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Abstract

The study of shear flow steady states has led to a wealth of research in the
field of fluid dynamics. By studying shear flows, we can understand how a fluid
behaves and how coherent structures arise. In this thesis, we primarily study the
stability of shear flows in the Euler equations. The Euler equations describe the
dynamics of an ideal fluid which is incompressible, inviscid, and experiences no
external forces. These equations can be formulated as a Poisson system, which
we exploit to study stability.

We study the family of shear flows of the Euler equations with vorticity of
the form Ω(x, y) = cos(κxpxx + κypyy) on a two-dimensional periodic domain of
size

[
0, 2π/κx

)
×
[
0, 2π/κy

)
. We prove that if py = 0 and κx|px| < κy, this shear

flow is linearly stable. If
√
κ2
xp

2
x + κ2

yp
2
y > (3 + 2

√
3)/2, we prove the corresponding

shear flow is nonlinearly unstable. In addition, we discuss the spectrum of the
linearisation of shear flows more generally and explore a related Jacobi problem.
There is a known Poisson structure preserving truncation of the Euler equations.
We prove analogous stability results in this system and discuss the qualitative
differences. We extend a previously known Poisson integrator for this truncation
of the Euler equations to a general two-dimensional periodic domain.

The Euler equations on a three-dimensional periodic domain are less well-
understood. In this domain we formulate the dynamics in terms of the vorticity
Fourier modes. This is then used to study shear flows and prove similar stability
results as for the two-dimensional case. We show that the linearised equations
split into subsystems which have equivalent dynamics to the subsystems of the
two-dimensional linearised equations. This is used to prove the existence of a
family of linearly stable shear flows, and another of linearly unstable shear flows.
For a dense set of parameter values, the linearised system has a nontrivial nilpo-
tent part leading to linear instability. This is linked to the nonnormality of the
system, which indicates a transition to turbulence. We also show that the Euler
equations on a three-dimensional periodic domain can be formulated as a Poisson
system. We finally present some numerical results demonstrating and exploring
the results of this thesis.
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Chapter 1

Introduction and Literature

1.1. Introduction

In 1790, Leonard Euler described a set of equations to model the dynamics of
an ideal fluid. These equations are now known as the Euler ideal fluid equations,
or simply Euler equations. Over the subsequent two centuries, the study of these
equations has led to an abundance of new mathematical ideas and results. How-
ever, many questions still remain unresolved. Our understanding of the dynamics
of fluids and gases is constantly improving as we glean further insight into the
solutions to the Euler equations.1

The Euler equations admit a class of steady states known as shear flows. Shear
flows are a family of flows with fluid moving parallel to a fixed direction. These
flows have been well-studied since the late nineteenth century, inspiring results
in the fluid dynamics community and the broader field of dynamical systems.
Understanding when shear flows are stable, when they are unstable, and how
they lose stability has contributed much towards our understanding of how fluid
moves and behaves.

In this thesis, we present a study of the linearised spectrum of shear flows
of the Euler equations on a periodic domain with arbitrary side lengths in two
and three dimensions. This builds upon and extends previous work and is a step
towards a complete description of the spectrum. The techniques and results in
this thesis take advantage of a Poisson system formulation of the Euler equations.
This structure is not only mathematically convenient and elegant, but very nat-
ural to the Euler equations. Approaching the system with this framework allows
us to exploit the structure associated with a Poisson system to answer questions
about stability.

The key new results of this thesis are as follows. We prove the existence of a
family of linearly stable sinusoidal parallel shear flows for the Euler equations on
a two-dimensional periodic domain. We further prove that almost all other sinu-
soidal shear flows are nonlinearly unstable. We then discuss a Poisson structure
preserving finite-mode truncation of this system, which leads to the development
of an accurate and efficient Poisson integrator. On a three-dimensional periodic

1In the electronic version of this document, all references to chapters, sections, figures, and
citations can be clicked to take you to the relevant page.
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2 1. Introduction and Literature

domain we show that the linearised system splits into subsystems equivalent to
those that occur in the two-dimensional problem. This allows us to develop re-
lated results and show the existence of a set of linearly stable shear flows and
another set of linearly unstable shear flows in the three-dimensional problem.
However, there are additional technical details related to the nonnormality of the
linearised system and the existence of nilpotent subsystems. These are funda-
mental differences to the two-dimensional shear flows. We finally present a new
Poisson structure for the Euler equations on a three-dimensional periodic domain.
Numerical experiments are included to analyse and extend these analytic results.

1.2. Background and History

We now summarise the key background for this thesis. The Euler equations
are introduced, as well as their broader context in the study of fluid dynamics.
Hamiltonian dynamics and stability theory are discussed in the context of hydro-
dynamical systems. We then discuss structure-preserving Poisson truncations of
the Euler equations, and existing work on the use of these truncations. Finally,
some related stability results for shear flows in a variety of contexts are presented.

1.2.1. Fluid Dynamics and the Euler Equations. The study of the mo-
tion of fluids is known as hydrodynamics. The field of hydrodynamics has provided
mathematicians and physicists with an abundance of questions, many with deep
mathematical implications. An intuitive understanding of fluid behaviour guided
the design of ships and aqueducts built by the Romans in the fourth century
BCE. The earliest known attempt to formalise these ideas came from Leonardo
da Vinci (1452-1519), who computed the equation for the conservation of mass
in a steady flow [Whi99]. Over the following centuries, the work of experimen-
talists and mathematicians developed both our understanding of fluid flows and
attempts to harness their power for our own means. The results of experimental
studies of gas and liquid fluid flows have led to improved designs for aeroplanes,
boats, turbines, parachutes, and countless other useful inventions.

In 1757, Leonhard Euler derived the first version of the equations that would
come to bear his name, the Euler equations of fluid dynamics. The Euler equa-
tions describe the dynamics of an ideal fluid. In this context, an ideal fluid is
incompressible (it has a constant density), inviscid (it has zero viscosity and
therefore no friction), and does not experience any external force. Euler’s fluid
dynamics equations are often cited as one of the first examples of a partial differ-
ential equation [Chr07]. The mathematical analysis of these equations has and
led to the development of new fields which continue growing today.

From a mathematical perspective, the Euler equations are a source of many
interesting and important research areas and have had a profound impact on the
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broader mathematical community [Con07]. Study in partial differential equa-
tions, dynamical systems, harmonic analysis, integrable systems, and other fields
has been inspired and enriched by problems stemming from the Euler equations.
Many of these problems remain unsolved [Yud03, Con07]. For instance, ques-
tions of well-posedness [Wu97, Wu99] and the existence of finite-time blowup
[CCF+] (where singularities arise in finite time from smooth initial conditions)
in general remain unresolved in the Euler equations. Mathematically, these are
deep question which probe both the limits of our understanding of the differen-
tial equations involved and the broader question of the relationship between the
model and the physical system it describes. A review of some of the mathematical
problems in fluid dynamics can be found in [FS02, FS03, FS04].

Among the active areas of research is the study of the Euler equations on
a three-dimensional domain, and how this relates to the same equations on a
two-dimensional domain. Although the governing equations are superficially the
same, the dynamics can exhibit very different behaviours [GGK00, Con07].
Many results which are understood for the two-dimensional domain are unknown
in the three-dimensional domain [Gib08]. Coherent structures such as vortices
that are common in the two-dimensional domain are not observed in the three-
dimensional domain. This reflects the increased mathematical complexity of the
problem in a three-dimensional domain, which can be noted by comparing the
number and type of constants of motions for the domains [YM16]. A common
approach is to discuss flows which are in some sense “between” two-dimensional
and three-dimensional flows, such as two-and-a-half dimensional flows [Gib08]
and epi-two-dimensional flows [YM16].

In addition to an analytic approach, a numerical description of the dynamics
of a fluid is of great importance to the scientific and industrial communities.
In the twentieth and twenty-first centuries, advancements in technology and the
parallel development of computational fluid dynamics has meant that flows can
be computed relatively quickly to a high degree of accuracy. Computational
fluid dynamics is used in many areas, such as aircraft design, weather prediction
models, and analysis of pipe flow for transportation of liquids.

As most useful models for effects such as drag rely on the viscosity of the
fluid, the Euler equations seemed of little use to experimentalists and engineers.
The Euler equations were generalised in the 19th century to the more general
Navier-Stokes equations, which model the dynamics of a viscous flow (that is, a
flow with nonzero viscosity). Although this is a more physically realistic scenario,
the equations are usually too difficult to analyse in detail. A compromise was
struck in the early twentieth century when it was shown that some flows can be
described using boundary-layer methods [AAR01, Whi99, Tay71]. There a
fluid is divided into a small layer with nonzero viscosity near a boundary (either
an object or an interface between fluids) and a larger layer with zero viscosity.
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The Euler equations can then be used to describe the flow of the inviscid layer,
and the Navier-Stokes equation to describe the viscous layer. Thus both the Euler
equations and the Navier-Stokes equations are used in modelling the system.

An important question from a mathematical perspective is whether the Euler
equations can be considered the zero-viscosity limit of the Navier-Stokes equa-
tions, and the relationship between solutions of the two sets of equations [Con95].
This is closely related to the question of finite-time blowup; if we have sufficiently
smooth initial conditions and no boundary on the domain, then the Euler equa-
tions are the limit of the Navier-Stokes equations. Otherwise, the answer is
generically unknown except in special cases; for example see [IP06].

1.2.2. Steady States, Stability and Turbulence. A key theme in the
field of dynamical systems is the study of steady states and equilibria. An equi-
librium is a state of a system where the dynamics are constant. Reference is
often made to a steady state of a system; this is a state where some property of
the system is unchanging with respect to time. For instance, in ideal fluid flow
we consider a steady state where the vorticity is constant with respect to time.
However, this constant vorticity induces a nonzero fluid velocity and a noncon-
stant flow of the system. Thus a steady state is an equilibrium with respect to
some frame of reference. A description of the dynamics of a system near a steady
state is a powerful step towards understanding the full dynamics of the system,
particularly in systems that are too complex to describe in toto.

In particular, the full dynamics of a system can often be inferred from analysing
the stability of steady states. Intuitively, a steady state is said to be stable if a
perturbation or small change away from the steady state will not change the
dynamics dramatically. Otherwise it is unstable, and after a perturbation the
system will move further from the steady state. There are many formal defi-
nitions and ideas of stability and instability, all seeking to capture this idea in
different ways. The study of stability is of key importance in experimental re-
search; a stable steady state can often be observed, whereas an unstable steady
state will almost never occur naturally, or only occur for a short length of time.

In the theory of hydrodynamics, the study of steady states and their stability
is of high interest. An early experiment to study this concept was conducted
by Osborne Reynolds in 1883 [Rey83]. Reynolds described experimental results
regarding laminar flow in a tube, and the conditions under which laminar flow
is lost. Laminar flow is a smooth flow where fluid travels along straight lines.
Reynolds observed that by changing the conditions of the experiment, the fluid
would transition from laminar flow to a chaotic state we now refer to as a turbulent
flow. From a dynamical systems perspective, the laminar flow is a stable steady
state, and if it becomes unstable as parameters change the flow will transition
to a chaotic turbulent flow. This work popularised the concept of the Reynolds
number, which was originally conceived by Sir George Stokes in 1851 [Sto51].
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Figure 1.1 – In a shear flow, fluid travels along parallel flow lines, illustrated
above. The velocity of fluid on different flow lines varies. Here the fluid flows in
two different directions, with sinusoidal velocity profile. As the flow is parallel to
the sides of the domain, this is a parallel shear flow.

The Reynolds number of a flow can be calculated by the formula

Re =
ρvL

µ
(1.2.1)

where ρ is the density of the fluid, v is the velocity of the flow, L is the charac-
teristic length, and µ is the viscosity. For a low value of the Reynolds number,
viscous forces are dominant, and laminar flow is expected. For a high value of
the Reynolds number, turbulent flow is expected. Although this is simple enough
to experimentally measure and physically justify, it is more difficult to analyt-
ically describe how and why the flows lose stability. Of particular note is that
the Reynolds number is singular in the “inviscid limit” when µ → 0. However,
this is not to imply that fluids with zero viscosity are necessarily turbulent. The
Reynolds number suggests whether the flow will be turbulent or not, but does
not provide a mathematical mechanism causing stability or instability to occur.

A shear flow is a flow where the flowlines along which the fluid travels are
all parallel, but the velocity of flow along such lines can vary. An example of
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such a flow is illustrated in Figure 1.1. The laminar flow described by Stokes and
Reynolds is an example of such a flow in a tube. Shear flows with zero viscos-
ity were studied by Lord Rayleigh [Ray79]. That paper introduced Rayleigh’s
equation, which is an eigenvalue problem for the evolution of perturbations from
a shear flow. From these eigenvalues, one can infer whether such a shear flow is
stable or not. This gives a mathematical insight into why and how these flows lose
stability, and the transition from stability to instability. This transition is known
as the transition to turbulence, which is still widely studied today. The equivalent
of Rayleigh’s equation for a viscous flow is the Orr-Sommerfeld equation, named
after William Orr and Arnold Sommerfeld [Orr07, Som08].

The causes of a transition to turbulence are not always clear, but many math-
ematical explanations have been developed. Notably, turbulence often will not
appear in a system linearised around a shear flow but will appear in the full non-
linear system. These nonlinear effects are often difficult to analyse. It has been
shown [TTRD93, GG94, BDT95] that the destabilising effect of the nonlinear
dynamics can be predicted by looking at the normality of the system. If the
eigenvectors of the linearised system are near parallel, perturbations perpendic-
ular to these eigenvectors can become stable on a sufficiently long timescale that
nonlinear effects will dominate. This means that although the linearised system
will be stable, the nonlinear system can be unstable and turbulence will occur.
An explanation and overview of this concept is given by Grossmann in [Gro00].

Knowing the stability of steady states in hydrodynamical systems is key to
understanding a number of physical phenomena. For instance, Kelvin-Helmholtz
instability describes an instability that occurs when two layers of a fluid are flow-
ing at different velocities [Hel68, Tho71]. This accounts for the structure of the
atmosphere in gaseous planets, such as the vortex at the giant red spot on Jupiter.
It also explains the dynamics of wind near the surface of a large body of water.
Another example is Rayleigh-Taylor instability which can occur between two lay-
ers of fluid with different densities [Str83, Tay50]. Such instabilities occur in
interstellar gas and can generate ocean currents. Understanding the mechanisms
by which flows lose stability allows more accurate models to be developed and
deeper insights to be made.

1.2.3. Poisson Systems and Fluid Mechanics. A useful theoretical frame-
work in the study of hydrodynamic stability is the theory of noncanonical Hamil-
tonian systems or Poisson systems. Hamiltonian systems were developed as a re-
formulation of the principles of Lagrangian mechanics. The theory of Lagrangian
mechanics was developed by Lagrange in 1788 to describe Newtonian mechanics
in a natural way for a generalised coordinate system. Hamiltonian mechanics
reformulates this in terms of the energy of the system, which is physically intu-
itive. The guiding principal of both Hamiltonian and Lagrangian mechanics is
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employing calculus of variations to ensure the principal of least action is satisfied
[Arn78, Mei07].

Canonical Hamiltonian systems typically describe the dynamics of systems
which can be modelled by a particle or set of particles, each with a position and an
associated momentum. The position and momentum are conjugate variables with
dynamics given by Hamilton’s equations. However, the principals of Hamiltonian
mechanics can be applied to a broader class of systems which are not necessarily
described using such coordinates. Poisson systems (also known as noncanonical
Hamiltonian systems) generalise Hamiltonian systems to a set of systems whose
dynamics can be derived from the principal of least action [Arn78, MQR98].
Throughout this thesis, we will frequently formulate the systems we study as
Poisson systems, and discuss and exploit the advantages of such a formulation.

One advantage to formulating a problem as a Poisson system is that it allows
one to use the ideas and methods of Hamiltonian stability theory. In particular,
the conserved quantities of a Poisson system such as the energy and the Casimirs
can be fixed and the stability under perturbations that conserve these quantities
can be analysed. In fluid dynamics, there have been many successes describ-
ing common flow models as Poisson systems. A summary of such systems was
compiled by Kolev [Kol07].

Arnold [Arn66b, AK98] showed that the dynamics of an ideal fluid can be
described geometrically by studying the geodesics (or shortest paths) on a Rie-
mannian manifold. Specifically, they are given by the geodesics on the group
of volume preserving diffeomorphisms [Zha08]. This Hamiltonian system is dis-
cussed in depth in Morrison [Mor98]. Arnold shows that this structure can be
exploited to show that the shear flow with velocity profile cos(y) is energy-Casimir
stable in a two-dimensional periodic domain with side length X and 2π if and only
if X < 2π [Arn66a, AK98]. This method relies on restricting perturbations to
the subspace defined by fixing the energy and Casimir constants, and is described
in [HMRW85, Mor98] and in a more general setting in [PRW04, OPBR05].
It is a very useful method for showing stability in a strong nonlinear sense, equiv-
alent to Lyapunov stability.

1.2.4. Structure-Preserving Truncations. As discussed in the previous
section, there are a number of advantages to describing fluid dynamics with Pois-
son systems. However, when calculating and analysing flows numerically it is typ-
ically not possible to use the full infinite-dimensional systems required to fully
capture the Euler equations. Often a Galerkin-style truncation down to some
set of important modes is made, and the resulting dynamics analysed [Ors77].
However, such a truncation will usually not conserve the Poisson structure.

Fortunately, in the case of the Euler equations in a two-dimensional periodic
domain there is a known finite-dimensional truncation that conserves the Poisson
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structure. Fairlie and Zachos [FZ89, FFZ89] showed that the group of symplec-
tic diffeomorphisms of the torus T2 is equivalent to the infinite special unitary
group SU(∞). Thus the finite-dimensional group SU(N) can be used to approx-
imate the group of symplectic diffeomorphisms on the torus. This was discussed
further in [Hop89, BHSS91, PR90].

It was then noted by Zeitlin [Zei91, Zei05] that this group of symplectic dif-
feomorphisms could also be used to describe the dynamics of the Euler equations
as described by Arnold. This gives an explicit finite-dimensional Poisson system
called the sine-bracket truncation that approximates the dynamics of the Euler
equations. A numerical evaluation of this truncation was completed by Dowker
and Wolski [DW92]. There is a similar construction on the spherical domain
[Zei04]; this may have interesting applications for studying the flow of a fluid
around a planet or planet-like structure.

An advantage of using this structure preserving truncation over a Galerkin-
style truncation is the appearance of Casimir conserved quantities. The sine-
bracket truncation described by Zeitlin has a set of Casimirs, with additional
Casimirs appearing as the truncation size is increased. These Casimirs can be
exploited to study energy-Casimir stability, as discussed above in the untruncated
system. They can also be studied from a statistical perspective as in Abramov
[Abr02] or used to develop a Poisson integrator that conserves the values of the
Casimirs as in McLachlan [McL93]. This Poisson integrator is discussed and ex-
tended in Section 3.3 of this thesis. For comparison, a Galerkin-style truncation is
often used in both numerical and analytic studies of the Euler equations [KB08];
the two truncations have their uses in different contexts. Peradzynski, Makaruk
and Owczarek [PMO01] discuss the merits of each truncation in numerical cal-
culations. Shear flows have been studied in the sine-bracket truncated system
[DWM16], including an energy-Casimir stability result that only exists in the
sine-bracket truncated system [DW16]. These results are included in this thesis
in Chapter 3. There are also interesting results in other systems with equivalent
truncations. For instance, the Poisson structure-preserving truncated flow on a
sphere [Zei04] is integrable for small truncation values [Dul13].

1.2.5. Stability Results for the Euler Equations. As the bulk of this
thesis is concerned with the stability of shear flows with sinusoidal velocity pro-
files, we now collect some related results for similar flows. We take care to note
the domain size and type, inclusion or exclusion of viscosity, and the type of
stability considered, as different studies consider different scenarios.

Consider the shear flow steady state of the ideal fluid Euler equations with
velocity of the form

v =

(
−Γκypy sin(κxpxx+ κypyy)
Γκxpx sin(κxpxx+ κypyy)

)
(1.2.2)
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for some constants Γ ∈ R, px, py ∈ Z on a periodic domain of size

D =

[
− π

κx
,
π

κx

)
×
[
− π

κy
,
π

κy

)
(1.2.3)

for constants κx, κy ∈ R+. The Euler equations themselves and the associated
domain are discussed in detail in Section 2.2.

Such sinusoidal shear flows and their stability have been studied in many
forms and with many approaches. Rayleigh’s equation [Ray79] is used to study
parallel shear flows. Parallel shear flows are equivalent to (1.2.2) with px = 0 or
py = 0; for a sinusoidal shear, these flows have the form

v =

(
sin(κypyy)

0

)
. (1.2.4)

Rayleigh studied parallel shear flows in a pipe flow. For a pipe flow, the domain
can be modelled as having no boundary in the y direction and walls at the
boundary in the x direction. For such a domain, Rayleigh’s criterion can be used
to determine eigenvalues and conclude the stability or instability of a flow. Such
systems are widely studied today, particularly in relation to the transition to
turbulence [MMSE09, AWH10, AMdL+11].

Arnold described the Euler equations with the periodic domain (1.2.3) in a
new geometric way; as geodesics on the manifold of volume-preserving diffeo-
morphisms. With this approach, he proved that the flow with velocity profile
v = (sin(κyy), 0) is stable if and only if the domain size satisfies κy/κx ≤ 1 (see
[AK98] example 4.6; also [Arn66b, Arn66a]). To be precise, it was shown
that such steady states are energy-Casimir stable. This means the steady state
is nonlinearly Lyapunov stable under the class of perturbations that preserve
the Casimirs. Energy-Casimir stability is discussed in a more general sense in
[WG96, WG98]. A discussion of how this is used to show the stability of sinu-
soidal and other parallel shear flows is included in [DH66]. A similar approach
that also exploits the structure of the system is developed in Hirota, Morrison
and Hattori [HMH14]. There a condition is developed for linear instability of
parallel shear flows by taking a variational approach.

A common area of research is parallel shear flows on a domain periodic in both
directions. One can then ask how the size of the domain affects stability. For
example, Belenkaya, Friedlander and Yudovich [BFY99] studied such inviscid
parallel flows on a two-dimensional domain 2π/κx periodic in x and 2π/κy periodic
in y. They calculated curves of spectrum for py < κx, and therefore demonstrated
instability. In this thesis it is shown that in two and three dimensions these
parallel shear flows are linearly stable for sufficiently narrow domains in Theorems
2.6.1 and 4.3.6. Belenkaya et al. also consider highly oscillatory shear flows, as
py → ∞. Compare this to Section 6.2 of this thesis where we consider the
spectrum in the limit κx → 0. This can in some sense be considered the dual
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problem. Similar analysis was completed by Lin [Lin03, Lin04] and Butta
[BN10].

Understanding the mechanisms by which a flow loses stability is of physical
importance, as natural processes will introduce perturbations that may differ
in character. A discussion of how parallel steady states can lose stability is
presented in [PW82]. Two distinct ways a parallel shear flow can lose stability
are shown. Most notably, they discuss how a parallel shear flow can lose stability
through perturbations which are solely parallel to the flow. This corresponds to a
disturbance which travels in the same direction as the fluid, and leads to different
long-term behaviour than a disturbance travelling perpendicular to the flow.

The related problem of parallel viscous shear flow stability is also well-studied.
Meshalkin and Sinai [MS61] studied the flow with velocity v = (sin(pyy), 0) (as
per Arnold [AK98]) in a domain periodic in y only. Notably, that work makes
use of continued fraction convergence arguments. Compare this to the arguments
in the inviscid problem in [Li00] and the Jacobi operator introduced in Section
2.9.4 of this thesis. Beck and Wayne [BW13] showed that the corresponding
parallel shear flows are “metastable” in the Navier-Stokes equations with a two-
dimensional periodic domain. They showed that such shear flows lose stability
on a slower timescale than the natural decay of the steady state, and so maintain
their structure as they decay.

There are fewer results for general sinusoidal shear flows with vorticity of the
form v = (−py sin(pxx + pyy), px sin(pxx + pyy)) on a square periodic domain.
Li [Li00] described the splitting of the linearised system into subsystems. He
then showed that only finitely many of these subsystems can contribute instabil-
ity. This suggests a natural description of the type and number of nonimaginary
eigenvalues. This thesis continues this idea to describe some of these eigenvalues
analytically. Li used a continued fraction type argument to calculate eigenval-
ues of the linearised inviscid system. Latushkin, Li and Stanislavova [LLS04]
showed that the continuous spectrum of the linearised system is the full imagi-
nary axis (extending previous work by Shvidkoy and Latushkin [SL03]), and pro-
vided an upper bound on the number of nonimaginary eigenvalues. Conjecture
6.1.8 presents a result which if proven would sharpen this bound and generalise
it to an anisotropic domain. Latushkin et al. also showed that the spectral map-
ping theorem holds for the linearised Euler equations. Together with the work of
Friedlander, Strauss, and Vishik [FSV97] this shows that eigenvalues with pos-
itive real part in the linearised problem imply nonlinear instability in the Euler
equations. This allows us to conclude nonlinear instability from linear instability
results. A similar result was previously proven for the Navier-Stokes equations by
Yudovich [Yud65]. In this thesis, we prove that almost all sinusoidal shear flows
are nonlinearly unstable in the two-dimensional domain in Theorem 2.7.53. For
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a three-dimensional domain, we prove almost all shear flows are linearly unstable
in Theorem 4.4.1.

1.3. Thesis Outline

1.3.1. Motivating Examples. We now present some examples to motivate
and illustrate the results of this thesis. A fluid has a velocity v and a vorticity
Ω. The Euler equations for the flow of an ideal fluid are the partial differential
equation

∂Ω

∂t
+ v · (∇Ω) = 0 (1.3.1)

and the incompressibility condition

∇ · v = 0. (1.3.2)

We also have the relation
Ω = ∇× v (1.3.3)

between the velocity and vorticity. In this thesis we are concerned with the
dynamics of these equations on periodic domains in two and three dimensions.
In two dimensions the domain is (1.2.3) for constants κx, κy > 0. On this domain
v ∈ R2 and Ω ∈ R.

On the two-dimensional periodic domain the Euler equations admit a family
of steady states with velocity given by (1.2.2) and vorticity

Ω∗ = Γ(p2
xκ

2
x + p2

yκ
2
y) cos(pxκxx+ pyκyy) (1.3.4)

for some constants px, py ∈ Z not all zero and nonzero Γ ∈ R. A key goal of this
thesis is to classify the stability and describe the spectrum of these steady states
in terms of the pi, κi parameters.

If py = 0, this is an example of a parallel shear flow. For the case px = 1,
py = 0 this is the flow described by Arnold in [Arn66a, AK98]. Arnold proved
that this flow is energy-Casimir stable if and only if κy/κx > 1. We wish to describe
the general class of parallel shear flows for px ∈ Z. For example, consider px = 2,
py = 0. The shear flow is then given by the velocity

v∗ =

(
0

sin(2κx)

)
. (1.3.5)

This flow is illustrated in Figure 1.2.

If we linearise the Euler equations around this shear flow, we discover that
number and size of the nonimaginary eigenvalues depends dramatically on the
aspect ratio of the domain κy/κx. This is illustrated in Figure 1.3, which shows
the absolute value of the real part of the eigenvalues as a function of the domain
size. If κy/κx < 2, we observe nonimaginary eigenvalues that will occur with
Hamiltonian symmetry (that is, if λ is an eigenvalue, so are −λ and ±λ̄). Thus,
there are eigenvalues with positive real part and the shear flow is linearly unstable.
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Figure 1.2 – An illustration of the velocity of the parallel shear flow (1.3.5).
The red arrows show the direction of the fluid flow, with their length representing
magnitude of the velocity. The domain is periodic in both dimensions. This flow
is linearly stable for certain domain sizes.
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Figure 1.3 – For the shear flow (1.3.5), the positive real part of the eigenvalues of
the linearised system as a function of the domain size κy/κx. Note that for κy/κx > 2,
there are no nonimaginary eigenvalues. Thus the shear flow is linearly stable if and
only if κy/κx > 2.
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Figure 1.4 – The nonimaginary eigenvalues of the linearisation around the shear
flow (1.3.6). As there are eigenvalues with positive real part, the shear flow is
linearly unstable. Real eigenvalues are plotted as red diamonds, and complex
eigenvalues are plotted as black circles.

By known results [FSV97, SL03] this linear instability can be used to confirm
the system is nonlinearly unstable.

A more surprising result occurs in the case κy/κx > 2. For this domain the lin-
earised system is antisymmetric and there are only imaginary eigenvalues. Thus
the shear flow is linearly stable. We generalise this result to all parallel flows
for appropriate domain sizes in Theorem 2.6.1, which proves the existence of a
family of linearly stable parallel shear flows.

A further observation from Figure 1.3 is that as κy/κx → 0, there are infinitely
many nonimaginary eigenvalues. We will study this numerically in Section 6.2
and show that in this limit, the discrete eigenvalues fill out a set of continuous
curves.

For all other shear flows with px, py 6= 0 or py = 0 and κy/κx < px we nu-
merically observe that the shear flow is unstable. Consider the shear flow with
velocity

v∗ =

(
− sin(2x+ y)
2 sin(2x+ y)

)
(1.3.6)

on the square domain κx = κy = 1. We linearise the Euler equations around this
flow and calculate the nonimaginary eigenvalues. These eigenvalues are shown
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Figure 1.5 – The nonimaginary eigenvalues of the linearisation around the shear
flow (1.3.8) in a three-dimensional domain. The domain is the isotropic domain
κx = κy = κz = 1.

in Figure 1.4. In particular, we observe eigenvalues with positive real part and
conclude that the shear flow is linearly unstable. Again, we appeal to the results
of [FSV97, SL03] to show this shear flow is therefore nonlinearly unstable. In
Theorem 2.7.53 we prove an analytical result confirming this instability. We show
that for almost all px, py there exists a lower bound on a positive real eigenvalue.
This is a step towards the goal of describing the full linearised spectrum of shear
flows of the form (1.2.2). Conjecture 6.1.8 describes this full spectrum, including
the number and type of nonimaginary eigenvalues.

In three dimensions the periodic domain has lengths

D3 =

[
− π

κx
,
π

κx

)
×
[
− π

κy
,
π

κy

)
×
[
− π

κz
,
π

κz

)
(1.3.7)

and the relevant quantities have different dimensions: v ∈ R3, Ω ∈ R3.

We consider shear flows in this domain. For example, consider the shear flow
with velocity

v∗ =



− sin(2x+ y)
2 sin(2x+ y)

0


 . (1.3.8)

In the two-dimensional cross section (ignoring dynamics in the third dimension),
this is the same flow as (1.3.6). For an isotropic domain with κx = κy = κz = 1,
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Figure 1.6 – The nonimaginary eigenvalues of the linearisation around the shear
flow (1.3.8). The domain κx = κy = 1, κz = 10 is chosen sufficiently wide in the z
dimension so that the spectrum is the same as the spectrum of the linearisation of
(1.3.6). This can be noted by comparing the eigenvalue locations with Figure 1.4.

the linearised spectrum is shown in Figure 1.5. As per the two-dimensional
domain, there are nonimaginary eigenvalues with positive real parts, and thus
instability.

If we take a domain sufficiently wide in the κz direction, something interesting
happens. The dynamics in the z direction become irrelevant for the nonimaginary
spectrum, and the spectrum is shown in Figure 1.6. The nonimaginary eigenval-
ues have the same values as the nonimaginary eigenvalues of the corresponding
two-dimensional flow (1.3.6) shown in Figure 1.4.

In fact, in Chapter 4 we prove that with under appropriate transformations,
the spectrum of any linearised shear flow in three dimensions can be described in
terms of the spectrum of linearised shear flows in two dimensions. Thus, we can
extend the conclusions made for the shear flows in two dimensions, and identify
linearly stable and linearly unstable shear flows in three dimensions. For instance,
(1.3.8) is linearly unstable, as the spectrum in Figure 1.6 has eigenvalues with
positive real part. This shear flow will be linearly unstable for any choice of
domain size κx, κy, κz. In Theorem 4.4.1 this is proven to be true for all shear
flows with vorticity of the form Ω∗ = 2Γ cos(κxpxx + κypyy + κzpzz) given that

κ2
xp

2
x + κ2

yp
2
y + κ2

zp
2
z >

(√
3 + 3/2

)2
.



16 1. Introduction and Literature

There also exist linearly stable shear flows in the three-dimensional periodic
domain. Corresponding to the linearly stable shear flows in two dimensions,
consider a flow such as

v∗ =




0
0

sin(2x)


 (1.3.9)

equivalent to (1.3.5). If κx = 1 and κy, κz > 2, the spectrum of the linearisation
of this flow is imaginary, and thus the flow is spectrally stable. Unlike the lin-
earisation of (1.3.5), the linearisation is not diagonalisable. This will contribute
constant unstable dynamics in the linearised system, so the shear flow (1.3.9) is
spectrally but not linearly stable. Compare this to the shear flow

v∗ =




0
ϕ sin(2x)
− sin(2x)


 (1.3.10)

where ϕ =
√

5+1
2

(chosen because it is the most irrational number in the sense
that its continued fraction representation converges very slowly). On a domain
with size κx = 1, κy = 3, κz = 3, the shear flow (1.3.10) has no nonimaginary
eigenvalues in the linearisation and is therefore spectrally stable. Furthermore,
the linearisation is diagonalisable so the flow is also linearly stable. This is due
to the choice of ϕ /∈ Q, by Proposition 4.2.70. We prove a general result for
stable parallel shear flows in Theorem 4.3.6. There is a subtle interdependency
between the velocity of the shear flow, the size of the domain, and the resulting
stability or instability. In Section 4.2.9, we find a condition for the linearisation
to be diagonalisable. In Section 4.3.3 we interpret nondiagonalisable flows in
terms of nonlinear instability and transition to turbulence. This is related to the
nonnormality of the associated operator.

1.3.2. Chapter by Chapter Outline. In Chapter 2, we study the Euler
equations on a two-dimensional periodic domain within a noncanonical Hamil-
tonian framework. We begin by introducing Poisson dynamics and the related
notation and concepts, and prove a theorem showing that the linearisation of a
Poisson system around an equilibrium is itself a Poisson system. Next, the Euler
equations on a two-dimensional periodic domain are discussed and it is shown
that they can be written as a Poisson system. The sinusoidal shear flow steady
states with vorticity Ω∗ = cos(κxpxx+κypyy) are introduced, and the linearisation
around these states is calculated and shown to block diagonalise into subsystems
which we call classes. A simple proof shows that only finitely many of these
classes can contribute linear instability. For parallel shear flows Ω∗ = cos(κxpxx)
and sufficiently narrow domains, no classes contribute linear instability and we
can conclude that the steady state is linearly stable.
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We then show that for almost all sinusoidal shear flows not of the stable form
we can prove the existence of a positive real eigenvalue. We show that such
an eigenvalue must be greater than an explicitly calculated positive lower bound.
Combining this with existing results, this implies these shear flows are nonlinearly
unstable. We then discuss the full nonimaginary spectrum for the linearisation of
the shear flows. A connection is shown between the linearised classes and Jacobi
operators; this is used to prove stability results in some exceptional cases. The
relationship between the linearised Euler equations, Jacobi operators, and the
associated moment problem is an intriguing connection which may shed light on
the full spectrum of the linearised system.

In Chapter 3, a finite-mode truncation of the Euler equations that preserves
the Poisson structure is discussed. First described by Zeitlin [Zei91], this is
known as the sine-bracket truncation. We discuss the advantages and disadvan-
tages of the sine-bracket truncation in terms of analytic tractability and numerical
usefulness. Many of the stability results for the full system in Chapter 2 are also
proven for the sine-bracket truncated system in Section 3.2. In certain cases, the
stability results can be strengthened for the sine-bracket truncated system. For
certain truncation values there exist energy-Casimir stable parallel shear flows,
which are only linearly stable in the untruncated system. We discuss the Poisson
integrator developed by McLachlan [McL93] for this system and generalise it to
an anisotropic domain. This allows for efficient and accurate calculation of flows
for the Euler equations.

In Chapter 4, we extend our analysis to shear flows for the Euler equations
on a three-dimensional periodic domain. The introduction of a third spatial di-
mension increases the complexity of the analysis significantly. We formulate the
Euler equations as an infinite-dimensional system of differential equations on the
Fourier modes of the vorticity. We then describe shear flows in this system anal-
ogous to those for the Euler equations on a two-dimensional domain and linearise
around such flows. This linearised system decomposes into subsystems natu-
rally. By a series of simplifications and transformations, we show that typically
the dynamics of these subsystems reduces to the dynamics of a corresponding
linearised subsystem for the two-dimensional domain. Thus we can make conclu-
sions about the linear stability or instability of shear flows in three dimensions
by relating them to corresponding shear flows in two dimensions. These stability
results are highly sensitive to the original parameters, so the shear flows cannot
be strongly stable. This is related the existence and significance of highly nonnor-
mal subsystems, and how they can induce nonlinear instability and a transition
to turbulence.

In Chapter 5 we show that there exists a Poisson structure for the Euler
equations on a three-dimensional periodic domain. This can be reduced to the
divergence-free subspace, which simplifies the space of admissible dynamics. This
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result is very promising as it allows us to analyse the structure of the Euler
equations in three dimensions using a Hamiltonian framework.

In Chapter 6, numerical results relating to the previous chapters are presented.
The spectrum of the linearised Euler equations is explored in detail for two- and
three-dimensional domains. This accords with the instability results of Chapters
2 and 4. The numerical results suggest a full description of the nonimaginary
spectrum, which is presented as a conjecture. A method for calculating a bound
on some nonimaginary eigenvalues is demonstrated, and the continuous spectrum
of the sine-bracket truncated system is approximated. We also calculate some
sample flows for the sine-bracket truncated system using the Poisson integrator
developed in Chapter 3. These flows illustrate the stability results proven in
Chapters 2 and 3.

Finally, in Chapter 7 we provide a conclusion and discuss the successes and
limitations of this thesis, as well as possible new avenues for future research.



Chapter 2

Stability Theory in the Two-Dimensional Euler Equations

The Euler ideal fluid equations have a class of steady states known as shear
flows. In this chapter, we demonstrate the existence of a family of shear flows
that are linearly stable on a two-dimensional periodic domain. We also prove that
another set of shear flows are nonlinearly unstable. To do so, we first discuss the
theory of Poisson systems. We then introduce the Euler equations and formulate
them as a Poisson system, which is then linearised around sinusoidal shear flows.

By a generalisation of a known class decomposition to an anisotropic domain,
we demonstrate that parallel sinusoidal shear flows are linearly stable for suffi-
ciently narrow domain sizes. For another set of sinusoidal shear flows we calculate
an explicit lower bound for a positive real eigenvalue of the linearisation. This
allows us to conclude that such shear flows are nonlinearly unstable, and is a first
step to a complete description of the spectrum. The full spectrum of linearised
shear flows is discussed. Finally, we demonstrate a connection between the sub-
systems of the linearised Euler equations and an associated Jacobi problem.

2.1. Poisson Dynamics

Many dynamical systems of physical importance have a geometric structure to
them in the sense that there exist fundamental structure which remain invariant
under their dynamics. This kind of behaviour can be described by a class of dy-
namical systems called Hamiltonian systems. In a classical Hamiltonian system,
the evolution of the position and conjugate momentum variables are given by
Hamilton’s equations. These dynamics then preserve the symplectic structure of
these variables. Hamiltonian dynamics are commonly used to describe scenarios
involving an object or a set of objects with a kinetic energy under the influence
of a potential energy. The structure of the equations leads to some simple but
powerful ideas; for instance, autonomous systems with Newtonian forces conserve
energy so the dynamics lie on surfaces of constant energy. Many problems of as-
trophysical significance [DW14] and equations arising in the field of integrable
systems [DP16] can be discussed from such a viewpoint, which allows the results
and ideas of Hamiltonian mechanics to be employed.

This idea can be generalised to a larger class of systems that do not neces-
sarily have a “position/momentum” dichotomy. Many systems can be written
as Poisson systems (or noncanonical Hamiltonian systems), a generalisation of

19
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Hamiltonian systems. Here, the coordinates used are not constrained to occur in
conjugate pairs. However, they must have a Poisson structure. If a dynamical
system can be written in Poisson form, we have access to a range of techniques
applicable to Poisson systems. For instance, we can analyse the Casimirs (con-
stants of motion inherent to a Poisson structure), discuss energy-Casimir stability
[HMRW85, AK98], and develop integrators that respect the Poisson structure
[Rut83, CH11].

We begin this chapter by introducing the notation and ideas of Poisson dy-
namics. We then present a linearisation method for Poisson systems. This demon-
strates that under mild assumptions the linearised dynamics of a Poisson system
about an equilibrium can also be expressed as a Poisson system which can be
calculated simply.

2.1.1. Definitions. We begin by making some basic definitions and intro-
duce the notation associated with Poisson systems.

Definition 2.1.1 (Poisson manifold, Poisson bracket). A Poisson manifold
(M, {., .}) is a smooth manifold endowed with a Poisson Bracket operation.

A Poisson bracket is a bilinear binary operator

{., .} : C2(M,R)× C2(M,R)→ C2(M,R) (2.1.2)

(where C2(M,R) is the space of twice-differentiable real-valued functions defined
on the manifold M) satisfying the following properties. For all f, g, h ∈ C2(M,R),
a ∈ R:

• {f, g} = −{g, f} (antisymmetry);
• {f + g, h} = {f, h}+ {g, h}, {af, g} = a{f, g} (bilinearity));
• {fg, h} = f{g, h}+ g{f, h} (derivation);
• {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi property).

For all such brackets there exists a Poisson structure matrix J (in general
dependent on the phase space variables) such that the Poisson Bracket can be
written as

{f, g} = ∇fTJ∇g. (2.1.3)

A discussion of the structure matrix is included in Meiss [Mei07].

In terms of the structure matrix J = (Ji,j), the antisymmetry of the bracket
in f and g is equivalent to the antisymmetry of J

JT = −J (2.1.4)

and the Jacobi identity is equivalent to the identity
∑

l

[
Ji,l

∂Jj,k
∂zl

+ Jj,l
∂Jk,i
∂zl

+ Jk,l
∂Ji,j
∂zl

]
= 0 (2.1.5)

for all j, k, i where the phase space coordinates are z1, z2, ..., zn [Olv00].
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Definition 2.1.6 (Casimir). A Casimir of a Poisson system (M, {., .}) is a
function C : M → R such that {f, C} = 0 for all f . Equivalently, J∇C = 0.

Definition 2.1.7 (Poisson System). A Poisson System is a triple (M, {., .}, H)
where M is a Poisson manifold with Poisson bracket {., .}, and H : M → R is a
real-valued function on the manifold. Then the Poisson dynamics of this system
are

d

dt
z = XH(z) = {z,H} (2.1.8)

where z ∈M .

The Casimir functions are constant under the Poisson dynamics as

d

dt
(C) = {C,H} = −{H,C} = 0 (2.1.9)

by definition of a Casimir function. Similarly, the Hamiltonian H is constant as

d

dt
(H) = {H,H} = 0 (2.1.10)

by the antisymmetry of the bracket (so {f, f} = −{f, f} = 0 for any function
f).

2.1.2. Linearising a Poisson System. When linearising around an equi-
librium of a Poisson system, the resulting linear system also has a Poisson struc-
ture. We can calculate this structure by forming a linear combination of the
Hamiltonian and the Casimirs which has vanishing derivative at the equilibrium.
Note that in a canonical Hamiltonian system, there are no Casimirs and the
gradient of the Hamiltonian always vanishes at an equilibrium.

This process is based on existing ideas; for instance it is part of the stability
method outlined in [HMRW85] and used in [DW16]. We present it in a more
explicit form here for clarity and completeness.

Theorem 2.1.11 (Linearising a Poisson System). Let (M, {., .}, H) be a Pois-
son system with phase space coordinates x and structure matrix J(x). Let the
Casimirs of (M, {., .}) be C1, ..., Cn for some (possibly zero or infinite) n ∈ N.
Let xeq ∈M be an equilibrium point of the dynamics of the Poisson system such
that XH(xeq) = 0 and assume ∇Ci(xeq) span the kernel of J(xeq). Then the
linearisation of the flow XH around xeq is

ż = J(xeq)D2H̃(xeq)z (2.1.12)

where z are the linearised coordinates around xeq, the linearised Hamiltonian is

H̃ = H −
∑

i

αiCi (2.1.13)

and the constants αi are chosen so that ∇H̃ = 0. This is a Poisson system with
structure matrix J(xeq) and Hamiltonian zTD2H̃z.
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Proof. As xeq is an equilibrium of the Poisson dynamics, J(xeq)∇H(xeq) = 0
and so ∇H(xeq) ∈ ker(J(xeq)). By assumption, at xeq the gradients ∇Ci(xeq)
span the kernel of J(xeq), so there exist constants αi such that

∇H(xeq) =
∑

i

αi∇Ci(xeq). (2.1.14)

Let x = xeq + z and linearise at xeq. Then the linearised dynamics are

ż = (J ′(xeq)∇H(xeq) + J(xeq)D2H(xeq))z. (2.1.15)

But linearising the condition J∇C = 0 for Casimirs gives

J ′(xeq)∇Ci(xeq) + J(xeq)D2Ci(xeq) = 0. (2.1.16)

Thus

ż = (J ′(xeq)∇H(xeq) + J(xeq)D2H(xeq))z

=
∑

i

(αiJ
′(xeq)∇Ci(xeq) + J(xeq)D2H(xeq))z

=
∑

i

(−αiJ(xeq)D2Ci(xeq) + J(xeq)D2H(xeq))z

=
∑

i

(J(xeq)D2(
∑

i

H − αiCi)(xeq))z

= J(xeq)D2H̃z.

(2.1.17)

This is the vector field of the Poisson system with constant structure matrix
J(xeq) and quadratic Hamiltonian zTD2H̃z. Note that if H and Ci are quadratic,

this Hamiltonian is exactly H̃. �

This procedure will be used in Section 2.4.2.

2.2. The Euler Equations

Our attention now turns to the Euler fluid equations. We begin by introducing
some general fluid mechanics notation and ideas, followed by the Euler equations
for ideal flow ; that is, flow that is incompressible and inviscid. We restrict our
attention to such a flow on a two-dimensional periodic domain. An anisotropic
domain, i.e. one in which the two periodic boundaries are not equally spaced,
is considered; although this may seem a relatively minor point, it can have a
dramatic effect on the resulting dynamics of the system. This system has been
studied in some detail, for example in [FSV97, BFY99, Arn66a], though the
isotropic domain is more commonly studied.
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Figure 2.1 – The relationship between the velocity and vorticity of a flow. Top:
the velocity of a fluid flowing across a line. Bottom: The corresponding vorticity
along this line. When the fluid is shearing around a fixed point, the vorticity is
high (in this configuration, positive for anticlockwise, negative for clockwise).

2.2.1. Definitions and Notation. When discussing fluid mechanics, there
are two common descriptions of the motion of a fluid (see [Mey82] for a discus-
sion) :

• a Lagrangian description identifies individual “particles” of fluid, and de-
scribes their movement via the position function xa(t) for the position of
particle a at time t;
• an Eulerian description concerns itself with the fluid flow past a fixed

point; the dynamics are described by the velocity field v(x, t), for the
velocity of the fluid passing through the position x at time t.

We will use the Eulerian convention, as it gives a more useful “global view” of
the dynamics of the fluid. If needed, one can recover the Lagrangian description
through the time derivative of the velocity field (also known as the material
derivative; see [Whi99]). Call the domain of the fluid flow (sometimes called a
fluid domain) D.

The fluid velocity v(x, t) is a vector field measuring the velocity of a fluid
particle at position x ∈ D at time t ∈ R, t ≥ 0. The vorticity Ω(x, t) is the curl
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of the velocity,

Ω = ∇× v. (2.2.1)

Vorticity generalises the idea of angular momentum to a fluid. For a flow in two
spatial dimensions, Ω is real valued; for three or more spatial dimensions, it is vec-
tor valued. The relationship between the velocity and the vorticity is illustrated
in Figure 2.1. One can think of vorticity as the rotational force experienced by a
pinwheel at a point in the fluid.

An ideal fluid flow describes the dynamics of an ideal fluid; that is, a fluid
which is

• inviscid (there is no viscosity and therefore no effect of friction),
• incompressible (the density of the fluid is constant),
• and experiences no external forces.

The condition for a flow to be incompressible is that the divergence of the
velocity must vanish,

∇ · v = 0. (2.2.2)

For incompressible fluid flow in two dimensions, there exists a stream function
Ψ(x, t) which generates the velocity vector field. It satisfies the relation

v = ∇×Ψ (2.2.3)

where Ψ = (0, 0,Ψ) and v = (u, v, 0) for velocity components u, v. The fluid
flows along lines of constant stream function.

Consider the two-dimensional case with spatial coordinates x = (x, y) and
velocity function v = (u, v) (that is, the fluid velocity is u in the x direction,
and v in the y direction). The stream function and vorticity are both real-valued.
Equivalently, they can be thought of as vectors in R3 pointing perpendicular to the
(x, y) plane. This becomes a useful analogy when considering three-dimensional
flows, as in Chapter 4.

The vorticity is related to the velocity by

Ω =
∂v

∂x
− ∂u

∂y
(2.2.4)

and the stream function is related to the velocities by

u =
∂ψ

∂y
, v = −∂Ψ

∂x
. (2.2.5)

Thus the stream function is related to the vorticity by

Ω =
∂

∂x

(
−∂Ψ

∂x

)
− ∂

∂y

(
∂ψ

∂y

)

= −∇2Ψ.

(2.2.6)
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2.2.2. The Euler Ideal Fluid Equations. We now define the incompress-
ible Euler ideal fluid equations, or Euler equations. These describe the dynamics
of an ideal fluid. Written in terms of the vorticity, the Euler equations are the
partial differential equation

∂Ω

∂t
+ v · (∇Ω) = 0 (2.2.7)

and the incompressibility condition

∇ · v = 0. (2.2.8)

The Euler equations capture the essence of ideal fluid behaviour. They were first
formulated by Euler in the mid-eighteenth century [Eul55], and have since held a
dramatic influence over the development of many fields of mathematics [Con07].

A common use for the Euler equations is in the study of the free boundary
problem [CCF+]. In the free boundary problem, the dynamics of the interface
between two fluids or a fluid and a vacuum are studied. An inviscid approximation
works well in the case of large Reynolds number (about Re > 104). It also is a
good approximation in channels with a short duct, such as a wind tunnel with
a narrow nozzle [Whi99]. One can use ideal fluids to describe the dynamics
in appropriate regions, and “patch” these together with solutions for nonzero
viscosity to get a full description of the dynamics of a fluid in a more complicated
situation.

The Euler equations are also of physical significance as the inviscid limit of
the Navier-Stokes equations [Con95]. For a two-dimensional domain, the Euler
equations exist as the inviscid limit of the Navier-Stokes equations for a smooth
initial condition. There is also significant research into the finite-time blowup
of the Euler equations [CCF+], and the transition to turbulence in the Euler
equations [BM92].

2.2.3. Euler Equations on a Two-Dimensional Periodic Domain. We
now formulate the Euler equations on a periodic domain. There are a number
of reasons one may wish to study this problem. From a mathematical point of
view, periodicity is very convenient as it allows us to expand the vorticity as a
Fourier series. There have also been results showing that behaviours observed in
numerical experiments on a periodic domain can also be observed in a real-world
experiment with a walled domain [PW82, Pum96].

We thus define the periodic domain

Dκ =

[
− π

κx
,
π

κx

)
×
[
− π

κy
,
π

κy

)
(2.2.9)

where κ = (κx, κy) and κx, κy are positive. Then the velocity, vorticity and
stream function are continuous on this domain. By redefining the units of length,
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we assume without loss of generality that

|κ| =
√
κ2
x + κ2

y = 1. (2.2.10)

Due to this normalisation, for the two-dimensional case we usually consider the
effect of the ratio κy/κx rather than either individual length.

We introduce some notation to describe this domain: define the anisotropy
matrix

K :=

(
κx 0
0 κy

)
. (2.2.11)

Define the weighted inner product

〈j,k〉 := (Kj)T(Kk) (2.2.12)

and the induced norm
|j|κ :=

√
〈j, j〉. (2.2.13)

Note that in the isotropic case κy/κx = 1, K = I and the inner product and norm
are the Euclidean dot product and magnitude respectively.

The partial differential equation (2.2.7) can be written as

∂Ω

∂t
=
∂Ψ

∂x

∂Ω

∂y
− ∂Ψ

∂y

∂Ω

∂x

Ω = −∇2Ψ

(2.2.14)

using (2.2.5). These coupled partial differential equations govern the dynamics
of Ω and Ψ.

As Ω is now periodic, we can expand it as a Fourier series in both spatial
directions. Define the Fourier coefficients

ωj(t) :=
κxκy
(2π)2

∫∫

D
Ω(x, t)e−i〈j,K

−1x〉dxdy (2.2.15)

for each j = (jx, jy) ∈ Z2. Note that 〈j, K−1x〉 = κxjxx + κyjyy. We can think
of the Fourier coefficients ωj as belonging on a Z2 integer lattice of values of the
corresponding mode numbers j. This will be become a very useful way to think
about these coefficients. See Figure 2.4 for an example of such a lattice.

Now the vorticity is given by

Ω(x, t) =
∑

j∈Z2

ωj(t)e
i〈j,K−1x〉. (2.2.16)

As the vorticity is real-valued, we must also impose the condition

ωj = ω−j. (2.2.17)

Equivalently we can expand the stream function by defining the modes

ψj(t) :=
κxκy
(2π)2

∫∫

D
Ψ(x, t)e−i〈j,K

−1x〉dxdy (2.2.18)
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so

Ψ(x, t) =
∑

j∈Z2

ψj(t)e
i〈j,K−1x〉 (2.2.19)

and

ψj = ψ−j. (2.2.20)

(Recall that the existence of the stream function is equivalent to (2.2.8) being
satisfied.)

We now rewrite (2.2.6) in terms of these coefficients:

∑

j∈Z2

ωj(t)e
i〈j,K−1x〉 = −∇2


∑

j∈Z2

ψj(t)e
i〈j,K−1x〉




=
∑

j∈Z2

(j2
xκ

2
x + j2

yκ
2
y)ψj(t)e

i〈j,K−1x〉
(2.2.21)

so

ωj = |j|2κψj. (2.2.22)

Substituting (2.2.16) and (2.2.19) into (2.2.14),
∑

j∈Z2

ω̇j(t)e
i〈j,K−1x〉 = κxκy

∑

k,l∈Z2

(kxly − kylx)ωkψle
i〈k+l,K−1x〉 (2.2.23)

(where ż = dz
dt

is the usual time derivative) so

ω̇j(t) = κxκy
∑

k+l=j

l× k ωlψk. (2.2.24)

We have here used the notation j×k = jxky− jykx for all j,k ∈ R3. This is a
projection of the usual cross product down from R3×R3 → R3 to R2×R2 → R.

Note that

ω̇0(t) = κxκy
∑

k

(−k× k)ωkψl

= 0.

(2.2.25)

Thus ω0 is constant. This corresponds to the fact that on a periodic domain,
there is zero net circulation, so the average vorticity over the whole domain is
zero. Thus ω0 = 0 as discussed in [BW13] for example.

Now the dynamics of Fourier coefficients are governed by the differential equa-
tions

ω̇j(t) = κxκy
∑

k 6=0

(k× j)ωj+k
ω−k
|k|2κ

. (2.2.26)

Here we have used the identity (2.2.22) and reordered the summation. We can
omit the ω0 term as we know from above that it is constant and zero.
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2.3. Hamiltonian Euler Equations

Having introduced the Euler equations, we now write them as a Poisson sys-
tem, granting us access to the methods discussed in Section 2.1. That such a
structure exists in the Euler equations is well known [MG80]; see [Mor06] for a
thorough discussion. The formulation here is simplified by the choice of domain,
as we work directly on the Fourier coefficients. We also discuss the Casimirs of
the system.

2.3.1. Ideal Fluid Bracket.

Definition 2.3.1 (Ideal Fluid Poisson Bracket). The ideal fluid Poisson Bracket
is given in Fourier Space by

{f, g} = κxκy
∑

j,k

∂f

∂ωj

∂g

∂ωk

(k× j)ωj+k. (2.3.2)

The corresponding (infinite dimensional) Poisson structure matrix J has en-
tries

Jj,k = κxκy(k× j)ωj+k (2.3.3)

so {f, g} =
∑

j,k Jj,k
∂f
∂ωj

∂g
∂ωk

. Note that J is a matrix indexed by two two-vectors.

This is a generalisation of the usual ideal fluid bracket for the square case K = I
(see e.g. [Li00, Zei91]). There is some freedom here in whether the factor κxκy is
included in the Poisson structure or the Hamiltonian; this is true of any constant.
We choose to include the factor in the bracket.

We can verify that this Poisson bracket is antisymmetric

Jj,k = κxκy(k× j)ωj+k

= −κxκy(j× k)ωk+j

= −Jk,j
(2.3.4)

and satisfies the Jacobi identity via (2.1.5)

∑

l

[
Ji,l

∂Jj,k
∂ωl

+ Jj,l
∂Jk,i
∂ωl

+ Jk,l
∂Ji,j
∂ωl

]

= κxκy
[
Ji,j+k(k× j) + Jj,k+i(i× k) + Jk,i+j(j× i)

]

= κxκy
[
(j× i)(k× j) + (k× i)(k× j) + (k× j)(i× k)

+ (i× j)(i× k) + (i× k)(j× i) + (j× k)(j× i)
]
ωi+j+k

= 0

(2.3.5)

by the antisymmetry of the cross product.
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The Hamiltonian can be derived from the kinetic energy per unit area

H =
κxκy
(2π)2

∫∫

D
||v||2dxdy

=

∫∫

D
ΩΨdxdy

(2.3.6)

(see [AK98]).

In terms of the Fourier modes, the Hamiltonian is

H =
∑

j6=0

ωT
−jω+j

|j|2κ
. (2.3.7)

Then the differential equations (2.2.26) are the Poisson equations ω̇j = {ωj,H}.

2.3.2. Casimirs of the Ideal Fluid bracket. The bracket (2.3.2) has
Casimirs corresponding to the generalised enstrophy invariants [AK98, Zei91,
YM16]. For the full system (2.2.7) there exist infinitely many conserved quan-
tities of the form

Cf =

∫∫

D
f(Ω)dx (2.3.8)

for an arbitrary smooth function f . We can define an independent set

Cn =
κxκy
(2π)2

∫∫

D
Ωndx (2.3.9)

for n ∈ N (we have divided through by the area of D for convenience). In Fourier
space, this becomes

Cn =
∑

ji

ωj1ωj2 ...ωjn ,
n∑

i=1

ji = 0. (2.3.10)

For n = 1, C1 = ω0 which we have already verified is conserved (and identically
zero). For n = 2,

C2 =
∑

j

ω−jωj (2.3.11)

the usual enstrophy [Con07]. This enstrophy has units of (length/time)2.

The enstrophy is a useful quantity in the study of turbulent flows in the
Navier-Stokes equations [FMRT01]. We will also see that a key difference be-
tween two- and three-dimensional flow is the number and type of constants; in
the three-dimensional domain, there are no enstrophy invariants, instead replaced
by the helicity (see Section 4.1.2).
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2.4. Shear Flows and Linearisation

The Euler equations have a family of steady states called shear flows. Shear
flows are flows in which there is a cross-sectional velocity/vorticity profile across
the domain (see Figure 2.2). These flows are well-studied. For instance, the
Rayleigh Criterion [AK98] gives a necessary but not sufficient condition for in-
stability of such flows. As we have periodic boundaries, such a profile can be
oriented in essentially any direction.

We focus specifically on sinusoidal shear flows, which become simple in the
Fourier coefficient space. The Poisson formulation of the Euler equations is lin-
earised using Theorem 2.1.11, and as a result we obtain the linearised equations
as a Poisson system. We then observe the known results that this linear system
decouples into infinitely many subsystems or “classes” of interdependent modes,
all governed by linear Poisson systems.

2.4.1. Steady States. The partial differential equation (2.2.7) with periodic
boundary conditions (2.2.9) admits a general family of steady state solutions of
the form

Ψ∗ = f(〈p, K−1x〉)
Ω∗ = −|p|2κf ′′(〈p, K−1x〉)

(2.4.1)

for any fixed p ∈ Z2 and smooth 2π periodic function f : R→ R. We can verify
that this is a steady state:

∂Ω

∂t
=
∂Ψ

∂x

∂Ω

∂y
− ∂Ψ

∂y

∂Ω

∂x

= (κxpxf
′)(−κypy|p|2κf ′′′)− (κypyf

′)(−κxpx|p|2κf ′′′)
= 0.

(2.4.2)

A specific example is the family of sinusoidal shear flows with vorticity given
by Ω∗ = α cos(〈p, K−1x〉)+β sin(〈p, K−1x〉) for constants α, β ∈ R. We will focus
our attention on this case. Note that we can write Ω∗ = 2Γ cos(〈p, K−1x〉 + θ),

where θ = ± tan−1
(−β
α

)
and Γ = ±

√
α2+β2

2
. The signs of θ and Γ will depend

on the signs of α and β. If α = 0, then take θ = π
2
. Define c = θ

|p|2Kp, so

Ω∗ = 2Γ cos(〈p, K−1(x + c)〉). Thus by taking the translation by c we need only
consider the steady states with vorticity of the form

Ω∗ = 2Γ cos(〈p, K−1x〉). (2.4.3)

An example is illustrated in Figure 2.2. As (2.2.7) is symmetric in both spatial
directions, we need only consider values of p = (px, py) with px, py ≥ 0. The
corresponding stream function is

Ψ∗ =
2Γ

|p|2κ
cos(〈p, K−1x〉) (2.4.4)
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Figure 2.2 – The vorticity associated with the steady state (2.4.3). The param-
eters are p = (2, 1), κy/κx = 1.5, and Γ = 1. The colours indicate the vorticity
at a point, orange for high vorticity and blue for low vorticity. A red line shows
the vector Kp; this is perpendicular to the contours of constant vorticity. The
boundaries are periodic. Compare with Figure 2.3, which shows the corresponding
velocity.

and the velocity is

v∗ =
2Γ

|p|2κ
sin(〈p, K−1x〉)

(
−κypy
κxpx

)
. (2.4.5)

The velocity vector field is illustrated in Figure 2.3.

This steady state is an example of a shear flow, which has been well studied.
Many works [Arn66a, FSV97, BFY99] study parallel shear flows, where p =
(px, 0) or p = (0, py). They are a subset of the full set of steady states for an
ideal fluid described in [Li00]. Equivalent flows in the Navier-Stokes equation
with an exponentially decaying factor are studied in [BW13] and referred to as
“bar states” [YMC03].

Written in Fourier space, the steady state (2.4.3) is and equilibrium given by

ω∗j =

{
Γ if j = ±p
0 otherwise.

(2.4.6)
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Figure 2.3 – The vector field of the velocity corresponding to the steady state
(2.4.3). The same parameter values as in Figure 2.2 are used. The red line indicates
the vector Kp; flow is always perpendicular to this vector. One can observe the
shearing effect as the velocity changes magnitude and direction along this line.
Compare with Figure 2.1, which shows the corresponding vorticity.

Note that the general shear flow steady state (2.4.1) can be characterised as an
equilibrium in Fourier space where only modes of the form ωkp are nonzero.

2.4.2. Linearisation and Class Decomposition. We now linearise the
Poisson system given by the bracket (2.3.2) and Hamiltonian (2.3.7) around the
equilibrium (2.4.6). We will follow the procedure described in Section 2.1.2.

As the bracket(2.3.2) is noncanonical, ∇H|Ω∗ is not necessarily zero. In fact,

∇H|Ω∗ =
Γ

|p|2κ
(ω−pep + ωpe−p) (2.4.7)

where ej is the unit vector pointing in the direction of ωj. Similarly, the derivative
of the Casimir (2.3.11) at the equilibrium is

∇C2|Ω∗ = Γ(ω−pep + ωpe−p). (2.4.8)
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We must find a linear combination of the Hamiltonian and the Casimirs such
that the gradient vanishes at the equilibrium in order to apply Theorem 2.1.11.
This is straightforward; define

H̃ = H− 1

2|p|2κ
C2 = −1

2

∑

j6=0

ρjω−jωj, (2.4.9)

ρj =
1

|p|2κ
− 1

|j|2κ
. (2.4.10)

Now H̃|Ω∗ = 0 and ∇H̃|Ω∗ = 0.

Next we must linearise the Poisson structure by evaluating the bracket (2.3.2)
at the equilibrium. Then

Jj,k|Ω∗ =





κxκy(p× j)Γ if j + k = p,

−κxκy(p× j)Γ if j + k = −p,

0 otherwise.

(2.4.11)

Then the new Poisson bracket is

{f, g}|Ω∗ = κxκyΓ(p× j)
∑

j

(
∂f

∂ωj

∂g

∂ωp−j
− ∂f

∂ωj

∂g

∂ω−p−j

)
, (2.4.12)

which is the nonlinear bracket evaluated at the equilibrium Ω∗. Note this bracket
is now constant with respect to the modes, and the Hamiltonian H̃ is quadratic.
Thus this is a linear Poisson system, and (2.4.9) and (2.4.12) together com-
prise the linearisation of our Poisson system around the steady state. Compare
this procedure to the first few steps of the stability “algorithm” described in
[HMRW85]. We will return to this idea in Sections 2.6.2 and 3.2.4.

Calculating the differential equations for ωj explicitly (writing ωj for the lin-
earisation about Ω∗ from now on)

ω̇j = {ωj, F} =
∑

k

κxκyΓ(k× j)ω−kρk(δk+j,p + δk+j,−p)

= κxκyΓ(p× j) (ρj+pωj+p − ρj−pωj−p)

(2.4.13)

This shows that the linearised equations decouple into subsystems; the dynamics
of the mode ωa depend only on the modes ωa±p, and hence the linearised dif-
ferential equations split into subsystems consisting of modes ωa+kp for k ∈ Z.
Following the convention of [Li00], we refer to each of these subsytems as a class
of Fourier modes. This idea is illustrated in illustrated in Figure 2.4. In terms
of the structure matrix, this means J can be block diagonalised into blocks that
govern the dynamics of a class of modes ωa+kp.

To make the splitting into subsystems explicit write

H̃ = −
∑

a∈A
Ha, Ha =

1

2

∑

k∈Z
ρkω

2
k (2.4.14)
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p

a− p

a

a+ p

a+ 2p

ã− 2p

ã− p

ã

ã+ p
(0, 0)

Figure 2.4 – Class decomposition of the linearised system. The dynamics of a
mode ωa depend only on ωa±p; extending this, the modes ωa+np form a subsystem.
These modes all lie on the line through a parallel to p. For this figure, p = (2, 1).
There are two classes shown, the class led by a = (−1, 1) (red dots) and the class
led by ã = (2,−2) (blue dots).

where A is the principal domain of mode numbers given by

A = {a ∈ Z2 | − 1

2
|p|2κ < 〈a,p〉 ≤

1

2
|p|2κ} (2.4.15)

and for a fixed a we define

ωk := ωa+kp, ρk := ρa+kp =
1

|p|2κ
− 1

|a + kp|2κ
(2.4.16)

where k ∈ Z is now an integer, rather than a vector. The modes with mode
numbers a + kp form the class led by a. Note the difference between ωk, ρk for
k ∈ Z, and ωj, ρj for j ∈ Z2. In the former case, we are studying the dynamics of
a single class only; in the latter case we are considering the dynamics of the full
system.

The principal domain of Fourier mode indices A is illustrated in Figure 2.5.
A is chosen so that for all j ∈ Z2, j = a + kp for some unique a ∈ Z2 and k ∈ Z.
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p

(0, 0)

Figure 2.5 – The principal domain of Fourier modes, A (shown here in blue).
Translations of A by p cover the whole domain of modes. This domain is chosen
such that if a ∈ A is not in the unstable ellipse (2.5.2) shown, a + kp is not in the
ellipse for any k ∈ Z.

Denote the set of indices in a class by

Σa = {a + kp | k ∈ Z}. (2.4.17)

Then for each a ∈ A there is an associated linearised subsystem on the modes ωj

for j ∈ σa which is a Poisson system with respect to the Poisson bracket

{f, g}a = α
∑

k∈Z

[
∂f

∂ωk

∂g

∂ωk+1

− ∂f

∂ωk+1

∂g

∂ωk

]
(2.4.18)

with Hamiltonian Ha, where

α = α(a,p) = Γκxκya× p. (2.4.19)

It is important to note that if a and p are parallel, α(a,p) = 0. Such “trivial”
classes cannot contribute instability as the associated differential equations are
ω̇k = 0 for all k. This corresponds to the fact that perturbations within the class
of modes ωnp move from our selected equilibrium Ω∗ to another shear flow of the
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form (2.4.1) perpendicular to p. These shear flows can be written as

ωj =

{
Γk if j = ±kp
0 otherwise.

(2.4.20)

Our shear flow is a special case of this with Γ1 = Γ, Γk = 0 for all k 6= 1. Thus
perturbations in the direction of a mode ωnp simply perturbs to another steady
state, so there is not instability under such perturbations. This is related to
the work of Pierrehumbert and Widnall [PW82] who discussed perturbations
parallel to a shear flow.

The differential equations for the bi-infinite vector of Fourier coefficients

ω = (..., ω−1, ω0, ω1, ω2, ...) (2.4.21)

in the subsystem Ha are

ω̇ = αMω (2.4.22)

where

M =




. . .
...

...
...

...
...

. . .
· · · 0 ρ−1 0 0 0 · · ·
· · · −ρ−2 0 +ρ0 0 0 · · ·
· · · 0 −ρ−1 0 +ρ1 0 · · ·
· · · 0 0 −ρ0 0 ρ2 · · ·
· · · 0 0 0 −ρ1 0 · · ·
. . .

...
...

...
...

...
. . .




(2.4.23)

and ρk is given by (2.4.10). It is worth mentioning that we represent the linear
operator M as an infinite matrix. This is for notational convenience; compare
this to [LLS04] where operator notation is used for the same object.

Note that M can be written as M = JS where

J =




. . .
...

...
...

...
...

. . .
· · · 0 +1 0 0 0 · · ·
· · · −1 0 +1 0 0 · · ·
· · · 0 −1 0 +1 0 · · ·
· · · 0 0 −1 0 +1 · · ·
· · · 0 0 0 −1 0 · · ·
. . .

...
...

...
...

...
. . .




, (2.4.24)
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Figure 2.6 – An illustrative graph of the function ρk. Here k is shown for con-
tinuous values of k for illustrative purposes; in an actual class k takes only integer
values. For this figure, p = (2, 0), a = (0, 1), κy/κx = 1. Note that as |k| → ∞,
ρk → 1/|p|2, the minimum value is ρ0 = 1/|p|2κ = 1/|a|2κ, and ρk is monotonically
increasing for k > 0 and monotonically decreasing for k < 0.

S =




. . .
...

...
...

...
...

. . .
· · · ρ−2 0 0 0 0 · · ·
· · · 0 ρ−1 0 0 0 · · ·
· · · 0 0 ρ0 0 0 · · ·
· · · 0 0 0 ρ1 0 · · ·
· · · 0 0 0 0 ρ2 · · ·
. . .

...
...

...
...

...
. . .




. (2.4.25)

This is the matrix form of the Hamiltonian system with Hamiltonian Ha, so αJ
is the structure matrix for the linearised bracket and Ha = 1

2
ωTSω. Note that

the constant α can be included in either the definition of Ha or J without any
effect on the dynamics.

We make some observations about ρk:

• ρ∞ := lim|k|→∞ ρk = 1
|p|2κ ;

• ρ0 = 1
|p|2κ −

1
|a|2κ ;

• ρ0 ≤ ρk < ρ∞ for all k ∈ Z and a ∈ A;
• ρk is monotonically increasing if k ≥ 0 and monotonically decreasing if
k < 0.
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These facts are illustrated in Figure 2.6.

2.5. Class Decomposition and Stability

We now discuss the stability of the linearised system derived in the previous
section. These shear flows are of physical interest; numerical results for fluids in a
periodic domain have been shown to agree with experimental results in a walled
domain [Pum96, PW82]. Identifying the stability of shear flows thus may be
able to explain the behaviour of physical systems. Of particular interest are cases
when such flows are stable; this means that such flows may be observable.

In this section, we first introduce the unstable ellipse, a generalisation of an
object used to identify in which modes instability can occur. A simple proof
is presented to show that modes in classes outside the unstable ellipse cannot
contribute linear instability. In the anisotropic case, we can adjust the size of the
domain for a new result: for certain parameter values, the shear flows (2.4.3) are
linearly stable. This is a generalisation of the result in [AK98]; there p = (1, 0)
and for κy > κx there is Energy-Casimir stability. In this case, there is only linear
stability. A discussion is presented explaining why this cannot be extended to
energy-Casimir stability in the sense of [HMRW85]. We also calculate the stable
continuous spectrum of the classes.

2.5.1. The Unstable Ellipse. Having split the system into subsystems, we
now wish to explore which of these subsystems contribute linear instability. We
consider classes led by some a ∈ A, the principal domain of Fourier modes il-
lustrated in Figure 2.5. Numerically, it becomes clear that only some finite set
of modes contribute nonimaginary eigenvalues. This corresponds to the exam-
ples in Section 1.3.1 where each linearised system had some small number of
nonimaginary eigenvalues.

This observation leads to the definition of the unstable ellipse. The unstable
ellipse is a generalisation of the unstable disc presented in [Li00] to the case
κy/κx 6= 1. Essentially, the ellipse classifies classes into those that can contribute
instability and those that cannot. If a class does not intersect the ellipse, it
cannot contribute instability, and thus can be disregarded when searching for
instabilities.

Definition 2.5.1 (The Unstable Ellipse). The unstable ellipse Dp is the region
in the space of Fourier modes given by

Dp := {x ∈ R2 | |x|κ < |p|κ}. (2.5.2)

This ellipse is shown for various parameter values in Figure 2.7. Note that
the shape of Dp does not depend on κx, κy but only on the ratio κy/κx. The

eccentricity of the ellipse is e =
√

1− κ2x
κ2y

.
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ã− p

ã
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(0, 0)
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a+ 2p
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ã

ã+ p
(0, 0)
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ã− p

ã

ã+ p

ã+ 2p

(0, 0)

Figure 2.7 – The unstable ellipse defined by Equation (2.5.2). For all three figures,
p = (2, 1) and the classes led by a = (−1, 1) and ã = (2,−2) are shown. Top:
κy/κx = 1. In this case the ellipse is a disc, as per [Li00]. Bottom left: κy/κx = 3

2 .
The ellipse still passes through p and has centre the origin, but the lengths of the
axes have changed. Bottom right: κy/κx = 2

3 . Now the ellipse is large enough that
the class through ã intersects the ellipse. This will change the spectrum of the
linearised problem. Note that the shape of the ellipse depends only on the ratio
κy/κx, so we normalise κ = (κx, κy) so that |κ| = 1.
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The semi-major and semi-minor axes of the unstable ellipse have lengths |p|κ/κx
and |p|κ/κy. The ellipse passes through the point p for all values of κx, κy. In
the special case of a parallel shear flow p = (px, 0) (or equivalently p = (0, py)),
varying κx, κy does not change the x-intercepts ±px. However, this still changes
the values of the y-intercepts. This will be important in Section 2.6.

It is important to note that for a ∈ A, the principal domain of modes, a /∈ Dp

implies that a + kp /∈ Dp for all k ∈ Z. This is illustrated in Figure 2.5. This
will be important for our notation, and motivates the choice of domain A.

We make a simple but important observation.

Lemma 2.5.3. A lattice point a + kp is inside the unstable ellipse if and only if
the corresponding ρk is negative, and on the boundary if and only if ρk = 0:

a + kp ∈ Dp ⇐⇒ ρk < 0;

a + kp ∈ ∂Dp ⇐⇒ ρk = 0;

a + kp /∈ Dp ⇐⇒ ρk > 0.

(2.5.4)

The notation A = A ∪ ∂A represents the closure of A.

Proof. Noting that a + kp ∈ Dp if and only if |a + kp|κ < |p|κ by definition of
Dp, this is clear from the definition of ρj (2.4.10). �

This is illustrated in Figure 2.7. In the top figure, a ∈ Dp and a + p ∈ ∂Dp,
so in that class, ρ0 < 0, ρ1 = 0 and ρk > 0 for all k 6= 0, 1. In the class led by ã,
ã + kp 6∈ Dp ∪ ∂Dp for all k, so ρk > 0 for all k.

Note that it is possible that the line through a parallel to p can intersect
Dp without any lattice point on the line lying inside Dp. Then the line which
contains all modes in the class intersects the unstable ellipse, but no modes in
the class lie in the ellipse. This implies ρk ≥ 0 for all k and the class will not
contribute instability.

2.5.2. Stable Classes and Stable Spectra. We claim that a class that
does not intersect the ellipse at any lattice point is a linearly stable subsystem
and thus cannot contribute linear instability to the full system. We now present
a proof of this result. This result is known and proven by Li [Li00] for the case
K = I, and here generalised for the anisotropic case K 6= I with a new proof. We
also discuss the stable spectrum which is also the continuous spectrum in this
problem [SL03].

Theorem 2.5.5 (Stable Classes). For all choices of a such that Σa ∩ Dp = ∅,
the corresponding subsystem is linearly stable.
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Proof. Define the transform T :

T :=




. . .
...

...
...

...
...

. . .

· · · ρ
−1/2
−2 0 0 0 0 · · ·

· · · 0 ρ
−1/2
−1 0 0 0 · · ·

· · · 0 0 ρ
−1/2
0 0 0 · · ·

· · · 0 0 0 ρ
−1/2
1 0 · · ·

· · · 0 0 0 0 ρ
−1/2
2 · · ·

. . .
...

...
...

...
...

. . .




. (2.5.6)

If Σa ∩ Dp = ∅, then ρk > 0 for all k by Lemma 2.5.3, and thus T is a real
diagonal matrix. Then define

M̃ := T−1MT

=




...
...

...
...

...
...

...
··· 0 (ρ−2ρ−1)1/2 0 0 0 ···
··· −(ρ−2ρ−1)1/2 0 (ρ−1ρ0)1/2 0 0 ···
··· 0 −(ρ−1ρ0)1/2 0 (ρ0ρ1)1/2 0 ···
··· 0 0 −(ρ0ρ1)1/2 0 (ρ1ρ2)1/2 ···
··· 0 0 0 −(ρ1ρ2)1/2 0 ···
...

...
...

...
...

...
...



.

(2.5.7)

This is equivalent to writing the system in terms of coordinates vk =
√
ρkωk.

Now M̃ is real and skew-symmetric, so iM̃ is Hermitian and therefore is
diagonalisable and has only real spectrum. Thus by similarity, M is diagonalisable
and has only imaginary spectrum, and thus the subsystem is linearly stable. Thus
it cannot contribute instability to the full system.

Alternatively, one can observe that if ρk > 0 for all k, the Hamiltonian Ha is
positive definite. As the Hamiltonian is constant, it acts as a Lyapunov function
for the growth, and thus the dynamics are Lyapunov stable. �

This result generalises similar results for the κy/κx = 1 case in [Li00]. This
shows that we need only look at a finite number of classes to address instability;
specifically, the classes that have a nonempty intersection with the unstable el-
lipse. Note that the above proof does not address classes with ρk = 0 for some
k. These classes must be treated carefully; we will discuss them in Section 2.9.2.

We can also describe the continuous spectrum of M for all classes. This shows
that the result of [LLS04] is valid for the anisotropic case κy/κx 6= 1.

Proposition 2.5.8 (Continuous spectrum of a class). The operator M has con-
tinuous spectrum

σess(M) =
1

|p|2κ
[−2, 2]i. (2.5.9)
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Proof. Define

M∞ :=




. . .
...

...
...

...
...

. . .
· · · 0 ρ∞ 0 0 0 · · ·
· · · −ρ∞ 0 +ρ∞ 0 0 · · ·
· · · 0 −ρ∞ 0 +ρ∞ 0 · · ·
· · · 0 0 −ρ∞ 0 ρ∞ · · ·
· · · 0 0 0 −ρ∞ 0 · · ·
. . .

...
...

...
...

...
. . .




= ρ∞J

(2.5.10)

where ρ∞ = lim|k|→∞ ρk = 1
|p|2κ and J is as per (2.4.24). Now P = M − M∞

decays like 1
k2

as k → ±∞, and so P is a compact operator [LLS04].

As iJ is Hermitian, J only has imaginary eigenvalues. Now consider the
operator J − iλI for some λ ∈ R. Consider this acting on a sequence v =
(..., v−1, v0, v1, v2, ...), so (J − iλI)v = (..., vk+1 − iλvk − vk−1, ...). Then form the
Fourier transform of this new sequence

F [(J − iλI)v](x) =
∞∑

k=−∞
(vk+1 − iλvk − vk−1)eikx

=
∞∑

k=−∞
(vke

−ix − iλvk − vkeix)eikx

= −i(2 sinx+ λ)
∞∑

k=−∞
vke

ikx

= −i(2 sinx+ λ)F [v](x).

(2.5.11)

If and only if 2 sinx + λ 6= 0 for all real x, then we can construct the inverse of
the operator (J − iλI) as

(J − iλI)−1 = F−1 1

−i(2 sinx+ λ)
F . (2.5.12)

Therefore iλ is in the spectrum of J if and only if 2 sin x − λ = 0 for some x,
i.e. λ ∈ [−2, 2]. Thus the spectrum of 1

|p|2κJ is 2i
|p|2κ [−1, 1]. By Weyl’s theorem

on the spectrum of compact perturbations of operators, see e.g. [RS78], the
essential spectrum of 1

|p|2κJ + P is equal to the essential spectrum of 1
|p|2κJ . Thus

the essential spectrum of M is 2i
|p|2κ [−1, 1]. �

This argument is based on the proof originally appearing in Latushkin, Li
and Stanislavova [LLS04]. To find the full continuous spectrum of the problem,
consider the factor α that occurs in every class subsystem. The full continuous
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spectrum is

σess =
⋃

a∈A
|α(a,p)|[−2, 2]i

=
κxκyΓ

|p|2κ
⋃

a∈A
|a× p|[−2, 2]i.

(2.5.13)

As a takes all values in A, a × p grows without bound, and so the continuous
spectrum is the entire imaginary axis σess = iR.

2.6. Stable Shear Flows

In the previous section, we saw that all but finitely many classes do not
introduce instability to the full problem. This leads to an interesting new result:
a subset of the flows of the form (2.4.3) are linearly stable. Previously, this was
only known in the case p = (1, 0) and κy/κx > 1. The new extension is for all p
of the form p = (px, 0). Such equilibria correspond to parallel shear flows of the
form cos(κxpxx). This result in some sense extends Arnold’s result for p = (1, 0)
[Arn66a], though we will see that the stability result here is more general but
weaker (linear stability rather than Energy-Casimir stability).

The existence of stable steady states is of some general interest. Although the
stability in this case is for periodic inviscid flows and is only linear stability, the
result is suggestive of the existence of related flows in other systems. For instance,
“metastability” results exist for parallel shear flows with nonzero viscosity per
Beck and Wayne [BW13], and the analogous scenario for channel flows (for
instance, periodic in one dimension only) is a common area of research [McH94].

2.6.1. Linearly Stable Parallel Shear Flows.

Theorem 2.6.1 (Linearly Stable Parallel Shear Flows). If p = (px, 0) and
κx|px| < κy, the parallel shear flow

Ω∗ = 2Γ cos(κxpxx) (2.6.2)

is linearly stable. Equivalently, if p = (0, py) and κy|py| < κx, the stationary
solution Ω∗ = 2Γ cos(κypyy) is linearly stable.

Proof. If p = (px, 0), the condition ρk ≤ 0 is equivalent to

(ax + kpx)
2 +

(
κy
κx
ay

)2

≤ p2
x <

(
κy
κx

)2

(2.6.3)

where a = (ax, ay). As ax, ay, px are integers, this implies ay = 0. Thus a =
(ax, 0).

But then α(a,p) = κxκyΓ(ax, 0)× (px, 0) = 0. Thus all classes either do not
intersect the unstable ellipse (so ρk > 0 for all k), or they satisfy α(a,p) = 0.
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p

a− p a a+ p a+ 2p

ã− 2p ã− p ã ã+ p ã+ 2p

(0, 0)

Figure 2.8 – The unstable ellipse for a linearly stable shear flow. For certain
choices of p, κx and κy, no classes will intersect the unstable ellipse except parallel
to p. This will lead to linear stability. For this figure, p = (2, 0), and κy/κx = 3 > 2.
Thus the condition |px| < |κy/κx| is satisfied.

Figure 2.9 – The vorticity for a linearly stable steady state. Here, p = (2, 0),
κy/κx = 3, and Γ = 1. Compare with Figure 2.2, which shows the vorticity of a
nonparallel shear flow.

If they do not intersect the unstable ellipse, they cannot contribute instability
by Theorem 2.5.5. If α = 0, the modes in the class are constant and so they
cannot contribute instability. Thus there are no classes that contribute instability,
and we conclude the flow is linearly stable. Thus the shear flow with vorticity
Ω∗ = 2Γ cos(κxpxx) is linearly stable.



2.6. Stable Shear Flows 45

The analogous result holds when p = (0, py) and κy|py| < κx. Then the steady
state Ω∗ = 2Γ cos(κypyy) is linearly stable. �

See Figure 2.8 for an illustration of the condition for a stable flow. The
unstable ellipse is “squashed” so that sufficiently few lattice points lie inside the
ellipse. This is not possible if px, py are both nonzero; as the ellipse always passes
through p and is axisymmetric, it will always have both semi-major and semi-
minor axes of length greater than max(|px|, |py|) and thus will contain a lattice
point that is not on the line through 0 and p. Figure 2.9 shows an example of
the vorticity of a stable steady state.

We can interpret this result as follows. On a torus sufficiently long in one
direction, a shear flow that varies sinusoidally in that direction only is linearly
stable. This interpretation may lead to some interesting extensions and implica-
tions. For instance, it may be possible that other parallel shear flows of the form
(2.4.1) with py = 0 satisfy a similar result, not just sinusoidal flows. It may also
be possible to make analogies with flows on a cylinder, which one can think of as
a torus with one infinitely long dimension.

2.6.2. Energy-Casimir Stability Analysis. In Theorem 2.6.1, we showed
that a subset of the family of steady states (2.4.3) are linearly stable. However,
we cannot extend this to nonlinear energy-Casimir stability in the sense of Arnold
[AK98]. The idea of Energy-Casimir stability is to restrict our system to ensure
perturbations preserve the Casimirs. We consider only dynamics on the subman-
ifold defined by fixing all Casimirs constant. Then if the energy/Hamiltonian
is positive definite near the steady state over the dynamics of the system, we
infer that the steady state is stable. The general procedure for showing nonlinear
stability in the energy-Casimir sense is discussed in [HMRW85, Mor98].

In this case we restrict the quadratic form H̃ (2.4.9) to the complement of the
gradients of the Casimirs (2.3.10). We must take H̃ rather than H (2.3.7) as the
derivative must vanish at the equilibrium. This allows us to consider stability
while locally fixing the values of the Casimirs.

The derivative of the Casimirs Cn (2.3.10) is given by

(∇Cn)j =
∑

ωk1ωk2 ...ωkn−1 (2.6.4)

where the sum is over all indices such that
n−1∑

i=1

ki = −j. (2.6.5)

Evaluating this at the steady state,

(∇Cn(Ω∗))(n−2m−1)p =

(
n− 1

m

)
Γn−1 (2.6.6)
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for all m ∈ N, and
(∇Cn(Ω∗))j = 0 (2.6.7)

for all j not of the form (n− 2m− 1)p.

Thus the linear approximation of the Casimirs Cn at the equilibrium Ω∗ is
given by a linear combination of the modes ωkp where k = −n,−n+2, . . . , n−2, n.
Then the span of the linear approximations of all Casimirs C1, C2, ... is all linear
combinations of the modes ωkp for k ∈ Z.

In the case κy/κx = 1, p = (1, 0) the Hessian D2H̃ has eigenvalues zero origi-
nating from ρ±p = 0. Any dynamics in these neutral directions are made constant
by fixing the Casimirs, and energy-Casimir stability follows. This is the Fourier
space version of Arnold’s theorem (for the original, see section 4 of [AK98]).

For our new linearly stable cases with κy > κx|px| > 1, the quadratic form H̃
is indefinite, specifically at lattice points ωj where j ∈ Dp. This implies they are
of the form j = (jx, 0), |jx| < |px| so ρk < 0. One cannot achieve definiteness of
H̃ by restricting to fixed values of the Casimirs for these modes, as they are not
at integer multiples of p. That is, the second variation cannot be made definite
by fixing the Casimirs, so we cannot find the convexity estimates required by
[HMRW85]. Our argument is equivalent to considering the most general linear
combination of Casimirs to construct H̃ as suggested in [HMRW85], and then
to observe that restricting to the constant Casimir submanifold H̃ is not definite
for the case at hand.

We thus cannot conclude nonlinear energy-Casimir stability for these linearly
stable steady states. This is a qualitative difference between the parallel shear
flow with p = (1, 0) and the general case p = (px, 0).

2.7. Unstable Shear Flows and Nonlinear Instability

In the previous section, we showed that in special cases, flows of the form
(2.4.3) are stable. However, as one may expect, this result is only for very partic-
ular values of p and κ. More generically (in the sense that it occurs for a greater
proportion of parameter values) we can expect the steady state is nonlinearly
unstable. We will show analytically that this is almost always the case.

In this section, we show that for fixed κx and κy all but finitely many values of
p give a nonlinearly unstable steady state. As we know that classes that do not
intersect the unstable ellipse cannot contribute linear instability, we only consider
classes that do intersect the unstable ellipse. Based on numerical evidence as
shown in Section 1.3.1, we make conjectures about the spectrum of (2.4.23) based
on the number and type of intersections the class has with the unstable ellipse.

We then analytically show nonlinear instability in all but finitely many cases
of p. To do so, we begin by taking a finite-mode truncation of our linearised
Poisson system. An upper bound on the size of eigenvalues is found. We then
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show that for the finite-mode truncation, there is linear instability for all classes
that intersect the unstable ellipse at one mode only. To do so, we consider the
associated characteristic polynomial.

Under some assumptions on the values ρk, we then show there is a lower bound
for a positive real eigenvalue independent of the truncation size. It is then shown
that a class satisfying the conditions on ρk exists for all but finitely many values
of p for a given domain size κx, κy. Combined with the spectral gap result for
the Euler equations [FSV97], this proves nonlinear instability for these steady
states.

2.7.1. Intersections with the Unstable Ellipse. Having established in
Theorem 2.5.5 that only classes that intersect the unstable ellipse can contribute
instability, we now turn our attention to the different ways that this can occur.
There are six possibilities:

a) Σa intersects ∂Dp once;
b) Σa intersects Dp once;
c) Σa intersects Dp once and ∂Dp once;
d) Σa intersects Dp twice;
e) Σa intersects ∂Dp twice;
f) Σa intersects Dp once and ∂Dp twice.

The locations of the values of a that lead to these cases are illustrated in Figure
2.10. There are no other possibilities, as classes can only intersect Dp at most
three times. This is because the ellipse lies wholly between the lines 〈a,p〉 = |p|2κ
and 〈a,p〉 = −|p|2κ. These lines are orthogonal to p in the κ-norm, and the
corresponding distance between these lines is |2p|. Thus a class cannot intersect
more than three times, and can only intersect three times if two of the lattice
points are on the boundary, as in (f).

Note that when we talk about intersections, we can only consider the discrete
integer points on Σa; the line that the modes in the class lie on may intersect Dp

in other regions, or without having any points in Σa lie in Dp.

Based on numerical evidence as discussed in Section 1.3.1, we can hypothesise
about the eigenvalues of (2.4.23) in each of these cases:

• in cases (a), (e) and (f), there are only imaginary eigenvalues;
• in cases (b) and (c), there is a pair of real eigenvalues;
• in case (d), there are four nonimaginary eigenvalues - either two real pairs

or a complex quadruplet.

The real eigenvalues occur in pairs ±λ and the complex eigenvalues occur in
quadruplets ±u± iv, due to the Hamiltonian symmetry of the spectrum. Numer-
ical results supporting this can be found in Section 6.1.2, and this is presented
as Conjecture 6.1.8.
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p

Figure 2.10 – For different values of a ∈ A, we can expect different nonimaginary
eigenvalues in the associated class. The dashed lines show the edges of the principal
domain A, and the ellipse shown is the unstable ellipse Dp. For a outside the
unstable ellipse, there are no nonimaginary eigenvalues. Otherwise, there are six
cases that can occur. The blue outer curve shows a such that a ∈ ∂Dp; this is
case (a). The area with diagonal lines shows the values of a such that a ∈ Dp but
a ± p /∈ Dp; this is case (b). The red inner curves show a such that a ∈ Dp and
a + p ∈ ∂Dp or a − p ∈ ∂Dp; this is case (c). The dotted area shows the values
of a such that a ∈ Dp and a + p ∈ Dp or a − p ∈ Dp; this is case (d). The four
black squares are values of a for which a ∈ ∂Dp and a− p ∈ ∂Dp; this is case (e).
The black dot at the origin is the value of a for which a ∈ Dp, a + p ∈ ∂Dp and
a−p ∈ ∂Dp; this is case (f). Knowing which of these regions a occurs in indicates
the number and type of nonimaginary eigenvalues.

The cases (e) and (f) are exceptional. Case (f) only occurs when a = 0; as
noted previously, this implies that α = 0 and so this class cannot contribute
instability and can be ignored. Case (e) is very exceptional; this occurs when

a =

(
1
2

±
√

3
2

κy
κx

∓
√

3
2
κx
κy

1
2

)
p. (2.7.1)
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As a,p ∈ Z2, this means κy
κx

= η
√

3 for some integer η. But then we also
require that px is a multiple of η, and px

η
≡ py mod 2. Combining these conditions,

all valid values can be expressed by

K =
1√

1 + 3µ2
1

(
1 0

0 µ1

√
3

)
, p =

(
µ1µ2

µ2 + 2µ3

)
,

a =

(
2µ1µ2 + 3µ1µ3

µ3

)
or

(
−µ1µ2 − 3µ1µ3

µ2 + µ3

) (2.7.2)

for any choices of κx ∈ R+, µ1, µ2, µ3 ∈ Z, µ1 > 0. Only for these values of K
and p will there be choices of a such that Σa intersects ∂Dp twice. These cases,
along with (a) and (c), are discussed in Section 2.9.2.

Of the generic cases, the easiest to address is (b). In terms of our coefficients
ρk, this scenario means ρ0 < 0 and ρk > 0 for all k 6= 0. Under some mild
additional assumptions, we can prove that this leads to the main matrix (2.4.23)
having a pair of real eigenvalues, and additionally calculate an explicit lower
bound.

2.7.2. A Finite-Mode Truncation. To study the unstable spectrum that
makes up the discrete spectrum of the full partial differential equation, we trun-
cate to a finite-mode approximation. Here we take a simple Galerkin-style pro-
jection of our problem down to a finite set of Fourier modes. In Chapter 3 a more
sophisticated Poisson structure-preserving truncation is discussed and employed.

There are two approaches to this; we can truncate to a finite set of modes
before linearising, or linearise and then truncate. The former approach is more
sensible for considering the full problem; we must consider all possible classes.
Such an approach would mean there are only finitely many differential equations
(2.2.26), and the problem would then be numerically tractable. However, the
structure of the bracket (2.3.2) is lost and we no longer have a Poisson system.

However, as we are now only interested in the existence of discrete spectra,
it is fine to truncate after linearisation. In particular, we can truncate within a
particular class Σa.

Assume we have fixed some a ∈ A and are considering the associated class.
Choose some truncation values m < n ∈ Z. Now project the differential equations
(2.4.22) to the set of modes ωk with m ≤ k ≤ n setting all other modes and their
derivatives to zero. Then the new differential equations are ω̇ = αMn

mω where
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ω = (ωm, ωm+1, ..., ωn−1, ωn), α = α(a,p) is still (2.4.19), and

Mn
m =




0 ρm+1 0 · · · 0 0 0
−ρm 0 ρm+2 · · · 0 0 0

0 −ρm+1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 ρn−1 0
0 0 0 · · · −ρn−2 0 ρn
0 0 0 · · · 0 −ρn−1 0




. (2.7.3)

The stability result of Theorem 2.5.5 still holds; if ρk > 0 for all m ≤ k ≤ n,
Mn

m has only imaginary eigenvalues. By truncating the transformation (2.5.6),
the result follows.

We should also note that the truncated, linearised system is Poisson; by trun-
cating (2.4.24) and (2.4.25) one recovers the structure matrix and Hamiltonian.
Therefore, there is a Hamiltonian symmetry to the eigenvalues; if λ is an eigen-
value of MN , so are −λ, λ̄, and −λ̄.

2.7.3. An Upper Bound for Eigenvalues. We first prove a simple upper
bound for all eigenvalues of (2.7.3).

Proposition 2.7.4. If λ ∈ C is an eigenvalue of Mn
m,

|λ| ≤ 2 max
m≤k≤n

{|ρk|} ≤ 2 max{ρ∞,−ρ0}. (2.7.5)

Proof. Consider some λ ∈ C, not necessarily an eigenvalue. Assume |λ| > 2|ρk|
for all m ≤ k ≤ n. Now consider

A = λI−Mn
m =




λ −ρm+1 · · · 0 0
ρm λ · · · 0 0
...

...
. . .

...
...

0 0 · · · λ −ρn
0 0 · · · ρn−1 λ



. (2.7.6)

We will now show that A is diagonally dominated. Note that the row sums are∑
j 6=i |Ai,j| = |ρi+m+1|+ |ρi+m−1| for all 1 < i < n−m+ 1,

∑
j 6=1 |A1,j| = |ρm+1|,

and
∑

j 6=1 |An−m+1,j| = |ρn−1|. All of these are strictly less than |Ai,i| = |λ|.
Thus A is strictly diagonally dominated and therefore nonsingular [HJ12]. Thus
λ cannot be an eigenvalue of Mn

m, and by contradiction, all eigenvalues of Mn
m

must satisfy |λ| ≤ 2 max |ρk| for all k.

Furthermore, we know that ρ0 ≤ ρk < ρ∞ for all k ∈ Z. Thus λ ≤
2 max{ρ∞,−ρ0}. Explicitly, if |a|κ <

√
2|p|κ, |λ| ≤ −2ρ0, otherwise |λ| ≤ 2ρ∞.

Note that in the second case, this bound coincides with the size of the continuous
spectrum (2.5.9). �
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2.7.4. The Characteristic Polynomial. Introduce the characteristic poly-
nomial of (2.7.3)

Mn
m(x) = det(xI −Mn

m). (2.7.7)

As Mn
m is tridiagonal, Mn

m can be recursively defined by expansion from top
left to bottom right

Mm
m(x) = x, Mm+1

m (x) = x2 + ρm+1ρm,

Mn
m(x) = xMn−1

m (x) + ρnρn−1Mn−2
m (x).

(2.7.8)

or by expansion from bottom right to top left

Mn
n(x) = x, Mn

n−1(x) = x2 + ρn−1ρn,

Mn
m(x) = xMn

m+1(x) + ρmρm+1Mn
m+2(x).

(2.7.9)

We prove a simple lemma.

Lemma 2.7.10. If ρk > 0 for all m ≤ k ≤ n, Mn
m(x) > 0 for all x > 0.

Proof. If n = m, Mm
m(x) = x > 0. If n = m + 1, Mm+1

m = x2 + ρm+1ρm > 0.
Assume Mη

m(x) > 0 for all m ≤ η < n and x > 0. Then

Mn
m(x) = xMn−1

m (x) + ρnρn−1Mn−2
m (x)

> 0
(2.7.11)

as x, ρn, ρn−1 > 0 and using the assumption. Thus by induction, the result
follows. �

Note that the recursive definitions (2.7.8) and (2.7.9) satisfy the condition
for Favard’s theorem [Fav36]. Thus the polynomials Mn

m(x) are orthogonal for
j = 1, 2, 3, ... with respect to an inner product with some weight function. This
is due to the connections between this system and an associated Jacobi operator;
we will explore this connection in Section 2.9 For details see [Sze39]; note that
in this case the weight function will not always be positive.

The following identities will be useful:

Mn
m(0) =

{∏n
k=m ρk if n−m is odd,

0 if n−m is even.
(2.7.12)

d

dx
Mn

m(x)

∣∣∣∣
x=0

=

{
0 if n−m is odd,
∑n−m

2
k=0

(∏n
j=m,j 6=m+2k ρj

)
if n−m is even.

(2.7.13)

These can be proved by simple induction arguments. We can simplify the last
of these: if ρk 6= 0 for all k and n−m is even,

d

dx
Mn

m(x)

∣∣∣∣
x=0

=

(
n∏

j=m

ρj

)


n−m
2∑

k=0

1

ρm+2k


 . (2.7.14)
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2.7.5. Finite-Truncation Instability. We first show that if ρ0 < 0, ρk ≥ 0
there is some nonzero real eigenvalue. Because of the Hamiltonian symmetry of
the spectrum this means there is a positive and negative pair of real eigenvalues
and so there is linear instability. This is then extended to show that under
certain conditions there is pair of real eigenvalues with an explicit lower bound
independent of the truncation used.

Proposition 2.7.15 (Existence of a real eigenvalue). If ρ0 < 0, and ρk ≥ 0 for
all k 6= 0, then for sufficiently large N ∈ Z, MN

−N has a nonzero real eigenvalue.

Proof. If ρ0 < 0 and ρk ≥ 0 for all k 6= 0, then either ρ1 = 0, or ρ−1 = 0, or
ρk > 0 for all k 6= 0 (see Section 2.7.1).

If ρ1 = 0 and N is odd, then

d

dx
MN
−N(x)

∣∣∣∣
x=0

=
N∏

k=−N,k 6=1

ρk

< 0

(2.7.16)

as ρ0 < 0, ρk > 0 for all k 6= 0, 1. Similarly if ρ−1 = 0 and N is odd,
d

dx
MN
−N(x)

∣∣
x=0

< 0.

If ρk > 0 for all k 6= 0, by (2.7.14)

d

dx
MN
−N(x)

∣∣∣∣
x=0

=

(
N∏

j=−N
ρj

)(
N∑

k=0

1

ρ−N+2k

)
. (2.7.17)

Now
N∏

j=−N
ρj < 0 (2.7.18)

as ρ0 < 0, ρk > 0 for all k 6= 0.

If N is odd, then 1
ρ−N+2k

> 0 for all k, and thus d
dx
MN
−N(x)

∣∣
x=0

< 0. If N

is even,
∑N

k=0
1

ρ−N+2k
> 0 for a sufficiently large value of N . This is because 1

ρ0

is finite and negative, and 1
ρk
→ |p|2κ > 0 as |k| → ∞. Thus for large enough

truncation values, d
dx
MN
−N(x)

∣∣
x=0

< 0.

In all cases, MN
−N(0) = 0 as N − (−N) = 2N is even. As the constant term

is zero, and the linear term is negative, then the lowest order nonzero coefficient
of the polynomial is negative.

We now argue by contradiction. Assume all roots of the polynomial are
imaginary (say iζk) or complex (γj + iδj) or zero. Then because eigenvalues
occur in positive and negative pairs due to the Hamiltonian symmetry as well as
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conjugate pairs the polynomial has the form

MN
−N(x) = xn1 ×

n2∏

k=1

(x− iζk)(x+ iζk)

×
n3∏

j=1

[(x− γj − iδj)(x− γj + iδj)(x+ γj − iδj)(x+ γj + iδj)]

= xn1

n2∏

k=1

(x2 + ζ2
k)

n3∏

j=1

(
x4 − 2x2(γ2

j − δ2
j ) + (γ2

j + δ2
j )

2
)
.

The lowest order nonzero coefficient (the coefficient of xn1) is

n2∏

k=1

(ζ2
k)

n3∏

j=1

(
(γ2
j + δ2

j )
2
)
> 0. (2.7.19)

But we know that the lowest order nonzero coefficient ofMN
−N is negative. Thus

by contradiction there must be some real eigenvalue, which will occur in a positive
and negative pair. Thus there is a positive real eigenvalue. �

2.7.6. A Lower Bound for a Real Eigenvalue. In the previous section,
we showed there is a real eigenvalue of MN

−N for appropriate values of ρk and N .
However, this does not preclude the possibility that the eigenvalue shrinks to zero
as the truncation size increases. Therefore, we must now find a lower bound for
such eigenvalues that does not depend on the truncation size. For a fixed domain
size κ such a lower bound exists for almost all values of p.

Lemma 2.7.20. If N > 2, ρ0 < 0, ρk > 0 for all k 6= 0, and ρ0 + ρ2 < 0, then

MN
−N(λ∗) < 0 (2.7.21)

where λ∗ =
√
−ρ1(ρ0 + ρ2).

Proof. Begin by noting that

Mγ
−N(

√
−ρ1(ρ0 + ρ2)) ≥ 0 (2.7.22)

for all γ < 0 by Lemma 2.7.10, as
√
−ρ1(ρ0 + ρ2) > 0. By applying (2.7.9) twice,

M1
−N(x) = (x2 + ρ1ρ0)M−1

−N(x) + ρ0ρ−1xM−2
−N(x) (2.7.23)

so

M1
−N(λ∗) = −ρ1ρ2M−1

−N(λ∗) + ρ0ρ−1λ
∗M−2

−N(λ∗). (2.7.24)

As ρ0 < 0, ρk > 0 for all k 6= 0, andM−1
−N ,M−2

−N take positive values for positive
arguments, M1

−N(λ∗) < 0.
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Now, by applying (2.7.9) repeatedly:

M2
−N(λ∗) = (λ∗2 + ρ1(ρ0 + ρ2))λ∗M−1

−N(λ∗)

+ (λ∗2 + ρ2ρ1)ρ0ρ−1M−2
−N(λ∗)

= −ρ1ρ
2
0ρ−1M−2

−N(λ∗).

(2.7.25)

As ρ1, ρ−1 > 0, ρ0 < 0 and M−2
−N is positive by Lemma 2.7.10, it follows that

M2
−N(

√
−ρ1(ρ0 + ρ2)) < 0.

Now for γ > 2, we make a recursive argument:

Mγ
−N(λ∗) = λ∗Mγ−1

−N (λ∗) + ργργ−1Mγ−2
−N (λ∗). (2.7.26)

Now λ∗ > 0 and ργργ−1 > 0 (as γ > 2). By induction, as M1
−N(λ∗) < 0,

M2
−N(λ∗) < 0, then Mγ

−N(λ∗) < 0 for all γ ≥ 1. Therefore we conclude that

MN
−N(

√
−ρ1(ρ0 + ρ2)) < 0. �

One can make the equivalent argument if ρ0 + ρ−2 < 0, with the lower bound
λ∗ =

√
−ρ−1(ρ0 + ρ−2) instead. If ρ0 + ρ−2 < 0 and ρ0 + ρ2 < 0, we can define

the lower bound λ∗ = max(
√
−ρ−1(ρ0 + ρ−2),

√
−ρ1(ρ0 + ρ2)).

Lemma 2.7.27 (Lower Bound for Real Eigenvalues). If a ∈ Dp and a+kp /∈ Dp

for all k 6= 0, and

λ∗ =
√
−ρ1(ρ0 + ρ2) (2.7.28)

is real and nonzero, there exists a real λ > λ∗ such that λ is an eigenvalue of
MN
−N for all sufficiently large N . Similarly if

λ† =
√
−ρ−1(ρ0 + ρ−2) (2.7.29)

is real and nonzero, there exists λ > λ† such that λ is an eigenvalue of MN
−N for

all sufficiently large N .

Proof. The leading order term of MN
−N(x) is x2N+1, and does not depend on

ρk. Thus, limx→∞MN
−N(x) > 0. Additionally we know from Lemma 2.7.20 that

MN
−N(λ∗) < 0 under the conditions given. Also,MN

−N(x) is a real-valued function
for real values of x. Thus by the intermediate value theorem, there exists some
λ > λ∗ such that MN

−N(λ) = 0. By definition, λ is an eigenvalue of MN
−N . By

the same argument, λ† is also a lower bound. If λ∗ and λ† are both real, there is
some real eigenvalue λ > max(λ∗, λ†). �

Thus there is an eigenvalue, and there is a lower bound on the eigenvalue that
does not depend on the truncation size. Thus it will persist to the full infinite
matrix. This lower bound is illustrated in Figure 2.18 in a reduced coordinate
frame.
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2.7.7. Conditions for Existence of a Lower Bound. In the previous
section we showed that under appropriate conditions on the coefficients ρk, the
class has a positive real eigenvalue greater than an explicit lower bound. We now
show that under certain conditions on p, there exist corresponding values of a
such that the required conditions on the ρk coefficients are satisfied.

Lemma 2.7.30 (Appropriate Choices for a). For all p such that

|p|κ >
3 + 2

√
3

2
, (2.7.31)

there exists at least one choice of a ∈ A such that the reality conditions of Lemma
2.7.27 are satisfied for sufficiently large N .

In the isotropic case κy/κx = 1, there is an appropriate choice of a for all p
except (1, 0)T, (1, 1)T, (1, 2)T (and permutations and sign changes thereof).

Proof. For the lower bound for a real eigenvalue λ∗ =
√
−ρ1(ρ0 + ρ2) (or equiv-

alently λ† =
√
−ρ−1(ρ0 + ρ−2)) given in Lemma 2.7.27 to be real and positive,

and hence a valid bound, we require ρ0 < 0, ρ±1 > 0, and ρ0 + ρ2 < 0 (or
ρ0 + ρ−2 < 0). As ρk is monotonic away from k = 0, this implies ρk > 0 for all
k 6= 0.

If ρ0 < 0 and ρk > 0 for all k 6= 0, then |a| < |p| and |a ± p| > |p|. This is
true if and only if a is in the shaded region in Figure 2.11 (top).

If |a|κ < (
√

3 − 1)|p|κ, then |a ± 2p|κ ≤ |a|κ + 2|p|κ < (
√

3 + 1)|p|κ by the
triangle inequality. Thus

ρ0 + ρ2 =
2

|p|2κ
− 1

|a|2κ
− 1

|a + 2p|2κ
<

2

|p|2 −
1

|(
√

3− 1)p|2
− 1

|(
√

3 + 1)p|2

=
1

|p|2
(

2− 1

(
√

3− 1)2
− 1

(
√

3 + 1)2

)

= 0.

(2.7.32)

Similarly, if |a|κ < (
√

3− 1)|p|κ then ρ0 + ρ−2 < 0. This condition is illustrated
in Figure 2.11 (bottom).

We thus need to show there exists a ∈ Z2 such that |a|κ < (
√

3− 1)|p|κ and
|a ± p|κ > |p|κ. The condition for this to be possible is shown geometrically in
Figure 2.12. The idea is to circumscribe an ellipse in this region, tangent to the
curves |x|κ = (

√
3− 1)|p|κ, |x + p|κ = |p|κ and |x− p|κ = |p|κ. The interior of
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p

p

Figure 2.11 – The conditions for Lemma 2.7.30, shown in Fourier coefficient
space. Top: the outer solid ellipse is Dp. The two dashed arcs are translations of
the boundary of the unstable ellipse, |x − p|κ = |p|κ and |x + p|κ = |p|κ. The
shaded region is bounded by these three curves. If and only if a is in the interior
of the shaded region, then ρ0 < 0 and ρ1, ρ−1 > 0. Note that the shaded region
lies wholly within the principal domain of modes A shown in Figure 2.5. Bottom:
the outer solid ellipse is Dp. The shaded area is the region |x|κ < (

√
3− 1)|p|κ. If

a is in the shaded area, then ρ0 + ρ2 < 0 and ρ0 + ρ−2 < 0.
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p

p

Figure 2.12 – The conditions for Lemma 2.7.30, shown in Fourier coefficient
space. Top: the intersection of the two conditions in Figure 2.11. If a lies in the
shaded blue region indicated, the conditions of Lemma 2.7.30 are satisfied. Lower:
magnified detail from the upper figure, with inscribed ellipse. The red shaded
region shows the largest axisymmetric ellipse circumscribed by the blue region.
The ellipse is tangent to the three dashed curves. As we can explicitly describe
this ellipse, we can verify that an integer lattice point occurs in this region under
the condition (2.7.31).
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this ellipse is the region

κ2
x

(
x+

κypy√
3κx

)2

+ κ2
y

(
y − κxpx√

3κy

)2

<

(
2
√

3− 3

3
|p|κ

)2

. (2.7.33)

Call this region E. This is shown in Figure 2.12 (bottom). This ellipse is tangent
to |x− p|κ = |p|κ at

(
(1−

√
3

2
)px −

1

2

(
κy
κx

)
py,

1

2

(
κx
κy

)
px + (1−

√
3

2
)py

)
, (2.7.34)

to |x− p|κ = |p|κ at
(
−(1−

√
3

2
)px −

1

2

(
κy
κx

)
py,

1

2

(
κx
κy

)
px − (1−

√
3

2
)py

)
, (2.7.35)

and |x|κ = (
√

3− 1)|p|κ at
(
−(
√

3− 1)

(
κy
κx

)
p2, (

√
3− 1)

(
κx
κy

)
p1

)
. (2.7.36)

All that remains is to show that there exists an integer lattice point a ∈ E∩A.
For an ellipse of the form

(x− x0)2

a2
+

(y − y0)2

b2
= 1, (2.7.37)

the largest possible square inscribed inside the ellipse has sides of length 2ab√
a2+b2

.

In the case of (2.7.33), this length is

l =
2(2
√

3− 3)

3
√
κ2
x + κ2

y

|p|κ. (2.7.38)

If this length l > 1, then the interior of the square must contain an integer lattice
point. Rearranging gives the condition

|p|κ >
3 + 2

√
3

2

√
κ2
x + κ2

y. (2.7.39)

As κ is normalised,
√
κ2
x + κ2

y = 1 and the result follows. �

Note that this is a sufficient but not necessary condition on p for a value of
a to exist that satisfies the conditions of Lemma 2.7.27. The inequality (2.7.32)
is not sharp. Thus there may be values of a that satisfy Lemma 2.7.27 for values
of p that do not satisfy (2.7.31).

As a particular example, in the isotropic case κy/κx = 1 the condition (2.7.31)
becomes

|p| > 3
√

2 + 2
√

6

2
≈ 4.57. (2.7.40)
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Checking the small number of p values with |p| < 4.57, there are appropriate
lattice points a for most such p. The following table shows an appropriate value
for a for corresponding parameter values p.

p (4, 2)T (4, 1) (4, 0) (3, 3)T (3, 2)T

a (−1, 2)T (1,−2)T (0,−2)T (1,−1)T (1,−2)T

p (3, 1)T (3, 0)T (2, 2)T (2, 0)T

a (1,−2)T (0, 2)T (−1, 2)T (0,−1)T

(2.7.41)

These points are shown in Figure 2.13 (top) as blue dots. For reflections and rota-
tions of these, the corresponding reflection or rotation of a satisfies the condition
(note that it is only in the case κy/κx = 1 that (px, py)→ (py, px) is a symmetry).
Thus in the isotropic case the only values of p that do not have a corresponding
a satisfying the conditions of Lemma 2.7.30 are the reflections and rotations of
p = (2, 1)T, (1, 2)T, (1, 1)T, (1, 0)T, (0, 1)T.

In the special case p = (px, 0), this bound can be improved. Consider the
lattice point a = (0, 1). Then a ± p = (px,±1) 6∈ Dp. Furthermore, if px <

1√
3−1

κy
κx

, then |a|κ < (
√

3−1)|p|κ. Thus this satisfies the requirements of Lemma

2.7.27. Similarly if p = (0, py) and py >
3+2
√

3
2

√
1 + (κx

κy
)2, a = (1, 0) satisfies the

requirements of Lemma 2.7.27.

In fact, for all choices of κx and κy all but a finite number of values of p will
admit an a that satisfies the condition of Lemma 2.7.27. Figures 2.13 and 2.14
show how the existence of an appropriate value of a given p changes depending
on κx, κy. Figure 2.15 shows how the number of values of p for which valid a
exist changes as a function of κy/κx.

2.7.8. Unstable Shear Flows. In Section 2.7.6 it was shown that under
certain conditions on the coefficients ρk there is a positive real eigenvalue of the
linearised class. In Section 2.7.7 we showed that under certain conditions on p,
there exists at least one value of a so that the ρk coefficients in the corresponding
class satisfy the conditions in Section 2.7.6. We now prove that this eigenvalue
has an eigenvector in `2, and hence by the spectral gap theorem show the shear
flows are nonlinearly unstable. This is a key result of this thesis.

Lemma 2.7.42. If

λ∗ =
√
−ρ1(ρ0 + ρ2) (2.7.43)

is real, the infinite dimensional linearised system given by (2.4.22) has a positive
real eigenvalue λ whose eigenvector is in `2.

Proof. According to Lemma 2.7.20, given the required conditions on p there
exists at least one positive real eigenvalue with some lower bound (independent
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Figure 2.13 – Valid values of p for condition (2.7.31). For fixed values of κx, κy,
a finite number of values of p will not satisfy condition (2.7.31). Any value of p in
the shaded region satisfies condition (2.7.31). As (2.7.31) is nonstrict, for any κx,
κy there exist p not satisfying (2.7.31) such that there still exist a ∈ A that satisfy
the conditions of Lemma 2.7.20. These values of p are shown as filled blue dots.
All other values of p are shown as red asterisks; there are only finitely many such
values for any given κx, κy. Top: square case κy/κx = 1. Bottom: κy/κx = 3.
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Figure 2.14 – Continued from Figure 2.13. Here κy/κx = 8 which is further from
1 and so more values of p occur outside the shaded area. As κy/κx → 0 or ∞, the
number of p outside the shaded area diverges (see Figure 2.15).

of N) of (2.7.3) for any sufficiently large truncation value N . By taking the limit
N →∞ we can conclude there exists some positive real eigenvalue λ of (2.4.23).

Now consider an eigenvector associated with this eigenvalue

v = (..., v−1, v0, v1, v2, ...)
T. (2.7.44)

For this to correspond to a real L2 eigenfunction of the full problem (that is,
for the Fourier series to converge), we need these Fourier coefficients to decay
sufficiently fast: they need to be a sequence in `2.

The entries of the (infinite dimensional) eigenvector vk of (2.4.23) correspond-
ing to the eigenvalue λ satisfy the recursion relation

λvk = α(ρk+1vk+1 − ρk−1vk−1). (2.7.45)

Since all ρk 6= 0 by assumption this can be rewritten as

vk+1 =
λ

ρk+1

vk +
ρk−1

ρk+1

vk−1 (2.7.46)

(scaling out the nonzero constant factor of α).

Consider the limiting behaviour as k → +∞. Then ρk → 1
|p|2κ . In this limit

solutions to (2.7.46) behave like solutions to

vk+1 = λ|p|2κvk + vk−1, (2.7.47)
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Figure 2.15 – The number of p values that do not satisfy the conditions of
Theorem 2.7.53 as a function of the ratio κy/κx. For this plot, we consider only
p = (px, py) with px, py ≥ 0 and not both zero. The upper blue line shows the
number of p values that do not satisfy (2.7.31). The lower red line shows that
number of p values for which no a exists that satisfies the conditions of Lemma
2.7.20. A log scale is used on the κy/κx axis. As κy/κx → 0 or κy/κx → ∞, both
curves diverge. The values are at their lowest around κy/κx = 1. For all other
p ∈ Z2, there exists a valid a and Theorem 2.7.53 proves instability.

see for example [Hen81].

This linear recurrence has the general solution

vk = C1µ
k
1 + C2µ

k
2 (2.7.48)

where C1, C2 ∈ R are constants and µ1, µ2 are solutions to µ2 − λ|p|2κµ− 1 = 0.
Thus µ1µ2 = −1 and without loss of generality |µ1| < 1, |µ2| > 1 (note that we
cannot have |µ1| = |µ2| = 1 as λ|p|2κ 6= 0 for nonzero eigenvalues).

Now as v is an eigenvector associated with a real eigenvalue, the span of the
eigenvector is an invariant subspace of the Hamiltonian system with Hamiltonian
H(ω) = 1

2

∑
k ρkω

2
k by (2.4.14). In fact, let ω(0) = v, then ω(t) = eλtv. As the

Hamiltonian is an integral of the motion, H(v) = H(eλtv). By taking the limit
t→ −∞, H(v) = H(0) = 0.
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Therefore,

H(v) =
∑

k

ρkv
2
k = 0; (2.7.49)

∑

k 6=0

ρkv
2
k = −ρ0v

2
0. (2.7.50)

Now, if C2 6= 0, ∑

k 6=0

ρkv
2
k ∼

∑

k 6=0

ρk(C2µ
k
2)2 →∞, (2.7.51)

as ρk → 1
|p|2κ and ρk > 0 for all k 6= 0. But ρ0 and vk are finite, so there is

a contradiction. Thus C2 = 0 and vk = C1µ
k
1 in the asymptotic limit, where

|µ1| < 1. This is exponential decay, which is sufficient for the Fourier series to
converge.

Similarly for k → −∞, the limiting behaviour is governed by

vk−1 = −λ|p|2κvk + vk−1. (2.7.52)

Again, this means vk is asymptotic to C1µ
k
1 + C2µ

k
2 for |µ1| < 1, |µ2| > 1.

By the same argument as above, we conclude that C1 = 0 and so vk = C2µ
k
2 as

k →∞. Thus the Fourier coefficients decay exponentially on both sides with |k|,
and hence v is in `2. �

Now we can combine the results regarding real eigenvalues and the associated
eigenvectors from the preceding sections and the conditions on p to conclude
nonlinear instability.

Theorem 2.7.53. The steady state

Ω∗ = α cos(κxpxx+ pyκyy) + β sin(κxpxx+ κypyy) (2.7.54)

is nonlinearly unstable for all p = (px, py)
T satisfying

|p|κ >
3 + 2

√
3

2
. (2.7.55)

For a fixed κx, κy, this condition is satisfied for all but finitely many values of p.

Proof. By Lemma 2.7.30, for all p satisfying (2.7.55) there exists some a such
that ρ0 < 0, ρk > 0 for all k 6= 0 and ρ0 + ρ2 < 0 and ρ0 + ρ−2 < 0. Thus by
Lemma 2.7.42 there exists a real positive eigenvalue λ of (2.7.3) for a sufficiently
large value of N . Moreover, the eigenvalue is greater than

max(
√
−ρ1(ρ0 + ρ2),

√
−ρn−1(ρ0 + ρn−2)) (2.7.56)

which is positive and independent of the choice of truncation size N . The
truncation size N can be increased without bound. Hence there is a hyper-
bolic eigenvalue of (2.4.22) in the limit N → ∞ and the spectrum of the lin-
earised PDE leads to instability. Now recall that any steady state of the form
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Ω∗ = α cos(κxpxx + pyκyy) + β sin(κxpxx + pyκyy) can be rewritten in the form
Ω∗ = 2Γ cos(κxpxx+pyκyy) by a coordinate transformation and so the instability
result follows.

By Lemma 2.7.42, the eigenvector associated with the eigenvalue λ is in `2.
The classes led by a and −a have the same spectrum, and thus the corresponding
eigenvectors can be combined to construct coefficients ωk of a real eigenfunction
Vλ corresponding to λ. Since the eigenvectors v are in `2 the periodic function
Vλ is in L2. Together with the result in Latushkin, Li and Stanislavova [LLS04]
which shows that the spectral mapping theorem holds, this establishes linear
instability. To conclude nonlinear instability we refer to the work of Friedlander,
Strauss and Vishik [FSV97] and Shvidkoy and Latushkin [SL03]. In [FSV97]
it is shown that sufficient conditions for nonlinear instability are linear instability
together with a ‘spectral gap’ condition. In [SL03] it is shown that the continuous
spectrum of the linearised Euler operator in the cases we are considering is iR.
Because of the presence of a point of discrete spectrum bounded away from the
imaginary axis, we have a spectral gap, and hence nonlinear instability. �

We stress that this result is not sharp, in the sense that the condition (2.7.55)
is sufficient but not necessary. As shown in Figure 2.13, for a fixed value of κ there
are many values of p that do not satisfy (2.7.55) but still have an associated class
a such that Lemma 2.7.20 holds and there is therefore a positive real eigenvalue
and hence instability. In fact, the observations of Section 2.7.1 are supported by
numerical evidence shown in Section 6.1, and lead to the observation that for any
values of p not of the form described in Section 2.6, the associated shear flow is
nonlinearly unstable. This is formulated as Conjecture 6.1.8.

2.8. Spectrum Classification

In the previous section, for many classes we proved the existence of a positive
real eigenvalue. In this section, we numerically build a fuller picture of the
nonimaginary spectrum associated with a class. We begin by showing that all
classes can be reduced by a series of transformations to a class with parameters
p = (1, 0)T, κy/κx = 1. We then describe how the size and type of the eigenvalues
vary depending on the choice of a in these reduced coordinates.

2.8.1. Rotated Coordinates. Consider the linearised system (2.4.22). De-
fine the new parameters

p̃ := Kp, ã = Ka (2.8.1)

where K is the aspect matrix (2.2.11). Then

ρk =
1

|p̃|2 −
1

|ã + kp̃|2 (2.8.2)
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p

(0, 0)

p̃

(0, 0)

p̄
(0, 0) p̂ = (1, 0)(0, 0)

Figure 2.16 – How the lattice of valid values of â is deformed by the transformation
defined by (2.8.5). In each figure, the lattice Z2 is shown with black dots connected
by grid lines, and the transformed unstable ellipse and p are shown. The red dots
show the transformed lattice of relevant values of a. Top left: the untransformed
lattice Z2. Top right: the scaling ã = Ka is applied to transform K → I. The
admissible values of ã are shown as red dots. The unstable ellipse is now a circle,
the unstable disc per [Li00]. Bottom left: the rotation ā = Rp̃ã is applied to
rotate p̃ parallel to the x-axis. The lattice of admissible values of ā, shown in red,
is accordingly rotated. Bottom right: the scaling by a factor of 1/|p|κ transforms p̄
to the unit vector in the x-direction. Admissible values of â are shown as red dots.
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p

a

ãx|p|κ

ãy|p|κ

Figure 2.17 – The relationship between a and p and the new parameters ãx,
ãy. The parameter ãx measures the length of the projection of a onto p, and ãy
measures the length of the component of a orthogonal to p. Both parameters are
normalised by |p|κ. For κy/κx = 1, this is the usual vector projection and rejection
as shown; for κy/κx 6= 1 it is the orthogonal decomposition in the κ inner product
(2.2.12).

where |x| is the standard Euclidean norm, and the scaling factor α = Γã × p̃.
The factor of α will occur in the full differential equations ω̇ = αMω, and so
multiplies any eigenvalues. Thus the linearised subsystem is equivalent to that
of a class with an isotropic domain K = I.

Next, define

Rp̃ :=
1√

p̃2
x + p̃2

y

(
p̃x p̃y
−p̃y p̃x

)
. (2.8.3)

The matrix Rp̃ ∈ SO(2) so RT
p̃Rp̃ = Rp̃R

T
p̃ = I and det(Rp̃) = 1. Let

p̄ = Rp̃p̃ = (|p̃|, 0)T = (p̄x, 0) and ā = Rp̃ã = (āx, āy). Then α = −āyp̄x, and ρk
remains unchanged as norms are invariant under rotation. Finally if we introduce
the transformation â = ā

p̄x
, then α = −ây and

ρk =

(
1− 1

(âx + k)2 + â2
y

)
. (2.8.4)

This system is now the same as the linearised system with Γ → 1/p̄21Γ = 1/|p|2κΓ,
p = (1, 0)T and a = â. Ignoring the scaling factors of Γ and 1

|p|κ , which will

be the same for all classes, we can define the scaling per class as α = |ay| (the
sign of α can be ignored by the Hamiltonian symmetry of the problem; for all
eigenvalues λ, −λ is also an eigenvalue). Thus up to a time rescaling to change
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the constant factor and the transformation

â =
1

|p|κ
RpKa (2.8.5)

for a ∈ Z2, we can perform all numerics on this simplified system

p =

(
1

0

)
, a =

(
ãx
ãy

)
, K = I, α = |ay|. (2.8.6)

We use the notation ãx, ãy to indicate we are using the reduced parameters, rather
than the original parameter a ∈ Z2.

It is very important to note this does not imply that the linearised problem
(2.4.13) does not depend on the K or p. Our class parameters ãx, ãy in this ad-
justed system will no longer have values is Z. Instead, (ãx, ãy) must take values
on a stretched, rotated and scaled version of such a lattice. We could not recon-
struct the full problem from these classes without summing over the transformed
lattice, which would require a transformation back to the original coordinates.
Thus is it is natural that we cannot make the same transformations to simplify
the original partial differential equation. See Figure 2.16 for an illustration of the
relationship between the new lattice of relevant values of (ãx, ãy) and Z2, and Fig-
ure 2.17 for the relationship between the original a and the reduced parameters
ãx and ãy.

To study the eigenvalues numerically, we consider only the spectrum of αM =
|ãy|M whereM is defined as in (2.4.23) with p = (1, 0). Now the principal domain
of parameters (ãx, ãy) is

A = {(ãx, ãy) ∈ R2 | − 1

2
< ãx ≤

1

2
}. (2.8.7)

We consider all real values of a ∈ A, ignoring for the moment that for an actual
linearisation only a discrete set of values will actually occur.

These reduced parameters gives us a convenient setting to study the lower
bound λ∗ = max(

√
−ρ1(ρ0 + ρ2),

√
−ρ−1(ρ0 + ρ−2)) described in Lemma 2.7.20.

This is shown in Figure 2.18.

We can use these parameters to describe the type and number of nonimag-
inary eigenvalues as a function of ãx and ãy. Figure 2.19 shows that there are
four generic possibilities for nonimaginary eigenvalues; no nonimaginary eigen-
values, one pair of real eigenvalues, two pairs of real eigenvalues, and a complex
quadruplet of eigenvalues. The figure shows how these four possibilities depend
on the parameters. The boundary curve between two pairs of real eigenvalues
and a complex quadruplet is not known analytically; it is calculated numerically.
This corresponds to the observations of Section 2.7.1, as illustrated in Figure
2.10. This regions there are related to the regions in Figure 2.19 by the affine
transformation (2.8.5).
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Figure 2.18 – Contour plot of the lower bound αλ∗ from (2.7.28) for the real
eigenvalue of αM as a function of (ãx, ãy). Only the area where the lower bound is

real and positive is shown. Note that we can take the larger of
√
−ρ−1(ρ0 + ρ−2)

and
√
−ρ1(ρ0 + ρ2), hence the symmetry across ãx = 0. Also note that α = ãy

in the reduced coordinates. The figure can also be reflected across ãy = 0. The

curves (ãx±1)2 + ã2
y = 1 and ã2

x+ ã2
y =
√

3−1 are shown; compare the shape with
the region shown in Figure 2.12.

Figure 2.20 illustrates how the bifurcations between types of eigenvalues occur.
Figures 2.21 and 2.22 show the values of the eigenvalues at some of the bifurcation
boundaries; note that these figures include the factor of α.

2.9. The Half-Class Operator and Associated Jacobi Problem

In the previous section, we asserted that bifurcations occur when ã2
x + ã2

y = 1

and (ãx ± 1)2 + ã2
y = 1. To study these boundary cases in further depth, we now

draw a connection between the matrix (2.4.23) and Jacobi operators.
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Figure 2.19 – The type and number of nonimaginary eigenvalues of M as a
function of (ãx, ãy) ∈ A. For this figure, we use the reduced coordinates with

p = (1, 0)T, K = I. The result is the same for all values of K, p up to rotation and
scaling as shown in Figure 2.16. For values of (ãx, ãy) in the yellow region, there
are two nonimaginary eigenvalues, which occur as a real pair ±λ. This region is
bounded by the curves ã2

x+ã2
y = 1, (ãx−1)2 +ã2

y = 1, and (ãx+1)2 +ã2
y = 1. In the

blue and red regions, there are four nonimaginary eigenvalues; in the blue region,
they are a complex quadruplet ±α ± βi, and in the red region they are two real
pairs ±α, ±β. If ãx, ãy are not in any of these regions, there are no nonimaginary
eigenvalues. The faded regions are outside the principal domain −1/2 < ãx ≤ 1/2
and are translations of the regions inside the principal domain by (1, 0). This shows
the full unstable disc ã2

x + ã2
y = 1.
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Figure 2.20 – The bifurcations that occur in the eigenvalues of M as a function
of ãx, ãy. Left: an illustration of detail from 2.19, showing bifurcation curves. We
only need to consider the range 0 ≤ ãx ≤ 1

2 , ãy ≥ 0. The other four quadrants
are reflections of this one. Right: an illustration of how the eigenvalues change
in the complex plane as ãy changes along the dotted line ãx = 0.25 shown in the
left figure, travelling from top to bottom. The figures are arranged from left to
right, top to bottom. If |ãy| >

√
1− ã2

x, there are no nonimaginary eigenvalues.

When |ãy| =
√

1− ã2
x (the top red dot on the left figure), two imaginary eigen-

values collide at zero, and split off onto the real axis. Between this and the next
bifurcation, there are two nonzero real eigenvalues. At the next bifurcation when
|ãy| =

√
1− (ãx − 1)2 (the second red dot), another two imaginary eigenvalues

collide at zero and split off onto the real axis. Then there are four nonzero real
eigenvalues. At the final bifurcation (the third red dot), the two pairs of nonzero
real eigenvalues collide, and travel into the complex plane. After this, there will
be a complex quadruplet of eigenvalues.
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Eigenvalues vs ãy at bifurcation

Figure 2.21 – The positive real eigenvalue of αM as a function of ãy along the
curve (ãx− 1)2 + ã2

y = 1. This occurs at the bifurcation between two and four real
eigenvalues, as seen in Figure 2.19.
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Figure 2.22 – The eigenvalue of αM as a function of ãy at the boundary of the
principal domain of modes A at ãx = 1/2. The eigenvalues here occur as a complex
quadruplet ±γ ± δi; the positive real part is shown in black, and the positive
imaginary part in red.
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Jacobi operators are useful mathematical objects in a number of contexts.
They arise in moment problems (see [Akh65]; that text refers to them as in-
finite Jacobi matrices or J -matrices), as a discrete analogue of Sturm-Liouville
operators, and as half of a Lax Pair for the Toda Lattice [Tes00]. Here we will
recast our linearised system (2.4.22) in terms of a Jacobi operator and study the
associated properties and how they translate back to the original problem.

For classes satisfying ã2
x + ã2

y = 1, or equivalently ρ0 = 0, we split the prob-
lem into two “half-classes” which are semi-infinite rather than bi-infinite. We
can therefore adjust our analysis for these special cases. We first present the
equivalent stability result to Theorem 2.5.5 for the half-classes. We then derive
a simple result giving an upper bound on eigenvalues of the associated matrix.
The half-class is then studied from a Jacobi operator perspective.

2.9.1. The Associated Jacobi Operator. Consider the eigenvalue prob-
lem for (2.4.23)

λvn = ρn+1vn+1 − ρn−1vn−1. (2.9.1)

By using this recursion on vn+1 and vn−1 to expand the equation out further,

(λ2 + ρn(ρn+1 + ρn−1))vn = ρn+1ρn+2vn+2 + ρn−1ρn−2vn−2. (2.9.2)

In the generic case ρn 6= 0 for all n, we define ṽk :=
√
ρ2nv2n and v̄k :=√

ρ2n+1v2n+1. Then ṽk and v̄k satisfy the second order difference equations

λ′ṽn = bn+1ṽn+1 + anṽn + bnṽn−1

λ′v̄n = dn+1v̄n+1 + cnv̄n + dnv̄n−1

(2.9.3)

where

an = −ρ2n(ρ2n+1 + ρ2n−1), bn = ρ2n−1
√
ρ2n−2ρ2n,

cn = −ρ2n+1(ρ2n+2 + ρ2n), dn = ρ2n
√
ρ2n−1ρ2n+1,

(2.9.4)

and the new eigenvalue is λ′ = λ2. These difference equations are the eigenvalue
problems for the Jacobi operators

J̃ ṽn := bn+1ṽn+1 + anṽn + bnṽn,

J̄ v̄n := dn+1v̄n+1 + cnv̄n + dnv̄n.
(2.9.5)

Note that an, bn, cn, dn may not be real. If ρn > 0 for all n, then all the
coefficients are real. In that case, the operators J̃ and J̄ are Hermitian.

2.9.2. The Half-Class Operator. We now address the case ρk = 0 for
some k. This allows for some simplifications, as we can decompose our Jacobi
operator into two parts analogous to the approach in [Li00].

Working in the transformed system (2.8.6), we change the domain condition
(2.8.7) from ãx ∈ (−0.5, 0.5] to ãx ∈ [−1, 0) for notational convenience. This
means that ρ0 is not always the minimum value of ρk, but we can now describe
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any class with ρk = 0 for some k by ãy = ±
√

1− ã2
x, so ρ0 = 0. Then if ρk ≤ 0

for any k, this must be ρ1.

There are some special cases when we have a clearer idea of when these
parameter values will actually be attained in the real problem. The case ãx = 0,
ãy = ±1 (where ρ0 = 0) translates to a = (±κ−1

x py,∓κ−1
y px)

T in the full problem;

when κ−1
x and κ−1

y are integers this is always a lattice point, and so such a class
exists. Furthermore, in the case K = I, the classes a = ±(py, px) will always
lead to one of these cases. There are also the two classes a = ±(−px, py). Other
classes will occur across the parameter ranges of p and κ, but one cannot make
precise statements about when they will and will not occur.

There is also the exceptional case when ρk = 0 for two values of k. This
occurs in the transformed coordinates when ãx = 0, ãy = 0 (so ρ−1 = ρ+1 = 0)
or ãx = −1/2, ãy = ±√3/2 (so ρ0 = 0, ρ1 = 0). The former case is singular, but
occurs when α = 0 and so can be safely ignored. As discussed in Section 2.7.1,
the latter case can only occur in the untransformed problem for very specific
values of K and p satisfying (2.7.2). It is not possible to have ρk = 0 for more
than two values of k.

Whether there are one or two values of k such that ρk = 0, we can now
split (2.9.2) into two Jacobi operators. Without loss of generality, assume that

ãy =
√

1− ã2
x, so ρ0 = 0. Then

λv−1 = −ρ−2v−2, λv+1 = ρ2v2 (2.9.6)

and (2.9.1) holds for all |n| > 1.

Before proceeding to turn these into a Jacobi problem, we address the stable
cases. This is Case (a) from Section 2.7.1.

Proposition 2.9.7 (Half-Class stability). If ρi = 0 for exactly one i ∈ Z and
ρk > 0 for all k 6= i (or equivalently, Σa ∩ Dp = ∅ and |Σa ∩ ∂Dp| = 1), the
corresponding subsystem does not contribute linear instability to the full system.

Proof. Without loss of generality, assume ρ0 = 0. Then by the above, the
dynamics of the associated system can be split into two parts and described by
the matrices

M1 =




0 ρ2 0 0 ...

−ρ1 0 ρ3 0 ...

0 −ρ2 0 ρ4 ...

0 0 −ρ3 0 ...
...

...
...

...
. . .




(2.9.8)
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and

M2 =




0 ρ−2 0 0 ...

−ρ−1 0 ρ−3 0 ...

0 −ρ−2 0 ρ−4 ...

0 0 −ρ−3 0 ...
...

...
...

...
. . .



. (2.9.9)

If ρk > 0 for all k 6= 0, these matrices are both similar to a skew-symmetric
matrix by the transformation matrix

T =




ρ
−1/2
±1 0 0 ...

0 ρ
−1/2
±2 0 ...

0 0 ρ
−1/2
±3 ...

...
...

...
. . .




(2.9.10)

with positive choices of ρ±k for M1 and negative for M2. This condition is equiv-
alent to the class Σa never intersecting the interior of the unstable ellipse. Thus,
all the eigenvalues associated with such a class are imaginary and thus cannot
contribute linear instability. �

Compare this with Theorem 2.5.5. Together, these prove that classes that do
not intersect the interior of the unstable ellipse cannot contribute instability.

Return now to the Jacobi problem for the half-class with initial condition
(2.9.6). Applying our recursion formula (2.9.2), we split the system into four
Jacobi problems, which will now no longer be bi-infinite but have a boundary
condition.

The four Jacobi operators associated with the problem have the form

λ′ṽ0 = b1ṽ1 + a0ṽ0,

λ′ṽn = bn+1ṽn+1 + anṽn + cnṽn−1 for n ≥ 1.
(2.9.11)

There are two “odd” problems with δ = 1 and δ = −1 for the positive and
negative directions respectively. In these problems, ṽn = v(2n+1)δ, λ

′ = λ2 and

an = −ρ(2n+1)δ(ρ(2n+2)δ + ρ(2n)δ),

bn = ρ(2n)δρ(2n+1)δ,

cn = ρ(2n−1)δρ(2n)δ.

(2.9.12)

For the “even” problems, δ = 1 or δ = −1, ṽn = v(2n+2)δ, λ
′ = λ2 and the

coefficients are

an = −ρ(2n+2)δ(ρ(2n+3)δ + ρ(2n+1)δ),

bn = ρ(2n+1)δρ(2n+2)δ,

cn = ρ(2n)δρ(2n+1)δ.

(2.9.13)
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In summary, there are four problems found by the following procedure: first
squaring our original matrix (2.4.23) and splitting into an “even” and “odd” part,
and then splitting each of these into two halves around the coefficient ρ0 = 0.

The tridiagonal matrix associated with these problems is then

J1 =




a0 b1 0 0 0 ...

c1 a1 b2 0 0 ...

0 c2 a2 b3 0 ...

0 0 c3 a3 b4 ....

0 0 0 c4 a4 ...
...

...
...

...
...

. . .




. (2.9.14)

Note this is now infinite in one direction only, unlike most of the matrices we
have seen so far.

We can transform any matrix of this form into a symmetric matrix by the
transformation matrix

T1 =




1 0 0 0 0 ...

0
√

c1
b1

0 0 0 ...

0 0
√

c1c2
b1b2

0 0 ...

0 0 0
√

c1c2c3
b1b2b3

0 ...

0 0 0 0
√

c1c2c3c4
b1b2b3b4

...

...
...

...
...

...
. . .




(2.9.15)

to

J2 =




a0

√
b1c1 0 0 0 ...√

b1c1 a1

√
b2c2 0 0 ...

0
√
b2c2 a2

√
b3c3 0 ...

0 0
√
b3c3 a3

√
b4c4 ....

0 0 0
√
b4c4 a4 ...

...
...

...
...

...
. . .




. (2.9.16)

Note this is in general not Hermitian, unless bi and ci are all positive. Also note
that in our case the matrix T is bounded and invertible as the relevant ρk values
are nonzero and have a finite limit. Note that this is one of two potentially
Hermitian matrices related to (2.4.23). The matrix iM̃ where M̃ is (2.5.7) is also
Hermitian if ρk ≥ 0 for all k. Then if ±λ are in the spectrum of iM̃ , then λ2 is
in the spectrum of J2.
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The off-diagonal terms are now
√
bici = ρ(2n)δ

√
ρ(2n−1)δρ(2n+1)δ (2.9.17)

and √
bici = ρ(2n+1)δ

√
ρ(2n)δρ(2n+2)δ, (2.9.18)

depending which of the four problems we are in. Thus if ρk ≥ 0 for all k 6= 0, all
four matrices J2 are Hermitian and thus have all real eigenvalues.

If ρ1 < 0 and ρk > 0 for k > 1, then the positive odd problem with coefficients

an = −ρ2n+1(ρ2n+2 + ρ2n),

bn = ρ2nρ2n+1,

cn = ρ2n−1ρ2n

(2.9.19)

satisfies
√
bncn ∈ R for all n > 1, and

√
b1c1 = ρ2

√
ρ1ρ3 ∈ iR. Thus is some sense

the non-Hermitian part is “localised” to a small number of coefficients. This
corresponds to the observation there are only ever one or two nonreal eigenvalues,
and thus only two or four nonimaginary eigenvalues of the original problem.

2.9.3. Gershgorin Circle Theorem. The Jacobi matrix associated with
(2.9.11) is (2.9.14) for the appropriate set of coefficients ai, bi, ci. According to
the definition in [Akh65], this is a Jacobi matrix if bi = ci > 0 and ai ∈ R for all i.
There are equivalent definitions in other texts, which can usually be transformed
to this form. For an eigenvalue λ of J , (2.9.11) has a bounded solution in ṽk.

We can apply the Gershgorin circle theorem to this matrix to obtain some
simple results. The Gershgorin circle theorem is as follows: given a matrix M
with entries Mi,j ∈ C, define Ci = Mi,i and Ri =

∑
j 6=i |Mi,j|. Then all eigenvalues

of M lie in at least one of the discs |λ− Ci| ≤ Ri. Furthermore, if there is a set
of k discs disjoint from the other discs, k of the eigenvalues of M lie in that set.

Applying this to (2.9.14), all the eigenvalues of J lie in the set of circles with
centres Ci = ai and radii Ri = |bi+1| + |ci| (setting c0 = 0). We can also apply
this to the transpose (as the eigenvalues are invariant under transposition), so
the eigenvalues lie in the set of circles with centres ai and radii |bi|+ |ci+1|.

Substituting the coefficients (2.9.13), the eigenvalues must lie in the discs
with centres Ci = −ρδ(2i+1)(ρδ(2i+2) + ρδ(2i)) and radii Ri = |ρδ(2i+1)ρδ(2i+2)| +
|ρδ(2i+1)ρδ(2i))| for i ≥ 1 and C0 = −ρ1ρ2, R0 = |ρ1ρ2|. In particular, as ρn > 0
for all n > 1, Ci < 0 and Ci = −Ri for all i > 1. If ρ1 < 0, C0 = R0, otherwise
C0 = −R0.

As Ri is strictly increasing (as ρn is strictly increasing for positive n), this
means the Ci, Ri generate a series of nested discs, all nested within the limiting
disc C∞ = −2, R∞ = 2 (as limn→∞ ρn = 1 in the transformed system). Thus all
eigenvalues lie in the set

{|λ+ 2|2 ≤ 22} ∪ { |λ+ ρ1ρ2|2 ≤ (ρ1ρ2)2}. (2.9.20)
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In particular, Re(λ) ∈ [−2,−2ρ1ρ2] if ρ1 < 0. Thus for an eigenvalue λ′ = ±
√
λ

of the corresponding matrix (2.9.8),

Re(λ′) ∈ [−2
√−ρ1ρ2, 2

√−ρ1ρ2]. (2.9.21)

This is true for ρ0 = 0. We will return to this in Section 6.1.5 and discuss a
general bound on eigenvalues with positive real part.

2.9.4. Associated Properties of the Jacobi Operators. The Jacobi ma-
trix J2 (2.9.16) has a number of associated objects of note. For J2 to be a Jacobi
matrix per the definition in [Akh65], in our case we require ρk > 0 for all ρk in
the coefficients given by (2.9.17), (2.9.18).

Associated with a Jacobi matrix is a set of orthogonal polynomials given by
the recursion

(a0 − x)P0(x) +
√
b1c1P1(x) = 0,

√
bkckPk−1(x) + akPk(x) +

√
bk+1ck+1Pk+1(x) = xPk(x).

(2.9.22)

With the initial condition P0(x) = 1, this recursion generates the characteristic
polynomials employed throughout Section 2.7 up to a scaling of x. This set of
polynomials is called the polynomials of the first kind. Then Pk(x) is of degree k
and the polynomials Pk(x) are orthonormal with respect to the spectral density.
The spectral density is equivalent to the linear functional S which can be con-
structed via the orthogonality condition S(Pm, Pn) = δm,n for all m,n ∈ Z; see
Chapter 1, Section 1.4 of [Akh65].

If we take (2.9.22) with the initial condition Q0(x) = 0, this generates the
polynomials of the second kind. Then the polynomials Pk(x) and Qk(x) satisfy a
number of properties:

• the roots of Pk(x) are real and simple (that is, Pk(x) has no double roots
for any k ∈ N);
• the roots of Qk(x) are real and simple;
• the roots of Pk(x) and Pk−1(x) interlace; between any two roots of Pk(x)

there is a root of Pk−1(x) and vice versa;
• the roots of Pk(x) and Qk(x) interlace; between any two roots of Pk(x)

there is a root of Qk(x) and vice versa.

Proofs for these statements can be found in Chapter 1, Section 2 of [Akh65].

We can also use this characterisation to calculate the spectral density of
(2.9.16) as the limit of a series of functions. Denote the ordered roots of Pn(x)
as λn,k for k = 1, 2, 3, ..., n such that λn,k−1 < λn,k. Then for fixed n ∈ N define
the quadrature weights

µk :=
1∑n−1

i=0 Pi(λn, k)2
(2.9.23)
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for k = 1, 2, 3, ..., n. These weights are useful in a number of way. They provide a
quadrature formula for the linear functional S; for any polynomial R(λ) of degree
≤ 2n− 2,

S{R} =
n∑

k=1

µkR(λk). (2.9.24)

Additionally, they allow us to define the piecewise constant functions that
approximate the spectral density. Define σn(x) as a piecewise constant function
with discontinuities at λi, so that

limε→0(σn(λi + ε)− σn(λi − ε)) = µi. (2.9.25)

This function is defined up to an arbitrary constant. Then the limit

σ(x) := lim
n→∞

σn(x) (2.9.26)

is the spectral density associated with the Jacobi Matrix (2.9.16). This is the
weight with respect to which the polynomials Pn(x) are orthonormal. It is also
the solution to the associated moment problem, which is of much interest in the
mathematical and physical sciences; see [Akh65] for more information.

This setting also provides a link between the approach of [Li00] to the lin-
earised Euler equations and the study of the Jacobi operators. In Chapter 1,
Section 4 of [Akh65] and Chapter 1 of [Tes00] a link is formed between the
Jacobi Matrix (2.9.16) and the continued fraction

1

z − a0 −
b1c1

z − a1 −
b2c2

z − a2 − ...

. (2.9.27)

For the coefficients (2.9.17), this is equivalent to the continued fractions studied
in Section 5 of [Li00].

These links between the Euler equations, Jacobi operators, moment problems,
and continued fractions run deep, and provide interesting and natural avenues
for further research.



Chapter 3

Structure Preserving Truncation of the Two-Dimensional
Euler Equations

In Chapter 2, we introduced a Poisson formulation for the Euler equations
and discussed its advantages. We also studied a finite-mode truncation which
led to the main instability result of Theorem 2.7.53. However, this truncation
is only a Poisson structure for the linearised truncated equations. If we take a
Galerkin-style finite mode truncation per Section 2.7.2 of the nonlinear system
given by (2.3.2) and (2.3.7), the result will no longer be a Poisson system.

There is an alternative truncation for the nonlinear problem that does pre-
serve the Poisson structure of the system. Thanks to a clever characterisation
of the space of symplectomorphisms on T2 [FFZ89], Zeitlin [Zei91] defines a
series of Poisson brackets that approximate the ideal fluid bracket (2.3.2). This
is the sine Poisson bracket. This truncation is useful for a number of reasons.
Studying a finite-dimensional problem has analytical advantages and makes a
numerical study more tractable. Additionally, a structure-preserving truncation
allows us to take full advantage of a Poisson system. The system has a family
of Casimirs corresponding to the generalised enstrophy Casimirs (2.3.10). The
finite-dimensional Poisson structure allows us to develop a robust Poisson in-
tegrator, which we here generalise from the integrator for the isotropic domain
[McL93] to the anisotropic domain. There have also been results showing that
systems with similar truncations are integrable for sufficiently low truncation
values, for instance in Dullin [Dul13].

In this chapter, we introduce the sine-bracket truncated system, and linearise
around shear flows. The technical details associated with the truncation are
discussed, particularly with regards to the decomposition into subsystems. We
then show that the same stability results as for the untruncated system hold in
the truncated system. Under certain conditions, we can actually improve the
stability results of Chapter 2.

3.1. The Sine-Bracket Truncation

Define the finite domain of Fourier Mode indices for a fixed N ∈ N

DN := {j = (jx, jy) ∈ Z2 | |jx|, |jy| ≤ N}. (3.1.1)

79
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Then DN ⊂ Z2 is a “box” of Fourier modes with sufficiently small mode numbers.
The size of this domain is |DN | = (2N + 1)2.

We wish to define a truncated approximation of (2.3.2) that is defined only
on the modes

ωk, j ∈ DN . (3.1.2)

Such a truncation exists called the sine-bracket truncation. This truncation is
based on an algebra developed by Fairlie, Fletcher and Zachos [FZ89, FFZ89]
and developed for the two-dimensional Euler Equations by Zeitlin [Zei91, Zei05].
Further discussion of the theoretical background can be found in [Hop89, PR90,
BHSS91, AK98].

The sine-bracket, as defined in those texts, is for the isotropic periodic domain
with size [0, 2π) × [0, 2π). In our notation, this is the special case K = I. We
first present that definition, then the extension to the general case κx, κy ∈ R+.
The bracket also has a set of Casimirs, which we will present and discuss.

3.1.1. The Sine-Bracket Truncation. Introduce the notation ĵ such that

ĵ ∈ DN and j− ĵ = (2N + 1)(a, b)T for some integers a, b ∈ Z. This is equivalent

to taking j modulo the lattice grid D. For any j ∈ Z2 there is a unique ĵ ∈ DN .
This is not to be confused with the notation used for the cross product matrix
in Chapters 4 and 5; this wrapping operation will be used in this chapter only.

Define the sine-bracket [FZ89, Zei91] on the domain of modes with mode
number in DN :

{f, g} =
∑

j,k∈DN

sin(εj× k)

ε

∂f

∂ωj

∂g

∂ωk

ω
ĵ+k

(3.1.3)

where j,k ∈ DN and

ε =
2π

2N + 1
. (3.1.4)

Note that

lim
N→∞

sin(εj× k)

ε
= lim

ε→0

sin(εj× k)

ε
= j× k. (3.1.5)

This Poisson bracket has structure matrix J with entries

Jj,k =
1

ε
sin(εj× k)ω

ĵ+k
(3.1.6)

The bracket has limit (2.3.2) in the following sense. As there is a Poisson struc-
ture, ideal fluid flow is a symplectomorphism of the phase space T2 to itself
[AK98]. It is known [Hop89] that the Poisson algebra of diffeomorphisms on the
torus can be written as a limit of Lie algebras equivalent to SU(N), as N →∞.
Thus this system is an approximation of the Euler equations. This concept is
used to develop the bracket (3.1.3) in [Zei91]. Notably, there is a corresponding
construction for symplectomorphisms on the sphere S2 [Hop89, Zei04].
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Figure 3.1 – The coupling coefficient Jj,k/ω̂
j+k

= sin(εj× k)/ε for a fixed k and N
as a function of j = (jx, jy). Here k = (1, 2). The coupling coefficient is shown for
|jx|, |jy| ≤ 10. Top row: N = 10, N = 25. Middle row: N = 50, N = 100. Bottom
row: the limiting coefficient for the untruncated case, j × k. As N increases, the
coupling approaches the untruncated case; this limit is reached more quickly for
modes with a smaller perpendicular distance to the line through k.
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Figure 3.2 – The coupling coefficient of the sine-truncated bracket as a function
of N . Solid blue curve: the coupling coefficient sin(εj× k)/ε for j = (8, 0), k = (1, 2)
as a function of the truncation value N . Dashed red line: constant value j×k. As
N → ∞, the coupling coefficient approaches the limit. As j× k = 16 is relatively
large, it takes a larger value of N to approach the limiting value. Compare with
Figure 3.1.

Figure 3.1 shows how the “coupling coefficient” between modes ωj and ωk,
k, j ∈ DN in (3.1.3) evolves as the truncation size N ∈ N increases. As N
increases the coefficient of Jj,k goes to the limiting value given by the structure
matrix for the full system (2.3.3); the closer the vectors j and k are, the quicker
this occurs. Figure 3.2 shows how the coupling coefficient between two particular
modes evolves as N increases, approaching the limit given by (2.3.3).

The corresponding truncation of (2.3.7) is the Hamiltonian

H =
1

2

∑

j∈DN\{0}

ω+jω−j
|j|2 , (3.1.7)

where only the domain of summation has changed. The vector field under the
sine-bracket truncation is thus given by

ω̇j = (J∇H)j =
∑

k∈DN
Jj,k∇Hk (3.1.8)

=
1

ε

∑

k∈DN
sin(εj× k)ω

ĵ+k

ω−k
|k|2 . (3.1.9)
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3.1.2. Extension to General κx, κy. The above definitions are for the
special case with domain K = I. We now present a simple extension to the
general anisotropic case.

Definition 3.1.10 (Generalised Sine-Bracket). For κ = (κx, κy)
T with κx, κy ∈

R+, the generalised sine-bracket is

{f, g} =
∑

j,k

κxκy
sin εj× k

ε

∂f

∂ωj

∂g

∂ωk

ω
ĵ+k

, (3.1.11)

Define the equivalent Hamiltonian to (3.1.7) with the adjusted κ norm

H =
1

2

∑

j∈DN\{0}

ω+jω−j
|j|2κ

, (3.1.12)

Now the Poisson system (3.1.11), (3.1.12) approximates the ideal fluid system
(2.3.2), (2.3.7). The vector field for the sine-bracket truncated Fourier modes is

ω̇j = κxκy
∑

k∈DN

1

ε
sin(εj× k)ω

ĵ+k

ω−k
|k|2κ

. (3.1.13)

As the bracket (3.1.11) differs from the isotropic sine-bracket (3.1.3) by a
constant factor only, we are able to generalise some existing results for this new
setting.

3.1.3. Casimirs of the Sine-Truncated Bracket. As discussed in Section
2.3.2 the full bracket (2.3.2) has infinitely many Casimirs, or conserved quantities.
These are the generalised enstrophy constants CM (2.3.10) for all M ∈ N. These
Casimirs are lost in a nonlinear Galerkin-style truncation, with the exception of
the enstrophy C2. Due to the Poisson structure, our sine-bracket has a set of N
Casimirs for truncation size N . As the truncation size is increased, the number
and value of the Casimirs approaches those of the full system.

The bracket (3.1.11) has a family of Casimirs functions

CM =
∑

IM
ωi1ωi2 ...ωiM cos (εA(i1, i2, ...iM)) (3.1.14)

for M = 1, 2, ..., N where

IM =



(i1, i2, ..., iM) | ik ∈ DN ,

M̂∑

k=1

ik = 0



 (3.1.15)

and A is the area form

A(i1, i2, ..., iM) =
∑

j<k

ik × ij. (3.1.16)
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These Casimirs can be calculated from the algebraic structure of the Poisson
bracket [Zei05]. In the limit N → ∞, ε → 0 these tend to the Casimirs for the
full bracket (2.3.10).

In the case M = 2, this is equal to the usual enstrophy, calculated over the
finite domain of modes

C2 =
∑

j∈DN
ω−jωj. (3.1.17)

3.2. Stability Theory for the Sine-Truncated System

We now show that many of the same stability results for shear flows developed
in Chapter 2 for the full systems also exist in the sine-bracket truncated system.
This has the advantage of allowing us to study a finite-dimensional Hamiltonian
system. However, there are new technicalities to consider.

We begin by linearising, which leads to a class decomposition per the untrun-
cated system. The nature of the sine-bracket truncation means that these classes
are more complicated; they wrap around our finite domain of modes. This means
the proofs in this case must be adjusted, as there is now a matching condition at
this wrapping point.

We explicitly calculate a basis for a global canonical Poisson structure for this
linearised system. This is due to the circulant structure of this system, which can
be diagonalised by a discrete Fourier transform. This structure will be exploited
again in Section 3.3 to develop an explicit Poisson integrator.

Having linearised, we prove that the two key results from Chapter 2 hold.
Firstly, there is an unstable ellipse which classes must pass through to contribute
linear instability. Secondly, there is instability for almost all choices of p, κ.
However, the more complicated structure of classes in this truncation means
there are additional considerations; specifically, the possibility that classes may
intersect the unstable ellipse at multiple nonadjacent points. For a generic p we
show that one can ignore this possibility and these results hold.

We also prove a new stability result akin to that of Section 2.6. For parallel
shear flows with p = (px, 0) and appropriate values of κx, κy, the system is linearly
stable. There is an interesting difference to the untruncated system; for certain
truncation values N this stability can be extended to energy-Casimir stability, a
much stronger result. There is an unbounded sequence of values of N for which
the system exhibits energy-Casimir stability. This sensitivity to the choice of
truncation size N is an interesting technical detail to the sine-bracket truncation,
which was noted by McLachlan [McL93].

3.2.1. Linearisation and Class Decomposition. We linearise (3.1.13)
around the shear flow equilibrium (2.4.6). As long as p ∈ DN , this equilib-
rium persists. The Jacobian of the vector field (3.1.13) around the equilibrium
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is

Ja,b =

{
0 if a = b or b = 0

κxκy
1
ε

(
1
|b|2κ sin(εb× a) + 1

|(̂b−a)|2κ
sin(εa× ̂(b− a))

)
ω

(̂a−b)
.

(3.2.1)

Note that

sin(εa× (b̂− a)) = sin (εa× (b− a + (2N + 1)k))

= sin(εa× b− εa× a + 2πa× k)

= sin(εa× b)

(3.2.2)

for some k ∈ Z2.

Thus the linearised differential equations are

ω̇j = α
(
ρ
ĵ+p

ω
ĵ+p
− ρ

ĵ−pωĵ−p

)
(3.2.3)

where

α = κxκy
Γ

ε
sin(εp× j), ρj =

1

|p|2κ
− 1

|j|2κ
. (3.2.4)

Compare this with the equivalent equations in Section 2.4.2 for the Galerkin
truncation. For example,

lim
N→∞

α = lim
ε→0

α = κxκyΓp× j. (3.2.5)

In addition, there is again a splitting into subsystems or “classes”. However,
such a splitting is more complicated in this truncation, due to the wrapping

operation ĵ. For a fixed a ∈ DN , define

ωn := ωâ+np, ρn := ρa+np. (3.2.6)

By (3.2.3), the linearised dynamics of ωn only depends on the values of ωn+1 and
ωn−1. Thus the set of modes ωn form a subsystem.

The set of mode numbers in this class is a set of unique mode numbers

Σa = {â + np | n ∈ Z} (3.2.7)

As there is a finite lattice of modes, |Σa| will always be finite. By translation
invariance, the number of modes in a class |Σa| is also independent of the starting
mode a. Now the modes ωn are only defined modulo the size of the class; i.e.
ωn+k|Σa| = ωn for all k ∈ Z.

Here a key distinction emerges: as classes only have finitely many modes, for
a fixed class led by a ∈ Z2 there exists some n ∈ N such that ω0 = ωn. This value
n will not depend on a, only on p and N . The class “wraps around” upon itself
on the lattice DN .
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p

a

a+ p
∧

a+ 2p
∧

a+ 3p
∧

a+ 4p
∧

a+ 5p
∧

a+ 6p
∧

a+ 7p
∧

a+ 8p
∧

a+ 9p
∧

a+ 10p
∧

(0, 0)

Figure 3.3 – Class decomposition for the linearised sine-bracket system. The
dynamics of ωa depend only on ωâ±p; extrapolating this, the modes ωâ+np form

a subsystem. These modes lie on lines parallel to p that “wrap” around the finite

lattice DN . Note that ̂a + 11p = a, as |Σa| = 11. The unstable ellipse is also
shown; it is the same as for the untruncated problem. For this figure, p = (2, 1),
N = 5, and the class led by a = (−1, 1) is shown. Compare with Figure 2.4; unlike
in that figure, here the class wraps around the domain.

We wish to find n ∈ N+ such that â + np = a, and â + kp 6= a for all
0 < k < n. By translation invariance, n̂p = 0. Thus, for some kx, ky,

npx = (2N + 1)kx, npy = (2N + 1)ky. (3.2.8)

For this to hold,

n =
2N + 1

gcd(2N + 1, px)
jx =

2N + 1

gcd(2N + 1, py)
jy (3.2.9)
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for some jx, jy ∈ Z, as n must be an integer. Thus the smallest positive value of
n is

n = lcm

(
2N + 1

gcd(2N + 1, px)
,

2N + 1

gcd(2N + 1, py)

)

=
2N + 1

gcd(2N + 1, px, py)
.

(3.2.10)

Thus

|Σa| =
2N + 1

gcd(2N + 1, px, py)
. (3.2.11)

As N is an integer, |Σa| is always odd.

This suggests that the nature of these classes is highly dependent on the prime
factorisation of 2N + 1 and p; this will become evident in later sections. In the
simplest case where gcd(2N + 1, px, py) = 1, DN splits into 2N + 1 classes of size
2N + 1. This is always true for choices of p with px, py coprime. By choosing N
appropriately, we can treat this as a generic case.

Note that for our purposes, gcd(x, 0) = x for all x. We also use the notation
gcd(a, b, c) = gcd(a, gcd(b, c)). In the special case p = (px, 0) (or equivalently
p = (0, py)), |Σa| = 2N+1

gcd(2N+1,px)
.

Define A ⊂ DN such that a ∈ A if and only if

− 1

2
|p|2κ <

gcd(px, py)

gcd(2N + 1, px, py)
〈a,p〉 ≤ 1

2
|p|2κ and

− 1

2
(2N + 1) gcd(px, py) < a× p ≤ 1

2
(2N + 1) gcd(px, py).

(3.2.12)

Then for all j ∈ DN , j = â + np for a unique a ∈ A and unique n modulo |Σa|.
A is illustrated in Figure 3.4. Compare this with the equivalent definition for the
untruncated problem, (2.4.15). The size of A is

|A| = |DN |/|Σa| = (2N + 1) gcd(2N + 1, px, py). (3.2.13)

The choice of A ensures that, as in the untruncated problem, ρ0 is the min-
imum value of ρn for n ∈ Z. However, due to the wrapping, ρk is no longer
monotonic (though it is locally monotonic near ρ0 in the sense that it will be
monotonic until the wrapping operation occurs).

The definition of A also suggests that there are issues when px, py, 2N + 1
are not coprime. This is illustrated in Figure 3.5, where translations of A by p
are no longer adjacent. This will become an important consideration later. For
instance, if px, py, and 2N + 1 are all mutually coprime and a ∈ A but not in the

unstable ellipse Dp, â + np /∈ Dp unless n is a multiple of |Σa|. This is not true
if gcd(px, py, 2N + 1) > 1.
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Figure 3.4 – The principal domain A ⊂ DN shown in dark blue, and translations
of the principal domain A + np (modulo wrapping around DN ) shown in light
blue. For this figure, p = (2, 1), κy/κx = 3/2, and N = 8. The translations A + np
completely cover the lattice DN for 0 ≤ n < |Σ|a. For a class Σa, there is exactly
one j ∈ Σa in each translation A + np. Also shown is the unstable ellipse, and
the translations of such by ±p. Note that the intersections of the discs lie on the
boundary of A. Thus, if a ∈ A is not in the unstable ellipse, a + np is not in the
unstable ellipse for all n ∈ Z.

Fix a ∈ A, and for brevity denote n = |Σa|. Define the matrix

MT =




0 +ρ1 0 0 · · · 0 −ρn−1

−ρ0 0 +ρ2 0 · · · 0 0

0 −ρ1 0 +ρ3 · · · 0 0

0 0 −ρ2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 +ρn−1

+ρ0 0 0 0 · · · −ρn−2 0




. (3.2.14)
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Figure 3.5 – The principal domain of the sine-bracket truncated system wraps
around the domain of Fourier modes DN . If gcd(px, py) 6= 1, the translations of
A are no longer adjacent. The principal domain A ⊂ DN is at the centre in dark
blue, and translations A+np are labelled with n and shown in gradually lightening
shades of blue. Note that the translations “wrap around” the domain Dp. For this
figure, p = (4, 2), κy/κx = 3/2, and N = 5. As gcd(px, py) = 2 > 1, the translations
of A skip over one another, so A + np and A + (n + 1)p are not adjacent. Also
note that A+ 11p = A.

Compare this to (2.4.23). Here the matrix is finite, and the truncation operation
introduces two extra nonzero elements in the top right and bottom left corners.

Now ω = (ω0, ω1, ..., ωn−2, ωn−1) evolves as ω̇ = αMTω. As for the truncated
case, we can write MT as a Poisson system, MT = JS with J antisymmetric and
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S symmetric where

J =




0 +1 0 · · · 0 −1

−1 0 +1 · · · 0 0

0 −1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 +1

+1 0 0 · · · −1 0




, S =




ρ0 0 0 · · · 0

0 ρ1 0 · · · 0

0 0 ρ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ρn−1



. (3.2.15)

3.2.2. Canonical Symplectic Structure. As noted above, the linearised
system is Poisson, with structure matrix J and Hamiltonian H = ωTSω. As J
is not the canonical structure matrix, this is not a canonical structure. However,
by Darboux’s theorem [dS01, Ste99], there are local coordinates with canonical
structure on the manifold created by fixing the values of the Casimirs (3.1.14).
This manifold is known as a symplectic leaf. These symplectic leaves foliate the
full Poisson manifold, which in this case is R|Σa|. As J is constant, these coordi-
nates can be defined globally on a symplectic leaf of the manifold. Additionally,
we can use the simple structure of J to find a basis explicitly.

The matrix J has size n for some odd n ∈ Z. As symplectic manifolds are
even-dimensional, J has a kernel, which is one dimensional and spanned by the
vector (1, 1, 1, 1, ..., 1). Thus there is exactly one Casimir function of the linear
subsystem, namely

C =
n−1∑

k=0

ωk. (3.2.16)

Thus the canonical structure has 2ñ basis vectors, where 2ñ+1 = n. We can now
find a canonical basis for J by the symplectic Gram-Schmidt theorem [dG06].
Additionally, J is circulant [Gra06]; each row is the previous row shifted one
space to the right. Thus J is diagonalised by a discrete Fourier transform.

The eigenvalues of J are

λk = −2i sin(
2πk

n
), k = 0, 1, 2, ..., n− 1. (3.2.17)

Note that λ0 = 0, and λk = −λn−k. Additionally, all eigenvalues are imaginary,
as J is skew-symmetric. The corresponding eigenvectors of J are

vk = (ϕ0, ϕk, ϕ2k, ..., ϕ(n−1)k)T (3.2.18)

where ϕ = e
2πi
n .
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Now let

ak =

√
2

n|λk|
Im(vk) =

√
2

n|λk|




0

− sin
(

2π
n
k
)

− sin
(

2π
n

2k
)

...

− sin
(

2π
n

(n− 1)k
)



, (3.2.19)

bk =

√
2

n|λk|
Re(vk) =

√
2

n|λk|




1

cos
(

2π
n
k
)

cos
(

2π
n

2k
)

...

cos
(

2π
n

(n− 1)k
)




(3.2.20)

for k = 1, 2, ..., ñ. Finally, let c = (1, 1, 1, ..., 1)T.

Now

• a1, a2, .... , añ, b1, b2, .... , bñ, c are linearly independent and span Rn;
• aTi Jaj = 0 for all i, j (that is, they are orthogonal with respect to the

Poisson form);
• bTi Jbj = 0 for all i, j;
• bTi Jaj = 0 for all i 6= j;
• bTi Jai = 1 for all i;
• xTJc = 0 for any vector x.

Thus if we define T := (a1, a2, ..., añ, b1, b2, ..., bñ, c), T is an n×n matrix such
that

TTJT =




0 I 0

−I 0 0

0 0 0


 . (3.2.21)

This is block diagonal, with a block of canonical J and a 0 block. Restricting
to a symplectic leaf means we consider only the dynamics on the manifold away
from the 0 block. Thus this is an explicit basis for a canonical structure on the
symplectic leaf. This is of limited utility, as the corresponding symmetric matrix
S from (3.2.15) is dense rather than diagonal in this basis, but is still notable.

3.2.3. Stable Classes and Stable Cases. Taking a similar approach to
Theorem 2.5.5, we now show that classes led by values of a outside the unstable
ellipse do not contribute instability. The unstable ellipse

Dp = {x ∈ DN ||x̂|κ < |p|κ} (3.2.22)
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is not significantly altered from the definition (2.5.2) by the truncation. Stability
is manifest for stable classes in this setting by the same argument as for the
untruncated system: define the transformation matrix

T :=




ρ
−1/2
0 0 0 ... 0

0 ρ
−1/2
1 0 ... 0

0 0 ρ
−1/2
2 ... 0

...
...

...
. . .

...

0 0 0 ... ρ
−1/2
n−1



. (3.2.23)

If ρk > 0 for all k, this is real. So T−1MTT is real and antisymmetric, and
thus only has imaginary eigenvalues. As this is similar to MT , the class cannot
contribute instability. Geometrically, the condition ρk > 0 for all k is equivalent
to Σa ∩Dp = ∅, and therefore a /∈ Dp.

We could also note that the Hamiltonian form corresponding to the symmetric
matrix S, H =

∑n−1
k=0 ρkω

2
k, is positive definite if all ρk > 0. But by the properties

of the Hamiltonian, d
dt
H = 0. Thus H is a weak Lyapunov function for the flow

as d
dt
H = 0. This is discussed in [AKN07].

This theorem, together with the unstable ellipse being invariant under the
truncation, means that the result of Theorem 2.6.1 holds in the truncated system.
If p = (px, 0) and κx|px| < κy, the equilibrium is linearly stable in the truncated
system. Equivalently, if p = (0, py) and κy|py| < κx, the equilibrium is linearly
stable.

3.2.4. Energy-Casimir Stability. It was shown in Section 3.2.3 that if
p = (px, 0) and κx|px| < κy, the parallel shear flow equilibrium ω±p = Γ is
linearly stable. It is natural to ask if this linear stability can be extended to
a stronger sense of stability. We can study the energy-Casimir stability as per
Section 2.6.2 in the sine-bracket truncated system, as there is an analogous set of
Casimirs (3.1.14). In most cases, the result will be the same; the linear stability
cannot be extended to energy-Casimir stability. The only case where energy-
Casimir stability can always be concluded is if p = (1, 0) and κx < κy. Thus the
result from [AK98] is also true in the sine-bracket truncated system. However,
we will see that under some conditions on N other parallel shear flows are also
energy-Casimir stable.

We calculate the linear approximation of the invariant subspace with fixed
Casimirs. The derivatives are given by

∂CM
∂ωk

=
∑

ωi1ωi2ωiM−1
cos

(
εA

(
i1, i2, ..., iM−1,−

M−1∑

j=1

ij

))
(3.2.24)

where the summation is over all sets of modes {ij} such that
∑M−1

j=1 ij = −k.
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Consider p = (px, 0), and evaluate (3.2.24) at the equilibrium Ω∗. The only
nonzero terms remaining will be when ij = ±p for all j. Thus

A

(
i1, i2, ..., iM−1,−

M−1∑

j=1

ij

)
= A (±p,±p, ...,±p, ξp) = 0 (3.2.25)

for some ξ (as p× p = 0). Thus, writing the derivative in vector form,

∇CM |Ω∗ = ΓM−1

M−1∑

a=0

(
M − 1

a

)
e ̂(2a−M+1)p

(3.2.26)

where ek is the unit vector in the direction k.

This is only nonzero in directions that are multiples of p, and the coefficients
there are always nonzero. Thus (recalling that C1 = ω0)

span (∇C1|Ω∗ ,∇C2|Ω∗ , ...∇CN |Ω∗)

= span
(
e0p, (ep̂ + e−p̂), (e2̂p + e−2̂p), ..., (eN̂p + e−N̂p)

)
.

(3.2.27)

This, along with the reality condition on ω±k fixes 2N+1
gcd(2N+1,px)

of the modes:

exactly those that can be written in the form âp. If gcd(2N + 1, px) > 1, then
the equivalent result as for the untruncated system applies; as fixing the Casimirs
does not fix the value of (ax, 0) for at least one value of 0 < ax < px, the energy
remains indefinite, and so there is not energy-Casimir stability.

However, if gcd(2N + 1, px) = 1 this leads to a surprising result.

Proposition 3.2.28 (Energy-Casimir Stable Flows). If p = (px, 0), κx|px| < κy,
and 2N +1 and px are coprime, then the sine-bracket truncated system is energy-
Casimir stable around the parallel shear flow equilibrium ω±p = Γ.

Proof. As in Section 2.4.2, define

H = H− 1

2|p|2κ
C2 = −1

2

∑

j∈DN {0}
ρj|ωj|2. (3.2.29)

Then, as C2 is a Casimir of the sine-bracket, H andH generate the same dynamics.
The gradient of H is

∇H = −
∑

j∈DN {0}
ρjωjej (3.2.30)

and the Jacobian is

(D2H)i,j = ρiδ(j + i) (3.2.31)

where δ is the Dirac delta function centred at zero. Additionally, note that

H|Ω∗ = 0, ∇H|Ω∗ = 0. (3.2.32)
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If p = (px, 0) and gcd(2N + 1, px) = 1, by the above the span of the gradient
of the Casimirs CM is span(eâp+e−̂ap) for a = 0, 1, ...., N . Additionally, ωj = ω̄−j.
Thus upon restricting to the complement of the gradient of the Casimirs projects
D2H to the basis ej for all j ∈ DN such that j 6= ap for all a ∈ Z. However,
as κx|px| < κy, ρj > 0 for all j 6= ap (as |j|κ > |p|κ for all j 6= ap). Thus
D2H is negative definite on the subspace fixed by the Casimirs, and therefore we
conclude the parallel shear flow is energy-Casimir stable. �

This is based on the algorithm presented in [HMRW85], which is based on
the approach used in [AK98, Arn66b]. As H is quadratic, the procedure is
simpler here, and equivalent to showing that H is a Lyapunov function for the
flow after restricting to the subspace fixed by the Casimirs.

As shown in Section 2.6.2, there is not energy-Casimir stability for the untrun-
cated system at the corresponding equilibria. For the truncated system, there are
arbitrarily large values of N for which energy-Casimir stability occurs, and also
arbitrarily large values for which it does not occur. If px is even, there is energy-
Casimir stability for all choices of N . Compare this to Lemma 3.2.42, where
it is shown that when gcd(px, py) is even there are issues with the instability
arguments.

The importance of gcd(2N + 1, px) in the above proof demonstrates that the
question of energy-Casimir stability is very sensitive to choice of truncation, and
care must be taken when selecting the truncation size N for the finite-dimensional
truncation. There is also the surprising result that parallel shear flows of the form
cos(2nκxx) are energy-Casimir stable for all n ∈ N and 2nκx < κy regardless of
truncation size. This is in contrast to the untruncated system, where they are
not energy-Casimir stable.

3.2.5. Unstable Classes. For classes that intersect the unstable ellipse and
therefore contribute instability, we prove the same two results as for the Galerkin-
truncated system: if ρ0 < 0 and ρk > 0 for all k 6= 0, nonimaginary eigenvalues
exist, and there is a lower bound for a real eigenvalue under certain conditions.
To prove this, we study the characteristic polynomial and use the intermediate
value theorem on the real axis. This characteristic polynomial can be written as
a function of the characteristic polynomials of the Galerkin-truncated matrices
defined in Section 2.7.4. This can be used to show that there is some lower bond
λ∗ on a root of the characteristic polynomial. When this lower bound is real,
there is a positive real eigenvalue. We then discuss values of p and N such that
there exists an a ∈ Z2 such that the lower bound is real. This requires a careful
selection of N to make sure the class of Fourier modes satisfies the condition
ρk > 0 for all k 6= 0. We show that such an N can be found for all p with px, py
not both even, and for almost all such p we conclude linear instability.
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Introduce the characteristic polynomial of MT

MT (x) = det(xI−MT ). (3.2.33)

This can be expressed in terms of the characteristic polynomials Mn
m of the

Galerkin-truncated matrices (2.7.7). Note that we consider the ρk in that def-
inition to be our new, wrapped ρk (3.2.4) rather than the ρk corresponding to
the untruncated system (2.4.10). As the ρk are treated symbolically throughout
much of Section 2.7, this discrepancy does not affect the recurrence relations or
the lower bound λ∗.

Expand by minors along the final row and column of xI −MT to calculate
the determinant MT (x):

MT (x) = xMn−2
0 (x) + ρn−1ρn−2Mn−3

0 (x) + ρn−1ρ0Mn−2
1 (x)

=Mn−1
0 (x) + ρ0ρn−1Mn−2

1 (x).
(3.2.34)

Here n = |Σa| is the size of the class, andMb
a are the characteristic polynomials

of the Galerkin-truncated system. This calculation uses the fact that n is odd.

Proposition 3.2.35 (Existence of a real eigenvalue (sine-truncated system)).
If ρ0 < 0, and ρk ≥ 0 for all k = 1, 2, ..., n − 1, ρk = 0 for at most one of
k = 1, 2, ..., n− 1, and sufficiently large N , MT has a nonzero real eigenvalue.

Proof. The characteristic polynomial MT for odd n has leading term xn and
constant term 0. By combining (3.2.34) and (2.7.13) (noting that n is odd, so
n− 1 and n− 3 are even), the linear coefficient is given by

dMT

dx

∣∣∣∣
x=0

=
d

dx
Mn−1

0 (x)

∣∣∣∣
0

+ ρ0ρn−1 Mn−2
1 (x)

∣∣
0

=

n−1
2∑

k=0

(
n−1∏

j=0; j 6=2k

ρj

)
+

n−3
2∑

k=0

(
n−2∏

j=1; j 6=1+2k

ρj

)

=
n−1∑

k=0

(
n−1∏

j=0; j 6=k
ρj

)
(3.2.36)

=

(
n−1∏

j=0

ρj

)(
n−1∑

k=0

1

ρk

)
. (3.2.37)

Note that (3.2.37) is only valid for ρk 6= 0 for all k, but (3.2.36) is always valid1.

Assume ρk > 0 for all k 6= 0. As ρk → 1
|p|2 > 0 as |â + kp| → ∞ and the

size n of the classes grows linearly with N ,
∑n−1

j=0
1
ρj
> 0 for sufficiently large N .

1The expression in equation (3.2.36) is the so-called n− 1th elementary symmetric polyno-
mial in the variables ρ0, ρ1, ..., ρn−1.
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However
∏n−1

j=0 ρj < 0 as ρ0 < 0, ρj > 0 for all j = 1, .., n − 1, and hence the
linear coefficient of the characteristic polynomial is less than zero.

If ρk = 0 for exactly one k, then (3.2.36) consists of only one term,
∏n−1

j=0; j 6=k ρj.
This is less than zero as ρ0 < 0 and ρj > 0 for all j 6= 0, k. If ρk = 0 for more
than one value of k, then the linear term is zero and this argument breaks down.

As the constant term is zero, and the linear term is nonzero, then the lowest
order nonzero coefficient of the polynomial is negative.

We now argue by contradiction, as per the proof of Proposition 2.7.15. Assume
all roots of the polynomial are imaginary (say iωk) or complex (γj + iδj) or zero.
Then the lowest order nonzero coefficient (of xn1) is

∏n2

k=1(ω2
k)
∏n3

j=1

(
(γ2
j + δ2

j )
2
)
>

0. Thus by contradiction there must be some real eigenvalue, which will occur in
a positive and negative pair by the Hamiltonian property of the spectrum. �

The lower bound in Lemma 2.7.20 is also a lower bound on a real eigenvalue
of MT by a similar argument.

Lemma 3.2.38 (Lower Bound for a Real Eigenvalue (sine-truncated)). If a ∈
Dp, â + kp /∈ Dp for all k 6= 0,

λ∗ =
√
−ρ1(ρ0 + ρ2) (3.2.39)

is real and nonzero, and N is sufficiently large, there is some real eigenvalue
λ > λ∗ of MT .

Proof. By expanding (3.2.34) using (2.7.8), (2.7.9)

MT (x) =(x3 + (ρ0ρ1 + ρ1ρ2)x)Mn−1
3 (x) (3.2.40)

+ (x2 + ρ0ρ1)ρ2ρ3Mn−1
4 (x)

+ ρ0ρn−1Mn−2
1 (x).

Thus

MT (
√
−ρ1(ρ0 + ρ2)) =− ρ1ρ

2
2ρ3Mn−1

4 (
√
−ρ1(ρ0 + ρ2)) (3.2.41)

+ ρ0ρn−1Mn−2
1 (

√
−ρ2(ρ1 + ρ3)).

As ρ1, ρ2, ρ3, ρn−1 > 0, ρ0 < 0 and the Mn
m terms are positive by Lemma 2.7.10,

MT (λ∗) < 0.

However, as the leading term ofMT is xn, limx→∞MT (x) > 0. Thus, by the
intermediate value theorem, there exists some λ > λ∗ such that MT (λ) = 0 and
therefore λ is a positive real eigenvalue of MT . �

All that remains is to clarify when the lower bound (3.2.39) is real in terms
of a, p, K. This is a more difficult task for the sine-bracket truncation than for
the Galerkin style truncation, due to the wrapping operation. For poor choices of
truncation size N , the class of modes Σa may intersect the unstable ellipse more
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than once. This can happen in two ways. If N is particularly small, the modes
in the classes may lie on two line segments which both intersect the unstable
ellipse. This can be remedied by selecting sufficiently large N . This scenario is
illustrated in Figure 3.6.

A more difficult problem is classes that wrap onto themselves. If p = (px, py)
and η = gcd(px, py) > 1, there may be integer lattice points in the class Σa of
the form a + kp + (px/η, py/η) for k ∈ Z. In particular, if a ∈ Dp in the Galerkin-
truncated we can conclude that if a ± p /∈ Dp, then a + kp /∈ Dp for all k 6= 0.
In the sine-bracket truncated system a + (px/η, py/η) may still be in Dp, which
will break the assumptions of Lemma 2.7.27. If η is odd, this can be avoided by
making appropriate choices of N .

Lemma 3.2.42 (Appropriate choices of N for the sine-bracket truncation). For
all p = (px, py) such that η = gcd(px, py) is not even, there exists a sequence of
N which increases without bound such that for all choices of a any two noncon-
secutive lattice points in Σa cannot both be in the unstable ellipse.

Proof. Choose N such that

N =
(2Ñ + 1)η − 1

2
(3.2.43)

for some Ñ ∈ N. Thus 2N + 1 = (2Ñ + 1)η. If η is not even, then such an N is
a positive integer and thus a valid lattice size.

Select as a lower bound Ñ > 2|p|2κ−ηκxκy
2ηκxκy

so that N > 2|p|2κ−κxκy
2κxκy

. Both p and

κ are fixed and finite and κx, κy 6= 0 so this lower bound is always finite. We can

thus find an infinite sequence of N that increases without bound by letting Ñ
increase without bound.

If x ∈ Σa then x = â + kp for some k ∈ N. Thus x lies on the line parallel
to the vector p that passes through the point a + ∆x(2N + 1) for some ∆x ∈ Z2

(note that this point may be outside the domain DN).

Similarly if y ∈ Σa then it lies on the line parallel to p that passes through
a + ∆y(2N + 1) for some ∆y ∈ Z2. Then the distance between these two lines is

d =
|[(a + ∆x(2N + 1))− (a + ∆y(2N + 1))]× p|

|p|

=
(2N + 1)|(∆x −∆y)× p|

|p| .

(3.2.44)

The value (∆x − ∆y) × p ∈ Z2, so d = 0 or d ≥ 2N+1
|p| . If d ≥ 2N+1

|p| , this

corresponds to x and y lying on different line segments, as in Figure 3.6. Thus the

distance between two points on different line segments is at least 2N+1
|p| > 2|p|2κ

κxκy |p|
for our choice of N .



98 3. Structure Preserving Truncations
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|p|
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∧

Figure 3.6 – A possible issue in the linearised sine-bracket truncated system.

For poor choices of N , a class of modes â + kp may intersect the unstable ellipse
at multiple nonadjacent values of k. This would cause issues for our stability
arguments. The minimum distance between modes in the same class that do not
lie on the same line segment (ie, the class has wrapped around Dp) is 2N+1

|p| . If

this is sufficiently large, the class cannot intersect the ellipse on more than one line
segment. Therefore nonadjacent modes in the class cannot both lie in the unstable
ellipse for sufficiently large N .

Now, dE, as indicated in Figure 3.6, is the distance between the two tangents
to the unstable ellipse parallel to the vector p. We calculate that

dE =
2|p|2κ
κxκy|p|

. (3.2.45)

Note that this expression involves both the κ-norm and the usual Euclidean
norm. We have shown that the distance between the line segments that contain
modes in the same class on two different line segments is greater than dE for
sufficiently large N; thus, they cannot both intersect the unstable ellipse. Thus,
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if two modes a and â + kp are in the unstable ellipse, they both lie on the line
segment through a parallel to p.

If d = 0, by the above, y lies on the line parallel to p passing through x. We
thus need to show that y = x±p. This is not possible for all choices of p, N ; see
Figure 3.5. For poor choices of p and N , x and y can lie in adjacent translations
of A+ np and therefore possibly both be in the unstable ellipse, but not satisfy
y = x± p.

Define q := (qx, qy) such that p = ηq and gcd(qx, qy) = 1. Then as x,y ∈ Z2,
y = x + kq for some k ∈ Z. But x,y ∈ Σa so y = x + jp + (2N + 1)∆ for some
∆ ∈ Z2. Thus kq = jp + (2N + 1)∆. So

kq = jηq + (2Ñ + 1)η∆ = η(jq + (2Ñ + 1)∆). (3.2.46)

Thus kq is divisible by η, but the elements of q cannot both be divisible by η as
gcd(q1, q2) = 1, so η|k. Thus y = x + ηβq for some β ∈ Z, and so y = x + βp.
Then if |y − x|κ < 2|p|κ (a necessary condition for x,y to both be in Dp) this
implies β = 0 or β = ±1.

Thus if there are two values x,y ∈ Σa ∩Dp , then x = y ± p, and the result
follows. �

An outstanding issue with the sine-bracket truncation is that there is no
appropriate choice of N when gcd(px, py) is even. If η > 1 and gcd(η, 2N+1) = 1,
then p will generate all multiples of q due to the wrapping operation. Thus
classes that intersect the ellipse can return after leaving the ellipse and intersect
the ellipse again, breaking the assumption of 3.2.38 that ρk < 0 for only one value
of k. This behaviour continues for all values of N with gcd(2N + 1, η) = 1. If η
is even, this is true for any N ; if η is odd, we select appropriate N to avoid this.

Theorem 3.2.47 (Linear Instability in the Sine-Bracket Truncated system).
Choose p such that px, py are not both even and

|p|κ >
3 + 2

√
3

2
, (3.2.48)

and N such that 2N+1 is a multiple of gcd(px, py) and 2N+1 > 2|p|2κ
κxκy

. Then in the

sine-bracket truncated system with truncation size N , the shear flow equilibrium
ω±p is linearly unstable.

Proof. By Lemma 2.7.30, under the above conditions there is at least one value
of a ∈ DN such that λ∗ =

√
−ρ1(ρ0 + ρ2) is real and positive and ρ0 < 0, ρ±1 > 0.

This result is not affected by the truncation, as it only depends on the sign of
values of ρk near k = 0. By Lemma 3.2.42, this implies ρk > 0 for all k 6= 0.

Thus by Lemma 3.2.38, there is some eigenvalue of MT with positive real
part, and we conclude linear instability. �
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Figure 3.7 – Valid values of p for Theorem 3.2.47. Values of p in the shaded
region satisfy (3.2.48). For the values of p indicated by blue dots, there exists at
least one values of a ∈ Z2 such that the conditions of Lemma 3.2.38 hold and we
can conclude linear instability. At the points indicated by red asterisks, we cannot
apply Theorem 3.2.47 to conclude instability because either there are no values of a
such that Lemma 3.2.38 holds or gcd(px, py) is even. Note that this includes values
of p that satisfy (3.2.48) but have gcd(px, py) even. We cannot prove instability in
this case, though numerical evidence suggests instability in all cases except those
shown to be stable in Section 3.2.3. Compare this to Figure 2.13; this figure is the
same except at the points with gcd(px, py) even.

Note that for a given value of p there is an unbounded sequence appropriate
choices of N such that the equilibrium is linearly unstable in the N -truncated
system. If gcd(px, py) 6= 1 there are also infinitely many choices of N for which
our proof breaks down as 2N + 1 is not a multiple of gcd(px, py). However, this
does not mean there is not instability for these values of N ; merely that our
current method is not sufficient to deal with these cases.
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3.3. Poisson Integrator for the Truncated Euler Equations

A practical application of identifying the Poisson structure associated with
a manifold is the development of a Poisson integrator [Rut83, HLW06]. For
a Hamiltonian flow ẋ = XH(x), the flow can be approximated by a function Φt

that integrates x(t0 + t) ≈ Φt(x(t0)). The flow Φt is called a Poisson integrator if
x→ Φt(x) is a Poisson transformation. In our notation, a Poisson transformation
is one that preserves the Poisson bracket; a set of coordinates y = F (x) such
that {yi, yj} = {xi, xj} for all i, j. Thus a Poisson integrator is an integrator that
preserves the Poisson structure.

In the case of canonically conjugate coordinates qi pi with {qi, pi} = 1,
{qi, pj} = 0 for i 6= j and {qi, qj} = {pi, pj} = 0 for all i, j, a Poisson integrator
called a symplectic integrator often exists in the form of a splitting integrator
[HLW06]. If the Hamiltonian in question is of the form H = T (p) + V (q), one
can generate a symplectic integrator Φt = ΦT

t ◦ΦV
t , where ΦT

t is the flow generated
by T and ΦV

t is the flow generated by V . This is the symplectic Euler method.
One can design more sophisticated and accurate symplectic integrators by com-
posing smaller timesteps of ΦT

τ and ΦV
τ in particular combinations, including the

symplectic Runge-Kutta method. Recently, new methods have been developed to
construct symplectic integrators for general Hamiltonians by introducing an “ex-
tended phase space” that essentially binds two copies of the phase space together
[Tao16].

For a noncanonical system, Poisson integrators are more difficult to con-
struct. For a large class of Poisson systems, an explicit integrator can be devel-
oped [CS91, McL93]. We now summarise the method described by McLachlan
[McL93]. Define a Poisson bracket on the phase space with coordinates x =

(x1, x2, ..., xN) with structure matrix linear in the coordinates Ji,j =
∑N

k=1 c
k
i,jxk

for structure constants cki,j. Then let

Σ = {σ ⊂ {1, 2, ..., N} |Ji,j = 0 ∀ i, j ∈ σ} (3.3.1)

ie, the collection of sets of commuting coordinates (that is, {xi, xj} = 0 for all
i, j ∈ σ for some σ ∈ Σ).

Consider a Hamiltonian H(σ) that only depends on some set of variables
xi for i ∈ σ for some σ ∈ Σ. Then the dynamics of the Poisson system with
Hamiltonian H(σ) are linear, with constant coefficients. This is because for any
i ∈ σ, xi is constant under the flow of H(σ) as {xi, H(σ)} = 0 because H(σ) only
depends on coordinates xj for which {xi, xj}. Thus ∇H(σ) is constant, so the
dynamics of the full system are at most linear as J is linear in the coordinates.
We can think of the dynamics of xi for i /∈ σ as depending on xj for j ∈ σ as
parameters.
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Now, for a system given by the sum of such Hamiltonians, we can construct
a Poisson integrator. Say H =

∑n
i=1 Hi(σi). Then the flow map

Φt
H(x0) = Φt

H1
(x0) ◦ ΦH2(t)

t(x0) ◦ Φt
H3

(x0) ◦ ... ◦ Φt
Hn(x0) (3.3.2)

where Φt
Hi

(x0) is the flow map for the dynamics of Hi is a first order Poisson
integrator for the dynamics of H. However, as we know the dynamics of Hi are
linear, we can write this explicitly as

Φt
H(x0) = exp(tJD2H1)exp(tJD2H2)exp(tJD2H3)...exp(tJD2Hn)x0. (3.3.3)

One can improve this and generate higher order methods by combining the inte-
grators in other configurations [BGS93].

In the case of the sine-truncated Euler equations, such a Poisson integrator
exists, by the same mechanism that allows the class decomposition in the lin-
earised system. This was developed in [McL93] for the isotropic case κy/κy = 1
and 2N +1 prime. We here present the generalisation to general κx, κy ∈ R+ and
N ∈ N. As we have seen in Section 3.2.4, there is qualitatively different nonlinear
behaviour for cases where 2N + 1 is nonprime. Thus it is useful to be able to
apply this Poisson integrator for all truncation values N .

For a fixed j ∈ DN , {ωj, ωk̂j} = 0 for any k ∈ Z. Thus define

σj := {n̂j | n ∈ Z}. (3.3.4)

Choose any subset K ⊂ DN such that
⋃

k∈K
σk = DN . (3.3.5)

Then define

µ(j) := number of k ∈ K such that j = n̂k for some n ∈ Z. (3.3.6)

If 2N + 1 is prime, there is a choice of K such that µ(j) = 1 for all j 6= 0,
given in [McL93] as K = {(0, 1)} ∪ {(1,m) | − N ≤ m ≤ N}. Otherwise, for
j such that gcd(2N + 1, jx, jy) > 1, µ(j) > 1. In this case, we can generate K
algorithmically and calculate µ(j) directly.

Now split the Hamiltonian (3.1.12) as

H =
∑

k∈K
Hk, Hk =

1

2

∑

n6=0

1

µ(n̂k)

ω+n̂kω−n̂k

|n̂k|2κ
. (3.3.7)

Now this satisfies our requirements; each Hk only depends on a set of com-
muting coordinates, and so generates linear dynamics. Note that the sets σk are
not necessarily disjoint, so the same mode ωj may appear in multiple Hamilto-
nians Hk. This does not happen in the case 2N + 1 prime. The integrator still
operates correctly with this overlap between the modes.
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Now the Poisson integrator for this system is

Φt
H(x0) =

(∏

k∈K
exp(tJD2Hk)

)
x0. (3.3.8)

This is explicit. Furthermore we can calculate exp(tJD2Hk) efficiently by ex-
ploiting the structure of the problem (the same structure that allows the class
decomposition in the linearised problem).

Under the dynamics of Hk, the evolution of a mode ωj is

ω̇j =
∑

n

(
κxκy

sin(εnj× k)

ε

1

µ(n̂k)|n̂k|2
ωn̂k

)
ω
ĵ−nk (3.3.9)

where the summation is over all unique values of n̂k ∈ DN , n 6= 0. If j = n̂k for
some n ∈ Z, the term in brackets above is zero, and so as expected the modes in
σk are constant under the dynamics of Hk. Thus the term in brackets is constant,
and so this system has linear dynamics, with the ωn̂k entering as parameters only.

Note that the dynamics of ωj depend only on the values of ωn̂k (which are
constant) and ω

ĵ+nk
. Thus the dynamics generated by Hk can be split into

subsystems of modes ω
ĵ+nk

. These subsystems are analogous to those in Section

3.2.1, illustrated in Figure 3.3. Let ωm := ω
ĵ+mp

, per (2.4.10). Then

ω̇m =
∑

n

anωm−n (3.3.10)

where

an = κxκy
sin(εnj× k)

ε

1

µ(n̂k)|n̂k|2
ωn̂k (3.3.11)

which is constant.

If ω = (ω0, ω1, ω2, ...), the dynamics are given by

ω̇ = Mω, M =




a0 a−1 a−2 ...

a1 a0 a−1 ...

a2 a1 a0 ...
...

...
...

. . .



. (3.3.12)

Now M is circulant (as in Section 3.2.2), and so can be diagonalised by a
Discrete Fourier transform. This allows us to efficiently compute the exponential
of M and thus the dynamics of Hk. Multiplying these together for all k ∈ K
gives the full Poisson integrator (3.3.8).

The existence of this integrator is very useful. In this thesis, it will be used to
generate numerical results in Section 6.3 to corroborate and analyse our stability
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results. More generally, an efficient integrator allows for a deeper numerical study
of the Euler equations without high computation cost.



Chapter 4

Stability Theory in the Three-Dimensional Euler
Equations

In Chapter 2, we discussed shear flows, stability, and Poisson structure in the
Euler equations on a periodic two-dimensional domain. A natural extension is to
consider a domain with three spatial dimensions and study shear flows there. The
dynamics of the Euler equations on a three-dimensional domain are qualitatively
different and more complex than the dynamics on a two-dimensional domain, and
it is correspondingly more challenging to complete stability analysis.

The examples of Section 1.3.1 guide our study of shear flows in the three-
dimensional domain. Figures 1.4 and 1.6 show that for particular domain sizes,
the spectrum of a linearised shear flow in three dimensions is the same as the
spectrum of a linearised shear flow in two dimensions. This observation leads to
our key result: the linearised three-dimensional Euler equations split into sub-
systems which generically have the same spectrum as a corresponding subsystem
of the linearised two-dimensional Euler equations. Thus the full spectrum of the
three-dimensional system can be described in terms of the spectrum of classes of
the linearised two-dimensional system. This allows us to identify linearly stable
and unstable shear flows on the three-dimensional domain. There is also a dense
set of parameters for which there exist subsystems with nontrivial nilpotent part;
such cases lead to linear instabilities which are not caused by the instability of a
related two-dimensional class.

We begin this chapter with a broad overview of the Euler equations in three-
dimensional domain and the associated considerations. We then derive a formula-
tion of the dynamics on a periodic domain in terms of the vorticity Fourier modes
and linearise around a family of shear flows. The linearised system has a decom-
position analogous to the two-dimensional problem, which can be significantly
simplified. We then show that a subset of the shear flows are linearly stable, and
another subset are linearly unstable. We also discuss the nonnormality of the
linearised dynamics, and the connection to transition to turbulence.

4.1. The Three-Dimensional Euler Equations

The Euler equations on a three-dimensional domain present a large number of
unanswered questions, despite centuries of research [Gib08]. Many results known
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for the two-dimensional domain either do not hold or are open problems in the
three-dimensional domain. For instance, the question of finite-time blowup is a
popular area of research in dynamics. In both the Euler equations and the Navier-
Stokes equations, it is in general unknown whether a smooth initial condition can
lead to a singularity in finite time. This forms part of the Clay Millennium Prize
question on the Navier Stokes Problem [Fef06]. In the Euler equations in two
dimensions, assuming an initial condition with smooth, finite kinetic energy it is
known that solutions do not blow up [Bar72]. For a three-dimensional domain
the same question is an open problem [Con07]. With this in mind we study the
linearisation and stability of shear flows and develop results analogous to those
studied in Chapter 2.

We begin by deriving a formulation of the Euler equations in terms of the vor-
ticity Fourier coefficients only. This relies on the divergence-free property which
restricts the possible vorticities that can occur. We then discuss the helicity, a
constant of motion in the three-dimensional Euler equations and its relationship
to the enstrophy in the two-dimensional domain problem.

We then introduce three-dimensional shear flows, which are complicated by
the fact that vorticity is vector-valued rather than scalar. Linearising around
these shear flows gives a class decomposition, though the governing differential
equations are significantly more complex than those for the corresponding two-
dimensional equations.

4.1.1. Vorticity Formulation of the Three-Dimensional Euler Equa-
tions. As per the two-dimensional Euler equations in Section 2.2.3, the three-
dimensional Euler equations on a general domain D ⊂ R3 can be formulated in
terms of the velocity vector field V : D×R→ R3 and the vorticity Ω : D×R→ R3.
The velocity field V (x; t) describes the instantaneous velocity of a fluid element
at position x = (x, y, z) ∈ D at time t, and the vorticity Ω(x; t) measures the
local rotational motion of a fluid element at x = (x, y, z) ∈ D. Note that unlike
in the two-dimensional case, Ω is vector-valued. One can think of each compo-
nent of Ω corresponding to the rotation of the fluid around the axis parallel to
the corresponding coordinate. One can consider the two-dimensional vorticity as
a special case where the z-dimension has trivial dynamics; then V = (vx, vy, 0),
and the vorticity Ω = (0, 0,Ωz) can be reduced to the scalar vorticity Ωz.

The three-dimensional Euler equations for an incompressible, inviscid flow are
given in terms of the vorticity and velocity by

Ω = ∇× V (4.1.1)

∂Ω

∂t
= (Ω · ∇)V − (V · ∇)Ω. (4.1.2)

See e.g. Constantin [Con07] for a discussion of these equations.
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We also have the divergence free conditions

∇ · V = 0, ∇ · Ω = 0. (4.1.3)

For the velocity field, this is a consequence of the incompressibility; for the vor-
ticity, it follows from the formula Ω = ∇× V and the fact that the divergence of
the curl of any vector must be zero.

We will consider these equations on the periodic domain

D =

[
− π

κx
,
π

κx

)
×
[
− π

κy
,
π

κy

)
×
[
− π

κz
,
π

κz

)
(4.1.4)

for some κx, κy, κz ∈ R+.

Write κ = (κx, κy, κz), and introduce the anisotropy matrix

K :=



κx 0 0

0 κy 0

0 0 κz


 . (4.1.5)

This matrix is diagonal, positive definite, and invertible. For the isotropic domain
κx = κy = κz = 1, K = I3. We rescale our domain and normalise |κ| = 1 so
κ2
x + κ2

y + κ2
z = 1.

Define the weighted inner product

〈a,b〉 := (Ka)T(Kb). (4.1.6)

For the domain size K = I this reduces to the usual Euclidean dot product. The
induced norm is

|a|κ :=
√
〈a, a〉 =

√
aTK2a. (4.1.7)

As K is positive definite, this norm is positive for all a 6= 0. Note the identity
|Ka| = |a|κ relates this weighted norm to the usual Euclidean norm.

Define the cross product matrix of a vector a

â :=




0 −az ay

az 0 −ax
−ay ax 0


 (4.1.8)

where a = (ax, ay, az). Then for any b ∈ R3, âb = a × b. Note that â is
antisymmetric. This is not to be confused with the notation use for the wrapping
operation in Chapter 3; as there is no such wrapping for the three-dimensional
problem, there is no overlap in the use of the notation.

For any invertible three by three matrix M , by the properties of the cross
product it can be shown that Ma ×Mb = det(M)M−T(a × b). Thus we have

the identities M̂a = det(M)M−TâM−1. In the special case of a rotation matrix

R ∈ SO(3), R̂a = RâRT.
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Per the two-dimensional equations in Section 2.2.3, we expand V and Ω in
terms of Fourier expansions. Defining the Fourier coefficients with wavenumber
j ∈ Z3 by

vj :=

∫

D
V (x, t)e−i〈j,K

−1x〉dx, (4.1.9)

ωj :=

∫

D
Ω(x, t)e−i〈j,K

−1x〉dx (4.1.10)

where the spatial variable x ∈ D. Note that vj(t),ωj(t) ∈ C3. Then

V =
∑

j∈Z3

vj(t)e
i〈j,K−1x〉,

Ω =
∑

j∈Z3

ωj(t)e
i〈j,K−1x〉.

(4.1.11)

As V and Ω are real, v−j = v̄j and ω−j = ω̄j.

The divergence free conditions imply

〈j, K−1vj〉 = jTKvj = 0,

〈j, K−1ωj〉 = jTKωj = 0
(4.1.12)

for all j. This implies that all dynamics of the Euler equations occur on the
divergence-free subspace

{ωj | 〈j, K−1ωj〉 = 0}. (4.1.13)

We wish to write the system as a set of differential equations for the dynamics
of the vorticity modes ωj only. The condition Ω = ∇× V implies

ωj = i(Kj)× vj. (4.1.14)

Combining (4.1.12) and (4.1.14) implies

(Kj)× ωj = −i|j|2κvj. (4.1.15)

Thus for all j 6= 0, we can take the divergence-free inverse to the curl

vj = i
(Kj)× ωj

|j|2κ
. (4.1.16)

This allows us to invert the relationship (4.1.1) and formally write V = (∇×)−1Ω
on the divergence-free subspace.

Now

(Ω · ∇)V =
∑

j,k∈Z3

ijTKωkvje
i(j+k)TKx

= −
∑

j,k∈Z3

jTKωj
(Kj)× ωj

|j|2κ
ei(j+k)TKx

(4.1.17)
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by reordering the summation. Similarly

(V · ∇)Ω =
∑

j,k∈Z3

ijTKvkωje
i(j+k)TKx

= −
∑

j,k∈Z3

1

|k|2κ
jTK(Kk× ωj)ωje

i(j+k)TKx.
(4.1.18)

Rewriting the partial differential equation Ωt = (Ω ·∇)V −(V ·∇)Ω in Fourier
space now leads to the ordinary differential equations

ω̇j =
∑

k+l=j

1

|k|2κ
(
lTK((Kk)× ωk)ωl − kTKωl(Kk)× ωk

)

=
∑

k∈Z3\0

(
ωj+k[(Kk)× (Kj)]T − 〈k, K−1ωj+k〉K̂k

) ω−k
|k|2κ

(4.1.19)

This is a differential equation for the vorticity modes that does not depend on
velocity. Note that ω0 = 0 by (4.1.14), and therefore can be omitted in the
summation so there is no singularity in (4.1.19).

The dynamics governed by the differential equations (4.1.19) reduce to the
two-dimensional equivalent (2.2.26) under the assumption that ωa = (0, 0,ωa)
and a = (a1, a2, 0) for all relevant modes ωa, and vectors a.

Define

A(j,k) :=
(
ωj+k[(Kk)× (Kj)]T − 〈k, K−1ωj+k〉K̂k

)
(4.1.20)

so

ω̇j =
∑

k

A(j,k)
ω−k
|k|2κ

. (4.1.21)

This simplifies for the isotropic domain K = I3 to

ω̇j =
∑

k∈Z3

(
ωj+k (k× j)T − (k · ωj+k)k̂

) ω−k
|k|2 . (4.1.22)

4.1.2. Helicity. The three-dimensional Euler equations (4.1.1) and (4.1.2)
have a constant of motion called the helicity [Gib08]. The helicity is given by

C =

∫

D
V · (∇× V ) dx

=

∫

D
V · Ω dx

(4.1.23)
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By substituting the expansions (4.1.11) and the relation (4.1.16),

C = i

∫ (∑

j6=0

(Kj)× ωj

|j|2κ
e−ij·x

)
·
(∑

k

ωke
−ik·x

)
dx

= i

∫ (∑

j 6=0,k

(Kj)× ωj

|j|2κ
· ωke

−i(j+k)x

)
· dx

= i
(2π)3

κxκyκz

∑

j6=0

(Kj)× ωj

|j|2κ
· ω−j

(4.1.24)

This can be rewritten as a quadratic form

C = i
(2π)3

κxκyκz

∑

j6=0

ωT
−jQ(j)ωj (4.1.25)

where

Q(j) =
1

|j|2κ
K̂j. (4.1.26)

It should be noted that the helicity is always zero in the two-dimensional
domain and does not provide any insight into the dynamics there. Conversely the
three-dimensional equations do not conserve the generalised enstrophy constants
discussed in Section 2.3.2. As there are infinitely many generalised enstrophy
constants, one can infer that the two-dimensional problem is more geometrically
constrained, reflecting a fundamental difference between the two cases [YM16].
Dynamical observations of two-dimensional flow are generically less turbulent,
which accounts for observable coherent structures such as typhoons, jet streams
and polar vortices.

A class of flows called epi-two-dimensional flows was introduced in Yoshida
and Morrison [YM16] as a sort of intermediate state between two- and three-
dimensional flows. These flows are defined on a three-dimensional domain and
have zero helicity. They also have constants of motion analogous to the gener-
alised enstrophies. This is very recent work and may be a fruitful model for future
study of the Euler equations and turbulence, with many constants of motion but
more complexity than two-dimensional flow.

4.1.3. Shear Flows. In the three-dimensional Euler equations with a peri-
odic domain there is a family of shear flow steady states

V ∗ = αf(〈p, Kx〉),
Ω∗ = (Kp)×αf ′(〈p, Kx〉) (4.1.27)

for a 2π-periodic function f : R → R and a vector α ∈ R3 satisfying the di-
vergence free condition 〈p, K−1α〉 = 0. Then V = V ∗, Ω = Ω∗ satisfies (4.1.1)
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and is a steady state for (4.1.2) by a similar calculation to the analogous two-
dimensional shear flows in Section 2.4.1.

Now consider (4.1.27) in the particular case

f(x) = α sin(x) + β cos(x), α =
2Γ× (Kp)

|p|2κ
. (4.1.28)

By the same reasoning as in Section 2.4.1, we can simplify this to consider
f(x) = sin(x) by redefining our coordinate frame and taking a time rescaling.
The divergence-free condition implies that (Kp) × α = 2Γ. Then the steady
state is

V ∗ =
2Γ× (Kp)

|p|2κ
sin(〈p, K−1x〉),

Ω∗ = 2Γ cos(〈p, K−1x〉).
(4.1.29)

In terms of vorticity Fourier coefficients, (4.1.29) is represented by the equi-
librium

ω∗k =

{
Γ if k = ±p;

0 otherwise.
(4.1.30)

For the divergence-free condition on ωp to be satisfied, the parameter Γ must
satisfy 〈p, K−1Γ〉 = 0.

4.1.4. Linearisation. We now linearise the vector field (4.1.21) around the
steady state (4.1.30) to study linear stability. We first calculate the Jacobian:

∂

∂ωk

ω̇j =
1

|k|2κ
A(j,−k) +

∂

∂ωk

(A(j,k− j))
ωj−k
|j− k|2κ

. (4.1.31)

where

∂

∂ωk

ω̇j =




∂
∂(ωk)x

(ω̇j)x
∂

∂(ωk)x
(ω̇j)y

∂
∂(ωk)x

(ω̇j)z
∂

∂(ωk)y
(ω̇j)x

∂
∂(ωk)y

(ω̇j)y
∂

∂(ωk)y
(ω̇j)z

∂
∂(ωk)z

(ω̇j)x
∂

∂(ωk)z
(ω̇j)y

∂
∂(ωk)z

(ω̇j)z


 (4.1.32)

is the (j,k) three-by-three block of the Jacobian.

Evaluating this at the equilibrium,

∂

∂ωk

ω̇j|Ω∗ =





1
|j−p|2κA(j,p− j)|Ω∗ + 1

|p|2κ
∂

∂ωj−p
(A(j,−p)Γ) if k = j− p;

1
|j+p|2κA(j,−p− j)|Ω∗ + 1

|p|2κ
∂

∂ωj+p
(A(j,p)Γ) if k = j + p;

0 otherwise.

(4.1.33)
Then the linearised system about Ω∗ is

żj = χ1(j + p)zj+p + χ2(j− p)zj−p (4.1.34)



112 4. Three-Dimensional Euler Equations

where zj = ωj − ω∗j and

χ1(j) =
1

|j|2κ
A(j− p,−j)|Ω∗ +

1

|p|2κ
∂

∂ωj

(A(j− p,p)Γ),

χ2(j) =
1

|j|2κ
A(j + p,−j)|Ω∗ +

1

|p|2κ
∂

∂ωj

(A(j + p,−p)Γ).

(4.1.35)

We have written the coefficients in the form above in analogy with the differen-
tial equations (2.4.13), where ρk appears as a coefficient of ωk. Unlike the ρk
coefficients, χ1(j) and χ2(j) are not the same function.

Now

A(j− p,−j)|Ω∗ = Γ[(Kj)× (Kp)]T − 〈j, K−1Γ〉K̂j (4.1.36)

A(j + p,−j)|Ω∗ = −Γ[(Kj)× (Kp)]T − 〈j, K−1Γ〉K̂j (4.1.37)

∂

∂ωj

(A(j− p,p)Γ) = ΓT [(Kp)× (Kj)] I3 − [(Kp)× Γ] (Kp)T (4.1.38)

∂

∂ωj

(A(j + p,−p)Γ) = −ΓT [(Kp)× (Kj)] I3 − [(Kp)× Γ] (Kp)T (4.1.39)

so χ1, χ2 can be written as

χ1(j) = χa(j) + χb(j), χ2(j) = χa(j)− χb(j) (4.1.40)

where

χa(j) = − 1

|j|2κ
〈j, K−1Γ〉K̂j− 1

|p|2κ
[(Kp)× Γ] (Kp)T (4.1.41)

and

χb(j) =
1

|j|2κ
Γ[(Kj)× (Kp)]T +

1

|p|2κ
ΓT [(Kp)× (Kj)] I3. (4.1.42)

The differential equations (4.1.34) can now be written as

żj =(χa(j + p)zj+p + χa(j− p)zj−p)

+ (χb(j + p)zj+p − χb(j− p)zj−p).
(4.1.43)

One can think of these equations as having a symmetric part with coefficients
χa and an antisymmetric part with coefficients χb. Note the similarity to the
differential equations for the two-dimensional system, where ω̇j = ρj+pωj+p −
ρj−pωj−p. There there is only the antisymmetric part, corresponding to the χb
coefficients.

Note that the divergence-free subspace (4.1.13) is still invariant under the
linearised dynamics. The differential equations defining the dynamics on this
subspace are only unique on the divergence-free subspace, and therefore can be
defined up to the addition of terms of the form g(j,p,Γ)(Kj)T to χa(j) and χb(j)
for any function g. We can also add or subtract any multiple of 〈p, K−1Γ〉 as
〈p, K−1Γ〉 = 0.
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p = (1, 2, 1)

a

Figure 4.1 – The class decomposition into subsystems for the linearised three-
dimensional Euler equations. The steady state is defined by p ∈ Z3. The lattice
points on the line parallel to p passing through a ∈ Z3 all belong to one class of
modes. The linearised dynamics of the modes in a class only depend on other modes
in the same class. For this figure, p = (1, 2, 1) and the class led by a = (−1, 1, 1)
is shown.

4.1.5. Class Decomposition of the Linearised System. The differential
equations (4.1.43) have a clear class decomposition; the dynamics of mode za

depends only on the modes za±p, which in turn depend only on za and za±2p,
and so on. Thus the subset of modes with indices of the form a + np for n ∈ Z
are a decoupled subsystem for any a ∈ Z3. This is illustrated in Figure 4.1, and
works much the same as the class decomposition for the two-dimensional case in
Section 2.4.2.
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In the linearised system, any mode of the form zqp for q ∈ Q such that
qp ∈ Z3 is constant. This is less obvious here than in the two-dimensional case.
Calculating χ1(qp) and χ2(qp),

χ1(qp) = χ2(qp) = − 1

|p|2κ
(Kp× Γ) (Kp)T . (4.1.44)

So the dynamics are given by

żqp = − 1

|p|2κ
(Kp× Γ) [(Kp)T z(q+1)p + (Kp)T z(q−1)p]. (4.1.45)

But (Kp)Tzmp = 1
m
〈mp, K−1zmp〉 = 0 by the divergence-free condition, and thus

żqp = 0.

We define the principal domain of mode numbers

A := {a ∈ Z3 | − 1

2
|p|2κ < 〈a,p〉 ≤

1

2
|p|2κ}. (4.1.46)

Then for all j ∈ Z3, j = a + np for a unique a ∈ A and n ∈ Z.

Now when studying the linearised system, we can study each class of modes
with indices a + np for a fixed a one at a time. We thus introduce the following
notation: for a fixed a ∈ A, define

zn := za+np, χi(n) := χi(a + np). (4.1.47)

We have reused the variables z and χi; the definition depends on whether we
consider the variables a function of an integer n or a vector v. In the former case,
we are considering the dynamics of a single class only. This is equivalent to the
use of ρk vs ρj in Section 2.4.2.

The differential equations for a single class are now

żn = χ1(n+ 1)zn+1 + χ2(n− 1)zn−1. (4.1.48)

4.2. Simplifying the Class Dynamics

In the previous section, it was shown that the linearised Euler equations
around a shear flow decouple into “classes” of modes. In this section, we further
simplify the dynamics of these classes and relate them to classes of the two-
dimensional problem. To do so, we make a number of transformations: remove
the influence of the anisotropic domain size κ; rotate and scale p to a unit vector
parallel to the x-axis; use the divergence-free property to simplify Γ; and finally
project down to the divergence-free subspace (4.1.13). The dynamics of the re-
sulting system split into a part isomorphic to the dynamics of a corresponding
class in the two-dimensional problem, and another part with simple dynamics.
There are exceptional cases when Γ and Ka are coplanar, which induce qualita-
tively different dynamics.
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4.2.1. Motivating Examples. To illustrate how the dynamics of a class
in the linearised three-dimensional problem relate to the classes of the two-
dimensional problem, consider the class with p = (2, 0, 0), a = (0, 1, 0), and
K = I3.

If Γ = (0, 0, 1), we calculate the eigenvalues of the differential equations
(4.1.48) using a large Galerkin truncation. The associated spectrum consists
of all imaginary eigenvalues on the interval i[−2, 2] and two real eigenvalues
λ = ±0.5225.... This is exactly the spectrum of the linearised class in the two-
dimensional problem with p = (2, 0), a = (0, 1) from (2.4.22). It should be noted
that the spectrum at any finite truncation is not exactly the same in the two- and
three-dimensional classes; the eigenvalues on the imaginary axis will not coincide.
In the untruncated limit, they fill out the same interval.

If Γ = (0,
√

3/2, 1/2) (normalised so |Γ| = 1) we again calculate the eigenvalues.
There are imaginary eigenvalues in the interval i[−1, 1] = 1

2
i[−2, 2], and real

eigenvalues at λ = ±0.2612... = ±1/2×0.5225.... These values are the eigenvalues
of the two-dimensional class with p = (2, 0), a = (0, 1) as above, up to a factor of
1/2. It seems reasonable to hypothesise that the spectrum of any class of the three-
dimensional problem can be written in terms of a class of the two-dimensional
problem up to a factor. We will show that the appropriate factor is the length of
the vector rejection of a onto Γ in a weighted norm.

Finally, consider Γ = (0, 1, 0). In this case the operator associated with
(4.1.48) is nilpotent. Therefore all eigenvalues are zero. This accords with the
hypothesis of the previous paragraph, as a and Γ are parallel and so the length
of the vector rejection is zero. Unlike the cases with cos θ 6= 0, there are unstable
linear dynamics due to the nontrivial nilpotent part. We study this case and its
implications for stability in Section 4.2.9.

To show that any class of the three-dimensional linearised problem can be
written in terms of a class of the two-dimensional linearised Euler equations, we
will first rewrite the problem in terms of simplified parameters. We then use these
parameters to show that the system decomposes into a part with stable dynamics
and another part isomorphic to a class of the two-dimensional problem.

4.2.2. Rescaling and Rotation. Define ã := Ka, p̃ := Kp. The condition
(4.1.12) now implies p̃TΓ = 0. Written in terms of these new variables,

χa(n) = − 1

|ã + np̃|2 ãTΓ ̂(ã + np̃)− 1

|p|2 [p̃× Γ] p̃T (4.2.1)

and

χb(n) =
1

|ã + np̃|2 Γ[ã× p̃]T +
1

|p̃|2 ΓT [p̃× ã] I3. (4.2.2)

Note that |x| =
√

xTx is the usual Euclidean norm, rather than the κ-norm.
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There is no explicit κ dependence in the differential equations now. Due to
the transformation ã and p̃ are no longer integer lattice points. The same will
be true throughout this chapter, unless stated otherwise. Thus we must consider
ã, p̃ as general parameters in R3. When considering the full stability problem for
a shear flow, the final step will be to transform back to the original a, p variables
and surmise which values actually occur on the lattice Z3. We must keep this in
mind throughout this section. Compare this to the equivalent transformation in
two-dimensions, discussed in Section 2.8.1 and depicted in Figure 2.16.

Next consider the rotation matrix that rotates a given vector v = (vx, vy, vz)
to the positive x-axis

R1(v) :=
1

|v|




vx vy pz

0 −vz |v|√
v2y+v2z

vy |v|√
v2y+v2z√

v2
y + v2

z
−vxvy√
v2y+v2z

−vxvz√
v2y+v2z


 . (4.2.3)

Similarly, define the rotation matrix R2(v) which rotates v to align it with
the x-y plane

R2(v) :=
1√

v2
y + v2

z




√
v2
y + v2

z 0 0

0 vy vz
0 −vz vy


 . (4.2.4)

Note the special cases for these rotation matrices. If v = (vx, 0, 0), we can
define R1(vx, 0, 0) := limvy ,vz→0R1(vx, vy, vz) = I3, and similarly if vz = 0 we can
define R2(vx, vy, 0) := I3.

Now the product

R = R2(R1(p̃)ã)R1(p̃) (4.2.5)

is a rotation matrix that satisfies det(R) = 1 and

RRT = RTR = I3, Rp̃ =



|p̃|
0

0


 , Rã =



āx
āy
0


 (4.2.6)

for some āx, āy ∈ R. Then define

p̄ := Rp̃, ā := Rã, Γ̄ := RΓ. (4.2.7)

For any n, ā +np̄ lies in the x-y plane. The condition p̃TΓ = 0 implies p̄TΓ̄ = 0,
and so

Γ̄ =




0

Γy
Γz


 = Γ




0

cos θ

sin θ


 (4.2.8)
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for some Γ ∈ R+, θ ∈ (−π, π]. Note the exceptional cases θ = π
2
,−π

2
where

Γy = 0 and θ = 0, π where Γz = 0. These cases will be very important in Sections
4.2.7 and 4.2.9.

Now define z̄n := Rzn, so

˙̄zn = Rχ1(n+ 1)RTz̄n+1 +Rχ2(n− 1)RTz̄n−1. (4.2.9)

Note that |j| = |Rj| and R̂j = RĵRT for all j ∈ R3, as R ∈ SO(3). So

Rχa(n)RT =
1

|ā + np̄|2
(
−(ā + np̄)TΓ̄ ̂(ā + np̄)− 1

2
p̄TΓ̂̄p

)

+
1

|p̄|2
(
−
[
p̄× Γ̄

]
p̄T − 1

2

[
(ā + np̄)× Γ̄

]
(ā + np̄)T

)
,

(4.2.10)

Rχb(n)RT =
1

|ā + np̄|2
(
Γ[(ā + np̄)× p̄]T + p̄TΓ ̂(ā + np̄)

)

+
1

|p̄|2
(
ΓT [p̄× (ā + np̄)] I3 + [p̄× Γ] (ā + np̄)T

)
.

(4.2.11)

These are equivalent to the matrices that give the dynamics of the system
with the parameters ā, p̄, K = I and Γ, so the differential equations are invariant
under these transformations.

A final rescaling by |p̄| transforms to a new p = (1, 0, 0), a = 1
|p̄|(āx, āy, 0) =

(ãx, ãy, 0). A time rescaling t→ Γt scales Γ = (0, cos θ, sin θ) to be a unit vector.
We can specialise to this set of classes with p = (1, 0, 0), a = (ãx, ãy, 0), and
Γ = (0, cos θ, sin θ) and infer the dynamics of any other class from the dynamics
of a class of this form by inverting the above transformations. Note that we
consider ãx, ãy ∈ R rather than Z, due to the transformations required to put
a class in this form. To make this clear, we denote the parameters ãx, ãy and
ã = (ãx, ãy, 0) rather than ax, ay, az, a. We also write p̃ = (1, 0, 0). We will also
use ω as the linearised variable in place of z for consistency with the notation in
Chapter 2. The dynamics of such a class are given by

ω̇n = χ1(n+ 1)ωn+1 + χ2(n− 1)ωn−1 (4.2.12)

where

χ1(n) := χa(n) + χb(n), χ2(n) := χa(n)− χb(n) (4.2.13)
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p

(|p|, 0, 0)

a

x

y

z

p

a

Γ

θ

x

y

z

Figure 4.2 – Simplifying transformations for the linearised classes. The dynamics
of the classes (4.1.48) can be simplified significantly by a change of coordinates.
First, the vector p is rotated to the x axis. An additional rotation around the
x-axis aligns a with the x-y plane. As Γ is perpendicular to p, it lies in the y-z
plane, and we can describe it by its length |Γ| and angle to the positive y-axis
θ. The dynamics are invariant under these transformations, so we only need to
consider classes with these parameters. Compare this to the Section 2.8.1.
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for

χa(n) =



−1

2
(ãx + n)ãy −1

2
ã2
y 0

1
2
(2 + (ãx + n)2) 1

2
(ãx + n)ãy 0

0 0 0


 sin θ

+




0 0 − ã2y
|ã+np̃|2

0 0 (ãx+n)ãy
|ã+np̃|2

(−2−(ãx+n)2)|ã+np̃|2+2ã2y
2|ã+np̃|2

−(ãx+n)ãy(|ã+np̃|2+2)

2|ã+np̃|2 0


 cos θ,

(4.2.14)

χb(n) =




ãy 0 0

−(ãx + n) 0 0

0 0 ãy

(
1− 1

|ã+np̃|2
)


 sin θ

+




0 0 0

0 0 −ãy
|ã+np̃|2

(ãx + n) ãy 0


 cos θ.

(4.2.15)

The next step is to show that this class has quantitatively the same dynamics
as the corresponding class in the two-dimensional problem; that is, there is limited
dependence on the parameter θ.

4.2.3. Calculating the Reduced Parameters. We have shown that the
original parameters a ∈ Z3, p ∈ Z3, Γ ∈ R3 can be reduced to three parameters
ãx, ãy ∈ R and θ ∈ [0, 2π). The reduced parameters are related to the original
parameters by the transformation a → 1

|p|κRKa = (ãx, ãy, 0), with the rotation

matrix R defined by (4.2.5). Explicitly, we can write ãx, ãy in terms of the original
parameters a,p as

ãx =
〈a,p〉
|p|2κ

, ãy =
|Ka×Kp|
|p|2κ

. (4.2.16)

We can also calculate the angle θ that defines the reduced Γ parameter
(0, cos θ, sin θ) by the formula

tan θ =
ΓT(Kp×Ka)

〈a, K−1Γ〉|p|κ
(4.2.17)

directly from the definition (4.2.8). One can see this by noting that Γy and Γz
are the magnitude of the vector projection and vector rejection respectively of
Γ onto the plane spanned by p, a. Note that θ is zero if ΓT(Kp × Ka) = 0,
so the associated reduced parameter Γ = (0, 1, 0). Also, tan θ is singular if
〈a, K−1Γ〉 = 0, so Γ = (0, 0, 1). Compare this to the illustration of the angle θ
in Figure 4.2, noting the relationship between a, Γ and the angle θ.
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4.2.4. Verifying a Linear Constraint. It is necessary to confirm that
the divergence-free subspace (4.1.13) is invariant under the linearised differen-
tial equations (4.1.48), so that we can study the dynamics on that subspace.
Note that the divergence is generally not a constant of motion of the differential
equations; an initial condition off the divergence-free subspace can have a varying
divergence. However, an initial condition with zero divergence will always have
zero divergence.

In general, the procedure for verifying that a linear constraint is preserved by
a linear differential equation is as follows. Given a linear system of differential
equations

ẋ = Dx (4.2.18)

one may need to check whether the linear subspace given by the constraint Cx = 0
for some C is invariant. For a nondegenerate constraint, CCT is invertible. Define
the projector

P := I− CT(CCT)−1C. (4.2.19)

This satisfies two properties:

• CP = C − CCT(CCT)−1C = 0;
• for all x such that Cx = 0, Px = x.

So now we wish to verify that the subspace is invariant, i.e. d
dt

(Cx) = 0. But

d

dt
(Cx) = CDx = CDPx (4.2.20)

for an initial condition x in the subspace satisfying x = Px. Therefore, if CDP =
0, the subspace is invariant.

4.2.5. Divergence Free Condition in the Linearised Subsystem. Us-
ing the method described in Section 4.2.4, we now confirm the divergence-free
subspace is invariant in the linearised subsystem. The condition (ã+np̃)Tωn = 0
for all n can be encoded as

Cω = 0, ω = (...,ω−1,ω0,ω1,ω2, ...)
T, (4.2.21)

C =




. . .
...

...
...

...
. . .

. . . (ã− p̃)T 0 0 0
...

. . . 0 (ã)T 0 0
...

. . . 0 0 (ã + p̃)T 0
...

. . . 0 0 0 (ã + 2p̃)T
...

. . .
...

...
...

...
. . .




. (4.2.22)
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Now CCT = diag(..., |ã− p̃|2, |ã|2, |ã+ p̃|2, |ã+2p̃|2, ..), so P is block diagonal
and can be written as

P = diag(.., P−1, P0, P1, P2, ...),

Pn = I3 −
1

|ã + np̃|2 (ã + np̃)(ã + np̃)T.
(4.2.23)

The dynamics of ω are given by ω̇ = Mω where

M =




. . .
...

...
...

...
. . .

. . . 0 χ1(0) 0 0
...

. . . χ2(−1) 0 χ1(1) 0
...

. . . 0 χ2(0) 0 χ1(2)
...

. . . 0 0 χ2(1) 0
...

. . .
...

...
...

...
. . .




. (4.2.24)

So

CMP =




. . .
...

...
...

...
. . .

. . . 0 µ0 0 0
...

. . . ν−1 0 µ1 0
...

. . . 0 ν0 0 µ2
...

. . . 0 0 ν1 0
...

. . .
...

...
...

...
. . .




(4.2.25)

where

µk = (ã + (k − 1)p̃)Tχ1(k)P (k),

νk = (ã + (k + 1)p̃)Tχ2(k)P (k).
(4.2.26)

By substituting the definition (4.2.13) we can directly confirm that µk = 0, νk = 0
for all k ∈ Z. Thus the divergence-free subspace is invariant under the linearised
dynamics.

4.2.6. Projecting to the Divergence-Free Subspace. Having confirmed
that the divergence-free subspace is invariant, we project down to this space to
find the true dynamics of the linearised Euler equations by disallowing perturba-
tions off this subspace. For each n ∈ Z, define the matrix

Rn :=
1

|ã + np̃|



ãx + n −ãy 0

ãy ãx + n 0

0 0 |ã + np̃|


 . (4.2.27)
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One can confirm this is a rotation matrix Rn ∈ SO(3) and satisfies

RT
n(ã + np̃) = |ã + np̃|(1, 0, 0)T. (4.2.28)

Define ω̃n := RT
nωn and write ω̃ = (ω̃n,x, ω̃n,yω̃n,z). Then the divergence-free

condition (ã + np̃)Tωn = 0 implies

0 = (ã + np̃)TRnω̃n

= (RT
n(ã + np̃))Tω̃n

= |ã + np̃|(1, 0, 0)Tω̃n

= |ã + np̃|ω̃n,x.

(4.2.29)

As we discard the zero class as explained in Section 4.1.5, |ã+np̃| 6= 0, so ω̃n,x = 0
and ω̃n = (0, ω̃n,y, ω̃n,z)

T. We can thus consider the dynamics of ω̃n,y, ω̃n,z only.

The differential equations for ω̃n = (ω̃n,y, ω̃n,z) are

˙̃ωn = RT
nχ1(n+ 1)Rn+1ω̃n+1 +RT

nχ2(n− 1)Rn−1ω̃n−1 (4.2.30)

where the coefficient matrices are projected down to the y, z coordinates. The
new projected coefficients

χ̃1(n) := RT
n−1χ1(n)Rn|projected, χ̃2(n) := RT

n−1χ2(n)Rn|projected (4.2.31)

are

χ̃1(n) =
ãy

|ã + np̃|2

[(
|ã + np̃||ã + (n− 1)p̃| 0

0 (|ã + np̃|2 − 1)

)
sin θ

+

(
0 |ã + (n− 1)p̃|
0 0

)
cos θ

]
,

(4.2.32)

χ̃2(n) =
ãy

|ã + np̃|2

[(
−|ã + np||ã + (n+ 1)p| 0

0 −(|ã + np|2 − 1)

)
sin θ

+

(
0 |ã + (n+ 1)p|
0 0

)
cos θ

]
.

(4.2.33)

By a reordering of the coordinates to

ω = (..., ω−1,y, ω0,y, ω1,y, ..., ω−1,z, ω0,z, ω1,z, ...), (4.2.34)

the system (4.1.43) can be written as

ω̇ = ãyMω, (4.2.35)

M =

((
M1 0

0 M2

)
sin θ +

(
0 M3

0 0

)
cos θ

)
(4.2.36)
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where

M1 =




. . .
...

...
...

...
...

. . .

. . . 0 |ã−2p̃|
|ã−p̃| 0 0 0

...

. . . − |ã−p̃||ã−2p̃| 0 |ã−p̃|
|ã| 0 0

...

. . . 0 − |ã|
|ã−p̃| 0 |ã|

|ã+p̃| 0
...

. . . 0 0 − |ã+p̃|
|ã| 0 |ã+p̃|

|ã+2p̃|
...

. . . 0 0 0 − |ã+2p̃|
|ã+p̃| 0

...
. . .

...
...

...
...

. . .




, (4.2.37)

M2 =




. . .
...

...
...

...
...

. . .

. . . 0 |ã−p̃|2−1
|ã−p̃|2 0 0 0

...

. . . −|ã−2p̃|2+1
|ã−2p̃|2 0 |ã|2−1

|ã|2 0 0
...

. . . 0 −|ã−p̃|2+1
|ã−p̃|2 0 |ã+p̃|2−1

|ã+p̃|2 0
...

. . . 0 0 −|ã|2+1
|ã|2 0 |ã+2p̃|2−1

|ã+2p̃|2
...

. . . 0 0 0 −|ã+p̃|2+1
|ã+p̃|2 0

...
. . .

...
...

...
...

. . .




,

(4.2.38)
and

M3 =




. . .
...

...
...

...
...

. . .

. . . 0 |ã−2p̃|
|ã−p̃|2 0 0 0

...

. . . |ã−p̃|
|ã−2p̃|2 0 |ã−p̃|

|ã|2 0 0
...

. . . 0 |ã|
|ã−p̃|2 0 |ã|

|ã+p̃|2 0
...

. . . 0 0 |ã+p̃|
|ã|2 0 |ã+p̃|

|ã+2p̃|2
...

. . . 0 0 0 |ã+2p̃|
|ã+p̃|2 0

...
. . .

...
...

...
...

. . .




. (4.2.39)

This reduction is a key result. We have shown that the dynamics of the lineari-
sation are block upper-triangular, and can thus make conclusions about spectral
stability or instability in terms of the spectrum of blocks on the diagonal. In the
next section this is further improved by transforming to a block diagonal matrix;
one can then conclude that the system is diagonalisable and therefore discuss
linear stability or instability.



124 4. Three-Dimensional Euler Equations

4.2.7. Further Simplifications and Lax Pair Reduction. The dynamics
of a class can be simplified further by transforming to split (4.2.35) into two
subsystems. This will result in a subsystem with very simple dynamics and
another subsystem isomorphic to a corresponding class of the two-dimensional
linearised Euler equations. Both these subsystems are diagonalisable, so we can
make more precise claims about stability. Define the transformation matrix

T := diag(..., |ã− 2p̃|, |ã− p̃|, |ã|, |ã + p̃|, |ã + 2p̃|, ...). (4.2.40)

As ã + np̃ 6= 0 for all n, T is invertible. Then for all θ 6= 0, π, cot(θ) is
nonsingular so we can define

T :=

(
T cot(θ)T

0 I

)
(4.2.41)

so

T −1 =

(
T−1 − cot(θ)I

0 I

)
. (4.2.42)

We will discuss the singular case θ = 0, π in Section 4.2.9 and consider the possible
dynamical implications in Section 4.3.3. Then for θ 6= 0, π, define

M̃ := cosec θ T −1MT

=

(
M̃1 0

0 M̃2

)
+

(
0 M̃3

0 0

)
cot θ

=

(
M̃1 ηM̃3

0 M̃2

)
(4.2.43)

where

M̃1 = T̃−1M1T̃

=




. . .
...

...
...

...
...

. . .

. . . 0 1 0 0 0
...

. . . −1 0 1 0 0
...

. . . 0 −1 0 1 0
...

. . . 0 0 −1 0 1
...

. . . 0 0 0 −1 0
...

. . .
...

...
...

...
. . .




,
(4.2.44)
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M̃3 = T̃−1M1T̃ − T̃−1M3 −M2

=




. . .
...

...
...

...
...

. . .

. . . 0 2
|ã−p̃|2 0 0 0

...

. . . 0 0 2
|ã|2 0 0

...

. . . 0 0 0 2
|ã+p̃|2 0

...

. . . 0 0 0 0 2
|ã+2p̃|2

...

. . . 0 0 0 0 0
...

. . .
...

...
...

...
. . .




,
(4.2.45)

M̃2 = M2, and η = cot θ. Now M̃ and M are similar up to a constant factor of
1/cosecθ = sin θ. The parameter η captures the effect of the choice of Γ, and can
have a extreme impact on the dynamics of the system.

Note that M̃2 is equal to the governing matrix for a two-dimensional class
(2.4.23) with p = (1, 0, 0). Also note that M̃1 is antisymmetric and equivalent to
the constant matrix M∞ defined by (2.5.10) with ρ∞ = 1.

The dynamics have been split into two parts; a subsystem driven by M̃3

equivalent to the dynamics of the two-dimensional linearised system, and another
driven by those dynamics through M̃2 with constant coefficient feedback given
by M̃1. The coupling between the two subsystems depends on the value of η. If
η = 0, there is no coupling and the matrix is block diagonal. We will show that
M̃ is always similar to the block diagonal matrix with η = 0.

Note that with ρk in the reduced coordinates defined as

ρk := 1− 1

(ãx + k)2 + ã2
y

(4.2.46)

we can write M̃3 (4.2.45) as

M̃3 =




. . .
...

...
...

...
...

. . .

. . . 0 2(1− ρ−1) 0 0 0
...

. . . 0 0 2(1− ρ0) 0 0
...

. . . 0 0 0 2(1− ρ1) 0
...

. . . 0 0 0 0 2(1− ρ2)
...

. . . 0 0 0 0 0
...

. . .
...

...
...

...
. . .




(4.2.47)
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and M̃2 the same as the matrix for the dynamics of the two-dimensional linearised
Euler equations (2.4.23). Now define the matrix

B :=




. . .
...

...
...

...
...

. . .

. . . −1 0 +1 0 +1 0
...

. . . 0 −1 0 +1 0 +1
...

. . . −1 0 −1 0 +1 0
...

. . . 0 −1 0 −1 0 +1
...

. . . −1 0 −1 0 −1 0
...

. . .
...

...
...

...
...

. . .




. (4.2.48)

This is a Toeplitz operator [Gra06] composed of shifted copies of the row

(..., b−3, b−2, b−1, b0, b1, b2, b3, ...) (4.2.49)

where

bi =





+1 if i = 2k for some k > 0

−1 if i = 2k for some k ≤ 0

0 otherwise.

(4.2.50)

Now we can confirm that

M̃3 = M̃1B −BM̃2. (4.2.51)

Thus if we define

B :=

(
0 B

0 0

)
(4.2.52)

then
d

dη
M̃ = [B,M̃]. (4.2.53)

Thus B, M̃ are a Lax Pair for M̃. Note also that B d
dη

(M̃) = d
dη

(M̃)B = 0.

Form the transformation T̃ satisfying

d

dη

(
T̃ −1

)
= BT̃ −1 (4.2.54)

with T̃ (0) = I. This has solution

T̃ = I− ηB =

(
I −ηB
0 I

)
, T̃ −1 =

(
I ηB

0 I

)
. (4.2.55)
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Now by (4.2.53)

d

dη
(M̃) = BM̃ − M̃B

η
d

dη
(M̃) = ηBM̃ − ηM̃B

M̃+ ηM̃B = M̃+ ηBM̃ − η d

dη
(M̃)− ηB d

dη
(M̃)

M̃(I + ηB) = (I + ηB)(M̃ − η d

dη
(M̃))

M̃ = T̃
(
M̃ − η d

dη
(M̃)

)
T̃ −1.

(4.2.56)

But M̃ − η d
dη

(M̃) does not depend on η as M̃ is linear in η. Thus the

spectrum of M̃ is independent of the parameter η. This is a very simple case of
the general theory of Lax pairs and isospectral operators [Lax68].

Thus we define

M̄ := M̃ − η d

dη
(M̃) =

(
M̃1 0

0 M̃2

)
(4.2.57)

so

M̃ = T̃ M̄T̃ −1. (4.2.58)

Then M̄ and M̃ are similar operators.

The new operator M̄ is independent of η and block diagonal with blocks M̃1,
M̃2. The matrix M̃1 is diagonalisable by a discrete Fourier transform per Section
3.2.2 and M̃2 is diagonalisable by the results of Chapter 2. We thus arrive at the
following conclusion.

Theorem 4.2.59 (Equating two- and three-dimensional classes). Assume that
ΓT(Ka×Kp) 6= 0. Then the linear stability and spectrum of the three-dimensional
class with parameters a, p, Γ is equivalent to the linear stability of the two-
dimensional class with parameters ã = (ãx, ãy), p̃ = (1, 0), Γ = ãy sin θ, where

ãx =
〈a,p〉
|p|2κ

, ãy =
|Ka×Kp|
|p|2κ

. (4.2.60)

and

tan θ =
ΓT(Kp×Ka)

〈a, K−1Γ〉|p|κ
. (4.2.61)

Proof. By Section 4.2, the dynamics of a class with parameters a, p and Γ are
isomorphic to the dynamics of a class with parameters ã = (ãx, ãy, 0), p = (1, 0, 0)
and Γ = (0, cos θ, sin θ) given in Section 4.2.3. As ΓT(Ka×Kp) 6= 0, sin θ 6= 0.
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Now the dynamics of this class can be reduced by the divergence-free condition
and are given by the matrix M (4.2.36). As sin θ 6= 0, by the transformation in
Section 4.2.7 the dynamics are governed by the matrix M̃ (4.2.57). The matrix
M̃ is block diagonal with a constant antisymmetric block M̃1 (4.2.44) and a
block equal to the matrix giving the dynamics of the equivalent two-dimensional
problem M̃2 (2.4.23). The spectrum of M̃1 is purely imaginary and covers the
interval 2i[−1, 1] by Proposition 2.5.8. This is also the continuous spectrum of M̃2

by Proposition 2.5.8, and thus the full spectrum of M̃ is the same as the spectrum
of M̃2. This is the same as the spectrum of the corresponding two-dimensional
class with parameters ã = (ãx, ãy), p = (1, 0), and Γ = sin θ. �

Note that even though the imaginary spectrum of the two-dimensional and
three-dimensional classes are the same, the spectral density may be different, as
there is a contribution to the imaginary spectrum from M̃1 in addition to the
contribution from M̃2. This is clear when looking at truncations of the system,
where the continuous spectrum is approximated by a finite set of values. Then
the spectrum of the two- and three-dimensional problems will be different, though
they have the same limit.

4.2.8. Continuous Spectrum. Note that M̄ is block diagonal by (4.2.57)
with blocks M̃1 and M̃2. It was shown in Proposition 2.5.8 that the continuous
spectrum of M̃2 is σess(M̃2) = [−2, 2]i. The same argument shows that the
continuous spectrum of M̃1 is also σess(M̃1) = [−2, 2]i. Thus the continuous
spectrum of M, including the scaling factor of sin θ from Theorem 4.2.59, is

σess(M) = 2| sin θ|[−1, 1] (4.2.62)

In the case θ = 0, π, the operator is nilpotent, and so the continuous spectrum
is degenerate [HN01].

4.2.9. Linear Growth Classes. The matrix M̃ is singular when θ = 0, π
as cotθ is singular. In that case, M is nilpotent of degree 2 as M2 = 0. Thus
the associated solutions to (4.2.35) are linear and given by

ω(t) = (I + ãy

(
0 M3

0 0

)
t)ω(0). (4.2.63)

These constant dynamics cause the steady state to be linearly unstable.

We thus need to determine when the reduced parameter θ = 0 or π and
thus sin θ = 0 in terms of the original parameters a,p ∈ Z3, Γ ∈ R3 and κ ∈
R+3

. Such classes occur when sin θ = 0, so ΓT(Kp × Ka) = 0 or equivalently
(K−1Γ)T(a× p) = 0, by the properties of the cross product and the fact that K
is invertible. Geometrically, this implies that a, p, and K−1Γ are all coplanar.
One can see this from Figure 4.2 by considering when the angle θ is 0 or π.
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An important question is whether given p, Γ and κ, there exist any actual
lattice points a ∈ Z3 such that sin θ = 0. If a = kp for some k ∈ R, then
the condition is automatically satisfied, but these classes only consist of constant
modes by the argument in Section 4.1.5 and cannot contribute instability. If a
and p are not parallel, we have the following condition.

Proposition 4.2.64. If and only if Γ can be expressed in the form

Γ = αK

(
b− 〈b,p〉〈p,p〉p

)
(4.2.65)

for some nonzero α ∈ R and b ∈ Z3, then there exist classes with linear growth
given by (4.2.63). Specifically, any class led by a = kb for k ∈ Z has linear
dynamics.

Proof. Assume we have some b,p ∈ Z3, Γ ∈ R3 such that θ = 0, π. Then K−1Γ,
b, and p are all coplanar, so for some constants α, β ∈ R

K−1Γ = αb + βp. (4.2.66)

But Γ also satisfies the divergence-free condition ΓTKp = 0, so

(αKb + βKp)TKp = 0

α〈b,p〉+ β〈p,p〉 = 0.
(4.2.67)

As 〈p,p〉 = |p|2κ 6= 0 as p 6= 0 by definition,

β =
−α〈b,p〉
〈p,p〉 (4.2.68)

and the result follows.

We should also note that the above implies that b and p are not parallel. If
b and p are parallel, for some ν ∈ R

Γ = αK

(
νp− 〈νp,p〉〈p,p〉 p

)

= 0

(4.2.69)

by the linearity of the inner product. But Γ 6= 0 by definition, so by contradiction
b and p must not be parallel.

Conversely, if Γ cannot be written in the form (4.2.65), then no b ∈ Z3

coplanar with K−1Γ and p and not parallel with p would exist, or the above
construction would be possible for that value of b. �

Note that their are either zero linear growth classes, or infinitely many.

In particular cases we can sharpen the above to make more specific claims
about the form of Γ.
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Proposition 4.2.70. Assume only one of px, py, pz is nonzero. Without loss of
generality, let p = (px, 0, 0) with px 6= 0. Then there exists a ∈ Z3 not parallel to
p such that the reduced parameter θ = 0 or π if and only if Γz = 0 or

κzΓy
κyΓz

∈ Q. (4.2.71)

Proof. By the divergence free theorem ΓTKp = 0. If Γ = (Γx,Γy,Γz), this
implies Γx = 0 as κx > 0.

Assume there exists some a ∈ Z3 not parallel to p such that Γ, p and a
are coplanar. Then K−1Γ = α(0, ay, az) by (4.2.65). If az = 0, then Γz = 0 as
κz, α 6= 0. Otherwise

κ−1
y Γy

κ−1
z Γz

=
αay
αaz

,

κzΓy
κyΓz

=
ay
az
∈ Q.

(4.2.72)

Conversely, assume either Γz = 0 or κzΓy/κyΓz ∈ Q. Then there exist q, r ∈ Z
and c ∈ R such that q, r are not both zero, c 6= 0 and κ−1

y Γy = cq and κ−1
z Γz = cr.

Then consider a = (0, q, r) ∈ Z3. Then Γ,p, a satisfy (4.2.65), and a is not
parallel to p by construction. �

It is clear from the above Proposition that for a dense set of values of Γ, there
exist corresponding a with θ = 0, π. We will discuss an interpretation of these
classes in Section 4.3.3.

4.3. Stable Shear Flows

In Theorem 4.2.59 it was shown that the dynamics of a three-dimensional lin-
earised class can almost always be reduced to the dynamics of a two-dimensional
linearised class. Thus we can form similar stability results to those in Chapter 2.
We begin by showing that all but finitely many classes do not contribute linear
instability. By carefully controlling the domain size κ, we identify parallel shear
flows that are linearly stable.

4.3.1. Stable Classes. Define the unstable ellipsoid.

Definition 4.3.1 (The Unstable Ellipsoid). Define the unstable ellipsoid

Dp := {x ∈ R3 | |x|κ < |p|κ}. (4.3.2)

The unstable ellipsoid is illustrated in Figure 4.3. This object will serve the
same purpose as the unstable ellipse (2.5.2), delineating linearly stable and un-
stable classes. We shall now prove that classes that do not intersect the unstable
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Figure 4.3 – The unstable ellipsoid per Definition 4.3.1. This is the three-
dimensional equivalent of the unstable ellipse. Classes led by values of a inside
the unstable ellipsoid will contribute instability, classes with a outside the unsta-
ble ellipsoid will not. This can be split into the regions shown in Figures 4.4 and 4.5
which further delineate the eigenvalues of the class led by a. This figure uses the
parameters p = (1, 0, 0) and κ = (1, 1, 1); for other parameter values, the region
will change by an affine transformation according to the scaling and rotations in
Section 4.2.

ellipsoid at a lattice point and do not satisfy θ = 0 or π cannot contribute linear
instability.

Begin by noting that for general a,p ∈ Z3 with associated reduced parameters
ãx, ãy defined by (4.2.60), |a|κ|p|κ =

√
ã2
x + ã2

y. Thus the definition of ρk as used
in (4.2.46) is

ρk := 1− 1

ã2
x + ã2

y

= |p|2κ
(

1

|p|2κ
− 1

|a|2κ

)
.

(4.3.3)

This matches the original definition for ρk in (2.4.10) up to the constant factor
of |p|2κ. This factor can be removed by a time rescaling and ignored. Also note
that for a ∈ A, the principal domain, a /∈ Dp =⇒ a + kp /∈ Dp for all k ∈ Z.

Proposition 4.3.4. If and only if a + kp ∈ Dp, then ρk < 0.
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Proof. By definition, a + kp ∈ Dp ⇐⇒ |a|κ < |p|κ. Therefore, ρk < 0 by
(4.3.3). �

Proposition 4.3.5 (Stable Classes). If (K−1Γ)T(a × p) 6= 0 and a /∈ Dp, the
associated class is linearly stable and cannot contribute instability.

Proof. If (K−1Γ)T(a × p) 6= 0, then θ 6= 0, π per Proposition 4.2.64. Thus by
Theorem 4.2.59, the system is diagonalisable and the spectrum is that of the
associated two-dimensional problem. If a /∈ Dp and a is in the principal domain
(4.1.46) then a + kp /∈ Dp for all k ∈ Z. Thus by Proposition 4.3.4 ρk ≥ 0 for all
k ∈ Z. Then by Theorem 2.5.5 and Proposition 2.9.7, the spectrum does not have
any nonimaginary eigenvalues and is diagonalisable, and the result follows. �

Thus if θ 6= 0, π only finitely many classes can contribute linear instability;
those that intersect the unstable ellipsoid at one of its finite interior lattice points.
We therefore limit our search for instability to this finite collection of classes. If
θ = 0, π these are the only classes that contribute spectral instability, but other
classes may contribute linear instability.

4.3.2. Stable Flows. We have shown that under the conditions in Proposi-
tions 4.2.64 and 4.2.70 on Γ and κ all but finitely many classes cannot contribute
linear instability. The classes that can contribute instability are exactly those
that are led by a that lie in the unstable ellipsoid. As the shape of this ellipsoid
is determined by the size of the domain κ, it is possible make the unstable el-
lipsoid sufficiently small to ensure there are no classes that contribute spectral
instability. This is analogous to Theorem 2.6.1; however, the existence of the
nilpotent classes discussed in Section 4.2.9 means there is an additional condition
on Γ,κ to ensure there is not linear instability.

Theorem 4.3.6 (Stable Shear Flows). If p = (px, 0, 0), κy, κz > κx|px|, and
κzΓy
κyΓz

/∈ Q, the parallel shear flow of the Euler equations (4.1.1), (4.1.2)

Ω∗ = 2Γ cos(κxpxx) (4.3.7)

is linearly stable.

Proof. If a = (ax, ay, az), and az ∈ Z is nonzero, then

|a|2κ ≥ κ2
za

2
z > κ2

z > κ2
x|px|2 = |p|2κ. (4.3.8)

Thus if az is nonzero, the class has |a|κ > |p|κ and thus cannot contribute
spectral instability by Proposition 4.3.5 (as az 6= 0 means a cannot be parallel
to p = (px, 0, 0)). Similarly, if ay is nonzero |a|κ > |p|κ and the class cannot
contribute linear instability. As the conditions of Proposition 4.2.70 are satisfied,
the class also does not contribute linear instability. Thus the only classes that can
contribute linear instability are of the form a = (ax, 0, 0) = ax/pxp. But then the
class dynamics cannot contribute instability as a and p are parallel, per Section
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4.1.5. Thus there are no classes that contribute linear instability, and the shear
flow is linearly stable. �

This proof can be adjusted for shear flows with p = (0, py, 0) or p = (0, 0, pz)
and the corresponding condition on κ.

If we relax the condition that (K−1Γ)T(a× p) 6= 0 for all a ∈ Z3, then there
exist nilpotent classes with unstable linear dynamics per Section 4.2.9. However,
all classes are still spectrally stable as all other classes are block diagonal and all
blocks have only imaginary spectrum. Then the parallel shear flow is spectrally
stable, but not linearly stable.

The condition on Γ for stability can be interpreted as precluding the possibil-
ity of strong stability with respect to Γ. Adjusting the definition in [Arn78], the
equilibrium of a linear Hamiltonian system is strongly stable if it is stable and
the corresponding equilibria of all linear Hamiltonian systems with sufficiently
close parameter values are also stable.

We observe that this is not true for the parallel shear flows in Theorem 4.3.6.
The values of Γ satisfying κzΓy/κyΓz ∈ Q are dense on the plane of admissible Γ
values perpendicular to Kp. Thus there is always a Hamiltonian system a small
perturbation away in Γ for which Theorem 4.3.6 does not hold. Therefore these
shear flows are unstable, as there exist classes with nilpotent dynamics which are
linearly unstable. Thus the shear flows are not strongly stable with respect to
Γ. In the next section, we explore how this weaker linear stability can allow for
nonlinear instability.

4.3.3. Nonnormality and Transition to Turbulence. In Proposition
4.3.5 it was shown that if (K−1Γ)T(a×p) 6= 0 the class led by a is not nilpotent
and does not contribute linear growth terms. Furthermore, in Propositions 4.2.64
and 4.2.70 it was shown that there exist appropriate choices of the parameters
p,Γ,κ such that for all a ∈ Z3 not parallel with p, (K−1Γ)T(a × p) 6= 0. How-
ever, for any p,Γ,κ there exist values of a ∈ Z3 such that (K−1Γ)T(a × p) is
arbitrarily small. On a superficial level, this does not affect our analysis. We can
still apply the transformation per (4.2.57), remove the influence of theM3 term,
and make conclusions about spectral stability or instability. However, if we take
a broader view, there is an important point to be made with implications for the
dynamics of the full nonlinear system.
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For small values of (K−1Γ)T(a×p) the parameter η is correspondingly large.
For all nonzero values of η, the matrix M̃ is nonnormal [TE05], as the commu-
tator of M̃ and its conjugate transpose is

[M̃,M̃T] = M̃M̃T − M̃TM̃

=

(
η2M̃3M̃

T
3 η(M̃3M̃

T
2 − M̃T

1 M̃3)

η(M̃2M̃
T
3 − M̃T

3 M̃1) (M̃T
2 M̃2 − M̃2M̃

T
2 )− η2M̃T

3 M̃3

)

6= 0.

(4.3.9)

One can think of M̃ as becoming “more nonnormal” for larger values of η. The
concept of a measure of nonnormality is discussed in [EP87]. A nonnormal
matrix may be linearly stable, but have dramatic transient behaviour that can
cause instability in the full nonlinear system. In Boberg and Brosa [BB88], it is
shown how turbulence can arise from shear flows in the Navier-Stokes equation in
a pipe. They showed that small transient instabilities that occur in the linearised
problem can propagate into larger instabilities in the nonlinear problem, leading
to turbulence. This instability is attributed to the degeneracy or near-degeneracy
of eigenvalues; if two eigenvalues are very close, the transient dynamics on a
short timescale may grow dramatically due to near-parallel eigenfunctions. In
Trefethen, Trefethen, Reddy, and Driscoll [TTRD93] (see also [TE05]) it was
shown that this behaviour can more generally be attributed to the nonnormality
of the associated operator or matrix. This transition from laminar to turbulent
flow is of much physical interest, and has been well-studied [ESHW07].

Following the very lucid explanation by Grossmann [Gro00], we briefly sketch
how this can occur in our system. Say we have an eigenvalue λ ∈ σ(M̃2). As M̃
is block diagonal with M̃2 as a block, λ ∈ σ(M̃). Say the eigenvector associated
with λ is (v1, v2)T, so M̃1v1 + ηM̃3v2 = λv1 and M̃2v2 = λv2. So v2 is the
eigenvector of M̃2 associated with λ. As this does not involve η, v2 = O(1) with
respect to η. But M̃1 and M̃3 are also O(1), so v1 = O(η). Thus for large values
of η, the eigenvector (v1, v2) is dominated by v1.

However, for all µ ∈ σ(M̃1), µ ∈ σ(M̃) with an eigenvector of the form (ν, 0).
As M̃1 is diagonalisable, there is a full set of eigenvectors for M̃1. Therefore there
is a set of eigenvectors of M̃ that span the space of vectors of the form (ν, 0). For
large values of η, the eigenvector of λ (v1, v2) = (O(η),O(1)) lies nearly parallel
to this subspace. Thus all eigenvectors of M̃ are of the form (O(η),O(1)).

Therefore for a perturbation of the form (0, v2), the dynamics will take some
time to reach the limiting dynamics along the eigenvectors which are of the form
(O(η),O(1)). In the linearised system, these transients will not affect stability.
However, the short term transient behaviour can be very dramatic before the
stable dynamics occur. This transient behaviour can lead to turbulent instability
in the nonlinear system, per [Gro00]. Additional detail is required to formalise
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Figure 4.4 – The region containing values a ∈ R3 such that a ∈ Dp (the unstable
ellipsoid) but a±p /∈ Dp. Classes with a in this region will contribute two nonzero
real eigenvalues. Compare this to shape of Figure 2.19; this region is the solid of
revolution obtained by rotating the “two real eigenvalues” region around the vector
p.

such an argument, but numerical evidence shows that eigenvectors become very
close to parallel for large η.

Thus for classes that are spectrally stable as in Proposition 4.3.5, nonnor-
mality can cause transient dynamics that are stable in the linearised problem,
but are harbingers of nonlinear instability. Note that this occurs for sufficiently
small values of (K−1Γ)T(a×p); as a must take all values in Z3, this quantity can
be made arbitrarily small by selecting appropriate a for any p,Γ,κ. Studying
this in the context of nonlinear transition to turbulence from shear flows in a
three-dimensional domain is a promising future direction for this research.

4.4. Unstable Shear Flows

4.4.1. Classifying Nonimaginary Eigenvalues. Having discussed in Sec-
tion 4.3 the range of parameters for which a stable shear flow occurs, we now look
at the larger set of parameters for which the shear flow is unstable. Based on
numerical observations, we can classify the number and type of nonimaginary
eigenvalues in these cases. Assume that (K−1Γ)T(a× p) 6= 0, so we are not in a
nilpotent class with linear instability. Then we make the following observations:
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Figure 4.5 – Region showing values of a ∈ R3 such that a ∈ Dp (the unstable
ellipsoid) and a+p ∈ Dp or a−p ∈ Dp. Classes with a in this region will contribute
four nonimaginary eigenvalues; either two real pairs, or a complex quadruplet.
Compare this to the regions in Figure 2.19; this region is the “four real eigenvalues”
and “four complex eigenvalues” regions rotated around the vector p. The union of
this figure and Figure 4.4 make up the full unstable ellipsoid in Figure 4.3.

• If a ∈ Dp but a + kp /∈ Dp for all nonzero k ∈ Z the associated class has
two real nonzero eigenvalues. The values of a for which this is true are
illustrated in Figure 4.4.
• if a ∈ Dp and a + p ∈ Dp or a− p ∈ Dp, but a + kp /∈ Dp for all other

values of k, the associated class has either four real nonzero eigenvalues or
a nonzero complex quadruplet of eigenvalues. The values of a for which
this is true are illustrated in Figure 4.5.

These observations are in direct analogy to the observations of Section 2.7.1.
We shall formulate this as Conjecture 6.1.10 in Chapter 6. Under particular
conditions on p we can prove in the first case that there is a class with a positive
real eigenvalue, leading to linear instability.

4.4.2. Unstable Shear Flows. We now prove that, under a simple condi-
tion on p we can find a corresponding a such that the class led by a has a positive
real eigenvalue. This then implies linear instability.
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Figure 4.6 – The condition for a lower bound for a real eigenvalue and therefore
linear instability. The curved outer surfaces in both figures are |a|κ = (

√
3−1)|p|κ

and |a± p|κ = |p|κ. If a lies within the region enclosed by these surfaces, a lower
bound exists. This region is a subset of Figure 4.4. If a lattice point a lies within
the region enclosed by the surfaces, it satisfies the conditions of Lemma 2.7.27
and therefore there is an explicit lower bound for a positive real eigenvalue in the
associated class. In Theorem 4.4.1, we show that under a condition on p, such an a
exists. Top: the ellipsoids Eφ for φ = 0, π2 , π,

3π
2 . Eφ is enclosed by the surfaces for

all φ, and thus any a ∈ Eφ satisfies the condition of Lemma 2.7.27. Bottom: the
union ∪φEφ gives a torus. For this figure, p = (1, 0, 0) and κ = (1, 1, 1); for other
values, the region is identical up to an affine transformation composed of rotations
and scaling.
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Figure 4.7 – The largest cube contained wholly within the ellipsoid x2

a2
+ y2

b2
+ z2

c2
≤ 1

has side length d = 2
(

1
a2

+ 1
b2

+ 1
c2

)−1/2
. If d > 1, this cube contains some lattice

point a ∈ Z3. This is used to find a lower bound on a positive real eigenvalue in
Theorem 4.4.1.

Theorem 4.4.1 (Unstable Shear Flows). The shear flow steady state

Ω∗ = 2Γ cos(〈p, K−1x〉) (4.4.2)

is linearly unstable for all p such that

|p|κ >
√

3 +
3

2
. (4.4.3)

Proof. According to Theorem 4.2.59, the spectrum of the class with parameters
a, p, Γ is equivalent to the spectrum of a two-dimensional class with parameters
ãx, ãy given by (4.2.60). The parameters ρk in this two-dimensional problem are
then given by (4.3.3). According to Lemma 2.7.27, if ρ0 < 0, ρk > 0 for all k 6= 0,
and ρ0 + ρ2 < 0 (or equivalently ρ0 + ρ−2 < 0) then there is a real eigenvalue λ
of M̃2 and therefore of M̃ satisfying

λ ≥ λ∗ =
√
−ρ1(ρ0 + ρ2). (4.4.4)

The region of a ∈ R3 where these conditions on ρk are satisfied is shown in Figure
4.6. We now wish to prove there is a lattice point a ∈ Z3 such that ρ0 < 0, ρk > 0
for all k 6= 0 and ρ0 + ρ2 < 0. We do so by showing there is a sufficiently large
ellipsoid contained within the region in Figure 4.6 that it must contain some
integer lattice point.

Consider the family of ellipsoids Eφ given by

Eφ = {x ∈ R3 | |x− c(φ)|κ <
(

2√
3
− 1

)
|p|κ} (4.4.5)
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where the centres are given by

c(φ) =
1√
3
K−1

(
Γ

|Γ| |p|κ cosφ+ (Γ×Kp) sinφ

)
. (4.4.6)

Note that 〈c(φ),p〉 = 0 for all φ, and |c(φ)|κ = 1√
3
|p|κ as Γ, Γ × Kp are

perpendicular.

If a ∈ Eφ, then by the triangle inequality with the κ-norm

|a|κ < |a− c(φ)|κ + |c(φ)|κ

<

(
2√
3
− 1

)
|p|κ +

1√
3
|p|κ

= (
√

3− 1)|p|κ.

(4.4.7)

So |a|κ < |p|κ and therefore ρ0 < 0. Also,

|a + p|κ ≥ |(a + p)− (a− c(φ))|κ − |a− c(φ)|κ
= |p + c(φ)|κ − |a− c(φ)|κ.

(4.4.8)

As 〈c(φ),p〉 = 0, |p + c(φ)|2κ = |p|2κ + |c(φ)|2κ = 4
3
|p|2κ and so

|a + p|κ >
2√
3
|p|κ −

(
2√
3
− 1

)
|p|κ

= |p|κ.
(4.4.9)

But |a + p|κ > |p|κ implies ρ1 > 0. By the same argument on a − p, ρ−1 > 0.
As a is in the principal domain A, ρk is monotonically increasing for k > 0 and
monotonically decreasing for k < 0. Thus ρk > 0 for all integers k 6= 0.

Also by the triangle inequality, |a± 2p|κ ≤ |a|κ + 2|p|κ < (
√

3 + 1)|p|κ. By
the same argument as Lemma 2.7.30,

ρ0 + ρ2 =
2

|p|2κ
− 1

|a|2κ
− 1

|a + 2p|2κ
<

1

|p|2κ

(
2− 1

(
√

3− 1)2
− 1

(
√

3 + 1)2

)

= 0

(4.4.10)

and similarly ρ0 + ρ−2 < 0.

Thus if there is an integer lattice point a ∈ Eφ∩Z3 for any φ ∈ R, then ρ0 < 0,

ρk > 0 for all k 6= 0 and ρ0 + ρ±2 < 0. We now show that if |p|κ >
√

3 + 3
2
, such

an a exists.

The region inside an ellipsoid

(x− x0)2

a2
+

(y − y0)2

b2
+

(z − z0)2

c2
≤ 1 (4.4.11)
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contains a cube with side length

d =
2√

1
a2

+ 1
b2

+ 1
c2

. (4.4.12)

This is illustrated in Figure 4.7.

For Eφ,

a =
(2/
√

3− 1)|p|κ
κx

, b =
(2/
√

3− 1)|p|κ
κy

, c =
(2/
√

3− 1)|p|κ
κz

. (4.4.13)

so √
1

a2
+

1

b2
+

1

c2
=

1

(2/
√

3− 1) |p|κ

√
κ2
x + κ2

y + κ2
z (4.4.14)

and so

d = 2

(
2√
3
− 1

)
|p|κ (4.4.15)

as we have normalised κ2
x + κ2

y + κ2
z = 1.

If d > 1, the cube is guaranteed to contain some integer lattice point, which
we can select as our a. Thus a sufficient condition for such an a to exist is

|p|κ >
1

2
(

2√
3
− 1
) =

√
3 +

3

2
. (4.4.16)

If such an a exists, by Theorem 4.2.59 and Lemma 2.7.27, the associated class
has a positive real eigenvalue with an explicit lower bound λ∗ =

√
−ρ1(ρ0 + ρ2).

Including the scaling factor due to the reduced parameter θ, the linearised class
has a real eigenvalue larger than ãy| sin θ|λ∗.

As φ is arbitrary, we can select φ and therefore a such that θ 6= 0, π and
sin θ 6= 0. This also means the class is not of the nilpotent form described in
Section 4.2.9. For instance, we can select φ = π

2
and find a corresponding value

of a which cannot be coplanar with K−1Γ,p and 0, so θ 6= 0, π.

Therefore the class has a positive real eigenvalue and is diagonalisable, and
therefore is linearly unstable. �

The region containing lattice points a with lower bound on a positive real
eigenvalue and the ellipsoids Eφ are illustrated in Figure 4.6. This figure also
shows the union of Eφ for all φ; this gives a toroidal region. If there is any lattice
point a in this torus, the previous theorem is valid.

It is important to stress here that the condition |p|κ >
√

3 + 3/2 is sufficient,
but not necessary. In fact, numerical experiments suggests that all flows not of
the form described in Theorem 4.3.6 will be unstable. This statement is discussed
in Conjecture 6.1.10. However, for a fixed domain size κ Theorem 4.4.1 proves
instability for all but finitely many values of the parameter p. Figure 4.8 shows all
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Figure 4.8 – Valid values of p for the sufficient condition for instability in Theorem
4.4.1. In this figure, the isotropic case κ = (1, 1, 1) is used. If p is in the solid
region indicated, p satisfies (4.4.16) and so there is instability. For the values of
p outside this region indicated by small black dots, there is still a corresponding
a ∈ Z3 such that we can guarantee the class contains a positive real eigenvalue
and thus conclude instability. For values of p indicated as large red points, there
are no valid values of a such that the lower bound is real, so we cannot use the
proof for instability. Note that there are only a small number of these points:
p = (1, 00), (0, 1, 0), (0, 0, 1), (1, 1, 1). This is likely due to the high probability of
a lattice point existing in the larger region in Figure 4.6 that is not captured by
the argument showing a lattice point in Eφ. For other values of κ, the size of the
region will change.

p satisfying the sufficient condition for a fixed κ. Note that there is no required
condition on Γ beyond θ 6= 0, π, reflecting the idea that Γ has limited influence
on the stability of the shear flow.
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To summarise the stability results of this chapter, we have shown analytically
that

• if p = (px, 0, 0), κy, κz > κx|px| and κzΓy
κyΓz

/∈ Q, the flow is linearly stable

(Theorem 4.3.6);

• if p = (px, 0, 0) and Γz = 0 or κzΓy
κyΓz

∈ Q, there is at least one class with

linear growth which contributes instability (Proposition 4.2.70);
• if |p|κ >

√
3 + 3/2, the flow is linearly unstable (Theorem 4.4.1);

• if Γ can be expressed in the form in Proposition 4.2.64, there are classes
with linear growth which contribute linear instability.

A discussion of the full spectrum of the linearised problem is included in
Chapter 6 and formulated as Conjecture 6.1.10.



Chapter 5

Poisson Structure of the Three-Dimensional Euler
Equations in Fourier Space

In Chapter 2, we formulated the Euler equations on a two-dimensional do-
main as a Poisson system (2.3.2), (2.3.7). This is a well-known result based on
the observation that the dynamics of the Euler equations can be described by
geodesics on the group of volume preserving diffeomorphisms [AK98, Zha08].
In this chapter we prove that the Euler equations on a three-dimensional peri-
odic domain can also be formulated as a Poisson system in terms of the vorticity
Fourier coefficients. This is a significant new result, as a Poisson structure means
we have access to the theory of Poisson dynamics and the associated ideas such
as energy-Casimir stability.

We first show that the Poisson structure exists by writing the system in terms
of ordinary differential equations on the Fourier coefficients of the vorticity, and
show that this is a Poisson structure. To do so we prove that the structure
satisfies the properties of a Poisson bracket per Section 2.1. We then calculate
the same structure on the divergence-free subspace. This is a simpler Poisson
manifold, so for instance stability analysis of this system is mechanically simpler.
However, the Poisson structure on the divergence-free subspace is significantly
more complicated algebraically.

5.1. Poisson Structure on a Three-Dimensional Periodic Domain

In Section 4.1.1 the Euler equations on a periodic domain are written in terms
of the vorticity Fourier coefficients as

ω̇j =
∑

k

A(j,k)
ω−k
|k|2κ

(5.1.1)

where

A(j,k) =
(
ωj+k[(Kk)× (Kj)]T − 〈k, K−1ωj+k〉K̂k

)
. (5.1.2)

However, the dynamics of the Euler equations only occur on the divergence
free subspace given by the constraint 〈j, K−1ωj〉 = 0 for all j ∈ Z3. Thus we

143
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define

B(j,k) := A(j,k)− 1

2
〈j + k, K−1ωk+j〉 ̂K(j− k)

= ωj+k[(Kk)× (Kj)]T +
1

2
〈j− k, K−1ωj+k〉K̂k

− 1

2
〈j + k, K−1ωj+k〉K̂j.

(5.1.3)

On the divergence-free subspace (4.1.13), A(j,k) = B(j,k) and so the Euler
equations (4.1.21) can be written as

ω̇j =
∑

k

B(j,k)
ω−k
|k|2κ

. (5.1.4)

We now show that by writing the differential equations in this form, the Euler
equations on a three-dimensional periodic domain are a Poisson system.

Theorem 5.1.5 (Poisson Structure for Three-Dimensional Euler Equations).
The dynamics of the three-dimensional Euler equations for an incompressible,
inviscid flow are given by the Poisson system with Poisson bracket

{f, g} =
∑

j,k∈Z3

(
∂f

∂ωj

)TB(j,k)(
∂g

∂ωk

) (5.1.6)

where B(j,k) is given by (5.1.3) and the Hamiltonian

H =
1

2

∑

j∈Z3\{0}

ωT
−jωj

|j|2κ
(5.1.7)

on the Poisson manifold

M = {ωj ∈ R3 | j ∈ Z3, jTKωj = 0}. (5.1.8)

Proof. The manifold M is the divergence-free subspace (4.1.13) on which our
dynamics are defined. The dynamics are

ω̇j = {ωj, H}
=
∑

k 6=0

B(j,k)
ω−k
|k|2κ

, (5.1.9)

which are the dynamics of the Euler equations by (5.1.4).
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We now confirm that the bracket (5.1.6) satisfies the properties in Definition
2.1.1. One can check

{g, f} =
∑

k,j∈Z3

(
∂g

∂ωk

)TB(k, j)(
∂f

∂ωj

)

= −
∑

k,j∈Z3

(
∂g

∂ωk

)TB(j,k)T(
∂f

∂ωj

)

= −
∑

k,j∈Z3

(
(
∂f

∂ωj

)TB(j,k)(
∂g

∂ωk

)

)T

= −{f, g}

(5.1.10)

as B(j,k)+B(k, j)T = 0 and so the bracket satisfies antisymmetry. It also satisfies
bilinearity as the bracket is linear in the partial derivatives.

We must also check the bracket satisfies the Jacobi property via the condition
(2.1.5). In this case the condition is

0 =
∑

δ∈{x,y,z},l∈Z3

(
B(i, l)α,δ

∂B(j,k)β,γ
∂ωl,δ

+B(j, l)α,δ
∂B(j,k)β,γ

∂ωl,δ

+B(k, l)α,δ
∂B(j,k)β,γ

∂ωl,δ

)

=
∑

δ∈{x,y,z}

(
B(i, j + k)α,δ

∂B(j,k)β,γ
∂ωj+k,δ

+B(j,k + i)β,δ
∂B(k, i)γ,α
∂ωj+k,δ

+B(k, i + j)γ,δ
∂B(i, j)α,β
∂ωj+k,δ

)

(5.1.11)

for all α, β, γ ∈ {x, y, z} and i, j,k ∈ Z3. We have used the notation ωj =
(ωj,x, ωj,y, ωj,z) and similar notation for the matrix B(j,k). This can be directly
verified from the definition of B(j,k). Although physically relevant dynamics
only occur on the manifold M, the Jacobi property and antisymmetry are both
satisfied for all ωj ∈ R3. We can thus consider the Poisson system on the man-
ifold M an invariant subsystem of a larger system without the divergence-free
restriction.

Thus the system given by (5.1.6), (5.1.7) and (5.1.8) is a Poisson system, and
generates the dynamics of the Euler equations on a three-dimensional periodic
domain. �

Note that the extension of the structure from the divergence-free subspace to
the full space of ωj ∈ R3 is not always possible for a generic Poisson system; see
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for instance [Egi95]. The existence of this extension means we can avoid some
technical difficulties.

Having a Poisson formulation of our system is very useful as it allows us to
utilise the ideas and language of Hamiltonian mechanics. However, analysing
the system is hindered by the fact that we are on the manifold M so any study
of stability is restricted to perturbations on this manifold. Fortunately, M is a
simple manifold topologically equivalent to R2n so we can rewrite the system in
a more convenient way.

5.2. Poisson Structure on the Divergence-Free Subspace

We wish to explicitly restrict our system to the manifold M defined by the
divergence free subspace jTKωj = 0 for all j. Then we can write the Poisson
system as a lower-dimensional system on a simpler manifold.

To do so, for each j ∈ Z3 introduce the rotation matrix Rj ∈ SO(3) that
rotates Kj parallel to the x-axis. As Rj is a rotation matrix, det(Rj) = 1 and
RT

j Rj = RjR
T
j = I. We also wish to ensure that Rj(Kj) = −R−j(−Kj) so

Rj = R−j and the same rotation is applied to both ±Kj. This means that

RjKj =



±|j|κ

0

0


 , R−j(−Kj) =



∓|j|κ

0

0


 . (5.2.1)

To do so, we need some concept of “positive” vectors in R3. Define a function
∆j : R3 \ {0} → {+1,−1} such that ∆j + ∆−j = 0 for all j in the domain. Note
that ∆2

j = 1 for all j 6= 0. We do not need to worry about the specific form of the
function as long as it partitions the domain into a “positive” half and “negative”
half. A particular choice of ∆j where j = (jx, jy, jz) is

∆j =





1 if (jx > 0) or (jx = 0, jy > 0)

or (jx = 0, jy = 0, jz > 0),

−1 if (jx < 0) or (jx = 0, jy < 0)

or (jx = 0, jy = 0, jz < 0).

(5.2.2)

Having made some choice of function ∆j, we can now define the required
rotation matrix. Define the norm on the y and z components

|j|y−z :=
√
j2
y + j2

z . (5.2.3)

Then let

R̃(j) :=
1

|j||j|y−z



jx|j|y−z jx|j|y−z jx|j|y−z

0 −jz|j|2 jy|j|2
|j|2y−z −jxjy −jxjz


 (5.2.4)
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j

−j

(|j|, 0, 0)

(−|j|, 0, 0)

Rj

R−j = Rj

Figure 5.1 – To project the Poisson system onto the divergence-free manifold,
introduce new coordinates ω̃j = Rjωj where Rj is a rotation matrix such that Rjj
is parallel to the x-axis. For the resulting system to be Poisson, we also need
Rj = R−j. To do so, we need to “cut” R3 \ {0} in half, to rotate half of the vectors
j to the positive x-axis, and the other half to the negative x-axis. Here we have
shown K = I; otherwise, we rotate Kj rather than j.

so R̃(j) is a rotation matrix such that

R̃(j)j =



|j|
0

0


 (5.2.5)

for all j. To adjust for both ∆j and K 6= I, define

Rj := R̃(∆jKj) (5.2.6)
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so RjKj = (∆j|j|κ, 0, 0) for all j 6= 0, as required. The action of this rotation is
illustrated in Figure 5.1.

Compare this to the rotation matrix (4.2.3). Although both matrices rotate a
given vector to align with the x-axis, the use is different in each case. In Section
4.2.2, the linearised modes were all rotated by the same matrix, to align the p
parameter that defines the equilibrium with the x-axis. In the nonlinear system
here, each mode is separately rotated by a different rotation matrix to align the
mode so the divergence-free condition implies that one of the coordinates is zero.

Now the divergence-free condition becomes

0 = jTKωj

= jTKRT
j Rjωj

= (RjKj)T(Rjωj).

(5.2.7)

Thus if we define ω̄j := Rjωj,

(∆j|Kj|, 0, 0)Tω̄j = 0 (5.2.8)

and thus the first element of ω̄j must be zero and have trivial constant dynamics.
This allows us to project down to the divergence-free subspace and still capture
the full dynamics.

Proposition 5.2.9 (Reduced Poisson structure of three-dimensional Euler equa-
tions). The Poisson structure given by (5.1.6), (5.1.7) and (5.1.8) can be written
as

{f, g} =
∑

j,k∈Z3

(
∂f

∂ω̃j

)TB̃(j,k)(
∂g

∂ω̃k

) (5.2.10)

for a function B̃(j,k) : Z3 × Z3 → R2×2

H̃ =
1

2

∑

j∈Z3\{0}

ω̃T
−jω̃j

|j|2κ
(5.2.11)

on the phase space manifold

M̃ = {ω̃j ∈ R2 | j ∈ Z3}. (5.2.12)

Then the dynamics of the Poisson system

˙̃ωj = {ω̃j, H̃} (5.2.13)

are equivalent to the dynamics of (5.1.4), the Euler ideal fluid equations.

Proof. Define ω̄j = Rjωj with Rj as above. Then if ω̄j = (ω̄j,x, ω̄j,z, ω̄j,y), the
divergence-free condition implies that ω̄j,x is constant and zero for all j.
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Define

B̄(j,k) := RjB(j,k)RT
−k

= Rj

[
(RT

j+kω̄j+k)(Kk×Kj)T

− 〈k, K−1RT
j+kω̄j+k〉K̂k

− 1

2
〈j + k, K−1RT

j+kω̄j+k〉 ̂K(j− k)

]
RT
−k.

(5.2.14)

Then the dynamics of ω̄j are

˙̄ωj =
∑

j,k

B̄(j,k)
ω̄−k
|k|2κ

. (5.2.15)

By direct calculation,
B̄(j,k)x,y = B̄(j,k)x,z = 0 (5.2.16)

if ω̃j,x = 0. Thus the divergence-free subspace is invariant, as expected.

Thus we can ignore the coordinate ω̄j,x and define ω̃j = (ω̄j,y, ω̄j,z). Similarly,
define

B̃(j,k) =

(
B̄(j,k)y,y B̄(j,k)y,z
B̄(j,k)z,y B̄(j,k)z,z

)
. (5.2.17)

The form of B̃(j,k) : Z3×Z3 → R2×2 is quite complicated. It can be directly
confirmed that this satisfies the antisymmetry and Jacobi identity conditions for
a Poisson structure matrix, due to the form of the rotation matrices Rj and the
property Rj = R−j. The Hamiltonian on the new coordinates is

H̃ =
1

2

∑

j∈Z3\{0}

ω̃T
−jω̃j

|j|2κ
. (5.2.18)

As the coordinates ω̃j are no longer restricted by the divergence-free condition,
the Poisson manifold is the full space of ω̃j ∈ R2 for all j ∈ Z2. Then the Poisson

bracket (5.2.10) with structure matrix B̃(j,k) and the Hamiltonian H̃ generate
the dynamics of the Euler equations in the new coordinates ω̃j. �

We now explicitly calculate

B̃(j,k) =

(
B̃y(j,k)y,y B̃y(j,k)y,z
B̃y(j,k)z,y B̃y(j,k)z,z

)
ω̄j+k,y

+

(
B̃z(j,k)y,y B̃z(j,k)y,z
B̃z(j,k)z,y B̃z(j,k)z,z

)
ω̄j+k,z

(5.2.19)

where B̃y(j,k)i,j, B̃z(j,k)i,j are constant as B̃(j,k) is linear in ω̃j+k.
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Define 〈j,k〉y−z := κ2
yjyky + κ2

zjzkz and |j|κ,y−z :=
√
〈j, j〉y−z. Now

B̃y(j,k)y,y =

(
κxjx|k|2κ,y−z〈j, j + k〉y−z

− κxkx|j|2κ,y−z〈k, j + k〉y−z
)

× |j|κ|k|κ|j + k|κ∆j∆−k∆j+k

|j|κ,y−z|k|κ,y−z|j + k|κ,y−z
.

(5.2.20)

B̃y(j,k)y,z = ((Kk)× (Kj))x
|j|κ,y−z|j|κ|k|κ|j + k|κ∆j∆j+k

|k|κ,y−z|j + k|κ,y−z
, (5.2.21)

B̃y(j,k)z,y = −B̃y(k, j)y,z, (5.2.22)

B̃y(j,k)z,z = 0. (5.2.23)

B̃z(j,k)y,y =(Kj×Kk)x
(
(Kj×Kk)2

y + (Kj×Kk)2
z

)

× |j|κ|k|κ∆j∆k

|j|κ,y−z|k|κ,y−z|j + k|κ,y−z|j + k|κ
(5.2.24)

B̃z(j,k)y,z =
[
κyjyκyky(κyjy + κyky)(Kk×Kj)z

− κzjzκzkz(κzjz + κzkz)(Kk×Kj)y

+ (Kj×Kk)x
(
(Kj×Kk)x(κxjx + κxkx)

− (κxkxκyjyκzjz + κxjxκykyκzkz)
)

− 2(Kj×Kk)zκzjzκzkz(κyjy + κyky)
]

× |j|κ|k|κ∆j

|j|κ,y−z|k|κ,y−z|j + k|κ,y−z|j + k|κ
,

(5.2.25)

B̃z(j,k)z,y = −B̃z(k, j)y,z. (5.2.26)

B̃z(j,k)z,z = (Kj×Kk)x
|j|κ|k|κ|j + k|κ,y−z
|j|κ,y−z|k|κ,y−z|j + k|κ

(5.2.27)
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One can confirm the conditions for antisymmetry

B̃y(j,k)y,y + B̃y(k, j)y,y = 0,

B̃y(j,k)z,z + B̃y(k, j)z,z = 0,

B̃z(j,k)y,y + B̃z(k, j)y,y = 0,

B̃z(j,k)z,z + B̃z(k, j)z,z = 0

(5.2.28)

by the property ∆−j = −∆j.

The Jacobi property is also satisfied, which can be verified using (2.1.5) but
is omitted here for brevity as it provides no particular insight.

This Poisson structure is quite complex and resists much algebraic traction.
However, for stability theory we are no longer restricted to a subset of all possible
perturbations. Thus this form can be very useful.



Chapter 6

Detailed Numerical Results

In this chapter, we present a number of numerical experiments verifying and
exploring the analytical results of the previous chapters. These provide addi-
tional context for those results and a clearer idea of many aspects of the stability
problem, such as the linearised spectrum and flow evolution. This also presents
an opportunity to demonstrate the efficacy of the Poisson integrator described in
Section 3.3 by computing flows of the Euler equations.

In Section 6.1 we discuss the spectrum of the Euler equations in two- and
three-dimensional domains. In Section 6.2 we consider extreme values of the do-
main sizes κx, κy, κz. The nonimaginary spectrum approaches continuous curves
as these sizes become large or small. In Section 6.3 some flows are calculated us-
ing the Poisson integrator. These numerical results allow us to make conjectures
suggesting possible avenues for future research.

6.1. Spectrum of the Linearised Euler Equations

In Sections 2.4.2 and 4.1.5 it was shown that the Euler equations linearised
around a sinusoidal shear flow decompose into subsystems or classes in both two-
and three-dimensional periodic domains. Additionally, only finitely many of these
classes contribute nonimaginary eigenvalues by Theorem 2.5.5 and Proposition
4.3.5. We need only check the classes led by modes that are both in the principal
domain A and the unstable ellipse/ellipsoid Dp for nonimaginary eigenvalues.

We can explicitly reduce the parameter space for those classes, significantly
simplifying numerical analysis across a wide range of parameters p and κ. The
nonimaginary eigenvalues for classes in this reduced parameter space are cal-
culated which allows us to discuss how the type and number of nonimaginary
eigenvalues depends on the parameters. This allows us to verify the observations
made in Section 2.7.1.

We then calculate the set of nonimaginary eigenvalues for the full system, by
combining all classes for which nonimaginary spectra occur. A conjecture on the
number of nonimaginary eigenvalues occurring for a specific flow is explored that
would sharpen the upper bound on the number of nonimaginary eigenvalues cal-
culated by Latushkin, Li, and Stanislavova [LLS04]. Extensions are conjectured

152
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for the anisotropic and three-dimensional domains. We also describe the imagi-
nary spectrum for the sine-bracket truncated system, and see how this relates to
the spectral density.

6.1.1. Simplified Dynamics of Linearised Euler Equations (Two Di-
mensions). Consider the linearised Euler equations on a two-dimensional peri-
odic domain, as studied in Chapter 2. This splits into subsystems or classes. We
wish to consider the spectrum of a class, which is given by eigenvalues of

M =




. . .
...

...
...

...
...

. . .

· · · 0 ρ−1 0 0 0 · · ·
· · · −ρ−2 0 +ρ0 0 0 · · ·
· · · 0 −ρ−1 0 +ρ1 0 · · ·
· · · 0 0 −ρ0 0 ρ2 · · ·
· · · 0 0 0 −ρ1 0 · · ·
. . .

...
...

...
...

...
. . .




. (6.1.1)

This is the matrix (2.4.23) which governs the dynamics of a class of Fourier modes.
In the full problem, this is premultiplied by the factor α ∈ R. In this chapter, we
will assume that Γ = 1 unless otherwise noted. For α 6= 0 these factors will not
change the nature of the eigenvalues, and in particular whether or not there is
an eigenvalue with positive real part. As all eigenvalues occur in pairs ±λ, even
if α < 0 there is still a positive real eigenvalue after including the factor of α.

Our goal is to demonstrate how the eigenvalues of M depend on the param-
eters a, p, and κ that appear in the ρk coefficients. This allows us to gener-
ate figures such as Figure 6.10 showing the relationship between the parameters
and the nonimaginary eigenvalues, and describe the full nonimaginary spectrum
in Conjecture 6.1.8. That conjecture is an extension of Lemma 2.7.42, which
showed that for certain parameter values we can prove the existence of a pair of
real eigenvalues.

In Section 2.8.1 a transformation was calculated that reduces a linearised class
to the form

ω̇k = Γãy(ρk+1ωk+1 − ρk−1ωk−1) (6.1.2)

where

ρk = 1− 1

(ãx + k)2 + ã2
y

(6.1.3)

for (ãx, ãy) in the principal domain

A = {(ãx, ãy) ∈ R2 | − 1

2
< ãx ≤

1

2
}. (6.1.4)
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Note the symmetry of ρk under ãy → −ãy, so we need only consider ãy > 0.
Although ãy may be negative, this does not affect the spectrum due to the Hamil-
tonian symmetry of eigenvalues ±λ. There is also a symmetry in ãx; if the ρk
values are renumbered as ρk → ρ−k, this is equivalent to ãx → −ãx. We thus
observe symmetry in the ãx parameter as well.

These reduced parameters ã = (ãx, ãy) are related to the original parameter
a by ã = 1

|p|κRpKa for the matrices Rp, K defined in Section 2.8.1. Explicitly

we can write

ãx =
〈a,p〉
|p|2κ

, ãy =
|Ka×Kp|
|p|2κ

. (6.1.5)

One must recall that although the original parameter a ∈ Z2, the reduced pa-
rameters ãx, ãy ∈ R are not necessarily integers. One can interpret ãx and ãy as
the projection of a in the directions parallel to and orthogonal to p with respect
to the κ norm (2.2.13) respectively. This was illustrated in Figure 2.17. This
reduction is computationally useful as we can study the two-dimensional param-
eter range in the principal domain A and translate this for our original choice
of parameters a, p and κ, rather than considering the six-dimensional space of
parameters a, p, κ.

6.1.2. Describing the Linearised Spectrum (Two Dimensions). Hav-
ing reduced the linearised two-dimensional problem to subsystems with two pa-
rameters ãx and ãy, we can describe the full spectrum by considering the eigenval-
ues in the class corresponding to those parameters. By Theorem 2.5.5, all classes
with (ãx, ãy) ∈ A satisfying ã2

x+ ã2
y ≥ 1 have only imaginary eigenvalues. Thus to

describe the nonimaginary spectrum we need only consider the parameter values
satisfying ã2

x + ã2
y < 1. To do so, we numerically calculate the nonimaginary

eigenvalues for the range ãx ∈ [−0.5, 0.5] and ãy ∈ (−
√

1− ã2
x,
√

1− ã2
x) on a

grid with a step size of 0.001. We calculate the eigenvalues using the sine-bracket
truncated matrix (3.2.14) with a truncation size N = 500. These eigenvalues
are calculated using the default MATLAB eigenvalue solver. All the figures in
this chapter are then computed using these values, with the appropriate trans-
formations when the original a, p, κ parameters are used. The advantage of
using the sine-bracket truncated system is illustrated in Figure 6.1; the spectrum
of a sine-bracket truncated system converges faster than the equivalent Galerkin
truncated system.

Figure 6.2 shows how the real and imaginary parts of the nonimaginary eigen-
values of (6.1.1) change as a function of ãx, ãy. In Figure 6.3, the same contours
as Figure 6.2 are shown with the factor of ãy included. When translating back to
the original parameters and considering the spectrum of the full linearised sys-
tem, this factor is used. Compare the shape of these figures to Figure 2.19, where
the number and type of nonimaginary eigenvalues were described in terms of ãx,
ãy. For a small range of parameter values, there are two sets of real eigenvalues
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Figure 6.1 – Eigenvalues vs truncation size N for the sine-bracket truncated
system vs the Galerkin truncated system. The Fourier modes ωk with k = (kx, ky)
for −N ≤ kx, ky ≤ N are used in the calculation. For both figures, p = (3, 2). Top:
the convergence of the positive real part of the eigenvalue in the class a = (3, 1).
Bottom: the convergence of the positive real part of the eigenvalue in the class
a = (−1, 1). In both cases, the convergence of the eigenvalues of the sine-bracket
truncated system (shown as a black line) is faster than the convergence of the
eigenvalues of the Galerkin truncated system.
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Figure 6.2 – Contours of nonimaginary eigenvalues of (6.1.1). Given parameters
ãx, ãy satisfying ã2

x + ã2
y < 1, there are nonimaginary eigenvalues of (6.1.1) λ =

±u±iv with u 6= 0. For some parameter values, there are two sets of real eigenvalues
±u1 and ±u2; for these, this figure shows the eigenvalues with larger absolute value.
Top: contour lines showing constant values of u = |Re(λ)| as a function of ãx, ãy.
Bottom: contour lines showing constant values of v = |Im(λ)| as a function of ãx,
ãy. The region where there are no contour lines in the lower figure corresponds to
the area where all nonimaginary eigenvalues are real as indicated in Figure 2.19.
As there is a symmetry ãy ↔ −ãy, we only show ãy > 0.
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Figure 6.3 – Contours of constant real (top) and imaginary (bottom) parts of
nonimaginary eigenvalues of ãyM . This is the same as Figure 6.2, except the
factor of ãy is included. Compare the top figure with the lower bound in Figure
2.18, which was proven to be a lower bound for a real eigenvalue in Theorem 2.7.53.
Only the larger of the two eigenvalues is shown for the parameter ranges where
there are two positive real eigenvalues.
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Figure 6.4 – Contours of the smaller real eigenvalues of (6.1.1). For some pa-
rameter values ãx, ãy, there are two pairs of real eigenvalues. For such values, the
smaller of the two real eigenvalues are shown in these contour plots. Top: contours
of equal eigenvalues of M , corresponding to Figure 6.2. Bottom: contours of equal
eigenvalues of ãyM corresponding to Figure 6.3. Compare the shape of the region
where this eigenvalue exists to the “four real eigenvalues” region in Figure 2.19.
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as noted in Section 2.7.1 and Figure 2.19. For these parameters the smaller of
the real eigenvalues is shown in Figure 6.4.

Figures 6.5 and 6.6 show which complex numbers occur as eigenvalues occur
across all parameter values (ãx, ãy) ∈ A with and without the factor of ãy re-
spectively. This corroborates the observation that there is a fixed upper bound
on the size of any nonimaginary eigenvalue that can occur, as proven in Section
2.7.3. Figures 6.7 and 6.8 show curves of complex eigenvalues of M and ãyM
respectively for a finite number of fixed values of ãx as ãy is varied. This shows
how the eigenvalues depend on the value of ãx. Figures 6.5 and 6.6 are the limits
of these figures calculated by taking all possible values of ãx rather than just
finitely many values.

Figure 6.9 shows the full nonimaginary spectrum for a linearised problem
with p = (5, 3) on an isotropic domain. As this is not of the linearly stable
form discussed in Theorem 2.6.1, we observe eigenvalues with a positive real
part, indicating linear instability. We also observe that there are only finitely
many discrete nonimaginary eigenvalues, corresponding to the observation that
there is a bijection between lattice points inside the unstable ellipse and pairs of
nonimaginary eigenvalues.

In Figures 6.10 and 6.11, values of a that lead classes that contribute non-
imaginary eigenvalues are shown, and the corresponding eigenvalues. This shows
how the position of a relative to the unstable ellipse affects the type of eigenvalues
that occur, corroborating the hypothesis of Section 2.7.1 which is illustrated in
Figure 2.10. We will formulate this observation as Conjecture 6.1.8, and use this
to make a further conjecture on the number of nonimaginary eigenvalues in the
spectrum of the linearised Euler equations.

6.1.3. Describing the Linearised Spectrum (Three Dimensions). In
Section 4.2.3, the explicit expression for the reduced parameters in the three-
dimensional problem was calculated as

ãx =
〈a,p〉
|p|2κ

, ãy =
|Ka×Kp|
|p|2κ

, (6.1.6)

tan θ =
ΓT(Kp×Ka)

〈a, K−1Γ〉|p|κ
(6.1.7)

The parameter space a,p ∈ Z3, Γ ∈ R3, κ ∈ R+3
can then be reduced to the

parameters ãx, ãy, θ ∈ R. Only a discrete set of these parameter values actually
occur for any shear flow corresponding to the a that occur at integer lattice
points. The reduced parameters can be used to calculate the spectrum of the
associated matrix for the three-dimensional linearised problem, which can then
be related back to the original parameters. Recall that the spectrum is given by
the union of the spectrum of the two-dimensional linearised class (6.1.1) and the
spectrum of the constant matrix (4.2.44) multiplied through by ãy| sin θ|, except
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Figure 6.5 – A plot of all possible eigenvalues of M across parameter values
−1

2 ≤ ãx ≤ 1
2 , ãy ∈ R is shown in the shaded region. The real eigenvalues lie in the

interval [−
√

2,
√

2] and the imaginary eigenvalues lie in the interval [−2, 2]i. Note
that all eigenvalues lie in a closed set and satisfy |λ| ≤ 2.

in the special cases θ = 0, π. An example of all nonimaginary eigenvalues for a
linearised shear flow in a three-dimensional domain is shown in Figure 6.13.

For the three-dimensional problem, across all values of the parameters ãx, ãy, θ
the eigenvalues must lie in the same region as in Figures 6.5 and 6.6. This is
because the only difference in the spectrum will be a multiplicative factor of
| sin θ|, and 0 ≤ | sin θ| ≤ 1 so no eigenvalues can occur except those that also
occur in the two-dimensional problem. This is illustrated in Figure 6.12, which
also shows the dependence on the parameter θ.

We must note that the linearised spectrum does not tell the full story in the
case of the three-dimensional problem. As discussed in Section 4.2.9, there may
be classes that are nilpotent and therefore do not contribute any nonimaginary
eigenvalues. However, these nilpotent classes lead to linear growth and therefore
linear instability. Thus observing spectral stability is not sufficient for linear
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Figure 6.6 – All possible nonimaginary eigenvalues of ãyM for all parameter
values −1

2 ≤ ãx ≤ 1
2 , ãy ∈ R. These are the same eigenvalues as Figure 6.5,

but including the scaling factor of ãy that appears in the matrix in the context of
the full problem. For the three-dimensional problem, across all parameter values
of ãx, ãy, θ, the same set of eigenvalues as illustrated above will occur, as the θ
parameter only scales the eigenvalues by | sin θ| ≤ 1. Also note that across all
parameter values, every value on the imaginary axis will occur in the spectrum.
Numerically, purely real eigenvalues occur in the range [−0.54, 0.54], the real part
of the complex eigenvalues occur in the range [−0.25, 0.25] and the imaginary part
of complex eigenvalues occur in the range [−0.39, 0.39] to two decimal places.

stability in the three-dimensional class. Propositions 4.2.64 and 4.2.70 discus
the additional requirement for linear stability. One must also keep in mind the
possibility of nonlinear instability due to nonnormality in the linearly stable cases,
which was discussed in Section 4.3.3.

6.1.4. The Full Nonimaginary Spectrum. The numerical evidence in
this chapter presents a convincing argument that the number and nature of the
nonimaginary eigenvalues of a class can be surmised from the location of the
parameters ãx, ãy in relation to the unstable ellipse. This was presented as an
observation in Section 2.8 and can be seen here in Figures 6.2, 6.4. Based on this
we make the following conjecture.
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Figure 6.7 – Complex eigenvalues of M along contours of constant ãx. Top: for
discrete values of ãx, the values in ãx-ãy space for which there is an associated
complex eigenvalue. The dashed lines show the edges of the principal domain
− 1/2 ≤ ãx ≤ 1/2. Bottom: for each of these lines of constant ãx, the associated
complex eigenvalues of M as ãy is varied are plotted in the same colour as for the
top figure. Figure 6.5 is the superposition of these contours for all values of ãx.
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Figure 6.8 – Complex eigenvalues of ãyM along contours of constant ãx. Top: for
discrete values of ãx, lines for which there is an associated complex eigenvalue. The
dashed lines show the edges of the principal domain − 1/2 ≤ ãx ≤ 1/2. Bottom: for
each of these lines, the associated complex eigenvalues of ãyM are plotted in the
same colour as for the top figure. Figure 6.6 is the superposition of these contours
for all ãx. Compare with Figure 6.8; here the factor of ãy is included.
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Figure 6.9 – All nonimaginary eigenvalues of the full linearised two-dimensional
system with parameters p = (5, 3), κy/κx = 1. Compare the shape with Figure 6.6;
all eigenvalues lie within the region indicated in that figure.

Conjecture 6.1.8 (Nonimaginary spectrum of linearised equations in two di-
mensions). Consider the linearised system in two dimensions with p ∈ Z2. Then
for the class led by a ∈ A ∩Dp such that a and p are not parallel,

• if a ± p /∈ Dp (the unstable ellipse), the nonimaginary spectrum of the
class led by a is a pair of nonzero real eigenvalues ±λ;
• if a + p ∈ Dp or a − p ∈ Dp, the nonimaginary spectrum of the class

led by a is either two pairs of nonzero real eigenvalues ±λ1, ±λ2 or four
complex eigenvalues ±u± iv for nonzero u, v ∈ R.

Therefore, if there exists any a ∈ A ∩ Dp not parallel to p, the linearised shear
flow is linearly unstable. We can therefore conclude that it is nonlinearly unstable,
by [FSV97] and [SL03].

Furthermore, if ν ∈ N is the number of lattice points in Dp, the above im-
plies that the number of nonimaginary eigenvalues counting multiplicity in the
linearised system is given by

|σdiscrete| = 2(ν − 2 gcd(px, py) + 1). (6.1.9)

This conjecture is based on the observations of Section 2.8 and the numerical
evidence illustrated in Figures 2.19, 6.2, 6.3.
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Figure 6.10 – Eigenvalues and their locations for p = (2, 1), κy/κx = 1. Top: all
lattice points a in the unstable ellipse Dp. Values with ρ±1 /∈ Dp are shown as
red diamonds, other points are shown as black circles. The dashed lines are the
edges of the principal domain A. Bottom: all nonimaginary eigenvalues of αM ,
marked with the symbols of the corresponding values of a. For each lattice point
in the top figure, the corresponding eigenvalues in the bottom figure are labelled
with the same letter. Note that the values of a such that ρ±1 /∈ Dp correspond
to real eigenvalues, and all others to complex eigenvalues. This corroborates the
observation in Section 2.7.1. Note also that any pair a and −a correspond to the
same eigenvalues. Thus all eigenvalues have multiplicity 2.
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Figure 6.11 – As per Figure 6.10, with parameters p = (3, 2) and κy/κx = 2.
In both figures, the number of lattice points in the unstable ellipse is exactly the
number of discrete nonimaginary eigenvalues, each of which has multiplicity 2.
This corresponds to a natural extension of the result in [LLS04], presented here
as Conjecture 6.1.8. The principal domain of modes A is between the dashed lines.
Note the points that lie in the unstable ellipse but not the principal domain. These
are in the same class as some other point that is in the intersection of the unstable
ellipse and the principal domain.
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Figure 6.12 – A plot of all possible complex eigenvalues of the three-dimensional
linearised problem. These are the eigenvalues of | sin θ|ãyM , across parameter
values −1

2 ≤ ãx ≤ 1
2 , ãy ∈ R θ ∈ [0, 2π). The shading corresponds to sin θ; larger

values of | sin θ| are shaded darker. This is the same shape as Figure 6.6, though
for smaller values of sin θ there are different accessible regions.

In Latushkin, Li and Stanislavova [LLS04], it was shown that in the case
κy/κx = 1 the number of nonimaginary eigenvalues of (6.1.1) is less than or equal
to twice the number of lattice points inside the unstable ellipse (or in that case, the
unstable disc) (2.5.2). The above conjecture states that this can be generalised
this to any domain size κ ∈ R2 and provide an exact count rather than an upper
bound. Note the term 2 gcd(px, py), which accounts for values of a that are inside
the unstable ellipse but are parallel to p. These classes contribute no nonzero
eigenvalues. If px and py are coprime, the only such value is a = 0. The final +1
term accounts for the fact that a = 0 is counted twice by 2 gcd(px, py) but only
occurs once. One should note that all eigenvalues have multiplicity 2; this is due
to the symmetry between the class led by a and the class led by −a. This can
be observed in Figure 6.10.

In the three-dimensional case, the system decomposes into classes which have
the same spectrum as a corresponding class in the two-dimensional problem, as
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Figure 6.13 – All nonimaginary eigenvalues of the three-dimensional linearised
flow for p = (5, 3, 1), Γ = (1,−2, 2), κ = (1, 1, 1). Compare the shape with Figure
6.12. These eigenvalues are calculated by transforming the calculated eigenvalues
for the reduced parameters ãx, ãy appropriately and scaling by | sin θ|. Compare
this with Figure 6.9; in the three-dimensional case, there are correspondingly more
nonimaginary eigenvalues as the unstable ellipsoid contains more lattice points
than the unstable ellipse. Eigenvalues occur closer to 0, as the prefactor | sin θ|
multiplies all eigenvalues, and | sin θ| ≤ 1.

shown in Theorem 4.2.59. We therefore can make a very similar conjecture for
the three-dimensional domain, with some minor but important changes.

Conjecture 6.1.10 (Nonimaginary spectrum of linearised equations in three
dimensions). Consider the linearised system in three dimensions with p ∈ Z3 and
Γ ∈ R3. For a class led by a ∈ A ∩ Dp such that a and p are not parallel and
a,p, K−1Γ are not all coplanar,

• if a± p /∈ Dp (the unstable ellipsoid), the nonimaginary spectrum of the
class led by a is a pair of nonzero real eigenvalues ±λ;
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• if a + p ∈ Dp or a − p ∈ Dp, the nonimaginary spectrum of the class
led by a is either two pairs of nonzero real eigenvalues ±λ1, ±λ2 or four
complex eigenvalues ±u± iv for nonzero u, v ∈ R.

Therefore, if there exists any a ∈ A∩Dp such that a is not parallel to p and not
coplanar with both p and K−1Γ, the linearised shear flow is linearly unstable.

Furthermore, if ν ∈ N is the number of lattice points in Dp the above im-
plies that the number of nonimaginary eigenvalues counting multiplicity in the
linearised system is bounded above by

|σdiscrete| ≤ 2(ν − 2 gcd(px, py, pz) + 1) (6.1.11)

where gcd(px, py, pz) = gcd(px, gcd(py, pz)).

Unlike in the two-dimensional case, the conjecture on the number of non-
imaginary eigenvalues is an upper bound rather than an inequality here. This is
due to the existence of values of a ∈ Dp ∩ Z3 such that a, p and K−1Γ are all
coplanar. By Section 4.2.9, such classes are nilpotent and do not contribute any
nonzero eigenvalues.

We observe these conjectures in our numerics. For instance, in Figure 6.10
there are 12 lattice points inside the unstable ellipse (not counting a = 0) and
12 nonimaginary eigenvalues, each with multiplicity 2. Similarly in Figure 6.11,
there are 36 interior lattice points in the unstable ellipse and 36 nonimaginary
eigenvalues, as gcd(3, 2) = 1. Note that the lattice points in the unstable ellipse
are not necessarily in the principal domain A.

6.1.5. An Explicit Bound for Nonimaginary Eigenvalues. In Section
2.9.3, the Gershgorin disc theorem was applied to find an upper bound on the real
part of all eigenvalues. For special parameter values, we can find an explicit upper
and lower bound on an eigenvalue with positive real part using the same method,
without calculating the eigenvalues of a large matrix. As calculating eigenvalues
can be computationally expensive, such a bound is very useful. Assume we are
in the case ρ0 = 0, ρ1 < 0. Consider the eigenvalues of the Jacobi matrix

J =




. . .
...

...
...

...
. . .

... a−1 b0 0 0 0 ...

... b0 a0 b1 0 0 ...

... 0 b1 a1 b2 0 ...

... 0 0 b2 a2 b3 ...

... 0 0 0 b3 a3 ...
. . .

...
...

...
...

. . .




(6.1.12)

with coefficients an = −ρ2n(ρ2n+1 + ρ2n−1), bn = ρ2n−1
√
ρ(2n−2)ρ2n from (2.9.4).

The eigenvalues of this matrix are the squares of the eigenvalues of (6.1.1). By
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Figure 6.14 – The parameter range of (ãx, ãy) where the Gershgorin disc theorem
can be used to calculate an explicit bound on an eigenvalues with positive real part.
This bound can be calculated very efficiently and does not require many terms of
the matrix (6.1.1). The red dashed lines show the curves (ãx± 1)2 + ã2

y = 1, where
ρ±1 = 0. This region was calculated numerically.

the Gershgorin disc theorem, the eigenvalues must lie in the discs with centres
Ci = ai = −ρ2i(ρ2i+1 + ρ2i−1) and radii Ri = |bi| + |bi+1| = |ρ2i−1

√
ρ2i−2ρ2i| +

|ρ2i+1
√
ρ2iρ2i+2|.

In particular, C0 = −ρ1ρ2, and R0 = ρ2ρ3. Both of these values are positive
and real. If this disc does not intersect any others, it must contain an eigenvalue.
Additionally, if C0 − R0 > 0, then this disc lies entirely within the right half of
the plane, so it contains an eigenvalue with positive real part. If these conditions
hold we have an explicit bound on an eigenvalue of (6.1.12) with positive real
part, and therefore an eigenvalue of (6.1.1) with positive real part. The region
where these conditions are met was calculated numerically and is shown in Figure
6.14. An illustrative example is shown in Figure 6.15. Some eigenvalue of (6.1.12)
must lie in the isolated disc indicated in that figure.

This method can also be applied in the three-dimensional case; for a problem
with reduced parameters ãx, ãy, θ and θ 6= 0, π, the spectrum is equivalent to
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Figure 6.15 – The Gershgorin discs of (6.1.12) truncated from a−20 to a20 for
(ãx, ãy) = (0, 0.4). As these parameters lie in the region indicated in Figure 6.14,
there is an eigenvalue with nonzero real part which can be isolated by the Gersh-
gorin disc theorem. There is a disjoint disc in the right half of the plane, which must
contain an eigenvalue. Therefore (6.1.12) has an eigenvalue with positive real part,
and so (6.1.1) must also have an eigenvalue with positive real part. Also note that
the discs accumulate at (x+ 2)2 + y2 = 22, the limiting disc. This corresponds to
the observation that the imaginary eigenvalues lie in the interval [−2, 2]i. The cal-
culated eigenvalues of the matrix (6.1.12) are plotted as red asterisks; as expected,
they fill the interval [−4, 0] except for an isolated eigenvalue on the positive real
axis.

the two-dimensional problem with parameters ãx, ãy by Theorem 4.2.59. We can
therefore use the above to calculate an explicit bound by including the factor of
| sin θ|ãy.

6.1.6. The Imaginary Spectrum. We now turn our attention to the imagi-
nary spectrum. Per [LLS04], the essential spectrum of the full linearised problem
is the full imaginary axis. This is made up of the superposition of the essential
spectrum of all classes, which are intervals on the imaginary axis. We now briefly
discuss the imaginary spectrum of an individual class, and how it relates to the
spectral density.
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Figure 6.16 – The density of imaginary eigenvalues for (ãx, ãy) = (0.3, 0.3). The
blue bars show the density of eigenvalues on the imaginary axis, which occur be-
tween −2i and 2i. The eigenvalues are most dense near these endpoints. These
eigenvalues were calculated using a sine-bracket truncation with N = 500. The
dashed red lines show the spectral density (6.1.14) obtained by the approximation
that ay is sufficiently large and so ρk ≈ 1 for all k.

For any ε > 0, we can choose ãy ≥ 1/√ε, so 1 > ρk > 1 − ε for all k ∈ Z
and thus ρk ≈ 1. Notably, in this approximation M is the same as the constant
matrix M̃1 (4.2.44) from Chapter 4. Consider this approximation in the sine-
bracket truncated matrix MT (3.2.14). Under the equivalent approximation in
the unreduced parameters ρk ≈ ρ∞ = 1/|p|2κ, this matrix is now antisymmetric. A
circulant matrix is diagonalised by a discrete Fourier transform as discussed in
Section 3.2.2. Thus the eigenvalues are

λj =
2i

|p|2κ
sin

(
2πj

n

)
forj = 0, ..., n− 1 (6.1.13)

where n = 2N + 1, and N is the truncation size used in the sine-bracket system.

Thus the approximate imaginary spectrum of Σa for sufficiently large |a| lies

inside the interval 2|α|i
|p|2κ [−1, 1] on the imaginary axis. Taking the limit N → ∞

(and so n→∞), for each x ∈ [0, 1] there is a correspondence with an eigenvalue
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λx where x = 1
2π

sin−1
(
λx|p|2κ

2i

)
. Differentiating this gives the density function

F (x) =
|p|2κ

π
√

4α2 − |p|4κx2
. (6.1.14)

That is, the proportion of the eigenvalues lying between c1i and c2i on the
imaginary axis is

∫ c2
c1
F (x)dx for c1, c2 ∈ 2

|p|2κ [−|α|, |α|]. The curve F (x) is plotted

in Figure 6.16, and it agrees well with the numerically calculated eigenvalues.
This is somewhat surprising as the value of ãy is not particularly large for that
figure. We conclude that equation (6.1.14) gives a strong approximation of the es-
sential spectrum. The function G(y) =

∫ y
c1
F (x)dx where c1 = −2α

|p|2κ is the spectral

density function. In the special cases discussed in Section 2.9.4, this is equiva-
lent up to transformation to the spectral density (2.9.26) that was calculated by
considering the problem as a Jacobi operator. Note that (2.9.26) is the spectral
density of M2, and G(y) is the spectral density of M .

In [LLS04, SL03], the authors describe the essential spectrum of the lin-
earised operator (6.1.1) in the isotropic case κy/κx = 1. The essential spectrum
for the class led by a is given in that paper as

σess = i[−|β|, |β|], where β =
2Γ

|p|2 (a× p). (6.1.15)

This is the same as our result in the case κy/κx = 1.

These results can be applied to the three-dimensional case as well. In terms
of the reduced parameters ãx, ãy, θ, by Theorem 4.2.59 the spectrum of a class
of the linearised three-dimensional problem is the same as the two-dimensional
class with parameters ãx, ãy up to a factor of | sin(θ)|. The constant secondary
part of the matrix (4.2.44) has the same essential spectrum and so contributes
no additional eigenvalues. In the exceptional cases θ = 0, π, the matrix (4.2.36)
is nilpotent per Section 4.2.9, so the eigenvalues are all zero and the result still
holds as sin 0 = sinπ = 0.

We can now make the following conclusion: the essential spectrum of a class
of the linearised three-dimensional equations with reduced parameters ãx, ãy, θ is

|ãy sin θ|[−2, 2]i, (6.1.16)

an interval on the imaginary axis. As per the two-dimensional case, ãy is un-
bounded so the essential spectrum of the full linearised operator is the union of
these for arbitrarily large ãy. Therefore the essential spectrum is the full imagi-
nary axis.

Figure 6.16 shows the density of the imaginary parts of the spectrum for
(ãx, ãy) = (0.3, 0.3). These eigenvalues are calculated using the sine-bracket
approximation. The spectral density curve F (x) is also shown, and agrees well
with the calculated eigenvalues.
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6.2. Spectrum of Limiting Domain Sizes

An interesting question is what happens to the nonimaginary eigenvalues and
stability of the linearised equations for extreme values of the boundary sizes κx,
κy, κz. We have seen in Section 2.6 that the stability of parallel shear flows
depends on the size of the unstable ellipse/ellipsoid and thus the size of the
domain. Conjectures 6.1.8 and 6.1.10 show that the number of nonimaginary
eigenvalues also depends on the size of the unstable ellipse/ellipsoid. Therefore
we now study what happens when these sizes are very large or very small. For
extreme values of the domain size, the spectrum can either disappear per Section
2.6 or accumulate along a finite number of curves akin the contours in Figure 6.8.

These parameters may be of physical interest, as it may suggest the corre-
sponding behaviour for the Euler equations on a cylindrical domain with periodic
boundary conditions in one direction only. These results can be compared to the
study of parallel shear flows with a fixed domain but a large number of oscillations
[BFY99]; this may in some sense be considered the dual problem.

6.2.1. Limiting Domain Sizes in Two Dimensions. We first consider
the linearised two-dimensional problem. As the problem only depends on the
ratio of the domain sizes κy/κx, we only need consider when this quantity becomes
asymptotically small or large.

For κy/κx → 0,∞, taking the limit of the formulae in (6.1.5) yields the result

lim
κy/κx→∞

ãx =
ay
py
, lim

κy/κx→0
ãx =

ax
px

(6.2.1)

where a = (ax, ay). As a,p ∈ Z2 and a only takes a finite set of values, this means
that the values of ãx accumulate at multiples of 1/py in the limit κy/κx → ∞ and
at multiples of 1/px in the limit κy/κx → 0. This is illustrated in Figure 6.17. In
particular, if px = 1 and κy/κx → 0, then ãx → 0 for all a, and all associated
eigenvalues will become real.

In these limits typically the number of lattice points inside the unstable ellipse
ν →∞ and therefore the size of the nonimaginary spectrum |σdiscrete(M)| → ∞.
In these cases the nonimaginary discrete spectrum appears to converge to some
continuous spectrum. This is illustrated in Figures 6.18 and 6.19, which show the
nonimaginary spectrum for p = (2, 1) and p = (5, 0) respectively across a range
of values of κy/κx. For particularly large or small values, the spectrum accumulates
at one or more curves similar to the contours in Figure 6.8, which correspond to
the discrete values of ãx that occur in the limit. Note the case with p = (2, 1)
and κy/κx large, where all eigenvalues are purely real or purely imaginary. This
corresponds to the fact that all lattice points have ãx = 0 in the limit as py = 1.
We also observe cases with no unstable eigenvalues for p = (5, 0), corresponding
to the stability result for parallel shear flows.
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Figure 6.17 – Relevant values of the reduced parameters ãx, ãy for p = (5, 3),
κ = (κx, κy) for various values of κy/κx. The reduced parameters ãx, ãy ∈ R are
calculated for all a ∈ Z2 ∩Dp. Only these parameters lead to classes contributing
nonimaginary eigenvalues. Top row: κy/κx = 1000, κy/κx = 10. Middle row: κy/κx =
1, κy/κx = 1/2. Bottom row: κy/κx = 1/10, κy/κx = 1/1000. Note that for large or small
values of κy/κz, the values of ãx accumulate at a finite set of discrete values.

We can also study how the condition for Theorem 2.7.53 changes for extreme
values of κy/κx. Figure 6.21 shows the values of p where Theorem 2.7.53 can be
applied, and the values for which the condition (2.7.31) holds for the domain
size κy/κx = 100. For sufficiently large values of κy/κx, values of p = (px, py) with
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Figure 6.18 – All nonimaginary eigenvalues of αM for p = (2, 1), varying κ. First
row: κy/κx = 8, κy/κx = 4. Second row κy/κx = 2, κy/κx = 1. Third row: κy/κx = 1/2,
κy/κx = 1/4. Fourth row: κy/κx = 1/8, κy/κx = 1/16 As κy/κx →∞, ãx accumulates at
0, so all eigenvalues are real. As κy/κx → 0, the eigenvalues trace a curve similar to
those in Figure 6.8, as ãx accumulates at discrete values as shown in Figure 6.20.
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Figure 6.19 – All nonimaginary eigenvalues of αM for p = (5, 0), varying κy/κx.
First row: κy/κx = 8, κy/κx = 4. Second row κy/κx = 2, κy/κx = 1. Third row:
κy/κx = 1/2, κy/κx = 1/4. Fourth row: κy/κx = 1/8, κy/κx = 1/16. For κy/κx > 5, there is
no nonimaginary spectrum per Theorem 2.6.1. For small κy/κx, there are multiple
asymptotic values for ãx shown in Figure 6.20 and eigenvalues accumulate along
corresponding curves such as those in Figure 6.8.
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Figure 6.20 – For a fixed p, κ, across all a ∈ Dp ∩ Z3, the associated reduced
parameters ãx, ãy. In both cases, κy/κx = 1/16, which is relatively small. Top:
p = (2, 1), corresponding to the bottom right subfigure in Figure 6.18. The values
of ãx accumulate at ãx = 0, leading to real eigenvalues, and ãx = ±1/2, leading
to complex eigenvalues along a curve equivalent to the contours in Figure 6.8.
Bottom: p = (5, 0), corresponding to the bottom right subfigure in Figure 6.19.
The parameters accumulate at ãx = 0,±1/5,±2/5. Thus there are real eigenvalues
with parameters ãx = 0, and two sets of eigenvalues along curves from Figure 6.8
corresponding to ãx = ±1/5,±2/5. Compare this to Figure 6.17; for all p = (px, py),
as κy/κx → 0 the relevant ãx parameters take only the values ±k/px for k ∈ Z.
Similarly, if κy/κx →∞ the relevant ãx parameters take only the values ±k/py.
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Figure 6.21 – Valid values of p for Theorem 2.7.53 with κy/κx = 100. As per
Figures 2.13 and 2.14. Here κy/κx is large so there are a large number of values of
p that do not satisfy the condition per Figure 2.15. The red values that indicate
values with no a leading to a real eigenvalue have py = 0, 1, which will in general
be true for large κy/κx.

px >
3+2
√

3
2

κy
κx

or py >
3+2
√

3
2

> 3 satisfy (2.7.31), and therefore there is linear
instability. By observation, in this limit all values p with py > 1 have some
class a that satisfies the conditions of Theorem 2.7.53 without satisfying (2.7.31),
leading to linear instability. Of course, we expect all steady states not satisfying
the conditions of Theorem 2.6.1 to be unstable due to the hypothesis of 2.7.1,
but this has not yet been proven.

6.2.2. Limiting Domain Sizes in Three Dimensions. The concepts in
Section 6.2.1 can be applied to the three-dimensional problem as well. As there
are three domain parameters κx, κy, κz, we can consider domains with extreme
values of κy/κx, κz/κz, or both. Recall that |κ| = 1 is normalised and κx, κy, κz 6= 0
so these ratios uniquely define the size of the domain.

Many of the same observations as for the two-dimensional case apply to the
three-dimensional case. Figure 6.22 shows how the nonimaginary eigenvalues for
p = (1, 1, 1) vary as the domain size is varied. Note that as the domain size is
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Figure 6.22 – For p = (1, 1, 1), the change in the nonimaginary spectrum as
the domain size is made large or small. Here Γ = (Γx, 1, 1) with Γx chosen to
satisfy the divergence-free condition. The three rows from top to bottom have
domain κy/κx = 1/10, κy/κx = 1, κy/κx = 10. The three columns from left to right
have domain κz/κx = 1/10, κz/κx = 1, κz/κx = 10. Note that as p is symmetric
under cyclic permutations, this figure is symmetric under κy ↔ κz. If any two
of κx, κy, κz are much smaller than the third, there are only real nonimaginary
eigenvalues. This is the same behaviour as in Figure 6.18.

changed, Γ must be altered to preserve the divergence-free condition 〈p, K−1Γ〉 =
0. This does not qualitatively affect the nonimaginary spectrum. As per the two-
dimensional case in Figures 6.18, 6.19 the number of nonimaginary eigenvalues
becomes very large when either or both of κy/κx, κz/κz become large or small. This
is because the unstable ellipsoid Dp become large, corresponding to an increase
in ν and therefore an increase in the number of nonimaginary eigenvalues per
Conjecture 6.1.10. As px, py, pz 6= 0, any domain that is sufficiently far from
isotropic leads to a large number of nonimaginary eigenvalues. Also note that
the figures are symmetric in κy/κx, κz/κz as p is symmetric in each direction and
Γ is symmetric in the y and z directions. Note that for κy/κx = 1/10 and κz/κx = 1,
the spectrum converges towards a curve similar to those in Figure 6.8. This is
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Figure 6.23 – For p = (2, 1, 0), the change in the nonimaginary spectrum as the
domain sizes are made large or small. Here Γ = (Γx, 1, 1) with Γx chosen to satisfy
the divergence-free condition. The three rows from top to bottom have domain
κy/κx = 1/10, κy/κx = 1, κy/κx = 10. The three columns from left to right have
domain κz/κx = 1/10, κz/κx = 1, κz/κx = 10. For sufficiently large values of κy/κx,
the nonimaginary spectrum is real as the unstable ellipsoid becomes sufficiently
prolate. For small values of κy/κx or κz/κx, the spectrum converges to contours as in
the two-dimensional case shown in Figure 6.19. If κy/κx are both small, new curves
arise due to the factor of sin θ in the spectrum, as there will be classes with many
different values of θ. Finally note that for κy/κx = 1 and sufficiently large values
of κz/κx, the nonimaginary spectrum is the same as for the two-dimensional class
with p = (2, 1), as shown in Figure 6.10. This is because the unstable ellipsoid
is very narrow in the z-direction, so the only nonimaginary spectrum is from the
lattice points on the x-y plane, which correspond to the lattice points in the two-
dimensional classes.

for the same reason as in Section 6.2.1: the values of the reduced parameters ãx
converge to a set of discrete values. Finally for κy/κx = κz/κz = 10, the eigenvalues
lie on a different curve to those seen in Figure 6.8. This curve occurs as the
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Figure 6.24 – For p = (2, 0, 0), the change in the nonimaginary spectrum as the
domain sizes are made large or small. Here Γ = (Γx, 1, 1) with Γx chosen to satisfy
the divergence-free condition. The three rows from top to bottom have domain
κy/κx = 1/10, κy/κx = 1, κy/κx = 10. The three columns from left to right have
domain κz/κx = 1/10, κz/κx = 1, κz/κx = 10. Note that as κy/κx, κz/κx → 0 the size of
the nonimaginary spectrum increases as the size of the unstable ellipsoid increases.
Also if κy/κx, κz/κx > 2 there is no nonimaginary spectrum, as the conditions of
Theorem 4.3.6 are satisfied so the shear flow is spectrally stable (though there may
still be classes with linear instability, depending on the value of Γ).

unstable ellipsoid grows to include classes with more values of θ, which scale the
eigenvalues by | sin θ|.

In Figure 6.23, p = (2, 1, 0) is fixed and the domain sizes are changed. Again,
Γ depends on the domain size to ensure the divergence-free condition is satisfied.
In this case, we observe that if κy/κx = 1 and κy/κx is large, the spectrum is the
same as that of the two-dimensional problem with p = (2, 1) shown in Figure
6.10. This is because the unstable ellipsoid becomes sufficiently narrow in the z
direction so only lattice points of the form a = (ax, ay, 0) in the x-y plane are
inside the unstable ellipsoid. The classes led by these values of a have the same
eigenvalues as the two-dimensional class with p = (2, 1), a = (ax, ay) by Theorem
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4.2.59. Also note that for κy/κx, κz/κx both sufficiently small, the eigenvalues occur
on multiple discrete curves that are scaled copies of one another. This corresponds
to the reduced parameter ãx only taking finitely many values, but multiple values
of the θ parameter occurring and scaling the resulting curves of eigenvalues. This
can also be observed when κy/κx = 1 and κz/κx = 1/10, where contours akin to
Figure 6.8 occur but are scaled according to | sin θ| for different values of θ.

In Figure 6.24, p = (2, 0, 0). As this is of the form p = (px, 0, 0), we observe
that the class is spectrally stable for certain domain sizes, per Theorem 4.3.6. This
is visible when κy/κx = κz/κx = 10, where there are no nonimaginary eigenvalues.
We also observe the same effects of changing the domain as in Figures 6.22 and
6.23, such as eigenvalues converging to curves corresponding to discrete values of
ãx.

6.3. Numerically Calculated Flows

We now present some numerically calculated flows of the Euler equations.
This allows us to verify the stability results of this thesis, particularly Theorems
2.6.1 and 2.7.53. We also observe the nonlinear dynamics that could not be cap-
tured by the linear stability analysis. To calculate these flows we use the Poisson
integrator for the sine-bracket truncated nonlinear system developed in Section
3.3. This integrator is computationally efficient thanks to the decomposition and
discrete Fourier transform developed in [McL93] and described in Section 3.3.
It also conserves the Casimirs to machine precision.

The outline of the integration algorithm is as follows:

• Fix a truncation size N ∈ N.
• For each k in DN , define σk = {n̂k : n ∈ N}, a set of commuting coordi-

nates.
• Choose a subset K ⊆ DN such that

⋃

k∈K
σk = DN . (6.3.1)

This is generated algorithmically by adding additional modes k to K until
the condition is satisfied.
• For all j ∈ DN define

µ(j) := number of k ∈ K such that n̂k = j for some n ∈ Z. (6.3.2)

For 2N + 1 prime, there is a choice of K per [McL93] such that µ(j) = 1
for all j 6= 0. For 2N + 1 non-prime, such a choice of K is not possible.
• Split the Hamiltonian (3.1.12) as H =

∑
k∈KHk, where

Hk =
1

2

∑

n6=0

1

µ(nk)

ω+nkω−nk
|nk|2κ
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Figure 6.25 – The flow of an initial condition consisting of a small perturba-
tion of cos(κxx), the steady state with p = (1, 0) for domain size κy/κx = 5/4.
The flow is calculated using the Poisson integrator for the sine-bracket truncated
system developed in Section 3.3 with truncation size N = 18. The domain size
satisfies κy/κx = 5/4 > 1 so this steady state is unstable, as we can observe from
the dynamics. From left to right, top to bottom, the system is shown at times
t = 0, 15, 22.5, 30.

per (3.3.7). Note that this splitting is not necessarily disjoint; the same
coordinate ωj may appear in multiple Hk.
• For each k ∈ K, calculate the dynamics generated by Hk and the sine-

truncated Poisson bracket. As Hk only depend on the modes in σk and

these modes all commute, the modes in n̂k are constant under these dy-
namics, and all other modes have linear dynamics. We can thus calculate
the flow map of Hk as φtk(x0) = exp(tJD2Hk)x0. This exponential can be
calculated explicitly; by Section 3.3, JD2Hk is diagonalised by a discrete
Fourier transform [McL93].



6.3. Numerically Calculated Flows 185

Figure 6.26 – The flow of an initial condition consisting of a small perturbation of
cos(κxx), the steady state with p = (1, 0). The flow is calculated using the Poisson
integrator for the sine-bracket truncated system developed in Section 3.3 with
truncation size N = 18. The domain size is κy/κx = 5/6 < 1. This system is linearly
stable by Theorem 2.6.1, and Energy-Casimir stable by [Arn66b]. Compare this
to Figure 6.25; when the domain size is changed, the stability of the steady state
changes accordingly. From left to right, top to bottom, the system is shown at
times t = 0, 15, 22.5, 30.

• For each timestep, the full flow map is the split-step integrator

φt =
∏

k∈K
φtk.

This integrator preserves the Poisson structure.

We use this integrator to demonstrate the stability theorems of Chapters 2 and
3. Figures 6.25 and 6.26 show how a small perturbation of the flow with vorticity
Ω = cos(κxx) evolves depending on the ratio of the domain size κy/κx. The flow
is perturbed by a Fourier-truncated Dirac delta function and the resulting initial
condition evolved using the Poisson integrator with truncation size N = 18 and
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Figure 6.27 – The evolution of an initial condition consisting of a small per-
turbation of the steady state with parameter p = (2, 0) on the domain with size
κy/κx = 3/2. As κy/κx < px, the steady state is unstable, which can be observed.
The flow is calculated using the Poisson integrator for the sine-bracket truncated
system with truncation size N = 18. The perturbation used is a Fourier-truncated
Dirac delta function at the centre of the domain. The state is shown at times
t = 0, 6, 12, 18, 24, 30, 75, 90.
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Figure 6.28 – The evolution of an initial condition consisting of a small pertur-
bation of cos(2x) (i.e., the steady state with parameter p = (2, 0)) on the domain
with size κy/κx = 5/2. As κy/κx > px, the state is linearly stable by Theorem 2.6.1.
The flow is calculated using the Poisson integrator for the sine-bracket truncated
system with truncation size N = 18. In this truncation, the state is also energy-
Casimir stable per Proposition 3.2.28 as 2N + 1 = 37 is prime. The perturbation
used is a Fourier-truncated Dirac delta function at the centre of the domain. The
state is shown at times t = 0, 12, 18, 24.

a timestep dt = 0.1. As per the result in Arnold [Arn66b], this flow is energy-
Casimir stable if and only if κy/κx > 1. This is also a special case of Theorem
2.6.1, which shows linear stability for this case. In Figure 6.25, κy/κx = 5/4 > 1
so the flow is nonlinearly unstable. In Figure 6.26, κy/κx = 5/6 < 1 so the flow is
energy-Casimir stable.

Figure 6.27 shows the evolution of a small perturbation of flow cos(2κxx) for
a domain with κy/κx = 3/2. As px = 2, κy/κx < px and so we expect nonlinear
instability per Theorem 2.7.53. This is clearly observed from the evolution of the
vorticity, which diverges towards a seemingly chaotic state.

Figure 6.28 shows the evolution of a small perturbation of the same flow
cos(2κxx) on a different domain, with aspect ratio κy/κx = 5/2. Then κy/κx > px = 2
and we expect linear stability per Theorem 2.6.1. Additionally, as the flow is
approximated using the sine-bracket truncated system, we expect this steady
state to be energy-Casimir stable per Proposition 3.2.28 as 2N + 1 = 37 is prime
so gcd(px, 2N + 1) = 1. We observe this stability; the perturbed steady state
does not change in any visually recognisable way. This is a striking juxtaposition
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Figure 6.29 – The flow of an initial condition consisting of a small perturbation of
the flow with p = (2, 1) and isotropic domain κy/κx = 1. For p = (2, 1), as px, py 6= 0
the flow will be unstable regardless of domain size. The flow is calculated using
the Poisson integrator for the sine-bracket truncated system with truncation size
N = 18. The perturbation used is a Fourier-truncated Dirac delta function at the
centre of the domain. The state is shown at times t = 0, 10, 15, 17.5, 20, 30.
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Figure 6.30 – An eigenfunction associated with a positive real eigenvalue of the
steady state with p = (3, 2) and domain size κy/κx = 1. This eigenfunction is
associated with the positive real eigenvalue λ = 0.0420..., which occurs in the
class a = (−2, 2). A perturbation of the steady state by this function will grow
exponentially in the linearised problem.

to Figure 6.27, where the same flow is calculated on a domain with a different
aspect ratio.

Figure 6.29 shows the evolution of a small perturbation of the flow with
Ω = cos(2x+y), which is unstable. The domain size is κx = κy = 1, the isotropic
domain. We observe nonlinear instability for any flow with vorticity of the form
Ω = cos(ax+ by) for a, b 6= 0.

A YouTube video showing full videos of the flows shown in Figures 6.25, 6.26,
6.27, 6.28, and 6.29 is available at

https://www.youtube.com/watch?v=5X3BmwPuCco.

The full dynamics and the loss of stability can be seen in those videos.

We can also calculate the eigenfunction associated with a positive real eigen-
value; this gives a local approximation of how the flow will lose stability. Figure
6.30 shows an eigenfunction associated with a real eigenvalue in the system lin-
earised around p = (3, 2) with κy/κx = 1. If the steady state is perturbed by this
eigenfunction, the perturbation will grow exponentially in size.

https://www.youtube.com/watch?v=5X3BmwPuCco


Chapter 7

Conclusion

In this thesis, we have determined the stability of a large family of sinusoidal
shear flows in both two- and three-dimensional periodic domains. We showed
analytically that a family of parallel shear flows are linearly stable, and another
family of shear flows are nonlinearly unstable in a two-dimensional domain and at
least linearly unstable in a three-dimensional domain. Numerically we extended
this to classify the stability of all sinusoidal shear flows, per Conjecture 6.1.8.
To prove instability, we showed the existence of a positive real eigenvalue in the
linearisation of the shear flows; this is a step towards a full analytic description
of the spectrum of the linearised system.

Of particular note are the results for the three-dimensional periodic domain.
The three-dimensional domain is more complicated and less well-understood than
the two-dimensional equivalent. We showed that the linearised system decom-
poses into classes, and that generically these classes are equivalent to some corre-
sponding class in the two-dimensional problem. We also discussed the exceptional
nondiagonalisable classes that occur for a dense set of values of the parameters
that set the steady state. This is related to the loss of nonlinear stability through
nonnormality, which occurs even in the generic case.

A notable new result of this thesis is the development of a Poisson structure
for the Euler equations on the three-dimensional periodic domain. By describing
the dynamics of the vorticity Fourier modes as a Poisson system, we have opened
the possibility of future study analysing and exploiting this structure. We also
calculated the reduced structure on a simplified Poisson manifold, which allows
for simpler stability analysis of this system. For the two-dimensional periodic
domain, we discussed how the Poisson structure can be truncated to a finite-
dimensional Poisson structure. It was shown that the stability results for shear
flows also hold in this finite-dimensional system. We also generalised an existing
Poisson integrator to an anisotropic domain, allowing for the efficient calculation
of ideal fluid flows.

This thesis provides a step towards a complete analytic description of the non-
imaginary spectrum. Future work would extend this to describe the full spectrum
in terms of the number and type of nonimaginary eigenvalues. It seems hope-
ful that there is an explicit lower bound akin to the one calculated in Lemma
2.7.20 which can be calculated for all classes with real nonzero eigenvalues. New

190
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techniques would be required to rigorously show the existence of complex eigen-
values as the proof of Lemma 2.7.20 relies on the application of the intermediate
value theorem on the positive real axis. A promising avenue for studying such
eigenvalues is the associated Jacobi problem discussed in Section 2.9. Studying
this problem could prove analytically the existence of the complex eigenvalues
calculated numerically in Section 6.1.2. A complete description of the imaginary
spectrum per Conjecture 6.1.8 would broaden the instability result of Theorem
2.7.53 to all p that do not satisfy the conditions of Theorem 2.6.1. Additionally
it would provide a more detailed understanding of the mechanisms that cause
these steady states to become unstable.

It is hoped that the Poisson structure for the three-dimensional Euler equa-
tions described in Chapter 5 may find some use in the broader fluid mechanics
research community. The existence of this structure may lead to further stability
or instability results, perhaps resulting from a careful studies of the Casimirs
and sub-Casimirs of the Poisson bracket. As the bracket has the Lie-Poisson
form discussed in [McL93], one may formally be able to write down a Poisson
integrator analogous to the one discussed in Section 3.3. However, as this is an
infinite-dimensional system, there is currently no numerical use for this system.
There may still be some way to exploit this structure to develop an accurate
numerical integrator.

Another interesting possible avenue of future research is the analysis of the
limit κy/κx → 0/∞ in the two-dimensional problem, and any possible physical
interpretations of this limit. The numerical results of Section 6.2 show that this
limiting problem has a remarkably coherent structure to its eigenvalues. This
may be considered the dual to the problem of highly oscillatory flows studied in
[BFY99]. There are also the equivalent limits on a three-dimensional domain.

It is possible that approaches similar to those used here could shed some light
on the study of steady states of the Euler equations on the sphere. This has
obvious geophysical applications, especially for the rotating sphere. A structure-
preserving truncation analogous to the one discussed in this paper exists for the
rotating sphere, in both the Euler and Navier-Stokes problems [Zei04]; this may
prove useful in further research.

Although it is beyond the scope of this thesis, it is hoped that there are
useful connections between these results and the existing body of work on shear
flows. For instance, there is significant research on the relationship between the
Euler equations and the inviscid limit of the Navier-Stokes equations. The results
of this paper may suggest parallel results in the Navier-Stokes problem akin to
the results in [BW13]. Understanding how the steady states we have studied
become unstable may also be useful in the challenge to understand the transition
from stable laminar flow to turbulence in the three-dimensional problem. As
discussed in Section 4.3.3, the linearised problem can indicate a possible transition
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to turbulence. The mechanism by which this transition occurs does not appear
in the two-dimensional domain, and merits further study.
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