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Abstract

Online data stream processing in Internet of Things (IoT) systems is an emerging
paradigm that allows users to use resource-constrained IoT devices with the back-
end of resourceful machines to process the data collected from the physical world in
a real-time manner. The huge amount of generated sensor data can produce value-
added information with different purposes for several applications. Techniques to pro-
mote knowledge discovery from the raw data allow fully exploiting the potential usage
of wide spread sensors in the IoT. In this context, using the energy of the resource-
constrained IoT devices in an efficient way is a major concern. However, the appli-
cation of QoS requirements should not be ignored to achieve the purpose of energy
saving at any cost. In this thesis, we propose a framework that combines online stream
data processing with adaptive system control to address both needs. The online algo-
rithms are based on statistical methods to meet the needs of stream data processing.
The result of the algorithms are then used to dynamically control the system behaviour
to meet the needs of energy-saving. Simulation results show the effectiveness of our
proposed framework.
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Chapter 1

Introduction

1.1 General Idea and IoT

Internet of Things (IoT) [1] aims to interconnect physical objects of all kinds, from
people and body parts, to huge civil structures, e.g. buildings, bridges and oil rigs.
Wireless sensor and actuator networks (WSAN) [2] lay the foundation of the Things
layer in IoT systems. These objects will be embedded with small devices, which are
typically battery-powered and equipped with electronics, software, sensors, actuators,
and network connectivity that enable them to collect and exchange environmental data
and to perform simple actions upon the physical world. Such instrumented objects or
things are called smart objects, and their integration with the Internet will enable an
ecosystem of smart applications and services that will improve and simplify the life
of the citizens and contribute to sustainable growth. Hence these devices are responsi-
ble for collecting the environmental data, performing simple processing on such data
and then communicating with higher level systems, e.g. the edge nodes or the cloud
platforms, which can perform more sophisticated computation and data analytics if re-
quired. Typically, sensors collect the physical environment data over a specified time
period to identify phenomena or events of interest to the application.

The nature of the physical world is intrinsically changing, and these changes are
reflected in the data collected and the models built from these data. Due to this feature,
the collected data could be burst, noisy, and unpredictable and thus, it is best modeled
as transient data streams in contrast with the traditional persistent relations of typical
information systems. The distinctive feature of the data stream model relies not on
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CHAPTER 1. INTRODUCTION 2

the structure of each individual data items, which is the same as in traditional models,
but in the stream nature of the produced data: unbounded in size, continuous arrival in
multiple, rapid, time-varying and possibly with unpredictable behavior [3].

Data stream processing systems typically require using on-line solutions (one that
computes its output using only a single in-order scan of its input to avoid unbounded
buffering while still guarantees the result can be calculated in a numerically stable
fashion.) since the valuable information can be acquired on the fly without having
the complete view or even a priori knowledge of the data. The ability to identify
changes in the input data is essential to the success of a stream processing system,
so that the knowledge discovery can be promoted from the raw data in early stage.
Changes may denote an event of interest that consists in general data patterns, trends
in the data distribution, and provides insightful information that can then be used in
further stages of application-specific decision making. At the same time, the early
findings on the data behaviour can be leveraged for the purpose of saving the precious
resources of IoT devices (throughout this paper, IoT devices and sensor nodes are used
interchangeably), increasing the overall cost effectiveness of the system.

1.2 Edge Computing

Data is increasingly produced at the edge of the network, therefore, it would be more
efficient to process the data at the edge of the network. A number of approaches,
such as micro Datacenter, Cloudlet, and fog computing have been introduced to the
community since Cloud computing is not always efficient for data processing when
the data is produced at the edge of the network.

A new approach called edge computing has been introduced to the community
recently. It refers to the enabling technologies that allow computation to be performed
at the edge of the network in a stream fashion, including both the downstream data
process on behalf of cloud services, and upstream data process on behalf of sensing
data.

According to [4], the reasons for introducing edge computing can be illustrated by
following points:

1) The computing power of the cloud cannot cover the increasing needs of the real
world applications, and in some case the data needs to be processed at the edge for
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shorter response time, more efficient processing and smaller network pressure. Thus,
it requires the edge computing to push data from cloud services.

2) The huge amount of data cannot always upload to the cloud in a timely manner,
so it needs to be processed at the edge of the network, which is to pull data from
Internet of Things.

3) Data producer can also be data consumer. A lot of data come from the producer
need to be processed at the same time. The change from data consumer to data pro-
ducer/consumer requires more function placement at the edge. Processing data at the
edge of network can also help to protect user privacy.

Edge computing can thus better handle the real-time data processing requirements,
especially when dealing with large, real-time data streams such as data streams gen-
erated by IoT devices. As a result, edge computing is increasingly used in the IoT
systems.

1.3 Data Stream Processing

A data stream is a real-time, continuous sequence of items with the definition stated
above [5]. In regard to the features of the stream data, there are some unique require-
ments in processing them [6]: 1) the procedure should have no requirement to store
the whole data in the stream to conduct any operation or sequence of operations. 2)
there are built-in mechanisms to action against stream imperfections, including de-
layed, missing or out-of-order data. These data are commonly occurred in real world
data streams. The procedure should not be allowed to have unnecessary wait in delayed
or missing data, which will block or delay the computation. However, when missing
data causes any information loss, the procedure should be able to be aware of it. Be-
sides, an updating mechanism should be involved to deal with out-of-date data. 3) A
data stream is never going to be a whole data set, but the data items are still used to rep-
resent knowledge. Thus, the processing engine should be able to generate predictable
outcomes which are used to carry out required operations for applications. 4) Based on
the previous requirements, each outcome can be regarded as temporary and old result
in the view of the long term run. Thus, the procedure should be able to intelligently
store, access and manage these state outcomes. In this case, the procedure will be able
to monitor the situations or compare and combine the information form the previous
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outcomes with the information from current stream. 5) In related to the resource and
efficiency requirements of edge computing, data stream processing requires an auto-
matically distribution across multiple processors to partition and scale the applications.
6) There should be an optimized balance between quality and the response time of the
results based on applications. Usually, the execution should respond instantly and the
correction action is taken during the long-term run.

Generally, regarding to the actions and communications between billions of devices
that produce and exchange data related to real-world objects of Internet of Things, ex-
tracting higher level information from the raw sensory data captured by the devices and
representing this data as interpretable information, for both the machine and human,
has several interesting applications. Deriving raw data into higher level information
representations demands mechanisms to find, extract, and characterize meaningful ab-
stractions from the raw data. These meaningful abstractions then have to be presented
in a human and/or machine-understandable representation. Our proposal targets on the
low level processing of raw data.

1.3.1 Statistical Methods

Statistical methods allow us to collect, describe, analyze, and draw conclusions from
data. They can be used in a purely exploratory context to describe properties of the
data, but also as estimators for model parameters or in the context of hypothesis test-
ing. For example, for the data distributions that are approximately symmetric, the
mean value is used to indicate the measures of center, which describes where the data
distribution is located along the number line. However, it is also an estimator for the
expected value of a probability distribution from which the data are sampled.

When data distributions are no longer symmetric, e.g. they are noticeably skewed
or have outliers, the mean and the variance are not the best options for describing the
measures of center and spread. Instead, the higher order moments, e.g. skewness and
kurtosis, are the better ones to use to mathematically describe such distributions. Skew-
ness provides the information about the asymmetry of the data distribution and kurtosis
gives an idea about the degree of peakedness of the distribution. More precisely, skew-
ness describes the problem of data asymmetry that whether or not a certain variable is
symmetrically distributed around its mean value. This indicates that an asymmetrical
frequency curve may arise in two cases: 1) the case of homogeneous material when the
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tendency to deviation on one side of the mean is unequal to the tendency to deviation
on the other side; and 2) the case of heterogeneous material consisting of a mixture of
two or more homogeneous materials.

The outcome of kurtosis addresses the structure of the distribution and informs how
much the data is peaked or flat relative to a normally distributed dataset. The reference
standard is zero by using the normal distribution whose excess kurtosis equal to kur-
tosis minus three as reference. And further, we can define certain dataset which have
a highly dispersed data as platykurtic, or one that have the data with higher frequency
of values concentrated near the mean leptokurtic, or one with the data concentrated
around its mean like a normal distribution mesokurtic. Thus for a platykurtic dataset,
the distribution results in a graphical dispersion of lower peak (lower kurtosis) than the
curvature found in a normal distribution. And for leptokurtic dataset, the observation
shows a sharp peak that is more extreme than a normal distribution (excess kurtosis
exceeding zero).

Therefore, statistical methods are widely used for computation of similarities or
patterns in WSAN. Most works usually focus on the mechanism of data analysis but
lack of concerns about the computation capability, efficiency and resource cost. In [7]
the authors introduce an information fusion algorithm based on the statistical concepts
of Kurtosis and Skewness. They proposed techniques to promote knowledge discov-
ery from the huge amount of sensing data are required to fully exploit the potential
usage of WSAN. Employment of such techniques are useful to reveal trends in the
sampled data, uncover new patterns of monitored variables, make predictions, thus
improving decision making process, reducing decisions response times, and enabling
more intelligent and immediate situation awareness. However, it is a centralized two
pass process (explained in the following) for calculating the statistical results which
does not perform well with large data sets in resource constrained IoT devices.

The traditional statistical methods of calculating the statistical moments are known
as the two-pass (a.k.a. off-line) algorithm in the field of computing. They are called
two-pass algorithm since the mean value must first be computed and it will be subse-
quently used in the computation of the higher order moments, which implies the entire
dataset must be retained for every computation. Due to the nature of two-pass algo-
rithms require large storage space and computation resources for big datasets, they are
not suitable to be used in resource constrained devices.

One-pass (a.k.a. on-line) algorithm can be employed to tackle the aforementioned
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issues with conventional two-pass algorithms. In general, a one-pass algorithm is one
that computes its output using only a single in-order scan of its input to avoid un-
bounded buffering while still guarantees the result can be calculated in a numerically
stable fashion. A one-pass algorithm generally requires at most O(n) time and less than
O(n) storage (typically, O(1)). Thus, it is more suitable to be used on those resource
constrained devices for analyzing large-scale datasets on the fly.

1.3.2 Performance Guarantee

To guarantee the accuracy of the outcomes, monitoring mechanisms are widely used
in data stream processing systems. Distribution or value changes may occur in data
stream after a certain period of time, or the distribution of data may be incomplete be-
fore a certain period especially for which generated from dynamic and complex envi-
ronments or applications, yielding different or incorrect processing outcomes. Hence,
the system should be aware of changes in the data or the differences in the outcomes.
Therefore, change detection method is introduced into the systems and is widely used
in monitoring data processing outcomes especially for higher level processing such as
knowledge discovery. Generally, change detector methods continuously monitor the
outcomes by comparing the results, deleting useless results, merging useful informa-
tion and carrying out corrective actions [7].

Early change detectors apply statistical probability methods to compare the inter-
mediate or final outcomes directly and see if there is change in the results. These
advanced probability methods are highly accurate. However, they are lack of adap-
tion ability in modern data processing. Therefore, resent change detectors implement
feedback detection method on the outcomes. In detail, the outcomes are regarded as
prediction outcomes as described above. Thus, new data provide the reference and
decide the accuracy of the predictions. And then, based on the real case reference, the
procedure correction itself in further processing. In this case, the error rate of the out-
comes is obtained. It is regarded as stable if the error rate keeps or decreases because
of the correction actions. That is to say, if there is a significant increase in the error
rate, it is possible that the situation is changing and the procedure should take actions
in regard to the changes. Such change detectors, such as: ADwin [8], SeqDrift [9] are
widely used and well evaluated.
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1.4 Proposal and Contribution

Realizing the full potential of IoT systems requires the development of novel software
technologies to enable the deployment and operation of wireless sensing and control
systems. However, the needs of the effective processing of generated data streams and
the efficient usage of the available resources of devices are normally addressed as two
separated issues. In the context of IoT, considering both needs as a whole is the key to
efficiently process IoT data streams.

To tackle this issue, we propose an online data stream processing approach tailored
to the needs of IoT applications based on statistical methods. Statistics methods are
adopted for their simplicity of implementation and low computational cost. Moreover,
we use the results from our data stream processing approach as the feedback signal for
adaptively controlling the resource usage on IoT devices within the system. By doing
this, our framework can decrease the data transmission of sensor nodes according to
the data stream behaviour, thus saving energy. Meanwhile, the adaptive adjustment
of the system resource usage is triggered at the edge nodes whenever it is necessary
to meet the accuracy constrain posed by applications, which ensures sufficient sensor
nodes are used for data measurements.

In this thesis, we introduce a basic framework and an enhanced framework as the
solutions for the issues stated above. For each framework, the purpose of self-adaptive
QoS-aware energy efficient data stream processing is achieved in different way.

1.5 Thesis Structure

The rest of the thesis is organized as below. In Chapter2, We present the state of
art of the data stream processing system in the context of IoT. And then in Chapter3
and Chapter4, we introduce our basic solution and our enhanced solution. For each
solution, the system model and architecture, algorithm design, and experiment are
provided. In addition, We compare the performance of two solutions at the end of the
Chapter4. Finally, in Chapter5, we draw a conclusion on the work presented in the
thesis and discuss several possibles ways to extend our work.



Chapter 2

Literature Survey

Considering the WSAN data stream processing under IoT context, there are proposals
regrading to different aspects. To tackle the issue we presented above, there are mainly
two areas of works which are about: 1) resource utilized system in WSAN targeting on
such as energy, storage, or life time limitations, under constrain of QoS requirements
such as accuracy, and 2) efficient large data stream processing targeting on the heavy
or over workload, the efficiency or the real-time response time requirements of the
system when facing large amount of the input data. Compared with and inspired by
these works, our thesis aims at filling the gaps these solutions have in tackling the
issue.

2.1 Data Processing

Statistical methods are widely used for computation of similarities or patterns in WSN.
Most works usually focus on the mechanism of data analysis but lack of concerns
about the computation capability, efficiency and resource cost. In [10] the authors
introduce an information fusion algorithm based on the statistical concepts of Kurtosis
and Skewness. It learns the Kurtosis and Skewness value and based on the features for
the shape of the kurtosis and skewness. In detail, the shape of the two values indicate
a rough information on the situation happens in the real application. However, it is
a centralized two pass process for calculating the statistical results which does not
perform well with large data sets in resource constrained IoT devices.

8
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However, the approaches above are both based on the data processing paralleliza-
tion which are not a direct transmission control in regard to the high volume of data.
While there are congestion control in regard to the high volume of data in TCP/IP area
[[11]]. In the work [11], the author introduces an advanced congestion control function
based on cubic function. Based on the transmission flow and load, the protocol adjusts
the threshold for the transmission. And the implementation of cubic function aims at
keeping the transmission allowance around the maximum as long as possible, in order
to fully utilize the transmission resources. The same control idea can be applied to the
wireless sensors networks to increase or decrease the transmission when possible.

2.1.1 Adaptive Data Processing

In respect to the large amount of data in data stream in WSAN networks, there are pro-
posals dealing with the possible transmission or processing congestions. Most works
consider the solutions in related to distribution and task scheduling methods. In [12]
the authors provide an elastic auto-parallelization scheme that can handle stateful op-
erators that works across multiple hosts. A control algorithm is applied periodically
reevaluating the number of channels to be used based on local run time metrics it main-
tains. The control algorithm is designed to decide the increase or decrease the number
of channels used or take no action at any decision point. When the number of channels
to use changes, then a state migration protocol may need to be executed if the paral-
lel region is stateful. However, it is a state based solution, which is not suitable for
WSANs, especially when data transmitted from each sensor is not always at the same
time. That is to say, it is hard to define the state.

The proposal in [13] describes a framework for real-time semantic annotation of
streaming IoT data to support dynamic integration into the Web using the Advanced
Message Queuing Protocol (AMPQ). The real-time annotation framework aims to se-
mantic annotation of IoT stream data by taking into account dimensionality reduction
and reliability. This enables the delivery of large volume of data that can influence the
performance of the WSANs under IoT context.

2.2 Resource Constrained WSAN System

There is a large amount of papers proposed recent years about energy saving in WSANs.
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Firstly, energy efficient system are widely acquired in different applications espe-
cially in industry applications. These applications include Health Care, Manufacturing
and smart grids, Transportation systems, environment, and etc.

In such applications, the system requires the sensors operating autonomously for
a long period of time, ranging from weeks to months. However, every application is
constrained in terms of energy because of the limited battery resources of the sensors
that limits the network lifetime. In fact, it is usually impossible to manually replenish
the sensor motes because of their number, the maintenance cost or the inaccessibility of
monitored regions. Besides, some applications such as health care can tolerate battery
replacement. Although, we believe that the rapid depletion of the battery prevent their
wide adoption. Thus in order to achieve energy efficiency, we present several existing
developments. One way is the automation of monitoring and control systems which is
an important purpose for many utility companies in manufacturing, water treatment,
electrical power distribution, and oil and gas refining.

The Smart Grids is aiming to monitor the energy supply and consumption process
based on the automated and intelligent power system managing mechanism. Potential
application of sensor networks in smart grids are: sensing the relevant parameters
that affecting power output (temperature, humidity, wind orientation, radiation, etc.);
remote detection of faulty components; control of motors and underground cables; and
home energy management [14].

Then regarding to the detail mechanisms on energy efficiency of these application,
existing major methods include:

1) Radio optimization: The radio module is the main component that causes battery
depletion of sensor nodes. To reduce energy dissipation of wireless communications,
researchers have tried to optimize radio parameters such as coding and modulation
schemes, power transmission and antenna direction. Modulation optimization is aim-
ing at finding the optimal modulation parameters that result in the minimum energy
consumption of the radio. For example, Costa and Ochiai [15] studied the energy ef-
ficiency of three modulation schemes. And derived from this, the modulation type
and its optimal parameters that achieve minimum energy consumption for different
distances between nodes. Transmission Power Control (TPC) has been investigated
to enhance energy efficiency at the physical layer via adjusting the radio transmission
power [16].

In CTCA (Cooperative Topology Control with Adaptation) [17], the authors intend
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to regularly adjust the transmission power of every node in order to take the uneven
energy consumption profile of the sensors into consideration. That is to say, a node
with higher remaining energy will increase its transmission power. In this case, the
other nodes are enabled to decrease their transmission power, and thus saving energy.
However, TPC strategy effect not only on the energy but also on the delays, link qual-
ity, interference and connectivity [18]. When transmission power decreases, the risk
of interference also decreases. While on the contrary, delay is potentially increased
because more hops will be needed to forward a packet. Finally, transmission power
influences the network topology because the potential connectivity between sensors
varies.

2) Data reduction: Another approach aims to reduce the amount of data being
delivered to the sink node. Two methods can be adopted jointly: the limitation of
unnecessary samples and sensing tasks because both data transmission and acquisition
are costly in terms of energy.

Firstly, in data aggregation schemes, nodes along a path towards the sink reduce
the amount of data forwarded to it by performing data fusion. For instance, one node
can retransmit the average or the minimum of the received data only. Meanwhile, data
aggregation may reduce the latency since it reduces traffic, which improves the delays.
However, data aggregation techniques may worse the accuracy of the collected data.
Indeed, depending on the aggregation function, original data may not be recovered by
the sink, thus results in the loss of information precision.

Secondly, the adaptive sampling: The sensing tasks are energy consuming and may
generate unneeded samples which affects communication resources and processing
costs. Adaptive sampling techniques adjust the sampling rate at each sensor. However
the application needs are met in terms of the coverage or information precision. The
authors proposed the idea in [19] to adjust the acquisition frequency to the user activity
because it may not be necessary to sample at the same rate when the user is sitting or
running.

Thirdly, network coding (NC) is used to reduce the traffic in broadcasting scenarios
by sending a linear combination of several packets instead of a copy of each packet.
[20] combines the network coding and Connected Dominating Sets to further reduce
energy consumption in broadcast scenarios.

Finally, data compression encodes information considering that the number of bits
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needed to represent the initial message is reduced. It is energy efficient because it re-
duces transmission times as the packet size is smaller. However, current compression
algorithms are not applicable to sensor nodes because of their resource limitations.
Therefore, specific techniques have been developed to adapt to the computational and
power capabilities of wireless motes. Kimura and Latifi [21] have surveyed compres-
sion algorithms specifically designed for WSANs.

3) Sleep/wakeup schemes
Idle states are the major sources of energy consumption at the radio component.

Sleep/wakeup schemes adapt the node activities to save energy by putting the nodes in
sleep mode.

Firstly, duty cycling schemes schedule the node radio state depending on net-
work activities in order to minimize the idle that listens and favours the sleep mode.
These schemes are usually divided into three categories: on-demand, asynchronous
and scheduled rendezvous [22]. Duty cycle based protocols are certainly the most
energy efficient but they suffer from sleep latency because a node must wait for the
receiver awake. Moreover, in some cases, it is not possible for a node to broadcast
information to all of its neighbors because they are not active simultaneously. Finally,
fixing parameters like listen and sleep periods, preamble length and slot time is a tricky
issue because it influences network performance. For example, a low duty cycle saves
a large amount of energy but increase communication delays. Thus, protocol parame-
ters can be specified prior to deployment for simplicity, although this leads to a lack of
flexibility.

Secondly, topology control: When sensors are redundantly deployed to ensure
good space coverage, it is possible to deactivate some nodes while maintaining net-
work operations and connectivity. Topology control protocols exploit redundancy to
dynamically adapt the network topology, based on the specific requirement for appli-
cations in order to minimize the number of active nodes. Indeed, nodes that are not a
must for ensuring connectivity or coverage can be turned off to prolong the network
lifetime. Misra et al. [23] posed a solution being capable of maintaining network cov-
erage while minimizing the energy consumption of the network by activating only a
subset of nodes.

In a recent work [24], Karasabun et al. consider the problem of selecting a subset
of active connected sensors based on the correlation of data. This is very useful in
some applications like environmental monitoring, when the sensed data is location
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dependent. In this case, the data of inactive nodes can be inferred from those of active
nodes due to the spatial correlation. Besides, other proposals for selecting active nodes,
as [15] and [25] introduce algorithms for node selection by analysing the correlations
between sensor nodes. The algorithm in [15] extracts a subset of active nodes that
provide the required sensing service within error threshold, and then let the rest of
the sensors go to a sleep mode. In [25] the authors proposed an application specific
method for selecting sensor nodes. The proposal considers the different interests of the
applications and selects sensors accordingly. However, these works do not take into
account the changes occurring in the environment, which means that they might lose
track of important information.

2.2.1 Self Adaptive System

There are many previous works about self adaptive system, in terms of the considera-
tion of QoS requirements and the requirement of intelligent adjustment for example in
selecting active sensor nodes. In [26], the authors describe a self-adaptive middleware
for WSN. They use MAPE-K (Monitor, Analyze, Plan, Execute) feedback loops to
adapt the WSN behaviour, within which the adaption is triggered whenever predefined
events, considered as node context information, are detected. The adopted decision
mechanism does not explicitly consider the stream nature of the produced data nether
the characteristics of data distribution. Therefore, their solution is prone to cause the
loss of important data or information, especially when changes happen in the environ-
ment.



Chapter 3

Basic Data Stream Processing
Framework

This section provides an overview of an IoT system with support of edge comput-
ing infrastructures used in our work. The system architecture is shown in Figure 3.1.
As depicted in the figure, our system contains two distinct physical tiers, namely the
Things tier (left side) and the Edge tier (right side). The Things tier encompasses the
IoT devices deployed in the monitored geographical area. They are responsible for
collecting the physical phenomenon of interest and sending the collected data back to
the Edge tier for further processing/analysis. Based on the detected changes/pattern-
s/behavior of the collected data, Edge devices adjust the data sending rate to be used by
the IoT devices. We assume that all the IoT devices have a valid communication path
to reach Edge tier. Communication interference between IoT devices is not considered
in this study. The Edge tier [27] encloses the more resourceful devices, e.g. smart gate-
ways, clusters, and micro/macro datacenters. We do not make any assumption about
the features of the edge nodes, but we do consider that edge nodes have no constraint
on energy supply and are equipped with more storage space and powerful processing
units than IoT devices.

3.1 Problem Description

The main issue to be addressed in our system v1 is twofold, 1) how to save energy
of the IoT devices by adjusting the data sending rate, which denotes the number of

14
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Figure 3.1: A two-tier IoT systems model

times the collected data is sent from sensor nodes to the edge node in a given time
period, while still meeting the application QoS requirements, and 2) how to enable
the geospatial data stream processing in an online manner, and then to aggregate the
streams in a mathematical stable way for allowing further knowledge discovery.

3.2 An Energy-Efficient QoS-Aware Online Data Stream
Processing Framework

In this section, we first introduce our proposed framework from a system design per-
spective, which indicates the design and the expectation on how the system executes
the adjustment. And then we detail the system architecture and operation including
the functional components of the framework, and how each component works with the
others in meeting the requirements.

3.2.1 Overall system design

The overall system adjustment and control is designed based on the energy control
requirement, as shown in Fig.3.1. The target control is set to be the transmission
between the sensor node and the edge node.

In detail, the sensors are expected to have two active modes, active or sleep. This
is an action aiming at control the transmission by turning off the transmission of se-
lected sensors. Further more, for active sensors, there are two working modes, lower
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Figure 3.2: Adjustment Design

sending rate or default sending rate. By decreasing the sending rate, we further reduce
the transmission from the sensors to the edge. Therefore, there are two decisions the
system needs to make for adjustment, the sending rate and the active sensors. The
sending rate decision is made by each sensor and the active sensors decision is made
on the edge.

More precisely, the adjustment of the active sensors is triggered by the kurtosis and
skewness value calculated on the edge node, and is monitored by a change detection
method that aims at preventing any loss of important information caused by the reduc-
tion of active sensors. And the adjustment of the sending rate is triggered by a change
detection result detected on the raw data, and is represented by a time based window.
A detailed adjusting mechanism will described in the following section.

Note that, the control of transmission does not affect on the data collection, which
means the sensors will work normally in collecting data, while being controlled in the
sending of collected data.

3.2.2 System architecture

The main components of our proposed framework are shown in Fig.3.3. The functional
components located in the sensor nodes are responsible for processing the individual
streams generated by each sensing device, while the functional components located in
the edge nodes are responsible to process all data streams sent from the Things tier.

In the sensor nodes, four functional components are implemented, namely data
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Figure 3.3: Basic System Architecture

collector, data sending rate controller, data transmission controller and γ updat-
ing calculator. The data collector is responsible for sensing the events of interest
occurred in the physical world and convert them into raw data. Once raw data is col-
lected, it will firstly be passed to the data sending rate controller, which contains
two methods: 1) the well-known change detector and estimator ADWIN [8] adopted
to serve as first step to detect changes in the distribution of the input data, and 2) the
adaptive window method serves as the second step to determine the data sending rate
by extracting the incoming data with a temporal sliding window. The size of the sliding
window (a time-based window denoting the time interval of data sending) will dynam-
ically control the data sending rate. ADWIN uses two data sets to detect the change:
a reference data set that summarizes the past information, and a target data set sam-
pled over the most recent input. Whenever these two data sets exhibit distinct enough
means values, the algorithm concludes that the expected values within those sets are
different, and a change is detected. Upon receiving a detection result, the adaptive win-
dow method calculates the new window size. If there is no change, the window size
is increased, otherwise, the windows size is decreased. The new window size is then
sent to the data transmission controller to decide the sending rate accordingly. Then
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under the sending rate decision, the data that is taken into account the transmission
will be forward to the γ updating calculator. Finally, the calculated result of a sensor
node will be sent to the edge node with the determined sending rate.

The edge nodes also host two functional components, namely, kurtosis and skew-
ness calculator and active sensors decision. The data sent from the sensor nodes is
the results of γ values. They are forwarded to the kurtosis and skewness calculator
to enable combining higher order moments of multiple time-histories (denoting data
sent by the different IoT devices present at the Things tier). By doing this, it offers a
mechanism to reanalyze data and detect the long-term trends in the underlying process.
It also has the salient features over traditional time and frequency analysis, e.g., lower
sensitivity to the noise, and easy and convenient analysis of the results [28]. After-
wards, the result is used as the input for the active sensors decision component. In this
component, the result will first be passed to the change detection method (ADWIN);
if no change is detected, the result will be passed to the method of K&S (kurtosis and
skewness) monitor. The principle of change detection on the edge nodes is the same as
the one performed on sensor nodes, but the data input changes from raw data to higher
order moments. This step aims at detecting the change that cannot be done at a single
sensor. For example, if the change on the input does not cause any significant change
on the mean value but changes where data is concentrated and that should be consid-
ered as a different phenomenon (or set of phenomena). By phenomenon, we mean an
event that generates data within a specific range.

Then the K&S monitor is used to determine the number of sensors to turn off. The
minimum number of active sensors that should be kept to assure the system operates
properly depends on the application.

Our framework focuses on the data sending rate adjustment due to the fact that
communication is the major energy consumer of sensor nodes [29]. For collecting
events of interest, the sensing rate of things always remain the same at all times.

Thus the implementation of the change detection algorithm follows in two stages,
one over the raw data collected by the devices and the other on the statistical moments
resulting of calculating the kurtosis and skewness of collected data, thus representing
the data distribution. The detection on the raw data occurs inside each sensor node,
as part of the local management at the Things tier, and has the goal to save energy of
devices while respecting the application QoS. The outcome of the detection process is
used as an initial monitor value to trigger adaptations in the window responsible for
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reduction/increase/keep control of the sending rate. The detection on the two moments
takes place at the Edge tier and it is used to check changes from a global view. In such
step, the goal is identifying similar patterns in the data produced by different sensor
nodes.

Such similarity denotes potentially redundant sensors that can be turned off for
purposes of further saving energy. In order to ensure the control of accuracy, we will
always need the very real data with no sampling out to monitor the accuracy, the turning
off of sensors turns off the sending transmission only, with the sensors still collect data
and detect change and follows the control rules inside the sensors described above.
Here, a second window regulates the number of active nodes based on the result of this
change detection process at the edge nodes.

3.3 Methodology and Algorithm

This section describes the methodology of our solution and the pseudo code accord-
ingly.

3.3.1 Online stream data processing

This section explains the rationale of our online solution for data stream processing so
as to enable the mathematical stable higher order moments combination at the edge
node, and to avoid the loss of precision on significant digits like the naive one-pass
algorithms that use the sum of powers of the samples for the estimation of central
moments [30].

Mathematically speaking, the initial pth order raw moment mp and the central mo-
ment θp of a given set ϕ that composed of discrete data x ∈ ϕ, are computed as below
[31]

mp =
1

n

∑

x∈ϕ
(x)p (3.1)

θp =
1

n

∑

x∈ϕ
(x− µ)p (3.2)

where n is the sample size and µ is the sample mean. Thus, the computation of the
first four statistical moments [31] is shown below:



CHAPTER 3. BASIC DATA STREAM PROCESSING FRAMEWORK 20

µ =
1

n

∑

x∈ϕ
x = m1 (3.3)

σ2 =
1

n

∑

x∈ϕ
(x− µ)2 = θ2 (3.4)

α3 =
1

nσ3

∑

x∈ϕ
(x− µ)3 =

θ3
σ3

(3.5)

α4 =
1

nσ4

∑

x∈ϕ
(x− µ)4 =

θ4
σ4

(3.6)

where µ, σ2, α3, and α4 denote the mean, variance, skewness and kurtosis of the data
sample, respectively, and θ2, θ3, θ4 are the central moments.

The above mathematical methods of computing the statistical moments are known
as the two-pass (offline) algorithm in the computing field. They are called two-pass
algorithm since the mean value must first be computed in the first pass, and then the
powers of the deviations from the mean are computed in the second pass, which im-
plies the entire dataset must be retained for every computation. The computational
demand regarding to one of these moments is a strong function of the number of times
a sample is raised to a power. Two-pass algorithms normally require large storage
space, intensive computational resource, and multiple access to the datasets. Thus,
they are not suitable to be used in resource constrained devices, particularly for data
stream processing.

On the contrary, one-pass (online) algorithms can be employed to tackle the afore-
mentioned issues present in the two-pass algorithms. By one-pass algorithm, we mean
that an algorithm can compute its output using only a single in-order scan of its input
to avoid unbounded buffering while still guaranteeing the result can be calculated in
a numerically stable fashion. A one-pass algorithm generally requires at most O(n)

time and less than O(n) storage (typically, O(1)). Thus, it is more suitable to be used
on the resource constrained devices for analysing large-scale datasets on the fly.

Our solution is a robust one-pass computational statistical method, which aims at (i)
computing the statistical moments without requiring the entire dataset to be processed,
and (ii) enabling a straightforward combination of higher order moments from multiple
data streams. This method uses variables γp that are easily combined by addition. After
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combination, the new variables are inversely transformed back to four raw moments
now describing all the data, from which the statistical moments are easily calculated.

New pth order moment addend variables, γp, are first introduced to enable straight-
forward combination of the statistical moments as below:

γp =
∑

x∈ϕ
(x)p (3.7)

where γ0 = n.
The relationship of γp and the corresponding raw moment mp can be represented

by:

γp = nmp = γ0mp (3.8)

This procedure is a recursive function to calculate the latest value of γp for each
stream. The latest value of γp from streams will then be combined for getting the higher
order moments. So for each sensor in the sensor network, input x is obtained, and thus
the gamma values are calculated whenever new data comes in. If Q sets of γ0,q are
known, for q ∈ (1, 2, · · · , Q), then each γp can be represented by the equivalent p raw
moments:

γp,q = γ0,qmp,q (3.9)

One of the benefits of expressing the statistical moment by γ is that the Q sets can
be readily combined by a simple addition operation, and no upper bound is set for the
value of Q,

γp,c =
Q∑

q=1

γp,q (3.10)

where the subscript c represents the combined γp.
According to this feature, for a Q sets of sensor nodes with each having input data

of x, we can have their latest γ values. Thus, an online calculation of γ for individual
sensor node from the Q sets is achieved, and the γ values of the whole Q sets of data
can also be obtained on the fly.

These combined values from Eq.(3.10) can be transformed into raw moments by
applying Eq.(3.8), then we have:
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mp,c =
γp,c
γ0,c

(3.11)

Note that mp,c represents the raw moments for the Q sets of x and is not necessarily
equal to the sum of mp,q. By now, we have the raw moments for the input data form
all the sensors required.

According to Eq.(3.1) and Eq.(3.2), we have the well-known mathematical rela-
tionships between mp and θp and thus the combined three central moments are ex-
pressed as:

θ2,c = m2,c −m2
1,c (3.12)

θ3,c = m3,c − 3m1,cm2,c + 2m3
1,c (3.13)

θ4,c = m4,c − 4m1,cm3,c + 6m1,cm
2
2,c − 3m4

1,c (3.14)

Finally, the statistical moments are computed as in Eq.(3.4) – (3.6):

σ2
c = θ2,c,α3,c =

θ3,c
σ3
c

,α4,c =
θ4,c
σ4
c

(3.15)

The pseudo codes of the online data stream processing shown in algorithm 1, 2
respectively present how we can achieve Kurtosis and Skewness. They can be summa-
rized as 1) updating the four intermediate values γ1−4, 2) summarizing these four vari-
ables respectively using Eq.(3.10) and have the value for γ1,c−4,c, 3) converting γ1,c−4,c

to the first forth raw moments m1,c−4,c using Eq.(3.11), 4) calculating the central mo-
ments θ2−4 using Eq.(3.12) - Eq.(3.14), and 5) computing the Kurtosis and Skewness
using Eq.(3.15).

3.3.2 Energy-efficient system behavior controllers

To achieve energy efficiency, the adaptive window technique is used to decide the data
sending rate on the sensor nodes in our system. The larger the window size is defined,
the lower the data sending rate is set. The pseudo code of the adaptive window is
shown in Algorithm 3.
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Algorithm 1 UpdateGamma
Input: x, γlast; // input data stream; γlast: previous round γ values;
Output: γ1, γ2, γ3, γ4; // the calculated γ values;

1: for each data stream do
2: γ1p = x+ γ1last ;
3: γ2p = x2 + γ2last
4: γ3p = x3 + γ3last ;
5: γ4p = x4 + γ4last
6: γ ← {γ1p , γ2p , γ3p , γ4p}
7: end for
8: return γ

Algorithm 2 Combination
Input: γ1, γ2, γ3, γ4, ni //n: data sensed for each sensor
Output: Skewness, Kurtosis

1: Initialization: activeSensors← default
2: N ←

∑
n // N: total number of sensed data

3: m1 ←
∑

γ1
N ;

4: m2 ←
∑

γ2
N ;

5: m3 ←
∑

γ3
N ;

6: m4 ←
∑

γ4
N ;

7: θ2 ← m2 −m2
1;

8: θ3 ← m3 − 3m1m2 + 2m3
1;

9: θ4 ← m3 − 4m1m3 + 6m2
1m2 − 3m4

1;
10: Skewness← c3

c
3/2
2

;

11: Kurtosis← c4
c22
;

12: return Skewness,Kurtosis

Inspired by [11], we choose the cubic function as the utility function to control the
behaviors of our adaptive window. The general form cubic function can be represented
as W = f(x3) = ax3 + bx2 + cx + d, where a is a nonzero coefficient. An inflection
point separates the curve of the cubic function changing from concave to convex, and
thus leads the window size W to change sharply when it is far from inflection point,
and smoothly when it is close to the inflection point. To better control the change of
window size, we use the following modified cubic function as our utility function.

W = S × t3 +Wref ,W < Wmax (3.16)

where S is the cubic parameter used to determine the general convergence speed, and
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Wref is the reference window size to decide the position of the inflection point. In
addition, t is the time step, Wmax is the maximum window size set by the different
requirements of the applications.

Algorithm 3 Adaptive window
Input: x or Kurtosis and Skewness
Output: W

1: Initialization: W ← 0,Wref ← 0,∆t← 0, S, β, tstep
2: change← Adwin(input)
3: if change then
4: W ← Wcurrent(1− β)
5: if Wcurrent < Wref then
6: Wref ← Wcurrent(2−β)

2
7: else
8: Wref ← Wcurrent

9: end if
10: else
11: if Wcurrent < Wmax then
12: W ← S(t−∆t)3 +Wref

13: else
14: W ← Wmax

15: end if
16: end if
17: return W

As mentioned before, ADWIN is used to detect changes in data streams. When a
change is detected, it indicates that a potential change in the input is happening. Thus,
the algorithm needs to stop decreasing the data sending rate and determines the new
window size. The new Wref is determined by two different scenarios. If the window
size Wcurrent is larger than the reference window size at the time of the change occurs,
Wref is set to Wcurrent, Otherwise, Wref is set by the following equation:

Wref = W
2− β

2
(3.17)

where β is a decreasing factor. This action of reducing the reference window size
without setting to Wcurrent slows down the increase of the window size afterwards. It
indicates that changes are more likely to occur if the window size has not reached the
reference window size. And thus efficiently prevent missing a detection of change.

In summary, the adaptive window works as below:
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W =

⎧
⎪⎪⎨

⎪⎪⎩

S(t−∆t)3 +Wref , (nochange,W < Wmax)

Wmax, (nochange,W ≥ Wmax)

Wcurrent(1− β), change

(3.18)

where t = 0, tstep, 2tstep, ... or equal to the natural elapsed time, δt is the time period
that the above function takes to increase Wcurrent to Wref when no further change is
detected and it is calculated by the following equation:

∆(t) =
3

√
Wref −W

C
(3.19)

At the edge node, the output of ADWIN is used as the input for K&S monitor to
decide the number of active sensors. The pseudo code of K&S monitor is as below.

Algorithm 4 Active Sensors
Input: Kurtosis and Skewness
Output: The Number of Active Sensors

1: if (!Adwin(input)) then
2: numActiveSensors← K&S MONITOR(input)
3: // if no change, the Active Sensors update decided by the K&S Monitor
4: else
5: Reset the Number of Active Sensors, and recalculate Kurtosis and Skewness
6: end if
7:
8: function K&SMONITOR(kurtosis, skewness)
9: if (|skewness| > S1 then

10: if kurtosis ≤ K1 then
11: numActiveSensors← V alue1 //New active sensors number
12: else
13: numActiceSensors← V alue2
14: end if
15: else
16: numActiveSensors← V alue3
17: end if
18: end function
19: return numActiveSensors

The values of kurtosis and skewness mostly reveal the phenomenon situation on the
monitored area. Based on the values, it is possible to have a rough idea about the states
of the monitored area so as to decide the number of active sensors accordingly. For
example, on one hand, we can have the case that all sensors are collecting data related
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to a single phenomenon and, thus, it is possible to decide to keep a small number of
active sensors. On the other hand, we can have the extreme case where all sensors are
collecting data related to different phenomena, and thus, it is not possible to turn off
any sensor.

To determine phenomena, we will first use skewness. If the data stream has a
moderate skew, this means that there are one or more phenomena on the monitored
area with very different data ranges. In this case, the multiple phenomena can be easily
identified. Thus, the number of active sensors can be kept low but the sensors cannot
be turned off all at once since it would change the kurtosis and skewness. Unlike the
moderate skew case, a strongly skewed data stream indicates that multiple phenomena
are taking place on the monitored area with close or overlapping data ranges. The
distinction among phenomena with more or less concentrated overlapping is provided
by the kurtosis index.

For given kurtosis, the shape of the peak can be used to indicate the number of
occurrences of a certain situation. To better identify them, we utilize the concepts of
platykurtic and leptokurtic from [31], which platykurtic means the data with a negative
exceed kurtosis compared to the normal distribution, and the opposite for leptokurtic.
Thus, the more often a certain situation occurs, the more leptokurtic is the data stream
(which means that the more a certain data is generated, the greater is its concentra-
tion). Note that the more precise threshold to classify the kurtosis can be application
specified.

A leptokurtic data stream indicates that the data are more concentrated. If not a
single phenomenon is occurring, there are multiple similar phenomena that share close
or overlapped data range, and even at the same time sharing a similar concentrated area.
In this situation it is harder to differentiate the phenomena. Therefore, the adjustment
of active sensors should be treated cautiously, which means that the number of active
sensors should be kept high. A platykurtic data stream indicates different phenomena
with close data ranges, but concentrates at different data ranges. This indicates that the
data distributes more evenly. In this case, it is easier to differentiate the phenomena
than the laptokurtic ones. The number of active sensors can thus be kept lower.

The classification result is then used to decide how the system adjusts the number
of active sensors. And this is decided by the K&S Monitor which is, as mentioned
above, triggered by the change detection result on the edge node. Note that in the
current version of our algorithm, we simply set the number of active sensors to be a
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fixed value instead of dynamically change it. Under the decision of the number, the
system randomly selects this number of sensors from the original set of sensors.

3.4 Performance Evaluation

We wrote our own simulator in Java language to implement the proposed framework
and evaluate its performance. We performed the experiment considering 200 sensor
nodes geographically deployed and two Smart Grid applications used in [10]. One
application is the overhead power line monitoring and the other is battery monitoring
used on the transmission towers. A transmission tower is a tower used to support an
overhead power line. An overhead power line is an electric power transmission line
suspended by towers. The overhead power-lines are the most common mean to trans-
mit energy. In the Smart Grid context, the transmission tower is also responsible for
storing energy using local batteries. The main goal of the performed experiments is to
evaluate 1) the adaption mechanism in terms of its correctness and its responsiveness,
including the details how the system has adapted itself to, how the change detectors
work and whether the system response is correctly and timely regarding to the applica-
tions, and 2) the system performance in terms of the accuracy (expressed by the error
rate of the system outputs to the predefined real cases) and energy saving (expressed
by the energy consumption rate to the initial consumption without adjustment).

In our experiment, two applications share the same information (temperature), but
with different data ranges, and are yet correlated. For evaluating the system perfor-
mance, we set up four time slots, namely, T1, T2, T3 and T4. Each time slot represents
a particular state of the applications along the time, denoting a particular event to be de-
tected. T1 represents ideal conditions for both applications (a safe condition). T2–T4
represents an overheated scenario for the overhead power line, the battery temperature
or both. We conducted three experiments and each of them contains a transformation
from the ideal case to a worse one, e.g., T1→T2, T1→T3 and T1→T4.

In T1, applications generated a highly skewed but platykurtic data stream. In T2,
applications generated a highly skewed but leptokurtic data stream. In T3 and T4,
moderate skewed data streams were generated. In our experiments, 100 sensors are
used for the battery and another 100 sensors for the overhead power line. By default,
all sensors collected data and sent to the edge node in every 15 seconds, as suggested by
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[10]. Battery and overhead power line temperatures changed according to the thermal
models presented in [32]. The thresholds used in in the K&S Monitor for classifying
the Skewness and Kurtosis are set to |0.5| and 0 (the exceed Kurtosis value). All data
points are averaged over 500 simulation rounds, and each round lasts 120 hours.

Temperature Range
T1 T2 T3 T4

Battery 40 ◦C-65 ◦C 65 ◦C-75 ◦C 40 ◦C-65 ◦C 65 ◦C-75 ◦C
Power Line 40 ◦C-144 ◦C 40 ◦C-144 ◦C 144 ◦C+ 144 ◦C+

Table 3.1: Temperature Range

Situations Avg.Sending
Rate

K&SMonitor output
Number of Active Sensors Transmitted

Data
Error
RateInitial Situation1 Situation2

T1→T2 30 s 200 100 (T1) 140(T2) 15% 1.5%
T1→T3 30 s 200 100 (T1) 80 (T3) 15% 1.2%
T1→T4 30 s 200 100 (T1) 80 (T4) 14% 0.4%

Table 3.2: System Adjustment Output (Transmitted Data is the total percentage of
transmitted data comparing to the number of collected data)

Situations
CDDT:

SN Avg.CDER:
SN

CDDT:
EN

CDER:
ENMax Avg.

T1→T2 95 s 47 s 0.04% 17 min 0.25%
T1→T3 240 s 63 s 0.02% 1 min 0.26%
T1→T4 45 s 37 s 0.02% 20 min 0.29%

Situations
K&SMonitor Error Output

Situation 1 Situation 2
Length End Length End

T1→T2 64 min 146 min 38 min 221 min
T1→T3 73 min 151 min 37 min 203 min
T1→T4 70 min 160 min 22 min 138 min

Table 3.3: Change Detection and K&S Monitor Performance (CDDT: change detection
delay time, CDER: change detection error rate, SN: sensor node, EN: edge node)

3.4.1 Evaluate the performance of adaptation mechanism

We firstly evaluate how the system adapts itself accordingly to the predefined changes
which are represented by significant drifts in the data values that move the distributions
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to new states. Table 2 summarizes the results of the adjusted sending rate (15s→30s)
and the number of active sensors. Table 3 analyzes the change detection on the sensor
and the edge node, in respect to the detection delay and detection error. The ”K&S
Monitor Error Output” in Table 3 shows the time period of the incorrect classification
decision last and when it ends. They always happened at the beginning of the experi-
ment while the amount of input data is insufficient so that leads to a misclassification.
However, these mis-classifications end up very shortly once our system has enough
input. According to these two tables, our system adapts well to the changes happening
in the system.

3.4.2 Evaluate the change of the adaptive window

In this experiment, we specifically demonstrate how the window size is increased/de-
creased according to the predefined changes. For illustration purpose, we present how
the window size (time interval of data sending) changes during the run time for two
randomly selected sensors as example. Fig.3.4 clearly shows how the adaptive window
method performs on these two sensors during a long period of time. Also, we selected
four critical time points (A, B, C, and D) to further explain how the sensors behave. At
time A, the system adjusted the number of active sensors when a change was detected
and the sensor No.1 was turned off accordingly. At time B, a change was detected on
the sensor No.32, so the window size was reduced. Then from B to C, a clear win-
dow size growth curve was occurred after a change was detected. Finally, at time D, a
change was detected on the edge node and thus triggered an adjustment on the number
of active sensors. This resulted in an activation of sensor No.1, and a turning off of
sensor No.32.

3.4.3 Evaluate the energy saving with accuracy

Finally, we studied how the change of the amount of processed data affects the data
accuracy and the energy consumption. To do so, we compared these values when using
our proposal to the reference original produced data stream (without the controlling of
the sending rate and active nodes). We implemented the energy model presented in
[33], and simulated the energy consumption of 1) sensing, 2) sensor logging, 3) data
transmission and 4) data processing. We measured the data accuracy by using the
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Figure 3.4: The change of window size for two sample sensors

metric of error rate, which is defined as the results of kurtosis and skewness computed
by our system, compared to the result computed by the two-pass algorithms using the
full original data stream. The results of data accuracy and energy saving are shown
in Fig.3.5. From the figure, we notice that: 1) the reduction of the total amount of
processed data decreases the energy consumption but increases the error rate, which
means loss of accuracy, 2) We achieve a significant energy saving with certain tolerance
of error rate. The best case in our simulation consumed almost only 0.3% of the initial
energy, with the worst error rate about 5.5%. And upon the best accuracy with an error
rate of 0.034% (kurtosis) and 0.068% (skewness), the system consumed nearly just
half of the energy consumption of the benchmark.

3.5 Conclusion

In this paper, we presented an energy-efficient QoS-aware online stream data process-
ing on Internet of Things systems. With Edge tier, our system can dynamically control
the energy consumption to meet the accuracy requirement of different applications.
The simulation results show that our proposed framework is promising. In the future,
we plan to evaluate our framework on real sensor nodes. Another possible extension
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Figure 3.5: Energy consumption with error rate

is to evaluate in a scenario where the edge nodes can collaborate among themselves.
Finally, we intend to extend the algorithm to work in the scenarios where both the
number of active sensor nodes and the data transmission rates of the nodes can change
dynamically.



Chapter 4

Enhanced Data Stream Processing
Framework

To better solve the problem stated in Chapter 3, we further adjust the system functional
architecture and the control mechanism on the edge node, aiming at better saving en-
ergy and better controlling the active sensors.

Two main improvements based on the previous system are: 1) the transmission
information from the sensors to the edge, 2) the selection mechanism on the active
sensors. Details on the new version of framework is addressed in Section 4.2, followed
by and overall evaluation on the system and the comparison of the two versions of
framework.

4.1 Problem Description

This section provides an overview of an IoT system with support of edge computing
infrastructures used in our work. The system modeling context is the same as before
as shown in Fig.3.1.

In the previous system version(system1), we calculate γ values inside the sensor
node and send the values to the edge. As described in Algorithm 1, each input data has
four γ representing the first four orders of intermediate values of calculating the statis-
tical moments. So each transmission contains four data values. In this case, each input
data results in four values for transmission, which highly increase the transmission
load comparing to the transmission for just the input data.

32
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Secondly, in system1, the selection of active sensors is based on a rough classi-
fication on the distribution. The overall kurtosis and skewness calculated for all the
transmitted data roughly indicates the possible real situation, complex multiple simi-
lar phenomena, or less complex multiple different phenomena, or simple single phe-
nomenon. Therefore, the selection based on such classification might just make it
less possible to lose information. And we tested the adjustment based on a situation
of simple combination of phenomena, and used experimental safety number of active
sensors. In this case, we are not able to see how system1 works with more complex
situations.

Considering the drawbacks and limitations of system1 stated above, we intend to
improve the overall system. Therefore, we proposed an enhanced version of system,
namely system2, under the same issue addressed previously, which is to consider the
need of the effective processing of data streams and the efficient usage of the available
resources of devices. The two key points considered as the enhancement in system2
are: 1) how to save more energy of the IoT devices without losing the accuracy com-
paring to system1, and 2) how to select active sensor nodes with a more intelligent
mechanism, to understand and reveal the situation more precisely and to be able to
work with more complex situations.

Therefore, the targeting improvements on the system are in two folds in regard to
the enhancement requirements, 1) the change on the data sent form the sensor node
to the edge, 2) the change on the method of selecting active sensors. Details of the
improvements to system are:

1) We simplify this transmission by moving the calculation of γ values to the edge.
The transmission between the sensor node and the edge node will contain the single
raw data only. This will decrease the number of transmitted data by the sensors in
system 2 to a quarter of which in system1, when processing the same number of data.

2) We change the nodes selection method to a clustering based mechanism. This
enables a better understanding on the situation, especially with multiple phenomena.
Then the selection of active sensors is based on the clusters. This better prevents
turning off the wrong sensors that are important in representing specific phenomena.
For example, if there is just a single sensor that works on a specific phenomenon,
it is very possible that system1 turns off this sensor. Hence, applying the clustering
mechanism can prevent such loss by assigning this sensor to an individual cluster.
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Figure 4.1: Adjustment Design

4.2 An Energy-Efficient QoS-Aware Online Data Stream
Processing Framework

In this section, we first introduce our proposed framework from a system design per-
spective, and then we detail the functional components, both with the comparison to
the previous one.

4.2.1 Overall system design

Targeting on the intended improvements, we make change to the design of the system
adjustment and control, on the decision of the active sensors made on the edge node
changes. As stated above, it will be improved to a clustering-based selection method.

The general idea on the design of sensors active mode remains the same. Adjust-
ment applies on the decision of active sensors made on the edge, as shown in Fig.4.1.
The sensors are clustered into certain clusters based on the raw data. And the active
sensors are decided inside each cluster. A change detection method is used to monitor
the change and trigger the re-clustering of the sensors.

4.2.2 System architecture

Following the new system requirements, the system changes the architecture on 1)
the γ updating calculation that is moved from the sensor node to the edge, and 2) the
functional components on the edge nodes.
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Figure 4.2: System Architecture

As shown in Fig.4.2, three functional components implemented in the sensor node,
namely data collector, data sending rate controller and data transmission con-
troller. Same as the previous system, the data collector is responsible for sensing the
events of interest that happened in the physical world and convert them into raw data.
Once raw data is collected, it will be passed to the data sending rate controller, which
contains two methods: 1) the well-known change detector and estimator ADWIN that
is adopted to serve as the first step to detect changes in the distribution of the input
data, and 2) the adaptive window method serves as the second step to determine the
data sending rate by extracting the incoming data with a temporal sliding window. This
is a time-based window of which the size represents the time interval of two data to
be sent to the edge. So the window size is calculated by the adaptive window method
and is used to control the sending rate. That is to say, under certain sending rate that
decides the data sending time interval, only the data that collected later than the cur-
rent time interval will be sent to the edge. But all the collected data will be input to the
change detector to monitor the input data.

ADWIN uses two data sets to detect the change: a reference data set that summa-
rizes the past information, and a target data set sampled over the most recent input.
Whenever these two data sets exhibit distinct enough means values, the algorithm con-
cludes that the expected values within those sets are different, and a change is detected.
Upon receiving a detection result, the adaptive window method calculates the new win-
dow size. If there is no change, the window size is increased, otherwise, the window’s
size is decreased. The new window size is then sent to the data transmission controller
to decide the sending rate accordingly.
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Finally, the processed data stream of a sensor node will be sent to the edge node
with the determined sending rate. At this time, γ values will not be calculated in the
sensor node.

The edge node hosts four functional components, namely, cluster decision, K&S
(kurtosis and skewness) Calculator, change detector and active sensors decision.
To demonstrate how the edge node works under these four components, we divide the
work flow into two stages, the initialization stage and the working stage. When data
is firstly sent from the sensor nodes, it is firstly received and processed by the Cluster
Method of Clustering Decision component. And then the clusters result is forwarded
to the K&S Calculator. Thus, with receiving the clusters result and the continuously
coming data, the K&S Calculator matched the coming data with the clusters and cal-
culate the kurtosis and skewness for each cluster. The kurtosis and skewness values
for each cluster are then being passed to the Merge Clusters Method to decide the final
clusters, by deciding whether there are clusters being able to be merged to one cluster.
Finally, the clusters result is processed to the Active Sensor Decision component and
is used to decide the active sensors. By now, the initialization stage is completed.

After the initialization, the edge node works into a normal working stage. In this
stage, the coming data will no longer be sent to the Cluster Decision component. In-
stead, new coming data are passed directly to the K&S Calculator to get the kurtosis
and skewness results. Then the kurtosis and skewness values are passed to the Merge
Clusters Method, as well as the Change Detector. If the clusters are merged, new clus-
ters will be passed to the Active Sensors Decision again to update the active sensors.
For the Change Detector, if there is change in the kurtosis and skewness values, the
system will reset all the adjustment result and start over from the initialization stage.

The principle of change detection on the edge nodes is the same as the one per-
formed on sensor nodes, but the data input changes from raw data to higher order
moments. This step aims at detecting the change that cannot be done at a single sen-
sor. The minimum number of active sensors that should be kept to assure the system
operates properly depends on the application. Also note that the index of same of the
kurtosis and skewness is application specified in terms of phenomena and precision
level.

Note that, 1) there are thresholds defined in the initialization. They are application
specific. For example, the threshold when the kurtosis and skewness are regarded
stable and being passed to the Merge Clusters Method. 2) Turning off the sensors
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means only turning off the transmission. All the sensors will remain collecting data,
detecting change inside the sensor node and adjusting the sending rate. Therefore,
when there is change detected inside the sensor, it will re-activate by itself. The edge
will start receiving the data from this sensor. This action reduces the possibility of
losing important information because of the active sensors adjustment. But the change
that occurs in the sensors are not necessarily resulting in the change of phenomenon.
So, the edge node will not reset the adjustment unless change is detected in the edge
node too.

4.3 Methodology and Algorithm

This section describes the new methodology, clustering, of our new solution and the
pseudo code accordingly.

4.3.1 Online stream data K-means based clustering

In our system, the initial clustering is based on K- means method.
Traditional K-means method is a process of updating the centers for each class.

And then based on the distance for each data point to the centers, K-means aiming at
and assigning data points a classification to the class where they have the minimum
distances to the center. In this case, the updating of the new center will be the mean
value of all the data points currently belong to the class. After a while, when no data
point change its class, the classification is done.

However, a same problem as the calculation of the kurtosis and Skewness occurs.
The traditional K-means requires a whole data set. The updating of the mean value
requires the exact number of the data points. While we are dealing with data stream,
which is an online processing. Old data will not be stored in the system. We will
not be able to calculate the mean value after the first classification which is usually
based on a group of random centers. Thus we need an online K-means. Inspired by
[34], we change the center updating mechanism. We are not calculating the mean
values anymore, we set a fixed weight with every updating that makes it an uncounted
updating rule. In detail, the traditional K-means calculates its center using:

ci =

∑
xi

ni
(4.1)
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Thus, in an online context, data is one by one received by the system. In this case,
upon receiving each new xi to class ci, the number of data point in this class will be
ni, and the center will be updated using:

ci
, = ci +

xi − ci
ni

(4.2)

So the online K-means aims at introducing α ∈ (0, 1) to replace 1
ni

, and hence the
center updating method with receiving each data point that belongs to class will be:

ci
, = ci +

xi − ci
α

(4.3)

Therefore, the overall clustering procedure is 1) get new data point, 2) determine
the closest center to the input, 3) update the center of the cluster with new assigned
data.

On the bases of the above clustering, our system implements a further refinement
of the clustering, aiming at minimizing the number of clusters to maximize the energy
saving. The idea is to merge the clusters that are not necessary to be differentiated. For
example, a phenomenon with certain distribution is separated because the clustering
decision is made before a long term run. The initial K-means clustering used the
mean value to present the cluster. But this cannot always represents the phenomena, as
described in the previous system, higher order moments are in need. We use kurtosis
and skewness as well to refine the cluster based on the data distribution. Two clusters
are merged if they process equivalent kurtosis and skewness value [35].

The pseudo code is shown in Algorithm 5:
Note that, in our system, only the clusters that detected changes will be reset. This

means that only the sensors that belong to a cluster with change will be re-clustering.

4.4 Performance Evaluation

We wrote our own simulator in Java language to implement the framework previously
described and evaluate its performance. We performed the experiment with 200 sen-
sor nodes that are geographically deployed and two Smart Grid applications used in
[10]. One application is the overhead power line monitoring and the other is battery
monitoring used on the transmission towers. Our goal is to evaluate 1) the adaption
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Cases Status
status1 status2

1 T1 + T2 T1

2
T1
T1
T1

T1
T2
T3

Table 4.1: Experiment Cases

mechanism and 2) the system performance in terms of the accuracy and energy saving.
3) the performance comparison of the two versions of system.

We have chosen as experimentation scenario the same as the previous version. A
transmission tower is a tower used to support an overhead power line. An overhead
power line is an electric power transmission line suspended by towers. The overhead
power-lines are the most common mean to transmit energy. In the Smart Grid context,
the transmission tower is also responsible for storing energy using local batteries.

In our experiment, two applications share the same information (temperature), but
with different data ranges, and are yet correlated. For evaluating the system perfor-
mance and to make a comparison to the previous system version, we set up the same
four time slots, namely, T1, T2, T3 and T4. Each time slot represents a particular state
S1, S2, S3, S4 of the applications along the time, a particular event to be detected. T1
represents ideal conditions for both applications (a safe condition). T2–T4 represents
an overheated scenario for the overhead power line, the battery temperature or both.
We conducted the experiment on the case, 1) from a status that starts with a combi-
nation of situations to a single situation. This is to evaluate how the system works on
the function design. and 2) the same three experiments with each of them containing a
transformation from the ideal case to a worse one, e.g., T1→T2, T1→T3 and T1→T4.
This is to see the performance comparing to the previous version. The two cases are
presented in Table 4.1.

More detail, for the first case, we assume the combination means a complex situ-
ation in the beginning. And after a period of time, it tends to be a stable and simple
situation. Initially, three sensors on the battery are in the state of T2(65 ◦C 75 ◦C) and
the others T1(40 ◦C 65 ◦C). And three sensors on the overhead power line are in the
state of T3(144 ◦C+) and the others T1(40 ◦C 144 ◦C). After a while, all sensors are
in the state of T1. All data points are averaged over 500 simulation rounds, and each
round lasts 120 hours.
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4.4.1 Evaluate the clustering mechanism

We firstly evaluate the clustering mechanism without sending rate and active sensors
adjustment, in order to see if the system can achieve the required clusters.

In order to do this, we conduct the experiment in the context of the first case. So
based on the case setting, there are four clusters in the beginning and after a period of
time there turns to two clusters. There should be an intermediate stage when change
occurs and the two clusters containing the sensors that change to T1, will be reset.

The testing result is shown in Fig.4.3. Fig.4.3(a) indicates the predefined situation.
Fig.4.3(b) presents the initial clusters in time point t1. There are four clusters with
ten sensors each of the battery and the overhead power line different from the others.
And at time point t2, as shown in Fig.4.3(c), two clusters changed but haven’t merged
yet. So ten sensors of each changed the cluster but the number of clusters remain four.
Then at t3, as shown in Fig.4.3(d), merging mechanism was activated and resulted in
the final clusters with only two clusters. One of the clusters represents the battery
sensors and another the overhead power line sensors. According to the result, our
clustering mechanism works well in achieving the expected clustering result.

4.4.2 Evaluate the performance of adaptation mechanism

We then evaluate the system performance on its adaptation mechanism, under the con-
text of case1. With the setting of case1, there is one change that occurs on the 20
sensors that change the state. And there is one change on the edge that activate the
re-cluster for 2 clusters of the 4 initial clusters. And the maximum sending rate is set
to be 45 seconds.

The testing result is presented in Table 4.2 and Table 4.3.

Time Slot Avg.Sending
Rate

Number of
Active Nensors

Total Percentage of
Transmitted Data Error Rate

t1 40 s 4 20.6% 3.47%
t2 20 s 200 16.9% 1.31%
t3 43 s 2 3.13% 0.08%

Table 4.2: System Adjustment Output (Error Rate: the error rate in terms of the kurto-
sis and skewness for the whole data stream at the end time point of the observation)

Table 4.2 presents the adjusting result at three time slots, t1, t2 and t3. Time slot t1
is the first observation time point before predefined change occurring time. Time slot
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 Sensors On Battery
 Sensors On Battery (with status change)
 Sensors On Overhead Powerline
 Sensors On Overhead Powerline (with status change)

(a) Pre-defined clusters

 Sensors On Battery
 Sensors On Battery (with status change)
 Sensors On Overhead Powerline
 Sensors On Overhead Powerline (with status change)

(b) Clustering Result at t1

 Sensors On Battery
 Sensors On Battery (with status change)
 Sensors On Overhead Powerline
 Sensors On Overhead Powerline (with status change)

(c) Clustering Result at t2

 Sensors On Battery

 Sensors On Overhead Powerline

(d) Clustering Result at t3

Figure 4.3: Clusters

t2 is the second observation time point after change occurs but before the re-cluster
being done. Time slot t3 is the last time point of the experiment.

From Table 4.2, the average sending rate tend to reach the maximum except for
the change detected period, with a significant decrease when change occurs. And the
number of sensors are set as expected, with acceptable error rate.

Table 4.3 analyzes the change detection and the clustering from the testing result
of three example tests. There are delay on the change detection and clustering mainly
because: 1) the detection and clustering mechanism has its own comparing depository.
This can be adjust by applying different detector based on different precision require-
ments. 2) When change occurs, the input data tends to be unstable. Thus it requires a
certain time period for the system to recognize the situation.
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Tests
CDDT:

SN Avg.CDER:
SN

CDDT:
EN

CDER:
EN

Avg. Clustering
Output DelayMax. Avg.

test1 90 s 42 s 0.02% 23 min 0.23% 57 min
test2 102 s 50 s 0.03% 17 min 0.20% 60 min
test3 95 s 47 s 0.02% 18 min 0.18% 55 min

Table 4.3: Change Detection and Clustering Performance (CDDT: change detection
delay time, CDER: change detection error rate, SN: sensor node, EN: edge node)

4.4.3 Evaluate the energy saving with accuracy

Finally, we studied how the change of the amount of processed data affects the data
accuracy and the energy consumption. To do so, we compared these values when using
our proposal to the reference original produced data stream (without the controlling
of the sending rate and active nodes). We implemented the energy model presented
in [33], and simulated the energy consumption of 1) sensing, 2) sensor logging, 3)
data transmission and 4) processing in our work. We measured the data accuracy by
using the metric of error rate, which is defined as the results of kurtosis and skewness
computed by our system, compared to the result computed by the two-pass algorithms
using the full original data stream.

By adjusting the setting of the number of active sensors in each cluster, we achieve
different amount of energy saving. And the results of data accuracy with the increase
of energy saving, of random selected two example tests are shown in Fig.4.4. From the
figure, we observed that the error rate are kept satisfied below 0.6%. Thus we are able
to achieve a significant energy saving with certain tolerance of error rate. The most
energy saving (the minimum energy consumption) that happened when we keep one
sensor for each cluster. In this case, we have the error rate at around 0.4%.

4.4.4 Evaluate the improvement

Finally, we compared the two system versions. Firstly, we compare the adjustment
of the two systems: 1) compare under case2 in the three time slots, t1, t2 and t3 as
above. 2) compare under case1 and presented the average result for the three situa-
tions, T1⇒T2, T1⇒T3 and T1⇒T3. The comparison results are shown in Table 4.4
and Table 4.5. Secondly, we presented the comparison of the two versions of the sys-
tem in regard to the energy consumption with error rate. We presented the energy
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Figure 4.4: Energy consumption with error rate

consumption for both systems under accuracy. The consumption value is an average
consumption under specific accuracy in all the experiments.The comparison results are
shown in Fig.4.7.

4.4.4.1 Compare the system adjustment

Time Slot

Average
Sending Rate

Number of
Active Sensors

Total Percentage of
Transmitted Data Error Rate

S1 S2 S1 S2 S1 S2 S1 S2
t1 40 s 40 140 4 26.8% 20.6% 56.5% 3.47%
t2 30 s 20 140 200 26.1% 16.9% 37.8% 1.31%
t3 40 s 43 120 2 18.2% 3.1% 30.5% 0.08%

Table 4.4: Comparison of System Adjustment Output in Case2

From Table 4.4, we can see that in case2, a more complex situation (the initial is
a combination of several situations), the previous system is not able to differentiate
several situations in the beginning. The system regard it simple situation and decide
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Situations

Average
SR

Number of
Active Sensors

Transmitted
Data (%) Error Rate

S1 S2 S1 S2 S1 S2 S1 S2Sit1 Sit2 Sit1 Sit2
T1→T2 40 s 35 100 140 2 2 13% 1.0% 0.8% 0.15%
T1→T3 40 s 35 100 80 2 2 13% 0.9% 1.4% 0.15%
T1→T4 40 s 35 100 80 2 2 12% 1.0% 0.7% 0.09%

Table 4.5: Comparison of System Adjustment Output in Case1 (Transmitted Data:
Total Percentage of Transmitted Data)

the active sensors based on the kurtosis and skewness. Fig.4.5 and Fig.4.6 show the ex-
ample test results presenting the active sensors selected by the two systems in the three
time slots. The selection of the system1 shows that the system failed to keep several
necessary sensors on. For example, in t1, as shown in Fig.4.5(b), all the sensors on the
battery that represent a different situation were turned off. This results in a significant
error rate in the result. But in t3, the situation turned to be simple without combina-
tion (T1), the error rate decreases. In contrast, as shown in Fig.4.6(b), Fig.4.6(c) and
Fig.4.6(d) the selection of active sensor nodes is in accordance with the predefined
situation. In this case, the new system performs a lot better than the previous one.

From Table 4.5, we can observe that under case1 which is simple situation, both
of the two versions of system perform well. While the new system keeps less active
sensors and transmits less data, which can achieve better energy saving.

 Sensors On Battery
 Sensors On Battery (with status change)
 Sensors On Overhead Powerline
 Sensors On Overhead Powerline (with status change)

(a) Pre-defined Situation

 Sleep Mode Sensors On Battery (without status change)
 Sleep Mode Sensors On Battery (with status change)
 Active Mode Sensors On Battery (without status change)
 Sleep Mode Sensors On Powerline (with status change)
 Sleep Mode Sensors On Powerline (without status change)
 Active Mode Sensors On Powerline (with status change)
 Active Mode Sensors On Powerline (without status change)

(b) t1

Figure 4.5: Selection of Active Sensors: System1
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 Sensors On Battery
 Sensors On Battery (with status change)
 Sensors On Overhead Powerline
 Sensors On Overhead Powerline (with status change)

(a) Pre-defined Situation

 Active Mode Sensors On Battery and Powerline

(b) t1

 Sleep Mode Sensors On Powerline (without status change)
 Sleep Mode Sensors On Powerline (with status change)

 Active Mode Sensors On Battery (without status change)
 Active Mode Sensors On Battery (with status change)
 Sleep Mode Sensors On Battery (with status change)
 Sleep Mode Sensors On Battery (without status change)
 Active Mode Sensors On Powerline (without status change)
 Active Mode Sensors On Powerline (with status change)

(c) t2

 Active Mode Sensors On Battery 
 Sleep Mode Sensors On Battery 
 Active Mode Sensors On Powerline
 Sleep Mode Sensors On Powerline 

(d) t3

Figure 4.6: Selection of Active Sensors: System2

4.4.4.2 Compare the energy saving with accuracy

From the tables above, we can see that in complex situations, the previous system is no
longer useful. Thus we further compare the two versions of system under simple case
when both systems are useful, case1, in order to achieve the comparison on the energy
consumption and accuracy.

Fig.4.5 shows that the error rate differs a lot under different energy consumptions.
When energy consumption decreases, the error rate increases obviously in the previous
system, but the error rate keeps stable and low. In this case, the new version of system
performs better when it requires more energy saving (less energy consumption).
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Figure 4.7: Comparison of energy consumption with error rate

4.5 Conclusion

Here, we presented an improved version of energy-efficient QoS-aware online stream
data processing on Internet of Things systems. With Edge tier, our system can dynam-
ically control the energy consumption to meet the accuracy requirement of different
applications, and make this a lot better than the previous version. The simulation re-
sults show that our proposed framework is promising, and the expected improvement
is achieved. In the future, we plan to evaluate our framework on real sensor nodes.
Another possible improvement is to evaluate it in a scenario where the edge nodes
can collaborate among themselves. Finally, we intend to come up with a better active
sensor nodes selection mechanism, that besides clustering, it learns about the relation-
ship between clusters, for example the weight for each cluster compared to the whole.
Hence, we will be able to keep the situation with reduced sensors in a same combina-
tion proportion as before.
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Algorithm 5 Cluster Based Active Sensors
Input: xi

Output: activeSensorsID
1: clusters← OnlineKmeans(xi)
2: for each cluster do
3: Gammas← UpdateGamma(xi)
4: KandS ← Combination(Gammas)
5: end for
6:
7: for Any two clusters p and q do
8: if |Kp −Kq| ≤ QK&&|Sp − Sq| ≤ QS then
9: Mergeclusterpandclusterq

10: end if
11: end for
12: Updateclusters
13: activeSensorsID ← randomselectedfromeachcluster
14:
15: for each cluster do
16: Gammas← UpdateGamma(xi)
17: K&S ← Combination(Gammas)
18: end for
19: if Admin(K,S) then
20: Turnonallsensors
21: Restart
22: end if
23:
24: function ONLINEKMEANS
25: RandomlygenerateedC1, C2, · · · , Cn;
26: ndenotethenumberofinitialcentres
27: loop
28: for eachCp, p ∈ [1, n]denotethecentreid do
29: Calculate|xi − C − p|
30: Findtheminrvaluefor|xi − Cp|
31: Sensoribelongtoclusterp
32: UpdateCp : Cp ← Cp +

1
α |xi − Cp|

33:
34: if nosensorchangesthecluster then
35: return clusters
36: Break
37: end if
38: end for
39: end loop
40: end function



Chapter 5

Conclusions and Future Directions

In all, we have proposed two versions of energy-efficient QoS-aware online stream
data processing frameworks on Internet of Things systems.

5.1 Conclusion of the Contributions

5.1.1 On-line statistical data stream processing

In our work, we introduce an on-line statistical moments calculating algorithm which
allows the efficient data processing under the computation and storage constraints.
Besides, the calculation does not require the whole data stream, and the information
aggregation among streams is done by performing a simple arithmetic addition. This
enables the calculation can be done in a distributed way and the resources of the IoT
systems can be fully utilized.

5.1.2 Energy efficient transmission control

With the consideration of energy consumption, we present two levels of transmission
control in the system, on both the sensor sending and the number of active sensor
nodes. The experiments have shown the significant reduction on the energy consump-
tion under error rate tolerance.

In this case, both sensors and data that are unnecessary for presenting the real
situation will not be considered into the transmission. Furthermore, this control of
transmission is flexible for applications. Different requirements can be realized by,

48
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1) predefining specific parameters (e.g. the maximum allowance of transmission time
interval, the maximum data sending rate or the maximum number of sensors to be
turned off.) and 2) predefining the outcome requirements such as the accuracy require-
ment, the energy consumption expectation. By doing this, our system provides flexible
leverage towards applications.

5.1.3 Self-adaptive mechanism

With regard to the performance monitoring of the system, our system is able to use self
adaption to better meet the application requirements. We firstly introduce the change
detector into the system to monitor the data distribution. This feedback of the detector
is used to decide how the system performs its control mechanism and is able to correct
the system control decision when it is needed. This guarantees an adaptive control of
the system based on the real situation.

Secondly, we mapped the window size control method used in TCP/IP to our sys-
tem. By doing this, the system decides how to execute the adjustment, such as the
adjustment speed, the adjustment curve, etc.

5.1.4 Overall contribution

To summarize, the overall contribution of this thesis is to propose two versions of
system framework that take into consideration both the effective processing of gen-
erated data streams and the efficient usage of the available resources of devices, with
adaptive monitoring mechanisms. Supported by the experiment results, the systems
performance is satisfied.

5.2 Future Works

There are multiple possible ways to extend and improve the system:
1) All the parameters involved in the system can be precisely in collaborate with

the system output. That is to say, we can learn about the parameters discovering how
exactly the parameters affect the outcomes. In this case, the system will be able to
provide simple interface to the user.
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2) Function blocks inside the system can be further improved. For example, the
incremented calculated results can be updated by removing the outdated result. There-
fore, all function blocks can share the same filtering mechanisms that update the system
running.

3) The scenario we used in this work is ideal. For example we did not take into
consideration the complex geographical deployment of the sensors, such as: the over-
lapping of sensor coverage, the acceptable distance between sensors that allow them
to be clustered. Thus, in the future, we intend to extend the scenario to a more realistic
situation, considering several complexity and challenges in the real world. Also, we
will need to perform the experiments on the real sensors.
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Code for System1

A.1 Class: Main Class

import moa . c l a s s i f i e r s . c o r e . d r i f t d e t e c t i o n .ADWIN;
import j a v a . i o . ∗ ;
i m p o r t j a v a . l a n g . r e f l e c t . Array ;

import s t a t i c j a v a . l a n g . Math . s q r t ;

p u b l i c c l a s s SensorNode {

p u b l i c s t a t i c vo id main ( S t r i n g [ ] args )
throws IOExcep t ion {

R e a d F i l e r e a d F i l e = new R e a d F i l e ( ) ;

double t s t e p ;
double s t e p S t a r t = 0 . 1 ;
double s t epEnd = 1 ;
double s t e p S t e p = 1 0 ;
i n t W max ;
i n t maxOptionLow = 2 ;
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i n t maxOptionHigh = 3 ;
i n t sensorNumber = 200 ;

f o r ( W max = maxOptionLow ; W max < maxOptionHigh ;
W max++) {

f o r ( t s t e p = s t e p S t a r t ; t s t e p < s t epEnd ;
t s t e p ∗= s t e p S t e p ) {
System . o u t . p r i n t l n ( ”W max ” + W max ) ;
System . o u t . p r i n t l n ( ” t S t e p ” + t s t e p ) ;
i n t [ ] N = new i n t [ 2 0 0 ] ;
double x ;
double [ ] moments ;
double [ ] gamma1 = new double [ 2 0 0 ] ;
double [ ] gamma2 = new double [ 2 0 0 ] ;
double [ ] gamma3 = new double [ 2 0 0 ] ;
double [ ] gamma4 = new double [ 2 0 0 ] ;

f o r ( i n t l i n e = 0 ; l i n e < 20000 ; l i n e ++) {
/ / i : da taFi leNumber , r e p r e s e n t t h e s e n s o r s number

f o r ( i n t i = 0 ; i < sensorNumber ; i ++) {

x = r e a d F i l e . s e t I n p u t ( i , l i n e ) ;
N[ i ] += 1 ;

gamma1 [ i ] += x ;
gamma2 [ i ] += x ∗ x ;
gamma3 [ i ] += x ∗ x ∗ x ;
gamma4 [ i ] += x ∗ x ∗ x ∗ x ;

}
}
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moments = moments (N, gamma1 ,
gamma2 , gamma3 , gamma4 ) ;

}
}

}

p r i v a t e s t a t i c double [ ] moments ( i n t [ ] N,
double [ ] gamma1 , double [ ] gamma2 ,
double [ ] gamma3 , double [ ] gamma4 ){

double m1 , m2 , m3 , m4 ;
double m1 2 , c2 , c 2 s q r t , c2 2 , c3 , c4 ;
double [ ] moments = new double [ 2 ] ;
double combinedGamma1 = 0 ;
double combinedGamma2 = 0 ;
double combinedGamma3 = 0 ;
double combinedGamma4 = 0 ;
i n t t o t a l N = 0 ;

f o r ( i n t i = 0 ; i < 200 ; i ++) {
combinedGamma1 += gamma1 [ i ] ;
combinedGamma2 += gamma2 [ i ] ;
combinedGamma3 += gamma3 [ i ] ;
combinedGamma4 += gamma4 [ i ] ;
t o t a l N += N[ i ] ;

}

m1 = combinedGamma1 / t o t a l N ;
m2 = combinedGamma2 / t o t a l N ;
m3 = combinedGamma3 / t o t a l N ;
m4 = combinedGamma4 / t o t a l N ;

m1 2 = m1 ∗ m1 ;
c2 = m2 − m1 2 ;
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c 2 s q r t = s q r t ( c2 ) ;
c2 2 = c2 ∗ c2 ;
c3 = m3 − 3 ∗ m1 ∗ m2 + 2 ∗ m1 2 ∗ m1 ;
c4 = m4 − 4 ∗ m1 ∗ m3 + 6 ∗ m1 2 ∗ m2

− 3 ∗ m1 2 ∗ m1 2 ;

/ / s k e w n e s s ;

moments [ 0 ] = c3 / ( c2 ∗ c 2 s q r t ) ;
/ / k u r t o s i s ;

moments [ 1 ] = c4 / c2 2 ;

re turn moments ;
}

}

A.2 Class: Energy Model

/∗ ∗
∗ Crea ted by yzha8420 on 7 / 0 9 / 2 0 1 6 .

∗ /

p u b l i c c l a s s EnergyModel {

p u b l i c s t a t i c vo id main ( S t r i n g [ ] args ) {
double en e r gy ;
i n t N ;
N = 16000∗2;
en e r g y = EnergyOnThings (N, 4 0 0 0 0 0 0 ) ;
System . o u t . p r i n t l n ( en e r g y ) ;

}

p u b l i c s t a t i c double EnergyOnThings ( i n t N, i n t N old ){
/ / N o ld = Sum a l l l i n e s ;
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double E t h i n g s ;
double E t h i n g s o l d ;
double E s e n s i n g ;
double E l o g g i n g ;
double E p r o c e s s i n g ;
double E t r a n s m i s s i o n ;
double E r e c e i v i n g ;

/ / i n t v a r i a b l e s p u b l i c = 1;

/ / i n t t i m e = N;

/ / i n t t h e t i m e p e r i o d f o r t h e

/ / r e p r e s e n t i n g o f t i m e p r o p o r t i o n ;

/ / i n t t i m e o l d = t i m e ∗ ( N old / N ) ;

i n t b = 1 ; / / b i t each data , i n i t i a l i z e t o 1 ;

i n t b p r o c e s s i n g = 2 ∗ b ;

/ / da ta b i t t a k e i n t o p r o c e s s i n g ;

i n t F = 1 ;
/ / r e c e i v i n g f r e q u e n c y , maximum N;

E s e n s i n g = b ;
E l o g g i n g = ( b / 8 ) ∗ (1 + 1 ) ;
E p r o c e s s i n g = b p r o c e s s i n g + b p r o c e s s i n g ;
E t r a n s m i s s i o n = b + b ;
E r e c e i v i n g = b ;
E t h i n g s = N ∗ E s e n s i n g + N ∗ E l o g g i n g

+ N ∗ E p r o c e s s i n g
+ N ∗ E t r a n s m i s s i o n
+ F ∗ E r e c e i v i n g ;

E t h i n g s o l d = N old ∗ E s e n s i n g
+ N old ∗ E l o g g i n g
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+ N old ∗ E p r o c e s s i n g
+ N old ∗ E t r a n s m i s s i o n ;

/ / Sys t em . o u t . p r i n t l n (” E t h i n g s ” + E t h i n g s ) ;

/ / Sys t em . o u t . p r i n t l n (” E t h i n g s o l d ” + E t h i n g s o l d ) ;

double e n e r g y R a t i o = E t h i n g s / E t h i n g s o l d ;
re turn e n e r g y R a t i o ;

}
}

A.3 Class: Energy Model

import j a v a . i o . ∗ ;

/∗ ∗
∗ Crea ted by yzha8420 on 2 5 / 0 7 / 2 0 1 6 .

∗ T h i s i s t h e c l a s s t o read da ta from f i l e .

∗ /

p u b l i c c l a s s R e a d F i l e {

p u b l i c double s e t I n p u t ( i n t f i l eNumber , i n t l ineNumber ) {

F i l e f = n u l l ;
S t r i n g [ ] p a t h s ;
Double d a t a = 0 . 0 ;
S t r i n g f i l eName ;

t r y {

f = new F i l e ( ” nameOfTheFi leWi thPa th ” ) ;
p a t h s = f . l i s t ( ) ;
/ / f o r ( i n t k =0; k<p a t h s . l e n g t h ; k++){
/ / Sys t em . o u t . p r i n t l n ( p a t h s [ k ] ) ;
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/ / }
/ / Sys t em . o u t . p r i n t l n ( p a t h s . l e n g t h ) ;

f i l eName = ” f i l e P a t h ”
+ p a t h s [ f i l e N u m b e r ] ;

B u f f e r e d R e a d e r r e a d e r =
new B u f f e r e d R e a d e r (

new I n p u t S t r e a m R e a d e r (
new F i l e I n p u t S t r e a m ( f i l eName ) ) ) ;

S t r i n g l i n e = r e a d e r . r e a d L i n e ( ) ;
i n t l ineNum = 0 ;
whi le ( l i n e != n u l l ) {

i f ( lineNum++ == l ineNumber ) {
d a t a = Double . p a r s e D o u b l e ( l i n e ) ;
break ;

}
l i n e = r e a d e r . r e a d L i n e ( ) ;

}
r e a d e r . c l o s e ( ) ;

}

} catch ( IO Excep t ion e ) {
/ / TODO Auto−g e n e r a t e d c a t c h b l o c k

e . p r i n t S t a c k T r a c e ( ) ;
}
re turn d a t a ;

}
}
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Code of System Version2

import moa . c l a s s i f i e r s . c o r e . d r i f t d e t e c t i o n .ADWIN;
import j a v a . i o . ∗ ;
i m p o r t s t a t i c j a v a . l a n g . Math . s q r t ;

/∗ ∗
∗ Crea ted by yzha8420 on 2 3 / 1 1 / 2 0 1 6 .

∗ /

p u b l i c c l a s s Kmeans {
p u b l i c s t a t i c vo id main ( S t r i n g [ ] args ) {

double p = 0 . 1 ; / / parame te r f o r u p d a t i n g c e n t e r s

i n t n = 20000 ; / / number o f i n p u t each s e n s o r

i n t m = 200 ; / / number o f s e n s o r s

i n t c = 4 ; / / number o f c e n t e r s

i n t [ ] c l u s t e r I d = new i n t [m] ;
i n t [ ] o l d C l u s t e r I d = new i n t [m] ;
i n t [ ] c l u s t e r I d 2 = new i n t [m] ;
i n t [ ] o l d C l u s t e r I d 2 = new i n t [m] ;
double x ;
double [ ] c e n t r e = new double [ c ] ;
double [ ] c e n t r e R e C l u s t e r = new double [ c ] ;
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double [ ] d i s t a n c e s ;
boolean move = t rue ;
boolean moveReClus te r = t rue ;
double [ ] k u r t o s i s = new double [ c ∗ 2 ] ;
double [ ] skewness = new double [ c ∗ 2 ] ;
double [ ] gamma1 = new double [ c ∗ 2 ] ;
double [ ] gamma2 = new double [ c ∗ 2 ] ;
double [ ] gamma3 = new double [ c ∗ 2 ] ;
double [ ] gamma4 = new double [ c ∗ 2 ] ;
i n t [ ] N = new i n t [ c ∗ 2 ] ;
boolean r e C l u s t e r = f a l s e ;
i n t r e C l u s t e r I D = 100 ;
i n t i ;

/ / i n i t i a l i z e t h e c e n t e r s f o r t e n

f o r ( i =0 ; i<c ; i ++) {
c e n t r e [ i ] = Math . random ( ) ;
c e n t r e R e C l u s t e r [ i ] = Math . random ( ) ;

}

/ / i n i t i a l i z e t h e c l u s t e r s

f o r ( i = 0 ; i < n ; i ++) {
i n t countMove = 0 ;
i f ( i < 100 | | move ) {
/ / l oop i n p u t f o r each s e n s o r

f o r ( i n t j = 0 ; j < m; j ++) {
x = s e t I n p u t ( i , j ) ;
d i s t a n c e s = g e t D i s t a n c e ( c e n t r e , x ) ;
/ / g e t c l u s t e r f o r t h i s i n p u t ;

c l u s t e r I d [ j ] = getMin ( d i s t a n c e s ) ;
/ / g e t c l u s t e r average ;

c e n t r e [ c l u s t e r I d [ j ] ] += p ∗ ( x −
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c e n t r e [ c l u s t e r I d [ j ] ] ) ;
i f ( c l u s t e r I d [ j ] != o l d C l u s t e r I d [ j ] )

countMove ++;
o l d C l u s t e r I d [ j ] = c l u s t e r I d [ j ] ;

}
/ / Sys t em . o u t . p r i n t l n ( countMove ) ;

i f ( countMove == 0) {
move = f a l s e ;

}
} e l s e {

System . o u t . p r i n t l n ( i ) ;
f o r ( i n t j = 0 ; j < m; j ++) {

System . o u t . p r i n t ( c l u s t e r I d [ j ] + ” ” ) ;
}
break ;
}

}

f o r ( i n t i 2 = i ; i 2 < n ; i 2 ++){
i n t countMove =0;
i f ( r e C l u s t e r == f a l s e ) {

ADWIN adwin = new ADWIN ( . 0 1 ) ;
f o r ( i n t j = 0 ; j < m; j ++) {

x = s e t I n p u t ( i , j ) ;
N[ c l u s t e r I d [ j ] ] + + ;
gamma1 [ c l u s t e r I d [ j ] ] += x ;
gamma2 [ c l u s t e r I d [ j ] ] += x ∗ x ;
gamma3 [ c l u s t e r I d [ j ] ] += x ∗ x ∗ x ;
gamma4 [ c l u s t e r I d [ j ] ] += x ∗ x ∗ x ∗ x ;
skewness [ c l u s t e r I d [ j ] ] =

moments (N[ c l u s t e r I d [ j ] ] , gamma1 [ c l u s t e r I d [ j ] ] ,
gamma2 [ c l u s t e r I d [ j ] ] , gamma3 [ c l u s t e r I d [ j ] ] ,
gamma4 [ c l u s t e r I d [ j ] ] ) [ 0 ] ;
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k u r t o s i s [ c l u s t e r I d [ j ] ] =
moments (N[ c l u s t e r I d [ j ] ] ,
gamma1 [ c l u s t e r I d [ j ] ] ,
gamma2 [ c l u s t e r I d [ j ] ] ,
gamma3 [ c l u s t e r I d [ j ] ] ,
gamma4 [ c l u s t e r I d [ j ] ] ) [ 1 ] ;

i f ( adwin . s e t I n p u t ( k u r t o s i s [ c l u s t e r I d [ j ] ] )
| | adwin . s e t I n p u t ( skewness [ c l u s t e r I d [ j ] ] ) ) {

i f ( i2> 200) {
r e C l u s t e r I D = c l u s t e r I d [ j ] ;
r e C l u s t e r = t rue ;
System . o u t . p r i n t l n ( i 2 ) ;

}
}

}
} e l s e {

i f ( moveReClus te r ){
f o r ( i n t j = 0 ; j < m; j ++) {

x = s e t I n p u t ( i , j ) ;
i f ( c l u s t e r I d [ j ] == r e C l u s t e r I D ) {

d i s t a n c e s =
g e t D i s t a n c e ( c e n t r e R e C l u s t e r , x ) ;

/ / g e t c l u s t e r f o r t h i s i n p u t ;

c l u s t e r I d 2 [ j ] = getMin ( d i s t a n c e s ) ;
c e n t r e R e C l u s t e r [ c l u s t e r I d 2 [ j ] ] +=

/ / g e t c l u s t e r average ;

p ∗ ( x − c e n t r e R e C l u s t e r [ c l u s t e r I d 2 [ j ] ] ) ;
i f ( c l u s t e r I d 2 [ j ] != o l d C l u s t e r I d 2 [ j ] )

countMove ++;
o l d C l u s t e r I d 2 [ j ] = c l u s t e r I d 2 [ j ] ;
c l u s t e r I d [ j ] = c l u s t e r I d 2 [ j ] + 4 ;

} e l s e {
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N[ c l u s t e r I d [ j ] ] + + ;
gamma1 [ c l u s t e r I d [ j ] ] += x ;
gamma2 [ c l u s t e r I d [ j ] ] += x ∗ x ;
gamma3 [ c l u s t e r I d [ j ] ] += x ∗ x ∗ x ;
gamma4 [ c l u s t e r I d [ j ] ] += x ∗ x ∗ x ∗ x ;
skewness [ c l u s t e r I d [ j ] ] =

moments (N[ c l u s t e r I d [ j ] ] , gamma1 [ c l u s t e r I d [ j ] ] ,
gamma2 [ c l u s t e r I d [ j ] ] , gamma3 [ c l u s t e r I d [ j ] ] ,
gamma4 [ c l u s t e r I d [ j ] ] ) [ 0 ] ;

k u r t o s i s [ c l u s t e r I d [ j ] ] =
moments (N[ c l u s t e r I d [ j ] ] , gamma1 [ c l u s t e r I d [ j ] ] ,
gamma2 [ c l u s t e r I d [ j ] ] , gamma3 [ c l u s t e r I d [ j ] ] ,
gamma4 [ c l u s t e r I d [ j ] ] ) [ 1 ] ;

}
}
i f ( countMove == 0) {

moveReClus te r = f a l s e ;
}

} e l s e {
f o r ( i n t j = 0 ; j < m; j ++) {

x = s e t I n p u t ( i , j ) ;
N[ c l u s t e r I d [ j ] ] + + ;
gamma1 [ c l u s t e r I d [ j ] ] += x ;
gamma2 [ c l u s t e r I d [ j ] ] += x ∗ x ;
gamma3 [ c l u s t e r I d [ j ] ] += x ∗ x ∗ x ;

gamma4 [ c l u s t e r I d [ j ] ] += x ∗ x ∗ x ∗ x ;
skewness [ c l u s t e r I d [ j ] ] =

moments (N[ c l u s t e r I d [ j ] ] , gamma1 [ c l u s t e r I d [ j ] ] ,
gamma2 [ c l u s t e r I d [ j ] ] , gamma3 [ c l u s t e r I d [ j ] ] ,
gamma4 [ c l u s t e r I d [ j ] ] ) [ 0 ] ;

k u r t o s i s [ c l u s t e r I d [ j ] ] =
moments (N[ c l u s t e r I d [ j ] ] , gamma1 [ c l u s t e r I d [ j ] ] ,
gamma2 [ c l u s t e r I d [ j ] ] , gamma3 [ c l u s t e r I d [ j ] ] ,
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gamma4 [ c l u s t e r I d [ j ] ] ) [ 1 ] ;
}
c l u s t e r I d =

m e r g e C l u s t e r ( c l u s t e r I d , c , k u r t o s i s , skewness ) ;
o l d C l u s t e r I d = c l u s t e r I d ;
i n t countMerge = 0 ;
f o r ( i n t j =0 ; j<m; j ++){

i f ( c l u s t e r I d [ j ] != o l d C l u s t e r I d [ j ] )
countMerge ++;

}
i f ( countMerge != 0) {

System . o u t . p r i n t l n ( i 2 + ” ”+” merged ” ) ;
}

}
}

}
f o r ( i n t j =0 ; j<m; j ++) {

System . o u t . p r i n t ( c l u s t e r I d [ j ] + ” ” ) ;
}

}

p u b l i c s t a t i c i n t getMin ( double [ ] d i s t a n c e s ) {
double m i n D i s t a n c e = d i s t a n c e s [ 0 ] ;
i n t minLabel = 0 ;
f o r ( i n t i =1 ; i<d i s t a n c e s . l e n g t h ; i ++){

i f ( d i s t a n c e s [ i ] < m i n D i s t a n c e ) {
m i n D i s t a n c e = d i s t a n c e s [ i ] ;
minLabel = i ;

}
}
re turn minLabel ;

}
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p u b l i c s t a t i c double [ ]
g e t D i s t a n c e ( double [ ] c e n t r e , double x ) {

double [ ] d i s t a n c e s = new double [ c e n t r e . l e n g t h ] ;
f o r ( i n t i =0 ; i<c e n t r e . l e n g t h ; i ++) {

double d = x − c e n t r e [ i ] ;
d i s t a n c e s [ i ] = Math . s q r t ( d ∗ d ) ;

}
re turn d i s t a n c e s ;

}

p u b l i c s t a t i c double
s e t I n p u t ( i n t l ineNumber , i n t f i l e N u m b e r ) {

Double d a t a = 0 . 0 ;
F i l e f = n u l l ;
S t r i n g [ ] p a t h s ;
S t r i n g f i l eName ;
t r y {

F i l e ( ” f i l e D i r e c t i o n ” ) ;
f i l eName =

” f i l eName ” + f i l e N u m b e r ;
B u f f e r e d R e a d e r r e a d e r =

new B u f f e r e d R e a d e r ( new I n p u t S t r e a m R e a d e r ( new
F i l e I n p u t S t r e a m ( f i l eName ) ) ) ;

/ / Sys t em . o u t . p r i n t l n ( f i l e N a m e ) ;

S t r i n g l i n e = r e a d e r . r e a d L i n e ( ) ;
i n t l ineNum = 0 ;
whi le ( l i n e != n u l l ) {

i f ( l ineNum++ == l ineNumber ) {
d a t a = Double . p a r s e D o u b l e ( l i n e ) ;

break ;
}
l i n e = r e a d e r . r e a d L i n e ( ) ;

}
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r e a d e r . c l o s e ( ) ;
} catch ( IO Excep t ion e ) {

/ / TODO Auto−g e n e r a t e d c a t c h b l o c k

e . p r i n t S t a c k T r a c e ( ) ;
}

re turn d a t a ;
}

p u b l i c s t a t i c i n t [ ]
m e r g e C l u s t e r ( i n t [ ] c l u s t e r I D ,
i n t numberOfClus te r ,
double [ ] k u r t o s i s ,
double [ ] skewness )
{

f o r ( i n t i =0 ; i<numberOfClus t e r ; i ++){
f o r ( i n t j =0 ; j<numberOfClus t e r ; j ++){

i n t d i f f e r e n c e K =
Math . abs ( ( i n t ) Math . f l o o r ( k u r t o s i s [ i ] )
− ( i n t ) Math . f l o o r ( k u r t o s i s [ j ] ) ) ;

i n t d i f f e r e n c e S =
Math . abs ( ( i n t ) Math . f l o o r ( skewness [ i ] )
− ( i n t ) Math . f l o o r ( skewness [ j ] ) ) ;

i f ( d i f f e r e n c e K < 0 . 5 & d i f f e r e n c e S < 0 . 5 )
c l u s t e r I D [ j ] = c l u s t e r I D [ i ] ;

}
}
re turn c l u s t e r I D ;

}

p u b l i c s t a t i c double [ ]
moments ( i n t N,
double gamma1 ,
double gamma2 ,
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double gamma3 ,
double gamma4 ) {

double m1 , m2 , m3 , m4 ;
double $m1 2 , c2 , c 2 s q r t , c2 2 , c3 , c4$ ;
double [ ] moments = new double [ 2 ] ;
m1 = gamma1 / N;
m2 = gamma2 / N;
m3 = gamma3 / N;
m4 = gamma4 / N;
m1 2 = m1 ∗ m1 ;
c2 = m2 − m1 2 ;
c 2 s q r t = s q r t ( c2 ) ;
c2 2 = c2 ∗ c2 ;
c3 = m3 − 3 ∗ m1 ∗ m2 + 2 ∗ m1 2 ∗ m1 ;
c4 = m4 − 4 ∗ m1 ∗ m3 + 6 ∗ m1 2 ∗ m2 − 3 ∗ m1 2 ∗ m1 2 ;
moments [ 0 ] = c3 / ( c2 ∗ c 2 s q r t ) ; / / s k e w n e s s ;

moments [ 1 ] = c4 / c2 2 ; / / k u r t o s i s ;

re turn moments ;
}

}
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[7] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia, “A survey on concept drift adaptation,” ACM Computing Surveys

(CSUR), vol. 46, no. 4, pp. 44, 2014.

67



BIBLIOGRAPHY 68

[8] Albert Bifet and Ricard Gavalda, “Learning from time-changing data with adap-
tive windowing,” in Proceedings of the 2007 SIAM International Conference on

Data Mining. SIAM, 2007, pp. 443–448.

[9] Russel Pears, Sripirakas Sakthithasan, and Yun Sing Koh, “Detecting concept
change in dynamic data streams,” Machine Learning, vol. 97, no. 3, pp. 259–
293, 2014.

[10] Gabriel Aquino, Luci Pirmez, Claudio M de Farias, Flávia C Delicato, and
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