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Abstract

The design of tall buildings requires an accurate understanding of the expected wind

loads and the resulting responses. The techniques used to estimate the wind-induced

response are subject to uncertainty, which can result in unsatisfactory building per-

formance or an over-designed structure. Altering the structure to rectify unsatisfac-

tory performance can be extremely difficult and prohibitively expensive, while an

over-designed structure represents unnecessary cost to the owner. This implies that

accurate estimates of wind loads and responses are crucial to tall building design.

Two aspects of tall building wind-induced response estimation are investigated:

the estimation of natural frequencies and damping ratios; and the understanding

of mechanisms causing wind-induced responses. This was primarily conducted via

full-scale testing of a tall building. The building used for full-scale measurements is

Latitude tower, an office tower located in the Sydney central business district, with

a height of 187 m above ground and 28 m of underground levels. The building has a

composite design including a reinforced concrete core, and reinforced concrete floor

slabs supported by steel beams spanning between the core and perimeter columns.

Outriggers linking the core and perimeter columns, as well as offset outriggers at

the facade, are located at mid-height.

The full-scale testing was conducted in two parts: vibration testing during con-

struction; and a two year monitoring programme commenced after construction

completion. Vibration testing during construction was conducted to determine the

natural frequencies and damping ratios as the structure changed. Forced vibration

testing and ambient vibration testing techniques were used. The Frequency Domain

Decomposition and Stochastic Subspace Identification techniques were used to es-

timate the natural frequencies and damping ratios from the ambient vibration test

outputs. The natural frequencies and damping ratios from the forced and ambient

vibration tests differed by less than 5% and 30% respectively.

Changes in the fundamental natural frequencies during construction were dis-

cussed in conjunction with the structural changes to further the understanding of

how changes in the stiffness and mass of a tall building influence the natural fre-

quencies. The measured natural frequencies during the early stages of construction

were used to update a finite element model representing the structure at the time
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of testing. The material properties and floor beams were the primary focus of the

model updating. The knowledge gained from partial structure updating was applied

to a model of the completed structure, and the natural frequency estimate errors

improved from 17% to 7%. The fundamental mode damping ratios measured during

construction changed by less than 15% between the first test, conducted when 38%

of the tower height was reached, and the final test at construction completion.

The wind-induced monitoring programme included the measurement of wind

velocities, accelerations, and displacements at the top of the building. The peak

events for southerly and westerly wind directions were discussed. It was found that

the acceleration response was dominated by the fundamental vibration mode. For

southerly winds this corresponded to an along-wind response, but for westerly winds

this corresponds to a cross-wind response. The probability distributions of upcross-

ings for along-wind and cross-wind responses where not significantly different to

a Gaussian distribution for both southerly and westerly winds. The slope of the

linear least squares fit was greater than two in all cases, which suggested intermit-

tent characteristics were present in the responses. The standard deviation resonant

acceleration responses from a high frequency base balance wind tunnel test were

within 29% of the measured values.
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signals are periodic, and the leakage is caused when a finite length periodic
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shear modulus Ratio of shear stress to shear strain (G = E/[2(1 + ν)])

tribrac A surveying instrument attachment device consisting of two triangular

plates connected at their corners by thumbscrews. By adjusting the thumb-

screws, the top triangular plate can be levelled when the bottom plate is
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zero-order hold method of converting a continuous signal to a discrete, stepwise

signal by holding each sample value for one sample interval. The input is

assumed to be piecewise constant over the sampling interval.



Chapter 1

Introduction

In order to achieve the design goals for a tall building, it is important to know the

response of the structure to the expected loading conditions. Therefore, estimating

the loads and subsequent responses is a crucial consideration for the design. Current

methods for estimating tall building response to loading involve numerous steps that

collectively form a combination of techniques, including theoretical, empirical, and

scaled model tests. These techniques are based on fundamental mechanics and years

of development, but uncertainty in the response estimates are still encountered. This

is particularly true for tall building designs that are considered significantly different

and complex relative to previous designs.

Notably absent from the list of techniques for estimating tall building response

is prototype testing. This is because tall buildings are essentially unique products.

Constructing a tall building represents a singular production run. This is in contrast

to other industries, such as the automotive or aerospace industries, which have

the ability to test multiple full-scale prototypes, and improve subsequent designs

with test results before releasing a product for general use. Applying such a design

approach to tall buildings is infeasible. Even if a prototype of a tall building could be

constructed purely for testing and design improvement, applying a controlled lateral

load equivalent to an ultimate earthquake or wind event would be inconceivable.

In addition to the uniqueness of tall buildings, any alterations to the structural

arrangement after it has been established can be difficult and expensive to conduct.

The level of difficulty and expense depends on how far the design and construc-

tion has progressed. In particular, any alterations to the completed form can be

extremely difficult to undertake and very costly. It is sufficient to say that altering

the structural arrangement to rectify a building response problem is to be avoided,

and when absolutely necessary, is best executed as early as possible in the design

and construction process. The ability to make effective structural changes is often

hampered by the fact that in all but the most structurally sensitive buildings, the

structural arrangement is essentially subservient to both architectural and financial

1
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requirements. This can constrict the structural design to inferior solutions, and

therefore further restrict the options for changing the structural arrangement.

The preceding paragraphs have introduced two crucial points for accurately pre-

dicting tall building response to loading. Firstly, there is virtually no means to test

a full-scale prototype and use the results to improve the design. Secondly, alter-

ations can be costly once the structural arrangement has been finalised. These two

aspects imply that estimates of the loads and responses must be accurate prior to

finalising the structural arrangement. The response parameters of interest for tall

building global design are the base overturning moments, base shears, lateral deflec-

tions, and accelerations at the top of the building. Sources of lateral loading include

earthquakes and wind, amongst others, and tall buildings can be sensitive to either

source.

1.1 Design Criteria for Tall Buildings

According to current limit state design codes [75, 150], the design of civil engineer-

ing structures include the following four aspects: ultimate, serviceability, fatigue,

and robustness. The ultimate aspects include strength and stability requirements

for peak load events, such as earthquakes and large return period wind events. Ser-

viceability aspects include the deflection and motion requirements for normal use

under all expected design loads. Fatigue aspects relate to the cyclical nature of

loading, and are rarely critical for tall building design. Robustness aspects refer to

the ability of a structure to withstand an event without incurring damage that is

disproportionate to the event, for example progressive collapse.

For the ultimate limit state, the design criteria requires a tall building to have

sufficient strength to resist the peak probable load events likely to occur during the

design life of the building. This requires an analysis of the forces and stresses within

the structural elements for the critical load combinations. An additional check is

also required to assess stability. The dead load of the structure, in conjunction with

any base anchoring arrangements, must be sufficient to ensure the applied lateral

loads will not cause the structure to topple. An understanding of lateral deflections

from ultimate loads are required when checking stability. The case may arise that

second-order load-deflection effects may cause structural instability.

For the serviceability limit state, the design criteria requires a tall building to

perform adequately for normal use under all expected actions. The serviceability

design criteria for tall buildings are numerous, however the most pertinent for overall

structural design are deflection and motion related criteria. In the case of structural

deflections, sufficient lateral stiffness must be provided to ensure the operation of

building components, such as elevators and doors, are not hampered by excessive



CHAPTER 1. INTRODUCTION 3

deflections. Furthermore, excessive lateral deflections can cause the transfer of loads

to non-load-bearing components, such as partition walls and facades. In the case of

motion related criteria, a tall building subjected to fluctuating wind loads can result

in oscillatory movements that have adverse effects on occupant comfort. Motions

that cause undesirable cognitive or physical effects for occupants may result in an

otherwise acceptable building becoming undesirable to prospective tenants. A tall

building design may have sufficient capacity to satisfy the ultimate limit state, but

could fail the occupant comfort criteria if accelerations experienced by occupants

under normal operating conditions exceed a threshold value.

For tall buildings, wind loads often form the critical load combinations when

determining structural actions and responses, for both ultimate and serviceability

limit states. This is particularly the case for ultimate base reactions, inter-storey

drift, and lateral deflections and accelerations at the top of the building. During

the design process of a tall building, a routine wind tunnel model test may be con-

ducted to determine the wind-induced responses of the structure. The wind tunnel

test results can include base reactions, wind forces, deflections, and accelerations.

Most design standards provide methods to calculate the wind-induced response of

rectangular prismatic tall buildings [153]. However, there are significant differences

between the standards, and wind tunnel model tests are considered more accurate,

particularly for buildings with complex geometries or eccentricities between mass

and stiffness centres.

Whether conducting wind tunnel tests or using desk calculation methods, in-

formation regarding the architectural, structural, and dynamic characteristics of

the building are required to determine the wind-induced responses. The architec-

tural characteristics include the external geometry. The structural characteristics

include the distribution of mass and stiffness. The dynamic characteristics include

the natural frequencies, mode shapes, and damping ratios of the structure. The

architectural and structural characteristics generally require little effort to obtain

or calculate. Depending on the structure, estimates of the dynamic characteristics

can require considerably more effort to determine, and are prone to the greatest

errors. Any errors in the architectural, structural, or dynamic characteristics will

cause inaccurate estimations of the wind-induced response of the building, which

may result in substandard performance, or excessive construction costs.

1.2 Response Sensitivity to Dynamic Character-

istics

The wind-induced response of a tall building is sensitive to its dynamic character-

istics: natural frequencies, mode shapes, and damping ratios. Each of these three
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Figure 1.1: Sensitivity of response to natural frequency (f) for a single degree of
freedom system.

dynamic characteristics influence the wind induced response in different ways. The

important point is that incorrect predictions of these dynamic characteristics during

design can lead to either performance issues in the completed structure or unnec-

essarily excessive construction costs. Therefore, the accurate prediction of these

parameters can be crucial to optimising the structure.

The natural frequency determines the point on the force spectrum at which the

building is operating. The spectral representation of fluctuating wind velocities gen-

erally peaks in the range 0.01–0.05 Hz, and reduces thereafter. Therefore, most of

the energy in the wind is in the lower frequencies. Figure 1.1 displays a typical wind

force spectrum for a tall structure, along with the mechanical admittance function of

a single degree of freedom system, and the resulting response spectrum. The natural

frequency of the fundamental mode of vibration for tall building structures are gen-

erally between 0.1–1 Hz. In this range, as the frequency increases, the force spectrum

decreases. Three mechanical admittance functions are displayed, which correspond

to the actual natural frequency (f1), the natural frequency underestimated by 50%

(fa), and the natural frequency overestimated by 50% (fb). Overestimating the nat-

ural frequency tends to decrease the wind induced response estimate, leading to the

possibility of performance issues such as excessive accelerations and compromised

occupant comfort criteria. An underestimation tends to increase the response es-

timate, which results in the structure being designed for a greater response than

necessary.

Mode shape estimates are also used to predict the wind induced response of tall
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structures. Since mode shapes describe the deformed shape of the structure, they

are used to determine the magnitude of the loading and the various response pa-

rameters: displacement, accelerations, and base reactions. An incorrect mode shape

estimate can lead to large errors in the response estimates, even if the natural fre-

quency and damping ratios are accurately estimated. An example is the torsional

component of a complex mode shape. Torsional responses are magnified by the

distance from the centre of the rotation. When considering a torsional response

as the vector sum of translations in the orthogonal directions (x and y axis), the

magnitude of the translations increases with increasing distance from the centre of

rotation. Therefore, a complex mode shape that incorrectly excludes or underesti-

mates the torsional component will result in a significantly reduced motion response

at the extremities of the building plan. Compromised occupant comfort criteria is

the most likely performance issue in this circumstance. Similarly, overestimating the

torsional component of the mode shape can lead to the building being over designed.

The final dynamic parameter, the damping ratio, has a significant impact on

the wind induced response of tall buildings. The damping ratio is a measure of

the energy dissipation characteristics inherent to a structure, and its estimation

can be subject to significant uncertainty. Of the three dynamic characteristics, the

wind induced response is arguably most sensitive to the damping ratio. Increasing

the damping ratio via auxiliary damping devices is regularly implemented in tall

building designs to mitigate the wind induced response [66, 162]. Figure 1.2 displays

the influence of the damping ratio on the mechanical admittance function of a single

degree of freedom system. An overestimation of the damping ratio can lead to an

underestimated response of the building. This can lead to substandard performance

of the final structure relating to strength, stability, or occupant comfort criteria.

Underestimating the damping can lead to the structure being over designed, which

represents unnecessary construction costs.

For most tall buildings, the relative errors for damping ratio estimates, and the

subsequent influence on the response, can be significantly greater than for relative

errors in natural frequency. This highlights the damping ratio as the most critical

dynamic parameter in the calculation of wind-induced resonant response. However,

this fails to consider other aspects, such as the need for accurate natural frequency

figures and mode shape descriptions for designing and installing damping devices.

Therefore, it is appropriate to broaden the scope of criteria when scrutinising the

relative importance of dynamic parameters. A broader scope tends to conclude that

all dynamic parameters are important when analysing the wind-induced resonant

response of a tall building because all dynamic parameters are required in order to

form a definitive description of the dynamic system for subsequent design.

Improving the accuracy of the dynamic characteristic estimates is beneficial at
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Figure 1.2: Sensitivity of the mechanical admittance function to the damping ratio
(ζ).

any stage of the structure life cycle, even during the construction phase. The primary

reason for conducting full-scale vibration testing is to evaluate the assumptions

and theories used in design. Despite the fact that results from these tests provide

valuable information that can be used to improve current as well as future designs,

vibration testing of tall buildings is not a routine procedure. Consider the design

of an auxiliary damping device to be installed in a tall building. In most cases,

dampers are installed at the top of buildings, where deflections are greatest. Since

the damper installation time is governed by the completion of the main structural

elements, a more accurate estimation of the dynamic parameters of the structure

prior to installation of the damper is achievable via vibration testing, and the results

can be used to improve the design. Furthermore, early detection of damping levels

in tall buildings is extremely beneficial to assessing the need for auxiliary damping

devices [99].

Another example of the benefit of vibration testing is the confirmation of numer-

ical models, such as finite element models. While empirical formulas can estimate

the natural frequencies, they are unable to provide reliable mode shape estimates.

This is particularly the case for tall buildings with complex mode shapes resulting

from eccentricities between the centre of mass and centre of stiffness. For this rea-

son, creating a finite element model is almost routine during the early stages of tall

building design, as the mode shape estimates from these models are used in response

estimates from wind tunnel tests. By comparing finite element models and full-scale

measurements, it is possible to improve the understanding of the mechanisms that

affect the dynamic behaviour of tall buildings.
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1.3 Response Estimation and Verification

Numerous techniques are used to estimate the response of tall buildings to dynamic

loading, including theoretical techniques, empirical formulas, numerical models, and

scaled model tests. All of the techniques involve assumptions, and despite advances

in these techniques, uncertainty in the response estimates is still encountered. A

definitive confirmation of the response is only attained once the structure is com-

pleted and full-scale measurements are conducted. Even then, the response estimates

may still lack confirmation if the measured responses are for loading conditions that

fail to match the design loads.

As for the vibration testing of tall buildings, monitoring the wind-induced re-

sponse of tall buildings is not routine. Compared with vibration testing, fewer tall

buildings are monitored over a long period to determine the wind-induced response.

More recently a number of monitoring programmes have been conducted on some of

the taller buildings located in North America and Asia [18, 20, 91, 107, 110]. These

studies represent a small portion of the current tall building stock available for mon-

itoring, and only include a small fraction of the many combinations of structural

systems and external geometries that are used in tall building design.

1.4 Objectives

The estimation of dynamic characteristics and the wind-induced response of tall

buildings is the focus of this research. The aims of this research are, firstly to im-

prove the accuracy of tall building dynamic characteristic estimates and to conduct

a validation of the values used in the estimation of the wind-induced response. Sec-

ondly, to validate the wind-induced response estimates of tall buildings from wind

tunnel testing using the full-scale monitoring of an as-built structure. It is impor-

tant to note that the full-scale experiments in the thesis are rarely undertaken due

to the difficulty of such experiments. The results of this thesis are adding to a

body of knowledge for which there are very few full-scale measurements recorded

and published. Furthermore, the research is closing the design loop, whereby the

response estimates from models are validated using full-scale measurements. The

full-scale experiments included vibration testing of the structure during construc-

tion, and the long term monitoring of the wind-induced response after completion

of the structure.

The building used for full-scale measurements is Latitude tower, an office tower

located in the Sydney central business district, with a height 187 m above ground

level. The structure is of a composite design with a reinforced concrete core, and

reinforced concrete floor slabs supported by steel beams spanning between the core

and perimeter columns. The construction used a previous building that was partially
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completed and abandoned. The new structure utilised much of the existing structure

and foundations, but significant alterations were made to the core walls and floor

slabs.

Full-scale experiments at Latitude tower commenced during the early stages

of construction and progressed periodically through the construction cycle. The

vibration tests during the construction cycle were conducted to record the change

in natural frequency and structural damping as the building was constructed, and

to investigate the possibility of improving natural frequency and damping ratio

estimates using the construction cycle data. Post completion of the structure, the

wind-induced response was monitored for approximately two years. The following

points summarise the objectives of this research:

• to determine if natural frequency and damping ratio estimates, from full-scale

vibration testing, of a structure during the construction phases can mitigate

the uncertainty in estimated values for the completed structure,

• to model a tall building using the finite element method for determining the

dynamic characteristics, and update the model using full-scale measurements

of the dynamic characteristics during the construction phase to improve the

understanding of the structural mechanisms that are significant to the deter-

mination of dynamic characteristics from a modelling perspective,

• to monitor the full-scale wind-induced response of a tall building, with a focus

on measuring the accelerations at the top of the building, and

• to validate the predicted wind-induced response from scaled model wind tunnel

tests with the full-scale results from the long term monitoring of the wind-

induced response of the building.

1.5 Outline

• Chapter 2 includes a literature review of material relating to this research.

The techniques used to estimate the natural frequencies and damping ratios

of tall buildings are initially discussed, followed by a review of previous full-

scale vibration testing of tall buildings. The final sections of this chapter

review previous studies that have monitored the wind-induced response of tall

buildings.

• Chapter 3 details the full-scale experiments conducted on Latitude tower. A

description of the structure is followed by the instrumentation details and

configurations. The experimental details for the vibration testing, conducted

during the construction of Latitude tower, and the wind-induced response
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monitoring of the tower, conducted post construction, are discussed at the

end of the chapter.

• Chapter 4 describes the system identification techniques used to estimate the

natural frequencies and damping ratios from forced vibration tests and ambient

vibration tests of Latitude tower. Two system identification techniques are

used with ambient vibration test data: a frequency domain technique and

a time domain technique. A comparison between the estimates from these

techniques is presented for response data recorded after the completion of

construction of Latitude tower. The random decrement method is described for

determining the amplitude dependence of the natural frequencies and damping

ratios.

• Chapter 5 presents the results from the vibration testing conducted during

the construction of Latitude tower. Estimates of the natural frequencies and

damping ratios at particular stages of construction are discussed with refer-

ence to the structural changes that occurred. The final section of the chapter

includes the finite element model updating using the vibration test results.

• Chapter 6 presents the results from the full-scale monitoring of the wind-

induced response of Latitude tower. A description of the wind events recorded

during the monitoring period are presented, and followed by a discussion of the

wind-induced response, which includes the acceleration response, background

response, and the peak factors. The final sections comprise the wind tunnel

testing results for the estimation of the accelerations at the top of the building,

as well as comparisons with the full-scale measurements.

• Chapter 7 presents a summary and conclusions of each segment of the research.

This chapter ends with recommendations for future research.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a review of previous research for estimating the dynamic

characteristics and wind-induced response of tall buildings. Theoretical, empirical,

and numerical techniques for estimating the dynamic characteristics of tall building

structures are described and compared. The techniques have varying complexity

in their application. Choosing a more complex technique does not necessarily pro-

duce improved estimation accuracy, and the opposite can be true for less complex

techniques. Empirical formulas are traditionally the least complex, as they rely on

simple correlations between full-scale results and building properties, such as geome-

try and structural system. The method used often depends on the importance of the

structure and the stage of the design process. The discussion is focused on the fun-

damental modes of vibration, which for most structures includes two translational

modes, in orthogonal directions, and one torsional mode.

This review also includes earthquake engineering literature in sections that dis-

cuss the dynamic characteristics of tall buildings. There is a wealth of knowledge

regarding the dynamic characteristics of buildings in the earthquake engineering

literature. Earthquake engineering code formulas for natural frequency are not in-

cluded in the review, because they are often intentionally adjusted to give a more

conservative earthquake design. If used for calculating the wind-induce response,

the natural frequency values that provide conservative earthquake design will result

in an unconservative wind engineering design.

2.2 Natural Frequency Estimation

There are three techniques currently used to determine the natural frequencies of

a tall building: empirical formulas, theoretical models, and numerical models. The

technique selected by designers depends on a number of factors that include the

10
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accuracy required, the number of modes to be estimated, the complexity of the

structure, available information, and time constraints. In practice, all three tech-

niques are usually applied during design. Empirical formulas are the least intensive

techniques to use, because they generally involve the input of one or two building

geometry measurements into a simple formula. This makes empirical formulas the

initial choice for quick estimates at the beginning of tall building design.

Empirical formulas may be the only option at the start of design, because in-

sufficient information regarding the structural arrangement could preclude a more

rigorous analysis using theoretical or numerical methods. The type of building — re-

inforced concrete shear wall, reinforced concrete moment frame, steel moment frame

— and external dimensions such as height and plan width are the input requirements

for most empirical formulas, and at least these aspects are known when structural

design commences. Theoretical models and numerical models have the ability to in-

clude more details of the structure in the estimation, and therefore generally require

more effort to conduct. The application of theoretical or numerical models will

often start with simple models, which include numerous simplifying assumptions,

and progressively become more detailed if required by the particular structure being

analysed.

The techniques are generally used in design according to the following order:

empirical, theoretical, and then numerical. The level of time and detail required

generally increases when ascending the order, as does the intended accuracy. In the

following sections, the theoretical methods are discussed first, because this estab-

lishes the theory upon which empirical formulas are initially based.

2.2.1 Theoretical Models

The theoretical modelling of any structure attempts to incorporate simplifying as-

sumptions that improve the computation efficiency, without significant detriment

to the resulting natural frequency estimation. Aspects of modelling a tall building

for natural frequency estimation include, but are not limited to, the distribution of

mass and stiffness, the type of deflection actions, and the interaction between the

soil and foundations. The assumptions adopted are directly linked to the complexity

of a tall building structural system. Some simple structural systems may be accu-

rately modelled as an idealised beam with simple boundary conditions, while more

complex structures may require significantly more detail.

The theoretical modelling of tall building structures has two options for repre-

senting the dynamic system: a lumped parameter system, or a distributed param-

eter system. For lumped parameter systems, the structure is discretised into a set

of points, and the motion of each point in the system is modelled with a tributary

mass that is concentrated at the point. The set of lumped masses are typically con-
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Figure 2.1: Lumped prarmeter model of a two-storey building experiencing transla-
tional vibration.

nected by elements that represent the stiffness and damping of the structure. Most

often the models represent the stiffness by springs or equivalent beam elements. The

damping is typically represented by dash-pots, or more often ignored due to its in-

significance on the natural frequency for large civil engineering structures. Once the

system model has been established, the natural frequencies of the system can be de-

termined using modal analysis techniques [74]. The dynamic behaviour is described

by second order differential equations, and the discretisation of the structure limits

the results to a finite number of natural frequencies.

An example of a lumped parameter system model of a two storey building is

presented in Figure 2.1. The example can be extended to include structures that

include more than two storeys, and the mass and stiffness parameters can vary

throughout the system. The lumped masses are readily calculated, and the stiffness

parameters can be calculated based on the arrangement and specification of walls,

columns, and other structural elements that resist lateral deformation. It is noted

that the model presented assumes a rigid connection between the first storey and

the foundations. If required, this assumption can be replaced with a more suitable

alternative that models soil structure interactions.

Depending on the number of degrees-of-freedom contained within a model, lumped

parameter systems can be computationally intensive to solve for the natural frequen-

cies. Degrees-of-freedom are the set of independent displacements or rotations that

define the deformed position of the system. For example, Figure 2.1 has two degrees-

of-freedom, x1 and x2. A coarse discretisation of a system can aid in reducing the

degrees-of-freedom, but the effect on estimation accuracy needs to be considered.

A coarse discretisation coupled with an approximation technique, such as Rayleigh’s

method [74], is a common approach when using lumped parameter models for quick

theoretical estimates of the fundamental natural frequency [68]. The premise of

Rayleigh’s method is that the maximum kinetic energy and the maximum potential
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energy must be equal in a conservative system. The estimates from this method are

an upper bound for the fundamental natural frequency. Approximations of higher

mode frequencies can be obtained by applying the Ritz method [171], which is an

extension of the Rayleigh method.

For the distributed parameter case, the mass of the structure is considered to

be a series of infinitely small elements that are distributed throughout the system.

Vibration of the structure causes each of the infinite number of elements to contin-

uously move relative to each other. A continuous function of the relative position

along the system is used to spacially describe the time response of the system. As for

the lumped parameter system representation, the assumptions used in formulating

the model are critical to the accuracy of the results.

Of particular interest to expeditious estimates of natural frequency is the mod-

elling of a tall building as an idealised beam. For tall buildings with relatively con-

stant properties throughout height, the discrete set of elements (beams, columns,

walls, etc.) that comprise the structure are replaced by a continuous medium of

equivalent properties. By assuming the incompressibility of the continuous medium,

the estimation of the natural frequencies is reduced to a single linear differential

equation with constant coefficients.

A number of fundamental theories exist for the analysis of the transverse vibra-

tion of idealised beams [88]. The Euler-Bernoulli beam model, also known as the

classical beam model, is one such theory that models the flexural action of uniform,

slender beams that are composed of linear, homogeneous material. Note that the

classical beam model only incorporates flexural deformations via the assumption

that plane sections remain plane. Equation (2.1) presents the formula for estimat-

ing the natural frequency of a fixed base uniform cantilever using classical beam

theory;

fi =
λi

2

2πL2

√
EI

m
i = 1, 2, 3, . . . , n (2.1)

i λi i λi

1 1.875 4 10.996

2 4.694 5 14.137

3 7.855 i > 5 (2i− 1)π
2

where L is the length of the beam, E is the modulus of elasticity, I is the area

moment of inertia about the neutral axis, m is the mass per unit length, and the

subscript i denotes the mode of vibration.

Another potentially important translational deformation action in tall buildings

is shear deformation. Flexural deformations generally dominate when considering a

slender structure, however shear deformations become important with reduced slen-

derness ratios and for analysing higher modes of vibration. Equation (2.2) presents
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the formula for estimating the natural frequencies of a fixed base uniform cantilever

assuming only shear deformations [7];

fi =
λi

2πL

√
κG

ρ
i = 1, 2, 3, . . . , n (2.2)

λi = (2i− 1)
π

2

where κ is the shear coefficient, G is the shear modulus, and ρ is the mass density.

The natural frequency estimates from the shear beam model is proportional to 1/L,

as opposed to 1/L2 for the flexural beam model, and the natural frequencies increase

linearly with the mode number.

For most tall buildings, the lateral stiffness is not constant with height, and tends

to decrease from a maximum at the base to a minimum at the top. This is certainly

the case for tall buildings with a core comprised of reinforced concrete shear walls.

A small percentage of the walls will extend from the foundations to the roof, while

others will be terminated, or have reduced dimensions, at various levels according

to the design lateral load resistance requirements. Equations for idealised beams

with tapers are applicable in these cases, which take the form of Equations (2.1) or

(2.2), and have adjusted values of λi that account for a tapering effect [115, 182]. A

taper in the dimension perpendicular to the vibration motion tends to increase the

natural frequency for all modes of vibration. For a taper in the plane of vibration

motion, the first mode natural frequency tends to increase, while the second and

third modes tend to decrease. More complex theoretical models that account for

arbitrary distributions of mass and stiffness have also been developed [105].

Rotatory inertia is also ignored in classical beam theory. Rotatory inertia is the

inertia associated with the local rotation of a beam cross section during flexural de-

formation. Corrections to classical beam theory to account for rotatory inertia were

established by Rayleigh [133]. A model proposed by Timoshenko [172] incorporates

the flexural deformations, shear deformations, and rotatory inertia effects. The ef-

fect of rotatory inertia on natural frequency is generally less than shear deformation,

and both tend to reduce the natural frequencies of beams compared with flexural

theory predictions.

Closed form solutions of models that incorporate flexural and shear deformations

are generally not attainable, which leads to the application of numerical methods

for solving such models to determine the natural frequencies. Alternatively, the

flexural and shear deformations can be combined using Dunkerley’s formula [45] to

calculate a lower bound estimate of the fundamental natural frequency [78]. Dunker-

ley’s formula is not limited to combining the flexural and shear deformations. The

generic form of Dunkerley’s formula, Equation (2.3), allows the input of multiple
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deformation actions.
1

f 2
=

1

ff
2 +

1

fs
2 + . . . (2.3)

Where ff and fs are the fundamental frequencies from a flexural beam model and

shear beam model, respectively.

The application of Dunkerley’s formula implies the system is modelled as isolated

components. This approach has been applied to shear wall buildings [60], coupled

shear wall buildings [135], and wall-frame buildings [57, 64, 147] by decomposing the

deflections into the component actions. The fundamental natural frequency from

each action is then combined using Dunkerley’s formula, with results found to be

within 3% of estimates from Rayleigh’s method [60]. Furthermore, the soil structure

interaction can be incorporated into the model by modelling the deflection actions

from the rotatory and translational motion of foundations on elastically yielding

soils.

Rotatory, or rocking motion, of structures becomes more pronounced as the

stiffness of the building increases relative to the stiffness of the ground. Rocking

motion can manifest as part of the translational mode of a building, or as a rocking

mode for a very stiff building resting on soft ground. Salvadori and Heer [138] com-

bined linearly varying shear and flexural rigidities with rocking and translational

motion using Dunkerley’s formula. The resulting formula for the fundamental nat-

ural frequency was able to match the upper and lower bounds of a large full-scale

measurements database, when using inputs that bounded expected structural and

soil parameters.

Another action that can influence the natural frequency estimation is the axial

compression and deformation of walls and columns. In some cases this action is

excluded since it is deemed insignificant relative to the desired accuracy of the

estimation. When axial compression has been included in the estimation method,

a decrease in the natural frequency was observed [36, 134]. The decrease was most

significant for the fundamental natural frequency, and reduced with each increase

in mode of vibration considered. This result can be explained by the increasing

dominance of shear deformations with increasing mode order. Furthermore, the

effect of axial deformation becomes important when building height and slenderness

ratios increase [158], or in other words, when flexural deformations are dominant.

The preceeding discussion has focused on the estimation of translational modes of

vibration. Attention is now turned to estimating the natural frequency of torsional

modes of vibration. Both the lumped parameter and distributed parameter systems

of modelling are applicable for estimating the torsional natural frequencies. For the

case of an idealised uniform beam, exact closed form solutions are only obtainable

for circular cross sections. Non-circular cross sections tend to warp during torsional

deformations, however this effect is not significant for simple closed sections. The
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equation for estimating the torsional natural frequency of a uniform beam is given

by,

fi =
λi

2πL

√
JG

ρIp
i = 1, 2, 3, . . . , n (2.4)

λi = (2i− 1)
π

2

where J is the torsion constant, G is the shear modulus, ρ is the mass density, and

Ip is the polar area moment of inertia of the cross section about the axis of torsion.

Similar to the shear beam model, the natural frequency estimates from the torsion

beam model is proportional to 1/L, and the natural frequencies increase linearly

with the mode number.

The theoretical techniques discussed in this section are not extensive, but form

the core of available methods that are relatively quick to apply for tall building

natural frequency estimation. More complex techniques are available, and may be

useful for certain structure types. Those included in the discussion also present

the foundation for understanding the formation of empirical estimates, which are

discussed in the following section.

2.2.2 Empirical Formulas

The natural frequency empirical formulas discussed in the following paragraphs are

those that relate to buildings that use shear-walls as the primary lateral load resisting

structure, either by historical application of the formulas to such structures, or by the

establishment of the formula for exclusive application to such structures. Formulas

recommended by design codes for earthquake design purposes are not discussed,

regardless of applicability to shear-wall tall buildings, due to the common practise

of intentionally adjusting the formulas to ensure a conservative earthquake design

[29, 34, 60]. It is important to note that a conservative estimation of the natural

frequency for tall building earthquake design will cause an unconservative natural

frequency estimation being used for wind-induced response design.

A number of previous studies have attempted to derive empirical formulas for

estimating natural frequencies of tall buildings. Two methods are used to develop

the formulas: Measured values of natural frequency are plotted as a function of one

or multiple building properties and a regression analysis is conducted; or, a semi-

empirical approach that checks the validity of a theoretical model with full-scale

measurements. Both methods require full-scale measurements from multiple build-

ings in order to create a database of natural frequencies. Parameters describing the

building, such as dimensions, construction material, structural system, foundation

material, and intended use, are included in the database for correlating with natural

frequencies.
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A substantial database of full-scale natural frequencies for buildings was compiled

by the United States Coast and Geodetic Survey (USCGS), which commenced the

dynamic testing of buildings and other structures in the early 1930’s in California

[24] for earthquake engineering purposes. This database includes buildings up to

125 m (409 feet) high, with most below 61 m (200 feet) high. The soil conditions,

foundation type, construction materials, structure type, building dimensions, and

number of storeys are included in the database, and the buildings are categorised

according to common plan forms: rectangular building, hollow rectangular building,

“set-back” building, L-shaped, U-shaped, E-shaped, T-shaped, H-shaped, irregular

shaped, and flat-iron. The vibration data includes the fundamental translational

and torsional periods and the maximum building displacement. An indication of

the wind velocity during testing is included using the Beaufort Scale. By mid 1949,

430 buildings, amongst other structure types, had been tested.

Using the USCGS database, Anderson et al. [3] investigated the correlation of

period versus h2/d, where h is the building height measured in feet and d is the

plan building depth in the direction considered, in feet. Figure 2.2 displays a plot of

the results. Considerable scatter is observed in the results, which could be partially

explained by the lack of categorisation of results based on structural types and

building materials. The best fit curve for the data is,

T = 0.06
h√
d

(2.5)

The error between Equation (2.5) and the points plotted in Figure 2.2 are between

+100% and -50%. The choice of correlating natural period with h/
√
d indicates the

use of a fixed base uniform cantilever shear beam model, which is demonstrated in

Equation (2.2) for the fundamental translational mode. Substituting ρ = m/A into

Equation (2.2), where A is the cross sectional area and is equal to the breadth b

times the depth d of a uniform beam, and rearranging;

T1 = 4

√
m

κGb

h√
d

(2.6)

The regression coefficient in Equation (2.5) is essentially an empirical estimate for

the terms on the right hand side of Equation (2.6), excluding h/
√
d. Empirical

formulas are essentially aggregating numerous variables relating to the vibration

mechanism into a single parameter.

Another early and significant database of full-scale dynamic observations of

buildings was compiled by researchers in Japan [65, 85, 89, 124, 159]. Like the

USCGS database, the impetus for collecting the observations was for earthquake

engineering purposes. Approximately 60 buildings of mostly reinforced concrete,
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Figure 2.2: Fundamental Periods of Buildings versus h2/d (Source: Anderson et al.
1951 [3] with notation adjustments)

with mixed structural form, are included in the Japan building database. The de-

sign code requirements under which most of the Japan buildings had been designed

imposed a height limit of 31 m (100 feet), as well as larger seismic design coefficients

compared with other countries. This results in the Japan building database having

much shorter and stiffer buildings compared with those of the USCGS database.

Combining this with the softer soil conditions reported for a majority of the build-

ings, resulted in rocking motion observations as the predominant form of lateral drift

in some buildings [89, 124]. Essentially, the buildings act as rigid body structures

on elastic foundations.

Using data sourced from the Japan building database and from the USCGS

survey, Kanai and Yoshizawa [86] reported that natural frequency was not sensitive

to the plan dimension in the direction of motion considered. The best fit formula

for the analysed data was;

T = 0.04
h
4
√
d

(2.7)

The two data sets used where individually analysed, and no classification of

the data was indicated. Since the degree of the power applied to d was relatively

low, this parameter was ignored and a new formula was recommended based on

the mean values of the ordinate T/h, which was approximately 0.02 for both the

Japan building data in Figure 2.3 and the USCGS database in Figure 2.4. The
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Figure 2.3: Relation between the fundamental period, the height, and the depth of
buildings in Japan (Source: Kanai and Yoshizawa 1961 [86] with notation adjust-
ments)

Figure 2.4: Relation between the fundamental period, the height, and the depth
of buildings in the USCGS database (Source: Kanai and Yoshizawa 1961 [86] with
notation adjustments)

recommended empirical formula for practical use was;

T = 0.02h (2.8)

T = 0.08N (2.9)

where N is the number of storeys. The empirical estimate in Equation (2.8) is used

in the Architectural Institute of Japan guidelines.

The strong relationship between height and natural frequency was understood

by the first attempts to establish simple empirical formulas for natural frequency

estimation. The problem that hindered estimation improvements appeared to be

the inability to capture the stiffness, in either a single constant or using a building

plan dimension. Housner and Brady [68] used theoretical expressions for uniform

rectangular buildings as a starting point for studying the influence of particular

parameters on the natural frequencies of shear-wall buildings. Using the USCGS
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data, Housner and Brady [68] found the equation T = CN/
√
d to be less accurate

than T = CN , and also less accurate than T = CN
√
b. The best fit formula

included the depth and breadth of the structure. However, the best fit formula

produced practically identical results to T = CN , even when some of the variability

in the USCGS data was reduced by choosing a subset of buildings that had relatively

uniform characteristics. But, none of the formulas gave consistently accurate results,

with significant scatter still present, which lead to the conclusion that the properties

of the analysed buildings are so variable that a simple equation cannot provide a

good fit. Furthermore, it was stated that a good estimate can only be obtained if

the actual wall stiffness is taken into account, and appears explicitly in the equation.

This idea was previously expressed by Takeuchi [159] and more recently by Goel and

Chopra [60], the latter using a more sophisticated analysis that attained relatively

modest improvements from the addition of a dedicated stiffness parameter.

Increasing the number of input parameters required in natural frequency es-

timates can potentially dilute the effectiveness of such formulas at fulfilling their

intended purpose, which is to provide a quick estimate for initial design purposes.

Estimating wall stiffness may be particularly difficult if the structural arrangement

has not been determined, which is often the case at the start of the design process.

The USCGS data and Japan building data has also been used in more recent

studies regarding natural period estimation of buildings. The most notable was

conducted by Ellis [47]. This study compiled details for 163 rectangular plan build-

ings from three sources: the USCGS database, Japan building tests reported by

Naito et al. [123], and from new data collected presumably by the author. As dis-

covered earlier by Kanai and Yoshizawa [86], the results of the regression analysis

showed that natural frequency was sensitive to building height, but not sensitive to

the plan dimensions. The best correlation was achieved by a formula of the form

T = Ch1.2d−0.2, with a correlation coefficient r = 0.8918. However, a formula of the

form T = Ch achieved a correlation coefficient r = 0.8828, and was therefore recom-

mended as the best simple estimate for the analysed data. Including the coefficient,

the formula recommended was;

T = h/46 (2.10)

A plot of the data used by Ellis and the recommended empirical formula is

displayed in Figure 2.5. As observed in previous research, there is considerable

scatter in the results, particularly for buildings with height less than 100 m. And

there is paucity in the data for building heights greater than 100 m. Applying

the statistical analysis to other modes of vibration, Ellis recommended T = h/58

(r = 0.838) for the fundamental orthogonal translational mode, and using a subset

of 63 buildings the fundamental torsional mode was best estimated by Tt = h/72

(r = 0.657). Equation (2.10) is used in multiple design standards including the
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Figure 2.5: Building height versus fundamental translational natural frequency for
163 rectangular plan buildings (Source: Ellis 1980 [47])

Australian wind actions code [151] and the Eurocode wind actions code [51], the

latter code recommending its application only to buildings with height greater than

50 m.

Lagomarsino [100] used a database of 185 buildings with mixed material and

construction type up to a height of 330 m. Most buildings were less than 100 m, and

some standardizing of the database was conducted by removing buildings deemed

to be highly irregular. A similar analysis to that of Ellis [47] was conducted, namely

the regression analysis using the shear beam model T = Ch. For all buildings in

the database, the coefficient for the first translation mode was C = 1/50. The fun-

damental translational natural period in the orthogonal direction was also included

in the estimate, as the regression coefficient was virtually unchanged by its presence

or omission in the analysis. This point is in contrast to the empirical formulas rec-

ommended by Ellis [47], which indicated an appreciable difference between the first
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mode natural periods in orthogonal directions. Lagomarsino also analysed individ-

ual subsets of the database by categorising the buildings according to construction

materials. The analysis of the categorised data produced the following formulas;

T = h/45 steel buildings (2.11)

T = h/55 RC buildings (2.12)

T = h/57 mixed buildings (2.13)

The categorisation of the buildings by construction material did not improve the

scatter of the data. A potentially more useful categorisation based on structural

type was conducted, but no qualitative results were presented. It was also found

that the addition of other parameters — plan dimensions, foundation type, soil

type, partition walls, slenderness — in the regression model did little to improve the

estimation reliability. The correlation between the fundamental torsional period of

vibration and building height resulted in considerable scatter in the data, which was

particularly evident for building heights greater than 150 m. The regression analysis

of the entire dataset produced an estimate of Tt = h/78 for the fundamental torsional

period, while a categorisation of the data into two bracing types, frame bracing and

other bracing (reinforced concrete core, truss bracing, et al.), produced the following

formulas;

Tt = h/60 frame bracing (2.14)

Tt = h/108 other bracing (2.15)

The reliability of the torsional period estimates were less than for the translation

case, and the categorisation of buildings by construction material type had little

influence on improving the reliability.

The empirical estimates reviewed thus far have been based on test results for

generally older style structures. The design techniques, materials, and construction

methods have all progressed since the first building vibration measurements were

recorded. In addition the accuracy of vibration measurement equipment and analysis

techniques has also improved over time. A more modern database was compiled for

buildings in Japan, with information sourced from publications issued after 1970.

Data for 137 steel-framed buildings, 25 reinforced concrete (RC) buildings, and 43

steel-frame reinforced concrete (SRC) buildings are included in the database. Most

of the steel-framed buildings are 50–150 m and used for offices or hotels. RC/SRC

buildings are mostly between 50–100 m and are used as apartments, and maximum

height was approximately 282 m. Almost all data was obtained during low amplitude

vibrations generated by numerous excitation techniques, but mostly from mechanical

shaker, human-induced, and microtremors.
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Figure 2.6: Fundamental translational period versus building height(Source: Satake
et al. 2003 [139])

Regression analyses [139, 140, 160] of the modern Japan building data included

the categorisation of data into construction type. The results are displayed in Figure

2.6, and the recommended formulas for the fundamental translational period were;

T1 = 0.020h Steel-frame buildings (2.16)

T1 = 0.015h RC/SRC buildings (2.17)

Both datasets returned a regression coefficient r = 0.94 for the chosen shear beam

model relationship between period and height, and both orthogonal translational

modes are included in the analysis. Despite being a modern database, it is inter-

esting to note the results are similar to those obtained by Kanai and Yoshizawa

[86] 40 years earlier. The RC/SRC estimate returns a shorter period for any given

height compared with steel buildings, which can be explained by these buildings

being used as apartments, which often have higher instances of internal walls —

either structural or non-structural — which generally makes for a stiffer structure

at low vibrtaion amplitudes. The fundamental torsional period was related to the

fundamental translational period by the following relationship;

Tt = 0.75T1 Steel-frame buildings (2.18)

Tt = 0.77T1 RC/SRC buildings (2.19)

The results are displayed in Figure 2.7, and both datasets returned regression coef-

ficients greater than or equal to r = 0.94 for the torsional period analysis.

Attention is now focused on the prediction of higher mode natural frequencies.

The fundamental translational and torsional natural frequencies generally constitute

the majority of tall building responses to dynamic loading [82], however the higher

modes can also have significant influence on the response. Furthermore, the ratio

of higher modes of vibration to the first mode can provide an indication of the
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Figure 2.7: Fundamental torsional period versus fundamental translational period
(Source: Satake et al. 2003 [139])

deformation action a structure is experiencing. The ratios are compared with ratios

obtained from idealised beam models, such as Equations (2.1) for flexural models

and Equation (2.2) for shear models.

The estimation of higher mode natural frequencies from empirical data has fo-

cused on the ratio between the natural frequencies of the higher modes and the fun-

damental mode. For the first three translational modes of vibration, research has

shown [100, 139, 157] these ratios to be approximately f2/f1 = 3.2 and f3/f1 = 5.6,

which closely match the ratios for the shear beam model given in Equation (2.2).

The classification of the data according to construction type — steel, and reinforced

concrete — resulted in higher ratios for the reinforced concrete buildings by up to

6% [139, 157].

Consolidating the literature regarding empirical formulas for estimating natural

frequencies of tall buildings, the following two conclusions can be stated. Firstly, the

empirical formulas imply, or the researchers have assumed, that a shear beam model

(f ∝ 1/L) rather than a flexure beam model (f ∝ 1/L2) is more appropriate for the

analysed buildings. Secondly, previous empirical formulas that include more input

parameters than height have not significantly improved estimates for the current

stock of full-scale data.

For the intended purpose of empirical formulas — the quick estimation for initial

analysis — it is unnecessary to increase the calculation complexity above that of the

current formulas. Having multiple formulas, each being applicable to a particular

type of building, maintains the simplicity of the formula while improving accuracy.

This is implemented in most design codes by offering different formulas for each

construction type. A lack of full-scale data restricts the ability to offer statistically

significant empirical formulas to a relatively narrow range of tall building structure

types.

Natural frequency empirical formulas are somewhat insular to the region in which

the underlying data was collected, and also possibly influenced by the governing
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design code criteria at the time the structure was constructed. This is a reflection

of the differing design codes throughout the world, and the effect they have on

the dynamic performance of buildings. The natural frequency data sourced from

earthquake prone regions, such as Japan, may be ill-suited for application to other

areas, via an empirical formula, due to these geographical and temporal influences.

The empirical formula proposed by Ellis [47] uses data sourced from three re-

gions — America, Japan, UK — that was collected over approximately five decades,

commencing in the 1920’s. The broad geographical and temporal range of the data

used is a potential reason for design codes [51, 151] to recommend f = 46/h for

estimating the fundamental natural frequency, with reasonable accuracy for initial

design purposes, of buildings that could be described as normal.

The description of buildings as normal stems from irregular buildings often being

removed from the datasets prior to analysis, which improves regression results for

empirical estimates [47, 100, 139]. This highlights the need for a better understand-

ing of the mechanics of modern tall buildings that are considered irregular compared

with previous tall buildings. Nevertheless, large variations are encountered even for

buildings that are expected to conform to what is defined as normal. This leads to

±50% confidence intervals being recommended when applying empirical formulas

[79].

Empirical formulas also do not consider the nature of the mode or coupling be-

tween modes. Theoretical and empirical techniques do not do well when complex

modes of vibration are present — coupled modes caused by mass and stiffness eccen-

tricities. More complicated models could be devised, but then the benefits of speed

of application would be reduced. In such cases, finite element models are essential

to the natural frequency estimation process.

It is important to note that empirical formulas can provide more accurate results

in some cases where incorrect assumptions are used in theoretical or numerical mod-

els. More detail does not necessarily produce improved estimates. This highlights

the important role of empirical formulas as a checking option for more complicated,

and therefore potentially more error prone, theoretical and numerical models. It

also highlights the need for more understanding of structural elements that influ-

ence the natural frequency of tall buildings, which will lead to improved modelling

assumptions.

2.2.3 Numerical Models

Many numerical techniques exist for estimating the natural frequency of tall build-

ings. The most widely used of those techniques is finite element analysis. This

technique simulates the structure by discretising the structure into a group of small,

finite elements over which stresses and displacements vary. The equations of motion
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of the discretised system describe the forces and displacements at the node points

that define each finite element. The finite element method models a large complex

structure via the combination of smaller, simpler structures.

The principle advantages of finite element analysis are generality and scalabil-

ity. With regard to generality, the method can be used to determine the natural

frequency and mode shapes of any linear elastic structure. The application of finite

element analysis differs only by the input details from structure to structure. The

scalability advantage arises because the method is amenable to the use of matrix and

linear algebra techniques, which facilitates the use of digital computers for solving

the equations. The number of finite elements contained in a model is only restricted

by the computing resources available.

Once the finite element model of the structure is established, the solution is

attained via a modal analysis. This approach is identical to the previous discussion

regarding lumped parameter systems. The solution provides the undamped natural

frequencies in the form of eigenvalues, and the mode shape coordinates in the form

of eigenvectors.

2.2.4 Sources of Uncertainty

The uncertainties in natural frequency estimation are related to assumptions made

during the modelling of the structure. Tall buildings are complex structures, with

relatively large numbers of structural elements and varying material properties.

Therefore, modelling a tall building requires simplifying assumptions, mostly to

reduce the time required to create the model. These assumptions may not match

the behaviour of the actual structure in numerous aspects, including: participation

of non-structural elements, soil-structure interaction, type of deformation action,

material properties (degree of concrete cracking), connection stiffnesses.

Another source of uncertainty is attributed to variations in the mass and stiff-

ness of structural elements between the model and the prototype. Tall building

construction is subject to variability between documented designs and the final, as

built, structure. While physical dimensions are generally within aceptable toler-

ances, the same cannot be said for material proporties and construction quality.

Property estimates for materials such as steel are reported with sufficient ac-

curacy from industrially controlled processes. In contrast, concrete properties are

subjected to many factors outside a controlled manufacturing environment, resulting

in large differences between design specified concrete properties and the actual used

for construction. Concrete suppliers also have the incentive to deliver concrete with

properties that exceed the specification. Supplying concrete that does not meet

specification attracts the risk of expensive removal or remedial works, as well as

litigation. The practice of supplying over specified concrete is known, however the
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degree of over specification is not known during the design stage.

The construction quality is difficult to measure and quantitatively relate to the

natural frequency. At best it can be viewed as a deviation from the design, but can

be difficult to detect post construction without accurate records of the construction

process. For example, two tall buildings constructed from factory pre-cast concrete

panels, with identical designs and situated at the same site, had fundamental natural

frequencies that differed by over 21% [50]. Assuming the use of pre-cast panels

removed much of the material variability between the two structures, this highlights

the variability in construction quality, and the impact on the natural frequency.

The sources of uncertainty are expanded when non-linear behaviour is included,

which is necessary when determining natural frequencies for high vibration ampli-

tudes. Increased vibration amplitudes may reduce stiffness due to decreased partici-

pation of non-structural elements, cracking of members, joint slippage, or formation

of plastic hinges. Increased vibration amplitude tends to reduce the stiffness of a

structure, and therefore reduce the natural frequency.

An extensive amount of research has been conducted on reducing the uncer-

tainties when estimating tall building natural frequencies. The goal is improved

understanding of structures in order to formulate, or validate, more accurate as-

sumptions for modelling tall building structures. The methodologies have included:

full-scale dynamic studies, correlating models with full-scale results, and compiling

databases of full-scale results.

Full-scale dynamic studies

The first method involves the full-scale dynamic study of one or multiple tall build-

ings, with focus on particular aspects of the structure, such as soil-structure in-

teraction and the effect of structural or non-structural elements. This approach

provides valuable insight into the factors that affect the natural frequency of vibra-

tion of structures. Unfortunately, the unique nature of tall buildings often limits

the transfer of knowledge between structures due to lack of similarity.

The lack of similarity between structures is overcome by conducting multiple

tests on a single structure that is undergoing controlled changes, such as during

construction or refurbishment. Using this approach allows the effect of structural

elements on natural frequency to be observed, and is most effective when structural

changes are made individually, such that the effects can be observed in isolation.

Refurbishments are particularly useful for observing the influence of non-structural

elements, as they often entail stripping a building to its primary structural elements

before adding back non-structural elements, such as internal partition walls and

facade. In this scenario, the effect of the non-structural elements on the dynamic

characteristics can be determined by multiple vibration tests; one test before and
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another after the addition or removal of the non-structural elements.

Unfortunately, construction sequences tend to schedule multiple tasks in parallel,

which hinders observations focused on a single structural element. This is certainly

the case for tall building construction. Shorter buildings have previously provided

the construction schedules required to observe discrete changes. For shorter steel

frame buildings, an increase in natural frequency has been observed after the addi-

tion of non-structural elements [8, 23, 49, 145]. In addition, non-structural elements

were found to be effective only during low amplitude vibrations, and increased the

non-linear nature of the response; natural frequency decreased considerably with

increasing vibration amplitude [55].

The type and design of the non-structural elements has a considerable influence

on the extent of the effect on the natural frequency. The presence of internal par-

tition walls does not guarantee a stiffness increase. Observations from a 30 storey

reinforced concrete building [178] and a six storey steel frame building [117] reported

little influence of partition walls on the natural frequency.

Correlating models with full-scale results

The correlation of mathematical models with experimental results allows the sensi-

tivity of the modelling assumptions to be assessed. This is often achieved via the cali-

bration of finite element models with full-scale measurements [19, 94, 108, 126, 186].

The effectiveness of this method depends on the range of data collected and the

complexity of the tested structure.

The range of data that can be collected from full-scale testing can be broadly

categorised into two groups: global data and local data [54]. Global data includes

the dynamic characteristics of the structure, such as natural frequencies and mode

shapes. The local data category incorporates the smaller scale aspects of the struc-

ture, such as the measurement of beam stresses and strains. These two categories,

and the full-scale data they include, influence the methodology used when updating

finite element models using full-scale data.

The assumptions used when creating a finite element model of a tall building are

typically due to simplifications to reduce modelling time, as well as due to estimates

of how particular structural elements will perform under various load levels. For

example, under serviceability loads a non-structural element may be considered to

participate in the structural system, and then not participate under ultimate loading

conditions. These estimates can be influenced by design conservatism that seeks to

ensure a higher factor of safety regarding the strength and stability of a structure.

Previous research has shown that numerical models of reinforced concrete tall

buildings that only include the bare frame and wall elements are likely to underes-

timate the natural frequency [84, 94, 109, 156]. In some cases, the difference was
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greater than 50%, which would be considered excessive for design. Excluding floor

plates is a common practice in tall building finite element modelling, and is con-

ducted to improve the numerical efficiency of the model. In the place of the floor

plate elements, a rigid diaphragm assumption is applied to the nodes located on the

plane for the floor plate. The rigid diaphragm essentially connects each node via an

infinitely stiff link, and forces all nodes to move as one plane without affecting any

out of plane actions.

The modelling of shear walls and coupled shear walls is another aspect of finite

element modelling that attracts simplifying assumptions. The accurate modelling of

major and minor wall penetrations, as well as thin internal walls, has been shown to

have a strong influence on torsional modes of vibration [19]. Non-structural elements

and their influence on structural stiffness has received considerable research attention

[55, 104, 156]. Conclusions regarding the stiffening effect of non-structural elements

are mixed. Ultimately, the structural capacity of non-structural elements and their

connection to the primary structure must be analysed on a case by case basis to

determine if they will have any influence on the lateral stiffness.

The strength and variability of construction materials is another aspect of finite

element modelling that can cause discrepancies with full-scale measurements. The

use of concrete that exceeds the design specification has been discussed previously.

Furthermore, concrete strength increases with time, and the level of cracking in the

concrete from previous loading events will also influence the effective strength.

Compiling databases of full-scale results

The final method of reducing uncertainties in natural frequency estimation is via

collecting natural frequencies and structural properties for a large set of buildings.

This reduces uncertainty by permitting a comparison between a large number of

existing buildings with the structure to be designed.

The classification and summarising of the data reduces, in theory, the variations

within each category. The lack of data may limit the sample sizes required to

achieve meaningful comparisons. An extension of this approach is the development

of empirical formulas discussed previously. This method becomes less effective when

building designs deviate from the buildings contained in the database.

2.3 Damping Ratio Estimation

Damping refers to the energy dissipation inherent to a mechanical system that tends

to reduce vibration amplitudes. In most cases the mechanical energy is converted to

heat. Despite the history of research on the subject, the understanding of damping

forces in vibrating structures has not reached a well developed state. The funda-
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mental mechanisms causing damping forces in mechanical systems and materials are

yet to be confidently proven, and remain the major barrier to the understanding of

damping forces. In contrast, the inertial forces and stiffness forces that contribute

to the natural frequency are well understood for most vibrating structures. By

using the dimensions, material properties, and elastic properties of structural and

non-structural components of a system, such as a tall building, it is possible to

accurately determine the mass and stiffness contributions to the system with little

difficulty. This is not the case for damping.

2.3.1 Sources of Damping

Damping in tall buildings originates from a number of sources that are both internal

and external to the structure. These sources are as follows [41, 168];

• Material damping: This form of damping is intrinsic to the materials present

in the structure. The sources of material damping are associated with plastic

flow, magneto-mechanical effects, or dislocation movement within the crys-

talline structure of the material. When subjected to cyclical loading, these

mechanisms result in a stress-strain hysteresis loop. Significant non-linearity

of the damping characteristics for structural materials has been observed, par-

ticularly at high stress levels [101]. A measure of this form of damping is

typically represented by the specific damping capacity, which is a ratio of the

energy dissipation per cycle to the strain energy at maximum strain.

• Frictional damping: The sources of friction damping are associated with bound-

ary shear effects that arise from abutting surfaces. In tall buildings this in-

cludes connections or shared boundaries between structural components as well

as non-structural components. The energy dissipation mechanism at the inter-

face may be due to dry sliding (Coulomb friction), lubricated sliding (viscous

forces), or cyclical strain in a separating adhesive (damping in a visco-elastic

layer) [62]. One model of this type of damping is a stick-slip model [41, 187],

which assumes certain elements in the structure deform elastically to a defined

force threshold, and then slip.

• Foundation damping: This source of damping arises due to radiation of energy

from the structure to the underlying ground. It is typically a function of the

characteristics of the ground, such as density, Poisson’s ratio, shear and elastic

modulus, and the depth to which the structure is embedded in the ground.

Therefore, a detailed knowledge of the local ground constituents and their

properties is important when determining the influence of foundation damping.
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• Aerodynamic damping: This source of damping is external to the structural

system and is caused by the interaction between a vibrating structure and the

fluid medium in which it is immersed. For low to moderate reduced wind veloc-

ities the aerodynamic damping is positive, but negative aerodynamic damping

can be created at certain wind speeds.

• Auxiliary damping: This source of damping represents a designed addition of

energy dissipation to a structure in order to reduce the vibration response.

Additional damping systems, either passive or active in design, are effective

in reducing the wind-induced response of tall buildings [97, 120, 188], and are

implemented in numerous buildings for this purpose [66, 162].

The first two damping sources discussed — material and frictional damping —

constitute the structural damping. The quantitative definition of the local energy

dissipation mechanisms that contribute to the structural damping is very difficult

to obtain. Consequently, the structural damping is typically described by a single

parameter that incorporates all the local energy dissipation mechanisms.

A range of models for structural damping have been developed, and the most

commonly used is the viscous damping model, where the damping force is expressed

as the product of a constant and the velocity of oscillations. When solving the

equations of motion for a damped system, using the viscous damping model leads to

a convenient form of the equations that facilitate the solution process. The viscous

model assumes that the energy loss per cycle at a fixed amplitude is dependent on

the response frequency. Section 4.2 discusses viscous damping models in the context

of solving the equations of motion for a multi-degree of freedom dynamic system.

An alternative model to the viscous damping model is the hysteretic damping

model, which is valid in the case of harmonic excitation. It is defined as a damping

force that is proportional to the displacement amplitude, and is in phase with the

velocity of the system. In contrast to the viscous damping model, the hysteretic

damping model is independent of the natural frequency.

For the elastic range of response, research has shown [77] that combining all

sources of damping into one equivalent viscous damping model is a sufficiently ac-

curate assumption. Once the response moves out of the elastic range and becomes

non-linear, the viscous damping assumption is no longer valid. For analysis purposes

during the design of a structure, the damping ratios can be obtained from full-scale

dynamic testing of similar structures. This type of testing has been performed on

many buildings, and a large database of values has been compiled from numerous

independent research sources.
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2.3.2 Full-scale Measurements

The history of full-scale measurements of tall building damping ratios closely follows

the history of natural frequency estimations discussed in Section 2.2.2. Since this

research focuses on damping ratios for modern tall buildings, the discussion will be

focused on recent studies. A combination of engineering judgement and historical

full-scale results is used to estimate the damping ratios in practice. Matching the

structure to previous structures with similar properties — structural system, mate-

rials, soil, foundation, etc — is the approach adopted by some design codes. Almost

all of the previous research reports damping ratios for low amplitude excitations

below serviceability levels.

A survey of 12 tall buildings was conducted in Australia [99], and all of the

buildings used RC construction except one that was comprised an RC core with

steel frame. The heights ranged from 31 to 68 storeys. The autocorrelation function

from ambient excitation was used to determine the damping ratios for the funda-

mental translational modes. The damping ratios were between 0.5–2.1 % for the RC

buildings, and 1.0–1.9 % for the RC steel building. The mean value of all measure-

ments was 1.1 %. The Australian building database was expanded with the addition

of eight RC tall buildings [98], and the damping ratio estimates for the fundamental

modes were reported to be in the range 0.40–1.65 %. A database of damping ra-

tios for RC buildings in Japan [139, 157] with heights greater than 150 m reported

similar damping ratios of approximately 1.0–1.5 %.

Four RC buildings in Hong Kong were studied for one year return period wind

events [21] using the random decrement technique, as well as controlled forced vibra-

tion tests [22]. For the ambient vibration tests of amplitudes up to approximately

1.0 mgn, the mean values for the translational modes was between 0.96–1.4 %, while

the torsional mode damping ratios were between 1.03–1.32 %. The controlled forced

vibration testing of these buildings established the translational damping ratios be-

tween 0.5–1.0 %, and the torsional damping ratios between 1.0–1.3 %.

2.4 Full-scale Dynamic Testing

Dynamic tests on full-scale structures are of two main types: forced vibration tests

(FVT), and ambient vibration tests (AVT). The FVT approach is further categorised

into two types: free vibration tests, and steady-state forced vibration tests. For free

vibration tests, an initial controlled excitation source is introduced to the structural

system, and then removed, which causes the structure to perform damped free vi-

brations. The response of the structure to the initial excitation is then recorded for

analysis, but the input excitation force is not necessarily measured. The structure

can be set in motion by either a sudden release from an initial displacement, by
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imparting an initial velocity on the structure, or by imparting a force. Methods

that have been successfully used to impart an initial excitation on tall buildings for

free vibration tests are listed below;

• Mechanical shakers have been extensively used in previous vibration studies

[9, 70, 111]. They are normally used for steady-state forced vibration tests, but

are equally suited to imparting an initial force for a free vibration test. The

input force from the mechanical shaker is repeated over a number of oscilla-

tions to increase the vibration amplitude to the required level. The maximum

amplitude of vibration achievable depends on the input force capability and

the energy dissipation inherent to the structure. To achieve an accurate free

vibration response for damping estimation, the force input from the mechani-

cal shaker needs to be suddenly halted when the required vibration amplitude

is attained. This requirement makes linear mechanical shakers [22] more suit-

able than rotary mechanical shakers [69] for tall building dynamic testing.

Furthermore, rotary mechanical shakers become ineffectual at low vibration

frequencies associated with tall buildings, because the accurate control of the

shaker and the input forces generated both diminish with decreasing vibration

frequency.

• Initial displacements of the structure can be achieved via an attached cable

that is subsequently loaded to cause a desired level of displacement in the test

structure [24]. In order to achieve an accurate free vibration result, a suitable

release method is required to ensure the instantaneous and total relaxation of

the tensile forces in the load cable. This method is more suitable for smaller

buildings, as for taller buildings the length of cable and the angle of the applied

force may be prohibitive.

• Synchronised movement of one or more humans at the natural frequency of

the test structure has been shown to achieve vibration amplitudes suitable

for free oscillation tests [59, 72, 166]. Best results are achieved if all involved

in generating the excitation force are pushing in unison against a common

structural wall. This method is essentially the same as using a mechanical

shaker, except that measurement of the input force would require much more

effort. Like a mechanical shaker, a number of input pushes can be made

in succession to increase the vibration amplitude. The main benefits of this

method are simplicity, cost effectiveness, and the ability to instantaneously

halt the excitation force.

• A construction crane attached to a building can be used as an excitation source

by lowering a mass and suddenly breaking the fall [42, 59]. Multiple fall and
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braking cycles can be made in succession to increase the vibration amplitudes,

and the boom can be positioned at different locations relative to the building

axes to target particular vibration modes.

If damping ratios are required from free vibration tests, it is important that am-

bient excitations are minimised during testing so that the applied initial excitation

is the only significant action on the test structure. Examples of ambient excitations

for tall buildings include wind loading, earthquake tremors, construction crane ac-

tivity, and elevator car movements. Minimising these sources of unmeasured force

inputs will ensure errors for damping values are within acceptable limits.

The second type of FVT, the steady-state forced vibration test, requires sinu-

soidal forces of varying frequency and amplitude to be applied to the test structure.

Both the input force and output response are recorded, and combined to generate

resonance curves or frequency response functions [74]. The dynamic characteristics

of the test structure can then be extracted from the resonance curves. A mechan-

ical shaker is used to apply the sinusoidal forces, and like the free vibration tests,

the minimisation of the unmeasured ambient excitation forces is important to avoid

excessive errors in results. This method has been successfully used for the dynamic

testing of numerous tall buildings [9, 71, 112, 154].

Dynamic tests using the AVT approach have also been extensively used in pre-

vious studies [17, 33, 173]. Like the free vibration test method, the input excitation

force is not measured. However, the output from ambient vibration tests are not

free vibration responses from a single excitation. Rather, the output response is

generated by multiple excitation forces acting on the test structure, which vary with

time and have various degrees of spacial correlation.

Ambient loading has the advantage of exciting multiple natural modes of vibra-

tion that can be recorded during a single test, and viewed individually using digital

techniques while post processing the vibration signals. In comparison to FVT, the

forced loading of large civil engineering structures has a number of disadvantages.

Development and logistical disadvantages are usually the most apparent when con-

sidering forced loading. Development of mechanical shakers used to conduct forced

loading is often time consuming and costly in comparison to ambient loading, which

requires no development of loading equipment.

Conducting forced loading is often accompanied by logistical problems associated

with the transportation and installation of the loading equipment. Depending on

the size of the structure to be tested, the loading equipment can be extremely large

and heavy, and therefore difficult to transport, in addition to causing potential

disruptions to the regular operation of the structure while conducting the tests.

Another disadvantage of forced loading arises from requiring almost complete control

of the various input loads on the structure. This results in forced loading tests being
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conducted when ambient loads are minimised — calm wind conditions for example.

Control of ambient loads is practically impossible, which means forced loading tests

are at best scheduled when ambient loads are expected to be minimised.

Previous research [121, 154, 175] has concluded that dynamic testing of buildings

using ambient excitation can provide reliable estimates of natural frequencies and

mode shapes. However, until more recently the estimation of structural damping

ratios from ambient excitation tests was particularly unreliable. In contrast, under

ideal forced excitation tests, structural damping ratios can be reliably determined.

The primary reason for this is under ideal conditions the input force can be

accurately determined when conducting a FVT. The known input force is used

along with the response output to determine the dynamic properties. Furthermore,

FVT can also force a particular mode to be excited with-out other modes ocurring

simultaneously. For AVT there is also the issue of separating structural damping

and aerodynamic damping components from AVT test results.

More recent techniques [14, 17, 127, 136] for post processing ambient excitation

test results have improved the structural damping ratio estimates, however most

techniques are more computationally intensive when compared with the processing

requirements of forced excitation test data.

Vibration amplitudes generated by ambient excitation forces are usually orders of

magnitude less than those generated by forced excitation. Unless a broad spectrum

of vibration amplitudes are experienced during the testing phase, the results will

only be valid for a small subset of potential loading conditions. This is a weakness

of ambient vibration testing, particularly when considering the influence of response

amplitude on natural frequency and structural damping ratios. It has been ob-

served that as vibration amplitude increases, the natural frequencies decrease and

the structural damping ratios increase [80, 87, 165]. This effect is reflected in many

building design codes, which specify larger values for structural damping ratios for

ultimate load cases compared with the values for serviceability load cases [151].

2.4.1 Dynamic Testing during Construction

The previous sections highlight the large amount of data and knowledge obtained

on the full-scale dynamic characteristics of completed structures. Much of this has

been due to research focused on earthquake engineering of civil structures. Very few

previous research efforts have investigated vibration testing of partially completed

structures during construction, either as a means of understanding the structural

mechanisms that influence the dynamic characteristics, or for enhancing the pre-

diction of dynamic characteristics. Compared with testing completed structures,

testing during construction presents more obstacles to achieving optimum outcomes.

It is difficult to control the construction of a building to maximise the information
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from vibration tests during construction. The schedule of the builder, who is under

pressure to meet cost and time budgets, governs how the structure is built. In

most cases, vibration testing during construction can only aim to conduct tests

at the most opportunistic stages of construction, in order to observe the effects of

structural changes on the dynamic characteristics.

Tall building construction is a particularly good example, because the construc-

tion schedule tends to progress based on levels, as opposed to structural elements.

It would be advantageous to conduct vibration tests when certain parts of the struc-

ture are completed, for example at the completion of the shear walls, columns, floor

slabs, facade, and internal non-structural walls. However, tall building construction

tends to overlap all of these parts. For example, the installation of the facade is

generally commenced once the structure has been completed far enough ahead, but

not entirely completed, to avoid clashes between construction processes. In this

arrangement, the facade and structure are built simultaneously, with the facade

trailing until the structure reaches completion.

Complete control over the construction of the structure would be ideal for under-

standing the structural mechanisms and the influence of both structural and non-

structural elements, but this is not practical or economical for tall buildings. Despite

not having complete control — to add or remove structural and non-structural ele-

ments at any time — during construction, determining the dynamic characteristics

at partially completed states can provide insight into the structural mechanisms

that influence the dynamic characteristics.

Due to the construction schedule mentioned above, it is unlikely that one study

will ever provide comprehensive understanding of tall building dynamics. Each

study of a building during construction offers a unique opportunity to further the

understanding, particularly if the construction schedule differs from previous studies.

Dynamic tests of partially completed buildings, or buildings undergoing alter-

ations, are not a recent occurence. The earlier studies conducted in the 1930’s were

mostly confined to steel frame buildings of under fifteen storeys [23], which were

the dominant form of construction at that time. For this type of building, the main

focus appeared to be determining the influence of curtain walls, partition walls,

and concrete encasement of the steel frame [8, 24, 145]. Furthermore, the results

focused attention on the natural periods of oscillation, and little information was

provided on the damping ratios. More recent studies have since included damping

ratio estimates [118].

The most comprehensive study for steel frame structures is perhaps the Card-

ington steel frame building [49]. This steel frame structure comprised eight storeys

and was designed to represent an office building. The entire structure was con-

structed within a laboratory, which allowed for practically complete control of the
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input excitation. Furthermore, the construction was undertaken in discrete stages

to accurately determine the influence of each stage on the dynamic characteristics.

This controlled laboratory experiment is at the extreme end of full-scale testing, and

generally not a viable option for larger structures.

Taller buildings have also been tested during construction and alterations, and of

particular interest to this research are those [16, 42, 141, 178] that use a reinforced

concrete core as the primary lateral load resisting structure. These few studies

represent the current breadth of research that use full-scale testing of tall buildings

during construction to improve the estimation of dynamic characteristics.

2.4.2 Natural Frequency during Construction

A majority of the research on the estimation of natural frequencies during construc-

tion has focused on the influence of non-structural components, such as internal par-

titions and facades. Shorter buildings have been more successful test cases because

the reduced number of levels, compared with taller buildings, means the primary

lateral system is more likely to be completed prior to the construction of the facade

and non-structural partitions. Therefore, the changes can be observed in discrete

stages.

For taller buildings during construction, the ability to observe the influence of

the facade and internal partitions is limited to the final stages of construction. This

is due to the main structure being completed while the remaining fit-out and facade

are conducted at lower levels, thus creating a stage at the end of construction where

only the facade and fit-out are changing. The observation of this stage in previous

studies of reinforced concrete core buildings has found the facade and partitions

did not significantly influence the dynamic characteristics [16, 42, 178]. This is a

similar result to that obtained for a steel frame tower of 24 storeys, which found the

cladding had little influence on the first modes, but tended to increase the natural

frequencies of the higher modes of vibration [118]. Regardless of the initial aim of

the previous studies, all the results have reported a decrease in natural frequency

with increasing height.

A relatively complete study of natural frequencies for a tall building during

construction was conducted on a reinforced concrete tower in Vancouver [141]. The

tower included 30 storeys, with 85 m height above ground and 9.4 m of basement

below ground. Using ambient vibration measurements, the natural frequencies of

the fundamental vibration modes — two sway and one torsion — and the second and

third set of higher modes was estimated. The results found the spacing between the

fundamental and higher order modes decreased as the building height increased. For

the sway modes, the ratios between the higher modes and the fundamental mode was

considerably higher, by as much as two times, than the ratios for an idealised shear
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beam model in Equation (2.2). The ratios for the torsional modes were generally

within 10% of the idealised shear beam model.

2.4.3 Damping Ratios during Construction

As for the investigation of natural frequencies during construction, previous research

has also focused on determining the influence of non-structural components on the

damping ratios. A common obstacle shared amongst the previous research is the

difficulty in obtaining a consistent set of accurate estimates for the damping ratios

during construction [42, 141]. This is understandable since the estimation of damp-

ing ratios is very sensitive to the loading conditions. And this fact is not avoided if

a mechanical shaker is used to excite the structure, as ambient vibrations can still

influence the results.

Regardless of the incomplete results sets for damping ratios, potentially useful

results have been reported. For a 24 storey steel frame tower, the facade was found

to increase the damping ratios, with the effect being more pronounced for the tor-

sional modes [118]. Forced vibration tests of a 94 m high apartment building with

reinforced concrete core found the damping ratios to be more dependent on the stage

of fit-out in the lower levels, as opposed to the fit-out in the higher levels [42].

2.5 Wind-induced Response

The wind-induced response of tall buildings consists of three components: a static

component due to the mean wind force; a quasi-static component due to low fre-

quency wind force fluctuations; and a resonant component due to wind force fluc-

tuations that have frequencies equal or similar to the natural frequencies of the

building. The quasi-static component is dynamic in nature — it involves movement

of the structure over time — however the frequency of the force fluctuations do not

coincide with the natural frequencies of the structure, which means resonance does

not occur. The static and quasi-static components are collectively referred to as the

background component.

The monitoring of a structure requires the recording of both the resonant re-

sponse and the background response. For the wind resistant design of tall buildings,

the required indicators include member stresses, structural deformations, and dis-

placements. The static and quasi-static components will influence these indicators

and cannot be ignored. Therefore, the measurement of static and quasi-static com-

ponents are important for tall building design and performance assessment.

In theory, the measurement of either displacement, velocity, or acceleration will

yield a complete result set for describing the responses, because the measured pa-

rameter can be differentiated or integrated to produce the unmeasured parameters.
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The accuracy of the integration results depends on the quality and properties of the

input data. Considering the basic equations for velocity and displacement derived

from the integration of acceleration;

ẋ =

∫
ẍdt+ C1 (2.20)

x =

∫
ẋdt+ C1t+ C2 (2.21)

each integration step in Equations (2.20) and (2.21) introduces an unknown constant

(C1 and C2) that can be resolved if the velocity and displacement are known at a

particular time. Since accelerometers are prone to drift and other errors over time,

it is not feasible to know with certainty the instantaneous velocity and displacement.

To make this approach feasible would require continuous compensation of the accel-

eration output for drift and other errors. Without such knowledge, Equations (2.20)

and (2.21) are not applicable for determining the quasi-static response of a structure

subjected to random loading. For this reason, both accelerations and displacements

are simultaneously measured by separate sensors to produce a complete results set

describing the wind-induced response of a structure.

2.5.1 Full-scale Monitoring

Prior to the 1970’s, the most significant full-scale study of the wind-induced response

of tall buildings was the study conducted on the Empire State Building (380 m) in

New York during the 1930’s [132]. A re-analysis of the results by Davenport [37]

established the increase in tip displacements according to wind speed. Further-

more, the difference in stiffness between the orthogonal axes of the building were

established and attributed to the geometry and structural system of the building.

Wind loads on tall buildings received more focus in the 1960’s and 1970’s as an

increase in tall building construction occurred during this period. The study con-

ducted on the Commerce Court Tower (239 m) in Toronto [35] is one of the most

extensive and well documented of the period. The acceleration response measure-

ments established the significance of torsional motion combined with sway motion

for one of the building orthogonal axes. This highlighted the influence of eccen-

tricities between the centre of mass and centre stiffness on the mode shapes and

subsequent response. The torsional motion was found to increase accelerations by a

factor of 1.4 at points furthest from the centre of rotation.

More recently, the focus on monitoring the wind-induced response of tall build-

ings has continued due to the increase in heights for some of the current tall building

designs. A number of studies have been conducted in the Asia-Pacific region, which

have focused on the response of tall buildings to typhoon winds [20, 107, 110]
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2.5.2 Displacement Measurement Techniques

The earliest recorded wind-induced displacement measurements of large flexible

structures were undertaken using optical techniques [46]. This method works by

sighting a target, perpendicular to the line of sight, through a telescope or similar

instrument. It is simple and easily implemented, but lacks the ability to attain accu-

rate measurements with high frequency. Automation is another key aspect missing

from such an approach to long term displacement measurement, an aspect that is

now easily accounted for by utilising relatively cheap and high resolution personal

movie cameras. The need to maintain an unobstructed view to the target can be

difficult to achieve, especially since many modern tall building designs incorporate

multiple set-backs, as well as the influence of weather conditions and pedestrian or

vehicle traffic. Target illumination must be considered for low light operation.

In the 1930’s, displacement monitoring techniques investigated the abilities of

plumb-bob methods [132]. Measurements are observed from the movements of a

small mass suspended by thin wire from the upper levels of a structure. Placement

of the wire and mass is restricted to internal shafts, such as service shafts, to avoid

wind disturbance. The biggest disadvantages of this method is space limitations,

temperature effects on the wire, and the need to dampen the swinging mass to

remove inertial components of displacement. The use of a plumb-bob coupled with

a tracking laser allows automated monitoring of the displacements [112].

Most limitations of optical and plumb-bob techniques are overcome using a laser.

More specifically, laser interferometery is capable of recording highly accurate dis-

placements, although the accuracy degrades with increasing travel distance of the

laser. Particles suspended in the air, including dust and water vapour, disperse

the laser beam and reduce the concentration of light resulting in reduced accuracy.

Despite these limitations, laser techniques have proved suitable for tall building dis-

placement monitoring [96]. Adding a photo-sensitive sensor [58] and computer to

digitize and record the laser beam, this system becomes automatic in operation.

However, to avoid the effects of water vapour and precipitation, internal installa-

tion of laser displacement systems is desirable, which introduces space limitations

inherent within tall building shafts.

Displacement measurements can be determined from tilt angles of the structure

[58]. The tilt angle is measured using a sensitive acceleromter. The main disad-

vantage is the drift inherent to accelerometers, which will cause errors in tilt angle

estimates.

More recently, displacement measurement systems based upon the Global Posi-

tioning System (GPS) have been used to monitor large flexible structures [15, 61, 114,

161]. Using GPS, the unknown position of objects are determined from the known

position of other objects via the concept of triangulation. GPS is designed to allow
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precise estimation of position, velocity and time in all weather conditions. The all

weather operation of the GPS design is an advantage over other displacement mea-

surement techniques. The disadvantage of using GPS displacement measurements

stem from the sources of error in the estimates, which include: atmospheric effects,

multipath effects, inadequate satellite position, satellite ephemeris errors, and tim-

ing errors. The atmospheric effects and multipath effects are likely to contribute

most to the total error when monitoring tall buildings.

A GPS receiver measures the incoming phase of satellite signals. As the satellite

signals travel from the source to the receiver, they pass through and are affected by

the atmosphere. The atmosphere consists of the ionosphere and the troposphere,

and changes in these zones cause a degradation in the accuracy of observations.

Satellite signals passing through the ionosphere can be slowed due to an effect similar

to the refraction of light as it passes through mediums of differing density. Such

atmospheric delays can introduce error in the range calculation as the velocity of

the signal is affected. Furthermore, the delay induced by the atmosphere is not

constant and depends on a number of factors; satellite elevation, density if the

ionosphere and the presence of water vapour.

Atmospheric errors can be mitigated by using two receivers: one configured as

a reference receiver, and another as a roving receiver. The reference receiver is

fixed at a point, and therefore static. When the two receivers observe the same set

of satellites simultaneously, the reference receiver can be used to correct the errors

from atmospheric effects in the roving receiver. The baseline between the two sensors

should be minimised to ensure that identical atmospheric conditions are recorded

at both receivers.

The multipath error source relates to the reception of GPS signals that have

travelled indirectly from the satellite to a receiver. Multipath signals travel further

than a direct line of sight signal, which causes overestimation of the distance travelled

by the signal and significant errors in the recorded positions. GPS signals can be

reflected by any surface or object, including buildings and natural surroundings.

2.5.3 Response and Peak Factors

Wind forces on structures tend to have random amplitudes that are distributed

over a wide frequency range. The response of wind sensitive structures tend to be

dominated by resonant responses to energy in the wind spectrum that coincide with

the narrow bands about the fundamental natural frequencies of the structure 2.8.

For most structures, a majority of the wind energy is at lower frequencies than their

natural frequencies. Furthermore, the energy decreases with increasing frequency.

Therefore, only the fundamental modes need to be considered. Tall buildings with

eccentricities between centre of mass and centre of stiffness are an exception, as
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higher modes with torsional responses become important to consider.

The wind-induced response of structures is divided into along-wind and cross-

wind components. This classification is made due to the different forcing mecha-

nisms that cause responses in these directions relative to the incident wind. The

combination of these components results in an elliptic response envelope.

Since the total response of a structure is composed of mean and dynamic com-

ponents, it is convenient to describe structural actions in terms of a mean value

plus the average maximum likely to occur. Probability distributions of the random

variables can be used to determine the peak value, and it has been shown that the

average peak response can be expressed via the number of standard deviations by

which the peak exceeds the mean [40]. The average peak response is then described

as;

x̂ = x̄+ gσx (2.22)

where x̂, x̄, and σx are the peak, mean, and standard deviation of x respectively,

and g is the reduced variate called the peak factor. The peak response is dependent

on the time period, and is often, but not exclusively, related to a duration of one
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hour [38].

The wind-induced response of structures is randomly distributed, and the esti-

mation of the maximum value is an import consideration when designing structures.

For most cases the response distribution can be considered as Gaussian, because the

Central Limit Theorem states the probability distribution of a continuous variable

that is the sum of a large number of independent variables is approximately normal.

For a normally distributed process, the peak factor can be based on the mean of the

distribution of largest values [39], which gives the equation;

gf =
√

2 ln(n0T ) +
0.577√

2 ln(n0T )
(2.23)

where n0 is the mean value crossing rate and T is the time period. Equation (2.23)

allows prediction of peak factors based on the mean crossing rate, which is typically

equal to the natural frequency of the structure, and the length of time T over which

the process is recorded. Depending on the time period considered, the peak factor

of an approximately Gaussian process is typically between 3.3 to 4.6.

In some cases, the process differs significantly from a Gaussian distribution. The

investigation of these non-Gaussian processes can provide insight into the nature

of the excitation mechanisms. The peak value and peak factor can be related to

a specific probability level [116]. For a lightly damped structure oscillating at its

fundamental natural frequency, it is possible to express the probability of exceedance

in terms of a frequency. Specifically, the peak value can be defined as the value

crossed with positive slope, following a zero crossing, once only on average during a

period T . For a narrow band, stationary, ergodic, normal process, this definition of

the peak value takes the form of a Weibull distribution and defines the probability

of upcrossing exceedance as;

P(x > a) = e(a/c)
k

(2.24)

For a Gaussian process, k = 2, c =
√

2σx, and the peak factor is 3.7 for P >

0.001. The Gaussian process provides a boundary between extreme behaviours. For

increasing values of k, the upcrossing variables become increasingly dependent such

that a sine wave results when k = ∞ and the peak factor is constant at a value of√
2. For k > 2, intermittent characteristics become more significant and the peak

factor is typically greater than 4 for P > 0.001. The peak factors using this method

are subscripted with the probability level to avoid confusion with the peak factor

based on a distribution of largest values.
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2.6 Summary

The previous research and current methods for the estimation of natural frequency

and damping of tall buildings have been presented in this chapter. The uncertainty

in the estimates provided by the current methods have been discussed with reference

to theoretical, empirical, and numerical estimation methods. The theoretical and

numerical methods have deficiencies in their ability to model structures with complex

interactions between primary structural elements and non-structural elements. The

empirical methods have the disadvantage of relying on a finite database of full-scale

results from existing structures to establish common trends. The quality of empirical

estimates are only as good as the quality of the database and how applicable they

are to modern structures.

Errors in the natural frequency or damping estimates can have a significant

impact on the design of a tall building as it can lead to incorrect estimates of the

wind-induced response. In turn the structure may be over or under-designed for the

actual wind loads. In the case of an over-designed structure the unnecessary use of

resources is the downside. For the under-designed case the structure will not perform

to acceptable criteria, such as occupant comfort criteria, resulting in discomfort for

tenants and possibly financial costs for the building owner due to owning a poorly

performing building.

From the material discussed in this chapter there is a need to improve the nat-

ural frequency and damping ratio estimates for tall buildings. Particularly in the

early phases of design and construction to enable improved designs and to iden-

tify if errors have been made. The full-scale testing of tall buildings provides a

number of benefits in this respect. It adds to the database of tested structures to

improve empirical methods. It allows the improvement of modeling techniques in

numerical methods through insight to appropriate assumptions about the structure

and material properties. And as outlined in the thesis objectives, it may help to

reduce uncertainty in the natural frequency and damping estimates when testing is

conducted during the early stages of construction.

The estimation of wind-induced response involves a chain of steps. The estima-

tion of natural frequency and damping are steps in the chain, and they are used in

the estimation of wind loads via wind code calculations and wind tunnel testing.

Errors in these later steps have similar outcomes: over or under-designed structures.

And similarly they can benefit from full-scale testing. The following chapter out-

lines the full-scale experiments and the tested structure that is used to address the

research needs discussed in this chapter.



Chapter 3

Description of Full-Scale

Experiments

3.1 Introduction

The benefits of full-scale testing of tall buildings has been discussed in Chapters 1

and 2. In this research the results of full-scale testing will be used to reduce the

uncertainty in natural frequency and damping estimates and to validate wind tunnel

testing results. This chapter describes the structure used for full-scale experiments,

Latitude tower (Figure 3.1), and the instrumentation and experimental methods

used to measure it’s response to various excitations. The description of Latitude

tower includes the geometry, structural system, construction methods, location, and

surrounds of the building. The description of the structural system and construction

methods are included to support the results of the vibration testing conducted during

construction of Latitude tower, which are presented in Chapter 5.

The data recorded during experiments included acceleration, displacement, wind

speed, and wind direction. The instrumentation consisted of accelerometers to mea-

sure the dynamic response, GPS receivers to measure the displacements, and an

anemometer to record the wind speed and direction. Supporting instrumentation,

such as signal conditioners and data acquisition systems, are also described in ad-

dition to the calibration, setup, and installation of the components.

The phases of the full-scale experiments are; firstly, periodic vibration testing

to record accelerations during the construction phase, and secondly, a continuous

monitoring phase to record accelerations, displacements, and wind velocity. In total

the periodic vibration testing lasted for one and a half years, and was followed by a

two year period of continuous monitoring.

45
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Figure 3.1: Architectural impression of Latitude tower viewed from the south-west
(Source: Crone Nation Architects)
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3.2 Description of the Test Structure

Latitude tower is a 46 storey office tower, with a maximum height of approximately

187 m above street level and 28 m of underground levels. An elevation of the eastern

facade of the building is displayed in Figure 3.2. Level 1 is the bottom of the

basement levels, level 10 is ground level, and level 55 is the roof. The development

of the Latitude tower site also included a six storey building located to the rear of

Latitude tower. The two buildings are structurally connected below street level via

the basement floor slabs, but no structural connections exist above street level.

3.2.1 External Geometry

The following descriptions of the external geometries refer to the widths and depths

of the plan views displayed in Figures 3.3 to 3.7. The width refers to distances mea-

sured in the east-west direction (x-axis), and the depth refers to distances measured

in the north-south direction (y-axis). The width is quoted first when both distances

are written together; for example, 9 m × 2 m, the width is 9 m and the depth is 2 m.

The external geometry of Latitude tower remains uniform for most levels, with

floor plan changes occurring in the first ten levels above street level and the last

four levels at the top. At level 10 and 11 (Figure 3.3), the total width is 59 m and

the total depth is 36 m. The north-east, south-east, and south-west corners of these

levels have rectangular cut-outs with dimensions of 9 m × 2 m, 4 m × 15 m, and 15 m

× 9 m respectively. Between levels 12 and 16 (Figure 3.4), the width increases to

71 m and the depth increases to 38 m. The rectangular cut-outs in the north-east,

south-east, and south-west corners are still present from the preceding levels, and

have dimensions of 20 m × 3 m, 13 m × 13 m, and 10 m × 10 m respectively. Levels

17 to 19 have similar external geometries as levels 10 and 11.

The typical external geometry (Figure 3.5) starts at level 20 and finishes at level

51. For these typical levels the total width and depth are 54 m × 44 m. At level

20, the southern facade extends outwards by approximately 6 m and accounts for

the increased depth of the typical levels. The typical levels have two rectangular

cut-outs; one in the north-east corner with dimensions of 11 m × 6 m, and another

in the south-west corner with dimensions of 6 m × 16 m.

At level 52 (Figure 3.6) the southern facade moves 6 m back towards the centre of

the building, which decreases the total depth to 38 m. The total width is unchanged

from the typical levels at 54 m. The depth of the north-east rectangular cut-out

increases, with dimensions of 11 m × 14 m, and the south-west rectangular cut-out is

6 m × 10 m. The external dimensions of level 54 (Figure 3.7) decrease further to 53 m

× 33 m, and the north-east and south-west rectangular cut-outs have dimensions of

11 m × 23 m and 5 m × 13 m respectively. Level 55 has similar dimensions as level
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GOULBURN STREET
L9      SSL    10.300

L1      SSL   -13.050

L19    SSL    50.855

L20    SSL    54.620

L21    SSL    58.385

L22    SSL    62.150

L23    SSL    65.915

L24    SSL    69.680

L25    SSL    73.445

L26    SSL    77.210

L27    SSL    80.975

L28    SSL    84.740

L29    SSL    88.505

L30    SSL    92.270

L31    SSL    96.035

L32    SSL    99.800

L33    SSL  103.565

L34    SSL  107.575

L35    SSL  111.975

L36    SSL  116.115

L37    SSL  119.880

L38    SSL  123.645

L40    SSL  131.175

L39    SSL  127.410

L41    SSL  134.940

L42    SSL  138.705

L43    SSL  142.470

L44    SSL  146.235

L45    SSL  150.000

L46    SSL  153.765

L47    SSL  157.530

L48    SSL  161.295

L49    SSL  165.060

L50    SSL  168.825

L51    SSL  172.950

L52    SSL  177.160

L53    SSL  180.925

L54    SSL  184.990

L55    SSL  190.320

            RL  202.000

Figure 3.2: Eastern elevation of Latitude tower (Source: Crone Nation Architects)
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Figure 3.3: General Arrangement for Levels 10 to 11 (Source: Hyder Consulting)

54.

3.2.2 Structural System

The lateral stability design of Latitude tower uses an outrigger-braced structural sys-

tem. The system consists of a centrally located core, comprising reinforced concrete

shear walls, in conjunction with outrigger trusses connecting the core to the perime-

ter columns at mid-height. The outrigger design increases the effective structural

depth of the building, which augments the lateral stiffness of the core and reduces

horizontal deflections and moments in the core [146]. Outrigger arrangements are

suitable for buildings with a significant flexural component of deformation, as op-

posed to shear dominated deformations.

Core and Service Shafts

The centrally located rectangular core is the primary lateral load bearing element

and is constructed of reinforced concrete shear walls. Figures 3.8 to 3.14 display core

wall plans at levels where changes occur in the wall configuration from the previous

level. Walls W1 and W5 form the ends of the lift shafts and are 700 mm thick at

level 1, and reduce to 650 mm at level 9, 500 mm at level 20, 400 mm at level 28,
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Figure 3.4: General Arrangement for Levels 12 to 16 (Source: Hyder Consulting)

Figure 3.5: General Arrangement for Levels 20 to 51 (Source: Hyder Consulting)
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Figure 3.6: General Arrangement for Levels 52 to 53 (Source: Hyder Consulting)

Figure 3.7: General Arrangement for Levels 54 to 55 (Source: Hyder Consulting)
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and finally 300 mm at level 37. Walls W7, W10, W13, and W16 form the centre

of each lift shaft and have a constant thickness of 250 mm. Walls W8, W9, W11,

W12, W14, W15, and W17 form the outer walls of the lift shafts and have a typical

thickness of 170 mm for level 25 and above. For levels 1 to 24, these walls have a

typical thickness of 175 mm. Wall W17 has a thickness of 300 mm for levels 1 to 8,

and reduces to 170 mm for level 9 and above.

The total width of the core remains relatively constant between levels 1 to 19.

The distance between W16 and W17 is increased at level 9 to accommodate a lift

shaft, which increases the overall width of the core from 30 125 mm in Figure 3.8

to 30 610 mm in Figure 3.9. Above level 19, the total width of the core decreases

at discrete points as core walls terminate. The total width of the core reduces

by approximately 60% between its base and top. The total depth of the core is

12 660 mm at level 1, and decreases as the thickness of walls W1 and W5 are reduced.

Latitude tower also includes two other reinforced concrete shafts in addition to

the centrally located core. The first is a low-rise lift and services shaft located

adjacent to W17 in Figure 3.9, between grids X06 and X07. The walls comprising

this additional shaft, W20 and W21, extend between levels 9 to 16 and are supported

by columns that transfer the vertical loads directly to the foundations.

The second reinforced concrete shaft is a high-rise services shaft adjacent to W5

in Figure 3.10, between grids Y05 and Y06. This shaft extends between levels 20

to 52, and is supported by trusses that transfer the vertical loads to both wall W5

and the columns situated on the perimeter of the lower levels, between grids Y04

and Y05 of Figure 3.4. The size and location of the high-rise services shaft, relative

to the central core, creates a significant eccentricity between the centre of mass and

the centre of stiffness.

The concrete strength f ′c used for the core and shafts was typically 50 MPa.

The walls between levels 34 and 36 were constructed with 80 MPa concrete. The

increased concrete strength was required because these levels link the core lift shafts

together and also accommodate the outrigger trusses.

Outriggers

Outrigger trusses require large depths to be effective, and their configurations in-

evitably clash with architectural aims. Plant rooms that occupy multiple consecutive

levels are the most structurally effective and architecturally convenient location for

such structures [146]. Latitude tower includes two outrigger trusses located in the

plant rooms between levels 34 and 36. The depth of each truss spans between the

level 34 and level 36 floor slabs. Figure 3.15 displays the location of the outrigger

trusses at grids X03 and X06.

The outrigger trusses at the level 34 plant room directly connect only two
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Figure 3.8: Level 1 Core Plan (Source: Hyder Consulting)

Figure 3.9: Level 9 Core Plan (Source: Hyder Consulting)
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Figure 3.10: Level 20 Core Plan (Source: Hyder Consulting)

Figure 3.11: Level 28 Core Plan (Source: Hyder Consulting)
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Figure 3.12: Level 37 Core Plan (Source: Hyder Consulting)

Figure 3.13: Level 48 Core Plan (Source: Hyder Consulting)
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Figure 3.14: Level 53 Core Plan (Source: Hyder Consulting)

columns to the core. A two storey high belt truss [167] surrounds the level 34–

35 plant room at the facade, which joins all the perimeter columns together. This

design theoretically forces all perimeter columns that are collinear with the line

through the outrigger columns to participate in the moment resisting characteris-

tics of the outrigger-bracing system. The belt truss also acts as an offset outrigger

[122], in conjunction with the level 34 and level 36 floor slabs, that is effective for

deflections in either the north-south or east-west directions. Figure 3.15 displays the

location of the belt truss along the northern facade, between grids Y08 and Y09.

Floor Plates

A composite steel-concrete floor system is typically used for level 16 and above.

Steel beams and reinforced concrete floor slabs span from the core to the perimeter

columns, which are constructed of concrete filled steel circular hollow sections. The

steel beams are connected at the core and perimeter columns by bolted connections,

which are not designed to support significant moment reactions. Shear studs welded

along the top flange of the supporting beams protrude into the floor slab to ensure a

composite action between the beam and floor slab is attained. In this configuration,

the concrete floor slab serves as a compression flange.

For levels 15 and below, the floor plates are constructed of reinforced concrete.

The floor slabs are supported by reinforced concrete beams that span from the core

to the perimeter columns, or an edge beam.
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Figure 3.15: Level 34 outrigger truss locations (Source: Hyder Consulting)
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At all levels the floor slabs are typically 120 mm thick, and increase to 150 mm

for slab sections within the core and service shaft areas. The floor slabs forming the

boundaries of plant rooms, such as level 34 and level 36, are 200 mm thick.

Block-work and Infill Walls

The intended use of the structure as an office tower results in mostly uninterrupted

floor spaces. The columns are typically located at the facade, and block-work infill

is scarce. In contrast, residential towers are characterised by extensive internal par-

titions. Depending on the design and construction of internal partitions, they can

influence the structural behaviour by acting as braced shear walls capable of sup-

porting moment reactions [146]. For the test structure, block-work infill is confined

to areas in the main core of the building, mainly for service shafts and stair wells,

and is unlikely to have any significant influence on the structural system.

Foundations

The interface between the base of the structure and the ground uses reinforced

concrete pad footing foundations. For the reinforced concrete core, a 1300 mm thick

reinforced concrete pad footing extends 920 mm to 1450 mm beyond the perimeter

of the core walls. Pad footings for the columns are similar in design to the core

pad footing. The underlying ground material is high class sandstone with a bearing

pressure capacity of 9 MPa to 12 MPa. Very little change to the existing foundations

was conducted apart from minor upgrades to some footings. The new structure

was designed to suit the existing foundations. For example, the new levels used a

composite steel and reinforced concrete floor plate design to reduce the mass of the

structure.

Cladding

The cladding consists of prefabricated sections constructed of glass and aluminium.

Steel brackets embedded in the floor slabs provide bolt eyelets as attachment points

for the cladding sections. The connections between the facade elements and the

brackets, as well as the connections between adjacent facade elements, consist of

movement joints that prevent the transfer of inter-storey shear forces to the cladding

elements. From a serviceability perspective, this ensures the glass in the facade

elements does not act as a compression strut in resisting inter-storey displacements.

3.2.3 Construction Methods

Construction of the tower utilised an existing reinforced concrete tall building, which

was partially completed approximately ten years prior to the commencement of
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Latitude tower in late 2002. The existing core was completed to level 24, and the

floor plates to level 15. However, the existing floor plates were not at levels that

suited the new designs and were scheduled for demolition.

To reduce construction times, a new construction deck was installed at level

15 and supported by the existing level 14 reinforced concrete columns. This new

construction deck allowed the construction of levels 15 and above to proceed, while

the floor plates at levels 11 to 14 were demolished and re-constructed according to

revised designs. Temporary bracing of the columns was installed at the demolished

levels, and removed once the floors had been re-constructed.

A jump-form was used to construct the core walls, and during the construc-

tion phase the core was often four to five storeys ahead of the floor plates. The

construction of the floor plates followed an upward spiral scheme. For a typical

floor plate, construction of one quadrant would commence with the installation of

steel columns and beams followed by steel decking atop the beams to act as unre-

coverable formwork. At this stage the erection of steel columns and beams in an

adjacent quadrant would commence, while steel reinforcement was placed in the first

quadrant in preparation for poring the concrete slab.

The facade trailed the floor plates by six to eight levels during the construction

of typical levels. Sections of the facade that spanned multiple levels were also not

installed until the end of construction. This was to allow for construction equipment,

such as cranes and hoists.

3.2.4 Location and Surrounds

Latitude tower is located at the southern end of the Sydney central business dis-

trict. It is part of the World Square development, which includes three tall buildings

contained within a city block measuring approximately 144 m × 155 m. Figure 3.16

displays the location of Latitude tower relative to the surrounding coastal waters.

The other locations plotted on the figure correspond to meteorological stations op-

erated by the Australian Bureau of Meteorology. Wind velocity data from these

stations were used to verify the measurements from the anemometer installed at

Latitude tower during the monitoring period. A satellite image covering a 5 km ra-

dius around Latitude tower is displayed in Figure 3.17. To the north is the Sydney

CBD and Sydney Harbour, and from the east around to the north west is mostly

low-rise industrial and residential buildings and park lands. The relationship be-

tween the cardinal wind directions (β) and the building orthogonal axes (θ) are

displayed in Figure 3.18.

The terrain surrounding Latitude tower varies. Winds approaching from the

north initially travel over land that mostly comprises suburban buildings. At a

distance of approximately 1.8 km north of Latitude tower, a mixture of high density
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Figure 3.16: Latitude tower location map.
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Figure 3.17: Latitude tower location satellite image.
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Figure 3.19: View from Latitude tower to the North.

metropolitan buildings and tall buildings becomes the predominant terrain. For

wind directions approaching from the north-east to south-east, winds initially travel

over the Pacific Ocean, before reaching land at approximately 7.5 km from Latitude

tower. For these wind directions, the dominant terrain type is low-rise suburban

buildings. Winds from the south also initially travel over the Pacific Ocean, and

reach land approximately 18 km from Latitude tower. The dominant terrain type

for southerly winds is also low-rise suburban buildings. For winds originating from

the south-west to the north-west, winds blow over long fetches comprised mostly of

low rise, suburban dwellings. Figures 3.19, 3.20, 3.21, and 3.22 display views from

the top of Latitude tower to the north, east, south, and west respectively.

As can be seen at the right side of Figure 3.19, a neighbouring building is located

in the immediate vicinity north of Latitude tower. This neighbouring building,

known as World Tower, stands approximately 230 m above street level. Figure 3.23

is a plan view of World Square, the city block containing Latitude tower, and shows

the size and location of World Tower relative to Latitude tower.
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Figure 3.20: View from Latitude tower to the East.

Figure 3.21: View from Latitude tower to the South.
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Figure 3.22: View from Latitude tower to the West.

3.3 Instrumentation Specification and Calibration

3.3.1 Accelerometer Specification

Selecting the appropriate acceleration transducer first requires the specification of

the anticipated vibrations to be measured. The expected frequency range of inter-

est for the periodic vibration tests was determined from previous vibration studies

of tall building structures ([47], [139]). These studies included natural frequency

values for the fundamental translational mode, the orthogonal fundamental trans-

lational mode, and the fundamental torsional mode for tall buildings with heights

ranging from below 20 m to a maximum height of approximately 275 m. The natural

frequency values that encompassed all heights and modes of vibrations from these

studies ranged from approximately 0.16 Hz to 4.3 Hz. From this historical data, the

frequency range of interest for the vibration testing of a 187 m tall building during

construction is expected to be between 0.1 Hz to 5.0 Hz.

Over the frequency range of interest, acceleration responses under 0.1 mgn were

anticipated to be recorded and used for analysis. The predicted maximum accelera-

tion varies with the height of the structure, with maximum values expected when the

structure reaches the final design height of 187 m. The sources of significant ambient

excitation during construction include wind loading and crane induced loading, and

both sources require consideration to estimate peak responses. For the ambient wind
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Figure 3.23: Plan view of World Square displaying the size and location of World
Tower (WT) relative to Latitude tower (LT).
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Input range ±30 gn

Bias < 15 mgn

One year repeatability < 2500µgn

Temperature sensitivity < 100µgn/
◦C

Scale Factor 1.33 mA/gn ±10 %
One year repeatability < 2500 ppm
Temperature sensitivity < 200 ppm/◦C

Resolution < 10µgn

Intrinsic Noise < 3000µgnrms (0–10 kHz)
Bandwidth > 300 Hz

Table 3.1: Honeywell Q-Flex R© QA650 Accelerometer Specification

excitation, results from a high frequency base balance wind tunnel test, presented

in Section 6.4, indicated the peak acceleration from a 1 year return period event for

a westerly wind would reach approximately 4.0 mgn. The crane induced excitation

depends on the loads carried and the operation of the crane — rate of accelera-

tion and deceleration of lifting and slewing actions of the crane. These factors are

highly variable under regular crane operations, and estimating the crane induced

accelerations is therefore difficult. During construction it would be anticipated that

regular crane operations would be unlikely to create sufficient impulse loads to in-

duce accelerations above those predicted from ultimate wind loading. A controlled

sequence of repeated crane induced impulse loads could theoretically induce higher

accelerations, however this method was not to be used or expected to occur during

normal construction activities.

The Honeywell Q-Flex R© QA650 Accelerometer [67] was chosen for the full-scale

acceleration measurements. The design of the QA650 uses an etched-quartz-flexural

seismic system with integrated electronics that develops an output current propor-

tional to the acceleration input. A user supplied output load resistor, appropriately

scaled for the acceleration range of the application, is required to convert the out-

put current to a voltage, which is discussed in the following section regarding signal

conditioning.

From the specifications listed in Table 3.1, the frequency response and resolution

of the accelerometers satisfies the low frequency and low acceleration requirements.

The use of quartz as the piezoelectric material results in reduced sensitivity com-

pared with other materials, but has superior stability over time and temperature

fluctuations [30]. The stability is an important factor for the long term monitoring

of structures.

The QA650 Accelerometer is a uniaxial transducer. The full-scale experiments

require the measurement of accelerations in orthogonal directions at a single point.

To facilitate the alignment of the accelerometers into orthogonal pairs, each ac-
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celerometer was securely fitted into a precision machined cube of brass. Screw holes

located around the edges of the cubes allowed pairs of accelerometers to be fastened

together in orthogonal directions.

3.3.2 Accelerometer Signal Conditioning

Each accelerometer was connected to an Accelerometer Conditioning Unit (ACU),

model number ASC650V2 [4]. The ASC650V2 ACU is a proprietary design of Wind

Engineering Services, The University of Sydney. Both the design and construction

was conducted at The University of Sydney. The ASC650V2 ACU is specifically

designed for the Honeywell QA650 Accelerometer, and includes a power supply for

the accelerometer, input offset control, amplifier, high pass filter and low pass filter.

The ACU initially converts the accelerometer output current to a voltage using a

load resistor with a fixed value of 1 kΩ. Therefore, the output from each ACU is Sc =

R× Sa, where Sc is the ACU scale factor in V/gn, R is the load resistance in ohms,

and Sa is the accelerometer scale factor in mA/gn. From the Honeywell supplied

accelerometer specification [67], the sensor and conditioning unit combination has

an output of approximately 1.33 V/gn at a gain of one.

Both the high and low pass filters are fourth-order Butterworth types with a char-

acteristic roll-off of 24 dB/octave. At the cut-off frequency the signal is attenuated

by 3 dB. The low pass filter attenuates frequencies above the cut-off frequency, and

the high pass filter attenuates frequencies below the cut-off frequency. Simultaneous

use of the high and low pass filters is possible to create a band pass filter.

3.3.3 Anemometer Specification

Selecting an anemometer for the meteorological observations was governed by two

factors; measurement performance and durability. In the field, anemometers are

exposed to the elements for extended periods. The presence of water, dirt, and the

sun can be detrimental to performance over time. A level of durability is required

that permits sustained operation without the need for regular maintenance. This

becomes increasingly important as the accessibility to the installation point of the

anemometer becomes more difficult. Reduced accessibility is almost inevitable, be-

cause anemometers are often installed atop tall masts or long booms. Ideally, the

anemometer is positioned to measure the free stream wind velocity, hence the need

for masts and booms to locate the anemometer away from the influence zone of sur-

rounding structures or topographic features. The influence zone refers to the region

surrounding an object where the free stream flow is disturbed by the presence of the

object. The influence zone diminishes with increasing distance from the object.

One of the primary operating requirements for the anemometer was maintenance
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Wind Speed
Range: 0–60 m/s
Accuracy: ±0.3 m/s
Starting threshold: 1 m/s
Distance constant: 2.7 m (63% recovery)
Output: AC voltage (3 pulses per revolution)

Wind Direction
Range: 0–355 ◦ electrical (5◦ open)
Accuracy: ±3◦

Starting threshold: 1.1 m/s
Delay distance: 1.3 m (50% recovery)
Damping ratio: 0.25 %
Damped natural wavelength: 7.4 m
Undamped natural wavelength: 7.2 m
Output: Analogue DC voltage

Table 3.2: R.M. Young 05103 Wind Monitor Specification

free operation. This requirement became more important due to difficulties associ-

ated with accessing the anemometer installation point. As a result, the anemometer

selection criteria focused on simple, robust designs with corrosion-resistant construc-

tion.

The selected anemometer, the R.M. Young 05103 Wind Monitor, incorporated a

helicoidal propeller and direction vane, and utilised construction materials suited to

harsh working environments. The wind speed range and accuracy for this anemome-

ter is 0–60 m/s and 0.3 m/s respectively, and the wind direction accuracy is 3◦. The

anemometer was coupled with an R.M. Young 06201 Wind Tracker, which facilitated

the integration of the anemometer with the data acquisition equipment by provid-

ing a voltage output of the wind speed and direction via standard BNC connectors.

The Wind Tracker voltage output for wind speed is 0–5 V for 0–50 m/s, and for wind

direction is 0–5 V for 0–355 ◦. The accuracy of the Wind Tracker was ±0.6 %. The

anemometer was connected to the Wind Tracker using shielded, twisted pair cable

to minimise noise contamination of the signals. Lightning protection equipment

for isolating the anemometer from the instrumentation was not installed. The full

specification for the anemometer is provided in Table 3.2.

3.3.4 GPS Receiver Specification

Two Leica MC500 GPS receivers were used to record displacements. These receivers

are capable of capturing GPS satellite signals on two L-band frequencies: L1 and

L2. Each frequency band incorporates twelve channels, and establishes position

coordinates based on carrier phase, C/A code, and P-code information within the
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signals. The dual frequency and carrier phase detection capabilities are important

aspects of the specification, as they allow a theoretical sub-centimetre accuracy for

position measurement. The scan rate is user selectable up to 10 Hz, and a number

of operating modes are supported, including static, real time kinematic (RTK),

and post processing. The acquired data can be recorded to internal memory, or

automatically transferred to external data storage for long term data acquisition.

Each GPS receiver were connected to a Leica AT504 dual frequency antenna. The

antenna is machined from a solid block of aluminium and incorporates features to

improve the overall accuracy of GPS measurements by mitigating multipath signals.

Firstly, the base of the antenna is designed to prevent low elevation signals from

reaching the antenna sensor. Secondly, the antenna incorporates four concentric

choke rings surrounding the antenna sensor, which trap indirect signals approaching

from above the antenna sensor.

3.3.5 Data Acquisition Equipment

Two types of data acquisition hardware were used during the full-scale measure-

ments. For the vibration testing, an IOTech Daq/216B PC-Card analogue to digital

converter (ADC) installed in a laptop computer was used to digitize and record the

accelerometer signals. The Daq/216B has a 16 bit resolution with a maximum input

range of ±10 V, and a maximum sampling frequency of 125 kHz.

For the monitoring programme, an IOTech DaqBoard/2000
TM

ADC installed in a

desktop computer was used to digitize and record the accelerometer and anemometer

signals. The DaqBoard/2000 has a 16 bit resolution with a maximum input range

of ±10 V, and a maximum sampling frequency of 200 kHz. The IOTech DaqView
TM

software was used to configure and control the ADC equipment.

The smallest change that can be resolved by an ADC, referred to as the least

significant bit, is attained by dividing the input range by the number of output

levels. Both types of ADC used have the same input range and number of output

levels. In this case the input range was 20 V and the number of output levels was

216, resulting in a least significant bit of 0.3 mV/bit. Dividing the least significant

bit by the accelerometer sensitivity gives an accuracy of 0.2µgn/bit, which is less

than the accelerometer resolution of 10µgn and more than adequate for the data

acquisition requirements.

The latency of the data acquisition system was an important consideration when

selecting the equipment. Both the Daq/216B and DaqBoard/2000 allowed simul-

taneous sampling of all analogue input signals, with latencies less than 8µs and

5µs respectively. Furthermore, the digitizing of all accelerometer and anemometer

measurements were conducted on a single ADC.
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3.3.6 Accelerometer Calibration

Static accelerometer calibration was conducted by measuring output voltages for a

specified component of gravity induced by tilting the accelerometer along its axis.

The tilting subjects the accelerometer to an acceleration of gravity multiplied by the

sine of the tilt angle. Accurate measurement of the tilt angle was achieved using a

Sine bar and gauge blocks. A Sine bar consists of a flat bar supported between two

identical cylinders, which are aligned parallel and have a known separation distance

L and a known relation to the reference surface of the bar. In this arrangement, the

bar becomes the hypotenuse of a triangle for angle measurement. The working axis

of the accelerometer was aligned with the longitudinal axis of the Sine bar. After

levelling the accelerometer and setting the output offset to zero, gauge blocks of

various height Hgb were placed under one cylinder to incline the bar at an angle α

such that Hgb = L tanα. The component of gravity applied along the accelerome-

ter axis is then sinα. The accelerometer gain was calculated from the ratio of the

accelerometer output voltage and the acceleration induced by gravity. The output

voltages were measured at several angles to check linearity over the range of ac-

celerations anticipated during full-scale testing. A zero reading was also recorded

at each change in gauge block height. Figure 3.24 shows the results of the static

calibration for a single accelerometer, and includes a least squares linear regression

fit of the data points. The other accelerometers displayed similar calibration results.

The static calibration was conducted at regular intervals to ensure any time related

physical changes in the accelerometers were accounted for. The maximum difference

between calibration results recorded between the start and end of full-scale testing

was 0.8%.

Dynamic accelerometer calibration was determined via a frequency-sweep exper-

iment, which recorded the accelerometer outputs for constant amplitude sinusoidal

motion at varying frequencies. The sinusoidal motion was generated by a crank

shaft attached to a long pendulum that was restricted to movement along a sin-

gle axis. Motion of the crank shaft was controlled by a steel disc driven by an

electric motor. The distance between the centre of the disc and the point of con-

nection between the disc and the crank shaft sets the peak displacement amplitude

x̂p. The number of revolutions of the disc in a specified time interval was recorded

for calculating the natural frequency fn. The acceleration of the system is then

ẍp = −xpω2 cos(ωt), where ω = 2πf . A variable speed gear box was located be-

tween the electric motor and the disc. The gear box allowed adjustment of the

rotational speed of the disc, and subsequently the frequency of the sinusoidal mo-

tion. To allow the observation of the phase between the accelerometer outputs, all

accelerometers were simultaneously calibrated. Prior to commencing the frequency-

sweep testing, each accelerometer axis was aligned to the direction of motion of the
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Figure 3.24: Accelerometer Static Calibration Results

pendulum and levelled. The output offset for each accelerometer was then zeroed

using the ACU. The frequency response of one accelerometer is displayed in Figure

3.25, and all accelerometers had similar frequency response graphs. The magnitude

of the accelerometer response is approximately linear over the range of frequencies

important for full-scale monitoring of tall buildings. Most important is the lack of

any mechanical amplification due to resonance. The maximum absolute deviation

from 0 dB amounts to a ±2% change in the static accelerometer coefficient. Most

of this deviation is likely due to mechanical tolerances inherent to the calibration

apparatus, which will cause motion that is not purely sinusoidal. In addition to

checking the accelerometer output from the dynamic calibration, the cross-power

spectral densities were calculated to determine the phase of the accelerometer out-

puts. The phase deviations for each accelerometer were less than 1%, and therefore

the accelerometers displayed no significant phase differences during the dynamic

calibration.

For both the static and dynamic calibrations, the cables, signal conditioning

equipment, and data acquisition hardware used during full-scale experiments were

also used for the calibrations. This ensured any influence on the accelerometer out-

puts from these components were included in the calibration coefficients. In addition,

the data collected during the calibration allowed the estimation of the noise floor

for the entire acceleration measurement system. A sample of the static accelerome-

ter data was used to generate histograms of the noise fluctuations about the mean

values. The histograms closely matched a Gaussian distribution, with a standard

deviation of approximately 0.077 mgn. This level of noise was also confirmed once
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Figure 3.25: Accelerometer Dynamic Calibration Results

the equipment was installed at Latitude tower, using a similar analysis of data col-

lected during calm wind conditions. This confirmation is important to ensure local

noise influences at the point of installation are not adversely affecting the recorded

data. The measured noise floor implies that recording a measurement as low as one

standard deviation (68.2%) results in a 31.8% chance of what was measured is noise.

Measurements as low as two and three standard deviations results in a 4.6% and

0.4% chance of what was measured is noise, respectively.

3.3.7 Anemometer Calibration

The anemometer was calibrated in a wind tunnel to confirm the wind speed specifi-

cations. The anemometer, along with the Wind Tracker and cabling used during the

monitoring programme, were setup in The University of Sydney, School of Civil En-

gineering Thunderstorm Wind Tunnel. A Pitot static tube measured the wind speed

while the anemometer was subjected to increasing wind speeds from approximately

5 m/s to 16 m/s.

Once installed, the anemometer was continuously exposed to harsh weather con-

ditions that could damage internal and external components. Potential sensor dam-

age includes increased bearing friction from dust ingress and corrosion. Regular

checks of the anemometer output data was conducted to detect any changes in

sensor characteristics.
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3.4 Vibration Tests

At various stages in the construction cycle of the structure, the acceleration response

to ambient loading was recorded. Considering the strengths and weaknesses of both

ambient and forced vibration testing discussed in Section 2.4, the vibration testing

programme used a combination of each method. Ambient vibration data was col-

lected at every opportunity, and when possible the data sets were augmented by

the collection of forced vibration data. During the early stages of construction, the

size of the tower was such that forced excitation was possible using a small group of

people — four in total — pushing in unison against a common wall. As construction

progressed, the tower’s increasing mass became a restriction to forced excitation us-

ing synchronised human movement with a small group, and site access limitations

restricted an increase in group size. The next preferred excitation method was a

form of forced loading using one of the two cranes attached to the structure dur-

ing construction, but site specific limitations excluded this method. Consequently,

forced vibration data was only collected during the early stages of construction.

At the completion of the main structure, forced vibration tests were conducted

using a mechanical shaker loaned from the CLP Power Wind/Wave Tunnel Facility

at The Hong Kong University of Science and Technology. The force imparted by

the mechanical shaker on the structure can be determined, with a varying degree of

accuracy, and therefore a more traditional modal analysis of the structure is permis-

sible. This assumes the mechanical shaker is the only input source. As mentioned

previously, the ambient input forces are assumed to be minimised and therefore

have negligible influence on the vibration outputs. Further details regarding the

forced vibration testing of the structure conducted after completion of construction

is presented in Section 3.4.4.

3.4.1 Accelerometer Installation

The dynamic characteristics of the first two modes of vibration for each of the or-

thogonal translations and the torsional modes were the minimum required outputs

from the vibration testing. The first three modes of vibration for a tall building, with

minimal eccentricity between mass and stiffness centres, typically include translation

in the major and minor axes and one torsional mode. Measuring the accelerations

at any level of the structure could yield such information. However, all accelera-

tion measurements were conducted at the highest accessible level of the building to

capture the largest acceleration amplitudes possible, consequently maximising the

quality of the recorded signals.

The extraction of natural frequencies alone from ambient vibration data of a

rigid body requires a single measurement of any kinematic property, provided the
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Figure 3.26: Vibration test accelerometer locations and axes.

measuring sensor is not located at a vibration node. To resolve the translations and

rotations of a rigid body undergoing two dimensional plane motion a minimum of

three appropriately placed sensors are required. Each level of the test structure can

be considered to experience two dimensional plane motion.

For the vibration tests, one pair of orthogonally aligned accelerometers was po-

sitioned near the centre of the floor plan and aligned to the x and y axes of the

building. A third accelerometer was positioned at the extremity of the floor plan

and aligned to the y-axis. In practice, locating the accelerometers was dictated by

the construction activity at the time of testing, and placement variations occurred

between consecutive tests. Figure 3.26 displays the nominal accelerometer place-

ments at points 1 and 2 with reference to the nominated origin and the defined axis

directions.

Due to the ongoing construction and constant changing of the structure, the

accelerometer pair could not be permanently attached. Instead, the accelerometer

pair was securely connected to a steel disc, with a diameter of 120 mm and 25 mm

thickness. The combined mass of the steel disc and accelerometers was approxi-

mately 2.9 kg. Three levelling screws evenly distributed around the circumference of

the disc allowed horizontal alignment of the accelerometers, with the aid of a bulls-

eye bubble level. This mounting configuration facilitated installation and removal,

whilst preserving the useful frequency range of the accelerometers, particularly at
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the lower frequencies.

3.4.2 Accelerometer Setup

At the accelerometer signal conditioning stage, a gain of 900 was applied to the

accelerometer signals to maximise the ±10 V input range of the ADC and therefore

minimise quantization errors [5]. Also prior to digitization, the accelerometer sig-

nals were filtered using an analogue low-pass fourth order Butterworth filter with

a 20 Hz cut-off frequency, which is significantly greater than the frequency range of

interest and avoided any filter roll-off effects. The resulting signal was sampled at

80 Hz. According to sampling theory, a significantly reduced sampling rate would

be required to capture the acceleration signals. The larger sampling rates were used

to enable the application of time domain data analysis techniques.

3.4.3 Test Schedule

The construction progress governed the vibration test schedule of the structure.

A consecutive test was only performed once significant structural changes had oc-

curred, for example the addition of a core level. Regular communication with design

engineers and site foremen ensured significant structural changes were documented.

A total of seventeen vibration tests were conducted between 27th May 2003 and

22nd December 2004.

Figure 3.27 displays the progress of the structure at the time of conducting the

vibration tests. The dates of all eighteen vibration tests are listed on the left hand

side of the figure. The lines link the vibration test date to the progress of the core,

floor plates, and facade. These three elements of the structure were considered to

have the most influence on the mass and stiffness of the structure. Note that the

floor plates between levels 11 to 15 were demolished and re-built according to revised

alignments. This was conducted while the upper levels were being built, which is

reflected in the dates listed for the demolition and re-building of these lower levels.

The construction progress at the vibration test dates is also listed in Table 3.3.

The table includes the reduced levels (RL) of the core, steel, and floor plates. Note

that the steel components lead the floor plates by approximately two levels. The

base of the tower is located at RL −13.050 m.

Three cranes were used during the construction of the tower: located at the core,

the eastern facade in the south-east corner, and the western facade in the north-west

corner. The core crane was supported by the core walls, while the cranes located at

the facades were supported at ground level. The core crane was removed between

the vibration test dates 2004-03-01 and 2004-06-07. The western facade crane was

removed between the test dates 2004-06-07 and 2004-08-06. The eastern facade
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Date
Core
Level

Core
RL (m)

Steel
Level

Steel
RL (m)

Floor
Level

Floor
RL (m)

2003-05-27 24 65.915 20 54.620 18 47.090

2003-06-17 26 77.210 22 62.150 20 54.620

2003-07-08 27 80.975 23 65.915 22 62.150

2003-08-01 32 99.800 24 89.680 23 65.915

2003-08-07 33 103.585 25 73.445 24 89.680

2003-08-27 35 111.975 29 88.505 27 80.975

2003-09-12 36 116.115 32 99.800 30 92.270

2003-09-30 37 119.880 34 107.575 31 96.035

2003-10-10 37 119.880 34 107.575 32 99.800

2003-10-27 40 131.175 35 111.975 34 107.575

2003-11-17 44 146.235 38 123.645 37 119.880

2003-12-17 46 153.765 41 134.940 38 123.645

2004-02-12 53 180.925 47 157.530 45 150.000

2004-03-01 54 184.990 50 168.825 48 161.295

2004-06-07 55 190.320 55 190.320 55 190.320

2004-08-06 55 190.320 55 190.320 55 190.320

2004-12-22 55 190.320 55 190.320 55 190.320

Table 3.3: Schedule of vibration tests at Latitude tower showing reduced levels (RL)
of the core, steelwork, and floors — base of tower at RL −13.050 m.

crane was removed prior to the final vibration test on 2004-12-22.

3.4.4 Mode Shape Testing

To conduct the mode shape testing, an array of twelve accelerometers distributed

throughout the completed structure were used to record accelerations induced by

a mechanical shaker. Most levels at the time of testing were secured for the new

tenants, which limited access to the floors that permitted general access for the facil-

ities management staff — namely the basement, ground level lobby areas, and plant

rooms located on levels 16, 34 and 52. The plant room levels correspond to approx-

imately quarter, half, and full height of the structure, and provide three suitably

spaced locations at which to place accelerometers for determining the fundamental

modes of vibration. Accelerations were also recorded at level 10, which corresponds

to ground level.

Three accelerometers were positioned at each of the four test levels. Two or-

thogonally mounted accelerometers were placed near the centre of the core, and

aligned to the x and y axes of the building. A third accelerometer was positioned at

the western facade and measured the y-axis acceleration component to resolve the
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Figure 3.27: Schedule of vibration tests at Latitude tower showing completed core,
floor plate, and facade levels at time of testing.
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torsional components of the acceleration response. The specification, signal condi-

tioning, data acquisition, and calibration of the accelerometers was identical to the

description in Section 3.3.

All twelve accelerometers were connected via four computers and an ethernet

network. This allowed simultaneous measurement of accelerations at all four levels.

Each test level operated as a separate unit, with a single computer recording the

output from the three accelerometers positioned on the respective test level. An

ethernet network joined the four computers and enabled simultaneous triggering of

the data acquisition systems, which ensured synchronisation of the four separately

sampled data sets.

A mechanical shaker with a payload of approximately 1000 kg was used to excite

the building. The electronically controlled shaker generated the excitation force by

moving a mass along a linear axis in a sinusoidal manner. A ball-screw mechanism

smoothly moved the mass at a specified rate and allowed instantaneous stopping

of the mass for accurate damping detection. To minimise other sources of loading

on the structure, particularly wind loading, the testing was conducted during calm

wind conditions.

3.5 Monitoring Programme

A full-scale monitoring programme commenced shortly after construction of the

structure was completed. Small scale construction activities were still in progress,

for example the internal fit-out within plant rooms and office areas, however the

structural system and cladding were completed before commencing the monitoring

programme. Hence, unlike the vibration testing, results from the monitoring pro-

gramme are not significantly influenced by changes in structural parameters, such

as mass, stiffness, and damping, that occur from construction activity.

Starting in April 2005, the monitoring programme continuously recorded the

wind-induced response of the structure for approximately two years. The recorded

data included accelerations, displacements, and wind velocity. The instrumenta-

tion system, summarised in Figure 3.28, includes four accelerometers to monitor the

translational and torsional responses. Tip displacements of the structure and the

approaching wind velocity were monitored by a GPS receiver and anemometer re-

spectively. The data acquisition system was configured to automatically record data

according to a wind speed threshold criteria, which avoided the recording of data

during periods of insignificant structural response. The following sections provide

more detail regarding the monitoring system components and configuration.
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Figure 3.28: Schematic of the monitoring system equipment and setup.
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3.5.1 Accelerometer Setup

Two pairs of orthogonally mounted accelerometers were installed in the plant room

located at the top of the structure. The specification and calibration of the ac-

celeromters are discussed in Section 3.3. Each pair of accelerometers were installed

at opposite sides of the structure, one pair at the eastern facade and another at

the western facade, and aligned to the x and y axes of the building. This spatial

arrangement enabled the recording of both translational and rotational responses.

The points labelled 1 and 2 in Figure 3.29 display the locations of the accelerometers

in relation to the floor plan. Due to the longevity of the monitoring programme, a

robust accelerometer mounting system was required. Each accelerometer pair was

securely bolted to the bottom flange of the level 54 spandrel beams. A tribrach

permanently fitted between the flange attachment and the accelerometer pair was

used for levelling, with the aid of a bulls-eye bubble level. The alignment of each

accelerometer pair was confirmed using a laser to site the orientations.

The accelerometer configuration used for the monitoring programme includes

one redundant sensor. In theory only three appropriately positioned accelerometers

are required to measure two dimensional plane motion of a rigid body. Including

an extra accelerometer offers a contingency in the event a sensor fails. Given the

potential time length required to measure responses from peak wind events, this

contingency, and indeed any other contingencies, is a valuable attribute. The ac-

celerometer arrangement could have been improved by increasing the perpendicular

distance between the accelerometers aligned to the x-axis. However, this could not

be achieved due to restricted access areas within the plant room. Considering the

possible accelerometer installation points within the level 52 plant room, those dis-

played in Figure 3.29 represented the optimum allowable configuration.

Results of the vibration tests presented in Table 4.1 indicated the frequency

values of the first three modes of vibration for the completed structure were below

0.5 Hz, and the first six modes were below 2 Hz. For most tall buildings the first three

modes of vibration encompass approximately 90% of the response energy [47]. This

is due to the nature of the spectrum of wind forces, which generally contain most

energy in the frequency bands below 1 Hz. Therefore, for the monitoring programme

the accelerometer signals were low pass filtered at a 5 Hz cut-off frequency, which is

significantly greater than the frequency range of interest and avoided any filter roll-

off effects. To improve the sensitivity, the acceleration signals were amplified by a

gain of 700 in order to utilise the ±10 V range of the ADC. The accelerometers were

connected to the signal conditioners using shielded, twisted pair cable to minimise

noise contamination of the signals. Existing cable trays and ducting was used to

route the accelerometer cables through the level 52 plant room to the signal condi-

tioners and data logging equipment. The cable lengths, and therefore signal noise,
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Anemometer

Figure 3.29: Monitoring programme sensor locations and axes.

was minimised by locating the data acquisition equipment approximately midway

between the two accelerometer installation points.

3.5.2 Anemometer Setup

Measurement of the local wind velocity was via a propeller-vane anemometer located

above the south-west corner of the roof. The anemometer location is displayed in

Figure 3.29, and the specification and calibration are discussed in Section 3.3. The

installation required a mast to elevate the anemometer above the roof cladding and

cooling towers, thus reducing undesirable influences on the free stream wind velocity.

Locating the anemometer in the south-west corner was suitable for measuring wind

velocities originating from 90◦ to 330◦, although outside this range reliable data was

unattainable due to severe turbulence from wind-structure interaction. Installation

restrictions imposed by the building owners precluded extending the anemometer

mast height, or installing a second anemometer at the eastern extremity of the roof

area.

Installation of the anemometer utilised a three metre cylindrical mast attached

to the cladding support structure via two steel brackets. The mast protruded ap-

proximately 1.5 m above the roof cladding structure, and the final height of the

anemometer above the level 55 roof was approximately 12 m, which corresponds to

a height of approximately 190 m above street level. Figure 3.30 displays the location

of the mast and anemometer in the south-west corner of the Latitude tower roof.

Despite elevating the mast above the cladding support structure, the anemometer
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Figure 3.30: Anemometer installation location in the south-west corner of the Lati-
tude tower roof.

location remained within the structures influence zone rather than in the free stream

flow; this was confirmed and accounted for by wind tunnel tests, which are described

in Section 6.2. The horizontal alignment of the anemometer was according to the

building orthogonal axes.

3.5.3 GPS Receiver Setup

The two GPS receivers were configured in a reference and rover arrangement to

allow Differential GPS (DGPS), paired with differential phase positioning, to min-

imise atmospheric errors [102]. The reference antenna was located at the Electrical

Engineering Department at The University of New South Wales (UNSW), which is

located approximately 4.9 km south-east of Latitude tower. The reference antenna
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Figure 3.31: Rover GPS antenna installation location in the North-West corner of
the Latitude tower roof.

installation was atop a small building and assumed to be relatively static under ser-

viceability wind events. The measurements recorded by the reference receiver were

used to correct the rover measurements for atmospheric errors.

The rover antenna was located in the north-west corner of the Latitude tower

roof. The installation location of the rover antenna, point 3 in Figure 3.29, was

chosen to minimise multipath errors, and to maximise the number of viewable satel-

lites. However, due to the proximity of neighbouring structures and the presence

of structural and architectural steelwork near the antenna, it was not possible to

completely mitigate the multipath errors from the recorded measurements. The ref-

erence antenna was mounted atop a steel pedestal, which was firmly secured to the

base of the roof-top balustrade using three guy-wires with turn buckles. Figure 3.31

displays the rover GPS antenna installation in the north-west corner of the Latitude

roof.

Both the reference and rover GPS receivers continuously streamed observation

data at 10 Hz to dedicated computers using Leica GPS control software. Analysis

of the GPS observations used a post-processing work flow, as opposed to real-time,

where the displacements are calculated after acquiring the data.
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3.5.4 Data Acquisition and Control System

The monitoring programme included three types of sensors that required integra-

tion into a single, synchronised system. To facilitate this integration, two separate

systems were used to record the data from the sensors. The acceleration and wind

velocity measurements comprised one acquisition system, while the GPS displace-

ment measurements formed another separate acquisition system, Figure 3.28. To

reduce the time and effort required to develop and implement the monitoring pro-

gramme control system and data acquisition, it was decided to use proprietary soft-

ware developed by the manufacturers chosen to supply the system components —

specifically IOTech Inc. and Leica Geosystems AG, supplying the ADC and GPS

receivers, respectively.

The accelerometer and anemometer output signals were digitized using an IOTech

DaqBoard/2000
TM

16 bit ADC and recorded to the internal hard drive of a desk-

top computer. The supplied IOTech DaqView
TM

software was configured to record

data according to a wind speed threshold of 5 m s−1 or greater, which avoided the

unnecessary acquisition of data during periods of insignificant building response.

Each trigger event was recorded for 15 minutes, with two minutes pre-trigger scan

included. The accelerometer signals had a bandwidth of 5 Hz, and according to

sampling theory [5] would require a sampling rate of at least twice the signal band-

width for accurate reconstruction. Both the anemometer and acceleration data were

recorded at 20 Hz.

Unlike the accelerometer and anemometer data acquisition, all GPS data was

continuously recorded regardless of the wind conditions or building response. Dis-

placement data collected during calm wind conditions can be used to improve the

estimation of the mean or centre point of the displacements as well as allowing a

more detailed analysis of the influence of multipath and temperature effects on the

displacement results. Multipath effects relate to the reception of GPS signals that

have travelled indirectly from the GPS satellite to a GPS antenna, which causes

significant errors in recorded positions. The temperature effects relate to the dif-

ferential heating of a structure during the day, which also influences displacement

results.

A notebook computer with Leica GPS Spider software was used to store the

acquired data and control the GPS receiver. The Leica MC500 GPS receivers al-

lowed a maximum sampling rate of 10 Hz, and the next user selectable scan rate

was 1 Hz. The third mode frequency of vibration for the test structure was ap-

proximately 0.44 Hz, which according to sampling theorem requires a sampling rate

greater than 0.88 Hz — at least twice the highest frequency in the signal. [125]

indicate that 2.5 samples per cycle is more appropriate, resulting in a sampling fre-

quency above 1 Hz. The GPS receivers main function was to record the background
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and quasi-static response of the structure and in this capacity a 1 Hz sampling rate

is sufficient. However, recording at higher sampling rates allows useful comparisons

and checks between the displacement and acceleration data, in addition to combin-

ing the separate data sources to improve estimates of the wind-induced response of

the structure. For these reasons, the GPS receiver data were sampled at 10 Hz.

Dividing the monitoring system components into two separate systems required

a synchronisation mechanism for the acquisition of data. Acceleration and wind

velocity measurements were recorded via one analogue to digital converter and were

therefore synchronised, however the GPS receiver data was recorded separately. To

synchronise the GPS data a second handheld GPS receiver was used to synchronise

the clock of the computer used to log the acceleration and wind velocity data. Using

Network Time Protocol (NTP) software [137] installed on the data logging computer,

the software was configured to poll the serial port for incoming NMEA messages [43]

from the handheld GPS receiver, and extract the appropriate segment related to time

and update the internal clock. The handheld GPS receiver sent NMEA messages

every second, and the computer updated the internal clock every ten seconds. This

ensured the computer clock was regularly synchronised to GPS time, and therefore

synchronised with the GPS receiver data. Each record containing acceleration and

wind velocity data was time-stamped with the trigger time to provide a means to

match with the GPS receiver data.

The continuous nature of the monitoring programme is arguably the most cru-

cial aspect. The programme schedule only allowed two years for monitoring the

structure, and ensuring the recording of all significant wind events was paramount.

Should equipment or control systems fail during a significant wind event, the chances

of a repeated event would be unlikely, given the relatively short monitoring period.

A number of strategies were implemented to ensure the monitoring system operated

continuously and mostly without constant human interaction. Firstly, an uninter-

rupted power supply was installed and used to power all equipment associated with

the monitoring system. Secondly, all equipment was configured to reboot and restart

logging in the event of a power failure. And finally, regular site visits were conducted

to check equipment and manually download recorded data.

3.6 Summary

This chapter has described the full-scale experiments conducted on a 46 storey office

tower located in the Sydney CBD. The experiments included two phases. Firstly, a

periodic vibration testing period during the construction of the building to record

horizontal accelerations of the building. These measurements are used to determine

the natural frequencies, damping ratios, and mode shapes of the building. The
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techniques used to estimate these values are discussed in the following chapter. The

second phase involved a two year monitoring period to measure the building’s tip

accelerations, tip displacements, and the approaching wind velocity.

The excitations measured were from a number of sources, including ambient

vibrations during and after construction, synchronised human movement during

construction, and excitation from a mechanical shaker at the end of construction.

In the test cases where human movement and the mechanical shaker was used, the

testing times were selected to minimise, as best as possible, the ambient vibrations

from wind and construction activities.

The full-scale testing phases highlighted the difficulties in gaining access to a

test structure and attaining ideal conditions in which to conduct testing. This was

particularly evident during the construction phase, where the pace of construction

takes precedent over all other activities.



Chapter 4

Vibration Models and System

Identification

4.1 Introduction

This chapter presents the theory of models of vibrating structures, and the system

identification techniques used to analyse the data obtained from full-scale vibration

measurements described in Section 3.4. The main purpose for describing the models

and techniques is to introduce the theory and nomenclature, to highlight the as-

sumptions of the chosen models and techniques, and to provide detailed examples

that support the results discussed in Chapter 5.

Finite element models of undamped vibrating structures are initially introduced.

Such models and the techniques used to solve them form the foundation of modal

analysis of discrete models to determine the dynamic characteristics. The damped

finite element model is subsequently introduced, with the proportional damping and

general viscous damping cases being discussed. These models form the basis upon

which the system identification techniques are developed.

Three system identification techniques are described: a frequency domain tech-

nique, and two time domain techniques. The frequency domain system identifica-

tion technique is an extension of the peak picking technique [6, 53] and is known as

Frequency Domain Decomposition (FDD) [14]. The first time domain system identi-

fication technique is based on a stochastic state space model of a vibrating structure

and is known as Stochastic Subspace Identification (SSI) [127]. The second time

domain technique described is known as the Random Decrement (RD) technique,

and is based on the concept of ensemble averaging segments of a response time his-

tory based on a defined trigger condition. All three system identification techniques

utilise operational modal analysis, which uses unmeasured ambient excitations dur-

ing operational conditions as the input source.

The reasons for using multiple system identification techniques in the data analy-

88
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sis is to enable comparisons between the results, because each technique has deficien-

cies, as well as allowing more rigorous investigations into the estimation of damping

values. FDD and SSI are used due to their theoretical ability to estimate damp-

ing ratios using limited data, compared with the Random Decrement (RD) which

generally requires large amounts of data to determine reliable damping estimates.

Furthermore, the RD technique was used with the monitoring data to determine the

amplitude dependence of natural frequency and damping ratio.

4.2 Finite Element Vibration Models

Consider the simplified model of a high-rise structure displayed in Figure 4.1 (a).

The masses mi are an approximation for the mass of each floor in a high-rise struc-

ture, and the walls and columns that typically span between levels are represented

by vertical stick elements. For horizontal motion in the x direction, the walls and

columns connecting the masses have an intrinsic stiffness ki and act as springs that

resist motion away from static equilibrium. The spring stiffness is dependent upon

the elastic modulus, the second moment of area, and length of the individual wall

and column elements. Energy dissipation is modelled via linear viscous damping

elements that generate a force proportional to the velocity, and the constant of pro-

portionality is the damping coefficient ci. In Figure 4.1 (a), the horizontal elements

are assumed to be axially rigid, and the rotations and vertical deflections at the top

of the elements spanning between the masses are assumed to be zero. In essence,

this simplified model represents an undamped multi-degree of freedom system with

n masses connected by n springs.

The equations of motion for the system in Figure 4.1(a) can be formed by apply-

ing Newton’s second law to each mass individually. To simplify the introduction of

this concept, only two degrees-of-freedom will be considered, and therefore n = 2.

Using the free body diagram displayed in Figure 4.1(b) and summing the dynamic

forces on each mass in the horizontal direction, the equations for dynamic equilib-

rium are;

−c1ẋ1(t)− k1x1(t) + c2(ẋ2(t)− ẋ1(t)) + k2(x2(t)− x1(t)) + f1(t) = m1ẍ1(t)

−c2(ẋ2(t)− ẋ1(t))− k2(x2(t)− x1(t)) + f2(t) = m2ẍ2(t)

These equations can be rearranged to;

m1ẍ1(t) + (c1 + c2)ẋ1(t)− c2ẋ2(t) + (k1 + k2)x1(t)− k2x2(t) = f1(t) (4.1)

m2ẍ2(t)− c2ẋ1(t) + c2ẋ2(t)− k2x1(t) + k2x2(t) = f2(t) (4.2)

Equations (4.1) and (4.2) represent two second-order linear differential equations
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Figure 4.1: Damped horizontal vibration model of a multi-storey building with
lumped masses and n degrees of freedom.

that are dependent, because both equations contain the terms x1(t) and x2(t). In

other words, the motion x1(t) of m1 is influenced by the motion x2(t) of m2 and vice

versa. In this case Equations (4.1) and (4.2) are coupled via the stiffness attributes

k1 and k2, as well as the damping attributes c1 and c2.

Equations (4.1) and (4.2) can be expressed in matrix notation as;


m1 0

0 m2




ẍ1(t)
ẍ2(t)


+


c1 + c2 −c2
−c2 c2




ẋ1(t)
ẋ2(t)


+


k1 + k2 −k2
−k2 k2




x1(t)
x2(t)


 =


f1(t)
f2(t)




(4.3)

or further condensed to;

Mẍ(t) +Cẋ(t) +Kx(t) = f(t) (4.4)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix,

x(t) is the displacement vector, ẋ(t) is the velocity vector, ẍ(t) is the acceleration

vector, and f(t) is the force vector.

The displacement coordinates x1, x2, . . . , xn are not the only set of coordinates

that can be employed to describe the system in Figure 4.1. Any dynamic system can
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be completely described using more than one set of independent spatial coordinates,

each of which is referred to as a set of generalized coordinates. The selection of the

generalized coordinates is arbitrary and often governed by convenience. Generally,

the displacement from the static equilibrium positions of masses and the rotations

about the mass centres are often used for coordinates. Let qi(t) ∈ Rn denote the set

of generalized coordinates selected to describe the system. For the case in Figure

4.1, the generalized coordinates can be taken as q1 = x1, q2 = x2, . . . , qn = xn.

Another example is the motion of a rigid floor plate within a tall building, which

can be completely described by two orthogonal translations in the horizontal plane

and a single rotation about a vertical axis. In this case the generalised coordinates

are q1 = x1, q2 = y1, and q3 = θ1.

The values of each element in the mass matrix, damping matrix, stiffness matrix,

and force vector are dependent upon the generalized coordinates used to describe

the system. Despite this fact, the inherent dynamic properties of the system are

independent of the generalized coordinates. Applying the generalized coordinate

notation introduced earlier to Equation (4.3), the generalized equations of motion

for a two degree of freedom system are;


m11 m12

m21 m22




q̈1(t)
q̈2(t)


+


c11 c12

c21 c22




q̇1(t)
q̇2(t)


+


k11 k12

k21 k22




q1(t)
q2(t)


 =


p1(t)
p2(t)


 (4.5)

which can be condensed to;

Mq̈(t) +Cq̇(t) +Kq(t) = p(t) = Pu(t) (4.6)

The mass matrix, damping matrix, stiffness matrix, and force vector, denoted by

p(t), are now associated with the generalized coordinates. The force vector is fac-

torised into a matrix P ∈ Rn×r that specifies the spatial position of the inputs, and

a vector u(t) ∈ Rr×1 that describes the inputs in time. The matrix P is the input

influence matrix and accounts for the situation in which not all degrees of freedom

have an associated input. This is often the case for finite element models, which

generally have significantly more degrees of freedom than the number of measured

points in a full-scale vibration test.

In addition to the presence of the generalized coordinates, Equation (4.5) further

generalizes the description of the system by representing each element within the

mass matrix, damping matrix, and stiffness matrix with a generic element identifier

instead of the actual value attained from summing the dynamic forces in Figure 4.1

(b). The two subscripts refer to the position within the matrix, for example m11 is

the first row and first column of the mass matrix, and k21 is the second row and

first column of the stiffness matrix. This extends the applicability of Equation (4.6)
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to describe the motion of a system with n degrees of freedom, which would imply

M ∈ Rn×n, C ∈ Rn×n, K ∈ Rn×n, p(t) ∈ Rn×1, and q(t) ∈ Rn×1. Therefore,

Equation (4.6) is also the general form of the equations of motion describing an n

degree of freedom system.

For distributed parameter systems like large civil engineering structures, Equa-

tion (4.6) represents a finite element (FE) model of the system, with n degrees of

freedom. The mass and stiffness matrices are generated from the geometry and

material properties of the system. The inclusion of viscous damping allows the ob-

served decaying vibrations of actual structures to be modelled. The general viscous

damping assumption does not accurately model the actual damping mechanisms.

Damping within a structure originates from numerous mechanisms, and the general

viscous damping approach combines all the damping mechanisms into one mathe-

matically convenient structural damping parameter. The complex nature of damp-

ing mechanisms within a structure precludes the formation of the damping matrix

in the manner used for the mass and stiffness matrices.

4.2.1 Undamped Free Vibration

The solution of Equation (4.6) is presented for the case where damping is removed

from the system. By assuming free vibration of the system, the force vector p(t)

equals zero, resulting in the homogeneous form of the undamped vibration model,

Mq̈(t) +Kq(t) = 0 (4.7)

The properties of Equation (4.8) make it a suitable candidate for particular solutions

to the homogeneous differential equations;

qi(t) = φie
jωit (4.8)

where φi is a vector of constants, ωi is a constant, and j =
√
−1. Note that the scalar

ejωit represents harmonic motion, since via Euler’s formula ejωt = cosωt + j sinωt.

Substituting Equation (4.8), and its second derivative, into Equation (4.7) and re-

arranging yields

(−ωi2M +K)φie
jωit = 0 (4.9)

Since ejωit 6= 0 for all values of t, φi and ωi must satisfy the equation

(−ωi2M +K)φi = 0 (4.10)

or alternatively

Kφi = λiMφi (4.11)
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where λi = ωi
2. Equation (4.11) represents a generalised eigenvalue problem [74],

where λi ∈ Rn are the eigenvalues and φi ∈ Rn (i = 1, . . . , n) are the eigenvec-

tors. All n generalised eigenvalue problems can be condensed into a single matrix

expression;

KΦ = MΦΩ2 (4.12)

where Φ ∈ Rn×n contains the eigenvectors in columns and Ω =
[
�ωi�

]
∈ Rn×n

contains the square root of the eigenvalues, or more commonly termed the system

natural frequencies, with units of radians per second. The eigenvectors are also

known as the modal vectors and physically represent the natural modes of the sys-

tem. In the context of structural vibration, the modal vectors are also termed the

mode shapes, because they visually represent the deformed shape of the vibrating

structure. The group of eigenvectors is also referred to as the modal matrix. The

modal matrix acts as a transformation from the generalised coordinates to another

set of coordinates, known as the principal coordinates, which uncouples the equa-

tions of motion by simultaneously creating diagonal M and K matrices, leading to

a system of independent equations of motion. Therefore, the following orthogonality

conditions can be proven;

ΦTMΦ =
[�mi�

]
, ΦTKΦ =

[�ki�
]

(4.13)

The modal vectors are unique via the ratios between any two elements, but the

values of each element are arbitrary. This property of the modal vectors occurs

because Equation (4.7) is homogeneous, meaning any constant times the modal

matrix is a solution of the equation. Therefore, the shape of the modal vectors are

unique, but the amplitudes are not. For convenience, a normalisation process can

be applied to the elements of the modal vectors to establish a unique amplitude,

and the resulting vectors are termed normal modes. A mass normalisation scheme

is a common choice, where Equation (4.13) becomes;

ΦTMΦ = I , ΦTKΦ = Ω2 (4.14)

where I is the identity matrix with dimensions n×n. Another useful normalisation

scheme consists of dividing each element of the modal vector by the maximum value,

which is a convenient option when plotting the modal vectors.

Substituting Equation (4.13) into Equation (4.12) yields the following funda-

mental relationship;

ωi
2 =

ki
mi

(4.15)

The preceding method of solving the equations of motion is known as modal analysis.

All mechanical systems have some form of energy dissipation in the form of damping
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forces.

With the inclusion of damping into the system described by Equation (4.6), the

modal analysis method used to solve the undamped free response case is not capable

of uncoupling the equations of motion unless the damping matrix is assumed to be

proportional to the mass and stiffness matrices. Proportional damping implies that

the modal vectors φi also diagonalise the damping matrix, in addition to the mass

and stiffness matrices. This results in decoupled equations that can be solved by

the modal analysis method. If the assumption of proportional damping is invalid for

the modelled system, an alternative solution option is to transform the equations

of motion to equivalent first order equations and apply a state space method. In

addition, the experimental determination of damping often requires general viscous

damping models. The proportional damping case and the general viscous damping

case are discussed in the following sections.

4.2.2 Damped Response with Proportional Damping

By introducing the coordinate transform q(t) = Φη(t) and multiplying by ΦT , the

system model in Equation (4.6) becomes,

ΦTMΦη̈(t) + ΦTCΦη̇(t) + ΦTKΦη(t) = ΦTp(t) (4.16)

where the vector η(t) ∈ Rn×n is the normal coordinates of the system, which are the

normalised principal coordinates as described in Section 4.2.1. With the assumption

of proportional damping, the eigenvectors are also diagonalising the damping matrix;

ΦTCΦ =
[�ci�

]
=
[�2ζiωimi�

]
= Γ

[�mi�
]

(4.17)

The second equality of Equation (4.17) follows from the definition of the modal

damping ratios; ζi = ci/ccr = ci/2miωi, where ccr is the critical damping coefficient.

The third equality defines Γ =
[
�2ζiωi�

]
. Substituting Equations (4.13) and (4.17)

into (4.16), the equations of motion are decoupled;

Iη̈(t) + Γη̇(t) + Ω2η(t) =
[�mi

−1
�
]
ΦTp(t) (4.18)

As for the undamped case, the solution for the homogeneous proportional damping

case has the form qi(t) = φie
jωit. The resulting eigenvectors are the same as for the

undamped case, and from Equation (4.18), the eigenvalues are determined from the

following characteristic equation,

λi
2 + 2ζiωiλi + ωi

2 = 0 (4.19)
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which can be solved via the quadratic equation to yield the following complex con-

jugate pairs as solutions,

λi, λi
∗ = −ζiωi ± ωi

√
1− ζi2j (4.20)

where the superscript ‘∗’ denotes complex conjugate. Including damping descrip-

tions in finite element models can be achieved by specifying individual modal damp-

ing ratios ζi for each mode of vibration within the range of interest. These modal

damping ratios can be sourced from experimental data from full-scale structures,

which is the approach taken by design codes that list damping ratios for varying

structure types.

One form of proportional damping involves the formation of the damping matrix

via a linear combination of the mass and stiffness matrices;

C = α0M + α1K (4.21)

where α0 and α1 are constants. This type of proportional damping is known as

Rayleigh damping [133], and it assumes the damping distribution over the structure

matches the distribution of the mass and stiffness. Equating the orthogonality

criteria in Equation (4.17) with the Rayleigh damping criteria in Equation (4.21),

the damping ratios in the proportional damping case are given by;

2ζ iωi = α0 + α1ωi
2 (4.22)

which simplifies to

ζ i =
1

2

(
α0

ωi
+ α1ωi

)
(4.23)

The constants α0 and α1 can be determined by using damping ratio values at two

frequencies and solving two simultaneous equations based on the relationship in

Equation (4.23), which yields;

α0 =
2ω1ω2(ζ2ω1 − ζ1ω2)

ω1
2 − ω2

2
α1 =

2(ζ2ω1 − ζ1ω2)

ω1
2 − ω2

2
(4.24)

The frequencies are chosen such that they cover the upper and lower bounds of

frequencies of interest in the design.

Rayleigh damping tends to underestimate the damping between the frequency

range of interest, and overestimate the damping outside the range [28]. Therefore,

to minimise errors when using the Rayleigh damping method, the chosen frequencies

should be as close as possible to the upper and lower limits of the frequency range

of interest. Alternatively, more rigorous methods of determining the proportional

damping matrix that mitigate the limitation of the Rayleigh damping method are
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available, such as Caughey damping [25] and Penzien-Wilson damping [185].

Despite having no physical justification for its application, proportional damp-

ing is a reasonable approximation for cases with low levels of damping, such as

those typically encountered on large civil engineering structures. Considering the

difficulties associated with estimating the true structural damping mechanisms, the

proportional damping assumption is considered sufficient for finite element models.

4.2.3 Damped Response with General Viscous Damping

The solution of Equation (4.6) is presented for the case where general viscous damp-

ing is included in the system. By assuming free vibration of the system, the force

vector p(t) is set equal to zero, resulting in the homogeneous form of the damped

vibration model,

Mq̈(t) +Cq̇(t) +Kq(t) = 0 (4.25)

By introducing x1(t) = q(t) and x2(t) = q̇(t), Equation (4.25) can be written in

terms of these new variables as follows:

ẋ1(t) = x2(t) (4.26)

ẋ2(t) = −M−1Cx2(t)−M−1Kx1(t) (4.27)

The second-order differential equation (4.25) can now be expressed as a pair of first-

order differential equations for the two variables x1(t) and x2(t). Equations (4.26)

and (4.27) can be written in matrix form by defining a state vector x(t) ∈ R2n×1;

x(t) =


x1(t)

x2(t)


 =


q(t)

q̇(t)


 (4.28)

Now the equations for the state variables can be written as a matrix differential

equation: 
ẋ1(t)

ẋ2(t)


 =


 0 I

−M−1K −M−1C




x1(t)

x2(t)


 (4.29)

This equation can be abbreviated to the following form:

ẋ(t) = Acx(t) (4.30)

The matrix Ac ∈ R2n×2n is known as the state matrix and contains the matrices

M , C, and K as submatrices, and therefore provides a complete description of

the system. The subscript c denotes this matrix as a continuous-time version, as

opposed to the discrete-time version of the matrix which is introduced in Section

4.4.3.
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As for the undamped case and the proportional damping case, it is assumed a

solution for Equation (4.30) has the form,

xi(t) = ψie
jωit (4.31)

Substituting Equation (4.31), and its first derivative, into Equation (4.30) yields,

jωiψie
jωit = Acψie

jωit (4.32)

Since ejωit 6= 0 for all values of t, ψi and ωi must satisfy the equation,

λiψi = Acψi (4.33)

where λi = jωi. Equation (4.33) represents a generalised eigenvalue problem of di-

mension 2n×2n [74], where λi ∈ C2n are the eigenvalues andψi ∈ C2n (i = 1, . . . , 2n)

are the eigenvectors. Note that unlike the undamped case and proportional damp-

ing case, the eigenvectors for the general viscous damping case are complex values

— hence the reason for denoting the complex eigenvectors with alternative nota-

tion (ψi). This results in complex valued physical mode shapes, which appear in

complex conjugate pairs referred to as complex modes. The interpretation of the

complex modes, as opposed to real modes, is that each degree of freedom reports

the magnitude and phase of the motion experienced, relative to the other degrees

of freedom. The real and imaginary parts of a complex mode correspond to the

magnitude and phase of the motion respectively.

Similar to the proportional damping case, the complex eigenvalues are deter-

mined as complex conjugate pairs in the form;

λi, λi
∗ = −ζiωi ± ωi

√
1− ζi2j (4.34)

Solving the eigenvalue problem of Equation (4.33) for the state matrixAc produces a

set of complex numbers of the form λi = αi+jβi, where αi = Re(λi) and βi = Im(λi).

The natural frequency and damping ratios can be obtained by comparing these

expressions with Equation (4.34);

ωi =
√
αi2 + βi2 =

√
Re(λi)2 + Im(λi)2 = |λi| (4.35)

ζ i =
−αi√
αi2 + βi2

=
−Re(λi)√

Re(λi)2 + Im(λi)2
=
−Re(λi)

|λi|
(4.36)
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4.3 Frequency Domain System Identification

The system identification technique discussed in subsequent sections uses a non-

parametric frequency domain method to estimate modal parameters. The peak

picking method is initially discussed to introduce simple frequency domain system

identification, and to provide the foundation upon which the applied technique is

based.

4.3.1 Peak Picking

The peak picking technique is arguably one of the simplest and least computation-

ally intensive methods for operational modal analysis of civil engineering structures.

As described by Bendat and Piersol [6], for a lightly damped structure, the output

response spectrum at any point will reach a maximum value at frequencies where

either the input excitation spectrum displays a significant peak, or where the fre-

quency response function of the structure peaks. Therefore, peaks identified in the

output response spectra can be considered to originate from input excitation peaks

or vibration modes of the structure.

Distinguishing structural vibration modes from input excitation peaks is achieved

via interrogation of the phase angles of cross spectra between measurement points.

For structural modes, the phase angles between measurement points will be either

0◦, in phase, or 180◦ out of phase. Also, if the input source is random excitation,

it is inconceivable that any peaks will be due to excitation sources. The coherence

function between two output channels can also be used to highlight structural modes,

because at resonance frequencies the high signal-to-noise ratio means the coherence

function tends to one.

The peak picking technique identifies operational deflection shapes, as opposed

to mode shapes, via the magnitudes of the output spectra. Operational deflection

shapes define the excitation of the structure when the input excitation is a pure

harmonic, and will be a superposition of multiple modes if the modes of vibration are

closely spaced. The phase angles from cross spectra are used to determine the nature

of the operational deflection shapes — translational, torsional, or coupled motion

as well as higher order modes of vibration. The damping value can be determined

using the half-power bandwidth method [142, 148], however despite recent advances

in this method [189], the presence of closely spaced vibration modes causes large

errors in half-power bandwidth damping estimates.

4.3.2 Frequency Domain Decomposition

The FDD technique [11, 14] is a non-parametric frequency domain system identifi-

cation technique that uses operational modal analysis concepts to determine modal
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parameters. The main concept of the technique was previously applied to the analy-

sis of structures using ambient vibrations as the input excitation [131]. The method

was then applied to frequency response functions (FRF) to more accurately deter-

mine the number of modes in measured data, and became known as the Complex

Mode Indication Function (CMIF) [2]. The CMIF is capable of identifying modal

parameters from FRFs [143].

The FDD method can be illustrated by first considering that a physical response

can be expressed in modal coordinates [12];

y(t) = φ1q1(t) + · · ·+ φiqi(t) = Φq(t) (4.37)

The covariance matrix of the responses is given by the following;

Cyy(τ) = E
[
y(t+ τ)y(t)T

]
(4.38)

Substituting Equation (4.37) into (4.38);

Cyy(τ) = E
[
Φq(t+ τ)q(t)HΦH

]
(4.39)

= ΦCqq(τ)ΦH (4.40)

and applying the Fourier transform gives the following relationship;

Gyy(ω) = ΦGqq(ω)ΦH (4.41)

where Gyy(ω) is the response spectrum matrix and Gqq(ω) is the modal coordinates

spectrum matrix. Now consider the singular value decomposition (SVD) [103] of the

response spectrum matrix, which is assumed to be a Hermitian matrix (Gyy = GH
yy),

at each frequency and for each response measurement;

Gyy(ω) = U(ω)SU(ω)H (4.42)

where U(ω) is an orthonormal matrix (UUH = I) containing the singular vectors

of Gyy(ω), and S is a diagonal matrix containing the corresponding singular values.

The form of Equation (4.42) is identical to Equation (4.41), which indicates the

following: firstly, the singular vectors from the SVD of the response spectrum matrix

can be associated with the mode shapes; secondly, the singular values represent the

spectra of single degree of freedom systems that have the same modal parameters as

the vibration modes that contribute to the response of the multi degree of freedom

system being analysed. In other words, the response spectrum matrix of a multi

degree of freedom system is decomposed into equivalent single degree of freedom

systems via the SVD of the response spectrum matrix. Therefore, the singular val-
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ues represent the response of each vibration mode expressed as the spectrum of each

modal coordinate. The links between Equations (4.41) and (4.42) assume that the

response spectrum matrix Gqq(ω) is a diagonal matrix, meaning the modal coordi-

nates are uncorrelated, and the mode shapes (the columns in Φ) are orthogonal.

4.3.3 Modal Parameter Extraction

The initial step in FDD is to estimate the response spectrum matrix. This matrix

is composed of the cross-spectral densities between the measured channels. The

cross-spectral densities between all channels can be used to form the response spec-

trum matrix, which essentially means that each measurement channel is a reference

channel. For cases with a large number of simultaneously measured channels, this

can result in excessive noise contamination in the singular value plot, which reduces

the accuracy of modal parameter estimates. This occurs because many channels will

contain similar information regarding the vibration modes of the system, but the

random errors originating from noise will differ between channels.

Reducing the noise can be achieved by reducing the number of channels used

in the estimation process. Those channels selected for the estimation process must

collectively contain all the information necessary to describe the vibration modes

of interest. A suitable set of channels can be selected by observing the correlation

coefficients between the channels [56]. The channel that has the highest correla-

tion with all other channels is initially selected as a reference. compared with the

other channels, this channel will generally contain the most information regarding

the system. Depending on the tested system, multiple reference channels may be

required.

Selecting non-reference channels is also achieved via inspection of the correlation

coefficients between the channels, accept the correlations between reference and non-

reference channels are minimised to ensure each channel brings a maximum amount

of new information to the estimation process. This step requires minimum threshold

correlation values to avoid selecting channels that contain only noise. The total

number of channels selected will determine the ability to separate closely spaced

modes. For two closely spaced modes, a total of three channels is required — two

channels to separate the modes and a third channel to account for measurement

noise.

The method used to create the cross-spectral densities is also important to the

estimation process. A common method is the Cooley-Tukey algorithm for computing

the discrete Fourier transform [32] to determine the periodogram of the input signal.

When applying the algorithm, the most important considerations are the minimi-

sation of spectral leakage and noise when transforming the measurement data from

the time domain to the frequency domain. Spectral leakage occurs when trans-
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forming finite length signals from the time domain to the frequency domain, and

results in energy from a particular frequency band being incorrectly represented in

adjacent frequency bands. The reason for the leaking of energy from one frequency

band to those adjacent is that the transformation process — the discrete Fourier

transform — assumes the finite length signal is periodic within the sample record

length. Maintaining periodicity across all frequencies in a complex signal is difficult

to achieve, resulting in some or all signals being abruptly truncated midway through

a cycle.

The effect of spectral leakage in frequency domain system identification manifests

as a broadening of the spectral peaks. This has implications for the identification

of peaks, particularly for closely spaced modes, and for the estimation of damping.

In the case of damping estimates, the broadening of spectral peaks due to leakage

will result in overestimation of damping. Spectral leakage can be mitigated by

applying a window function to the input signal, which forces the signal to be zero

outside the sampling period and therefore reduces the effect of abrupt truncations of

periodicity. Furthermore, the error caused by leakage is proportional to the square

of the frequency resolution [5], which means increasing the frequency resolution will

reduce spectral leakage errors.

Minimising noise variance in the spectral densities can be achieved via splitting

the input signal into multiple data segments of equal length, then applying the

discrete Fourier transform to each segment, and finally the periodograms for each

segment are averaged. The Welch averaged modified periodogram method [184] of

spectral estimation implements the averaging of segment spectral densities, with the

addition of segment overlapping, and also includes a window function discussed pre-

viously. It is important to note that attempting to simultaneously minimise spectral

leakage and noise presents a compromise. Increasing the number of data samples

in each segment, which simultaneously decreases the number of averages, will re-

duce the effect of leakage and provide improved spectral resolution. However, the

decrease in the number of averages will increase the noise and hence the stochastic

uncertainty of damping estimates. This aspect needs to be considered when deter-

mining the amount of data to be collected to avoid compromising either segment size

or number of averages when using the Welch method to estimate the cross-spectral

densities.

The next step in FDD is the decomposition of the estimated response spectrum

matrix by applying the SVD as described in Equation (4.42). The singular values

are returned from the SVD in ascending order. For each value of frequency ω, the

first singular value is an ordinate of the spectrum associated with the dominant

vibration mode at that frequency. For a particular frequency, the number of non-

zero singular values indicates the rank of the spectrum matrix, and therefore the
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number of modes contributing to the system response at that particular frequency.

If a single vibration mode is dominating at a particular resonance frequency, the

spectrum matrix will have a rank of one, and the first singular vector is an estimate

of the mode shape at that particular frequency. In the case of multiple modes

dominating at a resonance frequency, the singular vectors corresponding to non-zero

singular values are estimates of the mode shape, if the mode shapes are orthogonal.

By applying the SVD to the response spectrum matrix, this matrix is decom-

posed into single degree of freedom systems, which enables the application of single

degree of freedom modal parameter estimation techniques. The task now is to both

identify and define the extent of the spectral peaks belonging to modes of vibration.

Vibration modes are represented by peaks in the plot of singular values versus fre-

quency, but not all peaks necessarily indicate vibration modes. Peaks in the singular

value plot can be due to noise as well as the cross singular value effect. The cross

singular value effect occurs when two modes have equal contribution at a particu-

lar frequency, which causes the higher singular value curve to dip, while the lower

singular value curve peaks. The peak in this case is not due to a vibration mode.

Identifying and defining the extent of the peak can be achieved by comparing

the singular vector for the corresponding peak in the singular value plot with those

in the immediate vicinity. If the spectral peak represents a vibration mode, then the

singular vectors for points adjacent to the peak will be similar to the singular vector

for the corresponding peak singular value. Peaks that do not represent structural

modes will not display similarity between the singular vector for the peak and the

adjacent singular vectors. The degree of similarity between the singular vectors can

be determined using the modal assurance criteria (MAC) [1], which measures the

degree of consistency between two modal vectors, and is given by;

MAC =
|φaHφb|2

(φa
Hφa)(φb

Hφb)
(4.43)

The MAC ranges in value from zero, representing no consistency, to one, representing

consistent correspondence. Therefore, if the two modal vectors considered have a

linear relationship, the MAC value will approach unity.

When the spectral peaks for single degree of freedom modes of vibration are

defined, a number of techniques can be applied to extract the modal parameters:

either frequency domain or time domain based. A frequency domain example is the

process of fitting a parametric model to the spectral peak [52]. Alternatively, the

spectrum segment that corresponds to the single degree of freedom mode of vibration

can be transferred to the time domain using an inverse discrete Fourier transform

[13, 56]. Before applying the inverse Fourier transform, the singular values that do

not form part of the spectral peak are set to zero.
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After transitioning to the time domain, a plot of the resulting signal versus

time will represent the auto correlation function of the single degree of freedom

system. The natural frequency estimate is attained from a zero crossing analysis, and

damping ratio estimates are attained by applying the logarithmic decrement [74].

The logarithmic decrement is described in Figure 4.2 and the following equation;

ζ =
δ√

(2πn)2 + δ2
; δ = ln

(
y1
y2

)
(4.44)

where δ is known as the logarithmic decrement. The technique can be applied

to multiple peaks in the decay trace via a linear least squares fit of the natural

logarithm of the peaks. When applying the linear least squares fit, it is appropriate

to assume that the measurement noise is uncorrelated between observed values of

the dependent variable. Therefore, the error in the damping estimation can be

determined via the standard error of the regression line slope;

sm =

√
1

n−2
∑n

i=1(yi − ŷi)2∑n
i=1(xi − x̄)2

(4.45)

where n is the number of observations, yi is the dependent variable, ŷ1 is the estimate

of the dependent variable, xi is the observed value of the independent variable, and

x̄ is the mean value of xi.

Alternatively, the damping can be estimated by fitting the exponential function

y = Aebt to the peaks of the auto correlation function. Since the expression for

the auto correlation function of a viscously damped single degree of freedom system

is given by y = Ae−ζωnt sin(ωdt + θ), the damping value can be extracted from

the parameters of the fitted function via the relationship b = −ζωn, noting that

ωn = 2πfn is the natural frequency.

Example: Frequency Domain Decomposition

Using computer code developed in Matlab and the Signal Processing Toolbox R2007b

[170], the FDD technique is applied to data obtained from measurements recorded

approximately two years after construction completion of Latitude tower. At this

time the wind induced monitoring system described in Section 3.5 was operational.

The axes definition, and the location and orientation of the sensors, are presented in

Figure 3.29. The acceleration response time series collected for this test is displayed

in Figure 4.3. The mean wind speed for the time series is 10.2 m/s and the mean

wind direction is 250◦.

A plot of the singular values is presented in Figure 4.4. A segment size of

4096 was used to estimate the cross-spectral densities, which has been shown to

be sufficient resolution to avoid impacting the damping ratio estimates [164]. In
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Figure 4.2: Logarithmic decrement of a viscously damped single degree of freedom
system with 0 < ζ < 1

addition, a Hanning window function was applied to the segments to reduce leakage

effects.

The first three peaks on the first singular value line in the frequency range 0.2–

0.6 Hz correspond to the fundamental modes of vibration. In increasing order of

natural frequency, these modes correspond to fundamental y-axis translation, x-axis

translation, and torsion. The second modes of vibration are observed between the

frequencies 0.8–1.2 Hz, and correspond to x-axis translation, y-axis translation, and

torsion. Estimates for the natural frequency and damping ratio for these modes are

displayed in Table 4.1, and the mode shapes are displayed in Figure 4.7.

The first and second x-axis mode shapes are a combination of translation and

torsion. The torsional component is due to an eccentricity between mass and stiff-

ness, caused by the floor plates extending away from the central core at the southern

facade between levels 20 and above, which is evident in the comparison of the gen-

eral floor arrangements in Figures 3.4 and 3.5. The second y-axis mode displays

a significant torsional component. Above level 37 the eastern portion of the core

terminates, which can be seen by comparing the core plans in Figures 3.11 and 3.12.

This creates an eccentricity between mass and stiffness at this level and above, which

is the cause of the torsional aspect in the mode shape at level 54.

Another peak is also observed in the singular value plot in Figure 4.4, and is
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located on the second singular value line between the first and second peaks on the

first singular value line. This peak is due to the cross singular value effect, since

another smaller peak is observed to the left of the second mode peak. Analysis of the

singular vector for this peak showed weak correlation with the adjacent frequency

lines, and the mode shape was a superposition of the mode shapes for the first and

second modes of vibration. Therefore, the presence of this peak in the singular value

plot at the frequency 0.286 Hz is likely due to modal interference between the first

and second modes of vibration.

The portion of the first singular value line displayed as a thick black line is

the identified single degree of freedom spectral peak for the fundamental y-axis

translation mode. This peak was identified by comparing the singular vector at the

peak with those at adjacent frequency lines using the MAC method. A threshold of

0.8 was used for the MAC value acceptance criteria.

Spectral ordinates that do not form part of the identified peak are set to zero

prior to converting the spectrum to the time domain using an inverse Fourier trans-

form. The resulting auto-correlation function is displayed in Figure 4.5, which is

normalised using the maximum value of the ordinate. An estimate of the decay

envelope for a portion of the curve is also displayed.

A clearer picture of the auto-correlation envelope is presented in Figure 4.6,

which plots the natural logarithm of the peaks from the normalised auto-correlation

function. Both the positive and negative peaks are plotted. For a viscously damped

linear system, this plot will be a straight line. Nominal correlation limits for modal

parameter extraction are included, and they correspond to upper and lower bounds

of 0.95 and 0.30 respectively. Broadband noise or non-linearities in the viscous

damping can influence the initial and final time lags of the auto-correlation func-

tion, hence the reason for the maximum and minimum correlation threshold. It is

important to estimate the model parameters, and particularly the damping ratio,

from the linear portion of the plot. The minimum correlation threshold serves two

purposes: firstly to reduce the impact of noise, which becomes more pronounced at

higher time lags, and to avoid estimation uncertainty associated with large time lags.

For this example, the plot is non-linear over the first 40 s, which extends below the

nominal threshold limit and should not be used in the estimation process. There-

fore, the logarithmic decrement technique was applied over the correlation values of

approximately 0.7 to 0.3.

The acceleration values reported in Table 4.1 are the expected peak accelerations.

These values were determined via an upcrossing analysis of the time series data with

a probability of exceedance of 0.01. The upcrossing analysis theory is presented in

Section 2.5.3.
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Figure 4.3: Acceleration response signals from Latitude tower. Referring to Figure
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Figure 4.5: Normalised auto-correlation function with logarithmic decrement esti-
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X1: fx1 = 0.292 Hz X2: fx2 = 0.867 Hz

Y1: fy1 = 0.256 Hz Y2: fy2 = 1.005 Hz

T1: ft1 = 0.417 Hz T2: ft2 = 1.078 Hz

Figure 4.7: Plan view mode shapes at level 54 for the first six modes of vibration.
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f ζ σζ q̈max

(Hz) (%) (%) (mgn)

Translation X1 0.292 0.86 8.1 0.07

Translation Y1 0.256 1.03 6.5 0.13

Torsion T1 0.417 0.80 5.7 0.15

Translation X2 0.867 0.83 3.6 –

Translation Y2 1.005 0.43 4.7 –

Torsion T2 1.078 0.39 2.6 –

Table 4.1: Results for FDD frequency domain system identification.

4.4 Time Domain System Identification

The frequency domain system identification technique discussed in the previous

section formulates the analysis of dynamic structural systems by viewing physical

variables as outputs or responses to specified inputs. Another analysis approach

is to formulate the dynamics of the structural system in terms of variables that

describe the current state of the system. This approach is known as state space

system modelling.

In essence, the state space approach converts an nth-order differential equation

into a set of n first-order differential equations. Unlike nth-order differential equa-

tions, the set of first order differential equations can be conveniently expressed in

matrix form, which allows the application of efficient numerical techniques to deter-

mine the response of the system. Forming the system equations in matrix notation

also brings scalability to the state space approach by offering a means to analyse

the stability of higher order systems. The basis of state space modelling is now

presented, much of which is derived from introductory material [26, 52].

4.4.1 Continuous State Space Vibration Models

By introducing x1(t) = q(t) and x2(t) = q̇(t), where x1(t) and x2(t) correspond to

the displacement and velocity response vectors respectively, Equation (4.6) can be

written in terms of these new variables as follows:

ẋ1(t) = x2(t) (4.46)

ẋ2(t) = −M−1Cx2(t)−M−1Kx1(t) +M−1Pu(t) (4.47)

The original second-order differential equation (4.6) is now expressed as a pair of

first-order differential equations for the two state variables x1(t) and x2(t). The term

state variables is used because they completely describe the behaviour or state of

the system. Equations (4.46) and (4.47) can be written in matrix form by defining a
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state vector x(t) ∈ R2n×1, which has two components representing the displacement

and velocity response vectors:

x(t) =


x1(t)

x2(t)


 =


q(t)

q̇(t)


 (4.48)

Now the equations for the state variables can be written as a matrix differential

equation:


ẋ1(t)

ẋ2(t)


 =


 0 I

−M−1K −M−1C




x1(t)

x2(t)


+


 0

M−1P


u(t) (4.49)

This equation can be abbreviated to the following form:

ẋ(t) = Acx(t) +Bcu(t) (4.50)

The matrix Ac ∈ R2n×2n is known as the state matrix, and contains all the infor-

mation regarding the system and therefore provides a complete description of the

system. The matrix Bc ∈ R2n×r is the input matrix, and the vector x(t) is the state

vector, as described in Equation (4.28). The subscript c in Ac and Bc denotes these

matrices as continuous-time versions.

The response of the state space system is observed via an output vector y(t) ∈
Rl×1, which is also known as the observation vector. In practical applications, only

a subset l of the total n degrees of freedom are measured during a vibration ex-

periment. The measurement type and the particular process measured governs the

output vector constituents, and for structural systems the measured responses are

typically, but not restricted to, displacements, velocities, or accelerations. For the

general case, the response y(t) can be considered as a linear combination of the

measured displacements, velocities, and accelerations;

y(t) = ξdq(t) + ξvq̇(t) + ξaq̈(t)

= ξdx1(t) + ξvx2(t) +
[
0 I

]
ξa(Acx(t) +Bcu(t))

=
[[
I 0

]
ξd +

[
0 I

]
(ξv + ξaAc)

]
x(t) +

[
0 I

]
ξaBcu(t)

= Ccx(t) +Dcu(t) (4.51)

where ξd, ξv, ξa ∈ Rl×2n are the output location matrices for displacement, velocity,

and acceleration respectively. Cc ∈ Rl×2n is the output matrix and Dc ∈ Rl×r is

the direct transmission matrix. The second line of the above derivation is achieved

via the substitution of Equation (4.50). The combination of the state space equa-
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tion (4.50) and the observation equation (4.51) completely describes the input and

output behaviour of the continuous-time structural system, and is known as the

continuous time-invariant deterministic state space system. Continuous time means

the expression can be evaluated at each time instant, and deterministic implies the

exact measurement of input u(t) and output y(t) is possible.

ẋ(t) = Acx(t) +Bcu(t) (4.52)

y(t) = Ccx(t) +Dcu(t) (4.53)

4.4.2 Stochastic State Space Vibration Models

The state space system equations (4.52) and (4.53) imply the output can be pre-

cisely calculated once the input is known. This is unrealistic in almost all cases as

inevitably there are uncontrollable signals that also affect the system. Such signals

are often referred to as a disturbance or noise. For state space systems, it is common

practice to split the noise into contributions from measurement noise ν(t) ∈ Rl×1
and process noise w(t) ∈ R2n×1 acting on the states. Measurement noise is intro-

duced during the output signal measurement, and includes sensor inaccuracies such

as drift and noise. Process noise arises from uncontrollable inputs, where the system

is subjected to signals that have the characteristics of inputs, but are not controllable

by the user. In the case of structural systems, process noise can affect the structural

parameters that describe the system, for example a change in structural stiffness

due to uncontrollable temperature changes. Including the disturbance terms in the

state space equations (4.52) and (4.53) produces;

ẋ(t) = Acx(t) +Bcu(t) +w(t) (4.54)

y(t) = Ccx(t) +Dcu(t) + ν(t) (4.55)

The disturbance termsw(t) and ν(t) are unmeasurable and assumed to be zero-mean

sequences of independent random variables (white noise) [113] that are uncorrelated

with the input u(t), which implies;

E


w(t)

ν(t)


 = 0, E




w(t)

ν(t)



[
wT (t) νT (t)

]

 =


Q S

ST R


 δ(t) (4.56)

where E denotes the expected value and δ(t) is Dirac’s delta function. Q ∈ R2n×2n,

R ∈ Rl×l, and S ∈ R2n×l are covariance matrices of the disturbance terms w(t) and

ν(t). By treating the noise terms as stochastic processes and including them in the

state space equation (4.52) and observation equation (4.53), the resulting pair of

equations (4.54) and (4.55) are known as the continuous-time stochastic state space
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system equations.

4.4.3 Discrete Stochastic State Space Vibration Models

It is often easier to define a parameterized state space model in continuous-time

because physical laws — in this case, Newtown’s laws of motion — are most of-

ten described in terms of differential equations. In this case, the matrices Ac,

Bc, Cc, and Dc contain elements with physical significance, for example, mate-

rial properties. In practice, the input and output vectors of dynamical systems are

discrete time sampled series of the original continuous-time analogue signals — often

termed a sampled data system. A discrete-time formulation of the state space sys-

tem equations is required to comply with the input and output vector formats. The

continuous-time formulation also implies that all degrees of freedom are measured,

which is not the case in practice. Furthermore, the transformation of continuous

differential equations into discrete difference equations provides a suitable basis for

more efficient numerical computation to resolve the system responses. For these

reasons, the continuous-time stochastic state space system will be converted to a

more suitable form: the discrete-time stochastic state space system.

The discrete-time version of the stochastic state space system can be obtained

by applying a zero-order hold [129] approximation for the input u(t);

ẋ(kT + T ) = Adx(kT ) +Bdu(kT ) +w(kT ) (4.57)

y(kT ) = Cdx(kT ) +Ddu(kT ) + ν(kT ) (4.58)

where k =
{

1, 2, 3, . . . , n
}

, T is the sampling interval, u(kT ) is the input at time

instant kT , and y(kT ) is the output at time instant kT . The subscript d is added

to matrices Ad, Bd, Cd, and Dd to signify them as discrete-time versions of the

continuous-time state space matrices Ac, Bc, Cc, and Dc. The relationship between

the discrete-time and continuous-time matrices is as follows:

Ad = eAcT (4.59)

Bd =

∫ T

0

eAcτBcdτ = Ac
−1(Ad − I)Bc (4.60)

The observation matrix Cc and the direct term Dc are unchanged by the sampling,

therefore Cc = Cd and Dc = Dd. As for the continuous-time case, the noise terms

w(t) and ν(t) are assumed to be sequences of independent random variables with
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the following properties;

E


w(kT )

ν(t)


 = 0, E




w(kT )

ν(kT )



[
wT (kT ) νT (kT )

]

 =


Qd S

ST Rd


 δ(t− j) (4.61)

where δ(t− j) is Kronecker’s delta function and,

Qd =

∫ T

0

eAτQeA
T τdτ (4.62)

Rd = R (4.63)

The equations (4.57) and (4.58) include an input vector u(kT ) and output vector

y(kT ). For large civil engineering structures that are excited by ambient loading, the

input vector is difficult to record and is therefore often excluded during experimental

testing. Since only the output vector is known, the input vector is omitted from the

state space equations (4.57) and (4.58), and the unmeasured input is assumed to

be white noise and implicitly modelled by the noise terms w(kT ) and ν(kT ). The

resulting state space system is as follows;

ẋ(kT + T ) = Adx(kT ) +w(kT ) (4.64)

y(kT ) = Cdx(kT ) + ν(kT ) (4.65)

The white noise assumption of the noise terms is an important requirement for the

described system identification method. If the input u(kT ) contains dominant fre-

quency components in addition to white noise, then the white noise assumption

becomes invalid. Consequently, these dominant frequency components will be in-

cluded in the eigenfrequencies of the system and will appear as poles of the state

matrix Ad. This can cause the system identification results to become unclear or

inaccurate due to the mixing of poles that represent the stochastic response of the

system with spurious poles that represent the dominant frequencies originating from

the input. Only those poles representing the stochastic response are of interest.

4.4.4 Identification of Stochastic State Space Models

The stochastic state space model described by Equations (4.64) and (4.65) can be

solved using the Stochastic Subspace Identification (SSI) technique [127], which

involves directly fitting a parametric model to the output time series data from the

measurement transducers. Numerous algorithms that implement SSI are available,

and one of the more recent algorithms is the Numerical Algorithm for Subspace

State Space System Identification (abbreviated by the algorithum author to N4SID)

[176]. The data-driven identification scheme used in the algorithm can provide
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reliable state space models for complex, multivariable, dynamic systems using only

the measured outputs.

Subspace system identification algorithms generally consist of two steps. The

first step estimates the state vector x(kT ) by using two linear algebra tools: QR

decomposition and singular value decomposition (SVD) [113]. Once the states are

known, the identification of the unknown matrices, Ad and Cd, is achieved via a

linear least-squares solution [95].

The modal parameters of the system are then determined via the standard eigen-

value problem;

Ad = ΨΛΨ−1 (4.66)

where Ψ ∈ C2n×2n are the discrete time eigenvectors arranged in columns and

Λ =
[
�µi

−1
�
]
∈ C2n×2n is a diagonal matrix containing the discrete time com-

plex eigenvalues. For under-damped systems, the structural modes are represented

by complex conjugate pairs of eigenvalues (µi, µi+1
∗) and corresponding eigenvec-

tors. The complex conjugate pair of discrete time eigenvalues can be expressed

as eigenfrequencies fi and damping ratios ζi by first converting to continuous time

eigenvalues λi = ln(µi)/∆T , and then using the expressions established in Equations

(4.35) and (4.36), resulting in the following relationships [95];

fi =
|λi|
2π

, ζi =
−Re(λi)

|λi|
(4.67)

The estimated state vector x(kT ) does not generally correspond to a physical mean-

ing. Therefore the eigenvectors Ψ of the state vector are converted to physical values

by multiplying by the output matrix Cd, and the mode shapes are given by;

Φ = CdΨ (4.68)

Implementing the SSI technique requires determining the number of parameters

in the model, which is an essential but challenging process. The number of parame-

ters in the model is also referred to as the model order. This model order establishes

the state space dimension — the dimensions of the state matrix Ad. If the order

chosen is too small, then the dynamics and noise characteristics of the system can-

not be accurately modelled. Alternatively, selecting a model order that is too high

can lead to significant uncertainties of the model parameters.

Obtaining an estimate of the order can be achieved by doubling the number of

peaks in a frequency plot of a non-parametric spectrum-driven estimate, such as the

peak picking technique or from the complex mode indication function. The number

of peaks counted is doubled because each corresponds to a pair of complex conjugate

eigenvalues, and therefore the model order is twice the number of resonance frequen-
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cies observed in the spectral plot. In practice, the main focus is the extraction of

modal parameters as opposed to finding the order that produces the best model.

For this reason, the most suitable approach is to view model results generated from

multiple orders that range from a theoretical minimum, such as doubling the number

of resonance peaks, to an over-specified order.

Due to the presence of measurement noise and other non-white-noise sources

typical to ambient vibration measurements, non-structural modes will be included

in the results set for each model order. Numerous methods are available to dis-

cern structural from non-structural modes [128]. The stability plot [10] is one such

method that compares modal properties for each identified mode at a certain model

order with those obtained for the previous model order. If the modal property differ-

ences are within pre-set limits, the identified mode is deemed stable. The stability

limits are set for the change in frequency ∆f , change in damping ratios ∆ζ, and for

the change in mode shape, which can be measured via the modal assurance criteria

(MAC) described in Equation (4.43). The stability limits are defined as;

fi(p)− fi(p+ 1)

fi(p)
< ∆f (4.69)

ζi(p)− ζi(p+ 1)

ζi(p)
< ∆ζ (4.70)

(1−MAC(p, p+ 1)) < ∆MAC (4.71)

where p denotes the model order at which modal properties are identified. Using

these comparisons and considering the nature of the noise processes, the identified

non-structural modes will not show stability between consecutive model orders, and

will be filtered from the identified modes.

Example: Stochastic Subspace Identification

Using computer code developed in Matlab and the System Identification Toolbox

R2007b [169], the SSI technique is applied to data obtained from measurements

recorded approximately two years after construction completion of Latitude tower.

The response time histories are displayed as part of the FDD example in Figure 4.3.

The stability limits are ∆f = 0.01, ∆ζ = 0.05, and ∆MAC = 0.99. For this example

the model order has been increased by two at each iteration to improve the legibility

of the stability plot displayed in Figure 4.8. The average normalised power spectral

density of all input channels is also displayed as a guide to the stability plot.

The points in the stability plot (denoted by N) indicate a stable mode of vi-

bration according to the simultaneous application of the limits described in Section

4.4.4 for natural frequency, damping ratio, and mode shape. If any of the three

criteria are not satisfied the identified mode is not considered to be stable and is



CHAPTER 4. VIBRATION MODELS AND SYSTEM IDENTIFICATION 116

0 0.5 1 1.5
10

−5

10
−4

10
−3

10
−2

10
−1

Frequency, f (Hz)

A
ve
ra
ge

N
or
m
al
is
ed

P
S
D

20

30

40

50

60

70

80

90

100

N
4S

ID
M
o
d
el

O
rd
er

 fy1 = 0.256 Hz
 fx1 = 0.293 Hz 0.279 Hz

 ft1 = 0.417 Hz  ft2 = 1.078 Hz
 fx2 = 0.876 Hz  fy2 = 1.010 Hz

Figure 4.8: Stability plot for SSI time domain system identification. Stability limits:
∆f = 0.01, ∆ζ = 0.05, and ∆MAC = 0.99. (N Stable SSI Model, — Power Spectral
Density)

not plotted. The first three modes of vibration, between the frequencies 0.2 Hz and

0.5 Hz, are observed in both the SSI output and the spectral plot. They represent

the fundamental modes of vibration for y-axis translation, x-axis translation, and

torsion. The modes identified between the frequencies 0.7 Hz and 1.2 Hz represent

the second modes of vibration for x-axis translation, y-axis translation, and torsion.

The natural frequency and damping ratio estimates for the first six modes of vi-

bration are presented in Table 4.2. The standard deviation in the damping ratio

estimate σζ is reported as a percentage of the damping ratio. A comparison of the

mode shapes for the SSI and FFD analysis produced a MAC value greater than

0.98 for all mode shapes, and therefore the mode shapes for the SSI are virtually

identical to those displayed in Figure 4.7.

The stability plot in Figure 4.8 identifies three modes of vibration between

0.25 Hz and 0.30 Hz when the model order exceeds approximately 70. This addi-

tional mode has a natural frequency of 0.279 Hz, which is approximately equal to

the FDD estimate of 0.286 Hz. The intermittent nature of the stable orders for

this mode indicates weak stability. As concluded for the FDD analysis, this mode

is due to modal interference between the fundamental y-axis translation mode at

fy1 = 0.256 Hz and the fundamental x-axis translation mode at fx1 = 0.293 Hz.
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f ζ σζ q̈max

(Hz) (%) (%) (mgn)

Translation X1 0.293 0.94 10.3 0.07

Translation Y1 0.256 0.91 5.5 0.13

Torsion T1 0.417 1.02 3.3 0.15

Translation X2 0.876 0.83 4.8 –

Translation Y2 1.010 1.18 3.4 –

Torsion T2 1.078 0.92 3.3 –

Table 4.2: Results for SSI time domain system identification.

The SSI derived mode shape of this additional mode is a superposition of the these

two fundamental modes. The estimates for the dynamic characteristics of the funda-

mental modes used the model orders above 70. By using these higher model orders,

the results are less likely to be influenced by the presence of modal interference.

4.4.5 Random Decrement Technique

The Random Decrement (RD) technique is a time domain system identification

technique that generates the free-response of a linear single degree of freedom system

from ambient excitation forces. The basic idea of the RD technique is to average

time segments extracted from a response measurement, with the time segments being

selected according to a trigger condition. The technique was initially developed to

determine the dynamic characteristics and in-service damage detection of aerospace

structures from measured responses [31]. The technique has the ability to estimate

the amplitude dependence of the natural frequency and damping ratio for a mode

of vibration.

The concept of the RD technique is explained by considering the following. For

a system excited by random input forces, the response at time t0 + t is composed

of three parts: a step response of the structure from an initial displacement at t0,

an impulse response from an initial velocity at t0, and a random response due to

the applied load in the time interval t. By selecting segments from the response

time history that begin with a specified displacement response amplitude, and then

combining these segments via superposition, it is observed that as the number of

segments increases, the random response part will tend to zero. Furthermore, the

sign of the initial velocity is expected to vary randomly with time, resulting in a

zero initial velocity. Since the impulse response and random response parts are zero,

the remaining part is the step response from the initial displacement. The resulting

curve from this process is known as the random decrement signature.

The concept of the RD technique is described in Figure 4.9. Mathematical proofs
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36

Figure 4.9: Random decrement technique (Source: Cole 1973 [31])

of the RD technique have been conducted [144, 177] to establish generalised models

of the random decrement signature. The generalised models found the RD function

to be proportional to the auto correlation function of an ergodic Gaussian distribu-

tion [177]. This proportionality between the RD function and the auto correlation

function means the RD technique is directly comparable with spectral density func-

tions, since the correlation functions are attained from the inverse Fourier transform

of spectral density functions.

For a lightly damped structure excited by random input forces, such as wind

loading, the step response represents the single degree of freedom free vibration

trace that is produced when the structure is initially displaced by the distance used

in the segment selection process described above, and allowed to decay back to a

zero amplitude. The natural frequency and damping ratio of the system can be

extracted from the decay trace using numerous techniques, such as the logarithmic

decrement or curve fitting discussed in Section 4.3.3. The step response derived

from an initial displacement has been used in the description of the RD technique,

but any response type — displacement, velocity, acceleration — can be used with

the technique.

An important aspect in the application of the RD technique is the trigger con-

dition used to select the segments for averaging. Consider the RD signature defined

by;

Dxx(τ) = E[x(t+ τ)|x(t) = ar] (4.72)
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where Dxx(τ) is an estimate of the RD function over the time lag τ , and E[x|Tc] is

the conditional expected value of x for the condition defined by Tc. Equation (4.72)

represents the RD function estimate for a level crossing trigger condition, with the

level being defined by the reference amplitude ar. Assuming the response x(t) is

ergodic, the expected value is replaced with the time average to produce;

Dxx(τ) =
1

Ns

Ns∑

i=1

x(ti + τ)|x(ti) = ar (4.73)

where Ns is the number of segments used to generate the RD signature.

Another trigger condition is the use of peak amplitudes in the response time

history, and is known as the Ranked Random Decrement [163].

Dxx(τ) =
1

Ns

Ns∑

i=1

x(ti + τ)|ẋ(ti) = 0, x(ti) = ar (4.74)

Two conditions are specified in the ranked RD technique: ẋ(ti) = 0 requires x(t)

to be a peak when the response is at the reference amplitude specified by x(ti) =

ar. Since practical applications of the RD technique use discrete time sampled

response data, the probability of x(ti) = ar occurring in the time series is low

without careful selection of the reference amplitude. Depending on the amount

of response data available, this can lead to insufficient segments being selected,

which can cause significant errors in the estimation of the dynamic characteristics.

Therefore, a reference amplitude tolerance ∆ar is introduced to broaden the extents

of the acceptance interval about the reference amplitude, and thereby increase the

probability of trigger events occurring. The estimate of the RD function is given by;

Dxx(τ) =
1

Ns

Ns∑

i=1

x(ti + τ)|ẋ(ti) = 0, x(ti) ∈ [ar ±∆ar] (4.75)

The ranked RD technique is described in Figure 4.10. The trigger condition defined

by the ranked RD technique can be used to estimate the dynamic characteristics

for a particular response amplitude. By generating multiple RD functions for incre-

mental values of the reference amplitude, the amplitude dependence of the dynamic

characteristics can be observed.

In addition to the selection of a suitable trigger condition, the practical imple-

mentation of the RD technique requires consideration for the following aspects:

• The response data used to generate the RD function must be for a single degree

of freedom system. All structures have multiple modes of vibration, which

means the vibration mode of interest must be isolated prior to applying the

RD technique. This can be achieved with bandpass filtering the response data.
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Figure 4.10: Ranked RD concept (Source: Tamura and Suganuma 1996 [163] with
notation adjustments)

Careful selection of the upper and lower cut-off frequencies is required to ensure

unwanted modes are removed, without altering the response information for

the mode of interest.

• A suitable reference amplitude tolerance for the ranked RD technique is re-

quired to ensure sufficient segments are used to generate the RD function. As

the amount of response data increases, the reference amplitude can decrease,

because the reduced probability of detecting a peak in the narrower trigger

range is offset by the increased quantity of response data, thereby maintaining

the number of segments used. For a reduced quantity of response data, the

reference amplitude tolerance must increase the number of segments detected,

whilst not influencing the estimates of natural frequency and damping ratio.

This is particularly important when using the RD function for investigating

the amplitude dependence of the dynamic characteristics.

• Establishing a minimum threshold for the number of segments (Ns) used to

generate the RD function is important for maintaining the accuracy of the

natural frequencies and damping ratios. The estimation of the damping ratio

is expected to be more sensitive to the number of segments used. Previous

research has recommended the minimum number of segments to be 2000 [27,

163], although stability in the damping ratio estimates has been observed for

as little as 200 segments [22, 90].

• The number of cycles (Nc) used to extract the dynamic characteristics from
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the RD function is particularly important when investigating the amplitude

dependence of the dynamic characteristics. The variance of the RD function

increases with the number of cycles, which implies the first cycle is expected

to provide a more accurate damping ratio estimate. However, the damping

estimate errors using the first cycle is found to be high, and it has been rec-

ommended that improved results are obtained using five cycles [90]. This

recommendation is in contrast to other research that has observed increasing

overestimation of the damping ratio as the number of cycles increases [163].

Furthermore, there is the potential to dilute the amplitude dependent effects

on the damping ratio estimates by increasing the number of cycles. This will

introduce the latter parts of the RD function, which are not associated with

the response amplitude of interest, to the estimation process.

As for the FDD and SSI techniques, the RD technique requires the measured re-

sponse to be from a system excited by a Gaussian, white noise input force with zero

mean. Furthermore, the system is assumed to have a single degree of freedom with

linear, or small non-linear behaviour [73]. compared with FDD and SSI techniques,

the RD technique is less complex to implement since only three relatively simple

steps are performed: detection of trigger points, extraction of the time history seg-

ments, and averaging of the time history segments. However, the RD technique

requires large quantities of data in order to achieve satisfactory estimates of the

natural frequency and damping ratio. Therefore, the RD technique is applied to the

data obtained from the wind-induced monitoring programme described in Section

3.5, in order to determine the amplitude dependence of the natural frequencies and

damping ratios of Latitude tower.

Example: Random Decrement Technique

The Random Decrement analysis used in this research was programmed using Mat-

lab R2007b [170]. Figure 4.11 displays the RD function generated from multiple re-

sponse time histories collected during the monitoring programme at Latitude tower.

The ranked RD technique was used with the following trigger condition parameters:

ar = 0.3 mgn, ∆ar = 0.05. A tenth order Butterworth bandpass filter with upper

and lower frequencies of 0.21 Hz and 0.28 Hz respectively was used to isolate the

mode of interest. The natural frequency and damping ratio results using a curve fit

are listed below. The damping ratio estimate 95% confidence interval for the curve

fit is also reported in parentheses. The curve fit was applied over the first five, three,

and then two cycles of the RD function.

• Nc = 5, fy1 = 0.254 Hz, ζ = 1.60% (1.57, 1.63)

• Nc = 3, fy1 = 0.254 Hz, ζ = 1.38% (1.34, 1.43)
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Figure 4.11: Ranked RD function for the fundamental x-axis translation vibration
mode, generated from data obtained during the monitoring programme at Latitude
tower.

• Nc = 2, fy1 = 0.254 Hz, ζ = 1.02% (0.98, 1.06)

4.5 Summary

This chapter described vibration models of structures and the system identification

techniques used to determine dynamic characteristics from ambient vibration data.

Finite element models were initially discussed to introduce the formation of the

equations of motion for discrete systems with multiple degrees of freedom, and to

describe the solution methods for damped and undamped systems.

For the damped system case, proportional damping and general viscous damp-

ing cases are discussed. The equations of motion for the general viscous damping

case was used as the basis for the system identification techniques. Three system

identification techniques were described: a frequency domain technique, and two

time domain techniques. All three techniques estimate the dynamic characteristics

via the response measurements from a structure excited by unmeasured random

excitation — a technique also known as operational modal analysis.

The frequency domain technique described is known as frequency domain de-

composition. It is an extension of the peak picking method, with the addition of
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singular value decomposition of the spectral response matrix. Compared with the

peak picking method, this additional step in FDD improves the estimates of dynamic

characteristics, particularly damping ratios, and allows for improved identification

of closely spaced modes of vibration. The first time domain system identification

technique discussed is known as stochastic subspace identification. It is a paramet-

ric technique that has similar advantages to FDD — namely the ability to separate

closely spaced modes of vibration. The random decrement technique was finally in-

troduced in order to determine the amplitude dependence of the natural frequency

and damping ratio.

The FDD and SSI techniques were applied to wind-induced acceleration re-

sponses recorded approximately two years after construction completion of Latitude

tower. Natural frequencies and damping ratios for the first six modes of vibra-

tion were estimated. The first six modes comprised three fundamental modes of

vibration, including translation in the x-axis and y-axis and a torsional mode, and

corresponding second modes of vibration for these fundamental modes. The natu-

ral frequency estimates for the FDD and SSI techniques for all modes differed by

less than 1%. The damping ratio estimates displayed more variability between the

techniques. The damping ratio estimates for the fundamental modes differed by less

than 28%, but the second modes displayed larger differences, with the SSI estimates

being more than twice the FDD estimates for the second y-axis translation and

second torsional modes.

Multiple system identification techniques were used to gain more confidence in

the estimates of dynamic parameters. This is particularly relevant to the estimation

of the damping ratios when using unmeasured ambient vibrations as the excitation

force. The results from applying the system identification techniques to the vibration

tests conducted during construction of Latitude tower are presented in the following

chapter, in addition to comparisons with finite element models.



Chapter 5

Estimating Dynamic

Characteristics

5.1 Introduction

The main focus of this chapter is the estimation of the natural frequencies and

damping ratios of tall buildings. Results are presented for data obtained during

both the construction cycle, and during the post construction stages with tenant

occupation. A description of the tests and the equipment is included in Section 3.4.

The tests comprised forced and ambient vibration tests, and a comparison between

the results from the two test types is presented.

The natural frequency results during construction are discussed with attention

to the structural changes that occurred between consecutive vibration tests. The

goal is to further the understanding of links between changes in the stiffness and

mass of a structure, and the influence on the natural frequency. This will enable

more accurate models of structures to be generated, which will improve the natural

frequency estimates. In addition, a finite element analysis is also included as part of

the natural frequency estimation process. Using the natural frequencies measured

during the early stages of construction, a finite element model representing the struc-

ture at the time of testing is updated in order to achieve improved accuracy between

the model and the full-scale natural frequencies. The updated model attributes are

then applied to a model representing the completed structure. The knowledge ob-

tained from vibration testing, conducted during the early stages of construction, is

expected to improve the natural frequency estimates from the finite element model

of the completed structure. This is important for two reasons. Firstly, it provides

an evaluation of the assumptions and techniques used in the design, and the out-

comes of the evaluation can benefit future designs. Secondly, for buildings that

require auxiliary damping, a more accurate natural frequency estimate will benefit

the design of the damping devices.

124
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The damping ratio estimates during construction are discussed in parallel with

the structural changes. For a complex structure such as a tall building, it is dif-

ficult to attribute damping changes to particular changes in the structural and

non-structural elements. The goal in this instance is to determine the change in

the damping ratio between the initial stages of construction and after construction

completion. A relationship between these damping ratio estimates would prove use-

ful in removing much of the uncertainty in the damping ratio estimates for similar

tall building structures.

5.2 Forced Vibration Tests

The primary source of input excitation force for the series of vibration tests con-

ducted was from ambient excitations. The forced vibration tests (FVT) were con-

ducted to allow comparisons with the ambient vibration test (AVT) results, and

provided a validation of these results to give more confidence in the natural fre-

quency and damping ratio estimates.

Two input sources were used for the forced vibration tests: synchronised human

movement, and mechanical shaker. In both cases the natural frequency and damping

ratios were estimated from the decay trace of a vibration mode. The structure was

initially set in motion at a particular mode of vibration, with repeated forced inputs

to increase the oscillation amplitude. Once the amplitude plateaued or attained a

sufficient level above the ambient vibrations, the forced input was halted, and the

vibration amplitude was allowed to decay back to ambient vibration levels. The

natural frequency was estimated using the zero crossings of the decay trace. The

logarithmic decrement technique, discussed in Section 4.3.3, was applied to the decay

trace to estimate the damping ratio.

The decay traces often displayed amplitude beat characteristics due to closely

spaced vibration modes. In theory, the frequency of amplitude beating is approx-

imately equal to the average of the two interfering frequencies. Large structural

systems generally have low damping values, and are therefore classified as narrow-

band systems. Since the dominant modes are contained over a narrow frequency

band, the beating may result from more than two closely spaced modes. Therefore,

beating occurrences may not be periodic. To account for the beating, a linear least

squares fit of the logarithm of the decay trace peaks was used to determine the

damping ratio, and the peak of each beat cycle was selected to define the decay

trace envelope.

The damping values from forced vibration tests may be underestimated due to

the influence of unmeasured ambient excitation forces. These forces will increase the

vibration amplitude of the structure during the decay phase of the time series, which
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will result in a reduction of the slope of the logarithmic decrement. Effort was made

to conduct the tests during calm wind conditions, and when the cranes and lifts

were not in use, however it is impossible to completely avoid ambient excitations.

5.2.1 Synchronised Human Movement

Forced vibration tests using synchronised human movement were used for the first

three test dates in the schedule. Figure 5.1 is an example decay trace generated using

synchronised human movement. The first 20 seconds display increasing oscillation

amplitudes from repeated pushes from those involved in generating the input force.

The vibration amplitude peaks at approximately 0.24 mgn, and the input force was

halted at this point. The latter portion of the time series displays the decay trace of

the mode of vibration, and amplitude beat characteristics are clearly evident from

45 s onwards.

The results for all forced vibration tests using synchronised human movement

are included in Table 5.1. Only the fundamental modes of vibration were tested:

first mode translation in the x-axis (east-west), first mode translation in the y-

axis (north-south), and first mode torsion about the vertical z-axis. The reported

damping ratios are within the range 0.76–0.97 % for all test dates and vibration

modes.

The expected error in the damping ratios is represented by the standard devi-

ation of the damping ratio estimates σζ , which is reported as a percentage of the

damping ratio estimate. Some of the errors are significant, particularly for the x-

axis translation on the test date 2003-05-27. A potential reason for these errors is

the variation in the decay trace peaks caused by oscillation amplitude fluctuations

that most likely originate from beating, or energy exchange, between the funda-

mental modes of vibration as observed in other structures [92]. These fluctuations

reduce the linearity of the decay trace peaks, which is evident when plotted against a

logarithmic axes, and therefore reduce the quality of a linear fit when using the loga-

rithmic decrement technique. Since the slope of the decay trace is the only required

output from the linear fit in order to estimate the damping ratio, the presence of the

beating-induced vibration oscillations will have less effect on the damping estimates

than what is suggested by the error estimations.

The peak accelerations for the vibration tests are displayed in the final column

of Table 5.1. It is noted that some of the accelerations are relatively low, and

differences of more than a factor of two are displayed between test dates for a

particular vibration mode.
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Figure 5.1: Response signal for the fundamental y-axis translational vibra-
tion mode from a forced vibration test using synchronised human movement.
Test date: 2003-07-08, fy1 = 1.328 Hz, ζ = 0.76%, σζ = 14.5%.

Vibration Test f ζ σζ q̈max

Mode Date (Hz) (%) (%) (mgn)

Translation 2003-05-27 1.261 0.95 36.8 0.13

X1 2003-06-17 1.162 0.83 7.8 0.20

2003-07-08 1.050 0.86 21.5 0.09

Translation 2003-05-27 1.690 0.92 13.0 0.20

Y1 2003-06-17 1.509 0.91 12.1 0.20

2003-07-08 1.328 0.76 14.5 0.21

Torsion 2003-05-27 2.020 0.84 10.8 0.12

T1 2003-06-17 1.758 0.97 8.2 0.07

2003-07-08 1.548 0.94 21.4 0.12

Table 5.1: Results for forced vibration testing using synchronised human movement.



CHAPTER 5. ESTIMATING DYNAMIC CHARACTERISTICS 128

5.2.2 Mechanical Shaker

At the completion of the main structure, and prior to the completion of the facade

and internal fit-out, two forced vibration tests using a mechanical shaker were con-

ducted. Figure 5.2 displays a typical trace from a mechanical shaker test. Similar

to the decay trace for the synchronised human movement tests, the time history

displays the increasing oscillations, followed by a plateau that indicates the input

energy is equivalent to the energy dissipation per cycle. For this test, the vibration

amplitude peaks at approximately 0.29 mgn. After halting the movement of the

mechanical shaker, the decay trace is observed from 270 s onwards.

Table 5.2 lists the results for the forced vibration tests using the mechanical

shaker. The damping ratios for the two translational modes of vibration display

significant differences for the damping ratio estimates, particularly the y-axis trans-

lation mode. This could be explained by the use of less mass (some of the lead

weights were stolen) in the mechanical shaker for the test date 2004-12-22, resulting

in lower peak accelerations. The published literature on damping estimation [63, 81]

and the results in Section indicate that damping is dependent on the amplitude of vi-

bration. A reduced vibration amplitude results in a lower damping estimation. The

results in Table 5.2 also reflect this relationship between vibration amplitude and

damping for the first two modes of vibration (x-axis translation and y-axis trans-

lation). The final column of the table shows the acceleration magnitudes (q̈max).

The reduced mass in the mechanical shaker for the tests conducted on 2004-12-22

resulted in a lower excitation force and therefore a lower vibration amplitude.

Despite the increased vibration amplitudes reported for the test date 2004-06-07,

similar error estimates to those from the synchronised human movement tests are

evident. The mode shapes for the first three vibration modes of Latitude tower

are displayed in Figure 5.3. Note that each mode shape plot shows the x-axis

component, y-axis component, and rotational component of the mode shape. Mode

2 has a complex mode shape, being a combination of an x-axis translation component

and a rotational component about the vetical z-axis.

5.2.3 Comparison with Ambient Vibration Results

The data captured for the forced vibration tests did not coincide with the ambient

vibration test data. This was due to the need to conduct the forced vibration

tests during calm wind conditions, and the ambient vibration tests required windy

conditions to produce meaningful results. This requirement means it is highly likely

that the two tests cannot be conducted on the same day. The time difference between

forced and ambient vibration tests was minimised as much as possible, and the

timing was established in order to avoid significant structural changes. Therefore,
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Figure 5.2: Response signal for the fundamental torsional vibration mode
from a forced vibration test using a mechanical shaker. Test date: 2004-12-22,
ft1 = 0.421 Hz, ζ = 0.86%, σζ = 5.8%.

Vibration Test f ζ σζ q̈max

Mode Date (Hz) (%) (%) (mgn)

Translation 2004-06-07 0.315 1.09 16.5 0.38

X1 2004-12-22 0.299 0.78 14.1 0.07

Translation 2004-06-07 0.276 1.14 10.5 0.44

Y1 2004-12-22 0.260 0.64 23.4 0.17

Torsion 2004-06-07 0.447 0.75 25.2 0.39

T1 2004-12-22 0.421 0.86 5.8 0.29

Table 5.2: Results for forced vibration testing using mechanical shaker.
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despite the time lag, which was minimal, between forced and ambient vibration

tests, the structure state can be considered constant for both instances.

The difference in natural frequency estimates for FVT, FDD, and SSI were all

within 5%, with most values being within 1%. Due to this negligible difference,

a tabulated comparison of the natural frequency results for each technique is not

included. The set of natural frequency results from the FDD technique are used in

subsequent figures and tables for analysis and discussion.

The damping ratio estimates for FVT, FDD, and SSI are displayed in Table 5.3.

The damping ratio estimates include structural and aerodynamic damping compo-

nents, however the latter is expected to be negligible considering the low vibration

amplitudes observed during testing. Three test dates are used to compare the damp-

ing ratio estimates. The first two test dates include FVT using synchronised human

movement, while the final test date includes FVT using the mechanical shaker.

The differences between the damping ratio estimates from each technique are

typically less than 30%. The only exception is the SSI damping ratio estimate for

test date 2003-06-17, which is greater than the FVT and FDD estimates by a factor

of 1.73 and 1.79 respectively. The results do not appear to indicate any consistent

pattern of the AVT techniques either under or overestimating the damping ratios

reported by the FVT technique. Although, if the SSI damping ratio estimate for

the x-axis translation mode is excluded on test date 2003-06-17, the AVT results

tended to underestimate the FVT results.

The peak acceleration amplitudes for all tests ranged between approximately

0.05–0.40 mgn. This may result in amplitude dependence effects in the damping ratio

estimates, however the results in Table 5.3 do not show any positive correlations

between acceleration amplitude and damping ratio. Furthermore, the impact of

the amplitude dependence may be obscured by the errors inherent to each of the

estimation techniques.

5.3 Natural Frequency Results

5.3.1 Change during Construction

The natural frequencies for the fundamental modes of vibration measured during

the construction of Latitude tower are displayed in Table 5.4. The height of the core

above the base of the tower hb is included. Note that multiple measurements are

included for core heights of 132.930 m and 203.370 m. Referring to the construction

schedule in Figure 3.27, these heights correspond to level 37 and level 55 respectively.

The two vibration tests conducted when the core was at level 37 differ by the addition

of a floor plate. At level 55 the core was completed, and three vibration tests

were conducted to record the changes from the addition of floor plates, facade, and
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Translation X1

FVT FDD SSI

Test ζ σζ ẍ1max ζ σζ ẍ1max ζ σζ

Date (%) (%) (mgn) (%) (%) (mgn) (%) (%)

2003-06-17 0.83 7.8 0.20 0.81 13.2 0.05 1.44 4.2

2003-07-08 0.86 21.5 0.09 0.82 5.2 0.19 0.82 3.4

2004-06-07 1.09 16.5 0.38 0.87 13.0 0.32 1.05 7.1

Translation Y1

FVT FDD SSI

Test ζ σζ ÿ1max ζ σζ ÿ1max ζ σζ

Date (%) (%) (mgn) (%) (%) (mgn) (%) (%)

2003-06-17 0.91 12.1 0.20 0.88 25.1 0.05 0.89 8.5

2003-07-08 0.76 14.5 0.21 0.96 1.5 0.09 0.77 5.6

2004-06-07 1.14 10.5 0.44 0.98 12.2 0.16 0.89 21.5

Torsion T1

FVT FDD SSI

Test ζ σζ ÿ2max ζ σζ ÿ2max ζ σζ

Date (%) (%) (mgn) (%) (%) (mgn) (%) (%)

2003-06-17 0.97 8.2 0.07 0.74 17.2 0.05 0.91 4.0

2003-07-08 0.94 21.4 0.12 0.84 1.7 0.07 0.85 18.0

2004-06-07 0.75 25.2 0.39 0.92 29.2 0.05 1.01 21.7

Table 5.3: Comparison between damping ratio estimates from forced vibration tests
(FVT) and ambient vibration tests (FDD and SSI).
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internal fit-out.

A plot of the fundamental natural frequencies during construction is displayed

in Figure 5.4, with the height of the core above the structure base as the abscissa.

The measurements begin at a core height of 80 m because, as discussed in Section

3.2.3, the original structure was completed to this height.

The decrease in natural frequency with increasing height displayed in Figure

5.4 confirms the inverse relationship between natural frequency and height of the

building (length of beam) that is described in the theoretical models of idealised

cantilever beams in Equations (2.1) and (2.2). The spacing between the natural

frequencies also decreases with increasing height. For the first test, the difference

between the frequencies for fy1 and ft1 is approximately 0.33 Hz, and for fy1 and fx1

the difference is approximately 0.43 Hz. For the final test the differences reduce to

approximately 0.044 Hz and 0.12 Hz.

For the first test, the order of the modes according to ascending natural frequency

is fx1, fy1, and ft1. When approximately 80% of the building was constructed,

corresponding to a building height of 166.815 m, the frequencies of the translational

modes fx1 and fy1 converged, and from that point onwards the natural frequency

of the fundamental y-axis translation mode was lower then the fundamental x-axis

translation mode.

For all three fundamental modes of vibration, the slope of the natural frequency

plots in Figure 5.4 display three distinct segments. The three segments observed

are bounded by the following core heights above ground: first segment between

78.965–132.930 m, second segment between 132.930–193.975 m, and the third seg-

ment between 193.975–203.370 m. The boundaries between these segments mark

identifiable changes in the slope of the plots. These abrupt changes in slope are of

interest because, from the perspective of the dynamic characteristics, they imply a

significant change in the structural properties has occurred.

In the first segment, the slope of the plots for fx1, fy1, and ft1 are approximately -

0.013, -0.019, and −0.022 Hz/m respectively. This portion of the plots represents the

most rapid reduction in the natural frequencies during the construction cycle. This

rapid reduction is expected in this stage of construction if the building is behaving

as either a shear beam or flexural beam model, or a combination of both.

During the stages of construction bounded by the first segment, the demolition

of the floor slabs between levels 11 and 15 was conducted. Removing the floor plates

will decrease the mass of the structure, as well as reducing the stiffness. Considering

the relationship between natural frequency, mass, and stiffness in Equation (4.15),

a decrease in mass will increase the natural frequency, while a decrease in stiffness

will decrease the natural frequency. It is unlikely that the removal of these floor

slabs will have a significant impact on the lateral stiffness of the structure, because
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the core shear walls are the dominant lateral force resisting elements.

The commencement of the facade installation also occurred during the first seg-

ment. The largest lag between the facade and the floor plate level, compared with

subsequent stages of construction, is observed in the vibration test schedule in Fig-

ure 3.27. Furthermore, no facade is installed prior to the completion of the core to

level 35 on test date 2003-08-27. Therefore, the latter stages of the first segment see

the gradual introduction of the facade elements. At the test date 2003-10-27, which

coincides with the change in slope between the first and second segments, the facade

was installed between levels 16 and 29 and covered approximately 40% of the above

ground portion of the structure.

If the stiffness of the facade elements, and their connections to the main structure,

are sufficient to influence the natural frequencies, the point at which the change in

slope occurs would imply that the amount of facade, in this case approximately 40%

of the building height, or the lag between the facade and the top of the structure,

are important to mobilising the facade in the lateral force resisting system.

The design of typical facade elements installed at Latitude tower should ensure

any inter-storey shears are not transferred to the facade elements. The intended

outcome is to avoid the possibility of the glass acting as a compression strut, which

is likely to cause serviceability issues for the glass facade. This is achieved by

including relatively large movement joints between the panels, as well as allowing

for movement at the connections to the floor slabs. From this discussion, it can

be concluded that it is unlikely the facade will have a significant impact on the

stiffness of the structure. The influence of the facade will be via the additional mass

introduced to the system, which will decrease the natural frequencies.

In the second segment, the slope of the plots for fx1, fy1, and ft1 reduce to ap-

proximately -0.0030, -0.0048, and −0.0044 Hz/m respectively. The most significant

structural change during segment two is the introduction of the core outrigger and

offset outriggers at the plant rooms between levels 34 and 36.

Observing the impact of the core outriggers directly after installation is ques-

tionable. It is unlikely any significant impact will be observed. This is due to

the outriggers being effective in transferring bending moments from the core to the

columns. Without significant curvature in the core generated by bending action, the

core outriggers will not be mobilised. Participation in resisting shear action between

the floors plates is a possibility, but the core shear walls are more likely to dominate

in this case.

The offset outriggers at the facade use the same principle as the core outriggers

to transfer bending moments to the columns. The difference is the moment is first

transferred to the offset outriggers via the floor plate. Similar to the core outriggers,

the lack of bending action at this stage of construction means the offset outriggers
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Test hb,core fx1 fy1 ft1

Date (m) (Hz) (Hz) (Hz)

2003-05-27 78.965 1.261 1.690 2.020

2003-06-17 90.260 1.162 1.528 1.748

2003-07-08 94.025 1.050 1.323 1.548

2003-08-01 112.850 0.772 1.006 1.211

2003-08-07 116.635 0.754 0.961 1.148

2003-08-27 125.025 0.654 0.820 0.972

2003-09-12 129.165 0.615 0.752 0.884

2003-09-30 132.930 0.576 0.674 0.825

2003-10-10 132.930 0.566 0.649 0.820

2003-10-27 144.225 0.552 0.601 0.791

2003-11-17 159.285 0.513 0.542 0.732

2003-12-17 166.815 0.474 0.479 0.679

2004-02-12 193.975 0.390 0.360 0.557

2004-03-01 198.040 0.361 0.332 0.508

2004-06-07 203.370 0.313 0.269 0.440

2004-08-06 203.370 0.305 0.259 0.427

2004-12-22 203.370 0.303 0.259 0.427

Table 5.4: Change in natural frequency of the fundamental modes of vibration
during construction.

will not be mobilised. In the case of shear actions, the offset outriggers will have an

influence.

The core outrigger construction comprises steel encased concrete beams inte-

grated with the floor slabs and spanning between the core and the perimeter columns.

Two steel diagonals between the beams in a k-frame arrangement complete the brace.

The concrete beams include stressing tendons that were stressed, and therefore be-

came fully effective, approximately 28 days after pouring of the level 36 slab. This

occurred between test dates 2003-11-17 and 2003-12-17. At this stage the fy1 value

continues to decrease, and crosses the fx1 value at test date 2003-12-17.

The third and final segment in Figure 5.4 includes the last five vibration tests

starting at 2004-02-12. During this segment the natural frequencies decrease faster

than the previous segment. At the start of the segment, the concrete core was two

levels from completion, the floor plates were 10 levels from completion, and the

facade was completed to level 39. Assuming the floor slabs have little contribution

to the lateral stiffness, the last segment is characterised by the addition of mass,

which decreases the natural frequency of all the modes.

Table 5.5 compares the fundamental natural frequencies for the completed struc-
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Figure 5.4: Change in natural frequency of the fundamental modes of vibration
during construction.
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Measured Empirical Formula

f (Hz) Formula f (Hz) Difference

Translation Y1 0.256 fy1 = 46/h 0.263 3%

Translation X1 0.292 fx1 = 58/h 0.331 13%

Torsion T1 0.417 ft1 = 72/h 0.411 2%

Table 5.5: Comparison between measured fundamental natural frequencies and em-
pirical estimates from Ellis 1980 [47] (Measured values from after construction of
Latitude tower).

ture with the empirical estimates proposed by Ellis [47]. The measured natural

frequencies are from data recorded approximately two years after the building was

completed. At the time the entire building was occupied, with all internal fit-out

completed. The empirical formulas are based on the height above ground (h). The

measured y-axis mode and torsional mode natural frequencies are within 3% of the

estimates from the empirical formula. The empirical estimate for the x-axis natural

frequency is 13% more than the measured value.

The natural frequencies of the second modes of vibration are presented in Table

5.6 and Figure 5.5. The change in these modes of vibration during construction

is similar to that observed for the fundamental modes of vibration. The two tests

conducted when the core was at level 37 displayed a larger decrease in the natural

frequencies for the second modes compared with the first modes. The structural

changes between the two tests consisted of the addition of one floor level, and the

addition of the facade elements between levels 25 and 27. The decrease in the second

mode frequencies is between 4–6 %, while for the first modes the decrease is between

1–4 %.

The observability of stiffness changes, due to discrete changes in structural el-

ements such as the addition of outriggers and the joining of the eastern core wall

at level 16, between consecutive tests is obscured by the curing time of the con-

crete and the simultaneous nature of the construction. By the time the concrete

has achieved sufficient strength such that the change in question becomes effective,

other changes to the structure have occurred, thus preventing observations of the

changes in isolation.

5.3.2 Relationships between Modes

The ratios of the natural frequencies for the fundamental mode and second mode

of vibration during construction are displayed in Table 5.7 and Figure 5.6. Using

these ratios it is possible to gain insight into the structural actions of the building.

An idealised flexure beam with uniform mass and stiffness has a frequency ratio
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Test hb,core fx2 fy2 ft2

Date (m) (Hz) (Hz) (Hz)

2003-05-27 78.965 – – –

2003-06-17 90.260 3.809 4.683 4.961

2003-07-08 94.025 3.174 4.214 4.462

2003-08-01 112.850 2.588 3.008 3.545

2003-08-07 116.635 2.357 – –

2003-08-27 125.025 2.314 2.832 3.018

2003-09-12 129.165 2.046 2.686 2.788

2003-09-30 132.930 1.924 2.485 2.568

2003-10-10 132.930 1.816 2.383 2.471

2003-10-27 144.225 1.743 2.153 2.310

2003-11-17 159.285 1.567 1.924 2.075

2003-12-17 166.815 1.392 1.777 1.934

2004-02-12 193.975 1.147 1.382 1.523

2004-03-01 198.040 1.030 1.240 1.367

2004-06-07 203.370 0.928 1.055 1.152

2004-08-06 203.370 0.919 1.046 1.122

2004-12-22 203.370 0.908 1.025 1.106

Table 5.6: Change in natural frequency of the second modes of vibration during
construction.
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Figure 5.5: Change in natural frequency of the second modes of vibration during
construction.
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between the first and second modes of 2.5:1, while a shear beam has a ratio of 3:1.

The structural system in this case will be a combination of both flexural and shear

actions. Latitude tower has relatively uniform mass, but the stiffness decreases with

height due to reductions in the size of the core. This reduction in stiffness with

height can be approximated by an idealised beam with uniform mass and tapering

stiffness. The influence of tapering on the natural frequencies of idealised beams,

which is discussed in Section 2.2.1, are not considered in the ratios.

In Figure 5.6, the ratios for the x-axis modes are approximately equivalent to a

shear beam model after the core height reaches approximately 135 m. Prior to this,

the x-axis ratios gradually increase to a value of 3.5, and this stage of construction

corresponds to the demolition of the floor slabs between levels 11 to 15. The reduc-

tion in the mass at these levels may be an explanation for the increase in the ratios

for all the modes during these stages of construction.

For the torsional modes, the ratios gradually reduce after test date 2003-09-12

to a final value of 2.6. Torsional deflections are purely associated with shearing

actions, and therefore a ratio closer to 3 would be expected. However, the concrete

core does not have uniform stiffness over the building height, while the mass does

remain approximately uniform. Therefore, the idealised uniform beam ratios are

likely to be reduced due to the tapering effect of the concrete core stiffness [7].

The ratios for the y-axis modes are consistently above 3.5 after test date 2003-09-12,

and then increase after the completion of the concrete core to a value of 4.0. During

this increase, the only changes to the structure included internal fit-out and the

addition of facade elements between levels 52 to 55. This implies either the added

mass at the top of the building was a greater influence on reducing the first mode

frequency in the y-axis, or the elements added at the top of the building had an

influence on increasing the stiffness of the second mode frequency in the y-axis. An

increase in the ratio is also observed for the x-axis modes. Facade elements adding

stiffness to the second mode natural frequencies was reported for a 24 storey steel

frame tower [118].

The stressing of the core outriggers between test dates 2003-11-17 and 2003-

12-17 corresponds to an increase in the y-axis ratios. The stiffening effect of the

core outriggers was expected to have most influence on the fundamental mode of

vibration. Therefore, it was expected that the y-axis ratio would decrease with

the introduction of the core outriggers. The offset outriggers, acting in the x-axis,

were installed between test dates 2003-10-27 and 2003-11-17. The date at which

the floor slabs bounding the offset outriggers attain a 28 day concrete strength

is between test dates 2003-11-17 and 2003-12-17. For these test dates, the x-axis

ratio decreases more rapidly compared to the previous values, indicating the x-axis

fundamental natural frequency has increased relative to the second mode natural
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Test hb,core fx2/fx1 fy2/fy1 ft2/ft1

Date (m) (Hz) (Hz) (Hz)

2003-05-27 78.965 – – –

2003-06-17 90.260 3.3 3.1 2.8

2003-07-08 94.025 3.0 3.2 2.9

2003-08-01 112.850 3.4 3.0 2.9

2003-08-07 116.635 – – –

2003-08-27 125.025 3.5 3.5 3.1

2003-09-12 129.165 3.3 3.6 3.2

2003-09-30 132.930 3.3 3.7 3.1

2003-10-10 132.930 3.2 3.7 3.0

2003-10-27 144.225 3.2 3.6 2.9

2003-11-17 159.285 3.1 3.6 2.8

2003-12-17 166.815 2.9 3.7 2.9

2004-02-12 193.975 2.9 3.8 2.7

2004-03-01 198.040 2.9 3.7 2.7

2004-06-07 203.370 3.0 3.9 2.6

2004-08-06 203.370 3.0 4.0 2.6

2004-12-22 203.370 3.0 4.0 2.6

Table 5.7: Ratios of the natural frequencies for the fundamental mode and second
mode of vibration during construction.

frequency.

The ratio between the fundamental torsional mode and the fundamental transla-

tional modes is displayed in Table 5.8. This ratio is useful in confirming the estimate

of the torsional mode when the fundamental mode is estimated with sufficient accu-

racy. During construction, the ratio of the torsional mode to the x-axis translational

mode gradually decreases from 1.60 to 1.41, while the ratio of the torsional mode to

the y-axis translational mode increases from 1.20 to 1.65. At the start of testing, the

first mode of vibration was translation in the x-axis, and by the end of construction

the first mode had changed to translation in the y-axis. Therefore, buildings similar

to Latitude tower could be expected to have a ratio between the first torsional mode

and the first translational mode of approximately 1.6.

5.3.3 Amplitude Dependence

The amplitude dependence of the fundamental natural frequencies was determined

using the Ranked Random Decrement technique, and the results are displayed in

Figures 5.7 to 5.9. The number of segments (Ns) used to attain the natural frequency

estimates is indicated by the vertical dashed lines. For the x-axis translation mode,
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Figure 5.6: Ratios of the natural frequencies for the fundamental mode and second
mode of vibration during construction.
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Test hb,core ft1/fx1 ft1/fy1

Date (m) (Hz) (Hz)

2003-05-27 78.965 1.60 1.20

2003-06-17 90.260 1.50 1.15

2003-07-08 94.025 1.48 1.17

2003-08-01 112.850 1.56 1.22

2003-08-07 116.635 1.52 1.19

2003-08-27 125.025 1.51 1.19

2003-09-12 129.165 1.45 1.20

2003-09-30 132.930 1.44 1.22

2003-10-10 132.930 1.45 1.27

2003-10-27 144.225 1.44 1.32

2003-11-17 159.285 1.43 1.36

2003-12-17 166.815 1.44 1.41

2004-02-12 193.975 1.42 1.50

2004-03-01 198.040 1.42 1.53

2004-06-07 203.370 1.39 1.63

2004-08-06 203.370 1.41 1.67

2004-12-22 203.370 1.41 1.65

Table 5.8: Natural frequency ratios between the fundamental torsional mode and
the fundamental translational modes during construction.
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the estimates with an acceleration amplitude greater than 0.45 mgn used less than

2000 segments, and for acceleration amplitudes greater than 0.70 mgn the number

of segments reduces to less than 200. The y-axis translation mode and torsional

mode display higher acceleration amplitude thresholds for the 2000 and 200 segment

indicators in Figures 5.8 and 5.9. The number of segments used is more critical for

the damping estimates, which are discussed in Section 5.4.3, compared with the

natural frequency estimates.

The number of cycles (Nc) of the random decrement function used to estimate the

natural frequency has little influence on the final result. For the x-axis translation

mode and the torsional mode in Figures 5.7 and 5.9, increasing the number of cycles

tended to increase the natural frequency estimates at each acceleration amplitude,

whereas the opposite is observed for the y-axis translation mode in Figure 5.8.

Despite the influence of the number of segments and number of cycles used, the

change in the natural frequencies is very low over the acceleration amplitude range.

The approximate reductions are;

• Translation X1: 3.4%

• Translation Y1: 2.3%

• Torsion T1: 2.6%

For all fundamental modes, the change in the natural frequency over the accel-

eration amplitude range does not follow a linear trend. The rate of reduction is

greatest at the lower amplitudes, and decreases as the amplitudes increase. Once

the amplitude reaches a certain level, each mode displays a discontinuity in the rate

of natural frequency reduction, which is apparent in the sudden decrease observed at

the acceleration amplitudes 1.3 mgn, 0.9 mgn, and 1.2 mgn for the x-axis translation,

y-axis translation, and torsion modes respectively. These discontinuities could be

due to degradation of the random decrement function from insufficient segments. Al-

ternatively, these discontinuities may be due to structural or non-structural element

connections reaching a slipping threshold, and therefore contributing less stiffness

to the structure.

5.4 Damping Ratio Results

This section discusses the damping ratio estimates during construction. The esti-

mates for the fundamental modes of vibration are presented. The higher modes of

vibration typically displayed large errors in the damping ratio estimates when ap-

plying the FDD and SSI techniques. This was due to the ambient excitation force in

the frequency range of the higher modes being insufficient to excite these modes. It
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Figure 5.7: Amplitude dependence of natural frequency for the fundamental x-axis
translational mode of vibration (Ranked RD output).
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Figure 5.8: Amplitude dependence of natural frequency for the fundamental y-axis
translational mode of vibration (Ranked RD output).
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Figure 5.9: Amplitude dependence of natural frequency for the fundamental tor-
sional mode of vibration (Ranked RD output).

was observed that the operation of the construction cranes attached to the structure

tended to excite the higher modes of vibration. Time series data recorded during

crane activity were excluded from damping ratio estimates since the type of loading

does not satisfy the requirements for random excitation, which is an assumption of

the FDD and SSI techniques.

5.4.1 Change during Construction

Estimates of the damping ratios for the fundamental x-axis translation mode during

construction are displayed in Table 5.9 and Figure 5.10. The upper and lower

bound of the estimates are between approximately 0.8–1.1 %, with the exception

of the SSI estimate for test date 2003-06-17. The acceleration amplitudes reported

are significantly lower than what is expected for serviceability excitation levels. It is

noted that the final FVT results on test date 2004-12-22 have a very low acceleration

amplitude. This was due to less mass being used in the mechanical shaker compared

with test date 2004-06-07.

Some of the scatter in the results can be explained by the difference in excitation

amplitudes between tests. Figure 5.11 plots the damping ratio estimates against the

acceleration amplitude, and Figure 5.12 plots the damping ratio estimates against

the normalised displacement amplitude. A linear least squares fit of the data implies
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FVT FDD SSI

Test hb,core ζ σζ ẍ1max ζ σζ ẍ1max ζ σζ

Date (m) (%) (%) (mgn) (%) (%) (mgn) (%) (%)

2003-05-27 78.965 0.95 36.8 0.13 – – – – –

2003-06-17 90.260 0.83 7.8 0.20 0.81 13.2 0.05 1.44 4.2

2003-07-08 94.025 0.86 21.5 0.09 0.82 5.2 0.19 0.82 3.4

2003-08-01 112.850 – – – 0.91 28.0 0.27 0.99 4.6

2003-08-07 116.635 – – – – – – – –

2003-08-27 125.025 – – – 1.07 16.6 0.55 1.03 8.7

2003-09-12 129.165 – – – 0.98 20.8 0.07 0.90 22.8

2003-09-30 132.930 – – – 0.96 8.2 0.22 1.08 7.3

2003-10-10 132.930 – – – 0.89 12.1 0.22 0.88 14.1

2003-10-27 144.225 – – – 0.94 33.3 0.05 0.94 8.3

2003-11-17 159.285 – – – 0.99 27.9 0.28 0.87 6.8

2003-12-17 166.815 – – – 0.99 40.5 0.23 1.08 7.1

2004-02-12 193.975 – – – 0.87 30.6 0.10 0.99 11.0

2004-03-01 198.040 – – – 0.94 15.2 0.24 1.13 10.0

2004-06-07 203.370 1.09 16.5 0.38 0.87 13.0 0.32 1.05 7.1

2004-08-06 203.370 – – – 0.92 10.6 0.18 0.96 3.5

2004-12-22 203.370 0.78 14.1 0.07 – – – – –

Table 5.9: Damping ratios during construction for the fundamental x-axis transla-
tion vibration mode.

the damping ratios are increasing with increasing acceleration, but the scatter in the

plot results in a statistically weak correlation.

The noise floor of the acceleration measurement equipment was discussed in

Section 3.3.6. The standard deviation noise floor estimate was 0.077 mgn. It is

important to note that measurements for an acceleration less than this noise floor

have a 31.8% chance of being noise. Furthermore, the estimates for an acceleration

amplitude greater than two standard deviations of the noise floor have a 4.6% chance

of being noise. For the damping versus acceleration amplitude plot, the acceleration

values below 0.1 mgn are likely to have a low signal to noise ratio when considering

the noise floor of the acceleration measurement equipment.

Table 5.10 and Figure 5.13 display the damping ratio results for the fundamen-

tal y-axis translation mode during construction. The damping ratios are generally

within the range of 0.8–1.2 %, with the exception of the final FVT estimate of 0.64 %.

This value is significantly lower than the other estimates, and is likely due to dis-

tortions in the decay trace from ambient excitations. Figures 5.14 and 5.15 plot the

damping ratios against acceleration amplitude and normalised displacement respec-
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Figure 5.10: Damping ratio versus core height above base for the fundamental x-axis
translation vibration mode during construction.
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Figure 5.12: Damping ratio versus normalised displacement amplitude for the fun-
damental x-axis translation vibration mode during construction.

tively. As for the x-axis mode, the y-axis mode displays amplitude dependence in

the normalised displacement plot in Figure 5.15, particularly for the FVT damping

ratio estimates.

The damping ratio estimates for the fundamental torsional mode were lower

than the estimates for the translational modes. Figure 5.16 displays the torsional

damping ratio estimates during construction to be mostly between 0.7–1.1 %. In

addition, the plots of damping ratio against acceleration amplitude in Figure 5.17,

and damping ratio against normalised displacement in Figure 5.18, suggest that the

damping ratio is decreasing with increasing vibration amplitude.

The results presented above suggest that the damping ratios for low amplitude

vibrations are not influenced by the structural changes during construction. This

is a particularly useful outcome, since it implies the damping ratios for the first

three vibration modes of Latitude tower were known with a degree of confidence

when approximately 38% of the building height was completed. This conclusion

can also be more broadly applied to other buildings that share similar structural

and non-structural characteristics as Latitude tower. Furthermore, it has impor-

tant implications for determining auxiliary damping requirements for wind sensitive

structures. Confirming the level of damping inherent to the structure at an early

stage of construction allows more accurate assessments of the amount of auxiliary

damping required. If the inherent damping levels in the structure are confirmed to

be sufficient, auxiliary damping devices will be unnecessary. This results in signifi-

cant financial benefits by avoiding the installation of auxiliary damping devices, as

well as gaining the space reserved for the damping device installation, which can be
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FVT FDD SSI

Test hb,core ζ σζ ÿ1max ζ σζ ÿ1max ζ σζ

Date (m) (%) (%) (mgn) (%) (%) (mgn) (%) (%)

2003-05-27 78.965 0.92 13.0 0.20 – – – – –

2003-06-17 90.260 0.91 12.1 0.20 0.88 25.1 0.05 0.89 8.5

2003-07-08 94.025 0.76 14.5 0.21 0.96 1.5 0.09 0.77 5.6

2003-08-01 112.850 – – – 0.81 12.2 0.12 1.08 4.6

2003-08-07 116.635 – – – – – – – –

2003-08-27 125.025 – – – 1.01 15.6 0.17 1.09 15.0

2003-09-12 129.165 – – – 0.89 26.1 0.07 0.84 10.8

2003-09-30 132.930 – – – 0.93 9.1 0.24 0.99 4.4

2003-10-10 132.930 – – – 1.14 5.0 0.30 0.83 5.9

2003-10-27 144.225 – – – 1.06 17.5 0.06 1.03 7.4

2003-11-17 159.285 – – – 0.96 12.3 0.19 0.85 10.8

2003-12-17 166.815 – – – 1.17 25.7 0.35 0.89 11.4

2004-02-12 193.975 – – – 0.98 34.2 0.23 1.08 3.9

2004-03-01 198.040 – – – 0.92 24.6 0.22 0.99 7.8

2004-06-07 203.370 1.14 10.5 0.44 0.98 12.2 0.16 0.89 21.5

2004-08-06 203.370 – – – 1.05 12.3 0.28 0.98 5.2

2004-12-22 203.370 0.64 23.4 0.17 – – – – –

Table 5.10: Damping ratios during construction for the fundamental y-axis transla-
tion vibration mode.
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Figure 5.13: Damping ratio versus core height above base for the fundamental y-axis
translation vibration mode during construction.
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Figure 5.14: Damping ratio versus acceleration amplitude for the fundamental y-axis
translation vibration mode during construction.
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Figure 5.15: Damping ratio versus normalised displacement amplitude for the fun-
damental y-axis translation vibration mode during construction.

FVT FDD SSI

Test hb,core ζ σζ ÿ2max ζ σζ ÿ2max ζ σζ

Date (m) (%) (%) (mgn) (%) (%) (mgn) (%) (%)

2003-05-27 78.965 0.84 10.8 0.12 – – – – –

2003-06-17 90.260 0.97 8.2 0.07 0.74 17.2 0.05 0.91 4.0

2003-07-08 94.025 0.94 21.4 0.12 0.84 1.7 0.07 0.85 18.0

2003-08-01 112.850 – – – 0.83 7.7 0.09 1.02 43.8

2003-08-07 116.635 – – – – – – – –

2003-08-27 125.025 – – – 0.82 47.4 0.13 1.00 14.9

2003-09-12 129.165 – – – 0.90 51.7 0.06 1.10 33.7

2003-09-30 132.930 – – – 0.75 19.4 0.18 0.89 19.9

2003-10-10 132.930 – – – 0.90 34.0 0.22 0.95 9.2

2003-10-27 144.225 – – – 0.88 28.7 0.05 0.76 14.2

2003-11-17 159.285 – – – 0.96 24.9 0.14 1.55 6.4

2003-12-17 166.815 – – – 0.85 34.1 0.33 1.29 7.6

2004-02-12 193.975 – – – 0.86 16.7 0.11 0.82 16.8

2004-03-01 198.040 – – – 0.98 26.2 0.14 1.00 12.7

2004-06-07 203.370 0.75 25.2 0.39 0.92 29.2 0.05 1.01 21.7

2004-08-06 203.370 – – – 1.07 30.3 0.17 0.90 2.7

2004-12-22 203.370 0.86 5.8 0.29 – – – – –

Table 5.11: Damping ratios during construction for the fundamental torsion vibra-
tion mode.
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Figure 5.16: Damping ratio versus core height above base for the fundamental tor-
sion vibration mode during construction.
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Figure 5.17: Damping ratio versus acceleration amplitude for the fundamental tor-
sion vibration mode during construction.
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Figure 5.18: Damping ratio versus normalised displacement amplitude for the fun-
damental torsion vibration mode during construction.

reconfigured into a rentable space.

The damping ratio could be expected to increase during construction as more

independent damping mechanisms are added from sources such as the steelwork,

facade, and internal fit-out. At first testing the structure was predominantly rein-

forced concrete, and increasing proportions of steelwork were added. The addition

of steelwork means more joints, with the potential to add slipping friction damping

mechanisms. Therefore, it could be expected that the damping ratios would increase

with the addition of significant amounts of steelwork. Two aspects may contradict

this expectation. Firstly, during initial testing the structure included temporary

steelwork for construction purposes, which may have introduced slip friction damp-

ing mechanisms. Secondly, the levels of vibration may have been insufficient to

mobilise damping mechanisms from joint friction in the steelwork.

5.4.2 Comparison with Previous Research

A discussion of previous research on full-scale damping ratio estimates was included

in Section 2.3.2. The previous measurements established a range of damping ratios

between approximately 0.5–1.5 % for buildings comparable with Latitude tower. In

addition, all of the previous research discussed were for measurements recorded

during low amplitude events and typically include the structural and aerodynamic

components, which is the case for the measured damping ratio estimates at Latitude

tower.

During the final stages of construction of Latitude tower, when the core was
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complete and only the floor plates, facade, and internal fit-out were being completed,

the damping ratios for the fundamental translational modes were between 0.78–

1.1 %. For the completed structure, with tenants in the building, the damping

ratios were between 0.86–1.0 % — from Tables 4.1 and 4.2. The torsional coupling

observed in the fundamental x-axis mode did not correspond with a greater damping

ratio for this mode of vibration, which has been observed in other structures [140].

The measured damping ratios for the translational modes at Latitude tower are

within the range of measurements on comparable structures.

For the fundamental torsional mode, the damping ratios for the almost com-

pleted structure were between 0.75–1.1 %, and when tenants were in the building

the range was 0.8–1.0 % for low amplitude vibrations. These values are similar to

those discussed in Section 2.3.2.

5.4.3 Amplitude Dependence

The amplitude dependence of the damping ratios for the fundamental vibration

modes were determined using the Ranked Random Decrement technique. The re-

sults are displayed in Figures 5.19 to 5.21. The number of segments (Ns) used to

attain the damping ratio estimates is indicated by the vertical dashed lines. Esti-

mates that are to the right of the Ns < 2000 indicator used less than 2000 segments,

and another indicator is included for estimates that used less than 200 segments.

The number of cycles (Nc) of the random decrement function used to estimate the

damping ratios has a significant influence on the results. For all modes of vibration,

the damping ratio estimates typically increase as the number of cycles increases.

The increase is greater for between two and three cycles, compared with three and

five cycles. For estimates using more than 2000 segments, the y-axis translation

mode and the torsional mode display a 30% and 20% gain in the damping ratio

estimates between two and three cycles. The gain is reduced to approximately 15%

and 10% when the estimates for three and five cycles are compared. This result is

similar to that observed by previous research [163], however the magnitude of the

change is greater in this case.

For the fundamental x-axis translation mode, damping ratio estimates for accel-

eration amplitudes below 0.5 mgn used more than 2000 segments. For these accel-

eration amplitudes, all of the damping ratios are greater than 1.5%, and display a

decreasing trend with increasing amplitude. This trend is not typical of the ampli-

tude dependent effects on damping ratios [41, 63, 81, 106]. In addition, the estimated

values are at least twice the magnitude of the estimates from FVT and AVT tests

conducted at the completion of construction, which are displayed in Table 5.9. It

is possible that the damping ratio estimates for the x-axis translational mode in

Figure 5.19 are distorted by the modal interference between the first and second
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modes observed in Figure 4.4.

The amplitude dependence of the fundamental y-axis translation mode is dis-

played in Figure 5.20. The 2000 and 200 segment threshold are 0.7 mgn and 1.1 mgn

respectively, and these values are the largest amongst the fundamental modes. This

is expected since the fundamental y-axis translation mode is the first vibration mode,

and will therefore be the dominant mode of vibration. The plot displays an increas-

ing damping ratio as the acceleration amplitude increases. The estimates obtained

for two cycles have damping values that are approximately 10% larger than the val-

ues obtained from FVT and AVT in Table 5.10. Overestimation of damping ratios

was also observed in other applications of the Ranked Random Decrement technique

[163].

The shape of the plot for Nc = 2 in Figure 5.20 displays an initial increase

between 0.1–0.2 mgn, followed by a plateau between 0.2–0.4 mgn, and then another

increase between 0.4–0.8 mgn. These changes in the rate of increase of the damping

ratios could be due to extra damping sources being mobilised as certain amplitude

thresholds are reached. Beyond an acceleration amplitude of 0.8 mgn, the damping

ratio drops by 15% and is followed by another increase. These values beyond 0.8 mgn

are expected to be of poor quality due to insufficient segments being used to generate

the random decrement function.

Figure 5.21 displays the amplitude dependence of the fundamental torsional

mode. The 2000 and 200 segment thresholds are 0.5 mgn and 0.9 mgn respectively.

The damping ratio estimates for Nc = 2 do not closely match the FVT and AVT val-

ues in Table 5.11. The largest difference is approximately 60%. The damping ratio

estimates are increasing with increasing acceleration amplitude between acceleration

amplitudes 0.1–0.6 mgn, and the slope of the plot is also increasing. This is in con-

trast to the fundamental y-axis mode, which displayed a mixture of positive slopes

and plateaus. For this mode of vibration, the slope of the plot between 0.1–0.5 mgn

suggested that more damping sources are being mobilised with each incremental in-

crease in the acceleration amplitude. As observed with the y-axis translation mode,

the damping ratio estimates become more scattered after the number of segments

decreases below 2000, and the quality of the estimates becomes insufficient to allow

further conclusions to be established.

5.5 Finite Element Analysis

A finite element model was constructed using the Strand7 finite element analysis

system [155]. The mass and stiffness parameters used in the model were typical of

those likely to be used in a design case for determining the dynamic characteristics.

The following sections include a description of the initial assumptions, the updating
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Figure 5.19: Amplitude dependence of the damping ratio for the fundamental x-axis
translational mode of vibration (Ranked RD output).
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Figure 5.21: Amplitude dependence of the damping ratio for the fundamental tor-
sional mode of vibration (Ranked RD output).

methodology, and the results from comparing both the initial and updated models

with full-scale measurements.

5.5.1 Initial Assumptions

Model Detail

Finite element models of tall buildings can range from simple stick models to three

dimensional models that closely resemble the prototype. Stick models typically

comprise a single vertical beam element that models the vertical distribution of

stiffness. Uniform mass properties can be specified for the beam element, or it can

be subdivided into multiple segments with lumped masses and rotational masses

assigned to the nodes, which model the mass inertia and mass moment of inertia

respectively. These lumped masses and rotational masses typically represent the

influence of the floor plates, which often contain a significant portion of the total

mass.

In order to facilitate the updating process, the level of detail used to create the

finite element model for this research was relatively high. Latitude tower comprises

a complex structural arrangement compared with more typical tall buildings. The

structure below level 16 is relatively simple, with reinforced concrete core walls,
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columns, and floor plates. Above level 16, complexities arise due to column transfers

between levels 16 to 20, the extended floor plates at level 20 and above, and the

outrigger bracing at the plant room between levels 34 and 36. Furthermore, the

non-sequential construction method also adds complexities due to the demolition of

structural elements at lower levels while construction of upper levels progressed.

Considering the preceding discussion, a three dimensional finite element model

of Latitude tower was generated. The model was constructed according to the

geometry and dimensions described in Section 3.2. Few simplifying assumptions

were used to reduce the geometric complexity of the model. The goal was to create

a model that closely resembled the actual geometry of the structure. This would

allow fine tuning of mass and stiffness properties during the updating process.

The shear walls and floor slabs were modelled using plate elements that allow

both in-plane and out-of plane actions. The in-plane rigidity of the floor slabs was

the only source of rigid diaphragm action — no other elements, in addition to the

floor slab plates, were used to model the rigid diaphragm action of the floor plates.

The columns, braces, and trusses were modelled using beam elements, with appropri-

ate action releases assigned at the beam ends. No structural elements were included

to model the facade, as it was deemed to have little influence on the structural

stiffness.

Mass Distribution

Due to the level of detail used in the model, most of the structural mass was modelled

via the structural elements. The exception was the steel beams supporting the floor

slabs, which were excluded from the model. These beams are designed as simply

supported members, and the lack of moment actions at the connection to columns

means these beams will not contribute to the lateral stiffness of the structure. The

mass of these beams was included via the addition of equivalent non-structural mass

uniformly distributed over the floor plate area.

The mass of the facade was modelled by a non-structural mass applied around the

perimeter of each floor plate. The weight of the facade was estimated to be 0.5 kPa,

and for a typical level with a floor height of 3.765 m, this results in a uniformly

distributed load of 192 kg/m applied to the edge of the floor plates. The mass of the

fire stairs located on the western facade was also included as a non-structural mass.

Table 5.12 lists the standard dead loads (SDL) and live loads (LL) applied to

the model. In the Australian design standard on structural design actions [150],

these two loads are known as permanent actions and imposed actions respectively.

The SDL represents the mass associated with fittings and finishes, such as floor

coverings and false ceilings. The LL represents the mass from the intended use and

occupancy of the structure. For models of the structure during construction, the
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SDL LL

Floor Type (kPa) (kPa)

Plant 2.5 7.5

Office 1.1 1.5

Lobby 1.5 4.0

Retail 1.5 2.0

Parking 0.2 2.5

Table 5.12: Standard dead loads and live loads used in the finite element modelling.

f ′c Ec

(MPa) (MPa)

Core Walls Typical 50 34800

L34–L36 80 39600

Columns L1–L36 80 39600

L36–L41 60 36500

L41–L55 40 32800

Floor Slabs Typical 40 32800

Table 5.13: Concrete properties for the initial finite element model.

SDL values were only applied to levels included in the fit-out, and LL were only

applied to occupied levels.

Material Properties

The characteristic compressive strength of concrete at 28 days (f ′c) that was specified

on the structural drawings for various structural elements are listed in Table 5.13.

The table includes the modulus of elasticity (Ec) for the specified concrete. These

values were sourced from the Australian design code for concrete structures [152].

The core walls also included minor sections of masonry infill. These sections were

modelled with a modulus of elasticity of 25 000 MPa.

Shear Wall Link Beams

It is typical that some walls within a reinforced concrete core have large openings

at each floor level for doors, elevators, and services. The vertical alignment of the

openings tends to divide the wall into separate wall segments that are connected via

short beams. These beams link the walls, such that the effective depth of the wall

section is increased to a value between the individual wall sections and the total wall
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section when no openings are present. The modelling of the link beams will have a

significant influence on the stiffness of the structure.

For the modelling of Latitude tower, all link beams were modelled with dimen-

sions specified on the structural drawings. No reduction in the effective stiffness of

the link beams was modelled since the excitation levels experienced over the life of

the structure are significantly less than the lateral loads for the serviceability case,

and are therefore unlikely to be cracked.

Boundary Conditions

A description of the foundations is included in Section 3.2.2. Pad footings were

used for wall and column foundations, and the underlying ground material is high

class Sydney sandstone. In this configuration it is unlikely that significant compres-

sion of the underlying ground material under cyclical loading will occur, and the

influence on the dynamic characteristics will be negligible [48]. For this reason, the

nodal restraints at the base of the structure were assumed to be fixed in the three

translational directions. For the below ground levels above the base, a sufficient

gap between the structure and the surrounding soil is typically required to prevent

forces from rock heave. No other restraints were applied to the model.

Non-structural Elements

The intended use of the tower was for commercial offices, and therefore very few

internal partitions were constructed. Any stiffness associated with non-structural

elements was not included in the finite element model.

5.5.2 Model Updating Methodology

The are a number of model updating methodologies that have been used in previous

research. The most basic method is manually applying updates to the model using

knowledge of the structure to select the most appropriate parameters for updating.

Previous studies have shown this method can achieve good correlation between

experimental results and analytical models for large civil structures [94, 179]. The

disadvantage of this method is the time required to iterate the updating process to

test alternative structural configurations.

The time disadvantage of the manual method can be overcome by using an

automatic updating method. In this method the entire stiffness and mass matrices

of the model are subject to changes to produce models that are representative of

the system [54]. This automated approach can result in arbitrary changes to system

properties in order to force a match between the model and experimental results.

A potential outcome is a model with properties that are not physically realisable or
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Measured FEM1 Ratio

(Hz) (Hz) (–)

fx1 1.261 1.057 1.19

fy1 1.690 1.235 1.37

ft1 2.020 1.522 1.33

Table 5.14: Comparison between measured and FEM1 natural frequencies.

meaningful. A strategy to mitigate this is by placing limitations on the selections of

parameters to be modified by the automatic updating process [93, 180]. However,

at the end of the process the model changes still need to be reviewed, using sound

engineering judgement, to determine if they are realistic.

Compared with automatic updating, the manual updating process has the benefit

of avoiding arbitrary changes to system properties to force a match between the finite

element model and experimental results. For this reason, a manual methodology was

used to update the model using knowledge of the structure and the experimental

results recorded during and after construction.

5.5.3 Partial Structure Modelling

A model of the structure on test date 2003-05-27 was created for correlation with

the test results. The finite element model for this test date is displayed in Figure

5.22, and is denoted FEM1. The natural frequencies for this model prior to any

updating are compared with the measured frequencies in Table 5.14.

Updating Material Properties

Adjusting the stiffness of a structure can have significant impacts on its natural

frequencies. Unfortunately, in the case of reinforced concrete structures, accurately

determining the modulus of elasticity of concrete is difficult and highly variable. The

variability depends on the quality of the supplied concrete, the age of the concrete,

and the rate of loading as well as other factors.

The specified concrete strength for the core sections of the test structure was f ′c

= 50 MPa. The expected strength of the supplied concrete is likely to be higher than

specified, as suppliers are required to ensure no more than 5% of the concrete deliv-

ered is below specification. This results in expected compressive strengths that are

likely to be approximately 10% greater then specified. Furthermore, these strength

values are for concrete at 28 days, which needs to be adjusted by a factor that

accounts for strength increases as the concrete ages. Almost all of the concrete in

the structure at test date 2003-05-27 was poured more than five years prior. After

one year, the Cement and Concrete Association of Australia recommends a factor
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Figure 5.22: Finite element model for test date 2005-05-27.
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Measured FEM2 Ratio

(Hz) (Hz) (–)

fx1 1.261 1.190 1.06

fy1 1.690 1.411 1.20

ft1 2.020 1.746 1.16

Table 5.15: Comparison between measured and FEM2 natural frequencies.

of 1.3 for normal Portland cement [183]. The strength gains after this time period

are significantly less, and the recommended factor has been used in this updating

process.

The rate of loading also influences the compressive strength of concrete, resulting

in higher reported strengths when concrete is loaded at a faster rate than specified

in standard compressive strength tests. Mirza et. al. [119] proposed the following

equation to determine the effect of loading rates on the expected elastic modulus of

concrete.

EcR = (1.16− 0.08logtcR)Ec (5.1)

The parameter tcR is the loading duration in seconds, and Ec is the elastic modulus

of concrete. This correction is applicable due to the dynamic nature of the loading.

The first mode period of vibration for test date 2003-05-27 is approximately 0.8 s,

resulting in a 0.2 s loading duration. Cracking of the core sections was not included

in the stiffness estimates due to the continuous compression force applied to core

elements, and the lack of prior significant events to cause cracking of the core walls.

Applying the above factors and corrections to the specified concrete for the test

structure results in an elastic modulus of approximately 49 000 MPa, which is ap-

proximately 40% higher than the 34 800 MPa used in FEM1. This elastic modulus

adjustment is included in FEM2, and Table 5.15 indicates the adjusted elastic mod-

ulus value has considerably improved the natural frequency estimations. The impact

of this change on the natural frequency estimates is greatest for the fundamental

mode of vibration. In this case the ratio of the measured to finite element model

estimate reduces from 1.19 to 1.06.

Floor Beams

The concrete floor beams were not included in the initial model. These beams are

part of the floor plates between levels 2 to 15. The typical dimensions are a depth

of 500 mm and a width of 1000 mm. The beams are aligned to the y-axis and span

between the core and the perimeter columns. A similarly sized edge beam is located

at the perimeter, and is aligned with the centre of the perimeter columns. Table

5.16 displayed the results for FEM3, which includes the concrete beams in the floor
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Measured FEM3 Ratio

(Hz) (Hz) (–)

fx1 1.261 1.226 1.03

fy1 1.690 1.460 1.16

ft1 2.020 1.780 1.13

Table 5.16: Comparison between measured and FEM3 natural frequencies.

Measured FEM4 Ratio

(Hz) (Hz) (–)

fx1 0.303 0.265 1.14

fy1 0.259 0.221 1.17

ft1 0.427 0.401 1.06

Table 5.17: Comparison between measured and FEM4 natural frequencies.

plates for levels 2 to 15.

The addition of the concrete beams to the floor plates increased the natural

frequencies from the FEM1 model by approximately 3%. This indicates the floor

beams have little influence on the stiffness of the system.

Completed Structure

A finite element model for the structure at test date 2004-12-22 is displayed in Figure

5.23, and is denoted FEM4. At this stage of construction, the main structure was

completed and the internal fit-out was being conducted. The SDL assignments

reflected the extent of the fit-out. A comparison between the measured natural

frequencies and those from FEM4 are displayed in Table 5.17.

The updating conducted in the FEM1 and FEM2 models provided valuable in-

formation for improving the natural frequency estimates of the completed structure.

This is particularly the case for FEM2, which provided an indication of the likely

concrete properties. The knowledge gained from the updates conducted on FEM2

and FEM3 were then applied to the completed model in FEM4 to attain an improved

estimate of the natural frequencies for the completed structure. The updates ac-

counted for the reduced concrete age at higher levels of the structure. In addition,

the fundamental natural period was 3.9 s, and according to Equation (5.1) the dy-

namic elastic modulus of the concrete is estimated by a factor of 1.08 times the

elastic modulus. Model FEM5 denotes this final updated model, and Table 5.18

compares the measured natural frequencies with the estimates from FEM5.

The updating of the final model using insight gained from updating a partial

model of the structure during construction produced improved estimates of the nat-
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Figure 5.23: Finite element model for test date 2005-05-27.
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Measured FEM5 Ratio

(Hz) (Hz) (–)

fx1 0.303 0.294 1.03

fy1 0.259 0.243 1.07

ft1 0.427 0.433 0.99

Table 5.18: Comparison between measured and FEM5 natural frequencies.

ural frequencies. The differences between the natural frequency estimates for the

updated model and the measured values are less than 7%, and two of the fundamen-

tal mode estimates are within 3% of the measured values. This is compared with

17% for the model prior to updating.

The natural frequencies reported for the first two modes from FEM5 are less than

the measured values. This implies the full-scale results are indicating the building

is stiffer than the estimate from the FE model. The facade and internal partitions

were not included in the FEM5 model, and these will have the effect of stiffening the

structure. This could explain some of the residual difference between the full-scale

measurements and the estimates from FEM5.

Depending on the structure, the extrapolation of structural parameters from the

early stages of construction to the completed structure presents a useful approach

to validating design assumptions and improving estimates of natural frequencies. It

is a technique that can be conducted with a simple vibration test, and could form

part of a series of tests that focus on multiple aspects of the structure, such as non-

destructive material tests. This approach to improving the design of tall buildings

has been applied to more recent building projects that feature some of the worlds

tallest structures [130].

5.6 Summary

A comparison between the vibration testing techniques showed the natural frequency

results from FVT and AVT were all within 5%. The difference in damping ratio

estimates were typically less than 30%, and most results were within 20%. There

was no consistent pattern of the AVT techniques either over or underestimating the

damping ratios reported by the FVT. The amplitude dependence of the damping

ratios did not explain the difference between the techniques. These results show the

AVT techniques are suitable for determining estimates of the dynamic characteris-

tics, particularly the natural frequencies. Appropriately conducted forced vibration

tests provided the most reliable damping estimates in this instance, however the

AVT techniques proved suitable for establishing a damping ratio range from mul-
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tiple response records, and is a beneficial technique for determining the dynamic

characteristics if FVT is not possible.

Observing the influence of structural components in isolation was difficult due to

the simultaneous nature of the construction schedule. Even if tests were conducted

immediately before and after a single change was made, the gradual increase in

concrete strength meant the impact was unlikely to be observed between the two

tests. For concrete structural elements, the impact will be gradual, according to the

increase in concrete strength. This is unlike steel structures, where materials have

uniform strength over time.

The addition of the facade appeared to have more influence on the mass of the

structure and not the stiffness. When the facade was initially added, the natural

frequencies for the fundamental modes and second modes were all decreasing at the

fastest rate recorded during construction. When the main structure was complete,

the influence of the facade could be better observed as the only obscurity was the

added mass from internal fit-out. During this stage, all of the natural frequencies

decreased, however the decrease in the second modes was less than the decrease in

the fundamental modes. This could indicate the facade was increasing the stiffness

of the structure, but the additional stiffness was only effective for the second modes

of vibration. The stiffening of the second modes and not the fundamental modes is

a possibility, since the second modes will have higher components of shear action,

and the facade is more likely to provide additional shear strength as opposed to

bending strength. Alternatively, the different rates of natural frequency decrease

could reflect the mode shape influence on added mass in the structure. Increasing

the mass at the top of the building will have more influence on the fundamental

modes, due to the mode shapes, as opposed to the second modes of vibration. It is

possible that a combination of added mass and stiffness was provided by the facade,

however there was no evidence in the results to support the latter.

By conducting a vibration test during the early stages of construction at Lat-

itude tower, the uncertainty in the estimation of the dynamic characteristics was

reduced. The updating of the finite element model for the partially completed struc-

ture yielded improved estimates for the natural frequencies from the model of the

completed structure, from within 17% to 7% error. The lack of internal partitions

coupled with the level of detail in the model put focus on the material properties

as the major source of error in the natural frequency estimates. This assumes the

facade has negligible stiffness contributions and the total mass has been accurately

modelled. This made a strong case for underestimation of concrete strength as a

likely source of natural frequency underestimation, as opposed to stiffness gains from

internal partitions, which were not prevalent throughout the structure.

Comparing the measured and predicted natural frequencies, it is observed that
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further understanding of the mechanisms that affect the dynamic behaviour of tall

buildings is achievable. By accounting for the over specification of concrete strengths

and the loading rate effects on concrete stiffness due to dynamic loading, a higher

elastic modulus was estimated and used for sections of the core where typical design

elastic modulus values had been initially specified. Furthermore, the inclusion of

the floor plate beams was shown to improve the natural frequency estimates by

approximately 4% for the translational vibration mode aligned with the beams.

The low amplitude damping ratio estimates were confirmed by a vibration test

at the early stages of construction. The damping ratios during construction were

typically between 0.8–1.1 %, 0.8–1.2 %, and 0.7–1.1 % for the fundamental x-axis

translation, y-axis translation, and torsional modes respectively. Amplitude depen-

dence of the damping ratios during construction was observed for the translational

vibration modes, and accounted for some of the range in the measured damping

ratios during construction. Considering the tolerances in the estimates, a vibration

test conducted at 38% of final building height yielded a similar result to the final

measurement. The difference in the damping ratio estimates between the 38% and

100% completion points was less than 15% for all modes of vibration, and taking ac-

count of the different amplitudes used for each test. This result reduces the damping

ratio estimation uncertainty at an early stage of construction, and for wind sensitive

buildings with similar structural systems as Latitude tower, this approach could

be used to confirm auxiliary damping requirements, and their design if necessary.

It is noted that the damping ratio estimates from AVT include the structural and

aerodynamic damping components, however the latter is expected to be negligible

considering the low vibration amplitudes observed during testing.

For the structure used in this research, vibration testing during construction was

an effective strategy to mitigate uncertainty in the dynamic properties. The benefit

arises from early detection of dynamic properties that deviate from those used in

design, and the potential to reduce the cost of subsequent remedial works via the

early detection.



Chapter 6

Wind-induced Response

6.1 Introduction

The successful design of tall buildings relies on accurate estimations of the expected

forces and responses. Each tall building is unique, and often comprises significantly

different structural systems and geometries compared with previous designs. The

verification of the design is only achievable once the structure is completed and a

full-scale test is conducted. This is unlike other industries that have the ability

to iteratively improve the prototype design via full-scale testing. This approach

is infeasible for large civil engineering structures, both financially and practically.

This means tall building design is entirely reliant on response estimation techniques,

which include theoretical, empirical, numerical, and scaled model testing.

The full-scale testing of tall buildings allows the verification of the response es-

timation techniques, as well as gaining further understanding of the wind-induced

response of tall buildings. This chapter focuses on these two aspects. The results

of the the wind-induced response monitoring programme at Latitude tower are pre-

sented and discussed. The monitoring programme included the measurement of the

wind velocity, accelerations, and displacements at the top of the building. A descrip-

tion of the wind characteristics recorded at Latitude tower is presented, followed by

the acceleration and displacement response measurements. The final section com-

pares the full-scale acceleration response measurements with estimates from a scaled

model wind tunnel test.

6.2 Wind Events

Before analysing the recorded wind events a wind tunnel test was conducted to

determine the influence of the structure on the wind speeds and turbulence inten-

sities at the anemometer location. A 1:400 scale rigid model of Latitude tower and

surrounds was tested in the Boundary Layer Wind Tunnel at the School of Civil

170
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Engineering, The University of Sydney. A detailed description of the wind tunnel

configuration is included in Section 6.4.2. A hotwire anemometer was used to mea-

sure the wind speeds at the anemometer location, and a Pitot-static tube was used

to determine the mean wind speed of the free stream. The Pitot-static tube was po-

sitioned upstream of the model and at the same height as the hotwire anemometer.

Tests were conducted at 10◦ intervals. The relationship between the cardinal wind

directions and the building orthogonal axes are defined in Figure 3.18.

Figure 6.1 displays the influence of the structure on the wind speeds at the

anemometer location. The values plotted on the radial graph are the ratios of the

hotwire wind speeds at the anemometer location to the free stream mean wind speed.

The location of the anemometer in the south-west corner of the roof was expected to

be detrimental to the recording of wind events originating from azimuths between

0–90 ◦, which is confirmed by the variability of the results for this range. Winds

approaching from southerly directions have ratios that are approximately one, which

indicates there was little impact from the structure on the wind speeds measured by

the anemometer. For the ranges 100–130 ◦ and 240–330 ◦, the ratio is approximately

1.1, which indicates an increase in the wind speeds at the anemometer location due

to the structure. All subsequent mean wind speed results have been corrected using

the ratios in Figure 6.1.

The wind tunnel test was repeated using a TFI Cobra Probe to determine the

influence of the building and surrounds on the turbulence intensities at the anemome-

ter location. Figure 6.2 is a plot of the turbulence intensities measured by the Cobra

Probe. Similar to the velocity corrections, the turbulence intensities have significant

variability between 330–110 ◦. A terain category 3 profile was used in the tunnel, as

shown in Figure 6.32, which according to AS1170.2-2011 has a turbulence intensity

of 0.14. Figure 6.3 reproduces the section of turbulence intensities between 90–330 ◦

on a finer scale. Between 120–300 ◦ the turbulance intensities are typically within

the range of 0.120–0.145 ◦, which is comparable to the AS1170.2-2011 value.

As for the velocity correction results, the erroneous turbulence intensity values

between the NW and SE directions are due to the influence of the Latitude tower

roof structure and also the close proximity of World Tower directly to the north.

Therefore, results for wind directions in this zone are not discussed in the following

sections.

6.2.1 Distribution of Mean Wind Speeds

The monitoring of the wind-induced response of Latitude tower commenced on 15

August 2005 and ended on 23 April 2007. A total of 13562 records of 17 minute

lengths were recorded during this period. A distribution of the anemometer and

accelerometer measurements according to time and wind direction is displayed in
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Figure 6.1: Latitude tower anemometer velocity corrections from wind tunnel test.
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Figure 6.2: Latitude tower wind tunnel measurements of turbulence intensity at
anemometer location.
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Figure 6.3: Latitude tower wind tunnel measurements of turbulence intensity at
anemometer location.

Figure 6.4. Each point on the graphs represents a single record. The colour of the

point indicates the mean wind direction for the record. In the mean wind speed plot,

the diameter of the plotted points indicates the turbulence intensity. It is observed

that as the mean wind speed increases the point diameters are decreasing, and

therefore the turbulence intensity is decreasing with increasing mean wind speed.

The standard deviation acceleration plots in Figure 6.4 indicate the largest ac-

celeration responses were recorded during southerly wind events. Similar mean

wind speeds were also recorded for westerly wind events, however the acceleration

responses in the east-west direction are significantly less than the north-south accel-

eration responses for southerly wind events. This is likely due to the fundamental

vibration mode being a translation in the north-south direction.

Two gaps in the data set are observed during November 2005 and June/August

2006. These gaps were due to data acquisition hardware failures. Finally it is

noted that the data acquisition trigger condition was disabled in November 2006.

The trigger condition was originally set for a wind speed threshold of 5 m/s. The

disabling of the trigger condition is the reason for the increase in low wind speed

measurements from late November 2006 till the end of the monitoring programme.

The distribution of the mean wind speeds recorded at Latitude tower are dis-

played as a wind rose in Figure 6.5. A majority of the strong wind events recorded

during the monitoring programme originate from southerly and westerly directions.
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Figure 6.4: Temporal and directional distribution of measurements from the Lati-
tude tower anemometer and accelerometers.
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The wind rose also illustrates the lack of measurements for directions between 315–

90 ◦ due to the anemometer being located within the influence zone of the structure.

Regardless of moving the anemometer out of the influence zone of Latitude tower

for all wind directions, the location and proximity of World Tower to the north of

Latitude tower would also prevent the measuring of the free stream wind velocity

from azimuths between approximately North and North-East.

For comparison, a wind rose for the Sydney Airport anemometer is presented in

Figure 6.6. This anemometer is positioned at approximately 10 m height, and its

location relative to Latitude tower is displayed in Figure 3.16. The same time period

as the monitoring programme at Latitude tower was used to generate the Sydney

Airport wind rose. As for the Latitude tower wind rose, the southerly and westerly

directions yielded a greater proportion of strong wind events. Significant mean wind

speeds originating between directions 0–90 ◦ are also observed in the Sydney Airport

wind rose.

Comparing the wind roses for Latitude tower and Sydney Airport, it is observed

that a greater number of low wind speed records are included for the latter. There

are two reasons for this difference. Firstly, the anemometers are located at different

heights, and since wind speed increases with height for boundary layer synoptic

winds, the Latitude tower anemometer is expected to record higher wind speeds.

For a terrain category of 3, the ratio of the mean wind speed at 10 m to the mean

wind speed at 187 m is approximately 0.54, and increases to 0.65 for terrain category

2 [149]. In addition to the height difference, the minimum wind speed threshold

trigger condition used in the data acquisition at Latitude tower will also cause greater

proportions of higher wind speeds to be recorded at Latitude tower compared with

Sydney Airport, which continuously records the local wind velocity.

Another difference between the wind roses is the Latitude tower results indicate

the dominant winds originate from the SSE direction, while the Sydney Airport

results indicate a S direction. This discrepancy may be due to differences between

the local surrounds at each of the anemometers. For example, the Latitude tower

anemometer may incur directionality influences from the flow pattern around Lat-

itude tower. Furthermore, the discrepancy may be exaggerated by the relatively

coarse direction resolution used in the wind rose plots.

The scale of the wind events recorded during the monitoring period are rela-

tively small compared with typical return periods used in design. The one year

return period event as defined in AS1170.2-2009 did not occur during the monitor-

ing period. A more detailed comparison between the Latitude tower and Sydney

Airport anemometers could be undertaken, such as transfering the airport data to

the Latitude tower anemometer location. However, in light of the low return period

wind events experienced a more detailed comparison was deemed unecessary for the
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Figure 6.5: Wind rose for the Latitude tower anemometer for August 2005 to May
2007.

purposes of the research.

6.2.2 Turbulence Intensity

The fluctuations in wind velocities, and the resulting fluctuations in forces on struc-

tures, represent a form of dynamic loading that may cause resonance in wind sensi-

tive structures. It is therefore important to quantify the fluctuating component of

wind velocities when investigating the dynamic response of structures to wind load-

ing. Fluctuations in wind velocities are also known as turbulence, and the level of

turbulence in wind speed measurements can be determined by calculating the stan-

dard deviation of the wind speed components. The components correspond to the

horizontal longitudinal component u(t), the horizontal lateral component v(t), and

the vertical component w(t). The ratio of the standard deviation of the component

to the mean value is known as the turbulence intensity.

Table 6.1 displays the mean values of the turbulence intensity for the horizontal

longitudinal component. The results are for record lengths of 10 minutes. All of the

records from the monitoring programme were grouped according to wind speed and
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Figure 6.6: Wind rose for the Sydney Airport anemometer for August 2005 to May
2007.
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Figure 6.7: Mean turbulence intensity versus mean wind speed for the Latitude
tower anemometer measurements.

direction, and the mean turbulence intensity values are reported for each of these

groups. The results are plotted in Figure 6.7, in addition to the turbulence intensity

estimates from the current Australian wind code [153] for terrain categories 1 to 4.

For mean wind speeds less than 6 m/s, the mean turbulence intensities for all

directions are typically greater than the Australian wind code values. For mean

wind speeds greater then 8 m/s, the mean turbulence intensity values are mostly

between the Australian wind code estimates for terrain categories 2 and 4. Focusing

on the SSE and W directions, the mean turbulence intensity is approximately equal

to a terrain category 3 estimate when the mean wind speed is between 8–18 m/s.

For mean wind speeds in the range 20–22 m/s, the values increase to 0.18, which is

10% less than a terrain category 4 estimate. For the WNW direction, the turbulence

intensity drops to approximately 0.1 for wind speeds between 20–22 m/s, which is

equivalent to a terrain category 1. This result is unexpected since the terrain to the

west of Latitude tower comprises urban areas equivalent to terrain category 3. How-

ever, turbulence characteristics in different meteorological and micro-meteorological

events can be highly variable, even during the same event as observed in Figures

6.21 and 6.22.

The horizontal longitudinal wind speed was the only component recorded by the

Latitude tower anemometer. Despite not recording the horizontal lateral component,



CHAPTER 6. WIND-INDUCED RESPONSE 179

Ū ESE SE SSE S SSW

(m/s) Īu σIu Īu σIu Īu σIu Īu σIu Īu σIu
0 – 2 0.80 0.11 0.78 0.12 0.82 0.13 0.84 0.11 0.78 0.10

2 – 4 0.49 0.20 0.53 0.24 0.45 0.28 0.58 0.23 0.54 0.20

4 – 6 0.24 0.12 0.18 0.07 0.17 0.06 0.17 0.07 0.32 0.21

6 – 8 0.19 0.06 0.17 0.05 0.17 0.05 0.17 0.05 0.19 0.04

8 – 10 0.16 0.05 0.16 0.04 0.16 0.04 0.16 0.04 0.18 0.04

10 – 12 0.19 0.06 0.17 0.04 0.15 0.04 0.15 0.03 0.17 0.03

12 – 14 0.18 0.03 0.17 0.05 0.15 0.04 0.16 0.03 0.17 0.03

14 – 16 0.15 0.03 0.16 0.04 0.15 0.04 0.16 0.03 0.18 0.02

16 – 18 – – 0.12 0.03 0.14 0.03 0.15 0.03 – –

18 – 20 – – – – 0.15 0.03 0.16 0.03 – –

20 – 22 – – – – 0.18 0.01 0.14 0.01 – –

Ū SW WSW W WNW NW

(m/s) Īu σIu Īu σIu Īu σIu Īu σIu Īu σIu
0 – 2 0.75 0.13 0.82 0.13 0.74 0.08 0.78 0.17 – –

2 – 4 0.50 0.21 0.59 0.17 0.55 0.13 0.33 0.18 0.23 0.11

4 – 6 0.25 0.22 0.28 0.24 0.27 0.23 0.24 0.19 0.18 0.11

6 – 8 0.16 0.05 0.21 0.17 0.23 0.18 0.23 0.14 0.19 0.10

8 – 10 0.13 0.04 0.12 0.05 0.12 0.07 0.15 0.09 0.15 0.10

10 – 12 0.12 0.05 0.11 0.04 0.13 0.06 0.15 0.06 0.16 0.09

12 – 14 0.12 0.04 0.12 0.03 0.14 0.05 0.15 0.06 0.20 0.05

14 – 16 0.13 0.02 0.14 0.05 0.14 0.04 0.14 0.03 0.16 0.02

16 – 18 0.12 0.03 0.13 0.03 0.14 0.03 0.14 0.04 0.21 0.07

18 – 20 – – – – 0.11 0.01 0.12 0.02 0.16 0.01

20 – 22 – – – – 0.18 0.01 0.08 0.02 0.20 0.01

Table 6.1: Mean and standard deviation turbulence intensity for the Latitude tower
anemometer measurements.
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Figure 6.8: Standard deviation wind direction versus mean wind speed for the Lat-
itude tower anemometer measurements.

an indication of the turbulence intensity for this component can be attained via the

recorded wind direction. Figure 6.8 and Table 6.2 display the standard deviations

of the wind directions, with grouping according to mean wind speed and direction.

As observed for the longitudinal component, for mean wind speeds above 8 m/s the

standard deviation direction values tended to stabilise at approximately 10◦.

6.2.3 Wind Spectrum

Converting the wind speed time series measurements to the frequency domain pro-

vides a description of the distribution of turbulence according to frequency. The

frequency content of wind fluctuations is of interest when considering the dynamic

response of wind sensitive structures. Resonance will occur if the natural frequencies

of such structures coincide with frequency bands in the wind spectrum that contain

significant energy from wind fluctuations. With regard to the along-wind response,

it is the buffeting of the structure from the approaching wind fluctuations that will

cause a dynamic response in the along-wind direction [40, 181]. A majority of the

wind fluctuation energy is typically at frequencies that are much lower than the

fundamental natural frequency of most tall buildings, and the energy decreases with

increasing frequency.

Figures 6.9, 6.10, and 6.11 display the spectrum of wind speeds for directions
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Ū Standard Deviation Wind Direction (◦)

(m/s) ESE SE SSE S SSW SW WSW W WNW NW

0 – 2 90 79 89 97 95 99 120 101 49 –

2 – 4 54 58 51 80 87 82 98 88 39 21

4 – 6 16 9 10 12 47 36 41 41 29 19

6 – 8 9 8 10 11 16 14 23 27 23 20

8 – 10 7 8 9 11 15 11 10 9 10 16

10 – 12 8 7 8 10 15 11 9 9 9 13

12 – 14 7 8 8 11 14 11 10 10 9 14

14 – 16 7 7 8 11 20 12 11 9 8 9

16 – 18 – 6 8 9 – 9 10 10 7 19

18 – 20 – – 8 9 – – – 8 6 8

20 – 22 – – 8 9 – – – 16 4 9

Table 6.2: Standard deviation wind direction for the Latitude tower anemometer
measurements.

160◦, 275◦, and 287◦ respectively. The spectra are calculated from an hour time

series that correspond to peak events recorded during the monitoring programme.

The measurements collected during the monitoring programme were recorded at 17

minute intervals, and hour length records were generated by combining adjacent 15

minute records. The data was first corrected using Figure 6.1. The spectrum for

160◦ closely matches the estimated distribution from the Australian wind code [153].

For reduced frequencies below 0.05, the spectra for 160◦ and 275◦ are greater than

the code estimates, while the 287◦ spectra is less than the code estimate. This is

due to variations in the mean wind speeds for the hour long time series used.

The spectrum for 275◦ reports lower energy levels at reduced frequencies greater

than two. This implies the measured wind fluctuations contain less energy at the

higher frequencies compared with the code estimate. Similarly, the spectrum for

287◦ is indicating lower energy levels across the entire redeuced frequency range. The

fundamental natural frequencies of Latitude tower correspond to reduced frequencies

of between 2–3 on wind spectrum plots. Therefore, using the code estimate of the

wind spectrum for the 275◦ and 287◦ wind directions will overestimate the final

along-wind response compared with the measured spectrum.

6.3 Wind-induced Response

The wind-induced response of Latitude tower was monitored via the recording of ac-

celerations and displacements at the top of the building. The equipment specification

and configuration is included in Sections 3.3 and 3.5. The following sections discuss
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Figure 6.11: Spectrum of longitudinal wind velocity for 2005-09-17 18:20. Mean
wind direction = 287◦ (h=187 m)

a selection of the measured responses. The results presented focus on three wind

events that recorded some of the highest wind speeds and responses during the mon-

itoring period. The first is a southerly wind event recorded on 7 September 2006,

and the second and third are westerly wind events recorded on 29 September 2005

and 17 September 2005. The acceleration results presented are those measured by

the orthogonal accelerometer pair located at point 1 in Figure 3.29.

Referring to Figure 6.4, there are seven wind events during the monitoring pe-

riod with standard deviation acceleration responses above 0.5 mgn. The three wind

events discussed in this section are a small portion of all the collected data, but

they represent some of the highest wind speeds and responses recorded during the

monitoring period, and therefore were deemed more suitable for further analysis.

The wind speeds recorded during the events are less than the 1 year return period

values in the Australian Wind Code.

6.3.1 Acceleration Response

The acceleration response of Latitude tower from a southerly wind event is displayed

in Figure 6.12. The wind direction is relatively constant at a mean azimuth of 160◦

and the turbulence intensity is approximately equivalent to a terrain category 3.

The expected peak and standard deviation y-axis accelerations are greater than the
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x-axis accelerations by a factor of approximately 2.1. The measured peak y-axis

acceleration occurs at time 200 s, and is 1.3 times greater than the expected peak

from an upcrossing analysis. This peak coincides with a short, abrupt increase in the

wind speed, and the large increase in the acceleration response may have occurred

from the dynamic motion of the building being in phase with a large scale gust.

A plot of the y-axis versus x-axis accelerations are displayed in Figure 6.13. The

envelope of the response is elliptic with a dominant y-axis (along-wind) component

and a minor x-axis (cross-wind) component that skews the envelope. A number of

acceleration excursions beyond the envelope are observed. The most notable is the

measured peak event at the top of the ellipse. The acceleration response displays

significant x and y axes components as the envelope is exceeded, before becoming

mostly y-axis acceleration. This may suggest energy transfer between vibration

modes.

A frequency domain representation of the acceleration time histories is displayed

in Figure 6.14. The fundamental mode of vibration corresponds to translation in

the y-axis, and this mode dominates the response. The fundamental torsion mode

at 0.42 Hz also contributes significantly to the total response, and this is impor-

tant to consider when assessing occupant comfort requirements. The second modes

of vibration are at frequencies between 0.8–1.2 Hz, and they contribute orders of

magnitude less energy to the total response compared with the fundamental y-axis

translation and fundamental torsional modes.

The acceleration response for the westerly wind event recorded on 2005-09-29 11:05

is displayed in Figure 6.15. The mean wind speed is similar to the southerly event in

Figure 6.12, but the turbulence intensity is less in this case and equivalent to a terrain

category 2. Despite the incident wind being aligned with the x-axis (along-wind),

the y-axis (cross-wind) acceleration response is greater than the x-axis accelerations

by a factor of approximately 1.5. This is due to a combination of reduced longitu-

dinal turbulence buffeting in the along-wind direction, increased lateral turbulence

and cross-wind wake excitation in the y-axis, and the tendency of the structure to

vibrate at the fundamental mode of vibration. Based on the very low reduced veloc-

ity of 1.77 for the westerly event the wake excitation will be minimal, and therefore

the response is more likely due to increased turbulence buffeting in the cross-wind

direction.

The maximum acceleration recorded in the y-axis occurs at time 570 s. This

maximum acceleration coincides with a reduction in the mean wind velocity. In this

case, the maximum value could be biased by noise in the measurements. A plot of

the y-axis versus x-axis accelerations for the westerly wind event are displayed in

Figure 6.16. The response envelope is elliptic, and displays a greater contribution

from x-axis translations to the total response compared with the southerly event.
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Figure 6.12: Wind speed, direction, and acceleration response for 2006-09-07 08:30.
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β Ū Iu σDir ˆ̈y1 σÿ1 ˆ̈x1 σẍ1
(◦) (m/s) (–) (◦) (mgn) (mgn) (mgn) (mgn)

2006-09-07 160 20.0 0.137 8 2.53 0.81 1.17 0.39

2005-09-29 275 19.9 0.110 9 1.32 0.41 0.84 0.27

2005-09-17 287 23.4 0.065 3 1.92 0.62 1.00 0.32

Table 6.3: Comparison of x and y axes acceleration responses for the southerly and
westerly wind events.

This can be attributed to buffeting from the longitudinal turbulence since the x-axis

represents the along-wind response. The spectrum of the acceleration responses in

Figure 6.17 displays a larger peak for the fundamental x-axis translation mode at

0.28 Hz compared with the spectrum for the southerly event. The second modes

of vibration between 0.8–1.2 Hz are also contributing more to the total response

compared with the southerly event.

The acceleration responses for the second westerly event on 2005-09-17 is dis-

played in Figure 6.18. As displayed in Table 6.3 this event has an increased mean

wind speed of 23.4 m/s and a significantly lower turbulence intensity of 0.065. The

response envelope in Figure 6.19 has a more dominant y-axis component (cross-wind)

compared with the westerly event recorded on 2005-09-29. Comparing the spectra

in Figures 6.17 and 6.20, the westerly event reocrded on 2005-09-17 has more energy

associated with the fundamental y-axis vibration mode, which corresponds to the

cross-wind direction.

Table 6.3 presents a comparison between the peak and standard deviation accel-

erations in the x and y axes for the southerly and westerly wind events. The y-axis

accelerations for the southerly event are greater by a factor of two compared with

the westerly event, and the x-axis accelerations are greater by a factor of 1.4.

Acceleration responses for a westerly wind event that lasted approximately two

days are displayed in Figures 6.21 and 6.22. The time stamps differ by nine hours,

and these records are included in the discussion due to the unusual nature of the

longitudinal turbulence. The mean wind speeds and direction differ by approxi-

mately 6% and 3% respectively, but the turbulence intensities differ by a factor of

3.5. The turbulence intensity for the first record is equivalent to terrain category 2,

while the turbulence intensity of the second record is three times less than a terrain

category 1. To the west of Latitude tower, the terrain is mostly urban and would

be equivalent to terrain category 3 according to the Australian wind code [153].

Table 6.4 presents a summary of the wind statistics and acceleration responses

for these records. The y-axis accelerations correspond to the cross-wind direction,

and the reduction in the turbulence intensity results in a 27% and 20% reduction

in the peak and standard deviation accelerations respectively. This suggested the
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Figure 6.15: Wind speed, direction, and acceleration response for 2005-09-29 11:05.
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Figure 6.16: Acceleration response envelope for 2005-09-29 11:05.
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Figure 6.17: Singular value plot for 2005-09-29 11:05.
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Figure 6.18: Wind speed, direction, and acceleration response for 2005-09-17 18:20.
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Figure 6.19: Acceleration response envelope for 2005-09-17 18:20.
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Figure 6.20: Singular value plot for 2005-09-17 18:20.
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β Ū Iu σDir ˆ̈y1 σÿ1 ˆ̈x1 σẍ1
(◦) (m/s) (–) (◦) (mgn) (mgn) (mgn) (mgn)

2006-05-07 274 15.7 0.108 7 0.92 0.27 0.47 0.15

2006-05-08 266 14.8 0.031 2 0.67 0.22 0.49 0.15

Table 6.4: Comparison of x and y axes acceleration responses for westerly wind
events with different turbulence intensities recorded between 2006-05-07 to 2006-05-
08.

lateral turbulence is contributing to the cross-wind response for the higher turbu-

lence event, particularly since the standard deviation wind direction (σDir) is 70%

less for the low turbulence event. The reduced velocity is 1.39 for the westerly

event 2006-05-07, which is low and implies the wake excitation will be minimal, and

therefore the response is more likely due to increased turbulence buffeting in the

cross-wind direction. The accelerations for the along-wind direction are unchanged

between the two records. This result is unexpected, since a reduction in the tur-

bulence intensity would reduce the along-wind dynamic response from turbulence

buffeting. This could be due to the interaction between the first two modes of vi-

bration and the tendancy of the structure to: 1) predominantly oscillate in the first

mode of vibration, and 2) to decay into the first mode of vibration if higher modes

are initially excited.
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Figure 6.21: Wind speed, direction, and acceleration response for 2006-05-07 19:46.
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ÿ 1

(m
g
n
)

North-South Acceleration

  0    120    240    360    480    600
−1

−0.5

0

0.5

1

Time (sec)

A
cc
el
er
at
io
n
,
ẍ
1
(m

g
n
)

East-West Acceleration

Figure 6.22: Wind speed, direction, and acceleration response for 2006-05-08 04:42.
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6.3.2 Background Response

The displacement results corresponding to the southerly wind event recorded on

2006-09-07 are presented in this section. For this wind event the reference receiver

at UNSW was not operating correctly, and therefore the QUEENS reference receiver

operated by the SydNET GPS reference network infrastructure in NSW was used

to correct the atmospheric errors. The QUEENS reference receiver has a baseline

of 1.5 km from Latitude tower, but only recorded data at 1 Hz sampling frequency.

Therefore, the displacement measurements are reported for this sampling frequency,

despite the roving receiver at Latitude tower sampling at 10 Hz. A sampling fre-

quency of 1 Hz is sufficient for monitoring the background response, and since the

first three modes of vibration for Latitude tower are below the Nyquist frequency

of 0.5 Hz, the dynamic component from these modes will also be recorded. The raw

receiver data was processed using Leica software and precise ephemeris data for the

GPS satellites.

Establishing a base point for analysing the displacement measurements is diffi-

cult to due to instrumentation drift and temperature effects on the structure. The

temperature effects manifest as differential heating of the structure, which causes

movement due to disproportionate expansion of parts of the structure relative to

others. Since the instrumentation drift and temperature effects were not accounted

for in the analysis, it was not possible to compare the absolute deflection under

a certain wind speed with its resting position during still conditions. Instead the

change in deflection between the position prior to and during the wind event are

reported.

Figure 6.23 displays the change in the mean wind speed and direction, and the

displacements measured in the North-South direction for the southerly wind event

recorded on 2006-09-07. The time series totals six hours, and the start corresponds to

4 am. The mean wind speeds and directions are for ten minute intervals. The North-

South displacement plot displays fluctuations that do not correlate with the mean

wind speeds. Dilution of precision errors from suboptimal positioning of satellites

are likely to be present in the data, in addition to multipath errors due to the

location of the GPS receiver near buildings.

For the first two hours of the event, the mean wind speed and direction is be-

tween 6.2–10.1 m/s and 271–281 ◦ respectively. The mean of the GPS position mea-

surements during the first two hours was used as the reference position, which is

indicated by the dashed red line at zero displacement. At a time of approximately

two hours, the mean wind speed and direction abruptly change to values in the

ranges 17.2–18.4 m/s and 151–156 ◦ respectively. This mean wind speed and di-

rection is sustained over a period of two hours, and the mean displacement in the

North-South direction increases to approximately 11 mm. A further increase in the
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Frequency (Hz)

Acceleration Displacement

Translation Y1 0.252 0.252

Translation X1 0.284 0.283

Torsion T1 0.410 0.405

Table 6.5: Comparison of natural frequency estimates from acceleration and dis-
placement responses for southerly wind event 2006-09-07.

mean wind speed to a range of 19.4–20.2 m/s is observed at an elapsed time of four

hours, and this speed is sustained for approximately one hour. During this period,

the mean displacement increases to approximately 13 mm. The quasi-static compo-

nent has not been highlighted in Figure 6.23 because dilution of precision errors and

multipath errors have not been corrected in the data.

An upcrossing analysis of the y-axis accelerations was conducted to determine the

peak accelerations for the time period included in the displacement measurements

for the southerly event. From these peak accelerations, the resonant displacements

were calculated using the relationship ÿ1 = −ω2y. During the first two hours, the

resonance displacements along the y-axis were between 0.4–1 mm. Between the two

and four hour time period the resonance displacements increase to 7–9 mm, and for

the four hour to five hour period there was a further increase to 10–11 mm. These

resonance displacement account for some of the fluctuations about the mean values

displayed in Figure 6.23.

A plot of the North-South displacements versus the East-West displacements

are displayed in Figure 6.24. The grey line indicates the two hour period prior to

the southerly wind event. The mean of the points included in this time period are

centred on zero displacement in the North-South and East-West directions. The

black line is the four hour period during the southerly wind event. The 11–13 mm

change in the mean North-South displacement is visible, and there is practically no

change in the mean East-West displacement. The envelope of the displacement plot

is elliptical and is similar to the acceleration response displayed in Figure 6.13.

Figure 6.25 displays the spectra for the North-South and East-West displace-

ments. The fundamental translation modes in the x-axis (X1) and y-axis (Y1) are

visible in the spectra. The fundamental torsional mode (T1) is less defined in the

spectra compared with the translational modes. Table 6.5 presents a comparison

between natural frequency estimates from the displacement spectra with estimates

from the singular value plot of the accelerometer time series in Figure 6.14. All of

the natural frequency estimates are practically identical, which shows the capability

of the GPS measurements to capture the resonant component of the response.
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Figure 6.23: Mean wind speed and direction, and North-South displacement versus
time for southerly wind event on 2006-09-07.
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Figure 6.24: Displacement response for southerly wind event on 2006-09-07.

6.3.3 Peak Factors

The peak and standard deviation accelerations versus reduced velocity are displayed

in Figures 6.26 and 6.27 for wind directions 160◦ and 275◦ respectively. The accel-

eration values are for hour length records. As discussed previously, the hour length

records were generated by combining adjacent 15 minute records. The peak val-

ues were determined from an upcrossing analysis according to the theory in Section

2.5.3, and a probability of P > 0.001 was used.

The selection of records was based on the following criteria: The wind direction

was restricted to records within 5◦ of the specified wind direction; records with

mean wind speeds below 5 m/s were excluded; and the standard deviation wind

direction was restricted to 20◦. A linear least squares fit of the selected records is

also displayed for the peak and standard deviation values.

The southerly wind events (β = 160◦) recorded the largest along-wind responses,

which suggests turbulence buffeting, being the main excitation source in the along-

wind direction, is greater for the southerly wind events. This is supported by the

longitudinal turbulence results presented in Table 6.1, which indicate the SE, SSE,

S, and SSW directions have greater turbulence intensities compared with the W and

WNW directions. The slope of the fitted curves for the along-wind responses are

greater than the cross-wind responses, which indicates the along-wind responses are

increasing more rapidly with increasing mean wind speed.

The acceleration responses for the westerly winds (β = 275◦) in Figure 6.27
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are less than the responses for the southerly events. The cross-wind response is

greater than the along-wind response, as was observed in Section 6.3.1, and the

cross-wind response increases more rapidly compared with the along-wind response.

The dominant cross-wind response is possibly due to increased lateral turbulence

in the westerly winds compared with the southerly winds as displayed in Table 6.2.

Another possibility is the transfer of energy between the closely spaced fundamental

vibration modes, observed in the modal interference between the fundamental trans-

lational modes, as the structure will tend to vibrate at its lowest natural frequency.

The velocity range of the measurements is considerably less than the one year

return period estimate from the Australian wind loading code. The monitoring

period was conducted over a two year period, and the wind speed measurements

were expected to be closer to the code estimate. It is noted that the one year return

period regional wind speed for regions A1 to A7 was increased from 26 m/s in the

2002 edition to 30 m/s in the 2011 edition of the Australian loading code.

Figures 6.28 to 6.31 display the probability distributions from upcrossing anal-

yses of selected hour length records. The first two figures are for a southerly wind

event with a mean wind speed of 18.8 m/s and turbulence intensity of 0.18. The

slope of the linear least squares fit is greater for the along-wind response compared

with the cross-wind response. The next two figures are for a westerly wind event

with a mean wind speed of 19.1 m/s and turbulence intensity of 0.16. As observed

for the southerly event, the slope of the along-wind linear least squares fit is greater

than the cross-wind slope.

Comparing the along-wind responses, the slope of the westerly event is greater

than the southerly event. This result is unusual considering the turbulence intensity

is greater for the southerly event. An explanation for this result is the horizontal shift

towards larger abscissa values at lower probabilities of exceedance for the westerly

wind event. This is due to a constant crossing frequency at consecutive probabilities

of exceedance. The result is an increase in the slope of the linear fit. Another

explanation for deviations from a Gaussian distribution is due to the change in

mean wind speed during the hour time series.

The peak factors for the southerly wind events are approximately 4.1 and 4.0

for the along-wind and cross-wind responses respectively. For the westerly wind

event, the along-wind and cross-wind peak factors are 4.5 and 4.2 respectively. The

corresponding peak factor estimate from Equation (2.23) is 3.9 for along-wind re-

sponses in both the y-axis and x-axis. It is noted that the measured wind speeds are

significantly less than extreme events, and the additional turbulence at the lower

wind speeds compared with higher wind speeds is likely to cause larger peak factor

estimates from the results presented. Therefore the along-wind probability distri-

butions are likely to be more Gaussian at higher wind speeds. In summary, the
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Figure 6.26: Peak and standard deviation acceleration versus reduced velocity for
mean wind direction β = 160◦ (ÿ1 = along-wind, ẍ1 = cross-wind).
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ẍ
1
(m

g
n
)

 

 

1

1
.8
3

1

1
.8
8

1
y
ea
r
re
tu
rn

p
er
io
d

(A
S
/
N
Z
S
1
1
7
0
.2
:2
0
1
1
)

β = 275◦, θ = 265◦

fx1 = 0.293 Hz
b = 44 m
ˆ̈x1/σẍ1 = 4.2
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Peak (ˆ̈x1)

Figure 6.27: Peak and standard deviation acceleration versus reduced velocity for
mean wind direction β = 275◦ (ẍ1 = along-wind, ÿ1 = cross-wind).
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Figure 6.28: Probability distribution of upcrossings for the acceleration response in
the along-wind direction for mean wind direction β = 161◦.

probability distributions are not significantly different to a Gaussian distribution.

6.4 Wind Tunnel Response Estimation

This section describes the scaled model wind tunnel testing of Latitude tower and

compares the acceleration response results with the measured values from the full-

scale monitoring programme. The high frequency base balance (HFBB) technique

is used to model Latitude tower in a boundary layer wind tunnel.
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Figure 6.29: Probability distribution of upcrossings for the acceleration response in
the cross-wind direction for mean wind direction β = 161◦.
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Figure 6.30: Probability distribution of upcrossings for the acceleration response in
the along-wind direction for mean wind direction β = 282◦.
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Figure 6.31: Probability distribution of upcrossings for the acceleration response in
the cross-wind direction for mean wind direction β = 282◦.
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6.4.1 High Frequency Base Balance Technique

The HFBB technique [174] uses a rigid model of the prototype structure, and only

the external geometry of the structure is modelled. This is unlike aeroelastic tech-

niques [76], which also physically model the stiffness, mass, and damping of the

structure. For the HFBB technique, the stiffness, mass, and damping characteris-

tics of the structure are included via analytical techniques during the post processing

stage of the wind tunnel measurements.

The output from an aeroelastic wind tunnel test is the final response spectrum.

For the HFBB technique, the spectrum of modal force is measured during the wind

tunnel testing. The final response of the structure to the modal force is determined

analytically, which allows parametric studies of the response to changes in the dy-

namic characteristics without needing to retest the model in the wind tunnel.

The fundamental premise of the HFBB technique is that the modal forces exerted

on a building by the wind can be estimated from the measured base overturning and

torsional moments experienced by a rigid model. A modal force is defined as the

applied force weight by the mode shape at the point of application, and integrated

over the building height.

6.4.2 Wind Tunnel Modelling

A 1:400 scale rigid model of Latitude tower was mounted on a JR3 [83] force balance,

and the overall mass and stiffness of the combined system produced translational

and torsional natural frequencies greater than the frequency range of interest for the

tests. The base balance was calibrated by applying a range of known static loads

to the model and measuring the output from the base balance. The axis notation

and centre of stiffness is displayed in Figure 6.32. Referring to Figure 3.2, the base

moments were measured at Level 1, at RL −13.05 m. The model was tested in

the No. 1 Boundary Layer Wind Tunnel at the School of Civil Engineering, The

University of Sydney.

The approaching wind was modelled in the wind tunnel by air flow passing over a

fetch of floor-mounted roughness elements preceded by a vorticity-generating fence

spanning the width of the tunnel. The approach wind velocity profile and wind

turbulence characteristics, displayed in Figure 6.33, were consistent with a 1:400

scale model of a terrain category 3 boundary layer profile as defined in AS/NZS

1170.2:2002. Measurements were recorded for 10◦ intervals from North.

6.4.3 Comparison with Full-scale Measurements

The first three vibration modes of Latitude tower were considered in the analysis.

The natural frequencies of these modes are presented in Table 4.1. The damping
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Figure 6.32: HFBB axis notation and centre of stiffness.

(a) (b)

Figure 6.33: (a) Mean wind velocity profile and (b) Longitudinal turbulence intensity
profile.
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Figure 6.34: Power spectral density plot for the prototype base moment about the
x-axis.

ratios used in the analysis were sourced from the FVT estimates presented in Table

5.2. The values used were 1.09%, 1.14%, and 0.86% for the x-axis, y-axis, and

torsional modes respectively. The mode shapes used are displayed in Figure 5.3.

Mode shape correction factors of 0.85 and 0.7 were used for the translational and

torsional modes respectively.

The mass estimation was representative of the completed building with SDL and

LL from tenant occupation as presented in Table 5.12. The average mass per level

was 2.0×106kg, resulting in an overall structure density of 230 kg/m3. The average

mass moment of inertia at each level was 670×106kgm2. An example power spectral

density plot for the prototype base moment about the x-axis is displayed in Figure

6.34. This plot is a combination of the modal force spectrum and the mechanical

admittance function for the first mode of vibration, hence the peak at a frequency

of 0.256 Hz.

The acceleration responses were estimated at point 1 in Figure 3.29 to allow direct

comparison with the full-scale measurements. The complete quadratic combination

(CQC) method [44] was used to combine the acceleration responses in the analysis.

Two wind events recorded during the monitoring period were used for comparison

with the wind tunnel results. The first is a southerly event that occurred on 1

January 2006. The time series for the southerly event is displayed in Figure 6.35.
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β Ū Iu σDir ˆ̈y1 σÿ1 ˆ̈x1 σẍ1
(◦) (m/s) (–) (◦) (mgn) (mgn) (mgn) (mgn)

Southerly 160 17.8 0.145 8 2.5 0.62 1.3 0.35

Westerly 290 20.8 0.126 7 2.0 0.48 1.1 0.27

Table 6.6: Summary of full-scale results for comparison with HFBB results.

σär
Full-Scale HFBB Difference

(mgn) (mgn) (%)

Southerly 0.71 0.55 29

Westerly 0.55 0.75 27

Table 6.7: Comparison of combined standard deviation resonant acceleration re-
sponse from the wind tunnel with full-scale measurements.

The second is a westerly wind event that occurred on 17 September 2005, which is

displayed in Figure 6.36. The details of these wind events are presented in Table

6.6. These wind events were selected for comparison with the HFBB results because:

they are representative of the peak events from the monitoring period; they have

the most constant wind speed and direction over the hour period compared with the

other records; and they have turbulence intensities similar to that modelled by the

wind tunnel.

A comparison between the combined standard deviation resonant acceleration

responses from the wind tunnel results and the full-scale measurements are presented

in Table 6.7. For the southerly wind event, the HFBB underestimated the full-scale

measurement by 29%. For the westerly wind event, the HFBB overestimated the

full-scale measurement by 27%. It is noted that the measured turbulence intensity

for the westerly event is 10% less than the wind tunnel turbulence intensity, which

was modelled according to an AS/NZS 1170.2:2002 terrain category 3 profile. This

may explain some of the difference between the measured and estimated responses

for the westerly event.

A parametric study was conducted to determine the influence of changes in the

natural frequencies and damping ratios on the acceleration response estimates from

the HFBB test. The study included two scenarios: a 50% reduction in the natural

frequencies; and a 50% reduction in the damping ratios. Table 6.8 presents a com-

parison between the original results with the two scenarios. For both wind events,

halving the natural frequencies had the most impact on the acceleration responses.

The southerly wind event has similar increases for the two scenarios, with increases

of 49% and 42% for halving the natural frequencies and damping ratios respectively.
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Figure 6.35: Wind speed, direction, and acceleration response for southerly wind
event on 2001-01-01 21:53.



CHAPTER 6. WIND-INDUCED RESPONSE 212

   0     1200     2400     3600
0

5

10

15

20

25

30
Anemograph-2005/09/17-18:03:38

W
in
d
S
p
ee
d
(m

/s
)

 

90

180

270

360

D
ir
ec
ti
on

(◦
)
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Figure 6.36: Wind speed, direction, and acceleration response for southerly wind
event on 2005-09-17 18:03.
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Original 0.5fi 0.5ζi

σär σär Diff. σär Diff

(mgn) (mgn) (%) (mgn) (%)

Southerly 0.55 0.82 49 0.78 42

Westerly 0.75 1.3 73 1.0 33

Table 6.8: HFBB parametric study results.

The westerly event is more sensitive to changes in the natural frequencies compared

with the damping ratios. The response increased by 73% when the natural frequen-

cies were halved, while halving the damping ratios increased the response by 33%.

For a wind sensitive structure, the level of overestimation from combining these sce-

narios could lead to the unnecessary inclusion of auxiliary damping devices. This

highlights the need for accurate estimation of the natural frequency and damping

ratios for inclusion in response estimates due to wind loading.

6.5 Summary

The wind-induced response of Latitude tower, recorded between August 2005 and

April 2007, was presented in this chapter. The peak wind events typically originated

from southerly and westerly directions. The prevailing strong winds in Sydney

originate from north-easterly, southerly, and westerly directions. The north-easterly

winds were not accurately recorded by the Latitude tower anemometer due to wind-

structure interactions.

The mean longitudinal turbulence tended to decrease with increasing mean wind

speed, and was generally between terrain category 2–4 for mean wind speeds greater

than 8 m/s. The westerly winds had less longitudinal turbulence than the southerly

winds. The variability in the turbulence intensities is likely due to different meteo-

rological phenomena and their influence on the wind conditions. The longitudinal

wind speed spectrum for a southerly and westerly wind direction were approximately

equal to the estimate from the Australian wind loading code [153], with the westerly

wind event reporting less energy at reduced frequencies greater than two. An indi-

cation of the lateral turbulence was attained from the wind direction measurements.

The standard deviation wind direction tended to stabilise at approximately 8–11 ◦

for most directions at wind speeds above 8 m/s.

The acceleration responses for peak wind events from southerly and westerly

directions were discussed. In both cases, the responses were dominated by the fun-

damental translational mode of vibration in the y-axis. For the southerly winds this

corresponded to the along-wind direction, but for westerly winds this corresponds to
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a dominant cross-wind response. This is possibly due to increased lateral turbulence

in the westerly winds, as well as energy transfer via modal interference between the

closely spaced fundamental translation modes.

The displacement of Latitude tower for a southerly wind event was presented.

The southerly wind event was preceded by light westerly winds, before an abrupt

change to a mean wind speed between 17.2–18.4 m/s. The GPS measurements

recorded an 11–13 mm change in the mean North-South displacement of Latitude

tower for this wind event, and little change in the East-West direction. The envelope

of the displacements was similar in shape to the acceleration response envelope, and

the fundamental vibration modes were visible in the spectra of the North-South

and East-West displacements. This highlighted the ability of the GPS receiver to

capture the resonant component of the response.

A HFBB wind tunnel test of a 1:400 scaled model was conducted to estimate the

wind-induced response. The results were compared with full-scale measurements

from two wind events that had similar wind characteristics as those modelled in the

wind tunnel. The standard deviation resonant acceleration responses were used to

compare the results, and it was found that the wind tunnel estimates were within

29% of the full-scale measurements.

A parametric study of the influence of the natural frequencies and damping ratios

on the wind tunnel response estimate was conducted. Halving the natural frequen-

cies increased the response estimates by up to 73%, while halving the damping ratios

increased the responses by up to 42%. In this instance, the responses were more sen-

sitive to the natural frequency. This result is important to consider, because large

underestimations of natural frequencies have been previously documented [94], and

the damping ratio is difficult to accurately estimate. For wind sensitive structures,

a combined underestimation of the natural frequencies and damping ratios may lead

to overestimation of the responses, resulting in an over-designed structure.



Chapter 7

Conclusions

The design of tall buildings requires an accurate understanding of the expected

loading conditions and the resulting responses. For most tall buildings, wind loads

form the critical load cases for ultimate and serviceability limit states. The methods

for estimating tall building response to wind loading are comprised of theoretical,

empirical, and scaled model test techniques. Uncertainty in the response estimates

are encountered, and this is particularly true for tall building designs that are sig-

nificantly different and complex relative to previous designs.

Constructing a tall building represents a singular production run, with little op-

portunity to iteratively improve the completed structure via full-scale testing. This

is unlike other industries that have the ability to test multiple full-scale prototypes

and improve the design with test results before releasing the final product. Further-

more, altering the structural arrangement of a tall building to rectify unsatisfactory

performance can be extremely difficult and prohibitively expensive. This implies

that estimates of loads and responses must be accurate prior to finalising the struc-

tural arrangement.

The tested building, Latitude tower, is an office tower in the Sydney central

business district with a height of 187 m above ground. The building has a compos-

ite design including a reinforced concrete core, and reinforced concrete floor slabs

supported by steel beams spanning between the core and perimeter columns. Out-

riggers linking the core and perimeter columns, as well as offset outriggers at the

facade, are located at mid-height.

Two aspects of tall building wind-induced response estimation were investigated.

Firstly, the estimation of tall building dynamic characteristics. And secondly, the

magnitude of wind-induced responses and the mechanisms causing the response, as

well as the validation of wind tunnel test techniques.

Tall building dynamic characteristics include the natural frequencies, damping

ratios, and mode shapes. They are important parameters in the wind-induced re-

sponse estimation process, and errors in these parameters can cause large errors in

215
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the wind-induced response estimates.

Natural Frequency Estimation

Two methodologies for improving the accuracy of natural frequency estimates were

used. The first was based on observing changes in the natural frequencies during

construction and linking them with the changes in the structure. This has the po-

tential to further the understanding of how changes in the stiffness and mass of a

tall building influence the natural frequencies, which can be used to generate more

accurate numerical models of future designs for predicting natural frequencies. The

second methodology involved using the measured natural frequencies, during the

early stages of construction, to update a finite element model representing the struc-

ture at the time of testing. The updated model attributes from the partial structure

were then applied to the model representing the completed structure. This is im-

portant for two reasons. Firstly, it provides an evaluation of the assumptions and

techniques used in the design, and the outcomes of the evaluation can benefit future

designs. Secondly, for buildings that require auxiliary damping, a more accurate

natural frequency estimate will benefit the design of the damping devices.

Observing the influence of structural components in isolation was obscured by

the simultaneous nature of the construction schedule. Multiple changes in the struc-

ture where included between each test, and determining the contribution from each

individual change was not possible. For the addition of concrete elements that have

a stiffening influence on the structure, the change will be gradual as the concrete

strength increases.

The influence of the facade was observed during the final stages of construction,

since the only other changes were from fit-out, which is expected to contribute

significantly less mass than the facade. During this stage the decrease in the second

modes of vibration was less than the decrease in the fundamental modes. This

could indicate the facade was having a stiffening influence on the second modes of

vibration. This is a possibility, since the second modes will have higher components

of shear action, and the facade is more likely to provide additional shear strength as

opposed to bending strength. Alternatively, the different rates of natural frequency

decrease could reflect the mode shape influence on added mass in the structure. A

mass increase at the top of the building will have more influence on the fundamental

modes, due to the mode shapes, as opposed to the second modes of vibration. It is

possible that a combination of added mass and stiffness was provided by the facade,

however there was no firm evidence in the results to support the latter.

The influence of the outriggers were investigated using the ratios of the natural

frequencies for the fundamental mode and second mode of vibration. The addition of

the core outriggers was expected to stiffen the first mode natural frequency and result



CHAPTER 7. CONCLUSIONS 217

in a decrease in the ratio. However, the natural frequency ratio increased, which

implies the second mode natural frequency increased relative to the fundamental

mode. The result was opposite for the offset outriggers aligned to the x-axis, which

caused an increase in the fundamental natural frequency relative to the second mode

natural frequency. Other changes in the structure overlapped the addition of the

outriggers, including the addition of floor plates and core sections, and it is possible

these changes obscured the influence of the outriggers. Furthermore, the full impact

of the stiffening effect of the outriggers occurs when the structure is complete, and

the full extent of bending actions in the core are apparent.

A comparison of the fundamental natural frequencies for the completed structure

with empirical estimates [47] showed the y-axis translation and torsional modes were

within 3% of the empirical estimates, while the x-axis translation mode was within

13%. The amplitude dependence of the natural frequencies showed a decreasing

trend with increasing vibration amplitude, although the change was less than 3.4%

for all fundamental modes over the amplitude range 0.1–1.5 mgn.

A detailed three dimensional finite element model of Latitude tower was con-

structed for updating using full-scale measurements. The lack of internal partitions

coupled with the level of detail in the model put focus on the material properties as

the major source of error in the natural frequency estimates. This made a strong

case for underestimation of concrete strength as a likely source of natural frequency

underestimation, as opposed to stiffness gains from non-structural elements. Ac-

counting for the over specification of concrete strengths and the loading rate effects

on concrete stiffness due to dynamic loading, a higher elastic modulus was estimated

and used for sections of the core where typical design elastic modulus values had

been initially specified. The updating of the finite element model for the partially

completed structure yielded improved estimates for the natural frequencies from the

model of the completed structure, from within 17% to 7% error. Furthermore, the

inclusion of the floor plate beams was shown to improve the natural frequency es-

timates by approximately 4% for the translational vibration mode aligned with the

beams.

Damping Ratio Estimation

The damping ratios measured during construction were typically between 0.8-1.1%,

0.8-1.2%, and 0.7-1.1% for the fundamental x-axis translation, y-axis translation,

and torsional modes respectively. Amplitude dependence of the damping ratios dur-

ing construction was observed for the translational vibration modes, and accounted

for some of the range in the measured damping ratios during construction. The

damping ratio estimates were within the 0.5–1.5 % range established from previ-

ous studies on buildings similar to Latitude tower. It is important to note that
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the damping ratio estimates were for vibration levels significantly less than those

expected during serviceability loading conditions.

Considering the tolerances in the damping ratio estimates from Latitude tower,

the vibration test conducted at 38% of final building height yielded a similar result to

the final measurement. Accounting for the different vibration amplitudes recorded

in each test, the difference in the damping ratio estimates between the 38% and

100% completion points was less than 15% for all modes of vibration. The results

presented above suggest that the damping ratios for low amplitude vibrations are

not significantly influenced by the structural changes during construction. This is

a particularly useful outcome, since it implies the damping ratios for the first three

vibration modes of Latitude tower were known with a degree of confidence when

approximately 38% of the building height was completed.

This result could be more broadly applied to other buildings that share similar

structural and non-structural characteristics as Latitude tower. Furthermore, it has

important implications for determining auxiliary damping requirements for wind

sensitive structures. Confirming the level of damping inherent to the structure at

an early stage of construction allows more accurate assessments of the amount of

auxiliary damping required. If the inherent damping levels in the structure are con-

firmed to be sufficient, auxiliary damping devices will be unnecessary. This results

in significant financial benefits by avoiding the installation of auxiliary damping

devices, as well as gaining the space reserved for the damping device installation,

which could be reconfigured into a rentable space.

The amplitude dependence of the damping ratios for the fundamental vibration

modes were investigated using the ranked random decrement technique. The x-axis

translation mode displayed decreasing damping ratios as the vibration amplitude

increased, and the estimates were at least 60% larger than the AVT and FVT

estimates. It is likely that the uncharacteristic nature of the amplitude dependence

for this mode is due to the modal interference between the fundamental translational

modes. This will cause some of the vibration energy to transfer from the x-axis

accelerations to the y-axis accelerations, which will result in overestimation of the

damping ratios for the x-axis vibration mode. The y-axis translation mode damping

ratio values were 10% larger than the FVT and AVT values, while the torsional mode

was up to 60% larger. Both of these modes displayed an increase in the damping

ratios with increasing vibration amplitude. The magnitude of the increase over the

range 0.1–0.6 mgn was approximately 20% for both modes.

System Identification

A comparison between the vibration testing techniques and analysis methods showed

the natural frequency results from FVT and AVT were all within 5%. The damping
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ratio estimates typically differed by less than 30%, and most estimates differed by

less than 20%. There was no consistent pattern of the FDD or SSI techniques either

over or underestimating the damping ratios reported by the FVT, and the amplitude

dependence of the damping ratios did not explain the differences between the tech-

niques. These results show the FDD and SSI techniques are suitable for determining

estimates of the dynamic characteristics, particularly the natural frequencies.

The FDD and SSI techniques were specifically chosen for their ability to sepa-

rate closely spaced modes, as well as their theoretical strengths in damping ratio

estimation. Closely spaced modes were encountered in the vibration testing during

construction, and in the modal interference between the fundamental translational

modes of the completed structure. The FDD and SSI techniques were able to de-

fine these modes and achieve damping ratio estimates. The SSI technique required

higher model orders than would be normally used in order to separate the modes.

Appropriately conducted forced vibration tests provided the most reliable damping

estimates in this research, however the AVT techniques proved suitable for estab-

lishing a damping ratio range from multiple response records, and was shown to be

a beneficial technique for determining the dynamic characteristics if FVT was not

possible.

Wind-induced Response

The wind-induced response of Latitude tower was recorded between August 2005

and April 2007. The monitoring programme included the measurement of wind ve-

locities, accelerations in the orthogonal building axes, and displacements at a single

point using GPS. The peak wind events recorded by the Latitude tower anemometer

originated from southerly and westerly directions. The prevailing strong winds in

Sydney originate from north-easterly, southerly, and westerly directions. The north-

easterly winds were not accurately recorded by the Latitude tower anemometer due

to wind-structure interactions. The discussion of results focused on the southerly

and westerly winds.

The mean longitudinal turbulence intensities tended to decrease with increasing

mean wind speed, and were between terrain category 2–4 for mean wind speeds

greater than 8 m/s. The westerly winds reported less longitudinal turbulence than

the southerly winds. Large differences in the turbulence intensities were observed in

the westerly winds, with values ranging from 0.031 to 0.108 for one particular event.

The variability in the turbulence intensities is likely due to different meteorological

phenomena and their influence on the wind conditions.

The longitudinal wind speed spectrum for southerly and westerly wind direc-

tions were approximately equal to the estimate from the Australian wind loading

code [153]. An indication of the lateral turbulence was attained from the wind di-
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rection measurements. The standard deviation wind direction tended to stabilise at

approximately 8–11 ◦ for most directions at wind speeds above 8 m/s.

For peak wind events from southerly and westerly directions, the acceleration

responses were dominated by the fundamental translational mode of vibration in

the y-axis. For the southerly winds this corresponded to the along-wind direction,

but for westerly winds this corresponds to a dominant cross-wind response. This is

possibly due to increased lateral turbulence in the westerly winds, as well as energy

transfer via modal interference between the closely spaced fundamental translation

modes.

The probability distributions of upcrossings for along-wind and cross-wind re-

sponses where not significantly different to a Gaussian distribution for both southerly

and westerly winds. The slope of the linear least squares fit was greater than

two, which suggests intermittent characteristics were present in the acceleration

responses. The cross-wind responses had slopes closer to a Gaussian process com-

pared with the along-wind response. For a probability of exceedance of 1/1000, the

along-wind peak factors were 4.1 and 4.5 for a southerly and westerly wind respec-

tively, and the cross-wind peak factors were 4.0 and 4.2. The peak factor estimate

for a normally distributed process [39] is 3.9 for along-wind responses in both the

x and y axes. The measured peak factors are for wind speeds that are significantly

less than extreme events, and the additional turbulence at the lower wind speeds

compared with higher wind speeds may cause larger peak factor estimates.

Displacements measured by the GPS equipment were presented for a southerly

wind event with mean wind speeds between 17.2–18.4 m/s. The GPS measurements

recorded an 11–13 mm change in the mean North-South displacement of Latitude

tower for this wind event, and little change in the East-West direction. Dilution of

precision errors from suboptimal positioning of satellites, in addition to multipath

errors due to the location of the rover GPS receiver near buildings, were the likely

causes of large fluctuations in the displacement measurements that were unlikely

to be from wind loading. The presence of these errors hindered the observation

of the quasi-static component of the response. The fundamental vibration modes

were visible in the spectra of the North-South and East-West displacements, which

highlighted the ability of the GPS receiver to capture the resonant component of

the response. Estimates of the resonant displacements from the acceleration mea-

surements along the y-axis (North-South) were between 7–11 mm.

An HFBB wind tunnel test of a 1:400 scaled model was conducted using bound-

ary layer wind conditions equivalent to a terrain category 3 as defined by AS/NZS

1170.2:2002. Full-scale acceleration measurements of one hour duration were se-

lected for comparison with the wind tunnel results. The records were selected based

on having similar wind characteristics to those modelled by the wind tunnel, as well
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as being representative of the peak event recorded during the monitoring period.

The standard deviation resonant acceleration responses were used to compare the

results.

For a southerly wind, the HFBB underestimated the full-scale acceleration re-

sponse by 29%. The results for a westerly wind showed the HFBB overestimated the

response by 27%. For the westerly wind, the measured turbulence intensity was 10%

less than the wind tunnel value, which may explain some of the difference between

the wind tunnel and full-scale acceleration responses.

A parametric study of the HFBB results show that halving the natural frequen-

cies increased the response estimates by up to 73%, while halving the damping ratios

increased the responses by up to 42%. This result is important to consider, because

large underestimations of natural frequencies have been previously reported, and

the damping ratio is also prone to significant variability between measured and pre-

dicted values. For wind sensitive structures, a combined underestimation of the

natural frequencies and damping ratios may lead to significant overestimation of

the responses, resulting in an over-designed structure. This represents extra cost, as

well as potential loss of returns from decreased tenant space from the increased size

of structural elements, or the space required to install auxiliary damping devices to

mitigate excessive wind-induce responses.

Recommendations for Future Research

• Further observations of structures during construction: This approach has been

shown to be effective in reducing uncertainty in natural frequency and damping

ratio estimates. One building was used in this research, and the previous research

is limited. More buildings of various geometries, heights, structural systems, and

material properties will need to be observed before more firm conclusions can be

stated regarding the ability to improve estimates of the dynamic characteristics for

a wider range of structures. Many completed buildings have been tested to determine

their dynamic characteristics, and the database of results have been invaluable for

the determination of empirical formulas as well as providing guidance to future

designs. A similar database of results for structures during construction may be

equally as useful.

• Earlier observations of structures during construction: For this research, vi-

bration tests started at a later stage of construction due to the unusual nature of the

construction schedule — building atop an existing structure. The conclusions from

this research suggest that the uncertainty in estimating the dynamic characteristics

of a building can be mitigated via vibration testing of the partially completed struc-

ture. The most benefit is achieved if the uncertainty is mitigated as soon as possible

after construction starts, which gives more time for amending the structure should
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an undesirable forecast of the dynamic characteristics eventuate. The question is,

how early in the construction cycle can tests be conducted, and do earlier tests have

the same ability to provide improved forecasts? Or, does the forecasting ability

diminish with decreasing percentage of completed construction?

• System identification techniques : Improved system identification techniques,

particularly for the estimation of damping ratios from ambient vibration testing,

would be beneficial to future research on tall building dynamics and wind-induced

response. Natural frequency and mode shape estimates are relatively robust for

ambient vibration testing, yet damping ratio estimates are subject to variability.

• Local versus global monitoring : Dynamic properties are examples of global

updating parameters. There are benefits in using a local approach to gain more

information regarding structural behaviour, which can be used to create more ac-

curate models. A local monitoring approach implies finer grained monitoring, for

example member forces/stresses and displacements/strains. This can be achieved

via embedded sensors and this is starting to be implemented in tall buildings [130],

but there is little published research regarding this approach for tall buildings.

• Further full-scale validation of buildings : The monitoring programme in this

research only captured low level acceleration responses. The question remains as

to how this building, and many others, would respond to wind events with larger

return periods. The amount of full-scale data that is collected for tall building dy-

namics and wind response is small compared with the number that are constructed.

In the absence of a comprehensive amount of full-scale data the current methods for

estimating tall building response to wind may produce conservative results, which

can cause unecessary use of more resources and additional construction costs. Fur-

ther full-scale validation of buildings is necessary and is becoming easier due to

the rise of structural health monitoring and the unprecedented heights achieved in

current buildings — both are making owners realize the importance of monitoring

structures.

• Improved displacement measurement : GPS theoretically has sufficient accu-

racy for wind-induced response monitoring, however the detrimental effects on signal

quality from multipath errors are at present difficult to avoid in typical installations.

Either improved multipath mitigation algorithms or hardware are required to en-

sure GPS provides reliable wind-induced displacement data. Alternatively, different

displacement measurement techniques could be developed, or enhanced in the case

of existing techniques, to achieve the accuracy and reliability required.
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