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1.  INTRODUCTION 

This paper considers a stochastic frontier model that contains environmental variables 

that affect the level of inefficiency but not the frontier.  The model contains statistical noise, 

potentially endogenous inputs, and technical inefficiency that follows the scaling property, in the 

sense that it is the product of a basic (half-normal) inefficiency term and a parametric function of 

the environmental variables.  Both the inputs and the environmental variables may be 

endogenous because they are correlated with the statistical noise component of the error or with 

the basic inefficiency term.  

The first stochastic frontier papers with endogeneity appear to be Kutlu (2010) and Tran 

and Tsionas (2013).  Inputs may be endogenous because they are correlated with the statistical 

noise component of the error, but they are not correlated with inefficiency.  There are no 

environmental variables. This model was extended by Karakaplan and Kutlu (2013) to include 

environmental variables, but they are exogenous. 

Tran and Tsionas (2015) use a copula to allow dependence between the inputs and the 

composed error (the sum of statistical noise and inefficiency).  There are no environmental 

variables. 

Amsler, Prokhorov and Schmidt (2016), hereafter APS, was the first paper to allow 

endogeneity of the inputs with respect to statistical noise and inefficiency separately.  There were 

no environmental variables.  The present paper is essentially an extension of Amsler, Prokhorov 

and Schmidt to allow environmental variables.  Both the inputs and the environmental variables 

can be endogenous because they are correlated with statistical noise and/or they are correlated 

with the basic inefficiency term.  The novelty of the paper is allowing the endogenous variables 

to be correlated with the basic inefficiency term.  This raises non-trivial issues of the meaning of 
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exogeneity and difficult and novel technical issues of estimation. 

Kutlu (2016), which was written independently of and roughly contemporaneously with 

this paper, allows for endogenous inputs and endogenous environmental variables, but only in 

the sense of correlation with the statistical noise. 

Another somewhat similar paper is Griffiths and Hajargasht (2016).  They assume a panel 

data setting.  They do not have environmental variables in the same sense that we do, but the 

distribution of inefficiency differs across firms because it depends on the firm means of the 

endogenous inputs, so that they do have correlations between noise, inputs and inefficiency.  

This paper and the current paper are similar in intent but they actually do not have much in 

common analytically because the models are different. 

Our paper makes three contributions to the literature.  First, it provides a systematic 

treatment of endogeneity in stochastic frontier models generally and models with endogenous 

environmental variables more specifically.  Second, it discusses instrumental variables 

estimation as well as maximum likelihood.  Third, it allows environmental variables to be 

endogenous because they are correlated with either the statistical noise or the basic inefficiency 

term or both. 

 The plan of the paper is as follows.  In Section 2 we outline the model and define some 

basic notation.  Section 3 considers IV estimation in the case that the endogenous environmental 

variables are correlated with noise but not with the basic inefficiency error.  Section 4 considers 

MLE, in the same setting.  Section 5 considers the case that the endogenous environmental 

variables may be correlated with basic inefficiency as well as statistical noise.  Section 6 gives 

the results of some simulations, and Section 7 contains our concluding remarks. 
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2.  NOTATION AND BASICS OF THE MODEL 

 Consider the stochastic frontier model 

(1)         
         ,          . 

In the basic stochastic frontier model of Aigner, Lovell and Schmidt (1977), it was assumed that 

   is normal and    is half-normal, and   ,    and    are independent.  In this paper we will 

consider the case (commonly assumed in the stochastic frontier literature) that    depends on 

some “environmental variables”    that do not influence the frontier output, but which do 

influence the level of inefficiency   .  We will consider the case that the distribution of    

satisfies the “scaling property”: 

(2)       
        

    . 

Here the “basic inefficiency term”   
  is distributed as        

  , i.e. half normal, while  

      
    is the “scaling function.”  This is the so-called RSCFG model of Reifschneider and  

Stevenson (1991), Caudill and Ford (1993) and Caudill, Ford and Gropper (1995). 

We want to allow some or all of the inputs and environmental variables to be  

endogenous, so we will partition    and   : 

(3)     [
   

   
]   ,      [

   

   
] , 

 where     and     are exogenous, and     and     are endogenous.  The full set of exogenous 

instruments is denoted as   : 

 (4)      [

 
   
   

  

] 

 

where    = any “outside instruments.” 

  For some of the estimators we consider we need to assume reduced form equations for 



5 

 

the endogenous inputs and environmental variables: 

(5a)        
       

 (5b)        
       

In the most general version of our model,      
     and    may all be correlated with each other. 

 Finally, we define        
   √

 

 
   , and   

    
    . 

All of the papers referred to in the Introduction, except for Tran and Tsionas (2015) and 

Griffiths and Hajargasht (2016), are special cases of this model.  Kutlu (2010) and Tran and 

Tsionas (2013) have no environmental variables and do not allow correlation between the 

endogenous inputs and inefficiency. Karakaplan and Kutlu (2013) have environmental variables 

but they are exogenous.  Amsler, Prokhorov and Schmidt (2016) do not have environmental 

variables but they do allow correlation between the endogenous inputs and inefficiency.  Kutlu 

(2016) has environmental variables that can be endogenous, but does not allow correlation of the 

endogenous inputs or environmental variables with the basic inefficiency term.  

 Allowing the environmental variables to be correlated with the basic inefficiency term is 

a decidedly non-trivial extension of the previous literature, in large part because there are subtle 

issues of what is a proper (or useful) definition of “exogenous” and “endogenous.”  For example, 

in an IV setting we want exogenous variables to be valid instruments, and in an MLE setting we 

want exogenous variables to be things that we can condition on.  We give careful definitions of 

exogeneity that make these things true. 

   

 3.  IV ESTIMATION WITH ENVIRONMENTAL VARIABLES CORRELATED WITH 

NOISE BUT NOT WITH BASIC INEFFICIENCY 

 In this Section we allow endogenous environmental variables, but they are endogenous 
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only in the sense of being correlated with statistical noise, not with the basic inefficiency term.  

This case was also considered by Kutlu (2016).  However, here we consider estimation by 

instrumental variables (IV) rather than MLE. 

In APS, one of the methods of estimation considered was corrected 2SLS (C2SLS).  Here 

the model was estimated by 2SLS (IV), and then the intercept was corrected.  The intercept 

needed correction because, with no environmental variables,          √
 

 
   and 2SLS 

implicitly estimates the model             
         

 ).  The correction is based on an 

estimate of   
 , where   

  and   
  are estimated using the second and third moments of the 2SLS 

residuals.  This is a straightforward generalization of the corrected OLS estimator of Aigner, 

Lovell and Schmidt (1977), which was for the case that all of    is exogenous. 

  With environmental variables, things are different because       is no longer constant.  

So now we rewrite the model as follows: 

 (6)         
           

          
       

     
 

 where as before   
    

    .  A detail is that, assuming    , the term         
    will not 

be confounded with the intercept and so no correction of the intercept will be necessary.  

  For IV to be consistent, we will need to have 

 (7)            
           

         = 0, 

 or at least the weaker condition that             
           

      = 0.  The condition in 

(7) is equivalent to   

 (8)          
       

          .   

 We will have            under all of the definitions of exogeneity that we consider.  So 

fundamentally we will need to make assumptions that guarantee that 

 (9)       
       

           (IV moment condition) 
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 or at least     
       

          (weaker IV moment condition). 

  A trivial observation is that      
       

       ] would equal zero under any reasonable 

definition if    is contained in    and     
      =     

  .  That is the case that    is exogenous.  

But if    [
   

   
] and only     is part of   , this is not helpful. 

  This leads us to the following definition of exogeneity of   . 

 

  DEFINITION 1:     is exogenous if (i)           ; (ii)     
             

      = 

    
    

 

  THEOREM 1:  If    is exogenous in the sense of Definition 1, the IV moment 

condition (8) holds. 

  Proof:  If Definition 1 applies, then 

 (10)      
              

                       =        . 

 and then  

 (11)       
       

         =          
       

             

=           
       

          . 

 

  Given that the IV moment condition holds, the IV estimator will be consistent if standard 

regularity conditions (including the rank and order conditions) hold.  These are familiar 

conditions that we will not seek to refine. 

 The force of Definition 1 is that endogeneity of     is with respect to    only.  That is, 

endogeneity of     means correlation with   , not with   
 . Although we are not yet speaking in 

terms of independence, Definition 1 translated into statements of independence would be:     is 
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exogenous if    is independent of    and         is independent of   
 .  Fundamentally the point 

of view is that the representation      
         

    is as a product of independent parts.  So, for 

example, if   
         

     then              
         

    .  That fits with the usual 

discussion of the RSCFG model, but that is not surprising since the usual discussion is in terms 

of exogenous    (and   ). 

  To understand why this strong assumption is necessary, consider the following alternative 

(too weak) definition of exogeneity. 

 

  DEFINITION 2 (Too Weak):     is exogenous if (i)           ; (ii)     
         

    
     . 

 

  Definition 2 is appealing because it is about the relationship of    to the other variables.  

It does not restrict the relationship between     and   
 .  However, unfortunately, it does not 

imply that the IV moment condition (8) holds.  To see this, we calculate 

(12)       
       

                 
       

                    
        . 

The second term on the r.h.s. of (12) simply equals           
       .  The first term is 

(13)       
       

         =            
       

         =            
       

         

where the last equality is by Definition 2.  However, these two terms (first and second terms on 

the right hand side of (12)) are not equal unless     
      =     

     .  This is not implied by 

Definition 2. 

 

 4.  MLE WITH ENVIRONMENTAL VARIABLES CORRELATED WITH NOISE BUT 

NOT WITH INEFFICIENCY 
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  We continue to assume the basic stochastic frontier model (1) with environmental 

variables entering the specification of    as in (2).  Also as before   
  ~        

  ,    ~ 

      
  , and we partition    as    [

   

   
]. 

  For completeness, we first mention briefly the case in which all of    is exogenous, and 

    is endogenous because it is correlated with   .  This model was considered by Karakaplan 

and Kutlu (2013).  It is a relatively straightforward extension of Kutlu (2010), Tran and Tsionas 

(2013) and APS, which did not contain environmental variables.  Some algebraic details for this 

case are given in Appendix 1. 

 4.1 The Case That     and     Are Endogenous (Correlated with   ) 

  We now consider the main case of interest, in which     and     are endogenous in the 

sense that they are correlated with   .  This case was also considered independently by Kutlu 

(2016).  The instruments are    [

 
   
   

  

] as in equation (4) above.  We have the SF model of 

equations (1) and (2), plus we now assume reduced form equations for the endogenous variables: 

 (14a)        
       

 (14b)        
       

 We can write these as            where    [
   

   
],    [     ]    [

  

  
] . 

 We define    and   similarly to the case considered in Appendix 1: 

 (15)      [
  

  
]  [

  

  

  

] ,    [
  

    

      
]  [

  
       

         

         

]. 

 We then make the following Assumption. 
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  ASSUMPTION 1. 

   (i)       ~        

   (ii)   
              ~        

   

 

 So once again   
  is independent of everything else, and the errors       and    are independent 

of the instruments     

  We note that   |             |                     
  , where     

    
         

     as in 

Appendix 1. 

  We can factor the joint density of               as follows: 

 (16)                                                               

                                            

 From (16) we can obtain 

 (17)      (       |  )   ∫                                          
 

 
 

  The term in brackets is the convolution of          
   and          

  , where     
  is 

defined above and    

 (18)             
     ,    

    
        

     .   

 This convolution yields the skew-normal density: 

 (19)               (
 

  
)   (

       

  
)   (

            

  
). 

 In the expression in (19),   
      

    
  ;            ;   is the standard normal density 

function; and   is the standard normal cdf. 

  The term outside the brackets in (17) is the multivariate normal density: 

 (20)              constant        
        ( 

 

 
   

    
    ) 



11 

 

 Combining (19) and (20), we obtain 

 (21)       (       |  ) = (
 

  
)   (

       

  
)   (

            

  
)        

        ( 
 

 
   

    
    ) 

  To obtain the likelihood, we substitute           
   and           .  Then we 

take logarithms and sum over  .  This yields the result we seek. 

 

THEOREM 2:                             where 

(22A)       =   
 

 
∑      

 
  

 

 
∑          

            
 

  

   + ∑   [ (
           

        

  
)]    

and  

(22B)       =    
 

 
  |   |  

 

 
∑ (      

  )   
             . 

 

 This likelihood is similar to the likelihood given in equations (A3) - (A5) in Appendix 1, 

for the case that all of    is exogenous, which in turn is similar to the likelihood given in 

equations (13a) – (13c) of APS, for the case that there is no   . 

 We obtain the MLE by maximizing the likelihood with respect to the parameters 

(      
    

       ,      ).  Alternatively, as suggested by Kutlu (2010), Karakaplan and Kutlu 

(2013) and APS, we can use a two-step procedure.  Step 1 is to estimate the parameters     and 

  from the reduced form equations, that is by maximizing     .  This yields  ̂ = OLS of    on 

   and   ̂   
 

 
∑ (    ̂   )      ̂     .  Step 2 is to estimate the rest of the parameters by 

maximizing      taking the estimates of      and   as given. This is essentially a control 

function approach where the control function in the SF model equation is    
            and the 
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coefficients are    .  The two-step procedure is generally different from the MLE because it 

ignores the information about     and Π  contained in     .  A practical implication is that the 

conventionally-calculated standard errors from the Step 2 estimation need to be adjusted to 

reflect the fact that     and Π have been estimated, except when     = 0 (there is no 

endogeneity).  See APS, Section 4.3, for more detail. 

4.2 Prediction of    

 The usual predictor of    is  ̂          , as suggested by Jondrow et al. (1982).  

However, given the model of Section 4.1 we can define a better predictor of   , namely  ̃  

           .  Even though    is independent of   ,    is correlated with, and therefore informative 

about,   .  Therefore, conditional on    =      ,    is informative about   .   

 This point was first made by APS, Section 4.4, in the context of the simpler model with 

no   .  The results that follow here are logically the same as in APS though they are algebraically 

more complex. 

 Suppose that we transform (        ) into (     ̃   ) where 

(23)    ̃           where             
     . 

Then    is independent of (     ̃), so that             =        ̃     =        ̃ .  Define     
 ,   

  

and      as above.  Also define           ,   
      

    
 ,         

    
 

  
   ̃ and     

  
    

   
 

  
  .  

Then the same argument as in Appendix B of APS implies that the distribution of    conditional 

on   ̃ (or conditional on    and   ) is             
  .  This leads to the explicit expression: 

(24)   ̃  =              =        ̃  =                

where    
  

  
  ̃ and where                     is the standard normal hazard function.  

This is somewhat similar to equation (3) of Jondrow et al. (1982). 
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 This is a better predictor than the former predictor,  ̂          , because   
    

 .  So, 

paradoxically, while endogeneity complicates parameter estimation, it makes it possible (subject 

to the assumptions of the model) to improve the precision of prediction of   . 

The obvious disadvantage of the new estimator of    is that now the reduced form must 

in fact be a correctly specified model with normal errors.  Unlike in the standard linear model 

this is now a substantive assumption. 

 

5. ESTIMATION WITH ENDOGENOUS VARIABLES CORRELATED WITH 

INEFFICIENCY 

5.1 Notation and Assumptions 

  We will now consider the case that     and     may be correlated with   
  as well as   .  

APS considered the case that     may be correlated with   
 , but correlation of     with   

  is 

novel. 

We will continue to assume the stochastic frontier model as in equation (1), the error 

specification of equation (2), and the reduced form equations for     and     as in equation (14).  

As in the previous Section, we write the reduced form equations as            where 

   [
   

   
],    [     ]    [

  

  
] .  Also, as in equation (14) above, we will use the notation 

that    [
  

  
]  [

  

  

  

] ,    [
  

    

      
]  [

  
       

         

         

] .   

  Then we make the following Assumption. 

 

 ASSUMPTION 2. 

   (i)        ~          
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   (ii)   
     ~        

   

   (iii) The joint distribution of [
  

  
 ] conditional on    is characterized by the 

    marginal distributions in (i) and (ii), plus the Gaussian (multivariate  

   normal) copula. 

 

  In Assumption 2,     is the     element of the vector    and     is the     diagonal 

element of the matrix Ω. 

  A copula is a joint distribution whose marginals are uniform.  It captures the dependence 

in a joint distribution.  Sklar’s Theorem says that the specification of a joint distribution 

determines the marginal distributions and the copula; conversely, if we specify the marginal 

distributions and a copula, this determines a joint distribution which has the specified marginals.  

Similarly to what was done in APS, Section 4.5.2, we have therefore specified normal marginal 

distributions for the elements of    and a half-normal marginal distribution for   
 .  The normal 

marginal distributions for the elements of    plus the Gaussian copula imply that        is 

distributed as       , as in Assumption 1.  However, in Assumption 2   
  is independent only 

of   , so that now   
  can be correlated with the noise    and with the reduced form errors    and 

  .  Therefore now it is possible for     or     to be endogenous because they are correlated 

either with    or with   
 . 

  The joint distribution of [
  

  
 ] will depend on the variances     (which include   

  and the 

variances of the reduced form errors),   
   and the correlation parameters in the copula.  As a 

matter of generic notation we will let   represent this set of parameters.  Note that the 

distribution of [
  

  
 ] does not depend on   ; we are assuming that the random elements of the 
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model are independent of the instruments.   

Also note that, if we should wish to assume that   
  and    are independent, we just need 

to set the relevant correlation parameter in the copula equal to zero.  Smith (2008) has suggested 

using a copula to allow dependence between    and    in the basic stochastic frontier model, but 

the concept of endogeneity does not require such dependence. 

  The distribution of [
  

  
 ] cannot be written in closed form, but (as noted by APS) it is easy 

to make simulation draws from it.  This will be the basis of our estimation methods. 

 5.2 IV Estimation 

  We will now consider IV estimation of the model.  The basis of IV estimation is the 

moment condition: 

 (25)            
             

 where  

 (26)      (          )               
        

        . 

 Here the notation    is used to represent the parameters that are needed to characterize the joint 

distribution of   
  and   .  The parameters that are needed to characterize the distribution of    or 

its correlations with   
  and     are not relevant at this point. 

  We can calculate  (          ) to any desired degree of precision by the following 

simulation.  (i) Given   , draw a value of  [
  

  
 ] from the joint distribution of   

  and   .  (ii) 

Given       and   , calculate a value of       
      .  (iii) Given   

          and  , 

calculate a value of      
        

   .  (iv) Repeat this procedure many times and average the 

value of    (over draws of the simulation, not over i) to obtain     (          ). 

  Note that     is part of    and so it is taken as given; it is not drawn as part of the 
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simulation.   

The moment conditions (25) would lead naturally to the following GMM estimator.  We 

would minimize the IV criterion function 

  (27) ∑  (       
    (          ))       

  ∑    
 (       

    (          ))  . 

Here   is a positive definite weighting matrix, and the optimal   is     
 (       

   

 (          ))], which is estimable in the usual way from the results of a first-step estimation 

with arbitrary  . 

As it stands, the minimization would be with respect to the parameters          and   .  

That is a very large set of parameters.  We can simplify the IV minimization by observing that 

some of the parameters can be estimated from the reduced form.  For example, least squares 

applied to the reduced form equation for     provides a consistent estimate of   , say  ̂ .  Also, 

if we define    to be the dimension of    , we can consistently estimate the    reduced form 

error variances and the 
 

 
         reduced form error covariances from the sums of squares 

and cross products of the reduced form residuals.  These are the parameters in the matrix     

defined in equation (15) above.  From these covariances we can calculate the implied copula 

parameters for the distribution of   . 

With that as motivation, we partition    [
   

   
], where     contains the reduced form 

variances and the copula parameters that determine    , and where     contains   
  and    , 

where     is generic notation for the    copula parameters that determine the dependence 

between   
  and   .  We can calculate a consistent estimate, say  ̂  , of     , based on the results 
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of the estimation of the reduced form equation for    .  Then we can minimize the modified IV 

criterion function 

(28) ∑  (       
    (      ̂   ̂      ))   

     ∑    (       
    (      ̂   ̂      ))   

with respect to       and    . 

5.3  MLE 

We will now consider maximum likelihood estimation of the model. Omitting the 

subscript “i” for typographical simplicity, we begin with the joint density of the random elements 

of the model, namely 

(29)                     . 

This is the density implied by the assumptions of Section 5.2, namely, marginal normality 

of   and of the elements of   and τ, half-normality of   , and the normal copula.   

Then we want to transform this set of variables to the set           where  

(30)                                   

and where       (  
          )   Note that v                 , and the Jacobian of the 

transformation from           to           is unity.  Therefore the joint density of           is 

(31)                                                      
  .   

Next, we integrate out   : 

(32)                ∫                        

   = ∫                                
      . 

The range of the integral is from zero to infinity. 

Finally, we substitute        
          

   and           to obtain the 

joint density of       and  : 

(33)                          (     
        

           ) 
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This leads to the (log) likelihood 

(34)   ln   ∑     
                         

 The joint density of          can be written in closed form.  See Appendix 2.  However, 

this is not a simple expression since it includes the term             .   There is no explicit 

expression for the integral in equation (32).  It can be evaluated numerically (by drawing from 

the distribution of   ).  See Appendix 2 for the details. 

 

6. SIMULATIONS 

In this Section, we report the results of simulations designed to investigate the 

performance of some of the estimators proposed in this paper.  Specifically, we will investigate 

the performance of the MLE’s of Section 4.1 and Section 5.3.  We do not attempt to perform a 

detailed investigation of the statistical properties of the estimators, but we want to make sure 

there are no obvious serious problems (e.g. large biases or variances).  Also, and perhaps more 

importantly, we just want to make sure that our models are estimable in a practical sense.  This 

paper has not presented any formal identification results, and so we are interested in making sure 

that we have identification in the numerical sense, that is, that the various likelihoods have sharp 

maxima. 

6.1 Data Generation 

The DGP for the simulations is described in terms of the model given by equations (1), 

(2), (5a) and (5b), with additional notation defined in equations (3) and (4).  Either Assumption 1 

or Assumption 2 will hold depending on whether endogenous variables are correlated only with 

statistical noise  , or also with the basic inefficiency term   . 

We will first define a “base case” and then consider some changes from this case.  The 
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base case is defined as follows. 

1.    = 200.   

 2.  One each of            . 

 3.  Two outside instruments,    and   .   

 4.  The instruments             all N(0,1), and equicorrelated with correlation 0.5.   

 5.  The errors       (components of  ) all N(0,1), equicorrelated with correlation 0.5, 

and independent of the instruments.   

 6.    
  =         so that var     = 1.   

 7.    = 0. 

 8.    chosen such that the two coefficients are equal and var(   ) = var(   ). 

 9.     and    chosen such that in    the coefficients are equal and var(    ) = var( ), 

and similarly for   . 

 10.    = 0. 

 11.     independent of the other errors (though this will only sometimes be imposed in 

estimation). 

6.2 The Model of Section 4.1 

We first consider the model of Section 4.1.  In this model     and   are correlated, but    

is independent of     and  .  Therefore    and    are endogenous because they are correlated 

with  , not   .  For this case the likelihood can be written in closed form (equations (22A) and 

(22B)). 

Table 1 gives the results of estimation for a single simulated data set, for each of three 

values of  .  The point of this is simply to verify that the model can be estimated (e.g. there is no 

apparent failure of identification) and yields sensible results.  By focusing on a single data set, 
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we can do the usual numerical sensitivity checks (e.g. verifying that the same estimates result 

from different choices of starting values for the maximization algorithm) that are hard to 

implement in a many-replication simulation. 

As a broad statement, the results in Table 1 do seem sensible.  We did not encounter 

numerical difficulties and there are no obvious anomalies.  As   increases, the estimates 

generally get closer to the true values, and their (OPG) standard errors decrease at approximately 

the correct       rate.  The estimates of   
  are imprecise, but that is a common feature in all 

stochastic frontier models. 

We present the 2-step estimates only for   = 200, because in that case, and the other 

cases we consider, they are very similar to the 1-step estimates. 

Table 2 gives the results for the same data generating process, but for a simulation with 

1000 replications.  Here we give both the simulation standard deviations of the estimates and the 

average across replications of the standard errors.  As in Table 1, the results are unexceptional.  

There are no serious biases, the standard errors are reliable (the average of the standard errors is 

close to the simulation standard deviations), and both standard errors and standard deviations 

decrease at the correct       rate.  As in Table 1,   
  is estimated imprecisely, but the standard 

errors accurately reflect this. 

6.3 The Model of Section 5.3 

 Next we consider the model of Section 5.3, which allows        and   to be correlated.  

Therefore    and    can be endogenous because they are correlated with   or with    or both.  

However, we will simplify this model a little by making    and   independent in data generation 

and imposing independence of    and   in estimation.  This restriction seems sensible in 

empirical applications, and correlation between    and   is not part of the endogeneity issue. 
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 We also simplify the data generation process by making    independent of   and   in the 

DGP.  This enables us to generate the data without using a copula.  However, we do not impose 

the restriction that    is independent of   and   in estimation, so a copula is necessary for 

estimation of the model.  We use the Gaussian copula, which is consistent with the DGP.  Note 

that for this case we need to simulate the likelihood.  We do so using   draws from the 

distribution of    to evaluate (estimate) the expectation in equation (A10), where the values of   

will be reported below.   

The results for a single simulated data set, for each of three values of  , are given in 

Table 3.  For this set of results we use   = 100 draws to evaluate the likelihood.  Note that the 

correlation parameters at the bottom of the Table (e.g.    ) are the correlation parameters in the 

Gaussian copula, but because     and   are marginally normal they are also the simple 

correlations of the indicated variables. 

Table 3 is similar in format and intent to Table 1.  The results are also qualitatively 

similar.  We did not encounter numerical difficulties and the only anomaly is that the parameters 

    and     (the parameters in the Gaussian copula that determine the correlations between 

  and   and  , respectively) and   
   are estimated quite imprecisely, especially when   = 200.  

The estimates of the other parameters are generally a little less precise than in Table 1, but that is 

not surprising given that we are now estimating a more complicated model.   

The imprecision of the estimation of      and    disappears if we use large enough 

values of   and  .  For example, when we constructed one data set with   = 10,000 and used   

= 1000, the estimates of     and     were 0.005 and 0.034, with standard errors of 0.056 and 

0.042.  Of course,   = 10,000 is not empirically relevant for these kinds of models, but at least it 

seems that there is no fundamental (e.g. identification) issue.  For   
 , we obtained  an estimate 
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of 2.453 (versus true value of 2.752), with a standard error of 0.163, so the imprecision is more 

resistant to increases in sample size. 

Table 4 is similar in format and intent to Table 2, though for a different model.  It gives 

the results for the same data generating process as for Table 3, but for a simulation with 100 

replications.  Once again we use   = 100.  Here as in Table 2 we give both the simulation 

standard deviations of the estimates and the average across replications of the standard errors. 

The results for the parameters other than   
 ,     and     are mostly unexceptional.  

There are no serious biases, the standard errors are generally reliable (the average of the standard 

errors is close to the simulation standard deviations), and both standard errors and standard 

deviations decrease at the correct       rate.  As in Table 3,   
 ,     and     are estimated 

imprecisely.  The standard errors for these parameters reflect this imprecision but they are not as 

reliable as for the other parameters.  For example, for     for   = 500, compare the simulation 

standard deviation of 0.252 to the average standard error of 0.172; and for   
  for   = 500, 

compare the simulation standard deviation of 1.048 to the average standard error of 0.686.  In 

both cases the standard deviation is about 50% larger than the average standard error.  Also for 

  
  there appears to be a non-trivial bias.  However, given the large standard deviation of the 

estimate and the small number (100) of replications, this bias is not statistically significantly 

different from zero. 

It is possible that both the bias (for   
 ) and the unreliability of the standard errors (for all 

three parameters) would disappear for larger values of   (number of replications) and   (number 

of draws to evaluate the expectation in the simulated likelihood).  Table 5 reports some results 

for larger values of   and  .  All of these results are for   = 500.  The first three columns of 

results simply repeat the information in the middle columns of Table 4, for ease of comparison, 
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and correspond to      100.  The second three columns are for             and the 

last three columns are for               The number of replications is not as important as 

the number of draws used to evaluate the likelihood.  Increasing   from 100 to 500 essentially 

removes the bias in the estimate of   
 .  However, it does not much improve the accuracy of the 

standard errors.  This issue deserves more attention in future work. 

 

7. CONCLUDING REMARKS 

 In this paper, we consider the case that the inefficiency term    in a stochastic frontier 

model depends on some “environmental variables”    that do not influence the frontier output, 

but which do influence the level of inefficiency.  Specifically we assume a “scaling” model in 

which      
        

    where   
  is the “basic inefficiency term” (e.g. half-normal).  When 

both    and the inputs    are exogenous this is a familiar model in the stochastic frontier 

literature. 

 We first consider the case that some components of    and/or    are endogenous because 

they are correlated with   , though not with   
 .  This case, which is also considered by Kutlu 

(2016), is relatively easily handled.  We then turn to the more novel and difficult case that some 

components of    and/or    are endogenous because they are correlated with   
  as well as 

possibly with   .  We show how to estimate the model by IV and also by MLE.  Neither method 

is simple, because a specific copula must be assumed to model the correlation of   
  with the 

endogenous variables, and because simulation methods are necessary to form the IV criterion 

function or the likelihood. 

 The paper also makes the potentially important point that, although endogeneity 

complicates estimation of the model, it also enables more precise prediction of the inefficiencies. 
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APPENDIX 1 

 We define the instrument set    [

 
   
  

  

] and we write down a set of reduced form equations: 

      
      .  Let    [

  

  
] and   [

  
    

      
].  We make the following assumption. 

 ASSUMPTION 1(A).   

   (i)       ~        

 

   (ii)   
            ~        

  ;  equivalently,   
              ~        

   

 

  Assumption 1(A) says that   
  is independent of everything else in the model as well as 

any outside instruments   .  Note that    is exogenous in the current case because it is 

independent of    and   
  .  The only source of endogeneity in the model is that    is correlated 

with     if      .   

 Now we have      
        

    and therefore  

 

 (A1)               ~          
    ,      

    
         

    . 

 

 This is still a half-normal distribution but with the (pre-truncation) variance varying over  .  The 

variation over   is exogenous because it depends on    (and  ) and    is exogenous. 

  This is essentially the same as the model of Kutlu (2010) and Karakaplan and Kutlu 

(2013).  We just have to change   
  to     

    
         

   .  Explicitly, define 

(A2)             
         

     ,   
      

    
  ,    

    

  
 ,   

    
        

      . 

Also let   be the standard normal cdf.  Then the likelihood is 

(A3)                   

(A4)       =   
 

 
∑     

 
  

 

   
 ∑         
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   + ∑   [ (
           

        

  
)]    

(A5)       =    
 

 
  |   |  

 

 
∑         

       
         

      . 

We obtain the MLE by maximizing the likelihood with respect to the parameters 

(      
    

       ,      ). 

 

APPENDIX 2 

As in Section 5.3, we assume marginal normality of   and of the elements of   and τ, 

half-normality of   , and the normal copula. Thus, as explained in Section 5.1,    [

  

  

  

] is 

distributed as       .  Let the dimensions of    and    be    and   , and denote the error 

variances as   
     ,     

           for         , and     
                 for   

      .  Then the joint density of           is 

(A6)                            
       

    
       

         

    ∏    
  

  
    ∏    

  
  

   
      . 

 In equation (A6), “ ” represents the cdf of the random variable indicated by the 

subscript, evaluated at the point indicated on the left hand side of the equation.  For example, if 

  is the standard normal cdf, then    
  (

  

    
)     

  (
  

    
),     (

 

  
), and    is the cdf 

of        
   evaluated at    (or, equivalently, the cdf of         evaluated at        ).  

Similarly, “ ” represents the corresponding pdf; for example,    
 

  
 (

 

  
), where   is the 

standard normal pdf.  Also in (A6) “ ” is the Gaussian (normal) copula given by 

(A7)                           
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with           and                       , and where   is the correlation matrix of 

the copula. 

 Note that the typical elements of   are as follows.  (i)    (   
)     ( (

  

    
)) = 

  

    
 

   
   

; (ii)    (   
)   

  

    
    

   
; (iii)           

        ; and (iv)     (      )   We 

will let      and      be the vectors with typical elements   
   

 and   
   

 respectively. 

 The density given in (A6) and (A7) corresponds to the expression given in equation (29) 

of the text.  Next we want the joint density of          as in equation (31) of the text.  This is 

given by 

(A8)                      =     
 

    { 
 

 
  

          }       

   [∏    

  
   ]  [∏    

  

   
]                            

where          
            and where  

(A9)                    
                     

             

 Finally, as in equation (32) of the text, we integrate out   : 

(A10)                 ∫                        =  

       
 

 [∏    

  
   ]  [∏    

  

   
]   

      [   { 
 

 
  

          }                   ],                  

where “   ” indicates the expectation over the distribution of   .  We cannot evaluate this 

expectation analytically, but we can evaluate it numerically by averaging the indicated 

expression over many repeated draws from the distribution of    (for given values of all of the 

parameters, and of     and  ). 
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TABLE 1 
 

Case of Section 4.1 
 

  is independent of       in data generation and independence is imposed in estimation 
One replication only 

 
 
       N=200    N=200         N=500       N=2000 
 
       1 Step    2 Step          1 Step         1 Step 
             TRUE         Estimate          s.e.          Estimate     Estimate          s.e.      Estimate          s.e. 

   0 -0.009 (0.243) -0.015 0.266 (0.104) -0.068 (0.068) 

   0.661 0.875 (0.187) 0.872 0.560 (0.106) 0.630 (0.048) 

   0.661 0.640 (0.209) 0.640 0.641 (0.108) 0.650 (0.058) 

   0 0.034 (0.131) 0.027 -0.013 (0.054) 0.028 (0.030) 

   0 0.071 (0.115) 0.073 -0.038 (0.042) -0.031 (0.023) 

     0 -0.001 (0.072) -0.003 0.043 (0.046) -0.001 (0.022) 

     0.316 0.373 (0.095) 0.367 0.343 (0.060) 0.317 (0.029) 

     0.316 0.270 (0.088) 0.294 0.302 (0.059) 0.262 (0.028) 

     0.316 0.091 (0.084) 0.084 0.284 (0.059) 0.312 (0.028) 

     0.316 0.456 (0.092) 0.444 0.372 (0.057) 0.348 (0.027) 

     0 0.044 (0.077) 0.042 -0.027 (0.044) 0.002 (0.023) 

     0.316 0.382 (0.097) 0.376 0.359 (0.058) 0.311 (0.030) 

     0.316 0.259 (0.088) 0.280 0.243 (0.055) 0.277 (0.029) 

     0.316 0.183 (0.094) 0.177 0.250 (0.058) 0.347 (0.028) 

     0.316 0.361 (0.099) 0.350 0.354 (0.055) 0.304 (0.028) 

  
  2.752 2.076 (0.866) 2.057 3.631 (0.457) 2.537 (0.256) 

  
  1 1.099 (0.362) 1.106 0.721 (0.161) 1.023 (0.106) 

  
  1 0.877 (0.086) 0.877 0.983 (0.068) 0.955 (0.032) 

  
  1 0.972 (0.095) 0.972 0.909 (0.061) 1.015 (0.033) 

    0.5 0.525 (0.210) 0.524 0.423 (0.130) 0.465 (0.063) 

    0.5 0.469 (0.174) 0.467 0.451 (0.082) 0.439 (0.047) 

    0.5 0.487 (0.072) 0.486 0.450 (0.044) 0.481 (0.026) 
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TABLE 2 
 

Case of Section 4.1 
 

  is independent of       in data generation and independence is imposed in estimation 
Simulation with 1000 replications  

 
 

                                 N=200                                       N=500                                     N=2000 
   
                               Estimate                      Avg.     Estimate                     Avg.      Estimate                  Avg. 
                   TRUE    (mean)   Std.Dev.   Std.Err.   (mean)    Std.Dev.  Std.Err.    (mean)   Std.Dev.    Std.Err 

  0 -0.042 (0.292) (0.233) -0.013 (0.137) (0.133) -0.005 (0.067) (0.063) 

   0.661 0.670 (0.164) (0.176) 0.662 (0.101) (0.106) 0.663 (0.053) (0.051) 

   0.661 0.655 (0.185) (0.201) 0.660 (0.120) (0.120) 0.657 (0.059) (0.058) 

   0 -0.024 (0.537) (0.214) -0.003 (0.062) (0.065) -0.002 (0.029) (0.030) 

   0 0.007 (0.181) (0.164) 0.000 (0.059) (0.054) 0.001 (0.023) (0.024) 

     0 0.005 (0.072) (0.076) 0.001 (0.044) (0.046) 0.001 (0.021) (0.023) 

     0.316 0.312 (0.089) (0.098) 0.316 (0.054) (0.059) 0.317 (0.028) (0.029) 

     0.316 0.317 (0.087) (0.094) 0.316 (0.056) (0.056) 0.317 (0.028) (0.027) 

     0.316 0.319 (0.089) (0.092) 0.317 (0.052) (0.055) 0.316 (0.027) (0.027) 

     0.316 0.316 (0.084) (0.092) 0.317 (0.054) (0.055) 0.316 (0.027) (0.027) 

     0 0.004 (0.071) (0.076) 0.000 (0.044) (0.046) 0.000 (0.022) (0.023) 

     0.316 0.313 (0.091) (0.098) 0.318 (0.056) (0.059) 0.316 (0.028) (0.029) 

     0.316 0.321 (0.089) (0.094) 0.314 (0.055) (0.056) 0.316 (0.027) (0.027) 

     0.316 0.318 (0.089) (0.093) 0.318 (0.055) (0.055) 0.316 (0.027) (0.027) 

     0.316 0.314 (0.085) (0.093) 0.317 (0.055) (0.056) 0.314 (0.027) (0.027) 

  
  2.752 2.624 (0.954) (0.859) 2.707 (0.509) (0.516) 2.735 (0.257) (0.245) 

  
  1 1.040 (0.366) (0.356) 1.020 (0.199) (0.208) 1.009 (0.101) (0.098) 

  
  1 0.978 (0.100) (0.109) 0.992 (0.063) (0.065) 0.998 (0.031) (0.032) 

  
  1 0.980 (0.097) (0.108) 0.993 (0.061) (0.066) 0.998 (0.031) (0.032) 

    0.5 0.497 (0.214) (0.225) 0.501 (0.137) (0.136) 0.504 (0.066) (0.066) 

    0.5 0.499 (0.152) (0.165) 0.504 (0.094) (0.099) 0.502 (0.046) (0.048) 

    0.5 0.489 (0.075) (0.085) 0.499 (0.050) (0.052) 0.499 (0.024) (0.025) 
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TABLE 3 
 

Case of Section 5.3 
 

  independent of       in data generation but only independence of   and   imposed in estimaton 
Gaussian copula correctly assumed in estimation 

One replication only 
 

 
       N=200    N=200         N=500       N=2000 
 
       1 Step    2 Step          1 Step         1 Step 
             TRUE         Estimate          s.e.          Estimate     Estimate          s.e.      Estimate          s.e. 

   0 -0.194 (0.310) -0.148 0.302 (0.125) -0.220 (0.067) 

   0.661 0.806 (0.183) 0.809 0.538 (0.105) 0.628 (0.049) 

   0.661 0.680 (0.198) 0.674 0.665 (0.107) 0.640 (0.057) 

   0 0.175 (0.155) 0.122 0.003 (0.054) 0.014 (0.030) 

   0 -0.028 (0.118) 0.008 -0.042 (0.057) -0.032 (0.026) 

     0 0.072 (0.096) -0.003 0.019 (0.047) -0.020 (0.024) 

     0.316 0.385 (0.094) 0.367 0.341 (0.061) 0.315 (0.029) 

     0.316 0.255 (0.090) 0.294 0.294 (0.060) 0.267 (0.029) 

     0.316 0.098 (0.086) 0.084 0.287 (0.060) 0.311 (0.028) 

     0.316 0.468 (0.093) 0.444 0.374 (0.058) 0.347 (0.027) 

     0 0.144 (0.101) 0.042 -0.026 (0.046) 0.003 (0.026) 

     0.316 0.395 (0.096) 0.376 0.361 (0.058) 0.311 (0.030) 

     0.316 0.249 (0.093) 0.280 0.232 (0.055) 0.279 (0.029) 

     0.316 0.192 (0.099) 0.177 0.251 (0.057) 0.345 (0.028) 

     0.316 0.372 (0.100) 0.350 0.360 (0.054) 0.304 (0.028) 

  
  2.752 2.131 (1.332) 2.508 4.389 (0.625) 2.342 (0.250) 

  
  1 1.156 (0.368) 1.115 0.647 (0.148) 1.046 (0.105) 

  
  1 0.895 (0.092) 0.877 0.987 (0.069) 0.952 (0.032) 

  
  1 1.005 (0.115) 0.972 0.909 (0.061) 1.015 (0.033) 

    0.5 0.637 (0.134) 0.635 0.190 (0.204) 0.364 (0.073) 

    0.5 0.597 (0.120) 0.585 0.600 (0.115) 0.441 (0.061) 

    0.5 0.538 (0.057) 0.527 0.477 (0.034) 0.490 (0.018) 

    0 0.359 (0.310) 0.277 -0.260 (0.119) -0.131 (0.069) 

    0 0.471 (0.274) 0.346 0.016 (0.142) 0.010 (0.081) 
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TABLE 4 
 

Case of Section 5.3 
 

  independent of       in data generation but only independence of   and   imposed in estimaton 
Gaussian copula correctly assumed in estimation 

Simulation with 100 replications  
 
 

                                N=200                                       N=500                                     N=2000 
 
                                Estimate                       Avg.    Estimate                     Avg.    Estimate                       Avg. 
                  TRUE      (mean)     Std.Dev.  Std.Err.   (mean)   Std.Dev.  Std.Err.  (mean)    Std.Dev.   Std.Err 

  0 -0.015 (0.347) (0.245) 0.005 (0.223) (0.166) 0.008 (0.191) (0.084) 

   0.661 0.675 (0.192) (0.171) 0.684 (0.096) (0.107) 0.663 (0.049) (0.052) 

   0.661 0.648 (0.236) (0.192) 0.655 (0.115) (0.120) 0.659 (0.064) (0.059) 

   0 -0.019 (0.162) (0.111) -0.005 (0.078) (0.065) 0.002 (0.034) (0.030) 

   0 0.030 (0.189) (0.103) 0.003 (0.081) (0.061) 0.002 (0.039) (0.029) 

     0 -0.007 (0.086) (0.077) 0.008 (0.050) (0.049) -0.004 (0.029) (0.024) 

     0.316 0.323 (0.088) (0.095) 0.320 (0.055) (0.059) 0.315 (0.027) (0.029) 

     0.316 0.295 (0.076) (0.087) 0.314 (0.055) (0.056) 0.312 (0.029) (0.028) 

     0.316 0.312 (0.092) (0.086) 0.312 (0.049) (0.056) 0.319 (0.027) (0.027) 

     0.316 0.316 (0.098) (0.085) 0.323 (0.051) (0.056) 0.317 (0.029) (0.027) 

     0 -0.006 (0.077) (0.077) -0.002 (0.050) (0.049) 0.000 (0.029) (0.025) 

     0.316 0.315 (0.100) (0.096) 0.323 (0.057) (0.059) 0.318 (0.027) (0.029) 

     0.316 0.312 (0.082) (0.090) 0.314 (0.050) (0.057) 0.314 (0.025) (0.028) 

     0.316 0.317 (0.096) (0.088) 0.315 (0.053) (0.055) 0.314 (0.029) (0.027) 

     0.316 0.311 (0.090) (0.088) 0.315 (0.055) (0.055) 0.315 (0.027) (0.027) 

  
  2.752 2.954 (1.470) (1.015) 2.947 (1.048) (0.686) 2.968 (0.811) (0.351) 

  
  1 1.066 (0.489) (0.348) 1.020 (0.214) (0.226) 1.020 (0.159) (0.112) 

  
  1 0.991 (0.104) (0.113) 0.994 (0.062) (0.067) 1.001 (0.034) (0.032) 

  
  1 0.988 (0.093) (0.110) 0.987 (0.067) (0.066) 0.996 (0.028) (0.032) 

    0.5 0.460 (0.317) (0.195) 0.466 (0.185) (0.147) 0.457 (0.087) (0.079) 

    0.5 0.455 (0.227) (0.161) 0.463 (0.171) (0.125) 0.481 (0.085) (0.066) 

    0.5 0.513 (0.054) (0.060) 0.500 (0.033) (0.035) 0.500 (0.015) (0.017) 

    0 -0.032 (0.367) (0.216) -0.019 (0.252) (0.172) -0.020 (0.127) (0.096) 

    0 -0.005 (0.344) (0.192) -0.017 (0.206) (0.151) -0.044 (0.091) (0.083) 

 
  



31 

 

TABLE 5 
 

Case of Section 5.3 
 

  independent of       in data generation but only independence of   and   imposed in estimaton 
Gaussian copula correctly assumed in estimation 

Simulation with N =  500 
 
 

                                           S = 100, R = 100                      S = 500, R = 192                        S = 500, R = 384 
 
                                   Estimate                      Avg.     Estimate                      Avg.      Estimate                     Avg. 
                   TRUE        (mean)   Std.Dev.  Std.Err.    (mean)   Std.Dev.   Std.Err.     (mean)   Std.Dev.   Std.Err. 

  0 0.005 (0.223) (0.166) -0.048 (0.248) (0.173) -0.033 (0.236) (0.173) 

   0.661 0.684 (0.096) (0.107) 0.663 (0.112) (0.106) 0.665 (0.109) (0.107) 

   0.661 0.655 (0.115) (0.120) 0.664 (0.133) (0.120) 0.656 (0.127) (0.120) 

   0 -0.005 (0.078) (0.065) 0.011 (0.082) (0.070) 0.001 (0.081) (0.069) 

   0 0.003 (0.081) (0.061) -0.009 (0.097) (0.071) -0.004 (0.093) (0.070) 

     0 0.008 (0.050) (0.049) 0.004 (0.047) (0.046) 0.002 (0.045) (0.046) 

     0.316 0.320 (0.055) (0.059) 0.323 (0.060) (0.058) 0.320 (0.059) (0.058) 

     0.316 0.314 (0.055) (0.056) 0.309 (0.057) (0.056) 0.314 (0.057) (0.056) 

     0.316 0.312 (0.049) (0.056) 0.319 (0.055) (0.054) 0.314 (0.056) (0.055) 

     0.316 0.323 (0.051) (0.056) 0.314 (0.055) (0.055) 0.316 (0.056) (0.055) 

     0 -0.002 (0.050) (0.049) 0.009 (0.051) (0.046) 0.006 (0.048) (0.046) 

     0.316 0.323 (0.057) (0.059) 0.317 (0.059) (0.058) 0.318 (0.058) (0.058) 

     0.316 0.314 (0.050) (0.057) 0.306 (0.060) (0.055) 0.313 (0.058) (0.055) 

     0.316 0.315 (0.053) (0.055) 0.318 (0.057) (0.055) 0.316 (0.058) (0.054) 

     0.316 0.315 (0.055) (0.055) 0.322 (0.054) (0.055) 0.316 (0.056) (0.054) 

  
  2.752 2.947 (1.048) (0.686) 2.701 (0.915) (0.685) 2.753 (0.909) (0.697) 

  
  1 1.020 (0.214) (0.226) 1.048 (0.284) (0.226) 1.046 (0.277) (0.228) 

  
  1 0.994 (0.062) (0.067) 0.988 (0.066) (0.065) 0.988 (0.061) (0.065) 

  
  1 0.987 (0.067) (0.066) 0.993 (0.062) (0.066) 0.991 (0.061) (0.065) 

    0.5 0.466 (0.185) (0.147) 0.469 (0.189) (0.145) 0.479 (0.179) (0.147) 

    0.5 0.463 (0.171) (0.125) 0.469 (0.183) (0.126) 0.476 (0.176) (0.127) 

    0.5 0.500 (0.033) (0.035) 0.502 (0.034) (0.035) 0.500 (0.035) (0.035) 

    0 -0.019 (0.252) (0.172) 0.019 (0.292) (0.194) 0.018 (0.290) (0.191) 

    0 -0.017 (0.206) (0.151) 0.014 (0.226) (0.160) 0.011 (0.217) (0.159) 
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