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CHAPTER 1

Introduction

The Painlevé equations are universal integrable systems. Their solutions turn out to have
many physically relevant properties, which can be deduced precisely because these equations
are integrable. In this thesis we are concerned with a nonlinear g-difference equation, which
is a discrete version of a Painlevé equation. Our main objective is to derive global asymptotic
properties of its solutions.

1.1 Painlevé Equations

One of the most fundamental properties of linear differential equations, is that we can read
of the equation itself, where solutions might have singularities. To put it differently, the
equation determines a puncturing of the Riemann sphere, such that any local solution has
an unique meromorphic continuation to the universal cover space of the resulting punctured
sphere. Around the turn of the nineteenth century, Painlevé and his school wished to find
and classify nonlinear differential equations, particularly of second order, which share this
remarkable property with the linear ones, appropriately referred to as the Painlevé property
nowadays.

To be exact, Painlevé [69, 70], Gambier [17], Fuchs [15] and their colleagues classified all
second order differential equations, having the Painlevé property, of the form

OJ// = H(wv wla C)v

where / = d% and H meromorphic in ¢ and rational in w and w’. They ended up with a list
of fifty such equations, of which six are not trivially integrable, the six Painlevé equations,
given in Appendix A.

Just as many linear equations are used to define classical or linear special functions as their
solutions, the Painlevé equations give rise to so called Painlevé functions or transcendents.
Indeed solutions of Painlevé equations are generically higher transcendental, which roughly
means they can not be expressed in terms of earlier known functions, and therefore define truly
new functions. Nowadays Painlevé transcendents are widely recogized as nonlinear special
functions, where we particularly mention that they are included in the NIST handbook of
Mathematical Functions, see Clarkson [10].
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The inspiring sixth Painlevé equation is given by

P w' =4 (5 + o+ ) @ - (e gt o (1.1)
VI .
ww-1)(w-¢) BT Sl (St R O S (Sl
20 (60 — 1)2 - % + i + SEEERY),

where 6,y . oo € C are complex parameters. The Painlevé property manifests itself as follows,
any local solution of the sixth Painlevé equation on P!\ {0, 1, 0o}, has an unique meromorphic
continuation to the corresponding universal covering space, see also Theorem 2.1.1. In par-
ticular Pyt transcendents can only branch at ( =0, ( = 1 or ( = oo, the critical points of the
equation. The sixth Painlevé equation is often referred to as the mother equation, as for one,
it has the most complex parameters of the six Painlevé equations, and secondly, the other
Painlevé equations can be obtained by coalescence limits of it. One can hence think of Py
as the universal differential equation on the nonlinear level, similar to Euler’s hypergeometric
differential equation on the linear level,

CQ1=Quw"+(c—(a+b+1)¢)w — abw = 0. (1.2)

The sixth Painlevé equation is of great importance to this thesis, as we study a g-analog of
it, called the ¢-P(A;) equation. To put it broadly, a ¢-analog of an object, is a generalisation
involving an extra parameter ¢ in the complex plane, such that in the limit ¢ — 1, called
the continuum limit, the original object is recovered. One is generally interested in objects
characterised by some property, like the Painlevé property, and hence a proper ¢g-analog should
somehow share this property or a g-analog of it.

Let us recall that the theory of classical special functions has always co-existed with
a g-discrete theory of g¢-special functions. One of the most prominent examples are the
hypergeometric and g-hypergeometric functions. The famous Gauss hypergeometric function,
defined by

a, b — (@)n(D)n 1 ,

m[ ;c]zz”“cz, @ni= [[ @+ @eCnen
¢ n=0 (©)n(L)n 0<i<n—1

defines a solution to Euler’s hypergeometric differential equation (1.2). In 1846, Heine [33, 34]

introduced the g-hypergeometric function,

a, b, N @B @ ) (x n
aon |, o] = 3 (R s = I a-da) @ecnen a3

generalising Gauss’ hypergeometric function, which appropriately satisfies a g-discrete analog
of Euler’s hypergeometric differential equation. Given such a longstanding and fruitful tra-
dition within the special function community, it is quite remarkable that a g-Painlevé theory
had to wait for almost a century after the pioneering works of Painlevé and his colleagues.
Perhaps the deeper reason for this, is the difficulty in defining an appropriate g-analog of the
Painlevé property.
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1.2 Discrete Painlevé Equations

The early appearances of discrete Painlevé equations in the literature were not in the context
of Painlevé equations. Probably the first such example is the following additive or d-discrete

equation
n

t
Tpgl +Tn+Tp1=—=+1, t,=to+dn, (n€Z) (1.4)

n

in a paper by Shohat [81] in 1939, in which unfortunately, no connection with Painlevé
equations was made. It had to wait until 1990, when Brézin and Kazakov [7] first calculated
the continuum limit d — 0 of this equation, in the context of a field-theoretical model of two-
dimensional gravity. The result was the first Painlevé equation w” = 6w? + ¢, and equation
(1.4) soon become known as d-P;. This observation initiated an exciting new research area,
extending the Painlevé world into the discrete regime, opening the hunt for new discrete
Painlevé equations.

A question of much discussion during the nineties, was what the discrete analog of the
Painlevé property should be? A first candidate, called the singularity confinement property,
was proposed by Grammaticos, Ramani and Papageorgiou [22] in 1991. Let us discuss it by
example using d-P; (1.4). Reflecting on the Painlevé property for differential equations, we
are concerned with the continuation of local solutions of d-P;. Starting with some initial con-
ditions, say z,, = p and x,,—1 = v, equation (1.4) allows for a straightforward continuation,
both in the forward time direction n — n+ 1, and in the backward time direction n+—n —1,
unless at some time ng we find z,, = 0. Let us consider the forward time direction, with
Tn, = 0 and z,_1 = 1y. Then equation (1.4) gives z,,4+1 = 0o, which is not at all problematic
as we can easily move to projective space. However when we calculate the further iterates,
we find x,,42 = 00, Tp,+3 = 0 and finally x,,44 = 00 — 0o =7, which is a singularity, in the
sense that the solution is undefined. Just as the Painlevé property forbids movable essential
singularities, the singularity confinement property entails that the singularity in the fourth
iterate is in fact an apparent one. Indeed, upon closer inspection, setting z,, = €, one finds

tng tng lng+3 tnoVo + 2d

xn0+1 ~ ) xn0+2 ~ = ) xno+3 ~ = €, xn0+4 ~
€ € tng

(e > 0)
tn0+3

and hence letting € — 0, gives a regular value for x,,,44, recovering the initial value z,,-1 = vp.
By direct calculation x5 is also well-defined and generically nonvanishing in the limit € — 0,
and we say that the singularity is confined.

Grammaticos, Ramani and their collaborators [21] used the singularity confinement prop-
erty with great success to derive many different discrete Painlevé equations. Particularly they
were the first to write down the ¢-difference equation, which is the main subject of this thesis,
given by

(fg—1*)(fg — qt?) _ (g =bit)(g — bat)(g — bst

_ (Fo-1)(Fg 1) (g~ bs)lg—bu)lg— o)
P G- adifa-®) G-l =LAl
(Fg—-D(Fg—1) 7 - )7 b5

)(g—b4t)
(9 — ) ’
f—ba qt)(f—bllqt)
F-bO(F—bs")
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where f = f(t) and g = g(t) are the dependent variables, ¢ is the independent variable, we
denote f = f(qt) and g = g(qt), and by,...,bg € C* are complex parameters satisfying the
single constraint

~ bybobgby
1= obebibs

Grammaticos and Ramani [20] originally called this equation asymmetric ¢- Py, as it was the

(1.5)

first g-difference equation whose symmetric form reduces to the sixth Painlevé equation in
the continuum limit.

By the end of the nineties there were many different discrete Painlevé equations, and there
was no method of classification known. To make things worse, the singularity confinement
turned out to be merely a necessary condition for integrability, Hietarinta and Viallet [35] first
constructed a now well known counterexample, i.e. a mapping which satisfies the singularity
confinement property but is not integrable.

The time was ripe for a new approach, and it was Sakai [77], who around the turn of
the century, inspired by Okamoto’s work [66] on the continuous counterparts in the seventies,
gave a new characterisation of discrete Painlevé equations and in particular gave a complete
classification of them. To give a rough idea of Sakai’s theory, note that the Painlevé property
implies that the solution space of Pyp can be identified with the local solution space on
any simply connected open domain in P! \ {0, 1,00}, which one can choose as small as one
pleases. Taking this idea to its extreme, we let the domain shrink to a point, at which stage
Py1 becomes an equation for germs of meromorphic functions at that point. Okamoto [66]
understood that, following such a procedure with Py appropriately rewritten in system form,
the corresponding solution space becomes an algebraic surface, called the initial value space
or space of initial conditions. Given any two distinct times and a path between them, the
sixth Painlevé equation induces an isomorphism between the two corresponding initial value
spaces, via meromorphic continuation along such path.

Sakai [77] went in the opposite direction, he started with and classified initial value spaces,
and ended up with continuous and discrete Painlevé equations as isomorphisms of these
spaces. Within this context, the fundamental role played by symmetry groups, underlying
the Painlevé equations, becomes particularly visible. We also mention the book by Noumi [63]
in this regard, as it nicely illustrates the prominent role of symmetries in Painlevé equations.
The equation under consideration in this thesis has an initial value space of Agl) surface type
in Sakai’s classification, hence the name “g-P(A;) equation”.

1.3 Global Asymptotic Analysis

Many of the linear special functions were established because of their applications, partic-
ularly in physics. Even though the Painlevé equations were initially derived from purely
mathematical considerations, they have also found their way into many different areas of
mathematical physics. Examples include random matrix theory, quantum gravity, statistical
mechanics and conformal field theory. What essentially makes the Painlevé equations useful
as models, is that we have effective methods to study global asymptotic properties of its so-
lutions. To illustrate the latter point, let us get back to the Gauss hypergeometric functions,
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which are basically the local asymptotic series corresponding to the critical behaviours of
solutions of (1.2) near any of the critical points 0, 1 or co. Quite remarkably, it is possible to
write down explicit connection formulae which relate these critical behaviours near different
critical points. We call such connection formulae global asymptotic results and we remark
that they are generally much harder to establish than their local counterparts. For a long
time it was thought that such explicit global results could only be obtained for linear special
functions of hypergeometric type.

Fokas et al. [14] define the global asymptotic analysis or simply global analysis, of for
instance the sixth Painlevé equation, as the classification of all possible critical behaviours of
solutions near the critical points 0, 1 and co, and solving the corresponding connection problem
between each of these critical points. More explicitly, the critical behaviours should typically
be parameterised by two integration constants near each critical point, and the connection
problem concerns relating these pairs of integration constants coming from different critical
points explicitly. Let us remark that the global analysis of the sixth Painlevé equation has
been completed [28]. Jimbo [42] dealt with the generic case and most of the special cases have
been dealt with by Guzzetti [24, 25, 26]. From this perspective the sixth Painlevé equation
can hence be considered “solved”. We refer to Fokas et al. [14] for an overview of the global
analysis of continuous Painlevé equations.

The history of the asymptotic analysis of Painlevé equations is vast and goes back a long
way, starting with Boutroux [6] more than a hundred years ago. On the other hand, very little
asymptotic investigations have been carried out for discrete Painlevé equations, and only one
on the global analysis of such equations. We mention two recent works which are the discovery
of the nonlinear Stokes phenomenon in d-P; by Joshi and Lustri [47], and in d-P;; by Joshi
et al. [48]. Mano [61] was the first to study the global analysis of a discrete equation, more
precisely ¢-Pyr or ¢-P(As) in Sakai’s classification. Mano’s work can be considered a g-analog
of Jimbo’s [42] classical work on the sixth Painlevé equation. In particular he completes the
global analysis for g-Pyr in the generic case, up to writing down the connection formulae in
explicit form. In this thesis we are concerned with the global analysis of the ¢-P (A1) equation,
and it is hence the second work of this kind. So far we have not explained what methods
allow us tackle the global analysis of Painlevé equations, this is where a third characterisation
of Painlevé equations comes into play.

1.4 The Isomonodromic Deformation Method

Initially Painlevé’s classification was incomplete, as the sixth Painlevé equation was over-
looked. Fuchs [15] derived the missing equation, from a very different viewpoint, which lies
at the foundation of the isomonodromic deformation method. Fuchs considered the generic
linear differential equation of second order, say in z, with four regular singular points z = 0,
z=1, 2z =00 and z = (. He was interested in deformations of the coefficients in the equa-
tion, by varying the location of the fourth regular singular point z = {, which preserves the
associated monodromy. He observed that in such case, the deformation of the coefficients is
characterised by a second order nonlinear differential equation, the sixth Painlevé equation.
In particular Fuchs showed that there must exist an accompanying linear equation, involving
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differentiation with respect to ¢, which is consistent with the second order regular singular
equation. Such a pair of equations is called a Lax pair nowadays.

Using this Lax pair, one can construct a mapping, from the solution space of the sixth
Painlevé equation, to the monodromy space of Fuchsian equations with four regular singular
points. That is, the monodromy data are integrals of motion of the sixth Painlevé equation.
This mapping, often referred to as the monodromy mapping, is part of the celebrated Riemann-
Hilbert correspondence. Though this correspondence is a transcendental one, it is possible to
evaluate it in the limit where ¢ approaches one of the critical points. That is, one can explicitly
relate the critical behaviour of solutions near a critical point, with corresponding monodromy
of the associated linear equation. It is this property, which allows for the connection problems
to be solved explicitly.

Let us remark that ¢-Py1 was first derived by Jimbo and Sakai [43], analogously to Py, by
considering the isomonodromic deformation of a Fuchsian g-difference system. It was Yamada
[85] who first derived a Lax pair associated with ¢-P(A;), which will the focus of intense study
in this thesis.

1.5 Outline of Thesis

We start our journey with a review of some of the fundamental aspects of discrete Painlevé
equations in Chapter 2, specialised to ¢-P(A;). We discuss the confinement of singularities
for solutions of this equation, and delve deeper into some of its algebro-geometric aspects
within Sakai’s theory. In particular we consider the initial value space of the equation, which
allows us to define what we actually mean with a ¢-P(A;) transcendent. In fact we consider
two viewpoints, that of solutions with discrete time, and that of meromorphic solutions on a
connected open domain. We set up the basic analytic theory necessary to discuss the global
asymptotic analysis of ¢-P(A7), and introduce its symmetric form, which, in the continuum
limit, reduces the Painlevé VI.

In Chapter 3 we concern ourselves with the asymptotic analysis of ¢-P(A;) transcen-
dents near the critical points ¢ = 0 and ¢ = oco. We first follow the method of dominant
balance, which gives an autonomous sytem for the leading order behaviour. We identify
this autonomous system as a QRT mapping, which allows us to parameterise its solutions
completely. The generic two-parameter solution involves complex powers, and there are two
one-parameter families which involve logarithms. We show that, associated with the generic
solutions of the autonomous system, there exist full asymptotic expansions of solutions of the
q¢-P(A;) equation. These expansions are convergent and hence define true solutions of our
equation of interest. We tabulate all the different critical behaviours obtained, both for ¢-
P(A;) and its symmetric form. We then calculate the continuum limit of the different critical
behaviours on a formal level and show that they coincides with the known ones for the sixth
Painlevé equation.

We wish to relate the critical behaviours near ¢ = 0 and ¢t = oo, i.e. solve the connection
problem, using the isomonodromic deformation approach. For this we first discuss some
of the classical concepts involved, first worked out by Birkhoff [5] and his school, such as
Fuchsian g-difference equations and monodromy, in Chapter 4. We then interpret Yamada’s
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Lax pair within this framework, and work out in what sense monodromy is preserved under
the ¢-P(A;) deformation. This is a nontrivial task, as Yamada derived his Lax pair from
considerations different to isomonodromy. Having set up all the analytic aspects of the Lax
pair, we are ready to combine it with the tabulated critical behaviours.

The final part of the thesis, Chapter 5, is concerned with explicitly calculating the mon-
odromy of Yamada’s Lax pair associated with different critical behaviours around ¢t = 0 and
t = 0o, which is often called the direct monodromy problem. We find that in both asymptotic
limits ¢ — 0 and ¢ — oo, the monodromy problem factorises into two copies of a simpler
one, which we call the model equation. The integration constants, parameterising the critical
behaviours, enter the two copies of the model equation naturally. The explicit solution of
the monodromy problem for the model equation, then yields an explicit parameterisation of
the monodromy of Yamada’s Lax pair in terms of integration constants characterising the
critical behaviour at t = 0, and a similar explicit parameterisation in terms of the integration
constants characterising the critical behaviour at ¢ = co. Finally we obtain explicit relations
between the critical behaviour at ¢ = 0 and t = oo of ¢-P(A;) transcendents.

1.6 Notations and Conventions

We use N to denote the natural numbers including 0, and we use P := P! to denote the
Riemann sphere, as we will only be concerned with complex projective space of dimension
one. Recall that P is obtained by taking the quotient of C2\ {(0,0)}, with respect to the
equivalence relation

(.’El,IEQ) ~ (&7/17.17,2) — EI)\E(C [(331,332) = ()\17,1,)\1,‘/2)] )

and we denote the equivalence class corresponding to (x,z2) by [z1,z2]. We identify C C P
via x ~ [z, 1] for x € C and denote oo := [1,0] € P. For any subset V' C P, we write

V*=V\{0}.
Throughout this thesis we denote by ¢ a complex number with 0 < |¢| < 1. We write
={":ney, “to={"to:ne}, (tx<cP)
and for any Ty C P,

To=J ¢t
to€To

We are concerned with the g-discrete Painlevé equation ¢-P (A1) (1.2), whose parameters we
compactly denote by b = (by, ..., bs), with corresponding parameter space

B, = {b € C** : subject to (1.5)}.
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Sometimes we like ¢ to vary with the parameters b, and we write

«8 _ b1babsby

B={beC*”}, q(b) = hebebobs
Given some specific parameter values b, € B,, we write ¢-P(A1)(b.), to refer to equation
(1.2) with b = by, if we wish to stipulate the particular parameter values.

The natural domain for a g-difference equation, which we appropriately call g-domain, is
a nonempty set 7' C PP, invariant under multiplication by ¢, i.e. ¢I" =T. We call T" a discrete
q-domain, if for any choice of ty € T, we have T = ¢”ty, in which case it is custom to write
fs = f(ts) and gs = g(ts) where ts = ¢°to for s € Z. The opposite interpretation is to assume
T is a nonempty connected open subset of P, which we call a continuous q-domain. In this
case one is often interested in solutions (f(¢), g(t)) which depend meromorphically on ¢. This
interpretation is particularly appropriate in view of the so called continuum limit of ¢-P (A1),
discussed in more detail in Section 2.5.1.

1.6.1 Asymptotic Notation

As asymptotics play an important role in this thesis, and their exist various different conven-
tions concerning asymptotic notation in the literature, let us fix ours once and for all. We
are only concerned with asymptotics of complex functions on subsets of the Riemann sphere.
Let D C P and tg € P be a limit point of D. Let f(t) and g(¢) be complex functions which
contain D in their domain. We then say that f(¢) is of order g(t) as t — to in D, if there
exists a ¢ > 0 and a punctured open environment U of ¢y in P, such that

LfB)] < clg(t)], (1.6)

holds for ¢ € U N D. We denote this symbolically using Landau big O notation [2, 57],

f(t) =0(g(t), (t—to)

in D. Similarly we say that f(t) is of order less than g(t) as t — 0 in D, if for every ¢ > 0,
there exists a punctured open environment U of ¢y in P, such that (1.6) holds for t € U N D.
We denote this symbolically using Landau small o notation,

ft) =o(g(®), (£ = to)

in D. Sometimes we find it more natural to use Hardy’s notation [30],

f) < 9(t) = f(t) =0(g(t), [f{t)<g{t) < [f(t)=o(g(t)).

Let us also compare this with Vinogradow’s asymptotic notation [84], which reads f(t) < g(t)

iff f(t) = O(g(t)).
We say that f(t) and g(t) have the same order of magnitude as t — to in D, if both
f(t) =0(g(t)) and g(t) = O(f(t)) as t — tp in D, which we denote by

f(t)=g(t), (t—to)
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in D. Finally we say that f(t) is asymptotic to g(t) as t — to in D, if

1)

t—to,teD g(t)

which we denote symbolically by

f(t) ~g(t) (t = to),

in D. If the set D itself is a (punctured) open environment of ¢y, then we do not specify it
explicitly. As an example, if f(t) is given by a convergent power series expansion about ¢ = 0,

f(t) = Z fnt",
n=0

then we write for instance
f(t) = fo— fit =0(t?), (t—0)

and equivalently
ft) = fo+ fit +O(t?). (t—0)






CHAPTER 2

Analytic and Algebro-(Geometric
Aspects

As the Painlevé property is intrinsically related to meromorphic continuation of solutions, we
start this chapter by considering meromorphic continuation of local solutions of the ¢-P(A;)
equation on continuous g-domains. We then consider the singularity confinement property for
q-P(A;), which generalises this to continuation of solutions on discrete g-domains. In Section
2.2, we delve into the algebro-geometric side of the story, following Sakai’s method [77]. After
this, we are in position, to make precise the notion of solutions of ¢-P(A4;), in Section 2.3.
We discuss two different interpretations, one of discrete solutions, and one of meromorphic
solutions. We then set up the global asymptotic analysis of the ¢-P(A;) equation, considering
both interpretations, in Section 2.4. We conclude this chapter with the so called symmetric
form of the ¢-P(A1) equation, and its continuum limit to Pyg, in Section 2.5.

2.1 Meromorphic Continuation

Let us recall the following well-known fundamental result concerning the sixth Painlevé equa-
tion.

Theorem 2.1.1. Any local solution of Pyy, i.e. meromorphic solution on a (simply) con-
nected open subset of P\ {0,1,00}, can be meromorphically continued to an unique solution
on the universal covering space of P\ {0,1, 00}.

Proof. See for instance Hinkkanen and Laine [37] and Joshi and Kruskal [45]. O

In the above theorem, the Painlevé property manifests itself in the meromorphic contin-
uation of solutions. A naive g-analog for ¢-P(A;) would be the following lemma.

Lemma 2.1.2. Let b € By, and f and g be meromorphic functions on a connected open set
To C C*, such that To N q Ty # 0 and (f,g) satisfies q-P(A1) on this intersection. Then
there exists an unique meromorphic continuation of this solution to the continuous q-domain
T = ¢*Ty.

11
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Proof. The proof is elementary, we simply use the ¢-P(A;) equation to extend the domain
of f and g recursively, both in the forward time direction ¢t — g¢t, and the backward time
direction t s ¢~ 't. To make this explicit, let us rewrite ¢-P(A1) as

g = 1209~ )pa(g) — gt (fg ~ Dpr(9/1)
(fg = t*)pa(g) — at*(fg — Dpr(g/t)

75— LU —a)a(f) — a*t'(fg ~ Dpr(f/(at)) (2.1b)
t2(fg — at*)p2(f) — ¢*t*(fg — Dpa(f/(qt))

where the polynomials py(z), p2(z), p1(x), p2(x) are defined by

(2.1a)

p1(z) = (1 = byz)(1 — bex)(1 — b3z)(1 — byx), (2.2)
p2(x) = (1 = bsx)(1 — bex)(1 — byz)(1 — bgx), (2.3)
pi(x) = (1= x/b1)(1 = 2/by)(1 — x/b3)(1 — /ba),
p2(z) = (1 —2/bs)(1 — x/bg)(1 — x/b7)(1 — x/bg).

Next we would like to use the first equation (2.1a) to extend the domain of f to Ty U ¢Tp.
Note that the numerator of the right-hand side of (2.1a) is divisible by g, hence the only
obstacle would be for the denominator of the right-hand side of (2.1a) to be identically zero.
If this would be the case, then, using that f and g satisfy ¢-P(A1) on Ty N ¢~ Ty and Ty
is connected, it follows immediately that (f,g) = p; on Ty for some 1 < ¢ < 8, where the

“singular” solutions p1,...,ps are defined by
p1 = (prt,bit), p2 = (pt, bat), 3 = (pst, bst), pa = (prt, bat), (2.4a)
ps = (35, bs), p6 = (5+b6), pr = (5, b7), ps = (55, b8)- (2.4b)

In any case, unique meromorphic continuation to ToUqTy is guaranteed. Similarly the second
equation (2.1b) can be used to extend the domain of g to Ty U qTy. We proceed inductively
to extend the domain of f and ¢ to ¢"Tp. Obviously a similar approach in the backward time
direction allows us to consequently extend the domain of the solution to ¢%Tp. O

Let us emphasise that the connectedness of Ty in the above lemma is crucial. If we drop
this assumption, local meromorphic solutions might not have a meromorphic continuation to
the whole g-domain. This is why we demand that continuous ¢g-domains are connected.

2.1.1 Singularity Confinement

The result of Lemma 2.1.2 holds for a large class of g-discrete equations, many of which
would not be considered integrable. Indeed, what makes the ¢g-P(A;) equation special is
that, quite remarkably, unique continuation of solutions holds even on discrete g-domains.
That is to say, take any ty € C* with initial values (fp,g0) € P x P, not equal to one of the
points p; . ..pg with ¢t = o as defined in (2.4), then there exists a unique continuation of this
(albeit initially trivial) solution to q%to. Note that it is a priori unclear what is meant with
continuation beyond points on ¢ty where the ¢-P(A1) equation becomes singular. This is
where singularity confinement comes into play.
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Generally speaking, a singularity of a discrete mapping is an apparent loss of information
where, for instance, a curve of initial values gets mapped to a point under the iteration.
The singularity is said to be confined, if this information is recovered after taking a sufficient
number of further iterates with the use of a certain continuity argument we discuss by example
below. A discrete mapping is said to have the singularity confinement property if all its
singularities are confined. Grammaticos, Ramani and collaborators, see the overview [21] and
references therein, have used this property with great success in deriving many interesting
integrable mappings and more specifically discrete Painlevé equations.

As an example, let us have a look at the case (fo,90) = (fo,b5) with generic fo € P.
From (2.1) we obtain f; = b5_1, and hence both gy and f; are independent of the initial value

fo- When trying to calculate g1, we find that the right-hand side of (2.1b) takes the form
3
saw a resolution to this obstacle. Let us perturb the initial conditions by introducing a small

at which stage further iteration of the solution seems hopeless. Grammaticos et al [22]

parameter e, setting (fo, g0) = (fo, b5 + €). Calculating f; and g; again, we find
fl :b5_1+0(6)7 g1 :Gl(ant;b)+O(€)v

as € — 0, for some rational function Gi(fo,%o;b), which is non-constant with respect to fj.
At this point the singularity is said to be confined, as not only letting ¢ — 0, we have a
sensible continuation by setting g1 = G1(fo,%0; b), but also the initial value fj is recovered as
g1 depends on it.

We write the corresponding singularity pattern symbolically as
R _ S —
(fo, bs)r=> (b5, b5)-= (b5, 91), (2.5)

where we think of R = R(t) as the mapping sending (f,g) to (f,g) and S = S(t) as the
mapping sending (f,g) to (f,g). The singularity patterns of the ¢-P(A;) equation can now
be written as

R S
(vab]) H(%vb‘]) '_)(%791)7
(fo, bit) =5 (8, bit )= (L, 1),
S R
(bijvg()) H(%vbj) '—>(f27bj)v
(Lt 90)->5 (Lt bty (fa, bit),

for i € {1,2,3,4} and j € {5,6,7,8}, where for instance the last one with ¢ = 1 is obtained
by considering f; = %t and generic gg € P. Also note that the singularity patterns in the
backward time direction ¢t — ¢~ 't are obtained simply be reversing the arrows in the above
equations and replacing R and S by R~! and S~ respectively. In particular all singularities
are confined and hence the ¢-P(A;) equation satisfies the singularity confinement property.
We put these observations on a more rigorous mathematical ground by discussing the algebro-
geometric aspects of the ¢g-P(A1) equation in Section 2.2.
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2.2 An Algebro-Geometric Interpretation

In this section we work out the initial value space of the ¢-P(A;) equation in Sakai’s frame-
work.

2.2.1 The g-P(A;) Mapping
Recall that any polynomial P(x,y) € C[z,y] can be homogenised by defining
Ph(ay,ay,y1,0) = 27" Plan 21 [y2), di = dog,(P),  dy = deg, (P),
and hence used to define a mapping P" : C2 x C?2 — C which satisfies

Ph(()\xl‘l,)\x:tg), ()\yyla)\yy2>) = Agm)‘gyph((xlva)v (y1,y2))7

for Az, Ay € C*. We define the locus of P in P x P by

U(P) = {(x,y) € Px P: P"((x1,22), (y1,92)) = 0},

where we used shorthand notation x = [z1, 2] and y = [y1, y2]. Next given a rational function
R(z,y) € C(x,y), let us write R(x,y) = P(z,y)/Q(z,y) where P and @ are polynomials
without common divisors. Assuming P and @) have the same degrees in x and y to make the
discussion easier, we define

R:PxP--» P, (X> Y) = [Ph(($1,$2), (y1,y2)),Qh((£U1,332), (y1,y2))],

which is well-defined on the complement of the indeterminacy locus of R in P x P, defined by
I(R) :=1(P)NI(Q), i.e. the intersection of loci of P and Q.

To put the singularity confinement property in an algebro-geometric perspective, recall
that for ¢ € C*, we denote by R = R(t) the rational mapping which sends (f, g) to (f,g). More
precisely R = (R1, Rs), where Ry = R1(f,g) € C(f,g), and Ry = Ro(f,g) = g, with R1(f, g)
given by the right-hand side of (2.1a) divided by g. Note that we can also easily construct an
inverse of R by writing f in terms of f and g, using the first equation of ¢-P(A1). We write
R™' = (R{Y RyY) with RT' = R{Y(f,9) € C(f,9) and Ry' = Ry (f,9) = g. The rational
mapping R is called birational as it has an inverse rational mapping. Similarly S = S(t) is the
birational mapping which sends (f,g) to (f,g). We now think of ¢-P(A;) as the birational
mapping given by the composition 7 (t) := S(t) o R(t).

Let us consider Ry(t) as a mapping from P x P to P. An easy calculation shows that, for
generic t, its indeterminacy locus is given by

I(R1(t) = A{p1(t), ... pa(t),p5, ... s}, (2.6)

where the p; are as defined in (2.4), and we identified C> C P x PP as usual. We restrict our
discussion to generic values of the parameters b and t € C* here. The singularities p; of the
mapping R are often referred to as base points. At this point there is an invaluable tool from
algebraic geometry which allows us to resolve these base points, called the blowup. The idea
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is to replace the, in this case, algebraic manifold P x P for a larger one, by blowing up the
base points, and lifting the mapping R to it. Before we enter into the details the blowup,
note that the indeterminacy locus of Sy is given by

1(S2(t)) = {P1(8), - - P4(t), 5, - - - P} (2.7)

where pj(t) = (it,b;t) for 1 <i <4 and pj =p; for 5 <j <8.

2.2.2 The Blowup Procedure

As we are just interested in the resolution of base points in two-dimensional complex man-
ifolds, we only consider the blowup procedure of such spaces. We keep our discussion brief
and refer the interested reader to Duistermaat [13], where a lot of standard machinery from
algebraic geometry is explained in the context of discrete integrable systems. Let us start
with the simplest example of blowing up the origin in C2. Each point z € C2, defines an
unique line through the origin and hence a point in projective space P, except when z = 0.
We define

BoC? = {(2,1) € C*> x P : 2 lies on I}
= {((z,9), [l1,12]) € C* x Pz 2ly =y},

and define the projection map my : BoC? — C? by forgetting the second coordinate. We refer
to BoC? as the blowup of C? at the origin and define the exceptional divisor by Ey = 7161(0).
From a set-theoretical point of view all we did was replace the origin by a copy of P, however
ByC? can in fact be made into a complex manifold such that the projection map becomes a
holomorphic mapping. We do this by defining an atlas consisting of two charts (Uy, ¢1) and
(Ua, ¢2), where

Ui={(z,1) € BC*:1; #0}, (i€ {1,2})

with

v1: U1 — Cza (('x:y% [llalQ]) = ($7l2/l1)7
p2: Us = C2, ((2,9), [, o)) = (L /12, y).

We use the constructed atlas to induce a topology on ByC? and turn it into a complex
manifold. It is easy to check that this is a valid construction as all the transition maps are
holomorphic and that the projection map becomes a holomorphic mapping. It is often useful
to work with the inverse charts, given by

T = Iy, T = T2Y2,
Y = T1yY1, Y =192,
L= [1,], L= [z2,1],

where ¢1(($7y)al) = (931,3/1) and ¢2((1"7y)5l) = (932,3/2)a for (xl’y1)7(x27y2) € C% Let us
denote two special points of the exceptional divisor Ey by 0y = (0, [0, 1]) and cog = (0, [1, 0]),
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where the 0 subscripts emphasise that we blew up the origin. Then, in the first chart,
{z1 = 0,1 € C} parameterises Ey \ {Op}. Similarly, in the second chart, {yo = 0,29 € C}
parameterises Fy \ {oog}.

Given an arbitrary two-dimensional complex manifold M and a point p € M, we can now
easily construct the blowup of M at p, by working locally in a chart containing p. Firstly we
construct at chart ¢ : U — D, where p € U C M and D C C? open, such that o(p) = 0.
Next we define the blowup of D at the origin simply as BoD = m 1(D) and the corresponding
projection mp : BoD — D by restriction. Lastly we glue M* := M \ {p} and ByD together
by identifying U \ {p} and BoD \ Ey via 7! o ¢, giving the complex manifold B,M with
an associated projection mapping 7 : B,M — M defined in the obvious way and we call
E = 7~!(p) the exceptional divisor. We leave it to interested reader to work out the analytic
details and in particular prove that the obtained blowup is independent of the choice of chart
© up to projection preserving isomorphism. Note that the projection 7 is an isomorphism
onto M*, when restricted to B,M \ E, and we therefore identify M* C B, M.

To end our discussion, we would like to note that, as the blowup procedure is a local
operation, given distinct points p,q € M, the order in which we blow up M at p and ¢ is
irrelevant. That is, let B,B,M be obtained by first blowing up M at ¢ with corresponding
projection m, and subsequently at p with corresponding projection m,, and let © = m,, 0w, be
the composed projection on M, which we refer to as total projection from here on. Similarly
let B,B,M be obtained by blowing up at p and ¢ in opposite order with corresponding
total projection 7’ on M. Then there exists an isomorphism ¥ from B,B,M to B,B,M
such that m = 7’ o W. Hence, given a two-dimensional complex manifold M and distinct
points p1,...,p, on it, we can now safely speak about the manifold and corresponding total
projection 7w obtained by blowing up M at pi,...,p,, with associated exceptional divisors
E;=7n"1(p;) for 1 <i<n.

2.2.3 The Initial Value Space

We are now in the position to resolve the base points of the birational mappings R(t) and S(t)
and hence of the ¢-P(A;) mapping. Let us, for ¢t € C*, define X (¢) as the complex manifold
obtained by blowing up P x P at the eight base points in the indeterminacy locus (2.6) of
R1(t). We denote the corresponding total projection by mx = mx ;) and exceptional divisors
by E; = 7y (p;) for 1 < i < 8. Similarly let Y (¢) be the complex manifold obtained by blowing
up P x P at the eight base points in the indeterminacy locus (2.7) of S1(t), with corresponding
total projection by my = my ;) and exceptional divisors E! = W;l(pé) for 1 <i<8.

Using machinery from birational geometry, we can lift the birational mapping R(t) to an
isomorphism R(t) from X (t) to Y (t), and the birational mapping S(t) to an isomorphism
§(t) from Y'(t) to X(qt), such that the diagram 2.1 commutes [77]. We do not set up this
machinery here but instead discuss these lifts more heuristically in particular charts of the
domains and co-domains involved.

But before discussing R(¢) and 5(t) in more detail, note that correspondingly the ¢-P(A;)
mapping is lifted to the isomorphism 7 (t) := S(t) o R(t) from X(t) to X (qt) for t € C*. In
particular the complex manifold X () can be considered the initial value space of our equation
in consideration, and following Sakai [77], this manifold is called an Agj)—surface, hence the
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R(t
X() & Y(t) X(qt)
TX(t) Y () TX(qt)
R(t) S(t
PxP--------- >PXxP--------- >PxP

Figure 2.1: Commuting Diagram

name “q-P(A;) equation”. We study this surface in more detail in Section 2.2.4.

Recall that the birational mapping Ry (t) is not well-defined at (f,g) = (b5 ', bs). In X (t)
this point has been blown up to the exceptional divisor E5. Let us consider the following two
inverse charts, which cover Fs5 in X(t),

f=bst = fa, f=b5' = frags0,
g —bs = f51951, g — bs = gso,
Is = [1, g51], Is = [f52,1],

both defined for (f51,g51) and (fs2,¢52) in an open neighbourhood of (0,0) containing {0} x
C and C x {0} respectively. Writing U; and Us for the open subsets of X(¢) they cover
respectively, we find that U; N E5 is parameterised by { fs1 = 0} and Us N E5 is parameterised
by {g52 = 0}. We use 05 and oos to denote the elements of the singletons Es \ U; = {05} and
E5 \ U2 == {005}

So let us explore what the mapping ﬁ(t) looks like on U;. We use the coordinates f51 and
g51 to express Ry = f51951 + bs and, using (2.1a),

gt (fg —12) f51951(9 — be) (g — b7)(g — bs) — fs1(f51951 + b5 ' gs1 + b5)bibabsbat*pi(g/t)

 (fg—12)f51951(9 — bs)(g — br)(g — bs) — fa1(fsrg51 + bg 'gs1 + bs)brbabsbat*py(g/t)

:th(fg — t*)gs1(g — bs) (9 — b7)(g — b) — (fsrgs1 + bs 'gs1 + bs)brat*pr(g/1) (2.8)
(fg—12)gs1(g — b6)(g — b7)(g — bs) — (fs1951 + b5 " gs1 + bs)brat*pi(g/t) '

gl

where we temporarily use the notation b4 = bibabsby, the second equality follows from
dividing out the common factor f5; in numerator and denominator, and only the relevant
factors (g — bs) and (fg — 1) have been rewritten in terms of fs; and gs;. Note that the
indeterminacy at ps has been resolved, indeed, because of the cancellation of the factor f51,
the numerator and denominator do not have common zeros in a neighbourhood of F5NU; in
U;. Specialising to the exceptional divisor by setting f51 = 0, we find

_ qt>(1 — 12)gs1(bs — bg) (b5 — b7) (b5 — bg) — (b5 ' gs1 + bs)b1babsbat*p1(bs /1)

bs Ry — -
(1 —12)gs51 (b5 — b6) (b5 — br)(bs — bs) — (b5 ' gs1 -+ b5)b1babsbatdpy (bs/t)

in particular the only point on E5 NU; which gets send on the exceptional divisor Ef in Y (¢),
i.e. such that R; = bgl, is parameterised by (f51,951) = (0,0), which is the point cos. In
fact, considering (2.8), we find that all the elements of U; which get send on the exceptional
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divisor Ef in Y (t), are parameterised exactly by gs1 = 0, as the right-hand side of (2.8) equals
1 iff g51 = 0, in U;. To understand where such elements get mapped to in Ef, we have to
work in inverse charts on Y (¢) which cover Ef. We choose charts

— _ —/ — _ —/
F=b5"=Fs, f=b5" = F5ag50,
—/
g—bs = f51951, g —bs = gy,
—/
lg = [ngl]’ {/'3 = [f52’ 1]7

covering open subsets Uj and Uj of Y (t) respectively and we denote Ef \ U; = {05} and
EL\ Uj = {oof} as before. To explore R in the first chart, we set

Ry = 7{51 + 651, Ry = 7519/51 + b5,

which gives

(qt> = 1)(fg —t*)g51(g — be)(g — b7)(g — bs)
(fg = 12)g51(9 — b6) (g — b7)(g — bs) — (fsrg51 + b5 " g51 + bs)brbabsbatpu (g/1)’
(fg —t*)g51(9 — b6) (g — br)(g — bs) — (f51951 + b5 'g51 + b5)brbabsbat'p1(g/t)
(gt = 1)(fg — t*)(g — bs)(g — b7)(g — bs)

—/
f51 =

951 = bs f51
Note that ﬂ,l = 0 parameterises El N Uy, hence it is clear that gs; = 0 parameterises the
points in Uy send to Ef by R. Specialising to g5; = 0 we find f/51 =0 and

r_ —b2f (bs — b1t)(bs — bat)(bs — bst)(bs — bat)
951 = =055 1) (s for + L — £2)(by — bo) (b — b7)(bs — bs)

In particular setting f5; = 0 we find g5, = 0, that is, the point cos € X (¢) is send to oof € Y (t)
by R(t). Similarly we find §(t)(oo’5) =305 € X (gt), hence T (t)(oco5) = oof and it is easy to
see that

EsnN T(t)71<F5) = {005}

To put things in perspective, by exploring the mapping R(t) in different charts of X (¢) and
Y (t), we find a canonical way to lift it to a mapping R(t) from X(¢) and Y (t), as we did
above for two specific charts around E5 and EX.

2.2.4 Sakai’s Theory

In this section we delve ourselves more deeply into the geometric aspects of the ¢-P(A;)
mapping, following Sakai [77] closely. While most of the thesis is self-contained, we use
the algebro-geometric machinery, which can be found in Sakai’s exposition [77] on discrete
Painlevé equations, without setting it up ourselves here. Let us also mention Kajiwara et al.
[52] for an overview of the subject. We note that Hay et al. [32] work out Sakai’s method
explicitly for ¢-P(A;) as well.
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The Induced Picard Group Isomorphism

Recalling that the manifold X (¢) was obtained by blowing up P x P at the eight base points
p1(t),...,pa(t),ps,...,ps, the corresponding Picard group takes the form

Pic(X(t)) = Zhy + Zhg + Zey + . .. + Zes,

where e; corresponds to the linear equivalence class of the exceptional divisor E;, for 1 < ¢ < 8,
and hy and h, stand for the linear equivalence classes of 7' (L) and 73" (L) respectively
with Ly and Ly any lines f = constant and g = constant in P x [P respectively not containing
base points. We define the symmetric bilinear intersection form - on the Picard group by
setting the “intersection numbers” of the generators equal to

hy-hy=0, hg-hg =0, hy-hg=1, (2.9)

hy-ei =0, hg-e; =0, e -e =—1, ei-ej =0,

for 1 <i,j <8 with ¢ # j. Equations (2.9) remind us of the fact that for instance (different)
lines with f = constant do not intersect, but any line with f = constant intersects exactly
ones with a line given by g = constant. Similarly the Picard groups of Y (¢) and X(qt),
equipped with intersection forms, are given by

Pic(Y (t)) = Zh’? + Zhy + Zeéy + . . . + Zeg,
Pic(X(qt)) = Lhy + Lhg + Zey + ... + Zes.

Now the isomorphism ﬁ(t) induces an intersection preserving isomorphism ¢r between the
Picard groups of X (t) and Y (), i.e. satisfying

or(c1) - dr(c2) = c1 - ¢,

for ¢1,co € Pic(X ().

It is fairly straightforward to calculate ¢r explicitly. First of all, as R leaves the g-coordinate
invariant, i.e. Ra(f,g) = g, we immediately obtain ¢r(hy) = hy. Next let us consider the
line Ly in P x P given by g = bs. The lift of Ls is parameterised by gs1 = 0 in X(¢) and
the corresponding equivalence class in the Picard group is given by hy — e5. Now recall E(t)
sends {gs1 = 0} to {f5; = 0} in Y (¢), and we infer ¢g(hy — e5) = 5. Using the linearity of
or we find ¢r(es) = h’g — ef. The other exceptional divisors are handled essentially the same
and we find

or(hg) = hy,  ¢rle) =hy —e. (1 <i<8)

To calculate ¢r(hy), let us write
¢r(hf) = uhy + vhy 4+ wiey + ... + wgeg.
As ¢pg is intersection preserving, we have

u = ¢r(hg) - hy = ¢r(hys) - ¢r(hy) = hy-hy =1,
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and, for 1 <i <8,

wi = ¢r(hf) - (—¢;) = ¢r(hy) - drlei —hyg) = hy - (e;i — hy) = —1.

Furthermore
0=hys-hy=¢r(hy) ¢r(hy) =2v -8,

giving v = 4 and hence
¢R(hf) = h7+ 4h; — (6/1 + ...+ eé)

In summary ¢pr acts on the Picard group Pic(X (¢)) by

¢r: hy—= b +4hy — (e + ... e5),

hg — hy,
e hy — €] (1<i<8)

Completely analogous we find that ¢g acts on Pic(Y (¢)) by

. / —
hlgl—>4h7+hg—(€1+...€8),
e; — hy — &, (1<i<8)

and hence ¢ = ¢g o ¢ acts on the Picard group of X (¢) by

o7 - hfr—>9h?+4h§—3(él+...ég),
th4hf+hg— (€1 +...¢es),
ei*_>3hf+hy+éi_(€1+---€8)- (1§Z§8)

Irreducible Divisors and the Agl)-Surface

Consider the bidegree (1, 1) curves §; and 2 in PxP, given by fg = t? and fg = 1 respectively,
in affine coordinates. So §; meets each of the base points p1, p2, p3, p4 once, and d2 meets each
of the base points ps, pg, p7, ps once. We let D1 and Dy be the corresponding total transforms
in X (t) of these curves respectively. The associated classes in the Picard group of X(¢), are
given respectively by

dlzhf+hg—(€1+62+€3+64), d2:hf+hg—(€5+€6+€7+eg).

To ease the notation a bit, we use, for instance, d; to denote the total transform of D; in
X (t), for any t € C*. Similarly we no longer distinguish between h; and h? notation wise.
Now D and Dy have self-intersection —2 and they are the irreducible divisors of X. The
anti-canonical divisor of X is given by

0 =—Kx =2hy+2hg—(e1+ ...+ eg),
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@)
() A @)@~ —@9—@s—ag—)
(b) BV

Figure 2.2: Dynkin Diagrams

and we have the unique decomposition § = d; + da [31]. A small calculation shows

o7(di) =di, é7(d2) = da, (2.10)

and we consider the root lattice () = Zdy + Zdo with intersection form inherited from the

Picard group. Note that d; - dy = 2 and we readily identify the intersection matrix of {d;, da}

as the generalized Cartan matrixz of Agl) type multiplied by —1, that is

di-di di-do\ _ (-2 2\ _ (2 =2

dy-dy da-d2) 2 -2) \-2 2)°
The corresponding Dynkin diagram is the graph 2.2a, with nodes d; and do connected by two
edges as dy - dg = 2.

The Weyl Group Action

Rational surfaces are intrinsically related to affine Weyl groups, see for instance Looijenga

[60]. In this Section we work out the affine Weyl group action corresponding to the Agl)

surface. We refer the interested reader to Kac [51], for an overview of the theory of affine
Weyl groups. The orthogonal complement of Zd; + Zds in Pic(X),

ot :={a € Pic(Xp) | a-dy = 0,a - dy = 0},
admits a Z-basis {a; ...ag}, where

a1 = ez —eq, ag = ez — e, a3 =eq — €3, ay =hg —eq — e5,

5 = €5 — €4, g = € — €7, 7 =e7 — €g, asg :hf—hg.
Observe that § € 6+ and we have
0 = aq + 2a9 + 3ag + day + 3as + 206 + a7 + 2a3.

The basis elements a1, ..., ag all have self-intersection —2. Furthermore we have the associ-

ated Dynkin Diagram 2.2b, of E;l) type, with nodes the basis elements, such that different

basis elements are connected by n edges, iff their intersection product equals n, for n € N.
We define reflections by

[N 07

wj : Pie(X) — Pic(X),a— o —2 Q.

(67N 0 7
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for 1 <4 <8, and the Dynkin automorphism 7 on Pic(X) by
F(hf) :hg, W(hg) :hf, 7'('(61‘) = €9_—;. (1 §z§8)

By W = W(Egl)) we denote the affine Weyl group, which is the group generated by the
reflections wi, ..., ws. Similarly the extended affine Weyl group W = W(Eél)) is the group
generated by the reflections wi,...,ws and the Dynkin automorphism m. By definition we
have an action of W on Pic(X), which of course leaves d* invariant. The action of the
generators of W on the basis elements of 6+ is given in Table 2.1, where blank entries represent
invariance. Let us note the following fundamental relations

’LUZ-2:7T2:1, TW; = W8—;T,
wiwy)® =1, (li—jl=1) wiwy = wjwi, (i —j[ # 1)
fori,j € {1,...,7}, and
wg =1, Twg = W8T,
(waws)® = (wswy)® =1, ww; = wjws. (j # 4)
| i | we | ws | w | ows | w | w | wy | ]

a1 -1 a1 + 9 ary
Qg || a1+ Qo —Q2 Qg + a3 Qg
as a9 + a3 —Q3 a3 + a4 as
Qy a3 + a4 —Qy o4 + as oy + ag
Qs o4 + O —Q5 as + Qg Qs
g o5 1+ e —0% g + o7 P
a ag + ar —Qy 051
ag Qg+ ag —Qg

Table 2.1: Extended Weyl group action on 6=+

It is easy to check that the time evolution ¢ acts on the root lattice Eél) as

O oy, (1#£4,8)
Oz4i—>044—5,

ag — ag + 20,

and hence defines a translation in the root lattice by integer multiples of §. In particular, the
equation under consideration is indeed a Painlevé equation as defined in Sakai [77]. Finally
we can explicitly write ¢ as

¢7'2840830820850840830860850840870860850880840830820310

§9208308408508830840830820860850840830870860850840S8g.
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Backlund Transformations

The ¢-P(A;) equation has various Bécklund transformations, which relate solutions of the

equation for possibly different parameter values. The full affine Weyl group of E§1) type acts

on ¢-P(A1), however we only use four Backlund transformations in this study, given by

T (f,9,b) = (f(’“),g(’“),b(’“)), (2.11)
for k € {1,2,3,4}, where
t 1 1 1
O == A=ty <> O =gl4q 2t>, FOM) = —.
(t) 0 (t) , (t) (t) o)
t 1 1 1
M) = L @y =¢f (2 G ()= £ (g% @)= -
g (t) = ; gt—tf<>7 g (t) = flazt), g (t) = ;
=" ) =1tf(; () = £ (a31) 0 = 715
with for 1 <i<4and 5<j <8,
b = b, b = b7 b = qab;, b = b,
(1) _ -1 (2) _ -1 (3) _ -1 @
bJ B b] A bJ bj ’ b] _bJ

Note that each of these transformations Ty leaves ¢(b) invariant and indeed maps solutions of
¢-P(A;)(b) to solutions of ¢-P(A;)(b®) for k € {1,2,3,4}. We remark that these transfor-
mations are not independent, for instance 7172 = 7271 = T4, and that 7> ,73 and 7T, change
the independent variable.

2.2.5 Singularity Confinement Revised

We have seen that the time evolution T can be lifted to an isomorphism T between the
initial value space X at consecutive times, such that the diagram 2.1 commutes. Singularity
confinement is now a consequence of the analyticity of 7. Indeed looking back at the example
in Section 2.1.1, we have, for fy # bgl,

T [(fobs)] = T [lim (fo, b5 +
= lim 7 [(fo, b5 + €)]
e—0
= lim 7 [(fo, b5 + €)],
e—0
where the last equality follows from the fact that the diagram 2.1 commutes, and for € # 0

small enough, (fo,bs + €) does not equal any base point. Analogously to the singularity
pattern (2.5), we have, on the level of Picard groups,

hg—€5>ﬁ>€glﬁ>h?—é5.
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2.3 Notion of Solutions

For differential equations, the notion of a solution is well defined. However there are two
interpretations for difference equations. We describe them here for ¢-P(A1).

2.3.1 Discrete Solutions

Firstly there are solutions on discrete g-domains. We call solutions on such domains discrete
solutions, or solutions with discrete time. To be precise, following Section 2.2.3, after fixing a
to € C*, we call a sequence (fs, gs)sez, where (fs, gs) € X(¢°ty) for s € Z, a discrete solution
of ¢-P(A;), if and only if

T(for9s) = (forr,gsr1). (s €T)

We say that the domain of the solution is ¢%t;. We define the discrete solution space of
g-P(A1) on "t by

Sy(to) = Sa(q%to) := {discrete solutions of ¢-P(A;) with domain ¢”to}.

As a trivial remark, since T is an isomorphism, this space can easily be identified with the
initial value space X (o).

Now we can project a discrete solution pointwise to get back to, say the classical notion
of a solution in P x P, i.e. we define

71'X(.f&gS)SEZ - (fschgg)SGZa ( scvgg) = 7"'X(ts)(fs:gs)' (S € Z)

We project the entire discrete solution space Sy(to) to obtain the classical discrete solution
space

Sc(to) := mx [Salto)] -

Note that mx now defines a bijection between Sg(to) and Sc(tp) and we often treat the two
notions of discrete solutions as the same thing under this bijection. In Section 2.2.3 we
calculated that 7A'(005) = o005, and hence (fs,gs) = o5, for all s € Z, defines a discrete
solution. Its projection is of course given by (fS, gS) = ps for all s € Z. In fact, for each of the
eight base points, there exists exactly one discrete solution never leaving the corresponding
exceptional line, or equivalently one classical discrete solution everywhere equal to it. We call
these solutions base solutions. Let us mention the following result.

Proposition 2.3.1. For generic parameter values, any discrete solution of q-P(A1), whose
value, at two consecutive times, lies on the same exceptional line, is a base solution.

Proof. In Section 2.2.3, we saw that the only element of the exceptional line F5, whose image
under the time evolution 7 remains in Es, is the element ocos5 € X. Hence, if a discrete
solution takes a value on the exceptional line Ej5 for two consecutive times, it must equal the
base solution which equals cos everywhere. The other cases are dealt with similarly. O
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Singular and Regular Solutions

Remember that the irreducible divisors Dy and D are invariant under the time evolution, by
equations (2.10). Indeed, explicitly, if (f,g) € C?2 C P x P, not equal to a base point, satisfies
fg =12 then fg =1 and fg = ¢*t>. Hence, if we take any ¢ty € C* and gy € C*, then

gs = ¢*C V%0, fo=q*t2/gs, (s€Z)

defines a solution to the equations
fg=1,
{fg =t 212

and a discrete solution to the ¢-P(A;) equation. Similarly, corresponding to the exceptional
divisor Do, we take any tg € C* and fy € C*, and set

fo="tfo, gs=1/fs, (s€) (2.13)

which defines a solution to the equations

G o

and a discrete solution to the ¢-P (A1) equation. We call these solutions singular. For all intent
and purposes, they do not form intrinsically interesting solutions of the ¢-P(A;) equation.
We often disregard them as they cause problems in the analytic analysis, especially when we
consider the analytic aspects of Yamada’s Lax pair in Chapter 4. Indeed Yamada’s Lax pair
(2.21) is singular on Dy and Ds. We will therefore denote, by

Sa(to) = S.(to),

the space of discrete solutions living on ¢%tq excluding base solutions and singular solutions.
We call its elements regular solutions. Let us write

o1 ={(f,9) € C*: fg =t*}\ {p1,p2.p3, P4}, (2.15a)
6 ={(f.g9) € C*: fg =1} \ {ps,p6,p7, Ps}- (2.15b)

Note that a regular solution can hit a base point, but it can never hit the same base point
twice consecutively, by Proposition 2.3.1. On the contrary, if we know that a solution takes
a value in gl or gg at some time, then it is a singular solution. So regular solutions never hit
the sets 51 and 52. Or described differently, Kajiwara et al. [52] call these sets “inaccessible”.

2.3.2 Meromorphic Solutions

The interpretation of meromorphic solutions turns a difference equation into a functional
equation. Halburg and Korhonen [29] show that the existence of meromorphic solutions
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defined on the entire complex plane is closely related to the integrability of d-difference equa-
tions. Barnett et al. [3] carry out a similar study for g¢-difference equations. Let us also
mentions the work by Zheng and Chen [86] and Qi and Yang [73] on g¢-difference equations
in this regard.

We are interested in a weaker notion of meromorphic solutions, namely those defined on
continuous g-domains. To be precise, fix a continuous g-domain 7" C C*, then we call functions
f(t) and g(t), or (f(t),g(t)), a meromorphic solution of ¢-P(A;), if they are meromorphic,
not identically zero, and satisfy,

(9f —t*)(gf — qt*)(g — bs)(g — bs)(g — b7)(g — bs) =
(9f = 1)(gf —1)(g — bit)(g — bat)(g — bst)(g — bat), (2.16a)
(9f —at*)@f — ) (F = b5 )(F =g ) (F = b7 )(F—b5") = B
(gf = 1)(Gf = D)(f = by "qt)(f — by "qt)(f — b3 "qt)(f — by "qt), (2.16b)

on T, which is just ¢-P(A1) rewritten slightly, where f = f(t), f = f(qt) and so on as usual.
We define the meromorphic solution space on T by

Sm(T) = {meromorphic solutions of ¢-P(A;) with domain 7T'}.

Note that for any ¢ty € T, we have a mapping 7(t9) from S,,(T) to Sc(to), defined by restricting
the domain. We say that (f,g) € S (T) covers

w(to) [(f, 9)] := (f(a’t0), 9(¢°t0))sez-

This mapping allows us to immediately translate results obtained on the meromorphic level,
to results on the discrete level. Which begs the question whether the meromorphic solutions
cover all the discrete solutions.

Question 2.3.2. Does there exist, for every ty € C*, a continuous q-domain T C C*, such
that to € T' and (o) is surjective?

As in the discrete case, we call a meromorphic solution a base solution, if it equals one of the
base points (2.4) identically. Quite interestingly, the only meromorphic solutions which cover
discrete base solutions, are the meromorphic base solutions. Indeed we have the following
result, closely related to Proposition 2.3.1, which, although easily proven, appears to be new.

Proposition 2.3.3. Assume by, bo, b3, by are mutually unequal and bs, bg, b7, bg are mutually
unequal. Let (f,g) be a meromorphic solution of ¢-P(A1), with continuous g-domain T'C C*.
If there is a tg € T, with t% #1,¢71,q72, such that, for some i € {1,2,3,4},

(f(to), g(to)) = (to/bi, bito),  (f(qto),g(qto)) = (qto/bi, qbito),

then (f(t),g(t)) = (t/bi,bit) on T, i.e. the solution is a base solution.
Similarly, if for some j € {5,6,7,8},

(f(to), g(t0)) = (1/b5,b5),  (f(qto), g(ato)) = (1/b;, bj),

then (f(t),g(t)) = (1/bj,b;) on T, i.e. the solution is a base solution.
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Proof. This can be proven using just a power series method. Let ¢ty € T, and let us discuss
the case j = 5, remarking that the other ones can be dealt with analogously. So we assume

(f(to),g(to)) = (1/b5,b5), (f(qto),g(qto)) = (1/bs, bs).

As f(t) and g(t) are meromorphic at t = ¢y and ¢ = qtg, we have converging power series

expansions
f(t) = 1/b5+f1(t*t0)+f2(t*t0)2+...,
fgt) = 1/bs + f1(t —to) + fat —t0)* + ...,
g(t) =bs +g1(t —to) + galt —to)* + ...,
g(qt) = bs + g1 (t —to) + Galt — t0)* + ...,

about t = ty. We substitute these expansions into (2.1), and compare coefficients of powers
of (t —tp). The constant terms cancel out, and when we compare the terms of order one, we
find

(1 —3)(1 — qtd)(bs — bg)(bs — br)(bs — bg)g1 = 0,
(1= qtd) (1 — *t3) (b5 — b ") (b5 — b7 1) (b5 — b5 ') f1 = 0.

Therefore g; = 0 and f; = 0. Comparing the terms of order two, we find exactly the same
two equations, with g1 and f; replaced by go and f, respectively. By induction, we easily
work out that g, = 0 and f,, = 0 for all n > 1. Therefore g(t) = b5 and f(qt) = 1/bs on T.
The theorem follows. ]

Singular, Regular and Nowhere Singular Solutions

As in the discrete case, we call a meromorphic solution of ¢-P(A;) singular, if it satisfies
either (2.12) or (2.14). Explicitly, the meromorphic solutions of (2.12) are given by

F(£) =c()8,(1)*,  g(t) = c(t) "' 1204(1) 2,

where ¢(t) is any g-periodic and meromorphic function, and 6,(t) is a ¢-special function which
we introduce properly in Section 4.1, defined by equation (4.7), see also [18]. For now, all we
require to know is that 6,(t) is holomorphic on C* and satisfies 0,(qt) = t~10,(¢). Similarly
the meromorphic solutions of (2.14), are given by

F(&) = c()thy(8)72,  g(t) = c(t) "7 0,(t)?,

where again ¢(t) any meromorphic g-periodic function. These singular solutions often form
problems in our analysis and we therefore mostly exclude them. By S, (T") we denote the
space of meromorphic solutions on 1" which are neither base solutions nor singular solutions.
We call its elements regular solutions. Unfortunately, in contrast to base solutions, it is
possible for a regular meromorphic solution to cover a discrete singular solution. We call
a regular meromorphic solution nowhere singular, if it does not cover any discrete singular
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solutions. To be explicit, a regular meromorphic solution (f,g), is nowhere singular, if for
any top € C* in its domain, (f(¢°to), g(¢°t0))sez is not a singular discrete solution. We write

S(T) ={(f,q9) € S,,(T) : (f,g) is nowhere singular}, (2.17)

for the space of nowhere singular meromorphic solutions on 7. Let us emphasise that it is
very well possible for a (nowhere singular) regular meromorphic solution, to hit a base point
at some time t = tg € T. However, by Proposition 2.3.3, it cannot hit the same base point
at time t = qlo as well. On the contrary, if a regular meromorphic solution (f,g), assumes a
value in &, or 62, at some time t = ¢, then it never escapes D; or D respectively on ¢%t,
i.e. it covers a Slngular discrete solution. Therefore, a nowhere singular meromorphic solution
never hits the sets 51 or 52

Let us note that the growth of the singular solutions is quite wild as ¢t — 0 or ¢ — oo.
Consider for instance the discrete singular solutions defined by (2.13), say with ¢yp = 1. Then
fs goes to zero like q52, whereas f,; grows like q_52 as s — oo. Comparing this with t; = ¢°,
we see that g vanishes beyond all orders of ts, whereas f; grows beyond all orders of ¢, as

s — 00. In the regular case, we do not expect such asymptotics.

2.4 Global Asymptotic Analysis

Fokas et al. [14] define the global asymptotic analysis of a (continuous) Painlevé equation as
the study of critical behaviour of solutions near critical points and corresponding connection
problem between different critical points. As an example, the critical points of the sixth
Painlevé equation are 0, 1 and oo, as these are the only points where a solution might fail
to be meromorphic and hence branching might occur. Furthermore they describe a Painlevé
equation as “solved”, when we have complete knowledge of all critical behaviours near the
different critical points, parameterised effectively, and explicit connection formulae in terms
of the parameters involved, connecting these behaviours between any two critical points. We
set out a g-analog for ¢-P(A;) of this perspective.

2.4.1 Critical Behaviour near Critical Points

Part of the global asymptotic analysis of the ¢-P(A;) equation is the study of critical behaviour
near critical points, which, on itself, is essentially a local problem. Typically we would like to
obtain a complete tabulation of different critical behaviours near a critical point. The only
points in P which are invariant under the time evolution ¢ — ¢t, are t = 0 and ¢ = co. These
are the only points where branching of solutions can occur and hence the critical points of
g-P(A1). Let us first consider discrete solutions, say living on ¢%tg. We would like an explicit
parameterisation of all possible critical behaviours near t = 0 and t = co. Following Guzzetti
[28], we symbolically denote this, for u € {0,000}, by

(fs,95) = (f*(tsicf, ), 9" (tsi c¥, &), ts =q"to,  (ts = u) (2.18)

where cf, ¢y are complex integration constants, and we wrote t; — 0 for s — oo and ¢, — 0o
for s — —oo. We consider our parametrisation, or tabulation, complete, if for every solution
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(fs,9s)scz € Sj(to), there are unique ¢, c¢§ such that (2.18) holds for u € {0,00}. We remark
that this should not be confused with the notion of completeness of the solution space, as
studied in for instance [12], for Pr.

Similarly, for meromorphic solutions on some fixed continuous g-domain 7', we symboli-
cally write, for u € {0, 00},

(f(t),9() = (f*(tci (1), c5(1)), 9" (8 ¢1(8),5(1))),  (t—=winT) (2.19)

where c{(t),cy(t) are now g¢integration constants, i.e. g-periodic functions on 7. Again
completeness entails that our parameterisation covers every element of S}*(7"). The analysis
of critical behaviour near t = 0 and ¢ = oo is the subject of Chapter 3.

2.4.2 The g-P(A;) Connection Problem

Getting back to the parameterisation (2.18), if it is complete, then for any element ( fs, gs)sez €
0

S’ (to), there exist unique ¥, ¢ and ¢§°, ¢5° such that
(f g ) _ (fo(ts;0[1)70(2))790(t5;c(1)7c(2)))7 (ts — O)
SyJIS) —
(f>(ts; e1%,¢57), 9% (ts; €17, ¢57)), (s — 00)

giving rise to the ¢-P(A;) connection problem, which constitutes determining explicit formu-
lae
C(1) = C(l)(ccfov Cgo)v C(l)O = CTO(C% 08)7 (2 20)
(2) (2) = CSO(C% Cg)v .
which are called, using the terminology in [28], connection formulae in closed form.

Of course there is a natural analog for the meromorphic case. Note that there is no
principal objection, in completing the local analysis of behaviour of solutions near critical
points, for nonlinear equations. However, generically speaking, there is no hope in solving
the connection problem for such equations. Indeed, even for linear equations, the Riemann-
Hilbert correspondence is a transcendental one. It is exactly the integrability of the ¢-P(A;)

equation, in this case the existence of a Lax pair, which gives us a technique to solve the
q-P(A;) connection problem.

2.4.3 Yamada’s Lax pair

Yamada [85] derived the following Lax pair for ¢-P(A;),

Ly: u(z,t)y(gz,t) + v(z, t)y(z,t) + w(z, t)y(z/q,t) =0, (2.21a)
Lo: ho(z,t)y(z,qt) + hi(z,)y(z,t) + ha(z, t)y(z/q,t) = 0, (2.21b)
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where the coefficients in Ly, the spectral equation, are given by

u(z,t) =p2(qz)(1 — 2/ f),
w(z,t) =qp1(2/t)(1 — qz/f),

o(z 1) =22 [q293t—2<t2 BN Ly S qu/t%m(qz)} n

1—qgz fg—1
1—qz/f 3,-4 o f—2
e G

with the polynomials p; and ps as defined in equations (2.2) and (2.3) respectively. The
coeflicients in Lo, called the deformation equation, are given by

22°p(t/g) —a(l - QZ)Pl(Z/t)} )

h0(27t) = qt2gZ(f - Z)7 hl(z7t) = (gZ - 1)t27 hZ(zat) = t2 —gz.

We call z the spectral variable and t the time or Painlevé variable. The crucial property of
the Lax pair (2.21), is that the compatibility of the spectral and deformation equation, is
equivalent to (f,g) satisfying the ¢-P(A;) equation. To illustrate this point, let us recast
Yamada’s Lax pair into system form by setting

V0= ()

which gives

Y(qz,t) = A(2,t; f,9)Y (2,1), (2.22a)
Y(2,qt) = H(z,t; f,9)Y (2,1), (2.22b)
with
Cw(z)  w(z) _Zlgzg _ZQEzg
Aat) = ( 1 B(Z)> A= (u(z/@f%(z/@ v(z/q)h2<z/q>fw(z/q>h1(z/q)) :
w(z/q)ho(2/q) w(z/Q)ho(=/q)

where we suppressed the (f, g) dependence throughout.
Now assume we have a fundamental solution Y (z,¢) of (2.22), then

Y(qz,qt) = A(z,qt; f,9)Y (2,qt) = Az, qt; [, 9)H (2, t; f,9)Y (2, 1),
Y(qz,qt) = H(qz,t; f,9)Y (qz,t) = H(qz,t; f,9)A(z,t; f,9)Y (2, 1),

which yields the compatibility condition

Alz,qt; f,9)H(z,t; f,9) = H(qz, t; f,9)A(2, t; f, 9). (2.23)

Theorem 2.4.1. The q-P(A1) equation, interpreted as a system of algebraic relations between

points (t, f,g) and (qt, f,q), is equivalent to the consistency condition of (2.22), given by
equation (2.23).
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Proof. See Yamada [85]. O

2.4.4 Isomonodromic Deformation

We give a rough sketch of how an isomonodromic deformation method can be made effective
to solve the ¢-P( A1) connection problem. We emphasise that this is just a sketch, and many
aspects have been oversimplified. Firstly note that the spectral equation Ly = Li(¢, f, g) con-
stitutes a second order linear g-difference equation in the spectral variable, with the Painlevé
variables ¢, f, g entering the coefficients. We now think of the time evolution of ¢-P(A;) as a
deformation of the spectral equation. We can associate to the spectral equation L1, its mon-
odromy m(L1), which is the connection matrix, relating canonical solutions of the spectral
equation near z = 0 and z = oo, discussed properly in Chapter 4. Now the crucial observation
is, that the monodromy of the spectral equation is preserved by the ¢-P(A;) deformation, i.e.

m(L(qt, f,9)) = m(L(t, f,g)).

Hence the ¢-P(A;) deformation is called an isomonodromic deformation, and we can construct
the monodromy mapping

M : S;(to) = M, (f,9) = m(L(-, (), 9(-))), (2.24)

where M denotes the monodromy space, and “-” indicates one can take any time one pleases.
Now let us get back to the ¢-P(A;) connection problem, described in Section 2.4.2. Using the
notation in Section 2.4.2, a method of attack to solve this problem, is to find explicit formulae

M(f?.g) :M(C?,Cg), M(f7g) :M(tho’cgo)’ (225)
which when combined, lead to
M(, ) = M(c5°, ), (2.26)

which we call parametric connection formulae, following Guzzetti [28]. Determining formulae
(2.25), requires analysing Yamada’s Lax pair in the limits ¢ — 0 and ¢ — oo, which is the
subject of Chapter 5. Using (2.26), one should be able to derive connection formulae in closed
form (2.20).

2.4.5 Further Directions

Finer aspects of the global asymptotic analysis of a discrete Painlevé equation, include study-
ing the distribution of zeros, poles, base points, and other special points of solutions on
g-domains. Furthermore special solutions, such as algebraic solutions, classical solutions and
rational solutions, should take a special role within this framework. As an example, note that
the set S (P) consists exactly of all the rational solutions, for given parameter values. An
isomonodromic deformation method might also be an effective tool to classify the algebraic
solutions of ¢-P(A7). Indeed such an approach has been made successful for the sixth Painlevé
equation with 6, = 6, = 6, = 0, by Dubrovin and Mazzocco [11], and later on for general
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parameter values by Lisovyy and Tykhyy [59].

2.5 The Symmetric Form

There are some natural conditions on the parameters b wich allow a reduction of ¢-P(A;) to
its symmetric form,

(z2 — &t?) (zz — €2)  (w—at) (z—a™'t) (@ —bt) (z — b '¢)

@i-Dez-1) ~ G-0@-cD@-d@-dan = &
where a, b, c,d € C* are complex parameters and £ € C* defines the time evolution,
t = ¢&t, x = x(t), & = x(&t), z=x (7).
We write bg = (a, b, ¢,d) and denote the parameter space of symmetric ¢-P(A;) by
Bs = {(a,b,c,d) € CYa,b,c,d # 0}.
Considering ¢-P (A1), let €2 = ¢ and assume that the parameters b satisfy
biby =&, bsby = &, bsbg = 1, brbg = 1. (2.28)

Let us write

then ¢-P(A;) takes the form

(f9=)(Fg —at*) _ (9= a2)(g —a™'€3)(g — bE2t)(g — b'620)

(fg-1D(fg—1) (9—a)lg—c g —d)(g—d) ’
(fg — a*)(Jg — ¢*) _ (J —a&20)(f —a'&20)(J — b&20)(f — b~'€20)
(Fg—1(Fg—1) F-oF —eHF-F—dh

Hence, for any solution (f(t),g(t)) of ¢-P(A;) on a discrete g-domain T = ¢%to,

z(€'ty) = f(d"to), (€M) = 9(¢"t0),  (n€Z)

defines a solution of symmetric ¢-P (A1), on the discrete {-domain T:= €2t} with ) = ¢ _%to.
On a continuous ¢-domain things are a bit more delicate. Indeed, suppose (f(t),g(t)) is a
meromorphic solution of g-P(A;) on a continuous {-domain 7. Then

z(t) = f(£21), (2.29)

defines a solution of symmetric ¢-P(A;) on T=¢ _%T, if (f,g) satisfies the symmetry condi-
tion

fO=g('). (teT) (2.30)
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Note that Backlund transformation 73 leaves g-P(A;)(b) invariant for this specific choice of
parameters, i.e.

fOM) =g,  ¢O) = fer),

also defines a meromorphic solution of ¢-P(A;)(b) on the connected {-domain 7T'. Condition
(2.29) is equivalent to 73 acting trivial on (f,g), i.e. (f©,¢®) = (f,g). In Section 3.8 we
find that the 2.30 appears naturally in the asymptotic description of meromorphic solutions.

2.5.1 A Continuum Limit

Grammaticos and Ramani [20] calculated the following formal continuum limit of the sym-
metric ¢-P(A;) equation (2.27) to the sixth Painlevé equation. We set

a=-¢, b=¢£ ==, d=¢, (2.31)

for some fixed «, 3,7,0 € C. Then, by letting £ — 1, symmetric ¢-P(A;) becomes

IRV S S SRR S W
072 xo+ 1 xo— 1 xo+t o —1 0

11 1 1 1 ,
_<t+t—1+t+1+xg—t_a:o+ )xo (2.52)
LGP (@b @b 2

t2(7f2 — 1) (xo + t) (l‘o — t) (CCQ + 1)2 (330 — 1)2 ’

which is a non-canonical form of the sixth Painlevé equation, which we refer to as alt- Py1.
Indeed, the change of variables

1—7r 9 r—w
t = = = 2.33
147’ =6 0T T (2.33)
gives Py1 in canonical form (1.1), with parameter values
0, =90, Oy=0a, 0,=0, O=7+1 (2.34)

The above continuum limit is the result of a formal calculation, based on presumed expansions

z(t;€) =0(t) + (€ — Daa(t) + (€ — 1)%x2(t) + O((€ — 1)%), (2.35)
w(€t;€) =wo(t) + (& — 1)[w1(t) + txp (1) + (€ — 1)*[wa(t) + tai (1) + 5t°25(1)]
+0((6 - 1)%), (2.36)
w(€715€) =ao(t) + (€ — Dlwa(t) — tap(t)] + (€ — 1)%[22(t) — t2 (t) + 5t°2 (1)
+tap(t)] + O((€ = 1)%), (2.37)

as £ — 1. Indeed upon substitution in symmetric ¢-P(A1), after multiplying out the denom-
inators on both sides, one easily finds that the constant terms, as well as the (¢ — 1)! terms,
cancel out. Considering the (£ — 1)? terms, we find an equation involving only zg, equivalent
o0 (2.32), after some cancellation. We infer the following result.
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Lemma 2.5.1. Let z(t;€) denote a family of meromorphic solutions of symmetric q-P(A1),
with parameter values (2.31), on continuous {-domains T'(§), for & € Q, where Q C {z €
C* : |z| < 1} such that 1 € Q. Given a non-empty open set D C C* in the t-plane such that
D CT(&) and x(t;€) analytic int on D, for & € Q close to 1, and (2.35) holding uniformly
mtonD as & — 1 in Q, for some complex functions xg,x1,x2 on D. Then

t) = i t:
wo(t) SHE?EQ:U(@B)’

is an analytic solution of alt-Pyy (2.32) on D.

Proof. This follows from elementary complex analysis. Indeed note that, as (2.35) holds
uniformly in ¢ on D as £ — 1 in ), we immediately obtain that zg, x1 and xo are analytic on
D. Next, for any bounded open set U C U C D, we can easily derive that (2.36) and (2.37)
hold uniformly in ¢t on U as & — 1 in Q. The lemma follows. O

To get some intuition on what is happening in the continuum limit, we keep track of four
particular g-spirals in the ¢-plane, depicted in Figure 2.3a. As we are more used to working
with ¢ instead of &, we set ¢ = £ temporarily. Recall that we assume |g| < 1 and, defining ¢*
by the principal branch for s € R, we consider the g-spirals:

® 5] = g%, depicted in blue;

® 55 = —g®, depicted in red:;

® 53 = ig®, depicted in ;

® 55 = —ig®, depicted in purple;

where we think of s as a hypothetical branch cut, and the arrows on the spirals indicate the
direction of the time evolution ¢ — ¢t, running from ¢ = oo to t = 0.

From Figure 2.3a, it is clear that the hypothetical branch cut, in the continuum limit
q — 1, depends very strongly on the angle at which ¢ approaches 1 in the complex plane.
Indeed, fix a nonzero g, in the (open) unit disc and consider the corresponding picture (2.3a).
Now say we let ¢ vary along ¢® on the inside of the unit disc, then the g-spirals in (2.3a)
remain completely invariant. In particular letting ¢ approach 1 along ¢&, the resulting ¢-plane
still has the spiral —¢® as a hypothetical branch cut. As such branch cuts are highly non-
standard in the study of complex differential equations, we only consider continuum limits
in which ¢ approaches 1 tangentially to the real axis in the unit disc. We denote such a
limit by ¢ — 1~. However, we would like to note that there is principally nothing wrong
with continuum limits where ¢ approaches 1 from a different angle. In this context we would
particularly like to mention Sauloy’s thesis [78], in which he works out such continuum limits
rigorously for Fuchsian linear ¢-difference equations, including their monodromy.

Note that, in Lemma 2.5.1, we did not specify any angle at which ¢ approaches 1 in the
continuum limit. However this lemma only deals with the local problem of convergence away
from critical points.
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Figure 2.3: Continuum Limit in Pictures
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From now on we consider the case where ¢ — 17, i.e. ¢ approaches 1 tangential to the
real axis from within the unit disc. Under such a limit the four g-spirals s{, s, s, s, depicted
in Figure 2.3a, are stretched out to the four open half-axes

sl = (00,0), s5=(—00,0), s}=(ic0,0), si=(—io0,0),

of the t-plane respectively, as depicted in Figure 2.3b, where we kept track of the direction of
time. Furthermore, note that under this limit, two base points of symmetric ¢-P (A1) merge
to the base point g = 1 of alt- Py, and similarly two base points merge to xg = —1, two base
points merge to x¢p = t and the remaining two base points merge to xg = —t. The critical
points ¢ = 0 and ¢ = oo remain critical points of alt-Pyy, plus two new critical points t = 1
and ¢t = —1 are formed as ¢ — 17.

Now we consider the change of variables (z9,t) — (w,r) defined in (2.33). Both the
change of the dependent and independent variable are via a Mobius transformation and

hence automorphism of P. Firstly, the half-axes si, s3, s3, s1 are send to paths

st =(=1,1), sh=(-1,—00]U[oo,1), s5={—€e":-1<0<1}, s4={":-1<0<1},

respectively, as shown in Figure 2.3c. Furthermore the base points zg = 1, zg = —1, g =t
and xo = —t of alt-Pyy, are send to the well known base points w = 0, w = 00, w = 12 = (
and w = 1 of the sixth Painlevé equation respectively. Similarly the critical points ¢ = 0,
t=o00,t=—-1andt=1 of alt-Pyj are send tor =1, r = —1, r = oo and r = 0 respectively.

Finally ¢ = 72 gives the well-known critical points ¢ = 0, ¢ = 1 and ¢ = oo of Py1. Note
however, that » = 1 and r = —1 correspond to { = 1 in different sheets of the universal
covering space of P\ {0,1,00}. Indeed the change of variables ( = r? forces us to choose
a branch cut, which we set equal to the negative real axis (—oc,0) in the (-plane, see the
oscillating red line in Figure 2.3d. Also the hypothetical branch cut s becomes (1,00] in
the ¢-plane. Finally the paths s; and s} with starting point r = —1 and ending point r = 1
respectively, both become loops tracing out the unit circle in the (-plane, starting and finishing
at ¢ =1, going around ¢ = 0 once in anti-clockwise and clockwise direction respectively.

Let us reflect on the global asymptotic analysis of ¢-P(A;), as set out in Section 2.4,
from this perspective. Firstly, as ¢ — 17, the local classification of both critical behaviour of
solutions near ¢t = 0 and ¢ = oo, should coincide with that of the sixth Painlevé equation near
¢ = 1, after the relevant change of variables. Furthermore the ¢-P(A;) connection problem
should reduce to the connection problem of Py, on relating critical behaviour near ¢ = 1 of
solutions, in different sheets of the universal covering space of P\ {0, 1, 0o}, related by simple
loops around ¢ = 0.

We conclude with a summary of this chapter, in which we have discussed all the ba-
sic analytic and algebro-geometric aspects of the ¢-P(A;) equation. Using the singularity
confinement property and Sakai’s theory, we defined the notion of solutions of the ¢-P(A;)
equation, and we saw that local discrete solutions can be uniquely continued on discrete ¢-
domains, and local meromorphic solutions can be uniquely continued meromorphically on
continuous ¢-domains. We formulated what constitutes the global asymptotic analysis of the
g¢-P(A1) equation, involving in particular classifying critical behaviours of solutions near the
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origin and infinity, and the corresponding ¢-P(A;) connection problem, relating those critical
behaviours. We finished the chapter with the symmetric form of the ¢-P(A;) equation, and
a heuristic discussion of its continuum limit to Pyy.






CHAPTER 3

Local Behaviour of Solutions Near
Critical Points

In this chapter we study the local behaviour of g-P(A;) transcendents near the critical points
t =0 and t = co. We do this by a typical local asymptotic analysis of differential or difference
equations. Firstly we study the leading order behaviour of solutions of ¢-P(A;), and we find
that it is characterised by an autonomous system. We derive the general solution of this
system and subsequently formally calculate the full asymptotic expansion of the proposedly
corresponding ¢-P(Aj) transcendent, which contains the freedom of two g-constants. Finally
we show that this full expansion is always convergent, for suitably chosen ¢-constants. But
before going down this path, we warm up by considering solutions of ¢-P (A1), described by
very simple behaviour near critical points. Most of this chapter is published in Joshi and
Roffelsen [50].

3.1 Solutions Which Are Meromorphic at a Critical Point

In the language of Section 2.3, we classify the solutions spaces S;¥(C) and S;(P*) in this
section. Let us start by studying solutions which are holomorphic at the origin. These
solutions play a special role in the more general solution we derive later, as they correspond to
constant solutions of the leading order autonomous system (3.22). We classify the holomorphic
solutions using the power series method in combination with the g-Briot-Bouquet Theorem
B.3 to prove convergence.

We note that Ohyama [64, 65] classified the meromorphic solutions of the discrete Painlevé
equations ¢-Pyy, ¢-Py and ¢-Pyp around the origin in this fashion. We consider ¢-P(A;),
rewritten as in equations (2.16). Suppose we have a power series solution around ¢ = 0, say

FO=3"ft" gt) = gut™
n=0 n=0

39
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Evaluating equation (2.16) at t = 0 gives

(fogo = 1)*fo = £395(fo = b5 ) (fo — b 1) (fo — b7 ) (fo — bg), (3.1a)
(fogo — 1)%g5 = £395(g0 — bs)(go — bs) (g0 — b7)(go — bs). (3.1b)

Equation (3.1) has several trivial solutions, given by (fo,go) = (0,0) and (fo,g0) = (b; *, ;)
for ¢ = 5,6,7,8. Furthermore there are generally three nontrivial solutions, given by

(0,1) (0,1) bsbg — b7bg bsbg — brbg >
; = : , 3.2
(fo % > <b5b6(b7 + bg) — brbg(bs + bg) " bs + bg — (br + bs) (3.2a)

: ) _ < beb7 — bgbs bgb7 — bgbs > (3.20)
b6b7(b8 + b5) — b8b5(b6 + b7)’ bg + b7 — (bs + b5) ’ '

féo,2),g(()0 2)
(0,3) g(()0,3)

e ) _ < bsbr — bgbs bsbr — bgbg > (3.20)
0 ’ b5b7(b6 + bg) — b6b8(b5 + b7)’ bs + by — (bﬁ + bg) ’ '

If (fo,90) = (0,0), then there are no terms ¢t" with n < 4 appearing in (2.16), equating
the coefficients of t* in (2.16) gives

(frg1 — 1)%b1bobsbs = (g1 — b1) (g1 — b2) (g1 — b3) (g1 — ba), (3.3a)

(figr — 1)2m = (f=b7)(f1—b3)(fr — b3 ) (L —bgh). (3.3b)

Equation (3.3) has several trivial solutions, given by (f1,91) = (0,0) and (f1,91) = (b; *, ;)
for ¢ = 1,2, 3,4. Furthermore there are generally three nontrivial solutions, given by

(1,1) (L,1) by + by — (b3 + bs) biba(bz + bg) — bgba(by + ba)
= 4
(f I ) < biby — bsbs biby — bsby ’ (3-42)
1,2) (1,2)\ _ b2+ b3 — (bsa+b1) bab3(by + b1) — babi(ba + b3)
<f1 91 ) - < babs — baby babs — baby ’ (3.4)
13) (1,3)\ _ [ b1+ b3 — (b2 + by) bibz(ba + by) — baby(by + b3) 4
<f1 9 ) - < bibs — boby bibs — baby ' (8-4c)

Each of the cases in equations (3.2) and (3.4) generically determines an unique converging
power series solution.

Proposition 3.1.1. For k € {1,2,3}, the q-P(A1) equation has an unique power series
solution

FOR@) =37 f0Ren gOB @) =3 g0 Ren, (3.5)
n=0 n=0

with fl(o’k) and g§0’k) as defined in equation (3.2), given that the following conditions are



3.1. SOLUTIONS WHICH ARE MEROMORPHIC AT A CRITICAL POINT 41

satisfied for the case k =1, k =2 and k = 3 respectively,
bsbg

b £ O bs + be # b + bs and bt 4+t £ b7 405, (3.6)
beb
b B0 ot br £t by and byl bl £ b5t 4+ byl (3.7)
bsb
ﬁﬁéqza bs + b7 # be + bs and bt + b7t £ byt + gt (3.8)

Furthermore, each of these power series solutions has a positive radius of convergence and an
unique meromorphic continuation to C.

Proof We discuss the case k = 1. Let us first note that the assumptions made ensure that
fé and g( )
Bouquet theorem B.3, we rewrite ¢-P(A;) as

are well-defined and non-zero. In accordance with the notation in the g-Briot-

?:Hl(t7fag)7 §:H2(tvag)7 (39)

for some rational functions H; and Hs.
We apply the ¢-Briot-Bouquet theorem B.3 with m = 1 and n = 2 to this system, where

y1=f, y2 =g and
(an.gO) (fo 79(1)) .

It is not hard to see that H (¢, f,g) is holomorphic at (¢, f,g) = (0, fo,g0) and H (0, fo,g0) =
(fo0,90), as this is essentially the calculation done to obtain the case (3.2a). To establish this it
is helpful to think of H as the composition of R(t, f, g) := R(t)(f,g) and S(t, f, g) := S(t)(f, 9)
as defined in Section 2.2, i.e.

Hl(ta fa g) - Rl(ta fv g) = Sl<t?R(ta f?g))a H2(t7 f?g) - SQ(th1<t7 fa g)vg) - SQ(th(tv f:g))

In particular this is helpful to calculate the Jacobian, using the chain rule,

980,Y) Zhvo,v)\ 1 0 OF1 (0, y) 9Ri(0,Y)
<8f5<o v) f;(o,w)‘(%%(o,w %%(o,w)'(af o 4

-1 _ (bs+bg—br—bg)?(bsbs+brbs)
(bsbg (b7+bs)— b7bs(b +b6))?
(bsbs+brbs) (bsbe (br+bs) —brbs (bs+bs))> (bsbg+brbg)? 1 :
bs b b7 bg (bs+bg—br—bg)? b5 b6 b7bs

The eigenvalues of this matrix are equal to 2526 and b7b8 Since b5b6 = q" for any n € Z*, we
can apply the ¢-Briot-Bouquet theorem B.3 to obtam the desired results As to the last line
of the proposition, this is a direct consequence of Lemma 2.1.2. ]

Proposition 3.1.2. For k € {1,2,3}, the q-P(A1) equation has an unique power series

solution -
Z SR gt ) = gt (3.10)

n=1
with f(1 k) and g§1’ ) as defined in equation (3.4), given that the following conditions are
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satisfied for the case k =1, k =2 and k = 3 respectively,
b1by

oo b1 + by # by + by and byt byt £ by by (3.11)

394

bob

ﬁ ¢d", by +bs # b1 +ba and byt byt A b b (3.12)
104

bib

ﬁ ¢ d, b1+ b # bz +bs and byt byt A by by (3.13)
204

Furthermore, each of these power series solutions has a positive radius of convergence and an
unique meromorphic continuation to C.

Proof. Note we can apply the ¢g-Briot-Bouquet Theorem B.3 as done in the proof of Proposi-
tion 3.1.1. However, for a more elegant proof, we make use of one of the many symmetries of
q¢-P(A1). Indeed applying the Bécklund transformation 77, defined in (2.11), to each of the
solutions defined in Proposition 3.1.1, gives the desired results directly. O

By Remark B.5, the solutions defined in Propositions 3.1.1 and 3.1.2 are also analytic in
the parameters b.
Theorem 3.1.3. For generic parameter values b € B, i.e.

bi, b; L
L2 " b b # b 4 by ({i1,i2,3,14} = {1,2,3,4},{5,6,7,8}) (3.14)

3 bi4

the solutions of q-P (A1), defined in Propositions 3.1.1 and 3.1.2, are all solutions meromor-
phic at the origin, excluding the singular ones (2.4).

Proof. The proof is a bit laborious. We consider a Laurent series solution of (2.16),

&)= fat"  gt) = gat",
n=~k n=lI

where k,l € Z and f, g; # 0. We distinguish 16 different scenarios given by

k<0, k=0, k=1, or k> 1; and
[ <0, =0, =1, or [ >1.

We have already studied the cases k,l = 0 and k,l = 1, to prove the theorem it remains to
discard the other ones. Using the Béacklund transformations 7; and 73, we can reduce the
number of cases to be discarded to the following five,

k<0,0l>1; k=0,l=1;, k=0,0l>1;, k=1,1>1; k,1I>1.

From (3.1a) it follows immediately that the cases k = 0,1 > 1 and k = 0,/ > 1 are impossible.
Considering the case k,I > 1, by calculating the coefficients of t+3 and t**3 in (3.1a) and
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(3.1b) respectively, we find

1
(blbgbg + b1boby + bbby + 625354)91 =0, qk+37(b1 + by + b3 + b4)fk =0.
b1b2b3by4

As fr, g1 # 0, the above two equations can easily be used to derive

b1 +bo=0=0b3+by, by +b3=0=bg+by or by +by=0=by+ b3.
In any case our assumption (3.14) is violated. Let us now consider the case k = 1,1 > 1.
Calculating the coefficients of '3 in (3.1a), and equation (3.3b) give respectively

1

1 b_l b—l b—l b_l _

(fi—=by)(fr =) (A — b3 (A =B,

which combined again violate (3.14). We are left with the scenario k < 0,1 > 1, which can be
dealt with easily by comparing the lowest powers of ¢t appearing on the left- and right-hand
sides of (2.16), distinguishing k +1 < 0,k +1=0,k+1l=1,k+1=2and k+1> 2. O

We can translate all these results to a classification of solutions meromorphic at ¢ = oo,
simply by employing Bécklund transformation 74. For k € {1, 2,3}, we define solutions

%(0,k) “(L,k) .
(FOF gORy = Ty(pOR) gk (FIR) GR)y o (pOR) Ry (3 15)

which are meromorphic at ¢ = co, with asymptotic characterisations

<0,k 1 _ . _
700 = g + 06, GO (1) =~ + O,
90 o
2(1,k 1 . 1
f(7ﬂ=¢wﬁ+0m, JIR (1) = — 1t +O(1),
1 1

as t — oo. Note that, by Lemma 2.1.2, each of these solutions has an unique meromorphic
continuation to P*. Not only are the solutions, meromorphic at a critical point, special because
of their local behaviour near that critical point, but also as they are globally uni-valued. We
therefore pose the following question.

Question 3.1.4. Do there exist reqular solutions of q-P(A1), other than the ones meromor-

phic at the origin or infinity, which are meromorphic on the entire doubly punctured Riemann
sphere P\ {0, 00}

We remark that the existence of meromorphic solutions of a discrete equation has been
related to integrability of the equation in question, see for instance Halburd and Korhone
[29] and the references therein. Let us discuss an explicit example. We let ¢ = s* and take
parameter values

b1 = sa, by = sb, by = s2, b7 = ab,

by = sa” !, by =sb7 !, bg = s72, by = —.
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for some a,b € C*. Then ¢-P(A;) admits the rational solution

1—ut _1+ab

ft) =z(s7), g(t) =x(st), x(t):= = byt

where, not coincidently, z(t) defines a solution of symmetric ¢g-P(A;) with ¢ = s? and d = ab.
By calculating the leading order behaviour near t = 0 and t = oo, we identify

f= 3 = f(l’?’) (1,3) (1,3)

, 9=9"" =g
This solution was obtained by reverse engineering, using the continuum limit, starting from
the following known rational solution of the sixth Painlevé equation,

0, 0.

w(() = 0y+ezg+9y+ez’

(3.16)

with 6, =1, 0o =1—0, — 60, and 0,, 6, € C*. Indeed the continuum limit of x(t), as defined
in the beginning of Section 2.5.1, gives the following solution of alt-Pyr (2.32),

1 — ugt a+p
zo(t) up =g

B 1-— U()t_l ’
which is related to (3.16) via the change of variables (2.33) and (2.34).

Remark 3.1.5. Considering the special parameter values (2.28), the solutions (f(®1, g(0-1)
and (f(©?), ¢(03)) defined in Proposition 3.1.1, satisfy the symmetry condition (2.30), and
hence give rise to solutions of symmetric g-P(A;). The same holds for the solutions (f(:1), g(1.1))
and (f(l’?’),g(l’?’)), defined in Proposition 3.1.2. Upon calculating the continuum limit of the
leading order terms, they coincide with those of the four meromorphic solutions of the sixth
Painlevé equation at ( = 1, as classified by Kaneko [53].

3.2 The Leading Order Autonomous System

We study the leading order behaviour of solutions in more detail in this section. For complex
functions f and g we write f(t) < g(t) as t — to if and only if f(t) = O(g(t)) and g(t) =
O(f(t)) ast — to. Note that the solutions (f, g) defined in Propositions 3.1.1 and 3.1.2 satisfy
respectively f,g < 1 and f,g <t ast — 0. We therefore consider, on a formal level, any of the
following 25 combinations of asymptotic relations as t — 0, for a solution (f,g) of ¢-P(A1),

f=t f=t, t<f=<1, =1 or f=1 and
g <t, g =1, t<g=<1, g=1 or g~ 1.

Using Bécklund transformations 77 and 73 (2.11), we can reduce the number of individual
cases to be studied to 9. We assume that there exist m,n € N* such that

M2 fg <t (t—0)
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to exclude singular solutions and the zero solution. By some laborious comparison of dominant
and subdominant terms in equations (2.16), just like in the proof of Theorem 3.1.3, it is
possible to show that, for generic parameter values, the only 3 consistent combinations are

fig=t, t<f,g=<1, fig=1. (3.17)
Furthermore, there are 6 combinations which are only conditionally consistent, given by

frg=<t, f<tand g <t, f=<tand g <t, (3.18a)
frg>1, fr>1land g <1, f=<1and g > 1. (3.18b)

For example, f,g <t is only consistent if
by+by+b3+by=0 and byl 40yt +b3l +0t =0, (3.19)

and f <t with g <t is only consistent if
b1 + by = b3 + by, b1 + b3 =ba + by or b1 + by = by + bs. (3.20)

We give explicit examples of such cases in Section 3.5. The interested reader can find the con-
ditions, of the other conditionally consistent combinations, using Béacklund transformations
71 and T3. The remaining combinations are inconsistent for all parameter values b € B,. Let
us focus on the case t < f,g < 1in (3.17). We put f = tf1, and g = tgy, then 1 < f1,91 <t !
as t — 0, and by substitution into equations (2.16), we obtain

(figr =1 (Frgr— 1) ~ (b7 g1 = 1) (b3 "1 — 1) (b3 g1 — 1) (by "1 — 1), (3.21a)
(figr = D151 — 1) ~ (b1 — 1) (bofy — 1) (bsfy — 1) (bafy — 1), (3.21b)

as t — 0. So asymptotically f; and g; satisfy an autonomous system. Inspired by these
equations, we study the following autonomous system,

(FG-1)(FG-1)= (b]'G—1) (b5'G—1) (b5'G —1) (b;'G — 1), (3.22a)
(FG—1)(FG—1) = (biF — 1) (boF — 1) (bsF — 1) (bsF — 1), (3.22b)

which we refer to as the leading order autonomous system. We identify this system as a QRT
mapping (C.1) with

0 0 1 00 O
Ay = 0 Sy, =S7 |, Ai=(0 1 0],
Sy =55 0 0 0 -1

where SijE denotes the ith degree elementary symmetric polynomial in bfl, b;cl, bgﬂ and bjfl,
that is,

(= = b= — b3 (2 — b (e — bEY) = 24 — §F28 4 5522 — SFz + St
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We note that this is not a big surprise, as many discrete Painlevé equations were initially
discovered by Grammaticos, Ramani and collaborators [21], via deautonomisation of QRT
mappings. We refer the reader to the Appendix C for more details on QRT mappings.
Note that the QRT mapping under consideration is particularly simple as many entries of
the matrices A; and Az are zero. Indeed, condition (C.8) is satisfied, which means it is
linearisable.

We wish to construct full asymptotic expansions of solutions of ¢-P(A;), starting from
solutions of the leading order autonomous system. However solutions of ¢-P(A;) live on
g-domains, possibly open. This requires us to adopt a somewhat unusual interpretation of
the system (3.22). Even though it is an autonomous system, we think of it as a system of
g-difference equations on some ¢-domain.

3.2.1 Generic Solution of Leading Order System

We apply the method as described in Section C.1, to parameterise the generic solution of the
leading order autonomous system (3.22) . First of all, the invariant of (3.22) is given by

F?2+ S, FG+ S, G* - S F—-5;G

IFG) = FG—1

and we set I(F,G) = P. The linear system (C.9) becomes
F+F+ (S, —P)G =57, G + G + bybobsby(Sy; — P)F = ST (3.23)

If b1bobsba(P — Sy )? # 4, there exists an equilibrium solution (Fiq, Geq) to this system given
by
_ Si(P—Sy)+25) a. — S7(P—Sy)+28;
4 — bybobgby(P — Sy )2’ 4 — bybobsby(P — Sy )2’

(3.24)

The special case bibabgbs(P — S5 )2 = 4, requires a separate analysis, which we discuss in
Section 3.2.3. The matrix M (C.12) equals

M- -1 P-55
a —b1bab3bs(P — Sy) bibabgba(P — S2_)2 -1’
and its characteristic equation is given by
|M — M| = X+ (2 — bibobsbs(P — S5 )*) A+ 1 =0. (3.25)

At this stage, we consider P as a formal variable satisfying P = P, and as such, the char-
acteristic equation of M does not have a solution A € C(P). However we can rewrite (3.25)
as

1 2
bibabgbs(P — Sy )2 =A+2+ X1 = <A% + )\_2> :
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which inspires us to reparameterise

P=¢+ + AL (3.26)

A
b1babsby

where A = A, giving

A? b1babsby
M-XMN|=|A———] |- .
a1 = (3= ) (- 25

We put A = ﬁ, and M can be diagonalised as follows,

A0 1 1
weo() e e} uh)

We introduce an independent variable ¢ characterised by ¢ = A¢, which allows us to write
the generic solution to the linear system (3.23) as

b1babsby

F((b) = Feq(Av b) + ¢ + M¢_17 G(¢) = Geq(Av b) + A¢ + A

po !, (3.27)

where p is an arbitrary periodic constant, i.e. & = u, and by substituting identity (3.26) into
equations (3.24),

b1babsbs A (Sf— + 251_A + S3_A2)
a (b1babsby — A2)2 ’

b1babsbs A (S;_ + 2Sf_A + Sl_AQ)
a (brbabsby — A2)2 '

Foq(A,b) =

Geq(A,b) =
By direct calculation we find that the identity I(F,G) = P, for F' and G as defined in equation
(3.27), is equivalent to

A(A 4 b1ba) (A + bybs) (A + brbg) (A + babs) (A + babs) (A + bsby)
(brbobsby — A2)*

w=pu(A,b) = . (3.28)

So F and G as defined in equation (3.27), with 4 = (A, b) as defined above, satisfy equations
(3.23) and (C.4). Hence, by Lemma C.1,

b1babsb
F(6,4) = &+ Fog(A,b) + p(A, D)6 G(6,A) = A+ Geg(A, ) + === (A, D)o~
(3.29)
defines a formal solution to the QRT mapping (3.22), where A and ¢ satisfy
_ _ A2
A=A, o = Ao, A= . (3.30)
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We emphasise that this is a formal solution. However we can easily use it to construct true
solutions of the leading order autonomous system. Choose any Ag, ¢g € C*, then

A2
Fys = F(¢s,No), Gs:=G(¢s,No), s :=A5do, Ao : 0

= Z 3.31
bibabeh, €D (33D

defines a true solution to (3.22).

3.2.2 Six Special Families of Solutions

Note that the autonomous system (3.22) reduces to the system of algebraic equations (3.3)
if we assume F; = Fy and G; = G7. In particular, equations (3.4) give three constant
solutions to system (3.22). In this section we see that any of these constant solutions has
two associated 1-parameter families of solutions of (3.22). We denote the roots of p(A, b) by
A= Af (k=1,2,3), where

Af = —byby, AF = —bobs, A§ = —bibs,
Ay = —bsby, Ay = —biby, Ay = —bobs.

Let k € {1,2,3}, then we have

Fug (AfB) = /1™, G (AF,B) = g™, (3.32)
where the fl(l’k) and g%l’k), as defined in (3.4), denote a constant solutions of (3.22).
Associated we find two special 1-parameter families of solutions, by setting A = Af in (3.29),
given by
ik k -
Fi@) =0+ i, GHo)=Afe+a"™,  d=20, (3.33)
where
bbbk by
Tbsb’ P bk T boby

Note that for the particular choice ¢ = 0, the families (F} (¢), G} (¢)) and (Fy (¢), Gy (¢))
coincide with the constant solution <f1(1’k),g§1’k)>.

A1 (3.34)

3.2.3 Logarithmic Type Solutions
We consider the remaining case
blb2b3b4(P — 55)2 =4,

for the linear system (3.23). Note that the equilibrium solution (3.24) no longer exists and
we show that this case gives rise to logarithmic type solutions. We write r4 = 4+/b1b2b3by
and assume

2
P=S; +—. (3.35)
T4
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The system of equations (3.23) becomes
_ 2 _
F=-F+—=—G+S;, G=-2ryF+3G+2ryS; + 5. (3.36)
T+

We write V =G — ro F, then
V=V+S§+rs,
and we therefore introduce a formal variable x which satisfies

X=x+1, (3.37)

and set

V= (Sf_ + T:tS_) X-

This allows the first equation in (3.36) to be rewritten as
_ 1. B
F=F+2(—5"+5_)x+5],
T+
which gives
1 1 _
FO0 = Fo- i+ (87 +57) 22 (339
T+ T+

for some Fy with Fy = Fp.
As V =G — roF, we obtain a corresponding expression for G,

G(x) =reFo+reSyx + (ST +reS7) x> (3.39)

Upon substitution of (3.38) and (3.39) into the identity I(F,G) = P, or equivalently into the
leading order autonomous system (3.22), we find

24148y

We conclude that the general formal solution of the leading order autonomous system (3.22),
subject to (3.35), is given by

2+7reS, 1 1 _
Fr(y)= —=22 _ — Gy + (S* +S ) 2 3.40a
() SF ST e 1 X e 1 ]X ( )
2ry + S _ _
Grx) = ——2 4+ riS7x+ (S +r:57) X2, 3.40b
z(X) Sfr—i-?"isl_ r+91 X ( 1 T+ 1)X ( )

where x satisfies (3.37).
The subscripts ‘I’ stand for logarithmic type, as the time evolution of x, equation (3.37), is
characteristic for logq(t) when interpreted as a g-difference equation in t. Note that we used
S+ 7S] # 0 in the above derivation, we leave the degenerate case S;” + r.S; = 0 to the
interested reader.

We again emphasise that the obtained solution is a formal one. However we can easily use
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it to construct true solutions of the leading order autonomous system. Choose any yg € C,
then
Fy:= Fl:t(Xs)a Gs = G?:(Xs)a Xs = X0+ S, (5 € Z) (3'41)

defines a true solution to (3.22).

Remark 3.2.1. We would like to note that the classification of solutions of (3.22) is now
complete. That is, given any initial data (Fp,Go) € C2, such that Fy - Go # 0,1. Let
Fyi1 = Fs and Gg1 = G be defined recursively by (3.22) for s € Z. Then (Fy, Gs)sez is
captured by (3.31) or (3.41). Indeed let P = I(Fy, Gyo), and assume bybabsby(P — Sy )? # 4,
then (3.26) has two distinct solutions A = Ag, A, € C, which are related by AgAj = b1babsbs.
Hence p(Ag) = 0 iff p(Aj) = 0. Assume p(Ag) # 0, then the system

b1b2b3by

Fo = ¢o + Feq(Ao, b) + (Ao, b)gg ',  Go = Moo + Geq(Ao, b) + Ao

(Ao, b)oy
has an unique solution ¢g € C*, and (Fs, Gs)sez is given by (3.31). Of course the choice
A = Aj would have led to the same result. This, however, is no longer the case when

1(Ag) = 0. We leave it to the reader to work through these degenerate cases as well as the
logarithmic one, bybabsbs(P — SQ_)2 = 4.

3.3 A Formal Series Solution

In Section 3.2 we saw that, heuristically speaking, the generic leading order behaviour of ¢-
P(A;) transcendents is described by the autonomous system (3.22). Furthermore we derived a
general formal parameterisation of the solutions of this autonomous system. In this section we
study the complete formal expansion of ¢-P(A;) transcendents corresponding to the general
formal solution of the autonomous system. To this end, we consider the following formal
solution ansatz,

f= i Fit',  g= i Git', (3.42)
i=1 =1

This approach reduces to the power series method if we assume that the coefficients F; and
G; are plain complex numbers. However for now we work with these coefficients on a formal

o0 o0
f= Z qFit', g= Z q'Git".
=1 i=1

We substitute these formal series into equations (2.16) and compare coefficients of ¢ order

level, for example,

by order. First of all, note that no terms " with n < 4 occur in equations (2.16). By
comparing the coefficients of t* in equations (2.16) we recover the leading order autonomous
system (3.22) with FF = F} and G = (1. As to the higher order coefficients, for n > 1, by
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comparing the coefficients of "3 in equations (2.16), we obtain

G1(G1Fy = 1)¢"Fy 4+ qG1(G1F1 — 1)F 4+ q (2G1FAFy — Fy — F1) G, =

g QW(G1)Gy + RV [(F)1<icn, (Fi)i<icn, (Gi)i<i<n] » (3.43a)
b1bobsby

qF1 (F1G1 —1) Gy + F1 (G1F1 — 1) "Gy + (2F1G1G1 — G1 — G1) "F,, =

b1babsbaQ Y (F1) ¢"Fr + RP [(Fi)i<icn, (Gi)i<icn, (Gi)i<i<n] »  (3.43b)

for certain Rg) and Rg) which are polynomial with respect to their inputs, where the poly-

nomials Q) (z) are defined by

QW (z) = % [(z =) (2 —bb) (z—b5) (z—b))],

for i € {1,—1}.

Note that these equations are linear autonomous equations with respect to F,, and G,,. It
is straightforward to obtain explicit expressions for R%l) and R%Q), these are however rather
lengthy, which is why we omit them. As an example, Rgl) and RgQ) are given by

RY (F,F1,G1) = (b5 + b5 + b7 + b51) ¢Gi(F1Gy — 1) (F1Gy — 1),
R (F1,G1,Gh) = (bs + b + by + bs) ¢*F1 (F1G1 — 1) (F1G1 — 1)

Furthermore the polynomials RS) and Rg) are of degree at most n + 3 with respect to the
weighted gradation deg,, on C [ > {Fi, Fi, Gi,éi}], which is uniquely defined by its values
on the generators of this polynomial ring, as

deg,, F; = deg,, F'; = deg,, G; = deg,, G; = i. (1 € N¥)

The importance of this observation becomes clear when we substitute the generic formal
solution (3.29) to equations (3.22) for F}; and G;. Indeed, if we set F; = Fi(¢) = F(¢)
and G1 = G1(¢) = G(¢) as defined in equations (3.29), then Fi(¢) and G1(¢) are Laurent
polynomials in ¢ of degree 1 in both ¢ and ¢—!. Hence the right-hand sides of equations (3.43)
for n = 2, are Laurent polynomials in ¢ of at most degree n+3 = 5 in both ¢ and ¢!, which
shows that the system of equations (3.43) for n = 2 possibly has a solution (Fs(¢),G2(d)),
such that F(¢) and G3(¢) are Laurent polynomials in ¢ of at most degree 2 in both ¢ and
¢~ !. Indeed a lengthy calculation confirms this. More generally, we conjecture that there
is an unique solution ((F,,(¢))52, (Gn(¢))s2 ) to equations (3.43) with Fi(¢) = F(¢) and
G1(¢) = G(¢) as above, such that F,(¢) and G,(¢) are Laurent polynomials in ¢ of at
most degree n in both ¢ and ¢~'. An equivalent formulation of this statement is given in
Conjecture 3.3.3. This however seems difficult to prove directly and we hence prove a weaker
version, which states that there is an unique solution where the coefficients F,(¢) and G,,(¢)
are Laurent series in ¢ with highest order term of degree less or equal to n, for n € N*.
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Theorem 3.3.1. There exists an unique formal series solution to q-P(A1) of the form

Ot ¢ A b) =) FIXM (g A by, g™t (t A b) =D GIT (g A D), (3.44)
n=1 n=1
with, for n € N*,
P (A b) = Y FrF(Ab)e, GO (A b) = Y GUT(Ab)g, (3.45)

where F107’1+(A,b) =1, G(l)f (A,b) = A and A and ¢ satisfy equations (3.30), with

b1b2b3bs A?
A=AA,b
b5b6b7b8 ’ ( ) bl b2b3b4

q=q(b) =

Forn € N* and i € Z<y,, the coefficients FS;L (A,b) and GSL’j(A,b) are rational functions in
their inputs, which are regular at points (A,b) € C* x B such that

1¢ Q= {q"¢5 : (m,n) € N>\ {(0,0)}}, (3.46)

where q1 = q1(b, A) = g\ and g = g2(b, A) = A1
Furthermore, for fired b € B with |q| < 1, for any A € Lo(b), where

Lo(b) := {x € C* : |bybabsbs| < |z|* < |bsbebrbs|}, (3.47)

condition (3.46) is satisfied and this formal solution, written in terms of the variables (; = t¢

and CQ = ¢71:

O (GG G Ab) = Z Z Fyn_ (A, D)CRG, (3.482)
n=1m=0

0% (¢1¢a, ¢ Y5 A, b) Z Z GOl (A D), (3.48b)
n=1m=0

converges near (C1,¢2) = (0,0).

In fact, these expansions are also analytic in A. That is, for any L C Ly(b) open with
L C Lo(b), there is an open environment Z C C? of 0, such that the series (3.48) converge
uniformly on Z x L, defining holomorphic functions on this set in (¢, A).

Proof. We apply the ¢-Briot-Bouquet Theorem B.3 with m = 2 to ¢-P(A;), after a change
of dependent and independent variables. More precisely, inspired by equations (3.48), we
introduce the following variables,

1 =to, L=9¢ !, y1 =+ —1, Y2 = — — A, (3.49)
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where (; and (2, in accordance with equations (3.30), satisfy

Z1 = q161, Zz = q2(2-

As t = (1(2, we can rewrite ¢-P(A;) in terms of these new variables as

y1(q1€1, 42€2) = Hy (€1, C2, y1(C1, C2), 42(C1,G2); A, b) (3.50a)
y2(q1€1, 42€2) = Ha (C1, €2, y1(C1, C2), 42(C1, G2); A, b) (3.50b)

for certain rational functions Hy((1,C2,y1,y2; A, b) and Ho (1, (2,91, y2; A, b).
We apply the ¢-Briot-Bouquet Theorem B.3 to this system of g-difference equations. We
denote

C:(CLCQ)? y:(ylayQ)v q:(Q17(I2)7
and leave it to the interested reader to write down H;({,y; A, b) and H2({,y; A, b) explicitly.

A rather lengthy calculation shows

(y2+4)°
A2( Y1 + 1)2 ’

(y2 + A)?

Hy(0,y;A,b) = m

1, Hy(0,y;A,b) =

in particular H(0,0;q,A) = 0 and we have

_(%0,0:A,b) Z0(0,0;A,b)) _ (-1 2A~
b (éZfQ (0,0:A,b) 2%(0,0;2 b)) <_2A 3 ) : (3.51)

Note that 1 is the only eigenvalue of D(A,b), with multiplicity 2. Therefore, by the g-
Briot-Bouquet Theorem B.3, if conditions (3.46) are satisfied, then the system of ¢-difference
equations (3.50) has an unique power series solution of the form

Yi(C1, 23 A, b) = Z Z Ynom (A, B)CTCS", (3.52)

n=0m=0

with y(()%(A,b) =0 for s € {1,2}.
Associated via equations (3.49), we have the following expansions for f = f((1,(2; A, b) and
g = g(glv C2; Aa b)a

F(C1,Go3 A, b) = ZanmAbxacz, 9(C1, G5 Ab) = > > gm(A,b)CPEG, (3.53)

n=1m=0 n=1m=0

where the coefficients are defined by

Fam(Ab) =50 L(AD),  gam(Ab) =42 (A D),

for n € N* and m € N with (n,m) # (1,0), and

fi0(A,b) =1, g1o0(A,b) = A.
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Rewriting these expansions in terms of the original independent variables ¢t and ¢, the formulas

Ot oA b) = f (to, 075 A D), " (t g A b) =g (tg, 07 A D),

define formal series solutions of ¢-P(A;), precisely as described in equations (3.44). Further-
more the ¢-Briot-Bouquet Theorem B.3 implies that the power series (3.53) converge in an
open environment of ({1,(2) = (0,0), if 1 is not a limit point of (). Note that this condition
is trivially satisfied if 0 < |q1],|g2] < 1, which is equivalent to A € Lg(b). We conclude
that the series (3.48) indeed converge locally at ((1,(2) = (0,0), for A € Lg(b). Strictly
speaking, this only shows that the series defines a solution in the two variables ¢ and ¢ for a
fixed A € C* such that condition (3.46) holds. Note however, that the proof of Theorem B.3
gives an explicit recursion for the coefficients, which proves that the coefficients FT?:r (A,b)
and GSL”J[(A, b) are rational functions in their inputs and the formal series solution defines a
solution on a formal level. This finishes the proof of the first part of the theorem.

As to the second part, we would like to prove that the solutions (3.53) depend analytically
on A, which is equivalent to proving that the expansions (3.52) are analytic in A. To this
end we apply Theorem B.4. As, for any L C Lo(b) with L C Lo(b), the set L is compact, a
simple compactness argument shows that it suffices to prove that for any Ay € Lo(b), there
is an open environment L C Lo(b) of Ag, and an open environment Z C C? of 0, such that
the series (3.52) converge uniformly on Z x L.

So let us take a Ag € Lo(b), we denote qo = (q1(Ao, b), ¢2(Ag, b)) and determine an r > 0
such that

—=2
B?nax(q(br) C Bmax(q()??ﬂ) - BI21’laX(O7 1) \ {q € C2|Q1Q2 = O} C C27

and set U = B2 (qo,7).

We have to modify the functions Hi(¢,y;A,b) and Hy({,y; A, b) a bit in order to be able
to apply Theorem B.4, as A and b are not independent of q = (¢1,¢2). Indeed, we have to
reparameterise all variables in terms of ¢; and ¢2. To this end, we keep the value of b; fixed
for 2 < i < 8, but allow by and A to vary with q. More explicitly, we define

_ q1q2bsbebrbs

1 1
bi(q) = bababy b'(q) = (bi(a), ba, bs, ba, b5, b, bz, bg), A(q) = (bsbebrbs)2q7,

for q € U, where we choose the sign of the square root such that A(qg) = Ag.
Note that at q = qg, the original values of the parameters are recovered, as

b’(qo) = b, A(qo) = Ao,

and A(q) is a univalued holomorphic function on U.
We modify H, by setting

H( y;q) = H(C, y; Alq), b'(q)).

The function H(¢,y;q) is holomorphic at (¢,y,q) = (0,0,q’) with H(0,0,q’) = 0, for every
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q' € U. The relevant Jacobian matrix of H is given by

o e 12 o / _
Dmy_&%@y;)ﬁ%mmm>_MM®bm”‘<2mm 3 »

S

for q € U, where D(A,b) is the Jacobian matrix of H, as defined in equation (3.51).

Again 1 is the only eigenvalue of D(q), which is not an element of Qg as defined in (B.5) with
m = 2, for q € U. We can hence apply Theorem B.4, which gives open environments Z C C?
and V C U of 0 and qq respectively, such that the series y;(¢; A(q), b’(q)), with notation as
in equation (3.52) for i = 1,2, converge uniformly on Z x V, defining holomorphic functions
in (¢,q) on this set. To undo the reparameterisation (3.3), we define

(S) . 82 b1b2b3b4
d - b5b657b8 ’ 82 ’

and determine an open connected environment L C Lo(b) of Ay, such that

{a(s):se L} C V.
Then we know that the series

Yi(¢,s) =i (¢ A (a(s)), b (als))),

converge uniformly on Z x L, defining holomorphic functions in (¢, s) on this set.
Note however, that we have, for s € L,

A(a(s)) =s,  b'(a(s)) = Db,

and hence
K(C? 8) =Y (Cv S, b) .
The theorem follows. O

Remark 3.3.2. In fact, the expansions (3.48) also depend analytically on the parameters b.
That is, given bg € B and Ay € Lo(bg), there exist open environments Z C C?, L C C and
B C B of 0, Ay and by respectively, such that for any (A,b) € L x B, we have A € Ly(b) and
the series (3.48) converge uniformly on Z x L x B, defining holomorphic functions on this
set in (¢, A, b). This can be proven easily by incorporating parameters in Theorem B.4, see
Remark B.5.

As desired, we have
FH (0 Ab) = F(¢),  GYF(¢3A,b) = G(9), (3.54)

where F and @ are defined as in equations (3.29). Furthermore the coefficients Fy' (¢; A, b)
and G%+(q§; A, b) indeed satisfy equations (3.43).

In Theorem 3.3.1 the plus superscripts reflect the fact that there are only finitely many
positive powers of ¢ occuring in the Laurent series (3.45), we define the dual ‘minus’ solutions
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as follows
ot A b) = fOF <t w(A, o)t blbi\bs’b“,b) : (3.55a)
0= (t, ¢; A, b) = g*F (t (A, b)Y~ blbi’g’b“,b) : (3.55b)

Note that indeed, by Theorem 3.3.1, this defines a formal solution to ¢-P(A41), as
(blbzAbam)
Ab)pl=>——2"y(Ab)p .
(A, b)¢ bibaiah, U P)O

Analogously to the expansions (3.44) and (3.45), we have
Ot g A b) =Y FYT (4 A,b)", g0 (8¢ A b) =Y GYT (A, b)E", (3.56)
n=1 n=1
with, for n € N*,

FO~(¢;A,b) = Z : ~(¢;A,b) = ZG (3.57)

where, for i € Z>_,,

b1bab3by
A

b) b)) = 6t (M ) )

par = 58

Using the symmetries

b1b2b3b
M( : QAS 4) :M(A7b>7 Feq

b1b2b3b b1b2b3b
( — 4) = Feq(A, D), Geq( = 4) = Geq(A, D),

it is easy to see that
FY™(6;A,b) = F(6,A) = F{"F (4;A,b), G (¢3A,b) = G(¢,A) = GY (¢3A,b), (3.58)

where F'(¢, A) and G(¢, A) are as defined in equations (3.29).

Note that this implies that the coefficients of the formal ‘plus’ and ‘minus’ series solutions,
(3.45) and (3.57), satisfy the same recursive system of difference equations (3.43), with the
same initial values (3.58). Motivated by this plausibility argument, we formulate the following
conjecture.

Conjecture 3.3.3. The formal series solutions (3.44) and (3.56) are equal, that is,

Ot g A b) = o (¢, A, D), " (¢, ;A b) = " (¢, 4; A, b),
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or equivalently, for n € N*| the Laurent series (3.45) terminate at i = —n, that is,
n ) n )
FIM(giAb) = D FVF(AD)G, Gt (g A b) =D Ght(Ab)g'. (3.59)
i=—n i=—n

In particular, by equations (3.55), we have, for n € N* and i < n,

: b1babsb

iy (M ) = I (0 b) (3.602)
: b1bobsb

u(A,b)'GYT ( ! 2/\3 4,b> =Goti(¢A,b). (3.60D)

Equations (3.54) show that (3.59) is true when n = 1 and we have checked the case n = 2
using Mathematica. As an additional check, Proposition 3.5.1 is consistent with equations
(3.60).

Remark 3.3.4. By equations (3.54) and (3.29), we see that the coefficients FIO’Jr and G(1J,+
are only singular when A? = bibgb3bs. Reflecting on the proofs of Theorem 3.3.1 and B.3,
this implies that condition (3.46) in Theorem 3.3.1 can be relaxed to 1 ¢ @1, where Q1 C @
equals

Q1 ={q¢"qy : (m,n) € N2 \ {0,0} with m > 1} U {g2}.

In particular, if |g2| = 1 with g2 # 1 and |¢1| < 1, then the convergence of expansions (3.48)
still holds. If Conjecture 3.3.3 is true, then condition (3.46) can be relaxed further, to 1 ¢ Qyel,
where Q1 C Q is defined as

Qrel = {¢"q% : (m,n) € N*\ {0,0} with n <m + 1}.

3.3.1 Formal Series Solution about Infinity

The Bécklund transformation 73 defined in (2.11), shows that the critical points 0 and co play
an essentially equivalent role in ¢-P(A;). Using Bécklund transformation 73 and Theorem
3.3.1, it is easy to see that

f=tg"" (175;7\,b(2>> . g=tfot <1,$;/~\,b(2)> : (3.61)

defines a formal solution to ¢-P(A4;)(b), if A and ¢ satisfy

= = - .~ ~ A2
A=A, 6=\l A= (3.62)
ng)b§2)bg2)b512)
We introduce formal variables Ao, and ¢, satisfying
_ _ A2
Aoo = Aom (;500 = )\oogbocn )\oo < (3'63)

= bsbobrbs’
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and set

Observe that equations (3.62) are satisfied, and upon substitution into equation (3.61), we
find that

1
FoO(t, oo; Ao, b) = g™ <t Aoobooi 51— b@)) (3.64a)
1 1
97 (t, fooi Moo, b) = 0T <t,Aoo¢oo; A,b(2)) : (3.64D)
defines a formal series solution to ¢-P(A1)(b) at t = co
Indeed, expanding this solution in ¢ and ¢, we find
FoH (s fooi Moo D) = D F (doo; Ao, D)™,
n=0
9T (s fooi Mooy ) = Y Gt (oo Aoe, B)ETT,
n=0
with, for n € N,
o0 1
FTL 7+(¢00; AOO) b) = G%:l (AOO¢OO7 E? b(2)> )
1
G (P Ao, b) = Fg;& (Aw¢oo; " b(2)> 7
and hence
n+1 n+1
F2 % ($o0i Ao, b) = Z Frot (Moo, b)oh, G (G Ao, b) = Z G2 (Ao, b)

where, for n € N and ¢ € Z<p41,

1 1
+ 0,+ 2 ,+ 0,+ 2
F (Moo, b) = ALGYT (A bl >>, G (Moo, b) = ALFS <A bl >>.
o0 o0
Of course we can formulate analogous convergence results to the ones in Theorem 3.3.1. To
obtain the dual ‘minus’ solutions at infinity, we again take Ao, and ¢, satisfying equations

(3.63), and set
~ A 1
00 (2)
b > AOO¢OO .

A
A= e
bsbebrbs’

o=n <b5b6b7bs’

in equations (3.61).
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3.3.2 Symmetries of Formal Series Solution

In Section 2.2.4 we discussed several Backlund transformations of ¢-P(A;). Using these we
can find symmetries of the formal series solution (3.44). We discuss three such examples.
First of all, note that for any permutation

o€ Sym({1,2,3,4}) x Sym({5,6,7,8}), (3.65)

q-P(A1) is invariant under permutation of the parameters o (b); = by(;) correspondingly for
1 <1 <8, and using Theorem 3.3.1 we deduce

Ot @A) = fOF (g A a(b)),  g*F (g A b) = ¢"T (t,¢;M,0(b)).  (3.66)

Next, we would like to derive a symmetry of the formal series solution (3.44) by application of
Bécklund transformation 77 as defined in (2.11). Consider formal variables ¢ and A satisfying
(3.30) and put

~ 1 ~ 1
Then we have <y
K = Kv Z = (ga
bgl)bgl)bgl)bfll)
and by Theorem 3.3.1 this implies that
0+ (t oA b<1>) o (g L pm) o (t 5 A b(l)) ot (e L Ly
b ) ) 7t¢7 A7 ) ) ) ) 7t¢7 A? )

defines a formal solution to ¢-P(A;)(bM).
We apply Béacklund transformation 77, which shows that

t t

) t, =
04 (¢ L. 1L p@ 9(t, 9) 04 (. L.
f T 9 Vg

defines a formal solution to ¢g-P(A;)(b).
We expand this solution in powers of t and ¢ and prove that it is exactly the formal series

f(t.¢) = : (3.67)

,bu))

>

solution (3.44). First of all, for the denominators in (3.67), expanding in ¢ gives

11 Sl
For <t, % A,b<l>> = fum(d A D)™,
m=0
0,4 i.lb(l) _Oo~ <A b)E™
g tu td),A’ - ng(¢a 9 )t 9
m=0
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where, for m € N,

fon(; A, b) = ZFSL*Z ( >¢>, (3.68a)
Gm(¢p; A, b) = ZGm”<1 )qb’ (3.68b)

We can hence expand equations (3.67) in ¢, using for instance the Lagrange inversion formula,
to obtain

I f1(¢ A b) .2
1 91(¢,A,b) 2

SR TETW S TETNSER (3:090)

and compare the result with the formal series solution (3.44).

ft,¢) = T (3.692)

Indeed, by expanding the coefficients of the series (3.69) with respect to ¢, we see that they
are of exactly the same form as solutions (3.44), that is, we can find Fn ; and Gn i fori € Ne,,
and n € N* such that

=3°N Fatd', glte) =3 Y Gait'e.
n=1li=—o0 n=1it=—o0

In particular, calculating Fvl,l and 6171 gives
~ 1 ~ 1
Fii=—+7—7=1 Gii= 57— =
Fiy (5,b0) Gii (x,bM)

Therefore, by the uniqueness property of the formal series solution (3.44) in Theorem 3.3.1,
we have

ft,¢) = fo7(t,¢:A,b),  g(t.9) = g""(t,6:A,b),
and hence, by the definition of f and g (3.67), we obtain the formal identities
PO s A b) O (1, L L b QO (g Ab)g® (8, L b)) =1 (3.70)
) ) ) ¢ A7 ) i ) t¢ A7 * N

These equations induce a countable number of identities among the coefficients, each one
given by comparing the coefficients of a positive power of t. In particular, comparing the
coefficients of the lowest order term ¢, we obtain

FOP (i Ab) fo (4 A,b) =1, GV (¢;A,b)Go (¢;A,b) = 1. (3.71)
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Combining this identity with equations (3.54), (3.21) and (3.68), we find generating functions,

x€x S 0+ 1 (1) ;
=2k 72
1+Feq(A,b).1}—|—lu,(A7b)x2 Zl 0,1 <A7b >.’IJ, (37 a)
- ﬁ?i < > @', (3.72b)
A+ Geq(A b)x 4 b1b2b3l>4 (A, b —

Similarly, using Bécklund transformation 73, we find formal identities

Lbybbsb A
0+ 0,+ 1929394 3)
t A,b) = 2t b 3.73
ot ¢;A,b) =g (q q TR > (3.73)
1 A
gt (t, ¢ A, b) = O (¢ 28, g2 Ag; b)) (3.74)
bsbabrbs

These equations plays an important role in Section 3.8, where we consider the formal series
solution in the perspective of the reduction to symmetric ¢-P(A1), as described in Section
2.5.

3.4 Constructing True Solutions

In this section we use the formal series solution (3.44) to construct true solutions of ¢-P(A1).
The idea is relatively straightforward, we replace the formal variables A and ¢ with actual
functions satisfying equations (3.30). We first discuss how to construct discrete solutions.

3.4.1 Discrete Solutions

As usual, we adopt the discrete time interpretation

ts = q°to, fs = f(ts)v gs = g(tS)‘ (S S Z)
In this setting, we interpret equations (3.30) as follows,

A2

As = ASa s = )\s S5 )\s = .
+1 Gs+1 ¢ bbababs

(3.75)

Let us take any ¢ € C* and Ay € Lo(b), as defined in (3.47). In accordance with Theorem
3.3.1 and equations (3.75), we put

AZ

A p—
O bybobsby’

q1 :q)\07 q2 :)\617
and define, for s € Z,

bs = Njdo,  (C1)s = Gidoto,  (C2)s = a5p -
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As Ag € Lo(b), Theorem 3.3.1 shows that there is an r > 0 such that the expansions (3.48)
with A = Ag converge for all ((1,¢2) € C? with |¢1], (2| < r. Note that 0 < |q1],|q2| < 1 and
we determine an S € 7Z, such that, for all s > S,

(G, [(G2)s| <.

Then we know, that for all s > .5,

fo = 12" (ts, 653 Ao, b) Z Z By (R0, ) ()R (G, (3.76a)
n=1m=0

gs = 9" (ts, ds; Mo, b Z Z G (80, D) (C)HGQ)T, (3.76b)
n=1m=0

are well-defined, and converge uniformly in s on Z>g, defining a solution of ¢-P(A;).
Guaranteed by the singularity confinement property, we have an unique continuation of
(fs,9s)s>s to a full solution (fs, gs)sez in P x P. Note that this solution is completely deter-
mined by our initial choices for Ag and ¢g, that is, writing

(fsa gs)sGZ = (fs(AOa QSO))gS(AOa ¢0))s€Za

we found a family of solutions of ¢- P(A1) on discrete g-domains, with two arbitrary integration
constants Ay € Lo(b) and ¢g € C*. Note that the leading order behaviour is given by

fs ~ (gho)*todo,  gs ~ Ao(gro)*todo. (s = o0) (3.77)

3.4.2 Meromorphic Solutions

To construct solutions on a continuous ¢-domain, we replace the formal variables ¢ and A,
in the formal series solution (3.44), by analytic functions on this g-domain which satisfy
equations (3.30). Before stating the main theorem of this section, let us introduce some
notation. For a set V' C C*, we denote its closure in C* by V.

Theorem 3.4.1. Let b € B,. Suppose we have a continuous g-domain T', a function A(t)
which is analytic on T and g-periodic, i.e. A(qt) = A(t), satisfying A(t) € Lo(b), fort € T.
Let ¢(t) be a nonvanishing analytic function on T, satisfying

A(t)?

olat) = AMB)o(),  A#) =g 5

(teT) (3.78)

Then there exists an unique (nowhere singular) meromorphic solution (f(t),g(t)) of g-P(A1)
on T, characteristed by the fact that, for every continuous q-domain V C V' C T, there is
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an r > 0, such that the series

PO o0); Z Z Fyi (M), b)t"6(1)", (3.792)
n=1i=—o00
" (t, (1) Z Z Gyl b)t"é(t)’, (3.79b)

n=1i=—o0

converge uniformly on

Vn{teC: |t <r},
and we have f(t) = fOF(t,¢(t); A(t),b) and g(t) = g% (¢, #(t); A(t),b) on this set.

In particular the leading order behaviour of this solution within T, i.e. on V as above, is
given by
ft) ~ o)t g(t) ~At)p(t)t. (¢ —=0) (3.80)

Proof. Let us take any continuous ¢g-domain V' C T, such that V" C T. We define
Van =V N {t€C:1<t] < g '},
then V,., is a compact subset of T', and we set

At = M), A= inf |\t +_ ; —_ ing
tsgﬁn! (@)1, telgm! @], ¢ t:gﬁﬂ@()l, ¢ telgm!qﬁ()\

As A(t) € Lo(b) for t € T, we have
L< A <A <g ™t (3.81)
By equation (3.78), we obtain,
(erng < [o(o)] < (xFyEn (D g,

forallte V.
Let us introduce the variables

Cl (t) = t¢(t)a CQ(t) = ¢(t)_1a
then we have inequalities

GL()] < ATt (|gIaT) sl (3.82a)
Ga(8)] < (¢7) 7 (A7) oBral D (3.82b)

fort e V.
Determine L C Lo(b) open with L C Lo(b), such that

{A(t):teV}CL.
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By Theorem 3.3.1, there is an open environment Z C C? of 0, such that the series (3.48)
converge uniformly in ({,A) on Z x L. By inequalities (3.81) and (3.82), we can determine
an r > 0 such that {(¢t) € Z for |[t| < r. It follows that the series (3.79) converge uniformly
on (3.4.1), defining an analytic solution of ¢-P(A;) on this set. We apply Lemma (2.1.2) to
meromorphically continue this solution to a solution (fy,gy) on V. As we can do so for any
continuous g-domain V. C V° C T, we take the union of these solutions fv(t) and gy (t),
giving an unique meromorphic solution (f(t), g(t)) of ¢-P(A;) on T. O

Note that we can formulate a real version of Theorem 3.4.1. That is, assume that the
parameters b satisfy

{blaan b37b4} = {b17b27b3a b4}7 {b57667b77b8} = {b57b67b77b8}7

with ¢ € (0,1).

We let ¢(t) and A(t) be real valued continuous functions satisfying A(t) € Lo(b) and (3.78)
on Ry. Then there is an r > 0 such that the series expansions (3.79) converge uniformly
on (0,7) and f(t) = fOF(t,¢(t); A(t),b) and g(t) = g** (¢, #(t); A(t),b) define a real-valued
continuous solution of g-P (A1) on (0,r). If ¢(¢) and A(t) are real analytic, then f(t) and g(t)
are real analytic on (0,r) and there exists an unique piecewise real analytic continuation to a
solution on R .

In the coming sections, we discuss special cases of the construction in Theorem 3.4.1,
leading to different types of interesting leading order behaviour.

3.4.3 Complex Power Type Critical Behaviour

We consider Theorem 3.4.1, where we choose A(t) = A € Ly(b) constant. Then the associated
A(t) = X is also constant and we determine a p € C such that exp[plng] = A\. We choose
a ¢ € C* and set ¢(t) = ¢ot’. As p ¢ Z, we have to impose a branchcut on the domain
T C C*, and in order to meet the requirement ¢T' = T, we set this branchcut equal to —g~.

That is, we define
T=C'\{-¢:seR}, ¢°:=exp|sing|. (s eR) (3.83)

Then we can define the complex exponential ¢¥ uni-valued on 7', with ¢(qt) = A¢(t) for all
t € T. Explicitly we define t” on T as follows. Let ¢t € T, then there are unique s € R and
6 € (—m,7) such that t = ¢°¢®, and we set

19 = NP RO (3.80)
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Applying Theorem 3.4.1 gives us an unique meromorphic solution (f(t),g(t)) of ¢-P(A;1) on
T, such that f(t) and g(t) are described by

F(&) = foF (t, ¢ot";¢", b Z Z F)f (¢%,b) ght" ™, (3.85a)
n=11i=—00
g(t) = g>" (t,¢ot";¢", b Z Z GYT (¢, b) ghtrtn, (3.85b)

n=1i=—o0

for ¢ close to 0, on every continuous ¢-domain V C ViCT.
However, since A is constant, we can do a bit better. There is an r > 0, such that the
expansions (3.85) converge uniformly on

TN{teC |t <r}.

An interesting special case occurs when A € ¢, then we can choose p € R, and as 1 < |A| <
lg|7!, we have —1 < p < 0. In Section 3.8.2 we identify the critical behaviour (3.85) with the
complex power type behaviour of solutions of Painlevé VI found by Jimbo [42] near critical
points, in the continuum limit ¢ — 1. We remark that Mano [61] found similar complex power
type critical behaviour for solutions of ¢-Pyr (4.2), the g-analog of Py derived by Jimbo and
Sakai [43].

3.4.4 Oscillatory Type Critical Behaviour

Another case of special interest is given by setting A = e in Theorem 3.4.1, where § € R\27Z.
Indeed, by Remark 3.3.4, the expansions (3.44) are well-defined in this case, and converge.
This gives rise to solutions of ¢- P( A1) with leading order behaviour of oscillatory type. Indeed,
given a continuous g-domain T and a nonvanishing function ¢(t) satisfying ¢(qt) = e%¢(t)
on T, setting
A(t) = A = £(bibsbsby)zez”,

we can construct an unique meromorphic solution (f(t), g(t)) of ¢-P(A;) on T, such that,
for every continuous g-domain V' C V* C T, there is an r > 0, such that the series (3.79)
converge uniformly in ¢ on

Vn{teC : |t <r},
and we have f(t) = fOF(t, ¢(t); A,b) and g(t) = g% (¢, ¢(t); A, b) on this set.
The leading order behaviour of this solution, as ¢ — 0 within 7', is given by
F(t) =t (6(t) + Feq(A, b) + u(A,b)o(t) 1) + O (£7) (3.86a)

9(t) = t(Ag(t) + Geq(A, b) + blbf‘m p(A,B)p(t) ™) + O (£2) . (3.86h)

If 0 € 7Q, then ¢(t) is periodic, leading to a vast number of possible oscillatory type asymp-
totics in equations (3.87), for different choices of ¢(¢). On the other hand, for any ¢¢ € C*,
we can set ¢(t) = ¢ot?, as defined in (3.84), where p = ifIn(q) "', on T as defined in (3.83).
Then we have ¢(¢°t) = ¢(t), where s = 27” € R, which gives oscﬂlatory type asymptotics in
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equations (3.86) on ¢-spirals as well. Heuristically speaking, the latter critical behaviour is
related to the oscillatory type critical behaviour of solutions of the sixth Painlevé equation,
obtained by Guzzetti [24], via the continuum limit.

Let us get back to the general case. Applying Backlund Transformation 77 to the solution
(f(t),g(t)), we find that

ft) =

‘ o
!
~

@)’ 9(t)’
defines a meromorphic solution of ¢-P(A;)(b(")) on T, with
~ 1
0= S0+ R 8B + 18 Do T O o)
g(t) = ! (3.87b)

AG(t) + Geq(A, b) + 2204 (A, D)o ()7L + O (1)

as t — 0 in T. We remark that Guzzetti [24] also obtained inverse oscillatory type critical
behaviour for the sixth Painlevé equation.

Accumulating Poles and Base Points

Note that the leading order terms in equations (3.86) can not vanish identically on a non-
empty open subset of 7', except for a very special choice of the parameters b € B, and
X\ = e = —1, which we leave to the interested reader to explore. However, for special choices
of ¢(t), poles of f(t) and ¢(t) might accumulate at ¢ = 0 in T". For example, let us again take
a ¢p € C*, and set ¢(t) = ¢ot”, as defined in (3.84), where p = if In (q)_l, on T as defined in

(3.83). Then we have ¢(¢°t) = ¢(t), where s = 2% € R. Let z; and x5 denote the zeros of
T+ Foq(A,b) + p(A,b)z 1.

Say t; € T satisfies ¢(t;) = x; for i = 1,2, and assume s > 0. Then the leading order term
of f(t) in (3.86) vanishes on the spirals {¢"°t; : n € N}, with ¢ = 1,2, which accumulate at
t = 0. One can image that asymptotic to these spirals, there exists approximate spirals of
true poles of f(t), accumulating at ¢t = 0. We do not pursue to make such estimates rigorous
here, but note that a similar argument has been employed by Guzzetti [28] to prove existence
of critical behaviour of solutions of the sixth Painlevé equation, at for instance the critical
point 0, with two rays of poles accumulating at the critical point.

Now let us consider the critical behaviour (3.86) in light of for instance the base point
p1 = (t/b1,b1t). The two polynomial equations

¢ + Feq(A,b) + p(A,b)o ™" = 1/by, (3.88)

b1bobsb
A¢+Geq(A,b)+w

(A b)e ! = b, (3.89)

have the common solution

b1 (A + babs) (A + baby) (A + bsby)
(bibabsby — A2)?2 ’

6" =
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which can be checked by direct computation. Let ¢(¢) be as above, and suppose ty € T is
such that ¢(tp) = ¢*. Then we have

(f(t),9(1)) = (t/b1,b1t) + O (1?) ,

ast — 01in {¢"™%to : n € N}. Again it is not implausible for an approximate spiral asymptotic
to {¢"tp : n € N} to exist on which the solution hits base points, accumulating at ¢ = 0.
Note that we can not realise the case s = 1, which would heuristically speaking contradict
2.3.3 asymptotically.

3.4.5 An Asymptotic Formula

Given A(t) and ¢(t), we are interested in obtaining numerics of the via Theorem 3.4.1 associ-
ated solution. From a theoretical point of view, we could obtain arbitrary accurate numerics
of the solution (f(t),¢(t)) in T close to t = 0, by calculating sufficiently many coefficients in
the series (3.79). However, in practice these coefficients seem to be quite hard to calculate
for large n. As an example, writing the coefficients F207 o"(A,b) and Gg::{ (A, b) of expansions
(3.45), down explicitly as a ratio of polynomials in A and by, ..., bg already requires a couple
of pages. Despite this drawback, note that for continuous ¢-domains V' C V' C T, we have
1<¢() <t !tonV ast— 0. Therefore

o)t =t )" <t

fori € Zep, andn>2,ast—0in V.
Hence, by Theorem 3.4.1 and equations (3.79), we have

Ft) = o7 (¢, 0(t); A(t), b) = Fy t+zpw+ b)t"(t)" + oft),

g(t) = 9" (8, 6(1); A1), b) = GY'5 b)t + Z G (A1), D)t ()" + ot),

ast—0in V.
And therefore, using equations (3.72), we obtain

T (0 LA, bO)

A0+ 1
g(t) = Gig (A(t), b)t + G(1),+ (t—%(t)_laA(t)_l?b(l))

as t — 0 in V, and explicit formulas for Flo "+ and G?’Jr are given by equations (3.29) and
(3.54).
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3.4.6 Critical Behaviour near Infinity

As t = 0 and t = oo play an equivalent role in ¢g-P(A;), we can easily formulate an analog
result for Theorem 3.4.1 around t = oo.

Theorem 3.4.2. Let b € B,, suppose we have a continuous g-domain T, a function A (t)
which is analytic on T and q-periodic, i.e. Aoo(qt) = Aso(t), satisfying Ao (t) € Lo(b), for
t € T. Let poo(t) be a nonvanishing analytic function on T, satisfying

2
D00 (at) = Moo (Do), Aao(t) = V)

= . (teT .
bebobrbs (teT) (3.90)

Then there exists an unique (nowhere singular) meromorphic solution (f(t),g(t)) of g-P(A1)
on T, characteristed by the fact that, for every continuous q-domain V C V' C T, there is
an r > 0, such that the series

oo n+l

foo7+(tv ¢oo(t)§ Ao (t)a b) = Z Z Fr(;j"—i_(Aoo (t)v b)t_n¢m(t)i> (3'913)
n=01i{=—o00
oo n+l

(1o (0 e (0, D) = 30 37 G (M) D) "0, (391D)

n=0i=—o0

converge uniformly on
Vn{teC*:|t7l <r},
and we have f(t) = foF (¢, poo(t); Aso(t), b) and g(t) = g° (¢, oo (t); Ac(t), b) on this set.
In particular the leading order behaviour of this solution within T, i.e. in V as above, is given
by
f() ~ doo(t),  g(t) ~ Ao(t)Poo(t).  (t— 00) (3.92)

Proof. The proof is analogous to the proof of Theorem 3.4.1. 0

Similar to the beginning of Section 3.4, we construct solutions on a discrete g-domain
q“to, by taking a A, € Lo(b) and ¢, € C*, setting
_ A

bsbebrbs’

ts = qst07 )\oo

and determining an S € Z, such that

fs = fO’Jr(ts, )\goﬁbom Ao,b), gs = go’Jr(ts, )\f)oﬁbom Ao,b),

converge uniformly in s on Z<g, defining a solution of ¢-P(A;).

Guaranteed by the the singularity confinement property, we have an unique continuation
of (fs,9s)s<s to a full solution (fs,gs)sez in P x P. Note that this solution is completely
determined by our initial choices for Ay and ¢, that is, writing

(fs:9s)sez = (fs(Aoos b0 ) 9s (Moo, Poo))sez,



3.5. SIX SPECIAL ONE-PARAMETER FAMILIES OF CRITICAL BEHAVIOUR 69

we found a family of solutions of ¢- P(A1) on discrete g-domains, with two arbitrary integration
constants Aoy € Lo(b) and ¢, € C*. Furthermore we have asymptotic formula

fs~ Aioﬁboo, gs ~ AooAZogboo (5 — _OO)

3.5 Six Special One-Parameter Families of Critical Behaviour

As a consequence of Conjecture 3.3.3, we expect the inner summations in (3.45) to terminate
at ¢ = 0, i.e. all negative powers of ¢ to disappear, when A is equal to any of the roots of
(A, b). Indeed we have the following result.

Proposition 3.5.1. Let k € {1,2,3}, and Af and A\ be defined as in Section (3.2.2), where
we fix the sign £ throughout the proposition. Take b € B such that

1¢ Qs :={(\ '™ "¢" : (m,n) € N>\ {(1,0)}. (3.93)

Then, setting A = A,f, the formal solution (3.44) of q-P(A1), defined in Theorem 3.3.1, takes
the form

FOF(t, ¢ AL, b) ZZFO+ AE b)p't", (3.94a)
n=1 7=0

¢ F(t, ¢; A, b) ZZGO+ AE b)p't", (3.94b)
n=1 =0

where ¢ satisfies ¢ = )\flgb.
Assuming |q| < 1, |)\§1| < lq|7! and )\fl ¢ ¢, condition (3.93) is satisfied and this formal
solution, written in terms of the variables t and (1 = to,

FOF(t, ¢/t AL, b) Z Fyrd (A, )™ + Z Z Fpts (A )™, (3.95a)
i=1 m=0

9"t (t, G/t AL b) = Z GO (AE, D)™ + Z Z Gl (A, D)™, (3.95b)
m=1 i=1 m=0

converges near (t,(1) = (0,0).
Furthermore, the pair of isolated power series in (3.95), equals the solution (f(1F) (k)Y
holomorphic at t = 0, defined in Proposition 3.1.2, that is,

FOF (8,0, A%, b) ZF“Ai )t = R (), (3.96)
" (£,0; A, b) ZG (A, b)t™ = g M(1), (3.96b)

and in particular these do not depend on the choice of sign + in Aki.
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Proof. For notational simplicity, we discuss the particular case A = A} = —b1bo, noting that
the other cases can be dealt with analogously. We assume condition (3.93) with k¥ = 1 and
+ = +, plus the additional conditions

by+by#bs+by, b A DY, 14 MNQ.. (3.97)

Once we have proven the proposition with these additional assumptions, we can easily discard
them by analytic continuation using Remark 3.3.2. Indeed, given the proposition, we find,
that condition (3.46) in Theorem 3.3.1 can be replaced by 1 ¢ Qs when A = A7, as in Remark
3.3.4. The idea of the proof is to construct a formal solution (f(t, ¢), g(t, ¢)) of ¢-P(A1), which
has an expansion in ¢ and ¢, exactly of the form (3.94), and subsequently use the uniqueness
property in Theorem 3.3.1 to conclude

Ot ¢ AT, D) = f(t,0),  ¢"T(t,¢: A, b) = g(t, 9). (3.98)

Firstly, by (3.93), we have A\; ¢ ¢%, and using the first two conditions in (3.97), we construct
the solution (f(l’l),g(l’l)) of ¢-P(A1), holomorphic at ¢ = 0, defined in Proposition 3.1.2.
Next we apply the following change of variables

f(tv ¢) = f(171)(t) + Cl (1 + yl(tv Cl)) ) g(ta ¢) = g(l’l)(t) + Cl (_b1b2 + y2(ta Cl)) ) (3'99)

which allows us to rewrite ¢-P(A;) as

1 (qtv q)‘Cl) = Hl (t’ <l7 Y1 (tv Cl)a Y2 (t’ C2)) ’ (31003‘)
y2(qt, g\G) = Ha (t, G, y1 (¢, C1)s 92(t, C2)), (3.100Db)

for some functions Hi(t,(1,y1,y2) and Ha(t, (1,91, y2) which are rational in the elements of

{t7 Cl? Y1, Y2, f(l,l) (t)7 g(l’l) (t)7 f(Ll) (qt)7 g(ljl) (qt)} . (3101)

We wish to apply the ¢-Briot Bouquet theorem B.3 with Y = (0,0), therefore the first
condition we have to check is that H; and Hs are holomorphic at (¢, (1, y1,y2) = (0,0,0,0).
As H; and Hy are rational in the elements of (3.101), it is enough to expand H; and Hs as
series in ¢, (1, y1,y2 and check that no negative powers appear. Expanding H; and Hs in (q,
we find for i =1, 2,

Hi(t,C1,y1,12) = h¢ ( )G +h0 (t Y1,Y2) +h§)(t y1,y2)C1 + .

The coefficients h(f)l (t) are rational in ¢, f(LD (1), gV (¢), FOD(gt) and gtV (gt). Formally
speaking h(f{ (t) = 0 and h(ﬂ (t) = 0 is equivalent to the ¢-P(A;) equation with f = f(1(#)
and g = gD (t). That is, h(_lg (t) and h(_Q% (t) are identically zero, precisely because we are
perturbing around a solution of ¢-P(A;). We conclude, for : = 1,2,

Hi(t, ¢, y1.92) = h(()i)(ta Y1, y2) + hgi)(tath)ﬁ + héi)(t,yh y2)(E +
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In a similar fashion one can calculate that H;(t, (1,y1,y2) enjoys a power series expansion in
the other variables y1,y2 and t, for ¢ = 1,2. The y; and yo cases are rather trivial, but in the
t case, we use the fact that we perturb around a solution of g-P(A;), holomorphic at ¢t = 0, in
an essential way. We conclude that H; and Hy are holomorphic at (¢,¢1,y1,y2) = (0,0,0,0),
and calculate

_ 1 _
H1(0707?J1>y2) = _)\1 lyl - @ (1 + )\1 1) Y2,

HQ(O,O,yl,yg) = b3b4 (1 + )\;1) Y1 + (1 + )\Il + )\;2) Y2.

So H;(0,0,0,0) = 0 for ¢ = 1,2, and the Jacobi matrix

oH oH _ -
(ay:w’o,o,m ay;wyoyw):( ! —bf,n(ms))

91.(0,0,0,0) 911(0,0,0,0)) ~ \bsbs (14 A7) 14+ AT + A2

has eigenvalues 1 and )\1_2.
By (3.93) and the third additional assumption in (3.97), we can apply the ¢-Briot Bouquet
Theorem B.3, to obtain an unique power series solution to (3.100) of the form

yi(tv Cl) - Z y%),ntmg?7
m,n=0

with iy = 0 for i = 1,2,

Associated via equations (3.99), we have the solution (f(¢, ¢), g(t, ¢)) of ¢-P(A;) with

Ft0) =D faid't™,  gt,0) =D gnid't",

n=1i=0 n=1i=0
where
11 1
fii=1, fro= 1"V, fuo = MY, Fai =y, (3.102)
g1,1 = —biba, gr0=9g"", gno =g, In,i = y,(f,)m,p (3.103)

for 1 <i <mnand n € N>o.
By the uniqueness property in Theorem 3.3.1 we conclude that (3.98) must hold. The re-
maining convergence result follows from the ¢g-Briot Bouquet Theorem B.3. O

The proof of Proposition 3.5.1 is not particularly elegant. This lies in the fact that we
are dealing with a strongly resonant case in light of the general solution of a ¢g-Briot Bouquet
type equation. We do not want to delve too far into this issue, but just like to point out
that the difficulty comes from the fact that in the case of solutions, holomorphic at ¢ = 0,
the two eigenvalues of the relevant Jacobi matrix are each other’s reciprocals, as the proof
of Proposition 3.1.1 shows. We avoid this issue by a change of dependent and independent
variables, with the cost of dealing with some additional assumptions (3.97).

Remark 3.5.2. Equations (3.96) allow us to analytically continue, for instance the solution
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(f(lil)(t), g(l’l)(t)) defined in Proposition 3.1.2, to the degenerate parameter cases by + by =
b3 +bs and byt + by = byt + by

Let us discuss the particular case A = A = —byby in Proposition 3.5.1, in more detail.
We choose some parameter values b € B, such that |q| < 1, [\1] < |¢|™" and A\ ¢ ¢ In
particular condition (3.93) is satisfied. Strictly speaking, Theorem 3.4.1 is only applicable if
A = —b1by € Lo(b), or equivalently,

1< M| < g™t

However, the convergence result of (3.95) in Proposition 3.5.1, allows us to easily extend the
results of Theorem 3.4.1 to the cases [A1| < 1 and |A;| = 1. Indeed, let us consider the case
|A1] < 1, and take some analytic function ¢(¢) which satisfies ¢(qt) = A1¢(t) on a continuous
g-domain 7' C C*. Then there exists an unique meromorphic solution (f(¢), g(t)) of ¢-P(A1)
on T, characterised by

F(t) = foF(t, 6(t); —biba, b _ZZFM —b1ba, b)o(t)'t", (3.104a)
n=1 =0

g(t) = g F(t, ¢(1); —biba, b —ZZG —bibz, b)g(t)'t", (3.104b)
n=1 i=0

for t small in T', as the right-hand sides converge uniformly in ¢ on any continouous g-domain
V C v C T, intersected with a disk centered at the origin with radius chosen small enough.
In particular, by equations (3.96), the leading order behaviour of f(¢) and g(t) is given by

F@&) = fEV@) + o)t + O (o(1)t?)
g(t) = g BV (t) — bibaop(t)t + O (6(t)t?)
ast — 0in V as above.

Of course the choice ¢(t) = 0 gives f(t) = fV(t) and g(t) = g(bV(t). Now let us realise the
case f <t with g < ¢ in (3.18), by assuming the condition

b1 + by = bg + by, (3105)

given in (3.20). Indeed the leading term of f(11)(¢) vanishes, as fl(l’l) = 0, and hence we
generically have f <t and g <t ast — 0in V C T as above. If we also set

byt byt =03t 0 (3.106)
then the leading term of g(lvl)(t) also vanishes, as gil’l) = 0, and this realises the case f,g <t
as t — 0 in (3.18). Note that (3.105) and (3.106) imply by = —be and bg = —by, so condition
(3.19) is trivially satisfied, as expected. To give the reader an appreciation how far the rabbit
hole of degenerations goes, let us consider the case

b1 = —bo, bs = —by, bs = —bs, by = —bs, by = bg. (3.107)
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The solution (f(t),g(t)) takes the form

2 2
) = t6(), g(t) = Bto(t),  olat) = Mo(t), Ar=<2>, QZ(Z), (3.108)

where the parameters by, by and bg can be chosen at our pleasure. In particular, let us fix
some by, bg € C* with |bg| < |bg|. Then, for any m € N, we can choose by € C* small enough,
such that |A\1| < |¢|™, which gives

F(),g(t) < ",
as t — 0 in any continuous ¢g-domain V C V' C T.

Let us return to the generic case (3.104), application of Béacklund transformation 77 and
a permutation b — b(!) of the parameters, gives an associated solution (f(t),§(t)) of ¢-
P(A;)(b), with

&) = 1OV [1+ O 0 t]’+o( ). (3.1002)
a(t) 29(0’1)@)[ — by Loty } (5(15)75), (3.109b)

as t — 0 in V as above, where QNS(qt) = >\<;~5( t) with A = 2728, subject to conditions |g| < 1,

IA| <1, A ¢ ¢"" and, to ensure the validity of the asymptotics (3.109),
bs+bs #br +bg  and byl bgl A b b5l

Setting ¢(t) = 0, gives the solution f(t) = f©(t) and §(t) = g(®V(¢) defined in Proposition
3.1.1.

3.6 The Logarithmic Case

In Sections 3.4 and 3.5 we have been able to find complete expansions of the formal solutions
of ¢-P(A;) associated with the generic and 6 special families of formal solutions of the lead-
ing order autonomous system (3.22). Subsequently we have been able to turn such formal
solutions into true solutions by appropriate substitutions for the formal variables entering the
formal solutions. The only case left the discuss is the logarithmic type solutions of the leading
order system, discussed in Section 3.2.3. However this case does not seem very straightfor-
ward, even on a formal level. We expect the complete expansion of the formal solution of
g-P(A1), associated with (3.40), to take the form

=D Er(ot' glt.x) =Y Gr(ot", (3.110)
n=1 n=1



74 CHAPTER 3. LOCAL BEHAVIOUR OF SOLUTIONS NEAR CRITICAL POINTS

where of course FiF(x) = Fi(x) and G5 (x) = GF(x) as defined in (3.40), and more generally
the coefficients Fi¥(x) and G () are polynomials of degree 2n in Y,

2n
=D Fax's Gl ZGmX
=0

By direct calculation using Mathematica, we found that there indeed exist unique degree 4
polynomials in x for FQi (x) and Gf(x), solving (3.43) with n = 2. However carrying out such
a computation becomes very unattractive already for n = 3. A theoretical understanding is
required, but the author does not know a method of attack, at the time of writing this thesis.
Logarithmic type critical behaviour has been obtained for solutions of the sixth Painlevé
equation, see for instance Guzzetti [25], however convergence of the corresponding complete
expansions is still an open problem [28] at the time of writing.

Let us assume that indeed the complete formal expansion (3.110) is valid. Say we wish to
construct true solutions of g-P(A1) on some discrete g-domain ¢%tg, typically we would set

ts=¢q’t, Xs=Xo+s, (s€Z)
where we can choose xo € C at pleasure. Note that, for n € N*,

FE(Xs)te ~ Frgatia™s™, G (xs)ts ~ Groptgq™s™. (s — o0)

n,2n

Since ¢*"s?™ — 0 as s — 0o, we would hope that

fs = f(ts; Xs) ZFixs 5o s = glts, Xs) ZGixs

converge uniformly on {s € Z : s > S}, for some S € Z large enough, defining a true solution
of ¢-P(A1). Note that this solution has one free parameter xo € C.

As to solutions on open ¢-domains, we would typically consider

x(t) = log, t + c(t),

where ¢(t) any g-periodic function.

3.7 Summary and Outlook

Let us summarise what we have done so far. We started with a somewhat heuristic comparison
of possible asymptotic growths as t — 0 of solutions of ¢-P(A;) in Section 3.2. This lead to
three different cases, which we write down again for convenience of the reader,

frg=t, t=<f,g=<1, Lg=1.  (t—0)

Assuming t < f, g < 1, we showed that the leading order behaviour satisfies an autonomous
system (3.22). We derived the general solution of this autonomous system, and we were able
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to construct, for any solution of the autonomous system, an associated solution of ¢-P(A;)
with that particular critical behaviour, except for the logarithmic type solutions. By apply-
ing Bécklund Transformation 77 we found additional critical behaviours, which correspond
formally to the case f,g =< 1. Indeed, if we assume f, g < 1, and consider the following formal
ansatz, analogously to (3.42),

f:ZFitZ, g:ZG’Ltz
i=0 i=0
Then we find that the first formal terms satisfy

GH(FoGy — 1)(FoGo — 1) = FyFo(Go — b5)(Go — bg) (Go — b7)(Go — bs), (3.111a)
Fo(FoGo — 1)(FoGo — 1) = GoGo(Fo — b5 ) (Fo — b5 ") (Fo — b ") (Fo — bg).  (3.111b)

Now the formal leading order behaviour of the inverse complex power type, power series II,
inverse oscillatory type and inverse logarithmic type solutions, as depicted in Table 3.1, all
define solutions of system (3.111). In Table 3.1 the different critical behaviours near ¢t = 0 are
summarised. We discuss each case on the discrete level, so (fs, gs)sez € Si(to), where t5 = ¢°to
for s € Z and typ € C*. We emphasise that the logarithmic type and inverse logarithmic type
critical behaviours are conjectural. In the table we have written down only the formal leading
order behaviour. As to the inverse oscillatory and the inverse logarithmic type behaviour, one
should apply the permutation b — b1 to obtain the correct formulas for critical behaviour of
solutions for ¢-P(A;)(b). Furthermore we refer to the ¢-P(A;) transcendents, meromorphic
at the origin, defined in Propositions 3.1.2 and 3.1.1 as “Power Series I” and “Power Series
IT” respectively in Table 3.1. We remark that one can obtain a completely similar table for
the critical behaviour about ¢ = co.

A number of fundamental questions now arise. Firstly, we only proved that there exists
a solution with given leading order behaviour, but we did not prove that they are uniquely
characterised by this leading order behaviour. As an example, consider the discrete solution
constructed in Section 3.4.1, whose leading order behaviour is given by equations (3.77). Is
it true that there is only one discrete solution with leading order behaviour given by (3.77)7?
We pose the following “uniqueness” problem.

Problem 3.7.1 (Uniqueness). Show that the leading order critical behaviours of the solutions
in Table 3.1 determine the corresponding solution of q-P(A1) uniquely.

There are several to approach this problem. One way would be via a fixed point argument,
and another would be to show that the monodromy mapping (2.24) is injective, and that there
is only one monodromy datum corresponding to a given leading order behaviour, considering
the isomonodromic deformation framework in Section 2.4.4.

Another important question is whether our table of critical behaviours 3.1 is complete.
We pose the following “completeness” problem.

Problem 3.7.2 (Completeness). Show that Table 3.1 lists all critical behaviours of solutions
of ¢-P(A1) near t =0, for generic parameter values.
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A method of attack to solve this problem would be to show that the monodromy data,
corresponding to all the different critical behaviours in our table, exhaust the monodromy
space M. Finally let us recall the ¢-P(A;) connection problem, described in Section 2.4.2,
for which an isomonodromic deformation method can again be made effective to solve it, as
sketched in Section 2.4.4.

We remark that the critical behaviours in Table 3.1 all correspond to relatively moderate
growth, in the sense that there is no exponential growth or similar among them as t —
0. We expect that there are no solutions, other than the singular ones, which have such
wild behaviour near critical points. Establishing such a result rigorously, just by a local
analysis such as the method of dominant balance to arrive at a contradiction, seems difficult,
especially since the singular solutions show that exponential growth or decay of solutions is
not inherently inconsistent. This is of course closely related to the completeness problem
3.7.2.

Let us also note that some of the continuous Painlevé equations exhibit the nonlinear
Stokes phenomenon, typically coming from an divergent asymptotic expansion near a critical
point. See for instance Joshi and Kruskal [44] and Kapaev [54] for P, Joshi and Kruskal
[44] and Its and Kapaev [40] for P, and Kitaev [55] for Pry. Recently the nonlinear Stokes
phenomenon has also been observed in additive discrete Painlevé I by Joshi and Lustri [47]
and additive discrete Painlevé IT by Luu et al. [48]. As to ¢-P(A;1), we found that the generic
critical behaviour is given by convergent asymptotic expansions, both near ¢ = 0 and ¢ = oc.
The same holds true for Py, near its critical points. However, we also came across logarithmic
type formal leading order behaviour, and a conjectural corresponding full expansion. Even in
the Painlevé six case, it is not known whether the complete logarithmic type expansions are
convergent or divergent.

Remark 3.7.3. Another possible approach to solving Problems 3.7.1 and 3.7.2, than the
ones already mentioned, would be to do an asymptotic analysis in the initial value space X (t)
of ¢-P(A;), in the large and small ¢ limit. In this regard we mention the works of Joshi and
collaborators [12, 38, 49, 46].

3.8 Reduction to Symmetric Form and Continuum Limit

In Section 2.5, we discussed the natural reduction of ¢-P(A;) to its symmetric form. This
reduction allows us to easily translate much of the work done in the previous sections, to
symmetric ¢-P(A1). So let us consider the formal series solution (3.44) and assume (2.28),
then we have

~
~

2 A 2
A=A,  ¢=xp, A= <€> . (3.112)

In order to make sense of condition (2.30), we have to define the time evolution * on A and
¢. Inspired by equations (3.112), we set

A=A, $. (3.113)

o
Il
|
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Note that this is indeed consistent with (3.112) and condition (2.30) becomes
FOD (8,63 A, b(bs, €)) = g% (€714, ¢ A, b(bs,€)) (3.114)
where we denoted
b(b, &) = (ags,a™'e3, b3, 5718 e e d,d ). (3.115)

We prove that this condition indeed holds, which implies that the formal series solution (3.44)
reduces ‘naturally’ to a solution of symmetric ¢-P(A;). By equation (3.73), we have

0 0 1 —191020304
T (t (]5/\ b bs, =g é tv ) ’
f ( y ¥ 9 ( §>) ( § A b5b6b7bg

=" (67,6 A, BBy, 6))

b6 )

where
1 1 1 1
b (by,€) = ('3, ag%,b7¢3,b¢3 ¢ e, d 7 d). (3.116)

so it remains to prove

9O (67 6 A b(be,§) = ¢ (674,654, DO (b 0))

This identity, however, follows directly from equation (3.66), by comparing (3.115) and
(3.116), where the permutation o € Sym({1,2,3,4}) x Sym({5,6,7,8}) equals

o= (12)(34)(56)(7 8).

We conclude that, assuming equations (3.113), the symmetry condition (3.114) always holds.
To put it differently, consider solutions defined by Theorem 3.4.1 on some g-domain 7" which
also happens to be a £&-domain. Then the symmetry condition (2.30) holds, if and only if A(t)
and ¢(t) satisfy equations (3.113), which is only the case for very special choices of A(t) and

(t)-

Formula (2.29), however, does not allow for any straightforward interpretation on a formal
level. Luckily we are working with formal variables, so let us for a moment, denote the time
evolution ¢t +— & 3t by t,s0t = & 3t and in general © = . We simply introduce new formal
variables A’ and ¢’ which are forced to satisfy

R=en, ¢=¢2¢,
and hence, by equations (3.113), satisfy

N=N, §J=N¢. (3.117)
We conclude, using equation (2.29), that

20 (8,05 06 by) = O+ (34,6736 €A b(bL,©))
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defines a solution of symmetric ¢-P(A;1).
Despite the appearance of square roots of ¢ in the above expression, the coefficients in the
expansion are rational in £ and we have the following result.

Theorem 3.8.1. There exists an unique formal series solution of the symmetric q-P(A1)
equation (2.27), of the form

Tt i AL € by Z Z Ot (A€, ) ", (3.118)

n=1i=—o0

where :U0+ (A,&,bs) =1 and A and ¢ satisfy (3 117).
For n € N* and i € Z<y,, the coefficient x (A &, bs) is a rational function in its inputs
which is regular at points (A, &, bs) € C* x (C* x Bs satisfying

1¢ Q= {qi"g : (m,n) € N*\ {(0,0)}}, (3.119)

where g1 = q1(§, As) = EAs and g2 = g2(As) = AJT.
Furthermore, let |€] <1 and A € L§ := {z € C: 1 < |2] < |£]71}, then condition (3.119) is
satisfied and this formal solution, written in terms of the variables ¢, = t¢ and (o = ¢~ 1,

216, G A D) = Y D (A6 )R (3.120)

n=1m=0

converges near ((1,C2) = (0,0).

In fact, these expansions also depend analytically on As. That is, for any L C L§ open with
L C L§, there is an open environment Z C C2 of 0, such that the series (3.120) converges
uniformly on Z x L, defining holomorphic functions on this set in (¢, A).

Proof. We prove this analogously to Theorem 3.3.1. 0

For the formal series solution (3.118), conjecture 3.3.3 implies that the coefficients :U?j (A, b, &)
vanish for i < —n and n € N*. Indeed, by direct computation we checked this assertion for
n=1,2,3. As to the case n = 1, it is easy to see that

1

2Pt =2t (A by = D al (A€, by) o,

1=—00
equals

a+al+b+bt AA+ab)(A+ 4 A+ (A+ L)

(A — 1)2 (A — 1)4(A T 1)2 Qb_ (3.121)

+:¢—A

which defines a solution to the autonomous QRT mapping

(171 — 1) (12 — 1) = (21 — a) (21 — a_l) (z1—b) (z1 — b_l) .
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3.8.1 Constructing True Solutions

Similar to Theorem 3.4.1, we can use the formal series solution (3.118) to construct true
solutions to symmetric ¢-P(A;). As an example we construct complex power type series
solutions, let ¢g, p € C*, set A = £P, say with respect to the principal branch, and assume

L< Al < |¢gn (3.122)

Define t” analogously to (3.84) on a domain 7' defined by equation (3.83), with ¢ replaced by
€. Then there is an unique meromorphic solution z(t) of symmetric ¢-P(A;) on T such that

(t) = 2%F (t,got" €7, €, b)) = Y Y alii (60,6, by) gt (3.123)

n=1i=—o0

for ¢ close to 0. More precisely, there is an r > 0, such that the expansion on the right-hand
side of equation (3.123) converges uniformly in ¢ on

TN{teC: |t <r},
and the equation holds on this set.

We will not work out all the different critical behaviours of solutions of symmetric g-P(A;),
as we did for ¢-P(A;1) to finally obtain Table 3.1. In stead we simply give the corresponding
Table 3.2 for symmetric ¢-P(A;). In Table 3.2 we adopted the discrete time interpretation
(xs)sez, with tg = £%tg and tg € C*. We have only written down the formal leading order
behaviour, but we remark that the corresponding complete expansions are in form identical
to those for ¢-P(Ay).

Note that symmetric g-P(A;) has four solutions which are meromorphic at ¢ = 0, depicted
by “power series I” and “power series II” in the table. Corresponding to each of the two power
series of type I, there are two special complex power type critical behaviours. Similarly,
corresponding to each of the two power series of type II, there are two inverse special complex
power type critical behaviours.

Just as in the ¢-P(A;) case, there are solutions of its symmetric form with oscillatory type
and inverse oscillatory type critical behaviour. Furthermore, we have logarithmic and inverse
logarithmic type critical behaviour, where xlljo(a, b), in the formula of the formal leading order
behaviour, is given by

U gy 2 @latal =4+ 4407 —(a+a7h) +4)
331,0(6% ) = 8(a + b)(1+ ab) ).

One might wonder why there is no term “:Ullyl(a, b)xs” in the formula. This is because we

have the freedom of substitution xs — xs + r, for any r € C, which allows us to scale such a
term away. The same of course applies to equations (3.40).
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3.8.2 Continuum Limit of Complex Power Type Critical Behaviour

We wish to calculate the continuum limit €& — 1 as described in Section 2.5.1, of solutions
which are described by some critical behaviour. Doing such rigorous does not seem easy,
even on a formal level. Nonetheless let us consider the solutions defined by (3.123), where
we restrict ourselves to £ € (0, 1), and define by = b(§) by equations (2.31), for some fixed
a, B,7,d € C. Considering equation (3.122), we fix a p € C with —1 < R(p) < 0. We define,
as in equation (3.123),

z(t; do. p, €) = 27 (¢, ¢ot’; 7,6, b Z Z D€ b(©) gt (3.124)

n=1i=—o0

with the principal branch cut, which converges uniformly in ¢ on an open disc punctured at the
origin. Via meromorphic continuation we extend the domain of x(¢; ¢g, p, &) to C\ (—o0,0).
Using Theorem B.4, it is not hard to see that this solution also depends analytically on & for
¢ € (0,1). However, we are interested in the limit £ 1 1 of solution (3.124), but condition
(3.119) for the existence of the formal series solution (3.118), is not satisfied at & = 1. Despite
the fact that Theorem 3.8.1 becomes inapplicable in this limit, we do expect the solution
(3.124) converges to a true solution of the differential equation (2.32) as & T 1. Proving this
rigorously, probably requires an extension of Theorem B.4 which incorporates limits of the

variable q as it approaches the boundary of B 1) under some specific assumptions, an

max(
interesting direction for future research. Instead, we proceed by heuristically calculating the

continuum limit on a formal level. By equation (3.121), we have,

— I e e T
%eri ml,O (é.pa€7b8(§)) - %gri _&'P (é-p _ 1)2 o p2 ’

where the second equality is obtained by applying L’Hopital’s rule twice.
Similarly, we find

plp—a—PB)p—a—-B)p+a—PB)p—a+p))(p+a+pF)
4p* ’

%lmw 1 (£7,€,bs(§)) =

which motivates us to make the following bold move.
We assume that the limit,

Ty (P, be) = hm%‘ §(€9,6,b,(€)),

exists on a formal level, for all i € Z<,, and n € N*, where b, = (¢, 3,7, 9).
We hence obtain the following formal solution to the differential equation (2.32),

z* (t;¢07p7 Z Z nz pa (bl pl+n

n=1i=—o00
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and assuming convergence, its leading order behaviour is given by

1 a2 _ /82
x¢ (t7 ¢07 P bc) = (ﬁot o + pz t+

(p—a—-PB)p+a— 54)[55 —a+B)(p+a+ ﬁ)d)altlfp L0 (tg,m(pn) 7

ast — 0.

Applying the change of variables (2.33) to this solution, we find an associated solution
w? (¢; p, 8, b.) of Pyp with parameter values parameters (2.34), whose leading order behaviour
is given by

W G =151 =1 (14 S ) 1

_(p—a-B)pta-— fé(pﬁ— a+B)(p+a +ﬁ)8_1(1 40 ((1 _ C)z—zwéﬁs(p)l) ,

as ( — 1, where s = 27172P¢y.

This is exactly the critical behaviour around ¢ = 1 which characterises the solutions obtained
by Jimbo [42] for Py1. Guzzetti [26] states that the full expansion of the solution w(t) of Pyr,
is given by

o0 n
W) =14+ > wnilpbe)s'(1 =), (3.125)

n=1li=—n
where wy; = 1 and the remaining coefficients can be determined uniquely via substitution
into Py1 and comparing coefficients. So the continuous counterpart of Conjecture 3.3.3 is true.
That is, there are no terms t***" in expansion (3.125), with i < —n and n € N*. However,
also in the continuous case, this is not easy to derive from the equation itself. Indeed Guzzetti
[26] shows how to determine the coefficients wy,; recursively and observes that for at least
n < 3, no terms tP"t" with i < —n have to be introduced, but he does not give a proof of this
fact for general n. The form of the complete expansion (3.125) is easier to understand via the
linear problem of Py1. Quite remarkably, recent work by Lisovyy and collaborators [4, 16]
gives explicit formulae for all the coefficients in the asymptotic expansion of the 7-function
associated with w((¢), in terms of conformal blocks. Similarly, it might also be possible to find
explicit expressions for the coefficients ng and G?l’j in the formal series solution (3.44).

3.8.3 Comparison with Painlevé Six

Guzzetti [27] gives a tabulation of critical behaviours of solutions of Py;. We have found
reflections of all these different critical behaviours in the ¢-P(A;) case. Indeed, considering
Table 3.1, using the terminology in Guzzetti [27], we have encountered complex power be-
haviour, oscillatory behaviour, logarithmic behaviour, Taylor expansions, inverse oscillatory
behaviour and inverse logarithmic behaviour. Furthermore each of these reduce to critical
behaviour of solutions of symmetric ¢-P (A1), depicted in Table 3.2. In the previous section we
showed how, at least the formal leading order behaviour of complex power type of solutions,
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converges to the corresponding complex power behaviour of solutions for the sixth Painlevé
equation, in the continuum limit. In fact this can be made to work for each of the formal
leading order behaviours, resulting in a similar table for the sixth Painlevé equation, as given
by Guzzetti [27]. We say made to work, as one of course has to make sure that terms such as
x in the logarithmic case, have to depend appropriately on & for the continuum limit £ — 1

to be sensible. Indeed, if we set
1 (log(t)
(e )

with 7 € C, and the parameter values by as in (2.31), then the logarithmic leading order
behaviour, given in Table 3.2, satisfies

2, 32
t (%(a +a b+ b7+ 2] o(a, b)) — 1 (%(/82 — o) (log(t) +1)* + ;gi—§2> ’

as & — 1. We invite the interested reader to compare this with the Painlevé six case under
the change of variables (2.33), and confirm that they indeed coincide.

3.9 Tables of Critical Behaviours
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Formal Leading Order Behaviour Terms Involved Int. Const. | Disc. Par. Ref.
Complex Power Type
fs ~ts (¢s + Feq(A) + M(A)¢;1) Qbs = >\s¢>0 ¢0 eC (3 7())
gs ~ ts (Ags + Geg(A) + S u(A) g3 ) A= i A € Ly(b)
Special Complex Power Type
(LK)
~ts(ds + ke {l,2,3
for tula £y Bk bs = Ao ¢o € C* { } (3.104)
gs ~ to(Af s + g1 ™) +e{+-)
Power Series 1
(LK)
s~ s
f fi ke{1,2,3} | (3.10)
(LK)
gs ~ tsgy
Oscillatory Type
5+Fe s (Z55:€9is (25 e C*
o (00 4 Fegl8) + 1(2)67) o | et | o
gs ~ ts (Ads + Geg(A) + Lu(N)g5h) | A = £(bibobsby)zez? | 6 € R\ 277
Logarithmic Type
fsNts Fi +FiX5+FiX3
< ll’LO li li ) Xs = Xo+ s xo € C +e{+,-} | (3.110)
gs ~ ts (GLO +Giaxs + Gl,?X?)
Inverse Special Complex Power Type
fore FOPL 4 fOR 11 . ke{1,2,3)
o b5 = N Lpm B0 $o € C* (3.109)
9s ~ gy [ +A |b»—>b(1)90 Qbs] + e {"'7 _}
Power Series 11
-, £(0k)
Ja fo ke{l,2,3) | (3.5)
(0,k)
gs ~ g
Inverse Oscillatory Type (for parameter values b(1))
-1 .
fs ~ [s + Feg(A) + p(A) g5 @5 = "¢ ¢o € C*
[ o)+ u(A)e] » " ’ e {+ -} | (387)
gs ~ [Ags + Geg(A) + 2 u(A) 3] A = +(bybabsby)ze2” | § € R\ 277
Inverse Logarithmic Type (for parameter values b(!))
fs ~ [Fio + Fiaxs + Fipxdl ™
Fro + i 12X Xs = Xo+ S xo € C te{+ -}
gs ~ [G +G11X5+G12XS] !

Table 3.1: Critical Behaviours of solutions of ¢-P(A;) near ts := ¢°tp = 0, or s = oo, where

“disc. par.”

stands for “discrete parameters”,

and “ref.” stands for “reference”.
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Formal Leading Order Behaviour Terms Involved | Int. Const.
Complex Power Type

s ~ ts(ds + a1,0(A) +21,-1(A)d; ) ¢s = Ao Pt

Ae Lj
Special Complex Power Type

s ~ ts(ds + 155) ¢s = (—ab)*¢o ¢o € C*

zs ~ t(ds + 157) ¢ = (—ab) ¢y | o €C”

s~ ts(s + LE2) ¢s = (—a/b)do | o€ C*

2y ~ 1y, + LEb) 65 = (=bja)do | o€ C*

Power Series 1
Ts ~ ts 1a++cf)b
Ty ~ by oy
Oscillatory Type
25 ~ ts(¢ps + w10(e%) + 211 (7)) ¢s = Py et
0 € R\ 27Z
Logarithmic Type
zs ~ts(sla+a b4+ b7 xE +algla,b) | xs=xo0+s X0 €C
Inverse Special Complex Power Type

2 ~ s + ]! ¢s = (=cd)’¢o | doeC’

zs ~ (s + 2] ¢s = (—cd)™¢o | ¢o € C*

zo ~ [fs + HEG) ¢s = (—¢/d)¢o | doeC’

Ty ~ [Bs + ]! ¢s = (—d/c)do | o€ C*

Power Series 11

1+cd
c+d

c+d
1+cd

Tg ~

Inverse Oscillatory Type (with parameter values a <> ¢,b <> d)

) | . ¢o € C*
Ts ~ [QZ)S + xLO(er) + xl,—l(eez)ﬁbs 1] ¢s = €6ZS¢0
0 R\ 27Z
Inverse Logarithmic Type
_ _ —1
zs ~ [Sle+ et +d+d N )xE + 2l o(c,d)] Xs = X0+ 5 xo € C

Table 3.2: Critical behaviours of solutions of symmetric ¢-P (A1) near ts := %ty = 0, or

s = 0o, where “int. const.” stands for “integration constants”.




CHAPTER 4

Linear g-Difference Equations and
Isomonodromy

The theory of linear g-difference equations goes back a long way. A classical approach to the
global asymptotic analysis of such equations was completed by Birkhoff [5], in which he treats
the Riemann-Hilbert problem for regular singular g¢-difference systems without resonance.
More specifically, after appropriate normalisation, he studies the system

Y(qz) = A(2)Y (2), (4.1)
where A(z) is a complex m X m matrix polynomial of degree n,
A(Z) =Ag+zA1+...+2"A,.

Under some generic assumptions on the eigenvalues of the matrices Ay and A,,, Birkhoff’s
student Carmichael [9] constructed canonical fundamental solutions Y°(z) and Y°°(z) about
z =0 and z = oo respectively. These fundamental solutions are related by

Y(2) = YO(2) P(2),

for some matrix P(z), called the connection matriz, which obviously satisfies P(gz) = P(z).
For g-difference equations, it is essentially this connection matrix which constitutes the mon-
odromy of the equation. Roughly speaking Birkhoff [5] worked out an exact correspondence
between linear first order g-difference systems (4.1), up to GL,(C) conjugation, and their
connection matrices, again up to some action, which we call the Riemann-Hilbert-Birkhoff
correspondence. Our main interest lies in scalar g-difference equations of the form

ug(2)y(2) + ui(2)y(qz) + .. um—1(2)y(q"™2) = 0,

where ug(2), ... um—1(2) are some polynomials, as the spectral equation in Yamada’s Lax pair
(2.21) is of this type with m = 3. We therefore also give a treatment of the subject customised
to such second order scalar g-difference equations. We note that a modern treatment of the
subject in total generality, including irregular cases, has been carried out by Ramis, Sauloy

85
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and Zhang [76]. See also Sauloy [78, 80] for an analytic approach.

We start our discussion with first order scalar ¢-difference equations and g-elliptic func-
tions, as they form the building blocks of the theory of linear g-difference equations. We
then discuss Birkhoff’s theory in more detail, and consider the analog for scalar ¢-difference
equations. We discuss a particular case, which we call the model equation, as it plays a vital
role in the analysis of Yamada’s Lax pair in Chapter 5.

We then turn our attention to Yamada’s Lax pair (2.21). We define fundamental solutions
near z = 0 and z = oo, discuss how the ¢-P(A;) time evolution deforms them, and to
what extend it leaves the monodromy, i.e. the connection matrix, invariant, constituting an
isomonodromic deformation.

4.1 First Order g-Difference Equations

Not only are first order g-difference equations a great introduction to classical q-theory, they
also play a fundamental role as scaling factors in the higher order cases. Much of the material
in this section goes back a long way and we refer to Gasper and Rahman [18], for an exposition
of classical g-theory.

In this section we consider g¢-difference equations of the form

y(qz) = a(2)y(z), (4.2)

with a(z) # 0 meromorphic on C*, where we are interested in solutions which are meromorphic
on the same doubly punctured Riemann sphere. The simplest case of (4.2) is of course given
by a(z) = 1, whose solutions we call g-elliptic functions, which we discuss in detail in Section
4.1.1. Let us make the following trivial but important remark, given nonzero solutions y and
y* of (4.2), their quotient p = y/y* is a g-elliptic function. Or, to put it differently, once one
solution is found, the equation is essentially solved. We call z = 0 or z = oo, an ordinary
(critical) point of (4.2), iff respectively a(z) is holomorphic at z = 0 with a(0) = 1 or a(z) is
holomorphic at z = oo with a(co0) = 1.

Lemma 4.1.1. If z = 0 is an ordinary point of (4.2), then (4.2) admits an unique holomor-
phic solution y(z) with y(0) = 1 around z = 0. If a(z) is meromorphic on C, then y(z) has an
unique meromorphic continuation to C. Furthermore, if 1/a(z) is entire, then y(z) is entire.
Similarly, if z = oo is an ordinary point of (4.2), then (4.2) admits an unique holomorphic
solution y(z) with y(oo) = 1 around z = oo. If a(z) is meromorphic on P*, then y(z) has
an unique meromorphic continuation to P*. Furthermore, if a(1/z) is entire, then y(1/z) is
entire.

Proof. Suppose z = 0 is an ordinary point of (4.2), and temporarily assume we found a
solution y(z), holomorphic at z = 0, with y(0) = 1. From (4.2) we immediately obtain

n

y(z) 1
y(anrlz) o H a(qkz)’

k=0
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for n € N. Letting n — oo, we find the infinite product representation

y() = [[ — (4.3)
k=0

a(ghz)

Hence, to obtain the first part of the lemma, we can use the infinite product (4.3) to define a
solution of (4.2). Indeed, let R be the radius of convergence of 1/a(z) about z = 0, then it is
an elementary exercise in complex analysis, to show that the infinite product (4.3) converges
uniformly in z on {z € C: |z| < r}, for any 0 < r < R. Hence (4.3) defines a solution y(z)
which is holomorphic on {z € C : |z| < R}, and it is the same infinite product representation
which allows us to meromorphically continue it on C. Also note that indeed y(0) = 1 and
obviously, if 1/a(z) is entire, then y(z) is entire. The case z = oo is dealt with similarly. [

We are now able to define one of the main building blocks of classical g-theory, the infinite
q-Pochhammer symbol, which we obtain by taking a(z) = 1/(1 — 2z) in Lemma 4.1.1, giving
an entire function (-; z)so, with infinite product representation

(23 Q)oo = H (1 - qkz)a (4'4)

k=0
satisfying

(92:¢)c = ! S (25 0)cc- (4.5)

1—
Its finite counterparts, simply called g-Pochammer symbols, are given by

n—1

(zin =[] (1 = ¢*2),

k=0

for n € N, where the empty product, corresponding to n = 0, is set equal to 1 as usual. From
the infinite product representation (4.4) we derive that the zeros of the infinite g-Pochhammer
symbol (z;¢)s are all simple and given by z = ¢~", for n € N. Similarly we apply Lemma
4.1.1 with a(z) = 1 — 27!, to obtain a function y(z), which is analytic on P*, satisfying

y(oco) =1, and
z—1

y(2). (4.6)

We easily identify y(z) = (¢/2; ¢)o and consider the product

y(gz) =

0q(2) = 0(2;9) == (2, @)oo * (¢/2; @) co- (4.7)

Our interest in this product, comes from the observation, that it satisfies the following shift
and reflection relation,

04(qz) = _Zilgq('z% 04(2) = b4(q/2),

respectively, where the first is a direct consequence of (4.5) and (4.6), and the latter follows
from the definition. We refer to (4.7) as the g-theta function. It bears its name from being a
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g-analog of usual theta functions in elliptic function theory, which we make explicit in Section
4.1.1. Note that the g-theta function is holomorphic on C*, with only simple zeros, located
on ¢”. It is easy to see that (z;¢)so and hence (¢/2;¢)so are not rational functions, hence
04(z) has an essential singularity at z = 0 and z = oo.

We are now able to construct a meromorphic solution of (4.2) with a(z) = o € C*, by
setting

y(2) = eyfz50) = 8
which indeed satisfies y(¢z) = ay(z). Now consider (4.2) for any meromorphic function a(z)
on C. Determine o € C* and n € Z such that

a(z) = az"a(z),

where a(z) holomorphic at z = 0 with a(0) = 1. Then we can scale (4.2) by setting

y(2) = 0y(=2)"eq(z;0)y(2),

which gives
ylqz) = a(2)y(=).

Now z = 0 is an ordinary point of this equation, and we can apply Lemma 4.1.1 to obtain a
nonzero solution y(z), holomorphic at z = 0. Similarly, we can construct solutions of (4.2)
about z = oo, for any meromorphic function a(z) on C*.

Let us end the discussion with an important example, the case where a(z) = r(z) is a
rational function, say with r(0) = r(co) = 1, which means that both z = 0 and z = oo are
ordinary points of (4.2). We write

(1—=z/p1)-...- (1 —2/pn)
(I—z/q1) .- (1= 2/qn)’

for some n € N, where we assume that the numerator and denominator do not have common

“ra
kHlpk:L

We define a canonical solution at z =0 by

r(z) =

divisors, and

(a2 s @)oo
v0(=) = (2/P1, .- s 2/Pni Qoo

where we used the shorthand notation

(217 ce o5 R85 Q)oo = (Zl; Q)oo Tt (Zn; Q)oo- (21, -y 2n € C*)
Similarly, we define a canonical solution at z = oo by

(qp1/z, - qPn/%;0)so
(qq1/z, ..., qqn/%; @)oo

Yoo(2) =
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The solutions yo(z) and ys(z), are related by the g-elliptic function,

_ Yoo (2) B O,(2/q1,. .., 2/qn)

PO ) T Balelps )

which is the connection “matrix”, where we used shorthand notation

Og(z1,. ..y 2n) = 0(21, ..., 25:q) = 0g(21) ... - Og(2n). (21,...,2n € C")

Note that the g¢-elliptic function is written as a quotient of ¢-theta functions. In the coming
section we see that any g¢-elliptic function has such a representation. Albeit a bit trivial,
the Riemann-Hilbert-Birkhoff correspondence, specialised to this case, is the correspondence
between rank 1 first order equations with z = 0 and z = oo being ordinary points, and
corresponding connection “matrices” up to multiplication by nonzero complex numbers,

r(z) < [p(2)lc-

4.1.1 qg-Elliptic Functions

In this section we set up the basics of a g-analog of classical elliptic function theory. Recall
that a g-periodic function or g-constant is defined as any complex function p(z) satisfying
p(gz) = p(z) on its g-domain. Now a g¢-elliptic function is a g-periodic function which is
meromorphic on the entire doubly punctured Riemann sphere C*.

All the results in this section can be obtained by direct translation of the classical results
on elliptic functions. However, it seems more appropriate to develop the fundamentals di-
rectly from a g¢-discrete perspective. We therefore first clarify the relation between g-elliptic
and classical elliptic functions, and then rederive the basic results from scratch for g-elliptic
functions.

Let us take a g-elliptic function p(z) and set

E(¢) = p(exp [log(q)(]), (4.8)

for any choice of branch for log(g). Then E(({) is a meromorphic function on C which satisfies

E(C+1) = E(C), E(C+2mi/log(q)) = E(C),

and hence E(() is an elliptic function with fundamental periods wi = 1 and wy = 273/ log(q).
Conversely, given an elliptic function E({) with fundamental periods w; and ws, setting

w w
p(z)=FE (—%log z) , g =exp [2771'1] ,
271 w2
where the choice of branch of log(z) is irrelevant, defines a g-elliptic function p(z). Note that
in this correspondence, the condition w;/wy ¢ R is equivalent to |g| # 1. To extend the
correspondence, following Rains [75], for o € C* and n € Z, we call a meromorphic function
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0(z) on C*, a g-theta function of multiplier az™, if it satisfies
0(qz) = az"0(z).
To justify this definition, analogously to (4.8) we set

©(¢) = O(exp [log(q)<]), (4.9)

then O(() is periodic with respect to the fundamental period wo = 27i/log(q), and quasi-
periodic with respect to the fundamental period w; = 1,

O(¢ +1) = ag™O((),

and hence a theta function in the usual sense. Note that the ¢g-theta function (4.7) is a g-theta
function of multiplier —z~!. Similarly g-elliptic functions are g-theta functions of multiplier
1.

Getting back to g-elliptic functions, we define a fundamental domain or annulus of a
g-elliptic function, as any subset of C*, of the form

An(r):={ze€C:|q|r <|z| <r},

for some r > 0. Considering the group action of ¢ on C* by multiplication, note that a
fundamental annulus indeed contains exactly one element of each orbit of this action. Ge-
ometrically we can think of such a fundamental annulus as a torus by glueing together the
inner and outer boundary in C* consistent with the ¢ action.

Let us prove some basic results we are familiar with from the usual elliptic function theory.

Lemma 4.1.2. Analytic q-elliptic functions are constant.

Proof. Let p(z) be a g-elliptic function which is analytic. Then it is bounded on the compact

set An(1), hence the via (4.8) corresponding elliptic function F(¢) is bounded and entire. By
Liouville’s Theorem, F(¢) and hence p(z) is constant. O

Corollary 4.1.3. g-elliptic functions without zeros are constant.

Proof. As for any nonzero g¢-elliptic function p(z), the function 1/p(z) is also a g-elliptic
function, this follows directly from Lemma 4.1.2. O

Lemma 4.1.4. Suppose 0(z) is a g-theta function of multiplier az", and 0(z) has neither
zeros nor poles in C*, then n = 0 and 0(z) = czF for some ¢ € C and k € Z, in particular
a=qg" e

Proof. Differentiating 6(qz) = az™6(z), we find
q? (qz) = A\2"(nz"10(2) + 0'(2)),

and hence
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defines an analytic function on C*, satisfying

flgz) =n+ f(2). (4.10)

In particular g(z) := f’(z)/z is an analytic g-elliptic function. By Lemma 4.1.2, we know that
g(z) is constant, say g(z) = go € C. We immediately obtain

f(2) = 3902* + fo,

for some fy € C. This can only be consistent with (4.10), if n = 0 and gy = 0, so f(2) = fo
is constant. Hence 6(z) is an analytic function on C* without zeros, satisfying

') _h
0(z) =z~
We easily derive that fy = ¢* for some k € Z and 6(z) = cz* for some ¢ € C*. O]

We now have all the tools to classify g-elliptic functions.

Theorem 4.1.5. Let p(z) be a nonzero q-elliptic function, say with n zeros and m poles,
counting multiplicities, within any fundamental annulus. We fix a particular fundamental
annulus and denote the zeros and poles of p(z) in it respectively by ai,...an and by, ..., by,
with repetition according to multiplicity. Then m = n and there exist unique ¢ € C* and
k € Z such that

p(2) =czk1:[1m, qk:HZZ. (4.11)

=1
Proof. We simply set
m n
0(z) = p(2) [ [ 0a(2/b:) - [ [ Oalz/ai) ",
i=1 i=1
then 0(z) is a g-theta function of multiplier a2~ with
n m
o= H b; - H az_l
i=1 =1

Furthermore, 6(z) has neither zeros nor poles on C*, and we obtain the theorem by application
of Lemma 4.1.4. O

The second equation in (4.11) should remind us of the fact that the sum of poles minus the
sum of zeros of an elliptic function within a fundamental domain, taking into account their
multiplicities, is an element of the period lattice. We define the degree of a nonzero g-elliptic
function p(z), to be number of zeros or equivalently number of poles, counting multiplicity,
within a fundamental annulus.

Corollary 4.1.6. The degree of a non-constant q-elliptic function is at least 2.

Proof. Consider (4.11) with n = 1. Then b1/a; € ¢%, so p(z) has a both a zero and pole at
z = b1, which is nonsense. Hence the degree of a g-elliptic function cannot be 1. O
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Corollary 4.1.7. Let p(z) and q(z) be nonzero g-elliptic functions with identical zeros, poles
and their multiplicities, within some fundamental annulus, then there is a ¢ € C* such that

p(z) = cq(z).
We often require only a weaker version of Theorem 3.1.3, given by the following

Corollary 4.1.8. Let p(z) be a nonzero q-elliptic function of degree n € N, then there are
ai,...an € C* by,...b, € C* and ¢ € C*, such that

n

—cH 7 ZZZ 1 :H% (4.12)

i=1

The above corollary tells us that any g-elliptic function is basically the quotient of two
analytic g-theta functions of common multiplier. Indeed, considering equation (4.12), writing

n n n

0°(z) = c[ [ 0a(z/ai),  6°(2) = [[0u(z/b0). a=(=1)"[Jai=(-1)" ][]0
i=1

i=1 =1 =1

we have p(z) = 0%(2)/6°(z), where 0%(z) and 6°(z) are both analytic g-theta functions of
multiplier az~". Motivated by this observation, let us define, for n € N* and « € C*,

V,'(a) = {analytic g-theta functions of multiplier az™"},

then Vq"(a) denotes a complex vector space under the usual function addition and scalar
multiplication. If § € V*(«), and a € C* is such that (a) = 0, then 0(z) = 0(z)/04(z/a) is an
element of VJ“%—& /a). Using this we can easily derive that any nonzero element ¢ € V,'(«),
is of the form

2) =c[[04(2/0), (-1)"[Jai=aq, (4.13)
=1 ;

for some ay,...,a, € C* and ¢ € C*. To put it differently, in (4.13) we can take ¢ € C* and
ai,...ay_1 at pleasure to define an element of Vq" (a). Counting the number of freedoms, this
fits in neatly with the following

Theorem 4.1.9. Letn € N* and a € C*, then Vq”(a) is a complex vector space of dimension
n.

Proof. We proceed by induction. Note the case n =1 is trivial, indeed
V@) = {efy(~2/a) s c € C},

and hence Vq1 (o) is one-dimensional for all @ € C*. Now suppose the statement of the theorem
holds for some n € N*, and take any o € C*. We fix an a € C* and construct an element
0* € V]""!(a) which satisfies 0*(a) = 1. Then any element § € V/""!(a) can be written
uniquely as

0(2) = 6,(2/0)0(=) + 6(a)6" (=),
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where 6 € V' (—a/a). Tt is easy to see that this gives us a decomposition
Vit (a) 2 Vi (—a/a) © C,

and the theorem follows by induction. O

We finish our discussion with a useful addition formula for g-theta functions. From
Ormerod and Rains [67], we take the following identity among analytic g-theta functions

of multiplier 272,

04(be, c/b)b4(az, z/a) — O4(ac, c/a)b,(bz, 2/b) = c/aby(ab,a/b)b,(cz, z/c). (4.14)

To validate it, all we have to do is observe that the left and right-hand side have common
roots z = ¢%c*, hence they differ by at most a multiplicative constant, and subsequently
we check that they agree at z = b. In light of Theorem 4.1.9, equation (4.14) should be
read as follows. Given any three elements of Vq2(1), we know that they must be linearly
dependent, and the addition formula gives us the explicit linear dependence. We require a
slightly different parameterisation of the addition formula, given by

0,(a " be, c/b)0,(a az, z/a) — O,(a tac, c/a)f,(a bz, 2/b) =
c/aby(atab,a/b)0,(a ez, z/c), (4.15)

which gives the explicit linear dependence between any three elements of qu(oz).

4.2 Birkhoff’s Theory

We discuss Birkhoff’s aproach [5] to the global asymptotic analysis of linear g¢-difference
systems, more or less following Mano’s summary [61] of it. We keep our discussion brief, and
give more details in Section 4.3, adapted to the case we are interested in. Analogously to the
first order equation (4.2), our starting point is the following first order matrix equation

Y(qz) = A(2)Y (2), (4.16)
where we limit our discussion to the rank two case, with
A(z) = Ag + 2zA1 + 22 Ag + ... + 2" Ay, (4.17)

where n € N is called the degree of the equation and Ay, A,, € GLy(C), are assumed diago-
nalisable. We diagonalise Ag and A,, by

61 0

AO:MO(O 02

_ K1 0 _
> Myt A, = My <0 /-;2) M (4.18)
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where we think of the eigenvalues {61,602} and {k1,k2} as prescribed. Furthermore we pre-
scribe the roots of the determinant of A(z),

A(z)| =c[[(z — k). (ceC) (4.19)

Note that we can only do this subject to

2n
H1H2H T = 9192, (4.20)
k=1

which is the g-analog of Fuchs’ relation for linear differential equations. We note that gauging
equation (4.16) by an element of GLy(C), leaves all the analytic data invariant, and we are
to some extend only interested in the equation up to such overall gauging. By prescribing
the eigenvalues of Ay and A,,, we essentially have 4n free parameters, and by also taking into
account (4.19), we are left with 2n + 1 free parameters. Then, if we consider A(z) up to
overall gauging by G'L2(C), these numbers become 4n — 3 and 2n — 2 respectively.

We assume 61 /02, k1/ko & %, which is a g-analog of the non-resonant condition for
differential equations. Carmichael [9] shows that, for fixed My and My satisfying (4.18),
there exist unique fundamental solutions of (4.16) of the form,

Yo(z) = Moo(2) <eq(§"” eq(f;%)), (421a)
Voole) = byl=2) " Mwin(e) (V5T O ), (4.21b)

about z = 0 and z = oo respectively, where ®¢(z) analytic at z = 0, with ®¢(0) = I,
and @ (2) analytic at z = 0o, with ®4,(00) = I. Furthermore ®..(z) and ®q(z)~! can be
analytically continued, i.e. without poles, on C*.

We now define the connection matriz P(z) by
Yoo(2) = Yo(2)P(2),

which is meromorphic on C* and satisfies P(gz) = P(z), so its entries are g-elliptic functions.
Considering (4.21), we have

R I G I O] (R §

eq(z;602)71 0 eq(z; ko)
where the associated connection matriz Q(z) is defined by

Q(2) = Do(2) ' My ' Mo @00 (2).



4.2. BIRKHOFF’S THEORY 95

Note that Q(z) is analytic and satisfies

== (1 Den (0 0).

that is, for i,j € {1,2}, the entry Q;;(z) is an element of V' (¢9iﬁ;1). By Theorem 4.1.9,
we see that Q(z) lives in a 4n dimensional space. However, note that the diagonalisations
in (4.18), are only uniquely defined up to right-multiplication of My and My, by diagonal
matrices. Say M) = MyFy and M/ = M Fs, for diagonal matrices Fyy, Foo € GL2(C), then
the corresponding fundamental solutions (4.21) become

D) (2) = Fy ' ®o(2)Fy, PLo(2) = Fi!®oo(2) Fro,

and
Q'(2) = Fy 'Q(2) Fu.

To rigidify the situation, we consider (z) only up to multiplication from the left and right
by invertible diagonal matrices, and denote

[Q(=)], (4.22)

for the corresponding equivalence class. Note that [Q(2)] lives in a 4n — 3 dimensional space.
We now have a well-defined mapping

A(z) = [Q(2)],

which is easily seen to be constant on GLy(C)-conjugation classes of A(z). The Riemann-
Hilbert-Birkhoff correspondence is the bijective correspondence between matrix polynomials
A(z) (4.17), with prescribed exponents at zero and infinity, up to conjugation by GL2(C),

and corresponding [Q(z)], living in the orbit space of V' (Hm._l , with respect to

J >1§i,j§2
multiplication of invertible diagonal matrices from the left and right, which we symbolically

write as
[A(2)]aL,(c) < [Q(2)]- (4.23)

We can specialise this correspondence, by taking into account the prescribed zeros x1, ..., x2,
of |A(z)|, which gives another 2n — 1 constraints on [Q(z)], as one can show that

|Q(2)| = constant X O4(z/x1,...,2/x2p).

A few remarks are in order here. Firstly, let us note that (4.16) is strictly speaking
irregular singular at z = oo, indeed z = oo is only regular singular after scaling by 6,(—2)~",
see (4.21b). As set out by Sauloy [79], a more natural starting point would be to assume
A(z) is a matrix with rational entries, such that A(0), A(co) € GL2(C). Then (4.16) is really

Fuchsian.

Secondly, a major difficulty in the theory of linear g-difference equations, is that the field of
constants, i.e. g-elliptic functions, is in some sense too large. Indeed, we wish to consider our
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equation (4.16), up to gauging by only constant complex matrices, whereas, for instance the
scaling entries eq(z; k1) and eq(z; ko) on the right-hand side of (4.21b), are strictly speaking
only characterised up to g-elliptic functions. There are several ways to work around this
problem. Our approach lies close to van der Put and Singer [83], we consider the scalings
involved only symbolically. As an example, considering (4.21b), we put more importance in
®o(z), then Yoo(z). Similarly we consider the associated connection matrix Q(z) as being
more fundamental than the connection matrix P(z).

Le Caine [58] considered equation (4.17) with n = 1. She showed that the fundamental
solutions near z = 0 and z = oo can be described in terms of 2¢; hypergeometric functions
(1.3) and determined the corresponding connection matrix explicitly. Jimbo and Sakai [43]
derived a g-analog of Pyr within Birkhoff’s framework. They consider the n = 2 case of
(4.17), with eigenvalues parameterised by

a1a2 1 1
9 R1 = —F/, R = —/,
b2 qbs qby

a1a2

0, =
1 by

Oy =

and zeros of the determinant (4.19), parameterised by
xr1 = G;lt, €T = CLQt, €r3 = as, T4 = a4,
where t,a1,...a4,b1,...,bs € C*, and Fuchs’ equation (4.20) translates to

bibaagas
a1a2b3b4

Now note that for fixed ¢t € C*, the matrix A = A(z,t) has essentially 2n + 1 = 5 param-
eters, and hence two parameters when considered up to conjugation by GL2(C). Next we
consider a deformation ¢t +— g¢t, such the connection matrix P = P(z,t) is preserved, i.e.
P(z,qt) = P(z,t). Jimbo and Sakai [43] show that, by eliminating the gauge freedom in
A(z,t) appropriately, setting in particular Ay = diag(k1, K2), the time-evolution of the entries
of Ag = Ap(t) and A; = Ay(t), after some appropriate parameterisation, is equivalent to

1f G th)(g = thy)
P G (i

bsbs  (f—a3)(f —as)’

which is a g-analog of the sixth Painlevé equation.

4.3 Second Order g-Difference Equations

In this section we study the global asymptotic analysis of second order ¢-difference equations
of the form,
u(2)y(qz) +v(2)y(z) + w(z)y(z/q) = 0, (4.24)

where u(z),v(z) and w(z) are polynomials, without common divisors. We start with a brief
discussion on the classification of critical points and corresponding local solutions, for a more
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complete treatment of the subject we refer to Adams [1].

4.3.1 Classification of Critical Points

Analogously to the continuous theory, to construct solutions about z = 0, we consider the
indicial equation
u(0)A + v(0) + w(0)A~L =0,

and we sometimes refer to its roots as exponents. In case u(0) = 0 or w(0) = 0, the indicial
equation has solutions A = 0 or, formally speaking, A™' = 0, and we say that z = 0 is an
irregular singular point of (4.24), or we call the equation unbalanced at z = 0. Otherwise
we say that z = 0 is a reqular singular point or Fuchsian singularity of (4.24). Let us focus
on the regular singular case and let A1, Ao € C* denote corresponding exponents. We rescale
(4.24) by setting
y(2) = eq(2; A1)9(2),

which gives

Mu(2)3p(qz) + v(2)(2) + AT w(2)(2/g) = 0. (4.25)

At this point we employ the power series method, we set
oo
w(z) = Z (LmZm,
m=0

and substitution into (4.25) shows that we can choose ag at our pleasure, and consequently
the values of all a,, are determined uniquely by comparing coefficients of z™ in (4.25), unless
A1¢™ = Ao for some m € N, at which stage the power series method potentially fails.

Let us assume \;/Xo ¢ ¢Z for now, we choose ap = 1 and determine the unique power
series solution 1 (z) of (4.25) with ;(0) = 1. It is easy to show that such a power series
solution is always convergent. Now y1(2) = e4(2; A\1)¥1(2), defines a solution of (4.24), having
the g-analog of a Frobenius expansion at z = 0. Similarly we define an unique solution
y2(2) = eq(2; A2)a(2) of (4.24), where 1)2(2) a convergent power series with 12(0) = 1. We
can now define a fundamental solution of (4.24) at z = 0,

W(2) = (1(2) () = (n(2) (=) (SQ(’EM e(,(z(?AQ))'

We assumed A1 /A2 ¢ ¢Z, which is called the non-resonance condition. In case it is violated
we say that z = 0 is a regular singular point with resonance of (4.24). Let us consider the
resonant case where Ao = gA1, the only case of interest for our purposes. To simplify the
discussion, let us assume

u(z)zuo—i-mz—i—mzz—i—..., up =1,
U(Z)Zvo—i-mz—l—vng—i—..., v =—1—gq,

w(z) =wo + w1z + w2 + ..., wo = ¢,



98 CHAPTER 4. LINEAR Q-DIFFERENCE EQUATIONS AND ISOMONODROMY

so A1 = 1 and Ay = ¢. Note that (4.24) has an unique convergent power series solution
y2(2) =04 2+ a2’ + ...,

where all the coefficients can be determined by direct substitution into (4.24) as before.
However considering A; = 1, when we substitute a power series

y1(2) =14 a1z + a2’ + ...,
into (4.24), and compare coefficients of z, we find
up +v1 +wp =0. (4.26)
So generically the power series method fails and, just like in the continuous case, we have

to consider series expansions involving logarithms, or more specifically, a function x which

satisfies x(gz) = x(z) + 1, for instance x(z) = log,(z) or'

+ 3. (4.27)

However, in case (4.26) holds, we say that z = 0 is an ordinary point of (4.24). More
generally, in case A;/X2 € ¢%, but the Frobenius method above still allows us to find two
linearly independent solutions, we say that z = 0 is an apparent singularity of (4.24). We
classify the critical point z = oo of (4.24) in a completely analogous fashion, by dividing

(4.24) by the highest power of z occuring in the coefficients u(z), v(z) and w(z), so that the

resulting equation has coefficients which are polynomial in 2.

4.3.2 A Standard Form

From Section 4.1 we know that for any rational function r(z), we can find a meromorphic
function S(z) on C*, such that S(gz) = r(z)S(z). This allows us to scale or gauge equation
(4.24) by setting y(z) = S(z)y(z), which gives

r(2)u(2)y(qz) +v(2)5(2) +r(2/a) " w(2)§(2/q) = 0. (4.28)
In particular the choice r(z) = u(z)™!, leads to
y(gz) +v(2)y(z) + u(z/q)w(2)y(z/q) = 0. (4.29)
So we can always bring our g-difference equation in the following form,
y(gz) +v(2)y(2) + w(z)y(z/q) = 0, (4.30)

with v(z) and w(z) polynomials such that v(z),w(z) and w(z/q) do not have a nonzero
common root, and if v(0) = 0, then z = 0 is not a root of w(z) with multiplicity more than

'The choice (4.27) seems particularly appropriate as the corresponding x(z) is meromorphic on C*, with
simple poles on ¢~ 7, satisfying x(¢*) =n = log,(¢") for n € Z.
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one. Indeed if the latter condition is violated for some root of v(z), then we can easily gauge it
away, replacing v(z) and w(z) in (4.30) by lower degree polynomials. This form is essentially
the same as the one presumed by Birkhoff 4.16. Note that (4.30) is singular at z = oo, hence,
to study the analytic characterisation at z = oo, it is helpful to rescale

y(az) = 0g(=2)"g(2),  B(z) = 27"0(2),  @(2) = ¢ 2 w(z), (4.31)

where n € N chosen minimal such that ©(z) and @w(z) are polynomials in z~!. The indicial
equation at z = oo takes the form

K+ 0(00) + w(oco)k ™t = 0. (4.32)

It follows immediately that z = oo is an essential singularity if the degree of w(z) does not
equal 2n. Hence, z = oo is a regular singular point if and only if the degree of w(z) is 2n
and the degree of v(z) is less or equal to n. The same thing is true for Birkhoff’s form (4.16),
which is strictly speaking irregular singular at z = co. Indeed only after scaling by 6,(—z)"",

see (4.21b), z = oo is a regular singular point.

4.4 The Model Equation

Our main interest lies in the global asymptotic analysis of second order linear equations,
where z = 0 is an ordinary point and z = co is a regular singular point.

4.4.1 General Set Up

We consider the second order homogeneous g-difference equation

y(qz) +v(2)y(2) + w(z)y(z/q) =0, (4.33)
where

v(z) =vo+viz+... Fup2", vo = —1—gq,

2n
)

w(z):w0+wlz+...+WQnZ wo = ¢,

for some n € N, which we refer to as the degree of (4.33). Furthermore we think of the zeros
of w(z) as prescribed,
w(z) =q(l —z/z1) ..o (L= 2/z20). (4.34)

and to assure an apparent singularity at z = 0, the condition (4.26) takes the form v; +w; = 0,
SO we require

1

vy = qlayt 4+ Fay)).

Lastly, after the scaling (4.31), we prescribe exponents k1, ko € C* at z = oo, and hence, by
(4.32),
on = — (K1 + K2), Won = ¢ "K1K2. (4.35)
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Note that we can not freely prescribe both the zeros x1,...,zs, € C* and exponents k1, ko €
C*, as combining (4.34) and (4.35) gives
¢!
Klky = ————————, (4.36)
1 ... "Tn

which is the g-analog of Fuchs’ relation for linear differential equations. Now, say we prescribe
the zeros and exponents subject to (4.36), then (4.33) still has n — 2 free parameters, coming
from the freedom in choosing the coefficients vs,...,v,_1. The degree n = 2 case plays a
crucial role in the asymptotic analysis of Yamada’s Lax pair in Chapter 5, and in Section 4.5
we discuss it in detail.

It is sometimes helpful to write (4.33) in system form. Writing

i) = (y?ijw ’

Y(gz) = A(2)Y(2), A(z):<_v(z) _“’(z)>. (4.37)

we obtain

The equivalence between (4.33) and Birkhoff’s form (4.17) can now be made explicit, as
choosing any factorisation w(z) = w1 (z)ws(z), with wi(z) and wa(z) polynomials of degree
n, the rational gauge

gives

Y(gz) = A(2)Y (2), A(z) = R(qz) 'A(2)R(z) = (_“(z) —wl(Z)) |

which is of the form (4.17).

4.4.2 Fundamental Solution at Origin

As z = 0 is an ordinary point of the equation under consideration (4.33), the power series
method gives a convergent power series solution

y(z):co—l—clz—i—csz—i—...,

for any choice of ¢y, c; € C, after which all higher order coefficients are fixed. Let us specify
two solutions

WN(z) =1+0z+ 0 (2%, (4.382)
Y(2) =0+ 12+ 0 (2%), (4.38b)
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and write the corresponding fundamental solution by

yo(z) = (y?(z) yg(z)) = (1 z) <(1) (1)> +0 (z2) . (z—0)

This is initially only a local solution, but we can use the equation it satisfies (4.33), to
meromorphically continue it to the finite complex plane C. Note however, that the zeros of
w(z) can cause poles to arise. Let us define the corresponding fundamental solution of the

oy — (R B)
Yie) = (y?(Z/q) yS(Z/Q))’

then the Wronskian W(y°)(2) := |Y9(2)]| satisfies

system form (4.37) by

W(y%)(az) = w(z)W(y°),
as |A(z)| = w(z). Furthermore we have the asymptotic characterisation
W) (=) =@ =12+ 0("), (20

which gives
W) (2) = (¢ = Dz(z/z1, ... 2/ 2005 0) 2. (4.39)
We end our analysis of equation (4.33) near z = 0 with the following observation.

Lemma 4.4.1. The matriz function Y°(2)~! is analytic on C*.

Proof. As Y9(2) is a fundamental solution of (4.37), by (4.39) clearly invertible, its inverse
satisfies
YO(2) 7L = YOq2) "t A(2). (4.40)

Note that Y°(z)~! is a meromorphic matrix, which has a convergent Laurent expansion at
z = 0, with leading term given by

q—1 q—1

YO(2)~! :z-1< v 0 >+0(1). (> = 0)

Therefore Y9(2)~! is analytic in a punctured disc about the origin, and (4.40) guarantees
unique analytic continuation to the entire punctured plane C*. O

4.4.3 Fundamental Solution at Infinity

To construct a fundamental solution at z = oo of (4.33), we rescale, in accordance with (4.31),
y(2) = 5%(2)il2),  57(q2) = ri2"S7%(2),  Silz) = Oq(=2)"eq(z: ki), (4.41)
which gives, for i =1, 2,

Rivi(g2) + 2 "0(2)9i(2) + w71 2T w(2)i(2/q) = 0. (4.42)
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In analogy with Lemma 4.4.1, we have the following result.

Lemma 4.4.2. If k1/ka & ¢, then, for i = 1,2, the q-difference equation (4.42) has an
unique solution ¥°(z) which is analytic at z = oo with ¢Y°(co) = 1. Furthermore this
solution is analytic on the entire punctured Riemann sphere P*.

Proof. The assumption assures that z = oo is non-resonant, hence the power series method
allows us to find solutions around z = oo as prescribed. Equation (4.42) now guarantees
unique analytic continuation to P*. O

For now we assume #1/k2 ¢ ¢%, and define a fundamental solution of (4.33) near z = oo,

o6 = ) ) = (T

Associated we have a fundamental solution of the system form (4.37),

Ym()_<yl<> ys°<>>

Y5 Z/q) y5°(2/q)

¥1°(2) 53°(2)¥3°(2) >
S7( Z/q wl (2/q) 52 <z/q>w2 (2/q)

~(s0
(é q"z ><f<}fb (2/q) 52#1;5"(8/@) <sz)(2) S;(2)>
(

o o) e (07 )

e[ VEE URE)
v (mllwfo<z/q> mzwg%z/q))'

Again we are interested in the Wronskians W(y>)(z) = |Y*>°(z)| and W(>°)(z) = [¥>°(z)],

which, by the above calculation, are related by

W(y™)(2) = ¢"27"57°(2).5° ()W (%) (2).

) o) = (60() 5°(2).

@)

where we denoted

From this relation we easily derive
n

W) (q2) = ——2"2"w(2)W($)(2)

K1k2
=gtz oz Pw()W (™) (2)
=1 —x1/2) ... (1 =22,/ 2)W([™>)(2),

where in the second equality we used Fuchs’ relation (4.36).
Combining this first order equation with the asymptotic characterisation

W) (2) = k' — k' +0 (271, (z = 00)
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we directly obtain an explicit equation for the Wronskian

WE™)(2) = (k3! = K1) (@z1/2, - 4%20/ 2 0) o (4.43)

4.4.4 The Connection Matrix

We are now ready to construct a fundamental object in our study, the connection matrizx,
P(z) =Y (2)7'YV>(2),
which is meromorphic on C*, and satisfies
y>*(2) =4°(2) P(2).

From the definition we immediately find P(gz) = P(z), and hence the entries of the connection
matrix are g-elliptic functions. Note however, that we made choices on the way, on which P(z)
depends. For example, the choice of functions S° and S9°(z) in (4.41), was quite arbitrary.
A bit more delicate, the choice of initial conditions in (4.38), contains some freedom as z = 0
is an ordinary point. Note however, that

P(z) =Y2)"ly™(z)

0 o i) O (T )

=06 (%7 )

where the associated connection matriz Q(z) is defined by

(Qu(z) Qi2(2)\ o, 1 (1 O .
Q(z>_(Q21(Z) Q22(Z)> =V(z) <0 qnzn>\p (2), (4.44)

independent of the particular choice of scalings. Note that Q(z) satisfies

P (2)Q(2) = ¥>(2), (4.45)

and by Lemma 4.40 and 4.4.2, the matrix function Q(z) is analytic on the entire punctured
plane C*. Of course Q(z) fails to be g-periodic, however it does satisfy

Qa2) = Q) (“112_" L) (4.46)

0 Ko 2

1_-—n

Hence the entries Q11(z) and QQ21(z) are analytic ¢g-theta functions of multiplier k] "2~

the entries Q12(2) and Q92(2) are analytic ¢g-theta functions of multiplier x5 lz=n, To put it

, and

differently, writing

(Q11,Q21,Q12,Q22) € M := an(/ﬁ_l) D an("ﬁ_l) D Vgn(’igl) D an(/‘ﬂg_l), (4.47)
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the matrix ()(z) essentially lives in the 4n dimensional vector space M.
At this point we have not used the additional information coming from the explicit ex-
pressions (4.39) and (4.43), for the Wronskians involved in

Q)] = ¢"z7"W(y")(2) " W(¥™)(2),

which gives )

Q(2)| = Wq”z_”_l%(z/xl, ey 2/ Tan). (4.48)
We conclude that the matrix Q(z) in fact lives in M’, the “closed” subspace of M defined by
the cut (4.48). Note that (4.48) gives 2n constraints, 2n — 1 coming from the locations of, for
instance, the zeros z1,... 29,1, after which zs,, is automatically a zero because of the second
equation in (4.13). The remaining constraint comes from the overall scalar factor in front
of the product of g-theta functions. So M’ is essentially a 2n dimensional space. However,
following Birkhoff’s approach, we instead consider the bigger space M” obtained by cutting
M by

1Q(2)| = constant x 27" 0,(2/x1,. .., 2/T2m).

The Riemann-Hilbert-Birkhoff correspondence gives an injective mapping

(1)2, U3,... ,’Un_l) — [Q(Z)],

where [Q(z)] denotes the orbit of Q(z) in M” under multiplication by diagonal matrices by
the right and lower triangular matrices by the left, as z = 0 is an ordinary point. Now M"
is a 2n + 1 dimensional space and hence the corresponding orbit space is 2n — 3 dimensional,
whereas the domain of the injective mapping is n — 2 dimensional. That is, on the scalar
level, the monodromy mapping is generically not surjective, and we do not have a Riemann-
Hilbert-Birkhoff correspondence.

4.4.5 The Degree Zero and One Cases

Albeit a bit trivial, the degree zero case of (4.33) is given by

y(gz) — (1 + q@)y(2) + qy(z/q) = 0,

and hence {k1,k2} = {1,¢}. Two linear independent solutions are given by y(z) = 1 and
y(z) = z and the connection problem is trivial.
The degree one case, is given by

y(qz) + [~ +q) + q(z7" + 23 N)z] y(2) + q(1 — 2/21)(1 — 2/22)y(2/q) =0, (4.49)

where the exponents k1 and ko can hence be set equal to k1 = —q/x1,k2 = —q/x2. From
equations (4.47) and (4.13), we immediately obtain

~ (quby(gz/x1)  qiabg(qz/x2)
=) = <C]219q(q2/351) (1229q(qz/l“2)>7
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where ¢;; € C for i,j € {1,2}. Furthermore (4.48) gives us

q _ ,
Q11922 — Q12921 = T q(% Pt

1
Equation 4.49 is in fact reducible to first order equations, indeed one can easily check that

7°(2) = ((az/2130)5 (az/2250)5L)

defines a fundamental solution to (4.49). We calculate

P2(2) = ((21/2: Q)00 (£2/25@)o0)

and
Yy (Z) =Y (Z)Cv C= q 1 qg ..—1]-

We have the following connection result
~ oo ~ 04(qz/x 0
P =), Q) = (M ). (4.50)
and hence, by (4.45), we find

B 04(qz/x1) 0 B 04(qz/21) 04(qz/x2)
ae=o (] %mmm)‘(q )

-1 —1
T—¢%1 0q(qz/21) 1%(,352 04(qz/2)
Note that in this setting, it is more natural to work with 3°(z) than 3°(z), indeed the con-

nection formula (4.50) is much neater.

4.5 The Degree Two Model Equation

In Section (4.4.5) we saw that the degree zero and one cases of (4.33) are essentially trivial.
In this section we analyse the degree two case, the lowest degree non-trivial one. It plays
a crucial role in the analysis of the direct monodromy problem of Yamada’s Lax pair (2.21),
as the spectral part reduces to the degree two model equation when the time variable ¢
approaches zero or infinity. The equation under consideration is

y(gz) + [—(1+ @) +alay " + a5 + a5 + 2z — (k1 + k2)2°] y(2)
+q(1 = z/z1)(1 — 2/22)(1 — z/23)(1 — 2/24)y(2/q) = 0, (4.51)

supplemented with Fuchs’ equation

q3

S (4.52)
T1X2X3T4

Rik2 =
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We use the following short-hand notation for the parameters involved
o = (v1, %2, T3, T4; K1, K2),
and only consider the generic parameter case, to be precise,

47 R ..
L e a0 ddh (] €{1,2,3,4)) (4.53)
J

4.5.1 Relation with Associated Continuous Dual g-Hahn Polynomials

After some rescaling, and specialising to z € ¢%, equation (4.51) coincides with the recurrence
satisfied by the associated continuous dual q-Hahn polynomials. Indeed, following Gupta et
al. [23], these polynomials are defined by the three-term recurrence

Pt (i) = (1 = an)pn(p) + bppn—1(n) =0, (4.54)
for n € N, with po(p) =1 and p_1(p) = 0, where

a, = (a—l +b_1 —I-C_l + d—l)qn . (1 +q)q2n—1’
q n— n— n— n—
by = ——(1—ag" ") (1 =bg" " )(1 —cg"")(1 —dg" ).

These polynomials generalise the continuous dual q-Hahn polynomials, see Koekoek et al.
[56, Section 14.3], for a comparison. To relate equation (4.51) to the recurrence (4.54), we
rescale

y(z) = S(2)v(1/2), Sl(qz) =q *22(1 — qz/m1)(1 — qz/x2)(1 — qz/x3)(1 — qz/74)S(2),

which gives

(gz) + [—q (k1 + ko) + (a7 + a5t + a3t a2 — (1+9)2% /q] ¥(2)

q
+ ———— (1 —z1z/q)(1 — 322/q)(1 — x32/q) (1 — 242/q)p(2/q) = 0. (4.55)
L1X2T3T4
Now, specialising
pn =0(q"), p=q '(k1+k2), (71,29,73,24) = (a,b,c,d), (4.56)

we find that p,, satisfies (4.54) for all n € Z.
To be explicit, let S, = S(¢~™), or more precisely

q2n
Sn_l,_l = 1 1 1 1 Sn, (7’L S Z)
(¢" — )" — )@ — )" — 3;)
with Sy = 1, then p, = S,y(¢~") satisfies (4.54), for any solution y(z). One can of course

obtain exactly the polynomials p, (1), by choosing appropriate initial conditions y(1) = 1 and
y(g~') = 0, uniform in p.
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Gupta et al. [23] studied the recurrence (4.54) in the large positive n limit, which corre-
sponds to the limit z — oo in ¢Z for (4.51). Their approach can easily be adopted to the more
general case (4.51) with z not confined to ¢”. They observed that the large n asymptotics
can be expressed in terms of s¢o basic hypergeometric functions.

4.5.2 Intermezzo on Basic Hypergeometric Functions

Generalising Heine’s 9¢1 basic hypergeometric series (1.3), for r,s € N, the ,¢5 basic hyper-
geometric series are defined by

ai,ag,...,q - a17a2>' -CLTQQ)n n (") 1+s—r _n
b iq, 2 -1 2 z", 4.57

where a;,b; € Cfor 1 <i <rand 1 < j <s. Gasper and Rahman [18] wrote an extensive
overview on these series. We are mostly concerned with the 3¢2 basic hypergeometric series

a, ba C. - (aaby (& q)n n
d e 7Q7Z:| 2272 ) (458)

502 [ ; = (a,d,e;5q)n

which converges for |z| < 1 and enjoys meromorphic continuation to the entire complex plane.
Gasper and Rahman [18] give the following two-term tranformations

b,c de] (e/a,de/(bc);q),, a, d/b, d/c e
3¢’2[ d e’ ? abc] = (e, def(abo);q),. [d, de/(be)’ © a}’ (4.59a)
_ (b,de/(ab),de/(bc); q) d/b, e/b, de/(abc)
= e def(abe)iq). 2% [ de/(ab), de/(bc) * ¥ b} (4590
and the three-term transformation
b, c.  de (d/b,d/c,cq/a,q/e;q) c, efa, cq/d bﬁ
m[ d e '? abc] (d,cafe,a/a, d/(be); 4) * Lq/a beg/d’ & ]
B (q/e dq/e,b,c,e/a,de/(beq), beg? /(de); ) ag/e, bg/e, cqle.  de
(e/q,d,bq/e,cq/e,q/a,d/(bc),beg/d; q) 502 [ ¢e, dgfe abC] - 460

4.5.3 Outline of Global Asymptotic Analysis

We wish to explicitly determine the associated connection matrix Q(z) (4.44), for the degree
two case (4.51). Firstly, we derive explicit formula for the solutions ¥9°(z) of (4.42) at z = 0o
for i € {1,2}, by adopting the approach of Gupta et al. [23]. Writing

3q, —— 4.61
d e ’Q7 abc ( )

(b(abcde)—gqﬁg[ b, ¢ de}
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Gupta et al. [23] derive the following contiguous relation

de (1-0)(1—¢)(1—=d/a)(1—e/a)
E (1 — d)(l — 6) (;5(04, qb> qc¢, qda q€)

- <(1—a> (l—azliq) +a<1— jq) (1—a€q) +£iq(1—b)(1—c)> (ab,c,d,c)
+(1—d/q)(1 —e/q)¢(a,b/q,c/q,d/q,e/q) =0, (4.62)

and, by rescaling and specialisation of the parameters involved, they use it to construct
solutions of the recurrence (4.54) about n = oo. Similarly we use it to construct explicit
solutions of (4.42), analytic at z = oc.

We then use the transformations (4.59) and (4.60) to simultaneously find explicit solutions
of (4.51), analytic at z = 0, and corresponding connection matrix. We remark that these
results seem new.

4.5.4 Explicit Solutions near Infinity

Recall that the solutions ¥7°(2) satisfy (4.42), which we rewrite as

i(gz) + 22k [—(1+ @) + ey + a5 + 25t + 271z — (k1 4 62)2°] ¢i(2)
+ @ /RH(L = 2/a1) (1 — z/22) (1 — z/x3) (1 — z/x4)i(2/q) = 0, (4.63)

and are characterised by 12°(00) = 1, for i € {1,2}. We set
o(z) = ¢(a,Bz,Cz,aDz,aAz),
then, by (4.62), we have

a’AD (1 — A2)(1 — Bz)(1 — Cz)(1 — Dz)

qBC (1 —aDz)(1 —aAz) ¢(az)
a?AD aAD (1 1 1 1 aAD 1, 5
—<1+qBC—q<A+B+C+D)Z qz>¢(z)

+ (1 - aDz/q)(1 - adz/q)é(z/q) = 0.

We subsequently rescale
9(2) = (aDz,aAz;q)¥(1/2),
then ¢ (z) satisfies

aAD aAD
2hp(gz) + 22 | — 7z (1+q)+

a2 A2D?
+
q

2AD
(A'+B '+t + D2~ <1 + C;BC > 22] V()

(1-2/A)1—-2/B)(1—-2/C)(1—2/D)(z/q) =0. (4.64)
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Let i € {1,2}, then this equation coincides with (4.63) exactly for the choice

2
q
a = ) (A,B,C, D) = ($1,$2,$3,$4),
T1T4K;

and we obtain the following solution to (4.63),

2 2

2
- B q $22—1 5632—1 2
@-(z):(q 2L, zl;q) 302 [ e el
00 z z

1R, ’ TykK; ’ To2X3K;

This form of the solution does not allow easy evaluation of ¢;(c0), we therefore apply trans-
formation (4.59a), and discard of constant factors, to finally obtain

2

273 Ko 34 Ko 274 Ko
9 9

2_1,x1z_1;Q> 3¢2[ e 1 a ;q,xlz_ll, (4.65a)
o

-1 k2
fElmz ’qm

U (250) = < <

T1Rk1

2

273 K1 T34 K1 274 K1
9 9

2_1,:612_1SQ> 3¢2[ e a ;q,xlz_ll, (4.65b)
o

-1 K1
xINQZ ’ qﬁQ

V3 (2;0) = < <

T1R2

noting that both solutions are analytic at z = co with 9§°(0c0;0) = 1 and ¥5°(c0;0) = 1, and
hence coinciding with the solutions defined in Lemma 4.4.2. We denote the corresponding
fundamental solution by

P2(z0) = (Y°(z50) ¥3°(z50)) .

Remark 4.5.1. The model equation (4.51) is invariant under permutations of {x1, 2, x3, x4}
and switching of k1 and ky. From the asymptotic characterisation of the solutions (4.65), we
immediately obtain that both solutions are invariant under permutations of {x1,x9,x3,24}
and

wTO(Z;ﬂRH—mz) = Y/JSO(Z;U), wgo('z;a‘mﬁm) = pro(z7g)

One can also check this algebraically, using transformations (4.59).

4.5.5 Explicit Solutions at Origin

Using the three-term transformation (4.60), we are able to find solutions which are analytic
around the origin. Note that, without relying on meromorphic continuation, a necessary
requirement, for this transformation to be sensible, is \%q| < 1. In the following theorem, we
apply the three-term transformation (4.60), to the solution (4.65b). For validity of this step
we have to assume (4.66). However, in Section 4.5.7, we show that we can always apply a
permutation of the parameters such that this condition is satisfied.

Theorem 4.5.2. Considering the degree two model equation (4.51), if the parameters satisfy

|zszara| < g, (4.66)
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then we have a fundamental solution §°(z;0), analytic at z = 0, given explicitly by

(x4k12,q) T2Td g, Ty gty pgmy
R (z0) = 3 o 32 | ¢ wa | 34, ko|, (4.67a)
(g1 'z, qx3 "2, g5 25 q) 45t Tak12 q
(1'3"{1’2 q) %’%17 Mﬁh qxllz T3T4
P(z;0) = 1 o 32 | 1 vy | 14, Ko|. (4.67b)
(g1 'z, g2y ' 2, g2y ' 23 ) G, w3k1z q

These solutions are related to the solutions at infinity (4.65), by the connection formula

70(z;0) = > (z;0)R(z; 0), (4.68)

with, the connection matriz R(z;0) given by

E(Z'O’) _ 1 (rlleq($4/§22) T129q(l’3/€22)> m 0 (4 69)
7 04(qz/71,q2/22) \ro10y(zak12) r2204(23K12) 1 ’ )

0q(qz/x4)
where
(””3“ K1, R, SR q) Ry, R, SR q)
iy = ~— ! . =, rig = ~— . : =, (4.70a)
z3z4 T4 K1 z324 T3 K1
( q ﬁqux3a,{27q>oo ( q /‘@2»(19047@,(])00
(—”2;”4 K2, St R q) 5 (LQJ‘?’ K2, St R q) .
o1 = , rog = (4.70b)
T K2 . x K2 .
(q;g,;f,q)oo <qﬁ,ﬁ,q)oo
Proof. Firstly, let us specialise (4.68) to the first column, reading
R (20) = Run(2)95°(2;0) + Ran (2)95°(2; 0), (4.71)

where the entries Ri1(z) and Ry (2) equal

04 (xakoz) Fon(2) = ran O4(x4k12)
04 (q2/71,92/ 22,92/ 73)’ 04 (qz/x1,q2/22,q2/x3)

Rii(2) =1

Now, we take the expression (4.65b) for )5°(z;0), and apply the three-term transformation
(4.60), then, by carefully working out the different factors, we obtain

U5°(20) = Ra1(2)7'§1(20) — Baa(2) ' Run(2)05° (25 0),
that is, equation (4.71) is indeed correct. Furthermore, note that
Rui(g2) = m2°Ru(2),  Rai(gz) = raz® Bou(2),

from which we conclude, using (4.41), that 39 (z; o) satisfies our model equation (4.51). Or
to put it differently, the right-hand side of (4.71) defines a solution of the model equation
(4.51), regardless of the values of 711 and r9;. By switching x3 <> x4 in (4.71), using Remark
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(4.5.1), we immediately obtain the second column of (4.68) and the theorem follows. O

Note that the solutions (4.67) are related to y°(z) by
~0 ~0
0/, N _ .0 ([ ¥i(0;0)  y5(0;0)
Y (z0) =y (2)C(0), C(o)= (@9 000 B0

One can of course write C'(o) explicitly in terms of 2¢1 hypergeometric functions. By com-
parison with (4.45), we obtain

Q(2) = Q(z;0) = C(0)Q(z0), Q(z;0) = R(z;0)". (4.72)

4.5.6 An Explicit Connection Matrix

Considering equations (4.72), we wish to explicitly calculate the inverse of R(z;0). To do
this we first calculate its determinant explicitly. Of course we already have a formula (4.48)
for the determinant of Q(z; ), however, calculating |C(o)| takes some effort. In stead let us
use some of the g-elliptic theory developed in Section 4.1.1. Firstly, considering (4.69), we

evaluate
’<T119q($4f€22) 7“12‘9q(1‘3/<622)>‘: (%515 @)oo 2)
ro1bq(xariz)  rby(3k12) (g5t a5%, 2 2 B K21 )oe
with

L2X4 14

K1, m) O4(x3k12, xak2) — 04 (
q

€T2T3 13
K1,
q

/11> O4(xak12, x3K22)

r(z) = 6, (

o3 T4 K2 2
= kK10, —,— )6 z/x1,qz/x
q 1 q<x37/€1> q(q /laq / 2)7

where the second equality follows from the addition formula (4.15) with

1 1 1
T3T4K1K2

o =

Therefore a little calculation gives us an explicit formula for the determinant

o gt —apt (A 0o 1
’R(z;a)‘ =qz P (%m;q)OOHQ(qz/xl,qz/xg,qz/:v3,qz/x4) ) (4.73)

We can now calculate the inverse of R(z;0), giving

~ 4, K2 — K1 <w39q(z/m3) 0 ><q119q(aﬁgmz) qm@q(:cgfigz))
0 x404(2/4) @210q(xak12)  qa2b4(xak22)



112 CHAPTER 4. LINEAR Q-DIFFERENCE EQUATIONS AND ISOMONODROMY

where
(msm,{@’ LY 1113,{2;(1) <x213,£17 mleHl;q)
q q q q q
411 = oaze s o <, q12 = — = =, (4.74a)
(T”l’qﬂ"?;q)oo (qxja,?z;Q)oo
(9035134 Fog, T2Th g, TATd . q) (:vzru Fop, ST q)
q q q q q
Q1= X3%4 T4 K2 OO’ 422 = T4 K1 . (474b)
(Tﬁlyq?saa;@oo (QE,EQQ)OO
Of course @(z7 o) is characterised by
7°(2,0)Q(z;0) = ¥>(2;0). (4.75)

Comparison of (4.73) and (4.48) gives

T3Ta

1 (THZQQ)OO

T3T4

qg—1
C(o)| = .
clo) —ayt (1 g)eo

q x5

1

Remark 4.5.3. We emphasise that the explicit formulas in this section, break down when
one of the assumptions on the parameters in (4.53) is broken. As an example, suppose
k17172 = ¢2, then (4.65a) becomes

Yi°(z;0) = (xlzfl,xngl;q)

oo’

and
7(2) = (qz/21,q2/72;0) 2,

defines a solution of (4.51), analytic at z = 0. Taking any other solution 39(z), analytic at
z = 0, linearly independent of 7{(z), the connection matrix, relating {1/%°(2; o), ¥$°(2; o)} and
{70(2),99(2)}, is triangular. Note that the explicit connection results in this section break
down, as for instance ri; and ri2, defined in (4.70), are singular. We do not wish to discuss
the various degenerations of the model equation (4.51) here.

4.5.7 Symmetries

The calculations in the previous two sections are only valid if condition (4.66) holds. Now
suppose that instead |z3z4k2| > |g|, then, by Fuchs’ equation (4.52), we have

q]?

— < q|* < |q-
|z3zakal

|z122K1| =
Hence we can simply apply a permutation k1 <> ko, £1 <+ x3 and x2 <> 4, to all the results,

interchanging the rows and columns of E(z) and @(z) respectively in accordance with Remark
4.5.1.
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4.6 Yamada’s Lax Pair

In Section 2.4.3, we introduced Yamada’s Lax pair (2.21). Recall that the compatibility
condition (2.23) of the Lax pair, is equivalent to the ¢-P(A4;) equation, as formulated in
Theorem 2.4.1. In Section 4.7, we momentarily forget about the deformation equation and
set up the global analysis of the spectral equation, similar to that of the model equation 4.4.
In Section 4.8, we study how ¢-P(A;), or equivalently the deformation equation, deforms the
analytic data of the spectral equation. Finally, in Sections 4.9 and 4.10, we make the heuristic
discussion on the isomonodromic deformation method in Section 2.4.4, rigorous.

4.7 Analytic Theory of Spectral Equation

In this section we consider t, f,g as mere constants entering the spectral equation L, and
study the analytic structure of the spectral equation. We often suppress ¢, f or g dependence
in this section. Let us first remark that L; is in polynomial form, i.e. u(z),v(z),w(z) are all
polynomials in z of degree five. This is of course trivial for u(z) and w(z), but less so for v(z).
We invite the interested reader to check it themself. Let us write

-+ u5(t)25,
.+ U5(7f

u(z,t) = up(t) +ur(t)z +
v(z,t) = vo(t) + v1(t)z +

The Lax pair is singular on the complement of

R,={(t,f,9) €C*xC*: f,g,fg— 1, fg—t* # 0},

and we say that (¢, f,g) € C* x C? is in regular position, if it is an element of this set.

4.7.1 Fundamental Solution at Origin

It is easy to calculate

u =1, vo=—(1+¢q), wo=gq,
hence the exponents at z = 0 are {1, ¢}, which means z = 0 is a regular singular point with
resonance. Furthermore, a less easy calculation shows

up + v1 +wyp =0,

so z = 0 is in fact an ordinary point of L. We define two linearly independent solutions at
z =0 by

W (zt, f,9) =14024+0 (2%, (4.762)
w(zt, f,9) =0+ 12+ 0 (%), (4.76D)
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and write the corresponding fundamental solution by

(zit, f.9) = W0zt f9) Bzt f9) =1 2)+0(z%). (20 (4.77)

The technical characterisation is given in the following lemma.

Lemma 4.7.1. For fized (t, f,g) € R,, there exists an unique fundamental formal power
series solution y°(z;t, f,g) of L1 about z = 0, characterised asymptotically by (4.77). For any
(t*, f*, 9%) € Ry, this power series solution converges, locally uniformly in (z,t, f,g) € Cx Ry,
at (z,t,f,9) = (0,t*, f*,g*). The local solution y°(z;t, f,g) has an unique meromorphic
continuation to C in z, remaining analytic in (t, f,g) on R,.

Proof. This can be proven by elementary means, or by for instance using Theorem B.3 and
Remark B.5. O

It is helpful to rescale

y(zvt) = So(zvt)¢(z7t)> So(qzvt) = So(zvt)a

1
u(z,t)

where we specify
SO(Z7 t) = (quZ, qb6Z7 qb7Z, qb827 Z/fa Q)Ooa

and ¥(z,t) satisfies

¥(gz,t) +0(z,8)9(2,) + ulz/q, hw(z, t)(z/q,t) = 0.

Note that this equation is in standard form (4.33), and we specify an unique fundamental
solution by

Wz, t) = (W0(z,1) ¥9(z,1)=(1 2)+0(*). (2—0) (4.78)

We can easily calculate

ds® 1
(0,t) = ——(q(bs + bs + by + bs) + f1),

S5%(0,t) =1 -
0.5 =1, dz q-1

and we immediately obtain

0 _ 0 0 1 0
Yy (Z7t) =S (ZJW (Zat) ((;1(Q(b5+b6+b7+b8)+f_l) 1) :

Correspondingly we write

0 Py _ y?(zvt) yg(zvt) 0 > —_ ¢?(27t) w8(27t)
Y(’”‘<y9<z/q,t> y8<z/q,t>>’ vt (w?<z/q,t> w8<z/q,t>>’
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which are related by

_(5%z,t) 0
YO(z,t) = ( 0 $0(=/q. t)) 0(z,t)

1 0
. . 4.79
<_(]11(Q(b5+b6+b7+b8)+f_1) 1) ()
By equation (4.39), we have
|\Ilo(z’ t)’ = (q_l - 1)2(2/(qf)7 qz/fa blz/tv bQZ/tv ng/t, b4Z/t, b5Z, bGZ, b7Z, bBZ; Q)c:ola

and hence, by (4.79),

_ ,qbsz, qbez, qbrz, qbs2; q) o
Yoz = (g )Z(qz/f, b1z/t,boz/t, b3z /t,baz/t; q) 0o (4.80a)
_ b5z, qbez, qbrz, qbsz; q)oo
= (¢ —1)2(1— (gbs .
(q )2( #/f) (b1z/t,baz/t, b3z /t,bsz/t; q) oo

(4.80b)

Analogously to Lemma 4.4.1, we have the following result.

Lemma 4.7.2. The matriz function W9(z,t)~! = WO0(z;¢, f,g)~! is analytic on C* x R,.

4.7.2 Fundamental Solution at Infinity

We easily calculate

_blb?3b4 ¢, s = blb?m O e —blb?3b4q3q‘1t‘4,

hence the exponents {x1, k2} at z = co are given by k1 = t~2 and kp = ¢~ '¢t~2, which means

us =

z = 00 is a regular singular point with resonance. Furthermore, a less easy calculation shows
t*2u1 + v + t2w1 =0,

S0 z = oo is in fact an apparent singularity of L;. We rescale Yamada’s Lax pair a bit, such
that z = oo becomes an ordinary point. We set

y(z,t) = S(z,0)5(z,1), S(gz,t) =t729(z,t)  S(z,qt) = 27 25(z, 1), (4.81)
which leads to

Ly a(zt)7(gz,t) + (2, )7z, t) + w(z, t)§(z/q, t) = 0, (4.82a)
Lo 2 2ho(2,)0(2, qt) + ha (2, 0)7(2, ) + t2ha(z, 0)7(2/q, t) = 0, (4.82b)
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1

where u, v, w are polynomials in z~*, normalised such that u(oco,t) = 1, given by

~ f -3_-5
= — t

u(z,t) blb2b3b4q 27 %u(z, t),
~ f —3.,-542

t) = — t t
/U(Z? ) blb2b3b4q z U(Z7 )7
~ f —3,.,—544

t) = — t t).
w(Z’ ) b1b2b3b4q < w(z7 )

We only use the scaling S(z,t) formally, one could for instance take

0,(2t)*
0q(2)204(t)*’

but really the actual candidate is irrelevant. Explicitly, u(z,t) is for instance given by

S(z,t) =

u(z,t) = (1 =1/(b5qz))(1 = 1/(b6qz))(1 — 1/ (bzqz))(1 — 1/ (bsqz))(1 — f/2).

The corresponding system form is obtained by setting

V(o) = ( y(z,1) >’

y(z/q,1)
which gives

Y(qz,t) = A(z,t)Y (z,1), (4.83a)
Y(z,qt) = H(z,1)Y (z,1), (4.83b)

~ —pulel) el 20 10
— u(z,t) u(z,t) | —

Az ( : 0 ) = (4 Daco () p),

H(z,t)==z (O 2 H(z,1) 0 2]

Returning to the scalar equation El, we have

where

u(oo,t) =1, (oo, t) =—(1+q "), w@w(oo,t)=q "

and of course the non-resonance condition is satisfied and z = oo is an ordinary point of El.
We define two linearly independent solutions at z = oo by

Y (2t f,9) =14 0271+ 0 (277), (4.84a)
Y2 (zit, f,9) =0+ 1271+ O (277), (4.84b)
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and write the corresponding fundamental solution by

y> (%t f,9) = (525t f9) v(zit f9) = (1 27)+0(27%). (2 —o0) (4.85)

The technical characterisation is given in the following lemma.

Lemma 4.7.3. For fized (t, f,g) € R,, there exists an unique fundamental formal power se-
ries solution y>=(z;t, f,g) of L1 about z = 00, characterised asymptotically by (4.85). For any
(t*, f*,9%) € Ry, this power series solution converges, locally uniformly in (z,t, f,g) € P*x Ry,
at (z,t, f,g) = (00, t*, f*,g%). The local solution y*°(z;t, f,g) has an unique meromorphic
continuation to P* in z, remaining analytic in (t, f,g) on R,,.

Proof. This can be proven by elementary means, or by for instance using Theorem B.3 and
Remark B.5. ]

It is helpful to rescale

Bet) = S¥E00, S0t = 2o 8=(0),

where we specify
§%(z,1) = (1/(b52),1/(b62), 1/ (br2), 1/ (bsz), af /2 a)
and t(z, 1) satisfies
D(gz,t) + 0z, 09(2, 1) + U(z/q, ) (=, )3 (2/q. 1) = 0.

Note that this equation is in the form of (4.42), and we specify an unique fundamental solution
by
V(2 1) = (Y$(z,t) ¥(z,t)) = (1 27 +0(z7?). (2= ) (4.86)

We can easily calculate
1
S (z,t) =1 - q_—l(bgl +bg b b )T 0 (), (2 o)

and we immediately obtain

1 0
y>(2,t) (2, )™ (2, )<q11(b51+bal+b7l+bsl+(If> 1)

Correspondingly we write

o,y ((VEEYD y(a0) (o [ VY Y ()
v (’t)_<yf°(2/q,t) y%"(Z/q,t))’ =) <¢i’°(2/q,t) 1/}5"(2/61’75))’
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which are related by

S(z,t) 0

Y(z, t) = ( 0 Soo(z/q,t)) U™ (z,1)

1 0
. _ _ _ _ . 4.87
<ql]_(b51+b61+b71+b81+qf) 1) ( )

Note that
U (qz,t)| = u(z/q, t)w(z, )| ¥ (2,1)],

and hence, using (4.86), we find

(U (z,t)] =(q — 1)z7"(¢*f /2, [/ 2 qt/ (b12), gt/ (b22), qt/ (b32), gt/ (b42); €)oo X
(q/(b52),4/(b62),q/(br2), 4/ (bs2); @)oo

and hence, by (4.87),

(qt/(blz)a qt/(bQZ)a qt/(bi’)z)’ qt/(b4z); Q)oo
(1/(b5z)7 1/(bﬁz)v 1/(b72’), 1/(b82); Q)oo '

Analogously to Lemma 4.4.2 we have the following result.

Y (2,t)] = (= D27 (1~ f/2)

(4.88)

Lemma 4.7.4. The matriz function U>(z,t) = U (z:t, f,g) is analytic on P* x R,.

4.7.3 The Connection Matrix

Recall that, in Section 4.7.1, we defined a fundamental solution Y°(z,¢) of (2.22a). Similarly,
in Section 4.7.2, we defined a fundamental solution Y*°(z,t) of (4.83a). We wish to define
the connection matriz such that

y (1) = () P2, ), (4.89)
and hence we see that P(z,t) should be defined by

P(z,t) = YO(z: 1) <(1) tg) V(2. 1).

Indeed equation (4.89) is satisfied and

Plazt) = V(asit) () ) Y<(a

— YOz ) Az, ) ((1] t%) (tg 2) Az, 1) <(1) ;) Y (2, 1)

= £2y0(5 1) <(1) g) Voo 4),
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that is,
P(qz,t) = t*P(z,1t). (4.90)

Note that P(z,t) = P(z;t, f, g) is meromorphic on C* x R, and to understand its analytic
properties better, we consider the associated connection matriz

0 z
Q0 = g BP0

= eq(z/f)eq(ql%zy Qb(jz, qb7z7 qbgz)P(z, t)

Indeed, from Lemma’s 4.7.2 and 4.7.2, we easily derive that Q(z,t) = Q(z;t, f, g) is analytic
on C* x R,. Furthermore, by (4.90), Q(z,t) satisfies

e

T orbababi 27°Q(z,1). (4.91)

Qgz,t) =
By Theorem 4.1.9, we see that, for fixed ¢, Q(z,t) lives in a 4 x 5 = 20 dimensional space.
However, we can explicitly determine its determinant. Indeed, using equations (4.80a) and
(4.88) we derive
Gq(blz/t, bQZ/t, b32’/t, b4z/t)

P(z,t)| = qft*z 3
|P(z,t)] = af 0,(qbs2, qbsz, qbrz, gbs =)

(4.92)

and hence
1Q(2,1)| = qft>2730,(2/ £)?04(b12/t, baz /t, b3z [t,byz [t, qbsz, qbez, qbr 2, qbsz). (4.93)

After this cut Q(z,t) still contains essentially 20 — 10 = 10 free parameters, for fixed ¢. So far
we have used the analytic characterisation of Ly at z = 0 and z = oo and, say the location of
the zeros of u(z,t) and w(z,t). There is one intrinsic property of Yamada’s Lax pair we have
not used yet, which basically boils down to the following identity

o(f, t)o(f/q,t) = ulf/q, Yw(f, ). (4.94)
One can verify it by direct calculation, indeed

o£.8) = a1~ D) Tz (/0.

1— fg/t?
1-fg

from which the identity can easily be confirmed. At this point (4.94) might look a bit myste-

o(f/gt)=—1—q7") pa(f),

rious, however, one can think of it as the condition for z = f to be an apparent singularity,
as the following lemma shows.
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Lemma 4.7.5. For (t, f,g) in regular position, we have

( nf t) =0, (77, S Zg_l) (495)
OO( nf t) 0, (n S ZZQ) (496)
Q¢"f,t)=0.  (neZ) (4.97)

Proof. Let us start with verifying (4.95). Note that

\I/O(z,t)fl —_ \I’O(qz,t)flAO(Z,t), AO(Z,t) — <_U(1zat) _U(Z/%(f)w(zat)) ’

and as we know, by Lemma 4.7.2, that U9(z,#)~! is analytic in z on C*, we only have to
check that WO(f/q,t)~! = 0. Now we simply use the above recursion three times to obtain

VO(f/aq, )™ =g f, )7 A af, 1) A° (£, 1) A°(f [a, 1),

g (TR O) (RO il Deld0) (eian )

02 1) 1( v(qf,t) 0> <v(f,t)v(f/q_,?(;/sz)/q,t)w( £.t) 8)
@ro” (T 0) Gt o)
°(@f, )7 (8 8)

7

where in the fourth equality we used identity (4.94). Of course the evaluation (4.96) for
U(z,t) is done similarly. As to (4.97), firstly note that it is enough to show that Q(f/q,t) =
0, by recursion (4.91). The result then follows by observing that Q(z,t) can be written as a
product of analytic matrices in z on C*, one of which is W%(z,#)~!. Explicitly, by equations
(4.79) and (4.87), we have

1 0
e _5> T (2, 1) Moo,

S

Q(z,t) = MW (z,t)~1 (
where
1 0 1 0
My=1| , 1 sy Moo= 1 -1, -1 -1, -1
A(a(bs + b6+ b7 +bg) + f71) 1 A5t bt o7 H gt +af) 1

and the lemma follows. O

Theorem 4.7.6. The matrix function

R(zt, f,g) := Q(z,t) = 04(gbsz, qbs 2, gbrz, qbgz) P(2, 1),

1
04(2/1)

)
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is analytic on C* x R, satisfying
2

Rgzt) = ——
(42,1) q4bsbﬁb7bsz

“1R(z,1),

and determinant equal to
‘R(Z7 t)| = th22_30q(b12/t, bZZ/ta b3z/t7 b4Z/t, Qb5Z, Qbﬁz, Qb7Z, QbBZ)-

Proof. This is a direct consequence of Lemma 4.7.5 and equations (4.91) and (4.93). O

4.8 The Deformation Equation

In Section 4.7 we considered the global asymptotic analysis of the spectral equation L;. For
fixed t, we derived fundamental solutions at z = 0 and z = oo and studied the corresponding
connection matrix. Now we wish to let ¢ vary and understand how these, or related objects,
behave under the time evolution.

4.8.1 Solutions at the “Spectral” Origin

Perhaps the easiest way to initiate the discussion, is by the use of the power series method to
explore what happens when we also take the deformation equation in consideration. Say we
set

y(z,t) = cot) + er1(t)z + ea(t)2” + ..,

then, considering only the spectral equation, cy(t) and ¢;(¢) can be chosen at pleasure after
which all higher order coefficients are fixed by Li. Now let us consider what happens when
we substitute the power series into Lo. All constant terms cancel and when we compare the
coefficients of z in Lo, we find

q

a(t) = q—il(l —t72)g(t)eo(t) + - 1f(t)9(75)00(q75)- (4.98)
Similarly, comparing the coefficients of 22, we obtain
g’ q s q°
C2<t> = qg — 1g(t)00(qt) + q2 1 (q —t )g(t)cl(t) + q2 — 1f<t)g(t)61(qt).

Upon substitution of (4.98) into the above equation, we find an expression for cy(t) in terms of
{co(t), colqt), co(q?t)}. Of course, by comparing higher order coefficients, we find inductively,
that for any n € N, the coefficient ¢, () can be expressed in terms of {co(t), co(gt), ..., co(q"t)}.
Now, if we wish for y(z,t) to simultaneously solve L; and Lo, then this leads to ¢y(t) to satisfy
countably many g¢-difference equations, a priori. As an example, if we take the expression
for cp(t) we find by substitution into L;, and compare it with (4.98), then we find, after
substitution of (4.98) and a long calculation, that cy(t) should satisfy

Yo(t)eo(t) + 71 (t)co(qt) + 72(t)co(qt) = 0, (4.99)



122 CHAPTER 4. LINEAR Q-DIFFERENCE EQUATIONS AND ISOMONODROMY

where

Y0(t) =(t* = 1)g* [¢t*(fg — t*)p2(1/9) — (fg — Dpr(t/9)],

Y1(t) =t*(fg — 1)(fg — t*)[(b1 + ba + bz + ba)gt — (b5 + bg + by + bs)g*t> + q(qt> — 1)g
+ (¢*t* = 1)g],

Y2 (t) =’ fg(fg — 1)(fg — %),

and we suppressed ¢ dependence of f and g throughout. It turns out that this condition is
in fact sufficient. That is, to put it sloppy, let c¢o(t) be a solution of (4.99), and define ¢ (¢)
by (4.98), then the unique corresponding power series solution of Ly, also satisfies Ly. There
are several ways to make this precise. Let us first discuss the discrete case. For (¢, f,g) € R,,
we denote the space of meromorphic solutions of L1 = Ly (t, f, g) in z, by SOL;(¢, f,g). Note
that SOL4 (¢, f, g) is a 2-dimensional vector space over the field of g-elliptic functions. Then
we use the deformation equation, to define an operator Ly as follows. Assume (¢, f,g) and
(qt, f,g) are both in regular position, related by ¢-P(A1), then

Ly : SOLy(t, f,9) — SOLi(qt, f,9),y = L2y,
£ali() =~ E D) - EED /),

hO(Zv t)
is a well-defined linear operator by Theorem 2.4.1. Recall that {y{(2;¢, f,9),y5(2;t, f,g)} and
{0(z;qt, £,9),15(2; qt, f,G)} are bases of SOL1(¢, f, g) and SOL4(qt, f,g) respectively. The
question now is, what does Lo look like with respect to these bases? Well, let us write

y('z) = ?(Z t f7 )+Cly8(z't f7 )7
Loly)(z) = eyl (z:t, f.9) + @y (zt, £, g),

then the constants {co,c1} and {¢o,¢;1}, are related exactly by equations (4.98) and (4.99),
with the obvious identifications, like co(qt) = ¢y. We refer to equation (4.99) as the auxiliary
equation at z = 0. As to the continuous time interpretation, we have the following result.

Theorem 4.8.1. Let b € B, be generic® and T C C* be a continuous q-domain. Let (f,g)
be a nowhere singular memmorphzc solution of q-P(A1) on T. Furthermore suppose co(t)
denotes a meromorphic solution of the auziliary equation (4.99) on T. Define c1(t) by (4.98),
then

y(z,t) = co(tyi (=51, £(), 9(1) + c1(t)ya (21, £ (1), 9(2)), (4.100)

defines a solution of Yamada’s Lax pair, both the spectral and deformation equation, which is
meromorphic on C x T in (z,t).

Proof. Firstly, let i € {1,2}, then y?(2;t, f,g) is meromorphic on C x R, by Lemma 4.7.1.
Let us define

Ts={teT:(tf(t),9(t) & Ry} U{t € T: f(t) = oo or g(t) = oo}

2See Remark 4.8.2 for a precise definition
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As (f, g) is nowhere singular, we can write this set as

Ts={teT:f(t)=0o0rg(t)=0tU{teT: f(t) = o0 or g(t) = oo}
U{teT:(f(t),g(t)) = p; for some 1 <i <8},

and hence it is easy to see that the points in T are isolated and do not accumulate in 7.

Let T, be the complement of Ts in T', then (4.100) defines a function y(z,t) which is
meromorphic on C x T,.. Furthermore, it is obviously a solution of the spectral equation L.
Now we apply the operator Lo, that is, we set

T t) =~ t) — TR0,

and we wish to show y(z,qt) = y(z,t), as this implies that y(z,t) satisfies the deformation
equation Ly. Well, we can characterise y(z, gt) as the unique solution of Ly (qt), i.e. L; with
t — qt, meromorphic on C x ¢~'7,, satisfying

y(z,qt) = co(qt) + e1(qt)z + O (%), (4.101)

as z — 0, for any fixed t € ¢~ 1T}, such that cy(qt) and c¢;(qt) are finite. By Theorem 2.4.1, we
know that y(z,t) also satisfies L1 (gt), and is meromorphic on C x T}.. Furthermore, precisely
because co(t) and ¢q(¢t) satisfy (4.99) and (4.98), we know that y(z,t) enjoys exactly the same
expansion (4.101). The conclusion is that y(z,t) = y(z, t) holds, as an equality of meromorphic
functions on C x (T, N ¢~ 'T}). In particular y(z,t) indeed satisfies the deformation equation
Lo.

Finally, we wish to show that the singularities of y(z,t), at times in T, are at worst poles,
i.e. y(z,t) is meromorphic on C x T. Here we of course use that y(z,t) satisfies Lo, a priori
on C x (T, N ¢ 'T}), and is meromorphic on C x T}. Indeed, to establish the final piece of
the theorem, all we have to show is that ¢%T, = T, or to put it differently,

() ¢"T. = 0. (4.102)
nez
For generic parameter values b € By, this is guaranteed. O

Remark 4.8.2. Considering the proof of Theorem 4.8.1, we wish to exclude parameter values
b € B,, for which their exist discrete solutions which only take values in the exceptional
divisors Fj1,..., Fg, and the lines {f = 0}, {f = oo}, {g = 0} and {g = oo} in X. Note
that such discrete solutions only exist in very degenerate parameter cases, and we call the
parameters b generic if such solutions do not exist. An explicit example is given by the
very degenerate case (3.108), where ¢(t) can be chosen to have zeros on some g-spiral, and
hence the intersection on the left-hand side of (4.102) is non-empty. Working out the exact
conditions for which such discrete solutions exist is a laborious combinatorial problem, which
we do not wish to work out in detail here.
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4.8.2 Solutions at the “Spectral” Infinity

The story around z = oo is completely similar to that around z = 0, which we discussed in
the previous section. We consider an expansion

Uiz, t) =) + ()2t +at)z 2+ ..., (4.103)

about z = oo, for the rescaled Lax pair {Zl,iz}. Considering only the spectral equation
L1, the coefficients co(t) and ¢1(t) can be chosen at pleasure after which all higher order
coefficients are fixed. Now let us consider what happens when we substitute the _power series
into Ly. All singular terms cancel and when we compare the constant terms in LQ, we find

a0 = — =L - Lz (4.104)
BRSO R T R '
Similarly, comparing the coefficients of 2!, we obtain
o (l) = fala) + —E = am + =Lz
2T g O T e T g0 @ —1 M

Upon substitution of (4.104) into the above equation, we find an expression for ¢a(t) in terms
of {¢o(t),c0(qt), co(q*t)}. Comparing this expression for ¢a(t), with the one we obtain from
Ly, we find, after substitution of (4.104) and a long calculation, that ¢o(¢) should satisfy

Jo(t)eo(t) + F1(t)Co(qt) + Fa2(t)co(q’t) =0, (4.105)

where

Fo(t) =(t* = 1)g°g [(fg — Vp1(t/9) — (fg — *)p2(1/9)] |
F1(t) =b1babsba(fg — 1)(fg —t3)[(b5' +bg ' + b7 + b5 —q(by " + b5 + b3 " + by ) gg+
(¢°¢* = 1)g + (¢t* = 1)g],
F2(t) = — gbibabsbagg(fg — 1)(fg — t*),
and we suppressed t dependence of f and g throughout. It turns out that this condition is in
fact sufficient. That is, to put it sloppy, let ¢o(t) be a solution of (4.105), and define ¢;(¢) by

(4.104), then the unique corresponding power series solution of L1, also satisfies L2 We refer
to equation (4.105) as the auziliary equation at z = oc.

Theorem 4.8.3. Letb € B, be generic’ and T C C* be a continuous q-domain. Let (f,g) be
a nowhere singular meromorphic solution of g-P(A1) onT. Furthermore suppose ¢y(t) denotes
a meromorphic solution of the auxiliary equation (4.105) on T. Define ¢1(t) by (4.104), then

y(z,t) = co(t)yi*(z:, £(1), 9(8) + e1(D)w3° (8, f (1), 9(2)), (4.106)

defines a solution of the rescaled Lawz pair {L1, L}, which is meromorphic on P* x T in (z,1t).

3See Remark 4.8.2 for a precise definition
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Proof. This is proven analogously to Theorem 4.8.1. O

4.9 The Connection Matrix and Isomonodromy

We are now in position to combine the analytic theory of the spectral equation with the time
deformation. We assume b € By is generic in the sense of Remark 4.8.2. We fix a continuous
g-domain T' C C* and suppose (f,g) is a nowhere singular meromorphic solution (f,g) of
q-P(A1) on T. Let us take two linearly independent meromorphic solutions cj(¢) and c3(t)
of the auxiliary equation (4.99) at z = 0 on T', whose existence is guaranteed by the work
of Praagman [72]. We define c}(t) and c}(t) by equation (4.98), with co = ¢} and ¢y = ¢}
respectively. We denote

then Theorem 4.8.1 shows that
Vo(z,t) == Yzt, f(1), 9(t)) - C(t),

defines a fundamental solution of the Lax pair in system form (2.22), both of the spectral and
the deformation equation. Furthermore Y°(z,t) is meromorphic on C x T..

Similarly, we take two linearly independent meromorphic solutions ¢§(¢) and ¢3(t) of the
auxiliary equation (4.105) at z = oo on T. We define ¢ (t) and ¢2(t) by equation (4.104),
with ¢y = ¢} and ¢y = 3 respectively. We denote

~ co(t) E(t
cw - (3 20).
€
then Theorem 4.8.3 shows that

Y2 (z,t) = Y21, (1), (1)) - C(1),

defines a fundamental solution of the Lax pair in system form (4.83), both of the spectral and
the deformation equation. Furthermore }*°(z,t) is meromorphic on Cx7T'. The corresponding
connection matriz of Yamada’s Lax pair is defined by

1 0

Pz, t) = yo(z,t)_]L (0 2

) Yo(z,1) = C(t) Pt £(1), a(t)O(1), (4.107)

which is meromorphic on C* x T. Quite fundamentally, the spectral and time evolution of
the connection matrix are given by

P(qz,t) = t*P(z,1), (4.108a)
P(z,qt) = 2*P(z,1). (4.108b)

The first one is just the analog of equation (4.90), and the second one follows from the
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following calculation,

1 0
P(z,qt) = V°(2,qt) " <0 q2t2> V>¥(z,qt)

10\ = .
0 q2t2> H(z, 1)V (2,1)

=%z, t) TH(z, 1) <(1) q20t2> [22 <é q_QOt_2> H(z,t) ((1] t%)] V>®(z,t)

= 2*P(z,1).

= y“(z, t)_lH(z, t)_l <

To all intent and purposes, it is (4.108b), which is the manifestation of isomonodromy of
Yamada’s Lax pair. Indeed the time evolution of the ¢-P(A;) equation is nonlinear and
“complex”, whereas the time evolution of the associated connection matrix is trivial. If one
wishes to be strict, one could take any scalar function S(z,t), meromorphic on C*x T, enjoying
the same spectral and time evolution (4.108), as the connection matrix, i.e. (4.81), and set

P(z,t) = S(z,t) " P(z,1).

Then 75(7:, t) is g-periodic, both in the spectral and time variable, and we have isomonodromy
in the strict sense of the word. This approach, however, involves introducing arbitrariness,
by the freedom of choosing S(z,t) in the above.

4.9.1 Analytic Characteristics of Connection Matrix
By application of Theorem 4.7.6, we find that
R(z,t) := 04(qbsz, gbsz, qbrz, qbgz)P(2, 1), (4.109)

is meromorphic on C* x T, being analytic® in z, satisfying

t2

t) = 2 R(z,t 4.11
and determinant equal to
_ 2 |C(8)]
|R(Z, t)| - qf(t)t ‘C(t)’ eq(blz/ty b2z/ta b3z/t7 b4Z/t, quza Qb6Z, qb7z7 quZ)' (4111)
Furthermore the time evolution is given by
R(z,qt) = 2*R(z,1). (4.112)

4We say that a meromorphic function f (z,t), is analytic in z, if every point in its domain has an open
environment on which f(z,t) can be written as f(z,t) = g(z,t)h(t), with g(z,t) holomorphic and h(t) mero-
morphic.
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4.9.2 The Monodromy Mapping

Before resuming our discussion, it is convenient, using equations (4.98) and (4.104), to express
C(t) and C(t) as follows,

Ct)=N@#)Co(t),  C(t)=N@t)Co(t), (4.113)

where

=4

(0 N R0
(t)_<<qtﬁgl<t> —q€1>’ Colt) <Ea<qt> 63<qt>>'

To summarise, note that we have assigned, to the meromorphic solution (f, g) of ¢-P(A1),
and corresponding solutions {c}, 3} and {c§, c2} of (4.99) and (4.105) respectively, the matrix
R(z,t), symbolically

(fvgu {C(I))Cg}a{g(l)veg}) HR(th)‘ (4'114)

Now let us do some counting. The left-hand side has principally 10 g-periodic freedoms in
t, 2 coming from ¢-P(A;), and 4 coming both from choosing a fundamental solution of the
auxiliary equation (4.99) and (4.105). The right-hand side, i.e. R(z,t), basically carries 9
g-periodic freedoms in t. Indeed R(z,t) lives in a 16 dimensional space, characterised by
(4.110), cut by

|R(2,t)| = constant(t) x O4(b1z/t,baz/t,b3z/t, baz/t, qbsz, gbez, qbrz, qbgz), (4.115)

which leaves 16 — 7 = 9 freedoms. Indeed, as the overall scaling, the factor before the ¢-theta
functions, in the determinant formula (4.111), depends on the particular choices on the left-
hand side of the “correspondence” (4.114), we can only take the locations of the 8 (spirals
of) zeros of the determinant in consideration for the cut. The product of the 8 zeros in the
determinant (4.115) is prescribed by (4.110), hence we essentially eliminate 7 freedoms in ¢
by the cut (4.115).

So the left-hand side of the correspondence has 10 g-periodic freedoms, whereas the right-
hand side has 9. This imbalance is easily understood from equations (4.107) and (4.113).
Indeed, take any meromorphic function A(t) which is g-periodic in ¢, then

(f,9.{rco, AcG}, {ACy, AGH}) (4.116)

gets send to exactly the same matrix in the correspondence (4.114).
We can eliminate the fundamental solutions of the auxiliary equations from the corre-
spondence (4.114), by sending

Mr = (f,9) = [R(z,1)], (4.117)

where [-] denotes say the orbit under the action of arbitrary left and inverse right multipli-
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cation by meromorphic invertible matrices in ¢ which are ¢-periodic. To be exact, take the
space St of matrices Q(z,t), meromorphic on C* x T', being analytic in z, satisfying (4.110),
(4.112) and (4.115). Loosely speaking this is a 9-dimensional space in the g-periodic sense.
Then we consider the action on St defined by multiplication from the left and inversely from
the right by meromorphic invertible matrices in ¢t on T', which are g-periodic. We then divide
out this action, which eliminates 8 — 1 = 7 ¢-periodic freedoms, and the resulting orbit space
M has 9 — 7 = 2 g-periodic “dimensions”. We hence obtain a mapping

My : S5 (T) = Mr, (4.118)

where §**(T') denotes the space of nowhere singular meromorphic solutions on 7', as defined
in (2.17). We refer to My as the monodromy mapping and call Mp(f,g) the monodromy
corresponding to (f,g). We think of (4.118), or (4.114) after dividing out the freedom in
multiplication by A(t) as described in (4.116), of really being a correspondence. However we
will not investigate this further here.

Let us remark that the mapping Mt does not coincide, say pointwise, with the Riemann-
Hilbert-Birkhoff correspondence (4.23). Of course we have only defined the Riemann-Hilbert-
Birkhoff correspondence for non-resonant Fuchsian equations. However, in the case of a
Fuchsian system with resonance and trivial monodromy, both at the origin and infinity, one
typically sets the Riemann-Hilbert-Birkhoff correspondence to take the form

[A(2)]ar, ) < [Q(2)],

where [Q(z)], denotes the orbit of Q(z) under arbitrary multiplication by lower triangular
invertible matrices from the left and right. That is to say, in constructing My we divided
out more than one would typically do from the Riemann-Hilbert-Birkhoff perspective.

4.10 Time Deformation of Rigid Objects

We can exploit the simple time evolution of for instance °(z, ), to calculate the more complex
time evolution of the rigid object Y°(z,t). Indeed by equations (4.113), (4.99) and (4.105),
we have

Clqt) = E(t)C(t), E(t) := N(qt) <$ﬂ<t> i@)) N,
~2(t) Y2(t)

Clqt) = E()C(b), E(t) := N(qt) (_éﬂ(t) _%@)) V(1)
Y2(t) Y2(t)

Hence, as Y°(z,t) and Y>°(z,t) satisfy the deformation equations (2.22b) and (4.83b) respec-
tively, we have

>~<
[e=)
—~
n
L)
<~
S~—
I

H(z, )Y (2, t)E(t)™,

H(z,t)Y>®(z,)E(t)"

>~.<
g
¥
3
I
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In fact, let us write E(t) = E(t, f, g, f,g) and E(t) = E(t, f,9,f,9), then one can show that
for (t, f,g) and (qt, f,g) in regular position, related by ¢-P(A;), we have

YOziqt, f,9) = H(zt, f,9)Y (258, f,9)Et, .9, f.9) 7",
Y>®(ziqt, f,9) = H(z:t, f,9)Y™(2:t, f,9)E(L, f, 9. F.9) "

Similarly we have
P<Z; qt? 77 g) = ZQE(t7 f? 97?7 E)P<Z; t? f7 g)E(t7 f? g7 ?7 5)717

and also N
R(Z7 qt? ?? g) = ZQE({;? f?g??? E)R(Z; t? f7 g)E(t7 f7 g??? g)_l'

This time evolution is rather complex, however by taking on the relative position as set out in
Section 4.9.2, it takes a much simpler form. That is, following the ideas in Section 4.9.2, we
fix a tg € C*, and write S(t¢) for the space of analytic 2 x 2 matrix functions R(z), satisfying

2
tO

—4
_ R 4.119

R(g2)
and, analogously to (4.115),
|R(z)| = constant x 4(b1z/to, baz/to, b3z /to, baz/to, gbsz, qbsz, gbrz, gbgz). (4.120)

Then we consider the action ¢ of GL2(C) x GL2(C) on S(tp), which acts by left and inverse
right multiplication,

o(E,E)(R(z)) = ER(z)E™".  (R(2) € M(to)) (4.121)
We denote by M(tyg) = S(to)/p, the orbit space of S(tp) under ¢. Let us write
Ry(to) = {(t, f.9) € Ry : t € ¢"to},
then we define the monodromy mapping by
m: Ry(to) = M(to), (¢"to, f,9) = [z~ 2" R(z;¢" o, f, 9)]-

Now we know that if (¢"to, f,g) and (¢"*'tg, f,g) are in regular position, related by g-P(A1),
then m(q™to, f,g9) = m(¢""to, f,g). However we get into difficulties when a discrete solution
hits a base point. We pose the following conjecture.

Conjecture 4.10.1. Let (fs,gs)sez € Si(to), then, for any r,s € Z, if (¢°to, fs,9s) and
(¢"to, fr, gr) are in regular position, then

m(qstg, f87 gs) = m(qrtm f7‘7gr)'

Note that if the answer to Question 2.3.2 is affirmative, then this conjecture holds true.
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Let us assume momentarily that the above conjecture is correct. Then we obtain a mapping
M(to) : S:(to) — M(to).

We can do the same counting as done in Section 4.9.2. The space M (tg) is 16 — 7 = 9
dimensional, and hence M(ty) is 9 — 7 = 2 dimensional, which adds up with S () being two

dimensional.



CHAPTER 5

The Direct Monodromy Problem

The direct monodromy problem entails calculating the monodromy datum of the associated
linear problem corresponding to a given Painlevé transcendent explicitly. In our case the
transcendents are characterised by some asymptotics at t = 0 or ¢ = co. It turns out that we
can completely determine the monodromy exploiting just such asymptotic characterisations.
This is of course not unusual in the Painlevé world, Jimbo [42] and Mano [61] show that the
same is true in the Py1 and ¢-Pyp case.

We start with an overview of our approach to solve the direct monodromy problem for
a transcendent, characterised by some given critical behaviour. In Section 5.2, we discuss
a particular example in detail, the transcendent (f,g) = (f'V, ¢g(bY), meromorphic at t =
0, defined in Proposition 3.1.2. We then give the monodromy corresponding to the other
transcendents, which are meromorphic at a critical point, in Section 5.3. The technical proofs
of those results can be found in Appendix D.

We then consider the direct monodromy problem for the generic case near t = 0, i.e. a
solution with critical behaviour as specified in Theorem 3.4.1. In Sections 5.4 and 5.5 we
construct fundamental solutions of Yamada’s Lax pair near z = oo and z = 0 respectively,
which we relate via an explicit connection matrix in Section 5.6. This leads to an explicit
parameterisation of the monodromy of Yamada’s Lax pair in terms of the integration constants
{&(t), A(t)} of the generic solution near ¢t = 0, given in Section 5.7.

A similar analysis in Sections 5.8, 5.9 and 5.10, leads to an explicit parameterisation of
the monodromy of Yamada’s Lax pair in terms of the integration constants {¢oo(t), Aco(t)}
of the generic solution near ¢ = oo, given in Section 5.11.

Finally we combine the results in Section 5.12, to arrive at parametric connection formulae,
relating the critical behaviour of transcendents near ¢ = 0 and t = oo, indirectly.

5.1 Overview of Approach

Our starting point is a meromorphic solution of ¢-P(A;), given by some critical behaviour
near t = 0 or t = oo. Let us focus on the case t = 0, with some critical behaviour given in
Table 3.1. We only wish to give a schematic overview here, hence we warn the reader some
parts should be taken with a grain of salt.

We consider Yamada’s Lax pair and we wish to construct solutions of it near the “spectral”

131



132 CHAPTER 5. THE DIRECT MONODROMY PROBLEM

€= 0.0

€)= (00,00 P>(2)

Figure 5.1: Graphical illustration of factorisation of connection matrix in the ¢ — 0 limit.

zero 4.8.1 and the “spectral” infinity 4.8.2, depicted in red and blue respectively in Figure
5.1. As we have an asymptotic characterisation of our meromorphic solution near ¢t = 0,
we construct a meromorphic fundamental solution ¢y(t) of (4.105), such that, after some
specific scaling ¢o(t) = s*°(t)cg°(t), the resulting ¢§°(t) has tempered behaviour as ¢ — 0.
Correspondingly, by Theorem 4.8.3, we have a fundamental solution Y°°(z, t) = s (£)¥>(z,t)
of l~}, such that the limit

lim ¥ (z,t) — Dg°(2),

t—0

exists. We call such a fundamental solution a fundamental solution at (z,t) = (00,0). In
Figure 5.1, the point (z,t) = (00, 0) is encircled in blue.

The function U*°(z, t) satisfies a rescaled form of Yamada’s Lax pair, which we denote by
L*>°. When we let t — 0 in L*°, we find that D§°(z) satisfies a second order linear equation,
which is a rescaled version of the degree two model equation (4.51). We have an explicit
solution to the connection problem of the limiting equation, given by a connection matrix
P*°(z). This allows us to “transition” from z = oo to z = 0 along the line ¢t = 0 in the (z,t)
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plane, depicted by the wiggling blue line in Figure 5.1, by setting
T0 (2, 1) = U®(2, 1) P> ()~ L.
Indeed WYz, t) satisfies a rescaled version L of Yamada’s Lax pair, the limit

lim U0 (2, ) =: DSO’O(,Z),

t—0

exists, and Dj° (2) is holomorphic at z = 0.

We wish to follow a similar approach to construct a solution of Yamada’s Lax pair (2.21)
near (z,t) = (0,0). However it turns out that the Lax pair is very singular at (z,t) = (0,0)
in the (z,t) plane. The same holds true in the case of Pyr and ¢-Pyr, as shown by Jimbo
[42] and Mano [61] respectively. Further consideration shows that we should instead consider
Yamada’s Lax pair in the (£,t) plane, where { = . We find that there exists a fundamental
solution near (§,t) = (0,0), in the (§,¢) plane,

V(1) = () 0°(E, 1),
where s°(¢) some scaling, such that ¥°(¢,¢) is holomorphic at £ = 0 and the limit
: 0 _.no
lim W0(¢, ) =: DY(5).

exists. Now WY(¢,t) satisfies a rescaled version LY of Yamada’s Lax pair, and letting ¢ — 0,
we find that DJ(£) satisfies a linear second order equation, which is again a rescaled version
of our model equation (4.51). We denote the corresponding connection matrix by P°(¢), and
we transition from £ = 0 to £ = oo along ¢t = 0 in the (&, t) plane, depicted by the wiggling
red line in Figure 5.1, by setting

WO ) = WO (€, ) PO(€).
Indeed W0 (¢, t) satisfies a rescaled version L* of Yamada’s Lax pair, the limit

lim WO (£, 1) =: DI™(¢),

t—0

exists, and Dg’oo (€) is holomorphic at £ = co.

Interestingly enough, the Lax pairs L>? and L% are identical, and hence ¥%> (¢, t) =
W00 (2 1) and U>0(z,¢) satisfy the same Lax pair, though they are characterised by certain
asymptotics approaching (&,t) = (00, 0) via disjoint regimes. To match the two fundamental
solutions, we introduce a third fundamental solution W (z,t) near (£,t) = (o0,0), depicted by
the green circle, which is characterised asymptotically in a larger regime, having non-empty
intersection with the regimes corresponding to ¥%°°(¢,¢) and U>(z,¢). It turns out all three
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solutions are identical (possibly up to some scalar factors), and we find

YO(z,)P(2,t) = Y>®(z,1)
()T (2,1)
°°(t)\11°°0(z t) P> (2)
()W (2, 1) P(2)
)
)

[
V2] V2]
~

|
V2]

X)W (E, 1) P(2)
()P, 1) PO (€) P(2)

— YR P (o)

|
®

and we conclude

Soo() 0 [e’¢)
P(2,1) = P ( )P (2). (5.1)
s(t)

So we have an explicit factorisation of the Yamada Lax pair connection problem into two
copies of the connection problem of our model equation (4.51) as ¢ — 0. We note that
a similar factorisation takes place in the case of Pyr and ¢-Pyp, as shown by Jimbo [42]
and Mano [61] respectively. The way we have represented it here, the factorisation seems
quite miraculous. Let us therefore emphasise that such factorisations are in fact common
in isomonodromic deformation theory, where we particularly want to mention Gavrylenko
and Lisovyy [19] who discuss the generic (continuous) Fuchsian case with arbitrary rank and
number of regular singular points.

5.1.1 Overview of Approach near t = co

Our approach to solving the direct monodromy problem for meromorphic ¢-P(A;) transcen-
dents, characterised by some critical behaviour near ¢ = oo, is essentially the same. We
consider Yamada’s Lax pair and we wish to construct solutions of it near the “spectral” zero
4.8.1 and the “spectral” infinity 4.8.2, depicted in red and blue respectively in Figure 5.2.

We find a scaling 3°(¢), such that there exists a fundamental solution Y°(z, t) = 8°(¢)¥0(z, t)
of L (2.21) at (z,t) = (0,00), such that the limit

30
E&‘I’ (z,1) —>D0( ),
exists. In Figure 5.2, the point (z,t) = (0,00) is encircled in red.

The function \T/O(z, t) satisfies a rescaled form of Yamada’s Lax pair, which we denote by
L°. When we let t — oo in EO, we find that 138 (z) satisfies a second order linear equation,
which is a rescaled version of the degree two model equation (4.51). We have an explicit
solution to the connection problem of this equation, given by a connection matrix ﬁo(z).
This allows us to “transition” from z = 0 to z = oo along the line ¢t = oo in the (z,t) plane,
depicted by the wiggling red line in Figure 5.2, by setting

V02 (5, 4) = U0z, 6)PY(2).



5.1. OVERVIEW OF APPROACH 135

AO (gat) = (Oa OO)
S N it ) I N
N

(§:1) = (00, 00)

z2=20 Z =00

Figure 5.2: Graphical illustration of factorisation of connection matrix in the ¢ — oo limit.

We wish to follow a similar approach to construct a solution of Yamada’s Lax pair (4.82) near
(z,t) = (00, 00). However it turns out that the Lax pair is rather singular at (z,t) = (00, 00)
in the (z,t) plane. We resolve this singularity by considering Yamada’s Lax pair in the (,t)
plane, where £ = #. We find that there exists a fundamental solution at (£,t) = (o0, 00), in
the (£, t) plane,

Y(2,1) = 5°(0)T™(E, 1),

where §°°(t) some scaling, such that ¥ (&, t) is holomorphic at € = oo, and the limit

Jim (&, 1) = DF°(©),
exists. Now \Tloo(f ,t) satisfies a rescaled version L% of Yamada’s Lax pair, and letting t — 0,
we find that 1380(5) satisfies a linear second order equation, which is again a rescaled version
of our model equation (4.51). We denote the corresponding connection matrix by P> (¢), and
we transition from & = oo to £ = 0 along t = oo in the (&,t) plane, depicted by the wiggling
blue line in Figure 5.2, by setting

T0(e, 1) = U (L, £) P (€).
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It turns out that the Lax pairs L9 and L0 are identical, and we find \Tfo’m(z,t) =

oo (&,t), from which we derive the connection result
YO(z,)P(2,t) = Y(2, 1),

where

5.2 A Special Case

Before tackling the generic case, we first solve the direct monodromy problem for solutions
with the simplest critical behaviour near ¢ = 0 in our Table 3.1. We start with the solution
(f,9) = (f1, gD meromorphic at t = 0, defined in Proposition 3.1.2, where we assume
the corresponding conditions (3.11) on the parameters. We write

by by — (b3 + ba)

t) = fit t2 B4+ =
f() fl +f2 +f3 + 3 fl b1b2—b3b4 ;
b1ba(bg + by) — b3ba(by + b
g(t):91t+g2t2+93t3+--w g1 = 12(3 4) 34(1 2)-
b1ba — b3by

Let us recall that this solution is obtained from the generic solution (3.44) by setting A = Aic
and ¢ = 0, as shown in Proposition 3.5.1. It is helpful the keep this in mind as we we will see
that the values Af = —biby and A] = —b3bs enter the connection matrices of the limiting
second order equations naturally. Later on we find that this also holds in the generic case.

We mention that Kaneko [53] calculates the monodromy corresponding to solutions of Py
which are meromorphic at a critical point. Also Ohyama [64, 65] calculates the connection
matrices corresponding to the limiting equations of linear problems associated with g-Pjy,
q-Py and ¢-Py1, for transcendents meromorphic at the origin, though he does not follow up
with a matching procedure or equivalent to establish a factorisation as in (5.1).

5.2.1 Fundamental Solution at (z,t) = (oo, 0)

Let us first recall that Theorem 4.8.3 tells us that we should study equation (4.105) to
construct a solution at (z,t) = (00, 0). The coefficients in (4.105) satisfy

Fo(t) = bibabsba(figr — 1)t* + O (%),
F1(t) = bibobsba(figr — 1)(1 + q)gut® + O (1),
F2(t) = bibabsba(frgr — Da’git! + O (1),

as t — 0. Hence this equation is unbalanced, so we apply a scaling

co(t) = s®(t)cg°(t), s¥(qt) =Bt 's®(t), B:=—q 'g; ', (5.2)
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where we invite the reader to choose s*°(t), meromorphic on C*, at their pleasure. The
resulting equation for ¢g°(t) takes the form

W60 (£)eg° () + 10 (D)5 (at) +5° ()5 (¢%t) = 0, (5.3)

where

1
 bibabsby(f1g1 — 1)t

(76" (£), 77 (1), 72" (1)) (Fo(1). Bt~ 1F1(1). g B2 32 (1))

Now t = 0 is a regular singular point of (5.3), with exponents 1, ¢ and hence resonance, as
6°0) =1, 1°0)=~(1+q "), 5°0)=q"
However, the no-logarithms condition is satisfied, indeed a little calculation shows
%67 (0) + 7% (0) +45°(0) = 0,

and hence t = 0 is in fact an ordinary point of (5.3). In particular, for any choice of ¢ g, co1 €
C, there exists an unique meromorphic solution ¢i°(¢) of (5.3), characterised by

°(t) = coo+coat+ O (). (t—0) (5.4)

Now we rescale y(z,t) along with ¢y in (5.2), i.e.
y(z,t) = s* ()™= (2, 1), (5.5)

then 1)>°(z,t) satisfies the Lax pair L* given by

LY u(z, )™ (gz,t) + v(z, )™ (2, t) + w(z, t)p>(z/q,t) = 0, (5.6a)
LY. Bt 27 2ho(2, )™ (2, qt) + h1(2, )07 (2, 1) + t2ha(z,t)0>®(2/q,t) = 0. (5.6b)

By Theorem 4.8.3, we know that this system of equations is balanced at z = oo, and we know
that (5.3), which could be considered as L on the line z = oo, is balanced at ¢t = 0. It turns
out L™ is balanced at (z,t) = (00,0), as the following Theorem shows.

Proposition 5.2.1. For any choice of co,co,1 € C, there exists an unique solution 1> (z,t)
of the Lazx pair (5.6), which is analytic at (z,t) = (00,0), such that c§°(t) := 1>°(o0,t) is
characterised by the expansion (5.4). Furthermore ¥>°(z,t) enjoys an unique meromorphic
continuation to P* x C.
Proof. Let us consider an expansion

P2, t) = (1) + () + ()22 4.,

for a solution of (5.6). Comparing the scaling (5.5) with (4.103), we have

co(t) = sX(t)cg (1), (t) = s2()e”(t),  ca(t) = T ()3 (1), - .-
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where the first equation should remind us of (5.2). In particular, analogously to (4.104), we
find the following equation from Ls5°,

2 -1 q

() = ————c°(t) — ——=Bt 1 (qt). (5.7)
! (a—1g(t)* g—17 7

Now let us take some ¢g, o1 € C, then we know that there exists an unique solution ¢{°(t)
of (5.3), which is analytic at ¢ = 0, characterised by the expansion (5.4). Next we define
c3°(t) by (5.7), and note that ¢§°(¢) is analytic at ¢ = 0, precisely because § = —q_lgf1
Claim 5.2.2. There exists a small open disc D about t = 0, such that there is an unique
solution ¥>°(z,t) of LY, which is meromorphic on P* x D, characterised by

(e t) = () + (1) 4 0 (7 (5.8)
holding locally uniformly in t on D as z — oo.

The proof of this claim follows a typical procedure. Let us first remind ourselves of Remark
B.5, which basically tells us that for any well-posed (g-discrete) Cauchy problem, with analytic
dependence on some parameters, the corresponding solution also depends analytically on those
parameters. To establish the claim, we first observe that the coefficients u(z,t),v(z,t), w(z,t)
are holomorphic in (z,t) at (z,t) = (00,0), and hence holomorphic on some open polydisc
D, x Dy centered at (z,t) = (00,0). In fact we have

st 155 () (-5 () oo

U(z,t) = [ (L4q)+ (bt + b5t + 071 +bg 1)z (h;mglbll)z—?]
+O(1), (5.9b)
w(z,t) =¢~ ' + O(t), (5.9¢)

locally uniformly in z on P* as t — 0. Now let D C D; be an open disc centered at t = 0,
such that ¢§°(¢) and ¢(°(t) are holomorphic on D. Then, for any fixed ¢ € D, there exists an
unique solution ¥*>°(z,t) of L3, which is meromorphic on P* in z, characterised by (5.8) as
z — 00. By Remark B.5, equation (5.8) holds locally uniformly in ¢ on D as z — oo, and the
claim follows.

It remains to show that ¢*°(z,t) also satisfies L5°, which basically follows from Theorem
4.8.1 after some rescaling. For convenience of the reader we repeat this line of proof once
more. We use L5° as an operator, defining

2 hl(z t)
5h0( t)

3 h2(z7 t)

e M

V(2 ) = (2, 1) — 2%
Indeed {/}’o(z,t/ q) is a solution of L$°, meromorphic on P* x ¢D and it is easy to see that
1¥>°(z,t/q) has the same asymptotic characterisation (5.8), holding locally uniformly in ¢ on

qD as z — 0co. As DN gD = ¢D, we immediately obtain Joo(z,t/q) =>(z,t) on gD, that
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is, 1>°(z,t) satisfies L3° on P* x ¢D. The last line of the theorem, on unique meromorphic
continuation, is now obvious. ]

5.2.2 Transition from (z,t) = (o0, 0) to (z,t) = (0,0)

Let us take some cgg,co1 € C and corresponding solution tg(z,t) of L, as defined in
Proposition 5.2.1. We write its power series expansion about (z,t) = (00,0) as

oo o0
PY>(z,t) = Z cX(t)z”™ = Z Con? "
m=0

m,n=0
00 0
00 m 0o —ngm
= de(z)t = E Aoz "t
m=0 m,n=0

in particular 7, = dp°,, for m,n € N. Now, we let £ — 0 in L§°, which gives, by equations
(5.9),

1 1
d(z/q) + [—(1 +q)+ (bt Fbgt b b — <b1b2 + bgb4> z_z] )

4 (1 _ b;qg) (1 - bﬁlqz) (1 - b:qz) (1 - b;qg) (qz) = 0. (5.10)

This is exactly the degree two model equation (4.51) under the identification y(z) = dS9(1/z),
with parameter values o = ¢, defined in (5.26), where we note that Fuchs’ equation (4.52)
is indeed satisfied. By letting ¢ — 0 in L$°, we find, in a similar fashion,

00 g1 00 00 1 g2 —1> o)
di°(z) = — z(dg”(2) — dg (2 —— | = - fiz do”(2),
20 =~ I ) - ) - 2 (2 A ) )
and hence
dop = co0, do1= —Lco,o + 97 o1
(¢—Dan

In particular, we can just as well prescribe dyo and dp; to define ¢*°(z,t) uniquely. Using
the notation in Section 4.5, we define a fundamental solution of (5.10) by

D (z) =4 (z 7Y 0l),

and denote by U°(z,t), the fundamental solution of L®°, meromorphic on P* x C, associated
to it by ¥*°(z,0) = D§°(z). Similarly we denote
Dg™(2) = 9™ (= 0k,

[iagie o]

and we have the connection result

D () = DF°()P=(2),  P¥(2) = Q= Y0L) .
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Analogously, we define
T (z,t) = U0(2, 1) P™(2). (5.11)

From (4.46), we obtain

. b1baq?2? 0 .
P (qz) = < ! 20 b3b4q222> P (’Z)’

00,0

and hence, for i = 1,2, the component ¥,

00,0,1
Lo,

(z,t) defines a solution of the following Lax pair

L (o)
5422w(z,t)¢2. 70(2/%75) =0, (5.12a)
20,0 L 0 00 12 o
L0 Bogpho(5 0007 (2 at) 4+ (5, U (2,1) + 55 ha(, 097 (2/4,1) = 0. (5.12b)

LTO,O,i . q25i22a(z’ t),d)Z?O,O(qZ’ t) + 5(2, t)q[}ioo’o(z, t) +

where d7 = bibo and 09 = bsby. We note that \IJ?O’O(z,t) is meromorphic on C* x C, and
\I/fo’o(z,()) = Dgo’o’l(z) can be characterised as the unique solution of (4.63) with z + 271

and parameter values o = o, holomorphic at z = 0, with Dy° ’O’i(O) =1.

5.2.3 Fundamental Solution at (£,t) = (0,0)

Let us first consider equation (4.99), its coefficients ~o(t), v1(t) and ~2(t) are of order of
magnitude ¢2, 5 and t® respectively as t — 0. After some scaling

co(t) = s°()Q(t), s(qt) =t73s%(¢),

where we again invite the reader to choose s%(t) at their pleasure, the resulting equation for
cd(t) is balanced at t = 0, and some calculation, best done using equations (3.3), gives the
exponents

ar = B0 = —bibeg gy, o= By = —bibag gyt

Now, if we scale Yamada’s Lax pair 2.21 in ¢ as above, it is still unbalanced, as u(z,t), v(z,t)
and w(z,t) are of order of magnitude t~!, =3 and ¢t~ respectively. Indeed to overcome the
imbalance we should also apply a change of independent variables. For i = 1,2, we set

y(z 1) = LOUED), sHat) = ait (), =7, (5.13)

which gives the Lax pair L% given by
LY (et ) (g€, t) + (et )p2(€,1) + w(Et, )P (E/q,t) =0, (5.14)
Ly oqtho(§t, )0P (€/q, at) + ha (€6, )9 (6, 1) + ha(St, )90 (/g t) = 0. (5.15)

One can check that the coefficients in L(l)’i, are all analytic at ¢ = 0, and have expansions
similar to (5.9).

Proposition 5.2.3. For ¢ = 1,2, there exists an unique solution \I/?(g,t) of L%, which is
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holomorphic at (€,t) = (0,0), with ¥9(0,0) = 1. Furthermore W9(£,t) enjoys an unique
meromorphic continuation to C x C.

Proof. This is proven analogously to Proposition 5.2.1. O

5.2.4 Transition from (&,t) = (0,0) to (&,t) = (o0, 0)

For i = 1,2, we denote the power series expansion of WY(¢,t), defined in Proposition 5.2.3,
about (§,t) = (0,0) by

W= e = Y Ch e
m=0 m,n=0

= i D™ = i Dyl &M
m=0 m,n=0

When we let ¢ — 0 in L?’i, we obtain a second order g-difference equation for ngi(g), of
which the coefficient lim¢ o v(£t,t), of Dg’l(qﬁ), is a bit complicated. But if we let ¢t — 0 in
L(l)’z7 and consider the order ¢? terms, we obtain the very simple first order equation

D(€) = (8,6 = (8uf1 + 91)& +1) DG (€/)-
Let’s consider ¢ = 1, then d; fi + g1 = b1 + b2, and hence
D (6) = (1= bi&)(1 — b26) Dy (6/a). (5.16)
As Dg’i(O) = 1, we immediately obtain
D5 (€) = (abi€, absts )0
Similarly, setting ¢ = 2, we have
D*(€) = (1= bs&)(1 — bat) Dy (¢/a), (5.17)
and as DS’Q(O) = 1, we obtain
DEA(€) = (abs€ abass ) -

The connection problem for equations (5.16) and (5.17), are of course trivial, we set

1 1 1 1
DR%(€) = (DU (€), DR (€)) = ((b5 M;q) , (bgé M;q) ) ,

then the connection result reads

DY>(€) = DY(E)PO(€), P°¢) = <9q(qb1€7qb2§) 0 ) |

0 04(abs, qba&)
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and we define
O (g, 1) = WO(e, 1) PO(€). (5.18)

Now, for i = 1, 2, the component \I’?’Oo(ﬁ, t) satisfies the Lax pair L?°  given by

LY q?6:8%u(St, )0 (g6, 1) + v(&t, e (6, 1) + 5,152w<5t7t)w9<£/q,t) =0,

LY (et 0000(E/a, at) + Gi€%m (€t 0006 1) + halgt 1)U0(E/a.t) = 0.

Let us remark that we found that the connection problem on the ¢ = 0 line in the (¢, t)
plane, is trivial. This is precisely the case because we are considering a very special solution
of ¢-P(A1). Generically we find the full degree two model equation (4.51), on the ¢t = 0 line
in the (&,t) plane, just as we found on the ¢ = 0 line in the (z,t) plane in Section 5.2.2.

5.2.5 The Matching Procedure

Let us first make the crucial observation that, for i = 1,2, the Lax pairs L% and L%

essentially coincide, under the identification £ = %. To be precise, the equations L§°’07i and
Lg’oo’l are identical, and the equations L(lx”o’Z and L(l]’oo’l are a multiple of each other. Let

us focus on the case i = 1. So both W*Y(z,¢) and \I/(l)’oo(f,t) are solutions of the Lax pair
L% We now wish to match these two solutions at (£,¢) = (00, 0). Note however, that both
solutions are characterised asymptotically near (§,t) = (oo, 0), only on different complex lines
with empty intersection. Indeed we only have an asymptotic characterisation of \IJTO’O(Z,O)
near z = 0, and of \If(l)’oo(ﬁ, 0) near £ = co. As the connection problem on the ¢t = 0 line in the
(&,t) plane was trivial, the matching procedure can be done much simpler than in the generic
case. We perform the following trick, we consider

z z z
Ui (z,1) = (qblg, gba 7 q) u (;,t) , (5.19)

which is a solution of the Lax pair L%, given by

LYo uf (2, )08 (qz, t) + 0™ (2, )8 (2, 1) + w™ (2, )98 (2/q,t) = 0,
a
LY t—;ho(z7t) Tz, qt) + (1 — b1€)(1 — ba&)ha (2, )P (2, 1) + ha(z, )Y (2/q,t) = 0,

where

u'(z,t) = (t — qb12) (t — gba2) (t — b12) (t — baz) u(z,t),

(2, t) = t2(t — b12) (t — baz) v(2, 1),

w(z,t) = thw(z,t).
Proposition 5.2.4. There exists an unique solution \Ilf’”/(z,t) of L, which is holomorphic
at (z,t) = (0,0), with W' (0,0) = 1. Furthermore W' (z,t) enjoys an unique meromorphic

continuation to C x C.

Proof. The proof is completely analogous to the proof of Proposition 5.2.3. O
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We now simply compare $9(¢,t) and WY (¢, 1), where, following (5.19), the latter is defined
by
r/ /
W (gt 1) = (ab1€, qbag; q)oe UY (6,1).

Evidently both U9(¢, ) and 9’ (£, ) satisfy the Lax pair L%!, both are meromorphic on Cx C,
and

BY'(€,0) = (ghi€, aba€s a) s UY(0,0) = (abi€, qbaé; ) = VR (£,0).
In particular \I/?/(0,0) =1 and, by Proposition 5.2.3,

WO(e, 1) = WY'(&,1) = (gbi&, gbot; )t W' (68, 8). (5.20)

Similarly we wish to relate \Ifgr/(z, t) to \IITO’O(Z, t). Well, we simply scale

-1

r* t t ,0

i (2,t) = (blz’sz;q> W (2, t), (5.21)
o

then W™ (2,¢) is a solution of L', meromorphic on C* x C, and we have

U™ (2,0) = U50(2,0) = D0(2) = (271 0l ). (5.22)

oo

By comparing order t~! terms in LY as t — 0, we find that D' (2) := Wi'(2,0), satisfies

the same second order equation as (2710l ), i.e. (4.63) with 2z + z~! and parameter

(e o]
values o = ol . Furthermore D{’(z) is holomorphic at z = 0 and D§”'(0) = 1, from which we
conclude, using (5.22),

5 (2) = ¥ (e 0k) = W (2,0).
So both \Iftlr/(z, t) and Ui (z,t) are solutions of L'*, meromorphic on C* x C, such that

Ui (2,0) = U7 (2, 0).

By considering LY for different powers of ¢, we easily find, by a typical induction argument,
that all coefficients of powers in ¢ of the two solutions agree, and hence

U (2, 8) = U (2, 0). (5.23)
Putting everything together, we find

WP (e, 1) = WO(E, 1)0,(gbi€, qbak)
= (gb1&,qb2&;q) Lot (et 1)0 1 (qb1€, qb2t)

1 1 V)
= (M,M;Q)M\I’E (ftat)
1 1 . tr*
<b1€7b2£7q>oo\111 (Zat)

= \IITO’O(Z’ t)’

where the second equality follows from (5.20), the fourth equality follows from (5.23), and
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the last equality follows from (5.21). In a completely analogous fashion we find \Ilg’oo(f 1) =
U5%(z, ) and hence
WO (g 1) = U0(2,1). (5.24)

5.2.6 Monodromy Corresponding to Transcendent

In the context of Section 4.9, we can now explicitly write down the monodromy corresponding
to the ¢-P(A;) transcendent under consideration. From equations (5.18), (5.11) and (5.24)
we conclude the following connection result,

(2, 1) = U ) POE, 1) P>(2)

40 0,(gb1€, qb2§) 0 > 1.1 \—1
=00 (NPT i) 9

Following (5.5) and (5.13), we define
0
00 _ 0o 0 0 _ g0 (? . 81(t> 0
Y (Z,t)—S (t)\I’ (Zat)z Y (Zat)_‘lj <t7t> < 0 Sg(t) ’

then Y>°(z,t) and Y?(z,t) denote fundamental solutions of respectively (4.82) and (2.21).
We conclude
Y®(z,t) = Y9(2,t)P(z, 1),

where

s9(t)710,(gb1 2, gbo %) 0

— ¢® 2 o) .

This is consistent with the notation in Section 4.9, where

ctl)(t) = Sg(t)llj(l)(ovt)7 Cg(t) :
(1) = s (1)U (o0, 1), () :

s5(t)W5(0,1),
s (t)W5° (00, t).

Proposition 5.2.5. Consider the solution (f,g) = (f01, g of ¢-P(A1), meromorphic at
t = 0, defined in Proposition 3.1.2, where we assume the corresponding conditions (3.11) on
the parameters. Then the monodromy of Yamada’s Lax pair corresponding to this solution, is
given by

Me-(f,9) = [R(z,1)],

with

R(z,t) = 04(qbsz, gbsz, qbrz, gbgz) (Sl(t)eq(qblt’qth) v )> Qlz"hal ),

0 s2(t)04(qb3 %, qbaF

where s1(t) and sa(t) any nonzero meromorphic functions satisfying s1(qt) = %sl(t) and
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s2(qt) = b3b4 s9(t), on C*, and the parameter set ol equal to

1 1

I

= | ¢bs, gbs, qb7, qbg; ——, —— | . 5.26
P (q 52 b6, 4br, abss 3 - b3b4> (5.26)
Proof. This follows directly from equations (5.25) and (4.109). O

Expanding on the above Proposition, we consider Theorem 4.5.2 with o = o, where we
assume (4.53) holds. Assumption 4.66, is equivalent to

by
bsbg

Let us assume this inequality is indeed valid, then

_ _ 1
_ 1 rlleQ(ngi?Mz 1) TlQeq(ngil?Mz 1) 0q(gb72) 0 C(O’I
04(qbsz, qbez) \72104(a55:27") T2204 (552" R ] >
where 711, 712,791,720 are defined by (4.70) with ¢ = o._. Hence, we find that R(z,t), as
defined in Proposition 5.2.5, equals

 (51()04(gb1 %, qbo?) 0
R(Z’t)_< " sa(t)0 <qb3§,qb4§>>
3b4

. 7'119( Z) 7'129 7) (qbs,Z) 0 O’I -1
(7“219 (%ﬁiz} 2204 (gi )) < 0 eq(qbﬂ)) Clos)™

We hence obtain

51(t)04(qb1%, qb2%) 0 )
R(z,t)] = t t
[ ( )] |:< 0 9(] qb3taqb4t)
(b (@ T1204( 3b4 qbsz 0 )}
7210 (11,72 2204 ( 04(qb72)) |’
where
~ b3b4 b3b4 ~ b3b4 b3b4
"\ by bbr 1) 127 \ by bbs 1)
o blbg ble Fon — b1b2 b1b2
= b5b7 66b7 00 2 bBbS b6b8 00

Let us remark that, by permuting {b;, ba, b3, by}, we easily translate all the results in this
section, to the other two solutions, meromorphic at the origin, defined in Proposition 3.1.2.

)
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5.3 Transcendents Meromorphic at a Critical Point

In this section we give the monodromy corresponding to g-P(A;) transcendents, which are
meromorphic at the origin or infinity. The relevant proofs can be found in Appendix D. As
in Table 3.1, we distinguish between the solutions defined in Propositions 3.1.2 and 3.1.1, by
calling them of type I and type II respectively. In particular we have discussed the type I
case in Section 5.2.

Considering the transcendents meromorphic at infinity, listed in equation (3.15), we dis-
tinguish between the ones of order of magnitude t° and those of order of magnitude t' as
t — oo, which we respectively call of type I and of type II.

5.3.1 Transcendents Meromorphic at the Origin of Type II

Proposition 5.3.1. Consider the solution (f,g) = (fOV,¢O) of ¢-P(Ay), meromorphic
at t =0, defined in Proposition 3.1.1, where we assume the corresponding conditions (3.6) on
the parameters. Then the monodromy of Yamada’s Lax pair corresponding to this solution, is
given by

Mc-(f,9) = [R(z,1)],

REe.0) = Q (Giaft) (M0 )8 )

where s1(t ) and s9(t) any nonzero meromorphic functions satisfying s1(qt) = %sl(t) and

with

so(qt) = b b s2(t), on C*, and the parameter set o}l equals
= (b7 "By ", b3 ' by s ¢ bsbe, q?brbs) - (5.27)

Proof. This follows directly from equations (D.2) and (4.109). O

Expanding on the above Proposition, we consider Theorem 4.5.2 with ¢ = O'(I)I, where we
assume (4.53) holds. Assumption 4.66, is equivalent to

bibs
bsbe

Let us assume this inequality is indeed valid, then we obtain

T (64(b52) 0 q1104(q°
[R(z,1)] _[< ()3 Gq(b4§)) <QZ19 (q

' (sl(t)Hq(qb7z, qbsz) 0 > ]
0 $2(t)04(gbsz, qbsz) ) |’
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where
~ blb4 b2b4 ~ blb4 b2b4
M= bsbe " bsbs 1) N2= " brbg brbs 1)
o (bs babs oy (a0 babs
U= bybe bsbs 1) 2= brbg brbs 1)

Let us remark that, by permuting {bs, bs, b7, bs}, we easily translate all the results in this
section, to the other two solutions, meromorphic at the origin, defined in Proposition 3.1.1.

5.3.2 Transcendents Meromorphic at Infinity of Type I

Proposition 5.3.2. Consider the solution (f,g) = (f©OV, g0, meromorphic at t = oo,
defined in Equation (3.15), where we assume the corresponding conditions (3.6) on the pa-
rameters. Then the monodromy of Yamada’s Lax pair corresponding to this solution, is given

by
Me-(f.9) = [R(z1)].

with

~ z z z 2\ (§1(t)04(qbrz, qbsz) 0 t o\
R(z,t) =04 | gb1—,qba—,qbs—, qbs— ~ - )
(2,t) = 0, (q Ly @2 s 4t) ( 0 S2(t)04(gbs 2, gbs2) @ P

where $(t ) and S2(t) any nonzero meromorphic functions satisfying s1(qt) = ﬁzb@l(t} and

Sa(qt) = b b S2(t), on C*, and the parameter set 51 equals

1 1
~1
b3, gba, qb1, qb 5.28
0o <q 3,494,401, q02; ——— b b8 Qb5b6> ( )
Proof. This follows directly from equations (5.25) and (4.109). O

Expanding on the above Proposition, we consider Theorem 4.5.2 with o = &, where we
assume (4.53) holds. Assumption 4.66, is equivalent to

bibs
bsbe

Let us assume this inequality is indeed valid, then we obtain

~ ; . §1(t)0q(qb7z,qb8z) 0 rlle ( TG%) 9 (qbsz i)
[R( ,t)} _[< 0 §2(t)0q(qb5z,qb62)) (7‘219q( be%%) 7220, (q% blgi))

(T o)
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where
= baby b2b3 ~ b1by b1b3
7 \brbs brbs’ 1) 127 \bybs brbs' 1)
~ boby b2b3 ~ b1by b1b3
207 \bsbs bsbs 1) 27 \ bsbg bsbs’ ©)
Let us remark that, by permuting {bs, bs, b7, bs}, we easily translate all the results in this
section, to the other two solutions of type I, defined in (3.15).

5.3.3 Transcendents Meromorphic at Infinity of Type II

Proposition 5.3.3. Consider the solution (f,g) = (f(V,gY), meromorphic at t = oo,
defined in Equation (3.15), where we assume the corresponding conditions (3.11) on the pa-
rameters. Then the monodromy of Yamada’s Lax pair corresponding to this solution, is given

by
Me-(f.9) = [R(z1)]

with

5 _ ~any (51(6)0, (gb1%, qba%) 0
R(Z,t) *Q(Z, 0) < 0 §2(t)6q (qb3%’qb4%) )

where $1(t ) and S9(t) any nonzero meromorphic functions satisfying $1(qt) = %?1 (t) and

Sa(qt) = bsb 52(t), on C*, and the parameter set Gt equals

AH (b7 17 bS 17 b5 1a bﬁ ) qb3b47 qb1b2) (529)

Proof. This follows directly from equations (5.25) and (4.109). O

Expanding on the above Proposition we consider Theorem 4.5.2 with ¢ = E(I]I, where we
assume (4.53) holds. Assumption 4.66, is equivalent to

bibs
bsbe

Let us assume this inequality is indeed valid, then we obtain

_ a(bs2 62(a%52)  @i264(a7%22)
[mz””]:[(e o eq<26z)> (Z;M ) 22938{2))
. <§1ageq(qb1§,qbzi) 0 ) },

0 52(t)0q (qbs%, qba%)
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where
o _ (b2 biby. o (babe bibs
m = b5b87 b5b7 Hd 00 ’ 2= b5b87 b5b7’q 00 ’
o (b biby o (babs boby,
9 = bﬁbg’ b6b7 d 00 ’ P22 = b6b87 b6b7 4 00

Let us remark that, by permuting {b1, b, b3, by}, we easily translate all the results in this
section, to the other two solutions of type II, defined in (3.15).

5.4 Generic Case: Analysis near (z,t) = (o0, 0)

We wish to calculate the monodromy corresponding to solutions of ¢-P(A;) with critical
behaviour near ¢t = 0 as described in Theorem 3.4.1. In fact it is often easier to work with the
formal expansion in Theorem 3.3.1 and we hence do most of the analysis on a formal level. We
lighten the notation of the formal series solution a bit by writing the formal solution (3.44)

as f = f(t,¢;A) and g = g(t, ¢; A), with

() oo
f:ZFntnv QZZGntny
n=1 n=1

where for n € N*| the coefficients F,, = F,,(¢) = F,(¢;A) and G,, = Gp(¢) = Gn(¢; A) are
defined by

Fn: Zn: Fn,i¢i7 Gn: zn: Gn,i¢ia

1=—00 1=—00

with for i < n, the coefficients F;, ; = F, ;(A) and Gy, ; = G i(A) equal to
Foi(A) = Fpif (A b), Gi(A) = Gf (A,b).
Analogously to (5.2) and (5.5), we rescale the Lax pair L (4.82), by setting

with
Bi=—q 'Gi(s; M), (5.31)

where we invite the reader to choose s*°(t,®,A), meromorphic on C* x C* x C*, at their
pleasure. The rescaled Lax pair for ¢)>°(z,t, ¢) takes the form (5.6), which we again denote
by L*°. We sometimes suppress the explicit A dependence of formulas, i.e. y(z,t,¢) =
y(z,t,; \), to ease the notation.

5.4.1 Expanding about z = oo

Expanding ¢¥*°(z,t, ¢) in z,

V(2 t, ¢ A) = ¢ (t, s A) + 0 (t, s A) e+ 0t g A)z 2+ (5.32)
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we have ¢y = s*°¢°, and hence, by equation (4.105), we have

Y5O (t, 3 N)egC (t, 33 A) + 472 (¢, ¢ M) e (qt, Aps A) + 75° (¢, 5 A)egP (¢°t, N2 A) = 0, (5.33)

h
where 1

- blbgb3b4(F1G1 — 1)t2

(’780171007750) (§0>ﬁt_1%laq_1/33t_2:7/2)'
Expanding ¢j°(t, ¢) in t as
et ¢y A) = g% (5 A) + 2 (d5 AVt + c§5 (s M) + .., (5.34)

and substituting into (5.33) gives, by comparing coefficients of t°, the following linear second
order difference equation for ¢§%(¢),

4G13(0) — (G1 + aG1)cGH(A) + Giegy(\2¢) = 0, (5.35)
where we suppressed the ¢ dependence of G; and G;. Analogously to equation (5.7), we have

oo _ =1 00 1 —1,-1 00
vt ¢) = (=gt (t,¢) + q_ilGl((b) =13 (qt, A). (5.36)

We wish ¢§°(¢, ¢) to have a power series expansion in ¢ about ¢ = 0, which, considering (5.36),
requires g (Ag) = c§5(¢). Note that the latter is compatible with (5.35), indeed

00(®) = cgo(d; A) = k1(A), (5.37)

satisfies (5.35), for any k1 (A). Substituting expansion (5.34) into (5.33) gives, by comparing
coefficients of ¢, the following linear second order difference equation for 08f1(¢),

Gl él

(5.38)

Gaci(6) — (61 + @GOG V0) + 461G 0%0) = k() | T3t - O

Note that the ¢? terms on the right-hand side of this equation cancel and indeed, there exists
an unique formal series v(¢; A), of the form

0

V((ZS;A): Z Vn<A)¢n7

n=—oo

such that ¢ (¢; A) = v(¢; A) defines a solution of (5.38) with ki (A) replaced by 1.
Furthermore,

gh—1

V(s A) = ¢+ m

GI,O (A) +

defines a solution of the homogeneous part of (5.38), so

e (@A) i= k1 (M) (g5 A) + ka2 (A)vi(e; A), (5.39)
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defines a solution to (5.38) for any k2(A). The following proposition tells us that, after fixing
particular values for ki(A) and k2(A), there exists an unique corresponding formal series
solution of (5.33).

Proposition 5.4.1. Consider equation (5.33) with f = fO*(t,¢; A, b) and g = g% (¢, ¢; A, b)
as defined in Theorem 3.3.1. Then, for i € {1,2}, there exists an unique formal solution of
equation (5.33), of the form

(B N) =D ool M, (5.40)
m=0
with, for m € N,
(@ 8) = D chma(A)e", (5.41)

where

() 0/ \cgqa(A) 1
For m € N and n € Z<y,, the coefficients c(ofr’)in(/\) are rational functions in A and the
parameters by, ...,bs, in particular these rational functions are reqular at points (A,b) €
C* x B, satisfying (3.46). Furthermore, for fired b € B with |q| < 1, for any A € Lo(b),

condition (3.46) is satisfied and this formal solution, written in terms of the variables (; = t¢
and CQ - ¢_17

[e.9]

" (G G HA) = Y immn(MG, (5.43)
m,n=0
converges near (¢1,¢2) = (0,0).
In fact, these expansions are also analytic in A. That is, for any L C Ly(b) open with
L C Lo(b), there is an open environment Z C C? of 0, such that the series (5.43) converge
uniformly on Z x L, defining holomorphic functions on this set in (¢, A).

Proof. Note that within the context of equations (5.37) and (5.39), the initial conditions (5.42)
correspond to the choices (k1(A), k2(A)) = (1,0) and (k1(A), k2(A)) = (0,1) respectively. For
any of the two choices, we can prove the proposition similar to Theorem 3.3.1. We rewrite
equation (5.33) in appropriate system form and apply the ¢g-Briot Bouquet Theorems B.3 and
B.4. O

Remark 5.4.2. Recall that we used the formal series solution in Theorem 3.3.1, to construct
true solutions of g- P(A1) in Theorem 3.4.1, by replacing the formal variables by actual analytic
functions. Doing so we can use the formal series solutions in Proposition 5.4.1 to construct
corresponding true solutions of (5.33).

5.4.2 Expanding about t = 0

We expand the solution > (z,t,¢; A) in ¢t about t = 0,

V% (28,93 A) = dF (2, 65 A) + d7°(2, 63 )t + d5° (2, 03 M) + ... (5.44)
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Substitution in L® and comparing the coefficients of terms t? gives
dg”(z, A3 A) = dg (2, ¢; M), (5.45)

and we hence set
do” (2,93 A) = dgo(2; A).

Similarly substitution of (5.44) in L$° gives

A
dg% (z/q; \) + [—(1 +q)+ (bg1 + bgl + b;l + bgl) 274 (A_1 + A> z_2] dgf’o(z; A)

1 1 1 1\ o oy
rat- o) (1m0 ) (17 ) (17 o) dtesim =0 G.a0)

This is exactly the degree two model equation (4.51) under the identification y(z;A) =

dg (1/2; A), with parameter values 0 = 0 (A), as defined in (5.108), where we note that
Fuchs’ equation (4.52) is indeed satisfied. We remark that this is consistent with and gen-
eralises equation (5.10), as for the choices A = AT, equation (5.46) reduces to (5.10), as
expected from Proposition 3.5.1.

For any I3(A),l2(A), there exists an unique formal power series solution dfj(z;A) in 2
about z = oo, of equation (5.46) with

00(z M) = L(A) +12(A)z7 4. (5.47)

Now, by comparing coefficients of 2%t in L$°, we find

G
acga (A3 A) = (65 4) = (M) (g = G1 = k(M) &
which, one can easily check, is indeed consistent with (5.38).
By comparing the coefficients of ¢! of both sides of this equation and using (5.39), we find
Gaa(A
(2 — Dha(4) = (g — DAL(A) — by () P22

= (g = 1)A(A) + k1 (A)Geq (A7, bM) |
where in the second equality we used
Gaa(A) = —AGey (A1 BM)
which follows directly from (3.72). We conclude

ki(A) = L(A), (5.48)

1 -1
Ba(8) = 5 G (A—l,b<1>) 1(A) + qqA —Alz(A). (5.48D)
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5.4.3 Main Existence Theorem near (z,t) = (oo, 0)

Theorem 5.4.3. Consider the Lax pair L™ (5.6) with f = fOT(t,¢; A, b) and g = g"* (¢, ¢; A, b)
as described in Theorem 3.3.1, and [ defined as in (5.31). Then, for i € {1,2}, there exists
an unique formal series solution of the Lax pair L*°, of the form

oo

Uzt gy A) = 3 e (t ¢y A)zE,
k=0

where, for k € N,
GOt G A) =) oo (¢ A)E™,

0
with, form € N,

m
o A) = > o (M)e™,
n=—oo

and initial conditions (5.42).

We note that the notation here coincides with that in Proposition 5.4.1. For k,m € N and
n € Z<m, the coefficients cionfm(A) are rational functions in A and the parameters by, ..., bg,
in particular these rational functions are regular at points (A, b) € C* x B, satisfying (3.46).
Furthermore, for fived b € B with |q| < 1, for any A € Lo(b), condition (3.46) is satisfied
and this formal solution, written in terms of the variables z, (1 = t¢ and (o = ¢,

[e.9]

U (2,06 G A = Y o (MR, (5.49)

k,m,n=0

converges near (z,(1,C2) = (00,0,0).

In fact, this expansion also depends holomorphically on A. That is, for any L C Lo(b) open
with L C Lo(b), there is an open environment Z C P* x C? of (00,0,0), such that the series
(5.49) converge uniformly on Z x L, defining holomorphic functions on this set in (z, (1, (2, A).

Proof. The proof follows the same lines as the proof of Proposition 5.2.1. We only give a
sketch, not to bore the reader with all the analytic details. Considering the case i = 1, we
set cg°(t, ;) = cgo’i(t, ®; ), as defined in Proposition 5.4.1, in the expansion (5.32). We
define ¢{°(t, ¢; A) by equation (5.36). Then, analogously to Claim 5.2.2, we prove, using the
¢-Briot Bouquet Theorem B.3 and Remark B.5, that there exists an unique formal solution
P1°(z,t,¢; A) of LY, as described in the Theorem. It remains to prove that ¥§°(z,t, ¢; A)
also satisfies L3°, which we establish similarly to the final part of the proof of Proposition
5.2.1. [

Remark 5.4.4. Recall that we used the formal series solution in Theorem 3.3.1, to construct
true solutions of g- P( A1) in Theorem 3.4.1, by replacing the formal variables by actual analytic
functions. Doing so we can use the formal series solutions in Theorem 5.4.3, to construct
corresponding true solutions of the Lax pair L.
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5.4.4 Transition from (z,t) = (o0, 0) to (z,t) = (0,0)

Note that the two formal series solutions ¥§°(z,t, ¢; A) and ¥3°(z,t, ¢; A), define a basis of
solutions of L°. It is more convenient for us to work with a different basis of solutions, given
by

U (2,8, 3 A) = 1 4°(2, 8, 5 A) + %Geq (A7) ezt gin),  (5.500)
U (2,1, ¢ A) 1= 0- 95 (2, 8, ¢ A) + qA LU ACANIN) (5.50D)

By equations (5.48), these two solutions correspond respectively to (I1(A),l2(A)) = (1,0) and
(l1(A),12(A)) = (0,1) in (5.47). We write, for i = 1,2,

Ue(z,t, ¢ A) = Y Dy )tk (5.51)
k=0
where for k € N,
Dyt Z Do (2 M)

with for m € Z<y,
°° z (z;A) Z Dk g n
Note that, by equation (5.45),
Dge(z, ¢; A) = Dgp(z; A),
and D% (2; A) denotes the fundamental solution at z = oo of equation (5.46), given by
D§y (2 A) = 4727 0u0(A)),

where we used the notation in Section 4.5.

As in Section 5.2.2, we denote
D’ (25 8) = 4> (2 5 00 (A)),
and we have the connection result
D23 8) = D5’ (2 MP=(2:8), P¥(54) 1= Q= How(A) ™ (552)
Analogously to (5.11), we symbolically define

U0 (2, t, ¢5 A) 1= U (2,8, ¢ A) - PP(z;4) 71, (5.53)



5.5. GENERIC CASE: ANALYSIS NEAR (¢,T) = (0,0) 155

From (4.46), we obtain

20,2
00 —q Az 0 o)
P (qZ;A)=( 0 _qu//\Z2> - P¥(z; ),

and hence, for i = 1,2, a symbolic computation, shows that the component \I/Z-OO’O(z,t, oy \)
defines a solution of the Lax pair L% (5.12), with §1 = —A and § = —A/), and 3 as
defined in (5.31).

5.5 Generic Case: Analysis near (¢,t) = (0,0)

Analogously to (5.13), we rescale the Lax pair L (2.21), by
y(=.t,6:0) = (6, MU0 1,55 A), $(at A A) = at Pt 61A), == (5.54)

where

a=Ag'Gi(p; M),

which leads to the Lax pair L°, given by

LY u(t, )y0(g8, t) + v(Et, )0 (€, 1) + w(Et, )y’ (¢/q,t) = 0, (5.55a)
Ly ot ?ho(&t, )0°(E/q, qt) + ha (€, )90 (€, 1) + ha(Et, )0 (€/q, t) = 0, (5.55b)

where we suppressed ¢ and A dependence throughout.
We invite the reader to choose an appropriate s°(, ¢; A), meromorphic on C* x C* x C*, at
their pleasure.

5.5.1 Expanding about £ =0
We expand ¢° (€,t,¢; A) about & = 0,
OO (& 1,3 M) = c(t, 03 M) + At ¢ M)+ St ¢ M)EP + ...
We have ¢y = 5%, and hence, by (4.99),
0 . 0 . 0 . 0 . 0 . 0.2 2. _

Y0 (ta ¢7 A)CO (t7 ¢7 A) + 7 (t7 ¢7 A)CO (qt7 )‘¢7 A) + V2 <t7 ¢a A)CO(q ta A ¢7 A) - 07 (556)

where
(90,795 99) = 2 (70, at 31, atig*t ).
Let us, for i =0, 1, 2, write
At 83 A) = 310 (93 A) + 211 (¢5 M)t + 72 (05 M) + ... (5.57)

Expanding c(t, ¢; A) about t = 0,

Ot o3 A) = 0 o(d5 A) + 1 (3 M)t + Qo3 M + ..., (5.58)
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and substitution into (5.56) gives, by comparing coefficients of ¢, the following linear second
order difference equation for cg’o(gb; A),

Y0.0(05 A)ed o (3 A) + 7.0 (5 A)ch o (A5 A) + 78 (5 A)eh o (A3 A) = 0, (5.59)

where the 720(¢§ A) equal

Y0.0(#; A) =G1[b1babsbs Fy + (b1bg + bibs + biby + babs + baby + b3bs)Gy — (by + bz + bz + by) G}
— bybobg — byboby — bibsby — bobsby + G,

Wold; A) =AG1(FiG1 — 1)(by + by + b3 + by — G1 — G1),

¥90(¢3 A) =A*G1F1(FiGy — 1).

Lemma 5.5.1. We have the following identities

’Yg,o(¢; A)+ ’Y?,o(¢§ A) + 7870(@ A) =0,
Y0.0(83 A) + 700 (ds M)A+ 49 0(d5 A)A2 = 0.

Proof. One can either check these identities by direct calculation, or use equations (3.22) with
F = Fy and G = (G1, to establish them. O

By the above Lemma, we see that for any ki (A), k2(A),
cho(#A) = k1 (A) + ka(A)p ™", (5.60)
defines a solution of equation (5.59).
Proposition 5.5.2. Consider equation (5.56) with f = fOF (¢, ¢; A, b) and g = g%+ (¢, ¢; A, b)

as defined in Theorem 3.3.1. Then there exists, for i = 1,2, an unique formal solution of

(5.56), of the form

o' (t$iA) = D o5 M) (5.61)
m=0
with for m € N,
OB A) = Y pn(N)e", (5.62)

where
CO,I (A) 1 00’2 (A) 0
0,0,0 _ 0.0,0 _
(Cgié,—l(A)) <0> ’ <c8;§,_1(A)> <1> ' (5.63)

For m € N and n € Z<y, the coefficients cgjfnm(/\) are rational functions in A and the
parameters by, ..., bs, in particular these rational functions are regular at points (A,b) €
C* x B, satisfying (3.46). Furthermore, for fired b € B with |q| < 1, for any A € Lo(b),
condition (3.46) is satisfied and this formal solution, written in terms of the variables (; = t¢
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and CQ = ¢71:

o

0" (Gl G A) = D Wi n(MCE, (5.64)

m,n=0

converges near ((1,C2) = (0,0).

In fact, these expansions are also analytic in A. That is, for any L C Lo(b) open with
L C Lo(b), there is an open environment Z C C? of 0, such that the series (5.43) converge
uniformly on Z x L, defining holomorphic functions on this set in (¢, A).

Proof. Note that within the context of equation (5.60), the initial conditions (5.63) correspond
to the choices (k1(A), k2(A)) = (1,0) and (k1(A), k2(A)) = (0,1) respectively. For any of the
two choices, we can prove the proposition similar to Theorem 3.3.1. We rewrite equation
(5.33) in appropriate system form and apply the ¢g-Briot Bouquet Theorems B.3 and B.4. [

Remark 5.5.3. Recall that we used the formal series solution in Theorem 3.3.1, to construct
true solutions of ¢g-P(A1) in Theorem 3.4.1, by replacing the formal variables by actual analytic
functions. Doing so we can use the formal series solutions in Proposition 5.5.2 to construct
corresponding true solutions of (5.56).

5.5.2 Expanding about t =0

We consider a formal expansion of " (&,¢,9; A) in t,
YO (€.t 03 A) = dg(§, &5 A) + dY(€, 3 M)t + d5 (€, s M) +

By substitution in L (5.55b), and comparing the coefficients of order ¢?, we obtain

(1—g€G1)d)(&, &3 A) — do (€, @5 A) + Ag€(Fy — q€)dg(€, 5 A) = 0. (5.65)

Similarly, substitution into L{ gives

80(&, 05 N)dg(€/q, ¢3 A) + 61(€, &5 N)d (&, 3 A) + 02(€, 3 A)dg (g€, d; A) = 0, (5.66)

where the coefficients §;(§, ¢; A) are given by

60(&, 43 A) =q (F1()G1(d) — 1) (b1€ — 1) (b2€ — 1) (b3 — 1) (b4§ — 1) (¢ — Fi(9))
51(6, 05 A) = (F1(¢)G1(9) — 1) [d1,0(83 A) + 61,1 (3 A)E + 61,3(¢5 A)EP] + 61,2(95 A)E2,
62(&, 03 A) = (F1(9)G1(d) — 1) (§ — Fi(9)),
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with

d1.0(¢5A) =(q + 1) F1,

S11(3A) = — q(by +ba + b3 +by)Fy — ¢* — 1,

512(¢; A) = — ¢*(b1 + by + bs + ba) — q(b1ba + bibs + b1by + babs + baby + bsbs) Fy
+ q(bybabs + bibyby + bibsby + babsby) F2 — qbybobsby P + q(q — 1)G4
+q(q+1)(b1 + ba + b3 + ba) 1G1 — * PG,

S13(¢3 A) =" A1+ A7),

Let us expand d9(&, ¢; A) in ¢ as
(& ¢y A) = do(&A) +d) (&N +df_o(&GN)d 2+, (5.67)

then, substitution into equation (5.66) gives, by comparing coefficients of ¢?,

d8,0(¢1§; A)+ |—(1+q) +q(by +ba+ b3+ b4)l + g (qA + /;) 52} d8,0(§; A)

+q(1 = bi1&)(1 = ba€)(1 = b3&) (1 = ba&)do(§/g; A) = 0. (5.68)
Furthermore, substitution into equation (5.65) gives, by comparing coefficients of ¢°,
dg,o(‘lf; A) - d8,0(§; A) n A?
q(b1b2bsby — A?)E (b1b2b3bs — A?)
— (bubabs + bibaby + bybsby + bybsby + (by + by + by + ba)A) ] d3o(& ). (5.69)

d)_1(&A) =A

. [q(b1b2b364 ~ A%

Lemma 5.5.4. Given any solution dg’o(f;A) of equation (5.68), and defining d8771(§; A) by
equation (5.69), the function

d)(&, @3 A) i=df o(&A) +df (& A)p7, (5.70)

solves (5.65) and (5.66) simultaneously.

Proof. We checked this by direct calculation, using Mathematica. O

We identify equation (5.68) as the degree two model equation (4.51), with parameter
values 0 = 0g(A), as defined in (5.107), where we note that Fuchs’ equation (4.52) is indeed
satisfied. Considering Proposition 3.5.1, for instance the choice A = A, leads to a violation
of the condition 4.53, as described in Remark 4.5.3. This is why the connection problem on
the line ¢ = 0 in Section 5.2.4 is trivial.

Now, for any I1(A) and Ia(A), there exists an unique formal power series solution dg o(¢; A)
in £ of equation (5.68) with

dS0(&A) = L (A) + Io(A)E + ...
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=

Comparing expansions (5.58),(5.60) and (5.70), we find

ki(A) =l (A), (5.71a)
k'Q(A) :(]A<(1q/;1)1>)l2(A) — m [blbzbg + b1boby + b1b3by + babsby (5.71b)
4 (by + b+ by + b@A}zl(A). (5.71c)

5.5.3 Main Existence Theorem near (£,t) = (0,0)

Theorem 5.5.5. Consider the Lax pair L° (5.55) with f = fOF(t,¢; A, b) and g = g%+ (¢, p; A, b)
as defined in Theorem 3.3.1. Then, fori € {1,2}, there exists an unique formal series solution
of the Laz pair L°, of the form

o0

YAt o A) =) At b A)EF,

k=0

where for k € N,

with for m € N,
e (¢ ) = (D)o,

and initial conditions (5.63).

We note that the notation here coincides with that in Proposition 5.5.2. For k,m € N and
n € Z<m, the coefficients CZOWZ”L(A) are rational functions in A and the parameters by, ..., bs,
in particular these rational functions are regular at points (A, b) € C* x B, satisfying (3.46).
Furthermore, for fived b € B with |q| < 1, for any A € Lo(b), condition (3.46) is satisfied
and this formal solution, written in terms of the variables &, (| = t¢ and (o = ¢~ 1,

o0

(€060 GHA) = D A (MERE, (5.72)

k,m,n=0

converges near (§,¢1,¢2) = (0,0,0).

In fact, this expansion also depends holomorphically on A. That is, for any L C Ly(b) open
with L C Lo(b), there is an open environment Z C C x C? of (0,0,0), such that the series
(5.72) converge uniformly on Z x L, defining holomorphic functions on this set in (z, (1, Ca, A).

Proof. We prove this analogous to Theorem 5.5.5. 0

Remark 5.5.6. Recall that we used the formal series solution in Theorem 3.3.1, to construct
true solutions of g- P( A1) in Theorem 3.4.1, by replacing the formal variables by actual analytic
functions. Doing so we can use the formal series solutions in Theorem 5.5.5 to construct

corresponding true solutions of the Lax pair L% (5.55).
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5.5.4 Transition from (&,t) = (0,0) to (&,t) = (o0, 0)

Note that the two formal series solutions ¥{(£,¢,¢;A) and ¥9(€,t,¢; A), define a basis of
solutions of LY. It is more convenient for us to work with a different basis of solutions, given

by

VY&t 03 A) == 1- 90 (&, £, 3 A) + k5 (A)YI(E,t, 65 A), (5.73a)
0 DAY 0 _ (¢—1) 0 .
Us(&,t, 05 M) :=0-97(&,t, ;M) + m% (&t d5 A). (5.73b)

where k3 (A) is defined by

1

R ST

[blbzbg + byboby + bybsbs + babsba + (b1 + ba + by + ba)A.

By equations(5.71), these two solutions correspond respectively to (I3(A),l2(A)) = (1,0) and
(l1(A),l2(A)) = (0,1) in (5.47). Let us write, for i = 1,2,

P t, 93 A) = f: D€, &5 A)EF, (5.74)
k=0
where for k € N, .
DYU(& o A) = Y Dt (& M),
with for m € Z<y,
DY (EA) = 3 DYy, ()€™
n=0

Then we have, by Lemma 5.5.4,
Dy(&, ¢ A) == Dio(& M) + Dj 4 (& M)d7",

where
Dio(&A) = 4°(& o0(A)).
We denote
DY (& A) = (& o0(A)),

and we have the connection result
DYX(&A) = DS o(& M P& A), P& A) = Q& oo(A)). (5.75)
Analogously to (5.11), we symbolically define

WO(E b, s A) = WO(E,t, 3 A) - PO(E A). (5.76)
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From (4.46), we obtain

N e
0 A&

R
PO(qS;A)ZPO(S;A)-< it ! )

and hence, for i = 1,2, a symbolic computation, shows that the component \I/?’w(f,t, o, N),
defines a solution of the Lax pair L% given by

Lyt qz&gzu@t,tw?”(qf,t)+v<st,t>w?’°°<§,t>+g.lgzw@t,t)w?m(&/q,t) =0, (5.77a)

hO (gta t)wgoo(é-/% qt) + &f2h1(§t, t>w?,00 (57 t) + h? (£t7 t)¢?700 (€/Q7 t) = 07
(5.77b)

«

0,00,7
Ly™h: 5

where 0; = —A and 85 = —A/(q)), and we suppressed ¢ and A dependence throughout.

5.6 Generic Case: Matching near t = 0

In Section 5.4 we constructed a fundamental formal solution ¥°(z, ¢, ¢; A) of the Lax pair
L (5.6), where 3 := —¢~1G1(¢; A)~!. This formal solution converges for appropriate values
of A, as described in Theorem 5.4.3. Similarly we constructed a fundamental formal solution
UO(2,t,¢;A) of the Lax pair L? (5.55), in Section 5.5. This formal solution converges for
appropriate values of A, as described in Theorem 5.5.5.

We wish to relate the fundamental solution U*°(z, ¢, ¢; A) of L, with the fundamental
solution WO(£,¢, ¢; A) of the Lax pair L°. However, this is not sensible on the formal level.
Indeed we first have to substitute actual analytic functions for A and ¢, as done in Theo-
rem 3.4.1, after which connecting the fundamental solutions becomes possible. To ease the
notation and technical details, we restrict ourselves to A(t) = A constant.

5.6.1 True Solutions of Lax pairs

Recalling the definition (3.47) of Lo(b), we consider we fix some A € Ly(b), take a continuous
g-domain T, and fix a function ¢(¢) which is analytic and nonvanishing on 7', satisfying

2
A= A - (
b1bobsby

d(qt) = Ao(t), teT)

Let (f,9) = (f(t),g(t)) be the meromorphic solution of ¢-P(A;), as defined in Theorem
3.4.1. We fix a continuous g-domain V C V" C T and consider the Lax pair L*°, with
B = B(t) := —q 'G1(4(t); A)~1. Theorem 5.4.3 shows that, analogous to Theorem 3.4.1,

(2, 1) = (U1°(2, 1, 0(1); A), 957 (2,1, 6(1); A)),

defines a fundamental solution of L*> for (z,t) close to (00,0) in P* x V, which has an
unique meromorphic continuation to P* x V. We use the change of basis (5.50), to define the
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corresponding fundamental solution
U™(z,1) := (¥7°(2, 1, 0(1); A), W57 (2, 1, 6(1); A)),

which satisfies

T (2,0) = 10 (2 71 000 (A)). (5.78)
Following (5.53), we define
To0(2 1) := U®(2,t) - P®(2;A) 71, (5.79)
then
0(2,0) = (271 000 (A)), (5.80)

and for ¢ = 1,2, the component \Ilfo7o(z,t) defines a solution of the Lax pair L>%¢ (5.12),
with 0; = —A and 62 = —A/A.

Next we consider the Lax pair L° (5.55), with & = A¢~'G1(¢; A)~!. Using Theorem 5.5.5
and the change of basis (5.73), we define a fundamental solution of L?,

VI(E 1) = (I(E 1, o(1): A), WH(E,t, o(1); A)),

meromorphic on C x V' in (&, ), which satisfies
WY(€,0) = (& 00(A)).
Following (5.76), we define
WO(E, 1) = WS 1) - P& A, (5:81)

then
O, 0) = (& 00(D)), (5.82)

and for ¢ = 1,2, the component \Il?’oo(f,t) defines a solution of the Lax pair L% (5.77),
with 51 = —A and (52 = —A/(q)\).

We now wish to relate \I/TO’O(z,t) and \I/‘f’m(g,t), and we wish to relate \Ilgo’o(z,t) and
WY (€,t). Let us make the crucial observation that W3¥%(z,¢) and W) (¢,t) satisfy the
same Lax pair. That is, the Lax pairs L>%! and L%°! are identical under the formal
identification

U0t g ) = (G LB A), § = (5.83)

Similarly, the Lax pairs L>%2 and L%>?2 are identical under the formal identification

Ut 6 A) = %wg’“(&t, ih), €=<.

We will establish the following proposition.
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Proposition 5.6.1. We have the following identities,

) = 09 ), w0 = Cu e,

where the constant c is given by
gh —1
=— . 5.84
c= -7 (5.84)

The proof of this proposition is not easy. Even though we know that in both identities, the

left- and right-hand sides satisfy the same Lax pair, it is not possible to match them directly.
Instead, we will introduce an additional solutions of the Lax pair in both cases, which allows
us to make all the matches. To this end, we temporarily go back to the formal setting, i.e.
with ¢ and A formal variables.

5.6.2 Formal Transition

Recall the symbolic transition (5.53), which by equation (5.51) and a formal computation,
reads
G0z 1, s A) = Z ZD AT,
k=0 m=—00
where for k € N and m € Z<y,
DXO(z; A) = DS (2, A) - P®(z;A) 7!

k,m k,m

with, by equation (5.52),
DG (2:8) = 9> (=Y 000 (M)

We emphasise that these identities are merely symbolic. Nonetheless, motivated by this
symbolic calculation, we consider, for i = 1,2, the Lax pair L% (5.12), where §; = —A and
d2 = —A/A, and 3 as defined in (5.31). And we consider a formal solution ¥!*(z,t,¢; A) of
this Lax pair of the form

(2t p; A _Z Z it (5 A)tFe™,

k=0 m=—o00

where
trz tr,e
dOOZA E:dOOn

with dijyo(A) = 1.

Via substitution in L7 058

, we quickly recover d(t)fg(z;A) = (27105 (A)). Furthermore,
0,i

7, we find by induction, that for k¥ € N and m € Z<y, the coefficient
dz,rfn(z; A) enjoys a Laurent expansion in z about z = 0 with lowest order term at least z—*

by considering L5~

To be precise, we have the following result.

Lemma 5.6.2. Leti € {1,2} and consider the Laz pair L% (5.12) with f = fO*(t,¢; A, b)
and g = g% (t,¢; A, b) as described in Theorem 5.5.1, where §; = —A and 69 = —A/\, and
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B as defined in (5.31). Then there exists an unique formal series solution of the Lax pair
L0948 of the form

[e's) k

Uzt s A) =Y > Dl (2 Mk, (5.85)

k=0 m=—o0

where for k € N and m € Z<y,

trz tr,e
(z;A) Z D, m n
n=—k
with Dy o(A) = 1.
For k and m,n € Z<y,, the coefficients Dt” mn(A) are rational functions in A and the param-
eters by,...,bs, in particular these mtwnal functions are regular at points (A,b) € C* x B,

satisfying (3.46). Furthermore, for fized b € B with |q| < 1, for any A € Lo(b), condition
(3.46) is satisfied and this formal solution, written in terms of the variables z, u = to/z and

CQ = ¢_1; -
U (2, 212, G A) = Z D,Z}f_m,n_k(l\)uk(?z”, (5.86)

k,m,n=0

converges near (z,u, C2) = (0,0,0).

In fact, this expansion also depends holomorphically on A. That is, for any L C Ly(b) open
with L C Lo(b), there is an open environment Z C C3 of (0,0,0), such that the series (5.86)
converge uniformly on Z x L, defining holomorphic functions on this set in (z, u, Ca, A).

Proof. We prove this analogous to Theorem 5.4.3. ]

Recall that W% (£, ¢, ¢; A), defined symbolically in equation (5.76), is expressed in terms
of the independent variables &,t,¢,A. We hence rewrite, for ¢ = 1,2, the formal series
Uir(z,t, ¢; A), defined in Lemma 5.6.2, in terms of these variables,

W (€t 65 A) o= W (L ¢, ¢ A). (5.87)
Using (5.85), we have

RIS Sl Sl DL s

k=0 m=—00 n=—Fk
_Z Z Z Dt (M g, (5.88)
=0 Nn=—00 M=—00

where the last equality is the result of the change of summation ¥’ = k& + n. Note that
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\Tlgr(ﬁ ,t,¢; A) defines a formal solution of the Lax pair Lt given by

LI qP0:8%u(gt, 0" (a6, 1) + v(§t DU (6,1) + 52 w(ét O (/1) =0, (5.8%)
ES s B ho(6n 00 (6/arat) + €€t 0T (6.1) + 5 hal6t, 03 (E/a,) =0, (5.59D)

where again 0; = —A and 63 = —A /A, and f as defined in (5.31), and we suppressed the A
and ¢ dependence throughout.

Lemma 5.6.3. Fori =1 and i = 2, the inner m summation in the formal series (5.88), can
also be bounded from above by k' and k' + 1 respectively, that is

k'  min (k' +i—1,k'—n)

UI(E,t, ¢ A Z Z DR VA 0 N el

=0 n=—00 m=—oQo

Proof. We use | = k' — n to rewrite (5.88) as

l

\I]tr S t ¢ A ZZ Z Dltl”n; i l tk/¢m§kl l

=0 k'=0m=—o0
Our goal is to show

o0 oo min (kK'+i—1,0)

\ljtr f t, ¢’ Z Z Z Dlt;;;k/,l(A)tk/Qf)mgk/_l-

=0 k'= m=—00

In both the case i = 1 and ¢ = 2, this is easily proven by double induction, the outer one with
respect to [ and the inner one with respect to k', using the fact that Wi'(£,¢, ¢; A) satisfies
LY, O

The following result gives us an analytic characterisation of the formal series (5.87), which
allows us to complete the matching procedure.

Lemma 5.6.4. Let i € {1,2} and consider the Laz pair L' (5.89) with f = fOT(t, ¢; A, b)
and g = g%*(t,¢; A,b) as described in Theorem 5.5.1. Then WIr(€,t,¢;A) (5.87) can be
characterised as the unique formal series solution of the Lax pair L', of the form

oo k+i—1

\Ptr(f,t7¢ A Z Z Dtrz fA tk¢m

k=0m=—o00

where for k € N and m € Z<jyi—1,

trz ~tryt

n=—oo

with Dy o(A) = 1.
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For k, m € Z<jyi—1 and n € Z<y,, the coefficients ﬁlirs@n(‘/\) are rational functions in A and
the parameters by, ..., bs, in particular these rational functions are regular at points (A, b) €
C* x B, satisfying (3.46). Furthermore, for fired b € B with |q| < 1, for any A € Lo(b),
condition (3.46) is satisfied and the following formal series, written in terms of the variables

5; T = £t¢ and CZ = ¢_17

(70, G LA = Y D e (TG, (5.90)
k,m,n=0

STIUE(EE 0, A = Y DY (AT (5.91)
k,m,n=0

converge near (&, 7,(2) = (00,0,0).

In fact, these expansions also depends holomorphically on A. That is, for any L C Lo(b) open
with L C Lo(b), there is an open environment Z C P* x C? of (00,0, 0), such that the series
(5.90) converge uniformly on Z x L, defining holomorphic functions on this set in (&, T, (2, A).

Proof. In both the case i = 1 and ¢ = 2, we first prove the existence of such a formal solution
analogous to Theorem 5.4.3. We then conclude that this formal series solution must equal
Wir(¢,t, ¢; A), because of Lemma 5.6.3. O

By direct computation, we can calculate
tr,2 ~tr,2
Dyio(8) =0, Dgi_i(A)=c, (5.92)

where ¢ as defined in (5.84), and we note that the first equality can also be deduced from
Lemma 5.6.3.
5.6.3 Matching of True Solutions

We now return to the set up in Section 5.6.1 and prove Proposition 5.6.1. We use Lemma
5.6.2, to construct, for i = 1,2, a true solution

Uit (2,t) = Ui (2,1, 6(t); A),

of the Lax pair L>%! meromorphic on C* x V. Note that by the second part of Lemma
5.6.2, the limit
. tr _ trye .
t_}(l)glev \I]z (Zv t) - DO,O (Zv A)a (593)

exists, for z close but not equal to 0.

Lemma 5.6.5. We have the identities
U0z, t) = Ul (2,t),  W0(2,t) = WY (2,1). (5.94)

Proof. We define
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then s(gz) = As(z) and it is easy to see that
s(2) U5 (2, 1),

defines a solution of the Lax pair L>%! as Wi(2,¢) defines a solution of L>%2. So both
Uir(2,¢) and s(2)W(z,t) define a solution of the Lax pair L°>%! and it is easy to see that
they are linearly independent. As \I/Cfo’o(z,t) also satisfies the Lax pair L1, there must
exist meromorphic functions p;(z,t) and pa(z,t) on C* x V', which are g-periodic with respect

to z and t, such that
\IJTO’O(Z, t) = p1(2, 1) (2,t) + pa(z,t)s(2) VY (2,1). (5.95)

Now we take any ¢y € V, such that py(z,t9) and pa(z,tp) are not identically singular. We set
t = q"tp in (5.95), and let n — oo, giving, by equation (5.93),

U0(2,0) = pi(z, to) Doy (2 A) + pa(z, to)s(z)pgfgf(z; A), (5.96)

for z close but not equal to 0. By equation (5.80), we know that \Il‘fo’o(z, 0) is holomorphic at
z = 0 with ¥°°(0,0) = 1. By Lemma 5.6.2, we know that both Dgfél(z;A) and Dgfgf(z; A)
are convergent power series with constant term equal to 1. Note that pa(z,to)s(z) cannot
be regular at z = 0, unless it is identically zero, and hence we must have p;(z,ty) = 1 and
p2(z,tp) = 0, by equation (5.96). As this holds for any to € V, such that p1(z,to) and pa(z, o)
are not identically singular, we conclude that the first identity in (5.94) holds. We establish
the other one analogously. O

Let i € {1,2}, then, following (5.87),
W (S, 1) == U (&L, 1), (5.97)

defines a solution of the Lax pair Ltv (5.89), meromorphic on C* x V in (§,t). Furthermore,
by the second part of Lemma 5.6.4, we know that the limits

lim W (¢, t) = Dy (& A :
t—)(l),tEV 1 (‘Sat) 0,0 (5) )7 (5 98&)

lim LY () = D& A :
t~>(1),t€V ¢(t) 2 (é-’ t) 0,1 (gﬂ )7 (5 98b)

exists, for £ close but not equal to co.

Lemma 5.6.6. We have the identities,

\11(1),00(6’ t) - qj?(fa t)7 C¢ét)

WY 1) = UH(E, 1), (5.99)

where the constant c is defined in (5.84).

Proof. Let us focus on the first equality. We note that the Lax pairs Ltnt (5.89) and L1
(5.77) are equivalent, i.e. Ltlr’1 and L?’Oo’l are identical, and Lgr’l and Lg’oo’l are a multiple
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of each other. Let us define

04(£/2)
0q()

then s(¢€) = gAs(€) and we note that s(f)\I/g’oo(ﬁ, t) is a solution of L%**1. So both \I/(l)’oo(f, t)
and s(¢ )\Ilg’oo(f ,t) are solutions of L0°>! and it is easy to see that they are linearly indepen-

s(§) =¢

dent. As \T/tlr (¢,t) also satisfies L%°%1 there must exist meromorphic functions p;(¢,t) and
p2(&,t) on C* x V| which are g-periodic with respect to & and ¢, such that

(1) = p1 (&, )UTP(E, 1) + pa(€,£)s(E) Uy ™ (€, 1). (5.100)

Take any ¢y € V such that p;(&,t) and p2(&,t) are not identically singular. We set t = ¢"tg
and let n — oo in (5.100), which gives, by equations (5.98a) and (5.82),

D (& A) = p1(€, o) (& 00(A)) + p2(€, o) s(€)¥5° (& 00 (A)), (5.101)

for £ close but not equal to co. Now we recall that, by Lemma 5.6.4, we know that f)gfél (& A)
has a convergent power series expansion about & = oco. Note also that ¥§°(&;00(A)) and
P5°(&; 00(A)) are holomorphic and equal to 1 at £ = co. However pa(€,)s(€) is not regular
at £ = oo or identically zero. Combined we find, by equation (5.101), that we must have
p1(&,to) =1 and pa2(&,to) = 0. We conclude that the first identity in (5.99) holds. As to the
second one, let us write

(e 1) = cf@‘f’%r@»”

We wish to prove
U, 1) = Uy (6, 1) (5.102)

Firstly, we note that both \Ifg’oo(f, t) and W(&,t) define a solution of the Lax pair L?°2 (5.77).
Furthermore, we know that, by equation (5.98b), the limit

. §~tr2
1 U, t) =Dy (& A
ta(l)glev (57) c 0,1 (g, )a

exists for € close but not equal to co. Similarly we have \Ilg’oo (€ 0) = ¥5°(& 00(A)), by (5.82).

Finally, by Lemma 5.6.4 and equations (5.92), we know that %D&’f(ﬁ ;A) has a convergent
power series expansion in £ about & = co, with

§

Cc

DE(EA) =1+ 0. (€ — o)

A similar argument as above, where we write ¥ (¢, ¢) as a linear combination of \I/g’oo(ﬁ ,t) and
s(€)71W0(¢, 1), finally gives (5.102). O

Proof of Proposition 5.6.1. The Proposition is now a consequence of equation (5.97) and Lem-
mas 5.6.5 and 5.6.6. O
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By putting together Proposition 5.6.1 and equations (5.81) and (5.79), we find

w(z,0) = 0 (,6) @ (£, 00(A(0) ((1) té)m) Q (=0 (A1) (5.103)

By equation (5.30), we know that
YO(z, 1) 1= s®(£)U®(2, 1), s%(t) := s¥(t, d(t); A), (5.104)

defines a fundamental solution of Yamada’s Lax pair L (5.6), which is meromorphic on P* x V.
We note that s*°(t) satisfies

5(qt) = ="' G1(9(0); A) 15 (1).

Similarly, by (5.54), we know that

YO(z,t) = s2(4) 00 (;t) L s0() = sk, o(1): A), (5.105)

defines a fundamental solution of Yamada’s Lax pair L (2.21), which is meromorphic on Cx V.
We note that s%(¢) satisfies

'(qt) = Aq~ Gr(o(t); A) 120 (2).
Combining equations (5.103), (5.104) and (5.105), we obtain
Y®(z,t) = Y9(2,t)P(2, 1), (5.106)
with

Pt) = 5(0Q (2 o0()) (é cti?@) Q (= 10w (W)

where s(t) is the meromorphic function on T, satisfying s(qt) = —t2/As(t), defined by

s(t) = Zf(%)

This is consistent with the notation in Section 4.9, where

co(t) == s°(t)w7(0,1), cg(t) = s°(£)05(0, ),
A (L) == s (1) T (00, 1), 2(t) = s (1)U (00, 1).

Recall that the functions Y*°(z,t) and Y?(z,t) are defined on P* x V and C x V respectively,
and the connection result (5.106) is valid on C* x V. Now recall that we fixed V' to be any
continuous ¢-domain with V' C V" C T, at the beginning of Section 5.6.1. By doing the same
analysis on another continuous ¢-domain W with W C w* C T, we obtain identical results
on the intersection VN W. We conclude that we can extend the domains of Y*°(z,t) and
Y?(z,t) to P* x T and C x T respectively, and the connection result (5.106) is valid on C* x T..
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5.7 Monodromy Corresponding to Critical Behaviour at
t=0

Theorem 5.7.1. Let (f,g) be a meromorphic solution of ¢-P(A1) on a continuous g-domain
T, characterised by critical behaviour near t = 0 as in Theorem 5.4.1, by analytic functions
A(t) and ¢(t). Then the corresponding monodromy of Yamada’s Laz pair is given by

MT(f: g) - [R(Z,t)] )

with

R(z,t) = 5(t)04(qbsz, qbsz, qbr2, qbs 2)Q (?UO(A(@)) (0 c(t)tqs(t)> Q (2 Hos(A(t)

where s(t) is any nonzero meromorphic function satisfying s(qt) = —t>/A(t)s(t) on C*, the
two sets of parameters og(A\) and oo (A) are defined by

A
oo(A) = <b1—17b2_17b§17b51; —¢2A, —q>\> , (5.107)
A
oo(A) = | gbs, gbe, gbr, gbs; =A™, = ), (5.108)

where we suppressed the t dependence, and

_ g\ -1 _A@?
W=7 = bsbetr’

Proof. Note that equation (5.106), gives the theorem for the case where A(t) = A is constant.
To obtain the generic case, i.e. A(t) not necessarily constant, we can simply follow the proof
of (5.106), with A replaced by A(t) everywhere. One has to be a bit more careful with limits
such as (5.93) and (5.98), which now have to be taken on g-spirals, i.e. setting ¢ = ¢"tp and
letting n — oo. Similarly an equation like (5.78), becomes

lim W™ (z,q"to) = (=3 000 (A(t0)))-

n—o0

The theorem now follows from (4.109). O

Let us consider the setting in Theorem 5.7.1, where, for the sake of simplicity, we assume
that A(t) = A is constant, with of course A € Ly(). We wish to use the explicit results in
Section 4.5. Considering the condition (4.53) for og(A) and oo (A), we assume

b;
b ¢ 7, (5.109)
J

for i,7 € {1,2,3,4} and ¢,j € {5,6,7,8}. Furthermore it is required that A € L§(b), where

Li(b) := Lo(b) \ ¢” ({~bibj : 1 <i < j<4}U{-bbj:5<i<j<8}). (5.110)
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Now to apply the results in Section 4.5 directly, i.e. without having to permute the parameters,
assumption 4.66 has to be satisfied, which translates to

|b1b2| < ’A|, |A| < ‘b5b6’, (5111)

for the parameter values og(\) and oo (A) respectively. Without loss of generality, we may
assume that the parameters b are chosen such that

[b1] < |b2| < [bs] < [bal,  [bs] = |bg| = [b7| = bs]. (5.112)
In this case, equation (5.111) is trivially satisfied, as we have
|b1b2|? < |brbabsby| < [A]* < |bsbebrbs| < |bsbs|?,

where in the second and third inequality we used A € Lg().
Therefore, assuming (5.109) and (5.112) hold, and A € Lj(b), we find

0. (ba? 0 qiby (—* %) @by (—a553 1 0
q \91% g1 (—a°5:7) 92204 (—a5,57 z

r116q <_bs%\z) r120q (_b%\z) (0q(qb8z) 0 >]

72164 (-%Z) 2204 (—%z 0 04(qb72)

where the ¢;; are defined in (4.74) with ¢ = o¢()), and the r;; are defined by (4.70) with
0 =0x(A), for i,5 € {1,2}. As an additional check, one can now verify the equations (4.110)
and (4.112) directly.

5.8 Generic Case: Analysis near (z,t) = (0, 00)

We wish to calculate the monodromy corresponding to solutions of ¢-P(A;) with critical
behaviour near t = oo as described in Theorem 3.4.2. In fact it is often easier to work with
the formal expansion in equation (3.64) and we hence do most of the analysis on a formal
level. As the analysis is very similar to the one near ¢t = 0, we skip over some details. We
lighten the notation of the formal series solution a bit by writing the formal solution (3.64)

as f = foo(ta ¢oo;Aoo) and g™ = g(t,¢m;Am), with

[e.9] [e.9]
Je=) FXCT, g =3 Grth
n=0 n=0

where for n € N, the coefficients F° = F°(¢oo) = F¥(¢oo; Ao) and G° = Gp(¢) =
Gn(¢; A) are defined by

n+1 n+1
co __ e Py 0o __ 0o 1
Fn - E Fn,i¢ooa Gn - § Gn,i 00

i=—o00 1=—00
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with for i <n +1, the coefficients F25 = 25 (Ax) and G755 = G7%(Aso) equal to
F5(Aso) = Fi " (Aso,b),  Gli(Ase) = Go T (Ase, b).

Furthermore we recall that ¢oo satisfies ¢, = Moo, Where Ao as defined in (3.63).
We rescale the Yamada Lax pair L (2.21), by setting

y(za t, Poos Aoo) = go(ta Poo; AW)JO(Za t, Poos Aoo)a (5-113)

where

§O(Qt7 )‘oo(z)OdAoo) =as ( Do} oo),
with
A= "A0G5(hoo; Aoo) ™, (5.114)

and we denote the corresponding rescaled Lax pair for wo(z, t, Poo; Aoo) by 0.

5.8.1 Expanding about z = 0
Expanding 121\0(2, t, Poo; Aoo) In z around z = 0,

P02, 1, Goo; Moo) = C(t, booi Moo) + EV(E, Goo; Moo )z + 9 (F dooi Ac)Z2 4+ ..., (5.115)

where ¢) = 5%, by equation (4.99), satisfies

;Y\g(ta ¢m)68(t, ¢oo) + ;y\?(t, ¢w)68(qta )\oo(ﬁoo) + 72 (t ¢oo) 0( 2t )‘2 ¢00) (5'116)
where
(fy\g(t? quO)’ %)(ta ¢oo), ﬁy\g(t? QSOO)) = (’70(25’ ¢oo), alyl (t7 Qboo), aa"}?(t, ¢OO))7
and we suppressed the A, dependence throughout.
Proposition 5.8.1. Consider equation (5.116) with f = fo (t, doo; Aoo) and g = g° T (t, Ppoo; A

as defined in equation (3.64). Then there exists, for i = 1,2, an unique formal solution of
(5.116), of the form

o]
/\0,‘ y?
COl(t7¢oo;Aoo Z () ¢007 m,

1

m=0
with for m € N,
Comm(Pooi o) = Y T n(Aoo) Dl
where o1 o
C00.0(Ac) (1> C0.0.0(Ac0) (0>
(58,0,—1(1\00) 0 68,0,—1(Aoo) 1

For m € N and n € Z<,, the coefficients /égzin,n(AOO) are rational functions in Ay and the
parameters by, ..., bs, in particular these rational functions are regular at points (Ao, b) €
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C* x B, satisfying
1 ¢ {a1d : (k,1) € N*\ {(0,0)}}, (5.118)

where q1 = ¢ Aoo and g = AL
Furthermore, for fired b € B with |q| < 1, for any Ao € Lo(b), condition (5.118) is satisfied
and this formal solution, written in terms of the variables (1 = t ¢ and (o = ¢},

@ (GGG ) = D0 Em (M) (5.119)

m,n=0

converges near (C1,¢2) = (0,0).

In fact, these expansions are also analytic in A. That is, for any L C Lo(b) open with
L C Lo(b), there is an open environment Z C C? of 0, such that the series (5.119) converge
uniformly on Z x L, defining holomorphic functions on this set in (¢, A).

Proof. This is proven analogous to Proposition 5.4.1. O

Remark 5.8.2. Recall that we used the formal series solution in equation (3.64), to construct
true solutions of ¢g-P(A1) in Theorem 3.4.2, by replacing the formal variables by actual analytic
functions. Doing so we can use the formal series solutions in Proposition 5.8.1 to construct
corresponding true solutions of (5.116).

5.8.2 Expanding about t = oo

We consider the following formal expansion of 120(2, t, Poo; Aoo) In t at t = oo,
P02, Gooi o) = 9 (2, P Aoo) + Y (2, i Moo )t ™!+ d (2, doos Moo )12+,
which, upon substitution in Eg and comparing leading order terms, gives
B (2, Poci Moo) (92657 = 1) di (g2, dooi Aoo) — 4R (F5™ = 42)d) (97, Asodooi Aoc) = 0. (5.120)
Considering a solution of equation (5.120), which takes the form
D (2, doo; Aoo) = dB (25 o) + b, 1 (25 Aoo)

a calculation shows that, equation (5.120) is equivalent to

As
qcflgo(z/q) + |—(14+¢q) 4+ q(bs + b + by + bg)z + (quo + qz)\) 22} a/lg,o(z)
+ (1= bsqz)(1 — begz) (1 — brgz)(1 — bsqz)dy o (g2) = 0, (5.121)

together with

Aoo _ 00 0o
0.-1(2) = A O — 12 &g,o(q 2) + (Aooz2 + (Goo — Ao o)z — 1)) &8,0(2)} )
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where we suppressed Ao, dependence of 6/1\870(2; Aoo) and dA&_l(z; Aoo). We identify (5.121) as
the degree two model equation (4.51), via the scaling

B (2 hoo) = 5.:(2)y(2Ano),  4(2) = (bs5g2, b6z, braz, bsaz; @) (5.122)

with parameter values 0 = 7(Ay), defined in (5.153), noting that Fuchs’ equation (4.52)
is satisfied. For any l1(As) and l2(A), there exists an unique formal power series solution
d3.o(2; As) of (5.121) with

4Q.0(2 Aoo) = 11 (Aoo) + 11 (Aco)z + ... (5.123)
Now, by Proposition 5.8.1, the general formal solution of (5.116), takes the form
0t dooi Aoo) = k1(Aae)Cg (£, doci Aso) + ka(Aae ) (t, doci Asc), (5.124)

with k1 (As) and ka(Aso) free.
Analogously to equations (5.71), the free constants in (5.123) and (5.124), are related by

k1(Aso) = li(Aso), (5.125a)

22 (g (MBS (An) — G35(Ae)) L (M) + (g — Dla(Anc)) . (5.125D)

Falhoe) = R =)

5.8.3 Main Existence Theorem near (z,t) = (0, 00)

Theorem 5.8.3. Consider the Lax pair L°, obtained by scaling L (2.21) by (5.113), with
f = T (t,poo; Aso) and g = g (t, doo; Aoo) as defined in equation (3.64). Then, for
i € {1,2}, there exists an unique formal series solution of the Lax pair L°, of the form

{D\?(Z, t, ¢oo§ Aoo) = 2627i(t7 ¢oo§ Aoo)zk,
k=0

where, for k € N,
E%i(ta Poo; Aoo) = Z 52’;71(%0, Aoo)t_m,

with, for m € N,
o (oo Aoo) = o (Aso) 95

k,m k.m.mn oS}
n=—00

and initial conditions (5.117).

We note that the notation here coincides with that in Proposition 5.8.1. For k,m € N andn €
ZL<m, the coefficients Egzmn(Aoo) are rational functions in Ao, and the parameters by, ..., bg,
in particular these rational functions are reqular at points (Moo, b) € C*x B, satisfying (5.118).
Furthermore, for fized b € B with |q| < 1, for any As € Lo(b), condition (3.46) is satisfied
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and this formal solution, written in terms of the variables z, (1 =t doo and (2 = ¢ L,
(o9}
—~ I oy
¢? (Za C1 142 1: CQ 15 A) = Ck,%,m,n(Aoo)zkéflCQ (5-126)
k,m,n=0

converges near (z,(1,¢2) = (0,0,0).

In fact, this expansion also depends holomorphically on A. That is, for any L C Lo(b) open
with L C Lo(b), there is an open environment Z C C3 of (0,0,0), such that the series (5.126)
converge uniformly on Z x L, defining holomorphic functions on this set in (z,(1, (2, Aso).

Proof. We prove this analogous to Theorem 5.4.3. O

Remark 5.8.4. Recall that we used the formal series solution in equation (3.64), to construct
true solutions of g-P( A1) in Theorem 3.4.2, by replacing the formal variables by actual analytic
functions. Doing so we can use the formal series solutions in Theorem 5.8.3 to construct
corresponding true solutions of the Lax pair 0.

5.8.4 Transition from (z,t) = (0,00) to (z,t) = (o0, 00)

Note that the two formal series solutions QZ?(z,t,qSOO;AOO) and Jg(zj, ®oo; Moo ), defined in
Theorem 5.8.3, form a basis of formal solutions of L%. It is more convenient for us to work
with a different basis of solutions, given by

(2, t, doo; Aoo) 1= 1+ 00(2, , do; Aoo) + ki3 (Aoo) V(2 £, oo Aoo), (5.127a)

30 . e (). 70 . (¢—1) 0 .
U5 (2, t, doo; Aoo) := 017 (2,t, Poo; Aoo) + dhe(1= 1/)\00))1p2(z,t, Goo; Moo )- (5.127b)

where k3(As) is defined by

Ao

B = RO - D)

(¢ (A5 (Aoo) = G (Aee)) + (g = ).
where, recalling the definition of s,(z) in (5.122), the constant u € C is defined uniquely by
si(z) =14+uz+0 (%), (¢—0)

or explicitly
u = q%ql(b5+bﬁ+b7+bg).

By equations (5.125), these two solutions correspond respectively to (I1(Ax), l2(Aso)) = (1, u)
and ([1(Axo),l2(Ao)) = (0,1) in (5.47). The reason for this choice of basis, is that, writing
fori=1,2,

0o k

V(2,1 o0i Aoo) = D > Dt (21 Aco)th 02,

k=0 m=—0o0

we have
DY (25 Aoo) 1= (Dy'p (25 Aoo), D (21 Aoo)) = 5:(2)y° (2550 (o).
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We define
1 1 1 1

-1
DY (i A) = | ) —) —, —; (23 60(Aoo
0,0 (27 ) <b5Z’ b627 b7Z7 b827q> 1/} (Z,O'()( ))7

which leads to the connection result
Dy’ (2 Ace) = D (25 Ao PO (2 M), (5.128)

where
P°(2; M) = 0,4(qbs2, gbsz, qbr2, qbsz) 1 Q(2;50(Aso))-

We symbolically define
O (2,1, oo Moo) = W0(2, 1, oo Aoo) - PO (25 Ao). (5.129)

From (4.46), we obtain

3A 2
~ ~ —° 2 0
Pgzi M) = POz An) - [ T 27
(23 Aoc) = P(cs >< 5 )

and hence, for ¢ = 1,2, a symbolic computation, shows that the component \Tlg’m(z, t, boo; Aoo),
defines a solution of the Lax pair L%  given by

JO 1 .
L(l)’c’o’Z L Pe2u(z, t)@)’o"(qz, t)+v(z, t)zz;?’oo(z, t)+ ﬁw(z, t)\I/?’OO(z/q, t) =0, (5.130a)
(A

1
61'2:2

LYyt @ho(z, )0V (2, qt) + ha (2, )8 (2,8) + — ha(2, ) 00™(2/¢,t) = 0,  (5.130b)

where €1 = —qAoo /Ao, €2 = —As and @ as defined in (5.114).

5.9 Generic Case: Analysis near (£,t) = (oo, 00)

we rescale the Lax pair L (4.82), by setting

~ oo ~oo z

y(zata¢m§Am) =S (t7 d’oo;Aoo)d} (§7t7¢m§Am)7 52 Ey (5~131)
where

goo(qta )‘oo(bom A<>o) = /Bt2§m(ta ¢<>07 AOO))
with
Bi=q "G (fooi Moo) 1, (5.132)

where we invite the reader to choose $%°(t, ¢oo, Ao ), meromorphic on C* x C* x C*, at their
pleasure. We denote the rescaled Lax pair, which ¢>°(z,t, ¢) satisfies, by L.
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5.9.1 Expanding about £ = oo
We formally expand 1200(5, t, Poo; Aoo) in € about & = oo,
Joo(g’ t, Poo; Aoo) = /C\So(ta Doo; Aoo) + /C\(ljo(ta Poo; Aoo)g_l + 530(1% Goo; Aoo)g_2 +.

which, using equation (4.105), leads to

6 (1 o0 )T (1 boo) + AT (1 Do) T (at, Moo o) +75° (£ Do) T3 (478, Nogboc),s  (5.133)

where

(ﬁg@(t’ ¢00)7 ﬁloo(t (boo)a ago(ta ¢OO)) = (?0(2% ¢00)7 Bt2§1(t) d)OO)v q265t4§2(t7 Cboo)),
and we suppressed the A, dependence throughout.

Proposition 5.9.1. Consider equation (5.133) with f = fF(t, doo; Aso) and g = g (¢, Poo; Aoo)
as defined in equation (3.64). Then there exists, for i = 1,2, an unique formal solution of
(5.133), of the form

o0
680’1 (t’ boo; Aoo) = Eoog,m(¢m§ Aoo)t_ma
m=0
with for m € N,
m
Eoog,m(¢w7AOO) = Eoog,m,n(AOO) go?
n=—oo

where . )

Gr1(de) ) \OJ Co,1,1(Aoo) 1
For m € N and n € Z<y, the coefficients é;;im,n(z\oo) are rational functions in As and the
parameters by, ..., bs, in particular these rational functions are regular at points (Ao, b) €

C* x B, satisfying (5.118).
Furthermore, for fited b € B with |q| < 1, for any As € Lo(b), condition (5.118) is satisfied

and this formal solution, written in terms of the variables (1 = t 1 ¢oo and (o = ¢},
GGG G ) = Y Clmm (M) G (5.135)
m,n=0

converges near ((1,C2) = (0,0).

In fact, these expansions are also analytic in A. That is, for any L C Lo(b) open with
L C Lo(b), there is an open environment Z C C? of 0, such that the series (5.135) converge
uniformly on Z x L, defining holomorphic functions on this set in (¢, A).

Proof. We prove this analogous to Proposition 5.4.1. O

Remark 5.9.2. Recall that we used the formal series solution in equation (3.64), to construct
true solutions of g-P( A1) in Theorem 3.4.2, by replacing the formal variables by actual analytic
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functions. Doing so we can use the formal series solutions in Proposition 5.9.1 to construct
corresponding true solutions of (5.133).

5.9.2 Expanding about t = oo

We consider the following formal expansion of 1200(5 b, Poo; Aoo) In t at t = oo,

DX (E,t Pooi Moo) = 5 (€, Poo; Moo) + A€, Boo; Moo )tH + d5° (€, Pooi Aot 2+ ..,

which, upon substitution in Ego and comparing leading order terms, gives
d5° (€, Ao ooi Aoo) = d5° (€, dooi Acc)- (5.136)

We hence set c/i\ooo (€, Vo3 Ao) = 300?0 (&; Ax), which, by considering E‘fo, leads to

750 — — — —1\¢— 1 Ao -2 7%
qdgo(q8; Aoo) + [_(1 +q)+ (0 0 by 0+ (qA + qA) 3 2] 0.0(&5 Aso)

L — L — L _ L O _
- <1 B b1§> <1 b2§> <1 b3£> <1 b4£> d0,0(q gvAoo) 0, (5137)

which we identify with the degree two model equation (4.51), via the rescaling

055 (6 M0) = 50 ()Y€ An),  56(6) = (b 'e L b e bt e by e ), (5.138)

with the parameter values 0 = 0 (As), defined in (5.154), where we note that Fuchs’
equation (4.52) is indeed satisfied.
For any /;(As) and l3(As), there exists an unique formal power series solution c/i\o"f’o(f i Ao)
of (5.137) with

A3 (&5 Aoo) = 11 (Aoo) + o (Aoo)E 1+ .. (5.139)

Now, by Proposition 5.9.1, the general formal solution of (5.133), takes the form
/C\go(tv ¢OO§ AOO) =k (Aoo)égo’l(ta ¢oo§ Aoo) + ko (Aoo)580’2(t, ¢oo; Aoo), (5.140)

with k1(Aso) and ka(Aso) free.
Analogously to equations (5.71), the free constants in (5.139) and (5.140), are related by

k1(Aoso) = li(Aso), (5.141a)
q Ao o
kZ(Aoo) = q— )\oo (G((fl (Aoo)ll(AOO) + (q - 1)G0,1(Aoo)l2(Aoo)> . (5'141b)

5.9.3 Main Existence Theorem near (z,t) = (oo, 00)

Theorem 5.9.3. Consider the Lax pair L™, obtained by scaling L (4.82) by (5.131), with
f = T (t, poo; Axo) and g = g (t, doo; Aoo) as defined in equation (3.64). Then, for
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i € {1,2}, there exists an unique formal series solution of the Lax pair EOO, of the form

V(60 Booi Aoo) = 3 G (1t oo Aoo)EF,

k=0
where, for k € N,
62071 (t’ Goo; Aoo) = 6./;?;71(¢oo; Aoo)tima
m=0
with, for m € N,
/C\Z?;:L(Qboo:/\oo) = /C\z?;:l’n(Aoo> o
n=-—00

and initial conditions (5.134).

We note that the notation here coincides with that in Proposition 5.9.1. For k,m € N andn €
ZLi<m, the coefficients E’,éonfm(/\oo) are rational functions in Aoy and the parameters by, ..., bs,
in particular these rational functions are regular at points (Ao, b) € C*x B, satisfying (5.118).
Furthermore, for fired b € B with |q| < 1, for any A € Lo(b), condition (3.46) is satisfied

and this formal solution, written in terms of the variables £, (1 =t 1¢oo and (s = ¢},
-~ - > )
PEGIGNG ) = Y E (Bl (5-142)
k,m,n=0

converges near (§,(1,(2) = (00,0,0).

In fact, this expansion also depends holomorphically on As. That is, for any L C Lo(b)
open with L C Lo(b), there is an open environment Z C P* x C? of (c0,0,0), such that the
series (5.142) converge uniformly on Z x L, defining holomorphic functions on this set in

(&,¢1, ¢ As)-

Proof. We prove this analogous to Theorem 5.4.3. O

Remark 5.9.4. Recall that we used the formal series solution in equation (3.64), to construct
true solutions of g- P( A1) in Theorem 3.4.2, by replacing the formal variables by actual analytic
functions. Doing so we can use the formal series solutions in Theorem 5.9.3 to construct
corresponding true solutions of the Lax pair L.

5.9.4 Transition from (&,t) = (00, o0) to (&,t) = (0, 00)

Note that the two formal series solutions 1Zf° (&,1, ¢oo; Ao) and 1Z§° (€,1t, 0o; Ao), defined in
Theorem 5.9.3, form a basis of formal solutions of L°°. It is more convenient for us to work
with a different basis of solutions, given by

U (€, 1, hoo; Moo) = 1= P0(E,, Boo; Aoo) + K (Ao) ST (€, 1, doo; Ao), (5.143a)

~ -~ -1
T i M) = 0- T (60 o) + DGR (A5 (€ b dmi ). (5:1430)
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where k3 (A ) is defined by

q Ao
K (Asy) = 4 (g— DG (Ao | |
2( ) q— Moo (G&ol(Aoo) (q ) 0,1( )U>

where, recalling the definition in (5.138) of s,(), the constant v € C is defined uniquely by

$o(§) =140 +0(£77), (€= )

and explicitly given by
1
V= (b +by" b5t +010).

By equations (5.141), these two solutions correspond respectively to (11 (Ao ), l2(Aso)) = (1,0)
and (I1(Ao),l2(Aso)) = (0,1) in (5.139). The reason for this choice of basis, is that, writing
fori=1,2,

00 k

TX(Et, i N) = ZZD oo )tFom |

k=0 m=—00

we have

D55 (& Aso) = (D55 (€ Aso), D7 (65 Aso)) = 50(€)y (67 Foo(Aoc)).

We define
D (65 Ane) = (gbi€, gbak, g, qbat; @) T (67 Foo (Ano)),

which leads to the connection result
D€ Moe) = DEY (65 Moo) P (& Aoo) (5.144)

where
PX(&; M) = 0, (qb1&, qbat, qbs€, qbs€) Q€™ G (Aso)) L.
We symbolically define
U0 (€, Pooi Aoo) = U(E, 1, Pooi Aoo) - PZ(&; Aoo) L. (5.145)

From (4.46), we obtain

~ — Qe (=2 0 ~
Poo(qgaAOO) = ( 1 ASO 1 £—2> : POO(g’ Aoo)7

Ao
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and hence, for ¢ = 1,2, a symbolic computation, shows that the component ‘/I}fo’o(f vty Poo; Moo),s
defines a solution of the Lax pair L>?  given by

Ly '6“12QU(ét,t)w?(QS,t)+v(€t7t)¢?(£,t)+qglgsz(ft,t)w?(ﬁ/q,t)=07 (5.146a)

B0 (et 0/ at) + (€t (Eo0) +

q°€;

2ha(¢t,)U0(¢/a,t) = 0. (5.146b)

where € = —qg\#“’? € = —q2+ and f as defined in (5.132).

5.10 Generic Case: Matching near t = oo

As explained in Section 5.6, the matching procedure is only sensible on the level of true
solutions, i.e. with Ao = Axo(t) and ¢oo = ¢oo(t) analytic functions. So let (f,g) be
a meromorphic solution of ¢-P(A;) on a continuous ¢g-domain 7', characterised by critical
behaviour near t = 0o as in Theorem 3.4.2, by analytic functions A (t) and ¢uoo(%).

We fix a continuous g-domain V C V" C T and consider the Lax pair EO, obtained by
scaling L (2.21) by (5.113). Then Theorem 5.8.3, shows us that

B0, 1) = (D021, oo (0 Aoel0)), TRz, Buolt); A1)

defines a fundamental solution of L, for (z,t) close to (0,00) in C x V, which has an unique
meromorphic continuation to C x V. We use the change of basis (5.127), to define the
corresponding fundamental solution of L,

VO(2,1) 1= (D92, £, Poo (1) Aso (1)), U3 (2, , B0 (£); Ao (1))
Following (5.129), we define
TO® (2, 1) 1= UO(z, 1) - PO(2; Ao(t)). (5.147)

Then we know that the component \Tl?’oo(z, t), defines a solution of the Lax pair 1000 (5.130),
where €1 = —qAoo(t)/Aoo(t), €2 = —Aso(t) and @ as defined in (5.114).

Next we consider the Lax pair L, obtained by scaling L (4.82) by (5.131). Then Theorem
5.9.3, shows us that

(6 t) 1= (VR(E b oo (8)s Bool1)), U (€, 1, b (£)s A1)

defines a fundamental solution of L, for (&,t) close to (00,00) in P* x V, which has an
unique meromorphic continuation to P* x V. We use the change of basis (5.143), to define
the corresponding fundamental solution of L,

T (¢, 1) 1= (D56, Do (1) Aool1)), B5° (6t Do (8); A (1))
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Following (5.145), we define

ToO0(£,t) 1= U(E, 1) - P(€; Ao(t)) 1 (5.148)
Then we know that the component \TJ;}O’O (,1), defines a solution of the Lax pair L0 (5.146),
where € = —qﬁ%o%, € = —m and 3 as defined in (5.132).

We now wish to relate U9°(z,¢) and US*%(¢, 1), and we wish to relate 5> (z,¢) and
T0(€,t). Let us make the crucial observation that W)°(z,¢) and W5*"(¢,t) satisfy the

E0,00,Z

same Lax pair. That is, the Lax pairs and 192 are identical under the formal

identification ;
-0, 00,0
¢200(Z7t) = ;0 (gat)a é’: E

Similarly, the Lax pairs L0201 and L0 are identical under the formal identification

P=(et) = =30, €=

Analogous to Proposition 5.6.1, we have the following result.

Proposition 5.10.1. The following identities hold true,

B0 (2,1) = m@?"(s,t), B9 (z,1) = B520(¢, 1),

where the q-constant ¢(t) is defined in (5.155).

Proof. We proof this analogous to Propostion 5.6.1. O

By putting together Proposition 5.10.1 and equations (5.147) and (5.148), we find

= z = 0 (qblzvqb2gaqb3gaqb4g) ~
(t’ ) & 0q(qbs2, qbsz, qbrz, qbsz) 50(Aeolt)))
B0\ (b -1
o V)e(Yoniam) . G
By (5.113), we know that
YO(2,8) = 2)W0 (2,1),  sO(t) := sO(t, doo(t): Moo (1)), (5.150)

defines a fundamental solution of Yamada’s Lax pair L (2.21), which is meromorphic on Cx V.
We note that 3%(t) satisfies

§0(qt) = _qileoGgo(gﬁoo(t% Aoo(t))il‘go(t)'
Similarly, by equation (5.131), we know that

V02, 1) 1= 8°(1)U¥(2,1), §°(t) = 8, doo(t); Ao (£)), (5.151)
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defines a fundamental solution of Yamada’s Lax pair L (5.6), which is meromorphic on P* x V.
We note that 5°°(t) satisfies

5%(qt) = 4 GF (doo(t); Moo (1)) TH75%(2).
Combining equations (5.149), (5.150) and (5.151), we obtain
YO(z,t) = YO(z,)P(z, 1), (5.152)

with

~ O (qb1%,qba%, qbs%, qbs%) N DM)d®) t -1
P(z,t) = 3t q [ o o t ’ Aot z (; oo (Aoo(t ) ,
R P e L CL WO (S [ ST NOWE)

where 3(t) is the meromorphic function on T, satisfying 5(qt) = —t2/As(t)3(t), defined by

30 = S

This is consistent with the notation in Section 4.9, where

c(t) = 3()0(0, 1), c(t) =3 (t)5(0, 1),
a(t) =32 (1) T (00, 1), G(t) =52 (t) W5 (00, t).

Recall that the functions 1?0(2, t) and }A/OO(Z, t) are defined on C x V and P* x V respectively,
and the connection result (5.152) is valid on C* x V. Now recall that we fixed V' to be any
continuous ¢-domain with V. .C V' C T, at the beginning this section. By doing the same
analysis on another continuous ¢-domain W with W C wrcT , we obtain identical results on
the intersection VN W. We conclude that we can extend the domains of Y0(z,t) and Y (2, t)
to C x T and P* x T respectively, and the connection result (5.152) is valid on C* x T

5.11 Monodromy Corresponding to Critical Behaviour at
t =00

Theorem 5.11.1. Let (f,g) be a meromorphic solution of ¢-P(A1) on a continuous g-domain
T, characterised by critical behaviour near t = co as in Theorem 3.4.2, by analytic functions
Ao (t) and ¢oo(t). Then the corresponding monodromy of Yamada’s Lax pair is given by

~

Mr(f,9) = [R(z,1)],

with

N EOEM0) -1
Rz 1) = 5(0)0, (ab1 5 gbar dbaraba> ) Q (2. Go(Acc (1)) ( ; 0) Q (Z;aoomw(t)))
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where 3(t) any nonzero meromorphic function satisfying s(qt) = —t2/As(t)3(t) on C*, the
two sets of parameters oo(\) and 0o (A) are defined by

Go(As) = (b71,b81,b51,b61, quo,—qﬂAX > (5.153)
Ooo(Moo) = (qbg,qb47qb1,qb2; —— —)‘°°> , (5.154)
Moo qhe
and Aoo(t) — 1 Ao ()2
ct) = —h, Aoo(t) = b5z:;b7b8' (5.155)
Proof. This follows directly from the connection result 5.152. O

Let us consider the setting in Theorem 5.11.1, where, for the sake of simplicity, we assume
that Axo(t) = As is constant, with of course Ao € Lo(b). As in Section 5.7, we use the
explicit results in Section 4.5. Considering the condition (4.53) for go(A) and 0 (A), we
assume (5.109) and Ay € L§(b), where we recall the definition of Lj(b) in (5.110). Now
to apply the results in Section 4.5 directly, i.e. without having to permute the parameters,
assumption 4.66 has to be satisfied, which translates to

lgbrbs| < [Aso|,  |[Aso| < g b3byl, (5.156)

for the parameter values 0(Ax) and 00(Aoo) respectively. Without loss of generality, we
again assume (5.112), as equation (5.156) is now trivially satisfied, indeed

|gb7bs|? < |gbsbebrbs| = [b1babsba| < [Aco|? < |bsbebrbs| = g~ b1babsba| < |q~ 'b3bal?.

Therefore, assuming (5.109) and (5.112) hold, and A € L§(b), we find
A —~
A qiby (—q522)  q20, (—¢* 2(t)dos ()
0 0(1 (bGZ) q210q _QTZOZ QQ20 q b6)\ 0 1

ity (~alici) et (~onksi) (ta (e
0 (qblz) 7

rady (~a%23) vty (—a3) 0

where the ¢;; are defined in (4.74) with o = G¢(A), and the r;; are defined by (4.70) with
0 =0x(A), for i,5 € {1,2}. As an additional check, one can now verify the equations (4.110)
and (4.112) directly.

5.12 Parametric Connection Formulae

We have determined the monodromy of Yamada’s Lax pair corresponding to several of the
critical behaviours near ¢ = 0 and ¢ = oo, including the generic ones. Now let us combine
these results. Take some meromorphic ¢-P (A1) transcendent (f, g), on a continuous g-domain
T, and assume its critical behaviour near t = 0 is as specified in Theorem 3.4.1, for some
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particular integration constants
{o(t), A(t)}. (5.157)

Similarly let us assume its critical behaviour near ¢t = oo is as specified in Theorem 3.4.2, for
some particular integration constants

{oo(t), Aso () }- (5.158)

Then we conclude from Theorems 5.7.1 and 5.11.1, that there exist invertible meromorphic
g-periodic matrices E(t) and F(t) on T, and a nonzero meromorphic function s.(t) on T,
such that the sets of integration constants (5.157) and (5.158) are related by

t 0 ==

z

5x(t)04(qbsz, qbe2, gbrz, qbs2) E(t)Q (570’0(/\(75))) <1 c(t)to (t)) Q(: Los(A(1) T =

z z z z - ot t -1
O (a1 abeabs T b ) Q (=500 | 2 T @ (Z;aoomoo(t))) F (1),

where s, (t) satisfies s, (qt) = Aco(t)/A(t)s4(1).
The main objective now is to use this equality to derive closed connection formulae 2.20.
However this does not seem to be an easy task. At the heart of the problem lies that the
space M is seemingly complicated. For any tg € T, we can easily justify localising the
relation at t = tp, giving

EyRo(z) = Ro(z)Fo, (5.159)

where

z 1 0 _ _
Ro(2) = 04(qbsz, qbsz, qb72, qbs2)Q (to"’O(Ag)> (0 ot | @ (2715 000(A])) g

z

eto) o3 -1
~ z z z z - 0 to ~

R =0 b1—,qbo—,qbs—,qby— | Q A° 2 Q 25 (A

O(Z) q(q ltovq 2t05q 3t07q 4t0> (Z)UO( oo)) < 0 1) <270 ( oo)> )

with Ey, Fy € GLy(C), and we denoted

¢8 = ¢(t0)’ Aj = A(to), CO = C(to),
$3 = do(to), AJ, = Ao(to), & =2(t).

Note that equation (5.159) is now an equality between elements of S(t(), using the notation
in (4.10). By heuristic counting of dimensions in Section 4.10, we know that M(tg) should
be a two-dimensional space. However finding appropriate coordinates on M(tg) seems quite
nontrivial. It is natural to associate to any R(z) € S(to), the object

Ip(wy,ws) := Tr [R(wl)R(lUQ)*l] ,
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as this association is constant on orbits [R(z)] € M(tp). In particular, considering (5.159),

we have

T (w1, w2) = I (w1, w2).
By evaluating both sides at particular points we might be able to find useful relations between
the integration constants. We leave this issue open for future research.
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Conclusion

In this thesis we made effective the global asymptotic analysis of the ¢-difference Painlevé
equation g-P(Aj), by combining a local asymptotic analysis of its solutions, with an isomon-
odromic deformation method applied to a Lax pair derived by Yamada [85]. The final result
is a conjecturally complete description of critical behaviours of solutions near the critical
point ¢ = 0 and the critical point ¢ = 0o, supplemented with explicit parametric connection
formulae, relating the critical behaviours near the two different critical points indirectly.

The local asymptotic analysis consisted roughly of three steps. Firstly we studied the
leading order behaviour of ¢-P(A;) transcendents near ¢ = 0, by the method of dominant
balance, and found that it is characterised by an autonomous system. We identified this
autonomous system as a QRT mapping, which allowed us to parametrise its generic solution
in terms of two integration g-constants. The second step involved finding the full formal
asymptotic expansion of the solution of ¢-P(A;), corresponding to the generic solution of the
autonomous system. The third step consisted of proving that the formal asymptotic expansion
always converges for appropriate choices of the two integration g-constants. We then used a
Béacklund transformation to translate all the results to similar ones around ¢ = co.

We note that, besides the generic solution of the autonomous system, there also exist two
one-parameter families of solutions, expressed in terms of logarithms. We did not complete
steps two and three above for these families of solutions, and this will be an interesting
direction for future research. We compared the results heuristically in the continuum limit
with the known results for the sixth Painlevé equation, and observed that they essentially
coincide.

Rigorously proving that our description of different critical behaviours of ¢-P(A;) tran-
scendents is complete, the completeness problem 3.7.2, is a fundamental but seemingly difficult
one. The ¢-P(A;) connection problem entails relating the critical behaviours near the two
different critical points explicitly. To solve this problem, we employed the isomonodromic
deformation method.

Yamada [85] constructed a Lax pair, consisting of a second order scalar g-difference equa-
tion, the spectral equation, together with a deformation equation, whose compatibility is
equivalent to ¢-P(A;). However Yamada derived his Lax pair within a geometric framework
of algebraic curves, different from the isomonodromic deformation point of view. We there-
fore studied the analytic properties of Yamada’s Lax pair, and showed that under specific

187
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scalings, involving solutions of two auxiliary second order linear g-difference equations, the
monodromy, i.e. connection matrix, is preserved by the ¢-P(A;) deformation. We hence have
a well defined mapping, the monodromy mapping, which sends a ¢-P(A;) transcendent to
corresponding monodromy of Yamada’s Lax pair.

We then turned our attention to the direct monodromy problem, which entails explicitly
calculating the monodromy corresponding to a given g-P(A;) transcendent. We succeeded in
explicitly solving the direct monodromy problem, for the solutions characterised by the generic
critical behaviour involving two g-constants, both near t = 0 and near ¢ = co. Equating the
results, yields explicit parametric connection formulae, relating the critical behaviours near
the two different critical points indirectly. Deducing direct connection formulae, from these
parametric ones, is a problem which is currently being explored. We note that in both the
t — 0 and the t — oo limit, the connection matrix of Yamada’s Lax pair factorises in two
copies of a connection matrix associated with a simpler linear ¢-difference equation, which
we called the degree two model equation. This degree two model equation is related to
the associated continuous dual q-Hahn polynomials, and we showed that the solutions of the
degree two model equation can be expressed in terms of 3¢9 hypergeometric functions, inspired
by the work of Gupta et al. [23]. Furthermore we explicitly determined the corresponding
connection matrix.

There are several ways to approach the completeness problem. One is by doing an asymp-
totic analysis within the initial value space of the ¢-P(A1) equation, as t — 0 or ¢t — oo. This
would bring together the local asymptotic analysis of solutions and the algebro-geometric side
of the ¢-P(A;) equation. Let us note that such asymptotic studies have been carried out for
several of the continuous Painlevé equations, see Joshi and collaborators [12, 38, 49]. To our
knowledge, only one such study has been carried out for a discrete Painlevé equation, namely
a g-discrete version of P, see Joshi and Lobb [46]. Another way to solve the completeness
problem, would be to prove that the monodromy mapping is bijective, and show that each
monodromy datum of Yamada’s Lax pair corresponds to some unique critical behaviour in
our list, both near t = 0 and t = co. We were not able to establish such a result, particu-
larly as the spectral equation is scalar with resonance and trivial monodromy, both near the
spectral origin and infinity. It recently came to our attention that Rains and Ormerod [68]
constructed a different Lax pair for the ¢-P (A1) equation, which is in system form, with the
origin and infinity of the spectral equation being regular singular without resonance. It would
be of interest to perform a similar study of this Lax pair, and particularly use it to solve the
completeness problem.



Appendix A

The Painlevé Equations

The six Painlevé equations are given by the following nonlinear differential equations,

b w" =6w? + ¢,
P W’ =2w3 + Cw + a,

1 2 1 a9 B 3 g
P W== (W) — fw/+—w + = +yw” + —,
w( ) ¢ ¢ ¢ w
1
Pv: W =5 (w/)Q + %w3 +4¢w® +2(¢% — a)w + =,

—~ &1

i " _ 1 1 N2 1/ (w_1)2
Py “—(mm_J(‘”)‘g“* 2 T

ol b1 Npe (111N

Por 2<w+w_1+w—<>( ) (<+<—1+w— )
w(w — 1) (w — C) ¢ a2(C—1)  (1— B¢ —1)
MESTEI(GSE (”2‘u)2+<w—1>2+ (w—C)? )

where «, 8,7, € C are complex parameters.

B) +’yw +6w(w+1)

ow + —
w

—_
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Appendix B

g-Briot-Bouquet theorem

In 1856, Briot and Bouquet [8] analysed the existence and uniqueness of ordinary differential
equations of a specific type, which are appropriately called Briot-Bouquet equations nowadays.
Let us formulate their classical result.

Theorem B.1 (Briot-Bouquet theorem (dimension one case)). Let H(z,y) be an analytic
function at (z,y) = (0,0) with H(0,0) = 0, and denote \ = %—Z(0,0). If X ¢ N*, then the
differential equation

Y(2) = H(z y(2),

has an unique power series solution with zero constant term. Furthermore this power series
converges, defining a holomorphic solution of the differential equation near z = 0.

We refer the interested reader to the book by Hille [36] for more on the continuous side
of the subject. In 1890 Poincaré [71] analysed g-analogs of the Briot-Bouquet equations and
proved the so called ¢-Briot-Bouquet theorem, which is Theorem B.3, with m = 1, |¢| > 1
and Y = 0. Let us formulate the dimension one case of Poincaré’s result separately.

Theorem B.2 (g-Briot-Bouquet theorem (dimension one case)). Let |q| > 1 and H(z,y) be
an analytic function at (z,y) = (0,0) with H(0,0) =0, and denote \ = %—I;(O, 0). If A ¢ ¢,
then the q-difference equation

ylgz) = H(zy(2)),

has an unique power series solution with zero constant term. Furthermore this power series
converges, defining a holomorphic solution of the q-difference equation near z = 0.

Unfortunately Poincaré [71] only discusses the case |g| > 1, whereas in the cases |¢| < 1
and |g| = 1 an extra subtlety arises, which one does not see in the dimension one continuous
case B.1. Indeed, let us consider the following example,

y(gz) = z + My(2) + 2y(2),

so H(z,y) = z + Au + zy in Theorem B.2. We can immediately write down the full formal
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power series solution, which is given by

2)=Y b2",  bp=][ N (neNY) (B.1)
n=1 k=1

Not surprisingly, the formal power series solution exist, iff A ¢ ¢'. Let us assume this is
indeed satisfied, then the power series indeed always converges if |g| > 1. There are three
cases to consider, A =0, |\| # 0,1 and |A\| = 1. If A =0, then

> 1
§ :q 2nn+1

n=1

which does not converge when |¢g| < 1. The hidden reason for this, in the perspective of
Theorem B.2, is that although A ¢ ¢V, the set ¢ does have A = 0 as a limit point. In case
|A| # 0,1, it is easy to see that the power series solution (B.1) converges, regardless of the
modulus of ¢. In the final case |A\| = 1, the power series solution converges when |q| # 1.
However if |g| = 1, things are much more complicated and in the literature this case is often
referred as the resonant case. It turns out we can generalise Theorem B.2 to the regime
lg| <1, where, for the power series to converge, we require A ¢ s

In this section we discuss an extension of the classical g-Briot-Bouquet Theorem to several
independent variables and, more importantly, we prove that the constructed solutions depend
analytically on various parameters involved. This is a crucial ingredient in the proof of
Theorem 3.4.1, where we use the formal series solution defined in Theorem 3.3.1, to construct
true solutions of ¢-P(A;). We use standard multi-index notation, for n € N* for a =
(a1,...,a,) € N we set

la| = a1+ ...+ .

For a, 8 € N", we write a < 3 if and only if for all 1 <+4¢ < n we have a; < ;. This defines a

partial order on N, and we say a < § if and only of o < 8 and « # S.
If y € C*, we define

Qn

ye=yit oyt

The following Theorem is an extension of the ¢-Briot-Bouquet Theorem to several independent
variables t1, ... t,,, with a coupled time evolution, t; = g;t;, where ¢; € C* for 1 < i < m.

Theorem B.3 (g-Briot-Bouquet theorem (several independent variables)). Let m,n € N*
and let us denote

t=(tr,....tm), a=(q,---,qm) t=(q1tr, .., Gmtm); ¥ =(Y1,---,9n). (B.2)

Let H(t,y;q) = (Hi(t,y;Q),...,H,(t,y;q)) be a vector valued function. Assume there is a
Y € C", such that H(t,y) is holomorphic at (t,y) = (0,Y) with H(0,Y) =Y. Suppose the
eigenvalues of the Jacobi matrix

p-(Gr0x)

Ik 1<j,k<n
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are not elements of the set
Q:={q" | e N\ {0}}.

Then the system of q-difference equations
y; (t;a) = H;(t,y(t);q) (1<j<n), (B.3)
has an unique power series solution of the form,

yita) =Y+ > b (gt (1<j<n).
aeNm\ {0}

Furthermore, if the eigenvalues of the matrix D are not limit points of the set @, then these
power series convergence in an open environment of t = 0.

Proof. Several variables can easily be incorporated in the proof by Poincaré [71]. O

Note that the time evolutions of the independent variables in the above theorem are
coupled, i.e. although we have several independent variables, it is not a partial difference
system. Opposite to the continuous case, not much work has been done in the direction of
partial difference systems of Briot-Bouquet type. Let us mention the work of Tahara and
Yamazawa [82] which seems a first in this direction.

We would like to improve Theorem B.3, by showing that the solution y depends analyti-
cally on q, as formulated in Theorem B.4. For notational simplicity, we restrict ourselves to
the case Y = 0. Iwasaki et al. [41][Prop. 1.1.1] give an elegant proof of the classical Briot-
Bouquet Theorem with several dependent variables. The proof of Theorem B.4 is basically an
adaptation of their proof for the g-case, where every estimate is done uniformly in q. Before
we formulate the theorem, let us introduce some notation. We define the maz norm || - ||max
on C™ by

|[V|[max = 121%}% |vil,

for v € C", and for matrices A € C"*™, we set

|| Al max = lgﬁgnmz‘j!-

We have the following inequality

|| Av][max < 1f|Al[max|[v][max; (B.4)
for A e C™™ and v € C™.

For v € C" and R > 0, we define B", (v, R) and B.,,. (v, R) to be respectively the open and
closed ball of radius R centered at v in C™ with respect to the || - ||max norm.

Theorem B.4 (g-Briot-Bouquet theorem (several independent variables, uniform in q)). Let
m,n € N* and denote t,q,t andy as in (B.2). Let H(t,y;q) = (H1(t,y;q),..., Hy(t,y;q))

be a vector valued function. Assume there is an open set U C B, (0,1) C C™ such that, for

every qo € U, the function H(t,y;q) is holomorphic at (t,y;q) = (0,0;qo) with H(0,0;qg) =



194 APPENDIX B. Q-BRIOT-BOUQUET THEOREM

0. For q € U, let us denote the Jacobian matriz of H with respect to 'y at (t,y) = (0,0) by

oH;

D) = ( -

0.0:0))

1<j,k<n

We assume that for any q € U, the eigenvalues of the Jacobi matriz D(q), are not elements
of

Qo :={0}U{q” | a € N\ {0}}. (B.5)
Then the q-Briot-Bouquet Theorem B.3 shows, that for every q € U, the system of q-difference
equations

yj (t;q) = H(t,y(t);q) (1<j<n), (B.6)

has an unique converging power series solution vanishing at t = 0,

yita) = > P (@t (1<j<n). (B.7)
aeN™\{0}

For every qo € U, for1 < j <mn, the series B.7 converges locally uniformly in (t,q) at (0,qo)
on C™ x U. That is, for every qo € U, there are open environments Z C C™ and V C U
of 0 and qqo respectively, such that the series (B.7) converge uniformly on Z x V in (t,q),
defining analytic functions on this set.

Proof. For every q € U and 1 < j < n, since H;(t,y;q) is holomorphic at (t,y,q) = (0,0,q)
with H;(0,0;q) = 0, we can find a converging power series expansion

Hilt,y;a)= Y. Cy(aty?, (B.8)
aeN™ BeNn

%mw@J%z@ﬁ%M&C&M@zOﬁmlgjgn
The coefficients C’((i ) B)(q) are holomorphic in q on U for all « € N™ and 8 € N™. Substituting
formal power series expansions (B.7) into equation (B.6) gives the following recursion for the

coefficients by’ (q):

oy [ (@) o (@) (@),
D) bff):(q) | _(cgjzﬁgq))(a_m(a);(b;,><q>)a,<a7...,(bg’mq))a,@_ (B9)

(n) i : .

CRC/ (C&0@) Ly (@) o (@), |

for « € N™\ {0}, where the M, are polynomials in their inputs with positive coefficients and
the sets L(a) are defined by

L(a) ={(d/,8) e N" x N": &/ < o, |8] < | — &/| and if &/ = 0, then |3| > 2}.

As the eigenvalues of D(q) are not elements of Qy for q € U, we know that, for every
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a € N\ {0}, the matrix (q“I, — D(q)) is invertible for q € U and, even stronger,
q+— (q°I, — D(q)) ™",

is a holomorphic matrix-valued function on U. A
Hence this recursion defines unique holomorphic functions bg )(q) on U for 1 < j < n and
a € N™\ {0}. Let us take any qo € U and determine Ry > 0 such that

B;rnnax(q(JvRU) - EPrr;Lax(quRU) cuU.

As B (qo, Ry) C U is compact and the eigenvalues of D(q) are not elements of @y for
q € U, we can obtain the following uniform bound on B, (qo, Rv),

L= inf |det (q“I,, — D(q))| > 0. (B.10)
a€B ax (a0, Ry ), €N\ {0}

Hence, for every q € B, (qo, Ru), we have

adj (qaln B D(q)) ‘
det (ann - D(q))

(@1, = D(@) |

max max

 |det (qalnl— D(a))| o ta™2n = D) e
<" qer, - D))

< O 1y + (D@D
< 4 (D@l

and, as ||(D(q)]|,.. is clearly uniformly bounded on the compact set B, (qo, Rr), we have

max

B= s H(qafn - D(q))*l‘
qEBZax(qo,RU),CVGNm\{O}

< 00. (B.11)

max

For all « € N™ and 8 € N” and 1 < j < n, we have a convergent power series expansion

Clpl@ =Y ¢, (a—a), (B.12)
’YEN"L
about q = qp.
Even stronger, for 1 < 5 < n, we have a convergent power series expansion,
Hitt,y;a)= > CZ, (a—ao)t?y”, (B.13)
a,yeN™ BEN"

about (tayaq) = (0707q0)‘
For every 1 < j < n, we determine an R; > 0, such that, for all t,q € C™ and y € C", the
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series (B.13) converges if
Hthax < ij Hq - qOHmax < Rj7 HYHmax < Rj' (B14)

We set Ry = min (Ry, Ry, ..., Ry,), take any 0 < R < Ry and define

M; = sup
A€B .y (q0,R),0EN™ BENT

() |a+0]
c, (q)‘ Rlo+8l,

Clearly the M; are finite and we set My = max (M, ..., M,). We define the function

G(t,Y)—M<<1—2>_1-...- <1—Z’;)_1 (1—;>_n—1—n;>.

Observe that G is holomorphic at (t,Y) = (0,0) with G(0,0) = 0 and 2—5(0,0) = 0. Hence
G has a convergent power series expansion

G(t,Y) = > Clait®Y?,
aeN™ eN
(,d)#(0,0),(0,1)

around (t,Y) = (0,0).
Let o € N™, i € N with («,i) # (0,0), (0,1), then we have

n+it—1 My
o)

i Rlal+i”

Hence, for any 1 < j < n, for a € N™, 3 € N such that, if « = 0, then |3] > 2, we have, by

the definition of M,
() My
)Cm,ﬁ)@’ < Fiard S Clalan;

for q € B, (qo, R).
We consider the functional equation

Y (t) = BnG(t,Y (t)). (B.15)

We prove that this equation has an unique solution Y'(t) which is holomorphic at t = 0
with Y (0) = 0. For this we apply the implicit function theorem to the function F(t,Y) =
BnG(t,Y) — Y. Observe that F(0,0) =0 and

OF

—(0,0) = -1 #0.
Hence we can apply the implicit function theorem and obtain an unique solution Y (t) of the
functional equation (B.15) which is holomorphic at t = 0 with Y(0) = 0. Let the Taylor
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series expansion of Y(t) at t = 0 be given by

Y(t)= Y Bat® (B.16)
aeN™\{0}

Since Y is a solution of the functional equation (B.15), the coefficients B, are determined
uniquely by the recursion

B = B ((Clor ) tar )0y s B Do+ (Bar) i) (B.17)

for @ € N™\ {0}, where the polynomials M, are the same as in recursion (B.9).
We prove the following inequality by complete induction with respect to the partial order <
on N™,

bm(q)’ < B, (B.18)

(e}

for every 1 < j <n and q € B, (qo, R), for all o € N™ \ {0}.

Let us fix a q € B,y (qo, R), take any o € N™\ {0}, and assume that for all o/ < « inequality
(B.18) holds for every 1 < j < n. Then we have, by applying inequality (B.4) to equation
(B.9),

max ‘bﬁf)(q)‘ SnH(ann - D(q))_l‘

1<i<n

max

Mo {((jgzﬁﬂ(q))(agg)eL(a);(bgp(q))cw<a""’ (bgp(q)>a’<a]

q))a/<a,...,(

<nBM, ((C(OC'7|/3|))(O/,5)€L(01) 5 (Ba’)o/<a PRI (Bo/)a’<a>
:BOH

max
1<i<n

<nB max M, [(’C(i) (q)D

1<i<n

(o B)EL(@)’ (

where, in the second inequality we used the definition of B (B.11) and the fact that the poly-
nomials M, have positive coefficients, in the third inequality we use the induction hypothesis
(B.18), and in the last equality we used equation (B.17).

By complete induction, we conclude inequality (B.18) holds for all 1 < j < n and q €
Eﬁax(qo,R), for every aw € N™ \ {0}. Determine py > 0, such that the Taylor expansion
(B.16) converges if ||t||max < po. Take any 0 < p < pp, then we have

Z Bop® < 0. (B.19)
aeNm\ {0}

Take a 1 < j < n and define, for o € N\ {0}, the function

Y (¢, a) = b (@)t
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which is holomorphic on U x C™ and hence, also holomorphic on the compact set
S = Binax(0,9) X Bpax (0, R). (B.20)
Let || - ||, denote the supremum norm on S, then we have, by inequality (B.18),
VIS, < Bap!®l,
and therefore, by equation (B.19),

S VI < oo
aeN™\{0}
We conclude that
it = > Y9tq= Y (gt (B.21)
aeN™\{0} aeN™\{0}

converges uniformly on S, defining a complex function holomorphic on the interior of S. [

Remark B.5. It is straightforward to extend Theorem B.4 to include parameters. That is, we
write b = (by,...,bs) for some s € N*, set H = H(t,y;q,b) and assume that the conditions
in Theorem B.4 hold for all b in some fixed open set V' C C*. Then the obtained series
y(t; q, b) converge locally uniformly in (t,q,b) at (t,q,b) = (0, qo, bg) for (qo,bg) € U x V.



Appendix C

The QRT Mapping

In this section we discuss the QRT mapping, first introduced in Quispel, Roberts and Thomp-
son [74]. We denote

x
X=1=xz],
1
and take square matrices
a; Bi i
Ai=10 & G- (i=1,2)
Ki Ai Hy

The QRT mapping is the 18-parameter family of mappings given by

f1(y) — 2 fa(y) 91(T) — yg2(7)

=T/ y="—"""—", C.1
Foly) — o hsy) 02(®) — y0s(®) (1
with
fi(x) 91(z)
f@)=| f2(2) | = (4X) x (A1 X), 9(z) = | g2(2) | = (ATX) x (AT X).
f3(z) g3()
Such a mapping has an invariant given by
I(z,y) = a0y + Bor®y + vo® + doxy® + eoxy + (o + Koy® + Aoy + po
Y a1 x2y? + By + a2 + fay? + erxy + G+ k2 Ay +pr
that is,
I(z,9) = 1(7,y) = I(z,y). (C.2)

Conversely, the invariant defines the QRT mapping, via the following geometric process.
Consider the pencil of quadratic curves

{I(z,y) = Arep-

199



200 APPENDIX C. THE QRT MAPPING

Given a point (zg,y0) € P x P, write A = I(zg,yo) and let [; be the line (z,y) = (x,yp) in
P x P. Consider the curve C defined by I(x,y) = A, then (Zo, yo) is the unique other point on
the intersection of C and I; in P x P. Similarly let I3 be the line (z,y) = (To,y), then (Zo, 7y)
is the unique other point on the intersection of C and l. Of course (zo,yo) — (To,yy) now
coincides with the QRT mapping.

Let us write P = I(z,y) and

A:ao—alP, B:ﬁo—ﬁlp, D:50—51P, G:’)/O—"}/lp, E:€0—61P, (CSa)
K:/io—lﬂjlp, L:)\Q—)\lp, Z:C()—Clp, U:,U,()—/le, <C3b)

then, by equation (C.2), we have

Az?y?® + Bx*y + Day? + Go* + Exy + Ky* + Zx + Ly + U = 0, (C4)
AZ*y® + BT’y + DTy* + GT° + ETy + Ky* + ZT + Ly + U = 0, (C.5)
AT + BTy + DT + G + Exy+ K7* + Zz+ Ly + U = 0. (C.6)

Subtracting equation (C.4) from (C.5) and equation (C.5) from (C.6) we obtain respectively,

@—2)(AZ+2)y* +B@+2)y+Dy* +G (T +2)+ Ey+Z) =0,
G-vy) (AZ*(G+y)+BT*+ DT (§+y) +ET+ K (T+y)+ L) =0.

Excluding the cases T = x and y = y, we obtain

_ Dy’ +Ey+ 7 _ Bz’ + Ez+ L
T=—2T— &5 5  ~> Y=-"Y—- ———S = - (0-7)
Ay’ + By + G AT’ + DT+ K
If the various parameters A, B, ..., L, Z in this system are plain complex numbers, this has

been called the asymmetric McMillan map in latrou and Roberts [39], as it is indeed an
asymmetric extension of the classical McMillan map [62]. To summarise the discussion so far,
given particular values (xg,yo) € P x P, let (,,, Yn)nez be the sequence generated by the QRT
mapping. Then, by calculating P = I(x,yp) € P, we can associate a particular asymmetric
McMillan map (C.7), specified by parameter values (C.3), such that (., yn)nez is generated
by this McMillan map. We remark that the associated asymmetric McMillan map depends
strongly on the particular initial values (zg,yo) € P chosen.

Our main use of the above observation is in fact in opposite direction. We interpreted
the QRT mapping as a system of ¢-difference equations on a given g-domain. To construct
solutions to this system, we take any g-periodic function P(t) and instead solve the simpler
system given by (C.7), subject to P(t) = I(z(t),y(t)). The obtained solutions (z(t),y(t))
then satisfy the original system of ¢-difference equations defined by the QRT mapping. The
justification of the last step is given by the following lemma.

Lemma C.1. The mapping (C.7), with (C.3) where P = I(z,y), coincides with the QRT
mapping (C.1).

Proof. Note that P = I(x,y) is essentially (C.4). By reversing the above calculation we find
that (C.5) and (C.6) hold as well, in particular we recover (C.2). Eliminating P from equation
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(C.4) and the first equation in (C.7) gives the time evolution of z in (C.1). Eliminating P from
equation (C.5) and the second equation in (C.7) gives the time evolution of y in (C.1). [

C.1 Linearisable QRT mappings

If A= B = D = 0, then the autonomous system (C.7) is linear. We therefore consider a
special type of QRT mapping, specified by the parameter conditions

ag =a1 = o = 1 =0 =01 = 0. (C.8)

We call such a QRT mapping linearisable. Equations (C.7) become the following system of

linear equations

Tra+oy=-2 T4yt op- L (C.9)
cV="@  TtytT=-4 :

“Solving” this system is straightforward, we first look for an equilibrium solution (zeq, Yeq),
that is, a solution invariant under the time evolution, so

E A E L
2SUeq + 5yeq = _5’ 2yeq + ?‘Teq = _Ey
which gives
2KZ — FEL 2GL — EZ

=2 - =_=" -2 1
Tea = po gk YT TE2AGK (C.10)

Writing @ = xeq + x5 and y = yeq + Y, we can rewrite (C.9) as the following homogeneous

(Z) - (;}1 I?é_g— 1) G:) ' (C.11)

The next step involves diagonalising the matrix

-1 _g
M = E E2 5 (012)

K KG

system,

and we hence consider the associated characteristic equation

2 E?

|M — X[| = A +<2—KG>)\+1—O, (C.13)
which generically does not have a solution in C(P).
To overcome this limitation we could set P = coA + ¢1 + ¢o/A where A = A for some well
chosen cg, ¢1,c2, to guarantee that equation (C.13) has a root in C(A), leading to a nice
parameterisation. However the calculations quickly get out of hand, so we illustrate this
process by example in (3.2.1). Once the general solution of (C.9) is found, we substitute
it into equation (C.4), which forces us to fix the value of one free parameter as is done in
equation (3.28). Then, by Lemma C.1, we obtain the generic solution of the QRT mapping
subject to conditions (C.8). Note that we assumed E? — 4GK # 0 to obtain the equilibrium
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solution (C.10). The case E? — 4GK = 0 is delicate and requires a separate analysis. We
discuss such a case in Section 3.2.3.



Appendix D

Proofs of Results in Section 5.3

In this Appendix we discuss the proofs of Propositions 5.3.1, 5.3.2 and 5.3.3. As the method
of proof is identical to that of Proposition 5.2.5, we only discuss the major steps in each case.

D.1 Proposition 5.3.1

We calculate the monodromy corresponding the solution (f, g) = (f1, ¢(®Y), meromorphic
at t = 0, defined in Proposition 3.1.1, where we assume the corresponding conditions (3.6) on
the parameters. We write

bsbg — brbg
t) = fo+ fit+ fot> + ..., = :
JO =fo+ Sit+ /2 Jo bsbe (b7 + bg) — brbs(bs + bg)
bsbg — brb
g(t) = go+ gt +got* + ..., 9o o6 T

- b5+b6—(b7+b8)'

Lemma D.1. Upon fizing nonzero meromorphic functions s3°(t) on C*, satisfying

s°(qt) = Sias®(t), a=q 'fy', &=

|
=%
I\

|

fori e {1,2}, there exist unique W5°(z,t) and V°(z,t), such that

Y (z,t) = U(z,1) (S?;(t) s;(t)) 7

defines a fundamental solution of Yamada’s Laz pair L (4.82), where WS°(z,t) and WS (z,t)
are holomorphic at (z,t) = (00,0), with U$°(c0,0) = 1 = ¥ (0, 0).

We write
DE(2) = (D5 (2), DF2(2)) 1= 0 (2,0),

203
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then

1 1
DX*qz)=(1—— ) (1— — | D?
P = (1= 5) (13 20

and hence, by Lemma D.1,
1 1 1 1
Di(z) = —_— —_— .
0 (Z) (<b52”b627q>007<b7275827q)00>

0,(qbsz, gbez) 0
0 04(gb7z, qbgz) 1

We define

To0(2 1) = U®(2,t)P®(2)", P>¥(2):= ( > , (D.1)

then
T0(2,0) = ((gbsz, qb62; @)oos (qb72, qbs2; @)oo -

Lemma D.2. Upon fizing a nonzero meromorphic function s°(t) on C*, satisfying
$(qt) = at2(t), a=q7'fyl,

there exists, for any choice of 08’0, 0871 € C, an unique V(z,t), such that

V() = LOUED, €=,

defines a solution of Yamada’s Laz pair L (2.21), where U (E,t) holomorphic at (&,t) = (0,0),
with
U(0,t) =clo+c it +0O(t*). (t—0)

Furthermore Dy(z) = ¥(z,0) satisfies the degree two model equation (4.51) with parameter

values o = oll, defined in (5.27).

We use Lemma D.2 to define a fundamental solution Y(z,t) = s%(¢)¥%(¢, t) of Yamada’s
Lax pair L (2.21), with
V0(E0) =y (& 00),
and we define

\:[10700(5’ t) = \110(57 t)Q(§7 0(1)1)7

which gives

O(€,0) = (& 0p).
Following the matching procedure, as outlined in Section 5.2.5, we find

Uoo0(z, 1) = W€, 1),
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and hence
Y®(z,t) = Y9(2,t)P(z, 1),
where
P(z,t) = Q (f.gn) (eq(qbszaquZ)l 0 > ssi:((tt)) 0 (D.2)
’ £ 0 0 0,(gbrz, qbgz) 0 ‘Z%.;é? ' '

This is consistent with the notation in Section 4.9, where

co(t) := s° () WL(0,8), cy(t) = s°(£)W3(0, 1),

G(t) = sT°(1) W5 (00, 1), G(t) = s3°(£)W5° (00, 1).

Proposition 5.3.1 is now easily derived.

D.2 Proposition 5.3.2

We calculate the monodromy corresponding to the solution (f,g) = (f1, (%) meromor-
phic at ¢ = 0o, defined by equation (3.15). We write

_b5+b6—(b7+b8)

t) = T fotT2 4 _
JO=for Aot ot e fo bsbg — brbs
- - bsbe(br -+ bs) — brbs(bs + b
gty =go+ gt F gt 24+, go = 5b6(b7 + bg) — brbs(bs 6)’
bsbg — brbs

and we assume the corresponding conditions (3.6) on the parameters.

Considering the coefficients of the auxiliary equation (4.99) at z = 0, we have

Y0(t) = fo(fogo — 1)gbsbebrbsgy 't° + O (),
Y1(t) = fo(fogo — 1)q*(bsbs + brbs)t® + O (¢°)
Y2(t) = fo(fogo — g’ got® + O (£°),

ast — oo. Hence (4.99) is regular singular at ¢ = oo, with exponents {b5qu_lgo_1, b7b8q_1go_1}.

Lemma D.3. Upon fixzing nonzero meromorphic functions s;

(t) on C*, satisfying
(qt) = 0,880(t), B=q'gg', 01="bsbs, &2 = brbs,

for i € {1,2}, there exist unique \Tl(l)(z,t) and \T/g(z,t), such that

S0 g0 g (S0 0
P =0 () ).

defines a fundamental solution of Yamada’s Lax pair L (2.21), where (I\l(l)(z7 t) and (I\lg(z, t) are
holomorphic at (z,t) = (0,00), with ¥{(0,00) = 1 = ¥(0, c0).
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We write
DR(=) = (DR (=), DY (2)) 1= (2, 0),
then
DY g2) = : DY (2),
(1 — qbs2)(1 — qbgz)
PO (g2) = : DY (2),

(1 — qbr2)(1 — qbg=z)
and hence, by Lemma D.3,
D§(2) = ((abs. gb67: D)oo (abr7, 457 0)ec) -

We define

= = 04(qbsz, qbgz) 0
U0z ) =00z, t)PY(2), PYz ::(‘1 ’ , D.3
(2,1) (2, 0)P(2) (2) 0 0 (qbr2, qbs )" (D.3)

~ 11 L1 -1
\IJO’OO 0) = . . .
(2,0) <<b5z,bﬁz,q>m,<b7z,bgz,q>w>

Lemma D.4. Upon fizing a nonzero meromorphic function $*°(t) on C*, satisfying $*°(qt) =
Bt28(t), there exists, for any o0,c0.1 € C, an unique (&, t) such that

then

Bz ) =500, €=7,

defines a solution of L (4.82), where 1;(5, t) is holomorphic at (§,t) = (00, 00), with
P(00,t) =G0 + ot L+ O (t72) . (t — o0)
Furthermore c/l\o(f) = {b\(ﬁ, o0) defines a solution of the second order q-difference equation

1 1
)+~ a4 07 b b ) e () €7 d)

+q A=A —b e byt (1 = b e d(6/q) = 0. (D.4)

Note that equation (D.4), upon scaling

—~ _ N 1 1 1 1
a(€) = 8OyE ), 56 = (bgbgbqu) ,

I

coincides with the degree two model equation (4.51) for y(z), with parameter values o = o,

as defined in (5.28). We hence use Lemma D.4 to specify an unique fundamental solution
YO(z,t) = 5%(t)U>(,t) of L (4.82), such that

U2 (€,00) = 5.(E)y° (€715
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To transition from (§,t) = (o0, 00) to (£,t) = (0,00) in the (£, ¢) plane via t = oo, we set

T0(€, 1) = 0,(ghi€, gbat, gbs€, qba) U= (£,6)Q(€7;5L,),

which gives
T0(¢, 00) = (gh1&, qbal, qbs€, qbal; @)™ (671 5L).

Via the matching procedure, as outlined in Section 5.2.5, we find
00 (2, 1) = U0(¢, 1),

and hence
Y(z,t) = YOz, t)P(2,1),

where

<‘n§
—~
~
N2

~ 0 R + -1
— ZoobsZ abaZ ab, 2 | @) 0 LS|
P(th) 0(1 (qbl t7qb2t7qb3t7qb4t> 0 /S:)o((t? P (Z) Q <270'oo> .

52

This is consistent with the notation in Section 4.9, where

eb(t) == SO TY(0, 1), A1) = 59 TY(0, 1),
a(t) = ()T (0, 1), A1) = ()T (00, ).

Proposition 5.3.2 is now easily derived.

D.3 Proposition 5.3.3

We calculate the monodromy corresponding to the solution (f,g) = ( f (1’1),9(1:”), meromor-
phic at t = 0o, defined by equation (3.15). We write

) biby — bsby

t)y=fat+ fo+ fit 1+, 1= ’

f(t) = fat+fo+ fr J b1ba(b3 + ba) — b3ba(b1 + b2)
B biby — bsb

g(t) =g-at+go+ot " +..., 9-1 o

- b1 + b — (bs + bs)’

and we assume the corresponding conditions (3.11) on the parameters.
Consider the coefficients of the auxiliary equation (4.99) at z = 0, we have

Yo(t) =qg 1 (f-19-1 — DEE+ O ("),
n(t) = q9%1(f-19-1 = Dalg+ 1) ft” + O (%),
Yo(t) = qg*1(fo19-1 — 1)g* 241" + O (),

as t — oo. We therefore rescale



208 APPENDIX D. PROOFS OF RESULTS IN SECTION 5.3

then the rescaled equation for ¢y(t) is regular singular at t = oo, with exponents {1, '},

and hence with resonance. A direct calculation shows that ¢ = oo in in fact an apparent

singularity. As usual we leave it to the reader to choose 3°(t), nonzero and meromorphic on

C*, at their pleasure.

Lemma D.5. For any choice of ¢yp,¢01 € C, there exists an unique J(z,t) such that
Y(z,t) = 3()0(z, 1),

defines a solution of Yamada’s Lax pair L (2.21), where 121\(,2, t) holomorphic at (z,t) = (0, 00)
with
P(0,t) =Co0 +Coat T +O (7). (t— )

~

Furthermore, dy(z) = 1¥(z,00) defines a solution of the second order q-difference equation
(1 —gbsz)(1 — gbez)(1 — gbrz)(1 — gbsz)do(q2)
+ [—(1 +q) + q(bs + bg + by + bg)z — (b1ba + bgb4)q22] do(2) + qdo(z/q) = 0. (D.5)
Note that equation (D.5), upon scaling,

do(z) = s«(2)y(2), s4(2) := (qbs2, qbsz, qbrz, qbsz; q) s ,

coincides with the degree two model equation (4.51) for y(z), with parameter values o = oy,

defined in (5.29). We hence specify an unique fundamental solution Y0(z,t) = 3°(¢)0°(z, t)
of Yamada’s Lax pair, such that

(I\lo(z, 00) = 5.(2)y°(2; 8.

We now make the transition from (z,t) = (0,00) to (§,t) = (0,00) via the line ¢ = oo in the
(z,t) plane, by setting

VO(2, 1) = 0,(qbsz, bz, qbrz, qbsz) " WO(z,1)Q(2; 53,
which gives

N 1 1 1 1 \!
\P0,00 - = - = = . ocof ..l .
(Z,OO) <b52”b62’b72’bgz’q>oo U) (270'0)
Lemma D.6. Upon fizing meromorphic functions 57°(t) on C*, satisfying
So(at) = 0@t (1), b1 =) dp=o—
fori e {1,2}, there exist unique \/I}fo(f,t) and @g"(f,t) such that

7o == (T ).

defines a fundamental solution of Yamada’s Laz pair L (4.82), where \Tffo(ﬁ,t) and \Tlgo(ﬁ,t)
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are holomorphic at (£,t) = (00,00), with (00, 00) = 1 = U (00, 00).

We write R R R R
D) = (D€, DF2(6)) = (&, 0),
then
oo,1 1 1 oo, 1
D0 = (1- ¢ ) (1- ) DT €/
B (e) = (1 - b;) ( - blg) B2 (¢/g),

and hence, by Lemma D.6,

Soorey (L1 11
D) = (<b1£’b2€’q>oo’ <b3§7b4£’q>oo>‘

We define

J,00,0 _ J00 o -1 o0 = eq(
TN ) = U2 )P, PT(E) "( 0 04(qbs€, qbaé)

then R
U220(,0) = ((gb1€, qbat; q) 5L, (qbsé, qba&; ) ) -

Via the matching procedure, as outlined in Section 5.2.5, we find
WO (2, 1) = TU(E, 8),

and hence
Y®(z,t) = Y9(2,t)P(z, 1),

where

Ga0) 0
~ _ I\ Ao (2
P(z,t) = 04(gbsz, gbsz, gbr 2, qbg2) 1Q (z; O'(I]I) P (Z) (go(;t) ggo(t)> .

s9(1)
This is consistent with the notation in Section 4.9, where
cp(t) =3 ()90, 1), cj(t) = 3°()3(0,1),
G (t) == 37 (1)U (00, 1), () == 85 (£)W5° (00, t).

Proposition 5.3.3 is now easily derived.

qbi€, qba§) 0 >
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