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A B S T R A C T

Type two diabetes affects 5% of the world’s population and is
increasing in prevalence. A key precursor to this disease is insulin
resistance, which is characterised by a loss of responsiveness to
insulin in liver, muscle and adipose tissue. This thesis focuses on
understanding insulin signalling using the 3T3-L1 adipocyte cell
model.

Computational modelling was used to generate quantitative
predictions in the signalling pathways of the adipocyte, many
of which are mediated by enzymatic reactions. This study be-
gan by comparing existing enzyme kinetic models and evaluat-
ing their applicability to insulin signalling in particular. From
this understanding, we developed an improved enzyme kinetic
model, the differential quasi-steady state model (dQSSA), that
avoids the reactant stationary assumption used in the Michaelis
Menten model. The dQSSA was found to more accurately model
the behaviours of enzymes in large in silico systems, and in vari-
ous coenzyme inhibited and non-inhibited reactions in vitro.

To apply the dQSSA, the SigMat software package was devel-
oped in the MATLAB environment to construct mathematical
models from qualitative descriptions of networks. After the ro-
bustness of the package was verified, it was used to construct a
basic model of the insulin signalling pathway. This model was
trained against experimental temporal data at 1 nM and 100 nM
doses of insulin. It revealed that the simple description of Akt ac-
tivation, which displays an overshoot behaviour, was insufficient
to describe the kinetics of substrate phosphorylation, which does
not display the overshoot behaviour. The model was expanded
to include Akt translocation and the individual phosphorylation
at the 308 and 473 residues. This model resolved the discrepancy
and predicts that Akt substrates are only accessible to Akt lo-
calised in the cytosol and that PIP3 sequestration of cytosolic Akt
acts as a negative feedback.
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1I N T R O D U C T I O N

Diabetes, characterised by the disregulation of glucose homeosta-
sis, is a complex disease that is quickly becoming a leading cause
of mortality in the modern world. One of the key risk factors of
the Type 2 variant is insulin resistance. Significant research ef-
forst are shifting towards determining the intracellular causes of
insulin resistance in key tissues that regulate glucose homeostasis:
muscle, fat and liver.

The conventional method for interrogating the intracellular be-
haviour of cells is through a reductionist, node by node pertur-
bation of the cell. In recent decades, the use of computational ap-
proaches to complement the reductionist experimental approach
has gained prominence. This is the field of systems biology. One
component of this field is the simulation of biological networks
by mathematically modelling. This involves simulating the collec-
tion of biochemical reactions that occur within the cell to repro-
duce, predict and understand the emergent properties created by
the network. This will enhance our understanding of the defects
contributing to insulin, and their effects on the regulatory mecha-
nisms of glucose homeostasis. However, to do this it is necessary
for the model to accurately replicate the behaviour of each indi-
vidual biochemical reaction.

Mathematical models need to be constructed in close associa-
tion with experimental data derived from the cell model that is
studied. As there are many cell models used to study insulin sig-
nalling and insulin resistance, there are similarly many mathemat-
ical models that have been customised for each cell line. However,
there is currently no mathematical model designed specifically
for the common cell line used for studying insulin signalling in
fat cells, the 3T3-L1 adipocyte.

This has led to two key questions pursued in this thesis:

1. Are existing modelling methods sufficiently accurate, and if
they are not, can they be improved?

1
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2. What does a quantitative model of the common cellular
model system for studying insulin signalling and insulin
resistance, the 3T3-L1 adipocyte, look like?

These research questions are significant because together, they
begin the process of quantitatively integrating the enormous vol-
ume of research data (and uncountable number of sacrificed adipocytes)
that have been acrued using this cell model. From there, the math-
ematical model can then be used to quantitatively understand the
system. These simulations can then be used to identify gaps and
inconsistensies in the model, and refine hypotheses to explain
gaps and resolve inconsistencies with novel mechanisms. Finally,
the quantitative predictions can be used to experimentally vali-
dated the model with increased precision.
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2.1 the disease context

2.1.1 Diabetes: A non-infectious epidemic

Diabetes is a non-communicable disease which is characterised
by a loss of glucose homeostatis which can lead to many serious
and sometimes fatal complications [1]. Its severity is increased by
its growing prevalence throughout the world as shown in Fig. 1
[2]. In 2008, there were an estimated 347 million sufferers of dia-
betes world wide, making up approximately 5% of the world pop-
ulation [3]. In 2012, an estimated 1.5 million deaths were caused
by this disease [4]. Even within Australia, there are around 1.1
million sufferers of diabetes with 280 new cases appearing every
day [5]. Diabetes also creates a significant financial burden on
health care globally. In 2010, the global expenditure of diabetes
was USD 376 billion, which represents 12 % of global health ex-
penditure. In Australia, the average annual cost per person of

Figure 1: Comparative prevalence of diabetes globally [2].
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diabetes treatment is AUD 4669, increasing to about AUD 17,000
when patients present with vascular complications [6]. Diabetes
leads to an increased risk of complications such as cardiovascu-
lar disease, blindness, kidney failure, neuropathy, and reduced
resistance against infections [7].

There are two broad ways this diseases can arise. Type I Di-
abetes (T1D), is genetic in origin and accounts for around 10%
of cases. Type II Diabetes (T2D) on the other hand, has both ge-
netic and environmental origins and accounts for around 90% of
cases. T2D is characterised by insulin resistance in the patient
and only partial loss of insulin production [7, 8]. While there is
a strong genetic component to this form of diabetes, its develop-
ment is strongly correlated with obesity and increased abdominal
adiposity for those already predisposed [8, 9]. Given that the link
between obesity and insulin resistance is already known, investi-
gation of this link has become the focus of T2D research and the
focus of this thesis.

2.1.2 Insulin Action and Insulin Resistance

Regulation of plasma glucose levels is essential for whole body
homoeostasis [10]. Insulin and glucagon are two components of
the feedback system that maintains glucose homeostasis. Glucag-
on is secreted by the α-cells of the pancreas and increases blood
glucose levels during starvation. Conversely, insulin,
which is secreted by the β-cells of the pancreas, primarily causes
a system wide increase in glucose storage due to increased glu-
cose uptake in muscle and fat cells via recruitment of the glucose
transporter 4 (GLUT4) to the cell plasma membrane, and reduced
glucose output from the liver [10].

Insulin, the focus of this thesis, acts primarily on three types of
tissue in the body: liver, muscle and fat (Fig. 2) [11, 12]. In liver
cells, or hepatocytes, insulin increases lipogenesis and promotes
glycogen storage through inhibition of glycogen breakdown and
increasing glycogen synthesis from glucose [10]. Glycogen syn-
thesis is also promoted in muscle cells, or myocytes, in prepara-
tion for exercise. Fat storage is controlled by insulin in fat cells,
or adipocytes, by decreasing lipolysis which reduces the release
of free fatty acids [11]. In addition to these functions related to
glucose homeostasis, insulin increases gene expression, protein



2.1 the disease context 5

Figure 2: Effect of insulin under (clockwise from the top left): normal
fed condition, normal fasting condition, insulin resistant fed
condition and insulin resistant fasting condition [11]

synthesis and amino acid uptake, and decreases gluconeogenesis
(the conversion of pyruvate to glucose), apoptosis (programmed
cell death) and autophagy (degradation of cellular components)
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[13]. These effects are triggered by the signalling cascade that is
initiated when insulin binds to its cognate receptor.

Insulin resistance is characterised by an impairment in the abil-
ity of insulin sensitive tissue to respond to insulin. As there is
a strong link between T2D and obesity, insulin resistance is also
strongly correlated with obesity [9]. Beyond this, the biochemical
defects responsible for insulin resistance are highly contentious.
While defects in the insulin receptor itself is a possible cause of
the disease, it is only correlated with some cases of insulin resis-
tance [9]. Early insulin resistance research showed that other de-
fects downstream of the insulin receptor such as the insulin recep-
tor substrate and PIP3 production could also contribute to insulin
resistance. However, the full complexity of the disease is only now
appreciated as a growing range of possible causes are being iden-
tified [11]. This can be demonstrated by a Google Scholar search
of "causes of insulin resistance" which returns 24,000 search re-
sults within just the last two years. It is clear that the causes of in-
sulin resistance are both complex and variable. Thus a deeper un-
derstanding of the mechanisms involved with insulin signalling
is necessary before treatment strategies can be designed to reverse
it.

2.2 the insulin signalling pathway

2.2.1 Identifying the Pathway to Solve the Disease

As research into T2D and insulin resistance progresses, there is
increasing evidence that they are caused by intracellular defects.
As a result, there is increasing interest in understanding the mech-
anisms behind the insulin signalling pathways. Cell signalling
pathways can be described by a list of biomolecular reactions
which occur between the pathway components. So to understand
the pathway, it is necessary to understand the composition of the
biochemical components.

Identifying the composition of the network is much like solv-
ing a jigsaw puzzle. The biomolecular makeup, analogous to the
collection of puzzle pieces, is a list of unique species that differ
in physical (e.g. location) and chemical (e.g. intrinsic protein or
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post-translational modified) properties. This can be audited us-
ing -omics type studies [14, 15].

The list of interactions, analogous to the joints between puz-
zle pieces, are interactions between different biomolecular com-
ponents. These are governed by physico-chemistry, which causes
a change in one or more biomolecular species. This list is more
difficult to audit and is the subject of many biological assays,
such as yeast two hybrid studies, far western blotting and co-
immunoprecipitation.

In order to solve and understand the signalling pathway, we
must reconstruct the biomolecular makeup in an interaction net-
work where each interaction is verified and the general behaviour
is self consistent. This is much like the big picture of a jigsaw puz-
zle that can only be formed when all puzzle pieces fit in place
without any clashes in the connecting points or the continuity of
the picture (illustrated in Fig. 3).

The following sections will review the general mechanisms com-
monly found in signalling pathways. The focus will then turn
specifically to insulin signalling, where the broad structure of the

Figure 3: Identifying the makeup of signalling pathways is like solving
a jigsaw puzzle. Current pathways are often incomplete with
missing connections and nodes, and orphaned pieces where
their location in the system is unclear.
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pathway as it is currently understood is outlined. From there, the
various feedbacks acting on the important nodes are discussed to
demonstrate the immense complexity inherent in this system.

2.2.2 Mechanisms of Signalling Pathways

The traditional view of signalling pathways is a linear cascade,
where the receptor activates a linear cascade, ending at one effec-
tor (Fig. 4A). However, the more contemporary view is a complex
network of multiple inputs and multiple outputs which connect
with each other in complex ways (Fig. 4B). The crucial feature of
the contemporary view is that all inputs converge onto a selection
of key regulatory nodes, which then disperse the signal through
to the many effectors in the cell. This is known as the hourglass
or bow-tie architecture of signalling [16, 17].

Information through a signalling cascades is often transmitted
by enzymatic reactions [19]. Upon activation of the upper most re-
ceptor in the signalling pathway, it proceeds to activate its down-
stream molecular target, converting it from an "off" state to an
"on" state. The activated molecule then proceeds to activate its
target.

The most studied ways in which proteins become activated are
phosphorylation and guanine triphosphate (GTP) binding. Phos-
phorylation can occur on many proteins that contain key amino
acid residues that are phosphorylatable (serines, threonines and
tyrosines), a process where a phosphate group is added to the
residue. The addition of the phosphate is performed via enzy-
matically moving one phosphate from an adenosine triphosphate
(ATP) to the protein, converting it to adenosine diphosphate (ADP).
Enzymes that do this are known as kinases. Removal of the phos-
phate is also performed via enzymatic action by enzymes known
as phosphatases. In general, phosphatases such as Protein Phos-
phatase 2A (PP2A) are assumed to be promiscuous and consti-
tuitively active while kinases change their activity depending on
upstream signals [20]. Similarly, proteins can become activated by
GTP binding by guanine nucleotide exchange factors, which then
become inactivated through its conversion to guanine diphos-
phate by GTPase-activating proteins.

Phosphorylation represents one type of post translational mod-
ification (PTM). Other PTMs can also lead to the activation of pro-
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Figure 4: Evolution of our understanding of signalling. (a) The tradi-
tional view is linear with a one to one relationship between in-
put and output [18], (b) The contemporary "hour glass" view
is complex with a many to many relationship between input
and output [16]
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teins as well as other changes such as alterations in function, bind-
ing affinity or stability. Examples of these are methylation, acety-
lation, palmitylation, ubiquitination, glycosylation and oxidation
[18, 21, 22]. With continuing improvements in mass spectrometry
techniques, it is becoming more practical to identify modifications
in protein peptides. This has allowed the function of these other
modifications to be studied [23].

Other molecular mechanisms may be required for the activa-
tion of signalling proteins such as translocation to specific sub-
cellular compartments, or association with other proteins to form
signalling scaffolds. More research is revealing that this is an im-
portant mechanism in signalling and is required to enable speci-
ficity from input signals [24].

2.2.3 Overview of the core pathway

The topology of the insulin signalling pathway is preserved be-
tween the different types of insulin responsive cells. The differ-
ences that lead to their distinct responses to insulin arises from
variations in the expression levels of the nodes in the pathway
[18, 25, 26]. Insulin signalling begins with the initial binding of
insulin to the insulin receptor (IR) at its alpha subunit. This en-
ables activation of the beta component which contains a tyrosine
kinase which autophosphorylates the receptor [26]. This leads to
the increased recruitment of the adaptor protein insulin receptor
substrate (IRS) to the plasma membrane, leading to its subsequent
phosphorylation [27].

Phosphorylation of IRS enables PI3-Kinase (PI3K) to bind to it
via the Src Homology 2 (SH2) domain of the p85 regulatory sub-
unit [28, 29]. This also recruits the p110 subunit of PI3K, which
is already bound to the p85 subunit, to phosphorylate the mem-
brane bound phospholipid phosphatidylinositol (4,5) bisphosphate
(PI(4,5)P2) to generate phosphatidylinositol (3,4,5) triphosphate
(PI(3,4,5)P3 or PIP3) [30, 31]. The PIP3 can be dephosphorylated
into PI(4,5)P2, PI(3,4)P2 by the phosphatase PTEN or SHIP2, re-
spectively [32, 33]. The Pleckstrin Homology (PH) domain of the
serine/threonine kinase Akt (also known as Protein Kinase B)
preferentially binds to PIP3 [34]. Thus, when PIP3 is generated af-
ter insulin stimulation, Akt is recruited to the plasma membrane
[35]. At the plasma membrane, 3-phosphoinositide-dependent ki-
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Figure 5: Illustration of the core components of the Insulin Signalling
Pathway and how information is transmitted upon insulin
stimulation.

nase (PDK1) and mammalian target of rapamycin complex 2 (mTORC2)
phosphorylates Akt at the threonine 308 and serine 473 residues
(in Akt1, 308 and 474 respectively in Akt2) [36, 37].

Phosphorylation of these two sites activates Akt, allowing it to
phosphorylate and alter the activity of its many substrates, which
will be discussed in more detail in a later section [38, 39]. One
of the key substrates of Akt is TSC2, which indirectly activates
the mammalian target of rapamycin complex 1 (mTORC1) [40].
mTORC1 then activates S6-Kinase (S6K), which subsequently phos-
phorylates IRS1 at an inhibitory serine site [40]. This initiates a
negative feedback loop in the pathway [41].
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2.2.3.1 Insulin Receptor-Insulin Receptor Substrate

IR is a transmembrane protein that has been shown to be localised
on caveolae in the plasma membrane using gold labelled electron
microscopy [42]. Caveolae are domains rich with cholesterol and
lipids that are approximately 100 nm in diameter. They have a pit
like morphology and are scattered throughout the surface of the
plasma membrane [18, 42, 43]. Whilst the precise mechanisms of
caveolae function are still not well understood, they are known
to cause endocytosis. Based on caveolae’s function and IR’s prox-
imity to it, it is inferred IR is subject to endocytosis through this
mechanism [44].

There is some data to suggest that this mechanism of endocyto-
sis is itself insulin regulated. This model proposes that under un-
stimulated conditions, caveolae endocytosis is inhibited by cave-
olins [18]. When caveolins are phosphorylated, its activity is inhib-
ited which re-enables endocytosis [45]. Since it has been shown
that caveolin phosphorylation itself is insulin sensitive, it would
stand to reason that endocytosis is then insulin sensitive [45].

Caveolae mediated endocytosis represents only one method of
receptor endocytosis. An alternative method is via clathrin coated
pits. There is some data to suggest that IR activity is associated
with a number of proteins associated with this process [46, 47]. en-
docytosis of the IR is mediated through this alternative pathway
[47].

Whatever the mechanism may be though, there appears to be
some species specific interaction, as IRS1 is permenantly mem-
brane bound in human adipocytes while in rat adipocytes IRS1
is only recruited upon insulin stimulation [27]. Based on these
factors, it can be inferred that the endocytosis process has some
effect on IRS1 activation and downstream signalling.

In addition to the feed forward mechanism of IRS1, it is also a
potential target of feedback regulation in the pathway. Early stud-
ies showed that serine phosphorylation lead to its degradation
[48]. Later, four serine residues have been identified: 302, 522, 632
and 635. Phosphorylation of only the S302, S632 and S635 appear
to be associated with IRS1 degradation [49–51]. The S302 site ap-
pears to be targeted by S6K while the S632 and S635 sites are tar-
geted by mTORC2. There is some controversy regarding the roles
of these sites as some studies show a positive feedback effect from
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phosphorylation of these residues [52]. S522 phosphorylation on
the other hand, appears to reduce the tyrosine phosphorylation
induced by active insulin receptor and is phosphorylated directly
by Akt [53]. However, the inhibitory effect of serine phosphoryla-
tion of IRS1 has been questioned with mTOR dependent negative
feedback shown to be effective even on upstream growth receptor
signalling pathways that are IRS1 independent [38].

2.2.3.2 Mechanism of Akt Activation and Akt Substrates

Akt is the node that forms the neck of the "hour glass" of the
insulin signalling pathway. As such, understanding its activation
mechanism is very important in understanding how the insulin
signal is carried forward to its substrates, driving phenotypic
changes. The two main prerequisites for Akt activation are translo-
cation to the plasma membrane upon PIP3 generation and T308
and S473 phosphorylation.

Phosphorylation of Akt at the T308 and S473 residues have
been shown to be catalysed by PDK1 and mTORC2 using in vitro
kinase assays and knock down in cell models. This has also been
shown in embryonic stem cells, where knockdown of PDK1 does
not abolish S473 phosphorylation [54]. mTORC2’s ability to phos-
phorylate the S473 residue was verified using in vitro kinase assay
of proteins purified from HEK293 cells [37, 55, 56]. Later addi-
tion of PDK1 in this assay showed that T308 phosphorylation can
occur after S473 phosphorylation [37]. On the other hand, Sin1
knockout studies shows that T308 can be phosphorylated when
mTORC2 is inactive in mouse embryonic fibroblasts [57]. These
results show that the phosphorylation sites are neither intrinsi-
cally exclusive nor ordered. There is also some evidence emerg-
ing that PDK1 and mTORC2 are themselves regulated by insulin
signalling. In the case of
mTORC2, there is some evidence to suggest that one of its sub-
components Sin1 is a substrate of Akt. Phosphorylation of Sin1 in
turn further activates mTORC2, which formed a positive feedback
loop [14]. PDK1 appears to be constituitively active and doesn’t
respond to additional growth factor stimulation [58, 59].

It has been shown that Akt translocation to the plasma mem-
brane is sufficient to activate GLUT4 translocation, which sug-
gests it is sufficient for Akt activity [60]. It has also been shown
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that translocation is sufficient for Akt phosphorylation at T308
and S473, which leads to the idea that phosphorylation of these
residues are the prerequisites of Akt activity [60, 61]. Transloca-
tion is believed to occur because of binding of the Akt Pleckstrin
Homology (PH) domain to PIP3 as PH deletion mutants do not
translocate [35]. In spite of this, it has been shown that some PH
deletion mutants are still insulin sensitive [62]. Recently it has
been argued that this is mediated by an alternatve mechanism of
Akt activation beginning with mTORC2 activation by PI3K. This
leads to S473 phosphorylation that allows Akt to bind to the PIF
pocket on PDK1. This allows T308 to become phosphorylated al-
lowing Akt to become active independent of Akt translocation
[63].

Additionally, it is unclear if Akt alone is translocated to the
membrane, or if its kinases also undergo some translocation as
part of the insulin signalling process. In vitro studies have sug-
gested that other phospholipids, such as phosphotidylserine (PS),
have a role to play in this translocation mechanism, with over-
expression of a PS binding protein leading to the loss of PDK1
localisation in the PM [36, 64, 65]. It is also suggested that PDK1
translocation may be regulated by some membrane bound pro-
teins that act as a scaffold between PDK1 and Akt [66]. In terms
of mTORC2, the presence of a PH domain on one of its compo-
nents, Sin1, suggests that it too is translocated to the PM upon
insulin stimulation in addition to the phosphorylation mediated
regulation discussed before [67].

Downstream functions of Akt involve the phosphorylation of
its substrates, of which there are currently over a hundred and
counting [41]. Most substrates appear to exhibit a pattern in their
amino acid sequence around their Akt targeted phosphosite [68].
This consensus sequence is identified for Akt as R-X-R-X-X-S/T,
where R is an arginine, X is any amino acid and S/T is the phos-
phorylation site (either serine or threonine) [14, 41]. It should be
noted that additional regulatory mechanisms are likely to be re-
quired beyond the consensus motif because this sequence is of-
ten similar to the consensus motif of other kinases. Thus in vitro,
these kinases are often promiscuous but this is not the case in
vivo [41, 69]. In spite of this, the consensus sequence has been
used as a powerful predictor of other Akt substrates [14, 41].
These substrates can be roughly grouped into a number of key
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functions: glucose uptake, energy metabolism (glycogen synthe-
sis, gluconeogenesis etc), survival, proliferation and growth (mi-
tochondrial biogenesis, protein synthesis), and angiogenesis [41,
70, 71]. For more details of the proteins that are proposed to be
responsible for each of these functions, the interested reader is
referred to an excellent review by Manning [41].

Some of the key substrates that will be explored in this thesis
are TSC2 and PRAS40 due to their relationship to the negative
feedback loop in the insulin signalling pathway, AS160 due to its
relationship to GLUT4 trafficking, GSK3 due to its relationship to
glycogen synthesis, and FOXO1 due to its relationship to gluco-
neogenesis [25, 26, 72, 73]. A key question that emerges from this,
is how Akt can activate its downstream substrates with different
strengths while being the only trigger for their activity [38, 74].
This is still an area that is not well understood.

Variation within Akt itself also contributes to complexity in this
pathway. In humans there are three isoforms of Akt which share
approximately 80% amino acid homology [75]. Regulation of their
different functions is mediated through differential expression of
the isoforms throughout the body. Akt1 and 2 are expressed ubiq-
uituously while Akt3 is primarily expressed in the brain [76, 77].
In the context of glucose homeostasis, Akt2 is believed to be the
most important isoform as Akt2 knockout mouse become diabetic
and Akt1 overexpression is unable to rescue this effect [78]. The
multiple isoforms appear to have some redundant functions, as
whole body Akt2 and 3 double knockout mice remain viable al-
biet with various growth and glucose homeostasis related defects
[79]. The high degree of homology between the Akt isoforms has
made them difficult to perturb in a specific manner [80]. As a re-
sult, knockout strategies are used to isolate phenotypic outcomes
with specific isoforms. However, this approach is limited by the
compensatory effects that are initiated when proteins are down-
regulated for an extended period of time [81]. To overcome this
limitation, Kajno et. al. developed a mutant of Akt that is resistant
to the inhibitory effects of the small molecule inhibitor MK2206.
Since this W80 mutation prevents the inhibitor from binding to
the mutant Akt’s PH domain, its ability to translocation to the
plasma membrane no longer allosterically inhibited. Thus, this
MK resistance mutant of Akt can remain active in the prescence
of MK2206, while endogenous protein become inhibited, which
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isolates the effect and function of the mutant Akt isoform [81]. Us-
ing this strategy, Kajno found that Akt mediated GLUT4 translo-
cation is not an isoform specific function while control of differ-
entiation was specific for Akt1 [81].

2.3 mathematical modelling of pathways

2.3.1 Signalling Pathways as Biological Circuits

Signalling pathways, as previously mentioned, are the network in
which biological signals are transmitted from a biological sensor,
like a receptor, to a biological outcome, like the activation of some
biological machinery. While these concepts were originally simple
to understand, as the field advanced, the complexity of pathways
also increased. This is analogous to increasing the size and com-
plexity of jigsaw puzzles. When the puzzle is relatively simple, it
can be solved by eye. However, as complexity and the number of
pieces increases, the problem becomes intractable. There is now
a general sense that these systems cannot be understood or accu-
rately predicted using intuition. Given this complexity, how can
we begin to comprehend the nature of real systems?

A possible answer is inspired by other disciplines that routinely
deal with complex systems. One such system is electronics engi-
neering, which in its essence is not too dissimilar to the study
of cell signalling pathways [82]. Cell signalling pathways con-
tain fundamental elements (ligands, receptors, enzymes, molec-
ular motors, etc.) just like electronic circuits (batteries, resistors,
capacitors, inductors, etc.) and complex behaviours can be cre-
ated by combining them in novel ways. As such, signalling path-
ways can really be considered biological circuits. Given that en-
gineers routinely investigate the behaviour of electronic circuits
through mathematical modelling, it would stand to reason that
mathematical modelling can be a helpful tool in understanding
the behaviour of biological systems.

In engineering, knowledge of the relationship between struc-
ture and function in specific electronic circuits can be applied in
two ways. Firstly, the emergent function of the circuit allows it
to be applied in other contexts for synthetic purposes (analogous
to synthetic biology). Secondly, understanding the behaviour of
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Figure 6: Illustration of the parallels between electrical and biochemical
circuit boards. Both systems involve 1) A list of parts 2) which
have well defined behaviours 3) are assembled in very specific
ways 4) whose parts always have certain specifications.

the circuit helps us understand the origins of defects and how
they can be reversed (analogous to disease research and the de-
sign of therapeutics). In order to achieve this, it is necessary to
have knowledge of the structure of the circuit, which can either
be learnt through the blueprint or by studying the wiring in the
circuit board. This process is similarly followed when signalling
pathways are studied. However, in this context, there is the ad-
ditional difficulty that the underlying blueprint is not known a
priori, and the network cannot be easily studied through their
physical wiring. Thus, reconstruction of the system is a necessary
first step before the structure-function relationship can be investi-
gated.

In order to reconstruct the system, four pieces of knowledge
are generally required (Fig. 6). First is the parts list of the system
(e.g. the electrical components). In the case of cell signalling path-
ways, this is equivalent to knowledge of the proteome, transcrip-
tome, genome and other -omics data. Sophisticated techniques in
this area already exist and these -omics level data can be readily
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collected or are available in the literature [14]. Second is an un-
derstanding of how parts interact and behave (e.g. circuit theory).
There are well refined theoretical concepts from physics and bio-
chemistry that are relevant to this system, which enables highly
accurate quantitative models to be constructed. Third is the blue
print of the system (e.g. the circuit diagram), which customises
the model for the particular system investigated. Finally, the spec-
ifications of the components (e.g. the precise resistance and capac-
itances) must be known in order to tune the system to its correct
operational parameters. In the case of biochemical systems, these
are the rate parameters and dissociation/association constants. In
this section, each of these factors (except for the -omics level data)
will be discussed with regard to the relevant computational tech-
niques.

2.3.2 Overview of Modelling Approaches

The fundamental element of a biochemical circuit are the fun-
damental reactions between biochemical species, analogous to
the fundamental components of electrical circuits: the resistors,
inductors and capacitors. These components have a theoretical
description, which can be used to describe and predict their be-
haviour. In this section, we summarise the various approaches
from the least complex logical models to most complex spatial-
temporal and stochastic models. Models of low complexity typi-
cally require less data to validate but are less descriptive of the
mechanisms in the system and conversely, high complexity mod-
els may produce behaviours that are due entirely to the large
degree of freedom in the system which requires a much larger
data set to validate.

Boolean models, such as the Saez-Rodriguez model of T-cell
signalling, conceptualise proteins as binary nodes that are either
on or off [83]. The interdependence of responses between nodes,
such as activation and inhibition, are conceptualised as compu-
tational OR, AND or NOT gates (Fig. 8A). This simple and un-
ambiguous method allows the model to focus on the direction
and pattern of information flow in the system through emergent
properties such as attractors and transient points [84]. A short-
coming of this method is that populations of proteins do not al-
ways act in an on/off manner, and different nodes can become
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activated with only partial activation of a previous node. Thus,
some Boolean models, such as the one proposed by Bornholdt,
introduce a continuous signalling strength between nodes while
retaining their binary on/off status. The strength of activation de-
pends on the length of time the node has been on for and flips the
node when a threshold is reached [85]. Alternatively, fuzzy logic
is used to enable intermediate states of activation [86]. Additional
drawbacks of this approach include the inability to infer biochem-
ical mechanisms and that reaction speeds are not considered. A
variety of programs are available for performing this type of anal-
ysis [87–91]. A standard has recently been created for designing
and interpreting boolean models in an Extensible Markup Lan-
guage (XML) format that was designed to improve consistency
and reproducibility in modelling results [92].

Petri net models conceptualise the model as a system of nodes,
which contain resources and reactions to transfer resources be-
tween nodes. This type of model focuses on the way resources
are moved throughout the network using this concept [93, 94].
This simulates the level of activity of each node as well as the sto-
ichiometry of reactants in interactions (Fig. 8B). In this framework,
there are very clear rules for how resource nodes are consumed
(as inputs to reactions) and produced (as outputs to reactions)
[95]. This method, introduced by Reddy into the systems biology
field, builds on Boolean networks by including not just on and
off states, but other discrete intermediate levels of activation, ab-
stracted as the population size in each node [96]. These can be
consumed which adds more mechanistic detail to the model. The
drawback of this is reactions are traditionally untimed, which like
the Boolean model, does not reveal temporal information of the
system. This can be overcome using the more advanced Coloured
Petri Nets (CPN) initially adapted into biochemical modelling by
Lee [97]. CPNs allows the algorithm to model timed interactions,
and it allows individual resource unit to remember predefined
attributes (e.g. phosphorylation state of a site). In algorithm, re-
actions don’t just move resources, they can also modify the at-
tributes.

It is important to note that as timing information and advanced
states are included, the mathematics behind Petri nets begin to
resemble mass action based kinetic models. For more informa-
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tion, the interested reader is referred to the excellent review by
Chaouiya [98].

Kinetic models remove the concept of discrete states, replacing
it with a continuous function designed to represent the concen-
tration of system states as a population. Like the Petri Net frame-
work, species can be consumed in kinetic models but timing in-
formation is encoded explicitly and is the focus of this modelling
technique [102]. Kinetic models are constructed using ordinary
differential equations (ODEs) that expresses the rate of change
of each state as a function of time and the value of other sys-
tem states (Fig. 8C). This enables chemical kinetics to be utilised
in modelling interactions in the system. The chief rate equations
used are based on mass action kinetics from which rate equation
for more complex reactions are derived. Spatial effects can be ap-
proximate by discretisation of spatial components and simulating
transport between compartments as mass action reactions. This
requires that intra-compartment diffusion is much faster than
inter-compartment transport. The limitation of this modelling ap-
proach is that states are assumed to be at high enough concentra-
tions that stochastic effects are negligible, and the system is not
diffusion limited or contains advective transport and thus spatial
aspects are also negligible. When these assumptions do not hold,
these complexities must be accounted by using other modelling
methods.

Stochastic effects can be accounted for by using models which
simulate chemical reactions from the molecular basis (Fig. 8D).
In these stochastic models, interactions are modelled probabilis-
tically using the chemical master equation (CME), originally pro-
posed by Gillespie [100]. The CME is the stochastic form of the
mass action model and explores the probability of each molecule
interacting at any given time. The result is a probability distribu-
tion function of all concentrations of a species at any point in time.
This tends to diverge from the kinetic model when copy number
is less than approximately 100, and so this approach is appro-
priate for low concentration species like transcription factors and
rare events such as gene expression [103, 104]. Because the CME is
a differential equation involving all possible states in the system,
it suffers from the issue of combinatorial explosion and is thus im-
possible to solve in practice. As such, a number of methods have
been developed which can approximate the solution that can be
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Figure 7: Different modelling methods. (A) Boolean modelling [86]. (B)
Petri Net [98]. (C) Kinetic/chemical kinetics [99]. (D) Stochas-
tic/chemical master equation [100]. (E) Spatio-temporal [101].
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obtained numerically. We provide some references for interested
readers to follow on this topic [105–107]. Apart from the computa-
tional cost of this approach, the main limitation is that the spatial
aspect of signalling is neglected.

Spatio-temporal models are the same as kinetic models except
the spatial component is not smoothed out (Fig. 8E). Typically a
spatio-temporal model utilises reaction-diffusion partial differen-
tial equations (PDEs) to model all states in the system, although
there is an increased interest in reaction-advection-diffusion PDEs
[101, 108–110]. This approach is more powerful than the pure
kinetic model and has been used to model phenomena such as
crowding within the cellular environment which limits diffusion
in general, and active transport mechanisms through the micro-
tubule and actin filament networks [111–115]. Spatial models do
have the disadvantage of increasing complexity. Firstly, the in-
clusion of extra spatial dimensions greatly increases the compu-
tational cost. Secondly, the use of PDEs requires more complex
and less robust numerical methods such as finite element analysis
[109, 116, 117]. Thus far this form of rigorous spatial modelling
has only been successfully achieved for the simplest geometry
and simplest cases [110]. Apart from the computational cost of
this approach, the main limitation is that the stochastic effects are
neglected.

Finally, it should be noted that the stochastic approach and the
spatio-temporal approach essentially have complementary strengths
and limitations. As such, a logical method of resolving this is
simply to integrate the two methods. While there is no theoreti-
cal limitation to this, the two approaches are computationally ex-
pensive when applied alone. Thus, merging the two approaches
will significantly increase this cost. It is likely that for this rea-
son, a stochastic-spatio-temporal approach has not yet been im-
plemented.

2.3.3 Kinetic Models and Mass Action

Kinetic models are deterministic models that are motivated by
chemical kinetics. They consider signalling pathways as a collec-
tion of chemical reactions. By modelling the kinetics of each reac-
tion, the kinetics of the signalling event can be accurately repro-
duced, (Fig. 8). Mass action kinetics is the mathematical model



2.3 mathematical modelling of pathways 23

Figure 8: Levels of abstraction of a kinetic model. (A) Reactions occur
when molecules within a confined space meet. (B) This can
be described as a chemical equation. (C) This leads to a rate
equation for the concentration of species involved based on
the raw law of the reaction type.

describing these chemical reactions. It began as an empirically
determined relationship between the concentrations of reactants
and the velocity of the reaction. Mass action based rate laws typi-
cally look like:

d[A]

dt
= −k[A]α[B]β (1)

d[Pi]

dt
= −

d[A]

dt
(2)

where [Bi] and [A] are the concentrations of the reactants, [Pi] is
the concentration of the ith product, k is a rate constant and α
and β are empirically determined constants [118]. This describes
the following reaction:

A+B→
∑
i

Pi (3)

where the association reaction can lead to the formation of multi-
ple decay products.

As these systems were studied in more detail, a physical inter-
pretations of these empirically determined constants were given.
k, was found to be a temperature and pressure sensitive variable
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Figure 9: Illustration of the mechanism of enzyme action. The enzyme
and substrate first associate, and then they go through suc-
cessive steps of catalysis before reaching their final thermo-
dynamic form before dissociating into product and substrate.
Each step in this reaction is in principle reversible.

that describes the reaction rate at unit concentrations of the reac-
tant [118]. The exponents α and β are attributed to the stoichiom-
etry of the reaction (i.e. number of molecules of the species in-
volved with the reaction), and molecular crowding in the medium,
which is an additional multiplicative factor that increases as the
environment becomes more crowded [119].

Elementary reactions are the most fundamental units of kinetic
models. These are defined as single, direct interactions between
species that results in a chemical reaction [118]. Elementary re-
actions only involve two reactants because the probability of tri-
molecular (and greater) interactions occuring is infinitesimal [100,
120]. Chemical reactions that follow higher order mass action ki-
netics are likely to be made up of multiple, fast elementary reac-
tions [118, 121].

From elementary reactions, enzyme kinetic reactions that are
relevant to signalling cascade systems can be constructed [19]. Ba-
sic enzyme kinetics, which ignores crowding effects, is modelled
using the following series of reactions, which is also illustrated in
Fig. 9:

S+E
kaf−−⇀↽−−
kdf

ES
kc1f−−⇀↽−−
kcnr

ES ′
kc2f−−−−⇀↽−−−−
kcn−1
r

...
kcn−1
f−−−−⇀↽−−−−
kc2r

EP ′
kcnf−−⇀↽−−
kc1r

EP
kdr−−⇀↽−−
kar

P+E

(4)

where S, E, ES, EP and P denote the substrate, enzyme, enzyme-
substrate complex, enzyme-product complex and product, respec-
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tively. Primes above the ES and EP complex indicates further con-
formations the complex may take before undergoing catalysis and
dissociation. In general, this can be summarised into an enzyme-
substrate complex and an enzyme-product complex where the
chemical and thermodynamic change caused by the actual cat-
alytic step defines the distinction between the two complexes.
This leads to the general reaction scheme for enzyme action [122,
123].

S+ E
kaf−−⇀↽−−
kdf

ES
kcf−−⇀↽−−
kcr

EP
kdr−−⇀↽−−
kar

P+ E (5)

A number of simplifications have been made to this reaction
scheme in order to reduce the dimensionality and the mathemat-
ical complexity of the model. The first simplifying assumption is
to assume enzymes are irreversible and dissociate quickly upon
completion. By assuming kcr = 0, kar = 0 and very large kdr , this
reduces the model to three kinetic parameters [19, 74, 103, 124–
130].

The next assumption is the use of the quasi-steady state and
the reactant stationary assumptions. The quasi-steady state as-
sumption assumes that the formation of the enzyme-substrate
complex occurs very quickly, such that the catalytic rate becomes
dependent only on the substrate and enzyme concentrations. The
reactant stationary assumption on the other hand assumes the
complex concentration is extremely low, which allows its concen-
tration to be ignored in the model. The resulting kinetic model,
known as the Michaelis-Menten model, was the highlight of the
work of Michaelis, Menten, Briggs and Haldane and has the ben-
efit of further reducing the model dimensionality to two and re-
ducing the number of state variables to three [125, 131, 132].

Unfortunately, the in vivo context violates the reactant station-
ary assumption of the Michaelis-Menten model. This has been
recognised by various researchers who have attempted to explore
other approached by performing alternative transformations of
the basic reaction [133–136]. An alternative model of note is the
total quasi-steady state model, originally proposed by Lim but re-
cently revived by Tzafriri [136, 137]. By deriving the quasi-steady
state assumption using the total substrate concentration, Tzafriri
is able to avoid invoking the reactant stationary assumption, which
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enabled investigation of systems at high enzyme concentrations
while retaining the dimensionality reduction of the Michaelis-
Menten model [138]. However, this model is mathematically com-
plex and requires reanalysis when applied to promiscuous en-
zymes or substrates [139].

2.3.4 Building and Verifying Models of Pathways

The next component of the biochemical circuit that’s needed is the
blueprint. There are general problems with forming the blueprint.
First is the discovery of the blueprint, which as we previously
stated, is necessary because the blueprint is unknown in this con-
text. Second is the verification of the discovered blueprint, which
we want to be confident is correct before it is used to determine
the next direction of discovery. Thus, reconstruction of the sys-
tem’s blueprint requires an iterative approach that is described
in Fig. 10 [102, 140]. The stages of this process begins with a dis-
covery stage, where the biological mechanisms to be tested are
determined and then implemented into a kinetic model. The pro-
cess then moves into the verification stage, where the model is
fitted to experimental data in order to test whether it conforms to
known information. If it does, further predictions are made based
on the behaviour of accepted models. These behaviours are then
carried into the biological domain and tested experimentally in
order to verify the predictions. From there, the process returns to
the discovery stage. If the predictions were not validated, then the
focus will be on the discovery of new mechanisms for explaining
the original data. If the prediction was validated, then the model
is expanded to include new states and mechanism that may not
have been previously included.

The model setup stage has been discussed in the kinetic mod-
elling section. The model analysis stage consists of a number
of substages. The first step in the process is parameter fitting.
This is usually performed by minimising the least squares resid-
ual between the simulated data and the experimental data [52,
141, 142]. This can be done either with local or global optimisa-
tion approaches (the books by William Press for local approaches
and Eric Weise of global approaches is recommended) [143, 144].
In general, global approaches are favoured [145, 146]. However,
many modellers will apply a local optimisation routine seeded
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Figure 10: Illustration of the iterative process between model generation,
validation and expansion. This also shows the link between
the interface between mathemtical insights and biological in-
sight and where they sit in the iterative process.

from the solution of the global results to obtain the best fitted
solution [52, 141, 142].

In theory, for physicochemical parameters (more specifically
rate parameters and equilibrium coefficients) there is only one
biologically true value that truly describes the system. This is be-
cause these parameters are controlled by the thermodynamics of
the reaction which is defined by the physical and chemical proper-
ties of the medium (such as temperature, pH and viscosity), or the
biochemical makeup of the reactants (such as protein sequence,
conformation and post-translational modification state). The for-
mer are properties that are tightly controlled through homeostatic
processes which if altered can caused system wide changes to
physicochemical parameters. The latter are properties that are re-
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actant dependent and thus species with different chemical make-
ups are typically distinguished in the model to allow them to
react with different reaction parameters. However in principle for
a distinct species, the reaction parameter should be well defined.
In spite of this theoretical argument, in practice the true value can-
not be well constrained due to experimental noise or incomplete
data [103]. This variability in the goodness of fit is known as pa-
rameter non-identifiability or parameter sloppiness [147]. Due to
this effect, a single model fitted to one set of data, may not be con-
strained by a unique parameter set. This leads to an ensemble of
predicted behaviours. This effect necessitates the next step, which
is parameter sensitivity analysis. In this analysis, the parameters
are varied in order to determine these ensembles of predicted be-
haviour. A number of strategies exist to address this. The most
common approach is simply to individually (local) or as a group
(global) vary the parameters to find the region around a central
well fitting points to determine its degree of sloppiness. Erguler
favours the Bayesian statistics approach, where a posterior dis-
tribution is empirically reconstructed and then pockets of well
fitting parameters are clustered as well fitting sets [148]. Brann-
mark on the other hand, suggested a more sophisticated strategy
that involves aggregating all well fitting parameters by describ-
ing them based on their common behaviours. This behaviour is
then used as a candidate for verifying the model and is known
as a core prediction [149]. With a core or ensemble of predictions
determined, the next stage in the process is verification of the
prediction by experiment. The model is then adjusted based on
the result of the verification step as we have previously discussed,
which initiates the next iteration of model development.

2.4 models of the insulin signalling path-
way

2.4.1 Models of Insulin Signalling are highly varied

Given that the biology of the insulin signalling pathway is reason-
ably well studied, there has been increasing interest in creating
mathematical models of the insulin signalling pathway. Most of
these have focused on the kinetic modelling approach. Although



Table 1: Summary of the different insulin signalling models found in literature.

Model Model Type Pathway Scope Fitted Data Biological Insight

Wu Asynchronous Insulin and PI3K pathway, parallel Akt, S312, T451 and Y941 IRS1 PP2A does not dephopshorylate

2009 [150] Boolean MAPK and mTORC1/S6K negative feedback and T308 Akt in HepG2 cells Akt in the HepG2 cell line.

TNF, EGF and Insulin as input signals. Phosphorylation of 8 Negative cross talk between

Aldrige Fuzzy Logic The downstream components then combine proteins such as Akt, IRS1, ERK and the Akt pathway.

2009 [86] the signals and with negative feedback and MK2 in HT-29 cells

systems via ERK and Akt

Quon Mass Action Insulin receptor only in the plasma Insulin receptor localis- Mechanism of insulin binding to

1991 [151] membrane and cytosol. ation in BC3H-1 mycotes. and internalisation of IR

Wanant Mass Action Dimerisation of IR and its divalent IR imaging and double probe Order of binding of Insulin

2000 [152] bonding to Insulin. labelling of IR. to the IR.

Sedaghat Extension of the insulin receptor model Concentrations and rate par- Response of the wider insulin

2002 [153] Mass Action by including downstream components such ameters from previous exper- signalling pathway.

as Akt and GLUT4 translocation. iments in 3T3-L1 adipocytes.

Brannmark Mass Action Insulin receptor intenalisation model Insulin receptor location Explains IR internalisation

2010 [149] and Hill Function and phosphorylation in mechanism and new pathway con-

in primary human adipocytes nection to explain overshoot.

Nyman Mass Action Insulin receptor intenalisation model Same as Branmmark 2010 but Explains pathway differences

2012 [154] and Hill Function in murine cells in primary murine adipocytes between human and murine cells.

Kubota Mass Action Feed forward/back by Akt substrates Time course of Akt and var- Network motifs lead to low or

2012 [74] ious substrates in Fao cells high pass filtering of signals

Dalle Pezze Mass Action Regulation of mTORC2 and Akt activation. Temporal and inhibitor treat- A negative feedback independ-

2012 [127] ed responses of Akt and TSC2 of PI3K is hypothesised.

Brannmark Mass Action Brannmark 2010’s IR to Akt and GLUT4 Temporal study of Akt + sub- A number of mechanisms of

2013 [124] and Hill Function pathways to explore insulin resistance. strates in human adipocytes insulin resistance identified
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others have adopted alternative approaches such as discrete or
fuzzy logic boolean networks [86, 150].

In spite of the vast biological network that has been mapped
using biological experiments, mathematical models of insulin sig-
nalling are often significantly simplified. In fact, different models
will incorporate different nodes and connections from the known
network, and consolidate other nodes into a single node in order
to reduce complexity. This is because different models are focused
on different aspects of the network’s behaviour. Thus, modellers
typically only choose to include the components that are relevant
to the area of focus. This enables model simplification, which as
we discussed in section 2.3, is a major requirement for making ki-
netic models tractable. Boolean models do not face this challenge
and thus address more complex network topologies.

In this section we will begin by discussing the various discrete
and logical models of insulin signalling, then move to the various
kinetic models of the system in the literature. As an overview,
these models have been listed and summarised in table 1.

2.4.2 Logical and Discrete Models of Insulin Signalling

The two insulin signalling models of this type are the Wu et. al.
discrete model of liver insulin signalling, and the Aldridge et. al.
fuzzy logic model of TNF/EGF and insulin signalling in carci-
noma cells.

The Wu et. al. discrete model aims to model the behaviour of
HepG2 liver cells with the goal of testing and verifying a novel
negative feedback mechanism mediated by the protein PKR act-
ing on IRS1. In this model, each node can be in one of three states:
0 (off), 1 (intermediate) and 2 (on). When an activator/inhibitor
acts on a target at a level higher than the control, it increases/de-
creases the state of the target node by one respectively. This model
uses asynchronous updates for its nodes to model, which in prin-
ciple assumes phosphorylation events all occur within the same
time scale. Cell to cell variations are modelled by randomising
the initial conditions. Using this modelling setup, the simulation
was repeated 10,000 times to form a simulated population from
each simulated individual cellular responses [150].
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Figure 11: Simplified comparison of input data passed through a pure
and fuzzy logic model.

When all components of the known pathway were included,
the predicted temporal behaviour in an arbitary time scale did
not match experimental data. After analysis of the results it was
concluded that the dephosphorylation of Akt by PP2A cannot be
true as it is the source of the mismatch [150]. There is some exper-
imental evidence in the literature that this is the case in HepG2
cells, unlike in cells like 3T3-L1 adipocytes [155]. Further analysis
of the model led to the conclusion that the ERK negative feedback
did not agree with experimental data and was excluded. How-
ever it should be noted that this was not rigorously corroborated
by existing literature [150].

The second model is the Aldridge model, which aimed to pre-
dict the combined behaviour of the TNF, insulin and EGF path-
way in HT-29 cells. Due to the complex web of crosstalks that char-
acterises this model, a fuzzy logic model was applied. In short,
fuzzy logic models allow logical operators (like AND and OR) to
be applied to inputs and produce outputs with values between
0 and 1. Logical operators are applied using mathematical oper-
ators instead. I.e. OR is implemented either as the maximum, or
the probabilistic OR (a + b - ab) of the two inputs. AND is im-
plemented either as the minimum or the product of the inputs. A
simple example is illustrated in Fig. 11 [86].

For a given input, a pure logical model satisfies only one case
and generates a single exclusive output. For fuzzy logic models,
these inputs can satisfy multiple cases, due to its non-discrete
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Figure 12: Illustration of the way multiple cases are handled in the fuzzy
logic framework. This allows the outcome of multiple satis-
fied cases to be aggregated to form the final output.

nature. This collection of cases is called the Antecedent. Some-
times, a case is modelled as having less of a contribution to the
outcome. These cases can be given a weighting (which are in prac-
tice, optimised to the experimental data) to account for this. From
there, cases in the antecedent are assigned a corresponding out-
put probability density function (PDF). This collection of output
PDFs is called the Consequent. To obtain the final output value,
an output "score" is first obtained for each antecedent based on
the logical gate rule. The distribution of the corresponding Con-
sequent is then multiplied by the score and the weighting for that
antecedent. All weighted Consequents are then summed together
and normalised to the area under the summed consequent curve.
Finally the mean of the normalised summed consequent curve is
calculated which forms the output of the fuzzy logic gate. The ap-
plication of the Antecedent and Consequent is illustrated in Fig.
12 [86].

The Aldridge fuzzy logic model was fitted to experimental
data of cells stimulated under various combinations and doses
of the three inputs [86]. The outcome was compared to temporal
phosphorylation data of nodes within the model. It was found
the fuzzy logic model was significantly better at explaining the
data compared to a discrete logical model (analogous to the Wu
model) [150]. In spite of this, there were still nodes which were
not well explained by the model, such as the IRS1 serine phos-
phorylation response to EGF stimulation.



2.4 models of the insulin signalling pathway 33

2.4.3 Kinetic Models of Insulin Signalling

Kinetic models of the insulin signalling pathway can be roughly
broken down into two types.

• Models focused on the upstream insulin-insulin receptor
components.

• Models more generally focused on the whole pathway, some
of which are more comprehensive than others.

We will go through each of these types in turn and describe the
models that fit within these descriptions.

2.4.3.1 Focused models of Insulin Signalling

As the insulin receptor (IR) is the sensor for insulin sigalling, the
mechanistic details of its activation is crucial for the response
of all downstream components. In fact, the dynamic and kinetic
mechanisms of these two nodes are extremely complex as we de-
scribed in detail in section 2.2.3.1. Work on simulating the dynam-
ics of this system began in the 1990’s with Quon who explored
various models of this system [151]. He looked firstly at an en-
docytosis model of the IR and then at their singly and doubly
insulin bound monomer and dimer forms (shown in Fig. 13 A
and B respectively) [151, 152]. These models were compared to
temporal data and steady state dose response data respectively,
and the parameters of these early models were fitted by inspec-
tion rather than by computation. These two models became the
basis of the Sedaghat model of the insulin signalling pathway,
which is a more general model which we will discuss in more
depth later.

With an improved kinetic modelling strategy and model com-
parison techniques, this system was revisited by the Stralfors and
Cedersund group a decade later [149]. Using novel global optimi-
sation techniques and improved computational capabilities, the
group constructed both Quon models and compared both mod-
els against new phosphorylation data of the IR and Insulin Re-
ceptor Substrate 1 (IRS1) nodes in human adipocytes. Instead of
determining the parameter values by inspection, they were deter-
mined by parameter fitting and the models were evaluated us-
ing a concept called "core predictions". Roughly speaking, this
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involves looking at the range of predicted quantitative behaviour
within all accepted parameter models and then identifying those
behaviours that encompasses all accepted models. This prediction
is a core prediction because if it fails, it has the ability to not just
invalidate the parameter models, but the entire topological model
[149].

In using this approach, a number of models, particularly those
that do not include an endocytosis mechanism (such as ones sim-
ilar to the Wanant model) were excluded. These models failed for
a number of reasons including an inability to replicate temporal
features like overshoot of the phosphorylation kinetics, incorrect
timing of the overshoot peak, unrealistic degradation rate of in-
sulin and dependence of overshoot behaviour on the internalisa-
tion mechanism. This ultimately led to the identification of an
additional mechanism promoting the recycling of endocytosed

Figure 13: Evolution of Insulin Receptor and Insulin Receptor Substrate
models in the literature. Starting with (A) Quon’s endocy-
tosis model [151]. (B) Wanant’s insulin binding model [152].
(C) Brannmark’s feedback endocytosis model. (D) Nyman’s
enhanced feedback endocytosis model.
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Figure 14: Large abstracted models of Insulin Signalling (A) Kubota
model [74], (B) Dalle Pezze model [127] (C) Brannmark T2D
model [124]

receptors while degrading their attached insulin, which is illus-
trated in Fig. 13C [149].

The resulting Brannmark IR-IRS model of receptor endocytosis
was further improved by comparing the behaviour of this system
in other species. When performing the same experiment and anal-
ysis on murine adipocytes, it was found that while the overshoot
behaviour was consistent, the order of the overshoot between IR
and IRS1 was reversed. This indicated that further development
of the model was required, at least in the case of the murine cell
model. The development of this model resulted in the inclusion of
a new mechanism in their model of the insulin signaling pathway.
This new mechanism involves a novel substrates that is actived by
IRS1, which subsequently inhibits the activation of IRS1 by IR. Fig.
13D illustrates the structure of the updated model with the new
mechanism included [52].
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2.4.3.2 General Models of Insulin Signalling

General models of insulin signalling attempt to build a compre-
hensive network of the pathway from the IR to nodes that are
general proxies for phenotypic outputs. There are generally two
subapproaches to this. First is a simplified model that aims to cap-
ture the essence of the pathway. These models do not incorporate
all known mechanisms and greatly abstract the pathway. The sec-
ond approach attempts to capture as much mechanistic detail as
possible, where validated and only for components that are of in-
terest to the study. These models usually build on another model,
such as those described in the previous section, section 2.4.3.1.
In our discussion of these general models, we will explore the
abstracted models first, then discuss the more complex models
later.

Abstracted models generally come in two forms. One form is
simplified models that reduce the dimensionality of the system by
removing intermediate nodes or leaving out mechanisms which
appear to be unimportant. The first of these examples is the Kub-
ota model of insulin signalling (shown in Fig 14A), which had
the primary aim of examining the temporal behaviour of the sig-
nalling pathway, which makes use of one of the key advantages of
kinetic modelling. This only requires the various feedback mech-
anisms of the pathway to be captured, thus intermediates in the
pathway were omitted. This model concluded that some temporal
responses that were experimentally observed from Fao cells could
be explained with certain network motifs. For example, the inabil-
ity of S6K to generate any sustained response was resolved by in-
corporating a Incoherent Feed Forward Loop (IFFL) onto the S6K
node, where the upstream kinase is first activating, but later inac-
tivating. This required a new unknown protein which transmitted
the feedback component of the network motif to be incorporated
into the model. Furthermore, the model shows that varying the
reaction rate of a Feed Forward mechanism can change the sensi-
tivity of the downstream components to acute stimulations [74].

Other simplified models take advantage of the mechanistic na-
ture of kinetic models instead. In the case of the Dalle Pezze
model (shown in Fig 14B), the aim was to evaluate and validate
the mTORC2 to Akt negative feedback mechanism and explored
the impact of alterations to the PIP3-AKT components of the path-
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way. Again, the simulation prediction was fitted to temporal data
from HeLa cells. In this model, because mTORC2 regulation was
the key focus, the model was designed to include the detailed
mechanism of mTOR associated with its various binding partners
which form the mTORC1 and mTORC2 complexes, both of which
are integral parts of the signalling network [127].

The base model was validated using S6K phosphorylation lev-
els under different efficiencies of Raptor knockdown. Upon val-
idation, the fitted model was used to test various hypothesis of
mTORC2 activation (assumed to be tied to phosphorylation of
mTOR on the 2481 site). The PI3K dependent (tested with Wort-
mannin), TSC2 dependent (TSC2 knockdown) and mTORC1 neg-
ative feedback (Raptor knockdown) hypotheses curated from the
literature were tested and rejected as they did not agree with
model predictions. From there, a PI3K-dependent step that was
immune to the mTOR/S6K negative feedback loop (i.e. different
PI3K than the one that generates the PIP3 which Akt binds to)
was proposed. In effect, this implies that the new hypothesis was
Akt independent, which led to a series of validating experiments.
Transfection of constituitively active Akt did not result in any
additional phosphorylation of S2481 phosphorylation [127]. This
conclusion appears to contradict Humphrey et al’s finding that
mTORC2 activity is tied to Sin1 phosphorylation, which is regu-
lated by Akt [14].

Other models are constructed as incremental improvements of
previous models. The commonly known Sedaghat model is one
such example, as it was built on the Quon and Wanant models
[153]. This model is built from three separate models which fo-
cused on: IR binding, IR recycling and GLUT4 recycling [151, 152,
156]. The IR components form the input module while the GLUT4
components the output module. At this point there was no model
of the signalling machinery linking the input to the output. As
such, this model bridged the gap using a linear cascade of IRS1,
PIP3 and Akt, modelled using empirical linear kinetics. Further-
more, the rate parameters used in this case was determined using
dimensional reduction and theoretical arguments rather than by
experimentation [153].

Another model that followed the same concept is the Brann-
mark T2D model of insulin signalling (shown in Fig 14C) [124]. In
this study, the authors sought to determine the potential defects
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Table 2: Comparison of the fitted initial concentration of IR and bind-
ing rate between Insulin and IR in various models of insulin
signalling.

Model [IR]total(nM) k (nM−1s−1)

Wanant 2000 [152] 0.1 1× 10−3

Sedaghat 2002 [153] 9× 10−3 1× 10−3

Brannmark 2010 [149] 10 0.00649
Nyman 2012 [154] 10 0.00649
Kubota 2012 [74] 46.2 0.130

Dalle Pezze 2012[127] 12.1 0.00248
Brannmark 2013[124] 100 0.0106

that are created when an adipocytes changes to the T2D state. The
phenotypic changes associated with the T2D state were IR and
GLUT4 concentrations had previously been shown to decrease to
55% and 30-70% , respectively. Because GLUT4 was determined to
be a marker of the T2D state, it needed to be introduced into the
model. Thus, the original Brannmark model of IR-IRS1 signalling
pathway was expanded into a general model of insulin signalling.
In order to identify the potential defects, the model was fitted to
time course data from human adipocytes from T2D subjects. No
parameter was found that could fit the new dataset and thus the
working model was rejected and a new model mechanism was in-
voked. Using various theoretical arguments, a positive feedback
loop from mTORC1 to IRS1 was incorporated. From there, the
new model was refitted to the data to generate the new working
model [124].

As we can see, there are a wide range of quantitative insulin
signalling models and on face value they appear to be identical.
However, a closer look at the models reveals that there are subtle
differences between the models. The least subtle is of course the
wiring of the networks. The Kubota model and the Brannmark
T2D model both include a feedback mechanism from mTORC1/S6K
back to the IR-IRS1, but it was implemented as negative and pos-
itive feedbacks respectively [74, 124]. More subtly, the parameter
values and initial concentrations of the components used are dif-
ferent. To illustrate this, Table 2 compares the initial concentration



2.4 models of the insulin signalling pathway 39

Figure 15: Akt phosphorylation data that was used to fit the various
models. (A) Dalle Pezze model (adapted from Pezze et al
2012 [127]) (B) Kubota model [74]. (C) Brannmark T2D model
[124]

of the insulin receptor in the various models as well as the bind-
ing rate between it and extracellular insulin.

As this comparison demonstrates, the predicted concentrations
and kinetic rate parameters can vary across 3-4 orders of mag-
nitude between the models. This means they are not consistent
with each other and should in principle generate quantitative dif-
ferences in predictions. Does this mean they are wrong? Before
jumping to the conclusion that they are, we must consider that
these models are fitted to their respective data. As such, when
each model is considered in isolation with their datasets, they
actually fit quite well, and often the model has undergone some
validation in their model system. So if the models are data driven,
why are they inconsistent with each other? The answer is as sim-
ple as the data being inherently different from each other.

By placing the experimentally obtained time course of the same
state (for example in Fig. 15) it can be seen that they have different
features and time scales. The Dalle Pezze dataset does not show
any overshoot in the phosphorylation dynamics of Akt, while the
overshoots seen in the Kubota and Brannmark datasets appear
to occur in different time scales, with the Kubota overshoot oc-
curing much earlier [74, 124]. In fact, if we take a closer look at
the origins of the datasets, although they are performed with the
same experimental conditions, that is stimulation with 100 nM
insulin (except for the Kubota case, where it was 1nM), they were
in fact carried out on different cell types, ranging from human
primary adipocytes to HeLa cells, C2C12 cells and Fao cells [74,
124, 127]. Thus, what this demonstrates is while each model has
performed well in the context of their model systems, it is still
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questionable as to whether models can be translated between dif-
ferent cell models while retaining their accuracy.

2.5 motivation and aims for this thesis

The main aim of this thesis is to develop a mechanistic model
of the insulin signalling pathway for the 3T3-L1 adipocyte. The
purpose of the model will be to:

• Evaluate new connections discovered in the network by mak-
ing experimentally testable implications of the network.

• Make predictions about the behaviour within the network
that can be further constrained by experimentation to im-
prove the fit of the model.

In order to do this, three objectives must first be achieved:

1. To improve the mechanistic accuracy of the modelling ap-
proach and balance it with the number of free parameters
required, enzyme kinetic models need to be re-explored in
order to develop and validate a method that minimises the
number of necessary assumptions.

2. A model creation algorithm needs to be developed that can
utilise the improved kinetic model if it cannot be integrated
with existing tools.

3. A parameter fitting technique that accounts for inherent
non-identifiability in the system by thoroughly exploring
the parameter space in an efficient manner.

With the tools in place, a model will be constructed anew using
the 3T3-L1 adipocyte as the model template. The reason for recon-
structing this model of insulin signalling afresh is existing models
were developed based on data from different cell types. Hence,
these models may incorporate siganlling mechanisms which do
not existing in 3T3-L1 adipocytes and thus lead to unrealistic pre-
dictions.

The initial goal will be to construct with the insulin receptor
because it forms the input of the system. Subsequently, the Akt
pathway will also be explored. This is because there is significant
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uncertainty in the mechanisms involved in the pathway, and little
work has been performed in comprehesively investigating this
pathway using mathematical modelling. Thus, this pathway is
ripe for the application of quantitative modelling approaches.





3D E V E L O P M E N T O F A N E W
E N Z Y M E K I N E T I C M O D E L

Abstract
Enzymatic reactions underpin the regulatory mechanisms in

biochemical networks. In order to accurately model the biochem-
ical behaviour of an entire signalling network, the model must
predict each individual reaction accurately to avoid errors propa-
gating and amplifying throughout the simulated system. In this
chapter, we theoretically analyse common enzyme kinetic mod-
els in order to understand the origins of the assumptions that
underpin them. Then we perform some reanalysis of the single
and two substrate models to remove the low enzyme concentra-
tion (or reactant stationary) assumption in order to broaden the
conditions under which the model remains accurate. We will also
demonstrate that this model can be applied universally without
mathematical reanalysis of the model irrespective of the network
topology of the system under investigation.

Some of this work has been published in:

• Wong MK, Krycer JR, Burchfield JG, James DE, Kuncic Z.
A generalised enzyme kinetic model for predicting the be-
haviour of complex biochemical systems. FEBS Open Bio
2015; 9(5):226-239 doi: 10.1016/j.fob.2015.03.002.
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3.1 summary of notations in this chapter

The following notations are used throughout:

• Species names enclosed in square brackets implies their con-
centration, e.g. [S] is the concentration of S.

• Overhead dots of state variables indicate the total time deriva-
tive. e.g. [Ṡ] = d[S]/dt.

• Species can contain a subscript which are used to describe
the following properties:

– T indicate total (free and bound) concentrations e.g.
[ST ] = [S] + [ES].

– 0 indicates initial concentrations e.g. [S(t = 0)] = [S]0.

– ∞ indicates steady state concentrations e.g. [S(t→∞)] =

[S]∞.

• Rate parameters k contains subscript that defines the reac-
tion direction (f or r for forward or reverse) and a number.
E.g. subscript kf1 indicates rate parameter of the forward
direction of the first enzymatic reaction. When the reaction
only occurs in one direction, the letter is dropped and the
subscript thus only contains one number (e.g. k2 indicates
rate parameter of reaction 2).

• Rate parameters contain superscript a, d, or c which indi-
cates the association, dissociation and catalytic rates of the
enzyme reaction (e.g. kcf1 is a catalytic rate).

• Variables in bold font denote tensors and their numerical
subscripts indicate their indices.

3.2 introduction

Systems modelling of intracellular biochemical processes can pro-
vide quantitative insight into a cell’s response to stimuli and per-
turbations [157]. If the model is mechanistic, it has the power to in-
fer molecular mechanisms and predict biological responses [158].
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This requires the simulation of biochemical reaction kinetics typi-
cally described using ordinary differential equations (ODEs). Mod-
elling enzymatic cascade networks, however, requires the simula-
tion of multiple reactions. This inevitably increases the complex-
ity of the ODE model, which increases the number of free ki-
netic parameters. It then becomes more difficult to constrain all
parameters simultaneously using the limited experimental data
available [147]. This can result in the derivation of multiple well
fitting models with limited predictive power because of their non-
uniqueness. Thus, an optimum parameter dimensionality should
be selected to reduce non-uniqueness without reducing the topo-
logical complexity required to capture key kinetic features in the
system [102].

Of the biochemical processes that need to be modelled, many
are enzyme reactions [19]. Enzyme reactions involve the chemical
modification of a reactant (the substrate) that is aided by another
reactant (the enzyme) by reducing the activation energy. In these
reactions the enzyme maintains its chemical state throughout the
reaction. Enzymatic cascades are based on enzyme kinetics where
the product of one reaction forms the enzyme of the next. Within
which additional interactions such as inhibition and allosteric ef-
fects can be included using mass action kinetics [159]. Basic en-
zyme kinetics is modelled using the following series of reactions:

S+ E
kaf−−⇀↽−−
kdf

ES
kcf−−⇀↽−−
kcr

EP
kdr−−⇀↽−−
kar

P+ E (6)

where S, E, ES, EP and P denote the substrate, enzyme, enzyme-
substrate complex, enzyme-product complex and product, respec-
tively. The full mass action description of this reaction requires six
kinetic parameters: kaf , kdf and kcf are the forward association, dis-
sociation and catalytic rate parameters, respectively, and kar , kdr
and kcr are the corresponding reaction rate parameters in the re-
verse direction.

Many models of biochemical systems use the simplified irre-
versible form of the reaction, which only requires three kinetic
parameters [19, 74, 103, 124–130]. While this is an approxima-
tion of real enzyme action, in vitro spectroscopic studies of sin-
gle molecule enzyme kinetics have shown that this approxima-
tion is sufficient in experiments where there is no product in-
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hibition [123, 160]. Further simplifications have led to other en-
zyme kinetic models such as the Michaelis-Menten model and
the Tzafriri Total Quasi-Steady State Assumption (tQSSA) model
[103, 125, 133–136]. Whilst the Michaelis-Menten model is more
widely used, it is strictly accurate at low enzyme concentrations.
Since this may not be true under in vivo conditions, unrealis-
tic conclusions may be drawn from models using the Michaelis-
Menten equation [136, 139, 161, 162]. The tQSSA is not subject to
the same limitation, but it has a more complex mathematical form
that requires reanalysis for each distinct network to which it is
applied [139]. Currently, systems modellers must choose between
complex enzyme models with high parameter dimensionality, or
simpler models at the cost of accuracy.

A further compounding factor is that in vitro investigations of
enzyme action are generally performed in closed thermodynamic
systems which achieve thermodynamic equilibrium, as reflected
in the model described by Eqn. 6. Cellular systems, however, are
not thermodynamically closed, and so achieve only homeostatic
equilibrium. This is achieved by constant energy inflow through
coenzymes such as ATP. This allows the network to form cyclic
reactions made of counteracting enzymatic reaction pairs which
maintain and regulate this equilibrium. Examples of cyclic reac-
tions are the cyclic interconversion of nicotinamide adenine din-
ucleotide (NAD+) and nicotinamide adenine dinucleotide phos-
phate (NADP+), mediated by NAD kinase and NADP+ phos-
phatase in metabolism, and the cyclic interconversion of phos-
phatidylinositol (4,5) - bisphosphate to (3,4,5) - triphosphate, me-
diated by PI3K kinase and PTEN phosphatase in insulin and can-
cer signalling [32, 58, 163]. Thus, models of cellular systems need
to account for the continual energy consumption in these cyclic
reactions. Conventionally, the global coenzyme concentration is
not the focus of study, hence systems models implicitly account
for the effects of coenzyme concentration [CoE] by asserting that
k̄c = kc[CoE] and then directly varying the catalytic rate k̄c to
vary energy input rate. This allows the thermodynamically closed
enzyme kinetic model to be used in a thermodynamically open
context [102].

To address these issues, we have developed a generalised en-
zyme kinetic model that retains its mathematical form for systems
with multiple enzymes, whilst minimising the number of sim-
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Figure 16: Different models of single substrate enzyme kinetics. (A) An
illustration of the cyclic enzyme kinetic reaction that will be
the focus of this chapter. An enzyme reaction converts sub-
strate to product which is reversed by a spontaneous reaction.
(B) Chemical equation of the fully reversible reaction mech-
anism. (C) Chemical equation of the coupled irreversible re-
action mechanism. (D) Chemical equation of the irreversible
reaction mechanism.

plifying assumptions and parameters needed to characterise the
system. This enables more accurate simulation of the biochemical
mechanisms involved. In this chapter, we perform the theoretical
analysis for developing this improved model. Later in chapter 4,
the model is numerically tested for accuracy both as an isolated
reaction and within a more complex network.

3.3 simplifying enzyme kinetics

Since enzymes form the basis of many biochemical processes, en-
zyme kinetic models similarly form the basis of mathematical
representations of biochemical networks. The difficulty in imple-
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menting enzyme kinetic models lies in its variety in the literature.
In this section, we demonstrate and compare the limits of vari-
ous simplifications of enzyme kinetic models, beginning with the
more complex mass action based reversible enzyme kinetic model
in a reaction cycle. The reaction cycle will involve an enzymatic re-
action that favours substrate to product formation, coupled with
an irreversible decay reaction of the product back to substrate as
illustrated in Fig. 16A. Note that in enzyme kinetic models, it is
generally assumed that the stoichiometric constants are unity as
it is expected that one molecular of enzyme will react with one
molecular of substrate.

While the overall goal of this work is to achieve an optimally
accurate dynamic model, we will instead focus on the steady state
product enzyme catalysis speed v∞ to simplify the comparison.
Where:

v∞ = kcf1 [ES] − k
c
r1
[EP] (7)

This is because the homeostatic enzymatic reaction speed is eas-
ier to compare analytically than the full temporal behaviour, yet
an incorrect homeostatic equilibrium state implies the kinetic be-
haviour of the model is incorrect. Also, most enzyme kinetic mod-
els have the form [159]:

v∞ = [ET ]
kcf1 [S]/K1 − k

c
r1
[P]/K2

1+ [S]/K3 + [P]/K4
(8)

Expressing each model in this form allows us to compare the
form of the coefficients K1, K2, K3 and K4 which allows us to un-
derstand the simplifying assumptions between successive models
and thus the scenarios where the various models are valid.

3.3.1 Reversible enzyme kinetic model in a cyclic reaction sys-
tem

For the reversible cyclic reaction, described by the chemical equa-
tion shown in Fig. 16B, the mass action model can be expressed
minimally as [159, 164]:
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˙[ES] = kaf1 [S][E] + k
c
r1
[EP] − (kdf1 + k

c
f1
)[ES] (9)

˙[EP] = kar1 [P][E] + k
c
f1
[ES] − (kdr1 + k

c
r1
)[EP] (10)

˙[P] = −kar1 [P][E] + k
d
r1
[EP] − k2[P] (11)

[ST ]0 = [S] + [P] + [ES] + [EP] (12)
[ET ]0 = [E] + [ES] + [EP] (13)

Setting all derivatives to zero, solving Eqn. 9 and 10 simulta-
neously, and then substituting the result into Eqn. 7, leads to the
following expression for the catalysis speed at complete steady
state:

v∞ = kcf1 [ES] − k
c
r1
[EP]

= [ET ]∞ kcf [S]∞/Af1r1 − kcr[P]∞/Ar1f1
1+ [S]∞/Mf1r1 + [P]∞/Mr1f1

(14)

where

Aij = K
m
i

1−αiαj
1−αj

Mij = K
m
i

1−αiαj

1+αj
kci
kcj

αi =
kci

kci + k
d
i

Kmi =
kci + k

d
i

kai

(15)

The subscript i in A, α and Km determines whether the forward
and reverse reactions are referred to when i is f or r respectively.
Note that this model creates six unique coefficients within the
enzyme kinetic model (kcf1 , kcr1 , Af1r1 , Ar1f1 , Mf1r1 and, Mr1f1);
therefore all six kinetic parameters of the enzymatic reaction are
needed to fully define the coefficients and the reversible enzyme
kinetic model model. Thus for the reversible enzyme kinetic model,
a quasi-steady state approximation does not simplify that model
when compared to the full mass action model of the full set of
reactions.
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3.3.2 Uncoupled Reversible enzyme kinetic models in cyclic re-
actions

The coupled irreversible cyclic reaction described by the chemical
equation shown in Fig. 16C, is similar to the full reversible system
with a subtle difference. The catalysis step of both the forward
and reverse reactions immediately dissociate into their respective
product species and free enzyme. The purpose of making this
subtle change is to make the reversible reaction appear like two
coupled irreversible enzyme reactions, which can be expressed
minimally as:

˙[ES] = kaf1 [S][E] − (kdf1 + k
c
f1
)[ES] (16)

˙[EP] = kar1 [P][E] − (kdr1 + k
c
r1
)[EP] (17)

˙[P] = −kar1 [P][E] + k
c
f1
[ES] + kdr1 [EP] − k2[P] (18)

[ST ]0 = [S] + [P] + [ES] + [EP] (19)
[ET ]0 = [E] + [ES] + [EP] (20)

Again, setting all derivatives to zero and substituting Eqn. 16 and
17 into Eqn. 7, leads to the following expression for the catalysis
rate at steady state:

v∞ =
kcf1

[ET ]∞[S]∞
Kmf1

− kcr1
[ET ]∞[P]∞
Kmr1

1+
[S]∞
Kmf1

+
[P]∞
Kmr1

(21)

This (Eqn. 21) is similar to the analogous expression for the fully
reversible system (Eqn. 14) under the conditions kd � kc which
causes αf, αr ≈ 0. This then leads to Mf1r1 ≈ Af1r1 ≈ Kmf and
Mr1f1 ≈ Ar1f1 ≈ Kmr which is required for Eqn. 14 to become iden-
tical to Eqn. 21. This implies that under the "rapid equilibrium"
condition (where free enzymes and substrates rapidly equilibrate
with their complexed forms) the reversible enzyme kinetic system
can be modelled as two opposing irreversible enzyme kinetic sys-
tems without losing mechanistic detail. This assumption is iden-
tical to the original assumption made by Michaelis and Menten
where kd � kc and thus Km ≈ Ki where Ki is the dissociation con-
stant between enzyme, substrate and the enzyme-substrate com-
plex [131].
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3.3.3 Irreversible enzyme kinetic models in cyclic reactions

For the reaction to be modelled as completely irreversible, which
can be described by the chemical equation shown in Fig. 16D,
we simply set kcr1 = 0. Dropping the f and r subscripts from
parameters associated with reaction 1 (since all reverse terms are
now dropped, removing any ambiguity that script 1 parameters
refer to the forward direction of the reaction) this leads to the
following result for the catalysis speed at complete steady state:

v∞ =
kc1[ET ]∞[S]∞
Km1 + [S]∞ (22)

This model is now less realistic as enzymes do not behave irre-
versibly under physiological conditions. This is because enzyme
simply speed up reactions and cannot change the equilibrium
state as this is controlled by the free energy of the reaction [18].
However, by definition an irreversible enzyme would necessary
push the system towards complete consumption of substrate, re-
gardless of the actual equilibrium point. Thus this approxima-
tion is only suitable when the equilibrium point of the reaction
is known to be complete consumption of the product. A signifi-
cant consequence is that this model no longer includes product
inhibition since no enzyme-product complex exists. This is an im-
portant result that will be revisted in a later section.

3.3.4 The Michaelis-Menten Model in cyclic reactions

Whilst the Michaelis-Menten (and Briggs-Haldane) model is a
subset of the irreversible enzyme kinetic model, it is worthy of
a standalone analysis as it is widely used in models of biochemi-
cal systems. Since the topology of reaction networks can itself be
complicated, this model is often used to simplify the mathematics
of the network model [19, 103, 124, 126, 129, 130]. However, the
the Michaelis-Menten model may not be applicable under physio-
logical conditions, such as for protein phosphorylation networks
as various underlying assumptions of the model may be violated.

The Michaelis-Menten model adopts the quasi-steady state as-
sumption, where the enzyme-substrate complex [ES] rapidly equi-
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librates over small time scales ( ˙[ES] = 0 in Eqn. 16). This leads to
the following expression for the enzyme-substrate complex:

[ES] =
[S][E]

Km1
(23)

The state variable used is total enzyme concentration rather than
free enzyme using the following substitution [125]:

[ET ] = [E] + [ES] (24)

Combining Eqns. 7, 23 and 24 (noting that [EP] = 0 in this case)
leads to the following expression for the enzyme reaction rate v:

v = kc1
[ET ][S]

Km1 + [S]
(25)

This is very similar to the completely irreversible steady state
enzyme turnover rate (Eqn. 22). So in principle the Michaelis-
Menten model is consistent with the mass action based irreversible
enzyme kinetics model. In practice, this is not the case because it
is commonly assumed that:

[S] ≈ [ST ] (26)

This implies that the ES complex must have a negligible concen-
tration:

[ES] ≈ 0 (27)

This is known as the reactant stationary assumption and is the
origin of the low enzyme assumption implicit in the Michaelis-
Menten model [103, 132, 161, 165, 166]. The condition required
for this assumption to hold true is given by [132, 136]:

[ET ]� Km1 + [ST ]0 (28)

This does not strictly require that [ET ]� [ST ]0 but in the situation
where [ET ] > [ST ]0, a low enzyme-substrate affinity associated
with a large Km1 is instead required for condition Eqn. 28 to hold
[132, 166, 167].

The tQSSA proposed by Tzafriri avoids this limitation by not
applying the assumption expressed in Eqn. 26 implicitly account-
ing for the enzyme-complex concentration by re-expressing the
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series of equations in terms of the total substrate concentration
[ST ] [136, 167, 168]. The resulting steady state concentration is:

[P]∞ =
kc1
2k2

(
B−

√
B2 − 4[ET ][ST ]

)
(29)

B = Km1 + [ET ] + [ST ] (30)

There is some controversy surrounding the tQSSA model as it
is argued by Lim that it is merely a restatement of the Michaelis
Menten model but with different state variables [137]. While it
is true that the tQSSA is derived simply by making a change in
state variable, it has a profound impact on the accuracy of the
rate equation. This is due to a difference in their treatment of the
reactant stationary assumption. The practical difference between
the two models can be seen by the differences in the predicted
concentrations as a function of time [136].

In spite of the increased accuracy of the tQSSA compared to
the full mass action model of enzyme action, there is an addi-
tional yet common biological scenario in which it too can become
inaccurate. In a system where an enzyme has multiple targets (e.g.
Akt), the conservation law Eqn. 24 is no longer valid as there are
additional enzyme-substrate complexes that contribute to the to-
tal pool of enzymes [169]. This causes the Michaelis-Menten and
tQSSA models to break down as they both rely on this conserva-
tion law in their derivation. Hence, the rate equations for these
quasi-steady state models would need to be rederived for each
distinct biochemical network. As shown in other studies involv-
ing analysis using the tQSSA, this can become impractical as the
networks become complex enough that the ensuing simultaneous
equations become analytically intractable [139].

3.4 development of the differential quasi-
steady state model

We have established that reversible enzyme kinetics can be ap-
proximated as two opposing irreversible enzyme reactions under
rapid equilibrium conditions. We also showed that the Michaelis-
Menten model is an approximation of the mass action irreversible
enzyme reaction under quasi-steady state and reactant stationary
assumptions. However, this model is often not appropriate in an
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in vivo setting because the reactant stationary assumption is often
violated in a physiological setting. As such to develop a physio-
logically relevant quasi-steady state enzyme kinetic model, it is
necessary to overcome the reactant stationary assumption.

As we have outlined in the previous section, the Michaelis-
Menten reactant stationary assumption assumes that the complex
concentration is negligible, and thus does not include it as a state
variable. The tQSSA model does overcome the reactant stationary
model, but still does not explicitly model the complex concen-
tration because it uses the total substrate concentration instead
of the free substrate concentration as the state variable. Both of
these methods of implicit modelling of the complex concentra-
tion leads to limitations when applied to more complex biologi-
cal systems. Thus, if the quasi-steady state complex concentration
can be explicitly modelled, this would overcome the reactant sta-
tionary assumption of the Michaelis Menten model, and remove
the need for rederivation in different networks as is the case for
the tQSSA model. Thus the rapid equilibrium assumption would
be the only remaining assumption in the model, thereby increas-
ing its accuracy. We will show in this section that this can be
achieved through a more in depth analysis of the quasi-steady
state assumption.

In addition to this, we will show that our new model satisfies
the following two challenges that need to be overcome for an en-
zyme kinetic model to be useful for general classes of biochemical
networks:

1. Retain the accuracy and parameter reduction on par with
the tQSSA irreversible enzyme kinetic model

2. General applicability so the model doesn’t have to be reeval-
uated for novel networks.

To simplify the mathematics of this system, only the irreversible
half reaction of the enzymatic reaction will be discussed in this
section. However the reader should note that the derivation is
designed to be general. That is, the reaction does not act in an
isolate system and should be considered part of a wider network.
More explicitly, this means that [ET ] is not constant because this
enzyme may participate in another reaction and the definition
[ET ] only includes the free substrate and the complex of the en-
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zyme reaction in question. This will have other consequences that
will be discussed when relevant.

3.4.1 The Quasi-Steady State

The conventional derivation of quasi-steady state enzyme kinetics
is achieved by setting the rate of change of the complex concen-
tration to zero and solving for the complex concentration. For the
irreversible half reaction without any spontaneous decay from
product back to substrate (i.e. k2 = 0 from the irreversible anal-
ysis in section 3.3.3, dropping the subscripts from the enzymatic
reaction as all kinetic parameters now refer to the enzymatic re-
action), this is:

˙[ES] = ka[E][S] − (kc + kd)[ES] = 0 (31)

[ES] =
[E][S]

Km
(32)

Where ka, kd and kc are as defined at the beginning of this chap-
ter. Note that [ES] is assumed to only interact with this enzyme
reaction in this analysis.

Setting ˙[ES] to zero then implies the complex concentration
is constant at all times. This has been shown to be false inde-
pendently by Chen and Tzafriri: the complex concentration does
change whilst the system is in quasi-steady state [103, 136]. This
is shown in Fig. 17, where the complex concentration predicted
by the mass action model, using the full enzyme kinetic system,
is overlayed with the same prediction by the tQSSA model (this
system does not contain other external reactions). The two mod-
els are in disagreement during the transient phase, where the
complex concentration of the tQSSA model is constant while the
mass action model shows an increasing complex concentration
over time. Once the mass action model concentration reaches its
peak, the two models begin to align as the model reaches the
quasi-steady state. However, after this point of convergence, the
two models then exhibits a reduction in the complex concentra-
tion. This demonstrates two things. Firstly, the tQSSA and mass
action models are in agreement after the initial transient phase.
Secondly, the complex concentration can change after during the
quasi-static phase. This is seemingly contradictory with the quasi-
steady state assumption expressed in Eqn. 31.
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Figure 17: Line graphs showing the complex concentrations simulated
by the mass action model (solid lines) and tQSSA model
(dashed lines) at five different values of the association con-
stant ka. The parameters kd and kc and concentrations [S]0
and [E]0 are set to unity for illustrative purposes. The tQSSA
models do not agree with the mass action model at the be-
ginning of the simulation, but quickly align. The complex
concentration of both models later decrease together, which
demonstrates that both the mass action model and tQSSA
predict a change in the complex concentration, which would
appear to be a violation of Eqn. 31

To resolve this contradiction, the definition of the quasi-steady
state must be carefully considered. To start, any quasi-steady state
analysis assumes that the system can be divided into two time
scales, a high speed transient time scale, and a slower quasi-static
time scale. It is useful to recall that this is the conditions kc � kd,
which is required for the full mass action enzyme kinetic model to
be approximated as two irreversible enzyme kinetic half reactions.
This condition implies that any reactions that operate in the tran-
sient time scale (specifically the complex formation steps) occurs
fast enough that it can always reequilibrates before any reaction
in the slow quasi-static time scale (more specifically the catalytic
step) has proceeded to any appreciable degree. This distinction is
important as it leads to a number of differences in setting up the
derivation of the quasi-steady state assumption.
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To begin let us examine the equations governing the system at
the transient state. The minimal description of the system in this
regime is:

˙[ES] = ka([ET ] − [ES])([ST ] − [ES]) − (kd + kc)[ES] (33)
[ET ]0 +∆ = [ET ] = [ES] + [E] (34)
[ST ]0 +∆ = [ST ] + [P] = [ES] + [S] + [P] (35)

Where ∆ are other sources/sinks for the substrate and enzyme
external to the enzymatic reaction (such as other complexes) that
is not important to this analysis. In the quasi-steady state approx-
imation of an enzyme kinetic reaction, the complex formation re-
actions are assumed to operate in the transient time scale while
the catalytic conversion of substrate to product operates in the
quasi-static time scale. If we consider the total concentration of
substrate and enzyme (as opposed to distinguishing between free
and complex bound forms), then [ET ] and [ST ] are approximately
constant in the transient regime, and [P] = 0. With this setup,
the dynamic system can be described only with one differential
equation as the other conservation laws are trivial.

Traditionally, the complex concentration under the quasi-steady
state approximation can be found by setting ˙[ES] = 0. This was
found by Tzafriri to be [136]:

[ES] =
[ET ] + [ST ] +K

m −
√
([ET ] + [ST ] +Km)2 − 4[ET ][ST ]

2
(36)

Now let us consider what ˙[ES] = 0 actually means. ˙[ES] is a func-
tion of three dependent variables, [ES], [ET ] and [ST ], all of which
themselves are individually functions of time. Thus:

˙[ES] = ḟ(t, [ES], [ET ], [ST ])

= ka([ET ] − [ES])([ST ] − [ES]) − (kd + kc)[ES] (37)

The integral of this expression should yield:

[ES] = f(t, [ET ], [ST ]) (38)

The derivative of this generic functional form using the chain rule
yields:

˙[ES] =
∂[ES]

∂t
+
∂[ES]

∂[ET ]
˙[ET ] +

∂[ES]

∂[ST ]
˙[ST ] (39)



58 development of a new enzyme kinetic model

Now let us consider only the transient phase. We have previously
asserted that in this regime, [ET ] and [ST ] are constant since they
only operate in the quasi-static time scale. Thus, ˙[ET ] = 0 and

˙[ST ] = 0. So in the transient regime, ˙[ES] is just the partial deriva-
tive of [ES] with time. Therefore in the transient regime, the fol-
lowing expressions are equivalent:

d[ES]

dt
=
∂[ES]

∂t
= 0 (40)

Thus solving this will reproduce the Tzafriri result [136]. How-
ever, with our reanalysis of the quasi-steady state assumption,
the partial derivative and the full derivative are not equivalent.
This is because the full derivative contains the ˙[ET ] and ˙[ST ] terms
which are no longer zero. Now this is implicit in Tzafriri’s result,
because his expression for [ES] is a function of [ST ], and [ST ] is a
function of time.

It is useful to obtain an explicit solution for ˙[ES] because it
allows us to explicitly model the kinetics of the complex state,
rather than needing to infer it from [ET ] and [ST ]. Furthermore,
it is more useful to use the free substrate and enzyme concentra-
tions as the state variables as this simplifies the kinetic equation
when multiple substrates are involved. Thus Tzafriri’s analysis
can be extended along these lines. The relevant transformations
are:

[E] = [ET ] − [ES] (41)
[S] = [ST ] − [ES] (42)

Using this, the state variable of [ES] can be changed to:

[ES] =
[ET ] + [ST ] +K

m −
√
([ET ] + [ST ] +Km)2 − 4[ET ][ST ]

2
(43)

=
[E][S]

Km
(44)

˙[ES] can then be found for the new variables by again using the
chain rule, which gives:

˙[ES] =
∂[ES]

∂t
+
∂[ES]

∂[E]
˙[E] +

∂[ES]

∂[S]
˙[S] (45)
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From the quasi-steady state assumption, we assert that the first
term on the right hand side is zero. This produces:

˙[ES] =
∂[ES]

∂[E]
˙[E] +

∂[ES]

∂[S]
˙[S] (46)

The partial derivatives can be determined from Eqn. 44. Which
gives:

∂[ES]

∂E
=

[S]

Km
(47)

∂[ES]

∂S
=

[E]

Km
(48)

Substituting this into the total time derivative for the complex
Eqn. 46, and noting that the partial time derivative of [ES] is now
zero, leads to:

˙[ES] =
[S]

Km
˙[E] +

[E]

Km
˙[S] (49)

With an explicit expression for ˙[ES], it is now possible to write a
new set of equations that describe the quasi-steady state reaction:

˙[ES] =
[S]

Km
˙[E] +

[E]

Km
˙[S] (50)

˙[P] = kc[ES] =
kc[S][E]

Km
(51)

˙[S] =
d ([ST ]0 − [ES] − [P])

dt
= − ˙[ES] −

kc[S][E]

Km

= −
[S]

Km
˙[E] −

[E]

Km
˙[S] −

kc[S][E]

Km
(52)

˙[E] =
d ([ET ]0 − [ES])

dt
= − ˙[ES]

= −
[S]

Km
˙[E] −

[E]

Km
˙[S] (53)

By accounting for the change in the complex concentration dur-
ing the quasi-steady state, we no longer require the reactant sta-
tionary assumption and satisfy the first challenge. Additionally
we have collapsed the model from three parameters (ka, kd and
kc) to two parameters (Km and kc) However, the new dynamic
equation cannot be solve directly as there are mixed time deriva-
tives.
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3.4.2 Decoupling rate equation by vectorisation

Although our new system of equations (Eqns. 50-53) appear to be
able to resolve some of the challenges surrounding quasi-steady
state expression of enzyme kinetic system. However, the expres-
sions as it is currently presented is in implicit form and thus
cannot easily be solved simply. More specficially solved directly
using explicit techniques, which limits the numerical tools that
can be used. In order to achieve an explicit form, we need to re-
express the system of differential equations as a matrix equation
with the state variables represented with the vector x with the
indices:

1. Substrate

2. Enzyme

3. Product

4. ES Complex

This enables the differential equation to be rearranged into an
explicit form. The first step in achieving this is by isolating all
derivatives from Eqns 50 - 53 to the left hand side. This leads to:(

1+
x2
Km

)
ẋ1 +

x1
Km
ẋ2 = −kcx4 (54)

x2
Km
ẋ1 +

(
1+

x1
Km

)
ẋ2 = 0 (55)

ẋ3 = k
cx4 (56)

−
x2
Km
ẋ1 −

x1
Km
ẋ2 + ẋ4 = 0 (57)

This can be written as the following matrix equation:
1+ x2

Km1

x1
Km1

0 0

x2
Km1

1+ x1
Km1

0 0

0 0 1 0

0 − x1
Km1

0 1



ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 0 −kc1
0 0 0 0

0 0 0 kc1
0 0 0 0



x1

x2

x3

x4

 (58)

which can then be written in tensor form as:(
δjk +Gijkxk

)
ẋj = Y ilxl (59)
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where δ is the Kronecker delta, and the tensors:

Gijk =


1
Km , if [i, j,k] = [1, 1, 2], [1, 2, 1], [2, 1, 2], [2, 2, 1]

− 1
Km , if [i, j,k] = [4, 1, 2], [4, 2, 1]

0, else
(60)

Zil =


−kc, if [j, l] = [1, 4]

kc, if [j, l] = [3, 4]

0, else

(61)

The derivative terms can then be isolated from the non-deriva-
tive terms, leading to:

ẋj =
(
δjk +Gijkxk

)−1
Zilxl (62)

This now leaves the equation as an explicit differential equa-
tion, with a matrix inversion term that can be determined using a
variety of methods for solving a linear system of equations such
as gaussian elimination. Additionally, the final form of this equa-
tion is also applicable to more complex networks of enzymatic
reactions. Let us consider a system where two enzymes (E1 and
E2) both act catalytically on one substrate with reaction equation
shown below:

S+ E1
kaf1−−⇀↽−−
kdf1

E1S
kcf1−−→ P1 + E1 (63)

S+ E2
kaf2−−⇀↽−−
kdf2

E2S
kcf2−−→ P2 + E2 (64)

The system (without any reverse cyclic reactions) can be described
as:

[ST ]0 = [S] + [E1S] + [E2S] + [P1] + [P2] (65)
[E1T ]0 = [E1] + [E1S] (66)

˙[P1] = kc1[E1S] (67)
˙[E1S] = k

a
1 [S][E1] − (kd1 + k

c
1)[E1S] (68)

[E2T ]0 = [E2] + [E2S] (69)
˙[P2] = kc2[E2S] (70)

˙[E2S] = k
a
2 [S][E2] − (kd2 + k

c
2)[E2S] (71)



62 development of a new enzyme kinetic model

Reaction rates are as defined at the beginning of this chapter. Us-
ing the indices x1 = [S], x2 = [E1], x3 = [P1], x4 = [E1S], x5 = [E2],
x6 = [P2] and x7 = [E2S], and using the steps outlined in section
3.4 (shown in Appendix B.1), we generate the vectorised quasi-
steady state equation with tensors:

Gijk =



1
Km1

, if [i, j,k] = [1, 1, 2], [1, 2, 1], [2, 1, 2], [2, 2, 1]

− 1
Km1

, if [i, j,k] = [4, 1, 2], [4, 2, 1]

1
Km2

, if [i, j,k] = [1, 1, 5], [1, 5, 1], [5, 1, 5], [5, 5, 1]

− 1
Km2

, if [i, j,k] = [7, 1, 5], [7, 5, 1]

0, else
(72)

Zjl =



−kc1, if [i, l] = [1, 4]

kc1, if [i, l] = [3, 4]

−kc2, if [i, l] = [1, 7]

kc2, if [i, l] = [6, 7]

0, else

(73)

It can be seen that the elements of the tensor in which Km1 and
kc1 are inserted into are exactly the same as in the single enzyme
case and do not conflict with the elements where the terms Km2
and kc2 are inserted into. We can surmise from this that the ten-
sors G and Z for different reactions can be combined into their
corresponding global version by summation. I.e.

G
(Global)
ijk =

n∑
r

G
(r)
ijk (74)

Z
(Global)
il =

n∑
r

Z
(r)
il (75)

Where n is the number of reactions within a network and r is the
index of the reaction. Furthermore, the dynamic equation can be
generalised to include other fundamental reactions and external
inputs as arbitrary functions of time. These would appear as an
additional sum on the right hand side of Eqn. 62. To show this,
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consider Eqn. 65. If [ST ]0 is constant, but the total pool of substrate
and its products contains external sources and sinks (as in Eqns
34 and 35), then the expression becomes:

[ST ]0 +

∫ t
0

∑
m

xm
∑
n

kmnxn +
∑
n

kpxp + ks + fs(t, x)dt

= [S] + [E1S] + [E2S] + [P1] + [P2] (76)

Where klm are second order rate parameters, kn are first order, ks
is a zeroth order term and f(t, x) other arbitrary reaction veloci-
ties. If we follow through with the analysis we would find that:

˙[S] + ˙[E1S] + ˙[E2S] =(
∑
m

xm
∑
n

kmnxn +
∑
p

kpxn+

ks + fs(t, x)) − ˙[P1] − ˙[P2] (77)

And similarly for the other state variables. What this shows is
other elementary reactions when applied to the dQSSA simply ap-
pear as additional additive terms alongside Zilxl.Thus, the fully
generalised equation, which includes these reactions becomes:

ẋj =
(
δjk +Gijkxk

)−1
[Y ilmxlxm +Zilxl +

σi(t) + fi(t,~x)] (78)

where Y is a three dimensional tensor containing bimolecular rate
constants, Z is a two dimensional tensor containing unimolecu-
lar rate constants (which contains the catalytic constant for en-
zyme reactions), σ is a one dimensional tensor containing synthe-
sis type rate parameters and fi is a vector of arbitrary functions of
external inputs or other kinetic models. We refer to Eqn. 78 as the
dQSSA. By expressing the kinetic equation in this way, the model
topology is now captured by the location and value of non-zero
tensor elements.

3.4.3 Calculation of the Initial Condition

The dQSSA model in its current state simulates the beginning of
the quasi-steady state to the full steady state. However, we have
previously seen that the initial complex concentration during this
state is not zero. Thus, we need to evaluate this before the simu-
lation can begin. While there are many ways to achieve this, the
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simplest way is to simulate the transient phase. Note that this
transient phase is not mechanistically correct, but rather it is de-
signed to obtain the initial condition for the quasi-steady state.

Noting that the rate parameters in the tensors Y , Z, σ and f

are the non-quasi-static or "slow" reactions, these do not proceed
during the transient phase. Thus, all of these components are set
to zero during the transient phase. Next except with the reactants
and enzymes injected into the system and allowed to equilibrate.
This is done by providing a velocity profile for these states via
the fi(t,~x) vector whose area under curve is equal to the initial
concentrations prior to the transient phase. This is the only term
within the square bracket that will be non-zero. Solving this dif-
ferential equation will allow the correct initial quasi-steady state
condition to be established for simulation because the differential
equation should rapidly equilibrate the inject species into their
quasi-steady state configuration. This approach will be verified
in the next chapter.

3.5 ordered-sequential bi-bi reactions

While most enzyme kinetic models are single substrate and sin-
gle enzyme, enzymatic reactions in physiological scenarios are
two substrate and single enzyme. This is because most reactions,
such as phosphorylation, requires some cofactor, such as ATP to
proceed [102]. Thus it may be necessary to model the effect of
coenzyme depletion. In this case, modelling of the coenzyme con-
centration as a modification of the catalytic rate is not sufficient
[102]. One mechanism by which this can happen is the ordered-
sequential bi-bi shown in the following reaction equations [170]:

E+O
ka1−−⇀↽−−
kd1

EO (79)

EO+S
ka2−−⇀↽−−
kd2

EOS (80)

EOS− > [kc]E + P + Ō (81)

Again the rate parameters are as described in the beginning of
the chapter. O is the substrate coenzyme (e.g. ATP) while Ō is the
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product coenzyme (e.g. ADP). The ODEs describing the unidirec-
tional enzyme kinetic reaction is:

[Ė] = −ka1 [E][O] + kd1 [EO] + k
c[EOS] (82)

[Ȯ] = −ka1 [E][O] + kd1 [EO] (83)

[ ˙EO] = ka1 [E][O] − kd1 [EO] − k
a2 [EO][S] + kd2 [EOS] (84)

[Ṡ] = −ka2 [EO][S] + kd2 [EOS] (85)

[ ˙EOS] = ka2 [EO][S] − kd2 [EOS] − kc[EOS] (86)

The intermediate complexes in this reaction are [EO], the en-
zyme-coenzyme complex, and [EOS] the full enzyme-coenzyme-
substrate complex (which is the complex that continues to the
catalytic step). Using the same quasi-steady state simplication as
the single substrate case in section 3.4, the quasi-steady state rate
equations of the complexes are:

[ ˙EO]Q =K2
[Ȯ][E] + [Ė][O]

K1K2 + γ[S]

+ γK2
[Ṡ][O][E]

(K1K2 + γ[S])
2

(87)

[ ˙EOS]Q =
[Ȯ][E][S] + [Ė][O][S] + [Ṡ][E][O]

K1K2 + γ[S]

+
γ[E][O][S][Ṡ]

(K1K2 + γ[S])
2

(88)

where

K1 = kd1/ka1 (89)

K2 = kd2/ka2 (90)
γ = kc/ka1 (91)

This is a far more complex expression compared with Eqn. 49, es-
pecially with the substrate concentration appearing in the denom-
inator. However, it is still able to achieve a parameter reduction
of two (as two states are set to quasi-steady state). It is possible to
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further simplify the solution to appears in a similar form as Eqn
49 when γ ≈ 0. Under this condition, Eqns. 87 and 88 simplify to:

[ ˙EO] = [Ȯ]
[E]

K1
+ [Ė]

[O]

K1
(92)

[Ċ] =
[S]

K2
[Ȯ][E] + [Ė][O]

K1
+

[Ṡ]

K2
[E][O]

K1

=
[S]

K2
[ ˙EO] +

[EO]

K2
[Ṡ] (93)

This expression looks exactly the same as Eqn. 49, applied sequen-
tially for each substrate. This means under these assumptions,
even a two substrate enzyme kinetic reaction can be modelled
using the dQSSA. By using this approximation, the model is sim-
plified down from five parameters (ka1 , kd1 , ka2 , kd2 and kc) to
three parameters (K1, K2 and kc). Thus the tensor implementation
for a two substrate model becomes:

Gijk =



1
K1

, if [i, j,k] = [1, 1, 3], [1, 3, 1], [3, 1, 3], [3, 3, 1]

− 1
K1

, if [i, j,k] = [6, 1, 3], [6, 3, 1]
1
K2

, if [i, j,k] = [2, 6, 2], [2, 2, 6], [6, 6, 2], [6, 2, 6]

− 1
K2

, if [i, j,k] = [7, 6, 2], [7, 2, 6]

0, else
(94)

Wil =



−kc, if [j, l] = [1, 7]

−kc, if [j, l] = [2, 7]

kc, if [j, l] = [4, 7]

kc, if [j, l] = [5, 7]

0, else

(95)

Where the indicees are: With the indices:

1. Coenzyme-1

2. Substrate

3. Enzyme

4. Coenzyme-2



3.6 discussion 67

5. Product

6. Enzyme-Coenzyme-1 complex

7. Enzyme-Coenzyme-1-Substrate complex

Biochemically, the γ ≈ 0 assumption states that kc � ka1 , that
is the association of the coenzyme with the enzyme must occur
very quickly compared to the catalytic rate. If this condition does
not apply, then the quasi-steady state assumption breaks down
because the rate limiting step becomes the coenzyme-enzyme
binding step, rather than the catalytic step. It is expected that
this condition should hold in in vivo because the coenzymes in
this context are usually small molecules such as ATP or NADH,
which as in large abundance, which means they should not be
rate limiting. In spite of this, there are potentially scenarios where
coenzymes are large molecules, such as enzyme complexes made
of multiple proteins (such as the mTOR complexes). Under these
conditions, the two substrate dQSSA must be applied with great
care to ensure the complex formation steps are not rate limiting.

3.6 discussion

The motivation behind this study was to resolve the conflicting
goals of model simplicity (both mathematical and dimensional)
and accuracy when choosing enzyme kinetic models. We demon-
strated that the fully reversible enzyme kinetic model, with the
quasi-steady state assumption, requires all six rate parameters to
fully define. Thus this model is not simpler than the full mass ac-
tion description of enzyme kinetics. The simplest model, the Mi-
chaelis-Menten model, only requires two parameters. Each step of
simplification requires increasingly restrictive assumptions, some
of which are not necessarily true under physiological conditions.
The reactant stationary assumption in the Michaelis-Menten model
is an example of this.

The result of this study has shown that it is potentially possible
to resolve this conflict between model accuracy and complexity.
The dQSSA model is theoretically able to achieve the accuracy of
the reversible model with the parameter reduction of the Michae-
lis-Menten and tQSSA models. This is because the the dQSSA
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model only requires two assumptions. These are that the enzy-
matic reaction in question is approximately unidirectional (thus
not requiring a fully reversible enzyme kinetic model), and that
the dissociation rate constant is much larger than the catalytic
rate constant. The MichaelisMenten model requires the additional
reactant stationary assumption which assumes that the enzyme-
substrate complex concentration is negligible. In addition to this,
the dQSSA can be expressed with a universal form that does not
require reanalysis, allowing it to be applied for a varied of bio-
chemical system.

Furthermore, the reduction in parameter should improve the
uniqueness of fitted models that utilise the dQSSA, while its pre-
dicted mechanistic accuracy improves predictive reliability of the
model. This is especially important in large networks which have
large parameter dimensionalities and limited kinetic data [145,
147, 148, 171]. Additionally, the standardised form of the dQSSA
enables this model to be scaled up to be scaled up to larger bio-
chemical systems which incorporate more pathways and molecu-
lar species. This ability will be important in ensuring modelling
capabilities can keep pace with the increasing complexity of sig-
nalling pathways they are designed to study.

These two features of the dQSSA mean that it could have useful
applications in the field of systems biology. It offers a more predic-
tive and accurate modelling tool that can be applied with minimal
reanalysis, and minimises the degrees of freedom of its models
[102]. This enables model analysis to be focused on the structure
rather than the parameter and the choice of kinetic model.

One significant weakness of the basic dQSSA model is its fo-
cus on single substrate reactions. While single substrate Michae-
lis-Menten models (and mass action type models) are the more
commonly used enzyme kinetic models in biochemical systems,
kinase reactions typically involved two substrates: that is a target
substrate and ATP [102, 103]. To be able to comprehensively simu-
late signalling pathways, it is essential to be able to model at least
two substrate reactions. This will cover a large group of post trans-
lational regulations that are relevant to biochemical networks [18].
The extended dQSSA model covering the ordered bi-bi reaction
is a step towards this. While we have shown a universal quasi-
steady state form for this reaction, it is only one of the three (and
in fact the simplest) mechanisms that two-substrate reactions oc-
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cur with. It is not unreasonable to expect that the dQSSA forms
of the random-ordered bi-bi reaction and bi-bi ping-pong mech-
anisms will be more complicated even than the one presented in
section 3.5. However, the ordered bi-bi mechanism we have con-
sidered will cover the kinase reactions that are of interest in the
signalling networks we will study in later sections.

In the next chapter, we will take these theoretical models and
verify their accuracy in silico and in vitro.





4VA L I D AT I O N O F N E W E N Z Y M E
K I N E T I C M O D E L

Abstract
While enzyme kinetic models can sometimes be considered em-

pirical models, the most powerful kinetic models are those that
are mechanistic and enable prediction of the underlying chem-
istry of the system. In order to validate the predictive nature
of the model, they should ideally be verified experimentally. We
have made two claims about our dQSSA model. Firstly that it is
applicable for large networks using the universal form, and sec-
ondly that it accurately models real enzymatic reactions. In this
chapter, we test these claims in silico and in vitro. We test the first
claim by applying the dQSSA to a complex hypothetical network
and comparing its predicted time course to that achieved by the
mass action and Michaelis-Menten models. Next we tested the
second claim by testing the ability of the dQSSA to predict the
kinetics of the interconversion of pyruvate and lactate by lactate
dehydrogenase (LDH) in the presence of different concentrations
of coenzyme and enzyme. We found the dQSSA can accurately
model large networks in its native mathematical form, and both
the single substrate and two substrate dQSSA can predict the ki-
netics of LDH.

Some of this work has been published in:

• Wong MK, Krycer JR, Burchfield JG, James DE, Kuncic Z.
A generalised enzyme kinetic model for predicting the be-
haviour of complex biochemical systems. FEBS Open Bio
2015; 9(5):226-239 doi: 10.1016/j.fob.2015.03.002.
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4.1 introduction

Kinetic models of biochemical reactions are used with the view of
accurately predicting the behaviour of biochemical systems and
explaining the behaviour through the mechanisms of signal trans-
duction within the system [172]. However, the ability to do this
is highly dependent on the accuracy of the rate laws used to de-
scribe enzymatic reactions in the model. The use of rate laws out-
side of their scenarios where they are valid can lead to incorrect
predictions of the mechanisms relevant in the system [139, 173].

In order to avoid these follow on effects, it is imperative that
newly designed rate laws be rigorously tested to verify the areas
in which the model is accurate, and also determine its behaviour
when applied to more complex networks that are more typical
of the biological systems that are studied. Thus in this chapter,
we apply the dQSSA model developed in the last chapter to in
silico and in vitro validation tests to evaluate its accuracy and per-
formance compared to the standard Michaelis Menten and mass
action models.

4.2 method

4.2.1 In Silico Validation in a hypothetical complex network

In order to validate the dQSSA rate law, it is necessary to test it
both in a simple reaction as well as in the context of a larger com-
plex network with complex reactions. In order to perform both
functions as well, a single artificial network was designed which
would initially test the performance of the dQSSA as an isolated
enzymatic reaction but can be altered into a complex network
through an activating switch built into the network. The network
that will be used in shown in Fig. 18.

The initial test of the dQSSA in a simply network is performed
when the switch I is absent from the network. In this scenario,
which will be referred to later as the "I-off" network, the only
active reactions are a unimolecular, a bimolecular and a reversible
enzyme reaction. This allows us to isolate the performance of the
dQSSA within a controlled simple enzymatic system. A separate
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arm also tests the generalised dQSSA model’s ability to model
fundamental reactions.

After the basic tests of the dQSSA model as completed, activa-
tor I is added to activate more complex reactions in the system.
This secenario, which will be referred to later as the "I-on" net-
work, will assess the ability of the dQSSA to handle networks
with complex coupling between reactions. More specifically the
activator I will create species that are enzymes to multiple reac-
tions and cause some substrates to become targets of multiple
enzymes. To summarise, the network will contain:

• Unidirectional reactions (reaction 2, 4, 6, 8, 11)

• Bimolecular binding reactions (reaction 3)

• Enzyme reactions (reaction 1, 5, 7, 9, 10)

• A single substrate enzyme (species I)

• A multiple substrate enzyme (species p1B, pCD)

• A single enzyme substrate (species CD)

• A multiple enzyme substrate (species B)

• A substrate that is itself an enzyme for a different species
(species A).

All species in the network start at a concentration of zero except
the species A, B, C andD. I are added to the system with an input
velocity profile that follows a gaussian function with peak at t1/2
and width tw:

I(t) = I0
1

0.2
√
2π

exp

[
−
1

2

(
t− t1/2

)2
t2w

]
(96)

The Gaussian function was chosen because it is a smooth function
which will reduce the likelihood of residual errors during the
numerical integration process. For species A, B, C and D, the
following injection profile (given by f(t) in Eqn. 78) was used:

f(t, x) = x0
1

0.2
√
2π

exp

[
−
1

2

(t)2

0.52

]
(97)
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Figure 18: Network topology of the hypothetical network used to test
the accuracy of the dQSSA model compared to the mass ac-
tion model of enzyme kinetics. Numbers inside species refers
to their index in the model equations. Re refers to reactions
and their numbers as they are discussed in the text. The net-
work is designed to operate in two modes. In the first mode
only reactions with black lines are active. This is because en-
zymes required for those reactions (more specifically species
with grey backgrounds) are unavailable then. In the second
mode, all reactions become active. This second mode is trig-
gered by the present of the species I.
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Where x0 is the initial concentrations of A, B, C and D. The
parameters of the Gaussian function was chosen such that the
injection will be definition be complete within 0.5 seconds, with
0.5 additional seconds for the system to stabilise. Thus the initial
condition is solved as described in section 3.4.3 over a time inter-
val of t = [0, 1] in order for the simulation initial conditions to be
solved and stabilised.

The network was constructed using three different rate laws: a
mass action based model, a Michaelis-Menten based model and
a dQSSA based model. The mass action model was constructed
using mass action kinetics for fundamental reactions, and the full
mass action form of enzyme kinetic reactions given by Eqn. 9-
11 for enzymatic reactions. Each enzymatic reaction contains 6
rate parameters. All other reactions contain one. As such, this
model required 41 parameters in total: 36 rate parameters and 5
concentration parameters. Equations for this model can be found
in the computer code in section C.1.1 in the appendix.

For the dQSSA and Michaelis-Menten models, the 6 enzyme
reaction parameters are simplified into 4 as per the quasi-steady
state assumption. This resulted in 31 parameters: 26 rate parame-
ters and 5 concentration parameters. The dQSSA model was con-
structed as given in Eqn. 78. The tensors were assigned as per the
rules given in Eqn. 60-61. The 41 parameters for the mass action
model were generated using Eqn. 98. The probability generating
function was chosen such that their logarithm is uniformly dis-
tributed between [-1,1].

log (φ) = rand [−1, 1] (98)

Where φ represents all parameters in the model. These parame-
ter were then modified in order to satisfy the rapid equilibrium
conditions. The modifications applied are:

• The two generated catalytic rate of enzyme reactions are
assigned such that the favoured direction has the larger cat-
alytic rate.

• The dissociation rate (of the forward and reverse reaction) is
made 100 times larger than the catalytic rate of the favoured
direction

• All association rates are made 100 times larger in order to
reduce the size of Michaelis constants.
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This is necessary because in the previous chapter it was demon-
strated that the quasi-steady reversible enzyme kinetic model is
only valid under the rapid equilibrium condition. Because the
dQSSA and Michaelis Menten models are derived under this as-
sumption, these models will both become inaccurate if the condi-
tion is violated. However, in such scenarios, it would be necessary
to use all six parameters to fully define the system, which means
the mass action model would be the simplest model that can ac-
curately simulate the reaction.

The resulting network was simulated using Matlab’s ODE15s
function, with a relative tolerance of 1× 10−5 with the following
steps:

1. Determining initial conditions. For the dQSSA model, the
initial conditions were found by solving Eqn. 78 with ten-
sors Y and Z set to zero only at this step and with σ(t) set to
add the initial concentrations of A, B, C and D with a Gaus-
sian time profile centred at t = 0.5s and width tw = 0.01s to
the system. The time course was solved for t = [0, 1]s.

2. Determining time course of the Ioff phase. The mass action,
Michaelis-Menten and dQSSA models were then solved for
t = [0, t1/2 − 10tw]s.

3. Addition of input I. The three models were then solved
for t = [t1/2 − 10tw, t1/2 + 10tw]s, using the final concentra-
tion from the previous run as the initial condition. This is
to solve the addition of I into the system with high time
resolution.

4. Determining time course of the Ion phase. The three mod-
els were then solved for t = [t1/2 + 10tw, tend]s, using the
final concentration from the previous run as the initial con-
dition.

5. The results were then stitched together.

Simulations were performed in these three stages because of
limitations involved with the ODE15s routine. Average error and
average computing time was calculated over 1000 different com-
binations of system parameters to test accuracy under all pa-
rameter conditions except those already specified. The average
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computing time was determined using the "tic" and "toc" func-
tion in Matlab, with the total time summed from the simula-
tion time of each phase. The average error for the dQSSA was
calculated using all free and complex states compared to their
mass action counterpart at equilibrium. For the Michaelis-Menten
model, the error was compared to the equivalent state in the
mass action model after all complexes are dissociated (e.g. [AT ] =
[A] + [A − B] + [A − p1B]) again at equilibrium. The following
equation was then applied.

erri =

0 , if [dQSSAi] = [MAi]

log10
[

|[dQSSAi]−[MAi]|
min([dQSSAi],[MAi])

]
, else

(99)

errortot = 10
∧

[
1

n

n∑
i=1

erri

]
(100)

where i is the model states to be summed over, excluding states
where [dQSSAi] = [MAi] because the logarithm of this value
gives an undefined value. This gives a measure of the scale of the
difference across all states, rather than the absolute differences,
which can become dominated by states with large differences.

4.2.2 In Vitro Validation Using a Biological Enzyme

4.2.2.1 Mathematical Model

Since the Michaelis-Menten model is a single substrate enzyme
kinetic models, the ordered bi-bi nature of LDH was separated
into the enzyme and coenzyme binding step (Eqn. 101 and 102),
followed by the enzymatic step (Eqn. 101 and 102). This is illus-
trated in Fig. 19.

The Michaelis-Menten implementation produces the following
reaction velocities:

v1 =1000/K
i
NH[NADH][LDH] − 1000[NADH-LDH] (101)

v2 =1000/K
i
NH+[NAD+][LDH] − 1000[NAD+-LDH] (102)

v3 =k
c
Py

[Py][NADH-LDH]

[Py] +KmPy
(103)

v4 =k
c
Lac

[Lac][NAD+-LDH]

[Lac] +KmLac
(104)
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to form the following rate equations for each of the species:

d[NADH]/dt =− v1 − v3 + v4 (105)
d[NAD+]/dt =− v2 + v3 − v4 (106)
d[LDH]/dt =− v1 − v2 (107)
d[Py]/dt =− v3 + v4 (108)
d[Lac]/dt =v3 − v4 (109)

d[NADH-LDH]/dt =v1 (110)
d[NAD+-LDH]/dt =v2 (111)

The dQSSA implementation produces the following tensors that
are populated as per Eqn. 112-114, using the coupled irreversible
enzyme reaction form. The rate parameters used are the Ki (dis-
sociation constant) of LDH-NADH and LDH-NAD+ and the Km

and kc of the lactate and pyruvate reactions. The readout from
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Figure 19: Illustration of the reaction network used to simulate the LDH
reversible conversion of pyruvate to lactate. The numbers
within the species indicates the species index produced by
the simulation used in the study. Rate parameters are as de-
fined at the beginning of chapter 3.1 except for Ki which
are dissociation constants for their corresponding reactions.
Numbers inside species indicate their index used in the math-
ematical model in the models shown in Appendix C.2
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the models is the total NADH concentration (both free and bound
forms).

Gij =



1
KmPy

, if [i, j,k] = [3, 3, 6], [3, 6, 3], [6, 3, 6], [6, 6, 3]

− 1
KmPy

, if [i, j,k] = [10, 3, 6], [10, 6, 3]

1
KmLac

, if [i, j,k] = [4, 4, 7], [4, 7, 4], [7, 4, 7], [7, 7, 4]

− 1
KmLac

, if [i, j,k] = [11, 4, 7], [11, 7, 4]

0, else

(112)

which is the dQSSA tensor that contains the Michaelis constants.

Y ijk =



−1000/KiNH, if [i, j,k] = [1, 1, 5], [5, 1, 5]

1000/KiNH, if [i, j,k] = [6, 1, 5]

−1000/KiNH+ , if [i, j,k] = [2, 2, 5], [5, 2, 5]

1000/KiNH+ , if [i, j,k] = [7, 2, 5]

0, else

(113)

which is the coenzyme and LDH dissociation reactions. And fi-
nally

Zil =



−1000 , if [i, l] = [6, 6], [7, 7]

1000 , if [i, l] = [1, 6], [5, 6], [2, 7], [5, 7]

−kcPy , if [i, l] = [1, 10], [3, 10]

kcPy , if [i, l] = [2, 10], [4, 10]

−kcLac , if [i, l] = [2, 11], [4, 11]

kcLac , if [i, l] = [1, 11], [3, 11]

0, else

(114)

where the first two are the coenzyme and LDH association reac-
tions, and the remaining are the enzyme kinetic reaction catalytic
steps.

Since both Michaelis-Menten and dQSSA implementations of
the system contain the initial enzyme-coenzyme binding phase
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which we are not interested in, the simulation is run in two phases.
The first phase sets the catalytic rates for both enzyme reactions
to zero. This enables the enzyme-coenzyme binding reactions to
equilibrate before the reaction begins. The catalytic rates are then
reset to their required value and the time courses captured. The
simulation is then run for 10 s before determining the initial ve-
locity of NADH consumption/production, since the Michaelis-
Menten system needs to some time to settle into its new transient
quasi-steady state first, giving a more accurate representation of
the predicted initial velocity.

The first parameters to be fitted were the Km and kc of the
catalytic reactions. This was done by fitting the regression line of
the Lineweaver-Burk plot of the initial velocities of the reactions.
The residual ε for this fitting routine is:

ε =
∑
i

(y− µi)
2 (115)

This allows the enzymatic parameters Km and kc to be deter-
mined independently of the Ki of LDH-coenzyme formation be-
cause the concentration of the competitive coenzyme was zero
at the beginning of the reaction. Once the enzymatic parameters
were fitted, the Ki of LDH-coenzyme formation was fitted using
the Nelder-Mead simplex method. The residual ε in this case is:

ε =
∑
i

(
y− µi
σi

)2
(116)

The odds ratio was then used to compare the models in their
ability to predict the data. This was calculated using:

O =
P
(
MdQSSA|D

)
P (MMM|D)

(117)

Where O is the odds ratio, M is the model and,

P (Mi|D) =
∏
i

exp

(
1

2

(
y− µi
σi

)2)
(118)

Where, y is the model prediction, µi is the mean of the experi-
mental data and σi is the standard deviation of the experimental
data.
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4.2.2.2 Experimental Materials

Rabbit muscle L-LDH with a concentration of 5 mg/mL (101278
76001) was purchased from Roche Diagnostics. NADH (43420),
NAD+ (N0632), sodium pyruvate (P4562), sodium lactate (L7022)
and Corning polystyrene black-bottom microtitre plates (3915)
were purchased from Sigma-Aldrich. Phosphate buffered solu-
tion (PBS) was used as the buffer due to its activating effects on
LDH [46]. It was made internally using 0.36 (w/v)% Na2HPO4,
0.02 (w/v)% KCl, 0.024 (w/v)% KH2PO4 and 0.8 (w/v)% NaCl.

4.2.2.3 In Vitro Experiments

To derive the kinetic constants, equimolar solutions of substrate
and cofactor (NADH and pyruvate, NAD+ and lactate) were pre-
pared in PBS. 50 µL of each solution was added to the 96 well
plate in 4 replicates. LDH solution (4 U/L, 100 nM) was similarly
prepared in PBS diluted and 50 µL injected into each well. Exper-
iments were run in polystyrene black flat bottom 96 well plates
(Corning 3915). Enzyme kinetics were measured by the fluores-
cence of NADH in a Fluostar Omega plate reader (λEx = 355 nm,
λEm =450 nm, 5 flashes per well), with 250 reads per well recorded
over 300 seconds. The gain was calibrated using an NADH stan-
dard curve (in PBS, without other substrates or LDH), which was
prepared in each experiments in 4 replicates from 0-5 mM (100
µL total volume). It was also found that presence of NAD+ sig-
nificantly reduced the fluorescence of the NADH. This decay was
measured using a standard curve of 0 to 50 mM of NAD+ in the
presence of 0.3 mM of pyruvate and NADH. The observed frac-
tion drop in fluorescence is then fitted to an exponential decay
to model the absorbance of NAD+. The resulting model is the
same as that shown previously in Fig. 19. Acquired fluorescence
were converted to [NADH] using this standard curve and model
of absorbance by [NAD+].

The initial velocity was calculated by fitting a straight line through
the first 5 linear points of each time course, averaged over each
technical replicate. We assume that the products of the reaction
(or the reactants of the reverse reaction) are negligible at this time,
allowing us to analyse each half reaction individually. The kinetic
parameters, Km and kc, were determined by fitting the initial reac-
tion velocities to the initial concentrations on a Lineweaver-Burk
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plot. The NADH and LDH dissociation constant and NAD+ and
LDH dissociation constants were the parameters remaining to be
determined. Since these are quick processes, the dissociation rate
was fixed at 1000 s−1. From there it was found that, given the
fast rate of association and dissociation between the enzyme and
the coenzymes, the important parameter determine how NADH
and NAD+ competes for binding with LDH was in fact the ratio
between the NADH-LDH dissociation constant and the NAD+-
LDH dissociation constant. As such, the NAD+ and LDH dissoci-
ation constant was fixed at 4.0× 10−7 M based on literature [174].
From there the NADH-LDH dissociation constant was identified
using the full time course of the reactions used to identify the en-
zymatic rate parameters. We did this by taking advantage of the
fact that the four reactants become present at the reactions evolve
beyond the initial regime where only two reactants are present.

To investigate the inhibitory effects of NAD+ on the pyruvate
to lactate reaction, we measured the initial velocity of the reaction
initiated using 100 µL solutions of pyruvate and NADH (0.3 mM)
in the presence of increasing concentrations of NAD+ (0 to 10
mM).
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4.2.3 In Silico Validation of Two Substrate dQSSA

The reversible LDH reaction shown in figure 19 was implemented
using the two substrate dQSSA model (Eqn 94-95) as follows:

Gij =



1
KiNH

, if [i, j,k] = [1, 1, 5], [1, 5, 1], [5, 1, 5], [5, 5, 1]

− 1
KiNH

, if [i, j,k] = [6, 1, 5], [6, 1, 2]

1
Ki
NH+

, if [i, j,k] = [2, 2, 5], [2, 5, 2], [5, 2, 5], [5, 5, 2]

− 1
Ki
NH+

, if [i, j,k] = [7, 2, 5], [7, 5, 2]

1
KiPy

, if [i, j,k] = [1, 3, 6], [1, 6, 3], [3, 3, 6],

[3, 6, 3], [5, 3, 6], [5, 6, 3]

− 1
KiPy

, if [i, j,k] = [10, 3, 6], [10, 6, 3]

1
KiLac

, if [i, j,k] = [2, 4, 7], [2, 7, 4], [4, 4, 7],

[4, 7, 4], [5, 4, 7], [5, 7, 4]

− 1
KiLac

, if [i, j,k] = [11, 4, 7], [11, 7, 4]

0, else

(119)

which is the dQSSA tensor that contains the dissociation con-
stants.

Zij =



−kcPy , if [i, j] = [1, 10], [3, 10]

kcPy , if [i, j] = [2, 10], [4, 10]

−kcLac , if [i, j] = [2, 11], [4, 11]

kcLac , if [i, j] = [1, 11], [3, 11]

0, else

(120)

where the first two are the coenzyme and LDH association reac-
tions, and the remaining are the enzyme kinetic reaction catalytic
steps.

In this case, as per the expression that was derived in section
3.5, the constants used in the dQSSA here are simply the dissoci-
ation constants given in Eqn. 89 and 90. These are then compared
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to the mass action implementation of the LDH reaction as shown
in Appendix C.3.

This model was then evaluated in two different ways. Firstly,
the parameters of the two substrate LDH dQSSA model was ran-
domised using the same distribution described previously in Eqn.
98 (used in the hypothetical network to validate the one substrate
dQSSA in silico). The error was evaluated using the same equation
for evaluating the error for the one substrate dQSSA previously.
(Eqn. 100). Secondly, the parameters achieved for the LDH sys-
tem was applied to the two substrate dQSSA model to see how it
compares to the mass action model. In both cases, the exact tem-
poral profiles of all nodes are generated and compared to their
corresponding nodes in the mass action model.

4.3 result

4.3.1 In Silico Validation of dQSSA

In the one thousand randomly generated parameter sets, the dQSSA
model closely matched the time course of the mass action models,
both in the I-off network and I-on network. At equilibrium, the
average percentage difference between the two models was 0.5%
over 1000 simulations (Fig. 20a).This I-off network verified that
the dQSSA can replicate the mass action based reversible enzyme
model while the I-on network showed that the dQSSA can accu-
rately model the system behaviour with complex couplings in the
network. We also investigated the performance of the Michaelis-
Menten model in this scenario. We found that in many cases, the
Michaelis-Menten model was inconsistent with the mass action
and dQSSA model results, with an average difference of 9.7%
over 1000 simulations (Fig. 20b). Fig. 21 shows a representative
time course of one of these simulations, with the relevant param-
eters shown in Table 3. It can be seen that the Michaelien Menten
model diverges from the mass action model prediction even in
the "I off" regime, where the enzymatic reaction is completely iso-
lated.

As seen in the theoretical analysis, this is most likely due to a
violation of the low enzyme assumption of Eqn. 28. Therefore, we
further investigated whether this inconsistency requires the low
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enzyme assumption to be violated throughout the whole network,
or whether a single instance is sufficient to cause inaccuracies in
the whole network. To investigate this, we tested parameters such
that the low enzyme assumption in all reactions except the for-
ward direction of reaction 9. More specifically, the Km of reaction
9 was set to unity while all over Km were set to greater than 100.
The specifics of the parameters used are given in Table 4. As such,
the Michaelis-Menten model should be consistent with the other
two models during the I-off phase but inconsistent in the I-on
phase. We found that all three models were consistent during the
I-off phase (Fig. 22). However, in the I-on phase, the dQSSA and
mass action model remained consistent with each other while the
Michaelis-Menten model became inconsistent and varied between
7% and 45% consistency at equilibrium. The A and pA states had
a difference of approximately 20% even though these are not di-
rectly related to the species involved with the high enzyme con-
centration reaction. Hence, this result demonstrates that violation
of the low enzyme assumption even in just one reaction can lead
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Figure 20: Accuracy of the (A) dQSSA and (B) Michaelis Menten model
compared with the mass action model with 1000 different
generated parameter sets. (C) Fraction increase in the compu-
tation time of each of the runs when compared with the mass
action model. The errors are calculated averaged between the
outcomes from the "I off" and "I on" simulations.
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Figure 21: Representative time course of the reaction with the param-
eters used shown in table 3 where the Michaelis-Menten
model does not agree with the mass action or dQSSA models
in both the "I off" and "I on" regime. Between t = [0, 10) I is
not present and the system operates in the "I off" regime. Be-
tween t = [10, 12] I is added which initiates some changes in
the system (shown in subpanel d). When t > 12 the system
is in the "I on" phase. The solid line indicates the mass action
prediction which is used as the gold standard. Crosses indi-
cates the dQSSA model while pluses indicates the Michaelis
Menten model.
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Figure 22: Representative time course of the reaction with the param-
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present and the system operates in the "I off" regime. Between
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system (shown in subpanel d). When t > 120 the system is
in the "I on" phase. The solid line indicates the mass action
prediction which is used as the gold standard. Crosses indi-
cates the dQSSA model while pluses indicates the Michaelis
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to non-trivial discrepancies in the Michaelis-Menten model’s pre-
dictions.

While the dQSSA was found to be significantly better than the
Michaelis-Menten model at matching the mass action model’s
predictions, the linearisation of the dynamic equation and the in-
clusion of a matrix inversion increases the model’s computational
cost. For example, in our hypothetical network, we found that
the dQSSA model (including solving for the initial conditions)
required approximately 3 times longer to solve when compared
to the mass action model (Fig. 20c). The accuracy of the dQSSA
for estimating kinetic parameters was also tested by fitting the
dQSSA model to the mass action generated time course with ar-
tificial noise with signal to noise ratio of 5 was added. It was
found that fitted parameters are at most different by an average
of 20% and the uncertainty of the fitted parameters covers the
true parameter value as shown in Fig 23. This demonstrates that
the dQSSA is useful in parameter estimation against experimen-
tal time course data.

Table 3: Parameters used to generate the time course shown in Fig. 21.

Mass Action dQSSA and Michaelis-Menten

ka1f 84.0 ka5r 45.9 kd9f 884 Km9f 0.0378
kd1f 2750 kd5r 1340 kc9f 8.84 Km1f 33.1 Km5r 29.3 Km9f 8.84
kc1f 27.5 kc5r 3.66 ka9r 658 kc1f 27.5 kc5r 3.66
ka1r 10800 k6 1.39 kd9r 884 k6 1.39 Km9r 1.35
kd1r 2750 ka7f 8480 kc9r 3.36 Km1r 0.26 kc9r 3.36
kc1r 0.229 kd7f 77.6 ka10f 0.343 kc1r 0.229 Km7f 0.00925
k2 3.32 kc7f 0.776 kd10f 2550 k2 3.315 kc7f 0.776 Km10f 7510
k3 0.416 ka7r 235 kc10f 25.5 k3 0.416 kc10f 25.5
k4 98.4 ka7r 77.6 ka10r 181 k4 98.37 Km7r 0.332
ka5f 4320 kc7r 0.4 kd10r 2550 kc7r 0.4 Km10r 14.1
kd5f 1340 k8 0.821 kc10r 3.25 Km5f 0.31 k8 0.821 kc10r 3.25
kc5f 13.4 ka9f 23600 k11 3.14 kc5f 13.4 k11 3.14

Concentrations

[A]0 [B]0 [C]0 [D]0 [I]0

1.21 0.0283 73.0 87.3 100.0
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4.3.2 In Vitro Validation of dQSSA

Thus far, the in silico validation demonstrated good agreement be-
tween the mass action model and the dQSSA while highlighting
that the Michaelis-Menten model is not applicable for this type of
modelling, particularly when the reactant stationary assumption
is violated. To determine its practical significance, we extended
our comparison to an in vitro setting, modelling the action of
LDH.

LDH is a well-characterised enzyme which reversibly converts
pyruvate and reduced nicotinamide adenine dinucleotide (NADH)
to lactate and oxidiesd nicotinamide adenine dinucleotide (NAD+).
The reaction mechanism for LDH (Fig. 19) involves the ordered
binding of the coenzymes (NADH or NAD+) to LDH followed
by the subsequent binding of its corresponding substrate (pyru-
vate or lactate, respectively) [175]. The transfer of an electron be-
tween the coenzyme and the substrate then reversibly occurs in

Table 4: Parameters used to generate the time course shown in Fig. 22.

Mass Action dQSSA and Michaelis-Menten

ka1f 5 ka5r 0.1 kd9f 100 Km9f 0.2
kd1f 1000 kd5r 100 kc9f 1 Km1f 202 Km5r 1001 Km9f 0.2
kc1f 10 kc5r 0.1 ka9r 0.5 kc1f 10 kc5r 0.1
ka1r 0.5 k6 0.4 kd9r 1000 k6 0.4 Km9r 1
kd1r 1000 ka7f 5 kc9r 0.5 Km1r 2001 kc9r 0.5
kc1r 0.5 kd7f 1000 ka10f 5 kc1r 0.5 Km7f 202
k2 0.02 kc7f 10 kd10f 1000 k2 0.02 kc7f 10 Km10f 202
k3 0.05 ka7r 0.5 kc10f 10 k3 0.05 kc10f 10
k4 0.05 ka7r 1000 ka10r 0.5 k4 0.05 Km7r 2001
ka5f 1 kc7r 0.5 kd10r 1000 kc7r 0.5 Km10r 2001
kd5f 100 k8 0.02 kc10r 0.5 Km5f 100.5 k8 0.02 kc10r 0.5
kc5f 10 ka9f 1000 k11 0.5 kc5f 10 k11 0.5

Concentrations

[A]0 [B]0 [C]0 [D]0 [I]0

1.0 1.0 1.0 1.1 10.0
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Figure 23: Inference of the parameter when Guassian noise with a signal
to noise ratio of 5 is added. The correct parameter (dotted ver-
tical line) is contained within the blue curve (the likelihood
distribution of the parameter)

the ternary complex as part of the catalytic process. As LDH ap-
pears to be an enzyme that satisfies the "rapid equilibrium" as-
sumption, this reversible catalysis can be viewed as two distinct
reactions as described in section 3.3 [176]. Thus, it is ideal for ver-
ifying whether the in silico difference found between the dQSSA
model and the Michaelis-Menten model seen in the previous in
silico experiment translates in vitro.

As this is a real system, the first step involved characterising
the kinetic constants in both directions. The reactions were run
in the irreversible regime by adding equimolar concentrations of
the reactant and coenzyme of the relevant reaction direction. The
constants were then obtained by least squares fitting of the initial
concentration and reaction velocity using a Lineweaver Burk plot
(Fig. 24a,b). The time course of the reaction was run with a low
time resolution to smooth out the kinetics of the transient phase,
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Figure 24: Illustration of the reaction network used to simulate the
LDH reversible conversation of pyruvate to lactate. (a) and
(b) shows the Lineweaver-Burke plots of the inverse initial
reaction rate against the inverse concentrations of pyruvate
and lactate respectively. Circles represent the experimental
result while solid black and dashed grey lines represent the
dQSSA and Michaelis Menten model predictions respectively.
(c) - (e) shows a representative time course of the experiment
with the two model predictions overlayed. In these panels,
solid line represents the experimental data while crosses and
pluses represent the dQSSA and Michaelis Menten model re-
spectively.
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Figure 25: Validation result of the LDH model. The pyruvate to lac-
tate reaction was tested with varying amount of NAD+. The
initial velocity of the reaction (Vi) was then measured as a
fraction of the initial velocity in the absence of NAD+ (Vi0.
This is shown as open circles. Error bars show the SEM. The
dQSSA model (light grey line) and the Michaelis Menten
Model (dark grey line) of this scenario was simulated and
their results plotted.

and the reaction velocity was calculated using the first 5 time
points to smooth out other experimental noise that can skew this
parameter The dissociation constants of the coenzymes were then
determined by fitting the predicted time course with the experi-
mental time course, which describes the kinetics of the system
when all four reactants are present. Fits to three representative
measured time courses for three different initial concentrations
of [NAD+] (all with the same parameters values) are shown in
Fig. 24c-e. This approach was taken as the progression of the re-
action caused all four reactants to become present. We reasoned
that this causes the effect of coenzyme competition for the LDH
to become present, which can be used to determine the dissoci-
ation constants. The resulting parameters are shown in Table 5
and were found to be in good agreement with that found in the
literature [174, 177].

At this point, it was necessary to validate the prediction poten-
tial of the dQSSA and Michaelis-Menten models. It is expected
that when a reaction is initiated in a single direction, the pres-
ence of the opposing coenzyme will cause inhibition as some en-
zyme is bound with the wrong coenzyme. Given the quantitative
nature of the both models, they should be able to correctly pre-
dict the degree of inhibition this produces. As such, prediction of
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the change in initial reaction velocity of the pyruvate to lactate
reaction, under varying concentration of NAD+ was used to test
the model’s predictions. A good agreement was found between
the dQSSA model’s prediction and the observed result (Fig. 25).
On the other hand, the Michaelis-Menten model gave a different
prediction from the dQSSA model which was a poorer fit to the
experimental results (Fig. 25). Using an odds ratio quantification
of the goodness of fit, the dQSSA is the better model with an
odds ratio O = 2.3× 1028 in favour of the dQSSA model. This
shows that the dQSSA is able to make accurate temporal predic-
tions for enzyme reactions under physiological conditions, and
that the Michaelis-Menten model produces inaccuracies beyond
intrinsic inaccuracies originating from finite precision in numeri-
cal methods.

4.3.3 In Silico Validation of Two Substrate Model

Using 1000 different randomly generated parameters, the error of
the two substrate dQSSA was found to be on average thirty times
lower than the one substrate dQSSA model when compared to
the mass action models (Fig. 26). It should noted that the average
error in the one substrate dQSSA model in this model is about
0.05%, which is already extremely small.

Table 5: Rate parameters of the LDH system that are achieved when fit-
ted to the Michaelis-Menten and dQSSA models. The residuals
of the best fits are also given.

Michaelis-Menten dQSSA
Value Residual value Residual

NADH KiNH (M) 9.23× 10−9
4.2× 104 9.83× 10−9

3.0× 104
NAD+ KiNH (M) 3.79× 10−7 3.79× 10−7

KmPy (M) 1.25× 10−4
9.5× 105 1.27× 10−4

9.5× 105
kcPy (s−1) 78.9 79.3

KmLac (M) 1.30× 10−2
2.0× 106 1.30× 10−2

2.0× 106
kcLac (s−1) 62.8 63.3
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Figure 26: Distribution of errors in 1000 simulations with randomly gen-
erated parameters in the LDH model between the one sub-
strate and two substrate dQSSA.

In general the time course for all states were very consistent
between the three models. The use of the parameters measured
for LDH demonstrated this point. The time course derived for the
three models, using an LDH concentration of 2.5µM and NADH,
Pyruvate and NAD+ concentrations of 1 mM, is shown in Fig.
27. The three models produce the same kinetic behaviour so il-
lustrated in the stable portion of Fig. 27. However, under some
circumstances, particularly with low enzyme concentrations, the
numerical integration of the one substrate dQSSA is prone to in-
stabilities. This is illustrated by the unstable region in Fig. 27. In
this case, the three models produce a very similar time course,
but the one substrate model slowly deviates, leading to an er-
ror of some 5% at the 2000 s mark. After approximately 2500 s,
the one substrate model becomes unstable, which can be see by
the large fluctuations in the time course of the complex states. It
should be noted that the instability does not always occur. This
example was chosen as it consisted of a stable and unstable re-
gion and can be used to illustrate both behaviours concisely. It is
possible that this is associated with the inversion of near singular
matrices which becomes sources a large numerical errors in the
simulation.



4.4 discussion 95

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Time (s)

[
T

]

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

1.5

2

2.5
x 10

−5

Time (s)

C
o

n
ce

n
tr

a
ti

o
n

 

 

Mass Action

2 Substrate dQSSA

1 Substrate dQSSA

NADH−LDH

NADH−LDH−Pyruvate

NAD
+

−LDH

NAD
+

−LDH−Lactate

Stable
Region

Unstable
Region

Unstable
Region

Stable
Region

Mass Action

2 Substrate dQSSA

1 Substrate dQSSA

N
A

D
H

Figure 27: Representative time course showig instability in the one sub-
strate dQSSA model showing instability which does not oc-
cur in the two substrate model. In all panels, the mass action,
one substrate dQSSA and two substrate dQSSA models are
shown as a solid line, crosses and circles respectively. The up-
per panel shows the time course of total NADH in the three
models, showing they produce similar predictions. The lower
panel shows the concentrations of the various complexes of
LDH, which reveals instability in the one substrate model.

4.4 discussion

In this study, we set out to test and validate the dQSSA model
derived in chapter 3. The one substrate dQSSA model was thor-
oughly tested both in silico and in vitro. In the in silico test, the
dQSSA was found to computationally match the accuracy of the



96 validation of new enzyme kinetic model

fully reversible enzyme kinetic model both in a single cyclic reac-
tion, and in a multienzyme complex network. While these were
promising results, the dQSSA is more computationally expensive
was there is a three fold increase in computation time associated
with it. In spite of this, the use of the less computationally efficient
dQSSA model can be justified for a number of reasons. Firstly, the
dQSSA is a simplified model compared to the mass action model
as it requires one less rate parameters out of the three in the mass
action model to fully define, which in itself reduces computa-
tional burden originating from parameter fitting [178]. Secondly,
the dQSSA is accurate a wide range of scenarios. The equally
simple Michaelis-Menten model becomes inaccurate when the re-
actant stationary assumption is violated, but the dQSSA remains
accurate in these scenarios. And finally, the dQSSA is applica-
ble in biologically relevant scenarios. The dQSSA model was able
to correctly predict the kinetic behaviour of LDH in a situation
where both substrate and product are initially present, which is
a more physiologically relevant scenario than experiments where
products are not presents when the reaction is initialised.

While the dQSSA does not account for all physical mechanisms
involved in the interchange between intermediate complexes, its
focus is on the general existence of intermediate complexes and
simulating conditions that more closely resemble the in vivo con-
text. Although the initial quantity of the intermediate complex
cannot be measured in our in vitro assay, the model can be further
validated by investigating this using high-throughput, highly-sen-
sitive spectrometric techniques [14]. The excellent agreement be-
tween our model prediction and in vitro experimental data in
the LDH example, even using a predicted rather than measured
initial [ES], shows that indeed this additional detail can greatly
improve the dQSSA’s performance as compared to the Michaelis-
Menten model, which justifies its use in modelling physiological
systems.

In spite of the successes of the one substrate dQSSA model,
further testing on the LDH system revealed that it is prone to
computational instabilities. This was solved by the two substrate
dQSSA model, which we have shown is for all intents and pur-
poses as accurate as the one substrate model. However, it is un-
clear how the two substrate model resolves the instability issue.
This would be an interesting avenue for further theoretical re-
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search into the dQSSA models. The two substrate model also has
the advantage of simplifying the system more by further reducing
the dimensionality by one. Thus a two substrate enzyme kinetic
model can be fully described with three parameter rather than
the five that would be required with the equivalent mass action
model. Although the two substrate model has not been tested
in an in silico network as complex as the one tested for the one
substrate model, the similarity of the two substrate model to the
one substrate model in modelling the LDH system suggests that
their performances would universally be the same. Aside from
the instabilities caused by modelling processes with vastly differ-
ent time scales, the model is able to produce the same prediction
whether reactions are modelled in quasi-steady state or as dy-
namic reactions.

There are other advantages in using either forms of the dQSSA.
As mentioned in the introduction, systems modellers must cur-
rently choose from a plethora of enzyme kinetic models of dif-
ferent complexities, such as the inclusion of product inhibition.
As the dQSSA was derived using only the rapid equilibrium as-
sumption, it retains most features of the mass action based model,
encompassing all simplified models of the reversible enzyme ki-
netic model. Thus, the dQSSA is able to model a wide variety
of enzyme mediated biological processes from post translational
modifications in signalling, to metabolic processes.

Overall, we have shown that the dQSSA can act as a faithful
substitute for the reversible enzyme kinetic model in cases where
the rapid equilibrium assumption is valid, and allows all single
substrate enzyme kinetic models to be collapsed into a single
model. Since the dQSSA requires the rapid equilibrium assump-
tion, this model would be less accurate for modelling enzymes
which do not satisfy this, for example, carbonic anhydrase or
acetylcholinesterase. In these cases, the full mass action model
would be required. Nonetheless, our model merges the enzymol-
ogy understanding of enzyme kinetics based on the reversible en-
zyme kinetics model, with the systems biology application of en-
zyme kinetics, typically based on irreversible Michaelis-Menten
kinetics.

The dQSSA model can also improve the way models are con-
structed and communicated. Conventionally, systems models are
constructed and communicated using non-linearised rate equa-
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tions. While this is an unambiguous way of describing a model,
it can become verbose for large models - it is not uncommon
to find equations spanning over many pages [103]. In the case
of the dQSSA, the rate equation remains in the same form re-
gardless of the system studied. Instead, the model topology is
changed by varying the element values within the tensors in the
rate equation. Whilst the population of the dQSSA tensors ele-
ments is complex and unintuitive, this can be automated using
computer algorithms by creating rules relevant to different reac-
tion schemes. The shift in focus from rate equation to topology
in describing biochemical models has some support in the litera-
ture, with the Systems Biology Market Language (SBML) project
attempting to overcome model ambiguity and verbosity in a sim-
ilar way [179, 180]. The dQSSA is well suited to the SBML ap-
proach since the rules governing how reactions are implemented
are independent of the topology of the network and hence uni-
versal. As such, topology can be easily created using the dQSSA’s
framework.

Conversely, the model topology of a dQSSA model can in prin-
ciple be inferred from the tensor elements, which means dQSSA
models can be communicated by providing the tensor structures.
This also enables system topology to be inferred by fitting tensor
values to experimental time courses and dose response data. In
practice, this is not currently possible as the size of the tensor
scales as n3 for n number of species in the model. Nonetheless,
with continued improvements in computational software (e.g. op-
timisation techniques) and hardware (e.g. memory), there remains
potential for this approach to become practical in the future.

Now that we have validated our novel enzyme kinetics model,
we move onto the development of tools for applying this model
to arbitrary descriptions of biological networks in order to stream-
line the model design process.



5D E V E L O P M E N T O F M O D E L L I N G
T O O L S

Abstract
Many modelling tools exist for the construction of biochemi-

cal models and generating the final differential equation needed
to make quantitatively simulate. However, these tools are not
compatible with the dQSSA model. In order to overcome this,
a new modelling tool was developed in the MATLAB environ-
ment. Coined SigMat, the tool incorporates other features such
as modelling of protein localisation. It is shown to be intuitive
to use and correctly reproduces the simulation results of a man-
ually constructed model. The capability of the algorithm is also
demonstrated by rapidly generating two network motifs, a sig-
nalling merger and a sustained responder to transient stimula-
tions. These were analysed through parameter perturbation to
understand their behaviour.

The computer code associated with this chapter is publicly avail-
able at the SigMat GitHub repository.
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5.1 introduction

At this stage we have established that the mathematical formal-
ism behind the dQSSA remains consistent when applied to sin-
gle reactions or multiple reactions in a system. The next stage in
the modelling process, is to apply the dQSSA to signalling path-
ways. This immediately presents a challenge because signalling
pathways are often large and involve hundreds of reactions. This
quickly leads to a mathematically complex set of differential equa-
tions that can span dozens of pages [104]. Additionally, different
rate laws may be used for the similar reaction types (e.g. mecha-
nism and empirical rate laws may be used for different enzyme
kinetic reactions). Together, these factors can lead to difficulties in
producing the model correctly and consistently, which can make
published models difficult to independently verify [179]. Even
with the dQSSA formalism, this remains a challenge because the
large lists of ODEs are replaced with large arrays of matrices.

To overcome this difficulty, and to standardise the working
blueprint of biological systems in the scientific community, a mod-
elling standard (the SBML format) was established using the uni-
versal XML format. This is a cross platform, compact, human
readable formalism for describing biochemical systems as a col-
lection of attributes which are needed to unambigiously simulate
the system [89, 181, 182]. Unfortunately the way SBML has been
designed assumes the system differential equation can be con-
structed by simple addition of individual rate equations . This is
not the case for the dQSSA due to the additional prefactor it intro-
duces. Thus the dQSSA model cannot be defined using the SBML
format and is not compatible with existing modelling tools.

Here, a new tool is created to parse models with a structure sim-
ilar to the SBML format but compatible with the dQSSA, mass
action and hill models as well as protein compartmentalisation.
These models are integrated into the modelling algorithm. Fi-
nally, we use this framework to explore a number of theoretical
pathways that can produce biologically interesting behaviour as
a demonstration of the tools.
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5.2 implementing compartmentalisation

5.2.1 Discretised model of compartmentalisation

Compartmentalisation models generally start with a number of
assumptions. Firstly, compartments are internally well mixed with
constant concentration throughout the compartment, allowing it
to be modelled as a deterministic process. Secondly, transport be-
tween compartments is slow compared to the mixing rate within
compartments [102]. When both assumptions are satisfied, trans-
port between compartments can be modelled as elementary reac-
tions [102].

There are many computational tools in the field that incorpo-
rate compartmentalisation. However, a study by Alves showed
that the results generated by many of these tools were non-intuitive
[183]. This is because many are poorly documented and use in-
consistent units (e.g. in one case the rate parameter used for the
transport process is scaled to the absolute size of the compart-
ment while in another it is not). To address this, we will be aiming
to implement compartment transport such that the unimolecular
rate parameter is defined based on the relative geometry between
the relative compartments.

Transport between compartments can be modelled by discretis-
ing Fick’s law of diffusion. The net flux moving from compart-
ment 2 to compartment 1 is described by the following expres-
sions, following the system illustrated in Fig. 28 [183]:

J = D
∂[X]

∂x
(121)

1

A

dX1
dt

= Ps ([X2] − [X1]) (122)

dX1
dt

= PsA ([X2] − [X1]) (123)

where J is the flux into compartment 1,D is the diffusion constant,
X is the absolute number of molecules, [X] is the concentration of
X and their subscripts indicating their originating compartment,
x is the spatial dimension along which diffusion occurs, Ps is the
permeability coefficient and A is the interface area between the
two compartments.

These equations show that diffusion determines the number
of molecules transported as a function of the concentration. In
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Figure 28: Figure showing the physical interpretation of the discretised
model of transport between V1 to V2. X1 within a unit vol-
ume (dash bordered cube) is transported to V2 at a rate of
kap and disperses throughout V2. All X1 within the red vol-
ume of V1 (with a depth of ẑ undergoes this transport process
to form the total transported amount. The red volume is only
a subset of the total volume of V1 because the clear parts of
V1 are too deep within the compartment to be transported to
V2. This affects the accessibility of X1 available to be trans-
ported.

order to determine the rate of change of concentration in each
compartment due to transport, the expressions need to be further
manipulated by normalising to the volume of the compartment
of interest. In other words:

d[X1]

dt
=
PsA

V1
([X2] − [X1]) (124)

d[X2]

dt
=
PsA

V2
([X1] − [X2]) (125)

Where V1 is the size of the compartment which X1 is in. Similarly
for V2.

We note that Ps[X] is similar to the rate equation of a unimolec-
ular reaction. The difference is Ps has units ms−1 while the uni-
molecular rate constant k has units s−1, then we can rewrite Eqns.
124 as:

d[X1]

dt
=
1

V1

(
kapẑA

V2
V2[X2] −

kapẑA

V1
V1[X1]

)
(126)
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This generates the apparent rate constant kap and a combination
of geometry terms. We can break up V1 into z1A1 where z1 is a
characteristic depth of compartment V1.

d[X1]

dt
=
1

V1

(
kapẑA

z2A
V2[X2] −

kapẑA

z1A
V1[X1]

)
(127)

This then allows A1 to be be cancelled out from both the numer-
ator and denominator. Subsequently, ẑ, the transport depth, can
be combined with z1 to form the geometry term r that is the ra-
tio of ẑ and zi, which describes the percentage suppression of
the reaction due to suboptimal interface area to compartment vol-
ume ratio. In this model, kap is then the transport rate when the
interface area to volume ratio is maximised (for instance if a mi-
tochondria is in its most elongated form). r is then the percentage
reduction of the interface area in another scenario compared to
the previously described idealised scenario.

d[X1]

dt
=
1

V1
(rV2k

ap[X2] − rV1k
ap[X1]) (128)

This gives the rate of change due to transport between compart-
ments modelled as a unimolecular reaction. The interpretation of
this is illustrated in Fig. 28. Using this interpretation, kap can be
considered the diffusion rate per unit volume under a geometric
arrangement that maximises molecular transfer between compart-
ments.

5.2.2 Elementary Reactions

It is possible to expand the concept of transport to other rate laws
using the following general expression:

d[Xj]

dt
=

∑
i Ṅi
Vj

(129)

Where Ṅi is the rate equation in terms of absolute molecules num-
ber from reaction i:

Ṅi = riVivi (130)

and can be applied to Eqn. 129 to construct the rate equation for
the species concentration, where vi is the standard rate equation
as discusssed in section 2.3.3.
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An example of a cross compartment unimolecular reaction is
the dissociation of the plasma membrane localised insulin re-
ceptor - insulin receptor substrate complex. The elementary rate
equation would look like Eqn. 128 with ks instead being the uni-
molecular rate constant, ri would be one (as the reaction is never
limited by geometry) and V1 would be the volume where the com-
plex resides. The insulin receptor would remain in the plasma
membrane while the insulin receptor substrate would dissociate
into the cytosol. In this case, Vi is always the volume of the reac-
tant.

The reverse case of complex association deserves some addi-
tional attention due to the choice required for the characteristic
parameters. The two reactants insulin receptor and insulin recep-
tor substrate originate from different compartments with differ-
ent volumes. So what is the appropriate choice for Vi and ri for
this association reaction? Considering the nature of bimolecular
reaction, the reaction can only occur in some volume where both
species are present, and this is physically a thin layer surrounding
the interface between the two compartments. From this consider-
ation, riVi could define the thin volume surrounding the inter-
face. Using the defintion of r we introduced previously, we can
define the volume Vi to be the reacting volume when the geomet-
ric layout of the system is optimised, i.e. r = 1. This means the
entire volume of one of the two compartments is in the overlap-
ping region. This can only be the smaller of the two compartment
volumes. Thus for bimolecular reactions, Vi = min(V1,V2) and
0 6 r 6 1.

5.2.3 Compartmentalising the dQSSA

To determine the correct implemention of compartmentalisation
with the single substrate dQSSA enzyme kinetic model, we will
briefly reanalyse the derivation of the dQSSA (Eqn. 31 and 52-53)
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using the formalism presented in Eqn. 129 and 130. The original
quasi-steady state is:

˙[ES] =
1

Vc

(
raV0k

a[E][S] − Vc(k
c + kd)[ES]

)
= 0 (131)

[ES]Q =
V0
Vc

[E][S]

Km
(132)

˙[ES]Q =
1

Vc

(
V0ra

Km
[S] ˙[E] +

V0ra

Km
[E] ˙[S]

)
(133)

˙[S] =
1

VS

(
−
V0ra

Km
[S] ˙[E] −

V0ra

Km
[E] ˙[S] + k2VP[P]

)
(134)

˙[S] +
V0ra

KmVS
[S] ˙[E] +

V0ra

KmVS
[E] ˙[S] =

k2VP[P]

VS
(135)

˙[E] +
V0ra

KmVE
[S] ˙[E] +

V0ra

KmVE
[E] ˙[S] = 0 (136)

Where V0 = min(VS,VE) as per the bimolecular implementation
of compartmentalisation. From this analysis it can be seen that
the effect of compartmentalisation is that Km is modified by the
relative size of the compartments involved. However, what is in-
teresting is the modified Km is no longer symmetric between the
enzyme, substrate or complex rate equation.

5.3 creation of modelling algorithm

With the framework for compartmentalisation established, it is
now possible to develop the algorithm for solving arbitrarily large
biochemical models. The algorithm we created, called SigMat,
was developed in the MATLAB environment, and is based on
the dQSSA model presented in Eqn. 78. The dQSSA with com-
partmentalisation is:

ẋi =
(
δij +Gijkxk

)−1 [
Vjlmxlxm+

Wjlxl + σj(t) + fj(t,~x)
]
/Vi (137)

The goal of the algorithm is to parse a model that is written in a
similar way to an SBML model file, then dynamically parse it to
construct an ODE in the form of Eqn. 137 and finally solve it cor-
rectly by implicitly including any necessary initialisation steps (as
describe in section 3.4.3). As part of the model parsing and matrix
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generation steps, it is necessary to also determine the components
of the matrix elements that are defined as free parameters in the
model. Thus these need to be efficiently isolated from the matrix
as a whole. In this section we will describe the SigMat model de-
scription convention. This will be subsequently referred to as the
Sigmat format with models described using the convention called
SigMat models).

Fig. 29 outlines the components of a SigMat model and how in-
formation about system architecture and rate laws used is trans-
mitted in the algorithm. In this section, we discuss the motivation
and implementation of these various components and how they
are used to construct the differential equations governing the in-
put model, with an accompany wrapping script that enables the
differential equation to be solved with a varied of ODE solvers.

5.3.1 Layout of SigMat Model Files

The first thing we will discuss in this section is the SigMat format.
The SigMat format is largely motivated by the SBML format. This
is because the SigMat algorithm is ultimately designed to be com-
patible with SBML models used by other biochemical modelling
algorithms that does not currently utilises the dQSSA model. So
in this section we discuss the fundamental components of the
SBML format and then discuss the similarities and differences
with the SigMat format.

Figure 29: Outline of the SigMat algorithm. The components within the
dashed box are components within the algorithm. Compo-
nents outside are passed as inputs to the algorithm and can
be customised.
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5.3.1.1 Overview of the SBML format

The SBML defines some key attributes that describes the physical
environment, interactions, and metrics that are simulated by the
model [181]. Some of the key ones are:

• Species - These are the biochemical species used in the model.

• Parameters - These list and define the parameters in the
model and can either be global to the whole model or lo-
calised to single reactions.

• Compartments - These are places species can reside in. This
can either be a physical compartment or a region species
can become localised in.

• Reactions - These define how species interact with each other.

• Initial Assignment - Defines the initial conditions of the
model in terms of parameters and concentrations.

• Rules - Mathematical relationships between parameters. E.g.
parameters may be multiplicative factors of one another. En-
ables modelling of dynamic changes to compartment size
and rate parameters.

• Constraints - Boundaries for parameters in the model for
fitting purposes.

The features included are very comprehensive with some of
them fullfilling more niche applications than others. As such, for
our algorithm, we focused on implementing the key descriptions.
These were initially species, parameters, compartments and reac-
tions.

Species are all distinct molecular species (e.g. proteins or com-
plexes) and have the additional attributes of compartment ID (de-
fines where it belongs) and either initial amount or concentration
(which is converted to amounts using the compartment size).

Parameters are any other variables such as rate constants or
binding/dissociation constants. This contains no other attributes
except the parameter’s value.

Compartments define distinct locations in the cell and have
the attribute dimensions (e.g. 3 dimensional compartments like
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the cytosol or 2 dimensional compartments like the plasma mem-
brane) and size (in terms of its dimension, e.g. the volume or the
area).

Finally, reactions defines interactions between species using the
following attributes:

• List of reactants. Defined by a numerical ID and stoichiom-
etry that is consumed.

• List of products. Defined by a numerical ID and stoichiom-
etry that is produced.

• List of modifiers. Species that affect reactions but are not
consumed, such as enzymes and inhibitors. Defined by a
numerical ID and stoichiometry when used.

• KineticLaw. Rate law used for the reaction.

• Reversibility. Boolean. Defines if rate parameters can be neg-
ative. Note: does not create the opposing reaction explicitly.

• Compartment ID. Compartment where the reaction occurs.

More detailed information on the SBML format is available through
the technical manual [181].

5.3.1.2 Overview of the SigMat model structure

The model structure shown in Fig. 30 outlines the MATLAB adap-
tation of the SBML format used in the SigMat algorithm. The al-
gorithm needs to perform a few functions:

• determine and define the free parameters required based on
the model structure

• convert the structure into a kinetic equation dynamically

• enable assignment of these free parameters back into the
model when a parameter set is given as a vector

• solve the parameterised time course

There are a number of simplifications between SBML and Sig-
Mat model definitions arising from different design motivations.
While SBML is designed with completeness in mind, SigMat was
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Figure 30: Outline of the way models are constructed in SigMat.

designed with simplicity and streamlining in mind. The most sig-
nificant change is in the way system parameters are handled. In
the SBML format, parameters, rules, initial assignments and con-
straints are defined separately. These are streamlined in SigMat
and handled together. SigMat has retained the SBML approach
of classifying properties such as concentration, compartment size
and kinetic parameters all as parameters. This enables them to all
be treated identically. In SigMat, parameters are assigned as vec-
tors that follow a set of rules. These define whether the parameter
is fixed or free, and their constraints and rules. The specific syntax
for this is described in table 6.
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Following that, the concept of IDs have been completely re-
moved because index associate with each system attribute can be
used as an identifier, making the inclusion of a separate identifier
redundant. Reversibility is also removed because reactions should
be defined as elementary reactions, which means reversibility
can be explicitly implemented. The dimensionality and units at-
tributes were also removed as it has no functional significance
on the mathematics. In SigMat, the assumption is units are self
consistent within a model.

Based on these design decisions, the final SigMat framework
that was adopted is shown in Fig. 30. Species and compartments
are created using cells arrays where each row in the array corre-
sponds to a distinct species or compartment. The first column is
the name of the species/compartment and each subsequent col-
umn encodes the various associated attributes. Compartments, as
with the SBML structure, has the additional numerical attribute
size. Species on the other hand, analogous to SBML, has the addi-
tional compartment attribute (linked to the compartment name),
and the initial assignment numerical attribute.

Reactions are encoded using a structure instead. This is because
the content of the structure is more complex and requires more
flexibility. As there are no fields that are universally required for
all reactions (e.g. a synthesis reaction has no substrate, a degra-
dation reaction has no product and elementary reactions do not
have enzymes). In order to cover all possible reactions, all fields
are initialised for all reactions as part of the variable structure.
For the reaction parameters, the available fields are, these are:

• Reaction rates (from elementary reactions such as ka, kd of
Eqn. 9)

• Equilibrium constant (such as dissociation constants Ki of
Eqn. 101 or Michaelis constants Km of Eqn. 15)

• Hill coefficient (as part of the hill function)

• Interface coefficient (r are defined in the compartmentalisa-
tion formalism derived in section 5.2.1)

The inclusion of all fields for all reactions are important in
the dynamic construction of the system differential equation. The
user is only required to complete the fields that are relevant for



Table 6: Rules relating to how parameters should be assigned and how they are interpreted by SigMat.

Elements in 1 2 3 4

vector

Parameter Unconstrained free Grouped parameters Ungrouped free Constrained reference

Interpretation or fixed related by a factor. but constrained parameter of a group

Syntax - NaN or positive - First value is NaN or a number - First value is - First value is NaN

- Second value must be a positive NaN - Second value must be

integer - Second and third a positive integers

values must be a - Third and fourth val-

positive ues must be a positive

Syntax - If NaN, parameter - If first value NaN, it is the - Second and third - The second value def-

Definition is free and uncon- group’s reference parameter and values defines the ines the group of of

strained. is unconstrained. Else the number range the paramet- parameters it is in.

- If number, then is the multiplicative factor that er is constrained - Third and fourth val-

fixed parameter parameter is to the reference. within. ues defines the range

- The second value defines the the paramemter is con-

group the parameters is in. strained within.
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that particular reaction after which SigMat handles the rest. This
will be discussed in the following section 5.3.2.2.

And finally, a link to the rate law support function is included
for users that wish to compile their model with a custom dynamic
equation inference algorithm. This is implemented through the
~f(t,~x) term in the dQSSA equation (Eqn. 78).

5.3.2 Dynamic Inference of Rate Equation and its Matrix Com-
position

To generate the system of governing differential equations from a
model file, the final algorithm performs the following steps:

1. Converting the human readable components of the model,
more specifically reaction equations, into a mathematical
reference appropriate for computation

2. Parsing the model file to a model structure that can dynam-
ically determine the rate equations necessary for each reac-
tion

3. Populating the matrices in Eqn. 137 based on the rate equa-
tions inferred from the model

4. Placing the matrices within the generalised differential equa-
tion

5. Numerically solving the differential equation

The following sections will describe each of these steps in turn.

5.3.2.1 Model Interpretation and Parsing

Model interpretation is the conversion of the model from human
readable elements (such as compartment name or reaction equa-
tions) to a mathematical reference (such as the compartment in-
dex in its cell array). This enables species and compartments to
be referenced by their indices rather than by multiple string com-
parisons which is less computationally efficient.

Compartments are the first attributes to be processed as they
have no other dependencies. The conversion is simply performed
by isolating the first column of the array and identifying as the



5.3 creation of modelling algorithm 113

compartment name array. The Second column is then converted
to a numerical array.

Species are processed next as they depend only on the com-
partment attribute. In the model file, compartments are referred
by name. Using the array of compartment names, the second row
of the species array is converted to a compartment index. This
results in a cell array structure that has the species name as its
first column, compartment index in the second column, and ini-
tial concentration in the third column. Each of these arrays were
then separated out and the latter two converted to numerical ar-
rays. The names array will be referred to as the master species
list.

Reactions are processed in a different way. This is because in-
terpretation of the reaction involves classifying the rate equation.
Each reaction is processed separately. The first step is to convert
all species to their respective species index by comparing it to the
master species list. Then the reaction type is inferred based on the
follow attributes within each reaction:

• The number of substrates

• The number of modifiers such as enzymes or inhibitors

• Whether rate/equilibrium/Hill coefficients/other parame-
ters are defined as necessary parameters

From there, the reaction velocity is determined based on the reac-
tion type and its associated rate law in the rate law file. It should
be noted that users are able to create their own rate law file. The
description will only cover the default rule set prepacked with
the SigMat algorithm, also known as the odeKinetic rule set. Cur-
rently, the reaction types covered in the odeKinetic rule set are the
elementary reactions synthesis, degradation (zeroth order), uni-
molecular (first order), bimolecular (second order) and elemen-
tary reaction like simplifications of enzyme kinetic reactions, and
more complex enzyme kinetic reactions: dQSSA model and Hill
functions. Table 7 summarises the inference logic and the result-
ing reaction velocities that are relevant for each reaction type.

From this reaction velocity, the reaction rates relevant to the
system can be compiled by subtracting and adding the reaction
velocity to all substrates and products respectively. This gives a
list of reaction velocities that need to be combined to form the
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Table 7: Rules relating to reaction rates are inferred from the structure
of the reaction that is parsed by SigMat. Dashed line separates
groups of reactions that use rate laws of the same form.

Substrate Enzymes Products k Km n rate law

Synthesis 7 7 > 1 3 7 7 v = k

Enzymatic synthesis
7 7 > 1 3 7 7 v = k[E]

High Km

Degradation/ 7

Conversion/ 1 7 1 3 7 7 v = k[S]

Dissociation > 1

General enzymatic 1 3 > 0 3 3 7 v = dQSSA

Hill function 1 3 > 0 3 3 3 v =
k[E]n

[E]n+[Km]n

High Km enzymatic 1 3 > 0 3 7 7 v = k[S][E]

Association 2 7 1 3 7 7 v = k[S1][S2]

system rate equation. In SigMat, instead of compiling the list of
reactions velocities as functions, they are converted to matrix no-
tation, with each rate parameter fitting inside a tensor for each
reaction type. The advantage of this approach is instead of stor-
ing the reaction velocities as explicit equations which would need
to be parsed as text using a complex algorithm, the reactions can
now be stored as arrays and constructed using matrix operations.
The general vectorised equation is implemented as below using
tensor notation, and incorporating the modifications required to
account for compartmentalisation:

Vjẋj =

dQSSA︷ ︸︸ ︷(
δjk +Gijkoxk/Vo

)−1 2nd order︷ ︸︸ ︷
Y ilmoxlxmVo+

1st order︷ ︸︸ ︷
ZiloxlVo+

0th order︷ ︸︸ ︷
σioVo +

Hill︷ ︸︸ ︷
HiloxlVo+

custom︷ ︸︸ ︷
fi(t, x)

 (138)

where V is the vector of compartment size for each species. The
remaining are as defined in Eqn. 78.

Section 3.4.2 has already covered how the G tensor (which cov-
ers the quasi-steady state component) is populated for reactions
using the dQSSA model. The general rules for the elements of the
remaining tensors are:
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Table 8: Index assignment for matrices within Eqn. 138 for each reaction
type

Reaction type index for l index for m index for o value Matrix

Zeroth order 7 7 product k0 σj

First order reactant 7 substrate k1 Vjlmo

Second order substrate 1 reactant 2 min(V1,V2)* k2 Wjlo

Hill function substrate 7 min(V1,V2)*
k[E]n

[E]n+Km
Hilo

dQSSA complex 7 min(V1,V2)* kcat Wjlo

*smaller volume of reactants if from different compartments

• within a term (e.g. NjloxlVo), the j index is the species for
which this reaction actually acts on. It is not i because i is the
quasi-steady state rate of change, after the non-quasi-steady
state rate change is modified by the dQSSA prefactor.

• the sign of the element is positive for products and negative
for reactants.

Beyond this, there are specific rules regarding the other indicies
that are different for different reaction types. These are outlined
in table 8. Once the matrices are constructed in accordance to the
specified rules, matrices are non-dimensionalised for time. More
specifically this includes but its not limited to the following trans-
formation for the first and second order rate parameters (such as
ka and kd):

k̂ = k (tend − t0) (139)

where hat indicates the non-dimensional version of their non-
hat counterpart. In terms of Eqn. 138, this implies that elements
within tensors Y , Z, σ and ~f(t, x) need to be non-dimensionalised.
Non-dimensionalisation is performed to prevent floating point er-
rors that may be generated in the numerical simulation process.

The dynamic equation is solved in three stages. First, all com-
plexes from the initial condition are dissociated. This needs to be
done manually. For example, if the biological initial condition is
[S] = 1, [E] = 2 and [ES] = 0.3, where S is the substrate, E is
its enzyme and ES is the enzyme-substrate complex they form,
then [ES] must be manually added to [S] and [E] to form the
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equilibration initial condition for the simulation, which is then
[S] = 1.3, [E] = 2.3 and [ES] = 0. The equilibration initial con-
dition is then entered into SigMat. Next, the simulation initial
condition is solved by setting all matrices except G to zero and
adding the equilibration initial conditions to the simulation with
a time profile shown in Eqns. 97, and solving between the times
t = [0, 1] (because as explained in section 4.2.1, this time interval
allows the simulation to fully equilibrate, given the definition of
the time profile used to add the equilibration initial condition into
the system (Eqns. 97). Finally, all matrices are set to their nominal
values and the simulation run from t̂ = [0, 1] because the system
parameters have already been non-dimensionalised within this
interval.

5.3.2.2 Dynamic Adaptation of Matrices to Free Parameters

The previous section covered the construction of the matrices
from the system’s list of reactions. However, we have not cov-
ered free parameters within the model. To do this requires a few
additional steps in the matrix compilation process. These are:

1. Determining the free parameters in the model

2. Constructing matrices without committing a value by creat-
ing pre-matrices

3. Efficiently apply the values into the pre-matrices in a com-
putationally efficient way

Free parameters can be determined using the criteria given in
Table 6. When the free parameters are identified, the model pars-
ing stage is able to determine which element within which matrix
the parameter belongs. This is all done by referencing the matrix
element to the index of the vector of free parameter, rather than
directly assigning the parameter. This enables the pre-matrices to
be pre-generated without requiring an explicit parameter set to be
known. This means SigMat models only need to be parsed once
rather than everytime a new parameter set is required, leading to
improved computational efficiency. Thus, the pre-matrix needs to
include
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Table 9: Overview of the layout of the Matrix value pre-matrix. Cells
marked as Target Rate, Reactant, Substrate and Enzyme indi-
cate their indices. Crosses indicate unused columns.

Reaction MV pre-matrix column index
type 1 2 3 4 5 6 7

Zeroth order Target Rate k0 7 7 7 7 7

First order Target Rate Reactant r k1 7 7 7

Second order Target Rate Reactant 1 Reactant 2 r k2 7 7

Hill function Target Rate Substrate Enzyme r k Km n

dQSSA indices as explained previously r Km 7 7

1. Matrix value (MV) pre-matrix: a pre-matrix that encodes the
element reference for the parameter and information relat-
ing to the actual parameter value.

2. Parameter Index (PI) pre-matrix: a pre-matrix that encodes
a reference to an index of the free parameter vector

The matrix value pre-matrix is arranged such that columns in-
dicate different features of a single reaction, while rows encode
different reactions (or different targets of a single reaction). In this
case, features refers to things like the indices i, l or m (o is not
included as it can be inferred from the other indices), and param-
eter values. More specifically, the layout of the pre-matrices are
shown in table 9. The definition of the number in the parameter
values field in the Matrix value pre-matrix varies depending on
whether the parameter is free or not. If the parameter is fixed,
the value in the pre-matrix is the final value used. On the other
hand if the parameter is free, then the value in this matrix is the
multiplicative factor (which is relevant if the parameter is a mul-
tiplicative factor of another parameter, as discussed previously).

The Parameter Index pre-matrix mirrors the Matrix Value pre-
matrix. For elements in the MV that represent state indicies, the
equivalent element in the PI is NaN. This indicates the equivalent
MV element is not linked to a value in the vector of free param-
eters. On the other hand, where for elements in the MV that rep-
resent parameters, the corresponding element in the PI element
contains the index in the free parameter vector which it is linked
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to. If the element is zero, the parameter is fixed (since a vector
index in MATLAB cannot be zero). With this convention, free pa-
rameters can be replaced inside the MV, and the multiplicative
factors for grouped parameters be accounted for using the effi-
cient logical indexing capability of MATLAB. The MATLAB code
used to perform this can be summarised as:

mask = PI~=NaN|PI~=0

MV_Sub[mask] = MV[mask] .* p[PI[mask]]

Where MVSub is the MV matrix with the required parameter vec-
tor values substituted in, and p is the set of input parameters.
The mask only selects elements that contain free parameters for
replacement. Basically what this operation does is only for free
parameters, select the right parameter from the input list, and
then multiply it by the necessary multiplicative factor.

The ODE can then be then compiled by either constructing a
real matrix from the MV prematrix, and then using matrix op-
erations to calculate the differential equation, for example in the
case of first order reactions the following MATLAB code might
be used:

dxdt = sparse(MV_Sub[:,1],MV_Sub[:,2],MV_Sub[:,3])*(x.*V)

Where MV_Sub is the first order reaction matrix value prema-
trix. The sparse function constructs the pre-matrix into a true ma-
trix. Alternatively they can be compiled using the columns in the
MV pre-matrix as reference indices (e.g. species concentrations
or compartment size). For example a second order rate velocity
would be compiled by the following MATLAB code:

dxdt = sparse(MV_Sub[:,1],ones(size(MV_Sub[:,1])),...

min(V[MV_Sub[:,2]],V[MV_Sub[:,3]]) *...

MV_Sub[:,4] * x[MV_sub[:,2]] * x[MV_sub[:,3]])

The sparse function in this case generates the vector representing
the ODE directly.

5.3.3 Validation of the SigMat Algorithm

To ensure that the algorithm parses, compiles and simulates the
model correctly, a series of test cases were created. From chap-
ter 4 we have established that the degree of accuracy the dQSSA
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can produce compared to a mass action implemention and the pa-
rameter conditions required to reproduce this performance. Thus,
if the SigMat algorithm correctly implements the dQSSA, then
we would expect the SigMat algorithm to have the same perfor-
mance. Afterall, the SigMat algorithm is simple a combination
of the mass action model and dQSSA for larger networks. Thus a
number of test cases were generated where the SigMat model was
constructed in parallel with a manually written equivalent. The
two models were simulated together and then compared. One
test case was designed for each of the reactions described in Ta-
ble 7 except for the enzyme kinetic model, where an irreversible
case and a reversible case was designed to test the two facets of
enzyme kinetic models. This was designed to ensure that each
reaction is modelled by the algorithm correctly.

Finally, the complex model used to validate the dQSSA in sec-
tion 4.3.1 was converted to a SigMat model and compared to
the manually constructed mass action based series of differen-
tial equations. This was designed to verify that the algorithm cor-
rectly combines multiple reactions together into a interconnected
biochemical system.

In each of these test cases, the models were designed to pass in
parameters sets as an input. These parameters sets were then ran-
domised in order to test the performance of the algorithm under
all parameter conditions subject to the parameter limits for the
dQSSA as described in section 4.2.1. Rate parameters and concen-
tration parameters were generated using the random generator:

log (φ) = rand [−2, 2] (140)

because rate parameters are scale parameters, and a four order of
magnitude range is typically sufficient to cover various extremes
in system behaviour, particularly in the location of the system
equilibrium. The Hill coefficient was generating using the gener-
ator:

n = rand [1, 4] (141)

and volumes were generated using the generator:

V = rand [0, 1] (142)
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Table 10: Spread of the log transformed, normalised error for each re-
action type when simulated with sigMat compared to when
modelled with a manually compiled mass action model. A
value of -2 equates to an error of 1%, with lower values equat-
ing to lower errors.

Reaction minerr µerr − σerr µerr µerr + σerr maxerr

Synthesis -Inf -15.9 -15.5 -15.3 -14.9503
Conversion -3.35 -2.84 -2.58 -2.32 -2.02
Dissociation -3.49 -2.95 -2.69 -2.43 -2.18
Degradation -3.42 -2.72 -2.55 -2.39 -2.30
MM Synthesis -6.77 -4.42 -3.83 -3.23 -2.78
Association -3.48 -3.08 -2.80 -2.52 -2.18
High Km Enzymatic -15.78 -7.05 -3.76 -0.48 -2.21
High Km Enzymatic

-5.17 -3.12 -2.68 -2.23 -2.23
degradation

dQSSA irreversible -6.00 -4.80 -4.24 -3.67 -2.76
dQSSA reversible -6.02 -4.80 -4.18 -3.58 -2.38
Hill function -5.42 -3.31 -2.78 -2.24 -1.77
Complex Model -2.88 -2.66 -2.46 -2.26 -1.98

The differential equations were then solved using the algorithm
options described in section 4.2.1 such that the previous results
would be directly comparable to these results.

The accuracy for all models except for the dQSSA model was
evaluated using the following equation:

errtot = log10

√√√√∑
i

∑
t

(
YMA − YAlg

maxt (YMA)

)2 (143)

where t is across the time points and i is across the states. Sub-
script Alg indicates the output generated by the SigMat algo-
rithm. The accuracy for the dQSSA models are generated using
the equation given in Eqn. 100, i.e. the same equation used to eval-
uate the accuracy of the dQSSA when it was validated in silico.

The results of these test cases are shown in Table 10. From these
results, it can be seen that the models generated by the SigMat al-
gorithm has negligible error compared to their manually written
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counter parts. This indicates that the SigMat algorithm is able to
automatically generate system equations without error.

5.4 network motifs in signalling

With the SigMat toolbox completed, it is possible to efficiently
utilise the dQSSA framework to investigate signalling pathways.
Although the main procedure for investigating signalling path-
ways is through the cyclical process of model construction, model
analysis, experimental validation and biological analysis, it is pos-
sible to perform smaller theoretical studies of distinct network
motifs [184]. Investigation of these are interesting as they aid in
the interpretation and prediction of network behaviours through
modularisation of pathways into these discrete motifs. From there,
the system wide behaviour would be constructed by combining
the effects of the discrete motifs.

In this section, we will describe two motifs that have been en-
countered in this thesis and explore their behaviours as they are
of interest to signalling pathways in general.

5.4.1 Merging of Signalling Inputs

A common feature of signalling pathways appears to be their
hour glass like structure which we described in Fig. 4[16]. One
of the key component of this behaviour is the existence of vari-
ous distinct receptors (with their respective ligand) whose down-
stream targets are identical [185, 186]. This is unusual because
the distinction between receptor imply that they should perform
different functions, even though they activate the same pathways
[185, 186]. In the case of receptor tyrosine kinases (RTKs), their
downstream targets commonly activate the PI3K and Akt path-
ways [185, 186]. Furthermore, most RTKs autophosphorylate (and
thus activate) itself upon binding to their ligand. However, the
insulin receptor, a member of the RTK family, is unique in is
separated into two components with the receptor tyrosine kinase
component residing within the Insulin Receptor Substrate (IRS)
protein [185].

To investigate the difference between having a separate and
embedded tyrosine kinase component from the receptor itself, we
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Figure 31: Model layout of (a) a single receptor that is the target of two
ligands (b) two receptors with distinct ligands that target a
common substrate. Panels (c) and (d) presents the reaction
schemes used to model the network motif. In (c) the PI3K
components (dashed line components) are not explicitly mod-
elled because it is a direct substrate of pIR so is assumed to
simply transfer the signal of pIR forward. All enzymatic re-
actions are modelled using the dQSSA raw law. All other
reactions are modelled with first order mass action rate law.

constructed two models. One with two ligands binding to a single
receptor, and a second with two ligands binding to two separate
receptors which then activate the same downstream target. We
then tweaked the parameters and ligand concentration to inves-
tigate the downstream effects of these perturbations. Biological
examples of these two models are illustrated in Fig. 31. The Sig-
Mat model used for these two cases are:

Model: Single Receptor | Model: Double Receptor

modSpc ={’Insulin’ ,’Cytosol’,0 ;| modSpc ={’Insulin’ ,’Cytosol’,NaN;

’IGF-1’ ,’Cytosol’,0 ;| ’IR’ ,’Cytosol’,1 ;

’IR’ ,’Cytosol’,1 ;| ’pIR’ ,’Cytosol’,0 ;

’pIR’ ,’Cytosol’,0 ;| ’PDGF’ ,’Cytosol’,NaN;

’Phosphatase’,’Cytosol’,NaN};| ’PDGFR’ ,’Cytosol’,1 ;

| ’pPDGFR’ ,’Cytosol’,0 ;

| ’PI3K’, ,’Cytosol’,1 ;

| ’pPI3K’ ,’Cytosol’,0 ;

| ’Phosphatase’,’Cytosol’,1 };

|

modComp = {’Cytosol’,1}; | modComp = {’Cytosol’,1};

|
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rxn(end+1).label = ’IR -> pIR’; | rxn(end+1).label = ’IR -> pIR | Insulin’;

rxn(end).sub = ’IR’; | rxn(end).sub = ’IR’;

rxn(end).prod= ’pIR’; | rxn(end).prod= ’pIR’;

rxn(end).enz = ’Insulin’; | rxn(end).enz = ’Insulin’;

rxnv(end).k = NaN; | rxn(end).k = NaN;

rxn(end).Km = NaN; | rxn(end).Km = NaN;

rxn(end+1).label = ’IR -> pIR’; | rxn(end+1).label = ’pIR -> IR’;

rxn(end).sub = ’IR’; | rxn(end).sub = ’pIR’;

rxn(end).prod= ’pIR’; | rxn(end).prod= ’IR’;

rxn(end).enz = ’IGF-1’; | rxn(end).enz = ’Phosphatase’;

rxn(end).k = NaN; | rxn(end).k = NaN;

rxn(end).Km = NaN; |

rxn(end+1).label = ’pIR -> IR’; | rxn(end+1).label = ’PDGFR -> pPDGFR | PDGF’;

rxn(end).sub = ’pIR’; | rxn(end).sub = ’PDGFR’;

rxn(end).prod= ’IR’; | rxn(end).prod= ’pPDGFR’;

rxn(end).enz = ’Phosphatase’; | rxn(end).enz = ’PDGF’;

rxn(end).k = NaN; | rxn(end).k = NaN;

| rxn(end).Km = NaN;

| rxn(end+1).label = ’pPDGFR -> PDGFR’;

| rxn(end).sub = ’pPDGFR’;

| rxn(end).prod= ’PDGFR’;

| rxn(end).enz = ’Phosphatase’;

| rxn(end).k = NaN;

|

| rxn(end+1).label = ’PI3K -> pPI3K | pPDGFR’;

| rxn(end).sub = ’PI3K’;

| rxn(end).prod= ’pPI3K’;

| rxn(end).enz = ’pPDGFR’;

| rxn(end).k = NaN;

| rxn(end).Km = NaN;

| rxn(end+1).label = ’PI3K -> pPI3K | pIR’;

| rxn(end).sub = ’PI3K’;

| rxn(end).prod= ’pPI3K’;

| rxn(end).enz = ’pIR’;

| rxn(end).k = NaN;

| rxn(end).Km = NaN;

| rxn(end+1).label = ’pPI3K -> PI3K’;

| rxn(end).sub = ’pPI3K’;

| rxn(end).prod= ’PI3K’;

| rxn(end).enz = ’Phosphatase’;

| rxn(end).k = NaN;

The mechanism of receptor activation involves a ligand - recep-
tor binding and dissociation steps, and an autophosphorylation
step [149, 154]. Mechanistically, this is very similar to an enzyme
kinetic reaction with the ligand performing like an enzyme and
so some models have taken to modelling receptor activation as
an enzymatic process [127]. The same enzyme kinetic assump-
tion were made in our receptor model. To understand the gen-
eral behaviours of the system independent of the actual receptor
concentration, the system is non-dimensionalised to the recep-
tor concentration. In the two receptor model, the two receptors
were made the same concentration, and this concentration was set
as the reference concentration for the whole system. This means
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[IR] = [PDGFR] = 1 µM. All dephosphorylation reactions are also
modelled as enzymatic reaction with a large Km. This assumes
that the phosphatases have low concentration, are unregulated
and constitutively active, and uniquely targets its phosphopro-
tein monogamously. While the study of phosphatase are still in
their infancy, some phosphatase (such as PP2A) have been found
to have a high concentration of few catalytic subunit [14] which
combine with many lower concentration [14] regulatory subunits
that confer specificity to the phosphatase’s action [20]. This prop-
erty of phosphatases suggests that this assumption could be true
in vivo. This assumption allows the dephosphorylation reactions
to be modelled as first order mass action reactions.

From there, we start with the first order approximation that the
Km of all reactions are very large (i.e. Km > 100µM). The other
kinetic parameters are chosen such that effective dose at 50% ac-
tivity (ED50) for the receptor is 1 µM (this is because changes
in the catalytic rate/phosphatase concentration only shifts the
ED50 of the reaction). Finally the concentration of PI3K is made 50
times larger than the concentration of the receptors/receptor sub-
strate such that substrate limitation effects do not become present
downstream. This assumption appears to hold in some in vivo
circumstances. Proteomic study of 3T3-L1 adipocytes, where sig-
nal transmission is through insulin receptor and IRS1, showed
that PI3K and IRS1 abundance is equal. However, since PI3K is
a membrane bound protein and IRS1 is cytosolic, it could be in-
ferred that PI3K concentration in the membrane is much later
than IRS1 in the cytosol [14].

Using this setup, the output concentration (that is active PI3K
concentration) at steady state is measured under different doses
of the two ligands in both models. The result of this is shown in
Fig. 32. The simple addition of two separate receptors for each
ligand changes the behaviour of the dose response of the down-
stream substrate. In the case of the one receptor system, the down-
stream substrate no longer becomes responsive if any of the lig-
ands saturate it. On the other hand, the two receptor model ac-
tually sums the results of the two inputs, even if one ligand has
reached a maximum level of stimulation. It must be noted that
this model assumed equal concentrations of the two receptors.
Although this is not expect to be true in a physiological system,
changes in the concentrations on a particular receptor will simply
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Figure 32: Result of the pPI3K output at steady state for the (a) single
receptor model, and (b) two receptors model, under different
doses of the their respective ligands.

shift the ED50, or the sensitivity of the system to that particular
ligand. Further more a high receptor concentration could cause it
to shift its maximum PI3K activation capacity which can be seen
as a lever that is available to the cell in deciding which activation
arm is prioritised in downstream activation, such that the two in-
puts are not summed with equal priority. This result suggests that
when multiple ligands (such as Insulin and EGF) directly target
a receptor, they compete to trigger a downstream signal. On the
other hand, when multiple ligands transmit signals through their
own dedicated receptor (Insulin and PDGF), their individual sig-
nal will always be transmitted downstream when the signalling
pathway merges. This may be an indication of how cells can trans-
mit different signals through a common pathway without loss of
fidelity.

5.4.2 Sustained Response from Transient Stimulation

More recent studies of signalling pathways have explored the im-
pact of temporal control, such as frequency modulation, on phe-
notypic responses [74, 187, 188]. Some of these models demon-
strate that certain arms in the signalling pathway are fast acting
and respond to all stimulations. Others, are slow acting and be-
come blind to acute stimulations [74]. This is offered as a way that
cells exhibit different behaviours while stimulated by the same
signalling protein. An in vivo example of this is the stimulation of
MAPK in PC12 cells. A sustained MAPK activity leads to differen-
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tiation, which is expected as a sustained stimulation necessarily
leads to sustained responses. However, transient response MAPK
activity on the other hand leads to some sustained response that
results in cell proliferation [189, 190]. In most mathematical mod-
els of these signalling systems, substrates activated by a transient
stimulation would themselves respond transiently. Alternatively
a sustained but binary output can be produced using a positive
feedback mechanism. However, this in vivo example shows that
there are biological circumstances where a transient stimulation
can lead to a sustained response with a range of output strengths.
Thus, there must be a mechanism for a system to activate and sus-
tain the downstream components in a dose dependent manner.

Using theoretical arguments, we designed the following sig-
nalling motif as illustrated in Fig. 33, which we coin the "transient
stimulation responder". In a typical enzymatic cyclic reaction, the
enzymatic activation of protein is only dependent on the dose
of the activating enzyme if there is a balance between the acti-
vating enzyme and a deactivating enzyme. When the stimulus is
removed, the balance shifts such that the deactivating enzyme is

Figure 33: Illustration of the proposed signalling motif that will lead to
a sustained signal upon transient stimulation. All enzymatic
reactions are modelled using second order mass action rate
laws. All other reactions are modelled with first order mass
action rate law. Species with dashed outlines are inactives
with species with solid outlines are active.
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the only active enzyme in the system. Thus the final equilibrium
results in all biotransducer in the system to become deactivated.
For the biotransducer to remain active given a transient stimula-
tion of the activating enzyme, the deactivating enzyme must itself
be deactivated after the stimulus is removed. In the specific case
illustrated by Fig. 33, the phosphatase itself must thus be regu-
lated by the stimulus Akt.

When this is attempted in simulation, it was discovered that
this needs to happen quickly such that the phosphatase cannot
deactivate the target protein. Additionally, the deactivation of the
first target (in the case of Fig. 33 the transient substrate) also needs
to happen quickly to prevent it hyperactivating the downstream
transducer while the phosphatase is deactivating. Thus this net-
work motif exists in two regimes. The first regime is the activation
and deactivation of the upstream enzymes and phosphatase. Af-
ter this has happened quickly, the activation of the downstream
target (the biotransducer in this case) happens at a more mod-
erate rate that only detects the time averaged effects of the up-
stream components. During this phase, the concentration of the
activated phosphatase needs to be near constant irrespective of
the strength of the upstream signal. In other words, phosphatase
activation must be saturated. This implies that the ED50 of the
phosphatase must be far higher than the ED50 of the transducer.
The SigMat code used to generate this model is:

modComp = {’Cyto’, 1};

modSpc = {’I’ ,’Cyto’,0;

’A’ ,’Cyto’,1;

’pA’ ,’Cyto’,0;

’B’ ,’Cyto’,1;

’pB’ ,’Cyto’,0;

’Phos’ ,’Cyto’,1;

’ActPhos’,’Cyto’,0;};

rxn(end+1).desc = ’A -> pA | I’;

rxn(end).sub = ’A’;

rxn(end).prod= ’pA’;

rxn(end).enz = ’I’;

rxn(end).k = 100;

rxn(end+1).desc = ’pA -> A’;

rxn(end).sub = ’pA’;

rxn(end).prod= ’A’;

rxn(end).k = 100;

rxn(end+1).desc = ’B -> pB | A’;

rxn(end).sub = ’B’;

rxn(end).prod= ’pB’;

rxn(end).enz = ’pA’;

rxn(end).k = 0.1;

rxn(end+1).desc = ’pB -> B’;

rxn(end).sub = ’pB’;
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Figure 34: Time course and dose response of the transient stimulation
responder network motif.

rxn(end).prod= ’B’;

rxn(end).enz = ’ActPhos’;

rxn(end).k = 0.1;

rxn(end+1).desc = ’Phos -> ActPhos | pA’;

rxn(end).sub = ’Phos’;

rxn(end).prod= ’ActPhos’;

rxn(end).enz = ’pA’;

rxn(end).k = 1000;

rxn(end+1).desc = ’ActPhos -> Phos’;

rxn(end).sub = ’ActPhos’;

rxn(end).prod= ’Phos’;

rxn(end).k = 100;

In this model (shown in Fig. 34) with input as Akt and output
as the active biotransducer, large Km’s were assumed to be much
larger than all enzyme concentrations in order to reduce the pa-
rameter range of the model. This generally assumes a low con-
centration of enzyme-substrate complexes. This enables the enzy-
matic reactions to be second order mass action reactions. Thus,
all concentrations are also set to one because the rate velocity in
a second order rate law is proportional to both the catalytic rate
and enzyme concentration, so changing the former is equivalent
to changing the latter. As a test, the ED50 of the phosphatase ac-
tivation was set at 0.1 by varying the reaction rate of the forward
and reverse reactions. The ED50 of the other reactions were set at
1 using a similar method. The ability for the motif to sustain a
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Figure 35: Dose response of the transient stimulation responder net-
work motif with different rate at which the stimulus is re-
moved (shown in this figure as t 1

2
). At small stimulus re-

moval times (t 1
2
≈ 1 s), the dose response is a typical sig-

moidal curve. At an intermediate stimulus removal half time
(t 1

2
≈ 20 s), the output behaves like a log-linear converted

(shown in the black line) with a broadened dose response.
At large stimulus removal times (t 1

2
≈ 10, 000 s), the dose

response becomes binary at low dose.

transient signal was tested by making a step like stimulation for
120 s with an initial transient phase of 0.1 s. After that the stim-
ulation was quickly removed at a constant rate with a half time
of 0.1 s. The system is then allowed to equilibrium for another 80
s when the steady state measurement was obtained. Initially all
species have a concentration of 1 in their inactive forms. The re-
sulting time course, when applied with a dose of 1 A.U., is shown
in Fig. 34a. This was simulated for a range of stimulation doses.
The maximum output, which is the output at steady state during
stimulation, and the sustained output, which is the output after
removal of the stimulus, were recorded and compared to each
other in Fig. 34b.

Although this network motif is able to convert a transient stim-
ulation into a sustained output, it currently requires a step-like
addition and removal conditions. The system is less able to sus-
tain the signal if the stimulation is removed slowly. In Fig. 35 the
stimulation is removed at a constant rate with a half time of be-
tween 1 s and 10,000 s (approximately 1 day). As removal half
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life increases, two effects are observed. Firstly, at lower doses, the
system spends longer without the phosphatase being fully acti-
vated. This has the effect of increasing the biotransducer activity
at steady state. Secondly, the amount of time available for the
phosphatase to attenuate the signal increases at large doses, and
this leads to a decrease in the sustained output. Both of these
combined means that at an intermediate half time (about 20 s),
the steady state biotransducer activity is boosted at low doses
but suppressed at high doses. This overall leads to a broader bio-
transducer active range with respect to the stimulus. As the half
time increases beyond this, the dose response eventually flattens
to become like a binary dose response curve. Thus, this network
motif produces a number of emergent behaviour that can be sum-
marised as:

• At low stimulus removal half times, the active biotransducer
exhibits a standard sigmoidal dose response even when the
signal is completely removed.

• At intermediate stimulus removal half times, the active range
of the transducer to the stimulant is greatly broadened.

• At large stimulus removal half time, the active biotrans-
ducer begins to act as a binary switch.

5.5 discussion

Although a large number of biochemical modelling tools are avail-
able, none have the capacity for incorporating an additional divi-
sive term to a system of rate equations that is necessary for the
dQSSA model [183, 191]. As the size of studied biochemical net-
works increase, there is also an increased need to automate the
generation of mathematical models of these networks. This ne-
cessitated the development of a new tool for modelling complex
signalling pathways that can automatically generate models that
use the dQSSA enzyme kinetic model. Additionally, common fea-
tures among biological modelling tools, beyond modelling of ki-
netic pathways, is the modelling of multiple compartments and
compatibility with the SBML format [183]. Given these design
requirements, the dQSSA was further developed to include com-
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partmentalisation. This theoretical framework was then used as
the basis of the algorithm.

The result of the work in this chapter is the SigMat MATLAB
toolbox. Using a set of test scenarios, we showed that the tool-
box accurately reproduces the simulation results achieved by a
pure mass action model. This shows that the implementation
of the code not only faithfully and accurately compiles the rate
equation of a model written using the SigMat format, but also
correctly incorporates compartmentalisation, particularly in the
dQSSA model. Furthermore, the ability for the SigMat algorithm
to reproduce the complex network demonstrates the reliability
and robustness of the algorithm

The key motivation for the creation of the SBML format is to ad-
dress inconsistency between mathematical models implemented
by different researchers by offering a compact standardised for-
mat [179]. The SigMat model format can achieve the same goal as
its models can be fully defined with only two modules of the pro-
gram: the model file and the rate definitions. Beyond this, the Sig-
Mat toolbox also contains three additional advantages compared
to manual generation and curation of models of biochemical net-
works.

Firstly, the goal is that the software describes the reaction net-
work in question as a list of reaction equations. This enables the
reaction structure of the network to be available at a glance, rather
than as a series of differential equation. This is similar to the
SBML format which only includes a list of system compartments,
a list of system species, and a list of system reactions [179, 181].
This has advantages over algorithms such as Sim Biology, which
requires the modellers to manually enter the differential equation
for all system states.

Secondly, it compactly and unambiguously defines rate laws by
inferring reaction types through an unambigious series of criteria
and then assigning each reaction type with a corresponding rate
law that is automatically generated. This process is also designed
to be flexible as modellers can define their own inference criteria
and assign rate laws by writing a customised rate law definition
script that can be selected as an option in the algorithm. This is
designed to be simpler than the SBML implementations where
the rate law needs to be included manually in each reaction as a
MathML string [181]
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Finally, SigMat aims to automatically distinguish between free
parameters and fixed parameters, and their boundaries purely
though a single list of parameter definitions. Additionally, free
parameter descriptions are dynamically generated and labelled
such that they can be easily identified in downstream processes
such as parameter fitting. This aims to be more intuitive than the
SBML implementation, where parameter related functionality is
spread over three branches of the SBML structure: parameters,
rules and constraints [179, 181].

As a demonstration of the SigMat algorithm, and exploration of
the theoretical network motifs encountered in this thesis, two net-
work motifs were analysed. The transient stimulation responder
and the single and multiple receptor system are relevant to differ-
ent parts of the signalling networks. The former is relevant for the
effector components while the latter is related to the input part
of signalling pathways. For the transient stimulation responder,
our analysis demonstrated that it is possible to design a network
motif that generates a sustained signal even from a short tran-
sient signal. This may explain how a proliferative response can
be maintained from an initially transient signal [189, 190]. Ad-
ditionally, the analysis showed that the motif has the behaviour
of acting as a log-linear converter, though it is currently unclear
what the biological application of this behaviour is.

In the case of the receptor systems, what our analysis demon-
strated was a multiple receptor system essentially shields input
arms from saturating effects of parallel arms. This prevents sig-
nals from becoming "ignored" by the system at their point of con-
vergence. This is a powerful method of combining signals because
the cell is able to prioritise inputs arms into a pathway by control-
ling the level at which it converges to the main branch. A likely
reason for the need of such prioritisation is that signalling path-
ways are mapped such that inputs with more similar functions
converge higher up the signalling pathway. An example of this
is receptor tyrosine kinases generally contributes either to prolif-
eration or growth like functions [185]. These typically merge at
the PI3K node. However, there are two classes of PI3K isoforms
which converge to target PIP2, with Class IA associated with
RTKs and Class IB associated exclusively with G Protein Cou-
pled Receptors (GPCRs) [31, 192]. There is some evidence for this
where Akt activity in MEFs and NIH 3T3 cells were insensitive
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to a class 1B PI3K inhibitor when stimulated by RTK ligands, but
sensitive when stimulated by GPCR ligands [193]. Overall, what
this analysis has shown is that small network motifs can gener-
ate unexpected network wide behaviour through their emergent
properties. For example, the difference between single and mul-
tiple receptors can change the system from being competitive to
cooperative. Also regulation of cyclic enzymatic reaction at dif-
ferent time scales can lead to sustained signalling outputs even
when the the stimulus is removed under one mode of operation,
or expand the active range of the system in another mode of op-
eration.

SigMat is thus a highly valuable tool as it enables rapid proto-
typing, in silico testing, and validation of hypothetic biochemical
motifs and networks that may explain unusual behaviour in sig-
nalling pathways. Notwithstanding these advantages, there are a
number of shortcomings with the SigMat algorithm. Firstly, the
algorithm is not strictly SBML compatible yet as it can only read
SigMat designed models written as a MATLAB .m file. However,
since SigMat was inspired by the SBML format, it should be rel-
atively simple to create a helper function that can convert an
SBML model into a post-processed SigMat model given their rel-
atively similar structures. Secondly, there is an emerging interest
in the effects of signalling dependent changes in compartment
volumes/surface areas. This requires volume parameters to not
be modelled as a constant but rather a state variable with an asso-
ciated differential equation [180, 194]. This is currently not avail-
able, but should in principle be possible with minor modifications
of the SigMat algorithm.

In the next chapter, we will apply the framework developed in
this chapter to the insulin signalling pathway. There we will in-
vestigate the ability for the network map that is currently known
to predict experimental data.





6I N F E R I N G M E C H A N I S M O F A K T
A C T I VAT I O N W I T H M O D E L L I N G

Abstract Although there are many models of insulin signalling in
the literature, they are constructed using data from different cell
models. This may be problematic as it is not yet clear if insulin
signalling is conserved between different cell types. Therefore it is
important to reconstruct pathway models for each individual cell
type investigated. We have constructed the core insulin signalling
pathway of the 3T3-L1 adipocyte using temporal data generated
from the cell model. One key observed feature is an overshoot
in the phosphorylation kinetics of Akt but a monotonic increase
in the phosphorylation of Akt substrates. In silico simulation re-
vealed that the pathway model cannot reproduce both the phos-
phorylation kinetics of Akt and its substrates simultaneously. This
suggested that model was missing crucial mechanism, hypothe-
sised to be located in the process of Akt activation. To investigate
this, a an Akt focused model was developed which incorporated
translocation of Akt to the plasma membrane, and the subsequent
sequential phosphorylation of Akt at the 308 and 473 sites. This
model revealed that only a small fraction of the total Akt pool
(at most 20%) is phosphorylated. Under some circumstances the
overshoot behaviour in Akt is not observed in the cytosolic frac-
tion in the model. Thus it is possible for Akt substrates to be
phosphorylate monotonically if it is phosphorylated only by the
cytosolic fraction of Akt. An attempt was made to validate these
predictions by immunoprecipitation and measurement of Akt ac-
tivity. Immunoprecipitation of phosphorylated Akt supports the
model prediction that only a small fraction of Akt is phosphory-
lated under insulin stimulation. The Akt activity assay was found
to be unable to quantify the activity with sufficient resolution and
specificity to verify the hypothesis.

135
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The following pieces of data refered to in this chapter were
generated by Dougall Norris.

• PIP3 time profile used as the input of the Akt model that
was measured using TIRF microscopy.

• Immunoprecipitation of Akt under insulin stimulation.
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6.1 introduction

Following on from the work of the previous chapters we have ar-
rived at a point where we can accurately model enzyme kinetic
action and automatically apply models to networks of any size.
Thus, we are in a position to begin building a model of the insulin
signalling pathway. There is currently a large body of work de-
scribing the proteins and mechanisms involved in this signalling
pathway [70, 195, 196]. However, many specifics about the mech-
anisms involved are missing. Thus, there is still some distance
between the known mechanisms and what is required to build a
full mechanistic model of the system.

There is also a large body of work describing different math-
ematical models of the insulin signalling pathway, as we have
described previously in section 2.4 [74, 86, 124, 127, 150, 153,
155]. However, these models are based on different cell types. As
we have explained previously, the response of the insulin path-
way varies greatly between cell models. For example, the insulin
dependent increase in the phosphorylation response of Akt at
the Ser473 site under insulin stimulation, features an overshoot
which peaks at 20 s in Fao cells, but 5 mins in human primary
adipocytes [74, 124]. However, HeLa cells do not display the over-
shoot behaviour [127]. There are number of reasons leading to
these discrepant results. For example, the expression profile of
signalling molecules may differ between the cell models. Alterna-
tively, the insulin signalling pathway itself may not be completely
conserved.

Experimental data obtained using the 3T3-L1 adipocyte cell
model displays an overshoot in Akt at the Ser473 site that peaks
at 1.5 mins [169]. Futhermore, the Akt substrate temporal profile
does not have the overshoot feature which its kinase possesses,
unlike the Fao, HeLa or human adipocyte models where the ki-
nase and substrate models are similar [74, 124, 127, 169]. These
two unique temporal features in the 3T3-L1 adipocyte enables
these more subtle regulatory features in the insulin signalling
pathway to be investigated in this cell type.

In order to investigate this temporal feature and infer the regu-
latory mechanisms that it implies, a new model of the insulin sig-
nalling pathway, along with new parameter sets, was developed
to study this cell type which has not been previously modelled
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in silico. In this chapter, we firstly built the model from the well
characterised core components of the insulin signalling pathway.
The core components will be used to identify nodes which do not
agree with experimental data. It is then hypothesised that these
nodes contain missing mechanisms that are important to the reg-
ulation of the system. From there, new mechanisms will be added
and tested to evaluate their ability to resolve the conflicting in sil-
ico results. The updated model can be verified and validated with
further experimentation and finally integrated into the core path-
way model. These models will be validated using the parameter
free core prediction model proposed by Brannmark [149]. This in-
volves deep exploration of the parameter spaces of unidentifiable
models (models with large numbers of parameters but few data),
and identifying features that are predicted by all parameter sets
as the core predictions of the model. These predictions will then
be tested and can be used to validate or reject the entire model.

6.2 methods

6.2.1 Mathmatical Modelling

Generation of the mathematical model and simulation of the model
was performed using the modelling software described in chapter
5. All association/dissociation reactions are modelled with mass
action kinetics while enzyme kinetic reactions are modelled with
dQSSA kinetics except where specified. Parameters were then
varied using a customised Markov Chain Monte Carlo (MCMC)
which finds all parameter sets with likelihood above a predefined
acceptance probability threshold of L > 0.01 given a likelihood
function and an initial test parameter set. This optimisation algo-
rithm was chosen because it produces multiple solutions through
the generated Markov Chain, and is stochastic which allows the
algorithm to evade local minima in the parameter space. These
together allow the algorithm to obtain a more complete picture
of the model’s parameter space and obtain the multiple possible
solutions.

The likelihood function is defined as the likelihood of the sim-
ulated data being observed. The likelihood function used in this
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thesis assumes that the experimental data follows a normal distri-
bution is expressed by [197]:

ε (θ) =
∑
d

∑
i

∑
t

ait
biyidt − µidt

σidt
(144)

L(θ) = exp
[
−ε2/(2T)

]
(145)

Subscripts d, i and t indicates the stimulation dose, system species
and time point respectively. µit and σit are the estimated mean
and standard deviation of the experimental data respectively. y is
the simulation result and ait is the weight of the data point. In
general the weighting is set to 1 except for when specified. T is
the annealing temperature. bit is the scaling factor between the
simulation and the experimental data and is calculated by:

bi = µi (tend) /yi (tend) (146)

The scaling factor is determined using the simulation and experi-
mental endpoint because the study is concerned with fitting both
the shape and the magnitude of the simulation to the experiment,
it is necessary to prevent the model from compensating for an
inability to fit the shape by altering its magnitude (which can oc-
cur if the simulation and experimental data is normalised to the
mean or median of the time profile). Thus anchoring the simu-
lation data to the end point of the experimental data forces the
fitting algorithm to achieve a good fit of the simulation time pro-
file.

The customised MCMC algorithm used essentially follows the
algorithm outlined in the excellent textbooks by Gregory and
Brooks [197, 198]. The algorithm is varied in that a boundary is
added to the algorithm in order to limit the search space and
prevent divergence of the search algorithm. This is important be-
cause the goal of using MCMC is to perform a detailed search
within some parameter space. The efficiency of this will naturally
reduce as the parameter space increases. Parameter bounds were
chosen by first randomly selecting parameters until all species
in the model reproduces the time scale of the experimental data
(without regard for the actual shape of the temporal profile). The
upper and lower bounds of all parameters are then set two or-
ders of magnitudes above and below the parameter set identified
as described in the previous sentence respectively.
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Because proposal distributions become non-symmetric in the
boundary, the acceptance probabiltiy is also modified to account
for the asymmetric. Additionally, an annealing procedure is intro-
duced in order to prevent the algorithm from becoming trapped
in local minimas. The algorithm was first run at an annealing
temperature of T = 31. The algorithm was set to store 20,000
unique parameter sets before termination. The annealing temper-
ature was then dropped to the next temperature in the annealing
schedule. The algorithm is then re-run but using the parameter
sets stored from the previous temperature as seeds point for the
new simulation. This process was repeated iteratively until the an-
nealing temperature was dropped to T = 1. The annealing sched-
ule used in this thesis was T = [31, 10, 3, 1].

6.2.2 Immunoprecipitation

15 µL of Protein G Sepharose Beads (P3296 Sigma Aldrich) were
washed by adding 500 µL of ice cold lysis buffer and then cen-
trifuged at 2000×g for two minutes to pellet the beads. This was
performed three times. The supernatant is then discarded. 500 µL
of lysis buffer was then added to the beads with 7.5 µL of the spec-
ified antibody (see Appendix A.3 for antibodies product codes)
was added and incubated on a rotator at 4 ◦C for 2 hours. The
beads were again pelleted by cenfrifugation and washed three
more times. Cells were treated, harvested and quantified as de-
scribed in section A.2. 277 µg of cell lysate, diluted up to 500 µL
with lysis buffer supplemented with protease inhibitor and phos-
phatase inhibited, was then loaded onto the beads and incubated
on a rotator at 4 ◦C for 2 hours. The supernatant was captured
as the flow through, and the beads were washed three times. The
beads were then dried by aspiration and resuspended in 50 µL of
2× sample buffer (100 mM Tris [pH 6.8], 4% SDS, 20% glycerol,
0.4mg/mL bromophenol blue). The sample was then boiled at 95
◦C for 10 mins to elute the proteins. The samples were then re-
duced by adding 10× TCEP (ThermoFisher Scientific 77720). 25
µL was then separated by SDS-PAGE and analysed with Western
Blot.
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6.2.3 In-vitro Kinase Assay of Akt activity

Akt in vitro kinase assay was performed using the Omnia ST1
Kinase Assay (ThermoFisher Scientific KNZ1011, discontinued).
Cells were harvested in 1% Triton X-100, 1% Octyl-β-glucoside
(BOG) or RIPA buffer (see appendix for recipe). For controls 0.4ug
of recombinant Akt2 phosphorylated at the Thr-308 and Ser-473
sites were used (Active Motif, 31146). The reaction was performed
in a reaction volume of 20 µL in 384 well plates (Falcon 3962).
The reaction buffer was made of 20 mM HEPES-KOH (pH 7.5),
10 mM MgCl2 (Sigma Aldritch, M2670), 2 mM EGTA (Sigma
Aldritch E3887), 1 mM DTT (with kit), 1 mM ATP (with kit) and 1
mM substrate peptide unless otherwise specified. Inhibitors used
were 100 nM GDC0068 (Selleckchem, S2808, Akt inhibitor), 200
nM CRT0066101 (Abcam, ab144637, PKD inhibitor), 200 nM PKI
6-22 (Sigma Aldrich, P6062, PKA inhibitor) 10 µM GSK650394
(Sigma Aldrich, SML0773, GSK inhibitor), 400 nM LY2584702 (Sel-
leckchem, S7698, S6K inhibitor) and 300 nM Sotrastaurin (Sell-
eckchem, S2791, PKC Inhibitor) where indicated. Reactions were
first made up to 15 µL on ice and then initiated with addition of
cell lysates or purified Akt (as indicated) in a Tecan Infinite M1000
plate reader in fluorescence mode with excitation and emission
wavelengths of 360nm and 485nm respectively. Fluorescence in-
tensity was measured for 6 hours with at 30 second intervals. Re-
combinant Akt (Active Motif 31146) was used as specified in the
experimental figures using the manufacturer defined units of ac-
tivity.

6.3 modelling of the insulin signalling path-
way

6.3.1 Modelling the core pathway

To create a new model of the upstream insulin signalling pathway
3T3-L1 adipocyte, we constructed a map of the insulin signalling
curated from the literature. This was then adapted into a kinetic
model which is shown in Fig 36.

In this simplified model, the sequential activation of IR-IRS-
PI3K-PIP3 has been condensed into a single activation step, and
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Figure 36: Setup of the model of the Insulin Signalling Pathway.

Akt activation has been simplified to be a one step process and
directly activated by the IR. These simplifications are similar to
those made by Kubota et al. and Dalle Pezze et al. [74, 127]. Whilst
it is commonly asserted that an S6K mediated negative feedback
onto IRS1 is a crucial regulatory mechanism of the pathway, it
was not included in this model. This is because this mechanism
is not expected to be important until around 15 minutes after
Insulin stimulation, which is when S6K phosphorylation becomes
appreciable at a 100 nM dose. Since the model is investigating the
response of the system at about 1-5 minutes after stimulation, it
is assumed that this negative feedback will not yet be active and
can thus be safely omitted.

For this model, the data generated by Tan et al. was used ex-
tensively for the initial model calibration [169]. This data set con-
tains temporal data at a sub-maximal (1 nM) and maximal (100
nM) dose of Insulin. This provides two dimensions of informa-
tion (temporal and dose dependence) which is useful for both
the extrapolation of general dose dependence of the system, and
the exact temporal response at each dose. Understanding the de-
pendence between both dimensions can present features that can
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be used to identify novel regulatory mechanisms in the system.
The key features investigated in this chapter is the overshoot fea-
ture, defined as an initial increase in activity to some maximal,
and then a subsequent decrease into a lower steady state activ-
ity. The size of the overshoot is defined as the difference between
the maximal and steady state activity. In this experimental data,
the overshoot is observed in Akt phosphorylation under 1 nM of
Insulin stimulation. However at the same time, there is a lack of
this overshoot feature in Akt substrates under the same Insulin
dose as identified by Tan et al. [169]. At 100 nM Insulin stimula-
tion, the overshoot behaviour in Akt becomes lots and substrate
phosphorylation reaches its maximum sooner.

To train the model, the phosphorylation kinetics of both the
T308 and S473 residues of Akt and all phosphorylation sites of
Akt substrates were used. Since the model as shown in Fig. 36
only contains a single Akt phosphorylation site (indicative of the
"active" form of Akt), and a single Akt substrate, it is necessary to
choose how the experimental data will be adapted to the model.
To begin with, we assumed that both T308 and S473 phospho-
rylation are indicative of Akt activity. Thus, Akt activity is ap-
proximated as a mean aggregate of the phosphorylation of the
T308 and S473 sites. In the case of the Akt substrates, we assume
that the all Akt substrates respond identically, thus the Akt sub-
strate in the model reflects the average response of all individual
Akt substrates. Thus the phosphorylation time profiles for all Akt
substrates were also mean aggregated. The temporal response of
the phosphorylation level of each residue and the previously de-
scribed aggregated time profiles are shown in Fig. 37.

In general, the response of the aggregated temporal profiles ap-
pear to be identical in both path and relative magnitude to the
responses of the individual phosphorylation sites. The only ex-
ceptions to this are the two phosphorylation sites on Akt at 1
nM of Insulin. While both responses have the same general shape
as the aggregated response, T308 phosphorylation appears to be
far smaller than the aggregate. The reverse is true for S473 phos-
phorylation. Similarly GSK3 at 1 nM has a similar shape to the
aggregate response, but is far smaller in magnitude. Since the
model will be fitted to the aggregated time courses rather than
the individual phosphorylation sites, the model will not be able
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Figure 37: Time course data of (a) phosphorylated Akt under 1 nM in-
sulin stimulation (dashed lines) and 100 nM insulin stimula-
tion (solid lines), and (b) and (c) some Akt substrates under
1 nM insulin stimulation (dashed lines) and 100 nM insulin
stimulation (solid lines). In both figures, coloured lines corre-
spond to the phosphorylation of individual sites as indicated
in the figure. Black lines are the mean aggregate of all phos-
phorylation site shown within the subpanels. Error bars are
standard deviations. [169]

to capture the subtle differences between the responses of the in-
dividual phosphorylation sites.

From this starting point, the model was first fitted to both the
average phosphorylation data (black lines) in both Akt and Akt
substrates using Markov Chain Monte Carlo. This resulted in
20,000 parameter sets that fits with a residual less than 2. The
resulting fits were divided into three clusters using k-means clus-
tering of the temporal response of Akt and its substrates, nor-
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Figure 38: Result of calibrated model (solid line shows mean of best
parameter sets, dashed lines shows the ± one standard devi-
ation spread from optimal parameters, defined by the param-
eter set with the largest likelihood) compared to the exper-
imental data (open circle for mean, triangles for ± on stan-
dard deviation from the mean). (a)-(c) Clusters 1-3 of Akt re-
sponse to insulin. (d) shows the means of the Akt responses
of the three clusters plotted together. (e)-(g) Clusters 1-3 of
Akt substrate response to insulin. (h) shows the means of the
Akt substrate responses of the three clusters plotted together.

malised to the median of the response of each node at 100 nM.
The mean and standard deviation of the response of each clus-
ter are shown in Fig. 38. While the overall shape of the response
captured by the three clusters look remarkably similar, there are
some subtle differences the three clusters. Firstly, the steady state
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response (fimal time point) of Akt substrates at 100 nM insulin in
cluster 3 (0.86± 0.57) is higher than clusters 1 and 2 (0.76± 0.04).
Furthermore, cluster 2’s Akt response at 1 nM (0.15 at 60 s) is
slower than the other two clusters (0.2 at 60 s). Apart from these
subtle differences, the three clusters are equally capable of repli-
cating the experimental data. For example, the predicted 100 nM
Akt substrate response is modelled to be far faster than the 1 nM
response, which is in line with the experimental data.

On the other hand, the model did not replicate the overshoot
behaviour in Akt with 1 nM insulin stimulation. This raised con-
cerns as the overshoot feature is robustly observed between ex-
perimental replicates. We argued that the fitting procedure likely
missed this feature due to the error bars being artificially in-
creased by aggregating the time courses of the 308 and 473 sites
on Akt. Recall in Fig. 37 that individually, the error bars for each
site are much smaller and forced non-overshoot responses to be
rejected.

Taking this into consideration, a second round of fitting was
attempted where the model was fitted to the time courses of the
308 and 473 sites on Akt individually. Additionally, we hypoth-
esised that the temporal feature of Akt and its substrates were
mechanistically related. Because the temporal features of the ex-
perimentally observed time course of Akt and its substrates are
different, and that Akt is upstream of its substrates, it is possi-
ble that the substrate time profile is affected by the upstream Akt
time profile. Thus it does not make sense to fit them both with
equal weighting. To test this hypothesis, the model was addition-
ally fitted to the full Akt time profile but only the end point of
the substrate time profile simultaneously. This would enable us
to assess the range of responses the substrates can generate with
a given Akt time profile while retaining the same dose response.
Thus to be more specific, the second round of fitting differed from
the first round by:

• Fitting the simulated data to the experimental data for only
one of the two Akt phosphorylation sites.

• Fitting only the end point (1800 s) of the Akt substrates to
ensure the substrate dose response is reproduced but its
temporal profile is unconstrained.
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Figure 39: Plots of the (a) model fit to the pT308 Akt phosphorylation
time profile and (b) resulting substrate phosphorylation fit.
(c) model fit to the pS473 Akt phosphorylation time profile
and (d) its resulting substrate phosphorylation fit. Solid line
represents the mean of all accepted parameter sets while dot-
ted lines show one standard deviation of the range of simu-
lated kinetics across accepted parameter sets.

The result of this alternative fitting method is shown in Fig. 39.
Due to the smaller error bars associated with each individual
phosphorylation site, the overshoot feature of the time course be-
came an important constraint in the fitting procedure with the
new set of parameters now reproducing it. It is interesting to note
that the 308 site is shown to have a larger overshoot at 1 nM of
Insulin compared to the 473 site.

Another noteworthy result of the simulation is the Akt sub-
strates responses. The simulations fitted the end points reason-
able well (as required by the fitting criteria). It also produced no
overshoot in the substrate time course. However, it showed a pref-
erence for parameters where the substrate response lags behind
the Akt response. This lag was much slower than that observed
experimentally. So this raises a number of questions. Why is the
algorithm favouring slower responses for the Akt substrates, and
what would happen if we forced the Akt substrates to be phos-
phorylated at a faster rate?

To investigate this, a third round of simulations was carried out.
We took a parameter set fitted to the Akt 308 site, and fixed all
parameters except for the phosphorylation catalytic rate and the
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Figure 40: The resulting substrate temporal profiles that can be achieved
by varying the reaction rate of the substrate reactions based
on the model fitted to the pT308 phosphorylation time pro-
file.

dephosphorylation rate of the substrates. We sought to test the ef-
fect the reaction rate has on the time course of the Akt substrates
when the time profile of Akt featured an overshoot behaviour.
In this case, the reaction rate can be interpreted as a number of
physical processes. Firstly it can indicate the actual speed of the
phosphorylation reaction and secondly it includes delays caused
by the dissociation and translocation of Akt to its substrates be-
fore phosphorylation can occur.

The results for different simulations were shown in Fig. 40. The
blue curve shows the reaction rate from the original parameter
set (i.e. it is the same as Fig. 39b), which is slow (does not match
the first three experimental time points) and it does not feature
an overshoot. If we triple the base reaction rate (grey curve in Fig.
40), the substrate time course is now fast enough to be within one
standard deviation of the mean of the third experimental time
point (t = 180 s). However, the temporal profile now begins to ex-
hibit an overshoot behavior. This causes the simulated result to be
just inside one standard deviation of the mean of the fourth exper-
imental time point (t = 300 s). If we triple the rate again (red curve
in Fig. 40), we find the simulation fits the second (t = 30 s) and
final time point (t = 1800 s) well, but the remaining time points
are at a difference of at least one standard deviation between the
experimental mean and simulation. What this demonstrates is for
this particular parameter set, while the Akt time profile is fitted
well, the Akt substrate time profile fits poorly. Thus if this param-
eter set is evolved to a more optimal fit (quantified by Eqn. 145),
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it will likely compromise the goodness of the Akt time profile fit
in order to improve the fit to the Akt substrate time profile. This
phenomenon is a likely explanation of the difference between the
quality of the free fits shown in Fig. 38 where the model was
fitted to both the Akt and Akt substrate time profiles simultane-
ously, and the fits shown in Fig. 39 where the model was fitted
only to the Akt time profile.

This shows that with this network architecture, the simulated
Akt substrate temporal response at 1 nM insulin stimulation is
unable to fit more than two of the experimental time point. In
other words, the model can explain Akt’s temporal profile but
has a poor ability to explain both the Akt substrate time profile
simultaneously. This strongly implies that the network topology
in this model is incorrect and there are likely to be as yet unac-
counted for mechanisms behind Akt’s activation of its substrates
beyond Akt translocation and kinase activation.

6.3.2 Modelling of the Akt Signalling Pathway

6.3.2.1 Calibration of the Model

From the results of the previous simulations, it is clear that there
are missing mechanisms between Akt becoming phosphorylated
and Akt subsequently phosphorylating its substrates. This is note-
worthy as it is there are two commonly held assumptions within
the literature regarding the mechanisms of Akt signalling. Firstly,
it is assumed that Akt phosphorylation is synonymous with Akt
activity [199]. Secondly, it is assumed that Akt directly phospho-
rylates its substrates [200]. Our results imply that at least one
of these assumptions is wrong. In this chapter, we will investi-
gate the validity of the first assumption. If we assume that Akt
phosphorylation does not imply activation, then this implies addi-
tional mechanisms are required before Akt becomes active. Here
we test two possibilities.

The first possibility is that Akt must first be dually phosphory-
lated before it is fully active [58, 201]. The phosphorylation data
used in the previous section were only measures of total phospho-
rylation at a single site, regardless of the phosphorylation states
of the other sites [38]. Thus the resulting measure is a mixture
of the singly phosphorylated form of Akt as well as the doubly
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phosphorylated form. It is possible that only doubly phosphory-
lated Akt is active and the second phosphorylation is able to filter
out the overshoot behaviour.

The second possibility is that localisation of Akt is important. It
is known that Akt translocation to the plasma membrane (PM) is
required and sufficient for its phosphorylation and activation [60].
However, it is unclear whether Akt phsophorylates its substrates
at the PM or in the cytosol, although there is data in the literature
to suggest that substrate phosphorylation occurs at the plasmna
membrane [169]. It is possible that individual fractions of phos-
phorylated Akt can occur without an overshoot and that those
fractions are where Akt is able to phosphorylate its substrates.

Figure 41: Setup of the model for Akt phosphorylation and activation.
Nodes with dotted outlines lie within the plasma membrane
and nodes with solid outlines lie in the cytosol. Reactions can
only occur when reactants are in the same compartment (e.g.
PDK1 can only phosphorylatie Akt in the plasma membrane).
PIP3 dimerizes with Akt when Akt is recruited to the plasma
membrane. PIP3 is released back into the plasma membrane
when Akt dissociates from the plasma membrane. The input
for the model is PIP3, where its total concentration is con-
trolled external to the model.
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Figure 42: Time course of Akt translocation at 1 nM Insulin. Open cir-
cles and their associated error bars are TIRF microscopy re-
sults (n=5). The open diamonds are extrapolated from the
post-overshoot decay using an exponential decay function.
The grey line shows the average PM bound Akt response
predicted by the model across the accepted parameter sets.
[Experiment performed by Dougall Norris]

In this section, we investigate both of these hypotheses by iso-
lating the Akt signalling pathway and modelling the mechanisms
of Akt phosphorylation in more detail. The model used is shown
in Fig. 41.

This model increases the complexity of the Akt components
of the insulin pathway in two ways. Firstly it incorporates com-
partmentalisation, which is a vital process in the activation of Akt.
Secondly, the phosphorylation sites of Akt have been explicitly de-
fined, and their respective kinases are also explicitly included. In
order to simplify the model though, the upstream components of
the model is truncated at the PIP3 generation stage. This removes
other signalling components such as the mTORC1 or other neg-
ative feedback mechanisms that target nodes upstream of PIP3.
Instead, the effects of these negative feedback pathways are ac-
counted for by directly replicating the in vitro dynamics of PIP3
generation. By capturing the in vitro dynamics of PIP3 generation
under a step increase in insulin, the measured kinetics of PIP3
generation will implicitly include any feedback mechanisms that
act on it, or nodes upstream of it. This is because any feedback af-
fects will necessarily alter the PIP3 generation dynamics, which is
then transmitted downstream via Akt. Thus, replicating the PIP3
generation dynamics will account for any feedbacks that apply to
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Figure 43: Time course of Akt phosphorylation at 1 nM Insulin. Open
circles and the associated error bars are the experimental
mean and standard deviation of n = 5 [38]. The black line
shows the average of the Akt phosphorylation on the (a) 308
site and (b) 473 site across the accepted parameter sets.

PIP3 or nodes upstream of it. Thus, the Akt focused model would
then be able to ignore some feedback connections without jeop-
ardising the accuracy of the model. However, it should be noted
that this method only accounts for feedbacks that target nodes
at or upstream of PIP3. Feedbacks that target components down-
stream of PIP3 are not implicitly accounted for and will require
explicit modelling. This will be one of the subjects of investigate
of this model.

To model the system in this way, the temporal dynamics of PIP3
generation must be acquired first. This is possible using TIRF
microscopy, and using the translocation of various PH domain
containing proteins as a measure of the PIP3 generation rate. The
obtained temporal profile (data generated by Dougall Norris) is
shown in Fig. 42. Since the TIRF microscopy time course was only
measured up to 210 seconds, and the phosphorylation data exists
up to 300 seconds, the TIRF microscopy data was extrapolated to
the 300 second time point by fitting an exponential decay curve to
the PIP3 time course between t = [75, 240]s using the Nelder-Mead
method using the cost function shown in Eqn. 145.

The experimental and extrapolated data were then used as the
inputs of the Akt model. This is done by finding the time deriva-
tive of the piecewise polynomial spline of PIP3 generation time
profile shown in Fig. 42. First a piecewise cubic spline of the PIP3
generation time profile is constructed. Next the coefficients of the
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spline is modified to represent differential of the spline using the
operationg:

C′n−1 = nCn (147)

Where C′ is the coefficient of the derivative spline and C is the co-
efficient for the PIP3 generation time profile spline. Cn indicates
the coefficient of the nth polynomial term and this convention ap-
plies for both C and C′. As the operation is a derivative, C′3 = 0.
The derivative piecewise polynomial spline is then added to the
rate of change of PIP3 in the model.

The system is also normalised to the concentration of PIP3 as
per the TIRF microscopy time course, then the Western Blot data
was fitted to the total amount of Akt phosphorylated at the 308
and 473 sites (the same data as in the Insulin signalling model,
i.e. Fig. 37). This is shown in Fig. 43. The simulated translocation
time course is shown in Fig. 42 by the solid line. In both of these
figures, it can be seen that the simulated data fits within the un-
certainty in the data. Thus the model structure as it stands is able
to explain the data.

6.3.2.2 Partitioning of the forms of phosphorylated Akt

Using this model, we move towards some predictions. We first in-
vestigated the range of time courses of each species of Akt that are
produced. This is shown as a distribution of the response across
the accepted parameter sets in Fig. 44. Although This shows that
in most cases, all species of Akt displays an overshoot regardless
of its location in the cell.

Looking at the steady state, it was found that only a small per-
centage of Akt was phosphorylated with up to 25% being phos-
phorylated only at the 473 site, 10% phosphorylated at only the
308 site and only 5% phosphorylated at both the 308 and 473
sites Fig. 45. However, these numbers only represent the maxi-
mum fractions that can be generated by the model. It is more
likely that a smaller amount of Akt is phosphorylated. Nonethe-
less, the upper limit of the phosphorylated percentage present a
core prediction of this Akt model that can be tested experimen-
tally.

The distribution of the fractions phosphorylated throughout
the parameter sets generated is shown in Fig. 45. What this fig-
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Figure 44: Time course of Akt phosphorylation at 1 nM Insulin at the
(a) 308 site only at the plasma membrane, (b) 308 site only at
the cytosol, (c) 473 site only at the plasma membrane, (d) 473
site only at the cytosol, (e) 308 and 473 site only at the plasma
membrane, (f) 308 and 473 site only at the cytosol. The Deep-
ness of the red at point shows the number of parameter sets
that shows that level of response at that particular time point.
This shows aggregated results from 1000 parameter sets. Dis-
tribution of the parameter sets in parameter space is shown
in Fig. ?? in Appendix D.3
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ure illustrates is the model suffers from strong issues with non-
identifiability. With only two experimental time courses to fit to,
the model have sufficient degrees of freedom to exhibit a large
number of system behaviours whilst still replicating the experi-
mental data. The large variation in the percentage of Akt in var-
ious physical location with different levels of phosphorylation is
an indicator of this. Thus what this model attempts to achieve
is not to provide specific predictions. Instead, this model aims
to understand the broader, more general behaviour of the model
as implied by the experimental data. An example of this, again
using Fig. 45 as an example, is the clear trends in the relative
abundance of the different phosphorylated forms of Akt. Singly
phosphorylated Akt at the 473 site is most abundant, followed by
phosphorylation only at the 308 site. Dually phosphorylated Akt
is least abundant.

A second general trend that was observed across all parameters
sets, was that the system has a strong preference for achieving
double phosphorylation of Akt when Thr308 is phosphorylated
first. This was verified in silico by deleting the Thr308 phosphory-
lation step of Akt already that has already been phosphorylated
at Ser473 (i.e. the catalytic rate of this step was set to zero while
the reaction rates of the Thr308 phosphorylation from unphos-
phorylated Akt is left unchanged). It was found that the amount
of doubly phosphorylated Akt remained unchanged under this
perturbation. However, there is still a preference for the system to
achieve singly phosphorylated Akt on the 473 site. This appears
to suggest that the initial phosphorylation of Akt is not ordered.
However, to achieve double phosphorylation, Akt must first be
phosphorylated on the 308 site.

Beyond the distribution of the various phosphorylated forms,
it is also of interest to look at the distribution of Akt between the
cytosol and the plasma membrane. Currently, the model assumes
that the affinity of Akt for PIP3 does not vary with its phospho-
rylation state (this is reasonable to assume because the phospho-
rylation sites in question are not in the PH domain). Given this
assumption, it was found that most of the accepted parameter
sets predicts a small amount of Akt in the plasma membrane.
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Figure 45: Distribution of the predicted partition of phosphorylated Akt
between its different phosphorylated forms as well as their lo-
cations at steady state. (a) Indicates the fraction in the cytosol
(b) indicates the fractions in the plasma membrane.

6.3.2.3 Transduction of Akt Signal

Having explored some of the more interesting aspects of this
model, we now focus our investigation of the Akt model to our
original hypothesis regarding the mechanism of Akt phosphory-
lation of its substrates (in the same manner as the investigation
illustrated in Fig. 40). In spite of the result that most parame-
ters sets will show an overshoot behaviour in all states (shown
in Fig. 44), there are some parameter sets that show an exception
to this rule. One of these is the parameter set shown in Table. 11.
With this parameter set, the total 308 and 473 phosphorylation
time course fits within the clusters that are constrained by the

Figure 46: Temporal profiles of the different forms of Akt produced by
the non-overshooting parameters set listed in Table. 11. Note
there is no distribution shown because this is the result of a
single parameter set. States without any suffixes are cytosolic.
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Table 11: List of the parameters used to achieve the model with a cytoso-
lic phosphorylated Akt temporal profile that has a suppressed
overshoot. Non-conventional units are used for the concentra-
tion and volume.The model is non-dimensionalised with re-
spect to the PIP3 concentration and volume of the cytoplasm,
thus N indicates concentration as a fraction of PIP3 concentra-
tion, and V indicates volume as fraction of cytosol volume.

[PIP3]max 1.0
kcat (s−1)

0.14
Km (N)

0.15
(N) Akt → Aktp308 Akt → Aktp308

[Akt]0 1.0
kcat (s−1)

0.43
Km (N)

0.29
(N) Akt → Aktp473 Akt → Aktp473

[PDK1]0 1.0
kcat (s−1)

0.31
Km (N)

800
(N) Aktp473 → Aktp308p473 Aktp473 → Aktp308p473

[mTORC2]0 1.0
kcat (s−1)

0.34
Km (N)

1.86
(N) Aktp308 → Aktp308p473 Aktp308 → Aktp308p473

[Substrate]0 1.0
kcat (s−1)

160
Km (N)

10
(N) Substrate → pSubstrate Substrate → pSubstrate

k (s−1)
0.02

pSubstrate → Substrate

PM Size (V) 0.96 DephosphorylationAkt (s−1) 0.49

Association Rate (s−1) 72.53 Dissociations rate (s−1) 1.58

experimental data (i.e. it fits within the range shown in Fig. 43).
However, when separating out the individual species, there is a
stark difference between the time courses of the plasma mem-
brane bound fractions and the cytosol localised fractions. The
time course of each of these fractions are shown in Fig. 46. It
shows that the plasma membrane fractions follow the time course
of the PIP3 generation. The cytosolic fraction, however, actually
undergoes a transient suppression in phosphorylation which re-
covers some time later.

This particular parameter set is interesting because it presents a
fraction of Akt that does not closely follow the total 308 and 473
phosphorylation temporal dynamics that was shown in Fig. 43.
On the whole, the cytosolic fractions do not exhibit an overshoot
behaviour. Thus, this can lead to substrate phosphorylation that
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Figure 47: Substrate temporal profiles that can be achieved by varying
kcat of the Substrate → pSubstrate and k of the pSubstrate → Substrate re-
actions based on the model using parameters of the model that produces a non-
overshooting cytosolic phosphorylated Akt (listed in Table. 11). This is compared to
experimental data of Akt substrates aggregated in the same way as in the investiga-
tion of the insulin signalling model in section6.3.

does not exhibit an overshoot. Additionally, the added transient
repression may actually be ignored by substrates which are phos-
phorylated at a slow rate because this transient drop in cytosolic
phosphorylated Akt occurs on a much faster time scale than sub-
strate phosphorylation. This presents a possible model that can
simultaneously fit the overshoot feature of the Akt phosphoryla-
tion time profile as well as the flat phosphorylation time profile
of Akt’s substrates.

In order to test this hypothesis, the model was modified such
that only the cytosolic portion was allowed to phosphorylate a
generic substrate that represents the aggregate of the experimen-
tally observed Akt substrates (in the same manner as performed
in the investigation of the insulin signalling model in section 6.3).
The speed of this reaction was then modified (by varying both the
catalytic and dephosphorylation rates by the same multiplicative
factor) to investigate the range of temporal profiles that the sub-
strate can produce under this system. This is shown in Fig. 47. It
can be seen that the substrate temporal profile fits the experimen-
tal data extremely well in this case.

It should be mentioned that in this particular case, the percent-
age of Akt at the plasma membrane is about 50%. This is different
to the general trend that is found across the range of accepted pa-
rameter sets as shown in Fig. 44. It is likely that the different
behaviour of this model is attributed to the different mechanism
by which Akt achieve its dose response. In the case of the low
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percentage plasma membrane localised models, the limiting fac-
tor in Akt phosphorylation is the PIP3 generation. Here, the rate
limiting step is the the total Akt available. As Akt is recruited
to the PM by PIP3, it becomes depleted from the cytosol. Even-
tually, this process leads to PIP3 locking Akt to the membrane
when PIP3 concentration is sufficiently high. Thus, the overshoot
in the cytosolic fraction is suppressed because Akt becomes signif-
icantly depleted from the cytosol. The sudden burst of PIP3 (from
the overshoot) is in fact a negative feedback on the Akt available
in the cytosol because the PIP3 acts as a sponge that sequesters
excess Akt from the cytosol. This presents one explanation for
the absence of the overshoot behaviour in the phosphorylation of
Akt substrates. Whilst this parameter set presents an interesting
hypothesis, it is unclear whether this behaviour is physiologically
relevant. In particular the saturation of Akt at the height of the
PIP3 overshoot is a bold prediction of this model. Thus this pro-
vides a experimentally tractable validation of this model that can
be interrogated using further TIRF microscopy experiments at dif-
ferent doses of Insulin. However, given the rare occurrence of this
behaviour amongst the identified parameters sets, it is possible
that the behaviour produced by this parameter set is merely an
exception that is not physiological.

6.4 biological validation

Two key predictions were determined from the mathematical mod-
elling. First is that only a small fraction of Akt is phosphorylated,
and an even smaller fraction is doubly phosphorylated. Second
is that only the cytosolic fraction of Akt is active and its time
course follows that of the substrates (overshoot is suppressed by
the excess PIP3 generated).

In this section, this will be tested in one of two ways. The
first prediction was tested by immunoprecipitation of the various
phosphorylated forms of Akt. The second prediction was testing
using an in vitro kinase assays to determine the variation in Akt
activity with time profile upon Insulin stimulation.
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6.4.1 Verification of separate pools of phosphorylated Akt

Immunoprecipitation (IP) was used to determine the population
of the various phosphorylated forms of Akt. This experiment
(performed by Dougall Norris), involved performing a four point
time course under insulin stimulation, and then pulling down the
Akt with antibody targeting one phosphorylation site, and then
performing western blot analysis with an antibody targeting the
opposing phosphorylation site. Cross reactivity of the Akt and
the IP antibody was mitigated by eluting the IP in non-reducing
sample buffer (i.e. sample buffer without TCEP). This prevents
the IP antibody from dissociating and causing the heavy chain
band from obscuring the Akt band, which will separate at a simi-
lar rate on an SDS-PAGE gel based on their mass.

Preliminary results suggest that only a small fraction of the
total pT308 Akt is pulled down by the pS473 antibody, that is the
dually phosphorylated fraction (Fig. 48). To quantify the fraction
of dually phosphorylated Akt, we first calculated the enrichment
of each individual pull down of Akt. Fig. 48 shows that there is
significant enrichment in pS473 Akt by the IP. Using the fractions
defined in Fig. 49, this is the ratio:

% T308 dually phosphorylated =
STwcl

Twcl + STwcl
(148)

The S473 blotted lanes can be used to relate the concentration
of some of the S473 fractions. Firstly, we need to determine the an-

Figure 48: Immunoprecipitation result of Akt after stimulation with 1
nM of Insulin. The analysis of the two phosphorylation sites
were performed on the same membrane.
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Figure 49: Illustration of the various fractions of phosphorylated Akt
that are in the various Western blotting samples shown in
Fig. 48. The whole cell lysate and flow through samples are
loaded to the same total protein amount, which means unal-
tered protein contents stay the same between those two sam-
ples. The IP sample only contains samples extracted by the
IP process, but they become highly enriched. However, the
concentration ratios between extracted species are the same
as their ratio in their original whole cell lysate samples as-
suming the antibody binding efficiency is constant between
species.

tibody binding efficiency of the IP process. The binding efficiency
can be expressed as:

A = 1−
SFT + STFT

Swcl + STwcl
= 1−

SFT

Swcl
= 1−

STFT

STwcl
(149)

Which is one minus the fraction of S473 phosphorylated Akt left
behind after the IP process. Now the ratio of the band intensity
between the flow through to whole cell lysate is equivalent to:

FT Band
WCL Band

= γSer
SFT + STFT

Swcl + STwcl
(150)

Where γSer is an additional factor to account for loss of signal
in the IP and flow through lanes due to longer processing times.
The band intensity ratio is measured to be less than 1% (below
the sensitivity of the experimental process). Thus A ≈ 1 an the
γSer indeterminate. Next, we can determine the fold enrichment
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of pS473 from the IP process by quantifying the ratio. Firstly en-
richment is defined and rearranged as:

E =
STIP + SIP

STwcl − STFT + Swcl − SFT
(151)

=
STIP + SIP

(STwcl + Swcl)
(
1− STFT+SFT

STwcl+Swcl

) (152)

=
STIP + SIP

(STwcl + Swcl)A
(153)

E×A =
STIP + SIP

STwcl + Swcl
(154)

And similarly:

E×A =
STIP

STwcl
=
SIP

Swcl
(155)

Now the ratio of the band intensity between the IP lanes and the
whole cell lysate lanes measures the ratio of the quantities:

IP Band
WCL Band

= γSer
SIP + STIP

Swcl + STwcl
= E×A (156)

Thus the enrichment ratio E can be calculated using this rela-
tionship. This ratio of the band intensity was measured to be ap-
proximately 5-25 (there is some variation in enrichment between
the time points). Since the antibody binding efficieny is approx-
imately 1, the enrichment ratio is thus also approximately 5-25,
possibly higher if there is any processing time related intensity
loss in the IP lane.

Turning our attention to the pT308 bands, we can take the ratio
of the intensity of the flow through lane and the whole cell lysate
lane. This can be expressed as:

FT Band
WCL Band

= γThr
TFT + STFT

Twcl + STwcl
(157)

The factor γThr is for the loss of phosphorylation of the T308 flow
through and IP lanes, again due to longer processing times. This
expression can be rearranged and reexpressed by noting a few
things. Firstly TFT = Twcl because the singly threonine phospho-
rylated fraction is not pulled down by the S473 antibody. And:

STFT = STwcl (1−A) ≈ 0 (158)
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Since A ≈ 1. Further more, the intensity ratio between the T308
flow through and whole cell lysate bands were measured to be
0.5. So Eqn. 157 can be reexpressed as:

γThr
Twcl

Twcl + STwcl
=
1

2
(159)

For the ratio between the IP and whole cell lysate band, the ex-
pression is:

IP Band
WCL Band

= γThr
STIP

Twcl + STwcl
(160)

The ratio of the intensity of these two bands were measured to be
between 0.25 - 0.5. Using this information and the enrichment of
the serine fractions between IP and whole cell lysate (Eqn. 155),
we obtain:

[0.25− 0.5] = γThr
STwcl[5− 25]γSer

Twcl + STwcl
(161)

[0.01− 0.1] = γThrγSer
STwcl

Twcl + STwcl
(162)

Now combining Eqn. 159 and 162, we can isolate γThr.

[0.01− 0.1] +
γSer

2
=
γThrγSerSTwcl

Twcl + STwcl
+
γThrγSerTwcl

Twcl + STwcl
(163)

[0.01− 0.1] +
γSer

2
= γThrγSer

Twcl + STwcl

Twcl + STwcl
(164)

γThr = γSer[0.01− 0.1] + 0.5 (165)

Since γSer 6 1 and 0 6 [0.01− 0.1] 6 0.1, we can infer that the
fraction of T308 phosphorylation loss due to processing is:

0.5 6 γThr 6 0.6 (166)

Finally substituting Eqn. 166 back into 162 leads to:

[0.01− 0.1] = [0.5− 0.6]γSer
STwcl

Twcl + STwcl
(167)

[0.017− 0.2]
γSer

=
STwcl

Twcl + STwcl
(168)



164 infering mechanism of akt activation with modelling

Thus the fraction of T308 Akt that is dually phosphorylated is
at most 20%. However, it can be as low as about 2%. This is
also subjected to the motility of the phosphorylated S473. If the
IP process involved some loss of S473 phosphorylation in the
IP and flow through conditions, then the fraction of T308 that
is dually phosphorylated becomes even lower. Although the in
silico model produced a wide range of predictions for the frac-
tion of Akt at various states of phosphorylation, they all agree
that dually phosphorylated Akt appears in far lower abundances
than both of the singly phosphorylated states. This seems to be
in agreement with the preliminary immunoprecipitation results.
However, more work will need to be performed in future to fur-
ther validate this computational prediction. For example, this ex-
periment will need to be repeated, and the reverse IP will need
to be performed (i.e. immunoprecipitating our the T308 phospho-
rylation site and then blotting the IP for S473) Furthermore, this
experiment does not reveal the relative amount of phosphoryla-
tion between S473 and T308 phosphorylation. This ratio is also
predicted by the model (there is more S473 phosphorylation than
T308) and can be used to validate the model’s behaviour.

6.4.2 Determination of AKT activity using in Vitro Kinase As-
says

In vitro kinase assays are a common technique to investigate pro-
tein activity [55, 62, 202, 203]. The conventional technique in-
volves the immunoprecipitation of overexpressed, tagged proteins
that are used to catalyse a reaction using radioactive ATP (specifi-
cally phosphorus-32 substituted into the phosphate group) as the
reaction’s cofactor. The activity of the immunoprecipitate is then
measured by the amount of radioactive 32P incorporated into the
substrate as determined by counting the radioactivity of the sub-
strate band after separation by SDS-PAGE [204].

This technique has two key disadvantages. Firstly, proteins need
to be isolated by immunoprecipitation, which means they need
to be overexpressed, which has the potential to cause phenotypic
changes to the cells. Secondly, the progress curve of the kinase
assay can be partially captured because the detection method
is destructive. which greatly reduces the temporal resolution of
the kinase assay and the accuracy of the activity measurement.
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Figure 50: Results of optimisation In vitro kinase assay experiments per-
formed using purified active Akt. The y-axis normalised to
the initial and maximal fluorescence with recombinant Akt.
Dotted lines indicate ± one standard deviation of the experi-
mental mean with n = 3. (a) Optimising the amount of Akt re-
quired. (b) Optimising the buffer components. (c) Optimising
the lysis buffer used and observing their effects (d) Validation
of the inhibitors used and their effects on assay behaviour.

Some of these disadvantages appear to be overcome by an in
vitro kinase assay that is based on the fluorescent artificial SOX
amino acid [205]. When SOX chelates with Mg2+, the SOX amino
acid increases in fluorescence. Mg2+ on the other hand, has a
higher affinity for phosphopeptides than unphosphorylated sub-
strate peptides. This brings the Mg2+ close to the SOX amino
acid that is adjacent to the phosphorylate residue. Thus, the de-
gree of phosphorylation of a substrate peptide can be measured
by the change in fluorescence as the reaction progresses. It is also
claimed that this assay can be performed using whole cell lysate,
which avoids the need to immunoprecipate tagged proteins [205].
After considering the advantages, we decided to perform our Akt
activity assay using this method.

A number of optimisation experiments were first performed to
ascertain the Akt activity required for a detectable SOX-peptide
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phosphorylation rate and also variation of the components of the
kinase and lysis buffer to maximise the output signal. In a re-
action volume of 20 µL it was determined that the reaction can
progress up to 3 h before evaporation begins to affect the kinetics
of the reaction. Thus, the amount of purified Akt used for optimi-
sation reactions were such that the reaction will reach completion
by 3 h. By varying the amount of recombinant Akt (shown in
Fig. 50a), it was found that 1.8 U of Akt was the optimal amount
of Akt to use for future assays. Using this baseline, the composi-
tion of the kinase buffer was tested to maximise the fluorescence
signal produced by the assay. Starting at a control composition
of 2 mM EGTA and 10 mM MgCl2, the effect of removing EGTA
and increasing MgCl2 concentration to 20 mM was tested by vary-
ing the two concentrations. And finally the effect of adding 0.3%
DMSO to the buffer was tested as it is a solvent for many in-
hibitors and will necessarily be part of the kinase buffer when in-
hibitors are used in subsequent experiments. The results, shown
in Fig. 50b, shows that 2 mM EGTA and 10 mM MgCl2 are op-
timal for fluorescence and the effect of DMSO on Akt activity in
the in vitro kinase assay was minimal. From this point on, 0.3%
DMSO is added to the kinase buffer.

Next the effect of lysis buffer addition is tested in order to de-
termine the optimal lysis buffer to use. More explicitly this is min-
imal autofluorescence of the buffer, minimal loss of fluorescence
over time due to sequestration of SOX-peptides within micelles
and minimisation of denaturation of kinase. The common ones
we tested were RIPA buffer, Triton X-100, and Octyl-β-glucoside
(BOG). RIPA buffer is a robust lysis buffer but has the risk of de-
naturing proteins due to its 0.1% SDS content. Triton X-100 on
the other hand does not as readily denature proteins. However,
it does have a critical micelle concentration below the concentra-
tions typically used to lyse cells, which can also affect the in vitro
kinase assay in unfavourable ways. Finally BOG does not have
either of these disadvantages but is an expensive detergent. The
results (shown in Fig. 50c) show that as predicted, RIPA buffer
completely inhibits Akt kinase activity. Triton X-100 and BOG op-
erate in a similar way. However, Triton X-100 appears to cause
a reduction in fluorescence that is not concentration dependent.
This is potentially due to the eventual sequestration of the SOX-
peptide which inhibits its ability to chelate and hence leading to



6.4 biological validation 167

quenching of the fluorescence signal. The assay with BOG addi-
tion responds the same as a reaction without detergent.

Finally, we set out to test the effect of the various inhibitors that
is necessary for testing Akt activity with whole cell lysate. In this
case we are optimising for an Akt inhibitor that full inhibits Akt
activity as well as other AGC kinase inhibitors that minimises
off target inhibition of Akt. Because AGC kinases have similar
consensus motifs, it is likely a cell lysate lacking in biochemical
context will allow other kinases to phosphorylate the Akt SOX-
peptide [69]. As such, Akt activity must be isolated by inhibiting
other kinases that are not of interest. Alternatively, the degree of
non-specific activity can be gauged by quantifying the lysate ac-
tivity after inhibiting Akt activity. Before this can be done we need
to verify that the inhibitors that target Akt efficiently suppresses
its activity, and the inhibitors that target other kinases do not sig-
nificantly inhibit Akt. When this was tested (see Fig. 50d) it was
found that the Akt inhibitor GDC-0068 suppresess at least 90%
of its activity while the inhibitor cocktail for non-Akt kinases has
only a 10% effect on Akt. Thus these strategies for quantification
of Akt activity are feasible.

With the optimisation and preliminary validation experiments
completed, we moved onto measuring the Akt activity in whole
cell lysate (3T3-L1 adipocytes). The following stimulation condi-
tions were tested:

• Unstimulated cell lysate

• 1 nM Insulin stimulation

• 100 nM Insulin stimulation (maximum insulin stimulation)

• 100 nM Insulin stimulation with the PI3K inhibitor Wort-
mannin (inhibited maximal insulin stimulation).

• 100 nM Insulin stimulation with PP2A phosphatase inhibitor
Calyculin A (beyond maximal insulin stimulation)

and for the Calyculin A (Cal A) inhibitor, the kinase assay reac-
tion was run with either the Akt inhibitor or the non-Akt inhibitor
cocktail (Fig. 51a). These studies revealed a number of interesting
observations. Firstly. there was a significant increase in Akt ki-
nase activity with 100 nM insulin and with Cal A. However, were
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Figure 51: (a) In vitro kinase assay results with cell lysates under dif-
ferent conditions, with y-axis normalised to the initial and
maximal fluorescence with recombinant Akt. Dotted lines in-
dicate ± one standard deviation from the experimental mean
with n = 3. Cells are stimulated with insulin and other drugs.
W is Wortmannin during stimulation, and C is Calyculin A
during stimulation. G is GDC0068 and is added during the
kinase assay only. N is the non-Akt inhibitor cocktail (see
method for full list), also added during the kinase assay only.
(b) Western blot analysis of the whole cell lysates used in the
kinase assays to verify the change in phosphorylation state of
Akt and TSC2 and AS160 as an indication of Akt activity. (c)
Kinase assay performed with SOX-peptide already phospho-
rylated by recombinant Akt to demonstrate the phosphatase
activity of whole cell lysate stimulated with 100 nM insulin.
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was no significant increase in kinase activity at 1 nM insulin prob-
ably due to the limited dynamic range of the assay. This is likely
due at least in part to the high background level of kinase activity
that was evident in the lysate from PI3K inhibited cells, which
should not have Akt activity. However, when the Akt inhibitor
(marked as G in Fig. 51a) was used in the 100 nM insulin + Cal A
condition, the kinase activity was reduced by 40%. However, the
non-Akt inhibitor cocktail (marked as N in Fig. 51a) only reduced
the lysate activity by 10%. This suggests that 50% of non-specific
kinase activity is unaccounted for. This leads to two observations.
First, there is significantly more non-specific kinase activity than
anticipated, some of which exists in the unstimulated state. Sec-
ondly, the small reduction in kinase activity that represents Akt
activity would be difficult to measure under physiological doses
of insulin. So while the optimisation controls appeared to show a
potentially clean in-vitro kinase assay that can be performed using
whole cell lysate, our results demonstrate that this is experimen-
tally impractical.

In spite of these results, the non-maximal plateau that was
achieved by the assay when initiated with whole cell lysate was of
interest. In previous optimisation experiments, the fluorescence
eventually reached the maximum possible as determined by the
concentration of the SOX-peptide. However, when initiated with
whole cell lysate, the reaction reaches a non-maximal plateau that
was dependent on the kinase activity as measured by the initial
rate of increase in fluorescence. This suggests there is cycling in
the phosphoryation of the SOX-peptide, which indicates there is
phosphatase activity. This was tested by first phosphorylating the
SOX-peptide using purified Akt, and then testing the dephospho-
rylating capacity of whole cell lysate by adding it to the SOX-
peptide with the Akt inhibitor. It was found that indeed the flu-
orescence of the phosphorylated SOX-peptide begins to decrease
upon lysate addition eventually reaching a value significantly be-
low zero (which can be accounted for by baseline drift in the
instrument and loss of kinase activity after the long reaction time
(Fig. 51c).

In light of these results, we set out to develop an alternative
strategy for measuring Akt activity in cell lysates. Given the abil-
ity of purified Akt to phosphorylate the SOX-peptide, we next
looked to purify Akt from cell lysates using immunoprecipitation
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Figure 52: Verification of the compatibility of immunoprecipitation con-
ditions with in vitro kinase assay. The y-axis normalised to the
initial and maximal fluorescence with recombinant Akt. Dot-
ted lines indicate ± one standard deviation from the mean
with n = 3. (a) shows the change in activity of recombinant
Akt with antibody addition. (b) shows the efficiency of im-
munoprecipitation of recombinant Akt where control indi-
cates reaction run with just recombinant Akt, beads indicates
addition of empty beads to the control reaction, Ab indicates
addition of beads bound with recombinant Akt (without free
recombinant Akt) and supernatant is from the immunopre-
cipitation process (again without further addition of recom-
binant Akt).

(IP). To determine if Akt can be immunoprecipitated without loss
of activity, we first tested the effect of incubating Akt with only
the antibodies. Interestingly, the pT308 Akt antibody which target
the Akt kinase domain reduced Akt activity (Fig. 52a). This sug-
gets that Akt purified using this antibody would in general not
retain its activity. On the other hand, the pS473 antibody (which
targets the hydrophobic domain) does not significantly alter Akt
kinase activity. With these results, we moved to test the IP effi-
ciency of Akt. In this experiment, the pan-Akt antibody was used
instead of the pS473 antibody to capture all Akt possible with-
out regard for its post translational modification. Starting with
1.7 µg of recombinant Akt, we were able to recapture half of the
Akt on the protein G beads using the pan-Akt antibody as shown
by the kinase assay (shown in Fig. 52b). This is equivalent to a
50% efficiency using the manufacturer recommended antibody
concentration.

Based on these results, it can be concluded that the pan-Akt an-
tibody is appropriate for immunoprecipitation quantification of
Akt activity. However, we need to determine the feasibiltiy of this
using whole cell lysate. To do this, we first verified the amount
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Figure 53: Western blot analysis showing amount of Akt phosphory-
lated at the Thr308 site and total Akt from 15 µg of cell lysate
from 3T3-L1 adipocytes stimulated with 100 nM insulin for
10 minutes, and various amount of purified Akt.

of phosphorylation in the purified Akt in order to benchmark the
amount of Akt that would need to be immunoprecipitated for use
in the in vitro kinase assay. We compared the amount of total Akt
and Akt phosphorylated at the Thr308 site from 15 µg of cell, and
various amounts of purified Akt (Fig. 53). Quantification of these
lanes band intensity of the Akt originating from the cell lysate is
equivalent to the band intensity of about 200 ng of purified Akt,
and the phosphorylated fraction is similar between endogenous
Akt and the purified Akt. Given that we previously utilised 1.8 U
of purified Akt for the in vitro kinase assay, this also equates to
around 200 ng of purified Akt. Thus, the amount of Akt available
in cell lysates is sufficient for use with the in vitro kinase assay sub-
ject to efficiency of the immunoprecipitation process. However, it
should be noted that this was compared to Akt from cells stimu-
lated with 100 nM insulin. The activity of Akt under 1 nM insulin
will be far lower, thus more Akt will be required to achieve the
required activity for use with the in vitro kinase assay.

6.5 discussion

In this chapter, we have developed a basic model of the Insulin
Signalling pathway that is specific to the 3T3-L1 adipocyte cell
model. By focusing on the overshoot feature in the temporal be-
haviour of phosphorylated Akt, we identified that the phospho-
rylation time profile of Akt substrates could not be correctly sim-
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ulated in the in silico model. This component of the system was
then studied in more detail by constructing and investigating an
Akt and Akt substrate only model. By focusing the study to a
small component of the system, it was possible to incorporate and
investigate the effects of more complex physicochemical mech-
anisms, such as translocation and independent and unordered
phosphorylation of Akt.

By performing our in silico investigation in this way, we were
able to identify translocation of Akt to the membrane as a possi-
ble mechanism for blunting the overshoot observed by Akt sub-
strates. Our original hypothesis to explain this disconnect be-
tween Akt and its substrates was that translocation of Akt delays
the phosphorylation time profile between the plasma membrane
portion and the cytosol portion of Akt. However, this is equivalent
to a delay in the phosphorylation of the Akt substrates caused
by a slower reaction rate, and the delay required was shown to
be significantly slower than the phosphorylation rate observed
experimentally. What was found instead, was that translocation
served as a sequestration mechanism of limited cytosolic Akt. Al-
though total Akt translocation, and hence Akt phosphorylation,
exhibits an overshoot behaviour, this behaviour is dominated by
the plasma membrane portion.

In the cytosol, the abundance of the phosphorylated form of
Akt is governed by two mechanism. Firstly, the rate of phospho-
rylation at the plasma membrane. An equilibrium exists between
plamsa membrane bound total Akt and cytosolic total Akt, thus
the amount of phosphorylated Akt in the cytosol will increase
as phosphorylated Akt increases in the plasma membrane. Sec-
ondly, the equilibrium between the plasma membrane bound to-
tal Akt and cytosolic Akt can vary as the amount of PIP3 gen-
erated varies. In this system, the two mechanisms act as oppos-
ing systems. The phosphorylation necessarily increases cytosolic
phosphorylated Akt abundance while PIP3 generation decreases
it. In this way, the overshoot in PIP3 generation actually causes
an undershoot in cytosolic phosphorylated Akt if it is sufficiently
abundant.

With this result, the implication would be that active Akt is only
able to access its substrates in the cytosol and that Akt activity in
the cytosol does not exhibit the overshoot behaviour. Although
this would also suggest that substrate phosphorylation would ex-
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hibit an undershoot behaviour, the undershoot can be overcome
in one of two ways. Firstly, the system can strike a balance be-
tween the degree of PIP3 overshoot and the Akt phosphoryla-
tion rate at the plasma membrane. Secondly, the substrates can
roughly ignore the undershoot by having a slower phosphoryla-
tion rate, which is effective in blunting the signaling in this case
because the undershoot occurs in a shorter time scale than the
overshoot that causes it.

So the current understanding of the Akt system is an overshoot
in PIP3 generation has the potential to suppress the abundance of
Akt phosphorylation in the cytosol, and the majority of substrate
phosphorylation occurs in the cytosol. If we consider a stronger
dose of insulin which will cause a greater PIP3 generation rate,
this will lead to a faster Akt phosphorylation rate simply because
there is higher concentration of Akt in the plasma membrane lead-
ing to a higher phosphorylation probability. This also leads to
more sequestration of the cytosolic Akt. It is likely the system has
been optimised to ensure the sequestration effects of PIP3 genera-
tion does not overcome the increased phosphorylation. However,
if this system was hyper stimulated such that PIP3 abundance
is increased to sufficiently high levels, then the degree of Akt
sequestration could become high enough such that cytosolic ac-
tive Akt abundance could actually decrease below normal levels.
Hence, this could represent a form of insulin resistance.

This possibility would make an interesting hypothesis for fur-
ther study. However, a potential problem with the Akt focused
model is it requires specifically PIP3 generation. However, the cur-
rent data used is Akt translocation as opposed to PIP3 generation
directly, and the former is only a surrogate measure of the latter.
Under well behaved conditions, this is not a concern as Akt and
PIP3 generation should have correlating temporal profiles. How-
ever, under less ideal conditions, such as maximal insulin dose
or even insulin resistance conditions, the two temporal profiles
can potentially become difference due to changes in regulation.
Thus the true temporal profile of PIP3 generation would need to
be measured for use with the Akt model. Alternatively, the Akt
model could be reincorporated into the insulin Signalling path-
way model, in which case the kinetics of PIP3 generation and its
associated overshoot behaviour then becomes dependent on the
mechanisms of the negative feedbacks in the system.
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There were a number of ways to validate this model. One of
the implications of this mechanism is that a small amount of to-
tal Akt is phosphorylated, and an even smaller fraction is doubly
phosphorylated. Our preliminary results using immunoprecipita-
tion suggests that this also occurs in vitro. Secondly we wished
to determine the change in Akt activity over time. Unfortunately
we were not able to verify this because of the non-specific nature
of the in vitro kinase assay that was chosen. However, in this ex-
periment we would expect the activity of unfractionated Akt to
also overshoot. This would present the first stage of further exper-
imentation that would arise from this work.

Although we have adopted the most widely accepted negative
feedback mechanism in our model (i.e. mTORC1 mediated feed-
back), there are alternative mechanisms that have been proposed
in the literature [74, 206, 207]. One prominent case is the endo-
cytosis of the IR-IRS1 complex, and modelled in silico by Bran-
nmark et al [124]. It would be expected that the two different
models would result in differences in kinetic behaviour, which
would form the basis of further validating experiments. Beyond
this there are other proposed feedback mechanisms that can be
added to the model. An example is the proposed positive feed-
back mechanism on Akt, by Akt activation of mTORC2, which is
itself an activator of Akt [14]. There is also the translocation of
PDK1 to the plasma membrane with PIP3 generation, which can
also further increase complexity in the Akt focused model [73].

Finally, we would like comment on the specific finding that
this study has achieved, that is a mechanism by which an over-
shoot in Akt phosphorylation can be subsequently blunted at the
substrate level. This is not behaviour that has been explored in
other models of insulin signalling. One reason for this is alter-
native models are based on data originating from different cell
types, which exhibit correspondingly different behaviour. An ex-
ample of this is the Kubota et. al. model, which were performed
in Fao cells. This cell type in fact exhibits overshoot behaviour at
the substrate level, specifically in pGSK3 [74]. This highlights the
difference model cell types can cause in the mechanisms that can
be revealed in mechanistic models. Secondly, the effect was seen
in other models, but were not investigated as the focus of their
study. An example of this is the Brannmark model, which focused
on the nodes that cause T2D, although their model produced a
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similar behaviour, specifically the overshoot in Akt phosphoryla-
tion, and concurrent overshoot in substrate phosphorylation. This
highlights the utility of mechanistic models and their breadth of
potential research directions they can uncover.





7C O N C L U S I O N S A N D F U T U R E
W O R K

7.1 conclusions

In Chapter 1 of this thesis, we posed two questions:

1. Are existing modelling methods sufficiently accurate, and if
they are not, can they be improved?

2. What does a quantitative model of the common cellular
model system for studying insulin signalling and insulin
resistance, the 3T3-L1 adipocyte, look like?

To answer the first question, we investigated the commonly
used Michaelis Menten model of enzyme kinetics. This was firstly
because enzyme kinetics covers a large proportion of biochemical
reactions that are relevant to the insulin signalling pathway in
adipocytes. Secondly, the Michaelis Menten model is the most
commonly accepted model used to simulation enzyme kinetic re-
actions. In our investigation we found that the model’s assump-
tion that the enzyme-substrate complex is negligible leads to in-
accuracies in simulated results. In fact, this drawback with the
Michaelis Menten model has already been discussed in the lit-
erature [139]. From this motivation, we sought to improve the
Michaelis Menten model by explicitly accounting for the complex
concentration in quasi-steady state. In doing so we developed
the differential quasi-steady state assumption (dQSSA) enzyme
kinetic model, which was found to be more accurate than the
Michaelis Menten model when tested in silico and in vitro.

This is a potentially useful result because mathematical mod-
elling is a complex exercise. The main aim of performing this
type of study is to better understand the way information flows
through the biological system and the regulatory mechanisms in-
volved [172]. However, in practice parameter identifiability and
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the accuracy of the underlying mathematical model needs to also
be considered and can confound the result of the model [139,
147, 171]. The development of the dQSSA allows at least some
portion of these confounding factors to be solved. Furthermore,
the existing models of enzyme kinetics, and in fact biochemical
models, are focused on single substrate enzyme kinetic reactions.
The dQSSA we developed has both a single substrate and two
substrate form. This enables biochemical models to be expanded
such that they begin to include the contribution of cofactors such
as global ATP levels in the cell. These components of the model
up until now have been largely abstract if they are even consid-
ered at all [102].

To answer the next question, we needed to develop a mathe-
matical model of the insulin signalling pathway. However, con-
struction of the mathematical model from first principles is a te-
dious and difficult task and is not ideal there is a high risk of
introducing errors when constructing the model [89, 182]. This
has been recognised in the literature and led to the development
of the SBML format [179]. Unfortunately, the algorithms that are
currently available do not have the flexibility required to encode
the dQSSA model. Thus, an analogous modelling algorithm was
developed: the SigMat algorithm.

Using the SigMat algorithm, we have been able to apply the
dQSSA model on all enzyme kinetic type reactions in the in-
sulin signalling pathway in a relatively simple yet consistent way.
The confounding effects of parameter and kinetic model selec-
tion were mitigated by coupling this algorithm with the more ex-
ploratory Markov Chain Monte Carlo method of parameter fitting
when fitting the data. Thus, it was possible to focus on the ability
of the topology of the model studied to reproduce the experimen-
tal data. It was using this strategy that we were able to discover
that the detailed mechanistic detail involving Akt activation is in
fact important. The inclusion of this detail revealed that translo-
cation has a potential sequestration effect on cytosolic Akt, which
allows it to shield the overshoot behaviour it experiences from its
substrates. Although translocation as a necessary mechanism for
Akt activation is well known, the effect that translocation has on
the behaviour of the signalling pathway is new insight that could
not have otherwise been revealed without the use of accurate ki-
netic modelling [78, 208]. The development of this model has also
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let to other new insights, such as the ratio in which Akt is divided
between its various combinations of phosphorylation states. Pre-
liminary data presented in this thesis suggests this insight may
be true in vivo, which would be one validating evidence for the
Aky model developed in this thesis.

Comparison between our model of insulin signalling to other
models of insulin signalling actually reveals some interesting dif-
ferences in regard to the differences between cell types. The over-
shoot in Akt is observed in the Kubota model but not the Bran-
nmark or Dalle Pezze models [74, 124, 127]. And in the case of
the Kubota model, the overshoot is transmitted downstream, un-
like what is observed in the 3T3-L1 adipocyte data. This shows
that these cell types do exhibit different behaviours even when
the same pathway is investigated. Based on this observation it is
unclear if core pathways, such as the insulin signalling pathway,
are truly conserved between different cell types. In the Kubota,
Brannmark and Dalle Pezze models, the Akt modules following
the widely held assumption that Akt phosphorylation directly
relates to Akt activity [199, 200], and Akt directly activates its
substrates. In all of these models, these assumptions do not lead
to disagreement between the model and the experimental data.
However, in our model, these two assumptions resulting in con-
flicting simulation and experimental data. This implies that ad-
ditional mechanisms must be involved in the insulin signalling
pathway within an 3T3-L1 adipocyte and is yet to be discovered.
On top of this however, our model result would also question
whether or not these putative additional mechanisms also exist
in the cell types studied by Kubota, Brannmark and Dalle Pezze,
but simply played no regulatory roles in those cell types. These
questions would lead to some interesting directions for future
research into the workings of the insulin and Akt signalling path-
ways.

7.2 future work

Looking forward beyond this thesis, there are a number of ques-
tions that the insulin signalling model developed in this thesis
has raised. Firstly, the model was designed with the mTORC1-
IRS1 negative feedback mechanism. This was necessary in order
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to produce the overshoot behaviour observed during Akt phos-
phorylation. There are a number of studies that suggest this oc-
curs [53, 73]. However, this negative feedback is also controversial
as other studies have suggested that the negative feedback is IRS1
independent [209]. In fact, the Brannmark model of the insulin
signalling pathway does not incorporate the mTORC1-IRS1 nega-
tive feedback. It utilises endocytosis of the IR-IRS1 complex as the
mechanism for generating an overshoot behaviour downstream
[124, 149]. These vastly different hypotheses demand further in-
vestigation using mathematical modelling. With two competing
models of the underlying mechanism, it would be highly possi-
ble to compare the predictions between the two models and use
them as the basis for model validation and comparison. There
is the added benefit that both our model and the Brannmark
model were constructed using a parameter free core prediction
method, which means any differences in predicted outcome can
be attributed directly to model topology rather than parameter
choice.

An additional avenue for extending our insulin signalling model
is through expanding the downstream components of the path-
way. A particularly important path is extension of the AS160
arm, which leads to GLUT4 translocation and ultimately glucose
uptake [26]. This is a vital component of the pathway, particu-
larly in relation to diabetes because it is related to the ability
of adipocytes to maintain glucose homeostasis in the body. Al-
though knowledge of this component of the pathway, that is the
mechanism of GLUT4 translocation, docking and fusion with the
plasma membrane is still largely incomplete, current advances in
microscopy techniques will be pushing the frontiers of this field
in the near future.

Also, the use of mass spectrometry could be used to gener-
ate the vast amounts of data required to tune the network. The
would enable large portion of the network to be mechanistically
interrogated at once. Firstly, the ability for quantitative proteomic
techniques to determine the abundance of all proteins within a
sample. This can be used to define many of the concentration
parameters in the kinetic model. Secondly, the use of temporal
phospho-proteomics data at multiple doses would be an excel-
lent replacement for Western Blot analysis data due to its high
throughput nature. Although phospho-proteomic profile of the
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3T3-L1 adipocyte has already been performed, the key require-
ment is this data at multiple doses, as we have done in inves-
tigating the original insulin signalling pathway model [14]. Fi-
nally, these two approaches can be combined to interrogate the
causes of insulin resistance building kinetic models of cell mod-
els of insulin resistance. By combining proteomics and phospho-
proteomic data obtained of each model of insulin resistance, it
would be possible to construct kinetic models of insulin resistance
under the assumption that the protein abundance is as found in
the proteomic study and rate parameters remain the same across
the different cell models. In doing so, it would be possible to
determine if insulin resistance is purely due to a change in the
proteome of the cells, or if the regulatory mechanisms within the
cell are intrinsically changed.

In terms of the dQSSA and the theoretical aspects of kinetic
modelling, more work can be performed to better understand the
wider power of this new kinetic modelling, and validation of its
use within an in vivo context. While this thesis has provided ev-
idence with in vitro experiments, it is unclear under which bi-
ological systems it will provide different predictions compared
to a Michaelis Menten ot tQSSA implementation. While the use
of relative protein abundances obtained from proteomic data can
offer some hints into systems that may violate the reactant station-
ary assumption and thus require use of the dQSSA to accurately
model, it is still necessary to validate this in a controlled experi-
ment.

Finally, further development of the SigMat would aid in simpli-
fying the use of the dQSSA and be accessible for the wider sci-
entific community. The most important extension of the SigMat
model would be to achieve compatibility with the SBML format.
This is crucial because the SBML format has been a standard in
the systems biology field for over a decade, and thus many bio-
logical models have been designed and communicated using this
format. Compatibility with this format would enable the dQSSA
to be made available to the vast number of SBML models in the
literature. Furthermore, the SigMat model, currently written in
the MATLAB environment, is not very accessible to the research
community because MATLAB is proprietry software. If the soft-
ware can be migrated to an open source programming language,
such as Python, then the accessibility of the algorithm would in-
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crease. The combination of SBML compatibility and migration of
the SigMat code can allow the dQSSA method to become more
widely adopted in the research community.

Here we have listed only a small sample of the potential ap-
plications of the foundational insulin signalling pathway model
that was developed in this thesis. Although some of these applica-
tions are likely to be ambitious and long term projects, the scope
of expansion of these models are limitless and this can be realised
through the modelling approaches applied and demonstrated in
this thesis.
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a.1 cell culturing

3T3-L1 fibroblasts were cultured in 2 mL of culture medium which
is made of high glucose Dulbecco’s Modified Eagle Medium (DMEM,
Gibco, 11965), 10% FCS (Gibco, 16000-044), and 100X Glutamax
(Gibco, 35050) in 6 well plates (Costar 3516) or 3cm petri dishes
(Falcon 3001) at 37◦C and 10% CO2. Fibroblasts were passaged at
50-70% confluence (around every 48 hours).

3T3-L1 fibroblasts were prepared for differentiation into adipo-
cytes by reseeding into fresh plates and then cultured until conflu-
ence is reached. Differentiated is then initiated by replacing the
culture medium with differentiation medium which is made of
DMEM, 0.22 µM Dexamethasone (Sigma Aldritch, D4902), 100
ng/mL Biotin (Sigma Aldritch, B4639), 2 µg/mL Insulin (Cal-
biochem) and 500 µM Isobutyl-1-methyl-xanthine (IBMX, Sigma
Aldritch, I5879). After 72 hours the differentiation medium is re-
placed with post-differentiation medium which is made up of
DMEM, and 2 µg/mL Insulin. After a subsequent 72 hours, the
post-differentiation medium is replaced with culture medium. This
is replaced every 48 hours. After 10-12 days adipocytes were used.

a.2 time course experiment

A water bath was preheated to 37◦C for 1 hour to allow its temper-
ature to stablise and leveled to ensure its platform is flat. Cell cul-
ture medium was replaced with basal medium which is made up
of 0.22 µm filter sterilised Krebs-Ringer-Phosphate buffer (KRP,
12.5 mM HEPES [Millipore 391340], 0.4 mM NaH2PO4 [Sigma
Aldritch 71505], 0.6 mM Na2HPO4 [Sigma Aldritch S7907], 6 mM
KCl [Univar 383-500g], 120 mM NaCl [Sigma Aldritch S9888],
1.2 mM MgSO4 [Sigma Aldritch M9397], 1 mM CaCl2 [Sigma
Aldritch C5080]]) and 0.2% Bovine Serum Albumin (BSA, Bovostar
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BSAS1.0). This was done by removing cell culture media, then
performing three washing with Phosphate buffered solution (PBS,
150 mM NaCl, 10 mM Na2HPO4, 2.5 mM KCl, 1.75 mM KH2PO4

[Sigma Aldritch 795488]), and then adding 2 mL of basal medium.
The plates were then transferred to the preheated water bath. The
water level of the water bath it adjusted such that it reaches the
same water level as the medium in the cell culture. 6 mL of 3 nM
Insulin in KRP was also prepared and placed in the water bath
in 6 well plates. Adipocytes were serum-starved in this way for 2
hours.

After serum starvation, cells were stimulated by addition of 1
mL of 3 nM Insulin while in the water bath and then incubated
for the required amount of time. Immediately after the incuba-
tion the media was removed and the stimulation was quenched
by placing the cells on ice and washing the cells three times
with ice cold PBS. Cells were then harvested by either adding
400 µ L of 1% Triton X-100 (50 mM Tris [Univar 2311] pH 7.5
[neutralised with NaOH], 150 mM NaCl, 1% Triton X-100 [Sigma
Aldritch X100-500mL]) or 1% Octyl-β-glucoside (50 mM Tris [Uni-
var 2311] pH 7.5 [neutralised with NaOH], 150 mM NaCl, 1%
Octyl-β-glucoside [Sigma Aldritch O8001]) for in vitro kinase as-
say experiments, or Radio-Immuno-Precipitation-Assay (RIPA, 50
mM Tris pH 7.5 [neutralised with NaOH], 150 mM NaCl, 1%
NP40 [Sigma 13021], 0.5% Sodium Deoxycholate [D6750], 0.1%
SDS [Sigma Aldritch L4509], 1 mM [Amresco 0105], 1% Glycerol
[Sigma G5516]) for immunoprecipitation and western blotting
experiments, both with protease inhibitors (Roche, 11873580001)
and phosphatase inhibitors (2 mM Sodium Orthovanadate [Sigma
Aldritch S6508, first activated at 95◦C then neutralised with HCl],
1 mM Sodium Pyrophosphate [Sigma Aldritch S6422], 1 mM Am-
monium Molybdate [Sigma Aldritch A7302], 10 mM Sodium Flu-
oride [Fluka 71522]). Cells were then scrapped down and trans-
ferred to a 1.5 mL centrifuge tube (Axygen MCT-150-C).

Cell lysates were then homogenised by sonicating the samples
for 6 s, made up of a 1 s pulse followed by 3 s interval for a total
time of 21 s (total energy of 100 J deposited). Insoluble fractions
and lipids separated by centrifuging the samples at 21,000 × g for
30 minutes. Lipids were then removed by carefully aspirating the
resulting milky suspension. The supernatant is then transferred
to a clean centrifuge tube tube. The samples were then quantified
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using the Pierce bicinchroninic acid assay (ThermoFisher Scien-
tific 23224).

a.3 western blot analysis

Proteins were separated by SDS-PAGE then transfered to poly-
vinylidene difluoride membranes (Merck Millipore, IPVH00010).
Membranes were blocked in blocking buffer (5% skim milk [coles],
TBST: Tris-buffered saline with 0.1

The following antibodies were used in the analysis. pan-14-
3-3 (Rabbit, Santa Cruz Biotechnology, sc-629), pan-Akt (Rabbit,
Cell Signalling Technology, 4685), phospho-Akt Ser473 (Mouse,
Cell Signalling Technology, 4051), phospho-Akt Thr308 (Rabbit,
Cell Signalling Technology, 9275), phospho-AS160 Thr642 (Rab-
bit, Cell Signalling Technology, 4288).

a.4 total internal reflection microscopy (tirf)

TagRFPt-Akt2 was cloned using Gibson assembly from pDEST53-
eGFP-Akt2 [210]. The pDEST53-Akt2 fragment was cloned using
the primers TCTTCGCCCTTAGACACCATGTCTCCCTATAGTGAGTC
and TAATGGCATGGACGAGCTGTACAAGAATGAGGTGTCTGT-
CATCAAAG. TagRFPt fragment was cloned from pGEM-T-tagRFTt
using the primers GACTCACTATAGGGAGACATGGTGTCTAAGGGC-
GAAGA and CTTTGATGACAGACACCTCATTCTTGTACAGCTCGTC-
CATGCCATTA.

pDEST53-eGFP-Akt2 was cloned using Gibson assembly from
pDEST53-Cycle3_GFP-Akt2. The pDEST53-Akt2 fragment was cloned
using the same primers as previously described. The eGFP frag-
ment was cloned from pEGFP-C1 (Clonetech) using the primers
CCAAGCTGGCTAGACACCATGGTGAGCAAGGGCGAGGA and
CTTTGATGACAGACACCTCATTCTTGTACAGCTCGTCCATGC-
CATTA.

pDEST53-Cycle3_GFP-Akt2 was cloned using the gateway tech-
nique where human Akt2 in the pDONR221 backbone was in-
serted into pcDNA-DEST53 vector.

Differentiated cells were transfected with the tagRFPt-Akt2 flu-
orescent construct, seeded onto coverslips, and imaged with Total
Internal Reflection Fluorescence (TIRF) microscopy as described
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in [211]. Imaging was performing with the excitation wavelength
at 555 nm and emission wavelength at 584 nm.



BA D D I T I O N A L D Q S S A
D E R I VAT I O N S

b.1 two enzyme one substrate model

Beginning with:

[ST ]0 = [S] + [E1S] + [E2S] + [P1] + [P2] (169)
[E1T ]0 = [E1] + [E1S] (170)

˙[P1] = kc1[E1S] (171)
˙[E1S] = k

a
1 [S][E1] − (kd1 + k

c
1)[E1S] (172)

[E2T ]0 = [E2] + [E2S] (173)
˙[P2] = kc2[E2S] (174)

˙[E2S] = k
a
2 [S][E2] − (kd2 + k

c
2)[E2S] (175)

We find the functional form for the complex concentrations under
the quasi-steady state assumption. Setting equations 172 and 175
to zero we obtain:

[E1S] =
[S][E1]

Km1
(176)

[E2S] =
[S][E2]

Km2
(177)

The rate of change of the complex concentrations under the quasi-
steady state assumption are then:

˙[E1S] =
∂[E1S]

∂[E1]
˙[E1] +

∂[E1S]

∂[S]
˙[S] =

[S]

Km1

˙[E1] +
[E1]

Km1

˙[S] (178)

˙[E2S] =
∂[E2S]

∂[E2]
˙[E2] +

∂[E2S]

∂[S]
˙[S] =

[S]

Km2

˙[E2] +
[E2]

Km2

˙[S] (179)
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Then differentiating Eqns 169, 170 and 173 and substituting the
above (Eqns 190 and 193) leads to:

˙[S] = − ˙[E1S] − ˙[E2S] − ˙[P1] − ˙[P2]

= −
[S]

Km1

˙[E1] −
[E1]

Km1

˙[S] − kc1[E1S] −
[S]

Km2

˙[E2] −
[E2]

Km2

˙[S] − kc2[E2S]

(180)
˙[E1] = − ˙[E1S]

= −
[S]

Km1

˙[E1] −
[E1]

Km1

˙[S] (181)

˙[P1] = kc1[E1S] (182)

˙[E1S] =
[S]

Km1

˙[E1] +
[E1]

Km1

˙[S] (183)

˙[E2] = − ˙[E2S]

= −
[S]

Km2

˙[E2] −
[E2]

Km2

˙[S] (184)

˙[P2] = kc2[E2S] (185)

˙[E2S] =
[S]

Km2

˙[E2] +
[E2]

Km2

˙[S] (186)

Placing all derivative terms on the left hand side:

[S]

Km1

˙[E1] +
[S]

Km2

˙[E2] +
[E1]

Km1

˙[S] +
[E2]

Km2

˙[S] + ˙[S] = −kc1[E1S] − k
c
2[E2S]

(187)
[S]

Km1

˙[E1] + ˙[E1] +
[E1]

Km1

˙[S] = 0 (188)

˙[P1] = kc1[E1S] (189)

−
[S]

Km1

˙[E1] −
[E1]

Km1

˙[S] + ˙[E1S] = 0 (190)

[S]

Km2

˙[E2] + ˙[E2] +
[E2]

Km2

˙[S] = 0 (191)

˙[P2] = kc2[E2S] (192)

−
[S]

Km2

˙[E2] −
[E2]

Km2

˙[S] + ˙[E2S] = 0 (193)
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As a matrix equation:

1+
[E1]
Km1

+
[E2]
Km2

[S]
Km1

0 0
[S]
Km2

0 0

[E1]
Km1

1+
[S]
Km1

0 0 0 0 0

0 0 1 0 0 0 0

−
[E1]
Km1

−
[S]
Km1

0 1 0 0 0

[E2]
Km2

0 0 0 1+
[S]
Km2

0 0

0 0 0 0 0 1 0

−
[E2]
Km2

0 0 0 −
[S]
Km2

0 1





˙[S]
˙[E1]
˙[P1]
˙[E1S]
˙[E2]
˙[P2]
˙[E2S]


=



0 0 0 −kc1 0 0 −kc2
0 0 0 0 0 0 0

0 0 0 kc1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 kc2
0 0 0 0 0 0 0





[S]

[E1]

[P1]

[E1S]

[E2]

[P2]

[E2S]


(194)
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The matrices can be broken up into:

1+
[E1]
Km1

+
[E2]
Km2

[S]
Km1

0 0
[S]
Km2

0 0

[E1]
Km1

1+
[S]
Km1

0 0 0 0 0

0 0 1 0 0 0 0

−
[E1]
Km1

−
[S]
Km1

0 1 0 0 0

[E2]
Km2

0 0 0 1+
[S]
Km2

0 0

0 0 0 0 0 1 0

−
[E2]
Km2

0 0 0 −
[S]
Km2

0 1


= δij+

(195)

[E1]
Km1

[S]
Km1

0 0 0 0 0

[E1]
Km1

[S]
Km1

0 0 0 0 0

0 0 0 0 0 0 0

−
[E1]
Km1

−
[S]
Km1

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


+



[E2]
Km2

0 0 0
[S]
Km2

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
[E2]
Km2

0 0 0
[S]
Km2

0 0

0 0 0 0 0 0 0

−
[E2]
Km2

0 0 0 −
[S]
Km2

0 0


The first term is the same as Eqn. 60 . The second term is the same
as Eqn. 60 with the [E1], [E1S] and [P1] indices replaced with the
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[E2], [E2S] and [P2] indices. And similarly for the right hand side
matrix: 

0 0 0 −kc1 0 0 −kc2
0 0 0 0 0 0 0

0 0 0 kc1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 kc2
0 0 0 0 0 0 0


=



0 0 0 −kc1 0 0 0

0 0 0 0 0 0 0

0 0 0 kc1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


+



0 0 0 0 0 0 −kc2
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 kc2
0 0 0 0 0 0 0


(196)

The first term is the same as Eqn. 61. The second term is the same
as Eqn. 61 with the [P1] indices replaced with the [P2] indices. And
similarly for the right hand side matrix:





CD Q S S A VA L I D AT I O N M O D E L
D E F I N I T I O N S

c.1 in silico validation

c.1.1 dQSSA Model

function dx_dt = validatedQSSA(t,x,k,f)

x(x<0) = 0;

% Select variation method to use for dQSSA calculation.

% vartn = 1 explicitedly models the complex

% vartn = 2 implicitly models the complexes

vartn = 1;

%% Definition of states

%x(1) = I

%x(2) = A

%x(3) = pA

%x(4) = B

%x(5) = p1B

%x(6) = p2B

%x(7) = C

%x(8) = D

%x(9) = CD

%x(10) = pCD

%x(11) = A-B

%x(12) = A-p1B

%x(13) = I-CD

%x(14) = I-pCD

%x(15) = pCD-A

%x(16) = pCD-pA

%x(17) = pCD-B

%x(18) = pCD-p2B

%x(19) = p1B-B

%x(20) = p1B-p2B

%% Initialisation

B = zeros(length(x));

M = 0*B;

L = M;

%% Creating Tensors

if vartn ==1

% Variation 1. Complex explicitly modelled

G = [11 2 4 -1/k( 2); %Enzyme Reaction 1f

11 4 2 -1/k( 2);

4 2 4 1/k( 2);

4 4 2 1/k( 2);

193
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2 2 4 1/k( 2);

2 4 2 1/k( 2);

12 2 5 -1/k( 4); %Enzyme Reaction 1r

12 5 2 -1/k( 4);

5 2 5 1/k( 4);

5 5 2 1/k( 4);

2 2 5 1/k( 4);

2 5 2 1/k( 4);

13 1 9 -1/k( 9); %Enzyme Reaction 5f

13 9 1 -1/k( 9);

9 1 9 1/k( 9);

9 9 1 1/k( 9);

1 1 9 1/k( 9);

1 9 1 1/k( 9);

14 1 10 -1/k(11); %Enzyme Reaction 5r

14 10 1 -1/k(11);

10 1 10 1/k(11);

10 10 1 1/k(11);

1 1 10 1/k(11);

1 10 1 1/k(11);

15 10 2 -1/k(14); %Enzyme Reaction 7f

15 2 10 -1/k(14);

2 10 2 1/k(14);

2 2 10 1/k(14);

10 2 10 1/k(14);

10 10 2 1/k(14);

16 10 3 -1/k(16); %Enzyme Reaction 7r

16 3 10 -1/k(16);

3 10 3 1/k(16);

3 3 10 1/k(16);

10 3 10 1/k(16);

10 10 3 1/k(16);

17 10 4 -1/k(19); %Enzyme Reaction 9f

17 4 10 -1/k(19);

4 10 4 1/k(19);

4 4 10 1/k(19);

10 4 10 1/k(19);

10 10 4 1/k(19);

18 10 6 -1/k(21); %Enzyme Reaction 9r

18 6 10 -1/k(21);

6 10 6 1/k(21);

6 6 10 1/k(21);

10 6 10 1/k(21);

10 10 6 1/k(21);

19 5 6 -1/k(23); %Enzyme Reaction 10f

19 6 5 -1/k(23);

5 5 6 1/k(23);

5 6 5 1/k(23);

6 5 6 1/k(23);

6 6 5 1/k(23);

20 5 4 -1/k(25); %Enzyme Reaction 10r

20 4 5 -1/k(25);

5 5 4 1/k(25);

5 4 5 1/k(25);

4 5 4 1/k(25);

4 4 5 1/k(25);

];

G(isnan(G(:,4)),4) = 0;
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A = [7 7 8 -k(6) ; %Reaction 3

8 7 8 -k(6) ;

9 7 8 k(6)];

B(5,11) = k(1); %Reaction 1f

B(4,11) = -k(1);

B(5,12) = -k(3); %Reaction 1r

B(4,12) = k(3);

B(4,5) = k(5); %Reaction 2

B(5,5) = -k(5);

B(7,9) = k(7); %Reaction 4

B(8,9) = k(7);

B(9,9) = -k(7);

B(10,13)= k(8); %Reaction 5f

B(9,13) = -k(8);

B(10,14)= -k(10); %Reaction 5r

B(9,14) = k(10);

B(9,10) = k(12); %Reaction 6

B(10,10)= -k(12);

B(3,15) = k(13); %Reaction 7f

B(2,15) = -k(13);

B(3,16) = -k(15); %Reaction 7r

B(2,16) = k(15);

B(2,3) = k(17); %Reaction 8

B(3,3) = -k(17);

B(6,17) = k(18); %Reaction 9f

B(4,17) = -k(18);

B(6,18) = -k(20); %Reaction 9r

B(4,18) = k(20);

B(4,19) = k(22); %Reaction 10f

B(6,19) = -k(22);

B(4,20) = -k(24); %Reaction 10r

B(6,20) = k(24);

B(4,6) = k(26); %Reaction 11

B(6,6) = -k(26);

end

%% Solving the tensor equation

MTmp = sparse(G(:,1),G(:,3),G(:,4).*x(G(:,2)));

[a,b] = size(MTmp);

M(1:a,1:b) = MTmp;

LTmp = sparse(A(:,1),A(:,2),A(:,4).*x(A(:,3)));

[a,b] = size(LTmp);

L(1:a,1:b) = LTmp;

dx_dt = (eye(length(x))+M)\(L*x+B*x+f(t));

dx_dt(x<0) = 0;

c.1.2 Mass Action Model

function dx_dt = validateMA(t,x,k,f)

%% Definition of states

%x(1) = I

%x(2) = A

%x(3) = pA

%x(4) = B
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%x(5) = p1B

%x(6) = p2B

%x(7) = C

%x(8) = D

%x(9) = CD

%x(10) = pCD

%x(11) = A-B

%x(12) = A-p1B

%x(13) = I-CD

%x(14) = I-pCD

%x(15) = pCD-A

%x(16) = pCD-pA

%x(17) = pCD-B

%x(18) = pCD-pB

%x(19) = p1B-B

%x(20) = p1B-p2B

%% Reaction velocities

rxn1_1f = k(1)*x(2)*x(4); %A + B -> A-B

rxn1_2f = k(2)*x(11); %A-B -> A + B

rxn1_3f = k(3)*x(11); %A-B -> A-p1B

rxn1_1r = k(4)*x(2)*x(5); %A + p1B -> A-p1B

rxn1_2r = k(5)*x(12); %A-p1B -> p1B + A

rxn1_3r = k(6)*x(12); %A-p1B -> B + A

rxn2 = k(7)*x(5); %p1B -> B

rxn3 = k(8)*x(7)*x(8); %C+D -> CD

rxn4 = k(9)*x(9); %CD -> C + D

rxn5_1f = k(10)*x(1)*x(9) ; %CD + I -> I-CD

rxn5_2f = k(11)*x(13); %I-CD -> CD + I

rxn5_3f = k(12)*x(13); %I-CD -> I-pCD

rxn5_1r = k(13)*x(1)*x(10); %pCD + I -> I-pCD

rxn5_2r = k(14)*x(14); %I-pCD -> pCD + I

rxn5_3r = k(15)*x(14); %I-pCD -> I-CD

rxn6 = k(16)*x(10); %pCD -> CD

rxn7_1f = k(17)*x(2)*x(10); %pCD + A -> pCD-A

rxn7_2f = k(18)*x(15); %pCD-A -> A + pCD

rxn7_3f = k(19)*x(15); %pCD-A -> pCD-pA

rxn7_1r = k(20)*x(3)*x(10); %pCD + pA -> pCD-pA

rxn7_2r = k(21)*x(16); %pCD-pA -> pCD + pA

rxn7_3r = k(22)*x(16); %pCD-pA -> pCD-A

rxn8 = k(23)*x(3); %pA -> A

rxn9_1f = k(24)*x(4)*x(10); %pCD + B -> pCD-B

rxn9_2f = k(25)*x(17); %pCD-B -> B + pCD

rxn9_3f = k(26)*x(17); %pCD-B -> pCD-pB

rxn9_1r = k(27)*x(6)*x(10); %pCD + pB -> pCD-pB

rxn9_2r = k(28)*x(18); %pCD-pB -> pCD + pB

rxn9_3r = k(29)*x(18); %pCD-pB -> pCD-B

rxn10_1f = k(30)*x(5)*x(6); %p1B + p2B -> p1B-p2B

rxn10_2f = k(31)*x(19); %p1B-p2B -> p1B + p2B

rxn10_3f = k(32)*x(19); %p1B-p2B -> p1B-B

rxn10_1r = k(33)*x(5)*x(4); %p1B + B -> p1B-B

rxn10_2r = k(34)*x(20); %p1B-B -> p1B + B

rxn10_3r = k(35)*x(20); %p1B-B -> p1B-p2B
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rxn11 = k(36)*x(6); %p2B -> pB

% Constructing ODEs

dx_dt(1) = -rxn5_1f +rxn5_2f -rxn5_1r +rxn5_2r;

dx_dt(2) = -rxn1_1f +rxn1_2f -rxn1_1r +rxn1_2r -rxn7_1f +rxn7_2f +rxn8;

dx_dt(3) = -rxn7_1r +rxn7_2r -rxn8;

dx_dt(4) = -rxn1_1f +rxn1_2f +rxn2 -rxn9_1f +rxn9_2f -rxn10_1r +rxn10_2r +rxn11;

dx_dt(5) = -rxn1_1r +rxn1_2r -rxn2 -rxn10_1f +rxn10_2f -rxn10_1r +rxn10_2r;

dx_dt(6) = -rxn9_1r +rxn9_2r -rxn11 -rxn10_1f +rxn10_2f;

dx_dt(7) = -rxn3 +rxn4;

dx_dt(8) = -rxn3 +rxn4;

dx_dt(9) = rxn3 -rxn4 -rxn5_1f +rxn5_2f +rxn6;

dx_dt(10)= -rxn5_1r +rxn5_2r -rxn6 -rxn9_1f +rxn9_2f -rxn9_1r +...

rxn9_2r -rxn7_1f + rxn7_2f -rxn7_1r +rxn7_2r;

dx_dt(11)= rxn1_1f -rxn1_2f -rxn1_3f +rxn1_3r;

dx_dt(12)= rxn1_1r -rxn1_2r -rxn1_3r +rxn1_3f;

dx_dt(13)= rxn5_1f -rxn5_2f -rxn5_3f +rxn5_3r;

dx_dt(14)= rxn5_1r -rxn5_2r -rxn5_3r +rxn5_3f;

dx_dt(15)= rxn7_1f -rxn7_2f -rxn7_3f +rxn7_3r;

dx_dt(16)= rxn7_1r -rxn7_2r -rxn7_3r +rxn7_3f;

dx_dt(17)= rxn9_1f -rxn9_2f -rxn9_3f +rxn9_3r;

dx_dt(18)= rxn9_1r -rxn9_2r -rxn9_3r +rxn9_3f;

dx_dt(19)= rxn10_1f -rxn10_2f -rxn10_3f +rxn10_3r;

dx_dt(20)= rxn10_1r -rxn10_2r -rxn10_3r +rxn10_3f;

dx_dt = dx_dt’+f(t);

c.1.3 Michaelis Menten Model

function dx_dt = validateMM(t,x,k,f)

%% Definition of states

%x(1) = I

%x(2) = A

%x(3) = pA

%x(4) = B

%x(5) = p1B

%x(6) = p2B

%x(7) = C

%x(8) = D

%x(9) = CD

%x(10) = pCD

%% Reaction velocities

rxn1f = k(1)*x(2)*x(4)/(k(2)+x(4)); % B -> p1B | A

rxn1r = k(3)*x(2)*x(5)/(k(4)+x(5)); % p1B -> B | A

rxn2 = k(5)*x(5); % p1B -> B

rxn3 = k(6)*x(7)*x(8); % C+D -> CD

rxn4 = k(7)*x(9); % CD -> C + D

rxn5f = k(8)*x(1)*x(9)/(k(9)+x(9)); % CD -> pCD | I

rxn5r = k(10)*x(1)*x(10)/(k(11)+x(10)); % pCD -> CD | I

rxn6 = k(12)*x(10); % pCD -> CD

rxn7f = k(13)*x(10)*x(2)/(k(14)+x(2)); % A -> pA | pCD

rxn7r = k(15)*x(10)*x(3)/(k(16)+x(3)); % pA -> A | pCD
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rxn8 = k(17)*x(3); % pA -> A

rxn9f = k(18)*x(10)*x(4)/(k(19)+x(4)); % B -> p2B | pCD

rxn9r = k(20)*x(10)*x(6)/(k(21)+x(6)); % p2B -> B | pCD

rxn10f = k(22)*x(5)*x(6)/(k(23)+x(6)); % p2B -> B | p1B

rxn10r = k(24)*x(5)*x(4)/(k(25)+x(4)); % B -> p2B | p1B

rxn11 = k(26)*x(6); % p2B -> B

%% Constructing ODEs

dx_dt(1) = 0;

dx_dt(2) = -rxn7f +rxn7r +rxn8;

dx_dt(3) = rxn7f -rxn7r -rxn8;

dx_dt(4) = -rxn1f +rxn1r +rxn2 -rxn9f +rxn9r +rxn10f -rxn10r +rxn11;

dx_dt(5) = rxn1f -rxn1r -rxn2;

dx_dt(6) = rxn9f -rxn9r -rxn10f +rxn10r -rxn11;

dx_dt(7) = -rxn3 +rxn4;

dx_dt(8) = -rxn3 +rxn4;

dx_dt(9) = rxn3 -rxn4 -rxn5f +rxn5r +rxn6;

dx_dt(10)= rxn5f -rxn5r -rxn6;

fTrunc = f(t);

dx_dt = dx_dt’+fTrunc(1:10);

c.2 in vitro validation one substrate model

c.2.1 dQSSA Model

function dx_dt = LDHQSSA(t,x,k,f)

%% Species Definition

%x(1) = NADH

%x(2) = NAD+

%x(3) = Py

%x(4) = Lac

%x(5) = LDH

%x(6) = NADH-LDH

%x(7) = NAD+-LDH

%x(8) = NADH-LDH-Py

%x(9) = NAD+-LDH-Lac

B = zeros(length(x));

M = 0*B;

L = M;

G =[%%%%Pyruvate Side Reactions%%%%%%

8 3 6 -1/k(5); %NADH-LDH-Py

8 6 3 -1/k(5);

3 3 6 1/k(5);

3 6 3 1/k(5);

6 3 6 1/k(5);

6 6 3 1/k(5);

%%%%Lactate Side Reactions%%%%%%

9 4 7 -1/k(6); %NAD-LDH-Lac

9 7 4 -1/k(6);

4 4 7 1/k(6);

4 7 4 1/k(6);

7 4 7 1/k(6);
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7 7 4 1/k(6);

];

A = [1 5 1 -k(1);

5 5 1 -k(1);

6 5 1 k(1);

2 5 2 -k(3);

5 5 2 -k(3);

7 5 2 k(3);

];

B(6,6) = -k(2);

B(1,6) = k(2);

B(5,6) = k(2);

B(7,7) = -k(4);

B(2,7) = k(4);

B(5,7) = k(4);

B(2,8) = k(7); %Py-NADH-LDH -> Lac + NAD+ + LDH

B(4,8) = k(7);

B(1,8) = -k(7);

B(3,8) = -k(7);

B(1,9) = k(8); %Lac-NAD+-LDH -> Py + NADH + LDH

B(3,9) = k(8);

B(2,9) = -k(8);

B(4,9) = -k(8);

% Solving the linear equation

MTmp = sparse(G(:,1),G(:,3),G(:,4).*x(G(:,2)));

[a,b] = size(MTmp);

M(1:a,1:b) = MTmp;

LTmp = sparse(A(:,1),A(:,2),A(:,4).*x(A(:,3)));

[a,b] = size(LTmp);

L(1:a,1:b) = LTmp;

dx_dt = (eye(length(x))+M)\(L*x+B*x+f(t));

c.2.2 Michaelis Menten Model

function dx_dt = LDHMM(t,x,k)

%x(1) = NADH

%x(2) = NAD+

%x(3) = Py

%x(4) = Lac

%x(5) = LDH

%x(6) = NADH-LDH

%x(7) = NAD+-LDH

v1 = k(1)*x(1)*x(5)-k(2)*x(6); %NADH + LDH <-> NADH-LDH

v2 = k(3)*x(2)*x(5)-k(4)*x(7); %NAD + LDH <-> NAD-LDH

v3 = k(7)*x(3)*x(6)/(k(5)+x(3)); %py -> Lac | LDH-NADH

v4 = k(8)*x(4)*x(7)/(k(6)+x(4)); %Lac -> Py | LDH-NAD

dx_dt(1) = -v1-v3+v4;

dx_dt(2) = -v2+v3-v4;

dx_dt(3) = -v3+v4;
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dx_dt(4) = v3-v4;

dx_dt(5) = -v1-v2;

dx_dt(6) = v1;

dx_dt(7) = v2;

dx_dt = dx_dt’;

c.3 in vitro validation two substrate model

c.3.1 dQSSA Model (One Substrate and Two Substrate)

function dx_dt = dQSSA(t,x,k,f,var,kMA)

% 1 2 3 4 5 6 7 8 9

%x = [ [LDH],[NADH],[Py],[NADH-LDH],[NADH-LDH-Py],[Lac],[NAD+],[NAD+-LDH],[NAD+-LDH-Lac] ]

A = zeros(0,4);

G = zeros(0,4);

B = zeros(length(x));

M = 0*B;

N = 0*B;

if var == 1

%% Two substrate dQSSA reversible reaction

B = zeros(length(x));

B(6,5) = k(3);

B(7,5) = k(3);

B(2,5) = -k(3);

B(3,5) = -k(3);

B(2,9) = k(6);

B(3,9) = k(6);

B(6,9) = -k(6);

B(7,9) = -k(6);

M = 0*B;

N = 0*B;

G =[%QSS of E+O

4 1 2 -k(1)

4 2 1 -k(1)

1 1 2 k(1)

1 2 1 k(1)

2 1 2 k(1)

2 2 1 k(1)

%QSSA of EO+S

5 4 3 -k(2)

5 3 4 -k(2)

1 4 3 k(2)

1 3 4 k(2)

2 4 3 k(2)

2 3 4 k(2)

3 4 3 k(2)

3 3 4 k(2)

%QSS of E+Op

8 1 7 -k(4)

8 7 1 -k(4)

1 1 7 k(4)
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1 7 1 k(4)

7 1 7 k(4)

7 7 1 k(4)

%QSSA of EOp+P

9 6 8 -k(5)

9 8 6 -k(5)

1 6 8 k(5)

1 8 6 k(5)

6 6 8 k(5)

6 8 6 k(5)

7 6 8 k(5)

7 8 6 k(5)

];

elseif var == 2

% One substrate dQSSA reversible reaction (first substrate binding is

% mass action

G = [

%%%%Pyruvate Side Reactions%%%%%%

5 3 4 -k(1); %NADH-LDH-Py

5 4 3 -k(1);

3 3 4 k(1);

3 4 3 k(1);

4 3 4 k(1);

4 4 3 k(1);

%%%%Lactate Side Reactions%%%%%%

9 6 8 -k(3); %NAD-LDH-Lac

9 8 6 -k(3);

6 6 8 k(3);

6 8 6 k(3);

8 6 8 k(3);

8 8 6 k(3);

];

A = [1 2 1 -k(5); %-> NADH + LDH

2 2 1 -k(5);

4 2 1 k(5);

1 1 7 -kMA(6);%-> NAD+ + LDH

7 1 7 -kMA(6);

8 1 7 kMA(6);

3 4 3 -kMA(3); %-> NADH-LDH + Py

4 4 3 -kMA(3);

5 4 3 kMA(3);

6 6 8 -kMA(8); %-> NAD+-LDH + Lac

8 6 8 -kMA(8);

9 6 8 kMA(8);

];

B(5,5) = B(5,5)- kMA(4); %NADH-LDH + Py ->

B(3,5) = B(3,5)+ kMA(4);

B(4,5) = B(4,5)+ kMA(4);

B(9,9) = B(9,9)- kMA(9); %NAD+-LDH + Lac ->

B(8,9) = B(8,9)+ kMA(9);

B(6,9) = B(6,9)+ kMA(9);

B(4,4) = B(4,4)-kMA(2);

B(1,4) = B(1,4)+ kMA(2);

B(2,4) = B(2,4)+ kMA(2);



202 dqssa validation model definitions

B(8,8) = B(8,8)-kMA(7);

B(7,8) = B(7,8)+kMA(7);

B(1,8) = B(1,8)+kMA(7);

B(6,5) = B(6,5)+ k(2); %Py-NADH-LDH -> Lac + NAD+ + LDH

B(7,5) = B(7,5)+ k(2);

B(2,5) = B(2,5)- k(2);

B(3,5) = B(3,5)- k(2);

B(2,9) = B(2,9)+ kMA(10); %Lac-NAD+-LDH -> Py + NADH + LDH

B(3,9) = B(3,9)+ kMA(10);

B(6,9) = B(6,9)-kMA(10);

B(7,9) = B(7,9)-kMA(10);

end

MTmp = sparse(G(:,1),G(:,2),G(:,4).*x(G(:,3)));

[a,b] = size(MTmp);

M(1:a,1:b) = MTmp;

NTmp = sparse(A(:,1),A(:,2),A(:,4).*x(A(:,3)));

[a,b] = size(NTmp);

N(1:a,1:b) = NTmp;

dx_dt = (eye(length(x))+M)\(N*x+B*x+f(t));

c.3.2 Mass Action Model

function varargout = MA(t,x,k)

% Ordered bi-bi Binding of 3 species into a complex

%1 2 3 4 5 6 7 8 9

%x = [ [LDH],[NADH],[Py],[NADH-LDH],[NADH-LDH-Py],[Lac],[NAD+],[NAD+-LDH],[NAD+-LDH-Lac] ]

% Reversible Enz Kinetic

v(1) = -k( 1)*x(1)*x(2) + k( 2)*x(4); % [LDH] + [NADH] <-> [NADH-LDH]

v(2) = -k( 3)*x(3)*x(4) + k( 4)*x(5); % [NADH-LDH] + [Py] <-> [NADH-LDH-Py]

v(3) = -k( 5)*x(5) + k(10)*x(9); % [NADH-LDH-Py] -> [NAD+-LDH-Lac]

v(4) = -k( 8)*x(8)*x(6) + k( 9)*x(9); % [NAD+-LDH-Lac] <-> [NAD+-LDH] + [Lac]

v(5) = -k( 6)*x(1)*x(7) + k( 7)*x(8); % [NAD+-LDH] <-> [LDH] + [NAD+]

dx_dt(1) = v(1) + v(5);

dx_dt(2) = v(1);

dx_dt(3) = v(2);

dx_dt(4) = - v(1) + v(2);

dx_dt(5) = - v(2) + v(3);

dx_dt(6) = v(4);

dx_dt(7) = v(5);

dx_dt(8) = - v(5) + v(4);

dx_dt(9) = - v(4) - v(3);

varargout{1} = dx_dt’;
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D E F I N I T I O N S A N D E X T R A D ATA

d.1 insulins signalling model

%% Define postProc states

modSpc ={ ’IR’,’PM’,NaN ; %1

’pIR’,’PM’,0 ; %2

’piIR’,’PM’,0 ; %3

’AKT’,’PM’,NaN ; %4

’pAKT’,’PM’,0 ; %5

’AKTSub’,’Cytosol’,NaN ; %6

’pAKTSub’,’Cytosol’,0 ; %7

’TSC2’,’Cytosol’,NaN ; %8

’piTSC2’,’Cytosol’,0 ; %9

’mTORC1’,’Cytosol’,NaN ; %10

’pimTORC1’,’Cytosol’,0 ; %11

’Insulin’,’Outside’,0 ; %12

};

modComp = {’Cytosol’,1;

’PM’,NaN;

’Outside’,1000};

% Features of default parameters

Bnd.k0 = [1e01 1e04];

Bnd.k1 = [5e-5 5e-1];

Bnd.k2 = [5e-5 5e-1];

Bnd.Km = [1e-2 1e02];

Bnd.Conc = [1e-1 1e1];

Bnd.Comp = [0 1];

Bnd.n = [1 4];

Bnd.r = [0 1];

% IR

rxn(end+1).desc = ’IR -> pIR | Insulin’;

rxn(end).sub = {’IR’};

rxn(end).prod= ’pIR’;

rxn(end).enz = ’Insulin’;

rxn(end).k = [NaN 1e-2 1e1];

rxn(end).Km = [NaN 1-4 1e-1];

rxn(end+1).desc = ’pIR -> IR’;

rxn(end).sub=’pIR’;

rxn(end).prod=’IR’;

rxn(end).k = [NaN 1e-4 1e0];

rxn(end+1).desc = ’IR -> piIR | mTORC1 (2)’;

rxn(end).sub = ’IR’;

rxn(end).prod= ’piIR’;

rxn(end).enz = ’mTORC1’;

203



204 biological model definitions and extra data

rxn(end).k = [NaN 1e-2 1e2];

rxn(end).Km = NaN;

rxn(end+1).desc = ’piIR -> IR’;

rxn(end).sub = ’piIR’;

rxn(end).prod= ’IR’;

rxn(end).k = [NaN 1e-4 1e0];

%AKT

rxn(end+1).desc = ’AKT -> pAKT(1)’;

rxn(end).sub = ’AKT’;

rxn(end).prod= ’pAKT’;

rxn(end).enz = ’pIR’;

rxn(end).k = [NaN 1e-2 1e2];

rxn(end).Km = NaN;

rxn(end+1).desc = ’pAKT -> AKT’;

rxn(end).sub =’pAKT’;

rxn(end).prod=’AKT’;

rxn(end).k = [NaN 1e-4 1e0];

%Akt Substrates

rxn(end+1).desc = ’AKTSub->pAKTSub | pAKT (4)’;

rxn(end).sub = ’AKTSub’;

rxn(end).prod= ’pAKTSub’;

rxn(end).enz = ’pAKT’;

rxn(end).k = [NaN 5e0 1e4];

rxn(end).Km = [NaN 5e0 1e4];

rxn(end+1).desc = ’pAS160 -> AS160’;

rxn(end).sub =’pAKTSub’;

rxn(end).prod=’AKTSub’;

rxn(end).k = [NaN 1e-4 1e0];

%TSC2

rxn(end+1).desc = ’TSC2->piTSC2 | pAKT (7)’;

rxn(end).sub = ’TSC2’;

rxn(end).prod= ’piTSC2’;

rxn(end).enz = ’pAKT’;

rxn(end).k = [NaN 1e-2 1e2];

rxn(end).Km = [NaN 1e-4 1e0];

rxn(end+1).desc = ’piTSC2 -> TSC2’;

rxn(end).sub = ’piTSC2’;

rxn(end).prod= ’TSC2’;

rxn(end).k = [NaN 1e-4 1e0];

%mTORC1

rxn(end+1).desc = ’mTORC1->pimTORC1 | TSC2 (8)’;

rxn(end).sub = ’mTORC1’;

rxn(end).prod = ’pimTORC1’;

rxn(end).enz = ’TSC2’;

rxn(end).k = [NaN 1e-2 1e2];

rxn(end).Km = [NaN 1e-4 1e0];

rxn(end+1).desc = ’pimTORC1 -> mTORC1’;

rxn(end).sub = ’pimTORC1’;

rxn(end).prod= ’mTORC1’;

rxn(end).k = [NaN 1e-4 1e0];

d.2 akt model

%% Compartment definition
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modComp = {’Cyto’, 1;

’PM’ , [NaN 1e-3 1];

’ES’ , Inf;

};

%% Model species definition

modSpc = {’PIP3’ ,’PM’ , 0;

’AKT’ ,’Cyto’, 1;

’mAKT’ ,’PM’ , 0;

’p308mAKT’ ,’PM’ , 0;

’p473mAKT’ ,’PM’ , 0;

’p308p473mAKT’ ,’PM’ , 0;

’p308AKT’ ,’Cyto’, 0;

’p473AKT’ ,’Cyto’, 0;

’p308p473AKT’ ,’Cyto’, 0;

’mTORC2’ ,’PM’ , 1;

’PDK1’ ,’PM’ , 1};

%% Features of default parameters

Bnd.k0 = [1e01 1e04];

Bnd.k1 = [5e-5 0.5];

Bnd.k2 = [5e-5 5e-1];

Bnd.Km = [1e-2 1e02];

Bnd.Conc = [1e-1 1e1];

Bnd.n = [1 4];

Bnd.r = [0 1];

Bnd.Comp = [0 1];

%% Reactions

%% AKT Translocation Mechanics

rxn(end+1).desc = ’PIP3 + AKT -> mAKT’;

rxn(end).sub = {’PIP3’,’AKT’};

rxn(end).prod= ’mAKT’;

rxn(end).k = [NaN 1 1 1e3];

rxn(end+1).desc = ’mAKT -> PIP3 + AKT’;

rxn(end).sub = ’mAKT’;

rxn(end).prod= {’PIP3’,’AKT’};

rxn(end).k = [NaN 2 0.3 30];

rxn(end+1).desc = ’PIP3 + p308AKT -> p308mAKT’;

rxn(end).sub = {’PIP3’,’p308AKT’};

rxn(end).prod= ’p308mAKT’;

rxn(end).k = [NaN 1];

rxn(end+1).desc = ’p308mAKT -> PIP3 + p308AKT’;

rxn(end).sub = ’p308mAKT’;

rxn(end).prod= {’PIP3’,’p308AKT’};

rxn(end).k = [NaN 2];

rxn(end+1).desc = ’PIP3 + p473AKT -> p473mAKT’;

rxn(end).sub = {’PIP3’,’p473AKT’};

rxn(end).prod= ’p473mAKT’;

rxn(end).k = [NaN 1];

rxn(end+1).desc = ’p473mAKT -> PIP3 + p473AKT’;

rxn(end).sub = ’p473mAKT’;

rxn(end).prod= {’PIP3’,’p473AKT’};

rxn(end).k = [NaN 2];

rxn(end+1).desc = ’PIP3 + p308p473AKT -> p308p473mAKT’;

rxn(end).sub = {’PIP3’,’p308p473AKT’};
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rxn(end).prod= ’p308p473mAKT’;

rxn(end).k = [NaN 1];

rxn(end+1).desc = ’p308p473mAKT -> PIP3 + p308p473AKT’;

rxn(end).sub = ’p308p473mAKT’;

rxn(end).prod= {’PIP3’,’p308p473AKT’};

rxn(end).k = [NaN 2];

%% 308 phosphorylation and dephosphorylation mechanics

rxn(end+1).desc = ’mAKT -> p308mAKT’;

rxn(end).sub = ’mAKT’;

rxn(end).prod= ’p308mAKT’;

rxn(end).enz = ’PDK1’;

rxn(end).k = NaN;

rxn(end).Km = NaN;

rxn(end+1).desc = ’p473mAKT -> p308p473mAKT’;

rxn(end).sub = ’p473mAKT’;

rxn(end).prod= ’p308p473mAKT’;

rxn(end).enz = ’PDK1’;

rxn(end).k = NaN;

rxn(end).Km = [NaN 1 1e3];

rxn(end+1).desc = ’p308AKT -> AKT’;

rxn(end).sub = ’p308AKT’;

rxn(end).prod= ’AKT’;

rxn(end).k = [NaN 3 0.1 10];

rxn(end+1).desc = ’p308p473AKT -> p473AKT’;

rxn(end).sub = ’p308p473AKT’;

rxn(end).prod= ’p473AKT’;

rxn(end).k = [NaN 3];

rxn(end+1).desc = ’p308mAKT -> mAKT’;

rxn(end).sub = ’p308mAKT’;

rxn(end).prod= ’mAKT’;

rxn(end).k = [NaN 3];

rxn(end+1).desc = ’p308p473mAKT -> p473mAKT’;

rxn(end).sub = ’p308p473mAKT’;

rxn(end).prod= ’p473mAKT’;

rxn(end).k = [NaN 3];

%% 473 Phosphorylation and dephosphorylation mechanics

rxn(end+1).desc = ’mAKT -> p473mAKT’;

rxn(end).sub = ’mAKT’;

rxn(end).prod= ’p473mAKT’;

rxn(end).enz = ’mTORC2’;

rxn(end).k = NaN;

rxn(end).Km = [NaN 0.3 1e-3];

rxn(end+1).desc = ’p308mAKT -> p308p473mAKT’;

rxn(end).sub = ’p308mAKT’;

rxn(end).prod= ’p308p473mAKT’;

rxn(end).enz = ’mTORC2’;

rxn(end).k = NaN;

rxn(end).Km = NaN;

rxn(end+1).desc = ’p473AKT -> AKT’;

rxn(end).sub = ’p473AKT’;

rxn(end).prod= ’AKT’;

rxn(end).k = [NaN 3];

rxn(end+1).desc = ’p308p473AKT -> p308AKT’;

rxn(end).sub = ’p308p473AKT’;

rxn(end).prod= ’p308AKT’;

rxn(end).k = [NaN 3];

rxn(end+1).desc = ’p473mAKT -> mAKT’;

rxn(end).sub = ’p473mAKT’;
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rxn(end).prod= ’mAKT’;

rxn(end).k = [NaN 3];

rxn(end+1).desc = ’p308p473mAKT -> p308mAKT’;

rxn(end).sub = ’p308p473mAKT’;

rxn(end).prod= ’p308mAKT’;

rxn(end).k = [NaN 3];

d.3 additional data

Figure 54: Visualisatin of the distribution of 1000 parameter sets
achieved in the Akt-Akt substrate model using 3D heat maps.
Red indicates high density of accepted parameters while blue
shows a low density (deep blue is zero density).
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