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ABSTRACT 

Osteoarthritis (OA), characterised by progressive joint-wide pathology, is a major 

health problem accounting for 48% of people living with chronic pain. There are no 

treatments to slow OA progression and symptom managing therapies are at best 

moderately effective. This failure results from a poor understanding of the 

mechanisms that drive OA pain. Animal models are widely used to study OA pain 

molecular pathways, but pre-clinical findings fail to translate into effective 

therapeutics for patients. In part this may be because animal models have poorly 

defined phenotypes not mapped to specific sub-types of human OA.  

This research aimed to define the relationship between joint tissue pathology, pain 

behaviour and gene expression in the dorsal root ganglia (DRG), over time comparing 

models of post-traumatic OA (DMM) and inflammatory arthritis (AIA), and identify 

differences in what drives pain.  

DMM and AIA ultimately displayed similar hallmark histopathology of OA in late 

stage disease. However, each model had distinct temporal patterns of pathology; 

associations between articular cartilage, synovium and bone pathology; and risk 

factors for progression. Both models displayed sensitisation (tactile allodynia, 

mechanical and thermal hyperalgesia) and altered gait (reduced hindlimb weight 

bearing, changes in stride length). However, the severity and temporal pattern of 

occurrence were model-specific. At each phase of OA development, DRG gene 

expression changes were also model-specific. It was predominantly synovium and 

bone pathology that were significantly associated with altered DRG gene expression 

and pain behavior, but differentially in the two models. The DRG expression changes 

associated with altered pain behaviours were also model specific.   
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Combined these findings demonstrate that DMM and AIA are phenotypically unique 

models of OA, defined not only by initiating cause, but temporal pattern and inter-

dependence of joint pathology, pain characteristics, and molecular drivers. The results 

suggest that the mechanisms regulating joint pain are specific to the disease 

pathophysiology, and confirm the importance of mapping pre-clinical findings to 

specific human disease phenotypes. This challenges the current way animal models 

are used to investigate OA pain mechanisms and test therapeutics. 
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CHAPTER 1:  Introduction and literature review 

1.1 Osteoarthritis 

1.1.1 Prevalence and disease burden 

Arthritis is a general term used to describe a range of musculoskeletal conditions 

characterised by inflammation and/or damage of the joints. The most prevalent form 

of arthritis is osteoarthritis. Osteoarthritis (OA) is a complex progressive disease of 

joints that results in pain and reduced mobility. It is a major health problem world-

wide, with hip and knee OA ranked the 11
th

 highest contributor to global disability

(1). The global prevalence of radiographically confirmed knee OA is 3.8% (2). In the 

USA, 33.6% of adults aged 65 and older suffer from OA (3). In Australia, 15.3% of 

the population is affected by arthritis, and 58.9% of those affected have OA (4) . OA 

is not just a disease of the aged; approximately 64% of OA sufferers are in the 

working age population (15-64 years) (5). In a recent survey 68% of arthritis sufferers 

reported that their arthritis is badly managed, translating to persistent pain, disability, 

impact on work, family and finances (6). The persistent nature of OA means that 

sufferers live with the disease for a significant portion of their lives and typically 

develop a chronic pain state. In fact, OA is the major reported cause of chronic pain, 

accounting for 48% of those living with chronic pain (7). Chronic OA pain negatively 

impacts both physical and emotional function, leading to depression and reduced 

social participation (8). All of this results in a huge social and economic disease 

burden. 

The health system expenditure associated with arthritis exceeds expenditure on heart 

disease, depression, diabetes and asthma. In Australia it was estimated to be $4.2 
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billion in 2007, with OA accounting for over $1.9 billion (5); in the UK the disease 

burden cost was estimated at £3.2 billion in 2002 (9); and in the USA the total health 

expenditure attributable to joint replacements alone was estimated at US$42 billion in 

2009 (10). 

Despite the huge public health impact of this disease, there are still no effective 

therapies for treating or preventing OA. Based on the most recent systematic reviews 

of all randomised clinical trials, current therapy options for the management of hip 

and knee OA are at best mild to moderately effective and offer only short-term relief 

of symptoms (11). The exception to this is total joint replacement (TJR) surgery, 

which accounts in part for the huge financial burden of this disease. However, TJR is 

not an option when small joints are affected, and a significant proportion of patients 

that undergo TJR, especially of the knee joint, still report persistent pain (12). Yet, 

excluding TJR, no advances have been made in how we treat the pain of OA since the 

introduction of non-steroidal anti-inflammatory drugs (NSAID) at the turn of the last 

century. Current recommendations for non-surgical management of knee OA include 

biomechanical interventions, intra-articular corticosteroids, exercise, weight 

management, strength training and oral and topical NSAID (13). 

1.1.2 The pathophysiology of OA 

Joints are organs with a biomechanical function that comprise cartilage, subchondral 

bone, synovium, capsule, ligaments, tendons and muscles (figure 1.1). Each of these 

tissues is in part made up of extracellular matrices that determine their individual 

structure and biomechanical function. For example, the physical properties of articular 

cartilage are imparted by its extracellular matrix (ECM), which comprises a collagen 

fibre network that enmeshes large hydrophilic proteoglycans, the major one being 
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aggrecan, that provide resistance to mechanical compression and contribute to the low 

surface friction necessary for normal joint function (14). 

Figure 1.1. Schematic diagram of the knee joint 

Diagram depicts normal joint tissue components (left) compared to osteoarthritis 

(OA) joint tissue pathology (right). 
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All joint tissues are affected to a greater or lesser extent during the onset and 

progression of OA. In some tissues such as the articular cartilage the predominant 

change is progressive degradation and loss while in others like bone there is net tissue 

formation with resultant subchondral thickening and marginal osteophyte formation. 

OA is no longer thought of as a disease of individual joint tissues, the new paradigm 

is to consider that it is a failure of the “joint organ” (figure 1.1). Understanding what 

drives the pathology in different components of the joint, and how these interact and 

change with time and/or disease stage is critical to developing new approaches to 

manage, treat and ultimately cure OA. A great deal has been learned in the last 

decade, in large part through the development and study of genetically modified mice, 

about the molecular mechanisms underlying the pathological change. In the following 

sections I will summarise some of the key mechanisms that contribute to OA 

pathology in various joint tissues. 

1.1.3 Articular Cartilage 

Articular cartilage (AC) is comprised of chondrocytes enmeshed in a collagen rich 

extracellular matrix (ECM) bed. It is a complex tissue with unique properties that 

present numerous challenges in the face of damage and the need for repair, with little 

capacity for self-regeneration. AC is hypocellular, with chondrocytes making up only 

5 – 10% of the wet tissue weight (15). Chondrocytes are cytoplasmically isolated and 

rely on paracrine and autocrine communication (16). Yet chondrocytes are 

responsible for the production and maintenance of the ECM. AC is both aneural and 

avascular, relying on diffusion for metabolite and nutrient exchange (16).  

Cartilage ECM is made up primarily of collagen and proteoglycans, the most 

abundant by mass being aggrecan (15). Collagen is a major component of many 
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tissues including AC, bone, tendons, ligaments and muscle, but the specific subtypes 

and their fibrillar arrangement varies. Collagen is the most predominate protein in AC 

making up 30-40% of the tissue wet weight, the composite type II/IX/XI fibrils 

forming an oriented meshwork in the ECM, giving AC its tensile strength (17). 

Normal ECM in all tissues undergoes continuous remodelling. Matrix 

metalloproteinases (MMPs) are a family of more than 25 enzymes involved in normal 

tissue remodeling as well as many inflammatory and other pathological processes, 

associated with degeneration. These proteinases cleave ECM proteins and soluble 

messenger molecules such as cytokines and chemokines. The MMPs involved in 

articular cartilage degradation are the collagenases (MMP-1, MMP-8, MMP-13), 

gelatinases (MMP-2, MMP-9) and a distinct group of metalloproteinases belonging to 

the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motif) 

family – aggrecanase 1 and 2 (ADAMTS-4 and ADAMTS-5, respectively) (18). 

Understanding the role of MMP’s and ADAMTS in joint disease development has 

been a major focus of OA research.  

1.1.3.1 Aggrecan 

Aggrecan is a primary component of articular cartilage ECM. It is a large 

proteoglycan that consists of a protein core backbone substituted with many sulfated 

glycosaminoglycans. This imparts a high negative charge density that attracts water 

and when entrapped in the collagen network provides cartilage with the ability to 

resist compressive forces. The ADAMTS proteins are a family of zinc-dependent 

matrix metalloproteinase enzymes several of which cleave the aggrecan core protein 

with high efficiency at specific sites, in particular the interglobular domain whereby 

the entire glycosaminoglycan bearing region and load-bearing capacity is lost (19, 

20). It is evident in cartilage from all species including humans, that it is cleavage at 
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the ADAMTS-susceptible sites that is responsible for the majority of pathological 

aggrecan loss both in vitro and in vivo (20). 

The ADAMTS proteins are made up of an N-terminal pro-domain, a catalytic domain, 

a disintegrin domain, one or more thrombospondin (TS) motifs, a cysteine-rich 

domain and a spacer domain of variable length. The two principal aggrecanases, 

ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2) have been cloned and 

characterised (21, 22). ADAMTS-4 is the shortest member of the family with only 

one TS motif, while ADAMTS-5 has two. Interest was initially focussed on 

ADAMTS-4 after researchers demonstrated its regulation by inflammatory cytokines 

in joint tissue (23, 24). However it has since been shown that ADAMTS-4 knockout 

(KO) mice demonstrate similar susceptibility to cartilage degradation in OA as wild 

type (WT) mice (25). In contrast, deletion or inactivation of ADAMTS-5 significantly 

reduces stimulated cartilage aggrecan loss in vitro and in inflammatory and OA 

models in vivo, indicating it is the principle aggrecanase in mouse cartilage (26, 27). 

Mice deficient in both ADAMTS-4 and ADAMTS-5 do not show any developmental 

abnormalities, and have similar cartilage protection as ADAMTS-5 KO mice in 

surgically induced OA (28). Exactly which of these two ADAMTS proteins is the 

major aggrecanase in human cartilage is still under investigation (29). Furthermore, 

studies in mice deficient in both ADAMTS-4 and ADAMTS-5 have demonstrated 

that other aggrecanases may also play a role under specific conditions (30).  

Interestingly, ADAMTS-4 and 5 differ with respect to gene regulation. ADAMTS-5 is 

expressed in human chondrocytes and synovial fibroblasts and is not reliant on 

induction, whereas ADAMTS-4 expression requires induction by pro-inflammatory 

cytokines (31). Differential regulation has similarly been seen in MMPs, where 
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induced transcription occurs for all but MMP-2 and 11, which are constitutively 

expressed (32, 33).  

In addition to its role in cartilage degradation through cleavage of aggrecan, 

ADAMTS-5 may serve other physiological functions even though some studies would 

suggest that ADAMTS-5 KO’s do not differ phenotypically from WT’s (28). More 

recently investigators have looked at the expression profile of ADAMTS-5 during 

embryogenesis and in adult tissue (34). In adult tissue, there is constitutive expression 

of ADAMTS-5 in smooth muscle cells, mesothelium, glomerular mesangial cells, and 

of particular interest with regard to OA in the dorsal root ganglia, and schwann cells 

of the peripheral and autonomic nervous system. The findings of this study suggest a 

wider physiological role for ADAMTS-5 than that of articular cartilage degradation 

and its intensely investigated role in the development of OA. The lack of evidence of 

any functional disturbances or abnormalities in ADAMTS-5 KO’s suggests that its 

absence during development in an unchallenged adult null mouse may be 

compensated by one of several related ADAMTS proteases that may function as less 

efficient proteoglycanases. 

1.1.3.2 Collagen 

The most abundant collagen type in AC is type II, making up 90-95% of the collagen 

mass and playing a critical role in maintaining its integrity, as has been demonstrated 

in transgenic mice (35). Like aggrecan, type II collagen degradation is a prominent 

feature of human OA cartilage. Degradation of type II collagen leads to damage of the 

collagen network and is a critical step in AC erosion in OA (36). It has been 

demonstrated that type II collagen can only withstand limited degradation before 

resulting in irreversible cartilage damage in murine models of arthritis (36). A 

generalised weakening of the collagenous network and subsequent swelling of AC 
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was initially demonstrated in humans and a number of animal models of OA (37-39). 

Subsequently, type II collagen degradation was characterised as a localised process in 

two murine models of spontaneous OA, occurring only in sites adjacent to focal areas 

of AC degeneration (40).   

MMPs play an important role in this process of collagen degradation. In vitro studies 

have demonstrated that cartilage collagenolysis relies on MMP activity (41). MMP-1, 

MMP-8 and MMP-13 are collagenases secreted by chondrocytes that have the 

capacity to cleave fibrillar collagens (type II/IX/XI) with resultant fragmentation of 

fibrils. Of these, MMP-13 has received the greatest attention due to its up regulation 

in human OA, greater efficiency at type II collagen cleavage (42) and a demonstrated 

primary role in the release of collagen from human OA cartilage (43).   

Much work has been done to characterise the exact role of the collagenases in AC 

degradation. Postnatal induced over expression of MMP-13 in mice leads to arthritis 

characterised by cartilage erosion (44). MMP-13 KO mice demonstrate abnormalities 

in cartilage absorption (45) and fracture healing (46). In a surgical model of OA, 

MMP-13 KO mice demonstrated chondroprotection that was not associated with any 

reduction in aggrecanolysis, changes in chondrocyte hypertrophy or osteophyte 

development (47), confirming that cartilage structural damage depends on MMP-13 

activity and suggesting MMP-13 inhibition as a potential therapeutic target for OA. 

In addition to the MMP’s other proteases, such as cathepsin K, have emerged as 

important contributors to the cartilage degradation process in OA and along with 

ADAMTS-5 and MMP-13 are considered major targets for development of future 

novel therapeutics for OA (48). The exact role these collagenolytic enzymes play in 

the complex process of AC degradation is still under investigation. In a preclinical 

anterior cruciate ligament transection (ACLT) model, inhibition of cathepsin K 
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resulted in protection of SCB integrity, protection against cartilage degradation and a 

reduction in osteophyte formation (49). There is also evidence cathepsin K degrades 

AC in naturally occurring equine OA (50). Cathepsin K KO mice are protected 

against cartilage degradation and SCB changes following surgically induced OA (51). 

More recently, increased expression and activation of cathepsin K has been identified 

in human OA cartilage using immunohistochemistry and PCR techniques (52). 

1.1.3.3 Tissue inhibitors of metalloproteinase 

Tissue inhibitors of metalloproteinases (TIMPs) are specific MMP inhibitors that are 

involved in the regulation of local MMP activities within tissues (53). Of the 4 

mammalian TIMPs, TIMP-3 not only inhibits MMPs but has also been shown to be 

effective at inhibiting aggrecanases (ADAMTS-4 and 5) (54). Consistent with this, 

TIMP-3 KO mice have increased spontaneous age-dependent aggrecan loss and OA-

like cartilage damage compared with WT mice (55).  

 

1.1.4 Subchondral bone 

In addition to articular cartilage changes, subchondral bone remodelling is a 

significant feature of OA joint pathology that is now recognised as playing an 

important role in disease progression and pain (56-58).  

Bone has the unique capacity to rapidly alter its structural organisation in response to 

changing mechanical forces, and this has been demonstrated in people with hand and 

knee OA (59). These alterations are not uniform across all periarticular bone, and 

occur in two phases – a destructive phase followed by a productive phase (60). The 

remodelling process commences with the activation of bone resorption that is 

mediated by osteoclasts. Osteoclasts are a highly specialised lineage of monocyte-
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macrophages capable of removing mineralised bone matrix. Bone resorption is 

followed by bone formation that is mediated by osteoblasts. Under normal 

physiological settings, these two activities are coupled such that normal bone mass is 

maintained. Bone modelling occurs when these two processes are not coupled, 

resulting in a change in bone architecture and volume (increase or decrease), and a 

modification of the structural properties of cortical and trabecular bone. In addition, 

periarticular new bone formation can occur via endochondral ossification, where new 

bone replaces cartilaginous matrix. 

Periarticular bone comprises subchondral cortical bone, subchondral trabecular bone, 

and bone at the joint margins. While varying with disease stage and topographically 

within the joint, OA is typified by a general net increase in periarticular bone volume 

with subchondral cortical plate thickening, thinning of vertical trabeculae, a reduction 

in bone mineral content, focal increased remodelling and resorption, and the 

development of marginal osteophytes and enthesophytes (61). Imaging (radiography, 

DXA, MRI) of OA joints reveals various subchondral bone (SCB) changes including 

sclerosis, cyst formation, bone attrition, and bone marrow lesions (BML).  

Radiographically, SCB sclerosis appears as an increase in bone density beneath the 

weight-bearing joint surface. Bone attrition refers to the flattening of the SCB surface 

in areas of increased loading where remodelling is occurring. BML are a non-specific 

MRI feature that represents bone marrow necrosis, fibrosis and trabecular 

abnormalities. They appear to occur in areas of increased bone density (sclerosis) 

where there is excessive loading (62).  

A strong association exists between SCB attrition and BML in the same sub region, 

suggesting that increased bone stress, as indicated by the presence of BML, leads to 

increased SCB remodelling and subsequent development of bone attrition (63). 
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Importantly, in knee OA, articular cartilage loss is evident in areas of bone attrition 

(64), and the coupling of bone and cartilage turnover in OA may provide a key 

therapeutic target (61). SCB remodelling and the resolution of SCB cysts has been 

associated with an improvement in clinical outcomes in patients with advanced post-

traumatic OA (65). In a longitudinal multi-centre study of knee OA, enlargement of 

BML in patients with knee OA lead to an increased risk of cartilage loss in the 

associated region (66). Animal model studies have also linked SCB changes with 

disease progression. In mono-iodoacetate (MIA) induced OA, osteoclasts have been 

implicated in both SCB and calcified cartilage resorption, and early inhibition of 

osteoclast activity resulted in resolution of joint pathology and pain (67). 

 

1.1.5 Inflammation and the immune system 

OA was traditionally viewed as a non-inflammatory arthritis owing to the relatively 

small white cell populations observed in synovial fluid samples, compared to that 

seen in rheumatoid arthritis (68). This is despite early observations that synovial 

inflammation was a component of the disease (69). In the past few years the paradigm 

has shifted, and it is now widely accepted that inflammation not only exists as part of 

OA pathology and symptomology but plays a significant role in the pathogenesis (70) 

with evidence of a relationship between synovitis and the initiation (71) and 

progression of cartilage erosion (72). Both imaging and histological techniques have 

been used to characterise synovitis, and a number of studies have now identified a 

correlation between joint inflammation and disease symptoms such as pain (73, 74), 

and joint function measures such as walking and stair climbing (75). However, the 

exact pathogenic mechanisms involved in the development of synovitis and the 

relationship with other joint tissue changes is still under investigation (76). 
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A recent review has highlighted the prevalence of increased inflammatory cells in OA 

synovial tissues, including macrophages, T-cells and mast cells (77). Current evidence 

suggests that activation of the innate immune system is an essential driver of joint 

inflammation (especially synovitis) and a central feature of OA. A number of 

molecules released into the damaged joint can act as damage associated molecular 

patterns (DAMPs), activating the innate immune response via pattern-recognition 

receptors such as the toll-like receptors (TLRs) (78). These include ECM breakdown 

products, for example, hyaluronan (79) and fibronectin (80); as well as plasma 

DAMPs, for example, 1 microglobulin and 2 macroglobulin (81), that enter the 

joint subsequent to vascular leakage and exudation. These DAMPs have been shown 

to induce macrophage production of inflammatory cytokines and growth factors, 

implicated in both the inflammatory response and cartilage breakdown (81). Although 

a number of cell types within the joint are capable of responding to DAMPs 

(including chondrocytes), activation of synovial macrophages and the complement 

cascade (82), are thought to be the two main drivers for cytokine production, the 

development of synovitis and propagation of further cartilage damage (83). 

Cytokines (such as tumour necrosis factor (TNF)-, interleukin (IL)-1, and IL-6), and 

chemokines, such as chemokine ligand (CCL)3 (84), CCL18 (85), CCL19 (86), 

CCL20 (87), have all been implicated in the pathogenesis of OA (88). Interestingly, 

these cytokines also have demonstrated pro-algesic effects that could contribute to 

joint pain. The role of inflammatory cytokines and activation of the innate immune 

response in OA joint pain pathogenesis is currently under investigation (89). 
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1.1.6 OA phenotypes 

It is clear from the above summary that OA is a disease of the whole joint, and the 

degree of different tissue involvement and the predominant pathophysiological 

mechanisms that are active in any individual joint and/or patient may vary. The 

OARSI FDA OA Initiative defined OA as “a progressive disease of synovial joints 

that represents failed repair of joint damage that results from stresses that may be 

initiated by an abnormality in any of the synovial joint tissues, including articular 

cartilage, subchondral bone, ligaments, menisci, peri-articular muscles, peripheral 

nerves or synovium”, ultimately resulting in “the breakdown of cartilage and bone, 

leading to symptoms of pain, stiffness and functional disability” (90). This definition 

articulates the common end point of OA and our current understanding of the disease, 

but it does not reflect its complexity and the different forms that it can take. Both 

genetic (91, 92) and environmental factors such as age, gender, obesity, abnormal 

biomechanical loading (93) and joint injury can contribute to the development of OA 

(94-97). Each factor contributes differently to the pathobiological profile of the 

disease (98). OA can be localized to a single joint or generalized, and can be 

categorized on the basis of numerous disease characteristics including; etiology, 

pathophysiology, joint/s affected, stage of joint disease, presence of specific 

symptoms, and rate of progression.   

This concept of different subtypes or ‘OA phenotypes’ has been explored clinically 

(99) and epidemiologically (100), with a number of phenotype classifications 

proposed. For example, radiographic imaging can be used to identify clinically 

relevant OA phenotypes that may represent relevant subgroups for clinical trial 

selection (101), and distinct phenotypes of multi-joint and knee OA have been 

identified in population subgroups based on race and gender, which may influence 
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response to therapy (102-104). There is a move towards stratifying OA patients into 

sub-types based on different OA phenotypes, to improve clinical trial outcomes and 

develop a more mechanism based approach to treating OA (105, 106). However, 

clinicians and researchers are yet to reach consensus on which phenotype 

classifications are relevant for promoting the translation of preclinical research into 

effective therapeutics. 

 

1.1.7 OA therapeutic targets 

Synovial joints are organs, and therefore OA involves pathology in multiple tissues. 

Joint pathology changes include articular cartilage damage, subchondral bone 

sclerosis, joint hypervascularisation, synovial inflammation and fibrosis, osteophyte 

formation, meniscal and ligament degeneration and injury (70). However, articular 

cartilage degradation (including proteoglycan loss) remains a key feature of the 

structural changes that take place in the OA joint. For this reason much research has 

focused on articular cartilage and the role of chondrocytes in OA (41, 107-114). 

Significant progress has been made in our understanding of the pathogenesis of OA 

(115-121). Researchers believe this knowledge will enable the development of 

effective disease modifying compounds for the treatment of OA (122-127). This 

strategy for developing DMOADs is based on the theory that reducing structural joint 

damage (in particular, reversing articular cartilage degradation) will improve joint 

mobility and relieve the clinical symptom of pain. Consequently, many compounds 

that target specific components of OA pathology (SCB, AC, inflammation) have been 

developed and validated in pre-clinical OA models, and some have progressed to 

clinical trials (128). However, outcomes from the 13 published clinical trials 

conducted between 1999 and 2014 have been poor, and there are still no FDA 
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approved DMOADs (Table 1.1). Interestingly, the pre-clinical studies that informed 

these clinical trials all demonstrated some improvement in structural damage, but only 

one study reported on symptomatic outcomes (pain and weight bearing). 

This puts into questions the current approach for developing OA therapies.  The 

paradigm shift of thinking about OA as a failure of the joint organ that can manifest as 

multiple disease phenotypes has not been adopted into the way we use preclinical 

studies to inform selection of potential future therapeutics. For this to occur, 

consideration needs to be given to – (a) selecting animal models that replicate a 

human phenotype of the disease and allow longitudinal evaluation of disease initiation 

and progression; (b) identifying the tissues that play a role in disease symptomatology 

(pain and reduced mobility); and (c) mapping structural changes to clinical markers of 

the disease (pain, gait, weight bearing, mobility). This means that if our aim is to 

develop DMOADs that treat the disease, not just the pathology that develops in a 

particular joint tissue, joint structural changes can’t be studied in isolation of pain. 

The greatest obstacle to this approach is the complex relationship between joint 

structural pathology and pain, and the huge gaps in our current understanding of the 

pathophysiology of OA pain.  
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Table 1.1. Clinical DMOAD trials in knee osteoarthritis* 

Includes only placebo-controlled, peer-reviewed and published studies since 1999 

* Adapted from Malfait, A. M., & Little, C. B. (2015). On the predictive utility of animal models of osteoarthritis. Arthritis Res Ther, 17, 225. doi:10.1186/s13075-015-0747-6 

TRIAL 
 

TARGET DISEASE MODIFICATION SYMPTOMATIC OUTCOME 
(secondary endpoint) 

PRECLINICAL VALIDATION IN OA 
MODEL 

STRUCTURAL OUTCOME SYMPTOMATIC 
OUTCOME 

Oral salmon calcitonin 
(129) 
 
 
 
 

SCB JSW: No effect: 
biochemical markers (CTX-I & 
CTX-II) effect not significant 

WOMAC: no significant effect
  

Rat MNX and MNX/OVX (130) 
 
Dog ACLT (nasal delivery) (131) 
 
DMM in mice overexpressing 
salmon calcitonin (132) 

Joint protection, serum CTX-II  
 
Joint protection (no effect on 
osteophytes) 
OARSI score 7 weeks after DMM 

N/A 
 
N/A 
 
N/A 

Intra-articular rFGF18 
(133) 

Cartilage 
(anabolic) 

Primary endpoint not met ( 
cartilage loss in central medial 
femorotibial compartment 
MRI)  

WOMAC: improved Rat MMT (134) Increased thickness of the articular 
surface (medial tibial plateau).  
Degeneration scores  

N/A 

Strontium Ranelate (135) SCB JSW: fewer radiographic 
progressors  

Beneficial effects on symptoms 
at high dose only 

Dog ACLT (136) 
 
Rat MMT (137) 
 

Cartilage lesions, SCB thickening and 
Serum CTXII  
Cartilage degeneration   
SCB remodelling  

N/A 
 
N/A 

SD6010, Oral selective 
iNOS inhibitor (138) 

Cartilage JSW: no effect No effect on pain or function Dog ACLT (139, 140) 
 
Collagenase induced arthritis (Nos2 
null mice) (141) 
Rat MMT model (142) 

Cartilage lesions Osteophytes  
Synovitis  
Cartilage PG loss Cartilage lesions 
Osteophytes  
N/A 

N/A 
 
N/A 
 
Reversal of WBD & 
allodynia after 3 
hours  

Zoledronic acid(143) 
 

SCB Reduction in total BML area 
on MRI 
 

VAS pain scores   
But not KOOS 

Rat MIA (144) Rat MMT (145) 
a) prophylactic 
b) therapeutic (early or late 
intervention) 

 
Joint preservation 
Partial preservation, diminishes with 
late intervention 

 
Reversal of WBD  
Partial effect-
diminishing with 
late intervention 

Vitamin D3(146) 
 

SCB 
Cartilage 

MRI cartilage volume: no 
effect 

WOMAC: no effect  Rat pMNX (147) 
 
Osteochondrosis/OA in pigs (148) 

Inconclusive  
 
No effect: OA lesion incidence or 
severity  

N/A 
 
N/A 

Licofelone 
(5-LOX and COX inh) 
(149) 

Inflammation JSW: no effect WOMAC: pain improved Dog ACLT (150)  MRI cartilage volume  
Cartilage damage and osteophytes  

N/A 

Risedronate(151) 
 
Risedronate (152)   
 
Risedronate(153)   

SCB JSW: cartilage degradation and 
bone resorption markers  
JSW: no effect uCTXII  
 
Preserved integrity 

WOMAC  
 
WOMAC: no effect 
 
N/A 

DH guinea pig (154) – up to 24 wks 
NZW rabbits ACLT (155) 
 

OARSI score:  no effect, serum CTXII   
Loss of cartilage SCB damage 
serum CTXII    
 

N/A 

Broad-spectrum MMP 
inhibitor (156) 

Cartilage JSW: no effect No effect on pain Rat MIA (157) 
STR/Ort mice (158) 

Cartilage damage  
Cartilage & bone damage  

N/A 
N/A 

Doxycycline (159)  
 

Cartilage JSN: slowed in ipsilateral knee  No effect on pain Dog ACLT (160) 
 
DH guinea pig (161) 
DMM (mouse) (162) 

Femoral condyle damage  
Tibial plateau or osteophytes no effect  
Cartilage volume (MRI) loss  
Cartilage loss 

N/A 
 
N/A 
N/A 
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Clinically, a direct relationship between global joint pathology severity and pain 

intensity has not been demonstrated, and there is no established threshold of joint 

pathology at which pain starts to develop. There are however, specific joint tissue 

changes that occur with OA that are associated with pain. These include synovitis and 

bone marrow lesions (57, 74). But there is no established cause-effect relationship to 

assist investigations into how different tissues and processes lead to pain. 

This lack of association can in part be explained by the multitude of intrinsic patient 

factors, which determine an individual’s pain response. These include genetic (163, 

164), psychosocial (165), biomechanical (166) and comorbidity factors (97, 167). The 

other important consideration is that the relationship between joint pathology and pain 

is likely to be different for different OA phenotypes, and over the course of the 

disease. For example, following joint injury, inflammation may be the key driver of 

pain. As the inflammation resolves and joint disease progresses, other structural 

changes may take over and alter the characteristics of the pain response. In other 

words, early phase hypersensitisation may look very different to late phase 

hypersensitisation at a biomolecular level, but the measured pain outcome (eg 

allodynia) may look the same. A better understanding of pain mechanisms and the 

pathophysiological pathways involved in OA pain will bring clarity to the relationship 

between joint pathology and pain.  

In the next section I will review what is known about joint innervation and OA pain, 

focussing on the knee joint as a dynamic load-bearing joint, which is commonly 

affected by OA.  
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1.2 Sensory innervation of the knee joint 

1.2.1 Knee joint afferents 

Innervation of the rodent knee is derived from the femoral nerve, the sciatic nerve and 

the obturator nerve. The knee joint is innervated predominately by the medial articular 

nerve (MAN) and the posterior articular nerve (PAN). The PAN is the larger of the 

two nerves and originates from the tibial nerve branch of the sciatic (168). 

The cell bodies of the afferent neurons innervating the knee joint reside in the lumbar 

(L1-L5) dorsal root ganglia (DRG), with the majority in L3. In the rat 88% of knee 

joint afferents are located in L3 and L4 (169). However, knee afferents make up a 

very small percentage of the total DRG neuron cell bodies. 

Researchers have used different methods to identify and characterise the afferent 

innervation of the mouse knee joint. Ebinger (170) identified the number and 

distribution of nerve fibre size in the medial and posterior articular nerves of the 

mouse knee using electron light microscopy. However this histological study did not 

differentiate between sensory (nociceptor and mechanoreceptor fibres) and 

sympathetic neurons.  

Although the sub population of sensory neurons that innervate the knee joint and 

transmit nociceptive input to the spinal cord have been mapped and characterised 

(171-178), including the proteins and neuropeptides that are altered in animals with 

diseased joints, there is still no clear understanding of the disease mechanisms that 

drive and modulate these pain signals in the OA joint.  

Histological studies demonstrate that articular cartilage is avascular and aneural, so it 

is assumed that this tissue cannot be directly involved in the generation of pain. 

However, subchondral bone, periosteum, synovium, ligaments, and the joint capsule 
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are richly innervated with sensory neurons that have the capacity to transmit 

nociceptive stimuli.  

Sensory stimulation of normal joint tissues does not generate pain, as demonstrated by 

the ability to move a normal joint through a range of motions without any pain 

sensation. This suggests that, at least for movement-evoked knee pain, local and 

central mechanisms alter sensory signals in such a way that a previously benign 

stimulus (either sub-threshold or non-nociceptive) becomes painful. 

 

1.2.2 Nociceptors 

Nociceptors are specialised nerve endings that conduct noxious signals to the dorsal 

horn of the spinal cord. There are two main types of nociceptors, differentiated by the 

diameter of their afferent fibres and, the type and magnitude of stimulus required to 

activate them. High-threshold mechanoreceptors (HTM) are innervated by thinly 

myelinated, fast conducting (5-30m/s) A fibres that respond to intense mechanical 

stimulation. Polymodal nociceptors (PMN) are innervated by unmyelinated, slow 

conducting (0.5-2 m/s) C fibres that respond to intense mechanical stimulation, 

temperatures exceeding 42
O
C and irritant chemicals. It is thought that Afibres 

conduct sharp localised pain while C fibres conduct poorly localised, diffuse pain 

(179). A number of ion channels located in primary afferent nociceptors act as 

sensory transducers, and are responsible for the detection of physical stimuli. The 

most important of these are the poly-modal Transient Receptor Potential (TRP) 

channels (180). These channels are permeable to cations and structurally similar to the 

superfamily of voltage-gated channels, although not strictly voltage dependent. 
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1.2.3 Vanilloid 1 receptor 

Vanilloid 1 receptor (TRPV1) is a member of the TRP subfamily of cation channels. 

It is a polymodal receptor activated by three pain-producing stimuli, vanilloid 

compounds (eg capsaicin), moderate heat (temperatures > 42
O
C) and low pH (< 5.9). 

Its highest expression is in sensory neurons where it acts as a polymodal detector of 

noxious stimuli (181). Sensory neurons from TRPV1 KO mice do not respond to 

capsaicin and temperatures < 50
O
C in vitro. Mice lacking functional TRPV1 show 

normal physiological and behavioural responses to noxious mechanical stimuli, 

however they display an absence of thermal hypersensitivity in the setting of 

inflammatory pain models such as carrageenan (182). TRPV1 plays an important role 

in both chemical and thermal hyperalgesia, in models of acute inflammatory pain and 

neuropathic pain (183). A role in neuropathic pain is further supported by studies 

reporting increased levels of TRPV1 expression in uninjured DRG following 

peripheral nerve injury (184, 185). These studies suggest TRPV1 may play a role in 

the development and maintenance of chronic pain, beyond its thermoreceptor function 

and contribution to mechanical hyperalgesia. Interestingly, stimulation of the TRPV1 

receptor causes an acute neurogenic response that is characterised by vasodilation, 

plasma extravasation and hypersensitivity; however, there is significantly reduced 

blood flow in wild type mice compared to TRPV1 KO mice when capsaicin is 

injected directly into the knee joint (186).  

TRPV1 is implicated in arthritis pain but the exact mechanism/s by which it 

contributes to the pain of OA is not understood. TRPV1 participates in the 

development of chemical and thermal hyperalgesia in the acute phase, and mechanical 

hyperalgesia in the chronic phase, of adjuvant induced arthritis; via sensitisation of 

receptors by inflammatory mediators released in arthritic joints (187). Conversely, an 
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attenuation of inflammatory arthritis (both inflammation and pain) has been 

demonstrated in TRPV1 KO mice (188). TRPV1 receptors identified in human 

synovium provide a target for developing anti-TRPV1 therapeutics, and the efficacy 

of some of these has been demonstrated in MIA models of OA (189, 190). 

Intra articular injection of the axonal tracer Fast Blue and immunohistochemistry 

techniques have been used to identify the sub population of afferents from mice knee 

and ankle joints that express TRPV1, with 40% of these afferents expressing the 

receptor (191). Other investigators have also used Fast Blue to identify the cell bodies 

of sensory afferents from the rat knee joint, and investigated the expression of 

calcitonin gene-related peptide (CGRP) and TRPV1 receptors in this sub-population 

of DRG neurons (192). Using the antigen-induced arthritis (AIA) model in the rat to 

study the expression of TRPV1 in the lumbar DRG, investigators were unable to 

demonstrate any up regulation of TRPV1 expression (193), and the proportion of 

TRPV1 protein-positive lumbar DRG neurons did not increase in the course of acute 

and chronic AIA in the rat. However, it has been reported that TRPV1 receptor 

expression in small and medium-sized neurons in DRG is up-regulated during 

inflammation (194). Other studies have demonstrated an increase in TRPV1 protein-

positive neurons with acute inflammation, but not an increase in TRPV1 mRNA 

levels in DRG neurons (195, 196). In combination these findings support the 

suggestion that TRPV1 is one mechanism by which peripheral sensitisation develops 

following inflammation. 

A murine adjuvant induced arthritis model was used to investigate the role of 

extracellular-regulated kinase (ERK) and TRPV1 in primary afferent neurons (197). 

Preferential activation of ERK in TRPV1-positive neurons innervating the joint was 

demonstrated and TRPV1 KO mice showed reduced activation of ERK in the sensory 
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neurons. Changes in p-ERK expression in the sensory neurons correlated with 

changes in thermal and mechanical hyperalgesia. This study provides evidence that 

TRPV1 may contribute to the pain of inflammatory arthritis via an ERK-mediated 

pathway. 

The relationship between fibroblast-like synovial (FLS) cells and sensory neurons that 

innervate the knee joint has been investigated, using a co-culture system of FLS cells 

from AIA knee joints and DRG neurons (198). The proportion of DRG neurons 

expressing neurokinin-1 (NK1) receptor-like immunoreactivity was upregulated in the 

co-culture. Furthermore, the expression of TRPV1 was up regulated when DRG 

neurons were co-cultured with FLS cells from chronically inflamed joints.  

Changes in TRPV1 expression in DRG and the role of this receptor in sensitisation 

and OA pain have not been studied using a post-traumatic model of OA. 

 

1.2.4 Transient Receptor Potential Ankyrin-1 (TRPA1) 

TRPA1, the wasabi receptor, is another member of the transient receptor potential 

family of ion channels, and a sensor of pungent chemicals and environmental irritants 

such as mustard oil, garlic, cinnamon oil, clove oil and ginger (199, 200), and also 

plays a role in acute noxious mechanosensation and cold thermosensation (201, 202). 

It is specifically expressed in the inner ear (203), and trigeminal and DRG neurons, 

and is highly co-expressed with TRPV1 in small diameter peptidergic nociceptors. Its 

role in mechanical nociception remains controversial. TRPA1 has been shown to play 

a role in nociceptor excitability modulation and neurogenic inflammation at the site of 

tissue injury, and it may play a role in the transduction of high-threshold mechanical 

stimuli. TRPA1 KO mice demonstrate a higher mechanical threshold than wild type 

(WT) mice, and a deficiency in response to acute punctate cutaneous stimuli (202). A 
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small molecule TRPA1 inhibitor (AP18) has been used to investigate the role of 

TRPA1 in pain sensitisation. AP18 reverses Complete Freund’s Adjuvant (CFA)-

induced mechanical hyperalgesia in mice (204). In this same study TRPA1 KO mice 

did not show significantly increased acute mechanical thresholds, however they did 

develop CFA-induced hyperalgesia that did not respond to AP18. These findings 

suggest TRPA1 plays a role in sensitisation, but that a compensatory mechanism may 

exist in TRPA1 KO mice. It is unclear what molecular or cellular compensation 

mechanisms may account for these observations. The findings also suggest that 

TRPA1 may be involved in the maintenance and not the induction of mechanical 

hyperalgesia. Although TRPA1 and TRPV1 are co-localised and appear to interact 

functionally, an up regulation of TRPV1 has not been demonstrated in TRPA1 KO 

mice.  

These studies all implicate TRPA1 in mechanical hyperalgesia, despite other 

investigators failing to demonstrate a difference in mechanical thresholds between 

TRPA1 KO and WT mice (200). Overall, there is strong evidence that TRPA1 

contributes to inflammatory pain, and can be activated by inflammatory mediators 

such as bradykinin (205). TRPA1 KO mice have an impaired response to bradykinin 

injection and reduced bradykinin-induced mechanical hyperalgesia (200, 202). 

However, further investigation is needed into any role it may play in chronic pain 

states such as OA. 

 

1.2.5 Transient Receptor Potential Vanilloid-2 (TRPV2) 

TRPV2 is a structural homologue of TRPV1 that is insensitive to capsaicin but is 

activated by high temperatures, > 52
O
C. (206). Interestingly, nociceptors lacking both 

TRPV1 and TRPV2 have normal heat responses (207). TRPV2 is widely expressed in 
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neuronal cells, with strong immunolabelling detected in medium-diameter DRG 

neurons associated with A-fibers (208). The broader distribution of TRPV2 

compared to TRPV1, in a diverse range of neurons and non-neuronal tissue, suggests 

that it may contribute to more than just nociceptive processing (209). TRPV2 KO 

mice are susceptible to perinatal death but mice that survive do not demonstrate 

abnormal thermal or mechanical nociception (210). However, there is evidence that 

TRPV2 does play a role in peripheral sensitisation in inflammatory models (211), and 

in the development of mechanical hyperalgesia (212). More recent studies have 

suggested a role for TRPV2 in maintaining cardiac function (213, 214) and 

controlling cell tumour proliferation (215). 

 

1.2.6 Transient Receptor Potential Vanilloid-4 (TRPV4) 

TRPV4 is a polymodal receptor activated by hypotonicity, shear stress, innocuous 

heat (threshold temperatures >27deg), low pH and arachidonic acid metabolites (216-

218). Although widely expressed, its distribution in cochlear hair cells, vibrissal 

Merkel cells, sensory ganglia, free nerve endings & cutaneous A & C fibre terminals, 

suggests a primary role as a mechanoreceptor (219). 

TRPV4 KO mice show impaired osmotic sensation and sensitivity to acid (220), an 

increase in mechanical nociceptive threshold and altered thermal selection behaviour, 

but normal response to low threshold mechanical stimuli (221). TRPV4 agonists 

promote release of substance P and CGRP from central projections in primary 

afferents in the spinal cord (222), providing evidence for a role in nociception. 

TRPV4 mediates mechanical hyperalgesia following exposure to inflammatory 

mediators (223, 224) suggesting a more specific role for TRPV4 in acute 

inflammatory pain. The role of TRPV4 in chronic pain has also been investigated 
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using a neuropathic pain model (225), where it was shown that reduced expression of 

TRPV4 abolished Taxol-induced mechanical hyperalgesia and attenuated hypotonic 

hyperalgesia. 

 

1.2.7 The dorsal root ganglia  

Joint afferents cannot be differentiated histologically or immunochemically from 

other afferent populations. In order to study cell bodies in the DRG that innervate the 

knee joint retrograde labeling techniques have been used to differentiate this sub-

group of neurons. Retrograde axonal tracing techniques, where by a dye is injected 

directly into the stifle joint, can identify the sub population of sensory afferents within 

the somata of DRG neurons which innervate the structures of the knee joint.  

Salo & Tatton (226) identified cells in the DRG which innervate the mouse knee joint 

using in vivo retrograde tracing with Fluoro-Gold. They determined the size, number 

and distribution of the neurons that innervate the knee joint structures, but did not 

characterise the cells using immunohistochemical techniques. Salo & Theriault (169) 

later used retrograde tracing with Fluoro-Gold in combination with 

immunohistochemistry to characterise the number, distribution and neuropeptide 

content of cell body neurons in the DRG that innervate the knee joint of the rat. 

Following from this, retrograde tracing with Fluoro-Gold in combination with 

immunohistochemistry (labeling for the neuropeptides CGRP and substance P) was 

used to demonstrate an age-related loss of mechanoreceptors in the mouse knee joint 

(227). 
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1.3 Chronic Pain  

Although OA is described in terms of structural and biological joint pathology, the 

magnitude of the disease burden is not linked to these joint changes, but rather to the 

clinical symptoms (228). The most significant of these is pain, and yet pain is the least 

well-understood manifestation of this disease (229). 

 

1.3.1 Sensitisation 

Pain starts with stimulation of specialised nerve endings (nociceptors) and the 

subsequent transmission of signals along afferent peripheral sensory nerves to the 

spinal cord. From the spinal cord this signal is then transmitted via a number of 

pathways to the higher brain centres for processing into what is perceived as pain 

(Figure 1.2). But pain is not simply the passive transport of sensory signalling via 

encoded action potentials from one neuroanatomical location to the next with the 

eventual processing of such signals in the thalamas and cortex. All along this pathway 

are opportunities for intrinsic and extrinsic factors to influence the nature, amplitude 

and perceived location and duration of the original ‘pain’ signal. This discovery of 

nervous system plasticity has changed our understanding of pain (230). 

The spinal gate theory proposed by Melzack and Wall in 1965 (231) and the 

subsequent discovery of inhibitory control systems such as endorphins, enkephalins, 

and transcutaneous nerve stimulation, were early demonstrations of pain signal 

modulation at the level of the spinal cord and brain (232-242). In addition, others 

observed the enhanced signalling of peripheral nociceptors following injury, leading 

to a localised zone of ‘primary hyperalgesia’ (243-247). At the same time, Mendell 

and Wall introduced the concept of ‘wind-up’ in the dorsal horn neurons, by 

demonstrating that an increase in nociceptor signal frequency resulted in increased 
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action potential amplitude (248). These phenomena have all contributed to our 

understanding of pain modulation and hypersensitivity, however they do not fully 

account for the tactile allodynia (249), secondary hyperalgesia or temporal summation 

of pain that is observed with chronic pain (250).  

The idea of ‘central sensitisation’ came into play as researchers discovered that the 

majority of synaptic input to sensory neurons is sub-threshold, and that increasing the 

strength of this input or reducing inhibition, can result in profound changes to the 

functional properties of neurons (251-253). But, central sensitisation goes beyond a 

phenomenon based on activity dependent signal plasticity. Central sensitisation occurs 

after the period of initial nociceptive transmission, remains autonomous, is sustained 

beyond the initiating signal, and amplifies the response to non-nociceptor signals as 

well as nociceptor signals that originate from distant sights. We now know that 

changes to microglia, astrocytes, gap junctions, membrane excitability and gene 

transcription at the level of the DRG and spinal cord all contribute to central 

sensitisation development and the chronic pain state (254-258). 

Recent evidence supports the theory that both peripheral and central sensitisation, as 

well as endogenous inhibitory mechanisms, contributes to the chronic pain of OA. 

Peripheral sensitisation is thought to be mediated by nerve growth factor (NGF) (259) 

and pro inflammatory cytokines released after cell injury, such as prostaglandins, 

bradykinin, and TNF(260). Central sensitisation may be mediated by other 

inflammatory neuropeptides such as CGRP, Substance P, glutamate and vasoactive 

intestinal peptide (VIP) (261-264). The endogenous opioid and cannabinoid systems 

are the main inhibitory mechanisms that play a role in dampening the pain signal in 

OA (265-267). 
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Figure 1.2. Schematic diagram of the Pain Pathway 

The Pain Pathway describes the neuronal network that links the sensory inflow 

generated in peripheral nociceptor terminals with the conscious awareness of a painful 

stimulus. Tissue injury and inflammation alters the chemical environment of both 

peripheral and central nociceptor terminals, and heightens the activation threshold of 

these specialised neurons. In addition, a number of endogenous inhibitory controls 

exist that act as inhibitory modulators. 
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1.3.2 OA pain in humans 

A number of pain assessment tools have been used to assess pain in OA patients 

(268), including mechanical and thermal thresholds, range of motion, weight bearing 

and gait analysis (269). Patient self-reporting questionnaires, such as the Visual 

Analogue Scale (VAS), the McGill Pain Questionnaire (MPQ), and the Western 

Ontario and McMaster Universities Index of OA (WOMAC) are also important 

clinical assessment tools (270). 

The development of chronic OA pain is considered a maladaptive process that is both 

initiated and driven by a number of pathological processes involved in OA (271, 272). 

For the majority of OA patients, peripheral mechanisms (including inflammation) are 

thought to play a major role in pain development. In a subgroup of these patients the 

pain mechanisms are more complex, resulting in a pain syndrome that does not 

directly correlate with the severity of joint pathology, and that is driven by central 

processing and neuropathic mechanisms (273-275). These patients respond poorly to 

conventional therapies such as potent analgesics and joint arthroplasty. 

Researchers have yet to unravel these complex molecular pathways and better define 

the intricate relationship that exists between OA joint pathology and pain. In a multi-

center study that looked at the relationship between knee OA and sensitisation, 

evidence of sensitisation, as measured by mechanical temporal summation (MS) and 

pressure pain threshold (PPT), was associated with OA related pain severity but not 

with radiographic OA (276). This finding suggests that intrinsic patient factors, not 

just joint pathology, determine an individual’s OA pain phenotype. The idea that 

patients with knee OA exhibit increased sensitivity to painful stimuli at distant body 

sights has been demonstrated in a number of clinical studies. When OA patients were 

stratified into high versus low symptom severity based on the WOMAC, individuals 
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in the high group were more sensitive to heat, cold and mechanical (both blunt 

pressure and punctuate) stimuli, compared to the low symptom group and controls 

(277). OA patients also demonstrate somatosensory abnormalities that manifest as 

tactile hypoaesthesia and pressure hyperalgesia (278, 279). The growing evidence for 

a ‘neuropathic’ OA phenotype (280-284) has encouraged the development of 

assessment tools aimed at identifying patients with signs of central sensitisation (285), 

with the aim of developing a more targeted pain management approach for these 

patients (286-288). 

 

1.3.3 Mechanisms of OA pain 

We know that OA involves global joint pathology that leads to chronic pain and 

immobility. Historically, it has been assumed that joint pathology drives the pain of 

OA so the focus has been on understanding the pathobiology of OA and identifying 

disease-modifying therapeutics that will re-establish a normal joint environment, and 

thus remove the trigger for development of chronic pain. However, the mechanisms 

that drive and modulate the pain of OA are poorly understood and the exact 

biomolecular links between different aspects of joint pathology and pain, and how this 

may change over the course of the disease are still not known.  

Evidence of a co-dependent relationship between joint pathology and OA pain has 

only really been investigated in the context of inflammatory arthritis models (56, 289-

291). Despite the associations that have now been identified using advanced imaging 

(292-294), there still remains discordance between structural joint pathology and pain 

severity in people with OA (295). This can in part be explained by the psychosocial, 

genetic and biomechanical factors, which are also important determinants of the pain 

phenotype, and ultimately make the identification of any causal effects between 
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specific joint pathologies and pain, a significant challenge. Further validation of this 

clinical observation can be found in a naturally occurring model of OA. The 

relationship between OA pain and joint pathology has been investigated in the Dunkin 

Hartley guinea pig, which develops spontaneous OA. In this model, both 

histopathological and micro-CT determinants of joint degeneration correlated well 

with aging but did not correlate with nociception as measured by electrophysiological 

recordings (296). 

In human OA, strong associations have now been identified between pain and bone 

marrow lesions (57, 297, 298), synovitis (74, 299), and joint effusion (300, 301); and 

weaker associations between cartilage damage and pain (75, 302, 303). But, we are 

yet to identify which processes and joint tissues drive the development of chronic 

pain, and therefore should be targeted when developing therapeutics. More recently, 

gene array studies using different animal models have identified thousands of 

differentially expressed genes (304), suggesting a number of biomolecular 

mechanisms are working in concert to produce OA pain. It is likely that local, 

inflammatory and neurogenic mechanisms, as well as psychosocial factors all 

contribute to the pain of OA (271, 305, 306). 

Identifying local (joint specific) and peripheral mechanisms that mediate OA pain will 

allow for a more targeted approach to developing future therapeutics that are less 

likely to result in unwanted side effects (307). This strategy has identified a number of 

TRP channels, including TRPV1, TRPV4 and TRPA1; and the proteinase activated 

receptors PAR-1, PAR-2 and PAR-4, as potential intra-articular targets. 

The endocannabinoid and endogenous opioid systems both play a significant role in 

immune modulation (308) via a number of mechanisms including T cell signalling 

(309); and pain modulation (including OA pain) (310), and are emerging as novel, 
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joint specific therapeutic targets for OA . The antinociceptive activity of cannabinoids 

has been demonstrated in a number of animal models of arthritis (311-313). Systemic 

use of opioids is an important part of managing OA pain, however these potent 

analgesics have significant side effects. Emerging evidence about the complex role 

that the endogenous opioid system plays in pain (314), at the organ level (266, 315), 

the DRG (316) and spinal cord (317), suggests a more targeted approach is required 

(318, 319). 

1.3.3.1 Inflammation 

It is well established in both human and animal model studies that inflammation, and 

in particular synovitis, contributes to joint pathology and pain (320). Early 

electrophysiological studies investigating the effects of intra articular kaolin were able 

to demonstrate that acute synovitis reduced the activation threshold of A and C fibre 

sensory afferent neurons (321). A number of joint cells, including chondrocytes and 

synovial cells, express and respond to cytokines and chemokines that can mediate and 

amplify nociceptive signally (322). Pro-inflammatory cytokines, including TNF, IL-

1, and IL-6, are released by joint cells as well as sensory neurons and glial cells in 

the DRG and microglial cells in the dorsal horn, and have been shown to play an 

important role in joint pain. 

TNF is a pro-inflammatory cytokine involved in the generation of hyperalgesia 

associated with both neuropathy and inflammatory processes. TNF can rapidly alter 

neuronal excitability, and it can also mediate long-term changes in sensory neuron 

excitability via transcriptional and protein expression effects. For example, chronic 

exposure to TNF significantly increases the proportion of DRG neurons expressing 

TRPV1 (323). TNF can act directly on sensory neurons or indirectly via downstream 

targets such as the chemokine, monocyte chemoattractant protein-1 (MCP-1/CCL2), 

which is up regulated in sensory neurons following neuronal injury (324). 

Interleukins are an important family of cytokines that are reported to produce both 

rapid and delayed neuronal effects. Interleukin-1 is not only pro-nociceptive, 

mediating hypersensitivity in inflammatory (260) and arthritis pain models (325), but 

has also been shown to play a role in articular cartilage degradation, proteoglycan loss 
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and synovitis, in inflammatory arthritis and mechanical instability models of OA (83, 

326-328). In vitro studies have demonstrated that interleukin-17 (IL-17) increases 

DRG expression of TRPV4, and an antibody against IL-17 reduces secondary 

mechanical hyperalgesia in AIA mice (329). The anti-inflammatory cytokine, 

interleukin-10 (IL-10) also plays an important role in inflammatory pain, Recently it 

has been demonstrated that IL-10 producing macrophages mediate resolution of 

inflammatory hyperalgesia (330). 

DRG neurons express a number of chemokine receptors (331) suggesting that 

chemotactic cytokines also play a role in pain. In particular MCP-1 and its receptor 

(CCR2) have been implicated in a number of pain models (332-338), including OA 

where increased MCP-1/CCR2 expression correlated with movement-evoked pain in 

a post-traumatic model of OA (339). MCP-1 has also been implicated in up-regulating 

the expression and function of TRPV1 and the voltage-gated sodium channels, 

Nav1.8 in vitro (340). The peripheral voltage gated sodium channels Nav1.7, Nav1.8 

and Nav1.9 are all expressed in sensory neurons, with Nav1.8 preferentially expressed 

in DRG and trigeminal ganglia (341). Maladaptive changes in these channels are 

pivotal in mediating a number of chronic pain states. Recently, Nav1.7 and Nav1.8 

have both been shown to play a role in OA pain pathways in the rat MIA model (342).  

Angiogenesis has also been investigated as a mediator of OA pain (343). 

Inflammation is a key driver of angiogenesis, and this has been demonstrated in the 

synovia (344) and at the osteochondral junction (345) in OA joints. 

1.3.3.2 Neuropathic mechanisms 

Theories of the neurogenic origins of joint pain are summarized in a review by 

McDougall (346). Nociceptors respond to algesic chemical substances such as 

bradykinin, prostaglandins, leukotrienes, IL-1 and serotonin; and chronic excitation of 

nociceptors is dependent in part on this response, termed neurogenic inflammation. 

The role of activation of ‘silent nociceptors’ has been demonstrated in the context of 

joint injury and inflammation, whereby afferent fibers which are quiescent in normal 

joints are activated (347) and begin transmission of nociceptive signals to the central 

nervous system. In addition, early studies demonstrated a reduction in the activation 
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threshold of both C and Aafferents in inflamed joints, mediated via inflammatory 

neuropeptides such as CGRP (348). 

Substances released as a consequence of articular cartilage degradation may 

themselves play an indirect algesic role by influencing the release of neuropeptides 

from sensory neurons at the level of the dorsal root ganglia, and subsequently 

enhancing the release of algesic substances in the periphery. Conversely, sensitisation, 

and the associated release of inflammatory mediators such as substance P and 

cytokines, may also further contribute to the degenerative processes occurring in OA 

joints. 

Proteinase activated receptors (PARs) are a recently identified group of G-protein-

coupled receptors that offer a potential mechanism for linking attenuation of joint 

disease with alleviation of pain (349, 350). PARs are activated by proteinases released 

into tissues during inflammation, and demonstrate both pro-inflammatory and anti-

inflammatory properties. Currently four members of this family of receptors have 

been identified, and three of them are implicated in peripheral nociception (PAR-1, 

PAR-2, PAR-4). PAR-1 is expressed in mouse DRG, and its anti-nociceptive effect 

has only been observed in association with inflammatory pain (351). PAR-2 has been 

localized to sensory neurons, and is considered to have a pro-nociceptive effect that is 

mediated via TRPV1 (352, 353) and TRPV4 (222). PAR-4 expression has been 

demonstrated in rat DRG (354). PAR-4 is also expressed in rat (355) and mouse knee 

joints, where a pro-inflammatory and pro-nociceptive role was observed in following 

intra-articular injection of a PAR-4 agonist (349, 356). This is in contrast to a 

previous study that showed co-localisation of PAR-4 with the inflammatory 

neuropeptides substance P and CGRP in the rat DRG, and demonstrated an anti-

nociceptive effect for PAR4 in response to thermal and mechanical stimulation (357). 
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VIP is another inflammatory mediator that may play a role in the link between joint 

degeneration and pain in OA. Injection of VIP into the knee joints of rats results in 

synovial hyperaemia and pain (358). Unilateral injection of VIP into normal rat knee 

joints was demonstrated to cause a shift in weight bearing away from the injected 

joint as determined by force plate capacitance testing, and a reduction in paw 

withdrawal threshold of the ipsilateral hindlimb (263). In the MIA model, injection 

into the affected knee joint of the antagonist VIP6-28, diminished hind limb changes 

in weight bearing and increased paw withdrawal threshold.  

Electrophysiological studies have demonstrated enhanced afferent firing from normal 

rat knee joints after injection of VIP during normal and hyper-rotation of the joint 

(359). This VIP mediated sensitization was effectively blocked by pre-administration 

of VIP6-28. Using the MIA arthritis model the role of VIP and its antagonist VIP6-28 

was further investigated. Rats with MIA induced arthritis had significantly reduced 

afferent firing during normal joint rotation and during hyper-rotation of the affected 

knee when treated with VIP6-28, suggesting that VIP is released into OA knee joints 

and may contribute to joint pain. However, the role of VIP in OA pain has not been 

investigated using a post-traumatic OA model. 

Researchers have also attempted to define the relationship between pathology and 

pain using nerve injury models. These studies may provide some direction for further 

investigation into the relationship between OA pain mechanisms and OA joint 

pathology. Neuropathic pain is thought to involve nerve injury-induced specific 

changes to the DRG and spinal cord, but there is now evidence that neuropathic pain 

and neuroinflammation share similar mechanisms. The role of MMP-2 and MMP-9 in 

the pathophysiology of neuropathic pain has been studied using a well-characterised 

nerve injury model, L5 spinal nerve ligation (SNL) (360). MMP-9 demonstrated a 



 36 

rapid and transient up-regulation in injured DRG primary sensory neurons with 

concomitant activation of microglial and pain behaviour, consistent with an early 

phase of neuropathic pain. In contrast, MMP-2 demonstrated a delayed response to 

SNL in DRG satellite cells and spinal astrocytes, consistent with a late phase of 

neuropathic pain. The pro-inflammatory cytokines, TNF-and IL-1 are rapidly 

produced after tissue injury, and may play a role in the MMP-9 mediated initiation 

phase of neuropathic pain. Since both MMP-2 and MMP-9 are up regulated in human 

OA, the findings of this study highlight the importance of investigating the role of 

these metalloproteases in the pain of OA. 

Neuropathic pain mechanisms in OA have only been investigated in the MIA model. 

An increase in expression of activating transcription factor 3 (ATF-3) 

immunoreactivity in L5 DRG associated with early stage disease (day 8 and 14) and 

no change in L4 DRG was demonstrated in rats with MIA knee arthritis compared to 

controls (361). At day 8 this corresponded to reduced ipsilateral hind limb weight-

bearing and knee joint changes characterised by loss of proteoglycan, ghosting of 

chondrocytes, degeneration of subchondral bone plates with areas of bone loss and 

associated activation of osteoclasts and chondroclasts, and hyperplasia of synovial 

membranes associated with mononuclear inflammatory cell infiltrates. At day 14, 

increased ATF-3 in DRG also corresponded with reduced ipsilateral hind limb 

weight-bearing and, focal areas of pronounced ulceration of articular cartilage and 

superficial subchondral bone development within the affected joints. Since ATF-3 is 

described as a selective neuronal marker, specifically induced in sensory and motor 

neurons following nerve injury (362), these findings suggest an early phase 

neuropathy in the DRG innervating the affected MIA knee joints. However, the 

results of this study are difficult to interpret since retrograde axonal tracing studies 
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using fluoro-gold in the adult wistar rat have shown that 88% of knee joint afferents 

are in fact located in L3 and L4 DRG, with less than 10% residing in L5 (169). 

Pain related behaviours have been investigated and described in a number of OA 

models (363), however little attempt has been made to directly map these behaviours 

to specific joint histopathology changes or the mechanisms driving these changes.  

Fernihough et al investigated pain related behaviours in two OA models in the rat; 

partial medial meniscectomy and MIA injection (364). Histological evaluation of the 

knee joints in both models demonstrated progressive OA joint pathology development 

over a 28-day period. No comparison was made between the two models with respect 

to histological differences at time points before 28 days although the study did report 

on the initial period of acute inflammation and joint swelling seen with the MIA 

model up to day 7 post-injection. The study concluded that both OA models induced 

histological changes and pain related behaviours, (hyperalgesia, allodynia and 

reduced hind limb weight bearing) characteristic of human OA. However, response to 

pharmacological interventions (morphine, diclofenac, gabapentin and paracetamol) 

was only tested in the MIA treated animals because this model induced more robust 

and reproducible pain related behaviours. The investigators did not consider what 

impact the initial acute inflammatory response associated with the MIA model might 

have on later development of pain behaviour such as hyperalgesia and allodynia. 

Fast Blue Retrograde labelling was then used to identify cell bodies of primary 

sensory afferents from the knee joint of rats with MIA induced arthritis, and 

expression of CGRP and TRPV1 quantified in these labelled neurons (192). The 

majority of knee joint afferents were found to reside in the L4 DRG. Expression of 

CGRP and TRPV1 was greater in neurons innervating the knee joint than the general 

population of neurons across the whole DRG. L4 DRG of MIA mice showed an 
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increase in expression of both CGRP and TRPV1 compared to control mice, 

suggesting a potential role for CGRP and TRPV1 in the development of the pain 

behaviour associated with OA in the knee joint. 

The endogenous agonist for TRPA1, 4-hydroxy-2-nonenal (HNE), provides another 

example of how OA pathogenesis and OA pain mechanisms might share common 

pathways. HNE is a lipid peroxidation end product that is produced abundantly in OA 

articular tissue. HNE activates TRPA1, promoting acute pain, neuropeptide release 

and neurogenic inflammation (365). The formation of HNE is enhanced in 

synoviocytes from patients with OA (366-369). In addition, HNE induces 

transcriptional and post translational modifications of type II collagen and MMP-13 in 

human OA chondrocytes, contributing to cartilage ECM degradation (367). There is 

also evidence that HNE exerts a number of effects on human OA osteoblasts which 

alter their metabolic activity (366). 

 

1.3.4 Future therapies for OA pain 

Symptomatic OA therapies aimed at managing pain and improving mobility, are 

inadequate and not without side effects (370).  The options for OA sufferers are 

currently limited to non-steroidal anti-inflammatory drugs (NSAIDs), opioids, 

corticosteroids, visco-supplements (11), and a suite of nutriceuticals that have largely 

not been tested for efficacy or safety (371, 372). A number of new compounds that 

have demonstrated efficacy in animal models have failed to translate into safe and 

effective OA pain therapies for humans.  

NGF is one of the few novel therapeutic targets to emerge from pre-clinical research, 

which has lead to the development of an effective treatment for chronic OA pain that 

has entered Phase 3 trials. NGF was first identified as a trophic factor in sensory and 
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sympathetic neurons of the DRG (373). It is required in early embryonic development 

for sensory neuron maturation and survival, and plays a major role in the 

pathophysiology of inflammatory pain (374), including OA pain (375). NGF acts 

through two distinct types of cell-surface receptors, tropomyosin-related kinase A 

(TrkA) and p75. Peripheral sensory neurons, central nervous system neurons, as well 

as non-neuronal cells, such as macrophages and monocytes, all express TrkA. A 

number of mechanisms of action have been described for NGF. Following tissue 

injury and inflammation, pro-inflammatory cytokines are released by the damaged 

tissue and by activated immune cells. These cytokines stimulate the release of NGF 

from a range of cell types, which acts directly on peripheral sensory neurons via 

TrkA, to increase the excitability of these cells. In addition, activation of TrkA on 

non-neuronal cells results in the release of mediators that sensitise sensory neurons 

and alter the pain threshold (376). Up regulation of NGF in the knee joints of mice 

with surgically induced OA has previously been demonstrated immediately following 

surgery and in the chronic phase of disease development (264). More recently 

regulation of NGF by OA chondrocytes has been demonstrated in mice at the same 

time that OA-related pain develops (377).  

Despite the demonstrated efficacy of anti-NGF therapy in clinical trials, its 

contribution to OA pain, and the neurophysiological mechanisms involved, is still 

under investigation. Increased levels of NGF in synovial fluid (378), at the 

osteochondral junction (345) and in the synovium (379) of OA sufferers, suggests 

multiple mechanisms are involved, and this is supported by animal model studies that 

have investigated the role of NGF in knee OA pain. For example, it has been 

demonstrated that a greater proportion of DRG sensory neurons innervating the 

subchondral bone of the distal femur express TrkA compared to DRG that house 
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sensory afferents from the knee joint (380). More recently, the effect of increased 

knee joint NGF on local as well as remote evoked responses of spinal neurons has 

been studied to better understand the contribution of knee joint NGF to central 

(spinal) sensitisation (381). 

The complex nature of NGF’s role in mediating both inflammatory and neuropathic 

pain, has given rise to a number of potential applications for anti-NGF therapy (382). 

Targeting NGF has proven to be an effective strategy for tackling OA pain in pre-

clinical animal model studies (264) and in clinical trials (383-385). Phase 3 trials of a 

humanised anti-NGF antibody have show great promise in alleviating pain and 

improving mobility in OA sufferers (386-388), however, trials were temporarily 

suspended by the FDA from 2010 to 2012 due to an increased incidence of joint 

failure in trial participants. This was initially attributed to increased physical activity 

in the absence of joint pain leading to accelerated joint damage. Further investigation 

into possible mechanisms for this hypoalgesic effect, as well as the peripheral nerve 

safety of anti-NGF therapy, has been undertaken (389, 390).  

The story of NGF and its progression through the drug discovery cycle highlights the 

challenges of progressing pre-clinical research breakthroughs into effective clinical 

therapies. Many potential therapeutics fail the translation phase due to lack of efficacy 

or unforeseen side effects in the target species. The reasons for this are complex and 

reflect the gaps in our current understanding of OA pain (291). A major contributing 

factor has to be the poorly defined relationship between joint pathology and pain 

pathophysiology (272). A better understanding of this relationship would allow the 

classification of OA into phenotypes that reflect differences in clinical presentation as 

well as disease aetiology, and lead to the development of pain therapies that are 
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phenotype specific, and that can be trialled in a specific population of OA sufferers 

and at a specific stage of the disease (391).  

This targeted approach to developing and trialling OA pain therapies requires careful 

selection of pre-clinical animal models that best reflect the pathophysiology of a 

specific sub-class (phenotype) of the clinical disease. Yet, currently there is a 

mismatch between the animal models used to study OA joint disease and those used 

to investigate the mechanisms of OA pain. A review of animal models used to 

investigate OA joint structural damage as well as OA pain follows.  
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1.4 Animal models of OA 

The use of animal models is a powerful pre-clinical tool that allows more detailed 

investigation of the observations and associations identified in clinical studies. 

Information learned from pre-clinical models can then be used to inform better design 

and conduct of clinical trials. Animal models have advanced our understanding of OA 

pathobiology and symptomatology (pain), and have led to the development of novel 

disease modifying OA drugs (DMOAD’s). However, despite their efficacy in vitro 

and in pre-clinical models, most DMOAD’s have failed to translate into effective and 

safe treatments for human OA (128). The reasons for this lack of translatability are 

complex and highlight the need for better animal model selection criteria that are 

based on more than our current understanding of pathophysiological mechanisms 

(392, 393). 

In the case of preclinical research into OA pain, the animal models used differ with 

respect to joint pathology, disease progression, pain behaviour and response to 

therapy; and often do not reflect the human disease. In addition, there is a lack of 

consistency in two important areas; (1) the pain assays used to investigate pain 

mechanisms and evaluate potential therapeutics, and (2) the scientific reporting 

standards. This is despite the availability of numerous guidelines and 

recommendations (394-396). 

Many animal models have been developed to study the pathophysiology of the 

different arthritic diseases, in particular OA. With over 20 induction methods and at 

least 10 different species represented in the literature (397), there is no shortage of 

options for investigating the phenotype and molecular pathways of OA pain. 

However, there is still no consensus on what constitutes an ideal animal model for OA 

research (398), in particular the study of OA pain (399). 
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An ideal animal model is one that induces a consistent and reproducible disease 

phenotype, which reflects the human disease with respect to etiology and pathology; 

and is progressive over a suitable time frame to allow the study of different stages of 

the disease pathophysiology while still allowing a reasonably high throughput. The 

ideal animal is inexpensive, easy to house, manage and handle; is not dissimilar 

physiologically from humans (ie a mammal); and is large enough to allow multiple 

outcome measures to be performed, including those that mimic observed clinical 

symptoms such as pain (400). Rodents fit these criteria and with the added advantage 

of enabling the investigation of specific biomolecular pathways through the 

development of genetically modified strains; the mouse, is an ideal experimental 

animal (401, 402).  

The knee joint is the most commonly utilized joint in animal models of OA. It is 

readily accessible for both intra-articular injection and surgical intervention. It is also 

a clinically relevant joint to study, since OA most commonly affects the large weight 

bearing joints such as the knees and hips (3) as well as the joints of the hand (305). 

Animal models used to study OA pain can be broadly categorized into four main 

types: 1) Spontaneous, 2) Intra-articular injection, 3) Joint Injury (surgical instability, 

enzymatic instability, non-surgical instability, excessive/abnormal loading), and 4) 

Genetic modification (399). Spontaneous models mimic both age (296) and obesity 

(403) associated OA. Intra-articular models utilize irritant substances such as 

carrageenan and MIA that when injected into the joint elicit a severe inflammatory 

reaction and/or cellular (chondrocyte) injury or death, and direct tissue damage. 

Surgical instability models rely on partial or complete transection of one or more 

ligament of the knee joint, with resultant joint instability, altered 

biomechanics/loading, tissue degeneration and pain (404-406). These models attempt 
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to mimic post-traumatic OA, the sub class of human OA patients that acquire the 

disease following injury to joint structures such as the menisci, the anterior cruciate 

and collateral ligaments (407). The Collagenase model is a unique instability model 

that relies on the enzymatic breakdown of ligamentous tissue rather than surgery (408, 

409). Joint-injury also includes models where excessive or abnormal loading leads to 

joint injury over time, such as treadmill running and sub-failure joint loading (410). 

Examples of genetic modification models that as a result of a specific molecular 

derangement spontaneously develop OA include IL1- over-expressing rats (411), 

and Collagen IXa-1 deficient mice (412).  

All of these models differ greatly with respect to disease etiology and time course, 

joint pathology and pain outcomes, which impacts on their response to therapeutic 

intervention including genetic modification (as a proof of concept “specific molecular 

therapy”) (399, 413). These differences highlight the need for researchers to report on 

model specific outcomes and mechanisms, because effects may not be applicable to 

all OA, rather they may inform specifically on different sub-types of human OA 

(391).   

The investigation of OA pathophysiology has been conducted using a range of these 

animal models, but more recently there has been a shift towards surgical models that 

mimic post-traumatic OA and better reflect the human disease with respect to etiology 

and joint pathology changes (407, 413). In contrast, OA pain mechanisms have 

largely been studied using intra-articular injection models (291, 414). In addition, 

findings from inflammatory arthritis models have also been used to better understand 

the role that inflammation may play in the initiation and modulation of pain signaling 

in OA (415, 416). This diverse use of animal models highlights the complexities that 

arise when attempting to extrapolate key findings from pre-clinical studies. As it is 
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still unclear whether the differences in disease etiology, disease progression and joint 

pathology, between the models we use to study OA, are relevant to our understanding 

of OA pain and whether this is contributing to the failure to translate. 

Three pre-clinical arthritis models that have been widely used to investigate structural 

and symptomatic pathophysiology and therapeutic interventions are discussed in 

greater detail below. Not all of these have typically been considered physiologically 

relevant models of OA, but in the context of the preceding discussion on disease 

definition and phenotypes all three models provide some insight into understanding 

OA pain. Importantly, the different findings from these models highlights the 

significant gaps in our current understanding of the relationship between joint 

pathology and pain, and how it changes with initiating cause and disease progression. 

 

1.4.1 Mono-iodoacetate (MIA) induced arthritis 

The MIA model (417) is perhaps the most widely used, particularly by 

pharmaceutical companies, to investigate joint structural damage (histopathology) 

(418), pain and potential therapeutic targets (419, 420). MIA is an inhibitor of 

glyceraldehyde-3-phosphate dehydrogenase activity. Following intra-articular 

injection it induces widespread (depending on dose) chondrocyte degeneration and 

necrosis as early as day 1, osteoclast and osteoblast proliferation in subchondral bone 

by day 7, fragmentation and collapse of bony trabeculae by day 28, and large areas of 

bony remodeling by day 56 (418). Histological changes at day 14 include extensive 

focal areas of full thickness cartilage damage with complete loss of cellular detail and 

some loss of proteoglycan matrix, as well as visible marginal changes related to the 

growth of osteophytes (421).  
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The pain phenotype of this model is well described (291). Movement provoked pain 

behaviours have been demonstrated using the knee-bend test and CatWalk™ device 

(422), as well as mechanical allodynia (364), thermal hyperalgesia (423), reduced 

hindlimb grip strength (290), and reduced weight bearing (424). This model has also 

been used to characterize site-specific and time-dependent changes in articular 

cartilage and synovial tissue gene expression that underlie cartilage injury (425). 

More recently, investigators have attempted to identify links between joint tissue 

pathology and the development of chronic pain using this model in the rat (426). 

However, in this study a systematic evaluation of joint histopathogy using an 

established scoring system such as the one developed by the OARSI Histology 

Initiative (427), was not performed. This prevents direct mapping of the reported pain 

behaviours to joint disease progression in specific tissues. This study also reported on 

altered gene expression of pro-inflammatory cytokines (IL-1, TNF) and the 

neuropeptides CGRP and substance P, in the DRG neurons of L5. The findings are 

difficult to interpret, as the authors do not include gene expression data for L3 lumbar 

DRG, where a significant proportion of the sensory neurons that innervate the knee 

joint reside (169).  

MIA-induced arthritis is usually described as a model of OA, largely because of the 

pathological features particularly in the later stages. However, it is clear that the 

initiating event with rapid widespread chondrocyte necrosis is not typically seen in 

any OA phenotype in patients.  Some features of the disease pathophysiology, such as 

the role of ADAMTS and MMPs in aggrecanolysis and collagenolysis respectively, 

do mimic events in human OA (428). Nevertheless, Barve et al (429) demonstrated 

that there is little transcriptional similarity between rat MIA and human OA cartilage, 

by characterizing the gene expression profile of diseased cartilage. They identified 
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less than 4% overlap between rat and human genes that were modulated in the same 

direction. Similarly, despite the prolific use of this model in pre-clinical OA pain 

studies, there is growing evidence that the disease mechanisms in MIA induced 

arthritis are different from those of human OA (128). The MIA model has been 

shown, depending on dose, to have a substantial component of neuropathic pain 

(361), that is likely to only be relevant in a subset of human OA patients (430-432). 

Fundamental differences in the underlying molecular pathophysiology of MIA and 

human OA, may in part explain the lack of translational progress with novel 

DMOAD’s that demonstrate efficacy when tested in this animal model.  

 

1.4.2 Surgical destabilisation of the medial meniscus (DMM) 

Models that surgically induce instability and/or altered joint biomechanics/loading 

have been widely used to investigate OA (407, 413, 433). These models mimic 

injuries to key intra-articular structures that are observed in patients and significantly 

increase the risk of later OA development (434). The knee joint is unique in that 

fibrocartilagenous menisci within the joint provide stability, proprioception and act as 

shock absorbers, dissipating the weight bearing load on the underlying cartilage. Loss 

of meniscal function (tears, maceration, excision) leads to accelerated OA in both 

humans and animals (435, 436).  

While different meniscal injury models have been used in a variety of species to 

induce OA, showing the universal importance of these structures to knee function, 

recent years have seen an explosion in use of the surgical destabilization of the medial 

meniscus (DMM) in mice (407). The DMM model involves transection of the medial 

menisco-tibial ligament, which acts as the anterior attachment of the medial meniscus 

to the tibial plateau (437). Loss of this ligament allows the meniscus to be displaced 



 48 

laterally during ambulation, placing supra-physiological loading on the medial 

femoro-tibial cartilage and increased joint mobility. DMM produces a reliable and 

consistent, progressive disease state with all the structural features of OA that is 

amenable to evaluation of both the acute and chronic phases of OA, compared to 

more rapidly progressive models that rely on the injection of pro-inflammatory 

substances into the knee joint. The DMM model has been used to study the structural 

and biochemical changes associated with loss of articular cartilage and other joint 

pathology in mice (47, 407, 438, 439). In particular, this model has been used to show 

pathophysiological mechanisms linking changes in the expression of genes for matrix 

proteins, MMPs and aggrecanases (ADAMTS-4 and -5) in the meniscus and cartilage 

(25, 26) to the progression of the OA phenotype in mice. This model has also been 

used to study sex differences in OA, demonstrating that OA severity is greater in male 

mice than female mice following DMM surgery (440). 

More recently this model has been used to investigate pain mechanisms of OA (264, 

316, 363, 441). Although this model does not produce the same robust pain outcomes 

as the MIA model, it is viewed as perhaps a more clinically relevant model to study 

pain mechanisms since it represents a common biological trigger of human OA. A 

recently proposed scoring tool that assesses the translatability of early drug 

development projects, highlights the importance of this (442). Reliable biomarkers 

that transfer across from animals to humans, and preclinical studies that use animal 

models that reflect the disease in humans, have been identified as important 

translatability factors (443). Nevertheless, the surgery required for OA induction by 

DMM may introduce non-physiologic inflammation not seen with non-invasive joint 

injuries (444). As with all instability models, DMM is considered to particularly 

mimic the post-traumatic OA phenotype (407). However, unlike cruciate and other 
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ligament failures, meniscal tears and degeneration have been associated with non-

traumatic spontaneous age-associated OA in patients (298, 445, 446), suggesting 

findings from DMM may have wider implications.  
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1.4.3 Antigen-induced Arthritis (AIA) Model 

The AIA model was originally developed as an animal model of rheumatoid arthritis 

in rabbits (447) and later modified and characterized in mice (448). The model 

involves immunization with methylated bovine serum albumin (mBSA) in complete 

Freund’s adjuvant, followed by intra articular injection of mBSA. There are strain 

differences in susceptibility with robust histological knee joint changes demonstrated 

in C57BL mice. This is a chronic arthritis model persisting for up to 24 weeks in both 

mice and rabbits (448). It is one of the most widely used models of inflammatory 

arthritis, exemplifying an exogenously triggered joint immune response that is both T-

cell and immune-complex driven (449). At the time points most commonly evaluated 

in AIA studies (usually up to 3-4 weeks), pathology is typified by profound synovitis 

with panus formation by 1 week that slowly resolved, progressive cartilage 

degradation and bone erosion (439, 450, 451).  

Although not defined as a model of OA, it is frequently used to study the pain 

mechanisms of arthritis and has shed some light on the role of inflammation and the 

immune system that may be relevant in OA pain. Researchers have used this model to 

demonstrate that inflammatory processes in peripheral tissues such as the knee joint 

drive macrophage infiltration into the DRG, which in turn correlates with pain related 

behaviour (452). This model has also been used to characterize the role of pro-

nociceptive cytokines such as IL-1, in the development of thermal hyperalgesia 

(453), and IL-17 in the development of inflammation evoked mechanical hyperalgesia 

(329), both features of chronic arthritic knee pain. The role of cytokines in OA 

pathogenesis (322) and OA pain mechanisms (320) are currently important areas of 

investigation. 
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1.5 Literature review summary and research aims 

OA is a disease of the entire joint that results in chronic pain and reduced mobility. 

There are currently no effective therapies for treating or preventing OA. Long-term 

management of symptoms relies primarily on analgesics that are at best moderately 

effective, and that have significant side effects when used chronically. 

OA is characterised by a pain state that is both initiated and driven by a number of 

joint specific and systemic pathological processes, with resultant peripheral and 

central sensitisation of the sensory nervous system. There is growing evidence of a 

co-dependent relationship between joint pathology and OA pain; and that local, 

inflammatory and neuropathic mechanisms all contribute to the OA pain phenotype. 

Using pre-clinical animal models, researchers have attempted to unravel the 

molecular pathways involved in OA pain, and better define the complex relationship 

that exists between joint pathology and pain. Although this has advanced our 

understanding of the pathophysiology of OA and chronic pain, it has not translated 

into effective therapeutics. A number of factors have been proposed that may be 

hindering the translatability of preclinical research in OA pain.  

 We are yet to identify which processes and joint tissues drive the development 

of chronic OA pain, and therefore should be targeted when developing 

therapeutics. 

 There are significant differences between animal model phenotypes with 

respect to joint pathology and disease progression, pain behaviour and 

response to therapy. 

 Human OA is not all the same, differing between individuals and over time; 

with genetic and environmental factors contributing to the pathobiological 

profile of disease that an individual may experience. This suggests that a more 
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phenotype-based approach to investigating and identifying future therapeutics 

needs to be adopted. Researchers need to report on model specific outcomes 

and mechanisms, and relate them back to a specific subtype of human OA. 

 The majority of OA pain studies, including those that are testing response to 

therapeutics, use animal models that don’t reflect the human disease with 

respect to aetiology, disease progression and joint histopathology.  

 There is a lack of standardisation of pain assays within the OA pain literature, 

making it difficult to collectively compare and interpret findings, and 

producing a plethora of conflicting pain study outcomes that bring us no closer 

to understanding pain mechanisms and identifying suitable therapeutic targets. 

To optimize the use of animal models and inform our understanding of OA pain, we 

need to know how different pain behaviours correlate with structural changes in 

different joint tissues. We also need to know if pain and its mechanistic pathways 

change over time as the disease progresses, and if disease mechanism matters when it 

comes to understanding OA pain. 

Which model we use to study OA is important to our understanding of the disease and 

its symptoms, and may determine our ability to translate this understanding into 

effective therapeutics that modify the disease and treat its primary symptom – pain. 

However, there is currently no consensus on the ideal animal model for OA research, 

but if OA pain and OA joint pathology do share common pathways, then the study of 

joint disease and joint pain should be carried out in animal models that are 

phenotypically similar. 

In this thesis I hypothesise that the mechanisms that drive osteoarthritis pain are 

specific to the pathophysiology of the disease, and differ between different OA 

phenotypes.  
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To date, no study has directly compared pain and joint structural change in parallel, 

longitudinally using two distinct animal models. Therefore, the aim of this research is 

to map the relationship between joint pathology, pain behaviour and peripheral 

sensory innervation, over time, comparing a post-traumatic model of OA and an 

antigen-induced inflammatory model of arthritis.  
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CHAPTER 2:  Methods 

The methods described in this chapter were used throughout this thesis. Any 

exceptions or variations have been noted in the relevant chapter/s. The reagents and 

equipment used (and the respective suppliers) are listed in Appendix A. Reagent 

preparation protocols are described in Appendix B. Scoring protocols are outlined in 

Appendix C. 

2.1 Murine models of arthritis: Destabilisation of the medial meniscus 

(DMM) and Antigen-induced arthritis (AIA) 

The C57BL/6 strain of mice is the most common strain used in arthritis research, and 

is also the background strain from which several knockout strains have been derived 

to study the role of specific genes identified to be involved in joint disease 

development and pain transmission. 

Male mice develop more severe OA following surgery than female mice (440), and 

young mice (8 weeks and younger) develop less severe disease than older mice (Little 

CB unpublished observation). Skeletal maturity in male C57BL/6 mice, defined as 

cessation of active endochondral ossification and plateauing of long bone growth 

(although the growth plates do not close), occurs at ~3 months of age (454). For these 

reasons 10-12 week old male C57BL/6 mice were used to induce arthritis using the 

DMM model. Since the AIA model requires an initial 3-week period for 

immunization before arthritis can be induced, 8-10 week old mice were used in this 

model. This ensured that both models could be studied in parallel using similar aged 

mice at the actual time of induction of joint disease.   

Mice were obtained from a C57BL/6 breeding colony maintained at the Kearns 

Facility in the Kolling Institute. This colony was established with animals sourced 
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from Animal Resources Centre (Canning Vale, Perth WA), which maintains a 

C57BL/6Jax colony (designated C57BL/6JArc). The Kearns Facility colony is 

refreshed with C57BL/6JArc breeding mice at least every second year to avoid 

genetic drift from the parent strain.  Male littermates are housed in groups (up to 5 per 

30x20x18cm cage) to enable timely surgical and subsequent analytical processes to be 

undertaken, and to avoid the stress associated with solitary caging. Cages are 

individually ventilated with filter lids, sterilized bedding, environmental enrichment, 

and maintained at 19-22°C, with a 12-hour light/dark cycle. Animals receive acidified 

water and complete pelleted food ad libitum. Animal housing, all procedures, and 

behaviour testing were conducted with the approval of the Royal North Shore Animal 

Care and Ethics Committee (Protocol numbers 0807-019A, 0911-014A & 1202-003). 

All animals were housed in the Kearns Facility at the Kolling Institute of Medical 

Research, St Leonard’s, NSW. 

 

2.1.1 Randomisation and blinding 

Disease induction (detailed in the following sections) was done such that in any given 

cage there was a mixture of sham, DMM and control (naïve) mice; or saline injected, 

mBSA injected and immunized control mice housed together. All animal cages were 

housed in the same room in the Kearns Facility. Animals within a given cage were 

allocated to treatment groups in one of two ways. In the case of sham/DMM, animals 

were randomly selected by one operator (Sanaa Zaki: SZ) who anaesthetized, ear 

notched and shaved the leg before passing the animal to a second person (Christopher 

Little: CL) that randomly assigned and performed the sham or DMM surgery keeping 

SZ blinded. For the saline/AIA model all mice were immunized by a single operator 

(SZ). Individual syringes containing identical appearing solutions of saline or mBSA 
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were prepared and then coded and randomly assigned (drawn from a hat) a specific 

mouse number. These coded/assigned syringes were then intra-articularly injected by 

a second (SZ). In this way behaviour testing (performed by a single operator SZ) was 

done blinded to treatment group within the sham/DMM and saline/AIA cohorts, 

although the skin ulceration and later scar-formation at immunization sites meant it 

was not possible to blind between the two arthritis models.  After sacrifice, samples 

from individual mice were randomly assigned a code before processing to enable 

histology scoring (done independently by 2 operators SZ and CL) to also be 

conducted blinded to arthritis model and time post-induction. 

The mixed housing described above was also done to address two additional potential 

sources of bias in pain behaviour outcomes. The first arises from operator bias if the 

operator knows that all cage mates have undergone the same intervention. The second 

arises from the complex effect that conspecifics can have on modulating pain 

behaviour. It has been demonstrated that mice recognize and respond to overt pain 

behaviours displayed by conspecifics (455). In both male and female mice these 

social cues may either enhance or decrease the pain response. For example, exposure 

to cage mates displaying acute pain behaviour results in an increased sensitivity to 

noxious stimuli in the observing mouse, and pain behaviour is enhanced after one 

week of housing with a cage mate exposed to a noxious stimulus (456). These 

findings suggest the existence of pain ‘empathy’ amongst cage mates that modulates 

the pain response.  In addition, male mice display reduced pain behaviour in the 

presence of unaffected stranger male mice, but not familiar male cage mates (457), 

and this response is testosterone dependent (458). It may represent a form of stress-

induced analgesia, since the opposite occurs when male mice are not completely 
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separated and allowed partial physical contact. The affected mice display hyperalgesia 

rather than analgesia (458).  

The use of mixed housing aimed to reduce any bias towards an enhanced or a reduced 

pain response resulting from social modulation of pain across different experimental 

cohorts.  

 

2.1.2 Anaesthesia 

All surgeries, sham surgeries, intradermal injections and intra articular injections were 

performed under general anaesthesia as described here.  

Food and water were not withheld prior to anaesthesia. Each mouse was weighed, 

anaesthetised, and ear notched for identification prior to surgery or injection. 

Anaesthesia was induced in a Perspex induction chamber containing Isoflurane 

(2.5%) in a gas mixture of oxygen and nitrous oxide delivered in a 1:2 ratio with flow 

rates set at 1 and 2 L/min respectively. Gases were delivered via an anaesthetic 

machine with an out of circuit vaporiser and a Bain breathing system. Anaesthesia 

was maintained using a nose cone connected to the Bain breathing system and the 

same gas/anaesthetic mixture. The depth of anaesthesia was monitored and the level 

of isoflurane (1.5-2%) adjusted to achieve a surgical plane of anaesthesia, as indicated 

by regular breathing, muscle relaxation and absence of reflexes. No procedure was 

commenced until the pedal withdrawal reflex was abolished. Body temperature was 

maintained by ensuring that surgical site preparation and surgery were performed on a 

towel over a heating pad rather than a cold surface. At the end of the procedure, the 

animals were disconnected from the anaesthetic machine and allowed to recover in 

cages on a heating pad to minimize the risk of hypothermia developing. Recovery 

cages were kept in the operating theatre so that the animals could be visually 
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inspected every 5 minutes. Animals became conscious and ambulatory within 2-5 

minutes from when anaesthetic delivery was stopped. They were visually monitored 

to ensure they were eating and fully ambulant and weight bearing on the operated leg 

as they moved about the cage, prior to returning them to their original groups and 

housing rooms. Animals did not receive any post-operative analgesia. Provisions were 

included in the ethics protocol for the humane euthanasia of any animal that displayed 

signs of significant pain or distress. However, this was not deemed necessary for any 

animal throughout the study. 

 

2.1.3 The DMM model  

Surgical instability models are designed to mimic post-traumatic OA in humans, and 

are the most common laboratory animal models used to study OA (122, 407). 

However, it is still unclear whether such models also mimic the more common 

idiopathic form of OA that is seen in humans (399). 

The DMM model was chosen because it is a well-established post-traumatic OA 

model (437) that has been used extensively to study the pathophysiology of OA. It 

mimics the disease in humans histologically and clinically, since meniscal damage 

secondary to trauma has been shown to be a high risk factor for development of OA in 

humans (436, 459, 460). This model reproduces a more slowly progressive disease 

than other surgical models in mice (437) with a time course suitable for evaluation of 

both the acute and chronic phases of OA disease.  

Following induction of anaesthesia, the right hind limb was prepared for surgery by 

shaving the skin with a double-sided flexible blade and applying 80% ethanol. 

Surgery was performed under a surgical microscope. The animal was placed on a 

sterile, heated towel and the leg draped with sterile paper drape to isolate the surgical 
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site and minimise contamination. Using micro-surgical scissors, a 3-6 mm lateral 

para-patella skin incision was made commencing at the level of the distal patella and 

extending down to the proximal tibial plateau. The femoro-tibial joint capsule was 

incised just medial to the patella ligament, using a #15 blade (Figure 2.1a). The 

incision was extended proximally into the vastus medialis muscle using micro iris 

scissors to enable lateral luxation of the patella. Visualisation of the menisco-tibial 

ligament of the medial meniscus was facilitated by joint flexion and blunt dissection 

and proximal elevation of the infra-patella fat pad (without removal of any tissue) 

(Figure 2.1b). Any subsequent bleeding from the fat pad was controlled by applying 

pressure over the site with surgical gauze swabs. Articular cartilage surfaces were 

maintained moist by applying sterile saline. The medial menisco-tibial ligament 

(MMTL) was identified traversing laterally from the cranial horn of the medial 

meniscus to the anterior tibial plateau. The MMTL was isolated by passing one arm of 

curved Dumont #7 tweezers (superfine point dumostar steel) under the ligament at its 

junction with the anterior pole of the meniscus (Figure 2.1c). The MMTL was then 

severed using the tweezers, by rotating the tip of the tweezers axial and anterior, 

which results in tearing of the osseous insertion site. Complete DMM was confirmed 

by ensuring the meniscus could be manually displaced/luxated medially and the 

articular surface of the medial tibial plateau visualised (Figure 2.1d).   

The joint was flushed with sterile saline, the meniscus and patella manually replaced 

in their normal anatomical locations, and the incision was then closed in three layers – 

joint capsule, subcutaneous tissue and skin. Sterile ophthalmic grade 8/0 absorbable 

suture material (Vicryl) was used to anatomically reconstruct the joint capsule using a 

continuous suturing pattern, followed by a single subcutaneous mattress suture 
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(Figure 2.1e). To achieve optimal apposition surgical tissue glue (VetBond, 

cyanoacrylate) was used to close the skin layer (Figure 2.1f). 
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Figure 2.1. Destabilisation of the medial meniscus 

Surgical transection of the medial tibio-mensical ligament (MMTL): (a) The femoro-

tibial joint capsule is incised just medial to the patella ligament; (b) Visualisation of 

the MMTL is facilitated by joint flexion, blunt dissection and proximal elevation of 

the infra-patella fat pad; (c) The MMTL is isolated by passing one arm of curved 

Dumont #7 tweezers under the ligament at its junction with the anterior pole of the 

meniscus; (d) Complete DMM is confirmed by ensuring the meniscus can be 

manually displaced/luxated medially and the articular surface of the medial tibial 

plateau visualised; (e) Anatomical reconstruction of the joint capsule using a 

continuous suturing pattern, followed by a single subcutaneous mattress suture; (f) 

Surgical tissue glue is used to close the skin layer and achieve optimal apposition. 

a b c

d e f
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2.1.3.1 Sham operated mice 

Sham mice were anaesthetised as described for ear notching and surgery. The joint 

capsule was opened and the MMTL visualised and isolated exactly as for DMM 

however the ligament was not transected. The joint was lavaged and closed as for 

DMM.  

2.1.3.2 Control mice 

Control mice were anaesthetised as described for ear notching but had no surgery. 

2.1.4 Antigen induced arthritis model 

The AIA model was chosen because it is an established chronic inflammatory arthritis 

model that induces a cell mediated immune response resulting in a localised single 

joint inflammatory arthritis. Established as an experimental model for studying human 

rheumatoid arthritis (448), AIA produces joint changes that are characterised by acute 

joint inflammation and progressive cartilage damage, fibrosis and bone erosion. 

In this model, mice previously immunised with an emulsion of methylated bovine 

serum albumin (mBSA) in Freund’s Complete Adjuvant received an intra articular 

injection of mBSA in the right knee joint (450). 

2.1.4.1 Immunisation: 

Antigen preparation 

Refer to Appendix B 

Antigen loading 

Using an 18-gauge needle, emulsion was drawn into a 1ml tuberculin glass syringe 

and the barrel ‘coated’ by sliding the plunger up and down, before squirting back the 

emulsion into the main stock.  Approximately 600 l of emulsion was then loaded 
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into the syringe. The needle was removed and replaced with a 30-gauge needle and all 

air expelled from the syringe prior to injection.  

Intradermal injection 

Mice were anaesthetised as described above and positioned in sternal recumbency 

with legs splayed. The skin at the base of the tail and dorsum was shaved using a 

double-sided flexible razor blade and cleaned with 80% ethanol (Figure 2.2a). The 

skin at the base of the tail was held taught with forceps and the needle was introduced 

subcutaneously about 5mm at the site where the skin was most taught. The needle was 

then redirected more superficially into the dermis, so that the tip could be seen 

through but did not penetrate the skin, and 50 µl of emulsion was slowly injected 

intradermally resulting in a tight white disc of adjuvant approximately 1cm anterior 

and 5-10mm medial or lateral to the tail base.  A 2
nd

 50 µl intradermal injection was

done adjacent the 1
st
 injection on the opposite side of the midline. (Figure 2.2b)

After 14 days the intradermal injections were repeated as described above 

approximately 1 cm cranial to the 1
st
 injection sites.

Following immunisation animals were checked daily and handled with care so as not 

to traumatise the injection sites. Any ulceration that developed at the injection site 

was treated with topical povidone iodine.  

2.1.4.2 Intra articular injection: 

7 days after the 2
nd

 intradermal injection, each mouse received an intra articular

injection of 10µl mBSA (20mg/ml in sterile 0.15M NaCl) into the right knee joint. 

This was performed under a dissection microscope.  

Mice were anaesthetised as described and positioned in dorsal recumbancy. The right 

hind limb was prepared by shaving the skin with a flexible razor blade and applying 

80% ethanol. A lateral parapatellar skin incision approximately 5mm in length, 



 64 

extending to the level of the patella tendon, was made by tenting the skin with 

forceps.  By ensuring that the incision did not lie directly over the front of the knee 

excessive stretching of the wound was minimised when the animal was mobile, and 

this reduced any interference with wound healing. The leg was held between two 

fingers and fully extended. The incision was then manipulated to expose the patella 

tendon. A 31-gauge needle (0.3ml insulin syringe) was inserted with the bevel up just 

below and lateral to the patella in the patella ligament. The tip of the needle was then 

manipulated until it rested under the patella along the trochlear groove before 

injecting 10µl mBSA (20mg/ml). The skin incision was closed with tissue glue. 

2.1.4.3 Control mice: 

Two sets of control mice were used for the AIA model. Saline injected control mice 

were immunised as described above and received an intra articular injection of 10l 

saline into the right knee joint. Immunised control mice were immunised as described 

above but did not receive an intra articular injection. 
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Figure 2.2. Antigen induced arthritis: 

(a) skin preparation - the skin at the base of the tail and dorsum is shaved using a

double-sided flexible razor blade and cleaned with 80% ethanol; (b) intradermal

injections – two 50 µl aliquots of emulsion are slowly injected intradermally resulting

in a tight white disc of adjuvant approximately 1cm anterior and 5-10mm medial or

lateral to the tail base.

a

b
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2.1.5 Euthanasia  

Euthanasia was performed using three techniques. For harvesting of dorsal root 

ganglia (DRG) for gene expression, mice were euthanised by CO2 exposure (animals 

become unconscious within seconds) followed by decapitation. For harvesting of 

DRG for immunohistochemistry mice were deeply anaesthetised with 50mg/kg 

pentobarbitone IP, followed by perfusion (see section 2.5.1) resulting in immediate 

death. In mice where only knee joints were harvested, euthanasia was performed by 

anaesthetic overdose with 4% isoflurane (animals become unconscious within 

seconds) followed by cervical dislocation.  

 

2.2 Histology 

In order to better understand the relationship between joint disease and pain, the 

progressive changes that occurred in different joint tissue structures following 

induction of OA, were mapped to specific pain related behaviours. Since histology is 

the gold standard by which to evaluate murine models of knee arthritis, a robust 

histological scoring system that evaluated both joint structural damage and joint 

inflammation was utilised for comparing the two animal models in this thesis.  

 

2.2.1 Knee joint processing  

Right and left knee joints were harvested following euthanasia (as described in section 

2.1.5). The skin and the majority of the muscle were dissected away leaving the joint 

capsule intact, before the knees (mid tibia to mid femur) were fixed in 10% (v/v) 

neutral buffered formalin (NBF) for 24 hours. The knee joints were then transferred to 

70% v/v ethanol for storage prior to further processing.  
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The knee joints were decalcified by placing in 10% (v/v) formic acid, in 5% (v/v) 

formalin for 24 hours at room temperature with gentle agitation.  The tissue was then 

washed for 15 minutes in distilled water to remove the formic acid before been stored 

in 70% (v/v) ethanol for at least 24 hours prior to processing to paraffin.  

The knee joint specimens were dehydrated for one hour each in graded solutions of 

70%, 75%, 85% and 95% (v/v) ethanol, and three washes of 1-hour duration in 100% 

(v/v) ethanol. This was followed by three washes of 2 hours duration in chloroform. 

Paraffin infiltration of mouse knee joints in cassettes in Paraplast (plain) involved the 

following: first wax (Paraplast Plain) for 2 hours with vacuum; second wax (Paraplast 

Plain) for 2 hours with vacuum; third wax (Paraplast Plain) for 2 hours with vacuum; 

and a final wax (Paraplast Plain) for 6 hours with vacuum. 

Knee joints were mounted in blocks with the medial side down for sagittal sections. 

Blocks were trimmed on the microtome until the very beginning of the articular 

cartilage was evident and then serial sagittal sections (4µ) were cut across the entire 

medial femorotibial compartment of the joint. All right knee joints were cut and 

mounted on superfrost plus slides (three sections per slide). A minimum of six knee 

joints per treatment group (DMM, Sham, Control, mBSA, Saline, Immunised-

control), per time point (day 3, week 1, 2, 4, 8, 12 and 16) were sectioned. For DMM 

and Sham knee joints where pathology is focal, every 4
th

 slide (i.e. every 36µ) across 

the width of the medial femoro-tibial joint was stained for scoring to ensure the 

maximum lesion was evaluated.  In the case of the mBSA, saline and immunised-

control knee joints where the disease is uniform throughout the joint only one slide 

containing three sections (at the level of the central load bearing region) was stained 

for scoring.  
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Slides were dried at 85°C for 30 min and then overnight at 55
o
C in an oven to adhere 

sections to slides.  

 

2.2.2 Histochemical Staining 

Slides were stained using toluidine blue and fast green to enable histological 

evaluation of the articular cartilage (including proteoglycan content), synovium, 

meniscus and subchondral bone. 

Sections were de-parafinised by placing slides in 70% (v/v) ethanol for 15 minutes 

and draining well. Sections were then stained for 10 minutes in 0.04% (w/v) 

Toluidine Blue O in 0.1M sodium acetate buffer (pH 4.0), rinsed quickly in running 

tap water and counterstained for two minutes in 0.1% (w/v) fast green FCF, then 

quickly rinsed again in running tap water. Finally sections were dehydrated in three 

changes of isopropyl alcohol and three changes of xylene, before mounting in a 

resinous mountant (Euckitt). 

 

2.2.3 Histological Scoring system 

For evaluation of articular cartilage proteoglycan loss and structural damage, 

osteophyte formation, and subchondral bone changes, knee joint sections were scored 

using a modification (461) of previously published guidelines (462).  The femur and 

tibia were scored separately, and on each slide (three sections) the worst score was 

recorded. Only the slide containing sections of the central weight-bearing region of 

the joint was evaluated as this coincided with the maximal lesion in DMM (see 

Methods Validation Chapter 3). Details of the scoring method used are outlined in 

Appendix C. 
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Synovial inflammation was evaluated using a newly developed scoring system that 

included assessment of the synovial lining, the sub-synovium, synovial exudate, 

panus formation and cortical bone erosion,(461). Again only the central weight-

bearing region of the joint was evaluated. Details of this scoring method are also 

outlined in Appendix C. 

The histological scoring was performed by two independent observers (SZ, CL) 

blinded to treatment and time, and the average of the two scores calculated and used 

for analysis (refer to Chapter 3, Figure3.7b for inter-observer variability). 

 

2.3 Pain behaviour testing 

Pain behaviour tests used in this thesis were selected based on what is currently 

known about the clinical characteristics of OA pain in human patients. People with 

chronic OA modify their physical activity, and adjust their weight distribution and 

gait (463).  Patients with OA have reduced thresholds to repeated mechanical 

stimulation (evoked temporal summation), and reduced pressure pain thresholds 

(localised mechanical hyperalgesia) compared to normal subjects (276, 284, 464). 

Human OA patients also demonstrate thermal hyperalgesia (277).  

Mice were acclimatised to all the test equipment in the week prior to baseline testing. 

Acclimatisation involved placing the mouse in the different test chambers for a short 

period of time (1-3 minute in forceplate and hotplate chambers, and 30 minutes in von 

Frey chamber) to allow them to explore the environment without any intervention. 

This was done on at least two occasions. For tests that involved manual restraint, mice 

were briefly restrained to simulate testing and then released back into their cage. 

Again this was done on at least two occasions. 
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2.3.1 Von Frey filament testing 

Von Frey filaments were used to test for mechanical allodynia (465). Baseline 

withdrawal thresholds were assessed up to 1 week prior to induction of arthritis. 

Testing was then performed at day 3, week 1, 2, 4, 8, 12 and 16, after arthritis 

induction 

Mice were placed in individual transparent plastic chambers sitting on a wire mesh 

floor (Figure 2.3a), and allowed to acclimatise for up to 30 minutes prior to each test 

period until exploratory and grooming behaviours decreased. A 3-second stimulus 

was then applied by touching the plantar surface of the hind paw with a von Frey 

filament presented perpendicularly and exerting enough force to bend the filament 

(Figure 2.3a). A positive withdrawal was defined as biting, licking, shaking and/or 

withdrawal of the paw during or immediately following the 3-second stimulus. The 

stimulus was applied twice before confirming a positive or negative response. A 

series of von Frey filaments were used for testing, starting with filament 3.61 (0.4 g 

force). The size of filament was incrementally increased or decreased following a 

positive or negative response respectively, using the “up and down method” described 

by Chaplan (465). This up-down procedure was applied 6 times to calculate the 50% 

withdrawal response threshold using the algorithm described by Dixon (466).Up to 6 

mice were tested at any one time. The contralateral (left) hind paw was tested in all 

mice followed by the ipsilateral (right) hind paw. Each paw was tested twice to obtain 

an average. If mice were displaying grooming behaviour, urinating, defecating, 

moving around the cage excessively or attempting to climb the walls of the chamber, 

they were not tested at that time point. 
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Figure 2.3a: Von Frey testing chambers and application of filament. 

(i) Mice are placed in individual transparent plastic chambers sitting on a wire mesh

floor; (ii) A 3-second stimulus is then applied by touching the plantar surface of the

hind paw with a von Frey filament presented perpendicularly and exerting enough

force to bend the filament.

ii. 

i.
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2.3.2 Hotplate test 

Thermal hyperalgesia was measured using a hotplate device. Baseline response 

latency was determined up to 1 week before induction of arthritis. Test measurements 

were taken at day 3, week 1, 2, 4, 8, 12 and 16, after arthritis induction.  

The hotplate was set at 52 degrees Celsius. The mouse was placed on the hotplate, 

inside a transparent plastic cylindrical chamber (Figure 2.3b). The response latency 

was determined by observing for shaking & licking of the left or right hind paw. Each 

mouse was tested twice and response times averaged. Mice were given a 10 to 15 

minute rest period between each test. A maximum exposure time of 60 seconds was 

set to ensure tissue trauma to the plantar surface of the paws did not occur. Testing 

was also stopped if the mouse attempted to jump out of the chamber. 
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Figure2.3b. Hotplate device 

Mice are placed on the hotplate, inside a transparent plastic cylindrical chamber with 

the plate set at 52 degrees Celsius. 
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2.3.3 Pressure Application Measurement 

Mechanical hyperalgesia of the knee was assessed using a Pressure Application 

Measurement (PAM) device. Baseline withdrawal thresholds were assessed up to one 

week prior to induction of arthritis. Testing was then performed at day 3, week 1, 2, 4, 

8, 12 and 16, after arthritis induction. 

Mice were manually restrained in the right hand and the PAM device was held in the 

left hand for testing. The device was held between the thumb and index finger, and 

used to squeeze the knee joint with increasing force until the mouse responded. Left 

and right knees were tested, and two measurements were taken for each knee, one 

with the transducer applied to the medial side and one with the transducer applied to 

the lateral side of the joint (Figure 2.3c). Two attempts were recorded for each 

measurement to obtain an average and ensure consistency in response. Mice that 

displayed large discrepancies between the two attempts were retested at the end of the 

test period. 

The rate of force applied was guided by the PAM software to ensure an increasing 

amount of force was applied at a constant rate (30g/s), up to a maximum of 450g. A 

positive response was defined as an attempt to withdraw the limb. The force at which 

the mouse withdrew was recorded as the withdrawal threshold. The maximum force 

(450g) was assigned if the mouse did not withdraw. If a mouse struggled and 

attempted withdrawal following manual restraint or when the PAM device was gently 

placed against the knee, the mouse was returned to his cage and allowed to settle for 5 

minutes before testing was attempted again. 
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Figure 2.3c. Pressure Application Measurement device 

Mouse is restrained and the transducer is applied to the medial side of the knee joint; 

(ii) followed by the lateral side of the knee joint. The device is held between the

thumb and index finger, and used to squeeze the knee joint with increasing force until

the mouse responds.

ii. i. 
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2.3.4 Forceplate 

An in-house developed electronic forceplate (National Instruments-DAQmx hardware 

driver) and LabVIEW Run-Time Engine 2009 Software (National Instruments 

Australia) were used to measure hind limb weight distribution. Baseline hind limb 

weight distribution was assessed up to 1 week prior to induction of arthritis. Weight 

distribution was then tested at day 3, week 1, 2, 4, 8, 12 and 16, after arthritis 

induction. 

This test involved placing a mouse in a small transparent plastic chamber with each 

hind paw resting on a separate transducer plate (Figure 2.3d). The mouse was allowed 

to settle in the chamber for up to 1 minute prior to recording. Continuous recordings 

were taken for a total period of 30 seconds to obtain an average force in grams for 

each hind limb. Recordings occurred when the mouse was observed to be positioned 

as follows: (1) front paws resting on the front vertical panel of the chamber; (2) the 

mouse was not leaning/resting on either of the lateral vertical panels of the chamber; 

(3) the tail was positioned outside of the test chamber and held slightly raised to

ensure testicles and tail base were not in contact with the transducer plates; and (4) the 

hind paws were each placed on the respective left and right plate. If the mouse moved 

during the 30-second test period, recording was paused and then recommenced once 

correct positioning was observed. Results were expressed as mean weight distribution 

ratio (right/left hind limb). 
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Figure 2.3d. Forceplate device 

(i) The mouse is placed in a small transparent Perspex chamber with the front paws

resting on the front vertical panel of the chamber and the hind paws were each placed

on the respective left and right plate; (ii) the tail is positioned outside of the test

chamber and held slightly raised to ensure testicles and tail base are not in contact

with the transducer plates.

i. ii. 
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2.3.5 Stride length 

Baseline measurements were taken up to 1 week before induction of arthritis. Test 

measurements were taken at day 3, week 1, 2, 4, 8, 12 and 16, after arthritis induction.  

Individual mice were physically restrained to enable dipping of their hind paws in 

non-toxic water based paint (Figure 2.3e(i)). They were then quickly released into a 

transparent plastic run (50mm x 100cm) in which the floor was lined with printing roll 

paper (Figure 2.3e(ii)). The sides and end of the run were covered to create darkness 

and encourage the mice to run to the end. Once the mouse reached the end they were 

removed from the run to ensure the trail of footprints they had created on the paper 

were not smudged or superimposed if the mouse attempted to run in the opposite 

direction. If the mouse paused to groom, defecate, urinate or explore, this was noted 

on the recording paper with an asterix (*) (Chapter 3, Figure 3.5b). 

The feet of the mouse were cleaned with moist tissues prior to returning the mouse to 

his cage. The floor of the run was lined with fresh printing paper for each mouse. 

Stride length was then determined based on the footprints created on the printing 

paper. The mean stride length when supporting the affected limb (right to left) and the 

unaffected limb (left to right) was calculated by averaging out 5 consecutive right-to-

left strides and 5 consecutive left-to-right strides respectively. The mean complete 

stride length for the left and right hind limb was also calculated by averaging out 5 

left-to-left strides and 5 right-to-right strides. Sections of the recorded footprints that 

included a pause period (*) as described above, were not used to calculate stride 

length. For each mouse, measurements were taken from the same footprint location to 

ensure consistency (Figure 2.3e(iii)). 
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Figure 2.3e. Stride length measurement 

The mouse is physically restrained to enable dipping of the hind paws in non-toxic 

water based paint; (ii) the mouse is then quickly released into a transparent plastic run 

(50mm x 100cm) in which the floor has been lined with printing roll paper; (iii) 

measurements were then taken from the same footprint location to ensure consistency. 

ii. 

iii. 

i.
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2.4 DRG gene expression using real time Reverse Transcription-Polymerase 

Chain Reaction (RT-PCR) 

Based on previous studies that used retrograde tracing techniques to label and 

characterise knee joint afferents (169, 226, 227), the cell bodies of the afferent 

neurons innervating the knee joint reside in the lumbar dorsal root ganglia (DRG) (L1 

– L5), with the majority in L3. In the rat 88% of knee joint afferents are located in L3

and L4. However, knee joint afferents make up a small proportion of the total neuron 

cell body population in these DRG (less than 15%), and only about half of these are 

small, myelinated and unmyelinated nociceptors. Knee joint afferents also comprise 

the large, low threshold mechanoreceptors that are required for normal joint 

movement. Therefore, to optimize the ability to identify changes in gene expression in 

nociceptor neurons in the innervating DRG, only L3 and L4 DRG were harvested for 

real time RT-PCR.   

A number of inflammatory neuropeptides including Substance P (Tac-1) and CGRP, 

and inflammatory cytokines such as IL-1 have been demonstrated to play a role in 

chronic pain and sensitisation (467-470). TRPV1, TRPV2, TRPV4 and TRPA1 are all 

part of the Transient Receptor Potential (TRP) family of cation channels and have 

been described in the DRG. Numerous studies suggest all 4 TRP channels play a role 

in the development of chronic pain, and in particular mechanical hypersensitivity 

(471-474). The role of both the endogenous opioid and cannabinoid systems in pain 

modulation has been studied extensively (265, 266, 291, 308, 311, 475). However, the 

exact role that they play in pain modulation in diseases such as OA is still not known. 

There is growing evidence that supports a neurogenic component to OA pain (361, 

476, 477), highlighting the importance of investigating markers of neuronal injury 

(ATF3) in OA.  
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Based on this current understanding of chronic pain and sensitisation, the following 

genes were selected for investigation using real time RT-PCR: Tac-1, CGRP, IL-1, 

Oprm1, CNR1, TRPV1, TRPV2, TRPV4, TRPA1 and ATF3 (Table 2.1).   

In an attempt to investigate potential links between the mechanisms involved in 

cartilage degradation and peripheral pain mechanisms, gene expression of the 

principle aggrecanases implicated in cartilage degradation in OA (ADAMTS-4 and 

ADAMTS-5) was also measured using real time RT-PCR. While ADAMTS-4 

expression relies on induction by pro-inflammatory cytokines, ADAMTS-5 is 

expressed constitutively in a number of adult tissues including DRG (34). ADAMTS-

4 has not previously been investigated in the DRG, but it is the most highly expressed 

ADAMTS in the central nervous system (CNS) and is thought to play a role in 

controlling synaptic plasticity during CNS development (478). It has been 

demonstrated that ADAMTS-5 knock out mice are protected from OA and do not 

develop mechanical allodynia at 8 weeks after surgical induction of OA (441). To 

date, no one has investigated regulation of ADAMTS-4 or ADAMTS-5 in the DRG 

and how it changes over the course of OA disease development. 
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Table 2.1. Genes selected for RT-PCR analysis and evidence for role in chronic pain states including OA pain 

Gene 

symbol 

Name Evidence for potential role in chronic OA pain 

Tac-1 Substance P 

Tachykinin-1 

Mechanical hyperalgesia is significantly reduced in NK1 receptor deficient mice in CFA-induced inflammatory arthritis model (479). 

Tac-1 expression in the DRG is down-regulated in the peak inflammatory phase of Collagen-induced arthritis. Systemic administration of NK1 receptor 

antagonist inhibits joint swelling but not mechanical allodynia (480). 

The density of Sub P immune-reactive nerve fibres in the hip joint is increased in humans with painful OA but not in patients with failed total hip 
arthroplasties that are non-painful (481). 

Calcitonin 

(CGRP) 

Calcitonin gene related 

peptide 

CGRP deficient mice do not develop thermal hyperalgesia in carrageen induced inflammatory arthritis (468). 

CGRP promotes mechanical hyperalgesia in MIA and meniscal transection induced OA (469). 

The density of CGRP immune-reactive nerve fibres in the hip joint is increased in humans with painful OA but not in patients with failed total hip 
arthroplasties that are non-painful (481).  

IL-1 Interleukin-1 Intra-articular induction of IL-1 contributes to joint pathology and pain (325). 

Oprm1 Mu opioid receptor Temporal induction of the endogenous opioid system delays onset of pain in the DMM model of OA (316). 

Opioid induced analgesia for neuropathic pain is achieved at higher doses than inflammatory pain. Opioid receptor expression in the DRG is down-regulated 
in neuropathic pain (chronic nerve constriction model) and unaltered in CFA-induced inflammatory pain (314). 

CNR1 Cannabinoid 

receptor 1 

Peripheral CNR1 activation results in a greater reduction in mechanosensitivity in MIA induced OA knee joints compared to controls (475). 

CNR1 inhibits NGF induced sensitisation of TRPV1 (482). 

TRPV1 Transient Receptor 

Potential Vanilloid-1 

Joint inflammation and pain are attenuated in TRPV1 deficient mice in CFA-induced inflammatory arthritis (188). 

Increased TRPV1-immunoreactivity present in human OA synovium. Intra-articular administration of TRPV1 antagonist reverses knee joint mechanical 

sensitisation in mice with MIA induced OA (190). 
Mechanical hyperalgesia observed in models of polyneuropathy develops earlier and with greater intensity in TRPV1 deficient mice (183). 

TRPV2 Transient Receptor 

Potential Vanilloid-2 

TRPV2 expression in DRG is up regulated following CFA-induced inflammation and is associated with onset of thermal hyperalgesia (211). 

TRVP4 Transient Receptor 

Potential Vanilloid-4 

Development of mechanical allodynia in a neuronal injury model of chronic pain is in part driven by TRPV4 (483). 

TRPA1 Transient Receptor 

Potential Ankyrin-1 

TRPA1 modulates low intensity mechanical stimulation following CFA induced inflammation (474).  

Activation of TRPA1 plays a role in inducing and sustaining mechanical hyperalgesia in CFA induced inflammatory arthritis (484). 

TRPA1 inhibitor reverses CFA-induced mechanical hyperalgesia in wild type mice but not in TRPA1 deficient mice (204).  
TRPA1 deficient mice display less reduction in ipsilateral hindlimb weight bearing compared to wildtypes in MIA-induced arthritis (485). 

ATF3 Activating Transcription 

Factor-3 

Lumbar DRG ATF3-immunoreactivity is increased in mice with MIA induced knee OA and reduced ipsilateral weight bearing (361). 
Intra articular injection of 2mg MIA induces expression of ATF3 in DRG innervating the knee joint and surrounding tissues (486). 

ADAMTS4 Aggrecanase 1 Mechanical strain of articular chondrocytes drives the release of inflammatory and neurotrophic factors associated with joint degeneration (ADAMTS4) and 
pain (NGF, TNFa) (487). 

ADAMTS5 Aggrecanase 2 ADAMTS5 deficient mice are resistant to OA-like joint pathology and do not develop mechanical allodynia in the DMM OA model (441). 



83 

2.4.1 DRG harvesting 

Lumbar 3 and 4 DRG were harvested at day 3, week 1, 2, 4, 8, 12 and 16, after 

arthritis induction, from DMM, Sham, mBSA injected, and Saline injected mice. 

DRG were also harvested at week 4, 12 and 16 from age matched control mice. 

Mice were euthanized using CO2 inhalation followed by decapitation. Decapitation 

was performed to facilitate exsanguination and minimise blood contamination during 

dissection and DRG harvest. The coat was sprayed liberally with 70% ethanol to 

minimize contamination. The skin covering the dorsum was dissected away to expose 

the underlying muscle layers and allow visualisation of the vertebral column (Figure 

2.4a). Harvesting of DRG was done under a dissection microscope and each mouse 

was completed in ~15 minutes.  A size-11 scalpel blade was used to score the muscles 

overlying the dorsal vertebral column. The muscles were then dissected off the 

vertebral column using a Friedman Rongeur (Figure 2.4b), exposing the dorsal 

spinous processes (Figure 2.4c). Laminectomy forceps (#2) were then used to remove 

the dorsal vertebral column, exposing the spinal cord (Figure 2.4d). The spinal cord 

was gently elevated to enable visualisation of the DRG using fine Dumont (#5) 

forceps and micro spring scissors to cut nerve roots and free up the cord, starting at 

the sacrum and working towards the thoracolumbar junction (Figure 2.4e). Left and 

right DRG (L3 and L4) were lifted with fine Dumont (#5) forceps and dissected out 

by cutting the attaching nerve roots with micro spring scissors. L3 and L4 DRG from 

each side were immediately transferred to separate 1.5ml polypropylene (Eppendorf) 

tubes, homogenised in 50l TRIzol
®
 reagent using a motorized pestle, and then

placed in dry ice. Samples remained in dry ice until all DRG were harvested (up to 6 

hours), and then transferred to a freezer and stored at -80
o
C.
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Figure 2.4. DRG harvesting 

(a) Removal of the overlying skin to expose the vertebral column; (b) dissection of

the lumbar muscles using rongeurs; (c) exposure of the dorsal spinous processes; (d)

removal of dorsal spinous processes to expose the spinal cord; (e) lumbar DRG and

nerve roots following dissection of the spinal cord; (f) left and right L2 – L4 DRG in

situ (solid arrows).

a

d. c. 

b

f.e. 
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2.4.2 RNA extraction 

Total RNA was extracted from L3-4 DRG using the Qiagen RNeasy kits as described 

by the manufacturer. Previously homogenized samples were thawed at room 

temperature. Samples were done in batches due to the limitations of the centrifuge 

required for the extraction process, which held a maximum of 30 samples. Left and 

right DRG samples from the same animal were done at the same time, and each batch 

included samples from each treatment group to ensure consistency within individuals 

and between treatment groups in the extraction process. An additional 950l TRIzol
® 

reagent was added to each sample, followed by Chloroform (300l). Samples were 

vigorously vortexed for 15 seconds, and incubated at room temperature for 5 minutes, 

followed by centrifugation for 15 minutes at 12,000 rpm to stratify the aqueous and 

organic phases. The aqueous phase, containing RNA, was carefully transferred to new 

micro-tubes in 100l aliquots using a 200l pipette, and then combined with an equal 

volume of 70% ethanol.  Samples were gently mixed by inversion before loading onto 

RNeasy spin-columns in 600l aliquots followed by centrifuging at 12,000 rpm for 20 

seconds. RWI buffer (350l) was then added to each spin column, incubated at room 

temperature for 5 minutes and centrifuged at 12,000 rpm for 20 seconds. The 

collection tubes were discarded and new collection tubes placed under the spin 

columns. 80l of DNase in RDD buffer was applied to each spin column, centrifuged 

for 20 seconds at 12,000 rpm, and reapplied. Samples were then incubated at 37
o
C for

1 hour. After incubation the spin columns were washed with 350l RWI, followed by 

two washes with 500l RPE buffer. Spin columns were centrifuged for 20 seconds at 

12,000 rpm after each wash. An additional 2-minute centrifugation was done to 

evaporate any traces of ethanol and dry the spin columns. Finally, RNA was eluted 
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from spin columns by loading 32l RNase free water and centrifuging for 1 minute at 

12,000 rpm.  

2.4.3 RNA quantification 

RNA was quantified using a Nanodrop spectrophotometer (ThermoScientific). DNA 

contamination was detected by running a no-RT quantitative RT-PCR on 0.3g of the 

total RNA using the Rotor-Gene 6000 (Corbett Life Science, Australia) and the 

housekeeping gene GAPDH.  

2.4.4 Reverse Transcription 

Due to the large number of samples (multiple treatment groups and multiple time 

points) reverse transcription could not be performed on all samples at once, and still 

ensure each sample received equal exposure time to the master mix and incubation.  

Instead reverse transcription was done in batches based on harvest time point. 

Variability in RNA yield from the DRG of individual mice prevented reverse 

transcription of 1g RNA for each sample. Instead, an equal amount of total RNA 

(0.5 to 1 g), based on the smallest total yield from any given sample in a batch, was 

reverse transcribed into cDNA using the Omniscript RT kit (Bioline).  

The reverse transcription (RT) master mix was made up as described in Appendix B. 

All RNA samples were denatured prior to performing RT by placing on a heating 

block, set at 70
o
C, for 5 minutes. To each calculated amount of RNA was added

enough RNase-free water to make a total volume of 30l. 10l of master mix was 

then added to the side of each tube. Samples were then spun down quickly in the 

centrifuge and incubated for 3 hours at 37
o
C, followed by 5 minutes incubation in a
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heating block set at 93
o
C. The samples were then cooled quickly by placing in ice for 

5 minutes. The cDNA samples were diluted with RNase-free water to a total volume 

of 150L per 1g of original RNA. The cDNA samples were stored at 4
o
C until used. 

 

2.4.5 Primer design  

Murine primer sets were designed using MacVector 11.1 primer design software. 

Primers were purchased from Sigma Genosys and full details are provided in 

Appendix A. Primer specificity was confirmed by performing a melt curve analysis 

and demonstrating a single amplicon of appropriate size. 

 

2.4.6 Quantitative real-time RT-PCR 

qRT-PCR was performed using the Rotor-Gene 6000 (Corbett Life Science, 

Australia) and analysis software (Corbett Research Pty Ltd, copyright 2004). cDNA 

standards were prepared by combining aliquots of multiple samples of cDNA from 

different treatment conditions (i.e control, sham, DMM, saline, AIA) and post-

induction times, and making serial 4-fold dilutions to provide four standards (1:1, 1:4, 

1:16, 1:64) that were used as “in-run standards”. Standards were run in duplicate 

along with 2 negative controls (RNase free water), with each primer pair that was 

tested. A master mix was made up comprising 1x Immomix, 10M forward and 

10M reverse primer and 1x SYBR Green 1 dye made up to a total of 20l per 

reaction, in RNase free water. 20 l of master mix was added to each reaction tube 

followed by 5l of cDNA sample or standard. The following thermal profile was used 

for each reaction: 10 minutes denaturation at 95
o
C; 45 cycles of 95

o
C for 10 seconds; 
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a primer specific (see Appendix A) annealing temperature for 15 seconds; and 

extension for 20 seconds at 72
o
C.

A melt curve analysis was performed for each reaction to confirm that a single 

product was produced for each amplicon. Quantitative analysis was then performed 

and RNA values for each gene were normalised to total RNA, and expressed as fold 

change relative to mean sham-operated and saline-injected respectively.  

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was initially trialled for 

normalisation of RNA values for genes of interest, as this has previously been widely 

used as a housekeeping gene, including for studies of DRG gene expression (488, 

489). However, analysis of data revealed that GAPDH demonstrated significant 

variation in expression between sham and treatment mice DRG, at some of the 

measured time points. Unfortunately, insufficient RNA sample remained from many 

of the measured time points, to allow identification of a more suitable housekeeping 

gene that displayed stability in expression in DRG tissue, across the different 

treatment groups and the different time points. For this reason, RNA values were not 

normalized against a housekeeping gene, but instead normalised to total RNA and 

expressed as fold change relative to the respective sham-operated or saline-injected, 

control as previously recommended (490-492). 
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2.5 Immunohistochemistry 

DRG (lumbar 3-5) samples harvested for immunostaining were collected at key time 

points (day 7, week 4, 8 and 16) and stored initially as fixed-frozen blocks at -80
o
C.

To maximize the preservation of DRG tissue architecture and cell morphology, and 

allow multiple sectioning of individual DRG over the lengthy period it took to stain 

for the different antibodies, samples were subsequently embedded in paraffin for long 

term storage.  

Immunostaining of DRG was then performed in batches, the size of which was 

limited by the number of Sequenza trays (Thermo Scientific) available. Each batch 

contained sections from each treatment group and two time points. This allowed 

qualitative analysis of relative protein expression in the DRG between treatment 

groups and over time. 

2.5.1 Perfusion of mice with paraformaldehyde 

Mice were anaesthetised with an intraperitoneal injection of 50mg/kg pentobarbitone. 

Once deeply anaesthetised (loss of pedal reflex and slow breathing) mice were placed 

in a fume hood and positioned in dorsal recumbency on a tray. The limbs were held 

out in an extended position using adhesive tape. The coat was sprayed with 70% (v/v) 

ethanol and the skin overlying the ventral thorax was lifted with forceps to allow a 

large skin incision to be made with tissue scissors. The xiphoid process was then 

elevated and an incision made through the diaphragm to facilitate complete sectioning 

of the ribcage, to expose the heart. 

A small incision was made in the right auricle and a short 25-gauge needle (attached 

via minimum volume tubing to a 50ml syringe) was inserted into the left ventricle. 
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Flush solution (approximately 15ml) was then run through the animal until clear fluid 

was coming from the right auricle and the abdominal organs were pale. Fixative 

solution (approximately 50ml) was then run through the animal until the animal 

became rigid. Details of the composition of the flush and fixative solution are listed in 

Appendix B.  

The DRG were then dissected out as described in 2.4.1 and post fixed in 4% PFA for 

90 minutes. Isolated DRG were then placed in 30% sucrose at 4
o
C for 24 hours before

mounting into Base Molds (Tissue Path, Fischer Scientific) in a water-soluble 

specimen matrix (Tissue-Tek O.C.T). The specimen blocks were placed immediately 

in dry ice for snap freezing and then transferred to the freezer for storage at -80
o
C

until further processing. 

2.5.2 DRG Processing   

Following the harvesting of all time points, DRG stored at -80
o
C were brought to

room temperature and transferred to 70% (v/v) ethanol prior to paraffin embedding. 

Individual DRG specimens were wrapped in Kimwipes™ to ensure they were not lost 

during processing. 

All DRG specimens were dehydrated for 30 minutes each in graded solutions of 70%, 

75%, 85% and 95% (v/v) ethanol, and three washes of 30 minutes duration in 100% 

(v/v) ethanol. This was followed by three changes of 30 minutes duration in 

chloroform. DRG were then put through three 30-minute cycles in wax (Paraplast 

Plain) without vacuum. DRG were embedded in Paraplast Plain in cassettes using 

magnification to ensure a consistent orientation. DRG tissue was embedded flat along 



91 

their longitudinal access. In this orientation the neurons were centered with nerve 

roots extending from either side.   

Blocks were trimmed on the microtome until neurons were first visualised 

(microscopically), before serial sections (4µ) were cut and mounted onto superfrost 

plus slides (one sections per slide). The 1
st
 and 10

th
 slide were stained with

Haematoxylin and Eosin (H&E) to enable evaluation of DRG cellular morphology 

prior to immunohistochemical staining of slides 2-9.  If the number of neurons on 

these sections was sparse a further 10 sections were cut and mounted on slides, and 

the H&E staining repeated on slide 20 to evaluate the quality of the section prior to 

immunohistochemical staining of slides 11-19.  

To de-paraffinise, slides were immersed in xylene for two changes of 5 minutes 

duration each. The sections were then immersed in graded solutions of 100%, 100%, 

95% and 70% (v/v) ethanol for three minutes each. The slides were then rinsed in a 

container of running tap water and drained well before been stained for 10-12 seconds 

in Mayer’s Haematoxylin. Sections were then rinsed quickly in running tap water and 

placed in Scott’s blueing solution for one minute, and again rinsed quickly in running 

tap water. Sections were then counterstained in Eosin for 1 minute and rinsed 

immediately under running water. Finally sections were dehydrated in three changes 

of isopropyl alcohol and three changes of xylene, before mounted in a resinous 

mountant (Euckitt
®
).
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2.5.3 Antibody staining 

2.5.3.1 Deparaffinisation 

Slides were immersed in xylene for two changes of 5 minutes duration each. The 

sections were then immersed in graded solutions of 100%, 100%, 95% and 70% (v/v) 

ethanol for three minutes each. The slides were then rinsed in a container of running 

tap water and drained well. 

2.5.3.2 Primary antibody incubation 

Slides were assembled in Sequenza trays (Thermo Scientific). Wash buffer (Tris 

Buffered Saline and Tween-20) was added to the top of each slide chamber and 

incubated at room temperature for 6 minutes.  100l of Dako Protein Block (serum 

free) was then added to each slide chamber, and incubated at room temperature for 10 

minutes. 100µl of diluted primary antibody or appropriate negative control antibody 

was added to each slide chamber followed by incubation at 4
o
C overnight. Details of

antibodies are available in Appendix A. 

2.5.3.3 Detection 

Wash buffer (TBST) was added to each slide chamber and incubated at room 

temperature for 6 minutes. Three drops of Envision+ polymer (dual link) were added 

to each chamber and incubated for 30 minutes, followed by wash buffer (TBST) for 6 

minutes. Slides were then removed from the Sequenza tray and placed in a humid 

chamber. 200ml of substrate chromogen (NovaRED) was applied to each slide, 

making sure the section was covered with reagent, and incubated for 15 minutes at 

room temperature. Slides were then placed in rack and washed in running tap water 

for five minutes. 
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2.5.3.4 Counterstain 

Slides were placed into Mayer’s Haematoxylin for 10 seconds and washed until clear. 

Slides were then placed in Scott’s Blue for 1 minute and washed until clear. 

2.5.3.5 Mounting 

Slides were put through four changes of 100% (v/v) ethanol with 10-second agitation 

in each container. Slides were then put through three changes in xylene with 20-

second agitation in each container. Slides were left in xylene in preparation for 

mounting. Slides were drained, mounted in a resinous mountant (Euckitt
®
) and a

coverslip applied, and then allowed to dry in the fume hood. 
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CHAPTER 3:  Development and validation of methods 

The methods for induction of post-traumatic OA by DMM and inflammatory arthritis 

using AIA are well established in the host laboratories (439, 450, 461). In contrast, 

our laboratories had not previously evaluated pain outcomes in these mouse models. 

This chapter outlines how the pain assays were selected, and the protocol for 

conducting them was developed, modified and optimised.  

Furthermore, different histopathological scoring systems have previously been used to 

quantify arthritis progression in DMM (47) and AIA (439). Histopathological scoring 

in the DMM model is focused on quantifying articular cartilage damage (462). In 

contrast, histopathological scoring in the AIA model is aimed primarily at quantifying 

the inflammatory changes (448, 452, 493). This chapter therefore also describes 

experiments to validate the use of a single histological scoring system to enable direct 

comparison between the two arthritis models for subsequent correlation with pain 

outcomes.  

3.1 Pain assessment 

The International Association for the Study of Pain (IASP) defines pain as “An 

unpleasant sensory and emotional experience associated with actual or potential tissue 

damage, or described in terms of such damage” (494). This definition, adopted by 

pain experts to also describe pain in animals, highlights the challenge that researchers 

face when attempting to accurately and consistently quantify pain in preclinical 

studies. Nociception refers to the processing of information about the internal and 

external environment by the peripheral and central nervous system. This commences 

with the activation of peripheral nociceptors (specialised nerve endings that detect 

noxious stimuli). Transmission of nociceptive input to the cerebral cortex results in 



95 

the perception of pain. However, pain can also be perceived in the absence of any 

nociceptive signalling.  

Like humans, animals experience pain as a complex physiological, somatosensory, 

emotional and cognitive phenomenon, however they cannot verbally express or 

describe the emotional component that is unique to every individual. The challenge 

for researchers is to identify pain assays that accurately mimic the pain observed with 

human disease, and develop outcome measures that are consistent and can be 

validated. 

Changes in behaviour, posture and even facial expression provide valuable clues 

about an animal’s pain experience. Burrowing and nesting behaviours are also now 

recognised as an indicator of health and wellbeing in laboratory mice (495, 496), and 

has been validated as a marker of acute post-surgical pain (497, 498). However, there 

is currently no report of its validation as a marker of chronic pain, such as that which 

develops in both humans and animals with OA. Similarly, facial expression markers 

have been validated in mouse, rat and rabbit models of acute pain (499-503), but have 

proven unreliable as markers of chronic pain. 

Chronic pain assessment in humans relies principally on self-reporting assessment 

tools such as the WOMAC questionnaire (504). The use of questionnaires assists 

clinicians and researchers with quantifying the chronic pain state in an individual 

(505, 506). More recently attempts have been made to develop qualitative pain 

assessment tools that allow for the phenotyping of chronic OA pain and therefore, a 

more targeted approach to pain management (430, 507, 508).   

Chronic OA pain in human patients is characterised by movement evoked joint pain, 

locomotor restriction, spontaneous pain at rest, and poor sleep (509). Some of these 

features have also been demonstrated in preclinical models of arthritis, inflammatory 
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pain and chronic musculoskeletal pain. For example, fragmented sleep has been 

demonstrated in mice with chronic muscular pain (510).  

Somatosensory testing has also been used to characterise chronic OA pain. 

Researchers have demonstrated that patients who present with high levels of clinical 

pain, but only mild to moderate radiographic evidence of knee joint pathology, 

demonstrate reduced thermal and mechanical thresholds in quantitative sensory tests 

of central sensitisation (511). On the other hand, patients with mild knee OA pain 

experience knee joint mechanical hyperalgesia, as demonstrated by an increase in the 

pressure pain threshold (PPT), but not thermal hyperalgesia (512). In a cohort of 

patients with different degrees of knee OA, pain intensity (as reported by the patient) 

correlated significantly with knee PPT, temporal summation (TS) and conditioning 

pain modulation (CPM) (513). These three quantitative sensory tests are used to 

assess changes in central pain mechanisms, and reflect the development of central 

sensitisation. 

Chronic OA is also characterised by changes in gait. For example, patients with 

medial compartment knee OA demonstrate altered foot kinematics (514). Gait 

disturbances are also observed in pre-clinical models of OA. In the Collagen-induced 

arthritis model, mice demonstrate an increased stride frequency and shorter stride 

length (515). However, these gait modifications may reflect progression of joint 

pathology and subsequent changes in joint mechanical function and/or range of 

motion, rather than indicating joint pain severity (516). 

The pain assays selected for evaluation in this thesis can be used to assess the 

development of central sensitisation (as is observed in a sub group of chronic OA 

patients), and represent features of the pain state in pre-clinical models that reflect the 

clinical features observed in chronic OA patients. 
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Three stimulus evoked pain tests were investigated: 

1. The von Frey fibre test for tactile allodynia

2. The hotplate test for thermal hyperalgesia

3. The PAM (pressure application device) test for mechanical hyperalgesia

Three motor function based behaviour tests were also investigated: 

1. Hind-limb weight distribution using a force plate (incapacitance)

2. Gait analysis using hind-limb stride length measurements

3. Motor coordination using a rotarod

All six tests have been validated as outcome measures of pain through ablation of 

response following the administration of established analgesics such as non-steroidal 

anti-inflammatory drugs and opioids (316, 406, 423, 517, 518).  

However, despite the validation of these pain tests, it is apparent from the literature 

that there is tremendous variability in the outcome measures that define a positive 

response and subtle differences in the exact method used to measure these outcomes. 

This absence of standardisation means that outcomes do not translate across research 

laboratories, and result in many inconsistencies in the published data from apparently 

the same experiments. The interpretation of many of the behavioural outcomes, and in 

particular, what constitutes a “response” can be very subjective and operator/observer 

dependent, which leads to a significant amount of irreproducibility in the field.  

The purpose of the experiments described in this chapter, therefore, was to optimise 

the methods used and determine which pain outcome measures could detect 

pain/disability in mouse OA, and that would therefore be used in subsequent 

longitudinal studies. 



98 

Twelve naïve 8-week-old male C57BL/6 mice were used to evaluate the suitability of 

5 of the six pain-related behaviour tests (von Frey, Hotplate, Rotarod, Forceplate and 

Gait). A separate group of 12 naïve 8-week-old male C57BL/6 mice were used to 

evaluate the PAM device. This was done because the PAM testing required 

significant restraint of the mice (see section 3.1.3), and it was thought that imposing 

this additional stress on the mice might confound the results of the other pain tests. 

The aim of using naïve mice was to establish a repeatable method for each pain 

behaviour assay that achieved consistent baseline values. Where modifications were 

made to a particular assay, the modified method was trialled on six new mice. Once 

consistent baselines were established, the pain behaviour tests were used to 

investigate pain using the AIA model.  This model was used because it produces a 

more severe inflammatory response in the knee joint. Based on the current literature 

(420, 519, 520), an inflammatory arthritis such as AIA should provide a more robust 

model for demonstrating difference in pain behaviour between treatment mice and 

saline injected mice with no joint pathology. AIA was established in six mice, as 

described in Chapter 2 (section 2.1.4), and six mice served as immunised, saline 

injected, controls. Joint inflammation peaks early in the AIA model (521) and so for 

the experiments described in this chapter, testing was conducted day 0 (prior to 

immunisation), day 3, day 7 and day 14 (von Frey and PAM). Table 3.1 outlines the 

testing schedule and how many times individual mice were tested using the different 

pain assays.  
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Table 3.1. Testing schedule for optimisation of pain behaviour assays 

Pain test 
Baseline testing* AIA testing** 

Trial 1 Trial 2 Trial 3 Trial 4 Day 3 Day 7 Day 14 

Von Frey A (12) A (12) B (12) C (12) C (12) C (12) 

Hotplate 42 A (12) 

Hotplate 50 A (12) A (12) A (12) A (12) A (12) 

Hotplate 52 B (12) B (12) B (12) B (12) 

Hotplate 55 B (12) B (12) 

PAM D (12) E (12) E (12) E (12) E (12) 

Force plate A (12) C (12) C (12) C (12) 

Stride length A (6) A (12) A (12) A (12) 

Rotarod A (12) A (12) A (12) A (12) A (12) 

A, B C, D and E denote different mice cohorts. The number of mice tested is 

indicated in brackets. * Animals that were used to establish baselines for more than 

one pain test were rested for at least 24 hours before performing the next test. 

Baseline testing was done over a 2-week period prior to administering the first 

immunisation. ** Animals that underwent more than one pain test were rested for at 

least two hours before performing the next pain test. 

A single assessor (SZ) performed all behaviour testing described in this thesis. The 

assessor was blinded to treatment group until the completion of testing at all time 

points. Blinding is a crucial aspect of conducting pain behaviour experiments, as it 

reduces detection bias in a study. It is done because the assessor may be influenced by 

the knowledge about treatment assignment (for example, an animal with osteoarthritis 

should demonstrate a lower pain response threshold than a control animal) and this 

can induce a systematic detection bias. Overestimation of treatment effect due to 

unblinded assessors in randomised clinical trials has been estimated to range from 17 

- 50% (522, 523). There is an even greater risk of observer bias in animal model

experiments where the outcome measure is subjective, as in the case of behaviour 
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testing and scoring of histological preparations (524). Recently the impact of 

unblinded assessors in animal model experiments on observer bias was evaluated 

(525). Ten experiments (2450 animals) were included in the meta-analysis, and an 

average exaggeration of 59% of the odds ratio (OR) from non-blinded assessments, 

was calculated. This implies a considerable high risk of observer bias if an assessor is 

not adequately blinded. 

Despite the recent publication of guidelines for the reporting of in vivo animal 

experiments (ARRIVE Guidelines) (395), many publications do not include proper 

reporting, especially details of the blinding. Care must be taken when interpreting 

results from studies that simply state the experiment was blinded without clarification 

of the blinding. For example, are there any visible differences (e.g. surgical incision) 

between treatment groups that would unblind the assessor? Does the assessor remain 

blinded until the conclusion of the experiment when all data has been collected? Is the 

order that testing or scoring occurs random? Or do all animals in one treatment group 

get tested followed by the other treatment group? Are different treatment groups 

housed in mixed cages to avoid any bias associated with testing cage mates?   

For the experiments described in this Chapter, there were no visible differences 

between mice from the two treatment groups (Saline vs. AIA). Mice were housed in 

mixed treatment group cages, and tested in a random order each time. 
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3.1.1 Mechanical allodynia 

Quantitative assessment of mechanical allodynia was done using von Frey filaments 

(Stoelting Touch Test Sensory Evaluator Kit, USA) and the ‘up-down’ method 

described by Dixon (466). Details of the method used are outlined in Chapter 2 

(section 2.3.1). The use of a monofilament device to perform sensory testing was first 

reported in humans in 1922 (526) and subsequently standardised in the form of a set 

of calibrated nylon monofilaments by Semmes and Weinstein (527). These same 

monofilaments are now used by researchers to measure mechanical withdrawal 

thresholds and draw conclusions about the development of sensitisation in 

neuropathic, acute and chronic pain models. However, there is still no established 

consensus on what normal thresholds are in mice or rats. In addition there are a 

number of limitations of using nylon monofilaments to measure mechanical sensory 

thresholds in animal models of disease which require further consideration (528). 

Although the nylon monofilaments are calibrated, application parameters such as 

bend rate and the tip geometry influence the amount of vertical force generated by 

each fibre. In addition, the degree of bending can affect the non-vertical loading and 

therefore alter the total vertical force generated (528). Other confounders include, the 

application time, which can vary from less than a second to more than 10 seconds; 

and the site of application, which is difficult to accurately control. The significance of 

these application parameters is user dependent, and highlights the need for individuals 

to learn and practice the technique to ensure consistency and repeatability of results. It 

also suggests a reason for why there is such variability between individuals and 

highlights the challenge of yielding reproducible results across two or more different 

laboratories.  
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There are currently no published guidelines on how to train an experimenter to 

perform the test, and there is no standardised protocol for conducting the test, or 

method for the analysis and reporting of results. The method of analysis used in this 

thesis (465) is frequently reported, but is by no means universally accepted. 

 

The following test method was used: 

1. Six mice were placed in individual transparent plastic chambers with wire mesh 

flooring, and left undisturbed for one hour to acclimatise.  A one second stimulus 

was applied to the plantar surface of the hind paw with a von Frey filament 

presented perpendicularly and exerting enough force to bend the filament. 

2. A positive response was defined as shaking, licking, biting and/or withdrawal of 

the tested paw.  

3. A series of von Frey filaments were used, starting with filament 3.61 (0.4 g force) 

4. The left hind paw was tested in all six mice followed by the right hind paw in all 

animals. 

To establish baseline paw withdrawal threshold (PWT) using von Frey filaments, the 

same mice were tested on two separate occasions with a five-day rest period in 

between. This initial baseline data (Trial 1 and 2) collected from naïve mice was 

highly variable and inconsistent both within (right vs. left paw) and between 

individual animals (Figure 3.1a and 3.1b). To rule out the effect of stress due to over 

handling and testing, the von Frey test was repeated using the same method on a 

different group of naïve mice (n=12) (Trial 3). This group of mice demonstrated a 

similar withdrawal threshold (Figure 3.1b). 
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Figure 3.1a. Baseline 50% paw withdrawal threshold (PWT) 

Using von Frey filaments, naïve C57BL mice were tested (n=12) on the left and right 

hind paw. Graph demonstrates the observed within animal variability (left vs. right 

paw) in baseline 50% PWT. 

Figure 3.1b. Baseline 50% PWT using von Frey filaments 

Trial 1 and 2 represent the same cohort of naïve mice (n=12) tested on two occasions 

with a five-day rest period in between. Trial 3 is a second cohort of C57BL mice 

tested using the same method as trial 1 and 2. These mice demonstrated similar within 

and between animal variability in baseline 50% PWT. Trial 4 represents a third cohort 

of C57BL mice tested using a modified method. The results are presented graphically 

as a scatter plot, with mean and SEM marked. 
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A number of factors were attributed to this inconsistency: 

- Operator error in interpreting mouse response 

- The length of acclimatisation time  

- Use of a wire mesh floor surface 

In addition, these initial baseline 50% withdrawal thresholds in naïve mice were 

higher than that reported in the literature by other pain research groups (406, 441). 

As a naïve operator, I was unfamiliar with basic behaviour characteristics of mice. For 

example, mice are highly driven when it comes to basic activities such as voiding and 

grooming. This translated to a higher withdrawal threshold if mice were tested while 

they were performing these activities. The mice also displayed a quiescent state where 

they appeared unresponsive, but their eyes remained fully open. In this state, the 

response to a tactile stimulus was unpredictable. For any given stimulus, the response 

was either exaggerated or they did not respond at all. Mice that were asleep in the 

chamber at the time of testing were hypoalgesic and did not respond even when the 

largest von Frey fibres were used.  

In addition, I observed that there was variability in how quickly mice acclimatised 

after being placed in the test chambers, and that they did not remain settled 

indefinitely. In fact, following this period of reduced activity, the mice entered a state 

of heightened arousal where they demonstrated excessive grooming, excitatory 

exploratory behaviour, and attempts at escape from the chamber. In this state mice 

were very difficult to test. It was also observed that after a period of time mice began 

to shift their weight from one limb to the other. In contrast, some mice fell asleep 

after being in the chamber for only 30 minutes. 

It has been demonstrated in rats that the type of floor surface used influences the 

withdrawal threshold for the von Frey test and that wire mesh floors are associated 
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with a large variability in withdrawal threshold between control animals (529).  

Exposure to a wire mesh floor may itself induce a hyper aesthetic state resulting in an 

artificially reduced withdrawal threshold. Rodents do experience anxiety from being 

elevated (530), and so the mesh floor may act as a stressor because the mice can see 

through it. Physiological stress will influence an animal’s sensory processing. In 

addition, the mesh floor allows mice to receive visual cues as the operator’s hand 

approaches the mouse and raises the von Frey filament. This phenomenon was 

observed during testing and resulted in movement and a state of alertness before the 

filament was even applied to the paw. 

The stress of elevation because the surface is not opaque, the influence of visual 

signalling, and the effect of sensory stimulation due to standing on the mesh floor, 

could all in part explain the failure of some mice to settle in the chambers, and also 

why longer acclimatisation periods resulted in heightened activity levels. 

The state of arousal and attentiveness is an important modulator of pain sensitivity in 

humans (531, 532). The modulatory effect of equivalent behavioural states on 

mechanical and thermal nociception has also been examined in mice using a nerve 

injury model in three different mouse strains including the C57BL strain (533). 

Researchers reported six behavioural states; deep sleep, light sleep, resting, alert, 

grooming and exploring. They concluded that nociceptive sensitivity was influenced 

by activities such as grooming, alertness, light sleep and deep sleep (533). 

To address these confounding factors, the following caveats were added to the testing 

method. Mice were not tested when asleep, grooming, urinating, defecating or highly 

active and frequently rearing on their hind limbs. Mice that remained stationary in a 

hunched position, but with eyes open, for an extended period of time, were deemed to 

be asleep and therefore were lightly stimulated (light tap on Perspex wall) prior to 
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testing. Testing was not done while a mouse was observing the operator through the 

mesh floor. Mice were tested twice on each paw with a minimum 15-minute break 

between testing, and the two scores were averaged to obtain a mean 50% withdrawal 

threshold. Where the two scores differed by more than the equivalent of two von Frey 

filaments, mice were tested a third time and the three scores averaged. 

Acclimatisation time was reduced from one hour to 30 minutes. If after 30 minutes 

the mice were still very active, testing was incrementally delayed by 10 minutes until 

a point when the mice appeared settled in their cages. Acclimatisation time was 

capped at one hour because after this point, mice either became further agitated or 

started to fall asleep. Both of these states increased the variability and potentially 

reduced the accuracy of testing.  

With the adoption of these modifications to the method, subsequent von Frey testing 

achieved more consistent baseline 50% withdrawal thresholds, both within and 

between individual mice (Figure 3.1b: Trial 4). 

Following the establishment of consistent and repeatable 50% withdrawal threshold 

measurements from naïve mice, AIA was induced and testing repeated on Day 3 and 

day 14, post arthritis induction (Figure 3.1c). This demonstrated little change in left 

and right 50% PWT in saline injected mice at day 3 and 14. In AIA mice there was no 

change in the 50% PWT of the left hind limb, but a significant reduction in the 50% 

PWT of the right hind limb at day 3 (p = 0.007) that persisted to day 14 (p = 0.012). 

This confirmed the ability to detect reduction in PWT using the von Frey method 

described above, following the induction of arthritis. 
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Figure 3.1c. Development of von Frey test protocol 

50% PWT at day 0, day 3 and day 14 following induction of AIA in C57BL mice 

(n=6), in the right knee joint.  Sham group (n=6) were immunised and received an 

intra articular saline injection. At day 3 (P=0.007) and 14 (P=0.012) 50% PWT in the 

right limb was significantly reduced compared to baseline in AIA mice. The results 

are presented graphically as a line graph of the means with SEM marked. 
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3.1.2 Thermal hyperalgesia 

Quantitative assessment of thermal hyperalgesia was performed using a hotplate 

device (Ugo Basile, Italy). The hotplate assay was first reported by Woolfe and 

MacDonald in 1944 (534), and later modified by Eddy and Leimbach (535). Eddy and 

Leimbach used a 55-degree hotplate to test a number of novel new compounds for 

their analgesic properties in comparison to morphine and methadone. They tested 

2000 naïve mice and calculated a mean reaction time of 9.51 seconds +/- 1.02 

seconds.  

Pain researchers have used the hotplate assay extensively. However, there is still no 

consensus on the optimal test temperature, the effect of acclimatisation and 

habituation, or which response behaviours best correlate with pain. The literature 

suggests that a lower intensity stimulus (≤ 50 degrees Celsius) is more sensitive at 

detecting an effect, but produces greater variability in the response latency (517, 536). 

There are conflicting reports about the effect of habituation, with some researchers 

demonstrating a significant decrease in response latency (from 20 to 12 seconds) 

across trials when using a 50 degrees hotplate, but no change in sensitivity to the 

analgesic effects of morphine (517). Other researchers have demonstrated a 

significant repeated testing effect in mice tested 6 times at 30-minute intervals over a 

three-hour test period using a 59-degree hotplate, with a trend of decreasing latency 

with each test trial (537). In contrast, response latency was unaffected by repeated 

testing when a 55-degree hotplate was used with a short maximum exposure (20 

seconds) (538).  

A decrease in response latency represents an increased sensitivity to a noxious heat 

stimulus. This may be due to the influence of stress-induced anti-nociception (SIA), 

which in part is mediated via the endogenous opioid system (539). A novel test 
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environment, restraint or other physical stressors can all induce SIA (540). Repeated 

exposure to a noxious stimulus, whether during habituation or repeated test measures, 

will potentially reduce the effect of SIA and therefore result in an increase in 

sensitivity. This could be explained by the idea that different temperatures will recruit 

different populations of sensory afferents, some of which can be modulated by 

opioids (including endogenous opioids) and others that can’t. 

Prior to testing, mice were acclimatised by placing them in the Perspex cylindrical 

chamber for brief intervals of time (30 to 60 seconds), on four separate occasions over 

a one-week period. Two temperature settings, 42 degrees and 50 degrees Celsius, 

were used to optimise the test. These temperatures were selected for the following 

reasons: 

- Exposure to temperatures greater than 42 degrees Celsius represents a shift in

perception from innocuous warmth to noxious heat (541).

- There are a number of nociceptors that detect heat and have been implicated in

the development of inflammation driven thermal hyperalgesia. The role of the

TRPV1 receptor is the best characterised of these and this receptor is activated

by noxious temperatures greater than 42 degrees Celsius (541).

- The literature suggests that a low intensity stimulus (≤ 50 degrees Celsius) is

more sensitive at detecting a treatment effect.
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Initially the hotplate was set to 42 degrees Celsius. Individual mice were placed in a 

cylindrical Perspex chamber, which lay over the hotplate and prevented escape. A lap 

timer was used to record the time at which the following observations first occurred: 

- Shaking of front paw

- Licking/chewing of front paw

- Shaking of hind paw

- Licking/chewing of hind paw

- Jumping

Exposure to the hotplate did not exceed 60 seconds to avoid thermal injury to the 

ventral paw skin. Mice were then returned to their cage mates. After a 15-minute 

period of recovery the test was repeated with the hotplate temperature set at 50 

degrees Celsius. Exposure to the hotplate for the second time did not exceed 30 

seconds to avoid thermal injury to the ventral paw skin. Baseline measurements were 

taken on three separate occasions in the same 12 mice over a one-week period. 

When the hotplate was set at 42 degrees Celsius only 2 out of 12 mice responded 

before the 60-second cut off. One mouse responded on only one occasion and one 

mouse responded for two out of three baseline tests. When the hotplate was set at 50 

degrees Celsius all mice responded in less that 60 seconds, but there was significant 

within-mouse variability across the three baseline trials (Figure 3.2a), and significant 

between-mouse variability for any given baseline test [(mean ± SD (10.0 ± 3.0)]. This 

finding supported what other investigators have reported about the use of a low 

intensity stimulus (517, 536). 
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Figure 3.2a. Baseline paw withdrawal latency (PWL) 

Hotplate set at 50°C. Graph demonstrates the variability in baseline PWL in naïve 

C57BL mice (n=12) tested three times over a one-week period (trial 1 – 3). The PWL 

endpoint was defined as either front limb or hind limb response.  

Figure 3.2b. Development of Hotplate test protocol 

Baseline hind limb PWL when hotplate set at 50°C in C57BL mice (n=12). PWL 

endpoint defined as time to first attempt at shaking or licking hind paw. Testing was 

then repeated day 3 and day 7 following induction of AIA. At day 7, PWL in AIA 

was significantly increased compared to saline injected mice (P=0.02). The results are 

presented graphically as a bar graph of the means with SEM’s marked. 
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Licking behaviour of the front paws was displayed when mice were grooming as well 

as in response to the noxious heat stimulus. Therefore, in some mice the time to first 

licking their front paw was very short and did not represent a withdrawal response to 

a noxious stimulus. It was also difficult to interpret jumping behaviour. Jumping 

behaviour was observed in many mice during acclimatization when the hotplate was 

in fact not turned on (room temperature). Therefore, jumping is an escape behaviour 

and not specifically related to pain. So mice that displayed jumping behaviour may 

have been attempting escape from the confinement of the chamber, or the noxious 

heat stimulus, or both. Despite acclimatisation, some mice had an aversion to being in 

the Perspex chamber and almost immediately attempted to escape by jumping.  

Based on these observations, the following changes were made to the hotplate test 

protocol: 

- Mice whose first response was to jump were eliminated from the study.

- The paw withdrawal latency (PWL) was redefined as time to first attempt at shaking

or licking a hind limb. This avoided misinterpretation of grooming behaviour (licking 

the front paws) as a positive response to the thermal stimulus.  

This protocol was then used to compare AIA mice and immunised saline injected 

mice at day 3 and day 7 (Figure 3.2b).  

There was no significant difference in PWL between treatment groups at D0 or D3. 

At D7 there was a significant difference between treatment groups (p=0.02). 

However, this corresponded to a decrease in PWL in the saline group rather than the 

AIA group. There was no significant difference within each treatment group when 

comparing baseline (D0) to D3 or D7 post treatment (Table 3.2). 
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Table 3.2: Hotplate Test 

Plate set at 50°C. End point described as hind limb paw withdrawal latency (PWL). 

(*) Paired data analysis using Wilcoxon signed-rank test (significance p<0.05). (**) 

Unpaired data analysis using Mann-Whitney test (significance p<0.05). 

Therefore, development of thermal hyperalgesia could not be demonstrated in the 

AIA model when mice were exposed to a 50 degrees Celsius heat stimulus. Based on 

this finding the protocol for the hotplate test was revised further and tested on 12 

additional mice. The TRPV2 channel is activated following exposure to temperatures 

greater than 52 degrees Celsius (206), and may also play a role in the development of 

inflammation driven thermal hyperalgesia (211). The hotplate settings were therefore 

increased to 52 and 55 degrees Celsius and mice were exposed to the stimulus for a 

maximum of 60 seconds. Two measures were taken for each temperature setting and 

the values averaged. Mice were rested for at least 15 minutes prior to retesting. At 55 

degrees 10 out of the 12 mice displayed jumping behaviour on at least one of the 

trials. At 52 degrees only two mice displayed jumping behaviour on one of the trials, 

and the PWL was less variable within individual mice (Figure 3.2c).  

Treatment Baseline vs. D3 Baseline vs. D7 

Saline 0.35* 0.21* 
AIA 0.60* 0.60* 

Baseline Day 3 Day 7 

AIA vs. Saline 0.26** 0.26** 0.02** 
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Figure 3.2c. Development of Hotplate test protocol 

Baseline hind limb PWL when hotplate set at 52°C in C57BL mice (n=12). PWL 

endpoint defined as time to first attempt at shaking or licking hind paw. The higher 

temperature resulted in less variability in baseline PWL in mice (P = 0.42; trial 1 vs. 

trial 2) 

Figure 3.2d. Development of Hotplate test protocol 

Hind limb PWL at day 0, day 3 and day 7 following induction of AIA in C57BL mice 

(n=6), in the right knee joint. Sham group (n=6) were immunised and received an 

intra articular saline injection. At day 3 and 7 PWL was decreased compared to 

baseline in both saline and AIA mice. The results are presented graphically as a bar 

graph of the means with SEM’s marked. 
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Following the establishment of less variable hind limb withdrawal latency 

measurements from naïve mice, AIA was induced and testing repeated on Day 3 and 

day 7, post arthritis induction.  

At 52 degrees Celsius the PWL was decreased at day 7 relative to baseline in both 

AIA and Saline groups, but the decrease was not statistically significant (AIA p=0.92; 

Saline p=0.25) (Figure 3.2d). There was no significant difference between AIA and 

saline at any of the test time points (Day 3 p=0.82; Day 7 p=0.12). While this 

experiment failed to demonstrate a significant change in hotplate hind limb latency 

with AIA up to 7 days post induction, the test itself was robust and repeatable. 

3.1.3 Mechanical hyperalgesia  

Knee joint hypersensitivity is measured clinically in OA patients to assess pain. This 

is usually done by directly squeezing the joint with a pressure-measuring device such 

as a pressure dolorimeter (542). Electronic devices such as these have been shown to 

produce less between-observer variability compared to manual techniques (543). 

However, it is only moderately reliable at differentiating OA patients from healthy 

controls, and is poorly correlated with other measures of pain intensity such as the 

McGill Pain Questionnaire (544).  

The use of a commercial digital pressure application measurement (PAM) device 

(Ugo Basile, Italy) has the advantage of delivering a quantifiable force that can be 

directly applied to the knee joint. Baseline withdrawal thresholds (WT) are reported in 

rat models of inflammatory arthritis (518). The PAM device has been validated in 

both mice and rats (545), however, the majority of studies reporting the use of the 

PAM device were conducted in rats (453, 546, 547). The device’s software produces 

a graphical readout of the pressure being applied in real time and this allows the rate 
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of increase in pressure to be controlled. Increasing the pressure applied at a consistent 

rate produces greater inter-operator agreement (545). It has been demonstrated that 

the ramp speed of a stimulus increase affects the response threshold, with an 

increased steepness resulting in increased thresholds (548). An optimal increase rate 

of 30g/s is recommended for mice when using the PAM device, and this translates to 

a maximum test time of 15 seconds when the maximum applied force is set at 450g 

(Figure3.3a). 

Figure 3.3a. Pressure Application Measurement (PAM) device 

Screen shot of force/time graph with optimal rate of increase set at the recommended 

30g/sec. Maximum test time = 15 seconds and maximum force = 450g.  

Figure 3.3b. PAM protocol restraint method 

The mouse is cradled in the palm of the right hand while grasping the loose skin along 

the neck and back, with the tail secured between the palm of the hand and the last 

digit. 
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For mice a 5 mm circular probe is recommended to limit the size of the stimulus area. 

Unlike rats, mice require significant restraint to enable application of the circular 

probe over the area of the knee joint. Initially mice were removed from their home 

cage by grasping them at the base of the tail. They were then placed on the top of the 

wire lid, and while the left hand continued to gently hold the base of the tail, the right 

hand pinched the loose skin at the back of the neck. The tail was then released and the 

mouse cradled in the palm of the right hand while grasping the loose skin right along 

the neck and back, with the tail secured between the palm of the hand and the last 

digit (Figure 3.3b). The WT was determined for the right and left knee in naïve mice, 

by squeezing the knee between the thumb (with probe attached) and the index finger. 

There was considerable variability between the left and right limb in the majority of 

individual mice (Figure 3.3c). 

Figure 3.3c. Development of PAM device protocol 

Baseline testing of naïve C57BL mice (n=12). Trial 1 graph illustrates considerable 

variability between left and right hind limb withdrawal threshold (WT) in the majority 

of mice (P = 0.033; right vs left WT). 
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A number of observations were made during baseline testing that may have 

contributed to the variability in PAM outcome.  Some mice resisted restraint and 

vocalised when restrained prior to the application of the probe. These mice were 

released, allowed to recover and then restrained again. Other mice became very still 

and unresponsive when restrained, displaying a catalepsy-like state. Manipulation-

induced behavioural arrest in response to restraint such as pinching the skin of the 

neck has been demonstrated in a number of prey species including mice and rabbits 

(549, 550). The response to having pressure applied to the knee varied between 

individuals; some simply turned and looked at their knee, some vocalised, some 

retracted their limb and struggled in an attempted to release themselves, and some 

displayed both of these behaviours. 

The variability in baseline thresholds was attributed to the following: 

- Differences in response behaviour between mice.

- Confounding effect of distress caused by the actual restraint method

- Confounding effect of manipulation-induced behavioural arrest (catalepsy)

- Variability in the exact anatomical location where the probe made contact with

the knee, ie. medial vs. lateral joint compartment, patella-femoral vs femoro-

tibial joint compartment.
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To reduce this variability in baseline WT both within and between mice, the 

following modifications were made to the PAM protocol, and baseline testing was 

then performed on a new set of 12 mice. 

- Each mouse was tested at four sites; medial and lateral knee joints on both left

and right knees. The medial and lateral measurements from each side were

combined and averaged to obtain a single WT value for the left and right knee.

- Mice who struggled and vocalised immediately following restraint were

released and given time to recover before testing was attempted again.

- In mice that demonstrated catalepsy, mild head movement in the direction of

the knee was considered a positive response.

- In mice that did not demonstrate catalepsy, purposeful limb withdrawal,

struggling and/or vocalisation were all considered a positive response.

Mice were tested twice at each location to obtain an average withdrawal response. 

Following these adjustments and with continued practice of the technique, baseline 

testing became less variable (Figure3.3d). AIA was then induced and testing repeated 

on day 7 and day 14, post arthritis induction (Figure 3.3e). This demonstrated a small 

decrease in left and right WT in both saline injected and AIA mice at day 7. This 

decrease reverted at day 14 except in the right hind limb of AIA mice. In AIA mice 

there was a significant decrease (p = 0.035) in right hind limb WT compared to the 

left hind limb at day 14. This confirmed the ability to detect a reduction in WT using 

the PAM device as described above, following the induction of arthritis. 
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Figure 3.3d. Development of PAM device protocol 

Baseline testing of naïve C57BL mice (n=12). Trial 2 graph illustrates reduced 

variability between left and right hind limb WT in all mice, following modifications 

to the testing protocol (as described in section 3.1.3). 

Figure 3.3e. Development of PAM device protocol 

WT at day 0, day 7 and day 14 following induction of AIA in C57BL mice (n=6), in 

the right knee joint.  Sham group (n=6) were immunised and received an intra 

articular saline injection. At day 14 (P=0.035) WT in the right knee was significantly 

decreased compared to the left knee in AIA mice. The results are presented 

graphically as a line graph of the means with SEM’s marked. 
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3.1.4 Weight distribution  

Hind limb weight distribution is considered a clinically relevant measure of OA pain 

(551).  It mimics the clinical observation of pain on standing that is reported by OA 

patients.  

A purpose built incapacitance tester was used to measure hind limb weight 

distribution (Figure 3.4a). This device quantifies the force applied to two precision 

force transducers over which lie metal plates where the hind paws of the test mouse 

are placed. A special Perspex chamber was also made, to restrain the mouse and 

enable visualisation of correct positioning. The transducers were linked to LabVIEW 

Run-Time Engine 2009 software (National Instruments, Australia) and a National 

Instruments-DAQmx hardware driver that enabled continuous data acquisition and 

graphical readout (Figure 3.4b), as well as the easy conversion of data to excel format 

for later viewing and analysis. Commercially available incapacitance testers such as 

the Columbus Instruments InCap do not provide a continuous readout, but rather give 

a single readout based on the average force applied over a pre set time interval, 

usually no more than a few seconds.  
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Figure 3.4a. Incapacitance device used to measure hind limb weight distribution. 

Figure 3.4b. Hind limb weight distribution 

Graphical continuous readout of applied force of the right (series 1) and left (series 2) 

hind limb. Each 30-second test trial was preceded by 2 standard weight measurements 

(13.0g and 14.6g) to zero the instrument. 
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Mice were acclimatised prior to baseline testing by placing them in the chamber for 3-

minute intervals on alternate days, the week before testing commenced. The 

continuous graphical readout enabled a number of observations to be made during this 

acclimatisation period. 

- Even when mice appear to be still, they will shift their weight from limb to

limb periodically.

- When male mice position their forelimbs on the front vertical wall of the

Perspex chamber, their scrotum remains in contact with the force plates and

this contributes to the force applied to each plate.

- Naïve mice with no prior musculoskeletal pathology will preferentially

weight-bear on one particular hind limb and intermittently shift their weight.

- Subtle movements like turning the head to the left or right results in significant

changes in hind limb weight distribution.

Based on these observations, it was evident that a single time point measurement 

would reflect an animal’s weight distribution patterns less accurately than averaging 

the weight distribution measurements over a set time interval. A 30 second test period 

was selected. It was observed that mice become very agitated if confined in the test 

chamber for longer periods. 

After placing the mouse in the test chamber, the tail was exteriorised and supported to 

ensure the base of the tail and the testicles were elevated off the force plates. The 

mouse was then allowed to settle in the chamber and get into the correct position, 

before testing commenced. This modification reduced the variability in baseline 

weight distribution in naïve mice (Figure 3.4c: Trial 1 vs. Trial 2). AIA was then 

induced and testing repeated on day 3 and day 7, post arthritis induction (Figure 3.4d). 

This demonstrated no change in hind limb weight distribution in saline injected mice 
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at day 3 or day 7. In AIA mice there was a significant change in hind limb weight 

distribution at day 3 (p = 0.001) and day 7 (p < 0.001). In fact, the right to left weight 

distribution ratio decreased from 1 to less than 0.5. This confirmed the ability to 

detect a change in R to L hind limb weight distribution using an incapacitance device 

as described above, following the induction of arthritis. 

Figure 3.4c. Development of hind limb weight distribution test protocol 

Baseline hind limb weight distribution in naïve C57BL mice (n=12). Trial-1 

measurements are a single point in time measurement of applied force (right/left) in 

grams, recorded once the mouse was correctly positioned in the test chamber. Trial-2 

measurements are the average of a 30 second continuous measurement of applied 

force (right/left) in grams, recorded during periods when the mouse was correctly 

positioned in the test chamber. The results are presented graphically as a scatter plot 

with means and SEM’s marked. 
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Figure 3.4d. Development of hind limb weight distribution test protocol 

Hind limb weight distribution (R/L ratio) at day 0, day 3 and day 7 following 

induction of AIA in C57BL mice (n=6). Sham group (n=6) were immunised and 

received an intra articular saline injection. In AIA mice there was a significant 

decrease in the R/L weight distribution ratio at day 3 (P=0.001) and day 7 (P<0.001). 

The results are presented graphically as a line graph of the means with SEM’s 

marked. 
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3.1.5 Stride length  

The relationship between pain, disability and kinematics has been investigated 

extensively in humans with OA (552) however, the clinical significance of gait 

analysis as a tool for investigating the relationship between knee angles and moment, 

and pain and disability is still not clearly defined. It has been demonstrated that 

people with OA have a shorter stride length and walk more slowly than disease free 

adults (553). Stride length has also been measured in numerous animal models of 

arthritis using manual video recordings (554), video-based automated gait analysis 

systems (eg Catwalk™, Noldus Information Technology) (555), automated treadmills 

(556), digital imaging systems (e.g. DigiGait, Mouse Specifics, Inc.)(515), and paw 

print measurements (493). 

For this study a one-metre-long clear Perspex tunnel was used (Figure 2.3e). The base 

of the run was lined with white thermal paper Each mouse was restrained by pinching 

the dorsal skin of the neck and non-toxic paint (Crayola, Australia Pty Ltd) applied to 

the ventral surface of the hind paws (Figure 2.3e). The mouse was then released into 

the tunnel, leaving its paw prints on the paper as it made its way to the end of the 

tunnel. The paper was removed and allowed to dry. The paw prints were then used to 

measure the distance between consecutive footprints from opposite limbs (right-to-left 

and left-to-right distance) and from the same limb (left-to-left and right-to-right 

distance) (Figure 3.5a).  

After an initial test trial it was observed that many mice were hesitant to walk along 

the tunnel. In subsequent trials the sides and last third of the top of the tunnel were 

covered with black paper. This created a dark environment and encouraged mice to 

run to the end of the tunnel.  
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It was also observed that some mice stopped along the run to groom and/or 

urinate/defecate. Paw prints made during these activities were noted on the paper and 

not used to measure stride length, as this artificially reduced the average stride length 

(Figure 3.5b). Measurements were taken from a section where at least 5 consecutive, 

uninterrupted strides occurred. 

Figure 3.5a. Hind limb paw print trace for stride length measurement 

The right-to-left and left-to-right stride lengths are labelled in blue. The right-to-right 

and left-to-left stride lengths are labelled in red.  

Figure 3.5b. Development of stride length measurement protocol 

Hind limb paw print trace with urine stains marked (black dotted line). This trace 

illustrates the decrease in stride length (right-to-right) that occurs when mice stop to 

urinate or defecate. These artificially shortened strides were not used to calculate the 

average stride lengths 
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Figure 3.5c. Development of stride length measurement protocol 

Hind limb paw print traces recorded at day 0, day 3 and day 7 following induction of 

AIA in C57BL mice (n=6). Sham group (n=6) were immunised and received an intra 

articular saline injection. Both stride length (right-to-left) and complete stride length 

(right-to-right) were reduced in AIA mice at day 3 compared to baseline. The results 

are presented graphically as a line graph of the means with SEM’s marked. 

Speed was not measured in this study, but it was apparent simply through visual 

observation that mice moved at different speeds along the run. Speed alters stride 

length (557) and so in many studies walking velocity is adjusted for when 

determining changes in stride length (515). However, speed itself changes with 

disease state and pain, and so adjusting for differences in walking speed may mask 

changes in gait that are in fact due to joint disease and/or pain. For example, 

Complete Freund’s adjuvant (CFA) induced arthritis in rats results in both reduced 

velocity and a dramatic reduction in stride length (558). 

In this study relative stride length was also determined by calculating stride length 

when supporting the affected limb (right-to-left) relative to complete stride length 

(right-to-right) as previously described (493, 559). 
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Following acquisition of baseline stride length data, AIA was induced and testing 

repeated on Day 3 and day 7, post arthritis induction. This showed firstly that both 

stride length measurements (right-to-left and right-to-right) were consistent pre-

arthritis induction (Figure 3.5c day 0). Both stride length (right-to-left) and complete 

stride length (right-to-right) were reduced in the AIA mice at day 3 (Figure 3.5c) but 

then returned to baseline by day 7. This is similar to other studies that used the AIA 

model, where a decrease in stride length was only observed in the early acute phase of 

the disease (493). 

3.1.6 Rotarod  

The rotarod is an automated rotating rod that forces motor activity once a mouse or rat 

is placed on it. It has been used to test sensorimotor skills (balance and coordination) 

in a number of different animal models, including arthritis models in rats and mice 

(412, 560, 561). 

In this experiment an accelerating rotarod was used (Ugo Basile, Italy) (Figure 3.6a), 

commencing at a speed of 4 rpm and accelerating to 40 rpm over a 300 second 

interval, and continuing for a total of 6 minutes (or until the mouse fell off the rod). 

To condition mice to the rotarod four training trials were conducted the week prior to 

commencing baseline testing. These involved 2 trials with a 15-minute rest interval 

between testing. As previously reported (520), latency to fall (LTF) was defined as 

time to fall or passive rotation, with passive rotation occurring when a mouse freely 

rotated on the rod for two consecutive revolutions. 

To determine baseline and subsequent LTF values, one training trial was conducted 

followed by two test trials. The two test trials were used to determine the mean LTF. 

Mice were rested for 15 minutes between each test. 
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Despite conditioning the mice, there was considerable variability in baseline LTF 

between mice (range 198 – 400) (Figure 3.6b), with some mice displaying the ability 

to remain on the rotarod for much longer than the maximum 6 minutes. A ceiling 

value of 400 seconds did not truly reflect the LTF for those mice. During testing it 

was observed that mice developed different strategies for staying on the rod. For 

example, some mice used the side panel to lean on for support. This enabled them to 

take weight off the contralateral limb and still use the ipsilateral limb to walk and not 

fall off the rod. Other mice performed single passive revolutions at regular intervals to 

rest their hind limbs and therefore prevent falling.  

Changes in LTF have best been demonstrated in animal models where arthritis is 

induced in both hind limbs (560) or in multiple limbs (412). This may be due to the 

fact that when multiple joints are affected it is difficult to compensate by shifting 

weight distribution to an unaffected limb and minimise the work done by the affected 

limb. 
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Figure 3.6a. Development of rotarod test protocol 

The mouse in the first chamber is moving while the device is rotating and maintaining 

his balance. The mouse in the second chamber has lost balance and fallen off the rod. 

Figure 3.6b. Development of rotarod test protocol 

Baseline latency to fall (LTF) measurements recorded in seconds. The rotarod 

commences rotating at a speed of 4 rpm, accelerates to 40 rpm over 300 seconds and 

continues for a total of 6 minutes. The graph illustrates the variability in baseline LTF 

in naïve C57BL mice (n=12) and how the number of animals that remained on the 

rotarod after 6 minutes skews the data. The results are presented graphically as a 

scatter plot with means and SEM’s marked.  
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The decision was made not to continue with rotarod testing for the following reasons: 

- The adaptive behaviours that were observed confounded any changes (or lack

thereof) in LTF observed following induction of AIA.

- In subsequent experiments arthritis would be induced in only one knee joint,

allowing for adaptive compensatory behaviours to develop.

- The ability of individual mice to stay on the rod for times that far exceeded 6

minutes meant that a maximum LTF of 400 seconds masked the extent of

variability in LTF between individual animals.

3.1.7 Pain testing Conclusions 

After conducting these preliminary pain behaviour experiments and testing the 

modified pain behaviour test protocols in the AIA model, the following tests were 

selected to conduct subsequent experiments in this thesis.  

1. Von Frey

2. Hotplate 52°C

3. PAM – medial and lateral averaged for each knee joint

4. Forceplate – 30 second continuous reading averaged

5. Stride length – right-to-left and right-to-right stride

 These pain behaviour tests were then used to define the pain phenotype in both 

arthritis models and investigating how this changes over time, and how it maps to 

knee joint pathology. 
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3.2 Histology scoring  

Pathology in all joint tissues can be a feature of OA in humans. Synovitis, cartilage 

proteoglycan loss, loss of cartilage integrity and erosion, alterations in chondrocyte 

morphology, subchondral bone remodelling leading to erosion, increased 

vascularisation and thickening, and formation of marginal osteophytes and 

enthesiophytes, are features of knee joint histology changes in patients with 

symptomatic OA presenting for total knee replacement (TKR) (379). Different 

aspects of joint pathology feature in different OA phenotypes and at different stages 

of the disease; and only some have been associated with pain.  Most patients with 

knee OA have medial compartment tibio-femoral joint (TFJ) OA, femora-patella joint 

(FPJ) OA, or a combination (562, 563). In this thesis, histological evaluation of TFJ 

pathology focused on the pattern of change observed in human patients. A method of 

evaluation was required to define and quantify the knee joint histopathology that 

developed in the two distinct mouse models that were used. 

Reporting of OA joint pathology in mouse models has previously focused 

predominantly on the changes that occur in cartilage, and published recommendations 

such as The OARSI Histopathology Initiative (462) are aimed at standardising how 

histological sections are assessed. An additional challenge when it comes to assessing 

and reporting joint histopathology is that joint injury can result in both focal and 

diffuse joint pathology. In the case of the DMM model, pathology develops primarily 

in the medial compartment of the joint. Therefore, evaluating a pt-OA model requires 

scoring multiple sections of the joint in order to identify maximum and cumulative 

(total in all sections of the TFJ) pathology scores (462).  

In contrast, histological evaluation of inflammatory arthritis models such as AIA has 

previously been determined on a single 6m sagittal section corresponding to the 
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central weight-bearing region of the medial TFJ (439). This assumes inflammation is 

a global joint change. There are multiple scoring systems reported (452, 493, 521) and 

all focus on synovial changes (including cellular infiltration) and the degree of joint 

space inflammatory cell effusion.  

A detailed scoring system (Appendix C) was developed to evaluate TFJ pathology in 

the two mouse models used in this study. It combined the evaluation of joint structural 

damage (articular cartilage and subchondral bone changes) using a similar scoring 

system to that described in the OARSI Histopathology Initiative (462), and the 

evaluation of joint changes associated with inflammation (synovitis, synovial 

hypertrophy and joint cellular infiltration). To enable comparison between the two 

arthritis models, histological evaluation of knee joints was done on a single 6m 

sagittal section that corresponded to the central weight-bearing region of the medial 

TFJ.  

The following validations were performed before adopting the scoring system to 

compare the two arthritis models over time, and investigate the relationship between 

specific joint pathology features and pain outcome measures. 

1. Serial sagittal sections across the width of the medial TFJ from DMM, Sham, AIA

and Saline injected control mice at day 7 and day 28 following induction of

arthritis (n=6 mice per treatment group), were scored using the measures of joint

inflammation defined in Appendix C. Two (2) independent observers who were

blinded with regard to treatment, joint region and time performed the scoring. The

maximum score for each of the joint inflammation parameters irrespective of the

slide was recorded. The scoring system demonstrated a significant and repeatable

difference between treatment groups and within treatment group (AIA, DMM,

Sham) over time (day 7 vs. day 28) (Figure 3.7a). The differences over time for
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DMM and Sham demonstrated the sensitivity of the scoring system, as it was able 

to quantify post-surgical inflammation (evident in DMM and Sham groups at day 

7), and inflammation associated with OA disease (evident in DMM only at day 

28). The scoring system also demonstrated low inter-observer variability of 

individual scores and total scores  (Figure 3.7b). 

Figure 3.7a. Synovial inflammation 

This graph represents the maximum score for each of the joint inflammation 

parameters irrespective of the slide. Serial sagittal sections across the width of the 

medial tibio-femoral joint from DMM, Sham, AIA and saline injected mice (n=6 per 

treatment group) at day 7 and day 28 following induction of arthritis, were scored 

using the measures of inflammation defined in Appendix C. The results are presented 

graphically as box plots, with medians marked, 95% (upper bounds) and 5% (lower 

bounds) percentiles hinged, and whiskers depicting upper and lower limits of dataset. 
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Figure 3.7b. Inter-observer variability 

This graph represents the inter-observer variability for both individual (panus-PA, 

cortical bone erosion-CBE, synovial hyperplasia-SH, sub-synovial inflammation-SSI, 

synovial exudate-SE) and total inflammation scores of AIA mice (n=6) at day 28 

following induction of arthritis. Scoring was performed by two independent observers 

blinded with regard to treatment, joint region and time, The results are presented 

graphically as box plots, with medians marked, 95% (upper bounds) and 5% (lower 

bounds) percentiles hinged, and whiskers depicting upper and lower limits of dataset. 

Figure 3.7c. Serial sagittal section scores 

This graph represents the combined scores of serial sagittal sections across the width 

of the medial TFJ for tibial articular cartilage (AC) damage (mean = 0.33, SEM = 

0.33) and tibial proteoglycan (PG) loss (mean = 5.0, SEM = 0.0) for AIA mice (n=4). 

Scores were similar across all sections of the medial compartment indicating the 

central weight-bearing region is a suitable site for scoring maximum joint damage. 

The results are presented graphically as floating bars (minimum and maximum) and a 

line at the mean. 
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2. In AIA mice (n=4), serial sagittal sections of the medial TFJ were scored by two

independent observers blinded to joint region, to determine if structural joint

changes were similar across the entire medial compartment of the joint and

therefore whether the central weight-bearing section reflected the maximum

cartilage damage score. Scores were similar across all sections of the joint (Figure

3.7c), indicating that the central weight-bearing region was a site of maximum

joint damage.

3. In DMM mice, serial sagittal sections of the medial TFJ were scored by two

independent observers, blinded to joint region, to determine the maximum

cartilage damage score based on serial sections and compare with scores from the

central weight-bearing section. There was no significant difference between the

central weight-bearing region score and the maximum articular cartilage damage

score when determined by scoring serial sections (Figure 3.7d).

4. In DMM mice, sagittal sections corresponding to the site of maximum

inflammation score, the maximum articular cartilage damage score and the central

weight-bearing region of the medial compartment of the TFJ were scored (n=3) at

seven time points (day 3, week 1, 2, 4, 8, 12, 16), by two independent observers

who were blinded to joint region and time (Figure 3.7e). At all time points the

inflammation score was not significantly different between the central weight-

bearing section and the maximum articular cartilage structural damage section. At

week1, 4, 12 and 16 these two sections both reflected the maximum joint

inflammation score.
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Figure 3.7d. Maximum score vs. central weight bearing section 

This graph represents the maximum scores determined by scoring serial sagittal 

sections across the width of the medial compartment of the TFJ and the central 

weight-bearing (CW-B) section scores for each measured parameter: tibial articular 

cartilage damage (AC-D (T)); tibial proteoglycan loss (PG-L (T)); osteophyte 

maturity (OM); osteophyte size (OS) and subchondral bone sclerosis (SCB-Sc); from 

DMM mice (n=6) 28 days after induction of arthritis. The results are presented 

graphically as box plots, with medians marked, 95% (upper bounds) and 5% (lower 

bounds) percentiles hinged, and whiskers depicting upper and lower limits of dataset. 

Figure 3.7e. Synovial inflammation comparative scores 

This graph represents histology scores for sagittal sections corresponding to the site of 

maximum inflammation score (synovitis max.), maximum articular cartilage damage 

score (AC damage max.) and the central weight-bearing region (CWB) of the medial 

compartment of the TFJ from DMM mice (n=3) day 3, week 1, 2, 4, 8, 12 and 16 

after induction of arthritis. The results are presented graphically as box plots, with 

medians marked and whiskers depicting upper and lower limits of dataset. 
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Taken together, these findings indicated that both maximum articular cartilage 

damage and global joint inflammation can be reliably quantified, and compared 

between treatment groups, by evaluating a single histological section at the level of 

the central weight-bearing region of the medial TFJ, using the scoring system 

described in this thesis (Appendix C). 
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CHAPTER 4:  Knee joint histopathology following 

destabilization of the medial meniscus (DMM) and 

antigen-induced arthritis (AIA) in mice 

4.1 Introduction and aims 

In this current chapter, the progressive histopathological changes that occurred in 

different knee joint tissue structures, following induction of arthritis using two distinct 

arthritis models are evaluated and compared.  

The knee joint is a complex organ comprising cartilage, subchondral bone, synovium, 

capsule, ligaments, tendons and muscles; and pathology of all joint tissue structures is 

a feature of OA in humans (70). Inflammation is a major feature of animal models 

such as AIA, and inflammation also plays a significant role in the pathogenesis of OA 

in humans (70). In fact, joint inflammation (synovitis) is one of the few joint 

pathologies of OA that has been shown to correlate with disease symptoms (74, 75).  

Histopathology is the gold standard by which to measure joint pathology in animal 

models of arthritis. However, different methods and scoring systems have been 

reported for the two animal models used in this thesis (25, 26, 439, 448).  In order to 

better compare joint pathology changes over time in the two models, the same 

processing methods and scoring system were used. The scoring system used 

quantifies all aspects of OA joint pathology, allowing further investigation into 

whether different stages of disease and different disease phenotypes (inflammatory vs. 

post-traumatic) demonstrate different patterns of joint pathology. The scoring system 

also provides scope for investigating the relationship between pain and specific joint 

pathologies at different stages of OA disease. 
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The aims of chapter 4 are: 

1. To characterize the histopathology changes that develop in the knee joint

following induction of arthritis using two murine models (AIA and DMM),

including the temporal pattern of these changes.

2. To identify any associations between the different tissue pathologies that develop

over time, and compare these associations between the two murine models to

identify key features that might link the models to different human OA

phenotypes.

4.2 Methods, statistical analysis and data presentation 

Details of the methods used to induce the two models of arthritis, DMM and AIA, are 

described in chapter 2, section 2.1. The methods used for histological processing, 

sectioning and staining are described in chapter 2, section 2.2. The scoring system 

used is outlined in Appendix C. Development and validation of this scoring system is 

described in chapter 3, section 3.2. 

Comparison of histopathology scores between treatment groups and time points were 

analysed using the nonparametric ranked Kruskal-Wallis analysis for multiple groups 

and, where there was significance, the Mann Whitney U-test (for unpaired data) was 

performed for between group comparisons (StataSE software, Stata corporation, TX, 

USA). The Benjamini-Hochberg correction (564) was applied to the P values of the 

histology scores. The resulting P values for each histology score, when the alpha level 

was set at 0.05, are summarized in Table 4.1a and 4.1b. The results are presented 

graphically as box plots, with medians marked, 95% (upper bounds) and 5% (lower 

bounds) percentiles hinged, and whiskers depicting upper and lower limits of the 

dataset. 
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Associations between the different histology scores were determined by generating 

partial correlation coefficients, using Kendall’s tau-b (565). This nonparametric 

process uses pairwise ranked data values between the two variables under study 

(ordinal scores) and thus does not require data to be normally distributed or the 

relationship between the variables to be linear. The Benjamini-Hochberg correction 

was applied to the P values of the histology associations for each score, resulting in P 

< 0.022 being considered significant when the alpha value was set at 0.05. 

Ordinal logistic regression was used to determine whether the histology outcome 

variables changed over time; and correcting for time, whether there was a difference 

between treatments. The Benjamini-Hochberg correction was applied to the P values 

of the time and treatment effects for each score, resulting in P < 0.035 being 

considered significant when the alpha value was set at 0.05.  

Since AC damage is the hallmark of human OA and radiographic joint space 

narrowing is still used to diagnose and grade the disease; AC damage was assigned as 

the dependent variable and odds ratios were calculated to determine what factors 

increase the risk of joint disease developing in the two arthritis models. In human OA, 

synovitis is more strongly associated with pain than AC damage (74), and so in 

separate analyses synovitis was also assigned as a dependent variable and odds ratios 

were calculated to determine what factors increased the risk of synovitis developing 

in the two arthritis models. 

In the results, ‘significance’ refers to statistical significance, with P values included in 

the results tables.  
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4.3 Results 

Representative histological sections of the knees of mice day 3, week 1, 2, 4, 8, 12 

and 16 after induction of arthritis (DMM and AIA), and age matched control mouse 

joints are presented in Figures 4.1a to 4.1c. Marked differences in joint histological 

features were observed between treatment groups and many histopathological features 

demonstrated a model-specific temporal pattern of change.  These differences 

between models and with time, are readily apparent in outcomes of quantitative 

scoring of arthritis pathology. 

4.3.1 Effect of AIA and DMM on inflammation following induction of arthritis 

Joint inflammation was defined as synovitis. Synovial inflammation was evident in 

AIA, DMM and sham surgery mice from day 3 following induction of arthritis. In 

both models it peaked at week 2 and then decreased gradually until week 16 (Figures 

4.2c). Synovitis was significantly increased in AIA mice compared to saline injected 

mice at all time points (Figure 4.2a). Synovitis was significantly increased in DMM 

mice compared to sham surgery mice at day 3, week 1 and week 16, and significantly 

increased compared to age matched controls at week 4, 8, 12 and 16 (Figure 4.2b). 

Sham surgery resulted in less synovitis than DMM at all time points. After week 4, 

there was no significant difference between sham surgery mice and age match 

controls. AIA mice developed significantly greater synovitis compared to DMM mice 

at week 1, 2, 4, 8 and 12 (Figure 4.2c). 
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Table 4.1a Joint histopathology scores in AIA and DMM 

Score Time (W) DMM vs Sham DMM vs AIA AIA vs saline 

Synovitis
1

0.4 0.019 0.053 0.004 

1 0.006 0.005 0.002 

2 0.198 0.004 0.004 

4 0.053 <0.001 <0.001 

8 0.084 <0.001 <0.001 

12 0.060 <0.001 <0.001 

16 0.008 0.025 <0.001 

PG loss
2

0.4 0.794 0.048 0.026 

1 0.433 0.002 0.001 

2 0.004 0.002 0.002 

4 <0.001 0.005 <0.001 

8 <0.001 <0.001 <0.001 

12 0.004 <0.001 <0.001 

16 <0.001 <0.001 <0.001 

AC damage
3

0.4 0.800 0.040 0.140 

1 0.101 0.320 0.022 

2 0.004 0.070 0.016 

4 <0.001 0.017 <0.001 

8 <0.001 0.423 <0.001 

12 0.004 <0.001 <0.001 

16 <0.001 0.054 <0.001 

Osteophyte 

maturity
4

0.4 - - - 

1 0.058 0.009 - 

2 0.002 0.002 - 

4 <0.001 <0.001 - 

8 <0.001 0.020 0.020 

12 0.003 0.011 0.003 

16 <0.001 <0.001 <0.001 

Osteophyte 

size
5

0.4 - - - 

1 0.058 0.009 - 

2 0.002 0.002 - 

4 <0.001 <0.001 - 

8 <0.001 0.051 0.020 

12 0.003 0.003 0.003 

16 <0.001 0.291 <0.001 

SCB sclerosis
6 0.4 0.935 0.317 0.390 

1 0.342 0.008 0.003 

2 0.031 0.002 0.022 

4 0.002 <0.001 0.045 
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8 0.002 0.738 0.277 

12 0.145 0.002 <0.001 

16 0.028 <0.001 0.002 

SCB 

vascularity
7

0.4 0.794 0.005 0.065 

1 0.338 0.009 0.015 

2 0.012 0.002 0.002 

4 0.107 0.004 0.003 

8 0.459 0.858 0.299 

12 0.332 0.862 0.125 

16 0.393 0.072 0.050 

Chondrocyte 

hypertrophy 

(cell death)
8

0.4 0.002 0.326 0.002 

1 0.007 0.053 <0.001 

2 0.003 1.000 0.002 

4 <0.001 0.033 <0.001 

8 <0.001 0.004 <0.001 

12 0.007 <0.001 <0.001 

16 <0.001 <0.001 <0.001 

Knee joint histopathology scores between treatment groups (DMM vs. Sham, DMM 

vs. AIA, and AIA vs. Saline) comparisons using Kruskal-Wallis analysis followed by 

Mann-Whitney U-test. After Benjamini-Hochberg correction, 5% confidence level is 

P < 0.025
(1)

, P < 0.026
(2)

, P < 0.022
(3)

, P < 0.02
(4)

, P < 0.02
(5)

, P < 0.022
(6)

, P <

0.015
(7)

, P< 0.033
(8)

. P-values shown in bold typeface are significant below after

correcting for multiple comparisons. 

Table 4.1b Synovitis histolopathology scores in DMM and AIA 

Knee joint histopathology synovitis scores, DMM vs. AIA, comparisons using 

Kruskal-Wallis analysis followed by Mann-Whitney U-test. After Benjamini-

Hochberg correction, 5% confidence level is P < 0.013
(1)

, P < 0.023
(2)

, P < 0.005
(3)

, P

< 0.005
(4)

, P < 0.011
(5)

. P-values shown in bold typeface are significant below after

correcting for multiple comparisons. 

Time 

(weeks) 
Panus

1 Cortical 

bone 

erosion
2

Synovial 

hyperplasia
3

Sub synovial 

inflammation
4

Synovial 

exudate
5

0.4 0.371 0.089 0.224 0.053 0.150 

1 0.392 0.004 0.231 0.004 0.011 

2 0.005 0.003 0.005 0.005 0.005 

4 0.013 <0.001 0.005 <0.001 <0.001 

8 0.140 0.023 0.002 0.001 <0.001 

12 0.003 0.008 0.001 <0.001 0.002 

16 0.271 0.163 0.242 0.002 0.001 
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Figure 4.1a. OA knee joint histopathology – Acute inflammatory phase 

Representative sections of knee joint day 3, week 1 and 2 post induction of arthritis in 

DMM, Sham surgery, AIA and Saline injected mice. Images are toluidine blue stained 

saggital sections near the central weight-bearing region of the joint. X5 magnification 

Sham

Saline

Day 3 Week 1 Week 2

DMM

AIA

I. 

II. 

100µm
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Insert I = Synovitis at week 1 

Insert II = PG loss and SCB vascular invasion at week 2. 

I. 

25µm

II. 

25µm



148 

Figure 4.1b. = OA knee joint histopathology – Early progressive OA 

Representative sections of knee joint week 4 and 8 post induction of arthritis in DMM and AIA mice. Sham surgery and Saline injected mice 

included for comparison. Images are toluidine blue stained saggital sections near the central weight-bearing region of the joint. X5 magnification 

Insert III = osteophyte formation at week 8  

(Sham Wk8)(Saline Wk4)Week 4 Week 8  

DMM
III. 

AIA 100µm

25 µm
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Figure 4.1c. = OA knee joint histopathology – Late chronic OA 

Representative sections of knee joint week 12 and 16 post induction of arthritis in DMM and AIA mice. Sham surgery and Saline injected mice 

included for comparison. Images are toluidine blue stained saggital sections near the central weight-bearing region of the joint. X5 magnification 

Insert IV = SCB sclerosis at week 12; Insert V = AC damage and joint space narrowing at week 16. 

(Sham Wk16)(Saline Wk16)Week 12 Week 16

IV. 

DMM

AIA

V. 

100µm

V

25µm

IV 25µm
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Figure 4.2. Knee joint inflammation histopathology I 

Joint inflammation (defined as synovitis) in AIA vs. saline injected (a); DMM vs. sham surgery (b); and DMM vs. AIA (c) mice, at day 3, week 

1, 2, 4, 8, 12 and 16 following induction of arthritis. The results are presented graphically as box plots, with medians marked, 95% (upper 

bounds) and 5% (lower bounds) percentiles hinged, and whiskers depicting upper and lower limits of dataset. Significance = P<0.05 (*); P<0.01 

(**); and P<0.001 (***). 
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The total synovitis score depicted in Figure 4.2 was arrived at by sum of scores of five 

individual parameters: panus, cortical bone erosion associated with panus, synovial 

lining cell hyperplasia, sub-synovial inflammation and synovial exudate. Overall, the 

temporal pattern of development and the degree of severity of these five measures of 

synovitis differed between the two models.  

4.3.1.1 Panus 

The appearance of panus occurred in both models immediately following induction of 

arthritis, with severity peaking at week 2 (Figure 4.3a). Panus was significantly worse 

in the AIA compared with DMM at week 2, 4 and 12.  

4.3.1.2 Bone erosion 

The degree of cortical bone erosion associated with panus increased in the AIA model 

immediately following induction of arthritis (Figure 4.3b). This peaked at week 2 and 

did not decline substantially until week 8, although it was still significantly increased 

compared to DMM mice up until week 12. This was in contrast to the DMM model, 

which demonstrated a low and consistent level of bone erosion throughout the course 

of the disease. Cortical bone erosion was significantly greater in AIA compared with 

DMM at week 1, 2, 4, 8 and 12.  

4.3.1.3 Synovial hyperplasia 

Synovial hyperplasia occurred in both models following induction of arthritis with no 

significant difference between AIA and DMM until week 2 when synovial 

hyperplasia peaked in AIA mice (Figure 4.3c). Synovial hyperplasia remained 

significantly greater in AIA until week 16, when it declined to a level similar to 

DMM mice. 
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4.3.1.4 Sub-synovial inflammation 

Immediately following induction of arthritis sub-synovial inflammation was severe in 

the AIA model and did not start to resolve until week 8 (Figure 4.3d). In contrast sub-

synovial inflammation developed more gradually and was not as severe in the DMM 

model. Sub-synovial inflammation remained significantly more severe in AIA mice 

compared to DMM from week 1 until week 16, despite the decrease observed in AIA 

mice from week 8. 

4.3.1.5 Synovial exudate 

Synovial exudate was a consistent feature in the AIA model until week 16 when the 

proportion of mice with joint exudate declined (Figure 4.3e). In contrast, synovial 

exudate was only observed consistently in the first week following induction of 

arthritis in DMM mice and declined up until week 4. Beyond week 4 there was no 

synovial exudate observed in any DMM mice. Synovial exudate was significantly 

more severe in AIA mice compared to DMM from week 1 until week 16.
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Figure 4.3. Knee joint inflammation histopathology II 

Panus (a); Cortical bone erosion (b); Synovial hyperplasia (c); Sub-synovial inflammation (d); and Synovial exudate (e), in DMM vs AIA mice 

at day 3, week 1, 2, 4, 8, 12 and 16 following induction of arthritis. The results are presented graphically as box plots, with medians marked, 

95% (upper bounds) and 5% (lower bounds) percentiles hinged, and whiskers depicting upper and lower limits of dataset. Significance = P<0.05 

(*); P<0.01 (**); and P<0.001 (***).  
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4.3.2 Effect of AIA and DMM on articular cartilage degradation following 

induction of arthritis 

Articular cartilage (AC) histopathology was measured in terms of the combined score 

of maximum tibial and femoral AC proteoglycan loss, AC structural damage and 

chondrocyte hypertrophy/apoptosis.  

4.3.2.1 Proteogylcan loss 

Maximum proteoglycan loss peaked at week 1 in AIA and was significantly greater 

than saline injected mice at all time points (Figure 4.4a). Maximum proteoglycan loss 

was significantly greater in DMM mice than in sham surgery mice from week 2 

(Figure 4.4b). AIA mice had significantly greater proteoglycan loss than DMM mice 

at weeks 1 to16 (Figure 4.4c). 

4.3.2.2 AC structural damage 

In AIA mice, maximum AC structural damage was very mild up to week 4, and then 

increased dramatically from week 8 to 16 (Figure 4.5a). The difference between AIA 

and saline injected mice was significant at weeks 1 to 16. At no time point was 

structural damage in saline injected mice significantly different to age-matched 

controls. Maximum AC structural damage observed in DMM mice was mild at day 3 

post surgery, and did not become significantly greater than sham surgery or age-

matched control mice until week 2, and increased progressively until week 16 (Figure 

4.5b). Structural damage was mild and transient in sham surgery mice, and there was 

no significant difference between sham surgery and age-matched controls at any of 

the time points that were scored. There was little difference between the two arthritis 

models in AC structural damage scores over the time course of the study; DMM > 
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AIA at week 4 and AIA > DMM at week 12. By week 16 there was no significant 

difference in structural damage between DMM and AIA mice (Figure 4.5c). 

4.3.2.3 Chondrocyte hypertrophy 

Chondrocyte hypertrophy in non-calcified cartilage developed early and persisted in 

both AIA and DMM mice (Figure 4.6a and b), and was significantly greater than in 

saline injected and sham surgery, respectively. There was a significant difference 

between the two models from week 4 to 16, when chondrocyte hypertrophy was 

greater in AIA (Figure 4.6c). 
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Figure 4.4. Knee joint articular cartilage histopathology I 

Proteoglycan loss in AIA vs. saline injected (a); DMM vs. sham surgery (b); and DMM vs. AIA (c) mice, at day 3, week 1, 2, 4, 8, 12 and 16 

following induction of arthritis. The results are presented graphically as box plots, with medians marked, 95% (upper bounds) and 5% (lower 

bounds) percentiles hinged, and whiskers depicting upper and lower limits of dataset. Significance = P<0.05 (*); P<0.01 (**); and P<0.001 

(***). 
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Figure 4.5. Knee joint articular cartilage histopathology II 

Articular cartilage structural damage in AIA vs. saline injected (a); DMM vs. sham surgery (b); and DMM vs. AIA (c) mice, at day 3, week 1, 2, 

4, 8, 12 and 16 following induction of arthritis. The results are presented graphically as box plots, with medians marked, 95% (upper bounds) 

and 5% (lower bounds) percentiles hinged, and whiskers depicting upper and lower limits of dataset. Significance = P<0.05 (*); P<0.01 (**); 

and P<0.001 (***). 
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Figure 4.6. Knee joint articular cartilage histopathology III 

Chondrocyte hypertrophy in non-calcified cartilage in AIA vs. saline injected (a); DMM vs. sham surgery (b); and DMM vs. AIA (c) mice, at 

day 3, week 1, 2, 4, 8, 12 and 16 following induction of arthritis. The results are presented graphically as box plots, with medians marked, 95% 

(upper bounds) and 5% (lower bounds) percentiles hinged, and whiskers depicting upper and lower limits of dataset. Significance = P<0.05 (*); 

P<0.01 (**); and P<0.001 (***). 
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4.3.3 Effect of AIA and DMM on bone following induction of arthritis 

Bone histopathology changes were defined in terms of osteophyte development 

(maturation and size), and subchondral bone (SCB) vascularisation and sclerosis or 

thickening.  

4.3.3.1 Osteophytes 

Osteophytes developed in both DMM and AIA mice, but not in sham surgery or 

saline injected mice. In AIA, osteophytes only developed late (week 8) and reached 

peak size and maturity at week 16 (Figures 4.7a and 4.8a). In the DMM model in 

contrast, osteophytes developed early (week 1), initially as neo-cartilage and then 

maturing to bone through endochondral ossification, reaching peak size and maturity 

by week 4 (Figures 4.7b and 4.8b). Osteophyte size was significantly greater in DMM 

mice compared to AIA at week 1, 2, 4 and 12. Osteophyte maturity was significantly 

greater in DMM compared to AIA from week 1 to 16. By week 16 there was no 

significant difference in osteophyte size between the two models although those in the 

AIA model had not fully ossified (Figures 4.7c and 4.8c).  

Unique to the AIA model was the development of enthesophytes. These were 

observed from week 1, increasing in size and maturity up to week 16. The 

enthesophytes were observed on the anterior, medial margin of the tibia, at the level 

of the growth plate, adjacent the site of insertion of the patella ligament. This novel 

pathology has not previously been described in the AIA model. 
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4.3.3.2 Subchondral bone  

Subchondral bone sclerosis displayed two phases of change in both AIA and DMM. 

In control mice SCB sclerosis increased with age, reaching a median score of 2 by 

week 16. In the AIA model SCB sclerosis was absent at weeks 1 and 2, and was 

observed from week 4. At week 12 and 16 it was significantly increased compared to 

saline injected mice (Figure 4.9a). Saline injected mice displayed greater SCB 

sclerosis than controls in the first two weeks following injection, and then 

demonstrated a similar pattern of increase with age after week 4. Both DMM and 

sham surgery mice displayed increased SCB sclerosis compared to age matched 

controls in the first two weeks following surgery (Figure 4.9b). From week 4, sham 

surgery joints displayed a similar increase over time as age matched controls. In 

contrast, SCB sclerosis increased more rapidly in the DMM after week 2, exceeding 

the score of sham surgery and control mice. The difference between the groups was 

significant at week 4 and 8. SCB sclerosis was greater in DMM than AIA in the early 

stages of disease, and this difference was significant at weeks 1, 2 and 4. SCB 

sclerosis in AIA then exceeded DMM following week 8, and was significantly 

different again at week 12 and 16 (Figure 4.9c). 

SCB vascularisation remained similar to age matched controls at all time points in 

saline injected mice but was significantly increased in AIA compared to saline 

injected mice from week 1 to week 4 (Figure 4.10a). SCB vascularisation remained 

similar to age matched controls at all time points in DMM and sham surgery (Figure 

4.10b). SCB vascularisation was significantly increased in AIA compared to DMM in 

the early stages of disease (day 3 to week 4), and then decreased at week 8 to levels 

comparable to the other treatment groups (Figure 4.10c). 
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Figure 4.7. Knee joint osteophyte histopathology I 

Osteophyte size in AIA vs. saline injected (a); DMM vs. sham surgery (b); and DMM vs. AIA (c) mice, at day 3, week 1, 2, 4, 8, 12 and 16 

following induction of arthritis. The results are presented graphically as box plots, with medians marked, 95% (upper bounds) and 5% (lower 

bounds) percentiles hinged, and whiskers depicting upper and lower limits of dataset. Significance = P<0.05 (*); P<0.01 (**); and P<0.001 

(***). 

0.4 1 2 4 8 12 16

0

1

2

3

4

Weeks post arthritis induction

T
o
ta

l 
s
c
o
re

 /
3

Osteophyte size

AIA Saline

*

***
**

0.4 1 2 4 8 12 16

0

1

2

3

4

Weeks post arthritis induction

T
o
ta

l 
s
c
o
re

 /
3

Osteophyte size

DMM Sham

**
**

*** *** ***

0.4 1 2 4 8 12 16

0

1

2

3

4

Weeks post arthritis induction

T
o
ta

l 
s
c
o
re

 /
3

Osteophyte size

AIA DMM Control

***

**

**

**

a b c



162 

Figure 4.8. Knee joint osteophyte histopathology II 

Osteophyte maturity in AIA vs. saline injected (a); DMM vs. sham surgery (b); and DMM vs. AIA (c) mice, at day 3, week 1, 2, 4, 8, 12 and 16 

following induction of arthritis. The results are presented graphically as box plots, with medians marked, 95% (upper bounds) and 5% (lower 

bounds) percentiles hinged, and whiskers depicting upper and lower limits of dataset. Significance = P<0.05 (*); P<0.01 (**); and P<0.001 

(***). 
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Figure 4.9. Knee joint subchondral bone histopathology I 

SCB sclerosis in AIA vs. saline injected (a); DMM vs. sham surgery (b); and DMM vs. AIA (c) mice, at day 3, week 1, 2, 4, 8, 12 and 16 

following induction of arthritis. The results are presented graphically as box plots, with medians marked, 95% (upper bounds) and 5% (lower 

bounds) percentiles hinged, and whiskers depicting upper and lower limits of dataset. Significance = P<0.05 (*); P<0.01 (**); and P<0.001 

(***). 
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Figure 4.10. Knee joint subchondral bone histopathology II 

SCB vascularisation in AIA vs. saline injected (a); DMM vs. sham surgery (b); and DMM vs. AIA (c) mice, at day 3, week 1, 2, 4, 8, 12 and 16 

following induction of arthritis. The results are presented graphically as box plots, with medians marked, 95% (upper bounds) and 5% (lower 

bounds) percentiles hinged, and whiskers depicting upper and lower limits of dataset. Significance = P<0.05 (*); P<0.01 (**); and P<0.001 

(***). 
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4.3.4 Time and Treatment effect on joint pathology  

Logistic regression analysis was used to interrogate the pattern of change over time 

for each histology outcome variable, and also within the two arthritis models (Table 

4.2). This provides a more robust evaluation of the effect of the two arthritis induction 

methods on the different joint pathologies, by taking time into account and allowing 

all the data to be included in the analyses rather than individual time points.  

When corrected for treatment group (sham, saline, DMM, AIA), synovial 

inflammation increased over time up to week 2, and thereafter decreased significantly. 

Articular cartilage structural damage and chondrocyte hypertrophy progressively and 

significantly increased over time, however there was no significant time effect for AC 

proteoglycan loss. Osteophyte size and maturity both increased significantly with time 

post arthritis induction. Both SCB sclerosis and vascularity also demonstrated a 

significant temporal effect, SCB sclerosis increasing while SCB vascularity decreased 

over time.  

When time was corrected for, a significant treatment effect was observed for a 

number of the histology outcomes, in some cases differing between the two arthritis 

models. Synovitis was significantly increased in AIA and DMM relative to saline and 

sham respectively, and increased in AIA relative to DMM, regardless of which stage 

of the disease process. This treatment effect was also evident in four of the individual 

parameters (panus, bone erosion, synovial hypertrophy and sub-synovial 

inflammation) that combine to make up the synovitis score. Synovial exudate was 

only increased in AIA relative to saline and DMM. AC structural damage, AC 

proteoglycan loss and chondrocyte hypertrophy were all increased in AIA and DMM 

relative to their saline and sham controls. Only AC proteoglycan loss and chondrocyte 

hypertrophy were significantly increased in AIA relative to DMM. Osteophyte size 
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and maturity were increased in AIA and DMM relative to saline and sham, but 

decreased in AIA relative to DMM. SCB sclerosis was increased in DMM relative to 

sham but not in AIA relative to saline. SCB vascularity was increased in AIA and 

DMM relative to saline and sham. 

Table 4.2. Joint histopathology logistic regression analysis 

Score Period(w) Time
1

Time (P) Treatment
2

Cf tx
3
 Tx (P)

Synovitis 0 - 2 Increased 0.010 Sham Increased Saline <0.001 

AIA Increased Saline <0.001 

DMM Increased Sham   0.002 

AIA Increased DMM <0.001 

Synovitis 2 - 16 Decreased <0.001 Sham Increased Saline < 0.001 

AIA Increased Saline <0.001 

DMM Increased Sham <0.001 

AIA Increased DMM <0.001 

AC damage 0 - 16 Increased <0.001 Sham Increased Saline   0.003 

AIA Increased Saline <0.001 

DMM Increased Sham <0.001 

AIA - DMM   0.330 

AC PG loss 0 - 16 - 0.110 Sham - Saline   0.820 

AIA Increased Saline <0.001 

DMM Increased Sham <0.001 

AIA Increased DMM <0.001 

Chondrocyte 

hypertrophy 

0 - 16 Increased <0.001 Sham - Saline   0.370 

AIA Increased Saline <0.001 

DMM Increased Sham <0.001 

AIA Increased DMM <0.001 

Osteophyte 

maturity 

0 - 16 Increased <0.001 Sham - Saline   0.910 

AIA Increased Saline <0.001 

DMM Increased Sham <0.001 

AIA Decreased DMM <0.001 

Osteophyte 

size 

0 - 16 Increased <0.001 Sham - Saline   0.820 

AIA Increased Saline <0.001 

DMM Increased Sham <0.001 

AIA Decreased DMM <0.001 

Subchondral 

bone  

sclerosis 

0 - 16 Increased <0.001 Sham - Saline   0.350 

AIA - Saline   0.350 

DMM Increased Sham <0.001 

AIA - DMM   0.048 
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Subchondral 

bone  

vascularity 

0 - 16 Decreased <0.001 Sham - Saline   0.960 

AIA Increased Saline   0.004 

DMM Decreased Sham   0.010 

AIA Increased DMM   <0.001 

Panus 0 -16 Decreased <0.001 Sham Increased Saline <0.001 

AIA Increased Saline <0.001 

DMM Increased Sham <0.001 

AIA Increased DMM <0.001 

Bone erosion 0 -16 Decreased <0.001 Sham Increased Saline <0.001 

AIA Increased Saline <0.001 

DMM Increased Sham 0.031 

AIA Increased DMM <0.001 

Synovial 

hypertrophy 

0 -16 Decreased <0.001 Sham - Saline 0.230

AIA Increased Saline <0.001 

DMM Increased Sham <0.001 

AIA Increased DMM <0.001 

Subsynovial 

inflammation 

0 - 16 Decreased <0.001 Sham Increased Saline <0.001 

AIA Increased Saline <0.001 

DMM Increased Sham 0.003 

AIA Increased DMM <0.001 

Synovial 

exudate 

0 -16 Decreased <0.001 Sham Increased Saline 0.008 

AIA Increased Saline <0.001 

DMM - Sham 0.370 

AIA Increased DMM <0.001 

Logistic regression on joint histology scores in AIA and DMM was used to determine 

whether histology outcome variables changed over time, and then when correcting for 

time whether there was a difference between treatments. Where the direction (i.e. 

increase vs decrease) and/or significance of the temporal change for a particular 

histological feature differed with time after arthritis induction, the periods are 

reported separately. (1) Change over time when corrected for treatment, (2) Change 

between treatments when corrected for time, (3) Comparator treatment. 
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4.3.5 Correlation between pathological change in different joint tissues in AIA and 

DMM when corrected for time 

The knee joint functions as a biomechanical organ comprising numerous tissues. 

Since OA is a failure of the entire joint organ, understanding how the pathological 

changes that occur in different joint tissues are associated provides important 

information on changes in pathophysiology in different arthritis phenotypes and with 

time. The preceding regression analysis provided information on the change in joint 

pathology measures with time, and in the two models, but not how the changes in the 

different joint tissues are interrelated. These associations were determined by 

calculating partial correlation coefficients for the various joint tissue pathologies in 

the different treatments (AIA, Saline, DMM, Sham) when corrected for time (Table 

4.3). The significant associations in the two arthritis models and those common to 

both models are also represented schematically in Figures 4.11a-c, with positive 

correlations shown in solid lines and negative correlations in dashed lines, the weight 

of the line reflecting the strength of the correlation. 

4.3.5.1 Articular cartilage histopathology partial correlations  

In AIA mice AC structural damage correlated positively with chondrocyte 

hypertrophy but not proteoglycan loss. In addition, AC structural damage in this 

model correlated with all measured bone pathologies other than vascularity 

(positively with osteophyte maturity, osteophyte size and SCB sclerosis). 

Proteoglycan loss in AIA on the other hand, only correlated with SCB vascularity and 

chondrocyte hypertrophy, all being positive associations. Chondrocyte hypertrophy 

also correlated positively with SCB sclerosis and negatively with vascularity. 

In DMM mice AC structural damage correlated with cartilage and bone related 

pathologies (positively with proteoglycan loss, chondrocyte hypertrophy, osteophyte 
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size, osteophyte maturity and SCB sclerosis; negatively with SCB vascularity). AC 

proteoglycan loss also correlated positively with chondrocyte hypertrophy, and bone 

related pathologies (osteophyte maturity and osteophyte size, and SCB sclerosis). In 

addition, chondrocyte hypertrophy positively correlated with osteophyte size and 

maturity. 

4.3.5.2 Joint inflammation partial correlations 

In AIA mice synovitis scores correlated positively with SCB vascularity, negatively 

with SCB sclerosis, as well as the previously stated positive association with AC 

structural damage. In DMM mice however, synovitis scores only correlated with SCB 

vascularity, no significant correlations found with any articular cartilage or other bone 

related pathologies.  

4.3.5.3 Bone histopathology partial correlations 

In AIA mice SCB sclerosis correlated strongly with osteophyte size and maturity, and 

there was a strong negative correlation with both synovitis and SCB vascularity. SCB 

vascularity also strongly negatively correlated with osteophyte size and maturity. In 

DMM mice SCB sclerosis was positively correlated with osteophyte maturity but not 

size, and there was a negative correlation with SCB vascularity but not synovitis. In 

both AIA and DMM mice, there was a positive correlation between osteophyte size 

and maturity, strongest in AIA. 
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Table 4.3. Cartilage pathology, bone pathology and joint inflammation partial 

correlations in AIA and DMM 

a. Articular cartilage structural damage Treatment r P 

AC PG loss AIA 

Saline 

DMM 

Sham 

0.176 

0.289 

0.561 

0.314 

0.082 

0.004 

<0.001 

0.001 

Chondrocyte hypertrophy AIA 

Saline 

DMM 

Sham 

0.414 

0.108 

0.513 

0.109 

<0.001 

 0.520 

<0.001 

0.350 

Osteophyte maturity AIA 

Saline 

DMM 

Sham 

0.343 

- 

0.325 

- 

<0.001 

- 

0.001 

- 

Osteophyte size AIA 

Saline 

DMM 

Sham 

0.313 

- 

0.393 

- 

<0.001 

- 

<0.001 

- 

SCB sclerosis AIA 

Saline 

DMM 

Sham 

0.265 

0.120 

0.387 

0.221 

0.018 

0.093 

<0.001 

0.089 

SCB vascularity AIA 

Saline 

DMM 

Sham 

-0.190

-0.028

-0.313

-0.058

0.027 

0.860 

0.004 

0.610 

Synovitis AIA 

Saline 

DMM 

Sham 

0.179 

0.151 

-0.178

0.169

0.008 

0.190 

0.077 

0.037 

b. Articular cartilage proteoglycan loss Treatment r P 

Chondrocyte hypertrophy AIA 

Saline 

DMM 

Sham 

0.369 

0.182 

0.588 

0.133 

0.001 

0.170 

<0.001 

0.230 

Osteophyte maturity AIA 

Saline 

DMM 

Sham 

 0.010 

- 

0.492 

- 

0.920 

- 

<0.001 

- 

Osteophyte size AIA 

Saline 

DMM 

Sham 

0.009 

- 

0.450 

- 

0.910 

- 

<0.001 

-
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SCB sclerosis AIA 

Saline 

DMM 

Sham 

-0.045

0.070

0.280

-0.001

0.730 

0.630 

0.007 

0.990 

SCB vascularity AIA 

Saline 

DMM 

Sham 

0.230 

-0.032

-0.178

0.020

<0.001 

0.830 

0.077 

0.860 

Synovitis AIA 

Saline 

DMM 

Sham 

0.213 

0.117 

-0.063

0.075

0.066 

0.300 

0.420 

0.370 

c. Chondrocyte hypertrophy Treatment r P 

Osteophyte maturity AIA 

Saline 

DMM 

Sham 

0.170 

- 

0.358 

- 

0.074 

- 

<0.001 

- 

Osteophyte size AIA 

Saline 

DMM 

Sham 

0.144 

- 

0.349 

- 

0.088 

- 

<0.001 

- 

SCB sclerosis AIA 

Saline 

DMM 

Sham 

0.400 

-0.246

0.242

0.042

<0.001 

0.036 

0.042 

0.770 

SCB vascularity AIA 

Saline 

DMM 

Sham 

-0.285

0.020

-0.103

-0.038

0.008 

0.900 

0.410 

0.800 

Synovitis AIA 

Saline 

DMM 

Sham 

0.086 

 0.135 

-0.057

0.095

0.400 

0.270 

0.420 

0.330 

d. Subchondral bone sclerosis Treatment r P 

Osteophyte maturity AIA 

Saline 

DMM 

Sham 

0.393 

- 

0.261 

- 

<0.001 

- 

0.012 

- 

Osteophyte size AIA 

Saline 

DMM 

Sham 

0.370 

- 

0.086 

- 

<0.001 

- 

0.460 

- 

Synovitis AIA 

Saline 

DMM 

Sham 

-0.342

-0.079

-0.168

-0.081

0.004 

0.460 

0.073 

0.390 
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Cartilage pathology, bone pathology and joint inflammation partial correlations in 

AIA and DMM when corrected for time.  P-values shown in bold typeface are 

significant below after Benjamini-Hochberg correction for multiple comparisons, 5% 

confidence level is P < 0.022. 

SCB vascularity AIA 

Saline 

DMM 

Sham 

-0.700

-0.160

-0.495

-0.406

<0.001 

0.240 

<0.001 

<0.001 

e. Osteophyte maturity Treatment r P 

Osteophyte size AIA 

Saline 

DMM 

Sham 

0.865 

- 

0.429 

- 

<0.001 

- 

<0.001 

- 

Synovitis AIA 

Saline 

DMM 

Sham 

-0.167

- 

-0.127 

- 

0.067 

- 

0.110 

- 

SCB vascularity AIA 

Saline 

DMM 

Sham 

-0.351

-

-0.167

- 

<0.001 

- 

0.038 

- 

f. Osteophyte size Treatment r P 

Synovitis AIA 

Saline 

DMM 

Sham 

-0.209

- 

 0.042 

- 

0.014 

- 

0.550 

- 

SCB vascularity AIA 

Saline 

DMM 

Sham 

-0.319

-

-0.192

- 

<0.001 

- 

0.190 

- 

g. Synovitis Treatment r P 

SCB vascularity AIA 

Saline 

DMM 

Sham 

0.305 

-0.195

0.255

0.152

<0.001 

0.140 

0.011 

0.180 
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Figure 4.11. Knee joint histopathology associations 
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Significant associations between pathological changes in different knee joint tissues 

(cartilage, bone, and joint inflammation) in AIA model (a); DMM model (b); DMM 

and AIA models combined (c); as determined by calculation of partial correlation 

coefficients when corrected for time. After Benjamini-Hochberg correction, 5% 

confidence level is P < 0.022. 
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4.3.6 Comparison of joint tissue pathology relationships in AIA versus DMM  

Finally, ordinal logistic regression models were developed that described the variables 

that were significantly and independently associated with OA progression as 

measured by cartilage structural damage (Table 4.4) and OA joint inflammation as 

measured by synovitis (Table 4.5). These models were highly significant but revealed 

very different independent risk factors with significant odds ratios for the two arthritis 

models (Table 4.4 and 4.5). The risk of cartilage damage in the DMM model was 

increased 1.7 fold in association with joint injury (surgery), 2.4 fold with increased 

AC proteoglycan loss, 2.3 fold with increased osteophyte size, 2.0 fold with increased 

chondrocyte hypertrophy and 1.7 fold with increased SCB sclerosis. In contrast, the 

risk of cartilage damage in the AIA model was increased in association with time 

after disease induction (1.2 fold), increased synovitis (1.2 fold), increased 

chondrocyte hypertrophy/cell death (2.0 fold), and increased osteophyte size (13 

fold). 

The risk of joint inflammation in the DMM model was increased 3.5 fold in 

association with joint injury (surgery) and 4 fold with increased vascular invasion. 

However, in DMM the risk of joint inflammation was decreased with time post-

surgery and increased SCB sclerosis (0.77 fold and 0.63 fold, respectively). In the 

AIA model the risk of joint inflammation was increased 9.4 fold in association with 

treatment (mBSA injection) and 1.4 fold with increased AC PG loss. The risk of joint 

inflammation in AIA was decreased in association with increases in osteophyte size 

and SCB sclerosis (0.21 fold and 0.43 fold, respectively).  
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Table 4.4. Risk factors for OA (cartilage damage) 

Best ordinal logistic regression models defining the variables significantly associated 

with increased risk of OA development (defined as AC damage) in the AIA and 

DMM models. The included variables in both models are corrected for all others i.e. 

they are independently significant risk factors for cartilage erosion 

Table 4.5. Risk factors for OA (joint inflammation) 

Best ordinal logistic regression models defining the variables significantly associated 

with increased risk of joint inflammation (defined as synovitis) in the DMM and AIA 

models. The included variables in both models are corrected for all others i.e. they are 

independently significant risk factors for joint inflammation. 

Model Risk factor OR (95% CI) P 

(variable) 

P 

(model) 

DMM/Sham Surgery/joint injury 1.7 (1.0 – 2.9) 0.047 <0.001 

AC PG loss 2.4 (1.5 – 3.9) <0.001 

Chond. Hyp./cell death 2.0 (1.2 – 3.2) 0.005 

OP size 2.3 (1.3 – 4.1) 0.010 

SCB sclerosis 1.7 (1.1 – 2.7) 0.023 

AIA/Saline Time 1.2 (1.1 – 1.4) 0.003 <0.001 

Synovitis 1.2 (1.0 – 1.4) 0.019 

Chond. Hyp./cell death 2.0 (1.3 – 3.0) 0.002 

OP size 13 (3.3 – 50) <0.001 

Model Risk factor OR (95% CI) P 

(variable) 

P 

(model) 

DMM/Sham Surgery/joint injury 3.5 (2.4 – 5.1) <0.001 <0.001 

Time  0.77 (0.72 – 0.82) <0.001 

SCB vascular invasion 4.0 (1.9 – 8.3) <0.001 

SCB sclerosis 0.63 (0.43 – 0.92)  0.016 

AIA/Saline mBSA/saline 9.4 (2.4 – 36)  0.001 <0.001 

AC damage 1.2 (1.0 – 1.3)  0.003 

AC PG loss 1.4 (1.1 – 1.7)  0.008 

OP size 0.21 (0.11 – 0.40) <0.001 

SCB sclerosis 0.43 (0.29 – 0.64) <0.001 
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4.4 Discussion 

In this chapter, knee joint sections from DMM and AIA mice were histologically 

scored for the purpose of evaluating the histopathological changes that occur in the 

two models over time. Sham surgery, saline injected and age matched control knee 

joints were also scored for comparison. The focus of this chapter was to identify the 

temporal pattern of joint pathology and any associations between the different joint 

tissue changes that could distinguish the models as unique joint disease phenotypes. 

How these different histopathological changes in joint tissue relate to pain is 

investigated in subsequent chapters. 

Knee joint pathology in the DMM model was characterised by moderate early phase 

synovial inflammation that increased and peaked at week 2 and despite declining 

thereafter, low-grade inflammation persisted. Regression analysis revealed this low-

grade inflammation was greater than that of sham surgery and age matched control 

mice. Although the early phase of synovial inflammation was attributed to surgical 

trauma and tissue disruption since it also developed in sham surgery mice, it was also 

significantly greater in DMM suggesting an acute additive effect of OA-inducing joint 

injury. In contrast, the AIA model was characterised by severe synovial inflammation 

that while also peaking at week 2 persisted for longer (12 weeks) before decreasing to 

levels that were comparable to the DMM model at week 16.  

The idea that AIA is an inflammation driven model of arthritis and DMM is a post-

traumatic model of OA with trauma associated mild inflammation is not new (413, 

437, 521); however, this is the first time that an attempt has been made to not only 

quantify the degree of inflammation that occurs in the two models in terms of the 

different joint tissue changes that are involved in the inflammatory process (synovial 

hyperplasia, sub-synovial infiltration, synovial exudate, panus formation and cortical 
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bone erosion)(461), but also determine any associations between joint inflammation 

and the development of OA-like joint pathologies.  

Despite the presence of significant synovitis in both models, a direct association 

between synovitis and AC damage was only identified in AIA. In the AIA model 

there was an association between synovitis and subchondral bone pathology (both 

vascularisation and sclerosis). In contrast, synovitis was only associated with SCB 

vascularity in the DMM model. In combination with the fact that synovitis is a 

significant risk factor for development of AC damage in the AIA model but not in 

DMM, these associations suggest that inflammation, at least as measured by 

histological scoring of synovitis, is a more direct driver of joint pathology in this 

model than in the DMM.  

The correlation differences between the two models also suggests that the severity of 

inflammation and the type of inflammation, rather than its absolute presence, may 

determine the role it plays in the development of OA joint pathology. This study did 

not evaluate differences in inflammatory cell populations or the presence of specific 

cytokines in the inflammatory ‘soup’ that developed in the two models. However, 

evidence of the existence of these differences can be drawn from the type of 

histopathological inflammation observed in each model. For example, panus, sub-

synovial inflammation and synovial exudate were a feature of both early and late 

phase AIA inflammation. While panus was also present in both early and late phase 

DMM inflammation, synovial hyperplasia rather than sub-synovial inflammation was 

an early and persistent feature in this post-traumatic OA model.  

Human OA, both its presence and severity, is still defined by radiographic changes of 

joint space narrowing and the presence of osteophytes (566, 567). These radiographic 

hallmarks of human OA are reflected histologically in the DMM model as AC 
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proteoglycan loss and structural damage (joint space narrowing), and osteophyte 

maturation to calcified cartilage and bone (such that they would be detected on 

radiographs). AC proteoglycan loss and structural damage appeared early (week 1-2) 

and were both progressive thereafter. In contrast, these 2 aspects of cartilage 

pathology were not temporally associated in the AIA model where there was 

immediate and complete proteoglycan loss (day 3) that persisted, and a more delayed 

development of AC structural damage (week 8). Temporally the formation of 

mature/boney osteophytes (potentially visible radiographically) was quite distinct in 

the two models; 2-4 weeks in DMM and 12-16 weeks in AIA. Nevertheless, by 16 

weeks both arthritis models had pathology that would be consistent with the current 

radiographic diagnostic criteria for OA in patients. 

Although osteophyte formation occurred in both models, there were distinct 

differences and specific tissue pathology associations. In the DMM model there was a 

moderate association (r = 0.429) between osteophyte size and maturity, reflecting 

initial formation of cartilaginous outgrowths that then underwent endochondral 

ossification to form mature osteophytes. In AIA there was a very strong association 

between osteophyte size and maturity (r = 0.865), perhaps suggesting some subtle 

difference in pathophysiology of their formation in the two models. This may be 

further supported by the fact that osteophyte size and maturity were significantly 

correlated with AC structural damage but not AC PG loss or chondrocyte hypertrophy 

in the AIA model. In contrast, osteophyte size and maturity were significantly 

correlated with all three components of articular cartilage pathology (AC PG loss, AC 

structural damage and chondrocyte hypertrophy) in the DMM model. Yet in both 

models osteophyte size was associated with an increased risk of OA progression as 
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measured by cartilage structural damage, although in AIA the risk was much greater 

(OR = 13). 

In human OA patients, osteophyte size is also associated with a moderate increased 

risk of OA disease progression (568). However, this increased risk is largely 

accounted for when adjustments are made for the effect of joint malalignment on 

disease progression, due to the strong association between large osteophytes and joint 

malalignment. 

The factors that drive osteophyte formation are incompletely understood, but likely 

involve mechanical and soluble/growth factor signaling to activate mesenchymal stem 

cells (MSC) in the periosteum and synovial membrane, and potentially also 

macrophage-like cells [reviewed in (569)]. The relative contribution of biomechanics 

and soluble mediators to osteophyte development may differ with arthritis phenotype 

as previously demonstrated comparing the more inflammatory collagenase-induced 

OA (ciOA) with the less inflammatory DMM model of post-traumatic OA (570, 571). 

The osteophyte development in AIA may reflect a stronger role for growth factors 

such as TGF and BMPs-2 and -9 rather than biomechanics as previously reported in 

ciOA (572-576), while in DMM, joint instability may be more critical with 

osteophytes potentially acting to stabilise the joint (577). Osteophyte development in 

AIA occurred when synovitis was resolving but cartilage erosion was maximal, 

potentially implicating a role for increasing micro-instability with loss of cartilage 

volume in the late stages of this model. However, there was significant negative 

correlation between subchondral bone vascularity and both osteophyte size and 

maturation in AIA but not DMM. This is consistent with the greater joint 

inflammation and associated bone resorption in early AIA, and late osteophyte 

formation may be indicative of the need to resolve specific pro-inflammatory signals 
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to allow bone formation. This phenomenon was recently described in TNF-transgenic 

mice where blocking the key Wnt inhibitor Dikkopf-1, reversed the bone-destructive 

pattern typical of rheumatoid arthritis to one of bone formation, and particularly 

osteophyte formation, typical of osteoarthritis (578).  

In addition to osteophyte formation the AIA model also resulted in the formation of 

enthesophytes. This histopathological finding has not been reported previously in the 

AIA model. Enthesophytes differ from osteophytes with respect to anatomical 

location, tissue derivation and most likely pathogenesis. Unlike osteophytes, 

enthesophytes do not develop from the margins of the articular surface, but rather 

from the site of insertion of tendons, ligaments or articular capsule and they extend in 

the direction of pull of their tendon or ligament of origin (579). Based on location, the 

enthesophytes observed in the AIA mice most likely originated from the attachment 

site of the patella tendon/ligament. In contrast to osteophytes, which developed late in 

AIA, the enthesophytes developed early (week 1) and this would suggest that 

inflammation and not joint instability is a key factor in driving their formation in the 

AIA model.  

In humans the formation of enthesophytes and osteophytes are strongly correlated 

following correction for age and gender (580). This association has been further 

investigated in individuals with high bone mass in an attempt to identify a subset of 

OA patients with an OA phenotype that is characterised by excess bone formation 

(581). 

Our ‘tissue’ definition of OA has broadened from describing it as a disease of 

articular cartilage to a disease of multiple tissues that make up the joint organ (62, 

122). This study identified different model-specific associations between the three 

major tissue structures in the joint (articular cartilage, synovium and subchondral 
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bone). While providing further support to the clinical relevance of the “joint organ” 

definition, it also highlights how the pathological interaction between joints tissues is 

dependent on the arthritis phenotype.  The subchondral bone is one tissue that is 

reshaping our understanding of OA pathogenesis (62, 73, 582, 583). In the DMM 

model SCB sclerosis was consistently greater than sham surgery and age matched 

controls, despite the observed age-related increase in SCB thickening. The only 

decrease in SCB sclerosis that was observed in DMM occurred in week 1, when joint 

inflammation peaked and the SCB was characterised by increased vascularity. A 

similar pattern of change from SCB resorption to bone formation was observed in the 

AIA model, however, the decrease in SCB persisted for longer (week 4), reflecting 

the differences in joint inflammation severity and the degree of SCB vascularisation 

in the two models. SCB vascularisation was significantly associated with synovitis in 

AIA and DMM, indicating that it is part of the “whole joint inflammation” that occurs 

in the early stages of disease in both models.  

Despite the temporal differences described, by 16 weeks the two models were not 

significantly different with respect to inflammation (synovitis and SCB 

vascularisation), AC structural damage or osteophyte size. By all accounts at week 16 

histopathologically both models are OA-like. However, model specific tissue 

pathology associations were identified that confirm the unique disease phenotypes 

that these models represent (Figure 4.10). While it must be remembered that no causal 

relationships can be established from the data presented in this chapter, the different 

associations between joint pathologies in the two models may have implications when 

considering the potential of therapeutic intervention targeting one tissue to treat the 

global joint pathology of OA. In other words, the “OA phenotype” matters.  
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In the DMM model there was a strong positive relationship between cartilage 

structural damage and both PG loss and chondrocyte hypertrophy/apoptosis. This is 

consistent with the known role of both aggrecanolysis and the chondrocyte 

differentiation in OA cartilage degradation, and that genetic modifications targeting 

these molecular pathways can reduce OA cartilage damage in mice [reviewed in 

(407)]. Interestingly while AC structural damage in AIA was associated with 

chondrocyte hypertrophy and this with PG loss, there was no significant association 

between PG loss and cartilage erosion in this model. In the final OLR analysis of the 

two models the subtle differences in the cellular and molecular regulation of cartilage 

degradation are evident in PG loss and chondrocyte hypertrophy/apoptosis being the 

significant risk factors in DMM, while it was only chondrocyte hypertrophy/apoptosis 

in AIA. This is consistent with previous observation using genetically modified mice, 

demonstrating that the molecular regulation and/or enzymes involved in the sustained 

PG loss in AIA are distinct from those in DMM (439). However, it also confirms the 

importance of hypertrophic differentiation and chondrocyte death in cartilage 

structural damage (584-586), and that modulating this is an important therapeutic 

target that may cross different osteoarthritis phenotypes.  

That the relationships observed between different histopathological aspects of 

cartilage pathology align with current understanding of the pathophysiological 

mechanisms in this tissue provides confidence in the current analyses. We therefore 

explored the associations between different joint tissues in the two models. Consistent 

with the associations observed in human knee OA (63, 66, 570, 587) AC structural 

damage in the DMM model was significantly associated with increased SCB 

thickening and osteophyte formation (size), these two variables being significant 

independent risk factors in the logistic regression model describing AC damage in the 
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DMM model. This suggests that in the DMM induced post-traumatic OA the tissue 

specific mechanisms driving cartilage damage, SCB sclerosis and osteophyte 

formation are co-dependent. This is supported by data from genetically modified mice 

where targeting molecular mechanisms expected to specifically modulate bone 

turnover can significantly reduce cartilage damage in models of post-traumatic OA 

(407).  

In the AIA model however, despite some evidence for a correlation, SCB sclerosis did 

not remain in the final analysis as an independent risk factor for AC structural 

damage. Instead when corrected for all other variables, synovitis and osteophyte size 

were significant predictors of increasing AC structural damage in AIA. The factors 

that control association between osteophyte formation and cartilage damage as 

discussed above, appear to be acting in both arthritis models although at different 

times in disease progression. The negative correlation between synovial inflammation 

and SCB sclerosis observed in both models could in part account for the delayed AC 

structural damage observed in AIA model as synovitis persists at a greater level for 

longer, and supports the idea that the reduced SCB thickening is chondroprotective 

(583, 588).  However, the complex relationship between SCB and cartilage damage in 

OA is evident from recent therapeutic studies in mice (589, 590). Administration of 

bisphosphonates to reduce bone resorption had no effect on cartilage damage 

following meniscectomy-induced OA, however if the mice were first made 

osteopaenic or “bone-resorbers” by ovariectomy or Runx-2 overexpression, then 

bisphosphonates significantly reduced AC structural damage. This data suggests that 

excessive bone resorption may contribute to rather than protect against cartilage 

damage in OA. While no significant association was found between SCB 

vascularisation (the histological marker of bone resorption) and cartilage damage in 
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the AIA model, it would be interesting to determine if bisphosphonates had a 

chondroprotective effect in this model.  

It is perhaps also not surprising that in a model initiated by inducing an acute intra-

articular immune/inflammatory response to a foreign antigen (AIA), that synovitis 

would be a significant risk factor for cartilage damage.  Interestingly however, no 

direct association could be demonstrated between synovial inflammation and the 

development of articular cartilage pathology in the DMM model. This is somewhat 

surprising given that genetic modulation of various immune/inflammatory pathways 

has been shown to significantly inhibit cartilage degradation in mouse models of post-

traumatic OA (reviewed in (407)). This may reflect that the histopathological scoring 

method used for synovitis does not discriminate between different cellular or 

molecular phenotypes of inflammation. Thus while deficiency of complement factor 5 

(82), IL-1 (591), and IL-6 (592) for example have been shown to be 

chondroprotective in mouse post-traumatic OA, mice lacking complement regulatory 

protein 59a (82) or deficient in toll-like-receptors (TLRs)1-4 or their primary response 

gene Myd88 (593) show no change in OA cartilage damage. Thus there are specific 

inflammatory pathways and molecules that may be up-regulated and play critical roles 

in OA, and importantly in different stages and/or phenotypes of OA. This has been 

demonstrated previously for S100A9, which plays a central role in cartilage 

degradation in the more inflammatory ciOA, but not DMM (571). Whether it is 

simply the severity and prolonged time course of the synovial inflammation in AIA 

that drives the association between synovitis and AC damage in this model compared 

with DMM; or that more of the individual pathways that show association in DMM 

are up regulated in AIA; or that different, or more-potent pathways are regulated, is 

not clear.  
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Despite both models resulting in OA-like joint pathology, the different tissue 

associations observed in the two models suggest that different tissue specific 

mechanisms may be driving the joint pathology changes that ultimately lead to OA. 

The data presented in this chapter demonstrates that even when the long-term global 

joint pathology is the same, the relationship between the different tissue pathologies 

and the risk factors for developing OA, are likely determined by the initiating cause, 

and this is different for each animal model. This highlights the importance of defining 

animal model phenotypes in terms of initiating mechanisms and temporal joint tissue 

pathology, as well as end-stage joint disease characteristics. While most would agree 

that DMM is a model of post-traumatic (pt)-OA, the idea that AIA may also be an OA 

model would not be widely accepted. Acutely AIA is clearly a model of inflammatory 

arthritis, but at least from a pathological viewpoint, at some stage it “becomes OA”. 

With time long-term AIA could be considered a model of “post-inflammatory (pi)-

OA”. 

Although the two models eventually show all the hallmark pathological features of 

human OA (AC erosion, SCB sclerosis, marginal osteophytes), the time course of 

how this is arrived at and the relationship between the joint pathologies are very 

different. This suggests that even if both models are ultimately definable as different 

OA phenotypes, how one might plan to target or treat the disease has to be different. 

Furthermore, if despite ultimately similar OA pathology, the disease pathophysiology 

(tissue relationships and time course) differs between the models, does this mean the 

pathology/pain relationship and pain pathophysiology/molecular mechanisms will 

also differ? The relationship between pathology and pain in DMM versus AIA will be 

explored in the following chapters. 
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CHAPTER 5:  Pain behaviour outcomes following 

destabilization of the medial meniscus (DMM) and 

antigen-induced arthritis (AIA) in mice 

5.1 Introduction and aims 

In the previous chapter, the progressive histopathological changes that occur in 

different knee joint tissue structures following induction of arthritis using the DMM 

and the AIA models were evaluated, and different tissue pathology associations 

identified for each model. Interestingly, these joint pathology associations were not 

time dependent, and in contrast to the indistinguishable OA-like pathology observed 

in both models at week 16, were very much model-specific. 

In this chapter, activity-based and evoked pain-response behaviours were measured 

following induction of arthritis using DMM and AIA. This enabled further 

differentiation between the two models through evaluation of different pain related 

behaviours at key stages of disease development, as well as characterization of the 

temporal pattern of behaviour demonstrated in the two arthritis models. Associations 

between different pain behaviour outcomes were also investigated. 

Animal models are a useful pre-clinical research tool that are used to understand 

disease pathophysiology and facilitate the development and testing of new therapeutic 

agents (128). In the case of OA, the focus of pre-clinical research is to develop and 

test therapeutic agents that not only demonstrate efficacy with respect to halting joint 

disease progression and initiating joint pathology repair, but also that target the most 

clinically relevant disease symptom – pain (391).  

The challenge then becomes to identify animal models that mimic OA joint disease 

pathophysiology and symptomatology (399). This challenge is made even greater 
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because of the complex nature of pain as both a symptom and a disease.  Defining and 

quantifying pain in a pre-clinical setting is difficult (363). This in part explains why 

pre-clinical OA models remain unreliable predictors of disease response in humans 

and why favorable outcomes in animal models do not readily translate to effective 

human therapies (128).   

To address this current impediment to translation in OA research, pain outcomes in 

this thesis were defined (in terms that reflect what has been observed clinically in 

human OA), standardized (by developing detailed protocols on how tests are 

conducted to minimize operator variability), and then measured simultaneously in two 

animal models over a defined time period that reflected joint disease progression. The 

two models were specifically selected because; one has been used extensively to 

investigate OA specific pathophysiology (DMM) (28, 47, 407, 439) and one has been 

used to investigate arthritis pain and inflammatory pain mechanisms more broadly 

(AIA) (198, 453, 519, 594, 595).  

The aims of chapter 5 are: 

1. To characterize and compare the pain related behaviours that develop with knee

joint arthritis induced by DMM and AIA.

2. To track, in parallel, how each pain related behaviour changes temporally with

disease progression in the two models of arthritis.

3. To identify any associations between different pain-related behaviours in the two

models of arthritis.
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5.2 Methods, statistical analysis and data presentation 

Details of the methods used to induce the two models of arthritis, DMM and AIA, are 

described in chapter 2, section 2.1. The pain assays used in this chapter have 

previously been reported and validated (316, 465, 493, 517, 545), and the exact 

methods used for carrying out the pain tests were developed by the researcher 

(chapter 3, section 3.1) and described in chapter 2, section 2.3.  

Comparison of pain data between treatment groups and time points were analysed 

using the nonparametric ranked Kruskal-Wallis analysis for multiple groups and, 

where there was significance, post hoc analysis using the Mann Whitney U-test (for 

unpaired data) was performed for between group comparisons. Within treatment 

group comparisons relative to baseline were conducted using the Wilcoxon signed-

rank test (StataSE software, Stata corporation, TX, USA). The results are presented 

graphically as means with error bars depicting the standard error of each data set. 

The experiments reported in this chapter were designed to be hypothesis generating 

due to the variable nature of pain behaviour data and the fact that pain testing as 

described in this thesis (refer to Chapters 2 and 3) has not previously been conducted 

in two distinct arthritis models, tested longitudinally at the same time points over a 16 

week period of joint disease progression. For this reason, the alpha value was set at 

0.05 and the Benjamini-Hochberg correction was not applied to the P values to 

correct for repeated measures. 

Associations between the different pain related behaviours were determined by 

generating partial correlation coefficients, using Kendall’s tau-b (565). This 

nonparametric process uses pairwise ranked data values between the two variables 

under study (ordinal scores) and thus does not require data to be normally distributed 

or the relationship between the variables to be linear. Linear regression was used to 
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determine whether the pain-related behavior outcome variables changed over time; 

and when correcting for time, whether there was a difference between treatments. 

In the results, ‘significance’ refers to statistical significance, with p values included in 

the relevant results tables (Tables 5.1 – 5.7). 

5.3 Results 

Changes from baseline were observed in both AIA and DMM mice at different time 

points for the different pain related behaviours. These changes followed a similar 

trend in both animal models. However, a model-specific temporal pattern was 

observed for individual pain-related behaviours. These model-specific temporal 

changes are readily visible in figures 5.1c, 5.3c, 5.4c, 5.5c and 5.5i and are discussed 

in the following sections. 

5.3.1 Effect of AIA and DMM on tactile allodynia following induction of arthritis 

Paw withdrawal, evoked by von Frey filament stimulation was used to calculate the 

50% paw withdrawal threshold (PWT) as a measure of tactile allodynia. Following 

the establishment of a consistent method for measuring PWT evoked by von Frey 

filament stimulation, this pain assay was used to test for tactile allodynia in four 

separate experiments. The results reported in this section are the combined data from 

four cohorts of mice. Not all time points were captured for each mouse for several 

reasons. Firstly, a proportion of mice were culled at predetermined time points for the 

purpose of knee joint (see chapter 4) and DRG (see chapter 6) tissue harvesting. 

Secondly, we wished to avoid excessive testing and any confounding effect the 

associated stress of frequent testing would have on response thresholds. Any mice that 
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demonstrated extreme agitation and did not settle following the acclimatisation period 

were excluded from that test period, but were not excluded completely from the study. 

The decision to exclude an animal during a particular test period was made by the 

operator blinded to treatment. No particular treatment or sham group was excluded 

with any greater frequency. A total of 154 mice were used for testing. Ipsilateral 50% 

PWT’s for DMM, AIA, sham and saline groups are summarised graphically in figure 

5.1a-c and P values listed in Table 5.1. Contralateral 50% PWT’s are summarized in 

figure 5.1d-f. 
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Table 5.1. Von Frey (ipsilateral 50% PWT) 

Between treatment comparisons and within treatment changes compared to baseline. 

P-values shown in bold typeface are significant (P<0.05).

Time Treatments P – value 

(T1 vs. T2)* 

Treatment P – value 

(vs. D0)* 

Day 0 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.582 

0.373 

0.022 

0.536 

0.065 

0.088 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

- 

- 

- 

- 

- 

- 

Day 3 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.321 

- 

0.042 

0.013 

- 

- 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.527 

0.052 

0.027 

0.685 

- 

- 

Week 1 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

- 

- 

- 

<0.001 

0.011 

- 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

- 

- 

<0.001 

0.003 

- 

0.028 

Week 2 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.692 

0.005 

1.000 

0.002 

0.838 

<0.001 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.065 

0.077 

0.003 

0.056 

0.249 

0.028 

Week 4 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.931 

0.001 

0.150 

0.784 

0.878 

0.003 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.017 

0.013 

<0.001 

0.008 

0.753 

0.028 

Week 8 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.593 

0.066 

0.915 

0.621 

0.655 

0.007 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.108 

0.224 

<0.001 

<0.001 

0.116 

0.028 

Week 12 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.035 

0.038 

0.654 

0.234 

0.417 

0.020 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.117 

0.272 

0.333 

0.056 

0.115 

0.046 

Week 16 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.175 

0.002 

0.305 

0.067 

0.092 

0.017 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.041 

0.783 

0.019 

0.016 

0.345 

0.028 

* T1 and T2 = 1
st
 and 2

nd
 treatment, D0 = baseline
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Baseline ipsilateral PWT in DMM and AIA mice was not significantly different from 

the respective control groups or age matched naïve mice (P = 0.582). Baseline 

contralateral PWT in DMM and AIA mice was also not significantly different from 

the respective control groups or age matched naïve mice (P = 0.355).  

Ipsilateral PWT decreased significantly compared to age matched naïve mice in both 

the AIA and DMM model. In the AIA model, both saline-injected and mBSA-injected 

mice developed early (day 3) ipsilateral tactile allodynia. However, the decrease in 

PWT was significantly greater in AIA mice compared to saline-injected mice at day 3 

(P = 0.013), week 1 (P < 0.001), and week 2 (P = 0.002). Immunised control mice that 

did not receive an intra-articular injection also developed persistent ipsilateral tactile 

allodynia (figure 5.1g). 

In the DMM model, both sham and DMM mice developed early ipsilateral tactile 

allodynia by day 3. This began to resolve in sham mice after week 8 testing, and 

returned to baseline levels by week 12. In contrast, the tactile allodynia that developed 

in DMM mice persisted over the 16-week time course.  

In the contralateral limb, significant differences in PWT between the six treatment 

and control groups were only observed at week 1 (P = 0.014) and week 16 (P = 0.034) 

following induction of arthritis. In general, there was greater variability in PWT 

within treatment groups and between treatment groups over time, on the contralateral 

side (figure 5.1f and 5.1h). 



194 

Figure 5.1a-c. Ipsilateral 50% Paw Withdrawal Threshold (PWT) 

Using von Frey filament stimulation of the hind paws, as a measure of tactile allodynia in DMM vs. sham (a); AIA vs. saline (b); and DMM vs. 

AIA (c) mice at day 3, week 1, 2, 4, 8, 12 and 16 following induction of arthritis. The results are presented graphically as a line graph of the 

means with SEM’s marked. Significance for Treatment vs. sham/saline/control = P<0.05 (*); P<0.01 (**); and P<0.001 (***). Significance for 

Treatment vs. baseline (day 0) = P<0.05 (#); P<0.01 (##); and P<0.001 (###).
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Figure 5.1d-f. Contralateral 50% Paw Withdrawal Threshold (PWT) 

Using von Frey filament stimulation of the hind paws, as a measure of tactile allodynia in DMM vs. sham (d); AIA vs. saline (e); and DMM vs. 

AIA (f) mice at day 3, week 1, 2, 4, 8, 12 and 16 following induction of arthritis. The results are presented graphically as a line graph of the 

means with SEM’s marked. 
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Figure 5.1g-h. 50% PWT in immunised only mice 

Ipsilateral (g) and contralateral (h) 50% Paw Withdrawal Threshold (PWT) using von Frey filament stimulation of the hind paws, as a measure 

of tactile allodynia in immunised only (Im Control) mice and compared with AIA mice at day 3, week 1, 2, 4, 8, 12 and 16 following induction 

of arthritis. The results are presented graphically as a line graph of the means with SEM’s marked. Significance for AIA vs. saline = P<0.05 (*); 

P<0.01 (**); and P<0.001 (***). Significance for AIA vs. baseline (day 0) = P<0.05 (#); P<0.01 (##); and P<0.001 (###). Significance 

for ImControl vs baseline (day 0) = P< 0.05 (§) 
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5.3.2 Effect of AIA and DMM on thermal hyperalgesia following induction of 

arthritis 

Paw withdrawal latency (PWL) evoked by placing individual mice on a metal 

hotplate set at 52 degrees C, was used as a measure of thermal hyperalgesia. This pain 

assay was used to test for thermal hyperalgesia in five separate experiments. The 

results reported in this section are the combined data from five cohorts of mice. Not 

all time points were captured for each mouse because a proportion of mice were 

culled at predetermined time points for the purpose of knee joint and DRG tissue 

harvesting. Not all time points were captured in each cohort because of the 

confounding issue of conditioning when mice are tested too frequently on a hotplate 

(refer to Chapter 3). 

Any mice that demonstrated extreme agitation and/or attempted to escape from the 

chamber by jumping as soon as they were placed on the hotplate even when it was set 

to room temperature, were excluded from testing. A total of 178 mice were used for 

testing. PWL’s for AIA, DMM, saline, sham and control groups are summarised 

graphically in figure 5.2a-e and P values listed in Table 5.2.  

Baseline PWL (figure 5.2a) was significantly different between the six treatment and 

control groups (P = 0.027). Post-hoc analysis identified a significant difference 

between saline injected and immunized control mice (P = 0.023). Baseline PWL for 

all other treatment and control/sham group combinations was not significantly 

different. 

In all mice there was a temporal effect in the first week of testing with a decrease in 

PWL. This was followed by an increase in PWL at week 2. This decrease in PWL 

between baseline and the first test period only reached significance in the age matched 

control group (P = 0.012).
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In AIA and saline injected mice there was a mild but significant decrease in PWL 

compared to baseline at week 8 (P = 0.041 and P = 0.017). In AIA mice this decrease 

in PWL was persistent and reached significance again at week 16 (P = 0.046). In 

saline injected mice PWL returned to above baseline levels by week 12. To 

investigate if immunisation alone had an effect on PWL, immunized non-injected 

mice were also tested (Figure 5.2e). In immunized control mice there was no 

significant difference between baseline and any of the other measured time points 

(week 1, 4 and 8). Baseline and week 1 PWLs were significantly lower in saline 

injected mice compared to immunised non-injected mice (P = 0.023 and 0.026).  

In DMM mice PWL decreased from week 4 (P = 0.028) to week 16, compared to 

baseline. PWL was decreased in DMM mice compared to Shams from week 4 to 

week 16, but the difference between the groups was not significant. PWL was also 

decreased in DMM compared to AIA, reaching significance at week 4 only (P = 

0.018). 

Figure 5.2a. Hotplate paw withdrawal latency (PWL) baseline 

Evoked by placing individual mice on a metal hotplate set at 52
0
C, was used as a

measure of thermal hyperalgesia. The baseline values are presented graphically as a 

scatter plot (mean and 95% CI). 
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Table 5.2. Hotplate (52
0
C PWL)

Between treatment comparisons and within treatment changes compared to baseline. 

P-values shown in bold typeface are significant (P<0.05). * T1 and T2 = 1
st
 and 2

nd

treatment, D0 = baseline.

Time Treatments P – value 

(T1 vs. T2)* 

Treatment  P – value 

(vs. D0)* 

Day 0 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Im Control 

AIA vs. Control 

0.582 

0.125 

0.836 

0.179 

0.098 

0.106 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

- 

- 

- 

- 

- 

- 

Day 3 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Im Control 

AIA vs. Control 

0.599 

- 

0.789 

0.536 

- 

- 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.775 

0.493 

0.909 

0.265 

- 

- 

Week 1 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Im Control 

AIA vs. Control 

0.641 

0.194 

0.500 

0.120 

0.171 

0.077 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.347 

0.454 

0.314 

0.230 

0.012 

0.465 

Week 2 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Im Control 

AIA vs. Control 

0.166 

0.061 

0.564 

0.817 

- 

0.261 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.077 

0.530 

0.388 

0.060 

- 

- 

Week 4 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Im Control 

AIA vs. Control 

0.140 

0.159 

0.018 

0.388 

0.580 

0.768 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.028 

0.093 

0.203 

0.241 

0.028 

0.273 

Week 8 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Im Control 

AIA vs. Control 

0.108 

0.502 

0.063 

0.753 

0.040 

0.909 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.600 

0.753 

0.041 

0.017 

0.655 

0.068 

Week 12 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Im Control 

AIA vs. Control 

0.465 

0.053 

0.063 

0.214 

0.077 

0.117 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.225 

0.345 

0.116 

0.292 

- 

- 

Week 16 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Im Control 

AIA vs. Control 

0.234 

0.028 

0.462 

0.137 

0.066 

0.007 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.686 

0.917 

0.046 

0.753 

-

- 
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Figure 5.2b-e. Hotplate PWL 

Evoked by placing individual mice on a metal hotplate set at 52 degrees C, was used 

as a measure of thermal hyperalgesia in DMM vs. sham (b); AIA vs. saline (c); DMM 

vs. AIA (d); and Immunised-control (e) mice at day 3, week 1, 2, 4, 8, 12 and 16 

following induction of arthritis. The results are presented graphically as a line graph 

of the means with SEM’s marked. Significance for Treatment vs. Control/ImControl 

= P<0.05 (*) and P<0.01 (**). Significance for Treatment vs. baseline (day 0) = 

P<0.05 (#); Significance for AIA vs DMM = P< 0.05 (§). 
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5.3.3 Effect of AIA and DMM on mechanical hyperalgesia following induction of 

arthritis 

Paw withdrawal, evoked by applying digital pressure across the knee joint of 

individual mice, was used as a measure of mechanical hyperalgesia. This pain assay 

was used to test for mechanical hyperalgesia in two separate experiments. The results 

reported in this section are the combined data from two cohorts of mice. Not all time 

points were captured for each mouse because a proportion of mice were culled at 

predetermined time points for the purpose of knee joint and DRG tissue harvesting. 

Not all time points were captured in each cohort to avoid excessive testing and any 

confounding affect the associated stress of frequent restraint and testing would have 

on response thresholds (refer to Chapter 3). If an individual mouse could not be 

restrained appropriately for testing without exerting excessive force the measurement 

was excluded for that time point but the mouse was not excluded from the study. A 

total of 131 mice were used for testing. PWT for AIA, DMM, saline, sham and 

control groups are summarised graphically in figure 5.3a-h and P values listed in 

Table 5.3. 
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Table 5.3. PAM device (right knee PWT) 

Between treatment comparisons and within treatment changes compared to baseline. 

P-values shown in bold typeface are significant (P<0.05). * T1 and T2 = 1
st
 and 2

nd
 

treatment, D0 = baseline. 

Time Treatments P – value 

(T1 vs. T2)* 

Treatment  P – value 

(vs. D0)* 

Day 0 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Control 

AIA vs. Im Control 

0.317 

0.317 

- 

0.289 

0.480 

0.242 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

- 

- 

- 

- 

- 

Day 3 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Control 

AIA vs. Im Control 

- 

- 

- 

- 

- 

- 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

- 

- 

- 

- 

- 

 

Week 1 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Control 

AIA vs. Im Control 

- 

- 

- 

0.788 

- 

0.708 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

- 

- 

0.109 

0.317 

- 

0.007 

Week 2 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Control 

AIA vs. Im Control 

0.091 

0.047 

0.563 

0.648 

0.026 

- 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

- 

- 

- 

- 

- 

- 

Week 4 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Control 

AIA vs. Im Control 

- 

- 

- 

0.725 

- 

0.845 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

- 

- 

- 

0.317 

- 

0.578 

Week 6 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Control 

AIA vs. Im Control 

0.169 

0.209 

0.112 

0.565 

0.887 

- 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.052 

0.425 

- 

- 

0.388 

- 

Week 8 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Control 

AIA vs. Im Control 

- 

- 

- 

0.150 

- 

0.156 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

- 

- 

- 

- 

- 

- 

Week 12 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Control 

AIA vs. Im Control 

0.652 

- 

0.385 

0.107 

- 

- 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

- 

- 

- 

- 

- 

- 
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Week 14 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Control 

AIA vs. Im Control 

0.740 

- 

- 

- 

- 

- 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.035 

0.087 

- 

- 

- 

- 

Week 16 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. Control 

AIA vs. Im Control 

0.149 

0.002 

0.010 

0.600 

0.221 

0.180 

DMM 

Sham 

AIA 

Saline 

Control 

Im Control 

0.028 

0.140 

- 

- 

0.317 

-
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There was no significant difference between baseline PWT for the six different 

treatment and control groups in either the right (P = 0.518) or left (P = 0.192) knee 

joint.  

In the AIA model ipsilateral PWT decreased at two weeks following induction of 

arthritis and at two weeks there was a significant difference in ipsilateral PWT 

between AIA and aged matched control mice (P = 0.026). By week 16 ipsilateral 

PWL returned to baseline levels. A similar pattern of change was observed in both 

saline-injected and immunized control mice. But, there were no significant 

differences observed in the saline injected or immunized control mice compared with 

age-matched control mice, at any of the measured time points. 

In the DMM model ipsilateral PWT also decreased at two weeks following induction 

of arthritis and remained decreased until week 16. In DMM ipsilateral PWT was 

significantly lower than age-matched controls at week 2 (P = 0.047) and week 16 (P = 

0.002). It was also significantly lower than baseline measurements in DMM mice at 

week 6 (P = 0.052), week 14 (P = 0.035) and week 16 (P = 0.028). The decrease in 

ipsilateral PWT in sham mice followed a similar temporal pattern but the decrease 

was of a much smaller magnitude and was not significantly different from baseline or 

compared to age matched controls at any measured time points.  

Contralateral PWT conformed to a similar temporal pattern of change in both AIA 

and DMM mice, however the decreases were minimal and not significant. 
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Figure 5.3a-c. Ipsilateral paw withdrawal threshold (PWT) 

Using the PAM device across the knee joint, as a measure of mechanical hyperalgesia in DMM vs. sham (a); AIA vs. saline (b); and DMM vs. 

AIA (c) mice at day 3, week 1, 2, 4, 8, 12, 14 and 16 following induction of arthritis. The results are presented graphically as a line graph of the 

means with SEM’s marked. Significance for Treatment vs. control = P<0.05(*); and P<0.01(**). Significance for Treatment vs. baseline (day 0) 

= P<0.05(#). Significance for AIA vs. DMM =P< 0.01(§§).
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Figure 5.3d-f. Contralateral paw withdrawal threshold (PWT) 

Using the PAM device across the knee joint, as a measure of mechanical hyperalgesia in DMM vs. sham (a); AIA vs. saline (b); and DMM vs. 

AIA (c) mice at day 3, week 1, 2, 4, 8, 12, 14 and 16 following induction of arthritis. The results are presented graphically as a line graph of the 

means with SEM’s marked. 
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Figure 5.3g-h. PWT in immunised only mice 

Ipsilateral (g) and contralateral (h) PWT using the PAM device across the knee joint, as a measure of mechanical hyperalgesia in Immunised 

only (Im-control) and compared with AIA mice at day 3, week 1, 2, 4, 8, 12 and 16 following induction of arthritis. The results are presented 

graphically as a line graph of the means with SEM’s marked. 
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5.3.4 Effect of AIA and DMM on hind limb weight distribution following 

induction of arthritis 

Hind limb (HL) weight distribution was measured in mice across six experiments, and 

the results reported in this section are the combined data from six cohorts of mice. 

Not all time points were captured for each mouse because a proportion of mice were 

culled at predetermined time points for the purpose of knee joint and DRG tissue 

harvesting. Not all time points were captured in each cohort to avoid excessive testing 

and any confounding affect the associated stress of frequent restraint and confinement 

in a small test chamber would have on stress induced analgesia (refer to Chapter 3). If 

an individual mouse was unable to settle in the test chamber the measurement was 

excluded for that time point but the mouse was not excluded from the study. A total of 

229 mice were used for testing.  HL weight distribution, expressed as the ratio of right 

to left HL weight bearing force in grams, for AIA, DMM, saline, sham and control 

groups are summarised graphically in figure 5.4a-d and P values listed in Table 5.4. 
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Table 5.4. Forceplate (hindlimb weight distribution) 

Between treatment comparisons and within treatment changes compared to baseline. 

P-values shown in bold typeface are significant (P<0.05). * T1 and T2 = 1
st
 and 2

nd

treatment, D0 = baseline.

Time Treatments P – value 

(T1 vs. T2)* 

Treatment P – value 

(vs. D0)* 

Day 0 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.255 

0.086 

0.542 

0.452 

- 

0.180 

DMM 

Sham 

AIA 

Saline 

Control 

- 

- 

- 

- 

- 

Day 3 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.097 

- 

<0.001 

<0.001 

- 

- 

DMM 

Sham 

AIA 

Saline 

Control 

< 0.001 

< 0.001 

< 0.001 

0.116 

- 

Week 1 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.379 

- 

<0.001 

<0.001 

0.001 

- 

DMM 

Sham 

AIA 

Saline 

Control 

0.005 

0.019 

<0.001 
0.732 

- 

Week 2 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.177 

0.152 

<0.001 

<0.001 

- 

0.012 

DMM 

Sham 

AIA 

Saline 

Control 

0.040 

0.082 

<0.001 

0.254 

- 

Week 4 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.120 

0.549 

0.003 

0.008 

0.477 

0.004 

DMM 

Sham 

AIA 

Saline 

Control 

0.469 

0.026 

0.016 
0.124 

0.075 

Week 8 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.949 

0.127 

0.670 

0.942 

0.055 

0.423 

DMM 

Sham 

AIA 

Saline 

Control 

0.117 

0.148 

0.215 

0.210 

0.345 

Week 12 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.322 

0.641 

0.093 

0.784 

0.162 

0.067 

DMM 

Sham 

AIA 

Saline 

Control 

0.913 

0.011 

0.200 

0.093 

0.463 

Week 16 DMM vs. Sham 

DMM vs. Control 

DMM vs. AIA 

AIA vs. Saline 

AIA vs. ImControl 

AIA vs. Control 

0.676 

0.108 

0.615 

0.249 

0.363 

0.059 

DMM 

Sham 

AIA 

Saline 

Control 

0.018 

0.017 

0.100 

0.859 

0.116 
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Baseline hind limb weight distribution in AIA and DMM mice was not significantly 

different from the respective control groups or age matched naïve mice (P = 0.235). 

There was no significant change in HL weight distribution at any of the measured 

time points (Figure 5.4d) in control, saline injected or immunized non-injected mice. 

A similar temporal pattern of change in HL weight distribution was observed in both 

AIA and DMM mice, with a decrease in right HL weight bearing in the early stages of 

the disease (week 1 – 4) following induction of arthritis. This decrease was not 

detected consistently in the chronic phase of the disease in either arthritis models. The 

changes in HL weight distribution were greater in magnitude and lasted longer in AIA 

mice.  

In AIA mice right to left HL weight distribution decreased significantly at day 3 (P < 

0.005), week 1 (P < 0.005), week 2 (P < 0.005) and week 4 (P = 0.016), after 

induction of arthritis compared to baseline (Figure 5.4a).  

In DMM mice right to left HL weight distribution decreased significantly at day 3 (P 

< 0.005), week 1 (P = 0.005), week 2 (P = 0.040) and then again at week 16 (P = 

0.018) after induction of arthritis. In sham mice the initial decrease in HL weight 

distribution was less and was only significant at day 3 (P < 0.005) and week 1 (P = 

0.019). Interestingly, sham mice also demonstrated a second phase of reduced HL 

weight distribution, that was significantly reduced compared to baseline at week 4 (P 

= 0.026), week 12 (P = 0.011) and 16 (P = 0.017). 
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Figure 5.4a-d. Hind limb (HL) weight distribution 

Measured using a Forceplate, and expressed as right to left (R:L) HL ratio, in DMM 

vs. sham (a); AIA vs. saline (b); DMM vs. AIA (c); and Immunised-control (d) mice 

at day 3, week 1, 2, 4, 8, 12 and 16 following induction of arthritis. The results are 

presented graphically as a line graph of the means with SEM’s marked. Significance 

for AIA vs. Saline/ImControl = P<0.01 (**); and P<0.001 (***). Significance for 

Treatment vs. baseline (day 0) = P<0.05 (#); P<0.01 (##); and P<0.001 (###). 
Significance for AIA vs DMM = P< 0.01 (§§); and P< 0.001 (§§§). Significance for 

AIA vs. Control = P<0.05 (Φ); and P<0.01 (ΦΦ) 
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5.3.5 Effect of AIA and DMM on stride length following induction of arthritis  

Gait was characterised by measuring changes in stride length. Stride length was 

determined by measuring the distance between the right and left HL paw print (right-

to-left stride length; RLS), the left and right HL paw print (left-to-right stride length; 

LRS), and the distance from one right HL paw print to the next (full stride length 

right; FSLR), and one left HL paw print to the next (full stride length left; FSLL). 

Five consecutive measurements were averaged to determine a final value for each 

stride length parameter. Results for RLS, LRS, FSLR and FSLL are depicted 

graphically in figures 5.5a – 5.5l and P values listed in Table 5.5a – 5.5d.  

The stride measurements were also used to calculate the right relative step 

(LRS:FSLL ratio) when weight bearing on the unaffected limb, and the left relative 

step (RLS:FSLR ratio) when weight bearing on the affected limb. FSL is closely 

associated with walking speed and so normalising stride length to a complete walk 

cycle (FSL) eliminates speed (493, 557) as a confounding factor when interpreting 

changes in stride length following induction of arthritis in the two models. Results for 

right and left relative step are depicted graphically in figures 5.5m and 5.5n.  

Measurements were performed across two experiments, and the results reported in 

this section are the combined data from three cohorts of mice. Not all time points 

were captured for each mouse because a proportion of mice were culled at 

predetermined time points for the purpose of knee joint and DRG tissue harvesting. 

Also, during some test periods individual mice stopped too frequently to allow 

measurement of at least 5 consecutive uninterrupted strides. The most common 

behaviour displayed during stopping was grooming and urination. These mice were 

excluded from that single test period but were used for subsequent testing at later time 

points. A total of 84 mice were used for testing. 
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Table 5.5a. Stride length (right to left stride - RLS) 

Between treatment comparisons and within treatment changes compared to baseline. 

P-values shown in bold typeface are significant (P<0.05). * T1 and T2 = 1
st
 and 2

nd

treatment, D0 = baseline.

Time Treatments P – value 

(T1 vs. T2)* 

Treatment P – value 

(vs. D0)* 

Day 0 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.874 

0.199 

0.180 

DMM 

Sham 

AIA 

Saline 

- 

- 

- 

- 

Day 3 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.505 

0.115 

0.058 

DMM 

Sham 

AIA 

Saline 

0.615 

0.258 

0.006 

0.093 

Week 1 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.773 

0.882 

0.467 

DMM 

Sham 

AIA 

Saline 

0.308 

0.638 

0.446 

0.078 

Week 2 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.326 

0.051 

0.537 

DMM 

Sham 

AIA 

Saline 

0.814 

0.875 

0.828 

0.184 

Week 4 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.749 

0.631 

1.000 

DMM 

Sham 

AIA 

Saline 

0.462 

0.173 

0.753 

0.249 

Week 8 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.873 

1.000 

0.631 

DMM 

Sham 

AIA 

Saline 

0.345 

0.028 

0.035 

0.917 

Week 12 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.100 

0.144 

0.295 

DMM 

Sham 

AIA 

Saline 

0.138 

0.293 

0.345 

0.207 

Week 16 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.715 

1.000 

1.000 

DMM 

Sham 

AIA 

Saline 

0.893 

0.075 

0.600 

0.249 
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Table 5.5b. Stride length (left to right stride - LRS) 

Between treatment comparisons and within treatment changes compared to baseline. 

P-values shown in bold typeface are significant (P<0.05). * T1 and T2 = 1
st
 and 2

nd

treatment, D0 = baseline.

Time Treatments P – value 

(T1 vs. T2)* 

Treatment P – value 

(vs. D0)* 

Day 0 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.658 

0.374 

0.800 

DMM 

Sham 

AIA 

Saline 

- 

- 

- 

- 

Day 3 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.783 

0.612 

0.636 

DMM 

Sham 

AIA 

Saline 

0.754 

0.900 

0.113 

0.263 

Week 1 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.236 

0.767 

0.669 

DMM 

Sham 

AIA 

Saline 

0.433 

0.388 

0.744 

0.601 

Week 2 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.141 

0.300 

0.613 

DMM 

Sham 

AIA 

Saline 

0.158 

0.326 

0.349 

0.811 

Week 4 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.065 

0.055 

0.262 

DMM 

Sham 

AIA 

Saline 

0.075 

0.917 

0.753 

0.400 

Week 8 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.262 

0.296 

0.149 

DMM 

Sham 

AIA 

Saline 

0.600 

0.753 

0.753 

0.075 

Week 12 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

1.000 

1.000 

0.150 

DMM 

Sham 

AIA 

Saline 

0.686 

0.345 

0.917 

0.400 

Week 16 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.068 

0.582 

0.873 

DMM 

Sham 

AIA 

Saline 

0.138 

0.600 

0.028 

0.116 
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Table 5.5c. Stride length (full stride length right - FSLR) 

Between treatment comparisons and within treatment changes compared to baseline. 

P-values shown in bold typeface are significant (P<0.05). * T1 and T2 = 1
st
 and 2

nd

treatment, D0 = baseline.

Time Treatments P – value 

(T1 vs. T2)* 

Treatment P – value 

(vs. D0)* 

Day 0 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.624 

0.237 

0.458 

DMM 

Sham 

AIA 

Saline 

- 

- 

- 

- 

Day 3 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.383 

0.354 

0.304 

DMM 

Sham 

AIA 

Saline 

0.875 

0.730 

0.015 

0.985 

Week 1 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.175 

0.751 

0.448 

DMM 

Sham 

AIA 

Saline 

0.100 

0.754 

0.446 

0.018 

Week 2 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.106 

0.117 

0.874 

DMM 

Sham 

AIA 

Saline 

0.209 

0.255 

0.777 

0.231 

Week 4 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.092 

0.078 

0.297 

DMM 

Sham 

AIA 

Saline 

0.046 

0.462 

0.292 

0.141 

Week 8 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.522 

0.337 

0.045 

DMM 

Sham 

AIA 

Saline 

0.116 

0.600 

0.173 

0.116 

Week 12 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.465 

0.144 

0.378 

DMM 

Sham 

AIA 

Saline 

0.080 

0.345 

0.173 

0.917 

Week 16 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.082 

0.715 

0.873 

DMM 

Sham 

AIA 

Saline 

0.225 

0.917 

0.027 

0.917 
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Table 5.5d. Stride length (full stride length left - FSLL) 

Between treatment comparisons and within treatment changes compared to baseline. 

P-values shown in bold typeface are significant (P<0.05). * T1 and T2 = 1
st
 and 2

nd

treatment, D0 = baseline.

Time Treatments P – value 

(T1 vs. T2)* 

Treatment P – value 

(vs. D0)* 

Day 0 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.887 

0.274 

0.445 

DMM 

Sham 

AIA 

Saline 

- 

- 

- 

- 

Day 3 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.581 

0.441 

0.245 

DMM 

Sham 

AIA 

Saline 

0.730 

0.551 

0.029 

0.588 

Week 1 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.237 

0.933 

0.537 

DMM 

Sham 

AIA 

Saline 

0.182 

0.530 

0.744 

0.026 

Week 2 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.248 

0.138 

0.849 

DMM 

Sham 

AIA 

Saline 

0.071 

0.410 

0.879 

0.276 

Week 4 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.109 

0.065 

0.262 

DMM 

Sham 

AIA 

Saline 

0.046 

0.463 

0.463 

0.249 

Week 8 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.337 

0.149 

0.199 

DMM 

Sham 

AIA 

Saline 

0.074 

0.345 

0.249 

0.293 

Week 12 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.201 

0.120 

0.575 

DMM 

Sham 

AIA 

Saline 

0.080 

0.173 

0.075 

0.917 

Week 16 DMM vs. Sham 

DMM vs. AIA 

AIA vs. Saline 

0.359 

0.855 

0.748 

DMM 

Sham 

AIA 

Saline 

0.174 

0.753 

0.046 

0.753 
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There was no significant difference for baseline RLS (P = 0.490), LRS (P = 0.758), 

FSLR (P = 0.567) or FSLL (P = 0.655) measurements between the four treatment 

groups. The mean baseline RLS, LRS, FSLR and FSLL were 31.6mm, 32.6mm, 

63.5mm and 63.9mm respectively.  

Changes in LRS followed a different temporal pattern in AIA and saline injected mice 

even though by week 16 LRS was the same for both groups (5.5b). In AIA mice LRS 

remained similar to baseline and only decreased significantly at week 16 (P = 0.028). 

In saline mice LRS was decreased week 4 to week 16 but this did not reach 

significance compared to day 0 or compared to AIA at any of the measured time 

points. In contrast, changes in RLS followed a similar temporal pattern in AIA and 

saline injected mice. In AIA and saline injected mice RLS was decreased at day 3 and 

week 8 but was only significant in AIA mice (P = 0.006 and P = 0.035 respectively). 

FSLR and FSLL were both significantly decreased at day 3 in AIA mice (P = 0.015 

and 0.029) and increased at week 1 in saline injected mice (P = 0.018 and 0.026). 

FSLR and FSLL decreased further week 4 to week 16 in both AIA and saline injected 

mice, reaching significance in AIA mice at week 16 (P = 0.027 and 0.046).  

The changes in stride length observed in DMM mice followed a different trend to 

AIA. LRS was decreased from week 4 to week 16 following induction of arthritis. In 

contrast RLS did not decrease until week 12. Both FSLR and FSLL increased initially 

at week 1 and then decreased, reaching significance at week 4 (P = 0.046 and 0.046). 

In sham mice RLS decreased significantly (P = 0.028) at week 8. The differences 

observed between DMM and sham mice for LRS and FSL measurements were not 

significant at any time point. 
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Figure 5.5a-c. Stride length I 

Stride length measured as hind limb right to left stride  (RLS) length, in DMM vs. sham (a); AIA vs. saline (b); and DMM vs. AIA (c) mice at 

day 3, week 1, 2, 4, 8, 12 and 16 following induction of arthritis. The results are presented graphically as a line graph of the means with SEM’s 

marked. Significance for Treatment vs. baseline (day 0) = P<0.05 (#); and P<0.01 (##). Significance for AIA vs DMM = P< 0.05 (§).
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Figure 5.5d-f. Stride length II 

Stride length measured as hind limb left to right stride  (LRS) length, in DMM vs. sham (a); AIA vs. saline (b); and DMM vs. AIA (c) mice at 

day 3, week 1, 2, 4, 8, 12 and 16 following induction of arthritis. The results are presented graphically as a line graph of the means with SEM’s 

marked. Significance for Treatment vs. baseline (day 0) = P<0.05 (#). Significance for AIA vs DMM = P< 0.05 (§).
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Figure 5.5g-i. Stride length III 

Stride length measured as hind limb right to right full stride length (FSLR), in DMM vs. sham (a); AIA vs. saline (b); and DMM vs. AIA (c) 

mice at day 3, week 1, 2, 4, 8, 12 and 16 following induction of arthritis. The results are presented graphically as a line graph of the means with 

SEM’s marked. Significance for AIA vs. Saline = P<0.05 (*). Significance for Treatment vs. baseline (day 0) = P<0.05 (#).
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Figure 5.5j-l. Stride length IV 

Stride length measured as hind limb left to left full stride length (FSLL), in DMM vs. sham (a); AIA vs. saline (b); and DMM vs. AIA (c) mice 

at day 3, week 1, 2, 4, 8, 12 and 16 following induction of arthritis. The results are presented graphically as a line graph of the means 

with SEM’s marked. Significance for Treatment vs. baseline (day 0) = P<0.05 (#).
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Figure 5.5m-n. Stride length V 

Stride length expressed as relative step in DMM vs. AIA mice at day 3, week 1, 2, 4, 8, 12 and 16 following induction of arthritis. Right relative 

step (m) is defined as the relative stride length when supporting weight on the unaffected limb, and calculated as the LRS:FSLL ratio. Left 

relative step (n) is defined as the relative stride length when supporting weight on the affected limb, and calculated as the RLS to FSLR ratio. 

The results are presented graphically as a line graph of the means with SEM’s marked. 
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The observed differences in LRS, RLS and FSLR between AIA and DMM 

demonstrated interesting trends although these differences were not significant. Right 

and left relative step displayed a similar pattern of change to LRS and RLS, in AIA 

mice. However, DMM displayed the reverse pattern of change to LRS and RLS, with 

an increased R relative step and decreased L relative step at week 16. So for DMM 

mice at week 16, when speed is accounted for, stride length is decreased when weight 

bearing on the affected limb and increased when weight bearing on the unaffected 

limb. The changes from baseline and the differences between treatment and sham 

groups were not significant. 
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5.3.6 Time and treatment effect on pain-related behaviours 

Linear regression analysis was used to investigate the pattern of change over time for 

each pain-related behaviour outcome variable, and also within the two arthritis 

models (Table 5.6). This provides a more robust evaluation of the effect of the two 

arthritis models on pain- outcomes, by taking time into account and allowing all the 

data to be included in the analyses rather than individual time points. 

When corrected for treatment group (sham, saline, DMM, AIA), Forceplate 

measurements decreased significantly up to day 3, before increasing significantly over 

time. Von Frey measurements decreased significantly over time up to week 4, and 

thereafter increased significantly with time. PAM measurements decreased 

significantly over time up to week 2. Hotplate and Stride length (FSLL) 

measurements progressively and significantly decreased over time. 

When time was corrected for, a significant treatment effect was observed for a 

number of the pain-related behaviour outcomes. Forceplate HL weight distribution 

was significantly decreased in AIA relative to both saline and DMM regardless of 

which stage of the disease process. Von Frey PWT was significantly decreased in 

sham relative to saline and in AIA relative to saline in the acute phase of the disease 

process (0 – 4 weeks). There were no treatment effects in the later stages of disease, 

beyond week 4. No significant treatment effect was demonstrated in PAM when time 

was corrected for. There was also no significant treatment effect when time was 

corrected for in hotplate measurements. Stride length did demonstrate a treatment 

effect: FSLL was decreased in DMM relative to sham and increased in AIA relative 

to DMM. 
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Table 5.6. Time and treatment effect on pain behaviour 

Linear regression on separate pain parameters in AIA and DMM was used to 

determine whether pain outcome variables changed over time (1), and when corrected 

for time whether there was a difference between treatment (2) and comparator 

treatments (3). Where the direction (increase vs decrease) and/or significance of the 

temporal change for a particular pain outcome differed with time after arthritis 

induction, the periods are reported separately. Forceplate, PAM and stride length data 

was normally distributed, Von Frey and Hotplate data was normalised using log 

transformation. 

Score Period 

(w) 

Time
1

Time 

(P) 

Treatment
2

Cf tx
3
 Tx (P)

Forceplate 0 – 0.4 Decreased <0.001 Sham - Saline   0.320 

AIA Decreased Saline <0.001 

DMM - Sham   0.072 

AIA Decreased DMM   0.001 

Forceplate 0.4 - 16 Increased <0.001 Sham - Saline   0.12 

AIA Decreased Saline <0.001 

DMM - Sham   0.62 

AIA Decreased DMM   0.001 

Von Frey 0 - 4 Decreased <0.001 Sham Decreased Saline   0.004 

AIA Decreased Saline <0.001 

DMM - Sham   0.63 

AIA - DMM   0.19 

Von Frey 4 - 16 Increased 0.001 Sham - Saline   0.99 

AIA - Saline   0.75 

DMM - Sham   0.21 

AIA - DMM   0.36 

PAM 0 - 2 Decreased 0.037 Sham - Saline 0.100

AIA - Saline 0.720

DMM - Sham 0.730

AIA - DMM 0.140

PAM 2 - 16 0.650 Sham - Saline 0.180 

AIA - Saline 0.340 

DMM - Sham 0.091 

AIA - DMM 0.210 

Hotplate 0 - 16 Decreased 0.007 Sham - Saline 0. 210

AIA - Saline 0.450 

DMM - Sham   0.860 

AIA - DMM 0.080 

Stride 

length 

(FSLL) 

0 - 16 Decreased <0.001 Sham - Saline   0.23 

AIA - Saline   0.86 

DMM Decreased Sham   0.019 

AIA Increased DMM   0.012 



 226 

5.3.7 Correlation between different pain-related behaviours in AIA and DMM 

when corrected for time 

Each individual perceives the experience of pain differently, and each pain outcome 

measure may reflect a different aspect of the pain experience. Yet in pre-clinical pain 

research we attempt to define it in terms of a series of basic observations or responses 

to a specific stimulus. Understanding how the different pain-related behaviours that 

can be observed in pre-clinical studies are associated could provide important 

nuanced information about the pain phenotype of the different animal models that are 

used to study OA. The existence of any associations was investigated by calculating 

partial correlation coefficients for the different pain-related behaviours in the different 

treatments (AIA, Saline, DMM, Sham) when corrected for time (Table 5.7). 

Interestingly, when time was corrected for, there were no significant associations 

between the different pain-related behaviours in either of the arthritis models. In the 

saline group there was a weak association between PAM and hotplate, which was lost 

when correction for repeated measures was performed. 
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Table 5.7. Pain related behaviour partial ranked correlations in AIA and DMM when 

corrected for time.  

  

a. HL weight distribution Treatment r P 

Von Frey AIA 

Saline 

DMM 

Sham 

0.163 

0.123 

0.118 

0.028 

0.089 

0.440 

0.260 

0.860 

PAM AIA 

Saline 

DMM 

Sham 

0.091 

0.001 

0.277 

0.120 

0.560 

0.930 

0.250 

0.310 

Hotplate AIA 

Saline 

DMM 

Sham 

0.057 

0.017 

0.030 

0.031 

0.470 

0.790 

0.680 

0.610 

Stride length AIA 

Saline 

DMM 

Sham 

0.043 

0.065 

0.017 

0.061 

0.600 

0.320 

0.840 

0.380 

b. Von Frey     

PAM AIA 

Saline 

DMM 

Sham 

0.032 

0.123 

0.023 

0.053 

0.830 

0.460 

0.850 

0.750 

Hotplate AIA 

Saline 

DMM 

Sham 

- 

0.081 

- 

0.149 

- 

0.580 

- 

0.260 

Stride length AIA 

Saline 

DMM 

Sham 

- 

- 

- 

- 

- 

- 

- 

- 

c. PAM    

Hotplate AIA 

Saline 

DMM 

Sham 

- 

0.237 

- 

0.125 

- 

0.016 

- 

0.300 

Stride length AIA 

Saline 

DMM 

Sham 

- 

- 

- 

- 

- 

- 

- 

- 

d. Hotplate    

Stride length AIA 

Saline 

DMM 

Sham 

0.044 

0.092 

0.088 

0.118 

0.580 

0.280 

0.300 

0.160 
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5.4 Discussion 

In this chapter, pain-related behaviours were measured following induction of arthritis 

in DMM and AIA mice. Sham surgery and saline injected mice were also tested for 

comparison. The focus of this chapter was to characterise the pain that develops in 

these two distinct animal models and track how the pain-related behaviours change 

over time. Time and treatment effects were investigated, and associations between the 

different pain-related behaviours were also investigated in the two models of arthritis.  

Pain in both the DMM and AIA models was characterised by tactile allodynia, knee 

joint mechanical hyperalgesia, reduced weight bearing of the affected HL, thermal 

hyperalgesia and changes in stride length, at different points of disease progression. 

For all of the pain-related behaviours there were differences between the two models 

with respect to the degree of severity of the pain behaviour that developed and/or the 

pattern of change over time that was observed.  

There was little variability in baseline readings for the behaviour tests conducted, with 

the exception of the hotplate test. However, all pain related behaviours demonstrated 

greater variability in subsequent measurements following induction of arthritis, 

despite clearly defined endpoints and a single operator performing the testing. This 

suggests that the pain experience for each individual mouse is different, as it is for 

individual humans (596). This variability also means that many of the experiments 

conducted in this chapter were underpowered and so the conclusions that are drawn 

from these experiments are in part based on the patterns and trends that were 

observed, rather than statistically significant findings.  As stated previously these 

were hypothesis generating experiments as the methods used to conduct the behaviour 

tests were modified from what has previously been published and have not been 

previously described or tested in two distinct models of arthritis.  
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5.4.1 Tactile allodynia 

Tactile allodynia on the ipsilateral hind paw developed early in treatment and sham 

groups but not in control mice. Allodynia was observed before the time point at which 

bona fide OA like joint pathology changes start to develop in the two models (refer to 

chapter 4). This suggests that the early phase tactile allodynia is driven by the trauma 

and inflammation caused by surgery, immunisation and knee joint injection. Further 

support of this is the fact that allodynia resolved completely in sham surgery mice at 

the time when OA was well established in DMM mice.  

Interestingly in the AIA model, allodynia developed in both mBSA and saline 

injected mice. Allodynia is a hallmark sign of central sensitisation. Central 

sensitisation is a manifestation of both activity dependent (early phase) and 

independent (late phase) sensory signal plasticity that can be transient or long lasting. 

It occurs after a period of initial nociceptive transmission and is sustained beyond the 

initiating signal. Immediate changes involve alteration of the distribution and function 

(increased excitability) of ion channels and receptors in response to high-level 

nociceptor input. On going noxious input and inflammation then lead to 

transcriptional changes at the level of the DRG and spinal cord (dorsal horn) (255). 

Since it is unlikely that a minor interference (ie saline injection) could trigger the type 

of changes in the sensory nervous system that are needed for central sensitisation to 

develop (597), von Frey testing was also performed on immunised mice that had no 

knee joint intervention. As predicted, a similar degree of allodynia was observed in 

immunised-only mice. This novel finding has not been reported before in the AIA 

model and highlights the limitations of using models that have both a systemic and 

local joint effect.  
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Tactile allodynia in the contralateral hind paw could not be demonstrated consistently 

in either model. Interpretation of results from the contralateral side is difficult because 

a response to von Frey fibres requires movement of the contralateral limb, which may 

result in greater weight bearing on the ipsilateral knee joint and a worsening of the 

pain in that joint. In other words, pain in the ipsilateral knee joint may indirectly 

increase the threshold at which an animal responds to a noxious stimulus on the 

contralateral side. However, the differences between the ipsilateral and contralateral 

50% PWT in each treatment group cannot be fully explained by this, especially in the 

saline injected and immunised-only mice. For consistency, animals were tested first 

on the left hind paw and then the right hind paw. The effect of testing order cannot be 

excluded as another contributing factor to the observed difference in 50% PWT 

between the ipsilateral and contralateral limbs.  

5.4.2 Mechanical hyperalgesia 

In DMM mice development of ipsilateral knee joint mechanical hyperalgesia 

displayed an early (week 6) and late (week 16) phase, which corresponds to the acute 

and chronic stage of OA disease development and pathology in this model (refer to 

chapter 4). In contrast, AIA mice displayed greater pain pressure sensitivity earlier on 

in the disease when joint inflammation was at a peak and less sensitivity in the late 

phase when OA joint pathology was well established (refer to chapter 4). As occurred 

with tactile allodynia, a similar pattern of mechanical hyperalgesia was observed in 

saline injected and immunized-only mice. These observations again highlight the 

confounding effect of measuring pain outcomes in an animal model that induces 

systemic and local joint effects. Changes in pressure pain sensitivity in the 

contralateral knee were very mild but followed a similar temporal pattern to the 

ipsilateral knee in both AIA and DMM mice. 
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Reduced pressure-pain threshold is a clinically relevant measure of OA pain as it 

mimics what has been observed in patients with knee OA pain (268). Patients with 

mild knee pain display greater sensitivity to pressure applied to the lateral side of the 

joint. While patients with severe knee pain display greater sensitivity to pressure 

applied to the medial side of the joint (284). In addition, these patients display 

increased evoked temporal summation, in response to repeated pressure application. 

Both of these are measures of central sensitisation. Interestingly, the degree of 

localized sensitisation as measured by pressure application tests and evoked temporal 

summation correlate with clinical pain ratings reported by OA patients. This is in 

contrast to the lack of correlation between standard radiological findings and clinical 

or experimental pain measures in OA patients. It highlights the need for similar 

investigations to better define the relationships that may exist between experimental 

measures of pain and specific joint pathologies in pre-clinical animal models. 

It must be noted that the level of physical restraint required when testing mice for 

knee joint sensitivity to a mechanical stimulus made it challenging to differentiate 

between mice that were responding to the applied stimulus and those that were 

demonstrating escape behaviour due to the restraint method. In addition, the stress 

associated with restraint may also have induced activation of the endogenous opioid 

system and other mechanisms involved in stress-induced analgesia, which in turn 

would influence the response threshold in individual mice. These added complexities 

reinforce the importance of blinding and testing control and sham mice in parallel 

throughout the experiment. 

5.4.3 Hind Limb Weight distribution 

Hind limb weight distribution in DMM and AIA mice was evaluated as a measure of 

pain using a force plate. The average right to left HL weight bearing ratio pre-



 232 

treatment ranged from 1.0 – 1.1 in AIA, DMM, sham and naïve control mice. Both 

models induce a mono-articular arthritis and so any shift in weight distribution that 

favours the non-treated HL is assumed to be an avoidance response secondary to pain. 

However, in the DMM model it can’t be ruled out that changes in weight distribution 

are also due to biomechanical changes arising from joint instability. The fact that two 

aspects of OA could be at play in the DMM model (pain and biomechanical 

instability) may in part explain the conflicting results published by researchers using 

DMM and other joint destabilisation models (316, 406, 598). 

Reduced weight bearing on the ipsilateral HL was observed early in AIA, DMM and 

sham surgery mice. Unlike the pain-related behaviour tests that indicate central 

sensitisation, changes in HL weight distribution were not observed in saline injected 

and immunized-only mice. This suggests that HL weight distribution is a measure of 

pain driven primarily by local joint pathology and not by systemic mechanisms.  

The pattern of change in HL weight distribution was similar in both models. 

However, the peak reduction in ipsilateral HL weight bearing was greater in the AIA 

mice (50% vs. 30%) and persisted for longer (4 weeks vs 2 weeks) in this early phase 

of change. This suggests that the early changes in weight bearing may reflect the 

inflammation and trauma caused by the methods used to induce arthritis and not the 

direct effect of OA on weight bearing. Interestingly, a late phase (week 16) reduction 

in ipsilateral HL weight bearing was only observed in DMM and sham mice despite 

significant OA joint pathology in AIA mice and the absence of joint pathology in 

sham mice at this stage (refer to chapter 4). This late reduction in ipsilateral HL 

weight bearing was observed more consistently in DMM mice, with decreased 

ipsilateral HL weight bearing observed in 3 of the 4 DMM cohorts that were tested at 

week 16 and in only 2 of the 4 sham cohorts. The fact that changes in HL weight 
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distribution was observed in AIA, DMM and sham surgery mice indicate that altered 

weight distribution is not simply a biomechanical phenomenon following the creation 

of joint instability. However, the reasons why reduced weight bearing in the 

ipsilateral HL persisted in some sham surgery mice long after post-surgical joint 

pathology had resolved is still not known. 

5.4.4 Stride length 

In DMM mice gait was characterised by a small increase in FSLL, FSLR, LRS and 

RLS in the immediate post-surgical period (week 1) followed by a sustained decrease 

in LRS, FSLL and FSLR from week 4, that persisted until week 16.  This is similar to 

what has been observed in patients with knee OA where both stride length and 

walking velocity (reflected in full stride data) are reduced (553); and what has been 

reported in arthritis animal model studies using digital gait analysis systems (515). 

These changes can in part be explained by the reduced range of motion and increased 

joint stiffness that also occurs in patients with chronic knee OA. Despite these known 

associations from what has been observed in patients with knee OA, changes in stride 

length have not previously been investigated in the DMM model, as a potential 

marker of disease progression or indicator of response to novel therapies.  

In AIA mice a significant decrease in LRS, FSLL and FSLR occurred immediately 

following mBSA injection into the joint (day 3). This acute response to mBSA 

injection coincided with visible swelling of the knee joint, significant synovial 

exudate, sub synovial inflammation and synovial hyperplasia (refer to chapter 4). AIA 

mice recovered partially following this initial decrease in stride length before 

displaying a more gradual 2
nd

 phase of decrease in LRS, FSLL and FSLR, reaching 

DMM values by week 16. Also important to note is the fact that Relative Step 
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followed a similar pattern to the changes in stride length, suggesting that the decrease 

in FSLL and LRS is not simply due to a slower gait speed in the AIA model. 

The temporal changes in stride length support previous study findings, which 

demonstrated a similar pattern of change in the AIA model (493). The failure to 

demonstrate an association between stride length and any other pain-related 

behaviours is also supported by this study, where it was demonstrated that stride 

length correlates with other pain related measures (mechanical and thermal 

hyperalgesia) in the acute phase, at day 3, but not in the chronic phase (after week 3) 

of arthritis development (493).  

However, it is important to note that in this thesis multiple behaviour tests were not 

conducted on the same individual mice and so the ability to make any conclusions 

about potential pain-relate behaviour associations is limited. In addition, the study 

referred to here defines three weeks post joint injection as ‘chronic’, whereas the 

histological findings in this thesis would suggest that at three weeks the joint 

pathology is still characterized by acute inflammation and significant articular 

cartilage damage has not developed at this relatively early time point. 

The differences in the temporal pattern of change in stride length between the two 

models reflect some of the differences in onset of OA specific joint pathology 

development. Combined with the histology data from chapter 4, the temporal 

differences between the two models appear to reflect the early onset of OA joint 

pathology from week 4 (AC damage, osteophytes and SCB sclerosis) observed in the 

DMM model compared to AIA mice that developed characteristic OA joint pathology 

more gradually (refer to chapter 4) with significant AC damage occurring later than in 

DMM mice. 



 235 

Overall, DMM and AIA mice displayed different temporal patterns of change for all 

stride measurements. However, the low animal numbers in each treatment group at 

these time points and the variability within each animal group meant that these 

changes were not statistical significant.  

5.4.5 Thermal hyperalgesia 

PWL decreased over time in AIA, DMM and sham mice. Thermal hyperalgesia 

developed in DMM mice from week 4. Significant decreases in PWL were observed 

in AIA and saline-injected mice but these changes were less than what was observed 

in DMM mice. In DMM mice the decrease in PWL over time was only significant at 

week 4. This is most likely due to the small sample size of paired data at each time 

point (n ≤ 5). 

Therefore, interpreting the observed changes in PWL for the hotplate test presents 

some unique challenges. Although the hotplate is a well-established and validated 

pain assay (599), variability in baseline data makes it difficult to interpret changes 

over time between groups when the baseline PWL is significantly increased in one or 

more groups of mice.  

Like many of the pain-related behaviour tests used in mice, the hotplate involves 

exposure to two stressors, physical confinement or restraint and a noxious stimulus 

(heat). In the case of the hotplate, the relatively wider and open-ended holding space 

(see Chapter 2, figure 2.3b) may provide a greater stimulus for the flight response in 

some mice. Therefore, it is likely that in some mice the primary stimulus leading to a 

behavioural response is exposure to a noxious temperature, while in other mice the 

behaviour they display is not a pain response or an indication of thermal hyperalgesia, 

but rather a stress driven escape response. This could account for the variability in 

baseline response latency that is reported (599) and that was observed in this 
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experiment. This is despite the use of two combined endpoints to define PWL (hind 

paw lick and jump), which were selected because they have been shown to increase 

both specificity and sensitivity (600) when investigating non-analgesic drug effects.  

The variability in response latency also occurs following the administration of 

analgesics. When large numbers of mice were tested to determine baseline PWL and 

the effects of variable doses of morphine, there was great repeatability within cohorts 

but significant repeatable disagreement between cohorts (535). It is still unclear 

whether this simply represents individual variability or whether it is due to unknown 

environmental factors that only affected a given cohort at a particular test period. 

It has been suggested that matching subjects into groups based on baseline (pre-

treatment) PWL would remove the confounding effect of individual differences in 

sensitivity within different cohorts and allow data to be examined for any interactions 

between individual differences and treatments effects (517).  

The reason this strategy was not adopted is because of the evidence that exists for the 

effects of habituation leading to behavioural tolerance and a reduction in both 

baseline response latency and response to some analgesic agents. A progressive 

decrease in response time and disappearance of licking behaviour has been 

demonstrated with repeated testing (601) and prior exposure of mice to an unheated 

hotplate chamber significantly decreased response latency to a 55 degree hotplate. 

Therefore, behavioural tolerance cannot be ruled out as the cause of the decrease in 

PWL observed in treatment and sham groups at the early time points. However, it was 

unavoidable to test individual mice repeatedly over a two-week period in order to 

investigate early changes in PWL following induction of arthritis.  
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5.4.6 Summary 

Pain assessment in patients with knee OA involves numerous tests that measure many 

parameters including range of motion, weight bearing, gait analysis and mechanical 

pain thresholds, as well as self-report questionnaires such as the MPQ and the 

WOMAC (268). Using multiple tests allows more complete characterisation of OA 

pain. It also helps to clearly define the pain experience unique to an individual patient 

and facilitates tracking of its progression and evaluation of its management.  

While the use of self-report questionnaires is not an option in preclinical animal 

studies, the use of multiple pain assessment tools gives greater clarity to the type of 

pain that develops in any particular animal model (pain phenotype) and provides 

greater ability to test and quantify the efficacy of novel therapeutics.  

In this chapter I have reported on the use of a range of pain-related behaviour tests to 

characterise pain in the DMM and AIA model and described how the pain changes 

over time with disease progression. Each model demonstrates a unique pain 

phenotype despite both models displaying very similar OA-like knee joint pathology 

at week 16 (refer to chapter 4). Table 5.8 summarises the pain phenotype for each 

animal model at different phases of OA joint disease (early acute inflammatory, acute 

OA, chronic OA). 
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Table 5.8. Summary of pain phenotype for AIA and DMM at different phases of OA 

Phases of OA joint disease are based on histopathology changes (early acute, acute OA, chronic OA) and phentotype is defined based on 

different pain related behaviours (allodynia, mechanical hyperalgesia, thermal hyperalgesia, hind limb weight distribution and stride length). 

Plus symbol (+) = pain-related behaviour demonstrated; minus symbol (-)  = pain-related behaviour not demonstrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

OA Disease Phase Pain-related behaviour  Test  AIA DMM 

Early acute (0-2 weeks) Tactile allodynia   + 

 Thermal hyperalgesia Hotplate - - 

 Mechanical hyperalgesia PAM ++ + 

 Hind limb weight distribution Forceplate ++ + 

 Gait changes Reduced stride length + - 

     

Acute OA (4-8 weeks) Tactile allodynia  + + 

 Thermal hyperalgesia Hotplate - + 

 Mechanical hyperalgesia PAM + + 

 Hind limb weight distribution Forceplate + - 

 Gait changes Reduced stride length - + 

     

Chronic OA (12-16 weeks) Tactile allodynia  + + 

 Thermal hyperalgesia Hotplate + + 

 Mechanical hyperalgesia PAM - ++ 

 Hind limb weight distribution Forceplate - + 

 Gait changes Reduced stride length + + 
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The failure to demonstrate any correlation between the different pain related 

behaviours in this study highlights the importance of not relying on one single pain 

assay when evaluating the efficacy of therapeutics that are targeting the symptoms of 

OA (pain and mobility) in pre clinical models. 

The pain experienced by patients with OA has been well characterised. Peripheral 

mechanisms such as inflammation play an important role in its development. But, 

human OA pain is also driven in part by complex mechanisms that don’t directly 

correlate with joint pathology. These mechanisms lead to sensory nervous system 

modulation and subsequent development of central sensitisation (230). This explains 

why the degree of pain does not always correlate with the degree of joint pathology or 

inflammation and why patients with knee OA display mechanical hyperalgesia and 

tactile allodynia (284). It explains why OA patients experience movement-evoked 

pain and pain at rest. It also explains why patients with low pain thresholds and 

evidence of hyperalgesia may continue to experience pain following knee joint 

arthroplasty (602). 

Evaluation of the effect of both time and treatment on different pain related behaviour 

further demonstrates the complex nature of OA pain. When time was corrected for, 

weight bearing on the affected limb significantly decreased in AIA mice relative to 

both saline injected and DMM mice, indicating that regardless of the stage of disease 

HL weight bearing changes are determined by what mechanisms trigger OA to 

develop in the first place. In contrast, no treatment effect was demonstrated for the 

development of mechanical or thermal hyperalgesia when corrected for time, 

indicating that the observed changes are more likely associated with the stage of 

disease development rather than the disease etiology or animal model used to induce 

OA. Interestingly, the opposing treatment effect observed with stride length (FSLL) 



 240 

between DMM and AIA indicates the changes in stride are model specific because 

any change in gait reflects the combined effect of joint pathology on biomechanics, 

proprioception and pain. 

The findings in this chapter demonstrate that the DMM and AIA models lead to a 

complex pain state that is in part driven by central sensitisation and that has many of 

the hallmarks of what many human OA patients experience. What isn’t clear is which 

specific joint pathology processes trigger and maintain any given pain behaviour? The 

absence of any associations between the different pain behaviours indicates that the 

mechanisms may be different for different types of pain and at different stages of the 

disease. For example, tactile allodynia appears to persist long after the initiating 

trigger has resolved. This may be because other pathological processes take over as 

the drivers of the pain in the later stages of OA disease, or as with other neuropathic 

pain states, the allodynia is maintained by activity independent (late phase) sensory 

signal plasticity that is sustained beyond the initiating signal.  

This reinforces the need to investigate the underlying changes to sensory innervation 

that accompany the different pain-related behaviours.  The relationship between tissue 

specific joint pathology and pain, and how it changes over time can then be 

characterised and a better understanding of OA pain mechanisms arrived at. In the 

following chapter the changes in gene expression of key inflammatory mediators and 

neuropeptides in the dorsal root ganglia that innervate the knee joint are investigated. 
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CHAPTER 6:  Gene expression profile of inflammatory 

mediators and neurotransmitters in the DRG 

following destabilization of the medial meniscus 

(DMM) and antigen-induced arthritis (AIA) in mice 

6.1 Introduction and aims 

In the previous chapter, activity-based and evoked pain-response behaviours were 

measured to characterise and compare the pain that develops with knee joint arthritis 

induced by DMM and AIA. Model specific temporal patterns of change in pain 

response were identified, establishing that both the DMM and AIA models lead to a 

complex pain state that is partly driven by central sensitisation and that demonstrates 

many of the characteristics of the pain experienced by human OA patients. These 

findings highlight the need to investigate the changes in sensory neurons that 

accompany the different pain behaviours observed in each model in order to better 

understand differences in pain phenotype between the two models.  

In this chapter, gene expression of key inflammatory mediators and neuropeptides in 

the peripheral sensory neurons that innervate the knee joint were measured following 

induction of arthritis using DMM and AIA. In addition, gene expression of the major 

aggrecanases (ADAMTS-4 and ADAMTS-5) involved in articular cartilage 

degradation was also measured in an attempt to identify any biomolecular links 

between joint pathology and the mechanisms that drive OA pain. This enabled further 

characterisation of the pain phenotype in the two models through evaluation of the 

changes in sensory neurons that may be contributing to the observed pain-related 

behaviours reported in the previous chapter. 
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Studies have mapped the cell bodies of afferent neurons that innervate the knee joint 

in mice to the lumbar DRG (L1 – L5) (226). Retrograde tracing and 

immunohistochemistry methods have been used to characterise the number, 

distribution and neuropeptide content of neurons residing in the DRG that innervate 

the knee joint, with the majority (approximately 90%) residing in L3 and L4 (169). 

The knee joint sensory afferents make up a small proportion of the total cell 

population in these DRG (<1 in 15) (603) and only a subset of these are the small 

myelinated (A fibre) and unmyelinated (C fibre) nociceptors. The remainder 

comprises large, low threshold mechanoreceptors (169). This has implications for the 

ability to identify small changes in gene expression in this subset of nociceptor 

neurons using the method described in this thesis where the entire DRG is processed 

for RNA extraction and PCR. To avoid further dilution of any change in expression in 

the nociceptor neurons that specifically innervate the knee joint, only L3 and L4 DRG 

were processed. 

The proteins and neuropeptides that drive and modulate pain signaling in the OA joint 

have been investigated in a number of pre-clinical animal models (485, 604-607). 

These studies add to the huge body of knowledge that already exists about pain 

mechanisms and the role of neuronal plasticity in chronic pain states (230, 432, 596, 

608-611). It is well established that inflammatory neuropeptides such as Substance P 

and CGRP, and numerous inflammatory cytokines, including IL-1, are involved in 

the development of chronic pain and sensitisation (89, 469, 612). In addition, 

nociceptor ion channels such as members of the transient receptor potential family of 

channels, TRPV1, TRPV2, TRPV4 and TRPA1, are no longer viewed simply as 

sensory transducers that translate physical stimuli into electrical signals. Their role in 

the inflammatory and neuropathic mechanisms that contribute to the development of 
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chronic pain and sensitisation has been established through numerous investigations 

using preclinical pain models (613). The endogenous opioid and cannabinoid systems 

are also primary drivers of the inhibitory mechanisms that contribute to modulation of 

pain signaling (265, 312).  

In short, a number of local inflammatory and neurogenic mechanisms have been 

identified as potentially contributing to OA pain and could therefore lead to the 

development of suitable therapeutic targets for treating OA specific pain (reviewed in 

(271, 287)). However, the significance of these channels, neuropeptides and pro-

inflammatory cytokines in the establishment of specific sub-types of OA pain and 

their activity at different stages of disease development is still unclear. This is largely 

because previous investigations have not taken the approach that pain may be 

different for different sub types (phenotypes) of OA and at different stages of the 

disease. In fact, very few studies have investigated pain mechanisms in different 

animal models in parallel, to differentiate mechanisms that are model (phenotype) 

specific, and those that reflect more generic mechanisms associated with the 

development of chronic pain. The failure to translate the current understanding of 

acute and chronic pain mechanisms highlights the need for a more targeted approach 

to OA pain (363).  

This means that the development and testing of future OA pain therapeutics should 

target specific OA phenotypes (391). For example, it has been postulated that a more 

targeted approach that focuses on local (joint specific) and peripheral (DRG) 

mediators of OA pain is more likely to lead to the development of effective 

therapeutics that are void of unwanted systemic side effects (307). In line with this 

new way of thinking, peripheral pain mechanisms were investigated simultaneously in 

two animal models over a defined time period that corresponded to joint disease 



 244 

progression (Chapter 4) and model specific pain-related behaviour (Chapter 5). The 

lumbar DRG were targeted as the site of investigation because it is where the cell 

bodies of the sensory neurons that innervate the knee joint reside and therefore 

arguably where OA pain starts. Chronic pain and the development of central 

sensitisation involve changes in cell signaling, membrane excitability and gene 

transcription in neurons at the level of the DRG and the spinal cord, as well as 

supporting cells (astrocytes), immune cells (microglia)(614) and peripheral 

monocytes that migrate into the DRG and spinal cord (reviewed in (255, 615-618)). 

As a first step in unraveling these complexities for OA pain, investigation of gene 

expression alterations in the DRG following induction of arthritis have been 

undertaken. 

The aims of chapter 6 are: 

1. To characterise and compare temporal changes in gene expression in the lumbar 

(L3 and L4) DRG following development of knee joint arthritis induced by DMM 

and AIA.  

2. To identify any associations between the expression of different genes in the DRG 

and compare these in the two arthritis models. 

3. To investigate differences in protein expression in the lumbar (L3-L4) DRG 

following development of knee joint arthritis induced by DMM and AIA, using 

immunohistochemistry techniques. 
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6.2 Methods, statistical analysis and data presentation 

Details of the methods used to induce the two models of arthritis, DMM and AIA, are 

described in chapter 2, section 2.1. The methods used for harvesting DRG and real 

time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) are described in 

chapter 2, section 2.4. The methods used for immunohistochemistry are described in 

chapter 2, section 2.5.  

Comparison of gene expression between treatment groups was analysed using the 

nonparametric ranked Kruskal-Wallis analysis for multiple groups and, where there 

was significance, post hoc analysis using the Mann Whitney U-test (for unpaired data) 

was performed for between group comparisons. Within treatment group comparisons 

between right and left DRG gene expression were conducted using the Wilcoxon 

signed-rank test (StataSE software, Stata corporation, TX, USA). Analysis focussed 

on gene expression in the right DRG because both arthritis models induced a mono-

articular arthritis with joint pathology in the right knee joint. However, changes in 

both ipsilateral and contralateral DRG have been reported in animal models of single 

joint arthritis (375). So for completeness changes in the right and left DRG were 

compared and the R/L DRG ratio was also compared between treatment groups. 

The gene expression results are presented as the mean fold change relative to the 

respective sham or saline control group and graphed as log of the means with error 

bars depicting the standard error of each data set (Figures 6.1a-i and 6.2a-i). Bars 

above 1 represent a relative increase in gene expression and bars below 1 represent a 

relative decrease. 

Due to the current gaps that exist in our understanding of the mechanisms that drive 

OA pain, the experiments reported in this chapter were designed to be hypothesis 

generating, with a suite of genes tested. Although, the genes investigated in this 
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chapter have been implicated in a number of pain states, including arthritis, their 

pattern of expression in the peripheral nervous system at different stages of OA 

disease development using different animal models, has not previously been 

investigated. For this reason, when testing the significance of between and within 

treatment group changes in gene expression, the alpha value was set at 0.05 and the 

Benjamini-Hochberg correction was not applied to the P values to correct for repeated 

measures.  

Linear regression on log transformed gene expression data was used to determine 

whether gene expression changed over time regardless of treatment; and when 

correcting for time, whether there was a difference between arthritis models. 

Associations between the different genes within each model (when corrected for time) 

were also determined by generating Pearson partial correlation coefficients, using 

Kendall’s tau-b (565). This nonparametric process uses pairwise ranked data values 

between the two variables under study (ordinal scores) and thus does not require data 

to be normally distributed or the relationship between the variables to be linear. The 

Benjamini-Hochberg correction was applied to the P values of the associations for 

each gene pair, resulting in P < 0.040 being considered significant when the alpha 

value was set at 0.05.  

CNR1 was excluded from both linear regression and partial correlation analysis 

because of the reduced data set available for this gene, with only 1 time point in the 

AIA and saline groups and only 3 time points in the DMM and sham groups.   

In the results, ‘significance’ refers to statistical significance, with P values included in 

the relevant tables.  

Protein expression, based on immunohistochemical staining, in each of the treatment 

groups and at different time points were not measured quantitatively due to the small 
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sample size (n=2) and the challenges of maintaining the same quality of tissue 

integrity across all DRG samples and consistent staining patterns between tissue 

samples that had been stored for different periods of time. Representative images of 

DRG sections depicting protein expression trends based on immunohistochemical 

staining are presented in figures 6.4a – 6.4h. 

6.3 Results 

6.3.1 DRG gene expression (real time RT-PCR) 

When comparing gene expression in the R versus L DRG (within animal comparison) 

for each treatment group at different time points (Table 6.1), there was no significant 

difference in the saline or sham groups at any measured time point. The genes that 

showed a significant difference in expression between the R and L DRG of AIA or 

DMM mice, are displayed in Figure 6.1(a – g). In AIA, differences in gene expression 

between the R and L DRG occurred at day 3 (R DRG decreased IL-1); week 1 (R 

DRG increased TRPV2); week 2 (R DRG decreased ATF3, and ADAMTS-5); week 4 

(R DRG decreased CGRP, Oprm1, and ADAMTS-4); week 8 (R DRG decreased 

CGRP, and TRPA1); and week 12 (R DRG decreased TRPV1). In DMM differences 

in gene expression between R and L DRG occurred at week 1 (R DRG decreased IL-

1), week 4 (R DRG increased TRPA1, CNR1); week 8 (R DRG decreased TRPV1), 

week 12 (R DRG decreased CGRP, TRPA1, TRPV1); and week 16 (R DRG 

increased CGRP, TRPA1, TRPV1, TRPV2).  

In AIA there were more differences in gene expression between R and L DRG at the 

early stages of disease progression (up to week 4). In DMM the reverse trend was 

observed, with more differences in gene expression profile between R and L DRG at 

the chronic stages of disease (weeks12-16).  
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Table 6.1. Gene expression of the right vs. left L3/L4 DRG  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DRG gene expression in DMM and AIA mice at day 3, week 1, 2, 4, 8, 12 and 16 

post arthritis induction. No significant differences (n.c.) observed in saline and sham 

mice. Only genes that demonstrated a significant difference (P<0.05) are listed. 

Time  Treatment  Gene  P-value 

Day 3    

 Saline n.c. - 

 AIA IL-1b 0.046 

 Sham n.c.  

 DMM n.c.  

Week 1    

 Saline n.c.  

 AIA TRPV2 0.046 

 Sham n.c.  

 DMM IL-1b 0.028 

Week 2    

 Saline n.c.  

 AIA ATF3 0.028 

  ADAMTS-5 0.028 

 Sham n.c.  

 DMM n.c.  

Week 4    

 Saline n.c.  

 AIA CGRP 0.043 

  Oprm1 0.043 

  ADAMTS-4 0.042 

 Sham n.c.  

 DMM TRPA1 0.045 

  CNR1 0.043 

Week 8    

 Saline n.c.  

 AIA CGRP 0.028 

  TRPA1 0.046 

 Sham n.c.  

 DMM TRPV1 0.043 

Week 12    

 Saline n.c.  

 AIA TRPV1 0.028 

 Sham n.c.  

 DMM CGRP 0.003 

  TRPA1 0.026 

  TRPV1 0.013 

Week 16    

 Saline n.c.  

 AIA n.c.  

 Sham n.c.  

 DMM CGRP 0.003 

  TRPA1 0.026 

  TRPV1 0.013 

  TRPV2 0.043 
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Figure 6.1a-g. Gene expression for R vs. L L3/L4 DRG 

Presented as the mean fold change relative to the respective sham or saline control group and graphed as log of the means with error bars 

depicting the standard error of each data set. Bars above 1 represent a relative increase in gene expression and bars below 1 represent a relative 

decrease. Significance for R vs. L within treatment comparisons = P<0.05 (§); and P<0.01 (§§). 
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To investigate these observations further, gene expression in the ipsilateral R DRG 

was compared in each model against the relevant sham or saline group, as well as 

between the two models (Table 6.2 and Figures 6.2a – 6.2l). Differences in R DRG 

gene expression between AIA and saline mice were only observed at week 8: at this 

time point, both ATF3 (P=0.004) and TRPA1 (P=0.004) expression was decreased in 

AIA compared to saline. Differences in R DRG gene expression between DMM and 

sham mice were observed much earlier where at day 3 TRPA1 expression was 

increased in DMM compared to sham (P = 0.020). Differences between the two 

models (DMM vs. AIA) occurred at day 3 (IL-1, ADAMTS-5); week 1 (IL-1); 

week 4 (ATF3, CNR1, ADAMTS-4); and week 8 (ATF3, CGRP, TRPA1). 

Interestingly, when differences between the two models were observed, changes in 

gene expression were generally in the opposite direction with one model having 

increased expression and the other model having decreased expression. For example: 

ADAMTS-5 at day 3 (Figure 6.2l); IL-1 at week 1 (Figure 6.2c); ATF3 at week 4 

(Figure 6.2a); and TRPA1 at week 8 (Figure 6.2f). 

Table 6.2. Gene expression of the right L3/L4 DRG 

Treatment comparison Time Gene P-value

DMM vs Sham Day 3 TRPA1 0.020 

AIA vs Saline Week 8 ATF3 0.004 

TRPA1 0.004 

DMM vs AIA Day 3 IL1b 0.016 

ADTS5 0.005 

Week 1 IL1b 0.006 

Week 4 ATF3 0.007 

CBR1 0.004 

ADTS4 0.004 

Week 8 ATF3 0.006 

CGRP 0.029 

TRPA1 0.006 

DMM vs, sham; AIA vs. Saline; and DMM vs. AIA mice at day 3, week 1, 2, 4, 8, 12 

and 16 post arthritis induction. Only genes that demonstrated a significant difference 

(P<0.05) are listed. 
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Figure 6.2a-l. Gene expression for R L3/L4 DRG 

Presented as the mean fold change relative to the respective sham or saline control group and graphed as log of the means with error bars 

depicting the standard error of each data set. Bars above 1 represent a relative increase in gene expression and bars below 1 represent a relative 

decrease. Significance for treatment vs. Sham/Saline = P<0.05 (*); and P<0.01 (**). Significance for AIA vs. DMM = P<0.05 (#); and P<0.01 
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To account for any masking of change in ipsilateral R DRG gene expression resulting 

from changes in the contralateral L DRG, differences in the right to left (R/L) DRG 

gene expression ratio between treatment groups was also analysed (Table 6.3 and 

Figures 6.3a-6.3l). The R/L DRG gene expression ratio was different between DMM 

and sham mice at week 8, week 12 and week 16 but not at the early time points. 

CGRP, Tac-1, Oprm1, TRPA1 and TRPV1 all displayed significant changes at one or 

more time point in DMM. In marked contrast, there was no difference in R/L gene 

expression ratio between AIA and Saline at any of the measured time points. There 

were differences between DMM and AIA at all measured time points in one or more 

of the genes tested.  Most of the differences between DMM and AIA occurred at 

week 4, with differences observed in 8 of the 12 genes tested (CGRP, Oprm1, 

TRPA1, TRPV2, TRPV4, CNR1, ADAMTS-4, ADAMTS-5). The direction of 

change differed for each gene indicating both up regulation and down regulation at 

different time points for different treatments. 
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Table 6.3. Right to left DRG (L3 and L4) gene expression ratio 

 

DMM vs, sham; AIA vs. Saline; and DMM vs. AIA mice at day 3, week 1, 2, 4, 8, 12 

and 16 post arthritis induction. Only genes that demonstrated a significant difference 

(P<0.05) are listed. n.d. = no difference; * = DMM < Sham; ** = DMM < AIA 

 

 

Treatment comparison Time Gene  P-value 

DMM vs Sham Week 8 TRPV1* 0.050 

 Week 12 CGRP* 0.006 

  SP* 0.045 

  MOR* 0.029 

  TRPA1* 0.018 

 Week 16 CGRP 0.017 

  TRPV1 0.015 

AIA vs Saline n.d. n.d. n.d. 

DMM vs AIA Day 3 IL1b 0.025 

  TRPV2** 0.015 

 Week 2 ATF3** 0.037 

 Week 4 CGRP 0.002 

  MOR 0.006 

  TRPA1 0.004 

  TRPV2 0.015 

  TRPV4 0.004 

  CBR1 0.009 

  ADTS4 0.014 

  ADTS5 0.002 

 Week 8 TRPV1** 0.006 

 Week 12 SP** 0.037 

  TRPA1** 0.010 

 Week 16 CGRP 0.035 

  TRPV1 0.016 
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Figure 6.3a-l. Right to left gene expression ratio for L3/L4 DRG 

Presented as the mean fold change relative to the respective sham or saline control group and graphed as log of the means with error bars 

depicting the standard error of each data set. Bars above 1 represent a relative increase in gene expression ration and bars below 1 represent a 

relative decrease. Significance for treatment vs. Sham/Saline = P<0.05 (*); and P<0.01 (**). Significance for AIA vs. DMM = P<0.05 (#); and 

P<0.01 (##). 
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Table 6.4 summarises the changes in gene expression profile in each model and the 

differences between the two models at key time points of disease progression. The 

different phases of OA disease were defined by the histopathology in Chapter 4. The 

acute inflammatory phase combines day 3, week 1 and week 2 where there is: 

maximal synovitis; AC proteoglycan loss but mild structural damage; early largely 

cartilaginous osteophyte development; and SCB remodelling but limited sclerosis. 

The early-progressive OA phase incorporates week 4 and 8 data and reflects the stage 

in disease development when: inflammation is decreasing; articular cartilage 

structural damage and SCB sclerosis is worsening; and osteophytes are approaching 

maximal size and ossifying. The late OA phase includes week 12 and16 when all the 

hallmarks of chronic established OA are present and stable at maximal levels in both 

models, with AC structural damage/erosion, subchondral bone sclerosis and mature 

boney osteophytes. The genes that displayed differences in R vs L DRG, in the R 

DRG of arthritic vs sham/saline, or in DMM vs AIA comparisons, at one or more of 

the time-points included in these different disease phases, have been included in Table 

6.4 and the following discussion.  

The acute inflammatory phase of disease was characterised by increased ATF3, 

increased TRPV2 and decreased ADAMTS-5 expression in AIA; increased TRPA1 

expression in DMM; and decreased IL-1 in both models (although earlier in AIA). 

During this acute phase, gene expression for IL-1 (AIA decreased and DMM 

increased at day 3, AIA increased and DMM decreased at week 1) and ADAMTS-5 

(AIA decreased and DMM increased at day 3) was significantly different between the 

two models.  

The early-progressive OA phase of disease was characterised by decreased ATF3, 

CGRP, TRPA1, Oprm1 and ADAMTS-4 expression in AIA; and increased TRPA1, 
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decreased TRPV1 and decreased CNR1 expression in DMM. During this phase of OA 

gene expression for ATF3 (increased AIA and decreased DMM at week 4, decreased 

AIA and DMM at week 8); CGRP (decrease AIA and increase DMM at week 8); 

TRPA1 (decrease AIA and increase DMM at week 8); CNR1 (decrease DMM at 

week 4); and ADAMTS-4 (increase AIA and decrease DMM at week 4) was 

significantly different between the two models. 

The late OA disease phase was characterised by decreased TRPV1 expression in AIA; 

decreased Tac-1 and Oprm1 expression in DMM; increased TRPV1, TRPV2 and 

TRPV4 expression in DMM; and interestingly, initial decrease (week 12) and then 

increase (week 16) CGRP and TRPA1 expression in DMM. During this late phase 

there were no significant differences in R DRG expression between the two models. 
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Table 6.4. A summary of changes in gene expression profile in the ipsilateral L3/L4 

DRG of DMM and AIA mice.  

The genes that displayed significant differences in R vs. L DRG or in the R DRG and 

R/L DRG ratio of arthritis vs. sham/saline and DMM vs. AIA at one or more of the 

time-points included in the different disease phases (acute inflammatory, early 

progressive OA, late chronic OA) are presented.  

1. 
R DRG and R/L ratio gene expression change compared to sham. 

2.
 R DRG and R/L

ratio gene expression change compared to saline. 
3.

 R DRG gene expression change 
DMM compared to AIA (arrow indicates direction of change for DMM relative to

AIA). Arrows indicate increase (é) and decrease (ê)

OA Disease 

Phase 

Gene DMM
1

AIA
2 DMM vs 

AIA
3

Acute ATF3 -  - 

  

TRPA1  -

TRPV2 -  - 

ADAMTS-5 -  

Early OA ATF3 -  

CGRP -  

TRPA1   

TRPV1  - -

Oprm1  -
CNR1  

ADAMTS-4  

Late OA CGRP  - 

Tac-1  - 

TRPA1  - 

TRPV1   

TRPV2  - -

TRPV4  -

Oprm1  - -

-

-

-

-

IL-1β

-
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6.3.2 Time and treatment effect on DRG gene expression (real time RT-PCR) 

Linear regression analysis was used to investigate the pattern of change over time for 

each gene outcome variable (R DRG expression), and within the two arthritis models 

(Table 6.5). This provides a more robust characterization of the gene expression 

profile of the different models, by taking time into account and allowing all data to be 

included in the analyses rather than at individual time points.  

When corrected for treatment group (sham, saline, DMM, AIA) only CGRP 

expression increased significantly with time. None of the genes evaluated displayed a 

significant decrease in expression with time. When time was corrected for, a 

significant treatment effect was observed for two genes:  both TRPA1 and ADAMTS-

5 were increased in DMM relative to AIA. There were no treatment effects for any 

other genes. 
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Table 6.5. Time and treatment effect on DRG gene expression 

Gene Time
1
 Time (P) Treatment

2 
Cf tx

3
Tx(P) 

CGRP Increased 0.049 Sham – Saline   0.92 

(n=187) AIA – Saline   0.74 

DMM – Sham   0.26 

AIA – DMM   0.13 

IL-1b – 0.41 Sham – Saline   0.95 

(n=173) AIA – Saline   0.78 

DMM – Sham   0.59 

AIA – DMM   0.75 

Tac-1 – 0.34 Sham – Saline   0.55 

(n=184) AIA – Saline   0.32 

DMM – Sham   0.52 

AIA – DMM   0.29 

ATF3 – 0.66 Sham – Saline   0.38 

(n=187) AIA – Saline   0.83 

DMM – Sham   0.28 

AIA – DMM   0.70 

Oprm1 – 0.99 Sham – Saline   0.61 

(n=187) AIA – Saline   0.93 

DMM – Sham   0.50 

AIA – DMM   0.83 

TRPA1 – 0.49 Sham – Saline   0.43 

(n=187) AIA – Saline   0.17 

DMM – Sham   0.13 

AIA – DMM   0.036 

TRPV1 – 0.30 Sham – Saline   0.79 

(n=187) AIA – Saline   0.94 

DMM – Sham   0.57 

AIA – DMM   0.75 

TRPV2 – 0.17 Sham – Saline   0.75 

(n=180) AIA – Saline   0.68 

DMM – Sham   0.99 

AIA – DMM   0.90 

TRPV4 – 0.22 Sham – Saline   0.96 

(n=91) AIA – Saline   0.73 

DMM – Sham   0.45 

AIA – DMM   0.71 

ADAMTS-4 – 0.92 Sham – Saline 0.50 

(n=135) AIA – Saline 0.70 

DMM – Sham 0.96 

AIA – DMM 0.76 

ADAMTS-5 – 0.12 Sham – Saline 0.94 

(n=162) AIA 

DMM 

– 

– 

Saline 

Sham 

0.17 

0.37 

AIA – DMM 0.028 

Linear regression on log transformed gene expression data of the right L3/L4 DRG in 

AIA and DMM was used to determine whether gene expression changed over time 

(1), and when corrected for time whether there was a difference between treatment (2) 

and comparator treatments (3). 
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6.3.3 Correlation between different genes in AIA and DMM when corrected for 

time 

Understanding the associations in gene expression in the lumbar DRG provides 

important information about the mechanisms that may be driving the pain phenotype 

of the different OA animal models. The existence of any associations was investigated 

by calculating partial correlation coefficients for the different genes (right DRG gene 

expression) in the different treatments (AIA, Saline, DMM, Sham) when corrected for 

time (Table 6.6).  

When time was corrected for there were significant associations between all 11 genes 

in the two control groups (Saline and Sham), with the exception of IL-1 and TRPV4 

(no association in sham or saline mice); IL-1 and ADAMTS-4 (no association in 

sham or saline mice); and TRPV4 and ADAMTS-4 (no association in sham mice). In 

both AIA and DMM mice the majority of these associations between the 11 genes 

that were investigated persisted, confirming the interdependence of the neuropeptides, 

nociceptor channels, inflammatory mediators and other protein receptors involved in 

pain modulation. These associations reflect the normal network of sensory input 

regulation at the level of the DRG that are maintained in disease. However, of 

particular interest were the associations between gene expression that were lost in the 

two arthritis models, as these indicate disease-specific dysregulation that may be 

suggesting different pain regulatory pathways in the two arthritis models. Three 

particular genes showed loss of normal expression association in the two arthritis 

models; CGRP, IL-1 and ADAMTS-4.   In the case of CGRP there were 7 

associations lost in AIA (ATF3, IL-1, Oprm1, TRPV2, TRPV4, ADAMTS-4, 

ADAMTS-5) but only 2 in DMM (TRPV2, ADAMTS-4). There were 5 associations 

lost for IL-1 in both AIA (CGRP, Oprm1, TRPV1, TRPV2, ADAMTS-4) and DMM 
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(ATF3, Oprm1, Tac-1, TRPV2, ADAMTS-5), with only 2 of these (Oprm1, TRPV2) 

being common to both models. ADAMTS-4 showed the greatest loss of co-expression 

with other DRG genes, with 6 associations lost in AIA (CGRP, ATF3, IL-1, Oprm1, 

TRPV4, ADAMTS-5) and 8 in DMM (CGRP, Oprm1, Tac-1, TRPA1, TRPV1, 

TRPV2, TRPV4, ADAMTS-5), 4 of these (CGRP, Oprm1, TRPV4, ADAMTS-5) 

being common to both models. 

Table 6.6. Gene expression correlations 

Gene comparison Treatment r (tau) P 

CGRP VS ATF3 Saline 0.374   0.003 

Sham 0.495 <0.001 

AIA 0.154 0.22 

DMM  0.320 <0.001 

CGRP VS IL-1B Saline 0.286   0.003 

Sham 0.322   0.001 

AIA 0.003 0.99 

DMM 0.379 <0.001 

CGRP VS Oprm1 Saline  0.309   0.013 

Sham  0.442  <0.001 

AIA  0.139 0.29 

DMM  0.437   <0.001 

CGRP VS Tac-1 Saline 0.407 <0.001 

Sham 0.526 <0.001 

AIA 0.257    0.041 

DMM 0.410 <0.001 

CGRP VS TRPA1 Saline 0.312   0.001 

Sham 0.510 <0.001 

AIA 0.372   0.001 

DMM 0.483  <0.001 

CGRP VS TRPV1 Saline 0.527 <0.001 

Sham 0.466 <0.001 

AIA 0.333   0.006 

DMM 0.480 <0.001 

CGRP VS TRPV2 Saline 0.303   0.003 

Sham 0.468 <0.001 

AIA 0.155 0.22 

DMM 0.227   0.058 

CGRP VS TRPV4 Saline 0.323   0.005 

Sham 0.322   0.003 

AIA 0.287   0.066 

DMM 0.265   0.036 
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CGRP VS ADAMTS-4 Saline 0.456 <0.001 

Sham 0.374 <0.001 

AIA 0.168 0.29 

DMM 0.204 0.11 

CGRP VS ADAMTS-5 Saline 0.309 0.015 

Sham 0.385 <0.001 

AIA 0.031 0.85 

DMM 0.298 0.008 

ATF3 VS IL-1B Saline 0.299 0.001 

Sham 0.417 <0.001 

AIA 0.359 0.001 

DMM 0.111 0.27 

ATF3 VS Oprm1 Saline 0.286 0.023 

Sham 0.506 <0.001 

AIA 0.295 0.026 

DMM 0.471 <0.001 

ATF3 VS Tac-1 Saline 0.399 <0.001 

Sham 0.567 <0.001 

AIA 0.275 0.021 

DMM 0.407 <0.001 

ATF3 VS TRPA1 Saline 0.236 0.040 

Sham 0.460 <0.001 

AIA 0.448 <0.001 

DMM 0.426 <0.001 

ATF3 VS TRPV1 Saline 0.414 <0.001 

Sham 0.493 <0.001 

AIA 0.347 0.004 

DMM 0.404 <0.001 

ATF3 VS TRPV2 Saline 0.372 0.001 

Sham 0.536 <0.001 

AIA 0.331 0.009 

DMM 0.301 0.003 

ATF3 VS TRPV4 Saline 0.449 <0.001 

Sham 0.315 0.004 

AIA 0.394 0.023 

DMM 0.241 0.051 

ATF3 VS ADAMTS-4 Saline 0.406 0.002 

Sham 0.375 0.001 

AIA 0.256 0.095 

DMM 0.406 <0.001 

ATF3 VS ADAMTS-5 Saline 0.401 0.001 

Sham 0.249 <0.001 

AIA 0.490 <0.001 

DMM 0.332 0.001 

IL-1B VS Oprm1 Saline 0.295 0.009 

Sham 0.290 0.002 

AIA 0.167 0.19 

DMM 0.115 0.30 

IL-1B VS Tac-1 Saline 0.357 0.001 

Sham 0.376 <0.001 

AIA 0.239 0.035 

DMM 0.178 0.067 

IL-1B VS TRPA1 Saline 0.391 <0.001 

Sham 0.378 <0.001 
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AIA 0.276 0.016 

DMM 0.286 0.007 

IL-1B VS TRPV1 Saline 0.216 0.056 

Sham 0.293 0.002 

AIA 0.147 0.23 

DMM 0.259 0.021 

IL-1B VS TRPV2 Saline 0.321 0.002 

Sham 0.328 0.002 

AIA 0.055 0.65 

DMM 0.037 0.74 

IL-1B VS TRPV4 Saline 0.202 0.076 

Sham 0.196 0.14 

AIA 0.420 0.002 

DMM 0.170 0.21 

IL-1B VS ADAMTS-4 Saline 0.237 0.14 

Sham 0.109 0.32 

AIA 0.087 0.63 

DMM 0.208 0.042 

IL-1B VS ADAMTS-5 Saline 0.373 0.001 

Sham 0.214 0.040 

AIA 0.458 <0.001 

DMM 0.108 0.32 

Oprm1 VS Tac-1 Saline 0.456 <0.001 

Sham 0.522 <0.001 

AIA 0.402 <0.001 

DMM 0.588 <0.001 

Oprm1 VS TRPA1 Saline 0.444 <0.001 

Sham 0.542 <0.001 

AIA 0.411 <0.001 

DMM 0.595 <0.001 

Oprm1 VS TRPV1 Saline 0.404 <0.001 

Sham 0.601 <0.001 

AIA 0.351 0.002 

DMM 0.569 <0.001 

Oprm1 VS TRPV2 Saline 0.505 <0.001 

Sham 0.634 <0.001 

AIA 0.419 <0.001 

DMM 0.443 <0.001 

Oprm1 VS TRPV4 Saline 0.399 0.002 

Sham 0.482 <0.001 

AIA 0.502 <0.001 

DMM 0.512 <0.001 

Oprm1 VS ADAMTS-4 Saline 0.366 0.014 

Sham 0.382 <0.001 

AIA 0.164 0.37 

DMM 0.238 0.064 

Oprm1 VS ADAMTS-5 Saline 0.483 <0.001 

Sham 0.481 <0.001 

AIA 0.415 <0.001 

DMM 0.500 <0.001 

Tac-1 VS TRPA1 Saline 0.443 <0.001 

Sham 0.641 <0.001 

AIA 0.513 <0.001 

DMM 0.578 <0.001 
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Tac-1 VS TRPV1 Saline 0.366 0.001 

Sham 0.662 <0.001 

AIA 0.490 <0.001 

DMM 0.582 <0.001 

Tac-1 VS TRPV2 Saline 0.499 <0.001 

Sham 0.641 <0.001 

AIA 0.426 <0.001 

DMM 0.533 <0.001 

Tac-1 VS TRPV4 Saline 0.494 <0.001 

Sham 0.342 0.003 

AIA 0.490 <0.001 

DMM 0.470 <0.001 

Tac-1 VS ADAMTS-4 Saline 0.480 <0.001 

Sham 0.450 <0.001 

AIA 0.323 0.037 

DMM 0.222 0.089 

Tac-1 VS ADAMTS-5 Saline 0.321 0.031 

Sham 0.385 <0.001 

AIA 0.367 <0.001 

DMM 0.371 <0.001 

TRPA1 VS TRPV1 Saline 0.368 <0.001 

Sham 0.548 <0.001 

AIA 0.484 <0.001 

DMM 0.592 <0.001 

TRPA1 VS TRPV2 Saline 0.517 <0.001 

Sham 0.529 <0.001 

AIA 0.410 <0.001 

DMM 0.496 <0.001 

TRPA1 VS TRPV4 Saline 0.433 0.001 

Sham 0.336 0.011 

AIA 0.597 <0.001 

DMM 0.455 <0.001 

TRPA1 VS ADAMTS-4 Saline 0.490 0.001 

Sham 0.333 0.002 

AIA 0.397 0.002 

DMM 0.176 0.17 

TRPA1 VS ADAMTS-5 Saline 0.587 <0.001 

Sham 0.357 <0.001 

AIA 0.460 <0.001 

DMM 0.464 <0.001 

TRPV1 VS TRPV2 Saline 0.421 <0.001 

Sham 0.587 <0.001 

AIA 0.534 <0.001 

DMM 0.515 <0.001 

TRPV1 VS TRPV4 Saline 0.526 <0.001 

Sham 0.498 <0.001 

AIA 0.563 <0.001 

DMM 0.441 <0.001 

TRPV1 VS ADAMTS-4 Saline 0.624 <0.001 

Sham 0.375 <0.001 

AIA 0.474 <0.001 

DMM 0.159 0.23 

TRPV1 VS ADAMTS-5 Saline 0.471 <0.001 

Sham 0.447 <0.001 
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AIA 0.443 <0.001 

DMM 0.431 <0.001 

TRPV2 VS TRPV4 Saline 0.598 <0.001 

Sham 0.603 <0.001 

AIA 0.528 <0.001 

DMM 0.409 0.001 

TRPV2 VS ADAMTS-4 Saline 0.496 <0.001 

Sham 0.327 0.001 

AIA 0.380 0.003 

DMM -0.003 0.98 

TRPV2 VS ADAMTS-5 Saline 0.781 <0.001 

Sham 0.586 <0.001 

AIA 0.383 0.005 

DMM 0.254 0.028 

TRPV4 VS ADAMTS-4 Saline 0.470 <0.001 

Sham 0.229 0.18 

AIA 0.215 0.21 

DMM 0.139 0.43 

TRPV4 VS ADAMTS-5 Saline 0.593 <0.001 

Sham 0.438 <0.001 

AIA 0.493 <0.001 

DMM 0.479 <0.001 

ADAMTS-4 VS 

ADAMTS-5 

Saline 0.403 0.002 

Sham 0.294 0.005 

AIA 0.216 0.15 

DMM 0.171 0.17 

Gene expression Pearson partial correlations on right L3/L4 DRG in AIA and DMM 

when corrected for time, within treatment. Note: After Benjamini-Hochberg 

correction, 5% confidence level is P < 0.040 
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6.3.4 DRG protein expression (immunohistochemistry) 

Based on the key changes in gene expression and the associations that were identified 

in the two animal models and at different stages of disease progression (Table 6.4 and 

Table 6.6), antibodies against ATF3, IL-1, CGRP, Oprm1, TRPA1, TRPV1, 

TRPV2, TRPV4, ADAMTS-4 and ADAMTS-5 were used to examine the production 

of these proteins in the lumbar DRG. Despite using antibodies that had previously 

been published by other investigators and trying several modifications to the protocol 

(including heat and enzyme extraction methods and protein blocking techniques), 

optimisation of staining above the background levels that were observed in negative 

control stained sections could only be achieved for CGRP and Oprm1. Therefore only 

these two proteins could be investigated. Figures 6.4a to 6.4h are representative 

images of the differences in staining intensity and proportion of cells staining 

positive, that were observed in the two models and at the different time points. 
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Figure 6.4a-d. CGRP immunoreactivity (IR) 

IR (NovaRED staining neurons marked with black arrow) in the right L4 DRG in DMM, Sham, AIA, and Saline-injected mice at week 1 (a), 

week 4 (b), week 8 (c), and week 16 (d) post arthritis induction. X10 magnification. Inserts represent right L4 DRG negative reagent control (i) 

and right L4 DRG negative control from naïve mouse (ii). 
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CGRP immunoreactivity (IR) was detected in the right L3 and L4 DRG in all 

treatment groups at weeks 1, 4, 8 and 16, and was above the levels observed in naïve 

mice. At week 1, there was a greater level of CGRP-IR in saline, AIA and DMM mice 

compared to sham. This was reflected in the number of positive staining cells and the 

staining intensity. In contrast, the increase in CGRP gene expression at day 3 in AIA 

and DMM was not significant and there were no significant changes in CGRP gene 

expression observed in the acute inflammatory phase of disease (up to week 2). At 

week 4, there was greater CGRP-IR in saline and AIA compared to sham and DMM 

mice (number of positive staining cells and staining intensity). Interestingly, there was 

greater CGRP-IR in saline mice compared to AIA. This again did not reflect gene 

expression at this time point. At week 8, expression in all 4 groups was reduced 

compared to week 1 and 4, but still greater than naïve mice. CGRP-IR was greater in 

DMM than both sham and AIA based on number of positive staining cells and 

staining intensity. This difference in IR matched the gene expression changes at this 

time point where CGRP expression was up regulated compared to AIA (Figure 6.2b). 

At week 16 CGRP-IR in saline and sham had decreased further to levels similar to 

naïve mice. CGRP-IR in DMM was similar to week 8 and in AIA it increased to 

levels similar to DMM. 
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Figure 6.4e-h. Opmr1 immunoreactivity (IR) 

IR (NovaRED staining neurons marked with black arrow) in the right L4 DRG in DMM, Sham, AIA, and Saline-injected mice at week 1 (e), 

week 4 (f), week 8 (g), and week 16 (h) post arthritis induction. Inserts represent right L4 DRG negative reagent control (i) and right L4 DRG 

negative control from naïve mouse (ii). 

Saline

Sham

AIA

DMM

e. 

(i) (ii) 

100µm

100µm



276 

Saline

Sham

AIA

DMM

f. 

(i) (ii) 

100µm

100µm



277 

Saline

Sham

AIA

DMM

g. 

(i) (ii) 

100µm

100µm



278 

Saline

Sham

AIA

DMM

h. 

(i) (ii) 

100µm

100µm



279 

Oprm1-IR above that observed in naïve mice was not detected at all time points and 

treatment groups. At week 1, Oprm1-IR was detected in a few cells per HPF in all 

treatment groups and this was comparable to expression in naïve mice. This aligned 

with the gene expression data where there was no significant change in both model 

during the acute inflammatory phase (up to week 2). At week 4, Oprm1-IR in saline, 

AIA and sham mice increased based on number of positive staining cells. Oprm1-IR 

in DMM was unchanged. At week 8, Oprm1-IR in all treatment groups was similar to 

age matched naïve mice. At week 16, Oprm1-IR in saline, AIA and sham mice 

remained similar to age matched naïve. However, in DMM it increased both with 

respect to number of positive staining cells and staining intensity. This was in contrast 

to the down regulation in gene expression observed in DMM at week 12. 

6.4 Discussion 

In summary, this study demonstrated multiple changes in DRG gene expression 

between arthritic and control (sham/saline) groups as well as between the two arthritis 

models at each stage of OA disease development (Table 6.4). Differences in 

expression of IL-1ATF3, TRPA1, TRPV2 and ADAMTS-5 were observed in the 

acute inflammatory stage of disease. Down regulation of IL-1 was the only 

significant gene expression change observed in both models at this stage. In the early-

progressive stage of OA the AIA model was characterised generally by a down 

regulation in gene expression (ATF3, CGRP, TRPA1, Oprm1 and ADAMTS-4) with 

fewer changes occurring in DMM. In the late chronic stage of OA the DMM model 

was generally characterised by an up regulation in gene expression (CGRP, TRPA1, 

TRPV1, TRPV2, TRPV4) with only one change evident in AIA (TRPV1).  
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Interestingly, the greatest differences in gene expression profile between the two 

animal models occurred in the late chronic phase when histological characteristics of 

OA were well established in both models with no significant differences between the 

histology observed in AIA and DMM knee joints (Chapter 4). With respect to pain-

related behaviour, both models demonstrated ipsilateral tactile allodynia, thermal 

hyperalgesia and reduced stride length at this late phase of OA disease, with 

mechanical hyperalgesia and reduced ipsilateral hind limb weight bearing, unique to 

DMM (Chapter 5). Despite the histological and behavioural similarities between the 

two models, the DRG gene expression data suggests there are significant differences 

between the two models when it comes to the mechanisms driving pain at this late 

phase of OA disease. By week 16 we observed that CGRP, TRPA1, TRPV1, TRPV2 

and TRPV4 were all up regulated in DMM; Tac-1 and Oprm1 were down regulated in 

DMM; and TRPV2 was down regulated in AIA. When corrected for time, the 

dysregulated DRG gene-expression associations for CGRP, IL-1 and ADAMTS-4, 

suggest model specific differential effects in the expression profile of these three 

genes.  

This study was not able to clearly demonstrate how the observed changes in gene 

expression related to gene translation and therefore, changes in protein expression in 

the DRG. This was in part due to the difficulties encountered in tissue processing and 

the inability to achieve consistency in antibody immunoreactivity that was above 

background in 8 of the 10 antibodies tested. For Oprm1 and CGRP where this was 

achieved, there was no consistent association between gene and protein expression at 

the different time points. These observed temporal differences may be due to the 

transient nature of gene transcription and the complex mechanisms that regulate 
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translation (619). They may also indicate post-transcriptional control of protein levels 

mediated via proteolysis or other cellular mechanisms. 

Taken together, the data presented in this chapter implicates dysregulation of multiple 

genes including CGRP, IL-1, ADAMTS-4, ADAMTS-5, ATF3 TRPA1, TRPV1, 

TRPV2, TRPV4, Tac-1 and Oprm1 in arthritis pain. However, what specific role 

these changes in the DRG that innervate the knee joint play in the pain phenotype 

observed in each animal model is still not clear. 

A primary role for the sensory neurons of the DRG is to detect noxious mechanical 

and thermal stimuli in order to protect the body from harm (620). Nociceptive pain 

detection is clearly an adaptive process that is designed for protection and 

preservation.  However, persistent and exaggerated pain is maladaptive and is driven 

in part by the plasticity of sensory nociceptor neurons. Modulation following injury or 

exposure to inflammation starts at the nociceptor and ends with alterations in central 

nervous system processing. The result is an exaggerated pain state refered to as 

“sensitisation” that is characterised by hyperalgesia and allodynia. In the case of OA 

pain, a number of mechanisms have been investigated in an attempt to better 

understand how chronic pain in this disease develops and identify potential 

therapeutic targets (432, 604, 605, 608, 621, 622). The genes identified in this study 

as displaying model-specific alterations in expression have all been shown to play a 

role in sensitisation and the development of chronic pain (163, 310). The data 

reported in this chapter sheds further light on the likely significance of their 

contribution to the development of chronic pain that is specific to different types of 

OA. 
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Sensitisation manifests as allodynia, and mechanical and thermal hyperalgesia (230), 

and is a key component of the OA pain phenotype in humans (284, 596, 623). It 

contributes to many of the clinical symptoms that patients report such as movement-

evoked pain as well as specific tests of hypersensitivity such as mechanical temporal 

summation (TS) and reduced pressure pain thresholds (PPT) (278, 624, 625). Both 

TRPV1 and TRPA1 are involved in mediating mechanosensation and 

thermosensation. Despite TRPA1 being highly co-expressed with TRPV1 at the level 

of the DRG (626), the two TRP channels play distinct roles in mediating OA pain 

especially inflammation driven pain (627). Through the use of a TRPA1 specific 

inhibitor, the role of TRPA1 in development of mechanical hyperalgesia secondary to 

inflammation has been established (628). More recently, a role for TRPA1 in the 

development of inflammation driven knee OA sensitisation was demonstrated in 

TRPA1 KO mice using the MIA model (485). The role of TRPA1 in development of 

chronic pain in a post-traumatic OA model has not previously been investigated. The 

findings in this chapter demonstrate an up regulation of TRPA1 in DMM mice during 

both the acute inflammatory and chronic phase of OA disease, suggesting that in a 

post-injury OA phenotype, TRPA1 may play an important role in development of 

sensitisation in the early inflammatory phase of OA disease and the development of 

mechanical hyperalgesia in the late chronic phase of OA disease that, based on joint 

histopathology, is likely not driven by inflammation. These findings were not 

observed in the AIA model despite the similarities in joint pathology at this time. 

The TRPV2 channel is activated by temperatures greater than 52 degrees and is 

reported to also play a role in inflammation-induced hyperalgesia that is distinct from 

TRPV1 activity, and manifests as development of thermal hyperlagesia secondary to 

high temperature stimuli (211). The study in this chapter identified that TRPV2 was 
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only up regulated in the AIA model during the acute inflammatory phase prior to the 

development of OA specific joint pathology. In the DMM model, TRPV2 was up 

regulated during the early phase of OA disease when AC damage was developing, 

osteophytes were well established and moderate joint inflammation was still present 

(Chapter 4). Interestingly, at this time point thermal hyperalgesia was present in 

DMM but not in AIA mice (Chapter 5). This suggests the role of TRPV2 in 

development of thermal hyperalgesia is model and time specific. DRG culture studies, 

using a cannabinoid TRPV2 specific agonist, cannabidiol, have also demonstrated 

that TRPV2 mediates CGRP release (629). The findings in this chapter also 

demonstrated that CGRP was up regulated along side TRPV2 during the early phase 

of OA disease.  

TRPV4 is a polymodal receptor that is activated by many different stimuli including 

shear stress, hypotonicity and heat (> 27 degrees); and is expressed by low and high 

threshold neurons in the DRG (221). The observed increase in mechanical nociceptive 

threshold following disruption of TRPV4 in 129/Sv mice (221) and establishment of 

TRPV4 as a high threshold mechanoreceptor (219), suggests a role for TRPV4 in 

mediating mechanical hyperalgesia. This has been demonstrated with inflammatory 

mediator driven sensitisation (630) and neuropathic pain (631).  Investigators have 

also demonstrated that up regulation of TRPV4 drives mechanical hyperalgesia 

induced by DRG exposed to the pro-inflammatory cytokine, IL-17 (632). In addition, 

TRPV4 plays an important role in temperomandibular joint inflammatory pain via the 

trigeminal ganglion (633). 

TRPV4’s important role in maintaining joint homeostasis is evident by the numerous 

inherited skeletal dysplasias and arthropathies seen in humans with TRPV4 mutations 

(634-636). TRPV4 is found in bone (osteoblasts and osteoclasts) where it plays a role 
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in bone remodelling activity, and articular chondrocytes where it mediates cellular 

responses to hyposmotic stress (637). More recently, it has been demonstrated that 

TRPV4 KO mice are more susceptible to obesity-induced OA when fed a high fat diet 

(638). All of this makes TRPV4 an attractive therapeutic target for OA as both a 

DMOAD (639) and for treating OA pain. Yet little is known about the role that 

TRPV4 plays in mediating chronic OA pain that is not driven primarily by 

inflammation. There are currently no studies that have reported on the role of TRPV4 

in the development of chronic pain that is induced using a joint instability model such 

as DMM to identify if it plays a role in the chronic pain of a post-injury OA 

phenotype. In this study, both the upregulation of TRPV4 and the development of 

mechanical hyperalgesia occurred in the chronic stage of OA disease and were only 

observed in the DMM model.  

CGRP is co-expressed with TRPV1 in a subset of small sized sensory neurons in the 

DRG and its receptors are located in both the dorsal horn of the spinal cord and in 

several regions of the brain. CGRP increases synaptic transmission and neuronal 

responsiveness to noxious stimuli at the level of the spinal cord (dorsal horn neurons), 

and therefore contributes to the development of central sensitisation. Specific to 

arthritis pain, it has been demonstrated in the MIA model using retrograde tracing 

techniques, that there is greater expression of both CGRP and TRPV1 in sensory 

afferents that innervate the knee joint compared to the general DRG sensory neuron 

population (192).  With the recent development of small molecule CGRP receptor 

antagonists and antibodies to treat migraine headache, and evidence of their potential 

for treating inflammation driven pain (640) as well as arthritis pain (641), a better 

understanding of the role CGRP plays in development of chronic OA pain is needed 
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in order to take advantage of these emerging novel therapeutics that may prove to be 

effective at treating some types of chronic OA pain. 

Interestingly, the study reported in this chapter identified that in the early phase of OA 

CGRP gene expression was down regulated in AIA mice, while in the late phase of 

OA CGRP gene expression was up regulated in DMM mice. Previous knee OA 

animal model studies have demonstrated an increase in CGRP gene expression in the 

sensory neurons innervating the knee joint (192, 642). Both these studies used the 

MIA model of arthritis, which results in severe joint inflammation and chondrocyte 

death. Changes in CGRP gene expression following surgically induced OA have been 

reported in one study that compared MIA induced arthritis with two post-injury OA 

models, DMM and Anterior cruciate ligament transection (ACLT) (426). In all three 

models the sensory neuronal response to the induced knee joint pathology was a down 

regulation of both CGRP and Tac-1 gene expression at the level of the lumbar DRG. 

For MIA lumbar DRG gene expression was measured 5 weeks after intra articular 

injection of 2mg MIA. PG loss was the only histological joint pathology change that 

was measured. For DMM and ACLT DRG gene expression at a single time point was 

measured, but investigators did not report what this time point was or what joint 

pathology was observed at this time point. Therefore it is difficult to compare it with 

the findings reported in this chapter, where at week 16 (late phase OA) CGRP was up 

regulated and Substance P was down regulated in the DMM model. The effects of 

CGRP receptor blockade have also been investigated in a surgically induced OA 

model (medial meniscal transection). In this study, blockade of the CGRP receptor 

resulted in reversal of OA induced pain as measured by changes in hind limb weight 

distribution (469).  
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ATF3 regulates transcription by binding to DNA sites as a homodimer to inhibit 

transcription (643), or heterodimer to activate transcription (644). ATF3 is induced by 

different stress signals from a range of tissues including the liver, heart and kidneys 

(645). ATF3 is induced following transection of sensory and motor neurons (362) and 

is considered a marker of peripheral neuronal injury. ATF3 expression in the DRG 

has also been reported in inflammatory pain models following injection of CFA (646). 

In contrast to previous studies that reported no expression of ATF3 in naïve adult 

rodents (362, 647), the study reported in this chapter demonstrates ATF3 gene 

expression in both naïve and sham/saline mice (Appendix D). In peripheral neuronal 

tissue (DRG) ATF3 promotes nerve regeneration in injured neurons (648).  

ATF3 expression in animal models of arthritis has been investigated in an effort to 

identify common nociceptive pathways between OA pain and neuropathic pain 

following nerve injury. In a study using the rat AIA model investigators were unable 

to demonstrate any ATF3-positive neurons in the lumbar DRG using IHC techniques 

at day 1,3 and 21 following induction of arthritis (452). Similarly, in a study using the 

DMM model investigators reported no ATF3-positive neurons in the L4/L5 lumbar 

DRG at any time point (316). However, a study using a collagen-induced arthritis 

model did report ATF3 expression following induction of arthritis (649).  

This chapter reports on gene expression in the innervating DRG of DMM and AIA 

induced arthritis at key stages of disease progression. Up regulation of ATF3 occurred 

in AIA mice early following knee joint injection (week 2) and during the early OA 

phase of disease (week 8). In DMM mice there was no significant change in ATF3 

expression detected early but ATF3 was increased in late-stage disease. It is difficult 

to compare these findings with previous studies because gene expression does not 

always translate to protein expression, and up regulation of gene expression can be 
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transient, only occurring at specific time points. Therefore, comparisons between 

studies can only be made if the time points investigated are equivalent with respect to 

stage of disease. Nevertheless, the current findings suggest that model specific acute 

inflammation (AIA) and chronic post-traumatic OA knee joint pathology (DMM) 

either cause peripheral neuronal injury or mimic the biomolecular alterations that 

signal the need for neuronal transcription regulation, whether it be inhibition or 

activation.  

The peripheral effects of opioids have previously been investigated in an attempt to 

identify a safer alternative to the systemic use of opioids, such as morphine, to treat 

severe pain (307). Freund’s complete adjuvant induced inflammation results in up 

regulation of Oprm1 and an increase in Oprm1 G-protein coupling in the DRG but not 

the spinal cord or hypothalamus suggesting a local adaptive change in the mu receptor 

in response to acute inflammation rather than a response to systemically released 

mediators (317). Local injection of MOR agonists in rat models of inflammatory and 

neuropathic pain result in a reduced pain response and the resolution of allodynia 

(314). The role of MOR in regulating pain in animal models of OA has also been 

investigated (316). In this study up regulation of the MOR occurred at week 8 post 

surgery when affected mice displayed no pain (as measured by forceplate) until 

treated with a peripherally active MOR antagonist (naloxone methiodide). No change 

in MOR expression was detected early at 4 weeks or late at 16 weeks after surgery. 

This differs to the findings in the current study where in the chronic phase of OA a 

down regulation in Oprm1 gene expression was detected at week 12 and an increase 

in Oprm1-IR was observed in the L3/L4 DRG at week 16. 

ADAMTS-5 is expressed in chondrocytes and fibroblasts, and is the principle 

aggrecanase in mouse cartilage and plays a key role in cartilage degradation and the 
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development of OA joint pathology (26, 27). A wider physiological role for 

ADAMTS-5 has been suggested with the establishment of its constitutive expression 

in a number of adult tissues including DRG (34). ADAMTS-5 KO mice are protected 

from development of OA joint pathology (articular cartilage damage, SCB sclerosis 

and osteophyte formation)(26). Interestingly, ADAMTS-5 KO mice have also been 

shown to not develop mechanical allodynia when subjected to DMM surgery (441). 

The investigators did not look at what changes in sensory innervation might be 

driving this protection from sensitisation. So it remains unclear whether the different 

pain phenotype observed in the ADAMTS-5 KO is primarily due to the protection 

from joint pathology or whether ADAMTS-5 plays a direct role in sensory 

modulation at the level of the DRG. Expression of ADAMTS-5 and other MMP’s in 

the DRG following induction of arthritis has not previously been reported. In the 

present study, up regulation of ADAMTS-5 expression in the DRG occurred early 

(week 2) following DMM surgery but was not present at week 4 or beyond, once OA 

specific joint pathology and mechanical allodynia were well established.   

ADAMTS-4 is the other principle aggrecanase expressed in human and mouse 

cartilage, however its role in development of OA joint pathology is less clear. Unlike 

ADAMTS-5, ADAMTS-4 is inducible by pro-inflammatory cytokines (650) and 

although ADAMTS-4 is expressed in many tissues, its role in these tissues is still 

under investigation. Characterisation of the ADAMTS-4 KO mouse identified no 

gross or histological abnormalities in any tissues and no difference in susceptibility to 

the development or severity of OA between KO and wild type mice at 4 and 8 weeks 

after DMM surgery (25). ADAMTS-4 is the most expressed ADAMTS in the central 

nervous system (CNS) (ventral horn and cortex) and is thought to play a role in 

controlling synaptic plasticity during CNS development (478). Whilst it is associated 
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with neuronal repair after spinal cord injury, investigators have also demonstrated a 

neurodegenerative effect on motor neurons in a model of neurodegenerative disease 

(651). Despite its important role in the CNS, there are no previous reports of its 

expression in the DRG or the role it may play in the peripheral sensory nervous 

system and the development of OA pain. In this study, down regulation of ADAMTS-

4 expression in the DRG was observed during the early progressive OA phase in both 

models (AIA > DMM). Importantly, in the DMM model ADAMTS-4 showed the 

greatest loss of association with DRG genes involved in pain signalling (CGRP, Tac-

1, Oprm1, TRPV1, TRPV2, TRPV4, TRPA1). This loss of co-regulation of 

ADAMTS-4 gene expression may implicate this aggrecanase in having an important 

role in OA pain modulation, in particular in a post-injury OA phenotype. 

 

6.4.1 Summary 

In this chapter, the pain phenotype of the two arthritis models under investigation was 

further characterised by measuring gene expression in the DRG that innervate the 

knee joint. Some of the key protein and neuropeptide candidates that are associated 

with both inflammatory and chronic pain states were measured, and the alterations in 

expression at different phases of arthritis disease that were identified, indicate which 

of these may play a role in pain signal modulation in each model.  

Together, the findings in this chapter demonstrate two distinct peripheral sensory 

neuronal responses to OA joint pathology that change over time and are animal model 

specific. The different DRG gene expression profiles that were observed confirm that 

despite the similarities in histopathology and pain related behaviour that develops in 

both AIA and DMM in the chronic phase of OA disease, the molecular mechanisms 

that initiate and sustain the pain state are different.  
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This confirms that pain is different for different sub types (phenotypes) of OA and at 

different stages of the disease. By investigating an important aspect of sensory 

modulation in two models, it has allowed the differentiation of mechanisms that are 

model specific and therefore relevant for certain sub-types of OA. By focussing the 

investigation at the level of the DRG, peripheral mediators that may be a suitable 

therapeutic target for OA pain have been identified to allow for a more targeted 

approach to developing treatments that are devoid of systemic side effects. 

In the next chapter the relationships between the changes in sensory neurons, as 

measured by gene expression, the observed pain-related behaviour and the joint 

histopathology that develops over time, are investigated. Combining the findings on 

OA pain and OA joint pathology will provide a better understanding of what initiates 

and drives chronic OA pain, and may reveal associations between the two processes 

that will guide selection of therapeutic targets that modify joint disease and treat pain.  
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CHAPTER 7:  Associations between knee joint 

histopathology, pain behavior and peripheral sensory 

innervation following destabilization of the medial 

meniscus (DMM) and antigen-induced arthritis (AIA) 

in mice 

7.1 Introduction and aims 

The previous chapters of this thesis reported individually on the joint histopathology, 

pain-related behaviour outcomes and gene expression profiles of the innervating DRG 

in two animal models commonly used to study OA joint pathology (DMM) and 

arthritis pain (AIA) mechanisms. The two models under investigation both result in a 

consistent and reproducible chronic joint disease phenotype and ultimately lead to 

OA-like joint pathology. However, they differ in a number of ways. The DMM model 

induces altered joint biomechanics that leads to joint instability and greater loading 

strain on the medial femoro-tibial cartilage and underlying subchondral bone (SCB) 

(437). This model mimics a post-traumatic OA phenotype but has broader clinical 

relevance since meniscal tear and degeneration is also associated with non-traumatic 

age associated OA in patients (298). The AIA model on the other hand relies on an 

exogenously triggered joint immune response that leads to severe joint inflammation 

and other joint tissue pathologies. Although less directly-clinically relevant than 

DMM, this model has been used extensively to investigate the role of inflammation in 

the development of joint pain, and enabled investigators to begin to unravel the 

molecular mechanisms that drive arthritis pain (reviewed in (449, 612).  
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Histological investigation (Chapter 4) revealed that by 16 weeks both DMM and AIA 

mice display the hallmark histopathological features of human OA (AC erosion, SCB 

sclerosis, marginal osteophytes, mild synovitis), and by definition both DMM and 

AIA mice had therefore developed “knee joint OA”. However, significant temporal 

differences in joint tissue pathology progression, model specific pathology 

associations between the major tissue structures in the joint (AC, SCB and synovium), 

and different significant risk factors for development/progression of OA (as defined 

by AC damage), indicate that at the latest time points each model represents a 

different OA phenotype; “post-traumatic OA” (Pt-OA) for DMM vs. “post-

inflammatory OA” (Pi-OA) for AIA. 

When tested for pain (Chapter 5), the DMM and AIA models demonstrated distinct 

temporal patterns of pain-related behaviours, reflecting the development of a complex 

pain state that is partly driven by central sensitisation and that displays many of the 

hallmarks of human OA pain. In contrast to the joint pathology outcomes, there was 

an absence of any association between the different pain behaviours that were 

measured in either model. This highlighted the importance of using multiple pain 

assays to more accurately define the pain phenotype in a particular animal model, and 

by extrapolation, evaluate the response to any given therapy in a model.  The absence 

of any associations between the different pain behaviours likely indicates differences 

in the underlying mechanisms that drive pain at different stages of joint disease 

development, and reflects the complex nature of the relationship between tissue 

specific joint pathology and OA pain. 

Following from this, an investigation into the gene expression changes in the DRG 

(Chapter 6) identified multiple alterations in gene expression that were again model-
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specific. The gene expression profiles were also different at each phase of disease 

development (acute inflammatory, early progressive OA, late chronic OA), with the 

greatest differences paradoxically observed in the late chronic phase when 

histologically both models displayed most similarity with all the features of OA joint 

pathology. The genes investigated were highly associated in both control groups 

(sham and saline injected mice), reflecting the normal co-ordinated network of 

sensory input regulation in the DRG. For three of the genes (CGRP, IL-1 and 

ADAMTS-4), this association was lost in one or both models with different cohorts of 

other genes, and the disease-specific dysregulation suggests there are different pain 

regulatory pathways in the two arthritis phenotypes. 

Overall, these findings support the theory that OA pain, and at least the peripheral 

mechanisms that drive it, are unique for each sub-type of OA. This puts into question 

the current practice of extrapolating findings from pre-clinical investigations to 

human OA pain, without first considering which human OA phenotype the animal 

model represents, and in the case of the most commonly used model for pain research, 

MIA, perhaps any human OA phenotype at all (399). The experimental data generated 

in this thesis have demonstrated in separate analyses that joint tissue pathology, pain-

behaviour, and peripheral sensory modulation are each animal model specific. 

However, if the associations between these three disease components are the same in 

different models then, which model is selected to investigate what initiates and drives 

OA pain may ultimately not be critical to the predictive validity for human 

translation. To determine if the animal model does matter, any significant associations 

between OA disease (joint tissue histopathology), OA symptoms (pain behaviour) and 

sensory innervation (DRG gene expression) need to be characterised in different 

animal models. 
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In this chapter the relationships between joint pathology, pain behaviour and 

peripheral sensory modulation are investigated using statistical modelling to confirm 

whether the mechanisms that drive OA pain are specific to the pathophysiology of the 

disease and therefore, unique to each OA phenotype. 

The aims of chapter 7 are: 

1. To identify any associations between knee joint tissue pathology and gene 

expression in the innervating DRG of mice with knee joint arthritis induced by DMM 

and AIA. 

2. To identify any associations between pain-related behaviour and gene expression in 

the innervating DRG of mice with knee joint arthritis induced by DMM and AIA. 

3. To identify any associations between knee joint tissue pathology and pain-related 

behaviour in mice with knee joint arthritis induced by DMM and AIA. 

 

7.2 Methods, statistical analysis and data presentation 

Details of the methods used to induce the two models of arthritis, DMM and AIA, are 

described in chapter 2, section 2.1. The methods used for histological processing, 

sectioning and staining are described in chapter 2, section 2.2. The scoring system 

used is outlined in Appendix C. Development and validation of this scoring system is 

described in chapter 3, section 3.2. The pain assays used in this chapter have 

previously been reported and validated (316, 465, 493, 517, 545), and the exact 

methods used for carrying out the pain tests were developed by the researcher 

(chapter 3, section 3.1) and described in chapter 2, section 2.3. The methods used for 
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harvesting DRG and real time Reverse Transcription-Polymerase Chain Reaction 

(RT-PCR) are described in chapter 2, section 2.4. 

Associations between the different joint tissue pathologies and gene expression in the 

right L3/L4 DRG; the different pain behaviours and gene expression in the right 

L3/L4 DRG; and the different joint tissue pathologies and pain behaviours, were 

determined for each model (when corrected for time) by generating Pearson partial 

correlation coefficients, using Kendall’s tau-b (565). This nonparametric process uses 

pairwise ranked data values between the two variables under study (ordinal scores) 

and thus does not require data to be normally distributed or the relationship between 

the variables to be linear.  

The experiments in this thesis investigating pain behavior (Chapter 5) and gene 

expression (Chapter 6) were designed to be hypothesis generating due to the lack of 

standardisation of pain behavior tests that currently exists and the fact that so little is 

known about which genes are key drivers of OA pain specifically. To this end, the 

results in this chapter are also presented without correcting for repeated measures to 

ensure identification of all significant associations between joint tissue 

histopathology, pain behavior and DRG gene expression, that may otherwise be 

overlooked once correction for repeated measures has been applied, but which may 

still be worthy of further investigation.  

Correlation analysis was conducted for AIA and DMM only, and not for the 

equivalent sham/saline data. This was done because the aim of this study was to 

characterise the relationship between joint tissue pathology, pain behavior and DRG 

gene expression changes in two models of arthritis where significant joint disease 

develops. The results in chapter 4 confirm that only mild and transient joint pathology 
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is observed in the sham surgery and saline injected mice and neither group develops 

knee joint arthritis. 

7.3 Results 

7.3.1 Correlation between joint tissues histopathology and gene expression in right 

L3/L4 DRG in DMM and AIA when corrected for time 

An interesting pattern of associations emerged from the data (Table 7.1), with more 

correlation between joint tissue histopathology and DRG gene-expression observed in 

the DMM model compared to the AIA model (14 vs. 11). In DMM the DRG-

expression correlations were primarily with bone pathology changes (SCB sclerosis, 

SCB vascular invasion, osteophyte size and osteophyte maturity). In AIA in contrast, 

the correlations were with inflammatory change and osteophyte formation (synovitis, 

osteophyte size and osteophyte maturity). The majority but not all associations in both 

models were negative – i.e. as pathology worsened the DRG gene expression 

decreased. The positive correlations suggestive of a positive association between joint 

pathology and DRG gene-expression were: IL-1 with synovitis and AC damage in 

AIA, and CGRP, TRPV1 and CBR1 with SCB sclerosis in DMM. 

The genes whose expression was significantly dysregulated in the association analysis 

in Chapter 6 (CGRP, IL-1 and ADAMTS-4) also displayed unique associations with 

joint tissue pathology: CGRP & IL-1 as noted above, and ADAMTS-4 which was 

negatively correlated with osteophyte size and maturity in DMM. There were a 

number of pathology:DRG-expression correlations that were shared in the two 

models: TRPA1 and CBR1 negatively with synovitis; and ATF3 and MOR negatively 
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with osteophyte size. IL-1 was unique in having a significant positive correlation 

with synovitis in one model (AIA) but negative in the other (DMM). All other 

pathology:DRG-expression correlations were specific to one or other of the models. 

The strongest correlations (>0.4) were with CBR1, which was negatively associated 

with synovitis in both AIA and DMM (r = -0.596 and -0.517, respectively), and with 

SCB vascular invasion in DMM (r = -0.413). 
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Table 7.1. Histopathology and gene expression correlations 

Comparison Treatment r (tau) P 

AC damage IL-1b AIA (n=35) 0.201 0.044 

AC PG loss ATF3 

TRPA1 

DMM (n=46) 

AIA (n=36) 

-0.281

-0.265

0.008 

0.014 

Synovitis Tac-1 

CNR1 

CNR1 

IL-1b 

IL-1b 

TRPA1 

TRPA1 

AIA (n=36) 

AIA (n=6) 

DMM (n=11) 

AIA (n=35) 

DMM (n=39) 

AIA (n=36) 

DMM (n=46) 

-0.365

-0.596

-0.517

0.208

-0.257

-0.324

-0.175

0.001 

0.040 

0.002 

0.004 

0.010 

0.003 

0.039 

SCB invasion CNR1 DMM (n=11) -0.413 <0.001 

SCB sclerosis CGRP 

TRPV1 

CNR1 

DMM (n=46) 

DMM (n=46) 

DMM (n=11) 

0.249 

0.233 

0.380 

0.019 

0.037 

0.033 

OP size ATF3 

ATF3 

Oprm1 

Oprm1 

TRPV4 

ADAMTS-4 

ADAMTS-5 

AIA (n=36) 

DMM (n=46) 

AIA (n=36) 

DMM (n=46) 

DMM (n=35) 

DMM (n=34) 

AIA (n=30) 

-0.228

-0.204

-0.303

-0.213

-0.245

-0.275

-0.165

0.021 

0.050 

0.008 

0.043 

0.044 

0.006 

0.038 

OP maturity Oprm1 

TRPV1 

ADAMTS-4 

ADAMTS-5 

AIA (n=36) 

DMM (n=46) 

DMM (n=34) 

AIA (n=30) 

-0.292

-0.147

-0.240

-0.157

0.003 

0.023 

0.041 

0.036 

Spearman partial correlations on joint tissue histopathology outcomes and gene 

expression in right L3/L4 DRG (corrected for time) within treatment.  Alpha value set 

at 0.05. Only significant correlations (P < 0.05) are listed. 
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7.3.2 Correlation between pain behaviour and gene expression in right L3/L4 DRG 

in DMM and AIA when corrected for time 

Even more so than with joint histopathology, there were a great number of significant 

associations between pain behavior and DRG gene expression in the DMM model 

compared to the AIA model (7 vs. 2; Table 7.2). In contrast with histopathology, for 

all behavioural outcomes, a negative correlation indicates an association with 

worsening pain/disability. This is because pain (including sensitisation) was defined 

as a decrease in the relevant pain behaviour measurement (PWT, PWL, stride length, 

R/L hind limb weight distribution).  

Only one of the significant DRG-expression:pain-behaviour correlations was negative 

(TRPV1 and PAM in AIA); suggesting that for the remaining genes, an increase in 

gene expression was associated with decreasing pain and vice versa. In DMM, stride 

length was positively correlated with 6 genes (CGRP, Tac-1, TRPV1, TRPV2, 

TRPV4, ADAMTS-5), and hotplate was positively correlated with 1 gene 

(ADAMTS-4). In AIA, PAM was positively correlated with IL-1. There were no 

significant associations between tactile allodynia (Von Frey) or hind-limb weight 

distribution (forceplate), and expression of any genes in the DRG in either model. 
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Table 7.2. Pain behavior and gene expression correlations 

Comparison Treatment r (tau) P 

Stride
1 CGRP 

Tac-1 

TRPV1 

TRPV2 

TRPV4 

ADAMTS-5 

DMM (n=11) 

DMM (n=11) 

DMM (n=11) 

DMM (n=11) 

DMM (n=11) 

DMM (n=11) 

0.406 

0.451 

0.406 

0.445 

0.570 

0.474 

0.033 

0.007 

0.025 

0.016 

<0.001 

0.034 

PAM
2 IL-1β

TRPV1 

AIA (n=5) 

AIA (n=5) 

0.527 

-0.788

0.015 

<0.001 

Hotplate
3 ADAMTS-4 DMM (n=18) 0.267 0.035 

Spearman partial correlations on pain outcomes and gene expression in right L3/L4 

DRG (corrected for time) within treatment.  Alpha value set at 0.05. Only significant 

correlations (P < 0.05) are listed. (1) Stride = full stride length (left to left hind limb) 

measurement; (2) PAM = right hind limb withdrawal threshold (average of medial 

and lateral knee joint); and (3) Hotplate = hind limb withdrawal latency with plate set 

at 52 degrees. 
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7.3.3 Correlation between joint tissue histopathology and pain behaviour in DMM 

and AIA when corrected for time 

Overall, there were fewer associations between joint tissue histopathology and pain 

behavior in the DMM model (4) than in the AIA model (7). As above, negative 

correlation with any behavioral outcome indicates a positive association between that 

pain measure and histopathologic change.  Interestingly, the AIA correlations were 

predominately (5 of the 7) in a negative direction whereas in DMM the associations 

were all positive, suggesting a lack of association between pain and worse pathology 

in this model.  

In AIA, synovitis was negatively correlated with PAM and stride length; SCB 

invasion was negatively correlated with forceplate; AC damage and chondrocyte 

hypertrophy were negatively correlated with PAM; AC damage was positively 

correlated with hotplate; and OP maturity was positively correlated with forceplate. In 

DMM, synovitis was positively correlated with forceplate and stride length; SCB 

invasion was also positively correlated with forceplate; and AC damage was 

positively correlated with von Frey. 
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Table 7.3. Histopathology and pain behaviour correlations 

Comparison Treatment r (tau) P 

Synovitis Forceplate
1

PAM
2 

Stride
3

Stride 

DMM (n=23) 

AIA (n=18) 

AIA (n=12) 

DMM (n=11) 

0.273 

-0.415

-0.464

0.415

<0.001 

0.014 

0.001 

0.003 

SCB invasion Forceplate 

Forceplate 

AIA (n=38) 

DMM (n=23) 

-0.263

0.335

0.002 

0.024 

AC damage Von Frey
4

PAM 

Hotplate
5

DMM (n=9) 

AIA (n=18) 

AIA (n=38) 

0.549 

-0.349

0.172

0.041 

0.001 

0.054 

Chondrocyte 

hypertrophy/apoptosis 

PAM AIA (n=18) -0.398 0.006 

OP maturity Forceplate AIA (n=38) 0.220 0.050 

Spearman partial correlations on joint tissue histopathology outcomes and pain 

outcomes (corrected for time) within treatment.  Alpha value set at 0.05. Only 

significant correlations (P < 0.05) are listed. (1) Forceplate = right to left hind limb 

weight bearing ratio (average over 30 seconds); (2) PAM = right hind limb 

withdrawal threshold (average of medial and lateral knee joint); (3) Stride = full stride 

length (left to left hind limb) measurement; (4) Von Frey = right hind limb 50% 

withdrawal threshold; and (5) Hotplate = hind limb withdrawal latency with plate set 

at 52 degrees. 
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7.4 Discussion 

The “cause-effect” relevance of the correlations between knee joint histopathology 

and DRG gene expression is unclear, but along with the joint tissue pathology 

associations reported in chapter 4 (figure 4.11), they further demonstrate differences 

between the two models with respect to joint disease pathophysiology and how these 

relate to pain mechanisms. Acutely, AIA is a model of inflammatory arthritis and 

since synovitis is a predominant feature of joint inflammation in this model (448), it 

would be expected to be a key driver of pain. Only 4 of the 11 significant gene 

associations in AIA were with synovitis per se, 5 being with osteophyte formation 

suggesting that osteophytes may also play an important role in driving pain in this 

model. Osteophytes in AIA were late to form and mature to bone compared to the 

DMM model, and occurred after joint inflammation started to decrease, suggesting a 

need for resolution of specific pro-inflammatory signals in AIA before bone 

formation can occur as previously reported for DKK-1 in TNF-transgenic mice (578). 

Early formation of enthesophytes observed in AIA could be driven by the initiation or 

inhibition of these same pro-inflammatory signals early in the disease. If this is the 

case, then the DRG gene correlations with osteophyte formation may in fact reflect an 

indirect mechanism by which inflammation drives pain in this model.  

The joint histopathology and DRG gene expression associations observed in AIA 

were primarily negative indicating a down regulation in expression of the associated 

genes with increasing joint tissue pathology. This is not surprising given the pattern of 

DRG gene expression reported in chapter 4 where the changes in gene expression 

observed in AIA beyond the acute inflammatory phase of disease were down 

regulations in expression. 
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The exception to this is IL-1 which was positively correlated with synovitis and AC 

damage. The role of pro-inflammatory cytokines such as IL-1 and TNF- in 

mediating AC destruction and synovial inflammation, as well as the development of 

joint pain and sensitisation has been investigated using the AIA model. Use of 

neutralising antibodies to block IL-1 and TNF- activity in the joint previously 

demonstrated their role in the early establishment of destructive joint pathology in 

AIA (652), and has led to further investigation of their role in pain modulation more 

specifically. Joint inflammation and associated mechanical hyperalgesia in the first 7 

hours following induction of AIA is attenuated in IL-1 receptor type I (IL-1RI) KO 

mice, and IL-17 induced mechanical hyperalgesia in WT mice is inhibited by 

pretreatment with an IL-1RI antagonist in the first 3 days following induction of AIA 

(653). Furthermore, development of mechanical hyperalgesia following induction of 

AIA occurs in conjunction with increased production of IL-1 and neutrophil 

infiltration into the joint, and intra-articular administration of an IL-1 antagonist 30 

minutes prior to induction of AIA, attenuates both inflammation and pain (654). 

However, during the later stages of arthritis disease, the role of IL-1 may be 

different. Investigators have demonstrated that mechanical hyperalgesia persists 

following the administration of an IL-1RI antagonist from day 0 to day 21 after 

induction of AIA, while thermal hyperalgesia is attenuated from day 7 (453). This 

demonstrates IL-1’s role in development of thermal hyperalgesia but puts into 

question the role of IL-1 in driving mechanosensitivity of joint nociceptors.  

The data presented in this thesis supports these previously reported findings on the 

role of IL-1 in development of joint inflammation (synovitis) and pain, although 

which type of pain, remains unclear. However, these previous studies only tracked the 



305 

acute phase of the disease and did not establish what role IL-1 plays once significant 

bone and cartilage pathology is established. The positive association between IL-1 

and both synovitis and AC damage suggests a significant role for IL-1 in the 

establishment of joint OA pathology beyond the early acute phase of disease as 

reported in previous studies. This is further supported by the fact that synovitis was 

identified as a risk factor for development of AC damage in AIA (Chapter 4). 

Unlike AIA, in the DMM model IL-1 was negatively correlated with synovitis. This 

suggests that in the DMM model synovitis contributes to OA pain via other pro-

inflammatory signaling pathways in the DRG. There is little doubt that IL-1 is a key 

cytokine in OA pathogenesis (reviewed in (88)); acting to block chondrocyte 

synthesis of extra cellular matrix components, stimulate production of ADAMTS-4 

(655), and promoting chondrocyte apoptosis (656). Yet few studies have looked at 

whether the role of inflammation and the expression of IL-1 and other inflammatory 

cytokines, changes with disease severity (reviewed in (77)). Evaluation of synovial 

tissue from OA patients undergoing arthroscopy or arthroplasty identified greater 

expression of IL-1and TNF- in the synovium of the patients with less severe OA 

disease (657, 658). Here we demonstrate a similar association with respect to 

expression of IL-1 in the DRG and OA disease severity/progression.  

In DMM, there is a co-dependent relationship between articular cartilage and 

subchondral bone pathology (49, 407, 583), and data from patients would suggest that 

subchondral bone is a key driver of OA pain (292, 294). The joint histopathology and 

DRG gene expression associations observed in DMM (10 of the 14 are with SCB and 

osteophyte formation) supports a similar association in this mouse model. 

Furthermore the only positive pathology:DRG-gene-expression correlations in DMM 
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were all with SCB sclerosis suggesting this may be a major driver of pain in this 

model.  

Logistic regression modeling (chapter 4) identified synovitis as an independent risk 

factor for pathology progression (as defined by progressive AC damage) in AIA but 

not DMM, while SCB sclerosis as an independent risk factor for OA progression in 

DMM but not in AIA. The above results confirm these same model-specific tissue 

pathology associations, but now with potential molecular drivers of pain/sensitisation 

as well as progression of cartilage erosion.  This further differentiates the uniqueness 

of each OA phenotype, and highlights the need for additional exploration of the 

mechanisms underlying these associations to understand any causal effects and how 

specific joint pathologies might drive DRG-expression changes and pain in each 

model.  

In the case of pain behavior and DRG gene expression correlations, the cause-effect 

relationship would seem clearer, particularly with differentially regulated 

neuropeptides, nociceptor cation channels and inflammatory cytokines, where 

changes might directly alter neuronal excitability. The significance of stride length as 

a marker of the changes that are occurring in the sensory neurons to initiate and drive 

DMM-induced OA pain, provides evidence that the changes in stride length are not 

simply due to the biomechanical changes that occur when a joint is surgically 

destabilized, but rather they are a reflection of a gait adjustment that is driven by pain. 

In particular, since the genes that were associated with this pain-related behavior 

include neuropeptides (CGRP and SP), and nociceptor channels implicated in 

inflammation driven sensitisation (TRPV1 and TRPV2) and the development of 

mechanical hyperalgesia (TRPV1 and TRPV4). Stride length demonstrated a 
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treatment effect only in DMM mice, when corrected for time (Chapter 5), again 

suggesting that stride length is a relevant behavior marker for studying pain 

mechanisms in the DMM model. Interestingly though, all of the correlations between 

DRG-gene-expression and stride length were positive, suggesting the decrease in 

stride length that was observed is paradoxically not associated with an increase in 

expression of these genes.  

However, this does not exclude CGRP, Tac-1or the TRP channels from playing a 

significant role in the development of chronic OA pain via mechanisms other than an 

upregulation in gene transcription. For example, the TRPV1 channel is an important 

mediator of inflammatory pain (182), yet many studies have not been able to 

demonstrate an increase in DRG TRPV1 mRNA following induction of inflammation 

(181, 194). However, an increase in the number of DRG neurons expressing TRPV1 

immunoreactivity has been demonstrated in numerous models of inflammation and 

nerve injury pain (184, 194), including the MIA model of OA (192). In vitro culture 

studies have been able to demonstrate an increase in both expression and signalling of 

TRPV1 in DRG neurons (340). Synovium from patients with OA also demonstrates 

increased TRPV1 immunoreactivity (190). Sensitisation of TRPV1 following the 

release of inflammatory mediators is reported in both inflammatory and nerve injury 

models (609) and results in increased nociceptor signalling. Combined, these findings 

highlight the need to investigate multiple mechanisms of enhanced activity when 

determining the key molecular pathways involved in development of OA pain and 

sensitisation. 
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Further investigation to enable accurate assessment of therapeutic interventions using 

the DMM model is also required into other gait characteristics and methods for 

measuring them, in order to develop pain assays that are clinically relevant, easier to 

measure and more sensitive than stride length alone. One alternative has been to view 

movement provoked pain, which stride length is an indirect measure of, more broadly 

and look at measures of other spontaneous activities using purpose built automated 

instrumentation such as the LABORAS (Metris: Laboratory animal behavior 

observation, registration and analysis system). Activity based monitoring as a 

measure of both movement provoked pain and spontaneous pain has previously been 

reported in the DMM model (316, 339, 441). However, automated instruments such 

as the LABORAS produce numerous movement-based activity and behavior 

measurements, therefore a more detailed evaluation of the most sensitive of these 

measures for detecting changes with disease progression and predicting therapeutic 

efficacy needs to be conducted in the DMM model.  

The positive correlation between ADAMTS-5 expression in the DRG and stride 

length is interesting, given that ADAMTS-5 is the principle aggrecanase in mouse 

cartilage (26, 27) and ADAMTS-5 KO mice are not only protected from cartilage 

degradation and associated SCB sclerosis but also development of allodynia in the 

DMM model (441, 659). Administration of anti-ADAMTS-5 antibodies ameliorates 

allodynia in established OA induced by DMM in wild type mice, suggesting that 

analgesic effects may occur through blocking ADAMTS-5 activity in the DRG and 

reducing macrophage activation and gliosis (660, 661). It is therefore difficult to 

reconcile how decreased ADAMTS-5 expression (and presumably activity) in the 

DRG is associated with reduced stride length (increased pain) in DMM in the current 

study. In contrast to ADAMTS-5, there was a negative correlation (i.e. positive 
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association) between DRG-expression of ADAMTS-4 and osteophyte formation 

(table 7.1). Dysregulation of ADAMTS-4 gene expression in the DRG was unique to 

the DMM model (Chapter 6). While ADAMTS-4 can cleave aggrecan and play a role 

in cartilage degradation (662) is still has an undefined role in OA development (25), 

and there has been no study of its substrates or role in the DRG. Together these 

findings suggest that both ADAMTS-4 and ADAMTS-5 may play significant but 

different roles in OA pain mechanisms in a post-traumatic OA phenotype, although 

the mechanisms remain to be established. 

The negative correlation between TRPV1 and PAM in AIA is not surprising, as this 

indicates an association with local mechanical hyperalgesia and TRPV1 is known to 

play a significant role in the development of inflammation driven mechanical 

sensitisation (187). More unexpected was the positive correlation between PAM and 

IL-1 observed in this model, which means that increased DRG expression of IL-1 

is associated with a decrease rather than an increase in sensitisation and local 

hyperalgesia (ie an increase in the paw withdrawal threshold when a mechanical force 

is applied to the knee joint). Why this association is positive is not clear, given that 

IL-1 is an important pro-inflammatory cytokine involved in both the pathogenesis of 

OA (reviewed in (88, 322)) and the development of pain and sensitisation (reviewed 

in (89, 663). However, this finding is an important reminder that there are still many 

unknown complexities in the relationship between inflammation, pain and pathology 

that still require further investigation. This is evident if we look at the role of IL-1 in 

OA pathogenesis. Here, it has been shown to promote cartilage degradation (328), yet 

development of OA has been reported to be accelerated in the IL-1 KO mouse (327), 

and there is now some evidence that IL-1 can paradoxically play a protective role in 

articular cartilage homeostasis (664). 
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The associations between pain behaviour and joint tissue histopathology in the current 

study also demonstrated interesting trends. The correlations observed in the AIA 

model were primarily negative, while in DMM they were positive. This suggests a 

greater association between specific joint pathologies and pain in AIA, with measures 

of increased joint inflammation (synovitis and SCB vascular invasion) associated with 

more joint mechanical hyperalgesia, reduced stride length and decreased hind limb 

weight bearing. PAM, stride length and forceplate may therefore be particularly 

useful markers for monitoring the degree of joint inflammation in this model. It also 

confirms that reducing joint inflammation may reduce localised knee joint pain that 

can impact mobility. 

There were fewer associations in the DMM model, and in contrast to what might be 

expected measures of increased joint inflammation (synovitis and SCB vascular 

invasion) correlated with increased rather than decreased stride length and ipsilateral 

hind limb weight bearing. A positive correlation with force plate perhaps reflects the 

low levels of inflammation that persist throughout the time course of this model and 

the lack of significant change in weight distribution (right to left hind limb ratio) 

beyond the significant decrease that occurs at day 3 and week 1 (chapter 5). The 

correlation between von Frey and AC damage was also positive, but more likely 

reflects the small data set (n=9) that included only 2 time points (week 4 and week 8), 

rather than any true reflection of the relationship between AC damage and 

development of allodynia. These incongruent findings in the DMM model highlight 

the need for further histological evaluation of knee joints from the same mice in 

which pain behavior measurements have also been collected. Some researchers have 

reported development of allodynia in the DMM model that demonstrates a similar 

temporal pattern to the one observed in this thesis (339, 441), however the 
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relationship between the observed allodynia and the knee joint pathology in any given 

animal has not previously been investigated to enable comparisons with the findings 

from this thesis. Interestingly, others investigators have reported a very different 

temporal pattern of allodynia in the DMM model (604). 

7.4.1 Summary 

In summary, the correlation analyses reported in this chapter have identified model-

specific associations that further define the complex relationship between joint 

pathology, pain and gene transcriptional changes in the DRG (an important aspect of 

peripheral sensory modulation). Not only are joint tissue pathology, pain behaviour 

and peripheral sensory modulation animal model specific; the associations between 

these three disease components are also unique to the animal model under 

investigation. This confirms the importance of mapping pre-clinical findings to the 

human disease phenotype that best fits the animal model. It would appear that the 

selection of animal model and pain assay investigators use to study OA pain 

mechanisms and test therapeutic targets, does matter. 
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CHAPTER 8:  Conclusions and future directions 

The research in this thesis investigated the mechanisms that drive osteoarthritis (OA) 

pain, and whether these change over time, and differ between different OA 

phenotypes. This was done by characterising the changes that occur in OA joint 

histopathology, OA pain behaviour and dorsal root ganglia (DRG) gene transcription, 

over the different phases of OA disease development, using two distinct animal 

models (a post traumatic model of OA and an antigen-induced inflammatory model of 

arthritis).  The relationship between OA joint tissue pathology and OA pain was 

explored further by determining if any associations existed between the various 

outcomes that were measured.  

8.1 Summary 

1. Each model demonstrated a distinct temporal pattern of joint tissue

histopathological change, model-specific associations between the three major

tissue structures in the joint (articular cartilage, synovium and subchondral

bone), and a different set of risk factors for development of OA cartilage

degradation.

a) Moderate synovial inflammation peaking at week 2 and low-grade

inflammation persisting until week 16, was observed in DMM. Severe

synovial inflammation peaking at week 2 and persisting until week 12 before

declining to levels comparable to DMM (week 16) was observed in AIA.

b) Osteophyte formation was a feature of both models, however in DMM

osteophytes formed early (week 2) and persisted, and in AIA they formed late

(week 12).
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c) Unique to the AIA model was the formation of enthesophytes. Their site of

origin and early development suggest that inflammation is a key factor in

driving their formation.

d) In DMM articular cartilage (AC) proteoglycan loss and AC damage appeared

early (week 1 and 2) and developed gradually. In AIA AC proteoglycan loss

was immediate (day 3) and complete, and AC damage was more delayed in

developing (week 8).

e) The transition from subchondral bone (SCB) vascularisation to SCB sclerosis

was different in the two models and reflected the differences in joint

inflammation severity, with SCB vascularity persisting for longer (week 4) in

AIA.

f) Despite these temporal differences, by 16 weeks both models displayed all the

hallmark features of human OA; defined radiographically as joint space

narrowing and the presence of osteophytes; and observed histologically as AC

proteoglycan loss, AC erosion, SCB sclerosis and osteophyte maturity and

ossification.

g) Risk factors for OA development/progression (defined as AC damage) in the

DMM model are surgery/joint injury, AC PG loss, chondrocyte

hypertrophy/cell death, osteophyte size and SCB sclerosis. Risk factors for

OA development/progression (defined as AC damage) in the AIA model are

time, synovitis, chondrocyte hypertrophy/cell death and osteophyte size.

These risk factors suggest that different tissue-specific mechanisms; largely 

determined by the initiating cause, drive the joint pathology changes that lead 

eventually to OA. Therefore, AIA and DMM are both models of OA based on joint 

pathology but represent different phenotypes of OA based on their pathophysiology. 
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2. Both AIA and DMM models displayed tactile allodynia, knee joint mechanical

hyperalgesia, reduced weight bearing of the ipsilateral hind limb, thermal

hyperalgesia and alterations in stride length, during different stages of disease

development. However, the severity and temporal pattern in which these pain

behaviours occurred were different in each model.

a) Ipsilateral tactile allodynia developed early in all treatment and sham/saline

injected groups (by week 2), suggesting that tissue trauma and inflammation

(caused by surgery, immunisation and knee joint injection) initiates

sensitisation in both models. Persistence of tactile allodynia in DMM mice and

resolution in the shams indicates that different mechanisms are involved in the

initiation (surgical trauma and inflammation) and maintenance (OA disease

pathology) of sensitisation. Persistence of tactile allodynia in all AIA mice

(including immunised only) indicates that sensitisation in this model is largely

driven by immunisation and highlights the confounding effect immunisation

has on the alteration of pain pathways.

b) Pressure pain sensitivity (as measured by PAM) occurred in the early (week 6)

and late phase (week 16) of OA in DMM mice, indicating that mechanical

hyperalgesia is driven by local joint pathology changes in this model.  In

contrast, AIA mice displayed greater pressure pain sensitivity in the early

phase of disease with a similar pattern of response also observed in

immunised-only mice. This suggests that inflammation (both localised and

systemic) drives the development of mechanical hyperalgesia in this model,

and again highlights the confounding effect of using a model with both

systemic and localised effects.
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c) Reduced ipsilateral hind limb weight bearing was observed in DMM, sham

and AIA mice only, indicating that this is a measure of locally driven pain

mechanisms in both models.

d) Gait changes in DMM mice manifested as a decrease in left-to-right stride and

full stride length from week 4 that persisted until week 16. AIA and saline

injected mice demonstrated the same temporal pattern of change in stride

length and this was different to DMM. At week 16 both were decreased

compared to baseline. The changes in stride that occurred after week 4 are

likely driven by joint tissue pathology that develops earlier in DMM compared

to AIA (AC damage, osteophyte formation and SCB sclerosis), rather than by

joint inflammation. However, the added effect of immunisation cannot be

overlooked given the changes observed in saline mice.

Overall, each model demonstrated a unique temporal pattern of pain behaviour and 

despite both AIA and DMM displaying the same OA histopathological changes at 

week 16, the pain behaviour observed at this time point was different in each model. 

DMM was characterised by tactile allodynia, mechanical and thermal hyperalgesia, 

reduced weight bearing on the ipsilateral hindlimb and reduced full stride length. AIA 

was characterised by tactile allodynia, thermal hyperalgesia and increased full stride 

length. However, since tactile allodynia and reduced stride length were also observed 

in immunised-only mice, it is difficult to attribute these pain behaviours solely to the 

development of knee joint OA in the AIA model. 

Importantly, there were no associations between any of the pain behaviours in either 

model. This highlights the complex nature of pain and the importance of not relying 
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on one single pain assay when evaluating the efficacy of potential therapeutics in pre-

clinical studies, no matter which disease model is used.  

Also implicit in the pain behaviour findings is the difficulty in interpreting pain 

outcomes and investigating pain mechanisms using the AIA model. Models that 

induce a systemic immune or inflammatory response such as AIA may not be suitable 

for studying pain mechanisms of arthritis phenotypes where initiation of the disease 

process is locally driven (e.g. post-traumatic OA) rather than systemically driven (e.g. 

rheumatoid arthritis), due to the confounding effect immunisation can potentially have 

on all the outcomes.  

3. Changes in gene expression in the innervating DRG were observed during

each phase of OA disease in both AIA and DMM, with the greatest

differences occurring in the late chronic phase of OA. Despite the histological

similarities between AIA and DMM during this phase of disease, the gene

expression data suggests there are different mechanisms driving OA pain in

the two models.

a) In the acute inflammatory phase of disease, DRG gene expression changes in

DMM (relative to sham) occurred for IL-1 and ADAMTS-5, and in AIA

(relative to saline) changes occurred for ATF3, IL-1, TRPV2 and ADAMTS-

5.

b) In the early progressive phase of OA, DRG gene expression changes in DMM

(relative to sham) occurred for TRPA1, TRPV1 and CNR1, and in AIA

(relative to saline) for ATF3, CGRP, TRPA1, Oprm1 and ADAMTS-4.



317 

c) In the late chronic phase of OA, DRG gene expression changes in DMM

(relative to sham) occurred for CGRP, Tac-1, TRPA1, TRPV1, TRPV2,

TRPV4 and Oprm1, but only for TRPV1 in AIA.

d) Consistent gene expression associations were observed in sham and saline

mice. Dysregulation of these associations was identified in both AIA and

DMM for CGRP, IL-1 and ADAMTS-4, but with loss of association with

different subsets of genes in the two models. This suggests model specific

differential effects in the expression profile of these three genes and therefore,

supports the existence of different pain regulatory pathways in the two

models.

e) The observed temporal pattern of gene expression changes in each model

could not be related directly to protein expression in the DRG using

immunohistochemistry. For the two genes where antibody immunoreactivity

above background was achieved there was no consistent association between

gene expression and protein expression at different phases of disease.

4. Correlation analysis proved to be a useful tool for understanding the complex

relationship between joint pathology, pain and gene transcriptional changes in

the DRG, and defining the differences between different animal model

phenotypes.

a) Associations between joint histopathology and DRG gene expression suggest

that the synovium may be the primary tissue that drives pain in the AIA model

and SCB may be the primary tissue that drives pain in the DMM model.



318 

b) Associations between pain behaviour and DRG gene expression suggest that

stride length, and perhaps gait characteristics more generally, is a suitable pain

behaviour for investigating pain mechanisms in the DMM model.

c) Associations between joint histopathology and pain behaviour suggest that

PAM, stride length and forceplate may be useful markers of joint

inflammation.

So not only are joint tissue pathology, pain behaviour and peripheral sensory 

modulation animal model specific, but the associations between these three 

components of OA disease are also unique to the animal model under investigation. 

This confirms the importance of mapping pre-clinical findings to the human disease 

phenotype that best fits the animal model. Yet currently this does not occur for OA 

pain, where much of what we know is informed by studies conducted in animal 

models that don’t correspond to a human OA phenotype.  

The findings reported in this thesis support the hypothesis that the mechanisms that 

drive osteoarthritis pain are specific to the pathophysiology and stage of the disease, 

and differ between different OA phenotypes. Which model researchers use to study 

different aspects of OA pain is important to our overall understanding of its 

mechanisms and our ability to translate pre-clinical findings to effective therapeutics. 

The findings also suggest that OA joint disease and OA pain share common pathways 

and as such, the study of OA pain and pre-clinical investigation of therapeutics should 

be carried out in animal models that are phenotypically similar to specific human OA 

conditions of interest. 
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8.2 Study limitations 

This research challenges how we currently use animal models to inform our 

understanding of OA pain and make decisions about the potential efficacy of novel 

therapeutic targets. However, there are a number of study limitations that need to be 

highlighted. 

Model specific tissue pathology associations, pathology-pain associations, and pain-

DRG gene expression associations were identified. But establishing causal 

relationships for these associations was beyond the scope of this thesis, and further 

investigation is required.  

Interpretation of any pain behavior test is complicated by the fact that in most 

instances these tests involve exposure to two stressors, physical confinement or 

restraint, and a noxious stimulus (e.g. heat, mechanical, tactile, joint 

loading). Therefore, a behavioural response that is interpreted as pain may in fact 

be a stress driven escape response. Acclimatisation aims to familiarise mice to 

a particular restraint mechanism or procedure in order to minimise the stress 

response, however, it is unlikely to ever be completely eliminated.  

A relationship between the observed changes in gene expression and changes in 

protein expression in the DRG was not demonstrated. An investigation into the 

numerous post-transcriptional mechanisms that control protein levels was not within 

the scope of this study, but would provide a clearer understanding of the significance 

of the unique pattern of gene dysregulation that was observed in the two arthritis 

models.  

Although a number of key protein and neuropeptide candidates that are associated 

with both inflammatory and chronic pain states were measured, investigation of all 

genes implicated in pain signal modulation was also not within the scope of this 
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study. Investigating gene expression in the DRG was a starting point for 

characterising the sensory modulation that gives rise to sensitisation and the 

manifestation of chronic OA pain. Further investigation into pain mechanisms at the 

level of the spinal cord and brain are required in order to gain a more complete 

understanding of the mechanisms at play, and better inform gene selection for 

therapeutic targets in the future. 
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8.3 Questions arising 

A number of key questions about the mechanisms of OA pain emerge from the 

findings of this research. 

1. How suitable is the DMM model as a pre-clinical model for investigating pain

mechanisms in a human post-traumatic OA phenotype?

2. What other genes play a role in peripheral (DRG) and central (spinal cord)

sensory modulation in OA pain?

3. How important are changes in gene transcription relative to other processes that

together account for sensory modulation in OA pain?

4. How does inflammation contribute to pain and sensitisation at different stages of

OA disease in a post-traumatic OA phenotype?

5. How useful are different measurements of gait and mobility for tracking OA joint

disease progression and testing the efficacy of potential therapeutics?

6. What is the relationship between tactile allodynia (as measured by von frey) and

joint tissue pathology at different phases of OA disease?
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8.4 Future directions 

The broad investigations into pain-related behaviours and changes in DRG gene 

transcription conducted in this thesis were designed to be hypothesis generating to 

pave a path for future studies that can build on the findings from this thesis.  

The studies reported demonstrate that the DMM model is suitable for investigating 

both the histopathology and pain behaviour of a post-traumatic OA phenotype. 

Additional experiments, utilising gene array analysis, are required to fully 

characterise the DRG gene expression profile at different stages of OA in this model. 

This will then enable the selection of target genes for investigation in KO mice 

studies to characterise the role of specific genes in the initiation and progression of 

OA pain, by utilising the suite of pain assays and the histological scoring method 

reported in this thesis. The suitability of a particular gene as a future therapeutic target 

can then be evaluated. Based on the findings reported in this thesis TRPA1, TRPV1, 

TRPV4 and ADAMTS-4 KO mice are suitable candidates for further investigation, 

however there are likely to be others. 

In addition to characterising gene transcription profiles for each phase of OA, the role 

of gene translation (protein expression) also requires further investigation. This was 

commenced in this thesis but due to technical problems with optimising antibodies, 

the scope of the experiment was very limited. Further work is required to investigate 

protein expression of the other target genes identified, using a combination of IHC 

and tissue culture methods to determine the triggers that promote or inhibit protein 

expression. An investigation into sensory neuron protein expression using DRG tissue 

culture methods was commenced and preliminary data is presented in Appendix E. 
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However, because of the time required optimising the protocols and methods for this 

technique the investigation was not completed as part of the scope of this thesis. 

The DRG were selected as a starting point for characterising the sensory modulation 

that gives rise to sensitisation and the manifestation of chronic OA pain. However, in 

addition to identifying target genes at the level of the DRG, investigations into pain 

mechanisms at the level of the spinal cord (dorsal horn) and brain (e.g. thalamas, 

prefrontal cortex, somatosensory cortex, amygdala) are also required. There are clear 

advantages to targeting OA pain at the periphery, but this does not exclude the need to 

have a full understanding of the mechanisms at play all along the pain pathway to 

better inform gene selection for therapeutic targets that are likely to be effective when 

administered into the affected joint.  

The significant role that inflammation plays in OA pain was observed in both AIA 

and DMM, but was clearly different for each model. This was evident from the 

model-specific independent risk factors for developing OA that emerged from 

regression modelling and joint tissue associations that emerged from the correlation 

data. It was also demonstrated in the different gene expression profiles for each model 

at different phases of OA, and importantly in the model-specific associations between 

joint tissue histopathology, pain behaviour and DRG gene expression. The role of 

inflammation in OA pain is currently under investigation by numerous researchers 

and this needs to continue. In particular, greater clarification of the role of 

macrophage migration and differentiation of sub sets of macrophages and how each 

may alter sensory signalling differently at different stages of OA disease is required.  

Finally, it will be important to build on the pain behaviour methods that were 

described and used in this thesis, to further investigate associations between pain 
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behaviour and joint tissue pathology, especially the relevance of tactile allodynia as a 

measure of sensitisation, its association with AC damage and SCB sclerosis, and its 

value as a measure of pain when investigating therapeutic targets. Further 

examination of gait analysis and spontaneous activity based measures to optimise the 

measures used to detect changes with disease progression and to test potential 

therapeutics is also required. 
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Appendix A: Reagents and Equipment 

1. Animal Models

1.1 Complete Freund’s adjuvant preparation 

Material/Equipment Supplier 
Incomplete Freund’s Adjuvant SIGMA (order #F5506) 
Mycobacterium tuberculosis (M.tb) DIFCO (6 x 100mg vials, order #231141) 
Mortar and pestle 

1.2 Emulsion preparation 

Material/Equipment Supplier 
Methylated Bovine Serum Albumin SIGMA (order #A1009) 
1ml glass Tb syringe with leur lock Becton Dickson (order #512027) 
10ml glass syringe with leur lock Becton Dickson (order #512027) 
18 gauge drawing needles Becton Dickson (order #300204) 
30 gauge ½ inch needles Becton Dickson (order #305106) 
Dumont tweezers (#7, curved, superfine) ProSciTech (T017D) 
Flat bottomed 5 ml tube with cap 
Double edged razor blades 
Dissection microscope 
Anaesthetic machine (Isoflurane) 
Gloves and safety goggles 

1.3 DMM Surgery 

Material/Equipment Supplier 
Westcott spring scissors 11.5 cm long with 
straight tips 

ProSciTech (order #T106) 

Dumont tweezers – number 7 (curved 
with superfine points, dumostar steel) 

ProSciTech (order #T017D) 

Dumont tweezers – number 5 (straight 
with superfine points, dumostar steel) 

ProSciTech (order #T015D) 

Castroveijo Ophthalmic needle holder, 
curved 

ProSciTech (order #TT1A03C); 

Scalpel blades (no. 11) ProSciTech 
Scalpel handle (no. 3) ProSciTech 
Suture material (8/0 Vicryl) Ethicon (order # J548G) 
Tissue adhesive (Vetbond) 3M 
0.9% NaCl sterile irrigation solution 
Double-edged razor blades Schick 
Tuberculin syringes BD Medical 
Sterile gloves 
Paper drapes and sterile gauze 
Surgical microscope 
Anaesthetic machine (Isoflurane) 
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2. Polymerase Chain Reaction Primers

Molecule Species 

Accession # 

Pos’n Oligo Bases Sequence 5’ to 3’ T °C Product (bp) 

ADAMTS4 Mus musc 

NM172845 

1549F 

1793R 

24 

24 

F – TAA CTT GAA TGG GCA GGG GGG TTC 

R – AAT GGC TTG AGT CAG GAC CGA AGG 

60 245 

ADAMTS5 Mus musc 

NM011782 

2058F 

2355R 

21 

24 

F – TCT CCA AAG GTT ACG GAT GGG 

R – TCT TCT TCA GGG CTA AGT AGG CAG 

55 298 

ATF3 Mus Musc 

AB291912 

269F 

379R 

23 

23 

F – AGG ATT TTG CTA ACC TGA CAC CC 

R – TGT TGA CGG TAA CTG ACT CCA GC 

55 111 

Calcitonin (CGRP) Mus musc 

NM007587 

716F 

853R 

24 

22 

F – CCA CAG GCT AAA AGA GAA TCA CCC 

R – CCC AAA CAA CCA ACA CTT CCA G 

55 138 

Cannabinoid receptor 1 (Cnr1) Mus musc 

NM007726.3 

987F 

1149R 

22 

23 

F – TGG AGA ACC TGC TGG TGC TAT G 

R – GGA CTA TCT TTG CGG TGG AAC AC 

57 163 

GAPDH Mus musc 

BC083149 

880F 

1079R 

20 

20 

F – TGC GAC TTC AAC AGC AAC TC 

R – CCT GCT CAG TGT CCT TGC TG 

55 200 

IL1B Mus musc 

BC011437 

127F 

243R 

24 

23 

F – ACC TGT TCT TTG AAG TTG ACG GAC 

R – TCT TGT TGA TGT GCT GCT GTG AG 

55 117 

Opioid receptor mu (Oprm1) Mus musc 

AB441736 

701F 

822R 

23 

23 

F – TCT GTG TCT TCA TCT TCG CCT TC 

R – GTT CCT GTC CTT TTC TTT GGA GC 

55 122 

Tachykinin-1 (Substance P) Mus musc 

NM009311 

754F 

859R 

22 

22 

F – CGC AGT CTC CAA AGA AAG GAC C 

R – TGA AAG CAG AAC CAG GGG TAG C 

57 106 

TRPA1 Mus musc 

BC131963 

364F 

530R 

23 

21 

F – AAG TTT CTT CTC AGC CAA GGA GC 

R –ATC AAA GCC GTG TTC CCA TTC 

55 167 

TRPV1 Mus musc 

AY445519 

105F 

283R 

20 

24 

F – AGC CAA GCC CCA CAT CTT TG 

R – TGA GAC AGG TAG GTC CAT CCA CAG 

58 179 

TRPV2 Mus musc 

NM011706 

1846F 

2014R 

24 

22 

F – TAC CTC CCC CTG TTA GTG TCA TCC 

R – CAG CAA AGC CGA AAA GGA AGA C 

56 169 

TRPV4 Mus musc 

NM022017 

1454F 

1693R 

24 

21 

F – GAG AGA CAA GTG GCG TAA GTT TGG 

R – CCA GGG CAT TTC TTC GTG AAC 

58 240 
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3. Immunohistochemistry

3.1 Materials 

Materials Details Supplier 
Slides Adhesive Slides Dako K802021 
Cover slips Menzel-Glaser 22x50mm Trajan Scientific & Medical 

CS2250100 
Mountant Euckitt mounting media Trajan Scientific & Medical 

EUCKITT 
Staining chamber Sequenza Shandon coverplates ThermoFisher 
Xylene Xylene AR POCD (Point of care diagnostics) 

XYL5 
Ethanol 100% Absolute Ethanol, non 

denatured 
POCD ETHABS5 

Ethanol 95% Dilute 100% stock in milliQ 
water 

Ethanol 70% Dilute 100% stock in milliQ 
water 

Heat retrieval 
solution 

0.01M Citrate buffer, pH 6.0 Dako S1699 

Enzymatic 
retrieval 

Proteinase K Dako S3020 

0.3% Hydrogen 
Peroxide 

Diluted 30% stock in milliQ 
water 1:100 

Trajan Scientific & Medical  
UnivarAjax 260-500ml 

TBST wash buffer 0.05M Tris, 0.15M NaCl, 0.05% 
Tween 20, pH 7.6 

Dako K800 

Blocking reagent Serum-free Protein Block Dako X0909 
Antibody diluent Antibody diluent Dako S0809 
Detection Envision + Rabbit Dako K4003 

Envision + Mouse Dako K4001 
Stain NovaREDTM VectorLabs SK4805 
Counterstain Mayer’s Haematoxylin Refer to appendix B for details 

on preparation Scott’s Blue 

3.2 Antibodies 

Antibody Details Source 
CGRP Monoclonal Anti-Calcitonin Gene-

Related Peptide (CGRP) Clone CD8, 
in mouse, purified immunoglobulin 

Sigma C 9487 

F4/80 Monoclonal Anti-F4/80 antibody, in 
rat, purified immunogobulin 

Abcam ab6640 

Opmr1 Rabbit polyclonal antibody raised 
against synthetic peptide of opioid 
mu receptor, affinity purified 

Abnova PAB18103 

PGP Polyclonal anti-PGP9.5 antibody 
raised against synthetic peptide, in 
rat, affinity purified 

Abcam ab27053 
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4. DRG Tissue Culture reagents and materials

Reagent Supplier 

HBSS buffer solution Invitrogen 14025-092 

Poly-L-Lysine Sigma p1274-25MG 

N2 Invitrogen 17502048 

Laminin Sigma L2020-1MG 

Collagenase type 4 Fisher NC9620402 

Papain Fisher NC9212788 

F12 media Invitrogen 11765-054 

Fetal bovine serum Invitrogen 

Penicillin/Streptomycin Sigma P4333-20ML 

glass coverslips Fisher 12-545-102 

glass pipettes Fisher 136786B 
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Appendix B: Reagent Preparation 

1. Antigen Induced Arthritis Model

a. Freund’s Complete Adjuvant (2mg/ml)

A mask, safety glasses and gloves are worn during preparation.  

Place 1-2ml of Incomplete Freund’s adjuvant in a mortar and add 1 vial (100mg) of 

Mycobacterium turberculosis (M.tb). This avoids aerolisation of the powder during 

preparation. Pulverize the M.tb powder in the Incomplete Freund’s for about 10 

minutes, adding a little more Freund’s as you go but keeping the volume to a 

minimum so as to give best pulverization. 

Transfer the pulverized M.tb to a glass tube with lid. Add more Freund’s Incomplete 

to the mortar and use to “wash out” more of the M.tb 

Repeat several times until all of the M.tb has been transferred to the tube. 

Make the final volume of the Freund’s Complete adjuvant to 50 ml (5 x 10 ml vials) 

to achieve a concentration of 2mg/ml 

b. Methylated Bovine Serum Albumin (mBSA) (2mg/ml)

Weigh out 20mg mBSA in 10 ml tube.  Add 10ml sterile water.  DO NOT MIX but 

place in 37°C water bath over ~1hr to allow to dissolve.  Check every 15 min and 

gently flick. 

NB mBSA is prepared as a large batch (20mg in 10 ml), stored as 1ml aliquots at -20 

degrees, then thawed on the day it is needed to make emulsion. 
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c. mBSA emulsion (100l/mouse)

Make up more than the calculated amount to compensate for the losses that occur 

during preparation. For example, for 10 mice prepare 2ml emulsion, for 20 mice 

prepare 4ml emulsion, and for 30 mice prepare 5ml emulsion. 

Safety glasses and gloves are worn during preparation. 

Transfer the required amount of Freund’s complete adjuvant (FCA) (2mg/ml), using a 

1ml Gilson tip, to a 5ml flat bottom tube. Add an equal volume of dissolved 2mg/ml 

mBSA using a drop wise technique with continual vortexing of the tube. Once all the 

mBSA has been added, use an autoclaved 10 ml glass syringe with an 18-gauge 

drawing needle to create a stable emulsion using the following technique.  

- Aspirate some of the mixture into the syringe, invert syringe and pull the plunger

back most of the way to “coat” the walls of the syringe and provide a better seal. Then 

expel this back into the tube. 

- Draw up all of the emulsion, invert the syringe and expel the air. Expel the emulsion

(with force) back into the tube with the needle above the liquid to avoid any overflow 

and production of bubbles. Repeat the procedure 2-3 times then put the tube and 10 

ml syringe on ice for a few minutes to avoid heating the emulsion. 

- Minimise handling of syringe around the barrel to avoid warming it up.

- Repeat the above process 3-5 times until a thick and stable white emulsion is

formed.  

Test the stability of the emulsion by placing one drop of emulsion onto cold water in a 

beaker. If the drop stays together and little or no oil disperses onto surface of the 

water then the emulsion is suitable for use. 

NB Emulsion is made fresh on the day of the immunization and stored on ice until 

injected. 
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d. mBSA (20mg/ml)

Weigh out 20mg mBSA into a 1.5 ml tube.  Add 1ml sterile water.  DO NOT MIX 

but place in 37°C water bath over ~1hr to allow to dissolve.  Check every 15 min and 

gently flick.   

NB A larger batch is made up (200mg in 10 ml saline) and frozen at -20 degrees, in ½ 

and 1 ml aliquots, then thawed on the day it is required. 

When required, thaw and add 50µl of a sterile 3M NaCl solution to the 1ml aliquot 

and mix immediately. This solution is prepared the morning of injection, as the 

mBSA precipitates out over time.   

2. Real Time-PCR: Reverse transcription (RT) Master mix

Total volume = 1000µl 

- 

- 

- om primers (pentadecamers) 

- 

- -free glycerol

-    50 µl RT enzyme (Qiagen Omniscript kit)

3. Immunohistochemistry: Mice perfusion protocol

a. Flush solution - 9g NaCl + 5g Na2NO4 in 1L milliQ water

Add 1500 IU/500mL heparin (1500 IU = 300µL) 

b. Fixative solution - Phosphate buffered saline (PBS) + 4 % Paraformaldehyde (PFA) 

Set pH to 7.4 by adding NaOH or HCl. (Use pH meter) 

Prepare no sooner than day before and store at 4°C 

400 µl 10x RT buffer (Qiagen Omniscript kit)

200 µl RT dNTP (Qiagen Omniscript kit)

200 µl rand

100 µl RNAse inhibitor (Bioline)

50 µl RNAse



332 

4. DRG Culture (All procedures carried out under a laminar flow hood)

a. Preparation of Coverslips

- Place sterilized glass coverslips in tissue culture wells (2 x 6 well plates) and coat

with Poly-L-Lysine (PLL) (2ml/well) and leave at 4°C overnight

Note: The coating of these coverslips was done ahead of time and stored at 4°C 

- Turn coverslips over. Wash coverslips three times with sterile water. Use 2 ml for

each was and suction with a glass pipette. Allow coverslips to dry.

- Before use, coat the PLL-coated coverslips with Laminin (200 µl per coverslip)

and incubate for 2 hrs in the incubator at 37°C.

- After incubation, remove excess laminin from each coverslip by suctioning with

glass pipette, and allow to air dry.

b. Solutions and Culture Mediums

Poly-L-Lysine (PLL):- Add 250 ml of sterile tissue culture grade water to 25 mg of 

PLL. Store as 50 ml aliquots (100 µg/ml) at -20°C. 

N2:- Thaw 5 mL vial and store as 1 mL aliquots at -20°C 

Laminin: - Dilute 50x with sterile water (supplied at 1mg/ml concentration). Store as 

50 µl aliquots at -20°C. Thaw at room temperature and make working dilution of 

Collagenase type 4: - Dissolve 50 mg of Collagenase 4 into 50 ml of Hank’s 

Balanced Salt solution (HBSS) (1mg/ml). Store as 1 ml aliquots at 4-8°C. Thaw in 

37°C water bath before use. 

Papain; - Dissolve 1 vial of papain in 5ml of HBSS. Store as 500 µl aliquots at 4-8°C. 

F12 DRG medium and 10% FBS: - Add 5 ml of Fetal Bovine Serum (FBS) into 45 ml 

of F12 media. Make up in small quantities as required (0.5ml in 4.5ml for total of 

5ml). 



333 

F12 DRG Medium - Make up 100ml at a time in filter top bottles and store @ 4°C for 

up to 4wks. 

- 98 ml F12 media (use fresh bottle of F12 every ~6 weeks)

- 0.5 ml FBS

- 1 ml N2 supplement

- 0.5 ml Penicillin/Streptomycin
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Appendix C: Histology Scoring 

Scoring system used for histopathological assessment of Toluidine blue stained 

osteochondral sections of mouse knees following DMM or AIA. Sagittal sections.  

Only score a single slide for each animal/joint and try to score the same area of the 

joint in all animals – the slide near the central weight-bearing region of the joint.  

Table 1.  STRUCTURAL CARTILAGE DAMAGE 

Scoring system used for histopathological assessment of Toluidine blue stained 

osteochondral sections of mouse knees following DMM or AIA, modified from that 

of Glasson et al (Arthritis Rhem 2004). The tibial plateau and the femoral condyle are 

scored separately. Only the central weight-bearing region of the joint was evaluated.  

0 Normal cartilage 

1 Roughened surface AND/OR superficial fibrillation <10% of cartilage depth 

(any % of joint surface area), 

2 Fibrillation extending >10% of cartilage depth but not reaching the calcified 

cartilage AND/OR loss of surface lamina (any % or joint surface area) 

3 Horizontal cracks/separations between calcified and non-calcified cartilage 

OR clefts down to calcified cartilage BUT no loss of non-calcified cartilage 

4 Fibrillation to the calcified layer OR loss of non-calcified cartilage lesion for 

1-25% of the joint surface

5 Fibrillation to the calcified layer OR loss of non-calcified cartilage lesion for 

25-50% of the joint surface

6 Fibrillation to the calcified layer OR loss of non-calcified cartilage lesion for 

50-75% of the joint surface

7 Fibrillation to the calcified layer OR loss of non-calcified cartilage lesion for 

>75% of the joint surface

8. Lesion extends through the calcified cartilage (any % joint surface area)
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Table 2.  PROTEOGLYCAN LOSS 

Scoring system used for histopathological assessment of Toluidine blue stained 

osteochondral sections of mouse knees following DMM or AIA. The tibial plateau 

and the femoral condyle are scored separately. Serial sections across the width of the 

medial tibial plateau are stained. Only the central weight-bearing region of the joint is 

evaluated. 

0 Normal cartilage 

1 Decreased but not complete loss of toluidine blue staining over any % of 

surface area 

2 Complete loss of toluidine blue staining in the non-calcified cartilage extending 

to <25% of the articular surface 

3 Complete loss of toluidine blue staining in the non-calcified cartilage extending 

to 25-50% of the articular surface 

4 Complete loss of toluidine blue staining in the non-calcified cartilage extending 

to 50-75% of the articular surface 

5 Complete loss of toluidine blue staining in the non-calcified cartilage extending 

to >75% of the articular surface 
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Table 3.  CHONDROCYTE HYPERTROPHY/APOPTOSIS/CELL DEATH – 

non-calcified articular cartilage 

Scoring system used for histopathological assessment of Toluidine blue stained 

osteochondral sections of mouse knees following DMM or AIA. POSITIVE SCORE - 

defined as enlarged chondrocyte/lacunae in non-calcified cartilage – appears as empty 

space around collapsed chondrocyte typical of cells in calcified zone PLUS the 

nucleus of the cell is dark stained and pyknotic (shrunken).  

NOTE: If the nucleus is missing from the lacunae this is considered apoptotic. If there 

is empty space around nucleus but it is not collapsed/dark staining this is not 

considered positive (compare with hypertrophic/apoptotic cells in calcified cartilage 

as an example). Tibia and femur examined separately as below.  

0 No hypertrophy/apoptosis  

1 <1/3
rd

 of cells in non-calcified cartilage across the width of the joint are

hypertrophic/apoptotic/missing nuclei 

2 1/3
rd

 – 2/3
rd

 of cells in non-calcified cartilage across the width of the joint are

hypertrophic/apoptotic/missing nuclei 

3 >2/3
rd

 of cells in non-calcified cartilage across the width of the joint are

hypertrophic/apoptotic/missing nuclei 
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Table 4.  OSTEOPHYTE FORMATION/MATURATION 

Scoring system used for histopathological assessment of Toluidine blue stained 

osteochondral sections of mouse knees following DMM or AIA. Only the major 

osteophyte that forms on the anterior/medial margin of the tibia is scored. Only a 

single section is scored for each mouse.  The section that is scored is that just at the 

point when separation of the anterior and posterior meniscal elements becomes 

apparent. The osteophyte in the DMM model is invariably closer to the medial margin 

of the joint in sagittal sections and the same site is scored in each mouse. 

Osteophyte “maturity” 

0 No Osteophyte 

1 Predominantly cartilaginous - little or no active endochondral ossification 

2 Mixed cartilage and bone with active endochondral ossification – chondrocyte 

hypertophy and active vascular invasion and new bone formation 

3 Predominantly bone (often with mature trabeculae and marrow space) with 

little active endochondral ossification. 

Osteophyte size 

This is judged by an “internal” standard which is the thickness of the nearby normal 

full depth articular cartilage (i.e surface to base of calcified cartilage).  

0 No Osteophyte 

1 Small  = up to 1x (same) thickness of the adjacent normal cartilage 

2 Medium = 1-3 x the thickness of the adjacent normal cartilage 

3 Large = > 3 x the thickness of the adjacent normal cartilage 
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Table 5.  SUBCHONDRAL BONE 

Scoring system used for histopathological assessment of Toluidine blue stained 

osteochondral sections of mouse knees following DMM or AIA. Only the tibia is 

scored. NOTE “solid” trabeculae bone or cortical-type bone is seen as predominantly 

(>90%) green stained bone with canaliculi but may contain small marrow spaces and 

extends from the articular to the growth plate cartilage.  For a score of 1-3 the changes 

must be on 2 or more consecutive sections. 

0 Normal trabecular bone with > 50% marrow space 

1 2 or more “wide” vertical trabecular struts of bone that extend from the 

cartilage to the growth plate OR “solid” bone spanning up to 1/3
rd

 of the width

of the epiphysis 

2 “solid” bone spanning > 1/3
rd

 but < 2/3
rd

 of the width of the epiphysis

3 “solid” bone spanning > 2/3
rd

 of the width of the epiphysis.

Table 6.  SUBCHONDRAL BONE Vascular Invasion/erosion 

Scoring system used for histopathological assessment of Toluidine blue stained 

osteochondral sections of mouse knees following DMM. Only the tibia is scored. 

Score by evaluating the number of points at which the subchondral bone is 

“breached” such that vessels or marrow WBC touch or invade the calcified cartilage. 

0  Normal: intact SC bone layer 

1  Mild: 1 or 2 points of vascular invasion to touch but not invade the 

calcified AC in tibia 

2  Moderate: 3 or more points of vascular invasion to touch but not invade 

the calcified AC in tibia; OR any number of points that invade into the 

calcified AC but do not reach the non calcified AC 

3  Severe: any number of points that invade through the calcified AC and 

reach/invade the non calcified AC 
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Synovial Inflammation Scoring 

Scoring system used for histopathological assessment of Toluidine blue stained 

osteochondral sections of mouse knees following DMM or AIA. Sagittal sections.  

Only score a single slide for each animal/joint and try to score the same area of the 

joint in all animals – the slide near the central weight-bearing region of the joint. Only 

the synovium superior (femoral side) to the meniscal remnant is scored. Both anterior 

and posterior aspects of the joint are scored. 

PANUS 

Panus, defined as fibrous tissue/synovium/inflammatory cell out growth spreading 

OVER the bone at the osteochondral junction joint margin and ultimately over the 

surface of the cartilage at the joint margins. Score the maximum distance over which 

the panus (see definition above) has spread. Use an “internal standard” to measure the 

distance which is the full thickness depth of the articular cartilage (non-calcified plus 

calcified – i.e. tol blue positive tissue) at a point 1/4 of the way across the joint (see 

figure) from the respective adjacent/affected joint margin.   

0 No panus 

1 mild: panus (2> cells thickness) is present on the bone at the joint margin but 

has not has migrated over cartilage surface 

2 moderate: panus has migrated over cartilage surface  < 1 x cartilage depth 

3 severe: panus has migrated over cartilage surface  > 1 x cartilage depth 
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Bone Erosion By Panus Or Inflammatory Cell Inflitrate 

As well as migrating over the surface of the cartilage the panus/inflammatory cell 

infiltrate can erode into the cortical bone at the joint margin. Look at the anterior and 

posterior margin of the femur between joint capsule attachment and cartilage margin. 

Bone erosion by pannus/inflammatory cells is considered to be present when there is 

loss of any depth of the cortical bone from the outside in towards the marrow cavity 

with hyperplastic synovial cells/inflammatory cells attached to and invading into this 

area of bone loss. The depth of cortical bone loss can vary from partial thickness, 

appearing as a rough and/or scalloped bone surface with attached panus through to 

complete loss of cortical bone with panus extending into the marrow. 

BONE EROSION 

Score the maximum erosion severity at the joint margin. 

0 no cortical bone erosion at any site 

1 partial thickness loss of cortical bone only  

2 focal complete loss of cortical bone  - communication with the marrow cavity 

one small “vascular” communication site 

3 widespread complete loss of cortical bone  - communication with the marrow 

cavity multiple sites or broad area of loss of cortical bone 
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SYNOVIAL HYPERPLASIA - SEVERITY 

Do not score the cells in the area actually attached to the tibia or femur (this is 

recorded in panus) OR cells on the surface of the meniscus itself or immediately 

adjacent (synovial plica here often has multiple synovial cell thickness in normal 

joints). Score the maximum hyperplasia seen anywhere along this area even if only 

focal. 

0 1 cell thick  

1 mild = 2-3 cells thick  

2 moderate = 4-5 cells thick 

3 severe = >5 cells thick  

SUB-SYNOVIAL INFLAMMATION / WBC INFILTRATION 

The infiltration of inflammatory cells (neutrophils, macrophages and/or lymphocytes) 

is evaluated.  

0 no inflammatory cells 

1 occasional scattered inflammatory cells - perivascular 

2 FOCAL areas of dense subsynovial wbc infiltrate - but still predominantly 

normal subsynovial areolar connective tissue present 

3 WIDESPREAD dense subsynovial wbc infiltrate – markedly reduced or 

little/no normal areolar connective tissue evident OR 

LYMPHOID FOLLICLE formation – distinct accumulations of mononuclear cells 

organised into rounded masses reminiscent of lymph nodules 

SYNOVIAL EXUDATE 

The infiltration of inflammatory cells (neutrophils, macrophages and/or lymphocytes) 

is evaluated.  

0 no inflammatory cells or fibrin in the synovial cavity 

1 inflammatory cells and/or fibrin clot restricted in the synovial cavity – may be 

restricted to recesses 
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Appendix D: Melt curves for real time RT-PCR 

For real time RT-PCR, primer specificity was confirmed for each gene by performing 

a melt curve analysis and demonstrating a single amplicon of appropriate size. 

Representative melt curves for the 12 genes investigated in this study are included 

below. Each graph includes samples for DMM, AIA, sham and saline injected mice. 
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ATF3 quantitative data graph represents DMM, Sham, AIA and saline injected mice 

DRG. Expression of ATF3 was demonstrated in both treatment and control groups at 

all measured time points. The graphs below represent week 4 (a) and week 8 (b) data. 

a. 

b. 
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Appendix E: the role of macrophage infiltration and 

chemokine production by sensory neurones in 

development of OA pain - preliminary findings using 

IHC and DRG tissue culture methods. 

Introduction and aims 

Recently, macrophage infiltration has been implicated in pain and sensitisation in 

animal models of OA. Researchers have demonstrated that peripheral inflammation 

alone in the absence of peripheral nerve injury is a trigger for macrophage infiltration 

into innervating DRG, and that this macrophage infiltration correlates with OA pain 

related behaviour. MCP-1 (monocyte chemo-attractant protein-1) is a chemotactic 

cytokine that mediates increased pain signaling by attracting macrophages to the 

DRG, and has also been shown to directly mediate excitatory effects at the level of the 

DRG in nerve-injury models of pain. However, the relationship between DRG 

macrophage infiltration, pain, and progression of joint pathology has not been studied. 

To further investigate the mechanisms involved in sensitisation at the level of the 

DRG (both early and late in the development of OA), IHC and DRG tissue culture 

methods were used. Immunoreactivity for F4-80 (a macrophage marker) and 

production of MCP-1 by sensory neurons in vitro, was measured in the lumbar DRG 

of AIA and DMM mice (and their respective controls). 
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 Aims: 

1. To investigate differences in F4-80 expression in the lumbar (L3-L4) DRG

following development of knee joint arthritis induced by DMM and AIA,

using immunohistochemistry techniques.

2. To measure and compare the levels of MCP-1 protein produced in culture by

lumbar DRG from mice with knee joint arthritis induced by DMM and AIA.

Methods and data presentation 

Details of the methods used to induce the two models of arthritis, DMM and AIA, are 

described in chapter 2, section 2.1. The methods used for immunohistochemistry are 

described in chapter 2, section 2.5. The methods used for tissue culture are described 

below. Details of the composition and preparation of all solutions and culture 

mediums used in DRG culture are found in Appendix B. 

a. DRG harvesting

At week 1, 4, 8 and 16, post arthritis induction, cells were harvested and isolated from 

the innervating DRG of the knee joint (L3-L5). Due to the limited cell yield from each 

individual DRG, left and right DRG were combined, and DRG 4 mice from each 

treatment group (DMM, sham, AIA, saline, immunised-control, control) were pooled 

for each 12-plate culture.  

Mice were euthanised using CO2 inhalation. The coat was sprayed liberally with 70% 

ethanol to minimise contamination. Using a dissection microscope, the skin covering 

the dorsum was dissected away to expose the underlying muscle layers and allow 

visualisation of the vertebral column and ribs. Using iris scissors an incision was 

made through the interveterbral disc space at the level of the thoracolumbar region. 

The dorsal vertebral column was then trimmed away to expose the spinal cord. The 
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spinal cord was gently lifted starting at the thoracolumbar junction and working 

towards the sacral region, to enable visualisation of the DRG. Left and right DRG (L3 

to L5) were lifted with forceps and dissected out by cutting the attaching nerve roots.  

The DRG were placed in a collection dish containing cold Hank’s Balanced Salt 

Solution (HBSS). They sat on ice for approximately one hour, until DRG from all 4 

mice (24 DRG in total) had been harvested. 

b. DRG digest

All tissue culture procedures were done inside a laminar flow hood. Using a 1ml 

pipette, the DRGs were transferred to a 15 ml centrifuge tube (falcon tube) and 

pre-warmed Collagenase type 4 added to the DRG and incubated for 20-25 minutes at 

37
o

-warmed papain was added to the DRG, followed by

gently vortexing and incubation for 20-25 minutes at 37
o
C.

Ham’s F12 medium containing 10% Fetal Bovine Serum (FBS) (0.5ml) was then 

added and the DRG digest titurated with a glass pipette for several minutes to gently 

break up the tis

strainer to remove non-dissociated cells and remaining connective tissue. The tube 

containing the digest was ‘washed’ by adding 4.5 ml of Ham’s F12 medium with 10% 

FBS, and this also filtered through the cell strainer. The filtered cell digest was 

centrifuged at 1500 rpm for 10 minutes. 

c. DRG culture

The supernatant was removed, leaving only 0.5ml. The DRG cells were re-suspended 

in 1.2ml of serum free Ham’s F12 medium by gentle mixing, and 

suspension was plated onto the centre of sterile coverslips (previously coated with 

Poly-L-Lysine and laminin) that sat in 6 well tissue culture plates. A total of 12 wells 

100µl of cell
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were plated with cells. These were then incubated at 37oC with 5% CO2 for 1.5 hours 

to allow cells to adhere before an additional 2ml of serum free Ham’s F12 medium 

was added to each cover slip, making sure not to add directly to the cells but rather the 

side of the well. The plate was gently moved from side to side to ensure the coverslips 

were fully coated with media before placing them back in the incubator and cultured 

for two days at 37oC with 5% CO2. After two days in culture, the media was changed 

and the cells cultured for an additional two days, this media being used for subsequent 

analysis. 

d. Conditioned media harvest

Before harvesting, each well was viewed under the microscope and graded 1-3 based 

on the density and viability of the cell population. Cell culture supernatant from each 

well was transferred to an assembled 3-kDa molecular weight cut-off Millipore 

centrifugal filter tube, using a 1ml pipette. The tubes were centrifuged at 5000 rpm 

(10
o
C) for 30 minutes. The bottom of the filter tubes were discarded and the tubes

inverted, before centrifuging at 1000 rpm for an additional 2 minutes. The 

concentrated supernatant was then transferred to low binding tubes and stored at -

80
o
C.

e. Protein analysis of conditioned media

Total protein was determined using a BCA assay (Thermo Fisher Scientific). Briefly 

unknown sample replicate and a series of diluted protein standards was 

pipetted into microplate wells (Pierce 96-well plate, Thermo Scientific). To each well 

shaker for 30 seconds. The plate was then covered and incubated at 37°C for 30 

minutes. The plate was then cooled to room temperature before measuring the 

absorbance at 562nm using a plate reader. 
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Levels of MCP-1 protein were determined using an ELISA (R&D systems) following 

the manufacturer’s instructions. MCP-1 values were then expressed relative to total 

protein.   

Results 

Representative images of F4-80 IR are displayed in Figure I. Levels of MPC-1 in 

conditioned media are represented in Figure II. 
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Figure I. F4-80 Immunoreactivity 

IR (NovaRED staining) in the right L3/L4 DRG in DMM, Sham, AIA, and Saline-injected mice at week 1 (a), week 4 (b), week 8 (c), and week 

16 (d) post arthritis induction. X10 magnification 
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Figure II. MCP-1 production in conditioned media 

Levels of MCP-1, expressed relative to total protein in conditioned media, L3-L45 DRG (pooled from 4 mice) in DMM, Sham, AIA, Saline-

injected and control (untreated) mice at week 1, 4, 8 and 16 post arthritis induction. Values are presented graphically as a scatter plot (mean and 

SEM) 
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