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Abstract

Lachlan Toohey Doctor of Philosophy
The University of Sydney February 2016

Full State History Cooperative
Localisation with Complete

Information Sharing

This thesis presents the development of a novel decentralised localisation method for multi-

ple robots based on techniques from state of the art single vehicle localisation methods. We

extend upon these methods and enable reduced bandwidth requirements whilst employing

local solutions using state of the art single vehicle algorithms. Unlike many other state

of the art approaches, this method does not enforce a specific communication topology or

require complex tracking of fused information to avoid double counting and inconsisten-

cies in the estimate. The methods for inclusion of shared data match basic methods for

graph optimisation enabling quick implementation without special cases and giving greater

flexibility of application.

There are four key contributions in this thesis. The first is a novel method for splitting the

multiple vehicle problem into sections that can be iteratively transmitted in independent

packets with an upper bound on bandwidth per inter robot observation based on the di-

mension of the state space. This is achieved through delayed elimination of states involved

in intervehicle observations that we name external states. Local observations are placed

in subgraphs, each of which contains all states from one intervehicle observation until the

next. Any observations that connect to an external state are placed in either the subgraph

before or after the target external state - but not both. Internal states, which are all states

not involved in intervehicle observations, can then be eliminated from each subgraph and

the joint probability of the start and end external states can then be shared between vehi-

cles and combined with other subgraphs and further eliminated to yield the solution to the

entire graph when intervehicle observations are included. Once a subgraph is transmitted
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Abstract iii

the linearisation cannot be changed, however a local optimiser can relinearise and the local

linearisation point can inform selection of linearisation points for subsequent graphs.

The second contribution is exploitation of variable reordering within these packets to enable

simple handling of delayed observations that target an existing historical state such as may

occur with visual loop closures. We identify the calculations required to give the conditional

probability of the delayed historical state and the existing external states chronologically

before and after it. This can then be combined with previously transmitted probability in-

formation. This reduces the recalculation to updating the factorisation of a single subgraph

and is independent of the time since the observation was made.

The third key contribution is a method and conditions for insertion of states into existing

packets that does not require relinearisation and re-elimination nor invalidation of previously

transmitted information. We derive the conditions that enable this method and our fourth

contribution is the presentation of two motion models that describe real world systems and

conform to the derived conditions. Together this permits handling of the general out of

sequence case where remote platforms may be accumulating new states at relatively low

frequencies and be unaware that they were observed. Like the second contribution it limits

recalculation to a single subgraph. It does additionally require linearisation of the motion

model factors either side of the newly inserted state along with updating the factorisation

of the subgraph.

These methods are demonstrated in simulation to explore issues with a partially fixed

linearisation that we use and on captured data from a small fleet of ground vehicles to

demonstrate performance on real systems.

This thesis emphasises exact solutions after linearisation instead of approximations. The

absence of approximation methods such as sparsification reduces concern surrounding con-

servativity or inconsistency of localisation estimates and simplifies general graph handling.

It also emphasises iterative methods over batch methods for communication, in turn requir-

ing less bandwidth to generate a complete state history that is updated at each interaction.

This is important for cooperative localisation in contrast to cooperative mapping where

odometry drift over time can be reduced by frequent interaction. This work results in

predictable bandwidth usage, based on state space and intervehicle sensing rate and en-

ables more precise estimates of bandwidth required for the localisation task. This then

permits system design and offline planning for bandwidth allocation to localisation as well

as planning or control tasks.
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Chapter 1

Introduction

The aim of this thesis is to develop methods that permit asynchronous state updates between

agents and handles low bandwidth and unreliable communication channels.

1.1 Background and Motivation

Interest in multiple robot deployments stretch back further than 20 years with early re-

search in system architectures, task allocation and communication protocol [5, 26] with a

description of some of this early work given by Cao et al. [11]. Modern probabilistic lo-

calisation and mapping originated at a similar time for single robot systems [19, 66, 67]

based on Kalman Filtering [40]. In this work the challenge was to estimate position relative

to a starting point without global information such as GPS or a compass may provide.

Observation of landmarks then permitted generation of a map which was used to constrain

growth in uncertainty of robot poses, and of the landmarks themselves with much interest

in the consistency and long term convergence properties [7, 17, 28, 35]. This problem, and

the solutions to it are known as Simultaneous Localisation and Mapping (SLAM). Later

work relaxed assumptions about the lack of global information (such as GPS and compass)

and their incorporation in the state estimates is now commonplace for many applications

with interest in large scale or cheap high noise sensors [3, 33, 65, 69].

Application and extension of these probabilistic single robot methods to the multiple robot

case did not occur immediately although the concept of stationary landmarks was used

1
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by Kurazume et al. [43] and Rekleitis et al. [61]. In these works the total group was

divided into multiple teams with one team held in location as landmarks whilst the other

robots moved with these roles alternating as the entire group moved around the region. An

approach with all vehicles moving simultaneously based on Kalman filtering was described

by Sanderson [64] although some noise parameters were ignored. Modern probabilistic

localisation for multiple robot systems arrived soon after with a decentralised information

filtering approach [55] and a Kalman filtering approach [63]. It was realised that tracking

of information fusion was important to prevent double counting where information from

a single observation is fused multiple times. Usage of a channel filter [55] was proposed

to counter this within decentralised information/data filtering approaches. In these and

many following works the landmarks and maps of SLAM were ignored in favour of direct

observations of other robots giving rise to Cooperative Localisation as a distinct field,

although there is significant overlap with developments in the area of single and multiple

robot SLAM techniques. Subsequent work incorporated the mapping portion of SLAM [78]

without direct observations. Alternate Monte Carlo (or Particle filtering) approaches were

also developed [68] to better handle multi-modal and non-Gaussian uncertainty that arises

from nonlinear models.

The desire to incorporate constraints to historic states in single vehicles through laser scan

matching [49] or stereo image correspondence [21] led to the retention of historic states and

investigation of the Full SLAM problem where a sparse information matrix representing the

complete trajectory of the vehicle is used [22, 50, 75]. Identification of this with nonlinear

least squares and graphical models such as discussion in Frese and Hirzinger [25] led to

methods such as
√
SAM [15] and subsequent adaptation to online usage [31, 37, 39, 42].

Extension of these methods to multi-robot deployments has gained attention, although

present issues with bandwidth, reliability of communication channels, avoiding dependence

on individual robots and computation tractability. Increasing the number of robots in the

system tends to increase the concern with all these issues. Delays in communication or

observation of remote systems have led to delayed state methods [8, 46] that bridge the

gap between filtering and smoothing approaches where a small history is retained. DDF-

SAM [13, 14] uses landmarks to create a map on each platform that is then shared with

landmarks being associated on each platform, although it cannot handle direct inter-robot

observations. Handling direct observations has been shown with group of methods based on
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One-Way-Travel-Time (OWTT) [73, 76] that exploit both the information imbalance with

surface ships and submarines such that information is needed primarily in one direction

only and the dual nature of their acoustic modems as a communication and (one-way)

range device when coupled with synchronised low drift clocks. Methods developed here

cover delayed state and full graph approaches. The use of an ‘origin’ state that is used to

base packets off resulted in a tolerance to packet loss although the creation method would

result in double counting of information if used in a bidirectional network. More recent

work based on this sensing methodology [74] yielded a solution based on sparsification or

approximate marginalisation that uses odometry composition and decomposition operations

relative to local coordinate frames along with approximate priors. In this method any packet

can be lost without the system failing and a similar graph structure for solutions is used as

developed here. Their solution however is restricted to minimal (x, y) states.

Alternative methods that do not rely as heavily on a known ‘origin’ state exist [59]. Here

states between two consecutive inter-robot measurements are marginalised and a sparse ap-

proximation of the dense information matrix over the two states and landmarks is generated

and transmitted.

The structure of the solutions to multi-robot deployment localisation (and mapping) is

generally related to the specific constraints the problem faces. Where cases like underwater

robotics have very limited bandwidth over acoustic modems other scenarios on the ground

or in the air have much higher bandwidth. Again underwater, indoor or extra-terrestrial

problems lack the use of a Global Navigation System that they can independently position

against (such as GPS, GLONASS and Gallileo) and must rely on landmarks or relayed

information from robots with this globally visible information.

The centralised techniques that many of these are based off provide a target standard

for decentralised methods. These solutions utilise all available information with no ap-

proximations beyond linearisation which is repeated to reduce the ill-effects of poor initial

linearisation point selection. Recent prominent techniques such as iSAM2 or
√
SAM give

examples of the reference standards for online and offline centralised techniques.
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1.2 Problem Statement

The difficult problems in cooperative localisation concern double counting of sensor infor-

mation, bandwidth limits, unreliable communication, delayed communication, tractability

of computation and handling asynchronous and hereogeneous observations.

We aim to enable solutions nearly equivalent to centralised solutions for multiple robots in

an online decentralised manner. We are not seeking to handle swarms of hundreds of robots

but a local team in the order of five to ten. The solution should, on a given robot, contain all

local variables and have nearly identical marginal and conditional probabilities. The method

should avoid replication of calculation by solving locally before sharing as much information

as possible whilst still permitting fusion with solutions from other vehicles. The method

should be generic and permit handling of all Gaussian noise models for intra and inter-robot

observations. The method should minimise the bandwidth required and handle arbitrary

delays for limited range or high latency communications. Resilience against dropped packets

is also desired but not required.

1.3 Thesis Contributions

This thesis makes four novel contributions to the state of the art in multi-vehicle decen-

tralised localisation under bandwidth limited communication constraints. These contribu-

tions include:

• The development of a method for information fusion that allows iterative in-sequence

construction and transmission of a summary graph containing only the states involved

in intervehicle measurements for each vehicle.

This method eliminates the risk of double counting of measurements and permits arbi-

trary communication patterns. While existing methods either create chains of linked

packets using marginal and conditional probabilities on each vehicle which require

careful manipulation [8] or restrict vehicles from retransmitting [73], the approach

proposed here allows packets to be transmitted between vehicles without introducing

inconsistencies in the final estimate. The resulting estimates are exact up to the local

linearisation that takes place on each vehicle.
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• The extension of this method to facilitate the inclusion of out of sequence intervehicle

measurements without retransmission through promoting an existing state that is

sufficiently close to the desired time. Existing methods require a combination of

retransmission of existing data, increasing complexity of data tracking, or recalculation

across the interval between the original measurement time and the current time using

a limited delay horizon.

• A further extension to facilitate inserting a new state where an existing state does

not exist and the vehicle model obeys certain conditions. Existing methods require

recalculation of all data since the new observation or information cancellation and

re-elimination since the observation time of the out of sequence measurement.

• The analysis of vehicle models that conform to the insertion requirements for out of

sequence measurements.

These contributions are validated using a combination of simulation experiments and data

collected by teams of ground vehicles.

1.4 Outline

The remainder of this thesis is organised as follows.

Chapter 2 presents background information related to the problem. It provides an overview

of the state of the art in areas of state estimation including applications to single vehicle

localisation, SLAM and cooperative localisation. Additionally it includes background on

some of the less known mathematical methods that are used for state representation and

metric calculation.

Chapter 3 describes the mathematical foundation for the iterative in-sequence construction

and transmission of a summary graph. It validates these developments using both simulated,

multi-vehicle scenarios as well as using real data collected during the deployment of a team

of robots.

Chapter 4 extends this formulation to allow for the inclusion of out-of-sequence intervehicle

measurements as well as intravehicle measurements resulting from loop closure events. This

is again validated in both simulated scenarios and real data collected from a team of robots.
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Chapter 5 summarises the main contributions of the thesis and provides an outline of

directions for future work.



Chapter 2

Background and Related Work

This chapter will cover background knowledge required for understanding the details of

later chapters as well as a survey of related literature. The first section will cover factor

graphs and nonlinear estimation including a section on state representation. The discus-

sion of related literature in the second section, covering alternate localisation methods and

applications of these methods, will be framed by the terminology and methods described in

the first section.

2.1 Factor Graphs and Nonlinear Optimisation

The basis of many localisation methods for single and multiple robots in recent literature

has utilised nonlinear optimisation techniques and weighted nonlinear least squares in par-

ticular. Nonlinear least squares seeks to find the state/value that minimises the scalar error

calculated from the error function describing the problem. We begin with a relatively in-

formal description of describing localisation problems and the scalar error function before

getting more rigorous and developing more completely the mathematics and models we use

to describe it.

The scalar error function is the product of smaller parts of the problem that describe

sensor observations and vehicle motion. Both types of these functions are derived from

conditional probability distributions and are similar in form. Sensor observations, such as

vehicle orientation from a compass, coarse precision from GPS, speed from wheel encoders

7
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or inter-vehicle observations such as range from laser, RADAR or stereo cameras can be

treated as the conditional probability of an observation given the true state. As is typical

in localisation a Gaussian distribution is used to represent this probability distribution as

in (2.1) where h is a function to predict the sensor observation from the state. A similar

conditional probability distribution is used to represent the vehicle model in (2.2) where

the probability of the next state is given conditioned on the previous state. This function

represents the difference between the estimated next state xij and the predicted next state

h(xij−1).

p
(
zij
∣∣ xij) = det 2πΛi

− 1
2 exp−1

2

(
zij ⊕ h(xij)

−1
)T

Λ−1
i

(
zij ⊕ h(xij)

−1
)

(2.1)

p
(
xij
∣∣ xij−1

)
= det 2πΛi

− 1
2 exp−1

2

(
xij ⊕ h(xij−1)−1

)T
Λ−1
i

(
xij ⊕ h(xij−1)−1

)
(2.2)

(2.3)

These probability distribution functions can be combined to give a total probability for

all states and sensor observations through multiplication of these functions. The expected

value of the vehicle states over time is the mean of the combined distribution which, for

Gaussian distributed probability density functions is the argument that gives the maximal

value. It is this expected value that we seek and is the aim of solving in nonlinear least

squares based methods.

Typically the probability distribution function is modified to produce an easier to compute

and solve equation by discarding normalising terms to get a likelihood function and then

taking the logarithm and further discarding constant terms which do not change where the

minimal (after taking the logarithm) value occurs in the state space. At this point the more

familiar least squares format appears.

Observations of the structure of the probability distribution function and derived least

squares error function led to formation of a graph structure known as a factor graph where

these functions, or factors in the graphical model terminology, are connected via edges

to variables if they depend on the value of that variable. The connectivity of this graph

corresponds to the sparsity pattern of a Jacobian matrix that is computed whilst solving

the nonlinear least squares problem.

Methods for localisation developed recently have utilised graphical models to describe the

formulation of and the solution to these problems and enable insight into the structure of
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the sparse matrices that are the mathematical representation of the problems. In particular

the factor graph has been used for the formulation of localisation and mapping problems

and construction of the Jacobian and Information matrices [15] and a relatively recently

developed model termed the Bayes Tree [38] for representing the upper (or lower) triangular

square root inverse matrix that is used for back substitution in the solution to these prob-

lems after variable elimination. The underlying methods are applicable to Simultaneous

Localisation And Mapping (SLAM), Structure from Motion (SfM), Visual Odometry (VO)

and numerous other optimisation problems however we will focus on applications relating

to localisation (with mapping to a lesser extent).

Factor graphs are bipartite graphs with variable nodes θi that represent state estimates

and function or factor nodes gj (Θj) that are likelihood functions that depend upon a

subset of the state estimates. The total factor graph g is the product of all these factors∏
j gj (Θj). Probability distributions which are normalised likelihood functions are not

required as the focus is to find the maximum likelihood state estimate which is independent

of normalisation.

We use a factor graph for the cooperative localisation problem similar to the one depicted in

Figure 2.2. Here the variables θ are robot states xij which denote the state of robot i at time

step j on that robot. We use different hues to designate states from different robots and

additionally vary the brightness to denote with faded colour ‘internal’ states that are not

connected through an observation to another vehicle and brighter colour ‘external’ states

that are connected via a factor to another vehicle. We additionally include landmark states

lx where multiple digits indicate multiple landmarks were observed simultaneously and have

been bundled for convenience. These states are also variables and are used in map building

and landmark free loop closures (visual loop closures or similar where the landmark is elimi-

nated before the factor is included in the global graph). The factors, depicted as small black

circles, are probability distributions or likelihood functions that denote the likelihood of an

observation zj given connected variables Θj . These distributions arise from sensor models

for local state sensors and relative state sensors between vehicles or vehicles and landmarks.

Examples of local state sensors include position through global navigation systems, orienta-

tion from compasses or velocity through wheel encoders or Doppler measurements. Relative

state sensors include visual, laser, RADAR or acoustic ranging and bearing observations

of remote targets or pair matching for visual loop closures and laser range scan matching.
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Figure 2.1 – A generic three vehicle system over time. Vehicle states are coloured by vehicle and
are red, blue or green with landmarks in yellow. Odometry links connect vehicle poses and
intervehicle observations are indicated by arrows denoting the target of the observation.
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Figure 2.2 – A generic three vehicle factor graph. State variables are coloured by vehicle
and either red, blue or green for each vehicle with landmarks in yellow. Factors, which
represent observations relating to vehicle and landmark states are the black circles.

Finally vehicle models may also be used to create a link between states over time using

knowledge of system dynamics.

More rigorously a factor graph is a graph FG = (G,Θ, E) with two node types and edges

that connect only between nodes of different types. Factor nodes gj ∈ G represent the

likelihood functions and variable nodes θi ∈ Θ represent the states. Edges eij ∈ E represent

dependence of a factor function gj on a variable θi. Θj is the set of variables a factor

gj depends upon. The graph is the product of all factors and the value represents the

likelihood of a set of variable values. The aim is to find the maximum likelihood value of all

variables, which is the same as finding the global maximum of g(Θ). η is a normalisation

constant used to scale the graph to a probability distribution. This problem can be easily

reposed into a more familiar (nonlinear) least squares form as in (2.8) when assuming that
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likelihood functions are Gaussian distributions containing a vector error function fj(Θj)

and covariance matrix Λj .

p(Θ) = ηg(Θ) (2.4)

p(Θ) = η
∏
j

gj(Θ) (2.5)

Θ∗ = arg max
Θ

∏
j

gj(Θj) (2.6)

= arg max
Θ

∏
j

exp
(
−fj(Θj)

TΛ−1
j fj(Θj)

)
(2.7)

= arg min
Θ

∑
j

(
fj(Θj)

TΛ−1
j fj(Θj)

)
(2.8)

The number of rows mi in the factor gj is the dimension of the observation, and corresponds

to the number of rows and columns in the square covariance matrix Λj representing the

uncertainty in the factor.

Finding the minimum of the nonlinear least squares problem is done through iteration

over linearised versions of the problem with each iteration updating linearisation points

and ideally approaching the global minimum. Algorithms like Gauss-Newton, Levenberg-

Marquardt and conjugate gradient can be used to calculate the update each iteration with

different advantages to each [16, 30]. We will use Gauss-Newton here for demonstration

purposes.

2.1.1 Linearisation

Linearisation of these functions is performed using first order Taylor expansion of the error

metrics fj around linearisation points Θ0. Expanding the error term in (2.8) we find

Θ∗ = arg min
Θ

∑
j

(fj(Θ0
j ) +

∑
i

∂fj(Θ
0
j )

∂θi

(
θi − θ0

i

))T
Λ−1
j

(
fj(Θ

0
j ) +

∑
i

∂fj(Θ
0
j )

∂θi

(
θi − θ0

i

))
(2.9)

We can then rearrange to optimise over the change in state ∆Θ relative to the linearisation

point where ∆Θ =
(
Θ−Θ0

)
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∆Θ∗ = arg min
∆Θ

∑
j

(fj(Θ0
j ) +

∑
i

∂fj(Θ
0
j )

∂θi
δθi

)T
Λ−1
j

(
fj(Θ

0
j ) +

∑
i

∂fj(Θ
0
j )

∂θi
δθi

)
(2.10)

This can be further simplified to collate the summations to a single Jacobian matrix, co-

variance matrix and error metric vector for the entire graph

∆Θ∗ = arg min
∆Θ

(
f(Θ0) + J∆Θ

)T
Λ−1

(
f(Θ0) + J∆Θ

)
(2.11)

where f is the combined error metric vector, J the global Jacobian matrix whose rows

correspond to the metric functions and the columns to variables they depend upon, Λ is the

global block diagonal covariance matrix and ∆Θ combines the individual δθi into a single

vector. Given the structure of many problems, the Jacobian J is sparse as each error metric

depends only on a small number of variables.

2.1.2 State Representation

Whilst methods derived from the Kalman Filter, which will be covered briefly in the next

section, including the EKF, EIF, SEIF and DDF - historically solved for the state directly

this required careful handling throughout the estimator code for cases like rotations where

the state values are non-Euclidean and Euclidean distance metrics do not match the true

distances in these spaces. The simplest example of this is calculating the robot’s orientation

over time. A local sensor such as a compass will provide absolute estimates in the ±π range

(or equivalently [0, 2π)). Accumulation through odometry of circular motion will result

in the orientation estimate exceeding ±π resulting in incorrectly large innovations when

fusing new compass measurements. This can be compensated through methods including

adding ±2kπ to the compass observation or other workarounds that result in a normalised

difference in the ±π range. These can involve careful manipulation of the values and

updating the offset as estimates of values change. The choice of solving for the new estimate

directly includes the linearisation points in the error metric (through the
∂fj
∂θi
θ0
i terms). The
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alternative of solving for δθi has only the error metric and so depends only upon the error

value not the underlying values as well.

Treatment of the states as a manifold, or more precisely an n-dimension differentiable man-

ifold, enables calculation of derivatives and further creation of a tangent space at each

point on the manifold. The tangent space is important as the space is n-dimensional Eu-

clidean, matching the results of optimisation from least squares. Furthermore vector values

in the tangent space can be mapped back to the manifold, relative to the linearisation

point, enabling composition with the updates in a consistent manner. The mapping from

tangent space to the manifold is known as the exponential map exp and the reverse map-

ping is the logarithm map log. In this way the update equation to add the delta back to

the linearisation point is adjusted. What is θi = θi + δθi for Euclidean states becomes

θi = expθ0i
(δθi) = θ0

i ⊕ exp0(δθi) representing movement by δθi in the tangent space of the

manifold at θ0
i and alternatively as the composition of the linearisation point θ0

i with the

movement in the tangent space around the group identity exp0(δθi).

Another set of mathematical structures that enable simpler and more accurate handling of

non-Euclidean variables are Lie Groups and their related Lie Algebra [12]. Introductions and

examples of applications to robot dynamics [57] and later robot localisation [2, 31, 39, 48]

can be readily found. Lie groups are continuous transformation groups that are also n-

dimensional differentiable manifolds. Groups require a binary group operation, a null value

or identity, an inverse for each operation, associativity for operations and closure in that

the result of the group operation on group members must also be a group member. Lie

groups additionally assert that the group operation and inversion are differentiable.

Of particular interest to many robotics applications are the matrix Lie Groups SO(2),

SO(3), SE(2) and SE(3) the former pair of which handle rotations and the latter pair

rotations and translations in 2 and 3 dimensional Euclidean space. The numerical rep-

resentation of these are the standard square rigid transformation matrices. Whilst these

matrices can be useful for calculating transformations they do not immediately provide n

dimensional Euclidean values that are desired for the solving process. The tangent space

to a Lie Group at the identity is known as the Lie Algebra and for the matrix Lie Groups

is a square matrix of the same size with n degrees of freedom and each dimension is in

R. The exponential and logarithm maps are the matrix exponential and logarithm maps.

Whilst these are impractical to calculate in the general case for each of these matrix Lie
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Groups there are closed form equations that avoid calculating the full matrix exponential

and logarithms. When using Lie Groups and Algebra the update equation can be rewritten

as θi = θi ⊕ exp0(δθi) where ⊕ is the group operation.

A simple example of a matrix Lie Group and its Lie Algebra is the group of rotations

in the plane SO(2) shown in (2.12) and translations and rotations in the plane SE(2)

shown in (2.13) which is slightly more complex but shows the dependence of translation on

orientation. cosω − sinω

sinω cosω

 = exp

0 −ω

ω 0

 (2.12)


cosω − sinω u sinω−v(1−cosω)

ω

sinω cosω v sinω+u(1−cosω)
ω

0 0 1

 = exp


0 −ω u

ω 0 v

0 0 0

 (2.13)

2.1.3 Solving

Given the weighted linear least squares problem in (2.11) we can further simplify by incor-

porating the covariance matrix information into the Jacobian matrix and combined error

metric to create an unweighted linear least squares problem as in (2.15). If we use the

Cholesky decomposition of the inverse covariance matrix we get
(
Λ−1

)T/2 (
Λ−1

)1/2
= Λ−1.

We can then split the components and pre-multiply the Jacobian matrix and error vector.

This permits us, without loss of generality to incorporate the covariance term into the Ja-

cobian matrix and error vector and drop it from the terms. Here we will denote the change

forms with ‘′’ but drop it again following for simplification of notation.

∆Θ∗ = arg min
∆Θ

(
Λ−

1
2
(
f(Θ0) + J∆Θ

))T
Λ−

1
2
(
f(Θ0) + J∆Θ

)
(2.14)

= arg min
∆Θ

(
f ′(Θ0) + J ′∆Θ

)T (
f ′(Θ0) + J ′∆Θ

)
(2.15)

At this point application of Gauss-Newton, Levenberg-Marquardt or other linear solvers is

possible to obtain a final solution for ∆Θ. We temporarily denote the linearised function

of ∆Θ we are minimising as F (∆Θ). In the case of Gauss-Newton the derivative of F with
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respect to ∆Θ is calculated and set to equal 0.

F (∆Θ) = f(Θ0)T f(Θ0) + f(Θ0)TJ∆Θ + ∆ΘTJT f(Θ0) + ∆ΘTJTJ∆Θ (2.16)

∂F

∂∆Θ
= 2f(Θ0)TJ + 2∆ΘTJTJ = 0 (2.17)

If we transpose and rearrange the equation we arrive at the normal linear least squares

problem.

JTJ∆Θ = −JT f
(
Θ0
)

(2.18)

Solving (2.18) involves inverting JTJ , which is also known as the Information matrix I,

and multiplying both sides on the left by this inverse to obtain the solution for ∆Θ. Direct

instantiation of the dense inverse of I can be avoided using the Cholesky decomposition

of I. The Cholesky decomposition calculates the square root upper triangular matrix R

and its transpose such that RTR = I = JTJ . This then permits a two step process with

forward and backward substitution and avoids direct inversion of I.

JTJ∆Θ = −JT f(Θ0) (2.19)

RT y = −JT f(Θ0) (2.20)

R∆Θ = y (2.21)

An alternative approach is to avoid construction of I altogether using the QR decomposition

that calculates the same R where J = QR. Here Q is a unit determinant orthogonal matrix

such that QQT = I. QR decomposition can take place through a number of methods such

as Givens rotations and the Gram-Schmidt algorithm. These algorithms construct Q as

the product of many smaller unit determinant orthogonal matrices Qi. Construction of Q

itself can be avoided if each transformation is simultaneously applied to both sides of (2.18).

Finally back substitution yields the solution in (2.23).

QTJ∆Θ = −QT f(Θ0) (2.22)
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R∆Θ = −QT f(Θ0) (2.23)

The delta update ∆Θ is then added to the linearisation point Θ0 and the steps from lin-

earisation through solving are repeated until convergence where the update ∆Θ ≈ 0.

As an aside column ordering chosen for construction of J defines elimination ordering and

influences computational cost by controlling sparsity of I and R. Previous work in locali-

sation and mapping has used a minimal computation ordering heuristic such as COLAMD

or METIS [1]. We will cover elimination ordering further in the next section on Graphical

Approaches.

2.1.4 Graphical Approaches

Whilst a factor graph represents the initial problem it does not assist in representation of the

final solution. The process of Variable Elimination targets a single variable at a time in an

ordering known as the elimination order and converts the factor graph to another graphical

model known as a Bayesian Network [60] through inducing directional dependence in the

edges based on order of elimination. Different orderings will generally result in different

Bayesian Networks. This network encodes the conditional probabilities of a single variable

upon a number of other variables in a directed acyclic graph. Whilst acyclic there may still

be multiple paths from one node to another complicating inference.

In the case of Bayesian Networks resulting from variable elimination the network is chordal

which permits conversion to a tree structure, merging the multiple paths that can exist

between nodes in the Bayesian Network. The tree structure we convert to here is the Bayes

Tree [38]. This structure retains the directed nature of the Bayesian Network but instead

of encoding conditional probabilities of single variables relative to others it encodes the

conditional probability of a set of ‘frontal’ variables upon the ‘separator’ variables. Separator

variables also appear in the node’s parent as either frontal or separator variables and all

variables appear exactly once as a frontal variable in a complete tree. The directed edges

follow the flow of information in the solution from the root to the leaves mapping the back

substitution process. An example of a Bayes Tree is shown in Figure 2.3 and was created

from the factor graph in Figure 2.2 with a randomly chosen ordering. Mathematically the

Bayes Tree is represented as the product of conditional probabilities and can be directly
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Figure 2.3 – A Bayes tree generated from a random elimination ordering for the factor graph
in Figure 2.2. Larger cliques involve greater computation as each is a dense matrix and
vector that requires inversion. Sparsity is greater when there are less variables in each
clique. Computationally optimal orderings will aim to minimise clique size.

mapped to rows of the upper triangular matrix R that is calculated from QR or Cholesky

decomposition methods given in the previous section.

p(Θ) =
∏
k

p(Fk | Sk) (2.24)

Variable elimination can be understood within the graphical models as an iterative process

that converts factor graphs to Bayesian Networks and then Bayes Trees [38]. The process

takes the next variable in the elimination order and removes it along with all factors adja-

cent to it from the factor graph. The factors are combined into a single element and the

conditional probability of the target variable dependent upon the variables adjacent to the

removed factors is calculated. The conditional probability is added to the Bayes Network

and the remaining components of the factor returned to the factor graph. The new factor is

connected to all variables adjacent to all factors removed and results in ‘filling-in’. Once the

process is complete the Bayesian Network can be converted to a Bayes Tree by building in



CHAPTER 2. BACKGROUND AND RELATED WORK 18

reverse elimination order. Starting from the node representing the last eliminated variable,

nodes are taken from the Bayesian Network and added to the tree. Thus the first eliminated

variables make the leaves and the last eliminated variable is part of the root node.

Using this graphical model approach to variable elimination we can return to the linear

algebra approach and replicate it. The process of removing the factors surrounding the

target variable of dimension n from the factor graph is equivalent to isolating the rows of

the Jacobian matrix that contain non-zeros in the target n columns. Extraction of the

conditional then involves performing QR decomposition upon this isolated section, clearing

under the diagonal for n columns. The top n rows are then the conditional probability and

can be separated out, whilst the remaining rows return to the Jacobian. Givens Rotations

and Householder Reflections are relatively stable methods for calculating the QR decom-

position that also permit this partial process. Recovery of the delta can take place through

backsubstition using the solution matrix.

2.2 Related Literature

Accurate estimation of state is an important problem for robotic and human controlled

systems. Methods for state estimation have varied in robustness and requisite sensors

over time although now are typically based on statistical methods that incorporate sensor

uncertainty.

2.2.1 Filters

The origin for many of the methods now used in robotics is the Kalman Filter [40]. Seminal

work by Durrant-Whyte [19], Smith et al. [66], Smith and Cheeseman [67] introduced the

Kalman Filter to robotics as a solution to the SLAM problem, replacing methods that

overestimated uncertainty and lacked statistical bounds, instead using absolute min/max

bounds [10].

The Kalman Filter was designed as a method to handle weighted incorporation of sensor

data from a multitude of independent observations over time. The filter was shown to be

optimal for linear systems with Gaussian noise models, neither over or under estimating

uncertainty. Output of the filter consists of a mean state estimate vector and a covariance
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matrix representing the multi-variate Gaussian uncertainty around the mean state vector.

Joint covariance with previous state estimates is not calculated with the focus on the latest

state and the nature of the Kalman Filter as a recursive filter. The filter itself consists of

two sets of calculations. The first set is state prediction using a dynamic model to project

the state forward in time. The second set updates the state estimate through incorporation

of sensor data obtained at that time. Fusion in this manner permits the uncertainty to

be less than that of a single observation, especially if the dynamic motion model does not

introduce significant noise.

Whilst the prediction stage is relatively fast to compute, the inclusion of sensor information

involves numerous matrix inversions and an increased count of matrix multiplications. To

this end an alternative representation of the filter was proposed for usage in slowly changing

systems, or where a significant amount of information was to be fused at any single time.

This representation, known as the Information Filter, uses the inverse covariance matrix or

information matrix and the information vector, which is equal to the information matrix

multiplied by the mean state estimate vector from the covariance form. In information form

the state update from new sensor measurements includes a single inversion of the sensor

covariance matrix which is smaller than the covariance matrix and often constant for a

given sensor. State prediction is however more expensive, involving matrix inversions that

are reliant on the previous information matrix.

Further alternate formulations using factored versions of the information matrix or covari-

ance matrix have been proposed such as the Square Root Information Filter [51]. This

results in gains in numerical accuracy or computation speed, although literature on usage

of these is relatively sparse.

The methods shown so far are for linear systems and models which do not properly repre-

sent many systems of interest, such as vehicles moving in a plane or volume or nonlinear

observation models such as range and bearing. A relatively straightforward extension of

the Kalman Filter to handle this is the Extended Kalman Filter which uses the first or-

der Taylor expansion of state prediction and sensor observation functions to provide the

process and sensor model matrices from their Jacobians [27]. This is readily translated to

the Information form of the filter, with the caveat that the mean state vector must still be

used for the state prediction and sensor observation functions. This requires inversion of

the Information matrix to recover the state.
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All these variations are based on recursive filters which use different operations for state

predictions and odometry and for fusion of sensor information about the current state.

Whilst this enabled rapid calculation of the current state and uncertainty in the mean

it limited the ability to incorporate loop closures or links to other states and results in

growth in uncertainty over time unless some global source of absolute position information

is present. Many of the early robotics applications assumed no global frame existed or was

available and developed methods with augmented stationary states - or landmarks, that

were features that the robot could identify in the environment and navigate relative to.

This did come with the limitation that the landmarks needed to be readily identifiable and

repeatedly observed - ideally from a large range of locations in the environment.

2.2.2 Smoothers

Seminal work of Lu and Milios [49] opted to retain historic pose information to permit

computation of relative links between each of these poses derived from matching laser scan

data. This was the first case of global optimisation in the robotics literature. Global

optimisation of linear(ised) systems however had long existed within the literature under

the term smoothing [27]. Subsequent research increased understanding of the robotics

SLAM problem and noticed similarities to problems in other domains such as SfM and

Bundle Adjustment (BA) [71].

Formulation of the full SLAM problem as nonlinear least squares and using graphical models

permitted greater understanding of the structure of the problem. This also invited methods

that repeat the optimisation until convergence to fully exploit the retained information.

The required recalculation combined with the increased size of the matrices involved made

it an offline problem. First attempts used ‘springs’ or elastic methods [18, 29] and lacked the

attention to sensor and process modelling of the filtering literature but posed the problem as

- or noted the relation to - least squares. A more complete mapping to nonlinear least squares

and sparsity was shown in GraphSLAM [69]. An online implementation called Exactly

Sparse Delayed-State Filters using the structure of a single iteration of a nonlinear least

squares solution was developed for ‘view-based’ SLAM, where landmarks are not explicitly

constructed in the state space [22].

Both GraphSLAM and Exactly Sparse Delayed-State Filters used the information matrix

as their general storage and accumulation method. An alternate representation of the data
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using the matrix square root of the information matrix was proposed by Dellaert and Kaess

[15]. This forms the basis of the method we introduced at the start of this chapter and

provides an explicit mapping between linear algebra and graphical models. The matrix

square root can be found through Cholesky decomposition of the information matrix or

through QR decomposition of the Jacobian matrix (after incorporation of the noise models).

This form retains the general sparsity of the information matrix and is often used as part of

solving a system of linear equations or matrix inversion. Others have implemented variants

of this with a strong emphasis on speed of calculation [42]. Methods for fast inclusion of

new data in the square root form resulted in iSAM [37] and reusing previous linearisation

values and partial reordering when iterating gave iSAM2 [39]. Additionally a new graphical

model to describe the conditional probabilites that the square root form represents in a tree

structure was developed [38].

2.3 Localisation

Here we review research examining estimation in the context of robotics. We cover develop-

ments in localisation and mapping for a single vehicle before considering work in multiple

vehicles which parallels the single vehicle case in many instances.

2.3.1 Single Vehicle

Initial solutions to single vehicle localisation can be seen in the Kalman Filter. The earliest

robotics solutions used a constrained initial pose at the origin of the state space [10, 67] and

landmarks were used as the basis for navigation with interest in convergence properties [17]

and inconsistencies [36].

Efforts to handle larger problems led to approaches creating smaller submaps that delayed

fusion to keep a small local problem [20, 24, 45, 77] or forcing sparsity of the covariance

matrix [58, 70]. The latter approaches were not conservative1 and sometimes resulted in re-

duced uncertainty in the initial algorithms although later developments corrected this [72].

Alternate problems in SLAM where laser scans or monocular or stereo images were di-

rectly matched led to greater interest in the Full SLAM problem where historic states are

1We use the definition of conservative to indicate that the new approximate covariance ellipsoid contains
the original exact covariance ellipsoid derived from their respective matrices
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retained. The first example was Lu and Milios [49] which also led to the first smoothing

solutions. Later examples of the problem used delayed states with the Kalman Filter [21]

although realisation of sparsity of the information matrix for the same problem led to im-

provements [22, 50].

Around the mid 2000’s interest in smoothing solutions where the state and map estimates

are optimised until convergence gained greater interest as computing power and memory

increased and algorithms improved. This led to methods like GraphSLAM [69],
√

SAM [15],

iSAM [37], T-SAM [56] and HOG-Man [31]. These approaches all recognised the equiva-

lence with nonlinear least squares but varied in methods for representing and updating the

problem. GraphSLAM and
√

SAM both used batch solutions with the latter favouring the

square root of the Information matrix for representation of the problem. iSAM and subse-

quent extensions used the square root form enabling online updates, variable reordering and

relinearisation in real time [39]. T-SAM and HOG-Man instead favoured an hierarchical

approach using submaps, where pieces of the problem are solved before being grouped and

solved at higher levels, borrowing from earlier methods with filtering approaches. Authors

of both collaborated on an improved method using elements of both approaches [32].

Additionally smoothing based methods transitioned to solving for a vector of ‘deltas’ or

differences to the linearisation point as in both
√

SAM and HOG-Man based methods.

When combined with a change to use manifold or Lie Algebra methods this improved

handling of error metrics based on rotation groups SO(N) and pose spaces SE(N) through

avoidance of singularities where N is 2 or 3 for planar or full 6-DOF motion.

2.3.2 Cooperative Localisation

Methods for localisation of multiple robots have generally paralleled single robot solutions

although they present additional problems in communication range, bandwidth and relia-

bility along with the increased number of states to optimise over.

Very early implementations for cooperative localisation (as distinct from the ‘and mapping’)

split the team of robots into two groups where one group could move for a step and the other

was held in place as landmarks [43]. Observations were still sent to a centralised location

for incorporation in the Kalman Filter. A number of efforts for multiple robot Kalman

Filters used shared cross correlation terms and required synchronised communications to
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update each robot [63], or maintained a number of filter banks exponential in the number

of systems [6] to enable combination with remote systems estimates and avoid fusion of

observations multiple times.

Ultra-low bandwidth usage systems have also been proposed using quantisation of the inno-

vation to amounts as small as a single bit per update [52, 62]. This required using identical

estimators on all systems and so limited the ability to use local information at full resolu-

tion. A hybrid system that removed this limitation was developed [54] but still retained the

fixed linearisation and updating of multiple estimators.

Nettleton et al. [55] identified the information form as being more suitable for multiple robot

estimators with early work utilising a channel filter to cache information and transmit in

a small batch. Later work with delayed states permitted prevention of repeated fusion

through usage of a local solver that transmitted its estimate and uncertainty to a central

solver that could be replicated on each platform [8]. The solvers could then subtract out

information they had previously received before fusing the updated result. This did retain

some of the complexity of the Kalman Filter methods but reduced the storage required to

be proportional only to the number of vehicles as opposed to the square of the number of

vehicles and enabled delayed observations to be fused.

Investigation of nonlinear least squares approaches and adapting Smoothing and Mapping

(SAM) approaches has provided C-SAM [4] which linked separate
√

SAM solvers on an

intervehicle observation. The method did not investigate bandwidth reduction and instead

focussed on solving the relative transform between maps and identifying landmarks included

in both vehicles’ sets.

DDF-SAM [13, 14] also came from
√

SAM but ignored intervehicle observations. Instead

the each vehicle shares the marginal probability of a set of common landmarks which are

associated separately. Periodically new maps are shared requiring the old maps to be

removed to avoid fusing observations multiple times. They used anti-factors to cancel

previously shared information from the factor graph before fusing the updated information

enabling a single solution to be used and reduce repeated computation.

Another approach is based on condensed measurements [32] where the total graph is divided

and solved directly relative to an origin local to each section. The condensed measurements

are then made up of approximated measurements of each desired state relative to the sec-
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tions origin. Lazaro et al. [44] applied this to the multiple vehicle case to create a single

condensed graph per vehicle/vehicle pair which is periodically retransmitted with updates

included. The approximation used to condense measurements approximates the true dis-

tribution but does not guarantee the new uncertainty is equal to or greater than the actual

distribution.

Exploitation of heterogeneous robot teams where there is large disparity in information

sources available to each robot have led to asymmetric solutions where information is trans-

mitted in one direction only and can use constant bandwidth per intervehicle observa-

tion [76]. They also utilise a one way range measurement made possible with the use of

highly accurate, low drift synchronised clocks and known transmission times. This measure-

ment medium also doubles as the communication channel which transmits the broadcast

shared information. An extension to handle dropped packets was shown in [73]. It is

not clear if agents can retask and periodically change the direction of information flow if

the disparity of information changes or if the system would need to restart and discard

old data. Additionally the method is highly specialised to the given sensor/communication

combination and less useful in a more general setting where ranges may be calculated from

a round trip time.

Communication schemes for transfer of information have also been proposed where all mea-

surements and odometry were transferred between systems [46, 53]. These enable centralised

equivalent solutions but with potentially significant bandwidth requirements depending on

local sensing rates and if vehicles lose contact and need to transmit a large backlog.

2.4 Summary

There is a lack in the literature of exact and general methods based on a smoothing approach

to localisation that focus on reducing communication bandwidth. Smoothing methods we

surveyed either have restrictions on the communication topology or retransmit the whole

map or approximation. Filtering methods in comparison limit opportunity to correct lin-

earisation errors or data association where remote targets were incorrectly identified. We

perceive a gap for an exact iterative smoothing approach to multiple robot localisation that

does not restrict communication topology.
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Compression and Packetisation

Implementation of a cooperative localisation solution requires a system containing multiple

robots, sensors that permit at least partial observation of relative state and a method to

communicate data between all robots. Without any of these elements the system cannot

optimise across multiple robots online. Any method that performs cooperative localisation

should handle management of information to prevent ‘double counting’ and inconsistent es-

timates, consider fast solutions to permit online usage and work within the available band-

width of the system to prevent delays in fusion. Additional design goals include matching

the centralised solutions by finding the global minimum of the nonlinear optimisation prob-

lem, decentralisation to permit failure of any node and smart distribution of calculations to

reduce repetition across robots and minimise bandwidth. Guidance for fast and accurate

methods come from single and multiple robot SLAM literature and cooperative localisation

literature where graph methods and nonlinear least squares have shown prominence.

This chapter covers the formulation of a method that enables a distributed and decen-

tralised solution of the multi-vehicle problem. We have entitled the method Multiple Vehicle

Smoothing and Mapping (MVSAM). In particular the method is based on partially solving

a single iteration of the full history nonlinear optimisation problem, distributed elimination

of variables local to each system before sharing the result to solve in a decentralised/multi-

centralised manner. The solution is exact for a single iteration of nonlinear optimisation

without approximations such as sparsification. The calculations performed are largely the

same as the centralised version, with the main addition being a constrained elimination

ordering and the addition of communication steps. Additionally this solution enables local

25
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relinearisation whilst reusing the previously calculated results of variable elimination for

remote state variables. We show that the communication bandwidth is limited, with the

upper bound dependent on the state size and rate of intervehicle observations.

The contribution in this chapter is the novel linearisation ordering, combined with dis-

tributed partial elimination that arises from insights gained using the factor graph formu-

lation of the problem.

3.1 Cooperative Localisation

Figure 3.1b repeats the typical factor graph for the cooperative localisation problem from

Figure 2.2 with landmark observations removed. It contains factors for local measurements

that connect to a single state node, such as position, orientation and velocity observations,

and local measurements that connect adjacent nodes that represent vehicle model or odom-

etry links. When compared with single vehicle factor graphs, cooperative localisation factor

graphs contain intervehicle measurements that connect two nodes on different robots which

include observations of range and bearing between vehicles.

This structure has a long chain of variables local to a single vehicle and relatively sparse

intervehicle connections. Computation load can be distributed through the use of variable

orderings that eliminate local variables not connected to intervehicle factors, which we will

refer to as internal variables, first. It also removes the requirement to transmit or include

information about these internal variables that are not observed on any other robot. The

factor graph and Bayes tree after elimination of internal variables using an ordering placing

each internal state in chronological order is shown in Figure 3.1.

Three important ideas arise from these graphs. The first is that elimination of internal states

does not depend on any information from other vehicles as is evident by the fact that none

of the tree fragments contain variables from two vehicles. This allows the elimination of

these internal variables to take place locally without correspondence. Elimination requires

calculation of the Jacobian matrices and error of all factors connected to the target variable.

Calculation of these requires fixing the linearisation of all variables connected to these

factors. These linearisation points are then fixed for data shared with other robots. Update

of the linearisation requires retransmission of newly re-eliminated factors. The estimate

produced however is exact and matches a single iteration of the nonlinear optimisation
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(a) The example vehicle system of Figure 2.1 with landmarks removed. The dashed lines represent
vehicle paths with locations of each state marked with a triangle. Arrows between states denote
inter-vehicle observations from source to target.
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(b) Full factor graph showing all intra and inter-vehicle factors. We remove the landmark states and
factors connected to them before elimination here as we are targeting a cooperative localisation
solution.
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(c) Partially eliminated factor graph. Factors returned from the elimination of other variables are
in white.
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(d) The leaves of a Bayes Tree generated after elimination of internal states.

Figure 3.1 – The factor graph before and factor graph and Bayes tree after elimination of the
internal states. The most important result that can be seen is that the six sets of variables
eliminated are not connected to each other. The external states which remain act as a
separator permitting independent elimination.



CHAPTER 3. COMPRESSION AND PACKETISATION 28

process. Further iterations would differ due to the inability to relinearise data from remote

systems.

The second idea is that elimination of states separated by an external state can also be done

independently. Fragments are created for states between each intervehicle measurement the

vehicle is involved in, and the separator of the root of each fragment refers to only the two

states involved in intervehicle measurements either side of the eliminated internal variables.

This separator means that no returned factors from the elimination of one fragment are used

in calculation of a different fragment (but will be used for elimination for other variables in

the same fragment). This permits elimination to take place over all internal variables since

the last intervehicle measurement (or since the beginning when initialising).

The final idea that arises is that the conditional probabilities for the internal states do

not need to be transmitted as they are only required for recovery of the update for those

variables. The Bayes Tree shows that calculation of the update flows initially from the

leaves to the root for calculation of the Jacobians and factors and returns from the root

of the tree to the leaves for final calculation of the update. In this case the branches that

contain only internal states of remote vehicles are not needed as the local states do not

depend upon them.

3.1.1 Variable Elimination

Stepping through the manipulation of the factor graph’s joint probability g(Θ) required for

variable elimination we can show the ideas of the previous section. This requires extracting

all elements that depend upon our target state xjk from the joint probability. We then

manipulate to create the conditional probability of this state upon its connected variables

Si, known as the separator. This leaves a portion that does not depend on the eliminated

variable which is then treated as part of the factor graph again whilst the conditional

probability is now treated as part of a Bayes Tree.

To begin the variable elimination of an internal state xjk we gather all likelihood functions

that depend upon this state variable separately to those that do not as in (3.2). We use the

first order Taylor expansion to linearise these factors around our chosen linearisation point
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to get (3.4).
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∏
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We can then rearrange the argument of the exponentials in the likelihood functions to ex-

tract the update for the target state xjk from variables in the separator Si for each factor

as in (3.5). We can combine all likelihood functions we have linearised into a single ex-

ponential with concatenated terms fx, Jx, Js and Λx that give the function result vector

at linearisation, Jacobian matrices and covariance matrix of the grouped factors. We also

change to using Sk =
⋃
i Si to denote the separator of the combined factor. We further

show in (3.7) premultiplying the vector and matrix elements by the matrix square root of

the inverse covariance matrix.
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We can transform this single factor into two elements, the first the conditional probability of

xjk conditioned upon Sk and the second a factor dependent upon Sk but not xjk. To achieve

this we need to modify the Jacobian coefficient of δxjk to be upper triangular through unit

determinant orthogonal transforms Q where QQT = I. This transform can be found via

the QR algorithm, Gram-Schmidt or Householder reflections with Λ
− 1

2
x Jx = Q

[
R
0

]
and

furthermore QTΛ
− 1

2
x Jx =

[
R
0

]
This separation of upper triangular and zero component is

important to distinguish the conditional probability from the remnant factor. To splitting

R from the 0 rows we divide Q = [ Qx Qs ] where the number of columns in Qx equals the

number of columns in Jx. We insert I = QQT into the middle of the exponent before

multiplying through and splitting the conditional from the remnant factor.
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At this point the remnant factor is returned to the graph to be used in future variable

elimination and the conditional probability is retained separately. Calculation of the delta

update δxjk occurs after calculation of all δSk has taken place and these known values are

substituted into the conditional probability that was extracted.
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It is immediately apparent that provided the set of factors connected to two variables does

not overlap then elimination can proceed in parallel. Given an internal first elimination

ordering as we propose here the first condition immediately holds true as internal states do

not have remote vehicle states in their separator and thus internal states do not require re-

mote information for elimination. Furthermore sets of internal states separated by external

states on a single vehicle can also be eliminated in parallel. This is less obvious as external

states on the vehicle will be in the separators of multiple internal variables. However no

factor directly connects two sets of internal states and thus no factor is involved in elimina-

tion of two or more sets of internal states. Finally these local conditional probabilities are

not required on remote systems as internal variables do not appear in the separators of any

external states and so are not required for recovery of the updates.

With these insights we return to the linear algebra perspective, with the block sparsity

pattern of the matrices being shown in Figure 3.2. Here we combine the previously sep-

arated concepts of solution matrices (which represent conditional probabilities), and the

Jacobian matrix (and its general representation of multi-variate likelihood functions) as the

conditional probabilities can be seen as special cases of the generic likelihood functions that

factors represent. This ready movement of nodes in the Bayes tree back to the factor graph

was initially mentioned in [38] with regard to updating the Bayes tree with the arrival

of new factors for the related factor graph and includes a single variable derivation of the

conditional probability extraction using pseudo-inverses.

Our method extends this concept further to split the global factor graph into numerous

smaller factor graphs in which no factor is replicated. This is depicted in Figure 3.3a

with subgraphs being outlined by dashed lines. Notably no factor is included in multiple

subgraphs and thus elimination can occur in parallel and no double counting can occur.

The variables that occur in multiple subgraphs are the externally visible variables involved

in intervehicle measurements and are placed last in the elimination order. Each subgraph is

solved in parallel, using the same predetermined linearisation points for external variables

which appear in multiple subgraphs. After elimination the elements at the root of the

Bayes Tree relating to the external variables, which are typically the first and last variables

in chronological order, are returned for use in the global factor graph. Figure 3.4 depicts

the subgraphs solution matrix after elimination and highlights the section that is removed

using the internal variables first elimination ordering.
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Figure 3.2 – The block sparsity pattern of the combined Jacobian and Solution matrices after
elimination of internal variables. White blocks are the results of elimination as either the
conditional or returned factor whilst black nodes are factors that have not been touched
thus far by the elimination process. Columns are coloured to correspond to the colour of
the variable node in Figure 3.1 that this matrix represents.
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(a) The factor graph after removal of landmarks with division into subgraphs.
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(b) The global graph constructed from combining the intervehicle factors and the results of subgraph
elimination with elimination of external states pending.

Figure 3.3 – The complete graph divided into subgraphs before (a) and after (b) elimination of
the internal states from each subgraph. The black circles are nonlinear factors, representing
sensor error metrics. The small white circles are the linearised and summarised factors
resulting from elimination of internal variables. Factors connected to two states of different
colours represent the intervehicle observations. The dashed lines enclose the packets of
information, showing which factors and linearisation points would be transmitted. States
after the last external state on a given vehicle are not part of the shared graph that
is constructed - although if desired the information could be transmitted and used to
improved the estimates of all vehicles.
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Figure 3.4 – The solution matrix for the elimination subgraph. This is the linear algebra
equivalent of the Bayes tree. The highlighted elements are the rows that are passed to the
global graph.
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The global graph is constructed using the returned nodes from each Bayes Tree and the

intervehicle measurement factors. Subgraphs from each vehicle link in a chain through

common start and end states whilst intervehicle factors create the links between each vehicle.

This reduced graph is shown in Figure 3.3b and is similar to the partially eliminated graph

in Figure 3.1c, however factors relating to the external states are also included in the

elimination process. All factors in the graph are shared between all vehicles and the solution

calculated. The Bayes trees resulting from elimination of each subgraph, which are the

same as the fragments in Figure 3.1d, can be attached to the tree created by elimination

of the global graph as shown in Figure 3.5 and thus each vehicle can update its local state

estimates. As the conditional probabilities are not transmitted each vehicle cannot calculate,

and indeed has no information about, internal states from remote vehicles. Each vehicle

is running a local estimator that includes the summarised factors from remote vehicles

and nonlinear factors for intervehicle and local observations. This estimator supplies the

linearisation points for the calculation of the summary packets and they are supplied in a

just-in-time manner to enable usage of all information received to that point.

3.1.2 Relinearisation

To this point the description has been of exact solutions to a single iteration of the global

nonlinear least squares optimisation problem. Nonlinear optimisation requires iteration of

the solve, linearisation update and recalculate factor steps until convergence. Recalculation

of the factors used in subgraph elimination, and thus updating of the linearisation of remote

vehicle states cannot take place without transmitting the nonlinear factor data alongside

the eliminated data which undermines the data savings of distributed elimination.

Alternatively these subgraphs can be recalculated on their origin vehicle and transmitted

replacing the previous data - but this results in increased bandwidth. Vehicles can recalcu-

late their local factors and all intervehicle factors as they have the raw measurement data.

This permits relinearisation of all local states for the internal solver whilst holding fixed

the linearisation points of remote vehicle states. Furthermore if using iSAM2 [39] or other

graph solver that permits partial relinearisation not all local variables will require updating

at each time.
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Figure 3.5 – The Bayes tree after elimination of the graph in Figure 3.3b with the newly
calculated conditionals in black. The fragments of the tree that are retained from subgraph
elimination are shown in blue out with the red fragment representing the states that exist
after the last external state and so would not yet have been transmitted. In comparison to
the random elimination ordering the cliques in this tree are smaller and thus enable faster
calculation.
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3.1.3 Indeterminant Subgraphs

Calculation of the subgraphs on each vehicle containing internal states involves solving

a smaller section of the overall problem. Whilst we assume that the global problem is of

sufficient rank we do not make the same assumption about the subgraphs. The global graph

is generally either fixed at the origin (per vehicle) at the start time with offsets between

vehicles being calculated or sufficient observations are made relative to the global frame to

provide constraint in all dimensions. After this initialisation period further states may not

be constrained to the origin and the global frame may not be observable for all dimensions

(for example GPS denied environments). Rank sufficiency is maintained globally through

motion model links back to the initial states.

The lack of constraint in later states does not pose a significant issue for centralised problems

which eliminate with the initialisation measurements present. In contrast our decentralised

method partially eliminates each subgraph and so must handle cases where the subgraph

is singular. Given the structure of the vehicle localisation problem with a fully constrained

vehicle motion model the maximum deficiency of the Jacobian for any segment is the size of

the vehicle state n, and will occur when no observations were made outside of motion model

updates. Additional measurements reduce this deficiency but require sufficient variation in

the state elements that are being observed and depend on the structure of the motion model.

Due to potential singularities or rank deficiency the elimination cannot use a Cholesky based

method and must instead use a rank-revealing decomposition such as QR factorisation with

pivoting. Using a rank revealing method can assist in removal of rows that are non-zero

due to numeric computation precision issues by investigating the leading diagonal entries

on each row. In this way further numerical errors and transmission of these rows can be

reduced.

We demonstrate the complexity in predicting rank deficiency and handling reduction of

these subgraphs using QR factorisation on a simple 2 dimensional constant velocity model.

We show Jacobians for two sequential state segments with combinations of position and

velocity measurements on either state along with a single forward prediction between the

two states. Without loss of generality we demonstrate this with unit noise parameters1 and

δt = 1 to enable cleaner display of the matrix contents. The Jacobians premultiplied by

1Whilst the noise matrix for direct observations is a single element matrix with a value of 1, the process
noise matrix is a 2 × 2 matrix valued function of the time change multiplied by the noise parameter.
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Figure 3.6 – Jacobians before and after elimination. Each variant shows the Jacobian as
calculated from each factor with the noise model included on the left and the R matrix
resulting from QR decomposition of this matrix.

the inverse square root of the noise matrix and the final decomposed matrix are shown in

Figure 3.6 for the illustrative combinations.

Cases such as a single extra measurement are immediately apparent as singular due to an

insufficient row count in the Jacobian. Additionally repeating measurements at each time

step does not assist as these measurements are not linearly independent of each other -

although they will reduce uncertainty on the measured variable. The obvious case where

the system is not singular is where each dimension is directly observed at all times. Further

thought intuits that a single measurement of all state elements at any time will also provide

a full rank solution even if the measurements of each element are at different times.

The two interesting cases left in our simple system are when measurement of the same

state element is repeated at different times. The two state elements we use are position

and velocity with the Jacobians and their reduced upper triangular forms being shown in

Figures 3.6a and 3.6b respectively. Measurement of position at two different times supplies

sufficient information to estimate velocity (distance over time) where observation of velocity

at a single time does not. Measurement of velocity at two different times can provide

information about distance covered (which is already in the motion model) but does not

enable estimation of global position, hence the rank deficiency.

Models with greater complexity can inhibit prediction of rank deficiency. This complication
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can be through either nonlinear elements such as motion in a plane or volume with associated

rotations. Additionally this can arise in the cooperative localisation scenario where a packet

is dropped and connection of current states on a remote vehicle to its own initialisation

period is broken. Further inclusion of new packets requires either receiving the missed

packet or gaining sufficient information to enable elimination of the new remote chain of

states.

3.1.4 Iterative Solving

The final issue is fast inclusion of new data, or iterative inclusion of new local factors and

updated estimates. Online optimisation requires that these be fused rapidly to supply near

real time updates to the vehicle for control and planning. Research in graph solvers provide

a number of options that either optimise for rapid complete solutions [42], hierarchical

distribution of the problem [31, 32] or iterative updating of the inverse square root form [37,

39].

Whilst all of these methods are likely suitable as local optimisers for our method we utilise

iSAM2 [39] as a number of concepts such as partial relinearisation and exploitation of the

tree structure in our method are borrowed from it although applied with different aims and

heuristics.

3.1.5 The Algorithm

Algorithm 3.2 covers creation of the packets containing the nodes extracted from the sub-

graphs whilst Algorithm 3.1 contains the entire system. Each vehicle uses iSAM2 locally

to estimate its own position, although other nonlinear smoothing algorithms can work.

Separately on each platform a factor graph is calculated using all factors since the last

intervehicle measurement with the linearisation point for the states taken from the local

estimator or reused if contained in a previous packet.

This factor graph is eliminated, with the external states eliminated last. The rows relating

to these states are extracted from the solution matrix and transmitted to remote vehicles

as fixed linearisation factors. When vehicles receive these factors they are included in

the local graph estimator and the variables they target are not permitted to relinearise
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Algorithm 3.1 Localisation on vehicle i

create local estimator Fl
j ← 0
loop

create empty packet pij
create subgraph Fj in pij
repeat

get new local factors fi
Fl ← Fl ∪ {fi}
Fj ← Fj ∪ {fi}

until receive shared factor fj
calculate best estimate for local states Θi

p′ij ← compress packet pij using Θi

exchange packets with remote vehicle k
add FC from new packets p′kj to Fl
Fl ← Fl ∪ {fj}
j ← j + 1

end loop

Algorithm 3.2 Compress Packet

Require: Θi,Fj from pij
linearise Fj at Θi from pij
for all internal states xik do

eliminate xik from Fj
end for
copy external state subset ΘC from Θi

p′ij ← (FC ,ΘC)

return p′ij
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as the condensed factors they are connected to cannot be recalculated around an updated

linearisation point. The transmission of the raw/nonlinear intervehicle measurements enable

all local variable linearisations to be updated as the raw/nonlinear data for all factors

connected to them is known. Remote state linearisations however must remain constant.

The rows of the solution matrix that are extracted are of a fixed size and depend upon the

dimension of the vehicle state. Given a state size n and a fully determined subgraph the

last 2n rows of the upper triangular matrix are the rows relating to the two external states.

Elements below the diagonal are zero and so do not require transmission. Additionally the

error vector relating to these rows, the linearisation and time of the latest state need to

be transmitted. The linearisation and time for the previous external state that is linked

in this packet is unneeded as it was transmitted previously and is unchanged. The result

is a maximum number of floating point numbers per packet and is shown in (3.12). If

the subgraph is rank deficient the lowest rows of the upper triangular portion are zero

and can be omitted, reducing the data transferred. In comparison the transmission of all

observations requires the data and time of each observation, along with sensor type and

origin vehicle. Transmission of all observations has no inherent upper bound, but also has

no inherent lower bound - if no observations occur no data needs to be transmitted beyond

protocol demands which could be a single float and a bit to denote time to which no extra

data has been received.

datasize = 2n2 + 4n+ 1 (3.12)

We compare our compressed packets for a number of state sizes n against raw transmission

of single dimension observations. We indicate the number of floats required per subgraph

in Figure 3.7 at varying numbers of intra-vehicle observations per intervehicle observation.

3.2 Results

In showing performance of this method we compare against an iterative centralised graph

solver on which this method is based (iSAM2). We treat this method as a lower bound on the

expected error. An upper bound is then placed on the expected error by using each vehicle’s

solution independently, without information from the inter-vehicle observations. The usage

of the individual solution is to give context to any difference in solution error between
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Figure 3.7 – Comparison of number of floats transmitted per subgraph for compressed packets
of different sizes (determined by n the dimension of the vehicle state) and transmission of
each local observation at varying rates. At low local sensing rates relative to intervehicle
sensing rates compression takes up more bandwidth, eventually becoming equal and saving
bandwidth at much higher local observation rates. The strange unit of local observations
per intervehicle observation is used as this is the base ratio that is applicable across dif-
ferent vehicle designs and scenarios. Where aerial vehicles may have high sensing rates for
control slow moving underwater or ground vehicles may have lower sensing rates due to
less movement. The important ratio is, for all of these designs, the accumulation of local
data relative to intervehicle data.
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our method and the centralised solution. Additionally the bandwidth is demonstrated and

compared against raw transmission of the measured values.

As we have already shown the method is derived from a single iteration of a nonlinear solver.

Thus where the problem is linear or the linearisation point is close to the optimal value the

result should closely match the centralised solution. The difference between the centralised

solver and our decentralised/distributed method should be where the problem is nonlinear

and the choice of linearisation point is not close to the true value. This can be most evident

after long durations with denial of absolute/global state measurements like GPS or in fusion

of loop closures where large jumps in state estimates can result. If the linearisation point is

far from the true value the calculated Jacobian may be significantly different from the true

Jacobian and prevent convergence or find local minima different from the minimum we are

searching for.

Other methods were considered for comparison, but were deemed to not match the problem

or result in issues with direct comparison. Methods derived from a Kalman or Information

Filter approach typically solve in Euclidean space, which suffers from singularities in nonlin-

ear problems [48]. This has been addressed in most graph solvers where the value solved for

is a small delta to the linearisation point all of which may be expressed using manifolds and

their tangents or Lie Groups and Lie Algebra [2, 31]. The Euclidean and delta approaches

result in varying models and error metrics when the state isn’t well approximated by Eu-

clidean space and usage of appropriate models for each approach results in larger differences

than the method. Cooperative localisation graph solvers exist however often constrain the

communication topology to be source and destination rather than bidirectional sharing [23].

Whilst these are useful for target tracking it prevents application to group GPS denial or

relaying information through an intermediate.

We demonstrate our method on a simple set of problems that are relevant to field robotics

- groups of robots moving in the plane. The two scenarios we demonstrate are tracking,

where some vehicles have estimates of absolute position and vehicles observe the range/range

bearing to remote systems and share all information, and a GPS denied environment where

after an initial observation no vehicles obtain absolute position observations.

We use Monte Carlo simulation to show the effects of varying linearisation quality upon the

solutions, varying the parameters relating to orientation, such as orientation observation

frequency, accuracy and variance in the vehicle model, as it is linked through nonlinear
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Figure 3.8 – Robots and environment for the UTIAS dataset. Image courtesy of Autonomous
Space Robotics Lab at the University of Toronto.

dependencies with other state variables. Each combination of these parameters is simulated

50 times on the same path and each optimiser is run on each simulation before the root

mean square error of position and heading is calculated.

Additionally we use subsampled data from the UTIAS multi-robot dataset [47] to demon-

strate real world versions of each scenario. An image of the environment for the dataset is

in Figure 3.8. Subsampling was used to reduce the high frequency ground truth from the

Vicon system to a closer approximation of GPS and compass measurement frequencies.

3.2.1 Standard Deviation of Toy System

To better understand the error that we expect with different linearisation points we use

a toy system with a single variable in the state space and propagate forward over time

with periodic measurements. This enables calculation of the standard deviation which

for normally distributed observations and propagation model approximates the root mean

squared error about the mean estimate.

Time evolution of the standard deviation is shown in Figure 3.9 for an online filter estimator

and an offline batch solution for two different motion model variances. Observations of the

state are made at regular intervals and used for both the filtering and smoothing solutions.

Steady state variance of the Kalman filter post-observation can be calculated using the

sensor period, sensor variance and motion model variance and is independent of the initial

variance. This steady state variance is used for an initial observation for the filter and
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Figure 3.9 – Filtered and smoothed estimator standard deviation for two different motion vari-
ances over time. The dashed line represents the sensor’s standard deviation. Of key note
in these graphs is the gain in certainty by usage of ‘future’ observations in the smoothed
estimator.
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the batch solvers enabling the effects of initialisation and stabilisation to be omitted and

permit observation of long term and ‘current state’ differences between the solvers. The

most immediate difference between the filtered and smoothed solutions is the ability of the

smoothed solution to use the impending measurement to further constrain the estimate,

resulting in the hump shape instead of a near saw-tooth shape.

Figure 3.9a shows a relatively loose vehicle model, and the filter and smoothed solutions

show approximately similar standard deviations upon each observation, but the ability of

the batch solution to use ‘future’ information and constrain the standard deviation growth

between observations of the state is apparent. Figure 3.9b shows the same set of observations

with a smaller motion model variance (10% of the previous) representing smaller movement

uncertainty between observations. The most apparent difference between the two cases is

the significant reduction in uncertainty of the smoothed estimator relative to the filtered

one. Whereas with a less constraining vehicle model the uncertainty is derived primarily

from the previous and next measurements of the state, or just the last one for the filtered

case with a tighter constraint from the vehicle model the measurements before the previous

and after the next also influence the uncertainty. As the batch solver updates historic state

estimates using new information it enables a significant reduction in overall uncertainty

for these states. Towards the last time solved however the smoothed solutions gracefully

degrade to match the filtered solution with the absence of more ‘future’ measurements.

In this way the batch solver can be thought of as having two variance modes - the filtering

mode in the final intervals, and a reduced uncertainty mode for historical states. In either

linear or fixed linearisation systems, or full relinearisation batch solvers these two variance

modes are not important. Linear systems have Jacobians that are independent of the state,

whilst linearisation is not updated with fixed linearisation systems and in either case the

Jacobians will not be recalculated meaning the calculated uncertainty is unchanged. In full

relinearisation systems all the Jacobians will be recalculated either at each update, or as

updates diverge too far from the calculated linearisation point. For either fixed linearisation

or relinearising solvers the difference between batch and filter estimators is not significant,

as they fall near exclusively into one or the other for the purposes of calculating linearisation

points (a relinearising filter and a fixed linearisation batch solver are both unusual, where

fixed linearisation filters and relinearising batch solvers are common).

The method we propose here falls in a middle ground where states can be iterated until
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Figure 3.10 – Comparison of single variable smoothing showing contours of constant RMS
standard deviation for a range of sensor uncertainties and frequencies. The black rectangle
corresponds to the values we are exploring with Monte Carlo simulation in the following
sections.
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Figure 3.11 – Comparison of single variable filter/online optimisation showing the contours of
constant RMS standard deviation for a range of sensor uncertainties and frequencies. The
black rectangle corresponds to the values we are exploring with Monte Carlo simulation in
the following sections.

convergence pending an intervehicle measurement occurring that requires the linearisation

point for historic states to stay constant for shared information. If the intervehicle sensor

interval is significantly larger than the local state sensor intervals then the linearisation

points for older states will have ideally converged closer to the true state resulting in a

more accurate Jacobian calculation. If the intervehicle sensor interval is smaller than the

local state sensor intervals we would expect less convergence to the true state and thus

poorer linearisation points and less accurate Jacobians calculated from them, resulting in

larger system error overall.
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Given the single state, single vehicle system we can calculate an ‘average’ (root mean

square)2 standard deviation over time for combinations of vehicle model variance, sen-

sor variance and sensing intervals. This enables calculation of contour lines showing which

sensors with different parameters result in similar overall uncertainty. Results of this are

shown for both the filtered and batch solvers in Figure 3.10 and Figure 3.11. The bold rect-

angle shows the region that will be tested in simulation later and covers reasonable sensor

parameter ranges with the area around the box being shown to better illustrate effects of

each of the parameters.

Overall the graphs show standard deviation increasing as the sensor variance and sensing

interval grow. The underlying determining vertical variable can be shown to be the ratio

of period to motion model variance (more accurately the growth in variance per sensor

period). Shifting each of the three graphs in Figures 3.10 and 3.11 vertically results in the

same values.

Due to the logarithmic scale the standard deviation barely appears to change with low noise

values combined with large intervals and this is shown by the near horizontal contour lines.

For these sections the standard deviation is dominated by the motion model variance and

growth over time in comparison to the relatively small increase in minimums that the sensor

variance provides. That there is not a similar set of near vertical lines as sensing intervals

shrink show that reductions in periods are not subject to the same diminishing gains that

are present for reducing the sensor variance.

In a real system the motion model is a function of the path, or behaviour of the vehicle

and so using a constant physical system with varying model parameters should not present

root mean square error from truth as clean as the standard deviation calculations here.

We would anticipate higher errors where the motion model is too constrained, especially

where sensing periods are larger and the model resists change. Where the motion model

is overly loose, permitting larger fluctuations we would expect the errors to increase from

model mismatch, although not significantly.

2Essentially the square root of average variance.
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3.2.2 Vehicle Tracking

In the tracking scenario there are two groups of vehicles - those with global position sensor

information and those without. For our scenarios all vehicles have orientation and odometry

information and measure other vehicles relative location using range sensors. This maps

well to cases like underwater robotics where ships on the surface obtain GPS measurements

and then observe through acoustic methods the relative locations of submersibles that have

accurate onboard odometry and orientation information.

3.2.2.1 Simulated Data

We simulate a test scenario with four vehicles moving in the plane with two of these vehicles

having absolute position sensors in addition to the common velocity and orientation sensors.

We vary the noise and frequency parameters for the orientation measurements and the

orientation component of the motion model as well. We simulate 126 different combinations

(3 motion model values, 6 sensor frequencies and 7 sensor variance values) 50 times each

over the same path.

We analyse the heading error compared to ground truth for a centralised solver and our

method in Figure 3.12. The heading error is taken as the RMS of the online heading error

from all samples and all times after an initial stabilisation period of 100 seconds. This

can be compared back to the estimate of the single variable solution in Figure 3.11 and

Figure 3.10. An example of the heading error, and 3σ bound for low and higher noise

scenarios are shown in Figure 3.14 along with related paths in Figure 3.13.

The general shape of the solution matches the expected shape for both our decentralised

method and the centralised method - although with slightly steeper lines for higher noise,

lower period sensors indicating that increased sensor frequency tends to not help, and

is potentially dominated by noise in sensors. Additionally the error in the decentralised

method compared to the centralised is very close in the lower noise regions only increasing

as the sensor noise and period grow above expected regions for real world sensors (interval

up to 5 seconds, sensor standard deviation of 5 gives error less than 0.5 degrees). Further

the error to the centralised solution is less when compared to error to ground truth as the

local sensing rate increases.
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Figure 3.12 – Comparing the RMS error of vehicle heading (in degrees) for a variety of ori-
entation sensor periods, variances and motion model variances. Key observations are that
the magnitude of the difference between solutions is less than that to the ground truth,
and that in the frequent, low noise observation region where most systems operate (interval
up to 5 seconds, standard deviation of sensor noise up to 5 degrees) the difference to the
centralised method is less than 0.5 degrees, and less than 0.1 degrees for more accurate
sensors.
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(a) Online path estimation for low noise.
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(b) Online path estimation for high noise.

Figure 3.13 – Samples of simulated paths for one of the tracked vehicles in a low (0.5s period,
0.5◦ standard deviation) and high noise (5s period, 5◦ standard deviation) environments.
The position and heading RMS data for these samples is shown in Figure 3.14.
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(a) Segment of low noise sensor absolute heading estimation error and 3σ bound. The values here
overlap and show no difference between each solution.
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(b) Segment of low noise sensor vehicles position RMS error.
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(c) Segment of high noise sensor absolute heading estimation error and 3σ bound.
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(d) Small segment of high noise sensor vehicles position RMS error.

Figure 3.14 – Samples of simulated data for one of the tracked vehicles in a low and high noise
environment. These errors correspond to the sample paths in Figure 3.13. What is barely
appreciable from these graphs is the difference between the centralised and summarisation
methods - with the expected differences being of the order of 0.01m and 0.2◦.
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Figure 3.15 shows the RMS position error for the same scenarios taken from the end of each

scenario. Noise in these figures is much larger as it is taken from a smaller time section and

the relationship is much more complex with other sensors in the system. At low orientation

sensor noise/periods the position noise is dominated by the velocity and intervehicle sensor

information creating a noise floor that increased orientation accuracy cannot reduce. This

shows a similar pattern to the heading, with the difference in error between the centralised

and our decentralised method being small in low noise regions, growing to be more significant

as the sensor period and variance increase. Both of these figures agree with the concept

that the decentralised partially fixed linearisation method and a centralised relinearising

method differ most when the linearisation point diverges from the true value.

3.2.2.2 Captured Data

Showing real world performance for this scenario we use the UTIAS MRCLAM dataset [47].

This dataset is a multiple robot dataset captured with five Roombas in a series of nine runs.

Each Roomba has a single calibrated camera for performing range and bearing observations

of other robots and landmarks. Additionally the motor commands are recorded and given

as forward and angular velocities. Ground truth is supplied from a Vicon system that

gives both position and orientation with high accuracy for the robots and landmarks. We

extract illustrative results from our experiments here but have more complete coverage in

Appendix A.

For our heterogeneous configuration we chose the first and third vehicles to be trackers

and have access to global position information in addition to the odometry and orientation

information that all vehicles have access to. All vehicles can observed the others and we

ignore the landmark observations in the datasets. We subsampled the ground truth posi-

tion and orientation, odometry and intervehicle measurements to better approximate low

frequency sensors in field usage. We ran the same set of optimisers across the data as in the

simulated environment but refrain from grouping results as the paths and durations differ

significantly between each of the 9 samples. The other significant difference is the variability

in intervehicle measurements. We add an artificial restriction to create a minimum interval

of 6 seconds, however due to orientations of vehicles and limitations of the visual system

used to calculate range and bearing between targets this interval can, and is often exceeded.

Figure 3.16 shows an example from dataset 9 that illustrates these delays. This dataset
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Figure 3.15 – Comparing the RMS Position Error at the end of the simulation for a variety of
orientation sensor periods, variances and motion model variances. The error is calculated
at each time step for the current state for the last 10 seconds of the simulation (this is done
in the event that the position is growing without bound, such as in a dead reckoning case).
The RMS error is then calculated across all states in all samples for a given combination
of parameters. Again, like the heading error the position error is larger using the partially
fixed linearisation. However the difference between the two solutions is still relatively small
compared to the error relative to ground truth.
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(a) Delay to incorporation of tracking data from either vehicle 1 or 3 on vehicle 2, including indirect
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(b) RMS position error for vehicle 2 from each optimiser. Little difference between the decentralised
and centralised optimisers is visible.

Figure 3.16 – Tracked vehicle from MRCLAM dataset 9. Growth in error is apparent when
no tracking information is arriving at the vehicle, and is even more pronounced where no
external information is arriving at the vehicle.

was chosen as it has the largest RMS position errors and longer delays between tracking

updates and better illustrates performance under these adverse conditions. Figure 3.16a

shows the time since last incorporation of data from a tracking vehicle (vehicles 1 or 3) or

from another tracked vehicle (vehicles 4 or 5) on vehicle 2. Figure 3.16b shows the position

error for the same vehicle. The cooperative methods outperform the isolated method as

expected, and do not differ significantly from each other, with only two visible portions at

around 600s and 800s in this example. Error grows as the intervals increase, reducing again

upon subsequent observations - with multiple observations resulting in faster reductions.

Transmitted data is calculated for transmission of all measurements and their timestamps

- which is required for calculating the centralised method as well as for transmitting only

packets compressed using our method. One item we noted was that there is a large penalty

for ‘compressing’ if only a small number of measurements were taken during this time

period. To this end we also include a column with the data transmitted using the minimum
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Dataset Raw All Compressed Minimal Saving

Dataset 1 8213 kiB 4389 kiB 3665 kiB 55.38%
Dataset 2 10087 kiB 5872 kiB 4735 kiB 53.06%
Dataset 3 8353 kiB 4112 kiB 3479 kiB 58.35%
Dataset 4 7688 kiB 4308 kiB 3566 kiB 53.61%
Dataset 5 12850 kiB 7507 kiB 6095 kiB 52.56%
Dataset 6 4032 kiB 2479 kiB 2000 kiB 50.38%
Dataset 7 4710 kiB 2804 kiB 2293 kiB 51.30%
Dataset 8 22642 kiB 12397 kiB 10237 kiB 54.78%
Dataset 9 10609 kiB 4707 kiB 3916 kiB 63.08%

Totals 89188 kiB 48580 kiB 39992 kiB 55.16%

Table 3.1 – Total data transmitted in bytes for each UTIAS dataset in a tracking scenario.
Raw denotes timestamps and actual observation values, compressed denotes transmitting
the partially eliminated Jacobian, linearisation values and error vector whilst minimal uses
the smaller of each for any given packet to be transmitted. Saving is the percent bandwidth
saved by using the minimal transmission method.

of either actual measurement values and their timestamps or the compression method and

the percent bandwidth saved with the minimal case.

The compressed method for all packets saves approximately 45.5% of bandwidth, although

usage of the smaller of raw or compressed on any given packet nets a total saving of 55.2%.

Reasons for this can be when intervehicle observations occur very closely so only a small

number of observations are contained in the packet. Furthermore when greater periods

elapse between intervehicle observations savings from usage of the compressed method be-

come more significant - as was shown in Figure 3.7.

Overall the tracking scenario for cooperative localisation does not show significant differ-

ence between error from the centralised or decentralised methods, whilst maintaining less

communications and computation cost (due to limited relinearisation).

3.2.3 GPS Denied Environments

An alternate scenario for multiple robots is one where none can obtain absolute position

measurements, meaning no extra information about the position states are obtained after

initialisation. Excluding scenarios with landmarks or loop closures the uncertainty grows

over time, limited by the motion model variance and rate/accuracy of intervehicle mea-

surements and number of vehicles. This can be seen as a group of indoor robots or a fleet
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of autonomous submersibles moving in an environment without global constraints through

new terrain.

3.2.3.1 Simulated Data

We again use Monte Carlo simulation to show the effects of linearisation error and heading

uncertainty. The parameters for this scenario match that of the tracking scenario with the

exclusion of global position information from the tracking vehicles. With no global position

information entering the system after initialisation the RMS position error is expected to

slowly rise in the same manner as the individual solutions of the tracked vehicles from the

previous scenario albeit at a reduced rate. Simulation of a single variable system with

multiple vehicles gives the limit for variance reduction for a multiple vehicle system as 1
n

of the single vehicle case where n is the number of vehicles involved. The limit is when

there is no uncertainty in intervehicle observations. In this case the covariance reduction

for a single observation applies equally to all vehicles. The reduction of variance in a n

vehicle system for a single vehicle with no intervehicle observation uncertainty is the same

as a single vehicle system with n observations at each interval. This then gives the lower

bound of 1
n . Increased sensor noise, intervals and sparser intervehicle observations increase

the variance above this limit, although it will not exceed the single vehicle variance.

We show low and high noise sample solutions in Figure 3.18 and the difference between cen-

tralised solutions and our method across the range of orientation parameters in Figure 3.19.

The lack of constraint in position after initialisation makes calculation of a metric/contour

plot of final RMS more challenging as the variance is not approximately constant but in-

creasing. We find with the circular paths, and even with the more complex paths in the

captured data that the errors can by chance bring the vehicle back closer to the true posi-

tion before again drifting. Due to this the summarised RMS position error plots are not as

illuminating in this example.

The poor linearisation at the largest sensor variance and period and smallest vehicle variance

we simulate resulted in approximately 20% of the samples failing to solve due to numerical

stability problems for our decentralised method. The centralised (and individual) method

still yielded a solution for all samples. Failure of the decentralised method is related to a

combination of high error and high confidence due to expected minimal motion variance
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and the inability to relinearise a poor initial linearisation for remote values when fusing

intervehicle measurements. Additionally the relative information for low certainty orienta-

tion sensors and high certainty motion model could lead to incorrect estimates of rank due

to significant difference in magnitude of information.

3.2.3.2 Captured Data

Again we utilise the UTIAS datasets for which complete graphs can be seen in the appen-

dices. Similar to the tracking scenario the decentralised and centralised solutions provide

very similar solutions with any difference being substantially smaller than the difference

to the isolated solutions. There are more occasions of small difference, and the centralised

estimator tends to oscillate between two similar solutions slightly more than the decen-

tralised solution which can be attributed to the ability to relinearise all variables, making

exploration of nearby locally minimal solutions more likely (see datasets 8 and 9 in the

appendices). The inability of the decentralised method to relinearise tends to reduce fluc-

tuations as a large portion of states cannot be adjusted and effectively anchor the elements

that can be updated.

Finally we calculate the data required for transmission of measurements and timestamps

compared to transmission of our combined observations. We also include an optimistic ver-

sion which inspects each packet and uses the smaller of the two - enabling smaller packets

when there are a very small number of local measurements between adjacent intervehicle

measurements. The compression method uses less bandwidth than transmitting raw mea-

surements, at approximately 43.5% reduction but using the lesser of raw or compressed for

any given packet enables total savings of about 53.8%.

3.3 Summary

The relationship between the difference between centralised and decentralised solutions does

not exhibit a linear relationship to the ratio of sensor period and sensor standard deviation.

Instead regions of minimal difference between centralised and decentralised solution errors

can be defined as periods less than 5 seconds and standard deviation of less than 5 degrees.

Furthermore sensor noise can be increased as long as the sensor period is reduced. These
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(a) Online path estimation for low noise.
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(b) Online path estimation for high noise.

Figure 3.17 – Samples of simulated data for one of the vehicles in a low (0.5s period, 0.5◦

standard deviation) and high noise (5s period, 5◦ standard deviation) environments. Plots
of position and heading RMS over time are in Figure 3.18.
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(a) Segment of low noise sensor absolute heading estimation error and 3σ bound. Lines for each
solution overlap and obscure each other in this graph.
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(b) Segment of low noise sensor vehicles position RMS error.
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(c) Segment of high noise sensor absolute heading estimation error and 3σ bound.
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(d) Small segment of high noise sensor vehicles position RMS error.

Figure 3.18 – Samples of simulated data for one of the vehicles in a low and high noise envi-
ronments. These RMS error plots correspond to the paths in Figure 3.17. What is barely
appreciable from these graphs is the difference between the centralised and summarisation
methods - with the expected differences being of the order of 0.01m and 0.2◦.
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Figure 3.19 – RMS heading error at the end of GPS denied simulation. The difference between
the centralised relinearising solution and our method is relatively small when compared to
ground truth error.
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Dataset Raw All Compressed Minimal Saving

Dataset 1 7924 kiB 4389 kiB 3643 kiB 54.02%
Dataset 2 9730 kiB 5872 kiB 4700 kiB 51.69%
Dataset 3 8071 kiB 4112 kiB 3462 kiB 57.10%
Dataset 4 7416 kiB 4308 kiB 3541 kiB 52.25%
Dataset 5 12398 kiB 7507 kiB 6045 kiB 51.24%
Dataset 6 3884 kiB 2479 kiB 1982 kiB 48.97%
Dataset 7 4536 kiB 2804 kiB 2278 kiB 49.78%
Dataset 8 21831 kiB 12397 kiB 10168 kiB 53.42%
Dataset 9 10197 kiB 4707 kiB 3891 kiB 61.84%

Totals 85991 kiB 48580 kiB 39714 kiB 53.82%

Table 3.2 – Total data transmitted in bytes for each UTIAS dataset without GPS information.
Raw denotes timestamps and actual observation values, compressed denotes transmitting
the partially eliminated Jacobian, linearisation values and error vector whilst minimal uses
the smaller of each for any given packet to be transmitted. Saving is the percent bandwidth
saved by using the minimal transmission method.
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(a) Delay to incorporation of data from other vehicles on vehicle 2.
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(b) RMS position error for vehicle 2 from each optimiser. Differences between centralised and
decentralised are more apparent than in the tracking case.

Figure 3.20 – Vehicle 2 from MRCLAM dataset 7, showing delay to fusion. Jumps in op-
timiser estimates are apparent when fusing after long gaps in communication as evident
at 260s, 440s, 520s and 650s. Of more interest is the reduced error which the centralised
estimator has at times 50s and 630s. The ability of the centralised solver to relinearise all
factors permits better/more accurate exploration of nearby local minima than the fixed
linearisation does.
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approximate boundaries represent less than 0.1 metre difference in RMS position error. We

believe this rough boundary is higher noise than many systems would have. As noise in

states involved in nonlinear factors increases, the difference grows, although does not show

significant difference until it has exceeded noise expected in real world scenarios.

Demonstration on captured data shows little difference between the centralised and de-

centralised method, whilst reducing the bandwidth requirements approximately 32% at

minimum although on average nearer to 37.4% using our compression method for large

packets when compared to complete measurement transmission.



Chapter 4

Out of Sequence Measurements

Whilst methods for combining data can save bandwidth it can introduce issues when there

are delays in communication. Existing methods involving compressed, fused or condensed

measurements assist in reducing bandwidth but cannot handle delayed observations without

a fixed delay horizon beyond which observations are ignored [8]. Alternate methods exist

that target combined sensor and communication mediums so the observation does not occur

if the communication fails [23]. We make three contributions in this chapter. The first two

relate to methods for handling out of sequence observations and the third is investigation

and derivation of models that permit usage of the second method where we insert new

historical states.

This chapter contributes two methods that handle related variants of the out of sequence

problem for intervehicle measurements. The first method handles the case where an in-

ternal state at the time of the out of sequence observation already exists and the second

method handles the case where no state exists. Neither method requires retransmission or

replacement of already transmitted data. Both methods result in conditional probabilities

that can be shared and fused similarly to packets in the last chapter and receiving systems

cannot differentiate packets from either of the new methods. Where measurements arrive

in sequence the subgraph elimination from the previous chapter is used.

This chapter also investigates vehicle model behaviour and the effect of insertion of extra

states in the odometry chain of a vehicle and contributes non-trivial vehicle models that,

for usage in a nonlinear estimator, do not modify the results for a single iteration.

64
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(a) Existing external state. (b) Existing internal state.

(c) Existing internal with a loop closure. (d) Missing state.

Figure 4.1 – Four examples of the three cases that can arise with out of sequence observations.
The trivial case with an existing external state is depicted in (a). We show two examples
for when an internal state exists; one for an intervehicle observation (b) and the other
using a featureless loop closure (c). The cast of a missing state is shown in (d). Each case
shows the movement of vehicles along a path with faded states indicating an internal state
when the observation was received and the more saturated states indicating an external
state. In each case the out of sequence observation is indicated with a black arrow with
existing intervehicle observations indicated with a gray arrow.

We identify three distinct cases, depicted in Figure 4.1, to handle when measurements arrive

out of sequence:

1. An external/shared state already exists as in Figure 4.1a. This requires no special

handling as the desired information is already shared.

2. An internal/unshared state exists as in Figure 4.1b. The most apparent application of

this is depicted in Figure 4.1c where an initial observation is made and later associated

with another observation to create a landmarkless loop closure. Our first contribution

handles this case through exploiting properties of elimination reordering to create a

factor dependent on the internal state and the two external states chronologically

either side of it. This does not require retransmission of information in previous

packets that contain information about these two neighbouring external states.
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3. No state exists at the target time. This requires insertion of a new state. This is the

most likely case where intervehicle observations occur with delay. Our second and

third contribution in this chapter refers to this case. The first of these contributions

is derivation of a set of constraints that the vehicle model must obey to insert an

intermediate state without affecting existing factorised solutions. Once this new state

is inserted as the first eliminated state in a subgraph this case can be treated as per the

previous case. The second of these contributions is derivation of two vehicle models

that can be used in real world problems and obey the derived constraints.

4.1 Elimination Reordering

The simplest case for handling an out of sequence intervehicle measurement factor is when

a variable representing the target state already exists. This may occur frequently with high

internal measurement rates or rarely with lower internal measurement rates. Depending on

intervehicle sensing mechanisms an accurate clock could be used to synchronise observations

across all platforms. Even if no local observation of remote vehicles is made a local state

can be added in case a remote vehicle observes the local vehicle. Alternatively methods

that used featureless loop closures can add local states upon every image or laser scan even

if not initially informative.

Given that an internal variable already exists the elimination ordering can be adjusted

to include this variable with the external variables in the subgraph. Naively doing this

requires performing the entire elimination of the subgraph and retransmission of the root of

the Bayes Tree referring to the external variables. Instead we want to do this to minimise

recomputation and prevent the need to retransmit the bottom of the Bayes Tree relating to

already existing external variables. We depict a subgraph over six variables and the process

of ‘promoting’ an existing variable in Figures 4.2, 4.3 and 4.4 in factor graph, matrix and

Bayes tree form.

Instead of starting with the initial Jacobian we begin with the eliminated form upon creation

of the initial packet using the method developed in the previous chapter. Mathematically

this is the upper triangular solution matrix calculated by variable elimination and is shown

in Figure 4.3a.
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(a) After compression, before state promotion.

x0 x1 x3 x4 x5 x6

Shared
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(b) After promotion of a single state.

x0 x1 x3 x4 x5 x6

Shared

Internal

(c) After promotion of a second state.

Figure 4.2 – Factor graphs showing the original graph faded out with the calculated factors
produced by elimination in white. External states are shown in bright blue and internal
states are faded. Factors above the faded factors are the factors that are shared between
vehicles whilst those below the line are held internally. Each promoted state rearranges
the elimination order and requires sharing of a single extra factor linking three states - the
newly promoted state and the two states chronologically either side of it. Here we omit x2
as no observations took place at that time step.



CHAPTER 4. OUT OF SEQUENCE MEASUREMENTS 68

x1 x3 x4 x5 x0 x6

(a) Before reordering. Red blocks indi-
cate the variables being reordered.

x1 x3 x5 x4 x0 x6

(b) The now reordered variables are
shown in red along with their re-
ordered blocks.

x1 x3 x5 x4 x0 x6

(c) Eliminate/factorisation update.
Blocks touched by elimination are
in green

x1 x3 x5 x4 x0 x6

p′

(d) Extract conditional probability -
which is the new factor we are shar-
ing and is shown in yellow.

Figure 4.3 – The process of reordering the variables in a packet to promote an existing internal
variable x4. This is the matrix view of the changes in Figure 4.2 to produce the first state
promotion. We highlight successive changes through variable reordering and decomposition
before extraction of the additional conditional row to transmit which is depicted in yellow
in the final matrix. Particular note is drawn to the blocks that are zeroed in (d); using
the Bayes Tree structure shows that these two blocks are sparse where a linear algebra
approach does not without calculation and sufficient numerical accuracy. Additionally the
conditional rows for x3 and x5 could also be extracted with ease as the conditionals only
depend on states which have already been shared.
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p(x0, x6)

p(x5|x0, x6)

p(x4|x0, x5)

p(x3|x0, x4)

p(x1|x0, x3)

(a) Original.

p(x0, x6)

p(x4|x0, x6)

p(x5|x4, x6)p(x3|x0, x4)

p(x1|x0, x3)

(b) Bayes tree with x4 promoted.

p(x0, x6)

p(x4|x0, x6)

p(x5|x4, x6)p(x1|x0, x4)

p(x3|x1, x4)

(c) Bayes tree with x1 promoted.

Figure 4.4 – Bayes trees for the initial graph and after promoting internal variables. The
shared nodes are shown in black whilst nodes that are not transmitted are grayed out.
This structure can be used to identify which nodes will be affected by promotion of a new
external varible.

In this case x4 is promoted to become an external variable. Columns are reordered to match

the new ordering which places x4, our variable of interest, to be eliminated after all internal

variables and before all existing external variables (x0 and x6) in the subgraph as in Fig-

ure 4.3b. This breaks the triangular structure of the solution matrix and requires updating

of the factorisation. This is achieved using an iterative QR decomposition algorithm, such

as Givens Rotations or Householder Reflections. We track changed blocks in the example

subgraph and show the modified blocks in green in Figure 4.3c. Certain nodes in the Bayes

Tree are left unmodified and these nodes exist at both the leaves (as might be expected

from initial work on the Bayes Tree and relinearisation [38]) but also, and more importantly

for our case, the root of the tree that has already been transmitted.

The affected rows correspond to variables that have other variables swap between ‘elimi-

nated before’ and ‘eliminated after’. Thus in our example x1, x3, x0 and x6 are unaffected

as they remain in the first two and last two places in the ordering and so no variables

swap from their before and after sets. Given this, the previously shared rows relating to

existing external states x0 and x6 are unchanged and do not require retransmission. This

extends to the promotion of further variables within the subgraph as long as each successive

promotion places the new external variable before existing external variables and after the

internal variables. The Bayes Tree structure assists in evaluation of which variables require

recalculation for the reordering and through caching previous elimination results at the

leaves of the tree can reduce required recomputation. The use of this is apparent with the
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second promotion we depict in Figure 4.2c.

The promotion of x1 modifies the sets of variables either side of x5, but does not affect

the factor/conditional relating states x5, x4, x6 which the linear algebra approach does

not predict. The Bayes tree illustrates this through the update process where the node

containing the new external variable as a frontal variable and all nodes down to the shared

portion of the Bayes Tree are removed. The conditional probabilities are reinterpreted as

linearised factors and elimination is performed over these variables before returning to the

Bayes Tree. The leaves and shared root can then be reattached and are unaffected.

Finally the packet that relates the new external variables to the existing external variables

can be extracted as depicted in Figure 4.3d and shared with remote vehicles.

We have reduced the elimination to an iterative update of the Jacobian, minimising the

region that needs to be recomputed. We have also shown that the already transmitted

portion of the subgraph is unaffected by changing elimination order, as long as the external

variables remain in the same order. The final part of the algorithm is to extract the

conditional row that is required to use the new external variable in the global graph. This

is the row shown in yellow in Figure 4.3d. This figure also shows the actual block structure

of the solution matrix with two elements being zero that are not apparent in a pure linear

algebra derivation. The sparsity of these elements is apparent when looking at the Bayes

Tree in Figure 4.4b.

We briefly mentioned the case where additional out of sequence observations arrive that

refer to a single subgraph. Our algorithm readily extends to this case and the size of

the communicated information is constant. The promotion of x1 in our examples involves

transmission of the conditional probability of x1 upon its chronologically adjacent external

states x0 and x4. This occurs as x1 and x6 are conditionally independent given x4. In this

way a newly promoted variable will always be conditioned upon exactly two other variables

giving the constant size update we desire.

4.2 State Insertion

The case where a state does not already exist presents issues with connecting the new vari-

able into the existing graph without invalidating the previously transmitted components
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x0 x1 x3 x4 x5 x6

Shared

Internal

(a) After compression, before state insertion.

x0 x1 x2 x3 x4 x5 x6

Shared

Internal

(b) After insertion of x2.

x0 x1 x2 x3 x4 x5 x6

Shared

Internal

(c) After promotion of x2.

Figure 4.5 – Factor graphs showing the process of inserting a new state in a subgraph. The
original graph is shown faded out with the calculated factors produced by elimination in
white. We insert the new factor and calculate the composite factor, or conditional of
the new state x2 upon the adjacent states x1 and x3. This behaves as though x2 was
eliminated before all other variables in the subgraph and we use the elimination reordering
of the previous section to promote this variable.

from the subgraph and requiring retransmission. The two new temporal factors and lineari-

sation point for the new state must be equivalent after elimination to the existing temporal

factor which they replace between the two adjacent states in the subgraph. This allows

us to calculate conditions that the temporal error metric and choice of linearisation point

must fulfil to prevent invalidation of the previous segment. The aim for state insertion is to

create the state as if it were eliminated first in the original elimination order then use the

promotion method of the previous section to bring it from first eliminated of the internal

states to first eliminated of the external states.

Given an error metric which fulfills the conditions we derive in Section 4.2.1 we can recal-

culate the subgraph and can guarantee that addition of the state does not affect the joint
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probability at the root of the Bayes Tree. Calculation of this update to create the Jacobian

can be done iteratively by creating a two step system and eliminating the intermediate state

first using QR elimination. Calculation of the marginal information matrix and comparison

with the information matrix from the original factor can be used to verify that this method

is indeed correct and does not invalidate existing calculations. The conditional probability

derived from this can be added to the solution matrix and state promotion can occur as

for the existing states. Alternatively the entire subgraph can be recalculated with the new

elimination order.

Complete recalculation is simpler to implement and utilises less memory but requires greater

computation effort. Alternatively the small two step system can be created and the inter-

mediate variable eliminated. The probability of the intermediate state conditioned on its

adjacent states can then be attached to the Bayes Tree for the segment. The elimination

order can then be adjusted to promote the inserted state to the externals and the resulting

conditional probability is transmitted to other vehicles.

4.2.1 Derivation of Conditions for Applicability

To calculate these conditions we look at the factor graph for a simple two state optimisation

problem with time step (α + β), where α ≥ 0 and β ≥ 0. The linearised version of the

problem is calculated symbolically and includes the Jacobian matrices, error metric at the

linearisation points and noise models. We also calculate the same for a three state system

with time steps α and β and an as yet unknown value for the linearisation point of the

intermediate state. To be able to find the conditions, we need to eliminate the intermediate

state from the three state system. This is best achieved analytically through calculation

of the Information matrix and marginalisation rather than calculation of the square root

decomposition which involves factorisation steps that are difficult to calculate analytically.

Calculation of the Information matrix and the Information vector is done by premultiplying

the least squares problem with the transpose of the Jacobian (and if not already incorporated

in the Jacobian matrix the inverse of the measurement Covariance matrix Λ):

J∆Θ = −g
(
Θ0
)

(4.1)

JTΛ−1J∆Θ = −JTΛ−1g
(
Θ0
)

(4.2)

I∆Θ = i (4.3)
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The matrix and vector for the one step problem with start and end states θ0 and θ2 respec-

tively:

I =

∂fα+β∂θ0

T

∂fα+β
∂θ2

T

[Λ−1
α+β

] [
∂fα+β
∂θ0

∂fα+β
∂θ2

]
(4.4)

=

∂fα+β∂θ0

T
Λ−1
α+β

∂fα+β
∂θ0

∂fα+β
∂θ0

T
Λ−1
α+β

∂fα+β
∂θ2

∂fα+β
∂θ2

T
Λ−1
α+β

∂fα+β
∂θ0

∂fα+β
∂θ2

T
Λ−1
α+β

∂fα+β
∂θ2

 (4.5)

i = −

∂fα+β∂θ0

T

∂fα+β
∂θ2

T

[Λ−1
α+β

] [
fα+β

]
(4.6)

=

−∂fα+β
∂θ0

T
Λ−1
α+βfα+β

−∂fα+β
∂θ2

T
Λ−1
α+βfα+β

 (4.7)

and the two step problem, placing the intermediate state θ1 first in the column order, is

then calculated as:

I =


∂fα
∂θ1

T ∂fβ
∂θ1

T

∂fα
∂θ0

T

∂fβ
∂θ2

T


Λ−1

α

Λ−1
β

∂fα∂θ1
∂fα
∂θ0

∂fβ
∂θ1

∂fβ
∂θ2

 (4.8)

=


∂fα
∂θ1

T
Λ−1
α

∂fα
∂θ1

+
∂fβ
∂θ1

T
Λ−1
β

∂fβ
∂θ1

∂fα
∂θ1

T
Λ−1
α

∂fα
∂θ0

∂fβ
∂θ1

T
Λ−1
β

∂fβ
∂θ2

∂fα
∂θ0

T
Λ−1
α

∂fα
∂θ1

∂fα
∂θ0

T
Λ−1
α

∂fα
∂θ0

∂fβ
∂θ2

T
Λ−1
β

∂fβ
∂θ1

∂fβ
∂θ2

T
Λ−1
β

∂fβ
∂θ2

 (4.9)

i = −


∂fα
∂θ1

T ∂fβ
∂θ1

T

∂fα
∂θ0

T

∂fβ
∂θ2

T


Λ−1

α

Λ−1
β

fα
fβ

 (4.10)

=


−∂fα
∂θ1

T
Λ−1
α fα −

∂fβ
∂θ1

T
Λ−1
β fβ

−∂fα
∂θ0

T
Λ−1
α fα

−∂fβ
∂θ2

T
Λ−1
β fβ

 (4.11)
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After which the intermediate state needs to be eliminated to enable comparison with the

one step problem. Instead of using the elimination algorithms previously defined we change

to treat the Information matrix and vector as a multivariate Gaussian and calculate the

marginal distribution over the two end states. This effectively eliminates the intermediate

state but does not require decompositions of the block symbols we have been using and

thus facilitates simpler calculation and comparison of the one and two step cases.

The marginal information matrix and vector are:
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I
=

   ∂
f
α

∂
θ 0

T
∂
f
α

∂
θ 1

−
T
∂
f
β

∂
θ 1

T
( Λ

β
+

∂
f
β

∂
θ 1
∂
f
α

∂
θ 1

−
1
Λ
α
∂
f
α

∂
θ 1

−
T
∂
f
β

∂
θ 1

T
) −1

∂
f
β

∂
θ 1
∂
f
α

∂
θ 1

−
1
∂
f
α

∂
θ 0
−
∂
f
α

∂
θ 0

T
∂
f
α

∂
θ 1

−
T
∂
f
β

∂
θ 1

T
( Λ

β
+

∂
f
β

∂
θ 1
∂
f
α

∂
θ 1

−
1
Λ
α
∂
f
α

∂
θ 1

−
T
∂
f
β

∂
θ 1

T
) −1

∂
f
β

∂
θ 2

−
∂
f
β

∂
θ 2

T
( Λ

β
+

∂
f
β

∂
θ 1
∂
f
α

∂
θ 1

−
1
Λ
α
∂
f
α

∂
θ 1

−
T
∂
f
β

∂
θ 1

T
) −1

∂
f
β

∂
θ 1
∂
f
α

∂
θ 1

−
1
∂
f
α

∂
θ 0

∂
f
β

∂
θ 2

T
( Λ

β
+

∂
f
β

∂
θ 1
∂
f
α

∂
θ 1

−
1
Λ
α
∂
f
α

∂
θ 1

−
T
∂
f
β

∂
θ 1

T
) −1

∂
f
β

∂
θ 2

   
(4

.1
2)

i
=

   ∂
f
α

∂
θ 0

T
∂
f
α

∂
θ 1
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T
∂
f
β

∂
θ 1

T
( Λ

β
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∂
f
β

∂
θ 1
∂
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1
Λ
α
∂
f
α

∂
θ 1

−
T
∂
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β

∂
θ 1

T
) −1

( f β
−

∂
f
β

∂
θ 1
∂
f
α

∂
θ 1

−
1
f α

)
−
∂
f
β

∂
θ 2

T
( Λ

β
+

∂
f
β

∂
θ 1
∂
f
α

∂
θ 1

−
1
Λ
α
∂
f
α

∂
θ 1

−
T
∂
f
β

∂
θ 1

T
) −1

( f β
−

∂
f
β

∂
θ 1
∂
f
α

∂
θ 1

−
1
f α

)
   

(4
.1

3)
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We can now equate the marginal information matrix and vector of the two step problem

with the Information matrix and vector of the single step. From this set of 6 equations a

simpler set of four conditions can be extracted:

fα+β = fβ −
∂fβ
∂θ1

∂fα
∂θ1

−1

fα (4.14)

∂fα+β

∂θ0
= −

∂fβ
∂θ1

∂fα
∂θ1

−1∂fα
∂θ0

(4.15)

∂fα+β

∂θ2
=
∂fβ
∂θ2

(4.16)

Λα+β = Λβ +
∂fβ
∂θ1

∂fα
∂θ1

−1

Λα
∂fα
∂θ1

−T ∂fβ
∂θ1

T

(4.17)

These equations place conditions on the error metric value, Jacobians and covariance matri-

ces evaluated at the linearisation points. The total error is given in (4.14) as a combination

of the two steps by projecting the error from the first step via a transformation through

θ1. The Jacobians are related in (4.15) and (4.16). Both of these conditions can be derived

from the first equation by calculating the derivative. Finally (4.17) combines the covariance

terms by projecting the noise in the space of the first step to the space of the second. This is

the condition that many vehicle models will not obey so careful consideration of appropriate

vehicles models is required.

Trivial solutions can be found for any invertible metric where θ1 is the value that results

in a zero valued error metric, that is if fα = 0 then fβ = fα+β. The Jacobian conditions

are directly the partial derivatives of the first condition on the metric and thus satisfied.

Finally if the covariance matrix is set as zero for the first time step α then Λα+β = Λβ.

This results in a constant offset between the two values θ0 and θ1 however and is not what

is desired here.

In the search for more interesting solutions we restrict our search to the space where the

vehicle model metric is of the form in (4.18) so we can make further insights. In this case

u is at most a function of the initial state, the change in time and a measured constant -

the latter two of which are constant for a given factor.

f(θi, θj , δt,mij) = log (	(θi ⊕ u(θi, δt,mij))⊕ θj) (4.18)
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Here our metric is the adjoint representation of the Lie Algebra representing the difference

between the projected value from θi and the estimated value θj , and u is a function of any

or all of the starting state θi, the time between states δt and mij an odometry observation.

Given this the derivatives of the error metric relative to the end state are the identity and

so in our two step equations ∂fα
∂θ1

and
∂fβ
∂θ2

are the identity. This is advantageous as ∂fα
∂θ1

is

the only matrix to be inverted in these conditions and is now a trivial operation.

The simplest set of models that obey this condition are linear. We have also found a set

of models that work and contain translation, orientation and linear velocity components

in two and three dimensions. These models project forward with linear motion but can

calculate and distribute orientation changes evenly across multiple time steps. The pose is

represented using group SE(N) and the linear velocities are represented with RN and are

relative to the body frame.

Inclusion of angular velocities was investigated although deemed not possible due to inter-

action of time dependencies in the noise model, independent of orientation representation

methods. The time dependence creates issues as the position or translation components

are first order time dependent through the linear velocities and second order dependent

through the angular velocities via the orientation components. This results in mixed order

time dependence and complicating derivation of a compatible noise model. Inclusion of lin-

ear acceleration was initially considered as it would result in a matched order of dependence

on time but was found to be too complex to calculate.

4.2.2 Vehicle Models for State Insertion

The vehicle models we investigated for usage with state insertion were based around planar

(x, y, θ) or 6DOF (x, y, z, φ, θ, ψ) states with inclusion of body velocity terms. We found

models that conformed to our conditions of the previous subsection that had linear veloc-

ities, but not angular velocities. This results in a state representation using orientation,

translation and linear velocity terms giving 5 dimensions in the plane and 9 dimensions in

6DOF space. We use the product of the SE(N) group with RN to represent our states,

with N = 2 for the planar version or N = 3 for 6DOF. Elements of the matrix Lie Group
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SE(2)× R2 are representable as

θ =


R t 02×2 02×1

01×2 1 01×2 0

02×2 02×1 I2×2 v

01×2 0 01×2 1

 (4.19)

=


R t

1

I2 v

1

 (4.20)

and elements of the matrix Lie group SE(3)× R3 are representable as

θ =


R t 03×3 03×1

01×3 1 01×3 0

03×3 03×1 I3×3 v

01×3 0 01×3 1

 (4.21)

=


R t

1

I3 v

1

 (4.22)

We denote the algebra of these groups as (tx, ty, ωψ, vu, vv) and (ωφ, ωθ, ωψ, tx, ty, tz, vu, vv, vw).

We use the error metric form in (4.18) and here define

u (θi, δt) = exp




0N×N δtv 0N×N+1

01×N 0 01×N+1

0N+1×N 0N+1×1 0N+1×N+1


 (4.23)

=


IN×N δtv 0N×N+1

01×N 1 01×N+1

0N+1×N 0N+1×1 IN+1×N+1

 (4.24)

with no odometry observation mij and exp being the exponential map from the Lie Algebra

to our Lie Group SE(N)×RN . This predicted moves in the body velocity direction for the
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specified time interval and includes no angular motion.

The models we found for odometry error involve calculating the difference between a forward

prediction from θi at time t to θi+1 at time t + δt and the current estimate for state θi+1.

The prediction function returns an update to the translation only as we do not use angular

velocities or any acceleration terms.

Calculation of Jacobians and the Covariance matrix are complex due to the usage of non-

Euclidean spaces and Lie Algebra (and matrix exponentials and logarithms). To this end we

merely give the resulting Jacobians and covariance matrices with a high level explanation of

the constituent portions. Due to the number of variables involved we will use some symbols

that are generally familiar, such as R for rotation matrices, and less familiar such as the

Adjoint matrix [Adx] from Lie Group theory.

The Adjoint matrix for our spaces can be calculated in terms of rotation, translation and

velocity coordinates (RTV) of a group element. The Adjoint matrix for an element θ of the

planar group is

[Adθ] =



cosψ − sinψ y

sinψ cosψ −x

0 0 1

1

1


(4.25)

whilst for an element θ of the 6DOF group is

[Adθ] =


R

TR R

I

 (4.26)

where T is a skew symmetric matrix made from the translation elements

T =


0 −z y

z 0 −x

−y x 0

 (4.27)

This term arises frequency in calculating the derivatives of functions of Lie groups.
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We begin with the 6DOF model as the planar model is a special case where height, roll,

pitch and vertical velocity are 0. The Jacobians of the vehicle model error metric with

respect to the initial or source state θ0 and the end or destination state θ1 are

∂f

∂θ0
= −

[
Adθ−1

1 ⊕θ0

]
I

I δtI

I

 (4.28)

= −


R

TR R δtR

I

 (4.29)

∂f

∂θ1
= I (4.30)

where empty regions are zero elements.

The covariance is again more complex, and has two diagonal covariance matrices ΛR and

ΛV representing the motion model noise in the orientation and linear velocity dimensions

respectively. The central component represents the time dependence of each dimension

on the noise matrices and the general form of the time dependence is familiar from linear

constant velocity covariance models [9, p. 270].

Λ =
[
Adθ−1

1 ⊕θ0⊕u

]
δtΛR

δt2

2 ΛRV(
δt2

2 ΛRV
)T

δt3

3 (ΛV − V ΛRV ) δt2

2 ΛV

δt2

2 ΛV δtΛV

[Adθ−1
1 ⊕θ0⊕u

]T
(4.31)

V here is the skew-symmetric matrix of elements in v as for (4.27).

The Jacobians and covariance models for the planar case, with scalar covariance values

λu, λv, λψ are

∂f

∂θ0
= −

[
Adθ−1

1 ⊕θ0

]
I δtI

1

I

 (4.32)
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=



cosψ − sinψ y δt cosψ −δt sinψ

sinψ cosψ −x δt sinψ δt cosψ

0 0 1

1

1


(4.33)

∂f

∂θ1
= I (4.34)

Λ =
[
Adθ−1

1 ⊕θ0⊕u

]


δt3

3 (λψv
2 + λu) − δt3

3 λψuv − δt2

2 λψv
δt2

2 λu

− δt3

3 λψuv
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4.3 Results

As in the previous chapter we compare against a centralised relinearising solution and

individual solutions for each platform. We use the method from the previous chapter as a

comparison to illustrate the effect of the state insertion method to include out of sequence

observations. This provides us with four base estimators. We then use two variants of

each - one with and one without loop closures from landmark observations to provide eight

estimator solutions. The method from the last chapter and the new one including state

insertion use the state promotion method to handle loop closures as it is general for all

vehicle models.

Our results here are calculated using our estimators on the UTIAS datasets [47], this time

based only on a homogeneous configuration with the addition of subsampled landmark ob-

servations. Rather than including landmark states in the estimator as additional variables

we use measurements of landmark states to generate observations of the relative pose and

associated covariance between vehicle poses and include these as factors. Figure 4.6 shows

two situations in which we can generate this new factor from multiple landmark observa-

tions. Figure 4.6a shows a local loop closure which we utilise here whilst Figure 4.6b shows

a loop closure with a remote vehicle which we do not utilise here due to extra data transfer

required for data association. We calculate the landmarkless loop closure factor for both of
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(b) Intervehicle loop closure with landmarks.
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(d) Intervehicle loop closure after landmark-
less loop closure construction.

Figure 4.6 – Factor graphs before (a) (b) creation of landmarkless loop closure factors and
after (c) (d). The creation of these loop closures enables us to avoid including extra states
in the estimator. Double counting and inconsistency is avoided through usage of each
landmark observation for a single landmarkless factor.
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(a) Vehicle states and landmark observa-
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(b) Constrained factor graph.

Figure 4.7 – The physical structure and constrained factor graph for the optimisation of
loop closure candidates. The factor graph only shows one state as the starting state is con-
strained and thus a constant. The binary factors that would have connected the landmarks
to it are then unary factors connected only to the landmarks. The marginal probability of
the end state xj from this graph provides the conditional probability covariance relative
to the starting state xi.

these giving the local case in Figure 4.6c and the intervehicle case in Figure 4.6d.

This map free approach has origins in the original graph smoothing solutions with laser

scan matching [49] and more recently with stereo and monocular frame matching for visual

odometry and loop closures [21, 34, 41, 50]. These methods eschew addition of the fea-

tures, or lack features to add, and instead compute a pose offset and covariance from the

measurements. These values are then used as an observation in the localisation method.

Here we calculate the loop closures through nonlinear optimisation over the range and

bearing observations in the dataset to the commonly observed landmarks between two

poses as depicted in Figure 4.7. We avoid dependence on the current linearisations of the

states by constraining the earlier state xi in the loop closure candidate to be the origin and

solving for the later state xj relative to this. Initial linearisations for the reduced problem

are calculated geometrically from the observations to avoid any dependence on current

estimates. We iterate until convergence, discarding any potential loop closures that don’t

converge within 50 iterations. The landmark states are marginalised out and the marginal

probability of xj is extracted and used as the covariance of the loop closure factor. We

also utilise innovation gating through a one sided χ2 filter to ignore loop closures that are

unlikely based on state estimates at the time of capture using a threshold of 99% (which

equates to a Normalised Innovation Squared of approximately 11.34 for a three dimensional

observation). All estimators then receive the same set of measurements, including loop

closures, however due to differences in estimates the loop closures may be rejected by each

estimator.
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To better simulate the real world case we also introduce a delay to message passing between

platforms. In each case the communication delay is a fixed amount plus a range depen-

dent component to simulate computation time and the slower propagation delay in either

large range scenarios or slower communication mediums such as acoustic communications

underwater.

4.3.1 Captured Data

Given the desire to reduce bandwidth the selection of loop closure candidates from the total

possible pool deserves some attention. As a coarse measure to decrease the covariance we

required three common landmark observations although only two are required for a full rank

observation. As this is also not intended as a visual odometry solution a minimum time

between start and end states of a loop closure was required of 30 seconds. Additionally

repeat observations, or similar observations that link similar start and end states were

limited to reduce bandwidth and favour more informative loop closures. To this end the

difference of time at the start states added to the difference in time at the end states was

enforced to be above 10 seconds.

Detailed results for the first dataset in Figure 4.9 show that inclusion of loop closures has

a significant effect - even without loop closures between vehicles. As can be predicted the

presence of loop closures provides a constraint on the odometry drift that results in a near

constant uncertainty level over time [28] whilst the solutions that do not use landmarks

exhibit growth in uncertainty of odometry only solutions as can be calculated from the

Kalman filter equations. The use of intervehicle measurements still results in significant

reduction in uncertainty and error, even with the inclusion of loop closures. Of greater

interest however is the relative performance of decentralised estimators with and without

state insertion. Looking at the error and covariance the methods that can handle delayed

observations gain slightly - however it is not a large gain in this situation. Table 4.2 shows

that approximately 25% of intervehicle measurements arrived out of sequence for dataset 1.

The promotion method was able to handle 3% of the observations but insertion of additional

states was required for the other out of sequence observations. Overall this is an increase of

approximately 30% of usable measurements when using state insertion compared to our base

method. Looking at the time most of these observations took place in Figures 4.8b and 4.8c

the grouping of these with other in sequence observations shows the relatively small gain that
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(a) Loop closure connections for vehicle 2. A χ2 filter on each estimator resulted in some valid loop
closures being rejected and so there is variation in what each estimator actually used. Black
links indicate all estimators used the link whilst green indicates the centralised estimator did
not. Yellow indicates only MVSAM+Insertion+Landmarks used the link.
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(b) Times at which each vehicle was observed by vehicle 2. Cyan circles indicate that the observation
arrived out of sequence in the MVSAM solution with landmarks and OOS insertion.
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(c) Times at which vehicle 2 was observed by other vehicles. Cyan circles indicate that the obser-
vation arrived out of sequence in the MVSAM solution with landmarks and OOS insertion.

Figure 4.8 – Vehicle 2 from dataset 1 showing loop closure candidates and intervehicle obser-
vations. Figure 4.9 has the position standard deviation and error for this data.
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(a) Radius of circle approximation to standard deviation around position of vehicle 2 at each point
in time.
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(b) RMS position error for vehicle 2 from each optimiser.

Figure 4.9 – Vehicle 2 from dataset 1 showing estimator uncertainty and estimator error.
The connections with other vehicles are shown in Figure 4.8. The usefulness of even
local loop closures is apparent with the performance of the individual landmark solutions
exceeding the centralised and decentralised solutions without landmarks. However the
usage of landmarks and intervehicle observations permit further improvements in estimator
error and certainty over the methods of the previous chapter.
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Vehicle Landmarks Insertion Landmarks+Insertion
IS OOS-I OOS-P IS OOS-I OOS-P IS OOS-I OOS-P

1
EXT 1827 0 72 1810 216 36 1827 235 70

IV 1788 0 38 1809 216 36 1788 235 38
LC 92 0 34 0 0 0 88 0 32

2
EXT 1956 0 102 1919 376 43 1956 398 104

IV 1889 0 50 1918 376 43 1889 398 50
LC 123 0 52 0 0 0 125 0 54

3
EXT 2218 0 110 2152 294 38 2218 300 110

IV 2141 0 42 2151 294 38 2141 300 42
LC 148 0 68 0 0 0 150 0 68

4
EXT 2019 0 50 2018 311 45 2019 311 50

IV 2015 0 47 2017 311 45 2015 311 47
LC 9 0 3 0 0 0 11 0 3

5
EXT 1920 0 92 1832 164 24 1920 169 92

IV 1824 0 26 1831 164 24 1824 169 26
LC 231 0 66 0 0 0 231 0 66

Table 4.1 – Counts of external states (EXT) on each robot that were generated in sequence (IS)
or out of sequence via insertion (OOS-I) or promotion (OOS-P) methods for intervehicle
(IV) and local loop closure (LC) observations in dataset 1 as well as the total count of
external states. This gives a sense of data transfer requirements, assuming no duplication
of transmissions where Table 4.2 better indicates how many observations were rejected due
to lack of out of sequence handling. Two states are required for each intervehicle or loop
closure observation and one of these states is always generated ‘in sequence’ at the time of
observation whilst the other state may correspond to an existing external state, arrive in
sequence or require an out of sequence handler. Additionally the number of external states
generated does not match the sum of the count of states involved in local loop closures and
intervehicle observations due to overlap between the two sets.

Vehicle Landmarks Insertion Landmarks+Insertion
IS OOS-I OOS-P IS OOS-I OOS-P IS OOS-I OOS-P

1
IV 596 0 46 599 261 40 596 258 46
LC 32 0 31 0 0 0 31 0 29

2
IV 816 0 44 822 273 43 816 278 44
LC 36 0 51 0 0 0 36 0 53

3
IV 1250 0 60 1289 440 55 1250 474 60
LC 40 0 67 0 0 0 41 0 67

4
IV 548 0 12 551 148 12 548 151 12
LC 3 0 3 0 0 0 4 0 3

5
IV 1309 0 43 1328 244 38 1309 258 43
LC 85 0 65 0 0 0 85 0 65

Total
IV 95.7% 0.0% 4.3% 74.7% 22.2% 3.1% 73.6% 23.1% 3.3%
LC 47.5% 0.0% 52.5% 47.6% 0.0% 52.4%

Table 4.2 – Counts of method used to handle intervehicle observations made on each vehicle in
dataset 1. Local loop closures here are from the same sensor as intervehicle observations so
alignment of approximately 50% of loop closure observations with existing external states
is not surprising. However approximately 22% of observations arrived out of sequence and
required insertion and another 3% aligned with an existing internal state.
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Dataset Landmarks Insertion Landmarks+Insertion
IS OOS-I OOS-P IS OOS-I OOS-P IS OOS-I OOS-P

1
IV 95.7% 0.0% 4.3% 74.7% 22.2% 3.1% 73.6% 23.1% 3.3%
LC 47.5% 0.0% 52.5% 47.6% 0.0% 52.4%

2
IV 95.1% 0.0% 4.9% 70.2% 26.6% 3.2% 68.8% 27.7% 3.6%
LC 40.6% 0.0% 59.4% 40.2% 0.0% 59.8%

3
IV 95.8% 0.0% 4.2% 75.8% 21.3% 2.9% 74.7% 22.0% 3.3%
LC 58.0% 0.0% 42.0% 57.4% 0.0% 42.6%

4
IV 96.0% 0.0% 4.0% 74.8% 22.6% 2.6% 74.1% 22.9% 3.1%
LC 75.9% 0.0% 24.1% 75.9% 0.0% 24.1%

5
IV 94.3% 0.0% 5.7% 67.8% 28.6% 3.6% 66.4% 29.5% 4.0%
LC 52.1% 0.0% 47.9% 51.8% 0.0% 48.2%

6
IV 94.7% 0.0% 5.3% 67.8% 28.7% 3.4% 67.1% 29.2% 3.7%
LC 56.2% 0.0% 43.8% 56.4% 0.0% 43.6%

7
IV 96.0% 0.0% 4.0% 74.0% 23.3% 2.7% 72.3% 24.6% 3.0%
LC 50.4% 0.0% 49.6% 50.0% 0.0% 50.0%

Table 4.3 – Showing the percentage each method was used to handle sharing of state data
for shared observations in each dataset. Overall we see the rate of out of sequence varies,
however the relative ratio of promotion vs insertion for handling intervehicle observations
remains constant.

was to be found is due to these measurements being closely followed or preceded by many

other measurements of the same target and thus being relatively insignificant. Table 4.1

shows the count of external states that are shared between vehicles and the method of

generating the packet for each decentralised estimator.

Interestingly the local loop closure based methods vary more in their estimates and uncer-

tainty than the intervehicle only methods. Possible cause for this relates to the partially

fixed linearisation of remote states being unable to correct for odometry drift when updated

with loop closures distorting the estimator. Whereas in the case without loop closures the

entire system solution may drift from the mean together the loop closures pull on the graph

at varying rates and accuracies on each vehicle. The centralised estimator is better able to

accommodate these updates as it can update the linearisation for all vehicles.

Comparison of out of sequence observation counts for all datasets we tested are summarised

in Table 4.3. Here we see that the percentage that are out of sequence varies between

approximately 25% and 30% in our datasets and so remains fairly stable for our constant

configuration. We would expect variation in the rate of intervehicle observations or delay in

message passing to provide the most significant effects on this. The loss of these intervehicle

measurements does reduce certainty and increase error although the effect is relatively small.

Finally the communication bandwidth required for each estimator is given in Table 4.4.



CHAPTER 4. OUT OF SEQUENCE MEASUREMENTS 89

Dataset Raw MVSAM +Insertion

1 4114 kiB 2894 kiB 70.3% 2916 kiB 70.9%

2 5130 kiB 4027 kiB 78.5% 4114 kiB 80.2%

3 4146 kiB 2651 kiB 64.0% 2683 kiB 64.7%

4 3908 kiB 2805 kiB 71.8% 2819 kiB 72.1%

5 6514 kiB 4906 kiB 75.3% 4989 kiB 76.6%

6 2043 kiB 1493 kiB 73.1% 1498 kiB 73.3%

7 2421 kiB 1795 kiB 74.2% 1810 kiB 74.8%

Total 28276 kiB 20571 kiB 72.8% 20829 kiB 73.7%

(a) Raw and summarised usage with landmark data usage for loop closures.
Dataset Raw MVSAM +Insertion

1 4068 kiB 2531 kiB 62.2% 2560 kiB 62.9%

2 5025 kiB 3304 kiB 65.8% 3317 kiB 66.0%

3 4079 kiB 2317 kiB 56.8% 2342 kiB 57.4%

4 3837 kiB 2538 kiB 66.2% 2559 kiB 66.7%

5 6365 kiB 4166 kiB 65.5% 4208 kiB 66.1%

6 2012 kiB 1322 kiB 65.7% 1325 kiB 65.9%

7 2387 kiB 1582 kiB 66.3% 1589 kiB 66.6%

Total 27773 kiB 17760 kiB 63.9% 17900 kiB 64.5%

(b) Raw and summarised data usage with no usage of landmark data for loop closures.

Table 4.4 – Total data and percentage used relative to transmission of the raw measurements
for the UTIAS datasets. The summarisation methods result in 27% reduction for loop
closure scenarios and 35% reduction without loop closures. The difference in data savings
is due primarily to the extra bandwidth required for out of sequence promotion for the
historic states in loop closure factors. Alternate heuristics for selecting raw or summarised
transmission of data could assist in reducing data further.
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Overall we still retain reduction in bandwidth of around 27% when including landmarks

and 35% without. The difference in bandwidth reduction with out without landmarks is due

in part to the bandwidth required for the loop closure which includes the noise model as well

as calculated offset but also requires inclusion of the out of sequence summary data for the

earlier state. When transmitting raw data no extra information needs to be transmitted

as remote systems can calculate the earlier state information. When using summarised

data the out of sequence data needs to be transmitted and this equates to around 7% of

the 8% difference when using loop closures – the other 1% is for the loop closures factors

themselves. However there is scope to reduce the number of these loop closures shared with

smarter mechanics or simplification of the observations. Smarter mechanics could adjust

when raw observations are transmitted instead of summarised data. Currently we use the

summary algorithm if it results in less data than raw transmission. This threshold could

be adjusted to be 10% less data than raw transmission or other heuristics based on the

likelihood of an out of sequence observation occurring in the current subgraph. The loop

closure observations could also be simplified to be only the calculated mean offset with a

constant covariance instead of deriving the covariance from the simplified SLAM problem.

Inclusion of inserted states also increases the bandwidth requirement but amounts to around

1% reduction in savings on the base method.

4.4 Summary

Overall we see the inclusion of local landmark loop closures and their sharing across vehicles

provides the largest benefits to error and reduced uncertainty. This does come at a larger

cost to communications although this can be reduced through either more careful selection

of which loop closures to share or a constant covariance assumption for loop closure noise.

The ability to transmit for out of sequence observations does reduce uncertainty and error

but is small relative to the reduction of error due to loop closures and places restrictions

upon the vehicle model that do not suit all applications. It does however work for the

models and application we propose here.
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Conclusion

5.1 Summary

This thesis develops a new method for multiple robot localisation. The method handles

asynchronous updates between robots and minimises bandwidth. Importantly the method

is decentralised giving resilience against agent failure and distributes much of the compu-

tation. Additionally we develop algorithms to handle significant delays including out of

sequence arrival of information from remote platforms without retransmission or significant

recalculation. We verified this with simulated and captured data for sets of small robot

teams. The method reduced the bandwidth requirements in our tests on captured data by

approximately 50% and further benefits would arise in cases with more erratic communica-

tion where vehicles do not interact with others for longer periods. We calculated the savings

for various combinations of regular internal and external sensor rates and state space size.

Whilst we did get a measure of the handling with erratic communications in the UTIAS

dataset tests they are not exhaustive or necessarily representative of other systems.

We extended our decentralised method to handle communication delays that can arise from

slow signal propagation and computation times or communication range limitations. This

method does not require retransmission of existing data and is purely additive requiring the

same simple incorporation methods that our base method uses. This involved two related

extensions. The first handles delayed messages that connect to an existing internal state

on a remote vehicles estimator. The second handles delayed messages through the insertion

of a new state. This can be done without requiring retransmission given a vehicle model

91
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that conforms to a set of conditions we derived from equating one and two odometry step

localisation solutions.

Furthermore we applied these methods to enable sharing of local loop closure information.

In this case vehicles calculate local loop closures that connected vehicle states over long

periods and then share the loop closure information with remote vehicles. Using local loop

closures reduces the growth in covariance similar to the effect for single vehicles and SLAM

and can lead to significant improvements in estimates. The method also permits loop

closures between vehicles, although it is expected that the bandwidth cost of calculating

the data association is prohibitive and was not investigated.

5.2 Contributions

Four novel contributions to the state of the art in multiple robot decentralised localisation

with low bandwidth communication were presented.

The first contribution was the development of a method for information fusion that allows

iterative in-sequence construction and transmission of a summary graph containing only the

states involved in intervehicle measurements. It does not require retransmission or special

incorporation such as removing previously transmitted data before inclusion. The method

developed is exact, both in the sense of no approximations and producing an identical

solution for a single iteration of a nonlinear optimisation solver. Differences to a centralised

solution emerge due to the ability of a centralised (or multi-centralised) solver to relinearise

all states whilst our method is limited to relinearising only local states.

The second and third contributions were the extension of the previous method to facilitate

the inclusion of out of sequence intervehicle measurements without retransmission. The two

contributions handle two cases of delayed observations that cannot be implicitly handled

by the base method. The first of these two contributions handles delayed observations that

connect to an internal state. This most obviously arises with landmarkless loop closures

which we demonstrate. The method involves reordering elimination in a subgraph between

two existing external states to ‘promote’ the targeted internal state to an external state.

The subgraph structure developed for the base method when used for state promotion

reduces the required computation - which is a factorisation update and does not involve

linearisation of factors.
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The third contribution and second method for handling delayed and out of sequence mes-

sages concerns the case where no state exists at the target time on the target vehicle. This

arises where vehicles are passively observable such as through vision systems, LIDAR or

RADAR. Vehicles are unaware of their being observed and so cannot create a state to link to

the remote vehicle. The method handles insertion of a new intermediate state and fast ways

to calculate this that reduce the number of factors that need to be linearised and involved

in refactorisation. Unlike our second contribution this is not applicable to all vehicles and

we derive the conditions that vehicle models must conform to. The derivation compares

the joint marginal probability of two states with and without an intermediate state and

generates four constraints that cover the error metric, Jacobians of the error metric with

respect to the first or second state variable and the error metric covariance.

Our fourth contribution involved derivation of two vehicle models that conform to the

conditions derived in the third contribution. These models cover motion in the plane and

general 6DOF movement and enable usage on real systems.

As a whole these contributions permit efficient calculation of a near centralised equivalent

cooperative localisation solution. Significantly, when compared to existing cooperative lo-

calisation algorithms, it does not disregard late arriving information or out of sequence

messages, which in our tests represent approximately 25% of all intervehicle observations.

Nor does it require retransmission of data, reducing bandwidth and the need for more

complex information tracking. We utilise this to demonstrate usage of local loop closures,

reducing the growth in uncertainty and need for association of landmarks across platforms.

5.3 Future Work

A number of avenues for future work exist surrounding selection of informative shared states

instead of complete sharing, reduction in computation required for factorisation updates

through alternate variable ordering in subgraph elimination and extension to more general

landmark solutions.

Improved selection of loop closures to be shared across platforms is the simplest way to

reduce bandwidth further with the potential to reduce the number of shared states whilst

retaining the constraints on uncertainty that loop closures permit. This can involve selection

using Information based metrics such as entropy. Alternatively usage of a constant noise
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model for loop closures instead of extracting the uncertainty from the reduction of features

would reduce bandwidth for the loop closures themselves and may not affect the final

solution significantly.

An alternative improvement is anticipation of state promotion for loop closures when trans-

mitting data for a segment. The current algorithm uses the compressed data if the size

of raw data transmission exceeds the compressed packet size. Without out of sequence

observations this guarantees that the algorithm will use less bandwidth than complete raw

transmission. With out of sequence observations this is not guaranteed (although still

likely). Anticipation of out of sequence packets for loop closures and transmission of raw

data for the related segments could result in further reduction of bandwidth and could

come from knowledge of the robots planned motion or tracking of potential loop closure

observations.

Modification of the simple odometry chain order proposed with the initial packet calculation

to one based on a binary tree could be used to reduce the number of affected variables should

a state require sharing. Changing the Bayes Tree generated from narrow and tall to wider

and shorter could reduce the average number of nodes affected upon reordering. Currently

it is worst case n in the number of states, but could be reduced.

Incorporation of landmarks in the graph in an iterative manner would enable a general

multiple robot SLAM solution and may have benefits where vehicles only see a small number

of landmarks at any point in time. Iterative transmission of this data could assist in

building larger shared maps with reduced or more even bandwidth usage than comparable

batch transmission methods such as DDF-SAM [13, 14]. This also can be compared with

the landmarkless solutions we use and enable determination on a system by system basis

whether landmarks and data association or loop closures yield reduced bandwidth and

improved accuracy of the final solution.

Relinearisation of the shared graphs could result in improved solutions where initial esti-

mates are poor approximations to the true value. Investigation of this could include merging

of adjacent packets to reduce bandwidth required on retransmission. Additionally determi-

nation of update priority for variables based on delta size and stability of estimates could

assist in using bandwidth optimally.
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[31] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, Udo Frese, and Christoph
Hertzberg. Hierarchical optimization on manifolds for online 2d and 3d mapping. In
Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages
273–278. IEEE, 2010.
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Appendix A

Extended Data Graphs

Extra graphs from the main text where their presence there would overcrowd the text

without significant gains from their inclusion there. They are included here for completeness

and to enable the reader to better verify that the conclusions reached are not specific to

the examples shown and were presented more generally.

A.1 Compression and Packetisation

A.1.1 UTIAS Examples

Including all 9 datasets for completeness. Figure A.1 covers the tracking scenario and

Figure A.2 covers the GPS denied scenario.

A.2 Out of Sequence Measurements

A.2.1 UTIAS Examples

RMS error for a vehicle from the first 7 datasets is in Figure A.3.
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(a) Online estimator position error for UTIAS dataset 1.
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(b) Online estimator position error for UTIAS dataset 2.

0 200 400 600 800 1000 1200 1400

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

or
(m

)

Centralised
Individual
MVSAM

(c) Online estimator position error for UTIAS dataset 3.
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(d) Online estimator position error for UTIAS dataset 4.
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(e) Online estimator position error for UTIAS dataset 5.
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(f) Online estimator position error for UTIAS dataset 6.
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(g) Online estimator position error for UTIAS dataset 7.
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(h) Online estimator position error for UTIAS dataset 8.
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(i) Online estimator position error for UTIAS dataset 9.

Figure A.1 – Position error on one vehicle from each dataset using the tracking setup.
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(a) Online estimator position error for UTIAS dataset 1.
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(b) Online estimator position error for UTIAS dataset 2.
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(c) Online estimator position error for UTIAS dataset 3.
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(d) Online estimator position error for UTIAS dataset 4.
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(e) Online estimator position error for UTIAS dataset 5.
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(f) Online estimator position error for UTIAS dataset 6.
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(g) Online estimator position error for UTIAS dataset 7.
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(h) Online estimator position error for UTIAS dataset 8.
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(i) Online estimator position error for UTIAS dataset 9.

Figure A.2 – Position error on one vehicle from each dataset in a GPS denied environment.
The isolated/individual solutions match those in Figure A.1 as the on board sensing/setup
is identical.
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(a) Online estimator position error for UTIAS dataset 1.
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(b) Online estimator position error for UTIAS dataset 2.
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(c) Online estimator position error for UTIAS dataset 3.
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(d) Online estimator position error for UTIAS dataset 4.
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(e) Online estimator position error for UTIAS dataset 5.
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(f) Online estimator position error for UTIAS dataset 6.
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(g) Online estimator position error for UTIAS dataset 7.

Figure A.3 – Position error on one vehicle from each dataset in a GPS denied environment with
communication delay and loop closures. Optimisers with landmarks outperform those with-
out. The decentralised optimisers without loop closures perform similarly to the centralised
but the centralised solver with loop closures outperforms the decentralised optimisers in a
number of cases with a visible difference.
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