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Estimation of adjusted rate differences

using additive negative binomial

regression

Mark W. Donoghoe∗and Ian C. Marschner

Rate differences are an important effect measure in biostatistics and provide an alternative

perspective to rate ratios. When the data are event counts observed during an exposure period,

adjusted rate differences may be estimated using an identity-link Poisson generalised linear model,

also known as additive Poisson regression. A problem with this approach is that the assumption

of equality of mean and variance rarely holds in real data, which often show overdispersion. An

additive negative binomial model is the natural alternative to account for this, however, standard

model-fitting methods are often unable to cope with the constrained parameter space arising from

the non-negativity restrictions of the additive model. In this paper, we propose a novel solution

to this problem using a variant of the ECME algorithm. Our method provides a reliable way to

fit an additive negative binomial regression model and also permits flexible generalisations using

semi-parametric regression functions. We illustrate the method using a placebo-controlled clinical

trial of fenofibrate treatment in patients with type II diabetes, where the outcome is the number

of laser therapy courses administered to treat diabetic retinopathy. An R package is available that

implements the proposed method. Copyright c© 2015 John Wiley & Sons, Ltd.

Keywords: ECME algorithm; Negative binomial regression; Overdispersion; Rate difference; Semi-

parametric regression

1. Introduction

In many biostatistical contexts we observe an outcome that counts the number of times an event of interest occurred

and often these counts are observed over differing units of exposure, such as differing time periods of follow-up.

When a collection of covariates is also available, such data allow us to build a regression model quantifying the

effects of the covariates on the rate at which events occur. In this context, the parameters in an additive regression
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model represent adjusted rate differences, and provide an alternative to the adjusted rate ratios from a multiplicative

model.

Rate differences may often be preferable to rate ratios as a measure of effect size in biostatistical applications.

In studies evaluating an intervention, a rate difference quantifying the effect of the intervention directly relates to

the expected number of events that may be prevented by its use. For example, in vaccine studies the rate difference

is called the vaccine-attributable reduction, and can provide better information about the number of infections

prevented than the vaccine efficacy, which is a relative effect size [1]. A similar distinction exists in epidemiological

cohort studies where the rate difference is called the attributable risk. Rate differences are also useful in health

economics, because they allow quantification of the cost of an intervention per event prevented within a given time

period. Furthermore, risk factor models used for prediction and stratification are sometimes best presented in terms

of rate differences rather than rate ratios, both from an interpretation perspective and because additive models

sometimes fit the data better than multiplicative models.

A common approach for estimating adjusted rate differences is to fit a generalised linear model (GLM) with an

identity link function, and assume that the observed counts have a Poisson distribution. We will refer to this analysis

as additive Poisson regression, and a reliable algorithm for maximum likelihood estimation in this model has been

described by Marschner [2]. Provided the mean model is correctly specified, the parameter estimates from such a

model will be consistent [3, p. 80], but the Poisson constraint that the variance of the count is equal to its expected

value often does not hold true in real data. In particular, it is common for count data to exhibit overdispersion,

where the variance exceeds the mean [4]. An important consequence of overdispersion is that the estimated standard

errors from a Poisson model will be underestimates, leading to overly narrow confidence intervals and inflated type

I error rates [5].

Several model-based alternatives to Poisson GLMs for analysing overdispersed count data have been presented in

the literature, and we discuss these in detail in Section B of the supplementary materials available online. Negative

binomial regression is the most common of these approaches, and has been reviewed by various authors; see for

example the books by Cameron and Trivedi [6] and Hilbe [7]. Some others, such as generalised negative binomial,

generalised Poisson and Poisson–inverse Gaussian regression have been implemented in SAS [8], R [9] and Stata

[10].

These implementations typically rely on gradient-based algorithms such as Newton–Raphson to maximise the

likelihood. With multiplicative models this is usually reliable, because on the log link scale the parameter space

is unconstrained. As such, the multiplicative model is the only available option in some of these implementations.

While it is possible to estimate adjusted rate differences from a multiplicative model, using bootstrap resampling or

the delta method to construct confidence intervals [11], it is important to recognise that this rate difference differs

depending on the value of the adjustment covariates.

In situations where an additive model provides a better fit to the data when compared to a multiplicative model,

or there is little difference in fit but rate differences are the favoured measure of association, the additive model

should be preferred. Goodness of fit may be assessed by the use of model indices such as the AIC [12], AICc [13]

or BIC [14]. Alternatively, we can compare the observed number of events to the number predicted under each

model, using a Chi-squared test or an application of Hosmer and Lemeshow’s deciles approach [15].

The existing methods for fitting overdispersed count regression models can be modified in order to apply the

same gradient-based algorithms to an additive model, but in practice this presents challenges. For additive models,

a restriction must be placed on the possible values of the parameters to ensure that estimated mean counts and

rates are non-negative. For this reason, when applied to additive models, these standard algorithms often suffer

convergence issues and can be unreliable.

The purpose of this paper is to address these challenges by presenting a reliable and flexible approach for

additive negative binomial regression and using it to estimate adjusted rate differences in count data subject to
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overdispersion. Section 2 will outline the additive model that we will use based on the negative binomial distribution,

and then Section 3 will describe how a variant of the Expectation–Conditional Maximisation–Either (ECME)

algorithm can be used to reliably fit this model. We will then extend this in Section 4 to allow additional flexibility

through smooth semi-parametric regression functions. A detailed illustrative application of the methods will then

be provided in Section 5, using data from a large clinical trial in type II diabetics where the outcome is the number

of laser therapy courses administered to treat diabetic retinopathy.

2. Additive negative binomial regression

The negative binomial distribution can be derived in several ways [16], but in this context we motivate its use

by introducing multiplicative Gamma-distributed errors into the Poisson model. We begin by assuming that the

number of events Yi for individual i (i = 1, . . . , n) is distributed as

Yi ∼ Poisson(Niλi).

Here, Ni is the fixed exposure over which Yi is observed, such that λi represents the event rate per unit of exposure

for individual i. Typically, Ni will correspond to a fixed time period of observation for individual i, so that λi is the

event rate per unit of time, although other types of exposure are also possible. When modelling count data rather

than rates, we can set Ni = 1 for all i so that λi is the expected count.

Under an additive regression model, the event rate is a linear function of the covariate vector xi and its associated

parameter vector θ∗, which we denote by

λi = Λ(xi, θ
∗) = xiθ

∗. (1)

This is an identity-link Poisson GLM in which component j of θ∗ is the adjusted rate difference per unit change

in component j of xi. A number of authors have discussed methods for fitting this model to obtain adjusted rate

differences; see for example [2] and [7, pp. 152–157]. This model is a natural alternative to the multiplicative Poisson

model with log link function, where the (exponentiated) parameters are adjusted rate ratios.

The Poisson model has the restrictive assumption that Var(Yi) = E(Yi), which is frequently violated in the

direction of overdispersion, Var(Yi) > E(Yi). A natural way to accommodate this overdispersion is to adopt a more

general mean–variance relationship, Var(Yi) = σ2
E(Yi), for σ

2 > 1. For notational convenience we will rewrite this

relationship in the equivalent form Var(Yi) = (1 + φ)E(Yi), for φ > 0. Then the desired mean–variance relationship

can be achieved by generalising the Poisson model such that the mean is perturbed by multiplicative errors,

Yi | ηi ∼ Poisson(Niλiηi),

where ηi is a random variable with E(ηi) = 1 and Var(ηi) = φ/(Niλi). This can be confirmed by a straightforward

application of the law of total variance.

One possible cause of such overdispersion is unobserved heterogeneity in which some individuals are more event-

prone than others due to factors that are not captured by the observed covariates. Whatever the cause of the

overdispersion, λi retains its interpretation as an event rate, and θ
∗ its interpretation as a vector of adjusted rate

differences, averaged over the population.

Specification of the model is completed by assuming a distribution for ηi. A commonly used approach is to

assume that ηi is Gamma-distributed, which dates back to Greenwood and Yule [17]. This results in a negative

binomial marginal distribution for Yi, equivalent to the model referred to as NegBin I by Cameron and Trivedi [18].
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The parameter φ > 0 measures the extent of the overdispersion, and the distribution of Yi converges to a Poisson

distribution as φ→ 0.

It should be noted that other types of negative binomial models are also possible. In particular, if ηi is assumed

to be Gamma-distributed with constant variance φ, the resulting negative binomial distribution has a quadratic

mean–variance relationship, Var(Yi) = E(Yi)(1 + φE(Yi)). This model is referred to as NegBin II by Cameron and

Trivedi [18] and various other comparative discussions of the two models have been provided; see for example [7].

One advantage that is sometimes claimed for the NegBin II model is that, unlike NegBin I, when φ is fixed it is in

the exponential family and therefore falls within the GLM framework. Nonetheless, this does not invalidate the use

of the NegBin I distribution with an additive model for its mean. Indeed, in Section 5 we will present a motivating

application in which our additive NegBin I approach is more appropriate, and this model will be our main focus in

this paper. However, comparison with the additive NegBin II model will also be considered.

Expressing our model in terms of the usual negative binomial parameters leads to

Yi ∼ NegBin(ri(θ), p) where ri(θ) =
1

φ
Niλi = NiΛ(xi, θ)

with θ = θ
∗/φ and p = φ/(1 + φ). By finding the MLEs θ̂ and p̂ of this marginal negative binomial distribution, we

can transform them back to obtain the MLEs of the coefficient of overdispersion φ̂ and the adjusted rate differences

θ̂
∗:

φ̂ =
p̂

1− p̂
and θ̂

∗ = φ̂θ̂. (2)

However, in practice the additive structure for ri(θ) leads to substantial model-fitting challenges stemming from the

constraint ri(θ) ≥ 0. Indeed, as discussed in Section 6, there is no standard commercial software package that fits

this model. In the next section we will describe how the additive structure combined with the fact that p is constant

across individuals allows us to use the convolution properties of the negative binomial distribution to construct an

underlying latent outcome model. This will then allow us to implement the ECME algorithm [19], which provides

a stable approach to model fitting.

3. Model fitting

In this section we describe how the additive negative binomial model can be reliably fitted using a variant of the

ECME algorithm. To do this, we need to first describe the constrained parameter space and a latent outcome model

that will be used as the complete-data model in an ECME algorithm. We then describe a variant of the ECME

algorithm based on the combinatorial EM algorithm of Marschner [20].

3.1. Parameter space

In describing the model-fitting procedure, it is helpful to keep the categorical and continuous covariates separate.

We will examine a model that includes A categorical covariates, ui1, . . . , uiA, and B continuous covariates,

vi1, . . . , viB , for each individual i. Without loss of generality, the possible values of the ath categorical covariate are

{1, . . . , ka}, and the bth continuous covariate can take any value in the range [v
(0)
b , v

(1)
b ], where v

(0)
b = mini{vib} and

v
(1)
b = maxi{vib}.

The parameter vector θ associated with this model has J = 1 +
∑A

a=1 ka +B components: θ =

(α0,α1, . . . ,αA, β1, . . . , βB)
⊤, where α0 is an intercept term, each αa = (αa(1), . . . , αa(ka)) is a vector of parameters

associated with the ath categorical covariate and βb is the parameter associated with the bth continuous covariate.
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Thus the additive model is

Λ(xi, θ) = α0 +

A
∑

a=1

αa(uia) +

B
∑

b=1

βbvib, (3)

which for simplicity we can express in the form equivalent to (1)

Λ(xi, θ) =

J
∑

j=1

θjxij ,

where θj is the jth component of the parameter vector θ and we have defined the covariate vector for individual i

as xi = (1,u′

i1, . . . ,u
′

iA, vi1, . . . , viB), where u
′

ia is a vector of length ka with 1 in the uthia position and 0 elsewhere.

The parameter space for the additive negative binomial model requires that the expected counts are non-negative

and the Gamma scale parameter is positive, that is (θ, p) ∈ Θ× Φ, where

Θ = {θ : Λ(x, θ) ≥ 0, x ∈ X} and Φ = (0, 1) (4)

for a covariate space X , which consists of all possible combinations of the levels of the categorical covariates and

any value of the continuous covariates within their observed ranges

X =

A
∏

a=1

{1, . . . , ka} ×

B
∏

b=1

[v
(0)
b , v

(1)
b ].

Note that the parameter space (4) does not place any restrictions on the individual components of the parameter

vector θ, but we will introduce such restrictions in defining the latent outcome model.

3.2. Latent outcome model

In order to define a complete-data model for the ECME algorithm, we begin by considering a particular

t = (t1, . . . , tA+B), giving the reference level for each of the A+B covariates. For each categorical covariate

a = 1, . . . , A, we choose ta ∈ {1, . . . , ka} and set αa(ta) = 0. For each of the continuous covariates b = 1, . . . , B, the

reference level is either the minimum or maximum observed value. That is, tA+b = v
(ςb)
b for a choice of ςb ∈ {0, 1}.

For a particular ςb, we define the shifted covariate v′ib = (−1)ςb(vib − v
(ςb)
b ), which will be non-negative for all i, and

(3) can be equivalently written as

Λ(xi, θ) = Λ(x′

i, θ
′)

= α′

0 +

A
∑

a=1

αa(uia) +

B
∑

b=1

β′

bv
′

ib (5)

=

J
∑

j=1

θ′jx
′

ij ,

where x
′

i = (1,u′

i1, . . . ,u
′

iA, v
′

i1, . . . , v
′

iB) and θ
′ = (α′

0,α1, . . . ,αA, β
′

1, . . . , β
′

B)
⊤, with

α′

0 = α0 +

B
∑

b=1

βbv
(ςb)
b and β′

b = (−1)ςbβb. (6)
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For a particular choice of t, the complete-data model consists of J independent latent negative binomial random

variables with common p underlying the observed Yi. That is,

Yi =

J
∑

j=1

Y
(j)
i ,

where each Y
(j)
i ∼ NegBin(rij(θ

′), p) and rij(θ
′) = Niθ

′

jx
′

ij .

Because the sum of independent negative binomial random variables with common p is itself negative binomial,

the complete-data model is equivalent to the observed-data model, with the additional restriction that the rij(θ
′)

parameter of each of the latent variable distributions must be non-negative. As each x′ij is defined to be non-

negative for all i and j, this natural restriction imposed by the complete-data model for a given t is effectively a

non-negativity constraint on each of the components of θ′.

From (5) it is clear that for any choice of the reference level vector t, Λ(t, θ) = α′

0, and the non-negativity

constraints on the transformed parameters ensure that the fitted value for any other transformed covariate vector

will be larger than this. Thus, the parameter space related to the complete-data model for a particular choice of t

is Θ(t)× Φ, where

Θ(t) = {θ : Λ(x, θ) ≥ Λ(t, θ) ≥ 0, x ∈ X}.

There are
∏

a ka × 2B possible choices for the reference level vector t, which define a family of complete-data

models. Importantly, for any θ ∈ Θ, the smallest fitted value must correspond to one of these possible choices of

t. Hence, if we can find the constrained MLE associated with each of the complete-data models, the MLE for the

observed-data model is simply the constrained MLE that attains the highest likelihood. This means that the MLE

can be found by cycling through each of the possible choices of t, which constitutes an implementation of the

combinatorial EM algorithm described by Marschner [20].

A useful feature of this approach is that it is straightforward to consider a parameter space in which a particular

coefficient βb associated with a continuous covariate is constrained to be non-negative. This can be achieved by

considering only the reference level vectors in which ςb = 0. Likewise, a non-positivity constraint can be imposed

by considering only the reference level vectors in which ςb = 1. We will take advantage of this feature to include

semi-parametric terms in our model, described in Section 4.

3.3. ECME algorithm

We find the MLE for a particular complete-data model by using the ECME algorithm described by Liu and

Rubin [19]. In the ECME algorithm, the M-step of the EM algorithm [21] is replaced by a series of conditional

maximisation (CM) steps, which act on a subset of the unknown parameters while keeping the others fixed at their

current estimates. It differs from the ECM algorithm [22] in that some of the CM-steps can be designed to maximise

the observed-data log-likelihood rather than the expected complete-data log-likelihood from the E-step. In order to

ensure that the likelihood increases monotonically, Meng and Van Dyk [23] noted that the CM-steps maximising

the observed-data log-likelihood must be performed after all steps that maximise the expected complete-data

log-likelihood at each iteration.

After removing terms that do not depend on θ or p, the observed-data log-likelihood for the additive negative

binomial model is

ℓ(θ, p;Y ) =

n
∑

i=1

log(Γ(Yi + ri(θ)))− log(Γ(ri(θ))) + ri(θ) log(1− p) + Yi log(p),
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and the complete-data log-likelihood for a chosen t has a similar form:

L(θ′, p;Y) =

n
∑

i=1

J
∑

j=1

log(Γ(Y
(j)
i + rij(θ

′))) − log(Γ(rij(θ
′))) + rij(θ

′) log(1− p) + Y
(j)
i log(p).

Given a set of starting parameter estimates θ̂′

(0) and p̂(0), the E-step at the (c+ 1)th iteration requires calculation

of

Q(θ′, p | θ̂′

(c), p̂(c)) = E

(

L(θ′, p;Y) | Y , θ̂′

(c), p̂(c)

)

,

for which we use the property that the conditional distribution of negative binomial random variables with common

p given their sum is beta-binomial [24]. That is,

Pr(c)(Y
(j)
i = y | Yi) = Pr(Y

(j)
i = y | Yi, θ̂

′

(c), p̂(c))

=

(

Yi
y

)B
(

y + rij(θ̂
′

(c)), Yi + ri(θ̂(c))− (y + rij(θ̂
′

(c)))
)

B
(

rij(θ̂′

(c)), ri(θ̂(c))− rij(θ̂′

(c))
) ,

for y = 0, . . . , Yi, where B(·, ·) denotes the Beta function.

The first CM-step involves conditional maximisation of Q with respect to θ
′, holding p constant at its current

estimate p̂(c). To do this, for each θ′j we must find the non-negative root of the derivative

∂Q

∂θ′j
=

n
∑

i=1

Nix
′

ij

{

Yi
∑

y=0

(ψ(y + rij(θ
′))− ψ(rij(θ

′))) Pr(c)(Y
(j)
i = y | Yi) + log(1− p̂(c))

}

.

This does not have an explicit solution, but we can exploit the property of the digamma function

ψ(y + r) − ψ(r) =

y−1
∑

k=0

1

r + k
≤
y

r
y = 1, 2, . . .

in order to find an upper bound for the root

θ̂′j(c+1) ≤

∑n

i=1 E(c)

(

Y
(j)
i | Yi

)

log( 1
1−p̂(c)

)
∑n

i=1Nix′ij
= Uj(c+1) where E(c)

(

Y
(j)
i | Yi

)

= Yi
rij(θ̂

′

(c))

ri(θ̂(c))
.

This allows the straightforward use of an omnibus root-finding routine, such as uniroot in R, to find the root in

the finite interval [0, Uj(c+1)].

In the second CM-step, we keep the additive part θ̂′

(c+1) fixed at its current estimate, and update the estimate

for p by maximising the observed-data log-likelihood, giving

p̂(c+1) =

∑n

i=1 Yi
∑n

i=1 Yi +
∑n

i=1 ri(θ̂(c+1))
.

If our starting estimates are within the parameter space for a given complete-data model, the updated estimates

at each iteration are guaranteed to remain within the parameter space, and the likelihood will increase until it

converges to its maximum value within the restricted parameter space Θ(t).

This process is repeated for each possible choice of the reference vector t in order to find the global maximum,

which is the constrained MLE with the highest likelihood. However, there are some situations in which we can stop

early, having only searched a subset of the restricted parameter spaces [20]. In particular, if we find a stationary

Statist. Med. 2015, 00 1–?? Copyright c© 2015 John Wiley & Sons, Ltd. www.sim.org 7

Prepared using simauth.cls



Statistics

in Medicine M. W. Donoghoe and I. C. Marschner

point in the interior of the parameter space Θ(t), we can be sure that it is the overall MLE.

Finally, after finding the overall MLE (θ̂′, p̂), we can use the inverse of (6) to obtain the unshifted intercept and

linear slope parameters, and then (2) to calculate the estimated coefficient of overdispersion φ̂, and the estimated

rate difference parameters θ̂∗ = (α̂∗

0, α̂
∗

1, . . . , α̂
∗

A, β̂
∗

1 , . . . , β̂
∗

B)
⊤.

For categorical covariates, α̂∗
a(u) is the rate difference associated with level u compared to the reference level ta,

adjusted for the other A+B − 1 covariates. For continuous covariates, β̂∗

b is the adjusted rate difference associated

with a one-unit increase in the bth continuous covariate.

3.4. Variance estimation

If our distributional assumption and mean model are correct, the MLE resulting from this method will be consistent,

with an asymptotic multivariate normal distribution. We can obtain an estimate of the covariance matrix for the

parameter estimates (θ̂∗, φ̂) by using the inverse of the observed information matrix, evaluated at the MLE. The

relevant formulae are given in Section A of the supplementary materials available with the online version of this

article.

However, asymptotic normality of the MLE may be questionable if the estimate is on or close to the boundary

of the parameter space. In this case, confidence intervals for parameter estimates may be obtained by using a

resampling method such as the bootstrap. The stability of our fitting method ensures that the MLE can be obtained

in every resampled dataset, and so there will be no bias caused by non-convergence in some samples.

4. Semi-parametric model

In some situations it may be desirable to relax the linearity restriction on the effect of continuous covariates on the

expected count or rate, and instead adjust for these covariates semi-parametrically. To allow this, we extend (3) to

include C additional unspecified functions, so

Λ(xi, θ) = α0 +

A
∑

a=1

αa(uia) +

B
∑

b=1

βbvib +

C
∑

c=1

fc(wic).

As demonstrated by Donoghoe and Marschner [25] for the additive Poisson model, it is possible to incorporate

the estimation of the unknown functions fc into the additive negative binomial model by using B-spline basis

functions. This allows us to retain the stability of our estimation method, while still ensuring that the fitted means

are non-negative. The approach relies on the fact that it is straightforward to impose non-negativity constraints on

any of the parameters associated with continuous covariates. This is easy to do for the additive negative binomial

model also, as discussed in Section 3.2. We now describe the B-spline model.

4.1. B-spline model

For notational convenience, in this subsection we will first consider the case of C = 1 and drop the subscript c from

the unspecified function fc. We parameterise these regression functions using the B-spline model

f(w) =

D
∑

d=1

γdBd(w),

where {Bd; d = 1, . . . , D} are B-spline basis functions [26].

Let τ be a set of D + κ knots on which the B-spline basis is defined, where κ− 1 is the desired degree of the

smooth curve and D − κ of the knots are distinct turning points in the interior of the range of the continuous
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covariate. Then the above model means that f is restricted to belong to B(τ ), the function space defined by the

B-spline basis on τ . For simplicity, here we use κ = 3 and choose the D − 3 turning points to be evenly spaced

quantiles of the observed {wi}, but these methods will work with any choice of κ and knot vector. We allow the

level of smoothness to vary by fitting models with different numbers of turning points and choosing the one with

the smallest AIC [12]. Other suitable model selection criteria can also be used, such as the small-sample version,

AICc [13].

Each basis function Bd is positive in (τd, τd+3) and zero elsewhere, meaning that if all of the γd coefficients are

non-negative, the resulting f will also be strictly non-negative. Furthermore, the B-spline bases are normalised such

that
∑D

d=1Bd(w) = 1 for all w, so we must include an identifiability constraint on the coefficients of each curve.

We begin by choosing a reference level tA+B+1 ∈ {1, . . . , D}, and impose an identifiability constraint by setting

γtA+B+1 = 0. The remaining coefficients can be estimated by treating the basis function values Bd(wi) as continuous

covariates in the ECME algorithm, restricting their associated parameters to be non-negative. The resulting f will

belong to B+(τ ; tA+B+1), which denotes the subspace of strictly non-negative curves in B(τ ) that have their shape

constrained by the choice of tA+B+1. We repeat this for all D possible choices of tA+B+1, and the estimate with

the highest likelihood is the MLE for the semi-parametric model.

Extension to C > 1 is straightforward: for each c = 1, . . . , C, we choose a reference level tA+B+c ∈ {1, . . . , Dc},

set γctA+B+c
= 0 and use the ECME algorithm to find the MLE, constraining the remaining B-spline coefficients

to be non-negative. To find the global maximum, we repeat this for all
∏C

c=1Dc possible choices of these reference

levels.

4.2. Monotonicity restriction

This approach also allows us to impose a monotonicity restriction on any of the smooth curves. A sufficient condition

for the monotonicity of f is that coefficients of the B-spline basis functions are themselves strictly non-decreasing,

that is γ1 ≤ · · · ≤ γD [27]. If we set γ1 = 0 and introduce parameters δ2, . . . , δD that represent the increments

between successive coefficients, so

δd = γd − γd−1 d = 2, . . . , D,

an equivalent condition is to require these increments to be non-negative.

Under this parameterisation,

f(w) =

D
∑

d=2

δd

(

D
∑

e=d

Be(w)

)

, (7)

so a monotonicity restriction can be applied simply by treating the partial sums of B-spline bases in (7) as continuous

covariates, and constraining their associated parameters to be non-negative in the CEM algorithm. Because we only

need to consider one parameterisation for each monotonic regression function, extension to C > 1 is trivial, and in

fact the inclusion of additional semi-parametric monotonic covariates does not require additional applications of

the ECME algorithm.

5. Application

The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study was a double-blind randomised clinical

trial examining the effect of fenofibrate treatment on cardiovascular risk in 9795 participants with type II diabetes,

aged between 50–75 years over a median follow-up time of 5 years [28]. A pre-specified secondary endpoint of the

study was laser photocoagulation treatment for diabetic retinopathy, a microvascular complication of diabetes. Laser
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therapy is used to slow or prevent vision loss caused by retinopathy, but is associated with visual field reduction

and other side-effects [29], so reducing the need for its use would be a positive outcome.

The vast majority of patients (96%) did not undergo laser therapy during the follow-up period, but individuals

could have multiple courses of laser therapy, and we wish to estimate the effect of fenofibrate treatment on the

number of laser therapy courses administered per 5 patient-years. In the primary analysis of these data [30], a Poisson

GLM with a log link function was used to estimate a rate ratio (RR) for the treatment effect. The overdispersion

apparent under the Poisson model was accounted for by rescaling the estimated standard errors.

There was no evidence of an interaction between fenofibrate treatment and the presence of known prior

retinopathy at baseline on the multiplicative scale, with an estimated overall RR of 0.63 (95% CI 0.49–0.81)

from this quasi-Poisson model. Accounting for overdispersion by using a distributional form, a multiplicative

NegBin I model gives an estimated RR of 0.69 (95% CI 0.56–0.84), with a linear mean–variance relationship

of Var(µ) = 3.9µ. A multiplicative NegBin II model gives 0.62 (95% CI 0.48–0.81), with quadratic mean–variance

relationship Var(µ) = µ+ 30.8µ2. The rate ratio estimates from these multiplicative models can be applied to the

observed mean rates of laser therapy in the placebo group for those with and without known prior retinopathy to

obtain estimates of the absolute rate reduction, and hence the expected number of laser therapy courses that may

be avoided, by administering fenofibrate in these cohorts.

Alternatively, by using an additive model we are able to directly estimate these absolute rate differences and

their confidence intervals. The model will also allow us to adjust for individuals’ duration of diabetes prior to study

entry, which is strongly associated with the risk of retinopathy, and confounded with prior retinopathy status.

Assuming no interaction between treatment and known prior retinopathy, we estimated the effect of fenofibrate,

first unadjusted for any covariates, then adjusted for baseline retinopathy, in an additive NegBin I model. The

results are shown in Figure 1 as rate differences per 5 patient-years, along with their 95% confidence intervals.

Diabetes duration up to 20 years was then entered into the model as a flexible smooth term with a maximum of

5 internal knots. The inclusion of diabetes duration substantially improved the model fit as measured by the AIC

(3853.4 with diabetes duration compared to 4014.3 without), and led to a noticeable reduction in the magnitude

of the treatment effect estimate.

In order to obtain an estimate of the rate difference for fenofibrate separately in patients with and without known

prior retinopathy, the model must include an interaction between treatment allocation and retinopathy status. The

estimates from this model, with and without adjustment for diabetes duration, are also shown in Figure 1. As

expected from the analysis that showed no interaction on a multiplicative scale, the common relative effect of

treatment is manifested in a smaller absolute rate difference for individuals at low risk, that is those without

known prior retinopathy, compared to those at high risk. After adjustment for diabetes duration, this interaction

is marginally significant (p = 0.044).

Under this model, the effect of diabetes duration on the rate of laser treatment is assumed to be the same for

patients with and without known prior retinopathy. The estimated effect is shown in Figure 2, with a 95% confidence

interval obtained using the information matrix standard errors. This effect of increasing diabetes duration was

allowed to be non-monotonic, and the estimate shows a small reduction in rate just prior to 20 years, which may

be due to sampling error. The estimated effect of diabetes duration under a monotonicity constraint is also shown

in Figure 2.

The estimated rates under our additive NegBin I model were very similar to those under an equivalent additive

Poisson model, and did not exceed 0.75 events per 5 patient-years in either case. The coefficient of overdispersion

in the negative binomial model was estimated to be φ̂ = 2.44 (with estimated standard error 0.25), such that the

linear mean–variance relationship has a gradient of 3.44. The test statistic for a score test of the Poisson versus the

NegBin I distribution, which has a standard normal distribution under the null hypothesis [18], is 114.6, suggesting

strong evidence of overdispersion. Likewise the likelihood ratio test statistic, with a 0.5χ2(1) distribution under the
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null [31], is 1476.9.

Accounting for overdispersion by using a distributional model allows us to estimate the number of patients in

our sample expected to undergo a certain number of laser therapy courses, and these are shown in Figure 3 along

with the observed histogram. The additive Poisson model substantially underestimates the number of patients who

would not undergo any laser therapy, overestimates the number receiving a single course, and underestimates the

number receiving 3 or more courses. In contrast, the negative binomial models capture the large proportion of zeros

well: when we considered models that account for zero-inflation, these converged to the uninflated form.

Both additive and multiplicative NegBin I models appear to fit the observed counts well, including in the tail of

the distribution. The Chi-squared statistic for the observed versus expected counts shown in Figure 3 was 3.44 for

the additive model and 3.08 for the multiplicative model, both with an associated p-value greater than 0.9. The AIC

for the multiplicative model was 3837.2, which was also marginally better than the 3851.3 of the additive model,

but the goodness-of-fit statistic based on Hosmer and Lemeshow’s deciles approach [15] favoured the additive model

(66.2 versus 74.7, both p > 0.95). Overall, both models appear to have good fit to the data. Thus, if rate differences

were preferred then the additive model would be appropriate.

In the tail of the distribution, the additive NegBin I model appears to provide better fit than an additive

NegBin II model, which has an estimated mean–variance relationship of Var(µ) = µ+ 9.9µ2. The NegBin II model

underestimates the number of patients receiving between 2–6 courses of laser therapy, suggesting that the quadratic

mean–variance relationship has inferior fit to the linear overdispersion of the NegBin I model for this dataset. This

is supported by a comparison of AIC values (4132.8 for NegBin II versus 3851.3 for NegBin I) and Chi-squared

goodness of fit statistics (48.3 for NegBin II versus 3.44 for NegBin I) for the fitted models. Empirically, a plot of

the observed means and variances of the event rate within groups of patients defined by their assigned treatment,

prior retinopathy status and diabetes duration (Figure 4) also suggests that a linear mean–variance relationship is

more appropriate for these data.

As an extension, we considered the possibility that the effect of increasing diabetes duration may differ between

patients with and without known prior retinopathy. We fitted a similar additive NegBin I model, with a monotonicity

constraint but without the assumption of a common effect, and the expected rates under each model are shown

in Figure 5. The model that allowed different diabetes duration curves had superior fit in terms of AIC (3842.7

versus 3852.8), and shows a dramatic increase in the expected rate between 5 and 15 years of diabetes duration

for patients with known prior retinopathy. As can be seen by examining the vertical distance between the pairs of

lines in each case however, the estimated treatment effect is virtually identical under both models.

6. Discussion

We have described a stable method for finding the MLE in additive negative binomial regression, which allows for

estimation of adjusted rate differences in the presence of overdispersion. It also allows for smooth semi-parametric

regression using B-splines, with optional monotonicity constraints on these curves. The method respects the natural

non-negativity restriction on the fitted means, which can cause issues for approaches that employ standard gradient-

based algorithms such as Newton–Raphson.

Section B of the supplementary materials available online gives a detailed summary of existing software that

can potentially fit models for estimating adjusted rate differences in the presence of overdispersion. At present,

the gamlss package in R [9] is the only other available implementation of a method for fitting additive NegBin

I models. However, it employs a variant of the Newton–Raphson algorithm, which may perform poorly when the

MLE is on or near the boundary of the parameter space. In the current version (4.3), the routine stops with an

error if the estimates move outside the parameter space at any iteration, and although this may be improved by

Statist. Med. 2015, 00 1–?? Copyright c© 2015 John Wiley & Sons, Ltd. www.sim.org 11

Prepared using simauth.cls



Statistics

in Medicine M. W. Donoghoe and I. C. Marschner

step-size reduction, it is not straightforward to guarantee convergence in all cases. Together with the superiority of

the additive NegBin I model in the analysis of Section 5, these considerations illustrate the practical usefulness of

our method.

Our method has been implemented in the addreg package in R [32], which is available from the Comprehensive R

Archive Network (CRAN). Currently the package implements a basic version of the method, searching every possible

constrained parameter space consecutively. We plan that future releases will focus on optimising the computational

efficiency using techniques to reduce the number of ECME algorithms that need to be run, such as those discussed

by Marschner [20], and by taking advantage of the independent nature of the multiple ECME algorithms using

parallel implementation on a multi-core processor.

The additive NegBin I model that we consider in this paper has a linear relationship between the conditional

mean and variance, distinguishing it from the additive NegBin II model, which has a quadratic relationship. Both

of these are nested in the NegBin-p model [18], which could be used to test which is more appropriate, but there are

no existing methods for fitting this model with an additive mean. Alternatively, a scatterplot similar to that used

by Armitage [33] or Figure 4 can help to distinguish between NegBin I and NegBin II. Other forms of overdispersion

could be investigated using models such as the generalised Poisson [34] and Poisson–inverse Gaussian [35].

Both overdispersion and zero-inflation may be observed in the same data as a result of the data generating

process. A possible extension of our method is the inclusion of zero-inflation by introducing a latent Bernoulli

random variable into the complete-data model associated with the CEM algorithm. By utilising the methods of

Marschner and Gillett [36] and Donoghoe and Marschner [37], stability of the algorithm could be maintained for

any choice of logit, log or identity link in the regression model for the binary component. Such extensions are the

subject of ongoing research.
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Figure 1.Estimated effect of fenofibrate on the rate of laser therapy in the FIELD study from additive negative binomial models, unadjusted

and adjusted for prior retinopathy status and diabetes duration. p(Int) denotes the p-value for testing an interaction between treatment and

retinopathy history.
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Figure 2. Laser therapy rate difference associated with increasing diabetes duration in the FIELD study under an additive negative binomial

model.
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Figure 3.Observed number of individuals with each number of laser therapy courses in the FIELD study, compared to the expected number

under additive Poisson, NegBin I and NegBin II models, and a multiplicative NegBin I model. The y-axis has been log-scaled so that values in

the upper tail can be compared despite the heavy skew (96% of individuals had zero events).
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Figure 4.Observed mean and variance of laser therapy rates in the FIELD study, for groups defined by assigned treatment, prior retinopathy

status and diabetes duration. Lines show the estimated mean–variance relationship from fitted Poisson, NegBin I and NegBin II models.
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Figure 5. Fitted rates of laser therapy per 5 patient-years by baseline diabetes duration in the FIELD study under an additive negative binomial

model. In (A), the effect of diabetes duration was restricted to be the same for all patients, whereas in (B) it was allowed to differ for those

with and without known prior retinopathy.
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