
On the global asymptotic analysis

of a q-discrete Painlevé equation
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CHAPTER 1

Introduction

The Painlevé equations are universal integrable systems. Their solutions turn out to have

many physically relevant properties, which can be deduced precisely because these equations

are integrable. In this thesis we are concerned with a nonlinear q-difference equation, which

is a discrete version of a Painlevé equation. Our main objective is to derive global asymptotic

properties of its solutions.

1.1 Painlevé Equations

One of the most fundamental properties of linear differential equations, is that we can read

of the equation itself, where solutions might have singularities. To put it differently, the

equation determines a puncturing of the Riemann sphere, such that any local solution has

an unique meromorphic continuation to the universal cover space of the resulting punctured

sphere. Around the turn of the nineteenth century, Painlevé and his school wished to find

and classify nonlinear differential equations, particularly of second order, which share this

remarkable property with the linear ones, appropriately referred to as the Painlevé property

nowadays.

To be exact, Painlevé [69, 70], Gambier [17], Fuchs [15] and their colleagues classified all

second order differential equations, having the Painlevé property, of the form

ω′′ = H(ω, ω′, ζ),

where ′ = d
dζ and H meromorphic in ζ and rational in ω and ω′. They ended up with a list

of fifty such equations, of which six are not trivially integrable, the six Painlevé equations,

given in Appendix A.

Just as many linear equations are used to define classical or linear special functions as their

solutions, the Painlevé equations give rise to so called Painlevé functions or transcendents.

Indeed solutions of Painlevé equations are generically higher transcendental, which roughly

means they can not be expressed in terms of earlier known functions, and therefore define truly

new functions. Nowadays Painlevé transcendents are widely recogized as nonlinear special

functions, where we particularly mention that they are included in the NIST handbook of

Mathematical Functions, see Clarkson [10].

1
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The inspiring sixth Painlevé equation is given by

PVI

 w′′ = 1
2

(
1
w + 1

w−1 + 1
w−ζ

)
(w′)2 −

(
1
ζ + 1

ζ−1 + 1
w−ζ

)
w′

+w(w−1)(w−ζ)
2ζ2(ζ−1)2

(
(θ∞ − 1)2 − θ2xζ

w2 +
θ2y(ζ−1)

(w−1)2
+ (1−θ2z)ζ(ζ−1)

(w−ζ)2

)
,

(1.1)

where θx,y,z,∞ ∈ C are complex parameters. The Painlevé property manifests itself as follows,

any local solution of the sixth Painlevé equation on P1\{0, 1,∞}, has an unique meromorphic

continuation to the corresponding universal covering space, see also Theorem 2.1.1. In par-

ticular PVI transcendents can only branch at ζ = 0, ζ = 1 or ζ =∞, the critical points of the

equation. The sixth Painlevé equation is often referred to as the mother equation, as for one,

it has the most complex parameters of the six Painlevé equations, and secondly, the other

Painlevé equations can be obtained by coalescence limits of it. One can hence think of PVI

as the universal differential equation on the nonlinear level, similar to Euler’s hypergeometric

differential equation on the linear level,

ζ(1− ζ)ω′′ + (c− (a+ b+ 1)ζ)ω′ − abω = 0. (1.2)

The sixth Painlevé equation is of great importance to this thesis, as we study a q-analog of

it, called the q-P (A1) equation. To put it broadly, a q-analog of an object, is a generalisation

involving an extra parameter q in the complex plane, such that in the limit q → 1, called

the continuum limit, the original object is recovered. One is generally interested in objects

characterised by some property, like the Painlevé property, and hence a proper q-analog should

somehow share this property or a q-analog of it.

Let us recall that the theory of classical special functions has always co-existed with

a q-discrete theory of q-special functions. One of the most prominent examples are the

hypergeometric and q-hypergeometric functions. The famous Gauss hypergeometric function,

defined by

2F1

[
a, b

c
; ζ

]
=
∞∑
n=0

(a)n(b)n
(c)n(1)n

ζn, (x)n :=
∏

0≤i≤n−1

(x+ i), (x ∈ C, n ∈ N)

defines a solution to Euler’s hypergeometric differential equation (1.2). In 1846, Heine [33, 34]

introduced the q-hypergeometric function,

2φ1

[
a, b

c
; q, ζ

]
=
∞∑
n=0

(a; q)n(b; q)n
(c; q)n(q; q)n

ζn, (x; q)n :=
∏

0≤i≤n−1

(1− qix), (x ∈ C, n ∈ N) (1.3)

generalising Gauss’ hypergeometric function, which appropriately satisfies a q-discrete analog

of Euler’s hypergeometric differential equation. Given such a longstanding and fruitful tra-

dition within the special function community, it is quite remarkable that a q-Painlevé theory

had to wait for almost a century after the pioneering works of Painlevé and his colleagues.

Perhaps the deeper reason for this, is the difficulty in defining an appropriate q-analog of the

Painlevé property.
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1.2 Discrete Painlevé Equations

The early appearances of discrete Painlevé equations in the literature were not in the context

of Painlevé equations. Probably the first such example is the following additive or d-discrete

equation

xn+1 + xn + xn−1 =
tn
xn

+ 1, tn = t0 + dn, (n ∈ Z) (1.4)

in a paper by Shohat [81] in 1939, in which unfortunately, no connection with Painlevé

equations was made. It had to wait until 1990, when Brézin and Kazakov [7] first calculated

the continuum limit d→ 0 of this equation, in the context of a field-theoretical model of two-

dimensional gravity. The result was the first Painlevé equation ω′′ = 6ω2 + ζ, and equation

(1.4) soon become known as d-PI. This observation initiated an exciting new research area,

extending the Painlevé world into the discrete regime, opening the hunt for new discrete

Painlevé equations.

A question of much discussion during the nineties, was what the discrete analog of the

Painlevé property should be? A first candidate, called the singularity confinement property,

was proposed by Grammaticos, Ramani and Papageorgiou [22] in 1991. Let us discuss it by

example using d-PI (1.4). Reflecting on the Painlevé property for differential equations, we

are concerned with the continuation of local solutions of d-PI. Starting with some initial con-

ditions, say xm = µ and xm−1 = ν, equation (1.4) allows for a straightforward continuation,

both in the forward time direction n 7→ n+ 1, and in the backward time direction n 7→ n− 1,

unless at some time n0 we find xn0 = 0. Let us consider the forward time direction, with

xn0 = 0 and xn0−1 = ν0. Then equation (1.4) gives xn0+1 =∞, which is not at all problematic

as we can easily move to projective space. However when we calculate the further iterates,

we find xn0+2 = ∞, xn0+3 = 0 and finally xn0+4 = ∞−∞ =?, which is a singularity, in the

sense that the solution is undefined. Just as the Painlevé property forbids movable essential

singularities, the singularity confinement property entails that the singularity in the fourth

iterate is in fact an apparent one. Indeed, upon closer inspection, setting xn0 = ε, one finds

xn0+1 ∼
tn0

ε
, xn0+2 ∼ −

tn0

ε
, xn0+3 ∼ −

tn0+3

tn0

ε, xn0+4 ∼
tn0ν0 + 2d

tn0+3
, (ε→ 0)

and hence letting ε→ 0, gives a regular value for xn0+4, recovering the initial value xn0−1 = ν0.

By direct calculation xn0+5 is also well-defined and generically nonvanishing in the limit ε→ 0,

and we say that the singularity is confined.

Grammaticos, Ramani and their collaborators [21] used the singularity confinement prop-

erty with great success to derive many different discrete Painlevé equations. Particularly they

were the first to write down the q-difference equation, which is the main subject of this thesis,

given by

q-P (A1)


(fg − t2)(fg − qt2)

(fg − 1)(fg − 1)
=

(g − b1t)(g − b2t)(g − b3t)(g − b4t)
(g − b5)(g − b6)(g − b7)(g − b8)

,

(fg − qt2)(fg − q2t2)

(fg − 1)(fg − 1)
=

(f − b−1
1 qt)(f − b−1

2 qt)(f − b−1
3 qt)(f − b−1

4 qt)

(f − b−1
5 )(f − b−1

6 )(f − b−1
7 )(f − b−1

8 )
,
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where f = f(t) and g = g(t) are the dependent variables, t is the independent variable, we

denote f = f(qt) and g = g(qt), and b1, . . . , b8 ∈ C∗ are complex parameters satisfying the

single constraint

q =
b1b2b3b4
b5b6b7b8

. (1.5)

Grammaticos and Ramani [20] originally called this equation asymmetric q-PVI, as it was the

first q-difference equation whose symmetric form reduces to the sixth Painlevé equation in

the continuum limit.

By the end of the nineties there were many different discrete Painlevé equations, and there

was no method of classification known. To make things worse, the singularity confinement

turned out to be merely a necessary condition for integrability, Hietarinta and Viallet [35] first

constructed a now well known counterexample, i.e. a mapping which satisfies the singularity

confinement property but is not integrable.

The time was ripe for a new approach, and it was Sakai [77], who around the turn of

the century, inspired by Okamoto’s work [66] on the continuous counterparts in the seventies,

gave a new characterisation of discrete Painlevé equations and in particular gave a complete

classification of them. To give a rough idea of Sakai’s theory, note that the Painlevé property

implies that the solution space of PVI can be identified with the local solution space on

any simply connected open domain in P1 \ {0, 1,∞}, which one can choose as small as one

pleases. Taking this idea to its extreme, we let the domain shrink to a point, at which stage

PVI becomes an equation for germs of meromorphic functions at that point. Okamoto [66]

understood that, following such a procedure with PVI appropriately rewritten in system form,

the corresponding solution space becomes an algebraic surface, called the initial value space

or space of initial conditions. Given any two distinct times and a path between them, the

sixth Painlevé equation induces an isomorphism between the two corresponding initial value

spaces, via meromorphic continuation along such path.

Sakai [77] went in the opposite direction, he started with and classified initial value spaces,

and ended up with continuous and discrete Painlevé equations as isomorphisms of these

spaces. Within this context, the fundamental role played by symmetry groups, underlying

the Painlevé equations, becomes particularly visible. We also mention the book by Noumi [63]

in this regard, as it nicely illustrates the prominent role of symmetries in Painlevé equations.

The equation under consideration in this thesis has an initial value space of A
(1)
1 surface type

in Sakai’s classification, hence the name “q-P (A1) equation”.

1.3 Global Asymptotic Analysis

Many of the linear special functions were established because of their applications, partic-

ularly in physics. Even though the Painlevé equations were initially derived from purely

mathematical considerations, they have also found their way into many different areas of

mathematical physics. Examples include random matrix theory, quantum gravity, statistical

mechanics and conformal field theory. What essentially makes the Painlevé equations useful

as models, is that we have effective methods to study global asymptotic properties of its so-

lutions. To illustrate the latter point, let us get back to the Gauss hypergeometric functions,
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which are basically the local asymptotic series corresponding to the critical behaviours of

solutions of (1.2) near any of the critical points 0, 1 or ∞. Quite remarkably, it is possible to

write down explicit connection formulae which relate these critical behaviours near different

critical points. We call such connection formulae global asymptotic results and we remark

that they are generally much harder to establish than their local counterparts. For a long

time it was thought that such explicit global results could only be obtained for linear special

functions of hypergeometric type.

Fokas et al. [14] define the global asymptotic analysis or simply global analysis, of for

instance the sixth Painlevé equation, as the classification of all possible critical behaviours of

solutions near the critical points 0, 1 and∞, and solving the corresponding connection problem

between each of these critical points. More explicitly, the critical behaviours should typically

be parameterised by two integration constants near each critical point, and the connection

problem concerns relating these pairs of integration constants coming from different critical

points explicitly. Let us remark that the global analysis of the sixth Painlevé equation has

been completed [28]. Jimbo [42] dealt with the generic case and most of the special cases have

been dealt with by Guzzetti [24, 25, 26]. From this perspective the sixth Painlevé equation

can hence be considered “solved”. We refer to Fokas et al. [14] for an overview of the global

analysis of continuous Painlevé equations.

The history of the asymptotic analysis of Painlevé equations is vast and goes back a long

way, starting with Boutroux [6] more than a hundred years ago. On the other hand, very little

asymptotic investigations have been carried out for discrete Painlevé equations, and only one

on the global analysis of such equations. We mention two recent works which are the discovery

of the nonlinear Stokes phenomenon in d-PI by Joshi and Lustri [47], and in d-PII by Joshi

et al. [48]. Mano [61] was the first to study the global analysis of a discrete equation, more

precisely q-PVI or q-P (A3) in Sakai’s classification. Mano’s work can be considered a q-analog

of Jimbo’s [42] classical work on the sixth Painlevé equation. In particular he completes the

global analysis for q-PVI in the generic case, up to writing down the connection formulae in

explicit form. In this thesis we are concerned with the global analysis of the q-P (A1) equation,

and it is hence the second work of this kind. So far we have not explained what methods

allow us tackle the global analysis of Painlevé equations, this is where a third characterisation

of Painlevé equations comes into play.

1.4 The Isomonodromic Deformation Method

Initially Painlevé’s classification was incomplete, as the sixth Painlevé equation was over-

looked. Fuchs [15] derived the missing equation, from a very different viewpoint, which lies

at the foundation of the isomonodromic deformation method. Fuchs considered the generic

linear differential equation of second order, say in z, with four regular singular points z = 0,

z = 1, z = ∞ and z = ζ. He was interested in deformations of the coefficients in the equa-

tion, by varying the location of the fourth regular singular point z = ζ, which preserves the

associated monodromy. He observed that in such case, the deformation of the coefficients is

characterised by a second order nonlinear differential equation, the sixth Painlevé equation.

In particular Fuchs showed that there must exist an accompanying linear equation, involving
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differentiation with respect to ζ, which is consistent with the second order regular singular

equation. Such a pair of equations is called a Lax pair nowadays.

Using this Lax pair, one can construct a mapping, from the solution space of the sixth

Painlevé equation, to the monodromy space of Fuchsian equations with four regular singular

points. That is, the monodromy data are integrals of motion of the sixth Painlevé equation.

This mapping, often referred to as the monodromy mapping, is part of the celebrated Riemann-

Hilbert correspondence. Though this correspondence is a transcendental one, it is possible to

evaluate it in the limit where ζ approaches one of the critical points. That is, one can explicitly

relate the critical behaviour of solutions near a critical point, with corresponding monodromy

of the associated linear equation. It is this property, which allows for the connection problems

to be solved explicitly.

Let us remark that q-PVI was first derived by Jimbo and Sakai [43], analogously to PVI, by

considering the isomonodromic deformation of a Fuchsian q-difference system. It was Yamada

[85] who first derived a Lax pair associated with q-P (A1), which will the focus of intense study

in this thesis.

1.5 Outline of Thesis

We start our journey with a review of some of the fundamental aspects of discrete Painlevé

equations in Chapter 2, specialised to q-P (A1). We discuss the confinement of singularities

for solutions of this equation, and delve deeper into some of its algebro-geometric aspects

within Sakai’s theory. In particular we consider the initial value space of the equation, which

allows us to define what we actually mean with a q-P (A1) transcendent. In fact we consider

two viewpoints, that of solutions with discrete time, and that of meromorphic solutions on a

connected open domain. We set up the basic analytic theory necessary to discuss the global

asymptotic analysis of q-P (A1), and introduce its symmetric form, which, in the continuum

limit, reduces the Painlevé VI.

In Chapter 3 we concern ourselves with the asymptotic analysis of q-P (A1) transcen-

dents near the critical points t = 0 and t = ∞. We first follow the method of dominant

balance, which gives an autonomous sytem for the leading order behaviour. We identify

this autonomous system as a QRT mapping, which allows us to parameterise its solutions

completely. The generic two-parameter solution involves complex powers, and there are two

one-parameter families which involve logarithms. We show that, associated with the generic

solutions of the autonomous system, there exist full asymptotic expansions of solutions of the

q-P (A1) equation. These expansions are convergent and hence define true solutions of our

equation of interest. We tabulate all the different critical behaviours obtained, both for q-

P (A1) and its symmetric form. We then calculate the continuum limit of the different critical

behaviours on a formal level and show that they coincides with the known ones for the sixth

Painlevé equation.

We wish to relate the critical behaviours near t = 0 and t =∞, i.e. solve the connection

problem, using the isomonodromic deformation approach. For this we first discuss some

of the classical concepts involved, first worked out by Birkhoff [5] and his school, such as

Fuchsian q-difference equations and monodromy, in Chapter 4. We then interpret Yamada’s
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Lax pair within this framework, and work out in what sense monodromy is preserved under

the q-P (A1) deformation. This is a nontrivial task, as Yamada derived his Lax pair from

considerations different to isomonodromy. Having set up all the analytic aspects of the Lax

pair, we are ready to combine it with the tabulated critical behaviours.

The final part of the thesis, Chapter 5, is concerned with explicitly calculating the mon-

odromy of Yamada’s Lax pair associated with different critical behaviours around t = 0 and

t =∞, which is often called the direct monodromy problem. We find that in both asymptotic

limits t → 0 and t → ∞, the monodromy problem factorises into two copies of a simpler

one, which we call the model equation. The integration constants, parameterising the critical

behaviours, enter the two copies of the model equation naturally. The explicit solution of

the monodromy problem for the model equation, then yields an explicit parameterisation of

the monodromy of Yamada’s Lax pair in terms of integration constants characterising the

critical behaviour at t = 0, and a similar explicit parameterisation in terms of the integration

constants characterising the critical behaviour at t =∞. Finally we obtain explicit relations

between the critical behaviour at t = 0 and t =∞ of q-P (A1) transcendents.

1.6 Notations and Conventions

We use N to denote the natural numbers including 0, and we use P := P1 to denote the

Riemann sphere, as we will only be concerned with complex projective space of dimension

one. Recall that P is obtained by taking the quotient of C2 \ {(0, 0)}, with respect to the

equivalence relation

(x1, x2) ∼ (x′1, x
′
2) ⇐⇒ ∃λ∈C

[
(x1, x2) = (λx′1, λx

′
2)
]
,

and we denote the equivalence class corresponding to (x1, x2) by [x1, x2]. We identify C ⊆ P
via x ' [x, 1] for x ∈ C and denote ∞ := [1, 0] ∈ P. For any subset V ⊆ P, we write

V ∗ = V \ {0}.

Throughout this thesis we denote by q a complex number with 0 < |q| < 1. We write

qZ = {qn : n ∈ Z}, qZt0 = {qnt0 : n ∈ Z}, (t0 ∈ P)

and for any T0 ⊆ P,

qZT0 =
⋃
t0∈T0

qZt0.

We are concerned with the q-discrete Painlevé equation q-P (A1) (1.2), whose parameters we

compactly denote by b = (b1, . . . , b8), with corresponding parameter space

Bq = {b ∈ C∗8 : subject to (1.5)}.
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Sometimes we like q to vary with the parameters b, and we write

B = {b ∈ C∗8}, q(b) :=
b1b2b3b4
b5b6b7b8

.

Given some specific parameter values b∗ ∈ Bq, we write q-P (A1)(b∗), to refer to equation

(1.2) with b = b∗, if we wish to stipulate the particular parameter values.

The natural domain for a q-difference equation, which we appropriately call q-domain, is

a nonempty set T ⊆ P, invariant under multiplication by q, i.e. qT = T . We call T a discrete

q-domain, if for any choice of t0 ∈ T , we have T = qZt0, in which case it is custom to write

fs = f(ts) and gs = g(ts) where ts = qst0 for s ∈ Z. The opposite interpretation is to assume

T is a nonempty connected open subset of P, which we call a continuous q-domain. In this

case one is often interested in solutions (f(t), g(t)) which depend meromorphically on t. This

interpretation is particularly appropriate in view of the so called continuum limit of q-P (A1),

discussed in more detail in Section 2.5.1.

1.6.1 Asymptotic Notation

As asymptotics play an important role in this thesis, and their exist various different conven-

tions concerning asymptotic notation in the literature, let us fix ours once and for all. We

are only concerned with asymptotics of complex functions on subsets of the Riemann sphere.

Let D ⊆ P and t0 ∈ P be a limit point of D. Let f(t) and g(t) be complex functions which

contain D in their domain. We then say that f(t) is of order g(t) as t → t0 in D, if there

exists a c > 0 and a punctured open environment U of t0 in P, such that

|f(t)| ≤ c|g(t)|, (1.6)

holds for t ∈ U ∩D. We denote this symbolically using Landau big O notation [2, 57],

f(t) = O(g(t)), (t→ t0)

in D. Similarly we say that f(t) is of order less than g(t) as t → 0 in D, if for every c > 0,

there exists a punctured open environment U of t0 in P, such that (1.6) holds for t ∈ U ∩D.

We denote this symbolically using Landau small o notation,

f(t) = o(g(t)), (t→ t0)

in D. Sometimes we find it more natural to use Hardy’s notation [30],

f(t) 4 g(t) ⇐⇒ f(t) = O(g(t)), f(t) ≺ g(t) ⇐⇒ f(t) = o(g(t)).

Let us also compare this with Vinogradow’s asymptotic notation [84], which reads f(t)� g(t)

iff f(t) = O(g(t)).

We say that f(t) and g(t) have the same order of magnitude as t → t0 in D, if both

f(t) = O(g(t)) and g(t) = O(f(t)) as t→ t0 in D, which we denote by

f(t) � g(t), (t→ t0)
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in D. Finally we say that f(t) is asymptotic to g(t) as t→ t0 in D, if

lim
t→t0,t∈D

f(t)

g(t)
= 1,

which we denote symbolically by

f(t) ∼ g(t) (t→ t0),

in D. If the set D itself is a (punctured) open environment of t0, then we do not specify it

explicitly. As an example, if f(t) is given by a convergent power series expansion about t = 0,

f(t) =

∞∑
n=0

fnt
n,

then we write for instance

f(t)− f0 − f1t = O(t2), (t→ 0)

and equivalently

f(t) = f0 + f1t+O(t2). (t→ 0)





CHAPTER 2

Analytic and Algebro-Geometric

Aspects

As the Painlevé property is intrinsically related to meromorphic continuation of solutions, we

start this chapter by considering meromorphic continuation of local solutions of the q-P (A1)

equation on continuous q-domains. We then consider the singularity confinement property for

q-P (A1), which generalises this to continuation of solutions on discrete q-domains. In Section

2.2, we delve into the algebro-geometric side of the story, following Sakai’s method [77]. After

this, we are in position, to make precise the notion of solutions of q-P (A1), in Section 2.3.

We discuss two different interpretations, one of discrete solutions, and one of meromorphic

solutions. We then set up the global asymptotic analysis of the q-P (A1) equation, considering

both interpretations, in Section 2.4. We conclude this chapter with the so called symmetric

form of the q-P (A1) equation, and its continuum limit to PVI, in Section 2.5.

2.1 Meromorphic Continuation

Let us recall the following well-known fundamental result concerning the sixth Painlevé equa-

tion.

Theorem 2.1.1. Any local solution of PVI, i.e. meromorphic solution on a (simply) con-

nected open subset of P \ {0, 1,∞}, can be meromorphically continued to an unique solution

on the universal covering space of P \ {0, 1,∞}.

Proof. See for instance Hinkkanen and Laine [37] and Joshi and Kruskal [45].

In the above theorem, the Painlevé property manifests itself in the meromorphic contin-

uation of solutions. A naive q-analog for q-P (A1) would be the following lemma.

Lemma 2.1.2. Let b ∈ Bq, and f and g be meromorphic functions on a connected open set

T0 ⊆ C∗, such that T0 ∩ q−1T0 6= ∅ and (f, g) satisfies q-P (A1) on this intersection. Then

there exists an unique meromorphic continuation of this solution to the continuous q-domain

T = qZT0.

11
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Proof. The proof is elementary, we simply use the q-P (A1) equation to extend the domain

of f and g recursively, both in the forward time direction t 7→ qt, and the backward time

direction t 7→ q−1t. To make this explicit, let us rewrite q-P (A1) as

fg =
qt2(fg − t2)ṗ2(g)− qt4(fg − 1)ṗ1(g/t)

(fg − t2)ṗ2(g)− qt4(fg − 1)ṗ1(g/t)
, (2.1a)

fg =
q2t2(fg − qt2)p2(f)− q3t4(fg − 1)p1(f/(qt))

t2(fg − qt2)p2(f)− q3t4(fg − 1)p1(f/(qt))
, (2.1b)

where the polynomials p1(x), p2(x), ṗ1(x), ṗ2(x) are defined by

p1(x) = (1− b1x)(1− b2x)(1− b3x)(1− b4x), (2.2)

p2(x) = (1− b5x)(1− b6x)(1− b7x)(1− b8x), (2.3)

ṗ1(x) = (1− x/b1)(1− x/b2)(1− x/b3)(1− x/b4),

ṗ2(x) = (1− x/b5)(1− x/b6)(1− x/b7)(1− x/b8).

Next we would like to use the first equation (2.1a) to extend the domain of f to T0 ∪ qT0.

Note that the numerator of the right-hand side of (2.1a) is divisible by g, hence the only

obstacle would be for the denominator of the right-hand side of (2.1a) to be identically zero.

If this would be the case, then, using that f and g satisfy q-P (A1) on T0 ∩ q−1T0 and T0

is connected, it follows immediately that (f, g) = pi on T0 for some 1 ≤ i ≤ 8, where the

“singular” solutions p1, . . . , p8 are defined by

p1 = ( 1
b1
t, b1t), p2 = ( 1

b2
t, b2t), p3 = ( 1

b3
t, b3t), p4 = ( 1

b4
t, b4t), (2.4a)

p5 = ( 1
b5
, b5), p6 = ( 1

b6
, b6), p7 = ( 1

b7
, b7), p8 = ( 1

b8
, b8). (2.4b)

In any case, unique meromorphic continuation to T0∪qT0 is guaranteed. Similarly the second

equation (2.1b) can be used to extend the domain of g to T0 ∪ qT0. We proceed inductively

to extend the domain of f and g to qNT0. Obviously a similar approach in the backward time

direction allows us to consequently extend the domain of the solution to qZT0.

Let us emphasise that the connectedness of T0 in the above lemma is crucial. If we drop

this assumption, local meromorphic solutions might not have a meromorphic continuation to

the whole q-domain. This is why we demand that continuous q-domains are connected.

2.1.1 Singularity Confinement

The result of Lemma 2.1.2 holds for a large class of q-discrete equations, many of which

would not be considered integrable. Indeed, what makes the q-P (A1) equation special is

that, quite remarkably, unique continuation of solutions holds even on discrete q-domains.

That is to say, take any t0 ∈ C∗ with initial values (f0, g0) ∈ P × P, not equal to one of the

points p1 . . . p8 with t = t0 as defined in (2.4), then there exists a unique continuation of this

(albeit initially trivial) solution to qZt0. Note that it is a priori unclear what is meant with

continuation beyond points on qZt0 where the q-P (A1) equation becomes singular. This is

where singularity confinement comes into play.
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Generally speaking, a singularity of a discrete mapping is an apparent loss of information

where, for instance, a curve of initial values gets mapped to a point under the iteration.

The singularity is said to be confined, if this information is recovered after taking a sufficient

number of further iterates with the use of a certain continuity argument we discuss by example

below. A discrete mapping is said to have the singularity confinement property if all its

singularities are confined. Grammaticos, Ramani and collaborators, see the overview [21] and

references therein, have used this property with great success in deriving many interesting

integrable mappings and more specifically discrete Painlevé equations.

As an example, let us have a look at the case (f0, g0) = (f0, b5) with generic f0 ∈ P.

From (2.1) we obtain f1 = b−1
5 , and hence both g0 and f1 are independent of the initial value

f0. When trying to calculate g1, we find that the right-hand side of (2.1b) takes the form
0
0 , at which stage further iteration of the solution seems hopeless. Grammaticos et al [22]

saw a resolution to this obstacle. Let us perturb the initial conditions by introducing a small

parameter ε, setting (f0, g0) = (f0, b5 + ε). Calculating f1 and g1 again, we find

f1 = b−1
5 +O(ε), g1 = G1(f0, t; b) +O(ε),

as ε → 0, for some rational function G1(f0, t0; b), which is non-constant with respect to f0.

At this point the singularity is said to be confined, as not only letting ε → 0, we have a

sensible continuation by setting g1 = G1(f0, t0; b), but also the initial value f0 is recovered as

g1 depends on it.

We write the corresponding singularity pattern symbolically as

(f0, b5)
R7−→(b−1

5 , b5)
S7−→(b−1

5 , g1), (2.5)

where we think of R = R(t) as the mapping sending (f, g) to (f, g) and S = S(t) as the

mapping sending (f, g) to (f, g). The singularity patterns of the q-P (A1) equation can now

be written as

(f0, bj)
R7−→( 1

bj
, bj)

S7−→( 1
bj
, g1),

(f0, bit)
R7−→( qbi t, bit)

S7−→( qbi t, g1),

( 1
bj
, g0)

S7−→( 1
bj
, bj)

R7−→(f2, bj),

( qbi t, g0)
S7−→( qbi t, bit)

R7−→(f2, bit),

for i ∈ {1, 2, 3, 4} and j ∈ {5, 6, 7, 8}, where for instance the last one with i = 1 is obtained

by considering f1 = q
b1
t and generic g0 ∈ P. Also note that the singularity patterns in the

backward time direction t 7→ q−1t are obtained simply be reversing the arrows in the above

equations and replacing R and S by R−1 and S−1 respectively. In particular all singularities

are confined and hence the q-P (A1) equation satisfies the singularity confinement property.

We put these observations on a more rigorous mathematical ground by discussing the algebro-

geometric aspects of the q-P (A1) equation in Section 2.2.
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2.2 An Algebro-Geometric Interpretation

In this section we work out the initial value space of the q-P (A1) equation in Sakai’s frame-

work.

2.2.1 The q-P (A1) Mapping

Recall that any polynomial P (x, y) ∈ C[x, y] can be homogenised by defining

P h(x1, x2, y1, y2) = xdx2 y
dy
2 P (x1/x2, y1/y2), dx = degx(P ), dy = degy(P ),

and hence used to define a mapping P h : C2 × C2 → C which satisfies

P h((λxx1, λxx2), (λyy1, λyy2)) = λdxx λ
dy
y P

h((x1, x2), (y1, y2)),

for λx, λy ∈ C∗. We define the locus of P in P× P by

l(P ) = {(x, y) ∈ P× P : P h((x1, x2), (y1, y2)) = 0},

where we used shorthand notation x = [x1, x2] and y = [y1, y2]. Next given a rational function

R(x, y) ∈ C(x, y), let us write R(x, y) = P (x, y)/Q(x, y) where P and Q are polynomials

without common divisors. Assuming P and Q have the same degrees in x and y to make the

discussion easier, we define

R : P× P 99K P, (x, y) 7→ [P h((x1, x2), (y1, y2)), Qh((x1, x2), (y1, y2))],

which is well-defined on the complement of the indeterminacy locus of R in P×P, defined by

l(R) := l(P ) ∩ l(Q), i.e. the intersection of loci of P and Q.

To put the singularity confinement property in an algebro-geometric perspective, recall

that for t ∈ C∗, we denote by R = R(t) the rational mapping which sends (f, g) to (f, g). More

precisely R = (R1, R2), where R1 = R1(f, g) ∈ C(f, g), and R2 = R2(f, g) = g, with R1(f, g)

given by the right-hand side of (2.1a) divided by g. Note that we can also easily construct an

inverse of R by writing f in terms of f and g, using the first equation of q-P (A1). We write

R−1 = (R−1
1 , R−1

2 ) with R−1
1 = R−1

1 (f, g) ∈ C(f, g) and R−1
2 = R−1

2 (f, g) = g. The rational

mapping R is called birational as it has an inverse rational mapping. Similarly S = S(t) is the

birational mapping which sends (f, g) to (f, g). We now think of q-P (A1) as the birational

mapping given by the composition T (t) := S(t) ◦R(t).

Let us consider R1(t) as a mapping from P× P to P. An easy calculation shows that, for

generic t, its indeterminacy locus is given by

l(R1(t)) = {p1(t), . . . p4(t), p5, . . . p8}, (2.6)

where the pi are as defined in (2.4), and we identified C2 ⊆ P × P as usual. We restrict our

discussion to generic values of the parameters b and t ∈ C∗ here. The singularities pi of the

mapping R are often referred to as base points. At this point there is an invaluable tool from

algebraic geometry which allows us to resolve these base points, called the blowup. The idea
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is to replace the, in this case, algebraic manifold P × P for a larger one, by blowing up the

base points, and lifting the mapping R to it. Before we enter into the details the blowup,

note that the indeterminacy locus of S2 is given by

l(S2(t)) = {p′1(t), . . . p′4(t), p′5, . . . p
′
8}, (2.7)

where p′i(t) = ( qbi t, bit) for 1 ≤ i ≤ 4 and p′j = pj for 5 ≤ j ≤ 8.

2.2.2 The Blowup Procedure

As we are just interested in the resolution of base points in two-dimensional complex man-

ifolds, we only consider the blowup procedure of such spaces. We keep our discussion brief

and refer the interested reader to Duistermaat [13], where a lot of standard machinery from

algebraic geometry is explained in the context of discrete integrable systems. Let us start

with the simplest example of blowing up the origin in C2. Each point z ∈ C2, defines an

unique line through the origin and hence a point in projective space P, except when z = 0.

We define

B0C2 = {(z, l) ∈ C2 × P : z lies on l}
= {((x, y), [l1, l2]) ∈ C2 × P : xl2 = yl1},

and define the projection map π0 : B0C2 → C2 by forgetting the second coordinate. We refer

to B0C2 as the blowup of C2 at the origin and define the exceptional divisor by E0 = π−1
0 (0).

From a set-theoretical point of view all we did was replace the origin by a copy of P, however

B0C2 can in fact be made into a complex manifold such that the projection map becomes a

holomorphic mapping. We do this by defining an atlas consisting of two charts (U1, ϕ1) and

(U2, ϕ2), where

Ui = {(z, l) ∈ B0C2 : li 6= 0}, (i ∈ {1, 2})

with

ϕ1 : U1 → C2, ((x, y), [l1, l2]) 7→ (x, l2/l1),

ϕ2 : U2 → C2, ((x, y), [l1, l2]) 7→ (l1/l2, y).

We use the constructed atlas to induce a topology on B0C2 and turn it into a complex

manifold. It is easy to check that this is a valid construction as all the transition maps are

holomorphic and that the projection map becomes a holomorphic mapping. It is often useful

to work with the inverse charts, given by

x = x1, x = x2y2,

y = x1y1, y = y2,

l = [1, y1], l = [x2, 1],

where φ1((x, y), l) = (x1, y1) and φ2((x, y), l) = (x2, y2), for (x1, y1), (x2, y2) ∈ C2. Let us

denote two special points of the exceptional divisor E0 by 00 = (0, [0, 1]) and ∞0 = (0, [1, 0]),
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where the 0 subscripts emphasise that we blew up the origin. Then, in the first chart,

{x1 = 0, y1 ∈ C} parameterises E0 \ {00}. Similarly, in the second chart, {y2 = 0, x2 ∈ C}
parameterises E0 \ {∞0}.

Given an arbitrary two-dimensional complex manifold M and a point p ∈M , we can now

easily construct the blowup of M at p, by working locally in a chart containing p. Firstly we

construct at chart ϕ : U → D, where p ∈ U ⊆ M and D ⊆ C2 open, such that ϕ(p) = 0.

Next we define the blowup of D at the origin simply as B0D = π−1
0 (D) and the corresponding

projection πD : B0D → D by restriction. Lastly we glue M∗ := M \ {p} and B0D together

by identifying U \ {p} and B0D \ E0 via π−1 ◦ ϕ, giving the complex manifold BpM with

an associated projection mapping π : BpM → M defined in the obvious way and we call

E = π−1(p) the exceptional divisor. We leave it to interested reader to work out the analytic

details and in particular prove that the obtained blowup is independent of the choice of chart

ϕ up to projection preserving isomorphism. Note that the projection π is an isomorphism

onto M∗, when restricted to BpM \ E, and we therefore identify M∗ ⊆ BpM .

To end our discussion, we would like to note that, as the blowup procedure is a local

operation, given distinct points p, q ∈ M , the order in which we blow up M at p and q is

irrelevant. That is, let BpBqM be obtained by first blowing up M at q with corresponding

projection πq and subsequently at p with corresponding projection πpq and let π = πpq ◦πq be

the composed projection on M , which we refer to as total projection from here on. Similarly

let BqBpM be obtained by blowing up at p and q in opposite order with corresponding

total projection π′ on M . Then there exists an isomorphism Ψ from BpBqM to BqBpM

such that π = π′ ◦ Ψ. Hence, given a two-dimensional complex manifold M and distinct

points p1, . . . , pn on it, we can now safely speak about the manifold and corresponding total

projection π obtained by blowing up M at p1, . . . , pn, with associated exceptional divisors

Ei = π−1(pi) for 1 ≤ i ≤ n.

2.2.3 The Initial Value Space

We are now in the position to resolve the base points of the birational mappings R(t) and S(t)

and hence of the q-P (A1) mapping. Let us, for t ∈ C∗, define X(t) as the complex manifold

obtained by blowing up P × P at the eight base points in the indeterminacy locus (2.6) of

R1(t). We denote the corresponding total projection by πX = πX(t) and exceptional divisors

by Ei = π−1
X (pi) for 1 ≤ i ≤ 8. Similarly let Y (t) be the complex manifold obtained by blowing

up P×P at the eight base points in the indeterminacy locus (2.7) of S1(t), with corresponding

total projection by πY = πY (t) and exceptional divisors E′i = π−1
Y (p′i) for 1 ≤ i ≤ 8.

Using machinery from birational geometry, we can lift the birational mapping R(t) to an

isomorphism R̂(t) from X(t) to Y (t), and the birational mapping S(t) to an isomorphism

Ŝ(t) from Y (t) to X(qt), such that the diagram 2.1 commutes [77]. We do not set up this

machinery here but instead discuss these lifts more heuristically in particular charts of the

domains and co-domains involved.

But before discussing R̂(t) and Ŝ(t) in more detail, note that correspondingly the q-P (A1)

mapping is lifted to the isomorphism T̂ (t) := Ŝ(t) ◦ R̂(t) from X(t) to X(qt) for t ∈ C∗. In

particular the complex manifold X(t) can be considered the initial value space of our equation

in consideration, and following Sakai [77], this manifold is called an A
(1 )
1 -surface, hence the
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X(t) Y (t) X(qt)

P× P P× P P× P

πX(t)

R̂(t) Ŝ(t)

πY (t) πX(qt)

R(t) S(t)

Figure 2.1: Commuting Diagram

name “q-P (A1) equation”. We study this surface in more detail in Section 2.2.4.

Recall that the birational mapping R1(t) is not well-defined at (f, g) = (b−1
5 , b5). In X(t)

this point has been blown up to the exceptional divisor E5. Let us consider the following two

inverse charts, which cover E5 in X(t),

f − b−1
5 = f51, f − b−1

5 = f52g52,

g − b5 = f51g51, g − b5 = g52,

l5 = [1, g51], l5 = [f52, 1],

both defined for (f51, g51) and (f52, g52) in an open neighbourhood of (0, 0) containing {0} ×
C and C × {0} respectively. Writing U1 and U2 for the open subsets of X(t) they cover

respectively, we find that U1∩E5 is parameterised by {f51 = 0} and U2∩E5 is parameterised

by {g52 = 0}. We use 05 and ∞5 to denote the elements of the singletons E5 \U1 = {05} and

E5 \ U2 = {∞5}.
So let us explore what the mapping R̂(t) looks like on U1. We use the coordinates f51 and

g51 to express R2 = f51g51 + b5 and, using (2.1a),

gR1 =
qt2(fg − t2)f51g51(g − b6)(g − b7)(g − b8)− f51(f51g51 + b−1

5 g51 + b5)b1b2b3b4t
4ṗ1(g/t)

(fg − t2)f51g51(g − b6)(g − b7)(g − b8)− f51(f51g51 + b−1
5 g51 + b5)b1b2b3b4t4ṗ1(g/t)

=
qt2(fg − t2)g51(g − b6)(g − b7)(g − b8)− (f51g51 + b−1

5 g51 + b5)b1-4t
4ṗ1(g/t)

(fg − t2)g51(g − b6)(g − b7)(g − b8)− (f51g51 + b−1
5 g51 + b5)b1-4t4ṗ1(g/t)

, (2.8)

where we temporarily use the notation b1-4 = b1b2b3b4, the second equality follows from

dividing out the common factor f51 in numerator and denominator, and only the relevant

factors (g − b5) and (fg − 1) have been rewritten in terms of f51 and g51. Note that the

indeterminacy at p5 has been resolved, indeed, because of the cancellation of the factor f51,

the numerator and denominator do not have common zeros in a neighbourhood of E5 ∩U1 in

U1. Specialising to the exceptional divisor by setting f51 = 0, we find

b5R1 =
qt2(1− t2)g51(b5 − b6)(b5 − b7)(b5 − b8)− (b−1

5 g51 + b5)b1b2b3b4t
4ṗ1(b5/t)

(1− t2)g51(b5 − b6)(b5 − b7)(b5 − b8)− (b−1
5 g51 + b5)b1b2b3b4t4ṗ1(b5/t)

,

in particular the only point on E5∩U1 which gets send on the exceptional divisor E′5 in Y (t),

i.e. such that R1 = b−1
5 , is parameterised by (f51, g51) = (0, 0), which is the point ∞5. In

fact, considering (2.8), we find that all the elements of U1 which get send on the exceptional



18 CHAPTER 2. ANALYTIC AND ALGEBRO-GEOMETRIC ASPECTS

divisor E′5 in Y (t), are parameterised exactly by g51 = 0, as the right-hand side of (2.8) equals

1 iff g51 = 0, in U1. To understand where such elements get mapped to in E′5, we have to

work in inverse charts on Y (t) which cover E′5. We choose charts

f − b−1
5 = f

′
51, f − b−1

5 = f
′
52g
′
52,

g − b5 = f
′
51g
′
51, g − b5 = g′52,

l′5 = [1, g′51], l′5 = [f
′
52, 1],

covering open subsets U ′1 and U ′2 of Y (t) respectively and we denote E′5 \ U ′1 = {0′5} and

E′5 \ U ′2 = {∞′5} as before. To explore R̂ in the first chart, we set

R1 = f
′
51 + b−1

5 , R2 = f
′
51g
′
51 + b5,

which gives

f
′
51 =

(qt2 − 1)(fg − t2)g51(g − b6)(g − b7)(g − b8)

(fg − t2)g51(g − b6)(g − b7)(g − b8)− (f51g51 + b−1
5 g51 + b5)b1b2b3b4t4ṗ1(g/t)

,

g′51 = b5f51
(fg − t2)g51(g − b6)(g − b7)(g − b8)− (f51g51 + b−1

5 g51 + b5)b1b2b3b4t
4ṗ1(g/t)

(qt2 − 1)(fg − t2)(g − b6)(g − b7)(g − b8)
.

Note that f
′
51 = 0 parameterises E′5 ∩ U1, hence it is clear that g51 = 0 parameterises the

points in U1 send to E′5 by R̂. Specialising to g51 = 0 we find f
′
51 = 0 and

g′51 = −b25f51
(b5 − b1t)(b5 − b2t)(b5 − b3t)(b5 − b4t)

(qt2 − 1)(b5f51 + 1− t2)(b5 − b6)(b5 − b7)(b5 − b8)
.

In particular setting f51 = 0 we find g′51 = 0, that is, the point∞5 ∈ X(t) is send to∞′5 ∈ Y (t)

by R̂(t). Similarly we find Ŝ(t)(∞′5) = ∞5 ∈ X(qt), hence T (t)(∞5) = ∞′5 and it is easy to

see that

E5 ∩ T (t)−1(E5) = {∞5}.

To put things in perspective, by exploring the mapping R(t) in different charts of X(t) and

Y (t), we find a canonical way to lift it to a mapping R̂(t) from X(t) and Y (t), as we did

above for two specific charts around E5 and E′5.

2.2.4 Sakai’s Theory

In this section we delve ourselves more deeply into the geometric aspects of the q-P (A1)

mapping, following Sakai [77] closely. While most of the thesis is self-contained, we use

the algebro-geometric machinery, which can be found in Sakai’s exposition [77] on discrete

Painlevé equations, without setting it up ourselves here. Let us also mention Kajiwara et al.

[52] for an overview of the subject. We note that Hay et al. [32] work out Sakai’s method

explicitly for q-P (A1) as well.
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The Induced Picard Group Isomorphism

Recalling that the manifold X(t) was obtained by blowing up P× P at the eight base points

p1(t), . . . , p4(t), p5, . . . , p8, the corresponding Picard group takes the form

Pic(X(t)) = Zhf + Zhg + Ze1 + . . .+ Ze8,

where ei corresponds to the linear equivalence class of the exceptional divisor Ei, for 1 ≤ i ≤ 8,

and hf and hg stand for the linear equivalence classes of π−1
X (Lf ) and π−1

X (Lg) respectively

with Lf and Lg any lines f ≡ constant and g ≡ constant in P×P respectively not containing

base points. We define the symmetric bilinear intersection form · on the Picard group by

setting the “intersection numbers” of the generators equal to

hf · hf = 0, hg · hg = 0, hf · hg = 1, (2.9)

hf · ei = 0, hg · ei = 0, ei · ei = −1, ei · ej = 0,

for 1 ≤ i, j ≤ 8 with i 6= j. Equations (2.9) remind us of the fact that for instance (different)

lines with f ≡ constant do not intersect, but any line with f ≡ constant intersects exactly

ones with a line given by g ≡ constant . Similarly the Picard groups of Y (t) and X(qt),

equipped with intersection forms, are given by

Pic(Y (t)) = Zh′
f

+ Zh′g + Ze′1 + . . .+ Ze′8,

Pic(X(qt)) = Zhf + Zhg + Ze1 + . . .+ Ze8.

Now the isomorphism R̂(t) induces an intersection preserving isomorphism φR between the

Picard groups of X(t) and Y (t), i.e. satisfying

φR(c1) · φR(c2) = c1 · c2,

for c1, c2 ∈ Pic(X(t)).

It is fairly straightforward to calculate φR explicitly. First of all, as R leaves the g-coordinate

invariant, i.e. R2(f, g) = g, we immediately obtain φR(hg) = h′g. Next let us consider the

line Lg in P × P given by g ≡ b5. The lift of L5 is parameterised by g51 = 0 in X(t) and

the corresponding equivalence class in the Picard group is given by hg − e5. Now recall R̂(t)

sends {g51 = 0} to {f51 = 0} in Y (t), and we infer φR(hg − e5) = e′5. Using the linearity of

φR we find φR(e5) = h′g − e′5. The other exceptional divisors are handled essentially the same

and we find

φR(hg) = h′g, φR(ei) = h′g − e′i. (1 ≤ i ≤ 8)

To calculate φR(hf ), let us write

φR(hf ) = uhf + vh′g + w1e
′
1 + . . .+ w8e

′
8.

As φR is intersection preserving, we have

u = φR(hf ) · h′g = φR(hf ) · φR(hg) = hf · hg = 1,
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and, for 1 ≤ i ≤ 8,

wi = φR(hf ) · (−e′i) = φR(hf ) · φR(ei − hg) = hf · (ei − hg) = −1.

Furthermore

0 = hf · hf = φR(hf ) · φR(hf ) = 2v − 8,

giving v = 4 and hence

φR(hf ) = hf + 4h′g − (e′1 + . . .+ e′8).

In summary φR acts on the Picard group Pic(X(t)) by

φR : hf 7→ h′f + 4h′g − (e′1 + . . . e′8),

hg 7→ h′g,

ei 7→ h′g − e′i. (1 ≤ i ≤ 8)

Completely analogous we find that φS acts on Pic(Y (t)) by

φS : h′f 7→ hf ,

h′g 7→ 4hf + hg − (e1 + . . . e8),

e′i 7→ hf − ei, (1 ≤ i ≤ 8)

and hence φT = φS ◦ φR acts on the Picard group of X(t) by

φT : hf 7→ 9hf + 4hg − 3(e1 + . . . e8),

hg 7→ 4hf + hg − (e1 + . . . e8),

ei 7→ 3hf + hg + ei − (e1 + . . . e8). (1 ≤ i ≤ 8)

Irreducible Divisors and the A
(1)
1 -Surface

Consider the bidegree (1, 1) curves δ1 and δ2 in P×P, given by fg = t2 and fg = 1 respectively,

in affine coordinates. So δ1 meets each of the base points p1, p2, p3, p4 once, and δ2 meets each

of the base points p5, p6, p7, p8 once. We let D1 and D2 be the corresponding total transforms

in X(t) of these curves respectively. The associated classes in the Picard group of X(t), are

given respectively by

d1 = hf + hg − (e1 + e2 + e3 + e4), d2 = hf + hg − (e5 + e6 + e7 + e8).

To ease the notation a bit, we use, for instance, d1 to denote the total transform of D1 in

X(t), for any t ∈ C∗. Similarly we no longer distinguish between hf and hf notation wise.

Now D1 and D2 have self-intersection −2 and they are the irreducible divisors of X. The

anti-canonical divisor of X is given by

δ = −KX = 2hf + 2hg − (e1 + . . .+ e8),
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d1 d2

(a) A
(1)
1

α4α3α2α1 α5 α6 α7

α8

(b) E
(1)
7

Figure 2.2: Dynkin Diagrams

and we have the unique decomposition δ = d1 + d2 [31]. A small calculation shows

φT (d1) = d1, φT (d2) = d2, (2.10)

and we consider the root lattice Q = Zd1 + Zd2 with intersection form inherited from the

Picard group. Note that d1 ·d2 = 2 and we readily identify the intersection matrix of {d1, d2}
as the generalized Cartan matrix of A

(1)
1 type multiplied by −1, that is(

d1 · d1 d1 · d2

d2 · d1 d2 · d2

)
=

(
−2 2

2 −2

)
= −

(
2 −2

−2 2

)
.

The corresponding Dynkin diagram is the graph 2.2a, with nodes d1 and d2 connected by two

edges as d1 · d2 = 2.

The Weyl Group Action

Rational surfaces are intrinsically related to affine Weyl groups, see for instance Looijenga

[60]. In this Section we work out the affine Weyl group action corresponding to the A
(1)
1

surface. We refer the interested reader to Kac [51], for an overview of the theory of affine

Weyl groups. The orthogonal complement of Zd1 + Zd2 in Pic(X),

δ⊥ := {α ∈ Pic(Xb) | α · d1 = 0, α · d2 = 0},

admits a Z-basis {α1 . . . α8}, where

α1 = e2 − e1, α2 = e3 − e2, α3 =e4 − e3, α4 =hg − e4 − e5,

α5 = e5 − e6, α6 = e6 − e7, α7 =e7 − e8, α8 =hf − hg.

Observe that δ ∈ δ⊥ and we have

δ = α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 + 2α8.

The basis elements α1, . . . , α8 all have self-intersection −2. Furthermore we have the associ-

ated Dynkin Diagram 2.2b, of E
(1)
7 type, with nodes the basis elements, such that different

basis elements are connected by n edges, iff their intersection product equals n, for n ∈ N.

We define reflections by

wi : Pic(X)→ Pic(X), α 7→ α− 2
α · αi
αi · αi

αi.
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for 1 ≤ i ≤ 8, and the Dynkin automorphism π on Pic(X) by

π(hf ) = hg, π(hg) = hf , π(ei) = e9−i. (1 ≤ i ≤ 8)

By W = W (E
(1)
7 ) we denote the affine Weyl group, which is the group generated by the

reflections w1, . . . , w8. Similarly the extended affine Weyl group W̃ = W̃ (E
(1)
7 ) is the group

generated by the reflections w1, . . . , w8 and the Dynkin automorphism π. By definition we

have an action of W̃ on Pic(X), which of course leaves δ⊥ invariant. The action of the

generators of W̃ on the basis elements of δ⊥ is given in Table 2.1, where blank entries represent

invariance. Let us note the following fundamental relations

w2
i = π2 = 1, πwi = w8−iπ,

(wiwj)
3 = 1, (|i− j| = 1) wiwj = wjwi, (|i− j| 6= 1)

for i, j ∈ {1, . . . , 7}, and

w2
8 = 1, πw8 = w8π,

(w4w8)3 = (w8w4)3 = 1, w8wj = wjw8. (j 6= 4)

w1 w2 w3 w4 w5 w6 w7 w8 π

α1 −α1 α1 + α2 α7

α2 α1 + α2 −α2 α2 + α3 α6

α3 α2 + α3 −α3 α3 + α4 α5

α4 α3 + α4 −α4 α4 + α5 α4 + α8

α5 α4 + α5 −α5 α5 + α6 α3

α6 α5 + α6 −α6 α6 + α7 α2

α7 α6 + α7 −α7 α1

α8 α4 + α8 −α8

Table 2.1: Extended Weyl group action on δ⊥

It is easy to check that the time evolution φT acts on the root lattice E
(1)
7 as

φT : αi 7→ αi, (i 6= 4, 8)

α4 7→ α4 − δ,
α8 7→ α8 + 2δ,

and hence defines a translation in the root lattice by integer multiples of δ. In particular, the

equation under consideration is indeed a Painlevé equation as defined in Sakai [77]. Finally

we can explicitly write φT as

φT =s4 ◦ s3 ◦ s2 ◦ s5 ◦ s4 ◦ s3 ◦ s6 ◦ s5 ◦ s4 ◦ s7 ◦ s6 ◦ s5 ◦ s8 ◦ s4 ◦ s3 ◦ s2 ◦ s1◦
s2 ◦ s3 ◦ s4 ◦ s5 ◦ s8 ◦ s4 ◦ s3 ◦ s2 ◦ s6 ◦ s5 ◦ s4 ◦ s3 ◦ s7 ◦ s6 ◦ s5 ◦ s4 ◦ s8.
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Bäcklund Transformations

The q-P (A1) equation has various Bäcklund transformations, which relate solutions of the

equation for possibly different parameter values. The full affine Weyl group of E
(1)
7 type acts

on q-P (A1), however we only use four Bäcklund transformations in this study, given by

Tk (f, g,b) =
(
f (k), g(k),b(k)

)
, (2.11)

for k ∈ {1, 2, 3, 4}, where

f (1)(t) =
t

f(t)
, f (2)(t) = tg

(
1

t

)
, f (3)(t) = g

(
q−

1
2 t

)
, f (4)(t) =

1

g(1
t )
,

g(1)(t) =
t

g(t)
, g(2)(t) = tf

(
1

t

)
, g(3)(t) = f

(
q

1
2 t
)
, g(4)(t) =

1

f(1
t )
,

with for 1 ≤ i ≤ 4 and 5 ≤ j ≤ 8,

b
(1)
i = b−1

i+4, b
(2)
i = b−1

i+4, b
(3)
i = q

1
2 b−1
i , b

(4)
i = bi,

b
(1)
j = b−1

j−4, b
(2)
j = b−1

j−4, b
(3)
j = b−1

j , b
(4)
j = bj .

Note that each of these transformations Tk leaves q(b) invariant and indeed maps solutions of

q-P (A1)(b) to solutions of q-P (A1)(b(k)) for k ∈ {1, 2, 3, 4}. We remark that these transfor-

mations are not independent, for instance T1T2 = T2T1 = T4, and that T2 ,T3 and T4 change

the independent variable.

2.2.5 Singularity Confinement Revised

We have seen that the time evolution T can be lifted to an isomorphism T̂ between the

initial value space X at consecutive times, such that the diagram 2.1 commutes. Singularity

confinement is now a consequence of the analyticity of T̂ . Indeed looking back at the example

in Section 2.1.1, we have, for f0 6= b−1
5 ,

T̂ [(f0, b5)] = T̂
[
lim
ε→0

(f0, b5 + ε)
]

= lim
ε→0
T̂ [(f0, b5 + ε)]

= lim
ε→0
T [(f0, b5 + ε)] ,

where the last equality follows from the fact that the diagram 2.1 commutes, and for ε 6= 0

small enough, (f0, b5 + ε) does not equal any base point. Analogously to the singularity

pattern (2.5), we have, on the level of Picard groups,

hg − e5
φR7−→ e′5

φS7−→ hf − e5.
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2.3 Notion of Solutions

For differential equations, the notion of a solution is well defined. However there are two

interpretations for difference equations. We describe them here for q-P (A1).

2.3.1 Discrete Solutions

Firstly there are solutions on discrete q-domains. We call solutions on such domains discrete

solutions, or solutions with discrete time. To be precise, following Section 2.2.3, after fixing a

t0 ∈ C∗, we call a sequence (fs, gs)s∈Z, where (fs, gs) ∈ X(qst0) for s ∈ Z, a discrete solution

of q-P (A1), if and only if

T̂ (fs, gs) = (fs+1, gs+1). (s ∈ Z)

We say that the domain of the solution is qZt0. We define the discrete solution space of

q-P (A1) on qZt0 by

Sd(t0) = Sd(qZt0) := {discrete solutions of q-P (A1) with domain qZt0}.

As a trivial remark, since T̂ is an isomorphism, this space can easily be identified with the

initial value space X(t0).

Now we can project a discrete solution pointwise to get back to, say the classical notion

of a solution in P× P, i.e. we define

πX(fs, gs)s∈Z = (f cs , g
c
s)s∈Z, (f cs , g

c
s) = πX(ts)(fs, gs). (s ∈ Z)

We project the entire discrete solution space Sd(t0) to obtain the classical discrete solution

space

Sc(t0) := πX [Sd(t0)] .

Note that πX now defines a bijection between Sd(t0) and Sc(t0) and we often treat the two

notions of discrete solutions as the same thing under this bijection. In Section 2.2.3 we

calculated that T̂ (∞5) = ∞5, and hence (fs, gs) = ∞5, for all s ∈ Z, defines a discrete

solution. Its projection is of course given by (f cs , g
c
s) = p5 for all s ∈ Z. In fact, for each of the

eight base points, there exists exactly one discrete solution never leaving the corresponding

exceptional line, or equivalently one classical discrete solution everywhere equal to it. We call

these solutions base solutions. Let us mention the following result.

Proposition 2.3.1. For generic parameter values, any discrete solution of q-P (A1), whose

value, at two consecutive times, lies on the same exceptional line, is a base solution.

Proof. In Section 2.2.3, we saw that the only element of the exceptional line E5, whose image

under the time evolution T̂ remains in E5, is the element ∞5 ∈ X. Hence, if a discrete

solution takes a value on the exceptional line E5 for two consecutive times, it must equal the

base solution which equals ∞5 everywhere. The other cases are dealt with similarly.
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Singular and Regular Solutions

Remember that the irreducible divisors D1 and D2 are invariant under the time evolution, by

equations (2.10). Indeed, explicitly, if (f, g) ∈ C2 ⊆ P×P, not equal to a base point, satisfies

fg = t2, then fg = 1 and fg = q2t2. Hence, if we take any t0 ∈ C∗ and g0 ∈ C∗, then

gs = qs(s+1)t2s0 g0, fs = q2st20/gs, (s ∈ Z)

defines a solution to the equations {
fg = 1,

fg = q2t2,
(2.12)

and a discrete solution to the q-P (A1) equation. Similarly, corresponding to the exceptional

divisor D2, we take any t0 ∈ C∗ and f0 ∈ C∗, and set

fs = qs
2
t2s0 f0, gs = 1/fs, (s ∈ Z) (2.13)

which defines a solution to the equations{
fg = qt2,

fg = 1,
(2.14)

and a discrete solution to the q-P (A1) equation. We call these solutions singular. For all intent

and purposes, they do not form intrinsically interesting solutions of the q-P (A1) equation.

We often disregard them as they cause problems in the analytic analysis, especially when we

consider the analytic aspects of Yamada’s Lax pair in Chapter 4. Indeed Yamada’s Lax pair

(2.21) is singular on D1 and D2. We will therefore denote, by

S∗d(t0) ∼= S∗c (t0),

the space of discrete solutions living on qZt0 excluding base solutions and singular solutions.

We call its elements regular solutions. Let us write

δ̃1 = {(f, g) ∈ C2 : fg = t2} \ {p1, p2, p3, p4}, (2.15a)

δ̃2 = {(f, g) ∈ C2 : fg = 1} \ {p5, p6, p7, p8}. (2.15b)

Note that a regular solution can hit a base point, but it can never hit the same base point

twice consecutively, by Proposition 2.3.1. On the contrary, if we know that a solution takes

a value in δ̃1 or δ̃2 at some time, then it is a singular solution. So regular solutions never hit

the sets δ̃1 and δ̃2. Or described differently, Kajiwara et al. [52] call these sets “inaccessible”.

2.3.2 Meromorphic Solutions

The interpretation of meromorphic solutions turns a difference equation into a functional

equation. Halburg and Korhonen [29] show that the existence of meromorphic solutions
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defined on the entire complex plane is closely related to the integrability of d-difference equa-

tions. Barnett et al. [3] carry out a similar study for q-difference equations. Let us also

mentions the work by Zheng and Chen [86] and Qi and Yang [73] on q-difference equations

in this regard.

We are interested in a weaker notion of meromorphic solutions, namely those defined on

continuous q-domains. To be precise, fix a continuous q-domain T ⊆ C∗, then we call functions

f(t) and g(t), or (f(t), g(t)), a meromorphic solution of q-P (A1), if they are meromorphic,

not identically zero, and satisfy,

(gf − t2)(gf − qt2)(g − b5)(g − b6)(g − b7)(g − b8) =
(gf − 1)(gf − 1)(g − b1t)(g − b2t)(g − b3t)(g − b4t), (2.16a)

(gf − qt2)(gf − q2t2)(f − b−1
5 )(f − b−1

6 )(f − b−1
7 )(f − b−1

8 ) =
(gf − 1)(gf − 1)(f − b−1

1 qt)(f − b−1
2 qt)(f − b−1

3 qt)(f − b−1
4 qt), (2.16b)

on T , which is just q-P (A1) rewritten slightly, where f = f(t), f = f(qt) and so on as usual.

We define the meromorphic solution space on T by

Sm(T ) = {meromorphic solutions of q-P (A1) with domain T}.

Note that for any t0 ∈ T , we have a mapping π(t0) from Sm(T ) to Sc(t0), defined by restricting

the domain. We say that (f, g) ∈ Sm(T ) covers

π(t0) [(f, g)] := (f(qst0), g(qst0))s∈Z.

This mapping allows us to immediately translate results obtained on the meromorphic level,

to results on the discrete level. Which begs the question whether the meromorphic solutions

cover all the discrete solutions.

Question 2.3.2. Does there exist, for every t0 ∈ C∗, a continuous q-domain T ⊆ C∗, such

that t0 ∈ T and π(t0) is surjective?

As in the discrete case, we call a meromorphic solution a base solution, if it equals one of the

base points (2.4) identically. Quite interestingly, the only meromorphic solutions which cover

discrete base solutions, are the meromorphic base solutions. Indeed we have the following

result, closely related to Proposition 2.3.1, which, although easily proven, appears to be new.

Proposition 2.3.3. Assume b1, b2, b3, b4 are mutually unequal and b5, b6, b7, b8 are mutually

unequal. Let (f, g) be a meromorphic solution of q-P (A1), with continuous q-domain T ⊆ C∗.
If there is a t0 ∈ T , with t20 6= 1, q−1, q−2, such that, for some i ∈ {1, 2, 3, 4},

(f(t0), g(t0)) = (t0/bi, bit0), (f(qt0), g(qt0)) = (qt0/bi, qbit0),

then (f(t), g(t)) ≡ (t/bi, bit) on T , i.e. the solution is a base solution.

Similarly, if for some j ∈ {5, 6, 7, 8},

(f(t0), g(t0)) = (1/bj , bj), (f(qt0), g(qt0)) = (1/bj , bj),

then (f(t), g(t)) ≡ (1/bj , bj) on T , i.e. the solution is a base solution.
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Proof. This can be proven using just a power series method. Let t0 ∈ T , and let us discuss

the case j = 5, remarking that the other ones can be dealt with analogously. So we assume

(f(t0), g(t0)) = (1/b5, b5), (f(qt0), g(qt0)) = (1/b5, b5).

As f(t) and g(t) are meromorphic at t = t0 and t = qt0, we have converging power series

expansions

f(t) = 1/b5 + f1(t− t0) + f2(t− t0)2 + . . . ,

f(qt) = 1/b5 + f1(t− t0) + f2(t− t0)2 + . . . ,

g(t) = b5 + g1(t− t0) + g2(t− t0)2 + . . . ,

g(qt) = b5 + g1(t− t0) + g2(t− t0)2 + . . . ,

about t = t0. We substitute these expansions into (2.1), and compare coefficients of powers

of (t− t0). The constant terms cancel out, and when we compare the terms of order one, we

find

(1− t20)(1− qt20)(b5 − b6)(b5 − b7)(b5 − b8)g1 = 0,

(1− qt20)(1− q2t20)(b−1
5 − b

−1
6 )(b−1

5 − b
−1
7 )(b−1

5 − b
−1
8 )f1 = 0.

Therefore g1 = 0 and f1 = 0. Comparing the terms of order two, we find exactly the same

two equations, with g1 and f1 replaced by g2 and f2 respectively. By induction, we easily

work out that gn = 0 and fn = 0 for all n ≥ 1. Therefore g(t) ≡ b5 and f(qt) ≡ 1/b5 on T .

The theorem follows.

Singular, Regular and Nowhere Singular Solutions

As in the discrete case, we call a meromorphic solution of q-P (A1) singular, if it satisfies

either (2.12) or (2.14). Explicitly, the meromorphic solutions of (2.12) are given by

f(t) = c(t)θq(t)
2, g(t) = c(t)−1t2θq(t)

−2,

where c(t) is any q-periodic and meromorphic function, and θq(t) is a q-special function which

we introduce properly in Section 4.1, defined by equation (4.7), see also [18]. For now, all we

require to know is that θq(t) is holomorphic on C∗ and satisfies θq(qt) = t−1θq(t). Similarly

the meromorphic solutions of (2.14), are given by

f(t) = c(t)tθq(t)
−2, g(t) = c(t)−1t−1θq(t)

2,

where again c(t) any meromorphic q-periodic function. These singular solutions often form

problems in our analysis and we therefore mostly exclude them. By S∗m(T ) we denote the

space of meromorphic solutions on T which are neither base solutions nor singular solutions.

We call its elements regular solutions. Unfortunately, in contrast to base solutions, it is

possible for a regular meromorphic solution to cover a discrete singular solution. We call

a regular meromorphic solution nowhere singular, if it does not cover any discrete singular
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solutions. To be explicit, a regular meromorphic solution (f, g), is nowhere singular, if for

any t0 ∈ C∗ in its domain, (f(qst0), g(qst0))s∈Z is not a singular discrete solution. We write

S∗∗m (T ) = {(f, g) ∈ S∗m(T ) : (f, g) is nowhere singular}, (2.17)

for the space of nowhere singular meromorphic solutions on T . Let us emphasise that it is

very well possible for a (nowhere singular) regular meromorphic solution, to hit a base point

at some time t = t0 ∈ T . However, by Proposition 2.3.3, it cannot hit the same base point

at time t = qt0 as well. On the contrary, if a regular meromorphic solution (f, g), assumes a

value in δ̃1 or δ̃2, at some time t = t0, then it never escapes D1 or D2 respectively on qZt0,

i.e. it covers a singular discrete solution. Therefore, a nowhere singular meromorphic solution

never hits the sets δ̃1 or δ̃2.

Let us note that the growth of the singular solutions is quite wild as t → 0 or t → ∞.

Consider for instance the discrete singular solutions defined by (2.13), say with t0 = 1. Then

fs goes to zero like qs
2
, whereas fs grows like q−s

2
as s → ∞. Comparing this with ts = qs,

we see that gs vanishes beyond all orders of ts, whereas fs grows beyond all orders of ts, as

s→∞. In the regular case, we do not expect such asymptotics.

2.4 Global Asymptotic Analysis

Fokas et al. [14] define the global asymptotic analysis of a (continuous) Painlevé equation as

the study of critical behaviour of solutions near critical points and corresponding connection

problem between different critical points. As an example, the critical points of the sixth

Painlevé equation are 0, 1 and ∞, as these are the only points where a solution might fail

to be meromorphic and hence branching might occur. Furthermore they describe a Painlevé

equation as “solved”, when we have complete knowledge of all critical behaviours near the

different critical points, parameterised effectively, and explicit connection formulae in terms

of the parameters involved, connecting these behaviours between any two critical points. We

set out a q-analog for q-P (A1) of this perspective.

2.4.1 Critical Behaviour near Critical Points

Part of the global asymptotic analysis of the q-P (A1) equation is the study of critical behaviour

near critical points, which, on itself, is essentially a local problem. Typically we would like to

obtain a complete tabulation of different critical behaviours near a critical point. The only

points in P which are invariant under the time evolution t 7→ qt, are t = 0 and t =∞. These

are the only points where branching of solutions can occur and hence the critical points of

q-P (A1). Let us first consider discrete solutions, say living on qZt0. We would like an explicit

parameterisation of all possible critical behaviours near t = 0 and t =∞. Following Guzzetti

[28], we symbolically denote this, for u ∈ {0,∞}, by

(fs, gs) = (fu(ts; c
u
1 , c

u
2), gu(ts; c

u
1 , c

u
2)), ts = qst0, (ts → u) (2.18)

where cu1 , c
u
2 are complex integration constants, and we wrote ts → 0 for s→∞ and ts →∞

for s→ −∞. We consider our parametrisation, or tabulation, complete, if for every solution



2.4. GLOBAL ASYMPTOTIC ANALYSIS 29

(fs, gs)s∈Z ∈ S∗d(t0), there are unique cu1 , c
u
2 such that (2.18) holds for u ∈ {0,∞}. We remark

that this should not be confused with the notion of completeness of the solution space, as

studied in for instance [12], for PI .

Similarly, for meromorphic solutions on some fixed continuous q-domain T , we symboli-

cally write, for u ∈ {0,∞},

(f(t), g(t)) = (fu(t; cu1(t), cu2(t)), gu(t; cu1(t), cu2(t))), (t→ u in T ) (2.19)

where cu1(t), cu2(t) are now q-integration constants, i.e. q-periodic functions on T . Again

completeness entails that our parameterisation covers every element of S∗∗m (T ). The analysis

of critical behaviour near t = 0 and t =∞ is the subject of Chapter 3.

2.4.2 The q-P (A1) Connection Problem

Getting back to the parameterisation (2.18), if it is complete, then for any element (fs, gs)s∈Z ∈
S∗d(t0), there exist unique c0

1, c
0
2 and c∞1 , c

∞
2 such that

(fs, gs) =

{
(f0(ts; c

0
1, c

0
2), g0(ts; c

0
1, c

0
2)), (ts → 0)

(f∞(ts; c
∞
1 , c

∞
2 ), g∞(ts; c

∞
1 , c

∞
2 )), (ts →∞)

giving rise to the q-P(A1 ) connection problem, which constitutes determining explicit formu-

lae {
c0

1 = c0
1(c∞1 , c

∞
2 ),

c0
2 = c0

2(c∞1 , c
∞
2 ),

{
c∞1 = c∞1 (c0

1, c
0
2),

c∞2 = c∞2 (c0
1, c

0
2),

(2.20)

which are called, using the terminology in [28], connection formulae in closed form.

Of course there is a natural analog for the meromorphic case. Note that there is no

principal objection, in completing the local analysis of behaviour of solutions near critical

points, for nonlinear equations. However, generically speaking, there is no hope in solving

the connection problem for such equations. Indeed, even for linear equations, the Riemann-

Hilbert correspondence is a transcendental one. It is exactly the integrability of the q-P (A1)

equation, in this case the existence of a Lax pair, which gives us a technique to solve the

q-P (A1) connection problem.

2.4.3 Yamada’s Lax pair

Yamada [85] derived the following Lax pair for q-P (A1),

L1 : u(z, t)y(qz, t) + v(z, t)y(z, t) + w(z, t)y(z/q, t) = 0, (2.21a)

L2 : h0(z, t)y(z, qt) + h1(z, t)y(z, t) + h2(z, t)y(z/q, t) = 0, (2.21b)
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where the coefficients in L1, the spectral equation, are given by

u(z, t) =p2(qz)(1− z/f),

w(z, t) =qp1(z/t)(1− qz/f),

v(z, t) =
1− z/f
1− qgz

[
q2g3t−2(t2 − 1)

f − qz
fg − 1

z2p2(1/g)− (1− qgz/t2)p2(qz)

]
+

1− qz/f
1− gz/t2

[
qg3t−4(1− t2)

f − z
fg − t2

z2p1(t/g)− q(1− gz)p1(z/t)

]
,

with the polynomials p1 and p2 as defined in equations (2.2) and (2.3) respectively. The

coefficients in L2, called the deformation equation, are given by

h0(z, t) = qt2gz(f − z), h1(z, t) = (gz − 1)t2, h2(z, t) = t2 − gz.

We call z the spectral variable and t the time or Painlevé variable. The crucial property of

the Lax pair (2.21), is that the compatibility of the spectral and deformation equation, is

equivalent to (f, g) satisfying the q-P (A1) equation. To illustrate this point, let us recast

Yamada’s Lax pair into system form by setting

Y (z, t) =

(
y(z, t)

y(z/q, t)

)
,

which gives

Y (qz, t) = A(z, t; f, g)Y (z, t), (2.22a)

Y (z, qt) = H(z, t; f, g)Y (z, t), (2.22b)

with

A(z, t) =

(
− v(z)
u(z) −w(z)

u(z)

1 0

)
, H(z, t) =

(
−h1(z)
h0(z) −h2(z)

h0(z)
u(z/q)h2(z/q)
w(z/q)h0(z/q)

v(z/q)h2(z/q)−w(z/q)h1(z/q)
w(z/q)h0(z/q)

)
,

where we suppressed the (f, g) dependence throughout.

Now assume we have a fundamental solution Y (z, t) of (2.22), then

Y (qz, qt) = A(z, qt; f, g)Y (z, qt) = A(z, qt; f, g)H(z, t; f, g)Y (z, t),

Y (qz, qt) = H(qz, t; f, g)Y (qz, t) = H(qz, t; f, g)A(z, t; f, g)Y (z, t),

which yields the compatibility condition

A(z, qt; f, g)H(z, t; f, g) = H(qz, t; f, g)A(z, t; f, g). (2.23)

Theorem 2.4.1. The q-P (A1) equation, interpreted as a system of algebraic relations between

points (t, f, g) and (qt, f , g), is equivalent to the consistency condition of (2.22), given by

equation (2.23).
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Proof. See Yamada [85].

2.4.4 Isomonodromic Deformation

We give a rough sketch of how an isomonodromic deformation method can be made effective

to solve the q-P (A1) connection problem. We emphasise that this is just a sketch, and many

aspects have been oversimplified. Firstly note that the spectral equation L1 = L1(t, f, g) con-

stitutes a second order linear q-difference equation in the spectral variable, with the Painlevé

variables t, f, g entering the coefficients. We now think of the time evolution of q-P (A1) as a

deformation of the spectral equation. We can associate to the spectral equation L1, its mon-

odromy m(L1), which is the connection matrix, relating canonical solutions of the spectral

equation near z = 0 and z =∞, discussed properly in Chapter 4. Now the crucial observation

is, that the monodromy of the spectral equation is preserved by the q-P (A1) deformation, i.e.

m(L(qt, f , g)) = m(L(t, f, g)).

Hence the q-P (A1) deformation is called an isomonodromic deformation, and we can construct

the monodromy mapping

M : S∗c (t0)→M, (f, g)→ m(L(-, f(-), g(-))), (2.24)

whereM denotes the monodromy space, and “-” indicates one can take any time one pleases.

Now let us get back to the q-P (A1) connection problem, described in Section 2.4.2. Using the

notation in Section 2.4.2, a method of attack to solve this problem, is to find explicit formulae

M(f, g) = M(c0
1, c

0
2), M(f, g) = M(c∞1 , c

∞
2 ), (2.25)

which when combined, lead to

M(c0
1, c

0
2) = M(c∞1 , c

∞
2 ), (2.26)

which we call parametric connection formulae, following Guzzetti [28]. Determining formulae

(2.25), requires analysing Yamada’s Lax pair in the limits t → 0 and t → ∞, which is the

subject of Chapter 5. Using (2.26), one should be able to derive connection formulae in closed

form (2.20).

2.4.5 Further Directions

Finer aspects of the global asymptotic analysis of a discrete Painlevé equation, include study-

ing the distribution of zeros, poles, base points, and other special points of solutions on

q-domains. Furthermore special solutions, such as algebraic solutions, classical solutions and

rational solutions, should take a special role within this framework. As an example, note that

the set S∗∗m (P) consists exactly of all the rational solutions, for given parameter values. An

isomonodromic deformation method might also be an effective tool to classify the algebraic

solutions of q-P (A1). Indeed such an approach has been made successful for the sixth Painlevé

equation with θx = θy = θz = 0, by Dubrovin and Mazzocco [11], and later on for general
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parameter values by Lisovyy and Tykhyy [59].

2.5 The Symmetric Form

There are some natural conditions on the parameters b wich allow a reduction of q-P (A1) to

its symmetric form,(
xx̂− ξt2

) (
x

ˇ
x− ξ−1t2

)
(xx̂− 1) (x

ˇ
x− 1)

=
(x− at)

(
x− a−1t

)
(x− bt)

(
x− b−1t

)
(x− c) (x− c−1) (x− d) (x− d−1)

, (2.27)

where a, b, c, d ∈ C∗ are complex parameters and ξ ∈ C∗ defines the time evolution,

t̂ = ξt, x = x(t), x̂ = x(ξt),
ˇ
x = x

(
ξ−1t

)
.

We write bs = (a, b, c, d) and denote the parameter space of symmetric q-P (A1) by

Bs = {(a, b, c, d) ∈ C4|a, b, c, d 6= 0}.

Considering q-P (A1), let ξ2 = q and assume that the parameters b satisfy

b1b2 = ξ, b3b4 = ξ, b5b6 = 1, b7b8 = 1. (2.28)

Let us write

a = b1ξ
− 1

2 , b = b3ξ
− 1

2 , c = b5, d = b7,

then q-P (A1) takes the form

(fg − t2)(fg − qt2)

(fg − 1)(fg − 1)
=

(g − aξ
1
2 t)(g − a−1ξ

1
2 t)(g − bξ

1
2 t)(g − b−1ξ

1
2 t)

(g − c)(g − c−1)(g − d)(g − d−1)
,

(fg − qt2)(fg − q2t2)

(fg − 1)(fg − 1)
=

(f − aξ
3
2 t)(f − a−1ξ

3
2 t)(f − bξ

3
2 t)(f − b−1ξ

3
2 t)

(f − c)(f − c−1)(f − d)(f − d−1)
,

Hence, for any solution (f(t), g(t)) of q-P (A1) on a discrete q-domain T = qZt0,

x(ξ2nt′0) = f(qnt0), x(ξ2n+1t′0) = g(qnt0), (n ∈ Z)

defines a solution of symmetric q-P (A1), on the discrete ξ-domain T̂ := ξZt′0 with t′0 = ξ−
1
2 t0.

On a continuous q-domain things are a bit more delicate. Indeed, suppose (f(t), g(t)) is a

meromorphic solution of q-P (A1) on a continuous ξ-domain T . Then

x(t) = f(ξ
1
2 t), (2.29)

defines a solution of symmetric q-P (A1) on T̂ = ξ−
1
2T , if (f, g) satisfies the symmetry condi-

tion

f (t) = g
(
ξ−1t

)
. (t ∈ T ) (2.30)
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Note that Bäcklund transformation T3 leaves q-P (A1)(b) invariant for this specific choice of

parameters, i.e.

f (3)(t) = g(ξ−1t), g(3)(t) = f(ξt),

also defines a meromorphic solution of q-P (A1)(b) on the connected ξ-domain T . Condition

(2.29) is equivalent to T3 acting trivial on (f, g), i.e. (f (3), g(3)) = (f, g). In Section 3.8 we

find that the 2.30 appears naturally in the asymptotic description of meromorphic solutions.

2.5.1 A Continuum Limit

Grammaticos and Ramani [20] calculated the following formal continuum limit of the sym-

metric q-P (A1) equation (2.27) to the sixth Painlevé equation. We set

a = −ξα, b = ξβ, c = −ξγ , d = ξδ, (2.31)

for some fixed α, β, γ, δ ∈ C. Then, by letting ξ → 1, symmetric q-P (A1) becomes

x′′0 =1
2

(
1

x0 + 1
+

1

x0 − 1
+

1

x0 + t
+

1

x0 − t

)
x′20

−
(

1

t
+

1

t− 1
+

1

t+ 1
+

1

x0 − t
− 1

x0 + t

)
x′0 (2.32)

+
(x2

0 − t2)(x2
0 − 1)

t2(t2 − 1)

(
(α2 − 1

4)t

(x0 + t)2
−

(β2 − 1
4)t

(x0 − t)2
− γ2

(x0 + 1)2
+

δ2

(x0 − 1)2

)
,

which is a non-canonical form of the sixth Painlevé equation, which we refer to as alt-PVI.

Indeed, the change of variables

t =
1− r
1 + r

, r2 = ζ, x0 =
r − w
r + w

, (2.33)

gives PVI in canonical form (1.1), with parameter values

θx = δ, θy = α, θz = β, θ∞ = γ + 1. (2.34)

The above continuum limit is the result of a formal calculation, based on presumed expansions

x(t; ξ) =x0(t) + (ξ − 1)x1(t) + (ξ − 1)2x2(t) +O((ξ − 1)3), (2.35)

x(ξt; ξ) =x0(t) + (ξ − 1)[x1(t) + tx′0(t)] + (ξ − 1)2[x2(t) + tx′1(t) + 1
2 t

2x′′0(t)]

+O((ξ − 1)3), (2.36)

x(ξ−1t; ξ) =x0(t) + (ξ − 1)[x1(t)− tx′0(t)] + (ξ − 1)2[x2(t)− tx′1(t) + 1
2 t

2x′′0(t)

+ tx′0(t)] +O((ξ − 1)3), (2.37)

as ξ → 1. Indeed upon substitution in symmetric q-P (A1), after multiplying out the denom-

inators on both sides, one easily finds that the constant terms, as well as the (ξ − 1)1 terms,

cancel out. Considering the (ξ − 1)2 terms, we find an equation involving only x0, equivalent

to (2.32), after some cancellation. We infer the following result.
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Lemma 2.5.1. Let x(t; ξ) denote a family of meromorphic solutions of symmetric q-P (A1),

with parameter values (2.31), on continuous ξ-domains T (ξ), for ξ ∈ Q, where Q ⊆ {z ∈
C∗ : |z| < 1} such that 1 ∈ Q. Given a non-empty open set D ⊆ C∗ in the t-plane such that

D ⊆ T (ξ) and x(t; ξ) analytic in t on D, for ξ ∈ Q close to 1, and (2.35) holding uniformly

in t on D as ξ → 1 in Q, for some complex functions x0, x1, x2 on D. Then

x0(t) = lim
ξ→1,ξ∈Q

x(t; ξ),

is an analytic solution of alt-PVI (2.32) on D.

Proof. This follows from elementary complex analysis. Indeed note that, as (2.35) holds

uniformly in t on D as ξ → 1 in Q, we immediately obtain that x0, x1 and x2 are analytic on

D. Next, for any bounded open set U ⊆ U ⊆ D, we can easily derive that (2.36) and (2.37)

hold uniformly in t on U as ξ → 1 in Q. The lemma follows.

To get some intuition on what is happening in the continuum limit, we keep track of four

particular q-spirals in the t-plane, depicted in Figure 2.3a. As we are more used to working

with q instead of ξ, we set q = ξ temporarily. Recall that we assume |q| < 1 and, defining qs

by the principal branch for s ∈ R, we consider the q-spirals:

• sq1 = qR, depicted in blue;

• sq2 = −qR, depicted in red;

• sq3 = iqR, depicted in green;

• sq4 = −iqR, depicted in purple;

where we think of sq2 as a hypothetical branch cut, and the arrows on the spirals indicate the

direction of the time evolution t 7→ qt, running from t =∞ to t = 0.

From Figure 2.3a, it is clear that the hypothetical branch cut, in the continuum limit

q → 1, depends very strongly on the angle at which q approaches 1 in the complex plane.

Indeed, fix a nonzero q∗ in the (open) unit disc and consider the corresponding picture (2.3a).

Now say we let q vary along qR∗ on the inside of the unit disc, then the q-spirals in (2.3a)

remain completely invariant. In particular letting q approach 1 along qR∗ , the resulting t-plane

still has the spiral −qR∗ as a hypothetical branch cut. As such branch cuts are highly non-

standard in the study of complex differential equations, we only consider continuum limits

in which q approaches 1 tangentially to the real axis in the unit disc. We denote such a

limit by q → 1−. However, we would like to note that there is principally nothing wrong

with continuum limits where q approaches 1 from a different angle. In this context we would

particularly like to mention Sauloy’s thesis [78], in which he works out such continuum limits

rigorously for Fuchsian linear q-difference equations, including their monodromy.

Note that, in Lemma 2.5.1, we did not specify any angle at which q approaches 1 in the

continuum limit. However this lemma only deals with the local problem of convergence away

from critical points.
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Figure 2.3: Continuum Limit in Pictures
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From now on we consider the case where q → 1−, i.e. q approaches 1 tangential to the

real axis from within the unit disc. Under such a limit the four q-spirals sq1, s
q
2, s

q
3, s

q
4, depicted

in Figure 2.3a, are stretched out to the four open half-axes

s1
1 = (∞, 0), s1

2 = (−∞, 0), s1
3 = (i∞, 0), s1

4 = (−i∞, 0),

of the t-plane respectively, as depicted in Figure 2.3b, where we kept track of the direction of

time. Furthermore, note that under this limit, two base points of symmetric q-P (A1) merge

to the base point x0 = 1 of alt-PVI, and similarly two base points merge to x0 = −1, two base

points merge to x0 = t and the remaining two base points merge to x0 = −t. The critical

points t = 0 and t = ∞ remain critical points of alt-PVI, plus two new critical points t = 1

and t = −1 are formed as q → 1−.

Now we consider the change of variables (x0, t) → (ω, r) defined in (2.33). Both the

change of the dependent and independent variable are via a Möbius transformation and

hence automorphism of P. Firstly, the half-axes s1
1, s

1
2, s

1
3, s

1
4 are send to paths

sr1 = (−1, 1), sr2 = (−1,−∞]∪[∞, 1), sr3 = {−eπiθ : −1 < θ < 1}, sr4 = {eπiθ : −1 < θ < 1},

respectively, as shown in Figure 2.3c. Furthermore the base points x0 = 1, x0 = −1, x0 = t

and x0 = −t of alt-PVI, are send to the well known base points ω = 0, ω = ∞, ω = r2 = ζ

and ω = 1 of the sixth Painlevé equation respectively. Similarly the critical points t = 0,

t =∞, t = −1 and t = 1 of alt-PVI are send to r = 1, r = −1, r =∞ and r = 0 respectively.

Finally ζ = r2 gives the well-known critical points ζ = 0, ζ = 1 and ζ = ∞ of PVI. Note

however, that r = 1 and r = −1 correspond to ζ = 1 in different sheets of the universal

covering space of P \ {0, 1,∞}. Indeed the change of variables ζ = r2 forces us to choose

a branch cut, which we set equal to the negative real axis (−∞, 0) in the ζ-plane, see the

oscillating red line in Figure 2.3d. Also the hypothetical branch cut sr2 becomes (1,∞] in

the ζ-plane. Finally the paths sr3 and sr4 with starting point r = −1 and ending point r = 1

respectively, both become loops tracing out the unit circle in the ζ-plane, starting and finishing

at ζ = 1, going around ζ = 0 once in anti-clockwise and clockwise direction respectively.

Let us reflect on the global asymptotic analysis of q-P (A1), as set out in Section 2.4,

from this perspective. Firstly, as q → 1−, the local classification of both critical behaviour of

solutions near t = 0 and t =∞, should coincide with that of the sixth Painlevé equation near

ζ = 1, after the relevant change of variables. Furthermore the q-P (A1) connection problem

should reduce to the connection problem of PVI, on relating critical behaviour near ζ = 1 of

solutions, in different sheets of the universal covering space of P \ {0, 1,∞}, related by simple

loops around ζ = 0.

We conclude with a summary of this chapter, in which we have discussed all the ba-

sic analytic and algebro-geometric aspects of the q-P (A1) equation. Using the singularity

confinement property and Sakai’s theory, we defined the notion of solutions of the q-P (A1)

equation, and we saw that local discrete solutions can be uniquely continued on discrete q-

domains, and local meromorphic solutions can be uniquely continued meromorphically on

continuous q-domains. We formulated what constitutes the global asymptotic analysis of the

q-P (A1) equation, involving in particular classifying critical behaviours of solutions near the
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origin and infinity, and the corresponding q-P (A1) connection problem, relating those critical

behaviours. We finished the chapter with the symmetric form of the q-P (A1) equation, and

a heuristic discussion of its continuum limit to PVI.





CHAPTER 3

Local Behaviour of Solutions Near

Critical Points

In this chapter we study the local behaviour of q-P (A1) transcendents near the critical points

t = 0 and t =∞. We do this by a typical local asymptotic analysis of differential or difference

equations. Firstly we study the leading order behaviour of solutions of q-P (A1), and we find

that it is characterised by an autonomous system. We derive the general solution of this

system and subsequently formally calculate the full asymptotic expansion of the proposedly

corresponding q-P (A1) transcendent, which contains the freedom of two q-constants. Finally

we show that this full expansion is always convergent, for suitably chosen q-constants. But

before going down this path, we warm up by considering solutions of q-P (A1), described by

very simple behaviour near critical points. Most of this chapter is published in Joshi and

Roffelsen [50].

3.1 Solutions Which Are Meromorphic at a Critical Point

In the language of Section 2.3, we classify the solutions spaces S∗∗m (C) and S∗∗m (P∗) in this

section. Let us start by studying solutions which are holomorphic at the origin. These

solutions play a special role in the more general solution we derive later, as they correspond to

constant solutions of the leading order autonomous system (3.22). We classify the holomorphic

solutions using the power series method in combination with the q-Briot-Bouquet Theorem

B.3 to prove convergence.

We note that Ohyama [64, 65] classified the meromorphic solutions of the discrete Painlevé

equations q-PVI, q-PV and q-PIII around the origin in this fashion. We consider q-P (A1),

rewritten as in equations (2.16). Suppose we have a power series solution around t = 0, say

f(t) =
∞∑
n=0

fnt
n, g(t) =

∞∑
n=0

gnt
n.

39
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Evaluating equation (2.16) at t = 0 gives

(f0g0 − 1)2f4
0 = f2

0 g
2
0(f0 − b−1

5 )(f0 − b−1
6 )(f0 − b−1

7 )(f0 − b−1
8 ), (3.1a)

(f0g0 − 1)2g4
0 = f2

0 g
2
0(g0 − b5)(g0 − b6)(g0 − b7)(g0 − b8). (3.1b)

Equation (3.1) has several trivial solutions, given by (f0, g0) = (0, 0) and (f0, g0) = (b−1
i , bi)

for i = 5, 6, 7, 8. Furthermore there are generally three nontrivial solutions, given by(
f

(0,1)
0 , g

(0,1)
0

)
=

(
b5b6 − b7b8

b5b6(b7 + b8)− b7b8(b5 + b6)
,

b5b6 − b7b8
b5 + b6 − (b7 + b8)

)
, (3.2a)(

f
(0,2)
0 , g

(0,2)
0

)
=

(
b6b7 − b8b5

b6b7(b8 + b5)− b8b5(b6 + b7)
,

b6b7 − b8b5
b6 + b7 − (b8 + b5)

)
, (3.2b)(

f
(0,3)
0 , g

(0,3)
0

)
=

(
b5b7 − b6b8

b5b7(b6 + b8)− b6b8(b5 + b7)
,

b5b7 − b6b8
b5 + b7 − (b6 + b8)

)
. (3.2c)

If (f0, g0) = (0, 0), then there are no terms tn with n < 4 appearing in (2.16), equating

the coefficients of t4 in (2.16) gives

(f1g1 − 1)2b1b2b3b4 = (g1 − b1)(g1 − b2)(g1 − b3)(g1 − b4), (3.3a)

(f1g1 − 1)2 1

b1b2b3b4
= (f1 − b−1

1 )(f1 − b−1
2 )(f1 − b−1

3 )(f1 − b−1
4 ). (3.3b)

Equation (3.3) has several trivial solutions, given by (f1, g1) = (0, 0) and (f1, g1) = (b−1
i , bi)

for i = 1, 2, 3, 4. Furthermore there are generally three nontrivial solutions, given by(
f

(1,1)
1 , g

(1,1)
1

)
=

(
b1 + b2 − (b3 + b4)

b1b2 − b3b4
,
b1b2(b3 + b4)− b3b4(b1 + b2)

b1b2 − b3b4

)
, (3.4a)(

f
(1,2)
1 , g

(1,2)
1

)
=

(
b2 + b3 − (b4 + b1)

b2b3 − b4b1
,
b2b3(b4 + b1)− b4b1(b2 + b3)

b2b3 − b4b1

)
, (3.4b)(

f
(1,3)
1 , g

(1,3)
1

)
=

(
b1 + b3 − (b2 + b4)

b1b3 − b2b4
,
b1b3(b2 + b4)− b2b4(b1 + b3)

b1b3 − b2b4

)
. (3.4c)

Each of the cases in equations (3.2) and (3.4) generically determines an unique converging

power series solution.

Proposition 3.1.1. For k ∈ {1, 2, 3}, the q-P (A1) equation has an unique power series

solution

f (0,k)(t) =
∞∑
n=0

f (0,k)
n tn, g(0,k)(t) =

∞∑
n=0

g(0,k)
n tn, (3.5)

with f
(0,k)
1 and g

(0,k)
1 as defined in equation (3.2), given that the following conditions are
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satisfied for the case k = 1, k = 2 and k = 3 respectively,

b5b6
b7b8

/∈ qZ, b5 + b6 6= b7 + b8 and b−1
5 + b−1

6 6= b−1
7 + b−1

8 , (3.6)

b6b7
b5b8

/∈ qZ, b6 + b7 6= b5 + b8 and b−1
6 + b−1

7 6= b−1
5 + b−1

8 , (3.7)

b5b7
b6b8

/∈ qZ, b5 + b7 6= b6 + b8 and b−1
5 + b−1

7 6= b−1
6 + b−1

8 . (3.8)

Furthermore, each of these power series solutions has a positive radius of convergence and an

unique meromorphic continuation to C.

Proof. We discuss the case k = 1. Let us first note that the assumptions made ensure that

f
(1)
0 and g

(1)
0 are well-defined and non-zero. In accordance with the notation in the q-Briot-

Bouquet theorem B.3, we rewrite q-P (A1) as

f = H1(t, f, g), g = H2(t, f, g), (3.9)

for some rational functions H1 and H2.

We apply the q-Briot-Bouquet theorem B.3 with m = 1 and n = 2 to this system, where

y1 = f , y2 = g and

Y = (f0, g0) =
(
f

(1)
0 , g

(1)
0

)
.

It is not hard to see that H(t, f, g) is holomorphic at (t, f, g) = (0, f0, g0) and H(0, f0, g0) =

(f0, g0), as this is essentially the calculation done to obtain the case (3.2a). To establish this it

is helpful to think ofH as the composition ofR(t, f, g) := R(t)(f, g) and S(t, f , g) := S(t)(f, g)

as defined in Section 2.2, i.e.

H1(t, f, g) = R1(t, f, g) = S1(t, R(t, f, g)), H2(t, f, g) = S2(t, R1(t, f, g), g) = S2(t, R(t, f, g)).

In particular this is helpful to calculate the Jacobian, using the chain rule,(
∂H1
∂f (0,Y) ∂H1

∂g (0,Y)
∂H2
∂f (0,Y) ∂H2

∂g (0,Y)

)
=

(
1 0

∂S2

∂f
(0,Y) ∂S2

∂g (0,Y)

)
·

(
∂R1
∂f (0,Y) ∂R1

∂g (0,Y)

0 1

)

=

(
−1 − (b5+b6−b7−b8)2(b5b6+b7b8)

(b5b6(b7+b8)−b7b8(b5+b6))2

(b5b6+b7b8)(b5b6(b7+b8)−b7b8(b5+b6))2

b5b6b7b8(b5+b6−b7−b8)2
(b5b6+b7b8)2

b5b6b7b8
− 1

)
.

The eigenvalues of this matrix are equal to b5b6
b7b8

and b7b8
b5b6

. Since b5b6
b7b8
6= qn for any n ∈ Z∗, we

can apply the q-Briot-Bouquet theorem B.3 to obtain the desired results. As to the last line

of the proposition, this is a direct consequence of Lemma 2.1.2.

Proposition 3.1.2. For k ∈ {1, 2, 3}, the q-P (A1) equation has an unique power series

solution

f (1,k)(t) =
∞∑
n=1

f (1,k)
n tn, g(1,k)(t) =

∞∑
n=1

g(1,k)
n tn, (3.10)

with f
(1,k)
1 and g

(1,k)
1 as defined in equation (3.4), given that the following conditions are
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satisfied for the case k = 1, k = 2 and k = 3 respectively,

b1b2
b3b4

/∈ qZ, b1 + b2 6= b3 + b4 and b−1
1 + b−1

2 6= b−1
3 + b−1

4 , (3.11)

b2b3
b1b4

/∈ qZ, b2 + b3 6= b1 + b4 and b−1
2 + b−1

3 6= b−1
1 + b−1

4 , (3.12)

b1b3
b2b4

/∈ qZ, b1 + b3 6= b2 + b4 and b−1
1 + b−1

3 6= b−1
2 + b−1

4 . (3.13)

Furthermore, each of these power series solutions has a positive radius of convergence and an

unique meromorphic continuation to C.

Proof. Note we can apply the q-Briot-Bouquet Theorem B.3 as done in the proof of Proposi-

tion 3.1.1. However, for a more elegant proof, we make use of one of the many symmetries of

q-P (A1). Indeed applying the Bäcklund transformation T1, defined in (2.11), to each of the

solutions defined in Proposition 3.1.1, gives the desired results directly.

By Remark B.5, the solutions defined in Propositions 3.1.1 and 3.1.2 are also analytic in

the parameters b.

Theorem 3.1.3. For generic parameter values b ∈ Bq, i.e.

bi1bi2
bi3bi4

/∈ qZ, b±i1 + b±i2 6= b±i3 + b±i4 , ({i1, i2, i3, i4} = {1, 2, 3, 4}, {5, 6, 7, 8}) (3.14)

the solutions of q-P (A1), defined in Propositions 3.1.1 and 3.1.2, are all solutions meromor-

phic at the origin, excluding the singular ones (2.4).

Proof. The proof is a bit laborious. We consider a Laurent series solution of (2.16),

f(t) =

∞∑
n=k

fnt
n, g(t) =

∞∑
n=l

gnt
n,

where k, l ∈ Z and fk, gl 6= 0. We distinguish 16 different scenarios given by

k < 0, k = 0, k = 1, or k > 1; and

l < 0, l = 0, l = 1, or l > 1.

We have already studied the cases k, l = 0 and k, l = 1, to prove the theorem it remains to

discard the other ones. Using the Bäcklund transformations T1 and T3, we can reduce the

number of cases to be discarded to the following five,

k < 0, l > 1; k = 0, l = 1; k = 0, l > 1; k = 1, l > 1; k, l > 1.

From (3.1a) it follows immediately that the cases k = 0, l > 1 and k = 0, l > 1 are impossible.

Considering the case k, l > 1, by calculating the coefficients of tl+3 and tk+3 in (3.1a) and
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(3.1b) respectively, we find

(b1b2b3 + b1b2b4 + b1b3b4 + b2b3b4)gl = 0, qk+3 1

b1b2b3b4
(b1 + b2 + b3 + b4)fk = 0.

As fk, gl 6= 0, the above two equations can easily be used to derive

b1 + b2 = 0 = b3 + b4, b1 + b3 = 0 = b3 + b4 or b1 + b4 = 0 = b2 + b3.

In any case our assumption (3.14) is violated. Let us now consider the case k = 1, l > 1.

Calculating the coefficients of tl+3 in (3.1a), and equation (3.3b) give respectively

f1 = 1
2(b−1

1 + b−1
2 + b−1

3 + b−1
4 ),

1

b1b2b3b4
= (f1 − b−1

1 )(f1 − b−1
2 )(f1 − b−1

3 )(f1 − b−1
4 ),

which combined again violate (3.14). We are left with the scenario k < 0, l > 1, which can be

dealt with easily by comparing the lowest powers of t appearing on the left- and right-hand

sides of (2.16), distinguishing k + l < 0, k + l = 0, k + l = 1, k + l = 2 and k + l > 2.

We can translate all these results to a classification of solutions meromorphic at t = ∞,

simply by employing Bäcklund transformation T4. For k ∈ {1, 2, 3}, we define solutions

(f̌
(0,k)

, ǧ(0,k)) = T4(f (0,k), g(0,k)), (f̌
(1,k)

, ǧ(1,k)) = T4(f (1,k), g(1,k)), (3.15)

which are meromorphic at t =∞, with asymptotic characterisations

f̌
(0,k)

(t) =
1

g
(0,k)
0

+O(t−1), ǧ(0,k)(t) =
1

f
(0,k)
0

+O(t−1),

f̌
(1,k)

(t) =
1

g
(1,k)
1

t+O(1), ǧ(1,k)(t) =
1

f
(1,k)
1

t+O(1),

as t → ∞. Note that, by Lemma 2.1.2, each of these solutions has an unique meromorphic

continuation to P∗. Not only are the solutions, meromorphic at a critical point, special because

of their local behaviour near that critical point, but also as they are globally uni-valued. We

therefore pose the following question.

Question 3.1.4. Do there exist regular solutions of q-P (A1), other than the ones meromor-

phic at the origin or infinity, which are meromorphic on the entire doubly punctured Riemann

sphere P \ {0,∞}?

We remark that the existence of meromorphic solutions of a discrete equation has been

related to integrability of the equation in question, see for instance Halburd and Korhone

[29] and the references therein. Let us discuss an explicit example. We let q = s4 and take

parameter values

b1 = sa, b3 = sb, b5 = s2, b7 = ab,

b2 = sa−1, b4 = sb−1, b6 = s−2, b8 =
1

ab
.
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for some a, b ∈ C∗. Then q-P (A1) admits the rational solution

f(t) = x(s−1t), g(t) = x(st), x(t) := − 1− ut
1− ut−1

, u :=
1 + ab

a+ b
,

where, not coincidently, x(t) defines a solution of symmetric q-P (A1) with c = s2 and d = ab.

By calculating the leading order behaviour near t = 0 and t =∞, we identify

f = f (1,3) = f̌
(1,3)

, g = g(1,3) = ǧ(1,3).

This solution was obtained by reverse engineering, using the continuum limit, starting from

the following known rational solution of the sixth Painlevé equation,

w(ζ) =
θy

θy + θz
ζ +

θz
θy + θz

, (3.16)

with θx = 1, θ∞ = 1− θx− θy and θy, θz ∈ C∗. Indeed the continuum limit of x(t), as defined

in the beginning of Section 2.5.1, gives the following solution of alt-PVI (2.32),

x0(t) = − 1− u0t

1− u0t−1
, u0 :=

α+ β

α− β
,

which is related to (3.16) via the change of variables (2.33) and (2.34).

Remark 3.1.5. Considering the special parameter values (2.28), the solutions (f (0,1), g(0,1))

and (f (0,3), g(0,3)), defined in Proposition 3.1.1, satisfy the symmetry condition (2.30), and

hence give rise to solutions of symmetric q-P (A1). The same holds for the solutions (f (1,1), g(1,1))

and (f (1,3), g(1,3)), defined in Proposition 3.1.2. Upon calculating the continuum limit of the

leading order terms, they coincide with those of the four meromorphic solutions of the sixth

Painlevé equation at ζ = 1, as classified by Kaneko [53].

3.2 The Leading Order Autonomous System

We study the leading order behaviour of solutions in more detail in this section. For complex

functions f and g we write f(t) � g(t) as t → t0 if and only if f(t) = O(g(t)) and g(t) =

O(f(t)) as t→ t0. Note that the solutions (f, g) defined in Propositions 3.1.1 and 3.1.2 satisfy

respectively f, g � 1 and f, g � t as t→ 0. We therefore consider, on a formal level, any of the

following 25 combinations of asymptotic relations as t→ 0, for a solution (f, g) of q-P (A1),

f ≺ t, f � t, t ≺ f ≺ 1, f � 1 or f � 1; and

g ≺ t, g � t, t ≺ g ≺ 1, g � 1 or g � 1.

Using Bäcklund transformations T1 and T3 (2.11), we can reduce the number of individual

cases to be studied to 9. We assume that there exist m,n ∈ N∗ such that

tm ≺ f, g ≺ t−n, (t→ 0)
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to exclude singular solutions and the zero solution. By some laborious comparison of dominant

and subdominant terms in equations (2.16), just like in the proof of Theorem 3.1.3, it is

possible to show that, for generic parameter values, the only 3 consistent combinations are

f, g � t, t ≺ f, g ≺ 1, f, g � 1. (3.17)

Furthermore, there are 6 combinations which are only conditionally consistent, given by

f, g ≺ t, f ≺ t and g � t, f � t and g ≺ t, (3.18a)

f, g � 1, f � 1 and g � 1, f � 1 and g � 1. (3.18b)

For example, f, g ≺ t is only consistent if

b1 + b2 + b3 + b4 = 0 and b−1
1 + b−1

2 + b−1
3 + b−1

4 = 0, (3.19)

and f ≺ t with g � t is only consistent if

b1 + b2 = b3 + b4, b1 + b3 = b2 + b4 or b1 + b4 = b2 + b3. (3.20)

We give explicit examples of such cases in Section 3.5. The interested reader can find the con-

ditions, of the other conditionally consistent combinations, using Bäcklund transformations

T1 and T3. The remaining combinations are inconsistent for all parameter values b ∈ Bq. Let

us focus on the case t ≺ f, g ≺ 1 in (3.17). We put f = tf1, and g = tg1, then 1 ≺ f1, g1 ≺ t−1

as t→ 0, and by substitution into equations (2.16), we obtain

(f1g1 − 1)(f1g1 − 1) ∼
(
b−1
1 g1 − 1

) (
b−1
2 g1 − 1

) (
b−1
3 g1 − 1

) (
b−1
4 g1 − 1

)
, (3.21a)

(f1g1 − 1)(f1g1 − 1) ∼
(
b1f1 − 1

) (
b2f1 − 1

) (
b3f1 − 1

) (
b4f1 − 1

)
, (3.21b)

as t → 0. So asymptotically f1 and g1 satisfy an autonomous system. Inspired by these

equations, we study the following autonomous system,

(FG− 1)(FG− 1) =
(
b−1
1 G− 1

) (
b−1
2 G− 1

) (
b−1
3 G− 1

) (
b−1
4 G− 1

)
, (3.22a)

(FG− 1)(FG− 1) =
(
b1F − 1

) (
b2F − 1

) (
b3F − 1

) (
b4F − 1

)
, (3.22b)

which we refer to as the leading order autonomous system. We identify this system as a QRT

mapping (C.1) with

A0 =

 0 0 1

0 S−2 −S−1
S−4 −S−3 0

 , A1 =

0 0 0

0 1 0

0 0 −1

 ,

where S±i denotes the ith degree elementary symmetric polynomial in b±1
1 , b±1

2 , b±1
3 and b±1

4 ,

that is,

(z − b±1
1 )(z − b±1

2 )(z − b±1
3 )(z − b±1

4 ) = z4 − S±1 z
3 + S±2 z

2 − S±3 z + S±4 .
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We note that this is not a big surprise, as many discrete Painlevé equations were initially

discovered by Grammaticos, Ramani and collaborators [21], via deautonomisation of QRT

mappings. We refer the reader to the Appendix C for more details on QRT mappings.

Note that the QRT mapping under consideration is particularly simple as many entries of

the matrices A1 and A2 are zero. Indeed, condition (C.8) is satisfied, which means it is

linearisable.

We wish to construct full asymptotic expansions of solutions of q-P (A1), starting from

solutions of the leading order autonomous system. However solutions of q-P (A1) live on

q-domains, possibly open. This requires us to adopt a somewhat unusual interpretation of

the system (3.22). Even though it is an autonomous system, we think of it as a system of

q-difference equations on some q-domain.

3.2.1 Generic Solution of Leading Order System

We apply the method as described in Section C.1, to parameterise the generic solution of the

leading order autonomous system (3.22) . First of all, the invariant of (3.22) is given by

I(F,G) =
F 2 + S−2 FG+ S−4 G

2 − S−1 F − S
−
3 G

FG− 1
,

and we set I(F,G) = P . The linear system (C.9) becomes

F + F + (S−2 − P )G = S−1 , G+G+ b1b2b3b4(S−2 − P )F = S+
1 . (3.23)

If b1b2b3b4(P − S−2 )2 6= 4, there exists an equilibrium solution (Feq, Geq) to this system given

by

Feq =
S+

1 (P − S−2 ) + 2S−1
4− b1b2b3b4(P − S−2 )2

, Geq =
S−1 (P − S−2 ) + 2S+

1

4− b1b2b3b4(P − S−2 )2
. (3.24)

The special case b1b2b3b4(P − S−2 )2 = 4, requires a separate analysis, which we discuss in

Section 3.2.3. The matrix M (C.12) equals

M =

(
−1 P − S−2

−b1b2b3b4(P − S−2 ) b1b2b3b4(P − S−2 )2 − 1

)
,

and its characteristic equation is given by

|M − λI| = λ2 +
(
2− b1b2b3b4(P − S−2 )2

)
λ+ 1 = 0. (3.25)

At this stage, we consider P as a formal variable satisfying P = P , and as such, the char-

acteristic equation of M does not have a solution λ ∈ C(P ). However we can rewrite (3.25)

as

b1b2b3b4(P − S−2 )2 = λ+ 2 + λ−1 =

(
λ

1
2 + λ−

1
2

)2

,
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which inspires us to reparameterise

P = ε0 +
Λ

b1b2b3b4
+ Λ−1, (3.26)

where Λ = Λ, giving

|M − λI| =
(
λ− Λ2

b1b2b3b4

)(
λ− b1b2b3b4

Λ2

)
.

We put λ = Λ2

b1b2b3b4
, and M can be diagonalised as follows,

M = Q

(
λ 0

0 λ−1

)
Q−1, Q =

(
1 1

Λ b1b2b3b4
Λ

)
.

We introduce an independent variable φ characterised by φ = λφ, which allows us to write

the generic solution to the linear system (3.23) as

F (φ) = Feq(Λ,b) + φ+ µφ−1, G(φ) = Geq(Λ,b) + Λφ+
b1b2b3b4

Λ
µφ−1, (3.27)

where µ is an arbitrary periodic constant, i.e. µ = µ, and by substituting identity (3.26) into

equations (3.24),

Feq(Λ,b) = −
b1b2b3b4Λ

(
S+

1 + 2S−1 Λ + S−3 Λ2
)

(b1b2b3b4 − Λ2)2
,

Geq(Λ,b) = −
b1b2b3b4Λ

(
S+

3 + 2S+
1 Λ + S−1 Λ2

)
(b1b2b3b4 − Λ2)2

.

By direct calculation we find that the identity I(F,G) = P , for F and G as defined in equation

(3.27), is equivalent to

µ = µ(Λ,b) :=
Λ(Λ + b1b2)(Λ + b1b3)(Λ + b1b4)(Λ + b2b3)(Λ + b2b4)(Λ + b3b4)

(b1b2b3b4 − Λ2)4 . (3.28)

So F and G as defined in equation (3.27), with µ = µ(Λ,b) as defined above, satisfy equations

(3.23) and (C.4). Hence, by Lemma C.1,

F (φ,Λ) = φ+ Feq(Λ,b) + µ(Λ,b)φ−1, G(φ,Λ) = Λφ+Geq(Λ,b) +
b1b2b3b4

Λ
µ(Λ,b)φ−1,

(3.29)

defines a formal solution to the QRT mapping (3.22), where Λ and φ satisfy

Λ = Λ, φ = λφ, λ =
Λ2

b1b2b3b4
. (3.30)
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We emphasise that this is a formal solution. However we can easily use it to construct true

solutions of the leading order autonomous system. Choose any Λ0, φ0 ∈ C∗, then

Fs := F (φs,Λ0), Gs := G(φs,Λ0), φs := λs0φ0, λ0 :=
Λ2

0

b1b2b3b4
, (s ∈ Z) (3.31)

defines a true solution to (3.22).

3.2.2 Six Special Families of Solutions

Note that the autonomous system (3.22) reduces to the system of algebraic equations (3.3)

if we assume F 1 = F1 and G1 = G1. In particular, equations (3.4) give three constant

solutions to system (3.22). In this section we see that any of these constant solutions has

two associated 1-parameter families of solutions of (3.22). We denote the roots of µ(Λ,b) by

Λ = Λ±k (k = 1, 2, 3), where

Λ+
1 = −b1b2, Λ+

2 = −b2b3, Λ+
3 = −b1b3,

Λ−1 = −b3b4, Λ−2 = −b1b4, Λ−3 = −b2b4.

Let k ∈ {1, 2, 3}, then we have

Feq

(
Λ±k ,b

)
= f

(1,k)
1 , Geq

(
Λ±k ,b

)
= g

(1,k)
1 , (3.32)

where the f
(1,k)
1 and g

(1,k)
1 , as defined in (3.4), denote a constant solutions of (3.22).

Associated we find two special 1-parameter families of solutions, by setting Λ = Λ±k in (3.29),

given by

F±k (φ) := φ+ f
(1,k)
1 , G±k (φ) := Λ±k φ+ g

(1,k)
1 , φ = λ±1

k φ, (3.33)

where

λ1 =
b1b2
b3b4

, λ2 =
b2b3
b1b4

, λ3 =
b1b3
b2b4

. (3.34)

Note that for the particular choice φ = 0, the families
(
F+
k (φ), G+

k (φ)
)

and
(
F−k (φ), G−k (φ)

)
coincide with the constant solution

(
f

(1,k)
1 , g

(1,k)
1

)
.

3.2.3 Logarithmic Type Solutions

We consider the remaining case

b1b2b3b4(P − S−2 )2 = 4,

for the linear system (3.23). Note that the equilibrium solution (3.24) no longer exists and

we show that this case gives rise to logarithmic type solutions. We write r± = ±
√
b1b2b3b4

and assume

P = S−2 +
2

r±
. (3.35)
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The system of equations (3.23) becomes

F = −F +
2

r±
G+ S−1 , G = −2r±F + 3G+ 2r±S

−
1 + S+

1 . (3.36)

We write V = G− r±F , then

V = V + S+
1 + r±S

−
1 ,

and we therefore introduce a formal variable χ which satisfies

χ = χ+ 1, (3.37)

and set

V =
(
S+

1 + r±S−
)
χ.

This allows the first equation in (3.36) to be rewritten as

F = F + 2

(
1

r±
S+

1 + S−

)
χ+ S−1 ,

which gives

F (χ) = F0 −
1

r±
S+

1 χ+

(
1

r±
S+

1 + S−1

)
χ2, (3.38)

for some F0 with F 0 = F0.

As V = G− r±F , we obtain a corresponding expression for G,

G(χ) = r±F0 + r±S
−
1 χ+

(
S+

1 + r±S
−
1

)
χ2. (3.39)

Upon substitution of (3.38) and (3.39) into the identity I(F,G) = P , or equivalently into the

leading order autonomous system (3.22), we find

F0 =
2 + r±S

−
2

S+
1 + r±S

−
1

.

We conclude that the general formal solution of the leading order autonomous system (3.22),

subject to (3.35), is given by

F±l (χ) =
2 + r±S

−
2

S+
1 + r±S

−
1

− 1

r±
S+

1 χ+

(
1

r±
S+

1 + S−1

)
χ2, (3.40a)

G±l (χ) =
2r± + S+

2

S+
1 + r±S

−
1

+ r±S
−
1 χ+

(
S+

1 + r±S
−
1

)
χ2, (3.40b)

where χ satisfies (3.37).

The subscripts ‘l’ stand for logarithmic type, as the time evolution of χ, equation (3.37), is

characteristic for logq(t) when interpreted as a q-difference equation in t. Note that we used

S+
1 + r±S

−
1 6= 0 in the above derivation, we leave the degenerate case S+

1 + r±S
−
1 = 0 to the

interested reader.

We again emphasise that the obtained solution is a formal one. However we can easily use



50 CHAPTER 3. LOCAL BEHAVIOUR OF SOLUTIONS NEAR CRITICAL POINTS

it to construct true solutions of the leading order autonomous system. Choose any χ0 ∈ C,

then

Fs := F±l (χs), Gs := G±l (χs), χs := χ0 + s, (s ∈ Z) (3.41)

defines a true solution to (3.22).

Remark 3.2.1. We would like to note that the classification of solutions of (3.22) is now

complete. That is, given any initial data (F0, G0) ∈ C2, such that F0 · G0 6= 0, 1. Let

Fs+1 = F s and Gs+1 = Gs be defined recursively by (3.22) for s ∈ Z. Then (Fs, Gs)s∈Z is

captured by (3.31) or (3.41). Indeed let P = I(F0, G0), and assume b1b2b3b4(P − S−2 )2 6= 4,

then (3.26) has two distinct solutions Λ = Λ0,Λ
′
0 ∈ C, which are related by Λ0Λ′0 = b1b2b3b4.

Hence µ(Λ0) = 0 iff µ(Λ′0) = 0. Assume µ(Λ0) 6= 0, then the system

F0 = φ0 + Feq(Λ0,b) + µ(Λ0,b)φ−1
0 , G0 = Λ0φ0 +Geq(Λ0,b) +

b1b2b3b4
Λ0

µ(Λ0,b)φ−1
0 ,

has an unique solution φ0 ∈ C∗, and (Fs, Gs)s∈Z is given by (3.31). Of course the choice

Λ = Λ′0 would have led to the same result. This, however, is no longer the case when

µ(Λ0) = 0. We leave it to the reader to work through these degenerate cases as well as the

logarithmic one, b1b2b3b4(P − S−2 )2 = 4.

3.3 A Formal Series Solution

In Section 3.2 we saw that, heuristically speaking, the generic leading order behaviour of q-

P (A1) transcendents is described by the autonomous system (3.22). Furthermore we derived a

general formal parameterisation of the solutions of this autonomous system. In this section we

study the complete formal expansion of q-P (A1) transcendents corresponding to the general

formal solution of the autonomous system. To this end, we consider the following formal

solution ansatz,

f =

∞∑
i=1

Fit
i, g =

∞∑
i=1

Git
i. (3.42)

This approach reduces to the power series method if we assume that the coefficients Fi and

Gi are plain complex numbers. However for now we work with these coefficients on a formal

level, for example,

f =

∞∑
i=1

qiF it
i, g =

∞∑
i=1

qiGit
i.

We substitute these formal series into equations (2.16) and compare coefficients of t order

by order. First of all, note that no terms tn with n < 4 occur in equations (2.16). By

comparing the coefficients of t4 in equations (2.16) we recover the leading order autonomous

system (3.22) with F = F1 and G = G1. As to the higher order coefficients, for n > 1, by
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comparing the coefficients of tn+3 in equations (2.16), we obtain

G1(G1F1 − 1)qnFn + qG1(G1F 1 − 1)Fn + q
(
2G1F1F 1 − F1 − F 1

)
Gn =

q

b1b2b3b4
Q(1)(G1)Gn +R(1)

n

[
(Fi)1≤i<n, (F i)1≤i<n, (Gi)1≤i<n

]
, (3.43a)

qF 1

(
F 1G1 − 1

)
Gn + F 1

(
G1F 1 − 1

)
qnGn +

(
2F1G1G1 −G1 −G1

)
qnFn =

b1b2b3b4Q
(−1)

(
F 1

)
qnFn +R(2)

n

[
(F i)1≤i<n, (Gi)1≤i<n, (Gi)1≤i<n

]
, (3.43b)

for certain R
(1)
n and R

(2)
n which are polynomial with respect to their inputs, where the poly-

nomials Q(i)(z) are defined by

Q(i)(z) =
d

dx

[(
x− bi1

) (
x− bi2

) (
x− bi3

) (
x− bi4

)]
,

for i ∈ {1,−1}.

Note that these equations are linear autonomous equations with respect to Fn and Gn. It

is straightforward to obtain explicit expressions for R
(1)
n and R

(2)
n , these are however rather

lengthy, which is why we omit them. As an example, R
(1)
2 and R

(2)
2 are given by

R
(1)
2

(
F1, F 1, G1

)
=
(
b−1
5 + b−1

6 + b−1
7 + b−1

8

)
qG1(F1G1 − 1)

(
F 1G1 − 1

)
,

R
(2)
2

(
F 1, G1, G1

)
= (b5 + b6 + b7 + b8) q2F 1

(
F 1G1 − 1

) (
F 1G1 − 1

)
.

Furthermore the polynomials R
(1)
n and R

(2)
n are of degree at most n + 3 with respect to the

weighted gradation degw on C
[
∪∞i=1{Fi, F i, Gi, Gi}

]
, which is uniquely defined by its values

on the generators of this polynomial ring, as

degw Fi = degw F i = degwGi = degwGi = i. (i ∈ N∗)

The importance of this observation becomes clear when we substitute the generic formal

solution (3.29) to equations (3.22) for F1 and G1. Indeed, if we set F1 = F1(φ) = F (φ)

and G1 = G1(φ) = G(φ) as defined in equations (3.29), then F1(φ) and G1(φ) are Laurent

polynomials in φ of degree 1 in both φ and φ−1. Hence the right-hand sides of equations (3.43)

for n = 2, are Laurent polynomials in φ of at most degree n+ 3 = 5 in both φ and φ−1, which

shows that the system of equations (3.43) for n = 2 possibly has a solution (F2(φ), G2(φ)),

such that F2(φ) and G2(φ) are Laurent polynomials in φ of at most degree 2 in both φ and

φ−1. Indeed a lengthy calculation confirms this. More generally, we conjecture that there

is an unique solution ((Fn(φ))∞n=1, (Gn(φ))∞n=1) to equations (3.43) with F1(φ) = F (φ) and

G1(φ) = G(φ) as above, such that Fn(φ) and Gn(φ) are Laurent polynomials in φ of at

most degree n in both φ and φ−1. An equivalent formulation of this statement is given in

Conjecture 3.3.3. This however seems difficult to prove directly and we hence prove a weaker

version, which states that there is an unique solution where the coefficients Fn(φ) and Gn(φ)

are Laurent series in φ with highest order term of degree less or equal to n, for n ∈ N∗.
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Theorem 3.3.1. There exists an unique formal series solution to q-P (A1) of the form

f0,+(t, φ; Λ,b) =
∞∑
n=1

F 0,+
n (φ; Λ,b)tn, g0,+(t, φ; Λ,b) =

∞∑
n=1

G0,+
n (φ; Λ,b)tn, (3.44)

with, for n ∈ N∗,

F 0,+
n (φ; Λ,b) =

n∑
i=−∞

F 0,+
n,i (Λ,b)φi, G0,+

n (φ; Λ,b) =

n∑
i=−∞

G0,+
n,i (Λ,b)φi, (3.45)

where F 0,+
1,1 (Λ,b) = 1, G0,+

1,1 (Λ,b) = Λ and Λ and φ satisfy equations (3.30), with

q = q(b) =
b1b2b3b4
b5b6b7b8

, λ = λ(Λ,b) =
Λ2

b1b2b3b4
.

For n ∈ N∗ and i ∈ Z≤n, the coefficients F 0,+
n,i (Λ,b) and G0,+

n,i (Λ,b) are rational functions in

their inputs, which are regular at points (Λ,b) ∈ C∗ × B such that

1 /∈ Q := {qm1 qn2 : (m,n) ∈ N2 \ {(0, 0)}}, (3.46)

where q1 = q1(b,Λ) = qλ and q2 = q2(b,Λ) = λ−1.

Furthermore, for fixed b ∈ B with |q| < 1, for any Λ ∈ L0(b), where

L0(b) := {x ∈ C∗ : |b1b2b3b4| < |x|2 < |b5b6b7b8|}, (3.47)

condition (3.46) is satisfied and this formal solution, written in terms of the variables ζ1 = tφ

and ζ2 = φ−1,

f0,+(ζ1ζ2, ζ
−1
2 ; Λ,b) =

∞∑
n=1

∞∑
m=0

F 0,+
n,n−m(Λ,b)ζn1 ζ

m
2 , (3.48a)

g0,+(ζ1ζ2, ζ
−1
2 ; Λ,b) =

∞∑
n=1

∞∑
m=0

G0,+
n,n−m(Λ,b)ζn1 ζ

m
2 , (3.48b)

converges near (ζ1, ζ2) = (0, 0).

In fact, these expansions are also analytic in Λ. That is, for any L ⊆ L0(b) open with

L ⊆ L0(b), there is an open environment Z ⊆ C2 of 0, such that the series (3.48) converge

uniformly on Z × L, defining holomorphic functions on this set in (ζ,Λ).

Proof. We apply the q-Briot-Bouquet Theorem B.3 with m = 2 to q-P (A1), after a change

of dependent and independent variables. More precisely, inspired by equations (3.48), we

introduce the following variables,

ζ1 = tφ, ζ2 = φ−1, y1 =
f

ζ1
− 1, y2 =

g

ζ1
− Λ, (3.49)
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where ζ1 and ζ2, in accordance with equations (3.30), satisfy

ζ1 = q1ζ1, ζ2 = q2ζ2.

As t = ζ1ζ2, we can rewrite q-P (A1) in terms of these new variables as

y1(q1ζ1, q2ζ2) = H1 (ζ1, ζ2, y1(ζ1, ζ2), y2(ζ1, ζ2); Λ,b) , (3.50a)

y2(q1ζ1, q2ζ2) = H2 (ζ1, ζ2, y1(ζ1, ζ2), y2(ζ1, ζ2); Λ,b) , (3.50b)

for certain rational functions H1(ζ1, ζ2, y1, y2; Λ,b) and H2(ζ1, ζ2, y1, y2; Λ,b).

We apply the q-Briot-Bouquet Theorem B.3 to this system of q-difference equations. We

denote

ζ = (ζ1, ζ2), y = (y1, y2), q = (q1, q2),

and leave it to the interested reader to write down H1(ζ,y; Λ,b) and H2(ζ,y; Λ,b) explicitly.

A rather lengthy calculation shows

H1(0,y; Λ,b) =
(y2 + Λ)2

Λ2(y1 + 1)
− 1, H2(0,y; Λ,b) =

(y2 + Λ)3

Λ2(y1 + 1)2
− Λ,

in particular H(0,0; q,Λ) = 0 and we have

D(Λ,b) :=

(
∂H1
∂y1

(0,0; Λ,b) ∂H1
∂y2

(0,0; Λ,b)
∂H2
∂y1

(0,0; Λ,b) ∂H2
∂y2

(0,0; Λ,b)

)
=

(
−1 2Λ−1

−2Λ 3

)
. (3.51)

Note that 1 is the only eigenvalue of D(Λ,b), with multiplicity 2. Therefore, by the q-

Briot-Bouquet Theorem B.3, if conditions (3.46) are satisfied, then the system of q-difference

equations (3.50) has an unique power series solution of the form

yi(ζ1, ζ2; Λ,b) =
∞∑
n=0

∞∑
m=0

y(i)
n,m(Λ,b)ζn1 ζ

m
2 , (3.52)

with y
(i)
0,0(Λ,b) = 0 for i ∈ {1, 2}.

Associated via equations (3.49), we have the following expansions for f = f(ζ1, ζ2; Λ,b) and

g = g(ζ1, ζ2; Λ,b),

f(ζ1, ζ2; Λ,b) =

∞∑
n=1

∞∑
m=0

fn,m(Λ,b)ζn1 ζ
m
2 , g(ζ1, ζ2; Λ,b) =

∞∑
n=1

∞∑
m=0

gn,m(Λ,b)ζn1 ζ
m
2 , (3.53)

where the coefficients are defined by

fn,m(Λ,b) = y
(1)
n−1,m(Λ,b), gn,m(Λ,b) = y

(2)
n−1,m(Λ,b),

for n ∈ N∗ and m ∈ N with (n,m) 6= (1, 0), and

f1,0(Λ,b) = 1, g1,0(Λ,b) = Λ.
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Rewriting these expansions in terms of the original independent variables t and φ, the formulas

f0,+(t, φ; Λ,b) = f
(
tφ, φ−1; Λ,b

)
, g0,+(t, φ; Λ,b) = g

(
tφ, φ−1; Λ,b

)
,

define formal series solutions of q-P (A1), precisely as described in equations (3.44). Further-

more the q-Briot-Bouquet Theorem B.3 implies that the power series (3.53) converge in an

open environment of (ζ1, ζ2) = (0, 0), if 1 is not a limit point of Q. Note that this condition

is trivially satisfied if 0 < |q1|, |q2| < 1, which is equivalent to Λ ∈ L0(b). We conclude

that the series (3.48) indeed converge locally at (ζ1, ζ2) = (0, 0), for Λ ∈ L0(b). Strictly

speaking, this only shows that the series defines a solution in the two variables t and φ for a

fixed Λ ∈ C∗ such that condition (3.46) holds. Note however, that the proof of Theorem B.3

gives an explicit recursion for the coefficients, which proves that the coefficients F 0,+
n,i (Λ,b)

and G0,+
n,i (Λ,b) are rational functions in their inputs and the formal series solution defines a

solution on a formal level. This finishes the proof of the first part of the theorem.

As to the second part, we would like to prove that the solutions (3.53) depend analytically

on Λ, which is equivalent to proving that the expansions (3.52) are analytic in Λ. To this

end we apply Theorem B.4. As, for any L ⊆ L0(b) with L ⊆ L0(b), the set L is compact, a

simple compactness argument shows that it suffices to prove that for any Λ0 ∈ L0(b), there

is an open environment L ⊆ L0(b) of Λ0, and an open environment Z ⊆ C2 of 0, such that

the series (3.52) converge uniformly on Z × L.

So let us take a Λ0 ∈ L0(b), we denote q0 = (q1(Λ0,b), q2(Λ0,b)) and determine an r > 0

such that

B2
max(q0, r) ⊆ B

2
max(q0, r) ⊆ B2

max(0, 1) \ {q ∈ C2|q1q2 = 0} ⊆ C2,

and set U = B2
max(q0, r).

We have to modify the functions H1(ζ,y; Λ,b) and H2(ζ,y; Λ,b) a bit in order to be able

to apply Theorem B.4, as Λ and b are not independent of q = (q1, q2). Indeed, we have to

reparameterise all variables in terms of q1 and q2. To this end, we keep the value of bi fixed

for 2 ≤ i ≤ 8, but allow b1 and Λ to vary with q. More explicitly, we define

b′1(q) =
q1q2b5b6b7b8

b2b3b4
, b′(q) = (b′1(q), b2, b3, b4, b5, b6, b7, b8), Λ(q) = (b5b6b7b8)

1
2 q

1
2
1 ,

for q ∈ U , where we choose the sign of the square root such that Λ(q0) = Λ0.

Note that at q = q0, the original values of the parameters are recovered, as

b′(q0) = b, Λ(q0) = Λ0,

and Λ(q) is a univalued holomorphic function on U .

We modify H, by setting

H̃(ζ,y; q) = H(ζ,y; Λ(q),b′(q)).

The function H̃(ζ,y; q) is holomorphic at (ζ,y,q) = (0,0,q′) with H̃(0,0,q′) = 0, for every
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q′ ∈ U . The relevant Jacobian matrix of H̃ is given by

D̃(q) :=

(
∂H̃1
∂y1

(0,0; q) ∂H̃1
∂y2

(0,0; q)
∂H̃2
∂y1

(0,0; q) ∂H̃2
∂y2

(0,0; q)

)
= D(Λ(q),b′(q)) =

(
−1 2Λ(q)−1

−2Λ(q) 3

)
,

for q ∈ U , where D(Λ,b) is the Jacobian matrix of H, as defined in equation (3.51).

Again 1 is the only eigenvalue of D̃(q), which is not an element of Q0 as defined in (B.5) with

m = 2, for q ∈ U . We can hence apply Theorem B.4, which gives open environments Z ⊆ C2

and V ⊆ U of 0 and q0 respectively, such that the series yi(ζ; Λ(q),b′(q)), with notation as

in equation (3.52) for i = 1, 2, converge uniformly on Z × V , defining holomorphic functions

in (ζ,q) on this set. To undo the reparameterisation (3.3), we define

q(s) =

(
s2

b5b6b7b8
,
b1b2b3b4
s2

)
,

and determine an open connected environment L ⊆ L0(b) of Λ0, such that

{q(s) : s ∈ L} ⊆ V.

Then we know that the series

Yi(ζ, s) := yi
(
ζ; Λ (q(s)) ,b′ (q(s))

)
,

converge uniformly on Z × L, defining holomorphic functions in (ζ, s) on this set.

Note however, that we have, for s ∈ L,

Λ (q(s)) = s, b′ (q(s)) = b,

and hence

Yi(ζ, s) = yi (ζ; s,b) .

The theorem follows.

Remark 3.3.2. In fact, the expansions (3.48) also depend analytically on the parameters b.

That is, given b0 ∈ B and Λ0 ∈ L0(b0), there exist open environments Z ⊆ C2, L ⊆ C and

B ⊆ B of 0, Λ0 and b0 respectively, such that for any (Λ,b) ∈ L×B, we have Λ ∈ L0(b) and

the series (3.48) converge uniformly on Z × L × B, defining holomorphic functions on this

set in (ζ,Λ,b). This can be proven easily by incorporating parameters in Theorem B.4, see

Remark B.5.

As desired, we have

F 0,+
1 (φ; Λ,b) = F (φ), G0,+

1 (φ; Λ,b) = G(φ), (3.54)

where F and G are defined as in equations (3.29). Furthermore the coefficients F 0,+
n (φ; Λ,b)

and G0,+
n (φ; Λ,b) indeed satisfy equations (3.43).

In Theorem 3.3.1 the plus superscripts reflect the fact that there are only finitely many

positive powers of φ occuring in the Laurent series (3.45), we define the dual ‘minus’ solutions



56 CHAPTER 3. LOCAL BEHAVIOUR OF SOLUTIONS NEAR CRITICAL POINTS

as follows

f0,−(t, φ; Λ,b) = f0,+

(
t, µ(Λ,b)φ−1;

b1b2b3b4
Λ

,b

)
, (3.55a)

g0,−(t, φ; Λ,b) = g0,+

(
t, µ(Λ,b)φ−1;

b1b2b3b4
Λ

,b

)
. (3.55b)

Note that indeed, by Theorem 3.3.1, this defines a formal solution to q-P (A1), as

µ(Λ,b)φ−1 =

(
b1b2b3b4

Λ

)2

b1b2b3b4
µ(Λ,b)φ−1.

Analogously to the expansions (3.44) and (3.45), we have

f0,−(t, φ; Λ,b) =
∞∑
n=1

F 0,−
n (φ; Λ,b)tn, g0,−(t, φ; Λ,b) =

∞∑
n=1

G0,−
n (φ; Λ,b)tn, (3.56)

with, for n ∈ N∗,

F 0,−
n (φ; Λ,b) =

∞∑
i=−n

F 0,−
n,i (Λ,b)φi, G0,−

n (φ; Λ,b) =
∞∑

i=−n
G0,−
n,i (Λ,b)φi, (3.57)

where, for i ∈ Z≥−n,

F 0,−
n,i (Λ,b) = F 0,+

n,−i

(
b1b2b3b4

Λ
,b

)
µ(Λ,b)−i, G0,−

n,i (Λ,b) = G0,+
n,−i

(
b1b2b3b4

Λ
,b

)
µ(Λ,b)−i.

Using the symmetries

µ

(
b1b2b3b4

Λ

)
= µ(Λ,b), Feq

(
b1b2b3b4

Λ

)
= Feq(Λ,b), Geq

(
b1b2b3b4

Λ

)
= Geq(Λ,b),

it is easy to see that

F 0,−
1 (φ; Λ,b) = F (φ,Λ) = F 0,+

1 (φ; Λ,b), G0,−
1 (φ; Λ,b) = G(φ,Λ) = G0,+

1 (φ; Λ,b), (3.58)

where F (φ,Λ) and G(φ,Λ) are as defined in equations (3.29).

Note that this implies that the coefficients of the formal ‘plus’ and ‘minus’ series solutions,

(3.45) and (3.57), satisfy the same recursive system of difference equations (3.43), with the

same initial values (3.58). Motivated by this plausibility argument, we formulate the following

conjecture.

Conjecture 3.3.3. The formal series solutions (3.44) and (3.56) are equal, that is,

f0,+(t, φ; Λ,b) = f0,−(t, φ; Λ,b), g0,+(t, φ; Λ,b) = g0,−(t, φ; Λ,b),
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or equivalently, for n ∈ N∗, the Laurent series (3.45) terminate at i = −n, that is,

F 0,+
n (φ; Λ,b) =

n∑
i=−n

F 0,+
n,i (Λ,b)φi, G0,+

n (φ; Λ,b) =
n∑

i=−n
G0,+
n,i (Λ,b)φi. (3.59)

In particular, by equations (3.55), we have, for n ∈ N∗ and i ≤ n,

µ(Λ,b)iF 0,+
n,i

(
b1b2b3b4

Λ
,b

)
= F 0,+

n,−i(φ; Λ,b), (3.60a)

µ(Λ,b)iG0,+
n,i

(
b1b2b3b4

Λ
,b

)
= G0,+

n,−i(φ; Λ,b). (3.60b)

Equations (3.54) show that (3.59) is true when n = 1 and we have checked the case n = 2

using Mathematica. As an additional check, Proposition 3.5.1 is consistent with equations

(3.60).

Remark 3.3.4. By equations (3.54) and (3.29), we see that the coefficients F 0,+
1 and G0,+

1

are only singular when Λ2 = b1b2b3b4. Reflecting on the proofs of Theorem 3.3.1 and B.3,

this implies that condition (3.46) in Theorem 3.3.1 can be relaxed to 1 /∈ Q1, where Q1 ⊆ Q

equals

Q1 = {qm1 qn2 : (m,n) ∈ N2 \ {0, 0} with m ≥ 1} ∪ {q2}.

In particular, if |q2| = 1 with q2 6= 1 and |q1| < 1, then the convergence of expansions (3.48)

still holds. If Conjecture 3.3.3 is true, then condition (3.46) can be relaxed further, to 1 /∈ Qrel,

where Qrel ⊆ Q is defined as

Qrel = {qm1 qn2 : (m,n) ∈ N2 \ {0, 0} with n ≤ m+ 1}.

3.3.1 Formal Series Solution about Infinity

The Bäcklund transformation T4 defined in (2.11), shows that the critical points 0 and∞ play

an essentially equivalent role in q-P (A1). Using Bäcklund transformation T2 and Theorem

3.3.1, it is easy to see that

f = tg0,+

(
1

t
, φ̃; Λ̃,b(2)

)
, g = tf0,+

(
1

t
, φ̃; Λ̃,b(2)

)
, (3.61)

defines a formal solution to q-P (A1)(b), if Λ̃ and φ̃ satisfy

Λ̃ = Λ̃, φ̃ = λ̃−1φ̃, λ̃ =
Λ̃2

b
(2)
1 b

(2)
2 b

(2)
3 b

(2)
4

. (3.62)

We introduce formal variables Λ∞ and φ∞ satisfying

Λ∞ = Λ∞, φ∞ = λ∞φ∞, λ∞ =
Λ2
∞

b5b6b7b8
, (3.63)
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and set

Λ̃ =
1

Λ∞
, φ̃ = Λ∞φ∞.

Observe that equations (3.62) are satisfied, and upon substitution into equation (3.61), we

find that

f∞,+(t, φ∞; Λ∞,b) = tg0,+

(
1

t
,Λ∞φ∞;

1

Λ∞
,b(2)

)
, (3.64a)

g∞,+(t, φ∞; Λ∞,b) = tf0,+

(
1

t
,Λ∞φ∞;

1

Λ∞
,b(2)

)
, (3.64b)

defines a formal series solution to q-P (A1)(b) at t =∞.

Indeed, expanding this solution in t and φ∞, we find

f∞,+(t, φ∞; Λ∞,b) =
∞∑
n=0

F∞,+n (φ∞; Λ∞,b)t−n,

g∞,+(t, φ∞; Λ∞,b) =
∞∑
n=0

G∞,+n (φ∞; Λ∞,b)t−n,

with, for n ∈ N,

F∞,+n (φ∞; Λ∞,b) = G0,+
n+1

(
Λ∞φ∞;

1

Λ∞
,b(2)

)
,

G∞,+n (φ∞; Λ∞,b) = F 0,+
n+1

(
Λ∞φ∞;

1

Λ∞
,b(2)

)
,

and hence

F∞,+n (φ∞; Λ∞,b) =

n+1∑
i=−∞

F∞,+n,i (Λ∞,b)φi∞, G∞,+n (φ∞; Λ∞,b) =
n+1∑
i=−∞

G∞,+n,i (Λ∞,b)φi∞,

where, for n ∈ N and i ∈ Z≤n+1,

F∞,+n,i (Λ∞,b) = Λi∞G
0,+
n+1,i

(
1

Λ∞
,b(2)

)
, G∞,+n,i (Λ∞,b) = Λi∞F

0,+
n+1,i

(
1

Λ∞
,b(2)

)
.

Of course we can formulate analogous convergence results to the ones in Theorem 3.3.1. To

obtain the dual ‘minus’ solutions at infinity, we again take Λ∞ and φ∞ satisfying equations

(3.63), and set

Λ̃ =
Λ∞

b5b6b7b8
, φ̃ = µ

(
Λ∞

b5b6b7b8
,b(2)

)
1

Λ∞φ∞
.

in equations (3.61).
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3.3.2 Symmetries of Formal Series Solution

In Section 2.2.4 we discussed several Bäcklund transformations of q-P (A1). Using these we

can find symmetries of the formal series solution (3.44). We discuss three such examples.

First of all, note that for any permutation

σ ∈ Sym({1, 2, 3, 4})× Sym({5, 6, 7, 8}), (3.65)

q-P (A1) is invariant under permutation of the parameters σ(b)i = bσ(i) correspondingly for

1 ≤ i ≤ 8, and using Theorem 3.3.1 we deduce

f0,+(t, φ; Λ,b) = f0,+ (t, φ; Λ, σ(b)) , g0,+(t, φ; Λ,b) = g0,+ (t, φ; Λ, σ(b)) . (3.66)

Next, we would like to derive a symmetry of the formal series solution (3.44) by application of

Bäcklund transformation T1 as defined in (2.11). Consider formal variables φ and Λ satisfying

(3.30) and put

φ̃ =
1

tφ
, Λ̃ =

1

Λ
.

Then we have

Λ̃ = Λ̃, φ̃ =
Λ̃2

b
(1)
1 b

(1)
2 b

(1)
3 b

(1)
4

φ̃,

and by Theorem 3.3.1 this implies that

f0,+
(
t, φ̃; Λ̃,b(1)

)
= f0,+

(
t,

1

tφ
;

1

Λ
,b(1)

)
, g0,+

(
t, φ̃; Λ̃,b(1)

)
= g0,+

(
t,

1

tφ
;

1

Λ
,b(1)

)
,

defines a formal solution to q-P (A1)(b(1)).

We apply Bäcklund transformation T1, which shows that

f(t, φ) =
t

f0,+
(
t, 1
tφ ; 1

Λ ,b
(1)
) , g(t, φ) =

t

g0,+
(
t, 1
tφ ; 1

Λ ,b
(1)
) , (3.67)

defines a formal solution to q-P (A1)(b).

We expand this solution in powers of t and φ and prove that it is exactly the formal series

solution (3.44). First of all, for the denominators in (3.67), expanding in t gives

f0,+

(
t,

1

tφ
;

1

Λ
,b(1)

)
=
∞∑
m=0

f̃m(φ; Λ,b)tm,

g0,+

(
t,

1

tφ
;

1

Λ
,b(1)

)
=

∞∑
m=0

g̃m(φ; Λ,b)tm,
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where, for m ∈ N,

f̃m(φ; Λ,b) =
m−1∑
i=−∞

F 0,+
m−i,−i

(
1

Λ
,b(1)

)
φi, (3.68a)

g̃m(φ; Λ,b) =
m−1∑
i=−∞

G0,+
m−i,−i

(
1

Λ
,b(1)

)
φi. (3.68b)

We can hence expand equations (3.67) in t, using for instance the Lagrange inversion formula,

to obtain

f(t, φ) =
1

f̃0(φ; Λ,b)
t− f̃1(φ; Λ,b)

f̃0(φ; Λ,b)2
t2 + . . . , (3.69a)

g(t, φ) =
1

g̃0(φ; Λ,b)
t− g̃1(φ; Λ,b)

g̃0(φ; Λ,b)2
t2 + . . . , (3.69b)

and compare the result with the formal series solution (3.44).

Indeed, by expanding the coefficients of the series (3.69) with respect to φ, we see that they

are of exactly the same form as solutions (3.44), that is, we can find F̃n,i and G̃n,i for i ∈ N≤n
and n ∈ N∗ such that

f(t, φ) =

∞∑
n=1

n∑
i=−∞

F̃n,it
nφi, g(t, φ) =

∞∑
n=1

n∑
i=−∞

G̃n,it
nφi.

In particular, calculating F̃1,1 and G̃1,1 gives

F̃1,1 =
1

F 0,+
1,1

(
1
Λ ,b

(1)
) = 1, G̃1,1 =

1

G0,+
1,1

(
1
Λ ,b

(1)
) = Λ.

Therefore, by the uniqueness property of the formal series solution (3.44) in Theorem 3.3.1,

we have

f(t, φ) = f0,+(t, φ; Λ,b), g(t, φ) = g0,+(t, φ; Λ,b),

and hence, by the definition of f and g (3.67), we obtain the formal identities

f0,+(t, φ; Λ,b)f0,+

(
t,

1

tφ
;

1

Λ
,b(1)

)
= t, g0,+(t, φ; Λ,b)g0,+

(
t,

1

tφ
;

1

Λ
,b(1)

)
= t. (3.70)

These equations induce a countable number of identities among the coefficients, each one

given by comparing the coefficients of a positive power of t. In particular, comparing the

coefficients of the lowest order term t, we obtain

F 0,+
1 (φ; Λ,b)f̃0 (φ; Λ,b) = 1, G0,+

1 (φ; Λ,b)g̃0 (φ; Λ,b) = 1. (3.71)
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Combining this identity with equations (3.54), (3.21) and (3.68), we find generating functions,

x

1 + Feq(Λ,b)x+ µ(Λ,b)x2
=

∞∑
i=1

F 0,+
i,i

(
1

Λ
,b(1)

)
xi, (3.72a)

x

Λ +Geq(Λ,b)x+ b1b2b3b4
Λ µ(Λ,b)x2

=
∞∑
i=1

G0,+
i,i

(
1

Λ
,b(1)

)
xi. (3.72b)

Similarly, using Bäcklund transformation T3, we find formal identities

f0,+(t, φ; Λ,b) = g0,+

(
q−

1
2 t, q−

1
2
b1b2b3b4

Λ
φ;

Λ

b5b6b7b8
,b(3)

)
, (3.73)

g0,+(t, φ; Λ,b) = f0,+

(
q−

1
2 t, q

1
2 Λφ;

Λ

b5b6b7b8
,b(3)

)
. (3.74)

These equations plays an important role in Section 3.8, where we consider the formal series

solution in the perspective of the reduction to symmetric q-P (A1), as described in Section

2.5.

3.4 Constructing True Solutions

In this section we use the formal series solution (3.44) to construct true solutions of q-P (A1).

The idea is relatively straightforward, we replace the formal variables Λ and φ with actual

functions satisfying equations (3.30). We first discuss how to construct discrete solutions.

3.4.1 Discrete Solutions

As usual, we adopt the discrete time interpretation

ts = qst0, fs = f(ts), gs = g(ts). (s ∈ Z)

In this setting, we interpret equations (3.30) as follows,

Λs+1 = Λs, φs+1 = λsφs, λs =
Λ2
s

b1b2b3b4
. (3.75)

Let us take any φ0 ∈ C∗ and Λ0 ∈ L0(b), as defined in (3.47). In accordance with Theorem

3.3.1 and equations (3.75), we put

λ0 =
Λ2

0

b1b2b3b4
, q1 = qλ0, q2 = λ−1

0 ,

and define, for s ∈ Z,

φs = λs0φ0, (ζ1)s = qs1φ0t0, (ζ2)s = qs2φ
−1
0 .
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As Λ0 ∈ L0(b), Theorem 3.3.1 shows that there is an r > 0 such that the expansions (3.48)

with Λ = Λ0 converge for all (ζ1, ζ2) ∈ C2 with |ζ1|, |ζ2| < r. Note that 0 < |q1|, |q2| < 1 and

we determine an S ∈ Z, such that, for all s ≥ S,

|(ζ1)s|, |(ζ2)s| < r.

Then we know, that for all s ≥ S,

fs = f0,+(ts, φs; Λ0,b) =

∞∑
n=1

∞∑
m=0

F 0,+
n,n−m(Λ0,b)(ζ1)ns (ζ2)ms , (3.76a)

gs = g0,+(ts, φs; Λ0,b) =
∞∑
n=1

∞∑
m=0

G0,+
n,n−m(Λ0,b)(ζ1)ns (ζ2)ms , (3.76b)

are well-defined, and converge uniformly in s on Z≥S , defining a solution of q-P (A1).

Guaranteed by the singularity confinement property, we have an unique continuation of

(fs, gs)s≥S to a full solution (fs, gs)s∈Z in P× P. Note that this solution is completely deter-

mined by our initial choices for Λ0 and φ0, that is, writing

(fs, gs)s∈Z = (fs(Λ0, φ0), gs(Λ0, φ0))s∈Z,

we found a family of solutions of q-P (A1) on discrete q-domains, with two arbitrary integration

constants Λ0 ∈ L0(b) and φ0 ∈ C∗. Note that the leading order behaviour is given by

fs ∼ (qλ0)st0φ0, gs ∼ Λ0(qλ0)st0φ0. (s→∞) (3.77)

3.4.2 Meromorphic Solutions

To construct solutions on a continuous q-domain, we replace the formal variables φ and Λ,

in the formal series solution (3.44), by analytic functions on this q-domain which satisfy

equations (3.30). Before stating the main theorem of this section, let us introduce some

notation. For a set V ⊆ C∗, we denote its closure in C∗ by V
∗
.

Theorem 3.4.1. Let b ∈ Bq. Suppose we have a continuous q-domain T , a function Λ(t)

which is analytic on T and q-periodic, i.e. Λ(qt) = Λ(t), satisfying Λ(t) ∈ L0(b), for t ∈ T .

Let φ(t) be a nonvanishing analytic function on T , satisfying

φ(qt) = λ(t)φ(t), λ(t) :=
Λ(t)2

b1b2b3b4
. (t ∈ T ) (3.78)

Then there exists an unique (nowhere singular) meromorphic solution (f(t), g(t)) of q-P (A1)

on T , characteristed by the fact that, for every continuous q-domain V ⊆ V
∗ ⊆ T , there is
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an r > 0, such that the series

f0,+(t, φ(t); Λ(t),b) =
∞∑
n=1

n∑
i=−∞

F 0,+
n,i (Λ(t),b)tnφ(t)i, (3.79a)

g0,+(t, φ(t); Λ(t),b) =

∞∑
n=1

n∑
i=−∞

G0,+
n,i (Λ(t),b)tnφ(t)i, (3.79b)

converge uniformly on

V ∩ {t ∈ C∗ : |t| < r},

and we have f(t) ≡ f0,+(t, φ(t); Λ(t),b) and g(t) ≡ g0,+(t, φ(t); Λ(t),b) on this set.

In particular the leading order behaviour of this solution within T , i.e. on V as above, is

given by

f(t) ∼ φ(t)t, g(t) ∼ Λ(t)φ(t)t. (t→ 0) (3.80)

Proof. Let us take any continuous q-domain V ⊆ T , such that V
∗ ⊆ T . We define

Vann = V ∩ {t ∈ C : 1 ≤ |t| ≤ |q|−1},

then Vann is a compact subset of T , and we set

λ+ = sup
t∈Vann

|λ(t)|, λ− = inf
t∈Vann

|λ(t)|, φ+ = sup
t∈Vann

|φ(t)|, φ− = inf
t∈Vann

|φ(t)|.

As Λ(t) ∈ L0(b) for t ∈ T , we have

1 < λ− ≤ λ+ < |q|−1. (3.81)

By equation (3.78), we obtain,

(λ−)log|q|(|t|)φ− ≤ |φ(t)| ≤ (λ+)log|q|(|t|)+1φ+,

for all t ∈ V .

Let us introduce the variables

ζ1(t) = tφ(t), ζ2(t) = φ(t)−1,

then we have inequalities

|ζ1(t)| ≤ λ+φ+(|q|λ+)log|q|(|t|), (3.82a)

|ζ2(t)| ≤
(
φ−
)−1

(λ−)− log|q|(|t|), (3.82b)

for t ∈ V .

Determine L ⊆ L0(b) open with L ⊆ L0(b), such that

{Λ(t) : t ∈ V } ⊆ L.
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By Theorem 3.3.1, there is an open environment Z ⊆ C2 of 0, such that the series (3.48)

converge uniformly in (ζ,Λ) on Z × L. By inequalities (3.81) and (3.82), we can determine

an r > 0 such that ζ(t) ∈ Z for |t| < r. It follows that the series (3.79) converge uniformly

on (3.4.1), defining an analytic solution of q-P (A1) on this set. We apply Lemma (2.1.2) to

meromorphically continue this solution to a solution (fV , gV ) on V . As we can do so for any

continuous q-domain V ⊆ V
∗ ⊆ T , we take the union of these solutions fV (t) and gV (t),

giving an unique meromorphic solution (f(t), g(t)) of q-P (A1) on T .

Note that we can formulate a real version of Theorem 3.4.1. That is, assume that the

parameters b satisfy

{b1, b2, b3, b4} = {b1, b2, b3, b4}, {b5, b6, b7, b8} = {b5, b6, b7, b8},

with q ∈ (0, 1).

We let φ(t) and Λ(t) be real valued continuous functions satisfying Λ(t) ∈ L0(b) and (3.78)

on R+. Then there is an r > 0 such that the series expansions (3.79) converge uniformly

on (0, r) and f(t) = f0,+(t, φ(t); Λ(t),b) and g(t) = g0,+(t, φ(t); Λ(t),b) define a real-valued

continuous solution of q-P (A1) on (0, r). If φ(t) and Λ(t) are real analytic, then f(t) and g(t)

are real analytic on (0, r) and there exists an unique piecewise real analytic continuation to a

solution on R+.

In the coming sections, we discuss special cases of the construction in Theorem 3.4.1,

leading to different types of interesting leading order behaviour.

3.4.3 Complex Power Type Critical Behaviour

We consider Theorem 3.4.1, where we choose Λ(t) ≡ Λ ∈ L0(b) constant. Then the associated

λ(t) ≡ λ is also constant and we determine a ρ ∈ C such that exp [ρ ln q] = λ. We choose

a φ0 ∈ C∗ and set φ(t) = φ0t
ρ. As ρ /∈ Z, we have to impose a branchcut on the domain

T ⊆ C∗, and in order to meet the requirement qT = T , we set this branchcut equal to −qR.

That is, we define

T = C∗ \ {−qs : s ∈ R} , qs := exp [s ln q]. (s ∈ R) (3.83)

Then we can define the complex exponential tρ uni-valued on T , with φ(qt) = λφ(t) for all

t ∈ T . Explicitly we define tρ on T as follows. Let t ∈ T , then there are unique s ∈ R and

θ ∈ (−π, π) such that t = qseiθ, and we set

tρ = λse−=(ρ)θe<(ρ)θi. (3.84)
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Applying Theorem 3.4.1 gives us an unique meromorphic solution (f(t), g(t)) of q-P (A1) on

T , such that f(t) and g(t) are described by

f(t) = f0,+ (t, φ0t
ρ; qρ,b) =

∞∑
n=1

n∑
i=−∞

F 0,+
n,i (qρ,b)φi0t

ρi+n, (3.85a)

g(t) = g0,+ (t, φ0t
ρ; qρ,b) =

∞∑
n=1

n∑
i=−∞

G0,+
n,i (qρ,b)φi0t

ρi+n, (3.85b)

for t close to 0, on every continuous q-domain V ⊆ V ∗ ⊆ T .

However, since λ is constant, we can do a bit better. There is an r > 0, such that the

expansions (3.85) converge uniformly on

T ∩ {t ∈ C∗ : |t| < r}.

An interesting special case occurs when λ ∈ qR, then we can choose ρ ∈ R, and as 1 < |λ| <
|q|−1, we have −1 < ρ < 0. In Section 3.8.2 we identify the critical behaviour (3.85) with the

complex power type behaviour of solutions of Painlevé VI found by Jimbo [42] near critical

points, in the continuum limit q → 1. We remark that Mano [61] found similar complex power

type critical behaviour for solutions of q-PVI (4.2), the q-analog of PVI derived by Jimbo and

Sakai [43].

3.4.4 Oscillatory Type Critical Behaviour

Another case of special interest is given by setting λ = eθi in Theorem 3.4.1, where θ ∈ R\2πZ.

Indeed, by Remark 3.3.4, the expansions (3.44) are well-defined in this case, and converge.

This gives rise to solutions of q-P (A1) with leading order behaviour of oscillatory type. Indeed,

given a continuous q-domain T and a nonvanishing function φ(t) satisfying φ(qt) = eθiφ(t)

on T , setting

Λ(t) = Λ = ±(b1b2b3b4)
1
2 e

1
2
θi,

we can construct an unique meromorphic solution (f(t), g(t)) of q-P (A1) on T , such that,

for every continuous q-domain V ⊆ V
∗ ⊆ T , there is an r > 0, such that the series (3.79)

converge uniformly in t on

V ∩ {t ∈ C∗ : |t| < r},

and we have f(t) ≡ f0,+(t, φ(t); Λ,b) and g(t) ≡ g0,+(t, φ(t); Λ,b) on this set.

The leading order behaviour of this solution, as t→ 0 within T , is given by

f(t) = t
(
φ(t) + Feq(Λ,b) + µ(Λ,b)φ(t)−1

)
+O

(
t2
)
, (3.86a)

g(t) = t(Λφ(t) +Geq(Λ,b) +
b1b2b3b4

Λ
µ(Λ,b)φ(t)−1) +O

(
t2
)
. (3.86b)

If θ ∈ πQ, then φ(t) is periodic, leading to a vast number of possible oscillatory type asymp-

totics in equations (3.87), for different choices of φ(t). On the other hand, for any φ0 ∈ C∗,
we can set φ(t) = φ0t

ρ, as defined in (3.84), where ρ = iθ ln (q)−1, on T as defined in (3.83).

Then we have φ(qst) = φ(t), where s = 2π
θ ∈ R, which gives oscillatory type asymptotics in
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equations (3.86) on q-spirals as well. Heuristically speaking, the latter critical behaviour is

related to the oscillatory type critical behaviour of solutions of the sixth Painlevé equation,

obtained by Guzzetti [24], via the continuum limit.

Let us get back to the general case. Applying Bäcklund Transformation T1 to the solution

(f(t), g(t)), we find that

f̃(t) =
t

f(t)
, g̃(t) =

t

g(t)
,

defines a meromorphic solution of q-P (A1)(b(1)) on T , with

f̃(t) =
1

φ(t) + Feq(Λ,b) + µ(Λ,b)φ(t)−1 +O (t)
, (3.87a)

g̃(t) =
1

Λφ(t) +Geq(Λ,b) + b1b2b3b4
Λ µ(Λ,b)φ(t)−1 +O (t)

, (3.87b)

as t → 0 in T . We remark that Guzzetti [24] also obtained inverse oscillatory type critical

behaviour for the sixth Painlevé equation.

Accumulating Poles and Base Points

Note that the leading order terms in equations (3.86) can not vanish identically on a non-

empty open subset of T , except for a very special choice of the parameters b ∈ Bq and

λ = eθi = −1, which we leave to the interested reader to explore. However, for special choices

of φ(t), poles of f̃(t) and g̃(t) might accumulate at t = 0 in T . For example, let us again take

a φ0 ∈ C∗, and set φ(t) = φ0t
ρ, as defined in (3.84), where ρ = iθ ln (q)−1, on T as defined in

(3.83). Then we have φ(qst) = φ(t), where s = 2π
θ ∈ R. Let x1 and x2 denote the zeros of

x+ Feq(Λ,b) + µ(Λ,b)x−1.

Say ti ∈ T satisfies φ(ti) = xi for i = 1, 2, and assume s > 0. Then the leading order term

of f(t) in (3.86) vanishes on the spirals {qnsti : n ∈ N}, with i = 1, 2, which accumulate at

t = 0. One can image that asymptotic to these spirals, there exists approximate spirals of

true poles of f(t), accumulating at t = 0. We do not pursue to make such estimates rigorous

here, but note that a similar argument has been employed by Guzzetti [28] to prove existence

of critical behaviour of solutions of the sixth Painlevé equation, at for instance the critical

point 0, with two rays of poles accumulating at the critical point.

Now let us consider the critical behaviour (3.86) in light of for instance the base point

p1 = (t/b1, b1t). The two polynomial equations

φ+ Feq(Λ,b) + µ(Λ,b)φ−1 = 1/b1, (3.88)

Λφ+Geq(Λ,b) +
b1b2b3b4

Λ
µ(Λ,b)φ−1 = b1, (3.89)

have the common solution

φ∗ =
b1(Λ + b2b3)(Λ + b2b4)(Λ + b3b4)

(b1b2b3b4 − Λ2)2
,



3.4. CONSTRUCTING TRUE SOLUTIONS 67

which can be checked by direct computation. Let φ(t) be as above, and suppose t0 ∈ T is

such that φ(t0) = φ∗. Then we have

(f(t), g(t)) = (t/b1, b1t) +O
(
t2
)
,

as t→ 0 in {qnst0 : n ∈ N}. Again it is not implausible for an approximate spiral asymptotic

to {qnst0 : n ∈ N} to exist on which the solution hits base points, accumulating at t = 0.

Note that we can not realise the case s = 1, which would heuristically speaking contradict

2.3.3 asymptotically.

3.4.5 An Asymptotic Formula

Given Λ(t) and φ(t), we are interested in obtaining numerics of the via Theorem 3.4.1 associ-

ated solution. From a theoretical point of view, we could obtain arbitrary accurate numerics

of the solution (f(t), g(t)) in T close to t = 0, by calculating sufficiently many coefficients in

the series (3.79). However, in practice these coefficients seem to be quite hard to calculate

for large n. As an example, writing the coefficients F 0,+
2,0 (Λ,b) and G0,+

2,0 (Λ,b) of expansions

(3.45), down explicitly as a ratio of polynomials in Λ and b1, . . . , b8 already requires a couple

of pages. Despite this drawback, note that for continuous q-domains V ⊆ V
∗ ⊆ T , we have

1 ≺ φ(t) ≺ t−1 on V as t→ 0. Therefore

φ(t)−1 ≺ t, φ(t)itn ≺ t,

for i ∈ Z<n and n ≥ 2, as t→ 0 in V .

Hence, by Theorem 3.4.1 and equations (3.79), we have

f(t) = f0,+(t, φ(t); Λ(t),b) = F 0,+
1,0 (Λ(t),b)t+

∞∑
n=1

F 0,+
n,n (Λ(t),b)tnφ(t)n + o(t),

g(t) = g0,+(t, φ(t); Λ(t),b) = G0,+
1,0 (Λ(t),b)t+

∞∑
n=1

G0,+
n,n(Λ(t),b)tnφ(t)n + o(t),

as t→ 0 in V .

And therefore, using equations (3.72), we obtain

f(t) = F 0,+
1,0 (Λ(t),b)t+

1

F 0,+
1

(
t−1φ(t)−1,Λ(t)−1,b(1)

) + o(t),

g(t) = G0,+
1,0 (Λ(t),b)t+

1

G0,+
1

(
t−1φ(t)−1,Λ(t)−1,b(1)

) + o(t),

as t → 0 in V , and explicit formulas for F 0,+
1 and G0,+

1 are given by equations (3.29) and

(3.54).
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3.4.6 Critical Behaviour near Infinity

As t = 0 and t = ∞ play an equivalent role in q-P (A1), we can easily formulate an analog

result for Theorem 3.4.1 around t =∞.

Theorem 3.4.2. Let b ∈ Bq, suppose we have a continuous q-domain T , a function Λ∞(t)

which is analytic on T and q-periodic, i.e. Λ∞(qt) = Λ∞(t), satisfying Λ∞(t) ∈ L0(b), for

t ∈ T . Let φ∞(t) be a nonvanishing analytic function on T , satisfying

φ∞(qt) = λ∞(t)φ∞(t), λ∞(t) :=
Λ∞(t)2

b5b6b7b8
. (t ∈ T ) (3.90)

Then there exists an unique (nowhere singular) meromorphic solution (f(t), g(t)) of q-P (A1)

on T , characteristed by the fact that, for every continuous q-domain V ⊆ V
∗ ⊆ T , there is

an r > 0, such that the series

f∞,+(t, φ∞(t); Λ∞(t),b) =

∞∑
n=0

n+1∑
i=−∞

F∞,+n,i (Λ∞(t),b)t−nφ∞(t)i, (3.91a)

g∞,+(t, φ∞(t); Λ∞(t),b) =
∞∑
n=0

n+1∑
i=−∞

G∞,+n,i (Λ∞(t),b)t−nφ∞(t)i, (3.91b)

converge uniformly on

V ∩ {t ∈ C∗ : |t−1| < r},

and we have f(t) ≡ f∞,+(t, φ∞(t); Λ∞(t),b) and g(t) ≡ g∞,+(t, φ∞(t); Λ∞(t),b) on this set.

In particular the leading order behaviour of this solution within T , i.e. in V as above, is given

by

f(t) ∼ φ∞(t), g(t) ∼ Λ∞(t)φ∞(t). (t→∞) (3.92)

Proof. The proof is analogous to the proof of Theorem 3.4.1.

Similar to the beginning of Section 3.4, we construct solutions on a discrete q-domain

qZt0, by taking a Λ∞ ∈ L0(b) and φ∞ ∈ C∗, setting

ts = qst0, λ∞ =
Λ2
∞

b5b6b7b8
,

and determining an S ∈ Z, such that

fs = f0,+(ts, λ
s
∞φ∞; Λ0,b), gs = g0,+(ts, λ

s
∞φ∞; Λ0,b),

converge uniformly in s on Z≤S , defining a solution of q-P (A1).

Guaranteed by the the singularity confinement property, we have an unique continuation

of (fs, gs)s≤S to a full solution (fs, gs)s∈Z in P × P. Note that this solution is completely

determined by our initial choices for Λ∞ and φ∞, that is, writing

(fs, gs)s∈Z = (fs(Λ∞, φ∞), gs(Λ∞, φ∞))s∈Z,



3.5. SIX SPECIAL ONE-PARAMETER FAMILIES OF CRITICAL BEHAVIOUR 69

we found a family of solutions of q-P (A1) on discrete q-domains, with two arbitrary integration

constants Λ∞ ∈ L0(b) and φ∞ ∈ C∗. Furthermore we have asymptotic formula

fs ∼ λs∞φ∞, gs ∼ Λ∞λ
s
∞φ∞. (s→ −∞)

3.5 Six Special One-Parameter Families of Critical Behaviour

As a consequence of Conjecture 3.3.3, we expect the inner summations in (3.45) to terminate

at i = 0, i.e. all negative powers of φ to disappear, when Λ is equal to any of the roots of

µ(Λ,b). Indeed we have the following result.

Proposition 3.5.1. Let k ∈ {1, 2, 3}, and Λ±k and λk be defined as in Section (3.2.2), where

we fix the sign ± throughout the proposition. Take b ∈ B such that

1 /∈ Qs := {(λ±1
k q)m−1qn : (m,n) ∈ N2 \ {(1, 0)}. (3.93)

Then, setting Λ = Λ±k , the formal solution (3.44) of q-P (A1), defined in Theorem 3.3.1, takes

the form

f0,+(t, φ; Λ±k ,b) =
∞∑
n=1

n∑
i=0

F 0,+
n,i (Λ±k ,b)φitn, (3.94a)

g0,+(t, φ; Λ±k ,b) =
∞∑
n=1

n∑
i=0

G0,+
n,i (Λ±k ,b)φitn, (3.94b)

where φ satisfies φ = λ±1
k φ.

Assuming |q| < 1, |λ±1
k | < |q|

−1 and λ±1
k /∈ qN∗, condition (3.93) is satisfied and this formal

solution, written in terms of the variables t and ζ1 = tφ,

f0,+(t, ζ1/t; Λ±k ,b) =
∞∑
m=1

F 0,+
m,0(Λ±k ,b)tm +

∞∑
i=1

∞∑
m=0

F 0,+
m+i,i(Λ

±
k ,b)ζi1t

m, (3.95a)

g0,+(t, ζ1/t; Λ±k ,b) =
∞∑
m=1

G0,+
m,0(Λ±k ,b)tm +

∞∑
i=1

∞∑
m=0

G0,+
m+i,i(Λ

±
k ,b)ζi1t

m, (3.95b)

converges near (t, ζ1) = (0, 0).

Furthermore, the pair of isolated power series in (3.95), equals the solution (f (1,k), g(1,k)),

holomorphic at t = 0, defined in Proposition 3.1.2, that is,

f0,+(t, 0; Λ±k ,b) =
∞∑
m=1

F 0,+
m,0(Λ±k ,b)tm = f (1,k)(t), (3.96a)

g0,+(t, 0; Λ±k ,b) =

∞∑
m=1

G0,+
m,0(Λ±k ,b)tm = g(1,k)(t), (3.96b)

and in particular these do not depend on the choice of sign ± in Λ±k .
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Proof. For notational simplicity, we discuss the particular case Λ = Λ+
1 = −b1b2, noting that

the other cases can be dealt with analogously. We assume condition (3.93) with k = 1 and

± = +, plus the additional conditions

b1 + b2 6= b3 + b4, b−1
1 + b−1

2 6= b−1
3 + b−1

4 , 1 /∈ λ2
1Qs. (3.97)

Once we have proven the proposition with these additional assumptions, we can easily discard

them by analytic continuation using Remark 3.3.2. Indeed, given the proposition, we find,

that condition (3.46) in Theorem 3.3.1 can be replaced by 1 /∈ Qs when Λ = Λ+
1 , as in Remark

3.3.4. The idea of the proof is to construct a formal solution (f(t, φ), g(t, φ)) of q-P (A1), which

has an expansion in t and φ, exactly of the form (3.94), and subsequently use the uniqueness

property in Theorem 3.3.1 to conclude

f0,+(t, φ; Λ+
1 ,b) = f(t, φ), g0,+(t, φ; Λ+

1 ,b) = g(t, φ). (3.98)

Firstly, by (3.93), we have λ1 /∈ qZ, and using the first two conditions in (3.97), we construct

the solution (f (1,1), g(1,1)) of q-P (A1), holomorphic at t = 0, defined in Proposition 3.1.2.

Next we apply the following change of variables

f(t, φ) = f (1,1)(t) + ζ1 (1 + y1(t, ζ1)) , g(t, φ) = g(1,1)(t) + ζ1 (−b1b2 + y2(t, ζ1)) , (3.99)

which allows us to rewrite q-P (A1) as

y1(qt, qλζ1) = H1 (t, ζ1, y1(t, ζ1), y2(t, ζ2)) , (3.100a)

y2(qt, qλζ1) = H2 (t, ζ1, y1(t, ζ1), y2(t, ζ2)) , (3.100b)

for some functions H1(t, ζ1, y1, y2) and H2(t, ζ1, y1, y2) which are rational in the elements of{
t, ζ1, y1, y2, f

(1,1)(t), g(1,1)(t), f (1,1)(qt), g(1,1)(qt)
}
. (3.101)

We wish to apply the q-Briot Bouquet theorem B.3 with Y = (0, 0), therefore the first

condition we have to check is that H1 and H2 are holomorphic at (t, ζ1, y1, y2) = (0, 0, 0, 0).

As H1 and H2 are rational in the elements of (3.101), it is enough to expand H1 and H2 as

series in t, ζ1, y1, y2 and check that no negative powers appear. Expanding H1 and H2 in ζ1,

we find for i = 1, 2,

Hi(t, ζ1, y1, y2) = h
(i)
−1(t)ζ−1

1 + h
(i)
0 (t, y1, y2) + h

(i)
1 (t, y1, y2)ζ1 + . . . .

The coefficients h
(i)
−1(t) are rational in t, f (1,1)(t), g(1,1)(t), f (1,1)(qt) and g(1,1)(qt). Formally

speaking h
(1)
−1(t) = 0 and h

(2)
−1(t) = 0 is equivalent to the q-P (A1) equation with f = f (1,1)(t)

and g = g(1,1)(t). That is, h
(1)
−1(t) and h

(2)
−1(t) are identically zero, precisely because we are

perturbing around a solution of q-P (A1). We conclude, for i = 1, 2,

Hi(t, ζ1, y1, y2) = h
(i)
0 (t, y1, y2) + h

(i)
1 (t, y1, y2)ζ1 + h

(i)
2 (t, y1, y2)ζ2

1 + . . . .
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In a similar fashion one can calculate that Hi(t, ζ1, y1, y2) enjoys a power series expansion in

the other variables y1, y2 and t, for i = 1, 2. The y1 and y2 cases are rather trivial, but in the

t case, we use the fact that we perturb around a solution of q-P (A1), holomorphic at t = 0, in

an essential way. We conclude that H1 and H2 are holomorphic at (t, ζ1, y1, y2) = (0, 0, 0, 0),

and calculate

H1(0, 0, y1, y2) = −λ−1
1 y1 −

1

b1b2

(
1 + λ−1

1

)
y2,

H2(0, 0, y1, y2) = b3b4
(
1 + λ−1

1

)
y1 +

(
1 + λ−1

1 + λ−2
1

)
y2.

So Hi(0, 0, 0, 0) = 0 for i = 1, 2, and the Jacobi matrix(
∂H1
∂y1

(0, 0, 0, 0) ∂H1
∂y2

(0, 0, 0, 0)
∂H1
∂y1

(0, 0, 0, 0) ∂H1
∂y2

(0, 0, 0, 0)

)
=

(
−λ−1

1 − 1
b1b2

(
1 + λ−1

1

)
b3b4

(
1 + λ−1

1

)
1 + λ−1

1 + λ−2
1

)
,

has eigenvalues 1 and λ−2
1 .

By (3.93) and the third additional assumption in (3.97), we can apply the q-Briot Bouquet

Theorem B.3, to obtain an unique power series solution to (3.100) of the form

yi(t, ζ1) =
∞∑

m,n=0

y(i)
m,nt

mζn1 ,

with y
(i)
0,0 = 0 for i = 1, 2.

Associated via equations (3.99), we have the solution (f(t, φ), g(t, φ)) of q-P (A1) with

f(t, φ) =

∞∑
n=1

n∑
i=0

fn,iφ
itn, g(t, φ) =

∞∑
n=1

n∑
i=0

gn,iφ
itn,

where

f1,1 = 1, f1,0 = f
(1,1)
1 , fn,0 = f (1,1)

n , fn,i = y
(1)
n−i,i−1, (3.102)

g1,1 = −b1b2, g1,0 = g
(1,1)
1 , gn,0 = g(1,1)

n , gn,i = y
(2)
n−i,i−1, (3.103)

for 1 ≤ i ≤ n and n ∈ N≥2.

By the uniqueness property in Theorem 3.3.1 we conclude that (3.98) must hold. The re-

maining convergence result follows from the q-Briot Bouquet Theorem B.3.

The proof of Proposition 3.5.1 is not particularly elegant. This lies in the fact that we

are dealing with a strongly resonant case in light of the general solution of a q-Briot Bouquet

type equation. We do not want to delve too far into this issue, but just like to point out

that the difficulty comes from the fact that in the case of solutions, holomorphic at t = 0,

the two eigenvalues of the relevant Jacobi matrix are each other’s reciprocals, as the proof

of Proposition 3.1.1 shows. We avoid this issue by a change of dependent and independent

variables, with the cost of dealing with some additional assumptions (3.97).

Remark 3.5.2. Equations (3.96) allow us to analytically continue, for instance the solution
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(
f (1,1)(t), g(1,1)(t)

)
defined in Proposition 3.1.2, to the degenerate parameter cases b1 + b2 =

b3 + b4 and b−1
1 + b−1

2 = b−1
3 + b−1

4 .

Let us discuss the particular case Λ = Λ+
1 = −b1b2 in Proposition 3.5.1, in more detail.

We choose some parameter values b ∈ B, such that |q| < 1, |λ1| < |q|−1 and λ1 /∈ qN∗ . In

particular condition (3.93) is satisfied. Strictly speaking, Theorem 3.4.1 is only applicable if

Λ = −b1b2 ∈ L0(b), or equivalently,

1 < |λ1| < |q|−1.

However, the convergence result of (3.95) in Proposition 3.5.1, allows us to easily extend the

results of Theorem 3.4.1 to the cases |λ1| < 1 and |λ1| = 1. Indeed, let us consider the case

|λ1| < 1, and take some analytic function φ(t) which satisfies φ(qt) = λ1φ(t) on a continuous

q-domain T ⊆ C∗. Then there exists an unique meromorphic solution (f(t), g(t)) of q-P (A1)

on T , characterised by

f(t) = f0,+(t, φ(t);−b1b2,b) =

∞∑
n=1

n∑
i=0

F 0,+
n,i (−b1b2,b)φ(t)itn, (3.104a)

g(t) = g0,+(t, φ(t);−b1b2,b) =

∞∑
n=1

n∑
i=0

G0,+
n,i (−b1b2,b)φ(t)itn, (3.104b)

for t small in T , as the right-hand sides converge uniformly in t on any continouous q-domain

V ⊆ V ∗ ⊆ T , intersected with a disk centered at the origin with radius chosen small enough.

In particular, by equations (3.96), the leading order behaviour of f(t) and g(t) is given by

f(t) = f (1,1)(t) + φ(t)t+O
(
φ(t)t2

)
,

g(t) = g(1,1)(t)− b1b2φ(t)t+O
(
φ(t)t2

)
,

as t→ 0 in V as above.

Of course the choice φ(t) ≡ 0 gives f(t) = f (1,1)(t) and g(t) = g(1,1)(t). Now let us realise the

case f ≺ t with g � t in (3.18), by assuming the condition

b1 + b2 = b3 + b4, (3.105)

given in (3.20). Indeed the leading term of f (1,1)(t) vanishes, as f
(1,1)
1 = 0, and hence we

generically have f ≺ t and g � t as t→ 0 in V ⊆ T as above. If we also set

b−1
1 + b−1

2 = b−1
3 + b−1

4 , (3.106)

then the leading term of g(1,1)(t) also vanishes, as g
(1,1)
1 = 0, and this realises the case f, g ≺ t

as t→ 0 in (3.18). Note that (3.105) and (3.106) imply b1 = −b2 and b3 = −b4, so condition

(3.19) is trivially satisfied, as expected. To give the reader an appreciation how far the rabbit

hole of degenerations goes, let us consider the case

b1 = −b2, b3 = −b4, b5 = −b6, b7 = −b8, b2 = b6. (3.107)
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The solution (f(t), g(t)) takes the form

f(t) = tφ(t), g(t) = b22tφ(t), φ(qt) = λ1φ(t), λ1 =

(
b2
b4

)2

, q =

(
b4
b8

)2

, (3.108)

where the parameters b2, b4 and b8 can be chosen at our pleasure. In particular, let us fix

some b4, b8 ∈ C∗ with |b4| < |b8|. Then, for any m ∈ N, we can choose b2 ∈ C∗ small enough,

such that |λ1| < |q|m, which gives

f(t), g(t) ≺ tm+1,

as t→ 0 in any continuous q-domain V ⊆ V ∗ ⊆ T .

Let us return to the generic case (3.104), application of Bäcklund transformation T1 and

a permutation b 7→ b(1) of the parameters, gives an associated solution (f̃(t), g̃(t)) of q-

P (A1)(b), with

f̃(t) = f (0,1)(t)
[
1 + f (0,1)(t)φ̃(t)

]−1
+O

(
φ̃(t)t

)
, (3.109a)

g̃(t) = g(0,1)(t)
[
1− b−1

5 b−1
6 g(0,1)(t)φ̃(t)

]−1
+O

(
φ̃(t)t

)
, (3.109b)

as t → 0 in V as above, where φ̃(qt) = λφ̃(t) with λ = b7b8
b5b6

, subject to conditions |q| < 1,

|λ| < 1, λ /∈ qN∗ and, to ensure the validity of the asymptotics (3.109),

b5 + b6 6= b7 + b8 and b−1
5 + b−1

6 6= b−1
7 + b−1

8 .

Setting φ̃(t) ≡ 0, gives the solution f̃(t) = f (0,1)(t) and g̃(t) = g(0,1)(t) defined in Proposition

3.1.1.

3.6 The Logarithmic Case

In Sections 3.4 and 3.5 we have been able to find complete expansions of the formal solutions

of q-P (A1) associated with the generic and 6 special families of formal solutions of the lead-

ing order autonomous system (3.22). Subsequently we have been able to turn such formal

solutions into true solutions by appropriate substitutions for the formal variables entering the

formal solutions. The only case left the discuss is the logarithmic type solutions of the leading

order system, discussed in Section 3.2.3. However this case does not seem very straightfor-

ward, even on a formal level. We expect the complete expansion of the formal solution of

q-P (A1), associated with (3.40), to take the form

f(t, χ) =

∞∑
n=1

F±n (χ)tn, g(t, χ) =

∞∑
n=1

G±n (χ)tn, (3.110)
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where of course F±1 (χ) = F±l (χ) and G±1 (χ) = G±l (χ) as defined in (3.40), and more generally

the coefficients F±n (χ) and G±n (χ) are polynomials of degree 2n in χ,

F±n (χ) =
2n∑
i=0

F±n,iχ
i, G±n (χ) =

2n∑
i=0

G±n,iχ
i.

By direct calculation using Mathematica, we found that there indeed exist unique degree 4

polynomials in χ for F±2 (χ) and G±2 (χ), solving (3.43) with n = 2. However carrying out such

a computation becomes very unattractive already for n = 3. A theoretical understanding is

required, but the author does not know a method of attack, at the time of writing this thesis.

Logarithmic type critical behaviour has been obtained for solutions of the sixth Painlevé

equation, see for instance Guzzetti [25], however convergence of the corresponding complete

expansions is still an open problem [28] at the time of writing.

Let us assume that indeed the complete formal expansion (3.110) is valid. Say we wish to

construct true solutions of q-P (A1) on some discrete q-domain qZt0, typically we would set

ts = qst0, χs = χ0 + s, (s ∈ Z)

where we can choose χ0 ∈ C at pleasure. Note that, for n ∈ N∗,

F±n (χs)t
n
s ∼ F±n,2nt

n
0q
sns2n, G±n (χs)t

n
s ∼ G±n,2nt

n
0q
sns2n. (s→∞)

Since qsns2n → 0 as s→∞, we would hope that

fs := f(ts, χs) =
∞∑
n=1

F±n (χs)t
n
s , gs := g(ts, χs) =

∞∑
n=1

G±n (χs)t
n
s ,

converge uniformly on {s ∈ Z : s ≥ S}, for some S ∈ Z large enough, defining a true solution

of q-P (A1). Note that this solution has one free parameter χ0 ∈ C.

As to solutions on open q-domains, we would typically consider

χ(t) = logq t+ c(t),

where c(t) any q-periodic function.

3.7 Summary and Outlook

Let us summarise what we have done so far. We started with a somewhat heuristic comparison

of possible asymptotic growths as t → 0 of solutions of q-P (A1) in Section 3.2. This lead to

three different cases, which we write down again for convenience of the reader,

f, g � t, t ≺ f, g ≺ 1, f, g � 1. (t→ 0)

Assuming t � f, g ≺ 1, we showed that the leading order behaviour satisfies an autonomous

system (3.22). We derived the general solution of this autonomous system, and we were able
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to construct, for any solution of the autonomous system, an associated solution of q-P (A1)

with that particular critical behaviour, except for the logarithmic type solutions. By apply-

ing Bäcklund Transformation T1 we found additional critical behaviours, which correspond

formally to the case f, g � 1. Indeed, if we assume f, g � 1, and consider the following formal

ansatz, analogously to (3.42),

f =
∞∑
i=0

Fit
i, g =

∞∑
i=0

Git
i.

Then we find that the first formal terms satisfy

G2
0(F0G) − 1)(F 0G0 − 1) = F0F 0(G0 − b5)(G0 − b6)(G0 − b7)(G0 − b8), (3.111a)

F
2
0(F 0G0 − 1)(F 0G0 − 1) = G0G0(F 0 − b−1

5 )(F 0 − b−1
6 )(F 0 − b−1

7 )(F 0 − b−1
8 ). (3.111b)

Now the formal leading order behaviour of the inverse complex power type, power series II,

inverse oscillatory type and inverse logarithmic type solutions, as depicted in Table 3.1, all

define solutions of system (3.111). In Table 3.1 the different critical behaviours near t = 0 are

summarised. We discuss each case on the discrete level, so (fs, gs)s∈Z ∈ S∗c (t0), where ts = qst0
for s ∈ Z and t0 ∈ C∗. We emphasise that the logarithmic type and inverse logarithmic type

critical behaviours are conjectural. In the table we have written down only the formal leading

order behaviour. As to the inverse oscillatory and the inverse logarithmic type behaviour, one

should apply the permutation b 7→ b(1) to obtain the correct formulas for critical behaviour of

solutions for q-P (A1)(b). Furthermore we refer to the q-P (A1) transcendents, meromorphic

at the origin, defined in Propositions 3.1.2 and 3.1.1 as “Power Series I” and “Power Series

II” respectively in Table 3.1. We remark that one can obtain a completely similar table for

the critical behaviour about t =∞.

A number of fundamental questions now arise. Firstly, we only proved that there exists

a solution with given leading order behaviour, but we did not prove that they are uniquely

characterised by this leading order behaviour. As an example, consider the discrete solution

constructed in Section 3.4.1, whose leading order behaviour is given by equations (3.77). Is

it true that there is only one discrete solution with leading order behaviour given by (3.77)?

We pose the following “uniqueness” problem.

Problem 3.7.1 (Uniqueness). Show that the leading order critical behaviours of the solutions

in Table 3.1 determine the corresponding solution of q-P (A1) uniquely.

There are several to approach this problem. One way would be via a fixed point argument,

and another would be to show that the monodromy mapping (2.24) is injective, and that there

is only one monodromy datum corresponding to a given leading order behaviour, considering

the isomonodromic deformation framework in Section 2.4.4.

Another important question is whether our table of critical behaviours 3.1 is complete.

We pose the following “completeness” problem.

Problem 3.7.2 (Completeness). Show that Table 3.1 lists all critical behaviours of solutions

of q-P (A1) near t = 0, for generic parameter values.
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A method of attack to solve this problem would be to show that the monodromy data,

corresponding to all the different critical behaviours in our table, exhaust the monodromy

space M. Finally let us recall the q-P (A1) connection problem, described in Section 2.4.2,

for which an isomonodromic deformation method can again be made effective to solve it, as

sketched in Section 2.4.4.

We remark that the critical behaviours in Table 3.1 all correspond to relatively moderate

growth, in the sense that there is no exponential growth or similar among them as t →
0. We expect that there are no solutions, other than the singular ones, which have such

wild behaviour near critical points. Establishing such a result rigorously, just by a local

analysis such as the method of dominant balance to arrive at a contradiction, seems difficult,

especially since the singular solutions show that exponential growth or decay of solutions is

not inherently inconsistent. This is of course closely related to the completeness problem

3.7.2.

Let us also note that some of the continuous Painlevé equations exhibit the nonlinear

Stokes phenomenon, typically coming from an divergent asymptotic expansion near a critical

point. See for instance Joshi and Kruskal [44] and Kapaev [54] for PI, Joshi and Kruskal

[44] and Its and Kapaev [40] for PII, and Kitaev [55] for PIV. Recently the nonlinear Stokes

phenomenon has also been observed in additive discrete Painlevé I by Joshi and Lustri [47]

and additive discrete Painlevé II by Luu et al. [48]. As to q-P (A1), we found that the generic

critical behaviour is given by convergent asymptotic expansions, both near t = 0 and t =∞.

The same holds true for PVI, near its critical points. However, we also came across logarithmic

type formal leading order behaviour, and a conjectural corresponding full expansion. Even in

the Painlevé six case, it is not known whether the complete logarithmic type expansions are

convergent or divergent.

Remark 3.7.3. Another possible approach to solving Problems 3.7.1 and 3.7.2, than the

ones already mentioned, would be to do an asymptotic analysis in the initial value space X̂(t)

of q-P (A1), in the large and small t limit. In this regard we mention the works of Joshi and

collaborators [12, 38, 49, 46].

3.8 Reduction to Symmetric Form and Continuum Limit

In Section 2.5, we discussed the natural reduction of q-P (A1) to its symmetric form. This

reduction allows us to easily translate much of the work done in the previous sections, to

symmetric q-P (A1). So let us consider the formal series solution (3.44) and assume (2.28),

then we have
ˆ̂
Λ = Λ,

ˆ̂
φ = λφ, λ =

(
Λ

ξ

)2

. (3.112)

In order to make sense of condition (2.30), we have to define the time evolution ·̂ on Λ and

φ. Inspired by equations (3.112), we set

Λ̂ = Λ, φ̂ =
Λ

ξ
φ. (3.113)
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Note that this is indeed consistent with (3.112) and condition (2.30) becomes

f (0,+) (t, φ; Λ,b(bs, ξ)) = g(0,+)
(
ξ−1t,

ˇ
φ; Λ,b(bs, ξ)

)
, (3.114)

where we denoted

b(bs, ξ) =
(
aξ

1
2 , a−1ξ

1
2 , bξ

1
2 , b−1ξ

1
2 , c, c−1, d, d−1

)
. (3.115)

We prove that this condition indeed holds, which implies that the formal series solution (3.44)

reduces ‘naturally’ to a solution of symmetric q-P (A1). By equation (3.73), we have

f0,+(t, φ; Λ,b(bs, ξ)) = g0,+

(
ξ−1t, ξ−1 b1b2b3b4

Λ
φ;

Λ

b5b6b7b8
,b(3)(bs, ξ)

)
= g0,+

(
ξ−1t,

ˇ
φ; Λ,b(3)(bs, ξ)

)
,

where

b(3)(bs, ξ) =
(
a−1ξ

1
2 , aξ

1
2 , b−1ξ

1
2 , bξ

1
2 , c−1, c, d−1, d

)
. (3.116)

so it remains to prove

g(0,+)
(
ξ−1t,

ˇ
φ; Λ,b(bs, ξ)

)
= g0,+

(
ξ−1t,

ˇ
φ; Λ,b(3)(bs, ξ)

)
.

This identity, however, follows directly from equation (3.66), by comparing (3.115) and

(3.116), where the permutation σ ∈ Sym({1, 2, 3, 4})× Sym({5, 6, 7, 8}) equals

σ = (1 2)(3 4)(5 6)(7 8).

We conclude that, assuming equations (3.113), the symmetry condition (3.114) always holds.

To put it differently, consider solutions defined by Theorem 3.4.1 on some q-domain T which

also happens to be a ξ-domain. Then the symmetry condition (2.30) holds, if and only if Λ(t)

and φ(t) satisfy equations (3.113), which is only the case for very special choices of Λ(t) and

φ(t).

Formula (2.29), however, does not allow for any straightforward interpretation on a formal

level. Luckily we are working with formal variables, so let us for a moment, denote the time

evolution t 7→ ξ
1
2 t by t̃, so t̃ = ξ

1
2 t and in general ˜̃· = ·̂. We simply introduce new formal

variables Λ′ and φ′ which are forced to satisfy

Λ̃ = ξΛ′, φ̃ = ξ−
1
2φ′,

and hence, by equations (3.113), satisfy

Λ̂′ = Λ′, φ̂′ = Λ′φ′. (3.117)

We conclude, using equation (2.29), that

x0,+
(
t, φ′; Λ′, ξ,bs

)
= f0,+

(
ξ

1
2 t, ξ−

1
2φ′; ξΛ′,b(bs, ξ)

)
,
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defines a solution of symmetric q-P (A1).

Despite the appearance of square roots of ξ in the above expression, the coefficients in the

expansion are rational in ξ and we have the following result.

Theorem 3.8.1. There exists an unique formal series solution of the symmetric q-P (A1)

equation (2.27), of the form

x0,+ (t, φ; Λ, ξ,bs) =

∞∑
n=1

n∑
i=−∞

x0,+
n,i (Λ, ξ,bs) t

nφi, (3.118)

where x0,+
1,1 (Λ, ξ,bs) = 1 and Λ and φ satisfy (3.117).

For n ∈ N∗ and i ∈ Z≤n, the coefficient x0,+
n,i (Λ, ξ,bs) is a rational function in its inputs

which is regular at points (Λ, ξ,bs) ∈ C∗ × C∗ × Bs satisfying

1 /∈ Q := {qm1 qn2 : (m,n) ∈ N2 \ {(0, 0)}}, (3.119)

where q1 = q1(ξ,Λs) = ξΛs and q2 = q2(Λs) = Λ−1
s .

Furthermore, let |ξ| < 1 and Λ ∈ Ls0 := {z ∈ C : 1 < |z| < |ξ|−1}, then condition (3.119) is

satisfied and this formal solution, written in terms of the variables ζ1 = tφ and ζ2 = φ−1,

x0,+(ζ1ζ2, ζ
−1
2 ; Λ, ξ,bs) =

∞∑
n=1

∞∑
m=0

x0,+
n,n−m(Λ, ξ,bs)ζ

n
1 ζ

m
2 , (3.120)

converges near (ζ1, ζ2) = (0, 0).

In fact, these expansions also depend analytically on Λs. That is, for any L ⊆ Ls0 open with

L ⊆ Ls0, there is an open environment Z ⊆ C2 of 0, such that the series (3.120) converges

uniformly on Z × L, defining holomorphic functions on this set in (ζ,Λ).

Proof. We prove this analogously to Theorem 3.3.1.

For the formal series solution (3.118), conjecture 3.3.3 implies that the coefficients x0,+
n,i (Λ,bs, ξ)

vanish for i < −n and n ∈ N∗. Indeed, by direct computation we checked this assertion for

n = 1, 2, 3. As to the case n = 1, it is easy to see that

x0,+
1 = x0,+

1 (φ; Λ, ξ,bs) =
1∑

i=−∞
x0,+

1,i (Λ, ξ,bs)φ
i,

equals

x0,+
1 = φ− Λ

a+ a−1 + b+ b−1

(Λ− 1)2
+

Λ(Λ + ab)(Λ + a
b )(Λ + b

a)(Λ + 1
ab)

(Λ− 1)4(Λ + 1)2
φ−1, (3.121)

which defines a solution to the autonomous QRT mapping

(x1x1 − 1) (x1x1 − 1) = (x1 − a)
(
x1 − a−1

)
(x1 − b)

(
x1 − b−1

)
.
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3.8.1 Constructing True Solutions

Similar to Theorem 3.4.1, we can use the formal series solution (3.118) to construct true

solutions to symmetric q-P (A1). As an example we construct complex power type series

solutions, let φ0, ρ ∈ C∗, set Λ = ξρ, say with respect to the principal branch, and assume

1 < |Λ| < |ξ|−1. (3.122)

Define tρ analogously to (3.84) on a domain T defined by equation (3.83), with q replaced by

ξ. Then there is an unique meromorphic solution x(t) of symmetric q-P (A1) on T such that

x(t) = x0,+ (t, φ0t
ρ; ξρ, ξ,bs) =

∞∑
n=1

n∑
i=−∞

x0,+
n,i (ξρ, ξ,bs)φ

i
0t
ρi+n, (3.123)

for t close to 0. More precisely, there is an r > 0, such that the expansion on the right-hand

side of equation (3.123) converges uniformly in t on

T ∩ {t ∈ C∗ : |t| < r},

and the equation holds on this set.

We will not work out all the different critical behaviours of solutions of symmetric q-P (A1),

as we did for q-P (A1) to finally obtain Table 3.1. In stead we simply give the corresponding

Table 3.2 for symmetric q-P (A1). In Table 3.2 we adopted the discrete time interpretation

(xs)s∈Z, with ts = ξst0 and t0 ∈ C∗. We have only written down the formal leading order

behaviour, but we remark that the corresponding complete expansions are in form identical

to those for q-P (A1).

Note that symmetric q-P (A1) has four solutions which are meromorphic at t = 0, depicted

by “power series I” and “power series II” in the table. Corresponding to each of the two power

series of type I, there are two special complex power type critical behaviours. Similarly,

corresponding to each of the two power series of type II, there are two inverse special complex

power type critical behaviours.

Just as in the q-P (A1) case, there are solutions of its symmetric form with oscillatory type

and inverse oscillatory type critical behaviour. Furthermore, we have logarithmic and inverse

logarithmic type critical behaviour, where xl1,0(a, b), in the formula of the formal leading order

behaviour, is given by

xl1,0(a, b) =
ab(a+ a−1 − (b+ b−1) + 4)(b+ b−1 − (a+ a−1) + 4)

8(a+ b)(1 + ab)
).

One might wonder why there is no term “xl1,1(a, b)χs” in the formula. This is because we

have the freedom of substitution χs 7→ χs + r, for any r ∈ C, which allows us to scale such a

term away. The same of course applies to equations (3.40).
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3.8.2 Continuum Limit of Complex Power Type Critical Behaviour

We wish to calculate the continuum limit ξ → 1 as described in Section 2.5.1, of solutions

which are described by some critical behaviour. Doing such rigorous does not seem easy,

even on a formal level. Nonetheless let us consider the solutions defined by (3.123), where

we restrict ourselves to ξ ∈ (0, 1), and define bs = bs(ξ) by equations (2.31), for some fixed

α, β, γ, δ ∈ C. Considering equation (3.122), we fix a ρ ∈ C with −1 < <(ρ) < 0. We define,

as in equation (3.123),

x(t;φ0, ρ, ξ) = x0,+ (t, φ0t
ρ; ξρ, ξ,bs(ξ)) =

∞∑
n=1

n∑
i=−∞

x0,+
n,i (ξρ, ξ,bs(ξ))φ

i
0t
ρi+n, (3.124)

with the principal branch cut, which converges uniformly in t on an open disc punctured at the

origin. Via meromorphic continuation we extend the domain of x(t;φ0, ρ, ξ) to C \ (−∞, 0).

Using Theorem B.4, it is not hard to see that this solution also depends analytically on ξ for

ξ ∈ (0, 1). However, we are interested in the limit ξ ↑ 1 of solution (3.124), but condition

(3.119) for the existence of the formal series solution (3.118), is not satisfied at ξ = 1. Despite

the fact that Theorem 3.8.1 becomes inapplicable in this limit, we do expect the solution

(3.124) converges to a true solution of the differential equation (2.32) as ξ ↑ 1. Proving this

rigorously, probably requires an extension of Theorem B.4 which incorporates limits of the

variable q as it approaches the boundary of Bm
max(0, 1) under some specific assumptions, an

interesting direction for future research. Instead, we proceed by heuristically calculating the

continuum limit on a formal level. By equation (3.121), we have,

lim
ξ→1

x0,+
1,0 (ξρ, ξ,bs(ξ)) = lim

ξ→1
−ξρ ξ

β + ξ−β − ξα − ξ−α

(ξρ − 1)2 =
α2 − β2

ρ2
,

where the second equality is obtained by applying L’Hôpital’s rule twice.

Similarly, we find

lim
ξ→1

x0,+
1,−1 (ξρ, ξ,bs(ξ)) =

ρ(ρ− α− β)(ρ− α− β)(ρ+ α− β)(ρ− α+ β))(ρ+ α+ β)

4ρ4
,

which motivates us to make the following bold move.

We assume that the limit,

xcn,i (ρ,bc) = lim
ξ→1

x0,+
n,i (ξρ, ξ,bs(ξ)),

exists on a formal level, for all i ∈ Z≤n and n ∈ N∗, where bc = (α, β, γ, δ).

We hence obtain the following formal solution to the differential equation (2.32),

xc (t;φ0, ρ,bc) =
∞∑
n=1

n∑
i=−∞

xcn,i (ρ,bc)φ
i
0t
ρi+n,
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and assuming convergence, its leading order behaviour is given by

xc (t;φ0, ρ,bc) = φ0t
1+ρ +

α2 − β2

ρ2
t+

(ρ− α− β)(ρ+ α− β)(ρ− α+ β)(ρ+ α+ β)

4ρ4
φ−1

0 t1−ρ +O
(
t2−2|<(ρ)|

)
,

as t→ 0.

Applying the change of variables (2.33) to this solution, we find an associated solution

w0 (ζ; ρ, s,bc) of PVI with parameter values parameters (2.34), whose leading order behaviour

is given by

w0 (ζ; s, ρ,bc) = 1− s(1− ζ)1+ρ − 1

2

(
1 +

α2 − β2

ρ2

)
(1− ζ)

− (ρ− α− β)(ρ+ α− β)(ρ− α+ β)(ρ+ α+ β)

16ρ4
s−1(1− ζ)1−ρ +O

(
(1− ζ)2−2|<(ρ)|

)
,

as ζ → 1, where s = 2−1−2ρφ0.

This is exactly the critical behaviour around ζ = 1 which characterises the solutions obtained

by Jimbo [42] for PVI. Guzzetti [26] states that the full expansion of the solution ω(t) of PVI,

is given by

ω(ζ) = 1 +
∞∑
n=1

n∑
i=−n

ωn,i (ρ,bc) s
i(1− ζ)ρi+n, (3.125)

where ω1,1 = 1 and the remaining coefficients can be determined uniquely via substitution

into PVI and comparing coefficients. So the continuous counterpart of Conjecture 3.3.3 is true.

That is, there are no terms tρi+n in expansion (3.125), with i < −n and n ∈ N∗. However,

also in the continuous case, this is not easy to derive from the equation itself. Indeed Guzzetti

[26] shows how to determine the coefficients ωn,i recursively and observes that for at least

n ≤ 3, no terms tρi+n with i < −n have to be introduced, but he does not give a proof of this

fact for general n. The form of the complete expansion (3.125) is easier to understand via the

linear problem of PVI. Quite remarkably, recent work by Lisovyy and collaborators [4, 16]

gives explicit formulae for all the coefficients in the asymptotic expansion of the τ -function

associated with ω(ζ), in terms of conformal blocks. Similarly, it might also be possible to find

explicit expressions for the coefficients F 0,+
n,i and G0,+

n,i in the formal series solution (3.44).

3.8.3 Comparison with Painlevé Six

Guzzetti [27] gives a tabulation of critical behaviours of solutions of PVI. We have found

reflections of all these different critical behaviours in the q-P (A1) case. Indeed, considering

Table 3.1, using the terminology in Guzzetti [27], we have encountered complex power be-

haviour, oscillatory behaviour, logarithmic behaviour, Taylor expansions, inverse oscillatory

behaviour and inverse logarithmic behaviour. Furthermore each of these reduce to critical

behaviour of solutions of symmetric q-P (A1), depicted in Table 3.2. In the previous section we

showed how, at least the formal leading order behaviour of complex power type of solutions,
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converges to the corresponding complex power behaviour of solutions for the sixth Painlevé

equation, in the continuum limit. In fact this can be made to work for each of the formal

leading order behaviours, resulting in a similar table for the sixth Painlevé equation, as given

by Guzzetti [27]. We say made to work, as one of course has to make sure that terms such as

χ in the logarithmic case, have to depend appropriately on ξ for the continuum limit ξ → 1

to be sensible. Indeed, if we set

χ =
1

ξ − 1

(
logξ(t)

ξ − 1
+ r

)
,

with r ∈ C, and the parameter values bs as in (2.31), then the logarithmic leading order

behaviour, given in Table 3.2, satisfies

t
(

1
2(a+ a−1 + b+ b−1)χ2 + xl1,0(a, b)

)
→ t

(
1
2(β2 − α2)(log(t) + r)2 +

α2 + β2

α2 − β2

)
,

as ξ → 1. We invite the interested reader to compare this with the Painlevé six case under

the change of variables (2.33), and confirm that they indeed coincide.

3.9 Tables of Critical Behaviours
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Formal Leading Order Behaviour Terms Involved Int. Const. Disc. Par. Ref.

Complex Power Type

fs ∼ ts
(
φs + Feq(Λ) + µ(Λ)φ−1

s

)
gs ∼ ts

(
Λφs +Geq(Λ) + Λ

λµ(Λ)φ−1
s

) φs = λsφ0

λ = Λ2

b1b2b3b4

φ0 ∈ C∗

Λ ∈ L0(b)
(3.76)

Special Complex Power Type

fs ∼ ts(φs + f
(1,k)
1 )

gs ∼ ts(Λ±k φs + g
(1,k)
1 )

φs = λ±sk φ0 φ0 ∈ C∗
k ∈ {1, 2, 3}

± ∈ {+,−}
(3.104)

Power Series I

fs ∼ tsf (1,k)
1

gs ∼ tsg(1,k)
1

k ∈ {1, 2, 3} (3.10)

Oscillatory Type

fs ∼ ts
(
φs + Feq(Λ) + µ(Λ)φ−1

s

)
gs ∼ ts

(
Λφs +Geq(Λ) + Λ

λµ(Λ)φ−1
s

) φs = eθisφ0

Λ = ±(b1b2b3b4)
1
2 e

1
2
θi

φ0 ∈ C∗

θ ∈ R \ 2πZ
± ∈ {+,−} (3.86)

Logarithmic Type

fs ∼ ts
(
F±1,0 + F±1,1χs + F±1,2χ

2
s

)
gs ∼ ts

(
G±1,0 +G±1,1χs +G±1,2χ

2
s

) χs = χ0 + s χ0 ∈ C ± ∈ {+,−} (3.110)

Inverse Special Complex Power Type

fs ∼ f (0,k)
0 [1 + f

(0,k)
0 φs]

−1

gs ∼ g(0,k)
0 [1 + Λ±k |b7→b(1)g

(0,k)
0 φs]

−1
φs = λ±sk |b 7→b(1)φ0 φ0 ∈ C∗

k ∈ {1, 2, 3}

± ∈ {+,−}
(3.109)

Power Series II

fs ∼ f (0,k)
0

gs ∼ g(0,k)
0

k ∈ {1, 2, 3} (3.5)

Inverse Oscillatory Type (for parameter values b(1))

fs ∼
[
φs + Feq(Λ) + µ(Λ)φ−1

s

]−1

gs ∼
[
Λφs +Geq(Λ) + Λ

λµ(Λ)φ−1
s

]−1

φs = eθisφ0

Λ = ±(b1b2b3b4)
1
2 e

1
2
θi

φ0 ∈ C∗

θ ∈ R \ 2πZ
± ∈ {+,−} (3.87)

Inverse Logarithmic Type (for parameter values b(1))

fs ∼ [F±1,0 + F±1,1χs + F±1,2χ
2
s]
−1

gs ∼ [G±1,0 +G±1,1χs +G±1,2χ
2
s]
−1

χs = χ0 + s χ0 ∈ C ± ∈ {+,−}

Table 3.1: Critical Behaviours of solutions of q-P (A1) near ts := qst0 = 0, or s =∞, where
“disc. par.” stands for “discrete parameters”, and “ref.” stands for “reference”.
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Formal Leading Order Behaviour Terms Involved Int. Const.

Complex Power Type

xs ∼ ts(φs + x1,0(Λ) + x1,−1(Λ)φ−1
s ) φs = λsφ0

φ0 ∈ C∗

Λ ∈ Ls0
Special Complex Power Type

xs ∼ ts(φs + a+b
1+ab) φs = (−ab)sφ0 φ0 ∈ C∗

xs ∼ ts(φs + a+b
1+ab) φs = (−ab)−sφ0 φ0 ∈ C∗

xs ∼ ts(φs + 1+ab
a+b ) φs = (−a/b)sφ0 φ0 ∈ C∗

xs ∼ ts(φs + 1+ab
a+b ) φs = (−b/a)sφ0 φ0 ∈ C∗

Power Series I

xs ∼ ts a+b
1+ab

xs ∼ ts 1+ab
a+b

Oscillatory Type

xs ∼ ts(φs + x1,0(eθi) + x1,−1(eθi)φ−1
s ) φs = eθisφ0

φ0 ∈ C∗

θ ∈ R \ 2πZ

Logarithmic Type

xs ∼ ts(1
2(a+ a−1 + b+ b−1)χ2

s + xl1,0(a, b)) χs = χ0 + s χ0 ∈ C

Inverse Special Complex Power Type

xs ∼ [φs + c+d
1+cd ]−1 φs = (−cd)sφ0 φ0 ∈ C∗

xs ∼ [φs + c+d
1+cd ]−1 φs = (−cd)−sφ0 φ0 ∈ C∗

xs ∼ [φs + 1+cd
c+d ]−1 φs = (−c/d)sφ0 φ0 ∈ C∗

xs ∼ [φs + 1+cd
c+d ]−1 φs = (−d/c)sφ0 φ0 ∈ C∗

Power Series II

xs ∼ 1+cd
c+d

xs ∼ c+d
1+cd

Inverse Oscillatory Type (with parameter values a↔ c,b↔ d)

xs ∼
[
φs + x1,0(eθi) + x1,−1(eθi)φ−1

s

]−1
φs = eθisφ0

φ0 ∈ C∗

θ ∈ R \ 2πZ

Inverse Logarithmic Type

xs ∼
[

1
2(c+ c−1 + d+ d−1)χ2

s + xl1,0(c, d)
]−1

χs = χ0 + s χ0 ∈ C

Table 3.2: Critical behaviours of solutions of symmetric q-P (A1) near ts := ξst0 = 0, or
s =∞, where “int. const.” stands for “integration constants”.



CHAPTER 4

Linear q-Difference Equations and

Isomonodromy

The theory of linear q-difference equations goes back a long way. A classical approach to the

global asymptotic analysis of such equations was completed by Birkhoff [5], in which he treats

the Riemann-Hilbert problem for regular singular q-difference systems without resonance.

More specifically, after appropriate normalisation, he studies the system

Y (qz) = A(z)Y (z), (4.1)

where A(z) is a complex m×m matrix polynomial of degree n,

A(z) = A0 + zA1 + . . .+ znAn.

Under some generic assumptions on the eigenvalues of the matrices A0 and An, Birkhoff’s

student Carmichael [9] constructed canonical fundamental solutions Y 0(z) and Y∞(z) about

z = 0 and z =∞ respectively. These fundamental solutions are related by

Y∞(z) = Y 0(z)P (z),

for some matrix P (z), called the connection matrix, which obviously satisfies P (qz) = P (z).

For q-difference equations, it is essentially this connection matrix which constitutes the mon-

odromy of the equation. Roughly speaking Birkhoff [5] worked out an exact correspondence

between linear first order q-difference systems (4.1), up to GLn(C) conjugation, and their

connection matrices, again up to some action, which we call the Riemann-Hilbert-Birkhoff

correspondence. Our main interest lies in scalar q-difference equations of the form

u0(z)y(z) + u1(z)y(qz) + . . . um−1(z)y(qm−1z) = 0,

where u0(z), . . . um−1(z) are some polynomials, as the spectral equation in Yamada’s Lax pair

(2.21) is of this type with m = 3. We therefore also give a treatment of the subject customised

to such second order scalar q-difference equations. We note that a modern treatment of the

subject in total generality, including irregular cases, has been carried out by Ramis, Sauloy

85
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and Zhang [76]. See also Sauloy [78, 80] for an analytic approach.

We start our discussion with first order scalar q-difference equations and q-elliptic func-

tions, as they form the building blocks of the theory of linear q-difference equations. We

then discuss Birkhoff’s theory in more detail, and consider the analog for scalar q-difference

equations. We discuss a particular case, which we call the model equation, as it plays a vital

role in the analysis of Yamada’s Lax pair in Chapter 5.

We then turn our attention to Yamada’s Lax pair (2.21). We define fundamental solutions

near z = 0 and z = ∞, discuss how the q-P (A1) time evolution deforms them, and to

what extend it leaves the monodromy, i.e. the connection matrix, invariant, constituting an

isomonodromic deformation.

4.1 First Order q-Difference Equations

Not only are first order q-difference equations a great introduction to classical q-theory, they

also play a fundamental role as scaling factors in the higher order cases. Much of the material

in this section goes back a long way and we refer to Gasper and Rahman [18], for an exposition

of classical q-theory.

In this section we consider q-difference equations of the form

y(qz) = a(z)y(z), (4.2)

with a(z) 6≡ 0 meromorphic on C∗, where we are interested in solutions which are meromorphic

on the same doubly punctured Riemann sphere. The simplest case of (4.2) is of course given

by a(z) ≡ 1, whose solutions we call q-elliptic functions, which we discuss in detail in Section

4.1.1. Let us make the following trivial but important remark, given nonzero solutions y and

y∗ of (4.2), their quotient p = y/y∗ is a q-elliptic function. Or, to put it differently, once one

solution is found, the equation is essentially solved. We call z = 0 or z = ∞, an ordinary

(critical) point of (4.2), iff respectively a(z) is holomorphic at z = 0 with a(0) = 1 or a(z) is

holomorphic at z =∞ with a(∞) = 1.

Lemma 4.1.1. If z = 0 is an ordinary point of (4.2), then (4.2) admits an unique holomor-

phic solution y(z) with y(0) = 1 around z = 0. If a(z) is meromorphic on C, then y(z) has an

unique meromorphic continuation to C. Furthermore, if 1/a(z) is entire, then y(z) is entire.

Similarly, if z = ∞ is an ordinary point of (4.2), then (4.2) admits an unique holomorphic

solution y(z) with y(∞) = 1 around z = ∞. If a(z) is meromorphic on P∗, then y(z) has

an unique meromorphic continuation to P∗. Furthermore, if a(1/z) is entire, then y(1/z) is

entire.

Proof. Suppose z = 0 is an ordinary point of (4.2), and temporarily assume we found a

solution y(z), holomorphic at z = 0, with y(0) = 1. From (4.2) we immediately obtain

y(z)

y(qn+1z)
=

n∏
k=0

1

a(qkz)
,



4.1. FIRST ORDER Q-DIFFERENCE EQUATIONS 87

for n ∈ N. Letting n→∞, we find the infinite product representation

y(z) =
∞∏
k=0

1

a(qkz)
. (4.3)

Hence, to obtain the first part of the lemma, we can use the infinite product (4.3) to define a

solution of (4.2). Indeed, let R be the radius of convergence of 1/a(z) about z = 0, then it is

an elementary exercise in complex analysis, to show that the infinite product (4.3) converges

uniformly in z on {z ∈ C : |z| ≤ r}, for any 0 < r < R. Hence (4.3) defines a solution y(z)

which is holomorphic on {z ∈ C : |z| < R}, and it is the same infinite product representation

which allows us to meromorphically continue it on C. Also note that indeed y(0) = 1 and

obviously, if 1/a(z) is entire, then y(z) is entire. The case z =∞ is dealt with similarly.

We are now able to define one of the main building blocks of classical q-theory, the infinite

q-Pochhammer symbol, which we obtain by taking a(z) = 1/(1 − z) in Lemma 4.1.1, giving

an entire function (-; z)∞, with infinite product representation

(z; q)∞ =

∞∏
k=0

(1− qkz), (4.4)

satisfying

(qz; q)∞ =
1

1− z
(z; q)∞. (4.5)

Its finite counterparts, simply called q-Pochammer symbols, are given by

(z; q)n =
n−1∏
k=0

(1− qkz),

for n ∈ N, where the empty product, corresponding to n = 0, is set equal to 1 as usual. From

the infinite product representation (4.4) we derive that the zeros of the infinite q-Pochhammer

symbol (z; q)∞ are all simple and given by z = q−n, for n ∈ N. Similarly we apply Lemma

4.1.1 with ã(z) = 1 − z−1, to obtain a function y(z), which is analytic on P∗, satisfying

y(∞) = 1, and

y(qz) =
z − 1

z
y(z). (4.6)

We easily identify y(z) = (q/z; q)∞ and consider the product

θq(z) = θ(z; q) := (z; q)∞ · (q/z; q)∞. (4.7)

Our interest in this product, comes from the observation, that it satisfies the following shift

and reflection relation,

θq(qz) = −z−1θq(z), θq(z) = θq(q/z),

respectively, where the first is a direct consequence of (4.5) and (4.6), and the latter follows

from the definition. We refer to (4.7) as the q-theta function. It bears its name from being a
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q-analog of usual theta functions in elliptic function theory, which we make explicit in Section

4.1.1. Note that the q-theta function is holomorphic on C∗, with only simple zeros, located

on qZ. It is easy to see that (z; q)∞ and hence (q/z; q)∞ are not rational functions, hence

θq(z) has an essential singularity at z = 0 and z =∞.

We are now able to construct a meromorphic solution of (4.2) with a(z) ≡ α ∈ C∗, by

setting

y(z) = eq(z;α) :=
θq(z/α)

θq(z)
,

which indeed satisfies y(qz) = αy(z). Now consider (4.2) for any meromorphic function a(z)

on C. Determine α ∈ C∗ and n ∈ Z such that

a(z) = αznã(z),

where ã(z) holomorphic at z = 0 with ã(0) = 1. Then we can scale (4.2) by setting

y(z) = θq(−z)−neq(z;α)ỹ(z),

which gives

ỹ(qz) = ã(z)ỹ(z).

Now z = 0 is an ordinary point of this equation, and we can apply Lemma 4.1.1 to obtain a

nonzero solution ỹ(z), holomorphic at z = 0. Similarly, we can construct solutions of (4.2)

about z =∞, for any meromorphic function a(z) on C∗.
Let us end the discussion with an important example, the case where a(z) = r(z) is a

rational function, say with r(0) = r(∞) = 1, which means that both z = 0 and z = ∞ are

ordinary points of (4.2). We write

r(z) =
(1− z/p1) · . . . · (1− z/pn)

(1− z/q1) · . . . · (1− z/qn)
,

for some n ∈ N, where we assume that the numerator and denominator do not have common

divisors, and
n∏
k=1

qk
pk

= 1.

We define a canonical solution at z = 0 by

y0(z) =
(z/q1, . . . , z/qn; q)∞
(z/p1, . . . , z/pn; q)∞

,

where we used the shorthand notation

(z1, . . . , zs; q)∞ = (z1; q)∞ · . . . · (zn; q)∞. (z1, . . . , zn ∈ C∗)

Similarly, we define a canonical solution at z =∞ by

y∞(z) =
(qp1/z, . . . , qpn/z; q)∞
(qq1/z, . . . , qqn/z; q)∞

.
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The solutions y0(z) and y∞(z), are related by the q-elliptic function,

p(z) :=
y∞(z)

y0(z)
=
θq(z/q1, . . . , z/qn)

θq(z/p1, . . . , z/pn)
,

which is the connection “matrix”, where we used shorthand notation

θq(z1, . . . , zn) = θ(z1, . . . , zs; q) = θq(z1) · . . . · θq(zn). (z1, . . . , zn ∈ C∗)

Note that the q-elliptic function is written as a quotient of q-theta functions. In the coming

section we see that any q-elliptic function has such a representation. Albeit a bit trivial,

the Riemann-Hilbert-Birkhoff correspondence, specialised to this case, is the correspondence

between rank 1 first order equations with z = 0 and z = ∞ being ordinary points, and

corresponding connection “matrices” up to multiplication by nonzero complex numbers,

r(z)↔ [p(z)]C∗ .

4.1.1 q-Elliptic Functions

In this section we set up the basics of a q-analog of classical elliptic function theory. Recall

that a q-periodic function or q-constant is defined as any complex function p(z) satisfying

p(qz) = p(z) on its q-domain. Now a q-elliptic function is a q-periodic function which is

meromorphic on the entire doubly punctured Riemann sphere C∗.
All the results in this section can be obtained by direct translation of the classical results

on elliptic functions. However, it seems more appropriate to develop the fundamentals di-

rectly from a q-discrete perspective. We therefore first clarify the relation between q-elliptic

and classical elliptic functions, and then rederive the basic results from scratch for q-elliptic

functions.

Let us take a q-elliptic function p(z) and set

E(ζ) = p(exp [log(q)ζ]), (4.8)

for any choice of branch for log(q). Then E(ζ) is a meromorphic function on C which satisfies

E(ζ + 1) = E(ζ), E(ζ + 2πi/ log(q)) = E(ζ),

and hence E(ζ) is an elliptic function with fundamental periods ω1 = 1 and ω2 = 2πi/ log(q).

Conversely, given an elliptic function E(ζ) with fundamental periods ω1 and ω2, setting

p(z) = E
( ω2

2πi
log z

)
, q = exp

[
2πi

ω1

ω2

]
,

where the choice of branch of log(z) is irrelevant, defines a q-elliptic function p(z). Note that

in this correspondence, the condition ω1/ω2 /∈ R is equivalent to |q| 6= 1. To extend the

correspondence, following Rains [75], for α ∈ C∗ and n ∈ Z, we call a meromorphic function
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θ(z) on C∗, a q-theta function of multiplier αzn , if it satisfies

θ(qz) = αznθ(z).

To justify this definition, analogously to (4.8) we set

Θ(ζ) = θ(exp [log(q)ζ]), (4.9)

then Θ(ζ) is periodic with respect to the fundamental period ω2 = 2πi/ log(q), and quasi-

periodic with respect to the fundamental period ω1 = 1,

Θ(ζ + 1) = αqnζΘ(ζ),

and hence a theta function in the usual sense. Note that the q-theta function (4.7) is a q-theta

function of multiplier −z−1. Similarly q-elliptic functions are q-theta functions of multiplier

1.

Getting back to q-elliptic functions, we define a fundamental domain or annulus of a

q-elliptic function, as any subset of C∗, of the form

An(r) := {z ∈ C : |q|r ≤ |z| < r},

for some r > 0. Considering the group action of qZ on C∗ by multiplication, note that a

fundamental annulus indeed contains exactly one element of each orbit of this action. Ge-

ometrically we can think of such a fundamental annulus as a torus by glueing together the

inner and outer boundary in C∗ consistent with the qZ action.

Let us prove some basic results we are familiar with from the usual elliptic function theory.

Lemma 4.1.2. Analytic q-elliptic functions are constant.

Proof. Let p(z) be a q-elliptic function which is analytic. Then it is bounded on the compact

set An(1), hence the via (4.8) corresponding elliptic function E(ζ) is bounded and entire. By

Liouville’s Theorem, E(ζ) and hence p(z) is constant.

Corollary 4.1.3. q-elliptic functions without zeros are constant.

Proof. As for any nonzero q-elliptic function p(z), the function 1/p(z) is also a q-elliptic

function, this follows directly from Lemma 4.1.2.

Lemma 4.1.4. Suppose θ(z) is a q-theta function of multiplier αzn, and θ(z) has neither

zeros nor poles in C∗, then n = 0 and θ(z) = czk for some c ∈ C and k ∈ Z, in particular

α = qk ∈ qZ.

Proof. Differentiating θ(qz) = αznθ(z), we find

qθ′(qz) = λzn(nz−1θ(z) + θ′(z)),

and hence

f(z) =
zθ′(z)

θ(z)
,
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defines an analytic function on C∗, satisfying

f(qz) = n+ f(z). (4.10)

In particular g(z) := f ′(z)/z is an analytic q-elliptic function. By Lemma 4.1.2, we know that

g(z) is constant, say g(z) ≡ g0 ∈ C. We immediately obtain

f(z) = 1
2g0z

2 + f0,

for some f0 ∈ C. This can only be consistent with (4.10), if n = 0 and g0 = 0, so f(z) ≡ f0

is constant. Hence θ(z) is an analytic function on C∗ without zeros, satisfying

θ′(z)

θ(z)
=
f0

z
.

We easily derive that f0 = qk for some k ∈ Z and θ(z) = czk for some c ∈ C∗.

We now have all the tools to classify q-elliptic functions.

Theorem 4.1.5. Let p(z) be a nonzero q-elliptic function, say with n zeros and m poles,

counting multiplicities, within any fundamental annulus. We fix a particular fundamental

annulus and denote the zeros and poles of p(z) in it respectively by a1, . . . an and b1, . . . , bm,

with repetition according to multiplicity. Then m = n and there exist unique c ∈ C∗ and

k ∈ Z such that

p(z) = czk
n∏
i=1

θq(z/ai)

θq(z/bi)
, qk =

n∏
i=1

bi
ai
. (4.11)

Proof. We simply set

θ(z) = p(z)
m∏
i=1

θq(z/bi) ·
n∏
i=1

θq(z/ai)
−1,

then θ(z) is a q-theta function of multiplier αzn−m, with

α :=

n∏
i=1

bi ·
m∏
i=1

a−1
i .

Furthermore, θ(z) has neither zeros nor poles on C∗, and we obtain the theorem by application

of Lemma 4.1.4.

The second equation in (4.11) should remind us of the fact that the sum of poles minus the

sum of zeros of an elliptic function within a fundamental domain, taking into account their

multiplicities, is an element of the period lattice. We define the degree of a nonzero q-elliptic

function p(z), to be number of zeros or equivalently number of poles, counting multiplicity,

within a fundamental annulus.

Corollary 4.1.6. The degree of a non-constant q-elliptic function is at least 2.

Proof. Consider (4.11) with n = 1. Then b1/a1 ∈ qZ, so p(z) has a both a zero and pole at

z = b1, which is nonsense. Hence the degree of a q-elliptic function cannot be 1.
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Corollary 4.1.7. Let p(z) and q(z) be nonzero q-elliptic functions with identical zeros, poles

and their multiplicities, within some fundamental annulus, then there is a c ∈ C∗ such that

p(z) = cq(z).

We often require only a weaker version of Theorem 3.1.3, given by the following

Corollary 4.1.8. Let p(z) be a nonzero q-elliptic function of degree n ∈ N, then there are

a1, . . . an ∈ C∗, b1, . . . bn ∈ C∗ and c ∈ C∗, such that

p(z) = c
n∏
i=1

θq(z/ai)

θq(z/bi)
, 1 =

n∏
i=1

bi
ai
. (4.12)

The above corollary tells us that any q-elliptic function is basically the quotient of two

analytic q-theta functions of common multiplier. Indeed, considering equation (4.12), writing

θa(z) = c

n∏
i=1

θq(z/ai), θb(z) =
n∏
i=1

θq(z/bi), α = (−1)n
n∏
i=1

ai = (−1)n
n∏
i=1

bi,

we have p(z) = θa(z)/θb(z), where θa(z) and θb(z) are both analytic q-theta functions of

multiplier αz−n. Motivated by this observation, let us define, for n ∈ N∗ and α ∈ C∗,

V n
q (α) = {analytic q-theta functions of multiplier αz−n},

then V n
q (α) denotes a complex vector space under the usual function addition and scalar

multiplication. If θ ∈ V n
q (α), and a ∈ C∗ is such that θ(a) = 0, then θ̃(z) = θ(z)/θq(z/a) is an

element of V n−1
q (−α/a). Using this we can easily derive that any nonzero element θ ∈ V n

q (α),

is of the form

θ(z) = c
n∏
i=1

θq(z/ai), (−1)n
n∏
i=1

ai = α, (4.13)

for some a1, . . . , an ∈ C∗ and c ∈ C∗. To put it differently, in (4.13) we can take c ∈ C∗ and

a1, . . . an−1 at pleasure to define an element of V n
q (α). Counting the number of freedoms, this

fits in neatly with the following

Theorem 4.1.9. Let n ∈ N∗ and α ∈ C∗, then V n
q (α) is a complex vector space of dimension

n.

Proof. We proceed by induction. Note the case n = 1 is trivial, indeed

V 1
q (α) = {cθq(−z/α) : c ∈ C},

and hence V 1
q (α) is one-dimensional for all α ∈ C∗. Now suppose the statement of the theorem

holds for some n ∈ N∗, and take any α ∈ C∗. We fix an a ∈ C∗ and construct an element

θ∗ ∈ V n+1
q (α) which satisfies θ∗(a) = 1. Then any element θ ∈ V n+1

q (α) can be written

uniquely as

θ(z) = θq(z/a)θ̃(z) + θ(a)θ∗(z),
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where θ̃ ∈ V n
q (−α/a). It is easy to see that this gives us a decomposition

V n+1
q (α) ∼= V n

q (−α/a)⊕ C,

and the theorem follows by induction.

We finish our discussion with a useful addition formula for q-theta functions. From

Ormerod and Rains [67], we take the following identity among analytic q-theta functions

of multiplier z−2,

θq(bc, c/b)θq(az, z/a)− θq(ac, c/a)θq(bz, z/b) = c/aθq(ab, a/b)θq(cz, z/c). (4.14)

To validate it, all we have to do is observe that the left and right-hand side have common

roots z = qZc±, hence they differ by at most a multiplicative constant, and subsequently

we check that they agree at z = b. In light of Theorem 4.1.9, equation (4.14) should be

read as follows. Given any three elements of V 2
q (1), we know that they must be linearly

dependent, and the addition formula gives us the explicit linear dependence. We require a

slightly different parameterisation of the addition formula, given by

θq(α
−1bc, c/b)θq(α

−1az, z/a)− θq(α−1ac, c/a)θq(α
−1bz, z/b) =

c/aθq(α
−1ab, a/b)θq(α

−1cz, z/c), (4.15)

which gives the explicit linear dependence between any three elements of V 2
q (α).

4.2 Birkhoff’s Theory

We discuss Birkhoff’s aproach [5] to the global asymptotic analysis of linear q-difference

systems, more or less following Mano’s summary [61] of it. We keep our discussion brief, and

give more details in Section 4.3, adapted to the case we are interested in. Analogously to the

first order equation (4.2), our starting point is the following first order matrix equation

Y (qz) = A(z)Y (z), (4.16)

where we limit our discussion to the rank two case, with

A(z) = A0 + zA1 + z2A2 + . . .+ znAn, (4.17)

where n ∈ N is called the degree of the equation and A0, An ∈ GL2(C), are assumed diago-

nalisable. We diagonalise A0 and An by

A0 = M0

(
θ1 0

0 θ2

)
M−1

0 , An = M∞

(
κ1 0

0 κ2

)
M−1
∞ , (4.18)
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where we think of the eigenvalues {θ1, θ2} and {κ1, κ2} as prescribed. Furthermore we pre-

scribe the roots of the determinant of A(z),

|A(z)| = c

2n∏
k=1

(z − xk). (c ∈ C∗) (4.19)

Note that we can only do this subject to

κ1κ2

2n∏
k=1

xk = θ1θ2, (4.20)

which is the q-analog of Fuchs’ relation for linear differential equations. We note that gauging

equation (4.16) by an element of GL2(C), leaves all the analytic data invariant, and we are

to some extend only interested in the equation up to such overall gauging. By prescribing

the eigenvalues of A0 and An, we essentially have 4n free parameters, and by also taking into

account (4.19), we are left with 2n + 1 free parameters. Then, if we consider A(z) up to

overall gauging by GL2(C), these numbers become 4n− 3 and 2n− 2 respectively.

We assume θ1/θ2, κ1/κ2 /∈ qZ, which is a q-analog of the non-resonant condition for

differential equations. Carmichael [9] shows that, for fixed M0 and M∞ satisfying (4.18),

there exist unique fundamental solutions of (4.16) of the form,

Y0(z) = M0Φ0(z)

(
eq(z; θ1) 0

0 eq(z; θ2)

)
, (4.21a)

Y∞(z) = θq(−z)−nM∞Φ∞(z)

(
eq(z;κ1) 0

0 eq(z;κ2)

)
, (4.21b)

about z = 0 and z = ∞ respectively, where Φ0(z) analytic at z = 0, with Φ0(0) = I,

and Φ∞(z) analytic at z = ∞, with Φ∞(∞) = I. Furthermore Φ∞(z) and Φ0(z)−1 can be

analytically continued, i.e. without poles, on C∗.

We now define the connection matrix P (z) by

Y∞(z) = Y0(z)P (z),

which is meromorphic on C∗ and satisfies P (qz) = P (z), so its entries are q-elliptic functions.

Considering (4.21), we have

P (z) = θq(−z)−n
(
eq(z; θ1)−1 0

0 eq(z; θ2)−1

)
Q(z)

(
eq(z;κ1) 0

0 eq(z;κ2)

)
,

where the associated connection matrix Q(z) is defined by

Q(z) = Φ0(z)−1M−1
0 M∞Φ∞(z).
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Note that Q(z) is analytic and satisfies

Q(qz) = z−n
(
θ1 0

0 θ2

)
Q(z)

(
κ−1

1 0

0 κ−1
2

)
,

that is, for i, j ∈ {1, 2}, the entry Qij(z) is an element of V n
q

(
θiκ
−1
j

)
. By Theorem 4.1.9,

we see that Q(z) lives in a 4n dimensional space. However, note that the diagonalisations

in (4.18), are only uniquely defined up to right-multiplication of M0 and M∞ by diagonal

matrices. Say M ′0 = M0F0 and M ′∞ = M∞F∞, for diagonal matrices F0, F∞ ∈ GL2(C), then

the corresponding fundamental solutions (4.21) become

Φ′0(z) = F−1
0 Φ0(z)F0, Φ′∞(z) = F−1

∞ Φ∞(z)F∞,

and

Q′(z) = F−1
0 Q(z)F∞.

To rigidify the situation, we consider Q(z) only up to multiplication from the left and right

by invertible diagonal matrices, and denote

[Q(z)] , (4.22)

for the corresponding equivalence class. Note that [Q(z)] lives in a 4n− 3 dimensional space.

We now have a well-defined mapping

A(z) 7→ [Q(z)] ,

which is easily seen to be constant on GL2(C)-conjugation classes of A(z). The Riemann-

Hilbert-Birkhoff correspondence is the bijective correspondence between matrix polynomials

A(z) (4.17), with prescribed exponents at zero and infinity, up to conjugation by GL2(C),

and corresponding [Q(z)], living in the orbit space of V n
q

(
θiκ
−1
j

)
1≤i,j≤2

, with respect to

multiplication of invertible diagonal matrices from the left and right, which we symbolically

write as

[A(z)]GL2(C) ↔ [Q(z)] . (4.23)

We can specialise this correspondence, by taking into account the prescribed zeros x1, . . . , x2n

of |A(z)|, which gives another 2n− 1 constraints on [Q(z)], as one can show that

|Q(z)| = constant × θq(z/x1, . . . , z/x2n).

A few remarks are in order here. Firstly, let us note that (4.16) is strictly speaking

irregular singular at z =∞, indeed z =∞ is only regular singular after scaling by θq(−z)−n,

see (4.21b). As set out by Sauloy [79], a more natural starting point would be to assume

A(z) is a matrix with rational entries, such that A(0), A(∞) ∈ GL2(C). Then (4.16) is really

Fuchsian.

Secondly, a major difficulty in the theory of linear q-difference equations, is that the field of

constants, i.e. q-elliptic functions, is in some sense too large. Indeed, we wish to consider our



96 CHAPTER 4. LINEAR Q-DIFFERENCE EQUATIONS AND ISOMONODROMY

equation (4.16), up to gauging by only constant complex matrices, whereas, for instance the

scaling entries eq(z;κ1) and eq(z;κ2) on the right-hand side of (4.21b), are strictly speaking

only characterised up to q-elliptic functions. There are several ways to work around this

problem. Our approach lies close to van der Put and Singer [83], we consider the scalings

involved only symbolically. As an example, considering (4.21b), we put more importance in

Φ∞(z), then Y∞(z). Similarly we consider the associated connection matrix Q(z) as being

more fundamental than the connection matrix P (z).

Le Caine [58] considered equation (4.17) with n = 1. She showed that the fundamental

solutions near z = 0 and z = ∞ can be described in terms of 2φ1 hypergeometric functions

(1.3) and determined the corresponding connection matrix explicitly. Jimbo and Sakai [43]

derived a q-analog of PVI within Birkhoff’s framework. They consider the n = 2 case of

(4.17), with eigenvalues parameterised by

θ1 =
a1a2

b1
t, θ2 =

a1a2

b2
t, κ1 =

1

qb3
, κ2 =

1

qb4
,

and zeros of the determinant (4.19), parameterised by

x1 = a1t, x2 = a2t, x3 = a3, x4 = a4,

where t, a1, . . . a4, b1, . . . , b4 ∈ C∗, and Fuchs’ equation (4.20) translates to

b1b2a3a4

a1a2b3b4
= q.

Now note that for fixed t ∈ C∗, the matrix A = A(z, t) has essentially 2n + 1 = 5 param-

eters, and hence two parameters when considered up to conjugation by GL2(C). Next we

consider a deformation t 7→ qt, such the connection matrix P = P (z, t) is preserved, i.e.

P (z, qt) = P (z, t). Jimbo and Sakai [43] show that, by eliminating the gauge freedom in

A(z, t) appropriately, setting in particular A2 = diag(κ1, κ2), the time-evolution of the entries

of A0 = A0(t) and A1 = A1(t), after some appropriate parameterisation, is equivalent to

q-PVI


ff

a3a4
=

(g − tb1)(g − tb2)

(g − b3)(g − b4)
,

gg

b3b4
=

(f − ta1)(f − ta2)

(f − a3)(f − a4)
,

which is a q-analog of the sixth Painlevé equation.

4.3 Second Order q-Difference Equations

In this section we study the global asymptotic analysis of second order q-difference equations

of the form,

u(z)y(qz) + v(z)y(z) + w(z)y(z/q) = 0, (4.24)

where u(z), v(z) and w(z) are polynomials, without common divisors. We start with a brief

discussion on the classification of critical points and corresponding local solutions, for a more



4.3. SECOND ORDER Q-DIFFERENCE EQUATIONS 97

complete treatment of the subject we refer to Adams [1].

4.3.1 Classification of Critical Points

Analogously to the continuous theory, to construct solutions about z = 0, we consider the

indicial equation

u(0)λ+ v(0) + w(0)λ−1 = 0,

and we sometimes refer to its roots as exponents. In case u(0) = 0 or w(0) = 0, the indicial

equation has solutions λ = 0 or, formally speaking, λ−1 = 0, and we say that z = 0 is an

irregular singular point of (4.24), or we call the equation unbalanced at z = 0. Otherwise

we say that z = 0 is a regular singular point or Fuchsian singularity of (4.24). Let us focus

on the regular singular case and let λ1, λ2 ∈ C∗ denote corresponding exponents. We rescale

(4.24) by setting

y(z) = eq(z;λ1)ψ(z),

which gives

λ1u(z)ψ(qz) + v(z)ψ(z) + λ−1
1 w(z)ψ(z/q) = 0. (4.25)

At this point we employ the power series method, we set

ψ(z) =
∞∑
m=0

amz
m,

and substitution into (4.25) shows that we can choose a0 at our pleasure, and consequently

the values of all am are determined uniquely by comparing coefficients of zm in (4.25), unless

λ1q
m = λ2 for some m ∈ N, at which stage the power series method potentially fails.

Let us assume λ1/λ2 /∈ qZ for now, we choose a0 = 1 and determine the unique power

series solution ψ1(z) of (4.25) with ψ1(0) = 1. It is easy to show that such a power series

solution is always convergent. Now y1(z) = eq(z;λ1)ψ1(z), defines a solution of (4.24), having

the q-analog of a Frobenius expansion at z = 0. Similarly we define an unique solution

y2(z) = eq(z;λ2)ψ2(z) of (4.24), where ψ2(z) a convergent power series with ψ2(0) = 1. We

can now define a fundamental solution of (4.24) at z = 0,

y(z) =
(
y1(z) y2(z)

)
=
(
ψ1(z) ψ2(z)

)(eq(z;λ1) 0

0 eq(z;λ2)

)
.

We assumed λ1/λ2 /∈ qZ, which is called the non-resonance condition. In case it is violated

we say that z = 0 is a regular singular point with resonance of (4.24). Let us consider the

resonant case where λ2 = qλ1, the only case of interest for our purposes. To simplify the

discussion, let us assume

u(z) = u0 + u1z + u2z
2 + . . . , u0 = 1,

v(z) = v0 + v1z + v2z
2 + . . . , v0 = −1− q,

w(z) = w0 + w1z + w2z
2 + . . . , w0 = q,
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so λ1 = 1 and λ2 = q. Note that (4.24) has an unique convergent power series solution

y2(z) = 0 + z + a2z
2 + . . . ,

where all the coefficients can be determined by direct substitution into (4.24) as before.

However considering λ1 = 1, when we substitute a power series

y1(z) = 1 + a1z + a2z
2 + . . . ,

into (4.24), and compare coefficients of z, we find

u1 + v1 + w1 = 0. (4.26)

So generically the power series method fails and, just like in the continuous case, we have

to consider series expansions involving logarithms, or more specifically, a function χ which

satisfies χ(qz) = χ(z) + 1, for instance χ(z) = logq(z) or1

χ(z) = z
θ′q(−z)
θq(−z)

+ 1
2 . (4.27)

However, in case (4.26) holds, we say that z = 0 is an ordinary point of (4.24). More

generally, in case λ1/λ2 ∈ qZ, but the Frobenius method above still allows us to find two

linearly independent solutions, we say that z = 0 is an apparent singularity of (4.24). We

classify the critical point z = ∞ of (4.24) in a completely analogous fashion, by dividing

(4.24) by the highest power of z occuring in the coefficients u(z), v(z) and w(z), so that the

resulting equation has coefficients which are polynomial in z−1.

4.3.2 A Standard Form

From Section 4.1 we know that for any rational function r(z), we can find a meromorphic

function S(z) on C∗, such that S(qz) = r(z)S(z). This allows us to scale or gauge equation

(4.24) by setting y(z) = S(z)ỹ(z), which gives

r(z)u(z)ỹ(qz) + v(z)ỹ(z) + r(z/q)−1w(z)ỹ(z/q) = 0. (4.28)

In particular the choice r(z) = u(z)−1, leads to

ỹ(qz) + v(z)ỹ(z) + u(z/q)w(z)ỹ(z/q) = 0. (4.29)

So we can always bring our q-difference equation in the following form,

y(qz) + v(z)y(z) + w(z)y(z/q) = 0, (4.30)

with v(z) and w(z) polynomials such that v(z), w(z) and w(z/q) do not have a nonzero

common root, and if v(0) = 0, then z = 0 is not a root of w(z) with multiplicity more than

1The choice (4.27) seems particularly appropriate as the corresponding χ(z) is meromorphic on C∗, with
simple poles on q−Z, satisfying χ(qz) = n = logq(q

n) for n ∈ Z.
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one. Indeed if the latter condition is violated for some root of v(z), then we can easily gauge it

away, replacing v(z) and w(z) in (4.30) by lower degree polynomials. This form is essentially

the same as the one presumed by Birkhoff 4.16. Note that (4.30) is singular at z =∞, hence,

to study the analytic characterisation at z =∞, it is helpful to rescale

y(qz) = θq(−z)−nỹ(z), ṽ(z) = z−nv(z), w̃(z) = qnz−2nw(z), (4.31)

where n ∈ N chosen minimal such that ṽ(z) and w̃(z) are polynomials in z−1. The indicial

equation at z =∞ takes the form

κ+ ṽ(∞) + w̃(∞)κ−1 = 0. (4.32)

It follows immediately that z = ∞ is an essential singularity if the degree of w(z) does not

equal 2n. Hence, z = ∞ is a regular singular point if and only if the degree of w(z) is 2n

and the degree of v(z) is less or equal to n. The same thing is true for Birkhoff’s form (4.16),

which is strictly speaking irregular singular at z =∞. Indeed only after scaling by θq(−z)−n,

see (4.21b), z =∞ is a regular singular point.

4.4 The Model Equation

Our main interest lies in the global asymptotic analysis of second order linear equations,

where z = 0 is an ordinary point and z =∞ is a regular singular point.

4.4.1 General Set Up

We consider the second order homogeneous q-difference equation

y(qz) + v(z)y(z) + w(z)y(z/q) = 0, (4.33)

where

v(z) = v0 + v1z + . . .+ vnz
n, v0 = −1− q,

w(z) = w0 + w1z + . . .+ w2nz
2n, w0 = q,

for some n ∈ N, which we refer to as the degree of (4.33). Furthermore we think of the zeros

of w(z) as prescribed,

w(z) = q(1− z/x1) · . . . · (1− z/x2n). (4.34)

and to assure an apparent singularity at z = 0, the condition (4.26) takes the form v1+w1 = 0,

so we require

v1 = q(x−1
1 + . . .+ x−1

2n ).

Lastly, after the scaling (4.31), we prescribe exponents κ1, κ2 ∈ C∗ at z = ∞, and hence, by

(4.32),

vn = −(κ1 + κ2), w2n = q−nκ1κ2. (4.35)
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Note that we can not freely prescribe both the zeros x1, . . . , x2n ∈ C∗ and exponents κ1, κ2 ∈
C∗, as combining (4.34) and (4.35) gives

κ1κ2 =
qn+1

x1 · . . . · x2n
, (4.36)

which is the q-analog of Fuchs’ relation for linear differential equations. Now, say we prescribe

the zeros and exponents subject to (4.36), then (4.33) still has n− 2 free parameters, coming

from the freedom in choosing the coefficients v2, . . . , vn−1. The degree n = 2 case plays a

crucial role in the asymptotic analysis of Yamada’s Lax pair in Chapter 5, and in Section 4.5

we discuss it in detail.

It is sometimes helpful to write (4.33) in system form. Writing

Y (z) =

(
y(z)

y(z/q)

)
,

we obtain

Y (qz) = A(z)Y (z), A(z) =

(
−v(z) −w(z)

1 0

)
. (4.37)

The equivalence between (4.33) and Birkhoff’s form (4.17) can now be made explicit, as

choosing any factorisation w(z) = w1(z)w2(z), with w1(z) and w2(z) polynomials of degree

n, the rational gauge

Y (z) = R(z)Ỹ (z), R(z) =

(
1 0

0 w2(z)−1

)
,

gives

Ỹ (qz) = Ã(z)Ỹ (z), Ã(z) = R(qz)−1A(z)R(z) =

(
−v(z) −w1(z)

w2(qz) 0

)
,

which is of the form (4.17).

4.4.2 Fundamental Solution at Origin

As z = 0 is an ordinary point of the equation under consideration (4.33), the power series

method gives a convergent power series solution

y(z) = c0 + c1z + c2z
2 + . . . ,

for any choice of c0, c1 ∈ C, after which all higher order coefficients are fixed. Let us specify

two solutions

y0
1(z) = 1 + 0z +O

(
z2
)
, (4.38a)

y0
2(z) = 0 + 1z +O

(
z2
)
, (4.38b)
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and write the corresponding fundamental solution by

y0(z) :=
(
y0

1(z) y0
2(z)

)
=
(
1 z

)(1 0

0 1

)
+O

(
z2
)
. (z → 0)

This is initially only a local solution, but we can use the equation it satisfies (4.33), to

meromorphically continue it to the finite complex plane C. Note however, that the zeros of

w(z) can cause poles to arise. Let us define the corresponding fundamental solution of the

system form (4.37) by

Y 0(z) =

(
y0

1(z) y0
2(z)

y0
1(z/q) y0

2(z/q)

)
,

then the Wronskian W(y0)(z) := |Y 0(z)| satisfies

W(y0)(qz) = w(z)W(y0),

as |A(z)| = w(z). Furthermore we have the asymptotic characterisation

W(y0)(z) = (q−1 − 1)z +O
(
z2
)
, (z → 0)

which gives

W(y0)(z) = (q−1 − 1)z(z/x1, . . . z/x2n; q)−1
∞ . (4.39)

We end our analysis of equation (4.33) near z = 0 with the following observation.

Lemma 4.4.1. The matrix function Y 0(z)−1 is analytic on C∗.

Proof. As Y 0(z) is a fundamental solution of (4.37), by (4.39) clearly invertible, its inverse

satisfies

Y 0(z)−1 = Y 0(qz)−1A(z). (4.40)

Note that Y 0(z)−1 is a meromorphic matrix, which has a convergent Laurent expansion at

z = 0, with leading term given by

Y 0(z)−1 = z−1

(
0 0
q
q−1 − q

q−1

)
+O(1). (z → 0)

Therefore Y 0(z)−1 is analytic in a punctured disc about the origin, and (4.40) guarantees

unique analytic continuation to the entire punctured plane C∗.

4.4.3 Fundamental Solution at Infinity

To construct a fundamental solution at z =∞ of (4.33), we rescale, in accordance with (4.31),

y(z) = S∞i (z)ψi(z), S∞i (qz) = κiz
nS∞i (z), Si(z) = θq(−z)−neq(z;κi), (4.41)

which gives, for i = 1, 2,

κiψi(qz) + z−nv(z)ψi(z) + κ−1
i qnz−2nw(z)ψi(z/q) = 0. (4.42)
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In analogy with Lemma 4.4.1, we have the following result.

Lemma 4.4.2. If κ1/κ2 /∈ qZ, then, for i = 1, 2, the q-difference equation (4.42) has an

unique solution ψ∞i (z) which is analytic at z = ∞ with ψ∞i (∞) = 1. Furthermore this

solution is analytic on the entire punctured Riemann sphere P∗.

Proof. The assumption assures that z = ∞ is non-resonant, hence the power series method

allows us to find solutions around z = ∞ as prescribed. Equation (4.42) now guarantees

unique analytic continuation to P∗.

For now we assume κ1/κ2 /∈ qZ, and define a fundamental solution of (4.33) near z =∞,

by

y∞(z) =
(
y∞1 (z) y∞2 (z)

)
:= ψ∞(z)

(
S∞1 (z) 0

0 S∞2 (z)

)
, ψ∞(z) :=

(
ψ∞1 (z) ψ∞2 (z)

)
.

Associated we have a fundamental solution of the system form (4.37),

Y∞(z) =

(
y∞1 (z) y∞2 (z)

y∞1 (z/q) y∞2 (z/q)

)
=

(
S∞1 (z)ψ∞1 (z) S∞2 (z)ψ∞2 (z)

S∞1 (z/q)ψ∞1 (z/q) S∞2 (z/q)ψ∞2 (z/q)

)
=

(
1 0

0 qnz−n

)(
ψ∞1 (z) ψ∞2 (z)

κ−1
1 ψ∞1 (z/q) κ−1

2 ψ∞2 (z/q)

)(
S∞1 (z) 0

0 S∞2 (z)

)
=

(
1 0

0 qnz−n

)
Ψ∞(z)

(
S∞1 (z) 0

0 S∞2 (z)

)
,

where we denoted

Ψ∞(z) =

(
ψ∞1 (z) ψ∞2 (z)

κ−1
1 ψ∞1 (z/q) κ−1

2 ψ∞2 (z/q)

)
.

Again we are interested in the Wronskians W(y∞)(z) = |Y∞(z)| and W(ψ∞)(z) = |Ψ∞(z)|,
which, by the above calculation, are related by

W(y∞)(z) = qnz−nS∞1 (z)S∞2 (z)W(ψ∞)(z).

From this relation we easily derive

W(ψ∞)(qz) =
qn

κ1κ2
z−2nw(z)W(ψ∞)(z)

= q−1x1 · . . . · x2nz
−2nw(z)W(ψ∞)(z)

= (1− x1/z) · . . . · (1− x2n/z)W(ψ∞)(z),

where in the second equality we used Fuchs’ relation (4.36).

Combining this first order equation with the asymptotic characterisation

W(ψ∞)(z) = κ−1
2 − κ

−1
1 +O

(
z−1
)
, (z →∞)
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we directly obtain an explicit equation for the Wronskian

W(ψ∞)(z) = (κ−1
2 − κ

−1
1 ) (qx1/z, . . . , qx2n/z; q)∞ . (4.43)

4.4.4 The Connection Matrix

We are now ready to construct a fundamental object in our study, the connection matrix,

P (z) = Y 0(z)−1Y∞(z),

which is meromorphic on C∗, and satisfies

y∞(z) = y0(z)P (z).

From the definition we immediately find P (qz) = P (z), and hence the entries of the connection

matrix are q-elliptic functions. Note however, that we made choices on the way, on which P (z)

depends. For example, the choice of functions S∞1 and S∞2 (z) in (4.41), was quite arbitrary.

A bit more delicate, the choice of initial conditions in (4.38), contains some freedom as z = 0

is an ordinary point. Note however, that

P (z) = Y 0(z)−1Y∞(z)

= Y 0(z)−1

(
1 0

0 qnz−n

)
Ψ∞(z)

(
S∞1 (z) 0

0 S∞2 (z)

)
= Q(z)

(
S∞1 (z) 0

0 S∞2 (z)

)
,

where the associated connection matrix Q(z) is defined by

Q(z) =

(
Q11(z) Q12(z)

Q21(z) Q22(z)

)
:= Y 0(z)−1

(
1 0

0 qnz−n

)
Ψ∞(z), (4.44)

independent of the particular choice of scalings. Note that Q(z) satisfies

y0(z)Q(z) = ψ∞(z), (4.45)

and by Lemma 4.40 and 4.4.2, the matrix function Q(z) is analytic on the entire punctured

plane C∗. Of course Q(z) fails to be q-periodic, however it does satisfy

Q(qz) = Q(z)

(
κ−1

1 z−n 0

0 κ−1
2 z−n

)
. (4.46)

Hence the entries Q11(z) and Q21(z) are analytic q-theta functions of multiplier κ−1
1 z−n, and

the entries Q12(z) and Q22(z) are analytic q-theta functions of multiplier κ−1
2 z−n. To put it

differently, writing

(Q11, Q21, Q12, Q22) ∈M := V n
q (κ−1

1 )⊕ V n
q (κ−1

1 )⊕ V n
q (κ−1

2 )⊕ V n
q (κ−1

2 ), (4.47)
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the matrix Q(z) essentially lives in the 4n dimensional vector space M .

At this point we have not used the additional information coming from the explicit ex-

pressions (4.39) and (4.43), for the Wronskians involved in

|Q(z)| = qnz−nW(y0)(z)−1W(ψ∞)(z),

which gives

|Q(z)| = q(κ−1
2 − κ

−1
1 )

1− q
qnz−n−1θq(z/x1, . . . , z/x2n). (4.48)

We conclude that the matrix Q(z) in fact lives in M ′, the “closed” subspace of M defined by

the cut (4.48). Note that (4.48) gives 2n constraints, 2n− 1 coming from the locations of, for

instance, the zeros x1, . . . x2n−1, after which x2n is automatically a zero because of the second

equation in (4.13). The remaining constraint comes from the overall scalar factor in front

of the product of q-theta functions. So M ′ is essentially a 2n dimensional space. However,

following Birkhoff’s approach, we instead consider the bigger space M ′′ obtained by cutting

M by

|Q(z)| = constant× z−n−1θq(z/x1, . . . , z/x2n).

The Riemann-Hilbert-Birkhoff correspondence gives an injective mapping

(v2, v3, . . . , vn−1) 7→ [Q(z)],

where [Q(z)] denotes the orbit of Q(z) in M ′′ under multiplication by diagonal matrices by

the right and lower triangular matrices by the left, as z = 0 is an ordinary point. Now M ′′

is a 2n+ 1 dimensional space and hence the corresponding orbit space is 2n− 3 dimensional,

whereas the domain of the injective mapping is n − 2 dimensional. That is, on the scalar

level, the monodromy mapping is generically not surjective, and we do not have a Riemann-

Hilbert-Birkhoff correspondence.

4.4.5 The Degree Zero and One Cases

Albeit a bit trivial, the degree zero case of (4.33) is given by

y(qz)− (1 + q)y(z) + qy(z/q) = 0,

and hence {κ1, κ2} = {1, q}. Two linear independent solutions are given by y(z) = 1 and

y(z) = z and the connection problem is trivial.

The degree one case, is given by

y(qz) +
[
−(1 + q) + q(x−1

1 + x−1
2 )z

]
y(z) + q(1− z/x1)(1− z/x2)y(z/q) = 0, (4.49)

where the exponents κ1 and κ2 can hence be set equal to κ1 = −q/x1, κ2 = −q/x2. From

equations (4.47) and (4.13), we immediately obtain

Q(z) =

(
q11θq(qz/x1) q12θq(qz/x2)

q21θq(qz/x1) q22θq(qz/x2)

)
,
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where qij ∈ C for i, j ∈ {1, 2}. Furthermore (4.48) gives us

q11q22 − q12q21 =
q

1− q
(x−1

2 − x
−1
1 ).

Equation 4.49 is in fact reducible to first order equations, indeed one can easily check that

ỹ0(z) =
(
(qz/x1; q)−1

∞ (qz/x2; q)−1
∞
)
,

defines a fundamental solution to (4.49). We calculate

ψ∞(z) =
(
(x1/z; q)∞ (x2/z; q)∞

)
,

and

ỹ0(z) = y0(z)C, C =

(
1 1

q
1−qx

−1
1

q
1−qx

−1
2

)
.

We have the following connection result

ỹ0(z)Q̃(z) = ψ∞(z), Q̃(z) =

(
θq(qz/x1) 0

0 θq(qz/x2)

)
, (4.50)

and hence, by (4.45), we find

Q(z) = C

(
θq(qz/x1) 0

0 θq(qz/x2)

)
=

(
θq(qz/x1) θq(qz/x2)

q
1−qx

−1
1 θq(qz/x1) q

1−qx
−1
2 θq(qz/x2)

)
.

Note that in this setting, it is more natural to work with ỹ0(z) than y0(z), indeed the con-

nection formula (4.50) is much neater.

4.5 The Degree Two Model Equation

In Section (4.4.5) we saw that the degree zero and one cases of (4.33) are essentially trivial.

In this section we analyse the degree two case, the lowest degree non-trivial one. It plays

a crucial role in the analysis of the direct monodromy problem of Yamada’s Lax pair (2.21),

as the spectral part reduces to the degree two model equation when the time variable t

approaches zero or infinity. The equation under consideration is

y(qz) +
[
−(1 + q) + q(x−1

1 + x−1
2 + x−1

3 + x−1
4 )z − (κ1 + κ2)z2

]
y(z)

+ q(1− z/x1)(1− z/x2)(1− z/x3)(1− z/x4)y(z/q) = 0, (4.51)

supplemented with Fuchs’ equation

κ1κ2 =
q3

x1x2x3x4
. (4.52)
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We use the following short-hand notation for the parameters involved

σ = (x1, x2, x3, x4;κ1, κ2),

and only consider the generic parameter case, to be precise,

xi
xj

/∈ qZ, κ1xixj /∈ qZ,
κ1

κ2
/∈ qZ. (i, j ∈ {1, 2, 3, 4}) (4.53)

4.5.1 Relation with Associated Continuous Dual q-Hahn Polynomials

After some rescaling, and specialising to z ∈ qZ, equation (4.51) coincides with the recurrence

satisfied by the associated continuous dual q-Hahn polynomials. Indeed, following Gupta et

al. [23], these polynomials are defined by the three-term recurrence

pn+1(µ)− (µ− an)pn(µ) + b2npn−1(µ) = 0, (4.54)

for n ∈ N, with p0(µ) ≡ 1 and p−1(µ) ≡ 0, where

an = (a−1 + b−1 + c−1 + d−1)qn − (1 + q)q2n−1,

bn =
q

abcd
(1− aqn−1)(1− bqn−1)(1− cqn−1)(1− dqn−1).

These polynomials generalise the continuous dual q-Hahn polynomials, see Koekoek et al.

[56, Section 14.3], for a comparison. To relate equation (4.51) to the recurrence (4.54), we

rescale

y(z) = S(z)ψ(1/z), S(qz) = q−2z−2(1− qz/x1)(1− qz/x2)(1− qz/x3)(1− qz/x4)S(z),

which gives

ψ(qz) +
[
−q−1(κ1 + κ2) + (x−1

1 + x−1
2 + x−1

3 + x−1
4 )z − (1 + q)z2/q

]
ψ(z)

+
q

x1x2x3x4
(1− x1z/q)(1− x2z/q)(1− x3z/q)(1− x4z/q)ψ(z/q) = 0. (4.55)

Now, specialising

ρn := ψ(qn), µ = q−1(κ1 + κ2), (x1, x2, x3, x4) = (a, b, c, d), (4.56)

we find that ρn satisfies (4.54) for all n ∈ Z.

To be explicit, let Sn = S(q−n), or more precisely

Sn+1 =
q2n

(qn − 1
x1

)(qn − 1
x2

)(qn − 1
x3

)(qn − 1
x4

)
Sn, (n ∈ Z)

with S0 = 1, then ρn = Sny(q−n) satisfies (4.54), for any solution y(z). One can of course

obtain exactly the polynomials pn(µ), by choosing appropriate initial conditions y(1) = 1 and

y(q−1) = 0, uniform in µ.
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Gupta et al. [23] studied the recurrence (4.54) in the large positive n limit, which corre-

sponds to the limit z →∞ in qZ for (4.51). Their approach can easily be adopted to the more

general case (4.51) with z not confined to qZ. They observed that the large n asymptotics

can be expressed in terms of 3φ2 basic hypergeometric functions.

4.5.2 Intermezzo on Basic Hypergeometric Functions

Generalising Heine’s 2φ1 basic hypergeometric series (1.3), for r, s ∈ N, the rφs basic hyper-

geometric series are defined by

rφs

[
a1, a2, . . . , ar
b1, . . . bs

; q, z

]
=
∞∑
n=0

(a1, a2, . . . ar; q)n
(q, b1, . . . , bs; q)n

[(−1)nq(
n
2)]1+s−rzn, (4.57)

where ai, bj ∈ C for 1 ≤ i ≤ r and 1 ≤ j ≤ s. Gasper and Rahman [18] wrote an extensive

overview on these series. We are mostly concerned with the 3φ2 basic hypergeometric series

3φ2

[
a, b, c

d, e
; q, z

]
=
∞∑
n=0

(a, b, c; q)n
(q, d, e; q)n

zn, (4.58)

which converges for |z| < 1 and enjoys meromorphic continuation to the entire complex plane.

Gasper and Rahman [18] give the following two-term tranformations

3φ2

[
a, b, c

d, e
; q,

de

abc

]
=

(e/a, de/(bc); q)∞
(e, de/(abc); q)∞

3φ2

[
a, d/b, d/c

d, de/(bc)
; q,

e

a

]
, (4.59a)

=
(b, de/(ab), de/(bc); q)∞

(d, e, de/(abc); q)∞
3φ2

[
d/b, e/b, de/(abc)

de/(ab), de/(bc)
; q, b

]
, (4.59b)

and the three-term transformation

3φ2

[
a, b, c

d, e
; q,

de

abc

]
=

(d/b, d/c, cq/a, q/e; q)∞
(d, cq/e, q/a, d/(bc); q)∞

3φ2

[
c, e/a, cq/d

cq/a, bcq/d
; q,

bq

e

]
−
(
q/e, dq/e, b, c, e/a, de/(bcq), bcq2/(de); q

)
∞

(e/q, d, bq/e, cq/e, q/a, d/(bc), bcq/d; q)∞
3φ2

[
aq/e, bq/e, cq/e

q2/e, dq/e
; q,

de

abc

]
. (4.60)

4.5.3 Outline of Global Asymptotic Analysis

We wish to explicitly determine the associated connection matrix Q(z) (4.44), for the degree

two case (4.51). Firstly, we derive explicit formula for the solutions ψ∞i (z) of (4.42) at z =∞
for i ∈ {1, 2}, by adopting the approach of Gupta et al. [23]. Writing

φ(a, b, c, d, e) = 3φ2

[
a, b, c

d, e
; q,

de

abc

]
(4.61)
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Gupta et al. [23] derive the following contiguous relation

de

bcq

(1− b)(1− c)(1− d/a)(1− e/a)

(1− d)(1− e)
φ(a, qb, qc, qd, qe)

−
(

(1− a)

(
1− de

abcq

)
+ a

(
1− d

aq

)(
1− e

aq

)
+

de

abcq
(1− b)(1− c)

)
φ(a, b, c, d, e)

+ (1− d/q)(1− e/q)φ(a, b/q, c/q, d/q, e/q) = 0, (4.62)

and, by rescaling and specialisation of the parameters involved, they use it to construct

solutions of the recurrence (4.54) about n = ∞. Similarly we use it to construct explicit

solutions of (4.42), analytic at z =∞.

We then use the transformations (4.59) and (4.60) to simultaneously find explicit solutions

of (4.51), analytic at z = 0, and corresponding connection matrix. We remark that these

results seem new.

4.5.4 Explicit Solutions near Infinity

Recall that the solutions ψ∞i (z) satisfy (4.42), which we rewrite as

z4ψi(qz) + z2/κi
[
−(1 + q) + q(x−1

1 + x−1
2 + x−1

3 + x−1
4 )z − (κ1 + κ2)z2

]
ψi(z)

+ q3/κ2
i (1− z/x1)(1− z/x2)(1− z/x3)(1− z/x4)ψi(z/q) = 0, (4.63)

and are characterised by ψ∞i (∞) = 1, for i ∈ {1, 2}. We set

φ(z) = φ(a,Bz,Cz, aDz, aAz),

then, by (4.62), we have

a2AD

qBC

(1−Az)(1−Bz)(1− Cz)(1−Dz)
(1− aDz)(1− aAz)

φ(qz)

−
(

1 +
a2AD

qBC
− aAD

q

(
1

A
+

1

B
+

1

C
+

1

D

)
z +

aAD

q
1+q
q z2

)
φ(z)

+ (1− aDz/q)(1− aAz/q)φ(z/q) = 0.

We subsequently rescale

φ(z) = (aDz, aAz; q)−1
∞ ψ(1/z),

then ψ(z) satisfies

z4ψ(qz) + z2

[
−aAD

q2
(1 + q) +

aAD

q
(A−1 +B−1 + C−1 +D−1)z −

(
1 +

a2AD

qBC

)
z2

]
ψ(z)

+
a2A2D2

q
(1− z/A)(1− z/B)(1− z/C)(1− z/D)ψ(z/q) = 0. (4.64)
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Let i ∈ {1, 2}, then this equation coincides with (4.63) exactly for the choice

a =
q2

x1x4κi
, (A,B,C,D) = (x1, x2, x3, x4),

and we obtain the following solution to (4.63),

φi(z) =

(
q2

x1κi
z−1,

q2

x4κi
z−1; q

)
∞

3φ2

[
q2

x1x4κi
, x2z

−1, x3z
−1

q2

x1κi
z−1, q2

x4κi
z−1

; q,
q2

x2x3κi

]
.

This form of the solution does not allow easy evaluation of φi(∞), we therefore apply trans-

formation (4.59a), and discard of constant factors, to finally obtain

ψ∞1 (z;σ) =

(
q2

x1κ1
z−1, x1z

−1; q

)
∞

3φ2

[
x2x3
q κ2,

x3x4
q κ2,

x2x4
q κ2

q2

x1κ1
z−1, q κ2κ1

; q, x1z
−1

]
, (4.65a)

ψ∞2 (z;σ) =

(
q2

x1κ2
z−1, x1z

−1; q

)
∞

3φ2

[
x2x3
q κ1,

x3x4
q κ1,

x2x4
q κ1

q2

x1κ2
z−1, q κ1κ2

; q, x1z
−1

]
, (4.65b)

noting that both solutions are analytic at z =∞ with ψ∞1 (∞;σ) = 1 and ψ∞2 (∞;σ) = 1, and

hence coinciding with the solutions defined in Lemma 4.4.2. We denote the corresponding

fundamental solution by

ψ∞(z;σ) =
(
ψ∞1 (z;σ) ψ∞2 (z;σ)

)
.

Remark 4.5.1. The model equation (4.51) is invariant under permutations of {x1, x2, x3, x4}
and switching of κ1 and κ2. From the asymptotic characterisation of the solutions (4.65), we

immediately obtain that both solutions are invariant under permutations of {x1, x2, x3, x4}
and

ψ∞1 (z;σ|κ1↔κ2) = ψ∞2 (z;σ), ψ∞2 (z;σ|κ1↔κ2) = ψ∞1 (z;σ).

One can also check this algebraically, using transformations (4.59).

4.5.5 Explicit Solutions at Origin

Using the three-term transformation (4.60), we are able to find solutions which are analytic

around the origin. Note that, without relying on meromorphic continuation, a necessary

requirement, for this transformation to be sensible, is | bqe | < 1. In the following theorem, we

apply the three-term transformation (4.60), to the solution (4.65b). For validity of this step

we have to assume (4.66). However, in Section 4.5.7, we show that we can always apply a

permutation of the parameters such that this condition is satisfied.

Theorem 4.5.2. Considering the degree two model equation (4.51), if the parameters satisfy

|x3x4κ2| < |q|, (4.66)
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then we have a fundamental solution ỹ0(z;σ), analytic at z = 0, given explicitly by

ỹ0
1(z;σ) =

(x4κ1z, q)∞(
qx−1

1 z, qx−1
2 z, qx−1

3 z; q
)
∞

3φ2

[
x2x4
q κ1,

x1x4
q κ1, qx

−1
3 z

q x4x3 , x4κ1z
; q,

x3x4

q
κ2

]
, (4.67a)

ỹ0
2(z;σ) =

(x3κ1z, q)∞(
qx−1

1 z, qx−1
2 z, qx−1

4 z; q
)
∞

3φ2

[
x2x3
q κ1,

x1x3
q κ1, qx

−1
4 z

q x3x4 , x3κ1z
; q,

x3x4

q
κ2

]
. (4.67b)

These solutions are related to the solutions at infinity (4.65), by the connection formula

ỹ0(z;σ) = ψ∞(z;σ)R̃(z;σ), (4.68)

with the connection matrix R̃(z;σ) given by

R̃(z;σ) =
1

θq(qz/x1, qz/x2)

(
r11θq(x4κ2z) r12θq(x3κ2z)

r21θq(x4κ1z) r22θq(x3κ1z)

)( 1
θq(qz/x3) 0

0 1
θq(qz/x4)

)
, (4.69)

where

r11 =

(
x3x4
q κ1,

x2x4
q κ1,

x1x4
q κ1; q

)
∞(

x3x4
q κ2, q

x4
x3
, κ1κ2 ; q

)
∞

, r12 =

(
x3x4
q κ1,

x2x3
q κ1,

x1x3
q κ1; q

)
∞(

x3x4
q κ2, q

x3
x4
, κ1κ2 ; q

)
∞

, (4.70a)

r21 =

(
x2x4
q κ2,

x1x4
q κ2; q

)
∞(

q x4x3 ,
κ2
κ1

; q
)
∞

, r22 =

(
x2x3
q κ2,

x1x3
q κ2; q

)
∞(

q x3x4 ,
κ2
κ1

; q
)
∞

. (4.70b)

Proof. Firstly, let us specialise (4.68) to the first column, reading

ỹ0
1(z;σ) = R̃11(z)ψ∞1 (z;σ) + R̃21(z)ψ∞2 (z;σ), (4.71)

where the entries R̃11(z) and R̃21(z) equal

R̃11(z) = r11
θq(x4κ2z)

θq (qz/x1, qz/x2, qz/x3)
, R̃21(z) = r21

θq(x4κ1z)

θq (qz/x1, qz/x2, qz/x3)
.

Now, we take the expression (4.65b) for ψ∞2 (z;σ), and apply the three-term transformation

(4.60), then, by carefully working out the different factors, we obtain

ψ∞2 (z;σ) = R̃21(z)−1ỹ0
1(z;σ)− R̃21(z)−1R̃11(z)ψ∞1 (z;σ),

that is, equation (4.71) is indeed correct. Furthermore, note that

R̃11(qz) = κ1z
2R̃11(z), R̃21(qz) = κ2z

2R̃21(z),

from which we conclude, using (4.41), that ỹ0
1(z;σ) satisfies our model equation (4.51). Or

to put it differently, the right-hand side of (4.71) defines a solution of the model equation

(4.51), regardless of the values of r11 and r21. By switching x3 ↔ x4 in (4.71), using Remark
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(4.5.1), we immediately obtain the second column of (4.68) and the theorem follows.

Note that the solutions (4.67) are related to y0(z) by

ỹ0(z;σ) = y0(z)C(σ), C(σ) =

(
ỹ0

1(0;σ) ỹ0
2(0;σ)

dỹ01
dz (0;σ)

dỹ02
dz (0;σ)

)
.

One can of course write C(σ) explicitly in terms of 2φ1 hypergeometric functions. By com-

parison with (4.45), we obtain

Q(z) = Q(z;σ) = C(σ)Q̃(z;σ), Q̃(z;σ) = R̃(z;σ)−1. (4.72)

4.5.6 An Explicit Connection Matrix

Considering equations (4.72), we wish to explicitly calculate the inverse of R̃(z;σ). To do

this we first calculate its determinant explicitly. Of course we already have a formula (4.48)

for the determinant of Q(z;σ), however, calculating |C(σ)| takes some effort. In stead let us

use some of the q-elliptic theory developed in Section 4.1.1. Firstly, considering (4.69), we

evaluate ∣∣∣∣(r11θq(x4κ2z) r12θq(x3κ2z)

r21θq(x4κ1z) r22θq(x3κ1z)

)∣∣∣∣ =
(x3x4q κ1; q)∞

(q x4x3 , q
x3
x4
, κ1κ2 ,

κ2
κ1
, x3x4q κ2; q)∞

r(z),

with

r(z) = θq

(
x2x4

q
κ1,

x1x4

q
κ1

)
θq(x3κ1z, x4κ2z)− θq

(
x2x3

q
κ1,

x1x3

q
κ1

)
θq(x4κ1z, x3κ2z)

=
x2x3

q
κ1θq

(
x4

x3
,
κ2

κ1

)
θq
(
q2z/x1, qz/x2

)
,

where the second equality follows from the addition formula (4.15) with

α =
1

x3x4κ1κ2
, a =

1

x3κ1
, b =

1

x4κ1
, c = x2/q.

Therefore a little calculation gives us an explicit formula for the determinant∣∣∣R̃(z;σ)
∣∣∣ = qz−1x

−1
3 − x

−1
4

κ2 − κ1

(x3x4q κ1; q)∞

(x3x4q κ2; q)∞
θq(qz/x1, qz/x2, qz/x3, qz/x4)−1. (4.73)

We can now calculate the inverse of R̃(z;σ), giving

Q̃(z;σ) = q−1 κ2 − κ1

x−1
4 − x

−1
3

(
x3θq(z/x3) 0

0 x4θq(z/x4)

)(
q11θq(x3κ1z) q12θq(x3κ2z)

q21θq(x4κ1z) q22θq(x4κ2z)

)
,
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where

q11 =

(
x3x4
q κ2,

x2x3
q κ2,

x1x3
q κ2; q

)
∞(

x3x4
q κ1, q

x3
x4
, κ2κ1 ; q

)
∞

, q12 = −

(
x2x3
q κ1,

x1x3
q κ1; q

)
∞(

q x3x4 ,
κ1
κ2

; q
)
∞

, (4.74a)

q21 = −

(
x3x4
q κ2,

x2x4
q κ2,

x1x4
q κ2; q

)
∞(

x3x4
q κ1, q

x4
x3
, κ2κ1 ; q

)
∞

, q22 =

(
x2x4
q κ1,

x1x4
q κ1; q

)
∞(

q x4x3 ,
κ1
κ2

; q
)
∞

. (4.74b)

Of course Q̃(z;σ) is characterised by

ỹ0(z;σ)Q̃(z;σ) = ψ∞(z;σ). (4.75)

Comparison of (4.73) and (4.48) gives

|C(σ)| = q − 1

q

1

x−1
3 − x

−1
4

(x3x4q κ2; q)∞

(x3x4q κ1; q)∞
.

Remark 4.5.3. We emphasise that the explicit formulas in this section, break down when

one of the assumptions on the parameters in (4.53) is broken. As an example, suppose

κ1x1x2 = q2, then (4.65a) becomes

ψ∞1 (z;σ) =
(
x1z
−1, x2z

−1; q
)
∞ ,

and

ỹ0
1(z) = (qz/x1, qz/x2; q)−1

∞ ,

defines a solution of (4.51), analytic at z = 0. Taking any other solution ỹ0
2(z), analytic at

z = 0, linearly independent of ỹ0
1(z), the connection matrix, relating {ψ∞1 (z;σ), ψ∞2 (z;σ)} and

{ỹ0
1(z), ỹ0

2(z)}, is triangular. Note that the explicit connection results in this section break

down, as for instance r11 and r12, defined in (4.70), are singular. We do not wish to discuss

the various degenerations of the model equation (4.51) here.

4.5.7 Symmetries

The calculations in the previous two sections are only valid if condition (4.66) holds. Now

suppose that instead |x3x4κ2| ≥ |q|, then, by Fuchs’ equation (4.52), we have

|x1x2κ1| =
|q|3

|x3x4κ2|
≤ |q|2 < |q|.

Hence we can simply apply a permutation κ1 ↔ κ2, x1 ↔ x3 and x2 ↔ x4, to all the results,

interchanging the rows and columns of R̃(z) and Q̃(z) respectively in accordance with Remark

4.5.1.
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4.6 Yamada’s Lax Pair

In Section 2.4.3, we introduced Yamada’s Lax pair (2.21). Recall that the compatibility

condition (2.23) of the Lax pair, is equivalent to the q-P (A1) equation, as formulated in

Theorem 2.4.1. In Section 4.7, we momentarily forget about the deformation equation and

set up the global analysis of the spectral equation, similar to that of the model equation 4.4.

In Section 4.8, we study how q-P (A1), or equivalently the deformation equation, deforms the

analytic data of the spectral equation. Finally, in Sections 4.9 and 4.10, we make the heuristic

discussion on the isomonodromic deformation method in Section 2.4.4, rigorous.

4.7 Analytic Theory of Spectral Equation

In this section we consider t, f, g as mere constants entering the spectral equation L1, and

study the analytic structure of the spectral equation. We often suppress t, f or g dependence

in this section. Let us first remark that L1 is in polynomial form, i.e. u(z), v(z), w(z) are all

polynomials in z of degree five. This is of course trivial for u(z) and w(z), but less so for v(z).

We invite the interested reader to check it themself. Let us write

u(z, t) = u0(t) + u1(t)z + . . .+ u5(t)z5,

v(z, t) = v0(t) + v1(t)z + . . .+ v5(t)z5,

w(z, t) = w0(t) + w1(t)z + . . .+ w5(t)z5.

The Lax pair is singular on the complement of

Rp = {(t, f, g) ∈ C∗ × C2 : f, g, fg − 1, fg − t2 6= 0},

and we say that (t, f, g) ∈ C∗ × C2 is in regular position, if it is an element of this set.

4.7.1 Fundamental Solution at Origin

It is easy to calculate

u0 = 1, v0 = −(1 + q), w0 = q,

hence the exponents at z = 0 are {1, q}, which means z = 0 is a regular singular point with

resonance. Furthermore, a less easy calculation shows

u1 + v1 + w1 = 0,

so z = 0 is in fact an ordinary point of L1. We define two linearly independent solutions at

z = 0 by

y0
1(z; t, f, g) = 1 + 0z +O

(
z2
)
, (4.76a)

y0
2(z; t, f, g) = 0 + 1z +O

(
z2
)
, (4.76b)
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and write the corresponding fundamental solution by

y0(z; t, f, g) :=
(
y0

1(z; t, f, g) y0
2(z; t, f, g)

)
=
(
1 z

)
+O

(
z2
)
. (z → 0) (4.77)

The technical characterisation is given in the following lemma.

Lemma 4.7.1. For fixed (t, f, g) ∈ Rp, there exists an unique fundamental formal power

series solution y0(z; t, f, g) of L1 about z = 0, characterised asymptotically by (4.77). For any

(t∗, f∗, g∗) ∈ Rp, this power series solution converges, locally uniformly in (z, t, f, g) ∈ C×Rp,
at (z, t, f, g) = (0, t∗, f∗, g∗). The local solution y0(z; t, f, g) has an unique meromorphic

continuation to C in z, remaining analytic in (t, f, g) on Rp.

Proof. This can be proven by elementary means, or by for instance using Theorem B.3 and

Remark B.5.

It is helpful to rescale

y(z, t) = S0(z, t)ψ(z, t), S0(qz, t) =
1

u(z, t)
S0(z, t),

where we specify

S0(z, t) := (qb5z, qb6z, qb7z, qb8z, z/f ; q)∞,

and ψ(z, t) satisfies

ψ(qz, t) + v(z, t)ψ(z, t) + u(z/q, t)w(z, t)ψ(z/q, t) = 0.

Note that this equation is in standard form (4.33), and we specify an unique fundamental

solution by

ψ0(z, t) =
(
ψ0

1(z, t) ψ0
2(z, t)

)
=
(
1 z

)
+O

(
z2
)
. (z → 0) (4.78)

We can easily calculate

S0(0, t) = 1,
dS0

dz
(0, t) =

1

q − 1
(q(b5 + b6 + b7 + b8) + f−1),

and we immediately obtain

y0(z, t) = S0(z, t)ψ0(z, t)

(
1 0

− 1
q−1(q(b5 + b6 + b7 + b8) + f−1) 1

)
.

Correspondingly we write

Y 0(z, t) =

(
y0

1(z, t) y0
2(z, t)

y0
1(z/q, t) y0

2(z/q, t)

)
, Ψ0(z, t) =

(
ψ0

1(z, t) ψ0
2(z, t)

ψ0
1(z/q, t) ψ0

2(z/q, t)

)
,
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which are related by

Y 0(z, t) =

(
S0(z, t) 0

0 S0(z/q, t)

)
Ψ0(z, t)

·

(
1 0

− 1
q−1(q(b5 + b6 + b7 + b8) + f−1) 1

)
. (4.79)

By equation (4.39), we have

|Ψ0(z, t)| = (q−1 − 1)z(z/(qf), qz/f, b1z/t, b2z/t, b3z/t, b4z/t, b5z, b6z, b7z, b8z; q)
−1
∞ ,

and hence, by (4.79),

|Y 0(z, t)| = (q−1 − 1)z
(z/f, qb5z, qb6z, qb7z, qb8z; q)∞

(qz/f, b1z/t, b2z/t, b3z/t, b4z/t; q)∞
(4.80a)

= (q−1 − 1)z(1− z/f)
(qb5z, qb6z, qb7z, qb8z; q)∞

(b1z/t, b2z/t, b3z/t, b4z/t; q)∞
. (4.80b)

Analogously to Lemma 4.4.1, we have the following result.

Lemma 4.7.2. The matrix function Ψ0(z, t)−1 = Ψ0(z; t, f, g)−1 is analytic on C∗ ×Rp.

4.7.2 Fundamental Solution at Infinity

We easily calculate

u5 = −b1b2b3b4
f

q3, v5 =
b1b2b3b4

f
q3(1 + q−1)t−2, w5 = −b1b2b3b4

f
q3q−1t−4,

hence the exponents {κ1, κ2} at z =∞ are given by κ1 = t−2 and κ2 = q−1t−2, which means

z =∞ is a regular singular point with resonance. Furthermore, a less easy calculation shows

t−2u1 + v1 + t2w1 = 0,

so z =∞ is in fact an apparent singularity of L1. We rescale Yamada’s Lax pair a bit, such

that z =∞ becomes an ordinary point. We set

y(z, t) = S(z, t)ỹ(z, t), S(qz, t) = t−2S(z, t) S(z, qt) = z−2S(z, t), (4.81)

which leads to

L̃1 : ũ(z, t)ỹ(qz, t) + ṽ(z, t)ỹ(z, t) + w̃(z, t)ỹ(z/q, t) = 0, (4.82a)

L̃2 : z−2h0(z, t)ỹ(z, qt) + h1(z, t)ỹ(z, t) + t2h2(z, t)ỹ(z/q, t) = 0, (4.82b)



116 CHAPTER 4. LINEAR Q-DIFFERENCE EQUATIONS AND ISOMONODROMY

where ũ, ṽ, w̃ are polynomials in z−1, normalised such that ũ(∞, t) = 1, given by

ũ(z, t) = − f

b1b2b3b4
q−3z−5u(z, t),

ṽ(z, t) = − f

b1b2b3b4
q−3z−5t2v(z, t),

w̃(z, t) = − f

b1b2b3b4
q−3z−5t4w(z, t).

We only use the scaling S(z, t) formally, one could for instance take

S(z, t) =
θq(zt)

2

θq(z)2θq(t)2
,

but really the actual candidate is irrelevant. Explicitly, ũ(z, t) is for instance given by

ũ(z, t) = (1− 1/(b5qz))(1− 1/(b6qz))(1− 1/(b7qz))(1− 1/(b8qz))(1− f/z).

The corresponding system form is obtained by setting

Ỹ (z, t) =

(
ỹ(z, t)

ỹ(z/q, t)

)
,

which gives

Ỹ (qz, t) = Ã(z, t)Ỹ (z, t), (4.83a)

Ỹ (z, qt) = H̃(z, t)Ỹ (z, t), (4.83b)

where

Ã(z, t) =

(
−t2 v(z,t)

u(z,t) −t4w(z,t)
u(z,t)

1 0

)
=

(
t2 0

0 1

)
A(z, t)

(
1 0

0 t2

)
,

H̃(z, t) = z2

(
1 0

0 q−2t−2

)
H(z, t)

(
1 0

0 t2

)
.

Returning to the scalar equation L̃1, we have

ũ(∞, t) = 1, ṽ(∞, t) = −(1 + q−1), w̃(∞, t) = q−1.

and of course the non-resonance condition is satisfied and z =∞ is an ordinary point of L̃1.

We define two linearly independent solutions at z =∞ by

y∞1 (z; t, f, g) = 1 + 0z−1 +O
(
z−2
)
, (4.84a)

y∞2 (z; t, f, g) = 0 + 1z−1 +O
(
z−2
)
, (4.84b)
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and write the corresponding fundamental solution by

y∞(z; t, f, g) :=
(
y∞1 (z; t, f, g) y∞2 (z; t, f, g)

)
=
(
1 z−1

)
+O

(
z−2
)
. (z →∞) (4.85)

The technical characterisation is given in the following lemma.

Lemma 4.7.3. For fixed (t, f, g) ∈ Rp, there exists an unique fundamental formal power se-

ries solution y∞(z; t, f, g) of L̃1 about z =∞, characterised asymptotically by (4.85). For any

(t∗, f∗, g∗) ∈ Rp, this power series solution converges, locally uniformly in (z, t, f, g) ∈ P∗×Rp,
at (z, t, f, g) = (∞, t∗, f∗, g∗). The local solution y∞(z; t, f, g) has an unique meromorphic

continuation to P∗ in z, remaining analytic in (t, f, g) on Rp.

Proof. This can be proven by elementary means, or by for instance using Theorem B.3 and

Remark B.5.

It is helpful to rescale

ỹ(z, t) = S∞(z, t)ψ̃(z, t), S∞(qz, t) =
1

ũ(z, t)
S∞(z, t),

where we specify

S∞(z, t) := (1/(b5z), 1/(b6z), 1/(b7z), 1/(b8z), qf/z; q)
−1
∞ ,

and ψ̃(z, t) satisfies

ψ̃(qz, t) + ṽ(z, t)ψ̃(z, t) + ũ(z/q, t)w̃(z, t)ψ̃(z/q, t) = 0.

Note that this equation is in the form of (4.42), and we specify an unique fundamental solution

by

ψ∞(z, t) =
(
ψ∞1 (z, t) ψ∞2 (z, t)

)
=
(
1 z−1

)
+O

(
z−2
)
. (z →∞) (4.86)

We can easily calculate

S∞(z, t) = 1− 1

q − 1
(b−1

5 + b−1
6 + b−1

7 + b−1
8 + qf)z−1 +O

(
z−2
)
, (z →∞)

and we immediately obtain

y∞(z, t) = S∞(z, t)ψ∞(z, t)

(
1 0

1
q−1(b−1

5 + b−1
6 + b−1

7 + b−1
8 + qf) 1

)
.

Correspondingly we write

Y∞(z, t) =

(
y∞1 (z, t) y∞2 (z, t)

y∞1 (z/q, t) y∞2 (z/q, t)

)
, Ψ∞(z, t) =

(
ψ∞1 (z, t) ψ∞2 (z, t)

ψ∞1 (z/q, t) ψ∞2 (z/q, t)

)
,
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which are related by

Y∞(z, t) =

(
S∞(z, t) 0

0 S∞(z/q, t)

)
Ψ∞(z, t)

·

(
1 0

1
q−1(b−1

5 + b−1
6 + b−1

7 + b−1
8 + qf) 1

)
. (4.87)

Note that

|Ψ∞(qz, t)| = ũ(z/q, t)w̃(z, t)|Ψ∞(z, t)|,

and hence, using (4.86), we find

|Ψ∞(z, t)| =(q − 1)z−1(q2f/z, f/z, qt/(b1z), qt/(b2z), qt/(b3z), qt/(b4z); q)∞×
(q/(b5z), q/(b6z), q/(b7z), q/(b8z); q)∞,

and hence, by (4.87),

|Y∞(z, t)| = (q − 1)z−1(1− f/z)(qt/(b1z), qt/(b2z), qt/(b3z), qt/(b4z); q)∞
(1/(b5z), 1/(b6z), 1/(b7z), 1/(b8z); q)∞

. (4.88)

Analogously to Lemma 4.4.2 we have the following result.

Lemma 4.7.4. The matrix function Ψ∞(z, t) = Ψ∞(z; t, f, g) is analytic on P∗ ×Rp.

4.7.3 The Connection Matrix

Recall that, in Section 4.7.1, we defined a fundamental solution Y 0(z, t) of (2.22a). Similarly,

in Section 4.7.2, we defined a fundamental solution Y∞(z, t) of (4.83a). We wish to define

the connection matrix such that

y∞(z, t) = y0(z, t)P (z, t), (4.89)

and hence we see that P (z, t) should be defined by

P (z, t) = Y 0(z; t)−1

(
1 0

0 t2

)
Y∞(z, t).

Indeed equation (4.89) is satisfied and

P (qz, t) = Y 0(qz; t)−1

(
1 0

0 t2

)
Y∞(qz, t)

= Y 0(z; t)−1A(z, t)−1

(
1 0

0 t2

)(
t2 0

0 1

)
A(z, t)

(
1 0

0 t2

)
Y∞(z, t)

= t2Y 0(z; t)−1

(
1 0

0 t2

)
Y∞(z, t),
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that is,

P (qz, t) = t2P (z, t). (4.90)

Note that P (z, t) = P (z; t, f, g) is meromorphic on C∗ × Rp, and to understand its analytic

properties better, we consider the associated connection matrix

Q(z, t) =
S0(z, t)

S∞(z, t)
P (z, t),

= θq(z/f)θq(qb5z, qb6z, qb7z, qb8z)P (z, t).

Indeed, from Lemma’s 4.7.2 and 4.7.2, we easily derive that Q(z, t) = Q(z; t, f, g) is analytic

on C∗ ×Rp. Furthermore, by (4.90), Q(z, t) satisfies

Q(qz, t) = − ft2

b1b2b3b4q3
z−5Q(z, t). (4.91)

By Theorem 4.1.9, we see that, for fixed t, Q(z, t) lives in a 4 × 5 = 20 dimensional space.

However, we can explicitly determine its determinant. Indeed, using equations (4.80a) and

(4.88) we derive

|P (z, t)| = qft2z−3 θq(b1z/t, b2z/t, b3z/t, b4z/t)

θq(qb5z, qb6z, qb7z, qb8z)
, (4.92)

and hence

|Q(z, t)| = qft2z−3θq(z/f)2θq(b1z/t, b2z/t, b3z/t, b4z/t, qb5z, qb6z, qb7z, qb8z). (4.93)

After this cut Q(z, t) still contains essentially 20−10 = 10 free parameters, for fixed t. So far

we have used the analytic characterisation of L1 at z = 0 and z =∞ and, say the location of

the zeros of u(z, t) and w(z, t). There is one intrinsic property of Yamada’s Lax pair we have

not used yet, which basically boils down to the following identity

v(f, t)v(f/q, t) = u(f/q, t)w(f, t). (4.94)

One can verify it by direct calculation, indeed

v(f, t) = −q(1− q) 1− fg
1− fg/t2

p1(f/t),

v(f/q, t) = −(1− q−1)
1− fg/t2

1− fg
p2(f),

from which the identity can easily be confirmed. At this point (4.94) might look a bit myste-

rious, however, one can think of it as the condition for z = f to be an apparent singularity,

as the following lemma shows.
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Lemma 4.7.5. For (t, f, g) in regular position, we have

Ψ0(qnf, t)−1 = 0, (n ∈ Z≤−1) (4.95)

Ψ∞(qnf, t) = 0, (n ∈ Z≥2) (4.96)

Q(qnf, t) = 0. (n ∈ Z) (4.97)

Proof. Let us start with verifying (4.95). Note that

Ψ0(z, t)−1 = Ψ0(qz, t)−1A0(z, t), A0(z, t) :=

(
−v(z, t) −u(z/q, t)w(z, t)

1 0

)
,

and as we know, by Lemma 4.7.2, that Ψ0(z, t)−1 is analytic in z on C∗, we only have to

check that Ψ0(f/q, t)−1 = 0. Now we simply use the above recursion three times to obtain

Ψ0(f/q, t)−1 = Ψ0(q2f, t)−1A0(qf, t)A0(f, t)A0(f/q, t),

= Ψ0(q2f, t)−1

(
−v(qf, t) 0

1 0

)(
−v(f, t) −u(f/q, t)w(f, t)

1 0

)(
−v(f/q, t) 0

1 0

)
= Ψ0(q2f, t)−1

(
−v(qf, t) 0

1 0

)(
v(f, t)v(f/q, t)− u(f/q, t)w(f, t) 0

−v(f/q, t) 0

)
= Ψ0(q2f, t)−1

(
−v(qf, t) 0

1 0

)(
0 0

−v(f/q, t) 0

)
= Ψ0(q2f, t)−1

(
0 0

0 0

)
= 0,

where in the fourth equality we used identity (4.94). Of course the evaluation (4.96) for

Ψ∞(z, t) is done similarly. As to (4.97), firstly note that it is enough to show that Q(f/q, t) =

0, by recursion (4.91). The result then follows by observing that Q(z, t) can be written as a

product of analytic matrices in z on C∗, one of which is Ψ0(z, t)−1. Explicitly, by equations

(4.79) and (4.87), we have

Q(z, t) = M0Ψ0(z, t)−1

(
1 0

0 − q2ft2

b1b2b3b4
z−5

)
Ψ∞(z, t)M∞,

where

M0 =

(
1 0

1
q−1(q(b5 + b6 + b7 + b8) + f−1) 1

)
, M∞ =

(
1 0

1
q−1(b−1

5 + b−1
6 + b−1

7 + b−1
8 + qf) 1

)
,

and the lemma follows.

Theorem 4.7.6. The matrix function

R(z; t, f, g) :=
1

θq(z/f)
Q(z, t) = θq(qb5z, qb6z, qb7z, qb8z)P (z, t),
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is analytic on C∗ ×Rp, satisfying

R(qz, t) =
t2

q4b5b6b7b8
z−4R(z, t),

and determinant equal to

|R(z, t)| = qft2z−3θq(b1z/t, b2z/t, b3z/t, b4z/t, qb5z, qb6z, qb7z, qb8z).

Proof. This is a direct consequence of Lemma 4.7.5 and equations (4.91) and (4.93).

4.8 The Deformation Equation

In Section 4.7 we considered the global asymptotic analysis of the spectral equation L1. For

fixed t, we derived fundamental solutions at z = 0 and z =∞ and studied the corresponding

connection matrix. Now we wish to let t vary and understand how these, or related objects,

behave under the time evolution.

4.8.1 Solutions at the “Spectral” Origin

Perhaps the easiest way to initiate the discussion, is by the use of the power series method to

explore what happens when we also take the deformation equation in consideration. Say we

set

y(z, t) = c0(t) + c1(t)z + c2(t)z2 + . . . ,

then, considering only the spectral equation, c0(t) and c1(t) can be chosen at pleasure after

which all higher order coefficients are fixed by L1. Now let us consider what happens when

we substitute the power series into L2. All constant terms cancel and when we compare the

coefficients of z in L2, we find

c1(t) =
q

q − 1
(1− t−2)g(t)c0(t) +

q2

q − 1
f(t)g(t)c0(qt). (4.98)

Similarly, comparing the coefficients of z2, we obtain

c2(t) =
q2

q2 − 1
g(t)c0(qt) +

q

q2 − 1
(q − t−2)g(t)c1(t) +

q3

q2 − 1
f(t)g(t)c1(qt).

Upon substitution of (4.98) into the above equation, we find an expression for c2(t) in terms of

{c0(t), c0(qt), c0(q2t)}. Of course, by comparing higher order coefficients, we find inductively,

that for any n ∈ N, the coefficient cn(t) can be expressed in terms of {c0(t), c0(qt), . . . , c0(qnt)}.
Now, if we wish for y(z, t) to simultaneously solve L1 and L2, then this leads to c0(t) to satisfy

countably many q-difference equations, a priori. As an example, if we take the expression

for c2(t) we find by substitution into L1, and compare it with (4.98), then we find, after

substitution of (4.98) and a long calculation, that c0(t) should satisfy

γ0(t)c0(t) + γ1(t)c0(qt) + γ2(t)c0(q2t) = 0, (4.99)
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where

γ0(t) =(t2 − 1)g2
[
qt2(fg − t2)p2(1/g)− (fg − 1)p1(t/g)

]
,

γ1(t) =t2(fg − 1)(fg − t2)[(b1 + b2 + b3 + b4)qt− (b5 + b6 + b7 + b8)q2t2 + q(qt2 − 1)g

+ (q2t2 − 1)g],

γ2(t) =q3t4fg(fg − 1)(fg − t2),

and we suppressed t dependence of f and g throughout. It turns out that this condition is

in fact sufficient. That is, to put it sloppy, let c0(t) be a solution of (4.99), and define c1(t)

by (4.98), then the unique corresponding power series solution of L1, also satisfies L2. There

are several ways to make this precise. Let us first discuss the discrete case. For (t, f, g) ∈ Rp,
we denote the space of meromorphic solutions of L1 = L1(t, f, g) in z, by SOL1(t, f, g). Note

that SOL1(t, f, g) is a 2-dimensional vector space over the field of q-elliptic functions. Then

we use the deformation equation, to define an operator L2 as follows. Assume (t, f, g) and

(qt, f , g) are both in regular position, related by q-P (A1), then

L2 : SOL1(t, f, g)→ SOL1(qt, f , g), y 7→ L2[y],

L2[y](z) := −h1(z, t)

h0(z, t)
y(z)− h2(z, t)

h0(z, t)
y(z/q),

is a well-defined linear operator by Theorem 2.4.1. Recall that {y0
1(z; t, f, g), y0

2(z; t, f, g)} and

{y0
1(z; qt, f , g), y0

2(z; qt, f , g)} are bases of SOL1(t, f, g) and SOL1(qt, f , g) respectively. The

question now is, what does L2 look like with respect to these bases? Well, let us write

y(z) = c0y
0
1(z; t, f, g) + c1y

0
2(z; t, f, g),

L2[y](z) = c0y
0
1(z; t, f, g) + c1y

0
2(z; t, f, g),

then the constants {c0, c1} and {c0, c1}, are related exactly by equations (4.98) and (4.99),

with the obvious identifications, like c0(qt) = c0. We refer to equation (4.99) as the auxiliary

equation at z = 0. As to the continuous time interpretation, we have the following result.

Theorem 4.8.1. Let b ∈ Bq be generic2 and T ⊆ C∗ be a continuous q-domain. Let (f, g)

be a nowhere singular meromorphic solution of q-P (A1) on T . Furthermore suppose c0(t)

denotes a meromorphic solution of the auxiliary equation (4.99) on T . Define c1(t) by (4.98),

then

y(z, t) = c0(t)y0
1(z; t, f(t), g(t)) + c1(t)y0

2(z; t, f(t), g(t)), (4.100)

defines a solution of Yamada’s Lax pair, both the spectral and deformation equation, which is

meromorphic on C× T in (z, t).

Proof. Firstly, let i ∈ {1, 2}, then y0
i (z; t, f, g) is meromorphic on C × Rp, by Lemma 4.7.1.

Let us define

Ts = {t ∈ T : (t, f(t), g(t)) /∈ Rp} ∪ {t ∈ T : f(t) =∞ or g(t) =∞}.
2See Remark 4.8.2 for a precise definition
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As (f, g) is nowhere singular, we can write this set as

Ts ={t ∈ T : f(t) = 0 or g(t) = 0} ∪ {t ∈ T : f(t) =∞ or g(t) =∞}
∪ {t ∈ T : (f(t), g(t)) = pi for some 1 ≤ i ≤ 8},

and hence it is easy to see that the points in Ts are isolated and do not accumulate in T .

Let Tr be the complement of Ts in T , then (4.100) defines a function y(z, t) which is

meromorphic on C× Tr. Furthermore, it is obviously a solution of the spectral equation L1.

Now we apply the operator L2, that is, we set

ỹ(z, t) := −h1(z, t)

h0(z, t)
y(z, t)− h2(z, t)

h0(z, t)
y(z/q, t),

and we wish to show y(z, qt) = ỹ(z, t), as this implies that y(z, t) satisfies the deformation

equation L2. Well, we can characterise y(z, qt) as the unique solution of L1(qt), i.e. L1 with

t 7→ qt, meromorphic on C× q−1Tr, satisfying

y(z, qt) = c0(qt) + c1(qt)z +O
(
z2
)
, (4.101)

as z → 0, for any fixed t ∈ q−1Tr, such that c0(qt) and c1(qt) are finite. By Theorem 2.4.1, we

know that ỹ(z, t) also satisfies L1(qt), and is meromorphic on C× Tr. Furthermore, precisely

because c0(t) and c1(t) satisfy (4.99) and (4.98), we know that ỹ(z, t) enjoys exactly the same

expansion (4.101). The conclusion is that y(z, t) = ỹ(z, t) holds, as an equality of meromorphic

functions on C× (Tr ∩ q−1Tr). In particular y(z, t) indeed satisfies the deformation equation

L2.

Finally, we wish to show that the singularities of y(z, t), at times in Ts, are at worst poles,

i.e. y(z, t) is meromorphic on C × T . Here we of course use that y(z, t) satisfies L2, a priori

on C × (Tr ∩ q−1Tr), and is meromorphic on C × Tr. Indeed, to establish the final piece of

the theorem, all we have to show is that qZTr = T , or to put it differently,⋂
n∈Z

qnTs = ∅. (4.102)

For generic parameter values b ∈ Bq, this is guaranteed.

Remark 4.8.2. Considering the proof of Theorem 4.8.1, we wish to exclude parameter values

b ∈ Bq, for which their exist discrete solutions which only take values in the exceptional

divisors E1, . . . , E8, and the lines {f ≡ 0}, {f ≡ ∞}, {g ≡ 0} and {g ≡ ∞} in X. Note

that such discrete solutions only exist in very degenerate parameter cases, and we call the

parameters b generic if such solutions do not exist. An explicit example is given by the

very degenerate case (3.108), where φ(t) can be chosen to have zeros on some q-spiral, and

hence the intersection on the left-hand side of (4.102) is non-empty. Working out the exact

conditions for which such discrete solutions exist is a laborious combinatorial problem, which

we do not wish to work out in detail here.
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4.8.2 Solutions at the “Spectral” Infinity

The story around z = ∞ is completely similar to that around z = 0, which we discussed in

the previous section. We consider an expansion

ỹ(z, t) = c̃0(t) + c̃1(t)z−1 + c̃2(t)z−2 + . . . , (4.103)

about z = ∞, for the rescaled Lax pair {L̃1, L̃2}. Considering only the spectral equation

L̃1, the coefficients c̃0(t) and c̃1(t) can be chosen at pleasure after which all higher order

coefficients are fixed. Now let us consider what happens when we substitute the power series

into L̃2. All singular terms cancel and when we compare the constant terms in L̃2, we find

c̃1(t) =
t2 − 1

(q − 1)g(t)
c̃0(t)− q

q − 1
c̃0(qt). (4.104)

Similarly, comparing the coefficients of z−1, we obtain

c̃2(t) =
q

q2 − 1
f(t)c̃0(qt) +

qt2 − 1

(q2 − 1)g(t)
c̃1(t) +

q

q2 − 1
c̃1(qt).

Upon substitution of (4.104) into the above equation, we find an expression for c̃2(t) in terms

of {c̃0(t), c̃0(qt), c̃0(q2t)}. Comparing this expression for c̃2(t), with the one we obtain from

L̃1, we find, after substitution of (4.104) and a long calculation, that c̃0(t) should satisfy

γ̃0(t)c̃0(t) + γ̃1(t)c̃0(qt) + γ̃2(t)c̃0(q2t) = 0, (4.105)

where

γ̃0(t) =(t2 − 1)g3g
[
(fg − 1)p1(t/g)− (fg − t2)p2(1/g)

]
,

γ̃1(t) =b1b2b3b4(fg − 1)(fg − t2)
[
(b−1

5 + b−1
6 + b−1

7 + b−1
8 − q(b

−1
1 + b−1

2 + b−1
3 + b−1

4 )t)gg+

(q2t2 − 1)g + (qt2 − 1)g
]
,

γ̃2(t) =− qb1b2b3b4gg(fg − 1)(fg − t2),

and we suppressed t dependence of f and g throughout. It turns out that this condition is in

fact sufficient. That is, to put it sloppy, let c̃0(t) be a solution of (4.105), and define c̃1(t) by

(4.104), then the unique corresponding power series solution of L̃1, also satisfies L̃2. We refer

to equation (4.105) as the auxiliary equation at z =∞.

Theorem 4.8.3. Let b ∈ Bq be generic3 and T ⊆ C∗ be a continuous q-domain. Let (f, g) be

a nowhere singular meromorphic solution of q-P (A1) on T . Furthermore suppose c̃0(t) denotes

a meromorphic solution of the auxiliary equation (4.105) on T . Define c̃1(t) by (4.104), then

ỹ(z, t) = c̃0(t)y∞1 (z; t, f(t), g(t)) + c̃1(t)y∞2 (z; t, f(t), g(t)), (4.106)

defines a solution of the rescaled Lax pair {L̃1, L̃2}, which is meromorphic on P∗×T in (z, t).

3See Remark 4.8.2 for a precise definition
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Proof. This is proven analogously to Theorem 4.8.1.

4.9 The Connection Matrix and Isomonodromy

We are now in position to combine the analytic theory of the spectral equation with the time

deformation. We assume b ∈ Bq is generic in the sense of Remark 4.8.2. We fix a continuous

q-domain T ⊆ C∗ and suppose (f, g) is a nowhere singular meromorphic solution (f, g) of

q-P (A1) on T . Let us take two linearly independent meromorphic solutions c1
0(t) and c2

0(t)

of the auxiliary equation (4.99) at z = 0 on T , whose existence is guaranteed by the work

of Praagman [72]. We define c1
1(t) and c2

1(t) by equation (4.98), with c0 = c1
0 and c0 = c2

0

respectively. We denote

C(t) =

(
c1

0(t) c2
0(t)

c1
1(t) c2

1(t)

)
,

then Theorem 4.8.1 shows that

Y0(z, t) := Y 0(z; t, f(t), g(t)) · C(t),

defines a fundamental solution of the Lax pair in system form (2.22), both of the spectral and

the deformation equation. Furthermore Y0(z, t) is meromorphic on C× T .

Similarly, we take two linearly independent meromorphic solutions c̃1
0(t) and c̃2

0(t) of the

auxiliary equation (4.105) at z = ∞ on T . We define c̃1
1(t) and c̃2

1(t) by equation (4.104),

with c̃0 = c̃1
0 and c̃0 = c̃2

0 respectively. We denote

C̃(t) =

(
c̃1

0(t) c̃2
0(t)

c̃1
1(t) c̃2

0(t)

)
,

then Theorem 4.8.3 shows that

Y∞(z, t) = Y∞(z; t, f(t), g(t)) · C̃(t),

defines a fundamental solution of the Lax pair in system form (4.83), both of the spectral and

the deformation equation. Furthermore Y∞(z, t) is meromorphic on C×T . The corresponding

connection matrix of Yamada’s Lax pair is defined by

P(z, t) = Y0(z, t)−1

(
1 0

0 t2

)
Y∞(z, t) = C(t)−1P (z; t, f(t), g(t))C̃(t), (4.107)

which is meromorphic on C∗ × T . Quite fundamentally, the spectral and time evolution of

the connection matrix are given by

P(qz, t) = t2P(z, t), (4.108a)

P(z, qt) = z2P(z, t). (4.108b)

The first one is just the analog of equation (4.90), and the second one follows from the
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following calculation,

P(z, qt) = Y0(z, qt)−1

(
1 0

0 q2t2

)
Y∞(z, qt)

= Y0(z, t)−1H(z, t)−1

(
1 0

0 q2t2

)
H̃(z, t)Y∞(z, t)

= Y0(z, t)−1H(z, t)−1

(
1 0

0 q2t2

)[
z2

(
1 0

0 q−2t−2

)
H(z, t)

(
1 0

0 t2

)]
Y∞(z, t)

= z2P(z, t).

To all intent and purposes, it is (4.108b), which is the manifestation of isomonodromy of

Yamada’s Lax pair. Indeed the time evolution of the q-P (A1) equation is nonlinear and

“complex”, whereas the time evolution of the associated connection matrix is trivial. If one

wishes to be strict, one could take any scalar function S(z, t), meromorphic on C∗×T , enjoying

the same spectral and time evolution (4.108), as the connection matrix, i.e. (4.81), and set

P̃(z, t) = S(z, t)−1P(z, t).

Then P̃(z, t) is q-periodic, both in the spectral and time variable, and we have isomonodromy

in the strict sense of the word. This approach, however, involves introducing arbitrariness,

by the freedom of choosing S(z, t) in the above.

4.9.1 Analytic Characteristics of Connection Matrix

By application of Theorem 4.7.6, we find that

R(z, t) := θq(qb5z, qb6z, qb7z, qb8z)P(z, t), (4.109)

is meromorphic on C∗ × T , being analytic4 in z, satisfying

R(qz, t) =
t2

q4b5b6b7b8
z−4R(z, t), (4.110)

and determinant equal to

|R(z, t)| = qf(t)t2
|C̃(t)|
|C(t)|

θq(b1z/t, b2z/t, b3z/t, b4z/t, qb5z, qb6z, qb7z, qb8z). (4.111)

Furthermore the time evolution is given by

R(z, qt) = z2R(z, t). (4.112)

4We say that a meromorphic function f(z, t), is analytic in z, if every point in its domain has an open
environment on which f(z, t) can be written as f(z, t) = g(z, t)h(t), with g(z, t) holomorphic and h(t) mero-
morphic.
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4.9.2 The Monodromy Mapping

Before resuming our discussion, it is convenient, using equations (4.98) and (4.104), to express

C(t) and C̃(t) as follows,

C(t) = N(t)C0(t), C̃(t) = Ñ(t)C̃0(t), (4.113)

where

N(t) =

(
1 0

q
q−1(1− t−2)g(t) q2

q−1f(t)g(t)

)
, C0(t) =

(
c1

0(t) c2
0(t)

c1
0(qt) c2

0(qt)

)
,

Ñ(t) =

(
1 0

t2−1
(q−1)g(t) − q

q−1

)
, C̃0(t) =

(
c̃1

0(t) c̃2
0(t)

c̃1
0(qt) c̃2

0(qt)

)
.

To summarise, note that we have assigned, to the meromorphic solution (f, g) of q-P (A1),

and corresponding solutions {c1
0, c

2
0} and {c̃1

0, c̃
2
0} of (4.99) and (4.105) respectively, the matrix

R(z, t), symbolically (
f, g, {c1

0, c
2
0}, {c̃1

0, c̃
2
0}
)
7→ R(z, t). (4.114)

Now let us do some counting. The left-hand side has principally 10 q-periodic freedoms in

t, 2 coming from q-P (A1), and 4 coming both from choosing a fundamental solution of the

auxiliary equation (4.99) and (4.105). The right-hand side, i.e. R(z, t), basically carries 9

q-periodic freedoms in t. Indeed R(z, t) lives in a 16 dimensional space, characterised by

(4.110), cut by

|R(z, t)| = constant(t)× θq(b1z/t, b2z/t, b3z/t, b4z/t, qb5z, qb6z, qb7z, qb8z), (4.115)

which leaves 16− 7 = 9 freedoms. Indeed, as the overall scaling, the factor before the q-theta

functions, in the determinant formula (4.111), depends on the particular choices on the left-

hand side of the “correspondence” (4.114), we can only take the locations of the 8 (spirals

of) zeros of the determinant in consideration for the cut. The product of the 8 zeros in the

determinant (4.115) is prescribed by (4.110), hence we essentially eliminate 7 freedoms in t

by the cut (4.115).

So the left-hand side of the correspondence has 10 q-periodic freedoms, whereas the right-

hand side has 9. This imbalance is easily understood from equations (4.107) and (4.113).

Indeed, take any meromorphic function λ(t) which is q-periodic in t, then(
f, g, {λc1

0, λc
2
0}, {λc̃1

0, λc̃
2
0}
)
, (4.116)

gets send to exactly the same matrix in the correspondence (4.114).

We can eliminate the fundamental solutions of the auxiliary equations from the corre-

spondence (4.114), by sending

MT : (f, g) 7→ [R(z, t)] , (4.117)

where [-] denotes say the orbit under the action of arbitrary left and inverse right multipli-
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cation by meromorphic invertible matrices in t which are q-periodic. To be exact, take the

space ST of matrices Q(z, t), meromorphic on C∗ × T , being analytic in z, satisfying (4.110),

(4.112) and (4.115). Loosely speaking this is a 9-dimensional space in the q-periodic sense.

Then we consider the action on ST defined by multiplication from the left and inversely from

the right by meromorphic invertible matrices in t on T , which are q-periodic. We then divide

out this action, which eliminates 8− 1 = 7 q-periodic freedoms, and the resulting orbit space

MT has 9− 7 = 2 q-periodic “dimensions”. We hence obtain a mapping

MT : S∗∗m (T )→MT , (4.118)

where S∗∗m (T ) denotes the space of nowhere singular meromorphic solutions on T , as defined

in (2.17). We refer to MT as the monodromy mapping and call MT (f, g) the monodromy

corresponding to (f, g). We think of (4.118), or (4.114) after dividing out the freedom in

multiplication by λ(t) as described in (4.116), of really being a correspondence. However we

will not investigate this further here.

Let us remark that the mapping MT does not coincide, say pointwise, with the Riemann-

Hilbert-Birkhoff correspondence (4.23). Of course we have only defined the Riemann-Hilbert-

Birkhoff correspondence for non-resonant Fuchsian equations. However, in the case of a

Fuchsian system with resonance and trivial monodromy, both at the origin and infinity, one

typically sets the Riemann-Hilbert-Birkhoff correspondence to take the form

[A(z)]GL2(C) ↔ [Q(z)]∗ ,

where [Q(z)]∗ denotes the orbit of Q(z) under arbitrary multiplication by lower triangular

invertible matrices from the left and right. That is to say, in constructing MT we divided

out more than one would typically do from the Riemann-Hilbert-Birkhoff perspective.

4.10 Time Deformation of Rigid Objects

We can exploit the simple time evolution of for instance Y0(z, t), to calculate the more complex

time evolution of the rigid object Y 0(z, t). Indeed by equations (4.113), (4.99) and (4.105),

we have

C(qt) = E(t)C(t), E(t) := N(qt)

(
0 1

−γ0(t)
γ2(t) −γ1(t)

γ2(t)

)
N(t)−1,

C̃(qt) = Ẽ(t)C̃(t), Ẽ(t) := Ñ(qt)

(
0 1

− γ̃0(t)
γ̃2(t) − γ̃1(t)

γ̃2(t)

)
Ñ(t)−1.

Hence, as Y0(z, t) and Y∞(z, t) satisfy the deformation equations (2.22b) and (4.83b) respec-

tively, we have

Y 0(z, qt) = H(z, t)Y 0(z, t)E(t)−1,

Y∞(z, qt) = H̃(z, t)Y∞(z, t)Ẽ(t)−1.
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In fact, let us write E(t) = E(t, f, g, f , g) and Ẽ(t) = Ẽ(t, f, g, f , g), then one can show that

for (t, f, g) and (qt, f , g) in regular position, related by q-P (A1), we have

Y 0(z; qt, f , g) = H(z; t, f, g)Y 0(z; t, f, g)E(t, f, g, f , g)−1,

Y∞(z; qt, f , g) = H̃(z; t, f, g)Y∞(z; t, f, g)Ẽ(t, f, g, f , g)−1.

Similarly we have

P (z; qt, f , g) = z2E(t, f, g, f , g)P (z; t, f, g)Ẽ(t, f, g, f , g)−1,

and also

R(z; qt, f , g) = z2E(t, f, g, f , g)R(z; t, f, g)Ẽ(t, f, g, f , g)−1.

This time evolution is rather complex, however by taking on the relative position as set out in

Section 4.9.2, it takes a much simpler form. That is, following the ideas in Section 4.9.2, we

fix a t0 ∈ C∗, and write S(t0) for the space of analytic 2× 2 matrix functions R(z), satisfying

R(qz) =
t20

q4b5b6b7b8
z−4R(z), (4.119)

and, analogously to (4.115),

|R(z)| = constant × θq(b1z/t0, b2z/t0, b3z/t0, b4z/t0, qb5z, qb6z, qb7z, qb8z). (4.120)

Then we consider the action ϕ of GL2(C)×GL2(C) on S(t0), which acts by left and inverse

right multiplication,

ϕ(E, Ẽ)(R(z)) = ER(z)Ẽ−1. (R(z) ∈M(t0)) (4.121)

We denote by M(t0) = S(t0)/ϕ, the orbit space of S(t0) under ϕ. Let us write

Rp(t0) = {(t, f, g) ∈ Rp : t ∈ qZt0},

then we define the monodromy mapping by

m : Rp(t0)→M(t0), (qnt0, f, g) 7→ [z−2nR(z; qnt0, f, g)].

Now we know that if (qnt0, f, g) and (qn+1t0, f , g) are in regular position, related by q-P (A1),

then m(qnt0, f, g) = m(qn+1t0, f , g). However we get into difficulties when a discrete solution

hits a base point. We pose the following conjecture.

Conjecture 4.10.1. Let (fs, gs)s∈Z ∈ S∗c (t0), then, for any r, s ∈ Z, if (qst0, fs, gs) and

(qrt0, fr, gr) are in regular position, then

m(qst0, fs, gs) = m(qrt0, fr, gr).

Note that if the answer to Question 2.3.2 is affirmative, then this conjecture holds true.
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Let us assume momentarily that the above conjecture is correct. Then we obtain a mapping

M(t0) : S∗c (t0)→M(t0).

We can do the same counting as done in Section 4.9.2. The space M(t0) is 16 − 7 = 9

dimensional, and henceM(t0) is 9− 7 = 2 dimensional, which adds up with S∗c (t0) being two

dimensional.



CHAPTER 5

The Direct Monodromy Problem

The direct monodromy problem entails calculating the monodromy datum of the associated

linear problem corresponding to a given Painlevé transcendent explicitly. In our case the

transcendents are characterised by some asymptotics at t = 0 or t =∞. It turns out that we

can completely determine the monodromy exploiting just such asymptotic characterisations.

This is of course not unusual in the Painlevé world, Jimbo [42] and Mano [61] show that the

same is true in the PVI and q-PVI case.

We start with an overview of our approach to solve the direct monodromy problem for

a transcendent, characterised by some given critical behaviour. In Section 5.2, we discuss

a particular example in detail, the transcendent (f, g) = (f (1,1), g(1,1)), meromorphic at t =

0, defined in Proposition 3.1.2. We then give the monodromy corresponding to the other

transcendents, which are meromorphic at a critical point, in Section 5.3. The technical proofs

of those results can be found in Appendix D.

We then consider the direct monodromy problem for the generic case near t = 0, i.e. a

solution with critical behaviour as specified in Theorem 3.4.1. In Sections 5.4 and 5.5 we

construct fundamental solutions of Yamada’s Lax pair near z = ∞ and z = 0 respectively,

which we relate via an explicit connection matrix in Section 5.6. This leads to an explicit

parameterisation of the monodromy of Yamada’s Lax pair in terms of the integration constants

{φ(t),Λ(t)} of the generic solution near t = 0, given in Section 5.7.

A similar analysis in Sections 5.8, 5.9 and 5.10, leads to an explicit parameterisation of

the monodromy of Yamada’s Lax pair in terms of the integration constants {φ∞(t),Λ∞(t)}
of the generic solution near t =∞, given in Section 5.11.

Finally we combine the results in Section 5.12, to arrive at parametric connection formulae,

relating the critical behaviour of transcendents near t = 0 and t =∞, indirectly.

5.1 Overview of Approach

Our starting point is a meromorphic solution of q-P (A1), given by some critical behaviour

near t = 0 or t = ∞. Let us focus on the case t = 0, with some critical behaviour given in

Table 3.1. We only wish to give a schematic overview here, hence we warn the reader some

parts should be taken with a grain of salt.

We consider Yamada’s Lax pair and we wish to construct solutions of it near the “spectral”

131
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Figure 5.1: Graphical illustration of factorisation of connection matrix in the t→ 0 limit.

zero 4.8.1 and the “spectral” infinity 4.8.2, depicted in red and blue respectively in Figure

5.1. As we have an asymptotic characterisation of our meromorphic solution near t = 0,

we construct a meromorphic fundamental solution c̃0(t) of (4.105), such that, after some

specific scaling c̃0(t) = s∞(t)c∞0 (t), the resulting c∞0 (t) has tempered behaviour as t → 0.

Correspondingly, by Theorem 4.8.3, we have a fundamental solution Ỹ∞(z, t) = s∞(t)Ψ∞(z, t)

of L̃, such that the limit

lim
t→0

Ψ∞(z, t)→ D∞0 (z),

exists. We call such a fundamental solution a fundamental solution at (z, t) = (∞, 0). In

Figure 5.1, the point (z, t) = (∞, 0) is encircled in blue.

The function Ψ∞(z, t) satisfies a rescaled form of Yamada’s Lax pair, which we denote by

L∞. When we let t→ 0 in L∞, we find that D∞0 (z) satisfies a second order linear equation,

which is a rescaled version of the degree two model equation (4.51). We have an explicit

solution to the connection problem of the limiting equation, given by a connection matrix

P∞(z). This allows us to “transition” from z =∞ to z = 0 along the line t = 0 in the (z, t)



5.1. OVERVIEW OF APPROACH 133

plane, depicted by the wiggling blue line in Figure 5.1, by setting

Ψ∞,0(z, t) = Ψ∞(z, t)P∞(z)−1.

Indeed Ψ∞,0(z, t) satisfies a rescaled version L∞,0 of Yamada’s Lax pair, the limit

lim
t→0

Ψ∞,0(z, t) =: D∞,00 (z),

exists, and D∞,00 (z) is holomorphic at z = 0.

We wish to follow a similar approach to construct a solution of Yamada’s Lax pair (2.21)

near (z, t) = (0, 0). However it turns out that the Lax pair is very singular at (z, t) = (0, 0)

in the (z, t) plane. The same holds true in the case of PVI and q-PVI, as shown by Jimbo

[42] and Mano [61] respectively. Further consideration shows that we should instead consider

Yamada’s Lax pair in the (ξ, t) plane, where ξ = z
t . We find that there exists a fundamental

solution near (ξ, t) = (0, 0), in the (ξ, t) plane,

Y 0(z, t) = s0(t)Ψ0(ξ, t),

where s0(t) some scaling, such that Ψ0(ξ, t) is holomorphic at ξ = 0 and the limit

lim
t→0

Ψ0(ξ, t) =: D0
0(ξ),

exists. Now Ψ0(ξ, t) satisfies a rescaled version L0 of Yamada’s Lax pair, and letting t → 0,

we find that D0
0(ξ) satisfies a linear second order equation, which is again a rescaled version

of our model equation (4.51). We denote the corresponding connection matrix by P 0(ξ), and

we transition from ξ = 0 to ξ = ∞ along t = 0 in the (ξ, t) plane, depicted by the wiggling

red line in Figure 5.1, by setting

Ψ0,∞(ξ, t) = Ψ0(ξ, t)P 0(ξ).

Indeed Ψ0,∞(ξ, t) satisfies a rescaled version L0,∞ of Yamada’s Lax pair, the limit

lim
t→0

Ψ0,∞(ξ, t) =: D0,∞
0 (ξ),

exists, and D0,∞
0 (ξ) is holomorphic at ξ =∞.

Interestingly enough, the Lax pairs L∞,0 and L0,∞ are identical, and hence Ψ0,∞(ξ, t) =

Ψ0,∞( zt , t) and Ψ∞,0(z, t) satisfy the same Lax pair, though they are characterised by certain

asymptotics approaching (ξ, t) = (∞, 0) via disjoint regimes. To match the two fundamental

solutions, we introduce a third fundamental solution Ψtr(z, t) near (ξ, t) = (∞, 0), depicted by

the green circle, which is characterised asymptotically in a larger regime, having non-empty

intersection with the regimes corresponding to Ψ0,∞(ξ, t) and Ψ∞,0(z, t). It turns out all three
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solutions are identical (possibly up to some scalar factors), and we find

Y 0(z, t)P (z, t) = Ỹ∞(z, t)

= s∞(t)Ψ∞(z, t)

= s∞(t)Ψ∞,0(z, t)P∞(z)

= s∞(t)Ψtr(z, t)P∞(z)

= s∞(t)Ψ0,∞(ξ, t)P∞(z)

= s∞(t)Ψ0(ξ, t)P 0(ξ)P∞(z)

=
s∞(t)

s0(t)
Y 0(z, t)P 0(ξ)P∞(z),

and we conclude

P (z, t) =
s∞(t)

s0(t)
P 0
(z
t

)
P∞(z). (5.1)

So we have an explicit factorisation of the Yamada Lax pair connection problem into two

copies of the connection problem of our model equation (4.51) as t → 0. We note that

a similar factorisation takes place in the case of PVI and q-PVI, as shown by Jimbo [42]

and Mano [61] respectively. The way we have represented it here, the factorisation seems

quite miraculous. Let us therefore emphasise that such factorisations are in fact common

in isomonodromic deformation theory, where we particularly want to mention Gavrylenko

and Lisovyy [19] who discuss the generic (continuous) Fuchsian case with arbitrary rank and

number of regular singular points.

5.1.1 Overview of Approach near t = ∞

Our approach to solving the direct monodromy problem for meromorphic q-P (A1) transcen-

dents, characterised by some critical behaviour near t = ∞, is essentially the same. We

consider Yamada’s Lax pair and we wish to construct solutions of it near the “spectral” zero

4.8.1 and the “spectral” infinity 4.8.2, depicted in red and blue respectively in Figure 5.2.

We find a scaling ŝ0(t), such that there exists a fundamental solution Ŷ 0(z, t) = ŝ0(t)Ψ̂0(z, t)

of L (2.21) at (z, t) = (0,∞), such that the limit

lim
t→∞

Ψ̂0(z, t)→ D̂0
0(z),

exists. In Figure 5.2, the point (z, t) = (0,∞) is encircled in red.

The function Ψ̂0(z, t) satisfies a rescaled form of Yamada’s Lax pair, which we denote by

L̂0. When we let t → ∞ in L̂0, we find that D̂0
0(z) satisfies a second order linear equation,

which is a rescaled version of the degree two model equation (4.51). We have an explicit

solution to the connection problem of this equation, given by a connection matrix P̂ 0(z).

This allows us to “transition” from z = 0 to z = ∞ along the line t = ∞ in the (z, t) plane,

depicted by the wiggling red line in Figure 5.2, by setting

Ψ̂0,∞(z, t) = Ψ̂0(z, t)P̂ 0(z).
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Figure 5.2: Graphical illustration of factorisation of connection matrix in the t→∞ limit.

We wish to follow a similar approach to construct a solution of Yamada’s Lax pair (4.82) near

(z, t) = (∞,∞). However it turns out that the Lax pair is rather singular at (z, t) = (∞,∞)

in the (z, t) plane. We resolve this singularity by considering Yamada’s Lax pair in the (ξ, t)

plane, where ξ = z
t . We find that there exists a fundamental solution at (ξ, t) = (∞,∞), in

the (ξ, t) plane,

Ŷ∞(z, t) = ŝ∞(t)Ψ̂∞(ξ, t),

where ŝ∞(t) some scaling, such that Ψ̂∞(ξ, t) is holomorphic at ξ =∞, and the limit

lim
t→∞

Ψ̂∞(ξ, t) =: D̂∞0 (ξ),

exists. Now Ψ̂∞(ξ, t) satisfies a rescaled version L̂∞ of Yamada’s Lax pair, and letting t→ 0,

we find that D̂∞0 (ξ) satisfies a linear second order equation, which is again a rescaled version

of our model equation (4.51). We denote the corresponding connection matrix by P̂∞(ξ), and

we transition from ξ = ∞ to ξ = 0 along t = ∞ in the (ξ, t) plane, depicted by the wiggling

blue line in Figure 5.2, by setting

Ψ̂∞,0(ξ, t) = Ψ̂∞(ξ, t)P̂∞(ξ).
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It turns out that the Lax pairs L̂0,∞ and L̂∞,0 are identical, and we find Ψ̂0,∞(z, t) =

Ψ̂∞,0(ξ, t), from which we derive the connection result

Ŷ 0(z, t)P̂ (z, t) = Ŷ∞(z, t),

where

P̂ (z, t) =
ŝ∞(t)

ŝ0(t)
P̂ 0 (z) P̂∞

(z
t

)
.

5.2 A Special Case

Before tackling the generic case, we first solve the direct monodromy problem for solutions

with the simplest critical behaviour near t = 0 in our Table 3.1. We start with the solution

(f, g) = (f (1,1), g(1,1)) meromorphic at t = 0, defined in Proposition 3.1.2, where we assume

the corresponding conditions (3.11) on the parameters. We write

f(t) = f1t+ f2t
2 + f3t

3 + . . . , f1 =
b1 + b2 − (b3 + b4)

b1b2 − b3b4
,

g(t) = g1t+ g2t
2 + g3t

3 + . . . , g1 =
b1b2(b3 + b4)− b3b4(b1 + b2)

b1b2 − b3b4
.

Let us recall that this solution is obtained from the generic solution (3.44) by setting Λ = Λ±1
and φ = 0, as shown in Proposition 3.5.1. It is helpful the keep this in mind as we we will see

that the values Λ+
1 = −b1b2 and Λ−1 = −b3b4 enter the connection matrices of the limiting

second order equations naturally. Later on we find that this also holds in the generic case.

We mention that Kaneko [53] calculates the monodromy corresponding to solutions of PVI

which are meromorphic at a critical point. Also Ohyama [64, 65] calculates the connection

matrices corresponding to the limiting equations of linear problems associated with q-PIII,

q-PV and q-PVI, for transcendents meromorphic at the origin, though he does not follow up

with a matching procedure or equivalent to establish a factorisation as in (5.1).

5.2.1 Fundamental Solution at (z, t) = (∞, 0)

Let us first recall that Theorem 4.8.3 tells us that we should study equation (4.105) to

construct a solution at (z, t) = (∞, 0). The coefficients in (4.105) satisfy

γ̃0(t) = b1b2b3b4(f1g1 − 1)t2 +O
(
t3
)
,

γ̃1(t) = b1b2b3b4(f1g1 − 1)(1 + q)g1t
3 +O

(
t4
)
,

γ̃2(t) = b1b2b3b4(f1g1 − 1)q2g2
1t

4 +O
(
t5
)
,

as t→ 0. Hence this equation is unbalanced, so we apply a scaling

c̃0(t) = s∞(t)c∞0 (t), s∞(qt) = βt−1s∞(t), β := −q−1g−1
1 , (5.2)
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where we invite the reader to choose s∞(t), meromorphic on C∗, at their pleasure. The

resulting equation for c∞0 (t) takes the form

γ∞0 (t)c∞0 (t) + γ∞1 (t)c∞0 (qt) + γ∞2 (t)c∞0 (q2t) = 0, (5.3)

where

(γ∞0 (t), γ∞1 (t), γ∞2 (t)) =
1

b1b2b3b4(f1g1 − 1)t2
(γ̃0(t), βt−1γ̃1(t), q−1β2t−2γ̃2(t)).

Now t = 0 is a regular singular point of (5.3), with exponents 1, q and hence resonance, as

γ∞0 (0) = 1, γ∞1 (0) = −(1 + q−1), γ∞2 (0) = q−1.

However, the no-logarithms condition is satisfied, indeed a little calculation shows

γ∞0
′(0) + γ∞1

′(0) + γ∞2
′(0) = 0,

and hence t = 0 is in fact an ordinary point of (5.3). In particular, for any choice of c0,0, c0,1 ∈
C, there exists an unique meromorphic solution c∞0 (t) of (5.3), characterised by

c∞0 (t) = c0,0 + c0,1t+O
(
t2
)
. (t→ 0) (5.4)

Now we rescale ỹ(z, t) along with c̃0 in (5.2), i.e.

ỹ(z, t) = s∞(t)ψ∞(z, t), (5.5)

then ψ∞(z, t) satisfies the Lax pair L∞ given by

L∞1 : ũ(z, t)ψ∞(qz, t) + ṽ(z, t)ψ∞(z, t) + w̃(z, t)ψ∞(z/q, t) = 0, (5.6a)

L∞2 : βt−1z−2h0(z, t)ψ∞(z, qt) + h1(z, t)ψ∞(z, t) + t2h2(z, t)ψ∞(z/q, t) = 0. (5.6b)

By Theorem 4.8.3, we know that this system of equations is balanced at z =∞, and we know

that (5.3), which could be considered as L∞ on the line z =∞, is balanced at t = 0. It turns

out L∞ is balanced at (z, t) = (∞, 0), as the following Theorem shows.

Proposition 5.2.1. For any choice of c0,0, c0,1 ∈ C, there exists an unique solution ψ∞(z, t)

of the Lax pair (5.6), which is analytic at (z, t) = (∞, 0), such that c∞0 (t) := ψ∞(∞, t) is

characterised by the expansion (5.4). Furthermore ψ∞(z, t) enjoys an unique meromorphic

continuation to P∗ × C.

Proof. Let us consider an expansion

ψ∞(z, t) = c∞0 (t) + c∞1 (t)z−1 + c∞2 (t)z−2 + . . . ,

for a solution of (5.6). Comparing the scaling (5.5) with (4.103), we have

c̃0(t) = s∞(t)c∞0 (t), c̃1(t) = s∞(t)c∞1 (t), c̃2(t) = s∞(t)c∞2 (t), . . . ,
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where the first equation should remind us of (5.2). In particular, analogously to (4.104), we

find the following equation from L∞2 ,

c∞1 (t) =
t2 − 1

(q − 1)g(t)
c∞0 (t)− q

q − 1
βt−1c∞0 (qt). (5.7)

Now let us take some c0,0, c0,1 ∈ C, then we know that there exists an unique solution c∞0 (t)

of (5.3), which is analytic at t = 0, characterised by the expansion (5.4). Next we define

c∞1 (t) by (5.7), and note that c∞1 (t) is analytic at t = 0, precisely because β = −q−1g−1
1 .

Claim 5.2.2. There exists a small open disc D about t = 0, such that there is an unique

solution ψ∞(z, t) of L∞1 , which is meromorphic on P∗ ×D, characterised by

ψ∞(z, t) = c∞0 (t) + c∞1 (t)z−1 +O
(
z−2
)
, (5.8)

holding locally uniformly in t on D as z →∞.

The proof of this claim follows a typical procedure. Let us first remind ourselves of Remark

B.5, which basically tells us that for any well-posed (q-discrete) Cauchy problem, with analytic

dependence on some parameters, the corresponding solution also depends analytically on those

parameters. To establish the claim, we first observe that the coefficients ũ(z, t), ṽ(z, t), w̃(z, t)

are holomorphic in (z, t) at (z, t) = (∞, 0), and hence holomorphic on some open polydisc

Dz ×Dt centered at (z, t) = (∞, 0). In fact we have

ũ(z, t) =q−1

(
1− 1

b5qz

)(
1− 1

b6qz

)(
1− 1

b7qz

)(
1− 1

b8qz

)
+O(t), (5.9a)

ṽ(z, t) =q−1

[
−(1 + q) + (b−1

5 + b−1
6 + b−1

7 + b−1
8 )z−1 −

(
1

b1b2
+

1

b3b4

)
z−2

]
+O(t), (5.9b)

w̃(z, t) =q−1 +O(t), (5.9c)

locally uniformly in z on P∗ as t → 0. Now let D ⊆ Dt be an open disc centered at t = 0,

such that c∞0 (t) and c∞1 (t) are holomorphic on D. Then, for any fixed t ∈ D, there exists an

unique solution ψ∞(z, t) of L∞1 , which is meromorphic on P∗ in z, characterised by (5.8) as

z →∞. By Remark B.5, equation (5.8) holds locally uniformly in t on D as z →∞, and the

claim follows.

It remains to show that ψ∞(z, t) also satisfies L∞2 , which basically follows from Theorem

4.8.1 after some rescaling. For convenience of the reader we repeat this line of proof once

more. We use L∞2 as an operator, defining

ψ̃∞(z, t) := −z2t
h1(z, t)

βh0(z, t)
ψ∞(z, t)− z2t3

h2(z, t)

βh0(z, t)
ψ∞(z/q, t).

Indeed ψ̃∞(z, t/q) is a solution of L∞1 , meromorphic on P∗ × qD and it is easy to see that

ψ̃∞(z, t/q) has the same asymptotic characterisation (5.8), holding locally uniformly in t on

qD as z → ∞. As D ∩ qD = qD, we immediately obtain ψ̃∞(z, t/q) = ψ∞(z, t) on qD, that
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is, ψ∞(z, t) satisfies L∞2 on P∗ × qD. The last line of the theorem, on unique meromorphic

continuation, is now obvious.

5.2.2 Transition from (z, t) = (∞, 0) to (z, t) = (0, 0)

Let us take some c0,0, c0,1 ∈ C and corresponding solution ψ0(z, t) of L∞, as defined in

Proposition 5.2.1. We write its power series expansion about (z, t) = (∞, 0) as

ψ∞(z, t) =
∞∑
m=0

c∞m (t)z−m =
∞∑

m,n=0

c∞m,nz
−mtn

=
∞∑
m=0

d∞m (z)tm =
∞∑

m,n=0

d∞m,nz
−ntm,

in particular c∞m,n = d∞n,m for m,n ∈ N. Now, we let t → 0 in L∞1 , which gives, by equations

(5.9),

d∞0 (z/q) +

[
−(1 + q) + (b−1

5 + b−1
6 + b−1

7 + b−1
8 )z−1 −

(
1

b1b2
+

1

b3b4

)
z−2

]
d∞m (z)

+

(
1− 1

b5qz

)(
1− 1

b6qz

)(
1− 1

b7qz

)(
1− 1

b8qz

)
d∞m (qz) = 0. (5.10)

This is exactly the degree two model equation (4.51) under the identification y(z) = d∞m (1/z),

with parameter values σ = σI
∞, defined in (5.26), where we note that Fuchs’ equation (4.52)

is indeed satisfied. By letting t→ 0 in L∞2 , we find, in a similar fashion,

d∞1 (z) = − g1

q − 1
z(d∞0 (z)− d∞0 (z/q))− 1

q − 1

(
g2

g1
− f1z

−1

)
d∞0 (z),

and hence

d0,0 = c0,0, d0,1 = − g2

(q − 1)g1
c0,0 + g−1

1 c0,1.

In particular, we can just as well prescribe d0,0 and d0,1 to define ψ∞(z, t) uniquely. Using

the notation in Section 4.5, we define a fundamental solution of (5.10) by

D∞0 (z) = y0(z−1;σI
∞),

and denote by Ψ∞(z, t), the fundamental solution of L∞, meromorphic on P∗×C, associated

to it by Ψ∞(z, 0) = D∞0 (z). Similarly we denote

D∞,00 (z) = ψ∞(z−1;σI
∞),

and we have the connection result

D∞0 (z) = D∞,00 (z)P∞(z), P∞(z) := Q(z−1;σI
∞)−1.
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Analogously, we define

Ψ∞(z, t) = Ψ∞,0(z, t)P∞(z). (5.11)

From (4.46), we obtain

P∞(qz) =

(
b1b2q

2z2 0

0 b3b4q
2z2

)
· P∞(z),

and hence, for i = 1, 2, the component Ψ∞,0i (z, t) defines a solution of the following Lax pair

L∞,0,i,

L∞,0,i1 : q2δiz
2ũ(z, t)ψ∞,0i (qz, t) + ṽ(z, t)ψ∞,0i (z, t) +

1

δiz2
w̃(z, t)ψ∞,0i (z/q, t) = 0, (5.12a)

L∞,0,i2 : β
1

z2t
h0(z, t)ψ∞,0i (z, qt) + h1(z, t)ψ∞,0i (z, t) +

t2

δiz2
h2(z, t)ψ∞,0i (z/q, t) = 0. (5.12b)

where δ1 = b1b2 and δ2 = b3b4. We note that Ψ∞,0i (z, t) is meromorphic on C∗ × C, and

Ψ∞,0i (z, 0) = D∞,0,i0 (z) can be characterised as the unique solution of (4.63) with z 7→ z−1

and parameter values σ = σI
∞, holomorphic at z = 0, with D∞,0,i0 (0) = 1.

5.2.3 Fundamental Solution at (ξ, t) = (0, 0)

Let us first consider equation (4.99), its coefficients γ0(t), γ1(t) and γ2(t) are of order of

magnitude t2, t5 and t8 respectively as t→ 0. After some scaling

c0(t) = s0(t)c0
0(t), s0(qt) = t−3s0(t),

where we again invite the reader to choose s0(t) at their pleasure, the resulting equation for

c0
0(t) is balanced at t = 0, and some calculation, best done using equations (3.3), gives the

exponents

α1 = βδ1 = −b1b2q−1g−1
1 , α2 = βδ2 = −b1b2q−1g−1

1 .

Now, if we scale Yamada’s Lax pair 2.21 in t as above, it is still unbalanced, as u(z, t), v(z, t)

and w(z, t) are of order of magnitude t−1, t−3 and t−5 respectively. Indeed to overcome the

imbalance we should also apply a change of independent variables. For i = 1, 2, we set

y(z, t) = s0
i (t)ψ

0
i (ξ, t), s0

i (qt) = αit
−3s0(t), ξ =

z

t
, (5.13)

which gives the Lax pair L0,i given by

L0,i
1 : u(ξt, t)ψ0

i (qξ, t) + v(ξt, t)ψ0
i (ξ, t) + w(ξt, t)ψ0

i (ξ/q, t) = 0, (5.14)

L0,i
2 : αit

−3h0(ξt, t)ψ0
i (ξ/q, qt) + h1(ξt, t)ψ0

i (ξ, t) + h2(ξt, t)ψ0
i (ξ/q, t) = 0. (5.15)

One can check that the coefficients in L0,i
1 , are all analytic at t = 0, and have expansions

similar to (5.9).

Proposition 5.2.3. For i = 1, 2, there exists an unique solution Ψ0
i (ξ, t) of L0,i, which is
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holomorphic at (ξ, t) = (0, 0), with Ψ0
i (0, 0) = 1. Furthermore Ψ0

i (ξ, t) enjoys an unique

meromorphic continuation to C× C.

Proof. This is proven analogously to Proposition 5.2.1.

5.2.4 Transition from (ξ, t) = (0, 0) to (ξ, t) = (∞, 0)

For i = 1, 2, we denote the power series expansion of Ψ0
i (ξ, t), defined in Proposition 5.2.3,

about (ξ, t) = (0, 0) by

Ψ0
i (ξ, t) =

∞∑
m=0

C0,i
m (t)ξm =

∞∑
m,n=0

C0,i
m,nξ

mtn

=
∞∑
m=0

D0,i
m (ξ)tm =

∞∑
m,n=0

D0,i
m,nξ

ntm.

When we let t → 0 in L0,i
1 , we obtain a second order q-difference equation for D0,i

0 (ξ), of

which the coefficient limt→0 v(ξt, t), of D0,i
0 (qξ), is a bit complicated. But if we let t → 0 in

L0,i
1 , and consider the order t2 terms, we obtain the very simple first order equation

D0,i
0 (ξ) =

(
δiξ

2 − (δif1 + g1)ξ + 1
)
D0,i

0 (ξ/q).

Let’s consider i = 1, then δ1f1 + g1 = b1 + b2, and hence

D0,1
0 (ξ) = (1− b1ξ)(1− b2ξ)D0,i

0 (ξ/q). (5.16)

As D0,i
0 (0) = 1, we immediately obtain

D0,1
0 (ξ) = (qb1ξ, qb2ξ; q)

−1
∞ .

Similarly, setting i = 2, we have

D0,2
0 (ξ) = (1− b3ξ)(1− b4ξ)D0,2

0 (ξ/q), (5.17)

and as D0,2
0 (0) = 1, we obtain

D0,2
0 (ξ) = (qb3ξ, qb4ξ; q)

−1
∞ .

The connection problem for equations (5.16) and (5.17), are of course trivial, we set

D0,∞
0 (ξ) = (D0,∞,1

0 (ξ), D0,∞,2
0 (ξ)) =

((
1

b1ξ
,

1

b2ξ
; q

)
∞
,

(
1

b3ξ
,

1

b4ξ
; q

)
∞

)
,

then the connection result reads

D0,∞
0 (ξ) = D0

0(ξ)P 0(ξ), P 0(ξ) =

(
θq(qb1ξ, qb2ξ) 0

0 θq(qb3ξ, qb4ξ)

)
,
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and we define

Ψ0,∞(ξ, t) = Ψ0(ξ, t)P 0(ξ). (5.18)

Now, for i = 1, 2, the component Ψ0,∞
i (ξ, t) satisfies the Lax pair L0,∞,i, given by

L0,∞,i
1 : q2δiξ

2u(ξt, t)ψ0
i (qξ, t) + v(ξt, t)ψ0

i (ξ, t) +
1

δiξ2
w(ξt, t)ψ0

i (ξ/q, t) = 0,

L0,∞,i
2 :

αi
t3
h0(ξt, t)ψ0

i (ξ/q, qt) + δiξ
2h1(ξt, t)ψ0

i (ξ, t) + h2(ξt, t)ψ0
i (ξ/q, t) = 0.

Let us remark that we found that the connection problem on the t = 0 line in the (ξ, t)

plane, is trivial. This is precisely the case because we are considering a very special solution

of q-P (A1). Generically we find the full degree two model equation (4.51), on the t = 0 line

in the (ξ, t) plane, just as we found on the t = 0 line in the (z, t) plane in Section 5.2.2.

5.2.5 The Matching Procedure

Let us first make the crucial observation that, for i = 1, 2, the Lax pairs L∞,0,i and L0,∞,i

essentially coincide, under the identification ξ = z
t . To be precise, the equations L∞,0,i2 and

L0,∞,i
2 are identical, and the equations L∞,0,i1 and L0,∞,i

1 are a multiple of each other. Let

us focus on the case i = 1. So both Ψ∞,01 (z, t) and Ψ0,∞
1 (ξ, t) are solutions of the Lax pair

L0,∞,1. We now wish to match these two solutions at (ξ, t) = (∞, 0). Note however, that both

solutions are characterised asymptotically near (ξ, t) = (∞, 0), only on different complex lines

with empty intersection. Indeed we only have an asymptotic characterisation of Ψ∞,01 (z, 0)

near z = 0, and of Ψ0,∞
1 (ξ, 0) near ξ =∞. As the connection problem on the t = 0 line in the

(ξ, t) plane was trivial, the matching procedure can be done much simpler than in the generic

case. We perform the following trick, we consider

Ψtr
1 (z, t) :=

(
qb1

z

t
, qb2

z

t
; q
)
∞

Ψ0
1

(z
t
, t
)
, (5.19)

which is a solution of the Lax pair Ltr, given by

Ltr
1 : utr(z, t)ψtr

1 (qz, t) + vtr(z, t)ψtr
1 (z, t) + wtr(z, t)ψtr

1 (z/q, t) = 0,

Ltr
2 :

α1

t3
h0(z, t)ψtr

1 (z, qt) + (1− b1ξ)(1− b2ξ)h1(z, t)ψtr
1 (z, t) + h2(z, t)ψtr

1 (z/q, t) = 0,

where

utr(z, t) = (t− qb1z) (t− qb2z) (t− b1z) (t− b2z)u(z, t),

vtr(z, t) = t2 (t− b1z) (t− b2z) v(z, t),

wtr(z, t) = t4w(z, t).

Proposition 5.2.4. There exists an unique solution Ψtr
1
′
(z, t) of Ltr, which is holomorphic

at (z, t) = (0, 0), with Ψtr
1
′
(0, 0) = 1. Furthermore Ψtr

1
′
(z, t) enjoys an unique meromorphic

continuation to C× C.

Proof. The proof is completely analogous to the proof of Proposition 5.2.3.
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We now simply compare Ψ0
1(ξ, t) and Ψ0

1
′
(ξ, t), where, following (5.19), the latter is defined

by

Ψtr
1
′
(ξt, t) = (qb1ξ, qb2ξ; q)∞Ψ0

1
′
(ξ, t) .

Evidently both Ψ0
1(ξ, t) and Ψ0

1
′
(ξ, t) satisfy the Lax pair L0,1, both are meromorphic on C×C,

and

Ψ0
1
′
(ξ, 0) = (qb1ξ, qb2ξ; q)

−1
∞ Ψtr

1
′
(0, 0) = (qb1ξ, qb2ξ; q)

−1
∞ = Ψ0

1(ξ, 0).

In particular Ψ0
1
′
(0, 0) = 1 and, by Proposition 5.2.3,

Ψ0
1(ξ, t) = Ψ0

1
′
(ξ, t) = (qb1ξ, qb2ξ; q)

−1
∞ Ψtr

1
′
(ξt, t). (5.20)

Similarly we wish to relate Ψtr
1
′
(z, t) to Ψ∞,01 (z, t). Well, we simply scale

Ψtr
1
∗
(z, t) =

(
t

b1z
,
t

b2z
; q

)−1

∞
Ψ∞,01 (z, t), (5.21)

then Ψtr
1
∗
(z, t) is a solution of Ltr, meromorphic on C∗ × C, and we have

Ψtr
1
∗
(z, 0) = Ψ∞,01 (z, 0) = D∞,01 (z) = ψ∞1 (z−1;σI

∞). (5.22)

By comparing order t−1 terms in Ltr
1 as t → 0, we find that Dtr

0
′
(z) := Ψtr

1
′
(z, 0), satisfies

the same second order equation as ψ∞1 (z−1;σI
∞), i.e. (4.63) with z 7→ z−1 and parameter

values σ = σI
∞. Furthermore Dtr

0
′
(z) is holomorphic at z = 0 and Dtr

0
′
(0) = 1, from which we

conclude, using (5.22),

Dtr
0
′
(z) = ψ∞1 (z−1;σI

∞) = Ψtr
1
∗
(z, 0).

So both Ψtr
1
′
(z, t) and Ψtr

1
∗
(z, t) are solutions of Ltr, meromorphic on C∗ × C, such that

Ψtr
1
′
(z, 0) = Ψtr

1
∗
(z, 0).

By considering Ltr
2 for different powers of t, we easily find, by a typical induction argument,

that all coefficients of powers in t of the two solutions agree, and hence

Ψtr
1
′
(z, t) = Ψtr

1
∗
(z, t). (5.23)

Putting everything together, we find

Ψ0,∞
1 (ξ, t) = Ψ0

1(ξ, t)θq(qb1ξ, qb2ξ)

= (qb1ξ, qb2ξ; q)
−1
∞ Ψtr

1
′
(ξt, t)θq(qb1ξ, qb2ξ)

=

(
1

b1ξ
,

1

b2ξ
; q

)
∞

Ψtr
1
′
(ξt, t)

=

(
1

b1ξ
,

1

b2ξ
; q

)
∞

Ψtr
1
∗
(z, t)

= Ψ∞,01 (z, t),

where the second equality follows from (5.20), the fourth equality follows from (5.23), and
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the last equality follows from (5.21). In a completely analogous fashion we find Ψ0,∞
2 (ξ, t) =

Ψ∞,02 (z, t) and hence

Ψ0,∞(ξ, t) = Ψ∞,0(z, t). (5.24)

5.2.6 Monodromy Corresponding to Transcendent

In the context of Section 4.9, we can now explicitly write down the monodromy corresponding

to the q-P (A1) transcendent under consideration. From equations (5.18), (5.11) and (5.24)

we conclude the following connection result,

Ψ∞(z, t) = Ψ0(ξ, t)P 0(ξ, t)P∞(z)

= Ψ0(ξ, t)

(
θq(qb1ξ, qb2ξ) 0

0 θq(qb3ξ, qb4ξ)

)
Q(z−1;σI

∞)−1.

Following (5.5) and (5.13), we define

Y∞(z, t) = s∞(t)Ψ∞(z, t), Y 0(z, t) = Ψ0
(z
t
, t
)
·
(
s0

1(t) 0

0 s0
2(t)

)
,

then Y∞(z, t) and Y 0(z, t) denote fundamental solutions of respectively (4.82) and (2.21).

We conclude

Y∞(z, t) = Y 0(z, t)P(z, t),

where

P(z, t) = s∞(t)

(
s0

1(t)−1θq(qb1
z
t , qb2

z
t ) 0

0 s0
2(t)−1θq(qb3

z
t , qb4

z
t )

)
Q(z−1;σ∞)−1. (5.25)

This is consistent with the notation in Section 4.9, where

c1
0(t) := s0

1(t)Ψ0
1(0, t), c2

0(t) := s0
2(t)Ψ0

2(0, t),

c̃1
0(t) := s∞(t)Ψ∞1 (∞, t), c̃2

0(t) := s∞(t)Ψ∞2 (∞, t).

Proposition 5.2.5. Consider the solution (f, g) = (f (1,1), g(1,1)) of q-P (A1), meromorphic at

t = 0, defined in Proposition 3.1.2, where we assume the corresponding conditions (3.11) on

the parameters. Then the monodromy of Yamada’s Lax pair corresponding to this solution, is

given by

MC∗(f, g) = [R(z, t)] ,

with

R(z, t) = θq(qb5z, qb6z, qb7z, qb8z)

(
s1(t)θq(qb1

z
t , qb2

z
t ) 0

0 s2(t)θq(qb3
z
t , qb4

z
t )

)
Q(z−1;σI∞)−1,

where s1(t) and s2(t) any nonzero meromorphic functions satisfying s1(qt) = t2

b1b2
s1(t) and
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s2(qt) = t2

b3b4
s2(t), on C∗, and the parameter set σI∞ equal to

σI∞ =

(
qb5, qb6, qb7, qb8;

1

b1b2
,

1

b3b4

)
. (5.26)

Proof. This follows directly from equations (5.25) and (4.109).

Expanding on the above Proposition, we consider Theorem 4.5.2 with σ = σI
∞, where we

assume (4.53) holds. Assumption 4.66, is equivalent to∣∣∣∣b1b2b5b6

∣∣∣∣ < 1.

Let us assume this inequality is indeed valid, then

Q(z−1;σI
∞)−1 = R̃(z−1;σI

∞)C(σI
∞)−1

=
1

θq(qb5z, qb6z)

(
r11θq(q

b8
b3b4

z−1) r12θq(q
b7
b3b4

z−1)

r21θq(q
b8
b1b2

z−1) r22θq(q
b7
b1b2

z−1)

)(
1

θq(qb7z)
0

0 1
θq(qb8z)

)
C(σI

∞)−1,

where r11, r12, r21, r22 are defined by (4.70) with σ = σI
∞. Hence, we find that R(z, t), as

defined in Proposition 5.2.5, equals

R(z, t) =

(
s1(t)θq(qb1

z
t , qb2

z
t ) 0

0 s2(t)θq(qb3
z
t , qb4

z
t )

)
·

(
r11θq(

b3b4
b8
z) r12θq(

b3b4
b7
z)

r21θq(
b1b2
b8
z) r22θq(

b1b2
b7
z)

)(
θq(qb8z) 0

0 θq(qb7z)

)
C(σI

∞)−1.

We hence obtain

[R(z, t)] =

[(
s1(t)θq(qb1

z
t , qb2

z
t ) 0

0 s2(t)θq(qb3
z
t , qb4

z
t )

)
·

(
r̃11θq(

b3b4
b8
z) r̃12θq(

b3b4
b7
z)

r̃21θq(
b1b2
b8
z) r̃22θq(

b1b2
b7
z)

)(
θq(qb8z) 0

0 θq(qb7z)

)]
,

where

r̃11 =

(
b3b4
b5b7

,
b3b4
b6b7

; q

)
∞
, r̃12 =

(
b3b4
b5b8

,
b3b4
b6b8

; q

)
∞
,

r̃21 =

(
b1b2
b5b7

,
b1b2
b6b7

; q

)
∞
, r̃22 =

(
b1b2
b5b8

,
b1b2
b6b8

; q

)
∞
.

Let us remark that, by permuting {b1, b2, b3, b4}, we easily translate all the results in this

section, to the other two solutions, meromorphic at the origin, defined in Proposition 3.1.2.
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5.3 Transcendents Meromorphic at a Critical Point

In this section we give the monodromy corresponding to q-P (A1) transcendents, which are

meromorphic at the origin or infinity. The relevant proofs can be found in Appendix D. As

in Table 3.1, we distinguish between the solutions defined in Propositions 3.1.2 and 3.1.1, by

calling them of type I and type II respectively. In particular we have discussed the type I

case in Section 5.2.

Considering the transcendents meromorphic at infinity, listed in equation (3.15), we dis-

tinguish between the ones of order of magnitude t0 and those of order of magnitude t1 as

t→∞, which we respectively call of type I and of type II.

5.3.1 Transcendents Meromorphic at the Origin of Type II

Proposition 5.3.1. Consider the solution (f, g) = (f (0,1), g(0,1)) of q-P (A1), meromorphic

at t = 0, defined in Proposition 3.1.1, where we assume the corresponding conditions (3.6) on

the parameters. Then the monodromy of Yamada’s Lax pair corresponding to this solution, is

given by

MC∗(f, g) = [R(z, t)] ,

with

R(z, t) = Q
(z
t
;σII0

)(θq(qb7z, qb8z) 0

0 θq(qb5z, qb6z)

)(
s1(t) 0

0 s2(t)

)
,

where s1(t) and s2(t) any nonzero meromorphic functions satisfying s1(qt) = t2

b5b6
s1(t) and

s2(qt) = t2

b7b8
s2(t), on C∗, and the parameter set σII0 equals

σII0 =
(
b−1
1 , b−1

2 , b−1
3 , b−1

4 ; q2b5b6, q
2b7b8

)
. (5.27)

Proof. This follows directly from equations (D.2) and (4.109).

Expanding on the above Proposition, we consider Theorem 4.5.2 with σ = σII
0 , where we

assume (4.53) holds. Assumption 4.66, is equivalent to∣∣∣∣b1b2b5b6

∣∣∣∣ < 1.

Let us assume this inequality is indeed valid, then we obtain

[R(z, t)] =

[(
θq(b3

z
t ) 0

0 θq(b4
z
t )

)(
q̃11θq(q

2 b5b6
b3

z
t ) q̃12θq(q

2 b7b8
b3

z
t )

q̃21θq(q
2 b5b6
b4

z
t ) q̃22θq(q

2 b7b8
b4

z
t )

)

·
(
s1(t)θq(qb7z, qb8z) 0

0 s2(t)θq(qb5z, qb6z)

)]
,
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where

q̃11 =

(
b1b4
b5b6

,
b2b4
b5b6

; q

)
∞
, q̃12 = −

(
b1b4
b7b8

,
b2b4
b7b8

; q

)
∞
,

q̃21 = −
(
b1b3
b5b6

,
b2b3
b5b6

; q

)
∞
, q̃22 =

(
b1b3
b7b8

,
b2b3
b7b8

; q

)
∞
.

Let us remark that, by permuting {b5, b6, b7, b8}, we easily translate all the results in this

section, to the other two solutions, meromorphic at the origin, defined in Proposition 3.1.1.

5.3.2 Transcendents Meromorphic at Infinity of Type I

Proposition 5.3.2. Consider the solution (f, g) = (f̌ (0,1), ǧ(0,1)), meromorphic at t = ∞,

defined in Equation (3.15), where we assume the corresponding conditions (3.6) on the pa-

rameters. Then the monodromy of Yamada’s Lax pair corresponding to this solution, is given

by

MC∗(f, g) =
[
R̂(z, t)

]
,

with

R̂(z, t) = θq

(
qb1

z

t
, qb2

z

t
, qb3

z

t
, qb4

z

t

)(ŝ1(t)θq(qb7z, qb8z) 0

0 ŝ2(t)θq(qb5z, qb6z)

)
Q

(
t

z
; σ̂I∞

)−1

,

where ŝ1(t) and ŝ2(t) any nonzero meromorphic functions satisfying ŝ1(qt) = t2

b5b6
ŝ1(t) and

ŝ2(qt) = t2

b7b8
ŝ2(t), on C∗, and the parameter set σ̂I∞ equals

σ̂I∞ =

(
qb3, qb4, qb1, qb2;

1

qb7b8
,

1

qb5b6

)
. (5.28)

Proof. This follows directly from equations (5.25) and (4.109).

Expanding on the above Proposition, we consider Theorem 4.5.2 with σ = σ̂I
∞, where we

assume (4.53) holds. Assumption 4.66, is equivalent to∣∣∣∣b1b2b5b6

∣∣∣∣ < 1.

Let us assume this inequality is indeed valid, then we obtain

[
R̂(z, t)

]
=

[(
ŝ1(t)θq(qb7z, qb8z) 0

0 ŝ2(t)θq(qb5z, qb6z)

)(
r̃11θq(q

b5b6
b2

z
t ) r̃12θq(q

b5b6
b1

z
t )

r̃21θq(q
b7b8
b2

z
t ) r̃22θq(q

b7b8
b1

z
t )

)

·
(
θq
(
b2
z
t

)
0

0 θq
(
b1
z
t

))],
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where

r̃11 =

(
b2b4
b7b8

,
b2b3
b7b8

; q

)
∞
, r̃12 =

(
b1b4
b7b8

,
b1b3
b7b8

; q

)
∞
,

r̃21 =

(
b2b4
b5b6

,
b2b3
b5b6

; q

)
∞
, r̃22 =

(
b1b4
b5b6

,
b1b3
b5b6

; q

)
∞
.

Let us remark that, by permuting {b5, b6, b7, b8}, we easily translate all the results in this

section, to the other two solutions of type I, defined in (3.15).

5.3.3 Transcendents Meromorphic at Infinity of Type II

Proposition 5.3.3. Consider the solution (f, g) = (f̌ (1,1), ǧ(1,1)), meromorphic at t = ∞,

defined in Equation (3.15), where we assume the corresponding conditions (3.11) on the pa-

rameters. Then the monodromy of Yamada’s Lax pair corresponding to this solution, is given

by

MC∗(f, g) =
[
R̂(z, t)

]
,

with

R̂(z, t) = Q
(
z; σ̂II0

)(ŝ1(t)θq
(
qb1

z
t , qb2

z
t

)
0

0 ŝ2(t)θq
(
qb3

z
t , qb4

z
t

)) ,
where ŝ1(t) and ŝ2(t) any nonzero meromorphic functions satisfying ŝ1(qt) = t2

b1b2
ŝ1(t) and

ŝ2(qt) = t2

b3b4
ŝ2(t), on C∗, and the parameter set σ̂II0 equals

σ̂II0 =
(
b−1
7 , b−1

8 , b−1
5 , b−1

6 ; qb3b4, qb1b2
)
. (5.29)

Proof. This follows directly from equations (5.25) and (4.109).

Expanding on the above Proposition we consider Theorem 4.5.2 with σ = σ̂II
0 , where we

assume (4.53) holds. Assumption 4.66, is equivalent to∣∣∣∣b1b2b5b6

∣∣∣∣ < 1.

Let us assume this inequality is indeed valid, then we obtain

[
R̂(z, t)

]
=

[(
θq(b5z) 0

0 θq(b6z)

)(
q̃11θq(q

b3b4
b5
z) q̃12θq(q

b1b2
b5
z)

q̃21θq(q
b3b4
b6
z) q̃22θq(q

b1b2
b6
z)

)

·
(
ŝ1(t)θq

(
qb1

z
t , qb2

z
t

)
0

0 ŝ2(t)θq
(
qb3

z
t , qb4

z
t

))],



5.4. GENERIC CASE: ANALYSIS NEAR (Z, T ) = (∞, 0) 149

where

q̃11 =

(
b1b2
b5b8

,
b1b2
b5b7

; q

)
∞
, q̃12 = −

(
b3b4
b5b8

,
b3b4
b5b7

; q

)
∞
,

q̃21 = −
(
b1b2
b6b8

,
b1b2
b6b7

; q

)
∞
, q̃22 =

(
b3b4
b6b8

,
b3b4
b6b7

; q

)
∞
.

Let us remark that, by permuting {b1, b2, b3, b4}, we easily translate all the results in this

section, to the other two solutions of type II, defined in (3.15).

5.4 Generic Case: Analysis near (z, t) = (∞, 0)

We wish to calculate the monodromy corresponding to solutions of q-P (A1) with critical

behaviour near t = 0 as described in Theorem 3.4.1. In fact it is often easier to work with the

formal expansion in Theorem 3.3.1 and we hence do most of the analysis on a formal level. We

lighten the notation of the formal series solution a bit by writing the formal solution (3.44)

as f = f(t, φ; Λ) and g = g(t, φ; Λ), with

f =
∞∑
n=1

Fnt
n, g =

∞∑
n=1

Gnt
n,

where for n ∈ N∗, the coefficients Fn = Fn(φ) = Fn(φ; Λ) and Gn = Gn(φ) = Gn(φ; Λ) are

defined by

Fn =
n∑

i=−∞
Fn,iφ

i, Gn =
n∑

i=−∞
Gn,iφ

i,

with for i ≤ n, the coefficients Fn,i = Fn,i(Λ) and Gn,i = Gn,i(Λ) equal to

Fn,i(Λ) = F 0,+
n,i (Λ,b), Gn,i(Λ) = G0,+

n,i (Λ,b).

Analogously to (5.2) and (5.5), we rescale the Lax pair L̃ (4.82), by setting

ỹ(z, t, φ; Λ) = s∞(t, φ,Λ)ψ∞(z, t, φ; Λ), s∞(qt, λφ,Λ) = βt−1s∞(t, φ,Λ), (5.30)

with

β := −q−1G1(φ; Λ)−1, (5.31)

where we invite the reader to choose s∞(t, φ,Λ), meromorphic on C∗ × C∗ × C∗, at their

pleasure. The rescaled Lax pair for ψ∞(z, t, φ) takes the form (5.6), which we again denote

by L∞. We sometimes suppress the explicit Λ dependence of formulas, i.e. ỹ(z, t, φ) =

ỹ(z, t, φ; Λ), to ease the notation.

5.4.1 Expanding about z = ∞

Expanding ψ∞(z, t, φ) in z,

ψ∞(z, t, φ; Λ) = c∞0 (t, φ; Λ) + c∞1 (t, φ; Λ)z−1 + c∞2 (t, φ; Λ)z−2 + . . . , (5.32)
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we have c̃0 = s∞c∞0 , and hence, by equation (4.105), we have

γ∞0 (t, φ; Λ)c∞0 (t, φ; Λ) + γ∞1 (t, φ; Λ)c∞0 (qt, λφ; Λ) + γ∞2 (t, φ; Λ)c∞0 (q2t, λ2φ; Λ) = 0, (5.33)

where

(γ∞0 , γ∞1 , γ∞2 ) =
1

b1b2b3b4(F1G1 − 1)t2
(γ̃0, βt

−1γ̃1, q
−1ββt−2γ̃2).

Expanding c∞0 (t, φ) in t as

c∞0 (t, φ; Λ) = c∞0,0(φ; Λ) + c∞0,1(φ; Λ)t+ c∞0,2(φ; Λ)t2 + . . . , (5.34)

and substituting into (5.33) gives, by comparing coefficients of t0, the following linear second

order difference equation for c∞0,0(φ),

qG1c
∞
0,0(φ)− (G1 + qG1)c∞0,0(λφ) +G1c

∞
0,0(λ2φ) = 0, (5.35)

where we suppressed the φ dependence of G1 and G1. Analogously to equation (5.7), we have

c∞1 (t, φ) =
t2 − 1

(q − 1)g(t, φ)
c∞0 (t, φ) +

1

q − 1
G1(φ)−1t−1c∞0 (qt, λφ). (5.36)

We wish c∞1 (t, φ) to have a power series expansion in t about t = 0, which, considering (5.36),

requires c∞0,0(λφ) = c∞0,0(φ). Note that the latter is compatible with (5.35), indeed

c∞0,0(φ) = c∞0,0(φ; Λ) = k1(Λ), (5.37)

satisfies (5.35), for any k1(Λ). Substituting expansion (5.34) into (5.33) gives, by comparing

coefficients of t, the following linear second order difference equation for c∞0,1(φ),

G1c
∞
0,1(φ)− (G1 + qG1)c∞0,1(λφ) + qG1c

∞
0,1(λ2φ) = k1(Λ)

[
G2G1

G1
− G2G1

G1

]
. (5.38)

Note that the φ2 terms on the right-hand side of this equation cancel and indeed, there exists

an unique formal series ν(φ; Λ), of the form

ν(φ; Λ) =
0∑

n=−∞
νn(Λ)φn,

such that c∞0,1(φ; Λ) = ν(φ; Λ) defines a solution of (5.38) with k1(Λ) replaced by 1.

Furthermore,

νh(φ; Λ) = φ+
qλ− 1

Λ(q − 1)
G1,0(Λ) +

λ(qλ− 1)

Λ(q − λ)
G1,−1(Λ)φ−1,

defines a solution of the homogeneous part of (5.38), so

c∞0,1(φ; Λ) := k1(Λ)ν(φ; Λ) + k2(Λ)νh(φ; Λ), (5.39)
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defines a solution to (5.38) for any k2(Λ). The following proposition tells us that, after fixing

particular values for k1(Λ) and k2(Λ), there exists an unique corresponding formal series

solution of (5.33).

Proposition 5.4.1. Consider equation (5.33) with f = f0,+(t, φ; Λ,b) and g = g0,+(t, φ; Λ,b)

as defined in Theorem 3.3.1. Then, for i ∈ {1, 2}, there exists an unique formal solution of

equation (5.33), of the form

c∞,i0 (t, φ; Λ) =

∞∑
m=0

c∞,i0,m(φ; Λ)tm, (5.40)

with, for m ∈ N,

c∞,i0,m(φ; Λ) =

m∑
n=−∞

c∞,i0,m,n(Λ)φn, (5.41)

where (
c∞,10,0,0(Λ)

c∞,10,1,1(Λ)

)
=

(
1

0

)
,

(
c∞,20,0,0(Λ)

c∞,20,1,1(Λ)

)
=

(
0

1

)
. (5.42)

For m ∈ N and n ∈ Z≤m the coefficients c∞,i0,m,n(Λ) are rational functions in Λ and the

parameters b1, . . . , b8, in particular these rational functions are regular at points (Λ,b) ∈
C∗ × B, satisfying (3.46). Furthermore, for fixed b ∈ B with |q| < 1, for any Λ ∈ L0(b),

condition (3.46) is satisfied and this formal solution, written in terms of the variables ζ1 = tφ

and ζ2 = φ−1,

c∞,i0

(
ζ1ζ2, ζ

−1
2 ; Λ

)
=

∞∑
m,n=0

c∞,i0,m,m−n(Λ)ζm1 ζ
n
2 , (5.43)

converges near (ζ1, ζ2) = (0, 0).

In fact, these expansions are also analytic in Λ. That is, for any L ⊆ L0(b) open with

L ⊆ L0(b), there is an open environment Z ⊆ C2 of 0, such that the series (5.43) converge

uniformly on Z × L, defining holomorphic functions on this set in (ζ,Λ).

Proof. Note that within the context of equations (5.37) and (5.39), the initial conditions (5.42)

correspond to the choices (k1(Λ), k2(Λ)) = (1, 0) and (k1(Λ), k2(Λ)) = (0, 1) respectively. For

any of the two choices, we can prove the proposition similar to Theorem 3.3.1. We rewrite

equation (5.33) in appropriate system form and apply the q-Briot Bouquet Theorems B.3 and

B.4.

Remark 5.4.2. Recall that we used the formal series solution in Theorem 3.3.1, to construct

true solutions of q-P (A1) in Theorem 3.4.1, by replacing the formal variables by actual analytic

functions. Doing so we can use the formal series solutions in Proposition 5.4.1 to construct

corresponding true solutions of (5.33).

5.4.2 Expanding about t = 0

We expand the solution ψ∞ (z, t, φ; Λ) in t about t = 0,

ψ∞ (z, t, φ; Λ) = d∞0 (z, φ; Λ) + d∞1 (z, φ; Λ)t+ d∞2 (z, φ; Λ)t2 + . . . . (5.44)
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Substitution in L∞2 and comparing the coefficients of terms t2 gives

d∞0 (z, λφ; Λ) = d∞0 (z, φ; Λ), (5.45)

and we hence set

d∞0 (z, φ; Λ) = d∞0,0(z; Λ).

Similarly substitution of (5.44) in L∞1 gives

d∞0,0 (z/q; Λ) +

[
−(1 + q) +

(
b−1
5 + b−1

6 + b−1
7 + b−1

8

)
z−1 +

(
Λ−1 +

λ

Λ

)
z−2

]
d∞0,0(z; Λ)

+ q

(
1− 1

qb5z

)(
1− 1

qb6z

)(
1− 1

qb7z

)(
1− 1

qb8z

)
d∞0,0(qz; Λ) = 0. (5.46)

This is exactly the degree two model equation (4.51) under the identification y(z; Λ) =

d∞0,0 (1/z; Λ), with parameter values σ = σ∞(Λ), as defined in (5.108), where we note that

Fuchs’ equation (4.52) is indeed satisfied. We remark that this is consistent with and gen-

eralises equation (5.10), as for the choices Λ = Λ±1 , equation (5.46) reduces to (5.10), as

expected from Proposition 3.5.1.

For any l1(Λ), l2(Λ), there exists an unique formal power series solution d∞0,0(z; Λ) in z

about z =∞, of equation (5.46) with

d∞0,0(z; Λ) = l1(Λ) + l2(Λ)z−1 + . . . . (5.47)

Now, by comparing coefficients of z0t3 in L∞2 , we find

qc∞0,1(λφ; Λ)− c∞0,1(φ; Λ) = l2(Λ)(q − 1)G1 − k1(Λ)
G2

G1
,

which, one can easily check, is indeed consistent with (5.38).

By comparing the coefficients of φ1 of both sides of this equation and using (5.39), we find

(qλ− 1)k2(Λ) = (q − 1)Λl2(Λ)− k1(Λ)
G2,2(Λ)

Λ

= (q − 1)Λl2(Λ) + k1(Λ)Geq

(
Λ−1,b(1)

)
,

where in the second equality we used

G2,2(Λ) = −ΛGeq

(
Λ−1,b(1)

)
,

which follows directly from (3.72). We conclude

k1(Λ) = l1(Λ), (5.48a)

k2(Λ) =
1

qλ− 1
Geq

(
Λ−1,b(1)

)
l1(Λ) +

q − 1

qλ− 1
Λl2(Λ). (5.48b)
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5.4.3 Main Existence Theorem near (z, t) = (∞, 0)

Theorem 5.4.3. Consider the Lax pair L∞ (5.6) with f = f0,+(t, φ; Λ,b) and g = g0,+(t, φ; Λ,b)

as described in Theorem 3.3.1, and β defined as in (5.31). Then, for i ∈ {1, 2}, there exists

an unique formal series solution of the Lax pair L∞, of the form

ψ∞i (z, t, φ; Λ) =
∞∑
k=0

c∞,ik (t, φ; Λ)z−k,

where, for k ∈ N,

c∞,ik (t, φ; Λ) =

∞∑
m=0

c∞,ik,m(φ; Λ)tm,

with, for m ∈ N,

c∞,ik,m(φ; Λ) =

m∑
n=−∞

c∞,ik,m,n(Λ)φn,

and initial conditions (5.42).

We note that the notation here coincides with that in Proposition 5.4.1. For k,m ∈ N and

n ∈ Z≤m, the coefficients c∞,ik,m,n(Λ) are rational functions in Λ and the parameters b1, . . . , b8,

in particular these rational functions are regular at points (Λ,b) ∈ C∗ × B, satisfying (3.46).

Furthermore, for fixed b ∈ B with |q| < 1, for any Λ ∈ L0(b), condition (3.46) is satisfied

and this formal solution, written in terms of the variables z, ζ1 = tφ and ζ2 = φ−1,

ψ∞i
(
z, ζ1ζ2, ζ

−1
2 ; Λ

)
=

∞∑
k,m,n=0

c∞,ik,m,m−n(Λ)z−kζm1 ζ
n
2 , (5.49)

converges near (z, ζ1, ζ2) = (∞, 0, 0).

In fact, this expansion also depends holomorphically on Λ. That is, for any L ⊆ L0(b) open

with L ⊆ L0(b), there is an open environment Z ⊆ P∗ × C2 of (∞, 0, 0), such that the series

(5.49) converge uniformly on Z×L, defining holomorphic functions on this set in (z, ζ1, ζ2,Λ).

Proof. The proof follows the same lines as the proof of Proposition 5.2.1. We only give a

sketch, not to bore the reader with all the analytic details. Considering the case i = 1, we

set c∞0 (t, φ; Λ) := c∞,i0 (t, φ; Λ), as defined in Proposition 5.4.1, in the expansion (5.32). We

define c∞1 (t, φ; Λ) by equation (5.36). Then, analogously to Claim 5.2.2, we prove, using the

q-Briot Bouquet Theorem B.3 and Remark B.5, that there exists an unique formal solution

ψ∞1 (z, t, φ; Λ) of L∞1 , as described in the Theorem. It remains to prove that ψ∞1 (z, t, φ; Λ)

also satisfies L∞2 , which we establish similarly to the final part of the proof of Proposition

5.2.1.

Remark 5.4.4. Recall that we used the formal series solution in Theorem 3.3.1, to construct

true solutions of q-P (A1) in Theorem 3.4.1, by replacing the formal variables by actual analytic

functions. Doing so we can use the formal series solutions in Theorem 5.4.3, to construct

corresponding true solutions of the Lax pair L∞.
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5.4.4 Transition from (z, t) = (∞, 0) to (z, t) = (0, 0)

Note that the two formal series solutions ψ∞1 (z, t, φ; Λ) and ψ∞2 (z, t, φ; Λ), define a basis of

solutions of L∞. It is more convenient for us to work with a different basis of solutions, given

by

Ψ∞1 (z, t, φ; Λ) := 1 · ψ∞1 (z, t, φ; Λ) +
1

qλ− 1
Geq

(
Λ−1,b(1)

)
ψ∞2 (z, t, φ; Λ), (5.50a)

Ψ∞2 (z, t, φ; Λ) := 0 · ψ∞1 (z, t, φ; Λ) +
q − 1

qλ− 1
Λψ∞2 (z, t, φ; Λ). (5.50b)

By equations (5.48), these two solutions correspond respectively to (l1(Λ), l2(Λ)) = (1, 0) and

(l1(Λ), l2(Λ)) = (0, 1) in (5.47). We write, for i = 1, 2,

Ψ∞i (z, t, φ; Λ) =

∞∑
k=0

D∞,ik (z, φ; Λ)tk, (5.51)

where for k ∈ N,

D∞,ik (z, φ; Λ) =
k∑

m=−∞
D∞,ik,m(z; Λ)φm,

with for m ∈ Z≤k,

D∞,ik,m(z; Λ) =
∞∑
n=0

D∞,ik,m,n(Λ)z−n.

Note that, by equation (5.45),

D∞0 (z, φ; Λ) = D∞0,0(z; Λ),

and D∞0,0(z; Λ) denotes the fundamental solution at z =∞ of equation (5.46), given by

D∞0,0(z; Λ) = y0(z−1;σ∞(Λ)),

where we used the notation in Section 4.5.

As in Section 5.2.2, we denote

D∞,00,0 (z; Λ) = ψ∞(z−1;σ∞(Λ)),

and we have the connection result

D∞0,0(z; Λ) = D∞,00,0 (z; Λ)P∞(z; Λ), P∞(z; Λ) := Q(z−1;σ∞(Λ))−1. (5.52)

Analogously to (5.11), we symbolically define

Ψ∞,0(z, t, φ; Λ) := Ψ∞(z, t, φ; Λ) · P∞(z; Λ)−1. (5.53)
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From (4.46), we obtain

P∞(qz; Λ) =

(
−q2Λz2 0

0 −q2Λ/λz2

)
· P∞(z; Λ),

and hence, for i = 1, 2, a symbolic computation, shows that the component Ψ∞,0i (z, t, φ; Λ)

defines a solution of the Lax pair L∞,0,i (5.12), with δ1 = −Λ and δ2 = −Λ/λ, and β as

defined in (5.31).

5.5 Generic Case: Analysis near (ξ, t) = (0, 0)

Analogously to (5.13), we rescale the Lax pair L (2.21), by

y(z, t, φ; Λ) = s0(t, φ; Λ)ψ0(ξ, t, φ; Λ), s0(qt, λφ; Λ) = αt−3s0(t, φ; Λ), ξ =
z

t
, (5.54)

where

α = Λq−1G1(φ; Λ)−1,

which leads to the Lax pair L0, given by

L0
1 : u(ξt, t)ψ0(qξ, t) + v(ξt, t)ψ0(ξ, t) + w(ξt, t)ψ0(ξ/q, t) = 0, (5.55a)

L0
2 : αt−3h0(ξt, t)ψ0(ξ/q, qt) + h1(ξt, t)ψ0(ξ, t) + h2(ξt, t)ψ0(ξ/q, t) = 0, (5.55b)

where we suppressed φ and Λ dependence throughout.

We invite the reader to choose an appropriate s0(t, φ; Λ), meromorphic on C∗ × C∗ × C∗, at

their pleasure.

5.5.1 Expanding about ξ = 0

We expand ψ0 (ξ, t, φ; Λ) about ξ = 0,

ψ0 (ξ, t, φ; Λ) = c0
0(t, φ; Λ) + c0

1(t, φ; Λ)ξ + c0
2(t, φ; Λ)ξ2 + . . . .

We have c0 = s0c0
0, and hence, by (4.99),

γ0
0(t, φ; Λ)c0

0(t, φ; Λ) + γ0
1(t, φ; Λ)c0

0(qt, λφ; Λ) + γ0
2(t, φ; Λ)c0

0(q2t, λ2φ; Λ) = 0, (5.56)

where

(γ0
0 , γ

0
1 , γ

0
2) = t−2(γ0, αt

−3γ1, ααq
−3t−6γ2).

Let us, for i = 0, 1, 2, write

γ0
i (t, φ; Λ) = γ0

i,0(φ; Λ) + γ0
i,1(φ; Λ)t+ γ0

i,2(φ; Λ)t2 + . . . . (5.57)

Expanding c0
0(t, φ; Λ) about t = 0,

c0
0(t, φ; Λ) = c0

0,0(φ; Λ) + c0
0,1(φ; Λ)t+ c0

0,2(φ; Λ)t2 + . . . , (5.58)
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and substitution into (5.56) gives, by comparing coefficients of t0, the following linear second

order difference equation for c0
0,0(φ; Λ),

γ0
0,0(φ; Λ)c0

0,0(φ; Λ) + γ0
1,0(φ; Λ)c0

0,0(λφ; Λ) + γ0
2,0(φ; Λ)c0

0,0(λ2φ; Λ) = 0, (5.59)

where the γ0
i,0(φ; Λ) equal

γ0
0,0(φ; Λ) =G1[b1b2b3b4F1 + (b1b2 + b1b3 + b1b4 + b2b3 + b2b4 + b3b4)G1 − (b1 + b2 + b3 + b4)G2

1

− b1b2b3 − b1b2b4 − b1b3b4 − b2b3b4 +G3
1],

γ0
1,0(φ; Λ) =ΛG1(F1G1 − 1)(b1 + b2 + b3 + b4 −G1 −G1),

γ0
2,0(φ; Λ) =Λ2G1F 1(F1G1 − 1).

Lemma 5.5.1. We have the following identities

γ0
0,0(φ; Λ) + γ0

1,0(φ; Λ) + γ0
2,0(φ; Λ) = 0,

γ0
0,0(φ; Λ) + γ0

1,0(φ; Λ)λ−1 + γ0
2,0(φ; Λ)λ−2 = 0.

Proof. One can either check these identities by direct calculation, or use equations (3.22) with

F = F1 and G = G1, to establish them.

By the above Lemma, we see that for any k1(Λ), k2(Λ),

c0
0,0(φ; Λ) = k1(Λ) + k2(Λ)φ−1, (5.60)

defines a solution of equation (5.59).

Proposition 5.5.2. Consider equation (5.56) with f = f0,+(t, φ; Λ,b) and g = g0,+(t, φ; Λ,b)

as defined in Theorem 3.3.1. Then there exists, for i = 1, 2, an unique formal solution of

(5.56), of the form

c0,i
0 (t, φ; Λ) =

∞∑
m=0

c0,i
0,m(φ; Λ)tm (5.61)

with for m ∈ N,

c0,i
0,m(φ; Λ) =

m∑
n=−∞

c0,i
0,m,n(Λ)φn, (5.62)

where (
c0,1

0,0,0(Λ)

c0,1
0,0,−1(Λ)

)
=

(
1

0

)
,

(
c0,2

0,0,0(Λ)

c0,2
0,0,−1(Λ)

)
=

(
0

1

)
. (5.63)

For m ∈ N and n ∈ Z≤m the coefficients c0,i
0,m,n(Λ) are rational functions in Λ and the

parameters b1, . . . , b8, in particular these rational functions are regular at points (Λ,b) ∈
C∗ × B, satisfying (3.46). Furthermore, for fixed b ∈ B with |q| < 1, for any Λ ∈ L0(b),

condition (3.46) is satisfied and this formal solution, written in terms of the variables ζ1 = tφ
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and ζ2 = φ−1,

c0,i
0

(
ζ1ζ2, ζ

−1
2 ; Λ

)
=

∞∑
m,n=0

c0,i
0,m,m−n(Λ)ζm1 ζ

n
2 , (5.64)

converges near (ζ1, ζ2) = (0, 0).

In fact, these expansions are also analytic in Λ. That is, for any L ⊆ L0(b) open with

L ⊆ L0(b), there is an open environment Z ⊆ C2 of 0, such that the series (5.43) converge

uniformly on Z × L, defining holomorphic functions on this set in (ζ,Λ).

Proof. Note that within the context of equation (5.60), the initial conditions (5.63) correspond

to the choices (k1(Λ), k2(Λ)) = (1, 0) and (k1(Λ), k2(Λ)) = (0, 1) respectively. For any of the

two choices, we can prove the proposition similar to Theorem 3.3.1. We rewrite equation

(5.33) in appropriate system form and apply the q-Briot Bouquet Theorems B.3 and B.4.

Remark 5.5.3. Recall that we used the formal series solution in Theorem 3.3.1, to construct

true solutions of q-P (A1) in Theorem 3.4.1, by replacing the formal variables by actual analytic

functions. Doing so we can use the formal series solutions in Proposition 5.5.2 to construct

corresponding true solutions of (5.56).

5.5.2 Expanding about t = 0

We consider a formal expansion of ψ0 (ξ, t, ψ; Λ) in t,

ψ0 (ξ, t, φ; Λ) = d0
0(ξ, φ; Λ) + d0

1(ξ, φ; Λ)t+ d0
2(ξ, φ; Λ)t2 + . . . .

By substitution in L0
2 (5.55b), and comparing the coefficients of order t2, we obtain

(1− qξG1)d0
0(ξ, φ; Λ)− d0

0(qξ, φ; Λ) + Λqξ(F1 − qξ)d0
0(ξ, λφ; Λ) = 0. (5.65)

Similarly, substitution into L0
1 gives

δ0(ξ, φ; Λ)d0
0(ξ/q, φ; Λ) + δ1(ξ, φ; Λ)d0

0(ξ, φ; Λ) + δ2(ξ, φ; Λ)d0
0(qξ, φ; Λ) = 0, (5.66)

where the coefficients δi(ξ, φ; Λ) are given by

δ0(ξ, φ; Λ) =q (F1(φ)G1(φ)− 1) (b1ξ − 1) (b2ξ − 1) (b3ξ − 1) (b4ξ − 1) (qξ − F1(φ)) ,

δ1(ξ, φ; Λ) = (F1(φ)G1(φ)− 1)
[
δ1,0(φ; Λ) + δ1,1(φ; Λ)ξ + δ1,3(φ; Λ)ξ3

]
+ δ1,2(φ; Λ)ξ2,

δ2(ξ, φ; Λ) = (F1(φ)G1(φ)− 1) (ξ − F1(φ)) ,
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with

δ1,0(φ; Λ) =(q + 1)F1,

δ1,1(φ; Λ) =− q(b1 + b2 + b3 + b4)F1 − q2 − 1,

δ1,2(φ; Λ) =− q2(b1 + b2 + b3 + b4)− q(b1b2 + b1b3 + b1b4 + b2b3 + b2b4 + b3b4)F1

+ q(b1b2b3 + b1b2b4 + b1b3b4 + b2b3b4)F 2
1 − qb1b2b3b4F 3

1 + q(q − 1)G1

+ q(q + 1)(b1 + b2 + b3 + b4)F1G1 − q2F1G
2
1,

δ1,3(φ; Λ) =q2Λ(1 + λ−1).

Let us expand d0
0(ξ, φ; Λ) in φ as

d0
0(ξ, φ; Λ) = d0

0,0(ξ; Λ) + d0
0,−1(ξ; Λ)φ−1 + d0

0,−2(ξ; Λ)φ−2 + . . . , (5.67)

then, substitution into equation (5.66) gives, by comparing coefficients of φ3,

d0
0,0(qξ; Λ) +

[
−(1 + q) + q(b1 + b2 + b3 + b4)ξ + q

(
qΛ +

Λ

λ

)
ξ2

]
d0

0,0(ξ; Λ)

+ q(1− b1ξ)(1− b2ξ)(1− b3ξ)(1− b4ξ)d0
0,0(ξ/q; Λ) = 0. (5.68)

Furthermore, substitution into equation (5.65) gives, by comparing coefficients of φ0,

d0
0,−1(ξ; Λ) = Λ

d0
0,0(qξ; Λ)− d0

0,0(ξ; Λ)

q(b1b2b3b4 − Λ2)ξ
+

Λ2

(b1b2b3b4 − Λ2)2

[
q(b1b2b3b4 − Λ2)ξ

− (b1b2b3 + b1b2b4 + b1b3b4 + b2b3b4 + (b1 + b2 + b3 + b4)Λ)
]
d0

0,0(ξ; Λ). (5.69)

Lemma 5.5.4. Given any solution d0
0,0(ξ; Λ) of equation (5.68), and defining d0

0,−1(ξ; Λ) by

equation (5.69), the function

d0
0(ξ, φ; Λ) := d0

0,0(ξ; Λ) + d0
0,−1(ξ; Λ)φ−1, (5.70)

solves (5.65) and (5.66) simultaneously.

Proof. We checked this by direct calculation, using Mathematica.

We identify equation (5.68) as the degree two model equation (4.51), with parameter

values σ = σ0(Λ), as defined in (5.107), where we note that Fuchs’ equation (4.52) is indeed

satisfied. Considering Proposition 3.5.1, for instance the choice Λ = Λ+
1 , leads to a violation

of the condition 4.53, as described in Remark 4.5.3. This is why the connection problem on

the line t = 0 in Section 5.2.4 is trivial.

Now, for any l1(Λ) and l2(Λ), there exists an unique formal power series solution d0
0,0(ξ; Λ)

in ξ of equation (5.68) with

d0
0,0(ξ; Λ) = l1(Λ) + l2(Λ)ξ + . . .
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Comparing expansions (5.58),(5.60) and (5.70), we find

k1(Λ) =l1(Λ), (5.71a)

k2(Λ) =
(q − 1)

qΛ(1/λ− 1))
l2(Λ)− 1

Λ2(1/λ− 1)2

[
b1b2b3 + b1b2b4 + b1b3b4 + b2b3b4 (5.71b)

+ (b1 + b2 + b3 + b4)Λ
]
l1(Λ). (5.71c)

5.5.3 Main Existence Theorem near (ξ, t) = (0, 0)

Theorem 5.5.5. Consider the Lax pair L0 (5.55) with f = f0,+(t, φ; Λ,b) and g = g0,+(t, φ; Λ,b)

as defined in Theorem 3.3.1. Then, for i ∈ {1, 2}, there exists an unique formal series solution

of the Lax pair L0, of the form

ψ0
i (ξ, t, φ; Λ) =

∞∑
k=0

c0,i
k (t, φ; Λ)ξk,

where for k ∈ N,

c0,i
k (t, φ; Λ) =

∞∑
m=0

c0,i
k,m(φ; Λ)tm,

with for m ∈ N,

c0,i
k,m(φ; Λ) =

m∑
n=−∞

c0,i
k,m,n(Λ)φn,

and initial conditions (5.63).

We note that the notation here coincides with that in Proposition 5.5.2. For k,m ∈ N and

n ∈ Z≤m, the coefficients c∞,ik,m,n(Λ) are rational functions in Λ and the parameters b1, . . . , b8,

in particular these rational functions are regular at points (Λ,b) ∈ C∗ × B, satisfying (3.46).

Furthermore, for fixed b ∈ B with |q| < 1, for any Λ ∈ L0(b), condition (3.46) is satisfied

and this formal solution, written in terms of the variables ξ, ζ1 = tφ and ζ2 = φ−1,

ψ0
i

(
ξ, ζ1ζ2, ζ

−1
2 ; Λ

)
=

∞∑
k,m,n=0

c0,i
k,m,m−n(Λ)ξkζm1 ζ

n
2 , (5.72)

converges near (ξ, ζ1, ζ2) = (0, 0, 0).

In fact, this expansion also depends holomorphically on Λ. That is, for any L ⊆ L0(b) open

with L ⊆ L0(b), there is an open environment Z ⊆ C × C2 of (0, 0, 0), such that the series

(5.72) converge uniformly on Z×L, defining holomorphic functions on this set in (z, ζ1, ζ2,Λ).

Proof. We prove this analogous to Theorem 5.5.5.

Remark 5.5.6. Recall that we used the formal series solution in Theorem 3.3.1, to construct

true solutions of q-P (A1) in Theorem 3.4.1, by replacing the formal variables by actual analytic

functions. Doing so we can use the formal series solutions in Theorem 5.5.5 to construct

corresponding true solutions of the Lax pair L0 (5.55).
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5.5.4 Transition from (ξ, t) = (0, 0) to (ξ, t) = (∞, 0)

Note that the two formal series solutions ψ0
1(ξ, t, φ; Λ) and ψ0

2(ξ, t, φ; Λ), define a basis of

solutions of L0. It is more convenient for us to work with a different basis of solutions, given

by

Ψ0
1(ξ, t, φ; Λ) := 1 · ψ0

1(ξ, t, φ; Λ) + k∗2(Λ)ψ0
2(ξ, t, φ; Λ), (5.73a)

Ψ0
2(ξ, t, φ; Λ) := 0 · ψ0

1(ξ, t, φ; Λ) +
(q − 1)

qΛ(1/λ− 1))
ψ0

2(ξ, t, φ; Λ). (5.73b)

where k∗2(Λ) is defined by

k∗2(Λ) = − 1

Λ2(1/λ− 1)2

[
b1b2b3 + b1b2b4 + b1b3b4 + b2b3b4 + (b1 + b2 + b3 + b4)Λ

]
.

By equations(5.71), these two solutions correspond respectively to (l1(Λ), l2(Λ)) = (1, 0) and

(l1(Λ), l2(Λ)) = (0, 1) in (5.47). Let us write, for i = 1, 2,

Ψ0
i (ξ, t, φ; Λ) =

∞∑
k=0

D0,i
k (ξ, φ; Λ)tk, (5.74)

where for k ∈ N,

D0,i
k (ξ, φ; Λ) =

k∑
m=−∞

D0,i
k,m(ξ; Λ)φm,

with for m ∈ Z≤k,

D0,i
k,m(ξ; Λ) =

∞∑
n=0

D0,i
k,m,n(Λ)ξn.

Then we have, by Lemma 5.5.4,

D0
0(ξ, φ; Λ) := D0

0,0(ξ; Λ) +D0
0,−1(ξ; Λ)φ−1,

where

D0
0,0(ξ; Λ) = y0(ξ;σ0(Λ)).

We denote

D0,∞
0,0 (ξ; Λ) = ψ∞(ξ;σ0(Λ)),

and we have the connection result

D0,∞
0,0 (ξ; Λ) = D0

0,0(ξ; Λ)P 0(ξ; Λ), P 0(ξ; Λ) := Q(ξ;σ0(Λ)). (5.75)

Analogously to (5.11), we symbolically define

Ψ0,∞(ξ, t, φ; Λ) := Ψ0(ξ, t, φ; Λ) · P 0(ξ; Λ). (5.76)
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From (4.46), we obtain

P 0(qξ; Λ) = P 0(ξ; Λ) ·

(
− 1
q2Λ

ξ−2 0

0 − λ
qΛξ
−2

)
,

and hence, for i = 1, 2, a symbolic computation, shows that the component Ψ0,∞
i (ξ, t, φ; Λ),

defines a solution of the Lax pair L0,∞,i, given by

L0,∞,i
1 : q2δ̃iξ

2u(ξt, t)ψ0,∞
i (qξ, t) + v(ξt, t)ψ0,∞

i (ξ, t) +
1

δ̃iξ2
w(ξt, t)ψ0,∞

i (ξ/q, t) = 0, (5.77a)

L0,∞,i
2 :

α

t3
h0(ξt, t)ψ0,∞

i (ξ/q, qt) + δ̃iξ
2h1(ξt, t)ψ0,∞

i (ξ, t) + h2(ξt, t)ψ0,∞
i (ξ/q, t) = 0,

(5.77b)

where δ̃1 = −Λ and δ̃2 = −Λ/(qλ), and we suppressed φ and Λ dependence throughout.

5.6 Generic Case: Matching near t = 0

In Section 5.4 we constructed a fundamental formal solution Ψ∞(z, t, φ; Λ) of the Lax pair

L∞ (5.6), where β := −q−1G1(φ; Λ)−1. This formal solution converges for appropriate values

of Λ, as described in Theorem 5.4.3. Similarly we constructed a fundamental formal solution

Ψ0(z, t, φ; Λ) of the Lax pair L0 (5.55), in Section 5.5. This formal solution converges for

appropriate values of Λ, as described in Theorem 5.5.5.

We wish to relate the fundamental solution Ψ∞(z, t, φ; Λ) of L∞, with the fundamental

solution Ψ0(ξ, t, φ; Λ) of the Lax pair L0. However, this is not sensible on the formal level.

Indeed we first have to substitute actual analytic functions for Λ and φ, as done in Theo-

rem 3.4.1, after which connecting the fundamental solutions becomes possible. To ease the

notation and technical details, we restrict ourselves to Λ(t) ≡ Λ constant.

5.6.1 True Solutions of Lax pairs

Recalling the definition (3.47) of L0(b), we consider we fix some Λ ∈ L0(b), take a continuous

q-domain T , and fix a function φ(t) which is analytic and nonvanishing on T , satisfying

φ(qt) = λφ(t), λ :=
Λ2

b1b2b3b4
. (t ∈ T )

Let (f, g) = (f(t), g(t)) be the meromorphic solution of q-P (A1), as defined in Theorem

3.4.1. We fix a continuous q-domain V ⊆ V
∗ ⊆ T and consider the Lax pair L∞, with

β = β(t) := −q−1G1(φ(t); Λ)−1. Theorem 5.4.3 shows that, analogous to Theorem 3.4.1,

ψ∞(z, t) := (ψ∞1 (z, t, φ(t); Λ), ψ∞2 (z, t, φ(t); Λ)),

defines a fundamental solution of L∞ for (z, t) close to (∞, 0) in P∗ × V , which has an

unique meromorphic continuation to P∗×V . We use the change of basis (5.50), to define the
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corresponding fundamental solution

Ψ∞(z, t) := (Ψ∞1 (z, t, φ(t); Λ),Ψ∞2 (z, t, φ(t); Λ)),

which satisfies

Ψ∞(z, 0) = y0(z−1;σ∞(Λ)). (5.78)

Following (5.53), we define

Ψ∞,0(z, t) := Ψ∞(z, t) · P∞(z; Λ)−1, (5.79)

then

Ψ∞,0(z, 0) = ψ∞(z−1;σ∞(Λ)), (5.80)

and for i = 1, 2, the component Ψ∞,0i (z, t) defines a solution of the Lax pair L∞,0,i (5.12),

with δ1 = −Λ and δ2 = −Λ/λ.

Next we consider the Lax pair L0 (5.55), with α = Λq−1G1(φ; Λ)−1. Using Theorem 5.5.5

and the change of basis (5.73), we define a fundamental solution of L0,

Ψ0
1(ξ, t) = (Ψ0

1(ξ, t, φ(t); Λ),Ψ0
2(ξ, t, φ(t); Λ)),

meromorphic on C× V in (ξ, t), which satisfies

Ψ0
1(ξ, 0) = y0(ξ;σ0(Λ)).

Following (5.76), we define

Ψ0,∞(ξ, t) := Ψ0(ξ, t) · P 0(ξ; Λ), (5.81)

then

Ψ0,∞(ξ, 0) = ψ∞(ξ;σ0(Λ)), (5.82)

and for i = 1, 2, the component Ψ0,∞
i (ξ, t) defines a solution of the Lax pair L0,∞,i (5.77),

with δ̃1 = −Λ and δ̃2 = −Λ/(qλ).

We now wish to relate Ψ∞,01 (z, t) and Ψ0,∞
1 (ξ, t), and we wish to relate Ψ∞,02 (z, t) and

Ψ0,∞
2 (ξ, t). Let us make the crucial observation that Ψ∞,01 (z, t) and Ψ0,∞

1 (ξ, t) satisfy the

same Lax pair. That is, the Lax pairs L∞,0,1 and L0,∞,1 are identical under the formal

identification

ψ∞,01 (z, t, φ; Λ) = ψ0,∞
1 (ξ, t, φ; Λ), ξ =

z

t
. (5.83)

Similarly, the Lax pairs L∞,0,2 and L0,∞,2 are identical under the formal identification

ψ∞,02 (z, t, φ; Λ) =
tφ

z
ψ0,∞

2 (ξ, t, φ; Λ), ξ =
z

t
.

We will establish the following proposition.
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Proposition 5.6.1. We have the following identities,

Ψ∞,01 (z, t) = Ψ0,∞
1 (ξ, t), Ψ∞,02 (z, t) =

ctφ(t)

z
Ψ0,∞

2 (ξ, t),

where the constant c is given by

c = −qλ− 1

λ− 1
. (5.84)

The proof of this proposition is not easy. Even though we know that in both identities, the

left- and right-hand sides satisfy the same Lax pair, it is not possible to match them directly.

Instead, we will introduce an additional solutions of the Lax pair in both cases, which allows

us to make all the matches. To this end, we temporarily go back to the formal setting, i.e.

with φ and Λ formal variables.

5.6.2 Formal Transition

Recall the symbolic transition (5.53), which by equation (5.51) and a formal computation,

reads

Ψ∞,0(z, t, φ; Λ) =
∞∑
k=0

k∑
m=−∞

D∞,0k,m (z; Λ)tkφm,

where for k ∈ N and m ∈ Z≤k,

D∞,0k,m (z; Λ) = D∞,ik,m(z; Λ) · P∞(z; Λ)−1,

with, by equation (5.52),

D∞,00,0 (z; Λ) = ψ∞(z−1;σ∞(Λ)).

We emphasise that these identities are merely symbolic. Nonetheless, motivated by this

symbolic calculation, we consider, for i = 1, 2, the Lax pair L∞,0,i (5.12), where δ1 = −Λ and

δ2 = −Λ/λ, and β as defined in (5.31). And we consider a formal solution ψtr
i (z, t, φ; Λ) of

this Lax pair of the form

ψtr
i (z, t, φ; Λ) =

∞∑
k=0

k∑
m=−∞

dtr,i
k,m(z; Λ)tkφm,

where

dtr,i
0,0 (z; Λ) =

∞∑
n=0

dtr,i
0,0,n(Λ)zn,

with dtr,i
0,0,0(Λ) = 1.

Via substitution in L∞,0,i1 , we quickly recover dtr,i
0,0 (z; Λ) = ψ∞(z−1;σ∞(Λ)). Furthermore,

by considering L∞,0,i2 , we find by induction, that for k ∈ N and m ∈ Z≤k, the coefficient

dtr,i
k,m(z; Λ) enjoys a Laurent expansion in z about z = 0 with lowest order term at least z−k.

To be precise, we have the following result.

Lemma 5.6.2. Let i ∈ {1, 2} and consider the Lax pair L∞,0,i (5.12) with f = f0,+(t, φ; Λ,b)

and g = g0,+(t, φ; Λ,b) as described in Theorem 3.3.1, where δ1 = −Λ and δ2 = −Λ/λ, and
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β as defined in (5.31). Then there exists an unique formal series solution of the Lax pair

L∞,0,i, of the form

Ψtr
i (z, t, φ; Λ) =

∞∑
k=0

k∑
m=−∞

Dtr,i
k,m(z; Λ)tkφm, (5.85)

where for k ∈ N and m ∈ Z≤k,

Dtr,i
k,m(z; Λ) =

∞∑
n=−k

Dtr,i
k,m,n(Λ)zn,

with Dtr,i
0,0,0(Λ) = 1.

For k and m,n ∈ Z≤k, the coefficients Dtr,i
k,m,n(Λ) are rational functions in Λ and the param-

eters b1, . . . , b8, in particular these rational functions are regular at points (Λ,b) ∈ C∗ × B,

satisfying (3.46). Furthermore, for fixed b ∈ B with |q| < 1, for any Λ ∈ L0(b), condition

(3.46) is satisfied and this formal solution, written in terms of the variables z, µ = tφ/z and

ζ2 = φ−1,

Ψtr
i (z, zµζ2, ζ

−1
2 ; Λ) =

∞∑
k,m,n=0

Dtr,i
k,k−m,n−k(Λ)µkζm2 z

n, (5.86)

converges near (z, µ, ζ2) = (0, 0, 0).

In fact, this expansion also depends holomorphically on Λ. That is, for any L ⊆ L0(b) open

with L ⊆ L0(b), there is an open environment Z ⊆ C3 of (0, 0, 0), such that the series (5.86)

converge uniformly on Z × L, defining holomorphic functions on this set in (z, µ, ζ2,Λ).

Proof. We prove this analogous to Theorem 5.4.3.

Recall that Ψ0,∞(ξ, t, φ; Λ), defined symbolically in equation (5.76), is expressed in terms

of the independent variables ξ, t, φ,Λ. We hence rewrite, for i = 1, 2, the formal series

Ψtr
i (z, t, φ; Λ), defined in Lemma 5.6.2, in terms of these variables,

Ψ̃tr
i (ξ, t, φ; Λ) := Ψtr

i (ξt, t, φ; Λ). (5.87)

Using (5.85), we have

Ψ̃tr
i (ξ, t, φ; Λ) =

∞∑
k=0

k∑
m=−∞

∞∑
n=−k

Dtr,i
k,m,n(Λ)tk+nφmξn

=
∞∑
k′=0

k′∑
n=−∞

k′−n∑
m=−∞

Dtr,i
k′−n,m,n(Λ)tk

′
φmξn, (5.88)

where the last equality is the result of the change of summation k′ = k + n. Note that
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Ψ̃tr
i (ξ, t, φ; Λ) defines a formal solution of the Lax pair L̃tr,i, given by

L̃tr,i
1 : q2δiξ

2u(ξt, t)ψ̃tr
i (qξ, t) + v(ξt, t)ψ̃tr

i (ξ, t) +
1

δiξ2
w(ξt, t)ψ̃tr

i (ξ/q, t) = 0, (5.89a)

L̃tr,i
2 : βt−3h0(ξt, t)ψ̃tr

i (ξ/q, qt) + ξ2h1(ξt, t)ψ̃tr
i (ξ, t) +

1

δi
h2(ξt, t)ψ̃tr

i (ξ/q, t) = 0, (5.89b)

where again δ1 = −Λ and δ2 = −Λ/λ, and β as defined in (5.31), and we suppressed the Λ

and φ dependence throughout.

Lemma 5.6.3. For i = 1 and i = 2, the inner m summation in the formal series (5.88), can

also be bounded from above by k′ and k′ + 1 respectively, that is

Ψ̃tr
i (ξ, t, φ; Λ) =

∞∑
k′=0

k′∑
n=−∞

min (k′+i−1,k′−n)∑
m=−∞

Dtr,i
k′−n,m,n(Λ)tk

′
φmξn.

Proof. We use l = k′ − n to rewrite (5.88) as

Ψ̃tr
i (ξ, t, φ; Λ) =

∞∑
l=0

∞∑
k′=0

l∑
m=−∞

Dtr,i
l,m,k′−l(Λ)tk

′
φmξk

′−l.

Our goal is to show

Ψ̃tr
i (ξ, t, φ; Λ) =

∞∑
l=0

∞∑
k′=0

min (k′+i−1,l)∑
m=−∞

Dtr,i
l,m,k′−l(Λ)tk

′
φmξk

′−l.

In both the case i = 1 and i = 2, this is easily proven by double induction, the outer one with

respect to l and the inner one with respect to k′, using the fact that Ψ̃tr
i (ξ, t, φ; Λ) satisfies

L̃tr,i
2 .

The following result gives us an analytic characterisation of the formal series (5.87), which

allows us to complete the matching procedure.

Lemma 5.6.4. Let i ∈ {1, 2} and consider the Lax pair L̃tr,i (5.89) with f = f0,+(t, φ; Λ,b)

and g = g0,+(t, φ; Λ,b) as described in Theorem 3.3.1. Then Ψ̃tr
i (ξ, t, φ; Λ) (5.87) can be

characterised as the unique formal series solution of the Lax pair L̃tr,i, of the form

Ψ̃tr
i (ξ, t, φ; Λ) =

∞∑
k=0

k+i−1∑
m=−∞

D̃tr,i
k,m(ξ; Λ)tkφm,

where for k ∈ N and m ∈ Z≤k+i−1,

D̃tr,i
k,m(ξ; Λ) =

k∑
n=−∞

D̃tr,i
k,m,n(Λ)ξn,

with D̃tr,i
0,0,0(Λ) = 1.
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For k, m ∈ Z≤k+i−1 and n ∈ Z≤k, the coefficients D̃tr,i
k,m,n(Λ) are rational functions in Λ and

the parameters b1, . . . , b8, in particular these rational functions are regular at points (Λ,b) ∈
C∗ × B, satisfying (3.46). Furthermore, for fixed b ∈ B with |q| < 1, for any Λ ∈ L0(b),

condition (3.46) is satisfied and the following formal series, written in terms of the variables

ξ, τ = ξtφ and ζ2 = φ−1,

Ψ̃tr
1 (ξ, ξ−1τζ2, ζ

−1
2 ; Λ) =

∞∑
k,m,n=0

D̃tr,1
k,k−m,k−n(Λ)τkζm2 ξ

−n, (5.90)

φ−1Ψ̃tr
2 (ξ, ξ−1τζ2, ζ

−1
2 ; Λ) =

∞∑
k,m,n=0

D̃tr,2
k,k−m+1,k−n(Λ)τkζm2 ξ

−n, (5.91)

converge near (ξ, τ, ζ2) = (∞, 0, 0).

In fact, these expansions also depends holomorphically on Λ. That is, for any L ⊆ L0(b) open

with L ⊆ L0(b), there is an open environment Z ⊆ P∗ × C2 of (∞, 0, 0), such that the series

(5.90) converge uniformly on Z×L, defining holomorphic functions on this set in (ξ, τ, ζ2,Λ).

Proof. In both the case i = 1 and i = 2, we first prove the existence of such a formal solution

analogous to Theorem 5.4.3. We then conclude that this formal series solution must equal

Ψ̃tr
i (ξ, t, φ; Λ), because of Lemma 5.6.3.

By direct computation, we can calculate

D̃tr,2
0,1,0(Λ) = 0, D̃tr,2

0,1,−1(Λ) = c, (5.92)

where c as defined in (5.84), and we note that the first equality can also be deduced from

Lemma 5.6.3.

5.6.3 Matching of True Solutions

We now return to the set up in Section 5.6.1 and prove Proposition 5.6.1. We use Lemma

5.6.2, to construct, for i = 1, 2, a true solution

Ψtr
i (z, t) = Ψtr

i (z, t, φ(t); Λ),

of the Lax pair L∞,0,i, meromorphic on C∗ × V . Note that by the second part of Lemma

5.6.2, the limit

lim
t→0,t∈V

Ψtr
i (z, t) = Dtr,i

0,0 (z; Λ), (5.93)

exists, for z close but not equal to 0.

Lemma 5.6.5. We have the identities

Ψ∞,01 (z, t) = Ψtr
1 (z, t), Ψ∞,02 (z, t) = Ψtr

2 (z, t). (5.94)

Proof. We define

s(z) =
θq(z/λ)

θq(z)
,
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then s(qz) = λs(z) and it is easy to see that

s(z)Ψtr
2 (z, t),

defines a solution of the Lax pair L∞,0,1, as Ψtr
2 (z, t) defines a solution of L∞,0,2. So both

Ψtr
1 (z, t) and s(z)Ψtr

2 (z, t) define a solution of the Lax pair L∞,0,1, and it is easy to see that

they are linearly independent. As Ψ∞,01 (z, t) also satisfies the Lax pair L∞,0,1, there must

exist meromorphic functions p1(z, t) and p2(z, t) on C∗×V , which are q-periodic with respect

to z and t, such that

Ψ∞,01 (z, t) = p1(z, t)Ψtr
1 (z, t) + p2(z, t)s(z)Ψtr

2 (z, t). (5.95)

Now we take any t0 ∈ V , such that p1(z, t0) and p2(z, t0) are not identically singular. We set

t = qnt0 in (5.95), and let n→∞, giving, by equation (5.93),

Ψ∞,01 (z, 0) = p1(z, t0)Dtr,1
0,0 (z; Λ) + p2(z, t0)s(z)Dtr,2

0,0 (z; Λ), (5.96)

for z close but not equal to 0. By equation (5.80), we know that Ψ∞,01 (z, 0) is holomorphic at

z = 0 with Ψ∞,01 (0, 0) = 1. By Lemma 5.6.2, we know that both Dtr,1
0,0 (z; Λ) and Dtr,2

0,0 (z; Λ)

are convergent power series with constant term equal to 1. Note that p2(z, t0)s(z) cannot

be regular at z = 0, unless it is identically zero, and hence we must have p1(z, t0) ≡ 1 and

p2(z, t0) ≡ 0, by equation (5.96). As this holds for any t0 ∈ V , such that p1(z, t0) and p2(z, t0)

are not identically singular, we conclude that the first identity in (5.94) holds. We establish

the other one analogously.

Let i ∈ {1, 2}, then, following (5.87),

Ψ̃tr
i (ξ, t) := Ψtr

i (ξt, t), (5.97)

defines a solution of the Lax pair L̃tr,i (5.89), meromorphic on C∗× V in (ξ, t). Furthermore,

by the second part of Lemma 5.6.4, we know that the limits

lim
t→0,t∈V

Ψ̃tr
1 (ξ, t) = D̃tr,1

0,0 (ξ; Λ), (5.98a)

lim
t→0,t∈V

φ(t)−1Ψ̃tr
2 (ξ, t) = D̃tr,2

0,1 (ξ; Λ), (5.98b)

exists, for ξ close but not equal to ∞.

Lemma 5.6.6. We have the identities,

Ψ0,∞
1 (ξ, t) = Ψ̃tr

1 (ξ, t),
cφ(t)

ξ
Ψ0,∞

2 (ξ, t) = Ψ̃tr
2 (ξ, t), (5.99)

where the constant c is defined in (5.84).

Proof. Let us focus on the first equality. We note that the Lax pairs L̃tr,1 (5.89) and L0,∞,1

(5.77) are equivalent, i.e. L̃tr,1
1 and L0,∞,1

1 are identical, and L̃tr,1
2 and L0,∞,1

2 are a multiple
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of each other. Let us define

s(ξ) = ξ
θq(ξ/λ)

θq(ξ)
,

then s(qξ) = qλs(ξ) and we note that s(ξ)Ψ0,∞
2 (ξ, t) is a solution of L0,∞,1. So both Ψ0,∞

1 (ξ, t)

and s(ξ)Ψ0,∞
2 (ξ, t) are solutions of L0,∞,1, and it is easy to see that they are linearly indepen-

dent. As Ψ̃tr
1 (ξ, t) also satisfies L0,∞,1, there must exist meromorphic functions p1(ξ, t) and

p2(ξ, t) on C∗ × V , which are q-periodic with respect to ξ and t, such that

Ψ̃tr
1 (ξ, t) = p1(ξ, t)Ψ0,∞

1 (ξ, t) + p2(ξ, t)s(ξ)Ψ0,∞
2 (ξ, t). (5.100)

Take any t0 ∈ V such that p1(ξ, t) and p2(ξ, t) are not identically singular. We set t = qnt0
and let n→∞ in (5.100), which gives, by equations (5.98a) and (5.82),

D̃tr,1
0,0 (ξ; Λ) = p1(ξ, t0)ψ∞1 (ξ;σ0(Λ)) + p2(ξ, t0)s(ξ)ψ∞2 (ξ;σ0(Λ)), (5.101)

for ξ close but not equal to∞. Now we recall that, by Lemma 5.6.4, we know that D̃tr,1
0,0 (ξ; Λ)

has a convergent power series expansion about ξ = ∞. Note also that ψ∞1 (ξ;σ0(Λ)) and

ψ∞2 (ξ;σ0(Λ)) are holomorphic and equal to 1 at ξ = ∞. However p2(ξ, t)s(ξ) is not regular

at ξ = ∞ or identically zero. Combined we find, by equation (5.101), that we must have

p1(ξ, t0) ≡ 1 and p2(ξ, t0) ≡ 0. We conclude that the first identity in (5.99) holds. As to the

second one, let us write

Ψ(ξ, t) =
ξ

cφ(t)
Ψ̃tr

2 (ξ, t).

We wish to prove

Ψ(ξ, t) = Ψ0,∞
2 (ξ, t). (5.102)

Firstly, we note that both Ψ0,∞
2 (ξ, t) and Ψ(ξ, t) define a solution of the Lax pair L0,∞,2 (5.77).

Furthermore, we know that, by equation (5.98b), the limit

lim
t→0,t∈V

Ψ(ξ, t) =
ξ

c
D̃tr,2

0,1 (ξ; Λ),

exists for ξ close but not equal to∞. Similarly we have Ψ0,∞
2 (ξ, 0) = ψ∞2 (ξ;σ0(Λ)), by (5.82).

Finally, by Lemma 5.6.4 and equations (5.92), we know that ξ
c D̃

tr,2
0,1 (ξ; Λ) has a convergent

power series expansion in ξ about ξ =∞, with

ξ

c
D̃tr,2

0,1 (ξ; Λ) = 1 +O(ξ−1). (ξ →∞)

A similar argument as above, where we write Ψ(ξ, t) as a linear combination of Ψ0,∞
2 (ξ, t) and

s(ξ)−1Ψ0,∞
1 (ξ, t), finally gives (5.102).

Proof of Proposition 5.6.1. The Proposition is now a consequence of equation (5.97) and Lem-

mas 5.6.5 and 5.6.6.
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By putting together Proposition 5.6.1 and equations (5.81) and (5.79), we find

Ψ∞(z, t) = Ψ0
(z
t
, t
)
Q
(z
t
, σ0(Λ(t))

)(1 0

0 ctφ(t)
z

)
Q
(
z−1;σ∞(Λ(t))

)−1
. (5.103)

By equation (5.30), we know that

Ỹ∞(z, t) := s∞(t)Ψ∞(z, t), s∞(t) := s∞(t, φ(t); Λ), (5.104)

defines a fundamental solution of Yamada’s Lax pair L̃ (5.6), which is meromorphic on P∗×V .

We note that s∞(t) satisfies

s∞(qt) = −q−1G1(φ(t); Λ)−1t−1s∞(t).

Similarly, by (5.54), we know that

Y 0(z, t) = s0(t)Ψ0
(z
t
, t
)
, s0(t) := s0(t, φ(t); Λ), (5.105)

defines a fundamental solution of Yamada’s Lax pair L (2.21), which is meromorphic on C×V .

We note that s0(t) satisfies

s0(qt) = Λq−1G1(φ(t); Λ)−1t−3s0(t).

Combining equations (5.103), (5.104) and (5.105), we obtain

Y∞(z, t) = Y 0(z, t)P(z, t), (5.106)

with

P(z, t) = s(t)Q
(z
t
, σ0(Λ)

)(1 0

0 ctφ(t)
z

)
Q
(
z−1;σ∞(Λ)

)−1
,

where s(t) is the meromorphic function on T , satisfying s(qt) = −t2/Λs(t), defined by

s(t) =
s∞(t)

s0(t)
.

This is consistent with the notation in Section 4.9, where

c1
0(t) := s0(t)Ψ0

1(0, t), c2
0(t) := s0(t)Ψ0

2(0, t),

c̃1
0(t) := s∞(t)Ψ∞1 (∞, t), c̃2

0(t) := s∞(t)Ψ∞2 (∞, t).

Recall that the functions Y∞(z, t) and Y 0(z, t) are defined on P∗×V and C×V respectively,

and the connection result (5.106) is valid on C∗ × V . Now recall that we fixed V to be any

continuous q-domain with V ⊆ V ∗ ⊆ T , at the beginning of Section 5.6.1. By doing the same

analysis on another continuous q-domain W with W ⊆ W
∗ ⊆ T , we obtain identical results

on the intersection V ∩W . We conclude that we can extend the domains of Y∞(z, t) and

Y 0(z, t) to P∗×T and C×T respectively, and the connection result (5.106) is valid on C∗×T .
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5.7 Monodromy Corresponding to Critical Behaviour at

t = 0

Theorem 5.7.1. Let (f, g) be a meromorphic solution of q-P (A1) on a continuous q-domain

T , characterised by critical behaviour near t = 0 as in Theorem 3.4.1, by analytic functions

Λ(t) and φ(t). Then the corresponding monodromy of Yamada’s Lax pair is given by

MT (f, g) = [R(z, t)] ,

with

R(z, t) = s(t)θq(qb5z, qb6z, qb7z, qb8z)Q
(z
t
, σ0(Λ(t))

)(1 0

0 c(t)tφ(t)
z

)
Q
(
z−1;σ∞(Λ(t))

)−1
,

where s(t) is any nonzero meromorphic function satisfying s(qt) = −t2/Λ(t)s(t) on C∗, the

two sets of parameters σ0(λ) and σ∞(Λ) are defined by

σ0(Λ) =

(
b−1
1 , b−1

2 , b−1
3 , b−1

4 ;−q2Λ,−qΛ

λ

)
, (5.107)

σ∞(Λ) =

(
qb5, qb6, qb7, qb8;−Λ−1,−λ

Λ

)
, (5.108)

where we suppressed the t dependence, and

c(t) = −qλ(t)− 1

λ(t)− 1
, λ(t) =

Λ(t)2

b1b2b3b4
.

Proof. Note that equation (5.106), gives the theorem for the case where Λ(t) ≡ Λ is constant.

To obtain the generic case, i.e. Λ(t) not necessarily constant, we can simply follow the proof

of (5.106), with Λ replaced by Λ(t) everywhere. One has to be a bit more careful with limits

such as (5.93) and (5.98), which now have to be taken on q-spirals, i.e. setting t = qnt0 and

letting n→∞. Similarly an equation like (5.78), becomes

lim
n→∞

Ψ∞(z, qnt0) = y0(z−1;σ∞(Λ(t0))).

The theorem now follows from (4.109).

Let us consider the setting in Theorem 5.7.1, where, for the sake of simplicity, we assume

that Λ(t) ≡ Λ is constant, with of course Λ ∈ L0(). We wish to use the explicit results in

Section 4.5. Considering the condition (4.53) for σ0(λ) and σ∞(Λ), we assume

bi
bj

/∈ qZ, (5.109)

for i, j ∈ {1, 2, 3, 4} and i, j ∈ {5, 6, 7, 8}. Furthermore it is required that Λ ∈ L∗0(b), where

L∗0(b) := L0(b) \ qZ ({−bibj : 1 ≤ i < j ≤ 4} ∪ {−bibj : 5 ≤ i < j ≤ 8}) . (5.110)



5.8. GENERIC CASE: ANALYSIS NEAR (Z, T ) = (0,∞) 171

Now to apply the results in Section 4.5 directly, i.e. without having to permute the parameters,

assumption 4.66 has to be satisfied, which translates to

|b1b2| < |Λ|, |Λ| < |b5b6|, (5.111)

for the parameter values σ0(λ) and σ∞(Λ) respectively. Without loss of generality, we may

assume that the parameters b are chosen such that

|b1| ≤ |b2| ≤ |b3| ≤ |b4|, |b5| ≥ |b6| ≥ |b7| ≥ b8|. (5.112)

In this case, equation (5.111) is trivially satisfied, as we have

|b1b2|2 ≤ |b1b2b3b4| ≤ |Λ|2 ≤ |b5b6b7b8| ≤ |b5b6|2,

where in the second and third inequality we used Λ ∈ L0().

Therefore, assuming (5.109) and (5.112) hold, and Λ ∈ L∗0(b), we find

[R(z, t)] =

[
s(t)

(
θq
(
b3
z
t

)
0

0 θq
(
b4
z
t

))
q11θq

(
−q2 Λ

b3
z
t

)
q12θq

(
−q Λ

b3λ
z
t

)
q21θq

(
−q2 Λ

b4
z
t

)
q22θq

(
−q Λ

b4λ
z
t

)(1 0

0 c(t)tφ(t)
z

)
r11θq

(
− Λ
b8λ
z
)

r12θq

(
− Λ
b7λ
z
)

r21θq

(
− Λ
b8
z
)

r22θq

(
− Λ
b7
z
) (θq(qb8z) 0

0 θq(qb7z)

)]
,

where the qij are defined in (4.74) with σ = σ0(λ), and the rij are defined by (4.70) with

σ = σ∞(Λ), for i, j ∈ {1, 2}. As an additional check, one can now verify the equations (4.110)

and (4.112) directly.

5.8 Generic Case: Analysis near (z, t) = (0,∞)

We wish to calculate the monodromy corresponding to solutions of q-P (A1) with critical

behaviour near t = ∞ as described in Theorem 3.4.2. In fact it is often easier to work with

the formal expansion in equation (3.64) and we hence do most of the analysis on a formal

level. As the analysis is very similar to the one near t = 0, we skip over some details. We

lighten the notation of the formal series solution a bit by writing the formal solution (3.64)

as f∞ = f∞(t, φ∞; Λ∞) and g∞ = g(t, φ∞; Λ∞), with

f∞ =
∞∑
n=0

F∞n t−n, g∞ =
∞∑
n=0

G∞n t
−n,

where for n ∈ N, the coefficients F∞n = F∞n (φ∞) = F∞n (φ∞; Λ∞) and G∞n = Gn(φ) =

Gn(φ; Λ) are defined by

F∞n =

n+1∑
i=−∞

F∞n,iφ
i
∞, G∞n =

n+1∑
i=−∞

G∞n,iφ
i
∞,
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with for i ≤ n+ 1, the coefficients F∞n,i = F∞n,i(Λ∞) and G∞n,i = G∞n,i(Λ∞) equal to

F∞n,i(Λ∞) = F∞,+n,i (Λ∞,b), G∞n,i(Λ∞) = G∞,+n,i (Λ∞,b).

Furthermore we recall that φ∞ satisfies φ∞ = λ∞φ∞, where λ∞ as defined in (3.63).

We rescale the Yamada Lax pair L (2.21), by setting

y(z, t, φ∞; Λ∞) = ŝ0(t, φ∞; Λ∞)ψ̂0(z, t, φ∞; Λ∞), (5.113)

where

ŝ0(qt, λ∞φ∞; Λ∞) = α̂ŝ0(t, φ∞; Λ∞),

with

α̂ = −q−1Λ∞G
∞
0 (φ∞; Λ∞)−1, (5.114)

and we denote the corresponding rescaled Lax pair for ψ̂0(z, t, φ∞; Λ∞) by L̂0.

5.8.1 Expanding about z = 0

Expanding ψ̂0(z, t, φ∞; Λ∞) in z around z = 0,

ψ̂0(z, t, φ∞; Λ∞) = ĉ0
0(t, φ∞; Λ∞) + ĉ0

1(t, φ∞; Λ∞)z + ĉ0
2(t, φ∞; Λ∞)z2 + . . . , (5.115)

where ĉ0
0 = ŝ0c0, by equation (4.99), satisfies

γ̂0
0(t, φ∞)ĉ0

0(t, φ∞) + γ̂0
1(t, φ∞)ĉ0

0(qt, λ∞φ∞) + γ̂0
2(t, φ∞)ĉ0

0(q2t, λ2
∞φ∞), (5.116)

where

(γ̂0
0(t, φ∞), γ̂0

1(t, φ∞), γ̂0
2(t, φ∞)) = (γ0(t, φ∞), α̂γ1(t, φ∞), α̂α̂γ2(t, φ∞)),

and we suppressed the Λ∞ dependence throughout.

Proposition 5.8.1. Consider equation (5.116) with f = f∞,+(t, φ∞; Λ∞) and g = g∞,+(t, φ∞; Λ∞)

as defined in equation (3.64). Then there exists, for i = 1, 2, an unique formal solution of

(5.116), of the form

ĉ0,i
0 (t, φ∞; Λ∞) =

∞∑
m=0

ĉ0,i
0,m(φ∞; Λ∞)t−m,

with for m ∈ N,

ĉ0,i
0,m(φ∞; Λ∞) =

m∑
n=−∞

ĉ0,i
0,m,n(Λ∞)φn∞,

where (
ĉ0,1

0,0,0(Λ∞)

ĉ0,1
0,0,−1(Λ∞)

)
=

(
1

0

)
,

(
ĉ0,2

0,0,0(Λ∞)

ĉ0,2
0,0,−1(Λ∞)

)
=

(
0

1

)
. (5.117)

For m ∈ N and n ∈ Z≤m the coefficients ĉ0,i
0,m,n(Λ∞) are rational functions in Λ∞ and the

parameters b1, . . . , b8, in particular these rational functions are regular at points (Λ∞,b) ∈
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C∗ × B, satisfying

1 /∈ {qk1ql2 : (k, l) ∈ N2 \ {(0, 0)}}, (5.118)

where q1 = q−1λ∞ and q2 = λ−1
∞ .

Furthermore, for fixed b ∈ B with |q| < 1, for any Λ∞ ∈ L0(b), condition (5.118) is satisfied

and this formal solution, written in terms of the variables ζ1 = t−1φ∞ and ζ2 = φ−1
∞ ,

ĉ0,i
0

(
ζ−1

1 ζ−1
2 , ζ−1

2 ; Λ∞
)

=
∞∑

m,n=0

ĉ0,i
0,m,m−n(Λ∞)ζm1 ζ

n
2 , (5.119)

converges near (ζ1, ζ2) = (0, 0).

In fact, these expansions are also analytic in Λ. That is, for any L ⊆ L0(b) open with

L ⊆ L0(b), there is an open environment Z ⊆ C2 of 0, such that the series (5.119) converge

uniformly on Z × L, defining holomorphic functions on this set in (ζ,Λ).

Proof. This is proven analogous to Proposition 5.4.1.

Remark 5.8.2. Recall that we used the formal series solution in equation (3.64), to construct

true solutions of q-P (A1) in Theorem 3.4.2, by replacing the formal variables by actual analytic

functions. Doing so we can use the formal series solutions in Proposition 5.8.1 to construct

corresponding true solutions of (5.116).

5.8.2 Expanding about t = ∞

We consider the following formal expansion of ψ̂0(z, t, φ∞; Λ∞) in t at t =∞,

ψ̂0(z, t, φ∞; Λ∞) = d̂0
0(z, φ∞; Λ∞) + d̂0

1(z, φ∞; Λ∞)t−1 + d̂0
2(z, φ∞; Λ∞)t−2 + . . . ,

which, upon substitution in L̂0
2 and comparing leading order terms, gives

d̂0
0(z, φ∞; Λ∞)+(qzG∞0 − 1) d̂0

0(qz, φ∞; Λ∞)−qΛ∞z(F∞0 −qz)d̂0
0(qz, λ∞φ∞; Λ∞) = 0. (5.120)

Considering a solution of equation (5.120), which takes the form

d̂0
0(z, φ∞; Λ∞) = d̂0

0,0(z; Λ∞) + d̂0
0,−1(z; Λ∞)φ−1

∞ ,

a calculation shows that, equation (5.120) is equivalent to

qd̂0
0,0(z/q) +

[
−(1 + q) + q(b5 + b6 + b7 + b8)z +

(
qΛ∞ + q2 Λ∞

λ∞

)
z2

]
d̂0

0,0(z)

+ (1− b5qz)(1− b6qz)(1− b7qz)(1− b8qz)d̂0
0,0(qz) = 0, (5.121)

together with

d̂0
0,−1(z) = − λ∞

Λ∞(λ∞ − 1)z

[
d̂0

0,0(q−1z) +
(
Λ∞z

2 + (G∞0,0 − Λ∞F
∞
0,0)z − 1)

)
d̂0

0,0(z)
]
,
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where we suppressed Λ∞ dependence of d̂0
0,0(z; Λ∞) and d̂0

0,−1(z; Λ∞). We identify (5.121) as

the degree two model equation (4.51), via the scaling

d̂0
0,0(z; Λ∞) = s∗(z)y(z; Λ∞), s∗(z) = (b5qz, b6qz, b7qz, b8qz; q)∞ , (5.122)

with parameter values σ = σ̂0(Λ∞), defined in (5.153), noting that Fuchs’ equation (4.52)

is satisfied. For any l1(Λ∞) and l2(Λ∞), there exists an unique formal power series solution

d̂0
0,0(z; Λ∞) of (5.121) with

d̂0
0,0(z; Λ∞) = l1(Λ∞) + l1(Λ∞)z + . . . . (5.123)

Now, by Proposition 5.8.1, the general formal solution of (5.116), takes the form

ĉ0
0(t, φ∞; Λ∞) = k1(Λ∞)ĉ0,1

0 (t, φ∞; Λ∞) + k2(Λ∞)ĉ0,2
0 (t, φ∞; Λ∞), (5.124)

with k1(Λ∞) and k2(Λ∞) free.

Analogously to equations (5.71), the free constants in (5.123) and (5.124), are related by

k1(Λ∞) = l1(Λ∞), (5.125a)

k2(Λ∞) =
λ∞

qΛ∞(λ∞ − 1)

(
q
(
Λ∞F

∞
0,0(Λ∞)−G∞0,0(Λ∞)

)
l1(Λ∞) + (q − 1)l2(Λ∞)

)
. (5.125b)

5.8.3 Main Existence Theorem near (z, t) = (0,∞)

Theorem 5.8.3. Consider the Lax pair L̂0, obtained by scaling L (2.21) by (5.113), with

f = f∞,+(t, φ∞; Λ∞) and g = g∞,+(t, φ∞; Λ∞) as defined in equation (3.64). Then, for

i ∈ {1, 2}, there exists an unique formal series solution of the Lax pair L̂0, of the form

ψ̂0
i (z, t, φ∞; Λ∞) =

∞∑
k=0

ĉ0,i
k (t, φ∞; Λ∞)zk,

where, for k ∈ N,

ĉ0,i
k (t, φ∞; Λ∞) =

∞∑
m=0

ĉ0,i
k,m(φ∞; Λ∞)t−m,

with, for m ∈ N,

ĉ0,i
k,m(φ∞; Λ∞) =

m∑
n=−∞

ĉ0,i
k,m,n(Λ∞)φn∞,

and initial conditions (5.117).

We note that the notation here coincides with that in Proposition 5.8.1. For k,m ∈ N and n ∈
Z≤m, the coefficients ĉ0,i

k,m,n(Λ∞) are rational functions in Λ∞ and the parameters b1, . . . , b8,

in particular these rational functions are regular at points (Λ∞,b) ∈ C∗×B, satisfying (5.118).

Furthermore, for fixed b ∈ B with |q| < 1, for any Λ∞ ∈ L0(b), condition (3.46) is satisfied
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and this formal solution, written in terms of the variables z, ζ1 = t−1φ∞ and ζ2 = φ−1
∞ ,

ψ̂0
i

(
z, ζ−1

1 ζ−1
2 , ζ−1

2 ; Λ
)

=
∞∑

k,m,n=0

ĉ0,i
k,m,m−n(Λ∞)zkζm1 ζ

n
2 , (5.126)

converges near (z, ζ1, ζ2) = (0, 0, 0).

In fact, this expansion also depends holomorphically on Λ∞. That is, for any L ⊆ L0(b) open

with L ⊆ L0(b), there is an open environment Z ⊆ C3 of (0, 0, 0), such that the series (5.126)

converge uniformly on Z × L, defining holomorphic functions on this set in (z, ζ1, ζ2,Λ∞).

Proof. We prove this analogous to Theorem 5.4.3.

Remark 5.8.4. Recall that we used the formal series solution in equation (3.64), to construct

true solutions of q-P (A1) in Theorem 3.4.2, by replacing the formal variables by actual analytic

functions. Doing so we can use the formal series solutions in Theorem 5.8.3 to construct

corresponding true solutions of the Lax pair L̂0.

5.8.4 Transition from (z, t) = (0,∞) to (z, t) = (∞,∞)

Note that the two formal series solutions ψ̂0
1(z, t, φ∞; Λ∞) and ψ̂0

2(z, t, φ∞; Λ∞), defined in

Theorem 5.8.3, form a basis of formal solutions of L̂0. It is more convenient for us to work

with a different basis of solutions, given by

Ψ̂0
1(z, t, φ∞; Λ∞) := 1 · ψ̂0

1(z, t, φ∞; Λ∞) + k∗2(Λ∞)ψ̂0
2(z, t, φ∞; Λ∞), (5.127a)

Ψ̂0
2(z, t, φ∞; Λ∞) := 0 · ψ̂0

1(z, t, φ∞; Λ∞) +
(q − 1)

qΛ∞(1− 1/λ∞))
ψ0

2(z, t, φ∞; Λ∞). (5.127b)

where k∗2(Λ∞) is defined by

k∗2(Λ∞) =
λ∞

qΛ∞(λ∞ − 1)

(
q
(
Λ∞F

∞
0,0(Λ∞)−G∞0,0(Λ∞)

)
+ (q − 1)u

)
,

where, recalling the definition of s∗(z) in (5.122), the constant u ∈ C is defined uniquely by

s∗(z) = 1 + uz +O
(
z2
)
, (z → 0)

or explicitly

u =
q

q − 1
(b5 + b6 + b7 + b8) .

By equations (5.125), these two solutions correspond respectively to (l1(Λ∞), l2(Λ∞)) = (1, u)

and (l1(Λ∞), l2(Λ∞)) = (0, 1) in (5.47). The reason for this choice of basis, is that, writing

for i = 1, 2,

Ψ̂0
i (z, t, φ∞; Λ∞) =

∞∑
k=0

k∑
m=−∞

D̂0,i
k,m(z; Λ∞)tkφm∞,

we have

D̂0
0,0(z; Λ∞) := (D̂0,1

0,0(z; Λ∞), D̂0,2
0,0(z; Λ∞)) = s∗(z)y

0(z; σ̂0(Λ∞)).
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We define

D̂0,∞
0,0 (z; Λ∞) =

(
1

b5z
,

1

b6z
,

1

b7z
,

1

b8z
; q

)−1

ψ∞(z; σ̂0(Λ∞)),

which leads to the connection result

D̂0,∞
0,0 (z; Λ∞) = D̂0

0,0(z; Λ∞)P̂ 0(z; Λ∞), (5.128)

where

P̂ 0(z; Λ∞) := θq(qb5z, qb6z, qb7z, qb8z)
−1Q(z; σ̂0(Λ∞)).

We symbolically define

Ψ̂0,∞(z, t, φ∞; Λ∞) := Ψ̂0(z, t, φ∞; Λ∞) · P̂ 0(z; Λ∞). (5.129)

From (4.46), we obtain

P̂ 0(qz; Λ∞) = P̂ 0(z; Λ∞) ·

(
−q3 Λ∞

λ∞
z2 0

0 −q2Λ∞z
2

)
,

and hence, for i = 1, 2, a symbolic computation, shows that the component Ψ̂0,∞
i (z, t, φ∞; Λ∞),

defines a solution of the Lax pair L̂0,∞,i, given by

L̂0,∞,i
1 : q2εiz

2u(z, t)ψ̂0,∞
i (qz, t) + v(z, t)ψ̂0,∞

i (z, t) +
1

εiz2
w(z, t)Ψ̂0,∞

i (z/q, t) = 0, (5.130a)

L̂0,∞,i
2 : α̂h0(z, t)Ψ̂0,∞

i (z, qt) + h1(z, t)Ψ̂0,∞
i (z, t) +

1

εiz2
h2(z, t)Ψ̂0,∞

i (z/q, t) = 0, (5.130b)

where ε1 = −qΛ∞/λ∞, ε2 = −Λ∞ and α̂ as defined in (5.114).

5.9 Generic Case: Analysis near (ξ, t) = (∞,∞)

we rescale the Lax pair L̃ (4.82), by setting

ỹ(z, t, φ∞; Λ∞) = ŝ∞(t, φ∞,Λ∞)ψ̂∞(ξ, t, φ∞; Λ∞), ξ =
z

t
, (5.131)

where

ŝ∞(qt, λ∞φ∞,Λ∞) = β̂t2ŝ∞(t, φ∞,Λ∞),

with

β := q−1G∞0 (φ∞; Λ∞)−1, (5.132)

where we invite the reader to choose ŝ∞(t, φ∞,Λ∞), meromorphic on C∗ × C∗ × C∗, at their

pleasure. We denote the rescaled Lax pair, which ψ∞(z, t, φ) satisfies, by L̂∞.
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5.9.1 Expanding about ξ = ∞

We formally expand ψ̂∞(ξ, t, φ∞; Λ∞) in ξ about ξ =∞,

ψ̂∞(ξ, t, φ∞; Λ∞) = ĉ∞0 (t, φ∞; Λ∞) + ĉ∞1 (t, φ∞; Λ∞)ξ−1 + ĉ∞2 (t, φ∞; Λ∞)ξ−2 + . . . ,

which, using equation (4.105), leads to

γ̂∞0 (t, φ∞)ĉ∞0 (t, φ∞) + γ̂∞1 (t, φ∞)ĉ∞0 (qt, λ∞φ∞) + γ̂∞2 (t, φ∞)ĉ∞0 (q2t, λ2
∞φ∞), (5.133)

where

(γ̂∞0 (t, φ∞), γ̂∞1 (t, φ∞), γ̂∞2 (t, φ∞)) = (γ̃0(t, φ∞), β̂t2γ̃1(t, φ∞), q2β̂β̂t4γ̃2(t, φ∞)),

and we suppressed the Λ∞ dependence throughout.

Proposition 5.9.1. Consider equation (5.133) with f = f∞,+(t, φ∞; Λ∞) and g = g∞,+(t, φ∞; Λ∞)

as defined in equation (3.64). Then there exists, for i = 1, 2, an unique formal solution of

(5.133), of the form

ĉ∞,i0 (t, φ∞; Λ∞) =
∞∑
m=0

ĉ0,i
∞,m(φ∞; Λ∞)t−m,

with for m ∈ N,

ĉ0,i
∞,m(φ∞; Λ∞) =

m∑
n=−∞

ĉ0,i
∞,m,n(Λ∞)φn∞,

where (
ĉ∞,10,0,0(Λ∞)

ĉ∞,10,1,1(Λ∞)

)
=

(
1

0

)
,

(
ĉ∞,20,0,0(Λ∞)

ĉ∞,20,1,1(Λ∞)

)
=

(
0

1

)
. (5.134)

For m ∈ N and n ∈ Z≤m the coefficients ĉ0,i
∞,m,n(Λ∞) are rational functions in Λ∞ and the

parameters b1, . . . , b8, in particular these rational functions are regular at points (Λ∞,b) ∈
C∗ × B, satisfying (5.118).

Furthermore, for fixed b ∈ B with |q| < 1, for any Λ∞ ∈ L0(b), condition (5.118) is satisfied

and this formal solution, written in terms of the variables ζ1 = t−1φ∞ and ζ2 = φ−1
∞ ,

ĉ∞,i0

(
ζ−1

1 ζ−1
2 , ζ−1

2 ; Λ∞
)

=
∞∑

m,n=0

ĉ0,i
∞,m,m−n(Λ∞)ζm1 ζ

n
2 , (5.135)

converges near (ζ1, ζ2) = (0, 0).

In fact, these expansions are also analytic in Λ. That is, for any L ⊆ L0(b) open with

L ⊆ L0(b), there is an open environment Z ⊆ C2 of 0, such that the series (5.135) converge

uniformly on Z × L, defining holomorphic functions on this set in (ζ,Λ).

Proof. We prove this analogous to Proposition 5.4.1.

Remark 5.9.2. Recall that we used the formal series solution in equation (3.64), to construct

true solutions of q-P (A1) in Theorem 3.4.2, by replacing the formal variables by actual analytic
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functions. Doing so we can use the formal series solutions in Proposition 5.9.1 to construct

corresponding true solutions of (5.133).

5.9.2 Expanding about t = ∞

We consider the following formal expansion of ψ̂∞(ξ, t, φ∞; Λ∞) in t at t =∞,

ψ̂∞(ξ, t, φ∞; Λ∞) = d̂∞0 (ξ, φ∞; Λ∞) + d̂∞1 (ξ, φ∞; Λ∞)t−1 + d̂∞2 (ξ, φ∞; Λ∞)t−2 + . . . ,

which, upon substitution in L̂∞2 and comparing leading order terms, gives

d̂∞0 (ξ, λ∞φ∞; Λ∞) = d̂∞0 (ξ, φ∞; Λ∞). (5.136)

We hence set d̂∞0 (ξ, φ∞; Λ∞) = d̂∞0,0(ξ; Λ∞), which, by considering L̂∞1 , leads to

qd̂∞0,0(qξ; Λ∞)+

[
−(1 + q) + (b−1

1 + b−1
2 + b−1

3 + b−1
4 )ξ−1 +

(
1

qΛ∞
+

λ∞
qΛ∞

)
ξ−2

]
d̂∞0,0(ξ; Λ∞)

+

(
1− 1

b1ξ

)(
1− 1

b2ξ

)(
1− 1

b3ξ

)(
1− 1

b4ξ

)
d̂∞0,0(q−1ξ; Λ∞) = 0, (5.137)

which we identify with the degree two model equation (4.51), via the rescaling

d̂∞0,0(ξ; Λ∞) = s�(ξ)y(ξ−1; Λ∞), s�(ξ) =
(
b−1
1 ξ−1, b−1

2 ξ−1, b−1
3 ξ−1, b−1

4 ξ−1; q
)
, (5.138)

with the parameter values σ = σ̂∞(Λ∞), defined in (5.154), where we note that Fuchs’

equation (4.52) is indeed satisfied.

For any l1(Λ∞) and l2(Λ∞), there exists an unique formal power series solution d̂∞0,0(ξ; Λ∞)

of (5.137) with

d̂∞0,0(ξ; Λ∞) = l1(Λ∞) + l2(Λ∞)ξ−1 + . . . . (5.139)

Now, by Proposition 5.9.1, the general formal solution of (5.133), takes the form

ĉ∞0 (t, φ∞; Λ∞) = k1(Λ∞)ĉ∞,10 (t, φ∞; Λ∞) + k2(Λ∞)ĉ∞,20 (t, φ∞; Λ∞), (5.140)

with k1(Λ∞) and k2(Λ∞) free.

Analogously to equations (5.71), the free constants in (5.139) and (5.140), are related by

k1(Λ∞) = l1(Λ∞), (5.141a)

k2(Λ∞) =
q

q − λ∞

(
Λ∞

G∞0,1(Λ∞)
l1(Λ∞) + (q − 1)G∞0,1(Λ∞)l2(Λ∞)

)
. (5.141b)

5.9.3 Main Existence Theorem near (z, t) = (∞,∞)

Theorem 5.9.3. Consider the Lax pair L̂∞, obtained by scaling L̃ (4.82) by (5.131), with

f = f∞,+(t, φ∞; Λ∞) and g = g∞,+(t, φ∞; Λ∞) as defined in equation (3.64). Then, for
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i ∈ {1, 2}, there exists an unique formal series solution of the Lax pair L̂∞, of the form

ψ̂∞i (ξ, t, φ∞; Λ∞) =
∞∑
k=0

ĉ∞,ik (t, φ∞; Λ∞)ξ−k,

where, for k ∈ N,

ĉ∞,ik (t, φ∞; Λ∞) =

∞∑
m=0

ĉ∞,ik,m(φ∞; Λ∞)t−m,

with, for m ∈ N,

ĉ∞,ik,m(φ∞; Λ∞) =

m∑
n=−∞

ĉ∞,ik,m,n(Λ∞)φn∞,

and initial conditions (5.134).

We note that the notation here coincides with that in Proposition 5.9.1. For k,m ∈ N and n ∈
Z≤m, the coefficients ĉ∞,ik,m,n(Λ∞) are rational functions in Λ∞ and the parameters b1, . . . , b8,

in particular these rational functions are regular at points (Λ∞,b) ∈ C∗×B, satisfying (5.118).

Furthermore, for fixed b ∈ B with |q| < 1, for any Λ∞ ∈ L0(b), condition (3.46) is satisfied

and this formal solution, written in terms of the variables ξ, ζ1 = t−1φ∞ and ζ2 = φ−1
∞ ,

ψ̂∞,ii

(
ξ, ζ−1

1 ζ−1
2 , ζ−1

2 ; Λ
)

=
∞∑

k,m,n=0

ĉ∞,ik,m,m−n(Λ∞)ξ−kζm1 ζ
n
2 , (5.142)

converges near (ξ, ζ1, ζ2) = (∞, 0, 0).

In fact, this expansion also depends holomorphically on Λ∞. That is, for any L ⊆ L0(b)

open with L ⊆ L0(b), there is an open environment Z ⊆ P∗ × C2 of (∞, 0, 0), such that the

series (5.142) converge uniformly on Z × L, defining holomorphic functions on this set in

(ξ, ζ1, ζ2,Λ∞).

Proof. We prove this analogous to Theorem 5.4.3.

Remark 5.9.4. Recall that we used the formal series solution in equation (3.64), to construct

true solutions of q-P (A1) in Theorem 3.4.2, by replacing the formal variables by actual analytic

functions. Doing so we can use the formal series solutions in Theorem 5.9.3 to construct

corresponding true solutions of the Lax pair L̂∞.

5.9.4 Transition from (ξ, t) = (∞,∞) to (ξ, t) = (0,∞)

Note that the two formal series solutions ψ̂∞1 (ξ, t, φ∞; Λ∞) and ψ̂∞2 (ξ, t, φ∞; Λ∞), defined in

Theorem 5.9.3, form a basis of formal solutions of L̂∞. It is more convenient for us to work

with a different basis of solutions, given by

Ψ̂∞1 (ξ, t, φ∞; Λ∞) := 1 · ψ̂∞1 (ξ, t, φ∞; Λ∞) + k∗2(Λ∞)ψ̂∞2 (ξ, t, φ∞; Λ∞), (5.143a)

Ψ̂∞2 (ξ, t, φ∞; Λ∞) := 0 · ψ̂∞1 (ξ, t, φ∞; Λ∞) +
q(q − 1)

q − λ∞
G∞0,1(Λ∞)ψ∞2 (ξ, t, φ∞; Λ∞). (5.143b)
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where k∗2(Λ∞) is defined by

k∗2(Λ∞) =
q

q − λ∞

(
Λ∞

G∞0,1(Λ∞)
+ (q − 1)G∞0,1(Λ∞)v

)
,

where, recalling the definition in (5.138) of s�(ξ), the constant v ∈ C is defined uniquely by

s�(ξ) = 1 + vξ−1 +O
(
ξ−2
)
, (ξ →∞)

and explicitly given by

v =
1

q − 1

(
b−1
1 + b−1

2 + b−1
3 + b−1

4

)
.

By equations (5.141), these two solutions correspond respectively to (l1(Λ∞), l2(Λ∞)) = (1, v)

and (l1(Λ∞), l2(Λ∞)) = (0, 1) in (5.139). The reason for this choice of basis, is that, writing

for i = 1, 2,

Ψ̂∞i (ξ, t, φ; Λ) =
∞∑
k=0

k∑
m=−∞

D̂∞,ik,m(ξ; Λ∞)tkφm∞,

we have

D̂∞0,0(ξ; Λ∞) := (D̂∞,10,0 (ξ; Λ∞), D̂∞,20,0 (ξ; Λ∞)) = s�(ξ)y
0(ξ−1; σ̂∞(Λ∞)).

We define

D̂∞,00,0 (ξ; Λ∞) = (qb1ξ, qb2ξ, qb3ξ, qb4ξ; q)
−1 ψ∞(ξ−1; σ̂∞(Λ∞)),

which leads to the connection result

D̂∞,00,0 (ξ; Λ∞) = D̂∞0,0(ξ; Λ∞)P̂∞(ξ; Λ∞)−1, (5.144)

where

P̂∞(ξ; Λ∞) := θq(qb1ξ, qb2ξ, qb3ξ, qb4ξ)Q(ξ−1; σ̂∞(Λ∞))−1.

We symbolically define

Ψ̂∞,0(ξ, t, φ∞; Λ∞) := Ψ̂∞(ξ, t, φ∞; Λ∞) · P̂∞(ξ; Λ∞)−1. (5.145)

From (4.46), we obtain

P̂∞(qξ; Λ∞) =

(
− λ∞
q2Λ∞

ξ−2 0

0 − 1
q2Λ∞

ξ−2

)
· P̂∞(ξ; Λ∞),
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and hence, for i = 1, 2, a symbolic computation, shows that the component Ψ̂∞,0i (ξ, t, φ∞; Λ∞),

defines a solution of the Lax pair L̂∞,0,i, given by

L̂∞,0,i1 : ε̃1z
−2u(ξt, t)ψ0

i (qξ, t) + v(ξt, t)ψ0
i (ξ, t) +

1

q2ε̃i
z2w(ξt, t)ψ0

i (ξ/q, t) = 0, (5.146a)

L̂∞,0,i2 :
β̂

q2ε̃i
h0(ξt, t)ψ0

i (ξ/q, qt) + h1(ξt, t)ψ0
i (ξ, t) +

1

q2ε̃i
z2h2(ξt, t)ψ0

i (ξ/q, t) = 0. (5.146b)

where ε̃1 = − λ∞
q2Λ∞

, ε̃2 = − 1
q2Λ∞

and β̂ as defined in (5.132).

5.10 Generic Case: Matching near t = ∞

As explained in Section 5.6, the matching procedure is only sensible on the level of true

solutions, i.e. with Λ∞ = Λ∞(t) and φ∞ = φ∞(t) analytic functions. So let (f, g) be

a meromorphic solution of q-P (A1) on a continuous q-domain T , characterised by critical

behaviour near t =∞ as in Theorem 3.4.2, by analytic functions Λ∞(t) and φ∞(t).

We fix a continuous q-domain V ⊆ V
∗ ⊆ T and consider the Lax pair L̂0, obtained by

scaling L (2.21) by (5.113). Then Theorem 5.8.3, shows us that

ψ̂0(z, t) :=
(
ψ̂0

1(z, t, φ∞(t); Λ∞(t)), ψ̂0
2(z, t, φ∞(t); Λ∞(t))

)
,

defines a fundamental solution of L̂0, for (z, t) close to (0,∞) in C× V , which has an unique

meromorphic continuation to C × V . We use the change of basis (5.127), to define the

corresponding fundamental solution of L̂0,

Ψ̂0(z, t) := (Ψ̂0
1(z, t, φ∞(t); Λ∞(t)), Ψ̂0

2(z, t, φ∞(t); Λ∞(t))).

Following (5.129), we define

Ψ̂0,∞(z, t) := Ψ̂0(z, t) · P̂ 0(z; Λ∞(t)). (5.147)

Then we know that the component Ψ̂0,∞
i (z, t), defines a solution of the Lax pair L̂0,∞,i (5.130),

where ε1 = −qΛ∞(t)/λ∞(t), ε2 = −Λ∞(t) and α̂ as defined in (5.114).

Next we consider the Lax pair L̂∞, obtained by scaling L̃ (4.82) by (5.131). Then Theorem

5.9.3, shows us that

ψ̂∞(ξ, t) :=
(
ψ̂∞1 (ξ, t, φ∞(t); Λ∞(t)), ψ̂∞2 (ξ, t, φ∞(t); Λ∞(t))

)
,

defines a fundamental solution of L̂∞, for (ξ, t) close to (∞,∞) in P∗ × V , which has an

unique meromorphic continuation to P∗ × V . We use the change of basis (5.143), to define

the corresponding fundamental solution of L̂∞,

Ψ̂∞(ξ, t) :=
(

Ψ̂∞1 (ξ, t, φ∞(t); Λ∞(t)), Ψ̂∞2 (ξ, t, φ∞(t); Λ∞(t))
)
.
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Following (5.145), we define

Ψ̂∞,0(ξ, t) := Ψ̂∞(ξ, t) · P̂∞(ξ; Λ∞(t))−1. (5.148)

Then we know that the component Ψ̂∞,0i (ξ, t), defines a solution of the Lax pair L̂∞,0,i (5.146),

where ε̃1 = − λ∞(t)
q2Λ∞(t)

, ε̃2 = − 1
q2Λ∞(t)

and β̂ as defined in (5.132).

We now wish to relate Ψ̂0,∞
1 (z, t) and Ψ̂∞,01 (ξ, t), and we wish to relate Ψ̂0,∞

2 (z, t) and

Ψ̂∞,02 (ξ, t). Let us make the crucial observation that Ψ̂0,∞
2 (z, t) and Ψ̂∞,02 (ξ, t) satisfy the

same Lax pair. That is, the Lax pairs L̂0,∞,2 and L̂∞,0,2 are identical under the formal

identification

ψ̂0,∞
2 (z, t) = ψ̂∞,02 (ξ, t), ξ =

z

t
.

Similarly, the Lax pairs L̂0,∞,1 and L̂∞,0,1 are identical under the formal identification

ψ̂0,∞
1 (z, t) =

z

φ∞
ψ̂∞,01 (ξ, t), ξ =

z

t
.

Analogous to Proposition 5.6.1, we have the following result.

Proposition 5.10.1. The following identities hold true,

Ψ̂0,∞
1 (z, t) =

z

ĉ(t)φ∞(t)
Ψ̂∞,01 (ξ, t), Ψ̂0,∞

2 (z, t) = Ψ̂∞,02 (ξ, t),

where the q-constant ĉ(t) is defined in (5.155).

Proof. We proof this analogous to Propostion 5.6.1.

By putting together Proposition 5.10.1 and equations (5.147) and (5.148), we find

Ψ̂∞
(z
t
, t
)

= Ψ̂0 (z, t)
θq
(
qb1

z
t , qb2

z
t , qb3

z
t , qb4

z
t

)
θq(qb5z, qb6z, qb7z, qb8z)

Q (z, σ̂0(Λ∞(t)))

·

(
ĉ0(t)φ∞(t)

z 0

0 1

)
Q

(
t

z
; σ̂∞(Λ∞(t))

)−1

. (5.149)

By (5.113), we know that

Y 0(z, t) = ŝ0(t)Ψ̂0 (z, t) , s0(t) := s0(t, φ∞(t); Λ∞(t)), (5.150)

defines a fundamental solution of Yamada’s Lax pair L (2.21), which is meromorphic on C×V .

We note that ŝ0(t) satisfies

ŝ0(qt) = −q−1Λ∞G
∞
0 (φ∞(t); Λ∞(t))−1ŝ0(t).

Similarly, by equation (5.131), we know that

Ŷ∞(z, t) := ŝ∞(t)Ψ∞(z, t), ŝ∞(t) := ŝ∞(t, φ∞(t); Λ∞(t)), (5.151)
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defines a fundamental solution of Yamada’s Lax pair L̃ (5.6), which is meromorphic on P∗×V .

We note that ŝ∞(t) satisfies

ŝ∞(qt) = q−1G∞0 (φ∞(t); Λ∞(t))−1t2ŝ∞(t).

Combining equations (5.149), (5.150) and (5.151), we obtain

Ŷ∞(z, t) = Ŷ 0(z, t)P̂(z, t), (5.152)

with

P̂(z, t) = ŝ(t)
θq
(
qb1

z
t , qb2

z
t , qb3

z
t , qb4

z
t

)
θq(qb5z, qb6z, qb7z, qb8z)

Q (z, σ̂0(Λ∞(t)))

(
ĉ0(t)φ∞(t)

z 0

0 1

)
Q

(
t

z
; σ̂∞(Λ∞(t))

)−1

,

where ŝ(t) is the meromorphic function on T , satisfying ŝ(qt) = −t2/Λ∞(t)ŝ(t), defined by

ŝ(t) =
ŝ∞(t)

ŝ0(t)
.

This is consistent with the notation in Section 4.9, where

c1
0(t) := ŝ0(t)Ψ̂0

1(0, t), c2
0(t) := ŝ0(t)Ψ̂0

2(0, t),

c̃1
0(t) := ŝ∞(t)Ψ̂∞1 (∞, t), c̃2

0(t) := ŝ∞(t)Ψ̂∞2 (∞, t).

Recall that the functions Ŷ 0(z, t) and Ŷ∞(z, t) are defined on C×V and P∗×V respectively,

and the connection result (5.152) is valid on C∗ × V . Now recall that we fixed V to be any

continuous q-domain with V ⊆ V
∗ ⊆ T , at the beginning this section. By doing the same

analysis on another continuous q-domain W with W ⊆W ∗ ⊆ T , we obtain identical results on

the intersection V ∩W . We conclude that we can extend the domains of Ŷ 0(z, t) and Ŷ∞(z, t)

to C× T and P∗ × T respectively, and the connection result (5.152) is valid on C∗ × T .

5.11 Monodromy Corresponding to Critical Behaviour at

t = ∞

Theorem 5.11.1. Let (f, g) be a meromorphic solution of q-P (A1) on a continuous q-domain

T , characterised by critical behaviour near t =∞ as in Theorem 3.4.2, by analytic functions

Λ∞(t) and φ∞(t). Then the corresponding monodromy of Yamada’s Lax pair is given by

MT (f, g) = [R̂(z, t)],

with

R̂(z, t) = ŝ(t)θq

(
qb1

z

t
, qb2

z

t
, qb3

z

t
, qb4

z

t

)
Q (z, σ̂0(Λ∞(t)))

(
ĉ(t)φ∞(t)

z 0

0 1

)
Q

(
t

z
; σ̂∞(Λ∞(t))

)−1

,
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where ŝ(t) any nonzero meromorphic function satisfying ŝ(qt) = −t2/Λ∞(t)ŝ(t) on C∗, the

two sets of parameters σ̂0(λ) and σ̂∞(Λ) are defined by

σ̂0(Λ∞) =

(
b−1
7 , b−1

8 , b−1
5 , b−1

6 ;−qΛ∞,−q2 Λ∞
λ∞

)
, (5.153)

σ̂∞(Λ∞) =

(
qb3, qb4, qb1, qb2;− 1

qΛ∞
,− λ∞

qΛ∞

)
, (5.154)

and

ĉ(t) = −λ∞(t)− 1

λ∞(t)− q
, λ∞(t) =

Λ∞(t)2

b5b6b7b8
. (5.155)

Proof. This follows directly from the connection result 5.152.

Let us consider the setting in Theorem 5.11.1, where, for the sake of simplicity, we assume

that Λ∞(t) ≡ Λ∞ is constant, with of course Λ∞ ∈ L0(b). As in Section 5.7, we use the

explicit results in Section 4.5. Considering the condition (4.53) for σ̂0(λ) and σ̂∞(Λ), we

assume (5.109) and Λ∞ ∈ L∗0(b), where we recall the definition of L∗0(b) in (5.110). Now

to apply the results in Section 4.5 directly, i.e. without having to permute the parameters,

assumption 4.66 has to be satisfied, which translates to

|qb7b8| < |Λ∞|, |Λ∞| < |q−1b3b4|, (5.156)

for the parameter values σ̂0(Λ∞) and σ̂∞(Λ∞) respectively. Without loss of generality, we

again assume (5.112), as equation (5.156) is now trivially satisfied, indeed

|qb7b8|2 < |qb5b6b7b8| = |b1b2b3b4| < |Λ∞|2 < |b5b6b7b8| = |q−1b1b2b3b4| < |q−1b3b4|2.

Therefore, assuming (5.109) and (5.112) hold, and Λ∞ ∈ L∗0(b), we find

[R̂(z, t)] =

[
ŝ(t)

(
θq (b5z) 0

0 θq (b6z)

)q11θq

(
−qΛ∞

b5
z
)

q12θq

(
−q2 Λ∞

b5λ∞
z
)

q21θq

(
−qΛ∞

b6
z
)

q22θq

(
−q2 Λ∞

b6λ∞
z
)( ĉ(t)φ∞(t)

z 0

0 1

)
r11θq

(
−q Λ∞

b2λ∞
z
t

)
r12θq

(
−q Λ∞

b1λ∞
z
t

)
r21θq

(
−qΛ∞

b2
z
t

)
r22θq

(
−qΛ∞

b1
z
t

) (θq (qb2 zt ) 0

0 θq
(
qb1

z
t

))],
where the qij are defined in (4.74) with σ = σ̂0(λ), and the rij are defined by (4.70) with

σ = σ̂∞(Λ), for i, j ∈ {1, 2}. As an additional check, one can now verify the equations (4.110)

and (4.112) directly.

5.12 Parametric Connection Formulae

We have determined the monodromy of Yamada’s Lax pair corresponding to several of the

critical behaviours near t = 0 and t = ∞, including the generic ones. Now let us combine

these results. Take some meromorphic q-P (A1) transcendent (f, g), on a continuous q-domain

T , and assume its critical behaviour near t = 0 is as specified in Theorem 3.4.1, for some
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particular integration constants

{φ(t),Λ(t)}. (5.157)

Similarly let us assume its critical behaviour near t =∞ is as specified in Theorem 3.4.2, for

some particular integration constants

{φ∞(t),Λ∞(t)}. (5.158)

Then we conclude from Theorems 5.7.1 and 5.11.1, that there exist invertible meromorphic

q-periodic matrices E(t) and F (t) on T , and a nonzero meromorphic function s∗(t) on T ,

such that the sets of integration constants (5.157) and (5.158) are related by

s∗(t)θq(qb5z, qb6z, qb7z, qb8z)E(t)Q
(z
t
, σ0(Λ(t))

)(1 0

0 c(t)tφ(t)
z

)
Q
(
z−1;σ∞(Λ(t))

)−1
=

θq

(
qb1

z

t
, qb2

z

t
, qb3

z

t
, qb4

z

t

)
Q (z, σ̂0(Λ∞(t)))

(
ĉ(t)φ∞(t)

z 0

0 1

)
Q

(
t

z
; σ̂∞(Λ∞(t))

)−1

F (t),

where s∗(t) satisfies s∗(qt) = Λ∞(t)/Λ(t)s∗(t).

The main objective now is to use this equality to derive closed connection formulae 2.20.

However this does not seem to be an easy task. At the heart of the problem lies that the

space MT is seemingly complicated. For any t0 ∈ T , we can easily justify localising the

relation at t = t0, giving

E0R0(z) = R̂0(z)F0, (5.159)

where

R0(z) = θq(qb5z, qb6z, qb7z, qb8z)Q

(
z

t0
, σ0(Λ0

0)

)(
1 0

0
c0t0φ00
z

)
Q
(
z−1;σ∞(Λ0

0)
)−1

,

R̂0(z) = θq

(
qb1

z

t0
, qb2

z

t0
, qb3

z

t0
, qb4

z

t0

)
Q
(
z, σ̂0(Λ0

∞)
)( ĉ(t0)φ0∞

z 0

0 1

)
Q

(
t0
z

; σ̂∞(Λ0
∞)

)−1

,

with E0, F0 ∈ GL2(C), and we denoted

φ0
0 = φ(t0), Λ0

0 = Λ(t0), c0 = c(t0),

φ0
∞ = φ∞(t0), Λ0

∞ = Λ∞(t0), ĉ0 = ĉ(t0).

Note that equation (5.159) is now an equality between elements of S(t0), using the notation

in (4.10). By heuristic counting of dimensions in Section 4.10, we know that M(t0) should

be a two-dimensional space. However finding appropriate coordinates on M(t0) seems quite

nontrivial. It is natural to associate to any R(z) ∈ S(t0), the object

IR(w1, w2) := Tr
[
R(w1)R(w2)−1

]
,
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as this association is constant on orbits [R(z)] ∈ M(t0). In particular, considering (5.159),

we have

IR0(w1, w2) = I
R̂0

(w1, w2).

By evaluating both sides at particular points we might be able to find useful relations between

the integration constants. We leave this issue open for future research.
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Conclusion

In this thesis we made effective the global asymptotic analysis of the q-difference Painlevé

equation q-P (A1), by combining a local asymptotic analysis of its solutions, with an isomon-

odromic deformation method applied to a Lax pair derived by Yamada [85]. The final result

is a conjecturally complete description of critical behaviours of solutions near the critical

point t = 0 and the critical point t = ∞, supplemented with explicit parametric connection

formulae, relating the critical behaviours near the two different critical points indirectly.

The local asymptotic analysis consisted roughly of three steps. Firstly we studied the

leading order behaviour of q-P (A1) transcendents near t = 0, by the method of dominant

balance, and found that it is characterised by an autonomous system. We identified this

autonomous system as a QRT mapping, which allowed us to parametrise its generic solution

in terms of two integration q-constants. The second step involved finding the full formal

asymptotic expansion of the solution of q-P (A1), corresponding to the generic solution of the

autonomous system. The third step consisted of proving that the formal asymptotic expansion

always converges for appropriate choices of the two integration q-constants. We then used a

Bäcklund transformation to translate all the results to similar ones around t =∞.

We note that, besides the generic solution of the autonomous system, there also exist two

one-parameter families of solutions, expressed in terms of logarithms. We did not complete

steps two and three above for these families of solutions, and this will be an interesting

direction for future research. We compared the results heuristically in the continuum limit

with the known results for the sixth Painlevé equation, and observed that they essentially

coincide.

Rigorously proving that our description of different critical behaviours of q-P (A1) tran-

scendents is complete, the completeness problem 3.7.2, is a fundamental but seemingly difficult

one. The q-P (A1) connection problem entails relating the critical behaviours near the two

different critical points explicitly. To solve this problem, we employed the isomonodromic

deformation method.

Yamada [85] constructed a Lax pair, consisting of a second order scalar q-difference equa-

tion, the spectral equation, together with a deformation equation, whose compatibility is

equivalent to q-P (A1). However Yamada derived his Lax pair within a geometric framework

of algebraic curves, different from the isomonodromic deformation point of view. We there-

fore studied the analytic properties of Yamada’s Lax pair, and showed that under specific
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scalings, involving solutions of two auxiliary second order linear q-difference equations, the

monodromy, i.e. connection matrix, is preserved by the q-P (A1) deformation. We hence have

a well defined mapping, the monodromy mapping, which sends a q-P (A1) transcendent to

corresponding monodromy of Yamada’s Lax pair.

We then turned our attention to the direct monodromy problem, which entails explicitly

calculating the monodromy corresponding to a given q-P (A1) transcendent. We succeeded in

explicitly solving the direct monodromy problem, for the solutions characterised by the generic

critical behaviour involving two q-constants, both near t = 0 and near t = ∞. Equating the

results, yields explicit parametric connection formulae, relating the critical behaviours near

the two different critical points indirectly. Deducing direct connection formulae, from these

parametric ones, is a problem which is currently being explored. We note that in both the

t → 0 and the t → ∞ limit, the connection matrix of Yamada’s Lax pair factorises in two

copies of a connection matrix associated with a simpler linear q-difference equation, which

we called the degree two model equation. This degree two model equation is related to

the associated continuous dual q-Hahn polynomials, and we showed that the solutions of the

degree two model equation can be expressed in terms of 3φ2 hypergeometric functions, inspired

by the work of Gupta et al. [23]. Furthermore we explicitly determined the corresponding

connection matrix.

There are several ways to approach the completeness problem. One is by doing an asymp-

totic analysis within the initial value space of the q-P (A1) equation, as t→ 0 or t→∞. This

would bring together the local asymptotic analysis of solutions and the algebro-geometric side

of the q-P (A1) equation. Let us note that such asymptotic studies have been carried out for

several of the continuous Painlevé equations, see Joshi and collaborators [12, 38, 49]. To our

knowledge, only one such study has been carried out for a discrete Painlevé equation, namely

a q-discrete version of PI, see Joshi and Lobb [46]. Another way to solve the completeness

problem, would be to prove that the monodromy mapping is bijective, and show that each

monodromy datum of Yamada’s Lax pair corresponds to some unique critical behaviour in

our list, both near t = 0 and t = ∞. We were not able to establish such a result, particu-

larly as the spectral equation is scalar with resonance and trivial monodromy, both near the

spectral origin and infinity. It recently came to our attention that Rains and Ormerod [68]

constructed a different Lax pair for the q-P (A1) equation, which is in system form, with the

origin and infinity of the spectral equation being regular singular without resonance. It would

be of interest to perform a similar study of this Lax pair, and particularly use it to solve the

completeness problem.



Appendix A

The Painlevé Equations

The six Painlevé equations are given by the following nonlinear differential equations,

PI : ω′′ =6ω2 + ζ,

PII : ω′′ =2ω3 + ζω + α,

PIII : ω′′ =
1

ω

(
ω′
)2 − 1

ζ
ω′ +

α

ζ
ω2 +

β

ζ
+ γω3 +

δ

ω
,

PIV : ω′′ =
1

2ω

(
ω′
)2

+ 3
2ω

3 + 4ζω2 + 2(ζ2 − α)ω +
β

ω
,

PV : ω′′ =

(
1

2ω
+

1

ω − 1

)(
ω′
)2 − 1

ζ
ω′ +

(ω − 1)2

ζ2

(
αω +

β

ω

)
+ γ

ω

ζ
+ δ

ω(ω + 1)

ω − 1
,

PVI : ω′′ =1
2

(
1

w
+

1

w − 1
+

1

w − ζ

)(
w′
)2 − (1

ζ
+

1

ζ − 1
+

1

w − ζ

)
w′

+
w(w − 1)(w − ζ)

2ζ2(ζ − 1)2

(
γ2 − δ2ζ

w2
+
α2(ζ − 1)

(w − 1)2
+

(1− β2)ζ(ζ − 1)

(w − ζ)2

)
,

where α, β, γ, δ ∈ C are complex parameters.
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Appendix B

q-Briot-Bouquet theorem

In 1856, Briot and Bouquet [8] analysed the existence and uniqueness of ordinary differential

equations of a specific type, which are appropriately called Briot-Bouquet equations nowadays.

Let us formulate their classical result.

Theorem B.1 (Briot-Bouquet theorem (dimension one case)). Let H(z, y) be an analytic

function at (z, y) = (0, 0) with H(0, 0) = 0, and denote λ = ∂H
∂y (0, 0). If λ /∈ N∗, then the

differential equation

y′(z) = H(z, y(z)),

has an unique power series solution with zero constant term. Furthermore this power series

converges, defining a holomorphic solution of the differential equation near z = 0.

We refer the interested reader to the book by Hille [36] for more on the continuous side

of the subject. In 1890 Poincaré [71] analysed q-analogs of the Briot-Bouquet equations and

proved the so called q-Briot-Bouquet theorem, which is Theorem B.3, with m = 1, |q| > 1

and Y = 0. Let us formulate the dimension one case of Poincaré’s result separately.

Theorem B.2 (q-Briot-Bouquet theorem (dimension one case)). Let |q| > 1 and H(z, y) be

an analytic function at (z, y) = (0, 0) with H(0, 0) = 0, and denote λ = ∂H
∂y (0, 0). If λ /∈ qN∗,

then the q-difference equation

y(qz) = H(z, y(z)),

has an unique power series solution with zero constant term. Furthermore this power series

converges, defining a holomorphic solution of the q-difference equation near z = 0.

Unfortunately Poincaré [71] only discusses the case |q| > 1, whereas in the cases |q| < 1

and |q| = 1 an extra subtlety arises, which one does not see in the dimension one continuous

case B.1. Indeed, let us consider the following example,

y(qz) = z + λy(z) + zy(z),

so H(z, y) = z + λu + zy in Theorem B.2. We can immediately write down the full formal
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power series solution, which is given by

y(z) =
∞∑
n=1

bnz
n, bn =

n∏
k=1

(qk − λ)−1. (n ∈ N∗) (B.1)

Not surprisingly, the formal power series solution exist, iff λ /∈ qN
∗
. Let us assume this is

indeed satisfied, then the power series indeed always converges if |q| > 1. There are three

cases to consider, λ = 0, |λ| 6= 0, 1 and |λ| = 1. If λ = 0, then

y(z) =
∞∑
n=1

q−
1
2n(n+1)zn,

which does not converge when |q| < 1. The hidden reason for this, in the perspective of

Theorem B.2, is that although λ /∈ qN∗ , the set qN
∗

does have λ = 0 as a limit point. In case

|λ| 6= 0, 1, it is easy to see that the power series solution (B.1) converges, regardless of the

modulus of q. In the final case |λ| = 1, the power series solution converges when |q| 6= 1.

However if |q| = 1, things are much more complicated and in the literature this case is often

referred as the resonant case. It turns out we can generalise Theorem B.2 to the regime

|q| ≤ 1, where, for the power series to converge, we require λ /∈ qN∗ .
In this section we discuss an extension of the classical q-Briot-Bouquet Theorem to several

independent variables and, more importantly, we prove that the constructed solutions depend

analytically on various parameters involved. This is a crucial ingredient in the proof of

Theorem 3.4.1, where we use the formal series solution defined in Theorem 3.3.1, to construct

true solutions of q-P (A1). We use standard multi-index notation, for n ∈ N∗, for α =

(α1, . . . , αn) ∈ Nn, we set

|α| = α1 + . . .+ αn.

For α, β ∈ Nn, we write α ≤ β if and only if for all 1 ≤ i ≤ n we have αi ≤ βi. This defines a

partial order on Nn, and we say α < β if and only of α ≤ β and α 6= β.

If y ∈ Cn, we define

yα = yα1
1 · . . . · y

αn
n .

The following Theorem is an extension of the q-Briot-Bouquet Theorem to several independent

variables t1, . . . tm, with a coupled time evolution, ti = qiti, where qi ∈ C∗ for 1 ≤ i ≤ m.

Theorem B.3 (q-Briot-Bouquet theorem (several independent variables)). Let m,n ∈ N∗

and let us denote

t = (t1, . . . , tm), q = (q1, . . . , qm) t = (q1t1, . . . , qmtm), y = (y1, . . . , yn). (B.2)

Let H(t,y; q) = (H1(t,y; q), . . . ,Hn(t,y; q)) be a vector valued function. Assume there is a

Y ∈ Cn, such that H(t,y) is holomorphic at (t,y) = (0,Y) with H(0,Y) = Y. Suppose the

eigenvalues of the Jacobi matrix

D =

(
∂Hj

∂yk
(0,Y)

)
1≤j,k≤n

,
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are not elements of the set

Q := {qα | α ∈ Nm \ {0}}.

Then the system of q-difference equations

yj
(
t; q
)

= Hj(t,y(t); q) (1 ≤ j ≤ n), (B.3)

has an unique power series solution of the form,

yj(t; q) = Yj +
∑

α∈Nm\{0}

b(j)α (q)tα (1 ≤ j ≤ n).

Furthermore, if the eigenvalues of the matrix D are not limit points of the set Q, then these

power series convergence in an open environment of t = 0.

Proof. Several variables can easily be incorporated in the proof by Poincaré [71].

Note that the time evolutions of the independent variables in the above theorem are

coupled, i.e. although we have several independent variables, it is not a partial difference

system. Opposite to the continuous case, not much work has been done in the direction of

partial difference systems of Briot-Bouquet type. Let us mention the work of Tahara and

Yamazawa [82] which seems a first in this direction.

We would like to improve Theorem B.3, by showing that the solution y depends analyti-

cally on q, as formulated in Theorem B.4. For notational simplicity, we restrict ourselves to

the case Y = 0. Iwasaki et al. [41][Prop. 1.1.1] give an elegant proof of the classical Briot-

Bouquet Theorem with several dependent variables. The proof of Theorem B.4 is basically an

adaptation of their proof for the q-case, where every estimate is done uniformly in q. Before

we formulate the theorem, let us introduce some notation. We define the max norm || · ||max

on Cn by

||v||max = max
1≤i≤n

|vi|,

for v ∈ Cn, and for matrices A ∈ Cn×n, we set

||A||max = max
1≤i,j≤n

|Aij |.

We have the following inequality

||Av||max ≤ n||A||max||v||max, (B.4)

for A ∈ Cn×n and v ∈ Cn.

For v ∈ Cn and R > 0, we define Bn
max(v, R) and B

n
max(v, R) to be respectively the open and

closed ball of radius R centered at v in Cn with respect to the || · ||max norm.

Theorem B.4 (q-Briot-Bouquet theorem (several independent variables, uniform in q)). Let

m,n ∈ N∗ and denote t,q, t and y as in (B.2). Let H(t,y; q) = (H1(t,y; q), . . . ,Hn(t,y; q))

be a vector valued function. Assume there is an open set U ⊆ Bm
max(0, 1) ⊆ Cm such that, for

every q0 ∈ U , the function H(t,y; q) is holomorphic at (t,y; q) = (0,0; q0) with H(0,0; q0) =
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0. For q ∈ U , let us denote the Jacobian matrix of H with respect to y at (t,y) = (0,0) by

D(q) =

(
∂Hj

∂yk
(0,0; q)

)
1≤j,k≤n

.

We assume that for any q ∈ U , the eigenvalues of the Jacobi matrix D(q), are not elements

of

Q0 := {0} ∪ {qα | α ∈ Nm \ {0}}. (B.5)

Then the q-Briot-Bouquet Theorem B.3 shows, that for every q ∈ U , the system of q-difference

equations

yj
(
t; q
)

= Hj(t,y(t); q) (1 ≤ j ≤ n), (B.6)

has an unique converging power series solution vanishing at t = 0,

yj(t; q) =
∑

α∈Nm\{0}

b(j)α (q)tα (1 ≤ j ≤ n). (B.7)

For every q0 ∈ U , for 1 ≤ j ≤ n, the series B.7 converges locally uniformly in (t,q) at (0,q0)

on Cm × U . That is, for every q0 ∈ U , there are open environments Z ⊆ Cm and V ⊆ U

of 0 and q0 respectively, such that the series (B.7) converge uniformly on Z × V in (t,q),

defining analytic functions on this set.

Proof. For every q ∈ U and 1 ≤ j ≤ n, since Hj(t,y; q) is holomorphic at (t,y,q) = (0,0,q)

with Hj(0,0; q) = 0, we can find a converging power series expansion

Hj(t,y; q) =
∑

α∈Nm,β∈Nn
C

(j)
(α,β)(q)tαyβ, (B.8)

about (t,y) = (0,0), with C
(j)
(0,0)(q) = 0, for 1 ≤ j ≤ n.

The coefficients C
(j)
(α,β)(q) are holomorphic in q on U for all α ∈ Nm and β ∈ Nn. Substituting

formal power series expansions (B.7) into equation (B.6) gives the following recursion for the

coefficients b
(j)
α (q):

(qαIn −D(q))


b
(1)
α (q)

b
(2)
α (q)

...

b
(n)
α (q)

 =



Mα

[(
C

(1)

(α′,β)(q)
)
(α′,β)∈L(α)

;
(
b
(1)

α′ (q)
)
α′<α

, . . . ,
(
b
(n)

α′ (q)
)
α′<α

]
Mα

[(
C

(2)

(α′,β)(q)
)
(α′,β)∈L(α)

;
(
b
(1)

α′ (q)
)
α′<α

, . . . ,
(
b
(n)

α′ (q)
)
α′<α

]
...

Mα

[(
C

(n)

(α′,β)(q)
)
(α′,β)∈L(α)

;
(
b
(1)

α′ (q)
)
α′<α

, . . . ,
(
b
(n)

α′ (q)
)
α′<α

]


, (B.9)

for α ∈ Nm \{0}, where the Mα are polynomials in their inputs with positive coefficients and

the sets L(α) are defined by

L(α) = {(α′, β) ∈ Nm × Nn : α′ ≤ α, |β| ≤ |α− α′| and if α′ = 0, then |β| ≥ 2}.

As the eigenvalues of D(q) are not elements of Q0 for q ∈ U , we know that, for every
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α ∈ Nm \ {0}, the matrix (qαIn −D(q)) is invertible for q ∈ U and, even stronger,

q 7→ (qαIn −D(q))−1,

is a holomorphic matrix-valued function on U .

Hence this recursion defines unique holomorphic functions b
(j)
α (q) on U for 1 ≤ j ≤ n and

α ∈ Nm \ {0}. Let us take any q0 ∈ U and determine RU > 0 such that

Bm
max(q0, RU ) ⊆ Bm

max(q0, RU ) ⊆ U.

As B
m
max(q0, RU ) ⊆ U is compact and the eigenvalues of D(q) are not elements of Q0 for

q ∈ U , we can obtain the following uniform bound on B
m
max(q0, RU ),

L = inf
q∈Bmmax(q0,RU ),α∈Nm\{0}

|det (qαIn −D(q))| > 0. (B.10)

Hence, for every q ∈ Bm
max(q0, RU ), we have∣∣∣∣∣∣(qαIn −D(q))−1

∣∣∣∣∣∣
max

=

∣∣∣∣∣∣∣∣adj (qαIn −D(q))

det (qαIn −D(q))

∣∣∣∣∣∣∣∣
max

=
1

|det (qαIn −D(q))|
||adj (qαIn −D(q))||max

≤ (n− 1)!

L
||qαIn −D(q)||n−1

max

≤ (n− 1)!

L
(||qαIn||max + ||(D(q)||max)n−1

≤ (n− 1)!

L
(1 + ||(D(q)||max)n−1 ,

and, as ||(D(q)||max is clearly uniformly bounded on the compact set B
m
max(q0, RU ), we have

B = sup
q∈Bmmax(q0,RU ),α∈Nm\{0}

∣∣∣∣∣∣(qαIn −D(q))−1
∣∣∣∣∣∣

max
<∞. (B.11)

For all α ∈ Nm and β ∈ Nn and 1 ≤ j ≤ n, we have a convergent power series expansion

C
(j)
(α,β)(q) =

∑
γ∈Nm

C
(j)
(α,β,γ)(q− q0)γ , (B.12)

about q = q0.

Even stronger, for 1 ≤ j ≤ n, we have a convergent power series expansion,

Hj(t,y; q) =
∑

α,γ∈Nm,β∈Nn
C

(j)
(α,β,γ)(q− q0)γtαyβ, (B.13)

about (t,y,q) = (0,0,q0).

For every 1 ≤ j ≤ n, we determine an Rj > 0, such that, for all t,q ∈ Cm and y ∈ Cn, the
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series (B.13) converges if

||t||max < Rj , ||q− q0||max < Rj , ||y||max < Rj . (B.14)

We set R0 = min (RU , R1, . . . , Rn), take any 0 < R < R0 and define

Mj = sup
q∈Bmmax(q0,R),α∈Nm,β∈Nn

∣∣∣C(j)
(α,β)(q)

∣∣∣R|α+β|.

Clearly the Mj are finite and we set M0 = max (M1, . . . ,Mn). We define the function

G(t, Y ) = M

((
1− t1

R

)−1

· . . . ·
(

1− tm
R

)−1(
1− Y

R

)−n
− 1− nY

R

)
.

Observe that G is holomorphic at (t, Y ) = (0, 0) with G(0, 0) = 0 and ∂G
∂Y (0, 0) = 0. Hence

G has a convergent power series expansion

G(t, Y ) =
∑

α∈Nm,i∈N
(α,i)6=(0,0),(0,1)

C(α,i)t
αY i,

around (t, Y ) = (0, 0).

Let α ∈ Nm, i ∈ N with (α, i) 6= (0, 0), (0, 1), then we have

C(α,i) =

(
n+ i− 1

i

)
M0

R|α|+i
.

Hence, for any 1 ≤ j ≤ n, for α ∈ Nm, β ∈ Nn such that, if α = 0, then |β| ≥ 2, we have, by

the definition of M0, ∣∣∣C(j)
(α,β)(q)

∣∣∣ ≤ M0

R|α+β| ≤ C(α,|β|),

for q ∈ Bm
max(q0, R).

We consider the functional equation

Y (t) = BnG(t, Y (t)). (B.15)

We prove that this equation has an unique solution Y (t) which is holomorphic at t = 0

with Y (0) = 0. For this we apply the implicit function theorem to the function F (t, Y ) =

BnG(t, Y )− Y . Observe that F (0, 0) = 0 and

∂F

∂Y
(0, 0) = −1 6= 0.

Hence we can apply the implicit function theorem and obtain an unique solution Y (t) of the

functional equation (B.15) which is holomorphic at t = 0 with Y (0) = 0. Let the Taylor
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series expansion of Y (t) at t = 0 be given by

Y (t) =
∑

α∈Nm\{0}

Bαtα. (B.16)

Since Y is a solution of the functional equation (B.15), the coefficients Bα are determined

uniquely by the recursion

Bα = BnMα

((
C(α′,|β|)

)
(α′,β)∈L(α)

; (Bα′)α′<α , . . . , (Bα′)α′<α

)
(B.17)

for α ∈ Nm \ {0}, where the polynomials Mα are the same as in recursion (B.9).

We prove the following inequality by complete induction with respect to the partial order ≤
on Nm, ∣∣∣b(j)α (q)

∣∣∣ ≤ Bα, (B.18)

for every 1 ≤ j ≤ n and q ∈ Bm
max(q0, R), for all α ∈ Nm \ {0}.

Let us fix a q ∈ Bm
max(q0, R), take any α ∈ Nm\{0}, and assume that for all α′ < α inequality

(B.18) holds for every 1 ≤ j ≤ n. Then we have, by applying inequality (B.4) to equation

(B.9),

max
1≤i≤n

∣∣∣b(i)α (q)
∣∣∣ ≤n ∣∣∣∣∣∣(qαIn −D(q))−1

∣∣∣∣∣∣
max
·

max
1≤i≤n

∣∣∣∣Mα

[(
C

(i)
(α′,β)(q)

)
(α′,β)∈L(α)

;
(
b
(1)
α′ (q)

)
α′<α

, . . . ,
(
b
(n)
α′ (q)

)
α′<α

]∣∣∣∣
≤nB max

1≤i≤n
Mα

[(∣∣∣C(i)
(α′,β)(q)

∣∣∣)
(α′,β)∈L(α)

;
(∣∣∣b(1)

α′ (q)
∣∣∣)
α′<α

, . . . ,
(∣∣∣b(n)

α′ (q)
∣∣∣)
α′<α

]
≤nBMα

((
C(α′,|β|)

)
(α′,β)∈L(α)

; (Bα′)α′<α , . . . , (Bα′)α′<α

)
=Bα,

where, in the second inequality we used the definition of B (B.11) and the fact that the poly-

nomials Mα have positive coefficients, in the third inequality we use the induction hypothesis

(B.18), and in the last equality we used equation (B.17).

By complete induction, we conclude inequality (B.18) holds for all 1 ≤ j ≤ n and q ∈
B
m
max(q0, R), for every α ∈ Nm \ {0}. Determine ρ0 > 0, such that the Taylor expansion

(B.16) converges if ||t||max < ρ0. Take any 0 < ρ < ρ0, then we have∑
α∈Nm\{0}

Bαρ
|α| <∞. (B.19)

Take a 1 ≤ j ≤ n and define, for α ∈ Nm \ {0}, the function

Y (j)
α (t,q) = b(j)α (q)tα,
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which is holomorphic on U × Cm and hence, also holomorphic on the compact set

S = B
m
max(0, ρ)×Bm

max(q0, R). (B.20)

Let || · ||S∞ denote the supremum norm on S, then we have, by inequality (B.18),

||Y (j)
α ||S∞ ≤ Bαρ|α|,

and therefore, by equation (B.19), ∑
α∈Nm\{0}

||Y (j)
α ||S∞ <∞.

We conclude that

yj(t; q) =
∑

α∈Nm\{0}

Y (j)
α (t,q) =

∑
α∈Nm\{0}

b(j)α (q)tα, (B.21)

converges uniformly on S, defining a complex function holomorphic on the interior of S.

Remark B.5. It is straightforward to extend Theorem B.4 to include parameters. That is, we

write b = (b1, . . . , bs) for some s ∈ N∗, set H = H(t,y; q,b) and assume that the conditions

in Theorem B.4 hold for all b in some fixed open set V ⊆ Cs. Then the obtained series

y(t; q,b) converge locally uniformly in (t,q,b) at (t,q,b) = (0,q0,b0) for (q0,b0) ∈ U × V .



Appendix C

The QRT Mapping

In this section we discuss the QRT mapping, first introduced in Quispel, Roberts and Thomp-

son [74]. We denote

X =

x2

x

1

 ,

and take square matrices

Ai =

αi βi γi
δi εi ζi
κi λi µi

 . (i = 1, 2)

The QRT mapping is the 18-parameter family of mappings given by

x =
f1(y)− xf2(y)

f2(y)− xf3(y)
, y =

g1(x)− yg2(x)

g2(x)− yg3(x)
, (C.1)

with

f(x) =

f1(x)

f2(x)

f3(x)

 = (A0X)× (A1X), g(x) =

g1(x)

g2(x)

g3(x)

 =
(
AT0 X

)
×
(
AT1 X

)
.

Such a mapping has an invariant given by

I(x, y) =
α0x

2y2 + β0x
2y + γ0x

2 + δ0xy
2 + ε0xy + ζ0x+ κ0y

2 + λ0y + µ0

α1x2y2 + β1x2y + γ1x2 + δ1xy2 + ε1xy + ζ1x+ κ1y2 + λ1y + µ1
,

that is,

I (x, y) = I(x, y) = I(x, y). (C.2)

Conversely, the invariant defines the QRT mapping, via the following geometric process.

Consider the pencil of quadratic curves

{I(x, y) = λ}λ∈P.

199
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Given a point (x0, y0) ∈ P × P, write λ = I(x0, y0) and let l1 be the line (x, y) = (x, y0) in

P×P. Consider the curve C defined by I(x, y) = λ, then (x0, y0) is the unique other point on

the intersection of C and l1 in P× P. Similarly let l2 be the line (x, y) = (x0, y), then (x0, y0)

is the unique other point on the intersection of C and l2. Of course (x0, y0) 7→ (x0, y0) now

coincides with the QRT mapping.

Let us write P = I(x, y) and

A = α0 − α1P, B = β0 − β1P, D = δ0 − δ1P, G = γ0 − γ1P, E = ε0 − ε1P, (C.3a)

K = κ0 − κ1P, L = λ0 − λ1P, Z = ζ0 − ζ1P, U = µ0 − µ1P, (C.3b)

then, by equation (C.2), we have

Ax2y2 +Bx2y +Dxy2 +Gx2 + Exy +Ky2 + Zx+ Ly + U = 0, (C.4)

Ax2y2 +Bx2y +Dxy2 +Gx2 + Exy +Ky2 + Zx+ Ly + U = 0, (C.5)

Ax2y2 +Bx2y +Dxy2 +Gx2 + Exy +Ky2 + Zx+ Ly + U = 0. (C.6)

Subtracting equation (C.4) from (C.5) and equation (C.5) from (C.6) we obtain respectively,

(x− x)
(
A(x+ x)y2 +B (x+ x) y +Dy2 +G (x+ x) + Ey + Z

)
= 0,

(y − y)
(
Ax2 (y + y) +Bx2 +Dx (y + y) + Ex+K (y + y) + L

)
= 0.

Excluding the cases x = x and y = y, we obtain

x = −x− Dy2 + Ey + Z

Ay2 +By +G
, y = −y − Bx2 + Ex+ L

Ax2 +Dx+K
. (C.7)

If the various parameters A,B, . . . , L, Z in this system are plain complex numbers, this has

been called the asymmetric McMillan map in Iatrou and Roberts [39], as it is indeed an

asymmetric extension of the classical McMillan map [62]. To summarise the discussion so far,

given particular values (x0, y0) ∈ P×P, let (xn, yn)n∈Z be the sequence generated by the QRT

mapping. Then, by calculating P = I(x0, y0) ∈ P, we can associate a particular asymmetric

McMillan map (C.7), specified by parameter values (C.3), such that (xn, yn)n∈Z is generated

by this McMillan map. We remark that the associated asymmetric McMillan map depends

strongly on the particular initial values (x0, y0) ∈ P chosen.

Our main use of the above observation is in fact in opposite direction. We interpreted

the QRT mapping as a system of q-difference equations on a given q-domain. To construct

solutions to this system, we take any q-periodic function P (t) and instead solve the simpler

system given by (C.7), subject to P (t) = I(x(t), y(t)). The obtained solutions (x(t), y(t))

then satisfy the original system of q-difference equations defined by the QRT mapping. The

justification of the last step is given by the following lemma.

Lemma C.1. The mapping (C.7), with (C.3) where P = I(x, y), coincides with the QRT

mapping (C.1).

Proof. Note that P = I(x, y) is essentially (C.4). By reversing the above calculation we find

that (C.5) and (C.6) hold as well, in particular we recover (C.2). Eliminating P from equation
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(C.4) and the first equation in (C.7) gives the time evolution of x in (C.1). Eliminating P from

equation (C.5) and the second equation in (C.7) gives the time evolution of y in (C.1).

C.1 Linearisable QRT mappings

If A = B = D = 0, then the autonomous system (C.7) is linear. We therefore consider a

special type of QRT mapping, specified by the parameter conditions

α0 = α1 = β0 = β1 = δ0 = δ1 = 0. (C.8)

We call such a QRT mapping linearisable. Equations (C.7) become the following system of

linear equations

x+ x+
E

G
y = −Z

G
, y + y +

E

K
x = − L

K
. (C.9)

“Solving” this system is straightforward, we first look for an equilibrium solution (xeq, yeq),

that is, a solution invariant under the time evolution, so

2xeq +
E

G
yeq = −Z

G
, 2yeq +

E

K
xeq = − L

K
,

which gives

xeq =
2KZ − EL
E2 − 4GK

, yeq = −2GL− EZ
E2 − 4GK

. (C.10)

Writing x = xeq + xh and y = yeq + yh, we can rewrite (C.9) as the following homogeneous

system, (
xh
yh

)
=

(
−1 −E

G
E
K

E2

KG − 1

)(
xh
yh

)
. (C.11)

The next step involves diagonalising the matrix

M :=

(
−1 −E

G
E
K

E2

KG − 1

)
, (C.12)

and we hence consider the associated characteristic equation

|M − λI| = λ2 +

(
2− E2

KG

)
λ+ 1 = 0, (C.13)

which generically does not have a solution in C(P ).

To overcome this limitation we could set P = c2Λ + c1 + c0/Λ where Λ = Λ for some well

chosen c0, c1, c2, to guarantee that equation (C.13) has a root in C(Λ), leading to a nice

parameterisation. However the calculations quickly get out of hand, so we illustrate this

process by example in (3.2.1). Once the general solution of (C.9) is found, we substitute

it into equation (C.4), which forces us to fix the value of one free parameter as is done in

equation (3.28). Then, by Lemma C.1, we obtain the generic solution of the QRT mapping

subject to conditions (C.8). Note that we assumed E2 − 4GK 6= 0 to obtain the equilibrium
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solution (C.10). The case E2 − 4GK = 0 is delicate and requires a separate analysis. We

discuss such a case in Section 3.2.3.



Appendix D

Proofs of Results in Section 5.3

In this Appendix we discuss the proofs of Propositions 5.3.1, 5.3.2 and 5.3.3. As the method

of proof is identical to that of Proposition 5.2.5, we only discuss the major steps in each case.

D.1 Proposition 5.3.1

We calculate the monodromy corresponding the solution (f, g) = (f (0,1), g(0,1)), meromorphic

at t = 0, defined in Proposition 3.1.1, where we assume the corresponding conditions (3.6) on

the parameters. We write

f(t) = f0 + f1t+ f2t
2 + . . . , f0 =

b5b6 − b7b8
b5b6(b7 + b8)− b7b8(b5 + b6)

,

g(t) = g0 + g1t+ g2t
2 + . . . , g0 =

b5b6 − b7b8
b5 + b6 − (b7 + b8)

.

Lemma D.1. Upon fixing nonzero meromorphic functions s∞i (t) on C∗, satisfying

s∞i (qt) = δiαs
∞
i (t), α = q−1f−1

0 , δ1 =
1

b5b6
, δ2 =

1

b7b8
,

for i ∈ {1, 2}, there exist unique Ψ∞1 (z, t) and Ψ∞2 (z, t), such that

Y∞(z, t) = Ψ∞(z, t)

(
s∞1 (t) 0

0 s∞2 (t)

)
,

defines a fundamental solution of Yamada’s Lax pair L̃ (4.82), where Ψ∞1 (z, t) and Ψ∞2 (z, t)

are holomorphic at (z, t) = (∞, 0), with Ψ∞1 (∞, 0) = 1 = Ψ∞2 (∞, 0).

We write

D∞0 (z) =
(
D∞,10 (z), D∞,20 (z)

)
:= Ψ∞(z, 0),

203
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then

D∞,10 (qz) =

(
1− 1

qb5z

)(
1− 1

qb6z

)
D∞,10 (z),

D∞,20 (qz) =

(
1− 1

qb7z

)(
1− 1

qb8z

)
D∞,20 (z),

and hence, by Lemma D.1,

D∞0 (z) =

((
1

b5z
,

1

b6z
; q

)
∞
,

(
1

b7z
,

1

b8z
; q

)
∞

)
.

We define

Ψ∞,0(z, t) = Ψ∞(z, t)P∞(z)−1, P∞(z) :=

(
θq(qb5z, qb6z)

−1 0

0 θq(qb7z, qb8z)
−1

)
, (D.1)

then

Ψ∞,0(z, 0) = ((qb5z, qb6z; q)∞, (qb7z, qb8z; q)∞) .

Lemma D.2. Upon fixing a nonzero meromorphic function s0(t) on C∗, satisfying

s0(qt) = αt−2s0(t), α = q−1f−1
0 ,

there exists, for any choice of c0
0,0, c

0
0,1 ∈ C, an unique Ψ(z, t), such that

Y (z, t) = s0(t)Ψ(ξ, t), ξ =
z

t
,

defines a solution of Yamada’s Lax pair L (2.21), where Ψ(ξ, t) holomorphic at (ξ, t) = (0, 0),

with

Ψ(0, t) = c0
0,0 + c0

0,1t+O
(
t2
)
. (t→ 0)

Furthermore D0(z) = Ψ(z, 0) satisfies the degree two model equation (4.51) with parameter

values σ = σII0 , defined in (5.27).

We use Lemma D.2 to define a fundamental solution Y 0(z, t) = s0(t)Ψ0(ξ, t) of Yamada’s

Lax pair L (2.21), with

Ψ0(ξ, 0) = y0(ξ;σII
0 ),

and we define

Ψ0,∞(ξ, t) = Ψ0(ξ, t)Q(ξ;σII
0 ),

which gives

Ψ0,∞(ξ, 0) = ψ∞(ξ;σII
0 ).

Following the matching procedure, as outlined in Section 5.2.5, we find

Ψ∞,0(z, t) = Ψ0,∞(ξ, t),
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and hence

Y∞(z, t) = Y 0(z, t)P(z, t),

where

P(z, t) = Q
(z
t
;σII

0

)(θq(qb5z, qb6z)−1 0

0 θq(qb7z, qb8z)
−1

)( s∞1 (t)
s0(t)

0

0
s∞2 (t)
s0(t)

)
. (D.2)

This is consistent with the notation in Section 4.9, where

c1
0(t) := s0(t)Ψ0

1(0, t), c2
0(t) := s0(t)Ψ0

2(0, t),

c̃1
0(t) := s∞1 (t)Ψ∞1 (∞, t), c̃2

0(t) := s∞2 (t)Ψ∞2 (∞, t).

Proposition 5.3.1 is now easily derived.

D.2 Proposition 5.3.2

We calculate the monodromy corresponding to the solution (f, g) = (f̌ (0,1), ǧ(0,1)), meromor-

phic at t =∞, defined by equation (3.15). We write

f(t) = f0 + f1t
−1 + f2t

−2 + . . . , f0 =
b5 + b6 − (b7 + b8)

b5b6 − b7b8
,

g(t) = g0 + g1t
−1 + g2t

−2 + . . . , g0 =
b5b6(b7 + b8)− b7b8(b5 + b6)

b5b6 − b7b8
,

and we assume the corresponding conditions (3.6) on the parameters.

Considering the coefficients of the auxiliary equation (4.99) at z = 0, we have

γ0(t) = f0(f0g0 − 1)qb5b6b7b8g
−1
0 t6 +O

(
t5
)
,

γ1(t) = f0(f0g0 − 1)q2(b5b6 + b7b8)t6 +O
(
t5
)
,

γ2(t) = f0(f0g0 − 1)q3g0t
6 +O

(
t5
)
,

as t→∞. Hence (4.99) is regular singular at t =∞, with exponents {b5b6q−1g−1
0 , b7b8q

−1g−1
0 }.

Lemma D.3. Upon fixing nonzero meromorphic functions ŝ0
i (t) on C∗, satisfying

ŝ0
i (qt) = δ̂iβ̂ŝ

0
i (t), β̂ = q−1g−1

0 , δ̂1 = b5b6, δ̂2 = b7b8,

for i ∈ {1, 2}, there exist unique Ψ̂0
1(z, t) and Ψ̂0

2(z, t), such that

Ŷ 0(z, t) = Ψ̂0(z, t)

(
ŝ0

1(t) 0

0 ŝ0
2(t)

)
,

defines a fundamental solution of Yamada’s Lax pair L (2.21), where Ψ̂0
1(z, t) and Ψ̂0

2(z, t) are

holomorphic at (z, t) = (0,∞), with Ψ̂0
1(0,∞) = 1 = Ψ̂0

2(0,∞).
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We write

D̂0
0(z) =

(
D̂0,1

0 (z), D̂0,2
0 (z)

)
:= Ψ̂0(z,∞),

then

D̂0,1
0 (qz) =

1

(1− qb5z)(1− qb6z)
D̂0,1

0 (z),

D̂0,2
0 (qz) =

1

(1− qb7z)(1− qb8z)
D̂0,2

0 (z),

and hence, by Lemma D.3,

D̂0
0(z) = ((qb5z, qb6z; q)∞, (qb7z, qb8z; q)∞) .

We define

Ψ̂0,∞(z, t) = Ψ̂0(z, t)P 0(z), P 0(z) :=

(
θq(qb5z, qb6z)

−1 0

0 θq(qb7z, qb8z)
−1

)
, (D.3)

then

Ψ̂0,∞(z, 0) =

((
1

b5z
,

1

b6z
; q

)−1

∞
,

(
1

b7z
,

1

b8z
; q

)−1

∞

)
.

Lemma D.4. Upon fixing a nonzero meromorphic function ŝ∞(t) on C∗, satisfying ŝ∞(qt) =

β̂t2ŝ∞(t), there exists, for any ĉ0,0, ĉ0,1 ∈ C, an unique ψ̂(ξ, t) such that

ỹ(z, t) = ŝ∞(t)ψ̂(ξ, t), ξ =
z

t
,

defines a solution of L̃ (4.82), where ψ̂(ξ, t) is holomorphic at (ξ, t) = (∞,∞), with

ψ̂(∞, t) = ĉ0,0 + ĉ0,1t
−1 +O

(
t−2
)
. (t→∞)

Furthermore d̂0(ξ) = ψ̂(ξ,∞) defines a solution of the second order q-difference equation

d(qξ) +

(
−(1 + q−1) +

(
b−1
1 + b−1

2 + b−1
3 + b−1

4

)
q−1ξ−1 − q−2

(
1

b5b6
+

1

b7b8

)
ξ−2

)
d(z)

+ q−1(1− b−1
1 ξ−1)(1− b−1

2 ξ−1)(1− b−1
3 ξ−1)(1− b−1

4 ξ−1)d(ξ/q) = 0. (D.4)

Note that equation (D.4), upon scaling

d(ξ) = ŝ∗(ξ)y(ξ−1), ŝ∗(ξ) =

(
1

b1ξ
,

1

b2ξ
,

1

b3ξ
,

1

b4ξ
; q

)
∞
,

coincides with the degree two model equation (4.51) for y(z), with parameter values σ = σ̂I
∞,

as defined in (5.28). We hence use Lemma D.4 to specify an unique fundamental solution

Ŷ∞(z, t) = ŝ∞(t)Ψ̂∞(ξ, t) of L̃ (4.82), such that

Ψ̂∞(ξ,∞) = ŝ∗(ξ)y
0(ξ−1; σ̂I

∞).
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To transition from (ξ, t) = (∞,∞) to (ξ, t) = (0,∞) in the (ξ, t) plane via t =∞, we set

Ψ̂∞,0(ξ, t) = θq(qb1ξ, qb2ξ, qb3ξ, qb4ξ)
−1Ψ̂∞(ξ, t)Q(ξ−1; σ̂I

∞),

which gives

Ψ̂∞,0(ξ,∞) = (qb1ξ, qb2ξ, qb3ξ, qb4ξ; q)
−1
∞ ψ∞(ξ−1; σ̂I

∞).

Via the matching procedure, as outlined in Section 5.2.5, we find

Ψ̂0,∞(z, t) = Ψ̂∞,0(ξ, t),

and hence

Ŷ∞(z, t) = Ŷ 0(z, t)P̂(z, t),

where

P̂(z, t) = θq

(
qb1

z

t
, qb2

z

t
, qb3

z

t
, qb4

z

t

) ŝ∞(t)
ŝ01(t)

0

0 ŝ∞(t)
ŝ02(t)

 P̂ 0 (z)Q

(
t

z
; σ̂I
∞

)−1

.

This is consistent with the notation in Section 4.9, where

c1
0(t) := ŝ0

1(t)Ψ̂0
1(0, t), c2

0(t) := ŝ0
2(t)Ψ̂0

2(0, t),

c̃1
0(t) := ŝ∞(t)Ψ̂∞1 (∞, t), c̃2

0(t) := ŝ∞(t)Ψ̂∞2 (∞, t).

Proposition 5.3.2 is now easily derived.

D.3 Proposition 5.3.3

We calculate the monodromy corresponding to the solution (f, g) = (f̌ (1,1), ǧ(1,1)), meromor-

phic at t =∞, defined by equation (3.15). We write

f(t) = f−1t+ f0 + f1t
−1 + . . . , f−1 =

b1b2 − b3b4
b1b2(b3 + b4)− b3b4(b1 + b2)

,

g(t) = g−1t+ g0 + g1t
−1 + . . . , g−1 =

b1b2 − b3b4
b1 + b2 − (b3 + b4)

,

and we assume the corresponding conditions (3.11) on the parameters.

Consider the coefficients of the auxiliary equation (4.99) at z = 0, we have

γ0(t) = qg2
−1(f−1g−1 − 1)t8 +O

(
t7
)
,

γ1(t) = qg2
−1(f−1g−1 − 1)q(q + 1)f−1t

9 +O
(
t8
)
,

γ2(t) = qg2
−1(f−1g−1 − 1)q4f2

−1t
10 +O

(
t9
)
,

as t→∞. We therefore rescale

c0(t) = ŝ0(t)ĉ0(t), ŝ0(qt) = α̂t−1ŝ0(t), α̂ = −q−1f−1
−1 ,
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then the rescaled equation for ĉ0(t) is regular singular at t = ∞, with exponents {1, q−1},
and hence with resonance. A direct calculation shows that t = ∞ in in fact an apparent

singularity. As usual we leave it to the reader to choose ŝ0(t), nonzero and meromorphic on

C∗, at their pleasure.

Lemma D.5. For any choice of ĉ0,0, ĉ0,1 ∈ C, there exists an unique ψ̂(z, t) such that

Y (z, t) = ŝ0(t)ψ̂(z, t),

defines a solution of Yamada’s Lax pair L (2.21), where ψ̂(z, t) holomorphic at (z, t) = (0,∞)

with

ψ̂(0, t) = ĉ0,0 + ĉ0,1t
−1 +O

(
t−2
)
. (t→∞)

Furthermore, d0(z) = ψ̂(z,∞) defines a solution of the second order q-difference equation

(1− qb5z)(1− qb6z)(1− qb7z)(1− qb8z)d0(qz)

+
[
−(1 + q) + q(b5 + b6 + b7 + b8)z − (b1b2 + b3b4)qz2

]
d0(z) + qd0(z/q) = 0. (D.5)

Note that equation (D.5), upon scaling,

d0(z) = s∗(z)y(z), s∗(z) := (qb5z, qb6z, qb7z, qb8z; q)∞ ,

coincides with the degree two model equation (4.51) for y(z), with parameter values σ = σ̂II
0 ,

defined in (5.29). We hence specify an unique fundamental solution Ŷ 0(z, t) = ŝ0(t)Ψ̂0(z, t)

of Yamada’s Lax pair, such that

Ψ̂0(z,∞) = s∗(z)y
0(z; σ̂II

0 ).

We now make the transition from (z, t) = (0,∞) to (ξ, t) = (0,∞) via the line t = ∞ in the

(z, t) plane, by setting

Ψ̂0,∞(z, t) = θq(qb5z, qb6z, qb7z, qb8z)
−1Ψ̂0(z, t)Q(z; σ̂II

0 ),

which gives

Ψ̂0,∞(z,∞) =

(
1

b5z
,

1

b6z
,

1

b7z
,

1

b8z
; q

)−1

∞
ψ∞(z; σ̂II

0 ).

Lemma D.6. Upon fixing meromorphic functions ŝ∞i (t) on C∗, satisfying

ŝ∞i (qt) = δ̂iα̂tŝ
∞
i (t), δ̂1 =

1

b1b2
, δ̂2 =

1

b3b4
,

for i ∈ {1, 2}, there exist unique Ψ̂∞1 (ξ, t) and Ψ̂∞2 (ξ, t) such that

Ŷ∞(z, t) = Ψ̂∞(ξ, t)

(
ŝ∞1 (t) 0

0 ŝ∞2 (t)

)
,

defines a fundamental solution of Yamada’s Lax pair L̃ (4.82), where Ψ̂∞1 (ξ, t) and Ψ̂∞2 (ξ, t)
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are holomorphic at (ξ, t) = (∞,∞), with Ψ̂∞1 (∞,∞) = 1 = Ψ̂∞2 (∞,∞).

We write

D̂∞0 (ξ) =
(
D̂∞,10 (ξ), D̂∞,20 (ξ)

)
:= Ψ̂∞(ξ, 0),

then

D̂∞,10 (ξ) =

(
1− 1

b1ξ

)(
1− 1

b2ξ

)
D̂∞,10 (ξ/q),

D̂∞,20 (ξ) =

(
1− 1

b3ξ

)(
1− 1

b4ξ

)
D̂∞,20 (ξ/q),

and hence, by Lemma D.6,

D̂∞0 (ξ) =

((
1

b1ξ
,

1

b2ξ
; q

)
∞
,

(
1

b3ξ
,

1

b4ξ
; q

)
∞

)
.

We define

Ψ̂∞,0(ξ, t) = Ψ̂∞(ξ, t)P∞(ξ)−1, P∞(ξ) :=

(
θq(qb1ξ, qb2ξ) 0

0 θq(qb3ξ, qb4ξ)

)
, (D.6)

then

Ψ̂∞,0(ξ, 0) =
(
(qb1ξ, qb2ξ; q)

−1
∞ , (qb3ξ, qb4ξ; q)

−1
∞
)
.

Via the matching procedure, as outlined in Section 5.2.5, we find

Ψ̂0,∞(z, t) = Ψ̂∞,0(ξ, t),

and hence

Ŷ∞(z, t) = Ŷ 0(z, t)P̂(z, t),

where

P̂(z, t) = θq(qb5z, qb6z, qb7z, qb8z)
−1Q

(
z; σ̂II

0

)
P̂∞

(z
t

)( ŝ∞1 (t)
ŝ0(t)

0

0
ŝ∞2 (t)
ŝ0(t)

)
.

This is consistent with the notation in Section 4.9, where

c1
0(t) := ŝ0(t)Ψ̂0

1(0, t), c2
0(t) := ŝ0(t)Ψ̂0

2(0, t),

c̃1
0(t) := ŝ∞1 (t)Ψ̂∞1 (∞, t), c̃2

0(t) := ŝ∞2 (t)Ψ̂∞2 (∞, t).

Proposition 5.3.3 is now easily derived.
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integrable systems, volume 644 of Lecture Notes in Phys., pages 245–321. Springer, Berlin,

2004.

[22] B. Grammaticos, A. Ramani, and V. Papageorgiou. Do integrable mappings have the

Painlevé property? Phys. Rev. Lett., 67(14):1825–1828, 1991.

[23] D.P. Gupta, M.E.H. Ismail, and D.R. Masson. Contiguous relations, basic hypergeo-

metric functions, and orthogonal polynomials. III. Associated continuous dual q-Hahn

polynomials. J. Comput. Appl. Math., 68(1-2):115–149, 1996.

[24] D. Guzzetti. The elliptic representation of the general Painlevé VI equation. Commun.
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Publ. Res. Inst. Math. Sci., 18:1137–1161, 1982.

[43] M. Jimbo and H. Sakai. A q-analogue of the sixth Painlevé equation. Lett. Math. Phys.,
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forme. Bull. Soc. Math. Phys. France, 28:201–261, 1900.
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l’intégrale générale est uniforme. Acta Math., 25(1):1–85, 1902.
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