clustering coefficients and relatively small distance. In this
kind of network, the loss of some remote connections will increase the distance between two
nodes, decrease the transfer capacity of the power grid, which can easily cause cascading
events. Accordingly, these critical connections play an important role in power system
stability. Therefore, the vulnerability of the power system can be identified by detecting these
critical connections[32]. A small-world network based cascading failure model was proposed
in [33]. This model can be used to identify the vulnerable lines in the power grid. According
to the small-world network theory, those lines which removal can lead to a cascading events
are the vulnerable lines in the power system.

B. Scale-free Network.

The two step process to form a scale-free networks, growth and preferential attachment,
is described in [34]. The step of growth starts with a small number n0 of nodes, then adds a
new node with m(m ≤ n0) links to m different nodes already existing in the network. Pi is
employed to describe the probability of adding connection to an existing node i:

Pi =
ki

∑ j k j
(1.2)

where ki is the degree of node i, j is the rest of the nodes in the network. Therefore, the nodes
with large degree have the higher importance in a scale-free network [35]. As a result of
preferential attachment, the network gains a vast number of links attached to so-called hubs.
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The most important characteristics of scale-free networks is that the degree distribution
follows the power-law distribution. In scale-free network a few nodes have an extremely
large degree but most nodes have only a few links. Ref [36] applies the scale-free network
theory to the power networks. The result shows that power networks appear to have a
scale-free network structure. The paper also reveals that power networks have a number of
highly-connected "hub" buses. Based on scale-free network, Liu and Gu proposed a discrete
particle swarm optimization and reconfiguration strategy for power system in [37]. The
scale-free network theory is highly expected to become a new direction in power system
security assessment.

C. Betweenness Centrality.

It is assumed that communication between any two nodes is done via the shortest path in
a network. Then betweenness centrality of a node i as CB(i) and a link l as CB(l) are defined
as follows [38]:

CB (i) = ∑
( j,k)

a jk (i)
a jk

(1.3)

CB (l) = ∑
( j,k)

a jk (l)
a jk

(1.4)

where a jk is the number of shortest paths between nodes j and k, a jk (i) is the number of
shortest paths between j and k, containing node i, and a jk (l) is the number of shortest paths
between j and k containing link l.

If the betweenness centrality exceeds a pre-specified threshold CB max, CB (l)>CB max
or CB (i)>CB max , then link l or node i is overloaded and removed from the initial graph.
Then all betweenness centrality is updated. The propagates of cascading failure can be
approached with the iteration process goes on. In this application, an underlying assumption
is that the capacity for each link and each node is the same, which is normally not feasible
for a real power grid. To overcome this limitation, diversified capacity is introduced in [39].
The capacity of node i is proportional to its initial load as Ci = (1+α)ai0, where α is a
tolerance parameter that denotes the ability of a node to handle increasing load in order to
resist disturbances. It approves that the security analysis with betweenness centrality has the
potential for further improvement by refining the efficiency index in the power model.
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1.4 Research Goals

As it can be seen in the above review, the prior research of security assessment of
cascading failure for power system has made some significant achievement. However,
the power system is extremely diverse and complicated. It is hard to find a single model
which can address all aspects of cascading failure. Here are listed several problems that are
important and should be solved in future research:

1. Almost all of the past studies in the security analysis of power system have been based
on a traditional power grid. Little research has been done considering the impact of
RE and ES. It is already evident that the stability of power grids is greatly impacted
by the unpredictable fluctuating characteristics of RE, which means the networks may
be more vulnerable, especially under attacks. Therefore, the impact of RE must be
considered in the future research.

2. The CN theory has already shown its great advantages in vulnerability analysis on
power system. However, most of the researches with CN theory have largely ignoring
the electrical quantities and power flow constraints, which is one of the most important
characteristics of the power grid. In the latest research of power system vulnerability
based on CN [40], the power flow constraints are adopted by electrical distance and
efficiency of the transmission line. It makes progress but is still not comprehensive
enough to describe the power flow in the grid.

3. Most of the former research produces high risk cascading sequences and only a small
number of them considering the overall risk of cascading failure. Even in these results,
the overall cascading risk is approximated by extending the single cascading risk to
broader part of the power network. This does not capture the actual cascading events
as they happen in the grids. So what is the reasonable way to describe the overall
risk of cascading failure? And what are the cascading failure sequences of highest
probability?

4. Cascades between power grids and communication networks have played a prominent
role in several serious cascading blackouts which happened in past decades [41]. The
power grids provide the energy for the communication networks and also rely heavily
on the remote controls and operations based on the latter. However, the particular
research on cascading events between power grid and communication network has
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been suggested [3] but so far uses overly simplistic models. Although the power grid
and communication networks have been combined more and more closely, there is
little research on this topic towards a feasible modelling strategy for analysis.

These problems are complicated and diverse. Each of the problems might require
different modelling, approximations, assumptions and data in order to make them tractable.
It is expected that these problems can be solved with the new approaches and technologies.
This is the motivation for the current research on this topic: Application of Complex Network
Theory in Power System Security Assessment.

1.5 Research Contributions

The main contributions of this thesis are:

1. The impacts of different levels of the RES penetration are studied based on the future
grid (FG) platform under various scenarios. Then we designed a new CN efficiency
model for vulnerability analyses considering these RES impacts.

2. A new direction to improve the efficiency of the communication network in a PV-ES
combined system is investigated. The second-largest Laplacian eigenvalues and degree
distribution are used to explain the difference of performance during two phases. The
potential of an optimal communication network topology for the system is discussed.

3. A power flow based CN model for power system vulnerability analysis is proposed.
Then, a new definition of vulnerability index is introduced to identify the set of
vulnerable lines in a power system. The lines with a higher vulnerability index ranking
are considered to have more damage to a power grid when they trip off.

4. A new CN model and approach that aims to analyse the risk of a power system to give
cascading failure is investigated. The CN factors such as topology and connectivity
are added to the proposed model based on the traditional risk assessment model. Six
different types of electrical failures are adopted in this model. A cascading event
simulation module is designed to identify the cascading chain in the system during a
failure.
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5. The interactions between power grid and communication network is proposed in
an updated interdependency model. The dynamic simulation demonstrates that the
interdependency can sometime accelerate the cascading process.





Chapter 2

Power System Vulnerability Analysis
with Distributed Renewable Energy

2.1 Introduction

In conventional power systems, large thermal power plants have provided the main
actions underpinning the whole operation. Centralized control, unidirectional power flow
and demand driven balancing have been the main characteristics of the traditional electricity
network. The transmission networks were planned and built to ensure the demands were
met efficiently (and economically) and later according to the market. The load varies across
different periods of a day. However the load was able to be met by the combination of
dispatch and regulation processes. Among the other requirements, power flows and dynamics
are required to be within bound once and stable (for both static and dynamic aspects) in
order to maintain the electricity network performing. The traditional planning and control
problems, which have already been difficult tasks [42], will be further challenged with all the
new features of the future grid: RES, such as WP farms, PV plants, distributed generation
(DG), ES and new types of loads such as electric vehicles (EV). Meanwhile, studies on new
control mechanisms that will provide a more efficient way of providing energy, to reduce the
peak demand and more financial beneficial for electricity consumers are proceeding. Such
applications can be seen in the utilizations of the roof-top-PV and residential-size energy
storage, smart meters and smart home management and so on. In all these changes, the
role of modelling and analysis related to security for large numbers of scenarios remains of
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central importance. In particular, the recent CSIRO funded Future Grid project [change and
choice report] presents four meta-scenarios and many sensitivities for what the grid could
look like for the next decades.

Some studies on the modelling and vulnerability analysis in future grids have been seen
in recent years. A study on the scenario that mixed RES generation, distributed storage
and also new types of load such as EV, was made for a future zero-carbon electrical grid
of Australia in 2020 [43]. In this study, RES generations such as utility-sized concentrated
solar power plants and large wind farms are considered for the future Australian power grid.
Analysis based on the economic aspects and highest probability of wind and solar radiation
geographically was conducted. However performance, stability and security assessment of
the proposed network is missing from the study, which makes this study less useful. A study
in [44] from UNSW proposes scenarios of the future electricity network with 100% RES
generation considering a copper plate model for the National Electricity Market (NEM). It
is concluded that it is technologically feasible to rely on 100% percent of the RES for the
NEM provided that NEM reliability standard is applied. They also claim that the best way of
reducing peak load generation capacity is by delaying large concentrated solar power plants
(CSPs) dispatch and demand curtailment.

However, all these studies need to be reevaluated against a more accurate grid presentation
and stability margins. The network constraints and security issues were put aside, which
makes these studies require future analysis when on the operation in the real electricity
network and the future grid (FG). The unpredictable fluctuating characteristics of these
renewable energy sources must have introduced new security concerns for the stability of
power grids. On the other hand, new network expansion also changes the topology of
power networks to accommodate these new energy sources. The new network structure with
renewable energy sources integration may introduce new vulnerabilities, which unfortunately
have arisen as a concern for the future [45][46]. Therefore, it is necessary to carry out
vulnerability assessment for FG.

The main task of this chapter is to summarize and present stability analysis using simu-
lations based on the future grid platform under various scenarios, represented by different
levels of the RES penetration as well as demand side management (DSM) uptakes. The
security of the future electricity network is the main focus here; the effects of the increasing
level of RES penetration and DSM uptake on the both static and dynamic stability are studied
by using the simplified South-Eastern Australian power grid. Specifically speaking, the
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scenarios are categorized according to: 1). Status of the load: heavy, medium and light; 2).
Penetration level of the RES; 3).Uptake level of the DSM; 4).Locational, operational and
economic factors. The simulation results reveal some important points in the power system
stability assessment for the FG feasibility studies.

The remainder of the chapter is organized as follows: in the Section 2.2, the Australian
NEM model and the demand side management model is briefly described. Detailed simulation
scenarios measures and results are demonstrated in this part. The basic measures of power
system CN model is described in Section 2.3. The simulation results are presented in the
Section 2.4, followed by the analysis and discussions that are revealed from the simulation
results.

2.2 Impact of High Renewable Penetration in Australia Fu-
ture Grid

The starting point of our studies is the observation that to the best of our knowledge,
no international research so far has developed a standardized comprehensive modelling
framework for future grids close to what we have been accustomed to for classical systems;
a suite of definitions, equations and software for power flow, stability analysis, dispatch,
security and reliability. Well-known software in dynamics and market modelling such as
PSS/E and Plexos respectively have included new features to cover renewables, particularly
wind and PV. The newer analysis software such as DIgSILENT has been developed from the
outset with future grids in mind, especially in modelling renewable energy. Thus, this study
is based on Plexos for 14-Genertor for NEM market simulation and then DIgSILENT for
balancing and stability simulation and analysis.

2.2.1 The Simplified 14-Generator Model of South-Eastern Australia
Power System

The simplified 14-Generator, 50 Hz system model for the South-Eastern Australian grid
is illustrated in Fig. 2.1 [47]. This model was originally developed for small disturbance
stability studies. For convenience, it has been divided into 5 areas which stand for [47]:
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• Area1: Snowy Mountains

• Area2: New South Wales (NSW)

• Area3: Victoria (VIC)

• Area4: Queensland (QLD)

• Area5: South Australia (SA)

Areas 1 and 2 are more closely coupled. Thus, there are in essence 4 main areas and
hence 3 inter-area modes, as well as 10 local-area modes. AEMO has proposed this network
be modelled in forms of 16 zones for the NEM as shown in the Fig. 2.1.

A. The stability analysis model with RES

In order to make a model which can serve the purpose of the study, the 14-Generator
Model was rebuilt in a DIgSILENT environment with the following enhancements [48][49]:

• The capability to add solar thermal, PV or wind farm at all buses of the grid, including
possible grid extensions;

• The traditional generator models have also been enhanced to allow a wider range of
dynamic studies than just small-disturbance stability;

• The capability to include the demand-side representation of load, storage and demand-
response at city level.

The modelling framework aims to be very flexible for considering scenarios of RES
placement, randomly or from specific proposals, and optimizing which ones will provide the
best overall performance. In this chapter, we illustrate this flexibility with additional RES
at nodes in the four main areas. The traditional generators are replaced by RE sources with
different percentages of their capacity to see the impact on performance.

According to the practical data in Australia, we can select the following nodes to accom-
modate the renewable energy sources.

• SA: Node 501; NPS-5; Wind Farm 1: Lake Bonney
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Fig. 2.1 The simplified 14-generator model of the SE Australian power system.
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Fig. 2.2 Locations of the 4 renewable energy resources in SE Australia

• VIC: Node 301; LPS-3; Wind Farm 2: Waubra

• NSW: Node 204; MPS-2; Wind Farm 3: Capital

• QLD: Node 401; TPS-4; Photovoltaic Power Station

The geographic positions of the four power stations are shown in Fig. 2.2:

The scenarios are divided into two categories, i.e. 1) Power flow calculation under steady
operation conditions and the 2) Transient analysis under short circuit conditions. Both of the
two categories are performed for different penetration levels of sustainable energy sources.

To simply represent the change of actual load, we divided the daily load curve into
three different levels, i.e. light load level (0 am-8 am, 22 pm-0 pm), medium load level (9
am-17 pm) and heavy load level (18 pm-21 pm) respectively. In each scenario, the wind
and photovoltaic farms replace traditional generators in 10%, 20%, 30% and 40% of their
capacity at each specified nodes, namely Node 501, Node 301, Node 204 and Node 401.
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Fig. 2.3 The real-time PV power output within a day

By calculation, the penetration levels are 3.23%, 6.46%, 9.68% and 12.92% accordingly in
terms of the energy generated.

In different time points of a day, the power outputs of wind/PV farms shown in Fig. 2.3
and Fig. 2.4 are drawn from the real-time data of online reports (Wind Farm Performance
and UQ SOLAR Photovoltaic Data) [50][51] and scaled to different scenarios. From the
practical power output data, the corresponding capacity factors of different generators have
been converted throughout the day [49][52].

B. Demand side management model

The demand side management model is also analysed in this study under future grid
scenarios. In order to do that, firstly, the market simulation is done by PLEXOS, which is
a well-known market simulation software. The scenario is based on the dispatch process
from AEMO. The model is designed based on the residential level then aggregated into
different levels of the NEM future grid model according to the requirement for different
study purposes. Specifically speaking, the model that we designed is a decision making
optimization program where the decision can be computed at each household in order to
achieve the objective of minimizing electricity bills. Mathematically, the model can be
described as an optimization problem where the objective function and constraints can be
described as follows:
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Fig. 2.4 The wind farm power output within a day

min Ci =
K

∑
k=1

λ (k)∗
(

Ak
i +Ek

i −Pk
pv,i

)
(2.1)

s.t. Ak
i ∈
[
mk

i ,M
k
i

]
(2.2)

Ek
i = SOC(k+1)−SOC(k) (2.3)

Q−
i ≤ Ek

i ≤ Q+
i (2.4)

Pk
pv,i ≥ 0 (2.5)

where Ci denotes the electricity bill of the user i for the studies time period, normally a day
and K = 24. Here is the list of notations:

• λ (k): the rate of purchasing electricity from /selling electricity to the grid at time slot
t;
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• Ak
i : the electricity consumption of all appliances of user i within time slot k;

• Pk
pv,i: the photovoltaics system generation of user i within time slot k;

The constraint Ak
i ∈
[
mk

i ,M
k
i
]

shows that the total consumption of household i in time
slot k should be between the minimum and maximum consumption value; (2.3) and (2.4)
represent that constraints on the state of charge SOC and maximum charge/ discharge rate Q−

i

and Q+
i respectively. The term Ak

i +Ek
i −Pk

pv,i actually equals to the amount of electricity that
is exchanged with the grid from user i in time slot k, denoted by Pk

g,i. Therefore it indicates
that the user i purchases the electricity from the grid at time slot k when Pk

g,i ≥ 0; and the user
i sends back the electricity to the grid when Pk

g,i ≤ 0. The price is assumed to be according to
Time of Use (ToU) and the consumers are only considered as the price taker at this stage.

Later this demand side model is aggregated to represent many households at the city level
in order to analyse the scenarios when the demand side management is considered into the
FG stability study.

2.2.2 Steady-State Calculation and Analysis

The primary analysis tool for steady-state operation is power flow analysis, where the
voltages (magnitude and phase), line power flows and losses in the system are determined.
This analysis is widely used for both operation and planning studies throughout the system
i.e. both transmission and distribution systems. Also, some typical scenarios suggested by
the recent CSIRO Future Grid Forum (FGF) [53], Zero Carbon Australia Report [54] and
the AEMO 100% Renewables report [55] will be effectively analysed. The terminology for
scenarios is taken from the FGF report [53].

A. Renewable thriving

It is well known that Australia has an abundance of renewable energy resources, such
as wind, solar, geothermal etc. The scenarios that represent the increasing to high usage of
renewable energy sources have been formed. The purpose of this study is to reveal the impact
of "renewable thriving" under different penetration levels of RES considering the integration
of DG and ES (residential size).
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Fig. 2.5 The power flow distribution under 6.46% renewables without energy storage

Fig. 2.6 The power flow distribution under 12.92% renewables without energy storage

Therefore the scenarios are formulated at the same location under different levels of
renewable penetration and then compared to find out whether the system is stable in the
name of steady-state power balance viability. The stability of the system is indicated by the
non-convergence period in this study.

Fig. 2.5 and Fig. 2.6 show the power flows on an inter-connected transmission line
under the RE penetration level of 6.46% and 12.92% without ES respectively. It can be seen
that that under higher penetration level of renewables without energy storage integrated, the
power flow cannot converge in certain periods, i.e. 11:00-21:00. It is because the intermittent
characteristic of these renewables may incur imbalance between active power generation and
consumption.

B. Rise of the prosumers and distributed energy storages
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Fig. 2.7 The power flow distribution under 12.92% renewables with 40% energy storage

Fig. 2.8 The power flow distribution under 12.92% renewables with 80% energy storage

Prosumers are the residential customers who also supply their own electricity. The
sustained high retail prices of electricity, falling costs of solar roof-top panels and increasingly
innovative financing and product packaging from energy services companies are anticipated
to lead to a large increase in the scale of on-site generations. In this study, the demand-side
model has been aggregated into the city level. Parameters in this model can capture the
percentages of uptake for the technologies involved.

The figures show when accumulated energy storage is integrated into some critical loads
(such as Sydney city). Here, 40% or 80% of energy storage represent that there are 40% or
80% of the households in the selected area are installed with distributed PV-Battery system.
It should be noted that this only represents the uptake by the connected nodes. Hence the
figures are different from the definition of renewable penetration level. The non-convergence
problem of power flow could be dramatically alleviated, which can be seen from Fig. 2.7 and
Fig. 2.8 that the power flow non-convergence period time is reduced significantly. Also with
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Fig. 2.9 The power flow distribution under 12.92% renewables with 80% energy storage at
node 212

Fig. 2.10 The power flow distribution under 12.92% renewables with 80% energy storage at
node 509

the increase of penetration level of energy storage, the supporting function also strengthens,
making the non-convergence time shorter (from 2 hours to 1 hour). Therefore, the optimal
dispatch of energy storage can indeed help the system survive from the unbalance situations
in the future with high penetration level of intermittent renewable resources.

C. Impact of location of the distribution renewable energy and energy storage

The simulations also show that with the same energy storage modelling, same renewable
energy generation penetration level and the same energy storage level, the impact of the
energy storage to the grid could vary according to the location of the load.

It can be seen in Fig. 2.10 that when the energy storage devices are integrated in node
509 (remote load), power flows in 8 pm converge. On the other hand, as in Fig. 2.9 when
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the energy storage in placed in node 212 (load centre), the power flows do not converge in 8
pm. This could indicate with same level of renewable energy penetration and ES uptake, the
stability in different for different locations.

2.2.3 Dynamic Simulation and Analysis

Power system dynamic analysis aims to analyse the ability of an electric power system
to regain a state of operating equilibrium after a physical disturbance for a given initial
operating condition. The basic security requirement after balancing (energy, power and
ramping) is maintaining adequate stability margins (angle, voltage, frequency) for specified
contingencies. Power system stability for classical grids can be divided into three types [56],
voltage stability, (rotor) angle stability, frequency stability.

In this section, the preliminary results on stability are presented. The dynamic analysis is
done under different RES penetration levels without considering DG or ES in this stage. As
mentioned above, different stabilities have been assessed in DIgSILENT, and the results are
shown as follows.

A. Voltage Stability

Voltage stability analysis can be classified as large disturbance voltage stability and
small disturbance voltage stability. Large disturbance voltage stability refers to the system’s
ability to maintain steady voltages following large disturbances such as system faults, loss
of generation, or circuit contingencies. Determination of large-disturbance voltage stability
requires the examination of the nonlinear response of the power system over a period
of time sufficient to capture the dominant voltage dynamics. Small disturbance voltage
stability refers to the system’s ability to maintain steady voltages when subjected to small
perturbations such as incremental changes in system load. This form of stability is influenced
by the characteristics of loads, continuous controls, and discrete controls particularly voltage
regulators.

Voltage stability analysis is studied with both large disturbances and small disturbances,
where a short circuit is selected for the large disturbance and a reduction on the system load
is used for the small disturbance analysis.
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Fig. 2.11 Voltage stability with different RES penetration under small disturbance (a) 6.46%
RES penetration (b)12.92% RES penetration

It can be seen from Fig. 2.11 that with the increase of penetration level of RES, the voltage
stability under small disturbances gets worse. On the other hand, under large disturbance there
is no significant change in voltage stability. It seems for this case the voltage stability under
small disturbance is more sensitive to RES. The voltage dynamic performance deteriorates
significantly due to the lack of reactive power support provided by the inverter-based RES
when the penetration level increases.

B. Rotor Angle Stability

Rotor angle stability refers to the ability of the synchronous machines of an interconnected
power system to remain in synchronism after being subjected to a disturbance. It depends on
the ability to maintain/restore equilibrium between electromagnetic torque and mechanical
torque of each synchronous machine in the system.

Compared with voltage stability, Fig. 2.12 shows that the RES does not show that much
impact on rotor angle stability here. Even if there are some oscillations after the disturbance,
they remain at an acceptable level and can achieve a new situation to keep system stable. We
can see the dynamic behaviour is insensitive with regard to the increasing penetration level
of RES. This suggests that rotor angle stability is a complex problem associated with diverse
contributing factors.

C. Frequency Stability

Frequency stability refers to the ability of a power system to maintain steady frequency
following a severe system upset resulting in a significant imbalance between generation and
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Fig. 2.12 Rotor angle Stability with different RES penetration under small disturbance (a)
6.46% RES penetration (b)12.92% RES penetration

Fig. 2.13 Frequency stability with different RES penetration under small disturbance (a)
6.46% RES penetration (b)12.92% RES penetration

load. It depends on the ability to maintain/restore equilibrium between system generation and
load, with minimum unintentional loss of load. Instability occurs in the form of sustained
frequency swings leading to the tripping of generating units and/or loads.

Fig. 2.13 shows that the frequency stability of the system decreases gradually with the
RES penetration level increase under disturbance. Also under the higher RES penetration
level, the frequency change is faster compared with lower level. This may be caused by
the inverter-based RE reducing the rotational inertia so that the active power balance is
accelerated. This will require some new control system to maintain the frequency in future
grid with high penetration level RES to balance the active power.
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2.3 Power System CN Model

According to complex networks theory, a graph can be used to describe the physical
connection of a power grid. Based on the topology of a power grid, a graph G with N nodes
and K edges can be formed. The graph G is denoted by an N ×N adjacency matrix Wi j

describing the physical connections of the network. If there is an edge between nodes i and j

, Wi j is set to 1, otherwise 0. The geodesic path di j between two nodes i and j is defined as
the shortest path between them. The efficiency ei j between nodes i and j is the reciprocal of
the geodesic path. This means that the larger the di j is, the less efficiently the information
can spread between the two nodes. If there is no path between nodes i and j, ei j = 0. Once
the efficiency is defined, the average efficiency of a network can then be given by:

E (G) =
1

N (N −1) ∑
i ̸= j∈G

ei j (2.6)

The E (G) is usually applied to assess the vulnerability of a network [57]. The index can
reveal how the network efficiency changes before and after disturbances. For this purpose,
the load at a node i is defined as the total number of the geodesic paths passing through this
node. An important feature of the model is to allocate a given capacity to each node, i.e.,
the maximum limit of load that a node can bear. The capacity Ci of a node i is assumed as
directly proportional to the initial load carried by i,

Ci = αLi (0) (2.7)

where α is a tolerance parameter. Ref. [57] shows how the damaged efficiency of a power
grid changes with different α under attacks. The Li (0) is the initial load handled by node
i, and it is also the initial load at iteration step t = 0. In most complex networks, an initial
failure may cause a cascading effect and result in cascading failures. In the complex network
model, the removal of a node (initial failure), will change the geodesic paths between nodes,
then lead to the changes of Li and Ci. This effect would cause some other nodes to become
overloaded and then fail. These new failures would alter the geodesic paths and load of other
nodes again. This progress would continue until no overloaded nodes exist. At each iteration
step t, the following iterative rule is adopted [58][59]: network efficiency
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ei j (t +1) =

{
ei j (0)

Li(t)
Ci

if Li (t)>C
ei j (0) if Li (t)≤C

(2.8)

where j extends to all nodes that are connected to node i directly. At each step t, if node i is
overloaded, the length of all the edges connected to it is increased. This rule can degrade the
transmission capacity of node and thus decrease the efficiency of whole networks.

2.4 Vulnerability Analysis Given Renewable Energy Inte-
gration

In Fig. 2.3 and Fig. 2.4 we show the practical daily output of PV and outputs from three
wind farms located in different places in Australia [60]. It is easy to find that the output of PV
concentrates during the noon time, and fluctuates during its peak. As it is greatly impacted
by weather conditions especially cloud cover. The wind power output mainly depends on
the location of wind farm. The intermittent and unpredictable characteristics of renewable
energy sources should have an impact on the vulnerability of power networks.

In order to better make vulnerability analysis allowing for RE, we modify the complex
network model in Section 2.3. For distinguishing the nodes that have connected renewable
resources from others, a set {R} is defined. A node u ∈ {R} means that the node is connected
with a renewable energy generation source. The traditional generation in the grid is denoted
as G

′
.

To demonstrate the impact of RES variability on power system vulnerability, the modified
model is employed here [61]. The DC power flow equation [62] is usually adopted as a rapid
approximation technique to represent the relation between node power angle and real power
injection in a high-voltage transmission network.

P = Bθ (2.9)
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where P, B and θ are the node real power injection vector, the bus susceptance matrix and
the node power angle vector, respectively. In this modified model, the notion of power angle
deviation is used to redefine the load at node u:

Lu (t) =
N (θu (t)−θmin (t))

∑u∈N (θu (t)−θmin (t))
(2.10)

where from (2.9) we can get θ = [B]−1 P, which will be affected by the output factor of
renewable energy sources from time by time. The subscript "min" represents the minimum θ

among N. Usually the reference node in the grid has the minimum θ . Similar with (2.7) in
the traditional model, the capacity Cu of a node is proportional to its initial load:

Cu = αLu (0) u = 1,2, · · · ,N. (2.11)

The iterative rule introduced in (2.8) is also adopted at each iteration step during the
dynamic evolution here. Then the average efficiency of the network can then be given by:

E =
1

NRNG′
∑

u∈NR

∑
v/∈NR

euv (2.12)

At the end of cascading failures, the damaged efficiency D is used to describe the
normalized efficiency loss during the cascading failures[61].

D =
E0 −E f

E0
(2.13)

where E0 is initial efficiency and E f is the final efficiency after cascading failures. Therefore,
we can assess the vulnerability of a network by observing the D at different iterative steps t.
The modified form (2.12) compared to (2.6) is designed to focus on the node power angle
changes caused by the variability characteristics of RES in assessing overall vulnerability.

In order to study the impact of renewable energy sources on network vulnerability, the
Simplified 14-Generator Model of the South Eastern (SE) Australia Power System (14-
Generator Model) [47] is employed for numerical simulations. The system consists of 14
generating units, 58 load buses and 180 transmission lines.
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Table 2.1 Three normal steady-state operating conditions

Load Condition Light Load Medium Load Heavy Load
Total Generation

MW 15050 19060 23030

Total Load
MW 14810 18600 22300

Area 4 to Area 2
MW -200 300 500

Area 2 to Area 1
MW 470 740 1134

Area 1 to Area 3
MW 200 -200 1000

Area 3 to Area 5
MW 200 250 500

Time in the Day 01:00 - 09:00 09:00 - 17:00, 22:00 - 24:00 17:00 - 22:00

The power grid model with renewable energy sources integration is constructed in by
DIgSILENT. The real power injection vector P represents the amount of traditional generators
generation and load at each node under three load operating conditions which shown in
Table.2.1, are obtained from the standard data files of the 14-Generator Model [47]. The
power outputs of renewable energy generators have been taken as the average for each hour,
which are obtained from practical Australia WP and PV data files [60][51]. The tolerance
parameter α is set as 1.05 in this simulation.

The numerical simulations have been done for each hour during the day under different
penetration levels of renewable energy, 0%, 10%, 20%, 30% and 40%. Fig. 2.14 and Fig.
2.15 show the damaged efficiency of the power grid under a targeted attack and a random
attack given different penetration levels of renewable energy respectively. The random
attack curves are gained by averaging 58 individual removals. The targeted attack curves are
obtained by removing the highest loaded bus, i.e. the bus 212.

From the simulation outcomes, it can be seen that the curve of damaged efficiency rises
with the increase of load condition under both random attack and targeted attack. Obviously,
targeted attack can cause more damage to the power grid and more reduction of the efficiency.
Again it verifies that power networks have the characteristics of scale-free networks. On the
other hand, with the penetration level of renewable energy increasing, the damaged efficiency
also increases. The actual power outputs from renewable resources are usually intermittent.
Particularly PV is not able to generate any energy after sunsets which are more likely to be the
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Fig. 2.14 Damaged efficiency in 14-generator model under random attack

peak load period of a day and all the gaps have to be compensated by traditional generators.
Thus, the resulting oscillation of power flows in transmission lines would deteriorate with the
increase of the penetration level and would be likely to spread cascade failures to larger areas
in the power grid. Therefore, it can be seen from Fig. 2.14 and Fig. 2.15 that the maximum
damaged efficiency appears at 18:00 in both random and targeted attack scenarios.

Besides, the renewable energy makes different influences in the damaged efficiency of
power networks under random and targeted attacks. Fig. 2.16 shows the varying pattern
of random and targeted attacks in the same time points (with the same load condition and
output). When the renewable energy is set at a low penetration level (10% and 20%), the
changes of the performance under random attack is less severe and have long tails. On
the contrary, the curves change more dramatically under targeted attacks. It seems that the
vulnerability of the grid is more sensitive to the penetration level of renewable energy under
targeted attack. Such behaviour can also been disclosed in the 30% curve of Fig. 2.16 under
targeted attacks. Meanwhile, the changes in damaged efficiency become more obvious when
the penetration is over 30% under the random attacks. However, when the penetration level
comes to 40%, the damaged efficiency under random attack shows significant changes. The
curve rises more steeply during peak hours. Based on these results, we may come to the
conclusion that the power network may have a threshold on the penetration level of the
renewable energy. This threshold is associated with the topology and parameters of the
network. If the value of renewable energy connected into the network is over such threshold,
the network may no longer be robust to random attacks.
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Fig. 2.15 Damaged efficiency in 14-generator model under targeted attack

Fig. 2.16 The changes of damaged efficiency in 14-generator model with different penetration
level of RES
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But it is also clear that this issue needs to be studied with more refined vulnerability
indices than (2.12) and (2.13). The reactance and admittance of the transmission line are not
enough to describe the electrical characteristics of a power system. The DC power flow and
power angle vector also has inadequacy to present the actual power transmission. Based on
the new concepts, an improved model for power system security assessment is needed to
overcome the those issues.

2.5 Summary

In this chapter, a simulation platform for Australian future grid with high penetration
level RE scenarios is firstly presented. Then a series of simulations is designed to show the
impact of high penetration level RE to the system. The simulation results show that in steady
state the penetration level of RE and the locations of ES play a very important role. These
two factors will impact the result of power flow calculation greatly. In the aspect of voltage
stability, the performance deteriorates significantly due the lack of reactive power. The results
show rotor angle stability is insensitive with regard to the RES penetration level. In terms of
frequency stability, during disturbance the frequency change speed becomes faster because
of the increasing inverter based RES.

In this context, we proposed a modified CN based vulnerability analysis model to
demonstrate how the RES impact the vulnerability of the grid. From the simulation results,
the conclusion can be drawn that the grid would suffer more serious vulnerability under
attacks with the growth of renewable energy integration. In other words, the vulnerability
of power network deteriorates. Compared with random attacks, the vulnerability is more
sensitive to the penetration level of RE under targeted attacks. Also, we found there is a
threshold on the network being robust to random attacks. We should consider those factors in
the FG design and planning. However, the electrical efficiency model is obviously insufficient
for power system security assessment. We will introduce our improved models and indices
in the later chapters.



Chapter 3

Communication Network Topology
Analysis in Power System

3.1 Introduction

As we mentioned in Chapter 2, the number of distributed PV and energy storage (ES)
devices is increasing in future distribution networks. In a smart grid environment, small-scale
distributed generation. Such as, the household rooftop PV in Australia [63] has demonstrated
their popularity so far. Nevertheless, most of the distribution system is designed based on
the assumption that the substation is the only source of energy. In the new PV-ES combined
system, this distribution system has to face new challenges [64].

On the other hand, the scattered ES devices have also been receiving growing attention
because of their falling price. They can be utilized as an effective "buffer" to help the system
alleviate these problems if an appropriate control approach is adopted. In this context, the
concept of "multi-agents" and distributed algorithms can be adopted because these distributed
facilities can be regarded as small "agents". Those "agents" can exchange information with
their neighbours through the communication networks among them. In this situation, the
economic performance should be taken into account simultaneously.

There is already considerable existing literature discussing the different types of distribut-
ed optimization approaches to solve related problems. In Ref [65], conceptual frameworks for
involving highly distributed loads in power system control actions is proposed. Besides cen-
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tralized, hierarchical, and distributed control architectures are discussed along with benefits
and disadvantages. Mashhour et al. [66] studies distributed energy resources by maximizing
virtual power plant total profit subject to individual distributed energy resources and system
operating constraints. Also a lot of research works based on distributed optimization algo-
rithms have been studied, including the comparison between their convergence rate, accuracy,
capability, etc.

However, it appears that no analyses have investigated these issues in terms of the
communication network topology, especially the influence on the overall performance of the
distributed algorithms. In this context, we investigate a new direction that aims at improving
the efficiency of distributed optimizations in PV-ES combined system by analyzing the
topology of communication network in this chapter. We use the second-largest Laplacian
eigenvalues and degree distribution to explain the difference of performance during two
phases. The potential of using optimal communication network topology for the system is
also discussed in the latter part of this Chapter.

The remainder of this chapter is organized as follows: Section 3.2 lists the mathematical
model of distributed PV-ES combined system. In Section 3.3, the approach of distributed
alternating direction method of multipliers is explained. Section 3.4 demonstrates several
typical topologies of communication networks. It also compares the merits of different
topologies. Section 3.5 demonstrates simulation results and shows the different performance
during iteration. It also gives a discussion about effect of basic graph characteristics of
topology on the performance of distributed optimization. Finally, Section 3.6 gives a brief
summary.

3.2 Mathematical Modelling

In our research, we take the basic optimization problem described in paper [67] as a
reference model. In the future distribution network, each "agent" purchases (or sells) electric
power from (or to) the distribution system and then sells the electric power to the customers.
They will maximize their profit by determining the power outputs of all distributed energy
resources, subject to the constraints of supply and demand balance, line flow limits, and
distributed energy resources capacity limits. A simplified model is shown in Fig. 3.1.
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Fig. 3.1 Future distribution network with DG and ES

The mathematical model of this problem is formulated as follows:

f =−ρEPs +
N

∑
n=1

[ρdPdn −Cgn (Pgn)−Crn (Pm)] (3.1)

where Ps is the power injection from the distribution grid to PV-ES combined system and
node S is called the interface node through which the PV-ES combined system is connected
to the distribution system. If Ps is negative, it represents the injection from PV-ES combined
system to the distribution system and vice versa. The demand, distributed PV generation
power, and ES output power at node n are denoted as Pdn, Pgn, Prn, respectively. Then, the cost
functions of distributed PV and ES are defined as Cgn and Crn. The pre-assigned wholesale
market price and PV-ES combined system retail price are defined as ρE and ρd , respectively.
They are determined by bargaining between the PV-ES combined system and distribution
system/customers. Then the optimization of the cost function (3.1) is to maximize f under
following power constrains:

N

∑
n=1

(Pdn −Pgn −Prn)−PS = 0 (3.2)

−Tm ≤
N

∑
n=1

ηmn (Pgn +Prn −Pdn)≤ Tm (m = 1,2, · · · ,M) (3.3)

Pmin
gn ≤ Pgn ≤ Pmax

gn ,

{
Prn ≤ Pdch,max

rn , Prn ≥ 0
−Pm ≤ Pch,max

rn , Prn ≤ 0
(3.4)

where:

• Pmin
gn ,Pmax

gn are the minimum and maximum distributed PV capacities.
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• Pdch,max
rn ,Pch,max

rn are the maximum discharging/ charging power of ES.

• N,M are the numbers of nodes and lines managed by PV-ES combined system.

• ηmn is the sensitivity of power injection at node to the power flow on line and Tm is the
power flow limit of line m.

3.3 Distributed Alternating Direction Method of Multipli-
ers

The distributed Alternating Direction Method of Multipliers (D-ADMM) is a distributed
optimization algorithm. It was first proposed in Ref [68] and explored in Ref [69]. A
communication network with N participators is formed as a graph. Each participator, also
called an "agent" in the network has their private function fp and private constraint set Xp.
The goal is to minimize the sum of all functions, while constraining the solution to be in the
intersection of all the sets [69], written as follows:

minimize f1(x)+ f2(x)+ · · ·+ fp(x)

s.t. x ∈
p⋂

i=1

Xi
(3.5)

Since the optimization problem is solved in distributed way, there is no central or
aggregation node in the network. Both fp and Xp are private to node p. Each "agent"
communicates only with its neighbors (agents that are directly connected to it) and all-to-all
communications are not allowed. Each "agent" solves an optimization problem in parallel
and sends the information to their neighbors. The iteration steps are as follow:

1. "Agent" p solves the optimization problem based on fp and Xp. i.e.

xk+1
p = arg min fp (xp)+

(
γ

k
p −ρ ∑

j∈Np

xk
j

)T

xp +
Dpρ

2

∥∥xp
∥∥2

s.t. xp ∈ Xp

(3.6)

2. Then, they send Xk+1
p to their neighbours.
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3. All "agents" update their Lagrange multiplier

γ
k+1
p = γ

k
p +ρ ∑

j∈Np

(
xk+1

p − xk+1
j

)
(3.7)

4. Repeat step 1∼3 till the minimal sum of all functions are achieved.

In this algorithm, all "agents" can reach a solution together by exchanging solution
estimates in iterations with less communications than used the centralized way. In the PV-
ES combined system, each PV or ES is regarded as an "agent". Through this distributed
algorithm, they collaborate to maximize the net profit gained from purchasing and selling
electricity while at the same time maintain the power balance and the charging/discharging
requirements.

3.4 Topology of the Communication Network

In the distribution grid, the users are connected to the feeder line in a sequence. However,
the communication network can be designed to have different physical topology to the power
network. The principle of D-ADMM algorithm shows the convergence speed of optimization
highly relies on the structure of the communication network.

In this section, we design a series of numerical simulations to analyze the impact of the
communication network topology on the calculation speed of D-ADMM. The following six
different typical network connections demonstrated in Fig. 3.2 are employed:

3.5 Influence of the Different Communication Network Topol-
ogy on Calculation Performance.

Numerical simulations are performed to illustrate the calculation speed among different
communication networks. In each network, 5 PV and 5 ES nodes are created. Thus, there
are 10 nodes in total. They are connected in different topology by using graph software
NetworkX. The iteration process of the optimization is illustrated as follows, using the



40 Communication Network Topology Analysis in Power System

Fig. 3.2 Examples of typical topologies of communication networks
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Fig. 3.3 Iteration performance of D-ADMM under different communication network topology

D-ADMM algorithm introduced in previous sections. The simulation results are elucidated
in Fig. 3.3.

From the figure above, two phases can be observed during the convergence process,
namely descent phase and fluctuation phase. During the descent phase, all curves experience a
decrease towards the optimal solution with different velocities. Then after several fluctuations,
they converge to the optimal value. However, it can be clearly seen that the iteration steps
and convergence speeds are various. In some network connection, the curves decrease very
fast and have large fluctuations, and others have low speed of change overall.

Several basic characteristics of network topology in graph theory and some theoretical
analysis are introduced here to explain the reasons of disparity in convergence performance

A. Degree

In a graph, the degree of a node v is denoted as deg(v) which is the number of edges
connected to node v. The degree expresses the adjacency relationship between node v and
other nodes, which shows the significance of it in the network.

B. Laplacian Eigenvalue
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A Laplacian eigenvalue is the eigenvalue of a Laplacian matrix [70]. For a graph G with
n nodes, its Laplacian matrix L is defined as:

L = D−A (3.8)

where D is the degree matrix and A is the adjacency matrix of the graph. Then we can get

li, j =


degvi

i = j
−1 i ̸= j and vi is adjacent to v j

0 otherwise
(3.9)

The Laplacian eigenvalues can be used to find many other properties of the graph. There
are denoted as λn = 0 < λn−1 ≤ ·· · ≤ λ1, where the strict ingenuity refers to a connected
graph. One of the most important applications of spectral graph theory is to calculate the
approximate sparsest cut of a graph through the second-largest Laplacian eigenvalue.

It is well-known that the second-smallest Laplacian eigenvalues, namely λn−1, can reflect
connectivity of a network [70]. Connectivity is one of the basic concepts of a graph theory.
It represents the minimum number of nodes or edges that need to be removed to disconnect
the remaining nodes from each other. In the other words, the larger λn−1 a network has,
the higher it is connected. The distributions of λn−1 in the typical network topologies are
demonstrated in Fig. 3.4.

As we introduced in Section 3, the D-ADMM algorithm requires "agents" share the
information with their neighbours during the calculation. Therefore, in a network with higher
connectivity, "agents" can finish the information exchange in fewer steps. This can explain
the difference of descent rates in the simulation results mentioned above. From Fig. 3.4 it
can be seen that the fully connected graph has the largest λn−1. That is why it takes the least
iteration numbers in the descent phase. On the contrary, the scale-free network used in this
simulation has the lowest average connectivity. So the iteration curve decreases very slow
and takes almost five more times than in fully connected network.

The degree distribution of a network also has great impact on the calculation speed.
Based on the discussion of affiliation of Laplacian eigenvalues and degrees in [71]. Li and
Pan have proved a lemma in [72]:
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Fig. 3.4 Distribution of λn−1 in typical topologies

λ2 > D2 (3.10)

where λ2 is the second-largest Laplacian eigenvalue and D2 is the second-largest degree in
the network. They also pointed out that it is difficult to find a graph with λ2 = D2 and in
most case λ2 −D2 > 0 . This can be classified as an extremal graph [73] problem in graph
theory, which means to search for a graph with largest number of edges with certain property.
A graph with λ2 = D2 can be called an extremal graph here. Then the smaller the difference
between λ2 and D2 is, the closer a graph is to an extremal graph.

The fluctuation may be caused by the redundant information between "agents" communi-
cation while implementing the distributed optimization. However, the simulation shows that
the difference between λ2 and D2 has an effect on the fluctuation level during iteration. The
distribution of difference between λ2 and D2 in each topology is shown in Fig. 3.5.

We can clearly see that the larger difference there exists, the more intense fluctuation
it has. In another word, the fluctuation during iteration step can be reduced greatly if a
communication network has a closer topology to an extremal graph.
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Fig. 3.5 Distribution of difference between λ2 and D2 in typical topologies

Here we can draw a conclusion that the connectivity of a communication network will
influence the calculation speed during optimization. But it doesn’t mean a network with the
highest connectivity will gain the fastest convergence speed. It also has the likelihood for a
long term fluctuation step. Therefore, an optimum topology for a communication network
in distributed PV-ES combined system may exist. Such topology can help to improve the
calculation speed of distributed algorithms theoretically. In this case, the ideal topology
of the network should have maximum λn−1 and minimum difference between λ2 and D2.
With such a communication network topology, an optimum iteration curve with the highest
descent rates and the lest fluctuation curve can be formed. Then the fastest optimization with
the distributed algorithms can be achieved in this communication network.

3.6 Summary

In this chapter, we introduced a distributed PV-ES combined system with D-ADMM
algorithm. Characteristics of six typical communication network topologies are analysed.
Then, the performance of these topologies in a distributed PV-ES combined system is tested.
Simulation results show that the speed of the distributed optimization algorithm in this model
is highly sensitive to the communication network topology. By analysing the degrees and
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Laplacian eigenvalues of these networks, we found that the descent rate during the iteration
is determined by the second-smallest Laplacian eigenvalue, and the fluctuation time is related
to the difference between the second-largest Laplacian eigenvalue and second-largest degree.

A hypothesis can be drawn here: there might be an optimum communication network
topology. We will expand the idea in this chapter as design guidance to form a better
communication network topology in Chapter 6.





Chapter 4

Power System Vulnerability Analysis
based on Power Flow Model

4.1 Introduction

As we mentioned in Chapter 2, power system security has always been an important issue
in the power industry and substantial research has been done to enhance the grid security and
reliability. However, large scale blackouts all over the world still occur from time to time [4]
during the continuous evolution of power grids. Thus, it is necessary to further develop new
tools and models so as to meet the new situations and prevent potential large scale blackouts.

New developments in the complex network (CN) field have provided a new direction for
power system vulnerability analysis [74]. Currently, most research is focused on network
structure. The large-scale blackouts in North American and Italy were studied from the
network structural vulnerability viewpoint in [75] and [59] respectively. In these studies,
indexes and methodologies from graph theories, such as degree distribution, shortest path
and diameter are widely used to identify the vulnerable lines in power grids. The analysis
result of an American power grid based on this methodology is given by [36][76]. Based
on these basic concepts, the mechanism of cascading failures has been explained in [77]
and an efficiency model of cascading failure was proposed. Efficiency is defined in terms
of the harmonic composition of efficiencies of edges. Ref [15] reviewed basic modelling
and traditional methodologies in structural vulnerability. Furthermore, based on topology
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and load distribution, two criteria to identify the critical lines are proposed in [78]. The
results explain how the link nature and location impact the network’s capability. Unlike these
traditional physical topology models, an improved electrical topology model are proposed in
[57] and [79]. A power grid is depicted as a weighted graph based on the electrical topology.
Furthermore, in these models, it is assumed that the power flow is transmitted across the line
of ’least resistance’ in the network. Thus, the admittance is used to weight the lines in a
power system. Based on this efficiency model, a lot of research has been done in recent years.
Net-ability, a measure of power system performance under normal operating conditions, is
considered in [62]. Also a cascade-based model is proposed in [80]. Several critical power
system features are included in [40], such as Kirchhoff’s Laws and power angles, and so the
electrical topology model made a closer approximation to a real power grid.

However, several important issues still exist. Most of the literature analyses a power
system with efficiency and the shortest path algorithm from the CN theory. In these studies,
the power grid is described as an undirected graph weighted with efficiency. Nevertheless, in
a real power grid, the power is driven by the generation and load distribution, voltage and
rotor angle etc. Thus the power flow always has a direction. Moreover, the power neither
flows along the shortest path nor all available paths. The power flows from the generation
rich side to the load rich side. Also, the electrical efficiency of the transmission line gained
from admittance only partly represents the actual capacity of power transmission. To the best
of the author’s knowledge no prior analyses are investigated in terms of the characteristics of
the power system, especially the power flow and its directions.

With this background, in this chapter we investigate a new model and an approach that
aims to analyse the vulnerability of power system. First, an improved power flow based
model is proposed. The proposed model considers more power system features compared
with the previous ones. Consequently, compared with the traditional physical model and
electrical efficiency model, the proposed one is a closer approximation to real power grids.
Furthermore, we adopt a new definition of vulnerability index to identify the set of vulnerable
lines in a power system. The lines with a higher vulnerability index ranking are considered to
deal more damage to the power grid when they trip off. It is shown in later sections that this
innovation can form better approximation models for the vulnerability analysis of a power
system.

This chapter organized as follows. Section 4.2 introduces the existing physical and
electrical efficiency model and shows their deficiencies. Then an improved power flow
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based model for power system vulnerability analysis is introduced in Section 4.3. Numerical
simulations are displayed in Section 4.4 to show the performance of the proposed model.
Section 4.5 is the summary for this chapter.

4.2 Existing Models and Deficiencies

4.2.1 Topological Structure Model

As we mentioned in Section 2.3 a power grid can be described as a graph G. The graph
G defines an N ×N adjacency matrix, Ai j which describes the physical connections and
topology of the network. The key physical characteristics of a network can be gained from
the adjacency matrix. The connectivity of a network is mainly defined by the nodal degrees
and clustering coefficients. Analysing these characteristics can give an indication of the
structural vulnerability of a power grid [77].

4.2.2 Electrical Efficiency Model

The topological model can only describe the physical structure and connections of a
power system. However, a power grid is more than just a simple network structure. There
are several electrical features such as line impedances, which can impact the performance of
the whole system. Thus, based on the physical model, an updated electrical efficiency model
has been proposed. In an electrical efficiency model, the power network G is denoted by an
N ×N admittance matrix, Yi j describing the electrical efficiency of the network edges. In the
admittance form, the system equations can be described as the nodal equations:

IB = YBVB (4.1)

where IB is the vector of injection bus currents and VB is the vector of bus voltages measured
relative to the slack bus and YB is the bus admittance matrix. Expanding equation (4.1):
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Fig. 4.1 Electrical efficiency model of IEEE 9 bus system
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where

Yi j =

{
−
(
Gi j + jBi j

)
, i = j

∑i ̸= j
(
Gi j + jBi j

)
, i ̸= j

(4.3)

And Gi j and Bi j is the conductance and susceptance between node i and j respectively.
The bus matrix here closely captures both the real and reactive (imaginary) portions of the
line admittances. For pairs of nodes i and j that do not share a direct physical connection,
Yi j = 0 , otherwise Yi j is the admittance of the line between node i and j. An example of the
electrical efficiency model for the IEEE 9 bus test system is shown in Fig. 4.1. It can be seen
that the model is an undirected graph with edges weighted by the electrical efficiency.
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In this model, the electrical efficiency of the edges between nodes i and j is meant to
represent the level of power transmission between the two nodes. The transmitted power is
assumed to follow the path of "least resistance" in a circuit as defined in terms of Yi j. That
is to say, the edge with higher Yi j can carry more power in the system. As a measure for
performance, the average efficiency of a network E is employed.

E =
1

N (N −1) ∑
i ̸= j

Yi j (4.4)

In the process of cascading events, the average efficiency of a network E changes as the
efficiency on each line changes. The network efficiency loss during failures is described as
damaged efficiency D given by

D =
E0 −E f

E0
(4.5)

where E0 is initial network average efficiency and E f is the final network average efficiency
after failures[17].

Therefore, the network vulnerability of a power system can be observed by calculating
D for failures on different transmission lines. A failure is applied to different lines in the
network causing different damage to the system. The line whose removal can cause the
biggest D in the end is chosen as the most vulnerable line in the network.

Since the electrical efficiency model considers the admittance of the transmission lines
in the power system, it can be used to identify not only the physical structure vulnerability
but also the critical lines. A comparison of performance between the topological model
and electrical efficiency model is presented in [17]. The results show that compared with
the topological structure model the electrical efficiency model has a better performance in
identifying the weakness of power grids.

4.2.3 The Deficiencies in the Models

From the topological structure model to the electrical efficiency model, researchers have
shown the possibility of using CN theory to analyse power grid vulnerability. However, as
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Fig. 4.2 The arrows on the edges show the power flow directions in IEEE 9 bus system

network models are used to the describe power grid, these models have some deficiencies
that can’t be ignored.

A. The power flow has direction and does not flow along the shortest electrical path.

Both the topological model and electrical efficiency model describe a power grid as an
undirected graph. However, in an actual power system, the power flow always has a direction.
Fig. 4.2 shows the power flow in the IEEE 9 bus system obtained from simulation software
Power World which is convenient to show the power flow directions. The power flows in the
lines are directed.

Since the power flow is driven by generation, loads and rotor angles between buses,
power flow is not normally distributed according to the length of the path in the grid. Instead,
it obeys electrical laws to flow from generators to loads.

B. The electrical efficiency is not a reflection of the actual power transmission level

The weight on an edge in topological model only shows the connections. In the electrical
efficiency model, the weight on each edge shows the electrical connection and transmission
capabilities. In other words, an edge with high efficiency is deemed to transfer more power.
But in a real power system, neither of these weights shows the actual transmission level
of power flow. Fig. 4.3 shows the electrical efficiency and actual power flow on each
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Fig. 4.3 Electrical efficiency and power flows distribution on the transmission lines in IEEE
9 bus system

transmission line in the IEEE 9 bus system. The realistic power flow distribution is gained
by simulation on DIgSILENT. It can be seen that there are no real causalities between the
electrical efficiency and power flow distribution in the system. From Fig. 4.3 we can see
some transmission lines with low efficiency, such as line 8, transfer more power than the
lines with high efficiency like line 6.

4.3 The Power Flow Based Model

4.3.1 Power Flow Model

In order to overcome the above-mentioned issues, we now propose a power flow based
network model which is a weighted directed network with the following assumptions:

1. Buses and transmission lines in a power grid are classified as nodes and edges in a
network model. Each node is perfectly reliable, and each edge has two states: working
or failed.

2. The original network is connected and free of self-loops.

3. Each edge has its own direction, which is the same as the direction of the power flow
on the transmission line. Each edge is weighted by the value of the power system’s
steady state power flow.
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4. The degrees of all nodes are at least 2, except for the source nodes and sink nodes.

Also as a directed graph, the nodes in the model no longer have the same functions. In
the power flow model, nodes can be classified to four different types. The input and output
power flow of a node is denoted as Fi and F0. The load and generation on a node is denoted
as Ln and Gn respectively. The power flow that passes through each type of node obeys the
following rules:

• Source nodes: Fi = 0, this type of node represents generator buses in the power grid,
thus there is no input flow for these kinds of nodes.

• Sink nodes: Fo = 0, this type of node represents load buses which means only input
and no output from the node.

• Transmission nodes: Fi = Fo, to obey the Kirchhoff’s Law, for any intermediate node,
the flow coming into it needs to equal the flow going out of that node.

• Transmission nodes with load and/or generator: Fi = Fo +Ln −Gn, in a power grid,
some of the intermediate buses also have loads and/or generators on them. In this case,
the total output flow should be the total input power plus the node generation then
minus the node load.

Usually, there should be more than one generator and load in a real power system, so the
new model should have multiple source nodes and multiple sink nodes. We will introduce the
method to deal with the multi-source multi-sink problem in a later section. Fig. 4.4 shows a
power flow model of the IEEE 9 bus system. This model is a directed graph and weighted by
power flow. Unlike the electrical efficiency model, the edge with a higher weight transfers
more power in this model.

4.3.2 Identification of Important Lines

A new vulnerability index derived from the Maximum-Flow concept is proposed in this
model to identify critical lines in a power network. The Maximum-Flow Minimum-Cut
Theorem, also known as Ford Fulkerson algorithm [81], is widely used in CN research to
solve maximum flow problems, such as traffic flow, cash flow, information flow, power flow,
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Fig. 4.4 Power flow model of the IEEE 9 bus system

etc. [82][83][84]. The purpose of the algorithm is to calculate the maximum flow a network
can withstand and how to attain this limitation. The algorithm can be described as follows:

Given a network G = (V,E). The capacity and flow on the edge (i, j) are defined as c(i j)

and f(i j) respectively. A source node s, and a sink node t. Then define the residual network
of G as G f (V,E f ). The capacity of G f is defined as c f (i j) = ci j − fi j. Then the maximum
flow is calculated as follows:

1. Initially, for each edge (i, j), set the flow be fi f = 0

2. Given a path p from s to t in G f , for all edges (i, j)∈ p, find c f (p)=min
{

c f (i j) | (i, j) ∈ p)
}

.

3. For each edge (i, j) ∈ p, set fi j = fi j + c f (p).

In this way, corresponding to the maximum flow in the network, we can get the flow on
each edge. Then the vulnerability index of edge (i, j) can be defined as the level of flow
carried by edge (i, j) compared to the value for the maximum flow of the network. To extend
the idea to a multi-source multi-sink network power system, an improved index is defined
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with respect to all possible max flows. For a network with m sources and n sinks, let f uv
MAX

be the maximum flow from the source node u to the sink node v and let f uv
i j be the portion of

the flow passing through the edge Ei j of the network. Then we define the vulnerability of the
edge Ei j to be:

Vi j =
∑

m
u=1 ∑

n
v=1 f uv

i j

∑
m
u=1 ∑

n
v=1 f uv

MAX
(4.6)

Thus, the lines can be ranked with a vulnerability index based on the power flow they
carry using (4.6). The lines with a higher value of index are given a higher ranking in this
analysis.

Therefore, the procedure of the ranking process can be given as follows:

1. Build a connection network model of the power system.

2. Calculate the steady state power flow of the grid and collect data.

3. Weight the edges in the network model with the power flow gained from previous steps
and determine the flow directions.

4. Calculate the maximum flow of the network for each source-sink combination.

5. Sum up the flow values and compute vulnerability index Vi j.

6. Rank the lines according to values of vulnerability index.

The IEEE 9 bus system is used to illustrate the difference between the electrical efficiency
model and proposed model as an example here. The vulnerability index distribution in the
IEEE 9 bus system is given in Fig. 4.5. The edges are ranked by efficiency and the new
vulnerability index respectively. Load capacity L, the maximum amount of load a power
system can carry, is employed here as a realistic measure of the network performance. The
damage of the network is defined as

D =
L0 −L f

L0
(4.7)
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Fig. 4.5 V-index distribution of IEEE 9 bus system

Table 4.1 My caption

Ranking 1 2 3 4 5 6
Realistic Damaged Ranking (line number) 8 6 3 9 2 5

Ranking by Electrical Efficiency Model (line number) 6 9 2 5 8 3
Ranking by Power Flow Model (line number) 8 6 3 9 2 5

where L0 is the initial load capacity, L f is the final load capacity after removing the line from
the network. The damaged efficiency also represents the load loss from the failure.

Table 4.1 shows the vulnerable line ranking identified from the power flow model,
electrical efficiency model and the realistic damaged data. The electrical efficiency and
vulnerability index are calculated with Matlab and the realistic damaged data is gained from
the power system software DIgSILENT simulation environment. Please note line 1, 4 and 7
in this system are the lines that directly connect to the generator bus. When these lines are
removed from the system, the power flow of this system will not converge. Since the removal
of these lines is corresponds with shutdown of the generator from the system directly, these
lines are obviously important to the system (also can be found that these lines have extremely
high vulnerability index in Fig. 4.5). So we do not discuss this kind of line here.
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From Table 4.1 we can see that the ranking shows the difference between two models.
The ranking order by electrical efficiency is 6, 9, 2, 5, 8 and 3, does not match the realistic
result. However, the ranking order by vulnerability index is 8, 6, 3, 9, 2 and 5, practically in
accordance with the realistic damaged data. The results show that power flow based model
has a better performance in identifying the important lines.

4.4 Case Study

A vulnerability analysis for the IEEE 118 bus test system is carried out with the method-
ology explained in the previous section.

The electrical efficiency and the new vulnerability index of each line in the network are
calculated and normalized to their average value respectively. Fig. 4.6 shows the distributions
of these normalized values on the lines. From the figure, it can be seen the results are clearly
different. There are some lines which have low electrical efficiency (means less important
in the traditional model) with extremely high vulnerability index (shows it is critical in this
system using the power flow model). Also, the component of the vulnerability index value
in this system is shown in Fig. 4.7. It can be seen that most of the lines in IEEE 118 bus
system have a low value of index. Nearly 90% of the lines in the grid have an index less
than 0.05. On the contrary, the remaining 10% lines have a high index, meaning that they
are more critical in the system. The simulations are investigated to see the performance of
proposed index in vulnerability analysis.

First, 10 targeted attacks and 10 random attacks have been applied to the simulation
system according to the ranking by vulnerability index. Random attacks refer (with high
probability) to the failure on any of the less important lines (lines with low vulnerability
index) and targeted attacks refer to failure of the critical lines (lines with high vulnerability
index). The decrease of the load capacity of the power grid is shown in Fig. 4.8.

It can be seen that after 10 targeted attacks the capacity of the network drops to almost
70%. On the other hand, the capacity drops to about 97% after random attacks. The result
shows that the lines with a higher index are more vulnerable in the system. This performance
also matches the characteristics of scale-free networks in CN theory. The network is very
robust to random attacks and weak to targeted attacks. Meanwhile, this example illustrates



4.4 Case Study 59

Fig. 4.6 Normalized electrical efficiency and vulnerability index distribution in IEEE 118
bus system

Fig. 4.7 The number of lines in IEEE 118 bus system distributed by the value of vulnerability
index
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Fig. 4.8 Load capacity of IEEE 118 system after targeted and random attacks

how the vulnerability index proposed in this chapter is a reasonable way to identify the
vulnerability in a power system.

Furthermore, analysis has been carried out to compare the performance between the
electrical efficiency model and power flow based model. The original power flow distribution
in the IEEE 118 bus system is shown in Fig. 4.9 where the power flow profile is plotted under
a planar representation of the network.

It can be seen that the power flows concentrated on several critical areas. The south east
part of the grid (the left edge area in the figure) is a generator heavy area. Most of the power
in this grid is generated from this part and transferred to the north-western area (right side
in the figure). Then we execute 10 targeted attacks which remove the top 10 ranked lines
identified by the two different models to see the load shifting. The power flow distributions
after the attacks are recalculated and displayed in Fig. 4.10 and Fig. 4.11.

It is shown from the figures that the difference in accuracy to identify the critical lines
between two models is quite obvious. When we attack the high ranked lines in the electrical
efficiency model, the power flow distribution does not change a lot. From Fig. 4.10 it can be
seen that the generator heavy area still keeps the highest power flows and does not seem to
be affected much by the attacks. On the contrary, when the high ranked lines gained from the
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Fig. 4.9 Steady state geographical power flow distribution in IEEE 118 bus system

Fig. 4.10 Geographical power flow distribution in IEEE 118 bus system after ranked attacks
by efficiency model
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Fig. 4.11 Geographical power flow distribution in IEEE 118 bus system after ranked attacks
by power flow model

power flow model are attacked, the outcome is substantial. Multiple critical lines dropped
from the grid caused a great load shift in the system. To maintain the power supply to the
north-western parts, the generators and transmission lines in the central area are forced to
carry more power than they did in steady state. In Fig. 4.11 it can be clearly seen that more
power is transferred in the middle part of the graph and this large power shift will bring an
additional burden to rest of the system. It may also increase the risk of cascading events and
large area blackouts in the system.

The detailed data also shows further differences between the two models. The changes
of power flow on transmission lines after the attacks are demonstrated in Fig. 4.12 and Fig.
4.13 respectively. In the figures, a positive value means that the transmission line carries
more power than the initial state while a negative value shows that the line loses capacity
during the attacks.

From Fig. 4.12, it can be seen again that the power flow distribution before and after the
attacks as ranked by electrical efficiency model changed a little. Most of the gaps are less
than 100 MW. There are only 2 lines having load shift over 100 MW and the total power
shift in the system is recorded as 1977.95 MW. This means there are no large power shifts
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Fig. 4.12 Power flow variations on each edge in efficiency model

Fig. 4.13 Power flow variations on each edge in power flow model
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when the lines identified by this model are attacked. On the contrary, from Fig. 4.13, it can
be clearly observed that after attacks, an increased amount of power flows are observed in
those lines that used to have low power flow. The total power shift is 8485.66 MW, which is
over 4 times than the result from Fig. 4.12. Also 26 lines have great load shift over 100 MW.
At the same time, 53 lines are forced to carry power which is 200% overload than the normal
situation. For example, the line 52 carries less than 250 MW and over 600 MW before and
after attacks, which is 2.4 times of the usual amount. This indicates that there has been a
significant power shift between lines (or edges). The removal of several important lines from
the system causes many other transmission lines to carry more power to maintain the power
system operation. These lines have a high risk of overload in real power grids leading to
further failures which may cause cascading blackouts.

4.5 Summary

In this chapter we proposed an improved PF based model for vulnerability analysis of
power system. This model is novel in presenting a more realistic approximation of the power
system. A new vulnerability index is developed to identify the vulnerable lines in a power
system. Simulation results demonstrate that lines identified by this proposed model match
realistic situations. The ranking via the new vulnerability index can identify critical lines
in a power system more effectively and accurately. The analysis results not only provide a
reference for predicting the cascading failures, but also support power system design and
planning. We will expand the result gained here in Chapters 5 and 6 to analyse how the risk
changes during cascading events.



Chapter 5

Power System Cascading Risk
Assessment based on CN Model

5.1 Introduction

The world has witnessed several serious blackouts in power grids over the past decade.
Structural vulnerability and related cascading failures were considered as a major contributing
factor. Basically, most of these blackouts are caused by a single event but end up with
cascading failures across a large area [4]. For this reason, new models and methods for power
system security assessment are much needed to prevent potential cascading events.

Traditional power system security assessment can be classified into three types, which are
deterministic assessment, probabilistic assessment and risk-based assessment [85]. Determin-
istic assessment aims to demonstrate the power system in tolerant to the faults that are within
the "design basis", thereby defining the limits of safe operation [86]. Vulnerability analysis
for a power system is usually employed to identify critical components that if failed will lead
to serious damage of the system. However, this method cannot reflect the state of the grid
and random probability of the failures. By considering the fault probability of all kinds of
components and the random characteristics of a power system, the probabilistic methods may
assess the system security more practically [84]. But some fatal failures with low probability
may be neglected in the assessment process. Risk assessment on the other hand can reflect the
influence of the failures by combining the consequences of the events and random probability
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together. Steady-state risk assessment of a power system is largely discussed in [87] using
the Monte Carlo method. Ref. [88] developed a framework combining risk with voltage
problems based on the power system P-V curve. An approach that is based on assessing
the line overload risk is presented in [89]. A risk index is proposed in [90] for the system
planning. In addition, transient risk assessment aims to help the system operator identify the
risk after an event happens. A transient stability risk assessment framework considering the
load level is investigated in [91]. Based on traditional Monte Carlo simulation, [92] shows
the direction of risk assessment with the fuzzy logic method. It is worth noting that previous
research mainly focuses on the component-level to assess the security of a power grid. These
models and methods lack a strong systems level aspect while aiming to analyse one of the
most complex man-made systems in the world. Massive data acquisitions and calculations
are required to reach an overview assessment.

As we saw in Chapters 1 to 4, CN theory has been studied solving practical problems of
large-scale complex systems. Differently from the traditional risk assessment method which
is based on the component-level, researchers want to make the security assessment based
on network structure with CN methods [93]. New indices from CN theories, such as degree
distribution, shortest path and diameter, are widely applied to identify the critical parts in
power grids. Based on these basic concepts, the mechanism of cascading failures has been
explained in [77] and an efficiency model of cascading failure is proposed. A risk graph is
employed to reveal the power grid cascading failure in [94]. The model presented a new
node risk-based attack strategy which is better than the load-based and degree-based attack
strategies. It is shown that risk assessment with CN theory can reveal the system security from
a system-level viewpoint [74], which is particularly important in study cascading failures of
a power grid.

Nevertheless, several important issues still exist. In order to consider the system-level,
CN based models usually neglect the detailed electrical characteristics of a power grid. In
these studies, the power grid is mainly described as an undirected graph weighted with
efficiency [57]. However, in a real power grid, the power flow always has a direction which
is driven by the generation and load distribution, voltage and rotor angle etc. Also, the
efficiency of the transmission line gained from admittance only partly represents the actual
capacity of power transmission as we saw in Chapter 4.

In order to address the issue, we investigate a new model and approach that aims to
analyse the risk of a power system having cascading failures. We improve the model based
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on the power flow based CN model proposed in Chapter 4. The CN factors such as topology
and connectivity are added to the proposed model based on the traditional risk assessment
model. Also, the new model considers more practical power system features compared with
the previous CN cascading model. Six different types of electrical failures are adopted in
this model. Consequently, the proposed model can demonstrate improved approximation to
realistic cascading failures. Furthermore, we design a cascading event simulation module
to identify the cascading chain in the system during a failure. The parts with a higher risk
ranking are seen as more likely to form a cascading chain when a failure occurs.

The remainder of this chapter is organized as follows. The basic concepts of improved
CN model for risk assessment are introduced in Section 5.2. Then an innovated cascading
event simulation module is introduced in Section 5.3. Numerical simulations are displayed
in Section 5.4 to show the performance of the proposed model. Section 5.5 gives a summary
for this chapter.

5.2 Improved Power System CN Model for Risk Assess-
ment

A power grid usually has a certain number of generators, loads and buses connected by
transmission lines. Thus, a power grid can be described as a graph G with N nodes and K

edges. Several basic characteristics of the CN model are introduced here [95].

5.2.1 Basic Concept of Network Structure

A. Topology

The physical topology of the grid is described by an N ×N adjacency matrix Ai j. If there
is a transmission line connecting bus i and j, then Ai j is set to 1, otherwise 0. To simplify the
model, if there are parallel lines between buses those are modified to one edge. Then we can
get a simple connected graph without self-loops.

B. Degree
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The degree of a node in a graph is the number of edges incident to the node. The degree
of node i is denoted as deg(i). Then deg(i) expresses the adjacency relationship between node
i and other nodes, which shows the significance of it in the network. The node with higher
deg(i) carries more transmission lines.

C. Edge Weight and Direction

In the early research on power systems with CN models, the adjacency matrix Ai j is
applied to test the vulnerability of the network [79]. Since the adjacency matrix only reflects
the physical connection and ignores all the electrical characteristics, a weight that is a closer
approximation to a real power grid is required. In this research, the AC power flow is used to
weight the edges in the graph. That means the edge with higher weight carries more power
in steady state. Physically, the power transmission lines are able to transfer power bilaterally.
However in an actual steady power system, the power flow on a transmission line usually
has fixed direction. In this research, the directions of the power flow are set as the positive
directions of edges.

D. Edge Weight and Direction

In a CN, a node with zero input flow is called source node and a node with zero output
flow is called sink node. In a power grid model, these two kinds of special nodes stand
for generators and loads respectively. For other transmission bus nodes in the graph, their
total output flows should equal to the total input flows. The Maximum-Flow Minimum-Cut
Theorem, also known as Ford Fulkerson algorithm [96], is widely used in CN research to
solve the maximum flow problems, such as traffic flow, cash flow, information flow, power
flow, et.al. The purpose of the algorithm is to calculate the maximum flow that a network can
withstand and how to attain this limitation. We have introduced the details of this algorithm
in Chapter 4.

We saw that the Maximum Flow algorithm is effective to identify the critical lines in a
power system [81]. In this chapter, the Max-Flow method is used to calculate the vulnerability
index of edges, which will be explained in Section 5.2.2.
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5.2.2 Risk Assessment with Improved CN Model

For the complexity of the power system, a lot of uncertain factors will impact the results
of failures. The index called risk is proposed to define the possibility and seriousness of an
event. The expression of risk R can be generally written as:

R =C×P (5.1)

In the equation, C describes the consequence of the failure. And P represents the
probability of the event [97].

To achieve accurate risk assessment during cascading events, the risks of the nodes and
lines have to be calculated separately. The risk of nodes i and edge Ei j can be written as
follows:

Ri =Ci ×Pi (5.2)

Ri j =Ci j ×Pi j (5.3)

The consequence of a node i is defined as follow:

Ci = N1
deg(i)

degMAX
+N2

pi

pMAX
(5.4)

where

N1 +N2 = 1 (5.5)

In the equation (5.4), deg(i) represents the degree of the node i, degMAX represents the
maximum degree of the network. Similarly, pi and pMAX represent the power injection
of node i and the maximum power injection of the system respectively. The weight N

comprehensively reflects physical and electrical characteristics of the node in power system.
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We can gain a node consequence which considers more topological or electrical proportion
by adjusting N1 and N2.

The consequence of the transmission lines can be defined by a vulnerability index which
the expresses the level of flow carried by the edge relative to the maximum flow of the
network. For a network with m sources and n sinks, let f uv

max be the maximum flow from the
source node u to the sink node v and let f uv

i j be the portion of the flow passing through the
edge Ei j of the network. Then the consequence of edge Ei j can be written as:

Ci j =

m
∑

u=1

n
∑

v=1
f uv
i j

m
∑

u=1

n
∑

v=1
f uv
max

(5.6)

For more analysis of the power flow based model and vulnerability index, readers can
refer to our previous Chapter 4 and [98]. The result from Chapter 4 shows that the lines with
higher vulnerability index are more critical to the system when a failure happens.

In a real power system, generators, buses and transmission lines have their own fault
probabilities. These fault possibilities of electrical devices may change during different
failures. Six different types of severity failures [99], transmission line overload, bus power
overload, high/low limit generator voltage violation, max/min limit generator frequency
violation, are adopted in this research for comprehensive probability evaluation.

A. Transmission Line Overload

During the cascading event, a certain number of transmission lines may trip off with a
certain probability. The concept of hidden failure in protection system is used to determine
each line’s tripping probability, which can be written as:

Pi j =


Pi j Lmin ≤ L ≤ Lmax
(1−Pi j)×L+Pi j×Lmaxlimit−Lmax

Lmaxlimit−Lmax
Lmax ≤ L ≤ Lmaxlimit

1 L ≥ Lmaxlimit

(5.7)

where the Pi j denotes the overload probability of a transmission line during cascading events.
The Pi j is the average overload probability of edge Ei j. The Lmax represents the security
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setting of line flow. Then maximum limit of the line capacity Lmaxlimit is the value that the
line will trip off directly.

B. Bus Power Overload

Similar to the transmission lines, a bus in power system can also overload and lose its
capacity during the fault. The probability of bus overload for node i with total power injection
p is defined as:

Pi =


Pi pmin ≤ p ≤ pmax
(1−Pi)×p+Pi×pmaxlimit−pmax

pmaxlimit−pmax
pmax ≤ p ≤ pmaxlimit

1 p ≥ pmaxlimit

(5.8)

where Pi represents the average overload probability of node i. The maximal security setting
and upper limit of a bus is denoted as pmax and pmaxlimit respectively.

C. Generator Failure

The failure probability of a generator is determined by the higher probability of a
frequency violation and voltage violation [100]. Thus, the fault probability evaluation of
generator i can be written as:

PG = MAX{Pf ,Pu} (5.9)

where

Pf =



Pf Fmin ≤ F ≤ Fmax
(1−Pf )×F+Pf×Fmaxlimit−Fmax

Fmaxlimit−Fmax
Fmax ≤ F ≤ Fmaxlimit

(Pf−1)×F+Fmin−Pf×Fminlimit
Fmin−Fminlimit

Fminlimit ≤ F ≤ Fmin

1 F ≥ Fmaxlimit or

F ≤ Fminlimit

(5.10)
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Pu =



Pu Umin ≤U ≤Umax
(1−Pu)×U+Pu×Umaxlimit−Umax

Umaxlimit−Umax
Umax ≤U ≤Umaxlimit

(Pu−1)×U+Umin−Pu×Uminlimit
Umin−Uminlimit

Uminlimit ≤U ≤Umin

1 U ≥Umaxlimit or

U ≤Uminlimit

(5.11)

where [Fmin,Fmax] and [Umin,Umax] stand for the generator frequency and voltage margin
respectively. Moreover, the lower/upper limits of the frequency and voltage are denoted as
Fminlimit/Fmaxlimit and Uminlimit/Umaxlimit.

From the definitions in this section we can see, the improved CN model considers more
power system features compared with previous ones. Some key characteristics such as power
flow, voltage and frequency are adopted in the improved CN model. This innovation can
form a better approximation model for power system risk assessment compared with the
existing CN model. At the same time, the improved model is not limited to component-
level assessment. The consequences and probabilities of components are also considered
with topological factors gained from CN theory. Thus, the proposed model can provide a
system-level assessment during cascading events, which is not possible by traditional risk
models.

5.3 Cascading Event Simulation Module

In a power system, a cascading failure can be triggered by either edges or nodes. An edge
trigger is the tripping of a transmission line. Obviously, all power transmission on that edge
is lost because of the disconnection. On the other hand, a node trigger is a failure on a bus,
substation or generator. Once the node tripped from the system, lines connecting to the node
are also effectively tripped since power flow cannot be transmitted through the malfunctioned
node.

From the historical data, it can be asserted that the possibility of a node trigger is much
lower than an edge trigger. Usually, the substations and generators are well protected. Thus,
in a steady state power system, the occurrence frequency of the failure on them is quite rare.
Theoretically, a node contingency is more likely caused by a cascading failure and causes
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greater damage to the power system. So we only consider the cascading events initially
triggered by an edge failure here. Nevertheless, node failures triggered by cascading are still
considered for a better understanding of the cascading mechanism.

Typically, the generation and load keep a dynamic balance in a steady state power system.
Thus, an initial risk distribution can be obtained from this steady state. A failure may break
this balance and start a transient state. The balance of load and generation has to be restored
via following re-dispatch process:

• Generation ramping: Power transmission disturbed by a failure causes a gap between
generation and load. Thus generators need to ramp up or ramp down to maintain the
system balance.

• Generation tripping/ Load shedding: However, generators have their own ramping rate
limitation and output power limitation. Sometimes the system requires ramping rate
and/or output over these limitations, to restore the balance. In this case, the balance
cannot be restored only by generation ramping. If a surplus still exists, the generators
will be tripped to decrease the total generation. On the contrary, after the generators
hit their output limitation, load shedding will begin if the output is still not enough to
cover the demand.

• Generation tripping/ Load shedding: However, generators have their own ramping rate
limitation and output power limitation. Sometimes the system requires ramping rate
and/or output over these limitations, to restore the balance. In this case, the balance
cannot be restored only by generation ramping. If a surplus still exists, the generators
will be tripped to decrease the total generation. On the contrary, after the generators
hit their output limitation, load shedding will begin if the output is still not enough to
cover the demand.

After the system achieves the new operating point, the parameters in the system have to
be updated. Obviously, the topology of the system is changed due to the N −1 contingency.
The degree of certain nodes may change as well. For power flows have been redistributed,
edge weights and directions are redistributed. Therefore, the consequences and probabilities
of transmission lines and buses are changed from the initial steady state. The voltage and
frequency of generators are altered during ramping/tripping process. Loads may shed to keep
the system operating balance.
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With these updated data, a risk assessment for this stage can be obtained. The component
with the highest risk ranking is considered as the next breaking point in the system. A
cascading chain can be formed by combining these high risk parts from each stage. The
cascading events only cease when there is no overload or the power flow of the system does
not converge. In most cases, the non-convergence of power flow is caused by islanding. This
means the system has collapsed and no longer a fully connected grid.

In summary, the procedure to evaluate the cascading chain in the proposed cascading
event simulation module is illustrated in the following flow chart Fig. 5.1.

5.4 Case Studies

In this section, two test systems are carried out with the methodology explained in the
previous sections. A small system (IEEE 14 bus system) is adopted to show the details of
cascading event. Furthermore, a larger system (IEEE 39 bus system) is chosen to explain the
cascading mechanism from an overall view.

5.4.1 IEEE 14 Bus System Scenario

The topology of the IEEE 14 bus system is shown in Fig. 5.2. It can be seen, there are 14
nodes and 20 edges with 5 generators and 11 loads in this system. The main power injections
to the system come from generators on node1 and node 2. On the other hand, main loads in
the system are located on node 3, node 4 and node 9. The consequence of nodes and edges in
steady state are shown in Fig. 5.3 and Fig. 5.4 respectively. In Fig. 5.3, it can be seen that
the node consequence is comprised by topological and electrical parts. Some nodes, such as
node 9, are at a critical position but carry less power in the system. On the contrary, several
nodes have high consequence with high importance in electrical structure. Also, it is not
hard to find that this power network has the characteristics of scale-free networks. Fig. 5.4
demonstrates that most of the edges have low consequence in the system, while a few edges
have an extremely high consequence at the same time. This structure shows that this power
grid is robust to random attacks but can be vulnerable to the targeted attacks. The removal of
lines with high risk may easily lead to a wide area cascading failure.



5.4 Case Studies 75

Fig. 5.1 Flow chat of cascading event simulation module
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Fig. 5.2 IEEE 14 bus system

Fig. 5.3 Steady state node C distribution in IEEE 14 bus system
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Fig. 5.4 Steady state edge C distribution in IEEE 14 bus system

A trigger event is applied on edge 3, which is the edge with the highest risk in the steady
state. The cascading module follows the process described in Section 5.3. The detailed
changes of risks on each node and edge are shown in Fig. 5.5 and Fig. 5.6 respectively. Stage
0 is the status from steady state, while stage 1 shows the status after first failure, and so on.

After edge 3 is removed from the system, the power supply from node 2 to node 3 has
been interrupted. To maintain the power supply to the loads on node 3, node 4 has to transfer
more power as it’s the only node connected to node 3 now. At the same time, edges 7 and 6
are overloaded to cover the power transmission gap by losing edge 3. We can see from Fig.
5.5 and Fig. 5.6, the risk of node 4, edges 7 and 6 have increased greatly in stage 1. The
failure probability of edge 7 is also increased since the power flow on the transmission line
is over the security setting limit. This means that edge 7 is most likely to trip off from the
system and starts a cascading in this case. When edge 7 tripped off, the burden of power
supply to node 3 is completely carried by the edges 1, 2 and 6. Also, as the power injection
from node 5 to node 4 is lost, the situation of node 4 gets worse. As a topological key node,
node 4 is highly connected. Not only does it take on the irreplaceable position to supply the
power to node 3, but it also bears the task to transfer power to nodes 7 and 9. From Fig. 5.5
we can see node 4 is likely to be the next breaking point. For the edges, it can be seen that
edge 4 is also suffering an overload. As the only power input path to node 4, it carries over
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300% power than it used to carry in steady state. This may result in overload and tripping off.
Thus, after stage 2, node 4 or edge 4 no matter which one breaks out first, the system will
collapse. Node 3 loses all power supply from outside and will shed 94 MW loads, which are
over 36% of the total loads in the system.

Fig. 5.5 Normalized node risk distribution in different stages during cascading event

Fig. 5.6 Normalized edge risk distribution in different stages during cascading event



5.4 Case Studies 79

Fig. 5.7 IEEE 39 bus system

The following conclusion can be draw from the analysis above. A failure on edge 3 may
lead to a cascading event in IEEE 14 bus system, and the most possible cascading chain
would be edge 3- edge 7- edge4/ node4.

5.4.2 IEEE 39 Bus System Scenario

The standard IEEE 39 bus system (shown in Fig. 5.7) is chosen as a benchmark system
to demonstrate the proposed method from a system-level view. The risks of each edge and
nodes are calculated and normalized to their average value respectively. The steady state risk
distribution in the IEEE 39 bus system is shown in Fig. 5.8. To show how the failures spread
among the different areas of the grid, the risk profile is plotted under a planar representation
of the power grid. It can be seen that most of the edges and nodes in the IEEE 39 bus system
have low values of the risk index. On the other hand, several edges have high risk indices,
meaning that they are more critical in the system.
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Fig. 5.8 Steady state risk geographical distribution in the IEEE 39 bus system

First, a targeted attack has been applied to edge 37, which has the highest ranking by risk
index in steady state. The changes of risk distribution during cascading are displayed in Fig.
5.9 and Fig. 5.10. It can be seen that the risk distribution changed a lot from the steady state
after edge 37 is tripped off. As the power supply to the loads on nodes 15, 21 and 16 from
the generator on node 35 is no longer available, transmission edges in the middle part of the
system are forced to carry more power to maintain the power supply. The risk of edges 23
and 10 has increased greatly compared to the others. Edge 23 has the highest risk ranking in
this situation, which is most likely to trip off and start a cascading failure. It is worth noting
that edge 23 is not the only the transmission edge that keeps the loads mentioned above alive
but also the edge connecting the generator on node 32 with the loads on nodes 3 and 4, which
are other load centres in the system. Thus, after edge 23 is removed, the power supply from
the right side of the system to the load centres located on nodes 3 and 4 are interrupted. In
this case, the edge 10 has to carry even more power than in the previous stage. It can be seen
clearly from the figure, that edge 10 has the highest risk and is facing trip off at this stage.
A large amount of load shedding is required to node 3 and 4. Otherwise, when edge 10 is
tripped off by its overload, the edges connected to those nodes will be overloaded and the
entire system collapses. Thus, the cascading chain here is edge 37- edge23- edge 10.



5.4 Case Studies 81

Fig. 5.9 Geographical risk distribution in IEEE 39 bus system after targeted attack stage 1

Fig. 5.10 Geographical risk distribution in IEEE 39 bus system after targeted attack stage 2
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Fig. 5.11 Geographical risk distribution in IEEE 39 bus system after random attack stage 1

Furthermore, random attacks have also been applied to the simulation system. Here we
take the fault on edge 1 as an example to see how the cascading failures spread in the system.
The risk distributions during the cascading are shown in Fig. 5.11 to Fig. 5.13 respectively.

It can be clearly observed from Fig. 5.11 that after edge 1 is removed from the system,
the risk of edge 3 has increased significantly. This edge carries over 150% more power than
the normal situation. The value is over 10 times more than most of the other parts in the
system. When edge 3 is disconnected, the path from node 18 to node 4 (contains edge 7,
node 3 and edge 6) is going to turn into a high-risk area as shown in Fig. 5.12. This indicates
that there is a great power shift between edges. In this situation, either edge 6 or edge 7
may trip off due to the excessive overload. This will speed the deterioration in the position
of node 3, and bring additional burden to edge 8, which is the only power injection to this
load centre after edge 3 and edge 7 are lost. Fig. 5.13 demonstrates the final stage of this
cascading event, and edge 8 is holding the highest risk. Once edge 8 trips off, nodes 3 and
4 are isolated from the system. They will lose all power supply from outside and form an
island. More than 500 MW loads are lost for this cascading event, which are over 13% of the
loads in the entire system. The most possible cascading chain caused by this random attack
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Fig. 5.12 Geographical risk distribution in IEEE 39 bus system after random attack stage 2

Fig. 5.13 Geographical risk distribution in IEEE 39 bus system after random attack stage 3
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we can draw here is edge 1- edge 3- edge 6/edge 7- edge 8. This result can be a guidance to
help the operators predict the hidden risk of cascading and make a better protection plan.

5.5 Summary

To fulfill the strengthened security standards against cascading outages, their risks should
be addressed in system security assessment. Existing methods suffer from various drawbacks
such as missing critical characteristics of the power system or suffering from massive
simulations. In this chapter we introduce a new approach for cascading risk assessment,
which considers both topological and electrical characteristics. Based on the power flow
based CN model mentioned in Chapter 4, six different types of failure method on nodes
and edges during cascading are considered respectively. Simulation results demonstrate
the effectiveness of this approach to identify the critical part of the power system during
cascading events. The possible cascading tree gained by simulation module can also help the
operator to predict the next step cascading fault and minimized the damage to the system.

In this chapter, we present a new direction for risk assessment in power system. In reality,
the power system is usually connected to a communication system. It is worth paying more
effort on analysing the impact of cascading between those two networks. In the next chapter,
the impact of these factors will be considered.



Chapter 6

Risk Assessment in Cyber-physical
System

6.1 Introduction

During normal operation of a power system, primary and secondary controls are respon-
sible for stabilizing the grid. However, during large failures such control cannot stabilize
the grid. Therefore, a modern power grid should be equipped with a communication and
control network. This interdependency network allows constant monitoring of the power grid
with rapid response, providing optimal centralized control actions to mitigate the damage of
failures. This kind of "emergency control" can not only improve the performance of the grid,
it also creates a dependency between the power grid and the communication network. Specif-
ically, when the grid is under stress, loss of communication can lead to catastrophic failures,
such as failures caused by natural disaster that affect both the communication network and
the power grid or the failure of communication components due to the loss of power supply
from the grid. It is relevant to note that a report by Kirschen and Bouffard [41] has identified
that failures in the information infrastructure were a significant factor in most recent system
collapses. Therefore, studying the impact of communication network on the power system
security during failures is of great importance.

The impact of a communication network on its related power grid’s performance was
recently studied using a simplified form of interdependency. In [3] showed that if a one-to-one
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interdependency between the nodes of the power grid and the nodes of the communication
network occur, the interdependent networks will be more vulnerable to failures than the
isolated networks. In their "point-wise" interdependency model, a power node may fail if it
loses its control connection from the communication network node, and a communication
node will also fail if its power supply is lost from the power grid. Similar results can be
obtained from [101][102]. Ref. [3] indicated that coupled scale-free networks are more
vulnerable to failures compared to a system consisting of two random networks. Then,
Buldyrev et al. extended the network model in [103], in which nodes in each network have
multiple inter-links and the number of interconnections for each node is identical. Ref. [104]
developed the model networks so that each node has a different number of interconnections,
and the distribution of the inter-links follows a Poisson distribution. Ref. [105]proposed
"regular allocation" of inter-links to show the improvement of robustness compared with
random allocation techniques. Although the study of [106] modelled cascading failures in
the smart grid, each communication node in the model can only have one power source.

However, in a modern power system, the structure of a communication network does
not necessarily correspond to that of the power grid, which means the point-wise model is
not suitable for modeling a power-communication interdependent network. Moreover, the
loss of a communication network component may not directly lead to the loss of control of a
corresponding power grid component. More realistically, only when the two conditions are
met, that is, when the line overloads and becomes uncontrollable, does the transmission line
trip off.

Based on this background, here we propose a novel approach for modeling the interactions
between power systems and combined communication networks to investigate the cascading
process. The PF based CN model and cascading module mentioned in Chapters 4 and 5
are adopted here for the power grid side. Based on graph theory, we built a topological
model for a communication network. A data exchange rule considering the data transmission
characteristics is employed. We also recommend a new approach for interdependence
between a power grid and a communication network. A cascading simulation is adopted
on IEEE 39 bus system. In an attempt to show how a communication network impacts the
vulnerability of the power system, the results are compared with risk changes without a
communication network.

The remainder of this chapter is organized as follows. In Section 6.2, communication
network modeling and data exchange rules are briefly described. The method for interaction



6.2 Cyber-Physical Network as a CN Model 87

between power systems and combined communication networks is established in Section
6.3. Case studies are carried out in Section 6.4. The conclusions and discussions are given in
Section 6.5. The research in this chapter is partly based on my own publication P.3.

6.2 Cyber-Physical Network as a CN Model

The power-communication interdependent network can be divided into two general layers:
the physical layer and the cyber layer. The physical layer includes electrical devices for
power generation, transmission, distribution and consumption. The cyber layer is represented
by the communication network, which is used to gather, transfer and process the data with
consideration of the structural and transmission characteristics [107]. Data from all electrical
devices is sent to the control centre via a communication network. The control centre can
monitor the status of the power system and send control commands to power grids when
necessary. In previous chapters, we have introduced PF based CN model for the physical
layer. We focus on the CN model for the cyber layer in this chapter.

6.2.1 The CN Model of Communication Network

As it bears a resemblance to a power grid, a communication network can be described
by a graph with nodes and edges. However, unlike the PF, where powers usually have a
one-way direction, the data can be transferred bi-directionally in a communication network.
Also the telecommunication lines usually have very high capacity compared to the data
size. The transmission line "over load" situations experienced in a power system rarely
occur in communication networks. The topology of a power grid is usually determined by
the geographical distribution of power plants, substations, cities and industrial demands.
On the other hand, the topology of communication network is more flexible and widely
dispersed. The research in [102] shows that most of the communication networks have the
characteristics of scale-free networks. The nodal degree is distributed as a power law; a small
fraction of the communication nodes act as hubs that have a greater number edges than the
average. Thus, in our research, the communication CN model is proposed as an undirected
scale-free network with the following assumptions:

• The communication network is a connected network without parallel lines.
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• The capacity of communication line is enough to handle all the data.

• Each bus in a power grid is coupled with a combined communication node in the cyber
layer.

• For each transmission line between two buses, there are two related communication
nodes. Normally, the buses have different voltages. Only the communication node
coupled with the higher voltage bus is used to exchange information.

• A special communication node enacts a control centre in the cyber layer. All data
collected by combined communication nodes are transferred to the control centre via
other nodes. Then the control decisions made by the control centre are sent back to the
physical layer via the same combined communication node.

6.2.2 The Rules for Data Exchange

As we mentioned above, the data information is transferred between a bus combined
communication node and the control centre via the communication network. To demonstrate
the data exchange process, data exchange rules [108] are employed as follows:

• When an unusual signal, such as transmission line overload, is observed from the
power grid, the coupled combined communication node generates a message packet.

• Each message packet has a Sender and a Receiver. The packet can be sent out and
received by each communication node once in every single step.

• In each step, for a communication node with a message packet, if the Receiver of the
packet is in its Neighbours sets, the message packets are sent to the Receiver node
directly.

Otherwise, the message packets will be transferred to one of the neighbour nodes based
on the chosen probability P, as in (6.1) [108].

Pj =
e−βH j

∑m∈Ni e−βHm
(6.1)
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Fig. 6.1 The maximum transmission time with different hd

Hi = hddi +hcci (6.2)

where di is the shortest path between node i and j, ci is the number of packets in the queue
of node i, and hd + hc = 1. Also β is the inverse of the temperature (constant) of the
communication network. In the research of this chapter, we take β = 20.

This probability clearly depends on the weight hd , since it is straightforward to realize
that if hd is zero, the packets are diverted to the less loaded node regardless of the path length
which results in an uncontrolled increase in the distance traveled by the packets from the
Sender. Fig. 6.1 shows the maximum packet travel time Tmax (steps) changes with different
hd in a communication network with p nodes and β = 20. It can be seen that although the
tendency of the curves is to cross the straight line as p increases, there is an optimal value of
hd . So, in our research, the hd will be set as 0.75 which approaches the optimal value.
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The communication network will repeat the behaviours until the message packets are
sent to the Receiver (in our case, mostly the control centre). Then the control commands will
be sent back to the original Sender via the same process.

For the convenience of statistics and calculations, the time, in terms of number of steps,
needed for a message packet to transfer from a combined communication node of edge i j to
the control centre and receive the feedback command is defined as Ti j.

6.3 Interactions between Power Grid and Communication
Network

The main idea for the new interdependency model between a power grid and a communi-
cation network is shown in Fig. 6.2. Initially, when a fault hits the power grid and causes
an N −1 contingency, the power supply to the combined communication node is gone. The
topology of the entire cyber layer changes as the node is removed from the communication
network directly. Also the redistribution of power flow may result in other transmission
lines becoming overloaded. As we introduced in previous sections, an abnormal message
packet will be generated from the coupled communication nodes. The abnormal message
packet is sent to the control center, obeying the data exchange rules shown in Section 6.2.
The control commands are sent back to the Sender after the control centre receives this
message packet. The reaction time for the overloaded transmission line to survive is limited.
The inverse-time overcurrent protection is employed here as an index to identify the control
command effectiveness [33]. When a line i j is overloaded, the time ti j of inverse-time
overcurrent protection is calculated as in (6.3) :

ti j =
K∣∣Ii j/Iseti j
∣∣α −1

(6.3)

K = 7, α = 0.3, Ii j and Iseti j are the current and setting current, if ti j < Ti j, the protection acts,
that means the overloaded line is tripped before the control command arrive. If complete
control is finished before the overloaded line is tripped, we define it as an effective control.
Otherwise, it may start a new cycle of cascading failure without a timely control command.
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Fig. 6.2 The interdependency between power grid and communication network

It is apparent that the higher severity of overload the transmission line faces, the shorter
reaction time the system has.

Here, a simple example of the cascading interdependency between a power grid and a
communication network is presented. Please note the data here is purely hypothetical, and is
introduced for purposes of illustrating the process described in this section.

Fig. 6.3 (a) shows the initial state of a simplified cyber-physical network. The nodes
and edges on the left side, which are marked with blue, are the power grid, while the
communication nodes and path are marked in green on the right side. The control centre is
denoted by the yellow node. To simplify the model, we just show the power supply to the
combined communication nodes here. Then, we assume the first fault occurs on edge DC.

After edge DC is removed from the power grid, edge BA, edge DB and edge EC are
overloaded. From Fig. 6.3 (b) we can see the abnormal message packets are generated
from combined communication nodes b, d and e. tBA, tDB and tEC are given as 4, 2 and
5 respectively. The abnormal message packets are transferred under data exchange rules
introduced in Section 6.2.
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Fig. 6.3 An example of the cascading interdependency between power grid and communica-
tion network
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Fig. 6.3 (c) demonstrates the data exchange progress in the system. Here we can find the
abnormal message packet sent from node b has already arrived at the control centre and the
control commands will be sent back to node b in the next step. From Fig. 6.3 (d), it is easy
to see that the control command is received before the overload line BA trip off. Thus, in
Fig. 6.3 (e), the line BA is running under permission again. In contrast, tDB is larger than TDB

means the feedback data packet from control centre cannot be sent back to node d on time.
Transmission line DB is tripped off due to the delayed control command. Meanwhile, node
d is removed from the communication network as a consequence of losing power supply
from the power grid. In Fig. 6.3 (f), a cascading failure is triggered. As line EA is newly
overloaded, an abnormal message packet is generated in node e. Unfortunately, the control
command cannot arrive in the combined communication node since TEA < tEA. Several steps
later, the cyber-physical network is collapsed as it is shown in Fig. 6.3 (g).

6.4 Case Study

The IEEE 39 bus system (shown in Fig. 5.7) is chosen as a benchmark system of the
physical layer to demonstrate the proposed method. The communication network with 100
communication nodes, which contains one control centre, is generated with graph software
Network X. The communication nodes are connected, and its nodal degree distribution obeys
a power law to form a scale-free network structure.

Firstly, random attacks are applied to the standard power system and the cyber-physical
simulation system respectively. Here we pick the attack on line 2 and line 38 as a demonstra-
tion. The main load demand buses in the system are monitored to calculate the total load loss
after cascading events, which are shown in Fig. 6.4. It can be seen that after the power grid is
connected to the communication network, the power system performs better against random
attacks. Lost capacity on each node has decreased respectively. This example illustrates the
control strategy can help a power system to mitigate the damage of cascading failures.

Furthermore, the targeted attacks are applied to the cyber-physical system. Similar to
the simulations we have done in Chapter 5, the power transmission line with the highest
risk ranking is removed firstly. The removal of the transmission line may change the power
flow distribution in the power grid and/or the topology of the communication network. A
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Fig. 6.4 Lost demand capacities under random attacks

cascading event will spread in the cyber-physical system until a new dynamic balance point
is achieved.

To demonstrate the impact of communication network structures and connection patterns
of two layers on the cyber-physical system, four different scenarios have been studied here.
Besides the scale-free communication network we mentioned above, a random communi-
cation network is generated. It also has 100 communication nodes with one control centre
among them. The connection of the nodes is totally random, which means the nodal degree in
this communication network follows a Poisson distribution. Then these two communication
networks with different structures are each connected to IEEE 39 bus system through two
different ways.

In Scenario 1, the scale-free communication network is connected to the power system
and obeys "degree to degree" connection rule, where we connect the power bus nodes with
the highest degree to the group of highest nodal degree hubs in the communication network.
The same connection rule is adopted to the random communication network in Scenario 2.
Then the scale-free communication network and the random communication network are
randomly connected to the power system in Scenario 3 and 4, respectively. The conditions of
these four scenarios are simply summarized in Table 6.1.
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Table 6.1 Four scenarios of targeted attack to cyber-physical networks

Inter-similarity Scale-free Network Random Network
Degree to Degree

Connection Scenario1 Scenario2

Random Connection Scenario3 Scenario4

Fig. 6.5 Geographical risk distribution after attacks in Scenario 1

Since we have already introduced the detailed cascading progress in power layer in
Sections 5.3 and 5.4, and the interactions between two layers in Section 6.3, here we only
present the simulation results.

A complete disaster happens in Scenario 1. Once the highest risk ranking line is removed,
the related transmission lines suddenly have to carry more power to neutralize the gap. Many
abnormal message packets are generated in the combined communication nodes around the
breaking points. However, as a communication hub coupled with node 35 lost its function, a
large number (27 in this scenario) of communication nodes and telecommunication paths
disconnected from the hub. This incident increases the path length the abnormal message
packets need to pass through and message packets start queueing in the communication
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Fig. 6.6 Geographical risk distribution after attacks in Scenario 2

Fig. 6.7 Geographical risk distribution after attacks in Scenario 3
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Fig. 6.8 Geographical risk distribution after attacks in Scenario 4

network. The delay to the control command leads to another line trip off and starts a cascading
failure.

A similar situation is also observed in Scenario 2, although the failure was not as severe
as in Scenario 1. The random network average nodes distance is larger than the one in the
scale-free network. The delay still happens and leads to a larger hidden failure.

For the group of random connected networks. More communication nodes are lost
in Scenarios 3 than 4. Nevertheless, the performances of these two scenarios are largely
identical but with minor differences. As discussed in Chapter 3, the network structure plays
an important role in communication networks. When an overload line is coupled with a scale-
free network, it has higher chance to receive effective control. A communication network
with hubs has diverse outcomes. When those key nodes have not been destroyed, they can
provide the coupled system with a strong form of protection, but once they malfunction in the
communication network, there is a great risk of collapse in both layers of the cyber-physical
network.
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6.5 Summary

In this chapter, we present a new approach to CN modelling in cyber-physical network
security assessment. A structural communication model is coupled with a power system.
A data exchange rule which improves on the existing "point-wise" interdependency model
is introduced. The interactions between the two layers are described in detail. Finally,
we use simulation results to explain the impact of a communication network on a power
system. During random attacks, the control command can mitigate the damage to the power
grid. However, sometimes the communication network can accelerate the cascading process
and cause a severe blackout. Therefore, designing a robust communication structure and
interdependency strategy is of great importance.



Chapter 7

Conclusions and Future Work

This thesis is motivated by the direction that the structure of power systems becomes
increasing complex. For example, a single failure occurring in a vulnerable part of a power
system may cause a wide area cascading collapse. Therefore, an advanced method that
can assess power system security levels is needed, and complex network (CN) theory has
emerged recently to be a new direction for power system security assessment. This thesis
makes several extensions towards achieving more usable techniques based on CN ideas.

Firstly, we presented how power system stability is greatly impacted by the unpredictable,
fluctuating characteristics of the renewable energy. The scenarios studied show that these
new features are expected to have a negative impact on the stability and security of the
power grid, bringing new risks of cascading failures. Thus, we introduced a new CN model
for vulnerability analysis given renewable energy integration. Numerical simulations are
investigated based on the 14-generator model and realistic data of solar and wind output in
Australia. The results show the impact of renewable energy sources on the power network
under different penetration levels and load conditions.

Secondly, we attempt to give some guidance on how to design a better communication
network in a PV-ES combined system. A distributed optimization algorithm has been
introduced. Units in the system exchange information through the communication network
to maximize the net profit cooperatively. Then we analyse the performance of this distributed
optimization algorithm on several classic network topologies in an innovative way. We
investigate a series of simulations based on graph theory. The implication of Laplacian
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eigenvalues and degree distribution are discussed, and we show the potential of the optimal
topology for a communication network.

Then, we made a further step towards a CN model for vulnerability analysis by consider-
ing more electrical power factors. An innovative model which considers power flow (PF),
one of the most important characteristics in a power system, is proposed. Moreover, based on
the complex network theory and the Max-Flow theorem, we presented a new vulnerability
index to identify the vulnerable lines in a power grid. In addition, comparative simulations
between the power flow based model and existing models are investigated on the IEEE 118
bus system. The simulation results demonstrate that the proposed model and the index are
more effective in power grid vulnerability analysis.

Based on the PF model, an improved CN model for power system cascading risk assess-
ment is proposed. We defined risk by combining consequence and probability of the failures
in this model, which are affected by both power factors and network structure. Compared
with existing risk assessment models, the proposed one can evaluate the risk of the system
comprehensively during a cascading event by combining the topological and electrical infor-
mation. We also adopted a new cascading event simulation module to identify the power grid
cascading chain from a system-level view. In addition, simulations are investigated on the
IEEE 14 bus system and IEEE 39 bus system respectively to illustrate the performance of the
proposed module. The simulation results demonstrate that the proposed method is effective
in a power grid risk assessment during a cascade event.

Finally, we study the interaction between the power grid and the communication network.
We have proposed a new interdependency model to demonstrate a cascade event between
two different layers of a cyber-physical network. Unlike previous "point-wise" dependency
models, in our model the loss of one node does not necessarily lead to the failure of the
corresponding nodes. From the study, we can draw the conclusion that the structure of
communication network has great impact on the power grid security performance.

There are more questions to be explored in this area. As can be seen in the previous
chapters, the CN model has shown its great advantages in allowing an assessment procedure
where the number of calculations can be related to structure. Previously, the network based
modelling was largely simplified, and sometimes ignored the critical characteristics of
the original systems. The power flow constraints and data exchange rules are adopted in
this thesis. This is a good start, but still not comprehensive enough to describe the full
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interdependency of the two network layers. It is not difficult to speculate that more peculiar
characteristics and strategies of interconnected action are required in future modelling.
Meanwhile, power grids are not only connected with communication networks, but also
transportation networks, gas, and water supply networks. The CN model can be expanded to
include three or more interdependent networks in the near future.
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