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Acronyms/Symbols/Notation 

ADC – Apparent Diffusion Coefficient 

DWI – Diffusion Weighted Imaging 

IVIM – Intra-voxel Incoherent Motion 

K-L – Kullback-Leibler (Distance) 

LLS – Linear Least Squares 

LOOCV – Leave-one-out Cross-Validation 

MRI – Magnetic Resonance Imaging 

MSD – Mean Squared Displacement 

MSE – Mean Squared Error 

NLLS – Nonlinear Least Squares 

PDF – Probability Density Function 

ROI – Region (or Regions) of Interest 

RSS – Residual Sum of Squares 

SER – Standard Error of Regression 

SNR – Signal-to-Noise Ratio 

SD – Standard Deviation 

 

Definition of Terms 

These definitions come from either the Oxford Dictionary of English (ODE) [1] or the 
Oxford Dictionary of Statistics (ODS) [2] as specifically noted below. 

Reliability – The quality of being trustworthy or of performing consistently well.  The degree to 
which the result of a measurement, calculation, or specification can be depended on to be accurate. 
(ODE) 

Uncertainty – The state of being uncertain - not able to be relied on; not known or definite. (ODE) 
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Estimator – A statistic used to estimate a parameter. The realized value of an estimator for a 
particular sample of data is called the estimate (or point estimate). (ODS) 

Expected Value – The expected value of a random variable X, is denoted by E(X) and may be 
interpreted as the long-term average value of X. (ODS) 

Bias – If the expected value of the statistic is equal to the parameter then it is described as being an 
unbiased estimator and the realized value is referred to as an unbiased estimate.  If T is an 
estimator of the parameter θ and the expected value of T is θ+b, where b ≠ 0, then b is called the 
bias and the estimator is a biased estimator. (ODS) 

Variance – A measure of the variability in the values of a random variable.  It is defined as the 
expected value of the squared difference between the random variable and its expected value.  
(ODS) 

Consistent – An estimator is said to be a consistent estimator if, as the number of samples increases 
indefinitely, the estimator converges in probability to the true parameter value (ODS). 

  



Reliability and Uncertainty in Diffusion MRI Modelling 
   

9 
 

Abstract 

Current Diffusion MRI studies often utilise more complex models beyond the single exponential 
decay model used in clinical standards.  As this thesis shows, however, two of these models, 
biexponential and kurtosis, experience mathematical, ill-conditioning issues that can arise when 
used with regression algorithms, causing extreme bias and/or variance in the parameter estimates.  
Using simulated noisy data measurements from known truth, the magnitude of the bias and 
variance was shown to vary based on signal parameters as well as SNR, and increasing the SNR did 
not reduce this uncertainty for all data.  Parameter estimate reliability could not be assessed from a 
single regression fit in all cases unless bootstrap resampling was performed, in which case 
measurements with high parameter estimate uncertainty were successfully identified.  Prior to data 
analysis, current studies may use information criteria or cross-validation model selection methods 
to establish the best model to assess a specific tissue condition.  While the best selection method to 
use is currently unclear in the literature, when testing simulated data in this thesis, no model 
selection method performed more reliably than the others and these methods were merely biased 
toward either simpler or more complex models.  When a specific model was used to generate 
simulated noisy data, no model selection method selected this true model for all signals, and the 
ability of these methods to select the true model also varied depending on the true signal 
parameters.  The results from these simulated data analyses were applied to ex vivo data from 
excised prostate tissue, and both information criteria measures and bootstrap sample distributions 
were able to identify image voxels whose parameter estimates had likely reliability issues.  
Removing these voxels from analysis improved sample variance of the parameter estimates. 
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Chapter 1  
Introduction and Literature Review 

Since its invention over 40 years ago [3], the capabilities of MRI as a tool to non-invasively obtain 
anatomical details and identify anomalies and lesions without any ionizing radiation delivered to 
the patient have improved dramatically.  MRI works by measuring the magnetic properties of 
atomic nuclei present in human tissue in the presence of a large magnetic field, and is often used to 
measure either the rate for nuclear spins to return to equilibrium with their surroundings after a 
transmitted electromagnetic pulse (T1-weighting) or the rate that a group of spins lose their phase 
coherence (T2-weighting) [4].  The parameters for an MRI scan can be adjusted to weight a given 
image to detect differences in T1 or T2 in order to highlight or suppress different tissues for 
medical diagnosis.  Adding extra field gradients to a T2-weighted spin echo pulse sequence, for 
example, gives an MRI scanner the ability to measure the mean displacement of an ensemble of 
water molecules moving in tissues – a process known as Diffusion MRI, or Diffusion Weighted 
Imaging (DWI) [5].  In DWI measurements, analysing the distance that molecules move in a given 
volume of interest (voxel) during a given time period can provide insight into the underlying tissue 
properties. 

1.1 Molecular Diffusion and Brownian Motion 

When a molecule is suspended in a liquid or gas, it moves in a random fashion due to thermal 
energy and collisions with neighbouring molecules, a stochastic process known as Brownian 
motion.  Although the exact path of each molecule in a given volume is different, when combined 
over an entire ensemble, the random motions can be quantified via a displacement probability 
distribution that is measurable, such as a Gaussian distribution in the case of self-diffusion in the 
absence of a concentration gradient. 

1.1.1 Gaussian Self-Diffusion 

Diffusion refers to the process of how molecules or particles disperse through a substance with a 
typical example being dispersion of coloured dye added to a glass of water.  This can be 
characterized using a simple relation known as Fick’s First Law of Diffusion, which is given by [6] 

 𝐽 =  −𝐷∇𝜑 , (1) 

where J is the diffusion flux, ∇φ the concentration gradient of the molecular ensemble in space, and 
D the diffusivity or diffusion coefficient.  The diffusion coefficient refers to how the solute and 
solvent molecules move from a higher to lower concentration in the case of two substances.  In the 
case of self-diffusion, movement of particles of a single substance, a self-diffusion coefficient 
describes the molecular motion.  The value of this diffusion coefficient can be calculated by the 
Einstein-Sutherland relation [7] 
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 𝐷 =  
𝑘𝑘
𝑓

 , (2) 

where k is the Boltzmann constant, f the friction coefficient, and T the temperature.   The friction 
coefficient is dependent on the molecular substance itself, meaning a self-diffusion coefficient of a 
given substance will change only on its relation to temperature.  For water at a temperature of 20 
°C, the value is 2.02x10-9 m2/s, whereas at 37 °C (as in the human body) it has a diffusivity of 
3.03x10-9 m2/s [8].  As Brownian motion is a stochastic process, the exact path that each molecule 
travels is unknown.  However, the average displacement distance of a molecular ensemble will be 
longer if the molecules have a higher diffusivity.  If a molecular ensemble is made up of freely-
diffusing water, the random displacements in a single direction will assume a Gaussian Probability 
Density Function (PDF)  

 
𝑃(𝑟, 𝑡) =  

1
√4𝜋𝜋𝜋

exp �−
𝑟2

4𝐷𝐷�
 , (3) 

where r is the displacement in a given direction, D the diffusivity, and t time.  This Gaussian PDF 
equation describes a displacement centred about r = 0 with variance equal to 𝐷𝐷.  If a molecular 
ensemble with a fixed diffusivity of 3.0x10-9 m2/s is evaluated for two diffusion times, 40 and 80 ms, 
the variance of the 80 ms PDF is equal to 2.4x10-10 m and the variance of the 40 ms PDF equal to 
1.2x10-10 m.  These can be better represented as displacement standard deviations, equal to 15.5 
µm and 11.0 µm for the 80 and 40 ms distributions, respectively, illustrating that the molecules will 
displace further on average when given more time. The average displacement will also increase if 
the diffusivity is increased, and in both cases, the Gaussian distribution becomes wider.  The 
displacement of the ensemble in n-dimensional space can also be defined by the relation 

 〈𝑟2〉 = 2𝑛𝑛𝑛 .  (4) 

where 〈𝑟2〉 is known as the Mean Squared Displacement (MSD) with the angle brackets specifying 
an ensemble average.  In the case of free diffusion, MSD has a linear relation to time.   

1.1.2 Hindered Diffusion 

If obstacles are present that hinder the paths of molecules as they diffuse, the MSD will decrease, 
modifying the relation in Equation 4.  If Equation 4 is inverted and solved for a new, effective value 
of D, the result is 

 
𝐷𝑒𝑒𝑒(𝑡) =  

〈�𝑟(𝑡) − 𝑟(0)�2〉
6𝑡

 , (5) 

where r(t) – r(0) is the displacement of one molecule from time zero to time t.  If multiple molecules 
collide with obstacles as they diffuse through space, their total displacements over time will be 
shorter, and the effective diffusion coefficient will be less than the free diffusivity.  In the case of 
hindered diffusion, the displacements will still assume a Gaussian distribution as per Equation 3, 
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but the distribution will be narrower than a free diffusion distribution to reflect the decrease in 
MSD. 

1.1.3 Anomalous Diffusion 

When a molecular ensemble diffuses through porous media, percolation clusters, or fractal-like 
structures, the relationship of MSD to time becomes nonlinear and assumes a power law [9] 

 〈𝑟2〉 ∝ 𝐷𝑡𝛼. (6) 

If the value of α is less than one, the process is called subdiffusion and if α is greater than one, the 
process is superdiffusion, and when α is exactly one, the diffusion assumes the linear relationship in 
Equation 4.  While hindered diffusion is due to obstructions that randomly obstruct diffusing 
molecules, anomalous diffusion involves obstructions with periodic patterns or clusters at similar 
scales, causing the molecular displacements to be highly correlated with each other [10].  
Anomalous diffusion has been observed in excised human tissue using DWI measurements [11]. 

1.1.4 Restricted Diffusion 

When molecules are confined within a space such that some of the molecules are reflected during 
the diffusion time measurement, the diffusion is called restricted.  For molecules confined within a 
closed pore, the MSD will increase linearly at short diffusion times, but as a larger proportion of 
molecules bounce off the walls of the pore, the mean displacement no longer scales linearly with 
time, and as the diffusion time increases, the mean displacement eventually reaches a maximum 
value.  In this scenario, the relation between MSD and time varies depending on the length of time, 
and if the measurement time is sufficiently long, the MSD no longer changes with time and instead 
its value is dependent on the pore geometry.  For some basic restricted geometries, such as a 
sphere or two opposing planes, closed-form expressions have been determined for the diffusion 
coefficient with respect to the physical geometry [12].  In most complex systems, such as biological 
tissue, the geometries are complex and the molecular diffusion properties can exhibit various 
combinations of the previously mentioned diffusion types.  These molecular displacement 
distributions are difficult to define with a closed-form expression and are inadequately described 
by a Gaussian PDF or any anomalous relationship.   

For some cellular tissues, there may be structural order present, but cellular walls are also 
permeable, adding an additional dimension to the relationship between molecular displacement 
and geometry.  At short measurement times, DWI measurements are sensitive to molecular 
displacements on the order of micrometres, which are close to the size of a single cell in the human 
body, so molecular collisions with internal cellular structure must also be accounted for.  
Additionally, in some cellular structures such as the cylindrical shaped white matter fibres in the 
brain, diffusion restrictions in one spatial dimension can also be different than the other two such 
that the diffusion is anisotropic [13].  A detailed discussion of the various restricted diffusion 
relationships won’t be presented further in this thesis, however, a comprehensive review of the 
MRI literature on restricted diffusion can be found in [14], discussing various methodology, 
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experiments, and models with well-defined relations between geometries, measurement times, and 
diffusion coefficients, with additional updated review found in [7]. 

1.2 Modelling DWI Data 

DWI measurements can be acquired in an MRI scanner using a variety of pulse sequences, and the 
most common model in present use is the pulsed gradient spin-echo (PGSE) sequence developed by 
Stejskal and Tanner [15].  The PGSE relates the attenuation in the measured signal to the diffusion 
coefficient through the equation  

 𝑆
𝑆0

= exp �−𝛾2𝐺2𝛿2 �∆ −
𝛿
3
�𝐷� , (7) 

where S is the signal with the diffusion gradient applied, S0 the signal with no diffusion gradients 
applied, G the diffusion gradient amplitude, δ the gradient pulse width, Δ the time between pulses, γ 
a constant (gyromagnetic ratio), and D the variable of interest – the diffusion coefficient.  If two 
signals are measured, one with diffusion gradients, and one without, the scanner parameters can all 
be inserted into the equation and the value for D calculated.  For most DWI measurements, the 
value of Δ and δ are fixed, with the value of (Δ – δ/3) known as the diffusion time, and the gradient 
amplitude is adjusted to different values.  In one of his papers, Le Bihan suggested to simplify the 
equation by combining the scanner acquisition parameters into one single factor, called a “b factor” 
or b-value [16], which simplifies the  equation to  

 𝑆𝑏
𝑆0

= exp(−𝑏 ∙ 𝐷) . (8) 

Real DWI data measured by an MRI scanner has added noise associated with the acquisition 
process, so to reduce the variance of the value of D, multiple signal measurements are taken at 
different sequence parameters and a curve of best fit calculated for the data points.  The single 
exponential decay model of Equation 8 is often termed a monoexponential decay model and is 
widely used in DWI analysis.  Other commonly found models are the multiexponential decay model, 
kurtosis model, and stretched exponential model, which expand off of the monoexponential decay 
model, along with even more complex models that can assess diffusion in multiple dimensions. 

1.2.1 Monoexponential Decay Model 

If Equation 8 is used to assess a pure liquid undergoing free diffusion, for example, the calculated 
value of D will be the diffusion coefficient, equal to the variance of a Gaussian PDF.  For more 
complex environments where there are combinations of hindered and restricted diffusion, or 
where there are combinations of substances diffusing freely, the measured signal will no longer be 
a single exponential decay [17].  If the model in Equation 8 is still applied to measurements with 
non-Gaussian diffusion, then D is instead termed an Apparent Diffusion Coefficient (ADC)  

 𝑆𝑏 =  𝑆0 exp (−𝑏 ∙ 𝐴𝐴𝐴) . (9) 
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Because the ADC and b-value parameters are contained within the exponential function, their 
relationship to the measured signal Sb is nonlinear.  However, if a logarithmic transformation is 
applied to both sides of the equation, for any two b-values, the ADC value can be determined by the 
equation 

 
𝐴𝐴𝐴 =  

log�𝑆(𝑏2)� − log�𝑆(𝑏1)�
𝑏1 − 𝑏2

 . (10) 

This relationship can be solved exactly with only two measurements (the endpoints of a line) and 
for b1 = 0, the value S(b1) = S0, as in Equation 9.  This allows for a simple calculation of the ADC 
value, but sampling only two data points can make this value highly susceptible to noise.  To reduce 
the bias and variance of the estimated ADC, multiple b-value measurements can be acquired, 
logarithmically transformed, and fit with a linear regression method.   

The monoexponential model has been in use since the development of DWI imaging and the early 
focus of most DWI anatomical measurements was structures in the water-rich tissue of the human 
brain.  An early review showed that the diffusion coefficient was able to identify structures in the 
brain, such as white matter, grey matter, and cerebrospinal fluid [18].  This review also reports on 
using DWI acquisitions for the detection of ischemia in the brain due to blood vessel blockage as in 
a stroke, as well as the detection of cancerous lesions.  DWI researchers have the ability to detect 
minute changes to the white matter structure [19], and the ability to create whole mappings of the 
brain through tractography [20, 21].  DWI measurements of decreasing ADC are now also a 
standard recommendation for the imaging of acute ischemic stroke [22, 23]. 

DWI imaging has since moved beyond the brain to various tissues found throughout the entire 
body.  It has been used in the detection of cancerous tumours inside the visceral organs such as 
liver, kidney, and pancreas [24], along with lesions found in lymphatic tissue and bone marrow 
[25].  Application of the simple monoexponential decay model on DWI data currently performs well 
at the detection of cancers at the whole body level [26, 27], and on cancers in the pelvic region [28] 
along with other visceral organ cancers [29].  Whole body DWI, where the entire body is imaged in 
one scan, is now being implemented in clinical use, due to its capabilities for identifying and 
monitoring metastatic disease [30].  DWI has also been included as part of a standard, 
multiparametric prostate imaging protocol for the detection of prostate cancer in the international 
standard PI-RADS (version 2) [31, 32].  For many DWI measurements, especially in the brain, the 
ADC has been superseded by the application of more complex models to distinguish structural brain 
features more accurately [20].  However, the ADC in many measurements may not actually be 
measuring the molecular MSD and the meaning of ADC as applied to DWI data can be unclear [33].  
Hence, current DWI research often focuses on more complex methods and models to detect and 
identify intricate tissue structure and diffusion restrictions in images. 

1.2.2 Multiexponential Decay Model 

A natural extrapolation of the single monoexponential decay model is a model that includes more 
than one decay component.  If a given measurement voxel of a diffusion MRI measurement is made 
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up of two or more separate structures with different diffusion coefficients, the result will be a signal 
that is a sum of exponential decays,  

 
𝑆(𝑏) = 𝑆(0)�𝑓𝑖𝑒𝑒𝑒(−𝑏𝐷𝑖)

𝑁

𝑖=1

 , (11) 

where fi is the signal fraction of each component of the overall signal with the total of all N signal 
fractions equal to 1.  This first main application of this model was made by Le Bihan et al [34] 
where a two decay component equation was used to estimate the diffusion of water through tissues 
and the perfusion of blood moving through vessels.  This biexponential model use is referred to as 
IntraVoxel Incoherent Motion (IVIM) and this study established the theoretical basis for the 
biexponential model.  The IVIM/biexponential model can be used with regression fitting using 
either Equation 11 with two decay components and four fitting parameters or by substituting the 
signal fraction of the second component with the remainder from 1 of the first signal fraction 
component,  

 𝑆𝑏 =  𝑆0( 𝑆𝑆1 exp(−𝑏𝐷1) + (1 − 𝑆𝑆1) exp(−𝑏𝐷2) ) . (12) 

In this equation, the value of D1 is customarily known as the “fast” component as it has a larger 
decay rate and decays faster as the b-value increases, while the D2 component is known as the 
“slow” component.  In the IVIM model, the fast component is assumed to be perfusion, as the 
moving blood causes a faster decay, while diffusion is assumed to be the slow component.  This 
model has four parameters and requires a nonlinear regression method to estimate these 
parameters with noisy data.  This model is also currently used for a variety of measurements 
outside of IVIM imaging, and Chapter 2 of this thesis contains a detailed analysis of the current uses 
of the biexponential model in the literature and examines its reliability when using it to fit noisy 
data. 

1.2.3 Kurtosis 

If a stochastic variable has a Gaussian PDF, the first two cumulants are the well-known mean or 
expected value, labelled μ, and the variance, σ2.  This PDF is also known as the normal distribution 
and is often identified mathematically as N(μ, σ2).  The third cumulant of a PDF is the skewness and 
the fourth cumulant is known as the kurtosis, which refers to the degree that a distribution is either 
peaked or rounded [35].  When measuring molecular displacements in complex tissue, the kurtosis 
is a way to determine how the displacement distribution differs from a Gaussian one produced by 
free diffusion.  Comparing the kurtosis value this way measures the excess kurtosis, so a Gaussian 
distribution has excess kurtosis of zero.  If a distribution is sharper or more peaked, there is a 
positive excess kurtosis, and if it is more rounded, the excess kurtosis is negative.  Estimating the 
excess kurtosis in DWI measurements can be made with the equation [36] 

 𝑆𝑏 =  𝑆0 exp �−𝑏𝐷𝑎𝑝𝑝 +
1
6
𝑏2𝐷𝑎𝑎𝑎2 𝐾𝑎𝑎𝑎� . (13) 
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In this equation, an extra fit parameter Kapp is also estimated, making this a three parameter model, 
and the D and K parameters have a subscript of app to reflect that they are apparent coefficients.  If 
the measured diffusion of a given set of noisy data is free diffusion, then the value of K is zero, and 
Equation 13 is identical to Equation 9.  This model only focuses on the change in kurtosis from a 
Gaussian distribution, which has a mean and skewness of zero.  In the DWI literature, excess 
kurtosis is commonly referred to as just “kurtosis” and the model in Equation 13 called the 
“kurtosis model”, which is the convention that will be followed in the rest of this thesis.   

The kurtosis does not have a known, direct biophysical interpretation in human tissue like the IVIM 
model [37], but focuses instead on measuring the shape of the molecular displacement distribution.  
While it may not be directly modelling any physical properties of tissue, it is still a statistical model, 
and will be referred to as a model in the rest of this thesis for consistency.  The kurtosis model has 
appeared in the last ten years in the DWI literature and has been used in the analysis of ischemic 
stroke and neurodegenerative diseases [38].  Kurtosis has also been used to identify gliomas [39], 
tissue changes in the human kidney [40], and more recently in studies of abnormalities and lesions 
in the prostate [41, 42].  These studies report that the kurtosis model was better at assessment of 
specific tissue anomalies than the conventional, monoexponential model, identifying its usefulness 
in DWI analysis.  Chapter 3 examines the kurtosis model in detail, including its reliability when 
fitting the model to data. 

1.2.4 Stretched Exponential Model 

The stretched exponential model is used with fitting algorithms to assess anomalous diffusion in a 
given voxel.  From Section 1.1.3, anomalous diffusion has a power law scaling parameter shown in 
Equation 6, and this diffusion scaling has been modified to an equation of [43] 

 𝑆𝑏 =  𝑆0 exp[−(𝑏 ∙ 𝐷𝐷𝐷)∝] . (14) 

The DDC value for this equation is called the Distributed Diffusion Coefficient.  Hall and Barrick [44] 
modified this equation to better reflect the change in diffusion dynamics,  

 𝑆𝑏 =  𝑆0 exp(−𝐴𝐴𝛾) . (15) 

In this case, the value of A is the same as 𝐷𝐷𝐷𝛼, and the focus of this equation is on the stretching 
parameter γ, which can be directly related to the fractal dimension of the tissue structure.  This is 
another three parameter fitting model, and here the stretching parameter can assume values 
between 0 and 1.  When the stretching parameter value approaches 1, the diffusion becomes more 
like Gaussian diffusion, and eventually produces the same relation as Equation 9.  The stretched 
exponential model is also relatively recent, but has been used in DWI analysis of liver fibrosis [45] 
and ex vivo prostate tissue samples [37].  These two studies also reported that the stretched 
exponential model provided more information about the respective tissue than the 
monoexponential model.  This model, however, will not be examined further in this thesis. 
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1.2.5 Three-dimensional Diffusion Modelling 

The previous models are designed to measure the signal over multiple b-values with the scanner 
gradients setup for the same single direction in three-dimensional Cartesian space.  Producing a 
three-dimensional diffusion assessment of tissue requires multiple scans in different orientations 
and combining the resulting diffusion coefficient values from these orientations.  The most popular 
method of doing this is the construction of a diffusion tensor, which assesses the changes in  
multiple diffusion measurement vectors [46].  In three dimensions, a tensor requires a 3x3 matrix 
of nine elements which covers all of the different combinations.  For Diffusion Tensor Imaging 
(DTI), this matrix would be  

 
𝑫 = �

𝐷𝑥𝑥 𝐷𝑥𝑥 𝐷𝑥𝑥
𝐷𝑦𝑦 𝐷𝑦𝑦 𝐷𝑦𝑦
𝐷𝑧𝑧 𝐷𝑧𝑧 𝐷𝑧𝑧

� . (16) 

The cross product values are symmetrical in this tensor, i.e. Dyx = Dxy, so only six unique diffusion 
directions need to be measured.  The six diffusion values are usually selected to be as evenly spaced 
over the directional sphere as possible.  In a typical DTI measurement, one PGSE acquisition with 
no applied directional gradient is taken (b=0) for a voxel, and six measurements taken with the 
gradient applied and a b-value between 600-1000 s/mm2.  The b=0 value is used with each gradient 
signal b measurement to calculate the ADC values based on Equation 10, and with those values and 
the (x, y, z) gradient information for each signal, the six directional diffusion values needed for 
Equation 16 can be calculated.  The diffusion tensor can also be decomposed into three 
eigenvectors ε, which form three orthogonal axes in (x, y, z) space.  These eigenvectors have three 
eigenvalues λ associated with them, with the primary eigenvalue (λ1) having the value with the 
largest diffusion coefficient, and the other two eigenvalues having the secondary diffusivities.  
These eigenvectors can be used to visualize the directional difference in diffusivity for the voxel, by 
creating an ellipsoid with ε1 as the primary axis as shown in Figure 1. 

 

Figure 1 – Ellipsoid representing the orientation of the three diffusion tensor eigenvectors 
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The diffusion tensor eigenvalues also produce two other useful measurements.  The Mean 
Diffusivity (MD) is the average of the three diffusivity eigenvalues, which because it’s the average of 
multiple values, is more robust to noise than a single ADC measurement.  The other measure is the 
fractional anisotropy (FA), which is a value between 0 and 1 that describes the degree of diffusion 
anisotropy in the voxel, and an example equation to calculate this measure is 

 
𝐹𝐹 =

�(𝜆1 − 𝜆2)2 + (𝜆2 − 𝜆3)2 +  (𝜆3 − 𝜆1)2 

�2(𝜆12  +  𝜆22  + 𝜆32)
 . (17) 

Fractional anisotropy is a widely used measure to quantify anisotropy in diffusion measurement 
over a wide variety of applications.  Diffusion tensor measurements in the MR literature are 
widespread, especially in relation to the brain.  For many measurements in the brain, though, DTI 
has been reported to be inadequate for measuring certain structures, with more complex models 
demonstrated to have better performance.  While, analysis of three-dimensional models won’t be 
specifically discussed in this thesis, the previously described one-dimensional models can be 
applied to each axis of a set of multi-axis data to assess specific differences in each axis. 

1.2.6 Other Models 

Additional DWI models have been developed that are combinations of the aforementioned models, 
for example, a biexponential model, with either one or both decay components replaced by a 
stretched exponential decay component, was assessed on prostate tissue data [47].  A model called 
VERDICT, consisting of three separate components that assess the intracellular, extracellular, and 
perfusion components of prostate tissue, has been used to assess both healthy and cancerous 
tissues [48].  For brain tissue measurements, dozens of combinations of a set of fundamental three-
dimensional models were compared and assessed on their fit quality [49].  Improvements in MRI 
scanner technology lead to better SNR and higher image resolution, giving increased ability to 
identify more structures in tissue.  In response to these improvements, more flexible models with 
added parameters that assess additional information in the tissue are introduced.  As the presented 
studies for the biexponential, kurtosis, and stretched exponential models reported, these models 
can better fit data than the simpler monoexponential model, demonstrating their clinical 
usefulness.  The drawback of a more complex model, though, is that while an increased number of 
model parameters may make it more sensitive to changes in tissue structure, it also becomes more 
susceptible to noise and the model parameters can be harder to interpret. 

1.3 Estimation of Model Parameters 

Actual DWI data will always be corrupted with some amount of noise contributions from various 
physical phenomena in the acquisition process.  Assessing the underlying properties of the tissue 
structure in noise-corrupted data requires mathematical and statistical methods that attempt to 
quantify both signal and noise to produce the best model parameter estimates.  A probability 
density function describes the probability that a stochastic variable will assume a value given the 
parameters of the distribution.  In this section, the reverse problem is analysed through the 
introduction of likelihood – what the most likely parameter values are for a model, given the 
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measured data.  Determination of the most likely parameter values for a model and data is usually 
done using least squares regression or maximum likelihood estimation. 

1.3.1 Least Squares Regression 

Finding the most likely parameter values involves studying the relationship between the 
independent (sometimes called predictor) variable(s) and the dependent (response) variable [50].  
This relationship usually is constructed through a mathematical function with an additional 
stochastic variable (ε) representing the addition of error or noise 

 𝒚 = 𝑓(𝒙,𝜷) +  𝜀 . (18) 

The independent variable x and dependent variable y are bolded as they can be a vector of multiple 
values and likewise the vector of parameters β is bolded as there can also be more than one 
parameter in the equation.  One of the simplest relationships between x and y is a linear 
relationship dependent on only two parameters: β0, the 𝑦-intercept of the line, and β1, its slope.  
When fitting that model to a set of n observed data, the linear regression model is written as 

 𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖      𝑖 = 1, … ,𝑛 . (19) 

Least squares (LS) regression is a method that determines the best fit values of the 𝛽 parameters 
based on the sum of  squared deviation between the observed data y and the line of best fit based 
on those parameters and the values of x [51].  These deviations are also called residuals and the 
mathematical expression for minimizing a general least squares problem is 

 
min�(𝑦𝑖 − 𝑓(𝑥𝑖 ,𝜷))2

𝑛

𝑖=1

  . (20) 

To evaluate the linear model in Equation 19, 𝑓(𝑥𝑖 ,𝜷) can be substituted with 𝛽0 + 𝛽1𝑥𝑖.  An 
illustration of Linear Least Squares (LLS) regression using this model on simulated noisy data is 
shown in Figure 2.  The plot there shows that with the addition of noise to the true signal, the LLS 
regression algorithm is only able to get the best estimate of the true signal given the available 
information and model, but can’t recover the true underlying signal.  Thus, in parametric 
regression, the goal is to find a maximum likelihood estimate which should give the set of 
parameters with the minimum deviance between a specified model and the data.  Fortunately, least 
squares regression does give the maximum likelihood if the errors are independent, normally 
distributed, and have equal variance [52].  LLS algorithms make things very easy as the 
mathematical formulation is based on straightforward matrix algebra and gives an exact solution 
for the parameters 

 𝜷� =  (𝑿𝑇𝑿)−1𝑿𝑇𝒚 . (21) 

The hat on the β parameter vector indicates that these are the parameter estimates. As 
demonstrated in Section 1.2, using parametric models beyond a simple linear model is often 
desired.  Fortunately, more complicated models can be used with LLS regression as long as all of the 
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parameters have a linear relationship in the equation.  Thus, if the specified model was a third-
order polynomial model like 

 𝑦 =  𝛽3𝑥3 + 𝛽2𝑥2 + 𝛽1𝑥 + 𝛽0 + 𝜀 ,  (22) 

an LLS algorithm could be used as the estimated parameters (β) all have a linear relationship to y in 
the model equation. 

 

Figure 2 – Linear Least Squares Fit (red line) to simulated data (blue) 

The simulated data is generated by the linear model y = 2x + 6 + ε, where ε is Gaussian noise with zero 
mean and standard deviation of 2.   The line of best fit has a slope of 1.87 and an intercept of 6.6, 
indicating that there is bias between the best estimates and the true values. 

1.3.2 Nonlinear Least Squares Regression 

As shown previously in Section 1.2, unless the model was mathematically transformed, all models 
discussed therein were nonlinear models, as one or more of the parameters had a nonlinear 
relationship to the measured signal.  This requires the use of Nonlinear Least Squares (NLLS) 
algorithms to estimate the model parameters for a given set of data.  NLLS algorithms typically 
calculate a linear approximation of the fit for a set of parameters, and then iteratively refine that 
solution to find the minimum deviance between model and data.  Different algorithms perform 
different operations to find this minimum deviance, but all NLLS algorithms must be provided with 
a set of starting values for the model parameters.  For a given model, however, there can be 
multiple local minima, but the minimum deviance is found at what is called the global minimum.  
For certain models, multiple parameter start points should be used to attempt to find a global 
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minimum, as the algorithm may get hung up at a local minimum for a given set of starting values.  
There is also no guarantee that a particular algorithm can find a minimum deviance less than a 
specified stopping criteria, so sometimes an algorithm may just stop and return whatever values it 
stopped at. 

Residual Sum of Squares (RSS) 

An essential measure in least squares regression, both linear and nonlinear, is the Residual Sum of 
Squares (RSS), which is the sum of all individual residuals squared, and is a standard output from 
NLLS regression algorithms. This quantity is the equivalent of the expression in Equation 20, with 
each residual 𝑟 = 𝑦𝑖 − 𝑓(𝑥𝑖 ,𝜷), and is the value that is minimized as a NLLS algorithm attempts to 
find a minimum.  A lower RSS means less deviation between the model fit and data, so the RSS can 
be used as a measure to compare the closeness of a fit.  For a given DWI data voxel, comparing the 
RSS value obtained when fitting different models on that voxel can show which model gives the 
closest fit to the data.   

Jacobian 

The key matrix to be aware of when using NLLS algorithms is the Jacobian matrix (with respect to 
the model function).  If the goal is minimizing the deviance between a model equation with m 
parameters to be evaluated and a set of n noisy data observations, then the Jacobian matrix J is an m 
x n matrix made up of the partial derivatives of each parameter versus each independent variable 
data point.  So, if x is the independent variable, and f(x) the model function, as in Equation 20, the 
individual elements of J are 

  𝐽𝑖𝑖 =
𝜕𝜕(𝑥𝑖)
𝜕𝛽𝑗

 where 𝑖 = 1, … ,𝑚 and 𝑗 = 1, … ,𝑛 , (23) 

meaning Jij is the partial derivative of f(x) with respect to the regression parameter βj, evaluated at 
xi.  Evaluation of the Jacobian is important in NLLS regression algorithms for two reasons.  The first 
is that many NLLS algorithms accept user calculated Jacobian functions.  Many NLLS algorithms that 
are gradient-based attempt to approximate the local Jacobian elements based on the nearby 
numerical conditions.  If the Jacobian derived from the model function is provided to the algorithm, 
the algorithm can find a minimum more rapidly.  The downside of NLLS algorithms is the 
significantly slower speed in finding the minimum, often taking 30, 40, or 50+ iterations.  Providing 
a specific, function-based Jacobian to the algorithm can significantly reduce the number of 
iterations needed and therefore the time needed to find a minimum.  

The second advantage of using the function Jacobian is for the calculation of statistical diagnostics 
for a specific regression fit.  After a minimum is found by the NLLS algorithm, the Jacobian matrix 
evaluated at that minimum can be returned from the algorithm and this Jacobian can be used to 
obtain additional diagnostic information about the regression fit itself.  This information includes 
the correlation and covariance matrices for the model parameters, along with the estimated 
parameter variance, at a given fit [53].  Although the Jacobian is usually obtainable from a NLLS 
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algorithm, the other measures derived from it are often not standard in regression software.  While 
the RSS and its derivations, i.e. R2, provide a measure to determine the closeness of fit at the signal 
level, they do not provide any information about the parameter estimates themselves. 

1.3.3 Maximum Likelihood Estimation 

As mentioned in Section 1.3.1, if the errors are independent, normally distributed, and have equal 
variance, then least squares regression is equivalent to the maximum likelihood.  As the next 
section will show, most DWI measurements have a Rician distribution.  This distribution is not 
normally distributed over all measurements, and also has unequal variance over the 
measurements, a condition known as heteroskedasticity.  To account for changes in regression 
fitting due to this Rician distribution, Gudbjartsson and Patz created a bias reduction scheme to 
adjust for the differences in the distribution [54].  This can be used to obtain a corrected signal A, 
using the measured data 𝑀 and the best estimate of the noise variance 𝜎2, via the equation 

 𝐴 =  �|𝑀2 − 𝜎2| . (24) 

To get the best estimate of the maximum likelihood (ML), however, a custom equation that takes 
into account the full Rician distribution needs to be used.  One such equation was created by Sjibers 
and den Dekker for ML analysis as a log likelihood function [55].  The function maximizes the log 
likelihood for the signal values A, again given the magnitude data M and estimated variance σ2 with 
the full log likelihood equation for N data points being 

 
log  𝐿 = � log �
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 , (25) 

where 𝐼0 is the zeroth order, modified Bessel function of the first kind.  The variables M and σ2 can 
be plugged into the equation and a function minimization algorithm can be used to minimize the 
negative of the log likelihood function (equivalent to maximizing log likelihood) to get the ML 
values of A.  Sijbers and den Dekker showed that using this ML function with noisy data generally 
gave a reduction in fitting error over a least squares algorithm.  Walker-Samuel et al also showed 
that by adding the monoexponential decay model (Equation 9) to the ML equation, the bias in the 
estimation of the ADC was reduced compared to a least squares algorithm fit [56].  While the 
literature suggests that ML algorithms may improve error while attempting to fit noisy data, the 
computational complexity using Equation 25 increases considerably compared to a standard NLLS 
algorithm, requiring additional computation time to analyse all data.   While either of these 
methods can be used to assess DWI data, the simplicity and speed of NLLS regression means it is 
often chosen over custom ML analysis.  

1.4 Assessment and Analysis of Noise and Error 

When acquiring magnitude DWI data, the added noise from the MRI scanner is not normally 
distributed, but instead has a Rician distribution, and this noise corruption affects the values of the 
model parameter estimates.  To assess noise and error when fitting a model to data, the metric 
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often used is Mean Squared Error (MSE), which accounts for both the variance in the parameter 
estimates as well as the bias between the estimates and the true parameter values.  Both bias and 
variance need to be minimised when assessing the performance of a model over repeated sample 
measurements. 

1.4.1 Rician Distribution of Magnitude MRI Measurements 

A typical PGSE measurement acquires complex valued data with real and imaginary image 
components, and the noise associated with these components has a Gaussian distribution [57].  
Often, these real and imaginary images are combined into a magnitude and phase image and the 
phase portion usually discarded to remove phase artefacts in the image, leaving the magnitude 
measurement of the signal which is calculated with the equation [58] 

 
𝑆(𝑏) =  �(𝑆𝑟 + 𝑛𝑟)2 + 𝑛𝑖2  . (26) 

 

Figure 3 – Rician PDF’s for three different SNR values 

The noise standard deviation (σ) is set to 1 in this plot, so the true signal (A) is equal to the SNR value.  
The x-axis is the resulting magnitude measurement (M) divided by σ for the PDF of each true signal.  For 
an SNR of 5, the Rician PDF is a Gaussian with mean of 5 and standard deviation of 1 (the added noise).  
At an SNR of 2, the left tail of the distribution is rectified and there is a slight positive bias to the mean 
value of the distribution.  When there is zero signal, the resulting PDF is a Rayleigh distribution with a 
mean value of 1. 
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The second term under the square root would normally be (𝑆𝑖 + 𝑛𝑖)2 , but Equation 26 reflects the 
discarding of the imaginary measurement Si.  The total magnitude measurement now consists of a 
nonlinear combination of the real part of the signal plus two individual, Gaussian-distributed, real 
and imaginary noise components.  The combination of the signal and noise components now has a 
distribution known as the Rice distribution, where its PDF is determined by [59] 

 
𝑝(𝑀|𝐴) =  

𝑀
𝜎2

exp�
𝑀2 + 𝐴2

2𝜎2 � 𝐼0 �
𝑀𝑀
𝜎2

� . (27) 

This equation gives the conditional PDF of the magnitude measurement M given the unknown true 
signal A, with σ2 the associated noise variance and I0 the modified zeroth-order Bessel function.  As 
Equation 26 shows, if the two Gaussian noise components are squared, even if the particular noise 
components are negative, the resulting values will always be positive, leading to a “noise floor” 
phenomenon.  This is reflected in the Rice distribution, as it is effectively a Rayleigh distribution 
when there is no signal (A) present [54].  Alternatively, when the SNR (A/σ2) is ≥ 5, the distribution 
is effectively Gaussian with variance σ2.   A plot illustrating the changes in the Rician PDF at 
different SNR values is shown in Figure 3.   

 

Figure 4 – A semilog plot of a noise-free exponential decay signal (black dashed line) and a “cloud” 
(scattered red dots) representing possible measurements of the resulting magnitude signal with 
added noise   

Noisy signals were created by adding noise per Equation 26 with a standard deviation of 0.04 to the 
noise-free signal of exp(-0.3b).  The value of b in this case is an Arbitrary Unit (AU).  At high values of b, 
the measurements no longer track the true signal, but instead level off at the noise value of 0.04. 
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The Rician distribution of magnitude MRI images causes issues with DWI signal measurements due 
to the exponential decay relation in Equation 8.  As shown in Figure 4, as the value of b increases, 
the true, noise-free signal of exp(-0.3b), indicated by the dashed black line, decreases.  Simulated 
Gaussian noise components (ηr, ηi) are added to the noise-free signal per Equation 26, and as the 
noise-free signal decreases into the noise floor, the noisy signal measurements deviate significantly 
and level off at a near constant value.  Thus, as the b-value increases, the SNR of the noisy signal not 
only decreases as the noise-free signal approaches the level of the noise, but the noisy signal also 
becomes biased compared to the true underlying signal value.  If more additional measurements 
are taken at these higher b-values, the averaged signal will still not converge to the true, noise-free 
signal value, but instead one that is inherently biased, illustrating a significant issue with DWI 
measurements at higher b-values [60].   

1.4.2 Mean Squared Error 

To assess the fit quality in the case of a regression estimate based on a least squares model, an 
often-used measure is the mean squared error [61].  The MSE is useful as it incorporates both bias 
and variance, and for a regression estimate 𝜃� of the true value θ, the MSE can be calculated by  

 𝑀𝑀𝑀�𝜃�� = 𝐸 ��𝜃� − 𝜃�2� =  𝑉𝑉𝑉�𝜃�� + �𝐵𝐵𝐵𝐵�𝜃�,𝜃��2 . (28) 

If a particular regression estimate of noisy data is completely unbiased and converges 
asymptotically toward the true value with more measurements, then the bias would be zero and the 
MSE would be due solely to the noise variance.  As was just shown with the Rician signal bias, the 
noise distribution may cause a regression estimate to be biased, and therefore the MSE will have 
both variance and bias components.  With DWI measurements of tissue where there are various 
restrictions to diffusion, a true unbiased estimator is unobtainable because the regression models 
introduced previously don’t completely describe the unknown, true signal.  The MSE will then have 
variance and bias due to the Rician bias plus additional bias due to deviation between the selected 
model and the true underlying signal, demonstrating the importance of having more complex 
models with additional parameters – to reduce the bias between model and truth. 

1.4.3 Complexity and Overfitting 

While having too simple of a model for the data leads to bias in the parameter estimates since the 
model doesn’t describe the signal well, a simpler model is more resistant to variance in the data.  In 
the opposite case, when a model is very flexible and has lots of parameters, the model has less bias, 
but is more affected by variance in the data.  Figure 5 shows a basic example of this phenomenon 
where noise-free data from a single exponential decay of exp(-1.0b) was fitted with Gaussian noise 
with a standard deviation of 0.1 at eleven data points.  Two regression fits were then performed on 
the noisy data, a linear fit with slope and intercept parameters and a cubic polynomial fit with four 
parameters (as in Equation 22).  Neither model completely accounts for the underlying signal, but 
the linear fit is more biased with respect to the true signal, especially at the lowest and highest b-
values.  The cubic polynomial fits the true data curve well for the first five data points, however, 
when the noisy signal deviates significantly from the true curve at higher b-values, the regression fit 
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is more affected by these deviations, increasing its MSE due to the variance.  This phenomenon is 
known as overfitting [62].  When a model is overfit, it may provide the closest fit to one set of data, 
but when testing on different sets, it may give poor estimates that are largely affected by noise.  
Selection of a model that minimises MSE over all possible data values involves a compromise 
between finding a model complex enough to reduce the bias between model and data, but one not 
too complex to then increase the variance, a dilemma known as the bias-variance trade-off [63].  
Balancing this bias-variance trade-off selects a model with the best performance, not just for a 
single acquisition, but over repeated samples of the same signal.  Basing model selection only on 
how well a model fits a set of data is inadequate, and error analysis of DWI data requires more 
comprehensive methods that account for overfitting. 

 

Figure 5 – Simple line/curve of best fit using a linear model (red) and a cubic model (green)  

Linear model equation is 𝑆 =  𝛽1𝑏 + 𝛽0, and cubic model equation is 𝑆 =  𝛽3𝑏3 + 𝛽2𝑏2 + 𝛽1𝑏 + 𝛽0 .   
The true signal (black dotted line) is 𝑆 = exp(−𝑏) with Gaussian noise of standard deviation equal to 0.1 
added to create the noisy data (blue dots).  The cubic model fits the data points better, but is more 
affected by noise, especially at higher values of b. 

1.5 Model Selection 

Balancing the bias-variance trade-off requires a model to have just enough complexity to assess 
features in the data, but not too much to be affected by noise when those features are minimal, a 
phenomenon known as model parsimony [62].  Applying the model with the best minimisation of 
the error between model and data is trivial if the process that generated the data is straightforward 
and known, such as measuring the diffusivity of water using a monoexponential model.  When 
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assessing complex tissue with various restrictions and hindrances to the diffusing molecules, 
however, the true signal can have hundreds of dimensions and is effectively unknown.  The model 
that best minimises the error between data and truth over repeated measurements should still be 
used in this case.  When acquiring DWI data, however, this best model is often unknown and can be 
completely different for certain types of tissue.  Hence, researchers want to determine the model 
that gives the best performance for a given tissue study.  This requires model selection 
methodology that can compare multiple models to a given set of data. 

1.5.1 Statistical Tests 

A common practice seen in the DWI literature is the use of statistical hypothesis testing such as the 
F-test [64, 65], a likelihood ratio test [66], or an approximation of it like a χ2 goodness-of-fit test 
[67].   These statistical tests are popular because they produce an identifier of statistical 
significance, usually a p-value, which is the probability that the observed value would be obtained 
strictly by chance if the null hypothesis was true.  If this p-value meets a specified significance level, 
then one model is decreed significantly better than the other.  The F-test is used to distinguish 
between nested models, and whether the more complex model is better than a simpler one, so it 
can be used effectively to compare the monoexponential model to the biexponential, kurtosis, or 
stretched exponential models, where the monoexponential model is nested inside.  It cannot, 
however, be used to compare any of the three complex models to each other.  If these models were 
able to be compared using a statistical test, comparing four models would require six separate tests, 
and the chance for random errors propagating through multiple tests is much higher than a single 
test between two models.   

1.5.2 Information Criteria 

The Akaike Information Criteria (AIC) is a model selection method that balances the model’s 
complexity with a factor that penalises models based on the number of parameters [68].  The AIC 
assesses an important element of information theory, the Kullback-Leibler (K-L) divergence or 
distance [69], which is a measure of the difference between two probability distributions.  Put 
another way, this is the information lost when one distribution approximates another, and can 
assess any two probability distributions, including the unknown true distribution.  This is an 
important factor when selecting the best approximating model with DWI tissue data, as the truth is 
often unknown.  The AIC compares two or more models to the unknown true distribution via 
estimation of the likelihood, 

 AIC =  −2log�𝐿�𝜽��𝒚�� + 2𝑘 , (29) 

where 𝐿�𝜽��𝒚� is the maximum likelihood of the parameter estimates 𝜽� given the data y, and 𝑘 is a 
variable representing the number of parameters being estimated in a particular model.  Multiple 
models can be compared on the same set of noisy data this way, and the model that has the lowest 
value or score is the one with the lowest K-L distance to the true distribution.  The likelihood 
function of a more complex model will be lower than a simpler model, but the 2𝑘 factor in the AIC 
equation acts as a penalty against complexity as it grows as the number of parameters increase.  In 
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the case of fitting a model using least squares regression, the likelihood function in Equation 29 can 
be replaced by the RSS measure returned by the least squares fit, giving 

 AIC =  𝑛 log �
RSS
𝑛
� + 2𝑘 , (30) 

where n is the number of data measurements and k, in this LS equation, includes the number of 
model parameters plus 1, which accounts for the variance in the estimation [70].  The change in 
sign in the first term of Equation 30 reflects that least squares algorithms attempt to minimise the 
RSS value, while likelihood methods attempt to maximise the likelihood function.  This equation 
allows for multiple models to be easily compared using the results from a LS regression, with the 
lowest AIC value still selecting the model with the lowest divergence from the truth. There is also a 
corrected version of the AIC called the AICc, which is more appropriate if the sample size is low, i.e. 
n/k < 40 [62], 

 AICc =  AIC +
2𝑘(𝑘 + 1)
𝑛 − 𝑘 − 1

 . (31) 

The AIC is an appropriate tool for DWI analysis using least squares regression as it uses the RSS 
value from the fitting algorithm, or it can also be calculated using any custom maximum likelihood 
function.  In the DWI literature, the AIC has recently been used as a way to rank multiple models on 
the same data set [37, 47, 71], as has the corrected AICc version [72].  However, the AIC and AICc 
information criteria are not without their drawbacks.  The AIC can rank multiple models indicating 
the one with the lowest score is the best fitting model, but it cannot report that the models all have 
a large divergence from the truth.  AIC provides only a relative value between two or more models 
for a specific measurement, and is not an absolute score that assesses fit quality of a model across all 
data.  A related criterion called the Bayesian Information Criterion (BIC) has also been used to rank 
models in DWI data [73].  While this measure is valid for use in comparing DWI models, literature 
examples on comparison of AIC and BIC suggest that neither method has significant performance 
improvements over the other [74] and both are good approximations in most circumstances [75].   

1.5.3 Cross-Validation 

The other model selection method that will be examined in this thesis is cross-validation.  Cross-
validation involves removing one or more data points from a data set, and then using a model and 
the remaining data points to predict the value at the omitted point.  Multiple data points can be left 
out, but since most diffusion MRI measurements don’t have many data points for each voxel, 
typically only one data point is left out at a time, which is called Leave-one-out Cross-Validation 
(LOOCV).  Cross-validation techniques are often used to validate a model by dividing up the data set 
into section, using one section of the data as a training set to get the best predictions from the 
model, and compare how these predictions perform on the other section, which is known as the test 
set [76].  Cross-validation can also be used for model selection [77], like the AIC, and it has been 
shown that the AIC and cross-validation are asymptotically equivalent for maximum likelihood 
estimation for large sample sizes, and the AIC does have some cross-validation properties when 
maximum likelihood estimation is used with the models [78].   
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Cross-validation has been used in the DWI literature to estimate the best model for a given set of 
data [79-81].  It provides another method of model selection using the information only from the 
given models and the data to be examined, meaning no additional information is needed.  Because 
each point in a given voxel data measurement must be left out, the fitting time for the regression 
method for an entire measurement is multiplied by the number of data points in the set, i.e. if 
measurements are made at eleven different b-values, each one will have to be left out in turn, so the 
total time to perform regression on the data set is twelve times more than a single regression 
(including the original regression fit).  This is a significant drawback when measuring several 
thousand voxels from a DWI data set.  However, because it performs multiple tests on a single voxel 
data set, there may be an increase in selection performance compared to the approximations 
calculated using information criteria.   

1.6 Statistical Inference 

Statistical inference refers to the process of analysing observed data and attempting to infer the 
underlying properties of the phenomena that created them [82].  The topic of statistical inference is 
at the heart of DWI data analysis and ties together all of the topics introduced thus far in this 
chapter.  DWI is a diagnostic imaging tool and the aim of most DWI analyses is to find phenomena in 
the measured signal that infer that a particular condition or abnormality is present in a volume of 
interest in human tissue.  This is the process of causation and the forward problem – the presence 
of this condition causes this phenomenon in the measured signal.  DWI analysis, like most medical 
imaging modalities, investigates the reverse problem – a signal phenomenon is measured, but the 
desired knowledge is whether a specific condition in a volume of interest caused the measurement.  
The reverse problem in DWI data analysis is difficult both because the signal is confounded by noise 
from the data acquisition process, but also when measuring human tissue, there can be several 
conditions present in a given volume at once.  When making inferences about a given measurement, 
signal phenomena are then correlated with a particular tissue condition, often by selecting a region 
of interest (ROI) via pathological classification after tissue excision, and registering that same ROI 
in the DWI data.  While the correlation of signal phenomena and tissue properties does not 
guarantee causation, statistical analysis gives researchers information to make inferences that 
should be the most likely given the data and model.   

1.6.1 Uncertainty in Model Parameter Estimates 

The methodology of most parametric model fitting in the DWI literature references in this thesis 
usually involve selecting a set of data to be measured, examining and cleaning that data by 
eliminating outliers or measurements that don’t reflect reality, and preparing the data so each voxel 
in the data set is fit using a regression algorithm (often NLLS) with one or more of the previously 
mentioned models.  Regression fitting is performed on all data and the results are often analysed by 
correlating the returned parameter estimates with regions of the data, selected either by visual 
identification or confirmation via histopathology results (or both).  For each model tested, the 
parameter estimates for a selected ROI are often grouped as a distribution and the mean and 
standard deviation of this distribution reported.  If there are multiple regions selected for a given 
acquisition, say a region of cancerous tissue and a region of normal tissue, the parameter estimates 
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from these two regions are often compared by a statistical test.  If a test for a given parameter 
rejects the null hypothesis that there is no difference between the voxels from the two regions at a 
given level of significance, the parameter is often reported as being significantly higher or lower in 
one region vs. another.  The interpretation of this inference is that the parameter difference in the 
two populations is likely due to changes inherent in the tissue structure, and is often correlated 
with pathology or a different imaging modality to bolster this evidence.  Based on this knowledge, 
these differences in model parameters should allow researchers to make better diagnostic 
predictions of a given tissue anomaly or condition in future studies.   

In addition to studies on fitting models to tissue data, there are many studies in the literature on 
noise affecting the MRI acquisition process, uncertainty in DWI signal measurements, and methods 
to minimise noise, with a few examples presented in Section 1.4.  However, a gap in the literature 
exists between these two portions of the data analysis process, namely, a detailed study of the 
reliability of current DWI models when used with NLLS regression algorithms.  Modern 
computational languages make NLLS regression algorithms easy to use and are essentially “plug 
and play”, where both data and model are entered into the algorithm and parameter values 
returned in seconds.  Because of this, it’s easy for a researcher to overlook the model fitting step as 
a source of error, and under this assumption, any significant errors or outliers in the parameter 
estimates may be attributed back to noise from the physical MRI acquisition process.  While the 
monoexponential model is well established in clinical use, it provides a rough estimate of tissue 
microstructure, so introducing more complex models to clinical DWI analysis would expand 
medical researchers’ capabilities to better identify structural details [83].  For two of these models, 
biexponential and kurtosis, the monoexponential model is nested within their mathematical 
equations, and the assumption is that these more complex models may supersede it, since they can 
assess any monoexponential signal, as well.   

The assumption of similar model performance of the biexponential and kurtosis models is largely 
based on current statistical studies of data combined from multiple patients.  This gives a large 
range of parameter estimates to accommodate most possibilities, however, these values are mostly 
obtained from single acquisition studies.  While statistical methods produce an estimate of what 
parameter values are likely to be obtained in future studies, there is no guarantee that these values 
will be obtained unless tested.  What is missing in the literature is a detailed assessment of how 
parameter estimates vary across repeated sample measurements of the same patient.  This may be 
due to the prohibitively high cost of acquiring MRI data, especially in vivo, so studies that 
investigate repeated sample measurements from the same voxel or voxels are rarely performed.  
With no indications of regression analysis problems in the DWI literature, performing such an 
experiment may seem pointless to begin with.  Testing how models perform when fitting repeated 
measurements can instead be achieved by generating synthetic data via computer simulation.  
While an assessment of simulated data cannot be directly related to the results of actual empirical 
studies, using these data can isolate whether uncertainty in the regression fitting process is due 
solely to noise or to algorithmic issues, as well.  Chapter 2 and Chapter 3 of this thesis present an 
assessment of the reliability of the biexponential and kurtosis models, respectively, using such data. 
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1.6.2 Reliability of Model Selection Methods 

Section 1.5 presented a sample of DWI literature studies where multiple models were applied to a 
set of tissue data, and a specific model was reported to have been selected by a model selection 
method as the best for those tissue data.  The inference here is that that model would then give 
better predictive ability in identification of a tissue type or condition, assisting researchers who will 
choose models in future studies.  These studies often use information criteria or cross-validation to 
compare multiple models, with the models ranked based on how often they are selected as the best 
model for all voxels of a specific tissue or ROI.  While these studies are important contributions to 
the DWI literature, the choice of model selection method in these studies varies.  AIC, BIC, and AICc 
all have well-established theoretical foundations in the literature via the references presented in 
Section 1.5.2, but no method has been clearly established as being better than the others with a lack 
of detailed studies performed on when or why a particular criterion should be used for DWI 
measurements. 

With these information criteria, in-depth analysis of their selection performance is lacking, most 
likely, due to the statistical literature presenting these information criteria with little regard to 
uncertainty in the model selection process.  When comparing models on a single voxel from a set of 
DWI data in one acquisition, inferences are made for one specific noisy measurement of a true 
signal, but this disregards the possibility that the same model selection method may choose a 
completely different model for that voxel in another acquisition.  While model selection uncertainty 
has been noted in a few places in the model selection literature, e.g. Section 1.7 of [62] as well as 
[84, 85], there is little evidence in the DWI literature on how reliably model selection criteria select 
models over repeated measurements.  The biexponential and kurtosis models each have the 
monoexponential model nested within them, so if a signal is effectively monoexponential, all three 
of these models should fit it similarly.  The expectation is that model selection methods would 
select the monoexponential model as the best model in this case, but if the kurtosis or biexponential 
model happen to be selected, these models should also deliver similar results for the parameter 
estimates.  As noted in the previous section, however, equal performance of these models when 
assessing monoexponential data is still based on assumption.  What is missing in the literature, 
then, is a detailed assessment of the common model selection methods when analysing repeated 
measurements from various signals, and whether there is any cost when a model selection method 
chooses a more complex model on a signal better described as monoexponential or vice versa.  A 
detailed study of how information criteria and cross-validation reliably selected models on 
synthetic data is presented in Chapter 4. 

1.6.3 Aims of this Thesis 

Detailed analysis on the parameter estimates from the biexponential and kurtosis models and their 
sensitivity to noise is lacking in the literature.  On complex tissue where the truth is unknown, the 
justification for using more complex models on a set of data is often from previous studies that used 
model selection methodology.  These methods are applied under the assumption that they will 
always determine the best model without providing any explanation of what “best” means, or, if 
there is any uncertainty associated with the model selection process.   
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Based on this analysis, the aims of this thesis were: 

• Quantify the uncertainty in the biexponential model parameter estimates when using NLLS 
regression algorithms across possible parameter values, and assess the effects of 
measurement noise on the parameter estimates. 

• Quantify the uncertainty in the kurtosis model parameter estimates with NLLS algorithms. 
• Introduce additional diagnostic measures to NLLS regression analysis that could allow 

researchers to identify whether there are large uncertainties in their parameter estimates. 
• Present a detailed analysis of the effects of measurement noise and varying acquisition 

parameters on the AIC, AICc, and LOOCV model selection methods. 
• Investigate how the uncertainty in the parameter estimates varied as a model was applied 

to data where the model did and didn’t describe the underlying signal. 
• Combine the findings from these simulated parameter estimate and model selection 

analyses and revisit a multimodel, DWI analysis of excised prostate tissue. 
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Chapter 2  
Performance of the Biexponential Model Using Simulated DWI Data 

2.1 Introduction and Background 

In 2008, Le Bihan wrote an updated review [86] on the usage of the biexponential model in IVIM 
imaging, highlighting many successful studies and technological improvements made in the twenty 
years since his initial IVIM publication.  One specific in vivo liver study [87] was highlighted there, 
where the authors reported that the mean perfusion component was significantly lowered in 
measurements from patients with cirrhotic livers compared to healthy liver tissue, while the mean 
diffusion component was slightly higher.  This decrease in liver perfusion concurred with the 
results of other liver perfusion studies, and this biexponential model result stood in contrast to 
earlier monoexponential model DWI studies that reported a decrease in ADC value and attributed it 
to overall decreased diffusion.  This is just one specific study that demonstrates the additional 
measurement capabilities of the IVIM model, since it was able to assess both perfusion and 
diffusion components, and indicates why so much research has gone into establishing it as a 
reliable model for analysing DWI data.   

In addition to the decay parameters representing diffusion or perfusion rates, the amplitude 
parameters are often correlated with changes in the vasculature of tissue, demonstrating that the 
signal fraction of the amplitude components correlates with the volume fraction of a given voxel 
[88].  In less well-perfused tissues, or in ex vivo measurements, biexponential analyses have 
attempted to resolve two diffusion components instead.  These two diffusion components are often 
attributed to water in intra and extracellular compartments, although this finding is now regarded 
as overly simplistic [89, 90], not least because non-monoexponential (non-Gaussian) diffusion has 
been reported from the cytoplasm of a single cell [91].  As well as free and restricted diffusion 
compartments, multiexponential decay has been correlated with other factors including exchange 
between restricted diffusion compartments [92] and T2 relaxation effects [93].  The biexponential 
model has also been used in the Kärger model [94] in the absence of a compartment exchange 
component, as well as an approximation in a mesoscopic effective medium theory model [95].  
Biexponential models have also been demonstrated to fit T2 in vivo brain data better than a 
monoexponential model [96-99].  The theoretical and biophysical basis for the biexponential/IVIM 
model has been well established in the literature, and the large body of empirical research indicates 
that the biexponential model is useful and should be a good addition to clinical research. 

Estimating biexponential model parameters with modern NLLS regression fitting methods requires 
computational algorithms, but there are many examples in the computational literature that are 
highly critical of the biexponential model.  In the book Numerical Methods That Work, written in 
1970 by Forman Acton  [100], the chapter titled “Interlude: What Not to Compute” has a section on 
exponential fitting with the following quote, “For it is well known that an exponential equation of 
this type in which all four parameters are to be fitted is extremely ill conditioned.  That is, there are 
many combinations of <the fitting parameters> that will fit most exact data quite well indeed (will 
you believe four significant figures?) and when experimental noise is thrown into the pot, the entire 
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operation becomes hopeless.”  The problem of fitting sums of exponentials was demonstrated 
before Acton’s work, with Lanczos demonstrating in 1956 that a data set from a sum of three 
exponential decay components can be closely fit by completely different sets of parameter 
estimates [101].  There have since been many computational literature examples on methods to 
reduce the fitting bias and variance of multiexponential decay models, for example, a separable 
least squares algorithm that regressed separately on the linear and nonlinear components of the 
model equation [102].  This algorithm has been updated and improved for modern programming 
languages, with separate software packages for R [103] and MATLAB [104].  These two packages 
both provide enhanced error reporting and algorithm analysis capabilities along with the fitted 
parameter results, but the examples provided within this documentation also demonstrate how 
easily multiexponential decay models can return significantly different parameter estimates from 
the same signal.   

These warnings from the computational literature have been noticed in a few DWI studies.  A 
review paper [105] noted these warnings and specifically acknowledged Acton’s work, but 
contrasted these with examples in the DWI literature where the biexponential model returned 
results that were relatively consistent across different research groups and experiments.  A study 
using the IVIM model to examine breast cancer by Sigmund et al [88] specifically noted that the 
biexponential model can be ill-conditioned, and rather than use the entire model in a regression 
algorithm, performed a segmented analysis that was “more numerically stable”.  Another recent 
paper noted ill-conditioning present when fitting with the biexponential model, classified these 
measurements as outliers, and recorded the frequency of these outliers while adjusting the number 
and spacing of b-value measurements [106].   A third recent paper also reported an increase in 
outliers and extreme parameter estimate values from the biexponential model and acknowledged 
that these results may be due to ill-conditioning [107].  These few examples have acknowledged the 
algorithmic issues of the biexponential model and have identified specific problematic aspects 
when analysing DWI data, indicating that there can be problems with the IVIM model. 

The monoexponential decay model is used in clinical measurements and its use in regression 
analysis of DWI data and issues with noise and parameter selection have been widely 
acknowledged and well-characterized [56, 108].   The potential effects of noise on NLLS approaches 
to biexponential analysis, however, have only been estimated for a number of specific cases [67, 
109, 110].  Thus, there is a need to provide DWI researchers with a more complete analysis of the 
effects of noise on biexponential model parameter estimates by performing NLLS regression fits on 
simulated DWI data where the truth is known, giving a complete assessment of bias and variance in 
the parameter estimates.  Such an error assessment should also explain ill-conditioning, the 
scenarios where it occurs in the biexponential model, the severity of its effects, and possibly include 
an expanded array of statistical tools to help researchers better identify possible problems in their 
parameter estimates. 

2.1.1 Parameter Estimation Errors 

A comprehensive review of multiexponential analysis in physical phenomena can be found in 
Istratov and Vyvenko [111], which explains the mathematical theory of the model’s difficulties and 
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presents several computer algorithms and their performance on various data sets.  In the section on 
NLLS regression fitting, the authors reported several studies that had difficulty resolving two decay 
components with a decay ratio of 2 at an SNR of 1000.  Reporting a minimum decay ratio suggests 
that the uncertainty of the parameter estimates decreases as the decay ratio increases and vice 
versa.  This is consistent with the aforementioned DWI study by Sigmund et al [88], which stated 
specifically, “…finite data sampling/precision, small perfusion fraction and/or similar 
compartmental diffusivities make an unconstrained fit ill-conditioned” (Emphasis added).  These 
reports also suggest that the reliability of the parameter estimates from a biexponential model 
regression fit can vary based on the characteristics of the measured phenomena themselves. 

In order to produce simulated DWI data that replicate data that are typically used for fitting, a 
literature survey was performed to examine the range of parameter values that have been reported 
with actual tissue data.  Table 1 shows the results of this survey, listing the reported mean 
biexponential parameter values for 𝑆𝑆1,  𝐷1, 𝐷2, the resulting ratio of 𝐷1/𝐷2, the SNR of the data (if 
reported), and the type of tissue measured along with any specific categorical conditions.   

Table 1 – Reported parameters from DWI studies using a biexponential model in regression fitting 

Shaded studies are ex vivo and all studies are human unless otherwise specified.  A plot of this data is 
presented in Figure 6. 

Tissue SF1 D1 D2 D1 / D2 SNRb=0 Reference 
Muscle (rat) - Edematous 0.89 2 0.27 7.4 30-50 [112] 

    - Control 0.84 1.3 0.16 8.1   

Liver (mouse) 0.76 1.23 0.27 4.6 > 90 [113] 

Liver – Normal Tissue 0.19 16.1 1.1 14.6  [114] 

    - Cancer 0.14 51.9 1 51.9   

Breast 0.9 N/A 1.4  69 [115] 

Liver - Benign 0.031 27.6 1.56 17.7  [116] 

    - Malignant Lesions 0.064 21.7 1.29 16.8   

Prostate (fixed) – Normal Tissue 0.74 1.56 0.23 6.8 160 [117] 

    - Cancer 0.6 0.87 0.1 8.7   

Kidney - Enhancing mass 0.28 14.1 1.47 9.6 > 15 [118] 

    - Non-enhancing mass 0.06 11.1 2.4 4.6   

Breast - Lesion, normal fit 28.4 8.67 1.01 8.6  [119] 

    - Segmented fit 13.3 15.3 1.323 11.6   

Prostate - Benign 0.21 8.03 1.21 6.6  [120] 

    - Cancer 0.14 8.36 0.84 10.0   

Liver 0.13 136 1.11 122.5 52 [121] 

Muscle (rabbit, heart, fixed) 0.82 0.72 0.06 12.0  [122] 

Brain - Grey Matter 0.74 1 0.3 3.3  [123] 

    - White Matter 0.69 1 0.1 10.0   

Liver 0.24 160 1.38 115.9  [124] 



Reliability and Uncertainty in Diffusion MRI Modelling 
   

37 
 

Kidney Cortex 0.17 14.2 1.6 8.9  [125] 

Liver (rat) - Fibrosis Category 0 0.22 37.99 0.98 38.8  [126] 

    - Category 1 0.18 30.38 0.94 32.3   

    - Category 2 0.17 29.15 0.79 36.9   

    - Category 3 0.15 27.22 0.8 34.0   

    - Category 4 0.14 27.07 0.81 33.4   

Liver - Fibrosis Category 0 0.25 76.2 0.91 83.7  [127] 

    - Category 1 0.25 75.7 0.9 84.1   

    - Category 2 0.24 67.3 0.87 77.4   

    - Category 3 0.25 60.7 0.84 72.3   

    - Category 4 0.22 55.6 0.88 63.2   

Liver - Normal 0.17 70.6 1.02 69.2  [128] 

    - Carcinoma 0.17 28.2 1.07 26.4   

Pancreas - Pancreaitis 0.16 N/A 1.07 N/A  [129] 

    - Pancreatic Cancer 8.2 N/A 1.09 N/A   

Pancreas 0.16 64.5 1.58 40.8 >12 [130] 

Pancreas - Head 0.39 14.05 0.92 15.3  [131] 

    - Body 0.4 15.2 0.91 16.7   

    - Tail 0.33 15.2 0.87 17.5   

Brain - Grey Matter 0.49 1.5 0.5 3.0 100 [132] 

    - White Matter 0.7 1.2 0.1 12.0   

    - Thalamus 0.72 1.3 0.3 4.3   

    - Putamen 0.65 1.1 0.3 3.7   

Brain (rat, thalamus) 0.7 1.12 0.33 3.4 > 85 [133] 

Prostate - Central gland 0.73 2.68 0.44 6.1  [134] 

    - Peripheral Zone 0.73 2.52 0.23 11.0   

Brain - White Matter, MS, Lesion 0.88 14.3 0.76 18.8  [135] 

Liver - Normal 0.32 39.6 1.17 33.8  [136] 

    - Cirrhotic Tissue 0.25 27.9 1.04 26.8   

Kidney - Lesions 0.16 N/A 1.4 N/A  [137] 

Prostate - Central Gland 0.18 10.9 1.3 8.4  [138] 

    - Peripheral Zone 0.23 21.2 1.3 16.3   

    - Rectal Wall 0.24 31.3 1.1 28.5   

    - Tumor 0.15 25.2 0.82 30.7   

Prostate - Peripheral Zone 0.7 2.9 0.7 4.1  [139] 

    - Transition Zone 0.6 2.9 0.7 4.1   

    - Cancer 0.5 1.7 0.3 5.7   

Breast - Lesion 0.1 15.1 1.15 13.1  [88] 

Breast - Lesion 0.16 98.2 0.7 140.3  [140] 

Breast - Benign Cyst 0.72 2.12 0.19 11.2  [141] 

    - Malignant Lesion 0.67 2.1 0.18 11.7   
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Kidney - Review paper 0.35 23.9 1.6 14.9  [142] 

Larynx - Normal 0.33 N/A 1.6 N/A  [143] 

    - Cancer 0.11 N/A 1.13 N/A   

Kidney 0.44 12.7 1.4 9.1  [65] 

Liver - Normal/Fibrosis 1 0.31 59.7 1.11 53.8  [144] 

    - Fibrosis 2-3 0.25 41.8 1.1 38.0   

    - Fibrosis 4 0.25 32.27 0.98 32.9   

Lung - Squamous Cell Carcinoma 0.26 15 1.02 14.7  [145] 

    - Adenocarcinoma 0.23 15.25 1.12 13.6   

    - Malignancy 0.23 14.14 1.09 13.0   

    - Benign Lesion 0.26 12.8 1.34 9.6   

Kidney - Cortex 0.31 14.2 1.8 7.9  [146] 

    - Medulla 0.34 11.3 1.5 7.5   

    - Kidney 0.32 18.2 1.7 10.7   

    - Cyst 0.22 8.9 1.9 4.7   

 

 

Figure 6 – Reported parameter values for biexponential studies in the DWI literature 

SF1 and D1/D2 for the studies in Table 1.  D1/D2 ratios higher than 20 were set to 20.   
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The parameter estimates in Table 1 can be more easily visualised as a scatter plot, as shown in 
Figure 6, using the signal fraction component, SF1 as the x-axis and the decay component ratio, 
D1/D2 as the y-axis.  All measurements were categorised into different tissue types, and each data 
point has a colour corresponding with its tissue type shown in the legend.  Additionally, all decay 
ratios higher than 20 were set to 20 to keep the graph scaled to a smaller area for ease of viewing.  
Figure 6 shows that the reported values of SF1 vary widely from 0 to 1 and the D1/D2 ratio from 2 to 
20.  The results in the highly perfused tissues, such as liver, generally show a much higher decay 
ratio, but there are a few brain studies that reported a mean D1/D2 ratio between 2 and 4.  The only 
SNR value reported for one of these low decay ratio studies was 100, which is considerably lower 
than the minimum resolution SNR reported in Istratov and Vyvenko of 1000, so it is possible that 
some of these studies could contain ill-conditioned fits.  These studies reported parameter 
estimates by combining the results from all voxels in a ROI and reporting a mean and standard 
deviation.  The ROI parameter distributions are usually compared categorically (e.g. normal tissue 
vs. cancerous) for statistical significance using a statistical test that may assume these distributions 
are normal (e.g. t-test or ANOVA).  Reporting parameter estimates this way simplifies the process of 
statistical inference and reduces sampling error by including more measurements, but masks 
whether there are a significant number of outliers or whether these estimates are actually normally 
distributed. 

Some recent studies in Table 1 have actually gone further and included error estimates of the model 
parameters themselves.  Andreou et al [114] reported very large errors in some parameter 
estimates, including an upper bound of a 95% confidence interval (CI) for D1 (perfusion) of 2,120% 
over the nominal estimate and an upper bound of 240% for an SF1 CI.  Bailey et al [115] added a 
68% CI to measurements based on a χ2 goodness-of-fit test, and Dyvorne et al [121] reported large 
errors in the perfusion decay component based on inter-scan reproducibility error tests.  Cho et al 
[119] reported parameter standard errors with in vivo patient estimates, and also included 
simulated data where the bias from the true parameter values could be assessed.  When discussing 
these large parameter errors, the authors have associated them with noise in the data, tissue 
heterogeneity, or other random effects, so isolating specific sources of these large estimated values 
should be another goal of a simulation study.  

2.1.2 Conditioning, Collinearity, and Correlation  

Linear least squares regression problems have an exact solution that can usually be obtained for a 
linear regression based on matrix operations per Equation 21.  These matrices can be used to 
calculate the condition number of a numerical problem, which measures the magnitude of changes 
in the solution  related to the magnitude of changes in the data [147].  If small changes in the data 
result in similar changes in the solution, then the system is well-conditioned, but if small changes in 
the data result in much larger changes, then the system is ill-conditioned.  Parameter estimates from 
an ill-conditioned system can have large errors due to computational rounding problems, numerical 
precision issues, and/or instability in the mathematical results.  In a linear regression, the presence 
of  ill-conditioning is often used as a diagnostic for collinearity (sometimes referred to as 
multicollinearity), and is often seen where there are two or more independent variable components 
that have nearly the same slope in a linear model [148].  As these components become more nearly 
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collinear, the algorithm can no longer identify them as separate as �𝑿𝑻𝑿� approaches singularity, 
and when this matrix is inverted, its elements can have extremely large or small values [149].   

 

Figure 7 – Measurement of biexponential signal decay in noisy magnitude MR images  

In this example, the inherent “noise-free” signal (black dots) is composed of two signals of equal signal 
fractions that sum to 1 with decay constants D1 and D2 differing by a factor of 8.  The red “cloud” 
represents the possible magnitude image voxel values obtained by a measurement at SNR = 25. 

With most DWI measurements, there is usually just one independent variable, the b-value, so there 
aren’t any collinearity issues with the data in this case.  However, there can be highly collinear 
components in the regression model itself [150], and as was discussed in Section 1.3.2, most NLLS 
algorithms operate by solving a local linear approximation of the function based on the local 
gradient values of the function found in the Jacobian matrix .  In this approximation equation, the 
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Jacobian appears just like the matrix 𝑿 does for linear equations, as the transpose of the Jacobian 
multiplied by itself (𝑱𝑻𝑱) [151].  If there is significant collinearity between the regression model 
parameters, the Jacobian can also have near-singular values and become ill-conditioned, translating 
to increased parameter estimation errors.  Due to its nonlinear nature with respect to the b-value 
and the decay parameters, collinearity in the biexponential model in Equation 32 is not evident.  If a 
simulated biexponential signal with two diffusivity components is plotted logarithmically in the y-
axis, however, the linear aspect of the decay components is now visible, as shown in Figure 7.   

If the value of D2 (the slow component) increases while D1 is fixed at one, the individual 
components will become more and more close to parallel until perfectly collinear.  Hence, if D1 and 
D2 have a lower ratio, there will be more collinearity between the decay components, and there will 
most likely be larger errors in the parameter estimates.  When collinearity is present in a regression 
model, the usual effect is increased variance in one or more of the parameter estimates, often much 
greater than the variance in the data [152], although it is possible for parameter variance to also 
decrease [153].  Parameter estimates from NLLS regression often have some amount of bias 
present [154], but ill-conditioning in the regression model can significantly increase this bias [155].  
An additional effect of collinearity is that occasionally the bias in the parameter estimates can 
increase while the variance of the parameter estimates decreases [156].   

While it is possible for the biexponential model to have significant model collinearity, it is rarely 
mentioned or detected in nonlinear regression modelling of DWI data.  It has been mentioned in a 
DTI study in reference to avoiding collinearity by ensuring that the three-dimensional gradient 
directions are not made in parallel [157].  For DWI nonlinear regression, however, one study stated 
that the biexponential model was robust and reported no problems with collinearity [135].  An 
additional known problem with collinearity, however, is that it is usually not detected by the usual 
model selection methods based on RSS values like AIC, goodness-of-fit tests, F-tests, etc [158].  It 
also may not show up, or be severely underestimated, when examining the distribution of the fit 
residuals [159].  For example, if the true decay rates in a signal being fitted by a biexponential 
model were identical, the contribution to the model error or RSS value would be the same as a 
single exponential decay model with one of the biexponential decay terms essentially undetected. 
Thus, while the measured data itself may appear to be well-fitted by such a model, the parameter 
estimate calculations are often unstable, and the parameter values can be unreliable and have little 
relation to what the model represents [160]. 

Parameter Identifiability 

Perfectly collinear decay parameters in data being fit by a model are no longer identifiable [52].  An 
explanation of this statistical concept can be shown using the biexponential model equation with 
individual amplitude parameters 

 𝑆𝑏 =  𝐴1 exp(−𝑏𝐷1) + 𝐴2 exp(−𝑏𝐷2) . (32) 

Assume a signal has total signal amplitude at b = 0 of 1 and A1 and A2 are both non-zero.  If the 
decay components of the signal, D1 and D2, are effectively equal, then D1 ≈ D2 ≈ D and Equation 
32 reduces to 
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 𝑆𝑏 =   (𝐴1 + 𝐴2) exp(−𝑏𝑏) . (33) 

Equation 33 is then effectively a monoexponential decay equation with two amplitude components 
and the amplitude portion of the equation is effectively solving A1 + A2 = 1, which is an ill-posed 
problem as it has an infinite number of solutions for A1 and A2.  Likewise, if one of the amplitude 
components is close to zero, Equation 32 reduces to a single exponential decay equation, but the 
regression algorithm still attempts to estimate two parameters from a non-existent decay 
component.  These identifiability problems are also referred to as the model having redundant 
parameters [161], with the parameters attempting to resolve signal components that aren’t there. 
Identifiability can be a significant problem in estimation of the parameter estimates for a model, 
since a non-identifiable model means that there can be many parameter values that equally fit the 
data [162].  When this happens, there is no longer a single maximum likelihood estimate since there 
are multiple parameter combinations that are equally likely, so the model is inconsistent and 
repeated measurements will not converge to the true value and/or may not converge at all. 

These parameter identification scenarios reflect the warning in Sigmund et al [88] that ill-
conditioning can be present in signals with similar diffusivities and/or low perfusion fraction, but 
these signal fractions or diffusivities are not known a priori and are actually the parameters of 
interest.  In these worst-case scenarios, where the signal decay components are identical or one 
amplitude component is zero, while some regression algorithms may stop and report an error, most 
will still report a solution with parameter estimates.  When measurement noise is added to these 
problematic true signals, noise may affect the signal such that the algorithm doesn’t fail completely, 
but there is severe ill-conditioning present that causes unstable parameter estimates.  Hence, 
detection of ill-conditioning in the biexponential model requires expansion beyond the standard 
fare of diagnostic tools for NLLS regression.  Seber and Wild [150] note these “problems of 
approximate non-identifiability, correlated estimates, and poor precision of estimation” in 
nonlinear models, and they refer to the combination of these problems as the result of “ill-
conditioning”, a convention that will be followed in the rest of this thesis.   

2.1.3 Regression Diagnostics 

To determine if ill-conditioning is present in a given regression fit, the best measure to start with is 
the condition of the Jacobian matrix.  The Jacobian is a gradient matrix that is used to find the 
minimum squared residual value of a given fit, and is returned by most standard NLLS regression 
algorithms.  This Jacobian matrix will be of the dimensions, Number of parameters x Number of b-
values, and to calculate the condition of this matrix, the singular value decomposition (SVD) of the 
Jacobian is taken, which returns the singular values for each parameter, and the matrix condition is 
then calculated by the ratio of the largest singular value divided by the smallest.  A large condition 
number indicates that there may be more instability with the matrix, with a good summary of this 
issue given in [103].  While the references in the previous section demonstrate the usefulness of the 
condition number in diagnosing ill-conditioning in linear LS fitting, it’s effectiveness in NLLS fitting 
is unclear. 

Standard Error of Regression 



Reliability and Uncertainty in Diffusion MRI Modelling 
   

43 
 

Another measure used is the standard error of regression (SER).  This formula is calculated by 
dividing the RSS value of a given fit by the degrees of freedom (number of diffusion weightings – 
number of parameters), and taking the square root,  

 
𝑆𝑆𝑆 = �

𝑅𝑅𝑅
𝑛 − 𝑝

 , (34) 

where n is the number of diffusion weighted measurements or b-values, and p the number of 
parameters being estimated in the tested model.  The square of the SER is effectively a normalised 
value of the RSS, and the SER is then the estimate of the error in the regression problem, i.e., ε in 
Equation 18.  The SER is used for the value of σ in the following measures.  

Covariance and Correlation Matrices 

Two other diagnostic measures that can possibly indicate problems with a regression fit are the 
covariance matrix of the parameter fits and the related correlation matrix, since a high degree of 
correlation between two parameters implies collinearity (though the converse is not true) [158].  
The covariance matrix for the parameters can easily be calculated using the transpose of the 
Jacobian multiplied by itself ( 𝑱𝑻𝑱)  and the equation 

 𝑪𝒗 = 𝜎2�𝑱𝑻𝑱�−1 , (35) 

where σ2 is the estimated variance associated with the regression fit.  The covariance matrix is a 
𝑛 × 𝑛 square, symmetric matrix, where 𝑛 is the number of parameters in the regression model, with 
the biexponential model having a 4x4 matrix.  The diagonal elements in the matrix are the 
estimated variances for each parameter while the off-diagonal elements contain the covariance 
between two specific parameters respectively, allowing for comparison of variance at the 
parameter level, which can be compared to the overall variance in the regression fit.  The 
covariance elements can be used to assess which combination of parameters cause the regression 
fit to vary together, and this can be also visualised by calculating the Pearson correlation 
coefficients among the parameters.  This can be done by calculating the correlation matrix using the 
covariance matrix, giving a normalized correlation value between two parameters from -1 to 1, 
where the correlation equals the covariance between the two parameters divided by their 
estimated individual standard deviations.  The equation to calculate the correlation matrix is  

 𝑪𝒓  = �𝑑𝑑𝑑𝑑(𝑪𝒗)�−0.5 ∙ 𝑪𝒗 ∙ �𝑑𝑑𝑑𝑑(𝑪𝒗)�−0.5 , (36) 

where 𝑑𝑑𝑑𝑑(𝑪𝒗) means the diagonal elements of the covariance matrix.  The correlation coefficients 
indicate where any two parameters are highly correlated, implying a high degree of collinearity 
between those parameters.   

Variance Inflation Factor (VIF) 
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An additional measure calculated from the correlation matrix that is the standard method to assess 
collinearity in linear regression in the parameter estimates is the variance inflation factor (VIF) 
[163].  The VIF for a given parameter is 

 𝑉𝑉𝑉𝑘 = �1 − 𝑅𝑘2�
−1 , (37) 

where 𝑅𝑘2 is the coefficient of determination of the regression of the kth parameter on the other 
parameters.  A simpler way to calculate the values of VIF is to use the diagonal values of the inverse 
of the correlation matrix, 

 𝑉𝑉𝑉𝑝 = 𝑑𝑑𝑑𝑑𝑝�𝑪𝒓−1� , (38) 

where p is the parameter of interest.  The VIF estimates the multiplication factor for the parameter 
variance due to collinearity against the variance with no collinearity present. 

Parameter Standard Deviation and Confidence Intervals 

To assess the variance for the estimated parameters in a regression fit, the standard deviation of 
each parameter can be calculated which can then be used to give a confidence interval for each 
estimated parameter value.  Reported in a few DWI studies earlier in this chapter, confidence 
intervals provide more information than point estimates for the parameters in one fit, giving 
researchers an estimated range that the parameter estimate would likely assume in future samples.  
A confidence interval is also useful to assess the true value of a parameter in a given model, but it 
does not always contain the true value within it.  For example, 95% confidence intervals indicate 
that upon repeated noisy acquisitions of the same true signal, 95% of the confidence intervals will 
contain the true value.  The standard deviation for each parameter estimate can be calculated by 
taking the square root of the individual parameter variance (diagonal) values in the covariance 
matrix. 

  𝜎𝑝 = �𝑑𝑑𝑑𝑑𝑝(𝑪𝒗) ,   

 

(39) 

where p is the parameter of interest.  To calculate a two-sided 95% confidence interval based on 
the t-distribution, the value of 𝛼 is set to 0.05, the degrees of freedom equal to the number of 
measurements n minus the number of parameters p, and the multiplication factor 𝑡(𝛼,𝑛−𝑝) can be 
sampled from the PDF via a lookup table or calculated by a variety of computer algorithms.  The 
interval is then calculated by 

 𝑃𝑃(−𝐶 < 𝛽 < 𝐶) = 0.95 

  𝑤ℎ𝑒𝑒𝑒 𝐶 = 𝜎𝑝 ∙ 𝑡(𝛼,𝑛−𝑝) , 
(40) 

𝛽 the parameter value estimate, and 𝜎𝑝 the standard deviation for the parameter.  Confidence 
intervals based on the t-distribution return estimates based on normally distributed errors, but as 
is often the case in nonlinear regression, errors in the parameter values are often not normally 
distributed [150].  t-distribution intervals also don’t take into account that the parameter estimates 
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in a NLLS regression fit may be bounded, so the returned values don’t reflect reality, i.e. a negative 
value for the decay rate or amplitude parameters in DWI data.  While the confidence intervals may 
not be reliable in these cases, confidence intervals still provide an estimate of the variance in the 
parameter estimates across repeated samples. 

Perturbation Analysis and Bootstrapping 

A comprehensive review of collinearity and conditioning diagnostics, which discusses many of the 
problems with collinearity and ill-conditioning presented here, along with analysis of the 
regression diagnostic methods, can be found in [164].  This book also produced an effective 
diagnostic measure for ill-conditioning from a related paper by the same author [165] termed 
perturbation analysis.  Perturbation analysis is a simple simulation test that adds a small amount of 
noise to the input signal and seeing whether the resultant noise in the parameter estimates is of a 
similar magnitude, essentially identical to the definition of ill-conditioning made earlier in this 
chapter.  If the magnitude of the noise in the parameter estimates is much greater, then it can be 
said that a particular regression fit suffers from conditioning problems.  This process is very much 
akin to the common statistical technique called bootstrapping, particularly the parametric 
bootstrap, which involves taking the data from a given fit and adding a small amount of noise to that 
data by resampling the residuals from that fit [166]. 

The parametric bootstrap takes the set of all residuals returned from a specific regression fit and 
randomly samples, with replacement, new sets of residuals, say 1000 of them.  The parameter 
estimates are plugged into the model and the resulting signal is then added to each of the 1000 new 
sets of residuals, creating 1000 new data sets.  A new regression fit is then performed on the new 
data sets, and the resulting parameter estimates from all sets can be combined into parameter 
distributions for examination of the distribution shape and variance.  Because the standard 
deviation of the residuals if of a similar magnitude to the noise inherent in the signal, the 
parametric bootstrap is nearly identical to perturbation analysis, as it adds a small amount of noise 
to the fitted signal and produces parameter distributions that can be examined for errors.  An 
added benefit of creating estimated parameter distributions is that confidence intervals can then be 
created on these parameter distributions via percentile calculations, giving the bootstrapped 
confidence intervals for each parameter.  Because each bootstrap fit also can be bounded, these 
confidence intervals should better reflect the variance in each parameter estimate.  

 Graphical Analysis 

The nonlinear regression literature (e.g. [103]) has many examples of nonlinear functions where an 
algorithm can get “trapped” in a local minimum and thus never find this global minimum.  This is 
why multiple start points are often used with NLLS regression, and is also why exhaustive, global 
optimization methods like simulated annealing or genetic algorithms have been developed [103].  
While an NLLS algorithm may return a solution, it doesn’t know whether this minimum is global or 
the algorithm happened to get trapped in a local minimum, and hence multiple start points across 
the parameter space are used to make sure the global minimum is found.  Many graphical methods 
have been developed to assist researchers in learning more about the results from regression 
algorithms [167].  Some of these methods can be used to create a picture about the regression 
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algorithm’s results in the neighbourhood of a solution, providing an assessment of all nearby 
solutions where any values less than the current minima can be found.  With this additional 
information, researchers can ascertain whether their solution is indeed the global minimum, and if 
there is a real need to switch to a more exhaustive algorithm. 

In particular, Chapter 3 in Seber and Wild [150] introduces the graphical concept of sum-of-squares 
contours which shows how the RSS is distributed in the neighbourhood of a solution by creating a 
discrete array of points near the solution and iteratively comparing the RSS value at each point to 
the RSS value at the algorithm’s solution.  For example, if a NLLS regression solution is found for the 
monoexponential model with S0 = 1 and ADC = 0.5, then a two-dimensional discrete grid of 121 
points could be created with eleven values from 0.95 to 1.05 via 0.01 steps in the S0 axis and eleven 
values from 0.45 to 0.55 via 0.01 steps in the ADC axis.  If the RSS values from all points are plotted 
versus the parameter values as two-dimensional contours, they can illustrate the change in RSS like 
a topographic map.  The minimum RSS value over this parameter space is akin to the bottom of a 
valley, topographically, and represents the minimum that the NLLS regression algorithm attempts 
to find.  This information can also give a visual assessment of the confidence interval around a given 
parameter, or in the case of two-dimensional plots for two parameters, confidence regions, as 
termed by Bates and Watts.  This method will be used in this chapter for a few NLLS regression 
solutions, to determine its potential to investigate minima in the biexponential model. 

2.1.4 Rician Bias 

In addition to the effects of ill-conditioning, the parameter estimates in the biexponential model can 
also be affected by Rician bias.  In the presence of noise, the magnitude measurement used in 
biexponential NLLS regression may deviate significantly from the inherent underlying signal.  There 
are clearly two problems with using a biexponential regression to the measured signal in an 
attempt to extract the decay constants and relative signal fractions of the underlying components.  
First, the rapid decay of the faster D1 component means that it makes no significant contribution to 
the measurement during most of the observed signal decay.  If the selection of b-values does not 
include multiple measurements that cover the faster D1 decay, then its estimate may be imprecise 
and/or biased.  The second problem is that the presence of Rician bias in the measurement leads to 
the appearance that the slow component (D2) decays much more slowly than its actual signal, since 
the noise floor “lifts” the signal at high b-values.  Even with a large number of measurements in the 
high b-value range the estimate of the component characteristics of D2 will be biased by the noise 
and, asymptotically, the parameter will converge toward an inherently biased value.  

Figure 8 illustrates this issue with results from biexponential fitting of a sample noisy measurement 
obtained from the system illustrated in Figure 7. In this example the fitted biexponential has the 
equation 

 𝑆𝑏 = 0.62 exp(−0.74𝑏) + 0.38 exp(−0.09𝑏) . (41) 

The signal fraction of the fast diffusivity component is 24% overestimated, the fast diffusivity 
component value is 26% underestimated, and the slow diffusivity component is 28% 
underestimated, showing the lifting effect that the Rician bias can have at higher b-values.  In 
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addition to investigating the effects of ill-conditioning on biexponential parameter estimates, the 
effects of Rician bias on DWI data must be incorporated into this simulation study.   

 

Figure 8 – Components of a biexponential regression fit to the true signal in Figure 7 plus noise  

The higher and lower diffusivity components from a regression fit are plotted (solid lines) along with 
their true values (dashed lines).  In this example the noise floor has strongly biased the estimate of the 
lower diffusivity component (green), but there are also significant errors in the estimate of the higher 
diffusivity component and relative signal fractions.  
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2.1.5 Chapter Aims 

The concept of ill-conditioning presented in this chapter, along with the presented references that 
indicate that the biexponential model can be affected by it, demonstrate a need for a detailed study 
to determine what its actual effects on parameter estimates are when assessing DWI data in NLLS 
regression.  By studying simulated DWI data, the magnitude of the effects of noise on the bias and 
variance in the parameter estimates can be determined.  To simulate DWI data, artificial 
measurement noise can be repeatedly sampled and added to a given noise-free signal, creating 
hundreds of noisy sample measurements for each noise-free signal.  If the parameter estimates 
from all noisy signal fits are combined, a detailed distribution can be created from which the bias 
and variance of the estimates of each parameter can be determined for each noise-free signal.  
Multiple noise-free signals also need to be created to determine the effects on the parameter 
estimates when the true signal differs.  Since the monoexponential model is well established in 
clinical use, the monoexponential model will also be compared on the same noisy signals to 
compare the variance in its estimates. 

The aims of this chapter were to: 

• Determine the bias and variance in the biexponential model parameter estimates by 
combining the fits of repeated noisy samples from each noise-free signal. 

• Examine how this bias and variance changes as the true parameter values of the noise-free 
signals vary over the parameter space in Figure 6. 

• Examine the effects on the parameter estimates as the measurement SNR changes by 
adjusting the magnitude of the simulated noise added to the noise-free signals. 

• Compare the effects of noise on monoexponential model parameter estimates to assess any 
differences to biexponential model estimates. 

• Assess the effects of Rician bias on biexponential model estimates. 
• Assess whether the diagnostic measures based on the Jacobian matrix from the NLLS 

regression fits (condition number, covariance matrix, correlation matrix, VIF, parameter 
standard error) can indicate when ill-conditioning is present in a given fit. 

• Determine what the effects of ill-conditioning have on confidence intervals derived from the 
NLLS Jacobian matrix. 

• Investigate the results from the parametric bootstrap perturbation analysis and determine 
its effectiveness in detecting ill-conditioning and large variance in the parameter estimates. 

• Assess if there are any possible solutions that can help remedy ill-conditioning when using 
the biexponential model. 

2.2 Methods 

Simulated data was created using the computer language MATLAB (Mathworks, Natick, MA, USA) 
with Equation 12 as the basis for signal creation.  Since this analysis is strictly mathematical, the 
values for the diffusivity components were normalised, with the value of D1 for all experiments set 
to 1.  The total signal amplitude, S0, for all experiments was also normalised to 1.  To obtain the 
values for the other two parameters, 50,000 random values were uniformly sampled from a range 
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of 2 – 20 for the ratio of D1/D2, with an additional 50,000 uniform random samples from a range of 
0 – 1 for SF1, matching the bounds of the parameter space in Figure 6.  The parameter combinations 
were then used to create 50,000 noise-free signals, at eleven simulated b-values or diffusion 
weightings (0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6), with the term “diffusion 
weighting” emphasised to distinguish that the units were arbitrary and not related to actual 
scanner acquisitions.  These weightings were chosen to represent a typical or feasible acquisition 
strategy, with enough spacing and sampling to cover the rapid drop off at the maximum decay value 
(100% D1) while keeping a few weightings for the minimum decay value (100% D2), with a graph of 
the weightings and the decay curves on a logarithmic scale shown in Figure 9. 

 

 

Figure 9 – Range of test decay signals and diffusion weightings 

Blue lines indicate the maximum (100% D1 component at a decay rate of 1) and minimum (100% D2 

component at a decay rate of 0.05) decay signals in the artificial data set, with the blue shaded area 
indicating the range of simulated decays.  Red lines indicate the 11 diffusion weightings (arbitrary units) 
for the measurement protocol.  The SD of the noise level at an SNR of 25 is indicated by the black 
dashed line, with the SNR 100 level equal to the x-axis at 0.01 and the SNR 200 level (0.005) not visible. 

Noise associated with a magnitude measurement was added at three SNR values of 25, 100, and 
200, approximately covering the range from the studies in Table 1.  For each noise-free signal, 200 
noisy measurements were created, giving a total test set of ten million measurements at each SNR.  
Each simulated noisy measurement was created using Equation 26, with the two noise components 
individually sampled randomly from a normal distribution with a standard deviation equal to the 
inverse of the SNR value, since the noise-free signal amplitude is always 1.  To reduce the effect of 
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Rician bias on each measurement, the bias reduction formula in Equation 24 was applied to all 
noisy signals before fitting, using the known standard deviation from the SNR used to create the 
data, plus a small random perturbation of 10% since its exact value would not be exactly obtained 
in a physical DWI measurement. 

2.2.1 Biexponential Model Regression Fitting 

Fitting the biexponential model to the simulated noisy data was performed using a NLLS algorithm 
(lsqcurvefit in MATLAB) with a trust-region-reflective optimization option.  The individual 
amplitude model in Equation 32 was used as the regression model, the individual amplitudes were 
bound in the algorithm to a range between 0 and the maximum amplitude in each signal 
measurement, and the individual decay values were bound to a range between 0 and 4.  This 
allowed for a positive overhead (from the true values) on the parameter estimates, but kept them 
from going negative.  Because NLLS regression can sometimes have local minima that can trap the 
regression algorithms, for each signal measurement, five separate regression fits were performed 
using random start values within these parameter bounds.  The regression fit with the minimum 
RSS value was kept and the others discarded.  From this minimum fit of the five, all parameter 
estimates and residuals (including the RSS value) were saved for analysis.  The parameter estimates 
were then compared to the known true parameter values from their respective noise-free signals, 
with SF1 estimates calculated by the equation SF1 = A1 / (A1 + A2).   

2.2.2 Monoexponential Model Regression Fitting 

For comparison, the monoexponential model in Equation 9 was also fit to all noisy signals, with S0 
bound in the NLLS algorithm between 0 and 2 times maximum amplitude in each measurement, 
and ADC between 0 and 4.  Since the monoexponential model is assessing biexponential signals, 
only the variance in the parameter estimates was assessed, since there is no true parameter value 
to be compared. 

2.2.3 Rician Bias and Low SNR Rejection Strategy 

The different decay rates for the signals in Figure 9 were also chosen to assess how Rician bias 
affects the model parameter estimates.  For example, signals at the Minimum Decay Value shown 
there stay well above the SNR 25 Noise Average level for all diffusion weightings.  However, signals 
at the Maximum Decay Value reach the noise level at the seventh diffusion weighting with three 
more measurements sampled where the signal is well below it.  Thus, the signal lifting effects of the 
noise floor, as seen in Figure 4 will definitely be present.  Common practice in the literature is to 
limit acquisitions to lower b-values (around 800 s/mm2) so that all measurements remain well 
above the noise floor (e.g. [168]).  Since many of the noise-free biexponential signals tested here 
had at least one diffusion weighted measurement at or below the noise floor, a selective fitting 
strategy was also applied to each magnitude measurement to remove all higher weighted 
measurements with low SNR.  The strategy followed was similar to the protocol in [109] on each of 
ten million noisy measurements in the test set, i.e. for each measurement, the first diffusion 
weighted data point with an SNR < 2 was removed along with all measurements from higher 
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diffusion weightings.  The effects of employing this measurement strategy were compared to the 
full eleven diffusion weighting strategy for both the biexponential and monoexponential models. 

2.2.4 Regression Diagnostics 

From each regression fit, the final Jacobian matrix returned by the algorithm was also saved and 
used to calculate the diagnostic measures from Section 2.1.3, including the Jacobian condition 
number, standard error of regression, covariance matrix, correlation matrix, parameter standard 
errors, parameter VIF, and parameter confidence intervals based on t-distribution estimates.  
MATLAB code to construct these additional diagnostics was largely derived from the freely 
available, variable-projection, NLLS algorithm code in [104].   

2.2.5 Bootstrap Analysis 

Confidence intervals were also created using the parametric bootstrap from 1000 bootstrap 
samples for each regression fit.  However, this was only done for a very limited subset of the noisy 
signals since the regression fits for the 10 million noisy signals took 48 hours of computing time to 
perform, even with distributed code using 12 parallel processors.  Additionally, sampling the 
residuals for the parametric bootstrap resulted in the addition of normally distributed noise to the 
fitted data results, but since the artificial data was created using Rician distributed noise, the 
residual values were also added to the signal using Equation 26 to create a magnitude 
measurement.  Otherwise, it was possible for there to have been negative signal data at high 
diffusion weightings, which didn’t represent a realistic acquisition. 

2.2.6 Graphical Analysis 

To assist further in determining the effects of ill-conditioning and collinearity on the problem of 
NLLS regression fitting with the biexponential model, sum-of-squares contours were examined for 
two noise-free signals sampled from the test set in Section 2.2.  One signal had a D1/D2 ratio equal 
to 20, and the other a ratio equal to 2, with A1 = A2 = SF1 = 0.5 and D1 = 1 for both signals.  200 
discrete values were chosen for SF1 equally distributed between 0 and 1, and 200 discrete values 
were chosen for D1 equally distributed between 0 and 4.  Using the true value of D2 for each grid 
point signal (0.05 and 0.5, respectively), along with an amplitude value S0 = 1, Equation 12 was used 
to calculate the signal for the 40,000 discrete SF1, D1 combinations with the same eleven diffusion 
weightings.   For all grid points, the eleven residual values were calculated as the difference 
between that grid point signal and the test signal, and then squared and summed to determine the 
RSS value.  These RSS values at each of the discrete points were then plotted as a two-dimensional 
contour map.  Additionally, to determine the effects when NLLS regression fitting a biexponential 
model with perfect collinearity between decay components, a monoexponential signal was created 
using the biexponential model equation, with D1 = D2 = 1, SF1 = 0.5, and S0 = 1.  The RSS values were 
also plotted there as a two-dimensional contour map using the same discrete values. 
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2.3 Results and Discussion 

2.3.1 Bias and Variance in Biexponential Model Parameter Estimates 

All noise-free signals were sorted into an array of 100 bins based on true SF1 by 100 bins based on 
true D1/D2 ratio.  For all noisy data created from each noise-free signal in each bin, the error 
between the fitted parameter estimates and the known true parameter values were grouped as a 
distribution.  These errors for SF1, D1, and D2 are each shown as a two-dimensional pseudocolour 
plot for each SNR in Figure 10, with the mean absolute error shown for the SF1 estimates, and the 
mean percent error shown for the D1 and D2 estimates. Overlaid on each pseudocolour plot is a 
contour plot showing either the standard deviation for the SF1 estimates or the coefficient of 
variation (CV) for the D1 and D2 estimates.  The variance values in the contour plots were smoothed 
with a 3x3 averaging filter for display.  Due to the random uniform distribution of the true 
parameter values, several bins ended up with no noise-free signals in them, which are shown as the 
white pixels scattered throughout the pseudocolour plots. 

Figure 10 shows that the bias and variance of the parameter estimates do vary depending on the 
true parameter values that created the signal.  All plots show an area where the bias and variance of 
the parameter estimates is low, these areas are generally centred at intermediate values of SF1 
(near equal signal contribution from each component) and high ratios of D1/D2, and they enlarge as 
the SNR increases.  Conversely, as the signal fraction of either component goes to zero, or the D1/D2 
ratio goes towards the minimum tested ratio of 2, with the signal approaching monoexponential 
decay, the parameter estimate bias and variance increase rapidly and nonlinearly.  While the area of 
parameter space with large bias and variance diminishes as SNR increases, many signals are 
affected even at an SNR of 200, a ratio that would be obtainable only in a long ex vivo tissue study, 
demonstrating that high SNR does not guarantee reliable parameter estimates using the 
biexponential model. 

The SF1 parameter estimates are positively biased for low true SF1 values and negatively for high 
values.  The D1 parameter estimates are positively biased in areas of high uncertainty, except where 
the fast decay component is basically non-existent (SF1 ≈ 0).  The estimates of D2 are negatively 
biased for most of the true parameter space, except where its signal fraction is close to zero, where 
they abruptly shift to a large positive bias.  At an SNR of 25, there is measurable variance in the D1 

and D2 estimates across the entire parameter space, with the lowest contour value for the 
coefficient of variation equal to 0.3, and this increases sharply as the true signal becomes more 
monoexponential.  The standard deviation of the SF1 estimates are fairly low in the “reliable area”, 
but at a true SF1 value of 0.1 or less, the standard deviation of the SF1 estimates is 0.35 or more, 
nearly ten times the standard deviation of the added signal noise (0.04).  To investigate the nature 
of these errors in more detail, several noise-free signal samples across the parameter space were 
selected and histograms of the parameter estimates were created for all regression fits of each 
noise-free signal.  The estimates of the 200 noisy signals from three separate noise-free signals, 
with three different SF1 values of approximately 0.5, 0.25, and 0.1 and a D1/D2 ratio of 
approximately 15 for all, were selected to illustrate the effects of decreasing signal fraction, with 
the resulting distributions shown in Figure 11. 
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Figure 10 – Uncertainty in biexponential model parameter estimates for three SNR levels 

Bias (pseudocolour plots) and variance (contours) of the parameter estimate distributions in each bin.  
White pixels on the plots indicate bins with no signals in them.  Bias and variation in the parameter 
estimates increases rapidly when the true signal is closer to monoexponential, and this phenomenon 
still persists even when the simulated SNR is increased to 200. 

At a true signal fraction of 0.5, the histograms of the amplitude estimates (A1 & A2) are centred on 
their true values of 0.5 and have a well-formed, approximately normal distribution.  As the true 
signal fraction SF1 decreases to 0.25 and then 0.1, the amplitude distributions are centred closely to 
their true values, however they both exhibit severe skewness (A1 right-skewed, A2 left-skewed) and 
there is also a small amount of bimodality in the SF1 = 0.1 estimates.  The D1 estimates at SF1 = 0.5 
are generally centred on the true value of 1, however there are several estimates that are greater 
than 2.  At SF1 = 0.25, the majority of the D1 estimates are centred around 0.8, but the distribution is 
definitely not Gaussian and there are many values found all the way up to 4, which was the estimate 
upper bound set on the regression fit.  At SF1 = 0.1, the D1 estimates are widely dispersed over the 
range between 0 and 4, with the majority of the values found close to 0 and a considerable number 
of values found at the upper bound of 4.  The D2 estimates are not as widely dispersed as the D1 
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estimates, and are generally centred on the true value of 0.067, other than several estimates found 
near zero for SF1 = 0.1.   

 

Figure 11 – Parameter estimate histograms for three different true SF1 values 

The individual estimates (rows) from 200 regression fits to noisy signals at an SNR of 25 are displayed for 
three different noise-free signals (columns).  True D1/D2 ratio for all three signals is 15, true D1 = 1, and 
true SF1 is (L to R) 0.5, 0.25, and 0.1.  The x-axis for each histogram is the individual parameter value, the 
y-axis is the bin count, and the dashed red line indicates the true parameter value.  As SF1 decreases, 
such that the true signal is closer to monoexponential, the bias and variance in the parameter estimates 
increase. 

To illustrate the effects of a decreasing D1/D2 ratio, three noise-free signals were investigated, each 
with an SF1 value of approximately 0.5 and three different D1/D2 ratio values of 8, 4, and 2 (true D2 = 
0.125, 0.25, and 0.5), with the resulting parameter estimate distributions from the noisy signal fits 
shown in Figure 12.  The effects on the amplitude estimates are different when the true D1/D2 ratio 
is decreased.  The true amplitude values should remain at 0.5 for all three ratios, however, as the 
ratio decreases, the amplitude dispersion increases, but the centre of the A1 component shifts to the 
right and at a ratio of 2, the centre of the distribution is around 0.95 – giving a large positive bias 
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between the A1 fit estimates and the true value.  The large bias is also seen for the A2 component, 
only the centre of the distribution is biased negatively to around 0.05.   

 

Figure 12 – Parameter estimate histograms for three different true D1/D2 ratios 

The individual estimates (rows) from 200 regression fits to noisy signals at an SNR of 25 are displayed for 
three different noise-free signals (columns).  True SF1 value for all three signals is 0.5, true D1 = 1, and 
true D1/D2 ratio is (L to R) 8, 4, and 2.  The x-axis for each histogram is the individual parameter value, 
the y-axis is the bin count, and the dashed red line indicates the true parameter value.  Again, as the 
true signal is closer to monoexponential (decreased D1/D2 ratio), the bias and variance in the parameter 
estimates increase. 

The D1 estimates are centred mostly on the true value of 1 for a D1/D2 ratio of 8, but the distribution 
is right-skewed and several estimates have values greater than 2.  At a ratio of 4, the centre of the 
estimates is around 0.7 and the distribution is more peaked, and this peaked trend increases even 
more at a ratio of 2.  The D2 estimates are centred on the true value of 0.125, for a D1/D2 ratio of 8, 
but at a ratio of 4, the values are widely dispersed with several estimates located near zero.  At a 
ratio of 2, most of the D2 estimates are found at values less than 0.05 with many found at zero, 
which is a very large bias, since the true D2 value at this ratio is 0.5.  The effects of decreasing the 
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D1/D2 ratio on the parameter estimates seems to be more severe, since the minimum ratio of 2 not 
only shows increased dispersion for all parameters, but it also produces noticeable bias between all 
four parameter estimates and their true values.  The distribution of the parameter estimates shown 
in both Figure 11 and Figure 12 illustrate that even with a limited sample of the possible true 
parameter values in the biexponential test set, there can be large bias between the parameter 
estimates and their true values, the variance of the estimates can also be very large, and these 
distributions are not normal or well-formed and can even be bimodal.  In the biased cases, the 
estimators are no longer consistent, and adding more signal acquisitions to reduce sampling error 
still does not make the estimates converge to the true value.   

 

Figure 13 – Robust uncertainty measures for biexponential model parameter estimates  at three SNR 

Plots showing median error (colour) and IQR (contours) measures of the parameter estimates in each 
bin as described at the top of each column.  Even when using these more robust measures, the same 
phenomenon of increased bias and variance when the signal is effectively monoexponential is still 
present. 

Since the values for mean and standard deviation can be affected considerably by outlier values, the 
images of the errors in Figure 10 can be reproduced using statistical measures more robust to 
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extreme values.  Instead, the central tendency of the errors can be measured using the absolute 
median (SF1) or percentage median (D1 & D2) values, and the variance or deviation can be measured 
using the interquartile range (SF1) or the interquartile range divided by the median (D1 & D2).  The 
parameter estimate errors analysed with these robust statistics are shown in Figure 13.  With 
normally distributed data, the mean equals the median, and the IQR should be equal to 1.34 times 
the standard deviation [148].  The robust measure plots show that the areas of high bias in the 
mean SF1 parameter estimates at an SNR of 25 are greatly reduced and not as noticeable in the 
median errors, suggesting the presence of a significant amount of outlier estimates that caused a 
large bias in the mean.   There is also a reduction of the areas of significant bias and deviation in 
both the D1 and D2 estimates, especially when the signal fraction of that specific component is close 
to 1.  The differences between the set of parameter plots in Figure 10 and the robust parameter 
plots in Figure 13 suggest that there are large areas in the parameter space where the parameter 
estimate distributions are not normal and/or have a significant number of outlier values. 

2.3.2 Variance in Monoexponential Model Parameter Estimates 

The monoexponential parameter estimate errors for the same noisy biexponential signals at an SNR 
of 25 were also grouped by bins based on the same true parameter values of each noise-free signal.  
The standard deviation of the estimates for the amplitude, S0, and decay component, ADC, from 
Equation 9 are displayed as pseudocolour plots, as shown in the top row in Figure 14.  The letters A 
– E on the parameter colour plots match the labelled signals in the bottom plot.  Figure 14 also 
shows that the standard deviations of both the amplitude and decay coefficient estimates varied 
based on the true biexponential parameter values, with a range of 0.014–0.027 for the S0 estimates 
and 0.004–0.089 for the ADC estimates.  These estimates also varied across the true parameter 
space, but the magnitude of the change in standard deviation for either parameter wasn’t nearly as 
large as for the biexponential parameter estimates.  For example, the standard deviation of the 
amplitude parameter S0 in the top left corner of Figure 14 is 5–10 times less than the standard 
deviation of the SF1 parameter shown via contour in the top left corner of Figure 10.  The 
monoexponential ADC parameter was compared to the two individual decay components in the 
biexponential model by calculating the CV, standardising the variance in ADC by dividing the 
standard deviation (top right, Figure 14) by the mean ADC value for each measurement, as shown in 
Figure 15.  The highest CV from Figure 15 is around 0.16, which is also considerably less than the 
highest CV values of 1.2 in the D1 and D2 estimates shown in the top row plots in Figure 10.   

This was important, since it illustrated that the normalized variance penalty of incorrectly applying 
a model was 7.5 times higher when applying the biexponential model to a monoexponential signal 
versus the opposite application.  The plot in Figure 15 also shows an inverse relation to the CV plots 
for the D1 and D2 estimates – where the CV for the biexponential parameter estimates was lowest 
when the D1/D2 ratio was highest with close to equal signal fraction for each component, the CV for 
the ADC is highest at these values.  This was largely due to the goodness-of-fit that the 
monoexponential model had when fitting the simulated biexponential measurements.  This is 
shown using the averaged SER in Figure 16, indicating that for effectively monoexponential signals, 
the model fit well, as expected, but as the D1/D2 ratio increased and the signal fraction between the 
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two components became equal, the monoexponential model had a worse fit, and so the bias 
between model and data increased. 

 

Figure 14 – Colour plots of errors in monoexponential estimates with five example biexponential 
signals 

Colour plots display the standard deviation for the monoexponential amplitude (S0) and decay (ADC) 
estimates based on the true biexponential parameter values.  To illustrate the effects of noise across the 
parameter space, five example signals are identified (A-E) on the plots with their corresponding signals 
on the log-linear line plot (bottom).  SNR for all noisy signals was 25.  The SD of these two 
monoexponential parameter estimates increases for signals that decay into the noise floor more rapidly. 
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Figure 15 - Coefficient of Variation for monoexponential ADC parameter estimates from true 
biexponential signals (SNR = 25) 

When examining the normalised variation of the ADC estimates, the CV is highest at signals with equal 
signal fraction and highest D1/D2 ratio and lowest when the signal is effectively monoexponential. 

 

Figure 16 –Standard Error of Regression (SER) for monoexponential model fits to true biexponential 
signals averaged over all fits in each bin 

This pattern in the SER correlates well with the CV pattern of the ADC estimates in Figure 15, suggesting 
a direct relationship between the monoexponential model’s parameter estimates and how well this 
model fits the data. 
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Residuals in Biexponential Fitting 

 

 

Figure 17 – Colour plot (top image) and histogram (bottom image) of the standard error of regression 
for all SNR 25 fits of the biexponential model to simulated biexponential data 

The top colour plot displays the SER distribution in each bin whereas the bottom shows the bin SER 
distribution by value.  Noisy signal SNR is 25.  These SER values are all close to the simulated noise value 
of 0.04, indicating that the biexponential model fits all data fairly well. 

The SER was also calculated for each of the biexponential fits and a colour plot of the mean SER for 
all regression fits in each bin is shown in Figure 17 along with a histogram of the values of all 
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regression fits for the test set.  Compared to the SER of the monoexponential model fits in Figure 16 
that varied between 0.04 and 0.11, depending on the parameter values of the biexponential signal, 
the SER for the biexponential fits was found between 0.036 and 0.042, a much tighter range.  This 
range of values is unsurprising, since the fitting model was the same as the true signal, and the 
added noise was equal to 0.04, but there were slight deviations across the entire parameter space.  
More importantly, however, these values illustrate one of the major issues with collinearity and 
correlation discussed in Section 2.1.2, namely, most standard methods of measuring regression fit 
based on the residuals do not detect large uncertainty in parameter estimates.   

As discussed in Section 1.3.1, an assumption for least squares regression to return maximum 
likelihood parameter estimates is that the errors are normally distributed, which were examined 
using the residual values from a given regression fit.  A Kolmogorov-Smirnov one sample test of 
normality was performed on the binned regression fits across the parameter space, and at a p-value 
significance level of 0.05, all residuals were found to be distributed normally.  An assessment for a 
single regression fit was also performed visually using a Q-Q plot, where the residuals from the 
regression fits in an area of high uncertainty (true SF1 = 0.01, D1/D2 = 2.06) and one from low 
uncertainty (true SF1 = 0.5, D D1/D2 1/D2 = 19.85) were grouped together and each plotted in 
separate Q-Q plots as shown in Figure 18.   

 

Figure 18 - Q-Q Normality Plot of Residuals 

Left plot shows the distribution of residuals for fits to 200 noisy signals on a noise-free signal that has 
large errors in the parameter estimates.  Right plot shows the distribution for fits on a noise-free signal 
that has small errors in the parameter estimates.  These plots show that the residuals are normally 
distributed regardless of high bias and variance in the biexponential parameter estimates. 
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These two plots show that while the parameter estimates were non-normally distributed, the 
residuals from the fits themselves were normally distributed, and thus there was no indication that 
the maximum likelihood assumptions of normality for NLLS regression fits don’t hold.  This also 
showed that large uncertainty in the parameter estimates did not manifest themselves in the 
distribution of the residuals, either. 

2.3.3 Low SNR Rejection Strategy 

While the CV showed the normalised variance in the ADC estimates, and how its value was closely 
related to the error in regression fitting to biexponential signals, it didn’t resolve why the standard 
deviation of the two monoexponential parameter estimates in Figure 14 varied across the possible 
true signal parameter space.  This instead was attributed to the amplitude for each diffusion 
weighted measurement and how it compared to the noise.  The line plot at the bottom of Figure 14, 
shows five selected noise-free signals on a line plot similar to the signal range in Figure 9.  Signals 
“A” and “E” show signals selected near the minimum and maximum possible decay rates 
respectively.  Additionally, the three signals B – D show selected intermediate signals in the line plot 
between the two extremes.  These signal labels match the labels in the top left S0 plot and top right 
ADC plot, indicating where these signals are approximately located on those plots.  The parameter 
values of these five signals are given in Table 2.   

Table 2 - Parameter values for the selected signals in Figure 14 

Signal SF1 D1/D2 

A 0.05 19 

B 0.95 19 

C 0.5 11 

D 0.05 3 

E 0.95 3 

 

The minimum standard deviation for both parameter estimates is close to point A, the top left 
corner of the plot, which coincides where the signal fraction of the D1 component is zero, so the 
signal is made up purely of the slow component, D2, which has a value of 0.05 (1/20).   As the line 
plot at the bottom of Figure 14 shows, signal A stays well above the noise floor (SNR = 25) for the 
entire diffusion weighting range, and the SNR for all measurements is greater than 7.  The 
maximum standard deviation for both parameter estimates is near signal E, which is the bottom 
right corner of the plot where the signal becomes purely the fast component, D1, with a value of 1.  
The line plot shows that signal E decreases more rapidly, such that the last four diffusion weighting 
measurements have an SNR of 1 or below, effectively measuring noise.  Due to these variations in 
measurement amplitudes compared to the noise floor, strictly reporting the SNR at b = 0, as is 
common practice in the DWI literature, was inadequate here, since its value was 25 for all noisy 
measurements.  Calculating a signal-averaged SNR instead, averaging the SNR over all eleven b-



Reliability and Uncertainty in Diffusion MRI Modelling 
   

63 
 

value/diffusion weighting measurements, gave a better assessment of each noisy measurement, a 
plot of which is shown for the biexponential measurements in Figure 19.   

 

Figure 19 – Mean signal-averaged SNR for noise-free biexponential signals (SNRb=0 = 25) in each bin 

This signal-averaged SNR has an inverse relationship to the monoexponential parameter estimates 
shown in Figure 14, indicating that as the SNR increases, the SD in the parameter estimates decrease. 

This signal-averaged SNR plot illustrates the increase in standard deviation of the monoexponential 
parameter estimates was proportional to the decrease in SNR of the true signals.  Thus, if Signal E in 
Figure 14 was being used for fitting, its value at the eighth diffusion weighted measurement would 
be less than two times the standard deviation at an SNR of 25 (0.04), meaning measurements 8 
through 11 would be disregarded and only measurements 1-7 used for fitting.  After removing all 
measurements below an SNR of 2 for the biexponential signals, the updated signal-averaged SNR is 
shown in Figure 20.  This shows an increase in the signal-averaged SNR for the entire test set 
compared to Figure 19.  There are also bands on this plot, which are caused by discrete jumps in the 
number of diffusion weightings used in the signal measurements.  These jumps are illustrated 
inFigure 21, which displays the median number of weightings used in the signals in each bin. 
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Figure 20 – Mean signal-averaged SNR for noise-free signals in each bin after rejecting all 
measurements with SNR < 2 

This shows that the low SNR rejection strategy improved the signal-averaged SNR when compared to 
the results in Figure 21. 

 

Figure 21 – Median number of signals used for the biexponential test set when rejecting 
measurements with SNR < 2 
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After applying this low SNR rejection strategy to the entire biexponential test set, and fitting a 
monoexponential model to each signal, there was very little change to the standard deviation of the 
S0 and ADC parameter estimates, and the variance in these estimates actually increased.  The 
difference in all estimates was less than 0.002 and 0.0005 for the S0 and ADC estimates in each bin 
in Figure 14, respectively, and less than 0.004 for the CV of the ADC estimates in Figure 15.  There 
was, however, a significant decrease in fitting error (SER) for portions of the test set using the low 
SNR rejection method, as seen in Figure 22, since rejecting the noisiest measurements improved the 
closeness of the fit to the data and decreased the RSS value from which the SER is based.  The SER 
decrease is most noticeable at the lowest signal-averaged SNR measurements in Figure 19, where 
the improvement of the low SNR rejection over fitting all data points is about 0.01, compared to the 
added noise of 0.04 at an SNR of 25.  Thus, when fitting a monoexponential model on this 
biexponential test set and with this specific distribution of diffusion weightings, removing the 
noisiest diffusion weighted measurements improved the regression fit to the data but did not 
significantly improve the model’s parameter estimates.   

 

Figure 22 – Improvement in SER between fitting with all data points and rejection of data less than an 
SNR of 2 

Positive value indicates a decrease in SER using the SNR < 2 data rejection strategy.  This strategy 
improved monoexponential fitting only when the true biexponential signal consisted mostly of the fast 
decay component. 

Using the same low SNR rejection strategy with the biexponential model showed distinctly different 
results in the parameter estimates with the reduction of diffusion weighting measurements causing 
large increases in both the bias and variance of the parameter estimates.  The top row of Figure 23 
shows the errors in the parameter estimates at an SNR of 25 from the top row from Figure 10 
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where all eleven measurements are used for signal fitting.  The bottom row of Figure 23 shows the 
errors in the parameter estimates using the updated low SNR rejection strategy.  There is a slight 
increase in the bias and dispersion of the SF1 estimates where the true SF1 values are close to one, 
but there is a major increase in the bias of the D1 estimates at these values as well as an expansion 
of the high bias area in the D2 estimates.  The CV values for the D1 and D2 estimates have also 
increased slightly across most of the parameter space, as well.   

 

Figure 23 – Parameter estimate errors when fitting all eleven measurements (top row) and fitting only 
measurements with SNR ≥ 2 (bottom row).  SNRb=0 = 25 

This shows that the low SNR rejection strategy actually increased the bias and variance in the parameter 
estimates, regardless of the improvement in signal-averaged SNR. 

The error increase for all three parameter estimates was correlated with the areas of a reduction in 
the number of measurements used in the fitting.  Figure 21 shows the median number of 
measurements that are used in the biexponential test set when only using measurements where the 
SNR ≥ 2.  The top left corner shows the area that uses the full 11 diffusion weighted measurements, 
and there is little increase in error in this area on the parameter estimate error plots in the SNR ≥2 
fits.  The areas of large bias in the parameter estimates are seen where the total measurements are 
reduced to 7 or 8.  The increase in biexponential parameter estimate errors indicates that 
attempting to reduce the noise by removing low SNR measurements was counterproductive for a 
large portion of the biexponential test set.  Broad conclusions about the effects on biexponential 
model parameter estimates by reducing the number of diffusion weightings cannot be drawn here, 
though, since removing the three or four highest measurements left very little weighting on the 
slow decay component in this simulated setup.  However, due to this significant increase in the 
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parameter estimates, the remainder of biexponential model fitting results in this chapter used the 
full eleven diffusion weighted measurements. 

2.3.4 Regression Diagnostics 

Condition Number of the Algorithm Matrices 

The condition numbers of the Jacobian matrices from all noisy signal regression fits at an SNR of 25 
were analysed for any correlations with the increased errors seen in the parameter estimates.  All 
regression fits were again grouped by the same 100x100 bins as the results in Figure 10, and a 
count of the percentage of  regression condition numbers that were above 100 were calculated with 
the results shown in Figure 24.  This image shows a pattern similar to the areas of uncertainty in 
Figure 10, where more condition numbers above 100 were found where the true signal fraction of 
either component is low, or the D1/D2 ratio was also low.  The most significant finding on this map 
is the large area of the graph on the left hand side (SF1 < 0.2) where nearly 100% of all regression 
fits had a condition number greater than 100.  This is significant because this large area of ill-
conditioned regression fits happened to coincide where the signal-averaged SNR in Figure 19 was 
highest, illustrating why high SNR does not necessarily lead to better parameter estimates when 
fitting with the biexponential model.   

 

Figure 24 – Percentage of signal fits in each bin with a Jacobian condition number greater than 100 

When examining the values of all regression fit condition numbers, several fits with condition 
numbers of 106 or higher were found as shown in Figure 25.  The area with the greater number of 
extreme condition numbers is again found in areas of the parameter space where the true signal 
fraction and/or the D1/D2 ratio is low.  While these maps suggest that extreme condition number 
may be a good measure for indicating regression fits with high parameter estimate error, the noisy 
measurements from a few noise-free signals were analysed for direct correlation between high 
condition number and parameter estimates that deviated significantly from the true value, but the 
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correlation was poor.  While, it’s not a measure that can directly indicate problems with the 
parameter estimates, on average, a high condition number was correlated with large bias and/or 
variance in the parameter estimates.  This condition number analysis confirmed the hypothesis 
posited in Section 2.1.2 that the biexponential model could have ill-conditioning issues when the 
true signal was approximately monoexponential. 

 

Figure 25 - Percentage of signal fits in each bin with a Jacobian condition number greater than 106 

Note that the maximum value of the colour scale is 30% in this graph.  These two figures show that the 
condition number is highest for monoexponential signals. 

Parameter Standard Deviations and Other Jacobian-based Methods 

The parameter standard deviations (SD) were determined by the square root of the diagonal 
elements of the covariance matrix calculated for each regression fit and used to estimate the error 
of each parameter estimate.  The mean values of all parameter SD values were grouped by bin and 
are displayed in Figure 26.  This figure shows four pseudocolour plots for each parameter where 
the mean SD of the parameter estimates all go up as the signal becomes more like a 
monoexponential.  However, the upper range of these plots is 10, way beyond the value that would 
be expected for estimated parameter values between 0 and 1.  Again, the reason for these large 
mean values was the presence of extreme calculated values that skewed the mean.  Displaying the 
median values, instead, as in Figure 27 illustrates a more reasonable picture as the values there are 
scaled between 0 and 0.2.  In this plot, the SD of the two amplitude parameters are very high in the 
area where SF1 is very low, as well as a similar area around a decay ratio of 6 that juts out from the 
left side.  The median SD values are lower over the rest of the parameter space, and decrease 
further where the signal fraction of the slow component is near zero.  The two decay components 
also have the same areas where the errors differ, have very high parameter errors where SF1 is very 
low, and slightly increased error where SF1 is very high.   
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Figure 26 - Mean parameter standard deviation calculated from each signal regression fit 

 
Figure 27 - Median parameter standard deviation calculated from each signal regression fit 

Compared to Figure 10, parameter SD is a poor indicator of high uncertainty in the parameter estimates. 
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The area in the top centre of the parameter space appears to have completely random median 
standard deviation values between 0 and 1.  Figure 27 shows that even after eliminating the effects 
of outlier estimates, the diagnostic value of parameter SD estimates was poor.  While these values of 
SD indicated some areas of large error in the parameter estimates, they performed poorly even in 
areas correlated with low parameter estimate bias and variance, and were random in some 
instances.  Not surprisingly, the parameter SD performed poorly as it was derived from the NLLS 
algorithm Jacobian matrix, and on average, there were extreme values of parameter SD found 
where there were extreme condition numbers of that matrix.  The other diagnostic measures 
derived from the Jacobian matrix, namely, the correlation matrix, covariance matrix, and VIF, also 
performed poorly as indicators of high bias and variance in the parameter estimates.  Thus, when 
using an NLLS algorithm, it appears that the ill-conditioning in the biexponential model affected 
these diagnostic measures as well as the parameter estimates. 

Confidence Intervals 

 

Figure 28 – Percentage of 95% confidence intervals that contain the true value for all four parameter 
estimates 

These confidence intervals, based on the Jacobian, are also poor indicators of high uncertainty in the 
parameter estimates. 

The confidence intervals were calculated based on the parameter SD values and the t-distribution 
values in Equation 40.  As Figure 11 and Figure 12 both showed, the parameter estimates for 



Reliability and Uncertainty in Diffusion MRI Modelling 
   

71 
 

several of true parameter combinations were definitely not normally distributed, violating the 
normality assumptions for t-distribution based confidence intervals.  To see the effects of these 
non-normal distributions, along with the effects of ill-conditioning on the parameter SD values, the 
95% confidence intervals were determined from each regression fit and examined for how often 
the true value was contained within each interval. The selection rates of how often the true 
parameter values correctly fell within their respective parameter estimate confidence intervals 
were grouped by bins and plotted across the entire parameter space, as seen in Figure 28.  These 
plots show that for most of the parameter space, the 95% confidence intervals for both amplitude 
parameter estimates, as well as the estimates for D2, encompassed the true value at least 95% of the 
time. There is a small area in the lower left corner of the parameter space for the amplitude 
estimates where the reliability of the confidence intervals dropped below 60%.  The estimates for 
D1, however, have large areas where the reliability was below 60-70%, and the reliability only 
meets the 95% level at the very highest SF1 values.  The reliability for these intervals may be 
overstated however, since the confidence intervals could have a very wide distance between the 
minimum and maximum values that easily encompassed the true value.  Estimated 95% confidence 
intervals calculated using Equation 39, with 7 degrees of freedom for a t-distribution, gave a factor 
of 2.36 times the estimated parameter errors in Figure 27.  If the amplitude parameter estimates 
were bounded between 0 and 1 in a regression fit, but the parameter standard deviation for that 
parameter is 1, then the minimum and maximum values for the confidence interval would be well 
outside of those bounds, including negative minimum values, which were physically impossible.  A 
two-sided, 95% confidence interval for a Gaussian distribution is shown in Figure 29 to illustrate 
the area that is typically encompassed. 

 

Figure 29 – Probability density function of a Gaussian distribution (blue line) with shaded area 
indicating the area encompassing 95% of the distribution 

Red lines indicate the values that would be reported for the confidence interval (-2, 2).  This Gaussian 
distribution has a mean of 0 and a standard deviation (σ) of 1, so the values of x correspond to multiples 
of σ and 95% of the distribution is within 2σ of the mean. 
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The case studies of the parameter estimate histograms shown in Figure 11 and Figure 12 were 
updated to add in the median confidence intervals taken from all noisy regression fits that make up 
the histogram.  While the confidence intervals had differing values for each fit, examining the 
median value of the minimum and maximum confidence intervals from all noisy signal fits for a 
given true signal showed whether the confidence intervals approximately encompassed 95% of the 
parameter estimate histograms.  The updated histograms with the added confidence intervals are 
shown in Figure 30 and Figure 31.  For the decreasing signal fraction histograms in Figure 30, for 
SF1 = 0.5, the confidence intervals approximated the 95% area of the well-formed parameter 
estimates, other than the D2 estimates which were much wider than the distribution.  As SF1 
decreased, the confidence intervals did even worse at encompassing the parameter estimates, or in 
the case of the D2 estimates, they encompassed a much larger area than the distribution itself. 

 

Figure 30 – Histograms of noisy signal parameter estimates (rows) with median estimated 95% 
confidence intervals for three different noise-free signals (columns) of different true SF1 values 

Median confidence intervals (dashed blue lines) calculated from the parameter errors of the noisy signal 
regression fits in each histogram.  Dashed red lines indicate true parameter values. 

Similar trends are seen for the confidence intervals in Figure 31, where the decreasing D1/D2 ratio 
increasingly corrupted the ability of the confidence intervals to encompass the parameter estimate 
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distributions, and at the lowest ratio of 2 for some parameter estimates, the median confidence 
intervals didn’t even encompass the true parameter values.  While these confidence intervals were 
reliable when the parameter estimate errors were low, when ill-conditioning considerably affected 
the biexponential regression fits, the confidence intervals became unreliable.  The effects of this 
unreliability were the interval both over- and underestimating the possible range of values that the 
estimates could take when testing repeated sample measurements.  These complications of ill-
conditioning in the biexponential model confidence intervals may help to explain the extreme 
interval values seen in the literature examples presented in Section 2.1.1. 

 

Figure 31 - Histograms of noisy signal parameter estimates (rows) with median estimated 95% 
confidence intervals for three different noise-free signals (columns) of different true D1/D2 ratios 

Median confidence intervals (dashed blue lines) calculated from the parameter errors of the noisy signal 
regression fits in each histogram.  Dashed red lines indicate true parameter values.  These two figures 
show that the Jacobian-based confidence intervals poorly predict the range of values for fits with large 
uncertainty in the estimates. 
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2.3.5 Bootstrap Analysis 

Bootstrap analysis consisted of fitting 25 noisy signals for a limited subset of noise-free signals, and 
for each noisy signal fit, additional regression fits were performed on 1000 parametric bootstrap 
samples derived from that signal (i.e. fits of a fit).  All bootstrap parameter estimates for each signal 
were combined by parameter to analyse the distribution of the bootstrap sample estimates and the 
original signal fit from which they were derived.  From these results, three noise-free signal cases 
were selected for display: one in the area of low parameter estimate errors with true SF1 = 0.525 
and true D1/D2 = 15.05, another signal with low signal fraction with SF1 = 0.075 and D1/D2 = 15.05, 
and finally a low decay ratio signal with SF1 = 0.5 and D1/D2 = 2.45.  For the noisy signal regression 
fits from each of these three noise-free signals, one fit was chosen where the parameter estimates 
closely match the true values, and a second where the parameter estimates deviated significantly 
from the true values.  The 1000 bootstrap parameter estimates for each regression fit are displayed 
as histograms for each noisy signal fit in Figure 32, Figure 33, and Figure 34, along with two values 
indicating the original signal fit parameter estimate and the true value for that parameter from the 
noise-free signal. 

The bootstrap samples for the regression fits in Figure 32 show that for all parameters from both 
signals, the distributions are close to normal, with no significant outliers noticeable.  The 
distribution of these estimates change significantly for both of the noisy regression fits from the low 
SF1 true signal in Figure 33.  For Signal 1, the distributions are mostly centred on the parameter 
estimates, but the amplitude component distributions have noticeably long tails, and D1 is widely 
dispersed.  Signal 2’s parameters are distributed differently and the amplitude distributions were 
widely dispersed with no distribution structure.  Finally, for the true signal with a low decay ratio in 
Figure 34, Signal 1 has A1, A2, and D2 distributions partially clustered far from the original 
parameter estimates and the true value, but still has considerable variance in the distribution.  
Signal 2, however, has the bootstrap samples distributed around the original fit’s parameter 
estimates, but these estimates all deviate significantly from their true values.  These bootstrap 
distributions show that when the true signal was from an area of low uncertainty from the 
parameter space in Figure 10, regardless of how close the estimates were to the true values, the 
distribution was well-formed and has a relatively normal distribution shape.  If the true signal was 
from an area where there was significant ill-conditioning in the parameter estimates, regardless of 
how close a parameter estimate was to its true value, the bootstrap distribution will most likely be 
widely dispersed and irregularly shaped.  The shapes of these distributions were also similar to the 
distribution of the parameter estimates in Figure 11 and Figure 12, showing how bootstrap 
resampling can assess the reliability of a single regression fit. 
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Table 3 – True parameter values and regression fit estimates for Figure 32. 

 A1 A2 D1 D2 
True values 0.53 0.48 1.00 0.066 
Noisy Signal 1 Estimates 0.51 0.49 1.00 0.075 
Noisy Signal 2 Estimates 0.67 0.31 0.65 0.036 

 

 

Figure 32 – Histograms of bootstrap samples from parameter estimates for two noisy regression fits 
from the same noise-free signal in an area of “low uncertainty” 

True parameter values of the noise-free signal (dashed red lines on the histograms) along with the 
parameter estimates from the two noisy regression fits (dashed green lines) are displayed in the table at 
the top of the image.  Even for the fit with the highest deviation in the parameter estimates, the 
bootstrap distributions are well-formed and encompass the true value.  
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Table 4 – True parameter values and regression fit estimates for Figure 33. 

 A1 A2 D1 D2 
True values 0.075 0.93 1.00 0.066 
Noisy Signal 1 Estimates 0.090 0.90 1.01 0.057 
Noisy Signal 2 Estimates 0.55 0.44 0.19 0.024 

 

 

Figure 33 - Histograms of bootstrap samples from parameter estimates for two noisy regression fits 
from the same noise-free signal in an area of low true SF1 

True parameter values of the noise-free signal (dashed red lines on the histograms) along with the 
parameter estimates from the two noisy regression fits (dashed green lines) are displayed in the table at 
the top of the image.  These distributions show that regardless of whether the parameter estimates are 
close to the true parameter values, future measurements of this same signal are likely to be unreliable.  
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Table 5 – True parameter values and regression fit estimates for Figure 34. 

 A1 A2 D1 D2 
True values 0.53 0.48 1.00 0.41 
Noisy Signal 1 Estimates 0.51 0.51 1.10 0.37 
Noisy Signal 2 Estimates 0.98 0.02 0.68 < 0.0001 

 

 

Figure 34 - Histograms of bootstrap samples from parameter estimates for two noisy regression fits 
from the same noise-free signal in an area of low true D1/D2 ratio 

True parameter values of the noise-free signal (dashed red lines on the histograms) along with the 
parameter estimates from the two noisy regression fits (dashed green lines) are displayed in the table at 
the top of the image.  These distributions show that regardless of whether the parameter estimates are 
close to the true parameter values, future measurements of this same signal are likely to be unreliable. 

The bootstrap sample distributions were also used to produce more reliable 95% confidence 
intervals for the data.  Instead of estimating from the regression fit, a 95% confidence interval was 
estimated by calculating the 2.5% and 97.5% percentiles of the bootstrap sample distribution.  
Unlike the earlier estimated confidence intervals based on the t-distribution, using the bootstrap 
samples did not assume that the errors are symmetrical about the parameter estimates, and since 
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the values were bounded to zero on the lower side, the lower bound interval values wouldn’t be 
negative.  The bootstrap samples in all regression fits were estimated using no upper bounds on the 
NLLS algorithm, however, to investigate the true deviation for unreliable parameter estimates.  The 
horizontal axes for the bootstrap distributions in the previous three figures were limited to the 
same values as the parameter bounds for the original fit, but the bootstrap samples for the 
unreliable estimates had much higher values, especially for the decay parameters.  For example, 
Figure 33 had D1 sample estimates that were much greater than 4, with some values as high as 200.  
Figure 35 shows the bootstrap 95% confidence intervals compared to the 95% confidence intervals 
calculated via the t-distribution from the original regression fit. 

 

Figure 35 - Histograms of same bootstrap samples in Figure 34 with added confidence intervals 

True parameter values of the noise-free signal (dashed red lines on the histograms) along with the 
parameter estimates from the two noisy regression fits (dashed green lines) are displayed in the table at 
the top of the image.  Dashed cyan lines indicate the 95% t-distribution based confidence intervals 
calculated from each regression fit, and dashed blue lines indicate the 95% percentile intervals based on 
the bootstrap sample distribution.  The bootstrap distributions better assess the range of values likely to 
be seen for future measurements. 
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Figure 35 shows that the A1 and A2 bootstrap confidence intervals in blue encompass the 
distributions much better and fell within the original bounded values of 0 and 1, while the t-
distribution confidence intervals didn’t properly encapsulate the range of possible values.  The D1 
bootstrap confidence intervals encompassed the bootstrap samples that varied well above the 
original parameter estimate upper bound of 4 and also didn’t become negative.  The bootstrap 
confidence intervals were a better assessment of the range of possible values that the parameter 
estimates could have, but obviously, confidence intervals that encompass nearly the entire possible 
range of values for a parameter, 0 to 4 for D1, for example, indicate that the true value could be 
anywhere in the possible range of values and that this particular fit is very unreliable.  These 
confidence intervals, or any variance measure such as standard deviation, IQR, etc., produced by the 
bootstrap sample distributions give a significantly better estimation of the variance associated with 
the parameter estimates of a single regression fit.   

2.3.6 Graphical Analysis 

Figure 36 shows a contour plot of the RSS values across a discrete grid of points with different 
values of SF1 and D1.  with each point compared to two noise-free signals, both with A1 = A2 = SF1 = 
0.5 and D1 = 1, with one signal having a D1/D2 ratio = 2 and the other a D1/D2 ratio = 20.  With the 
same colour scale set for the RSS value of each contour map, these two maps show how much flatter 
and wider the RSS contours are for the D1/D2 ratio = 2 signal than the D1/D2 ratio = 20 signal.  The 
innermost contour at the ratio-of-2 signal stretches from 0.35 to 0.9 for SF1 value, whereas the 
same contour for the ratio-of-20 signal is an ellipse tightly centred on the true value of 0.5.  This 
innermost contour represents RSS values between 0 and 0.0005, and the ratio-of-2 signal has a 
“shallower” floor with more parameter combinations falling in that RSS range.  While a standard 
NLLS algorithm would find the global minimum of 0 and the true parameter values for both signals 
in this case, the addition of noise would affect the ratio-of-2 signal much more than the ratio-of-20 
signal.  Put another way, if the addition of noise means that a NLLS fit of this a noisy signal 
measurement has an RSS of 0.0005, there is a larger range of possible parameter estimates for the 
ratio-of-2 signal due to the larger contour.  If the noise added to the signal increases, such that the 
RSS from a NLLS fit is now 0.001, the increase affects the ratio-of-2 signal more than the ratio-of-20.   
The ratio-of-2 contour is also elongated and banana shaped, and projecting it onto the horizontal 
axis to create a one-dimensional distribution helps to illustrate why the parameter estimates are no 
longer normally distributed and/or symmetrical (see Figure 12). 

If these same sum-of-squares contours are applied to a noise-free signal that is monoexponential 
and the D1/D2 ratio = 1 (D2 = 1), the resulting map in Figure 37 shows that the minimum contour 
stretches across all possible values of SF1.  This illustrates what Equation 33 demonstrated in this 
chapter’s introduction of collinearity – if the values of D1 and D2 are equal, there can be an infinite 
number of possible values for the amplitude coefficients.   
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Figure 36 – Sum-of-squares contour maps of the RSS value for a D1/D2 ratio = 20 signal (top) and a 
D1/D2 ratio = 2 signal (bottom) 

The ratio = 2 signal has a much wider range of possible estimate values than the ratio = 20 signal. 
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Figure 37 – Sum-of-squares contour maps of the RSS value for a D1/D2 ratio = 1 signal 

For this signal, the value of SF1 could be estimated at any value from 0 to 1. 

The contour plots from these three signals demonstrate that the issues with the biexponential 
model and its large parameter errors stem from the nature of the model and not the inadequacy of 
the algorithm in finding the global minimum.  They also illustrate what Acton meant in the chapter 
introduction by many combinations of parameters fitting data quite well.  The results in this 
chapter have shown, however, that using the biexponential model is not a completely hopeless 
prospect, but instead the degree of hopelessness depends on the nature of the signal itself. 

2.3.7 Comparison of Simulation Results to the Literature 

The simulated results presented in this chapter illustrated how and why the biexponential model 
has uncertainty issues with its parameter estimates.  While new methods such as the bootstrap 
analysis were presented to assist researchers in evaluating possible uncertainties in the model 
estimates from their data, it also might be useful to assess some of these simulated results in the 
context of reported literature values.  The reported literature values from Figure 6 can be plotted 
on the SD contours of the SF1 estimates for an SNR of 25 (Figure 10, top left plot), resulting in the 
image in Figure 38. 
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Figure 38 – Reported study parameter values (dots) from Figure 6 overlaid on the CV values (contours) 
for the SF1 estimates at SNR = 25 plot (top left) in Figure 10 

This figure shows that many of the reported literature values can be found in areas of increased 
variability in the SF1 estimates.  The reported estimates for most of the brain, prostate, and kidney 
studies have a D1/D2 ratio lower than 10, which puts them in an area of increased variability in the 
SF1 estimates, indicating that it may be good to revisit these studies in the context of these results.  
While the muscle and breast studies have D1/D2 ratios in a middle range between 8 and 16, many of 
the studies have low signal fraction of either the slow or fast component, causing a higher 
variability in the SF1 estimates.  The pancreatic studies appear to have the best overall performance, 
while the liver studies have the highest D1/D2 ratios, but some of these studies have low values of 
SF1.  These simulations could be extended to the reported D1/D2 ratios for these liver studies (> 50), 
if desired, however, the simulation results presented in this chapter cannot directly be related to 
the actual studies, as the scanner acquisition criteria are most likely different and the reported 
literature values are the estimates, not the true values.  An interesting analysis of these high D1/D2 
ratios would be to revisit these liver studies and examine whether these high ratios are actually due 
to increased perfusion or are more due to the overestimation of the D1 estimates when the fits are 
ill-conditioned, as was shown in this chapter.  As this chapter also showed, the number and values 
of the diffusion weightings affected the performance of the biexponential model, as did the value of 
the simulated SNR, so any tissue analysis should also take this into account. 
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2.4 Summary of Conclusions 

This chapter presented an analysis of the biexponential model and its use with NLLS regression 
algorithms on simulated data.  The results addressed gaps in the literature specifically described in 
Section 2.1.5, namely: 

• Both large bias and variance were found in the biexponential model parameter estimates 
when fitting to a test set of simulated biexponential signal measurements that reflected the 
range of parameters typically seen in DWI studies.  For noisy measurements of some 
signals, the variance in the estimates was an order of magnitude beyond the variance of the 
simulated noise.  When significant bias affected the parameter estimates, fitting of repeated 
samples from the same signal did not converge to the true value of the parameters.  In some 
cases, the distribution of the parameter estimates was heavily skewed and/or bimodal, with 
many outlier values. 

• The large bias and variance occurred in true signals that were near monoexponential, either 
through low signal fraction or low decay ratio.  Thus, the biexponential model was found to 
be non-robust and the degree of uncertainty in its estimates varies based on the nature of 
the signal.   

• Increasing the SNR of the simulated noise from 25 to 200 decreased the overall number of 
signals with large uncertainty in the parameter estimates.  However, at signals that were 
effectively monoexponential, large bias and variance were still found in the parameter 
estimates, signifying that increased SNR does not lead to better estimates for all signals. 

• There was increased ADC coefficient of variation when fitting the simpler monoexponential 
model to much of the biexponential test set, illustrating the increase in error of fitting a 
simpler model to a complex signal.  However, it was found that the coefficient of variation in 
the biexponential model decay parameter estimates when fitting a monoexponential signal 
were much greater, demonstrating the cost of using the biexponential model that was 
previously unassessed. 

• The Rician bias from the magnitude measurements was found to affect both the 
monoexponential and biexponential models.  When more measurements at higher diffusion 
weightings were at or below the noise floor, the variance in the parameter estimates 
increased.  However, for data where all measurements were well above the noise floor, the 
biexponential model still had large uncertainty in the parameter estimates where there was 
very low signal fraction of one component, demonstrating that the effects of ill-conditioning 
and algorithmic issues are much greater than the effects of Rician signal bias. 

• The ill-conditioning in the parameter estimates were found to affect the diagnostic 
measures derived from the NLLS regression algorithm Jacobian matrix.  They were found to 
have poor predictive performance in identifying cases where the parameter estimates had 
large bias or variance.  When averaging over repeated samples, an increase in the Jacobian 
condition number was correlated with an increase in parameter estimate uncertainty.   

• The effects of the parameter standard deviations derived from the Jacobian matrix led to 
confidence intervals that poorly estimated the possible range of values of parameter 
estimates with high uncertainty. 
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• The parametric bootstrap perturbation analysis provided confidence intervals that gave a 
much better assessment of the variance possible in the parameter estimates upon fitting 
repeated samples from the same measurement.   Examining the shape of the bootstrap 
sample distribution also showed whether there may be bias in the estimates where 
repeated samples would converge to the wrong value, giving a better assessment of the 
reliability of the estimates from a given fit. 

• The sum-of-squares contours illustrated that the problem with uncertainty in the 
parameter estimates is not due to possible inadequacies in the NLLS regression algorithm, 
but rather issues with the mathematical nature of the biexponential model itself.  They also 
demonstrated how noise affected a signal with low decay ratio more than one with a high 
decay ratio. 

• Finally, these simulated results were presented in the context of the reported literature 
studies to notify researchers what types of studies were most likely to have biexponential 
reliability issues. 
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Chapter 3  
Performance of the Kurtosis Model Using Simulated DWI Data 

3.1 Introduction and Background 

3.1.1 Regression Fitting with the Kurtosis Model 

The kurtosis model is another model commonly used for NLLS regression fitting to DWI data, with 
the methodology often referred to as diffusional kurtosis imaging (DKI).  DKI assesses differences in 
biophysical tissue structure by measuring the deviation in the shape of the molecular diffusion 
displacement distribution from a Gaussian distribution.  Equation 13 introduced the DWI kurtosis 
model and its individual parameters,  

 𝑆𝑏 =  𝑆0 exp �−𝑏𝐷𝑎𝑎𝑎 +
1
6
𝑏2𝐷𝑎𝑎𝑎2 𝐾𝑎𝑎𝑎� . (13) 

This model has an amplitude component S0 like the monoexponential decay model, but the 
apparent diffusion coefficient Dapp appears twice in the exponential term in the same relationship as 
the b-value, linearly in the first component and quadratically in the second.  This second component 
is then multiplied by the kurtosis parameter, with a larger absolute value of the kurtosis parameter 
leading to a larger deviation from the single exponential decay curve.  Like the biexponential model 
illustration in Figure 7, the effect of the kurtosis parameter on the curve deviation can best be seen 
with a logarithmically scaled plot, shown in Figure 39. 

At higher b-values, the curve with a kurtosis of 2 actually curves up and since its values are based 
on a quadratic component for the b and ADC parameters, its term can become larger than the linear 
term, causing an exponential increase in the signal value.  This does not make sense physically, 
however, since molecules wouldn’t all disperse and then spontaneously reform to their starting 
positions, so the decay curve should be monotonically decreasing or at least unchanging at high b-
values [38].  A kurtosis greater than zero means the molecular displacement distribution is more 
sharply peaked and has fatter tails than a normal distribution, whereas a kurtosis less than zero has 
the opposite effect, the distribution is more rounded and has shorter tails than the normal 
distribution.  The effect of a negative kurtosis on the curve is shown in Figure 39 with the signal 
decreasing in value more rapidly than a normal distribution as the b-value increases.  The increase 
or decrease of the signal curve at high b-values may also mean that estimates of the kurtosis 
parameter may also be susceptible to Rician noise bias when fitting to noisy DWI data.  The lifting of 
the tail of the curve where kurtosis = 2 in Figure 39 is similar to the effect at high b-values seen in 
Figure 4, which would cause a positive bias in the kurtosis parameter as well as possible bias in the 
decay rate.  The lifting of the tail end of the signal from positive kurtosis would indicate that tissue 
structures are causing restrictions to the diffusion, whereas negative kurtosis would indicate 
something more complex is happening.   
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Figure 39 - Line plot of a monoexponential decay signal (black dashed) and two kurtosis signals based 
on Equation 13, one with Kapp = -1 (blue) and another with Kapp = 2 (green) 

Jensen et al [36] gave specific examples where a negative kurtosis has a possible biophysical basis 
and also reported the existence of several negative kurtosis estimates from NLLS regression, but all 
negative values were rounded to zero for presentation.  The authors there also report studies on 
phantoms filled with sucrose solution, with reported mean kurtosis values close to zero, but all 
kurtosis estimates are reported with a zero cut-off.  Rosenkrantz et al [41] reported a few negative 
kurtosis values, and Latt et al [169] actually reported negative kurtosis values along with fitted 
kurtosis values that were much higher than 3.  Negative kurtosis values have also been seen in T2* 
decays when measuring prostate tissue [170].  Kurtosis models are often compared to the fits from 
a monoexponential decay model, but if there are estimated negative kurtosis values, rounding them 
to zero would present the results as an overabundance of simple monoexponential decay values 
since a kurtosis of zero makes Equation 13 equivalent to a single exponential decay.  To better 
assess the performance of the kurtosis model over the range of its possible estimated parameter 
values, analysis of negative kurtosis parameter values should be included. 

Most DKI studies used the kurtosis model successfully to correlate different tissues and/or changes 
in the brain with differences in the kurtosis parameter estimates.  Researchers have expanded the 
scope of kurtosis model investigations into other tissues, with a recent review paper summarizing 
all studies done on non-brain tissue [171].  Kurtosis model parameter estimates are also reported 
after combining data voxels using visual selections of regions of interest, and then reporting the 
mean and standard deviation of the parameter distributions, although exceptions exist where 
estimates are reported via distribution scatter plots or colour maps [109].  The kurtosis model is 
also used as a combined tensor where measurements are taken over multiple axes in three 
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dimensions, and the kurtosis parameter estimates are reported as a mean kurtosis calculated by 
averaging the different axial kurtosis estimates [38]. 

3.1.2 Comparison with the Biexponential Model 

The biexponential and kurtosis models both contain additional parameters to assess information 
beyond monoexponential, Gaussian diffusion.  The kurtosis model with three fitting parameters is 
more complex than the monoexponential decay model, but is more parsimonious than the four 
parameter biexponential model.  As the previous chapter on the biexponential model showed, the 
uncertainty in the biexponential model parameter estimates was much greater than in the 
monoexponential model over a significant area of the biexponential true parameter space.  In this 
case, using a more complex model to attempt to reduce model bias when fitting to complex tissue 
structure came at a cost of a large increase in both the bias and variance in the parameter estimates.  
The more parsimonious kurtosis model may have more stable parameter estimates that are less 
prone to error than the biexponential model, but no literature investigations into kurtosis model 
stability over a typical range of parameters have been made either.  Kiselev et al [109] did a 
comparison of the biexponential model vs. the kurtosis model and showed that the kurtosis model 
fit nearly as well as the biexponential model for several parameter estimate cases in brain tissue.  
Toivonen et al [172] reported that the biexponential model was less reliable than the kurtosis 
model.   

While the Rician noise bias can affect the kurtosis model parameters, the kurtosis model itself may 
also be susceptible to the same ill-conditioning and parameter identification problems that affect 
the biexponential model.  The monoexponential model is also nested within the kurtosis model, 
seen in Equation 13 when Kapp = 0.  When the true kurtosis value of a signal approaches zero, the 
model is attempting to fit a parameter that isn’t there, which is similar to the parameter 
identification problem that created large errors in the biexponential model parameter estimates.  
This can also be visually explained using Figure 39 when the true kurtosis parameter is close to 
zero.   Small kurtosis values have a small deviation or angle from the true monoexponential decay 
signal, so the measurement noise will have a larger effect on the parameter estimates, and ill-
conditioning may result in the NLLS regression algorithm.  Equation 13 also shows that even if Kapp 
is relatively large, there is an additional source of small deviation based on the values of b or Dapp.  
When either b or Dapp (or both) are small, the difference between the quadratic term  1

6
𝑏2𝐷𝑎𝑎𝑎2 𝐾𝑎𝑎𝑎 

and the linear monoexponential term −𝑏𝐷𝑎𝑎𝑎 is smaller.  If the measurements are limited to small 
b-values or the true value of Dapp is small, the algorithm is attempting to assess a deviation that is 
small relative to the added measurement noise, which may also cause it to be ill-conditioned. 

Parameter estimates were already obtained using the biexponential model on a simulated 
biexponential signal test set, so kurtosis model fits can be performed on this same biexponential 
test set for comparison.  As the kurtosis model is a more parsimonious model, the parameter 
estimates may have lower bias and/or variance for true biexponential signals that were 
problematic when fitting the biexponential model.  This reduction in parameter uncertainty may 
offset the bias from fitting the incorrect model to the known truth.  Since a monoexponential model 
is nested within the kurtosis model, also fitting the kurtosis model to simulated monoexponential 
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signals can demonstrate if the kurtosis model is also susceptible to ill-conditioning when there is no 
kurtosis present in the true signal.  Both the biexponential and monoexponential models were 
chosen to generate signal data, since these two models have direct biophysical basis in human 
tissue.  As was mentioned in the introduction, the kurtosis model does not have this basis and is 
considered a model-free approach [173, 174], so it was not used to generate signal data here 

3.1.3 Chapter Aims 

This chapter will perform an assessment of the kurtosis model parameter estimates similar to the 
tests run on the biexponential model in Chapter 2.   

The aims of this chapter were to: 

• Determine the variance in the kurtosis model parameter estimates by testing the model on 
the same biexponential signal test set from Chapter 2. 

• Examine how this variance changes as the true parameter values of the noise-free 
biexponential signals vary over the parameter space in Figure 6, and compare the results to 
the biexponential model parameter estimates. 

• Determine how the variance in the kurtosis model parameters estimates compares to 
monoexponential model estimates by fitting both models on noisy measurements derived 
from signals generated using a monoexponential model. 

• Examine the effects on the parameter estimates as the measurement SNR changes by 
adjusting the magnitude of the simulated noise added to the noise-free signals. 

• Assess the effects of Rician bias on kurtosis model estimates. 
• Investigate the average condition number across the fits for each noise-free signal to 

determine when ill-conditioning, if any, was present in a given fit. 
• Investigate the results from the parametric bootstrap perturbation analysis and determine 

its effectiveness in detecting ill-conditioning and large variance in the kurtosis model 
parameter estimates. 

3.2 Methods 

3.2.1 Error in Kurtosis Model Parameter Estimates on Biexponential Truths 

The kurtosis model was fit to the same simulated biexponential data test set in Section 2.2, using 
the same parameter space and diffusion weightings (0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 
25.6) to create 50,000 noise-free signals.  Additionally, the 200 noisy measurements for each noise-
free signal were used, but only the test sets for SNR values of 25 and 200 were used in this section.  
Fitting of the kurtosis model to all simulated noisy data was again performed using a NLLS 
algorithm (lsqcurvefit in MATLAB) with a trust-region-reflective optimization option.  Equation 13 
was used as the regression model, the amplitude S0 estimates were bound in the algorithm to a 
range between 0 and 2, the Dapp parameter was bound to a range between 0 and 4, and Kapp bound 
between -1 and 2.  For each noisy signal, five separate regression fits were performed using random 
start values.  Because certain combinations of the above parameters within those bounds can cause 
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very large values (>1010) due to the exponential increase of the quadratic parameter at high 
diffusion weightings, the random starting values were bound to a more restricted range – S0: 0.8 – 
1.2, Dapp: 0.5 – 1.5, Kapp: -0.2 – 0.2.  For each noisy signal, the regression fit with the minimum RSS 
value was kept and the others discarded.  To reduce the effects of the Rician bias on the signal, the 
bias reduction formula in Equation 24 was applied to all noisy signals before fitting, using the 
known standard deviation from the SNR used to create the data, plus a small random perturbation 
since its exact value would not be exactly obtained in a physical DWI measurement.   

3.2.2 Condition Number 

For all kurtosis model regression fits in this chapter, the final Jacobian matrix returned by the 
algorithm was also saved and used to calculate the Jacobian condition number introduced in 
Section 2.1.3.   

3.2.3 Rician Bias and Low SNR Rejection Strategy 

Testing of the effects of Rician bias was performed similar to the methodology in Section 2.2.3, i.e., 
for each measurement, the first diffusion weighted data point with an SNR < 2 was removed along 
with all measurements from higher diffusion weightings.  The effects of employing this 
measurement strategy were compared to the full eleven diffusion weighting strategy for both the 
kurtosis model and compared to the results in Chapter 2 for the biexponential and 
monoexponential models. 

3.2.4 Bootstrap Analysis 

The same limited bootstrap analysis subset of the biexponential test set in Section 2.2.5 was also 
tested with the kurtosis model.   1000 parametric bootstrap samples were created for the kurtosis 
model to examine the effects of ill-conditioning, if any, on the parameter estimates. 

3.2.5 Error in Kurtosis Model Parameter Estimates on Monoexponential Truths 

To create simulated monoexponential data, the same eleven diffusion weightings as Section 3.2.1 
were used to create 1000 noise-free signals.  The basis for the noise-free signals was Equation 8 
with signal amplitude S0 equal to 1 and ADC randomly and uniformly chosen from a range of 0.05 to 
1 for each signal, giving the same possible decay range as the biexponential signal test set shown in 
Figure 9.  For each noise-free monoexponential signal, random Gaussian noise was added per 
Equation 26 to create 200 noisy magnitude measurement each at SNR b=0 values of 25 and 200.  
NLLS regression fitting was performed using the same bounds and starting parameters as Section 
3.2.1 
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3.3 Results 

3.3.1 Variance in Kurtosis Model Estimates to Biexponential Truth 

All noise-free signals were grouped in the same 100x100 bin values as Chapter 2 and the parameter 
estimates for the associated noisy measurements in these bins were grouped as distributions.  The 
standard deviation of these distributions are shown as pseudocolour plots for all three kurtosis 
parameters, at an SNR b=0 of 25, in Figure 40. 

 

Figure 40 – Standard Deviation for all three kurtosis parameter estimates on biexponential test set at 
SNRb=0 of 25 

The SD of the Kapp estimates is high on the left side of its plot which is not present on either the S0 or Dapp 
estimates. 

For the data at an SNRb=0 of 25, the SD values for the S0 and Dapp parameter estimates of the 
biexponential test set look very much the same as the deviations in their monoexponential 
parameter counterparts in Figure 14, albeit an increase in the Dapp dispersion at the extreme right 
of the map versus the monoexponential ADC values.  The SD in the kurtosis parameter (Kapp) 
estimates increase with decreasing SNR on the right side of the map much like the other two 
parameters, however, there is a large increase on the upper-left side of the graph where the signal-
averaged SNR of the biexponential test set is lowest (see Figure 19).  This increase in Kapp SD 
correlated with an increased condition number in these regression fits as shown in Figure 41, 
where the left side of the plot contains a large area where all fits in each bin have a condition 
number greater than 20.  This plot also shows a band along the bottom and right edges where 30-
50% of the fits have a condition number greater than 20, illustrating that there appears to be 
conditioning issues in the kurtosis model when the true signal approximated monoexponential 
decay.  This increase in the kurtosis parameter estimate variance was also seen in the biexponential 
parameter estimates in Chapter 2, and like that model, this increase can still be seen when the test 
set SNRb=0  is 200 as shown in Figure 42.  These plots all suggest that the increased SD in the Kapp 
estimates was not due to decreased signal-averaged SNR alone and that ill-conditioning also affects 
the kurtosis model, confirming the hypothesis posited in Section 3.1.2 that this model also has 
algorithmic issues when attempting to fit signals that are effectively monoexponential.   
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Figure 41 – Percentage of fits with condition number greater than 20 for the biexponential test set at 
SNRb=0 of 25 

 

Figure 42 - Standard deviation in Kapp parameter estimates at SNR of 200 
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Figure 43 – Histograms of kurtosis parameter estimates for fits to noisy measurements from three 
noise-free signals (A-C) 

The parameter values of the noise-free signals are compared to the number of fits that have condition 
number greater than 20 (top right, see Figure 41), and their signals also plotted (top left).  Signal C has 
the highest condition number and uncertainty in the parameter estimates, even though it has the 
highest signal-averaged SNR. 
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As was illustrated in Chapter 2, when the fits were highly affected by ill-conditioning, the parameter 
estimates distributions for a given noise-free signal were widely varied and did not have a cohesive, 
normal-like distribution.   The kurtosis model parameter estimates were examined in the same 
manner using three noise-free signals, each with a D1/D2 ratio of 15 and individual SF1 values of 0.5, 
0.95, and 0.05 respectively, with the combined parameter estimate histograms from all noisy 
measurement fits associated with each signal displayed in Figure 43.  These histograms show that 
the S0 parameter estimates have a similar variance, while the Dapp estimates increase in variance as 
true SF1 increases from 0.05 (signal C) to 0.5 (signal A) to 0.95 (signal B).  This corresponds with 
the increase in the variance of the Dapp estimates seen when increasing true SF1 from left to right in 
the center map in Figure 40, but the distribution of the estimates are still clustered together in a 
distribution.   

There were more severe errors in the Kapp estimate distributions, however.  At true SF1 = 0.5 (A), 
where there is very little ill-conditioning indicated in the top right corner plot in Figure 43, the Kapp 
estimates are clustered together in a distribution.  The true SF1 = 0.95 (B) estimates are mostly 
clustered in a distribution around 0.2, however there are several outliers shown at much smaller 
values, including around 10 values with an estimated Kapp of -1, which was the lower bound of the 
parameter in the regression fits.  For true SF1 = 0.05 (C), in the area where all signals had a fit 
condition number greater than 20, the Kapp estimates widely varied from -1 to 1.2, with a significant 
left tail in the distribution and a considerable number of fits clustered near the lower bound of -1.  
Thus, ill-conditioning in the kurtosis model affected the parameter estimates when fitting simulated 
DWI data, however large uncertainty only appeared to affect the kurtosis parameter Kapp.   

3.3.2 Bootstrap Samples 

A single, noise-free biexponential signal (true SF1 = 0.025, D1/D2 = 15.05) from the smaller 
bootstrap test set was also selected from the kurtosis model fits similar to Signal C in Figure 43.  
One fit was selected from the 25 noisy measurements derived from that noise-free signal, with 
kurtosis model parameter estimates of S0 = 0.97, Dapp = 0.071, Kapp = 0.068.  The 1000 bootstrap 
samples from that fit were grouped together and plotted as histograms in Figure 44.  The 
histograms for the S0 and Dapp bootstrap samples show well-formed distributions that are Gaussian-
like and centred around the original signal estimates of 0.97 and 0.071 respectively.  The Kapp 
bootstrap samples, however, show a widely dispersed distribution with many values found at the 
lower bound of -1.  Confirming the results in Chapter 2 with the biexponential model, performing a 
perturbation analysis with the parametric bootstrap also effectively identified ill-conditioning in a 
model fit and high variance in the parameter estimates.  Any variance measures derived from the 
bootstrap samples could indicate problematic fits, as could an examination of the shape of the 
distribution. 
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Figure 44 – Histograms of kurtosis bootstrap samples for each model parameter along with the 
estimated parameter value from the original fit (green dashed line) 

The bootstrap distribution show that S0 and Dapp have increased uncertainty in their estimates, but not 
to the degree that Kapp does, with many values found at the lower bound of -1. 

3.3.3 Low SNR Data Rejection 

The methodology of rejecting low SNR values improved the overall, signal-averaged SNR of the 
biexponential test set (Figure 20), but it was found that little improvement was made in the 
monoexponential parameter estimates and there was a significant degradation in the biexponential 
parameter estimates.  The kurtosis model was fit to the biexponential test set using this same 
method of rejecting any signal measurement below 2 times the noise standard deviation (SNRb=0 = 
25).  The variance in the parameter estimates from those regression fits were mapped over the 
parameter space of the biexponential signal test set and compared to the estimates from fitting all 
eleven diffusion weighted measurements.  In these results, the change in variance of the S0 and Dapp 
estimates between the SNR < 2 rejection and full fit strategies was negligible (< 0.005), like the 
monoexponential model, but there was a slight improvement in the variance of the Kapp estimates.  
Figure 45 shows a plot of the difference in SER between the SNR < 2 rejection strategy and a fit of 
all eleven diffusion weightings. This plot shows that in the portion of the parameter space where 
there were one or two measurements removed (bottom left quadrant of plot), the SER decreased 
using an SNR < 2 strategy.  However, for the area where the most measurements are removed (right 
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side of plot), in the hope of improving the signal-averaged SNR, the SER actually increased when 
discarding data points.  A negligible parameter estimate benefit and worse overall fitting ability 
suggested that a variable SNR < 2 rejection strategy did not significantly improve the results when 
fitting a kurtosis model on this biexponential test set. 

 
Figure 45 – Change in SER utilising SNR < 2 rejection strategy versus fitting all 11 diffusion weightings 

Negative value indicates improvement in fitting ability of SNR < 2 strategy. 

SER 

The mean SER of all kurtosis regression fits to biexponential truth is shown in Figure 46.  This plot 
is similar to Figure 16, where the regression fits were able to closely fit the biexponential signal 
when it was most like a monoexponential signal, but at high D1/D2 ratio and near-equal signal 
fraction, the regression error increased.  The kurtosis fit does have more flexibility as the highest 
SER for the regression fits is around 0.09, compared to 0.11 SER when fitting a monoexponential 
model (Figure 16), showing that the flexibility of the extra term in the kurtosis model allows for an 
improvement of fitting on a true biexponential signal.  However, this increase in SER versus the 
biexponential model indicated that the kurtosis model was not as flexible as the biexponential 
model which had an SER over the entire test set of 0.042.  This showed that there was still 
considerable model bias when fitting a kurtosis model to typical biexponential based signals.  The 
kurtosis model has a larger area that is relatively free of ill-conditioning compared to the 
biexponential model (compare Figure 24 and Figure 41), though, but there is still a significant area 
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of large uncertainty, so the kurtosis model is also not robust over the entire range of signal 
measurements derived from this biexponential test set.  Furthermore, the kurtosis and 
biexponential model both have these problems for measurements of signals that are effectively 
monoexponential. 

 

Figure 46 – Mean SER for all kurtosis fits on biexponential signal test set for SNRb=0 = 25 

The kurtosis model fits the biexponential data better than the monoexponential model when compared 
with Figure 16, however, it also does not fit the data as well when the signal has equal signal fraction 
and high D1/D2 ratio. 

3.3.4 Fitting a Kurtosis Model to Monoexponential Truth 

All noise-free monoexponential signals were sorted into an array of 95 bins based on true ADC 
value.  Signals with true ADC close to 0.05 were similar to signal C in Figure 43 as they remained 
above the noise floor for all eleven diffusion weightings.  Signals with true ADC closer to 1 were 
similar to signal B in Figure 43 as they decreased rapidly at lower diffusion weightings and the 
remaining four measurements were biased by the noise floor.  The kurtosis model parameter 
estimates from all noisy measurements, based on the signals in each bin, were combined as a 
distribution with the variance calculated for each bin.  Figure 47 displays histograms of the 
variance in these estimates along with the mean condition number, and show that as signal ADC 
increased, the standard deviation in the S0 and Dapp parameter estimates also increased, since more 
diffusion weighted measurements fell below the noise floor and the signal-averaged SNR of the 
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signal measurements was lower.  The trend in the Kapp parameter estimates was the opposite, 
however, as the standard deviation decreased as the signal-averaged SNR decreased.  As the plot of 
the mean Jacobian condition number shows, this was due to the reduction of ill-conditioning in the 
signal.  For these monoexponential measurements, the Rician bias actually had a positive effect on 
the Kapp estimates, since it artificially lifted the tail of these measurements enabling the kurtosis 
model to fit the data with less ill-conditioning.  However, even with the beneficial effect from Rician 
bias, the minimum standard deviation of the Kapp estimates was around 0.4, which was quite high 
compared to the true value of zero, and was also high compared to the estimates returned across 
much of the biexponential test set shown in Figure 40. 

 

Figure 47 – Histograms of kurtosis model parameter estimates to a monoexponential test set 

While the S0 and Dapp parameters have higher SD as the true ADC increases (which lowers the signal-
averaged SNR), this is not the case with Kapp which actually decreases as the SNR decreases.  This is most 
likely due to the lower ill-conditioning in the fits, indicated by the mean Jacobian condition number plot. 

3.4 Summary of Conclusions 

This chapter presented an analysis of the kurtosis model and its use with NLLS regression 
algorithms on simulated data, specifically data generated from both the monoexponential and 
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biexponential models.  The results addressed gaps in the literature specifically described in Section 
3.1.3, namely: 

• Large variance was found in the kurtosis model parameter estimates when fitting to a 
biexponential test set, specifically when the biexponential signal was close to being 
monoexponential.  However, this large variance was confined to the parameter that 
assesses the kurtosis (Kapp). 

• These high levels of variance were found in this kurtosis parameter as the true 
biexponential signal was close to monoexponential, similar to the findings for all 
biexponential model parameter estimates in Chapter 2. 

• Again like the biexponential model, while increased SNR alleviated the large variance in the 
estimates for some signal measurements, at effectively monoexponential signals, there was 
still significant variance. 

• This large variance was isolated to the effects of ill-conditioning, as evidenced by large 
variance in the parameter estimates even at the highest levels of SNR, as well as a large 
condition number. 

• The parametric bootstrap was also able to identify measurements with significant 
uncertainty due to ill-conditioning. 

• Implementing a SNR < 2 rejection strategy did not have a significant improvement on the 
kurtosis parameter estimates and actually increased the fitting error in many cases. 

• Testing the kurtosis model on a test set generated from all monoexponential signals showed 
that the Rician bias actually had a beneficial effect on the kurtosis parameter estimates, 
since it artificially induced a deviation from a straight monoexponential decay signal where 
the ill-conditioning was highest. 
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Chapter 4  
Model Selection Using Information Criteria and Cross-Validation 

4.1 Introduction and Background 

The previous two chapters demonstrated the magnitude of the bias and variance in both the 
biexponential and kurtosis models parameter estimates, such that reliable inference could not be 
made about the underlying true signal.  For both models, the uncertainty in these estimates was 
greatest when the simulated true signal was most like monoexponential decay.  Applying a 
biexponential or kurtosis model to a monoexponential signal is then a misspecifcation of the model, 
since the monoexponential model is obviously the most appropriate model to apply to the data in 
this situation.  However, when assessing a set of tissue data, the best model for a data set is 
unknown prior to measurement and analysis, and often this best model can change on a voxel-wise 
basis [37].  Additionally, the true voxel signals may have dozens of dimensions far beyond the 
simple structure of the DWI models presented thus far, so the best model to apply would likely not 
be obvious.  Thus, the basis for the DWI model selection studies presented in Section 1.5 was to 
demonstrate to researchers what model is likely to provide the lowest MSE parameter estimates in 
future studies of a particular tissue or condition.  If a more complex model is indicated as the best 
model in a study, and demonstrations of the additional information it provides are often included 
(e.g. [87]). 

4.1.1 Model Selection Uncertainty 

While the premise behind model selection is to obtain the best model that provides the lowest error 
between model and data over repeated sample measurements, little consideration is taken into 
account on the effects of noise on the model selection process.  Burnham and Anderson’s book on 
model selection, however, specifically notes, “…a different model (in the fixed set of models 
considered) may be selected as best for a different replicate data set arising from the same 
experiment.” (Section 1.7, [62]).  For example, 100 sample measurements are obtained from the 
same voxel, and although the biexponential model was selected as best for the first sample, the 
monoexponential model was selected as best for 95 of the 100 total samples.  Given this 
information, lower MSE would be achieved over all samples by using the monoexponential model 
for future data acquisitions on this voxel.  However, what if the biexponential model selection rate 
over repeated samples of a different voxel was 50%, with no clear best model in this case?  Which 
model should be used in this scenario?  Model selection criteria don’t have the capability to assess 
future measurements, and the high cost of additional DWI acquisitions means that researchers have 
to do the best with the limited information they have.  To gain better insight into the selection rate 
between two models over the long run, however, DWI model selection studies are often conducted 
by combining the number of times each model is selected over multiple voxels in an ROI or organ.  
But what would be the effects on future studies when the biexponential model is selected as best 
for 51% of these voxels versus 100%?  Knowledge of this information would be a useful addition to 
the DWI literature. 
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The appeal of using the AIC in model selection, for example, is its ability to assess which model 
provides the most information on the data because it has the minimum K-L distance to the truth.  
Yet, the LS regression formula for the AIC in Equation 30 has the value of RSS in it, and as was seen 
in Chapter 2, the SER, derived from the RSS, changed depending on the signal-averaged SNR as well 
as the number of diffusion weightings.  As was also shown with the biexponential signal test set in 
Chapter 2, while the SER for the biexponential model fits in Figure 17 stayed relatively constant 
over the entire test, the SER for the monoexponential model fits in Figure 16 changed depending on 
the true signal, and when the true signal was most like a monoexponential signal, the SER for both 
the biexponential and monoexponential model fits had similar values.  Similar values of SER would 
mean the RSS values would be similar, and therefore, the two models would fit the same signal 
similarly.  In this case, it would be expected that when comparing model fits on repeated noisy 
measurements samples from one signal, the selection rate of the biexponential model as best would 
be different than fits on repeated samples of a biexponential signal where the monoexponential 
model SER was much higher (i.e., one with equal SF1 and high D1/D2 ratio). 

What researchers need to know then is what the cost in MSE is when a model is misspecified, i.e. 
when a biexponential model is applied to a monoexponential signal or vice versa.  In terms of the 
ability to fit a signal, there may appear to be no cost, but as was demonstrated in Section 2.3.2, the 
CV in the biexponential model parameter estimates when assessing an effectively monoexponential 
signal was nearly 7.5 times higher than the highest CV when assessing the monoexponential model 
to the biexponential signal.  Chapter 2 also demonstrated that measures based on goodness-of-fit 
had no ability to detect unreliable parameter estimates.  Therefore, relying solely on model 
selection methods to pick the best signal may come with a hidden cost in lower parameter estimate 
reliability.  A study that relates the results presented thus far in this thesis on uncertainty in the 
parameter estimates to the effects of uncertainty in model selection would also be a useful 
supplement to the literature.  

4.1.2 Akaike Information Criterion 

The theoretical definition of a monoexponential signal uses Equation 9 as the generating model, 
whereas a signal using Equation 12 with SF1 = 0.001 is theoretically a biexponential model, but the 
signal is effectively monoexponential.  If one of these models is used to create a signal, with the 
addition of measurement noise, identifying which of these two models is the true basis model 
becomes extremely difficult.  The effect of measurement noise compared to the parameter penalty 
and the difference in AIC values can be formulated using Equation 30 for the AIC of two arbitrary 
models x and y,  

∆AIC𝑥−𝑦 ≡ AIC𝑥 − AIC𝑦 =  𝑛 log �
RSS𝑥
𝑛

� −  𝑛 log �
RSS𝑦
𝑛

� + 2�𝑘𝑥 − 𝑘𝑦� , then 

 
∆AIC𝑥−𝑦 = 𝑛 log�

RSS𝑥
RSS𝑦

�+ 2�𝑘𝑥 − 𝑘𝑦� . (42) 

The expectation is that the AIC is “tuned” to make the distinction between a theoretical 
biexponential model and a monoexponential model, but it is easily shown that this is not the case 
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using Equation 42, assigning model x as the monoexponential model and model y the biexponential. 
As a true biexponential signal approximates monoexponential decay, the biexponential and 
monoexponential models fit this signal equally, so RSSx/RSSy goes to 1 and the first term in 
Equation 42 becomes zero.  When this happens, the value of ΔAIC is 4, with the monoexponential 
selected as the best model, and this bias occurs regardless of SNR.  The other two model 
comparison combinations, kurtosis vs. monoexponential and biexponential vs. kurtosis, both have a 
ΔAIC of 2 in favour of the simpler model when the fits are effectively equal.  Because this parameter 
bias exists even with no added measurement noise, the decision boundary between the 
monoexponential and biexponential models is different in a theoretical sense than in a 
statistical/information-theoretic one.  

Equation 42 can also be used to demonstrate the AIC selection rates between the biexponential and 
monoexponential models that are equidistant (K-L) to a measurement of a true signal, with their 
AIC values equal and so ΔAIC between the two models is zero.  If this measurement has eleven 
diffusion weightings, using Equation 42, the biexponential and monoexponential models will 
equally fit this measurement when the ratio of RSSx (mono) to RSSy (biexp) is approximately 
exp(4/11) or 1.44.  This means that when the AIC values are equal, the monoexponential model fit 
to the measurement has a slightly larger error than the biexponential model fit, which compensates 
for the parameter penalty.  For this measurement of an unknown signal where the ΔAIC 
(biexponential – monoexponential) is zero, if AIC values on these two models are compared to 
repeated noisy measurements of the same signal, acquired at the same SNR, it is plausible that for 
some measurements the biexponential model will fit better, and for others, the monoexponential 
model.  Thus, the selection rate of the biexponential model across all samples of the signal won’t be 
100%, and if the ΔAIC values for these fits are distributed equally around zero from added noise, 
the selection rate for each model will be 50% – an equal chance.   

While the AIC values of future samples can’t be estimated from a single measurement with 
unknown truth, examining the ΔAIC value between the best model and the other(s) provides an 
additional measure of the strength of inference.  Burnham and Anderson specifically give an 
estimated scale that relates the strength of inference of a model to the value of ΔAIC, with a value 
greater than 10 indicating that the selected model has a “substantial level of empirical support” 
versus the other tested model(s) (Section 2.6, [62]).   When using only the lowest AIC to determine 
the best model, a difference in AIC values of -0.001 and -100 carries the same inferential weight on 
model selection.  Compared to a ΔAIC value of 0.001, a ΔAIC value of 100 between the biexponential 
model (selected best) and the monoexponential means that future measurements of the same truth 
are more likely to have the biexponential model selected as best.  A recent DWI study [175] 
demonstrated that the ΔAICc values were large between the combinations of four tested models 
(biexponential, monoexponential, stretched exponential, kurtosis) when measurement noise added 
to simulated signals was low, but as the noise increased, the AICc values of all four models 
converged together, so the ΔAICc values between models went to zero, and it was more difficult to 
distinguish models.  This demonstrated that values of ΔAICc (and likely, ΔAIC) are sensitive to noise 
and as these values are smaller, it is more difficult to distinguish models.   
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4.1.3 F-test 

The F-test is a statistical test that compares two nested models with the null hypothesis being that 
there is no difference between the models.  The formula for comparing two nested models (e.g. 
biexponential and monoexponential) based on their RSS values from a given LS fit is [176] 

 

𝐹 =
�
𝑅𝑅𝑅𝑥 − 𝑅𝑅𝑅𝑦

𝑅𝑅𝑅𝑦
�

�
𝑘𝑦 − 𝑘𝑥
𝑛 − 𝑘𝑦

�
 , (43) 

with n the number of measurements, k the number of parameters for that model, and x always set 
to the simpler model.  The value of F is calculated for the fit of the two models on a given signal, and 
will have an F-distribution with (ky – kx) and (n – ky) degrees of freedom.  If the value of F is greater 
than the critical value of the F-distribution with these degrees of freedom at a given level of 
significance (usually 0.05), then the null hypothesis is rejected at that significance level.  While the 
p-value, and its decree of “significance” when meeting an arbitrary criterion, is being widely 
criticised in the scientific literature at present (e.g. [177]), it does provide a way of assessing an 
error rate.  One of the aims of this thesis was determination of the reliability of model selection 
methods, including type I, false positive errors, so it is more important to analyse what a significant 
result of an F-test means in terms of error rates.  p < 0.05 indicates that for less than 5% of the time, 
the F-test will erroneously reject the null hypothesis that there is no significant difference in the 
models.  In terms of DWI multimodel analysis, this would mean that given the null hypothesis is 
true, for 5% of measurements the biexponential model would be falsely selected as being 
significantly better than the monoexponential model. 

This is one advantage that the F-test has over the AIC, since the AIC has no such error specification 
or indication of its selection reliability [178].  A certain amount of error in model selection 
methodology should be expected, with a scientific goal of minimising such error [179].  The worst 
case method, when making a decision between two models, is a random, 50/50 coin flip.  The 
previous section illustrated a case where two models fit a measurement equally, and the AIC 
effectively gives a 50/50 chance in selecting the best model.  Assessing a minimum ΔAIC value then 
is similar to a p-value, with a recent paper [180] demonstrating the similar analysis properties of 
the p-value, confidence intervals, and ΔAIC, and how a minimum ΔAIC value “breaks ties” in the 
selection process.  This paper also demonstrates, though, that the choice of a minimum ΔAIC value 
is as arbitrary as the selection of significance level (e.g. 0.05) for a p-value.  It also reviews the 
various scales presented in the literature, relating a reported ΔAIC value and the strength of 
inference that provides.  This referenced Burnham and Anderson’s scale presented in the previous 
section, upon which they wrote a spirited-yet-puzzling reply that essentially says that p-values are 
worthless and antiquated compared to the “21st  century” information-theoretic properties of the 
AIC [181].  With these conflicting views on the F-test in the literature, comparing the AIC and F-test 
selection rates on DWI data would be useful to researchers, since both methods are currently used 
in DWI analysis. 
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4.1.4 Additional Selection Criteria 

The corrected version of the AIC, the AICc, has a rule of thumb which states if the ratio of n/k is less 
than 40, then the AICc should be used [62].  For the four parameter biexponential model, this would 
require 160 b-value measurements for n/k to be higher than 40, which is unrealistic for an actual 
DWI acquisition.  According to this rule, then, the AICc should be used when making inferences in 
nearly all DWI studies.  The correction term of the AICc, however, is simply a mathematical bias 
component added to the calculated AIC value.  For a signal with eleven measurements, calculating 
the additional bias term for the AICc found in Equation 31,  

2𝑘(𝑘 + 1)
𝑛 − 𝑘 − 1

 , 

gives values for this bias term of 12 for a biexponential model, 6.67 for a kurtosis model, and 3.43 
for a monoexponential model.  These factors include the additional parameter for fitting the 
variance in least squares, so k = 5 for the biexponential model, 4 for the kurtosis, and 3 for the 
monoexponential. For eleven signal weightings, this AICc will then add an even larger penalty to 
more complex models than just the AIC.  For the AIC example where the biexponential and 
monoexponential fit a monoexponential signal equally, resulting in a ΔAIC of 4, the AICc adds 
another 8.57 (12 - 3.43) to this value, giving a ΔAICc value of 12.57 at the theoretical boundary of 
the biexponential and monoexponential models.  The added bias term in the AICc, then, is basically 
an additional parameter penalty favouring simpler models based on the number of measurements.  
As the number of measurements goes up, however, the effect of this correction factor becomes 
smaller, and eventually the AICc value converges to the AIC.  The other model selection criterion 
that adjusts the parameter penalty based on the number of measurements is the BIC, which has an 
equation of [73] 

 BIC =  −2log �𝐿�𝜃��𝑦�� + 𝑘 log(𝑛). (44) 

The first term is the same as Equation 29 with the likelihood function, which is equivalent to the 
nlog(RSS/n) term for the AIC in Equation 30.  The difference between the AIC and BIC, then, is a 
difference in parameter penalties: 2×k for AIC, log(n)×k for the BIC.  While the BIC parameter 
penalty increases with the number of measurements, the value of log(n) for the range of 
measurements in the test sets presented in this chapter is between 1.95 (seven measurements) and 
2.40 (eleven measurements).  For eleven diffusion weightings, then, the difference between a two 
and four parameter model that fit a signal equally would be 4.8 instead of 4.  This would result in a 
selection rate similar to the AIC for most DWI models, and the BIC has a parameter penalty less 
extreme than the AICc, so its results could be inferred based on the results from the other criteria 
and it won’t be assessed further in this chapter. 

4.1.5 Information Criteria vs. Cross-Validation 

The AIC and Leave-One-Out Cross-Validation (LOOCV) procedures are asymptotically equivalent in 
model selection [78], but the effects of limited measurement samples on selection rates of  DWI 
models have not been widely studied.  A recent DWI study used LOOCV model selection on ex vivo 
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data to confirm the rankings produced by the AIC and AICc, finding good agreement in selection of 
the best model between LOOCV and AIC [37].   While the AIC and LOOCV rates converge with a large 
number of samples, it is unknown which method performs better on a limited number of 
measurements.  Cross-validation methods estimate the error across all measurements as opposed 
to an approximate penalty like the AIC, so it’s possible for it to be more reliable for small samples.  
Conversely, if there are only seven diffusion weightings, leaving one measurement out will be a 
significant loss of information compared to the overall signal, causing significant errors in the 
selection rates.  The AIC has already shown in this chapter to be mathematically biased at the 
theoretical boundary between a monoexponential and biexponential model, so it may be possible 
for LOOCV to have an improved selection rate near this boundary.  The LOOCV also returns 
arbitrary values for each model and like the AIC, the boundary between selection of models is a 
point estimate with no assessment of error rate or strength of inference of the best model.  The 
LOOCV also comes with a cost of increased computation time, and this trade-off should also be 
considered when comparing model selection methods. 

4.1.6 Effects of Rician Bias and Number of Diffusion Weightings 

It’s been demonstrated previously in this thesis that having more measurements with lower SNR 
meant that the increased noise and Rician bias increased the uncertainty in the some of the model 
parameter estimates and reduced it in others.  While complex phased data can be used to avoid 
Rician signal bias, this causes problems by inducing phase artefacts in the image, so common 
practice is to use magnitude data [54].  To avoid the effects of the Rician signal bias, the diffusion 
weightings of a signal acquisition strategy are often limited to low b-values to keep the SNR at each 
data point high, i.e. 5 or greater.  A strategy of removing any measurements with an SNR less than 2 
has been used in this thesis, but this changed the number of measurements used for fitting across 
the entire test set, giving a range of measurements from seven to eleven for the biexponential test 
set.  Different diffusion weightings means the RSS value changes over the entire test set, which 
would affect the AIC (and AICc), as well.  Additionally, the LOOCV would change based on differing 
the number of measurements over the test set.  To maintain consistency, the model selection 
methods will be tested for two different numbers of diffusion weightings, seven and eleven.  These 
weightings will be the same as the simulated biexponential and monoexponential tests used earlier, 
and as Figure 9 shows, using only the first seven diffusion weightings means that all signal SNR 
values will be greater than 5. 

Using all eleven diffusion weighting will examine cases where signals have some measurements in 
the noise floor, as well as some signals that remain well above the noise floor.  Limiting 
measurements to the lowest seven diffusion weightings will remove the effects of the noise floor 
altogether on the model selection process.  However, if the signals are limited to lower weightings, 
there will be less divergence from a monoexponential signal, and therefore, the resolvability of the 
biexponential and kurtosis models using model selection methods decreases.  While a biexponential 
model will fit a true biexponential signal better than a monoexponential model, the biexponential 
signal will fit much closer at higher weightings, such that the RSS value for a monoexponential 
model will be much larger.  Limiting the signal to low weightings means the RSS values for both 
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models will be similar, and with the parameter penalty bias, the monoexponential model will be 
selected more often than with the higher weightings.   

4.1.7 Chapter Aims 

This chapter focuses on providing researchers with a detailed picture of how the most common 
selection methods are affected by measurement noise as well as varying DWI acquisition 
parameters.  More importantly, this chapter will also focus on what the cost is when these methods, 
and the uncertainty in them, misspecify a model, leading to unreliable parameter estimates.  This 
information will help researchers in avoiding these instances, and improve the reliability of their 
parameter estimates.  To accomplish these goals, this chapter used the simulated biexponential 
signal data from Chapter 2 as well as the simulated monoexponential signal data from Chapter 3.  
The model selection rates can then be related to the uncertainty in the parameter estimates from 
these previous chapters to present a comprehensive data set on how model selection affects model 
parameter estimates. 

The aims of this chapter were to: 

• Determine the differences, if any, in how the AIC, AICc, and LOOCV each select the best 
model over repeated measurements from simulated signals where the truth is known. 

• Examine how these selection rates of different models change as the true parameter values 
of the simulated signals vary. 

• Assess the effects of varying the SNR of the added measurement noise to determine any 
changes in the selection rates among the model selection methods. 

• Compare the changes, if any, to the selection rates when the number of diffusion weightings 
is reduced to increase the signal-averaged SNR and avoid Rician bias. 

• Do a direct comparison of the AIC and F-test to compare their selection rates across the 
same measurements. 

• Compare the effects of the additional bias correction factor in the AICc and compare its 
selection rates directly with the AIC. 

• Investigate how the difference in AIC scores (ΔAIC) between two models compares with the 
selection rate of these two models on fits from a set of measurements from one signal. 

• Compare the selection rates of the tested model selection methods and measures with the 
occurrence of significant ill-conditioning in the regression fits and large uncertainty in the 
parameter estimates. 

4.2 Methods 

4.2.1 Simulated Biexponential Signal Test Set 

To compare the selection rates of the AIC, AICc, and LOOCV on simulated biexponential truth, 
Equation 12 was used as the generating model for 4900 noise-free signals, with 70 discrete SF1 
parameter values evenly spaced from 0 to 1, and 70 discrete D2 values evenly spaced from 2 to 20.  
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A0 and D1 were set to 1 for all signals, and two test sets were created for both seven and eleven 
diffusion weightings (again in arbitrary units): 

7: (0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6) 

11: (0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6) 

The eleven diffusion weightings set uses the same values as in Chapter 2, while the seven diffusion 
weightings set merely has the last four weightings removed.  For both of these test sets, 200 noisy 
signals were created for each of the 4900 noise-free signals with simulated Gaussian noise added 
per Equation 26 at SNR values of 25 and 200, resulting in the test set matrix in Table 6. 

Table 6 – Biexponential Test Set for Model Selection 

 SNR 25 SNR 200 

7 diffusion weightings 4900 x 200 noisy signals 4900 x 200 noisy signals 

11 diffusion weightings 4900 x 200 noisy signals 4900 x 200 noisy signals 

 

4.2.2 Simulated Monoexponential Signal Test Set 

The monoexponential test set has the same 1000 parameter combinations from Section 3.2, using 
Equation 8 as the generating model for the noise-free signals, with signal amplitude S0 equal to 1 
and ADC randomly chosen from a range from 0.05 to 1 for each signal.  These combinations were 
used to create two sets of noise-free signals with the same seven and eleven diffusion weightings as 
the biexponential test set above.  Simulated noise was also added to the noise-free signals at SNR 
values of 25 and 200, resulting in the monoexponential test set matrix in Table 7. 

Table 7 – Monoexponential Test Set for Model Selection 

 SNR 25 SNR 200 

7 diffusion weightings 1000 x 200 noisy signals 1000 x 200 noisy signals 

11 diffusion weightings 1000 x 200 noisy signals 1000 x 200 noisy signals 

 

The diffusion weightings and signal ranges match the plot shown in Figure 9.   

4.2.3 Calculating AIC, AICc, and LOOCV from NLLS Regression Fits 

Fitting the monoexponential, kurtosis, and biexponential models to the simulated data was 
performed using the same NLLS regression algorithm as in the previous two chapters (lsqcurvefit in 
MATLAB, trust region reflective option).  The model equations used were 9 (monoexponential), 13 
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(kurtosis), and 32 (biexponential) with the lower and upper bounds on each model set per Table 8.  
Since the LOOCV required a twelve-fold increase in computation time, a single starting value 
combination was only used in each fit per Table 8, also.  To calculate the AIC and AICc values for 
each signal fit, the returned RSS value from each model was used in both Equation 30 and Equation 
31 to calculate the respective values.    For the LOOCV value of each model fit of a signal 
measurement, each diffusion weighted measurement was left out in turn, with the parameter 
estimates from fitting the other diffusion weighted measurements used to predict the missing 
value.  For all combinations in a given signal measurement, the squared differences between the 
original signal measurement and the predicted value were totalled, giving the total LOOCV value for 
each model.  For each fit of the noisy measurements from each noise-free signal, the AIC, AICc, and 
LOOCV values were compared for each model, and the lowest value of each method signifying that 
model as best.  Then, for each method, the number of times each model was selected as best was 
tallied over the total measurements for each signal, and a selection rate for each model calculated 
as a percentage. 

Table 8 – Bounds and Starting Values for NLLS Regression Model Parameters 

Amplitude bounds and starting values were set to either the maximum value of a given noisy signal 
measurement or a multiple of that value. 

Parameter Lower Bound Upper  Bound Starting Value 

A0 (mono) 0 (2x) max signal max signal 

ADC 0 4 1.5 

A0 (kurt) 0 (2x) max signal max signal 

Dapp 0 4 1 

Kapp -1 2 0.5 

A1 0 max signal (0.5x) max signal 

A2 0 max signal (0.5x) max signal 

D1 0 4 1 

D2 0 4 1/6 
 

4.2.4 Calculating ΔAIC and ΔAICc Values Between Two Models 

For all measurements from each signal, the ΔAIC values for all three two-model combinations 
(biexponential vs. kurtosis, biexponential vs. monoexponential, kurtosis vs. monoexponential) were 
calculated for the biexponential signal test set with 11 diffusion weightings, and added 
measurement noise at an SNR of 25.  For the each two-model comparison, both the mean ΔAIC and 
ΔAICc were calculated for the measurement fits for each noise-free signal and directly compared 
with the selection rate of each model.   
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4.2.5 Comparing the AIC and F-Test 

To directly compare the AIC and F-Test selection results, the biexponential and monoexponential 
model were compared on the biexponential test set in Table 6 at an SNR of 25, and the selection 
rate that each model was chosen as best by both methods compared.  For each measurement 
regression fit, the returned RSS values from both the biexponential and monoexponential model fits 
were used in Equation 43 with model x set to the monoexponential model and model y to the 
biexponential model.  The value returned by Equation 43 was compared with the calculated critical 
value of the F-Distribution, which was calculated using the finv function in MATLAB with the 
numerator degrees-of-freedom (v1 or d1) equal to ky – kx, the denominator degrees-of-freedom (v2 
or d2) equal to n – ky, and the significance level (α) set to 0.05. 

4.2.6 Diagnosing Ill-Conditioned Fits and Uncertain Parameter Estimates 

The difficulty and time involved for a visual examination of the four parameter estimate 
distributions from the regression fits of all measurements from all 4900 signals was considerable.  
To make the information presented here useful for researchers, as well, algorithmic tests of ill-
conditioning in the fits were needed.  The previous biexponential and kurtosis chapters showed 
that when the estimates were uncertain, the distributions were heavily skewed and/or not well-
formed. Assessment of the distribution shape was then performed on all parameter estimate 
distributions from the measurements of each signal in two ways.  The first was to assess the 
skewness of the distributions by simply subtracting the mean from the median.  The second way 
was using a standard test of normality, specifically, applying a Lilliefors normality test with a 
significance level (α) of 0.001.  If the null hypothesis that the distribution is normal was rejected, 
this was taken as evidence that there was considerable uncertainty in the parameter estimates.   

4.3 Results 

4.3.1 Fitting Three Models to Biexponential Truth with Eleven Diffusion Weightings 

SNR 25 

The percentage rates that each model was selected as best, when fitting the noisy measurements 
generated by each noise-free signal at SNR = 25, were calculated for each selection method and 
displayed as individual pseudocolour plots in Figure 48.  These plots show that the biexponential 
model is selected as the best model for most of the test set, including a considerable portion of the 
test set where 100% of noisy signals are selected as biexponential.  However, the biexponential 
model was not selected as the best model over the entire test set, even though it was the basis 
model for all signals, and the decrease in the selection rate was greatest when the true signal was 
closest to monoexponential decay.  This decrease in selection rate was inversely correlated with the 
increase in the bias and variance of the parameter estimates seen in Chapter 2, and hence, this can 
be a beneficial side effect of model selection, since the monoexponential model will be selected 
more often when the uncertainty in the biexponential model parameter estimates is highest.   
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The AIC and LOOCV have very similar selection rates of the monoexponential and biexponential 
models for the test set, confirming earlier findings in the literature noted in Section 4.1.5.   The 
extra bias of the AICc toward simpler models was evident here, too, as it selected smaller 
percentages of the biexponential model as best, while selecting larger percentages of the 
monoexponential as best.  However, the AIC and AICc selected the kurtosis model for approximately 
the same portion of the signals with a selection range between 0 and 40%.   

 

Figure 48 – Selection rate of the monoexponential, kurtosis, and biexponential models as best by the 
AIC, AICc, and LOOCV for a simulated biexponential signal test set with eleven diffusion weightings 
and noise added at an SNR of 25 

For most of the biexponential data, the biexponential model was selected by all three selection methods 
as best, however, the other two models are still selected as best for some data, specifically as the true 
signals are closer to monoexponential. 

The LOOCV selected the kurtosis model for the left half of the test set plot, but selects very few 
signals on the right half.  After further investigation, this was found to be a complication from the 
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Kapp parameter when holding out the largest diffusion weighting (25.6).  As Figure 9 shows, this 
weighting is at the far right of the line plot while the next closest weighting is in the middle of the 
graph (12.8).  If the largest weighting was held out, the value of Kapp set by the first ten weightings 
was estimated much higher than when it was included, such that the predicted signal value at the 
highest diffusion weighting was much greater than the initial value (on the order of 104).  This 
caused the total LOOCV value to be much greater than the biexponential or monoexponential values 
and it was rarely selected.  This issue with the non-monotonically decreasing possibilities of the 
kurtosis model was also described in Chapter 3. 

SNR 200 

 

Figure 49 – Selection rate for biexponential test set with eleven diffusion weightings and noise added 
at an SNR of 200 
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Increasing the simulated SNR to 200 led to the biexponential model being selected for even more data 
than when the SNR was 25, however at the margins where the signal is effectively monoexponential, the 
other two models are still selected. 

Increasing the SNR to 200 produced a distinct increase in the selection rate of the true 
biexponential model as best for all three selection methods as shown in Figure 49.  This increase in 
area of the test set, where the biexponential selection rate is 100%, is similar to the area of reduced 
parameter error at an SNR of 200 in Figure 10.  This shows that an increase in SNR not only 
reduced the occurrence of ill-conditioning, but also improved the reliability of the selection 
methods in selecting the true model.  However, like Figure 48, when the true signal was effectively 
monoexponential, the monoexponential model was still selected as best, with the kurtosis model 
selected as an intermediary model for a portion of the test set.  The additional bias of the AICc 
toward simpler models is still evident with a slight increase in the amount of test set that the 
monoexponential model was selected as best, however, the effect of this additional bias was much 
less than at an SNR of 25.  The selection rates of the AIC and LOOCV methods are also similar here, 
however the LOOCV selected slightly more of the biexponential model at the extreme bottom 
corners of the test set plot. 

4.3.2 Fitting Three Models to Biexponential Truth with Seven Diffusion Weightings 

SNR 25 

As shown in Figure 50, reducing the number of diffusion weightings to seven made a dramatic 
decrease in the reliability of the model selection methods, with the highest selection rate of the 
biexponential model by the AIC at 38%.  The kurtosis model is selected by the AIC about 40% of the 
time for much of the test set, but at the extreme left of the kurtosis plot, this rate drops to zero.  This 
was due to this portion of the test set consisting mostly of the slower decay component, such that 
signal remained flat for most of the diffusion weightings, with very little curvature or deviation 
from a monoexponential decay for the kurtosis model to fit to.  The additional bias of the AICc 
obviously had too much of an effect here, since it selected the monoexponential model as best for 
nearly 100% of the entire test set.  LOOCV produced an increase of the biexponential and kurtosis 
models selection rate over the AIC for this test set, suggesting that the similar performance for 
these two methods didn’t hold for this reduction in the number of diffusion weightings. 
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Figure 50 – Selection rate for biexponential test set with seven diffusion weightings and noise added 
at an SNR of 25 

Reducing the number of diffusion weightings to seven led to the biexponential model rarely being 
selected for data generated by itself. 

SNR 200 

Increasing the SNR to 200 for the seven diffusion weighting biexponential test set produced 
different patterns for the model selection rates, as shown in Figure 51.  The monoexponential 
model was barely selected by the AIC and LOOCV methods, except where the signal was effectively 
monoexponential, similar to the eleven diffusion weighting plots in Figure 49. The kurtosis model 
was then selected as the best model for most of the test set, except for the upper left portion of the 
test set, again where the signal was flat and did not decay much.  For the AICc, this portion of the 
test set now had the monoexponential model selected as best, and the biexponential model was not 
selected at all.  The LOOCV method selected the biexponential as best for much more of the test set 
here, suggesting the AIC approximation was not adequate in this case. 
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Figure 51 – Selection rate for biexponential test set with seven diffusion weightings and noise added 
at an SNR of 200 

Increasing the SNR of 200 led to the biexponential model being selected for more data than the SNR 25 
results, but the pattern of selection does not relate to whether the signals were monoexponential. 

4.3.3 Fitting Three Models to Monoexponential Truth with Eleven Diffusion Weightings 

SNR 25 

With the monoexponential model set as the basis for the signals, the selection rates of each model 
were displayed as histograms for each method in Figure 52, with the true ADC being the only 
variable compared to the results.  Like the biexponential test set results, the monoexponential 
model was not selected as the best model for all signals, with a maximum selection rate via the AIC 
of around 70%, which then decreased to 40% as the true ADC increased.  This decrease in the rate 
that the monoexponential model is selected as best can be explained by the effects of Rician bias on 
the signal measurements.  For low values of ADC around 0.05, where the signal was flat and 
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remained well above the noise floor, the monoexponential model selection rate was highest. Yet, 
the selection rate was still below 100%, indicating that there is still a considerable amount of noise 
affecting the data such that the other two models were selected as best for some measurements.  As 
the ADC increased and the signal measurements were lifted by the effect of the noise floor, the 
kurtosis and biexponential models selection rates increased, since these models are able to better 
fit the curvature of these measurements.  This was similar to the effect on the variance in the 
kurtosis parameter estimates in Section 3.3.4, and showed that the Rician bias does have an effect 
on the selection rate of all three model selection methods.   

 

Figure 52 – Selection rate for monoexponential test set with eleven diffusion weightings and noise 
added at an SNR of 25 

With the monoexponential model used to generate the data, the other two models are still selected for 
some data. 
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The additional bias in the AICc had a significant effect on the selection rates, as the simpler 
monoexponential model was selected correctly at least 80% of the time over the entire test set.  As 
opposed to the biexponential test set, where the selection rate of the signal basis model decreased, 
for the monoexponential test set, this additional bias was beneficial as it increased the selection 
rate of the simpler monoexponential model.  Figure 52 also shows that the AIC and LOOCV methods 
had similar selection rates here. 

SNR 200 

 

Figure 53 – Selection rate for monoexponential test set with eleven diffusion weightings and noise 
added at an SNR of 200 

Increasing the SNR to 200 led to the monoexponential model being selected more often. 
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Increasing the SNR to 200 increased the AIC selection percentage of the monoexponential model to 
over 70% for the entire test set, and also eliminated the lifting effects of the noise floor, as seen in 
Figure 53.  However, the kurtosis model was still incorrectly selected at a rate of over 20% of the 
entire test set, while the biexponential model was selected less than 5% of the time.  The additional 
bias of the AICc increased the monoexponential selection rate to above 90%, with the kurtosis 
model selected for nearly all of the remainder of the signals.  The AIC and LOOCV methods differed 
in selection rate of the more complex models, with the selection rate of the biexponential model 
increased.  Compared to the divergence in selection rates for the biexponential test set, the 
increased selection rate of the biexponential model by the LOOCV method is incorrect in this case, 
suggesting that the LOOCV is somewhat biased toward the more complex models.  The selection 
rate for the monoexponential model still does not reach 100% for these data, either, suggesting that 
even at an SNR of 200, the noise is still enough such that the kurtosis model fits better than the 
monoexponential model for many measurements. 

4.3.4 Fitting Three Models to Monoexponential Truth with Seven Diffusion Weightings 

SNR 25 

The reduction of diffusion weightings to seven in Figure 54 shows the increase in selection of the 
simpler models that was also seen for the biexponential signals, due to restriction of the data to 
lower diffusion weightings as well as a lower overall number of weightings.  The lifting tail effect, 
however, is again seen in the AIC where the monoexponential selection rate decreased as the ADC 
increased, suggesting that the decrease in signal-average SNR still affects the data.  The AICc is 
severely biased here such that the monoexponential model was selected as best for nearly all 
measurements.  The LOOCV selection rates differ completely than the AIC for this test set, as the 
monoexponential model selection rate increased as the ADC increased, opposite to the AIC trend, 
with the more complex models being selected at a higher rate overall. 
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Figure 54 – Selection rate for monoexponential test set with seven diffusion weightings and noise 
added at an SNR of 25 

Reducing the number of diffusion weightings led to a higher selection of the simpler models. 

SNR 200 

For an SNR of 200 and seven diffusion weightings, the monoexponential model had a selection rate 
of 90% for the AIC, but this rate decreased as the ADC increased, as shown in Figure 55.  For the 
remainder of the test set, the AIC selected the kurtosis as the best model, aside from a small portion 
where the biexponential model is selected.  Like the SNR 25 test set, the AICc selected the 
monoexponential model as best for the entire test set, and the selection rates between AIC and 
LOOCV again differed, favouring the more complex models. 
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Figure 55 – Selection rate for monoexponential test set with seven diffusion weightings and noise 
added at an SNR of 200 

4.3.5 ΔAIC and ΔAICc Differences in Model Combinations 

These mean ΔAIC values are shown in the left column of the pseudocolour plots in Figure 56 for 
each two-model combination, with the right column displaying the corresponding head-to-head 
selection rates.  These plots show that where a particular model is selected 100% of the time versus 
the other, the mean ΔAIC value is much lower than zero.  As the selection rate decreased, eventually 
the mean ΔAIC value reached 0, indicated by the black contour line in the left column plots.  This 
contour location corresponds fairly well with the 50% selection rate contour in all three plots in the 
right column, aside from the right side of the kurtosis vs. monoexponential plots in the bottom row.   
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Figure 56 – Mean ΔAIC value (left column) and model selection rate of the noisy signal fits, based on 
each noise-free signal, for the three head-to-head model comparison pairs (rows)  

The black contour line indicates where the mean ΔAIC value is zero (left column) or where the selection 
rate of each model is 50% (right column).  This shows the signals where the ΔAIC was zero and the 
selection rate was 50% were at similar values. 

This correlation between mean ΔAIC and selection rate is illustrated in more detail in Figure 57 
showing the biexponential and monoexponential model fits to the noisy measurements from three 
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separate noise-free signals selected from the test set.  For signal A (true SF1 = 0.49, true D1/D2 ratio 
= 20), where the biexponential model was selected for 100% of signals, the mean ΔAIC value was -
22, the standard deviation 6.3, and the ΔAIC between the two models greater than 10 in all fits.  
This showed that repeatedly fitting noisy measurements from one signal varies the difference in 
model AIC value considerably, with a difference in minimum and maximum ΔAIC values of 34.  
Signal B (true SF1 = 0.087, true D1/D2 ratio = 19.5) had the ΔAIC distribution evenly divided about 
zero in count with an equal 50% selection rate, however, the maximum value is around 4 (the 
difference in the 2k parameter penalty between the two models), and the minimum value -17.   
Signal C, actually a monoexponential signal (SF1 = 0, D1/D2 = 13.3), had 95% of the ΔAIC distribution 
greater than zero, with most values grouped near 4, however there was one signal with a ΔAIC 
value of -8.   

 

Figure 57 – Histograms of the ΔAIC values for three case studies of the model fits from three noise-
free signals (top left plot) with added noise at SNR of 25   

Each histogram shows the difference in AIC value between the biexponential and monoexponential 
model where the selection rate of the biexponential model is 100% (A), 50% (B), and 5% (C), with a 
higher ΔAIC value when the signals was less like a monoexponential. 
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These three signal examples show that just by adding noise at an SNR of 25 to one signal, the 
difference in AIC value can have a large deviation across the fitted noisy measurements derived 
from one signal.  This is largely due to the deviations in the RSS values when fitting the models, as 
shown in Figure 58.  Signal A had RSS values for the biexponential model distributed between zero 
and 0.04, while monoexponential RSS values vary over a much wider range with a minimum value 
of 0.05, leading to the clear distinction between AIC distributions.  In signal B, the distribution of 
monoexponential RSS values is much closer to the biexponential RSS distribution, but still has a 
higher mean value.  The effect of the AIC parameter penalty, however, means that the distribution 
of the AIC values overlap and are similar with a 50% selection rate for both models.   

 

Figure 58 – Histograms of the AIC values for the biexponential (blue) and monoexponential (red) 
models (left column) along with the RSS distributions (right column) for the three signals in Figure 57 
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Finally, the RSS values for signal C show that the RSS distributions are nearly the same, since the 
two models fit the signals similarly.  With the parameter penalty, however, the monoexponential 
AIC distribution has a lower mean, leading to the lower biexponential selection rate. 

SNR 200 

 

Figure 59 – Mean ΔAIC value (left column) of the noisy signal fits at an SNR of 200 versus the 
corresponding selection rate (right column) for the three head-to-head model comparison pairs (rows)   
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The black contour line indicates where the mean ΔAIC value is zero (left column) or where the selection 
rate of each model is 50% (right column). 

Figure 59 shows the changes in the ΔAIC value when the SNR of the added noise increased to 200.  
For all three model pair combinations, the magnitude of the minimum ΔAIC value has greatly 
decreased, leading to an increased selection rate for the more complex models over most of the 
parameter space compared to Figure 56.  A case study of three signals similar to Figure 57 was 
performed for the SNR 200 test set, with the results shown in Figure 60.  While the selection rate of 
the biexponential model versus the monoexponential model increased over much of the parameter 
space, the spread in the ΔAIC values was largely the same.  For example, signal A in Figure 57 had a 
difference in minimum and maximum ΔAIC values of 34, and in Figure 60 (same noise-free signal), 
this difference was 35. 

 

Figure 60 – Histograms of the ΔAIC values for three case studies of the model fits from three noise-
free signals (top left plot) with added noise at SNR of 200 

Each histogram shows the difference in AIC value between the biexponential and monoexponential 
model where the selection rate of the biexponential model is 100% (A), 50% (B), and 5% (C). 
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While the overall variance in RSS value for the SNR 200 signals decreases for both the 
monoexponential and biexponential model fits (see Figure 61 compared to Figure 58), Equation 42 
is based off of the log of the ratio of the two RSS values, so the variation in AIC values remains at a 
similar value.  With the biexponential and monoexponential models, this consistency of the ΔAIC 
value shows that it could be used as a measure to infer that the biexponential model was indeed 
better for a given fit, regardless of SNR.  For example, only using the biexponential model when the 
difference in AIC to the monoexponential model is -10 or more increases the chance that the 
biexponential model is indeed better as opposed to strictly basing selection on whether the AIC is 
simply lower.  This finding confirmed the literature studies introduced in Section 4.1.3 that a higher 
ΔAIC value correlates with the strength of inference between models, although here it was 
specifically demonstrated as a higher model selection rate over repeated samples. 

 

Figure 61 – Histograms of the AIC values for the biexponential (blue) and monoexponential (red) 
models (left column) along with the RSS distributions (right column) for the three signals in Figure 60 
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ΔAICc – SNR 25 

 

Figure 62 – Mean ΔAIC value (left column) of the noisy signal fits at an SNR of 25 versus the mean 
ΔAICc value (right column) for the three head-to-head model comparison pairs (rows)   

The black contour line indicates where the mean ΔAIC or ΔAICc value is zero.  Note, that the colour plots 
are the same column-wise, but each colourbar has a different scale. 
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An examination of the difference in AICc values shows the effect of the selection rate is merely the 
added parameter penalty.  The values of ΔAICc are shown in the right column of Figure 62, and are 
plotted against the ΔAIC values at SNR of 25 from the left column of Figure 56.  If the scales of the 
pseudocolor plots are adjusted based on the difference in the additional AICc  parameter penalty, 
the colour distribution in the plots in each row are the same.  However, the decision line of the 
mean ΔAICc = 0 now covered a smaller portion of the parameter space, and hence this bias of the 
AICc toward simpler models was reflected in the selection rates in the centre row of Figure 48.   

4.3.6 F-Test 

 

Figure 63 – Selection rate of the biexponential model vs. the monoexponential model for the 
biexponential test set (11 weightings, SNR = 25) by the AIC (upper left), F-Test (α = 0.05, upper right), 
and AICc (bottom right) 

Note that the F-Test results are more similar to the AICc than the AIC. 

A comparison of AIC, AICc and F-Test selection rates, when comparing the biexponential model vs. 
the monoexponential on the biexponential test set (11 diffusion weightings, SNR 25), is shown in 
Figure 63.  This figure shows that the F-Test, with the significance level (α) set to 0.05, had similar 
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selection rates across the biexponential parameter space to the AICc, with both biased toward the 
simpler, monoexponential model than the AIC.  

4.3.7 Ill-Conditioning and Normality in Parameter Estimates 

Assessment of the skewness of the biexponential model parameter distributions, where the mean of 
the distribution was subtracted from the median and performed on all measurements of each noisy 
signal are plotted in Figure 64.  These plots show that the skewness was indeed minimised in the 
areas where parameter uncertainty was lowest at equal signal fraction and maximum D1/D2 ratio.  
This measure also detects the difference in left- and right-handed skewness in the amplitude 
parameters, but may not be a useful measure, since a considerable amount of the D1 distributions 
had a high amount of skewness. 

 

Figure 64 – Skewness (mean – median) for the parameter estimate distributions of the noisy signal fits 
for each noise-free signal at an SNR of 25 

The skewness is higher when the signal is more monoexponential, which is also where the fitting is more 
likely to be ill-conditioned. 
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The parameter distributions were also compared with the Lilliefors normality test (α = 0.001) with 
the results of this test for each biexponential model parameter shown as pseudocolour plots in 
Figure 65.  These plots also show that the estimate distributions were normal more often where 
parameter uncertainty was lowest at equal signal fraction and maximum D1/D2 ratio.  These test 
results were noisy, even in the areas of lowest parameter uncertainty, however, with very few D1 
estimates passing the normality test.  Thus, to not completely rule out all parameter estimates, a 
logical “OR” combination of the four parameter estimates was done, where the combined test was 
set to pass if any of the parameter estimates passed the normality test.  This gives the plot seen in 
Figure 66. 

 

Figure 65 – Lilliefors normality test (α = 0.001) of the noisy signal parameter estimate distributions.  
Blue dots are true signals where the parameter distributions are normal, yellow dots are non-normal 

This test also is likely to fail when the signal is more like a monoexponential decay. 

Many automated tests of normality have very tight constraints, causing many distributions to fail, 
and different normality tests will have different assessments and selection rates [182, 183].  While 
the combined test could still be erratic in its selections, it did provide a decision boundary between 
the areas of low parameter errors and high, ill-conditioned parameter errors.  Thus, this test could 
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be used with the bootstrap parameter estimates to provide a decision on whether to use the 
biexponential model parameter estimates from a single fit.   

 

Figure 66 – Combined results of the individual parameter normality tests in Figure 65 where the test is 
set to pass if any of the parameter estimate tests passed 

 

Figure 67 – Pseudocolour plot of mean ΔAIC between the biexponential and monoexponential model 
fits, with overlaid contour of the test boundary between normal and non-normal parameter estimate 
distributions from Figure 66 
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If this test indicates non-normal parameter estimates, there is a considerable chance that there will 
be large uncertainty in the parameter estimates, since this is an indication that the parameter 
estimates may be unreliable.  If the decision boundary from the combined test in Figure 65 is 
overlaid as a contour on a plot of the ΔAIC value between the biexponential and monoexponential 
model, the value of ΔAIC was made clearer as shown in Figure 66.  If a minimum ΔAIC value of say -
10 was chosen for a decision boundary on whether to keep the biexponential model parameter 
estimates, then on average there was a lower chance of the parameter estimates being unreliable.  
This could be useful if bootstrap samples from fits are not able to be calculated to check normality 
due to the large increase in computation time.  In this case using a specified minimum difference in 
ΔAIC will reduce the overall bias and variance of the biexponential model estimates. 

Difference in Parameter Estimates when AIC Selects Two Models Equally 

To illustrate the difference in parameter estimates made when relying solely on the AIC to select a 
model, one noisy measurement of signal B in Figure 57 was chosen for analysis.  When fitting the 
biexponential and monoexponential model to the signal measurement, the difference in AIC values 
was 0.1, with the biexponential model selected as best.  For both the biexponential and 
monoexponential fits, a perturbation analysis was performed for both models with 500 parametric 
bootstrap samples for each, in order to calculate a confidence interval for each parameter and 
assess the distributions for normality.  The parameter estimates for both models, along with their 
calculated 95% bootstrap confidence intervals are listed in Table 9. 

Table 9 – True Value, Parameter Estimates, and Bootstrap Confidence Intervals from 
Monoexponential and Biexponential Fits with near-equal AIC values. 

 True Value Original Fit Estimate Confidence Interval 

Biexponential 
A1 

0.09 0.10 (0.038, 0.82) 

A2 0.91 0.89 (0.23, 0.95) 

D1 1 1.17 (0.093, 34.7) 

D2 0.05 0.05 (0.0, 0.06) 
Monoexponential 

S0 
N/A 0.96 (0.92, 0.99) 

ADC N/A 0.06 (0.05, 0.07) 
 

The table shows that the parameter estimates of the original fit here were very close to their true 
values.  However, this is just from one fit, and the 95% confidence intervals indicate that the A1, A2, 
and D1 parameters could assume a very wide range of values over repeated measurements of the 
same signal.  The confidence intervals for the monoexponential model are much smaller and evenly 
distributed around the original estimates.  This specific example illustrates why caution must be 
used when relying on the AIC to choose the best model, and that when comparing the biexponential 
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and monoexponential models, signals with equal AIC values can have significantly worse parameter 
estimates in the biexponential model when assessing multiple measurements. 

4.4 Conclusions 

This chapter analysed three model selection methods on simulated data to examine the effects of 
noise and acquisition parameters on their selection rates, specifically: 

• When comparing the biexponential, kurtosis, and monoexponential models, the selection 
rate that each model was selected as best by the AIC, AICc, and LOOCV selection methods 
varied over repeated noisy measurements of the same simulated signal. 

• The rate that each model was selected by all three methods also changed as the parameter 
values for the true simulated signals varied, whether the signal basis model was 
biexponential or monoexponential. 

• When the SNR increased to 200, the biexponential model selected more of the biexponential 
signals as the best model, however, when the signals were effectively monoexponential, the 
kurtosis and monoexponential models were still selected for many of the signal 
measurements. 

• Removing the highest diffusion weightings to remove the effects of Rician bias from the 
measurements led to a higher selection rate of the simpler monoexponential model.  When 
Rician bias affected the measurements when the highest diffusion weightings were 
included, the noise floor effects lifted the tail of the signals and the kurtosis and 
biexponential model were selected more often when the monoexponential model was the 
signal generating model. 

• When comparing the biexponential and monoexponential models over all signals in a 
biexponential test set, the rate that the F-test selected the biexponential model as best was 
very similar to the AICc as opposed to the AIC. 

• When comparing the AIC and AICc directly, it was shown that the additional correction term 
in the AICc merely operates as a source of additional bias favouring simpler models.  For a 
biexponential test set with limited diffusion weightings, the AICc selected the 
monoexponential model as best for all signals, so it is possible that the AICc can be biased 
too much in specific examples. 

• An increase in the value of ΔAIC between two models was associated with a higher selection 
rate of the model initially chosen as best, when repeated measurements from the same 
signal were tested.   

• When selecting between the biexponential and monoexponential model, a higher minimum 
value of ΔAIC for a given fit where the biexponential model was selected as best was 
associated with a lower average chance that ill-conditioning would affect the biexponential 
model parameter estimates. 

• When comparing the biexponential and monoexponential models on a given measurement, 
and the AIC values for both models were similar, there was considerable ill-conditioning in 
the biexponential parameter estimates and therefore, relying solely on model selection 
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methods to choose whether to use the parameter estimates can lead to much larger error in 
future repeated measurements. 
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Chapter 5  
Parameter Estimation and Model Selection of Actual DWI Data 

This chapter references the author’s conference publication, “Biexponential modelling of diffusion in 
stroma and epithelium of prostate tissue”, Ned Charles, Gary Cowin, Nyoman Kurniawan, Roger 
Bourne, Joint Annual Meeting ISMRM-ESMRMB, 2014 [184] 

The previous chapters demonstrated large uncertainties in both the biexponential and kurtosis 
model estimates on simulated data, along with expanded methods on how to identify these issues.  
Additionally, a comparison of model selection methods was performed on this simulated data, 
demonstrating that even if a model was selected as best by one of these methods, there could still 
be unreliable parameter estimates.  This chapter compares these simulated data results to fitting of 
actual DWI data from a prostate tissue sample scan performed ex vivo. 

5.1 Introduction and Background 

5.1.1 DWI Analysis of Prostate Tissue 

As of 2015, prostate cancer accounts for one-fourth of all new cancer diagnoses in American men 
and is their second leading cause of cancer deaths [185].  The number of men in New South Wales, 
Australia living with prostate cancer is expected to rise by 59 – 73% from 2007 to 2017, with an 
estimated 60,000 men to be affected then [186].  The diagnosis of prostate cancer using MRI has 
improved greatly since the 1980’s, and the current PI-RADS standard includes DWI as part of a 
multiparametric assessment strategy [31].  For a DWI acquisition in vivo of the  prostate, the initial 
PI-RADS recommended a maximum b-value up to 800 – 1000 s/mm2, which avoids the increased 
noise of the Rician signal bias [32].  While measurements of the ADC value using the 
monoexponential model should stick to these lower b-values, the newest version 2 standard now 
recommends the use of higher b-values between 1400 – 2000 s/mm2, as long as the SNR is high 
enough.  The addition of higher b-values means that clinicians may be investigating more complex 
models such as the biexponential and kurtosis models. 

The author’s conference publication referenced above used even higher b-values, up to 4.65 
ms/µm2 (4650 s/mm2), with an estimated SNR at the lowest b-value (0.335 ms/µm2) equal to 40.  
However, this scan was performed ex vivo on tissue, which removes the noisy effects of patient 
movement and perfusing blood from the data.  The study was performed on a 16.4 T MRI scanner, 
and the high magnetic field strength and small bore allowed for DWI voxel sizes of 80 µm (length of 
all three sides), and T2* voxel sizes of 40  µm.  The purpose of the research study was to use this 
high scan resolution to individually investigate the properties of the three main types of prostate 
cellular tissue: epithelium, stroma, and lumen (duct).  In vivo studies, for example, typically have 
voxel sizes around 1-2 mm, and contain heterogeneous mixtures of all three tissue types.  The study 
was performed on three, 3 mm-diameter tissue core samples from three separate prostates 
analysed after radical prostatectomy, with a 40 µm T2* image of a middle slice through the cores 
shown in  Figure 68.  From this T2* image, five ROI were manually drawn on the image, 
representing stroma (S1 and S2), normal, epithelium-rich glands (E1 and E2), and one region (C1) 
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likely to be low-grade cancer based on macroscopic tissue features and previous patient biopsy 
results (though not confirmed by histopathology analysis, which was unable to be performed). 

 

Figure 68 – 40 µm T2* image of three 3 mm diameter prostate tissue samples with five manually 
selected ROI illustrated 

Reproduced from [184] for this thesis. 

Biexponential Model Fitting 

The five ROI from the T2* image were rescaled to the 80 μm DWI image, and all voxels within each 
ROI were fitted with a biexponential model using NLLS regression.  The 80 μm voxel size used in 
this study (each voxel containing ~200 cells) is eight times smaller than that used for a previous 
investigation that applied a biexponential model to DWI signal attenuation in fixed prostate tissue 
[187].  The results from this 80 μm biexponential study showed that both D1 and SF1 were lower in 
the epithelium-rich regions (E1, E2, C1) than in stromal regions (S1, S2).  These results should also 
lead to a lower ADC in epithelial tissue than in stroma when examining the monoexponential model, 
although this test was not performed on the study.  Additionally, the lowest value of D2 was found in 
the epithelial tissue in C1, suggesting a more restrictive diffusion environment than the other 
epithelial ROI.  The difference in parameter estimates were analysed and presented by grouping the 
parameter estimates for the voxel fits in each ROI and reporting a mean and standard deviation of 
these distributions. 

5.1.2 Chapter Aims 

Given the issues with the biexponential model and its uncertainties presented thus far in this thesis, 
this data set was chosen for a study of the biexponential model fits on actual tissue.  This included 
an expanded analysis with some of the measures introduced earlier in this thesis that indicated 
large uncertainty in the parameter estimates.  Reviewing this earlier study established whether 
there were also large uncertainties in the biexponential parameter estimates when examining real 
data, determined the magnitude of the variance in these estimates, and the number of voxels that 
were affected.  It also determined whether large uncertainties in the parameter estimates could be 
alleviated through testing the bootstrap sample distributions for non-normality, as well as choosing 
voxel fits with a minimum difference in AIC score from the monoexponential model.  This analysis 
examined the kurtosis model in a similar fashion, and also examined monoexponential model 
estimates to compare to the two more complex models. 
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The aims of this chapter were to: 

• Investigate the uncertainty in the biexponential, kurtosis, and monoexponential model 
parameter estimates of the data by examining both parameter plots and histograms of the 
regression fits for outliers. 

• Examine the bootstrap confidence intervals for all fits and determine whether there were 
large discrepancies and ill-conditioning present in the parameter estimates. 

• Use the AIC to select the best model in all voxels and determine the percentage that each 
model was selected as best. 

• Perform a normality test on the bootstrap sample distributions for all biexponential and 
kurtosis model fits and determine whether excluding non-normal fits from the analysis 
improved the uncertainty in the parameter estimates. 

• Individually compare the biexponential and kurtosis models to the monoexponential model, 
exclude voxel fits under a minimum difference in AIC score, and determine whether this 
exclusion improved the uncertainty in the parameter estimates. 

5.2 Methods 

5.2.1 Data Acquisition 

Three, 3 mm-diameter core samples were obtained from three separate prostates after radical 
prostatectomy with patient consent.  These samples were initially fixed in formalin for 24 hours, 
then immersed in 0.2% v/v Magnevist for over 48 hours.  The samples were set in a fixed position 
and imaged on a 16.4 T Bruker AV 700 microimaging system (5 mm birdcage coil, Micro5 gradient 
set) using a 3D spin echo DTI sequence with TE/TR = 28/500 ms and δ/Δ = 2/20 ms.   80 μm 
isotropic voxels were acquired in six gradient directions with b-values of 0.50, 0.90, 1.42, 2.06, 2.78, 
3.59, 4.65 ms/μm2, along with two reference images at an effective b-value of 0.335 ms/μm2.  All 
scans were performed at room temperature (22° C) and typical voxel SNRb=0.335 = 40.  In the original 
conference publication study, a diffusion tensor was calculated for each b-value in the 80 μm data 
set and the mean diffusivity used to calculate normalized signal intensity at each b-value, 
independent of gradient direction.  In this thesis study, the mean diffusivity was not calculated and 
instead, biexponential model fitting was performed using the data from one axis, combining the 
mean signal from the two reference images (b = 0.335 ms/μm2) and the remaining seven b-value 
acquisitions for a total of eight diffusion weighted measurements for each voxel. 

5.2.2 NLLS Regression Fitting 

The monoexponential, kurtosis, and biexponential models were each fit to the data using the same 
NLLS regression algorithm as the previous three chapters (lsqcurvefit in MATLAB, trust region 
reflective option).  The model equations used were 9 (monoexponential), 13 (kurtosis), and 32 
(biexponential) with the starting values and lower and upper bounds on each model set per Table 
8.  The SD of the background noise for this acquisition was calculated over a few thousand voxels 
using the difference in value between the two reference images.  Each voxel measurement was also 
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compared to the noise level and if the measured magnitude of the lowest b-value was not at least 
three times the noise standard deviation, the models were not fit. 

Table 10 – Bounds and Starting Values for NLLS Regression Model Parameters 

Amplitude bounds and starting values were set to either the maximum value of a given noisy signal 
measurement or a multiple of that value.  Values for ADC, Dapp, D1 and D2 are in (μm2/ms) and starting 
value of 2.1 chosen since it’s the diffusion coefficient of free water at 22° C. 

Parameter Lower Bound Upper  Bound Starting Value 

A0 (mono) 0 (2x) max signal max signal 

ADC 0 10 2.1 

A0 (kurt) 0 (2x) max signal max signal 

Dapp 0 10 2.1 

Kapp -1 2 0.2 

A1 0 (1.2x) max signal (0.5x) max signal 

A2 0 (1.2x) max signal (0.5x) max signal 

D1 0 10 2.1 

D2 0 10 2.1/6 
 

5.2.3 Parametric Bootstrap, Confidence Intervals, and Normality Testing 

For all voxel regression fits with the monoexponential, kurtosis, and biexponential models, 200 
parametric bootstrap samples were created for each model fit, by resampling the residuals and 
fitting each sample fit with that same model.  For all bootstrap fits on all three models, all upper 
bounds in the regression fitting were removed, and only the lower bound of Kapp was removed with 
the rest left at zero.  A 95% confidence interval was determined for each resulting bootstrap 
parameter estimate distribution from each model by calculating the 2.5 and 97.5% percentile 
values of the distribution.   A Lilliefors normality test with a significance level (α) of 0.001 was also 
applied to each bootstrap parameter distribution.  For the biexponential model, if any of the four 
parameter distributions passed the normality test (did not reject the null hypothesis), then that 
voxel passed the normality test.  For the kurtosis model, the normality test was applied to the Kapp 
distributions only, based on the simulation results in Chapter 3. 

5.2.4 AIC and Model Selection 

The AIC value was calculated for the monoexponential, kurtosis, and biexponential fits for all 
voxels.  The model with the lowest AIC value for each voxel was selected to be the best model for 
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that voxel.  The ΔAIC values were also calculated for both the biexponential-monoexponential and 
kurtosis-monoexponential model combinations. 

5.3 Results 

5.3.1 SNR 

For reference when analysing the parameter estimates of the tissue data, both the SNR at the lowest 
b-value (SNRb=0) and the signal-averaged SNR demonstrated in Chapter 2 were calculated for all 
voxels.  The noise SD was calculated by subtracting the two reference images from each other and 
taking the SD of a selected group of voxels, with a resulting value of 350, which can be used to 
reference the amplitude parameter values later on in this chapter.   Figure 69 shows the maps for 
SNRb=0 and signal-averaged SNR. 

 

Figure 69 – SNRb=0 and signal-averaged SNR of slice voxels 

White contours indicate selected ROI from Figure 68. 

For the voxels in all five ROI, the mean of the lowest b-value SNR and signal-averaged SNR were 
both calculated and are given in Table 11.   

Table 11 – Mean SNRb=0 and mean signal-averaged SNR for all voxels (n = number) in the five ROI 
shown in Figure 68 

 S1 (n=156) S2 (n=89) E1 (n=123) E2 (n=189) C1 (n=248) 

SNRb=0 39 15 47 45 35 

Signal-Averaged SNR 20 6 28 25 20 
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This table shows that the epithelial regions (E1 and E2) both had a higher mean SNRb=0 and signal-
averaged SNR that the other regions.  Additionally, the stromal region S2 had both mean SNR values 
considerably lower than the other regions, and a signal-averaged SNR of 6 meant that many of the 
signals were affected by Rician bias. 

5.3.2 Model Parameter Estimates 

 

Figure 70 – Amplitude-related parameter pseudocolour plots from the monoexponential, kurtosis, and 
biexponential model fits 

  Zero-valued parameters near bottom indicate where no fits were performed due to low signal 
intensity.  Note the increased noise in the biexponential parameter estimates (A1, A2, and SF1) 
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The parameter estimates for the voxels fits were grouped together by similar parameter type, i.e. S0, 
A1, A2, and SF1 for the amplitude-related parameters, and ADC, Dapp, D1, D2, and Kapp for the decay-
related parameters, with the parameter pseudocolour plots displayed in Figure 70 and Figure 71. 

 

Figure 71 – Decay-related parameter pseudocolour plots from the monoexponential, kurtosis, and 
biexponential model fits 

  ADC, Dapp, D1, and D2 are in units of µm2/ms.  Note that the biexponential parameter estimates (D1 and 
D2) are noisiest, and the kurtosis parameter (Kapp) has values of -1 scattered across the data. 

The S0 maps for the monoexponential and kurtosis models showed similar signal magnitudes across 
all three tissue cores, with the glandular structure across most of the tissue visible, and the high 
signal, liquid-filled ducts easily visible.  In the biexponential amplitude maps, A1 and A2, the ducts 



Reliability and Uncertainty in Diffusion MRI Modelling 
   

140 
 

were still visible at high signal value, but there was a considerable amount of noise across both 
parameter plots, which caused a loss of visibility of the tissue structure.  This noise is even more 
pronounced in the SF1 map, which lost much of the visible structure in the tissue.  In the diffusion 
rate parameter plots, the high-signal ducts also had the highest values of ADC, Dapp, D1, and D2, and 
these values were all around 2.1 µm2/ms, suggesting the presence of free water.  The value of Dapp 
from the kurtosis model was slightly elevated in value versus the ADC across much of the tissue, 
especially in the right one-third of the plot.  The stromal ROI had the highest mean values of ADC 
compared to the epithelial ROI, suggesting that this tissue had less diffusion restrictions.  
Distributed randomly across the parameter plot of Kapp were several voxels where the value was 
effectively -1.  This was a high indication of ill-conditioning present in these fits, since this 
phenomenon was also demonstrated in simulated data in Chapter 3.  There were also indications of 
ill-conditioned fits for the biexponential model, as there were many values of D1 that were at 4 
µm2/ms or higher, which was well above the free diffusion coefficient of 2.1 (at 22° C).  Since this 
was ex vivo tissue, there were no perfusion effects present, so freely diffusing water should have 
been the maximum decay rate seen.  The values of D2 in C1 were among the lowest ones in all tissue 
measurements here, but this was not noticeable in the D1 plots.  Again, the biexponential decay 
parameter plots were considerably noisier than the monoexponential or kurtosis decay 
parameters, especially for D1, which had lost considerable structural detail. 

Table 12 – Mean ± SD of the five ROI voxels for all model fit parameters 

                 Region  
S1 (n=156) S2 (n=89) E1 (n=123) E2 (n=189) C1 (n=248) 

Parameter 

M
on

o S0 15800 ± 1700 7100 ± 1200 17700 ± 2700 17900 ± 4400 13600 ± 6500 

ADC 0.55 ± 0.16 1.10 ± 0.29 0.36 ± 0.08 0.48 ± 0.26 0.43 ± 0.35 

Ku
rt

os
is

 S0 17500 ± 2200 8000 ± 1400 19700 ± 3600 19900 ± 5300 15600 ± 7500 

Dapp 0.77 ± 0.23 1.41 ± 0.32 0.56 ± 0.15 0.70 ± 0.34 0.69 ± 0.45 

Kapp 0.71 ± 0.12 0.40 ± 0.33 1.00 ± 0.17 0.80 ± 0.25 1.06 ± 0.54 

Bi
ex

po
ne

nt
ia

l 

A1 11700 ± 3400 5900 ± 1000 12500 ± 4000 13300 ± 4800 10600 ± 6000 

A2 6300 ± 3100 3300 ± 1700 8600 ± 3500 8200 ± 4000 6500 ± 3800 

SF1 0.65 ± 0.17 0.66 ± 0.12 0.59 ± 0.16 0.62 ± 0.17 0.60 ± 0.17 

D1  
(µm2/ms) 

1.28 ± 0.53 2.90 ± 1.65 1.28 ± 0.79 1.49 ± 1.08 1.51 ± 0.91 

D2  
(µm2/ms) 

0.23 ± 0.13 0.67 ± 0.38 0.14 ± 0.09 0.21 ± 0.20 0.17 ± 0.27 
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Table 12 displays the common way of examining the five ROI indicated in the parameter estimate 
plots by reporting a mean and standard deviation of the voxel estimates.  For the monoexponential 
parameter estimates, the mean ADC values were lower in the epithelial regions (E1, E2, C1) than the 
stromal regions (S1, S2), which was also true for Dapp and D2.  These D2 findings agreed with the 
original conference paper findings in Section 5.1.1, but in the current study, the SF1 values were 
very close in all regions and the D1 values for S1 were actually lower than two of the epithelial 
regions.  In addition to lower Dapp values in the epithelial regions, the kurtosis parameter Kapp was 
also higher in the epithelial regions than the stromal regions, showing that the mean signal value in 
these regions decayed slower, suggesting more restrictions to diffusion.  The original conference 
paper reported a lower mean D2 value in the C1 epithelium versus the other epithelial ROI, but 
Table 12 showed D2 lower in E1 than C1, although the SD of the C1 voxels were much higher.   

Histograms of Parameter Estimates 

The histograms of the parameter estimates for all ROI are shown for all three models in Figure 72 
(monoexponential), Figure 73 (kurtosis), and Figure 74 (biexponential). 
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Figure 72 – Histograms of monoexponential parameter estimates for each ROI 

  ADC is in units of µm2/ms.  Note that the highest ADC values are around the free diffusion coefficient of 
2.1.  
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Figure 73 – Histograms of kurtosis parameter estimates for each ROI.  Dapp is in units of µm2/ms 

Note the increased uncertainty in the Kapp estimates, along with several values found near -1.  These 
phenomena were seen using the simulated data in Chapter 3, Figure 43.  
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Figure 74 – Histograms of biexponential parameter estimates for each ROI 

  D1 and D2 are in units of µm2/ms. These increases in uncertainty and outlier values of these parameter 
estimates are similar to the simulated histograms seen in Chapter 2, Figure 12.  Note that many of the D1 
values are above the free diffusion limit of 2.1, indicating that these data do not reflect real phenomena. 

The ADC estimate distributions in Figure 72 show decidedly non-normal distributions for S1, S2, E2, 
and C1, with several values found outside of the main distribution grouping.  Since the 
monoexponential model was not known to have ill-conditioning problems, and these values were 
close to or below the free diffusion coefficient of 2.1, these values were most likely due to 
heterogeneity of the tissue structure in the ROI.  The ADC distributions also showed that the 
majority of the distributions in the epithelial regions were lower than the stromal regions, reflected 
in the decreased mean values.  However, the majority of the C1 distribution is seen to be lower than 
both the E1 and E2 distributions, and its higher mean value than S1 was due to the number of 
outlier values found well above the main distribution.  In this case, the median values demonstrated 
this phenomenon better, which were 0.50 (S1), 1.1 (S2), 0.35 (E1), 0.40 (E2), and 0.30 (C1), 
indicating that the voxels in C1 were indeed lower for ADC.  These median values, the mean values 
in Table 12, and the distributions in Figure 72, also illustrate that the S2 region has a much higher 
ADC, indicative of less restrictions to diffusion and a higher water content. 

The Dapp values for the kurtosis model in Figure 73 show a similar situation where C1 had a higher 
mean value than S1 per Table 12, but a lower median value 0.52 (C1) vs. 0.54 (E1).  The kurtosis 
parameters also displayed signs of ill-conditioned fits, as both S2 and C1 had values of Kapp at its 
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lower regression bound of -1, a phenomenon seen in Chapter 3 with simulated data, specifically 
Figure 43.  The C1 Kapp estimates also had a larger variance, but many more values at higher values 
near the upper regression bound of 2, giving it a higher mean value than E1.  In Figure 74, the 
estimates of A1 and A2 for the biexponential model varied more than the S0 values in the 
monoexponential and kurtosis models, but this could be attributed to ROI signal heterogeneity.  
More extreme outliers were seen in the D1 estimates, where there were many estimates reported 
above 2.1 in the distributions, especially in region S1.  Likewise, there were many D2 estimates 
found at very small values near the lower bound of zero in all five ROI.  These estimates were very 
similar to the effects seen in the biexponential chapter, specifically Figure 11 or Figure 12, and 
showed that the demonstrated effects of ill-conditioning on simulated data parameter estimates, 
presented previously in this thesis, were also present in actual tissue data. 

5.3.3 Bootstrap Confidence Intervals 

Confidence intervals from the parametric bootstrap distributions for all voxels from all three model 
fits were calculated for each ROI, and the effects of ill-conditioning on the estimates and their 
confidence intervals can be seen by examining two of the ROI, S1 and C1.  Figure 75 shows the 
confidence intervals for the monoexponential parameter estimates of S1, illustrating that for nearly 
all of the fits, the intervals were symmetric around the estimates and their ranges all contained 
realistic values for both parameters.  The intervals grew in size when the estimated values of either 
parameter increased, a phenomenon better illustrated in Figure 76 for the C1 estimates.  There also 
seems to be more heterogeneity in the C1 voxels than S1, with more values found at higher ADC 
values.  The kurtosis intervals for S1, seen in Figure 77, showed similar interval ranges and 
parameter estimates for S0 and Dapp, however the Kapp estimates had a few intervals where the range 
was larger and the lower bounds had negative values.  These Kapp interval effects were even more 
pronounced for C1 in Figure 78, with several intervals having lower bounds below -3, with some 
values as low as -35,000, a highly unrealistic value indicative of extreme ill-conditioning. 
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Figure 75 – Monoexponential parameter estimates (red points) plus bootstrap confidence intervals 
(blue lines) for voxels in E1 ROI 

 

Figure 76 – Monoexponential parameter estimates (red points) plus bootstrap confidence intervals 
(blue lines) for voxels in C1 ROI 
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Figure 77 – Kurtosis parameter estimates (red points) plus bootstrap confidence intervals (blue lines) 
for voxels in E1 ROI 

Note that some of the Kapp intervals stretch into negative values. 
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Figure 78 – Kurtosis parameter estimates (red points) plus bootstrap confidence intervals (blue lines) 
for voxels in C1 ROI 

There are more Kapp intervals found at negative values, indicating there is likely to be more ill-
conditioned fits in this ROI. 

The confidence intervals for the biexponential parameter estimates shown in Figure 79 for S1 were 
asymmetric for a considerable number of all four parameter fits.  Both A1 and D1 had a few intervals 
where the upper and/or lower bounds were outside the displayed scale, and while a few of these 
intervals had unrealistic initial estimated values greater than 3, a few of these values occurred at 
estimates of 2 or less, illustrating that the initial estimates may have had realistic values, but 
repeated fits of this same voxel would be likely to have estimates that widely vary.  The slow decay 
component parameters (A2 and D2) had intervals with a smaller variance around the original 
estimates.  The intervals for C1 in Figure 80, however, had many values that go off of the displayed 
scale for all four parameters, with several upper bounds for D1 over 150, with a highest value of 
335.  Like the kurtosis model intervals, these values were highly unrealistic and indicative of ill-
conditioning in the algorithm.  While, the D1 intervals in C1 had upper values in the hundreds, the 
highest outlier value of the original fit estimates in Figure 74 was less than 8.  Part of this was due 
to the regression upper bound of 10, where this bound was removed for the bootstrap estimates.   
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Figure 79 – Biexponential parameter estimates (red points) plus bootstrap confidence intervals (blue 
lines) for voxels in E1 ROI 

Many of the D1 intervals reach values of 10 or more. 
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Figure 80 – Biexponential parameter estimates (red points) plus bootstrap confidence intervals (blue 
lines) for voxels in C1 ROI 

The large interval values here show more ill-conditioned fits in this ROI were likely. 

An additional illustration of why these bootstrap confidence intervals are much higher than the 
original estimates is shown in Figure 81.  The original signal in red, with a D1 estimate of 7.4, has a 
small amount of curvature, whereas the bootstrapped signal in blue happened to have resampled 
residuals such that the resulting signal was straighter and more monoexponential than the original 
signal.  This resulted in the signal fit to be more ill-conditioned, with a new D1 estimate of 46.6, and 
demonstrated the effectiveness of bootstrap resampling, since signals that were closer to being 
monoexponential had a higher likelihood that these large bootstrap parameter values will manifest 
themselves. 
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Figure 81 – Semilog plot of a selected voxel from the C1 ROI showing the original signal (red) plus a 
signal created via bootstrap resampling (blue) 

The bootstrapped signal is straighter and closer to a monoexponential signal, leading to an estimated D1 

value of 46.6, versus the estimated D1 value of 7.4 for the original signal.  However, both signals are 
higher than the free diffusion limit of 2.1, indicating that ill-conditioning affected both fits. 

5.3.4 Normality Testing of Bootstrap Estimates 

The results from Section 4.3.7 showed that using a normality test on the bootstrap parameter 
distributions was an effective method to diagnose when a given biexponential fit is likely to be ill-
conditioned with high uncertainty in the parameter estimates.  When the normality test was 
applied in this study to the biexponential model fits of each ROI, the number of voxels that failed to 
have one normal bootstrap distribution was considerable, with a percentage of failing voxels in 
each ROI of 43% (S1), 73% (S2), 31% (E1), 38% (E2), and 39% (C1).  As Chapter 4 showed, this 
indicates that the underlying tissue in these voxels produced a signal that was effectively 
monoexponential given the SNR and b-values.  There were a considerable number of D1 estimates 
higher than 2.5 for S2 in Figure 74, as well as a much larger variance in the D2 estimates, and this is 
probably the reason for the larger number of voxels that failed for that ROI.  After removing the 
voxels that failed the normality test from each ROI group, the mean and standard deviation were 
again tested on the ROI estimate distributions with the results given in Table 13.  These results 
show several changes in the mean values of the various parameters in the ROI, specifically, the 
mean value of D2 for region C1 is now lower than S1.  More importantly, compared to the results in 
Table 12, every ROI/parameter distribution has a lower standard deviation apart from the A1 
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estimates for E1.  The improvement in estimate deviation is largely due to the elimination of outlier 
measurements in the distributions, as shown in Figure 83.  While a large number of D1 estimates 
above 2.5 remained in the distributions, especially in S2, the amount of low D2 estimates grouped 
near zero all but disappeared when compared to the original estimates in Figure 74. 

Table 13 – Mean ± SD of biexponential fit parameters after removing voxels that failed normality 
testing 

                Region  
S1 (n=89) S2 (n=24) E1 (n=85) E2 (n=117) C1 (n=152) 

Parameter 

A1 12000± 3200 6600 ± 900 12300 ± 4400 14000 ± 4700 11900 ± 5300 

A2 7000 ± 2600 3100 ± 1100 10100 ± 2400 9300 ± 2600 7000 ± 2400 

SF1 0.63 ± 0.14 0.69 ± 0.07 0.54 ± 0.11 0.59 ± 0.11 0.61 ± 0.14 

D1  
(µm2/ms) 

1.46 ± 0.50 2.47 ± 0.71 1.50 ± 0.77 1.67 ± 0.85 1.77 ± 0.65 

D2  
(µm2/ms) 

0.27 ± 0.10 0.53 ± 0.20 0.18 ± 0.06 0.23 ± 0.10 0.15 ± 0.11 

 

 

Figure 82 – Histograms of biexponential parameter estimates for each ROI with voxels that failed 
normality testing removed 
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 D1 and D2 are in units of µm2/ms.  Many of the outlier values in Figure 74 have now been removed. 

Removing voxels that failed normality testing also considerably reduced the number of fits with 
large confidence intervals, as shown in Figure 83.  When compared to Figure 80, all D1 intervals that 
were previously off the scale are gone, with only a few of these intervals found in the other 
parameters. 

 

Figure 83 – Biexponential parameter estimates (red points) plus bootstrap confidence intervals (blue 
lines) for voxels in C1 ROI after removing voxels that failed normality testing 

There is a reduction in the large interval values seen in Figure 80. 

 

 



Reliability and Uncertainty in Diffusion MRI Modelling 
   

154 
 

Kurtosis Model Estimates 

Table 14 – Mean ± SD of kurtosis fit parameters after removing voxels that failed normality testing 

                Region  
S1 (n=108) S2 (n=38) E1 (n=90) E2 (n=142) C1 (n=185) 

Parameter 

S0 17800 ± 2100 8200 ± 1400 20100 ± 3800 20500 ± 5100 16600 ± 6100 

Dapp 0.79 ± 0.24 1.55 ± 0.35 0.58 ± 0.16 0.73 ± 0.34 0.74 ± 0.41 

Kapp 0.71 ± 0.12 0.52 ± 0.15 1.00 ± 0.16 0.82 ± 0.20 1.14 ± 0.39 

 

 

Figure 84 – Kurtosis parameter estimates (red points) plus bootstrap confidence intervals (blue lines) 
for voxels in C1 ROI after removing voxels that failed normality testing 

Applying the normality test to the Kapp bootstrap distribution also led to a reduction in the number 
of voxels in each ROI, specifically, a percentage of failing voxels in each ROI of 31% (S1), 73% (S2), 
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27% (E1), 25% (E2), and 25% (C1).  After removing these voxels from each ROI, the mean and SD 
values of the S0 and Dapp remained close to the same, as shown in Table 12, whereas the SD in the 
Kapp estimates were reduced for all ROI but S1, where it remained the same. 

5.3.5 Model Selection with AIC 

The results of the AIC calculations for all slice voxels in the study are shown in Figure 85, and after 
excluding voxels where no fits were performed, for this slice, the best model selection rates by the 
AIC were 6% (monoexponential), 43% (kurtosis), and 51% (biexponential).    

 

Figure 85 – Selected best model via lowest AIC value for all voxels with yellow = biexponential, green = 
kurtosis, and blue = monoexponential 

  White voxels had no fits performed due to low signal. 

Of the five ROI in this study, while most voxels have the kurtosis or biexponential model chosen as 
best, there is no model selected as best for all voxels in a specific ROI.   
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Figure 86 – ΔAIC values between the biexponential and monoexponential models for all ROI voxels 

 

Figure 87 – ΔAIC values between the kurtosis and monoexponential models for all ROI voxels 
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The model selection rates were broken down further for each ROI by comparing the ΔAIC values of 
the biexponential model (Figure 86) and the kurtosis model (Figure 87) versus the 
monoexponential model.  These histograms show that for most voxels in all ROI, either the 
biexponential or kurtosis model would be selected over the monoexponential model.  However, 
region S2 appears to have many more voxels where the monoexponential model is selected as best, 
and very few voxels where the ΔAIC value between either complex model and the monoexponential 
model is greater than -10.  As was demonstrated in Section 4.3.7, though, having the AIC select the 
biexponential or kurtosis models as best did not translate into better accuracy of their parameters.  
Section 4.3.5 established that a more negative ΔAIC value between either the biexponential or 
kurtosis model and the monoexponential model meant that particular signal was less like a 
monoexponential signal and, therefore, less likely to have ill-conditioned estimates.  These ΔAIC 
values were used to eliminate any voxels from the ROI where the difference between the 
biexponential or kurtosis model and the monoexponential model was greater than -10. 

Biexponential Model Estimates 

Eliminating voxels with ΔAIC between the biexponential and monoexponential fits led to a 
reduction in the number of voxels for all ROI, specifically, 26% (S1), 96% (S2), 13% (E1), 26% (E2), 
and 33% (C1).  This eliminated nearly all of the voxels in S2, leaving only four voxels for 
measurement.  The mean and SD of the parameter estimates for the voxels left in each ROI are given 
in Table 15.  Like the effect that removing non-normal bootstrap distributions had in reducing the 
SD of all ROI parameter estimates in Table 13, removing voxels with a ΔAIC > -10 reduced the SD of 
all ROI parameter estimate distributions other than the A1 estimates for E1, and the D2 estimates for 
S1.  As the parameter estimate distributions in Figure 88 show, many of the outlier measurements 
for the D1 estimates have been removed in all ROI, however several of the D2 estimates near zero 
still remain.  Removing these voxels all significantly reduced the number of C1 estimates that had 
large confidence intervals in Figure 89, even more so than the normality testing results did in 
Figure 83. 

Table 15 – Mean ± SD of biexponential fit parameters after voxels with ΔAIC > -10 (see Figure 86) were 
removed 

       Region  S1 (n=116) S2 (n=4) E1 (n=107) E2 (n=139) C1 (n=167) Parameter 

A1 12300 ± 3200 5500 ± 1000 12500 ± 4100 13700 ± 4500 11400 ± 5100 

A2 6300 ± 2900 2000 ± 1600 9300 ± 3100 8600 ± 3100 7000 ± 3000 

SF1 0.66 ± 0.15 0.73 ± 0.03 0.58 ± 0.14 0.62 ± 0.14 0.61 ± 0.14 

D1  
(µm2/ms) 

1.29 ± 0.46 1.79 ± 0.69 1.31 ± 0.62 1.45 ± 0.58 1.59 ± 0.63 

D2  
(µm2/ms) 

0.22 ± 0.13 0.28 ± 0.21 0.14 ± 0.08 0.19 ± 0.10 0.14 ± 0.21 

 



Reliability and Uncertainty in Diffusion MRI Modelling 
   

158 
 

 

Figure 88 – Histograms of biexponential parameter estimates for each ROI after voxels with ΔAIC > -10 
(see Figure 86) were removed.  D1 and D2 are in units of µm2/ms 

This method also removed many of the outlier values from Figure 74. 
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Figure 89 – Biexponential parameter estimates (red points) plus bootstrap confidence intervals (blue 
lines) for voxels in C1 ROI after voxels with ΔAIC > -10 (see Figure 86) were removed 

Kurtosis Model Estimates 

Eliminating voxels with ΔAIC between the kurtosis and monoexponential fits greater than -10 also 
led to a reduction in the number of voxels for all ROI, specifically, 31% (S1), 94% (S2), 27% (E1), 
40% (E2), and 54% (C1).  This led to an overall reduction in SD of the estimates for many of the 
ROI/parameter combinations, as shown in Table 16, however, a few ROI estimates had the same or 
higher SD values, specifically, S1 and S2.  Eliminating these voxels also had the effect of eliminating 
the Kapp outliers in the estimates apart from one -1 value in C1 as seen in Figure 90.  As the C1 
estimates with added bootstrap intervals show in Figure 91, all but one of the large Kapp intervals 
seen in Figure 78 were eliminated. 
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Table 16 – Mean ± SD of kurtosis fit parameters after voxels with ΔAIC > -10 (see Figure 87) were 
removed 

                Region  
S1 (n=103) S2 (n=5) E1 (n=84) E2 (n=114) C1 (n=114) 

Parameter 

S0 18000 + 2200 7900 + 1300 20500 + 3400 21200 + 4400 17500 + 6200 

Dapp 0.81  + 0.23 1.42 + 0.58 0.58 + 0.14 0.73 + 0.26 0.73 + 0.38 

Kapp 0.72 + 0.12 0.67 + 0.37 1.03 + 0.15 0.89+ 0.16 1.14 + 0.42 

 

 

 

Figure 90 – Histograms of biexponential parameter estimates for each ROI after voxels with ΔAIC > -10 
(see Figure 87) were removed.  Dapp is in units of µm2/ms 
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Figure 91 – Kurtosis parameter estimates (red points) plus bootstrap confidence intervals (blue lines) 
for voxels in C1 ROI after voxels with ΔAIC > -10 (see Figure 87) were removed 

5.4 Conclusions 

This chapter demonstrated that many of the phenomena discussed previously in this thesis on 
simulated data were also found in actual data from a DWI acquisition, specifically: 

• The presence of large outlier values were found in the biexponential model parameter 
estimates, specifically, values for the fast decay component that were higher than the rate of 
free diffusion and very small estimates that were effectively zero in the slow decay 
component.  In the kurtosis model, there were also highly negative estimates for the 
kurtosis parameter that did not represent realistic measurements.  The phenomena seen in 
these model fits on real data were similar to the ill-conditioned, simulated estimates 
presented previously in this thesis. 

• The bootstrap confidence intervals calculated from both the biexponential and kurtosis 
model fits showed a large number of fits with interval ranges that were orders of magnitude 
above and/or below the original estimate value.  Many of these intervals had asymmetric, 
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non-normal distributions, and these large, irregular distributions were also seen in the 
simulated fits in Chapter 2 and Chapter 3. 

• The AIC calculations for the voxels in this tissue study showed that either the biexponential 
or kurtosis model was selected as the model with the highest information content for most 
of the voxels.  However, no clear model for all voxels in the individual ROI was superior. 

• When applying a normality test to the bootstrap parameter estimates for both the kurtosis 
and biexponential model fits, there were many voxels that failed this test, which was shown 
to be indicative of ill-conditioned fits on simulated data in Chapter 4.  When these voxels 
were removed from the test set and the parameter estimate distributions re-examined, a 
decrease in standard deviation was seen for nearly all parameters in all ROI.  This was 
largely due to the elimination of outlier measurements in the estimate distributions, which 
could also be seen by the removal of nearly all voxel estimates with very large confidence 
intervals. 

• When comparing the ΔAIC values of the biexponential and kurtosis models to the 
monoexponential model, the fits of all studied ROI had a wide range of ΔAIC values.  When 
eliminating voxels fits where the ΔAIC value was greater than -10 and the more complex 
model was favoured, a decrease in standard deviation was also seen for nearly all 
parameters and ROI.  As Chapter 4 showed, these voxels would be from signals that were 
less likely to be monoexponential, and removing them also led to a significant decrease in 
outliers.  This showed that  the ΔAIC value could also be used to improve the results of 
model fitting with either the biexponential or kurtosis models. 

• This tissue study showed that ill-conditioned estimates were found in both stromal and 
epithelial regions.  One stromal region (S2) had much higher ADC parameter values that the 
other regions, suggesting a higher water content in these voxels.  This region also produced 
the largest number of D1 estimates above the free rate of diffusion, the normality test 
eliminated 75% of the voxels, and the use of a minimum ΔAIC value eliminated nearly all 
voxels, demonstrating that the diffusion in this region was close to monoexponential, 
resulting in many unreliable estimates when used with the biexponential and kurtosis 
models.  Estimates from the epithelial tissue from region C1, with glandular structure 
similar to that found in cancerous tissue, had the lowest ADC estimates, but the confidence 
intervals revealed a considerable number of voxels with highly uncertain estimates, also 
suggesting diffusion in these voxels that was close to monoexponential.  These results 
demonstrated that using the biexponential or kurtosis models to assess either of these types 
of prostate tissue should be done so with caution, using the expanded analysis tools 
presented in this thesis to provide additional information. 
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Chapter 6  
Implications of Results 

6.1 The Precariousness of the Biexponential Model 

A major objective of this thesis was to provide researchers with detailed information on the 
uncertainty and reliability of parameter estimates when using the biexponential model to fit DWI 
data.  Chapter 2 demonstrated there were significant issues when using the biexponential model in 
NLLS regression fitting of simulated DWI data using parameter values similar to what has been 
reported in the literature.  These issues were shown to be high bias and/or variance in the 
parameter estimates, the magnitude(s) of which greatly increased as the true signal was effectively 
monoexponential, and demonstrated that the biexponential model does not perform consistently 
and reliably across the possible parameter space.  Not only did the variance of the parameter 
estimates increase for many tested signal measurements, but many of the estimates were outliers 
that were orders of magnitude higher or lower than their mean values, and had values that were 
physically unrealistic.  While increasing the SNR improved the uncertainty in the estimates for 
much of the simulated data, even at a high SNR of 200, signals that were effectively 
monoexponential had parameter estimates that were highly unreliable.  Thus, regardless of SNR, a 
monoexponential decay signal acts like an asymptote to the biexponential model, and fitting a 
biexponential model to a true monoexponential signal is an ill-posed problem resulting in 
unreliable parameter estimates. 

The implication of these results is that using the biexponential model with NLLS regression fitting 
needs considerable reliability studies with actual tissue data before it can be deemed a replacement 
for the current monoexponential ADC model.  This statement is made under the assumption that for 
a given DWI tissue study, there will be voxels that contain only freely diffusing water or structures 
that produce only non-restricted diffusion of a single, homogenous, effective diffusion coefficient.  
While there may be the existence of tissues that only produce non-Gaussian diffusion, the 
knowledge of whether non-Gaussian diffusion is present in a given voxel is unknown prior to a 
proposed study.  Even if these voxels could be identified, the results presented in this thesis showed 
that the occurrence of highly uncertain estimates in the biexponential model were seen in signals 
that were close to monoexponential and that this closeness depended on SNR.  The results also 
demonstrated that how a signal fit the data was independent of whether the parameter estimates 
were unreliable.  Visual identification that a plotted signal measurement is non-monoexponential, 
and is better fitted by a biexponential model, is no guarantee of reliable parameter estimates.  
Additionally, obtaining valid, reliable biexponential parameter estimates from one fit of a voxel is no 
guarantee that this voxel may return similar estimates when fitting further sample measurements.  
This either requires repeated sampling from one voxel, or instead, obtaining bootstrap samples to 
better estimate what values are likely to be obtained over repeated measurements.  The parametric 
bootstrap analysis introduced in this thesis was indeed shown to be effective at identifying 
parameter estimates with high uncertainty.  
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While writing the conclusion section of this thesis, a published paper by Merisaari et al was 
released that demonstrated both large variance and bias using simulated signals, and that these 
high uncertainties manifested themselves when either the D1/D2 ratio or SF1 was at its lowest [188].  
The authors also demonstrated how parameter uncertainty varied as the SNR was changed, and 
that a segmented fitting approach was not necessarily better.  The paper also implemented 
bootstrap confidence intervals and reported extremely high median upper bound for the 
confidence intervals for D1 estimates as well lower bounds of effectively zero for D2 estimates.  
These results were all in agreement with the results presented in this thesis, demonstrating the 
reproducibility of the biexponential model uncertainty issues presented here with another 
simulated study.  However, the authors there attribute the overestimated bias in the biexponential 
parameter values to the effects of the Rician signal bias.  In this thesis, these issues were identified 
as problems arising from ill-conditioning issues in the fitting algorithm, since the effects of Rician 
signal bias were not enough to cause extreme uncertainty in the parameter estimates.  Regardless 
of these differences, that study also reinforces the importance of repeatability studies of model 
parameter estimates, robustness of model to noise, and clinical usefulness of the results, and is a 
good complement to the findings presented in this thesis. 

As the results in this thesis also demonstrated, the mathematical structure of the biexponential 
model meant that for some signal measurements, there were many biexponential parameter 
combinations that fit a signal closely.  This property, as well as the general susceptibility of a model 
with more parameters to overfitting, meant that the biexponential model was more susceptible to 
noise than the monoexponential model.  This was exemplified by the parameter plots in Figure 70 
and Figure 71, where the biexponential parameters were considerably noisier than either the 
monoexponential or kurtosis parameters, resulting in a loss of visible tissue structure.  This is a 
possible reason why most biexponential/IVIM analyses in the literature involve grouping together 
voxels into ROI, since combining voxels averages out the inter-voxel variation in the parameter 
estimates over the entire group.  These noise issues of the biexponential model were highlighted in 
a recent review published on DWI analysis outside the brain [189].  In that paper, while the IVIM 
model there was indicated as a future direction for DWI use in the clinic, the increased variance of 
the perfusion decay coefficient estimates was specifically noted as a hindrance to its use.  A relevant 
quote from the paper states, “While most published repeatability studies focus on estimates from 
small regions or whole organs, for the approach to be useful in general reliable voxel-wise 
estimation is important so that parameter maps may be computed for radiological assessment. The 
variability reported for regions or organs underestimate the errors with voxel-wise estimation.” 
(Emphasis mine)  Another quote states, “Data showing superiority of IVIM parameters over ADC for 
tissue characterization is limited, and more evidence is needed.  IVIM parameter reproducibility 
and the role of IVIM parameters in treatment response need also to be better defined.” 

In the analysis in Chapter 5 using real tissue data, problematic voxels where the signal 
measurements were effectively monoexponential were removed, since these extreme values 
considerably affected the ROI statistical parameters.  These ROI were made up of nearly a hundred 
or more voxels, so the loss of 30 or 40 of these voxels did not produce a drastic effect.  However, in 
an in vivo analysis of prostate, for example, every voxel is crucial since a possible tumour may only 
be 2 or 3 voxels wide.  In this case, the biexponential/IVIM model may be best suited as 
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supplementary information to the ADC, much like DWI is recommended as part of a 
multiparametric analysis in the PI-RADS standard.  The biexponential parameter estimates can be 
used in addition to the ADC value, and if the biexponential estimates are unreliable, that at least 
provides additional information, namely, this voxel is likely exhibiting monoexponential decay.  
Leaving these unreliable voxels  present in a statistical analysis could significantly skew the results 
of any categorical comparisons, so extra caution should be used with any statistical testing. 

6.2 The Kurtosis Model – Also Not Ready to Replace the ADC 

This thesis also analysed the uncertainty in the kurtosis model parameter estimates for the same 
simulated data as the biexponential model, and while the instability in the model was not as severe 
as the biexponential model, when assessing signals that were effectively monoexponential, the 
variance in the kurtosis parameter estimates increased considerably, with many outlier values 
found at extremely large negative values.  While the parameter maps for the signal amplitude and 
decay rate in in Figure 70 and Figure 71 showed the ability to resolve similar tissue structure to the 
monoexponential model estimates, there was large variance and the presence of negative outlier 
values in the kurtosis parameter estimates.  Compared to the biexponential model, the kurtosis 
model parameters may then give an average lower variance, but it can also produce highly 
uncertain parameter estimates like the biexponential model, although they appear to be confined to 
one parameter.  Due to this same possibility of unreliable estimation, the kurtosis model would also 
appear to be not ready for voxel-wise clinical assessment of non-Gaussian diffusion using NLLS 
regression, and also needs more repeatability studies to be a replacement for the monoexponential 
model when assessing DWI data.  Although the kurtosis does not have a biophysical basis, it would 
be interesting to see what sort of bias results in the parameters if the kurtosis model was used to 
generate the true signal data. 

6.3 Model Selection and the Effects of Misspecification 

Another major objective of this thesis was to determine the reliability of common model selection 
methods when selecting from the monoexponential, biexponential, and kurtosis models on a set of 
simulated DWI data.  When comparing the AIC, AICc, and the LOOCV methods on simulated data in 
Chapter 4, while varying the simulated SNR and acquisition parameters, the rates that these 
methods selected the tested models also varied significantly.  Additionally, if the biexponential 
model was the true model that generated the signals, after adding simulated measurement noise, 
the biexponential model was not selected as best for all signals.  This also happened when using the 
monoexponential model as the true model, and also demonstrated that no one particular method 
was superior in reliably selecting the true model, but instead certain methods were biased in favour 
of simpler models and others in favour of complex models.  For example, when testing data 
simulated from true biexponential signals, the AIC selected the biexponential model as best more 
often than the monoexponential model when compared to the AICc.  However, when testing a data 
set generated from true monoexponential signals, the AICc selected the monoexponential model 
more often than the biexponential model when compared to the AIC.  The AIC and LOOCV methods 
were shown to select similarly across most of the data, which confirmed earlier studies, and 
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indicated that when assessing the DWI measurements and models found in this thesis, spending the 
extra computational time to calculate LOOCV information is probably unnecessary. 

Another important conclusion from these results is that across repeated measurements, the AIC, 
and its derived measure AICc, can select three different models as best for the same signal.  This was 
shown to happen when the true generating signal was effectively monoexponential, however, this 
does demonstrate that the AIC has limitations with this set of models.  Due to the overlapping 
nature of the biexponential and kurtosis models with the monoexponential model, for some signals, 
the AIC is effectively a random “spin of the wheel”.  This was shown specifically when comparing 
the biexponential and monoexponential models in Figure 57, where depending on how the noise 
affected the sample measurement, there was a 50/50 chance of selecting one of the models.  This 
illustrates the inherent problem in using the AIC selection results from one sample measurement of 
one voxel – a researcher doesn’t know whether this AIC best model selection came from a signal 
where that model would get chosen for all repeated samples, or whether the AIC is randomly 
selecting from the tested models.  Hence, the magnitude value of ΔAIC between two models was 
demonstrated to be important, but this value of ΔAIC also varied over repeated individual samples.  
For example, a ΔAIC of 1 between two models could have come from a signal where the model 
would be selected for 100% of all samples or one where the selection rate would be 50%.  However, 
the higher the ΔAIC value of a given measurement, the higher the selection rate of this model on 
average versus the other tested model across repeated measurements. 

Perhaps it would help us to be reminded that the AIC is an asymptotic measure, and that its results 
apply to an assessment of many repeated sample measurements.  The theoretical basis for the AIC 
and its roots in information theory give it a solid foundation as an objective judicator, and while its 
basis may be sound, as statistical consultant John D. Cook points out on his blog, “…the choice of 
models to compare and the choice of information criterion are not as objective, so there can be an 
inflated impression of objectivity [190].” Another conclusion from this thesis, then, was that various 
information criteria (AIC, AICc, BIC, etc.) all selected a specific model at different rates over 
repeated samples of the same signal versus the other tested models.  Newer model selection criteria 
such as the Mixture Regression Criterion [191, 192] might possibly improve these selection rates.  
While an aim of Chapter 4 was to establish whether a given selection method was more reliable 
than the others, the more important result was establishing that these methods merely select 
differently.  Researchers, then, must be aware that their choice of selection method is subjective, 
that another method or criterion can return different results for the same data set with recent 
evidence of this reported in the DWI literature [37].  Chapter 4 also demonstrated that 
measurement settings also affect the model selection results, for example, limiting the number of 
diffusion weightings to avoid Rician signal bias had the side effect of choosing simpler models more 
often.  Not only was this due to limiting the signals to lower weightings where the divergence from 
non-Gaussian, monoexponential decay was harder to detect, but with less signal measurements, the 
difference in RSS values was lower compared to the value of the parameter penalty.  Thus, for a 
given acquisition of DWI data, the selection of biexponential model on a set of data could be 
increased if the number of b-values was increased to 20, 30, or more.  In this case, what is the best 
model?  What is the optimal number of b-values?  Perhaps the conclusion here is that there appears 
to be no such thing as an objective selection of best. 
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Objectivity is usually not what researchers are interested in anyway.  Rather, the goal is to find and 
use the model with the best performance across future measurements.  Best performance, then, 
requires model parameter estimates that are consistent and will converge toward their expected 
values.  In the history of DWI analysis, the monoexponential model was the foundational model 
because it has a theoretical basis for it, and for some tissue measurements, the model may get 
“lucky” and assess a voxel where the diffusion is Gaussian, and so it is measuring the actual 
diffusivity.  For non-Gaussian diffusion measurements, this model is no longer valid.  If there are 
two distinct diffusing compartments for a given voxel, then obviously the biexponential model is 
the valid model.  However, when this biexponential model is applied to monoexponential, Gaussian 
diffusion, there are now two redundant parameters, and so the model is invalid, and the parameter 
estimates in this case do not represent anything real.  For most tissue measurements, however, the 
true basis model is infinite and so all models aren’t really “valid” but are approximations, and so the 
goal instead is to find the model with the best average prediction over all future data.  Assuming 
that this data will fluctuate across all possibilities, when assigning a model to assess data, two 
things will happen.  A simpler model will be applied to complex data, or a complex model will be 
applied to simpler data.  As Chapter 4 demonstrated, when using the biexponential or kurtosis 
model, if the AIC selects the biexponential and monoexponential models as equal for a given 
measurement, the variance in the biexponential model diffusion coefficient estimates was an order 
of magnitude higher than the monoexponential estimates. 

This demonstration established that a model selection method declaring a model as best did not 
automatically translate into better accuracy and/or precision of the parameters.  Therefore, extra 
caution must be taken when using model selection methods to make inference about complex 
models, since their tendency to overfit leads to a lack of generalization.  While the simple 
monoexponential ADC value does not accurately describe underlying restrictions to tissue, giving 
considerable bias to its diffusion coefficient estimates, its simple structure makes it more robust to 
noise and algorithmic issues than the biexponential or kurtosis models.  One reason that the ADC 
has made it to clinical use is its ability to be used effectively on a wide variety of measurements 
with various acquisition protocols.  In their current state, and with the current state of NLLS 
regression, the biexponential and kurtosis models don’t appear to have this capability.  Improved 
algorithmic methods such as NLLS fitting with regularization [98] or mixed effect model [193] have 
shown some improvements on the uncertainty in the biexponential model and are examples of 
direction for future analysis.  As this thesis showed, the current algorithms can be used with model 
selection criteria, specifically ΔAIC, to reduce the occurrence of these extreme parameter estimates.  
To be accepted into clinical use, further research must be performed on these models to attempt to 
reduce these ill-conditioning issues, and this will require study specifically on how to tame these 
errors in the worst-case scenarios. 

6.4 Replication, Replication, Replication… 

In 2016, one of the most widely-discussed, pressing topics in the current statistical literature has 
been that of a “statistical crisis in science”, particularly with respect to replication of existing 
studies.  The focal point has been mainly in the field of social psychology with one example being a 
large study released last year that replicated the results of 100 original experiments that had been 
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reported in top-ranking psychology journals [194].  The results of this replication showed that 
compared to 97% of the original results reported as statistically significant, only 36% of the 
replicated study results were statistically significant.  The main object of criticism over the past few 
years of this replication crisis is the p-value, with one journal going to so far as to outright ban Null 
Hypothesis Significance Testing (NHST) procedures and their resulting criteria (p-values, t-values, 
F-values, etc.) [195].  Recently, the American Statistical Association released a formal statement in 
March 2016 that clarified the principles underlying the proper use and implementation of the p-
value [196].  Regardless of whether researchers heed these guidelines or not, a journal paper 
probably has a better chance of getting accepted with a statistical test proclaiming “significant” or a 
model criterion proclaiming “best”. 

This sentiment is echoed in one of the commentaries added as supplemental information to the ASA 
statement [196] written by Andrew Gelman, in which he states, “…we tend to take the ‘dataset’ and 
even the statistical model as given, reducing statistics to a mathematical or computational problem 
of inference and encouraging students and practitioners to think of their data as given. Even when 
we discuss the design of surveys and experiments, we typically focus on the choice of sample size, 
not on the importance of valid and reliable measurements. The result is often an attitude that any 
measurement will do, and a blind quest for statistical significance.”  He later says, “…it seems to me 
that statistics is often sold as a sort of alchemy that transmutes randomness into certainty, an 
“uncertainty laundering” that begins with data and concludes with success as measured by 
statistical significance…This is what is expected—demanded—of subject-matter journals. Just try 
publishing a result with p = 0.20.”  A related article by Gelman and his co-author Loken [197] state 
that p-values are based on what would have happened under other data sets, and term these 
possible choices in the process of setting up and analysing a scientific study “The Garden of Forking 
Paths”. 

The topic of replication was addressed in much of this thesis by showing how results changed when 
assessing repeated simulated samples.  These studies were specifically presented this way to 
inform researchers of problems that need to be addressed in order to establish the reliability of 
these new DWI models and methods before implementing them in clinical research.  This thesis 
demonstrated that for a given measurement, the SNR, number and locations of the b-values, 
removal of outlier data, choice of ROI, choice of model, and choice of model selection criteria all 
affected results.  Thus, extra care should be taken when drawing conclusions from statistical 
analysis and attempting to characterize the diffusion processes occurring in complex tissue.This is 
especially true when p-values are involved, for example, a multimodel analysis where several 
models, each with multiple parameters, are applied to a set of data has a high likelihood of 
achieving a significant difference in one parameter value with p < 0.05 by chance alone.  Consistency 
in statistical significance in DWI analysis was called for by Jones and Cercignani in pitfall #23 of 
their 2010 paper, “Twenty-five Pitfalls in the Analysis of Diffusion MRI Data” [198], in which they 
warn against this multiple comparisons problem and the high probability of type I, false positive 
errors when researchers report p-values and do not correct for this issue. 

This thesis is not a criticism of individual studies or researchers, nor does intend to downplay the 
importance of researchers conducting exploratory model analyses for DWI data.  Rather, it is a plea 
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for more detailed model checking and validation which seems to be at odds with the current 
research environment.  While the DWI community needs more reliable exploratory studies to lay 
solid foundations for future research, the current motto of “publish or perish”, however, demands 
as many novel papers as possible.  The second study of a given tissue/model combination probably 
doesn’t get published, so replication is often not rewarded.  Thus, the decree of significance is more 
important than detailed error analysis and control, and more and more scientific studies are 
published with the focus on quantity at the cost of quality [199].  This loss of quality has not gone 
unnoticed, for example, a recent review of the literature determined that 50% of previous pre-
clinical, life sciences research was irreproducible, with approximately $28 billion spent on this 
irreproducible research in the United States alone [200].   Figures like this are part of the reason 
that in 2016, the National Institute of Health added new guidelines for scientific rigour and 
transparency in data and statistical analysis for all future grant applications [201]. 

As demonstrated in this thesis, simply fitting a biexponential or kurtosis model to one voxel 
measurement via NLLS regression and examining the parameter estimates will almost never lead a 
researcher to think there is anything wrong with a given measurement and model fit, as this cannot 
be assessed by a single point estimate.  While the demonstrated parametric bootstrap can assess 
whether a given fit is likely to produce unreliable estimates in future measurements, this needs to 
be demonstrated with empirical studies on actual data.  Likewise, empirical studies comparing 
model selection methods on repeated measurements of a given volume of interest needs to be 
assessed as well.  A study examining the differences between how two different observers reported 
results has been performed on the biexponential model [202], but these observers tested the same 
data set.  The previously introduced study by Merisaari et al [188] compared results from two 
separate examinations for eighty-one patients.  Additionally, a recent study investigated differences 
in ADC measurements across multiple MRI scanners using a phantom [203].  More of these types of 
repeatability and reproducibility studies are needed in the DWI literature, especially with the 
biexponential and kurtosis models, with several examples now being seen [114, 121, 204-207].  The 
information provided in this thesis on these models, along with the techniques provided to improve 
their estimates, was intended to assist researchers in understanding the uncertainty involved not 
only in their data but also in their models.  Such understanding will improve the reliability of DWI 
studies and help avoid any future DWI replication crisis as well. 
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