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Abstract
Charika De Alvis Doctor of Philosophy

University of Sydney January 2017

Multi-Modal Learning For
Adaptive Scene Understanding

Modern robotics systems typically possess sensors of different modalities such
as colour cameras, inertial measurement units, and 3D laser scanners to per-
ceive their environment. While there are undeniable benefits to combine sensors
of different modalities the process tends to be complicated. Segmenting scenes
observed by the robot into a discrete set of classes is a central requirement for
autonomy as understanding the scene is the first step to reason about future
situations. Equally, when a robot navigates through an unknown environment,
it is often necessary to adjust the parameters of the scene segmentation model
online to maintain the same level of accuracy in changing situations. This the-
sis explores efficient means of adaptive semantic scene segmentation in an online
setting with the use of multiple sensor modalities
In computer vision many successful methods for scene segmentation are based on
conditional random fields (CRF) where the maximum a posteriori (MAP) solu-
tion to the segmentation problem can be obtained by efficient inference. CRF
encodes contextual information and longer-range relationships during the predic-
tion process. Further, parameters learning of CRFs is a also widely studied area
This thesis offers three main contributions.
First, we devise a novel CRF inference method for scene segmentation that in-
corporates global constraints, enforcing particular sets of nodes to be assigned
the same class label. To do this efficiently, the CRF is formulated as a relaxed
quadratic program whose MAP solution is found using a gradient-based opti-
misation approach. These global constraints are useful, since they can encode
"a priori" information about the final labeling. This new formulation also re-
duces the dimensionality of the original image-labeling problem, which result in
a decrease of the computational time. The proposed globally constrained CRF
is employed in an urban street scene understanding task. Camera data is used
for the CRF based semantic segmentation while global constraints are derived
from 3D laser point clouds. Experimental results demonstrate the improvement
achieved with global constraints. Comparisons with higher order potential CRF
show the benefits of the proposed method.
Second, an approach to learn CRF parameters without the need for manually la-
belled training data is proposed. Parameter learning is of high importance when
extending scene segmentation to an online setting since the nature of the input
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data is unknown. The model parameters are estimated by optimising a novel loss
function using self supervised reference labels. These reference labels are obtained
purely based on the information from camera and laser, in a self-training man-
ner with minimum amount of human supervision. Sensor data is pre-processed
using methods such as convolutional nets, discriminant analysis, and Euclidean
distance based clustering to extract reference labels
Third, an approach that can conduct the parameter optimisation while increasing
the model robustness to non-stationary data distributions in the long trajectories
of the robot is proposed. We adopted stochastic gradient descent to achieve this
goal by using a learning rate that can appropriately grow or diminish to gain
adaptability to changes in the data distribution. We demonstrate experimental
results on KITTI dataset for long real world image sequences.
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Nomenclature

General

P (A) Probability of event A
P (A|B) Probability of event A given event B
K−1 Matrix inversion
KT Matrix transpose
Kij Element of matrix K at row i and column j
L Set of Labels
n Number of labels
x Multidimensional observed variable
D Dimension of x
xi ith element of vector x
||x|| L2 norm of vector x
y Multidimensional target variable
θ Model parameters
θ∗ Optimal parameter values
g(x) Function over x

Classificication

ai Training data samples in class i
ki Number of data samples in ai
x̄i Average of the data samples in ai
Γ1 Intra class covariance matrix
Γ2 Inter class covariance matrix
Φ Linear transformation matrix

Conditional Random Fields

G Undirected graph
V Set of vertices
E Set of edges
C Set of cliques in a graph
m Number of nodes in the graph
Ni Neighbours of node i
Z Normalising function
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yi Trarget variable correspond to node i.
ψi(yi) Unary potental of node i
ψij(yi, yj) Pairwise potental between nodes i and j
E(y|θ) Energy of the model given parameters
Ω Training set
N Number of training samples
K Number of parameters
L(θ|Ω) Likelihood of θ given data
l(θ|Ω) Log likelihood function
E(f(x)) Expected value of f(x)
C Global constraints

Convex Relaxation

I(yi), I(yi, yj) Indicator variables of label assignment
H Edge potential matrix

Equality Constrained Quadratic Programming

Q Negative edge potential matrix
A Equality constraints matrix
e Number of equality constraints
λ Lagrange multiplier vector
null(A) Null space of matrix A
Z Basis for the null space
Q̃ Reduced hessian matrix

Belief Propagation

mi→j Message from i to j
Bi Belief in node i
Ni/j Neighbourhood of i except j

Optimisation

w Image frame index
ω Data sample
E Expected risk
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EN Empirical risk
η Global learning rate
t Iteration index
θt Value of parameter at tth iteration
γ Global learning rate for SGD
5f(x) Gradient of f at x
α, λ Loss function parameters
z Ground truth labels
B Mini batch size

3D Point Cloud Processing

M Horizontal plane model
h0 Number of points required to learn parameters of M
Pn Observed data distribution
T Number of iterations
Si Set of points fit with the model
S̄i Consensus set of Si
ν Probability of outlier occurrence
ε, γ Threshold values
R kd tree formulation of point cloud
QR Queue of points
CL List of clusters
dn Radius of point neighbourhood
du Upper bound
Ci Cluster i

Visual Features and Metrics

l, a, b LAB color metrics
x, y Image pixel location coordinates
ω Data sample
Dxy Distance in x− y coordinate frame
Dlab Distance in LAB color space
Dr Distance between cluster centers
DB Bhattacharyya Distance
DE Euclidean Distance
M Superpixel count
S Superpixel size
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m Pixel count
ξ Compactness indicator
NB Number of bins in a histogram

Abbreviations

CRF Conditional Random Field
FCN Fully Convolutional Net
GD Gradient descent
GPS Global positioning system
HOG Histogram of oriented gradients
HOP Higher order potentials
ICM Iterative conditional modes
ILP Integer linear programming
LBP Loopy bilief propagation
LDA Linear discriminant analysis
ML Maximum Likelihood
MAP Maximum a Posteriori
MCMC Markov chain Monte Carlo
pLDA Pseudo linear discriminant analysis
QP Quadratic programming
RANSAC Random sample consensus
SGD Stochastic gradient descent
SIFT Scale-Invariant Feature Transform
SLIC Simple linear iterative clustering
UGM Undirected graphical models
ADAGRAD Adaptive gradient algorithm
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Chapter 1

Introduction

1.1 Motivation

Intelligent autonomous systems are becoming increasingly popular in society.
Driver assistance, robotic navigation and environmental exploration all include
a level of autonomy. Autonomous driving is highly beneficial because it con-
tributes to reducing road accidents, creating orderly traffic flow, optimising fuel
consumption and providing mobility for the elderly and people with disabili-
ties. Under autonomous driving, there are many areas of active research, such
as road, vehicle, traffic sign and pedestrian detection and understanding. There-
fore, it is necessary to establish a semantic and geometrical understanding of the
changing environment surrounding the vehicle. For this purpose, identifying the
precise class boundaries is critical. Object or class recognition is usually achieved
through labelling every pixel of the image with a chosen class or object label.
Figure 1.1 shows a semantically segmented street scene to 12 distinct classes.
Google’s self-driving car is arguably a successful attempt to fully automate the
task of autonomous driving. However, complete autonomy is still infeasible due
to the nonlinearities in real world applications. Figure 1.2 is an image of the
Google self-driving car with a 360◦ Velodyne scanner.
Scene understanding is commonly studied in the context of autonomous driving

and comes with major challenges. A successful scene understanding algorithm
should have the capability to accommodate rich contextual information in the
process of segmenting the image over accurate class boundaries and subsequently
assigning class labels to each segment. For image labelling problems, Conditional
Random Fields (CRF) are commonly used because they can integrate different
levels of contextual information. CRF has unary potentials that can capture
low-level cues derived from local texture, colour and location of the pixels and
pairwise potentials that can assist in smoothing label predictions. Figure 1.3 de-
picts a simple CRF model built over image patches. Higher-level cues such as
label consistency in regions, object co-occurrence statistics and shape informa-
tion can be incorporated in the CRF model through higher order potentials or
hierarchical connectivity.
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Figure 1.1: Illustration of semantic segmentation of an image. Pixels correspond to different
object classes are individually. From: http://mi.eng.cam.ac.uk/projects/segnet/.

Figure 1.2: Google self driving car(courtesy NASA/JPL-Caltech).

Higher-level cues that contain longer-range information such as label consis-
tency over image regions are typically derived using unsupervised image seg-
mentation methods such as clustering. Clustering algorithms group similar data
points within the given data. The similarity of the data in a group provides
information about label consistency. The importance of clustering is that it re-
quires minimum human supervision and can be modelled to adapt to changing
environments. Furthermore, clustering algorithms do not require assumptions
on the input data since they group data into separate clusters based on the dis-
similarity metrics. Moreover, clustering is an attractive technique to reduce the
dimensionality of the data and also especially suitable for processing sparse data.
For sparse 3D laser point cloud processing, clustering techniques are efficiently
implemented [90]. Figure 1.5 shows clusters generated from a 3D point cloud
where each cluster correspond to an object or a part of an object. However, the
accuracy of the final solution of CRF based semantic scene segmentation models
is limited by the accuracy of the associated unsupervised methods.
For accurate scene labelling output it is necessary to learn the CRF parameters

corresponding to the input data distribution, which requires inference over the
CRF model.
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Figure 1.3: Autonomous driving platform Annieway with multiple sensor modalities (courtesy
Annieway /KITTI).

The scene segmentation problem typically formulated by grid shaped CRF and it
results in complicated dependencies in the model, further it also involves multi-
ple classes/states, essentially rendering the inference problem intractable. Under
these circumstances, accurate CRF parameter learning can be a challenging task.
Typically, CRFs are used to encode visual information, such as colour and tex-

ture for scene classification. However, it is evident that combination of multiple
modalities can be beneficial, i.e. using depth information in addition to visual
data can increase the robustness to changes in illumination and texture; and as a
result, we see that contemporary robots are comprised of multiple sensors such as
optical cameras, Velodynes, sonars, thermal cameras and flash lidars. Figure 1.4
shows autonomous driving platform of KITTI vision benchmark suite with mul-
tiple modalities mounted on it. Laser-based depth information is commonly used
with visual information to CRF modelling. The tendency to use multiple modal-
ities has drawn more attention towards efficient sensor fusion techniques.
Another consideration is that the location and orientation of each sensor may

vary from each other. As a result, the visibility of an object might change from
sensor to sensor due to occlusions. Laser sensors usually can perceive objects in
a shorter range, while cameras can capture objects much further. This shows
that, some sensors are capable of recognising particular object classes better than
others. Therefore, efficient sensor fusion requires representing all different sensor
inputs in one single domain. This is a complex task, and so substantial research
is being conducted on fusing sensors to get the maximum use of input data.
Apart from that the scene segmentation model should have the flexibility to fuse
information from any new sensor input introduced to the system.
Semantic scene segmentation directly links with autonomous driving. Scene

labelling models are learnt on training datasets, eventhough the model has to
operate on newly encountered data. In scenarios where the autonomous vehicle
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Figure 1.4: Part of a conditional random field built over an image patches. Demon-
strates characterization of contextual information. From: http://spark-
university.s3.amazonaws.com/stanford-pgm/slides/2.4.1-Repn-MNs-pairwise.pdf.

navigates in unknown changing environments, maintaining a high level of accu-
racy of image labelling is very challenging. One option is to use large datasets
of labelled samples to train the model, since it should improve the generalisa-
tion properties. But this involves large amounts of human supervision, increases
computational complexity and time consumption. In other words, autonomy be-
comes an unrealistic goal. Additionally, it is impractical to obtain labelled data
when navigating in unknown environments. There can be an infinite number of
different routes, changing weather, lighting conditions, traffic conditions and so
on. Therefore it is essential to generate means of establishing adaptability in
unexpected scenarios.
When developing adaptive scene segmentation models for autonomous driving,

online learning plays a significant role. As new data instances are observed, CRF
model parameters can be updated in an online setting. Batch optimisers that
update parameter with the use of gradient and Hessian computations accumu-
lated over the complete training set are a popular choice for parameter learning.
However, in autonomous driving, the relevant data stream is continuous. As the
vehicle moves, new data flows in which makes it hard to define a fixed-length batch
of data. Furthermore, using batch optimizing on past data also can be infeasible
due to the sheer amount of information. Consequently, stochastic gradient-based
methods that update the model parameters based on the gradient over a sin-
gle data instance are commonly utilised in place of batch optimisers. Stochastic
methods scale appropriately with advanced computing resources and are also re-
silient to the inaccuracies that occur when approximating the gradients.
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Figure 1.5: Point clusters generated from a 3D Velodyne point cloud conrrespond to individual
objects. From: http://www.roboticsproceedings.org/rss05/p22.pdf.

Additionally, there is evidence showing that models trained using stochastic gra-
dient descent(SGD) tend to have lower generalisation errors compared to batch
learning methods.
However, using SGD in an online setting comes with challenges. Selecting an

optimum learning rate for SGD methods can be complicated since larger learn-
ing rates result in divergence from the optimum parameter values and smaller
learning rates can make the learning process extremely slow. Slow adaptation
is unsuitable for real-time operation, especially when navigating in an urban en-
vironment, where it is essential to understand the environment in a real-time
manner. Hence we need a way to optimise the parameters of the CRF efficiently
and accurately. It has been shown in the literature that decreasing learning rates
guarantee the convergence of SGD, and so diminishing learning rate is commonly
used in practice. However, for non-stationary data distributions, the optimiser
might become trapped in a local minimum as the the learning rate becomes in-
finitesimal, and so new information cannot be learned. Even fixed learning rates
cannot address this issue, therefore it is important to have an adaptable learning
rate that can increase or decrease according to changes in the data distribution.

1.2 Problem Statement

The thesis addresses the following critical issues in autonomous navigation. Ini-
tially, it focuses developing a convenient way of including “a priori ”knowledge
about correct labelling to the scene segmentation model in the optimisation pro-
cess, because this type of additional information is readily available and can be
used to enhance the quality of scene understanding. This “a priori ”knowledge
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is commonly obtained by combining information from different modalities. Sec-
ondly, we consider the problem in the context of typical autonomous platforms
that consist of cameras and laser sensors as the primary sensors of interest. In this
scenario, using laser-based information as additional knowledge to image based
scene segmentation models has to be analysed further to increase the efficiency.
Thirdly, this thesis addresses the issues involve with scene segmentation during
long-term navigation where the main problem concerns modelling adaptability in
changing environments. The core of the thesis thus demonstrates a method that
can adapt to the variations in the perceived environment through an efficient pa-
rameter learning method. Furthermore, the computational cost of the semantic
segmentation of an image frame is minimised, thus facilitating real-time oper-
ation. Finally, we explore means of eliminating the need for manually labelled
data during the learning process.

1.3 Contributions

The major contributions of this thesis are as follows:

1. A novel CRF formulation using global constraints capable of en-
forcing label consistency in a semantic scene segmentation model
for autonomous driving. An application of the proposed method
is demonstrated for urban street scene segmentation using cam-
era and laser sensor data gathered by real robotic platforms.
CRF can be used to model the image labeling problem. Label prediction
is formulated as the maximum a posteriori (MAP) estimation problem of
CRF. Quadratic programming (QP) formulation is one of the most efficient
means of solving the CRF inference problem. We propose an inference
method to include "a priori" information about label consistency in the
form of constraints. A side effect of the use of these constraints is a large
reduction of the problem’s dimensionality which facilitate real-time opera-
tion. Experiments shows how constrained CRF is used to efficiently fuse
camera and laser sensors efficiently. The CRF model is formulated based on
visual features obtained from camera images, and global constraints that
enforce label consistency are extracted from the laser point cloud. This
approach enhances the model’s resilience to changes in lighting conditions
and occlusions.

2. Developing an approach for CRF parameters learning eliminating
the need for manually labelled training data.
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CRF parameters estimation is essential to efficiently combine the different
cues associated with the model since it enriches the adaptability of the
model. Parameter learning is formulated on the optimisation of a loss func-
tion.
Our approach derives the reference labels necessary for the loss computa-
tion in a self supervised manner based on the outputs from a discriminant
analysis classifier and a fully convolutional network combined with laser
point based segments corresponding to objects in the image. This approach
minimises the human supervision in learning by providing means for the
model to automatically learn from unseen instances.

3. A stochastic gradient based method to update CRF parameters
while making the model robust to non-stationary data in long-
term navigation.
The Semantic scene segmentation model is extended to an online learning
algorithm, where the model updates its parameters to predict image labels
more accurately over time. Since the input data stream is large and un-
known, stochastic gradient descent is used to optimise the loss as new data
is received. The learning rate is continuously adjusted, both decreasing over
time to allow the model to reach an optimum point and increasing when
necessary to leap out of a local minima. The proposed model has the ca-
pability to maintain or improve the accuracy of its initial estimates as the
perceiving environment changes.

1.4 Thesis Outline

This section summarises the content of the thesis. The goal is to develop an
efficient framework for scene understanding to assist with autonomous driving.
Accurate scene understanding is expected to be achieved through the addition of
"a priori" knowledge in the form of global constraints, while getting the maximum
use of the input data from multiple modalities. The model is designed to adpat
to the changes in the environment when navigating in urban environments.

Chapter 2: Theoretical Background

This chapter describes the fundamental theories and techniques necessary to de-
velop the original contributions of the thesis. It starts with an introduction to
supervised learning (section 2.1) and then details an specific classification algo-
rithm, discriminant analysis. Afterwards, the theory of conditional random fields
(CRFs) is explained (section 2.2). Under this section, the formulation of CRF,
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general inference, inference using programming relaxations and parameter learn-
ing of CRF are described. Sections 2.3 and 2.4 detail the batch gradient descent
and stochastic gradient descent methods, which are commonly used in parame-
ter learning. Finally, section 2.5 presents information on sensor data processing,
focusing specifically on camera images and laser point clouds.

Chapter 3: Urban Scene Segmentation with Laser-Constrained CRFs

This chapter discusses the first contribution of the thesis related to developing
a reliable scene understanding framework. Section 3.1 consists of the introduc-
tion and related work of the proposed model. Section 3.2 introduces the CRF
based semantic scene segmentation model, that incorporates camera-based vi-
sual information and laser based global constraints. In section 3.3, inference in
the proposed CRF model is illustrated. This section expands on how quadratic
programming formulation can be used to characterise the image labeling prob-
lem with global constraints. Finally, section 3.4 demonstrates the benefit of the
proposed semantic segmentation model over other state of the art methods that
only exploit visual information. Furthermore, it also showcases the advantage of
having laser-based hard constraints over methods using soft constraints. Experi-
mental results are presented for two real-world data sets.

Chapter 4: Online Learning for Scene Segmentation With Laser
Constrained CRFs

This chapter focuses on the second and third contributions of this thesis, which
are developed by extending the proposed scene segmentation model to an online
adaptive model. Section 4.1 provides the introduction to the framework and dis-
cusses related work. Section 4.2 describes the process of extending the constrained
QP problem in to an adaptive model by parameter learning using self supervised
reference labels. It details that how stochastic gradient descent methods can be
used to learn the parameters efficiently. Lastly, section 4.4 demonstrates the en-
hancement in quality achieved for individual object classification with adaptive
learning. It also showcases the robustness of the scene segmentation model over
long image sequences to simulate real-world driving. Finally, it illustrates the
adaptability of the model to abrupt changes of input data distribution

Chapter 5: Conclusion and Future Work

Chapter 5 summarises the contributions of the thesis and draw conclusions based
on the proposed methods. This chapter concludes by suggesting directions for
future research on semantic scene segmentation based on the proposed framework.
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Chapter 2

Background

This chapter presents the theoretical background necessary to understand the
thesis. In Section 2.1 we introduce supervised learning techniques. We discuss
classification algorithm, Discriminant Analysis, which we have utilised in our
work to obtain the basic predictions on image labels.
Section 2.2 provides a description of Conditional Random Fields, which is also a

sophisticated method for enhancing the quality of image classification considering
the longer-range contextual information. Here we discuss about the inference
in CRF and possible approaches to solve the inference problem. We majorly
focus on the Quadratic Programming that can be efficiently applied in image
classification. Further this section provides information on parameter estimation
of CRF models.
The approaches used for optimisation in machine learning are described in the

Section 2.3 and 2.4. Section 2.3 introduces gradient descent algorithm in general.
Our research involves with developing an adaptive model requiring parameter
optimisation. Stochastic gradient decent, which is detailed in section 2.4, is im-
plemented for optimising the parameters for our CRF model to conduct image
segmentation. Since our problem operates in an online setting the problem is
large scale and stochastic gradient methods are more attractive.
The Section 2.5 presents information on sensor data processing. This section

contains two portions. The first part explains image data processing. The sec-
ond part is focused on 3-D point cloud processing. We provide details on super
pixels generation and feature extraction. Laser point cloud based 3D information
plays a major role in our image classification framework. We describe 3D point
cloud processing methods such as Euclidean cluster extraction and ground plane
removal methods.

2.1 Supervised Learning

Supervised learning is a major branch in machine learning. Consider target vari-
ables y and observed variables x where y = g(x). In supervised learning, the
main task is learning the function g parameterised by a set of parameters θ given
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training set. Learning is conducted using a training set of input and output sam-
ples Ω = {(xi, yi)}Ni=1 assumed to be independent and identically distributed. N
refers to the number of training samples. xi has D number of dimensions, where
each dimension links to a feature or a attribute. Features are extracted from an
image, sentence, electronic signal or voice recording. In the case where yi is a
real valued scalar the prediction problem is referred as regression. Normally
the output yi is considered to be a categorical or nominal variable and can be
assigned with a value from the set L = {1, .., n} where n is the number of classes.
This type of a problem is known as classification. Murphy et al. [75] offers a
more extensive theoretical description of the properties and the applications of
supervised learning.

2.1.1 Classification

In classification problems, when n = 2 then the problem reduces in to a binary
classification when n > 2 it is a multiclass classification. Through machine learn-
ing the classifier function g is obtained. Subsequently, the learnt function can be
used to predict the label of newly observed data. However, it is important that
function g generalises well to unseen data. There are several algorithms used for
classification such as Support vector machines [20], Decision Trees [84] and Neu-
ral Networks [3] . In the next section we explain the theory behind discriminant
analysis utilised in extracting labels for the image pixels in later chapters.

Linear Discriminant Analysis

Linear discriminant analysis (LDA) linearly combines features to distinguish be-
tween object classes. It can be directly used as a linear classifier or for dimension-
ality reduction. This is a popular technique for pattern classification mainly due
to the ease of computation since it has closed form solutions. It also provides de-
cent class separability and can be used for multiclass problems intrinsically. This
classifier has demonstrated good performance in practice. Additionally LDA does
not require learning of hyper parameters. In our work, we use LDA to classify
image patches. Li et al. [64] proposed the first LDA model to map multivariate
input variables to univariate output variables. Here the model ensures that the
outputs generated from each of the classes are far from each other as much as
possible. Consider a training set Ω. The dimensionality D of input vector x has
to be sufficiently large to contain adequate information to conduct the classifica-
tion accurately. LDA is developed based on the analysis of scatter matrix, which
is a metric utilised to evaluate the covariance matrix of the multivariate normal
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distribution. The corresponding scatter matrix for class i is denoted by:

χi =
∑

xj∈ai

(xj − x̄i)(xj − x̄i)T , (2.1)

where the number of classes is denoted by n. ai referred to input data samples of
ith class. x̄i referred to the mean of the example input instances that has the label
of the ith class. Fisher et al. [114] introduce a discriminative feature transform
using intra-class and inter class co-variance matrices denoted by Γ1 (Eq. (2.2))
and Γ2 (Eq. (2.3)) respectively,

Γ1 =
n∑
i=1

χi, (2.2)

Γ2 =
n∑
i=1

ki(x̄i − x̄)(x̄i − x̄)T , (2.3a)

x̄ = 1
N

n∑
i=1

kix̄i. (2.3b)

Here ki refers to the number of sample inputs belong to the class i. N denotes the
total number of samples. There are important characteristics of the matrix T =
Γ−1

1 Γ2 so it can convey information on class compactness and class separation. T
provides a discriminative feature transform through the eigenvectors related to the
largest eigenvalues. According to Fishers criterion [114] a linear transformation
Φ can be defined by maximising the Rayleigh coefficient indicated below,

Rayleigh coefficient = |Φ
TΓ2Φ|
|ΦTΓ1Φ| . (2.4)

This linear transformation matrix can be utilised as a distance measure (similar
to Euclidean distance) to do the classification in the transformed space. The class
label for some input xj is given by:

yj = i∗ where i∗ = mini∈LxjΦ− x̄iΦ. (2.5)

2.2 Conditional Random Fields

In artificial intelligence, problems such as scene understanding, natural language
processing and voice recognition require computing the assignments to a sequence
y given a known set of inputs x. The prediction of y can be difficult due to the
complex dependencies between output variables. For instance, in image labelling
problems neighbouring image patches are likely to have similar labels. Graphi-
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cal models [19, 81] unite the techniques in probability theory with the efficient
strategies in graph theory to overcome the complexity. They can be used to
represent such problems, since they can efficiently characterise the dependencies
between output variables. There are several families of graphical models such
as neural networks, Markov random fields [51], ising models [113], Bayesian net-
works [47]and factor graphs [57] for structured prediction. Commonly, graphical
models use a generative approach, which focus on modeling a joint probability
distribution over input and output variables. However, CRF based approaches
can result in intractable models when the dimensionality of the input is massive
and there are complex dependencies between input variables. For more informa-
tion on graphical models please refer to [54].
Conditional random fields (CRFs) are a variation of Markov random fields and

use a discriminative approach to overcome the tedious joint probability compu-
tations. CRFs characterise distributions of structured output variables that are
conditioned on some observed variables. These conditional distributions can be
utilised for solving sequential classification problems. Typically, discriminative
models do not require modelling the input distribution and also they permit to
use pre-processed inputs, which can be useful in image classification. Another
advantage of CRFs in the context of image classification is that it has flexibility
to incorporate global features.
A discrete random field can be defined over the graph G = (V,E) where V and

E are the set of vertices and set of edges in the graph respectively. In this context
y = {y1, y2, .., ym} is a set of random variables where each vertex is associated
with each node i. Each random variable can have a label from the label set
L = {1, 2, .., n}. x represent the observed variables. Neighbours of each node i
are indicated by Ni = {j ∈ V |(i, j) ∈ E}. Through the conditional distribution
P (y|x) the mapping from x to y is modeled. When y is conditioned on x it
assumes the Markov property. That implies the conditional distribution of yi,
given its neighbours in G, is independent from the other variables which are not
in the neighbourhood.
The conditional distribution for the random variable set can be indicated by:

P (y|x, θ) = 1
Z(x)

∏
c∈C

Ψc(yc|x, θ). (2.6)

Here a set of conditionally dependent random variables is defined as a clique
(fully-connected sub-graphs), which is denoted by c. Set of random variables
correspond to clique c is denoted by yc, where C denotes the set of all cliques
and Ψc is a non negative clique potential. Set of model parameters are indicated
by θ. In this scenario the partition function (normalising function) Z(x) is a
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function of the input x,

Z(x) =
∑

y

∏
c∈C

Ψc(yc|x, θ). (2.7)

Generally in the cases where y is discrete, log potential is described by a linear
combination of parameters,

logΨc(yc|x, θ) = θTc ψc(x,yc), (2.8)

where θc ∈ R is a parameter vector. ψc indicate sufficient statistics or feature
functions learnt from the observed data. Now the log of the conditional proba-
bility can be denoted by:

log(P (y|x, θ)) =
∑
c∈C

θTc ψc(x,yc)− log(Z(x)). (2.9)

This formulation is known as the log-linear model. According to the theories in
statistical physics, a probability distribution can be defined using the energy of
the variables. This formulation is known as the gibs distribution [63],

P (y|x, θ) = 1
Z(x)exp(−

∑
c∈C

E(yc|θc)), (2.10)

where E(yc|θc) ≥ 0 is the energy correspond to the clique c. The conditional
distribution of the CRF can be represented from a Gibbs distribution by defining
the potential as follows:

Ψc(yc|x, θ) = exp(−E(yc|θc)). (2.11)

Now the energy of the CRF model can be denoted by:

E(y|θ) = −log(P (y|x, θ))− log(Z(x)). (2.12)

CRF for Image Labelling

Image classification can be characterised as a process of assigning labels to image
pixels or patches (small groups of pixels). These labels depend on the application,
i.e. foreground, background or object class label. Relationships among the labels
of image pixels or patches are very important. CRF models are commonly used to
solve the image classification problem. Usually for image classification problems,
size of maximal clique is considered as 2 by confining the model into unary and
pairwise cliques.
Unary cliques correspond to nodes, and each node (a pixel or an image patch)
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is associated with an unary potential ψi(yi) that is defined as the log likelihood
of node i is assigned with label yi. This potential is computed based on features
extracted locally to a node, i.e. colour, texture and location. Similarly, pairwise
cliques correspond to edges. Edge potentials are denoted by ψij(yi, yj). Typically
these edge potentials encourage connected nodes to take the same label. In prac-
tice contrast sensitive Potts models [17] are used to formulate pairwise potentials
can be expressed by,

ψij(yi, yj) =

0 if (yi = yj)

γ(i, j) otherwise
, (2.13)

here γ(i, j) is a feature function derived on the contrast of colour, texture and
location of the connecting nodes in the graph. In the general case neighbourhood
Ni is stated as to connect 4 to 8 neighbouring pixels. These connections are
important since they decide the amount of contextual information is used in
classification. Energy of the image classification problem can be indicated by:

E(y) =
∑
i∈V

ψi(yi)︸ ︷︷ ︸
Unary Potentials

+
∑

i∈V,j∈Ni

ψi,j(yi, yj)︸ ︷︷ ︸
Pairwise potentials

. (2.14)

Higher Order Potentials

The pairwise potential encourages smooth boundaries between different object
classes. However these potentials can be highly useful but still have some draw-
backs. For example, these smoothing terms are less efficient in identifying in-
tricate boundaries of different object classes. In addition, the boundaries of the
objects in the segmentation based on pairwise potentials can deviate from the
actual boundaries due to the over smoothing. In order to address these prob-
lems higher order potentials (HOPs) are introduced to the image classification
problem. Higher order potentials impose soft constraints about label consistency.
Thus it encourages the consistency of labelling with in image regions or segments.
In this manner HOP assist to capture longer range relationships. Energy function
of CRF can be modified by introducing HOPs as in Eq. (2.15), where S denotes
the set of image regions/segments, on which ψa, the higher order potentials are
defined on,

E(y) =
∑
i∈V

ψi(yi) +
∑

i∈V,j∈Ni

ψi,j(yi, yj) +
∑
a∈S

ψa(ya). (2.15)
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2.2.1 CRF Inference

In learning the CRF model parameters and predicting the query variables, accu-
rate and fast inference is a main concern. The goal of this section is to describe
the main inference problems and commonly used approaches to solve them. The
section mainly focus on the inference methods which would be efficiently used
for image labelling problem. A more comprehensive explanation can be found in
[75]. Generally two inference problems can be described for CRF.

• Marginal Distribution Computation:
The marginal distribution for a set of variables in a CRF is obtained by
marginalising all the other variables to obtain P (yc|x, θ) where c is a subset
of y. The computation involves summing out all the random variables in
the conditional distribution of y that do not belong to clique c. When
there are large number of variables associated with y or when variables
having a higher number of states, computational complexity can increase
and problem can become intractable. Selecting a simpler graph structure
might reduce the computational cost.

• Maximum A Posteriori Estimation:
Considering a CRF with parameter set θ, we obtain the labelling of y
correspond to input x by picking the most likely output yMAP that is stated
as the maximum a posteriori denoted by argmaxy P (y|x, θ),

yMAP = argmax
y

P (y|x, θ) = argmax
y

1
Z(x)

∏
c∈C

Ψc(yc|x, θ). (2.16)

MAP estimation is widely used since it represent an optimisation problem,
that can be solved by efficient algorithms. MAP inference for general graphs
tend to be NP-hard in most of the cases. For those instances approximate
inference is conducted. It is clear that since the normalisation function
is not a function of y, it can be ignored during the optimisation process.
Therefore, according to the Eq. (2.12) MAP solution also can be attained
by minimising the energy function,

yMAP = arg min
y

E(y). (2.17)

MAP estimation is similar to a point estimate. Hence it does not comes
with any uncertainty measures.
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Exact Inference

This section focuses on the exact inference in conditional random fields. For
more detailed description on the algorithms mentioned here refer to [54],[50] and
[80]. Usually the computational cost for the inference operations exponentially
grows with the number of random variables. This causes the intractability of
the exact inference in general CRF. However there are some special cases where
the inference problem in CRFs can be solve in polynomial time. Variable elim-
ination (VE) [54] is the simplest approach to obtain the marginal distribution
or the MAP estimation of CRFs. However, this method has an exponentially
growing complexity with the number of random variables. Usually VE can only
be used to conduct the inference in graphs with low treewidth. Typically, when
the graph has a chain or a tree structure, message-passing algorithms can provide
exact solutions for the inference problems. In addition, if a CRF consists only
pairwise terms and the random variables associated with the nodes can only take
binary values (binary graph) then it can be solved exactly using max flow−min
cut algorithm [32]. Here MAP solution is obtained as the equivalent maxflow
solution. Vision based problems such as foreground/background segmentation
(binary problems) can be exactly solved by this method. Graphs with lower tree
weight can also be solved exactly using the junction tree algorithm [50]. In this
case marginal distribution is obtained. Yet the computational complexity ex-
ponentially increases with the treewidth. In our work we are mainly interested
in solving scene segmentation problems, which involves multiple classes, graphs
with loops and higher tree width. Generally these problems are intractable and
cannot be solved using the exact inference methods.

Approximate Inference

CRF models, commonly used to solve computer vision problems, have posterior
distributions, which are infeasible to compute in polynomial time due to the high
dimensionality. Instead several approximation techniques are proposed to solve
inference problems.
One of the common approaches is stochastic approximation [88]. In this process

sufficient number of samples are drawn from the true distribution and an approx-
imated sample distribution is generated. Sampling distributions can asymptoti-
cally converge to the original distribution. This characteristic is used in solving
the problems. Markov chain Monte Carlo [78] methods are popular sampling
methods to solve the CRF inference problem.
Variational inference [113] is also a widely used deterministic technique. The

main idea behind this approach is to use an analytical distribution that can
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approximate the posteriori distribution. Different types of Gaussian distribu-
tions are commonly used to approximate true posterior distributions. Further,
variational method deal with minimising the distance between the true and the
analytical distribution.
Message passing techniques such as loopy belief propagation [76] also provide

good approximation to the CRF inference problem. The next sections elaborate
the theory behind some approximate inference methods.

Loopy Belief Propagation

Loopy belief propagation (LBP) ([75] Chapter 22) is a technique for approxi-
mate inference on discrete graphical models. LBP is an extension to standard
belief propagation algorithms to conduct inference on the graphs with loops. As
we know CRF based image classification models commonly exploit grid shaped
graphs that connects all the neighborng nodes because it requires modeling con-
textual relationships. This type graphical structures have loops. LBP methods
are used in practice to perform inference in CRF models that are used in image
classification. Marginal distribution P (y|x) of the random variables associated
with the nodes can be obtained using LBP. The fundamental concept behind
LBP is letting all nodes to receive messages from the neighbouring nodes. Given
an all edges in the graph, messages flow through every edge in both directions.
Standard form of a message sent from a certain node i to its neighbour j can be
denoted by:

mnew
i→j(yj) =

∑
yi

[ψi(yi)ψij(yi, yj)
∏

k∈Ni\j
mold
k→i(yi)]. (2.18)

Common practice is to normalise messages as follows:

∑
yj

mi→j(yj) = 1. (2.19)

The belief of node i is proportional to the following terms:

βi(yi) ∝ ψi(yi)
∏
j∈Ni

mj→i(yi). (2.20)

The algorithm updates node beliefs and send the updated messages to their cor-
responding neighbours. These steps are repeated until the marginal beliefs are
stabilised.
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Algorithm 1: Loopy Belief Propagation for Pairwise CRF
Input: unary/node potentals ψi(yi) , pairwise/edge potentials ψij(yi, yj)
Output: βi(yi)

1 Initialise:
2 Messages mi→j = 1 ∀ edges i− j ∈ E
3 Beliefs βi(yi) = ψi(yi) ∀i ∈ V
4 do
5 Transmit message from each node to its corresponding neighbours
6 mi→j(yj) =

∑
yi

[ψi(yi)ψij(yi, yj)
∏
k∈Ni\jmk→i(yi)]

7 Update marginal belief correspond to each node
8 βi(yi) ∝ ψi(yi)

∏
j∈Ni

mj→i(yi);
9 while change of βi(yi) is significant;

10 return βi(yi)

Consider the algorithm 1. All the messages mi→j are initialised to 1. Marginal
belief of each node is initialised to its local node potential. Subsequently messages
are sent from each node to its neigbours Ni parallely. Then new messages can be
computed (for repeating the process) by multiplying all the incoming messages
except the one from the receiver. In this manner marginal beliefs can be updated
until convergence. Theoretically, node beliefs is expected to converge to true
marginals. However, this sum product belief updating process does not guarantee
to converge, even if it converges the solution might not be accurate. It has been
proven that the approximation error of the marginal is linked with the convergence
rate. In the other words, if the LBP is converging fast, that implies the answer
is more accurate.

2.2.2 Approximate MAP Inference Using Convex Relaxation

This section describes the formulation of the MAP estimation as a mathematical
optimisation problem. For discrete CRFs, MAP estimation problem is generally
NP-hard. Therefore, solutions are obtained through convex relaxations which
is a approximation of the original problem with a much simpler problem. The
previously mentioned CRF model for image classification is a discrete model. For
MAP estimation of discrete CRFs it has been proposed tight relaxations [120]
that is described in this section. Consider a standard integer linear (ILP) [34]

18



program given bellow:

arg min
Y

eTY (2.21a)

s.t AY + s = b (2.21b)

Y ≥ 0 (2.21c)

Y ∈ Zn, (2.21d)

where Y is the vector containing the random variables, e and b are real valued
vectors, A is integer valued matrix, s is a slack variable. MAP problem can be
reformulated as an integer linear program to apply relaxations. ILP indicated in
Eq. (2.21) consist of a linear objective built over variables that are constrained to
attain integer values. This ILP formulation of MAP problem is also an NP-hard
problem.Yet it allows convex relaxation by expanding the feasibility region from
integer space to real valued space. There are several methods based on convex
relaxations [58] that can be used to solve the ILP problem. These relaxations
provide an approximation to the ILP problem. Some of the relaxation techniques
are commonly used in practice are listed below

1. Linear Programming Relaxation

2. Quadratic Programming Relaxation

3. Semi definite Programming Relaxation

4. Second-Order Cone Programming Relaxation

Notations

Consider the pairwise CRF model and assume that each output variable of yi is
assigned with values from the discrete label set L. Then the potential functions
can be defined as a linear combination of indicator functions as in Eq. (2.22) and
Eq. (2.23),

ψi(yi) =
∑
r

ψi(r)Ir(yi), (2.22)

ψij(yi, yj) =
∑
r,s

ψij(r, s)Irs(yi, yj), (2.23)

here r, s ∈ L and i, j ∈ V . Now the indicator variables can be denoted by:

Ir(yi) =

1 yi = r

0 otherwise
, (2.24)
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Irs(yi, yj) =

1 yi = r and yj = s

0 otherwise
. (2.25)

Since the normalising function is only a function of the observed variables we can
rewrite the equation for conditional likelihood of the y as:

P (y|x, θ) ∝ exp(
∑
i,r

δi;rIr(yi) +
∑
i,r;j,s

δi,r;j,sIrs(yi, yj)). (2.26)

For convenience we have defined new notations δi;r = θirψi(r) and δi,r;j,s =
θirjsψij(r, s). Based on all above derivations, the MAP estimation can be for-
mulated using indicator functions,

y∗ = argmax
y

∑
i,r

δi;rIr(yi) +
∑
i,r;j,s

δi,r;j,sIrs(yi, yj). (2.27a)

Linear Programming Relaxation

This section formulates the MAP problem as a standard ILP problem and as a
the linear programming relaxation, as originally introduced in [99]. The indicator
variables Ir(yi) and Irs(yi, yj) can be replaced by binary variables µ(i; r) and
µ(i, r; j, s). The new form of the MAP estimation is,

max
∑
i,r

δi;rµ(i; r) +
∑
i,r;j,s

δi,r;j,sµ(i, r; j, s) (2.28a)

subject to
∑
s

µ(i, r; j, s) = µ(i; r) (2.28b)∑
r

µ(i; r) = 1 (2.28c)

µ(i; r) ∈ {0, 1} (2.28d)

µ(i, r; j, s) ∈ {0, 1}. (2.28e)

Due to the structure of the indicator variables in Eq. (2.24) and Eq. (2.25), the
binary variable also satisfy the marginalisation constraint Eq. (2.29b). Further,
the constraints in Eq. (2.28c) are enforced to confine each variable to have only
one label. Here all the constraints are assumed to be linearly independent. This
formulation of the MAP problem satisfies the requirement for a ILP. The linear
relaxation for this problem is given by Eq. (2.29). The random variable µ is
relaxed such that it can lie in the range of [0,1]. This expands the feasibility

20



region for the solution,

max
∑
i,r

δi;rµ(i; r) +
∑
i,r;j,s

δi,r;j,sµ(i, r; j, s) (2.29a)

subject to
∑
s

µ(i, r; j, s) = µ(i; r) (2.29b)∑
r

µ(i; r) = 1 (2.29c)

0 ≤ µ(i; r) ≤ 1 (2.29d)

0 ≤ µ(i, r; j, s) ≤ 1. (2.29e)

Quadratic Programming Relaxation

Graphical model energy can be precisely represented by a quadratic objective
function. Thus quadratic programming relaxation of the MAP problem can yield
exact solutions to the original problem. Quadratic programming (QP) relax-
ation is originally proposed in [87] and has applied to image classification with
a MAP estimation [120]. According to the definition of the indicator function in
Eq. (2.25), it automatically satisfies the independence constraint,

Irs(yi, yj) = Ir(yi)Is(yj). (2.30)

Consider the relaxation variables of the indicator functions Irs(yi, yj) and Ir(yi)
that are indicated by variable µ(i, r; j, s) and µ(i; r) in Eq. (2.29). We constrain
these relaxation variables in a similar fashion to the indicator functions as in
shown in Eq. (2.31), by letting the relaxation to be tighter,

µ(i, r; j, s) = µ(i; r)µ(j; s). (2.31)

Now we can rewrite Eq. (2.29) as a quadratic programming problem by substi-
tuting Eq. (2.31) for µ(i, r; j, s) as follows:

max
∑
i,r

δi;rµ(i; r) +
∑
i,r;j,s

δi,r;j,sµ(i; r)µ(j; s) (2.32a)

subject to
∑
r

µ(i; r) = 1 (2.32b)

0 ≤ µ(i; r) ≤ 1. (2.32c)

This quadratic programming formulation leads to a tighter relaxation of original
MAP problem, according to Theorem 2.2.1 and Theorem 2.2.2 given below.

Theorem 2.2.1. The optimal value of relaxed quadratic problem Eq. (2.32) is
equal to the optimal value of the MAP problem in Eq. (2.27). (Proof in [87])

21



Theorem 2.2.2. Any solution to the MAP problem Eq. (2.27) efficiently yields
a solution of the relaxation and Eq. (2.32) and vice versa. Thus the relaxation
Eq. (2.32) is equivalent to the MAP problem Eq. (2.27). (Proof in [87])

Note that relaxed QP problem consists of nm number of random variables
which is much less compared to the n2|E| number of variables associated with
the LP problem.

Convex Approximation

In the cases where the MAP problem is convex it can be solved in polyno-
mial time. Ravikumar et al. [87] state that if the pairwise coefficient matrix
H = [δi,r;j,s]mn×mn of the proposed QP relaxation is negative definite, then the
MAP problem becomes a convex program. They also propose a convex approxi-
mation to quadratic programming problems which enables to solve the problem
in polynomial time. Consider a situation where H is non-negative definite. To
convert H to a negative definite matrix, pairwise potentials are modified as,

Hi,r;j,s =


∑
k,p δi,r;k,p if i = j, r = s

δi,r;j,s otherwise
, (2.33)

Hi,r = δi,r −
∑
k,p

δi,r;k,p. (2.34)

This means, positive potential value is added to each of the pairwise potentials in
the diagonal of H. Subsequently, the value of the added potential is subtracted
from the corresponding unary potential as indicated in Eq. (2.34) in order to
cancel the effect of the addition with in the objective function. This modification
of the pairwise potentials guarantees that the H is negative semi-definite. The
updated QP program is denoted as follows:

argmax
µ

∑
i,r

Hi;rµ(i; r) +
∑
i,r;j,s

Hi,r;j,sµ(i; r)µ(j; s) (2.35a)

subject to
∑
r

µ(i; r) = 1 (2.35b)

0 ≤ µ(i; r) ≤ 1. (2.35c)

The convexity of the QP problem in Eq. (2.35) makes it feasible to solve it in
polynomial time. According to [87], in following two scenarios the QP relaxation
in Eq. (2.35) obtains a solution which is close to MAP estimation of the original
problem:
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• The original edge potential matrix H is close to negative definite in case
diagonal terms for the convex approximation is close to zero.

• Final solution of µ(i, r) yield values close to one or zero.

Linearly Constrained Quadratic Programming

Both scenarios of MAP problem, denoted in Eq. (2.32a) and convex approximated
version in Eq. (2.35a) maximise a quadratic function which is defined over linearly
constrained (equality and/or inequality) random variables. The algorithms such
as interior point [69], active set [40] and augmented Lagrangian [21] are used
to directly solve the problem. However when the number of nodes is higher
and large numbers of states are associated with variables, the above-mentioned
methods tend to fail due to the computational complexity. However, if a quadratic
function is derived only based on equally constrained variables, then there are
mathematical approaches to reduce the dimensionality of the original problem
and derive an equivalent unconstrained optimisation problem. This allows us to
solve the problem using unconstrained optimisation approaches such as conjugate
gradient method [38].

Equality Constrained Quadratic Programming Problems

Equality Constrained Quadratic Programming Problem refers to a type of opti-
misation problems where the objective is a quadratic function of some variables,
which are only subjected to equality constraints. Consider a quadratic function
similar to Eq. (2.32a), and assume the corresponding random variables are only
equality constrained. General form of this problem can be written in matrix
notation as a minimisation problem as follows:

minimize 1
2Y

TQY + eTY (2.36a)

subject to AY = b (2.36b)

Y ∈ Rmn. (2.36c)

Here Q ∈ Rmn×mn is symmetric pairwise potential matrix and Q = −H, e =
[−δi,r]mn×1 and Y = [µ(i, r)]mn×1. A ∈ Ru×mn with u < mn, A has full row rank
allowing AY = b to have u number of linearly independent equations (equality
constrains) and b ∈ Ru. Y ∗ ∈ Rmn denotes the optimum solution to the prob-
lem. According to first order necessary conditions [77] for Y ∗ to be a solution
of Eq. (2.36), it is true that there is a vector λ∗ such that the following linear
system satisfied,
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Q −AT
A 0

Y ∗
λ∗

 =
−e

b

 , (2.37)

here λ∗ ∈ Rm is the vector of Lagrange multipliers. By introducing a new variable
p such that p = Y ∗ − Y , where Y be a feasible point satisfying the equality
constraints, the linear system can be reformulated as follows,

Q AT

A 0


︸ ︷︷ ︸

K

−p
λ∗

 =
e +QY

AY − b

 . (2.38)

The matrix K is stated as Karush−Kuhn−Tucker (KKT) matrix [77]. When
the KKT matrix is non-singular, it results in important conditions as indicted in
Lemma 2.2.1.
First, consider a matrix Z, that is a basis for null space of A where Z ∈

Rmn×(mn−u) and AZ = 0. The matrix ZTQZ is stated as the reduced Hessian
matrix.

Lemma 2.2.1. Assume that A has full row rank and reduced-Hessian matrix

ZTQZ is positive definite. Then the Karush−Kuhn−Tucker matrix
Q AT

A 0

 is

non-singular. Hence the linear system (Eq. (2.37)) has a unique solution (Y ∗, λ∗)
[77] (Proof in [77])

According to Lemma 2.2.1, the KKT conditions (first order necessary con-
ditions [77]( see Chapter 12)) are satisfied, therefore the quadratic problem in
Eq. (2.36a) has a unique optimal solution. Further it also implies that the sys-
tem satisfies the second order sufficient conditions [77]( see Chapter 12) such that
there exist a local minimiser for the problem. Using these facts the following ar-
gument has been derived to prove that the unique solution is a global minimum
given the KKT conditions.

Theorem 2.2.3. Given the assumptions in Lemma 2.2.1, linear system yield
a unique solution (Y ∗, λ∗). Then Y ∗ is the unique global solution of equality
constrained QP problem Eq. (2.36) (Proof in [77] (Chapter 16)).

The solution (Y ∗, λ∗) can be obtained by range space or null space methods
[77].
Range Space Methods

This method is applicable only when Q is strictly positive definite and invertible.
In addition, it also require the number of constraints u to be small. Under these
assumptions, considering the linear equations Eq. (2.38), Y ∗ can be eliminated
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to derive a linear system for λ∗ as follows,

(AQ−1AT )λ∗ = (AQ−1e+ b). (2.39)

Then p can be obtained by the first equation in the linear system Eq. (2.38) by
substituting for λ∗ as follows,

Qp = ATλ∗ − (e+QY ). (2.40)

The optimum solution is obtained by Y ∗ = Y +p. Where Y is some feasible point
satisfying the equality constrains in the original minimisation problem.
Null-space Methods

This method exploit the matrix Z that is in the null space of A. Consider
given feasible solution Y0 that satisfy the equality constraints . We can denote
Y = Y0 + Zv for some new vector v ∈ Rmn−u. Substituting for Y it can be
shown that the equality-constrained minimisation problem(Eq. (2.36)) can be
represented from an equivalent unconstrained minimisation problem.
Firstly, it require to always satisfy the equality constraints during the op-

timisation. To this end, AY − b = 0 is substituted by Y = Y0 + Zv, then
AY0 − b︸ ︷︷ ︸

=0

+AZ︸︷︷︸
=0

v = 0. As we can see the constraint equation is always satisfied.

The quadratic objective in Eq. (2.36a) is a function of Y hence we denote it as
q(Y ). Now we substitute Y = Y0 + Zv to q(Y ). Here Y0 and Z are constants
hence the substitution makes the quadratic objective q(Y ), a function of v. The
new unconstrained problem given by Eq. (2.41),

q(v) =1
2(Y0 + Zv)TQ(Y0 + Zv) + eT (Y0 + Zv)

=1
2v

T Q̃v + ẽTv + const , where Q̃ = ZTQZ, ẽ = ZT (QY0 + e).
(2.41)

The Quadratic function q(v) implicitly satisfy the constraint equations as shown
earlier and it can be considered as an unconstrained optimisation equivalent to
the equality constrained minimisation in Eq. (2.36). Now by eliminating the
constant term, the new minimisation problem can be denoted as,

minv
1
2v

T Q̃v + ẽTv. (2.42)

In a case where the reduced Hessian matrix Q̃ is positive definite then the
following linear system provides a unique solution v∗ for the sub problem,

(ZTQZ)v∗ = −ZT (QY0 + e) (2.43)
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The solution Y ∗ for the Eq. (2.36) can be obtained by Y ∗ = Y0 + Zv∗.

2.2.3 CRF Training

CRF models are best known for labelling newly encountered data through the
inference process. As we know CRFs are parametric models. Eq. (2.6) indicates
a typical CRF model. Learning the perfect model for the interested problem is
a challenging task. More detailed description on CRF training is available in
[75](Chapter 19.6). Through parameter training we obtain a model that can gen-
erate a probability distribution close to the desirable distribution. The optimum
parameter set can improve the quality of CRF predictions. Parameter training
process requires a set of training sequence Ω = {(zi,xi) i ∈ {1, . . . , N}, where
xi is an observed data sample and zi is the corresponding labelling or the as-
signment for each observed data point. yi is the corresponding label prediction
from the CRF model. The training approaches described in the next sections are
based on [75] and [11].

Maximum Likelihood-Based Parameter Training

Likelihood function based methods are best known for parameter estimation
tasks. The likelihood function states the likelihood of a parameter set θ =
[θ1, .., θK ] given the training data Ω. We assume that the training data is in-
dependent and identically distributed. In this case we can obtain the optimum
parameter set θ∗ for our model by maximising the likelihood for the given data
Ω as denoted in Eq. (3.10c),

θ∗ = argmax
θ

L(θ|Ω), (2.44)

where L denotes the log likelihood function which is a summation of the likelihood
over training samples. In practice log of the actual likelihood is used for the
mathematical operations to avoid numerical problems. Likelihood for a general
CRF model is denoted by the Eq. (2.45),

L(θ|Ω) =
N∏
i=1

P (zi|xi, θ). (2.45)

Taking the log of Eq. (2.45) and we can obtain the equation below for the log
likelihood. In order to avoid over-fitting, we can add a regularising term to the
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log likelihood as follows,

l(θ|Ω) = 1
N

N∑
i=1

log P (zi|xi, θ)

= 1
N

∑
i

{∑
c

θTc ψc(xi, zi)− log Z(θ,xi)
}
−

K∑
l=1

θ2
l

2α2
l︸ ︷︷ ︸

Quadratic Regularizer

.
(2.46)

Here αl refer to the penalty applied on θl. This regularisation assists to generalise
the model for newly encountered data.
The log likelihood is a convex function with respect to θ. Hence a gradient-based
algorithm can be used to accomplish the maximisation.The derivative of l(θ|Ω)
with respect to clique c is denoted by Eq. (2.47),

∂l

∂θc
= 1
N

∑
i

{
ψc(zi,xi)−

∂logZ(xi, θ)
∂θc

}
− θl
α2
l

. (2.47)

The derivative of the log of the normalising function Z(xi, θ) can be stated as
the expectation of the feature correspond to the clique c according to the model
as in Eq. (2.48),

∂logZ(xi, θ)
∂θc

= E[ψc(yi,xi)]. (2.48)

The partition function and its derivative computation rely on the inference so-
lution of the model. Conducting these computations in higher dimensional space
and performing the computation at each iteration is computationally intractable.
Hence approximations to the model are used. One solution is to replace the log
likelihood with the pseudo likelihood [9], which is an approximation to the like-
lihood but is a computationally simpler problem. Otherwise we can deploy the
approximate inference methods such as sum product loopy belief propagation.

Loss-Based Parameter Estimation

Loss based models are capable of independently processing the learning criterion
from the CRF. This approach is described in [103]. The loss represents the
distance between the ground truth and the model solution ( MAP solution).
In order to compute this distance mean squared error, overall accuracy or F1-
measure is used in practice. The ultimate goal is to select θ values so that the
expected loss is minimised for the query distribution. Since the actual data
distribution is unknown the loss is minimised for a set of known input out put
pairs from the true data distribution. This process is referred to as empirical risk
minimisation,
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θ∗ = arg min
θ

N∑
j=1

`(zj,yMAP
j ). (2.49)

Here zj is the ground truth for data point j, yMAP
j is the MAP estimation and

` is the loss based on the dissimilarity between zj and yMAP
j . As described

earlier MAP for CRF models are commonly conducted through approximation
algorithms. Therefore, parameter learning must be optimising the approximated
model rather than the true CRF model. Loss based methods are efficient to
achieve this purpose rather than likelihood models. The loss function can be
selected depending on the interested application giving the bias on more critical
parameters. Loss minimisation is an optimisation problem, hence gradient-based
methods can be used to solve the problem. In practice, automatic differentiation
[86] or finite differences [101] generate the required gradients for the operation.
Generally batch gradient decent or simulated annealing can be used to optimise
the loss. However for large-scale problems, stochastic gradient decent based meth-
ods are more popular. In order to avoid over fitting appropriate regularisation
should be adopted.

2.3 Gradient Descent for Machine Learning

Gradient descent (GD) [14] is commonly used in machine learning. GD based
learning is developed using a greedy, hill-climbing strategy. Fundamentally GD
tunes parameters of the model considering the deviation between the actual and
the model output. The updated parameters drive the model to a direction where
the error of the model declining in the steepest sense.
Consider a supervised learning problem in which ω = (xi, zi) is a example input

output pair in the training set Ω where x ∈ Rρ is the input and the z is the actual
label (ground truth). G is the family of functions gθ(x) that is parameterised by θ
where predicted output y = gθ(x). Then the error of the model can be denoted by
a loss function `(y, z). The goal is to find θ∗ that minimises the loss `(gθ(x), z)∀ω
as indicated in Eq. (2.50),

E(gθ) =
∫
`(gθ(xi), zi)dP (ω). (2.50)

The expected risk E(gθ) represent the accuracy of the model for both existing and
the future data. But practically the distribution of P (ω) is not known. Hence
minimising the cost is associated with a selected sample of data points as denoted
in Eq. (2.51),
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EN(gθ) = 1
N

N∑
i=1

`(gθ(xi), zi). (2.51)

However for practical usage the empirical risk EN(gθ) is minimised in place of
the expected risk where G is sufficiently restrictive. GD updates the parameters
θ at each iteration using the gradient of the empirical risk.

θt+1 = θt − η
1
N

N∑
i=1
∇θ`(gθ(xi), zi), (2.52)

where the learning rate η should be carefully chosen depending on the nature
of the problem. As elaborate in [14], with sufficient regularity assumptions, by
choosing the initial estimate θ0 sufficiently close to the optimum and setting
the learning rate sufficiently small, linear convergence can be guaranteed. If
g is a convex function convergence rate is O(1/t). In cases where g is strongly
convex convergence rate tend to be O(e−ρt). In order to improve the optimisation
method, learning rate η can be substituted by a matrix B where B should be a
positive definite matrix and it should approach the inverse of the Hessian of the
loss function at the optimum point,

θt+1 = θt −Bi
1
N

N∑
i=1
∇θ`(gθ(xi), zi). (2.53)

The second order gradient descent is a modification of the Newton algorithm.
Under sufficient regularity assumptions, if the θ0 is selected close to the optimum
it can be guaranteed the quadratic convergence. In a case where loss function is
quadratic and B is exact, the optimum is obtained with a single iteration.
GD has several advantages such as the applicability in parallel processing mod-

els and capability in working incrementally with new data. However GD methods
do not always guarantee reaching the global optimum. Hence there are several
techniques to overcome GD from settling in a local optimum. One approach is
using a convex objective. Alternatively the problem can be randomly initialised
and perform GD multiple time to find a best estimate for the optimum.

2.4 Stochastic Gradient Descent

Unlike the GD algorithm, Stochastic gradient descent (SGD) utilise a simpler
gradient in place of the gradient of the empirical risk. This section describe the
theoretical and the practical aspects of SGD based on the works in [14],[12] and
[13]. SGD gradient is computed using a single randomly selected data point
during each parameter updating step. The stochastic process {θt : t = 1, ...., N}
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continues on randomly selected data points,

θt+1 = θt − γt∇θ`(gθ(xt), zt). (2.54)

SGD is proven to optimise the expected risk. With the random selection of data
points from the query distribution it develops a more generalised model than
GD. Another characteristic of SGD is it avoids the redundant learning occurred
in batch gradient descent. Batch GD process similar data points prior to each pa-
rameter update which can be avoided in the case of SGD. In large scale machine
learning, computing limitations are a major concern. In this context SGD can
be efficiently implemented to optimise large chunks of data over batch gradient
methods. Although the gradients tend to be noisy, SGD has shown promising
results in optimisation. Typically, convergence rate is slower than the GD algo-
rithm. For strongly convex functions, SGD has a convergence rate of O(1/t) and
for general convex functions convergence rate is O(1/

√
t).

Setting the learning rate in a SGD algorithm is a delicate issue since the larger
values can diverge the algorithm from optimum and smaller values can increase
the convergence time. According to convergence analysis in [14], SGD allows
different learning rate schedules. Fixed step size and diminishing step size are
the most popular choices. Under certain assumptions [14] fixed step size can
guarantee to linearly converge to a neighbourhood of the optimal value. But
noisy gradients deviate the algorithm from reaching the optimum. In practice
selecting a fixed learning rate can be tedious. Usually, if the optimisation process
stops showing sufficient progress then the fixed learning rate is replaced with a
smaller value and the process is repeated to obtain a better optimum. In order
to obtain a quick convergence while not allowing the learning rate to cause the
divergence is a tricky task. Bottu et al [14] presents a diminishing learning rate
schedule for this purpose,

∞∑
k=1

γk =∞ and
∞∑
k=1

γ2
k <∞. (2.55)

If a strongly convex function satisfies the assumptions of smoothness and limits
for first and second moments [14] then sublinearly decreasing step size can achieve
sublinear convergence to the optimum. Considering above results several learning
rate schedules have been proposed such as momentum method, adaptive gradient
algorithm [89], Adadelta [118], adaptive moment estimation [24] and root mean
square propagation [107].
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2.5 Sensor Data Processing

This section focuses on pre-processing the data from a camera and laser sensors
and extracting useful information. Techniques described here, are used in latter
chapters to assist in image classification tasks.

2.5.1 Image Processing

When solving vision problems, operation on the pixel level can be tedious since
hundreds of pixels are associated with a single image. Therefore working on units
formed by low level pixel grouping can dramatically reduce the computational
cost. In addition these units can be more meaningful than a pixel and they
also tend to have similar colour and texture that lead to eliminate redundant
computations. These units can also assist with preserving the boundaries in the
segmentation process. In practice these over segmented units are referred as super
pixels.

Super Pixels

Simple Linear Iterative Clustering (SLIC) [1]method involves with over segmenta-
tion of the image using a pixel clustering technique depending on colour similarity
and vicinity in the image coordinate system. The clustering occurs in a five dimen-
sional space that consist of LAB [67] colour channels and x,y image coordinates.
LAB color space represents all perceivable colors using three channels, L light-
ness, A and B chromaticity layers. Channels are defined using color-opponent
theory, which indicate that there are opponent colors, which cannot be perceived
at the same time. Channel A is defined from opponent colors green to red and
the channel B is extending from blue to yellow. This colour space can provide
perceptually uniform values for small colour distances. All the colour and loca-
tion spaces are normalised to provide equal bias to all components.
Consider an image with m pixels, where required number of super pixels is M.
In this case S = (m/M)0.5 where S denotes the super pixel size approximately.
In the start it requires to extractM number of cluster centres at constant grid
intervals S. Search area for each cluster centre is set to 2S × 2S in the xy plane
surrounding a cluster centre. Since the area of the expected super pixel is S×S,
it can be assumed that this super pixel lies with in the above search area.The
colour(LAB) and location details correspond to a pixel can be denoted by 5D
space vector pi = [li, ai, bi, xi, yi]. Instead of computing the Euclidean norm for
5D space vectors, colour based and location-based distances are computed sepa-
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rately, in order to reduce violation of boundaries as shown in Eq. (2.56),

Dlab =
√

(lc − li)2 + (ac − ai)2 + (bc − bi)2, (2.56a)

Dxy =
√

(xc − xi)2 + (yc − yi)2, (2.56b)

Dr = Dlab + ξ

S
Dxy. (2.56c)

Here (lc, ac, bc) refers to the colour metrics of the cluster centre in LAB space.
Dlab denotes the distance between the cluster centre and the pixel i in the clour
space. Coordinates of the cluster center in the image frame is denoted by (xc, yc).
Dxy indicates the distance between the cluster centre and the pixel i in the image
coordinate frame. We denote the resultant distance (dissimilarity) between a
cluster centre and pixel i by Dr, where ξ adjusts the compactness of superpixels.
ξ normally vary between 1 to 20. Properly selected ξ can compromise between
the colour contrast and spatial distance to generate super pixels with preserved
boundaries.

Algorithm 2: SLIC Super pixels
Input: cluster centre initialisation at regular grid interval

S : pc = [lc, ac, bc, xc, yc]T , RE - residual error
Output: clusters of pixels

1 repeat
2 foreach pk do
3 Consider the pixels in the search area 2S × 2S
4 Assign the pixel to the cluster pk if it is the nearest cluster.
5 end
6 Compute new cluster centers by taking the average of the labxy vector of the

pixels in each cluster
7 Compute the residual error RE (distance between the current and the

previous cluster centers) for each cluster
8 until RE < Threshold;
9 return final clusters of pixels

2.5.2 Feature Extraction

Visual data based on camera images contain rich information about the colour
and texture of a scene. Most of the time these data includes some redundant
and less informative parts. In order to efficiently use image data in applications
such as classification it requires reducing the dimensionality of the data. This
representative data can be referred to as features. Extracting the most important
information from the image input and characterising it in a lower dimensional
space is feature extraction. In practice features are expected to have following
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properties:

• Capability to enhance the level of machine interpretation of the problem

• Relevance in the context of the application, i.e. features can be used to
distinguish between classes

• Less sensitivity to noise

• Robustness to image transformations such as scaling and rotation

• Assisting with the generalisation steps.

However choosing an appropriate feature extraction method for a particular
application should be done with a good consideration. Some examples for the
commonly used feature extraction techniques in the field of image classification
are SIFT descriptor [66], TextonBoost [100], optical flow and deep belief net
[73]. Even though some features provide rich information that can enhance the
accuracy of the results, computational complexity also rise with the sophisticated
nature of the feature. It is important to select a technique that has a higher
accuracy and reasonable computational efficiency. In our work we have utilised
simple histograms based features including histogram of oriented gradient [121].
Through this we were able to achieve a better level of accuracy combined with
fast operation.

Colour Histograms

Colour histograms describe the distribution of pixels in a colour space such as
RGB, HSV or LAB. Each colour channel, in a space can be divided into small
intervals called bins. The process is termed as colour quantisation. Quantifying
the number of pixels contribute to each bin, the histogram can be extracted. The
histograms can be generated for the entire image or the image patches. Discrimi-
nation power increases with the number of bins. Computational cost restrict the
ability to process large number of bins efficiently. One of the advantage with the
histograms is its robustness to translation and rotation. Sudden change of scale
or view point do not create significant changes in the histogram measure. His-
tograms contain descriptive knowledge about the underlying image or the image
patch. To illustrate, a low contrast image can be identified by a narrow histogram.
A histogram slanted in the direction of the high end, suggests a bright image.
A bimodal histogram is an evident for a foreground object with a contrasting
background. Example are shown in Figure 2.1. In order to extract statistical
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features, histogram can be represented in a probabilistic manner as follows,

P (g∗) = m(g∗)
m

, (2.57)

where g∗ is the gray level and P (g∗) is a statistic to measure the texture of a
image region which is referred as the first order histogram probability, m is the
number of pixels in the image region/segment and m(g∗) is the number of pixels
in gray level g∗. Different types of informative features such as mean, variance,
entropy and energy can be extracted using P (g∗) distribution. To illustrate, the
square root of the variance can be used to represent details about the contrast of
the image. Energy values describe the intensity distribution.

HOG Features

HOG is a visual descriptor that can be efficiently used in image classification
and object recognition. The intuition behind the descriptor is that local intensity
gradients or edge directions can efficiently illustrate the local texture and object
contours.
Usually the image is split in to small areas called cells. The cells normally have

rectangular or radial shapes. Each cell is associated with a 1-D histogram which
consist of constant number of bins divided based on the gradient orientation. The
range of the bins is typically from 0 to π radians or 0 to 2π radians. First range
is used when the angles are unsigned. Each pixel in a cell, proportionally votes
to the corresponding bin based on their gradient orientation. For a particular
application we can select appropriate number of histogram channels. Typically
for colour images, separate histograms are calculated for each channel. Depend-
ing on the application the bias of the pixel vote can be replaced by function of
the gradient magnitude. To increase the robustness of the model for lightning
changes, shadowing and similar eccentricities, normalisation can be applied. For
this purpose normalising constant is derived using the adjacent cells in a defined
block. The block can be selected allowing for overlapping. Hence some cells
contribute to the overall descriptor multiple times. This overlapping among the
blocks preserves the information on local variations. At the end all the normalised
histograms correspond to each cell is concatenated form the final descriptor. This
descriptor can be a represented as a feature vector to contrast between different
object classes.
R-HOG represents the case when the blocks are rectangular. This approach

is typically implemented using the count of cells in one block, count of pixels
in each cell and count of histogram channels. Circular HOG blocks (C-HOG)
can be found in two variants: those with a single, central cell and those with an
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angularity divided central cell. In addition, these C-HOG blocks can be described
with four parameters: the number of angular and radial bins, the radius of the
center bin, and the expansion factor for the radius of additional radial cells.
Figure 2.2 depicts the HOG descriptor for an image from the PASCAL dataset.

(a) Bright Image and Intensity Histogram

(b) Dark Image and Intensity Histogram

(c) Image with contrasting background and Intensity Histogram

Figure 2.1: Figure 2.1a shows a histogram slanted towards high end, Figure 2.1b shows a
histogram slanted towards low end and Figure 2.1c depicts is a bimodel histogram
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Figure 2.2: The figure shows the histogram descriptor of a image from PASCAL dataset [27].
The gradients are denoted in gray scale. Cells have histogram bins divided in
the range of from 0 to 360 degrees. The colour index close to 255 implies larger
magnitude of gradients

2.5.3 3D Point Cloud Processing

Laser sensor output is a 3D point cloud which is a set of data points in Cartesian
coordinates x,y,z. In addition to the location information each points includes
an intensity value. In point cloud processing, single points do not contain suffi-
cient information to measure similarity between each other. Hence local descrip-
tors such as shape descriptors are adopted. Considering the neighbourhood of a
point, geometric features correspond to the surface which the point lies on can
be obtained. Once this information is associated with the underlying point, the
comparison between points during the processing becomes more meaningful be-
cause the each point contains more contextual information. Here the expectation
is to derive set of geometric features that have similar values for the points lying
on the same surface or alike surfaces. These feature outputs also should contrast
if the points lie on dissimilar surfaces. Similar to image based features, these geo-
metric features also should have characteristics such as robustness to 3D rotation
and translation and less sensitivity to mild noise. Typically laser scanners tend
to have varying density in the point cloud. Hence the feature vector should be
independent from the density of the corresponding neighbouring volume.

Random Sample Consensus (RANSAC) Algorithm

Ground / non-ground identification is critical in autonomous driving. Since
ground has areas such as paved area, road, grass and sand it can be challenging
to locate ground by pure manipulation of the visual data. Instead, a laser point
cloud can provide additional information about the ground plane. One of the
most popular method for ground plane extraction is the Random sample consen-
sus. The main intuition of the method is obtaining a set of model parameters for
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a data distribution that can be used to describe the distribution by eliminating
the outliers.
To elaborate, RANSAC can also be considered as an outlier detection tech-

nique. RANSAC generate a parameter set to represent a model for a set of
observed data while removing the effect of the outliers. Outlier can occur not
only when there is noisy data but also due to a false hypotheses about the data.
The latter is useful in extracting the horizontal ground plane (largest horizontal
plane in the image). RANSAC is an iterative method. Usually, the results gener-
ated by the method are associated with a probability that indicates the reliability
of the result. This probability is increasing with the number of iterations under-
gone. The RANSAC algorithm was originally proposed in [31]. An overview of
the method is presented in [22].
Consider the Algorithm 3, where model type M defines the structure of the

model depending on our particular application, i.e. for ground extraction prob-
lems, the model can be a horizontal plane (with vertical surface normal) close to
the ground. At this stage parameters for the model are unknown. n0 can depend
on the nature of the model and the particular application. In theory, S̄1 is named
as the consensus set of S1. This process is recursively run for T number of itera-
tions. It can be defined a relationship between T and ρ which is the probability
that there exist at least a one random sample set which only contains inliers. If
the probability of outlier occurrence is ν then the T can be given by:

T = log(1− ρ)
log(1− (1− ν)n0) . (2.58)

At the end of each iteration, either the existing model is refined or rejected
depending on the size of the consensus set. At the end of the iterations, the model
containing the highest number of inliers can be selected as the best fitting model.
In practice ε and γ are selected based on the experimental process considering
the particular application and the nature of the data distribution.
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Algorithm 3: RANSAC
Input:
Ms -selected model
n0 - minimum number of data points required to obtain parameters for Ms

Pn - observed data distribution
n1 - number of observed data points where n0 < n1

ε - a threshold value to decide if a data point fits the model
γ - number of minimum points required to ensure that the model fits well with
data
Output:
Mbest = model best fit the data

1 Draw a random sample set S1 (hypothetical inliers) from Pn, size(S1) = n0

2 Obtain parameters for the model Ms using S1 ⇒M1 = Instantiated model
3 Mbest = null , Qualitybest = 0
4 foreach i = 1 to T do
5 S̄1 = points fit to model M1 with a tolerance ε
6 if size(S̄1) > γ then
7 Refine model parameters using S̄1

8 else
9 Discard the existing model

10 Redraw a random sample set S1 (hypothetical inliers) from Pn

11 re-estimate parameters for the model type M using S1 ⇒M1 = model
with re-estimated parameters

12 end
13 Qualitycurrent =number of inliers for the current model
14 if Qualitybest< Qualitycurrent then
15 Mbest = M1

16 Qualitybest = Qualitycurrent
17 end
18 end
19 return Mbest

Euclidean Cluster Extraction

Clustering is the process of grouping the points in an unorganized point cloud
into meaningful parts. These smaller groups are easier to process and infor-
mation extraction from them is more efficient. The main approaches are simi-
larity based clustering and feature based clustering. Similarity based methods
define boundaries to subdivide the point cloud based on a proximity measure.
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Algorithm 4: Euclidean Cluster Extraction
Input:
R = Kdtree formulation of the 3D point cloud
CL = List of clusters
QR = queue of interested points
dn = radius for point neighbourhood
du = upper bound for dn
Output: C

1 CL = ∅, QR = ∅
2 foreach ρi ∈ R do
3 add ρi to QR
4 foreach ρi ∈ QR do
5 neighbours of ρi (with in a sphere of dn) → ρki

6 foreach % ∈ ρki do
7 if % is not already been processed then
8 add % to queue QR
9 end

10 end
11 current set of points in QR forms a cluster. add QR to list of clusters CL
12 QR = ∅
13 end
14 end
15 return CL

This proximity is computed using a metric such as Manhattan or Euclidean dis-
tance. Algorithm 4 shows the implementation of the Euclidean cluster extraction
[85]. For cluster generation, it is important to discriminate one point cluster from
another. For cluster Ci = {ri ∈ R} to be disjoint from cluster to Cj = {rj ∈ R},
it requires that arg min ||ri − rj|| ≥ du where du is a threshold distance. This
means that the distance between every point in Ci and every point in Cj should
be greater than the given threshold for Ci and Cj to be separate clusters. The
distance threshold is obtained via approximate nearest neighbour queries. The
notion of neighbourhood provides a maximum distance value for a point to be a
neighbour of a query point. K-d tree representation is used to structure the data
and find the threshold du. Once the threshold is found clustering is performed
by grouping neighbours.

2.6 Summary

This chapter presented the theoretical groundwork for the semantic segmenta-
tion framework proposed in the later chapters. Different classification methods
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are used to label the image pixels. In order to utilised the contextual informa-
tion and solve the image classification problem more resourcefully, conditional
random fields are commonly used in image classification. Exact CRF inference is
a challenging problem for complicated graph structures with higher tree width.
Hence approximate inference methods are discussed in the chapter. We discuss
the derivation of quadratic programming relaxation, which is used to solve the
CRF inference problem related to the image segmentation model in Chapter 3.
This is important because QP turns the problem in to an optimisation problem
which facilitates the addition constraint to the inference problem. This charac-
teristic is systematically used to improve the quality of the segmentation in the
next chapter.
Optimally learning the CRF parameters can improve the quality of the results.

Loss based parameter learning explained in this chapter, has been used in the
Chapter 4 to estimate parameters for the semantic segmentation model. This
later works also exploits the theory and the practical aspects of the stochastic
gradient decent discussed in this chapter in order to optimise the loss function in
an online setting.
Theory and techniques described in this chapter have been applied in later

chapters to develop an efficient scene-understanding framework using multimodal
data. Camera and Velodyne sensors are used to test the framework. Sensor data
is processed in parallel. Super pixels are extracted from camera images using
SLIC algorithm. Subsequently, a linear discriminate analysis classifier is trained
on image super pixels. Simultaneously, ground plane is removed from the laser
point cloud using RANSAC to facilitate 3D objects extraction with Euclidean
clustering. Lastly a CRF model is proposed to improve image classification us-
ing additional label consistency information obtained from the extracted objects.
Afterwards, proposed CRF model is extended in to an adaptive model via online
parameter training.

40



Chapter 3

Urban Scene Segmentation with
Laser-Constrained CRFs

3.1 Introduction

This chapter presents a novel formulation of CRFs to incorporate "a priori" knowl-
edge in the form of global constraints and thus conduct semantic scene segmen-
tation efficiently. The work reported here was formerly published in IROS1.
Scene segmentation is a core competency for many robotic tasks. It provides

the foundation, which allows a robot to understand and reason about its envi-
ronment. For navigation in urban environments, such information is critical for
safety, as it allows the robot to predict which areas pose a risk due to the presence
of dynamic objects. Robots carry many different sensors, such as cameras, laser
scanners, RGB-D cameras, etc, which typically observe the environment from
slightly different angles due to the physical placement. This variation in view-
point and diversity of the sensor observations make the optimal sensor fusion
challenging. In this chapter, we propose a model, which effectively combines the
information from multiple modalities. The method is applied to image segmen-
tation using camera and laser scan data but is general in nature applicable to a
wide variety of sensor combinations.
CRFs are efficiently used for image labeling due to several advantages. First,

it is a convenient tool for structured prediction, that takes in to account the
entire structure of the image for label prediction. Label prediction problem is
addressed by formulating it as a probabilistic inference problem that can be solved
as a standard optimisation problem. CRFs also encourage similar pixels to have
similar labels, establishes spatial regularity and coherency. This reduces the noise
in label assignments. CRFs are also capable of higher-level object recognition and
longer range labeling relationships representation. CRFs can be built on pixels,
superpixels or image patches depending on the application.
It is clear that we want to enforce the validity of the additional information or

1Charika De Alvis, Lionel Ott, Fabio Ramos. Urban Scene Segmentation with Laser-
Constrained CRFs. In IEEE International Conference on Intelligent Robots and Systems
(IROS), 2016
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multiple sensor information in the scene labeling problem. As such it is impracti-
cal to encode it in the overall cost function directly and solve it efficiently unless
the problem is formulated as a standard optimisation problem. Therefore we pro-
pose a framework based on a relaxed quadratic program formulation of CRFs for
scene segmentation which can conveniently be enforced with a set of global con-
straints. These global constraints contain "a priori" information about the label
consistency. Information from one or multiple sensor modalities can be used to
derive these constraints. Since these constraints are applied on the optimisation
process, it is important that the accuracy of the constraints are maintained at a
higher level. In our work image data is used to build the CRF graph and potential
functions while the depth data is used to formulate global constraints over sets
of nodes in the CRF. Each constraint encloses nodes belonging to a single object,
as determined by the depth data and ensure they take the same label during the
optimisation process. The interested optimisation problem is a linear equality
constrained problem, which can be easily solved to obtain the MAP solution of
CRF model using an efficient gradient-based algorithm introduced in [120].
The main contributions of this chapter are:

• Novel CRF formulation for scene labeling by adding global constraints, that
are capable of enforcing label consistency, i.e. nodes on the same object are
assigned with the same label

• Demonstration of the powerlessness of the proposed framework for urban
scene segmentation by combining image and 3D laser data gathered by a
real robotic platforms.

The remainder of this chapter consists of the following sections. Section 3.2
describes related work on the theory and practices in CRF based semantic scene
segmentation. Section 3.3 describes enforcing global constraints in scene labelling
process. Experimental framework, results and discussions are included in Section
3.4.

3.2 Related Work

CRF Based Semantic Scene Segmentation
As described in Section 2.2 Semantic segmentation problem is commonly formu-
lated as a CRF, where CRF is constructed on pixels or image patches. The CRF
model consists of smoothing terms that support label agreement between similar
pixels and combines more descriptive terms that model contextual connections
between object classes. CRF also has the capability to model long range rela-
tionships and global dependencies with in the image. There are several different
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approaches to add long range information such as intricate potentials, global im-
age features [108], segment and region based label consistency [33, 46] and global
co- occurrences statistics between different classes [59, 61]. Unfortunately, for
grid-like graphs, which we are particularly interested in image segmentation, the
problem of multi-class classification is NP-hard. Therefore we need to rely on
approximate inference algorithms.
The segmentation of the image corresponds to the minimal cut [32] of the CRF.
Minimal cut ensures cutting all the edges between the pixels belong to differ-
ent classes. In computer vision, many successful image segmentation methods
are based on graph cuts [16] and its refinements such as normalised cuts [98, 15].
Ladicky et al. [62] propose a improved scene segmentation model based on a novel
undirected graphical model, associative hierarchical random fields which is also
solved using a graph cut based method. Felzenszwalb and Huttenlocher [29] in-
troduce a predicate to measure evidence for a border between two distinct regions
(can be different classes/objects) in an image-based graph. Recently, quadratic
programming relaxations [87] have been successfully applied to MAP inference in
conditional random fields. At this point it has been proven that QP relaxation is
tight and exactly solves the original MAP problem of the CRF.

Semantic Scene Segmentation in Robotics
In robotic applications stereo vision is commonly used for scene segmentation.
He and Upcroft [41] introduce a stereo image based system and a non parametric
model depend on data to semantically segment images in large scale. The pro-
posed model operate without any offline learning. He et al. [42] present the use
of both colour and depth cues for automatic segmentation. A similar approach
is taken in [97] to automatically labels street scenes through a hierarchical CRF
model that is solved using Alpha expansion algorithm [18]. The energy function
for the model consists of pairwise potentials correspond to the disparity of the
neighbouring nodes in addition to the commonly used color and texture based
potentials. A method to semantically segment dense 3D point clouds obtained
by RGBD sensors is presented by Hermans et al. [45]. This novel model propa-
gates 2D labels in to 3D space by Bayesian updates and dense pairwise 3D CRF.
In robotics, there are several approaches on scene segmentation using multiple
modalities, such as camera and 3D laser data. Douillard et al. [23] propose a
spatial-temporal CRF method integrating measurements from a conventional 2D
laser scanner with images from a calibrated camera. Munoz et al. [74] extract
features from an image and laser data and use in a classifier to segment the scene.
Similar works are done in [116]. Xu et al. [115, 116] introduce novel framework
for information fusion based on over-segmentation and Dempster-Shafer theory.
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Above method generate promising results but confined to a single obstacle class
since it lacks ability to identify different objects in the obstacle class. Munoz
et al. [74] treat two sensor modalities as first class objects and propose a joint
inference, that couples the predictions among all modalities. The model enable
propagating information through domains during the inference process. This is
important because some domains are more apt at predicting certain classes than
others, i.e. images can be used to distinguish between elements that are similar
in shape but have different texture (e.g. grass , sand vs road ), and laser point
clouds are useful to differentiate objects that have similar appearance but dif-
ferent in scale (e.g wall and a car with similar color and texture). Visual data
based segmentation model introduced by Felzenszwalb and Huttenlocher [29] is
extended to used RGBD data is in [104]. This method creates a colored laser
point cloud by combining camera images and a 3D Lidar point clouds. Then
through an efficient graph-theoretic algorithm segmentation is obtained. In [2]
voxels are generated from a 3D urban point cloud and then supervoxels are formed
using voxels. Subsequently super voxels are clustered by link-chain method [117]
to extract the objects from the point cloud. Later classification of the objects
conducted using local descriptors based on color and laser intensity and other
geometrical features. A method that exploits both colour and laser based depth
information is presented in [119]. This method makes predictions using unimodel
classifiiers on the depth and colour data . Subsequently utilise late fusion ar-
chitecture to fuse unimodel classifiers and the resulting output is post-processed
using a CRF. Kundu et al. [60] introduce a higher order CRF model for joint in-
ference of 3D structure and semantics in a 3D volumetric model. They use depth
and visual information in the form of unary, pairwise and higher order potentials
and MAP estimation over a random field. Ladicky et al. [105] also formulate an
energy minimisation problem of a random field to conduct object class segmenta-
tion . In this case also depth and visual information are incorporated as different
form of potentials. However both above methods are tested with comparatively
low-resolution images. Hence the accuracy of the labeling and the computational
time for high-resolution images are unknown.

Deep Network Experts For Semantic Segmentation
Eitel et al.[26] extend conventional CNN to use multimodal information, RGB
images and depth images. The model trains the network separately for each
modality using two parallel streams. Afterwards, fine tunning is done for the two
streams jointly to derive a fusion network that can perform the final classifica-
tion. The model is tested only for short-range indoor foreground object recog-
nition tasks. In [93], authors test different CNN models developed based on the
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architecture proposed in [8] which can efficiently exploit RGB data from images
and HHA [39] features from lidar points for pedestrian detection task. They also
empirically conclude that late fusion of RGB and HHA would yield more accurate
detections. Audebert et al.[6] performs semantic segmentation by improving the
conventional RBG (3 channel) based SegNet [7] model. They use IRRG images
with near infrared , red and green channels as input to a SegNet model and also
data collected from a aerial laser sensor as input to the another SegNet model.
The laser data also formed as a composite image that consists of three channels
DSM, NDVI and NDSM[36]. Then using the theory of residual deep learning[43],
fusion of the two models is conducted. In[70], it is presented a framework to
optimise the image classification by mixing multiple CNNs trained on distinctive
modalities. Feature representation of the CNNs is used to train weight of the
gating network, which produces the final classification. The framework is tested
for pedestrian detection. The main drawback of using deep networks is that it
requires large amount of labelled data for training. In contrast our framework can
use any conventional classifier such as Naive Bayes or SVM that is learnt with less
training examples. In addition, laser-based information is incorporated, enhanc-
ing classification in a unsupervised manner. Further, any additional multimodal
data that includes label consistency information also can be directly incorporated
to our framework with no training.

Higher Order Potentials
Higher order potentials (HOP) introduced in Section 2.2 [53] can encode addi-
tional information which can be used to model longer range information within
the model. These potentials became popular in CRF based labelling tasks. HOPs
and ray potentials [91] enforce soft constraints on the optimisation. However, the
complex potential terms associate with additional parameters. This makes the
models intricate and time consuming to learn. Kohli et al. [53] use a P n Potts
model-based CRF with HOP for the task of image segmentation and use a graph
cut based algorithm to solve the optimisation problem. Tarlow et al. [106] pro-
posed a method with HOP models and belief propagation, adopting a set of
potentials for which efficient message passing rules exist. In [55] a dual decom-
position based master-slave framework is presented to solve generic higher order
Markov random fields.
These soft constraints (higher order potentials) containing long-range infor-

mation may be violated in the optimisation process, since they are not strictly
enforced. Although when we have precise "a priori" knowledge on long-range
relationships with in the image, discarding this information can reduce the qual-
ity of labelling. Our method on the other hand, strictly enforces the validity of
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global constraints during optimisation. In our approach, we demonstrate that
the imposed constraints from depth information are satisfied by the solution.

3.3 A Model to Fuse Laser and Visual Information

3.3.1 Overview

RGB Image

Frame

Super Pixel

Generation

Unary Clas-

sifier(pLDA)

CRF Model
Constrained

CRF Model

Global

Constraints
Clusters

Laser Point

Cloud

MAP
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Figure 3.1: Overview of the Global Constraint Based Semantic Segmentation Model

A schematic overview of the processing pipeline is shown in Figure 3.1. In the
first step our method preprocess and extracts features from raw images (first row
in Figure 3.1) in the following manner:

1. Extracting super pixels from raw images where superpixels contain group
of neighboring pixels with proximity in space and color.

2. Extracting features from the superpixels based on colour, texture and lo-
cation. Subsequently training pseudo linear discriminant analysis classifier
(pLDA) [68].

In parallel to training the classifier we process the laser point cloud in the following
manner(bottom row in Figure 3.1 ):

1. Extracting Euclidean clusters from the laser point cloud which contain com-
plete or part of objects (due to occlusion).

2. Mapping the 3D point clusters to the 2D camera frame and locate the super-
pixels correspond to the each cluster. These sets of super-pixels are used in
the form of constraints to impose label consistency on scene classification
in the next stage.

We conduct the semantic scene labeling in the last stage using the visual feature
base classifier and the laser based constraints (middle row inFigure 3.1) as follows:
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1. Building a CRF on the interested image. Integrating the classifier based
potentials with the CRF model.

2. Adding the laser based constraints to the inference problem of the CRF.

3. Conducting the inference and obtaining semantic labels for the images.

3.3.2 Superpixel Generation

Commonly image labeling algorithms utilise image pre-processing techniques. To
reduce the computing cost and facilitate the method to run in real time, we use an
over-segmentation of the image into super pixels. Subsequently image labelling is
conducted on superpixel level. This approach increases the possibility to preserve
class boundaries in the semantic segmentation process. We generate super pixels
using SLIC algorithm. SLIC generate approximately uniform superpixels (in size
and shape). Moreover, the method is memory efficient and has a computational
complexity of O(N) which is much less compared to the other state of the art
methods.
More importantly SLIC superpixels are compact and high in quality. Quality
usually links with the capability to adhere to class boundaries. Boundary adher-
ence is evaluated using boundary recall that computes the portion of the class
boundaries (given by the ground truth) lying within in at least two pixels of a
superpixel border. Higher boundary recall suggest that only few true class bound-
raies are violated by the superpixels. Under-segmentation error can also be used
to assess boundary adherence. This approach consider the reigions of the image
correspond to each class and the superpixels enclosed by that region. The quality
measure corresponds to the number of pixels of the underlying superpixels that
lie across the region boundary (defined by the ground truth image).

3.3.3 Feature Extraction

We build a CRF on the image and conduct inference to obtain the optimum la-
belling. To this end, we exploit super pixels as nodes in the graph. It requires
evaluating the node potentials of the graph in order to perform inference. There-
fore a pLDA classifier is trained on super-pixels exploiting simple colour, texture
and location features. Location of super pixels in the camera frame, HSV colour
histogram per superpixel and HOG features are used for training. HOG features
are one of the simplest measures of texture. In this model, HOG features are
extracted in RGB space. The combination of two colour spaces assists in over-
coming the loss of important information. The classifier provides the posterior

47



probability of super-pixels/nodes attaining a certain class label. We have used
this information as unary potentials in the CRF.

3.3.4 Laser Point Based Clusters

The driving factor of our framework is imposing a priori knowledge as hard con-
straints on the final labelling problem. We use image information to solve the
super-pixel labelling problem. Additionally, laser based information is used as
constraints in the optimisation problem. To this end, we obtain the laser based
constraints on sets of super pixels by extracting groups of connected points, or
objects, from the Velodyne point cloud. This process requires time synchronised
camera images and Velodyne point clouds.
To generate the constraints we first perform a ground plane removal step using
RANSAC to find the largest plane aligned with the ground. Subsequently, re-
maining points are grouped using Euclidean cluster extraction [85]. We fine-tune
the clustering algorithms so that each cluster contains only points belonging to
a single class. From these extracted, we only consider those that include more
than 150 points to avoid the issues with noise. The 3D coordinates of the points
contain in the selected clusters are then translated into image space coordinates
using the extrinsic calibration provided by the dataset. The projected points
in the image space then associated with super pixels. In other words, we can
obtain super-pixel clusters correspond to complete objects or object parts. The
ground plane as well as the retained point clusters after the projection can be
seen in Figure 3.4c and Figure 3.4d respectively. Based on this 2D clusters we
create constraint sets C used in the optimisation. All super pixels that corre-
spond to the same laser segment are constrained to be assigned the same label.
Super-pixels which do not belong to any of the extracted laser segments are kept
unconstrained.

3.3.5 CRF Model For Image Segmentation

Consider a graph G = (V,E) whereV and E denotes the sets of nodes and edges
respectively. Each node in set V represent an image superpixel in set S. y =
{y1, y2, . . . , ym} is the set of discrete random variables associated with nodes.
Number of nodes is denoted by m. Each random variable yi is assigned with
one of the labels from L = {1, . . . , n} where n is the number of labels. N(i) =
{j ∈ V |(i, j) ∈ E} denotes the neighbours of node i. Then a pairwise conditional
random field is defined on G such that, the random variables y conditioned on
x and it satisfy the Markov property with respect to the graph: P (yi|x, yj)j 6=i =
P (yi|x, yj)j∈N(i). Semantic segmentation for the images are obtained through the
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inference of the CRF.
φi(yi) denotes the unary potentials obtained from a linear discriminant analysis
classifier described in Section 2.1.1 and ψij(yi, yj) refers to pairwise potentials
between connected nodes.

φi(ypi ) ∝ DE(xΦ, x̄pΦ), (3.1)

here x is the newly observed image feature vector described in Section 3.3.3, p
refers to the class index, DE is the Euclidean distance and x̄p refers to the mean
of the feature vectors correspond to the training samples with label p. Φ is the
linear transformation matrix ( refer to the Section 2.1.1 for explanation). The
edges between nodes are created considering their distance within the image, i.e.:

E(i, j) =

1 if dist(i, j) < ζ

0 otherwise
, (3.2)

where ζ is the distance threshold and dist(i, j) is the Euclidean distance in image
coordinates between centres of two super pixels. All super pixels closer than the
user defined threshold are connected. Selecting larger values for ζ allows encod-
ing longer range information but also increases the computational complexity. In
our experiments ζ was set such that each node is connected to roughly ten neigh-
bouring nodes, which results in a grid like structure. The pairwise potentials
ψij are derived based on their dissimilarity using colour, texture, and location
information of the super pixels, i.e.:

dis(i, j) =1
3

[
θc||mc(i)−mc(j)||2 + θl||cm(i)− cm(j)||2 +DB(cl(i), cl(j))

]
,

(3.3)

where mc(i) is the mean colour vector of the i-th super pixel normalised by θc
which is the maximum possible color contrast under the HSV color space, cm(i)
is the centre of mass of the super pixel, normalised with θl which is the maximum
possible distance between two points in the image frame and cl(i) is the colour
histogram for the i-th super pixel, for which similarity with neighboring superpixel
is computed using the Bhattacharya distance given by the following equation,

DB(a, b) =
√

1− 1√∑
i ai

∑
i biN2

B

∑
i

√
aibi, (3.4)

where a and b are two histograms and NB is the number of bins in the histograms.
This results in a similarity value between 0 and 1, with 0 encoding identical super
pixels. We use the pairwise potential function to encourage the neighbouring
superpixels to have similar labels if disssimilarity between them based on the
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colour,texture and location is small as follows:

ψi,j(yp
i , y

q
j ) =

1− dis(i, j)2 if p = q

dis(i, j)2 otherwise
. (3.5)

The additional a priori information about sets of points which belong to the same
group is encoded as constraints on the CRF in a later stage. A graphical rep-
resentation of this structure is shown in Figure 3.2, where nodes are denoted by
circles while edges indicate connections between nodes. The set of nodes coloured
identically are constrained to take the same label. The unary and pairwise po-
tentials are based on information extracted from the image while the information
about groups of nodes is extracted from 3D laser data.

Figure 3.2: Example of the type of CRF structure used in this work. The two shaded areas,
A and B, encode sets of nodes which are required to be assigned the same label.

3.3.6 MAP Estimation

Our goal is to find the best label assignment for query variables associated with
each node. This assignment is denoted as MAP estimation (Section 2.2.1). The
conditional distribution presented in Eq. (2.6) can be reformulated for the unary
and pairwise cliques. Taking the log of the likelihood function results in the
following conditional log likelihood of the query variables:

logP (y|S) =
∑
i∈S

φi(yi)︸ ︷︷ ︸
Unary Potentials

+
∑

i∈S,j∈N(i)
ψij(yi, yj)︸ ︷︷ ︸

Pairwisw potentials

−Z(S), (3.6)
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where Z(S) is the partition function.

Quadratic Program Formulation

As finding the MAP solution to Eq. (3.6) is NP hard we use QP based approach
to solve the inference problem. Refer to Section 2.2.2 for details on the QP
relaxation. We start by reformulating the MAP problem as a quadratic integer
program [120] as indicated in Eq. (3.7),

maximise
∑
i∈S

∑
p∈L

φi(ypi )µi(y
p
i ) +

∑
i∈S
j∈N(i)

∑
p,q∈L

ψij(ypi , y
q
j )µi(y

p
i )µj(y

q
j )

subject to
∑
p∈L

µi(ypi ) = 1 ∀i (3.7a)

µi(ypi ) ∈ {0, 1} ∀i, p, (3.7b)

with the indicator function:

µi(ypi ) =

1 if ypi = 1

0 otherwise
, (3.8)

where ypi encodes if node i has been assigned label p. This quadratic program
formulation penalizes disagreements between the data via the indicator function,
which guides the model to obtain coherent segmentation. Additionally, Equa-
tions (3.7a) and (3.7b) enforce that exactly one label is selected for each node.
In order to make the NP hard problem solvable we relax the integer requirement
of the quadratic program [120] as follows:

maximise
∑
i∈S

∑
p∈L

φi(ypi )µi(y
p
i ) +

∑
i∈S

j∈N(i)

∑
p,q∈L

ψij(ypi , y
q
j )µi(y

p
i )µj(y

q
j )

subject to
∑
p∈L

µi(ypi ) = 1 ∀i (3.9a)

0 ≤ µi(ypi ) ≤ 1 ∀i, p. (3.9b)

This relaxation is tractable and can be solved by standard optimisation algo-
rithms, thus it yields an optimal solution equivalent to the MAP solution for the
original problem denoted in Eq. (3.6). Proof is elaborated in [87].

Globally Constrained QP

Optimisation of quadratic programming is a vastly studied area. In this stage
we add global level constraints to the maximisation problem. These equality
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constraints are derived in Section 3.3.4, resulting in following problem:

maximise
∑
i∈S

∑
p∈L

φi(ypi )µi(y
p
i ) +

∑
i∈S

j∈N(i)

∑
p,q∈L

ψij(ypi , y
q
j )µi(y

p
i )µj(y

q
j )

(3.10a)

subject to
∑
i,j∈Ck

∑
p∈L

µi(ypi )− µj(y
p
j ) = 0 ∀Ck ∈ C (3.10b)

∑
p∈L

µi(ypi ) = 1 ∀i (3.10c)

0 ≤ µi(ypi ) ≤ 1 ∀i, p, (3.10d)

where Eq. (3.10b) enforces that all pairs of nodes i and j in a constraint set
Ck ∈ C are assigned the same label.

Inference of Globally Constrained QP

We use the methods described in the Chapter 2.2.2 (Equality Constrained Quadratic
Programming Problems) to solve the QP relaxation problem. Consider an ob-
jective function similar to Eq. (3.10a) which has constraints set similar to and
Eq. (3.10b), multiplying by −1 we can formulate it as a minimisation problem,

minimise
∑
i∈S

∑
p∈L
−φi(ypi )µi(y

p
i ) +

∑
i∈S

j∈N(i)

∑
p,q∈L

−ψij(ypi , y
q
j )µi(y

p
i )µj(y

q
j )

(3.11a)

subject to
∑
i,j∈Ck

∑
p∈L

µi(ypi )− µj(y
p
j ) = 0 ∀Ck ∈ C. (3.11b)

Following [56], we can rewrite the minimisation in matrix notation,

minimise 1
2Y

TQY + bTY (3.12a)

subject to AY = 0, (3.12b)

where Q ∈ Rmn×mn is a symmetric matrix which encodes the negative quadratic
coefficients (pairwise potentials) and b ∈ Rmn×1 negative linear coefficients (unary
potentials). Y = [µ1(y1

1), .., µ1(yn1 ), .., µm(y1
m), .., µm(ynm)]T is the indicator vari-

able matrix representing µi(ypi )∀i ∈ V and p ∈ L. A ∈ Re×mn is a matrix with
full row rank which encodes the global constraints from Eq. (3.11b). Here e is
the number or independent constraints.
To solve the constrained minimisation problem in Eq. (3.12) efficiently, it can

be reduced in to a simpler unconstrained problem. We can use null space method
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Figure 3.3: The figure shows an example for the mapping from Y to R where number of
nodes is 5 and each node can take 2 labels. Assume that based on the global
constraints information nodes 2 and 5 are constrained to take same label. Similarly
nodes 3 and 4 are constrained together. Image shows that how the dimensionality
reduction is occurred. This mapping is achieved through seeking a basis for null
space of A accordingly.

[77] to reformulate the constrained minimisation problem in a lower dimensional
space.
To this end, we define Z ∈ Rmn×(mn−e) where columns of Z are a basis for null

space of A as indicated in Eq. (3.13),

AZ = 0. (3.13)

Then it can be introduced a matrix R ∈ R(mn−e)×1 that contains new set of
indicator variables where ZR = Y . According to theory if ZTQZ is positive
definite, the equality constrained problem in Eq. (3.12) can be represented by an
equivalent unconstrained problem as indicated in Eq. (3.14),

minimise 1
2R

T (ZTQZ)R + (ZT c)TR. (3.14)

The equality constraints AY = 0 can be rewrite as A(ZR) = 0 by substituting
for Y since AZ = 0 the equality constraint is always satisfied (implicitly) in the
minimisation problem Eq. (3.14). This transformation has two benefits: First,
the dimensionality of the variable matrix R in the reduced problem is decreased
by value e compared to the dimensoinality of Y . This implies that a large num-

53



ber of constraints makes the optimisation problem easier to solve. Second, the
optimisation problem is in an unconstrained form, which again makes it easier to
solve.
As mentioned earlier, our main goal is to solve the MAP estimation problem

in Eq. (3.10). We obtain an equivalent problem to this MAP estimation by
adding the constraints Eq. (3.10c) and Eq. (3.10d) to the unconstrained problem
(Eq. (3.14)) as follows:

minimise 1
2R

T (ZTQZ)R + (ZT c)TR (3.15a)

s.t FY = 1 (3.15b)

0 ≤ Ak ≤ 1 ∀k. (3.15c)

With the added constraints in the matrix notation and substituting for Y = ZR

we obtain:

minimise 1
2R

T (ZTQZ)R + (ZT c)TR (3.16a)

s.t (FZ)R = 1 (3.16b)

0 ≤ (ZR)k ≤ 1 ∀k. (3.16c)
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Algorithm 5: Globally Constrained CRF
Input: Unary potential array b, Edge potential matrix Q, Laser segment based

constraints matrix A, number of laser based constraints e, number of
nodes m, number of labels n

Output: Assignment of the nodes y = [y1, .., ym]
1 µi(rpi )−Indicator variables in the reduced problem:

// Initialise

2 µi(rpi ) = ρi(rpi )/
∑
p ρi(r

p
i )

// Computation of the null space:

3 Z = null(A)
// Unary and pairwise coefficients in the reduced space

4 ρi(rpi ) = (−ZT c)n(i−1)+p

5 τij(rpi , r
q
j ) = −(ZTQZ)(n(i−1)+p),(n(j−1)+q)

// Computing the dimensions of the reduced problem:

6 w = m− e/n
// Perform gradient descent

7 repeat
8 foreach i ∈ {1, . . . , w} do
9 foreach p ∈ {1, . . . , n} do

// Compute the gradient at node i

10 qi(rpi )← ρi(rpi ) + 2
∑
i,j

∑
q τj(r

p
i , r

q
j )µtj(r

q
j )

11 µt+1
i (ri)←

µt
i(r

p
i )qi(rp

i )∑
p
µt

i(r
p
i )qi(rp

i )

12 end
13 end
14 until convergence;

// Array of the relaxed indicator variables in the reduced space

15 R = [µ1(r1
1), .., µ1(rn1 ), .., µw(r1

w), .., µw(rnw)]T

// Extract final solution

16 Y = ZR

17 µi(ypi ) = An(i−1)+p

18 foreach i ∈ {1, . . . ,m} do
19 foreach p ∈ {1, . . . , n} do
20 yi ← p if µ(ypi ) = 1
21 end
22 end
23 return y
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The null space of A can have infinite number of solution matrices. However,
we ensure that the selected matrix Z generates a mapping similar to the example
shown in Figure 3.3. Depending on the simpler structure of A this is straight-
forward. This selection of Z makes the mapping from Y to R surjective. Z only
contains 0 or 1. Each row contain single element that is equal to 1 and all the
other elements are set to zero. The nonzero element locations are selected so that
each variable in Y is equivalent to some variable in R. This means that variables
in R also vary between 0 and 1 similar to variables in Y . Also when∑p µi(ypi ) = 1
and node i is mapped to node j in R then ∑p µj(rpj ) = 1.
Reversing the transformation from Eq. (3.10) to Eq. (3.12) we can rewrite Eq. (3.14)
using element wise notation as a maximisation:

maximise
∑
i

∑
p

ρi(rpi )µi(r
p
i )

+
∑
i,j

∑
p,q

τij(rpi , r
q
j )µi(r

p
i )µj(r

q
j ) (3.17a)

∑
p∈L

µi(rpi ) = 1 ∀i (3.17b)

subject to 0 ≤ µi(rpi ) ≤ 1, (3.17c)

where rpi denotes, if label p has been assigned to random variable i. In this manner
each random variable i is associated with n number of variables [µi(r1

i ), .., µi(rni )],
whereR = [µ1(r1

1), .., µ1(rn1 ), .., µm−e/n(r1
m−e/n), .., µm−e/n(rnm−e/n)]T with the unary

potential ρi(rpi ) = (−ZT c)n(i−1)+p and the pairwise potential
τij(rpi , r

q
j ) = −(ZTQZ)(n(i−1)+p),(n(j−1)+q). Eq. (3.16b) can be formulated as Eq. (3.17b).

The objective Eq. (3.17a) is a function of µi(rpi ), it is indicated by the notation
J(µi(rpi )). We optimise Eq. (3.17) using gradient ascent which can be done effi-
ciently as the gradient can be computed in closed form [120] as follows:

qi(rpi ) = ∂(J(µi(rpi )))
∂µi(rpi )

= ρi(rpi ) + 2
∑
i,j

∑
q

τj(rpi , r
q
j )µj(r

q
j ),

(3.18)

µt+1
i (rpi ) = µti(r

p
i )qi(r

p
i )∑

q µ
t
i(r

q
i )qi(r

q
i )
. (3.19)

Zhang et al [120] conduct the optimisation process by implicitly maintaining the
constraints Eq. (3.17b) and Eq. (3.17c) using a combination of fixed point iter-
ation and gradient ascent as indicated in Eq. (3.19). If −(ZTQZ) is negative
definite, then gradient ascent guarantee to converge to a global maximum, oth-

56



erwise it may converge to a local maximum. It is possible to conduct convex
approximation as described in Chapter 2.2.2 by modifying the reduced hessian
matrix. However in our case original values yield striking solutions in practice
without the convex approximation. Once the algorithm has converged we can
extract the values of original indicator variables µ(yqi ) and thus the MAP label
assignments to the yi variables. To this end we transform the solution for µ(rpi )
obtained from Eq. (3.17) back into the form of Eq. (3.10) using A = ZR. A is a
column vector whose entries correspond to the values of the µ(ypi ). The optimal
assignment to each node i ∈ V is found by selecting the label p ∈ L for which
µi(ypi ) = 1 holds. Generally, µi(ypi ) values converges to 0 or 1. Otherwise label is
assigned to the class which has the largest µi(ypi ) value.
This procedure is summarised in Algorithm 6. The required inputs are the

values of the unary and the pairwise potentials of the reduced problem Eq. (3.17).
µi(rpi ) variables are initialised using local potentials ρ. Then the gradient (Eq. (3.18))
is computed and used to update the solution iteratively until convergence is
achieved. Here µti(r

p
i ) refers the value of µi(rpi ) during the tth iteration. Finally,

the solution is extracted and returned.

3.4 Experiments

3.4.1 Experimental Set up and Feature Selection

In this section we present experimental evaluation of our proposed framework
on the task of urban scene segmentation. We use the KITTI dataset [35] as it
provides typical urban data. The dataset was captured by driving around the city
of Karlsruhe, Germany. Importantly, the datasets contain both colour images and
Velodyne point clouds. The image information is used to build the CRF model
structure and potential functions while the Velodyne data is used to construct
global constraint sets.

Type Description Dimensionality

Texture RGB gradient magnitude histogram 50× 3 = 150
RGB gradient orientation histogram 50× 3 = 150

Colour RGB mean 3
RGB std 3
HSV histogram 50× 3 = 150

Location Super pixel image coordinates 25× 2 = 50

Table 3.1: Features used for the unary potential of the CRF based on a discriminant analysis
classifier applied to super pixels.

We start by extracting super pixels from the image using SLIC which forms an
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over segmentation of the original image. From each 375× 1242 image we extract
roughly 1600 super pixels, shown in Figure 3.9b. We have selected the average
super pixel size to ensure the homogeneity of the over segmentation is preserved
in a higher level. Each of these super pixels represents a node in our CRF and the
goal is to label them with one of the seven different classes: vehicle, pedestrian
& cyclist, buildings, ground, sky, vegetation, or unknown. Due to the low sample
size of pedestrians and cyclists in the data set they are assigned to same class
The unary potentials φi are obtained from the posterior of a pseudo linear

discriminant analysis classifier as described in the previous chapter. The classifier
is trained on 100 manually labeled images (training set) from the drive_0048,
drive_0091 and drive_0106 of KITTI dataset using colour, texture, and location
features, shown in Table 3.1. The magnitude and the orientation of the gradient
at each pixel are computed using the Piotr’s Computer Vision Matlab Toolbox
[82] for each colour channel separately. Standard practice is to use equal sized
square cells to create gradient magnitude and gradient orientation histograms.
Therefore, 2D bounding boxes are drawn centering at the centroid of each super
pixel. By analysing the sizes of the generated superpixels, dimensions of the
bounding box can be set to 15×15 since it approximate the size of the super pixels.
Magnitude and orientation histograms are computed on each bounding box and
normalised locally. Our final model is tested on 100 labeled images (validation
set) from drive_0093, drive_0095, drive_0021, drive_0059 and drive_0043.
Labeling was taken place with the assistance of the Image Annotation Tool [4].

CRF parameters

Weight values corresponding to the unary and pairwise terms of the CRF model
can be learnt from the available ground truth data (Section 2.2.3). However in
the experiment section we are evaluating the constrained CRF method on data
recorded in diverse environments (areas with high pedestrian density, urban areas,
rural areas, areas with different illumination conditions). Therefore it would
not be feasible to obtain one global parameter set that can perform optimally
in all different situations. To address this problem we develop a framework to
adaptively learn these parameters for changing environments in the next chapter.
During the experiments on this section we have given unit weight to all the unary
and pairwise terms after a simple grid search. These suboptimal parameters add
reasonable quality to the CRF classification to demonstrate the improvement
achieved through the laser constraints addition.
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(a) Original Image

(b) Superpixel Generation

(c) Ground Plane Removal

(d) Laser Point Cloud Clustering

Figure 3.4: Display of a typical scene from the KITTI dataset. (a) shows the raw image, (b)
overlays the super pixels extracted from the image, (c) depicts the projection of
the RANSAC plane in to the 2D image frame, (d) shows the global constraints
extracted from the 3D laser point projected into the image space, each colour
represents a single segment. Labels of the segments are unknown at this stage.
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Figure 3.5: This figure shows exemplary scene segmentation results obtained on KITTI im-
ages. From top to bottom we have: each row containing original image and the
labeling conducted by respective methods, discriminant analysis classifier,iterative
conditional modes, markov chain monte carlo, loopy belief propagation, quadratic
programming, and finally ground truth labels.

3.4.2 Scene parsing using visual information and laser based hard
constraints

In the following we compute solution for the MAP problem denoted in Eq. (3.6)
using approximated inference methods such as iterative conditional modes algo-
rithm (ICM) [10], markov chain monte carlo (MCMC), loopy belief propagation
(LBP). Here the MAP problem only consist of image based potentials. No laser
information in used in this context. Subsequently, we compare the results from
the state of the art methods with the results obtained from solving the QP prob-
lem (Eq. (3.9)) using the gradient based method described in Eq. (3.18) and
Eq. (3.19). This showcase the quality of the segmentation results obtained by
pure visual data. Thereafter, we introduce the global constraints obtained from
the Velodyne points to demonstrate the enhancement of the segmentation quality
due to the combination of multiple sensors inputs. Later we compare the results
obtained from our contained model (Eq. (3.10)) with a graph-cut based HOP
method [52].
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Figure 3.6: This figure shows scene labeling accuracy of drive_0093 (in KITTI dataset) ob-
tained using different CRF inference algorithms.

Visual Information Only Segmentation

In Figure 3.5, we present results from five methods, (i) discriminant analysis
classifier which provides the unary potentials of the CRF, (ii) loopy belief prop-
agation using the UGM toolbox [94], (iii) ICM method using UGM toolbox, (iv)
MCMC method using UGM toolbox, and (v) quadratic programming solution
[120]. Exemplary results together with the original image and ground truth la-
bels are shown in Figure 3.5. The first row shows the original colour images while
the second row shows the most likely class of the discriminant analysis classifier
which is used as the unary potentials of the CRF. As to be expected the classifier
output is noisy and incorrect in several places. All the other CRF based solutions
produce a much cleaner and consistent result compared with the raw classifier
result. However, there are still segmentation errors present due to effects such
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as shadowing and illumination changes. The quantitative evaluation results on
the validation set, shown in Table 3.2, further demonstrates the improvements
and also indicates that the QP based solution outperforms the LBP and MCMC
methods. Where ICM method has a slightly better performance over all the other
methods. Figure 3.6 indicates the accuracy and F1 measure plots for the vali-
dation set. All these analysis prove that the basis on which our method is built
is capable of producing high quality segmentation results before any additional
constraints are added, which will be evaluated next. It also conveys that the
quality of the segmentation is accurate compared to the state of the art.

Laser Constrained Segmentation

In this section we explore the impact additional constraints, extracted from Velo-
dyne data, have on segmentation results by comparing our method to a HOP
based method by Kohli et al. [52]. The higher order potentials penalize label
inconsistencies between nodes identified to be part of a single segment in the 3D
data. Both methods use uniform weight parameters for the unary, pairwise, and
higher order potentials, where applicable.
Some exemplary results are shown in Figure 3.7 with the original image shown

on the far left, followed by the result of the HOP based method in the second
column, then our method, and finally the hand labeled ground truth. Inspecting
the results we can see that the HOP based method struggles to correctly identify
distant objects, especially when cars or walls are involved. Additionally, the
results our method obtains appear more uniform with less spurious classifications.
This difference in behavior is explained by the way the additional 3D information
is used. While our method enforces the constraints the HOP based method is
allowed to violate them. The examples in Figure 3.8 show the benefit of using
the hard constraints rather then soft constraints. The first two rows showcase
this for a single wall while the third row shows the result of this in a scene
populated by pedestrians. The first two columns show the original image and the
segment extracted from the Velodyne data. Due to the visual appearance of these
areas the classifier fails to pick the correct class in some parts of the 3D segment.
The HOP based method fixes some classification errors, however, cannot fix every
single one. In the case of the pedestrian scene the HOP method even misclassifies
all pedestrians. Our method on the other hand is forced to assign a single class
to the entire segment and as such the correct class is assigned even to the areas
where the classifier makes mistakes.
For a quantitative analysis we compute average precision, recall, accuracy, and

F1-score for the different methods on validation set. The F1 score is a combined
matric of precision and recall. The highest quality of the classification is achieved
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Figure 3.7: This figure shows results obtained on KITTI urban scenes using the HOP based
method and our proposed method together with the original image and the hand
labelled ground truth. We can see that our method (Constrained QP) performs
better then the HOP based method at segmenting distant and objects cast in
shadows.

when the F1 measure is 1 and poorest case is zero. Higher F1 score is an indication
of both high precision and high recall. Since we operate in a multiclass setting,
micro average F1 score is used to give an equal bias to all the classes which is
indicated by (∑n

i=1 F1i)/n where F1i denotes the F1 score for ith class. As we
can see in Table 3.2 the addition of global constraints in our method allows it to
significantly outperform the other methods lacking this information and even the
HOP method, using the same information, does not provide the same benefits.
Improvement of the precision,accuracy and F1 measure in CQP compared to the
HOP method is around 2%. Where recall has increased by 3%. Results show
that adding constraints based on simple information about which areas belong to
a single object allows the segmentation to be more accurate. This is good news,
as this type of information is readily available in robotic systems. Looking at
the performance of the individual classes in Table 3.3 we can see that “cyclist &
pedestrian” class is the hardest one. This is explained by the fact that instances
of this class occur infrequently and as such the classifier has a harder time at
classifying them correctly. Furthermore, this class has the smallest appearance
in the Velodyne data and as such will only be detected at close range. The other
classes exhibit similar performance, which is not surprising, given that they occur
frequently in the data and cover larger areas of the scene. Numerous colours and
areas with different textures (glasses, wheels, and body have different texture)
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Figure 3.8: This figure shows examples from KITTI dataset to convey the benefit of enforc-
ing hard constraints . The highlighted areas in the image show continuous 3D
segments extracted from Velodyne data. The classifier output in these areas is
noisy and wrong due to visual ambiguities. While the HOP based method fails to
correct this our method succeeds in classifying the entire area correctly, as it is
forced to assign a single class to each of the laser based segments.

associated with the vehicle class, cause difficulties to identify the superpixels
belong to that class accurately. In the table, we can see that improvement of
the accuracy and F1 measure from HOP to CQP, correspond to the vehicle class
is around 4% and 8% respectively. This amount of dramatic improvement is
obtained by the label consistency information enforced with the hard constraints.
Apart from that, constraints also help to separate vehicles from walls and the
ground.
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Method Average
Precision

Average
Recall

Average
Accuracy

F1 Score

Discriminant Analysis Classifier 0.7027 ±
0.045

0.5127 ±
0.061

0.8826 ±
0.045

0.5927 ±
0.057

Iterative Conditional Modes 0.7671 ±
0.032

0.8023±
0.048

0.9185±
0.044

0.7843±
0.061

Markov Chain Monte Carlo 0.7629 ±
0.038

0.7999 ±
0.041

0.9116 ±
0.024

0.7810 ±
0.062

Loopy Belief Propagation 0.7435 ±
0.051

0.7197 ±
0.081

0.9024 ±
0.053

0.7314 ±
0.067

Quadratic Programming Relax-
ation

0.8001±
0.032

0.7645 ±
0.048

0.9150 ±
0.053

0.7818 ±
0.040

Higher Order Potentials 0.8319 ±
0.073

0.8143 ±
0.067

0.9278 ±
0.022

0.8230 ±
0.070

Constrained Quadratic Pro-
gramming

0.8549±
0.079

0.8424±
0.078

0.9507±
0.025

0.8482±
0.076

Table 3.2: Quantitative evaluation of various segmentation methods for the selected drives
of KITTI dataset. The first row shows the results from the unary classifier and
the next four rows represent the results from state of the art CRF inference algo-
rithms using only image based information. The last two rows show the results for
methods using additional information obtained from 3D Velodyne scans. The HOP
method incorporates this information as an additional potential, while our method
(Constrained Quadratic Programming) enforces the validity of this additional infor-
mation as constraints. We can see that the addition of the 3D information improves
the performance compared to the image only based solutions. However, actively
enforcing the constraints allows our method to outperform the HOP based method.

(a) Original Image (b) Unary (c) Ground Truth

(d) Iteration 1 (e) Iteration 2 (f) Iteration 3

(g) Iteration 4 (h) Iteration 5 (i) Iteration 6

(j) Iteration 7 (k) Iteration 8 (l) Our Final

Figure 3.9: The image flow depicts intermediate solutions of the gradient-based optimisation
of the constrained CRF model. Segmented images up to 8th iteration are shown
consecutively. Final solution is shown in the last row (25th iteration).
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Quality Measure Average Precision Average Recall Average Accuracy F1 Score

Method HOP CQP HOP CQP HOP CQP HOP CQP

Cyclists &
Pedestrians

0.7689 0.7700 0.5134 0.5334 0.9670 0.9772 0.6153 0.6302

Ground 0.8431 0.8554 0.9747 0.9775 0.9569 0.9789 0.9032 0.9124
Vegetation 0.8284 0.8440 0.5161 0.5359 0.9468 0.9473 0.5931 0.6192
Buildings 0.8431 0.8420 0.8448 0.8838 0.8652 0.9103 0.8382 0.8568
Sky 0.7519 0.7877 0.7690 0.7564 0.9723 0.9780 0.7265 0.7461
Vehicles 0.8485 0.9089 0.7101 0.8058 0.9031 0.9413 0.7614 0.8543

Table 3.3: Quantitative evaluation of the performance on a per class for HOP method and
our method CQP(For the KITTI dataset). All the major 6 classes excluding the
unknown class are separately evaluated for the quality of segmentation.

Figure 3.10: The graph denotes the change of the objective (J(µi(rp
i ))) value of the input

image shown in the Figure 3.9 corresponding to iterations of the gradient based
method.

The inference process of the proposed method is shown in Figure 3.9. It is
evident that the algorithm fixes most of the issues with the unary classifier and
enforces label consistency information on the segmentation at the end of the
iteration 1. During next iterations it eliminates the noise in the labeling and
the posterior probabilities for the random variables correspond to the labels are
converged to zeros and ones. After the 8th iteration we can obtain a fairly well
labeled image, but it takes approximately 25 iterations for random variables to
completely stabilise. The graph in the Figure 3.10 indicate the variation of mag-
nitude of the objective which is equivalent to the MAP of the CRF model. It can
be seen that the at the 8th iteration it reaches to a considerably maximum level
and increment of the objective value after this point is trivial.
The performance of both constrained QP and HOP can be improved by training

the weight parameters of the potential functions, which encodes knowledge about
class relationships and object co-occurrence statistics. The advantage of our
method is, that it only requires unary and pairwise potentials while HOP has
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additional higher order potentials, which can be harder and time consuming to
learn. This makes the proposed method easier to fine tune as there are fewer
parameters involved.

Ford Campus Vision and Lidar Dataset

For further validation of the model, we tested the method on Ford campus vision
and lidar dataset [79] that has cameras with spherical vision. This dataset is gath-
ered by an autonomous ground vehicle testbed, developed using a customised Ford
F − 250 pickup truck. The vehicle consist of multiple sensors including a Point
Grey Ladybug3 omnidirectional camera system [102] and a Velodyne HDL−64E
lidar [37]. The truck has drawn around the Ford Research campus and down-
town Dearborn, Michigan to collect the dataset. Visual data has been captured
using only half resolution (1600× 600) of the full capacity of the camera. During
our experiments we utilised the time-registered data in dataset 1 correspond to
ladybug camera and Velodyne. The ladybug camera usually creates spherically
distorted images. Transformations provided by the camera manufacturer are used
to recover the distorted points by ultimately constructing flat images. However
due to the nature of a ladybug camera, usually the proportions of the objects are
not realistic. Especially the area covered by the classes such as vehicles, trees,
buildings and pedestrians are small. Since these objects have a very low sam-
ple size, it was hard to distinguish between them through classification, to the
contrary ground and sky has an enormous amount of training data. Also, these
classes suffer from the low resolution which deteriorates the capability to extract
rich texture features. As we know, texture is highly important in training an ac-
curate classifier especially for the critical classes such as vehicles and pedestrians.
All these reasons make it challenging to train an accurate local classifier for this
dataset. Meanwhile, poorly distributed classes also lack contextual information.
However, we can see that constraint addition still able to do a considerable en-
hancement of the quality of segmentation. Hence it is evident that the a priori
information addition can be highly useful even in the situations with a poorly
trained local classifier.

Method Precision Recall Accuracy F1 Measure

pLDA
classifier 0.6872 0.6645 0.8432 0.6757
QP 0.7462 0.7320 0.9011 0.7390
CQP 0.7651 0.7537 0.9251 0.7593

Table 3.4: Quantitative evaluation on the Ford vision and lidar dataset. The values depict
the overall precision, recall, accuracy and F1 measure for QP and CQP methods.
The result shows that CQP method is distinguishably improved over QP method.
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Figure 3.11: Example images from Ford vision and lidar dataset. This shows that the CQP
does a considerable improvement to the pure image based QP solution.

Runtime Comparison
We start by comparing the runtime required to solve the constrained quadratic

program of Eq. (3.10) directly using NLOPT BOBYQA [48] compared to our
proposed framework. As we can see in Figure 3.12, directly solving the quadratic
program is not feasible for problems of interesting size. On the other hand, our
method scales very favourably with the problem size. Additionally, while typically
increasing the number of constraints makes the problem harder and thus slower
to solve, our method becomes faster with more constraints. This is caused by
the fact that constraints reduce the size of the actual problem we solve. This
means that adding more domain knowledge allows us to improve the quality of
the result as well as speed up the computation.
A typical CRF derived from the KITTI images used in the experiments consists

of 1600 nodes, each of which can have one of seven different labels, which means
we have on the order of 11 200 random variables. Solving this CRF using the
quadratic program formulation Eq. (3.9) (with no laser based constraints) takes
around 2 s while the belief propagation based solution takes 0.5 s. Including the
constraints we can reduce the number of nodes to around 400 which results in
a much smaller number of variables, around 2800. Solving this inference prob-
lem using gradient based method takes around 0.07 s. All computations were
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performed on an Intel Core i5 3.20 GHz processor with MATLAB and C++
implementations of the algorithms. Besides the reduction of the number of vari-
ables involved our method also requires fewer iterations to converge, around 25,
compared to 70 for the purely image based quadratic program. These two advan-
tages, reduction in number of variables and faster convergence gives our method
a significant computational advantage.
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Figure 3.12: The plot shows the time (log scale) needed to find a solution as a function of
the number of nodes in the CRF. NLopt BOBYQA solving the problem directly
scales very poorly while our proposed method is scaling much more favourably.

3.5 Summary

In this chapter we presented a novel image segmentation method based on a con-
ditional random field with additional global constraints which encode a priori in-
formation about groups of nodes having the same label obtained from a secondary
sensor. This CRF is formulated as a relaxed quadratic program whose MAP solu-
tion is found using gradient descent based optimisation. We evaluate our method
on data from the KITTI and Ford datasets. Each image is pre-processed into
super pixels which provide the unary and pairwise potentials of the CRF. The
global constraints on sets of super pixels are obtained from Velodyne data. The
results show that the addition of these hard constraints significantly improves
on the solution obtained without constraints. Runtime comparisons show how
black box solvers do not scale for this problem and how our formulation exploits
constraints in a way which simplifies the problem. Finally, the proposed method
is general and capable of encoding other forms of constraints, such as relative
positioning of classes with respect to each other.
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Chapter 4

Online Learning for Scene Segmentation With
Laser-Constrained CRFs

4.1 Introduction

In the previous chapter a semantic segmentation model was proposed that can
efficiently combine the information from multiple sensors. That model processes
each image independently of all the other images. In this chapter, the goal is to
extend the model to a real time scene segmentation framework so that it can be
used in autonomous driving. The content of the chapter is accepted for publishing
in ICRA 1.
Formerly, we used CRF models to perform scene labelling as they can integrate

local classifiers and smoothness of labels depending on the context. However, ef-
ficient combination of this information is challenging, especially in the context
of autonomous driving, where the robot’s environment is continuously changing.
The ability to efficiently combine features is more important in dynamic than in
static cases. Adaptively and continually learning the CRF parameters is there-
fore coupled with the changes in the data distribution. However, CRF parameter
learning can be painstaking due to complex correlations between variables , cost
involved with inference and gradient computations. Stochastic Gradient Descent
(SGD) algorithms have become an appealing alternative in online learning set-
tings since they use a gradient calculated at a single point or small subset of the
data, instead of the full gradient.
Training CRFs is commonly conducted with fully labelled images. In some cases

partially labelled images are used to train CRFs since it also helps to overcome
issues such as parameter overfitting and over-estimation. However in autonomous
navigation learning is done continuously as new data encountered with no ground
truth available. In this scenario parameter learning is not a trivial problem.
Therefore, it is important to do online parameter-learning by eliminating the use
of manually labelled images. In this setup, we are searching for the best set of

1Charika De Alvis, Lionel Ott, Fabio Ramos. Online Learning for Scene Segmentation With
Laser-Constrained CRFs. In IEEE International Conference on Robotics and Automation
(ICRA), 2017
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parameters for the CRF model to accurately do the image classification of the
current images from a continuous sequence. In other words, we are interested in
finding the best local estimate rather than a global optimum for all past data.
We use information from the camera and laser sensors as a reference to compute
the loss function. By minimising this loss, we obtain a best set of parameters for
the current data distribution (the true input data distribution is non-stationary).
We use a SGD-based approach for the optimisation because it facilitates getting
the best parameter set based on recent data. We demonstrate the performance
of the online parameter learning on the CQP model proposed in [5]. We use real
world street scene data from the KITTI dataset [35]. To summarise the main
contributions of the chapter are:

1. Development of a model to learn CRF parameters by eliminating the need
for ground truth labels. The model derives the reference labels for learning
by pre-processing the sensor information.

2. A stochastic gradient based method to continuously update the parameters
while making the method robust to non-stationary data observed during
long trajectories.

3. Evaluation of the methods on real urban datasets.

4.2 Related Work

A number of approaches have been proposed to efficiently estimate the parameters
of CRF models. Verbeek et al. [111] introduce a method for learning CRFs from
datasets with unlabelled nodes by marginalising out the unknown labels and by
maximising the log-likelihood of the known nodes by gradient ascent. Tsuboi
et al. [109] present a similar work for training CRF using partially annotated
corpora for natural language processing. In [44] the authors develop a hybrid
model for exploiting incompletely labelled data that combines a generative topic
model for image appearance with discriminative label prediction. These methods
target only offline learning of CRF parameters.
For large scale learning problems it is imperative that the algorithms scale well.

Due to the high cost associated with CRF training models, SGD methods have re-
placed batch learning in online settings. The momentum method [83] is commonly
used to help SGD to accelerate in relevant directions and dampen oscillations.
Selecting an ideal learning rate for SGD can be challenging. ADAGRAD [25] is a
first-order method that can efficiently adapt learning rates. This method exploit
separate learning rates for each dimension where large gradients result in smaller
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learning rates and the vice versa. Similar to second order methods, ADAGRAD
can balance the progress in each dimension over-time. This method continuously
decreases the learning rates based on the accumulated gradients over time, which
also provide the effects similar to annealing. ADADELTA [118] is a recent im-
provement which reduces the sensitivity to the hyperparameter selection. This
method uses a learning rate similar to ADAGRAD, but accumulation of the gra-
dients is not done from the beginning of the sequence instead it uses a moving
window which only considers recent set of gradients. This formulation prevents
the continual decline of the learning rates allowing to grow the learning rate when
necessary. SGD has a slower convergence rate compared to the batch gradient
descent methods. To overcome this issue Schmidt et al. [95] apply stochastic
average gradient algorithm which combines the characteristics of deterministic
and stochastic models to train CRFs. They show that this algorithm converges
with a smaller number of iteration than SGD. However, despite this advantage it
is difficult to apply SAG algorithm to models with sophisticated features and a
large number of labels when the number of training examples is small.
In our research, we are interested in online learning for autonomous navigation.

Schraudolph et al. [96] propose a scalable, stochastic quasi-Newton method for
online convex optimisation. Schaul et al. [92] propose a method to automatically
tune learning rates to minimise the expected error at (any)time t. The framework
performs well in non-convex problems. The method is based on local gradient
variations across samples. In this framework, learning rates have the freedom
to grow or decline to make the model robust in non-stationary problems. Our
framework also uses a similar technique to change learning rates to adapt to
changing data distributions but focus on exploiting the robot sensor data.
Fathi et al. [28] propose an incremental self-training algorithm for object seg-

mentation in a video, where they iteratively label the least uncertain frame and
update similarity metrics. This self training video segmentation provide higher
accuracy for foreground identification problems. The approach of [72] consists of
a self-learning algorithm for ground detection. The system automatically learns
to identify salient features which correspond to the ground class. New observa-
tions are labelled by outlier rejection using the past data. Vijayanarasimhan et
al. [112] demonstrate a method to reduce the human effort in video annotation.
They choose k frames for manual labelling to ensure that automatic pixel level
label propagation occurs with minimal expected error. They minimise the effort
required for labelling and correcting propagation errors. All these methods re-
quire some amount of labelling of the data which is difficult to obtain in a real
time navigation task. Our framework omits the need to use labelled data in the
learning process. Instead it attempts to exploit existing sensor information to
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constraint the problem and adjust the parameters accordingly.

4.3 An Adaptive Model to Parse image Sequences

4.3.1 Overview

RGB Image

Frame

Super Pixel

Generation

FCN Classifier

pLDA Classifier

Parameters

(Current)

Constrained

CRF Model
MAP Estimation

Semantic

Segmentation

Laser Point

Cloud

Global

Constraints

Reference Labels Loss Estimation

Parameters

(Locally

Optimised)

Figure 4.1: This flow diagram summarizes the main parts of the framework. As indicated pro-
cessing and feature extraction of visual and laser data is conducted independently
of each other. Later this sensor information has been used to derive reference
labels for the training images. These reference labels are used to minimise the
mislabeling loss while optimising the model parameters.

Figure 4.1 shows the pipeline of our learning framework based on CQP. The
first stage of the framework involves pre-processing the data and extracting visual
and depth based features.

1. Superpixel generation and training a pLDA classifier (described in Chap-
ter 3.3.3) for super pixels and obtaining posterior probability for possible
labelling.

2. Obtaining label prediction for foreground objects using a pre-trained Fully
Convolutional Network based (FCN)[65] classifier.

3. Extracting the laser based segments (described in Chapter 3.3.4 ).

As mentioned in Chapter 3, we initialise by setting all the CQP parameters to
1. Firstly, using MAP estimation of the CQP model we obtain the best labelling
for the superpixels. Secondly, we combine all the information extracted from
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sensors to generate reference labels for the image superpixels. Thirdly the loss
is computed depending on the dissimilarity between the current set of optimal
labels and the reference labels. Stochastic gradient decent is used to update the
parameter set by optimising the loss. The learning process continues in this order
in an online setting while providing locally optimum parameters for the CQP.

Convolutional Neural Networks for Scene Classification

Convolutional Neural Networks [49] are revolutionising the field of image classi-
fication. An image can be directly fed into CNN architectures, which permits to
encode many important properties in the classification process. CNN is encom-
passed with single or multiple convolutional layers followed by fully connected
layers to the end. There are also intermediate pooling layers. Layers of CNN op-
erate in three dimensions: width, height and depth. The main advantage of CNN
is that it has considerably less number of parameters than a conventional neural
network with the same number of hidden layers. To illustrate, the input volume
for a CNN is image width x image height x 3 (for RGB colors) and usually its
output volume tend to be 1 x 1 x number of classes. This is a single vector that
gives the class prediction for the image. CNN has been extended for prediction in
a pixel level. Long et al. proposed fully convolutional networks (FCN) [65] that
can be trained to do pixel to pixel segmentation. FCNs are designed by replacing
last fully connected layers in CNN, by convolutional layers that can classify each
image pixel. Consequently, the size of the output volume becomes image width
x image height x number of classes. Therefore it can provide score for the class
of each pixel. We have used a FCN classifier along with the pLDA classifier to
improve the local classification.

Laser Constraints

The constraints required by the CQP model as well as generating the reference
labels, are extracted from the Velodyne scans. Section 3.3.4 describes the process
of laser based constraints extraction. Then constraints are mapped in to the
image frame and associated with superpixels. Subsequently it can be identified
groups of superpixels that have label consistency within a group.

4.3.2 CRF Based Scene Segmentation Model

The main objective of this chapter is to improve the accuracy of the CQP method
proposed in the previous chapter by adaptive learning. CQP conducts scene seg-
mentation by enforcing a set of global constraints during the optimisation which
makes it more computationally efficient while providing capacity for performing
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in real time. Furthermore, CQP achieves high accuracy in scene segmentation
by utilising only unary and pairwise potential terms. This is attractive because
parameter learning of pairwise CRFs is a extensively studied area.

CRF Model Building

Refer to Section 3.3.5 for the definition of the CRF model. In this stage unary
potentials used in the CQP model are derived by combining two local classifiers.
The pseudo linear discriminant analysis classifier [71] trained in our previous work
(3.3.5 ) is combined with a fully convolutional net based classifier.
pLDA classifier prediction on a node labeling is denoted by φi(ypi ). The pre-
trained FCN classifier has a higher accuracy in identifying classes such as vehicles
and pedestrians of the KITTI dataset. Our goal is to segment the images into
the following seven classes: pedestrians and cyclists, ground, vegetation, build-
ings, sky, vehicles, and unknown. Pedestrians and vehicles classes are associated
with label number 1 and 6 respectively. If the FCN classifier recognised that
a superpixel belong to class 1 or 6 then f(ypi ) = 1 where p ∈ [1, 6]. The set
a = [k|f(y1

k) = 1] denotes the nodes which are recognised as pedestrians by the
FCN classifier. Similarly for the vehicle class, b = [j|f(y6

j ) = 1].
Now we introduce the formulation of unary potentials ψi(ypi ) for the CQP model

by averaging pLDA and FCN classifier outputs. (Note: Averaging is done only
for the nodes which are recognised as pedestrians or vehicles by FCN. Rest of the
nodes are assigned with the values from pLDA classifier alone),

ψk(y1
k) = 0.5(φk(y1

k) + 1) k ∈ a, (4.1a)

ψk(ypk) = 0.5φk(ypk) k ∈ a and p ∈ [2, 3, 4, 5, 6, 7], (4.1b)

ψj(y6
j ) = 0.5(φj(y6

j ) + 1) j ∈ b, (4.1c)

ψj(ypj ) = 0.5φj(y6
j ) j ∈ b and p ∈ [1, 2, 3, 4, 5, 7], (4.1d)

ψj(ypj ) = φj(ypj ) j ∈ V j /∈ a,b p ∈ L. (4.1e)

The selection of the pairwise potential matrix ψ for this setting is given below:

ψi,j =

1 if i = j

0.01 otherwise
. (4.2)

This model is chosen to encourage the neighbouring super pixels to take same
labels.
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Constrained Quadratic Programming

The labelling for y is attained with a maximum a posteriori (MAP) estimation
of the conditional log-likelihood log(P (y|S)) To solve the inference problem effi-
ciently Zhang et al [120] proposed the quadratic programming relaxation which
is introduced in Eq. (3.9). To improve the accuracy of label assignment we added
global constraints over the optimisation problem which is denoted in Eq. (3.10)
(CQP model). This relaxation includes the parameters corresponding the unary
and pairwise terms.
Previously, CQP parameter values linked to all the unary and pairwise poten-

tials were set to 1. In this chapter we are interested in an adaptive model which
has the ability to update its parameters according to the context. The parame-
ter set Θ contains 21 CRF parameters, of those 14 are associated with pairwise
potentials while the remaining seven are linked to unary potentials. All nodes in
the CRF use the same set of parameters,

θpairpq =

θ
ondiag
p if p = q p, q ∈ L

θoffdiagp otherwise
, (4.3a)

Θ = [θunary1 , ....θunaryn , θondiag1 , ...θondiagn , θoffdiag1 , ....θoffdiagn ]. (4.3b)

We modify the CQP problem in Eq. (3.10) by adding the parameter variables
which results in the following optimisation problem:

maximise
∑
i∈S

∑
p∈L

θunaryp ψi(ypi )µi(y
p
i )

+
∑
i∈S

j∈N(i)

∑
p,q∈L

θpairpq ψij(ypi , y
q
j )µi(y

p
i )µj(y

q
j ) (4.4a)

subject to
∑
p∈L

µi(ypi ) = 1 ∀i (4.4b)

∑
i,j∈Ck

∑
p∈L

µi(ypi )− µj(y
p
j ) = 0 ∀Ck ∈ C (4.4c)

0 ≤ µi(ypi ) ≤ 1 ∀i, p. (4.4d)

Here C is the set of laser segments. ypi encodes if node i has been assigned label
p and the label assignment to each node is represented by the indicator function
µi(ypi ). Chapter 3.3.6 describes efficient means of solving the CQP problem us-
ing a dimensionality reduction technique and gradient ascent based algorithm.
When the gradient ascent convergences µi(ypi ) provides the most probable label
assignment to the super pixels.
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4.3.3 Online Learning

In this section we present a framework to optimise the parameters Θ of the unary
and pairwise potentials of the CQP model in an online fashion. We optimise the
loss function, detailed next, using stochastic gradient descent (SGD) which allows
for fast and continue update of the parameters.

Loss Function

Our goal is to minimise the difference between the predicted probability of the
label assignment r to nodes in G against the reference labels z extracted in a
self-supervised manner from image and laser data by selecting the optimal CRF
parameters Θ, i.e.:

Θ∗ = arg min
Θ

l(z,C, r). (4.5)

where Θ∗ is the set of optimal parameters we wish to find and l is the loss function
we need to optimise. r is the matrix that consist of the label prediction from the
CQP model where rkp = µk(yPk ) k ∈ V and p ∈ L. Ideally, we would compare
the predicted result to ground truth labels, as typically done in parameter learn-
ing. However, as we operate in the online setting we do not have access to such
ground truth labels for the newly observed data. Therefore we generate labels
for regions of high confidence on the image based on laser scanner data, fully
convolutional net (FCN) [65] classifier outputs, and pLDA classifier [71] results.
Our loss function is comprised of several components which are introduced

next. The classifier and the laser constraints contain information about recog-
nising classes. Some classes are easier to recognise using the FCN classifier and
vice versa. Hence in order to get accurate reference labels it is important to
extract maximum amount of information correspond to each class. The classes
are associated with a label index. 1- Pedestrians and Cyclists, 2 - Ground , 3 -
Vegetation, 4- Buildings, 5- Sky , 6 - Vehicles and 7- Unknown. The loss function
consist of 3 components.
First component lagree provides a measure of deviation from reference labels.

Here we consider the super pixels that we can predict their labels with a higher
confidence and compare with the labels predicted from the CQP model . Then
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loss is assigned proportional to the dissimilarity,

lagree =
∑

Sj∈Sagree

∑
k∈Sj

λj||rk − zk||2 (4.6a)

Sagree = [S1, S2, S3, S4, S5, S6] (4.6b)

S1 = {k|f(y1
k) = 1 and vk = 1 and k /∈ Ransac Plane } (4.6c)

S2 = {k|φk(y2
k) = 1 and k ∈ Ransac Plane } (4.6d)

S3 = {k|φk(y3
k) = 1} (4.6e)

S4 = {k|φk(y4
k) = 1 and vk = 1 and k /∈ Ransac Plane and f(y4

k) = 0} (4.6f)

S5 = {k|φk(y5
k) = 1 and vk = 0 and f(y5

k) = 0} (4.6g)

S6 = {k|f(y6
k) = 1 and vk = 1 and k /∈ Ransac Plane } (4.6h)

rk = [µk(ypk)]1×n (4.6i)

zkp =

1 if k ∈ Sp
0 otherwise

(4.6j)

zk = [zkp]1×n. (4.6k)

Here vi is a binary variable to indicate if there are any 3D laser points are mapped
on to the superpixel i. As we can see each frame we process will have a varying
number of reliable labels at our disposal since set Sagree is changing from frame to
frame. Sj denotes the set of nodes where we are confident that true label should
be i based on the self supervised labeling process. zkp = 1 if only k ∈ Sp where
p ∈ L in all the other cases zkp is set to zero, i.e. S1 contains the super pixels
that are labelled as pedestrians based on the sensor information. We consider 3
factors in finding superpixels belong to pedestrian class.

• The FCN classifier has a higher accuracy for this class therefore FCN clas-
sifier should predict the superpixel as a pedestrian

• The super pixel should contain projected laser points on it. This implies
that this super pixel can not be in the sky or in a very high level from the
ground and

• The super pixel can not belong to the ground plane.

If a certain superpixel undergo these requirement it can be labelled as a pedes-
trian. Similar rules are used in finding the super pixel sets for the other classes.
The second component of the loss function ldiffer is used in cases where we have

knowledge that a certain label assignment is not possible, i.e. a super pixel that
is observed by the laser cannot be sky. Here we add a loss if the CQP predictions
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assign a label to a less probable class (based on the sensor based knowledge),

ldiffer =
∑

Sj∈Sdiffer

∑
i∈Sj

αj||rk · zbk||2 (4.7a)

Sdiffer = {S1,S2,S5,S6} (4.7b)

S1 = {k|f(y1
k) = 0} (4.7c)

S2 = {k|vk = 1 and k /∈ Ransac Plane} (4.7d)

S5 = {k|vk = 1} (4.7e)

S6 = {k|f(y6
k) = 0}. (4.7f)

Here Sj denotes the set of nodes where we are confident that true label is unlikely
to be j based on the sensor inputs. zkp = 1 if only k ∈ Sp where p ∈ L in all the
other cases zkp is set to zero, i.e. S1 denotes the set of superpixel in which the
true label is very unlikely to be pedestrians. If FCN classifier prediction is zero
for a certain superpixel which means that the super pixel is not in the foreground
of the image. This implies that this super pixel have a least probability to be a
pedestrian. On similar basis S2,S5 and S6 are found correspond to ground, sky
and vehicle class respectively.
Finally for parts where we have point cloud segments we assign a loss, llaser, if
CQP prediction violates the label consistency obtained by the laser segments,

llaser = λl
∑
Cj∈C

∑
k∈Cj

||rk − rk+1||2. (4.8)

Now combining all the three loss components we obtain the total loss for an image
frame,

l = lagree + ldiffer + llaser. (4.9)

Putting these parts together with a regularizer to prevent over fitting we obtain
the following optimisation problem:

Θ∗ = min
Θ

∑
w

l + || exp(Θ)||2, (4.10)

where each w refer to input image index. This type of function is amenable to
optimisation using stochastic gradient descent. For our method we propose to
use ADAGRAD which is described in the next section.
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Stochastic Gradient Decent For Loss Optimisation

As we operate in an online setting where we continuously obtain new observa-
tions, standard batch gradient optimisation methods are not applicable due to
the unbounded size of the data to be processed. Instead, we use stochastic gradi-
ent descent (SGD) which operates on a single observation at a time to optimise
the parameters using the loss function presented in Eq. (4.5).
For each image we compute the stochastic gradient of the loss function with

which we update the parameter vector Θ. To this end, we form a mini-batch
composed of the last consecutive B number of image frames and perform B

number of parameter update steps (1 step per each frame). Mini-batch size is
dependent on the rate at which images are received, resolution of the image and
the required frequency of the semantic segmentation. The values of Θ learnt with
this stochastic process are adapted to the current context of the continuous image
sequence, however, also retain information from the past.
As the learning rate has a big impact on the speed of convergence and quality

of the result we employ ADAGRAD which uses individual learning rates for each
parameter based on past data. The basic equations of ADAGRAD have the
following form:

G =
∑
t

ΛtΛT
t . (4.11)

where Λt = 5l(z,C, r) is the point gradient at iteration t. The gradient is
calculated using central finite differences. With this we can update the parameter
set Θ as follows:

Θ := Θ− ηDiag(G)−0.5 · Λ, (4.12)

where η is the global learning rate, Λ the current gradient, and t the iteration
number.

Even though, ADAGRAD works well in typical large scale problems there are
some drawbacks when using it in an online setting. The main one is that the entire
gradient value history is accumulated which results in a continuously decreasing
step size. In an online settings this means that at some point the parameters
would no longer adapt to changes in the environment. One possible solution is
to use a constant fixed learning rate which would always allow for changes in
the environment to be reflected in the parameters. However, selecting a suitable
fixed learning rate is not trivial and would require a lot of testing for different
scenarios which clearly is not ideal. So in order to preserve good learning rates
of ADAGRAD while still being able to adapt to changes we adopt a procedure
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Algorithm 6: Online Learning Algorithm
// cqp(..)- Function which provides the MAP estimation for CQP
// t - Iteration number
// w - Image frame index
// δ - Threshold value for minimum step size change per iteration
// υ - Threshold value for number of iterations
// G - Accumulated gradient
// Θw - Parameter set correspond to wth image frame
Input: η-Global learning rate , I - Input image , B - Mini batch size
Output: Label assignment y
// Initialisation

1 w = B + 1
2 G = 0
3 Θw = [1]1×21 ∀w ∈ [1, ..B]

// SGD parameter optimisation
4 while Images available do

// Select past B frames and shuffle
5 foreach t ∈ {w −B, .., w} do
6 r← cqp(Θ, It)
7 z← self supervised reference labels of image It
8 C← laser constraints correspond to the image It
9 loss=l(z,C, r)

// gradient of the loss function
10 Λ← dl

dΘ
// gradient accumulation

11 G ← G + ΛΛT
// updating the parameters

12 Θw ← Θw − ηDiag(G)−1/2 · Λ
13 end

// Decide when to reset the step size
14 if ∀τ ∈ [t : t− υ]; abs(Θτ −Θτ−1) < δ then
15 G = 0;
16 end
17 Θw+1 ← Θw

18 y← cqp(Θw+1, Iw+1)
19 w ← w + 1
20 end
21 return y
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similar to [92]. The basic idea is to have a decaying learning rate, but at opportune
moments increase this learning rate again to allow quicker adaptation. In our case
once the learning rate has become sufficiently small for a number of iterations
we set G = 0 which discards all previously accumulated gradient information.
This effectively increases the learning rate and allows the optimiser to adapt to
changes if necessary. In the case the distribution has changed the gradient will be
non-zero and pull the solution to a different local minimum. Similarly, if the data
distribution hasn’t changed the gradients will be close to zero and the algorithm
will not change the parameters.
An overview of the steps involved in our algorithm are summarised in Algo-

rithm 6. For each new image the last B images, typically 5 to 10, are used to
perform the intermediate updates of Θ using the loss value for each individual
image (lines 8 to 14). Next we decide whether or not to reset the step size which
allows us to keep adapting to changes (lines 17 to 19). Finally, we replace the
current parameters with the updated parameters obtained which can be subse-
quently used to classify the next incoming image (lines 20 to 22).

4.4 Experiments

4.4.1 Model Building

In this section we present experimental evaluation of our proposed framework
for online learning of CRF parameters. We compare the results obtained using
CQP with no parameter learning with those obtained using CQP with adaptive
parameters. We use the KITTI dataset [35] as it provides typical image and laser
scanner data collected in urban environments. The data which was collected in
the city of Karlsruhe, Germany using a vehicle equipped with the cameras and a
Velodyne laser scanner provides a variety of scenes and environmental conditions.
The range of the loss function weight values α and λ are chosen through a

grid search. Subsequently, fine-tuning is done manually using training set of 100
labelled images from drive_0091. Intuition behind fine-tuning is the importance
of the each loss component and the reliability of the corresponding reference label,
i.e. if the scene classification model assigns ground label to a unlikely super pixel
that is highly critical for autonomous driving application. Hence weight on this
loss (error) component should be larger, Pedestrians appear less and cover a
small area of the image hence the loss component is smaller compared to the
other classes. Therefore it requires a larger weigh value on this component to
have an equal bias. α values are the weights on each class for the loss correspond
to unlikely labelling. As mentioned in Chapter 4.3.3, we do not define this loss
component for 3-vegetation and 4-building classes because the information from
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α1 α2 α3 α4 α5 α6
0.47 8.00 0.00 0.00 0.20 0.30
λ1 λ2 λ3 λ4 λ5 λ6 λl

1.50 0.47 0.50 0.75 0.50 3.00 2.00

Table 4.1: Overview of the loss function parameters.

the sensors is not sufficient to have solid decisions about these classes on wrong
labelling. Therefore α3 and α4 are set to zero. λ and α values are summarised in
Table 4.1. The base learning rate was set as η = 0.037 which was obtained from
the experiments on the training set.
We use the same features HSV colour histograms, RGB Hog features, and pixel

coordinates as in the previous chapter to train the pLDA classifier using the se-
lected training set. The FCN classifier is a publically available pre-trained model
(pascal-fcn32s-dag) [110] for recognising the foreground objects in an outdoor
scene. The model is trained using the Pascal dataset[27]. We used Matconvnet
[17] environment to run the FCN framework to obtain the class predictions. We
have used the drive_0021, drive_0043, drive_0071, drive_0038, drive_0093
and drive_0095 for testing the algorithm. Every 10th frame in these sequences
are manually labeled for quantitative analysis of the online CQP model.

4.4.2 Results

In the following we present results comparing CQP using fixed parameters and
CQP using parameters that are adapted online using our proposed method. An
overview of the typical behaviour and performance of the proposed algorithm
is shown in Figure 4.2. The top image shows how the online adaptive CQP
maintains a higher overall accuracy in comparison to CQP using fixed parameters.
This is clearly visible in the areas where CQP has drops in accuracy which the
online CQP manages to avoid as it adapts to the changes and as a result doesn’t
drop as much in terms of accuracy. The middle and bottom graph evaluate the
accuracy on the parts of the image for which we have obtained reference labels
(second) and those where we have had no reference label information (third). As
to be expected the result for areas where we had label information is better then
for those where we lack label information, however, the difference is relatively
small. Overall the shapes and trends are quite similar which is a good indication
that the parameter training done on the labelled parts of data influences the
parameters of classes of data without labels in a positive way. One interesting
case are the two drops in performance around the frame #200 and #350. In the
first instance this drop is present in both cases with and without reference labels
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and as a result the online CQP manages to mitigate it. By contrast the second
instance only occurs in the part with no reference labels and as such no parameter
adaptation happens because of it and both the online CQP and fixed CQP reduce
in accuracy. This again demonstrates that parameters updated based on the parts
of the data with reference labels improves the performance in areas where we have
not obtained reference labels.
Figure 4.3 shows selected images of the sequence . Figure 4.4 and Figure 4.5 show
the corresponding reference labels of images A,B,C and D. In the instances A, B
and D the errors are mainly due to the wrong classification of the ground class.
Unexpected noise in the image data(blur images) and changes in lighting can
reduce the accuracy of the local classifier. However when the class prediction is
less accurate in a certain area the error may propagate to a large area through the
enforcement of the laser based global constraints. These occasional reductions in
performance in the CQP can be overcome through the online parameter learning.
The parameters will assist the CQP to find a solution closer to the previous
adjacent image frames without a large deviation and maintain the consistency of
the classification under real world conditions.
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Figure 4.2: Accuracy on a per frame basis for the drive_0093 dataset from KITTI. (Top)
overall accuracy of each frame (second) accuracy of the super pixels for which we
extracted reference labels in a self-supervised manner, and (third) accuracy for
super pixels without label information. Overall the online CQP is able to adapt
the parameters to prevent drastic reduction in accuracy. Comparing the (second)
and (third) graphs one can see that even though the parameters are learned only
on data from the (second) the changes have a positive impact on the (third) graph.
The (bottom) graph depicts the reference labels correspond to each frame. These
labels are derived from local classifier outputs.

85



Figure 4.3: This figure contains the image frames corresponding to the marked points A,B,C,D
in the top graph of Figure 4.2.The result of online CQP is be suggestive of over-
coming the random errors in CQP solution due to illumination and noise

(a) A (b) B

(c) C (d) D

Figure 4.4: Images shows the set of the reference labels derived from the label agreement
of pLDA classifier, FCN classifier and laser segments correspond to the image
A,B,C,D.
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Figure 4.6: The plots show the relative accuracy, i.e. difference in absolute accuracy values,
between CQP using fixed parameters and online CQP. A positive value indicates
that the accuracy of online CQP is better then that of CQP. We can see how online
CQP is outperforming CQP in almost all cases. Big spikes in the relative accuracy
can be explained by a drop in accuracy of CQP that online CQP managed to adapt
to in time.

(a) A (b) B

(c) C (d) D

Figure 4.5: Images shows the set of the reference labels related to label consistency correspond
to the image A,B,C,D . Each color shows where the label assignment should be
consistent. These constraints are derived from laser segments.This label consis-
tency is encouraged in learning process.

The same type of improvements can be observed in other datasets. Figure 4.6
shows the relative change in accuracy between CQP and online CQP, i.e. a pos-
itive value indicates that online CQP is performing better then CQP using fixed
parameters. From these plots we can see the constant gain in accuracy where the
spikes stem from sudden drops in accuracy in CQP which online CQP manages
to mitigate. These results are also verified in the comparison of several perfor-
mance metrics on multiple datasets in Table 4.2. The table shows how online
CQP consistently improves on the results obtained by CQP. This improvement
is typically in the 2% to 3% range, but in a few cases the gain is as much as 6%.
Next we are going to look at the per class performance to see the impact online

CQP has on those. Looking at Figure 4.7 we can see that for very simple classes
such as “ground” there is barely any improvement. For more complex and varied
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Quality Measure Average Precision Average Recall Average Accuracy F1 Score

Method CQP Online
CQP

CQP Online
CQP

CQP Online
CQP

CQP Online
CQP

Dataset0071 0.8440 0.8676 0.8793 0.8987 0.9493 0.9562 0.8237 0.8481
Dataset0095 0.8501 0.8938 0.9350 0.9393 0.9496 0.9642 0.8435 0.8884
Dataset0038 0.7454 0.7860 0.7135 0.7780 0.9317 0.9441 0.7284 0.7814
Dataset0093 0.8534 0.8767 0.8390 0.8624 0.9503 0.9601 0.8458 0.8692

Table 4.2: Quantitative comparison of CQP and online CQP on the test set. Online CQP
shows an improvement over the results of CQP for the image sequences collected
under different environmental conditions, i.e. The dataset drive_0071 has a high
concentration of pedestrians and drive_0095 is collected in an area with higher
vehicle density.

Quality Measure Average Precision Average Recall Average Accuracy F1 Score

Method CQP Online
CQP

CQP Online
CQP

CQP Online
CQP

CQP Online
CQP

Pedestrians 0.8066 0.7994 0.5797 0.7279 0.9233 0.9346 0.5184 0.6375
Ground 0.7223 0.7805 0.9095 0.9379 0.9145 0.9363 0.8335 0.8687
Vegetation 0.8923 0.8949 0.8830 0.8658 0.9705 0.9707 0.8622 0.8624
Buildings 0.9527 0.9515 0.9210 0.9219 0.9050 0.9124 0.8768 0.8888
Sky 0.6674 0.6911 0.8885 0.8960 0.9868 0.9877 0.7435 0.7521
Vehicle 0.8701 0.8987 0.8801 0.8955 0.9123 0.9345 0.8751 0.8955

Table 4.3: Class wise accuracy, precision, recall, and F1 score for CQP and online CQP on
the drive_0093 dataset. Different metrics are improved for different classes which
is dependent on what makes a class hard to classify correctly. However, across the
board the F1 score increases, indicating that online CQP manages to improve on
hard aspects of the classification without sacrificing other areas.

classes this changes. In the case of the “pedestrian and cyclists” class there is
mostly no change, however, when CQP makes large errors the online CQP method
maintains good accuracy. Looking at the “vegetation” and “buildings” classes
we can see that online CQP has a somewhat smoother curve while exhibiting
a positive accuracy offset over CQP. These impressions are also verified by the
numerical evaluation presented in Table 4.3 for drive_0093. For hard classes
such as “Cyclists & Pedestrians” the precision is not improving, however, recall
improves significantly which also reflects in the F1 score. Depending on the class
some metrics remain unchanged while others gain and as a result the F1 score
improves across the board. As such the online CQP method manages to improve
on the challenging metrics for each class without degrading others.
In longer range autonomous navigation the environment changes smoothly

rather then abruptly we evaluated the ability of our proposed method to quickly
adapt to changes in the data. To this end we selected two very different datasets,
drive_0093 which contains mainly vehicles and drive_0071 which has data cap-
tured in a pedestrian zone. These two datasets were processed one after the other
as if they were one continuous data stream. In Figure 4.8 we show the evolution
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Figure 4.7: Accuracy of CQP and online CQP on a per class basis for the drive_0038 dataset.
For easy classes there is little difference, however, in more complex ones we can
see online CQP retaining good accuracy when CQP drops significantly as seen in
“Pedestrians & Cyclists” or has a constant performance offset as in the “Buildings”
class.

of the unary potential parameters of online CQP (top) and on-diagonal pairwise
parameters (bottom) as we process the data. All parameters start with a value
of 1 and we can see how they quickly move to mostly stable values different from
1. Then around iteration 800 the first dataset ends and the second one starts
being processed. We can see abrupt jumps in the values indicating that the SGD
method is able to quickly change parameters if needed. After this short period
of rapid changes all parameters settle again. The actual direction in which the
parameter values move is not necessarily indicative of the scene composition as
the parameter interact in complex ways inside the CQP method itself.
The importance of being able to quickly adapt to changes, even if this is a

rare occurrence, is demonstrated in Figure 4.9 which compares the accuracy of
the first 50 frames after we switch the datasets. We compare the results of
CQP using the same fixed parameters, online CQP which contentiously adapts
its parameters and partial online CQP which adapts the parameters until the
dataset changes, i.e. the parameters at point "A” in Figure 4.8 are used. This
allows us to evaluate how important the ability to adapt quickly is. We can
see that both online CQP methods outperform CQP which is in line with the

89



0 100 200 300 400 500 600 700 800 900 1,000 1,1000

0.5

1

1.5

A

Iterations

θu
na

ry

Pedestrians and Cyclists Ground Vegetation
Buildings Sky Vehicles

0 100 200 300 400 500 600 700 800 900 1,000 1,1000

0.5

1

1.5

2

A

Iterations

θo
nd

ia
g

Figure 4.8: The top and bottom plots show the change of parameters correspond to unary and
pairwise potentials with adaptive learning. The test is done for drive_0093. At
iteration A data sequence drive_0071 is fed to the framework which has different
lightning conditions and class distribution than the previous one. Plots clearly de-
pict that after this sudden change on input data, parameters dramatically change
to adapt the situation.

previous results. The interesting part is the comparison of the two online CQP
methods. In several areas we can observe that the lack of adaptability results in
degraded performance, for example around frame 30 and 40. As such being able
to react quickly to changes in the environment is important to prevent errors to
accumulate over time.
All computations were performed on an Intel Core-i5 3.20GHz processor with

MATLAB implementations of the algorithms. Each parameter update step using
a single image requires 70 ms. As the parameter updates are independent of the
segmentation itself it is possible to perform the segmentation at a higher frequency
then the parameter updates. Furthermore, mini batch size B considered in a
single update step can be chosen in a wide range. As we can see in Figure 4.10
the performance stays very stable with 10 or more images used. This means
that longer range information, from older images, does not negatively impact the
adaptation capability of the algorithm.
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Figure 4.9: Accuracy of the first 50 frames after the new dataset was introduced. Online CQP
continues to adapt, while partial online CQP continues to use the parameters used
at the end of the first dataset (at iteration A) while CQP uses the same initial
parameters. We can see how the continued adaptation allows online CQP to
improve over the partial online CQP. As seen previously both versions of online
CQP outperform CQP using fixed initial parameters.
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Figure 4.10: The plots shows the quality of the segmentation of the image sequence
drive_0038 with online CQP with varying number of images B considered in
each update step.
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4.5 Summary

In this chapter we presented a method that learns the parameters of the unary
and pairwise potentials of a CRF in an online manner. This enables the algorithm
to adapt the parameters based on the current situation which is advantageous in
a life-long learning scenario where it the environment is expected to change over
time. This is achieved by formulating the selection of the optimal parameters as a
loss function using reference labels that are obtained in a self-supervised manner.
This loss function is updated efficiently using stochastic gradient descent with
continuously adapting learning rates. In experiments conducted using data from
the KITTI dataset we demonstrate the benefit in regards of scene segmentation
performance of a CRF that continuously adapts it’s parameters over one with
fixed parameters. Furthermore, we demonstrated that the proposed method can
quickly adapt to changes in the environment.
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Chapter 5

Conclusion

This thesis proposes a framework to efficiently combine multiple modalities avail-
able on robotic platforms to conduct street scene understanding with the ability
to adapt to changes for long-term navigation. The semantic scene segmentation
problem is formulated as a MAP estimation of a pairwise CRF. The solution to
the MAP problem is sought using a QP formulation. QP formulation provides the
flexibility to combine the information from multiple modalities by allowing to in-
corporate global constraints about label consistency. This addition of global level
information increase the accuracy of the segmentation and the computational
cost of inference problem. The adaptability to changing input data is achieved
through parameter learning. SGD based approach is used in parameter learning
while exploiting a self-supervised set of reference labels. Despite the fact that the
framework is proposed for scene segmentation, it is general in nature. Therefore
the proposed methods can be used to combine arbitrary types of a priori infor-
mation about the optimum solution for any problem that can be formulated as
a MAP estimation of a pairwise CRF. Furthermore, the online learning process
described here can be applied to any model that need to adjust to changing input
data given that model has sufficient amount of sensor/input data to interpret its
environment. This chapter summarises the main contributions of the thesis and
discusses interesting extensions to the proposed model.

5.1 Summary of Contributions

5.1.1 Constrained Quadratic Programming Inference

In Chapter 3, we proposed a method to enhance the quality of semantic scene seg-
mentation by incorporating a priori information (possibly from multiple modal-
ities) in the form of constraints. There we formulated the scene understand-
ing problem as a pairwise conditional random field to obtain optimum labelling
through the MAP estimation. Subsequently, we expressed the MAP problem
as a QP problem which permits adding additional constraints to enforce label
consistency. Then we presented an efficient gradient-based method to solve the
constrained QP problem. The proposed inference process reduced the dimension-
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ality of the inference problem dramatically which allows the segmentation to be
performed in real time.

5.1.2 Integration of Visual and Depth Information

In Chapter 3, we demonstrate an application of the proposed CQP model. We
address the issue of combining camera-based visual data and laser based depth
data for outdoor scene segmentation. Since these modalities have different view-
points (due to the physical location), operate in different domains and also lacks
unique correspondence. These facts make it challenging to fuse this information
directly. We use visual features to compute the potential terms of the CQP model
while extracting label consistency constraints from the laser point cloud. In this
manner, the visual and depth information is represented in a single domain which
results in scene labelling that is robust to illumination changes and occlusions.
The efficiency of the model is tested on a dataset gathered by a real robotic
platform equipped with colour cameras and Velodyne laser scanners.

5.1.3 Self Supervised Parameter Learning

Parameter learning is vital in enhancing model robustness to changing input data
distribution. However, learning in an online setting is difficult because the nature
of new observations is unknown because no labelled data is available in online
settings. Therefore, we introduce a method in Chapter 4 which generates refer-
ence labels for the data in a self-supervised manner which allows it to be used for
parameter learning. These reference labels are obtained by exploiting the predic-
tions from a discriminant analysis classifier and fully convolutional net, which are
combined with laser-based label consistency information. These reference labels
are utilised to optimise the CQP parameters by minimising the loss due to the
inaccurate predictions from the CQP model. This learning process improve the
autonomy of CQP method in long-term navigational tasks because it requires a
minimum amount of human supervision.

5.1.4 Robust Parameter learning for non-stationary data
distributions

In real world navigation, robots may encounter entirely new scenes, e.g. areas
with large crowds, areas with heavy traffic and environmental changes due to dif-
ferent weather conditions. Scene understanding becomes problematic due to this
diversity in the situations, which necessitates adapting the scene segmentation
model accordingly. Therefore, we proposed a method to preserve the adaptabil-
ity of parameter learning in long term navigation. We optimised the loss com-
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puted using the reference labels, by implementing a stochastic gradient descent
method that can continuously seek the best set of parameters to the current
circumstances. These locally optimised parameters maintain the segmentation
accuracy in a higher level. To obtain quality results it requires carefully handling
the SGD learning rates. We let the learning rates to automatically decrease the
learning rate using the ADAGRAD method to reach local optimum and also pro-
vide the ability to increase the learning rate when the input data distribution
changes so the parameters can escape the local optimum. The learning is done
with minimum level of human supervision.

5.2 Future Work

In this section, we discuss areas of possible future developments based on the
methods proposed in this thesis.

5.2.1 Local Classification

In our proposed method, we used a linear discriminant analysis classifier combined
with a pre-trained fully convolutional net classifier. The quality of the image
segmentation can be improved by training a new fully convolutional net classifier
for urban street scenes. An advanced unary classifier can increase the number
of superpixels that have reliable reference labels for loss computation as well as
the accuracy of each labelling which again increase the accuracy of parameter
learning.

5.2.2 Global Constraints

In our model, we only exploit label consistency information in the form of global
constraints. Nevertheless, constraints can be modified to impose other informa-
tion such as object co-occurrence statistics. Furthermore, the model performance
can be tested for the cases where it needs to combine modalities other than
camera and laser, i.e. Adding infrared image based constraints along with laser
constraints might lead to interesting results. The thesis has focused on establish-
ing an efficient inference method for QP problems with linear equality constraints
that is used in semantic image segmentation. Still, it would be interesting to dis-
cover efficient means of inference in linear inequality constrained QP problems
in this context. Equally, it might be useful to expand the inference algorithm to
solve nonlinear constraints as well. Sophisticated constraints will facilitate im-
posing more informative priori information about the final segmentation which is
harder to do using CRF potentials.
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5.2.3 Long Term Autonomy

The learning rate of SGD utilised in the thesis is set to decrease over time and
increase when the change in parameters is below a threshold. This technique
assists in adjusting the parameters for unknown environments. It is important to
investigate other possible methods to identify when there is a change in the input
data distribution so the learning rate can be increased accordingly to facilitate
learning the new distribution. It would be useful if we can derive a measure of
the distribution change so we can increase learning rate more meaning fully, i.e.
Selecting the magnitude of the learning rate increment depending on the sharp-
ness of the distribution change. In [92], a method was proposed to increase the
SGD learning rate when there is an abrupt change in the input data distribution
to facilitate parameter learning. Even though, in real world navigation problems
the change of the data distribution is gradual, it might be possible to adapt the
above method to improve the learning rate selection process.
Another interesting area to investigate is building a strong relationship between

consecutive frames over time. The constrained CRF model can be extended
to a hierarchical model connecting multiple images over time. Spatio-temporal
connections will allow the segmentation model to get the use of the past knowledge
as well as enable addition of temporal constraints that can increase the quality
of the segmentation.
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