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SPEEDING UP MCMC BY EFFICIENT DATA SUBSAMPLING

MATIAS QUIROZ, MATTIAS VILLANI, ROBERT KOHN AND MINH-NGOC TRAN

Abstract. We propose Subsampling MCMC, a Markov Chain Monte Carlo (MCMC)

framework where the likelihood function for n observations is estimated from a random

subset of m observations. We introduce a general and highly e�cient unbiased estimator of

the log-likelihood based on control variates obtained from clustering the data. The cost of

computing the log-likelihood estimator is much smaller than that of the full log-likelihood

used by standard MCMC. The likelihood estimate is bias-corrected and used in two corre-

lated pseudo-marginal algorithms to sample from a perturbed posterior, for which we derive

the asymptotic error with respect to n and m, respectively. A practical estimator of the

error is proposed and we show that the error is negligible even for a very small m in our

applications. We demonstrate that Subsampling MCMC is substantially more e�cient than

standard MCMC in terms of sampling e�ciency for a given computational budget, and that

it outperforms other subsampling methods for MCMC proposed in the literature.

Keywords: Bayesian inference, Estimated likelihood, Correlated pseudo-marginal, Block

pseudo-marginal, Big Data, Survey sampling.

1. Introduction

The popularity of Bayesian methods increased signi�cantly in the early 90's due to ad-

vances in computer technology and the introduction of powerful simulation algorithms such

as Markov Chain Monte Carlo (MCMC) (Gelfand and Smith, 1990). However, posterior

sampling with MCMC is time-consuming and there is an increasing awareness that new scal-

able algorithms are necessary for MCMC to remain an attractive choice for inference in data

sets with a large number of observations.
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Current research on scalable MCMC algorithms belongs to two major groups. The �rst

group employs parallelism through the typical MapReduce scheme (Dean and Ghemawat,

2008) by partitioning the data and computing posteriors in a parallel and distributed manner.

The resulting draws are subsequently combined into a single posterior distribution. The

main di�erence within this group is how weighting is performed and whether the partitions

communicate at runtime, see for example Scott et al., 2013; Neiswanger et al., 2013; Wang

and Dunson, 2013; Minsker et al., 2014; Nemeth and Sherlock, 2016. Our approach belongs

to the second group of methods that use a subsample of the data in each MCMC iteration

to speed up the algorithm, which we refer to as subsampling MCMC, see Korattikara et al.

(2014); Bardenet et al. (2014); Maclaurin and Adams (2014); Bardenet et al. (2015); Liu et al.

(2015). Section 4.3 brie�y outlines these approaches and Section 4.4 compares them against

our methods. For a more extensive introduction to these methods and a broad overview of

the problem in general, see the excellent review in Bardenet et al. (2015).

Our article presents a Metropolis-Hastings (MH) framework where the likelihood is esti-

mated from a random subset of the data using highly e�cient control variates for variance

reduction. For models with an intractable likelihood function, Beaumont (2003) proposes to

estimate the likelihood unbiasedly and run the MH algorithm on an extended space, which

also includes the random variates underlying the likelihood estimate. Andrieu and Roberts

(2009) develop theory for such Pseudo-Marginal MH (PM) algorithms, and prove that PM

algorithms target the true posterior if the likelihood estimator is unbiased and almost surely

positive. Obtaining unbiased likelihood estimators with low variability from subsampling is

a major challenge, and previous attempts have failed to produce an MCMC sampler that

does not get stuck (Korattikara et al., 2014; Bardenet et al., 2015). Moreover, ensuring that

the unbiased likelihood estimator is also positive was shown by Jacob and Thiery (2015)

to only be possible under assumptions that can only be satis�ed by sampling the full data

set (Bardenet et al., 2015). Quiroz et al. (2016) use the insights and techniques proposed

here (control variates and correlated PM for subsampling) to produce an estimator with low

variability and, in addition, target the absolute value of the estimate following Lyne et al.
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(2015) that allow the estimator to occasionally be negative. Draws from the algorithm are

corrected with an importance sampling step to obtain unbiased estimates of expectations of

posterior functions. Letm and n be the subsample and population sizes. Our article provides

an alternative approach that instead simulates by PM, but from a slightly perturbed target

(because the likelihood estimator is slightly biased), where (i) the error can be estimated

and made arbitrarily small at the rate O(m−2) with n �xed and (ii) a smaller variance of

the logarithm of the estimator of the likelihood can be achieved thus requiring a smaller m.

We also study the error with respect to the number of observations n, when m = m(n) and

under certain assumptions of the control variates.

The variance of the estimator of the log-likelihood is crucial for the performance of PM

algorithms: a large variance can easily produce extreme over-estimates of the likelihood and

cause the Markov chain to get stuck for long periods. On the other hand, a too precise

likelihood estimator might be unnecessarily costly. Pitt et al. (2012), Doucet et al. (2015)

and Sherlock et al. (2015) analyze the variance of the log-likelihood estimator σ2
LL,m,n that

maximizes the number of e�ective draws per unit of computing time. They conclude that

the optimal number of particles m should be such that σ2
LL,m,n is around 1. Moreover,

m = O(n) is required to obtain the optimal value of the variance. Recent advances in PM

algorithms correlate the particles at the current and proposed parameter value in the MH

ratio (Deligiannidis et al., 2016; Dahlin et al., 2015) or use blocking (Tran et al., 2016a).

This makes it possible to target σ2
LL,m,n � 1 and the optimal variance can be obtained

with m = O(n1/2) (Deligiannidis et al., 2016; Tran et al., 2016a). Our article proposes a

correlated pseudo-marginal approach for data subsampling that uses a copula transformation

of the random variates in Deligiannidis et al. (2016). Tran et al. (2016a) derive an explicit

expression of the correlation of the log-likelihood estimator at the current and proposed

draw, which we use to compute the optimal subsample size m = m(n) for our algorithm.

The paper is organized as follows. Section 2 introduces the general estimator and derives

some important properties. Section 3 outlines the subsampling MCMC algorithm and its

theoretical framework, including results on the accuracy of the perturbed posterior, and how
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to select the rate of m to achieve the optimal σ2
LL,m,n. Section 4 reviews other subsampling

approaches and evaluates the performance of the proposed methodology on two examples.

The second of these examples benchmarks our methods against the other approaches. Im-

plementation details and proofs are placed in the online Appendices A and B.

2. Sampling-based Log-likelihood Estimators

2.1. A log-likelihood estimator based on simple random sampling with e�cient

control variates. Let {yi, xi}ni=1 denote the data, where y is a response vector and x is a

vector of covariates. Let θ ∈ Θ be the vector of parameters. Given conditionally independent

observations we have the usual decomposition of the log-likelihood

(2.1) `(n)(θ) :=
n∑
i=1

`i(θ), where `i(θ) := log p(yi|θ, xi)

is the log-likelihood contribution of the ith observation. For any given θ, (2.1) is a sum of

a �nite number of elements and estimating it is equivalent to the classical survey sampling

problem of estimating a population total. See Särndal et al. (2003) for an introduction.

We assume in (2.1) that the log-likelihood decomposes as a sum of terms where each term

depends on a unique piece of data information. This applies to longitudinal problems where

`i(θ) is the log joint density of all measurements on the ith subject, and we sample subjects

rather than individual observations. It also applies to certain time-series problems such as

AR(p) processes, where the sample elements become (yt, . . . , yt−p), for t = p+ 1, . . . , n. Our

examples in Section 4 use independent identically distributed (iid) and time series data.

Estimating (2.1) based on Simple Random Sampling (SRS), where any `i(θ) is included

with the same probability generally results in a dramatically large variance. Intuitively,

since some `i(θ) contribute signi�cantly more to the sum in (2.1) they should be included in

the sample with a larger probability, using so called Probability Proportional-to-Size (PPS)

sampling. However, this requires each of the n sampling probabilities to be proportional

to a measure of their size. Evaluating n size measures is likely to defeat the purpose of

subsampling, except in cases when there is a computationally cheaper proxy than `i(θ) that
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can be utilized instead. Alternatively, one can make the {`i(θ)}ni=1 more homogeneous by

using control variates so that the population elements are roughly of the same size and SRS

is then expected to be e�cient. Our article focuses on this case and proposes e�cient control

variates qi,n(θ) such that the computational cost of the estimator is substantially less than

O(n). The dependence on n is due to qi,n(θ) being an approximation of li(θ), which typically

improves as more data is available.

De�ne the di�erences di,n(θ) := `i(θ)− qi,n(θ) and let

µd,n(θ) :=
1

n

n∑
i=1

di,n(θ) and σ2
d,n(θ) :=

∑n
i=1 (di,n(θ)− µd,n(θ))2

n

be the mean and variance of the �nite population {di,n(θ)}ni=1. Let u1, . . . , um be iid random

variables such that Pr(u = k) = 1/n for k = 1, . . . , n. The Di�erence Estimator (DE,

Särndal et al., 2003) of `(n)(θ) in (2.1) is

(2.2) ̂̀
(m,n)(θ) := q(n)(θ) + nµ̂d,n(θ), µ̂d,n(θ) :=

1

m

m∑
i=1

dui,n(θ)

with q(n)(θ) :=
∑n

i=1 qi,n(θ). It is straightforward to use unequal sampling probabilities with

the DE, but the sampling probabilities need to be evaluated for every observation, which

can be costly. The following Lemma gives some basic properties of the DE estimator.

Lemma 1. Suppose that ̂̀(m,n) is the estimator of `(n)(θ) = `(θ) given by (2.2). Then

i. E[µ̂d,n(θ)] = µd,n(θ).

ii.

E
[̂̀

(m,n)(θ)
]

= l(n)(θ) and σ2
LL,m,n = V

[̂̀
(m,n)(θ)

]
=
n2σ2

d,n

m
.

iii. ̂̀(m,n)(θ) is asymptotically normal when m → ∞ for �xed n and σ2
d,n < ∞, or when

both m,n→∞ with m = Bnγ for constants B > 0 and γ > 0 and σ3
d,n <∞.

Proof. The proofs of parts i) and ii) are straightforward and omitted. The proof of iii) is in

Appendix B. �
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The assumptions of �nite σ2
d,n and σ3

d,n in Lemma 1 part (iii) are highly non-restrictive

because the random variables are discrete with a �nite sample space: they are satis�ed for

any control variates that are �nite. We use the following estimate of σ2
d,n

σ̂2
d,n(θ) :=

∑m
i=1 (dui,n(θ)− µ̂d,n(θ))2

m
.

2.2. Control variates for variance reduction. To see the crucial role of variance reduc-

tion using control variates, we �rst note that the variance of the log-likelihood estimator

should be around one for the standard PM (see e.g. Pitt et al., 2012; Doucet et al., 2015

and Section 1). Now, de�ne

(2.3) an := sup
θ∈Θ

sup
i∈{1,...,n}

|di,n(θ)− µd,n(θ)| .

Throughout our article we assume that an <∞ for a given n and also that lim sup an <∞.

This assumption is easily enforced if Θ is a compact space as long as the control variates are

�nite. The following lemma is straightforward to prove.

Lemma 2. Suppose that lim sup an <∞. Then σ2
d,n = O(a2

n) and σ2
LL,m,n = n2a2nO(1)

m
.

According to Lemma 2, keeping the variance bounded as a function of n requires that

n2O(a2n)
m

= O(1). This highlights the importance of the variance reduction: SRS without

control variates scales poorly becauseO(a2
n) = O(1) andm = O(n2). On the other hand, with

control variates that improve as, say di,n = O(n−α) with α > 0, we have O(a2
n) = O(n−2α)

and m = O(n2(1−α)).

2.3. Computational complexity. The di�erence estimator in (2.2) needs to compute

q(n)(θ) =
∑n

i=1 qi,n(θ) in every MCMC iteration: this requires evaluating the control variates

qi,n(θ) for all data points. We now explore speci�c choices of qi,n that allow us to compute∑n
i=1 qi,n(θ) using substantially less evaluations than n. Denote the Computational Cost

(CC) for the standard MH without subsampling which evaluates `(n) :=
∑n

i=1 `i by

CC[`(n)(θ)] := n · c`,
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where c` is the cost of evaluating a single log-likelihood contribution (assuming the cost is

the same for all i). For the di�erence estimator in (2.2), we have

CC
[̂̀

(m,n)(θ)
]

:= n · cq +m · c`,

where cq is the cost of computing a control variate. We now brie�y describe two particular

control variates that reduce the �rst term n · cq. See Appendix A for details regarding their

implementation.

First, consider the control variates in Bardenet et al. (2015) who propose to use a second

order Taylor expansion of each `i(θ) around some reference value θ?, e.g. the maximum

likelihood estimate. This reduces the complexity from n evaluations to a single one (similar

to su�cient statistics for a normal model because qi,n(θ) is quadratic in θ). As noted by

Bardenet et al. (2015), this control variate is a poor approximation of `i(θ) whenever the

algorithm proposes a θ that is not near to θ?, and will therefore work well only when the

posterior is tightly concentrated around θ?. As a remedy in the case of a less concentrated

posterior, they suggest to occasionally recompute the control variates, expanding around the

current θ in the MCMC (using all n observations).

We now propose a control variate that works well regardless of the posterior concentration.

This control variate is based on clustering the data {zi = (yi, xi)}ni=1 into K clusters that

are kept �xed throughout the MCMC. At every MCMC iteration, we compute the exact

log-likelihood contributions at all K centroids and use a second order Taylor expansion with

respect to zi at the centroid as a local approximation of `i around each centroid. This allows

us to compute
∑n

i=1 qi,n(θ) by simply scaling up quantities computed at the K centroids.

The resulting estimator therefore has cost

(2.4) CC
[̂̀

(m,n)(θ)
]

= K · cq +m · c`,

where typically K � n.
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3. Subsampling MCMC Methodology

3.1. MCMC with likelihood estimators from data subsampling. We propose an

e�cient unbiased estimator ̂̀(m,n)(θ) of the log-likelihood and then approximately bias-correct

following Ceperley and Dewing (1999) (see also Nicholls et al., 2012) to obtain the 'bias-

corrected' likelihood estimator

(3.1) L̂(m,n)(θ, u) := exp

(̂̀
(m,n)(θ)−

n2

2m
σ̂2
d,n(θ)

)
,

where ̂̀(m,n)(θ) and σ̂
2
d,n(θ) are the estimators presented in Section 2.1. The form of (3.1) is

motivated by the case when ̂̀(m,n)∼N (`(n)(θ), σ
2
LL,m,n(θ)) and σ2

LL,m,n is known, in which case

all bias is removed. Normality holds asymptotically in bothm and n by part (iii) of Lemma 1.

However, the assumption of known variance is unrealistic because the computation requires

the entire data set. The estimator in (3.1) is therefore expected to only be nearly unbiased.

A main di�erence of our use of this estimator compared to Ceperley and Dewing (1999) and

Nicholls et al. (2012) is that our approach is a pseudo-marginal, where the space explored

by the Markov chain also includes the random variates used for estimating the likelihood.

Other di�erences are that we use control variates, that we analyze the dependence on n in

the analysis of the error, and that our convergence rate of the error (Theorem 1 below) is

O(m−2) as opposed to O(m−1) in Nicholls et al. (2012).

We now outline how to carry out a pseudo-marginal MH with the approximately unbiased

estimator in (3.1) and derive the asymptotic error in the stationary distribution. Denote

the likelihood by L(n)(θ) := p(y|θ), let pΘ(θ) be the prior and de�ne the marginal likelihood

L(n) :=
∫
L(n)(θ)pΘ(θ)dθ. Then the posterior is π(n)(θ) = L(n)(θ)pΘ(θ)/L(n). Let pU(u) be the

distribution of the vector u of auxiliary variables corresponding to the subset of observations

to include when estimating L(n)(θ). Let L̂(m,n)(θ, u), for �xed m and n, be a possibly biased

estimator of L(n)(θ) with expectation

L(m,n)(θ) =

∫
L̂(m,n)(θ, u)pU(u)du.
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De�ne

(3.2) π(m,n)(θ, u) := L̂(m,n)(θ, u)pU(u)pΘ(θ)/L(m,n), with L(m,n) :=

∫
L(m,n)(θ)pΘ(θ)dθ,

on the augmented space (θ, u). It is straightforward to show that π(m,n)(θ, u) is a proper

density with marginal

π(m,n)(θ) =

∫
π(m,n)(θ, u)du = L(m,n)(θ)pΘ(θ)/L(m,n).

The MCMC that targets (3.2) uses a joint proposal for θ and u given by

qΘ,U(θ, u|θc, uc) = pU(u)qΘ(θ|θc)

where c denotes the current state of the Markov chain. The PM acceptance probability

becomes

(3.3) α = min

(
1,
L̂(m,n)(θp, up)pΘ(θp)/qΘ(θp|θc)
L̂(m,n)(θc, uc)pΘ(θc)/qΘ(θc|θp)

)
.

This expression is similar to the MH acceptance probability, but with the true likelihood

replaced by its estimate. By Andrieu and Roberts (2009), the draws of θ obtained by this

MH algorithm have π(m,n)(θ) as invariant distribution. If L̂(m,n)(θ, u) is an unbiased estimator

of L(n)(θ), then the marginal of the augmented MCMC scheme above has π(m,n)(θ) = π(n)(θ)

(the true posterior) as invariant distribution. However, if L̂(m,n)(θ, u) is biased, the sampler

is still valid but has a perturbed marginal π(m,n)(θ).

3.2. Perturbation analysis - asymptotics. Our next result gives the rate at which the

perturbed target π(m,n)(θ) approaches the true target posterior π(n)(θ).

Theorem 1. Suppose that a PM algorithm is implemented with the estimator in L̂(m,n)(θ, u)

in (3.1) and assume that n3a3
n/m

2 = o(1). The following results hold for any θ ∈ Θ, where

Θ is a compact space,
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i. ∣∣L(m,n)(θ)− L(n)(θ)
∣∣

L(n)(θ)
≤ O

(
n2a2

n

m2

)
.

ii. ∣∣π(m,n)(θ)− π(n)(θ)
∣∣

π(n)(θ)
≤ O

(
n2a2

n

m2

)
.

iii. Suppose that h(θ) is a function such that Eπ(n)
[|h(θ)|] <∞. Then∣∣∣∣∣Eπ(m,n)

[h(θ)]− Eπ(n)
[h(θ)]

Eπ(n)
[h(θ)]

∣∣∣∣∣ ≤ O

(
n2a2

n

m2

)
.

Note that we need to have m = n2O(a2
n) to target σ2

LL,m,n = n2O(a2n)
m

at the optimal value

around 1. By Theorem 1, this m gives a fractional error of the posterior which is within

O(n−2a−2
n ) of the true posterior. Note also that the perturbation error is O (m−2) for a �xed

n.

3.3. Approximating the perturbation error. Theorem 1 is derived under essentially

no assumptions on the estimator, and clearly displays the fast convergence of our perturbed

posterior, but it does not provide a practically useful way to quantify the discrepancy between

π(m,n)(θ) and π(n)(θ). We now propose a way to estimate the point-wise fractional error in

the perturbed posterior distribution

(3.4) error(θ) =
π(m,n)(θ)− π(n)(θ)

π(n)(θ)
=

(
L(m,n)(θ)

L(n)(θ)

)/(L(m,n)

L(n)

)
− 1.

The following lemma is an application of the bivariate Central Limit Theorem (CLT).

Lemma 3.

√
m

µ̂d,n
σ̂2
d,n

−
µd,n
σ2
d,n

 L→ N

0

0

 ,Σ =

σ2
d,n ϕ

(3)
d,n

ϕ
(3)
d,n σ4

d,n − ϕ
(4)
d,n

 as m→∞,

with ϕ
(b)
d,n = E[(dui,n − µd,n)b] =

∑n
i=1(di,n − µd,n)b/n for b ≥ 1.
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Lemma 4. Suppose thatµ̂d,n
σ̂2
d,n

 ∼ N

µd,n
σ2
d,n

 , Σ̄ =
1

m

σ2
d,n ϕ

(3)
d,n

ϕ
(3)
d,n σ4

d,n − ϕ
(4)
d,n

 .(3.5)

Then, with Ψ
(b)
d,n := ϕ

(b)
d,n/σ

b
d,n for b ≥ 1,

(3.6) L(m,n)(θ) = exp

(
`(n) +

σ4
LL,m,n(θ)

8m

(
1−Ψ

(4)
d,n(θ)

)
−
σ3
LL,m,n(θ)

2
√
m

Ψ
(3)
d,n(θ)

)
.

Proof. Since L(m,n)(θ) = exp
(
q(n)(θ)

)
E
[
exp

(
nµ̂d,n − n2

2m
σ̂2
d,n

)]
the result follows from the

moment generating function (mgf) of the bivariate normal distribution in (3.5). �

It is easy to show that γ
(b)
d,n = O(1) for any b ≥ 1. From Lemma 4 it follows that the

perturbation error in the likelihood L(m,n)(θ)/L(n)(θ) depends on σLL,m,n, and will increase

with it for su�ciently large σLL,m,n. It is important to note, however, that any constant factor

c in L(m,n)(θ)/L(n)(θ) that does not depend on θ will cancel out in the fractional posterior

error in (3.4) since the same factor c will also appear in L(m,n)/L(n). This observation leads

to the following theoretically interesting remark.

Remark 1. Suppose we run a PM algorithm and that we can, for any proposed θ ∈ Θ, where

Θ is a compact space, choose m(θ) such that

(3.7)
σ4
LL,m(θ),n(θ)

8m(θ)

(
1−Ψ

(4)
d,n(θ)

)
−
σ3
LL,m(θ),n(θ)

2
√
m(θ)

Ψ
(3)
d,n(θ) = c.

Then error(θ) = 0.

The constant c is an arbitrary choice: any c generates a speci�c mc(θ) which ensures

unbiasedness for any θ ∈ Θ. A natural choice of c would be to solve (3.7) based on the m(θ?)

that targets the optimal σ2
LL,m(θ?),n, where θ

? is the mode. Of course, this strategy uses all

data and is thus not applicable, but illustrates an important property of our method.

In practice we can instead use the result in Lemma 4 to check error(θ) in any given

application as follows. The quantities σLL,m,n(θ) and γ
(b)
d,n can be easily evaluated for any

θ at the cost of evaluating `i(θ) for all i = 1, ..., n, or estimated from a subsample. It
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is also necessary to evaluate L(n) and L(m,n), which can be done with the usual Laplace

approximation. Approximating L(n) requires the Hessian of logL(n)(θ) evaluated at the

mode, which can be obtained analytically from tedious di�erentiation or numerically by �nite

di�erences. A similar procedure applies for L(m,n), but with logL(m,n) from (3.6) where clearly

the Hessian becomes analytically intractable, but �nite di�erences are straightforward.

3.4. Correlated proposals of u for subsampling. Deligiannidis et al. (2016) and Dahlin

et al. (2015) both propose a general method that correlates the current and proposed values

of ui. The advantage of this correlation is that it makes the variance of the di�erence in the

logarithms of the estimated likelihoods appearing in (3.3) much smaller than that of each of

the terms themselves. This leads in our context to requiring much smaller values of m, or

equivalently, that we can target much higher values of σ2
LL,m,n than unity, provided we also

check that error(θ) remains at an acceptable level.

For a correlated PM approach to subsampling, we let u be a vector of length n with

binary elements ui that determine if observation i is included (ui = 1) when estimating the

log-likelihood. Note that this is di�erent from the above, where u contained the observation

indices and was of length m. Moreover, here the sample size is random and we let m? be the

expected sample size. The sampling probabilities become Pr(ui = 1) = m?/n for i = 1, . . . , n.

We use the auxiliary variable (particle) v in Deligiannidis et al. (2016) to induce dependence

at the current uci and proposed upi sampling indicator through a Gaussian copula as we

now explain. The correlated pseudo-marginal method uses a Gaussian auto-regressive kernel

K(vc, vp) with a transition de�ned by vp = φvc+
√

1− φ2ε, where ε ∼ N (0, 1). We also have

vc ∼ p(v) = N (v|0, 1) and K(vc, vp) is reversible with respect to p(v). We sample the ui's by

�rst generating vc and vp and set uci = I
[
Φ(vc) ≤ m?

n

]
and upi = I

[
Φ(vp) ≤ m?

n

]
, where Φ

denotes the standard normal cdf. An equivalent approach is to generate upi from a Markov

chain with marginal p(uci = 1) = m?/n, with transition probabilities Pr(upi = 1|uci = 1) = κ

and Pr(upi = 0|uci = 0) = 1 − (1− κ) m?/n
1−m?/n

. The persistence parameter κ in the Markov

chain is related to the AR persistence φ by the relation κ = n
m? Φ2 (Φ−1(m?/n),Φ−1(m?/n)|φ),

where Φ2(·, ·|φ) is the cdf of bivariate standard normal variables with correlation φ.
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As noted above, in contrast to Section 2.1, u is a binary vector. We can instead use the

Horvitz-Thompson (Horvitz and Thompson, 1952) which (under SRS) is

d̂(m?,n) =
n∑
i=1

di,n
m?/n

ui,

and is unbiased for d(n). Note that we can write

d̂(m?,n) =
1

m?

n∑
i=1

ndi,nui, with σ2
LL,m?,n =

σ2
ξ,m?,n

m?
, where σ2

ξ,m?,n = n

(
1− m?

n

) n∑
i=1

d2
i,n

can be unbiasedly estimated by

σ̂2
ξ,m?,n = n2

(
1− m?

n

)
1

m?

n∑
i=1

d2
i,nui.

3.5. Block proposals of u for subsampling. Tran et al. (2016a) propose the block PM

algorithm and show that it is a natural way to correlate the estimation errors in panel data

and also in subsampling problems such as ours. The method divides the vector of observation

indices u = (u1, . . . , um) into G blocks and then update one block at a time jointly with θ.

By setting a large G, a high correlation ρ between the estimates at the proposed and current

parameter values is induced, reducing the variability of the ratio of estimates. More precisely,

they show that under certain assumptions ρG = 1− 1/G.

3.6. Optimal variance of the estimator. Pitt et al. (2012), Doucet et al. (2015) and

Sherlock et al. (2015) obtain the value of σ2
LL,m,n that optimizes the trade o� between MCMC

sampling e�ciency and computational cost in standard PM. The consensus is that σ2
LL,m,n

should be between [1, 3.283] where, in general, the less e�cient the proposal in the exact

likelihood setting, the higher the optimal value of σ2
LL,m,n. The optimal value is derived

assuming that the cost of computing one MCMC sample is inversely proportional to σ2
LL,m,n,

so that the so called Computational Time (CT) to produce one equivalent to an iid draw is

CT(σ2
LL,m,n) ∝ IF(σ2

LL,m,n)× 1

σ2
LL,m,n

, with IF(σ2
LL,m,n) = 1 + 2

∞∑
l=1

ρl,(3.8)
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where IF is the Ine�ciency Factor and ρl is the l-lag auto-correlation of the chain. In our

approach we have to select bothm and K, the number of clusters. The computational cost of

a new cluster comes from evaluating `i at the centroid, but also from evaluating the gradient

and Hessian of `i. An approximate upper bound for the cost of a new cluster is therefore

3c`, where c` is the cost of a single `i-evaluation. In many models one can however re-use

computations when computing the gradient and Hessian, so the true cost is probably much

closer to 1c`. Assuming that the cost of a new cluster is ωc`, for some ω > 0, a reasonable

measure of computational time is

(3.9) CT(m,K)(σ
2
LL,m,n(K)) = IF(σ2

LL,m,n(K))× (ωK +m).

This expression is similar to Tran et al. (2016b) who also take into account an overhead cost

in their CT. We �nd m and K by standard numerical optimization using an expression for

the IF (e.g. the ones derived in Pitt et al., 2012 for PM and Tran et al., 2016a for block

PM). It should be noted that the optimal value σ2
LL,m,n ≈ 1 is obtained if m is much larger

than K (and ω is not too large) because then (3.8) and (3.9) are approximately equal (up

to a proportionality constant).

Tran et al. (2016a) show that the conditional variance of the log-likelihood estimator

(conditional on only updating one block of u, keeping the others �xed) is τ 2
m,n,G = σ2

LL,m,n(1−

ρ2
G). Let G = G(m) = O(mβ), then it follows that (using Lemma 2 and ρG(m) = 1−1/G(m))

τ 2
m,n,G = O(1) is achieved if we take m = O(nγ) with

γ =
2(1− α)

1 + β
, and α in an = O(n−α) as in (2.3).

Note that if β = 0, i.e. G is constant as a function of m so that ρ → 0 as m → ∞, then

γ = 2(1−α), which corresponds to the uncorrelated algorithm. We emphasize that it is the

interaction of the control variates and the correlated mechanism that makes the method scale

well. For example, using G = O(
√
m), the optimal m is sublinear in n if α>1/4. However,

note that reducing γ lower the rates of the asymptotic errors in Theorem 1. Tran et al.

(2016a) also derive the optimal value of σ2
LL,m,n to target under the assumption of a CT as
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in (3.8), but conditional on a value of ρ. This value of σ2
LL,m,n will typically be much larger

than 1.

4. Applications

4.1. Settings for PM algorithms. Our algorithms use the control variates obtained by

data clustering followed by a Taylor series expansion in data space. The tuning parameters

m and K in the PM algorithms are determined by optimizing the computational time CT

in (3.9)

σ2
LL,m,n(K) =

n2σ2
d,n(K)

m
and IF(σ2

LL,m,n(K)),

with respect to m and K. We estimate the relation σ2
d,n(K) = C0K

ν by, for each example,

running our cluster algorithm on a grid ofK and for each value of the grid we compute σ2
d,n at

the likelihood mode θ?. Given C0 and ν, it is straightforward to use the expression for the IF

in Pitt et al. (2012) (PM) and Tran et al. (2016a) (block PM) to minimize CT(m,K) in (3.9)

and obtain mopt and Kopt and the corresponding σ2
opt = σ2

LL,mopt,n
(Kopt). The correlated

PM uses m?
opt = mopt and the same value of Kopt as block PM. Table 1 shows a summary

of the settings for the applications. Finally, we let G = 100 (ρ = 0.99) and φ = 0.9999

(κ = 0.9863).

4.2. Logistic regression. Our �rst example uses a logistic regression model for modeling

bankruptcy conditional on a set of �rm-speci�c covariates and macroeconomic variables, see

Giordani et al. (2014) for details on the covariates. The data set has n = 4, 748, 089 and 8

covariates. The model is

p(yi|xi, β) =

(
1

1 + exp(xTi β)

)yi ( 1

1 + exp(−xTi β)

)1−yi
, with p(β) = N (β|0, 10I).

Since the bankruptcy observations (yi = 1) are sparse (41, 566 defaults), we only subsample

the observations with yk = 0 observations, i.e. the �rst term in

`(θ) =
∑
{i;yi=1}

`i(θ) +
∑
{i;yi=0}

`i(θ),
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Table 1. Experimental setup in the applications. n is the number of obser-
vation. The proposals are the Random Walk Metropolis (RWM) q(θ|θc) =
N (θ|θc,Σθ?) and the Independent MH (IMH) q(θ) = t10(θ|θ?,Σθ?), where the
location parameter is θ? is the posterior mode and Σθ? is the negative inverse
Hessian of the log-posterior evaluated at θ?, both obtained from an initial
numerical optimization. We denote the optimal sample size and number of
clusters by mopt and Kopt, and σ

2
LL,opt is the corresponding optimal variance

of the log-likelihood estimate. We use N = 50, 000 iterates after discarding
5,000 iterates as burn-in.

Example n Proposal 100mopt/n 100Kopt/n σ2
LL,opt

Logistic 4,7×106 RWM/IMH

Uncorr 8.615 4.967 0.27

Block / Corr 1.286 0.485 56.89

AR(1): M1 105 RWM

Uncorr 1.896 2.464 0.11

Block / Corr 0.757 0.993 12.41

AR(1): M2 105 RWM

Uncorr 4.561 8.192 0.11

Block / Corr 2.151 3.176 12.40

is always evaluated (and included in the CC). Figure 1 shows the sampling e�ciency of the

PM algorithms relative to that of the MH algorithm as measured by the Relative Compu-

tational Time (RCT) de�ned, for any sampler A, as CTMH/CTA. The �gure also shows the

Relative IF (RIF) , which is de�ned as IFA/IFMH, where each IF is estimated using the coda

package in R (Plummer et al., 2006). The �gure shows that both correlated and block PM

signi�cantly outperform standard PM and also MH with respect to RCT. Figure 2 plots the

Kernel Density Estimates (KDE) on the output from the three pseudo-marginal schemes

and the exact MH approach. The �gure shows that targeting a large σ2
LL,m,n (≈ 56) for the

block and correlated PM samplers result in a very small bias in this application, with the

approximation error in (3.4) being −0.01 for both the block and correlated PM and −0.0001

for the standard PM. Figure 2 suggests that this small perturbation is, for the correlated

and block PM estimators, mostly due to β3.

Finally, we also tried the exact subsampling approach (Quiroz et al., 2016) by setting

E[G] = 100 (G is random in their approach) and the batch-size to 602, so that their prior
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expected sample size corresponds to that for our correlated algorithms. For the RWM we

obtained an RCT of ≈ 17 (ω = 3) and ≈ 20 (ω = 1) (average over parameters), with ω in

(3.9).
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Figure 1. Logistic regression example. For algorithm A (uncorrelated (Un-
corr), block (Block) and correlated (Corr) PM) the �gure shows the Relative
Ine�ciency Factors (RIF) and Relative Computational Time for RWM pro-
posal (left panel) and IMH (right panel). For RCT, the �lled (dashed) bar
correspond to ω = 3 (ω = 1) in (3.9).

4.3. Other subsampling approaches. We brie�y discuss some other subsampling ap-

proaches and then benchmark them against our approach.

Korattikara et al. (2014) argue that using all data to take the simple decision to accept

(or reject) a single parameter draw is a computationally ine�cient strategy. Instead, they

develop a sequence of t-tests, where each test is based on an increasing sample size and has

a user speci�ed error probability ε. The sequence is stopped when a decision of accepting

(or rejecting) a single sample can be taken with a su�ciently small total error probability.

They prove that the discrepancy between their approximate posterior and the true posterior

can be made arbitrarily small by decreasing the total error probability of the test. However,

it was empirically demonstrated in Bardenet et al. (2015) (see also Section 4.4) that the ε
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Figure 2. Logistic regression example. Kernel density estimates of marginal
posteriors obtained by the IMH proposal. The �gure shows the marginal pos-
teriors obtained using the uncorrelated (Uncorr), block (Block) and correlated
(Corr) PM (dashed blue, red and green, respectively) and MH (solid black
line).

parameter must be set so low that virtually the full data set is required to obtain a reasonable

approximation error.

Bardenet et al. (2014) also rely on the idea of replacing the computation of the MH ratio

with a hypothesis test. However, they use an exact (not relying on a CLT) con�dence

interval obtained through a concentration inequality, which allows the choice of a subsample

large enough so that a decision can be taken with a user speci�ed error probability. They

prove that the posterior targeted by their algorithm can become arbitrarily close to the true

posterior as the error probability decreases. To successfully implement the method, the range

of the di�erences in log-likelihood contributions at the proposed and current samples must

be cheap to compute. Moreover, the performance of the method is highly dependent on the

variance of these di�erences.

Bardenet et al. (2015) improve on the sampler in Bardenet et al. (2014) by introducing

control variates to obtain variance reduction of the di�erences. Furthermore, the method

does not rely on a cheaply computed range, however, it does rely on a bound for the di�erence
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between the log-likelihood contributions at the proposed and current sample, and that of the

control variates. When the control variates are obtained via Taylor series approximations,

they suggest using the Taylor-Lagrange inequality to obtain the bound. We show in Section

4.4 that the Taylor-Lagrange bound can sometimes be too crude, and it is then necessary

to compensate with a very large subsample. Bardenet et al. (2015) show that their method

dramatically outperforms, among others, Korattikara et al. (2014), Bardenet et al. (2014)

and Fire�y Monte Carlo (Maclaurin and Adams, 2014, see below).

Fire�y Monte Carlo in (Maclaurin and Adams, 2014, and more recently, Liu et al., 2015)

introduces an auxiliary variable for each observation which determines if it should be included

in the evaluation of the posterior. The distribution of these variables are such that when

they are integrated out, the marginal posterior is the true posterior of θ. Moreover, a lower

bound for each likelihood term is introduced, which basically plays the role of replacing the

observations that are not included in the evaluation of the posterior. The authors suggest

using the Gibbs sampler, generating the parameters conditional on the auxiliary variables

and vice versa. The method has been documented to be very ine�cient, see e.g. Bardenet

et al. (2015), see also Section 4.4.

4.4. AR processes. The running examples in Bardenet et al. (2015) use the normal model

which is too simplistic for our method because the log-likelihood is quadratic in the data and

therefore our control variates are perfect. We instead compare our method to alternative

approaches using the following illustrative models. We consider the following two AR(1)

models with Student-t iid errors εt ∼ t(5) with 5 degrees of freedom

M1 : yt = β0 + β1yt−1 + εt [θ = (β0 = 0.3, β1 = 0.6)]

M2 : yt = µ+ %(yt−1 − µ) + εt [θ = (µ = 0.3, % = 0.99)]

with priors

p(β0, β1)
ind.
= U(β0| − 5, 5) · U(β1|0, 1) and p(µ, %)

ind.
= U(µ| − 5, 5) · U(%|0, 1),
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where U(·|a, b) is the uniform density on the interval [a, b]. Model M2, the so called steady

state AR, is particularly interesting as % close to 1 gives a weakly identi�ed µ, with a posterior

that concentrates very slowly as n increases.

We compare our method to the Austerity MH (Korattikara et al., 2014), Fire�y Monte

Carlo (Maclaurin and Adams, 2014), the con�dence sampler (Bardenet et al., 2014) and the

con�dence sampler with proxies (Bardenet et al., 2015). We set the tuning parameters of the

competing algorithms following Bardenet et al. (2015) with the following exceptions. First,

we adapt during the burn-in phase to reach an acceptance probability of α = 0.35 (instead

of α = 0.50), which is optimal for RWM with two parameters (Gelman et al., 1996). For the

pseudo-marginals we instead use α = 0.15 as the �ve parameter example in Sherlock et al.

(2015). Second, the p-value of the t-test in the Austerity MH algorithm is set to ε = 0.01

(instead of ε = 0.05) to put the approximation error of the method on par with the other

methods. Setting ε = 0.05 gives an unusably poor approximation (and also produces a much

lower RCT than our methods). Additionally, the con�dence sampler with proxies (from

a Taylor series approximation with respect to θ) requires that the third derivative can be

bounded uniformly for every observation and any θ. This bound is achieved, without any

extra computational cost, by computing on a θ-grid where the posterior mass is located.

Table 2. AR-process example. Mean of sampling fraction f = m/n over
MCMC iterations for models M1 and M2 with MH, uncorrelated PM (Un-
corr), block PM (Block) and correlated PM (Corr), con�dence sampler (Conf),
con�dence sampler with proxies (ConfProxy), Austerity MH (AustMH), and
Fire�y Monte Carlo (Fire�y).

MH Uncorr Block Corr Conf ConfProxy AustMH Firefly

M1 1.000 0.093 0.037 0.037 1.493 0.160 1.037 0.100

M2 1.000 0.291 0.117 0.116 1.490 1.500 1.019 0.137

Table 2 shows the mean of the sampling fraction over MCMC iterations. We note that

both con�dence samplers and the Austerity MH estimate the numerator and denominator

in each iteration, and therefore require twice as many evaluations in a given iteration as

MCMC (in some cases evaluations from the previous iteration can be reused). It is clear
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Figure 3. AR-process example: Results for other subsampling algorithms.
The left and right panel, respectively, show the results for model M1 and
M2. Each column shows the kernel density estimates of marginal posteriors
(top two) and for algorithm A (con�dence sampler (Conf), con�dence sampler
with proxies (ConfProxy), Austerity MH (AustMH), and Fire�y Monte Carlo
(Fire�y)) the Relative Computational Time (RCT) (bottom).

that our algorithms makes very e�cient use of a small subsample, especially the block and

correlated PM samplers.

Figure 3 and 4 show the marginal posteriors obtained by, respectively, alternative sampling

approaches and the several PM approaches. Moreover, the �gures show the sampling e�-

ciency of the di�erent subsampling MCMC algorithms relative to that of the MH algorithm

as measured by the Relative Computational Time. Figure 3 shows the striking result that

many of these approaches are not more e�cient than MH, except the con�dence sampler

with proxies for M1. Regarding the approximation, it is evident that the Austerity MH still

has a tempering e�ect (larger spread on the posterior) although ε is set so low that the full

data set is sampled (see Table 2). The PM algorithms (and also the con�dence samplers)

provide excellent approximations: indeed, error(θ) ≤ 10−6 in (3.4) for all our methods. Fire-

�y Monte Carlo, although being an exact algorithm, is highly ine�cient in this example, as

also documented in Bardenet et al. (2015). In fact, for M2, we were not able to obtain a



SPEEDING UP MCMC 22

0.29 0.30 0.31 0.32

π
(β

0
)

M1
MH

Uncorr

Block

Corr

0.5 0.0 0.5 1.0 1.5 2.0

π
(µ

)

M2

0.590 0.595 0.600 0.605 0.610

π
(β

1
)

0.989 0.990 0.991 0.992

π
(%

)

β0 β1

10
20
30
40

R
C

T

14.71 15.13

37.64
43.93

35.27 36.03

Uncorr

Block

Corr

µ %

10
20
30
40

R
C

T

4.46 5.62
12.85 13.7311.86 13.54

Figure 4. AR-process example: Results for subsampling PM algorithms. The
left and right panel, respectively, show the results for model M1 and M2. Each
column shows the kernel density estimates of marginal posteriors (top two) and
for algorithm A (uncorrelated (Uncorr), block (Block) and correlated (Corr)
PM) the Relative Computational Time (RCT) (bottom). For RCT, the �lled
(dashed) bar correspond to ω = 3 (ω = 1) in (3.9).

single e�ective sample out of 55, 000 iterations, and hence it was impossible to construct a

kernel density estimate in this case. We also tried the exact subsampling in Quiroz et al.

(2016), setting the tuning parameters to match the sample size used here as described in

Section 4.2. For M1 the sampler got stuck because the variance of the log of the estimator

was too large (≈ 2070, compared to ≈ 12 for the estimator used here). For M2 the exact

subsampling produced an RCT of ≈ 4 (ω = 3) and ≈ 7 (ω = 1) (average over parameters),

with ω in (3.9).

We conclude that the only viable subsampling MCMC approaches are the con�dence

sampler with proxies (Bardenet et al., 2015) and the PM approaches we propose. Moreover,

a signi�cant speed up is only obtained with the correlated PMs (both correlated and block).

We acknowledge that we have put the con�dence sampler with proxies in an unfavorable

situation in M2: the bound of its concentration inequality requires a bound of the remainder

term in the Taylor series via the Taylor-Lagrange inequality, which is very hard for M2.
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We remark that the Taylor proxies with respect to θ work well in these two-dimensional

examples, however, problems are encountered in the logistic example in Section 4.2; the

expansion with respect to the data as proposed in Section 2.1 works much better. Moreover,

an additional feature of expanding with respect to data is that an IMH proposal can be

implemented straightforwardly, as the control variates are accurate for any θ.

5. Conclusions and Future Research

We propose a framework for speeding up MCMC for data sets with many observations

by data subsampling. The following features are key to our approach. First, we introduce a

highly e�cient log-likelihood estimator, which incorporates information about each observa-

tion's contribution to the log-likelihood function, while only operating on a sparse set of the

data. This results in a substantially lower computational cost. Second, we use the result-

ing likelihood estimate within a pseudo-marginal framework and sample from a perturbed

posterior which, for �xed n, we prove to be within O(m−2) of the true posterior. We also

consider the asymptotic behavior with respect to n. Moreover, we provide a useful heuristic

to approximate the error, given that m is large. Third, we propose a correlated pseudo-

marginal approach to subsampling, which allows highly variable estimates of the likelihood

without adversely a�ecting the mixing of the algorithm. The resulting algorithm is a highly

e�cient algorithm when taking into account the statistical e�ciency and computational cost.

Fourth, we use the correlated and block PM samplers to show that we can let the sample size

m grow much more slowly as a function of n than the standard PM sampler to achieve the

same ine�ciency, and hence a much lower computational time. Finally, we document large

speed ups relative to MH and, more importantly, we show that our method outperforms

other recent subsampling approaches in the literature.

Future research concerns designing e�cient proposals based on data subsampling, e.g. in

hybrid Monte Carlo algorithms. It is also of interest to develop improved clustering methods

to obtain control variates, especially in the presence of a large number of covariates.
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SPEEDING UP MCMC BY EFFICIENT DATA SUBSAMPLING

MATIAS QUIROZ, MATTIAS VILLANI, ROBERT KOHN AND MINH-NGOC TRAN

Abstract. We propose Subsampling MCMC, a Markov Chain Monte Carlo (MCMC)

framework where the likelihood function for n observations is estimated from a random

subset of m observations. We introduce a general and highly e�cient unbiased estimator of

the log-likelihood based on control variates obtained from clustering the data. The cost of

computing the log-likelihood estimator is much smaller than that of the full log-likelihood

used by standard MCMC. The likelihood estimate is bias-corrected and used in two corre-

lated pseudo-marginal algorithms to sample from a perturbed posterior, for which we derive

the asymptotic error with respect to n and m, respectively. A practical estimator of the

error is proposed and we show that the error is negligible even for a very small m in our

applications. We demonstrate that Subsampling MCMC is substantially more e�cient than

standard MCMC in terms of sampling e�ciency for a given computational budget, and that

it outperforms other subsampling methods for MCMC proposed in the literature.

Keywords: Bayesian inference, Estimated likelihood, Correlated pseudo-marginal, Block

pseudo-marginal, Big Data, Survey sampling.

1. Introduction

The popularity of Bayesian methods increased signi�cantly in the early 90's due to ad-

vances in computer technology and the introduction of powerful simulation algorithms such

as Markov Chain Monte Carlo (MCMC) (Gelfand and Smith, 1990). However, posterior

sampling with MCMC is time-consuming and there is an increasing awareness that new scal-

able algorithms are necessary for MCMC to remain an attractive choice for inference in data

sets with a large number of observations.
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Current research on scalable MCMC algorithms belongs to two major groups. The �rst

group employs parallelism through the typical MapReduce scheme (Dean and Ghemawat,

2008) by partitioning the data and computing posteriors in a parallel and distributed manner.

The resulting draws are subsequently combined into a single posterior distribution. The

main di�erence within this group is how weighting is performed and whether the partitions

communicate at runtime, see for example Scott et al., 2013; Neiswanger et al., 2013; Wang

and Dunson, 2013; Minsker et al., 2014; Nemeth and Sherlock, 2016. Our approach belongs

to the second group of methods that use a subsample of the data in each MCMC iteration

to speed up the algorithm, which we refer to as subsampling MCMC, see Korattikara et al.

(2014); Bardenet et al. (2014); Maclaurin and Adams (2014); Bardenet et al. (2015); Liu et al.

(2015). Section 4.3 brie�y outlines these approaches and Section 4.4 compares them against

our methods. For a more extensive introduction to these methods and a broad overview of

the problem in general, see the excellent review in Bardenet et al. (2015).

Our article presents a Metropolis-Hastings (MH) framework where the likelihood is esti-

mated from a random subset of the data using highly e�cient control variates for variance

reduction. For models with an intractable likelihood function, Beaumont (2003) proposes to

estimate the likelihood unbiasedly and run the MH algorithm on an extended space, which

also includes the random variates underlying the likelihood estimate. Andrieu and Roberts

(2009) develop theory for such Pseudo-Marginal MH (PM) algorithms, and prove that PM

algorithms target the true posterior if the likelihood estimator is unbiased and almost surely

positive. Obtaining unbiased likelihood estimators with low variability from subsampling is

a major challenge, and previous attempts have failed to produce an MCMC sampler that

does not get stuck (Korattikara et al., 2014; Bardenet et al., 2015). Moreover, ensuring that

the unbiased likelihood estimator is also positive was shown by Jacob and Thiery (2015)

to only be possible under assumptions that can only be satis�ed by sampling the full data

set (Bardenet et al., 2015). Quiroz et al. (2016) use the insights and techniques proposed

here (control variates and correlated PM for subsampling) to produce an estimator with low

variability and, in addition, target the absolute value of the estimate following Lyne et al.
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(2015) that allow the estimator to occasionally be negative. Draws from the algorithm are

corrected with an importance sampling step to obtain unbiased estimates of expectations of

posterior functions. Letm and n be the subsample and population sizes. Our article provides

an alternative approach that instead simulates by PM, but from a slightly perturbed target

(because the likelihood estimator is slightly biased), where (i) the error can be estimated

and made arbitrarily small at the rate O(m−2) with n �xed and (ii) a smaller variance of

the logarithm of the estimator of the likelihood can be achieved thus requiring a smaller m.

We also study the error with respect to the number of observations n, when m = m(n) and

under certain assumptions of the control variates.

The variance of the estimator of the log-likelihood is crucial for the performance of PM

algorithms: a large variance can easily produce extreme over-estimates of the likelihood and

cause the Markov chain to get stuck for long periods. On the other hand, a too precise

likelihood estimator might be unnecessarily costly. Pitt et al. (2012), Doucet et al. (2015)

and Sherlock et al. (2015) analyze the variance of the log-likelihood estimator σ2
LL,m,n that

maximizes the number of e�ective draws per unit of computing time. They conclude that

the optimal number of particles m should be such that σ2
LL,m,n is around 1. Moreover,

m = O(n) is required to obtain the optimal value of the variance. Recent advances in PM

algorithms correlate the particles at the current and proposed parameter value in the MH

ratio (Deligiannidis et al., 2016; Dahlin et al., 2015) or use blocking (Tran et al., 2016a).

This makes it possible to target σ2
LL,m,n � 1 and the optimal variance can be obtained

with m = O(n1/2) (Deligiannidis et al., 2016; Tran et al., 2016a). Our article proposes a

correlated pseudo-marginal approach for data subsampling that uses a copula transformation

of the random variates in Deligiannidis et al. (2016). Tran et al. (2016a) derive an explicit

expression of the correlation of the log-likelihood estimator at the current and proposed

draw, which we use to compute the optimal subsample size m = m(n) for our algorithm.

The paper is organized as follows. Section 2 introduces the general estimator and derives

some important properties. Section 3 outlines the subsampling MCMC algorithm and its

theoretical framework, including results on the accuracy of the perturbed posterior, and how



SPEEDING UP MCMC 4

to select the rate of m to achieve the optimal σ2
LL,m,n. Section 4 reviews other subsampling

approaches and evaluates the performance of the proposed methodology on two examples.

The second of these examples benchmarks our methods against the other approaches. Im-

plementation details and proofs are placed in the online Appendices A and B.

2. Sampling-based Log-likelihood Estimators

2.1. A log-likelihood estimator based on simple random sampling with e�cient

control variates. Let {yi, xi}ni=1 denote the data, where y is a response vector and x is a

vector of covariates. Let θ ∈ Θ be the vector of parameters. Given conditionally independent

observations we have the usual decomposition of the log-likelihood

(2.1) `(n)(θ) :=
n∑
i=1

`i(θ), where `i(θ) := log p(yi|θ, xi)

is the log-likelihood contribution of the ith observation. For any given θ, (2.1) is a sum of

a �nite number of elements and estimating it is equivalent to the classical survey sampling

problem of estimating a population total. See Särndal et al. (2003) for an introduction.

We assume in (2.1) that the log-likelihood decomposes as a sum of terms where each term

depends on a unique piece of data information. This applies to longitudinal problems where

`i(θ) is the log joint density of all measurements on the ith subject, and we sample subjects

rather than individual observations. It also applies to certain time-series problems such as

AR(p) processes, where the sample elements become (yt, . . . , yt−p), for t = p+ 1, . . . , n. Our

examples in Section 4 use independent identically distributed (iid) and time series data.

Estimating (2.1) based on Simple Random Sampling (SRS), where any `i(θ) is included

with the same probability generally results in a dramatically large variance. Intuitively,

since some `i(θ) contribute signi�cantly more to the sum in (2.1) they should be included in

the sample with a larger probability, using so called Probability Proportional-to-Size (PPS)

sampling. However, this requires each of the n sampling probabilities to be proportional

to a measure of their size. Evaluating n size measures is likely to defeat the purpose of

subsampling, except in cases when there is a computationally cheaper proxy than `i(θ) that
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can be utilized instead. Alternatively, one can make the {`i(θ)}ni=1 more homogeneous by

using control variates so that the population elements are roughly of the same size and SRS

is then expected to be e�cient. Our article focuses on this case and proposes e�cient control

variates qi,n(θ) such that the computational cost of the estimator is substantially less than

O(n). The dependence on n is due to qi,n(θ) being an approximation of li(θ), which typically

improves as more data is available.

De�ne the di�erences di,n(θ) := `i(θ)− qi,n(θ) and let

µd,n(θ) :=
1

n

n∑
i=1

di,n(θ) and σ2
d,n(θ) :=

∑n
i=1 (di,n(θ)− µd,n(θ))2

n

be the mean and variance of the �nite population {di,n(θ)}ni=1. Let u1, . . . , um be iid random

variables such that Pr(u = k) = 1/n for k = 1, . . . , n. The Di�erence Estimator (DE,

Särndal et al., 2003) of `(n)(θ) in (2.1) is

(2.2) ̂̀
(m,n)(θ) := q(n)(θ) + nµ̂d,n(θ), µ̂d,n(θ) :=

1

m

m∑
i=1

dui,n(θ)

with q(n)(θ) :=
∑n

i=1 qi,n(θ). It is straightforward to use unequal sampling probabilities with

the DE, but the sampling probabilities need to be evaluated for every observation, which

can be costly. The following Lemma gives some basic properties of the DE estimator.

Lemma 1. Suppose that ̂̀(m,n) is the estimator of `(n)(θ) = `(θ) given by (2.2). Then

i. E[µ̂d,n(θ)] = µd,n(θ).

ii.

E
[̂̀

(m,n)(θ)
]

= l(n)(θ) and σ2
LL,m,n = V

[̂̀
(m,n)(θ)

]
=
n2σ2

d,n

m
.

iii. ̂̀(m,n)(θ) is asymptotically normal when m → ∞ for �xed n and σ2
d,n < ∞, or when

both m,n→∞ with m = Bnγ for constants B > 0 and γ > 0 and σ3
d,n <∞.

Proof. The proofs of parts i) and ii) are straightforward and omitted. The proof of iii) is in

Appendix B. �
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The assumptions of �nite σ2
d,n and σ3

d,n in Lemma 1 part (iii) are highly non-restrictive

because the random variables are discrete with a �nite sample space: they are satis�ed for

any control variates that are �nite. We use the following estimate of σ2
d,n

σ̂2
d,n(θ) :=

∑m
i=1 (dui,n(θ)− µ̂d,n(θ))2

m
.

2.2. Control variates for variance reduction. To see the crucial role of variance reduc-

tion using control variates, we �rst note that the variance of the log-likelihood estimator

should be around one for the standard PM (see e.g. Pitt et al., 2012; Doucet et al., 2015

and Section 1). Now, de�ne

(2.3) an := sup
θ∈Θ

sup
i∈{1,...,n}

|di,n(θ)− µd,n(θ)| .

Throughout our article we assume that an <∞ for a given n and also that lim sup an <∞.

This assumption is easily enforced if Θ is a compact space as long as the control variates are

�nite. The following lemma is straightforward to prove.

Lemma 2. Suppose that lim sup an <∞. Then σ2
d,n = O(a2

n) and σ2
LL,m,n = n2a2nO(1)

m
.

According to Lemma 2, keeping the variance bounded as a function of n requires that

n2O(a2n)
m

= O(1). This highlights the importance of the variance reduction: SRS without

control variates scales poorly becauseO(a2
n) = O(1) andm = O(n2). On the other hand, with

control variates that improve as, say di,n = O(n−α) with α > 0, we have O(a2
n) = O(n−2α)

and m = O(n2(1−α)).

2.3. Computational complexity. The di�erence estimator in (2.2) needs to compute

q(n)(θ) =
∑n

i=1 qi,n(θ) in every MCMC iteration: this requires evaluating the control variates

qi,n(θ) for all data points. We now explore speci�c choices of qi,n that allow us to compute∑n
i=1 qi,n(θ) using substantially less evaluations than n. Denote the Computational Cost

(CC) for the standard MH without subsampling which evaluates `(n) :=
∑n

i=1 `i by

CC[`(n)(θ)] := n · c`,
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where c` is the cost of evaluating a single log-likelihood contribution (assuming the cost is

the same for all i). For the di�erence estimator in (2.2), we have

CC
[̂̀

(m,n)(θ)
]

:= n · cq +m · c`,

where cq is the cost of computing a control variate. We now brie�y describe two particular

control variates that reduce the �rst term n · cq. See Appendix A for details regarding their

implementation.

First, consider the control variates in Bardenet et al. (2015) who propose to use a second

order Taylor expansion of each `i(θ) around some reference value θ?, e.g. the maximum

likelihood estimate. This reduces the complexity from n evaluations to a single one (similar

to su�cient statistics for a normal model because qi,n(θ) is quadratic in θ). As noted by

Bardenet et al. (2015), this control variate is a poor approximation of `i(θ) whenever the

algorithm proposes a θ that is not near to θ?, and will therefore work well only when the

posterior is tightly concentrated around θ?. As a remedy in the case of a less concentrated

posterior, they suggest to occasionally recompute the control variates, expanding around the

current θ in the MCMC (using all n observations).

We now propose a control variate that works well regardless of the posterior concentration.

This control variate is based on clustering the data {zi = (yi, xi)}ni=1 into K clusters that

are kept �xed throughout the MCMC. At every MCMC iteration, we compute the exact

log-likelihood contributions at all K centroids and use a second order Taylor expansion with

respect to zi at the centroid as a local approximation of `i around each centroid. This allows

us to compute
∑n

i=1 qi,n(θ) by simply scaling up quantities computed at the K centroids.

The resulting estimator therefore has cost

(2.4) CC
[̂̀

(m,n)(θ)
]

= K · cq +m · c`,

where typically K � n.
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3. Subsampling MCMC Methodology

3.1. MCMC with likelihood estimators from data subsampling. We propose an

e�cient unbiased estimator ̂̀(m,n)(θ) of the log-likelihood and then approximately bias-correct

following Ceperley and Dewing (1999) (see also Nicholls et al., 2012) to obtain the 'bias-

corrected' likelihood estimator

(3.1) L̂(m,n)(θ, u) := exp

(̂̀
(m,n)(θ)−

n2

2m
σ̂2
d,n(θ)

)
,

where ̂̀(m,n)(θ) and σ̂
2
d,n(θ) are the estimators presented in Section 2.1. The form of (3.1) is

motivated by the case when ̂̀(m,n)∼N (`(n)(θ), σ
2
LL,m,n(θ)) and σ2

LL,m,n is known, in which case

all bias is removed. Normality holds asymptotically in bothm and n by part (iii) of Lemma 1.

However, the assumption of known variance is unrealistic because the computation requires

the entire data set. The estimator in (3.1) is therefore expected to only be nearly unbiased.

A main di�erence of our use of this estimator compared to Ceperley and Dewing (1999) and

Nicholls et al. (2012) is that our approach is a pseudo-marginal, where the space explored

by the Markov chain also includes the random variates used for estimating the likelihood.

Other di�erences are that we use control variates, that we analyze the dependence on n in

the analysis of the error, and that our convergence rate of the error (Theorem 1 below) is

O(m−2) as opposed to O(m−1) in Nicholls et al. (2012).

We now outline how to carry out a pseudo-marginal MH with the approximately unbiased

estimator in (3.1) and derive the asymptotic error in the stationary distribution. Denote

the likelihood by L(n)(θ) := p(y|θ), let pΘ(θ) be the prior and de�ne the marginal likelihood

L(n) :=
∫
L(n)(θ)pΘ(θ)dθ. Then the posterior is π(n)(θ) = L(n)(θ)pΘ(θ)/L(n). Let pU(u) be the

distribution of the vector u of auxiliary variables corresponding to the subset of observations

to include when estimating L(n)(θ). Let L̂(m,n)(θ, u), for �xed m and n, be a possibly biased

estimator of L(n)(θ) with expectation

L(m,n)(θ) =

∫
L̂(m,n)(θ, u)pU(u)du.
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De�ne

(3.2) π(m,n)(θ, u) := L̂(m,n)(θ, u)pU(u)pΘ(θ)/L(m,n), with L(m,n) :=

∫
L(m,n)(θ)pΘ(θ)dθ,

on the augmented space (θ, u). It is straightforward to show that π(m,n)(θ, u) is a proper

density with marginal

π(m,n)(θ) =

∫
π(m,n)(θ, u)du = L(m,n)(θ)pΘ(θ)/L(m,n).

The MCMC that targets (3.2) uses a joint proposal for θ and u given by

qΘ,U(θ, u|θc, uc) = pU(u)qΘ(θ|θc)

where c denotes the current state of the Markov chain. The PM acceptance probability

becomes

(3.3) α = min

(
1,
L̂(m,n)(θp, up)pΘ(θp)/qΘ(θp|θc)
L̂(m,n)(θc, uc)pΘ(θc)/qΘ(θc|θp)

)
.

This expression is similar to the MH acceptance probability, but with the true likelihood

replaced by its estimate. By Andrieu and Roberts (2009), the draws of θ obtained by this

MH algorithm have π(m,n)(θ) as invariant distribution. If L̂(m,n)(θ, u) is an unbiased estimator

of L(n)(θ), then the marginal of the augmented MCMC scheme above has π(m,n)(θ) = π(n)(θ)

(the true posterior) as invariant distribution. However, if L̂(m,n)(θ, u) is biased, the sampler

is still valid but has a perturbed marginal π(m,n)(θ).

3.2. Perturbation analysis - asymptotics. Our next result gives the rate at which the

perturbed target π(m,n)(θ) approaches the true target posterior π(n)(θ).

Theorem 1. Suppose that a PM algorithm is implemented with the estimator in L̂(m,n)(θ, u)

in (3.1) and assume that n3a3
n/m

2 = o(1). The following results hold for any θ ∈ Θ, where

Θ is a compact space,
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i. ∣∣L(m,n)(θ)− L(n)(θ)
∣∣

L(n)(θ)
≤ O

(
n2a2

n

m2

)
.

ii. ∣∣π(m,n)(θ)− π(n)(θ)
∣∣

π(n)(θ)
≤ O

(
n2a2

n

m2

)
.

iii. Suppose that h(θ) is a function such that Eπ(n)
[|h(θ)|] <∞. Then∣∣∣∣∣Eπ(m,n)

[h(θ)]− Eπ(n)
[h(θ)]

Eπ(n)
[h(θ)]

∣∣∣∣∣ ≤ O

(
n2a2

n

m2

)
.

Note that we need to have m = n2O(a2
n) to target σ2

LL,m,n = n2O(a2n)
m

at the optimal value

around 1. By Theorem 1, this m gives a fractional error of the posterior which is within

O(n−2a−2
n ) of the true posterior. Note also that the perturbation error is O (m−2) for a �xed

n.

3.3. Approximating the perturbation error. Theorem 1 is derived under essentially

no assumptions on the estimator, and clearly displays the fast convergence of our perturbed

posterior, but it does not provide a practically useful way to quantify the discrepancy between

π(m,n)(θ) and π(n)(θ). We now propose a way to estimate the point-wise fractional error in

the perturbed posterior distribution

(3.4) error(θ) =
π(m,n)(θ)− π(n)(θ)

π(n)(θ)
=

(
L(m,n)(θ)

L(n)(θ)

)/(L(m,n)

L(n)

)
− 1.

The following lemma is an application of the bivariate Central Limit Theorem (CLT).

Lemma 3.

√
m

µ̂d,n
σ̂2
d,n

−
µd,n
σ2
d,n

 L→ N

0

0

 ,Σ =

σ2
d,n ϕ

(3)
d,n

ϕ
(3)
d,n σ4

d,n − ϕ
(4)
d,n

 as m→∞,

with ϕ
(b)
d,n = E[(dui,n − µd,n)b] =

∑n
i=1(di,n − µd,n)b/n for b ≥ 1.
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Lemma 4. Suppose thatµ̂d,n
σ̂2
d,n

 ∼ N

µd,n
σ2
d,n

 , Σ̄ =
1

m

σ2
d,n ϕ

(3)
d,n

ϕ
(3)
d,n σ4

d,n − ϕ
(4)
d,n

 .(3.5)

Then, with Ψ
(b)
d,n := ϕ

(b)
d,n/σ

b
d,n for b ≥ 1,

(3.6) L(m,n)(θ) = exp

(
`(n) +

σ4
LL,m,n(θ)

8m

(
1−Ψ

(4)
d,n(θ)

)
−
σ3
LL,m,n(θ)

2
√
m

Ψ
(3)
d,n(θ)

)
.

Proof. Since L(m,n)(θ) = exp
(
q(n)(θ)

)
E
[
exp

(
nµ̂d,n − n2

2m
σ̂2
d,n

)]
the result follows from the

moment generating function (mgf) of the bivariate normal distribution in (3.5). �

It is easy to show that γ
(b)
d,n = O(1) for any b ≥ 1. From Lemma 4 it follows that the

perturbation error in the likelihood L(m,n)(θ)/L(n)(θ) depends on σLL,m,n, and will increase

with it for su�ciently large σLL,m,n. It is important to note, however, that any constant factor

c in L(m,n)(θ)/L(n)(θ) that does not depend on θ will cancel out in the fractional posterior

error in (3.4) since the same factor c will also appear in L(m,n)/L(n). This observation leads

to the following theoretically interesting remark.

Remark 1. Suppose we run a PM algorithm and that we can, for any proposed θ ∈ Θ, where

Θ is a compact space, choose m(θ) such that

(3.7)
σ4
LL,m(θ),n(θ)

8m(θ)

(
1−Ψ

(4)
d,n(θ)

)
−
σ3
LL,m(θ),n(θ)

2
√
m(θ)

Ψ
(3)
d,n(θ) = c.

Then error(θ) = 0.

The constant c is an arbitrary choice: any c generates a speci�c mc(θ) which ensures

unbiasedness for any θ ∈ Θ. A natural choice of c would be to solve (3.7) based on the m(θ?)

that targets the optimal σ2
LL,m(θ?),n, where θ

? is the mode. Of course, this strategy uses all

data and is thus not applicable, but illustrates an important property of our method.

In practice we can instead use the result in Lemma 4 to check error(θ) in any given

application as follows. The quantities σLL,m,n(θ) and γ
(b)
d,n can be easily evaluated for any

θ at the cost of evaluating `i(θ) for all i = 1, ..., n, or estimated from a subsample. It
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is also necessary to evaluate L(n) and L(m,n), which can be done with the usual Laplace

approximation. Approximating L(n) requires the Hessian of logL(n)(θ) evaluated at the

mode, which can be obtained analytically from tedious di�erentiation or numerically by �nite

di�erences. A similar procedure applies for L(m,n), but with logL(m,n) from (3.6) where clearly

the Hessian becomes analytically intractable, but �nite di�erences are straightforward.

3.4. Correlated proposals of u for subsampling. Deligiannidis et al. (2016) and Dahlin

et al. (2015) both propose a general method that correlates the current and proposed values

of ui. The advantage of this correlation is that it makes the variance of the di�erence in the

logarithms of the estimated likelihoods appearing in (3.3) much smaller than that of each of

the terms themselves. This leads in our context to requiring much smaller values of m, or

equivalently, that we can target much higher values of σ2
LL,m,n than unity, provided we also

check that error(θ) remains at an acceptable level.

For a correlated PM approach to subsampling, we let u be a vector of length n with

binary elements ui that determine if observation i is included (ui = 1) when estimating the

log-likelihood. Note that this is di�erent from the above, where u contained the observation

indices and was of length m. Moreover, here the sample size is random and we let m? be the

expected sample size. The sampling probabilities become Pr(ui = 1) = m?/n for i = 1, . . . , n.

We use the auxiliary variable (particle) v in Deligiannidis et al. (2016) to induce dependence

at the current uci and proposed upi sampling indicator through a Gaussian copula as we

now explain. The correlated pseudo-marginal method uses a Gaussian auto-regressive kernel

K(vc, vp) with a transition de�ned by vp = φvc+
√

1− φ2ε, where ε ∼ N (0, 1). We also have

vc ∼ p(v) = N (v|0, 1) and K(vc, vp) is reversible with respect to p(v). We sample the ui's by

�rst generating vc and vp and set uci = I
[
Φ(vc) ≤ m?

n

]
and upi = I

[
Φ(vp) ≤ m?

n

]
, where Φ

denotes the standard normal cdf. An equivalent approach is to generate upi from a Markov

chain with marginal p(uci = 1) = m?/n, with transition probabilities Pr(upi = 1|uci = 1) = κ

and Pr(upi = 0|uci = 0) = 1 − (1− κ) m?/n
1−m?/n

. The persistence parameter κ in the Markov

chain is related to the AR persistence φ by the relation κ = n
m? Φ2 (Φ−1(m?/n),Φ−1(m?/n)|φ),

where Φ2(·, ·|φ) is the cdf of bivariate standard normal variables with correlation φ.
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As noted above, in contrast to Section 2.1, u is a binary vector. We can instead use the

Horvitz-Thompson (Horvitz and Thompson, 1952) which (under SRS) is

d̂(m?,n) =
n∑
i=1

di,n
m?/n

ui,

and is unbiased for d(n). Note that we can write

d̂(m?,n) =
1

m?

n∑
i=1

ndi,nui, with σ2
LL,m?,n =

σ2
ξ,m?,n

m?
, where σ2

ξ,m?,n = n

(
1− m?

n

) n∑
i=1

d2
i,n

can be unbiasedly estimated by

σ̂2
ξ,m?,n = n2

(
1− m?

n

)
1

m?

n∑
i=1

d2
i,nui.

3.5. Block proposals of u for subsampling. Tran et al. (2016a) propose the block PM

algorithm and show that it is a natural way to correlate the estimation errors in panel data

and also in subsampling problems such as ours. The method divides the vector of observation

indices u = (u1, . . . , um) into G blocks and then update one block at a time jointly with θ.

By setting a large G, a high correlation ρ between the estimates at the proposed and current

parameter values is induced, reducing the variability of the ratio of estimates. More precisely,

they show that under certain assumptions ρG = 1− 1/G.

3.6. Optimal variance of the estimator. Pitt et al. (2012), Doucet et al. (2015) and

Sherlock et al. (2015) obtain the value of σ2
LL,m,n that optimizes the trade o� between MCMC

sampling e�ciency and computational cost in standard PM. The consensus is that σ2
LL,m,n

should be between [1, 3.283] where, in general, the less e�cient the proposal in the exact

likelihood setting, the higher the optimal value of σ2
LL,m,n. The optimal value is derived

assuming that the cost of computing one MCMC sample is inversely proportional to σ2
LL,m,n,

so that the so called Computational Time (CT) to produce one equivalent to an iid draw is

CT(σ2
LL,m,n) ∝ IF(σ2

LL,m,n)× 1

σ2
LL,m,n

, with IF(σ2
LL,m,n) = 1 + 2

∞∑
l=1

ρl,(3.8)



SPEEDING UP MCMC 14

where IF is the Ine�ciency Factor and ρl is the l-lag auto-correlation of the chain. In our

approach we have to select bothm and K, the number of clusters. The computational cost of

a new cluster comes from evaluating `i at the centroid, but also from evaluating the gradient

and Hessian of `i. An approximate upper bound for the cost of a new cluster is therefore

3c`, where c` is the cost of a single `i-evaluation. In many models one can however re-use

computations when computing the gradient and Hessian, so the true cost is probably much

closer to 1c`. Assuming that the cost of a new cluster is ωc`, for some ω > 0, a reasonable

measure of computational time is

(3.9) CT(m,K)(σ
2
LL,m,n(K)) = IF(σ2

LL,m,n(K))× (ωK +m).

This expression is similar to Tran et al. (2016b) who also take into account an overhead cost

in their CT. We �nd m and K by standard numerical optimization using an expression for

the IF (e.g. the ones derived in Pitt et al., 2012 for PM and Tran et al., 2016a for block

PM). It should be noted that the optimal value σ2
LL,m,n ≈ 1 is obtained if m is much larger

than K (and ω is not too large) because then (3.8) and (3.9) are approximately equal (up

to a proportionality constant).

Tran et al. (2016a) show that the conditional variance of the log-likelihood estimator

(conditional on only updating one block of u, keeping the others �xed) is τ 2
m,n,G = σ2

LL,m,n(1−

ρ2
G). Let G = G(m) = O(mβ), then it follows that (using Lemma 2 and ρG(m) = 1−1/G(m))

τ 2
m,n,G = O(1) is achieved if we take m = O(nγ) with

γ =
2(1− α)

1 + β
, and α in an = O(n−α) as in (2.3).

Note that if β = 0, i.e. G is constant as a function of m so that ρ → 0 as m → ∞, then

γ = 2(1−α), which corresponds to the uncorrelated algorithm. We emphasize that it is the

interaction of the control variates and the correlated mechanism that makes the method scale

well. For example, using G = O(
√
m), the optimal m is sublinear in n if α>1/4. However,

note that reducing γ lower the rates of the asymptotic errors in Theorem 1. Tran et al.

(2016a) also derive the optimal value of σ2
LL,m,n to target under the assumption of a CT as
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in (3.8), but conditional on a value of ρ. This value of σ2
LL,m,n will typically be much larger

than 1.

4. Applications

4.1. Settings for PM algorithms. Our algorithms use the control variates obtained by

data clustering followed by a Taylor series expansion in data space. The tuning parameters

m and K in the PM algorithms are determined by optimizing the computational time CT

in (3.9)

σ2
LL,m,n(K) =

n2σ2
d,n(K)

m
and IF(σ2

LL,m,n(K)),

with respect to m and K. We estimate the relation σ2
d,n(K) = C0K

ν by, for each example,

running our cluster algorithm on a grid ofK and for each value of the grid we compute σ2
d,n at

the likelihood mode θ?. Given C0 and ν, it is straightforward to use the expression for the IF

in Pitt et al. (2012) (PM) and Tran et al. (2016a) (block PM) to minimize CT(m,K) in (3.9)

and obtain mopt and Kopt and the corresponding σ2
opt = σ2

LL,mopt,n
(Kopt). The correlated

PM uses m?
opt = mopt and the same value of Kopt as block PM. Table 1 shows a summary

of the settings for the applications. Finally, we let G = 100 (ρ = 0.99) and φ = 0.9999

(κ = 0.9863).

4.2. Logistic regression. Our �rst example uses a logistic regression model for modeling

bankruptcy conditional on a set of �rm-speci�c covariates and macroeconomic variables, see

Giordani et al. (2014) for details on the covariates. The data set has n = 4, 748, 089 and 8

covariates. The model is

p(yi|xi, β) =

(
1

1 + exp(xTi β)

)yi ( 1

1 + exp(−xTi β)

)1−yi
, with p(β) = N (β|0, 10I).

Since the bankruptcy observations (yi = 1) are sparse (41, 566 defaults), we only subsample

the observations with yk = 0 observations, i.e. the �rst term in

`(θ) =
∑
{i;yi=1}

`i(θ) +
∑
{i;yi=0}

`i(θ),
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Table 1. Experimental setup in the applications. n is the number of obser-
vation. The proposals are the Random Walk Metropolis (RWM) q(θ|θc) =
N (θ|θc,Σθ?) and the Independent MH (IMH) q(θ) = t10(θ|θ?,Σθ?), where the
location parameter is θ? is the posterior mode and Σθ? is the negative inverse
Hessian of the log-posterior evaluated at θ?, both obtained from an initial
numerical optimization. We denote the optimal sample size and number of
clusters by mopt and Kopt, and σ

2
LL,opt is the corresponding optimal variance

of the log-likelihood estimate. We use N = 50, 000 iterates after discarding
5,000 iterates as burn-in.

Example n Proposal 100mopt/n 100Kopt/n σ2
LL,opt

Logistic 4,7×106 RWM/IMH

Uncorr 8.615 4.967 0.27

Block / Corr 1.286 0.485 56.89

AR(1): M1 105 RWM

Uncorr 1.896 2.464 0.11

Block / Corr 0.757 0.993 12.41

AR(1): M2 105 RWM

Uncorr 4.561 8.192 0.11

Block / Corr 2.151 3.176 12.40

is always evaluated (and included in the CC). Figure 1 shows the sampling e�ciency of the

PM algorithms relative to that of the MH algorithm as measured by the Relative Compu-

tational Time (RCT) de�ned, for any sampler A, as CTMH/CTA. The �gure also shows the

Relative IF (RIF) , which is de�ned as IFA/IFMH, where each IF is estimated using the coda

package in R (Plummer et al., 2006). The �gure shows that both correlated and block PM

signi�cantly outperform standard PM and also MH with respect to RCT. Figure 2 plots the

Kernel Density Estimates (KDE) on the output from the three pseudo-marginal schemes

and the exact MH approach. The �gure shows that targeting a large σ2
LL,m,n (≈ 56) for the

block and correlated PM samplers result in a very small bias in this application, with the

approximation error in (3.4) being −0.01 for both the block and correlated PM and −0.0001

for the standard PM. Figure 2 suggests that this small perturbation is, for the correlated

and block PM estimators, mostly due to β3.

Finally, we also tried the exact subsampling approach (Quiroz et al., 2016) by setting

E[G] = 100 (G is random in their approach) and the batch-size to 602, so that their prior
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expected sample size corresponds to that for our correlated algorithms. For the RWM we

obtained an RCT of ≈ 17 (ω = 3) and ≈ 20 (ω = 1) (average over parameters), with ω in

(3.9).
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Figure 1. Logistic regression example. For algorithm A (uncorrelated (Un-
corr), block (Block) and correlated (Corr) PM) the �gure shows the Relative
Ine�ciency Factors (RIF) and Relative Computational Time for RWM pro-
posal (left panel) and IMH (right panel). For RCT, the �lled (dashed) bar
correspond to ω = 3 (ω = 1) in (3.9).

4.3. Other subsampling approaches. We brie�y discuss some other subsampling ap-

proaches and then benchmark them against our approach.

Korattikara et al. (2014) argue that using all data to take the simple decision to accept

(or reject) a single parameter draw is a computationally ine�cient strategy. Instead, they

develop a sequence of t-tests, where each test is based on an increasing sample size and has

a user speci�ed error probability ε. The sequence is stopped when a decision of accepting

(or rejecting) a single sample can be taken with a su�ciently small total error probability.

They prove that the discrepancy between their approximate posterior and the true posterior

can be made arbitrarily small by decreasing the total error probability of the test. However,

it was empirically demonstrated in Bardenet et al. (2015) (see also Section 4.4) that the ε
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Figure 2. Logistic regression example. Kernel density estimates of marginal
posteriors obtained by the IMH proposal. The �gure shows the marginal pos-
teriors obtained using the uncorrelated (Uncorr), block (Block) and correlated
(Corr) PM (dashed blue, red and green, respectively) and MH (solid black
line).

parameter must be set so low that virtually the full data set is required to obtain a reasonable

approximation error.

Bardenet et al. (2014) also rely on the idea of replacing the computation of the MH ratio

with a hypothesis test. However, they use an exact (not relying on a CLT) con�dence

interval obtained through a concentration inequality, which allows the choice of a subsample

large enough so that a decision can be taken with a user speci�ed error probability. They

prove that the posterior targeted by their algorithm can become arbitrarily close to the true

posterior as the error probability decreases. To successfully implement the method, the range

of the di�erences in log-likelihood contributions at the proposed and current samples must

be cheap to compute. Moreover, the performance of the method is highly dependent on the

variance of these di�erences.

Bardenet et al. (2015) improve on the sampler in Bardenet et al. (2014) by introducing

control variates to obtain variance reduction of the di�erences. Furthermore, the method

does not rely on a cheaply computed range, however, it does rely on a bound for the di�erence
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between the log-likelihood contributions at the proposed and current sample, and that of the

control variates. When the control variates are obtained via Taylor series approximations,

they suggest using the Taylor-Lagrange inequality to obtain the bound. We show in Section

4.4 that the Taylor-Lagrange bound can sometimes be too crude, and it is then necessary

to compensate with a very large subsample. Bardenet et al. (2015) show that their method

dramatically outperforms, among others, Korattikara et al. (2014), Bardenet et al. (2014)

and Fire�y Monte Carlo (Maclaurin and Adams, 2014, see below).

Fire�y Monte Carlo in (Maclaurin and Adams, 2014, and more recently, Liu et al., 2015)

introduces an auxiliary variable for each observation which determines if it should be included

in the evaluation of the posterior. The distribution of these variables are such that when

they are integrated out, the marginal posterior is the true posterior of θ. Moreover, a lower

bound for each likelihood term is introduced, which basically plays the role of replacing the

observations that are not included in the evaluation of the posterior. The authors suggest

using the Gibbs sampler, generating the parameters conditional on the auxiliary variables

and vice versa. The method has been documented to be very ine�cient, see e.g. Bardenet

et al. (2015), see also Section 4.4.

4.4. AR processes. The running examples in Bardenet et al. (2015) use the normal model

which is too simplistic for our method because the log-likelihood is quadratic in the data and

therefore our control variates are perfect. We instead compare our method to alternative

approaches using the following illustrative models. We consider the following two AR(1)

models with Student-t iid errors εt ∼ t(5) with 5 degrees of freedom

M1 : yt = β0 + β1yt−1 + εt [θ = (β0 = 0.3, β1 = 0.6)]

M2 : yt = µ+ %(yt−1 − µ) + εt [θ = (µ = 0.3, % = 0.99)]

with priors

p(β0, β1)
ind.
= U(β0| − 5, 5) · U(β1|0, 1) and p(µ, %)

ind.
= U(µ| − 5, 5) · U(%|0, 1),
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where U(·|a, b) is the uniform density on the interval [a, b]. Model M2, the so called steady

state AR, is particularly interesting as % close to 1 gives a weakly identi�ed µ, with a posterior

that concentrates very slowly as n increases.

We compare our method to the Austerity MH (Korattikara et al., 2014), Fire�y Monte

Carlo (Maclaurin and Adams, 2014), the con�dence sampler (Bardenet et al., 2014) and the

con�dence sampler with proxies (Bardenet et al., 2015). We set the tuning parameters of the

competing algorithms following Bardenet et al. (2015) with the following exceptions. First,

we adapt during the burn-in phase to reach an acceptance probability of α = 0.35 (instead

of α = 0.50), which is optimal for RWM with two parameters (Gelman et al., 1996). For the

pseudo-marginals we instead use α = 0.15 as the �ve parameter example in Sherlock et al.

(2015). Second, the p-value of the t-test in the Austerity MH algorithm is set to ε = 0.01

(instead of ε = 0.05) to put the approximation error of the method on par with the other

methods. Setting ε = 0.05 gives an unusably poor approximation (and also produces a much

lower RCT than our methods). Additionally, the con�dence sampler with proxies (from

a Taylor series approximation with respect to θ) requires that the third derivative can be

bounded uniformly for every observation and any θ. This bound is achieved, without any

extra computational cost, by computing on a θ-grid where the posterior mass is located.

Table 2. AR-process example. Mean of sampling fraction f = m/n over
MCMC iterations for models M1 and M2 with MH, uncorrelated PM (Un-
corr), block PM (Block) and correlated PM (Corr), con�dence sampler (Conf),
con�dence sampler with proxies (ConfProxy), Austerity MH (AustMH), and
Fire�y Monte Carlo (Fire�y).

MH Uncorr Block Corr Conf ConfProxy AustMH Firefly

M1 1.000 0.093 0.037 0.037 1.493 0.160 1.037 0.100

M2 1.000 0.291 0.117 0.116 1.490 1.500 1.019 0.137

Table 2 shows the mean of the sampling fraction over MCMC iterations. We note that

both con�dence samplers and the Austerity MH estimate the numerator and denominator

in each iteration, and therefore require twice as many evaluations in a given iteration as

MCMC (in some cases evaluations from the previous iteration can be reused). It is clear
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Figure 3. AR-process example: Results for other subsampling algorithms.
The left and right panel, respectively, show the results for model M1 and
M2. Each column shows the kernel density estimates of marginal posteriors
(top two) and for algorithm A (con�dence sampler (Conf), con�dence sampler
with proxies (ConfProxy), Austerity MH (AustMH), and Fire�y Monte Carlo
(Fire�y)) the Relative Computational Time (RCT) (bottom).

that our algorithms makes very e�cient use of a small subsample, especially the block and

correlated PM samplers.

Figure 3 and 4 show the marginal posteriors obtained by, respectively, alternative sampling

approaches and the several PM approaches. Moreover, the �gures show the sampling e�-

ciency of the di�erent subsampling MCMC algorithms relative to that of the MH algorithm

as measured by the Relative Computational Time. Figure 3 shows the striking result that

many of these approaches are not more e�cient than MH, except the con�dence sampler

with proxies for M1. Regarding the approximation, it is evident that the Austerity MH still

has a tempering e�ect (larger spread on the posterior) although ε is set so low that the full

data set is sampled (see Table 2). The PM algorithms (and also the con�dence samplers)

provide excellent approximations: indeed, error(θ) ≤ 10−6 in (3.4) for all our methods. Fire-

�y Monte Carlo, although being an exact algorithm, is highly ine�cient in this example, as

also documented in Bardenet et al. (2015). In fact, for M2, we were not able to obtain a
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Figure 4. AR-process example: Results for subsampling PM algorithms. The
left and right panel, respectively, show the results for model M1 and M2. Each
column shows the kernel density estimates of marginal posteriors (top two) and
for algorithm A (uncorrelated (Uncorr), block (Block) and correlated (Corr)
PM) the Relative Computational Time (RCT) (bottom). For RCT, the �lled
(dashed) bar correspond to ω = 3 (ω = 1) in (3.9).

single e�ective sample out of 55, 000 iterations, and hence it was impossible to construct a

kernel density estimate in this case. We also tried the exact subsampling in Quiroz et al.

(2016), setting the tuning parameters to match the sample size used here as described in

Section 4.2. For M1 the sampler got stuck because the variance of the log of the estimator

was too large (≈ 2070, compared to ≈ 12 for the estimator used here). For M2 the exact

subsampling produced an RCT of ≈ 4 (ω = 3) and ≈ 7 (ω = 1) (average over parameters),

with ω in (3.9).

We conclude that the only viable subsampling MCMC approaches are the con�dence

sampler with proxies (Bardenet et al., 2015) and the PM approaches we propose. Moreover,

a signi�cant speed up is only obtained with the correlated PMs (both correlated and block).

We acknowledge that we have put the con�dence sampler with proxies in an unfavorable

situation in M2: the bound of its concentration inequality requires a bound of the remainder

term in the Taylor series via the Taylor-Lagrange inequality, which is very hard for M2.
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We remark that the Taylor proxies with respect to θ work well in these two-dimensional

examples, however, problems are encountered in the logistic example in Section 4.2; the

expansion with respect to the data as proposed in Section 2.1 works much better. Moreover,

an additional feature of expanding with respect to data is that an IMH proposal can be

implemented straightforwardly, as the control variates are accurate for any θ.

5. Conclusions and Future Research

We propose a framework for speeding up MCMC for data sets with many observations

by data subsampling. The following features are key to our approach. First, we introduce a

highly e�cient log-likelihood estimator, which incorporates information about each observa-

tion's contribution to the log-likelihood function, while only operating on a sparse set of the

data. This results in a substantially lower computational cost. Second, we use the result-

ing likelihood estimate within a pseudo-marginal framework and sample from a perturbed

posterior which, for �xed n, we prove to be within O(m−2) of the true posterior. We also

consider the asymptotic behavior with respect to n. Moreover, we provide a useful heuristic

to approximate the error, given that m is large. Third, we propose a correlated pseudo-

marginal approach to subsampling, which allows highly variable estimates of the likelihood

without adversely a�ecting the mixing of the algorithm. The resulting algorithm is a highly

e�cient algorithm when taking into account the statistical e�ciency and computational cost.

Fourth, we use the correlated and block PM samplers to show that we can let the sample size

m grow much more slowly as a function of n than the standard PM sampler to achieve the

same ine�ciency, and hence a much lower computational time. Finally, we document large

speed ups relative to MH and, more importantly, we show that our method outperforms

other recent subsampling approaches in the literature.

Future research concerns designing e�cient proposals based on data subsampling, e.g. in

hybrid Monte Carlo algorithms. It is also of interest to develop improved clustering methods

to obtain control variates, especially in the presence of a large number of covariates.
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