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  Abstract 

  Background:  Obesity treatments aim to maximize fat loss, 

particularly abdominal or visceral fat, without compro-

mising lean or bone mass. However, the literature con-

tains numerous examples of obesity treatments that  –  in 

addition to fat loss  –  result in loss of lean mass and/or 

bone mass. 

  Materials and methods:  Because of the known effects of 

energy restriction to increase activity of the hypothalamo-

pitutiary adrenal (HPA) axis in lean humans and animals, 

and because increases in circulating glucocorticoid levels 

could potentially contribute to adverse body composi-

tional changes with obesity treatments, we conducted a 

systematic PubMed search to determine whether HPA axis 

activation also occurs in response to energy restriction in 

obese humans and animals. 

  Results and conclusions:  In most studies in obese hu-

mans, short-term severe energy restriction increased cir-

culating cortisol levels, and this response was also seen 

in two longer-term human studies involving severe or mo-

derate energy restriction. These fi ndings parallel studies 

on short- or long-term energy restriction in obese rodents, 

with most studies showing increases in circulating corti-

costerone concentrations, and no change or actual increa-

ses in hypothalamic expression of corticotropin-releasing 

hormone, urocortin 3 or their receptors. However, a signi-

fi cant proportion of studies involving longer-term severe 

or moderate energy restriction in obese humans showed 

no change or decreases in HPA axis function. There was 

variability among human studies in the duration of ener-

gy restriction and timing of the HPA axis investigations 

(i.e., during energy restriction, or aft er a period of post-re-

striction weight maintenance). In order to unambiguously 

determine changes in HPA axis function with energy re-

striction in obese humans, it will be important to assess 

HPA axis function at multiple time points  during  energy 

restriction, given that obese individuals may spend many 

weeks or months in severe or moderate energy restriction 

in order to reduce excess weight, and given that increases 

in glucocorticoid function can have signifi cant eff ects on 

body composition within weeks to months.  
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  Introduction 
 Obesity is a condition defined as abnormal or excessive fat 

accumulation and has been identified as a risk factor for 

a number of disorders, including type 2 diabetes [1] and 

cardiovascular diseases [2]. The worldwide prevalence of 

obesity continues to increase and has more than doubled 

since 1980. 

 An important aspect of curbing the impact of the 

obesity epidemic is providing effective long-term treat-

ments. The aim of obesity treatments is to maximize the 

loss of fat mass, particularly abdominal or visceral fat 

mass, without compromising lean body mass or bone 

mass. However, the literature contains numerous exam-

ples of obesity treatments that  –  in addition to induc-

ing fat loss  –  result in loss of lean mass and/or bone 

mass, particularly when supervised strength training is 
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not incorporated into the treatment regime [3 – 7], when 

dietary protein intake falls below certain critical levels [8], 

and possibly also when weight loss is rapid, as in severely 

energy-restricted diets [9], or as a result of some forms 

of bariatric surgery [10]. Understanding the mechanisms 

underpinning changes in body composition in response 

to obesity treatments could lead to improved clinical out-

comes from such treatments. 

 We hypothesise that increased activity of the hypo-

thalamo-pituitary-adrenal (HPA) axis in response to 

energy restriction in obese people may contribute to less 

than optimal body compositional outcomes. The ration-

ale for this hypothesis is that energy restriction in lean 

humans or animals is known to up-regulate activity of 

the HPA axis, with resultant increases in circulating 

glucocorticoid levels [11]. Moreover, because glucocorti-

coids per se can cause accretion of white adipose tissue 

 –  particularly visceral adipose tissue  –  as well as loss of 

lean tissue and bone mass in humans and animals, such 

increases in circulating glucocorticoid levels probably 

contribute to the loss of lean tissue and bone in severely 

energy-restricted people (e.g., patients with anorexia 

nervosa or elite gymnasts), as well as the preferen-

tial accretion of central fat with re-feeding in anorexia 

nervosa [11]. One might argue that an obese individual 

undergoing energy restriction to lose excess weight is 

under a less extreme form of nutritional stress than an 

already lean or underweight individual in severe energy 

restriction caused by anorexia nervosa or competitive 

sports requirements. However, because obesity per se is 

already associated with heightened activity of the HPA 

axis, as will be briefly discussed below, any effects of 

energy restriction on HPA axis activity in obesity may not 

be negligible. 

 In light of these considerations, we conducted a sys-

tematic search of the literature in the PubMed database 

from 1975 to June 2013 in order to ascertain the effects 

of energy restriction on activity of the HPA axis in obese 

animals and humans. Our search strategy included the 

following Medical Subject Heading (MeSH) terms: [diet, 

reducing OR diet, weight loss OR caloric restriction OR 

obesity/diet therapy OR food deprivation OR body weight 

(only in animal search)] AND [corticotropin-releasing 

hormone OR receptors, corticotropin-releasing hormone 

OR corticotroph OR receptors, corticotropin OR glucocorti-

coid OR receptors, glucocorticoid OR adrenocorticotropic 

hormone OR hydrocortisone OR corticosterone OR cortico-

releasing factor (only in animal search)] AND (obesity). 

We limited our search to articles in English and studies in 

humans and animals. The search yielded 105 human and 

741 animal articles. We retrieved the full text and reviewed 

in depth only those articles that included investigation of 

the effect of energy restriction on the HPA axis in obese 

humans or animals (mice and rats), as stated in the article 

title or abstract. Sixteen human and 10 animal articles met 

these criteria and were thus included in our review. These 

articles are cited in the sections below entitled  “ Effects 

of energy restriction on activity of the HPA axis in obese 

humans ” , and  “ Effects of energy restriction on activity of 

the HPA axis in obese rodents ” . 

 Before outlining the results of our systematic litera-

ture search, we will first provide an overview of the HPA 

axis, as well as the effects of obesity per se and eating 

on activity of this axis, as this provides important back-

ground to our literature review.  

  Overview of the HPA axis 
 The HPA axis is a major neuroendocrine system that helps 

to protect against stressors by regulating the secretion of 

glucocorticoids [12]. Stress induces the release of cortico-

tropin-releasing hormone (CRH) from the paraventricular 

nucleus (PVN) of the hypothalamus. CRH is released into 

the hypophyseal portal system and is transported to the 

pars distalis in the anterior lobe of the pituitary gland, 

where it stimulates the secretion of adrenocorticotropin 

(ACTH) from the anterior pituitary. ACTH, in turn, stimu-

lates glucocorticoid production from the adrenal cortex, 

and glucocorticoids are transported in the circulation 

bound to corticosteroid-binding globulin (CBG). The avail-

ability of glucocorticoids in target tissues is dependent on 

activity of the enzyme 11 β -hydroxysteroid dehydrogenase 

(11 β -HSD). The 11 β -HSD1 isoform converts the inactive 

glucocorticoids (cortisone in humans and 11-dehydrocor-

ticosterone in rodents) into their active form (cortisol in 

humans and corticosterone in rodents), and the 11 β -HSD2 

isoform inactivates cortisol and corticosterone [13]. Gluco-

corticoids exert actions in target tissues by binding to and 

activating the glucocorticoid receptor. Glucocorticoids 

participate in the control of whole body homeostasis and 

the response to stress, and play a key role in regulating 

basal activity of the HPA axis. The glucocorticoid recep-

tor initiates or represses gene transcription, and induces 

negative feedback of the HPA axis, for termination of the 

stress response, by acting on the hypothalamus and the 

pituitary gland [14]. The inhibitory glucocorticoid feed-

back on the HPA axis limits duration of the total tissue 

exposure to glucocorticoids, thus minimizing catabolic, 

anti-reproductive and immunosuppressive effects of these 

hormones.  
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  Obesity is associated with 
 dysregulation of the HPA axis 
 Previous studies have shown that obesity is associated 

with HPA axis dysregulation that may originate from 

increased forward drive, decreased sensitivity to negative 

feedback regulation, or altered sensitivity of peripheral 

tissues such as fat and skeletal muscle tissue to gluco-

corticoids [15, 16]. Obese humans show a hypersensitive 

response to stimulation of the HPA axis, the magnitude of 

this exaggerated response being dependent on fat distri-

bution [17, 18]. After physical or psychological stressors, or 

after exogenous administration of CRH, obese individuals 

showed exaggerated circulating ACTH and glucocorticoid 

levels [17, 19]. This exaggerated response was significantly 

greater in those obese people who have a more visceral 

distribution of body fat than those with a more subcuta-

neous distribution [17]. Greater visceral adiposity is also 

associated with a higher HPA axis response in lean people 

[19]. Sex also plays an important role in determining HPA 

axis response, where cortisol exposure is inversely related 

to fat mass index (calculated as fat mass/height 2  in kg/m 2 ) 

in men and waist to hip ratio in women [18, 20 – 23]. 

 While the exact direction(s) of causality in this asso-

ciation between visceral adiposity and HPA response is 

unclear, the relationship may be caused by the physiology 

of visceral fat, which contains a higher density of glucocor-

ticoid receptors than subcutaneous fat without an increase 

in binding affinity [24]. This could in turn influence glu-

cocorticoid production and subsequent negative feedback 

to the brain. Indeed, it has been shown that people with a 

greater visceral fat distribution may have increased pitui-

tary sensitivity to CRH [18]. Another factor that may contrib-

ute to the observation of increased HPA activity in people 

with more adiposity is that obesity is characterized by a 

state of chronic mild inflammation [25, 26], with enhanced 

circulating levels of inflammatory markers, including 

cytokines [27]. Cytokines  –  like stress  –  have been shown 

to stimulate the HPA axis at the level of the hypothalamus, 

anterior pituitary gland, and the adrenal cortex [14, 28]. 

 In summary, obesity in humans  –  particularly visceral 

obesity  –  is associated with increased activity of the HPA 

axis, and this may be due in part to specific qualities of 

visceral adipose tissue.  

  The HPA axis and food intake 
 Before examining the effects of long-term energy restric-

tion, as in  ‘ dieting ’  in obese humans and animals, this 

section provides an overview of the effects of daily 

rhythms in food intake on activity of the HPA axis. This 

knowledge is important, because the recent nutritional 

status of research subjects at the time of investigation can 

profoundly influence results. 

 Food intake has been shown to be a synchronizer of 

diurnal rhythm of the HPA axis, a rhythm that is character-

ized in humans by maximum glucocorticoid levels in the 

early morning and minimum levels at night [29 – 31]. Under 

normal circumstances, surging levels of cortisol enter the 

bloodstream after a midday or evening meal, contributing 

to the undulating nature of daily HPA axis activity [30, 32]. 

 Fasting is a state of stress [29] that alters the normal 

HPA axis rhythm. If overnight fasting is extended through-

out the day, circulating cortisol levels peak later in the 

afternoon and follow an overall higher, flattened profile 

[32 – 34]. This change likely contributes to energy homeo-

stasis in cases of insufficient exogenous energy intake, 

because hypercortisolemia promotes an appetite for cal-

orie-dense, highly palatable food and processes such as 

gluconeogenesis to convert stored forms of energy into 

useable glucose [29, 33, 35 – 38]. 

 The exact mechanism by which the HPA axis responds 

to acute changes in food intake remains elusive. It seems 

that the type of macronutrient ingested plays an impor-

tant role in HPA axis stimulation. High protein meals 

stimulate a significantly higher cortisol secretion than do 

high carbohydrate or high fat meals [39 – 41]. Although sci-

entists are still unclear of how a signal reaches the HPA 

axis once food has been ingested, one study has shown 

that nasogastric compared to intravenous administra-

tion of nutrients induces a much more significant cortisol 

response, suggesting that the signalling emanates from 

the stomach or duodenum before the metabolites enter 

the blood stream [40]. 

 While activity of the HPA axis is influenced by the 

presence of food, human and animal studies (as discussed 

below) have shown that energy restriction, be it severe or 

moderate, also affects the HPA axis on several levels.  

  Effects of energy restriction on 
activity of the HPA axis in obese 
humans 
 A number of studies have looked at the effect of short-

term periods of severe energy restriction on circulating 

or urinary cortisol levels in obese humans, with con-

flicting evidence. Two studies have shown a decrease in 
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circulating cortisol levels, after 48 h [42], or urinary cor-

tisol levels after 3  days [43] of short-term severe energy 

restriction, while three other studies using short-term 

total fasting reported an increase in circulating cortisol 

[44 – 46]. These latter studies involved an 84-h total fast 

[44] or 6 – 11 days of starvation in obese men [45, 46], and 

were found to increase circulating cortisol levels [44 – 46]  –  

both total and unbound [46]  –  with no change [45] or only 

a slight increase [46] in total or free urinary cortisol. On 

balance, the majority of the studies (three out of five) that 

have investigated the effects of severe short-term energy 

restriction on circulating cortisol levels in obese humans 

have shown significant increases in this parameter. 

 There have been somewhat mixed results with longer-

term severe energy restriction on HPA axis function in 

obese humans. The majority of studies report no change 

in function. Four weeks of severe energy restriction of 

~380 kcal/day in obese female identical twins had no 

effect on circulating levels of cortisol [47]. In addition, 

a severely energy-restricted diet to achieve a weight loss 

of   >  10% of initial body weight, followed by a 1-week re-

feeding regime, resulted in no change in circulating cor-

tisol levels in obese individuals [48]. Similarly, 3 weeks 

on a severely energy-restricted diet of ~600 kcal/day, fol-

lowed by 1 week of weight maintenance and then 2 weeks 

of ad libitum feeding, did not alter circulating cortisol 

levels in obese men [45]. Further, following 12-weeks on 

a severely energy-restricted diet of 800 kcal/day in obese 

women, circulating ACTH levels and ACTH response to 

ovine CRH stimulation were unaltered relative to pre-diet 

levels and did not differ between the obese participants 

and lean controls [49]. However, in that study cortisol con-

centrations decreased after weight loss, and there was a 

reduced cortisol response to ovine CRH stimulation [49]. 

Another study also showed a decrease in circulating corti-

sol levels in obese males and females following a 4-week 

severely energy-restricted diet of ~380 kcal/day [50]. 

While the majority of studies involving long-term severe 

energy restriction in obese humans have shown either no 

change (three studies) or a decrease (two studies) in cir-

culating cortisol levels or cortisol response, this is not a 

unanimous finding. When obese participants were treated 

with a severely energy-restricted diet of 450 kcal/day for 

16 weeks, followed by a hypocaloric diet for 32 weeks, cir-

culating cortisol levels increased in women, with no sig-

nificant change in men, when measured at 8 and 18 weeks 

after commencing the severely energy-restricted diet [51]. 

 Similar to the findings with longer-term severe 

energy restriction, it is also unclear if longer-term mod-

erate energy restriction, commonly used in the manage-

ment of overweight and obesity, influences circulating 

cortisol levels or function of the HPA axis, with published 

studies reporting no change, inhibitory or stimulatory 

effects. Moderate (30%) energy restriction in overweight 

and obese individuals over a period of 12 weeks resulted 

in no significant differences in 24-h urinary free cortisol/

cortisone, circulating CBG or free cortisol levels during a 

low dose ACTH simulation test [52]. Similarly, 6 months of 

moderate energy restriction (a 250 – 350 kcal/day deficit) 

in obese women had no effect on circulating levels of 

cortisol [53]. These findings support a shorter-term study 

that showed no differences in salivary cortisol levels fol-

lowing 18 days on a moderately energy-restricted diet of 

1000 kcal/day [54]. Also, 3  months on a moderately 

energy-restricted diet of 1000 kcal/day, followed by a 

period where participants were transitioned back to solid-

foods over 2 weeks and then spent 3 months on a weight 

maintenance diet, had no effect on cortisol production 

rate, either absolute values or normalized to fat free mass 

[55]. However, in that study cortisol production rate nor-

malized to fat mass or intra-abdominal fat mass increased 

by 40% and 100%, respectively, after weight loss [55]. 

While these three studies involving moderate energy 

restriction showed no clear changes in HPA axis func-

tion, another study of a 90-day diet of 800 – 1500 kcal/day 

in obese women showed decreased ACTH and cortisol 

levels measured during an oral glucose tolerance test [56]. 

In contrast, moderate energy restriction (a 500 kcal/day 

deficit) over 10 weeks in obese men increased circulating 

cortisol levels and decreased that of ACTH [57]. 

 Taken together, the available literature shows that 

energy restriction in obese adults results in disturbances 

in HPA axis function, albeit the direction of change is not 

clear. In most [44 – 46] but not all [42, 43] studies in obese 

humans, short-term severe energy restriction produced an 

increase in circulating cortisol levels, and this response 

was also seen in women but not men in one longer-term 

study involving severe energy restriction [51]. However, 

most studies involving longer-term severe energy restric-

tion in obese humans showed no change in HPA axis func-

tion [45, 47 ,48], and two studies suggested a decrease in 

activity of this axis [49, 50]. Similarly, longer-term moder-

ate energy restriction in obese humans has been reported 

to result in increases [57], no change [52 – 55] or decreases 

[56, 57] in HPA axis function. 

 A possible explanation for these widely discrepant 

findings in humans could be the time relative to the com-

mencement of energy restriction when HPA axis func-

tion was measured. Many of the studies reviewed in this 

section involved a period of post-diet re-feeding or weight 

maintenance prior to investigation of HPA axis function. 

This experimental paradigm enables the effects of weight 
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loss per se to be examined, independent of any effects of 

energy restriction. Indeed, certain adaptations to energy 

deficit, notably reduced metabolic rate and impaired 

thyroid function, are seen when measured during energy 

restriction but not after a period of 10 days to 3 months in 

energy balance in weight-reduced individuals [58, 59]. As 

such, it is reasonable to propose that HPA axis function 

may be different depending upon whether it is measured 

during energy restriction or following a period of weight 

maintenance at the reduced body weight. Given that obese 

individuals may spend several months in severe or mod-

erate energy restriction in order to reduce excess weight, 

and given that increases in glucocorticoid function can 

have significant effects on fat, lean and bone mass within 

2 – 3  months [60, 61], it is important to assess HPA axis 

function  during  energy restriction. Another factor that 

could contribute to the discrepant findings reported in 

this section is negative feedback regulation of the HPA 

axis; initial increases in circulating cortisol levels can 

feed back on the pituitary gland and hypothalamus and 

lead to eventual normalization or even inhibition of the 

axis. Support for this concept comes from a study involv-

ing continuous central administration of neuropeptide Y 

to rats [62], an experimental paradigm that mimics many 

aspects of energy restriction [63]. This paradigm initially 

increased circulating corticosterone and ACTH concen-

trations, but subsequently led to normalization of these 

parameters, as well as down-regulation of hypothalamic 

CRH mRNA expression [62]. In light of these considera-

tions, we propose that a more complete understanding of 

HPA axis function with energy restriction in obese humans 

would be obtained if investigations were made at several 

time points during energy restriction.  

  Effects of energy restriction on 
activity of the HPA axis in obese 
rodents 
 Studies in obese rodents have revealed a profound, pre-

dominantly stimulatory, impact of energy restriction on 

activity of the HPA axis, either when compared to non-

restricted obese controls, or when compared with effects 

of energy restriction in lean rodents. 

 A number of studies have looked into the effect of 

overnight, short-term and longer-term food deprivation 

on corticosterone concentrations in obese mice and rats 

[64 – 67]. These studies showed that following 12 [65], 24 

[66, 67] and 48 [67] h of fasting, or following 3 weeks [64] 

of 33% energy restriction, there was an increase in circu-

lating corticosterone concentrations in obese rodents. A 

similar effect was also seen with longer-term food depriva-

tion. Following a 30% energy-restricted diet for 12-weeks, 

Otsuka Long Evans Tokushima Fatty rats had greater cir-

culating corticosterone concentrations when compared 

with an unrestricted control group [68]. Interestingly, 

in that study no increase in corticosteronemia was seen 

when similar reductions in body weight, adiposity and 

leptinemia were achieved by 12 weeks of wheel running 

[68]. It must be noted that one study in obese mice showed 

a decrease (rather than an increase) in circulating corti-

costerone concentrations following 6-weeks of food dep-

rivation when compared with ad libitum-fed obese mice 

[69]. 

 It can be seen from the above that short- or long-term 

energy restriction in obese rodents generally increases 

circulating corticosterone levels. This effect is likely 

mediated by the hypothalamus, because energy restric-

tion influences hypothalamic expression of CRH or CRH 

receptors in obese rodents. One study looked at the effects 

of 48-h food deprivation on hypothalamic mRNA levels 

of urocortin 3 (Ucn3) and type 2 corticotropin-releasing 

hormone receptor (CRH 
2
 -R) in lean and obese Zucker rats 

[70]. Ucn3 is part of the CRH family and binds specifically 

to CRH 
2
 -R to decrease food intake, therefore playing an 

important role in responding to food-related stress. An 

interesting outcome of this experiment was that although 

lean rats showed decreases in hypothalamic Ucn3 and 

CRH 
2
 -R mRNA levels in response to energy restriction, 

obese Zucker rats showed no change [70]. Similar findings 

were reported in another study, where CRH concentra-

tions were measured in three regions of the hypothala-

mus of lean and obese mice: the arcuate nucleus (ARC), 

paraventricular nucleus (PVN), and ventromedial hypo-

thalamus (VMH). Obese mice had half the CRH concentra-

tions in the ARC as lean mice in the un fasted state, but 

 –  unlike their lean counterparts  –  they showed no change 

(i.e., no decrease) in ARC CRH concentrations following 

24 h of food deprivation [71]. While these studies showed 

no effect of food deprivation on central CRH expression in 

obese rodents, unlike food-deprived lean animals, another 

study has shown actual increases in brain CRH mRNA 

levels or activation of CRH-expressing hypothalamic cells 

with energy restriction in obese Zucker rats [72]. After 

3, 6, 12 and 24  h of food deprivation, obese Zucker rats, 

compared to lean rats, showed a relative increase in CRH 

mRNA expression or cellular activation of CRH-expressing 

neurons (as indicated by induction of c-fos expression) in 

several brain regions, the changes being most pronounced 

in the PVN. Obese rats also exhibited a marked increase in 
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type 1 corticotropin-releasing hormone receptor (CRH 
1
 -R) 

mRNA levels in the PVN starting at 6 h after fasting, com-

pared to lean rats, with no significant changes in CRH 
2
 -R 

[72]. In light of the observation that energy deprivation 

in obese rodents generally increases circulating corticos-

terone levels [64 – 67], these findings of no change  –  or an 

actual increase  –  in the hypothalamic expression of CRH, 

Ucn3 or their receptors suggest that during energy restric-

tion in obesity, the HPA axis may exhibit impaired nega-

tive feedback regulation at the level of the hypothalamus. 

 While obese rodents generally show energy restric-

tion-induced increases in circulating corticosterone levels 

and no decrease or an actual increase in central expression 

of CRH or CRH receptors, obese mice have been shown to 

have a decreased pituitary content of ACTH following a sig-

nificant period of energy restriction. A group of genetically 

obese  ob/ob  mice were put on an energy-restricted diet at 

5 weeks of age, when their weights were slightly over 

normal weight (overweight) [73]. Under normal circum-

stances, adult obese mice were found to have roughly 

14 times higher levels of ACTH in the pituitary gland than 

lean mice. However, after 7 weeks of caloric restriction, 

the obese mice showed pituitary ACTH levels nine times 

less than their obese, non-restricted counterparts, as well 

as a significant decrease in ACTH secretion from the iso-

lated perifused pituitary gland. These differences in pitui-

tary ACTH levels between lean and obese mice were not 

reflected by differences in plasma ACTH and corticosterone 

levels [73]. This study did not report on the effect of energy 

restriction on circulating ACTH levels in obese mice. 

 In summary, the HPA axis of obese rodents shows 

marked changes in response to short- or longer-term 

energy restriction, with most but not all studies showing 

increases in circulating corticosterone concentrations 

compared to non-restricted levels, and no change or 

actual increases in hypothalamic expression of CRH, 

Ucn3 or their receptors. Additionally, one study from 1975 

showed a decrease in pituitary ACTH levels or secretion 

with longer-term energy restriction in obese mice.  

  Effects of changes in activity of the 
HPA axis on body composition 
 It is often assumed that activation of the HPA axis in 

response to energy restriction would only be observed 

under cases of extreme stress, such as in lean humans 

with anorexia nervosa or cachexia, or in lean animals. 

However, our review of the literature in obese humans and 

rodents shows that  –  as is the case for the known effects 

of energy restriction on activity of the HPA axis in lean 

humans and animals  –  obese humans and rodents some-

times also display enhanced HPA axis activity in response 

to energy restriction. While further work is required to 

confirm this possibility, such an effect could potentially 

contribute to less than optimal changes in body composi-

tion during energy restriction for the treatment of obesity. 

 Not only does the binding of glucocorticoids to glu-

cocorticoid receptors produce effector responses that 

have implications for metabolism and appetite, it also is 

involved in the regulation of adipocyte and myocyte syn-

thesis, as well as regulating osteoblasts and osteoclasts. 

Glucocorticoids, through their interaction with insulin, 

promote the differentiation of pre-adipocytes into mature 

fat cells as well as stimulating lipoprotein lipase activ-

ity, which facilitates fat accumulation, particularly in the 

abdomen [33, 74, 75]. High levels of glucocorticoids inhibit 

myocyte synthesis and promote breakdown through stim-

ulating protein catabolism pathways [33, 76]. This process 

is further accelerated in the absence of insulin [77]. 

This would most likely be seen in the fasting scenario, 

where insulin levels are reduced and the body needs to 

convert stored energy to useable energy [76]. Addition-

ally, the reduced circulating insulin concentrations typi-

cally observed during weight loss interventions in obese 

individuals might therefore be expected to enhance the 

catabolic effects of glucocorticoids on myocytes. Further 

to effects on adipocytes and myocytes, glucocorticoids 

promote apoptosis in osteobalasts and osteocytes, which 

would be expected to decrease bone formation, as well as 

prolonging the lifespan of osteocalsts, which would be 

expected to increase bone resorption [78]. 

 In keeping with the effects of glucocorticoids on fat, 

muscle and bone cells observed in vitro, lean men and 

women taking a high dose of oral glucocorticoid treatment 

(   ≥   40 mg/day of a prednisolone equivalent) for 2 months 

showed a 10% increase in fat mass, a 10% decrease in lean 

body mass, and significant decreases in bone mineral 

density and bone mineral content in the absence of effects 

on body weight [60]. Longer-term use (more than 60 days) 

of oral glucocorticoids is associated with self-reported 

weight gain in over 60% of patients, including those on 

lower doses (e.g., 10  mg/day prednisone for 6 months), 

and weight gain is the most commonly reported adverse 

event in patients taking glucocorticoids [61]. Additionally, 

people with Cushing ’ s syndrome, associated with primary 

hypercortisolism, exhibit hyperphagia, weight gain, vis-

ceral obesity and muscle wasting [19, 76, 79], further 

demonstrating a primary role of increased glucocorticoid 

action in the propensity to store fat (particularly central 

fat) at the expense of lean tissues. 
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 It remains to be determined whether any changes in 

circulating glucocorticoid concentrations with energy 

restriction in obese individuals contributes to adverse 

effects on body composition.  

  The gap in knowledge and 
significance 
 Our review of the literature has not ruled out the possi-

bility that energy restriction in obese individuals is per-

ceived as a nutritional stress, resulting in indications of 

enhanced HPA axis function in most rodent studies and in 

some  –  but certainly not all  –  human studies. Studies in 

obese humans on effects of energy restriction on HPA axis 

function showed a great deal of variability, with reports 

of increased, unchanged or decreased circulating cortisol 

levels. As recent nutritional status influences function of 

the HPA axis, and because changes in HPA axis activity 

can be masked by feedback regulation of the axis by gluco-

corticoids, we propose that a more complete understand-

ing of HPA axis function with energy restriction in obese 

humans would be obtained if investigations were made at 

several time points  during  energy restriction, as opposed 

to after a period of post-restriction re-feeding, as was the 

case in several human studies hereby reviewed. Addi-

tionally, correlating changes in HPA axis function with 

changes in parameters of body composition, such as fat 

mass and distribution, lean body mass, muscle strength 

and bone mineral content, could shed light on the role of 

altered HPA axis function, if any, in mediating favourable 

or unfavourable changes in body composition in response 

to obesity treatments. Such knowledge could aid in the 

quest for obesity treatments that maximize the loss of fat 

mass, particularly abdominal or visceral fat mass, without 

compromising lean body mass or bone mass.  
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