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Abstract 

Acute Lymphoblastic Leukemia (ALL) is the most common childhood cancer. Disease 

relapse following treatment still occurs in a significant minority of children and the 

majority of adult patients. The inability to further intensify current treatments due to 

dose limiting toxicities of chemotherapeutic agents demands the development of new 

agents. One exciting new treatment, is the mTOR inhibitor everolimus. Preclinical 

studies using everolimus, while promising, revealed that resistance can emerge 

following prolonged treatment in vivo. 

This study uses ALL xenografts that have developed resistance to everolimus by long-

term exposure in vivo. This unique resource, combined with proteomic and 

transcriptome sequencing technology, allows a global approach to analyse the 

complex biological mechanisms behind the development of resistance to everolimus 

in ALL.  

The expression of RNA and protein, the cell cycle distribution of everolimus resistant 

xenografts as well as the Kaplan Meier survival curves was vastly different between 

the two ALL xenografts analysed in this study. This indicates that resistance to 

everolimus is likely to have developed through different mechanisms. The cell cycle 

distribution of everolimus resistant ALL xenografts also differed depending on the 

tissues from which they were isolated. Leukemia cells may home to different tissue 

specific microenvironments that express specific factors that support ALL growth and 

survival to varying degrees. Furthermore, while individual genes were dissimilar 

between the two xenografts, there was a common regulation in pathways involved in 

cellular adhesion and the cytoskeleton. Proteomic sequencing identified 3 proteins 

possibly involved in everolimus resistance; PDLIM1, Vimentin and Stathmin-1. These 

proteins are involved with the cytoskeleton and may have a role in the adhesion, 
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migration and cell cycle, yet their exact role in the development of resistance to 

everolimus is yet to be confirmed. 

We were unable to correlate the possible mechanisms of resistance identified in the 

murine model to ALL patients after acute everolimus exposure. We identified a 

decrease in the expression of the oncogenic micro-RNA, miR-21, though, this was 

likely due to the immunosuppressive effects of everolimus and did not correlate to 

patient outcome. 
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CHAPTER 1 INTRODUCTION 

1.1 Hematopoiesis  

Hematopoiesis is a complex process where pluripotent hematopoietic stem cells 

(HSC) divide and differentiate along lineage specific pathways into the cells which 

normally comprise the blood [2, 3]. HSCs give rise to two known oligo-lineage 

progenitor cells, the common lymphoid and common myeloid progenitor cells, and 

these progenitors are restricted in their differentiation and proliferation capabilities. 

The common lymphoid progenitor (CLP), is the oligo-lineage progenitor which gives 

rise to lymphoid population, namely B-cells, T-cells, and NK-cells. The common 

myeloid progenitor (CMP) further differentiates into two progenitor cells, the granulo-

monocyte progenitor, which gives rise to the granulocytic and monocytic lineages, and 

Figure 1.1 Hematopoietic Stem Cells have the pluripotent ability to divide and 

differentiate into the cells which normally comprise the blood. Reproduced from [1]. 
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the megakaryocyte-erythroid progenitors which gives rise to cells of the erythrocytic 

and megakaryocytic lineages (Figure 1). Nevertheless, the common myeloid 

progenitors retain the potential to differentiate into the B-cell lineage at an extremely 

low frequency [4]. 

In 1978, Schofield et al described a specialised microenvironment within the bone 

marrow where HSC reside, which they termed the HSC niche [5, 6]. The supporting 

cells of the bone marrow create this niche and express and/or secrete factors that are 

required for HSC maintenance, quiescence and differentiation [2, 4]. HSC interactions 

with the niche and the supporting cells determine whether they remain stem cells, 

commit and differentiate or undergo apoptotic cell death [4, 7, 8].  

1.2 Normal lymphocyte development 

As HSCs develop into mature lymphocytes, they progressively lose multi-lineage and 

self-renewal potential and simultaneously gain the cellular and immunophenotypic 

features associated with the lymphoid lineage [9, 10]. The developing lymphocytes 

require contact with surrounding cells of the bone marrow microenvironment for 

continued growth and survival (Figure 1.2) and factors expressed and/or secreted by 

the microenvironment promote commitment to a particular lineage and mature along 

specific pathways. As the cells mature they move out of the bone marrow into the 

peripheral circulation. 
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Perhaps one of the most important secreted factors for B-lymphopoiesis is the 

chemokine CXCL12. It was first discovered to be a growth stimulating factor for pre-B 

cells [12] and is required for the retention of HSC and B-cell progenitors within the 

bone marrow [9]. CXCL12 is produced by a variety of cells within the bone marrow 

microenvironment including CXCL12-abundant reticular (CAR) cells, endothelial cells 

and osteoblastic cells [13, 14]. The receptor for CXCL12, CXCR4, is highly expressed 

on hematopoietic cells and the binding of the ligand stimulates the cell survival 

pathways. A gradient of CXCL12 exists within the bone marrow, with higher levels 

being present compared to the peripheral blood. This is a positive gradient that 

functions to retain the HSC within the bone marrow pool [13, 14]. Mice lacking CXCL12 

or its receptor CXCR4 are non-viable with both lymphopoiesis and myelopoieisis being 

severely diminished in the foetal liver and bone marrow [15]. 

Members of the TGF- superfamily play important roles in maintaining HSC and B-

lymphopoiesis. The superfamily consists of more than 20 members including 

Figure 1.2 Normal B-cell development. Reproduced from [11]. IgH (heavy) and IgL 

(light) chain loci. GL, locus in the germline configuration.  
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transforming growth factor beta (TGF-, the bone morphogenic proteins (BMP) 2 

and 7, growth and differentiation factors (GDF) 1-15, activin and Nodal [14].  

TGF- is one of the most potent inhibitors of HSC growth and is produced by a number 

of cells within the bone marrow microenvironment such as non-myelinating Schwann 

cells and megakaryocytes [16, 17]. The growth and survival of HSC pool is regulated 

by TGF- in a bidirectional manner. High concentrations of the cytokine strongly 

induces HSC quiescence, while lower concentrations promotes the proliferation of 

myeloid precursors and inhibits the growth of lymphoid precursors [16].  

Normal lymphocyte development in the murine bone marrow is highly dependent on 

the activity of IL-7 and FMS-like tyrosine kinase 3 (FLT-3, CD135), with loss of either 

of these cytokines arresting murine lymphocyte development [14, 18, 19]. In contrast, 

the role of IL-7 in humans is different, where while it is absolutely required for T-cell 

lymphopoiesis [14, 20] and induces proliferation of human B-cell precursors in vitro 

[14], it is not required for B-cell development.  

In humans, FLT3 (CD135) is expressed on HSCs and early precursors of all lineages. 

While the exact role of FLT3 in human hematopoiesis remains unclear, it is postulated 

to play an important role in the survival of the HSC and precursor cells [21]. On the 

other hand, the expression of FLT3 in mice is restricted to the multipotent and lymphoid 

progenitors and is not expressed in self-renewing stem cells [21, 22]. 

Nevertheless, the bone marrow microenvironment is a highly complex biological 

system. The structure and factors expressed by the niche is not completely 

understood, and new discoveries are consistently being made. While the factors 

mentioned above are crucial for lymphocyte development, a far greater number of 
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factors may be responsible for the regulation of the growth and survival of both normal 

and malignant lymphocytes in vivo. 

1.3 Acute Lymphoblastic Leukemia 

1.3.1 Definition 

Acute lymphoblastic leukemia (ALL) is characterised by the uncontrolled proliferation 

of lymphoblasts, within the bone marrow. As the malignant lymphoblasts increase in 

number, there is a concomitant decrease in the space available for normal 

hematopoietic cells, resulting in a reduction of normal hematopoiesis. Therefore 

patients often present with fatigue (anaemia), bleeding (thrombocytopenia) and 

recurrent infections (neutropenia), while the extensive cellular expansion can produce 

bone pain. The bone marrow is involved in all cases of ALL and diagnosis is made 

when the nucleated cell portion of the bone marrow is comprised of at least 20% 

malignant lymphoblasts. Extramedullary involvement is a common feature and may 

involve the central nervous system, lymph nodes, spleen, liver, and in males, the 

testes. 

1.3.2 Incidence 

ALL is the most common childhood malignancy in children under 15 years of age and 

accounts for approximately 31.9% of all childhood cancers diagnosed in the United 

States of America in the years 1992 to 2004, with a higher incidence rate for males 

than females [23]. There has been a significant increase in the event free survival for 

children with ALL, though females continue to obtain higher survival rates compared 

to males. Recent data has shown the five-year event free survival has increased to 

85.6% and 87.1% for males and females respectively [24, 25]. 
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The incidence of ALL in adults is much lower than in children, and while modern 

chemotherapeutic intervention has improved patient survival, the prognosis for these 

patients is far worse than that for children [26].  Adult ALL is generally associated with 

unfavourable genetic alterations, such as a high incidence of Philadelphia 

chromosome positive (Ph+) disease. Adult disease may also be complicated by age 

related co-morbidities [26-28].  

1.3.3 Classification of ALL  

Diagnosis of ALL is dependent on the guidelines by the World Health Organisation 

that uses immunophenotyping, cytogenetics and morphology to classify the 

leukemias. Identification of surface markers on leukemic cells also allows them to be 

classified according to the stage of maturation and also to be differentiated from 

normal cells (Table 1.1). The latter enables the tracking of the malignant cells 

throughout treatment and the detection of minimal residual disease [29]. Cytogenetic 

abnormalities are found in 70% of adults and 90% of children with ALL [28] and play 

a large role in the risk stratification of ALL patients into risk categories. Common 

cytogenetic abnormalities associated with adult and paediatric B-lineage ALL are 

summarised in Table 1.2. 

1.3.4 Current Therapy  

The therapeutic options available for patients with ALL are dependant on factors such 

as their age, cytogenetic abnormalities and risk status. The cornerstone of all therapy 

is a complex, multi-agent approach that aims to eradicate the bulk of the leukemic 

cells, induce remission and restore normal hematopoiesis. 
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Table 1.1 Common ALL phenotypes and expression of immunological 

markers (adapted from [28]). 

B Lineage T Lineage 

Subtype Immunophenotype Subtype Immunophenotype 

Pro-B CD19+, CD22+, CD79a+  Pro-
thymocyte 

CD7+, CD2-, CD5- 

Pre-B 
CD19+, CD22+, CD79a+, 

CD10+, cIg 
 Immature CD7+, CD2 or CD5+, CD3-

Mature 
CD19+, CD22+, CD79a+, 

CD10+, sIg, CD20(+/-) 
 Mature CD7+, CD2+, CD5+, CD3+

Cytogenetics Gene Adult Children

t(9;22)(q34;q11) BCR-ABL1 25-30% 2-5% 
t(1;14)(p32;q11) TAL-1 12-26% 3% 
t(v;11)(v;q23) MLL 10% 8% 
t(10;14)(q24;q11) HOX11 8% 1% 
t(12;21)(p13;q22 TEL-AML1 1-4% 25% 
t(8;14), t(2;8), t(8;22) C-MYC 4% 2% 
t(1;19)(q23;p13) E2A-PBX1 3% 6% 
t(5;15)(q35;q32) HOX11L2 1% 1% 
t(5;14)(q31;q32) IL3-IGH <1% <1% 
Focal deletions/mutations of 7p12.2 IKZF1 - 15% 
Dic(9;20) CDKN2a 0.5% 2-3% 
Deletion on 22q22 ERG - 3-7% 
Hyperdiploidy (more than 50 chromosomes) - <9% 25-30% 
Hypodiploidy (less than 44 chromosomes) - 2% 1% 
N/A BCR-ABL1-Like 21-27% 15% 

Table 1.2 Common chromosomal abnormalities found in adult and 

pediatric ALL patients (adapted from [28, 30, 31]) 

CD – cluster of differentiation, c-Ig – cytoplasmic immunoglobulin, sIg – surface immunoglobulin. 
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CNS involvement is uncommon at diagnosis but intrathecal chemotherapy may be 

included in first line treatment if the patient is considered to be a high risk of developing 

CNS disease. The overall survival rate of paediatric patients following induction 

chemotherapy is 90%, though this is dependent on early intensification and 

consolidation of therapy [32-34]. Adolescent and young adults (AYA) patients with ALL 

have an increased prevalence of poor risk factors, such as the Ph+, hypodiploidy, 

complex karyotypes and a higher incidence of T-cell ALL [28]. While the recent 

adoption of paediatric treatment protocols, including the use of asparaginase, has 

improved outcomes for AYA patients [35], the survival rates remain inferior to 

paediatric patients treated with the same protocols.  

The survival of adults with ALL has improved significantly over the last decade with 

remission rates rising to 85-90% and overall survival rates of 40-50% [27, 36-38]. 

Superior chemotherapy regimens and the adoption of stem cell transplant into front 

line therapy, have made substantial contributions to increasing patient survival. 

However, poor risk factors including unfavourable cytogenetics, and a high rate of 

relapse, continue to limit favourable patient outcomes. Historically, Ph+ disease was 

associated with poor patient prognosis, a high risk of relapse, and a five year survival 

rate of only 5-10% with chemotherapy alone [39]. The development of the BCR/ABL 

tyrosine kinase inhibitors (TKI) such as imantinib, dasatinib, nilotinib and ponatinib has 

significantly improved the response of Ph+ ALL, when combined with conventional 

chemotherapy [28].  

Recently, a new sub-group of ALL has been identified. These Philadelphia-like (Ph-

like) cases have a similar gene expression profile to Ph+ ALL, but do not carry the 

BCR/ABL translocation [40]. Deletions or mutations in IZKF1, a lymphoid transcription 

factor, are features of both Ph-like and BCR/ABL positive ALL. Moreover, 
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approximately 50% of Ph-like ALL cases contain a mutation in CRLF2, which is highly 

associated with mutations of members of the Janus Kinase (JAK) family [31, 41, 42]. 

Ph-like ALL represents approximately 15% of paediatric and 27% of AYA patients with 

ALL and is associated with a poor patient outcome and a higher rate of relapse than 

other BCR/ABL negative subtypes [42, 43]. A study by Roberts et al profiled the 

genome of 1725 patients with ALL (154 of which had Ph-like ALL) and found 91% of 

the patients with Ph-like ALL, also harboured other kinase-activating mutations [40]. 

Therefore, clinically approved tyrosine kinase inhibitors may be beneficial in treating 

Ph-like ALL. However, a larger clinical trial where tyrosine kinase inhibitors are added 

to current protocols based mutations detected in individual Ph-like patients must be 

performed to assess effects on patient outcome. 

1.3.5 New directions in ALL therapy 

Monoclonal antibodies such as those directed against CD20, CD22, CD52, and CD19 

have demonstrated the power of immunotherapy to complement current 

chemotherapeutic regimens and improve patient survival. [44-46]. Two new promising 

immunotherapy options in ALL are CAR (Chimeric Antigen Receptor) cells [47-52] and 

BiTE (Bispecific T-cell Engaging) antibodies [47, 53-58].  

Both CAR cell and BiTE antibodies have successfully been used in several clinical 

trials in both adults and children with promising results [47, 55-58]. However, their use 

in patients with ALL results significant toxicities, particularly a ‘cytokine storm’ which 

eventuates when used in patients with high tumour load [47]. Therefore more clinical 

trials are required for both immunotherapy options before their implementation in 

mainstream clinical treatment of ALL. 
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1.3.6 Issues with current therapy 

Currently, the treatment of ALL is a long, arduous process and results in significant 

toxicity to normal tissues due to the relative non-specific action of chemotherapeutic 

compounds. Moreover, the efficacy of treatments is severely hampered by the 

development of resistance and often leads to refractory relapses and poor patient 

survival.  Two major hypotheses exist as to how ALL cells develop resistance to 

chemotherapeutic compounds. ALL cells may develop resistance through the 

acquisition of resistance conferring mutations during chemotherapy, or such mutations 

may have been present in a sub-population of ALL clones at diagnosis. Extended 

treatment selects these clones allowing them to become the dominant population and 

leading to relapsed disease that is resistant to chemotherapy [59, 60]. 

The development of new therapeutic options, such as immunotherapy and targeted 

pathway inhibition, has great potential in improving patient survival. However, these 

treatments remain in the experimental stage and carry significant risks associated with 

their use. Further investigation into these upcoming immunotherapy and pathway 

specific inhibitors is required overcome treatment related resistance and to maximise 

patient outcome. 

1.4 Mammalian Target of Rapamycin (mTOR) 

Cell growth is a tightly controlled process involving numerous signalling pathways that 

can become dysregulated in malignant disease. One such pathway is that involving 

the mammalian target of rapamycin (mTOR), a ubiquitously expressed 

serine/threonine kinase that is involved in important cellular processes such as 

proliferation, protein synthesis, survival and metabolic activity [61, 62].  
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mTOR is a highly conserved protein, with humans, mice and rats sharing 

approximately 95% homology in amino acid sequence. The N-terminus of the protein 

contains up to 20 tandemly repeated HEAT domains (Huntingtin, Elongation factor 3, 

A subunit of PP2A and TOR) as well as a FAT (FRAP-ATM-TRRAP) domain. While 

the C-terminus of mTOR contains a catalytic kinase domain, putative auto-inhibitory 

domain (negative repressor domain, NRD), the FK binding protein 12 (FKBP12)-

rapamycin binding domain (FRB) and FATC (FAT C-terminus) domain (Figure 1.3). 

As this portion of the protein is homologous to PI3K, mTOR is considered to be part 

of the same family of kinases, the PIKK (PI3K-related protein kinase) family [64-67].  

 

 

1.4.1 mTORC1  

Two complexes are formed using mTOR; mTORC1 and mTORC2, with each recruiting 

different subunits and having distinct roles within the cell (Figure 1.4). The first 

complex, mTORC1, arises from the association between mTOR and FKBP12 which 

further recruits the following proteins; RAPTOR (regulatory associated protein of 

Figure 1.3 The protein structure of the mammalian target of rapamycin 

(mTOR). Reproduced from [63]. 
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mTOR), PRAS40 (proline rich AKT substrate 40) and DEPTOR (DEP-domain 

containing mTOR-interacting protein [68]). GL (g-protein -subunit like protein), 

otherwise known as mammalian LST8 (mLST8), is also recruited and its binding to the 

catalytic domain of mTORC1 being necessary for full catalytic activity [69]. The role of 

RAPTOR in the formation and activity of the mTORC1 complex remains unclear, 

however, it has been proposed that RAPTOR has a tug-of-war style relationship with 

GL. Under nutrient deficient conditions raptor binds strongly to mTOR thereby 

inhibiting it. Conversely in nutrient rich conditions GL displaces RAPTOR allowing 

kinase activation [70]. 

 

 

 

 

 

 

 

 

 

There are two methods by which the mTORC1 may be activated: 1) by extracellular 

growth factors and their receptors or 2) by fluctuations in the metabolic status of the 

cell such as cellular energy status, nutrient availability or hypoxia. The proteins TSC1 

Figure 1.4 Composition of the two mTOR complexes, mTOR1 and mTORC2. 
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(also known as hamartin) and TSC2 (also known as tuberin) form a complex that 

controls cellular growth and regulates the activity of mTOR [71, 72] (Figure 1.5). TSC1 

stabilizes TSC2 by preventing its degradation by the ubiquitin pathway. The GAP 

(GTPase-activating protein) domain of TSC2 activates the small G-protein Rheb (Ras 

homologue enriched in brain) that catalyses the conversion GTP to GDP [72]. 

Activated Akt inhibits the TSC1/2 complex allowing the accumulation of GTP within 

the cell. The accumulated GTP activates mTORC1, although the mechanism behind 

this activation is not fully understood [73, 74]. 

The translation of mRNA is tightly regulated at the rate-limiting step where the 

ribosome is recruited to the 5’ end of the mRNA. The 5’ end of all nuclear transcribed 

mRNA’s possess the cap structure m7GTP (7-methylguanosine), which is recognized 

by the eukaryotic initiation factor 4E (eIF4E) [75]. This leads to a complex being formed 

with other initiation factors and leading to the binding of the 40S ribosome and the 

initiation of translation. The 4E-Binding protein family (4EBP), of which 4EBP1 is the 

most extensively studied, restricts the recruitment of the translation complex to 

initiation factor eIF4E, thus controlling the rate of translation. Under basal conditions, 

4EBP1 remains bound to eIF4E in its hypo-phosphorylated form, and upon activation, 

the phosphorylation of 4EBP1 by mTORC1, leads to its dissociation from eIF4E, 

allowing the recruitment of the protein complex and mRNA translation [75, 76]. 

The synthesis of new proteins is paramount for the continual survival of a cell, and the 

downstream effects of mTORC1 signalling to the S6 kinases, co-ordinates this 

process. Mammalian cells contain two S6 kinases, S6K1 and S6K2, that have 

conserved phosphorylation domains but are encoded by separate genes [76]. Un-

phosphorylated S6K remains bound to the initiation factor eIF3, and phosphorylation 

of S6K on Thr389 by mTORC1, results in its dissociation from eIF3 [75]. The activity 
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of S6K1 is dependent on multiple phosphorylation events, including phosphorylation 

on Thr229 and Ser411, however, initial phosphorylation on Thr389 by mTOR, is 

essential for full activation [77-79]. mTOR binds to a specific site within the N-terminus 

of S6K1 called the TOR signalling (TOS) motif. This site is essential as deletion or 

functional inactivation of this motif prevents mTOR binding and subsequent 

phosphorylation of S6K [66]. Interestingly, S6K1 is involved in a negative feedback 

loop linked the activity of Akt through its phosphorylation RICTOR, a subunit of 

mTORC2 [80]. 

Phosphoinositide Dependent Kinase 1 (PDK1) is responsible for the phosphorylation 

of Thr229 in the kinase domain of S6K1, however, phosphorylation of Thr389 is 

required prior to the PDK1-mediated phosphorylation of Thr229 [64]. Meanwhile, the 

phosphorylation of Ser411 is required for the mTOR mediated phosphorylation of 

Thr389 and subsequent activation of the kinase [81]. S6K subsequently 

phosphorylates several substrates involved in the translation of mRNA and in protein 

biosynthesis, such as eIF4B, PDCD4 (programmed cell death 4), SKAR (S6K1 

ALY/REF-like substrate), eEF2K (Eukaryotic elongation factor-2 kinase), CCT (T-

complex protein 1 subunit beta), NCBP80 (Nuclear cap-binding protein subunit 1), and 

p70-RPS6 (ribosomal protein S6) [75]. 
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1.4.2 mTORC2 

mTORC2 is a distinct complex from mTORC1. In contrast to mTORC1, it does not 

require mTOR to first bind FKBP12 and so is relatively insensitive to rapamycin, 

although, prolonged treatment with rapamycin can inhibit mTORC2 in some cell types 

[83, 84]. As with mTORC1, mTORC2 is comprised of mTOR, mLST8 and DEPTOR, 

but specifically recruits mSIN1, Protor and RICTOR (rapamycin insensitive companion 

of mTOR). [83, 85, 86] (Figure 1.4). In contrast to mTORC1, mTORC2 requires an 

intact TSC1/2 complex for activation by growth factors [87]. The TSC1/2 complex 

associates with rictor and activates mTORC2 independently of the GAP activity of 

TSC2 towards Rheb (Figure 1.5) [83]. 

Figure 1.5. The PI3KAkt/mTOR signalling pathway (adapted from [75, 82, 83]). 

mRNA translation  eIF4B, PDCD4, SKAR, eEF2K, 

CCTNCBP80 and p70-RPS6  
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mTORC2 is responsible for the allosteric activation of Akt by phosphorylation of 

Ser473 which increases the specificity of Akt towards its substrates [88]. 

Phosphorylation of Akt on Ser473 is indicative of mTORC2 activation by stimuli such 

as growth factors and hormones. Mouse embryonic fibroblasts (MEFs) with defective 

mTORC2 signalling due to deletion of Sin1, rictor or mLST8 are unable to 

phosphorylate Akt on Ser473. These cells have normal Akt activity as it can still be 

activated by phosphorylation of its T-Loop domain on Thr308, however, they 

demonstrate reduced activity on downstream targets [88].  

The AGC group of kinases (Protein kinase A, G and C families) all share conserved 

Thr-Pro-Pro residues within their turn motif. Thr450 of Akt is within such a motif and is 

solely phosphorylated by mTORC2 during the synthesis of nascent Akt while the 

peptide is still attached to the ribosome. This modification is essential for the stability 

of the protein by allowing the C-terminus to anchor to the kinase domain [83]. 

Moreover, the lack of turn motif phosphorylation in mTORC2 disrupted cells leads to 

ubiquitination and degradation of the newly synthesized Akt.  

mTORC2 is also phosphorylates Ser422 within the hydrophobic motif of the AGC 

kinase SGK1. Disruption of mTORC2 signalling leads to defective activation of SGK1 

due to diminished phosphorylation and activation of the hydrophobic motif [83, 89]. 

Unlike SGK1, phosphorylation of the hydrophobic motif of protein kinase c (PKC) does 

not require mTORC2 as it can also occur by auto-phosphorylation, although, 

phosphorylation of the turn motif is highly dependent on mTORC2 and disruption of 

mTORC2 signalling leads to diminished phosphorylation and decreased PKC 

expression [83]. 
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1.4.3 Role of mTOR in leukemia 

The mTOR signalling pathway plays a pivotal role in the growth and proliferation of 

cells through the coordination of many metabolic processes such as energy levels, 

nutrient availability and extracellular growth factors (Figure 1.5) [63, 82, 90, 91] . One 

of the key hallmarks of cancer is the uncontrolled proliferation in the absence of growth 

signals. It is of no surprise then, that the Akt/ mTOR pathway is aberrantly activated in 

many malignancies including breast, prostate and ovarian cancers as well as acute 

and chronic leukemias [67, 85, 92, 93].  

In contrast to solid tumours, the frequency of copy number variations leading to 

activation of the mTOR pathways is significantly lower in ALL [93]. Additionally, 

activating mutations in Akt and deletions in PTEN are not common in B-ALL, indeed 

PTEN appears to be essential for the survival of B-ALL cells in vivo [94, 95]. In 

contrast, PTEN abnormalities are a common feature of T-ALL [96] and the Akt/mTOR 

pathway may be activated  through aberrant Notch-1 signalling in T-ALL [97-99] and 

by direct interaction with BCR/ABL in Ph B-ALL [100]. It is not fully understood how 

Notch-1 activates mTOR, though it is speculated to occur indirectly through c-myc or 

through crosstalk with other pathways such as those involving as insulin growth factor 

receptor and IL-7 receptor [101, 102]. 

Despite the lack of activating mutations, mTOR is frequently hyper-activated in B and 

T-ALL [103]. Contact between ALL and the bone marrow microenvironment is highly 

important for their continued growth and survival [104]. Given that mTOR is influenced 

by extracellular factors such as CXCL12, IL7 and TSLP, deregulation of the production 

of these factors by bone marrow microenvironment can result signalling through the 

Akt/mTOR pathway [105-108]. 
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Although the use of tyrosine kinase inhibitors (TKIs) against the BCR/ABL fusion gene 

has significantly improved treatment of Ph+ disease, the development of resistance to 

the inhibitors limits their efficacy. One possible mechanism of resistance, is the 

activation of the mTOR pathway by BCR/ABL [109]. Indeed, the combination of 

rapamycin with imatinib demonstrated improved growth inhibition and cell death, 

overcoming the resistance conferring mutation in BCR/ABL, T315I [109, 110]. 

Additionally, hyper-active mTOR signalling has also been correlated to 

rearrangements of the CRLF2 gene, seen in Ph-like ALL.  The combination of an 

mTOR inhibitor with a JAK2 inhibitor may be effective in treating this high risk ALL 

subtype [41, 111].  

While much of the role of mTOR in cancer has been associated with changes to 

upstream oncogenes, there is evidence to suggest its downstream effectors, S6K1 

and 4EBP1, may also play a role in cancer and have been correlated to poor patient 

prognosis, despite regular mTOR function [112-114]. The eIF4E/4EBP1 axis is finely 

regulated, with both increases and decreases being correlated with cancer cell growth 

and drug resistance [115, 116]. Moreover, the concentration of eIF4E is highly 

important, with increased expression driving tumorigenic programs [117] and may 

confer resistance to active site mTOR inhibitors [118]. On the other hand, little is known 

about the role of S6K1 in cancer. A recent study has suggested that that S6K1 may 

regulate the metabolic requirements for BCR/ABL positive chronic myelogenous 

leukemia cell survival [119] and may have prognostic value in breast cancer [120]. 

By comparison, less is known about the role of mTORC2 in leukemia. The activity of 

mTORC2 in increased in the prostate cancer cell line PC3, the breast cancer line 

MCF7, as well as several types of glioma [121, 122]. The increased mTORC2 activity 
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in these cells is correlated to the elevation in the expression of the mTORC2 specific 

sub-unit, RICTOR, promoting the proliferation and metastatic potential of the cells. 

1.4.4 Targeting mTOR in leukemia 

Extensive pre-clinical investigation of the use of mTOR inhibitors in ALL has 

highlighted their efficacy in decreasing cell proliferation and inducing autophagy and/or 

cell death [123-126]. Rapamycin and its analogues are reported to induce cell death 

by the classical apoptosis pathways. However additional pathways appear to be 

recruited, but these pathways have not been fully characterised and further 

investigation is required [127, 128]. Inhibition of mTOR also impacts the cell cycle 

process by inhibiting key cell cycle proteins such as pRb, Ki67 and PCNA, resulting in 

the arrest of the cell cycle in G1, although this appears to be a dose dependant process 

[125, 129]. In vivo, inhibition of mTOR is efficacious in extending the survival of mice 

engrafted with human ALL xenografts [128, 130] and is synergistic with current 

chemotherapeutic compounds such as methotrexate, vincristine and ionising radiation 

[124, 128, 129, 131], indicating the ability of mTOR inhibitors to be incorporated into 

current chemotherapy regimens. 

Several clinical trials have demonstrated the safety and efficacy of everolimus in 

hematological malignancies [100, 132]. However, clinical evidence of the safety and 

efficacy in ALL is lacking. Recently, two clinical trials have demonstrated that 

everolimus is well tolerated in conjunction with conventional chemotherapy and has 

moderate efficacy, particularly in T-ALL [133, 134]. Currently, there are a number of 
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clinical trials investigating the efficacy of rapamycin and its derivatives in combination 

with current chemotherapy for the treatment of leukemia (Table 1.3).  

1.5 Resistance to mTOR inhibition 

The model of the mechanism of action for rapamycin was developed in yeast in the 

early 1990’s [135, 136] and it quickly became apparent that these cells acquire genetic 

mutations that confer resistance to mTOR inhibition [137-139]. Further research 

demonstrated similar mechanisms of resistance in mammalian cells as those 

Drug  Disease  Clinical activity  Current clinical trials  

Sirolimus 

AML 

CR not observed as a 
single agent 
24% ORR with MEC 
chemotherapy 

Sirolimus and azacitidine 
(NCT01869114)  
Sirolimus, idarubicin, and 
cytarabine  
(NCT01822015)  

ALL 
CR not observed as a 
single agent 

Sirolimus and multi-agent 
chemotherapy (NCT01658007)  
Sirolimus and methotrexate 
(NCT01162551)  

Temsirolimus 

AML 
21% CR with temsirolimus 
and clofarabine 

Temsirolimus and 
chemotherapy (NCT01611116)  

ALL 
 

Temsirolimus and multi-agent 
chemotherapy (NCT01403415), 
Temsirolimus with etopiside and 
cyclophosphamide  
(NCT01614197) 

CML 
 Temsirolimus and imatinib 

(NCT00101088)  

Everolimus 

AML 
68% CR with everolimus 
and 7+3 chemotherapy 

Everolimus and midostaurin 
(NCT00819546)  

ALL 
 Everolimus and multi-agent 

chemotherapy (NCT01523977 ) 

CML 
 Everolimus and imatinib 

(NCT00093639)  

Table 1.3 Current clinical trials into the use of mTOR inhibitors in Leukemia 

(Adapted from [100]) 

Abbreviations: AML – Acute Myeloid Leukemia, ALL – Acute Lymphoid Leukemia, CML – Chronic 
Myeloid Leukemia, CR – Complete remission, MEC: mitoxantrone, etoposide, cytarabine, ORR: 
overall response rate. 
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observed in yeast. However, transplantation of rapamycin resistant mammalian cell 

lines generated in vitro in mice showed a restoration of sensitivity [140], indicating the 

complex nature of acquired resistance.  

Recently, everolimus resistance has been documented following chronic exposure to 

the mTOR inhibitor in renal cell carcinoma and prostate cancer cell lines [141-143], 

although clinically, little has been documented regarding resistance to rapamycin or 

its analogues. Several hypotheses exist as to possible mechanism by which cells may 

become resistant to mTOR inhibition. The majority of these were determined using the 

stereotypical mTOR inhibitor rapamycin; however, may be more broadly applicable to 

rapalogs due to similar mechanism of action. 

1.5.1 Mutations in FKBP12  

Rapalogs have a well-defined mechanism of action in first binding FKBP12, then 

binding the FKBP12 binding domain of mTOR, thus inhibiting the formation of the 

active complex. Mutations in the either the FKBP12 protein, which would prevent 

rapalog binding, or mutations in mTOR preventing the binding of the FKBP12-rapalog 

complex, would impart resistance. This particular mechanism was first discovered in 

the yeast S.cerevisiae where sub-strains of the yeast were resistant to growth 

inhibition by rapamycin. Resistant yeast strains had mutations in the FKBP12 and/or 

TOR proteins resulting in decreased rapamycin binding [137, 144]. Similar mutations 

were identified in murine mast cells [139] and T-cell lymphoma cell lines [138] where 

reduced binding affinity for rapamycin by FKBP12 conferred high-level resistance.  

1.5.2 Mutations in S6 kinase 1 

Rapamycin induced inhibition of mTORC1 leads to the rapid dephosphorylation of 

Thr389 in S6K1, and due to hierarchal phosphorylation events, results in decreased 
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phosphorylation on subsequent residues such as Thr229 and Ser411 [81, 145]. 

Therefore, mutations in these critical regions such as Thr389 to glutamic acid, render 

S6K1 insensitive to the effects of rapamycin [146]. 

mTORC1 interacts with a specific motif of S6K1, the TOS motif, and deletion or 

functional inactivation of this motif prevents mTOR induced phosphorylation of S6K1 

at Thr389. Interestingly, co-deletion of the carboxy-terminus of S6K1 slightly rescues 

the phosphorylation of Thr389, and also prevents its decrease by rapamycin [66, 77]. 

However, deletion of the carboxy-terminus alone only imparts partial resistance to 

rapamycin. Suppression of rictor through siRNA abrogates the resistance to 

rapamycin in the carboxy-terminus knockout S6K1, but does not impact on 

phosphorylation of wild type S6K1 [77]. This indicates that mTORC2 is also able to 

phosphorylate and activate S6K1, though to a somewhat lesser extent than mTORC1, 

and the carboxy-terminus contains an inhibitory motif that restricts this in wild type 

S6K1.  

There is little evidence to show that S6K can impart resistance to mTOR inhibitors in 

patients, however, there is evidence that it may play a part in the development of 

resistance to other treatments. In two breast cancer studies patients who responded 

poorly to endocrine inhibitor therapy [147] and neoadjuvant chemotherapy [148] 

displayed increased S6K1 activity. It is clear that S6K has the potential to impart 

resistance to many therapeutic options including mTOR inhibition, and it would not be 

surprising to see S6K1 correlated to the development of resistance in patients. 

1.5.3 Defect in the ratio of eIF4E to 4EBP1  

The initiation factor eIF4E is crucial for regulating the initiation of mRNA transcription 

and early work determined its role in cellular growth and malignant transformation 
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[149-151]. eIF4E is inhibited by 4EBP1 and overexpression of eIF4E is associated 

with increased tumour progression and has been reported in a number of malignancies 

such as head and neck [152], breast [153, 154], and gastrointestinal carcinomas [155]. 

In addition, phosphorylation of eIF4E at Ser209 reduces its affinity for 4EBP1, resulting 

in a relative increase in free eIF4E that promotes mRNA translation [156]. 

The down regulation or inactivation of the inhibitory protein 4EBP1, by decreased 

translation or hyper-phosphorylation, is another mechanism by which eIF4E may 

become deregulated and reduced 4EBP1 activity has been correlated with rapamycin 

resistance [157]. While the levels of eIF4E may remain unchanged, decreased levels 

of 4EBP1 result in increased free eIF4E and increased eIF4E activity. The ratio 

between eIF4E and 4EBP1 may be indicative of how tumours respond to mTOR 

inhibition, with high cellular 4EBP1 correlating with a more favourable outcome. 

1.5.4 Akt negative feedback loop 

Despite strong pre-clinical evidence, many clinical trials involving the allosteric 

inhibition of mTOR by rapamycin, or its first generation analogues, have demonstrated 

only modest efficacy [158]. Recently, a negative feedback loop has been discovered 

whereby inhibition of mTOR may result in the activation of the Akt signalling cascade 

in some cell types [63, 159-162]. However, the mechanism behind the increased Akt 

activation following mTOR inhibition remains elusive. Given mTOR negatively 

regulates the downstream signalling of growth factors such as Insulin receptor 

substrate-1 (IRS1), growth factor receptor bound protein 10 (Grb10) and platelet 

derived growth factors (PDGFR’s) [63], inactivation of mTOR may lead to the 

subsequent increase in the ability of these growth factors to signal on to their 

respective receptor tyrosine kinases, leading to downstream activation of Akt (Figure 
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1.6). Furthermore, the second mTOR complex (mTORC2) is associated with its own 

feedback look with Akt. Akt phosphorylates the mTORC2 subunit SIN1 at Thr86, 

enhancing the mTORC2 kinase activity. Active mTORC2 is responsible for the 

phosphorylation of Akt on S473, leading to the full activation of Akt [163]. 

 

 

1.5.5 PP2A Related Phosphatases 

The mammalian protein phosphatase 2A (PP2A) is a family of serine/threonine 

phosphatases involved in many cellular processes including oncogenic transformation 

[164, 165]. The PP2A complex contains a dimeric core composed of a structural A 

subunit and a catalytic C subunit, that associates with a diverse array of regulatory B 

subunits [166]. The PP2A complex in intrinsically intertwined in many kinase cascades 

including the mTOR signalling cascade where it affects the downstream targets S6K1 

and 4EBP1 [166, 167]. The in vitro response to rapamycin has been correlated with 

Figure 1.6 mTOR negative feedback loop with Akt. Reproduced from [63]. 
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components of the PP2A complex such as the A4 and B55 subunits. Treatment of 

Jurkat cells with rapamycin leads to the dissociation of the A4 sub-unit from the 

catalytic subunit. Transfection of exogenous A4 into Jurkat cells confers resistance to 

rapamycin [168]. Loss of the B55 subunit in colorectal cancer confers resistance to 

rapamycin through a compensatory mechanism involving MYC and PDK1. Re-

expression of B55 restores sensitivity to rapamycin by abrogating these 

compensatory pathways [169]. However, transfection of the 4 subunit into Raji cells 

did not confer resistance to rapamycin and other studies have failed reproduce the 

rapamycin induced dissociation of the A4 subunit seen in other mammalian cell types 

[168], leaving the association of PP2A to resistance to mTOR inhibition uncertain. 

1.5.6 Cellular Adhesion 

Adhesion to a supportive microenvironment confers resistance to chemotherapeutic 

compounds in many malignancies, including ALL [170-172]. Integrins are a crucial 

component of ALL meditated adhesion to the bone marrow microenvironment [173, 

174], and disruption of integrin binding can overcome resistance to chemotherapy and 

improve outcome [175]. Moreover, the development of resistance to the mTOR 

inhibitors everolimus and temsirolimus has been correlated to changes in expression 

of integrins and cellular adhesion [176, 177]. However, whether the altered integrin 

expression and adhesion potential of the cells resulted in the development of 

resistance or if it is altered after resistance has developed remains uncertain. 

Focal adhesion kinase (FAK/PTK2) plays an important role in adhesion and migration 

downstream of integrin mediated signalling [178-180], and inhibition of FAK is able to 

synergize with the mTOR inhibitor everolimus to improve patient response in an in vivo 

setting [181]. While evidence that FAK is involved in the development of resistance to 
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everolimus is lacking, the synergy between FAK inhibitors and everolimus indicates 

that FAK inhibitors may be beneficial in overcoming everolimus resistance. 

1.5.7 Cell cycle regulation   

Everolimus elicits a cell cycle arrest in the G0/G1 stage of the cell cycle in in vitro cell 

models of leukemia [129], bladder cancer [182] and pancreatic neuroendocrine 

tumours [183], while a G2M arrest was reported in the oral cancer cell line SCC4 [184]. 

The in vitro development of resistance to everolimus in renal cell carcinoma and 

pancreatic cancer was associated with increased expression of cell cycle regulating 

protein complexes CDK2-CyclinA and CDK1-CyclinB. These complexes are crucial for 

cell cycle to occur with increased levels overcoming the inhibitory effects of everolimus 

on the cell cycle resulting in cell cycle progression [143, 185]. The importance of the 

cell cycle in the development of resistance to everolimus is further evidenced by the 

restoration of sensitivity upon the inhibition of these crucial cell cycle complexes. Tsuar 

et al were able to restore sensitivity to everolimus and slow the growth of prostate 

cancer cells in vitro by knock down either CDK1 or Cyclin B with siRNA [143]. Likewise, 

decreased CDK2 and cyclinA expression in renal cell carcinoma cells by the histone 

deacetylase inhibitor valproic acid abrogated resistance to everolimus [185]. However, 

knockdown of CDK1/Cyclin B did not fully restore everolimus sensitivity and the HDAC 

family have many crucial roles in cell homeostasis. Indicating that, while regulation of 

the cell cycle may be involved in resistance to mTOR inhibition, they are not solely 

responsible for the development of resistance.  
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1.6 Significance 

The mTOR signalling complex is hyperactive in many malignancies and effective 

pharmacological inhibition could synergize with existing chemotherapy to increase 

patient survival. The rapamycin analogue everolimus, is effective in treating mice 

engrafted with human ALL xenografts alone and when used in combination with 

conventional chemotherapy [65, 128].  

Figure 1.7 Predicted sources of resistance to rapamycin and its analogues in the 

mTOR pathway. Mutations (stars) and changes to protein expression (arrows) 

predicted to confer to mTOR inhibition (Adapted from [168, 186, 187]). 
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Resistance to everolimus has been found in many malignancies treated with mTOR 

inhibitors both in vivo and in vitro. Long-term administration of everolimus to mice with 

pre-B ALL has led to the development of resistance that is maintained upon secondary 

transplantation of cells from treated mice (unpublished data). While a number of 

mechanisms have been proposed to be responsible to the development of resistance, 

there was no common mechanism of resistance between different types of mammalian 

cell. Understanding the mechanisms by which cells become resistant to mTOR 

inhibition may not only provide increased therapeutic efficacy of such inhibitors, but 

also provide insights into the resistance mechanisms to other kinase inhibitors.  

1.7 Hypotheses and Aims 

1.7.1 Hypotheses 

Comparing the genome and proteome of everolimus resistant cells to sensitive cells 

will provide new insights into mechanisms behind the development of resistance to 

everolimus in vivo. 

  

1.7.2 Aims 

1. To characterise changes in to the transcriptome and proteome in ALL 

xenografts upon the development of resistance to everolimus. 

2. To identify a common mechanism behind the development of resistance to 

everolimus in ALL. 

3. To determine whether patients with ALL receiving everolimus in conjunction 

with chemotherapy display evidence of resistance development. 
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CHAPTER 2 MATERIALS AND METHODS 

2.1 MATERIALS  

2.1.1 Patient Derived Xenografts 

Table 2.1 Characteristics of patient derived xenografts 
 

ID  Age/Sex  Immunophenotype  Cytogenetics 

1196  8/F 
CD34‐ CD19+ 

CD10+ 
46 XX ‐19,del(19), t(1;19)(q23p13) 

1345  5/F 
CD34‐ CD19+ 

CD10+ 
45XX, dup(1)(q42q25),del(3)(q21), ‐9, del(9)(p22), 

t(18;20)(q21;q13.1) 

2055  1.5/F 
CD34+ CD19+ 

CD10+ 
45,X,T(X;1)(P22;P36),‐

9,T(12;12)(P11;Q11.2),ADD(20)(Q12) 
 

2.1.2 Tissue Culture 

Roswell Park Memorial Institute (RPMI) 1640 and phosphate buffered saline (PBS) 

were purchased from Lonza (Sydney, NSW, Australia). Fetal bovine serum, L-

glutamine and trypsin-EDTA were purchased from Sigma-Aldrich (Sydney, NSW, 

Australia). 51Chromium Radionuclide 1mCi (37MBq) Sodium Chromate in Normal 

Saline (pH 8-10) was purchased from Perkin Elmer (Melbourne, Vic, Australia). 

2.1.3 Antibodies 

Anti-human phospho-CDK1 (Thr161), CDK1, phospho-CDK2 (Thr160), CDK2, 

phospho-STMN (Ser38), phospho-PKC, PDK, PKAC, phospho-eEF2, eEF2, and 

ITG6 were purchased from Cell signaling technology (Boston, MA, USA). Anti-human 

STMN, phospho-STMN (Ser16), phospho-STMN (Ser63), phospho-S6K1 (Ser411), 

phospho-S6K1 (Thr229), S6K1, ELF2, ITG6-Phycoerythrin (PE), anti-mouse horse 

radish peroxidase (HRP) and anti-rabbit-Alexa Fluor 405 (AF405) were purchased 
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from Abcam (Melbourne, Vic, Australia). Anti-human GAPDH, ITG8- allophycocyanin 

(APC), ITG4-Alexa fluor 488 (AF488) and ITG6 (Clone GoH3) were purchased from 

R&D systems (Minnesota, USA). Anti-actin was purchased from Sigma-Aldrich, 

anti-rabbit HRP from Dako (Melbourne, Vic, Australia), goat anti-rabbit pacific blue 

(PB) and anti-mouse CD45-fluorescein isothiocyanate (FITC) from Life Technologies 

(Melbourne, Vic, Australia). Anti-human CD19-PE and CD29-PE, rat IgG2a isotype 

and APC BrdU flow kit were purchased from BD Biosciences (Sydney, NSW, 

Australia). Anti-human ITG1 (4B4) was purchased from Beckman Coulter (Sydney, 

NSW, Australia) and mouse IgG1 isotype from Biolegend (San Diego, CA, USA) 

2.1.4 RNA 

TRIzol reagent, SuperScript III, TaqMan hsa-miR-21 gene expression assay, 

MultiScribe reverse transcriptase and TaqMan Universal PCR master mix (no UNG) 

were purchased from Life Technologies. ISOLATE II RNA mini extraction kit, ISOLATE 

II plasmid mini kit, Tetro cDNA synthesis kit, and SensiFAST qRT-PCR master mix 

were purchased from Bioline (Sydney, NSW, Australia). 

RNeasy Mini kit, QIAquick gel extraction kit, RT² Profiler PCR Array Human miR-21 

Targets, RT2 First Strand kit, RC3 reverse transcriptase and RT2 SYBR green 

mastermix were all purchased from Qiagen (Limburg, Venlo, Netherlands). 

TargetAmp-Nano labelling kit was procured from Epicenter (Madison, WI, USA) and 

the HumanHT-12v4 Bead expression chip from Illumina (San Diego, CA, USA). 

Phusion High fidelity DNA polymerase was purchased from New England Biosciences 

(Massachusetts, USA), kanamycin from Astral Scientific (Sydney Australia) and the 

restriction enzymes EcoRI and BamHI as well as T4 DNA ligase and JM109 cells from 

Promega (Sydney, NSW, Australia).  
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Sanger sequencing was performed by the AGRF (Sydney, Australia) and transciptome 

sequencing by Axeq Technologies (Seoul, Korea). Agilent bioanalyser analysis was 

performed by the The Westmead Institute for Medical Research Genomics Facility. 

2.1.5 Primers 

Table 2.2  cDNA primers 

Gene Detection Primer Cloning Primer 

DYRK1a 

FWD 
5’CAACTGCTCCCCTGAGAAAA, 
REV 
5’AACCCATTCTTGCTCCACAC 

FWD 
5’CTTCGAATTCCAACTGCTCCCCTGAGA
AAA, 
REV 
5’GGTGGATCCAACCCATTCTTGCTCCA
CAC 

CHEK1 

FWD 
5’GAAGAAGCAGTCGCAGTGAA 
REV 
5’CTTCGAATTCGAAGAAGCAGTCGCAG
TGAA 

FWD 
5’CTTCGAATTCGAAGAAGCAGTCGCAG
TGAA 
REV 
5’GGTGGATCCTCCACAGGACCAAACAT
CAA 

ATG5 
FWD 5’TGGGCCATCAATCGGAAACT 
REV 5’TCTGTTGGCTGTGGGATGAT 
 

FWD 
5’CTTCGAATTCTGGGCCATCAATCGGA
AACT 
REV 
5’GGTGGATCCTCTGTTGGCTGTGGGAT
GAT

PKN2 
FWD 5’TGAGTCTCCCTTTCCTGGTG 
REV 5’GGTTCTCGAGGTGGAGTCAG 
 

FWD 
5’CTTCGAATTCTGAGTCTCCCTTTCCTG
GTG 
REV 
5’GGTGGATCCGGTTCTCGAGGTGGAGT
CAG 

MLL5 

FWD 5’ATCAGGCGGTCTTGTACACC 
REV 
5’TTGTTGGTCGTTCCTTCACA 
 

FWD 
5’CTTCGAATTCATCAGGCGGTCTTGTAC
ACC 
REV 
5’GGTGGATCCTTGTTGGTCGTTCCTTCA
CA 

ITG6 
FWD: 5’TCATGGATCTGCAAATGGAA, 
REV: 5’AGGGAACCAACAGCAACATC 

N/A 

ITG8 
FWD: 5’GAACGCAACAACAAGGGATT, 
REV: 5’CTCAAGACGTGGAACTGCAA 

N/A 

PTK2 
FWD 5’ CATGCCCTCAACCAGGGATT 
REV 5’ CACGCTGTCCGAAGTACAGT 

N/A 

ACTN1 

FWD 
5’ TGATATTGGCAACGACCCCC 
REV 
5’ GCCTGGAATGTCACTACCCC 

N/A 

CDK6 

FWD 
5’ ACAGAGCACCCGAAGTCTTG 
REV 
5’ CTGGGAGTCCAATCACGTCC 

N/A 
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AKAP12 

FWD 
5’ CGCCACCAAGCTCCTACAGA 
REV 
5’ GTGATGTCGTGAACAACCGC 

N/A 

PRKCB1 

FWD 
5’ CTGTGCCACCAGAAGGAAGT 
REV 
5’ TGGTCGTCTTTTCTTCCGGG 

N/A 

EIF4e3 

FWD 
5’ AGTAATGCAAAGGGTGGCGT 
REV 
5’ TCCCCGATGGTTGCTAACAG 

N/A 

EPAS1 

FWD 
5’ GCTTCCTGCGAACACACAAG 
REV 
5’ GGTCACCACGGCAATGAAAC 

N/A 

PTAR 

FWD 
5’ ACTTTACCACTGCATGGAAC 
REV 
5’GGCGAGTTTTCCCAGATGTA 

N/A 

PTEN 

FWD 
5’ CCGTTACCTGTGTGTGGTGA 
REV 
5’ AGGTTTCCTCTGGTCCTGGT 
 

N/A 

BMPR2 

FWD 
5’ GGACGCATGGAATATTTGCT 
REV 
5’ CCCAGTCACTTGTGTGGAGA 
 

N/A 

USP34 

FWD 
5’ ACATCAAAGTGGAGGTAGTGACA 
REV 
5’ CACCACTGTTGGCAGTTTCG 

N/A 

PELI1 

FWD 
5’ GGCTCAGCAGAGAGGAAAAA 
REV 
5’ ACAATGTTGCACCACAGAGG 

N/A 

RHOB 

FWD 
5’ CTCATGTGCTTCTCGGTGGA 
REV 
5’ TGGGCACATTGGGACAGAAG 

N/A 

GAPDH 
FWD: 5’GAGTCAACGGATTTGGTCGT, 
REV: 5’TTGATTTTGGAGGGATCTCG 

N/A 

 

2.1.6 Proteomics 

cOmplete ULTRA and PhosSTOP protease inhibitor tablets were purchased from 

Roche (Sydney, NSW, Australia), BCA colorimetric assay from Pierce (Waltham, MA, 

USA) and 0.4 m nitrocellulose membrane from Merck Millipore (Melbourne, Vic, 

Australia). Clarity chemiluminescent substrate (ECL), coomassie G-250, and 17cm, 
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pH 3-10 IPG strips were purchased from Bio-RAD (Sydney, NSW, Australia) and 

Trypsin Gold from Promega. 2D-Clean-up kit, 2D Quant kit, IPG buffer pH3-10 and 

GELoader tips were purchased from GE Life sciences (Sydney, NSW, Australia), 3 

Dye 2D DIGE labelling Kit from Lumiprobe (Hallandale Beach, FL, USA) and 20 x 

20cm, 4-16% gradient, bis-TRIS polyacrylamide gel in low fluorescent glass plates 

from Jule Biotechnologies (Milford, CT, USA)  

Triethylammoniumbicarbonate (TEAB), Formaldehyde, 13C formaldehyde in 

deuterated water, cyanoborohydride, cyanoborodeuteride, formic acid and -cyano-4-

hydroxycinnamic acid were purchased from Sigma-Aldrich. C18 reverse phase 

cartridges were purchased from (Waters, Australia), 3M Empore C18 filter membrane 

(Supelco, USA) and 100 nm Reprosil-Pur 120 C18 AQ resin from Masch GmbH 

(Ammerbuch-Entringen, Germany) and POROS 20 R2 reverse phase resin from Life 

Technologies. Dithiotherol (DTT), iodoacetimide, Acetonitrile, ammonium bicarbonate 

and TFA (trifluoroacetic acid) were all purchased from Sigma-Aldrich. 

2.1.7 Drugs 

Everolimus and placebo were provided by Novartis (Basil, Switzerland). Harmine was 

purchased from Abcam. 

2.1.8 Animals 

NOD/SCIDγc-/- (NSG) mice were bred in the Westmead Hospital Animal Care Facility. 

2.1.9 Software 

The software packages GenomeStudio (Illumina) Partek Genomics Suite (Partek, St 

Louis, MO, USA), Metacore (Thompson Reuters, Sydney, NSW, Australia), GSEA 

(Broad institute, MIT, Cambridge, MA, USA), ImageLab (Bio-RAD), DeCyder (GE 
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Healthcare), MicroBeta scintillation plate counter (Perkin Elmer), ProteinPilot (SCIEX, 

Framingham, MA, USA), Prism 6 (GraphPad, La Jolla, CA, USA) and SPSS statistics 

22 (IBM, Armonk, NY, USA) were used for data analysis. 
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2.2 METHODS 

2.2.1 Tissue Culture 

RPMI media was supplemented with 10% FBS and 1 mM L-glutamine (cRPMI). Cells 

were incubated at 37°C in 5% CO2.  

For removal of adherent cells, the supernatant was removed and remaining cells 

washed with PBS. Cells were incubated with trypsin-EDTA at 37°C for 10-30 min or 

until the adherent layer detached. Cells were harvested and pelleted by centrifuging 

at 400 x g for 5 min then resuspended in fresh cRPMI media. 

2.2.2 Isolation of human leukemia xenografts from murine tissues 

Peripheral blood, femurs and spleens were collected from sacrificed animals and 

single cell suspensions prepared as previously described [128]. Briefly, spleens were 

gently pushed through a 70 m filter with 10 mL of cRPMI. Bone marrow was isolated 

from femurs by removing distal ends of the femur and flushing central marrow with a 

25 gauge needle and 1 mL of cRPMI. Red blood cells were removed by incubating 

with red cell lysis buffer consisting of 10 mM KHCO3, 155 mM NH4Cl and 126M EDTA 

at pH 7 and remaining cells were washed by centrifugation at 400 x g. 

2.2.3 RNA extraction with TRIzol 

RNA was extracted using TRIzol reagent according to manufacturer instructions. Up 

to 10 million cells were lysed by resuspending the cell pellet in 1 mL of TRIzol reagent. 

Two hundred microliters of chloroform was added, then tubes vigorously shaken by 

hand for 15 s. Samples were incubated at room temperature (RT) for 2 min then 

centrifuged for 15 min at 12000 x g at 4°C. The top aqueous layer was carefully 

removed and placed in a fresh RNase free tube to which 0.5 mL of isopropyl alcohol 
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was added. Samples were incubated for 10 min at RT and then centrifuged for 10 min 

at 12000 x g at 4°C. The supernatant was carefully discarded and the pellet was 

washed with 1 mL of 75% ethanol, briefly mixed and the centrifuged at 7500 x g for 5 

min at 4°C. The supernatant was discarded, the pellet air-dried and then resuspended 

in 20 L of RNase free water. 

2.2.4 RNA Extraction with commercial kits 

Total RNA was extracted with the Isolate II RNA mini kit according to manufacturer’s 

instructions. Contaminating DNA was removed from samples by an on-column DNase 

digestion step. 

2.2.5 Bioanalyser 

RNA integrity was determined using the TotalRNA nano chip and the Bioanalyzer 2100 

(Agilent, California, USA). The concentration of RNA and DNA was calculated by UV 

nanophotometer (Implen, Germany). RNA with an integrity number (RIN) greater than 

7 and an absorbance ratio at 260 nm and 280 nm (A260/280) of between 1.8 and 2 

was deemed satisfactory for amplification.  

2.2.6 Microarray 

RNA was amplified and biotinylated using TargetAmp-Nano labelling kit. RNA (300 

ng) was reverse transcribed to produce cDNA by incubating samples with SuperScript 

III and T7 Oligo(dT)18 primers at 50°C for 30 min. The second strand was 

subsequently synthesized using TargetAmp-Nano 2nd-Strand DNA Polymerase by 

incubating samples at 65°C for 10 min. Biotinylated mRNA was then transcribed from 

the synthesized cDNA by incubation with T7 RNA polymerase and biotin-UTP at 42°C 
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for 4 h. Excess cDNA was removed from samples by incubating with DNase I at 37°C 

for 15 min. Samples were then purified with RNeasy Mini kit.  

Biotinylated RNA was hybridised to a HumanHT-12v4 Bead expression chip by the 

The Westmead Institute for Medical Research Genomics Facility according to 

manufacturer’s instructions and scanned using Illumina BeadArray Reader.  

Array data was imported into GenomeStudio corrected for background signals and 

normalised to the mean signal of each sample (average normalisation). Gene set 

enrichment analysis carried out using GSEA software.   

2.2.7 Quantitative real time PCR 

cDNA was reverse transcribed from 300 ng of RNA using Tetro reverse transcriptase 

by incubating samples with Oligo (dT)18 primers at 45°C for 30min. The reverse 

transcriptase was inactivated by incubating samples at 85°C for 5 min. cDNA was 

combined with SensiFAST qRT-PCR master mix and forward and reverse primers (f.c. 

200 nM) The relative expression of target genes was quantitated using a standard 

curve generated from serially diluted cDNA. Reactions were performed on the Bio-

RAD CFX96 real time PCR machine (The Westmead Institute for Medical Research) 

using a 2 step cycling protocol with the following cycling conditions: hot start 95°C for 

2 min, 40 cycles of 5 s at 95°C and 15 s at 60°C. Fluorescence data was collected in 

the SYBR channel at the end of each cycle. A melt curve was generated at the 

completion of the cycles. The expression of indicated genes was normalised to 

GAPDH expression.  
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2.2.8 Protein extraction  

Cell pellets were lysed with a lysis buffer consisting of 10 mM TRIS-HCl, 150 mM 

sodium chloride, 1 mM EDTA, 2 mM sodium molybdate, 10 mM sodium fluoride, 1% 

v/v Triton X-100, cOmplete ULTRA and PhosSTOP tablets. Samples were rotated at 

4°C for half an hour then centrifuged for 10 min at 12,000 x g. Supernatants were 

transferred to fresh tubes and protein quantified by BCA colorimetric assay.  

2.2.9 Immunoblotting 

Twenty micrograms of protein was combined with 5 l of 3x Laemmli buffer and heat 

denatured in a water bath at 95°C for 10 min. Samples were loaded onto 10% bis-

TRIS SDS-PAGE gels with a 4% stack and run at 120 volts until the dye front reached 

the end of the gel. Proteins were transferred onto a 0.4 m nitrocellulose membrane 

by wet transfer for 2.5 h at 300 mAmp. Transfer of protein was confirmed by staining 

the membranes with 0.1% Ponceau S in 1% acetic acid, for 1 min with gentle agitation. 

Membranes were washed briefly in 1x TBS containing 0.1% Tween-20 (TTBS) and 

then blocked with 5% skim milk powder in TTBS for 1 h at RT with gentle agitation.  

Primary antibody was diluted in 5% BSA in TTBS and incubated with membranes at 

4°C overnight with gentle agitation. Membranes were washed to remove unbound 

antibody and then probed with the secondary antibody conjugated to HRP for 1.5 h at 

RT with gentle agitation. Membranes were again washed to remove unbound 

antibody. Membranes were incubated with Clarity ECL for 1 min and then imaged 

using the ChemiDoc MP imaging system (Bio-RAD). 

Membranes were stripped of bound primary and secondary antibodies by incubating 

blots in 0.4% SDS, 0.06M TRIS-HCl and 0.008% v/v -mercaptoethanol for 0.5 h at 
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55°C with gentle rocking. Membranes were washed briefly in 1x TBS containing 0.1% 

Tween-20 (TTBS) and were then re-probed with a second primary antibody. 

2.2.10 Statistics 

Two tailed non-paired t-tests were performed using Microsoft Excel. Kaplan Meier 

survival curves were generated with GraphPad Prism and log ranked (Mantel-Cox) 

test performed on data. One-way and Two-way ANOVA analysis was performed by 

Partek Genomics Suite. P-values ≤ 0.05 were considered statistically significant. 

2.2.11 Ethics Approval 

All mouse experimental protocols were approved by the Westmead Hospital Animal 

Ethics Committee. All patients enrolled in clinical trial conducted by MD Anderson 

Cancer Center signed an informed consent form approved by the Institutional Review 

Board of University of Texas / MD Anderson Cancer Center (clinicaltrials.gov identifier: 

NCT00968253).  

 

  



51 
 

CHAPTER 3 NEXT GENERATION SEQUENCING OF 
EVEROLIMUS RESISTANT ALL XENOGRAFTS 

3.1 INTRODUCTION 

A pre-clinical study conducted by Crazzolara et al [128] evaluated the efficacy of 

everolimus in a murine xenograft model of human ALL. The survival of mice engrafted 

with human ALL xenografts was significantly extended with administration of 

everolimus as a single agent, and in the case of one xenograft eradicated the 

leukemia. However, despite this very promising efficacy in the treatment of leukemia 

in vivo, clinical use of everolimus is likely to be in combination with established 

chemotherapy regimens [188, 189]. Indeed, the survival of mice engrafted with human 

ALL xenografts and treated with everolimus in conjunction with the chemotherapeutic 

agent vincristine, was significantly extended over either agent alone [128, 129].  

A preliminary investigation of the effects of long-term administration of everolimus was 

conducted prior to the commencement of this project. Human ALL xenograft cells were 

harvested from mice that succumbed to ALL despite continuous treatment with 

everolimus. When these cells were re-engrafted into secondary recipients, the 

extension in survival elicited by everolimus was significantly reduced compared to 

everolimus naïve cells, indicating the development of resistance (unpublished data, 

Fig 3.5). This resistance development severely limits the therapeutic potential of 

everolimus and must be investigated so that patients may benefit from the anti-tumor 

properties of mTOR inhibition. 

ALL exists as a heterogeneous clonal population with sub-clones arising from a 

common parental clone with a driving mutation [190, 191]. Relapse and drug 
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resistance is proposed to occur by the selection of a pre-existing resistant clone or 

through the acquisition of a resistance conferring mutation [192-194]. 

Resistance to everolimus has not been described in ALL, though parallels may be 

drawn from studies with everolimus, and its parental compound rapamycin, in other 

mammalian cell models. The mechanism by which these cells acquire resistance is 

not universal, though mutations in genes such as FKBP12 (the binding partner for 

everolimus) and S6K1 (a downstream target of mTOR) may confer resistance [138, 

139, 147, 148]. Next generation sequencing of the transcriptome (RNAseq) gives not 

only insight into the actively transcribed genes but also any mutations, splice variants 

and gene fusions that have occurred within cells. RNAseq has previously been used 

to determine mechanisms of drug resistance to conventional chemotherapeutic 

compounds in leukemia cells [195]. This chapter aimed to characterise the 

transcriptome of everolimus resistant ALL cells to determine possible mechanisms by 

which resistance has been acquired. 
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3.2 METHODS 

3.2.1 Transcriptome sequencing 

RNA was extracted and its quality determined as described in 2.2.3 and 2.2.4 

respectively. RNA (5 g), with a RIN > 6 and A260/280 > 1.8, was precipitated by 

adding 0.1 volumes of 3 M sodium acetate (pH 7-8) then 2 volumes of ice cold 100% 

ethanol. Samples were sent to Axeq Technologies (Seoul, Korea) for transcriptome 

sequencing using Illumina HiSeq 2000 and the 100bp paired end sequencing method. 

Sequence alignment and analysis (Gene expression, SNP, INDEL, fusion gene, slice 

variant) was performed by Axeq.  

3.2.2 Cloning and Sanger sequencing 

Reverse transcribed cDNA was amplified by PCR using Phusion high fidelity DNA 

polymerase and gene specific primers containing restriction sites for EcoRI and BamHI 

on the forward and reverse primers respectively (Table 2.2). PCR products were 

separated using agarose gel electrophoresis and correct products excised then 

purified using the QIAquick gel extraction kit. Purified PCR products and cloning vector 

(pEGFP-N1) were digested with EcoRI and BamHI restriction enzymes by incubating 

products with 1x digestion buffer, 1 µg/µL of acetylated BSA and 5 U of restriction 

enzyme in a 20 L reaction at 37°C for 1 h. Digested products and vector were purified 

by from agarose gels using the QIAquick gel extraction kit. Products were ligated into 

the cloning vector using T4 DNA ligase overnight at 4°C. Competent E-coli JM109 

cells were transformed with ligated vectors and selected on agar plates containing 

kanamycin (60 g/mL). Colonies were picked and incubated in 5 mL of lysogeny broth 

containing kanamycin (60 g/mL). Plasmid DNA was extracted using the ISOLATE II 

plasmid mini kit and sent for Sanger sequencing with the AGRF. 
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3.2.3 Adhesion 

Human bone marrow stroma (HuBMS.hTERT) was seeded onto sterile white optiplate-

96 microtitre plates with transparent bases and grown to confluence, as determined 

by light microscopy. White optiplate-96 microtitre plates were coated with 1 g/well of 

laminin by incubation at 4°C overnight. Microplates coated with laminin were washed 

twice with PBS and non-specific binding was blocked by incubating wells with 1% BSA 

for 2 h at 37°C. Excess BSA was removed through two washes with PBS. 

Cells were labelled with 100 Ci of 51chromium in 100 L phenol red free cRPMI 

supplemented with 10% FBS and 1 mM L-glutamine for 90 min at 37°C. Cells were 

washed twice with phenol red free cRPMI. Cells were resuspended at 1x105/mL in 

phenol red free cRPMI and 100 L added per well (minus the 100% control). Plates 

were centrifuged at 250 x g for 5 min then incubated at 37°C for 1 h. Non-adherent 

cells were gently removed by three washes with PBS. The cells for the 100% control 

were added to respective wells and 100 L of phenol red free cRPMI was added to 

each of the remaining wells. Cells were lysed with 50 L of a 3% TritonX-100 solution. 

The transparent base of optiplates were covered with a white adhesive layer and 

adherent cells were analyzed by adding 100 L of microscint40 to each well and 

reading plates with the Microbeta2 scintillation counter. 
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3.3 RESULTS  

3.3.1 Gene expression 

RNA was isolated from the everolimus resistant xenograft 1345-R and its matched 

sensitive control 1345-S, and sent to Axeq technologies for transcriptome sequencing. 

Gene expression data was subsequently filtered by removing genes that were not 

expressed in any sample from the analysis. A total of 13204 genes were quantified 

and their expression in 1345-R was normalised to the parental xenograft, 1345-S. 

Everolimus resistant cells had 593 genes upregulated and 578 genes downregulated 

greater than 2 fold over the sensitive xenograft. Three of the top 15 genes (MLLT4, 

ITGa6, ITGa8) upregulated in the 1345-R cells are involved in cellular adhesion (Table 

3.1) and the top down regulated gene (ADAM23) has anti-adhesive properties (Table 

3.2). Moreover, 4 genes that control gene expression either by forming transcription 

factor complexes (FOSB, EGR2, FOS) or by affecting alternative splicing of RNA 

(AFF2) were upregulated in the 1345-R xenograft. Resistant cells down regulated 3 

genes implicated in cell death (Table 3.2), CDIP and RNF133B are involved with p53 

dependent cell death, while RNF130 is suggested to have a role in the death of 

hematopoietic cells.  

GSEA did not identify any gene sets as being significantly enriched in 1345-R cells as 

compared to the sensitive parental cells. Fifty pathway maps (Table 3.3 and Appendix 

Table A.3) and 18 process networks (Table 3.4) that were significantly enriched in 

1345-R cells, with an FDR < 25%, were identified using Metacore analysis. Consistent 

with the observations made with the gene expression data, six of the pathway maps 

and 2 of the process networks involved cellular adhesion.
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Gene ID Gene Name 
Ratio 
R/S 

Function 

MLLT4 
Mixed-Lineage Leukemia 

Translocated To, 4 
53.97 Cell-Cell adhesion 

ITGa6 Integrin alpha 6 45.62 Adhesion to laminin 

CR1 
Complement component receptor 

1 
44.91 Complement cascade 

H1F0 H1 histone family, member 0 35.49 

Histone present in cells 
that are in terminal stages 

of differentiation or that 
have low rates of cell 

division 

LOC100130992 uncharacterized LOC100130992 28.62 
Affiliated with non-coding 

RNA 

JMJD7-
PLA2G4B 

Jumonji Domain Containing 7-
Phospholipase A2, Group IVB 

(Cytosolic) Read-Through 
27.94 

Calcium-dependent 
phospholipase A2 

RAI14 Retanoic acid induced 14 27.5 Novel retinal pigment 

FOSB 
FBJ Murine Osteosarcoma Viral 

Oncogene Homolog B 
25.69 

Enhances DNA binding of 
Jun proteins 

ITGa8 Integrin alplha 8 20 Cell-Cell adhesion 
NOS1 Nitric oxide synthase 1 17.82 Produces nitric oxide 
EGR2 Early growth response 2 17.69 Transcription factor 

NR4A1 
Nuclear Receptor Subfamily 4, 

Group A, Member 1 
17.11 

May inhibit NF-kappa-B 
transactivation of IL2. 

FOS 
FBJ Murine Osteosarcoma Viral 

Oncogene Homolog 
17.1 

Part of Jun/AP-1 
transcription factor 

complex 

TTC28 
Tetratricopeptide repeat protein 

28 
16.41 

Possible role in 
condensation of spindle 
midzone microtubules 

AFF2 AF4/FMR2 Family, Member 2 15.53 
RNA binding protein. 

Possible alternate splicing 
role. 

Table 3.1. The 15 most upregulated genes in the transcriptome of xenograft 

1345-R (for full table see Appendix Table A.1). 
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Gene ID Gene Name Ratio 
R/S 

Function 

ADAM23 
ADAM Metallopeptidase Domain 

23 
-176.58 

Non-catalytic 
metalloprotease-like 

protein 

LRRC26 
Leucine Rich Repeat Containing 

26 
-79.74 aux of BK-a channel 

PHOSPHO2-
KLHL23 

PHOSPHO2-KLHL23 
Readthrough 

-31.9 Phosphatase function 

SNHG5 
Small Nucleolar RNA Host Gene 

5 
-23.69 

snoRNA, affliated with  
non-coding RNA 

SNHG4 
Small Nucleolar RNA Host Gene 

4 
-17.34 

snoRNA, affiliated with  
non-coding RNA 

RNF130 Ring Finger Protein 130 -13.86 
Possible role in cell death 

of hematopoietic cells 

MOCS2 
Molybdenum Cofactor Synthesis 

2 
-13.19 

sulfur carrier required for 
molybdopterin biosynthesis

HSD17B8 
Hydroxysteroid (17-Beta) 

Dehydrogenase 8 
-12.9 Steroid regulation 

SHOX2 Short stature homeobox 2 -12.89 Possible growth regulator 

SPG20 Spastic Paraplegia 20 -12.04 
Possible endosomal 

trafficking and/or 
microtubule dynamics 

LOC100133957 
uncharacterized LOC100133957, 

transcript variant 1 
-11.91 

affiliated with  non-coding 
RNA 

CDIP1 
(C16orf5) 

Cell Death-Inducing P53 Target 1 -11.58 p53 apoptotic effector 

RNF144B Ring finger protein 144B -11.52 
p53 dependent but 

caspase-independent 
apoptosis 

ODF2L 
Outer Dense Fiber Of Sperm Tails 

2-Like 
-11.03 cytoskeletal 

GUSBP2 
Glucuronidase, Beta Pseudogene 

2 
-10.86 pseudogene 

Table 3.2. The 15 most down regulated genes in the transcriptome of 

xenograft 1345-R (for full table see Appendix Table A.2). 
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Pathway map pValue FDR 

Transcription_Role of AP-1 in regulation of cellular 
metabolism 

1.181E-
07 

8.988E-
05 

Cytoskeleton remodeling_Cytoskeleton remodeling 2.572E-
06

9.798E-
04 

Cytoskeleton remodeling_TGF, WNT and cytoskeletal 
remodeling 

8.890E-
06 

2.258E-
03 

Inhibition of neutrophil migration by proresolving lipid 
mediators in COPD 

2.459E-
05 

6.432E-
03 

Reproduction_GnRH signaling 3.363E-
05 

6.398E-
03 

NETosis in SLE 8.139E-
05 

1.038E-
02 

Cell adhesion_Integrin-mediated cell adhesion and migration 1.057E-
04 

1.153E-
02 

Neurophysiological process_Corticoliberin signaling via 
CRHR1  

1.113E-
04 

1.154E-
02 

Immune response_ETV3 affect on CSF1-promoted 
macrophage differentiation 

1.316E-
04 

1.154E-
02 

Transcription_Role of VDR in regulation of genes involved in 
osteoporosis 

1.365E-
04 

1.154E-
02 

Immune response_HSP60 and HSP70/ TLR signaling 
pathway 

2.181E-
04 

1.618E-
02 

HBV signaling via protein kinases leading to HCC 2.524E-
04 

1.618E-
02 

Immune response_MIF-induced cell adhesion, migration and 
angiogenesis 

2.918E-
04 

1.618E-
02 

Immune response_MIF - the neuroendocrine-macrophage 
connector 

2.918E-
04 

1.618E-
02 

Development_Keratinocyte differentiation 2.977E-
04 

1.618E-
02 

Role of Endothelin-1 in inflammation and vasoconstriction in 
Sickle cell disease 

3.748E-
04 

1.724E-
02 

Development_Regulation of cytoskeleton proteins in 
oligodendrocyte differentiation and myelination 

4.002E-
04 

1.724E-
02 

Stimulation of TGF-beta signaling in lung cancer 4.078E-
04 

1.724E-
02 

Cell adhesion_Chemokines and adhesion 4.318E-
04 

2.057E-
02 

Immune response_MIF-mediated glucocorticoid regulation 4.696E-
04 

1.787E-
02 

Table 3.3. The 20 most significantly enriched Metacore pathway maps 

in the transcriptome data (for full table see Appendix Table A.3). 
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Network pValue FDR 

Cytoskeleton_Regulation of cytoskeleton rearrangement 2.729E
-05 

4.339E
-03 

Muscle contraction 5.703E
-05 

4.534E
-03 

Cell adhesion_Cadherins 2.835E
-04 

1.298E
-02 

Protein folding_Folding in normal condition 3.251E
-04 

1.298E
-02 

Cell adhesion_Integrin-mediated cell-matrix adhesion 5.572E
-04 

2.570E
-02 

Neurophysiological process_Corticoliberin signaling 1.080E
-03 

2.734E
-02 

Cytoskeleton_Actin filaments 1.173E
-03 

2.734E
-02 

Development_Skeletal muscle development 1.336E
-03 

3.721E
-02 

Proliferation_Positive regulation cell proliferation 1.762E
-03 

5.569E
-02 

Immune response_Antigen presentation 2.559E
-03 

4.639E
-02 

Signal Transduction_TGF-beta, GDF and Activin signaling 3.730E
-03 

7.366E
-02 

Translation_Translation in mitochondria 6.584E
-03 

9.850E
-02 

Cytoskeleton_Cytoplasmic microtubules 7.230E
-03 

9.850E
-02 

Inflammation_MIF signaling 1.160E
-02 

1.359E
-01 

Development_Keratinocyte differentiation 1.290E
-02 

1.359E
-01 

Immune response_Phagosome in antigen presentation 1.291E
-02 

1.359E
-01 

Development_Blood  vessel morphogenesis 1.882E
-02 

2.066E
-01 

Proteolysis_ECM remodeling 2.665E
-02 

2.492E
-01 

Table 3.4 Metacore networks maps significantly enriched in the 

transcriptome of the resistant xenograft. 
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3.3.2 Mutations in resistant xenograft 1345-R  

Four genes (CHEK1, DYRK1A, ATG5 and PKN2) with documented roles in 

malignancy were found to have novel heterozygous mutations in both untreated and 

everolimus treated 1345-R cells that were not detected within the sensitive parental 

xenograft (Table 3.5). CHEK1 had single base mutation that was predicted to have a 

significant impact on protein function with a BLOSUM score of -3, while the remaining 

genes had a single base pair insertion.  

The mutation observed in DYRK1a is predicted to result in the truncation of the protein 

at amino acid (a.a.) 119, leading to a complete loss in function. To determine whether 

inactivation of DYRK1a confers resistance to everolimus, a pharmacological inhibitor 

of DYRK1a, harmine, was combined with a sub-lethal dose of everolimus and the 

viability and proliferation of NALM6 assessed in vitro. Harmine induced a dose 

dependent G1 arrest by 24 h, but no further effect was observed with the combination 

with 8 M of everolimus (Figure 3.1 A). Similarly, harmine did not prevent the loss of 

viability induced by everolimus at 24 h (Figure 3.1 B).  

As inhibition of DYRK1a by harmine was unable to confer resistance to everolimus in 

NALM6 cells, we sought to confirm the mutations found in 1345-R cells (Table 3.5). 

Genes were amplified by PCR using a high fidelity polymerase and cloned into a 

sequencing vector. Ten clones of each gene were sequenced however none of the 4 

mutations were confirmed in 1345-R cells (Figure 3.2). 
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Gene ID Gene Name Zygosity 
Mutation and 
Blosum score 

Function 
Predicted impact on 

protein 
Reported impact in cancer 

CHEK1 
Checkpoint kinase 

1 
Heterozygous 

Single base 
mutation T  G at 

bp 353 
aa119 Val  Gly. 

blossom -3. 
Mutation in protein 

kinase domain 
and claspin 

binding region.

Checkpoint mediated 
cell cycle arrest in 
response to DNA 

damage. 

Altered downstream 
signaling 

Potential drug target for B-cell 
lymphomas / leukemia, 

neuroblastoma and some 
breast and lung cancers 

DYRK1A 

Dual specificity 
tyrosine-

phosphorylation-
regulated kinase 

1A 

Heterozygous 

1 bp insertion at 
bp 318. Predicted 

truncation at 
amino acid 119 of 

754 

May play a role in a 
signaling pathway 

regulating cell 
proliferation. 

Loss of kinase 
domain, ATP binding 
domain, and bipartite 
nuclear localization 

signal motif. 

Increased expression 
associated with AMKL, 

decrease associated with T-
ALL. 

ATG5 
Autophagy protein 

5 
Heterozygous 

1bp insertion, 
frameshift 

mutation at aa233, 
stop codon at 
aa244 of 275 

E3 ubiquitin ligase, 
required for autophagy 

Possible impact on 
protein folding 

Depletion can generate 
autophagy deficient neoplasms 

in vivo. 

PKN2 
PKC-related 

serine/threonine-
protein kinase N2 

Heterozygous 

1bp insertion at 
amino acid 928, 
stop codon at  

amino acid 944; 
region 917-977 
necessary for 

catalytic activity 

Plays a role in the 
regulation of cell cycle 

progression, actin 
cytoskeleton assembly, 

cell migration, cell 
adhesion, tumor cell 

invasion and 
transcription activation 
signaling processes. 

Altered catalytic 
activity 

PRK2/PKN2, a Ser/Thr kinase 
and Rho/Rac effector protein, is 

an essential regulator of both 
entry into mitosis and exit from 

cytokinesis. 

Table 3.5 Mutations identified in 1345-R cells by transcriptome sequencing 
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Figure 3.1 Effects of DYRK1a inhibition by harmine on NALM6 cells. Cells were 

cultured with increasing doses of harmine alone and in combination with 8 mM 

everolimus and analysed for cell cycle distribution (A) and viability (B). Error bars 

represent the standard deviation of the mean of 2 independent experiments. 
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Figure 3.2 Sanger sequencing of 1345-R RNA. Region surrounding the 

predicted mutation site of each gene was PCR amplified and cloned into pEGFP-

N1 expression vector. Arrows indicate predicted mutation. Data shown is a 

representative of 10 clones sequenced for each gene. 
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3.3.3 Integrin expression 

To investigate the enrichment of adhesion related networks and pathways, the 

expression of adhesion molecules associated with these pathways was explored. The 

two most regulated were integrins alpha 6 and 8 being increased by 45.62 and 20 fold 

according to the transcriptome data. Quantitative Real time PCR (qRT-PCR) was used 

to confirm the increase in expression of the integrins alpha 6 (ITG6) and alpha 8 

(ITG8) detected by transcriptome sequencing in 1345-R cells. ITG6 was 

significantly increased 93 fold in the resistant 1345-R xenograft cells, as compared to 

the sensitive parental cells (Figure 3.3), however, there was a large variation in 

expression in resistant cells harvested from different mice. The expression of ITG8 

was too low to be detected by qRT-PCR and therefore its regulation could not be 

confirmed.  

ITG6 could not be detected by immunoblotting, therefore flow cytometry was used to 

confirm protein expression. Strong expression of ITG6 was detected on the pre-B 

ALL cell line NALM6, however, no ITG6 could be detected on the surface of either 

sensitive or resistant 1345 cells (Figure 3.4). However, intracellular staining for ITG6 

revealed higher expression in 1345-R than 1345-S cells, confirming the RNA results. 

The increase in ITG6 expression in 1345-R cells is restricted to the intracellular 

compartment where it cannot elicit its adhesive capabilities, making it unlikely that it is 

involved in resistance to mTOR inhibition by everolimus. 
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Figure 3.3 1345-R cells have increased ITG6 expression. ITG6 expression 

relative to GAPDH and normalized to 1345. Error bars represent the standard 

deviation of the mean of biological triplicates. * p=0.0012 
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Figure 3.4 Expression of ITG6 expression in leukemia cells as 

detected by GoH3 antibody. Surface and intracellular expression 

of ITG6 was assessed on sensitive and resistant 1345 cells. ITG6 

(GoH3) is represented by the blue histogram while the isotype control 
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3.3.4 Generation of additional resistant xenografts 

In order to expand the number xenografts analysed, an additional 2 xenografts, 1196, 

and 2055 were evaluated for their capability to develop resistance to everolimus in 

vivo (Figure 3.5). Everolimus was efficacious in extending the survival of animals 

engrafted with both xenografts, and re-engraftment of 2055 cells harvested from 

animals pre-treated with everolimus resulted in a reduction in the survival extension to 

27 days (green and purple lines), from 41 days in mice having previously received 

placebo (red and blue lines), indicating the development of resistance in these cells (p 

<0.0001). In mice engrafted with 2055 cells from placebo and everolimus pre-treated 

animals, the fraction of leukemia in the peripheral blood reached 1% in both 

simultaneously and as such, received treatments at the same time. Interestingly, 

however, cells from the everolimus pre-treated animals expanded at a slower rate, 

irrespective of whether the mice subsequently received placebo or everolimus. This is 

in contrast to the effect of resistance observed in 1345-R where mice more rapidly 

succumbed to the resistant xenograft. The xenograft 1196 did not develop resistance 

with the everolimus-induced survival extension being unchanged following serial 

transplantation and continuous everolimus exposure. 

The difference in the kinetics of the sensitive and resistant forms of the ALL xenografts, 

raised concerns about potential contamination. Therefore, short tandem repeat 

profiling of 9 loci was undertaken on the resistant and sensitive cells according to the 

ATCC guidelines to verify the origin of the resistant xenografts [196]. Both 1345-R and 

2055-R xenografts shared identical tandem repeat profiles as their sensitive forms, 

1345-S and 2055-S respectively, (Figure 3.6) indicating that both resistant xenografts 

arose from sensitive parental cells. 
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Figure 3.5 Development of resistance to mTOR inhibition by everolimus in 

human ALL xenografts in NSG mice. NOD/SCID mice engrafted with the 

indicated human ALL xenografts were treated as shown when blasts in the 

peripheral blood reached greater than 1%. Kaplan Meier plots shown with the p 

values indicating significant extensions in survival compared to each xenografts 

respective placebo control, determined using a Gehan-Breslow-Wilcoxon test. 

Arrows indicate the days when treatment commenced. 
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Figure 3.6 STR analysis of everolimus resistant ALL xenografts. DNA from 

xenografts was sequenced for 11 short tandem repeats and the number of copies 

in each allele compared between sensitive and resistant xenografts.  
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3.3.5 Microarray  

Transcriptome sequencing revealed resistance to everolimus induced numerous 

alterations to gene expression, however, the sample size had limited statistical power. 

Therefore we analysed RNA from the newly generated 2055-S and 2055-R, along with 

1345-S and 1345-R, with and without everolimus treatment by microarray. Mice were 

either engrafted with resistant ALL xenografts or their sensitive parental cells and once 

leukemia reached approximately 50% in the peripheral blood, mice received a single 

dose of everolimus or placebo and were sacrificed after 24 h. RNA was isolated from 

spleen cells (2.2.3), amplified, biotinylated and hybridized to a HumanHT-12v4 bead 

expression chip (2.2.6).  

Gene expression data obtained from the microarray was imported into GenomeStudio 

software and normalised for background with the average normalisation parameter. 

Gene lists were obtained by collapsing probes by average expression and exported 

into a Microsoft Excel spreadsheet. Genes were filtered by excluding those that were 

not significantly detected in at least 2 of the 3 mice from any group. Xenograft 1345-S 

and 2055-S had 15022 and 15765 genes remaining respectively after the filter was 

applied, and these genes were subjected to gene set enrichment analysis using the 

curated oncology (C2) gene set dataset.  

No gene sets were significantly enriched with a FDR of less than 25% when 1345-R 

and 1345-S cells were compared (Table 3.6). On the other hand, the development of 

resistance in 2055 resulted in the enrichment of 1063 genes sets in 2055-R and 467 

in 2055-S cells. (Table 3.6). Due to the lack of similarity in the changes in gene 

expression in the two xenografts upon the development of resistance, the effect of 

everolimus treatment on gene expression was considered. Two gene sets were 
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enriched following everolimus treatment in both the untreated and resistant 1345 

xenograft. Of interest was the negative correlation with the 

BIOCARTA_AKT_PATHWAY in treated 1345-S cells (Table 3.8). This gene set was 

not significantly regulated in 1345-R cells, although a trend was observed, suggesting 

a reduced effect on this pathway in the resistant cells. While everolimus administration 

negatively enriched a similar number of gene sets in 1345-R and 2055-R (344 and 

290 respectively, Table 3.6), there was no similarity in the gene sets enriched (Tables 

3.8 and 3.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Comparisons 

Xenograft 
  1345 2055

 

Sensitive  0  467 

Resistant  0  1063
 

Sensitive untreated  2  0 

Sensitive 24hr Everolimus  2  9 
 

Resistant untreated  344  290 

Resistant 24hr Everolimus 0  0 

Table 3.6 Number of gene sets significantly enriched with a FDR of less than 

25% in microarray data. 
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1345
 

NAME NES NOM p-val FDR q-val 

1345-S 

REACTOME_CELL_CELL_JUNCTION_ORGANIZATION 1.636 0.000 1.000 

MENSSEN_MYC_TARGETS 1.624 0.000 1.000 

KIM_ALL_DISORDERS_DURATION_CORR_DN 1.604 0.000 1.000 

CREIGHTON_AKT1_SIGNALING_VIA_MTOR_DN 1.581 0.000 1.000 

REACTOME_DESTABILIZATION_OF_MRNA_BY_AUF1_HNRNP_D0 1.565 0.109 1.000 

1345-R 

PID_HDAC_CLASSIII_PATHWAY -1.407 0.000 0.441 

PID_IL1_PATHWAY -1.407 0.000 0.441 

PID_AR_NONGENOMIC_PATHWAY -1.407 0.000 0.442 

DELPUECH_FOXO3_TARGETS_DN -1.407 0.192 0.443 

OUELLET_CULTURED_OVARIAN_CANCER_INVASIVE_VS_LMP_UP -1.405 0.000 0.443 

     

2055 
NAME ES NOM p-val FDR q-val 

2055-S 

MARTINEZ_RESPONSE_TO_TRABECTEDIN_UP 2.141 0.000 0.054 

REACTOME_APC_C_CDC20_MEDIATED_DEGRADATION_OF_CYCLIN_B 2.134 0.000 0.054 

BASSO_CD40_SIGNALING_DN 2.075 0.000 0.054 

XU_HGF_TARGETS_REPRESSED_BY_AKT1_DN 2.066 0.000 0.054 

CHIANG_LIVER_CANCER_SUBCLASS_INTERFERON_DN 2.031 0.000 0.079 

2055-R 

PID_ILK_PATHWAY -2.081 0.000 0.188 

BARIS_THYROID_CANCER_DN -2.033 0.000 0.240 

REACTOME_MUSCLE_CONTRACTION -1.949 0.000 0.345 

RASHI_RESPONSE_TO_IONIZING_RADIATION_2 -1.943 0.000 0.283 

LANDIS_BREAST_CANCER_PROGRESSION_DN -1.936 0.000 0.257 

Table 3.7 Gene set enrichment analysis of differential gene expression found by microarray associated with resistance 

in two human ALL xenografts 
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1345 
 NAME ES NOM p-val FDR q-val

UN 

AMIT_SERUM_RESPONSE_40_MCF10A 1.844 0.000 0.214 

CROONQUIST_NRAS_VS_STROMAL_STIMULATION_DN 1.826 0.000 0.233 

REACTOME_CHOLESTEROL_BIOSYNTHESIS 1.880 0.000 0.262 

CHUANG_OXIDATIVE_STRESS_RESPONSE_UP 1.741 0.000 0.265 

LEE_AGING_NEOCORTEX_UP 1.746 0.000 0.289 

Eve 

BRACHAT_RESPONSE_TO_METHOTREXATE_UP -1.990 0.000 0.054 

BIOCARTA_AKT_PATHWAY -1.899 0.000 0.105 

REACTOME_SIGNALING_BY_NOTCH1 -1.755 0.000 0.360 

ZHU_CMV_8_HR_DN -1.654 0.000 0.393 

XU_HGF_TARGETS_INDUCED_BY_AKT1_48HR_DN -1.655 0.000 0.412 

     
  

1345-R 
 NAME ES NOM p-val FDR q-val

UN 

WONG_PROTEASOME_GENE_MODULE 1.881 0.000 0.078 

YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_14 1.816 0.000 0.211 

KEGG_PURINE_METABOLISM 1.812 0.000 0.157 

KIM_MYC_AMPLIFICATION_TARGETS_UP 1.800 0.000 0.169 

REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE 1.785 0.000 0.201 

Eve 

BIOCARTA_AKT_PATHWAY -1.820 0.000 0.487 

PID_IL2_STAT5_PATHWAY -1.768 0.000 0.671 

WAMUNYOKOLI_OVARIAN_CANCER_GRADES_1_2_DN -1.735 0.000 0.958 

SMIRNOV_RESPONSE_TO_IR_2HR_DN -1.708 0.000 1.000 

ZHAN_MULTIPLE_MYELOMA_PR_DN -1.690 0.000 1.000 

Table 3.8 Gene set enrichment analysis of differentially expressed genes found by microarray following everolimus 

treatment of sensitive and resistant 1345 
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2055  
NAME NES NOM p-val FDR q-val

UN 

ZHAN_LATE_DIFFERENTIATION_GENES_DN 1.791 0.000 0.259 

BIOCARTA_G2_PATHWAY 1.775 0.000 0.266 

BUCKANOVICH_T_LYMPHOCYTE_HOMING_ON_TUMOR_DN 1.769 0.000 0.271 

ODONNELL_METASTASIS_UP 1.480 0.000 0.286 

GINESTIER_BREAST_CANCER_20Q13_AMPLIFICATION_UP 1.481 0.000 0.287 

Eve 

REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX -1.793 0.000 0.066 

REACTOME_TRANSLATION -1.804 0.000 0.075 

REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_THE_43S_COMPLEX -1.744 0.000 0.086 

REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION -1.823 0.000 0.089 

REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION -1.710 0.000 0.105 
 

     

2055-R 

NAME NES NOM p-val FDR q-val

UN 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 1.507 0.000 0.192 

ZHAN_MULTIPLE_MYELOMA_CD1_VS_CD2_UP 1.505 0.000 0.192 

REACTOME_PACKAGING_OF_TELOMERE_ENDS 1.507 0.000 0.193 

SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP 1.506 0.000 0.193 

NAKAMURA_TUMOR_ZONE_PERIPHERAL_VS_CENTRAL_UP 1.507 0.000 0.193 

Eve 

COLIN_PILOCYTIC_ASTROCYTOMA_VS_GLIOBLASTOMA_DN -1.699 0.000 1.000 

LEE_INTRATHYMIC_T_PROGENITOR -1.692 0.000 1.000 

HOEBEKE_LYMPHOID_STEM_CELL_UP -1.662 0.000 1.000 

BRACHAT_RESPONSE_TO_METHOTREXATE_UP -1.609 0.000 1.000 

POMEROY_MEDULLOBLASTOMA_PROGNOSIS_UP -1.600 0.000 1.000 

Table 3.9 Gene set enrichment analysis of differentially genes by microarray following everolimus treatment of sensitive 

and resistant 2055 
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A list of genes significantly detected by the microarray analysis of both everolimus 

resistant xenografts was imported into Partek genomics suite. Principal component 

analysis (PCA) indicated the major source of variation within the 1345 xenograft set 

was based on how the xenografts responded to everolimus treatment rather than the 

development of resistance (Figure 3.7 A). Conversely, resistance to everolimus was 

the major source of variation between the 2055 xenograft set (Figure 3.7 B). Similarly, 

hierarchical clustering of the significantly detected genes clustered in 1345-S by 

treatment (Figure 3.8 A) and 2055 by resistance (Figure 3.8 B), further emphasising 

the difference in the development of resistance between these two xenografts. This 

suggests that changes in baseline gene expression are important for resistance in 

2055 while changes in the response to everolimus is important for resistance in 1345. 

Differential regulation of genes was detected with the Partek genomics suite by means 

of a 2-way ANOVA using the method of moments and comparing groups by the 

Fisher's Least Significant Difference method on Log2 transformed data. Lists that 

contained genes significantly altered by everolimus treatment and the development of 

resistance, were generated for each xenograft. Everolimus treatment of 1345-S and 

1345-R significantly altered the expression of 4833 and 3547 genes respectively, with 

2531 genes being regulated in common (Figure 3.9 A). Fewer genes were significantly 

regulated by treatment in 2055-S and 2055-R with 1792 and 1534 respectively being 

altered, 505 being common between the two xenografts (Figure 3.9 B). Compared to 

their respective sensitive parental controls, 762 genes were regulated in common 

between both 1345-R and 2055-R (Figure 3.9 C). Treatment of the resistant xenografts 

with everolimus commonly altered the expression of 441 genes (Figure 3.9 D). 
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The 762 genes commonly regulated in both 1345-R and 2055-R (Figure 3.9 C 

intersection) could potentially indicate a similarity in the development of resistance to 

everolimus. To assess what pathways these genes were involved in, the list of genes 

was interrogated using Metacore and GSEA. GSEA was unable to identify enrichment 

of any gene sets in the commonly regulated genes, however, Metacore identified 20 

pathway maps (Table 3.10) and 15 process networks (Table 3.11) that were 

significantly enriched with a FDR of less than 25%. Pathways associated with cellular 

adhesion and cytoskeletal regulation were prominent in both process networks and 

pathways maps of everolimus resistant cells. 
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Figure 3.7 Principal component analysis (PCA) of microarray data. RNA was 

isolated from mice engrafted with sensitive and resistant 1345 (A) and 2055 (B). 

Mice were untreated (blue and red dots) or received everolimus 24 h before cull 

(green and purple dots). RNA was analyzed by microarray and expression data was 

imported into Partek genomics suite and samples separated by PCA analysis. 

Samples were run in biological triplicate.  
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Figure 3.8 Hierarchical clustering of microarray data from 1345 and 2055 ALL 

xenografts. RNA was isolated from mice engrafted with sensitive and resistant 

1345 (A) and 2055 (B). Mice were untreated (red and orange bars) or received 

everolimus 24 h before cull (green and yellow bars). RNA was analyzed by 

microarray and expression data was imported into Partek genomics suite. 

Hierarchical clustering was performed on Samples (rows) and genes (columns) 

using Euclidean dissimilarity and the average linkage method. Samples were run 

in biological triplicate.   
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Figure 3.9 Venn diagram of commonly expressed genes. Partek genomics 

suite was used to detect differentially expressed genes and compare generated 

lists between different comparison groups. Expression of genes significantly 

altered by everolimus treatment was compared between the sensitive and resistant 

1345 (A) and 2055 (B) ALL xenografts. Genes that were significantly different in 

both resistant xenografts compared to their relative sensitive parental controls (C) 

and common genes in resistant xenografts when treated with everolimus (D) were 

also compared. 
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Maps p-value FDR 

Cell adhesion_Cadherin-mediated cell adhesion 8.935E-06 8.206E-04 

Cell adhesion_Chemokines and adhesion 1.641E-05 8.206E-04 

Cell adhesion_Histamine H1 receptor signaling in the 
interruption of cell barrier integrity 

4.787E-05 1.596E-03 

Development_Role of proteases in hematopoietic stem cell 
mobilization 

3.745E-04 9.363E-03 

Cytoskeleton remodeling_Cytoskeleton remodeling 5.477E-04 9.870E-03 

Cell adhesion_Endothelial cell contacts by non-junctional 
mechanisms 

6.718E-04 9.870E-03 

Cytoskeleton remodeling_TGF, WNT and cytoskeletal 
remodeling 

7.013E-04 9.870E-03 

Cell adhesion_Endothelial cell contacts by junctional 
mechanisms 

7.896E-04 9.870E-03 

Development_Osteopontin signaling in osteoclasts 1.053E-03 1.124E-02 

Cytoskeleton remodeling_Fibronectin-binding integrins in cell 
motility 

1.124E-03 1.124E-02 

Role of growth factor receptors transactivation by Hyaluronic 
acid / CD44 signaling in tumor progression 

1.433E-03 1.303E-02 

Development_Astrocyte differentiation from adult stem cells 1.870E-03 1.559E-02 

Cell adhesion_Integrin-mediated cell adhesion and migration 2.684E-03 1.997E-02 

Cytoskeleton remodeling_Integrin outside-in signaling 2.796E-03 1.997E-02 

Cell adhesion_Role of CDK5 in cell adhesion 1.460E-02 9.731E-02 

Development_Role of G-CSF in hematopoietic stem cell 
mobilization 

3.375E-02 1.124E-01 

Cytoskeleton remodeling_ESR1 action on cytoskeleton 
remodeling and cell migration 

3.533E-02 1.124E-01 

Development_GDNF signaling 3.848E-02 1.124E-01 

Development_Slit-Robo signaling 4.788E-02 1.124E-01 

Cytoskeleton remodeling_Reverse signaling by ephrin B 4.944E-02 1.124E-01 

Table 3.10 Metacore pathway maps of genes commonly regulated in 

everolimus resistant xenografts. 

Abbreviations: FDR- False discovery rate 
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Networks p-value FDR 

Cell adhesion_Cadherins 2.170E-05 1.302E-03 

Cell adhesion_Platelet aggregation 1.732E-03 3.021E-02 

Cell adhesion_Cell junctions 1.899E-03 3.021E-02 

Cytoskeleton_Actin filaments 2.571E-03 3.021E-02 

Cytoskeleton_Regulation of cytoskeleton rearrangement 2.962E-03 3.021E-02 

Cell adhesion_Synaptic contact 3.021E-03 3.021E-02 

Cell adhesion_Cell-matrix interactions 4.936E-03 3.597E-02 

Cell adhesion_Integrin-mediated cell-matrix adhesion 5.190E-03 3.597E-02 

Inflammation_Protein C signaling 5.396E-03 3.597E-02 

Cell adhesion_Glycoconjugates 1.633E-02 9.796E-02 

Cell adhesion_Platelet-endothelium-leucocyte interactions 1.973E-02 1.076E-01 

Cytoskeleton_Intermediate filaments 2.982E-02 1.491E-01 

Cytoskeleton_Macropinocytosis and its regulation 3.259E-02 1.504E-01 

Signal Transduction_BMP and GDF signaling 3.693E-02 1.583E-01 

Development_Blood  vessel morphogenesis 3.961E-02 1.584E-01 

Table 3.11 Metacore process networks of genes commonly regulated 

in everolimus resistant xenografts.

Abbreviations: FDR- False discovery rate 
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3.3.6 qRT-PCR confirmation of changed expression 

Of the 762 genes commonly altered in both resistant xenografts, 80 were mutually 

increased (≥1.5 fold) and 47 decreased (≤1.5 fold) over their respective sensitive 

controls (Table 3.12). A significant increase in the expression of 7 genes was 

confirmed in 2055-R cells (Figure 3.10 A) though one gene, PTAR, while similarly 

increased in 2055-R cells, failed to achieve significance. The expression of FAK 

(PTK2), CDK6, EPAS1 and AKAP12 was increased in 1345-R cells, however the 

difference was not significant (Figure 3.10 B). 
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Upregulated 

 
Downregulated 

Gene FC 2055-R FC 1345-R Gene FC 2055-R FC 1345-R 

PTGDR 68.43 13.98 BEST3 105.20 1.72 

GIMAP4 63.79 19.19 ADAMTSL2 56.99 3.07 

LOC442597 30.28 3.41 CXORF57 56.64 2.83 

NOG 18.73 2.04 ADAM23 53.59 4.65 

SDK2 18.27 5.39 FAM127A 41.22 2.00 

ZYX 17.00 1.73 DCBLD2 25.09 2.00 

FAK 16.40 12.96 ALDH7A1 24.69 3.61 

ACTN1 15.10 3.08 WBP5 24.29 1.67 

GYPC 14.27 1.51 TMSB15A 21.15 0.91 

ARMCX1 12.68 7.87 ALOX5 18.06 3.04 

HS.570988 12.63 2.69 VMD2L3 17.31 1.73 

SLC2A5 12.24 1.99 ZNF70 17.15 16.68 

LOC646786 12.17 4.63 PTPRZ1 15.03 2.48 

SLC4A11 11.23 1.91 BCL2L11 14.48 2.01 

GOLGB1 8.61 2.81 SKAP1 13.87 2.56 

SH3BP4 6.65 3.19 TRIB1 12.49 2.53 

TNS3 6.27 3.45 RBM9 11.31 2.11 

TBC1D4 5.88 1.58 IL9R 7.19 1.54 

RAI14 5.68 3.12 MYOM2 6.94 1.56 

RASD1 4.83 2.75 NFIA 6.04 0.15 

C10ORF47 4.79 3.30 OXCT2 5.96 1.65 

DMXL2 4.74 2.10 SERINC2 5.74 1.98 

SPNS3 4.68 1.94 RAPGEF3 5.55 4.61 

AKAP12 4.57 2.39 PLCH2 5.36 2.14 

EIF4E3 4.54 6.01 FM01 5.30 2.48 

Abbreviations: FC – Fold change 

Table 3.12 Top 25 commonly regulated genes in everolimus 

resistant xenografts by microarray (for full table see Appendix A.4). 
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Figure 3.10 RT-PCR confirmation of altered gene expression detected in array 

analysis of resistant xenografts. Expression of indicated genes was assessed in 

RNA from mice engrafted with sensitive (blue) and resistant (red) 2055 (A) and 

1345 (B). Error bars represent the standard deviation of the mean biological 

triplicates, data normalized to sensitive xenografts, * p<0.05. 
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3.5.7 Correlation of transcriptome sequencing and microarray 

The list of genes significantly altered by resistance in 1345 and 2055 as detected by 

microarray was compared to the list generated from transcriptome sequencing. A total 

of 36 genes were identified by both techniques and of those genes, 33 were similarly 

altered in both the degree and directionality (Table 3.13). Analysis of the pathway 

maps (Table 3.14) and process networks (Table 3.15) associated with these genes, 

revealed and enrichment in adhesion related pathways. However, the relatively small 

gene list used to generate these pathways meant that only a few genes were involved 

in each pathway, limiting the reliability of the pathways generated.  

  



86 
 

  

Gene Gene Name 
2055-R

(microarray
1345-R

(microarray 
1345-R 

(transcriptome)
ACTN1 Actinin alpha 1 15.10121 3.081514 2.195555 

ADAM23 ADAM Metallopeptidase Domain 23 -53.5883 -4.64562 -176.576 
ALOX5 Arachidonate 5-lipoxygenase -18.064 -3.0368 -6.52093 
BEST3 Bestrophin 3 -105.202 -1.71758 -7.13469 

C11ORF75 
Single-Pass Membrane Protein With 

Coiled-Coil Domains 4 
2.186602 4.152587 5.232009 

CD163L1 CD163 Molecule-Like 1 -4.82464 -2.39797 -6.68956 
CD200 OX-2 membrane glycoprotein 1.902462 1.513213 2.368478 

CTNNA1 Catenin alpha-1 4.048169 5.428412 10.03516 

DCBLD2 
Discoidin, CUB and LCCL domain-

containing protein 2 
-25.0897 -1.99505 -3.76471 

DDX60 
DEAD (Asp-Glu-Ala-Asp) Box 

Polypeptide 60 
-1.80541 -2.64506 -3.06109 

FAM127A 
Family With Sequence Similarity 

127, Member A 
-41.2189 -2.00215 -2.39869 

FAM164A 
Family With Sequence Similarity 

164, Member A 
-3.03256 -2.93756 -4.11349 

FLJ22536 hypothetical locus LOC401237 4.442485 2.634444 3.0411 
GATS Stromal Antigen 3 Opposite Strand 2.362571 1.634139 2.597726 

HIST1H1B Histone Cluster 1, H1b -2.37669 -1.60532 -2.00687 
HIST1H1D Histone Cluster 1, H1d -1.92065 -1.60837 2.840239 

KBTBD11 
Kelch Repeat And BTB (POZ) 

Domain Containing 11 
1.527067 2.711003 3.434046 

LAX1 
Lymphocyte Transmembrane 

Adaptor 1 
1.795586 3.329376 2.615507 

MVP Major Vault Protein 1.582479 2.751358 3.116274 
NEIL1 Nei Endonuclease VIII-Like 1 -5.18819 -1.58733 4.673198 

OXCT2 3-Oxoacid CoA Transferase 2 -5.96289 -1.65187 -4.82785 
PRKCB Protein Kinase C, Beta 4.467857 1.521046 2.139201 
PTGDR Prostaglandin D2 Receptor 68.42667 13.98083 15.14209 
PTK2 Protein tyrosine kinase 2 (FAK1) 16.40453 12.96064 4.562393 

PTPRF 
Protein Tyrosine Phosphatase, 

Receptor Type, F 
2.22575 2.153346 3.226891 

RAI14 Retinoic Acid Induced 14 5.684875 3.119224 27.49589 
RASD1 RAS, Dexamethasone-Induced 1 4.82974 2.749402 6.451487 
RHOB Ras Homolog Family Member B -4.44211 -2.3474 6.016126 

SDK2 
Sidekick Celltune Adhesion 

Molecule 2 
18.2686 5.393328 12.31393 

SPNS3 Spinster Homolog 3 4.676926 1.939586 3.125965 

TM6SF1 
Transmembrane 6 Superfamily 

Member 1 
1.923002 5.365719 2.288218 

TMEM136 Transmembrane Protein 136 2.684557 1.533716 2.853364 
TMEM44 Transmembrane Protein 44 2.557675 1.619264 2.303991 

WBP5 WW Domain Binding Protein 5 -24.2946 -1.6746 -2.90655 
ZNF154 Zinc Finger Protein 154 4.208378 2.643361 7.111662 

ZYX Zyxin 17.00392 1.726505 3.249487 

Table 3.13 Genes commonly regulated in resistant xenografts found by 

microarray and transcriptome. 
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Maps p-value FDR 

Cell adhesion_Cadherin-mediated cell adhesion 1.058E-05 9.154E-04 

Cell adhesion_Chemokines and adhesion 2.068E-05 9.154E-04 

Cytoskeleton remodeling_Cytoskeleton remodeling 2.237E-05 
9.154E-

04sc 

HBV signaling via protein kinases leading to HCC 2.876E-05 9.154E-04 

Development_Gastrin in differentiation of the gastric mucosa 3.390E-05 9.154E-04 

Cell adhesion_Histamine H1 receptor signaling in the interruption of 
cell barrier integrity 

5.661E-05 1.274E-03 

Cell adhesion_Integrin-mediated cell adhesion and migration 6.879E-05 1.327E-03 

Muscle contraction_Oxytocin signaling in uterus and mammary gland 1.482E-04 2.501E-03 

Development_VEGF signaling via VEGFR2 - generic cascades 3.649E-04 5.473E-03 

Cell adhesion_Endothelial cell contacts by non-junctional mechanisms 7.481E-04 9.891E-03 

Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling 8.257E-04 9.891E-03 

Cell adhesion_Endothelial cell contacts by junctional mechanisms 8.792E-04 9.891E-03 

Cytoskeleton remodeling_Fibronectin-binding integrins in cell motility 1.252E-03 1.207E-02 

NETosis in SLE 1.252E-03 1.207E-02 

Neurophysiological process_Thyroliberin in cell hyperpolarization and 
excitability 

1.595E-03 1.436E-02 

Abbreviations: FDR – false discovery rate. 

Table 3.14 Top 15 pathway maps of genes commonly regulated in resistant 

xenografts found by microarray and transcriptome (for full table see Appendix A.5). 
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Networks p-value FDR

Cell adhesion_Cadherins 8.305E-09 5.647E-07 

Cell adhesion_Cell junctions 5.071E-05 1.724E-03 

Cytoskeleton_Regulation of cytoskeleton rearrangement 9.073E-05 2.057E-03 

Cell adhesion_Integrin-mediated cell-matrix adhesion 1.900E-04 3.230E-03 

Development_Neuromuscular junction 5.246E-04 7.134E-03 

Cytoskeleton_Actin filaments 1.033E-03 1.143E-02 

Signal transduction_Oxytocin signaling 1.420E-03 1.143E-02 

Cell cycle_G1-S Growth factor regulation 1.513E-03 1.143E-02 

Cell adhesion_Amyloid proteins 1.513E-03 1.143E-02 

Signal Transduction_Cholecystokinin signaling 2.589E-03 1.688E-02 

Inflammation_Protein C signaling 2.731E-03 1.688E-02 

Cell adhesion_Platelet aggregation 7.931E-03 4.444E-02 

Cell adhesion_Glycoconjugates 8.496E-03 4.444E-02 

Muscle contraction 1.017E-02 4.939E-02 

Cell adhesion_Synaptic contact 1.202E-02 5.451E-02 

Table 3.15 Top 15 process networks of genes commonly regulated in resistant 

xenografts found by microarray and transcriptome (for full table see Appendix A.6). 

Abbreviations: FDR – false discovery rate. 



89 
 

3.3.8 Adhesion  

Genes involved with cellular adhesion were found to be upregulated in everolimus 

resistant xenografts by RNAseq and microarray. Furthermore, pathway mapping with 

Metacore identified an enrichment of adhesion pathways and networks. To confirm the 

increased adhesive capabilities of resistant cells, 1345-R and 2055-R xenografts 

adhesion assays were performed using the immortalised human bone marrow stromal 

cell line HuBMS.hTERT. Resistant 1345-R cells demonstrated significantly greater 

adhesion to human bone marrow stroma than the sensitive xenograft. A similar trend 

towards increased adhesion with resistance was observed with 2055, although the 

difference was not significant (Figure 3.11).  

 

  

Figure 3.11 Adhesion of 1345 and 1345-R cells to human HuBMS.hTERT 

stromal cells. Cells were labelled with 51Cromium and allowed to adhere to 

HuBMS.hTERT cells for 1 h. Adherent cells were counted by Microbeta 2 

scintillation counter. Error bars represent the standard deviation of the mean from 

2 independent experiments performed in quadruplicate. * p=0.01. 
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3.4 DISCUSSION 

Relapse and drug resistance continue to plague patient survival in both paediatric and 

adult patients with ALL. Resistance to everolimus may occur through the acquisition 

of resistance conferring mutations during treatment, or through the selection of pre-

existing sub-clones containing such mutations.  

Several mutations were identified that were solely present within the resistant ALL 

xenograft 1345-R, however, none of the mutations could be confirmed by Sanger 

sequencing. The proposed mutations in the transcriptome sequencing occurred within 

single nucleotide rich regions. Errors in sequencing and inaccurate mapping of reads 

to the reference genome may have led to the false identification of mutated base pairs. 

The transcriptome is highly complex and sequencing technology is currently limited by 

technical and bioinformatics ‘noise’ that may have confounding effects on data 

obtained. Mapping the sequencing reads to the reference genome and library 

preparation are significant sources of error within RNAseq, and there is still room for 

improvement in these areas in order to maximise the quality of data obtained from 

sequencing of the transcriptome [197]. Large datasets are required to overcome 

current limitations of RNAseq technology and our limited sample number necessitated 

the use of alternative techniques to analyse the transcriptome of everolimus resistant 

xenograft.  

A recurring theme in the analysis of the gene expression dataset of everolimus 

resistant cells was adhesion. Increased adhesion has been previously reported to 

occur in cells resistant to mTOR inhibition but a causal role has not yet been 

established [176, 181, 198]. Adhesion to the bone marrow microenvironment is critical 

for the growth and survival of ALL cells in vivo and in vitro [104, 107].  
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Changes to the expression of crucial adhesion factors such as VLA-4 [175, 199] and 

CD44 [200] are implicated in the development of drug resistance in ALL. Furthermore, 

increased adhesion to the bone marrow microenvironment has been shown to provide 

cells with a means by which to escape chemotherapy [170-172] and disruption of the 

adhesive interactions or factors that retain cells within the microenvironment, 

significantly improves the therapeutic effect of chemotherapy in pre-clinical models of 

ALL [175, 201].  

The dissimilarity in survival curves of the two everolimus resistant xenografts suggests 

differences in the mechanisms underlying resistance in these xenografts. However, 

we identified 762 genes regulated in common between both everolimus resistant 

xenografts, and these genes were enriched for pathways involved in cellular adhesion. 

As adhesion is paramount for the survival of ALL cells, and has previously been 

demonstrated to associate to mTOR inhibitor resistance in other cancer cell models in 

vitro [176, 177], it is a potential common mechanism by which these xenografts have 

developed resistance to everolimus.  

The transcript of the integrin, ITG6, is increased in everolimus resistant 1345-R cells, 

however, this failed to translate to an increase of surface expression of the protein and 

therefore is unlikely to impact on the adhesion of the resistant cells. Regardless, both 

1345-R and 2055-R were more adherent to human bone marrow stroma in vitro than 

their sensitive parental counterparts, and adhesion mediated intracellular signalling 

pathways enriched in the everolimus resistant xenografts. The expression of focal 

adhesion kinase (FAK/PTK2) was increased in both resistant xenografts as were 

pathways involving reorganisation of the actin cytoskeleton. FAK has a well-

documented role in facilitating adhesion and migration downstream of integrin-

mediated intracellular signalling regulating focal adhesions and directed migration by 
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reorganising the actin cytoskeleton [178-180, 202]. Cytoskeleton remodelling is an 

important process for adhesion and cellular migration [203, 204] and perturbation of 

Rho GTPases, regulators of cytoskeleton dynamics, can impair the adhesion ITG4 

mediated adhesion of multiple myeloma cells in response to SDF-1[205]. 

Recently, the overexpression of FAK has been correlated with resistance to mTOR 

inhibition by everolimus in pancreatic neuroendocrine tumours and inhibition of FAK 

synergised with everolimus in vitro [181]. Similarly, genetic deletion or 

pharmacological inhibition of FAK sensitised PTEN null T-ALL cells to inhibition of the 

PI3K/mTOR pathway [206] and synergized with tyrosine kinase inhibitors in BCR/ABL 

positive ALL [207]. While overcoming everolimus resistant by inhibition of FAK remains 

to be seen, the FAK inhibitor defactinib is currently in several clinical trials including a 

phase II clinical trial for mesothelioma (NCT01870609) and a phase I trial for ovarian 

cancer (NCT01778803), making combination therapy with everolimus rapidly 

translatable.  

Despite adhesion signalling being prominent in everolimus resistant cells, the exact 

surface factors involved is yet to be determined. The efficacy of combining of FAK 

inhibitors with everolimus in other cell models highlights the potential for their 

combination to overcome resistance to everolimus in ALL and offers an attractive 

target for future investigation. 
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CHAPTER 4 PROTEOMIC ANALYSIS OF 
EVEROLIMUS RESISTANT ALL XENOGRAFTS 

4.1 INTRODUCTION 

Early work on resistance to mTOR inhibition by rapamycin indicated that resistance 

can be conferred by deregulation of several proteins in the mTOR pathway. Alterations 

in the expression and/or function of proteins upstream of mTOR, such as FKBP12 

[138, 139], or the downstream targets of mTOR, S6K1 [146, 208]) and 4EBP1 [157], 

facilitated resistance through various mechanisms. However, a common mechanism 

behind resistance to everolimus among these cell models could not be identified, 

suggesting multiple factors outside of the Akt/mTOR signalling pathway may be 

involved in the development of resistance to mTOR inhibitors. 

While sequencing the genome and/or transcriptome of malignant cells gives insight 

into the genetic basis of cancer, it may not correlate to the functional proteome of the 

cell. Complex protein-protein interactions and post-translational modifications make it 

difficult to correlate the changes at the nucleotide level to the effects seen in disease 

states [209-211]. Recent advances in proteomic technology have improved the ability 

to accurately identify and quantify protein expression. Mass spectrometry is a highly 

sensitive proteomic technique and its use may have implications for the clinical 

management of malignancies by improving classification and stratification, the 

discovery of biomarkers and characterisation of resistance to chemotherapy [212-

215]. 

This chapter aimed to correlate everolimus resistance development in ALL with 

previously identified mechanisms of resistance from prior investigations in other 

cancer cell models. The proteome of everolimus resistant xenografts was compared 
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to that of sensitive ALL xenografts in order to characterise the changes associated 

with the development of resistance and identify possible drivers of resistance to 

everolimus.   
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4.2 METHODS 

4.2.1 2 Dimensional - Difference In Gel Electrophoresis (2D-DIGE) 

Protein from the spleens of mice bearing sensitive and resistant xenografts were 

purified using the 2D-Clean-up kit and then quantified using the 2-D Quant kit. Fifty 

micrograms of protein from sensitive and resistance cells were fluorescently labelled 

with the 3Dye 2D DIGE labelling Kit, alternating Cy3 and Cy5 dyes between samples 

to eliminate label bias from analysis. An internal standard was created by labelling a 

pool of 25 g of each sample with Cy2. Proteins were labelled with 400 pmol/l of each 

respective dye for 30 min on ice, in the dark, after which the reaction was quenched 

with 10 mM lysine on ice for 30 min, in the dark. Proteins labelled with Cy2, Cy3 and 

Cy5 were combined into a single tube and proteins were reduced with 40 mM DTT at 

RT for 20 min, then alkylated with 80 mM iodoacetimide at RT for 20 min. Immobilized 

pH gradient (IPG) buffer pH 3-10 was added to samples (final concentration (f.c.) 0.5% 

v/v) before passively rehydrating 17cm, pH 3-10 IPG strips. Isoelectric focusing was 

carried out using Ettan IPGphor II (GE Healthcare) using the protocol in Table 4.1.  

 

Table 4.1. 2D-DIGE isoelectric focusing profile 

Voltage (V) Type Time 

400 Gradient 1 min 

400 Step 5 h 

8000 Gradient 3 h 

8000 Step 11 h 

400 Gradient 2 h 

400 Step 14 h (hold overnight 
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IPG strips were prepared for second dimension SDS-PAGE by equilibrating strips with 

40 mM DTT in equilibration buffer (50 M Tris-HCl (pH 8.8), 6 M urea, 30% (v/v) 

glycerol, 2% (v/v) SDS and 0.5% (v/v) bromophenol blue) for 20 min with gentle 

rocking followed by 80 mM iodoacetimide in equilibration buffer for 20 min with gentle 

rocking. Strips were then loaded onto a 20 x 20 cm, 8-16% gradient, bis-TRIS 

polyacrylamide gel between low fluorescent glass plates and proteins separated using 

the protocol in Table 4.2. 

 

Table 4.2. SDS-PAGE profile for second dimension separation of 2D-DIGE. 

Current (mAmp/gel) Time 

16 1.25 h 

20 1.5 h 

24 
4 h (or until the dye front reached the end of the gel)

 

To visualize and quantify fluorescent protein spots, gels were scanned while between 

the low flouorescent glass plates using the Typhoon Trio variable mode imager (GE 

Life sciences) and analyzed with DeCyder software (GE life sciences). Gels were 

removed from glass plates and fixed for 1 h in a solution of 10% (v/v) methanol and 

7% (v/v) acetic acid, and stained with a modified colloidal Coomassie blue protocol 

“blue silver” (0.12% (w/v) Coomassie G-250, 10% (v/v) ammonium sulfate, 10% (v/v) 

phosphoric acid, and 20% (v/v) methanol) [216] to visualize protein spots. Proteins 

that were significantly different in fluorescent images were identified on the Coomassie 

stained gels and excised for identification by MALDI MS/MS.  
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Gel pieces were de-stained in a 25% (v/v) acetonitrile (ACN) in 50 mM ammonium 

bicarbonate then dehydrated by washing twice with 100% ACN. Gel pieces were dried 

by vacuum centrifugation and in gel digestion of proteins performed by rehydrating gel 

pieces with 12 ng/l of Trypsin Gold in 50 mM ammonium bicarbonate and incubating 

at 4°C for 1 h.  Excess trypsin was removed and 20 l of fresh 50 mM ammonium 

bicarbonate added for overnight incubation at 37°C. Peptides were extracted by 

adding 0.5% (v/v) TFA in 10% (v/v) ACN and incubating for 15 min in a water bath 

ultrasonicator (Ultrasonics Australia). The supernatant was collected, vacuum 

centrifuged and reconstituted in 0.5% (v/v) TFA. Samples were combined at a ratio of 

1:1 with 5 g/ml of a matrix (-cyano-4-hydroxycinnamic acid) in 0.5% TFA (v/v) in 

70% (v/v) ACN, spotted onto a MALDI sample plate and run on the SCIEX TOF/TOF 

5800 MALDI (SCIEX, Massachusetts, USA). Spectra were analyzed with ProteinPilot 

software using the mascot method and interrogated against the UNIPROT database. 

4.2.2 Dimethyl Labelling 

Two hundred micrograms of protein was isolated from matched sensitive and resistant 

xenografts with lysis buffer containing 10 mM TRIS-HCl, 150 mM sodium chloride and 

1% (v/v) Triton X-100 for half an hour at 4°C. Lysates were clarified by centrifugation 

at 12000 x g for 10 min at 4°C, supernatant collected and urea added to a f.c. of 6 M. 

Protein was reduced with DTT (f.c. 9.5 mM) in 100 mM ammonium bicarbonate for 30 

min and alkylated with iodoacetemide (f.c. 32 mM) in 100 mM ammonium bicarbonate 

for 30 min. The urea concentration was reduced to 2 M with 50 mM ammonium 

bicarbonate and protein digested with Tryspin Gold (promega) at a trypsin to protein 

ratio of 1:25 overnight at 37°C. A second digestion was performed by adding additional 

trypsin at a ratio of 1:25 and incubating for a further 2 h at 37°C. 
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The trypsinised protein mixture was acidified with formic acid (FA) at f.c. of 1% (v/v) 

and peptides were purified with a C18 reverse phase cartridge. Cartridges were 

activated with 0.5% (v/v) FA in 70% (v/v) ACN before use. Samples were loaded onto 

the column and washed twice with 0.5% (v/v) FA. Peptides were first eluted with 0.5% 

(v/v) FA and 70% (v/v) ACN, followed by a second elution with 0.5% (v/v) FA and 90% 

(v/v) ACN. Samples were dried by vacuum centrifuge and re-suspended in 1 M 

triethylammoniumbicarbonate (TEAB) buffer, then diluted to 170 mM with MilliQ water 

and dimethyl labelling was carried out, as described by Boersema et al [217] (Figure 

4.1), to add light and heavy methyl groups to the primary amines of peptides. 

 

Briefly, 5 L of a 10% (v/v) solution of formaldehyde (light) or 13C formaldehyde in 

deuterated water (heavy) was added to samples and incubated by shaking at RT for 

10 min. One molar cyanoborohydride (light) and cyanoborodeuteride (heavy) was 

added to appropriate tubes and incubated by shaking at RT for 20 min. The reaction 

was quenched by adding 25% (v/v) ammonium hydroxide and acidified with FA (f.c. 

2%). Samples were pooled, dried by vacuum centrifugation and resuspended 10 mM 

KH2PO4 in 25% ACN at a pH of 3.  

Figure 4.1. Labelling schema of triplex dimethyl labelling of primary amines 

(adapted from Boresema et al [217]) 
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To remove contaminating Triton-X100, samples were loaded peptides onto POROS20 

strong cation exchange (SCX) resin that had non-specific binding sites blocked with 

10 g of BSA. Columns were washed 4 times with 10 mM KH2PO4 in 25% ACN at pH3 

then peptides eluted with 500 mM KCl in 10 mM KH2PO4 in 25% ACN at pH3. Supelco 

C18 reverse phase columns were activated with 70% ACN in 0.5% FA then washed 

with 0.5% FA. Samples were then bound to the column and washed three with 0.5% 

FA to remove salts added to samples by the SCX procedure. Peptides were firstly 

eluted with 0.5% (v/v) FA in 70% (v/v) ACN and any residual peptide eluted with 0.5% 

(v/v) FA in 90% ACN. Samples were dried by vacuum centrifugation and re-suspended 

in 0.1% (v/v) FA. 

Samples were loaded into the SCIEX TripleTOF 5600 using a 40 cm column, packed 

with 100 nm Reprosil-Pur 120 C18 AQ resin and run for 240 min at a flow rate of 350 

nl/min with the gradient in Table 4.3.  

Table 4.3. LC-MS/MS gradient profile 

Time % Formic Acid % ACN 

0 98 2 

3 98 2 

15 88 12 

180 70 30 

215 40 60 

225 5 95 

230 5 95 

235 98 2 

240 98 2 
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Spectra were analysed and quantified with ProteinPilot using the paragon method. 

4.2.3 Statistics 

SPSS was used to calculate the T-statistic using the formula: 

averageLogFoldChange / (standard deviation LogFold Change / (square root(N))).  

A one sample t-test was then used to calculate the significant protein fold change in 

SPSS with n-1 degrees of freedom using the formula: 2*(1-CDF.T(Abs(T),N-1)). 
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4.3 RESULTS 

4.3.1 Expression and activation of Akt in everolimus resistant xenografts 

Aberrant Akt activity can confer resistance to mTOR inhibitors such as rapamycin and 

everolimus [160]. Akt is activated by a number or phosphorylation events, most 

importantly on Thr308 and Ser473. Phosphorylation of Akt on Thr308 activates the 

kinase and is the main regulator of the activity of Akt [218], whereas phosphorylation 

of Ser473 is a marker of the activation of a negative feedback loop involving mTORC2 

[219, 220]. 

The two everolimus resistant xenografts had different expression and phosphorylation 

profiles of Akt. Where 1345-R had unaltered Akt expression compared to 1345-S, the 

expression of Akt was increased in xenograft 2055-R (Figure 4.2 C, G). The 

phosphorylation on Thr308 was not affected by the development of resistance to 

everolimus in either xenograft, however, the increase in basal Akt in 2055-R led to a 

decrease in the ratio of phosphorylated to total Akt in resistant cells (Figure 4.2 H). As 

with the sensitive parental xenografts, administration of everolimus for 24 h decreased 

the phosphorylation on Thr308, however, the decrease was only statistically significant 

in 2055-S cells when compared to actin (Figure 4.2 B and F) and 1345-S cells when 

the ratio of phosphorylated to total Akt was considered (Figure 4.2 D and H).  
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Figure 4.2 Expression of Akt and phosphorylation of Thr308 in everolimus 

sensitive and resistant ALL cells, with and without everolimus treatment. 

Protein isolated from resistant xenografts and matched sensitive controls 1345-R 

and 1345-S (A), 2055-S and 2055-R (E), with and without treatment with 

everolimus. Blots were probed with antibodies against phosphorylated Akt on 

Thr308 and total Akt, with -actin used as a loading control. Band intensity was 

used to quantify the total amount of phosphorylated Akt on Thr308 (B, F), total Akt 

(C, G) and ratio of phosphorylated Akt to total protein (D, H). Lysates were run in 

biological triplicates using students 2 tailed unpaired t-test comparing against 

untreated sensitive cells (* p < 0.05) and untreated resistant cells (# p < 0.05). 
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The phosphorylation of Akt on Ser473 was increased in the sensitive xenografts 1345-

S and 2055-S following everolimus treatment (Figure 4.3 B, F), although statistical 

significance was not achieved. This signifies the possible activation of the negative 

feedback loop in both of the sensitive xenografts upon mTORC1 inhibition by 

everolimus. Phosphorylation of Akt on Ser473 was higher in 1345-R cells (Figure 4.3 

C) but not 2055-R (Figure 4.3 G) as compared to respective sensitive cells. The 

resistant xenografts respond to everolimus differently to their respective parental 

xenografts, in that the increase in phosphorylation on Ser473 was no longer apparent. 

As with phosphorylation of Thr308, the increased basal Akt levels in 2055-R led to a 

decrease in the relative proportion of phosphorylated protein (Figure 4.3 H). 
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Figure 4.3 Expression of Akt and phosphorylation of Ser473 in everolimus 

sensitive and resistant ALL cells with and without everolimus treatment. 

Protein isolated from resistant xenografts and matched sensitive controls 1345-R 

and 1345-S (A), 2055-S and 2055-R (E), with and without treatment with everolimus. 

Blots were probed with antibodies against phosphorylated Akt on Ser473 and total 

Akt, with -actin used as a loading control. Band intensity was used to quantify the 

total amount of phosphorylated Akt on Ser473 (B, F), total Akt (C, G) and ratio of 

phosphorylated Akt to total protein (D, H). Lysates were run in biological triplicates 

using students 2 tailed unpaired t-test comparing against untreated sensitive cells 

(* p < 0.05) and untreated resistant cells (# p < 0.05).  
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4.3.2 Expression and activation of the downstream targets of mTOR in 

everolimus resistant xenografts 

Previous studies have implicated deregulation of the downstream effectors of mTOR 

such as S6K1 and 4EBP1 in the development of resistance to mTOR inhibitors. 

Unfortunately, it was not possible to accurately detect the expression or 

phosphorylation of S6K1 due to lack of specificity of commercially available antibodies, 

therefore we examined its downstream effector, S6 ribosomal protein (S6RP), as a 

marker of its activity.  

The phosphorylation of S6RP on Ser235/236 was reduced in both parental 1345-S 

and 2055-S xenografts following everolimus administration (Figure 4.4 B, F), indicating 

successful inhibition of mTOR activity. However, resistance to everolimus elicited 

conflicting responses from the two resistant xenografts. While the total amount of 

S6RP was not altered in the resistant 1345-R cells compared to their sensitive parental 

controls (Figure 4.4 C), the amount of phosphorylation on Ser235/236 and the ratio of 

phosphorylated protein were significantly reduced (Figure 4.4 B and D). In contrast, 

the total amount of S6RP was significantly reduced in xenograft 2055-R (Figure 4.4 

G), whereas, phosphorylation of Ser235/236 was significantly increased in resistant 

cells (Figure 4.4 F). This resulted in a 60 fold increase in the ratio of phosphorylated 

protein in 2055-R cells (Figure 4.4 H). Unlike the everolimus sensitive xenografts, the 

expression and phosphorylation of S6RP in both 1345-R and 2055-R was unaffected 

by treatment with everolimus (Figure 4.4 B-D, F-H).  
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Figure 4.4 Expression of S6RP and phosphorylation of Ser235/236 in 

everolimus sensitive and resistant ALL cells with and without everolimus 

treatment. Protein isolated from resistant xenografts and matched sensitive 

controls 1345-R and 1345-S (A), 2055-S and 2055-R (E), with and without 

treatment with everolimus. Blots were probed with antibodies against 

phosphorylated S6RP on Ser235/236 and total S6RP, with -actin used as a 

loading control. Band intensity was used to quantify the total amount of 

phosphorylated S6RP on Ser235/236 (B, F), total S6RP (C, G) and ratio of 

phosphorylated S6RP to total protein (D, H). Lysates were run in biological 

triplicates using students 2 tailed unpaired t-test comparing against untreated 

sensitive cells (* p < 0.05) and untreated resistant cells (# p < 0.05). 
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The expression of 4EBP1 was significantly reduced in 2055-S treated with everolimus 

(Figure 4.5 G) but was unaltered in 1345-S cells (Figure 4.5 C).  Both everolimus 

resistant 1345-R and 2055-R xenografts had significantly increased expression of 

4EBP1 (Figure 4.5 C, G). The sensitive xenografts failed to demonstrate any 

regulation of 4EBP1 phosphorylation following exposure to everolimus (Figure 4.5 B, 

F). While the resistant xenograft 1345-R behaved similarly to its sensitive counterpart 

(Figure 4.5 B), the phosphorylation of Ser37/46 was significantly reduced in 2055-R 

cells (Figure 4.5 F). Due to the increase in basal expression of 4EBP1 in everolimus 

resistant xenografts, the relative ratio of phosphorylated protein was reduced in both 

xenografts, although this only reached statistical significance in 2055-R (Figure 4.5 D, 

H).  
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Figure 4.5 Expression of 4EBP1 and phosphorylation of Ser37/46 in 

everolimus sensitive and resistant ALL cells with and without everolimus 

treatment. Protein isolated from resistant xenografts and matched sensitive 

controls 1345-R and 1345-S (A), 2055-S and 2055-R (E), with and without 

treatment with everolimus. Blots were probed with antibodies against 

phosphorylated 4EBP1 on Ser37/46 and total 4EBP1, with -actin used as a 

loading control. Band intensity was used to quantify the total amount of 

phosphorylated Akt on Ser37/46 (B, F), total Akt (C, G) and ratio of phosphorylated 

Akt to total protein (D, H). Lysates were run in biological triplicates using students 

2 tailed unpaired t-test comparing against untreated sensitive cells (* p < 0.05) and 

untreated resistant cells (# p < 0.05). 
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4.3.3 Effects of resistance on the proteome of 1345 cells 

Individual protein analysis by immunoblotting yielded inconsistent expression data 

between the two everolimus resistant xenografts. To gain a global understanding of 

the proteomic changes induced in the ALL xenografts by resistance to everolimus we 

undertook preliminary shotgun proteomic sequencing using 2D-DIGE. Fluorescent 

labels are used to directly correlate protein expression between 1345 and 1345-R 

relative to an internal standard, which comprised of an equal amount of protein from 

both xenografts (Figure 4.6). Samples were labelled with fluorescent dyes and proteins 

were separated in two dimensions to identify individual proteins (Figure 4.7).  
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  Mice engrafted with 1345 or 1345-R  
and ALL cells harvested from spleen 

Protein labelled with Cy3 (green) and 
Cy5 (red). Equal amounts of 1345 and 

1345-R were combined to make the 
internal standar, which was labelled 

with Cy2 (blue). 

Samples combined 

Proteins separated by isoelectric focusing 

Proteins separated by SDS-PAGE based 
on molecular weight 

Differential spots identified with 
DeCyder software and picked 

Protein extracted from spots, trypsin 
digested and peptides purified by C18 

ZipTip and run on the MALDI 
TOF/TOF 

 

Peaks picked in ProteinPilot using 
MASCOT search 

+ve 
(pH3
) 

-ve  
(pH10) 

Figure 4.6 Work flow for the isolation and labelling schema for protein 

analysis for 2D-DIGE.  
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Proteins that were significantly regulated greater than 1.5 fold in either direction in 

resistant xenografts across 3 biological replicates were marked for identification by 

MALDI mass spectrometry. Forty six protein spots were significantly regulated in 

everolimus resistant xenograft 1345-R, and of those 11 proteins were successfully 

isolated and identified by MALDI (Table 4.4). To characterise the difference in 

response of the resistant and sensitive xenografts to everolimus, protein was extracted 

from the spleens of mice following 24 h treatment with the drug.  

Figure 4.7 Representative 2D-DIGE image. Protein was first separated by 

isoelectric point on an 18 cm, non-linear, pH 3-10 isoelectric focusing strip. 

Separation on the second dimension was carried out on a 20 cm SDS-PAGE 

gel with a gradient of 8-16%. Shown here are protein isolated form 1345-R 

(green) v 1345 (red) relative to the fluorescence of the internal standard. 
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Protein Name Symbol FC P value 
MW 

(kDa) 
PI 

Hemoglobin b HBB -2.65 0.0100 15.9 6.74

Hemoglobin alpha 2 HBA2 -2.62 0.0380 15.3 8.72

Hemoglobin alpha 1 HBA1 -2.62 0.0380 15.3 8.72

26S protease regulatory subunit 7 PRS7 -2.3 0.0200 48.6 5.71

Acidic leucine-rich nuclear 
phosphoprotein 23 family member 

E 
AN32E -2.07 0.0180 30.7 3.76

Tuberin-specific chaperone A TBCA -1.94 0.0240 12.85 5.25

PDZ and LIM domain protein 1  PDLIM1 -1.82 0.0200 36.1 6.56

serum albumin ALBU -1.61 0.0140 69.3 5.92

kininogen-1 KNG1 -1.53 0.0056 71.9 6.34

myotrophin MTPN 1.53 0.0110 12.9 5.27

WD repeat-containing protein 1 WDR1 1.66 0.0140 50.7 6.04

Table 4.4 Proteins identified by 2D-DIGE that are differentially regulated in 

1345-R 

FC – Fold change, MW – molecular weight, PI – isoelectric point. 
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Samples were again analysed by 2D-DIGE and 33 protein spots were differentially 

regulated between the two samples. Of these spots, we successfully identified 16 

proteins with MALDI mass spectrometry (Table 4.5). Interestingly, 2D-DIGE identified 

2 proteins with documented roles in cancer. The expression of the first, PDLIM1, was 

decreased in 1345-R cells and further decreased following everolimus treatment 

(Table 4.4 and 4.5) and while its function is not yet fully elucidated, it has been 

implicated in metastasis and disease progression [221]. The second protein identified 

was stathmin. (Table 4.5). Stathmin, which was upregulated in 1345-R cells, regulates 

important cell processes such as microtubule dynamics and the cell cycle [222, 223]. 

Stathmin is over expressed in many malignancies of different origins and may be 

involved in the development of resistance to chemotherapy by breast cancer cells and 

epithelial cancer cell lines [224, 225]. The effect of stathmin expression in resistance 

to everolimus in ALL is explored further in Chapter 5. 
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Protein Name Symbol FC P value 
MW 

(kDa) 
PI 

heterogeneous nuclear 
ribonucleoprotein H 

HNRNPH1 -1.98 0.029 49.2 5.89 

isocitrate dehydrogenase 2 IDH2 -1.72 0.012 50.1 8.88 

phosphoglycerate kinase 1 PGK1 -1.72 0.012 44.6 8.3 

PDZ and LIM domain protein 1 PDLIM1 -1.71 0.019 36.1 6.56 

high mobility group protein B2 HMGB2 -1.53 0.042 23.9 7.77 

X-ray repair cross complementing 
protein 6 

XRCC6 -1.38 0.038 69.8 6.23 

Heat shock protein 60 HSP60 1.64 0.014 61 5.7 

Moesin MSN 1.71 0.0033 67.8 6.08 

PRO2619 (serum albumin) ALB 1.72 0.0034 69.3 5.92 

annexin A2 ANXA2 1.73 0.067 38.6 7.57 

Heat shock protein 10 HSP10 1.75 0.034 10.9 8.89 

PRO2619 (serum albumin) ALB 1.81 0.0084 69.3 5.92 

truncated lactoferrin LTF 2.04 0.011 78.2 8.5 

elongation factor 2 EEF2 2.04 0.043 62.7 6.27 

elongation factor 2 EEF2 2.07 0.016 62.7 6.27 

stathmin STMN 2.24 0.0019 17.32 5.75 

Table 4.5 Proteins identified by 2D-DIGE that are differentially regulated in 

1345-R following everolimus treatment 

FC – Fold change, MW – molecular weight, PI – isoelectric point. 
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4.3.4 LC-MSMS with dimethyl labelling 

While 2D-DIGE technology successfully separated and quantified the proteomic 

changes in cells, it is limited by the need to visualise the spots by Coomassie blue 

staining. For this reason, we undertook a more sensitive whole cell lysate proteomic 

analysis by combining liquid chromatography with tandem mass spectrometry (LC-

MS/MS). To quantify differences between everolimus resistant and sensitive ALL 

xenografts, we used an off-line labelling method to add methyl groups to lysine 

residues on peptide fragments [226] (Figure 4.8). LC-MS/MS successfully identified 

similar numbers of peptide spectra (Figure 4.9 A) and ProteinPilot matched those 

spectra to a similar number of proteins (Figure 4.9 B) in each comparison group. 

However, there was a large variation in the identified spectra between the biological 

replicates included in each sample group.  
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Figure 4.8 Work flow for the isolation and labelling schema for protein analysis 

by LC-MS/MS with dimethylation labelling.  

 

Mice engrafted with 
1345 or 1345-R 

ALL cells harvested 
from spleen 

Protein extracted and 
separated into 

triplicates 

Protein reduced, 
alkylated and trypsin 

digested 

1345 samples labelled 
with ‘light’ methyl group 

+28 Da 

1345-R samples 
labelled with ‘heavy’ 
methyl group +36 Da 

Samples combined, 
purified with SCX and 
C18 columns 

 Samples run on LC-MS 
on a 40cm C18 column 

with 4hr gradient 

Samples desalted with 
C18 column and 

prepared for labelling 

Peaks picked and 
quantified in ProteinPilot 

Protein expression compared 
across biological replicates with 

SPSS and Microsoft excel 
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Figure 4.9 Summary of total spectra and identified proteins across all 

analysis groups. Data is shown as the average and standard deviation of 

technical and biological triplicates for both everolimus resistant xenografts 

with and without treatment. 
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Proteins differentially regulated in everolimus resistant ALL xenografts were identified 

by enumerating fold changes in proteins across biological replicates using the 

statistical program SPSS. The expression of proteins was averaged across all proteins 

identified in each technical replicate and Log2 transformed. The T-statistic was 

calculated on the Log2 transformed data and significantly altered proteins were 

determined with a one sample t-test, with N minus 1 degrees of freedom.  

A large number of proteins were differentially expressed in xenograft 2055-R 

compared to the parental xenograft 2055-S. Three hundred and three proteins were 

significantly identified to be up or down regulated in at least one of the biological 

replicates. Of these proteins, 62 were significantly regulated with N-1 degrees of 

freedom (Figure 4.10). Pathway analysis with Metacore revealed 16 pathway maps 

(Table 4.6) and 4 process networks (Table 4.7) that were significantly enriched within 

the regulated proteins. In particular, pathways involved with DNA damage, protein 

translation and metabolic process were enriched in resistant cells. 
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Figure 4.10 Proteins significantly differentially regulated in everolimus 

resistant ALL xenograft 2055-R. The log of the fold change was compared 

across biological replicates and significance calculated using the t-statistic and 

a one sided t-test with n-1 degrees of freedom.  
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Maps pValue FDR 

Neurophysiological process_Dynein-dynactin motor complex in axonal 
transport in neurons 

4.764E‐03  9.288E‐02

L-Alanine, L-cysteine, and L-methionine metabolism 5.115E‐03  9.288E‐02

L-Alanine, L-Cysteine, and L-Methionine metabolism / Human version 5.477E‐03  9.288E‐02

Oxidative stress_Role of Sirtuin1 and PGC1-alpha in activation of 
antioxidant defense system 

5.852E‐03  9.288E‐02

Transcription_Sirtuin6 regulation and functions  6.635E‐03  9.288E‐02

Aspartate and asparagine metabolism 8.560E‐03  9.987E‐02

Oxidative phosphorylation 1.715E‐02  1.315E‐01

DNA damage_DNA-damage-induced responses 1.728E‐02  1.315E‐01

Transport_Macropinocytosis 2.298E‐02  1.315E‐01

Apoptosis and survival_DNA-damage-induced apoptosis 2.864E‐02  1.315E‐01

wtCFTR and deltaF508 traffic / Late endosome and lysosome (normal and 
CF) 

3.052E‐02  1.315E‐01

DNA damage_NHEJ mechanisms of DSBs repair 3.615E‐02  1.315E‐01

wtCFTR traffic / Sorting endosome formation (normal) 4.360E‐02  1.315E‐01

Glycolysis and gluconeogenesis p.3 4.545E‐02  1.315E‐01

Cytoskeleton remodeling_Neurofilaments 4.730E‐02  1.315E‐01

Cell adhesion_Endothelial cell contacts by junctional mechanisms 4.915E‐02  1.315E‐01

Table 4.6 Metacore pathway maps significantly enriched in the proteome of the 

resistant xenograft 2055-R. 
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Large biological variation in comparing 1345-R to its parental xenograft, resulted in the 

reduction of the number of proteins significantly identified across the biological 

replicates. In total 146 proteins were identified and of those, only 3 were found to be 

significantly regulated (Figure 4.11).   

Eleven proteins were regulated in both resistant xenografts if the lack of statistical 

significance was ignored for xenograft 1345 (Table 4.8). Six of those proteins were 

regulated in the same direction in both xenografts and of particular interest was the 

similar down regulation of the proteins PDLIM1 and vimentin. 

Despite everolimus having known effects on protein expression, we were unable 

significantly detect any meaningful differences in the regulation of proteins in either 

xenograft, following acute everolimus exposure, irrespective of resistance status 

(Table 4.9).  

Networks pValue Min FDR 

Response to hypoxia and oxidative stress 3.044E‐03 5.083E‐02 

Translation_Translation initiation 3.619E‐03 5.083E‐02 

Cytoskeleton_Actin filaments 4.013E‐03 5.083E‐02 

Translation_Elongation-Termination 1.073E‐02 1.019E‐01 

Table 4.7 Metacore networks maps significantly enriched in the transcriptome of the 

resistant xenograft 2055-R. 
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Figure 4.11 Proteins significantly differentially regulated in everolimus 

resistant ALL xenograft 1345-R. The log of the fold change was compared across 

biological replicates and significance calculated using the t-statistic and a one sided 

t-test with n-1 degrees of freedom.  
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2055‐R  1345‐R 

Name 
Avg log 
F.C. 

Stdev 
log F.C. 

Pval 
Avg log 
F.C. 

Stdev 
log F.C. 

Pval 

Actin related protein 2/3 complex, subunit 1B, 41kDa   0.303  0.079  0.116  ‐0.897  0.642  0.298 

Annexin  ‐0.541  0.252  0.203  ‐0.680  0.729  0.413 

cDNA, FLJ92658, highly similar to Homo sapiens poly (ADP‐ribose) polymerase family, member 
1 (PARP1), mRNA 

‐0.493  0.179  0.041  ‐2.018  0.026  0.006 

EBNA‐2 co‐activator variant (Fragment)   ‐0.416  0.107  0.021  0.069  0.711  0.913 

Epididymis tissue sperm binding protein Li 7e  ‐0.688  0.174  0.021  0.401  0.070  0.078 

High mobility group protein B1  0.142  0.097  0.126  0.322  0.725  0.643 

Histone cluster 1, H1e  ‐1.293  0.315  0.108  0.301  1.297  0.798 

IQ motif containing GTPase activating protein 1  ‐0.228  0.052  0.102  ‐0.354  0.736  0.492 

L‐lactate dehydrogenase   ‐0.205  0.042  0.014  ‐0.125  0.450  0.762 

PDZ and LIM domain protein 1   ‐0.514  0.085  0.009  ‐0.512  0.228  0.060 

Vimentin   ‐0.825  0.132  0.008  ‐0.367  0.604  0.548 

F.C. – fold change, Pval – p-value. 

Table 4.8 Proteins regulated in common between the everolimus resistant xenografts 1345-R and 2055-R. 
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1345‐S  Avg log F.C.  Stdev log 
F.C. 

N  T  P 

Nucleolin   0.23  0.76  2  0.42  0.75 

Thymosin alpha‐1  0.47  1.69  2  0.40  0.76 

Aspartate‐‐tRNA ligase, cytoplasmic  0.32  0.14  2  3.19  0.19  
       

1345‐R  Avg log F.C.  Stdev log 
F.C. 

N  T  P 

L‐lactate dehydrogenase  0.552  0.258  2  3.03  0.20 

Glyceraldehyde‐3‐phosphate dehydrogenase  ‐0.163  0.152  2  ‐1.51  0.37 

Heterogeneous nuclear ribonucleoprotein AB isoform a variant (Fragment)  0.279  1.322  2  0.30  0.82 

Cofilin‐1  0.117 0.785 3 0.26 0.82

Voltage‐dependent anion‐selective channel protein 1 ‐0.114 0.745 2 ‐0.22 0.86

       

2055‐S Avg log F.C.  Stdev log 
F.C. 

N T P

Voltage‐dependent anion‐selective channel protein 1  0.04  0.36  2  0.17  0.89 

High mobility group protein B1  ‐0.18  0.41  2  ‐0.61  0.65 

Ribosomal protein L4 variant (Fragment)   0.32 0.46 2 0.97 0.51

       

2055‐R Avg log F.C.  Stdev log 
F.C. 

N T P

Ribosomal protein L5 variant (Fragment)   0.14  0.85  2  0.24  0.85 

MYH9 variant protein  ‐0.23  0.11  2  ‐2.94  0.21 

60S ribosomal protein L6  0.88  0.13  2  9.49  0.07 

F.C. – fold change, N- number of samples, T – t-statistic, P – p-value. 

Table 4.9 Proteins regulated by treatment in everolimus sensitive and resistant ALL xenografts. 
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4.4 DISCUSSION 

There are many hypotheses as to the mechanism of resistance to mTOR inhibitors 

such as everolimus, though, most theories centre on the dysregulation of protein 

expression or function [143, 146, 157, 176, 177, 208, 219, 227]. Proteomics 

technology has improved immensely over the last decade and is capable of 

discovering novel cancer biomarkers [228-231], and identifying proteins involved in 

resistance to chemotherapeutic agents [209, 213, 232-236].  

Several possible resistance mediators have been identified in other mammalian cell 

models. These include increased activity of Akt and S6K1 and downregulation of 

4EBP1 [157, 220]. Inhibition of the mTORC1 complex by rapamycin and its analogues 

(rapalogs) is known to activate a negative feedback, driven by mTORC2 and S6K1 

[220]. Phosphorylation of Akt on Ser473 is a marker of activation of this negative 

feedback loop which then leads to the activation of other cellular growth and survival 

pathways such as the MAPK pathway [219]. The negative feedback loop appeared to 

be activated by everolimus treatment of the sensitive ALL xenografts in this study. This 

response to everolimus was no longer apparent in the resistant xenografts, although 

1345-R had increased basal phosphorylation of Ser473 suggesting this pathway is 

already activated in 1345-R cells. Interestingly 1345-R cells had activated Akt Ser473 

in the absence of everolimus, suggesting that this may be the mechanism of 

resistance. However, treatment with everolimus reduced the phosphorylation of Akt 

on Ser473, questioning the role of the negative feedback loop in resistance to 

everolimus in this ALL sample. Further studies with additional xenografts would be 

required to clarify if the feedback loop is indeed involved in the development of 

resistance.   
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Dysregulation of the downstream mTOR substrates S6K1 and 4EBP1, may contribute 

to the resistance permitting downstream signalling irrespective of mTOR inhibition 

[157, 237]. Due to the relatively lack of specificity of commercially available antibodies 

against S6K1 and its phosphorylation sites, we used S6RP as a marker of its activity. 

Interestingly, there was a striking contrast in the regulation of S6RP between the two 

everolimus resistant xenografts. Moreover, contrary to reports that downregulation of 

4EBP1 results in resistance to rapamycin [157], the expression of 4EBP1 was 

upregulated in both everolimus resistant ALL xenografts.  

The discrepancy between previously published mechanisms of resistance to mTOR 

inhibitors [146, 157, 208] and the difference between the two xenografts, raises 

questions as to whether these proteins are involved in the development of resistance 

to everolimus and whether the effects observed in these xenografts are the cause or 

as a result of the development of resistance.  

These discrepancies required a more global approach to understand how resistance 

developed in these cells. Analysing the proteome of everolimus resistant ALL 

xenografts identified 3 interesting targets, stathmin, vimentin and PDZ and LIM domain 

contain protein 1 (PDLIM1), that may contribute to the development of resistance to 

mTOR. Firstly, stathmin, an important regulator of microtubules and the cell cycle, is 

increased in many malignancies such as leukemia/lymphoma, breast cancer and 

prostate cancer [238-241]. Moreover, it has documented roles in the development of 

resistance to chemotherapy in in vitro models of breast cancer [224] and in cervical 

squamous cancer cells [209]. The expression of stathmin was increased in the 

everolimus resistant xenograft 1345-R and due to its effects on the cell cycle, may be 

involved in the increased disease progression of 1345-R in vivo (Figure 3.3). The 
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differences in cell cycle between the everolimus resistant xenografts and the impacts 

of stathmin on the cell cycle are examined in the next chapter. 

The second protein identified by proteomic sequencing of resistant xenografts was 

vimentin. Vimentin is a major component of intermediate filaments and is involved in 

cell motility, the maintenance of cell shape and the formation of focal adhesions [242, 

243]. Vimentin is over-expressed in various malignancies such as prostate cancer, 

gastrointestinal tumours, CNS tumours, breast cancer, malignant melanoma, lung 

cancer and correlates to increased tumour growth, metastasis and a poor prognosis 

[244-246]. The development of resistance to doxorubicin in breast cancer cells [245], 

resistance to the CHOP chemotherapy regimen in diffuse large B-cell lymphoma [247] 

and cisplatin resistance in ovarian cancer [248] and lung adenocarcinoma [249] have 

all been attributed to an increase in the expression of vimentin. However, as the 

expression of vimentin is decreased in our resistant xenografts, the role vimentin plays 

in resistance to everolimus in ALL remains unclear. 

Finally, PDLIM1 was downregulated in everolimus resistant xenografts and was 

reproducibly identified with both 2D-DIGE and LC-MS/MS. The exact function of 

PDLIM1 remains uncertain, but it appears to be involved in formation of stress fibres, 

focal adhesions and the recruitment of proteins to the cytoskeleton through the 

association with cytoskeletal proteins such as alpha actinin and E-cadherin [221, 250-

252]. Recently, PDLIM1 has been associated with the cancer metastases and disease 

progression, however, there are conflicting reports as to how PDLIM1 functions in 

malignant cells. One report states that PDLIM1 is downregulated in highly metastatic 

colorectal cancer, liver metastases and is a marker of a more aggressive disease 

[221]. Moreover, PDLIM1 is able to stabilize the E-cadherin and -catenin complex 

and loss of PDLIM1 promotes the expression of markers of epithelial-mesenchymal 
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transition [221]. In contrast, another study suggests that overexpression of PDLIM1 in 

breast cancer is correlated to the progression of the disease [253]. PDLIM1 was 

consistently downregulated in everolimus resistant xenografts across multiple 

techniques and in two separate ALL xenografts. This strongly supports a role for 

PDLIM1 in everolimus resistance, however, as the role of this protein is still being 

investigated, how the effects are elicited remains to be determined. 

Despite all the promising advances in the field of proteomics, many obstacles remain 

before it becomes routine in the clinic [228, 254, 255]. Two shotgun based proteomic 

techniques were utilized in this study and each came with their own inherent strengths 

and weaknesses. 2D-DIGE allows the separation of individual proteins on 2 

dimensions, allowing for highly sensitive protein separation and quantification. 

However, only relatively small amounts of protein are able to be loaded on the first 

dimension, and there is an under-representation of highly hydrophobic proteins [256, 

257]. Moreover, identification of the individual protein spots requires visualisation by 

Coomassie blue staining, thus lowly expressed proteins are often not identified with 

mass spectrometry. Therefore, only a small proportion of differentially expressed 

proteins found by the fluorescent Cy dyes were able to be correlated to spots 

visualised by Coomassie staining. 

The second technique employed in this study separated proteins based on their 

hydrophobicity using high performance liquid chromatography (HPLC) coupled with 

tandem mass spectrometry (LC-MC/MS). LC-MS/MS is more sensitive than 2D-DIGE 

and is able to detect lowly abundant peptides and therefore, overcome some of the 

limitations associated with the gel based technique [258]. Yet, many factors such as 

the complexity of the lysate, tryptic digestion and under-sampling of data, limit the 

reproducibility between mass spectrometry runs [259, 260]. Multiple sample runs may 
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increase the number of peptides sampled by the mass spectrometer, although, 

abundant proteins tend to be analysed repeatedly thus decreasing the chance of 

identifying lowly abundant proteins [259]. 

ALL resistant xenografts were prepared in technical triplicate and biological triplicate 

to reduce the pitfalls of LC-MS/MS and to maximise the number and confidence of 

protein identification. While a similar number of peptides were identified in all samples, 

there was a large variation between technical replicates. Traditional cell lysis buffers 

containing urea resulted in a gelatinous lysate, most likely as a result of high nuclear 

content of ALL cells causing extraneous DNA to aggregate in the tube. To overcome 

this, samples were first lysed with a buffer containing Triton X-100, prior to the addition 

of the urea, which eliminated the problem with lysate preparation. To remove the 

contaminating Triton X-100, peptides were purified with strong anion exchange prior 

to samples being run on the mass spectrometer. Label based proteomics requires 

additional cleaning steps compared to non-label based proteomics prior to running 

samples on the mass spectrometer. The addition of extra purification measures to 

remove the contaminating TritonX-100, may have resulted in the loss of peptides and 

impacted on the identification of proteins.  

Labelling of lysine residue with methyl groups allows for samples to be run 

concurrently and changes in protein expression may be directly quantified between 

samples, though correlation between replicates remained troublesome. One possible 

mechanism to reduce variability across replicates is to use a similar normalisation 

procedure as used in SILAC experiments, termed SUPER-SILAC. This involves 

adding an internal standard with a third label to samples to improve protein detection 

and quantification [261-263]. 
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This study attempted to correlate changes in the expression of proteins to resistance 

to everolimus in ALL xenografts. Although some potential factors involved in the 

development of resistance to everolimus were identified, post-translational 

modifications such as phosphorylation, can have profound effects on protein function 

and add another layer of complexity in characterising the roles of proteins in resistance 

to everolimus. Higher level bioinformatics analysis, further refinement of experimental 

procedures, analysis of post-translation modification and increased number of 

samples may improve the identification and quantification of proteins involved in the 

development of everolimus resistance in ALL. 
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CHAPTER 5 IN VIVO CELL CYCLE ANALYSIS OF 
EVEROLIMUS RESISTANT ALL XENOGRAFTS 

5.1 INTRODUCTION 

The engraftment kinetics of the everolimus resistant ALL xenografts 1345-R and 2055-

R, was similar to the respective sensitive parental cells, with leukemia detected in 

peripheral blood and treatment commenced in all groups simultaneously. However, 

once leukemia was established, the leukaemic burden increased at a vastly different 

rate both in respect to the parental cells and between the two resistant xenografts. 

Moreover, the response of the xenografts to everolimus administration differed greatly 

between the two resistant xenografts (Chapter 3.3.4). The difference between the cell 

growth of the resistant xenografts (2055-R and 1345-R) and their sensitive 

counterparts may be due to changes in cell cycle regulation resulting from the 

development of resistance. 

Primary patient ALL cells are notoriously difficult to culture and require the presence 

of a supportive stromal layer to survive in vitro [104, 264]. However, both the sensitive 

and resistant xenografts analysed in this study could not be cultured in vitro despite 

the presence of the human bone marrow stroma (data not shown). For this reason the 

cell cycle status of everolimus resistant and sensitive ALL xenografts was analysed in 

vivo by using the thymidine analogue, 5-bromo-2'-deoxyuridine (BrdU). BrdU is 

incorporated into cycling cells during S phase and short term administration can be 

used to determine the cell cycle status when coupled with the DNA marker 7AAD using 

flow cytometry [129, 265, 266]. 

Initial proteomic investigations demonstrated that the microtubule regulating protein 

stathmin was increased in everolimus resistant 1345-R cells. Stathmin expression is 
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increased in many malignancies such as leukemia/lymphoma, breast cancer and 

prostate cancer, and is correlated to a metastatic phenotype [238-241]. Stathmin has 

microtubule destabilizing activity mediated by binding and sequestering alpha/beta-

tubulin heterodimers [223, 267]. The activity of stathmin is regulated by a series of 

phosphorylation events [268] that occur progressively as cells transition through the 

cell cycle [223]. These specific inhibitory phosphorylation events are required for the 

disassembly of mitotic spindle and appropriate exit from mitosis (Figure 5.1) [269]. 

Stathmin expression is higher in actively proliferating cells, such as hematopoietic 

progenitors and malignant cells [270]. Stathmin expression is upregulated in many 

malignancies and is correlated to resistance to chemotherapy [225, 271]. 

Phosphorylation of Ser25, mediated by MAPK, and Ser38, carried out by the cyclin 

dependent kinases CDK1 and CDK2 [223] does not completely inhibit stathmin 

activity, instead appearing to be pre-requisite sites for further phosphorylation on 

Ser16 and Ser63 [272]. Phosphorylation at Ser16, mediated by Ca2+/calmodulin-

dependent kinase IV (CaMK IV) and Ser63 by PKA [223] elicit the most potent effects 

on stathmin, with phosphorylation of these sites completely abolishing tubulin binding 

[268].  

This chapter aims to determine the cell cycle status of everolimus resistant ALL 

xenografts and the effects of everolimus on the cell cycle kinetics. It also examines the 

expression and phosphorylation status of proteins involved in the cell cycle and 

correlates these with cell cycle distribution. 
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Figure 5.1 Stathmin signalling. Stathmin may be phosphorylated and inactivated on Ser sites by calmodulin (CALM) and 

Ca2+/calmodulin kinases, phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinases (MAPKs)), cyclin-dependent kinases 

(CDKs), aurora kinase B (AURKB), protein kinase A (PKA) , leading to the stability of the microtubule and the formation of the mitotic 

spindle. On the other hand, Stathmin 1 may be dephosphorylated by protein phosphatase 2A (PP2A), protein phosphatase 2B (PP2B) or 

protein phosphatase 1 (PP1), resulting in the activation of stathmin and the instability of microtubules and dissolution of the mitotic spindle. 
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5.2 METHODS 

5.2.1 In vivo cell cycle 

NSG mice were engrafted with 2-5 x 106 patient derived xenografts cells, in which 

resistance to everolimus had been established by prolonged in vivo exposure, or a 

matched sensitive parental xenograft. Leukaemic engraftment was assessed by 

weekly tail vein bleeds and flow cytometry using antibodies to human CD19 and 

mouse CD45. Once mice had greater than 50% leukaemic blasts in their peripheral 

blood, they were treated once with everolimus (5 mg/kg) or a placebo by oral gavage 

24 h prior to cull. Mice also received 100 l of BrdU (10 mg/ml) by IP injection, 1 h 

prior to cull. 

Peripheral blood, femurs and spleens were collected from sacrificed animals and 

single cell suspensions prepared as described in Chapter 2.2.2. Following red cell 

lysis, remaining cells were stained with antibodies against human CD19 and mouse 

CD45 to identify human leukemia cells. Cells were fixed and permeabilized by 

sequential incubation for 10 min with BD Cytofix/Cytoperm buffer (RT), Cytoperm Plus 

(4°C), and BD Cytofix/Cytoperm (RT), washing with BD wash solution between 

incubation steps with each buffer. BrdU epitopes were exposed by treating cells with 

30 mg of DNase per million cells in a total volume of 100 l then fluorescently labelled 

with a BrdU antibody conjugated with APC. For intracellular evaluation of stathmin, 1 

x 106 BrdU labelled with incubated with rabbit antibodies specific for stathmin or its 

phosphorylation sites at Ser38 or Ser63. Bound primary antibodies were detected with 

anti-rabbit pacific blue. 7-AAD (f.c. 20 g/ml) was added 10 minutes prior to running 

samples on the BD LSRFortessa. Analysis was carried out using Flowjo software 

(Treestar). 
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5.3 RESULTS 

5.3.1 In vivo assessment of cell cycle 

The baseline cell cycle status and the effects of administration of everolimus were 

assessed in sensitive and resistant xenografts using the BrdU method of in vivo cell 

cycle analysis. Flow cytometry was used to identify human CD19 leukemic cells and 

the cell cycle distribution and incorporation of BrdU into these cells was analysed in 

the blood, spleen and bone marrow as shown in Figure 5.2.  
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In vivo, the xenograft 1345-R was more proliferative as compared to the parental 

xenograft 1345-S, but surprisingly, 2055-R was less proliferative than the sensitive 

2055-S. The increase proliferation of 1345-R cells correlated with a significant 

reduction it the proportion of cells in G0/1 in all tissues. Furthermore, a statistically 

significant increase in S phase and G2M cells was observed in the spleen and blood 

respectively (Figure 5.3 A).  Administration of everolimus elicited an accumulation of 

cells in G0/1 in 1345-S and 1345-R cells. As a result the treated resistant cells had a 

similar cell cycle profile to that of untreated sensitive cells. While 1345-R cells remain 

sensitive to the anti-proliferative effects of everolimus the increased basal proliferation 

of these cells meant that even in the presence of the drug the cells continued to 

proliferate strongly. 

Figure 5.2. The gating strategy used for the assessment of cell cycle by BrdU 

incorporation in everolimus sensitive and resistant ALL xenografts in vivo. 

Top Left panel: ungated cells are shown on a FCS-A vs. SSC-A dot plot. The viable 

cell population is identified by the gate shown. Top right panel: cells gated from the 

top left panel are shown on a FSC-A vs. FSC-H dot plot. Doublets and aggregates 

are identified, and excluded by the gate shown. Bottom left panel: cells gated from 

the doublet exclusion date are shown on a human CD19 (PE) and mouse CD45 

(FITC) dot plot, human leukaemia cells are identified by the gate shown. Bottom 

right panel: human leukaemia cells are shown on a 7-AAD vs. APC-A dot plot. The 

upper gate defines cells positive for BrdU and therefore in S phase at the time of 

the BrdU pulse, the lower left gate, cells in G0/1 and the lower right gate those in 

G2M. 
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2055-R cells had a smaller proportion of actively cycling cells, a finding consistent with 

the slower growth of these cells in vivo (Figure 3.3). Both the everolimus resistant and 

sensitive 2055 xenografts had a limited proportion of cells actively cycling in the 

peripheral blood, however, the proportion of 2055-R cells in G0/1 was significantly 

higher (Figure 5.3 B). In contrast to 1345-R, 2055-R cells appeared less proliferative 

than the sensitive 2055-S cells, particularly in the spleen and bone with the majority of 

cells being in the G0/1 phase of the cell cycle. Everolimus administration resulted in an 

accumulation of 2055-S in G0/1 in all tissues analysed. While everolimus similarly 

affected 2055-R cells in the spleen, it had no effect on cells recovered from the blood 

and the bone marrow. While proliferating more slowly, 2055-R cells are less sensitive 

to everolimus-induced inhibition of proliferation. 
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5.3.2 Expression of stathmin in everolimus resistant ALL 

Preliminary proteomic investigation identified the upregulation of the microtubule 

regulating protein stathmin in the everolimus resistant xenograft 1345-R. Although 

expression of stathmin is strikingly over expressed in 1345-S and 1345-R relative to 

peripheral blood mononuclear cells (PBMCs), no difference was observed upon 

development of resistance when examined by western blotting (Figure 5.4). However, 

using the same methodology, 2055-R demonstrated increased expression of stathmin 

(Figure 5.5 E).  

Figure 5.3 Resistance to everolimus alters the cell cycle in vivo. Cell cycle 

distribution of ALL cells isolated from the peripheral blood, spleen and bone marrow 

of mice engrafted with everolimus sensitive or resistant 1345 (A) or 2055 (B) ALL 

xenografts. Blue bars represent cells in G1 phase, orange bars represent cells in S 

phase and grey bars represent cells in G2M phase. The mean ± SD of six mice is 

shown for each xenograft. Students 2 tailed t-test comparing untreated sensitive 

cells (*p < 0.05) to untreated resistant cells (#p < 0.05). 
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Since the activity of stathmin is regulated by phosphorylation events, it is possible that 

the differentially expressed spot observed on the 2D-DIGE in chapter 4 represented a 

particular phosphorylated form. Therefore the phosphorylation of stathmin on Ser38, 

the prerequisite phosphorylation site, and Ser63, the strongest inhibitory site were 

assessed in both xenografts. The phosphorylation on Ser38 was the same in 1345-S 

and 1345-R cells (Figure 5.5 B – D), though phosphorylation of Ser63 was significantly 

decreased (Figure 5.6 B - D). In contrast, the amount of phosphorylation on Ser38 

(Figure 5.5 F) and amount and proportion of stathmin phosphorylated on Ser63 (Figure 

5.6 F and H) were significantly increased in everolimus resistant 2055-R cells. In both 

xenografts, treatment with everolimus had opposing effects on the phosphorylation of 

the two serine residues, with Ser38 tending to be decreased (Figure 5.5 B and F) while 

there was increased phosphorylation of Ser63 (Figure 5.6 B and F). 

Figure 5.4 Stathmin is over expressed in 1345-S and 1345-R cells. Protein was 

isolated from spleen cells recovered from mice engrafted with resistant xenografts 

or matched sensitive controls (1345-R and 1345-S) as well as PBMC from healthy 

donors. Blots were sequentially probed with antibodies against stathmin with -

actin used as a loading control. 
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Figure 5.5 Expression of stathmin and phosphorylation of Ser38 in everolimus 

sensitive and resistant ALL cells with or without everolimus treatment. Protein 

was isolated from cells recovered from mouse spleens bearing resistant or matched 

sensitive xenografts: 1345-R and 1345-S (A), 2055-S and 2055-R (B). Mice had been 

treated with everolimus or vehicle 24 h prior to sacrifice. Blots were sequentially probed 

with antibodies against stathmin phosphorylated on Ser38, total stathmin, and -actin, 

which was used as a loading control. Band intensity was used to quantify stathmin 

phosphorylated on Ser38 (B, F) and total stathmin (C, G) and ratio of phosphorylated 

to total stathmin calculated (D, H). Lysates were run in biological triplicates using 

students 2 tailed unpaired t-test. * p < 0.05 when comparing to untreated sensitive cells, 

# p < 0.05 when comparing to untreated resistant cells. 
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Figure 5.6 Expression of stathmin and phosphorylation of Ser63 in everolimus 

sensitive and resistant ALL cells with and without everolimus treatment. Protein 

was isolated from cells recovered from mouse spleens bearing resistant or matched 

sensitive xenografts 1345-R and 1345-S (A), 2055-S and 2055-R (B). Mice had been 

treated with everolimus or vehicle 24 h prior to sacrifice. Blots were sequentially probed 

with antibodies against stathmin phosphorylated on Ser63, total stathmin and -actin, 

which was used as a loading control. Band intensity was used to quantify stathmin 

phosphorylated on Ser63 (B, F), total stathmin (C, G) and ratio of phosphorylated 

stathmin to total stathmin calculated (D, H). Lysates were run in biological triplicates using 

students 2 tailed unpaired t-test. * p < 0.05 when comparing to untreated sensitive cells, 

# p < 0.05 when comparing to untreated resistant cells.  
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5.3.3 Differential expression of stathmin through the cell cycle  

The expression and activity of stathmin is regulated throughout the cell cycle by a 

series of inactivating phosphorylation events. To gain insight into the regulation of 

stathmin during the cell cycle, we used BrdU cell cycle analysis coupled with 

intracellular phospho-flow cytometry to assess the expression of stathmin and 

phosphorylation on Ser38 and Ser63.  

The expression of total stathmin gradually increased throughout the cell cycle, peaking 

in the G2M phase in sensitive and resistant cells from both xenografts (Figure 5.7 and 

5.8). Similar to the immunoblotting data, the expression of stathmin was not changed 

upon development of resistance in 1345 cells. When comparing sensitive and resistant 

cells, there were no major changes in the phosphorylation status of stathmin in 1345-

R cells with small reductions in phosphorylation on both Ser38 and Ser68 in cells in 

the periphery, most notable in G0/1 and S phase cells. However, there was a reduction 

in total stathmin in 2055-R cells isolated from the spleen and to a lesser extent the 

bone marrow, a finding that conflicts with the immunoblotting data. Interestingly, there 

was an increase in total stathmin in 2055-R cells isolated from the blood and increased 

phosphorylation on Ser38 and Ser68 in all tissues, primarily in G0/1 and S phases of 

the cell cycle. However, the antibodies used in this study to analyse the expression 

and phosphorylation of stathmin were validated only for use in immunoblotting and not 

in flow cytometry. While expression and phosphorylation of stathmin was quantifiable 

by flow cytometry, the lack of validation by BD biosciences and the lack of other 

sources of intracellular antibodies against stathmin and phosphorylated Ser38 and 

Ser63, results in an uncertainty into the validity of the flow cytometry results. 
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Administration of everolimus had little effect on the phosphorylation status of stathmin. 

In xenograft 1345 there was a small reduction the phosphorylation of Ser38 and even 

a lesser effect on Ser68, most evident in the sensitive 1345-S cells in the periphery. 

The exception was an increase in phosphorylation at both sites in 1345-R cells in G2M 

isolated from the blood.  

Expression of stathmin in 2055-R was significantly decreased all stages of the cell 

cycle in the spleen and bone marrow, whereas expression was significantly increased 

in the blood in the S and G2M phases. Both 2055 and 2055-R phosphorylated stathmin 

on Ser38 and Ser63 in the G2M phase in preparation for mitosis, however, 

phosphorylation of these residues was already apparent in S phase in the everolimus 

resistant xenograft. Resistant 2055-R cells had a higher level of phosphorylated 

stathmin than the sensitive parental xenograft in all tissues, except for phosphorylation 

of Ser38 in the spleen, where 2055-R cells had a significantly lower amount of 

phosphorylated stathmin. Administration of everolimus had little effect the expression 

or phosphorylation of stathmin in both sensitive and resistant 2055 cells, although a 

slight yet significant decrease in total stathmin was found in the spleen and bone 

marrow of both 2055-S and 2055-R cells.  
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Figure 5.7 Expression and phosphorylation of stathmin on Ser38 and 

Ser63 throughout the cell cycle in 1345-S and 1345-R. Mice were engrafted 

with matched sensitive and resistant xenografts and treated with everolimus or 

vehicle for 24 h prior to sacrifice. Cells were isolated from the indicated tissues 

and analysed by flow cytometry using gating shown in figure 5.2. Columns 

represent the average mean fluorescence intensity (MFI) ± SD of 6 biological 

replicates. *p < 0.05 compared to untreated sensitive cells, #p < 0.05) compared 

to untreated resistant cells using Students 2 tailed unpaired t-test. 
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Figure 5.8 Expression of total stathmin and phosphorylation on Ser38 and 

Ser63 in 2055-S and 2055-R. Mice were engrafted with matched sensitive and 

resistant xenografts and treated with everolimus or vehicle for 24 h prior to 

sacrifice. Cells were isolated from the indicated tissues and analysed by flow 

cytometry using gating shown in figure 5.2. Columns represent the average mean 

fluorescence intensity (MFI) ± SD of 6 biological replicates. *p < 0.05 compared 

to untreated sensitive cells, #p < 0.05) compared to untreated resistant cells using 

Students 2 tailed unpaired t-test. 
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5.3.4 Regulation of Stathmin Phosphorylation 

Phosphorylation of stathmin is carried out by several kinases throughout the cell cycle, 

though the best characterized of these are the phosphorylation of the Ser16 and Ser63 

by PKA [273, 274] and Ser25 and Ser38 by members of the cyclin dependent kinases 

CDK1 and CDK2 [275, 276]. We evaluated the expression of the catalytic subunit of 

PKA (PKA-C), CDK1 and CDK2, as well as the respective activating phosphorylation 

sites of each protein, to assess whether the changes in stathmin phosphorylation in 

everolimus resistant ALL xenografts may be due to altered expression of these 

kinases. 

Everolimus treatment of 1345-S cells significantly increased the expression of the 

catalytic subunit of PKA by 1.5 fold (Figure 5.9 C), resulting in a relative decrease in 

the ratio of phosphorylated to total PKA-C (Figure 5.9 D). The proportion of 

phosphorylated PKA-C was significantly decreased in the resistant 1345-R xenograft 

(Figure 5.9 D), but treatment with everolimus did not to elicit a further decrease (Figure 

5.9 D). In contrast to 1345-R, treatment with everolimus and the development of 

resistance did not alter the expression or phosphorylation of PKA-C in the 2055 

xenografts. 
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Figure 5.9 Expression and phosphorylation of PKA-Con Thr197 in everolimus 

sensitive and resistant ALL cells with and without everolimus treatment. Protein 

isolated from resistant xenografts and matched sensitive controls 1345-R and 1345-S 

(A), 2055-R and 2055-S (E), with and without treatment with everolimus. Blots were 

sequentially probed with antibodies against PKA-C phosphorylated on Thr197 and 

total PKA-C, with -actin used as a loading control. Band intensity was used to 

quantify PKA-C phosphorylated on Thr197 (B, F) and total PKA-C (C, G) and ratio 

of phosphorylated PKA-C to total protein was calculated (D, H). Lysates were run in 

biological triplicates using students 2 tailed unpaired t-test. *p < 0.05 compared to 

untreated sensitive cells, #p < 0.05) compared to untreated resistant cells using 

Students 2 tailed unpaired t-test. 
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The basal expression of the cyclin dependent kinases CDK1 and CDK2 and 

phosphorylation of their respective activation residues at Thr160 and Thr161, 

remained unchanged with the development of resistance in the 1345 xenograft (Figure 

5.10 B - D and 5.11 B - D). In contrast, xenograft 2055-R demonstrated reduced 

expression of both CDK1 and CDK2 as well as reduced phosphorylation of Thr160 

and Thr161 respectively, compared to the parental sensitive xenograft (Figure 5.10 F 

- H and 5.11 F - H). Administration of everolimus significantly decreased the 

expression of CDK1 in both sensitive and resistant 2055 xenografts (Figure 5.11 H) 

leading to a relative increase in the ratio of phosphorylated CDK1 in both 2055-S and 

2055-R (Figure 5.10 F). The expression of total CDK2 was upregulated following 24 h 

of everolimus treatment both 1345-S and 2055-S xenografts (Figure 5.11 C-D, G-H). 

However, the responses of the resistant xenografts differed with the expression and 

phosphorylation of CDK2 on Thr160 being significantly reduced in 1345-R cells (Figure 

5.11 C-D), while, these parameters were non-significantly increased in 2055-R (Figure 

5.11 G-H). However, the ratio of phosphorylated to total CDK2 was significantly 

reduced in both resistant xenografts (Figure 5.11 D, H). Moreover, the ratio of 

phosphorylated to total CDK2 was similarly reduced in both the sensitive and resistant 

forms 1345 and 2055 upon everolimus administration, though this reduction was small, 

and insignificant in all but xenograft 1345-S. 
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Figure 5.10 Expression and phosphorylation of CDK1 on Thr161 in everolimus 

sensitive and resistant ALL cells with and without everolimus treatment. 

Protein isolated from resistant xenografts and matched sensitive controls 1345-R 

and 1345-S (A), 2055-R and 2055-S (E), with and without treatment with everolimus. 

Blots were sequentially probed with antibodies against CDK1 phosphorylated on 

Thr161 and total CDK1, with -actin used as a loading control. Band intensity was 

used to quantify CDK1 phosphorylated on Thr161 (B, F) and total CDK1 (C, G) and 

ratio of phosphorylated CDK1 to total protein was calculated (D, H). Lysates were 

run in biological triplicates using students 2 tailed unpaired t-test. *p < 0.05 compared 

to untreated sensitive cells, #p < 0.05) compared to untreated resistant cells using 

Students 2 tailed unpaired t-test. 
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Figure 5.11 Expression and phosphorylation of CDK2 on Thr160 in everolimus 

sensitive and resistant ALL cells with and without everolimus treatment. 

Protein isolated from resistant xenografts and matched sensitive controls 1345-R 

and 1345-S (A), 2055-R and 2055-S (E), with and without treatment with everolimus. 

Blots were sequentially probed with antibodies against CDK2 phosphorylated on 

Thr160 and total CDK2, with -actin used as a loading control. Band intensity was 

used to quantify CDK2 phosphorylated on Thr160 (B, F) and total CDK2 (C, G) and 

ratio of phosphorylated CDK2 to total protein was calculated (D, H). Lysates were 

run in biological triplicates using students 2 tailed unpaired t-test. *p < 0.05 compared 

to untreated sensitive cells, #p < 0.05) compared to untreated resistant cells using 

Students 2 tailed unpaired t-test. 
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5.4 DISCUSSION 

The primary location of hematopoiesis in adults is the bone marrow, which provides a 

specialised microenvironment that supports the growth and survival of normal and 

malignant hematopoietic precursors. This supportive environment can offer a 

sanctuary to leukaemic cells where they can escape the effects of chemotherapy, 

contributing to resistance [170, 171, 277]. The spleen is a secondary hematopoietic 

organ that contains a specialized niche that, while different to the bone marrow 

microenvironment, expresses similar factors such as CXCL12, SCF, VE-Cadherin, 

PDGFR, LepR, TCF21 and VCAM-1 to support the growth and survival of 

hematopoietic precursors [278-280]. Yet, the prevalence of extramedullary 

involvement in mice engrafted with human ALL xenografts is varied between 

xenografts. It is possible that the spleen microenvironment may express factors, 

different to the bone marrow, which can support the growth of leukemia cell, although 

such factors are unknown. In times of high stress to the bone marrow, such as trauma, 

anaemia, infection and leukemia, the spleen is able to support hematopoiesis [278]. 

Infiltration of malignant cells into the spleen is a common clinical feature of ALL and is 

often correlated with an elevated white cell count in the peripheral blood [25]. 

The variability in survival of mice engrafted with the two everolimus resistant 

xenografts 1345-R and 2055-R, is reflected in the cell cycle distribution of each 

xenografts. The cell cycle distribution of cells recovered from mice engrafted with 

1345-R indicated that these are more proliferative than the sensitive 1345-S cells 

which corresponded to the more rapid disease progression in 1345-R bearing animals. 

In contrast, the growth of 2055-R in vivo was more subdued and mice survived longer 

than those engrafted with the parental xenograft, a finding consistent with the high 

proportion of cells in the G0/1 phase of the cell cycle. Everolimus is a cytostatic 
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compound and induces a G0/1 arrest in ALL cells in vivo [129].  While 1345-R remained 

responsive to the cell cycle effects of everolimus, the response of 2055-R cells was 

significantly reduced with cell cycle inhibition only being detected in cells recovered 

from the spleen. Furthermore, the differential growth of the xenografts and response 

to everolimus between the tissues analysed, suggests each tissue offers a specific 

microenvironment that may affect the growth of the xenografts and their response to 

everolimus. 

Stathmin is an important regulator of the cell cycle that is involved in the G1-S and the 

G2M checkpoints that needs to be phosphorylated for mitosis proceed [281]. The 

overexpression of stathmin has been identified in numerous malignancies and is 

correlated to a more proliferative and metastatic phenotype [238-241, 282]. Similarly, 

stathmin was highly overexpressed in the ALL xenograft 1345-S as well as the 

everolimus resistant form, 1345-R, compared to normal peripheral blood mononuclear 

cells. Though, it must be noted that the expression of stathmin in hematopoietic cells 

decreases as the cells mature [270]. Therefore, CD34 positive immature lymphoblasts 

at a similar stage of maturation to the malignant cells would have been more 

appropriate normal comparator for stathmin expression. Nevertheless, the expression 

and phosphorylation of stathmin, despite significant regulation, was not in line with its 

predicted effects on the cell cycle in either everolimus resistant xenografts. In addition, 

both everolimus resistant xenografts demonstrated tissue specific effects on stathmin 

phosphorylation and expression, further emphasising the possible influence of tissue 

specific microenvironments on the expression of proteins and the regulation of the cell 

cycle. 

The cyclin dependent kinases CDK1 and CDK2 are important for the proper 

progression of the cell cycle. Loss of CDK2 in cells can be compensated for by the 
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recruitment of other cyclin dependant kinases such as CDK1. On the other hand, 

CDK1 is vital for cell cycle, as it is the master regulator of the G2M transition [283-285]. 

Moreover, resistance to everolimus in prostate cancer has been linked to increased 

expression of CDK1 and CDK2 [143]. In the everolimus resistant ALL xenografts 

CDK2 activity was lost, while the expression of CDK1 was down regulated solely in 

2055-R. The regulation of the cyclin dependent kinases does not explain the increased 

proliferation of the 1345-R xenograft, indicating multiple mechanisms regulating the 

cell cycle in the two xenografts. 

As CDK1 controls the G2M transition, its reduction in 2055-R cells recovered from the 

spleen may be a compensatory mechanism for the increased expression of stathmin 

and possibly the causative factor behind the strong G0/1 accumulation in vivo. 

Nevertheless, despite the strong G0/1 accumulation in the blood, spleen and bone 

marrow, xenograft 2055-R continued to proliferate in vivo. The mechanism of how the 

cells continue to cycle and how these factors contribute to resistance to everolimus 

remains elusive.  

Microenvironments vary between tissues and interaction of ALL xenografts these 

tissue specific microenvironments may lead to cellular resistance to everolimus. 

Different xenografts may have a preference for particular microenvironment that may 

have led to the differential responses between the two xenografts studied. Indeed, 

disruption of the interaction between ALL cells and the microenvironment using agents 

such as AMD3100 and G-CSF synergizes with current chemotherapeutic compounds 

[175, 201], and may be a strategy to overcome potential mechanisms of resistance to 

everolimus. 



154 
 

CHAPTER 6 EVALUATION OF THE SHORT-TERM 
EFFECTS OF EVEROLIMUS IN A CLINICAL TRIAL 
INVOLVING ADULTS WITH REPLAPSED OR 
REFRACTORY ALL. 

6.1 INTRODUCTION 

The Akt/mTOR pathway is an important cellular growth pathway that is often over 

active in many cancers, including ALL [286-288], and offers an attractive target for 

inhibition in conjunction with conventional chemotherapy. 

The allosteric mTOR inhibitor everolimus has been approved for by the Therapeutic 

Goods Administration (TGA) for clinical use in several malignancies including 

pancreatic neuroendocrine tumours and renal cell carcinoma, as well as for the 

treatment of Subependymal giant cell astrocytoma (SEGA), angiomyolipoma and 

lymphangioleiomyomatosis (LAM) associated with the tuberous sclerosis complex. 

The efficacy of everolimus is currently being evaluated in several clinical trials for other 

malignancies including non-small cell lung carcinoma (NCT02321501), 

chondrosarcoma (NCT02008019), gastroesophageal adenocarcinoma 

(NCT02138929) and prostate cancer (NCT02125084). The efficacy of everolimus has 

been demonstrated in pre-clinical models of ALL [65, 125, 128, 289] and while the 

safety of everolimus has been demonstrated in other hematological malignancies 

[132], clinical evidence of the safety and efficacy in ALL was lacking. 

To assess the safety and efficacy of everolimus in relapsed adult ALL, a single centre, 

phase I/II clinical trial was conducted through the MD Anderson Cancer Center in 

Houston, Texas. Patients with relapsed or refractory ALL enrolled into the trial were 

given everolimus in combination with the intensive chemotherapy regime HyperCVAD, 

which consists of hyper fractionated cyclophosphamide, vincristine, adriamycin 
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(doxorubicin) and dexamethasone [133]. We aim to characterise short-term changes 

induced by everolimus and to determine if these were associated with responses to 

everolimus as well as the overall clinical outcome.  
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6.2 METHODS 

6.2.1 Patient samples 

Peripheral blood mononuclear cells were isolated at the MD Anderson Cancer center 

by Ficoll-Hypaque density gradient centrifugation (Sigma-Aldrich, St. Louis, MO), 

before (Cycle 1 Day 0) and 24 hours after (Cycle 1 Day 1) the first dose of everolimus 

during the first cycle of therapy. Both samples were taken prior to treatment with 

HyperCVAD chemotherapy. Peripheral blood mononuclear cells were lysed in TRIzol 

reagent and frozen at -80°C prior to shipping to The Westmead Institute for Medical 

Research. 

6.2.2 miR-21 expression 

The expression of human miR-21 was analyzed with the Taqman miRNA expression 

array system (Life Technologies). RNA was isolated from patient samples using TRizol 

extraction as described in Chapter 2. Ten nanograms of total RNA was reverse 

transcribed using Taqman Small RNA assay and MultiScribe reverse transcriptase by 

incubation with a stem loop primer targeted against miR-21 and the small nucleolar 

RNA control, snoU6. Samples were sequentially incubated at the following 

temperatures: 30 min at 16°C, 30 min at 42°C and 5 min at 85°C.  

Real time quantitative PCR was then performed on the transcribed product by 

combining with Taqman Universal PCR master mix (no UNG) and taqman probes 

targeting miR-21 and snoU6. Reactions were performed in duplicates with the 

following cycling conditions on the Bio-RAD CFX96 thermocycler: Hot start 95°C for 

10 min, 40 cycles of 15 s at 95°C and 1 min at 60°C. Fluorescence was collected at 

the end of each cycle. Gene expression was calculated using the 2-ct quantification 

method [290], normalizing to the average of snoU6. 
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6.2.3 Expression of miR-21 targets 

cDNA was prepared from 400 ng of patient RNA by using the RT2 First Strand kit. 

Genomic DNA was removed from samples by incubating with GE buffer for 5 min at 

42°C. Samples were reverse transcribed with RC3 reverse transcriptase at 42°C for 

15 min and the reaction terminated by incubating tubes at 95°C for 5 min.  

The cDNA product was then combined with RT2 SYBR green qPCR Mastermix and 

dispensed into a 384 well plate preloaded with target primers. The plate was sealed 

and centrifuged at 1000 x g at RT. Samples were run on the Bio-RAD CFX384 

thermocycler using the following program: Hot start 95°C for 10 min, 40 cycles of 15 s 

at 95°C and 1 min at 60°C, with fluorescence collected at the end of each cycle. Gene 

expression was calculated by using the 2-ct quantification method, normalizing to the 

average of the 5 housekeeping genes included in the array. 
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6.3 RESULTS 

6.3.1: Patient Characteristics 

Twenty four patients were enrolled in the study, however, due to lack of patient 

material, samples from only 15 patients were sent to Australia (Table 6.1). Of the 

samples sent, the mean age of patients was 29.4 years (range 11-59) and patients 

received, on average, 2 prior treatments (range 1-4) before enrolment into the trial. 

Seven patients were diagnosed with pre-B ALL, 7 with pre-T ALL and one mixed 

phenotype, with varying cytogenetics among patients. Patients remained on the study 

for an average of 120 days (range 21-800) and received an average of 2 treatment 

cycles (range 1-4). 

Patients were commenced on a dose of 5 mg/kg of everolimus (patients 1-3) and after 

no serious adverse events were observed, the dose was increased to 10 mg/kg 

(patients 4-11). Adverse effects were observed at the higher dose of everolimus and 

therefore the dose was reduced back to 5 mg/kg for the remainder of the trial. Six 

patients achieved a complete remission (CR), one of which did not completely recover 

their blood counts (CRi) while another did not recover their platelet counts (CRp). Two 

patients achieved a partial remission (PR). The remaining 7 patients were classified 

as non-responders (NR). Peripheral blood samples were taken on day 0 (before 

everolimus) and day 1 (after one dose). 
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No. Diagnosis Age CG No. Prior treatments/ Regimen 
CR1 Duration 

(months) 
Everolimus  Dose 

(mg/day)  
No. 

.Cycles 
Clinical 

Response  
Days on 

Study 
S6RP 
inhib. 

1 Pre-T-ALL 29 Del 7, del 17 4 
ESHAP, CHOP, AugHCVAD, 

alloSCT 
7 5 2 PR 48 Y 

2 Pre-T-ALL 24 Diploid 4 Larson, Nelarabine, other 11 5 2 NR 46 N 

3 Pre-B-ALL 52 11q23 1 R-HCVAD 26 5 4 CR 153 Y 

4 Pre-B-ALL 27 t(12;16) 1 AugBFM 39 10 1 NR 21 Y 

5 Pre-T-ALL 11 del 1, inv 3 1 CCG-1961 w/XRT 12 10 1 NR 28 Y 

6 Pre-T-ALL 24 
Hyper with 

11q23 
3 HCVAD, Nelarabine, alloSCT 30 10 4 PR 145 Y 

7 Pre-B-ALL 59 Diploid 1 R-CHOP 12 10 2 +mnt CR 800 N 

9 Pre-T-ALL 26 
Hyper 

2 
HCVAD+Nelarabine, 

6 10 2 CRi 148 N 
with +8 MOAD w/ alloSCT 

10 Pre-B-ALL 24 Del 7, del 17 3 ALL0232, other 12 10 2 NR 49 Y 

11 Pre-B-ALL 23 t(2;9) 1 AugBFM 21 10 2 CR 73 Y 

14 Pre-B ALL 43 Diploid 4 
HCVAD w/FLAG-IDA, 

Clofarabine, BiTE 
9 5 2 NR 64 ND 

16 Pre-T-ALL 22 Diploid 1 AugBFM 15 5 4 CR 102 ND 

17 Pre-B-ALL 14 IM 3 AALL0232, Bortezomib 11 5 1 NR 29 ND 

21 Pre-T-ALL 19 Diploid 1 AugBFM 9 5 2 CRp 68 ND 

23 
Mixed 

phenotype 
44 Diploid 2 HCVAD w/allo SCT, MorphoSys 7 5 1 NR 26 ND 

Table 6.1 Clinical characteristics of patients (N = 15) 

Abbrevations: CG = cytogenetics, CR = complete remission, PR = partial remission, CRi = complete remission with incomplete counts recovery, CRp = 
complete remission with incomplete platelets recovery, NR = non responder, mnt = maintenance, ND = not determined 
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6.3.2: Gene expression analysis by microarray 

RNA was isolated from patient samples, quantified by UV spectrophotometry and 

integrity determined using the Agilent Bioanalyzer (Table 6.2). The RNA isolated from 

patients 1 to 5, 14, 16, and 17 was not of sufficient quality for microarray analysis (RNA 

integrity number (RIN) of less than 7). Insufficient initial cell numbers and time RNA 

was stored in TRizol may have contributed to the lower quality of RNA extracted. An 

adequate quantity of suitable quality RNA was isolated from patients 6, 7, 9, 10 and 

11 (all of which received the higher 10 mg/kg dose of everolimus). These samples 

were amplified and hybridized to a human gene expression microarray chip. 

Microarray chips were scanned with the Illumina BeadArray Reader and results 

imported into BeadStudio where genes were normalised using the average 

normalisation protocol against internal controls.  

Unsupervised hierarchical clustering was performed on genes significantly detected in 

all samples using the Partek Genomics Suite and Euclidean dissimilarity (Figure 6.1). 

Of the 5 patients analysed by microarray the 2 patients who achieved CR, 7 and 11, 

clustered together. Patient 6, a partial responder, also clustered alongside the CR 

patients while patients 9 and 10 clustered separately. Clustering of all patients, except 

for the CR patients (7 and 11) was more strongly influenced by the underlying genetics 

rather than the effects of everolimus treatment. In contrast, clustering of the CR 

patients 7 and 11 was more heavily influenced by treatment. 
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No. Treatment day 
Concentration 

(ng/l) 
A260/280 RIN 

1 
Day 0 70 1.591 N/A 

Day 1 54 1.688 N/A 

2 
Day 0 24 1.714 N/A 

Day 1 138 1.769 N/A 

3 
Day 0 38 1.583 N/A 

Day 1 128 1.455 4.7 

4 
Day 0 258 1.843 N/A 

Day 1 56 1.750 N/A 

5 
Day 0 128 1.730 N/A 

Day 1 222 1.820 N/A 

6 
Day 0 732 1.848 8.7 

Day 1 400 1.724 N/A 

7 
Day 0 104 1.625 8.8 

Day 1 144 1.565 8.6 

9 
Day 0 328 1.822 9.7 

Day 1 240 1.818 9.7 

10 
Day 0 450 1.844 9.4 

Day 1 486 1.898 9.5 

11 
Day 0 600 1.724 9.2 

Day 1 440 1.833 9.2 

14 
Day 0 803 1.958 5.5 

Day 1 975 2.002 4 

16 
Day 0 426 1.941 4.5 

Day 1 389 1.932 4.6 

17 
Day 0 122 1.800 6.1 

Day 1 24.4 1.600 7.7 

21 * 
Day 0 816 1.606 N/A 

Day 1 106 1.646 N/A 

23 * 
Day 0 46.4 1.657 9 

Day 1 83.6 1.672 7.8 

Table 6.2 Patient RNA concentration and integrity (N = 15) 

Abbreviations:  A260/280 – ratio of absorbance at 260 nm and 280 nm,  
RIN – RNA integrty number.  * Samples 21 and 23 were thawed 
during shipment 
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Figure 6.1 Hierarchical clustering of patient samples. Patient samples collected before (Day 0) and 24 h after (Day 1) the first 

dose of everolimus. Significantly detected genes were segregated using unsupervised hierarchical clustering in the Partek Gene 

Expression Suite. CR = complete remission, PR = partial remission, CRi = complete remission with incomplete recovery of white 

blood cell counts, NR = non-responder.  
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Significantly differentially expressed genes were detected in patients at baseline (day 

0) between patients 7 and 11 and the remaining patients. In the two CR patients, 1139 

genes were significantly upregulated and 1526 downregulated by more than 1.5 fold 

as compared to the remaining patients. GSEA was unable to identify any significantly 

enriched gene sets, however, Metacore identified 50 pathway maps (Table 6.3) and 

50 process networks (Table 6.4) that were enriched in CR patients with a FDR of less 

than 25%. Cell cycle regulation pathways were enriched in both process networks and 

pathway maps with patients achieving a CR appearing less proliferative (Figure 6.2). 

  

Maps p-value FDR 

Cell cycle_The metaphase checkpoint 9.644E-22 7.850E-19

Cell cycle_Role of APC in cell cycle regulation 1.869E-19 7.609E-17

Cell cycle_Spindle assembly and chromosome separation 1.217E-13 3.302E-11

Protein folding and maturation_POMC processing 2.695E-12 5.484E-10

Cell cycle_Cell cycle (generic schema) 9.928E-11 1.616E-08

Cell cycle_Transition and termination of DNA replication 1.273E-10 1.727E-08

DNA damage_ATM/ATR regulation of G1/S checkpoint 1.584E-10 1.841E-08

Cell cycle_Role of SCF complex in cell cycle regulation 2.609E-10 2.654E-08

Cell cycle_Start of DNA replication in early S phase 1.792E-09 1.621E-07

Cell cycle_Role of Nek in cell cycle regulation 1.797E-08 1.463E-06

IL-6 signaling in multiple myeloma 2.367E-08 1.751E-06

Cell cycle_Chromosome condensation in prometaphase 2.828E-08 1.919E-06

Cell cycle_Influence of Ras and Rho proteins on G1/S Transition 4.904E-08 3.071E-06

DNA damage_ATM / ATR regulation of G2 / M checkpoint 6.200E-08 3.605E-06

Cell cycle_ESR1 regulation of G1/S transition 2.549E-07 1.383E-05

Table 6.3 Top 15 Metacore pathway maps enriched in patients who achieved 

complete remission (for full table see appendix A.7). 



164 
 

  

Networks p-value FDR 

Cell cycle_Mitosis 2.704E-28 4.299E-26

Cell cycle_Core 4.171E-27 3.316E-25

Cytoskeleton_Spindle microtubules 1.494E-22 7.921E-21

Cell cycle_S phase 1.177E-19 4.678E-18

Cell cycle_G2-M 1.815E-14 5.772E-13

DNA damage_Checkpoint 2.474E-10 6.557E-09

Cell cycle_Meiosis 2.073E-09 4.709E-08

DNA damage_DBS repair 4.091E-08 8.130E-07

Transcription_mRNA processing 6.874E-07 1.214E-05

DNA damage_MMR repair 2.940E-06 4.674E-05

Transcription_Chromatin modification 6.071E-06 8.776E-05

Cell cycle_G1-S 7.450E-06 9.871E-05

DNA damage_BER-NER repair 4.154E-05 5.081E-04

Cell cycle_G1-S Interleukin regulation 9.372E-05 1.064E-03

Reproduction_Male sex differentiation 1.792E-04 1.900E-03

Table 6.4 Top 15 Metacore process networks enriched in patients who 

achieved complete remission (for full table see appendix A.8). 
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Figure 6.2 Top cell cycle regulation pathway (Cell cycle_Mitosis) in patients 

achieving complete remission. Red thermometers indicate an increase in 

expression, while blue thermometers indicate a decreased expression, with the 

amount of colour indicating the degree of regulation.  
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The gene signature generated based on the baseline expression of genes in patient 

who achieved CR was applied to a larger dataset consisting of 280 patients with mixed 

ALL subtypes and 4 normal controls (GSE28497) [291]. MRD data collected by flow 

cytometry at day 19 and day 46 was available, however, our CR gene signature was 

unable to predict MRD outcome at day 19 (Figure 6.3 A) or day 46 (Figure 6.3 B). 

GSEA was used to identify gene signatures enriched as a result of treatment with 

everolimus. In a pooled analysis of array data from all patients, 213 gene signatures 

were significantly enriched with a FDR of less than 25% following treatment with 

everolimus. The most significantly enriched were the gene signatures for SMARCA2 

(p<0.001), ERCC3 (p<0.002), TRAIL (p<0.001) and 2 gene signatures of miR-21, 

GABRIELY_MIR21_TARGETS (p<0.002) and ATAAGCT MIR-21 (p<0.004) (Figure 

6.4 A). Micro RNA-21 (miR-21) is a small RNA molecule responsible for the down 

regulation of many tumour suppressors such as PTEN, and is therefore considered to 

be an oncogenic microRNA (oncomiR). Due to its oncogenic potential, the 

GABRIELY_MIR21_TARGETS gene signature was analysed in each patient 

individually (Figure 6.4 B). The signature was significantly enriched following 

everolimus treatment in all patients, except patient 11, with a FDR of less than 25%.  

RNA from another 2 patients, patient 21 and 23, was arrayed and interrogated by 

GSEA but failed to generate any gene signatures that were significantly detected with 

appropriate FDR (q value). Both patients displayed a similar trend in the enrichment 

curve for the miR-21 gene signature as the initial patient cohort, however, data from 

neither patient achieved significance with a FDR of less than 25% (Figure 6.4 C). The 

integrity of RNA isolated from patient 21 could not be quantified and while patient 23 

obtained suitable RIN values of 9 for Day 0 and 7.8 for Day 1, the concentration of 

RNA was much lower than previous samples (Table 6.2). The samples from patients 
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21 and 23 were thawed during shipment and this may have had detrimental effects on 

the quality of the RNA obtained from the samples. Additionally, these patients received 

a lower dose of everolimus than the other patients analysed by microarray, therefore 

these two patients were excluded from further analysis. 

  



168 
 

Figure 6.3 CR gene signature does not predict patient MRD status. The CR 

gene signature was applied to a published dataset of 284 patients with various 

leukaemia subtypes and MRD assessed at day 19 (A) and 46 (B). 
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Figure 6.4 GSEA of microarray data of samples collected from (Day 0) and 24 

hours after (Day 1) the first dose of everolimus. (A) Columns 1-4 show the top 

4 gene signatures (SMARCA2, MIR21, ERCC3, TRAIL) and column 5 the 

consensus miR-21 signature (GABRIELY_MIR21_TARGETS) when all available 

samples were analysed. (B) Results for the miR-21 targets for each patient pre- 

and post-treatment. (C) Consensus miR-21 gene signature in an additional 2 

patients. 
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6.3.3: Expression of miR-21 

Expression of miR-21 was assessed using a miR-21 gene expression chip (Methods 

2.2.6) in the 5 patients subjected microarray analysis as well as an additional 7 

patients, where despite poor quality of the 18s and 26s RNA, small peaks, potentially 

containing micro RNA, were observed using the Agilent bioanalyser. The signature of 

miR-21 targets was enriched in day 1 samples from patients 6 to 10, signifying a 

relative decrease in the activity of miR-21. As observed in the microarray gene 

signatures, the expression of miR-21 was decreased in patients 6, 7 and 10 after 24 

h of everolimus while it was paradoxically increased in patients 9 and 11 (Figure 6.5 

A). An increase in miR-21 would be expected to yield decreased expression of 

downstream targets, yet microarray analysis shows enriched expression in patient 9, 

a possible explanation may be that the relative expression of miR-21 may be increased 

but its activity or binding capacity is diminished, leading to the enrichment in target 

gene expression. 



171 
 

  

Figure 6.5 miR-21 is downregulated following everolimus treatment. RNA from 

patients (A) and cell lines (B) before and 24 h after treatment with everolimus was 

assessed for miR-21 gene expression. miR-21 expression was normalised to the 

expression of small nucleor RNA U6 (snoU6) and fold change in expression after 

treatment was calculated with the 2-ct method.  
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6.3.4: miR-21 expression and regulation of target genes 

As limited patient samples were available, the B and T cell leukemia cell lines NALM6, 

LK63, REH, Jurkat and Molt4 were used to confirm the effect of everolimus on the 

expression of miR-21 and its target genes. While LK63, REH and MOLT4 replicated 

the decrease in miR-21 expression seen in the patient samples after treatment with 4 

M everolimus for 24 h, NALM6 and Jurkat failed to show any significant regulation 

(Figure 6.5 B). A set of 5 genes regulated by miR-21; PTEN, PEL1, BMPR2, PTAR1 

and USP34, were analysed by quantitative RT-PCR to assess the effects of 

everolimus of miR-21 activity. Two doses of everolimus were used in the cell lines, the 

in vitro IC50 dose of 4 M (Figure 6.6 A), and the peak plasma concentration achieved 

by the patients enrolled in the trial, 90 nM (Figure 6.6 B). RT-PCR was unsuccessful 

in demonstrating any effect on these target genes over three separate experiments, 

despite miR-21 itself being affected in the cell lines.  

Due to the unreliability of tissue culture in recapitulating the miR-21 response to 

everolimus, a more specific array of 86 target sequences was employed to interrogate 

RNA from two patient samples. Patients 5 and 10 were selected as these patients 

exhibited differential regulation of miR-21 expression and had sufficient material 

remaining for analysis. For both patients, the majority of genes analysed were 

unaffected by treatment with everolimus (Figure 6.7). A small number of these genes 

were upregulated in patient 5 which may have been due to the effects of miR-21. 
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Figure 6.6 Expression of miR-21 targets in cell lines. Cells were treated with 

everolimus at 4 M (A) or 90 nM (B) for 24 h and assessed for the expression of the 

indicated genes by qRT-PCR. Gene expression was normalised to GAPDH and fold 

change calculated against untreated controls. Bars represent the mean and SD of 3 

independent experiments. 
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0 1 2 3

Figure 6.7 Expression of miR-21 targets in patients. Patients were assessed for 

the expression of 85 target genes of miR-21 by Qiagen RT2 profiler miR-21 target 

array. Data represented by a scatter plot with median and interquartile range. 
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6.4 DISCUSSION 

The efficacy of everolimus in treating ALL is well established in pre-clinical models of 

the disease, however, clinical evidence of its efficacy is lacking. We collaborated with 

the MD Anderson Cancer Center to investigate the efficacy of everolimus in human 

ALL and to characterise short-term gene expression changes induced by everolimus 

and to determine if these correlate with response to mTOR inhibition by everolimus as 

well as the overall clinical outcome. This project was limited to the analysis of gene 

expression changes as the only material available was not suitable for other types of 

studies. 

miRNA are small non-coding RNAs that regulate gene expression through binding to 

the 3’ UTR of RNA, and recruit the RNA inducing silencing complex (RISC) to promote 

RNA degradation [292]. Several miRNAs, such as miR-21, have been reported to have 

oncogenic potential through the attenuation of tumour suppressor genes such as 

PTEN. The expression of miR-21 is increased in conditions such as cancer, cardiac 

injury and response to inflammatory cytokines [293, 294]. Increased levels of miR-21 

lead to decreased expression of PTEN, and a subsequent increase in the activity of 

the downstream signalling pathway of PI3K/Akt/mTOR [295-297]. Pre-clinical studies 

have highlighted the clinical benefits of miR-21 inhibition as its silencing sensitizes 

CML cells to imatinib [298] and K562 cells to X-ray irradiation [299].  

The genetic signature of miR-21 expression was negatively enriched in patient 

samples after 24 h of everolimus treatment, suggesting decreased miR-21 activity and 

thus, an increase in target gene expression. However, the down regulation of miR-21 

was not correlated with inhibition of mTOR signalling by everolimus or the overall 

clinical outcome of patients. ALL is known to induce an inflammatory response in 
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patients, likely through interaction with the bone marrow microenvironment, leading to 

the release of pro-inflammatory cytokines such as TNF and IL-6 [300-303]. Everolimus 

is capable of supressing the immune system and has been successfully used in 

patients who have undergone a solid organ transplant [304-309]. We hypothesize that 

the ALL induced inflammation results in increased in miR-21 activity and that the 

immunosuppressive effects of everolimus abrogate this. The patient samples were 

taken after a single everolimus dose without chemotherapy, therefore any 

immunosuppression is a result of mTOR inhibition by everolimus. Nevertheless, these 

observations arise from a limited patient base and additional patients would need to 

be studied to confirm whether ALL induced inflammation increases miR-21 expression 

and activity, and if everolimus abrogates this response. 

The gene expression of patients ALL cells was not correlated with inhibition of mTOR 

by everolimus, although the two patients on whom we had gene expression data that 

achieved clinical remission exhibited a baseline genetic similarity that separated them 

from the remainder of the patients. Baseline genetic signatures of patients are gaining 

increasing attention in order to maximise treatment efficacy through improved risk 

stratification and optimal therapy selection. However the prognostic power of genetic 

signatures is limited at the present time [310-312]. Interestingly, one patient who 

achieved a clinical remission but without recovery of their blood cell counts, failed to 

separate alongside the other clinical remission patients. However, when the CR gene 

signature we identified based on the patients studies here was applied to a larger 

dataset consisting of 180 patients with various ALL subtypes, it was unable to 

segregate patients based on their MRD status at day 19 or 46. The limited patient 

dataset used to generate the gene signature severely limits its prognostic capability 

and acquiring additional gene expression data from more patients is required in order 
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further strengthen the predictive power of the CR gene signature. Furthermore, the 

CR gene signature identified in this study may be specific for responses to mTOR 

inhibition and not applicable to other treatment settings. 

The expression of miR-21 and the prognostic power of a baseline gene signature for 

complete remission may have profound impacts in the clinic, however, the data 

presented here, although promising, is limited by the number of patients analysed. 

Gene expression data and corresponding clinical outcome from additional patients will 

be required to fully characterise miR-21 and the gene signature for complete remission 

in order to fully elucidate their clinical impact. 

  



178 
 

CHAPTER 7 CONCLUSION 

ALL is one of the success stories of modern oncology with patients achieving high 

remission rates with current treatment protocols [34, 313]. However, the relapse rate 

for both children and adults remains high and the outcome for those patients is often 

very poor [314]. The dose limiting toxicities of current therapies make further 

intensification impractical and therefore new agents are required in order to further 

increase patient survival. The mTOR pathway offers an attractive target for novel 

therapies as it is hyper-activated in many cancers, including ALL [67, 85, 315], and its 

inhibition is efficacious in prolonging survival in pre-clinical models of ALL [65, 125, 

128, 129, 316]. This efficacy has led to the use of everolimus in several clinical trials 

in many different cancers, including ALL [133]. It has been demonstrated in this thesis 

that prolonged exposure to the mTOR inhibitor everolimus in vivo can result in the 

development of resistance, with two of three patient derived ALL xenografts displaying 

resistance. The mechanism by which these cells have developed resistance needs to 

be characterised and overcome to maximize the clinical application of these agents. 

ALL is a clonal disease [190, 191] and resistance is thought to occur through the 

selection of pre-existing resistant clones that have been exposed to prolonged 

treatment or through the selection of a clone that has acquired a resistance-conferring 

trait [192-194]. Several mechanisms by which these clones become resistant to mTOR 

inhibitors have been proposed, including mutations that reduce the binding capability 

of the compound and the dysregulation of the expression and/or activity of several 

proteins up and downstream of mTOR [62, 168, 186, 317]. However, we could not 

identify, with significant certainty, any mutations solely present within resistant cells. 

Therefore, it is possible that resistance to everolimus arises due to the aberrant 

expression or activity of genes or proteins.  
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The two everolimus resistant xenografts analysed in this study did not appear to share 

a common resistance phenotype, with the expression of genes and proteins being 

quite dissimilar. Despite this limited overlap, pathways involved in cellular adhesion 

were a common feature in both of the everolimus resistant xenografts. Adhesion to the 

microenvironment provides survival signals that are important for the growth and 

survival of ALL cells both in vitro and in vivo [104, 107]. Moreover, increased adhesion 

has been implicated in the development of resistance to chemotherapeutic 

compounds [170-172, 176]. Adhesion of ALL cells to the bone marrow 

microenvironment is highly complex and not fully understood, but interruption of this 

interaction enhances the efficacy of some therapeutic compounds [175, 201]. Although 

pathways involved in the regulation of cellular adhesion were repeatedly found to be 

upregulated in resistant xenografts, the surface factors involved remain elusive. 

The difference in survival rates of mice engrafted with the two resistant xenografts and 

the cell cycle distribution of the resistant cells further exemplified the dissimilar 

mechanisms by which resistance developed in these cells. Interestingly, there was 

also discordance amongst the cell cycle profiles of the xenografts between the various 

tissues analysed. Tissue specific microenvironments, such as those offered by the 

spleen and bone marrow, likely express different factors and hence provide distinct 

interactions with ALL cells resulting in different effects on the behaviour of ALL cells 

[279, 318-320]. Normal hematopoiesis can occur in the spleen under certain 

circumstances and ALL cells accumulate in this tissue [25, 128, 278]. Analysis of gene 

and protein expression involved in the development of resistance was performed using 

leukaemic cells isolated from the spleens of sacrificed animals. If interactions between 

different microenvironments can have different effects on the behaviour of ALL cells, 

comparing the gene and protein expression from a single tissue, as done in this thesis, 
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may not fully characterise the mechanism by which these cells have developed 

resistance to everolimus. Comparing the expression of genes and proteins from cells 

isolated from the spleen to others tissues known to support ALL cells such as the liver 

and bone marrow may further the understanding of how ALL cells behave within 

various tissue specific microenvironments. Yet, technical challenges limit the use of 

shotgun based sequencing methods for transcriptome and proteome analysis on some 

tissues. Mass spectrometry based proteomics requires large amounts of input protein 

to identify proteins with statistical certainty. In addition, isolating enough cells from 

tissues such as the blood and liver to identify possible mechanisms of resistance with 

statistical confidence may not be feasible. The microenvironment within the bone 

marrow is fairly well characterised, however, it is far from being fully understood, 

whereas the splenic microenvironment, remains poorly characterised. These 

microenvironments provided by the various tissues play a major role in the 

development of resistance to everolimus and additional investigation is required if 

resistance to everolimus is to be fully understood.  

The major limitation of this study is the limited number samples used to characterise 

resistance to everolimus in both the murine model of ALL as well as human subjects. 

Assessing additional ALL xenografts for their capability to develop resistance to 

everolimus and the characterisation those cells may allow this complex puzzle to be 

unravelled. We were unable to correlate the findings from the murine model of ALL 

with human patients. The resistance that developed in ALL xenografts was established 

through the long-term treatment of the animals with everolimus. However, due to the 

clinical trial protocol and abscence of viable cells from trial patients, we have only 

analysed the effects of short-term treatment with everolimus. Moreover, many samples 

sent were not analysed due to degradation of the samples during shipment. Increasing 



181 
 

the number of patients analysed would increase the statistical confidence of the 

findings. Furthermore, it is possible that long-term follow up of patients with prolonged 

exposure to everolimus may reveal whether resistance to everolimus will develop in 

these patients. 

A new generation of inhibitors of the kinase region of mTOR offer additional benefits 

over allosteric mTOR inhibitors such as everolimus, and these are gaining increased 

attention for clinical use. As they inhibit the kinase region, both mTOR complexes are 

inhibited, thus eliminating the activation of the negative feedback loop onto Akt. 

However, resistance to these inhibitors is also beginning to emerge [118, 321]. 

Increased understanding of the development of resistance to everolimus may also 

provide insights into the development of resistance to other allosteric inhibiors on 

mTOR as well as the newer generation of mTOR kinase domain inhbitors. Further 

work involving additional everolimus resistant ALL xenografts is required to fully 

understand how resistance to mTOR inhibition develops in these cells. Only then can 

effective countermeasures be developed that can be translate into the clinic to improve 

patient outcome. 
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APPENDIX 

Table A.1 Genes up-regulated 2-fold or greater in 1345-R by transcriptome 

 

MLLT4 53.97 

ITGA6 45.62 

CR1 44.91 

H1F0 35.49 

LOC100130992 28.62 

JMJD7-PLA2G4B 27.94 

RAI14 27.50 

FOSB 25.69 

ANKRD6 21.15 

ITGA8 20.00 

NNAT 18.99 

NOS1 17.82 

STON1-GTF2A1L 17.81 

EGR2 17.69 

NR4A1 17.11 

FOS 17.10 

TTC28 16.41 

AFF2 15.53 

PTGDR 15.14 

LOC100132215 13.92 

CABLES1 13.68 

CNR1 13.55 

CHPF 12.89 

KCNMB2 12.52 

SDK2 12.31 

LITAF 11.75 

PCDH18 11.29 

TSC22D3 11.05 

MPP7 10.99 

EGR1 10.71 

POU3F3 10.54 

PPIL6 10.27 

LOC100507433 10.19 

IL1B 10.12 

CTNNA1 10.04 

IGSF9 9.94 

ACTR3C 9.76 

SPAG6 9.70 

ARHGAP29 9.58 

SMN1 9.42 

SMN1 9.42 

LOC63930 9.26 

PARVG 8.94 

MYLK 8.87 

CSF1 8.87 

LRRN2 8.86 

GRASP 8.54 

DYSF 8.47 

SNED1 8.32 

IL18BP 8.28 

VGF 8.12 

RAVER2 8.10 

NSUN7 8.07 

BCL2A1 8.06 

DPEP1 7.85 

DNAJA4 7.78 

SPRY4 7.63 

JUN 7.59 

TRIM74 7.58 

NEK6 7.53 

FLT1 7.46 

SEMA4C 7.40 

TRIB3 7.39 

SORBS2 7.22 

SLC16A3 7.12 

ZNF154 7.11 

PYROXD2 6.80 

SORBS3 6.67 

ODZ1 6.62 

RASD1 6.45 

ZNF626 6.44 

GZMA 6.39 

DGCR9 6.38 

38596 6.37 

RHOB 6.02 

CACNA2D2 5.99 

LRRC38 5.99 

CD69 5.82 

NR4A2 5.66 

RGS16 5.61 
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ZIC2 5.58 

OPTN 5.44 

EHD3 5.36 

LOC100507140 5.23 

C11orf75 5.23 

MDK 5.22 

PRKCQ 5.20 

TNFSF12 5.15 

C11orf92 5.11 

LOC100507254 5.08 

IL24 4.94 

SPRY1 4.92 

CDC42EP4 4.91 

HAPLN3 4.88 

NRN1 4.86 

ADAMTS18 4.85 

GUSBP9 4.81 

GUSBP9 4.81 

CSRNP1 4.81 

TPBG 4.80 

HIST1H2BC 4.78 

FAM134B 4.78 

GOLGA7B 4.75 

KLF6 4.74 

RAB15 4.68 

NEIL1 4.67 

C9orf47 4.63 

LTK 4.57 

PTK2 4.56 

NKPD1 4.53 

HMX2 4.47 

C15orf52 4.44 

FBXO39 4.39 

HAR1B 4.39 

AHRR 4.38 

CAPN3 4.36 

PHOX2B 4.35 

CYS1 4.35 

PNPLA7 4.35 

TCP11L2 4.34 

HIST2H2BF 4.29 

PCDHGC3 4.27 

HAR1A 4.20 

C1orf187 4.19 

BTG2 4.17 

KLF2 4.17 

C11orf66 4.14 

MUC20 4.13 

CTGF 4.07 

PALLD 4.05 

PPP1R15A 4.00 

SMAD3 3.98 

C5orf62 3.97 

ATF5 3.97 

SERPINB9 3.97 

SH3TC1 3.96 

ESM1 3.96 

39692 3.92 

FLJ39639 3.91 

PANX2 3.91 

HLX 3.89 

PTPRN2 3.88 

HTR3A 3.85 

BMPR2 3.83 

IL8 3.80 

TMEM99 3.77 

HIST1H2AK 3.75 

ISG20 3.75 

GPR114 3.73 

OBSCN 3.71 

LOC100130451 3.70 

HIST1H2AC 3.70 

PTGER4 3.68 

RAB37 3.63 

AIM1L 3.56 

MTUS2 3.55 

FLJ36644 3.55 

ISM1 3.55 

HLA-DQB1 3.54 

LOC653160 3.53 

ZNF704 3.51 

FAIM3 3.50 

TREML2 3.50 

LOC100506585 3.49 

LOC541473 3.48 

MORN1 3.46 

NDRG1 3.46 

KLKB1 3.45 

KBTBD11 3.43 

CDKN1C 3.43 

AOX2P 3.40 

CRYM 3.40 

CYP21A2 3.38 

LGR6 3.37 

LOC284749 3.36 

SPTLC3 3.34 
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FCGRT 3.34 

RNF224 3.34 

AMIGO1 3.31 

LSP1 3.30 

CELF6 3.30 

CBLN3 3.28 

NCRNA00114 3.28 

CNR2 3.28 

FAM57B 3.28 

C11orf93 3.26 

KIAA1683 3.26 

SCARF1 3.26 

HCG26 3.25 

ZYX 3.25 

MGAT5B 3.24 

IDUA 3.24 

PTPRF 3.23 

PREX1 3.23 

FAM110C 3.22 

C19orf18 3.22 

FBN1 3.21 

BLOC1S1-RDH5 3.20 

NCRNA00304 3.19 

BAI2 3.19 

LOC100130093 3.19 

GPA33 3.18 

MYO15B 3.15 

BAGE3 3.15 

GPR56 3.15 

FBXO44 3.15 

SPNS3 3.13 

RIMS3 3.12 

PLEK 3.12 

C3orf47 3.12 

LYZ 3.12 

MVP 3.12 

HIST1H2BJ 3.11 

CD226 3.10 

PATL2 3.10 

DNTT 3.10 

FLJ46906 3.08 

COL18A1 3.08 

C11orf21 3.08 

PARP3 3.07 

ZNF853 3.07 

FLJ20021 3.07 

PLGLB2 3.07 

PLGLB2 3.07 

CBX7 3.06 

SH3BP5 3.05 

GPR150 3.04 

FLJ22536 3.04 

LGALS3 3.04 

LOC100129034 3.04 

PNRC1 3.03 

CYP2E1 3.03 

PCDHGA5 3.02 

TAS2R4 3.01 

RGS1 3.01 

CBWD3 3.01 

RSAD2 3.00 

MYO7B 3.00 

ABTB1 3.00 

PYY2 2.99 

IER2 2.95 

PIP5KL1 2.95 

DEFA3 2.94 

HIST2H4A 2.93 

HIST2H4A 2.93 

HLA-DQA2 2.93 

BCL3 2.93 

HIST2H2BE 2.92 

PLEKHG1 2.92 

FAT1 2.92 

C9orf173 2.92 

DENND3 2.91 

ZFP36 2.90 

APOBEC3B 2.90 

DUSP2 2.90 

SMTNL1 2.89 

REM2 2.88 

ATHL1 2.87 

PPP1R16B 2.86 

HIST1H3B 2.85 

TMEM136 2.85 

ZFP36L1 2.85 

HIST1H1D 2.84 

HRH2 2.82 

FLJ45244 2.82 

HIST1H2BG 2.82 

ZMAT1 2.81 

TPM2 2.81 

YPEL5 2.81 

C17orf109 2.80 

PLXNC1 2.78 

SDC2 2.78 
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FRMPD1 2.77 

WBP2NL 2.76 

SH3BP2 2.76 

TP53INP1 2.76 

LOC100289511 2.76 

LTF 2.76 

CARD11 2.73 

CCDC136 2.73 

IL3RA 2.72 

IL3RA 2.72 

ATP6V1C2 2.72 

EXD3 2.72 

LOC100289187 2.72 

SLC45A4 2.71 

LOC100131234 2.69 

RALB 2.68 

CCDC121 2.68 

C17orf103 2.67 

CCDC122 2.67 

LOC100270804 2.67 

LOC100129387 2.66 

PGCP 2.66 

LOC100129722 2.66 

YPEL3 2.66 

NKG7 2.65 

C10orf57 2.65 

TCL1B 2.65 

PCDHGB6 2.65 

IGSF3 2.65 

NAV1 2.65 

DEFA1 2.65 

DEFA1 2.65 

DEFA1B 2.65 

APOLD1 2.65 

S100A8 2.65 

BTNL9 2.65 

C21orf96 2.65 

FFAR1 2.65 

PTP4A3 2.64 

MAPK8IP2 2.64 

CALCOCO1 2.64 

GAPDHS 2.64 

LAPTM4B 2.64 

TSSK3 2.63 

RRBP1 2.62 

CD82 2.62 

LOC644554 2.62 

LAX1 2.62 

ETV5 2.61 

GSN 2.60 

LOC100506713 2.60 

LOC100505783 2.60 

GATS 2.60 

SKI 2.60 

S100A12 2.60 

LOC400960 2.60 

LOC100130357 2.58 

GTF2IRD2 2.58 

SLC37A1 2.58 

ETV4 2.57 

ANK1 2.57 

MXRA8 2.56 

LOC282997 2.55 

HLA-F 2.54 

GPR3 2.54 

BMF 2.53 

CDH24 2.53 

C1QL1 2.52 

NCRNA00086 2.52 

SIRT2 2.52 

DNAJB2 2.51 

C17orf108 2.51 

SCARNA9 2.51 

HCG27 2.51 

ZNF177 2.50 

HVCN1 2.50 

ALOX5AP 2.50 

COMMD3-BMI1 2.50 

RUNDC2C 2.50 

JUND 2.49 

PCDHGA6 2.49 

TPST1 2.49 

PDLIM2 2.49 

AK1 2.48 

C5orf45 2.48 

NAV2 2.48 

CBFA2T3 2.47 

LOC100131691 2.47 

PCDHGB2 2.47 

LOXL2 2.47 

GTF2IRD2P1 2.47 

APITD1-CORT 2.47 

LBH 2.47 

HIST1H3D 2.46 

SVIL 2.46 

HLA-H 2.45 
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HLA-DMB 2.45 

NFKBIZ 2.45 

PPAP2A 2.44 

EFCAB4A 2.44 

PCDH9 2.44 

CHAC1 2.43 

TMEM234 2.43 

PLIN4 2.42 

HLA-DQA1 2.42 

LOC254100 2.42 

ZNF528 2.42 

SLC22A18 2.41 

LHFPL2 2.41 

SAP25 2.41 

VN1R1 2.40 

CATSPER3 2.40 

FLJ10038 2.39 

KRTAP5-9 2.39 

GTF2IRD2B 2.39 

CXCL16 2.39 

SIK1 2.39 

CASKIN2 2.39 

C1orf220 2.38 

LPAR6 2.37 

ABCG1 2.37 

NCRNA00163 2.37 

CD200 2.37 

PCDHGA7 2.36 

LSR 2.36 

C21orf122 2.36 

GYLTL1B 2.36 

LOC100188949 2.36 

LOC100131096 2.36 

FSCN2 2.36 

LAIR1 2.35 

HERC2P4 2.35 

LOC100131564 2.35 

AKAP2 2.35 

LOC100131089 2.35 

HCP5 2.35 

RHBDL1 2.34 

MAST4 2.34 

PBXIP1 2.34 

ZCWPW1 2.34 

POPDC2 2.33 

LOC100506826 2.32 

PDE1B 2.32 

QSOX2 2.32 

PLEC 2.32 

PROX1 2.32 

LOC100499489 2.32 

MTSS1L 2.31 

FAM46C 2.31 

CD27 2.31 

TMEM44 2.30 

LRRC37A3 2.30 

LOC643770 2.29 

TM6SF1 2.29 

ARSD 2.29 

QRICH2 2.29 

LOC645431 2.28 

NCRNA00321 2.28 

CIITA 2.28 

GAS2L3 2.28 

TAS1R3 2.28 

FMO5 2.28 

RGL4 2.28 

SH2D4B 2.27 

LOC284454 2.27 

ABCA1 2.27 

P2RX1 2.27 

KLF8 2.27 

GPT 2.27 

C14orf28 2.26 

CAPS 2.26 

EBLN2 2.26 

RGS2 2.26 

B3GNT9 2.26 

GZMK 2.26 

TEX21P 2.26 

LY6G5C 2.25 

GLT1D1 2.25 

CROCCP3 2.25 

C1orf228 2.25 

MMP11 2.25 

FCRLA 2.25 

AMY2B 2.24 

SNX24 2.24 

KDM5B 2.23 

B3GALTL 2.23 

ZMYND10 2.23 

TK2 2.23 

SPRY2 2.23 

NFATC4 2.23 

CACNB4 2.23 

ABCA2 2.22 
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NCF1C 2.22 

LOC728739 2.22 

LOC100129726 2.21 

ADAP1 2.21 

LOC100216545 2.21 

LOC338799 2.21 

SPP1 2.21 

RPS10P7 2.21 

RPL21P28 2.21 

LAPTM5 2.21 

LTB 2.21 

HIST1H2BN 2.20 

LOC100128288 2.20 

ACTN1 2.20 

LILRB2 2.19 

LOC146880 2.19 

WDR78 2.19 

RDX 2.19 

FLJ40852 2.19 

FAM19A1 2.19 

GPR52 2.19 

HLA-DOA 2.18 

YJEFN3 2.18 

LOC100101266 2.18 

PLAGL1 2.17 

HCFC1R1 2.17 

DNAJC2 2.17 

HLA-DPB1 2.17 

LOC728724 2.17 

ZBTB46 2.17 

FAM167A 2.17 

KRBA2 2.17 

CHKB-CPT1B 2.16 

HIST1H2BK 2.16 

PIK3R5 2.16 

TLE3 2.16 

LAMA3 2.15 

SLC23A1 2.15 

C5orf41 2.15 

LOC100129917 2.15 

RNF215 2.15 

ADAM8 2.14 

C21orf15 2.14 

CPT1B 2.14 

HIST1H3H 2.14 

PRKCB 2.14 

C8orf84 2.14 

FAM167B 2.13 

ARL4C 2.13 

JUNB 2.13 

MYLIP 2.13 

ATF3 2.13 

GJA9-MYCBP 2.13 

LOC389634 2.13 

OPRL1 2.13 

LOC728175 2.12 

DNAJC1 2.12 

C1RL 2.12 

HLA-E 2.12 

TNFRSF14 2.12 

PCDHGB3 2.12 

BTG1 2.12 

TXK 2.12 

ST3GAL1 2.12 

AACS 2.12 

B3GALT4 2.12 

LOC100507557 2.11 

ARSA 2.11 

HIST2H2BC 2.11 

MACROD2 2.10 

ABR 2.10 

LILRA2 2.09 

SCARF2 2.09 

MMP25 2.09 

IGLL5 2.09 

NFATC2 2.09 

IGF1R 2.09 

DTX1 2.09 

HSD17B11 2.08 

PTPRJ 2.08 

ARL4A 2.08 

SEC31B 2.08 

HEATR7A 2.08 

LOC100507331 2.08 

CD72 2.07 

YPEL2 2.07 

DUSP1 2.07 

NFIL3 2.07 

IL11RA 2.07 

FLJ45983 2.07 

SLC31A2 2.07 

FAM180B 2.06 

LHPP 2.06 

HOOK2 2.06 

ZNF671 2.06 

HLA-F-AS1 2.06 
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ZNF862 2.06 

GPR35 2.06 

ZMYND11 2.06 

LOC202181 2.06 

CD74 2.06 

CMTM8 2.05 

CA5B 2.05 

CD160 2.05 

LOC100129148 2.05 

PCSK4 2.05 

LOC283624 2.04 

SUPT7L 2.04 

LOC154822 2.04 

HIST1H2BD 2.04 

ANKRD36BP2 2.03 

NBEA 2.03 

TRAF1 2.03 

MTMR9LP 2.03 

C20orf165 2.03 

FAM84B 2.03 

ITM2A 2.03 

STARD5 2.02 

CNNM4 2.02 

NCRNA00115 2.01 

MASP2 2.01 

LOC100131655 2.01 

CD22 2.01 

ACP2 2.01 

PDE3B 2.01 

C6orf164 2.01 

CLSTN3 2.00 
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Table A.2 Genes down-regulated 2-fold or greater in 1345-R by transcriptome 

 

ADAM23 176.58 

LRRC26 79.74 

PHOSPHO2-
KLHL23 

31.90 

SNHG5 23.69 

SNHG4 17.34 

RNF130 13.86 

MOCS2 13.19 

HSD17B8 12.90 

SHOX2 12.89 

SPG20 12.04 

LOC100133957 11.91 

C16orf5 11.58 

RNF144B 11.52 

ODF2L 11.03 

GUSBP2 10.86 

FERMT1 10.62 

GUSBP4 10.33 

ZNF540 10.32 

DDN 9.65 

PHLDA3 9.49 

CXorf57 8.81 

APOBEC3H 8.25 

SEC61G 7.87 

SOX11 7.57 

SKAP1 7.57 

LIMA1 7.42 

METTL7B 7.33 

BEST3 7.13 

CDKN1A 7.13 

ZSCAN18 7.12 

MCAM 7.05 

CD163L1 6.69 

TTC8 6.58 

ALOX5 6.52 

PRR4 6.51 

RPF2 6.49 

C6orf108 6.31 

C20orf160 6.29 

VDR 6.19 

FAM169A 6.00 

PRPF40B 5.76 

TP63 5.64 

BCKDHB 5.51 

SAMHD1 5.36 

KRT10 5.33 

ITGB7 5.28 

VCL 5.24 

LOC344595 5.23 

ASB14 5.21 

MTHFD1L 5.10 

ZNF565 5.04 

TMEM237 4.99 

NOL7 4.96 

LY6E 4.96 

MACC1 4.89 

KRTCAP3 4.89 

OXCT2 4.83 

C6orf125 4.71 

IGJ 4.69 

TUBB4 4.65 

BBS9 4.64 

CENPV 4.63 

DPCD 4.51 

KBTBD8 4.49 

VARS 4.48 

DHRS3 4.46 

SCO2 4.42 

RAB34 4.41 

SKAP2 4.35 

MUTED 4.35 

RPS18 4.33 

PLIN2 4.24 

RARS2 4.17 

PFKM 4.13 

FAM164A 4.11 

IFI30 4.04 

CSNK2B 4.03 

SLC25A23 3.97 

FAH 3.93 

APOM 3.91 

FDXR 3.89 

IKZF4 3.88 

DDX43 3.88 

THOC6 3.84 
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PAK1IP1 3.81 

RPA3 3.81 

COX7A2 3.80 

MYO1F 3.78 

DCBLD2 3.76 

STK33 3.75 

PRIM2 3.73 

GCAT 3.68 

C4orf32 3.66 

PRPS1L1 3.63 

GDAP1 3.60 

CRYZ 3.58 

ACAT2 3.56 

ECI2 3.55 

CD96 3.55 

SLC29A1 3.55 

POLR1C 3.55 

KDELC1 3.54 

PTRH1 3.53 

GMDS 3.52 

DAZL 3.51 

PYCR1 3.50 

GNGT2 3.50 

STOM 3.49 

WDR46 3.49 

SBF2 3.48 

DHX32 3.47 

CKMT2 3.46 

PHPT1 3.45 

FAM162A 3.45 

TNFRSF21 3.44 

EDA2R 3.42 

KLHL14 3.41 

PI4K2A 3.40 

STAP1 3.39 

NDUFA4 3.38 

GPR176 3.38 

C14orf132 3.37 

RPS27L 3.36 

TLN2 3.35 

OSBPL1A 3.32 

PEX7 3.31 

ORC3 3.29 

ACTA2 3.29 

GARS 3.29 

HAAO 3.29 

FKBP11 3.28 

C3orf39 3.28 

VARS2 3.28 

DGCR6 3.28 

ZNF571 3.27 

URGCP 3.26 

S100A11 3.26 

CCT6A 3.26 

PFDN6 3.26 

EIF3B 3.25 

BROX 3.24 

NME1 3.23 

THAP9 3.22 

MREG 3.21 

B3GNT5 3.21 

CYTIP 3.17 

MPEG1 3.16 

MRPS28 3.14 

NT5DC3 3.14 

NDUFAF2 3.10 

PMS2 3.10 

UAP1 3.09 

POLD2 3.08 

MAP1B 3.07 

MRPL2 3.07 

NTPCR 3.07 

GCLC 3.06 

DDX60 3.06 

FAS 3.05 

ZNF542 3.03 

PSMA2 3.02 

LOC100271831 3.02 

SESN1 3.02 

GUK1 3.01 

CD3EAP 3.00 

C3orf78 3.00 

SARS2 2.99 

RPAP3 2.98 

OGDH 2.98 

HRSP12 2.96 

MINA 2.96 

UBE2CBP 2.94 

CSRP2 2.94 

HERC5 2.92 

DCXR 2.91 

RASA4P 2.91 

WBP5 2.91 

ABCF1 2.91 

CCDC74A 2.91 

C9orf64 2.91 
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TRIM58 2.90 

CENPW 2.88 

HSP90AB1 2.88 

MYL4 2.88 

FOSL1 2.87 

ARHGAP18 2.87 

FH 2.87 

NUDT1 2.85 

LACE1 2.85 

RPL26L1 2.84 

NOP16 2.84 

PSMB1 2.84 

TMEM14A 2.83 

MRPS18B 2.82 

BZW2 2.82 

XPO5 2.80 

ALDH1B1 2.80 

PMPCB 2.80 

LRFN3 2.78 

C3orf26 2.77 

MT2A 2.76 

TCP1 2.76 

PACSIN3 2.75 

NQO1 2.75 

NPL 2.75 

BOLA3 2.75 

C7orf44 2.74 

CCDC167 2.74 

METTL1 2.74 

VWCE 2.73 

EFNB1 2.73 

GMNN 2.73 

LOC649330 2.73 

ZNF670 2.73 

MT1X 2.72 

ADCY9 2.72 

MVK 2.70 

LYSMD1 2.70 

OXER1 2.68 

KLHL3 2.68 

POLR3G 2.68 

CNIH4 2.68 

MLKL 2.67 

SCAMP5 2.67 

TOE1 2.66 

TOMM7 2.66 

RIOK1 2.66 

REC8 2.66 

PUS7 2.66 

NPM3 2.66 

KIAA0664 2.65 

FAM26F 2.65 

RPP40 2.63 

ADAM15 2.63 

C6orf192 2.63 

LOC92659 2.62 

MRPL55 2.61 

TRMT11 2.61 

GALE 2.60 

ARL6 2.60 

HEATR1 2.60 

BBC3 2.60 

CUTA 2.59 

CLCN5 2.59 

SH2D2A 2.58 

SCCPDH 2.58 

B3GNT7 2.58 

GPR126 2.58 

ENDOG 2.58 

POMT1 2.57 

TNNI3K 2.57 

GTF2H4 2.57 

DDX56 2.57 

RDBP 2.57 

HSPE1 2.56 

ELMO1 2.56 

C1QBP 2.56 

PTPRZ1 2.55 

ARF3 2.55 

TUBA1C 2.54 

LOC100286844 2.54 

COQ3 2.53 

HEATR2 2.53 

ABHD16A 2.53 

IPO4 2.53 

AIF1 2.52 

PALM2 2.52 

HSPD1 2.52 

B7H6 2.51 

C12orf41 2.51 

TMEM183B 2.51 

TTN 2.51 

RCAN1 2.50 

SNRPC 2.50 

HPDL 2.50 

CDKAL1 2.50 
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MAP4K4 2.50 

AS3MT 2.50 

TCTN2 2.50 

TTK 2.49 

BCL2L12 2.49 

SLC16A10 2.49 

PHF14 2.49 

CKB 2.48 

PYGL 2.47 

ZBTB7B 2.47 

SMARCD1 2.47 

MCM3 2.46 

PDF 2.46 

FARS2 2.46 

NLN 2.46 

ZNF239 2.46 

SENP1 2.46 

MCRS1 2.45 

PRKAR1B 2.45 

SLC35A4 2.45 

DYNC2LI1 2.45 

TSFM 2.44 

MSH5 2.44 

MRPL1 2.44 

PSMG1 2.44 

DDX21 2.44 

SLC39A4 2.43 

LSS 2.43 

NT5C3L 2.43 

C7orf30 2.43 

MAGI1 2.43 

HCN3 2.42 

DHCR7 2.42 

RWDD1 2.42 

ACAT1 2.42 

NUDT3 2.42 

AFAP1L1 2.41 

EIF3IP1 2.41 

C7orf50 2.41 

EPHX1 2.41 

HOMER1 2.41 

ARMC9 2.41 

TMEM106C 2.40 

TRAP1 2.40 

VPRBP 2.40 

FAM127A 2.40 

S100A4 2.40 

TUBA1B 2.39 

HSD17B6 2.39 

SLC40A1 2.38 

ADSS 2.38 

GPR65 2.38 

MRPL12 2.38 

MIF 2.38 

ITSN1 2.37 

PELO 2.37 

NT5DC1 2.36 

GBP1 2.36 

EIF1AD 2.36 

APITD1 2.36 

RRP36 2.35 

GLRX2 2.35 

MRPL4 2.35 

KAZN 2.35 

RANBP1 2.34 

CHCHD2 2.34 

EBNA1BP2 2.34 

ACOT7 2.34 

WDR18 2.33 

C6orf26 2.33 

C16orf59 2.33 

ZSCAN5A 2.33 

DOCK9 2.33 

PSMA3 2.33 

RPS12 2.32 

UBE2E3 2.32 

CLCN6 2.32 

PCYT2 2.32 

TFAP2C 2.31 

GSTP1 2.31 

CCDC58 2.30 

GADD45GIP1 2.30 

CCZ1 2.29 

PHF10 2.29 

C16orf88 2.29 

MEF2B 2.29 

LOC100287722 2.29 

PHB 2.29 

NELL1 2.29 

XRCC5 2.29 

AHCY 2.28 

EDARADD 2.28 

IQCK 2.28 

RRP12 2.28 

C15orf63 2.28 

GCSH 2.28 
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C7orf28B 2.28 

KLHL5 2.28 

TTLL12 2.27 

BLVRB 2.27 

IPO11 2.27 

MRPL39 2.27 

C12orf62 2.27 

SNORA40 2.27 

NDUFS5 2.27 

ZNF643 2.27 

ACN9 2.27 

FARSB 2.26 

CCDC86 2.26 

HSPBP1 2.26 

THG1L 2.26 

PLTP 2.26 

CCDC51 2.25 

HOPX 2.25 

ROR1 2.25 

SCFD2 2.25 

FAM54A 2.25 

NVL 2.25 

ASCC3 2.25 

L2HGDH 2.24 

CACNB2 2.24 

BYSL 2.23 

SMYD3 2.23 

UCHL5 2.23 

SRM 2.23 

GCHFR 2.23 

DIP2B 2.23 

ENO1 2.23 

MIPEP 2.22 

ZNRD1 2.22 

PARP1 2.22 

TRIP10 2.22 

UTP20 2.22 

MRPS7 2.22 

CLASP2 2.22 

WDR12 2.22 

FKBP5 2.21 

DDX39B 2.21 

DUSP15 2.21 

GTF3C6 2.21 

KCNN4 2.21 

EIF2B3 2.21 

MDN1 2.20 

SDF2L1 2.20 

NUP133 2.19 

DCTPP1 2.19 

GPN1 2.19 

C2orf47 2.19 

MAF 2.19 

NFS1 2.19 

ZNF43 2.18 

ABCB10 2.18 

ISOC2 2.18 

LCMT2 2.18 

PRKAG1 2.18 

MTFP1 2.18 

GEMIN5 2.17 

ASB8 2.17 

LYRM4 2.17 

AIMP2 2.17 

RAD51L3-RFFL 2.17 

TACO1 2.16 

RTEL1 2.16 

RPS2P32 2.16 

LTV1 2.16 

TOMM40 2.16 

CSE1L 2.16 

LDHA 2.16 

PDP2 2.16 

ALDOA 2.16 

DDX23 2.15 

GBP2 2.15 

GPI 2.14 

GCDH 2.14 

ORC1 2.14 

HK2 2.14 

BAG6 2.14 

MAP1A 2.13 

SNAPC2 2.13 

CYB5R4 2.13 

SKIV2L 2.13 

ATPAF1 2.13 

UGT3A2 2.13 

EEF1E1 2.13 

PSD3 2.13 

MRM1 2.13 

MRTO4 2.13 

L3MBTL3 2.12 

MRPL11 2.12 

NME2 2.12 

RFC4 2.12 

EARS2 2.12 
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TMCO7 2.12 

MRPS18A 2.12 

RCOR2 2.12 

NDUFAF4 2.11 

HMBS 2.11 

TBRG4 2.11 

HMGA1 2.11 

LGALS3BP 2.11 

ATP5G1 2.11 

TBXA2R 2.11 

SMAP1 2.11 

POLR2J4 2.10 

PAQR9 2.10 

GNL1 2.10 

NCL 2.10 

KHK 2.10 

KIAA0114 2.10 

RPS26 2.09 

PSMD1 2.09 

HDAC2 2.09 

MRPL27 2.09 

LARS2 2.09 

AKR1B1 2.09 

DHX57 2.09 

PARS2 2.09 

TTC23 2.08 

PPP2R1B 2.08 

PPIL1 2.08 

LOC344967 2.08 

C20orf27 2.08 

EIF5A 2.08 

ATF1 2.08 

DHX16 2.07 

FECH 2.07 

FBXW9 2.07 

SELRC1 2.07 

TBCE 2.07 

FABP5 2.06 

RABEPK 2.06 

DIAPH3 2.06 

SNRPF 2.06 

ACADSB 2.06 

NPW 2.06 

GRWD1 2.06 

RPL23AP82 2.06 

PGK1 2.05 

AKR7A2 2.05 

SIP1 2.05 

CISD1 2.05 

VPS41 2.05 

THNSL1 2.05 

PDCD2L 2.05 

RRP1B 2.04 

BDH1 2.04 

MRPL47 2.04 

C8orf59 2.04 

TALDO1 2.04 

SYNCRIP 2.04 

LOC388564 2.04 

GLO1 2.04 

MAPK13 2.04 

GGH 2.04 

KBTBD7 2.04 

CCDC124 2.03 

HYAL2 2.03 

RRP9 2.03 

HNRNPA2B1 2.03 

SLC38A2 2.03 

EHMT2 2.03 

GBAS 2.03 

HSPA9 2.03 

CHI3L2 2.03 

PPP1R14B 2.03 

TUBA1A 2.03 

PRELID1 2.03 

PMF1-BGLAP 2.03 

TUBB3 2.02 

PGAM4 2.02 

GNL3 2.02 

SF3A3 2.02 

BAG4 2.02 

PPA2 2.02 

MIS18A 2.02 

SPRYD7 2.02 

HSPH1 2.02 

PA2G4P4 2.02 

GAPT 2.01 

PSMD11 2.01 

CHCHD4 2.01 

RPS26P11 2.01 

HIST1H1B 2.01 

MTHFD1 2.01 

ALG14 2.01 

AGK 2.00 

TUBG2 2.00 

WDR3 2.00 



213 
 

RMND1 2.00 

PFAS 2.00 
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Table A.3 Metacore pathway maps in the transcriptome data 

Maps p-value FDR 

Transcription_Role of AP-1 in regulation of cellular metabolism 2.948E-07 2.287E-04 

Cytoskeleton remodeling_Cytoskeleton remodeling 4.952E-06 1.922E-03 

Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling 1.677E-05 4.337E-03 

Inhibition of neutrophil migration by proresolving lipid mediators in COPD 5.898E-05 1.144E-02 

Reproduction_GnRH signaling 8.004E-05 1.242E-02 

NETosis in SLE 1.465E-04 1.722E-02 

Cell adhesion_Integrin-mediated cell adhesion and migration 1.553E-04 1.722E-02 

Neurophysiological process_Corticoliberin signaling via CRHR1  2.219E-04 2.027E-02 

Immune response_ETV3 affect on CSF1-promoted macrophage differentiation 2.350E-04 2.027E-02 

Transcription_Role of VDR in regulation of genes involved in osteoporosis 2.845E-04 2.208E-02 

Immune response_HSP60 and HSP70/ TLR signaling pathway 4.282E-04 2.858E-02 

HBV signaling via protein kinases leading to HCC 4.458E-04 2.858E-02 

Immune response_MIF-induced cell adhesion, migration and angiogenesis 5.414E-04 2.858E-02 

Immune response_MIF - the neuroendocrine-macrophage connector 5.414E-04 2.858E-02 

Development_Keratinocyte differentiation 5.799E-04 2.858E-02 

Role of Endothelin-1 in inflammation and vasoconstriction in Sickle cell disease 6.569E-04 2.858E-02 

Development_Regulation of cytoskeleton proteins in oligodendrocyte differentiation 
and myelination 

7.735E-04 2.858E-02 

Stimulation of TGF-beta signaling in lung cancer 7.507E-04 2.858E-02 

Cell adhesion_Chemokines and adhesion 6.864E-04 2.858E-02 

Immune response_MIF-mediated glucocorticoid regulation 7.343E-04 2.858E-02 

LRRK2 and immune function in Parkinson's disease 7.343E-04 2.858E-02 

Immune response_C5a signaling 1.022E-03 3.604E-02 

CFTR folding and maturation (normal and CF) 1.211E-03 4.087E-02 

Signal transduction_Activin A signaling regulation 1.360E-03 4.399E-02 

Transcription_Transcription regulation of aminoacid metabolism 1.524E-03 4.549E-02 

Immune response_IL-1 signaling pathway 1.806E-03 5.190E-02 
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Glycolysis and gluconeogenesis (short map) 2.149E-03 5.380E-02 

Cytoskeleton remodeling_Neurofilaments 1.524E-03 4.549E-02 

Immune response_TNF-R2 signaling pathways 2.097E-03 5.380E-02 

Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier 
integrity 

2.097E-03 5.380E-02 

Cell adhesion_Cadherin-mediated cell adhesion 1.895E-03 5.251E-02 

Signal transduction_PTMs in IL-17-induced CIKS-independent signaling pathways 2.425E-03 5.881E-02 

Immune response_Oncostatin M signaling via MAPK in human cells 2.735E-03 6.241E-02 

Immune response_Antigen presentation by MHC class II 2.644E-03 6.218E-02 

dATP/dITP metabolism 3.913E-03 7.786E-02 

Immune response_IL-18 signaling 3.790E-03 7.739E-02 

Regulation of degradation of wtCFTR 3.132E-03 6.943E-02 

Immune response_IL-2 activation and signaling pathway 3.653E-03 7.739E-02 

Regulation of degradation of deltaF508-CFTR in CF 3.732E-03 7.739E-02 

Cell adhesion_Gap junctions 4.090E-03 7.935E-02 

Development_Oligodendrocyte differentiation from adult stem cells 4.706E-03 8.695E-02 

Chemotaxis_Inhibitory action of lipoxins on IL-8- and Leukotriene B4-induced 
neutrophil migration 

4.706E-03 8.695E-02 

Signal transduction_Activation of PKC via G-Protein coupled receptor 5.313E-03 9.371E-02 

Immune response_IL-3 activation and signaling pathway 4.852E-03 8.756E-02 

Nociception_Nociceptin receptor signaling 6.097E-03 1.007E-01 

Cell cycle_Role of Nek in cell cycle regulation 5.712E-03 9.637E-02 

Cell cycle_Start of DNA replication in early S phase 5.712E-03 9.637E-02 

Regulation of Tissue factor signaling in cancer 6.528E-03 1.055E-01 

Development_BMP signaling 6.679E-03 1.058E-01 

Glycolysis and gluconeogenesis p.3 7.220E-03 1.099E-01 
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 Table A.4 Genes regulated in common between resistant xenografts identified by 

microarray 

GENE 2055-S 2055-R 
2055-S 
eve 

2055-R eve 
1345-
S 

1345-R 
1345-S 
eve 

1345-R 
eve 

A2M 1.00 -2.21 1.45 -2.69 1.00 0.89 1.22 1.34 

AADACL4 1.00 -33.59 -3.88 -52.90 1.00 0.65 0.71 0.48 

ABCD4 1.00 1.31 0.68 1.48 1.00 -2.41 -2.36 -1.59 

ADAM33 1.00 0.77 0.87 0.69 1.00 -5.38 -8.80 -5.47 

ADAP1 1.00 -3.94 0.00 -3.87 1.00 0.35 1.84 0.80 

AGXT2L1 1.00 -3.69 1.21 -1.81 1.00 0.17 0.77 1.01 

ALDH1A1 1.00 -94.44 2.36 -93.51 1.00 -0.28 1.28 -0.37 

ALDH3B1 1.00 -26.45 0.63 -25.03 1.00 1.66 3.50 2.30 

ANKRD55 1.00 -4.87 0.98 -4.77 1.00 0.75 0.66 0.72 

ANTXR2 1.00 -18.12 1.67 -25.20 1.00 1.51 1.07 1.38 

ARHGAP22 1.00 -7.22 0.63 -3.15 1.00 1.74 5.21 3.03 

ARHGEF17 1.00 -28.62 1.56 -44.93 1.00 -52.44 -50.12 66.27 

ARHGEF3 1.00 -21.48 -0.17 -23.53 1.00 0.46 0.56 0.76 

ARHGEF5 1.00 -7.72 1.16 -7.80 1.00 1.12 0.99 0.91 

ARHGEF5L 1.00 -584.54 -2.88 -593.93 1.00 -0.63 2.17 -1.04 

ATP10D 1.00 -0.62 0.23 -0.38 1.00 -6.38 -19.33 -13.36 

B3GALTL 1.00 9.34 0.24 6.48 1.00 -3.53 1.13 -6.32 

BATF 1.00 -4.59 1.56 -4.34 1.00 2.16 2.09 1.83 

BGN 1.00 -3.46 0.43 -3.87 1.00 1.59 19.67 32.80 

BRSK1 1.00 2.81 0.69 3.73 1.00 -30.68 -16.99 -34.05 

C18ORF51 1.00 -443.44 -0.48 -341.19 1.00 0.56 0.37 0.20 

C1ORF115 1.00 -166.45 1.45 -169.25 1.00 0.77 1.70 1.77 

C1QTNF3 1.00 1.14 0.80 1.19 1.00 -3.20 -2.46 -3.71 

C20ORF197 1.00 -5.65 -0.54 -28.21 1.00 0.68 -0.46 -0.01 

C2ORF55 1.00 -25.98 2.02 -41.62 1.00 0.48 1.07 0.44 
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C5ORF42 1.00 1.96 0.47 2.44 1.00 -16.36 -22.03 -37.83 

C6ORF59 1.00 -3.32 0.20 -3.58 1.00 0.58 2.27 1.28 

CA8 1.00 -3.00 0.77 -2.76 1.00 1.00 1.35 1.18 

CAP2 1.00 -13.82 0.42 -29.42 1.00 0.98 1.64 3.35 

CARD6 1.00 2.56 1.07 1.65 1.00 -6.50 0.54 -1.87 

CCDC71 1.00 0.54 0.34 0.69 1.00 -3.43 -4.46 -5.65 

CCDC89 1.00 12.35 1.30 13.89 1.00 -2.80 6.93 -1.55 

CCND1 1.00 -17.12 1.19 -18.20 1.00 -0.08 -0.34 -1.02 

CCND2 1.00 -116.76 1.30 -126.27 1.00 -0.51 -1.08 -0.86 

CD1C 1.00 -30.50 4.91 -48.42 1.00 -1.27 -0.62 0.30 

CD244 1.00 2.80 0.61 3.34 1.00 -9.76 -3.40 -2.24 

CD247 1.00 -49.55 -2.06 -38.59 1.00 4.88 -0.62 2.47 

CD300A 1.00 -7.22 0.57 -10.71 1.00 1.48 1.69 1.75 

CD300LF 1.00 -12.80 7.26 -16.98 1.00 1.61 0.48 2.62 

CD3D 1.00 -27.86 1.04 -35.60 1.00 1.25 0.52 0.66 

CD93 1.00 -2980.36 2.17 -3502.35 1.00 0.53 1.85 1.49 

CEACAM1 1.00 -149.60 0.24 -206.94 1.00 2.59 0.92 0.38 

CEACAM6 1.00 -13.44 2.96 -11.71 1.00 1.75 1.25 0.46 

CENTG2 1.00 -147.41 0.11 -149.02 1.00 -4.05 1.28 -1.75 

CGNL1 1.00 -28.41 0.89 -32.55 1.00 0.87 1.21 0.78 

CITED4 1.00 -35.30 1.12 -38.72 1.00 0.20 -0.55 -0.42 

CPVL 1.00 -13.79 1.43 -13.45 1.00 0.60 0.68 1.43 

CSGALNACT1 1.00 -14.97 1.59 -26.23 1.00 0.66 1.36 0.77 

CTDSPL 1.00 -23.06 0.99 -21.05 1.00 2.71 4.08 4.25 

CXCR3 1.00 -4204.87 26.07 -3707.50 1.00 1.54 0.81 -0.07 

CYTSB 1.00 -9.55 0.92 -10.18 1.00 0.08 -0.05 1.31 

DEFA5 1.00 0.83 0.80 0.65 1.00 -34.48 -408.27 -177.86 

DHDH 1.00 -123.35 4.56 -177.95 1.00 1.78 2.70 4.72 

DNER 1.00 -7.06 1.02 -17.26 1.00 1.26 0.52 1.38 
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DUSP3 1.00 -30.83 1.07 -33.78 1.00 0.32 0.49 0.34 

ECM2 1.00 -5.95 0.71 -8.23 1.00 0.38 0.28 1.12 

EEPD1 1.00 -6.42 0.21 -7.44 1.00 0.15 1.91 1.73 

EFCAB2 1.00 2.25 0.76 2.75 1.00 -22.98 -3.37 -11.25 

EFNB1 1.00 -57.49 -1.06 -63.01 1.00 -1.08 -1.32 -1.00 

EMILIN1 1.00 -3.38 1.54 -3.15 1.00 1.51 2.01 1.64 

ENOSF1 1.00 -28.93 0.91 -20.49 1.00 0.77 0.83 0.98 

ERV3 1.00 3.13 0.81 3.21 1.00 -7.88 1.74 -6.53 

FAM46B 1.00 -86.71 7.38 -98.87 1.00 0.57 -15.41 -9.11 

FAM89A 1.00 -515.15 0.19 -599.81 1.00 -2.35 0.52 -2.77 

FAM90A1 1.00 -3.80 0.54 -4.10 1.00 0.43 1.22 0.92 

FGD5 1.00 -75.08 -7.35 -123.84 1.00 0.17 0.88 0.06 

FGD6 1.00 -3.34 0.50 -4.62 1.00 0.40 0.22 0.84 

FLJ11795 1.00 -4.40 0.78 -5.06 1.00 0.93 1.58 1.12 

FLJ23834 1.00 -35.94 1.11 -39.86 1.00 0.77 0.93 1.14 

FLJ35220 1.00 -0.14 0.38 0.08 1.00 -2.12 4.28 -0.20 

FLJ37228 1.00 0.57 0.66 0.34 1.00 -81.17 -54.76 -55.80 

FLJ41649 1.00 -19.70 -0.31 -17.94 1.00 1.87 0.23 0.22 

FLJ46020 1.00 -12.74 -1.71 -9.79 1.00 -1.05 -0.82 -2.29 

FSTL5 1.00 -82.94 1.67 -98.07 1.00 1.23 1.14 0.52 

GALNT11 1.00 -15.72 1.85 -10.97 1.00 0.91 1.12 0.86 

GANC 1.00 1.82 0.75 2.08 1.00 -4.45 -3.62 -8.63 

GBA3 1.00 -9.67 0.77 -8.34 1.00 1.03 1.04 1.24 

GDF9 1.00 1.63 1.16 1.93 1.00 -27.16 -21.93 -24.39 

GDPD5 1.00 -9.49 1.11 -7.99 1.00 0.73 0.72 0.69 

GIMAP6 1.00 13.15 1.42 16.19 1.00 -3.66 -1.11 -4.36 

GLIPR1 1.00 -81.45 6.67 -105.12 1.00 0.99 0.39 1.41 

GPR68 1.00 -37.60 0.46 -51.99 1.00 0.78 1.90 1.03 

GPRC5B 1.00 0.78 0.67 0.44 1.00 -18.75 -24.22 -20.31 



219 
 

GRAP2 1.00 -7.19 0.70 -8.56 1.00 1.48 1.14 1.79 

GUCY1B3 1.00 9.11 -0.24 9.58 1.00 -40.97 -67.02 -23.53 

HEY2 1.00 -25.84 2.62 -36.28 1.00 0.68 0.94 0.67 

HGF 1.00 -14.40 1.64 -17.91 1.00 0.57 0.45 0.12 

HPD 1.00 29.02 0.44 33.08 1.00 -428.73 -637.03 -308.04 

HS.151692 1.00 -21.46 -0.32 -13.15 1.00 14.77 9.40 19.82 

HS.155579 1.00 1.44 1.11 0.57 1.00 -5.31 -6.72 -5.48 

HS.175285 1.00 0.89 0.80 0.29 1.00 -6.27 -3.79 -4.75 

HS.18849 1.00 1.01 0.66 0.84 1.00 -9.33 -5.68 -0.90 

HS.189987 1.00 -5.78 1.19 -5.82 1.00 -0.29 1.22 -0.15 

HS.193557 1.00 -7.92 -0.64 -7.17 1.00 0.34 1.55 0.42 

HS.222909 1.00 -3.77 0.04 -4.94 1.00 0.39 -1.43 2.07 

HS.439578 1.00 -42.37 -11.85 -69.76 1.00 5.21 8.14 0.89 

HS.482960 1.00 -28.49 3.95 -29.32 1.00 0.57 0.96 0.44 

HS.536336 1.00 1.31 1.60 1.83 1.00 -8.33 -6.88 -13.15 

HS.564658 1.00 1.29 1.62 1.17 1.00 -4.78 -5.87 -2.81 

HS3ST1 1.00 -3.61 -0.30 -4.53 1.00 0.24 -0.35 -0.07 

HTR7 1.00 -8.03 1.53 -6.30 1.00 0.63 -1.03 0.24 

IFFO2 1.00 2.32 1.00 3.26 1.00 -10.59 -10.49 -3.04 

IL18R1 1.00 -10.22 1.29 -37.43 1.00 0.71 0.08 0.00 

IL18RAP 1.00 -9.14 0.85 -29.23 1.00 -0.54 0.12 -0.92 

IL1B 1.00 0.59 1.63 0.71 1.00 -4.14 1.66 -8.01 

INSL3 1.00 -11.91 5.01 -17.10 1.00 1.01 1.19 0.73 

IQSEC2 1.00 -6.10 0.40 -14.18 1.00 0.13 0.70 0.68 

IRGM 1.00 -8.97 1.30 -10.32 1.00 0.77 0.99 -0.46 

JPH1 1.00 -5.16 1.20 -2.20 1.00 1.23 0.45 1.22 

JPH3 1.00 -5.87 0.46 -6.80 1.00 5.37 17.69 7.60 

KANK3 1.00 -10.56 0.40 -12.82 1.00 -1.09 -0.20 -0.35 

KDM4D 1.00 1.35 0.83 1.56 1.00 -3.48 -7.41 -5.49 
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KDM6B 1.00 2.29 1.00 3.25 1.00 -3.10 6.35 3.21 

KIAA1199 1.00 -20.99 0.86 -21.92 1.00 1.14 1.06 1.34 

KIAA1324L 1.00 -16.25 1.40 -20.46 1.00 0.53 0.87 0.85 

KIAA1522 1.00 1.25 1.04 1.45 1.00 -3.58 -3.91 -6.07 

KIF17 1.00 -13.21 0.90 -13.36 1.00 0.45 1.14 0.78 

KIT 1.00 0.26 0.23 0.59 1.00 -2.38 -3.08 2.82 

KL 1.00 -17.35 2.71 -17.53 1.00 -6.97 -1.55 -7.63 

KLHL38 1.00 0.57 0.63 2.31 1.00 -44.81 -64.31 -37.86 

LARP6 1.00 -17.16 1.14 -17.76 1.00 0.38 1.07 0.62 

LGALS7B 1.00 -2.76 0.84 -3.07 1.00 0.63 0.45 0.56 

LOC100129354 1.00 -20.43 -2.39 -16.51 1.00 1.81 2.36 0.53 

LOC100129977 1.00 0.60 0.74 0.52 1.00 -44.45 -63.78 -33.72 

LOC100131250 1.00 1.50 0.61 1.24 1.00 -238.42 -287.95 -304.44 

LOC100132532 1.00 -13.40 0.85 -15.05 1.00 -2.04 -4.41 -4.56 

LOC100133214 1.00 0.52 0.22 0.64 1.00 -2.65 -4.10 -9.81 

LOC100134728 1.00 1.32 1.12 1.84 1.00 -2.48 0.39 -0.44 

LOC144481 1.00 -1161.86 25.16 -1398.41 1.00 2.78 -0.32 -0.63 

LOC154822 1.00 -23.28 1.79 -33.77 1.00 -0.32 0.80 -3.02 

LOC338829 1.00 0.57 0.66 0.94 1.00 -2.85 -0.67 -0.78 

LOC388820 1.00 0.92 1.57 1.24 1.00 -7.83 2.52 -0.27 

LOC389000 1.00 1.53 1.06 1.85 1.00 -2.67 -8.12 -4.20 

LOC389641 1.00 63.70 -5.83 46.01 1.00 -2.70 0.34 -2.08 

LOC391427 1.00 24.02 -6.39 40.48 1.00 -3.61 0.97 -2.47 

LOC440508 1.00 1.21 1.50 1.03 1.00 -8.49 -11.87 -9.27 

LOC54103 1.00 29.11 0.44 36.04 1.00 -2.68 1.90 -2.04 

LOC641744 1.00 -6.09 -0.82 -7.72 1.00 -1.74 0.73 -0.98 

LOC641926 1.00 1.10 0.48 0.86 1.00 -7.38 -2.36 -3.15 

LOC642083 1.00 3.29 0.35 3.22 1.00 -105.08 123.25 36.82 

LOC642833 1.00 0.47 0.43 0.81 1.00 -16.83 -7.62 -1.31 
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LOC643918 1.00 0.68 0.34 0.84 1.00 -2.83 -4.40 -3.05 

LOC644477 1.00 0.77 1.32 1.51 1.00 -9.67 -33.89 -145.72 

LOC646128 1.00 0.37 1.02 0.65 1.00 -8.09 -7.42 -8.05 

LOC646576 1.00 -18.79 0.13 -24.46 1.00 1.48 -4.79 0.49 

LOC646855 1.00 0.46 0.32 0.27 1.00 -4.23 -19.18 -4.42 

LOC647050 1.00 0.56 1.00 1.03 1.00 -2.81 -7.81 -10.77 

LOC647219 1.00 1.33 1.11 1.12 1.00 -31.57 -120.05 -81.75 

LOC648745 1.00 0.38 -0.44 1.17 1.00 -2.68 -1.49 1.24 

LOC648982 1.00 -26.96 -7.81 -41.12 1.00 1.24 0.82 1.08 

LOC650620 1.00 0.81 1.00 0.67 1.00 -4.16 -2.78 -3.63 

LOC728022 1.00 0.52 0.42 0.70 1.00 -8.54 -11.97 -7.56 

LOC728910 1.00 55.47 -1.76 87.08 1.00 -3.55 -2.23 0.03 

LOC729313 1.00 0.84 0.70 0.96 1.00 -4.40 -76.16 -49.14 

LOC729715 1.00 0.51 0.77 0.79 1.00 -3.57 -8.50 -21.41 

LOC729806 1.00 1.76 0.45 2.10 1.00 -8.46 -15.00 -5.35 

LOC730241 1.00 0.60 1.29 0.72 1.00 -2.62 -0.52 -0.85 

LOC730281 1.00 2.09 3.74 4.24 1.00 -4.61 -22.77 -15.28 

LOC730517 1.00 -107.16 -10.11 -177.90 1.00 0.18 0.73 0.13 

LOC732371 1.00 4.41 1.08 3.01 1.00 -5.09 -2.70 -0.30 

LOXL1 1.00 -7.42 0.64 -5.94 1.00 0.77 1.07 0.74 

LRP3 1.00 -6.05 1.11 -2.15 1.00 0.73 1.54 0.82 

LRRC3B 1.00 -3.79 -0.55 -4.30 1.00 -1.68 1.00 -0.63 

MAML2 1.00 -6.18 -1.10 -9.70 1.00 -0.34 0.12 0.98 

MAST4 1.00 -5.97 1.52 -5.89 1.00 1.96 0.38 1.16 

MEGF11 1.00 6.04 -0.98 2.42 1.00 -2.08 5.78 4.85 

MGC42367 1.00 -17.99 1.32 -30.86 1.00 1.04 1.08 0.70 

MKRN3 1.00 -12.12 0.60 -15.85 1.00 0.55 0.83 0.89 

MMP28 1.00 -39.04 0.66 -45.69 1.00 0.56 -0.12 -1.03 

MOCS3 1.00 0.21 0.46 0.06 1.00 -14.57 -16.12 -12.60 
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MOSC2 1.00 -21.27 2.02 -16.89 1.00 1.63 0.99 0.73 

MPO 1.00 -200.23 0.96 -219.46 1.00 -1.51 -0.16 0.09 

MST1R 1.00 -2.79 1.02 -3.54 1.00 0.78 1.07 0.84 

MYOF 1.00 -17.46 -0.45 -18.17 1.00 1.04 2.31 0.83 

MYOZ3 1.00 10.65 0.16 6.81 1.00 -2.71 -0.07 -0.81 

N4BP3 1.00 -0.22 0.54 -0.13 1.00 -2.24 12.56 3.93 

NBL1 1.00 -7654.19 -67.51 -6464.02 1.00 1.39 -1.10 0.10 

NCF1B 1.00 73.03 -3.99 109.06 1.00 -2.22 0.95 8.13 

NCRNA00119 1.00 0.67 0.87 0.60 1.00 -13.09 -2.52 -16.01 

NFIA 1.00 0.17 0.55 0.33 1.00 -6.62 -0.55 -3.92 

NIPSNAP3B 1.00 -46.27 3.45 -66.61 1.00 0.43 0.68 0.76 

NLRP11 1.00 -8.59 1.68 -8.00 1.00 1.59 1.75 1.48 

NPY 1.00 -37.24 1.29 -96.79 1.00 0.83 1.52 0.94 

OPLAH 1.00 -5.24 1.08 -7.11 1.00 0.42 1.08 0.34 

OR2A20P 1.00 -50.03 -1.29 -56.92 1.00 -3.55 -3.01 -2.94 

OR2A42 1.00 4.27 0.85 5.26 1.00 -3.87 3.79 0.25 

OR2A9P 1.00 -81.53 -1.72 -100.41 1.00 -3.21 6.87 -7.14 

OR7D2 1.00 -16.39 1.84 -25.33 1.00 0.87 0.67 0.66 

OSBPL10 1.00 -6.07 3.17 -6.14 1.00 0.83 1.19 0.80 

PC 1.00 -5.36 0.52 -3.16 1.00 0.84 1.22 1.23 

PDCD1 1.00 -3.18 1.24 -4.48 1.00 0.77 1.22 0.98 

PDGFRB 1.00 -27.77 1.38 -27.55 1.00 1.16 2.24 0.87 

PDK4 1.00 -8.60 -0.33 -20.50 1.00 -0.79 1.39 3.12 

PIK3R6 1.00 -285.39 -33.16 -307.07 1.00 -0.28 0.03 1.61 

PION 1.00 -46.85 1.17 -68.49 1.00 11.29 18.24 15.14 

PLAUR 1.00 2.62 0.42 2.57 1.00 -4.33 11.03 -13.02 

PLCH1 1.00 4.54 0.96 8.41 1.00 -4.03 0.21 -1.40 

PLCL1 1.00 -3.27 -1.18 -3.25 1.00 0.86 1.03 0.11 

PLEKHA5 1.00 -15.94 -2.66 -20.42 1.00 1.17 2.59 1.66 
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PLEKHG7 1.00 0.98 0.89 1.21 1.00 -4.33 -6.11 -0.84 

PLK2 1.00 -4.64 1.91 -4.85 1.00 2.03 3.59 -1.36 

PLXNA1 1.00 -2.22 1.34 -1.72 1.00 0.87 1.05 1.12 

PNOC 1.00 -24.13 0.19 -32.52 1.00 2.09 1.56 1.33 

PNPLA4 1.00 -2.11 0.97 -3.59 1.00 1.51 0.61 1.50 

PODXL2 1.00 -6.97 0.29 -5.54 1.00 0.30 0.04 0.17 

PON2 1.00 -142.41 -1.50 -201.06 1.00 0.57 0.71 -2.68 

POU2F2 1.00 -9.11 4.79 -11.43 1.00 0.99 0.75 0.95 

PPFIBP2 1.00 -3.87 0.99 -6.63 1.00 1.73 0.73 1.28 

PPIL2 1.00 0.81 1.08 2.00 1.00 -3.15 -13.77 -11.55 

PRAM1 1.00 -3.63 0.72 -9.90 1.00 0.50 0.25 0.95 

PRL 1.00 -4.69 1.37 -5.71 1.00 -0.57 0.18 1.66 

PROM1 1.00 24.40 2.22 31.54 1.00 -25.58 -7.37 -4.79 

PRSSL1 1.00 38.62 0.86 47.26 1.00 -2.73 0.22 -1.50 

PSTPIP1 1.00 -14.96 0.35 -20.56 1.00 1.25 0.68 1.09 

PTPRO 1.00 -3.46 0.91 -5.30 1.00 1.94 2.78 2.34 

PVRL2 1.00 -10.65 -0.27 -14.06 1.00 0.16 1.07 0.82 

RAB11B 1.00 1.26 1.41 1.28 1.00 -2.11 -2.50 -1.60 

RAB17 1.00 -8.97 0.79 -18.42 1.00 0.84 1.32 0.89 

RAB3IL1 1.00 -5.41 1.25 -5.08 1.00 0.36 1.30 0.92 

RADIL 1.00 -32.64 -1.26 -47.10 1.00 -0.08 -0.71 1.09 

RBM47 1.00 -2.60 0.88 -3.27 1.00 0.47 0.96 1.23 

RENBP 1.00 12.83 0.81 13.23 1.00 -3.39 -0.36 -3.05 

RFX2 1.00 0.99 0.39 1.42 1.00 -56.26 -45.92 14.09 

RNF157 1.00 1.91 1.31 1.88 1.00 -2.10 -2.56 -6.86 

RNF165 1.00 -248.22 -14.61 -239.57 1.00 5.85 3.15 38.91 

ROR2 1.00 -73.73 1.29 -100.37 1.00 0.74 0.56 0.59 

S100A16 1.00 -854.01 -2.20 -941.01 1.00 0.13 0.25 -0.36 

SCARNA2 1.00 -13.53 1.96 -9.40 1.00 0.02 0.65 0.23 
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SCHIP1 1.00 -2.35 0.93 -2.19 1.00 1.21 0.47 0.55 

SCML4 1.00 9.93 2.12 13.32 1.00 -3.53 0.03 -4.89 

SEMA6A 1.00 -33.36 -1.39 -39.99 1.00 3.50 4.15 2.34 

SFRP5 1.00 -0.21 0.67 -0.38 1.00 -16.49 -11.28 -19.76 

SH2D3A 1.00 0.24 1.41 0.54 1.00 -7.48 6.24 -6.77 

SH3RF1 1.00 -18.51 1.36 -24.17 1.00 0.42 1.46 0.32 

SHISA2 1.00 -7.85 -0.08 -7.83 1.00 -0.21 -1.71 1.57 

SHROOM3 1.00 -3.88 1.15 -5.40 1.00 1.48 0.39 0.97 

SIPA1L2 1.00 -72.36 1.40 -124.95 1.00 0.47 0.71 0.04 

SIRPA 1.00 -22.75 1.05 -29.76 1.00 0.89 1.40 0.78 

SLC12A7 1.00 -5.66 -0.14 -10.86 1.00 0.94 1.00 0.74 

SLC30A4 1.00 -6.18 -1.41 -10.53 1.00 0.46 0.46 1.41 

SMOX 1.00 23.20 0.76 27.66 1.00 -10.53 -0.59 -4.07 

SNX24 1.00 0.73 0.80 1.02 1.00 -5.77 -5.11 -8.47 

SPATA13 1.00 45.73 -16.08 67.90 1.00 -4.67 0.16 -1.76 

STAP2 1.00 -2.09 -0.01 -1.56 1.00 -0.69 -0.51 0.47 

STON1 1.00 -27.12 18.51 -67.37 1.00 0.90 0.19 0.17 

STS 1.00 3.26 1.44 4.09 1.00 -41.42 -16.60 -13.84 

SYNGR1 1.00 -32.24 1.50 -28.42 1.00 1.13 0.16 0.42 

SYT1 1.00 -14.92 1.41 -13.40 1.00 0.31 0.97 0.61 

TAKR 1.00 -10.21 1.94 -10.54 1.00 0.61 1.12 0.88 

TANC2 1.00 -40.38 0.64 -34.67 1.00 -4.48 -1.86 -3.73 

TBC1D9 1.00 -5.75 0.70 -5.86 1.00 0.83 0.67 1.21 

TBKBP1 1.00 -32.51 0.76 -40.85 1.00 0.59 0.67 0.37 

TBX10 1.00 0.54 0.83 0.61 1.00 -61.68 -83.79 -43.82 

TCF7L2 1.00 -1639.47 -62.76 -1691.71 1.00 1.44 -1.04 0.48 

TES 1.00 -6.18 0.33 -7.53 1.00 1.28 2.56 1.45 

TMEM121 1.00 0.57 1.23 0.91 1.00 -26.99 10.44 -8.64 

TMEM128 1.00 5.58 1.01 8.33 1.00 -6.72 -1.76 -5.62 
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TMEM133 1.00 -8.43 0.60 -8.23 1.00 0.57 -0.10 0.75 

TMEM144 1.00 -2.25 1.13 -1.47 1.00 0.96 1.01 0.90 

TMEM16A 1.00 4.46 0.43 11.82 1.00 -5.70 -5.56 -22.28 

TMEM170B 1.00 8.12 0.57 9.18 1.00 -4.25 12.94 4.72 

TMEM38A 1.00 0.80 1.07 0.47 1.00 -42.11 -5.17 -29.13 

TMEM71 1.00 -53.91 2.51 -109.69 1.00 151.94 -84.01 64.64 

TMOD1 1.00 -66.55 12.03 -45.79 1.00 -0.54 -1.22 0.23 

TNFRSF1B 1.00 -13.49 0.64 -16.95 1.00 0.40 0.80 1.00 

TPSB2 1.00 0.52 0.53 0.43 1.00 -2.27 2.02 5.93 

TRH 1.00 178.88 -0.82 257.63 1.00 -36.97 -33.67 -41.51 

TRPM4 1.00 -10.14 2.42 -16.12 1.00 3.27 2.78 3.66 

TRPM8 1.00 -87.11 -0.86 -171.46 1.00 -0.29 0.04 0.07 

TSHZ2 1.00 -108.07 -2.73 -205.63 1.00 -0.21 2.46 1.40 

TTYH1 1.00 -3.67 0.97 -2.56 1.00 0.31 0.89 0.18 

TYROBP 1.00 -6.52 -0.26 -11.06 1.00 0.98 0.98 0.34 

VCX-C 1.00 2.20 1.35 2.22 1.00 -2.92 4.62 4.88 

WIPI1 1.00 -3.38 1.30 -10.33 1.00 0.98 0.47 0.96 

ZBTB46 1.00 -0.16 0.94 0.16 1.00 -2.64 -3.69 -8.11 

ZC3H12D 1.00 0.79 0.28 1.25 1.00 -17.89 -7.21 -4.20 

ZNF135 1.00 -18.36 1.48 -23.53 1.00 0.66 1.02 0.60 

ZNF287 1.00 0.00 0.19 0.10 1.00 -677.39 -2301.56 -831.43 

ZNF354C 1.00 -10.41 0.76 -13.87 1.00 5.42 1.68 1.39 

ZNF397OS 1.00 1.83 0.76 1.75 1.00 -55.08 -82.84 -83.11 

ZNF467 1.00 -11.87 2.23 -15.44 1.00 1.18 1.22 1.25 

ZNF471 1.00 -6.02 0.69 -7.19 1.00 1.12 1.20 0.51 

ZNF521 1.00 -2.15 0.91 -1.01 1.00 1.37 1.62 1.52 

ZNF667 1.00 -8.87 0.61 -10.44 1.00 1.18 2.08 1.24 
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Table A.5 Pathway maps of genes commonly regulated in resistant xenografts 

found by microarray and transcriptome. 

 

Maps p-value FDR 

Cell adhesion_Cadherin-mediated cell adhesion 1.058E-05 9.154E-04 

Cell adhesion_Chemokines and adhesion 2.068E-05 9.154E-04 

Cytoskeleton remodeling_Cytoskeleton remodeling 2.237E-05 9.154E-04 

HBV signaling via protein kinases leading to HCC 2.876E-05 9.154E-04 

Development_Gastrin in differentiation of the gastric mucosa 3.390E-05 9.154E-04 

Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier 
integrity 

5.661E-05 1.274E-03 

Cell adhesion_Integrin-mediated cell adhesion and migration 6.879E-05 1.327E-03 

Muscle contraction_Oxytocin signaling in uterus and mammary gland 1.482E-04 2.501E-03 

Development_VEGF signaling via VEGFR2 - generic cascades 3.649E-04 5.473E-03 

Cell adhesion_Endothelial cell contacts by non-junctional mechanisms 7.481E-04 9.891E-03 

Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling 8.257E-04 9.891E-03 

Cell adhesion_Endothelial cell contacts by junctional mechanisms 8.792E-04 9.891E-03 

Cytoskeleton remodeling_Fibronectin-binding integrins in cell motility 1.252E-03 1.207E-02 

NETosis in SLE 1.252E-03 1.207E-02 

Neurophysiological process_Thyroliberin in cell hyperpolarization and excitability 1.595E-03 1.436E-02 

Apoptosis and survival_Anti-apoptotic action of Gastrin 2.401E-03 1.907E-02 

Development_VEGF signaling and activation 2.401E-03 1.907E-02 

Immune response_MIF - the neuroendocrine-macrophage connector 2.744E-03 2.058E-02 

Oxidative stress_Role of IL-8 signaling pathway in respiratory burst 2.985E-03 2.098E-02 

Cytoskeleton remodeling_Integrin outside-in signaling 3.109E-03 2.098E-02 

Development_Gastrin in cell growth and proliferation 4.934E-03 3.172E-02 

Development_Positive regulation of STK3/4 (Hippo) pathway and negative regulation 
of YAP/TAZ function 

6.251E-03 3.615E-02 

Inhibition of neutrophil migration by proresolving lipid mediators in COPD 6.251E-03 3.615E-02 
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Development_EGFR signaling pathway 6.426E-03 3.615E-02 

Nociception_Nociceptin receptor signaling 7.333E-03 3.960E-02 

Cell adhesion_Role of CDK5 in cell adhesion 1.537E-02 7.982E-02 

Immune response_Regulatory role of C1q in platelet activation 2.550E-02 1.104E-01 

G-protein signaling_RhoB regulation pathway 2.718E-02 1.104E-01 

Transcription_Transcription factor Tubby signaling pathways 2.885E-02 1.104E-01 

Cell cycle_Chromosome condensation in prometaphase 3.553E-02 1.104E-01 

Cytoskeleton remodeling_ESR1 action on cytoskeleton remodeling and cell 
migration 

3.719E-02 1.104E-01 

Cell cycle_Sister chromatid cohesion 3.719E-02 1.104E-01 

Development_Delta- and kappa-type opioid receptors signaling via beta-arrestin 3.885E-02 1.104E-01 

Development_GDNF signaling 4.050E-02 1.104E-01 

Cell cycle_Initiation of mitosis 4.216E-02 1.104E-01 

Development_Angiotensin signaling via beta-Arrestin 4.216E-02 1.104E-01 

Transcription_Transcription regulation of aminoacid metabolism 4.216E-02 1.104E-01 

Neurophysiological process_Dopamine D2 receptor transactivation of PDGFR in CNS 4.381E-02 1.104E-01 

Neurophysiological process_nNOS signaling in neuronal synapses 4.875E-02 1.104E-01 
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Table A.6 Process networks of genes commonly regulated in resistant xenografts 

found by microarray and transcriptome 

 

Networks p-value FDR 

Cell adhesion_Cadherins 8.305E-09 5.647E-07 

Cell adhesion_Cell junctions 5.071E-05 1.724E-03 

Cytoskeleton_Regulation of cytoskeleton rearrangement 9.073E-05 2.057E-03 

Cell adhesion_Integrin-mediated cell-matrix adhesion 1.900E-04 3.230E-03 

Development_Neuromuscular junction 5.246E-04 7.134E-03 

Cytoskeleton_Actin filaments 1.033E-03 1.143E-02 

Signal transduction_Oxytocin signaling 1.420E-03 1.143E-02 

Cell cycle_G1-S Growth factor regulation 1.513E-03 1.143E-02 

Cell adhesion_Amyloid proteins 1.513E-03 1.143E-02 

Signal Transduction_Cholecystokinin signaling 2.589E-03 1.688E-02 

Inflammation_Protein C signaling 2.731E-03 1.688E-02 

Cell adhesion_Platelet aggregation 7.931E-03 4.444E-02 

Cell adhesion_Glycoconjugates 8.496E-03 4.444E-02 

Muscle contraction 1.017E-02 4.939E-02 

Cell adhesion_Synaptic contact 1.202E-02 5.451E-02 

Inflammation_Neutrophil activation 1.825E-02 7.062E-02 

Cytoskeleton_Intermediate filaments 1.917E-02 7.062E-02 

Immune response_Phagocytosis 1.987E-02 7.062E-02 

Cytoskeleton_Macropinocytosis and its regulation 2.099E-02 7.062E-02 

Reproduction_Spermatogenesis, motility and copulation 2.131E-02 7.062E-02 

Development_Neurogenesis_Axonal guidance 2.181E-02 7.062E-02 

Reproduction_Male sex differentiation 2.518E-02 7.784E-02 
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Table A.7 Pathway maps enriched in CR patients 

 

Maps p-value FDR 

Cell cycle_The metaphase checkpoint 9.644E-22 7.850E-19 

Cell cycle_Role of APC in cell cycle regulation 1.869E-19 7.609E-17 

Cell cycle_Spindle assembly and chromosome separation 1.217E-13 3.302E-11 

Protein folding and maturation_POMC processing 2.695E-12 5.484E-10 

Cell cycle_Cell cycle (generic schema) 9.928E-11 1.616E-08 

Cell cycle_Transition and termination of DNA replication 1.273E-10 1.727E-08 

DNA damage_ATM/ATR regulation of G1/S checkpoint 1.584E-10 1.841E-08 

Cell cycle_Role of SCF complex in cell cycle regulation 2.609E-10 2.654E-08 

Cell cycle_Start of DNA replication in early S phase 1.792E-09 1.621E-07 

Cell cycle_Role of Nek in cell cycle regulation 1.797E-08 1.463E-06 

IL-6 signaling in multiple myeloma 2.367E-08 1.751E-06 

Cell cycle_Chromosome condensation in prometaphase 2.828E-08 1.919E-06 

Cell cycle_Influence of Ras and Rho proteins on G1/S Transition 4.904E-08 3.071E-06 

DNA damage_ATM / ATR regulation of G2 / M checkpoint 6.200E-08 3.605E-06 

Cell cycle_ESR1 regulation of G1/S transition 2.549E-07 1.383E-05 

Cell cycle_Initiation of mitosis 3.587E-07 1.825E-05 

DNA damage_Role of Brca1 and Brca2 in DNA repair 5.110E-07 2.447E-05 

Development_Thrombopoietin-regulated cell processes 3.668E-06 1.659E-04 

Immune response_Signaling pathway mediated by IL-6 and IL-1 3.938E-06 1.687E-04 

Inhibition of neutrophil migration by proresolving lipid mediators in COPD 6.179E-06 2.515E-04 

Signal transduction_Additional pathways of NF-kB activation (in the cytoplasm) 7.520E-06 2.915E-04 

Mitogenic action of Estradiol / ESR1 (nuclear) in breast cancer 1.232E-05 4.559E-04 

Apoptosis and survival_DNA-damage-induced apoptosis 1.292E-05 4.573E-04 

Immune response_BCR pathway 1.635E-05 5.547E-04 

Development_NOTCH1-mediated pathway for NF-KB activity modulation 1.792E-05 5.836E-04 
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Role of B cells in SLE 2.096E-05 6.488E-04 

Transcription_Role of heterochromatin protein 1 (HP1) family in transcriptional 
silencing 

2.232E-05 6.488E-04 

Reproduction_Progesterone-mediated oocyte maturation 2.232E-05 6.488E-04 

Transcription_Ligand-dependent activation of the ESR1/SP pathway 2.659E-05 7.215E-04 

Immune response_IL-4 - antiapoptotic action 2.659E-05 7.215E-04 

Apoptosis and survival_Apoptotic TNF-family pathways 4.008E-05 1.053E-03 

Cell cycle_Sister chromatid cohesion 5.324E-05 1.354E-03 

Cell cycle_Regulation of G1/S transition (part 1) 6.358E-05 1.568E-03 

Transport_RAN regulation pathway 6.908E-05 1.654E-03 

Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling 8.164E-05 1.899E-03 

Inflammatory factors-induced expression of mucins in normal and asthmatic 
epithelium 

8.938E-05 1.966E-03 

Signal transduction_NF-kB activation pathways 8.938E-05 1.966E-03 

Development_Regulation of cytoskeleton proteins in oligodendrocyte differentiation 
and myelination 

1.066E-04 2.283E-03 

Proteolysis_Putative SUMO-1 pathway 1.134E-04 2.334E-03 

Immune response_Inhibitory action of Lipoxins on pro-inflammatory TNF-alpha 
signaling 

1.147E-04 2.334E-03 

Immune response_HMGB1/RAGE signaling pathway 1.407E-04 2.763E-03 

Immune response_HMGB1 release from the cell 1.448E-04 2.763E-03 

Development_Leptin signaling via PI3K-dependent pathway 1.460E-04 2.763E-03 

Immune response_LTBR1 signaling 1.612E-04 2.983E-03 

DNA damage_Inhibition of telomerase activity and cellular senescence 1.695E-04 2.999E-03 

DNA damage_Mismatch repair 1.695E-04 2.999E-03 

Immune response_IL-6 signaling pathway 2.134E-04 3.584E-03 

Aberrant B-Raf signaling in melanoma progression 2.159E-04 3.584E-03 

dCTP/dUTP metabolism 2.200E-04 3.584E-03 

Immune response_IL-2 activation and signaling pathway 2.309E-04 3.584E-03 
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Table A.8 Process networks enriched in CR patients 

 

Networks p-value FDR 

Cell cycle_Mitosis 2.704E-28 4.299E-26 

Cell cycle_Core 4.171E-27 3.316E-25 

Cytoskeleton_Spindle microtubules 1.494E-22 7.921E-21 

Cell cycle_S phase 1.177E-19 4.678E-18 

Cell cycle_G2-M 1.815E-14 5.772E-13 

DNA damage_Checkpoint 2.474E-10 6.557E-09 

Cell cycle_Meiosis 2.073E-09 4.709E-08 

DNA damage_DBS repair 4.091E-08 8.130E-07 

Transcription_mRNA processing 6.874E-07 1.214E-05 

DNA damage_MMR repair 2.940E-06 4.674E-05 

Transcription_Chromatin modification 6.071E-06 8.776E-05 

Cell cycle_G1-S 7.450E-06 9.871E-05 

DNA damage_BER-NER repair 4.154E-05 5.081E-04 

Cell cycle_G1-S Interleukin regulation 9.372E-05 1.064E-03 

Reproduction_Male sex differentiation 1.792E-04 1.900E-03 

Reproduction_Progesterone signaling 2.776E-04 2.759E-03 

Cytoskeleton_Regulation of cytoskeleton rearrangement 3.281E-04 3.069E-03 

Cell adhesion_Cadherins 4.427E-04 3.910E-03 

Inflammation_IL-4 signaling 6.922E-04 5.793E-03 

Apoptosis_Death Domain receptors & caspases in apoptosis 1.060E-03 8.430E-03 

Proliferation_Positive regulation cell proliferation 1.118E-03 8.464E-03 

Cytoskeleton_Cytoplasmic microtubules 1.503E-03 1.086E-02 

Apoptosis_Apoptotic nucleus 1.792E-03 1.221E-02 

Immune response_Phagosome in antigen presentation 1.843E-03 1.221E-02 

Signal transduction_WNT signaling 2.135E-03 1.358E-02 
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Inflammation_MIF signaling 2.482E-03 1.518E-02 

Proliferation_Lymphocyte proliferation 3.208E-03 1.889E-02 

Cell cycle_G0-G1 4.661E-03 2.647E-02 

DNA damage_Core 5.574E-03 3.056E-02 

Signal transduction_ESR1-nuclear pathway 6.099E-03 3.232E-02 

Development_Regulation of telomere length 6.522E-03 3.244E-02 

Reproduction_Feeding and Neurohormone signaling  6.529E-03 3.244E-02 

Cell cycle_G1-S Growth factor regulation 7.326E-03 3.530E-02 

Immune response_Antigen presentation 8.752E-03 4.093E-02 

 

 

 

 

 

 




