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Abstract 
 

 

Background and rationale 

Acute intracerebral haemorrhage (ICH) results from rupture of cerebral vasculature leading to 

bleeding into the cerebral parenchyma. ICH represents 10-50% of stroke, depending on the 

population studied, is associated with significant morbidity and mortality, and has limited 

treatment options.  The INTERACT2 trial was designed to assess the role of blood pressure 

lowering therapy in intracerebral haemorrhage. Guideline therapy (target systolic blood pressure 

[SBP] <180 mmHg) was compared against intensive lowering (SBP <140 mmHg). The 

outcomes assessed in this trial were death or major disability (according to the modified Rankin 

scale at 90 days) following ICH. Hyperglycaemia has been widely studied in acute illnesses as 

myocardial infarction, ischaemic stroke, traumatic brain injury and ICH, and is associated with 

adverse outcomes. The incidence of hyperglycaemia in the acute phase is due to a combination 

of factors: diabetic pathophysiology and stress hyperglycaemia. Animal models have specifically 

examined hyperglycaemia in ICH and have found association with haematoma volume, 

expansion and perihaematomal oedema. Accordingly, I performed secondary analyses in the 

INTERACT2 dataset to determine the association between hyperglycaemia and outcomes. The 

aim was also to understand the underlying mechanism and assess the potential role of 

hyperglycaemic management in ICH.  

 

Methods 

The INTERACT2 cohort was divided into two groups: normoglycaemia (blood glucose level 

<6.5) and hyperglycaemia (blood glucose level >6.5). Baseline characteristics were summarised 

as mean (standard deviation [SD]) or median (interquartile range [IQR]) for continuous 

variables, and as number (%) for categorical variables. Collinearity and interactions between 

variables were checked.  Independent associations between baseline characteristics and level of 

blood glucose (normoglycaemia and hyperglycaemia) and history of diabetes mellitus, were 

examined in multivariable logistic regression models. Adjustment was made for all significant 

baseline variables to determine independent predictors of hyperglycaemia. 90-day clinical 

outcomes studied were: death alone, major disability lone and death or major disability. 
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Multivariable logistic regression models adjusted by all the significant and clinically important 

baseline variables as well as significant interactions were used to determine associations of 

baseline level of blood glucose, both as continuous and categorical (fourths) variables, and 

clinical outcomes, as well as the association between a history of diabetes mellitus and clinical 

outcomes. Blood glucose data was also categorised based on diagnostics thresholds (<6.1, 6.1–

7.0, >7.0 mmol/L) and sensitivity analyses were performed to further examine associations with 

primary outcomes. Univariate analysis was also performed to determine associations with 24 

hour neurological deterioration, non-fatal adverse events and causes of death. The associations of 

hyperglycaemia on absolute increase in haematoma and perihaematomal oedema volumes over 

24 hours were assessed by an analysis of covariance (ANCOVA) including the same adjusted 

variables above.   

 

Results 

Of the 2829 ICH patients, 176 were excluded because of missing baseline blood glucose 

measurements. Of the remaining 2653 patients, 1348 (51%) presented with hyperglycaemia 

(>6.5 mmol/L) and 292 (11%) had a history of diabetes mellitus. Baseline characteristics of 

INTERACT2 patients were compared between normoglycaemic and hyperglycaemic patients. 

All characteristics with significant difference on univariate analysis were included in the 

multivariate model. On multivariate analyses, the independent predictors of hyperglycaemia at 

admission were: female gender, patients outside of China, stroke severity (by National Institutes 

of Health stroke scale (NIHSS) score), systolic blood pressure (SBP), history of diabetes, cortical 

location of the haematoma, intraventricular haemorrhage (IVH) extension, and haematoma 

volume (ICH only). In non-diabetic patients, independent predictors were female sex, 

recruitment outside of China, high NIHSS score (an indicator of more severe neurological 

impairment), cortical location of ICH, large volume haematoma, and IVH extension. Primary 

and secondary outcomes were compared by admission blood glucose. There was a strong and 

near continuous relationship between baseline blood glucose level and death or major disability 

(odds ratio [OR] 1.29, 95% confidence interval [CI] 1.19-1.40; P<0.0001) and death (OR 1.23, 

95%CI 1.12-1.37; P<0.0001) at 90 days, and these variables remained significant when adjusted 

for other confounders and significant interactions: adjusted odds ratio [aOR] 1.11, 95%CI 1.00-

1.24; P<0.0001, aOR 1.16 95% CI (1.01-1.33); P=0.043 for death or major disability and death, 
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respectively. Quartile analysis of admission blood glucose showed significant association with 

poorer outcomes in the highest quartile (aOR 1.35, 95%CI 1.01-1.80, P=0.015). For secondary 

outcomes: early neurological deterioration, non-fatal serious adverse events and fatal serious 

adverse events were all significantly greater in hyperglycaemic patients. Hyperglycaemic 

patients had significantly higher baseline haematoma volumes, with (14.6 vs 11.6 mL, P 

<0.0001) and without intraventricular haemorrhage (11.6 vs 10.2 ml, P <0.01), and less deep 

(78.8% vs. 86.5%, P <0.001) and more cerebellar (5.9% vs. 1.1%, P <0.01) haematomas. 

Diabetic patients had significantly lower haematoma volume in comparison with non-diabetics 

(DM 9.2 mL vs. NDM 11.2 mL; p < 0.01) whilst there was no association with haematoma 

location or IVH extension.  Hyperglycaemic patients had no difference in haematoma growth 

(mean adjusted, 5.1% vs 6.8%, P =0.13) and perihaematomal oedema (mean adjusted 86.0% vs 

94.1%, P =0.46) in the first 24 hours.  

 

Discussion and conclusions 

Admission hyperglycaemia and history of diabetes mellitus was shown to be an independent 

predictor of poor outcome in patients with predominantly mild to moderate severity of ICH 

(INTERACT2 cohort). Significantly greater adverse events (fatal and non-fatal) and early 

neurological deterioration was also found in the hyperglycaemic patients. The underlying 

mechanism of the hyperglycaemia may be a combination of diabetic pathophysiology and the 

physiological stress response. This was reflected in the determinants of hyperglycaemia which 

included history of diabetes mellitus, haematoma characteristics (ICH volume, superficial 

haematoma location, IVH extension), ICH severity by NIHSS score and demographic factors 

(females, recruitment outside China). Interestingly, diabetic patients presented with significantly 

lower haematoma volumes and no association with haematoma location or IVH extension, 

suggesting distinct pathophysiology between diabetic hyperglycaemic and non-diabetic 

hyperglycaemic patients. 

 

Whilst animal models suggest that hyperglycaemia exacerbates haematoma expansion and 

perihaematomal oedema, these associations were not observed in INTERACT2 analyses. 

However, hyperglycaemic patients did present with significantly greater IVH extension, baseline 

haematoma volumes, and of cerebellar and cortical location of the haematomas. More detailed 
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haematoma location analysis is required to determine if specific cerebral regions responsible for 

glucose homeostasis are affected in hyperglycaemic patients as this will reveal more about the 

underlying cause for hyperglycaemia. Significantly higher baseline SBP was found in 

hyperglycaemic patients and further analyses is required to identify the benefit of intensive blood 

pressure lowering in patients presenting with admission hyperglycaemia.  

 

There are limited data and guidelines regarding the management of hyperglycaemia in ICH. 

Intensive insulin therapy creates the risk of hypoglycaemic events which threatens to worsen 

outcome. However, the results of this investigation illustrate significant association between 

hyperglycaemia and adverse outcomes. Based on these findings, there is justification in 

proceeding with a clinical trial to evaluate benefits and harms of therapy to control 

hyperglycaemia in ICH.  
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Chapter 1: Introduction 
 

Intracerebral Haemorrhage: Burden and Aetiology 

Burden of Stroke  

Stroke is the second highest cause of death and the leading cause of disability and costing $2.14 

billion to Australians annually. Each year there are predicted to be 60000 new and recurrent 

strokes. Intracerebral haemorrhage (ICH) is characterised by bleeding within the parenchyma of 

the brain and accounts for 10-50% of strokes and is associated with significant mortality. 

Globally, from 1990 to 2010, the incidence of ICH decreased in high-income countries (12%, 

95% CI 6-17), whilst increased (12%, 95% CI -3 to 22) in low and middle-income countries who 

have a significant burden of stroke through high incidence, prevalence, mortality, disability-

adjusted life years (DALYs) lost
1
.  Specifically, examining stroke in high-income countries from 

2000-2008, the mortality following ICH was 41.0% in comparison with ischaemic stroke 

(14.3%) and subarachnoid haemorrhage (SAH) (30.0%).  In contrast, stroke mortality for low 

income countries for ICH, SAH and ischaemic stroke, was 38.7%, 43.9% and 16.7%, 

respectively.  

A systematic review and meta-analyses by Van Asch et al.
2
 assessed 36 eligible studies of the 

incidence, mortality and functional outcome for ICH during 1980-2008.  1-month mortality of 

40.4% was reported, however, few data pertained to outcomes beyond 3-months. Functional 

outcomes were available for 6 of the 36 included trials, thereby requiring further data.  

The specific costs of stroke subsets in the Australian population were investigated in NEMESIS 

study
3
 and found that ICH accounted for 26% of stroke costs ($334.5 million) compared to 

$936.8 million (72%) attributed to ischaemic stroke. Anterior circulation ischaemic stroke were 

responsible for the greatest hospitalisation costs followed by ICH, however, average lifetime 

costs were greater in ICH and were 1.6-2 fold greater than ischaemic stroke. Similar findings 

were presented in a German population study
4
 where the economic burden and management 

strategies were followed for one year post-ICH. Compared with ischaemic stroke, ICH had 

greater hospital and rehabilitation costs, hospitalisation periods and admission rates to intensive 
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care units (ICU). Gender differences have also been reported in the literature, with females 

associated with poorer outcomes and greater mortality
5,6

 in studies with multivariate modelling. 

Functional outcomes were also assessed and revealed reduced problem solving ability (47.9%), 

memory storage and retrieval capacity (50.9%), vision impairment (29.4%) and decreased speech 

comprehension (29.2%)
4
. Another investigation showed a potential association with dementia 

and cognitive impairment following ICH
7
 with domains of executive function, episodic memory 

and psychomotor speed being affected. The wide range of neuropsychological and cognitive 

impairments associated post-ICH may contribute to the significant societal and individual burden 

of this disease process.  

Causes of Intracerebral Haemorrhage 

ICH refers to the extravasation of blood outside the cerebral vasculature into brain parenchyma. 

A number of risk factors and causes for ICH have been identified. The most important is 

hypertension.  Others relate to various vasculopathies, abnormal coagulation, specific genetic 

markers, cerebral aneurysms, and arteriovenous malformations (AVMs). Use of specific 

medications, in particular anticoagulants and antiplatelet agents, also cause ICH, whilst the role 

of common chronic diseases such as diabetes mellitus has also been proposed yet remains 

debated. Age remains the most significant non-modifiable risk factor.  

Hypertension 

Hypertension has been established as a significant aetiological factor associated with ICH with a 

number of proposed mechanisms, such as oxidative stress that disrupts the cerebral circulation. 

Activation of the renin-angiotensin system (RAS) in hypertension leads to increased superoxide 

production. Animal models have shown that elevated superoxide levels were associated with 

greater incidence and volumes of ICH
8
. Didion et al.

9
 explored the role of copper zinc 

superoxide dismutase in protecting against endothelial dysfunction and superoxide induced 

damage, whilst also reporting a concentration dependent effect of angiotensin II in causing 

increased superoxide levels. However, experimental models testing clinical relevance of 

oxidative stress in ICH found injections of superoxide dismutase yielded no reduction in 

neurological injury
10

.  
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Another proposed mechanism links the pathology of hypertensive ICH through the reactive 

hyperplasia within the vascular smooth muscle leading to collagen type IV deposits in the 

endothelial wall
11

. This fibrinoid necrosis within the vasculature may alter its contractility and 

distribution of these pathological vessels in high-pressure regions (diencephalon, basal ganglia) 

may represent the association with ICH
12

.  

Vasculopathy  

Cerebral amyloid angiopathy (CAA) is a vasculopathy where amyloid (Aβ) protein accumulates 

within the endothelium of cerebral vasculature specifically in cortical vessels. These proteins 

aggregate within the tunica media and adventitia and disease progression results in degeneration 

of the vessel wall. β-amyloid deposition activates matrix metalloproteinases which may further 

contribute to the deterioration of cerebral vasculature.
13

 This fragility in cerebral blood vessels 

leads to microaneurysm formation and is reported to be responsible for 12-15% of lobar located 

ICH. Early investigations reported this vasculopathy induced ICH,
14

 whilst Wagle et al.
15

 

through a radiographic case series, underlined CAA as a cause of ICH. More recently differences 

between CAA and hypertensive pathology were investigated.
16

 With differing patterns of 

involved vasculature, the surgical management is also distinct in CAA-induced ICH.  

Genetic causes of ICH and CAA 

Genetic factors related to both hypertension and CAA may also contribute to the aetiology of 

ICH. The apolipoprotein gene APOE-ε4 has an established role in the pathology of Alzheimer’s 

disease
17,18

, however, a strong positive correlation has also been reported with CAA.
19

  

The role of apolipoprotein E is to maintain cerebrovascular function, however, the APOE4 

isoform results in blood-brain barrier disruption, susceptibility to uptake of neurotoxic proteins 

and overall neurodegeneration. Greenberg et al.
20

 found that the ApoE-ε4 genotype has an 

independent effect, distinct from Alzheimer’s disease, upon CAA as well CAA-associated ICH. 

This gene was further linked with 5 years earlier onset of lobar ICH in comparison with controls. 

The genetic correlation with CAA-induced lobar ICH has been extensively investigated and it 

has been proposed that ApoE-ε2 increases the incidence of vascular rupture and this effect is 

independent of Alzheimer’s pathology. In contrast, ApoE-ε4 is associated with greater amyloid 

deposition in the vessel wall, atherosclerotic changes and is correlated with Alzheimer’s 

Disease.
21
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The ApoE ε4 was also found to be independently associated with lobar ICH.
22

 A Chinese 

population study of ICH patients found higher frequency of patients with ε3/ε4 allele compared 

to controls,
23

 whilst the presence of either ε2 or ε4 resulted in a 28% recurrence rate in 

comparison to 10% for normal controls
24

. In addition, recent investigation
25

 demonstrated that 

the ε2 genotype was also associated with haematoma expansion as observed in patients with 

lobar ICH. This expansion was even greater in patients with CAA indicating there may be a 

common mechanism between these aetiological factors.  

Vascular changes and defects 

The formation of aneurysms and presence of AVM are also considered significant risk factors for 

ICH. Although aneurysmal rupture is most commonly associated with subarachnoid 

haemorrhage, ICH from intracavernous carotid artery
26

 and anterior ethmoidal artery
27

 

aneurysms have been reported. AVM are embryonic vascular malformations caused by direct 

anastomoses between cerebral arterial and venous vasculature. AVM increase the risk of ICH, 

are associated with poorer outcomes and there is a greater incidence of rupture post-ICH
28

.  

Haematological and coagulation disorders 

Haematological disorders such as haemophilia, vitamin K deficiency, coagulation defects and 

von Wildebrand factor deficiency, increase bleeding risk and are therefore linked with more 

severe ICH. For both Haemophilia A and B spontaneous ICH is frequently reported with the 

neonatal risk being 40-80 times greater than the normal population
29

. Vitamin K deficiency in 

ICH was investigated in the Turkish population and reported 33% case mortality.
30

 Specifically, 

coagulopathies have been linked with lobar ICH
31

 and short-term mortality (1-month) was found 

to be significantly higher in patients with elevated bleeding profiles (International Normalised 

Ratio, INR). Liver dysfunction is another proposed aetiological factor of ICH possibly through 

effects upon platelet function and coagulation. Fujii et al.
32

 examined this association and found 

significantly greater mortality and haematoma volumes in patients with liver dysfunction.  

Diabetes mellitus 

Diabetes mellitus is a metabolic disease with multi-system complications. It is a known risk 

factor for coronary artery disease, myocardial infarction, and ischaemic stroke, and is associated 

with poor outcome. However, the association with ICH is not robust. Epidemiological analyses 

reveal the relative risk of ICH in diabetics as 1.6 in comparison with non-diabetics
33

, however, 
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population studies in Iran contrast these findings and show no association between ICH and 

diabetes mellitus.
34

   

The association of diabetes mellitus with adverse outcomes following ICH has also been 

investigated with conflicting results. Earlier studies found significantly higher mortality rates in 

diabetics (54.5%) in comparison with non-diabetics (26.3%),
35

 and at 7 and 30-days
36

. In 

contrast, prospective analysis of 1438 Chinese patients found no association with adverse 

outcomes.
37

 Therefore, conflicting evidence exists regarding this association with further 

analysis required for a more comprehensive understanding.  

Potential mechanisms underlying diabetes-induced ICH involve diabetic ketoacidosis (DKA) and 

microvascular complications. The diabetic hyperglycaemic state increases oxidative stress 

thereby disrupting endothelial cells and damaging microvasculature. Associated systemic 

inflammation also contributes to various signalling pathways which disrupt endothelial function 

and exacerbate neurological injury.
38

 Another mechanism by which diabetes may predispose 

individuals to ICH is through the formation of atherosclerotic plaques in the vascular 

endothelium. The hyperglycaemic state results in non-enzymatic glycosylation of lipids and 

proteins, thereby accelerating atheroma formation.
39

 With existing uncertainty in the role of 

diabetes mellitus in ICH, further investigation is required to explore this association and 

understand potential mechanisms involved.  

This thesis examines the incidence of stress hyperglycaemia and its independent predictors in 

ICH patients (Chapter 2). It analyses outcomes of early neurological deterioration and longer 

term outcomes of 3-month major disability and death (Chapter 3). Comparisons of haematoma 

volumes, intraventricular extension and haematoma location are also explored in patients with 

normal and elevated admission blood glucose levels (Chapter 4). We hypothesised that patients 

with admission hyperglycaemia would have significantly higher incidence of early neurological 

deterioration and poorer longer term outcomes (death or major disability) at 3 months. Other 

hypotheses were that patients with admission hyperglycaemia would have more severe 

haematoma characteristics such as larger haematoma volume, higher rates of intraventricular 

extension, haematoma growth and perihaematomal oedema.  
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Chapter 2 - Stress hyperglycaemia and its 

determinants 
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(Brisbane) 
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Background and Purpose:  Hyperglycaemia is common after acute intracerebral haemorrhage 

(ICH) and is associated with adverse outcomes.  We aimed to identify the determinants of 

hyperglycaemic response among participants of the INTERACT2 study.  

Methods:  INTERACT2 was an international, multicentre, prospective, open, blinded endpoint, 

randomised controlled trial of 2839 ICH patients (<6hr) with elevated systolic blood pressure 

(SBP) assigned to intensive (target SBP <140mmHg) or guideline-based (SBP <180mmHg) BP 

management.  Determinants of baseline hyperglycaemia were identified in multivariable logistic 

regression models.  
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Results:  Available baseline data on blood glucose in 2653 (93%) patients showed. significant 

predictors of hyperglycaemia were female sex, recruitment outside China, high SBP, high 

NIHSS score, history of diabetes mellitus, cortical location of ICH, large haematoma volume, 

and intraventricular extension (all P<0.001).  Independent predictors of hyperglycaemia in non-

diabetic patients (n = 2361) were female sex, high SBP, recruitment outside of China, high 

NIHSS score, cortical location of ICH, large volume haematoma and intraventricular extension.  

Conclusions:  Hyperglycaemic reaction in acute ICH reflects a combination of physiological 

stress related to the severity of underlying disease and associated dysglycaemia from associated 

diabetes mellitus.  

2.3 Hyperglycaemia in acute medical conditions and association with adverse 

outcomes 

Hyperglycaemia refers to the elevation in plasma glucose and is a clinical finding that is linked 

with many emergency scenarios such as ICH, acute myocardial infarction (AMI), trauma and 

ischaemic stroke. The incidence of hyperglycaemia has further been found to be specifically 

associated with adverse functional outcomes and increased rates of mortality. Increased hospital 

mortality has been reported with increments in blood glucose and adverse outcomes seen with 

admission hyperglycaemia.
40

 This raises the question of the mechanism and whether the stress 

hyperglycaemia or an underlying diabetic pathophysiology needs to be considered.  

 

Admission hyperglycaemia has also been linked with adverse outcomes in other neurological 

disease processes such as traumatic brain injury where there is an association with infectious 

morbidity
41

, severe disability and mortality
42

 and acute ischaemic stroke where admission 

hyperglycaemia is correlated with haemorrhagic transformation
43

 and adverse outcomes at 3-

months
44

.  

The presentation of hyperglycaemia has been considered independent of diabetes as non-diabetic 

patients presenting to cardiac and neurosurgical units reported significantly increased mortality.
45

 

In critical illness, hyperglycaemia has been observed in 38% of patients, of which a significant 

proportion are non-diabetic. Non-diabetic hyperglycaemic patients are at greater risk of adverse 

outcomes with 16% mortality in comparison with 3% mortality reported in diabetic 

hyperglycaemic patients.
46
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In terms of functional outcomes hyperglycaemic patients also had longer hospital admission 

periods and were more frequently admitted into rehabilitation or extended care facilities. The 

adverse outcomes linked with hyperglycaemia may be related to the increased risk of infectious 

complications in critical illness
47,48

 or the oxidative stress due to generation of oxygen free 

radicals.
49

  

Acute myocardial infarction and cardiac surgery 

Acute myocardial infarction generates a physiological stress and the resulting hyperglycaemia 

has been widely reported. Significantly higher in-hospital mortality has been reported in 

myocardial infarction patients presenting with hyperglycaemia (16%) in comparison with 

normoglycaemia (6%).
50

 However, when dividing the hyperglycaemic group into diabetics and 

non-diabetics there was no significant difference in mortality. These findings were affirmed by 

Capes et al.
51

 who demonstrated a 3.9 times greater risk of mortality in non-diabetic 

hyperglycaemic patients in comparison with normoglycaemic controls. This suggests that the 

association between hyperglycaemia and poorer outcomes is separate from diabetic 

pathophysiology. In myocardial infarction, potential pathways in the acute setting include 

activation of inflammatory cascades with increased levels of circulating interleukins, activation 

of T-cell differentiation and elevated inflammatory markers (C-reactive protein.
52

  

 

The hyperglycaemia may also exacerbate the myocardial necrosis due to oxidative stress and the 

p66Shc protein plays an integral role in regulating the oxidative equilibrium and causing cardiac 

mitochondrial dysfunction.
49

 This protein contributes to the production of hydrogen peroxide 

thereby stimulating mitochondrial apoptosis.
53

 The elevated blood glucose was also correlated to 

increased levels of myocardial necrotic factors such as Troponin I and creatine kinase MB.
54

 

This suggests that the hyperglycaemia is related to the physiological stress following infarction.  

 Adverse outcome have been reported following cardiac surgery and infectious complications 

(sternal wound infections) and longer hospitalisation is reported.
55

 These markers of poor 

outcome must also be assessed in ICH.  
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Direct clinical application may suggest that tighter glycaemic control would be advantageous, 

however, intensive insulin regimens have failed to show significant clinical benefit and resulting 

hypoglycaemic events must be weighed against the theoretical benefit.
56-58

 

Neurological conditions 

Hyperglycaemia has also been recorded in brain-related emergencies such as traumatic brain 

injury (TBI), acute ischaemic stroke and, most relevantly, ICH and these are linked with adverse 

outcomes based on morbidity and mortality.
59

 Jeremitsky et al.
60

 monitored blood glucose over 5 

days in TBI patients and found that early hyperglycaemia was linked with poorer functional 

outcomes (GCS) and mortality. Independent risk factors for patients requiring neurosurgical 

intervention (craniotomy) for management of TBI were hyperglycaemia, age, GCS <9 and 

severity of TBI.
61

 In this study the hyperglycaemic group had higher in-hospital mortality in 

comparison with normoglycaemic controls (31% vs 20%, p < 0.02). Paediatric TBI is another 

critical condition where the incidence of hyperglycaemia is associated with poor outcomes.
62,63

  

Ischaemic stroke 

In the context of ischaemic stroke, hyperglycaemia is observed in 20-50% of patients.
64

 

Specifically, higher mortality rates were reported at 30 days, 1 year and 6 years (p <0.01 for 

all).
65

 These findings have been confirmed in subsequent investigations reporting worsened 

clinical outcomes
66

 and significantly increased 28-day mortality
67

. An earlier study found no 

significant difference in survival or functional outcome between hyperglycaemia and 

normoglycaemic patients at 3 months
68

, however, this had a smaller cohort encompassing all 

stroke subtypes (lacunar infarcts, cerebral infarcts and ICH). 

ICH 

A number of investigations have demonstrated the presence of hyperglycaemia in ICH.
69-71

 

Stress hyperglycaemia was reported in 27.3% (n=109) of patients with 45% mortality in the 

hyperglycaemic group in comparison with 5% mortality in normoglycaemic patients.
71

 Other 

investigations found hyperglycaemia in 59.3% of patients at admission, with less than half of 

these (44%) experiencing prolonged hyperglycaemia at 72-hours. The association of 

hyperglycaemia and survival also shows significantly greater in-hospital and 3-month 

mortality.
72
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Numerous mechanisms involving oxidative stress, haematoma expansion and cerebral oedema 

have been discussed with respect to hyperglycaemia and ICH. Hyperglycaemic animal models 

have illustrated increased haematoma expansion following ICH and the proposed mechanism is 

via plasma kallikrein (PK). Binding of PK with collagen inhibits platelet aggregation, especially 

in diabetic rats. Haematoma expansion in the subarachnoid space and haematoma volume were 

significantly greater in diabetic rats in comparison with non-diabetic controls perhaps indicating 

that hyperglycaemic conditions relate with haemorrhagic expansion.
73

 Further animal models 

have underlined the role of hyperglycaemia in causing vasogenic and cytotoxic cerebral oedema 

as well as perihaematomal cell death. TNF-α and possible interleukins have been suggested (IL-

1β).
74

 These findings of haematoma expansion were supported by Kimura et al.
70

 who reported 

increased brain oedema in hyperglycaemic patients which may further contribute to the poor 

outcomes and neurological deterioration.   

 

The clinical significance of examining hyperglycaemia in ICH is to determine whether targeting 

blood glucose level may be advantageous in restricting haematoma growth, perihaematomal 

oedema and provide more favourable outcomes. This has been investigated in animal models 

where intensive blood glucose lowering therapy resulted in significantly lower intracranial 

pressure and decreased incidence of cerebral hypoxia. Neurochemistry markers such as pyruvate, 

lactate and glutamate were also significantly lower in the intensive insulin management group.
75

 

This may lead to the decreased formation of oxidation free radicals thereby ameliorating 

oxidative stress upon neurons. The role of superoxide production and oxidative stress was 

underlined through rat models where correlation with blood-brain barrier disruption was 

observed.
76

 The BBB disruption may lead to calcium influx, anaerobic glycolysis and cerebral 

parenchymal acidosis representing a possible mechanism for exacerbated neurological injury. 

Neurological complications following ICH may also occur as hyperglycaemia is associated with 

haemorrhagic transformation of ischaemic infarcts within the parenchyma of the brain.
77

  

 

2.4 The role of insulin resistance in hyperglycaemia 

Insulin is a key regulator of glucose uptake and metabolism with its actions taking effect upon 

muscle and adipose tissue. The role of insulin in carbohydrate metabolism is to accelerate 

glycolysis and induce glycogen synthesis.
78

 Insulin resistance is a pathological condition where 



Chapter 2 - Stress hyperglycaemia and its determinants 

 

Page 24 of 94 

 

tissue sensitivity to insulin is impaired leading to dysfunctional glucose metabolism and elevated 

serum glucose levels. Potential mechanisms of insulin resistance are thought to involve defects in 

insulin signalling involving GLUT4, PIP-3 kinase and insulin responsive substrate (IRS) 

proteins.
79

 In the context of intracerebral haemorrhage the associations of insulin resistance with 

age and hypertension must be addressed.  

 

Early investigations explored the potential role of ageing in insulin resistance by comparing 

young and old subjects.
80

 Fink et al. compared insulin binding by examining adipose tissue 

biopsies in young and old patients and found no difference in binding. Insulin resistance was 

assessed using oral glucose tolerance testing with older subjects having higher levels of serum 

insulin and glucose. Based on these results, Fink et al. postulated that impaired insulin resistance 

may be related to the ageing process due to post-receptor defects. There were multiple 

limitations in this early study, with only limited baseline characteristics available to compare the 

young and old group and the small sample size restricting the statistical power. More recent 

studies suggest that insulin resistance in older patients is related to higher levels of obesity and 

visceral adiposity.
81

  

 

Metabolic syndrome and its components must also be considered, specifically the relationship 

between insulin resistance and hypertension. Metabolic syndrome refers to inter-related 

conditions of insulin resistance, hypertension, dyslipidaemia and obesity all of which are 

significant risk factors for cardiovascular and cerebrovascular disease.
82

 The relationship 

between hypertension and insulin resistance has been studied extensively through animal models, 

genetic studies and clinical investigations. Studies of glucose metabolism in the hypertensive rat 

model display impairment in insulin mediated glucose transport when compared with controls.
83

 

Genome wide scanning has also revealed potentially common loci for diabetes and 

hypertension.
84

  

 

Therefore, when studying the role of acute hyperglycaemia in intracerebral haemorrhage the 

interplay with existing insulin resistance must be considered. History of diabetes mellitus 

represents insulin resistance, however, does not account for undiagnosed diabetes mellitus, 

impaired fasting glucose and impaired glucose tolerance. In the INTERACT2 study population 
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the history of hypertension is relatively high (72.8%) and the median age is 63.3 years (see Table 

1) with these factors potentially contributing to insulin resistance. History of diabetes (11.0%) is 

also recorded and adjusted for in the analyses as will be described later, however, undiagnosed 

diabetes and impaired insulin resistance is difficult to account for. Whilst acute hyperglycaemia 

may reflect the physiological stress response to the neuronal injury of ICH, mechanisms of 

insulin resistance driven by ageing, obesity and hypertension may also be critical in the elevated 

glucose levels recorded.   

 

The relationship of insulin resistance in ischaemic stroke has been well-established; however, 

current evidence is conflicting in intracerebral haemorrhage. In ischaemic stroke insulin 

resistance is now being considered as a therapeutic target as part of secondary prevention (IRIS 

trial).
85

 This trial assessed the potential to treat insulin resistance with pioglitazone to reduce 

recurrence of vascular events. Patients with insulin resistance and a history of stroke or TIA in 

the preceding 6 months were included and pioglitazone therapy was shown to reduce recurrent 

stroke and major vascular events.
86

 Whilst the association of insulin resistance with intracerebral 

haemorrhage is still controversial, further investigation into this association is warranted.  

 

2.5 Hyperglycaemia and post-ICH outcome 

Recent studies have reported that hyperglycaemia is an independent predictor of mortality
59,70

 

and adverse functional recovery based on the modified Rankin scale (mRS).
87

 The functional 

status was characterised into favourable (mRS <3) and poor outcome (mRS ≥3). Elevated blood 

glucose was associated with poor functional recovery in non-diabetic patients, whilst increased 

mortality was found in both diabetic and non-diabetic patients. Tertile and quartile analysis of 

admission blood glucose further reveals increased risk of mild, moderate and severe handicap.
88

  

Therefore, current literature provides contrasting evidence with regards to the incidence, 

outcomes and management of hyperglycaemia in ICH. INTERACT2 with its significant cohort 

size, data on admission blood glucose and record of death and major disability over 3-months 

allows these questions to be adequately addressed.  
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Determinants of hyperglycaemia in INTERACT2 

The incidence of hyperglycaemia and association with poor outcomes in acute illness has been 

extensively described above. However, the mechanisms involved are not clearly understood. 

Specifically in ICH the relationship of hyperglycaemia with demographic, biochemical and 

clinical factors needs to be explored. Determinants of hyperglycaemia have been investigated in 

myocardial infarction, cardiac surgery and hepatic steatosis with the associated physiological 

stress resulting in elevated blood glucose levels. The uncertainty is whether hyperglycaemia is 

due to physiological stress or due to pre-existing glucose intolerance and undiagnosed DM.  

Ladeira et al.
54

 examined the predictors of hyperglycaemia in myocardial infarction with 

multivariate models showing myocardial necrosis, history of diabetes mellitus and glucose 

metabolism (HbA1c, insulin levels) to be significantly associated with hyperglycaemia. To 

effectively assess whether diabetic pathophysiology or stress hyperglycaemia is the key 

mechanism markers of glucose metabolism were studied in patients without diabetes mellitus. 

Stratifying these patients into HbA1c (<5.7, 5.-6.4, >6.4) it was found the admission blood 

glucose was significantly greater with higher HbA1c groups. This suggests that undiagnosed 

diabetes mellitus and glucose intolerance may be the driving mechanism in hyperglycaemia. 

Further, diabetes mellitus was the strongest determinant of hyperglycaemia in this investigation 

(odds ratio [OR] 27, 95 confidence interval [CI] 3.7-195.7;, P=0.001). On the other hand, the 

significant association with myocardial necrosis (measured through CK-MB and troponins) 

reported (OR 21.9, 95%CI 1.3-360.9; P=0.03) supports the stress mechanism where the more 

critical condition induces a greater glycaemic response.  

The hyperglycaemic mechanism has also been explored in patients undergoing cardiac 

catheterisation.
89

 Four groups of analysis were: patients without diabetes mellitus or acute 

coronary syndromes (ACS), diabetes mellitus and ACS, diabetes mellitus only, and ACS only. 

Again the strongest association with hyperglycaemia was seen in the diabetes mellitus group 

(OR 9.4, 95%CI 3.9-22.4; P<0.001) whilst ACS was also independently associated with 

hyperglycaemia (OR 4.6, 95%CI 2.3-9.0; P<0.001). Whilst Ladeira et al.
54

 excluded diabetic 

patients from their study, this investigation excluded patients with HbA1c ≥ 6.5% to assess the 

minimise interaction from patients with chronic hyperglycaemia and poor diabetic control.  
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Retrospective analysis of cardiac surgery patients also examined predictors of hyperglycaemia.
90

 

More comprehensive exclusion criteria was applied, excluding patients with HbA1c ≥6.5%, 

known diabetes mellitus, pre-operative random BSL ≥200 mg/dL and patients taking diabetic 

medications. Continuous BSL was monitored 4 hourly for a 72-hour period rather than baseline 

BSL used in other investigations. Results from this study showed multiple determinants of 

hyperglycaemia including: age, gender, body mass index, clinical parameters such as left 

ventricular ejection fraction and previous cardiac surgery. Pre-operative cardiogenic shock was 

another independent predictor of hyperglycaemia which supports the stress mechanism where 

activation of shock-related stress hormones may play a role in the elevated BSL. Other reported 

predictors of hyperglycaemia in cardiac surgery include ACE inhibitors
91

 and pre-existing 

metabolic syndrome
92

.   

Determinants of hyperglycaemia in acute stroke (ischaemic and ICH) include stroke severity, 

infarct size whilst there is conflicting evidence regarding the role of neuroendocrine hormones. 

Early studies divided patients into normoglycaemia, known diabetes, newly diagnosed diabetes 

and non-diabetic hyperglycaemia.
93

 Whilst no association was found with lesion site and stroke 

severity (Toronto stroke scale) was significantly greater in non-diabetic hyperglycaemic patients. 

Significant association between infarct size and hyperglycaemia has also been reported in 

ischaemic stroke.
93,94

 Previous investigations have also discussed the role of the neuroendocrine 

hormones in the stress hyperglycaemic response. O’Neill et al.
95

 found that insulin, glucagon, 

cortisol but not catecholamines (epinephrine, norepinephrine) were significantly associated with 

BSL, however, this was on univariate analysis with a small cohort (n=23) and part of a single-

centre study.  

The INTERACT2 study allows a similar assessment to be conducted for ICH. Whilst severity of 

AMI was linked with markers of myocardial necrosis (CKMB), in ICH haematoma 

characteristics such as volume and IVH extension represent the severity. As history of diabetes 

was recorded at admission this association can also be explored in the INTERACT2 cohort.   

Methods 

The INTERACT2 trial included 2839 patients assigned to intensive or guideline-recommended 

antihypertensive therapy. Demographic and clinical characteristics recorded at the time of 

enrolment included a history of diabetes mellitus and level of blood glucose.  Stroke severity was 
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measured using the GCS and National Institutes of Health stroke scale (NIHSS) at baseline, 24 

hours, and at Day 7 (or upon discharge from hospital if this occurred earlier). History recorded at 

baseline also included: past medical history (hypertension, heart disease, prior ICH, prior 

undifferentiated stroke) and current medications (insulin or glucose lowering therapy, aspirin or 

antiplatelet agents, warfarin or anticoagulation, antihypertensive therapy). Clinical measurements 

of systolic and diastolic BP, GCS score and demographic details of age, gender and recruitment 

centre were also recorded. Using CT analysis haematoma characteristics of haematoma volume, 

location and IVH extension were assessed.  

Baseline characteristics were summarized as mean (standard deviation [SD]) or median 

(interquartile range [IQR]) for continuous variables, and as number (%) for categorical variables.  

Collinearity and interactions between variables were checked.  Independent associations between 

baseline characteristics and level of blood glucose, defined as normoglycaemia (<6.5 mmol/L) or 

hyperglycaemia (≥6.5 mmol/L), and with a history of diabetes mellitus, were examined in 

multivariable logistic regression models with all significant baseline variables. These 

multivariable analyses were performed for the entire cohort (n = 2839) and in non-diabetic 

patients (n = 2361).  

Results 

Of the 2829 ICH patients, 176 were excluded because of missing baseline blood glucose 

measurements.  Table 1 shows the baseline characteristics of the remaining 2653 patients, which 

included 1348 (51%) with hyperglycaemia (>6.5 mmol/L) and 292 (11%) with diabetes mellitus. 

On univariate analysis hyperglycaemic patients were significantly more often female, from 

outside of China, had greater cortical haematomas, diabetes mellitus, higher SBP, greater clinical 

severity of stroke, and larger haematomas with IVH extension. No collinearity was found 

between the baseline variables.  All significant interactions (age x NIHSS ≥15, China x IVH 

extension, baseline haematoma volume x deep location of haematoma, and deep location of 

haematoma x IVH extension) were included in the multivariable analyses. This showed that 

female gender, patients outside of China, stroke severity (by NIHSS), SBP, history of diabetes, 

cortical location of haematomas, IVH extension and haematoma volume (ICH only) were 

significant independent predictors of hyperglycaemia (Table 1). In non-diabetic patients 
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independent predictors were female sex, recruitment outside of China, high NIHSS score, SBP, 

cortical location of ICH, large volume haematoma and IVH extension (Table 2).  

Discussion 

Our multivariate analysis identified the determinants of hyperglycaemia in the INTERACT2 

cohort. Key demographic predictors were females and patients recruited from outside China, 

whilst age was only significant in univariate analyses. The two important clinical parameters 

were stroke severity and baseline SBP. Univariate associations of hyperglycaemia with history of 

hypertension and heart disease did not remain after multivariate adjustment, whilst DM is found 

to be the strongest independent predictor of baseline hyperglycaemia. The critical haematoma 

characteristics that are also significant predictors are haematoma location (cortical), IVH 

extension and ICH volume.   

These results confirm previous investigation by Passero et al.
96

 (n=764) who identified 

haematoma volume, IVH extension and initial mean arterial pressure (MAP) as well as GCS 

(only in univariate INTERACT2 analyses) as independent predictors of hyperglycaemia in 

univariate analysis only without adjustment for diabetes mellitus. Fogelholm et al.
97

 found 

hyperglycaemia in non-diabetic patients was predicted by haematoma volume, midline shift of 

cerebral structures and high MAP. Our study showed significant association between 

hyperglycaemia and SBP in non-diabetic patients, confirming these earlier findings.  

IVH was also examined in INTERACT2 and aligns with previous investigation by Appelboom et 

al.
72

. This study specifically examined the relationship between IVH and hyperglycaemia with 

IVH categorised based on the IVH score
98

, a popular rating scale of clinical severity and 

prognosis in ICH. Determinants of hyperglycaemia in this study (n=104) were diabetes mellitus 

and IVH score with a linear relationship reported between admission blood glucose levels and 

the IVH score (multivariate analyses). Accordingly, greater IVH severity is associated with a 

more severe hyperglycaemic state. This may support the stress hyperglycaemia hypothesis 

whereby the driver of the glucose levels is the severity of the neurological injury. Other 

haematoma characteristics such as haematoma volume and location were not determinants of 

hyperglycaemia in multivariate analyses unlike INTERACT2 findings. Our much larger, multi-

centre investigation suggests that a number of haematoma characteristics (volume, location, IVH 
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extension) are all significantly associated with admission hyperglycaemia and need to be 

individually examined to understand the mechanism and the impact upon survival outcomes.  
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Table 2.1: Baseline characteristics by admission blood glucose in INTERACT2 cohort; multivariate analyses 

  All 

(N=2653) 

Glucose<6.5 

(N =1305) 
Glucose≥6.5(N=1348) P value 

Adjusted OR P value 

Age, median(IQR)* 63.3(54.4-73.8) 62.1(53.8-72.3) 64.5(54.9-75.1) <0.0001   

Male sex* 1655(62.4) 863(66.1) 792(58.8) <0.0001 0.74(0.62-0.88) 0.0006 

Recruited from 

China* 
1764(66.5) 943(72.3) 821(60.9) <0.0001 

0.74(0.61-0.88) 0.0009 

GCS, median (IQR) 14(13-15) 14(13-15) 14(12-15) <0.0001   

Time to 

randomisation, hours 
3.7(2.8-4.7) 3.7(2.8-4.6) 3.7(2.8-4.8) 0.54 

  

NIHSS, median 

(IQR)* 
11(6-16) 9(5-14) 12(7-16) <0.0001 

1.03(1.01-1.04) 0.0004 

Systolic BP, mmHg, 

mean(SD)* 
179.0(17.0) 177.2(16.9) 180.0(16.8) <0.0001 

1.01(1.01-1.02) 0.0001 

Diastolic BP, mmHg, 

mean±SD 
100.9±14.6 101.2±14.1 100.6±15.2 0.27 

  

History of 

hypertension* 
1928(72.8) 922(70.7) 1006(74.7) 0.0197 

  

Current use of 

antihypertensive 

therapy 

1209(45.6) 556(42.6) 653(48.5) 0.0024 

  

Heart disease* 287(10.8) 115(8.8) 172(12.8) 0.0011   

Prior intracerebral 

haemorrhage 
217(8.2) 105(8.1) 112(8.3) 0.80 

  

Prior ischaemic or 

undifferentiated 

stroke 

302(11.4) 145(11.1) 157(11.7) 0.66 

  

History of diabetes* 292(11.0) 46(3.5) 246(18.3) <0.0001 5.91(4.21-8.31) <0.0001 

Use of warfarin 

anticoagulation 
77(2.9) 31(2.4) 46(3.4) 0.11 

  

Use of aspirin or 

other antiplatelet 

agent* 

260(9.8) 95(7.3) 165(12.3) <0.0001 

  

Insulin therapy or 

glucose lowering 

treatment 

179(6.8) 31(2.4) 148(11.0) <0.0001  

 

Deep location of 

haematoma§* 
2036(83.0) 1052(86.8) 984(79.4) <0.0001 

0.51(0.40-0.65) <0.0001 

IVH Extension* 685(27.9) 264(21.8) 421(34.0) <0.0001 1.77(1.46-2.14) <0.0001 

Haematoma volume 

at baseline, mL, 

median (IQR)  

        

  

ICH* 10.9(5.7-19.5) 10.2(5.4-17.0) 11.6(6.2-21.9) <0.0001 1.01(1.00-1.02) 0.0068 

Combined 

(ICH+IVH) 
13.1(6.4-23.8) 11.6(5.9-20.0) 14.6(7.0-28.0) <0.0001 

  

Data are n(%), mean (SD), or median (IQR) 

§ Deep location refers to location in the basal ganglia or thalamus. 

P values are based on chi-squared, t-test or Wilcoxon rank sum test. 

*all significant univariate variables were put into the multivariable model. We reduced the full model by 

successively removing the nonsignificant covariates until all the remaining predictors remained statistically 

significant (P<0.05). 
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Table 2.2: Baseline characteristics by admission blood glucose in Non-diabetic Patients 
  Glucose<6.5 

(N =1259) 
Glucose≥6.5(N=1102) P value 

Adjusted OR P value 

Age, mean(SD) 62.4(12.6) 64.3(13.2) 0.0007   

Male sex 833(66.2) 634(57.5) <0.0001 0.71(0.60-0.86) 0.0003 

Recruited from China 920(73.1) 702(63.7) <0.0001 0.71(0.59-0.86) 0.0004 

GCS, median (IQR) 14(13-15) 14(12-15) <0.0001   

Time to 

randomization, hours 
3.7(2.8-4.6) 3.7(2.8-4.8) 0.35 

  

NIHSS, median 

(IQR) 
9(5-14) 12(7-17) <0.0001 

1.03(1.02-1.05) <0.0001 

Systolic BP, mmHg, 

mean(SD) 
177.2(16.9) 180.0(16.8) <0.0001 

1.01(1.01-1.02) 0.0001 

Diastolic BP, mmHg, 

mean(SD) 
101.5(14.0) 101.2(15.3) 0.0038 

  

History of 

hypertension 
884(70.3) 793(72.1) 0.33 

  

Current use of 

antihypertensive 

therapy 

523(41.6) 490(44.6) 0.15 

  

Heart disease 109(8.7) 118(10.7) 0.092   

Prior intracerebral 

haemorrhage 
100(8.0) 89(8.1) 0.90 

  

Prior ischaemic or 

undifferentiated 

stroke 

137(10.9) 116(10.6) 0.79 

  

Use of warfarin 

anticoagulation 
29(2.3) 31(2.8) 0.43 

  

Use of aspirin or 

other antiplatelet 

agent 

89(7.1) 106(9.6) 0.0243 

  

Insulin therapy or 

glucose lowering 

treatment 

6(0.5) 5(0.5) 0.94  

 

Deep location of 

haematoma§ 
1015(87.0) 790(78.1) <0.0001 

0.47(0.37-0.60) <0.0001 

IVH Extension 253(21.7) 345(34.1) <0.0001 1.81(1.48-2.20) <0.0001 

Haematoma volume 

at baseline, mL, 

median (IQR)  

10.2(5.5-17.1) 12.2(6.5-23.5) <0.0001 

1.01(1.00-1.02) 0.0093 

 

Data are n(%), mean (SD), or median (IQR) 

§ Deep location refers to location in the basal ganglia or thalamus. 

P values are based on chi-squared, t-test or Wilcoxon rank sum test. 

*all significant univariate variables were put into the multivariable model. We reduced the full model by 

successively removing the nonsignificant covariates until all the remaining predictors remained statistically 

significant (P<0.05). 
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3.3 Abstract 

Background and Purpose:  We aimed to determine associations of baseline blood glucose and 

diabetes mellitus with clinical outcomes in participants of the Intensive Blood Pressure 

Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2).   

Methods:  INTERACT2 was an international prospective, open, blinded endpoint, randomised 

controlled trial of 2839 patients with spontaneous ICH (<6 hr) and elevated systolic blood 

pressure (SBP) randomly assigned to intensive (target SBP <140 mmHg) or guideline-based 

(SBP <180 mmHg) BP management.  Associations of hyperglycaemia at presentation (>6.5 

mmol/L) and combined and separate poor outcomes of death and major disability (scores of 3-6, 

3-5, and 6, respectively, on the modified Rankin scale) at 90 days were determined in logistic 

regression models.   

Results:  In 2653 patients with available data, there were 1348 (61%) with hyperglycaemia and 

292 (11%) with diabetes mellitus.  Associations of baseline blood glucose and poor outcome 
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were strong and near continuous.  After adjustment for baseline variables, the highest fourth 

(7.9-25.0 mmol/L) of blood glucose was significantly associated with combined poor outcome 

(adjusted odds ratio [aOR] 1.35, 95% confidence interval [CI] 1.01-1.80; P trend 0.015).  

Diabetes mellitus also predicted poor outcome (aOR 1.46, 95% CI 1.05-2.02; P = 0.023) though 

more important for residual disability than death on separate analysis.  

Conclusions: Hyperglycaemia and diabetes mellitus are independent predictors of poor outcome 

in patients with predominantly mild to moderate severity of ICH.  These data support guideline 

recommendations for good glycaemic control in patients with ICH.   

Clinical Trial Registration - URL: http://clinicaltrials.gov. Unique Identifier: NCT00716079 

 

3.3 Manuscript 

Introduction 

Acute ICH is the most serious and least treatable form of acute stroke
99

 for which established 

prognostic factors include clinical severity and location and volume of haematoma at 

presentation.
100

 While stress hyperglycaemia is associated with adverse outcomes in many 

medical conditions, including acute ischaemic stroke,
101,102

 traumatic brain injury
63

 and acute 

myocardial infarction,
50

 evidence specifically related to the critical condition of ICH is varied 

and conflicting due to previous studies being limited to small single centre series
72,88

 with short 

duration of follow-up.
103

 Animal models have shown that elevated BP exacerbates cerebral 

injury following ICH
104

 and have explored associations between hyperglycaemia and cerebral 

oedema.  There may be a supra-additive effect of hyperglycaemia and the hypertensive response 

in ICH on outcome. The purpose of this study was to quantify risk associations of 

hyperglycaemia and diabetes mellitus among participants of the INTERACT2.
105

 Our hypothesis 

was that hyperglycaemia is associated with poor outcome in ICH.  

Materials and Methods 

INTERACT2 was an international, multicentre, prospective, open-label, assessor-blinded end-

point, randomised controlled trial, the details of which are described elsewhere.
105 In brief, 2839 

patients with CT-confirmed spontaneous ICH within 6 hours of onset and elevated systolic BP 

(SBP, 150-220 mmHg) were randomly assigned to receive intensive (target SBP <140 mmHg 

within 1 hour) or guideline-recommended (target SBP <180 mmHg) BP lowering therapy using 
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locally available agents according to standardised protocols.  The study protocol was approved 

by the appropriate ethics committee at each participating site, and written informed consent was 

obtained from the patient or an appropriate surrogate. 

Demographic and clinical characteristics recorded at the time of enrolment included a history of 

diabetes mellitus and level of blood glucose.  Stroke severity was measured using the Glasgow 

coma scale (GCS) and National Institutes of Health stroke scale (NIHSS) at baseline, 24 hours, 

and at Day 7 (or upon discharge from hospital if this occurred earlier).  For each CT scan, 

uncompressed digital images were sent to a central analysis laboratory in DICOM format on a 

CD-ROM identified only with the patient’s unique study number.  Haematoma volumes with and 

without inclusion of any IVH component were calculated independently by trained scientists 

who were blind to clinical data, treatment, and date and sequence of scan.  This calculation was 

done with computer-assisted multi-slice planimetric and voxel threshold techniques in MIStar 

software (version 3.2) (Apollo Medical Imaging Technology, Melbourne, Australia).  Inter-

reader reliability was checked by periodic re-analysis of the scans (15%) throughout the study to 

avoid drift (intraclass correlation coefficients 0.92).   

The primary clinical outcome was death or major disability, defined by scores 3-6 on the 

modified Rankin scale (mRS) at 90 days.
106

  Secondary outcomes were separately those of death 

and major disability (mRS score of 6 and 3-5, respectively), and serious adverse events including 

early neurological deterioration (defined as an increase of ≥4 on the NIHSS or a decline of ≥2 on 

the GCS from baseline to 24 hours post-randomisation).  Primary causes of death were classified 

into 3 categories: (i) direct effects of initial ICH, defined as any death after the onset of the 

randomised ICH event in a patient who had progressive neurological deterioration and either the 

baseline or follow-up brain scan showed haematoma with mass effect, midline shift, or 

significant extension of initial haematoma in the absence of a clear extra-cranial cause for the 

death; (ii) recurrent cardiovascular event, defined by clear clinical evidence of a recurrent stroke, 

coronary vascular event, or sudden death, according to standard definitions; (iii) other causes, 

defined by clear evidence of death due to a non-neurological cause that included pneumonia, 

sepsis, or injury. 

Baseline characteristics were summarized as mean (standard deviation [SD]) or median 

(interquartile range [IQR]) for continuous variables, and as number (%) for categorical variables.  
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Collinearity and interactions between variables were checked.  Independent associations between 

baseline characteristics and level of blood glucose, defined as normoglycaemia (<6.5 mmol/L) or 

hyperglycaemia (≥6.5 mmol/L), and with a history of diabetes mellitus, were examined in 

multivariable logistic regression models with all significant baseline variables.  Curves of 

predicted 90-day outcomes according to baseline glucose level were constructed using predicted 

values and 95% confidence intervals (CI) from the univariate logistic regression models.  

Multivariable logistic regression models adjusted by all the significant and clinically important 

baseline variables as well as significant interactions were also used to determine associations of 

baseline level of blood glucose, both as continuous and categorical (fourths) variables, and 

clinical outcomes, as well as the association between a history of diabetes and clinical outcomes.  

Sensitivity analyses were conducted to examine clinical outcomes based on diagnostic thresholds 

of blood glucose for normoglycaemia, pre-diabetes, and diabetes mellitus (<6.1, 6.1–7.0, >7.0 

mmol/L, respectively).  Cox proportional hazard modelling was used to measure survival over 

90-days post-ICH.  The associations of hyperglycaemia on absolute increase in haematoma and 

perihaematomal oedema volumes over 24 hours were assessed by an analysis of covariance 

(ANCOVA) including the same adjusted variables above.  Data are presented with odds ratios 

(OR) and 95%CI.  A two sided P value <0.05 was set as the level for statistical significance.  All 

statistical analyses were performed using SAS version 9.3 (SAS institute, Cary, NC, USA). 

Results 

Of the 2829 ICH patients, 176 were excluded because of missing baseline blood glucose 

measurements (Figure 1).  Table 1 shows the baseline characteristics of the remaining 2653 

patients, which included 1348 (51%) with hyperglycaemia (>6.5 mmol/L) and 292 (11%) with 

diabetes mellitus.  After adjusting for confounding factors, hyperglyacemic patients were 

significantly more often female, from outside of China, had greater cortical haematomas, 

diabetes mellitus, higher SBP, greater clinical severity of stroke, and larger haematomas with 

intraventricular haemorrhage (IVH) extension.  Whereas patients who presented with a history of 

diabetes mellitus tended to be older, more often from outside China, had lower diastolic BP, 

greater history of hypertension, heart disease, and use of antihypertensive, antiplatelet and 

warfarin anticoagulation therapies, and with lower haematoma volume than those patients 

without diabetes mellitus (Table 2). 
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No collinearity was found between the baseline variables.  All significant interactions (age x 

NIHSS ≥15, China x IVH extension, baseline haematoma volume x deep location of haematoma, 

and deep location of haematoma x IVH extension) were included in the multivariable analyses.    

There was a strong and near continuous relationship between baseline blood glucose level and 

death or major disability (OR 1.29, 95%CI 1.19-1.40; P<0.0001) and death (OR 1.23, 95%CI 

1.12-1.37; P<0.0001) at 90 days  and they were still significant after adjusted by confounders and 

significant interactions: adjusted odds ratio [aOR] 1.11, 95%CI 1.00-1.24; P<0.0001, aOR 1.16 

95% CI (1.01-1.33); P=0.043 for death or major disability and death, respectively (Figure 2).  

Table 3 shows that the combined poor outcome of death or major disability was significantly 

greatest for the highest fourth of baseline blood glucose (aOR 1.35, 95% CI 1.01-1.80; P trend 

0.015).  Similar trends were evident for death (P trend 0.062) and major disability (P trend 

0.041).  The trends are also similar after removing the variable of randomised lowering treatment 

from the multivariate model (Table 4).  A history of diabetes mellitus (Table 5) was significantly 

associated with death or major disability (aOR 1.46, 95% CI 1.05-2.02; P = 0.023) and major 

disability (aOR 1.51, 95% CI 1.08-2.12; P = 0.017), but not for death alone (aOR 0.96, 95% CI 

0.62-1.51; P = 0.87).  For diagnostic thresholds of blood glucose, significant trend was found for 

death or major disability (P = 0.01) and major disability (P = 0.031).  In patients with admission 

blood glucose >7.0 mmol/L, there was significantly greater association with poor outcome (aOR 

1.36, 95% CI 1.08-1.71) (Table 6).  Adjusted Cox regression models  indicate increasing risks of 

death by increasing (fourths) levels of baseline blood glucose (Figure 3a), although this 

association did not appear independent of diabetes mellitus (Figure 3b). In regard to reported 

serious adverse events (Table 7), hyperglycaemic patients had significantly greater frequency of 

early neurological deterioration (16.5% vs. 13.1%; P = 0.014), death (14.4% vs. 8.9%; P 

<0.0001) and non-fatal adverse events (25.5% vs. 20.6%; P = 0.003) in comparison with 

normoglycaemic patients.  However, there was no apparent difference in the frequencies of fatal 

and non-fatal ischaemic, cardiovascular or infectious events between the two groups of patients, 

but these numbers were small.  Patients with a history of diabetes mellitus experienced 

significantly more non-fatal serious adverse events, particular of major cardiovascular events, 

during follow-up, but the frequency of early neurological deterioration or deaths from the initial 

ICH was similar to those without diabetes mellitus (Table 8).  There was a trend toward higher 

glucose levels among patients with higher baseline haematoma and perihaematomal oedema 
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volumes (Table 9 and 10, respectively). However, there was no significant difference of increase 

in either hematoma and perihaematomal oedema volumes between patients with admission 

glucose <6.5 or ≥6.5 mmol/L. These relationships are further explored in Chapter 4.  

Discussion 

This study shows that elevated blood glucose levels and diabetes mellitus both predict serious 

outcomes in patients with predominantly mild to moderate severity of acute ICH.  

Hyperglycaemia appears to influence prognosis of the acute event, increasing the risks of early 

neurological deterioration and death directly from the ICH, but without any apparent effect on 

growth in either haematoma or perihaematomal oedema over 24 hours (Chapter 4). Further, a 

near continuous association was evident between the level of blood glucose at presentation and 

the separate and combined outcomes of death and major disability over the subsequent 90 days.  

Moreover, the association was not affected by randomised BP lowering treatment. While 

diabetes mellitus was also associated with poor outcome, this appears to relate more to effects on 

residual disability and increased risks of future cardiovascular events rather than through a direct 

effect on the initial event.  

Our findings extend previous reports of elevated blood glucose being a predictor of adverse 

outcomes in ICH.
70,88,97,103

 In particular, the finding of a trend towards greater mortality from 

hyperglycaemia that was observed in Korean multi-centre study
103

 of 1387 ICH patients, but not 

with that seen in a smaller Finnish study.
97

 Sensitivity analysis of outcomes based on diagnostic 

thresholds (reference group <6.1 mmol/L) of blood glucose rather than fourths (reference group 

of 2.6–5.6 mmol/L) potentially allowed more clinically relevant glucose levels to be assessed.  

Specifically, the patient groups with admission glucose levels <6.1 and 6.1–7.0 mmol/L had less 

adverse outcomes than those with admission levels >7.0 mmol/L.   

In contrast to previous studies that have defined critical prognostic thresholds of hyperglycaemia, 

such 8
107

 or 10 mmol/L,
72

 we have shown no threshold but rather a strong continuous 

relationship between admission blood glucose and poor outcome in the INTERACT2 dataset. 

The multivariable analyses indicate that these associations are specific to hyperglycaemia rather 

than that of the pathophysiology of diabetes mellitus.  In contrast to previous studies showing 

that diabetes mellitus is an independent predictor of mortality after acute ischaemic stroke,
108

 and 
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for in-hospital
35

 and 1
36

 and 3 months
69,96,109 

time points after ICH, we did not find that diabetes 

mellitus predicted death after ICH.   

The exact pathophysiological mechanisms underlying the adverse effects of hyperglycaemia in 

ICH are yet to be elucidated. Hyperglycaemia has been shown to induce neuronal apoptosis in 

experimental ICH in adult Sprague-Dawley male rats,
110

 but other reactions from inflammatory 

(interleukin-1and tissue necrosis factor alpha)
111,112 

and toxic (cerebral lactate and 

lactate/pyruvate ratios)
113 

effects of oxygen free radical generation
114

 may also be important. 

Elevated white blood cells have been found to be positively correlated with glucose levels in 

ICH and are also an independent predictor of poor outcome.
115

 The leucocytosis may represent 

an inflammatory response caused by the hyperglycaemia and may exacerbate further 

neurological injury.  

Recent studies have also shown increased superoxide production, disruption of the blood-brain 

barrier,
76,116

 and enhanced cerebral oedema
74

 in hyperglycaemic rat models.  Moreover, the study 

of Parsons et al.
117

 in patients with ischaemic stroke has shown an association of hyperglycaemia 

and brain lactate and penumbral damage, quantified by magnetic resonance imaging with 

spectroscopy, which suggests there could be a similar mechanistic pathway in ICH.   

Whatever the mechanism, our data lend support guideline recommendations for good glycaemic 

control in ICH
118

 and suggest that a blood glucose level of <7.0 mmol/L may be an optimal 

therapeutic target despite the absence of randomised evidence.  In the United Kingdom Glucose 

Insulin in Stroke Trial (GIST-UK),
119

 there was no effect of glucose-potassium-insulin compared 

to saline over the initial 24 hours on mortality in 933 patients with stroke (including 114 with 

ICH) when the trial was stopped early because of slow enrollment.  Moreover, a meta-analysis of 

randomised controlled trials comparing glycemic control by insulin with usual care in patients 

with ischaemic stroke also showed no benefit regarding mortality or functional outcome and 

increased risk of hypoglycaemic events, suggesting the potential harmful effects of intensive 

glycaemic control to vulnerable ischaemic penumbra.
120

 However, there are still significant 

uncertainties regarding optimal glucose levels and glycaemic control methods in acute stroke, 

especially in ICH which distinct pathophysiological mechanisms from ischaemic stroke. 

Strengths of our study include the large and heterogeneous patient population which had rigorous 

prospective and systematic evaluations early after the onset of acute ICH.  However, as these 
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analyses were not pre-specified, they are open to chance or biased associations, and therefore the 

findings require further validation.  Another limitation is that they are based on single 

measurements of blood glucose and thus prone to regression dilution bias as well as some 

misclassification bias with respect to diabetes mellitus status since this was based only on a 

history of the condition at presentation.  Although our study had a much lower frequency of 

diabetes mellitus (11%) than has been reported in other studies (14-23%),
72,88,96

 many of the 

participants were from China where the frequency of obesity and diabetes mellitus is lower than 

in the west.  Finally, as the INTERACT studies excluded patients with a high likelihood of early 

death and planned surgical evacuation of haematoma, these findings may not be applicable to 

patients with severe ICH. 

In summary, our study has shown that hyperglycaemia has strong and continuous associations 

with poor outcomes from predominantly mild to moderate severity of ICH.  Hyperglycaemia 

appears to have a direct deleterious effect on the initial ICH, whereas diabetes mellitus reduces 

the potential for recovery and increases the risk of subsequent cardiovascular events.  In the 

absence of randomised evidence, these findings support current guidelines recommending 

treatment of hyperglycaemia in ICH.
121
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Figure 1: Patient flow in INTERACT2 study and admission blood glucose analysis  
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Figure 2: Predicted probabilities of outcome by baseline blood glucose level 

OR represents odds ratio for outcome; 95% CI represents 95% confidence interval; AOR represents adjusted odds ratio of outcome. 

Multivariate model adjusted for age, geographical region, gender, history of heart disease, history of hypertension, history of diabetes 

mellitus, use of aspirin or warfarin, baseline haematoma volume and location, intraventricular extension, baseline systolic blood 

pressure, admission National Institutes of Health stroke scale (score ≥15), randomised treatment, age x NIHSS≥15, china x 

intraventricular extension, baseline haematoma volume x deep location of haematoma, and deep location of haematoma x 

intraventricular extension. 
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Figure 3a: Cox proportional hazards regression curves for fourths of baseline blood glucose and death 
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(>6.5 mmol/L) and history of diabetes mellitus (DM) 
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Table 3.1: Patients characteristics according to baseline blood glucose level 

 Baseline glucose level, mmol/L  

  

Variable 

2.60-5.59 

(N=644) 

5.60-6.49 

(N=661) 

6.50-7.90 

(N=693) 

7.91-25.0 

(N=655) 

P value 

Age, yr 62 (12) 63 (13) 65 (13) 65 (13) <0.001 

Male  436 (68) 427 (65) 411 (59) 381 (58)   0.001 

Recruited from China 487 (76) 456 (69) 422 (61) 399 (61) <0.001 

Time to randomization, hr 3.8 (2.8-4.7) 3.7 (2.9-4.6) 3.7 (2.8-4.8) 3.7 (2.8-4.7)   0.94 

Level of consciousness, GCS score 15 (13-15) 14 (13-15) 14 (12-15) 14 (12-15) <0.001 

Neurological impairment, NIHSS score 8 (4-13) 10 (6-15) 12 (7-16) 12 (7-17) <0.001 

Systolic BP, mmHg 177 (17) 177 (17) 180 (17) 182 (17) <0.001 

Diastolic BP, mmHg 102 (14) 101 (14) 100 (15.3) 100 (15)   0.49 

History of hypertension 454 (71) 468 (71) 494 (71.4) 512 (78)   0.004 

Use of antihypertensive therapy 277 (43) 279 (42) 309 (44.7) 344 (53)   0.001 

Heart disease 58 (9) 57 (9) 72 (10.4) 100 (15) <0.001 

Prior ICH 52 (8) 53 (8) 56 (8.1) 56 (9)   0.98 

Prior ischaemic / undifferentiated stroke 76 (12) 69 (10) 82 (11.9) 75 (12)   0.84 

History of diabetes mellitus* 22 (3) 24 (4) 52 (7.5) 194 (30) <0.001 

Insulin or glucose lowering treatment* 13 (2) 18 (3) 28 (4.1) 120 (18) <0.001 

Use of warfarin anticoagulation 10 (2) 21 (3) 19 (2.8) 27 (4)   0.049 

Use of aspirin or other antiplatelet agent 46 (7) 49 (7) 77 (11.1) 88 (14) <0.001 

Deep location of haematoma† 514 (85) 538 (88) 524 (81.0) 460 (78) <0.001 

IVH extension 120 (20) 144 (24) 209 (32.3) 212 (36) <0.001 

Haematoma volume, mL       

   ICH 9.0 (4.6-16.1) 11.4 (6.2-18.7) 11.5 (6.4-20.8) 11.9 (6.0-22.8) <0.001 

   Combined ICH + IVH 10.2 (5.1-18.0) 13.3 (7.1-21.8) 14.2 (7.2-27.0) 15.3 (7.0-29.1) <0.001 
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Data are n (%), mean (±SD), or median (IQR).  aOR, denotes adjusted odds ratio; BP, blood pressure; NIHSS, National Institutes of 

Health stroke scale; GCS, Glasgow coma scale; ICH, intracerebral haemorrhage; IVH, intraventricular haemorrhage. 

P values based on chi-squared, t-test or Wilcoxon rank sum test. 

*As there was a strong collinearity between history of diabetes mellitus and insulin or glucose lowering treatment, only diabetes 

mellitus was included in the multivariable analyses 

†Deep location refers to location in the basal ganglia or thalamus. 
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Table 3.2:  Baseline characteristics for ICH patients according to the presence of diabetes mellitus 

 All 

(N=2826) 

No diabetes mellitus 

(N=2521) 

Diabetes mellitus 

(N=305) 
P value 

Age 63 (54-74) 63 (54-73) 67 (60-76) <0.001 

Male 1777 (63) 1579 (63) 107 (65)   0.44 

Recruited from China    1917 (68) 1764 (70) 153 (50) <0.001 

Time to CT scan, hr 1.8 (1.2-2.7) 1.8 (1.2-2.7) 1.8 (1.3-2.9)   0.16 

NIHSS score 11 (6-15) 10 (6-15) 12 (7-16)   0.12 

Systolic BP, mmHg 179 (17) 179 (17) 180 (17)   0.32 

Diastolic BP, mmHg 101 (15) 102 (15) 97 (14) <0.001 

Heart rate, beats/min 76 (68-86) 76 (68-86) 78 (70-87)   0.057 

History of hypertension 2048 (73) 1786 (71) 262 (86) <0.001 

Antihypertensive therapy
 

1274 (45) 1069 (42) 205 (67) <0.001 

Beta-blocker 227 (8) 178 (78) 49 (16) <0.001 

Calcium-channel blocker 393 (14) 319 (13) 74 (24) <0.001 

History of heart disease 299 (11) 238 (9) 61 (20) <0.001 

Prior intracerebral haemorrhage 229 (8) 201 (8) 28 (9)   0.47 

Prior ischaemic or undifferentiated stroke 323 (11) 273 (11) 50 (16)   0.004 

Use of warfarin anticoagulation 81 (3) 63 (3) 18 (6)   0.001 

Use of aspirin or other antiplatelet agent 265 (9) 198 (8) 67 (22) <0.001 

Insulin therapy or glucose lowering treatment 183 (7) 12 (1) 171 (56)  

Deep location of haematoma* 2180 (84) 1940 (83) 240 (84)   0.84 

Left hemisphere site of haematoma 1312 (50) 1170 (50) 142 (50)   0.83 

Intraventricular extension 739 (28) 647 (28) 92 (32)   0.12 

Haematoma volume, mL      

    Haematoma alone 10.9 (5.8-19.5) 11.2 (5.9-19.7) 9.2 (4.7-16.7)   0.002 

    Combined with intraventricular haemorrhage
 

13.1 (6.5-23.8) 13.3 (6.6-23.9) 11.4 (5.6-22.8)   0.035 

Data are n (%), mean (SD), or median (IQR).  aOR indicates adjusted odds ratio; BP, blood pressure; CT, computed tomography; 

NIHSS, National Institutes of Health Stroke Scale; and ICH, intracerebral haemorrhage.  P values based on chi-squared, t-test or 

Wilcoxon rank sum test. 

*Deep location refers to location in the basal ganglia or thalamus. 
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Table 3.3: Fourths of baseline blood glucose and 3-month outcomes after acute intracerebral haemorrhage  

Outcome Fourths of glucose    Events 
OR (95%CI) 

P trend Multivariate 

Category N  n   (%) aOR (95% CI) P trend 

Death or major 

disability 

<5.6 637  268 (42) 1.0 <0.001 1.0 0.015 

5.6-6.5 650  319 (49) 1.33 (1.07-1.65)  1.07 (0.82-1.39)  

6.5-7.9 685  395 (58) 1.88 (1.51-2.33)  1.31 (1.01-1.71)  

>7.9 647  399 (62) 2.22 (1.77-2.77)  1.35 (1.01-1.80)  

         

Death <5.6 637  45 (7) 1.0 <0.01 1.0  

5.6-6.5 650  70 (11) 1.59 (1.07-2.35)  1.37 (0.88-2.12) 0.062 

6.5-7.9 685  86 (13) 1.89 (1.29-2.76)  1.16 (0.76-1.79)  

>7.9 647  107 (17) 2.61 (1.81-3.76)  1.63 (1.06-2.51)  

         

Major disability <5.6 592  223 (38) 1.0 <0.001 1.0 0.041 

5.6-6.5 580  249 (43) 1.25 (0.99-1.57)  1.04 (0.79-1.37)  

6.5-7.9 599  309 (52) 1.76 (1.40-2.22)  1.32 (1.00-1.74)  

>7.9 540  292 (54) 1.95 (1.54-2.47)  1.27 (0.94-1.72)  

OR denotes odds ratio; aOR, adjusted odds ratio; CI, confidence interval 

*adjusted for age, geographical region, gender, history of heart disease, history of hypertension, history of aspirin or warfarin use, 

history of diabetes mellitus, baseline haematoma volume and location, intraventricular extension, baseline systolic blood pressure, 

National Institute of Health stroke scale (NIHSS) score (≥15), randomised treatment, and age x NIHSS≥15, China x intraventricular 

extension, baseline haematoma volume x deep location of haematoma, and deep location of haematoma x intraventricular extension 
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Table 3.4: Quartiles of baseline blood glucose and 90-day outcomes after acute intracerebral haemorrhage (not adjusted by 

randomised BP lowering treatment) 

 

Outcomes 

Glucose (mmol/L)    Events Multivariable 

Category N  n (%) aOR (95% CI) P trend 

Death or major disability <5.6 637  268 (42) 1.0 0.016 

5.6-6.5 650  319 (49) 1.06 (0.81-1.38)  

6.5-7.9 685  395 (58) 1.31 (1.01-1.70)  

>7.9 647  399 (62) 1.35 (1.01-1.80)  

       

Death <5.6 637  45 (7) 1.0  

5.6-6.5 650  70 (11) 1.37 (0.88-2.12) 0.062 

6.5-7.9 685  86 (13) 1.16 (0.76-1.79)  

>7.9 647  107 (17) 1.63 (1.06-2.51)  

       

Major disability <5.6 592  223 (38) 1.0 0.043 

5.6-6.5 580  249 (43) 1.03 (0.78-1.36)  

6.5-7.9 599  309 (52) 1.32 (1.00-1.73)  

>7.9 540  292 (54) 1.27 (0.94-1.72)  

OR indicates odds ratio; aOR, adjusted odds ratio; and CI, confidence interval. 

*Adjusted for age, geographical region, sex, history of hypertension, heart disease, and diabetes, use of aspirin and/or warfarin use, 

baseline haematoma volume and location, intraventricular extension, baseline systolic blood pressure, National Institute of Health 

Stroke Scale (NIHSS) score (≥15), and age*NIHSS≥15, China*intraventricular extension, baseline haematoma volume*deep location 

of haematoma, and deep location of haematoma*intraventricular extension. 
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Table 3.5: Outcomes from intracerebral haemorrhage, by diabetes mellitus status  

Outcomes  n (%) OR P value aOR P value 

Death or major disability       

  No 2329 1192 (51) 1.0  1.0  

  Yes   287   186 (65) 1.76 (1.36-2.27) <0.001 1.43 (1.03-2.00) 0.035 

Death       

  No 2329   267 (12) 1.0  1.0  

  Yes   287     39 (14) 1.22 (0.85-1.74) 0.29 0.93 (0.59-1.46) 0.74 

Major disability       

  No 2062   925 (45) 1.0  1.0  

  Yes   248   147 (59) 1.79 (1.37-2.34) <0.001 1.49 (1.06-2.10) 0.023 

OR indicates odds ratio; aOR, adjusted odds ratio. 

Models were adjusted for age, geographical region, sex, history of hypertension, diabetes, and heart disease, use of aspirin and/or warfarin, 

baseline haematoma volume and location, intraventricular extension, baseline systolic blood pressure, National Institute of Health stroke scale 

(NIHSS) score (≥15), randomised treatment, and age*NIHSS ≥15, China*intraventricular extension, baseline haematoma volume*deep location of 

haematoma, and deep location of haematoma*intraventricular extension. 
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Table 3.6: Baseline blood glucose (mmol/L) by diagnostic thresholds for diabetes mellitus and 90-day outcomes after acute 

ICH  

  Glucose (mmol/L)  Events  Crude  Multivariable adjusted* 

Outcomes Category N  n (%)  OR (95% CI) P trend  aOR (95% CI) P trend 

Death or major disability <6.1 996  443 (45)  1 <0.001  1 0.010 

 6.1-7.0 655  349 (53)  1.42 (1.17-1.74)   1.13 (0.88-1.43)  

 >7.0 968  589 (61)  1.94 (1.62-1.74)   1.36 (1.08-1.71)  

Death <6.1 996  85 (9)  1 <0.001  1 0.081 

 6.1-7.0 655  70 (11)  1.28 (0.92-1.79)   0.93 (0.63-1.36)  

 >7.0 968  153 (16)  2.01 (1.52-2.67)   1.34 (0.95-1.89)  

Major disability <6.1 911  358 (39)  1 <0.001  1 0.031 

 6.1-7.0 585  279 (48)  1.41 (1.14-1.74)   1.11 (0.87-1.43)  

  >7.0 815  436 (54)  1.78 (1.47-2.15)   1.30 (1.02-1.65)  

OR indicates odds ratio; aOR, adjusted odds ratio; CI, confidence interval; ICH, intracerebral haemorrhage 

*Adjusted for age, geographical region, sex, history of hypertension, diabetes, and heart disease, use of aspirin and/or warfarin, 

baseline haematoma volume and location, intraventricular extension, baseline systolic blood pressure, National Institute of Health 

Stroke Scale (NIHSS) score (≥15), randomised treatment, and age*NIHSS ≥15, China*intraventricular extension, baseline haematoma 

volume*deep location of haematoma, and deep location of haematoma*intraventricular extension. 
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Table 3.7.  Serious adverse events, by baseline blood glucose level 

 Glucose level  

 
<6.5 mmol/L 

(N=1305) 

≥6.5 mmol/L 

(N=1348) 

 

P value 

Early neurological deterioration  168/1282 (13.1) 217/1313 (16.5) 0.014 

Non-fatal serious adverse events 269/1305 (20.6) 344/1348 (25.5) 0.003 

    Initial ICH 26/1305 (2.0) 36/1348 (2.7)  

    Cardiovascular disease 27/1305 (2.1) 37/1348 (2.7)  

      Recurrent ICH 6/1305 (0.5) 2/1348 (0.1)  

      Ischaemic/undifferentiated stroke 3/1305 (0.2) 7/1348 (0.5)  

      Acute coronary event 3/1305 (0.2) 5/1348 (0.4)  

      Other cardiovascular disease 15/1305 (1.1) 23/1348 (1.7)  

    Non-cardiovascular disease 101/1305 (7.7) 137/1348 (10.2)  

    Severe hypotension 4/1305 (0.3) 7/1348(0.5)  

Fatal serious adverse events 115/1297 (8.9) 193/1343 (14.4) <0.001 

    Initial ICH  66/1297 (5.1) 124/1343 (9.2) <0.001 

    Cardiovascular disease 12/1297 (0.9) 16/1343 (1.2) 
 

      ICH 1/1297 (0.1) 1/1343 (0.1)  

      Ischaemic/undifferentiated stroke 1/1297 (0.1) 0/1343  

        Acute coronary event 2/1297 (0.2) 2/1343 (0.1)  

        Other vascular disease 1/1297 (0.1) 3/1343(0.2)  

        Other cardiac disease 7/1297 (0.5) 10/1343 (0.7)  

    Non-cardiovascular disease 37/1297 (2.9) 53/1343 (4.0) 
 

        Renal failure 1/1297 (0.1) 3/1343 (0.2)  

        Respiratory infections 12/1297 (0.9) 14/1343 (1.0)  

        Sepsis (includes other infections) 6/1297 (0.5) 4/1343 (0.3)  

        Non-vascular medical 18/1297 (1.4) 32/1343(2.4)   

ICH denotes intracerebral haemorrhage 
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Table 3.8: Safety outcomes during 90-day follow-up after intracerebral haemorrhage, stratified by diabetes mellitus status at baseline 

  No diabetes mellitus Diabetes mellitus   

  (N=2358) (N=295) P value 

Early neurological deterioration 345/2308 (15.0) 40/285 (14.0) 0.68 

Non-fatal serious adverse events 509/2358 (21.6) 101/285 (34.6) <0.001 

    Any neurological deterioration from intracerebral haemorrhage 81/2358 (3.4) 7/285 (2.5) 
 

    Cardiovascular disease 56/2358 (2.4) 19/285 (6.7) <0.001 

        Recurrent intracerebral haemorrhage 7/2358 (0.3) 1/285 (0.4) 
 

        Ischaemic or undifferentiated stroke 10/2358 (0.4) 4/285 (1.4) 
 

        Acute coronary event 9/2358 (0.4) 1/285 (0.4) 
 

        Other cardiovascular disease 33/2358 (1.4) 14/285 (4.9) 
 

    Non-cardiovascular disease 242/2358 (10.3) 41/285 (14.4) <0.001 

    Severe hypotension 9/2358 (0.4) 5/285 (1.8) 
 

Cause of death 267/2358 (11.3) 39/285 (13.4) 0.24 

    Direct effects of primary intracerebral haemorrhage event 165/2358 (7.0) 23/285 (7.9) 0.51 

    Cardiovascular disease 21/2358 (0.9) 7/285 (2.4) 
 

        intracerebral haemorrhage Feb-58 0 
 

        Ischaemic/undifferentiated stroke Jan-58 0 
 

        Acute myocardial infarction/coronary event/other 4/2358 (0.2) 0 
 

        Other vascular disease 4/2358 (0.2) 0 
 

        Other cardiac disease 10/2358 (0.4) 7/285 (2.4) 
 

    Non-cardiovascular disease 81/2358 (3.4) 9/285 (3.1) 
 

        Renal failure 3/2358 (0.1) 1/285 (0.3) 
 

        Respiratory infections 23/2358 (1.0) 3/285 (1.0) 
 

        Sepsis (includes other infections) 9/2358 (0.4) 1/285 (0.3) 
 

        Non-vascular medical 46/2358 (2.0) 4/285 (1.4)   

 



Chapter 3: Prognostic significance of hyperglycaemia in acute intracerebral haemorrhage 

 

54 

 

Table 3.9: Haematoma growth over 24 hours post-randomisation by glucose levels 

 Glucose <6.5 mmol/L(n=422) Glucose ≥6.5 mmol/L(n=489) P value 

 Baseline 24 hours Baseline 24 hours  

Haematoma volume (mL), mean±SD  13.4±13.3 17.7±22.9 16.9±16.6 20.4±21.1  

Haematoma growth    

   Absolute growth volume (mL), crude mean (95% CI) 4.3 (2.8-5.9) 3.4 (2.0-4.9) 0.40 

   Absolute growth volume (mL), adjusted mean* (95% CI) 6.9 (3.9-9.9) 5.4 (2.8-8.0) 0.19 

SD indicates standard deviation; and CI, confidence interval. 

*Adjusted for age, geographical region, sex, history of hypertension, diabetes, and heart disease , use of aspirin and/or warfarin, baseline 

haematoma volume and location, intraventricular extension, baseline systolic blood pressure, randomised treatment, China*intraventricular 

extension, baseline haematoma volume*deep location of haematoma, and haematoma location*intraventricular extension. 
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Table 3.10: Growth of perihaematomal oedema over 24 hours post randomisation by glucose levels 

 Glucose <6.5 mmol/L (n=376) Glucose ≥6.5 mmol/L (n=413) P Value 

 Baseline 24 hours Baseline 24 hours  

Perihaematomal oedema volume (mL), mean±SD 2.8±3.6 5.5±7.8 3.5±4.8 6.1±8.2  

Growth of perihaematomal oedema     

   Absolute growth volume (mL), crude mean (95% CI) 2.7 (2.1-3.3) 2.6 (2.0-3.1) 0.81 

   Absolute growth volume (mL), adjusted mean* (95% CI) 3.0 (1.9-4.1) 2.6 (1.6-3.5) 0.29 

SD indicates standard deviation; and CI, confidence interval. 

*Adjusted for age, geographical region, sex, history of hypertension, diabetes, and heart disease, use of aspirin and/or warfarin, baseline 

haematoma volume and location, intraventricular extension, baseline systolic blood pressure, randomised treatment, China*intraventricular 

extension, baseline haematoma volume*deep location of haematoma, and haematoma location*intraventricular extension
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4.2 Abstract 

Background and Purpose:  Uncertain pathophysiological mechanisms underlie the adverse 

outcomes associated with hyperglycaemia in intracerebral haemorrhage (ICH).  We aimed to 

determine the relation of hyperglycaemia to haematoma characteristics among participants of 

the INTERACT2 study.  

Methods:  INTERACT2 was an international, multicentre, prospective, open, blinded 

endpoint, randomised controlled trial involving 2839 patients with ICH (<6 hr) and elevated 

systolic blood pressure (SBP) randomly assigned to intensive (target SBP <140 mmHg) or 

guideline-based (SBP <180 mmHg) BP management during 2008-2012.  Associations of 

hyperglycaemia (≥6.5 mmol/l) and haematoma volumes at baseline (in all) and 24 hours (in 

963 patients) and perihaematomal oedema volumes (in 789 patients) were determined in 

ANOVA models. 

Results:  Baseline blood glucose was recorded in 2653 (93%) patients.  Hyperglycaemic 

patients had significantly higher baseline haematoma volumes, with (14.6 vs 11.6 ml, P 

<0.0001) and without intraventricular haemorrhage (11.6 vs 10.2 ml, P <0.01), and less deep 
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(78.8% vs. 86.5%, P <0.001) and more cerebellar (5.9% vs. 1.1%, P <0.01) haematomas. 

Hyperglycaemic patients had no difference in haematoma expansion (mean adjusted, 5.1% vs 

6.8%, P =0.13) and perihaematomal oedema (mean adjusted 86.0% vs 94.1%, P =0.46) in the 

first 24 hours.  

Conclusions:  Hyperglycaemia is associated with bleeding location and greater severity of 

initial haematoma volumes in acute ICH patients, but has no clear effect on either haematoma 

expansion or early cerebral oedema.  

 

4.3 Manuscript 

Introduction 

Intracerebral haemorrhage refers to bleeding within the brain parenchyma. Significant 

morbidity and mortality has been reported following ICH with a 1-month case fatality of 

40.4% and functional independence of 12 to 39%
2
. The INTERACT2 analyses examined 

independent predictors of both death and major disability at 3 months. This showed a 

significant association between admission blood glucose and adverse outcomes (death and 

major disability) independent of diabetes mellitus (DM). Whilst DM was significantly 

associated with major disability, no association was reported with mortality alone. The 

hyperglycaemic group also experienced significantly greater neurological deterioration over 

the first 24 hours post-admission. Uncertainty exists over the mechanism underlying this 

association between hyperglycaemia, adverse outcomes and neurological deterioration.  

Specific haematoma characteristics such as haematoma volume, location, intraventricular 

haemorrhage (IVH) and cerebral oedema are associated with adverse outcomes. Haematoma 

expansion 24 hours post-ICH has been reported in a number of studies
122-125

 and occurs in 

14.3%
123

 to 38%
125

 of ICH and is independently associated with increased mortality and 

morbidity
126

. Animal models suggest that hyperglycaemia induces haematoma expansion; 

however, there is limited human data to confirm this effect
127,128

.  

Restricting haematoma growth is essential in limiting neuronal damage and perihaematomal 

oedema which is critical in the acute management of ICH. Protecting the potential 

‘penumbra’ in ICH is also a consideration; however, controversy exists regarding its 

existence. The role of the penumbra has been tested in animal models where haematoma was 
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induced through injection of autologous blood into deep white matter and measurement of 

regional cerebral blood flow (rCBF). The evidence is conflicting with earlier studies showing 

reduced rCBF
129

 and other investigations reporting no difference in rCBF pre- and post-

haematoma.
130

 Imaging studies using PET
131

 and MRI
132

 found regions of cerebral 

hypoperfusion, however, no evidence of ischaemia in the perihaematomal zone. Therefore, 

whilst limiting haematoma volume may be important there is still ongoing controversy 

regarding whether there is a salvageable penumbra in ICH. Animal models have been used to 

analyse the effects of hyperglycaemia upon the ischaemic territory by measuring lactate 

levels and hydrogen ion concentration. In these models of ischaemic stroke, hyperglycaemia 

was associated with higher levels of lactate in the ischaemic territories.
133

 There is 

uncertainty regarding these associations in intracerebral haemorrhage with the role of 

hyperglycaemia requiring further assessment. This current study aimed to investigate the 

relationship of admission hyperglycaemia with haematoma growth, IVH and cerebral oedema 

to identify a potential role of tighter glycemic control in management.  

Methods 

Trial Design 

The present study is a prospective, randomised, open-label, assessor-blinded end-point 

(PROBE), multicentre, international clinical trial (INTERACT2). From 2008 to 2012 data 

was obtained from over 140 international centres with 2826 patients being included in this 

study. Patient inclusion depended on age ≥ 18 years, blood pressure measurement between 

150 and 220 mmHg (2 systolic measurements) and CT or MRI confirmed ICH diagnosis. 

Exclusion criteria included: GCS score of 3-5, surgical intervention, structural abnormality 

causing ICH or large volume ICH. Haematoma enlargement was measured in a specific 

cohort of 963 patients with 911 having admission blood glucose data available.  

 

Baseline demographics (age, gender, ethnicity), medical history of diabetes mellitus, 

hypertension, heart disease, previous strokes and current medications (insulin, 

antihypertensives, calcium and beta blockers) were noted. We also recorded blood glucose, 

blood pressure (systolic, diastolic) and biochemical markers at admission. Admission GCS 

was used to assess level of consciousness and severity of ICH was graded using NIHSS score 

at 24 hours.  

 

CT and MRI Analyses 



Chapter 4: Hyperglycaemia and haematoma parameters in intracerebral haemorrhage 

 

59 

 

CT and MRI scans were performed at baseline. Radiological analysis was performed to 

calculate ICH volume and the presence and volume of intraventricular haemorrhage 

extension. Location of the primary ICH, presence of hydrocephalus, midline shift of cerebral 

structures was also recorded.  In a selected subset of patients, both ICH and IVH volume was 

measured at 24 ± 3 hours. These radiological scans were analysed using MIStar version 3.2 to 

calculate haematoma volume, intraventricular extension, subdural haemorrhage and other 

parameters.  

 

Statistical Analyses  

Patients were categorized into two groups based on admission blood glucose: 

normoglycaemia (0-6.5 mM) and hyperglycaemia (> 6.5 mM). The effects of admission 

blood glucose on relative and absolute changes in haematoma volume were assessed by 

means of an analysis of covariance. The relative change in haematoma volume was log-

transformed to remove skewness after the addition of the value 1.1 to eliminate negative 

values. Baseline haematoma volume, IVH presence and volume was compared between 

groups. Admission blood glucose tertiles and quartiles in relation to haematoma volume were 

also studied and the p-trend was determined.  

Haematoma growth was calculated as absolute (mL) and proportional (%). Our multivariate 

model adjusted for age, geographical region, sex, history of stroke, treatment, baseline 

haematoma volume, baseline systolic blood pressure, admission NIHSS score≥15, use of 

aspirin, use of warfarin or other anti-platelet drugs, and history of diabetes. The association 

between history of diabetes mellitus and haematoma growth was also modelled and adjusted 

for the aforementioned covariates (excluding history of DM).  

All statistical analyses were performed using SAS version 9.3 (SAS institute, Cary, NC, 

USA). A two sided P value <0.05 was set as the level for statistical significance. 

Results 

Table 1 illustrates baseline differences in haematoma characteristics between 

normoglycaemic and hyperglycaemic patients. Stroke characteristics were more severe in the 

hyperglycaemic group with greater haematoma volume (11.6 mL normoglycaemia vs. 14.6 

mL hyperglycaemia, p<0.01) and incidence of intraventricular extension (21.8% 

normoglycaemia vs. 34.0% hyperglycaemia, p<0.01). Cerebellar haemorrhage was 

significantly more frequent in hyperglycaemic patients (1.1% normoglycaemia vs. 5.9% 
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hyperglycaemia, p<0.01) whilst deep ICH was significantly less frequent (86.8% 

normoglycaemia vs. 79.4% hyperglycaemia, p<0.01). Increasing quartiles of admission blood 

glucose correspond with greater combined haematoma volumes with significant p-trend 

(Table 2).  

Diabetic patients had significantly lower haematoma volume in comparison with non-

diabetics (DM 9.2 mL vs. NDM 11.2 mL; p < 0.01) whilst there was no association with 

haematoma location or IVH extension (Table 3).  

Of the 2653 patients in the INTERACT2 study, haematoma growth was analysed in a cohort 

of 963 patients (Table 4). 52 patients without admission blood glucose measurements were 

excluded. There was no difference in haematoma growth within the hyperglycaemic group. In 

hyperglycaemic patients: adjusted haematoma growth (normoglycaemic 6.8 ml (95%CI 4.3-

9.2) vs. hyperglycaemic 5.1 ml (95%CI 3.0-7.2); p = 0.46) and mean adjusted ICH+IVH 

growth [normoglycaemic 9.2 ml (95%CI 5.5-12.8) vs. hyperglycaemic 6.9 ml (95%CI 3.8-

10.0); p = 0.17] showed no difference.  

Similarly, there was no difference in perihaematomal oedema expansion over 24 hours 

between hyperglycaemic and normoglycaemic patients [hyperglycaemic group: 2.8 ml 

(95%CI 2.0-3.5), normoglycaemic group: 3.3 ml (95%CI 2.4-4.2); p = 0.19)] (Table 6). There 

was also no difference found between diabetic and non-diabetic patients [DM 6.2 ml (95%CI 

2.5-9.9) vs. NDM 5.7 ml (95%CI 3.3-8.1); p = 0.79] (Table 5).  

Discussion 

The present study examined radiological analyses following ICH and considered the effect of 

admission hyperglycaemia and diabetes mellitus. Baseline radiological characteristics 

illustrated that patients with elevated blood glucose at admission had significantly higher 

haematoma volume and IVH volume. In contrast, multivariate analyses showed diabetic 

patients had significantly lower haematoma volume. Haematoma growth and cerebral 

oedema growth at 24 hours were hypothesised as mechanisms for the previously reported 

neurological deterioration, however, no association was found with admission 

hyperglycaemia or history of diabetes mellitus.  

This study found that admission hyperglycaemia is correlated with more severe ICH 

characteristics, such as haematoma volume and IVH extension, in line with existing 

literature
69,97

. Quartiles of admission blood glucose displayed a significant p-trend with 
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respect to haematoma volume and admission blood glucose >6.5mM was significantly 

associated with incidence of IVH extension. Haematoma expansion and cerebral oedema 

have also been previously linked with hyperglycaemia with future potential to examine this 

relationship in the INTERACT2 cohort
73,127,128

.  

Cerebellar haemorrhages were significantly more frequent in hyperglycaemic patients whilst 

deep haematomas (thalamus and basal ganglia) were less frequent. Previous data has shown 

that cerebellar haemorrhage in hyperglycaemic patients is associated with increased severity 

with more frequent intraventricular extension, brainstem compression, hydrocephalus and 

larger haematoma diameter
59

. These parameters are all predictors of adverse outcomes 

following cerebellar haemorrhage
134

. Associations with diabetes mellitus were also explored 

to assess if diabetic patients were predisposed to haematoma in specific locations. However, 

no specific regions were identified (Table 4.3). ICH location analysis performed by Zhang et 

al.
135

, examined deep and lobar ICH and the admission blood glucose levels for these specific 

ICH sub-types. When comparing the sub-types no significant difference in admission blood 

glucose was reported, unlike our findings where patients with deep ICH were less likely to 

present with hyperglycaemia.  

With hyperglycaemic patients more likely to have cerebellar haemorrhage, specific 

complications must be considered. The risk of brainstem herniation is increased in cerebellar 

haemorrhage with data showing significantly greater one-week mortality in such cases
136

. 

Whilst this analysis was not performed in INTERACT2, the association with hyperglycaemia 

would assist in understanding the linking mechanisms. Potentially, cerebellar injury would 

disrupt neuronal processing and coordination of inputs which may explain the clinical 

deterioration observed over 24 hours and longer term adverse outcomes at 3 months.   

I noted that patients in the hyperglycaemic group had more severe ICH characteristics such as 

haematoma volume and IVH extension in line with existing literature
69,97

. Quartiles of 

admission blood glucose (Table 2) displayed a significant p-trend with respect to haematoma 

volume. This is in line with previous findings where significantly higher ICH volume has 

been reported in patients with admission hyperglycaemia
69,137

.  

Admission hyperglycaemia was also significantly associated with incidence of IVH extension 

and significantly greater IVH volume at admission. This relationship between admission 

blood glucose and IVH score was investigated by Appelboom et al.
69

. As previously 
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discussed, the linear correlation supports the stress hyperglycaemia hypothesis whereby more 

severe neurological injury results in greater hyperglycaemic response.  

Currently there is limited evidence regarding the relationship between haematoma expansion 

and admission hyperglycaemia. Kazui et al.
128

 reported that the interaction of systolic blood 

pressure (>200 mmHg) with both fasting plasma glucose and HbA1c were independent 

predictors of haematoma enlargement. Whilst this was a much smaller study (n=186) it 

questioned the potential role of hypertension and DM in inducing ICH growth. HbA1c was 

used as a parameter for DM, whilst elevated fasting plasma glucose was studied to indicate 

stress hyperglycaemia. Another study recorded blood glucose levels 5 times over 3 days 

following admission and categorised patients into increasing and declining levels
99

. In 

patients with increasing blood glucose association was found with haematoma expansion and 

perihaematomal oedema expansion.  

My hypothesis that hyperglycaemic patients would have significantly greater haematoma 

growth was also extrapolated from studies involving ischaemic stroke which demonstrated 

that hyperglycaemia was significantly associated with haemorrhagic transformation in the cat 

model
138

, rats
139,140

 and humans
43

. However, unlike these proposed mechanisms and previous 

findings the current study displayed that admission hyperglycaemia and DM held no 

association with haematoma growth.  

Animal models illustrated profound cerebral oedema with hyperglycaemia following ICH
74

. 

However, these experimental findings do not translate to the current investigation where no 

association was found between admission blood glucose and cerebral oedema at 24 hours. 

My results for perihaematomal oedema and haematoma expansion are in line with the smaller 

study by Feng et al.
141

 where no association was reported with hyperglycaemia. This earlier 

investigation used mean glucose levels over 72-hours which illustrate the effect of prolonged 

elevation in BSL upon neuronal injury.  

The findings in the current study are in direct contrast with the investigation by Liu et al.
73

 

where DM was modelled in rats using streptozotocin. In this experimental model, plasma 

kallikrein was identified as a central mediator in increasing haematoma growth and was 

therefore used to induce expansion.  This animal model tested whether DM or 

hyperglycaemia was the underlying factor in haematoma expansion and found that 

normalizing blood glucose with insulin prior to ICH resulted in significantly lower 

haematoma expansion. Furthermore inducing hyperglycaemia in NDM rats resulted in 
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increased haematoma growth. Hyperglycaemia amplified the action of kallikrein in inhibiting 

platelet aggregation thereby facilitating greater haematoma expansion. The increased plasma 

osmolality caused by increased blood glucose further contributed to haematoma growth. 

These findings indicated the potential use of insulin therapy to maintain tight glucose control 

in the acute management of ICH.  

Broderick et al.
127

 studied determinants of haematoma enlargement (n=353) and also found 

that serum blood glucose was significantly associated with greater ICH growth (p=0.02) and 

ICH+IVH growth (p=0.0306). Although statistically significant, this study could not 

demonstrate whether admission blood glucose was a causative factor or a marker of 

haematoma growth.  

A number of mechanisms have been reported involving hyperglycaemia, haematoma 

expansion and neuronal damage. Badjatia et al.
142

 studied subarachnoid haemorrhage (SAH) 

patients and found a positive association between mean blood glucose and the incidence of 

vasospasm. Patients who experienced vasospasm after SAH presented with significantly 

higher admission blood glucose. Vasospasm may exacerbate bleeding and has been proposed 

as part of the pathophysiology linking hyperglycaemia and haematoma expansion.  

Animal models have illustrated that hyperglycaemia promotes superoxide generation and 

blood-brain barrier disruption leading to exacerbation of haemorrhage and increased 

haematoma volume
76

. An experimental Sprague-Dawley rat model has also established the 

role of aquaporin-4 (AQP-4) in exacerbating ICH
116

 with downregulation noted in 

hyperglycaemic rats. Further, hyperglycaemia was positively associated with severe BBB 

disruption, as well as increased brain water content
74

 and vasogenic oedema
116

. Whilst these 

mechanisms may contribute to the significantly greater baseline ICH volume in 

hyperglycaemic patients, the link with haematoma growth was not confirmed in the present 

study.  

The current investigation illustrates the complete opposite as hyperglycaemic patients had 

lower median haematoma growth in terms of absolute (mL) and proportional growth (%). 

This was seen for ICH and ICH+IVH. The INTERACT2 analyses is the first large scale (911 

patients) human study analysing the relationship between hyperglycaemia and haematoma 

expansion. However, the results of the present study do not align with experimental animal 

models.  
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Previous human studies have evaluated the pro-thrombotic effect of hyperglycaemia and 

these factors may be involved in ICH. Specifically, hyperglycaemia accelerates the rate of 

thrombus formation and coagulation via the collagen and thrombin pathway
143,144

. 

Intravenous endotoxin administration has also been used to simulate the inflammatory state
145

 

and in hyperglycaemic patients (12 mM) coagulation was significantly higher. Similarly 

hyperglycaemia and platelet function have been studied in the context of acute coronary 

syndrome
144

. Hyperglycaemic patients had significantly higher formation of thrombin-

antithrombin complexes in comparison with normoglycaemic patients whilst platelet 

activation markers were also significantly elevated. These studies suggest that 

hyperglycaemia in acute medical conditions is associated with increased platelet function and 

coagulation. In the context of ICH this may result in coagulation of haematoma thereby 

limiting haematoma growth by decreasing bleeding over 24 hours.  

My findings illustrate the positive association between hyperglycaemia and baseline 

haematoma volume, however, patients with DM showed an unexpected association. Baseline 

haematoma volume was significantly lower in diabetic patients. This is in direct contrast to 

the significantly greater haematoma volumes seen in hyperglycaemic patients. Further, in 

diabetic patients haematoma growth was higher in the DM group with marginal significance 

(p=0.11). Therefore, we report directly contrasting associations of baseline haematoma 

volume with DM and admission blood glucose. This suggests distinct pathophysiological 

pathways in stress hyperglycaemia and diabetes mellitus.  

However, both DM and admission hyperglycaemia hold no association with haematoma 

growth. Existing literature has established that DM is responsible for a hypercoagulable 

state
146-148

. Specifically, diabetic patients present with increased concentration of clotting 

factors and von Wildebrand factor, increased platelet aggregation and impaired fibrinolysis. 

The lack of association between DM and haematoma growth may also be related to levels of 

plasminogen activator inhibitor 1 (PAI-1). Elevated PAI-1 has been found in DM
149-152

 and 

although this increases the risk of macrovascular complications (acute ischaemic stroke, acute 

myocardial infarction) it may also play a role in limiting continued bleeding following ICH 

thereby restricting haematoma growth.  

This investigation represents one of the largest cohorts of ICH patients analysed for 

haematoma volume, location and IVH (2653 patients) as well as haematoma growth (963 

patients). However, certain limitations need to be addressed. Although blood glucose was 
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only measured upon admission, continuous measurement to calculate persistent 

hyperglycaemia may have been more effective in elucidating the mechanism with haematoma 

growth. Undiagnosed diabetic patients were not included. Other studies have also examined 

brain oedema and total brain water content to elicit the effect of hyperglycaemia upon 

perihaematomal regions. This may be an area that could be further analysed. The limitations 

of secondary analysis are also present in our investigation.  

Conclusions 

In conclusion, my secondary analysis revealed that patients with admission hyperglycaemia 

had more severe characteristics relating to their ICH. This included significantly higher 

haematoma volume and IVH extension. However, haematoma growth and cerebral oedema 

were not associated with admission hyperglycaemia or history of diabetes mellitus. Whilst 

further investigation is required, at this stage our study indicates that tight blood glucose 

control is not required to limit haematoma expansion. 
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Results 

Table 4.1: Haematoma Characteristics in Normoglycaemic and Hyperglycaemic patients 

  All 

(N=2653) 

Glucose<6.5 

(N =1305) 

Glucose≥6.5 

(N=1348) 

P 

value 

Haematoma Location     

    Lobar 251(10.2) 112(9.2) 139(11.2) 0.11 

    Deep 2025(82.6) 1048(86.5) 977(78.8) <0.01 

    Cerebellar 86(3.5) 13(1.1) 73(5.9) <0.01 

Ventricular 11(0.5) 4(0.3) 7(0.6)   

Brainstem 77(3.1) 35(2.9) 42(3.4) 0.48 

Deep location of haematoma§– no./total no. (%) 2036(83.0) 1052(86.8) 984(79.4) <0.01 

Left hemisphere site of haematoma- no./total no. 

(%) 
1223(49.9) 590(48.7) 633(51.1) 0.24 

IVH Extension - no./total no. (%) 685(27.9) 264(21.8) 421(34.0) <0.01 

Haematoma volume at baseline, mL, median 

(IQR)  
        

ICH 10.9(5.7-19.5) 10.2(5.4-17.0) 11.6(6.2-21.9) 0.01 

    IVH 0.0(0.0-0.8) 0.0(0.0-0.0) 0.0(0.0-2.4)   

    Combined 13.1(6.4-23.8) 11.6(5.9-20.0) 14.6(7.0-28.0) <0.01 

     

§ Deep location refers to location in the basal ganglia or thalamus. 

P values are based on chi-squared, t-test or Kruskal-Wallis test 

 

 

 

 

 



Chapter 4: Hyperglycaemia and haematoma parameters in intracerebral haemorrhage 

 

67 

 

 

Table 4.2: Baseline haematoma volume stratified by glucose (quartiles) 

 

 

 

 

 

Table 4.3: Haematoma Characteristics in DM and NDM 

 All 

(N=2826) 

Non-Diabetes Mellitus 

(N =2521) 

Diabetes Mellitus 

(N=305) 

P Adjusted OR 

 (95% CI) 

P 

Location– no (%)       

    Lobar 260(10.0) 228(9.8) 32(11.2)    

    Deep 2168(83.0) 1930(83.0) 238(83.2)    

    Cerebellar 89(3.4) 80(3.4) 9(3.2)    

Ventricular 12(0.5) 10(0.4) 2(0.7)    

Brainstem 80(3.1) 75(3.2) 5(1.8)    

Deep location of haematoma§– no./total 

no. (%) 

2180(83.5) 1940(83.4) 240(83.9) 0.84   

Left hemisphere site of haematoma - 

no./total no. (%) 

1312(50.3) 1170(50.3) 142(49.7) 0.84   

IVH Extension - no./total no. (%) 739(28.3) 647(27.8) 92(32.2) 0.12   

Haematoma volume at baseline, mL, 

median (IQR)  

      

    ICH 10.9(5.8-19.5) 11.2(5.9-19.7) 9.2(4.7-16.7) 0.03 1.01(1.0-1.02) 0.01 

    IVH 0(0-0.8) 0(0-0.6) 0(0-1.9)    

    Combined 13.1(6.5-23.8) 13.3(6.6-23.9) 11.4(5.6-22.8) 0.06   

  

 Q1 Q2 Q3 Q4 

Haematoma volume at baseline, mL, 

median (IQR) 
 

 
   

ICH 9.0(4.6-16.1) 11.4(6.2-18.7) 11.5(6.4-20.8) 11.9(6.0-22.8) 

    Combined(ICH+IVH) 10.2(5.0-18.0) 13.3(7.1-21.8) 14.2(7.2-27.0) 15.3(7.0-29.1) 
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Table 4.4: Haematoma Growth parameters at 24 hours post randomisation, by admission blood glucose 

 
All 

(N=911) 
Glucose<6.5(N=422) Glucose≥6.5 (N =489) 

Absolute (mls) / 

proportional (%) less in 

patients with glucose≥6.5 

(95% CI) 

P Value 

Haematoma volumes, baseline to 24 hours Baseline 24 hours Baseline 24 hours Baseline 24 hours   

Haematoma (ml), mean unadjusted (SD) 15.3±15.3 19.2±22.0 13.4±13.3 17.7±22.9 16.9±16.6 20.4±21.1   

Haematoma + IVH (ml), mean unadjusted (SD) 17.7±16.9 23.2±29.5 14.9±14.6 21.1±33.3 20.1±18.4 25.0±25.7   

Haematoma growth 

    Growth (ml), mean unadjusted (95%CI)  4.3(2.8-5.9) 3.4(2.0-4.9) 0.9(-1.2-3.0) 0.40 

    Growth (ml), mean adjusted* (95% CI)  6.8(4.3-9.2) 5.1(3.0-7.2) 1.7(-0.5-3.9) 0.13 

    Growth (%), median unadjusted (95% CI)  19.6%(13.6-25.8%) 17.3%(11.8-23.0%) 2.2%(-6.5-10.8%) 0.59 

    Growth (%), median adjusted (95% CI)   29.2%(19.2-40.0%) 25.7%(17.3-34.6%) 3.6%(-5.6-12.7) 0.46 

Haematoma + IVH growth      

    Growth (ml), mean unadjusted (95%CI)  6.2(3.9-8.5) 4.9(2.8-7.0) 1.2(-1.9-4.4) 0.43 

    Growth (ml), mean adjusted* (95% CI)  9.2(5.5-12.8) 6.9(3.8-10.0) 2.3(-1.0-5.6) 0.17 

    Growth (%), median unadjusted (95% CI)  22.1%(15.8-28.7%) 19.1%(13.4-25.1%) 2.8%(-6.1-11.7%) 0.51 

    Growth (%), median adjusted (95% CI)   34.9%(24.1-46.6%) 29.5%(20.6-39.1%) 5.4%(-4.4-15.1%) 0.29 
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Table 4.5: Haematoma Growth parameters at 24 hours post randomisation, by diabetes mellitus status 

 All 

(N=963) Non-Diabetes Mellitus 

 (N =833) 
 

Diabetes Mellitus (N 

=130) 

 Absolute (mls) / 

proportional (%) 

less in patients 

with IVH(95% CI) 

P 

Value 

Haematoma volumes, baseline to 24 hours Baseline 24 hours Baseline 24 hours  Baseline 24 hours    

Haematoma (ml), mean unadjusted (SD) 15.4±15.3 19.4±22

.2 

15.6 ±15.4 19.4 ± 22.5  14.2±14.9 19.0±20.

3 

   

Haematoma + IVH (ml), mean unadjusted 

(SD) 

17.8±17.0 23.5±29

.9 

17.9±16.9 23.5±30.3  17.1±17.4 24.0±26.

8 

   

Haematoma growth                                                                                                         24 hours minus baseline                 24 hours minus baseline 

    Growth (ml), mean unadjusted (95%CI)  3.8(2.7-4.9)  4.8(2.0-7.6)  -0.9(-3.9-2.1) 0.54 

    Growth (ml), mean adjusted* (95% CI)  5.7(3.3-8.1)  6.2(2.5-9.9)  -0.5(-3.8-2.9) 0.79 

    Growth (%), mean unadjusted (95% CI)  17.0%(12.8-21.3%)  26.7%(15.5-38.8%)  -10.4(-25.6-4.8) 0.11 

    Growth (%), median adjusted (95% CI)   24.9%(15.4-35.2%)  29.5%(14.8-46.0%)   0.52 
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Table 4.6: Cerebral oedema parameters at 24 hours post randomisation 

 Glucose<6.5(N=376) Glucose≥6.5 (N =413) P Value 

Cerebral oedema volume, baseline to 24 hours Baseline 24 hours Baseline 24 hours  

Cerebral oedema (ml), median unadjusted (IQR) 1.7(0.8-3.5) 3.3(1.5-6.2) 2.0(1.0-3.9) 3.7(1.8-7.1)  

   Absolute  Growth (ml), mean unadjusted (95%CI) 2.7(2.1-3.3) 2.6(2.0-3.1) 0.81 

    Growth (ml), mean adjusted* (95% CI) 3.3(2.4-4.2) 2.8(2.0-3.5) 0.19 

   Relative  Growth (%), mean unadjusted (95% CI) 85.2(71.1-100.3) 74.3(61.7-87.9) 0.28 

    Growth (%), mean adjusted (95% CI)  94.1(71.6-119.5) 86.0(67.0-107.1) 0.46 

Multivariate Model adjusted for age, geographical region, sex, history of stroke, history of hypertension, treatment, baseline haematoma volume, IVH 

extension, baseline systolic blood pressure, and history of diabetes. 
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Chapter 5: Discussion and concluding remarks  
 

 

Conclusions from Analyses 

My investigation examined admission hyperglycaemia in ICH specifically determining 

incidence, independent predictors, associations with outcome (primary and secondary) and 

haematoma parameters, relationship with diabetes mellitus and potential underlying 

mechanisms.  

From baseline data I analysed demographic factors, clinical parameters and haematoma 

characteristics (volume, location, IVH extension) that were independent predictors of 

admission hyperglycaemia. In multivariate analysis (n=2653) after adjusting for all 

significant variables of univariate analysis and clinically significant interactions, the strongest 

independent predictor for hyperglycaemia was diabetes mellitus (aOR 5.91 95%CI 4.21-8.31, 

P<0.0001) (Table 2.1). To minimise the confounding effect of diabetes mellitus, independent 

predictors of hyperglycaemia in the non-diabetic patients (n=2361) were also determined 

(Table 2.2).   

Demographics such as gender (females) and patients recruited outside of China were 

determinants of hyperglycaemia in the complete and non-diabetic analyses. Significant 

association was also present between hyperglycaemia and ICH severity as determined by the 

NIHSS score. Severity is also reflected through haematoma parameters with haematoma 

volume and IVH extension being significant predictors of hyperglycaemia. This analysis in 

non-diabetic patients illustrates the potential stress hyperglycaemic mechanisms involved 

outside of the diabetic effect. Hyperglycaemic patients were also found to have significantly 

fewer deep haematomas when compared to normoglycaemic patients. This baseline analysis 

of haematoma characteristics directed my research into a more extensive examination of ICH 

parameters (Chapter 4).  

In the hyperglycaemic group, haematoma volume was significantly greater at baseline. To 

further examine if there was an incremental trend, I separated the cohort into quartiles by 

admission blood glucose. Increasing quartiles of blood glucose were associated with greater 

median ICH and combined (ICH + IVH) volume (Table 4.2).  
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The significance of haematoma location with potential mechanisms and suggestions for 

future studies 

Baseline analysis showed association between hyperglycaemia with superficial territory of 

ICH. I performed further location analysis to investigate the mechanism of hyperglycaemia. 

If certain haematoma territories, responsible for glucose metabolism, were more commonly 

affected in the hyperglycaemic group this would potentially suggest the underlying 

mechanism. I examined associations with lobar, cerebellar and deep haematomas. 

Hyperglycaemic patients were more likely to have cerebellar (5.9% hyperglycaemic group 

vs. 1.1% normoglycaemic group) and superficial/cortical haematomas whilst deep and 

thalamic haematomas were significantly less frequent. 

Cerebellar haemorrhage is associated with poorer outcomes and significant long-term 

morbidity and mortality. Due to anatomical location, cerebellar haemorrhage can lead to 

ventricular and brainstem compression. Involvement of the fourth ventricle can accelerate 

elevation in intracranial pressure thereby limiting cerebral perfusion and exacerbating 

neuronal injury. Cerebellar haemorrhage can also cause brainstem compression with the 

potential for trans-tentorial herniation with a smaller study (n=42) showing 60% of patients 

exhibiting radiological signs of brainstem compression and herniation.
153

 Determinants of 

outcome in cerebellar haemorrhage include haematoma volume, diameter and initial GCS 

score. Poor functional recovery and significant mortality at 6 months has been previously 

reported.
154,155

 Data assessing hyperglycaemia in cerebellar haemorrhage has been limited; 

however, the investigation by Wu et al.
59

 determined independent predictors of outcome. 

They reported haematoma diameter and admission hyperglycaemia (> 7.8 mmol/L) to be 

predictive of mortality at discharge. In the 86 patients with cerebellar haemorrhage in 

INTERACT2 cohort, 84.9% presented with admission hyperglycaemia (n=73). Further 

investigation of hyperglycaemia specifically in cerebellar haemorrhage can be performed to 

examine associations with haematoma parameters (volume and diameter) and complications 

(brainstem compression, trans-tentorial herniation). This may also reveal potential 

mechanism for poorer outcomes in hyperglycaemic ICH patients.  

A limitation of my approach was that the categorisation of location was too general. More 

specific categorisation would underline potential critical neuroanatomical regions affected by 

ICH and involved in dysfunction of glucose metabolism. Determining the involvement of 

regions such as the hypothalamus may provide further understanding for the cause of 

elevated blood glucose levels. The hypothalamus regulates glycaemic control with 
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specialised glucose sensing neurons involved in insulin regulation at the pancreatic islet cells 

as seen in animal models.
156

 Glucose kinase activity in the hypothalamus mediates processing 

of glucose and initiates the insulin response via the neural-islet axis. Chronic down-regulation 

of these hypothalamic insulin receptors lead to glucose intolerance and pancreatic islet cell 

impairment reflecting their role in glucose metabolism in the rat model.
157

 Distinct glucose-

sensitive regions in the hypothalamus that have been identified include the ventromedial
158

, 

lateral and arcuate nucleus
159

. The dorsal vagal complex in the brainstem also contains 

glucose sensitive neurons involved in glucose homeostasis
160

 with recent studies reporting the 

role of the nucleus of solitary tract in detecting circulating glucose. Analysing the specific 

location of ICH in patients with hyperglycaemia may indicate if these glucose-critical regions 

are damaged and thereby responsible for the hyperglycaemic state rather than a generalised 

physiological stress response.  

Blood glucose level is also affected by autonomic activation and neurohormonal signalling. 

The release of adrenocorticotropic hormone (ACTH) from the anterior pituitary induces 

cortisol release via the hypothalamic-pituitary-adrenal axis (HPA axis). The net effect is a 

hyperglycaemia through increased hepatic gluconeogenesis and decreased peripheral uptake 

of glucose. Sympathetic activation will also cause hyperglycaemia through increased serum 

adrenaline and noradrenaline. Damage to structures involved in autonomic pathways and the 

HPA axis may also explain the hyperglycaemic response. Whilst this could not be determined 

in the present study, more specific location analysis may allow this. In the INTERACT2 

analyses, cortisol and catecholamine levels were not recorded. An earlier study by van 

Kooten et al. measured catecholamine levels as a surrogate marker for physiological stress 

and found no association with blood glucose and suggested that hyperglycaemia was not a 

result of the stress response
161

. A limitation of this analysis is that plasma catecholamine 

levels are not an accurate marker of sympathetic nervous system activation. The plasma 

concentration of catecholamines only represents a proportion of total neurotransmitter 

released and plasma levels are also affected by local neuronal uptake.
162

 Catecholamine 

levels are also determined by physiological stimuli such as breathing, emotional stimuli and 

body positions (standing, squatting). These factors may have contributed to the lack of 

association found in this observational study. The statistical significance of this study was 

also limited by its small cohort size (n=91). Further investigation is required in determining 

the association of stress hormones (catecholamines, cortisol) with blood glucose levels as this 

will highlight the magnitude of the stress component in hyperglycaemia. 
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Mechanism driving hyperglycaemia: stress response or diabetic pathophysiology 

The primary question in terms of the mechanism is whether the driver of hyperglycaemia is 

the severity of the ICH (by volume, location, IVH extension) or if an inherent dysglycaemic 

state caused by diabetes (diagnosed or undiagnosed). I also aimed to determine if 

hyperglycaemia acts as a marker of this physiological stress and diabetic pathophysiology or 

whether it exacerbates neuronal injury. From the baseline characteristics and determinants of 

hyperglycaemia, a significant association was observed with history of diabetes (n=292). 

Undoubtedly diabetic patients would be more prone to hyperglycaemia due to impaired 

glucose homeostasis mechanisms and accordingly 84.2% of diabetics in our study presented 

with admission hyperglycaemia. However, there were still 1102 non-diabetic hyperglycaemic 

patients in our analyses. Within this group there would be a proportion of undiagnosed 

diabetics and patients with pre-diabetes (impaired fasting glucose and impaired glucose 

tolerance) which must be accounted for. The determinants of the hyperglycaemia in the non-

diabetics were parameters of ICH severity (haematoma volume and location, IVH extension, 

NIHSS score) as well as demographic differences. Therefore, there are multiple mechanisms 

at play in the presentation of hyperglycaemia. There is the contribution of diabetic 

pathophysiology and potentially undiagnosed diabetes. However, outside of this effect the 

severity of the haematoma is the other significant driver highlighting the role of the stress 

response.  

The role of BP lowering in hyperglycaemic and diabetic patients: a potential treatment 

effect 

The INTERACT2 study compared intensive and guideline based BP lowering therapy in 

acute ICH in terms of long-term outcome (3-month death or major disability). The main 

paper
105

 examined primary (death or major disability) and secondary outcomes (mRS score, 

health-related quality of life, fatal and non-fatal adverse events). It also compared the 

treatment effect across 8 subgroups: age, region (from or outside China), time to 

randomisation, baseline SBP, history of hypertension, baseline NIHSS score, baseline 

haematoma volume and location. Across all subgroups there was no significant difference in 

primary or secondary outcomes.  

In this analysis, the treatment effect with admission blood glucose and history of diabetes 

mellitus was not studied. However, there is the potential to revisit these earlier models and 

assess the potential treatment effect in the hyperglycaemic group. This would involve 

comparing hyperglycaemic patients treated with guideline and intensive therapy and 
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reviewing whether there are differences in primary and secondary outcomes. More recent 

INTERACT2 analyses explored the efficacy of BP reduction of SBP in hypertensive patients 

by comparing minimal (<10 mm Hg), moderate (10-20 mm Hg) and large (≥ 20 mm Hg) 

changes in SBP and determining association with poor outcomes (death or major 

disability).
163

 This showed that large reductions in SBP during the first hour and maintained 

over 7 days were less associated with poor outcome in comparison with minimal reductions 

(<10 mm Hg). There is also the potential to assess how hyperglycaemic patients respond to 

different degrees of BP reduction.  

At baseline, the hyperglycaemic patients presented with significantly greater SBP 

(P=0.0001). It is critical to evaluate the differences between guideline and intensive therapy 

and to determine how aggressively blood pressure should be lowered in this important subset 

of ICH patients. The treatment effect must also be explored in the diabetic patients. The 

microvascular complications of diabetes are well documented and the overlap between 

diabetes and hypertension is known. Both are significant cardiovascular and cerebrovascular 

risk factors and accelerate atherosclerosis. Therefore, exploring potential treatment effects in 

both hyperglycaemic and diabetic patients will provide valuable data regarding the 

therapeutic approach to these patient subsets and whether a distinct BP lowering strategy is 

required when treating ICH patients presenting with diabetes or admission hyperglycaemia.  

Association between admission hyperglycaemia and outcomes  

After establishing baseline characteristics and determinants of hyperglycaemia, I investigated 

the associations with primary and secondary outcomes. Primary outcomes were death or 

major disability, death alone, and major disability alone, at 90 days whilst secondary 

outcomes were neurological deterioration over the first 24 hours, and fatal and non-fatal 

adverse events.  

Existing data on hyperglycaemia in ICH and associations with outcomes is represented in 

Table 1 and 2. The majority of data evaluates outcomes either at discharge or in the first 

month post ICH with limited data on longer term follow-up. However, the majority of these 

studies report significant association with poorer survival in the hyperglycaemic patients. Our 

findings at 3-months build upon the existing literature with the advantage of INTERACT2 

analyses being the significantly larger cohort size, multi-centre data and comprehensive study 

design.  
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Our multivariate model adjusted for all significant baseline variables and clinically 

significant interactions and patients were divided based on admission blood glucose (quartile 

analysis). There was a significant association with death or major disability (P trend=0.015), 

specifically in the two highest quartiles of admission blood glucose (Q3 aOR 1.31 95%CI 

1.01-1.71; Q4 aOR 1.35 95%CI 1.01-1.80). When admission blood glucose was examined as 

a continuous variable the significant association with poor outcome was also noted (aOR 

1.11, 95%CI 1.00-1.24; P<0.0001). Therefore, our analyses confirm that admission 

hyperglycaemia is an independent predictor of poor outcome, independent of diabetes 

mellitus, haematoma volume, IVH extension and other significant interactions.  

When comparing INTERACT2 results with existing literature, the baseline characteristics of 

other studies must be considered. Specifically, the proportion of patients presenting with 

hyperglycaemia varies across different trials (Table 5.1). This is also affected by differing 

definitions of hyperglycaemia applied in different investigations. I selected 6.5 mmol/L as 

this was the median level of admission blood glucose and allowed effective categorisation of 

patients for quartile analysis. Given that the majority of our patients were from China, the 

proportion of diabetes in the study (11%) was surprisingly lower than other trials. However, 

these 292 patients were enough to provide significant statistical power for outcome analyses. 

The primary outcomes also varied across the ICH trials conducted to date with in-hospital, 

30-day and 3-month mortality and morbidity being investigated. Long-term outcomes (3-

months) were limited by smaller cohort sizes, univariate analysis and conflicting results. My 

analyses of the INTERACT2 cohort overcame limitations of cohort size and multivariate 

analysis showed significant association with poor outcome (death or major disability) at 3-

months.  

Safety outcomes, adverse events and early neurological deterioration in INTERACT2 

analyses 

Analysis of secondary outcomes also provided further information regarding the underlying 

mechanisms in admission hyperglycaemia. Hyperglycaemic patients experienced greater fatal 

adverse events (Table 3.3) primarily caused by the initial haematoma itself. Complications in 

hyperglycaemic ICH patients was earlier explored by Passero et al.
96

 who found greater 

cerebral and infectious complications. My analyses showed that there were significantly 

greater deaths due to the initial ICH (P<0.001) and significantly greater early neurological 

deterioration (P=0.014) in the hyperglycaemic patients. However, there were no significant 

differences in rates of sepsis and respiratory infections between hyperglycaemic and 
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normoglycaemic patients. Early neurological deterioration was measured as decreases in 

GCS (≥ 2 points) or increased ICH severity (≥ 4 points NIHSS score)
105

. These clinical 

measures of neurological deterioration could be due to evolution of symptoms from the initial 

ICH or attributed to progression of the initial haematoma. As a result, I compared haematoma 

characteristics (haematoma growth and perihaematomal oedema) over the first 24 hours as 

causes of worsening neurological status and as potential mechanisms for the poorer long term 

outcomes in hyperglycaemic patients.  

Safety outcomes were also assessed in the diabetic and non-diabetic patients. In contrast to 

analyses for hyperglycaemia and normoglycaemia, the data on those with diabetes mellitus 

showed significantly greater cardiovascular adverse events (non-fatal) with no associations 

with early neurological deterioration. There were no significant differences in causes of death 

between those with and without diabetes mellitus is in keeping with multivariate model 

finding showing no significant association of diabetes with mortality. Comparing the 

differences in safety outcomes between diabetes and hyperglycaemia reveals that there may 

be distinct mechanisms involved in these two patient groups. The association of diabetes with 

cardiovascular events reflects microvascular and macrovascular complications of the disease. 

To better understand these mechanisms, I explored associations of haematoma growth and 

perihaematomal oedema with admission blood glucose and also history of DM (Chapter 4).  

To elucidate the mechanism underlying adverse outcomes in hyperglycaemia, I examined 

haematoma characteristics based on previous investigations and animal models. Induced 

hyperglycaemia in animal models showed haematoma expansion and exacerbation of 

perihaematomal oedema. However, there has been limited data in clinical trials of ICH 

assessing these parameters. Therefore, in sub-study analysis of the INTERACT2 cohort, I 

explored potential mechanisms explaining the significant neurological deterioration seen in 

the hyperglycaemic group. I hypothesised that hyperglycaemic patients would experience 

greater haematoma growth and perihaematomal oedema 24 hours post-ICH aligning with 

early neurological deterioration reported in hyperglycaemic patients. Surprisingly, there was 

no difference in haematoma growth or perihaematomal oedema in patients with 

hyperglycaemia. These results suggest that hyperglycaemia may play a role in initial 

haematoma growth, with significantly greater baseline haematoma volume but with limited 

change in volume over 24 hours. Haematoma characteristics that were not examined in my 

analyses included hydrocephalus and brainstem compression due to lack of specific data 

collected, which could be explored in future studies.  
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Whilst increased IVH volume is associated with poor outcomes
164

, this was adjusted for in 

multivariate analyses and associations between hyperglycaemia and IVH have been 

previously reported
72

. Appelboom et al.
72

 reported linear relationship between IVH severity 

score and the admission blood glucose level. Further, IVH was found to be an independent 

predictor of critical hyperglycaemia which has been confirmed in the INTERACT2 analyses. 

Hyperglycaemia may exacerbate neuronal injury through blood brain barrier disruption, 

oxidative damage and inflammatory activation thereby causing extension into the ventricular 

system. Therefore, hyperglycaemia is associated with specific severe haematoma 

characteristics and these may contribute to the associated neurological deterioration, 

mortality and major disability. 

Associations of diabetes mellitus and outcome 

Earlier studies have investigated associations between diabetes mellitus and ICH, specifically 

focusing on complications, determinants and outcomes. Arboix et al.
35

 in univariate analyses 

found significantly greater mortality in diabetic patients and in multivariate models reported 

significant association with previous ICH, haematoma affecting multiple locations and 

cranial nerve palsy. INTERACT2 analyses also found that diabetics were significantly more 

like to have experienced previous stroke (ischaemic or undifferentiated), however, found no 

associations with specific ICH location. Baseline differences in diabetic patients reflected the 

shared pathophysiology with cardiovascular disease with significantly greater history of 

hypertension, heart disease and specific medications (beta-blocker, calcium channel blocker, 

anti-hypertensive, insulin therapy) (Table 3S1).  

Interestingly at baseline, diabetic patients had significantly smaller ICH (diabetes 9.2 ml vs. 

non-diabetes 11.2 ml, P=0.002) and combined haematoma volumes (diabetes 11.4 ml vs. 

non-diabetes 13.3 ml, P=0.035) (Table 3S1). There was also no association seen with IVH 

extension or location of haematoma. These baseline characteristics starkly contrast the 

comparison between hyperglycaemic and normoglycaemic patients where hyperglycaemia 

was significantly associated with greater haematoma volumes, IVH extension and specific 

haematoma locations (cerebellar and cortical). These differences between diabetic and 

hyperglycaemic patients indicate distinct mechanisms involved in these patient groups. The 

non-diabetic hyperglycaemic patients are affected by the stress response to the acute 

haematoma with poorer outcomes potentially exacerbated by elevated blood glucose levels. 

In diabetic patients the hyperglycaemia may result from multiple mechanisms including the 
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impaired glucose homeostasis from the disease along with physiological stress response to 

the acute ICH.  

In terms of outcomes, diabetic patients had significantly greater death or major disability 

(aOR 1.43 95%CI 1.03-2.00, P=0.035) and major disability alone (aOR 1.49 95%CI 1.06-

2.10, P=0.023), however, no association with death alone (P=0.743) (see Table 3S3). This 

confirms recent Chinese population study (n=1438) who also reported DM was not a 

significant predictor of mortality.
37

  

Clinical application, Insulin Therapy and Potential for RCT 

My investigation of hyperglycaemia and diabetes mellitus in spontaneous ICH raises the 

question of whether there is a role of targeted insulin therapy for specific blood glucose 

levels. Whilst my data showed no critical threshold of blood glucose, a significant trend was 

observed with increasing levels at admission associated with poorer outcomes. Current 

guidelines are far from comprehensive regarding the approach to hyperglycaemia in ICH.  

Older studies investigating the role of intensive insulin therapy in Intensive Care Units 

provided positive evidence for this approach. A ‘landmark’ trial by van den Berghe et al.
165

 is 

frequently cited. This prospective, randomised controlled trial (n=1548) compared 

conventional (target blood glucose: 10.0-11.1 mmol/L) to intensive therapy (target blood 

glucose: 4.4-6.1 mmol/L). 4% of these patients were admitted in ICU for neurologic disease 

with the majority being post-cardiac surgery. Benefits reported from this trial included 

reduced ICU admission length, decreased rates of septicaemia, less prolonged requirement 

for ventilation and most importantly reduced mortality. These findings were supported in a 

later Chinese study
166

.  

However, subsequent trials have yielded mixed results in terms of the benefits of intensive 

insulin therapy (IIT) in critically ill patients. Meta-analysis of these patients (n = 8432) 

showed no significant difference with in-hospital mortality.
167

  Adverse event analysis 

showed significantly greater hypoglycaemic events but also showed significantly lower 

incidence of septicaemia in the IIT group. It should be noted that inclusion criteria was for 

ICU patients and represented a wide range of patient types (cardiac surgery, acute 

cerebrovascular events, trauma, acute coronary syndrome, sepsis). Further systematic 

reviews
168-170

 found no survival benefit and significantly greater IIT-induced hypoglycaemic 

events. Arabi et al. investigated the clinical significance of this hypoglycaemia and reported 

no significant difference in mortality when compared with controls.
171

 In patients with critical 
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hypoglycaemia (BSL < 1.2 mmol/L) a trend towards poorer outcomes was noted but this was 

not statistically significant in multivariate analyses.  

Whilst aforementioned studies focused on medical and surgical ICU patients, more recent 

trials have been conducted in stroke with the majority of literature examining on acute 

ischaemic stroke. An early pilot study tested the safety and tolerability in controlling BSL 

between 5-8 mmol/L and found that insulin requirements decreased within 48-hours 

suggesting a role for early aggressive therapy to control glycemic control.
172

 The randomised 

pilot study (THIS)
173

 explored the differences in clinical outcomes at 3 months by looking at 

mRS scores ≤2, Stroke-Specific Quality of Life, modified Barthel Index and NIHSS. 

Hypoglycaemic events were experienced in the IIT group, however, these were mostly 

asymptomatic and easily resolved. Whilst clinical outcomes were more favourable in the IIT 

patients these results were not statistically significant. This study has been extended upon 

with the SHINE trial which is currently underway.
174

 This investigation will compare 

standard vs. intensive insulin management in hyperglycaemic stroke patients with targeted 

cohort of 1400 patients. The primary end-point will be 90-day clinical outcome using 

modified Rankin scale.  

The INSULININFARCT trial examined the effect of IIT upon infarct growth using MRI 

imaging. Although more optimum glycaemic control was achieved with IIT, this therapy was 

also significantly associated with larger infarct growth. However at 90-days there was no 

difference in mortality or serious adverse events.
175

 Further analysis of a sub-group of this 

trial (n=99) examined the effect of insulin therapy upon the penumbral region. 

Hyperglycaemic patients experienced worsened ischaemic damage; however, the insulin 

therapy had no effect upon severity of ischemia.  

In ICH there is limited literature regarding the role of IIT. Godoy et al.
176

 studied the effect of 

insulin therapy. Whilst mild hypoglycaemia was reported it was associated with no 

significant adverse outcomes. There was no change in mortality in patients treated with 

insulin for tight glycemic control.  

At this stage there is not enough evidence regarding the potential of IIT in ICH. From 

INTERACT2 analyses, where significant associations were observed with hyperglycaemic 

patients and early neurological deterioration and later clinical outcomes (3-months), there is a 

definite need for further investigation into the effect of tight glycaemic control upon outcome. 

Although our sub-study analysis showed no association with haematoma growth and 
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perihaematomal oedema, further confirmatory investigation is required and other haematoma 

characteristics such as hydrocephalus and brainstem herniation must be examined. The 

majority of patients in INTERACT2 were of mild-moderate severity (based on NIHSS score). 

Assessing the role of hyperglycaemia in different severity ICH would also be useful.  

I recommend the undertaking of a randomised pilot trial to examine the safety and tolerability 

of IIT in ICH, before proceeding to a large scale clinical endpoint trial. Specifically, I would 

examine in-hospital mortality, hypoglycaemic events, infectious and cerebral complications 

during hospital admission. Three-month clinical outcomes would also be assessed (death or 

major disability). We would also want to determine differences in haematoma growth, 

perihaematomal oedema following tighter glycaemic control. With the difference in 

hyperglycaemia based on location reported, it may also be interesting to investigate if deep 

vs. cortical haematomas are more responsive to aggressive insulin therapy.  

However, before proceeding to a large-scale clinical trial it is essential to directly examine 

the relationship between glycaemic control and intracerebral haematoma growth. A proof-of-

concept (PoC) trial would allow the signal between tight glycaemic control and haematoma 

growth to be assessed and may also provide preliminary insights into the efficacy of this 

therapy. Specifically, it would assist in examining the association between tight glycaemic 

control and increases in haematoma volume, intraventricular extension and perihaematomal 

oedema.  

The advantages of PoC studies are in their simplified study design and small-scale approach 

which limits funding requirements and overcome issues of timing related with large clinical 

trials. Examining adverse events such as rates of hypoglycaemia will also provide integral 

information regarding the safety of tighter glycaemic control in intracerebral haemorrhage 

patients. These studies may also suggest an optimum therapeutic window for glycaemic 

control. Results from such trials will assist in determining the need and benefit for further 

larger-scale investigation.  

Limitations of PoC trials must also be considered. Statistical power will be reduced by 

smaller sample sizes and potential confounding variables such as age, gender, medical history 

(hypertension, coronary artery disease), medications (anti-coagulation, anti-platelet therapy, 

anti-hypertensives) must be considered and adjusted for. The time required for recruitment of 

suitable patients is another factor that could reduce efficiency of the trial.  
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A number of recent trials have investigated outcomes associated with intensive insulin 

therapy in neurocritical care and acute ischaemic stroke with varying results. Poorer 

outcomes with significantly higher hypoglycaemic events and higher mortality have been 

reported
177

  with 71% incidence  of hypoglycaemia found in ischaemic stroke patients.
178

 The 

INSULINFARCT trial
179

 also studied insulin therapy in ischaemic stroke and whilst 

hyperglycaemia exacerbated neuronal ischaemia, there was no improvement in infarct 

volumes in patients receiving intensive insulin therapy.  Therefore the ethical considerations 

of performing PoC studies must be taken into account as aggressive insulin therapy may 

subject patients to potentially significant harm. Before commencement these risks must be 

examined, however, a PoC trial with small sample size may provide a vital starting point in 

understanding the role of insulin therapy in intracerebral haemorrhage.  

Overall, my investigation has provided a comprehensive overview on the role of 

hyperglycaemia in ICH with the recommendation for a proof-of-concept study comparing 

intensive and standard glycaemic control in ICH.  



Chapter 5: Discussion and concluding remarks 

 

83 

 

Table 5.1: Overview of studies assessing association hyperglycaemia and outcomes at 1-month and 3-month 

Study  

Cohort 

Size 

% 

Hyperglycaemia 
% Diabetes 

Hyperglycaemia 

definition 
Outcome 

Critical 

Level 
AOR P value 

Early 

Outcome 
                

Appelboom 104   23.20% 10mM Discharge Mortality 10mM 4.381(1.186–16.174) 0.03 

Franke 157 50.30% N/A ≥8 mmol/L 2-Day Mortality >8mM 5.5 0.01 

Samiullah 399 27.30% 
  

≥7 mmol/L (fasting) 

or ≥8.6 mmol/L 

In-Hospital 

Mortality   
10.9(4.72-25.32) <0.001 

Tetri 379 33.80% 17.94% >8.0mM 2 day Mortality - 1.04 (0.95–1.13) Not Significant 

Kimura 100   Not Reported >150 mg/dl 14-Day Mortality >150 mg/dl 37.34(1.40-992.73) 0.031 

Outcome at 

1-month               

 

  

Fogelholm 290   11.90% 9.1 mM 28 day Mortality   1.22(1.07-1.40) 0.004 

Bejot  465     ≥8.6 mmol/L 1-Month Mortality ≥8.6 mmol/L 2.51(1.23-2.43) 0.002 

Lee 1387   11.60% - <30 day Mortality - 1.10(1.01-1.19) 0.03 

Lee  1119   NDM - Non-DM, <30 day - 1.11(0.999-1.22) 0.053 

Passero 637 43.20% 17% ≥130 mg/dl 30 day Mortality ≥130 mg/dl 1.099(0.947-1.275)**   

Godoy 295 
  

50.17% 
≥7.22 mmol/l or 130 

mg/dl 
30-Day Mortality 9.08 mmol/l 1.51(1.23–1.85) <0.0001 

Tapia-Perez 116   31.90% >140 mg/dL 30-Day Mortality >140 mg/dL 2.65(1.15–6.12) 0.02 

Tan  3756 39.60% N/A ≥7.5mM 
In-hospital to 1-

month Mortality 
- 3.46(1.66-7.20) 0.0009 

Outcome at 

3-months             

 

  

Passero 637 43.20%   ≥130 mg/dl 3-Month Mortality ≥130 mg/dl 1.086(0.941-1.253)**   

Appelboom 104     10mM 3-month Mortality 10mM 10.85(1.886–62.41) 0.02 

Tetri 379     >8.0mM 3 Month Mortality - 1.04 (0.99–1.10) Not Significant 

INTERACT2 2653 61% 11% >6.5mM 
3-Month Death or 

Major Disability 
- 1.11 (1.00-1.24) P<0.0001 

INTERACT2 2653 61% 11% >6.5mM 3-Month Mortality - 1.16 (1.01-1.33) P=0.043 
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Table 5.2: Other studies investigating associations between hyperglycaemia and poor outcomes in ICH 

Study  
Cohort Size 

% 

Hyperglycaemia 
% Diabetes 

Hyperglycaemia 

definition 
Outcome 

Critical 

Level 
AOR 

P 

value 

Sun 149 
  

23.50% ≥140 mg/dl 
Late Neurological 

Deterioration 
140 mg/dl 

2.614 (1.146–

5.965) 
0.022 

Zhang 54 - DM group - Poor Outcome, mRs >2 - 
1.109(0.704–

1.394) 
0.078 

Zhang  
234 - NDM group - Poor Outcome, mRs >2 - 

0.995(0.763–

1.26) 
0.105 

Qureshi 60 42% N/A - modified Rankin Score 4-6 114 mg/dl 
2.64(1.03-

6.75)   

Stead 237 19.80%   140 mg/dl       0.0037 

Feng 135 33.30% 19.26% ≥150 mg/dl modified Rankin Score ≥3 ≥150 mg/dl     

Lee 1387 
  

11.60% - > 30 day Mortality - 
1.05(0.98-

1.11) 
0.15 

Lee 1119 
  

NDM - Post-ICH Mortality - 
1.10(1.03-

1.17)   

Lee 
    

NDM - Non-DM, >30 day - 
1.07(0.99-

1.16) 
0.09 

Wu 62 N/A 27.40% ≥140 mg/dl 
Poor Outcome, Glasgow 

Outcome Scale 
≥140 mg/dl 25.217 0.008 

Bejot 465 
    

≥8.6 mmol/L Function Handicap 
≥8.6 

mmol/L 

2.51(1.43-

4.40) 
0.01 
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