
Semantic-Preserving Transformations
for Stream Program Orchestration

on Multicore Architectures

A thesis submitted in fulfilment of the requirements for the

degree of Doctor of Philosophy in the School of Information Technologies at

The University of Sydney

Yousun Ko

2016

ABSTRACT
Because the demand for high performance with big data processing and distributed

computing is increasing, the stream programming paradigm has been revisited for its

abundance of parallelism in virtue of independent actors that communicate via data

channels. The synchronous data-flow (SDF) programming model is frequently adopted

with stream programming languages for its convenience to express stream programs as

a set of nodes connected by data channels. Unlike general data-flow graphs, SDF re-

quires the specification of the number of data items produced and consumed by a node

already at compile-time. Static data-rates enable program transformations that greatly

improve the performance of SDF programs on multicore architectures. The major appli-

cation domain is for SDF programs are digital signal processing, audio, video, graphics

kernels, networking, and security.

The major optimization objective with stream programs is data throughput. Stream

program orchestration is a term that denotes compiler optimizations and run-time tech-

niques that aim at performance improvements of stream programs on multicore archi-

tectures. A large body of research has already been devoted to stream program orches-

tration. Nevertheless, current compilers and run-time systems for stream programming

languages are not able yet to harvest the raw computing power of contemporary paral-

lel architectures. We identify data channels as the dominating roadblock for achieving

high performance of SDF programs. Data channels between communicating nodes, i.e.,

between a producer and a consumer, employ FIFO-queue semantics. Funneling a data

item (token) from a producer to a consumer through a FIFO queue incurs non-negligible

overhead. The producer is required to perform an enqueue-operation, followed by a

dequeue operation in the consumer. The enqueue and dequeue operations induce the

ii

run-time overhead of the underlying queue implementation. Queues on shared-memory

multicores are implemented as buffers that are indexed via read- and write-pointers. En-

queueing and dequeuing tokens via such indirect address operations obscures the data-

dependencies between producer and consumer. As a result, compiler optimizations are

rendered ineffective. Although FIFO queues are a valuable abstraction mechanism to

separate concerns (i.e., implementation details) between producer and consumer nodes,

they represent an insurmountable abstraction barrier for current optimizing compilers.

This thesis makes the following three contributions that improve the performance

of SDF programs: First, a new intermediate representation (IR) called LaminarIR is

introduced. LaminarIR replaces FIFO queues with direct memory accesses to reduce

the data communication overhead and explicates data dependencies between producer

and consumer nodes. We provide transformations and their formal semantics to con-

vert conventional, FIFO-queue based program representations to LaminarIR. Second, a

compiler framework to perform sound and semantics-preserving program transforma-

tions from FIFO semantics to LaminarIR. We employ static program analysis to resolve

token positions in FIFO queues and replace them by direct memory accesses. Third, a

communication-cost-aware program orchestration method to establish a foundation of

LaminarIR parallelization on multicore architectures. The LaminarIR framework, which

consists of the aforementioned contributions together with the benchmarks that we used

with the experimental evaluation, has been open-sourced to advocate further research

on improving the performance of stream programming languages.

Keywords : Multicore Architecture, Stream Programming Languages, Synchronous Data Flow, Com-

piler Optimization, Performance Analysis, Static Program Analysis

iii

국문요약

멀티코어컴퓨터구조에서의스트림프로그램편성을위한

의미보존적프로그램변환에대한연구

최근효율적인빅데이터처리방식과분산처리시스템에대한요구가증가함에따

라,계산을수행하는액터와액터간의통신을위한데이터채널을독립적으로정의하

는스트림프로그래밍패러다임의풍부한병렬성이재조명되고있다.동기성데이터

흐름(synchronous data flow)프로그래밍모델은스트림프로그래밍언어를꼭짓점과

그점을잇는변의집합,즉그래프로추상화하는데에용이하게활용된다.일반적인

데이터 흐름 그래프와는 달리, 동기성 데이터 흐름 그래프로 표현되는 프로그램은

프로그램을 구성하는 최소 단위인 액터(actor)가 소모하고 생성하는 데이터의 양을

소스코드 단에서 미리 정의하고, 이 특성으로 인해 동기성 데이터 흐름 프로그램은

추가적인 메모리 소모 없이 무한히 동작할 수 있다. 동기성 데이터 흐름 프로그램은

디지털 신호 처리, 오디오, 비디오, 그래픽 커널, 네트워크, 데이터 암호화 및 해독과

같은분야에서널리활용되고있다.

스트림 프로그램 최적화의 주된 목표는 단위시간 당 데이터 처리량의 증진이다.

스트림프로그래밍언어의성능을향상시키기위한다양한컴파일러기법과최적화

방법이 선행연구되었지만, 현대의 병렬 컴퓨터 구조 본래의 연산 능력을 오롯이 활

용하기에는개발된기법들의최적화도가충분하지못했다.본논문은고성능동기성

데이터흐름프로그래밍언어를개발함에있어서가장큰장애물은데이터채널의생

산자와 소비자 모델을 구현하기 위해 활용된 선입선출(FIFO)식 의미론임을 보인다.

선입선출식 의미론은 데이터를 접근함에 있어 무시할 수 없는 부하를 일으킬 뿐만

아니라, 선입선출식 의미론으로 인해 간접화된 데이터 접근방식은 데이터간의 의존

도를모호하게하여결과적으로컴파일러최적화기법들의효용성을저하시킨다.

본 논문은 동기성 데이터 흐름 프로그램의 성능을 향상시키기 위해 다음과 같은

세가지 새로운 최적화 방식을 제시한다: (1) 선입선출 의미론을 직접적인 데이터 접

근방식으로 대체할 새로운 중간 표현형(intermediate representation)인 LaminarIR을

iv

정의하고선입선출의미론을사용하는프로그램을 LaminarIR로변환하는제반이론

을확립한다. (2)정적프로그램분석기법을기반으로선입선출의미론을 LaminarIR

로 변환하기 위한 온전(sound)하고 의미 보존적인 프로그램 변환 기법을 지원하는

컴파일러프레임워크를개발한다. (3)통신부하를고려한프로그램편성기법을설계

하고 그 기법을 LaminarIR에 적용하여 LaminarIR이 멀티코어 컴퓨터구조에서 활용

될수있도록한다.위의기법들이구현된 LaminarIR프레임워크와성능실험을위해

활용된 벤치마크는 스트림 프로그래밍 언어의 성능을 향상시키기 위한 후속연구를

용이하게하기위해오픈소스화되었다.

핵심되는말 :멀티코어컴퓨터구조,스트림프로그래밍언어,동기성데이터흐름,컴파일러최적화,

성능분석,정적프로그램분석

v

Acknowledgments
Yousun(1) Yousun(1)

NAME
Yousun - the command-line interface to develop Yousun Ko
into a holder of a doctoral degree

SYNTAX
Yousun [options]

DESCRIPTION
This interface enables the thesis author to interact with
great people around her, who have contributed to expand her
perceptions of research and society.

OPTIONS
--advisors advisor

Consult with advisor(s). The advisors are:
Professor Bernd Burgstaller:

A scholar who astonishes all the time by his depth
of intelligence, enthusiasm, and patience. He also
knows how to hit the rock with a shovel.

Professor Bernhard Scholz:
A scholar of great insights and talent, who bridges
the gap between theory and practice. He knows how
to brainstorm in the middle of stagnating ideas.

--committee-members
Consult with committee members Professor Sang-hyun
Park, Professor Yo-Sub Han and Professor Kyoungwoo
Lee, for insightful comments and guidances which enrich
research perspectives.

--colleagues
Meet lab members from the ELC Lab., Minyoung, Wasuwee,
Edy, Shinhyung, Hyoseok, Yoojin, Yong-hyun and Seongho,
to develop reasoning ability and tackle research issues
together. Share joys and sorrows of night shifts.

--friends
Meet dear friends, Soojin, Woojin, Jongchoel, Hoyoung
and Jeongho, for considerate support and intense
discussions. Meeting them is very effective, especially
to relieve tension from pursuing research.

--family
Meet parents and Joohyoung who are always supportive
and instructive, to seek questions not only in research
but also in life. They provide a space to breathe,
think, and eventually come up with inspiring ideas.

vi

Contents

Abstract ii

국문요약 iv

Acknowledgments vi

List of Figures ix

List of Tables xi

Listings xii

Algorithms xiii

1 Introduction 1

1.1 Stream Programming Paradigm . 1

1.2 Thesis Contributions . 2

1.3 Thesis Organization . 6

2 Background 7

2.1 Synchronous Dataflow (SDF) . 7

2.2 Scheduling of SDF programs . 9

2.2.1 Steady-state Scheduling . 9

2.2.2 Pre-steady-state Scheduling 10

2.2.3 Steady-state Scheduling of SDF Graphs with Cycles 11

2.3 SDF Code Optimization . 12

3 Overview: LaminarIR Compiler Framework 14

3.1 Frontend . 16

3.2 Orchestration . 18

3.3 Backend . 19

3.4 Run-time Support for Performance Evaluation 19

4 LaminarIR 20

4.1 FIFO Queue Overhead with Stream Programs 20

4.2 Motivating Example . 23

4.3 LaminarIR . 26

4.3.1 Local Direct Access Transformation 28

4.4 Global Direct Access Transformation 29

4.4.1 Background and Notation . 29

4.4.2 Concrete SDF Semantics . 32

4.4.3 Auxiliary Semantics . 34

4.5 Experimental Results . 38

4.5.1 Performance . 40

4.5.2 Communication Elimination 45

4.5.3 LLVM Optimization Statistics 47

5 Abstract Interpretation-based Static Analysis to Resolve FIFO Queue Ac-

cess Overhead 49

5.1 Complex Control-flow and Direct Memory Access of Stream Programs 49

5.2 Motivating Example . 51

5.3 SDF Program Analysis . 57

5.3.1 Determining Queue Positions by Abstract Interpretation 58

5.3.2 Derivation of Loop Bounds by Partial Constant Propagation . . 60

5.3.3 Narrowing Operator . 61

5.4 Program Transformation . 62

5.4.1 AST Transformation . 63

5.4.2 Inspector . 64

viii

5.4.3 Local Direct Access Transformation 64

5.5 Experimental Results . 65

5.5.1 Performance Evaluation . 66

5.5.2 Case Studies . 71

6 Communication Cost Aware Orchestration 77

6.1 Communication Overhead of Stream Programs from Parallelization . . 77

6.2 Motivating Example . 79

6.3 Actor Placement Problem (APP) . 82

6.3.1 NP-hardness of APP . 82

6.4 Approximation . 83

6.5 Dynamic Program for PackP Subroutine 87

6.5.1 Structured Stream Graphs . 87

6.5.2 Dynamic Programming Model 89

6.5.3 Reduced Stream Graphs for LaminarIR 96

6.6 Time Complexity . 98

6.7 Experimental Results . 98

7 Related Work 104

7.1 Compiler Optimizations to Overcome FIFO Queue Overhead 104

7.2 Static Analysis of Stream Programs 105

7.3 SDF Scheduling Algorithms for Parallelization 106

8 Conclusion 109

8.1 Summary . 109

8.2 Opportunities for Future Work . 111

Appendices 114

A An Optimal, ILP-based Solution for the Min-Max AP Problem 115

Bibliography 118

ix

List of Figures

2.1 An example program of SDF semantics 8

2.2 An SDF with a cycle. 11

3.1 LaminarIR compiler framework . 15

4.1 A motivating example of LaminarIR 21

4.2 Implementations of FIFO queues vs. LaminarIR 22

4.3 Abstract Syntax of LaminarIR . 26

4.4 LaminarIR framework . 27

4.5 Speedup of LaminarIR vs. FIFO queues 41

4.6 Speedup of LaminarIR vs. StreamIt 42

4.7 Effectiveness of the LaminarIR with compiler optimizations 44

4.8 Contribution rate of particular LLVM optimization passes 48

5.1 Original actor code and corresponding plain LaminarIR code 52

5.2 Motivating examples for partial constant propagation, initial data rate

intervals, and improved data rate intervals after narrowing 53

5.3 Intermediate actor code after complete AST transformation, and Lami-

narIR code with named tokens . 55

5.4 Abstract syntax of actor codes . 58

5.5 Abstract semantics of actor codes . 59

5.6 Semantic definitions for narrowing operator 61

5.7 Analysis compilation path . 63

5.8 Speedup and code size growth rate of LaminarIR over FIFO queues by

number of transformations . 67

5.9 Representative control-flow cases in stream programs 72

5.10 Experimental results on Case 1 and Case 2 74

5.11 Experimental results on Case 3 and Case 4 75

6.1 An example source code and corresponding stream graph 80

6.2 Actor placement considering actor execution times only and considering

both actor execution times and communication overhead 81

6.3 Composites of structured stream programs 81

6.4 An example structured stream graph and corresponding binary tree de-

composition . 88

6.5 Dynamic program for composites . 90

6.6 An example structured stream graph and corresponding reduced stream

graph . 97

6.7 Speedup comparison of communication-aware scheduling with computation-

only scheduling . 102

xi

List of Tables

4.1 Benchmark specification . 38

4.2 Hardware configuration . 39

4.3 Communication reduction from the elimination of splitters and joiners

with the LaminarIR direct access format 45

4.4 Improvements of the LaminarIR direct access format over FIFO queues

and StreamIt on the Intel i7-2600K . 46

4.5 Enhanced SSA promotion . 47

5.1 Hardware configuration . 65

5.2 Benchmark characteristics . 66

5.3 Speedup of LaminarIR over FIFO queues with the base AST and with

the transformed AST . 68

6.1 Example of tabularized values of the objective function of PackP. 91

6.2 Benchmark characteristics . 99

6.3 Approximate vs. optimal result . 100

6.4 AAP and ILP solving times in seconds for 2, 4, and 6 processors 101

A.1 Comparison of the objective function values of the ILP and the linear

relaxation for two processors . 116

Listings

2.1 An example code of SDF semantics 8

4.1 An example SDF source code . 21

4.2 An example LaminarIR code . 21

4.3 An example generated C code from LaminarIR 21

4.4 Implementation of concrete semantics of SDF 34

5.1 Original actor code of RadixSort . 52

5.2 Corresponding plain LaminarIR code of RadixSort 52

5.3 Result code of partial constant propagation and loop unrolling 53

5.4 Intermediate code after complete AST transformation 55

5.5 LaminarIR code with named tokens after local direct access transforma-

tion . 55

List of Algorithms

1 Find Actor Allocation . 84

2 Actor Allocation Oracle . 86

Chapter 1

Introduction

The increasing demand for high performance with big data processing and distributed

computing demands novel parallel programming paradigms. Sequential programming

languages provide insufficient parallel hardware abstractions, which greatly hampers

performance and portability of software on multi/many-core architectures. With sequen-

tial programming languages, it is left to the programmer to identify parallelism in pro-

grams, which is tedious and error-prone. In contrast, the stream programming paradigm

provides an abundance of parallelism already in the source-code, through its program-

ming abstraction of independent actors that communicate via FIFO data channels.

1.1 Stream Programming Paradigm

The stream programming paradigm facilitates application domains characterized by

regular sequences of data. These characteristics occur with digital signal processing,

audio, video, graphics kernels, networking, and data encryption and decryption algo-

rithms. In the stream programming model, computations are expressed through a set

of actors that are connected by FIFO data channels. An actor is said to be fireable, if

there are sufficient tokens on its incoming data channels. An actor firing removes to-

kens from the incoming data channels, executes the operation of the actor, and places

the computed tokens in the outgoing data channels [42]. Except the data-dependencies

between a producer and a consumer, actors are independent of each other, e.g., actors

are not allowed to communicate via shared variables. Because each actor contains its

own program counter, actors can execute in parallel. The actor programming paradigm,

thus, enforces a programming style where ample parallelism is already expressed in the

source-code.

Examples of stream programming languages and environments that adopts the stream

programming paradigm include Baker [19], Brook [17], Cg [55], CQL [7], Lime [8],

StreamFlex [71], StreamIt [77], ΣC [32], OpenCL [72], and SPUR [85]. Systems based

on the streaming model are acknowledged by various previous researches such as Bore-

alis [4], Flextream [37], and DANBI [58].

1.2 Thesis Contributions

A major challenge with stream programs is to fully harvest the raw computing power

of contemporary parallel architectures. This problem is paraphrased by the term “The

Parallel Programming Gap”, expressing the steady increase in the number of cores over

time, and the slow adoption of new programming models to effectively utilize the com-

putational power of parallel cores. Current compilers and programming language imple-

mentations for stream programming languages are in their infancy and cannot leverage

the available parallelism to utilize the underlying hardware to the maximum. Until now,

the traditional focus of stream programming language compilers has been to leverage

the available parallelism during compilation, auto-tuning and run-time adaptation by ex-

ploiting underlying stream graph structure with an objective to maximize data through-

put [15, 26, 37, 46]. However, the optimization opportunities with actual data transfers

between communicating actors have been neglected from the considerations. Such op-

timization opportunities are particularly imminent in structured stream programs that

re-distribute data via structural components, such as split-joins, pipelines and feedback

loops.

In this thesis, we capitalize on the fact that the stream programming model is designed

to process regular data streams, which means that communication overhead between ac-

tors is a major contributing factor to the performance of stream programs. In particular,

even a small inefficiency in the data-item access model will accumulate quickly and im-

2

pact overall performance. Thus, we propose three optimization techniques which tackle

performance issues related to data communication to improve the performance of stream

programs on multicore architectures.

In this work, we employ the semantics of Synchronous Data Flow (SDF) [11], which

restricts the general Kahn’s process [43]. In SDF, an actor consumes and produces a

fixed number of tokens when it is fired. The fixed number of tokens consumed and pro-

duced in an actor firing permits the computation of a static finite periodic schedule [11],

simplifying the processing model. Further background knowledge on SDF semantics

are discussed in Chapter 2.

Contribution 1: LaminarIR—a Novel IR for Stream Programs

First, we present a new intermediate representation (IR) called LaminarIR, to replace

FIFO (first-in, first-out) semantics with direct memory accesses and its underlying the-

ory for program transformation. Stream programming languages employ FIFO seman-

tics to model data channels between producers and consumers. A FIFO data channel

stores tokens in a buffer that is accessed indirectly via read- and write-pointers. This in-

direct token-access decouples a producer’s write-operations from the read-operations

of the consumer, thereby making data-flow implicit. For a compiler, indirect token-

access obscures data-dependencies, which renders standard optimizations ineffective

and impacts stream program performance negatively. Thus we propose a transforma-

tion for structured stream programming languages such as StreamIt that shifts FIFO

buffer management from run-time to compile-time and eliminates splitters and joiners,

whose task is to distribute and merge streams. To show the effectiveness of our lower-

ing transformation, we implemented a LaminarIR compilation framework, and report

on the enabling effect of the LaminarIR on LLVM’s optimizations, which required the

conversion of several standard StreamIt benchmarks from static to randomized input, to

prevent computation of partial results at compile-time.

The goal of the new IR is to remedy the current situation by shifting FIFO queue-

management from run-time to compile-time. A key observation is that the abstraction

level of stream program representations is too high for compilers to map stream pro-

3

grams effectively onto von Neumann architectures. We also propose a lowering transfor-

mation that converts a stream program to LaminarIR. Lowering proceeds in two steps:

first, a local direct access transformation explicates the token-flow within actors if a

programming language employs a push/pop semantic (as with StreamIt [77]). The sec-

ond step performs a global direct access transformation for inter-actor communication

across the whole stream graph. In LaminarIR, actor declarations must name the tokens

on each incoming and outgoing data channel. Work functions explicitly refer to named

tokens rather than relying on FIFO queue operations for data communication.

Contribution 2: Specification-driven Static Analysis for Actor Trans-

formations

The local direct access transformation is the former transformation step of the two

steps in the LaminarIR program transformation, which replaces queue operations with

static local positions in the queue for each actor. To perform a one-to-one mapping

of a queue statement and a queue position, a control-flow update of actor code may

be inevitable, because a given statement can be mapped to multiple queue positions,

e.g. queue operations in a loop. Therefore, a loop-bound analysis is essential to per-

form our local direct access transformation. To the courtesy of the static characteristic

of SDF programs, the control-flow of all but five actor definitions in the StreamIt bench-

mark suite [76] are data independent, and partial constant propagation of static variables

are sufficient to determine loop bounds statically, so as the queue positions denoted by

the queue operations in the loops. Yet, data dependent control-flow is commonplace in

real-world applications. Thus we propose a sound static program analysis technique that

exploits actor specifications to resolve data dependent control-flow. By abstract interpre-

tation [22, 81], an integer interval is employed to abstract the space of possible data rates

for each statement of an actor code. A narrowing operator is provided to enhance the

analysis quality and the narrowing condition is driven by the actor specification.

Based on the static analysis, standard loop unrolling and trace partitioning tech-

niques [10, 56, 68] are applied on the AST of a program to flatten control-flow paths.

4

Thus more queue operations can be mapped with a static queue position as a result.

Static analysis is performed iteratively until an internal inspector decides an input AST

is fully transformed and no further transformations are possible.

Contribution 3: Communication-aware Orchestration

In the third contribution, we design a communication-aware orchestration algorithm

which will be a foundation to expand the target hardware of LaminarIR to parallel archi-

tectures. Load-balancing actors among available processor cores is a major challenge.

The mapping of stream graphs on processor cores (known as orchestration) has received

a lot of attention already in the literature [18, 19, 26, 27, 31, 33, 44, 47, 75, 78, 79, 80,

84]. The traditional load-balancing problem that only considers computational over-

heads are known to be NP-hard. The LaminarIR model requires an a further advanced

load-balancing technique than the traditional approach. The model weighs benefits from

data communication cost elimination by LaminarIR and benefits from parallel execu-

tion despite of accompanying communication overhead. The gains obtained from par-

allel execution are easily overshadowed by communication overhead. The workload of

a processor core comprises both the execution time of actors and the communication

overhead of data channels. In [27], it was shown that the makespan can worsen by up

to 346% if communication costs of data channels are not considered. A unified integer

linear programming (ILP) formulation has been presented by Farhad et al. [27], which

considers communication costs of data channels on cache-coherent multicore architec-

tures. However, as the number of processor cores increases, the ILP program quickly

becomes intractable and does not present a practical solution for the actor placement

problem. We present an approximation algorithm for placing stream programs on mul-

ticores that takes communication costs of data channels into account. The algorithm

balances the workload of processor cores such that the makespan becomes minimal.

The theory of approximation algorithms [82] was used to design our actor placement.

Approximation algorithms are an active field of research in optimization theory and

theoretical computer science. Unlike load-balancing heuristics, our approximation al-

gorithm runs in polynomial time with solutions within a factor of log2 n of the optimal

5

solution, where n is the number of actors in a stream program. Also, our approximation

algorithms provide solutions whose value is within a factor of the optimal solution.

1.3 Thesis Organization

This thesis is organized as follows: in Chapter 2, we present background material.

Chapter 3 introduces the LaminarIR compiler framework and provides an overview

of its three main research contributions. Chapter 4 describes theoretical background

of LaminarIR, including proofs of semantic preserving transformations from FIFO se-

mantics to LaminarIR. Chapter 5 introduces static program analyses deployed with the

local direct access transformation of LaminarIR. In Chapter 6, we present the approx-

imation algorithm that exhibits a polynomial run-time, and prove its correctness and

approximation bounds. We survey related work in Chapter 7 and draw our conclusions

in Chapter 8.

6

Chapter 2

Background

This chapter presents the background of SDF programs including graph theory, par-

allel scheduling and its formulation, and code generation to maximize data throughput

of SDF programs.

2.1 Synchronous Dataflow (SDF)

An SDF graph is a data-flow graph, which statically specifies the number of samples

produced or consumed by each node on each invocation a priori [11]. An SDF graph

is represented by a tuple (V,E) where V and E are finite sets of nodes and edges,

respectively. An edge e ∈ E is a tuple of two nodes (u, v), which indicates a data

channel from node u to node v. We use n for the size of set V , and m for the size of set

E.

Each node v ∈ V has two properties, preds (v) and succs (v) which indicate the sets

of predecessors of v and successors of v, respectively.

With graph G = (V,E), we define src (G) as a set of any source node v ∈ V which

has no u ∈ V that satisfies (u, v) ∈ E. Similarly, sink (G) is a set of any sink node

v ∈ V which has no w ∈ V that satisfies (v, w) ∈ E. We assume that an SDF graph has

a single source node and a single sink node. An SDF graph has three vectors cns, prd

and del whose elements correspond to edges in the SDF graph [59]. The consumption

rate cns ((u, v)) is a positive integer that represents the number of tokens associated with

edge (u, v) by each invocation of node v. The production rate prd ((u, v)) is a positive

1 void->void pipeline Program() {
2 add A1();
3 add A2();
4 add A3();
5 add A4();
6 }
7 void->int filter A1() {
8 int x;
9 init {x=0;}

10 work push 1 {push (x++);}
11 }
12 int->int filter A2() {
13 work push 6 pop 1 {
14 pop();
15 // do some work
16 push(); // 6 times
17 }
18 }
19 int->int filter A3() {
20 work push 1 pop 6 {
21 pop(); // 6 times
22 // do some work
23 push();
24 }
25 }
26 int->void filter A4() {
27 work pop 1 {print(pop());}
28 }
29

A1

15

A2

25

A3

20

A4

10

10

70

10

(a) (b)

Figure 2.1: (a) Actor source code (b) Corresponding stream graph.

integer that indicates the number of tokens produced on edge (u, v) by each invocation

of node u. By del ((u, v)), we present a non-negative integer which indicates number of

initial tokens on edge (u, v).

The Synchronous data-flow (SDF) programming model [11] is frequently adopted

to the design of stream programming languages for its convenience to abstract stream

programs into a set of nodes and channels in between. SDF defines data-flow graph

that restricts the general Kahn’s process [43] by statically specifying the number of

data tokens produced or consumed by each actor on each invocation a priori. The fixed

number of tokens consumed and produced in an actor firing permits the computation of

a static finite periodic schedule making the processing model simple.

An example program of SDF semantics is depicted in Figure 2.1.

8

2.2 Scheduling of SDF programs

Significance of scheduling for the throughput of SDF graphs has been recognized

from the early stage of the SDF paradigm. Murthy et al. [61] introduced Single Appear-

ance Scheduling (SAS), where each actor only appears once in the schedule to avoid

code-size explosion. Compared to a schedule where an actor may appear in multiple

parts, SAS comes at the cost of larger buffer sizes. For a given SDF graph more than

one SAS schedule may exist. Ritz et al. [65] introduced two variants of SAS, Single

Appearance Single Activation Schedules (SASASs) and Single Appearance Minimum

Activation Schedules (SAMASs). SASAS was designed for minimum program memory

usage and SAMAS pursues minimum context switch overhead. As an opposite schedul-

ing to SASAS, push scheduling executes downmost node which has sufficient number

of available tokens to invoke even once. Push scheduling results in the minimal buffer

size at the expense of code size. Karczmarek et al. [44] proposed a new scheduling

algorithm, phased minimum latency scheduling, which is an alternation between SAS.

2.2.1 Steady-state Scheduling

A periodic static schedule [49] consists a finite sequence of node invocations; the

periodic schedule is computed at compile time, invokes each node of the SDF graph at

least once, and produces no net change in the system state, i.e., the number of tokens

on each edge is the same before and after executing the schedule. Thus, a periodic

schedule can be executed ad-infinitum without exhausting memory, and we refer to the

state before and after the execution of a periodic schedule as the steady-state.

A periodic schedule has two properties denoted by two positive integer vectors. First

vector is r ∈ Nn called repetition vector [49] whose elements correspond to nodes in the

SDF graph. Element r (v) for all v ∈ V is equal to the number of occurrences of node

v in the periodic schedule. Because every node needs to be invoked at least once in the

schedule, r (v) ≥ 1, ∀v ∈ V . To run the nodes of an SDF graph in parallel, a sufficient

number of initial tokens must exist on all edges (u, v) ∈ E. This number of pre-loaded

tokens is denoted by vector s ∈ Nm, which is the second property of a periodic schedule.

9

Definition 1. Given an SDF graph G for which a periodic schedule exists, we call this

graph parallel-executable if the following condition holds for all edges (u, v) ∈ E,

s ((u, v)) ≥ r (v)× cns ((u, v)) .

To run a parallel periodic schedule ad-infinitum without exhausting memory, the fol-

lowing balance equation must hold for all edges (u, v) ∈ E of the SDF graph.

Definition 2. For each edge (u, v) of a parallel-executable graph, the balance equation

is denoted by

r (u) = r (v)× cns ((u, v))

prd ((u, v))

for any edge (u, v) ∈ E.

2.2.2 Pre-steady-state Scheduling

The initial idea of a pre-steady-state schedule has been borrowed from software-

pipelining. The prolog in software-pipelining denotes the sequence of instructions used

to fill a software-pipelined loop [5]. Gordon et al. [31] introduced a loop prologue,

which serves to advance each node to a different iteration of the stream graph.

StreamIt [77], which is one of the stream programming languages, allows a node

to have a prework stage which is executed once before the periodic static schedule. It

permits programmers to insert tokens on particular edges of the SDF graph. A node’s

production and consumption rates may differ from its steady state. In addition, nodes

may use a peek operation where tokens are read in a non-consuming way. Nodes may

peek more tokens than they consume, which must be considered in a pre-steady-state

schedule. To account for prework stages and peek operations, an initialization sched-

ule has been proposed in [30, 44]. Therefore, the pre-steady-state phase of StreamIt

programs is a composition of an initialization schedule followed by a pre-steady-state

schedule.

To run a node as part of a static periodic schedule, each incoming edge has to con-

tain sufficient number of tokens. If this condition holds for all nodes, then all nodes can

10

execute completely independent to each other. The easiest way to fill each edges with

a sufficient number of tokens is to fill edges with zero data tokens [51]. With this ap-

proach, the first few results of the SDF program will have undefined values. But based on

the ideal assumption that the SDF program runs infinitely, an initial small and constant

number of undefined values would be tolerable for SDF program execution. However,

filling edges with zero data tokens will not execute correctly if an actor contains input-

data-dependent state variables. For such actors called stateful actors, pre-steady-state

schedule prior to the steady-state schedule are necessary to advance the SDF graph into

a state with a sufficient number of tokens for a periodic static schedule.

2.2.3 Steady-state Scheduling of SDF Graphs with Cycles

Existence of cycles in an SDF graph makes the computation of a schedule not trivial.

If we define C as a set of at least two edges which forms a single cycle in an SDF graph

G, Reiter showed in [64] that the SDF graph is free of deadlock if and only if every

cycle C in the SDF graph satisfies∑
(u,v)∈C

del ((u, v)) ≥ min
(u,v)∈C

(cns ((u, v))× r (v))*. (2.1)

Even though the SDF graph is deadlock free, it does not guarantee that a cycle can

execute in parallel.

A B

2 4

1 2

Figure 2.2: An SDF with a cycle.

Figure 2.2 shows an SDF graph with a cycle. Numbers written on each edge indicates

production and consumption rate of the edge e.g., for the edge (A,B), cns ((A,B)) = 2

*Reiter considers homogeneous SDF (HSDF) graphs in [64]: HSDF graphs are SDF graphs which

consume and produce only a single token for each invocation of nodes. Thus, the original condition to be

a deadlock free SDF graph written in [64] is
∑

(u,v)∈C del ((u, v)) > 0

11

and prd ((A,B)) = 1. If del ((A,B)) = del ((B,A)) = 0, then there is no schedule

to run the SDF graph as none of A or B has available tokens to execute, ending up

in deadlock. If edge (A,B) satisfies Equation (2.1), for example del ((A,B)) = 2,

then valid periodic schedules exist such as BAA. However, these schedules are only

valid when executed on a single processor, and no valid parallel periodic schedule exists

unless all edges are filled with sufficient number of tokens to run the parallel periodic

schedule. Thus, every cycle C in an SDF graph must satisfy the following condition if

and only if the SDF graph is deadlock free for parallel execution.

del ((u, v)) ≥ (cns ((u, v))× r (v)), ∀(u, v) ∈ C. (2.2)

With the example in the Figure 2.2, the condition to be deadlock free for parallel

execution is del (B,A) = 4 and del ((A,B)) = 2.

In the thesis, we consider two ways to ensure that the SDF graph is deadlock free for

parallel execution. First is to urge users to program SDF graphs which at least satisfies

the Equation (2.1) in compile time, and introduces an algorithm to transform the SDF

graph into acyclic SDF graph by condensing nodes in a cycle in a new merged node.

This transformation does not change any semantic of an SDF program, but only forces

to execute all nodes of a cycle on a processor. Basic algorithms to transform a cycle into

a new merged node is introduced by Bhattacharya et al. [11]. The other approach is to

guide users to provide sufficient delays to satisfy Equation (2.2) in compile-time. These

two approaches are realistic as SDF programs are static already in compile-time.

2.3 SDF Code Optimization

Although buffering techniques and scheduling are inter-dependent, there is a large

body of work focusing mainly on buffering techniques. The common idea is to put ad-

jacent nodes to different iterations to run them independently during each subsequent

iteration of the SDF graphs. The buffer space must be provided to store at least one

steady state of tokens between each pair of adjacent nodes [31, 60]. Murthy et al. [60]

introduced a buffering technique that retains separated buffers for each input and output

12

buffers of an edge but which shares the memory space as much as possible. This ap-

proach could further minimize buffer sizes compared to the results of the previous work

of the time [66, 74]. But this work did not take the performance of the SDF programs

into account, and it required the programmer to supply annotations or static program

analysis techniques which can comprehend semantics of each nodes’ computations.

Furthermore, their buffer design is coarse-grained which considers number of tokens

produced and consumed in a steady-state iterations but does not consider individual

tokens.

Regarding techniques to manage buffers, a straight-forward and the most popular

approach to implement communication of two actors is to use First-In-First-Out (FIFO)

queues. But queues are costly, so Lee et al. [51] introduced static buffering which reads

its input directly from specified memory locations and writes its outputs directly to

specified memory locations within buffer. This method was applied to Gabriel [13], a

design environment for digital signal processing, but the idea was introduced briefly

only to be applied on the buffers connect two nodes in a same processor.

13

Chapter 3

Overview:

LaminarIR Compiler Framework

This chapter introduces each step of LaminarIR compiler framework and describes its

software engineering aspects. LaminarIR compiler framework is a source to source com-

piler framework which accepts a structured stream program e.g., StreamIt, and gener-

ates C code that employs FIFO queues or direct token accesses as depicted in Figure 3.1.

The LaminarIR compiler frontend parses structured stream programs and lowers them to

LaminarIR by applying local and global direct access transformations. A static analysis

pass is employed on the Abstract Syntax Tree (AST) in the frontend phase to enhance

replacement of queue operations with local named tokens. An orchestration pass pro-

vides actor allocation information on processor(s) which is incorporated into LaminarIR

after the global direct access transformation. The code generator subsequently generates

C code from LaminarIR. To enable rapid prototyping, LaminarIR compiler framework

employs object-oriented design including the strategy pattern [28] for parser, sched-

uler and code generator. For example, as shown in Figure 3.1, the LaminarIR compiler

framework provides a code generator interface for two different implementations of the

code generator, i.e., FIFO queues and Direct Access. The intention of implementing own

FIFO queue backend is to isolate effects of LaminarIR as the independent variable in our

experimental evaluation from the input language specific optimizations. For example,

the StreamIt compiler applies its own graph transformation methods on input programs,

e.g., combining multiple actors into a single aggregate actor (fusion) or by instantiating

StreamIt Parser

Static Analysis
Partial ConstProp

and Loop Unrolling

Data Rate Interval
Initialization

Data Rate Interval
Narrowing

Inspector

A
ST

Tr
an

sf
or

m
at

io
n

Local Direct Access
Transformation

Orchestration

Global Direct Access
Transformation

Code Generator

Direct
Access

FIFO

StreamIt (.str)

C code employing
direct token access (.c)

C code employing
FIFO queues (.c)

Fr
on

te
nd

B
ac

ke
nd

Direct memory access path
FIFO queue path

AST

LaminarIR

LaminarIR

Figure 3.1: LaminarIR compiler framework

15

an actor multiple times (fission) and wrapping the instances by a round-robin split-join

combination to achieve data parallelism [30]. Similarly, scheduler interface can be im-

plemented by various actor allocation algorithms, and parser interface can support any

structured stream programming languages, independent to the functionalities of other

passes.

The LaminarIR framework and the benchmarks that we used with the experimental

evaluation are available online [1].

3.1 Frontend

The frontend of the LaminarIR compiler framework is composed of three major parts:

(1) A parser for the input language to generate ASTs, (2) a local direct access trans-

formation that replaces FIFO queues with local named tokens from ASTs of a stream

program and generates LaminarIR code, and (3) a static program analyzer that performs

AST transformations to foster replacement of FIFO queues with local named tokens in

the local direct access transformation.

Parser The parser of the frontend comes with the input programming language that

the LaminarIR compiler framework supports. For the StreamIt parser, the ANTLR parser

generator is adopted from the StreamIt compiler to accept StreamIt programs as input

programs. In addition to AST generation, the parser generates stream graph information,

such as actor instances and topology of actor instances. For the sake of programmability,

structured stream programs facilitate constant stream parameters to scale each compo-

nent. For example, the StreamIt parser generates a java bytecode that evaluates con-

stant stream parameters and finally results an end stream graph of a StreamIt program.

Topology of actor instances in the stream graph is an essential information to lower the

structured stream programs into LaminarIR. The frontend may be expanded to support

other stream languages. For a new language, a parser is required that generates an AST

and a stream graph from the input code.

A FIFO queue path, a comparison group to LaminarIR, bypasses the static program

16

analyzer pass and the local direct access transformation pass to generate LaminarIR

code with FIFO queues directly from parser.

Static program analyzer The generated AST is passed on to the static program an-

alyzer. The static analyzer is not technically mandatory to perform the local direct ac-

cess transformation path generating LaminarIR code, and can be bypassed by letting

the inspector exit the static analyzer pass without visiting the AST transformation pass.

However, the quality of local direct access transformation is heavily dependent on the

static analysis pass. The local direct access transformation replaces a queue operation

with a direct access token when a queue operation is statically mapped to a queue po-

sition, otherwise the local direct access transformation path will keep queue operations

in form of local array accesses. Multiple mapping of queue positions in a queue op-

eration happens when the queue operation is invoked in loops, and the static analyzer

employs static specification of actors to resolve the loop bounds of loops that contain

queue operations.

When loop bounds are data independent, partial constant propagation of constant

stream parameters derived from the parser is sufficient to resolve loop bounds in most

of cases. On the other hand, data dependent loop bounds which are more frequently used

in real-world applications, cannot be resolved during compile time in general. However,

in our static analysis, we resolve the data dependent loop bounds by using abstract

interpretation [22, 81] to denote the range of possible loop bounds, and narrow the range

of possible loop bounds by the static data rates given by the actor specification. Standard

loop unrolling and trace partitioning [10, 56, 68] are performed on AST to improve the

analysis quality and the static analysis is revisited until the inspector decides to stop.

Because loop unrolling combined with trace partitioning may explode code size, the

inspector exams feasibility of the AST transformation in advance. Inspector also checks

soundness of the analysis. Chapter 5 covers the static analysis pass in detail.

Local direct access transformation The local direct access transformation path re-

places queue operations with local named tokens inside to actors. The local named to-

17

kens from producer and consumer are mapped to a global symbol later through the

global direct access transformation path. Because most of complex mappings of queue

operations to queue positions are resolved via the means of static program analysis,

the replacement of queue operations to local direct access tokens are performed rather

mechanically. Yet, two phase direct access transformations have its virtue on simplify-

ing theoretical problems especially in case of transforming cyclic graphs or multi-phase

scheduling. The design of LaminarIR including syntax is presented in Chapter 4.

3.2 Orchestration

Orchestration is an essential pass to expand the target hardware of LaminarIR to par-

allel architectures. Orchestration computes the mapping of stream graphs on multicores

to achieve load-balancing among available processors. The traditional load-balancing

problem that only considers computation overhead is known to be NP-hard, and yet it

is hard to achieve the estimated load-balancedness by the traditional approach because

the influence of data communication cost to the makespan is non-neglectable. In [27],

it was shown that the makespan can worsen by up to 356% if communication cost of

data channels are not considered. Even more, a further advanced load-balancing tech-

nique is essential to orchestrate LaminarIR because FIFO queues are required again for

inter-processor communication where intra-processor communications are transformed

into direct token access. Thus the orchestration should be able to weigh benefits from

data communication cost elimination by LaminarIR and benefits from parallel execution

despite of accompanying communication overhead.

As a foundation of the parallel LaminarIR, we introduce a new orchestration algo-

rithm which considers communication costs of FIFO queues. The novelty of our or-

chestration algorithm is that we use an approximation algorithm to consider communi-

cation costs in a practical time and within a reasonable quality bound. Farhad et al. [27]

showed a unified ILP formulation that considers communication costs of data channels,

however, the ILP program quickly becomes intractable as the number of processor cores

increases. The approximation algorithm for communication-cost-aware orchestration is

presented in Chapter 6.

18

3.3 Backend

The backend of the LaminarIR compiler framework consists of two major passes, the

global direct access transformation pass that maps the producer- and consumer-side of

local named tokens, and the code generator that generates C target source code from

LaminarIR. The underlying theory and the proof of our semantic-preserving transfor-

mation are presented in Chapter 4.

3.4 Run-time Support for Performance Evaluation

The LaminarIR compiler framework provides a run-time support system for precise

and accurate performance measurement. For the processors that support CPU frequency

scaling, scaling governors are employed to lock the clock frequency to the value stated

in the hardware specification. In addition, affiliation of processes are finely controlled

by the lightweight performance tool (LIKWID, [2]). For ARM architectures which LIK-

WID dost not support, we use sched_setaffinity function from the GNU C Li-

brary to dedicate a specific core to a thread. To observe effect of our approaches on

microarchitectural CPU events that are highly CPU-specific [40], the LaminarIR com-

piler framework provides a run-time support system that collects notable hardware per-

formance counters by aid of PAPI [16]. LaminarIR compiler framework uses LLVM

compiler infrastructure for an in-depth analysis of the profitability of each optimization

on the evaluated formats.

19

Chapter 4

LaminarIR

4.1 FIFO Queue Overhead with Stream Programs

Streaming applications contain an abundance of parallelism due to independent ac-

tors that communicate via data channels. Hence, the traditional focus of stream pro-

gramming compilers has been to leverage the available parallelism during compilation,

auto-tuning and run-time adaptation by exploiting the underlying stream graph structure

with the objective to maximize data throughput [15, 26, 37, 46]. However, the optimiza-

tion opportunities with the actual data transfers between communicating actors have

been neglected. Such optimization opportunities are particularly imminent in structured

stream programs that re-distribute data via split-join constructs.

Actor communication is based on the notion of FIFO queues that isolate the pro-

ducer from the consumer. Although the FIFO queue is an elegant conceptual model

for communication, it is nevertheless obscuring the access of information between pro-

ducer and consumer. Hence, optimizing compilers cannot automatically discover the

information flow due to indirect memory accesses, and standard compiler optimizations

including register allocation and constant propagation become ineffective across actor

boundaries. I.e., FIFO queues perforate each data channel by an indirect token store op-

eration on the producer side, plus an indirect token load operation on the consumer side.

Queues as data channels are thus a dead-end performance-wise, and a valid question is

whether the problem of FIFO queues could be ignored by scaling to a larger number of

cores instead. Unfortunately, stateful actors, which are actors that pass state information

1 void->void pipeline Prog{
2 add A();
3 add float->float splitjoin
4 {
5 split duplicate;
6 add B();
7 add C();
8 join roundrobin;
9 }

10 add D();
11 }
12 void->float filter A(){
13 work push 1
14 {push(my.frand());}
15 }
16 float->float filter B(){
17 work push 1 pop 2{
18 push(pop()+pop()/2);}
19 }
20 float->float filter C() {
21 work push 1 pop 2{
22 push(sqrt(pop()*pop()));}
23 }
24 float->void filter D(){
25 work pop 2{
26 println(pop());
27 println(pop());}
28 }

(a)

1 sdf Prog {
2 float A ->S(1);
3 float S(1)->B;
4 float S(1)->C;
5 float B ->J(1);
6 float C ->J(1);
7 float J(2)->D;
8 actor A{
9 firing:{y=frand();}

10 output: S: y;
11 }
12 actor B{
13 input : S: x1,x2;
14 firing:{y=(x1+x2)/2;}
15 output: J: y;
16 }
17 actor C {
18 input : S: x1,x2;
19 firing:{y=sqrt(x1*x2);}
20 output: J: y;
21 }
22 actor D {
23 input : J: x1,x2;
24 firing:{println(x1);
25 println(x2);}
26 }
27 }

(b)

1 void Prog(){
2 float x1;
3 float x2;
4 float x3;
5 float x4;
6

7 for(;;){
8 // actor A
9 x1=frand();

10 x2=frand();
11

12 // actor B
13 x3=(x1+x2)/2;
14

15 // actor C
16 x4=sqrt(x1*x2);
17

18 // actor D
19 printf("%f\n",x3);
20 printf("%f\n",x4);
21 }
22 }

(c)

A

S

B C

J

D

1
1

1
2

1
2

1
1

1
1

2
2

(d)

frand() frand()

(_+ _) ∗ 1
2

√
_ ∗ _

printf(_) printf(_)

(e)

Figure 4.1: (a) An example SDF source code, (b) LaminarIR, (c) generated C code,

(d) streamgraph, and (e) dataflow-graph for schedule 2A, 2S,B,C, J,D,

21

A enq deq S
enq

deq

enq

deq

C

B

enq

deq

enq

deq
J enq deq D

(a)

A1

A2

C

B

D

A1.y

A2.y

C.x1

C.x2

B.x1

B.x2

C.y

B.y

D.x2

D.x1

(b)

Figure 4.2: Implementations of (a) FIFO queues vs. (b) LaminarIR

from one invocation to the next, limit the available parallelism as reported in the liter-

ature [26, 46]. Also, high performance applications that require peak performance will

not seek a compromise.

The goal of the presented work is to remedy the current situation by shifting FIFO

queue-management from run-time to compile-time. A key observation is that the ab-

straction level of stream program representations is too high for compilers to map stream

programs effectively onto von Neumann architectures.

We propose a lowering transformation that converts a stream program to LaminarIR,

our stream program IR. Lowering proceeds in two steps: first, a local direct access trans-

formation explicates the token-flow within actors if a programming language employs

a push/pop semantic (as with StreamIt [77]). The second step performs a global direct

access transformation for inter-actor communication across the whole stream graph. In

LaminarIR, actor declarations must name the tokens on each incoming and outgoing

data channel. Work functions explicitly refer to named tokens rather than relying on

FIFO queue operations for data communication.

In this chapter, we discuss the following contributions of this thesis:

22

1. We identify FIFO queues as the dominating roadblock for achieving high perfor-

mance with stream programming languages. This roadblock hampers the imple-

mentation of structured stream programs on von-Neumann architectures.

2. We establish the program transformation and its underlying theory to replace

FIFO queues by the LaminarIR format, which manages buffers already at compile-

time.

3. We evaluate the proposed transformation across four hardware platforms in terms

of performance and energy consumption. Our evaluation is based on a represen-

tative set of StreamIt benchmarks.

The remainder of this chapter is organized as follows. In Section 4.2 we present a

motivating example for our framework. In Section 4.3 we describe the LaminarIR, the

local direct access transformation with StreamIt as a case-study, and the LaminarIR code

generator. Section 4.4 describes our global direct access transformation. Section 4.5

contains the experimental evaluation.

4.2 Motivating Example

Let us consider the example in Fig. 4.1a. This example uses StreamIt, but our pro-

posed technique applies to any stream programming model that employs static data

rates. Our example computes the arithmetic and geometric means from pairs of num-

bers produced by the source actor A. Actor A lifts input data into the stream-graph by

calling a native function my.frand(), which is a floating-point random number gen-

erator that employs glibc’s rand() function under the hood. Each invocation of the

source actor produces one random number that is then passed to the splitter S, which

duplicates its input stream for actors B and C to compute the arithmetic and the geo-

metric mean, respectively. The output streams of actors B and C are joined for actor D

to output the results. The stream graph of this example is depicted in Figure 4.1d; the

numbers stated with each stream-graph edge denote the number of data-items (tokens)

produced and consumed by one invocation of the respective edge’s producer and con-

23

sumer actors. During code generation, a stream compiler will use these production and

consumption rates to dimension the buffer capacity required on each stream-graph edge.

These capacities will depend on the chosen actor execution schedule; To keep the ex-

ample simple, we assume the sequential schedule 2A, 2S,B,C, J,D, where actor A ex-

ecutes twice, followed by two executions of the splitter S, and then single invocations of

actors B, C, J and D. An implementation for this schedule is depicted in Figure 4.2a.

Therein each push() statement has been mapped to an enq operation that places a

token in the corresponding actor’s output queue. deq operations read tokens from an

actor’s input queue. On a shared-memory CPU, these queues will be implemented as

buffers that are accessed indirectly via read- and write-pointers. Every enq and deq

operation entails the overhead of maintaining the read- and write-pointers, plus the cost

of indirect token-access itself.

We can specialize our program by connecting producer-side operands to the opera-

tions in the consumer that process them. For example, from the above schedule we can

easily infer that the tokens produced by two invocations of actor A become the input for

the arithmetic and the geometric mean computations of actors B and C in lines 18 and 22

of Figure 4.1a. Instead of routing these tokens through the duplicating splitter S and its

associated queues, we explicate the token-flow through the stream graph as depicted

by the data dependence graph in Figure 4.1e. There, each operation from a consumer

actor (e.g., (_ + _) ∗ 1
2

and
√

_ ∗ _) directly accesses its operands from the producer

actor. Direct token-access eliminates splitters, joiners and FIFO queues altogether. Cre-

ated by a compiler, the direct access format effectively shifts FIFO buffer management

from run-time to compile-time. This transformation cannot be established solely from

an actor’s source-code, because the amount of tokens that occur on a data channel at

any given point in time is determined by the actor execution schedule. E.g., although

it is true that the push statement in line 14 of actor A always enqueues a token at the

back of the queue, the memory address of the accessed queue position depends on the

state of the queue, i.e., the number of elements already in the queue. Thus, in the sched-

ule 2A, 2S,B,C, J,D the first invocation of actor A will write to a different memory

address than the second invocation.

24

As an example transformation, consider actor C in Figure 4.1b, which is the result

of the local direct access conversion of our motivating example. The input section of

actor C states two named tokens x1 and x2, which are written in this order by split-

ter S. The actor stores its output in token y; the geometric mean computation in the

firing section is defined in terms of the named tokens x1, x2 and y. We refer to

named tokens as indirections, because they divert a token access inside of an actor to an

abstract storage location, where it can be aliased with the corresponding token access at

the opposite endpoint of the respective data channel during the second step of our low-

ering transformation. This second step is a global graph transformation that employs

the stream graph topology to pair producer- and consumer-side indirections. The result

of this transformation on our motivating example is depicted in Figure 4.2b. Boxes ()

denote abstract token storage locations between actors. Tokens are passed explicitly by

a write-operation of the producer on an indirection which is aliased by an indirection in

the consumer. E.g., the first invocation of actor A, i.e.,A1, writes its output to indirection

A1.y, which is aliased by indirections C.x1 and B.x1 of actors C and B respectively.

Splitters and joiners are eliminated during the global indirect access transformation. The

LaminarIR format is on a sufficiently low abstraction level for LLVM to promote all to-

ken variables to SSA form. The data-flow graph in Figure 4.1e depicts the dependencies

that LLVM generated from the LaminarIR of our motivating example.

For the sake of readability we have restricted the size of the motivating example. Note

however that the proposed technique applies to synchronous data flow (SDF) graphs

in general. Our experimental evaluation in Section 4.5 applies this technique to entire

StreamIt applications. Our proposed technique is applicable to static-rate sub-graphs

of hybrid approaches like the one from [70]. With such a hybrid approach, edges with

dynamic data rates are kept as FIFO queues, whereas edges with static data rates are

transformed to the LaminarIR format. Conversely, the LaminarIR does not inhibit par-

allelization. Rather, our technique can be applied to any stream sub-graph with static

data-rates. Although outside the scope of this work, such sub-graphs can be produced

by state-of-the-art multicore parallelization techniques. Our optimization is thus orthog-

onal to stream parallelization techniques to enhance performance.

25

program ::= sdf id { edge node }

edge ::= type id .idx? (((rate)))? -> id .idx? (((rate)))?

delay ::= = { val }

node ::= actor id { StateDef ? NodeDef }

StateDef ::= state: code init: code

NodeDef ::= input? firing output?

input ::= input: channel

firing ::= firing: code

output ::= output: channel

channel ::= id : indirections

indirections ::= id ,id

Figure 4.3: Abstract Syntax of LaminarIR. For brevity, constructs not relevant for buffer

management have been omitted.

4.3 LaminarIR

The LaminarIR is a domain-specific program representation for stream programming

languages that employ static data rates. Unlike StreamIt, which represents programs as

hierarchies of pipelines, loops and split-join compound statements, LaminarIR employs

a flat, directed graph structure which is not restricted to structured stream graphs. Lam-

inarIR provides an actor with direct access to the tokens of its incoming and outgoing

data channels. The LaminarIR is thus on a lower abstraction level than StreamIt, which

abstracts away direct token access adapting a queue model with the push, pop, and

peek statements.

LaminarIR’s abstract syntax is summarized in Figure 4.3. Each program starts with a

sequence of edge declarations that define the topology of the program’s stream graph.

Here, edge denotes a list of edge components; we use similar notation for other lists in

the LaminarIR grammar. Lines 2–7 from Figure 4.1b constitute the edge section of our

motivating example’s stream graph. An edge declaration consists of the token-type and

26

Pa
rs

erStreamIt
(.str)

L
oc

al
D

ir
ec

tA
cc

es
s

Tr
an

sf
or

m
at

io
n

G
lo

ba
lD

ir
ec

tA
cc

es
s

Tr
an

sf
or

m
at

io
n

C
od

e
G

en
er

at
or

D
ir

ec
t

A
cc

es
s

FI
FO

C code employing
direct token access (.c)

C code employing
FIFO queues (.c)

AST
Laminar

IR
Laminar

IR

Figure 4.4: LaminarIR framework

the producer and consumer actor of the edge. With splitters and joiners, we additionally

require the specification of input and output data-rates from which LaminarIR can de-

duce whether the actor is either a splitters or joiner. If an actor is not a splitter/joiner,

the actor requires an explicit node declaration that includes data-rates for consumption

and production. As an example, splitter S referred in line 2 of Figure 4.1b will consume

one token on the edge A->S on each invocation. An actor can have several instances,

for which the LaminarIR provides optional indexes (idx). The indexes are appended to

the produced/consumer declarations of an edge declarations. Throughout this chapter

we distinguish actor instances by subscripts.

Actors other than splitters and joiners are declared in the node section of the Lam-

inarIR. A node declaration defines incoming channels and channel indirections in the

node’s input section, and outgoing channels and their indirections in the output section.

The order of stated indirections (left-to-right) corresponds to their positions (front-to-

back) in the associated queue. Actor computations are defined in the firing section of

an actor declaration. Indirections are referenced like regular variables, except that in-

put indirection are restricted to read-accesses, and output indirections to write-accesses,

respectively. No constraints are imposed on the order of indirection accesses within an

actor’s firing section. An actor is stateful if an optional state section is defined. State

variables declared in the state section are initialized in the init section, which is run

once before execution of the program’s steady-state.

The code generator of the LaminarIR framework, as shown in Figure 4.4, uses actor

functions as code templates, computes a schedule and produces a single block to execute

a finite periodic schedule. Hence, tokens become local and the data-flow between actor

invocations for the compiler is fully exposed.

27

4.3.1 Local Direct Access Transformation

StreamIt provides a queue semantics to access input and output tokens of an actor,

whereas LaminarIR has named tokens only. To lower queue operations for accessing

input and output tokens, LaminarIR requires a mapping from StreamIt’s push state-

ments to named output tokens and from StreamIt’s pop and peek operations to named

input tokens. This mapping must be static, i.e., for all possible program paths in the

control-flow of the actor, the conversion must be semantically correct. However, the

queue operations may be dependent on data-dependent control-flow constructs. Hence,

an automatic conversion may fail. To overcome this issue, we have devised a translation

scheme that performs constant propagation and loop-unrolling, which covers almost all

practical cases to convert push and pop operations of StreamIt to named tokens. Our

local conversion covers all but 3 actors of the StreamIt benchmarks with static data-rates

from [76].

If the translation fails, we introduce dynamic read/write counters for the queue posi-

tion that are incremented when push/pop statements are executed. Depending on the

counters, the appropriate named token is accessed via a switch/case statement. This is

possible, because the number of named tokens for each channel is a constant. However,

the dynamic conversion from push and pop statements imposes a run-time overhead

as discussed in the experimental evaluation in Section 4.5.

Our StreamIt-to-C source to source transformation framework is depicted in Fig-

ure 4.4. Parsed StreamIt programs are lowered to LaminarIR by the local and global

direct access transformations, to be followed by C code generation. The StreamIt com-

piler applies its own set of graph transformations, e.g., by combining multiple actors

into a single aggregate actor (fusion) or by instantiating an actor multiple times (fission)

and wrapping the instances by a round-robin split-join combination to achieve data par-

allelism [30]. To isolate the effects of the LaminarIR as the independent variable in our

experimental evaluation, we have implemented our own FIFO queue backend. Unlike

StreamIt, our FIFO queue backend does not change the underlying stream graph struc-

ture. (Our experimental evaluation in Section 4.5 compares LaminarIR to both StreamIt

28

and our own FIFO queue backend.) The LaminarIR framework and the benchmarks that

we used with the experimental evaluation are available online [1].

4.4 Global Direct Access Transformation

We give two types of semantics for the SDF programming model. The first semantics

may be considered as a concrete semantics for SDF. The state of the data channels in the

concrete semantics are modeled via an array of lists. A list in the array represents state

of a data channel between two actor firings. Actors are fired according to a sequential

schedule. An actor firing (1) dequeues tokens from its incoming data channels, (2) the

dequeued tokens are applied to the firing function of the actor, and (3) the produced

tokens of the firing function are enqueued on its outgoing data channels. The second

semantics is an auxiliary semantics, which stores tokens by indirections. Instead of hav-

ing data channels storing tokens, symbols with an environment are used to represent the

state between actor firings. The auxiliary semantics results in a non-constructive impera-

tive program of infinite length with infinite number of program variables. We finitize the

imperative program using the finite admissible periodic schedule of the SDF program.

4.4.1 Background and Notation

An SDF program is a data-flow graph which statically specifies the number of data

tokens produced or consumed by each actor on each invocation a priori [11]. An SDF

program is expressed as a directed graph with a set of actors V = {1, . . . , n} and a

set of data channels E = {1, . . . ,m} that connect actors. When an actor i is fired,

the consumption of tokens on the incoming channels is represented by function c :

V → (E → N). For example c3(1) denotes the consumption rate of actor 3 on data

channel 1. If data channel 1 is not an incoming edge of actor 3, then the consumption

is set to zero. Similarly, the production of tokens is modeled by function p : V →

(E → N). An SDF program has a delay, which represents the initial tokens in the

data channel before firing actors in a schedule 〈u1, u2, . . .〉. It is assumed that an SDF

program has a finite admissible periodic schedule 〈u1, u2, . . . , uk〉 that consists of a

29

finite sequence of actor invocations [49]; the periodic finite schedule is computed at

compile time, invokes each actor of the SDF graph at least once, and produces no net

change in the system state, i.e., the number of tokens on each edge is the same before

and after executing the schedule. Thus, a periodic finite schedule can be executed ad-

infinitum without exhausting memory, and we refer to the state before and after the

execution of a periodic finite schedule as the steady-state.

For representing the state of a data channel, we resort to simple lists for which we

introduce two functions. Function headk : (t1, . . . , tk−1, tk, tk+1, . . . , tl) 7→ (t1, . . . , tk)

extracts the first k elements from the list and function tailk : (t1, . . . , tk−1, tk, tk+1, . . . ,

tl) 7→ (tk+1, . . . , tl) extracts the elements from tk+1 onwards. The concatenation of two

lists l1 and l2 is denoted by l1 · l2. We extend the functions for lists to array of lists, e.g.,

head(k1,...,km)(l1, . . . , lm) = (headk1(l1), . . . , (headkm(lm)) to represent the state of an

SDF program.

Boot Schedule The boot schedule of an SDF graph G = (V,E) denotes a sequence

of node invocations of any node v ∈ V to arrange a sufficient number of tokens for all

edges e ∈ E according to Definition 1. We define a non-negative integer vector i ∈ Nn
0

called the init vector whose elements correspond to nodes in the SDF graph. Element

i (v) for all v ∈ V indicates the number of occurrences of node v in the boot schedule.

The number of tokens that reside on edge (u, v) after booting can be written as i (u)×

prd ((u, v))− i (v)× cns ((u, v)). Therefore, we can derive Definition 3.

Definition 3. s ((u, v)) = i (u)× prd ((u, v))− i (v)× cns ((u, v)) , ∀(u, v) ∈ E

To compute the vector i of a boot schedule, we introduce the level * of node, which

indicates the depth of the node from the sink node. We define vector l whose elements

correspond to the levels of node in the SDF graph.

l (v) =


0 if v ∈ sink(G),(

max
w∈succs(v)

l (w)

)
+ 1 otherwise.

(4.1)

*In [49], Lee et al. defined the level of a given node is the longest number of invocations of a given

node on a path from the node to the sink node of a graph.

30

Thus the number of invocations of node v for booting is

i (v) = l (v)× r (v) . (4.2)

Lemma 1. Equation (4.2) is equivalent to i (v) = max
w∈succs(v)

(
(i (w) + r (w))× cns((v,w))

prd((v,w))

)
.

Proof.

i (v) = l (v)× r (v)

=

(
max

w∈succs(v)
(l (w)) + 1

)
× r (v) by Equation (4.1)

=

(
max

w∈succs(v)
(l (w) + 1)

)
× r (v)

= max
w∈succs(v)

((l (w) + 1)× r (v))

= max
w∈succs(v)

(
(l (w) + 1)× r (w)× cns ((v, w))

prd ((v, w))

)
by Definition (2)

= max
w∈succs(v)

(
(l (w)× r (w) + r (w))× cns ((v, w))

prd ((v, w))

)
= max

w∈succs(v)

(
(i (w) + r (w))× cns ((v, w))

prd ((v, w))

)
. by Equation (4.2)

Lemma 2. Based on Definition 1, i (u)× prd ((u, v)) ≥ i (v)× cns ((u, v)) holds.

Proof.

s ((u, v)) = i (u)× prd ((u, v))− i (v)× cns ((u, v)) .

Thus,

s ((u, v)) ≥ r (v)× cns ((u, v))

i (u)× prd ((u, v))− i (v)× cns ((u, v)) ≥ r (v)× cns ((u, v))

i (u)× prd ((u, v)) ≥ (i (v) + r (v))× cns ((u, v))

≥ i (v)× cns ((u, v)) .

31

We assume a single appearance schedule for booting. Therefore, the execution order

of nodes is in topological order of the SDF graph G.

Lemma 3. For an SDF graph G = (V,E), the boot schedule expressed by the vector i

satisfies s ((u, v)) ≥ r (v)× cns ((u, v)) for all v ∈ V and predecessor u ∈ preds (v).

Proof. By structural induction on G in reverse topological order.

Base case: For the sink node v ∈ sink (G), it holds that l (v) = 0 and i (v) = 0. Thus

Definition (1) trivially holds.

Hypothesis: For any node v ∈ V with level l (v) = n and any successor w ∈ succs (v),

we assume s ((v, w)) ≥ r (w)× cns ((u,w)).

Then ∀u ∈ preds (v),

l (u) ≥ l (v) + 1 by Equation (4.1)

l (u)× r (v)× cns ((u, v)) ≥ (l (v) + 1)× r (v)× cns ((u, v))

l (u)× r (u)× prd ((u, v)) ≥ (l (v) + 1)× r (v)× cns ((u, v)) by Definition 2

l (u)× r (u)× prd ((u, v))− l (v)× r (v)× cns ((u, v))

≥ r (v)× cns ((u, v))

i (u)× prd ((u, v))− i (v)× cns ((u, v))

≥ r (v)× cns ((u, v)) . by Equation (4.2)

Thus s ((u, v)) ≥ r (v)× cns ((u, v)).

4.4.2 Concrete SDF Semantics

We express the concrete semantics of an SDF program by means of a simple recur-

rence relation between two subsequent states, because there is only a single possible

transition from one actor firing to another actor firing for a given infinite schedule.

Definition 4. For a given schedule 〈u1, . . .〉, the states 〈s0, . . .〉 of the concrete semantics

32

are given as,

s0 = delay

si = taili(si−1) · fi(headi(si−1)), for i > 0,

where the initial state s0 is referred to as delay.

A state si (for all i ≥ 0) is an array of lists representing the snapshot of data tokens

stored in the data channels between two actor firings. A channel is represented by a list

and the lists of all channels are collated to an array. The size of the array is determined

by the number of edges in the SDF program† whereby the list lengths are determined

by the number of tokens stored in the data channels that may change if an actor either

consumes from or produces tokens for the channel. An actor firing of actor ui is ex-

pressed by the actor firing function fi that takes the tokens to be consumed as an input

and produces the tokens on the outgoing channels. The input/output behaviour of an

actor function is also represented by a function whose domain and co-domain are arrays

of lists. The corresponding lists of an outgoing channel contain the produced tokens

whereas channels that are not outgoing channels will be empty. The input is represented

by lists of input tokens for all channels. If a list is an incoming edge, the number of

elements in the list is determined by the consumption rate; otherwise the list is empty.

We employ the function headi(si−1) that accesses the input tokens of the actor firing,

i.e., head(cui (1),cui (2),...,cui (m))(si−1) where cui
(j) denotes the consumption rate of actor

ui on channel j to extract the input tokens for the current actor firing fi. For instance,

for a channel k, cui
(k) tokens are retrieved and applied to actor firing function fi of

actor ui. The new tokens that are produced by the actor function are concatenated with

taili(si−1) = tail(cui (1),cui (2),...,cui (m))(si−1), i.e., the state of the data channels after con-

suming the input tokens. Note that the states 〈s0, . . .〉 are only defined if, for all actor

firings i, there are enough tokens enqueued in state si−1 for firing semantic function fi.

This property holds if the schedule is a finite admissible periodic schedule, for example.

†The underlying assumption here is that the SDF graph is stable throughout the execution and the

number of edges do not change.

33

An implementation of the concrete semantics is shown in Listing 4.4. We assume that

the schedule is a finite periodic schedule stored in schedule of length K. The state is

an array of token lists that stores the tokens of each channel from 1 to m. The state is

initialized with tokens in delay and updated by subsequent actor firings. The variable

state outside the loop represents s0 of the concrete semantics. For each firing of actor

u, the input for u is stored in variable input that receives its value by extracting the

input tokens from the current state si−1 represented by variable state using function

head. In the next step, the semantic function for u is executed with the computed input

and the output is produced. The output of the firing function is concatenated with the

state after removing the input tokens using the tail function. After updating the state

variable state, the variable represents state si.
1 var schedule:array[1..K] of nodes;

2 var consumption_rate:array[1..N]:array[1..M] of integer;

3 var delay,state,input,output:array[1..M] of list;

4 ...

5 state:=delay;

6 i:=1

7 loop

8 u:=schedule[i];

9 i:=(i mod K)+1;

10 for j in {1..M} do

11 input[j]:=head(state[j],consumption_rate[u,j])

12 output:=fire(u,input);

13 for j in {1..M} do

14 state[j]:= tail(state[j],consumption_rate[u,j]) ‖

15 output[j];

Listing 4.4: Implementation of concrete semantics of SDF

4.4.3 Auxiliary Semantics

We introduce an auxiliary semantics that produces a sequential program whose vari-

ables represent tokens in the data channel. The produced sequential program does not

require the notion of FIFO queues. To construct the auxiliary semantics, the data chan-

nels are represented symbolically, i.e., the data channels store symbols for which there

exists an environment that maps symbols back to tokens. To ensure the correctness of

34

the auxiliary semantics, the domain of tokens is disjoint from the domain of symbols.

The auxiliary semantics stores tokens in data channels by indirection: a list of to-

kens 〈t1, . . . , tk〉 in the concrete semantics is represented by a sequence of symbols

〈v1, . . . , vk〉 for which there is an environment e : {v1 7→ t1, v2 7→ t2, . . . , vk 7→ tk}.

With the environment the symbol lists 〈v1, . . . , vk〉 are mapped back to the list of tokens

〈t1, . . . , tk〉. We denote the mapping by 〈t1, . . . , tk〉 = e(〈v1, . . . , vk〉) for environment

e. We introduce a helper function (〈v1, . . . , vk〉, e′) = fold(〈t1, . . . , tk〉, e) where e′ is

the extended environment adding the mappings {v1 7→ t1, v2 7→ t2, . . . , vk 7→ tk} to e.

The newly introduced variables {v1, . . . , vk} are disjoint from the existing variables in

environment e.

Lemma 4. For all token lists 〈t1, . . . , tk〉 and an arbitrary environment e, the following

holds:

〈t1, . . . , tk〉 = (λ (l′, e′) .e′(l′))fold(〈t1, . . . , tk〉, e).

The above lemma is a correspondence lemma, i.e., the fold function converts a to-

ken sequence with an environment e to a pair consisting of a symbol sequence and an

environment that can be converted back to the token sequence. This is expressed by a

lambda function, that binds the symbol sequence l′ and environment e′ from the result of

the fold function. When the environment e′ is applied to the symbol sequence we obtain

the token sequence. Hence, the translation of any token list to a symbol list is reversible

under the environment e provided by the fold operation, because only new symbols

are introduced for each token in 〈t1, . . . , tk〉. To operate on symbolic states, we extend

the definitions of the environment application e(〈v1, . . . , vk〉) and folding operation to

arrays of symbol lists v for ease of readability.

Definition 5. For a given schedule 〈u1, . . .〉 the symbolic states with their environments

〈(v0, e0), . . .〉 in the auxiliary semantics are defined as

(v0, e0) = fold(delay, ∅)

(vi, ei) = (λ (l′, e′) .(taili(vi−1) · l′, e′))

fold(fi(ei−1(headi(vi−1))), ei−1), for i > 0,

35

where vi is an array of symbol sequences and ei is its variable environment of the i-th

step.

The definition of the auxiliary semantics goes in-line with the concrete semantics of

SDF. Instead of token lists, symbol lists and their environments are used to describe the

state of the data channels. Before applying the actor firing function, the symbol lists of

the input are converted to concrete token lists by environment ei−1. This is necessary

because the semantic function fi is not computable symbolically in general. The result

of the actor firing function is mapped back to symbol lists by the fold function. Since

the fold function converts the output of the actor firing to a pair (l′, e′), we use a λ-

function to construct the new symbolic state by concatenating the state after consuming

the tokens from the incoming edges with the output of the actor firing function.

Lemma 5. Semantic equivalence: For a schedule 〈u1, . . .〉 the evaluated symbolic states

of the auxiliary semantics coincide with the states of the concrete semantics, i.e., for all

i ≥ 0, ei(vi) = si.

The equivalence of the concrete semantics and the auxiliary semantics can be shown

by structural induction in a straightforward fashion.

Instead of using a functional notion to express the computations, the auxiliary seman-

tics guides the translation to an imperative program. The symbols of the environments

become program variables and the actor firings become function calls. The underlying

assumption is that the program and the program variables are unbounded. The impera-

tive program of the auxiliary semantics is given by

v0 ← delay

new1 ← f1(head1(v0))

new2 ← f2(head2(v1))

. . . ,

where newi are the newly produced symbols in the i-th step by the actor firing, i.e.,

vi = taili(vi−1) · newi. Here, the array of symbolic sequences become block assign-

ments of program variables and blocked argument passing to the function calls. Unfor-

36

tunately, the resulting imperative program is non-constructive and we seek a program

that is bounded. To finitize the imperative program, we use the existence of the finite

admissible‡ periodic schedule 〈u1, . . . , uk〉, which have neither net-gains nor net-losses

of tokens after execution. The imperative program is rewritten using an infinite loop as

follows:

v0 ← delay

loop : new1 ← f1(head1(v0))

new2 ← f2(head2(v1))

. . .

newk ← fk(headk(vk−1))

v0 ← vk

goto loop

In the loop the first k actors of the finite periodic schedule are fired and the symbolic

state vk to v0 is copied at the end of the loop body. The steady-state property guarantees

that both symbolic states have the same cardinality. Note that this program is seman-

tically correct only if all symbolic tokens of v0 have been consumed at the end of the

periodic schedule. In case that the delay is too large and there exist symbols of v0 in vk,

the periodic schedule 〈u1, . . . , uk, u1, . . . , uk, . . . , u1, . . . , uk〉 is expanded by several it-

erations of the periodic finite schedule until no symbols of the delay remain in the final

state of the expanded periodic schedule. The expansion is necessary since a symbol can

only carry a single token and not a multitude.

Note that for splitters and joiners the actor firing function re-distributes the tokens and

can be directly executed at a symbolic level. Hence, splitters and joiners are dissolved

in the generated program, and only actor functions that do actual computational work

are performed.

‡The SDF program has steady-state, i.e., the number of tokens before and after the execution of the

finite periodic schedule is the same on all data channels.

37

Table 4.1: Benchmark specification

Benchmarks Parameters and values

DCT window size (8×8), coarse

DES number of rounds (16)

FFT window size (16)

MatrixMult matrix dims (10×10, 10×10)

AutoCor vector length (32), series length (128)

Lattice number of Stages (10)

Serpent number of rounds (32), length of text (128)

JPEG window size (64), fine, loops

BeamFormer beams (4), channels (12), coarse filter tabs (64), fine filter tabs (64)

Comp. Count. number of values to sort (16)

RadixSort number of values to sort (16)

4.5 Experimental Results

We conducted our experimental evaluation on the Intel i7-2600K, AMD Opteron 6378,

Intel Xeon Phi 3120A and ARM Cortex-A15 platforms. Characteristic features of the

tested platforms are summarized in Table 4.2. Our evaluation comprised the Lami-

narIR direct access format and FIFO queues (C code), and the C++ code generated

by StreamIt 2.1.1. All source code was compiled by Intel’s ICC compiler for the In-

tel Xeon Phi 3120A, and the LLVM compiler infrastructure for the other processors.

LLVM’s optimizing middle-end provides fine-grained control over the selection of op-

timization passes and their application order. We employed this facility for an in-depth

analysis of the profitability of each optimization on the evaluated formats.

Our experimental evaluation focuses on single thread performance only, to dissect

the effect of our optimization on the full range of low-level compiler optimizations.

Focusing on single thread performance avoids the experiment to be perturbed from syn-

§Shared by 2 cores.

38

Table 4.2: Hardware configuration

CPU Intel

i7-2600K

AMD

Opteron 6378

ARM

Cortex-A15

Intel

Xeon Phi 3120A

Clock Freq. 3.4 GHz 2.4 GHz 1.7 GHz 1.1 GHz

I-Cache 32 kB 64 kB§ 32 kB 32 kB, unified data

L1 D-Cache 32 kB 16 kB 32 kB and instruction cache

OS Ubuntu 12.04 CentOS 6.5 Linaro 13.08 Centos 6.5

Kernel ver. 3.2.0 2.6.32 3.11.0 2.6.32

C Compiler LLVM/Clang 3.5.0 ICC 14.0.3

chronization and inter-processor communication overhead, which are orthogonal to our

optimization. StreamIt’s backend was thus used with the default setting that compiles

for a uniprocessor. Measurement data was collected from hardware performance coun-

ters using PAPI [16]. Except with the Intel Xeon Phi 3120A that does not support CPU

frequency scaling, we employed scaling governors on all platforms to lock the clock fre-

quency to the values stated in Table 4.2. As a result, the coefficient of variation of each

measurements is close to 0%. Our list of representative benchmarks from the StreamIt

benchmark suite [76] is stated in Table 4.1. Five benchmarks are from the StreamIt

Core Benchmark Suite proposed by the MIT-StreamIt-group [30]. The StreamIt Core

Benchmark Suite contains 12 benchmarks, and Serpent and DES are the largest bench-

marks. RadixSort (single-pipeline), AutoCor (split/joins) and JPEG (two loops) were

included for their distinct stream-graph features. ComparisonCounting and MatrixMult

were chosen as adversary test cases for LaminarIR. ComparisonCounting features in-

put data-dependent push/pop statements that limit direct token access, and MatrixMult

is aggressively fused by StreamIt, which incurred a penalty on the LaminarIR. Beam-

Former, one of the 12 StreamIt Core benchmarks, contains 28 stateful actors. Most

StreamIt benchmarks use static input data; with the LaminarIR direct access format,

39

static input enabled LLVM to compute partial results already at compile-time. We thus

manually converted the benchmarks to use randomized input instead (similar to our

motivating example in Figure 4.1a). All evaluations shown in this chapter are based

on randomized input. We report on the enabling effect of the LaminarIR by comparing

the performance achieved with static and randomized input, in comparison to the FIFO

queues and StreamIt code.

4.5.1 Performance

Figure 4.5 and Figure 4.6 show the speedups achieved by the LaminarIR direct access

format over FIFO queues and StreamIt respectively. LaminarIR’s direct access format

achieves average speedups of 7.25x over FIFO queues and 3.73x over StreamIt on the

Intel i7-2600K, 7.43x and 4.13x on the AMD Opteron 6378, 6.75x and 4.98x on the

Intel Xeon Phi 3120A and 6.74x and 4.84x on the ARM Cortex-A15.

In general, more complex benchmarks have a tendency to contain more split-joins,

which are eliminated altogether with the LaminarIR direct access format, leading to

larger performance improvements. The corresponding reduction of communication costs

is covered in Section 4.5.2. DES, which shows the best performance improvement

amongst all benchmarks, achieves a 36.2x speedup with the LaminarIR direct access

format over FIFO queues, and a 19.2x speedup over StreamIt on the Intel i7-2600K.

The DES encryption algorithm uses static keys. With direct token access, computations

on static data can be partially computed already at compile time, which reduces code-

size and instruction cache misses, leading to very competitive performance compared to

the FIFO queues and StreamIt representations.

40

(a) without compiler optimization

Average

RadixSort

Comp. Count.

BeamFormer

JPEG

Serpent

Lattice

AutoCor

MatrixMult

FFT2

DES

DCT

Architecture

i7

ARM

Opteron

Xeon Phi

Average

RadixSort

Comp. Count.

BeamFormer

JPEG

Serpent

Lattice

AutoCor

MatrixMult

FFT2

DES

DCT

.83 1 1.5 2 5 10 15 20 25 30 35

Speedup

(b) with compiler optimization

Figure 4.5: Speedup of LaminarIR vs. FIFO queues without compiler optimization (top),

and with compiler optimization (bottom)

41

(a) without compiler optimization

Average

RadixSort

Comp. Count.

BeamFormer

JPEG

Serpent

Lattice

AutoCor

MatrixMult

FFT2

DES

DCT

Architecture

i7

ARM

Opteron

Xeon Phi

Average

RadixSort

Comp. Count.

BeamFormer

JPEG

Serpent

Lattice

AutoCor

MatrixMult

FFT2

DES

DCT

 .30 .71 .89 1 1.5 2 5 10 15 20 25 30 35

Speedup

(b) with compiler optimization

Figure 4.6: Speedup of LaminarIR vs. StreamIt without compiler optimization (top),

and with compiler optimization (bottom)

42

Two benchmarks, ComparisonCounting and JPEG, showed a speed-down on the In-

tel Xeon Phi 3120A. ComparisonCounting contains a temporary array variable in the

StreamIt source code, which our optimization does not target. We attribute the speed-

down to the effect of the Intel Xeon Phi’s 512bit wide SIMD registers in conjunction

with this array. The JPEG benchmark contains similar programmer-provided arrays.

Table 4.4 compares the LaminarIR direct access format to FIFO queues and StreamIt

in terms of the total number of instructions executed (columns 2 and 6), the number of

memory loads (columns 3 and 7) and stores (columns 4 and 8), and the energy consump-

tion of the CPU (columns 5 and 9). All data was collected from hardware performance

counters on the Intel i7-2600K processor. Stated percentages denote LaminarIR direct

access over FIFO, and LaminarIR direct access over StreamIt. E.g., LaminarIR direct

access executes on average only 43.66% of instructions compared to StreamIt, and it

consumes only 55.8% of the energy. The LaminarIR direct access format uses only

around 40% of memory accesses on average compared to FIFO queues and StreamIt.

SDF programs are data centered in general and about 40% of the total instructions exe-

cuted are loads and stores on average with FIFO queues.

Figure 4.7 shows the effectiveness of the LaminarIR with compiler optimizations.

Static input data enables compilers to compute partial results already at compile-time,

showing a 5.53x average speedup over randomized input when using the LaminarIR

direct access format. This effect is observed to a much lesser degree with FIFO queues

(1.56x average speedup) and StreamIt (1.34x average speedup). We found the amount of

computations shifted to compile-time startling with some benchmarks, e.g., only 2% of

instructions are left when using static input data in conjunction with the LaminarIR with

the Comparison Counting benchmark. Another scenario for large improvements with

the LaminarIR direct access format are programs which fit into the L1 data and instruc-

tion caches after compiler optimizations on static input have been conducted (e.g., with

DES). The reduced code sizes and data accesses are beneficial especially on processors

which provide smaller instruction and L1 data caches, such as the Intel Xeon Phi 3120A.

43

1

1.7

5

10

15
20

30
40

1

1.7

1

1.7

D
ire

c
t a

c
c
e
s
s

F
IF

O
S

tre
a
m

It

D
C
T

D
ES

FFT2

M
at

rix
M

ul
t

Aut
oC

or

La
tti
ce

Ser
pe

nt

JP
EG

Bea
m

Fo
rm

er

C
om

p.
 C

ou
nt

.

R
ad

ix
Sor

t

Ave
ra

ge

S
p
e
e
d
u
p

Architecture

i7

ARM

Opteron

Xeon Phi

Figure 4.7: Effectiveness of the LaminarIR with compiler optimizations: static input

data enables compilers to compute partial results already at compile-time, showing a

5.53x average speedup over dynamic input when using LaminarIR. This effect is ob-

served to a much lesser degree with our FIFO queue implementation (1.56x average

speedup) and StreamIt (1.34x average speedup).

44

Table 4.3: Communication reduction from the elimination of splitters and joiners with

the LaminarIR direct access format

Benchmark
Reduction

Abs. (byte) Ratio to total

DCT 0 0.00%

DES 66,048 60.48%

FFT 1,024 20.00%

MatrixMult 60,800 69.72%

AutoCor 17,536 50.00%

Lattice 14,308 43.76%

Serpent 101,640 33.33%

JPEG 6,208 41.59%

BeamFormer 1,280 30.08%

Comp. Count. 1,664 52.00%

RadixSort 0 0.00%

Average 36.45%

4.5.2 Communication Elimination

Table 4.3 shows the absolute numbers of bytes that the size of data channels decreased

with the LaminarIR direct access format (column “Abs. (byte)”). Column “Ratio to to-

tal” shows the proportion to the total number of bytes transferred during one steady state

iteration of a benchmark. Such communication reductions are due to the elimination of

splitters and joiners. No improvement is possible with the DCT and RadixSort bench-

marks, because they do not contain splitters or joiners. However, the LaminarIR direct

access format shows better performance than FIFO queues and StreamIt with those two

benchmarks (see Figure 4.5, Figure 4.6 and Table 4.4), which implies that it is more

efficient even with the same amount of data communication.

45

Table 4.4: Improvements of the LaminarIR direct access format over FIFO queues and

StreamIt on the Intel i7-2600K

Benchmarks

LaminarIR over FIFO queues

Inst.
Mem. Acc. Energy

Loads Stores Cons.

DCT 88.29% 95.78% 99.14% 107.65%

DES 7.00% 11.85% 4.08% 3.51%

FFT 60.71% 50.25% 43.26% 73.47%

MatrixMult 14.55% 14.99% 6.34% 11.50%

AutoCor 22.26% 25.16% 9.01% 27.47%

Lattice 11.12% 12.00% 9.64% 14.26%

Serpent 22.87% 34.60% 33.37% 20.39%

JPEG 6.04% 4.85% 5.03% 8.21%

BeamFormer 59.14% 59.28% 43.73% 58.15%

Comp. Count. 47.82% 34.92% 17.15% 46.49%

RadixSort 81.91% 61.04% 79.21% 98.64%

Average 38.34% 36.79% 31.81% 42.70%

Benchmarks

LaminarIR over StreamIt

Inst.
Mem. Acc. Energy

Loads Stores Cons.

DCT 65.11% 58.77% 97.87% 95.54%

DES 12.98% 14.09% 5.72% 6.44%

FFT 62.09% 55.49% 46.58% 72.53%

MatrixMult 29.59% 23.77% 12.13% 47.80%

AutoCor 40.30% 40.00% 26.31% 35.91%

Lattice 20.16% 15.88% 15.68% 47.38%

Serpent 45.88% 41.34% 42.94% 55.25%

JPEG 8.53% 6.30% 7.00% 16.34%

BeamFormer 59.44% 58.85% 44.22% 72.01%

Comp. Count. 57.24% 44.78% 35.08% 60.16%

RadixSort 78.95% 85.65% 77.81% 104.43%

Average 43.66% 40.45% 37.40% 55.80%

46

Table 4.5: Enhanced SSA promotion

Benchmarks
Direct Access

Abs. vs. FIFO vs. StreamIt

DCT 138 575.00% 460.00%

DES 7,526 250.03% 302.01%

FFT2 1,240 212.33% 529.91%

MatrixMult 2,603 518.53% 2991.95%

AutoCor 418 40.50% 35.73%

Lattice 3,330 234.51% 1640.39%

Serpent 36,802 229.63% 1594.54%

JPEG 1,363 236.63% 580.00%

BeamFormer 770 168.12% 154.00%

Comp. Count. 402 219.67% 209.38%

RadixSort 250 357.14% 219.30%

Average 276.55% 792.47%

4.5.3 LLVM Optimization Statistics

Table 4.5 shows the absolute number of variables promoted to SSA form with the

LaminarIR direct access format (column “Abs.”), and proportional SSA promition rate

with the LaminarIR direct access over the number of SSA variables with FIFO queues

(column “vs. FIFO”) and StreamIt (column “vs. StreamIt”). Because FIFO-based token

access and the presence of splitters and joiners obscure the data-flow in a program, it is

less likely that LLVM can connect the definition- and the use-sites of tokens in the pro-

gram source-code. This problem is avoided with the LaminarIR direct access format,

which uses indirections to make the token-flow between producer and consumer ac-

tors transparent. Higher numbers of promoted SSA variables indicate an improved SSA

formation, which improves compiler optimizations [6]. Lower numbers of promoted

SSA variables with the FIFO queues and StreamIt representations indicate the pres-

47

Direct Access FIFO StreamIt

−10

0

25

50

75

100

D
C

T
D

E
S

F
F
T
2

M
a
tr
ix

M
u
lt

A
u
to

C
o
r

L
a
tt
ic

e
S

e
rp

e
n
t

JP
E

G

B
e
a
m

F
o
rm

e
r

C
o
m

p.
 C

o
u
n
t.

R
a
d
ix

S
o
rt

D
C

T
D

E
S

F
F
T
2

M
a
tr
ix

M
u
lt

A
u
to

C
o
r

L
a
tt
ic

e
S

e
rp

e
n
t

JP
E

G

B
e
a
m

F
o
rm

e
r

C
o
m

p.
 C

o
u
n
t.

R
a
d
ix

S
o
rt

D
C

T
D

E
S

F
F
T
2

M
a
tr
ix

M
u
lt

A
u
to

C
o
r

L
a
tt
ic

e
S

e
rp

e
n
t

JP
E

G

B
e
a
m

F
o
rm

e
r

C
o
m

p.
 C

o
u
n
t.

R
a
d
ix

S
o
rt

Im
p

ro
ve

m
e

n
t

R
a

te
 (

%
)

LLVM Passes

dse early−cse gvn indvars inline inline−cost instcombine ipsccp

licm loop−delete loop−idiom loop−rotate loop−unroll other simplifycfg sroa

Figure 4.8: Contribution rate of particular LLVM optimization passes

ence of array accesses which are modeled as memory accesses and thus perforate the

SSA-based definition-use information that can be computed for the token-flow across a

stream graph.

Figure 4.8 shows the contribution of individual LLVM optimization passes over the

total performance improvement on the Intel i7-2600K. Unlike FIFO queues and StreamIt,

the LaminarIR direct access format gains most by SROA (Scalar Replacement of Ag-

gregates), which is part of LLVM’s SSA formation. FIFO queues and StreamIt on the

contrary gain much less from the SROA pass. Instead, they profit most from inlining of

functions for buffer management.

48

Chapter 5

Abstract Interpretation-based

Static Analysis to Resolve FIFO Queue

Access Overhead

5.1 Complex Control-flow and Direct Memory Access

of Stream Programs

The advent of multicore architectures and the emergence of Big-Data streaming ap-

plications [48, 73] have created an increased interest in stream-parallel programming

languages specifically. Stream programs process continuous data streams through inde-

pendent actors that communicate via FIFO data channels. Synchronous data-flow (SDF,

[11, 49]) requires the data-rates of actors to be known a-priori. This information has been

traditionally leveraged by compilers to transform the underlying stream graph structure

to maximize data throughput [26, 31, 46, 54, 62]. In spite of all those efforts, little

attention has been devoted to optimize the data transfer mechanism between commu-

nicating actors. The FIFO queue abstraction isolates the producer from the consumer,

which facilitates modularity and separation of concerns across actors. Nevertheless, be-

cause FIFO queues are accessed indirectly via read- and write-pointers, they obscure

the data-flow between actors. Hence, compilers are not able to optimize the information

flow between actors. Standard compiler optimizations including register allocation and

constant propagation become ineffective across actor boundaries.

The LaminarIR framework [45] introduced an intermediate representation (IR) for

SDF [11]. LaminarIR converts FIFO queues to named token accesses. A named access

is a concrete token in either an input or output queue of an actor. By naming the tokens,

the FIFO buffer management can be shifted from run-time to compile-time. As a side-

effect of this technique, splitters and joiners are eliminated whose task is to distribute

and merge streams. The LaminarIR performs the transformation in two phases: a local

and global direct access transformation. The local direct access transformations expli-

cates the token-flow within an actor by replacing FIFO queues operations to local scalar

variables. The global direct access dissolves the FIFO buffers between actors using the

scalar variables instead of buffers, and dissolves splitters and joiners.

Although the framework in [45] gives superior performance to systems using run-time

FIFO queues, the local access transformation is sometimes not successful. To still enable

the global direct access transformation, the local direct-memory transformation has a

fall back solution: inside the actor, local queues are instantiated as an interface between

named tokens for the global direct memory transformation of a program, and the FIFO

operations of the actor. This fall back solution obscures data-flows that passes through

the actors with local queues, disrupting to exploit full advantage of the direct memory

accesses of LaminarIR. To overcome this problem, an enhanced actor transformation is

required.

The key research problem in the local direct memory transformation is that the queue

position of a queue operation is dependent on the control-flow of the actor. However, the

control-flow of an actor is in general undecidable in the presence of conditional branches

and loops. To get a handle on the problem, we use the number of produced and con-

sumed tokens of an actor that were specified by the programmer. If loops consume/pro-

duce tokens, the loops become bounded by the the production and consumption rates of

the actor, respectively. This insight is used in this work to transform a program with data

dependent control-flow into the form that local direct access transformation is applica-

ble. Our work is based on an abstract interpretation framework [21, 22, 81], that deduces

queue position of actor statements. An interval semantics is used to find the queue po-

sitions. Partial constant propagation for loop bounds and a narrowing operator [20, 22]

50

are provided to sharpen the intervals. The contribution of this work is as follows:

• an enhanced actor transformation for the local access transformation in the Lam-

inarIR framework,

• an abstract interpretation framework that gives precise queue positions employing

intervals, and

• an experiment showing the improved performance of the enhanced actor transfor-

mation.

This chapter is organised as follows: In Section 5.2, we present a motivating example

for our enhanced actor transformation. In Section 5.3, we describe the abstract interpre-

tation analysis to obtain precise queue positions. In Sec. 5.4, we outline the local access

transformation. In Section 5.5, we present the experimental findings of our enhanced

actor transformation.

5.2 Motivating Example

In this section, we will present how an example actor of a stream program, Radix-

Sort shown in the Figure 5.1a, is analyzed by abstract interpretation (Figure 5.2a, 5.2b,

and 5.2c) and transformed to replace an actor’s queue operations by named tokens (Fig-

ure 5.3b). This chapter also shows generated LaminarIR code without the proposed

static analysis beside (Figure 5.1b to highlight the effectiveness of the new approach.

Input Stream Progrm Figure 5.1a shows our motivating example. The depicted node

is a key actor in RadixSort, a benchmark from the StreamIt benchmark [76], which

produces (aka. pushes) and consumes (aka. pops) N tokens per invocation of the actor’s

work function. The push and pop data rates must be specified already in the actor’s

source code (line 3). The RadixSort actor is parameterized by two stream parameters:

(1) N denotes the number of tokens to sort, and (2) radix denotes the specific bit to

sort on. Both parameters are compile-time constants, which are allowed to differ across

actor instances.

51

1 int->int filter RadixSort

2 (int N, int radix){

3 work pop N push N {

4 int[N] ordering;

5 int i=0, j=0;

6 // bounded loop:

7 for(i=0; i<N; i++){

8 int current=pop();

9 //unbalanced if-else stmt:

10 if((current & radix)==0){

11 push(current);

12 }else{

13 ordering[j]=current;

14 j++;

15 }

16 }

17 // unbounded loop:

18 for(i=0; i<j; i++){

19 push(ordering[i]);

20 }

21 }

22 }

(a)

1 actor RadixSort {

2 // int N=2; int radix=...;

3 int out_array[2] = {0,0};

4 int out_ctr = 0;

5 int[2] ordering;

6 int i=0, j=0;

7 //unrolled bounded loop 1:

8 int current=x1;

9 if((current & radix)==0){

10 out_array[out_ctr++] = current;

11 }else{

12 ordering[j]=current;

13 j++;

14 }

15 //unrolled bounded loop 2:

16 int current=x2;

17 if((current & radix)==0){

18 out_array[out_ctr++] = current;

19 }else{

20 ordering[j]=current;

21 j++;

22 }

23 for(i=0; i<j; i++){

24 out_array[out_ctr++] = current;

25 }

26 x1 = out_array[0];

27 x2 = out_array[1];

28 }

(b)

Figure 5.1: (a) Original actor code and (b) corresponding plain LaminarIR code

52

1 int->int filter RadixSort

2 (int N, int radix){

3 work pop 2 push 2 {

4 // int N=2; int radix=...;

5 int[2] ordering;

6 int i=0, j=0;

7 i=0;//unrolled bounded loop 1:

8 int current=pop();

9 if((current & radix)==0){

10 push(current);

11 }else{

12 ordering[j]=current;

13 j++;

14 }

15 i=1;//unrolled bounded loop 2:

16 int current=pop();

17 if((current & radix)==0){

18 push(current);

19 }else{

20 ordering[j]=current;

21 j++;

22 }

23 for(i=0; i<j; i++){

24 push(ordering[i]);

25 }

26 }

27 }

(a)

1: 〈[0,0],[0,0]〉

1: 〈[0,0],[0,0]〉

1: 〈[0,0],[0,0]〉

1: 〈[1,1],[0,0]〉

2: 〈[0,0],[1,1]〉

2: 〈[0,0],[0,0]〉

2: 〈[0,0],[0,0]〉

1: 〈[0,0],[0,1]〉

1: 〈[0,0],[0,0]〉

1: 〈[1,1],[0,0]〉

2: 〈[0,0],[1,1]〉

2: 〈[0,0],[0,0]〉

2: 〈[0,0],[0,0]〉

1: 〈[0,0],[0,1]〉

2: 〈[0,0],[1,1]〉

1: 〈[0,0],[0,∞]〉

0:〈[2,2],[0,∞]〉

(b)

1: 〈[0,0],[0,0]〉

1: 〈[0,0],[0,0]〉

1: 〈[0,0],[0,0]〉

1: 〈[1,1],[0,0]〉

2: 〈[0,0],[1,1]〉

2: 〈[0,0],[0,0]〉

2: 〈[0,0],[0,0]〉

1: 〈[0,0],[0,1]〉

1: 〈[0,0],[0,0]〉

1: 〈[1,1],[0,0]〉

2: 〈[0,0],[1,1]〉

2: 〈[0,0],[0,0]〉

2: 〈[0,0],[0,0]〉

1: 〈[0,0],[0,1]〉

2: 〈[0,0],[1,1]〉

1: 〈[0,0],[0,2]〉

0:〈[2,2],[2,2]〉

(c)

Figure 5.2: (a) After partial constant propagation and loop unrolling, (b) initial data

rate intervals and, and (c) improved data rate intervals after narrowing derived by static

analysis.

53

During execution of actor’s work function, pop()-statement (line 8) reads tokens

from the actor’s input-channel and push()-statement (lines 11 and 19) writes tokens

to the actor’s output channel. Conventionally, data channels are implemented by FIFO-

queues that access data tokens via indirect memory access. In contrast, LaminarIR [45]

is an IR that exposes the queue-positions accessed by an actor through named tokens.

However, not all queue operations can be statically mapped to a static queue-position.

For instance, matching queue-positions of queue operations in a loop which is not stati-

cally bounded can be arbitrary as shown in lines 18–20. Queue operation’s in the if-else

statement from lines 10–15 cannot be statically mapped to a static queue-position either,

because its branches have different numbers of queue operations and condition is dy-

namic. We call such if-else statement an unbalanced if-else statement. For such queue

operations involved with data dependent control-flows, LaminarIR falls back to local

array and its index counter as shown in Figure 5.1b.

Our proposed static analysis resolves queue-positions of queue operations in dynamic

control-flows as above in compile-time. To the best of our knowledge, the proposed

work is the first approach that can resolve queue positions in dynamic control-flows in

compile-time including unbalanced if-else statements.

Static Analysis for Queue Positions Because all stream parameter are compile-time

constants, stream parameters are propagated and loops with static loop bounds are un-

rolled. We call this step partial constant propagation and loop unrolling. Figure 5.2a

shows the result of partial constant propagation and loop unrolling of the original actor

code, considering N=2 for our running example. Note that radix has not been propa-

gated for the sake of readability.

However, partial constant propagation and loop unrolling is not sufficient to resolve

all queue operations, due to loops with data dependent bounds and the unbalanced if-

else statement. To resolve the remaining data-dependent queue operations, we propose

a static program analysis technique which is based on the observation that the variabil-

ity of dynamic, data-dependent control-flow is restricted by the static data rates. E.g.,

because the for-loop depicted in lines 23–25 of Figure 5.2a produces one token per loop

54

1 actor RadixSort { // int N=2; ...

2 int ordering[2]={0};

3 int i=0, j=0;

4 // root if-else stmt:

5 int current=pop();

6 if((current & radix)==0){

7 push(current);

8 int current=pop();

9 // lifted if-else stmt 1:

10 if((current & radix)==0){

11 push(current);

12 // lifted loop 1:

13 for(i=0; i<j; i++){

14 push(ordering[i]);

15 }

16 }else{

17 ordering[j]=current;

18 j++;

19 // lifted loop 2:

20 for(i=0; i<j; i++){

21 push(ordering[i]);

22 } }

23 }else{

24 ordering[j]=current;

25 j++;

26 int current=pop();

27 // lifted if-else stmt 2:

28 if((current & radix)==0){

29 push(current);

30 // lifted loop 3:

31 for(i=0; i<j; i++){

32 push(ordering[i]);

33 }

34 }else{

35 ordering[j]=current;

36 j++;

37 // lifted loop 4:

38 for(i=0; i<j; i++){

39 push(ordering[i]);

40 } } } }

(a)

1 actor RadixSort { // int N=2; ...

2 int ordering[2]={0};

3 int i=0, j=0;

4 // root if-else stmt:

5 int current=x1;

6 if((current & radix)==0){

7 y1=current;

8 int current=x2;

9 // lifted if-else stmt 1:

10 if((current & radix)==0){

11 y2=current;

12 // lifted loop 1:

13 // dead code elimination

14 // by static analysis

15

16 }else{

17 ordering[j]=current;

18 j++;

19 // lifted loop 2:

20 y2=ordering[0];

21

22 }

23 }else{

24 ordering[j]=current;

25 j++;

26 int current=x2;

27 // lifted if-else stmt 2:

28 if((current & radix)==0){

29 y1=current;

30 // lifted loop 3:

31 y2=ordering[0];

32

33

34 }else{

35 ordering[j]=current;

36 j++;

37 // lifted loop 4:

38 y1=ordering[0];

39 y2=ordering[1];

40 } } }

(b)

Figure 5.3: (a) Intermediates actor code after complete AST transformation, and (b)

LaminarIR code with named tokens after local direct access transformation

55

iteration, N=2 is an upper bound for the number of loop iterations. For the static analy-

sis, we abstract each statement of an actor’s source-code by a pair of data rate intervals,

〈[cmin, cmax], [pmin, pmax]〉, which represent the minimum and maximum number of queue

operations for consumption ([cmin, cmax]) and for production ([pmin, pmax]), respectively.

Figure 5.2b shows the initial data rate intervals for our running example. E.g., the

pop statement in line 8 is abstracted as 〈[1, 1], [0, 0]〉 because the pop statement uncon-

ditionally pops one token and does not produce a token. Similarly, the data rate interval

of the push statement in line 10 is 〈[0, 0], [1, 1]〉. The if-else statement in lines 9–14 is

abstracted as 〈[0, 0], [0, 1]〉, as depicted on the last source-line of the compound state-

ment in the line 14 of Figure 5.2b: the if-else statement does not consume a token, and

may perform 0 or 1 push operations. The data rate intervals of the loop with data de-

pendent bounds (from lines 23–25) are 〈[0, 0], [0,∞]〉, because the loop contains a push

operation and the loop’s upper bound is not known yet.

As seen in the example, the data rate intervals of a compound statement are de-

rived from the data rate intervals of its contained statements. Our analysis therefore

derives the initial data rate intervals by a bottom-up traversal of an actor’s abstract syn-

tax tree (AST). The labels shown on the left side in Figures 5.2b and 5.2c denote the

nesting depth of a statement in the AST. The data rate interval of a compound statement

on nesting level L is decided by summing up the data rate intervals of the enclosed

statements on nesting level L + 1. In our running example, the data rate interval of the

AST’s root node (nesting level 0 in line 27 of Figure 5.2b) is then decided by summing

up all data rate intervals of nodes on nesting level 1, resulting in the data rate intervals

〈[2, 2], [0,∞]〉.

The data rate interval narrowing phase is applied on the initialized data rate inter-

vals to refine infinite data rate intervals as shown in Figure 5.2c. By the actor’s data

rate specification, the data rate intervals of the root node (representing the entire work-

function) must be 〈[2, 2], [2, 2]〉. We apply a narrowing operation (to be introduced in

Section 5.3.3) in a top-down fashion on AST. For example, the summation of all data

rate intervals of nodes on nesting-level 1 cannot exceed the data rate interval of the root.

Thus the interval for the production rate of the data dependent loop in lines 23–25 can

be narrowed from [0,∞] to [0, 2].
56

Actor Transformation for LaminarIR According to the analysis result by the pro-

posed static program analysis, a program transformation is applied on the AST to shorten

data rate intervals and make them singleton eventually. For instance, the first data rate

interval divergence happens at the first if-else statement in line 9 of Figure 5.2a, and the

diverged data rate interval obscures the data access indices of the following statements

from lines 15–25. In this case, two code versions of the following statements are gen-

erated and lifted into each branch of the if-else statement as shown in lines 11–24 and

lines 30–43 of Figure 5.3a. In the next iteration of the program transformation, a similar

transformation is again performed on the nested if-else statements, generating different

code versions of the following statement, which is a for-loop. Thus four code versions

of the for-loop are generated and lifted into each branch of the nested if-else statement

as shown in lines 14, 21, 33 and 40.

After the AST transformation, the validity of the transformed AST is examined by

the inspector. During this phase, the inspector can detect dead code portions. E.g., the

first code version of the for-loop in lines 14–16 of Figure 5.3a is eliminated, because the

specified N=2 number of push operations have been performed already on this program

path and no more token production is allowed. Because each program transformation

may affect the data rate intervals of other nodes, we repeat the program analysis and

transformation pass until no more AST transformations are possible or needed (see Fig-

ure 5.7).

Finally, the local direct access transformation of LaminarIR is applied on the trans-

formed AST (Figure 5.3a), which replaces queue operations with named tokens (Fig-

ure 5.3b).

5.3 SDF Program Analysis

The purpose of the proposed program analysis is to decide 1) whether the queue

position of a queue operation can be determined at completing, and 2) what is queue

position if it can be converted to a named token access. We use an abstract interpreta-

tion framework for answering the aforementioned questions. The abstract interpretation

57

P ::= actor id pop rate push rate S

S ::= skip

| var = E

| push E

| S1;S2

| if E then S1 else S2

| while E do S

E ::= var

| val

| pop

| op E

| E1 op E2

Figure 5.4: Abstract syntax of actor codes. For brevity, constructs not relevant for queue

operations have been omitted.

framework finds sound intervals for queue positions of each statement in the actor.

For sake of simplicity, we provide a simplified programming language for actors that

uses standard semantics. Figure 5.4 shows the abstract syntax of statements in an ac-

tor. An actor Program P requires the definition of static push and pop rates denoted

by “push rate” and “pop rate”. We have statement push and function pop for enqueu-

ing and dequeuing tokens, respectively. The statements of an actor P are defined by

nonterminal S, which are conditional branches, loops, and sequences. Non-terminal E

represents Expressions used in the statements.

5.3.1 Determining Queue Positions by Abstract Interpretation

Figure 5.5 shows the abstract semantics that provides bounds on the number of queue

operations from bottom to top of an AST. In this abstract semantics, the number of

pushs or pops of the concrete semantics is abstracted by an integer interval [l, u], where

l indicate lower bound and u indicates upper bound of the number of tokens that were

pushed and popped, respectively. Hence, the abstract state is a pair of intervals where

each interval is associated either to the input and output queue of the actor, respectively.

The abstract semantic domain D̂ is defined as

D̂ = N̂× N̂,

58

[[actor id pop rate push rate S]] = [[S]]

[[skip]] = 〈[0, 0], [0, 0]〉

[[var = E]] = [[E]]

[[push E]] = [[E]]+̂〈[0, 0], [1, 1]〉

[[S1;S2]] = [[S1]]+̂[[S2]]

[[if E then S1 else S2]] = [[E]]+̂([[S1]] t [[S2]])

[[while E do S]] = ([[E]]+̂[[S]])×̂〈[0,∞], [0,∞]〉

[[var]] = 〈[0, 0], [0, 0]〉

[[val]] = 〈[0, 0], [0, 0]〉

[[pop]] = 〈[1, 1], [0, 0]〉

[[op E]] = [[E]]

[[E1 op E2]] = [[E1]]+̂[[E2]]

Figure 5.5: Abstract semantics of actor codes

where

N̂ = {[l, u] | l ≤ u ∧ l, u ∈ N∞} ∪ {⊥,>}

and N∞ = N∪{∞}. N̂ is a partial ordered set where [l1, u1] v [l2, u2] iff l2 ≤ l1∧u1 ≤

u2, and ⊥ v [l, u] v >, ∀[l, u] ∈ N̂. By the algebraic product, semantic domain D̂ is a

partial ordered as well since the intervals are partial orders.

The γ-function of the Galois connection for the abstract interpretation is defined as

γ[l, u] = {n ∈ N | l ≤ n ≤ u} when u 6=∞

= {n ∈ N | l ≤ n} when u =∞

γ> = N.

The element infinity (∞) of the domain is an upper bound of any element in N, and

is introduced to represent an unbounded quantity. For example, the number of loops

iterations of a loop may be unbounded without knowing the loop invariants. Hence,

the production and consumption of tokens can be still be described by an unbounded

number of tokens using the symbol∞. This information loss will be restored in part by

partial constant propagation for the loop bounds (Section 5.3.2) and narrowing operator

59

of the abstract interpretation (Section 5.3.3). Both approaches exploit static properties

of the SDF program.

The arithmetic operations on the infinity are defined below,

x+ y
y

N ∞

x
N x+ y ∞

∞ ∞ ∞

x× y
y

0 N+ ∞

x

0 0 0 0

N+ 0 x× y ∞

∞ 0 ∞ ∞

Binary operators +̂, ×̂ and t are defined on N̂ as below and the operators on D̂ are

defined compositionally. The operators are monotonic.

[l1, u1]+̂[l2, up] = [l1 + l2, u1 + u2]

[l1, u1]×̂[l2, u2] = [l1 × l2, u1 × u2]

[l1, u1] t [l2, u2] = [min(l1, l2),max(u1, u2)]

5.3.2 Derivation of Loop Bounds by Partial Constant Propagation

As shown in Figure 5.5, the abstract semantics of “while E do S” evaluates any non-

zero number of queue operations of the child nodes to infinity assuming loop bounds

of the statement are unknown (〈[0,∞], [0,∞]〉). This approach is sound, may prohibit a

local actor transformation.

The major advantage of actors in SDF graphs is that they have static data rates for

pushes and pops. Thus, if a given actor code is correctly specified, a loop that includes

queue operation in the loop body becomes bounded since the production and consump-

tion rate are bounded by the actor specification. Because of this property, loop bounds

are likely to be determined even without considering the loop conditions.

For example, StreamIt [77] is a stream programming language that shares a number

of properties with the SDF programming model. When loop bounds are known during

compile-time, most likely by static stream parameters that are evaluated at the level of

stream graph generation of a program, then the unknown loop bounds 〈[0,∞], [0,∞]〉

60

[[actor id pop rate push rate S]]↓σ = [[S]]↓σ[[[S]] 7→ [[S]]∆R]

[[skip]]↓σ = σ([[skip]])

[[var = E]]↓σ = σ([[var = E]])

[[push E]]↓σ = σ([[push E]])

[[S1;S2]]↓σ = [[S1]]↓σ1[[S2]]↓σ2

where σ1 = σ[[[S1]] 7→ [[S1]]∆(σ([[S1;S2]])− [[S2]])]

σ2 = σ[[[S2]] 7→ [[S2]]∆(σ([[S1;S2]])− [[S1]])]

[[if E then S1 else S2]]↓σ = [[E]]↓σ[[S1]]↓σ1[[S2]]↓σ2

where σ1 = σ[[[S1]] 7→ [[S1]]∆(σ([[if E then S1 else S2]])− [[E]])]

σ2 = σ[[[S2]] 7→ [[S2]]∆(σ([[if E then S1 else S2]])− [[E]])]

[[while E do S]]↓σ = [[E]]↓σ [[S]]↓σ

[[var]]↓σ = σ([[var]])

[[val]]↓σ = σ([[val]])

[[pop]]↓σ = σ([[pop]])

[[op E]]↓σ = σ([[op E]])

[[E1 op E2]]↓σ = σ([[E1 op E2]])

Figure 5.6: Semantic definitions for narrowing operator

in the [[while E do S]] can be specified by 〈[lk, uk], [lk, uk]〉 when lk means lower bound

and uk means upper bound of the loop.

5.3.3 Narrowing Operator

We define a narrowing operator [20, 22] for the abstract semantics to enhance the

quality of the analysis. The aforementioned static property of the SDF graphs will be

applied on a whole analysis result of an actor code by a narrowing operator ∆.

Figure 5.6 shows semantic definitions for the narrowing operator. The narrowing op-

erator is evaluated from top to bottom of the AST. An environment σ is introduced

which is a set of bindings that maps each node of an AST to an element of D̂. Each

node in AST is initially mapped to its analysis result by the abstract semantics. If N de-

61

notes a set of nodes in an AST and Σ is a set of environments, then we define a function

σ : N → Σ→ D̂ by abuse of notation. Notation ‘f [x 7→ w](y)’ denotes a function that

returns value w when x is given to the function f and agrees with f otherwise. Note

that data rate intervals on Expressions is always singleton. Thus narrowing operator is

omitted for [[E]].

The operator ∆ on N̂ is defined as

[l1, u1]∆[l2, u2] = [max(l1, l2),min(u1, u2)]

and the operator ∆ on D̂ is defined compositionally. The operator ∆ satisfies

∀x, y ∈ D̂ : x v y ⇒ x v (x∆y) v y

and the decreasing chain y0 = x0, yi+1 = yi∆xi+1 for all decreasing chain x0 ≥ x1 ≥

· · · is finite obviously. Thus the operator ∆ is a narrowing operator. The semantics for

the narrowing operator also introduces a new operator − which is defined as

[l1, u1]− [l2, u2]=[l1 − u2, u1 − l2] when l1 < u2 ∧ l2 < u1

=[0, u1 − l2] when l1 ≤ u2 ∧ l2 < u1

=[l1 − u2, 0] when u2 < l1 ∧ u1 ≤ l2

=[0, 0] when l1 ≤ u2 ∧ u1 ≤ l2

on N̂, and the operator is defined on D̂ compositionally. By apply the narrowing operator

from the root of the AST, the intervals for the number of queue operations are bounded

by the static data rateR ∈ D̂ which is 〈[rp, rp], [rc, rc]〉 where rp and rc denote push and

pop data rates specified by the actor declaration respectively.

Using the refined analysis, loop bounds are deduced. A subsequent transformation

unrolls loop bounds and performs the local access transformation as outlined in [45].

5.4 Program Transformation

This section describes each step in program transformation phase, AST transforma-

tion, inspector and local direct access transformation in Figure 5.7.

62

AST

Partial ConstProp
and Loop Unrolling

Data Rate Interval
Initialization

Data Rate Interval
Narrowing

AST
Transformation

Inspector

Local Direct Access
Transformation

LaminarIR

AST

Figure 5.7: Analysis compilation path

5.4.1 AST Transformation

AST transformation is to flatten control-flow paths, so more queue operations can be

mapped with a static queue position as a result. In other words, AST transformation

is performed to shorten data rate intervals and make them singleton eventually. Data

rate intervals grow when multiple control-flows or branches with different number of

queue operations join at a point, such as if-else statements and loops. Thus, two standard

program transformation techniques are applied in the AST transformation to flatten each

of if-else statements and loops.

The first standard technique is loop-unrolling [5] where a single unrolling step is

depicted by

while(C){S1;}→ if(C){S1; while(C){S1;}}.

Unrolling is performed when the loop bounds are constant.

The second standard technique is trace partitioning [10, 56, 68] which is a technique

63

that delays joining point of multiple branches to prevent growing abstract information.

Trace partitioning is implemented by lifting all following statements of an if-else state-

ment into every branches, such as,

if(C){S1;}else{S2;}S3;→ if(C){S1;S3;}else{S2;S3;}.

Performing loop unrolling with trace partitioning can arouse interactive analysis im-

provement especially when loops or if-else statements are nested to the others. However,

generating new code versions for each transformation can expand the code size. Thus,

we limit the maximum number of transformation rounds to 100 per actor instance and

exit the transformation loop. When an actor code needs more than 100 rounds of trans-

formation, a half-way flattened AST is passed to local direct access transformation. The

way to transform a half-way flattened AST with the mixture of resolved and un-resolved

queue positions for queue operations will be covered in Section 5.4.3.

5.4.2 Inspector

After the AST transformation, the generated code is passed on to the inspector. The

inspector examines the validity of the transformation by simulating queue operations.

A valid transformation should map a static queue position to a queue operation, and

the static queue position should not exceeds specified data rate. For instance, if the

minimum number of queue operations of a control-flow path exceeds the number of

remaining queue operations to be performed, then the path is examined to be a dead

code and eliminated.

Because each program transformation and dead code elimination performed by in-

spector can affect the data rate intervals of other nodes, we repeat the program analysis

and transformation pass until no more AST transformations are possible or needed. As

long as the data rates are static, the number of iterations is constant.

5.4.3 Local Direct Access Transformation

Local direct access transformation is an actor-wise program transformation phase

which reads transformed AST of an actor code and generates corresponding LaminarIR

64

Table 5.1: Hardware configuration

CPU Intel i5-4690 AMD Opteron 6378 ARM Cortex-A15

Clock Freq. 2.3 GHz 2.4 GHz 1.7 GHz

Inst. Cache 32 kB 64 kB, shared by 2 cores 32 kB

L1 Data Cache 32 kB 16 kB 32 kB

OS (Kernel ver.) Ubuntu 14.04 (3.13) CentOS 7.2 (3.10) Linaro 13.09 (3.11)

C Compiler LLVM/Clang 3.7

code, where queue operations are replaced with named tokens.

Preciously, local direct access transformation examined whether queue positions of

all push or pop operations are resolved in an actor to replace queue operations with

named tokens. If it was not possible to match every each pop/push operation with a static

queue position, then a read/write counter and a local array for the pop/push operations

were introduced to simulate the FIFO operations at run-time through the whole actor

code.

With the proposed approach, we extended the local direct access transformation that

can replace part of the queue positions that have been resolved with named tokens. In

addition, the minimum resolved queue position that is guaranteed to be resolved for all

control-flow paths is calculated. Named tokens are used for resolved queue operations

that are mapped with smaller queue positions than the minimum resolved queue posi-

tion, and otherwise FIFO queues are employed that accesses local arrays. Calculating

the minimum resolved queue position enable to reduce size required for the local arrays,

meaning that less number of copy operations in between named tokens and local arrays.

5.5 Experimental Results

To evaluate the efficiency of the proposed technique, we implemented the enhanced

actor transformation for the LaminarIR framework [1, 45] and assessed the performance

improvements. Because the local access transformations that we apply in this work are

65

Table 5.2: Benchmark characteristics

Benchmarks Parameters
Trans. AST Trans. Stats

Eval. Full If-else Loop

BubbleSort data size (16) 2 32 0

MergeSort data size (16) 33 64 79

RadixSort data size (8) 255 2805 0

RunLength Enc. data size (16) 100 >1000 100 0

RunLength Dec. data size (16) 100 >1000 57 44

JPEG Enc. window size (64) 100 >1000 100 0

reported to increase a program’s code size [9], we also state the code size increase of

the generated executable binaries.

We evaluate the proposed technique on two mobile processors, an Intel i5-4690, and

an ARM Cortex-A15 platform, and on an AMD Opteron 6378 x86 server CPU. The

characteristic features of the tested platforms are summarized in Table 5.1. We employ

six StreamIt benchmarks [76] with distinctive control-flow patterns to evaluate how

our technique is affected by varying control-flow patterns. To generate ASTs from the

StreamIt benchmark sources, we adopted the StreamIt framework’s compiler frontend.

After applying our transformation, the LaminarIR intermediate representation [45] is

generated from the transformed AST. The LaminarIR framework translates LaminarIRs

to C codes.

We employ the LLVM compiler infrastructure to compile the generated C code for

all evaluated platforms. Execution times are measured using the PAPI hardware perfor-

mance counter library [16]. We used randomized program input for all experiments, to

prevent LLVM to compute partial results already at compile-time (see [45]).

5.5.1 Performance Evaluation

In this section, we describe each control-flow case that we observed in six StreamIt

benchmarks (Table 5.2). RadixSort contains a loop with static bounds and an unbalanced

66

Speedup @ Intel i7−4850HQ

Speedup @ ARM Cortex−A15

Speedup @ AMD Opteron 6378

1.0

1.5

2.0

2.5

S
p

e
e

d
u

p

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

Number of Transformations

Code Size Growth Rate @ Intel i7−4850HQ

Code Size Growth Rate @ ARM Cortex−A15

Code Size Growth Rate @ AMD Opteron 6378

0.5

1.0

1.5

2.0

2.5

C
o

d
e

 S
iz

e
 G

ro
w

th
 R

a
te

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45

Number of Transformations

(a) BubbleSort (b) MergeSort

5

10

15

20

25

30

S
p

e
e

d
u

p

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

Number of Transformations

0.6

0.8

1.0

1.2

1.4

1.6

C
o
d
e
 S

iz
e
 G

ro
w

th
 R

a
te

0

20

40

60

80

100

0 50 100 200 300 400 500 600

Number of Transformations

(c) JPEG Encoder (d) RadixSort

0.8

0.9

1.0

1.1

1.2

S
p

e
e

d
u

p

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

Number of Transformations

0.8

0.9

1.0

1.1

1.2

C
o
d
e
 S

iz
e

 G
ro

w
th

 R
a
te

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

Number of Transformations

(e) RunLength Encoder (f) RunLength Decoder

Figure 5.8: Speedup and code size growth rate of LaminarIR over FIFO queues by

number of transformations

67

Table 5.3: Speedup of LaminarIR over FIFO queue with base ASTs (column “base”),

transformed ASTs (column “overall”), and the speedup differences by the proposed

static analysis (column “SA”).

Benchmarks
Intel i5-4690

base SA overall

BubbleSort 243.03% +25.85% 268.87%

MergeSort 128.56% +50.78% 179.33%

RadixSort 124.73% +13.82% 138.55%

RunLength Enc. 116.35% +0.25% 116.60%

RunLength Dec. 112.23% -6.27% 105.96%

JPEG Enc. 1137.26% +24.0% 1161.27%

Benchmarks
ARM Cortex-A15

base SA overall

BubbleSort 244.96% -11.56% 233.40%

MergeSort 161.26% +82.63% 243.90%

RadixSort 108.71% +3.86% 112.57%

RunLength Enc. 108.08% -0.18% 107.09%

RunLength Dec. 117.08% -3.62% 113.45%

JPEG Enc. 2891.89% -139.64% 2752.25%

Benchmarks
AMD Opteron 6378

base SA overall

BubbleSort 160.42% +33.71% 194.21%

MergeSort 128.16% +107.96% 236.12%

RadixSort 130.63% +33.38% 164.01%

RunLength Enc. 112.69% +9.10% 121.79%

RunLength Dec. 113.53% -0.46% 113.06%

JPEG Enc. 1165.44% +40.46% 1205.90%

68

if-statement nested within the loop. Because of the nested unbalanced if-statement of

the loop, another loop which follows the first loop automatically has data dependent

bounds. BubbleSort is composed of selective if-else statements, and MergeSort has a

sequence of data dependent loops including a while loop. RunLength decoder contains a

nested data dependent loop in another loop with static loop bounds. Both the RunLength

encoder and the JPEG encoder have a sequence of data dependent loops with nested and

unbalanced if-else statements.

BubbleSort BubbleSort (Figure 5.8a) has two consecutive unbalanced if-else branches.

That means that the static analysis can narrow liveness of branches of latter unbal-

anced if-else statement because branches become more specific by trace partitioning.

First AST transformation copies latter unbalanced if-else statement into every branch

of the former unbalanced if-else statement. Code size increment due to the code copy

is negligible, however, eviction rate of the first-level instruction cache increases. A no-

ticeable speed down with a single AST transformation on ARM Cortex-A15 shown in

Figure 5.8a depicts such case. Intel i7-4850HQ and AMD Opteron 6378 accommodate

instruction queues which eventually effect as larger L1 instruction cache. After two

AST transformations, AST of BubbleSort is fully flattened and all queue operations are

replaced with named tokens.

MergeSort MergeSort (Figure 5.8b) contains two serial loops with data dependent

loop bounds, but the sum of iterations of the two serial loops should be constant. It

means loop bounds of the second loop are dependent on the behavior of the first loop.

Due to this characteristics, continuous trace partitioning on the sequence of unrolled

loop iterations did not increase code size, but improved performance gradually up to

2.0×more performance with 33 AST transformations to a fully flattened program. Nev-

ertheless, a local input array with a read counter had to be introduced for MergeSort

despite of the full flattening due to data dependent peeking indices.

RadixSort RadixSort (Figure 5.8d) is similar to MergeSort, but the first loop of the

RadixSort contains an unbalanced if-else statement in addition. Because of additional

69

trace partitioning required for the nested unbalanced if-else statement, code size incre-

ment over AST transformations begins to overwhelm gains from the direct memory ac-

cesses at around a point when the code size becomes larger than 60 kB after 275 rounds

of AST transformations. But after 510 rounds of AST transformations, program is fully

flattened replacing all queue operations with named tokens. Complete FIFO queue op-

eration replacement with named tokens maximizes benefits of direct memory access,

recovering code size to the one with FIFO queues.

RunLength Decoder RunLength Decoder shown in Figure 5.8f contains a nested

loop where loop bounds of the inner loop are data dependent. This is the most exhaustive

case among other cases in terms of the number of required AST transformations to fully

flatten a program. In this case, the first few AST transformation resulted slight perfor-

mance improvement and more AST transformations resulted in no notable performance

changes.

RunLength Encoder and JPEG Encoder RunLength Encoder is the last step of the

JPEG Encoder. Control-flow pattern of RunLength Encoder is an advanced version of

RadixSort with a two-level unbalanced if-else statements nested in the first loop. When

our proposed technique is applied on RunLength Encoder, a 3.0% performance improve-

ment is obtained from 100 rounds of AST transformations resulting in a 1.15×overall

speedup on average on the three processors (Figure 5.8e). With JPEG Encoder, which is

a real world application that exploits RunLength Encoder, the proposed static analysis

enables maximum 40.46% additional performance improvement (Figure 5.8c). Consid-

ering that RunLength Encoder is the only actor that is applicable to the proposed static

analysis in JPEG Encoder, we can assess that effectiveness of a same AST transforma-

tion can grow if the clarified data-flow by direct memory access influences more part of

a program.

Table 5.3 shows effectiveness of the proposed static analysis in speedups of Lami-

narIR over FIFO queues. Column “base” shows the speedups of LaminarIR with the

base AST where only partial constant propagation is applied, and column “SA” shows

70

speedup changes of LaminarIR with transformed AST. Column “overall” shows the

overall speedup after indicated number of transformations in Table 5.2, which are sum-

mation of “base” and “SA” of each benchmark.

Table 5.2 shows benchmark characteristics with statistics of static analysis. Col-

umn “# Trans” denotes rounds of AST transformations required to fully flatten control-

flow of a program. “>1000” in Column “# Trans” means the control-flow of the bench-

mark cannot be fully flattened in 1000 times of AST transformations, and ASTs after

100 rounds of AST transformation are used for performance evaluation in such cases.

Column “AST Trans. Stats” shows whether loop-unrolling or trace partitioning has hap-

pened over the designated number of AST transformations. A single round of static

analysis traverses all actors in a program, thus AST Trans. Stats of BubbleSort is inter-

preted as two AST transformation is applied on each of 16 actors, and all of the AST

transformations are trace partitioning.

5.5.2 Case Studies

To categorize representative control-flow patterns of the observed benchmarks and

estimate further behaviours of each control-flow pattern over the proposed optimiza-

tions, we introduce four synthetic benchmarks where each benchmark contains a single

computing actor of a specific representative control-flow pattern. The four control-flows

patterns are made by compositions of two control-flow units, If-else and loop.

Figure 5.9 shows control-flow diagrams of the four control-flow patterns called Case 1

to Case 4, which also represent characteristics of the real world benchmarks described

in Section 5.5.1. Case 1 shows the simplest control-flow pattern which is a serial of

two or more If-elses. The number of possible control-flows is dependent on number

of If-elses. Thus we varied the numbers of If-elses in an actor by 2, 4, 8, 16 and 32

to see how the increased control-flow complexity by the serial If-else statements are

affected by the AST transformation. Case 2 shows a little bit more advanced control-

flow pattern that contains two loops, one followed by the other. Loop bounds of the

latter loop are dependent on the former loop. It means the number of possible control-

flows is dependent on the loop bounds of the former loop, thus we varied loop bounds

71

C1

BR1 BR2

C2

BR3 BR4

C1

LB1

C2

LB2

(a) Case 1: If-else and Loop (b) Case 2: Loop and Loop

C1

LB

C2

BR1 BR2

C1

LB1

C2

LB2

(c) Case 3: If-else in Loop (d) Case 4: Loop in Loop

Figure 5.9: Representative control-flow cases in stream programs

72

for the test to the same factors aforementioned. Case 3 and Case 4 represent a nested

If-else and Loop in an outter Loop respectively. Unrolling a Loop with a nested control-

flow diverging component increases number of possible control-flows exponentially. In

Case 3, we fixed the exponent by not differenciating number of nested If-else statements,

and exponent in Case 4 was varied by increasing loop bounds of the nested loops as well

as the ones of the outter loop.

Figure 5.10 and 5.11 show the performance and code size changes of the four cases

over number of AST transformations. The numbers are proportional to FIFO versions,

and the numbers with 0 number of AST transformation represents result of plain Lam-

inarIR without static analysis and AST transformation. Randomly generated inputs are

used for all experiments. However, because control-flows are input data dependent, the

behavior of four cases over different number of AST transformations may differ by dif-

ferent input data sequences. Graphs with x-axis that ranges from 0 to 100 mean that the

particular testing case is not fully flattened in 1000 AST transformations, and the other

graphs shows the behaviour of programs which can be fully flattened within the shown

x-axis range.

In perspective, If-else only control-flows (Figure 5.10a are too simple to benefit from

the static analysis, and control-flows with Loops (Figure 5.10b and 5.11) benefit from

the static analysis if the complexity size fits into the instruction cache size. Despite of

the burst of lines of code by a hundred AST transformations, the compiled code size

remained around factor of 2 over the code size of FIFO queues for all cases except

Case 4. The steady code size is because the flattened AST enabled more queue oper-

ations to be replaced by scalar variable, which helped compiler to optimize more on

flattened control-flows.

This case study also reveals shortcomings of the approach. One is the sharp drop of

performance on Intel i5-4690 when a program is fully flattened in few cases of Case 2.

Case 2 contains three Loops, two as shown in the Figure 5.9b and the last loop to flush

remain input queue data or fill up remain output queue data if there is any. Against

to the intuitive expectation that the instruction cache miss by the three unrolled loops

would en the origin of the performance degradation, we observed that the scalar replace-

73

N=2

Speedup @ Intel i7−4850HQ

Speedup @ ARM Cortex−A15

Speedup @ AMD Opteron 6378

0.9

1.0

1.1

1.2

1.3

1.4

S
p
e
e
d
u
p

0.5

1.0

1.5

2.0

0 1 2 3 4 5

Code Size Growth Rate @ Intel i7−4850HQ

Code Size Growth Rate @ ARM Cortex−A15

Code Size Growth Rate @ AMD Opteron 6378

0.8

1.0

1.2

1.4

1.6

1.8

C
o
d
e
 S

iz
e
 G

ro
w

th
 R

a
te

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

N=4

0.9

1.0

1.1

1.2

1.3

S
p
e
e
d
u
p

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6 7 8 9 10

0.6

0.8

1.0

1.2

1.4

1.6

C
o
d
e
 S

iz
e
 G

ro
w

th
 R

a
te

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16 18 20

N=8

0.9

1.0

1.1

1.2

1.3

S
p
e
e
d
u
p

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6 7 8 9 10

0.7

0.8

0.9

1.0

1.1

1.2

1.3

C
o
d
e
 S

iz
e
 G

ro
w

th
 R

a
te

0

1

2

3

4

5

0 2 4 6 8 10 14 18 22 26 30

N=16

1.0

1.1

1.2

1.3

1.4

S
p
e
e
d
u
p

0.5

1.0

1.5

2.0

0 2 4 6 8 10 12 14 16 18 20

0.7

0.8

0.9

1.0

1.1

1.2

C
o
d
e
 S

iz
e
 G

ro
w

th
 R

a
te

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50

N=32

0.9

1.0

1.1

1.2

1.3

S
p
e
e
d
u
p

0.5

1.0

1.5

2.0

0 5 10 15 20 25 30 35 40 45 50

Number of Transformations

0.7

0.8

0.9

1.0

1.1

C
o
d
e
 S

iz
e
 G

ro
w

th
 R

a
te

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

Number of Transformations

(a) Case 1 (b) Case 2

Figure 5.10: Experimental results on (a) Case 1 and (b) Case 2: Speedup and code size

growth rate of LaminarIR over FIFO queues by number of transformations

74

N=2

Speedup @ Intel i7−4850HQ

Speedup @ ARM Cortex−A15

Speedup @ AMD Opteron 6378

0.5

1.0

1.5

2.0

S
p
e
e
d
u
p

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

Code Size Growth Rate @ Intel i7−4850HQ

Code Size Growth Rate @ ARM Cortex−A15

Code Size Growth Rate @ AMD Opteron 6378

0.6

0.8

1.0

1.2

1.4

C
o
d
e
 S

iz
e
 G

ro
w

th
 R

a
te

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

N=4

0.8

1.0

1.2

1.4

1.6

S
p
e
e
d
u
p

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50

0.6

0.8

1.0

1.2

1.4

C
o
d
e
 S

iz
e
 G

ro
w

th
 R

a
te

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

N=8

0.8

0.9

1.0

1.1

1.2

1.3

S
p
e
e
d
u
p

0

2

4

6

8

0 50 100

0.7

0.8

0.9

1.0

1.1

1.2

1.3

C
o
d
e
 S

iz
e
 G

ro
w

th
 R

a
te

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90

N=16

0.8

0.9

1.0

1.1

1.2

S
p
e
e
d
u
p

0

2

4

6

8

0 10 20 30 40 50 60 70 80 90 100

0.8

0.9

1.0

1.1

1.2

C
o
d
e
 S

iz
e
 G

ro
w

th
 R

a
te

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

N=32

0.8

0.9

1.0

1.1

1.2

S
p
e
e
d
u
p

0

2

4

6

8

0 10 20 30 40 50 60 70 80 90 100

Number of Transformations

0.7

0.8

0.9

1.0

1.1

C
o
d
e
 S

iz
e
 G

ro
w

th
 R

a
te

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

Number of Transformations

(a) Case 3 (b) Case 4

Figure 5.11: Experimental results on (a) Case 3 and (b) Case 4: Speedup and code size

growth rate of LaminarIR over FIFO queues by number of transformations

75

ment queue operations hampers two modern microarchitectural techniques, instruction

queueing and instruction re-ordering [41]. Instruction queuing is designed to reduce

time consumed to fetch instructions. Instruction queuing can behave as a instruction

cache when executing over a loop with a small loop-body. Thus small loops can not

exploit the instruction queue when unrolled and even can overfull the instruction queue

which increases instruction fetch latency. Similar instruction queuing is required for in-

struction re-ordering as well. Instruction re-ordering engine queues micro operations

until all source operands are ready, schedules and dispatches ready micro operations

to the available execution units. The queue overfulls when the dependency chain of

operands is too long. The clarified data-flow of the fully flattened Case 2 generated too

long data dependency chain which overfulls instruction queues in microarchitectures.

76

Chapter 6

Communication Cost Aware

Orchestration

6.1 Communication Overhead of Stream Programs from

Parallelization

Recently, the mapping of stream graphs on processors (also known as orchestration)

has received a lot of attention [18, 19, 26, 27, 31, 33, 44, 47, 75, 78, 79, 80, 84]. In

this work, we introduce an actor placement algorithm that maps actors of stream graphs

to processors by considering communication costs of data channels. The algorithm bal-

ances the workload of processors such that the makespan becomes minimal. The theory

of approximation algorithms [82] was used to design our actor placement. Approxi-

mation algorithms are an active field of research in optimization theory and theoret-

ical computer science. Unlike heuristics, approximation algorithms provide solutions

whose value is within a factor of the optimal solution and their solution can be com-

puted in polynomial time. Other exhaustive search techniques including integer linear

programming (ILP) and branch&bound techniques compute optimal solutions, however,

for larger input sizes exhaustive search techniques become intractable.

We employ the semantics of Synchronous Data Flow (SDF) [11] that restricts the

general Kahn’s processes [43]. In SDF, an actor consumes and produces a fixed number

of tokens when it is fired. The fixed number of tokens consumed and produced in an

actor firing permits the computation of a static finite periodic schedule [11], making

the processing model simple. An example program of StreamIt, which employs SDF

semantics, is depicted In Figure 6.1. StreamIt programs use structured stream graphs

that are composed of filters, pipelines, split-joins, and feedback loops. Dependencies

between actors caused by data channels are deferred between iterations of the finite

periodic schedule, making the parallel execution of an actor independent of each other

in an iteration.

Although stream programs contain an abundance of parallelism, obtaining an effi-

cient mapping onto parallel architectures is nevertheless a challenging problem. The

gains obtained from parallel execution are easily overshadowed by communication. The

workload of a processor comprises both the execution time of actors and the communi-

cation overheads of data channels. In [27], it was shown that the makespan can worsen

by up to 346% if communication costs of data channels are not considered.

The main contributions of this work are:

• an approximation algorithm for the actor placement problem that considers com-

munication costs of data channels,

• instance bounds that provide better bounds than log2 n for a concrete problem

instance*, and

• an evaluation of our algorithm for StreamIt.

The chapter is organized as follows: In Section 6.2, we provide a motivating example.

In Section 6.3, we describe the Actor Placement Problem (APP), prove its NP-hardness,

and formally introduce structured stream graphs that are at the core of our approxi-

mation algorithm. In Section 6.4, we present the approximation algorithm that exhibits

a polynomial run-time, and prove its correctness and approximation bounds. In Sec-

tion 6.7, we present the experimental evaluation of our approximation algorithm using

StreamIt.
*For a concrete instance, a better bound can be computed which is called an “instance bound”. The

approximation ratio log2 n is a worst case for all problem instances.

78

6.2 Motivating Example

We motivate our method by the StreamIt [3] program example in 6.1(a). The program

consists of four actors A1, A2, A3 and A4 that emit and consume sequences of integer

tokens. The counter variable x is initialized in the init-section of actor A1. In the

work-section of actor A1, the counter value is pushed onto the output stream and the

counter is incremented with each actor invocation. The push 1 statement within the

work function specifies the production rate of 1 token per actor invocation. Similarly,

Actor A2 has a consumption rate of 1 token per actor invocation (specified by the pop

1 statement) and a production rate of 6 tokens. Actor A3 has reversed consumption and

production rates, i.e., it consumes and produces 6 and 1 tokens respectively. Actor A4

represents the sink of the stream graph, which simply prints the received integer tokens.

The stream graph for this example is depicted in 6.1(b). The numbers associated

with the nodes and the edges of the graph represent actor execution times and data

communication overheads respectively. We assume that pairwise communication costs

between actors are semi-metric†. For instance, if actors A1 and A2 are assigned to two

different processors, a communication overhead of 5 time units is incurred.

Let us assume that we want to assign the actors of the stream program to two pro-

cessors of a cache-coherent multicore CPU such that the attained makespan is minimal.

In computing the assignment, we must take into account the communication overhead

caused by data transfers between the actors. The communication overhead can drasti-

cally increase the execution times of actors and outweigh the benefits obtained through

parallel execution [27] Thus, it is important to incorporate communication overheads

into the makespan to efficiently balance the workload of the processors.

In Figure 6.1(b), actor A2 has the highest execution time of 25 time units among all

actors and channel (A2, A3) has the highest communication overhead of 70 time units.

Let us first demonstrate the case where we ignore the communication overhead and

optimally balance the workload among processors based on the execution times of actors

†Given a stream graph (V,E), for any two actors u, v ∈ E, the communication cost cuv = 0, if u = v

and cuv = cvu, for all u, v ∈ V .

79

void->void pipeline Program() {
add A1();
add A2();
add A3();
add A4();

}
void->int filter A1() {
int x;
init {x=0;}
work push 1 {push (x++);}

}
int->int filter A2() {
work push 6 pop 1 {

pop();
// do some work
push(); // 6 times

}
}
int->int filter A3() {
work push 1 pop 6 {

pop(); // 6 times
// do some work
push();

}
}
int->void filter A4() {
work pop 1 {print(pop());}

}

A1

15

A2

25

A3

20

A4

10

10

70

10

(a) (b)

Figure 6.1: (a) An example source code and (b) corresponding stream graph.

only. In Figure 6.2(a), actors A1 and A3 are assigned to processor 1, while actors A2 and

A4 are placed on processor 2. Note that such actor placement is optimal: the attained

run-time is 35 time units on both processors, which constitutes the makespan for this

placement. However, the edges (A1, A2), (A2, A3), and (A3, A4) of the stream graph

are all placed across processor boundaries. An additional communication overhead of

5 + 35 + 5 = 45 time units is incurred by data transfers between actors, resulting in a

worst-case makespan of 80 time units.

Let us compare the placement in Figure 6.2a to the optimal placement that can be ob-

tained by considering both the actor execution times and the communication overhead.

If we place actors A1 and A4 on processor 1 and actors A2 and A3 on processor 2, there

are two edges (A1, A2) and (A3, A4) placed across processor boundaries that contribute

10 time units to the overall makespan (Figure 6.2b). Since both actors A2 and A3 are

placed on the same processor, there is no extra communication overhead. The makespan

attained for this placement is thus 55 time units, which is almost 1.5 times smaller than

the makespan obtained for placement in Figure 6.2a.

80

Processor 1

A1

15
A3

20

Processor 2

A4

10
A2

25

10 70 10

Processor 1

A2

25
A3

20

A1

15
A4

10

Processor 2

10

70

10

(a) (b)

Figure 6.2: Actor placement: (a) considering actor execution times only (b) considering
both actor execution times and communication overhead.

Filter

Stream1

Stream2

Splitter

Stream Stream

Joiner

Joiner

Stream

Splitter

(a) Filter (b) Pipeline (c) Split-join (d) Feedback Loop

Figure 6.3: Composites of structured stream programs

81

6.3 Actor Placement Problem (APP)

A stream graph is defined by a tuple (V,E) where V is the set of actors and E ⊆

V × V is the set of channels, and n = |V | and m = |E|. Execution time of an actor v

is denoted by tu and read and write communication costs of a data channel (u, v) ∈ E

is denoted by ruv and wuv respectively. We adopted the profiling scheme of [27] to

measure execution times of actors, and read and write communication costs of edges.

When S ⊆ V , execution times of set S is denoted by t(S) =
∑

v∈S tv by abuse of

notation. Similarly, communication costs of two sets of actors S1, S2 ⊆ V are defined

by c(S1, S2) =
∑

(u,v)∈E∩S1×S2
(ruv + wuv) for all u ∈ S1 and v ∈ S2. If u ∈ S1, v ∈ S2

and (u, v) 6∈ E, then ruv = wuv = 0.

A placement is a partition of V into disjoint sets S1, . . . , Sp (
⋃

i Si = V) where p is

number of processors to utilize and Si denotes set of actors placed on processor i. The

run-time of processor i is denoted by ri which is defined as,

ri = t(Si) +
1

2
c(Si, V \ Si). (6.1)

Note that we assume that tu of actor u ∈ V and and communication cost of a channel

(u, v) ∈ E i.e., ruv and wuv are constant on all processors.

The goal of the actor placement problem is to minimize the run-time of the longest

running processor (also known as makespan) Π = maxi ri.

6.3.1 NP-hardness of APP

Theorem 1. The APP problem is NP-hard.

Proof. We show the NP-hardness by reducing the partition problem ([SP12] in [29]) to

the actor placement problem. An instance of the partition problem is given by a multi-

set A and a weight function ω : A → N. The partition problem seeks for a subset A′

such that ω(A′) = ω(A−A′). We reduce an instance of the partition problem to a graph

whose nodes represent the elements of A and the graph is edge free. The execution time

function becomes the weight functions i.e., t(a) = ω(a) for all a ∈ A. Let p = 2 be the

number of processors, hence, the APP problem reduces to:

82

min
S1,S2

max(r1, r2) = min
S1,S2

max(t(S1) + c(S1, V \ S1) , t(S2) + c(S2, V \ S2))

= min
A′⊆A

max(ω(A), ω(A− A′))

which resembles the partition problem where S1 represents set A and S2 represent set

A′ since S1 and S2 partition V into two disjoint sets. By minimizing the maximum cost

cut, APP will attempt to balance the partition cost and it will output a partition if one

exits, i.e., if r1 = r2.

Note that even for two processors (and no communication costs) the problem becomes

NP-hard. For three or more processors, the APP problem is strongly NP-hard by reduc-

tion from the 3-partition problem. Given a set of 3n integers {a1, ..., a3n} and a bound

B such that
∑3n

i=1 ai = nB, the goal is to partition these integers into n subsets of three

integers such that each subset has a total of exactlyB. This is problem [SP15] in [29]. To

restrict APP to 3-partition, we set the execution time of each actor ai, ∀i ∈ {1, ..., n}, to
B
4
< t(ai) <

B
2

. We further assume that the graph is edge free and the number of actors

is n = 3k. Note that all the communication cost coefficients are polynomially bounded

in the input. Hence, the reduction establishes strong NP-hardness.

Thus to guarantee obtaining solution of AAP in quality bound within feasible time,

we presents an Oracle-based approximation algorithm which uses binary search scheme.

For each iteration of binary search, an Oracle subroutine determines whether an actor

placement for a given makespan exists or not. Because the problem is NP-hard, a dy-

namic program is constructed to find an optimal solution in polynomial time by exploit-

ing structural property of structured stream graphs.

6.4 Approximation

The goal of the approximation algorithm for the actor placement problem is to find

a solution for an instance in polynomial time steps whose quality is bounded. The idea

83

Algorithm 1 Find Actor Allocation
Require: Stream Graph G = (V,E), UB, LB

1: Lower bound LB ← 0

2: Upper bound UB ←
∑

u∈V t(v)

3: while UB − LB > ε do

4: Π← LB+UB
2

5: if ACTORALLOCATIONORACLE(G,Π) is YES then

6: UB ← Π

7: else

8: LB ← Π

9: end if

10: end while

11: return UB

of the proposed approximation algorithm is to use a binary search scheme, Find Actor

Allocation (Algorithm 1) for the makespan Π which is given to a subroutine, Actor Allo-

cation Oracle (Algorithm 2) as a criterion to determine whether there exists a placement

for makespan Π.

The upper bound for the binary search is initially set to t(V), which represents the

total execution time for all actors placed on a single processor. The initial bound ob-

viously corresponds to a feasible solution for the subroutine Actor Allocation Oracle.

Assuming that all execution times are positive, if the Actor Allocation Oracle finds a

valid actor allocation for a given makespan (i.e., answer YES), then the Find Actor Al-

location routine searches the lower half range in the next binary search iteration. If the

Actor Allocation Oracle fails to find a valid actor allocation for a given makespan (i.e.,

answer NO), on the other hand, then the next binary search iteration is performed on

the upper half range. Binary search continues until difference of upper bound and lower

bound becomes smaller than a threshold parameter ε which is proportional to t(V) i.e.,

0.001× t(V).

The subroutine Actor Allocation Oracle initially assumes an empty list of disjoint

84

sets S = [S1, . . . , Sp] where p represents number of processors to utilize. Then the sub-

routine starts allocating actors on each processor until all actors are allocated. For each

actor allocation iteration for a processor i where 1 ≤ i ≤ p, the subroutine Actor Allo-

cation Oracle calls another subroutine PackP (line 5 in Algorithm 2) and accumulates

the result set of the subroutine PackP on Si. The subroutine PackP solves a discrete op-

timization problem and returns an optimal set X of actors, which is subset of set V . The

optimal set X is computed based on dynamic programming that maximizes the number

of newly allocated actors on processor i by still adhering to the makespan constraints

i.e., ri ≤ Π. The set X is defined by,

max . |X ∩ U |

s.t. t(X) + c(X, V \X) ≤ Π

X ⊆ V,

(6.2)

where set U denotes a set of actors that are not assigned on S yet.

Lemma 6. After the `-th iteration of the while-loop in Algorithm 2, ri ≤ ` ·Π holds for

all processors i ∈ {1, . . . , p}.

Proof. For the first iteration of the while-loop (line 3 in Algorithm 2), the value of

ri = t(Si) + 1
2
c(Si, V \ Si) is at most Π for each iteration i of the outer for-loop (line

4 in Algorithm 2). Each cut returned by the PackP subroutine is guaranteed to have

ri ≤ Π due to the makespan constraint. Reassigning actors in the inner for-loop (line 6

in Algorithm 2) does not increase the value of ri for either Si or S. The set of actors that

can be reassigned in each iteration of the while loop increases by at most Π. Hence, for

the `-th iteration of the while-loop, the value of ri for each Si is at most ` · Π.

Lemma 7. If there exists a placement for makespan Π, then in each iteration of the

while-loop in Algorithm 2 the number of unallocated actors halves at least.

Proof. For the `-th iteration of the while-loop where ` > 0 and U0 = V , let U`−1 be the

set of unassigned actors at the beginning of the while-loop iteration and U` be the set of

unassigned actors at the end of the while-loop iteration. We claim that |U`| ≤ |U`−1|
2

.

85

Algorithm 2 Actor Allocation Oracle
Require: Stream Graph G = (V,E), Makespan Π

1: (S1, . . . , Sp)← (∅, . . . , ∅)

2: U ← V

3: while U 6= ∅ do

4: for all i ∈ {1, . . . , p} do

5: X ← PackP(G,U,Π)

6: for all j ∈ {1, . . . , p} \ {i} do

7: Ij ← X ∩ Sj

8: if c(Ij, Sj \ Ij) < c(Ij, X \ Ij) then

9: Sj ← Sj \ Ij
10: else

11: X ← X \ Ij
12: end if

13: end for

14: Si ← Si ∪X

15: U ← U \X

16: end for

17: if maxi∈{1,...,k} ri > Π · log2 n then

18: return NO

19: end if

20: end while

21: return YES

For the `-th iteration of the while-loop, let U`i denote number of unallocated actors

at the end of the i-th iteration of the outer for-loop where 1 ≤ i ≤ p and U`0 = U`. We

define X`i = U`(i−1)−U`i, which means the set of newly allocated actors determined in

the i-th iteration of the outer for-loop.

The PackP subroutine returns an optimal actor assignment such that |X`i| ≥ |U`i|.

Summing over all iterations of the outer for-loop, we obtain:

86

|U`−1| − |U`| =
∑

1≤i≤p

|U`(i−1)| −
∑

1≤i≤p

|U`i|

=
∑

1≤i≤p

|X`i| = |X`|

≥
∑

1≤i≤p

|U`i| = |U`|

Theorem 2. The algorithm is a log2 n-approximation.

Proof. By Lemma 7, the algorithm should terminate in at most log n iterations of the

while-loop. Combining this bound with Lemma 6 concludes the proof.

6.5 Dynamic Program for PackP Subroutine

To reduce problem solving time of PackP, we exploit structured property of structured

stream graphs. Instead of searching solution on a structured stream graph, we convert

the structured stream graph into a binary tree decomposition which is known to speed

up problem solving time of linear systems [53].

Section 6.5.1 defines structured stream graphs in binary tree decomposition approach,

and Section 6.5.2 describes dynamic program for PackP that returns an optimal actor

assignment under given conditions. Because LaminarIR does not implement decorative

nodes of structured stream graphs such as splitters and joiners, Section 6.5.3 describes

how to convert structured stream graphs into reduced stream graph without splitters and

joiners, and shows how the dynamic programming can be expanded and applied on a

corresponding reduced stream graph. Section 6.6 proves the problem solving time of

PackP is polynomial due to binary tree decomposition.

6.5.1 Structured Stream Graphs

To get a handle on the actor placement problem we restrict the graphs to structured

stream graphs as used in stream languages such as StreamIt [3]. Note that structured

87

A

B

C

D

E

F

G

H

I

∗

∗ I

A ‖

∗ ◦

CD F

(a) (b)

Figure 6.4: (a) An example structured stream graph and (b) corresponding binary tree
decomposition.

stream graphs have a strong relationship to series-parallel graphs. It can be shown that

structured stream graphs can be embedded in the class of series-parallel graphs.

A compositional stream is composed of composites as shown in Figure 6.3. The

composites are either (1) an actor called filter that is a single discrete computational

unit which filters data from one input channel and writes to one output channel, (2) a

pipeline, which composes substreams in sequence, where the output of one substream

becomes the input of another substream, (3) a split-join, where input data is split and

given to multiple substreams to be consumed, the output of all these substreams are

joined together and passed on as the split-join’s output, and (4) a feedback loop, where

the output of a substream is split and passed back to be input again to the substream.

Split-joins and feedback loops are constructed using special actors called splitters and

joiners that either splits the tokens of a communication channel or joins them.

Let G denote a class of compositional stream graphs. A compositional stream graph

G ∈ G is specified by a tuple (V,E, s, e). V and E denote sets of actors and edges

88

respectively and s, e ∈ V are start and end nodes which are the linking points of the

composite to the other composites. Definition 6 defines rules to denote each composite.

Definition 6. The class of compositional stream graphs G is inductively defined:

(R1) If u ∈ V , then a filter composite of u is denoted by

G = ({u}, ∅, u, u) ∈ G.

(R2) If G1 = (V1, E1, s1, e1) and G2 = (V2, E2, s2, e2) are in G and V1 and V2 are

disjoint, then a pipeline composite of two graphs are denoted by

G1 ∗ G2 = (V1 ∪ V2, E1 ∪ E2 ∪ {(e1, s2)}, s1, e2) ∈ G.

(R3) If G1 = (V1, E1, s1, e1) and G2 = (V2, E2, s2, e2) are in G, and V1, V2, {s, e}

(where s and e are labels) are disjoint, then a split-join composite of two graphs

are denoted by

G1 ‖ G2 = (V1∪V2∪{s, e}, E1∪E2∪{(s, s1), (s, s2), (e1, e), (e2, e)}, s, e) ∈ G.

(R4) If G1 = (V1, E1, s1, e1) ∈ G and {s, e} is disjoint from V1, then a feedback

composite of G1 is denoted by

◦G1 = (V1 ∪ {s, e}, E1 ∪ {(s, s1), (e1, e), (e, s)}, s, e) ∈ G.

(R5) Nothing else is in G

6.5.2 Dynamic Programming Model

In this section, we transform PackP into an equivalent problem that is solved us-

ing dynamic programming. We first establish cost functions for each components of

structured stream graphs and construct a dynamic program for the PackP subroutine, to

demonstrate the PackP is equivalent to the suggested dynamic program.

We introduce a recursive function h(G, x, y, k) whose first parameter is a structured

stream graph G = (V,E, s, e) ∈ G. G is constructed by a stream graph (V,E) that

89

s1 x

e1 p

s2 q

e2 y

G1

G2

c(e1, s2) · I(p 6= q)

sx

s1p

e1q

G1

ey

c(s, s1) · I(x 6= p)

c(e1, e) · I(q 6= y)

c(e, s) ·

I(x 6= y)

(a) Pipeline (b) Feedback Loop

s x

s1p1

e1q1

G1

s2 p2

e2 q2

G2

e y

c(s, s1) · I(x 6= p1) c(s, s2) · I(x 6= p2)

c(e1, e) · I(q1 6= y) c(e2, e) · I(q2 6= y)

(c) Split-join

Figure 6.5: Dynamic program for composites

90

Table 6.1: Example of tabularized values of the objective function of PackP.

x y
k

0 . . . n

0 0 . . .

0 1 . . .

1 0 . . .

1 1 . . .

is given to PackP as a parameters. The second and third binary parameters x and y,

indicate whether the start and end nodes, s and e respectively, should be packed as a

result of PackP. The last parameter k is a integral value between 0 and n tabularizing

the values of the objective function of PackP. The function h finds the minimal run-time

for a single processor such that the total number of allocated actors is exactly k. For

instance, in Figure 6.1(b), the minimal run-time returned by h such that k = 2 is 25

(i.e., if actors A1 and A4 are packed and no intra-processor communication cost occurs

from actor A1 and to actor A4).

For every call h(G, x, y, k), the dynamic algorithm constructs a table containing the

minimal run-time given the input k and the information about whether the start and end

nodes of G are packed.

Table 6.1 shows an example of tabularized values of the objective function of PackP.

The rows of the table correspond to x and y values (i.e., there are 4 rows) and the

columns represent k values ranging from 0 to n. The algorithm starts with the tables for

the actors and then proceeds to generate tables for the composites. A complete set of

rules for the dynamic program is given below:

Definition 7. The dynamic program is defined as a function h : G × B × B × N → R

such that:

91

(R1) If G = ({u}, ∅, u, u) is an actor, then

h(G, x, y, k) =



0, if x = y = 0, k = 0

t(u), if x = y = 1, u 6∈ U, k = 0,

t(u), if x = y = 1, u ∈ U, k = 1,

∞, otherwise.

(R2) If G = (V,E, s, e) is a pipeline, i.e.,

G = G1 ∗G2 = (V1, E1, s1, e1) ∗ (V2, E2, s2, e2) and s = s1, e = e2, then

h(G, x, y, k) = min{h(G1, x, p, k1) + h(G2, q, y, k2)

+
1

2
c(e1, s2) · I(p 6= q)

: k = k1 + k2, p, q ∈ {0, 1}}

where I(p 6= q) is the indicator function of condition p 6= q and it is 1 if the

condition holds; 0 otherwise.

(R3) If G = (V,E, s, e) is a split-join, i.e.,

G = G1 ‖ G2 = (V1, E1, s1, e1) || (V2, E2, s2, e2), then

h(G, x, y, k) = min{h(G1, p1, q1, k1) + h(G2, p2, q2, k2) + x · t(s) + y · t(e)

+
1

2
(c(s, s1)·I(x 6= p1)+c(s, s2)·I(x 6= p2)+c(e1, e)·I(q1 6= y)+c(e2, e)·I(q2 6= y))

: k = k1 + k2 + δs(x) + δe(y), p1, q1, p2, q2 ∈ {0, 1}}

where δu(x) =

x, if u ∈ U ,

0, otherwise.

(R4) If G = (V,E, s, e) is a feed-back loop, i.e.,

G = ◦G1 = ◦(V1, E1, s1, e1), then

h(G, x, y, k) = min{h(G1, p, q, k1) + x · t(s) + y · t(e)

+
1

2
(c(s, s1) · I(x 6= p) + c(e1, e) · I(q 6= y) + c(e, s) · I(x 6= y))

: k = k1 + δs(x) + δt(y), p, q ∈ {0, 1}}

92

where δu(x) =

x, if u ∈ U ,

0, otherwise.

For an actor u in (R1), the start node corresponds to the end node. The function h

returns the execution time of u if x = y = 1 indicating that the actor is packed. If there

is no feasible solution, i.e., x 6= y, the function returns∞. The k parameter denotes the

number of previously unassigned nodes; it is set to 1 if u has not been already packed.

In case of a pipeline (R2), the indicator function I(·) denotes whether the end node

of G1 and the start node of G2 are assigned to the same processor (Figure 6.5(a)). We

choose nodes such that the sum of costs for the substreams G1 and G2 and the commu-

nication cost between them is minimal.

For a split-join (R3), we similarly minimize the sum of costs between substreams

G1 and G2 and the cost of communication with the splitter and joiner nodes s and e

(Figure 6.5(c)). Note that unlike the pipeline case, there are additional execution costs

associated with the splitter and joiner nodes represented by t(s) and t(e).

For a feedback loop (R4), we choose p and q so that the cost of G1 with additional

execution costs for the splitter and joiner nodes and the cost of communication between

the pairs of actors (s, e), (s, s1) and (e1, e) is minimal (Figure 6.5(b)).

To prove the proposed dynamic program is equivalent to PackP, we first establish

definitions as following.

Definition 8. Given Π ∈ R and 0 ≤ k ≤ n, let HΠ and Fk be the two sets formed as

follows:

HΠ ={X ⊆ V : ĥ(X) ≤ Π} (6.3)

Fk ={X ⊆ V : f(X) = k} (6.4)

h̃(k) = min
X⊆V
{ĥ(X) : |X ∩ U | = k}

= min
X⊆Fk

ĥ(X) (6.5)

where

93

ĥ(X) = t(X) + c(X, V \X)

denoting the cost function for assigning actors of a stream graph to a processor of

PackP in Equation 6.2, and function f that returns value of the objective function of

PackP, i.e., |X ∩ U |.

Note that the set HΠ corresponds to the feasible region of PackP. We introduce h̃(k)

that is computed efficiently via the proposed dynamic program.

Lemma 8. The intersection of Fg and HΠ is non-empty iff minX∈Fg{ĥ(X)} ≤ Π.

Proof.

min
X∈Fg

{ĥ(X)} ≤ Π ⇐⇒ ∀X ∈ arg min
X∈Fg

{ĥ(X)} : ĥ(X) ≤ Π

⇐⇒ arg min
X∈Fg

{ĥ(X)} ∩HΠ 6= 0

⇐⇒ arg min
X∈Fg∩HΠ

{ĥ(X)}

⇐⇒ Fg ∩HΠ 6= 0

Lemma 9. The value of Mf∗ = maxg{g : h̃(g) ≤ Π} is the optimal solution of PackP.

Proof. We claim that PackP maximizes the number of unallocated actors U ⊆ V to be

placed on a processor such that the total run-time does not exceed Π.

Mf∗ = max
g
{g : min

X⊆V
{ĥ(X) : f(X) = g} ≤ Π}

= max
g
{g : Fg ∩HΠ 6= 0}

= max
X⊆V
{f(X) : X ∈ HΠ 6= 0}

= max
X⊆V
{f(X) : ĥ(X) ≤ Π}

94

In Definition 6.5.2, we claimed that h̃(k) = minX⊆V {ĥ(X) : |X ∩ U | = k}, which

corresponds to minx,y h(G, x, y, k). In order to establish the claim, we further show by

structural induction, that for all graphs G ∈ G, the following holds:

h(G, x, y, k) = min
X⊆V
{ĥ(X) : |X ∩ U | = k}.

Proof. By structural induction

- If G = ({u}, ∅, u, u) is an actor, then

h(G, x, y, k) = min{ĥ(X) : f(X) = k}.

- If G = (V,E, s, e) is a pipeline, i.e.,

G = G1 ∗G2 = (V1, E1, s1, e1) ∗ (V2, E2, s2, e2), then

h(G, x, y, k) = min{ min
X⊆V1\{s1,e1}

{ĥ(X) : f(X) = k1}

+ min
X⊆V2\{s2,e2}

{ĥ(X) : f(X) = k2}

+
1

2
c(e1, s2) · I(p 6= q) : k = k1 + k2, p, q ∈ {0, 1}}

= min{ min
X⊆V1∪V2

{ĥ(X) : f(X) = k} : k = k1 + k2}

= min{ĥ(X) : f(X) = k}.

- If G = (V,E, s, e) is a split-join, i.e.,

G = G1 ‖ G2 = (V1, E1, s1, e1) ‖ (V2, E2, s2, e2), then

h(G, x, y, k) = min{min
X⊆V1

{ĥ(X) : f(X) = k1}+ min
X⊆V2

{ĥ(X) : f(X) = k2}

+ x · t(s) + y · t(e)

+
1

2
(c(s, s1) · I(x 6= p1) + c(s, s2) · I(x 6= p2)

+ c(e2, e) · I(q1 6= y) + c(e2, e) · I(q2 6= y))

: k = k1 + k2 + δs(x) + δe(y), p1, q1, p2, q2 ∈ {0, 1}}.

95

- If G = (V,E, s, e) is a feed-back loop, i.e.,

G = ◦G1 = ◦(V1, E1, s1, e1), then

h(G, x, y, k) = min{h(G1, p, q, k1) + x · t(s) + y · t(e)

+
1

2
(c(s, s1) · I(x 6= p) + c(e1, e) · I(q 6= y) + c(e, s) · I(x 6= y))

: k = k1 + k2 + δs(x) + δt(y), p, q ∈ {0, 1}}.

6.5.3 Reduced Stream Graphs for LaminarIR

Communication cost aware orchestration algorithm is essential to determine best par-

allel schedule for LaminarIR. However, the proposed communication cost aware orches-

tration algorithm needs adjustments to be applied on LaminarIR. LaminarIR is designed

for general graphs therefore not restricted to structured stream graphs. With structured

stream programs, LaminarIR eliminates data-flows non-computational nodes such as

nodes only for data distribution or merge, which effects as destructing of structured

stream graphs. Thus, orchestration information based on structured stream graphs is

necessary to be converted into general stream graphs forms. We call reduced stream

graph for graphs generated by eliminating nodes for data distribution and merge from

structured stream graphs.

Figure 6.6 shows an example of a reduced stream graph after eliminating splitter (node

D) and joiner (node C) from a structured stream graph. As shown in the example, topol-

ogy of reduced stream graph (Figure 6.6b) represents direct memory access pattern of

LaminarIR which is not represented in the structured stream graph (Figure 6.6a). This

LaminarIR-friendly topology of reduced stream graph enables to 1) profile data com-

munication overheads of LaminarIR in higher precision and 2) compute actual data

communication cost of LaminarIR when a parallel schedule is given.

To maintain semantics of structured stream programs in reduced stream programs,

data rotation orders which has been implicated in the definition of splitters and joiners

in structured stream programs have to be incorporates into scheduling information of

96

A B

C

D

E F G

31 3 1

6
3

1
1

1
1

1
1

A B

E F G

1

1

1

1

1

1

1

1

1

1

1

1

(a) (b)

Figure 6.6: (a) An example structured stream graph and (b) corresponding reduced
stream graph.

reduced stream program. For example, the defined data rate of the joiner (actor C) and

the splitter (actorD) implies that the joiner consumes three incoming data once per edge

in round-robin way and splitter produces one outgoing data once per edge in round-robin

way. Therefore, one of the valid steady-state schedules of Figure 6.6a is

3A3BC2D3(EFG).

Implied distribution/merge information in splitters and joiners are eliminated as well

when structured stream programs are transformed into reduced stream graphs. Thus, re-

duced stream program needs to extend scheduling information to retain the implication,

for example,

(A,E, 1)(A,F, 1)(A,G, 1)(B,E, 1)(B,F, 1)(B,G, 1).

A schedule of reduced stream program is represented by a list of tuples. Each tuple

consists of three elements, where the first and second element of the list indicate pro-

ducer and consumer respectively followed by the third element which means data rate

per transfer.

97

6.6 Time Complexity

Now let us analyze the running time of the proposed dynamic programming algorithm

and the overall running time of the Algorithm 2. A stream graph has at most 2n − 1

edges represented by actors and pipelines. Hence, the decomposition binary tree has at

most 2n − 1 leaf nodes and the total number of nodes is thus bounded by 4n − 3. For

leaf nodes and nodes that represent split-join and feed-back loop compositions in the

binary tree, the number of values of the objective function that need to be computed is

O(p2), where p = |P |. For nodes that represent pipeline compositions, the number of

computations is O(p3). Since the number of nodes in the decomposition tree is linear,

the overall running time of the PackP subroutine is O(np3). Note that in case of split-

join nodes with d > 2 streams, the decomposition tree is not binary but can be converted

to a binary tree without affecting the solution. For every such split-join node, we replace

it with a complete binary subtree T of height dlog2 d− 1e rooted at r and attach d nodes

of the split-join node as children of T at most 2 per each node. We assign t(r) the local

cost of the split-join node and for every other internal node u in this subtree we set

t(u) = 0. The edge costs between the internal nodes are set to 0, while the costs on the

edges to the attached children are set to the costs associated with the split-join node. By

Lemma 7, Algorithm 2 terminates in at most log2 n iterations. Thus, the overall running

time is bounded by O(np3 log2 n) , where n is number of nodes in a graph and p is the

number of processors to utilize.

6.7 Experimental Results

We evaluate our method as follows:

• Quality bounds of approximated solution compared to the optimal solution.

• Efficiency of approximation algorithm in problem solving time compared to the

ILP program.

• Effectiveness of theoretically computed solutions in real applications.

98

In this experiment we have used an Intel Xeon E5-2697 running a standard build of

the Centos 7.2 Linux distribution (kernel version 3.10.0). As a benchmark suite for our

scheduling algorithm, we have used 6 applications from the StreamIt [77]. All bench-

marks are a part of the StreamIt benchmark suite publicly available from [3] and vary

from digital signal processing, video processing, and linear algebra, to sorting. The in-

formation about the actors in each benchmark is provided in Table 6.2. Besides para-

metric specifications of benchmarks in column 2, we provide two additional benchmark

specific characteristics which we observe to have high correlation to the effectiveness of

the proposed communication-cost-aware orchestration. Column 3 in Table 6.2 shows the

number of nodes related to data distribution and collection (split-joins), which indicate

complexity of stream-graph topology. Column 4 shows the proportional overhead of

communication overhead over the computational overhead. Higher proportion of split-

ters and joiners indicates nodes in a benchmark share many data channels with each

other, which means higher data dependencies among nodes. Higher communication cost

ratio over computation cost means a benchmark has higher chance to be improved by

communication-cost-aware orchestration than computation only orchestration.

Table 6.2: Benchmark characteristics

Benchmark Parameters SJs comm.
comp. ratio

RadixSort number of values to sort (16) 0 33.81%

DCT window size (16) 4 337.61%

FFT window size (64) 2 121.49%

FMRadio bands (7); window size (128); decimation (4) 10 63.76%

MergeSort number of values to sort (16) 14 62.75%

MatrixMult matrix dims NxM, MxP (12x12, 9x12) 10 21.60%

BeamFormer channels (15) 4 23.61%

The approximate solutions of all instances are bounded by log2 n (cf. Section 6.4),

where n is the number of actors. However, this bound is a worst-case bound, and we are

99

able to observe better bounds for concrete instances. Note that the approximation ratio

of an instance is bounded by the number of iterations of the while-loop in Algorithm 2.

Each loop iteration penalizes the solution by at most Π as shown in Lemma 6.

Table 6.3: Approximate vs. optimal results. The number of actors in each benchmark

is indicated by n, while |E| represents the number of communication channels in the

stream graph. Note that all APX
OPT

values are bounded by log2 n.

Benchmark |V | |E|
APX/OPT

2 Cores 4 Cores 6 Cores

RadixSort 13 12 1.157 1.368 1.182

DCT 24 37 1.407 1.577 0.953

FFT 26 26 1.386 2.096 1.491

FMRadio 31 37 1.437 2.586 2.085

MergeSort 31 37 1.328 1.337 N/A

MatrixMult 52 88 1.000 0.984 1.000

BeamFormer 58 71 1.051 N/A N/A

Average 1.252 1.658 1.342

In Table 6.3, we show the result of the optimal solution (OPT) compared to the ap-

proximation (APX) for 2, 4 and 6 processors. The optimal solution was computed using

the ILP program given in the Appendix (Equation A.1). The ILP program is written in

IBM ILOG AMPL [38] and IBM ILOG CPLEX Interactive Optimizer 12.6.3.0 [39] is

used as a solver. On average, quality bound of our approximation algorithm were in

25.2% with 2 processors, in 65.8% with 4 processors, and in 34.2% with 6 processors.

Our approximation solutions are closer to optimal solutions when benchmarks have

equable execution times among nodes, e.g., RadixSort, MatrixMult, and BeamFormer.

Our approximation algorithm solved better solution than the ILP in some cases such

as DCT on 6 processors and MatrixMult on 4 processors. It is because the ILP uses

branch&bound techniques compute optimal solutions with specific threshold to termi-

100

Table 6.4: AAP and ILP solving times in seconds for 2, 4, and 6 processors

Benchmark |V | |E|
2 Cores 4 Cores 6 Cores

AAP ILP AAP ILP AAP ILP

RadixSort 13 12 0.238 0.190 0.235 1.183 0.244 0.977

DCT 24 37 0.753 0.537 0.724 33.490 1.002 25.808

FFT 26 26 1.905 0.705 2.888 7.492 2.163 4.851

FMRadio 31 37 1.487 1.697 1.583 19.903 1.151 144.285

MergeSort 31 37 2.382 1.245 2.690 35.405 2.816 N/A

MatrixMult 52 88 3.178 7.923 3.580 50.721 8.773 86.340

BeamFormer 58 71 11.251 26.614 11.706 N/A 10.846 N/A

nate. With an increasing number of processors, the ILP program becomes intractable.

The entries marked by ‘N/A’ in Table 6.3 indicate that the ILP did not provide any

solution after a preset timeout, 10,000 seconds.

Table 6.4 shows actual running time of our approximation algorithm and the ILP pro-

gram. Problem solving time of the ILP increases drastically as the number of processors

grows. With 6 processors, two out of seven benchmarks failed to be solved by the ILP

program in 10,000 seconds. In contrary, problem solving time of our approximation

algorithm which does not increase by growing number of processors.

In Figure 6.7a, we present the speedups achieved by our communication-cost-aware

approximation algorithm over single processor execution for 2, 4, and 6 processors. We

obtain average speedups of 1.31x, 1.50x and 1.84x on 2, 4 and 6 processors respectively.

Some benchmark instances do not scale well due to bottleneck actors, i.e., actors that

constrain the throughput of a stream program. For example, MatrixMult achieves lower

speedups than other benchmarks as the number of processors increases, even though the

actor placement for these benchmarks is optimal for 6 cores (see Table 6.3).

Figure 6.7b shows experimental result of communication-cost-insensitive schedul-

ing for comparison. For two benchmarks, communication-cost-insensitive scheduling

show worse performance than sequential program, and communication-cost-insensitive

101

50

100

150

200

250

D
C
T

FFT2

M
at

rix
M

ul
t

R
ad

ix
Sor

t

Bea
m

Fo
rm

er

M
er

ge
Sor

t

FM
R
ad

io

S
p

e
e

d
u

p
 (

%
)

Computation+Communication

(a) Communication-cost-aware scheduling

50

100

150

200

250

D
C
T

FFT2

M
at

rix
M

ul
t

R
ad

ix
Sor

t

Bea
m

Fo
rm

er

M
er

ge
Sor

t

FM
R
ad

io

S
p

e
e

d
u

p
 (

%
)

Proc P2 P4 P6

Computation

(b) Computation-only scheduling

Figure 6.7: Speedup comparison of (a) communication-aware scheduling with

(b) computation-only scheduling

102

scheduling does not show gradual performance improvement over increasing number

of processors for four benchmarks. Such problem happens more frequently when ex-

ecution times of actors in a program are similar and topology of the stream-graph is

complex. The most critical problem of the communication-cost-insensitive scheduling

is that the quality of schedules are highly dependent on the fluctuation rate of the per-

formance measurement. If actor execution times are very much similar and fluctuation

rate of a testing machine is very high e.g., memory structure of the machine is complex,

then result of actor allocation can be arbitrary, and so is the schedule.

Another noticeable observation is that RadixSort and BeamFormer show better per-

formance with communication-cost-insensitive scheduler. As shown in Table 6.2, Radix-

Sort and BeamFormer have very simple stream-graph topology, and communication

cost overhead is relatively small compared to the computation overhead as shown in Ta-

ble 6.2. In such case, benefit of communication-cost-aware scheduling become less ef-

fective and communication-cost-insensitive scheduler results more load-balanced sched-

ule as it has less objectives to meet. Considering complexity of the stream-graph topol-

ogy as a factor of scheduler would enhance scheduling quality, and this is one of the

future works.

103

Chapter 7

Related Work

Unlike classical data-flow [24], SDF [51] graph is a data-flow graph which fixes the

number of tokens produced and consumed by an actor at compile-time. The static nature

of SDF facilitates compile-time optimizations wrt. streamgraph transformations, parti-

tioning and scheduling. A number of contemporary stream languages have been adapted

SDF as their computation model for aforementioned properties.

There exists a large body of work on stream programming languages and related com-

pilation techniques, including StreamIt [77], Baker [19], Brook [17], Cg [55], CQL [7],

Lime [8] and StreamFlex [71].

7.1 Compiler Optimizations to Overcome FIFO Queue

Overhead

All modern stream programming languages except Cg implement data channels based

on queues. Systems based on the streaming model such as Borealis [4], Flextream [37]

and DANBI [58] employ FIFO queues for their data channels.

Because the performance overhead of FIFO queue operations is non-negligible, there

has already been significant research effort to reduce the communication overhead of

stream programs. Bhattacharyya et al. [12] investigated how to enhance register uti-

lization for data transfers by tuning actor invocation schedules rather than tackling the

data transfer method itself. Bier et al. [13] introduced Gabriel, a design environment

for digital signal processing, which employs symbolic names for tokens across actors.

Gabriel does not model global data-flow, and data is flushed to memory after each ac-

tor invocation. Sermulins et al. [69] applied scalar replacement to convert arrays into

scalar variables for buffers that reside between fused actors. However, unlike Lami-

narIR, scalar replacement is not applied on buffers which contain delay tokens, because

two adjacent actors are never fused if the downstream actor performs any peeking. This

constraint implies that scalar replacement cannot be performed on stream graph cycles

such as StreamIt’s feedback loops. Soulé et al. [70] and Bosboom et al. [15] described

actor fusion techniques to remove inter-buffering overhead, but they did not remove

queues as such as the communication mechanism between actors.

7.2 Static Analysis of Stream Programs

Majority of research on synchronous data-flow program optimizations are in the area

of graph topology [35]. Hirzel et al. surveys topological optimizations that can enhance

utilization of traditional compiler optimizations, and also stresses the necessity of new

compiler analysis for stream programs. Our approach is distinctive from the proposed

topological optimizations as any actor code is eligible to our approach.

The latest StreamIt system [69, 77] supports program-wise scalar replacement by

fusing actors, only if the buffer in between two actors does not contain delay tokens, as

well as tokens to peek exceeding consumption rate, and pre-loaded tokens to execute

stream graph cycles. Our method separates actor-wise and program-wise scalar replace-

ment, thus provides a modularized view of data token flows. Hence, we can handle SDF

graphs with cycles and can treat them, soundly. StreamIt’s scalar replacement is not

sound when queue operations are involved with unbalanced conditional branches, and

actors with static stream parameters in form of constant arrays.

Various researches have been devoted to exploit abstract interpretation for static pro-

gram analysis on SDF program optimizations [14, 34, 83]. In [14], Blanchet et al. in-

troduced an abstract interpretation-based static program analysis to theoretically ver-

ify large safety-critical software including periodic synchronous safety critical embed-

105

ded software. The work exploits loop unrolling and trace partitioning for better anal-

ysis quality for program transformation. Halbwachs [34] utilizes an application of ab-

stract interpretation, approximate reachability analysis to verify critical properties of

synchronous programs.

Trace partitioning is proposed by [10, 56, 68] to improve the quality of static analysis

by obtaining path sensitivity. In [9], Balakrishnan et al. proposes a refinement technique

to simplify control-flow sequences especially for loops to improve the precision of ab-

stract interpretation in the presence of widening.

7.3 SDF Scheduling Algorithms for Parallelization

A wide range of static scheduling algorithms for the SDF model exist [26, 31, 44,

47, 50, 67, 78, 79]. The StreamIt compiler [31] targets the Raw Microprocessor [57],

shared-memory multicore architectures and clusters of workstations. Adjacent actors

are often fused to increase the computation-to-communication ratio as long as the result

is stateless. A heuristic for actor fission is then applied to increase data-parallelism to

the extent that a communication-efficient balance between task and data parallelism

is maintained. Coarse-grained software-pipelining of actors increases flexibility of the

program partitioning and scheduling phases due to the eliminated actor dependencies

within the same steady-state iteration. A greedy partitioning heuristic that minimizes

the makespan is applied to load-balance actors among processor cores.

Actor placement of stream programs on multicore architectures with accelerators

such as GPGPUs is examined in [79]. A communication-aware ILP formulation is pre-

sented for partitioning computations between CPU cores and GPGPU streaming multi-

processors (SMs) that minimizes makespan. Partitioned computations are then software-

pipelined to execute on CPU cores and on the SMs of the GPU. Profiling is used to de-

termine an optimal execution configuration of a stream program in terms of the number

of registers per thread and the number of data-parallel actor instances. A buffer layout

technique for GPUs that coalesces accesses to device memory is presented. Udupa et

al. proposed a heuristic algorithm for the actor placement problem and experimentally

106

demonstrated that the produced solutions are within 9.05% of the optimal solution ob-

tained with the ILP program across a range of benchmark.

An iterative heuristic algorithm for partitioning and allocation that maps Kahn pro-

cess networks with optional SDF-parts onto heterogeneous multiprocessors is presented

in [18]. Partitions with short software pipelines are favored to reduce memory, la-

tency and startup overheads that increase with the number of pipeline stages. In order to

shorten software pipelines, generated partitions are convex, i.e., they are connected and

do not contain circular dependencies. Partitioning is parameterizable through the provi-

sion of basic connected sets, which constitute collections of actors that the compiler is

allowed to merge in a pairwise fashion. However, the assumption that partitions need to

be convex is not shown to be code optimal.

Kudlur and Mahlke’s stream graph modulo scheduling in [47] employs an ILP formu-

lation to evenly distribute StreamIt actors among the synergistic processing elements of

the Cell processor [36]. An integrated unfolding and partitioning technique that spreads

data-parallel actors and maximally packs actors onto cores is incorporated into the ILP

formulation. Stage assignment algorithm is then applied to overlap communication over-

heads with computations. In contrast to our model, an assumption was made about actor

execution times that always dominate communication overheads. Hence, it is not appli-

cable to multicore architectures where this assumption does not hold.

Another ILP formulation, which combines the requirements for both rate-optimal

software pipelining and the minimization of inter-processor communication overhead

on a communication exposed architecture is illustrated in [80]. In this multi-objective

optimization problem, the primary objective is to maximize the computational rate,

while the secondary objective is to minimize the communication overhead. A binary

search is used to find the maximal rate where the communication is minimized. In con-

trast to our model, the approach is devised specifically for the communication exposed

architecture.

A 2-approximation algorithm for mapping stream programs onto a multicore archi-

tecture has been proposed in [26]. A data rate transfer model has been presented for

stream graphs which expresses the data rate of each actor depending on a single pa-

rameter which is referred to as a closed form. The approximation algorithm has been
107

implemented based on the closed form expression. The quality of the solutions achieved

is near-optimal. However, the approach did not consider the communication overhead

in allocating actors to processor cores.

In [27], a unified ILP formulation is presented that does consider communication

costs of data channels on cache-coherent multicore architectures. The objective is to

minimize the maximum workload over the set of processor cores taking into account

the incurred communication overhead. However, as the number of processor cores in-

creases, the ILP program quickly becomes intractable and does not present a practical

solution for the actor placement problem.

108

Chapter 8

Conclusion

In this thesis, we introduced LaminarIR compiler framework which comprises opti-

mization techniques to tackle performance obstacles of stream programs which reside

in data communication implementation. We designed a new intermediate representa-

tion for structured stream programs, LaminarIR, and its theoretical foundation to en-

sure semantically correct program transformation from structured stream programs into

LaminarIR. The backbone of the compiler consists of a parser which accepts StreamIt

and transforms into LaminarIR, and a backend which generates C code from Lami-

narIR. To expand applicability of LaminarIR, we introduced a static analysis based actor

transformation method. A new communication-cost-aware orchestration algorithm for

structured stream programs is devised to convey benefits of LaminarIR onto multicore

architectures.

This chapter summarizes contributions of the thesis in Section 8.1, and suggests

prominent future works in Section 8.2.

8.1 Summary

We designed LaminarIR and its compiler transformation that shift FIFO buffer man-

agement from run-time to compile-time. Underlying theory of the LaminarIR is estab-

lished to guarantee semantic preserving transformation. Effectiveness of our approach is

verified in microarchitectural level by evaluating the LaminarIR on four representative

processor architectures from three different processor vendors and achieving between

6.64x and 7.43x performance improvement on average against FIFO queue implemen-

tation. We also proved the new data-flow representation enhances effectiveness of stan-

dard and contemporary compiler techniques, by showing accelerated SSA form promo-

tions by the LaminarIR. Our approach eliminates 35.9% data-communication resulting

in 60% less memory accesses on the Intel i7-2600K.

For further sound and effective LaminarIR transformation, we proposed a sound static

program analysis technique which employs static actor specifications to analyze dy-

namic control-flow of the actors in stream programs during compile-time. Local di-

rect token access is an essential prerequisite to further resolve program-wise direct

token flow which improves performance of the program drastically once applied on

SDF programs. The proposed static analysis technique is distinguished from previous

approaches by guaranteed soundness of result, and the analysis utilizes SDF specific

properties to improve analysis quality. Evaluation of our static analysis technique is

conducted actor-wise, meaning that only local direct access transformation is applied

without global direct access transformation of the LaminarIR compiler framework. This

implies that clarified data-flow improves performance of programs even if the visibility

of the data-flow is restricted to an actor not through a whole program. On average, a pro-

gram composed with actors that uses the LaminarIR for internal data-flow representa-

tion achieved from 2.2x to 2.5x speedups on the three difference processor architectures

from the Intel, AMD, and ARM each. But as few cases in the experimental result also

shows that increased code size by the proposed technique can overwhelm benefits from

the analysis. Extension of the analysis technique which takes hardware specifications

such as instruction cache size and protocols into accounts to evaluate the quality of the

analysis result.

By devising an approximation algorithm for communication-cost-aware orchestra-

tion, we stretched practical application scope of the LaminarIR to parallel architec-

tures. The proposed approximation algorithm balances workload of stream programs

on cache-coherent multicore architectures and produces solutions in polynomial time

log2 n, where n is number of actors in a stream program and the worst-case run-time of

the algorithm isO(np3 log2 n). To the best of our knowledge, this is the first approxima-

110

tion algorithm for solving actor placement problem considering communication costs of

data channels. Current state-of-the-art approaches address the actor placement problem

considering communication costs from heuristic measurements or rely heavily on opti-

mal exhaustive search techniques including integer linear programming. Heuristics are

either fast but do not provide performance guarantees of their solutions. Integer linear

program approaches provide optimal solutions, but feasible input sizes are very limited

for commercial ILP solvers.

We evaluated our approximation algorithm on a range of benchmarks from various

scientific domains and demonstrated its near-optimal experimental bound for 2, 4, and

6 processors. We further presented two instance bounds for the approximate solution:

one is based on linear relaxation and the other utilizes properties of the approximation

scheme. The linear relaxation demonstrates tight bounds for a low number of proces-

sors. As the number of processors increases, the instance bounds on the approximation

ratio obtained using the linear program deteriorate quickly. On the other hand, the lat-

ter bounding technique achieves tight bounds providing an invaluable insight into the

problem structure. For our benchmark, we observe instance bounds of 2 in the worst

case.

8.2 Opportunities for Future Work

Expansion of target stream languages Stream programs are expressed by indepen-

dent computing units that are connected by data channels, and intended to process con-

tinuous input data stream. Different stream programming languages retain their own dis-

tinguishable characteristics as well such as different language properties to convey own

purposes of the language, different implementations of conceptual structures, and differ-

ent optimization techniques [35]. Thus, a framework that supports various stream pro-

gramming language design has the prevailing academic meaning, because such frame-

work enables researchers to apply and evaluate their approaches on programs with dif-

ferent characteristics. Examining an approach from various angles will enhance quality

and broaden applicability of the approaches. One way to implement the generic stream

111

programming language framework would be to develop a profound parser that accepts

programs in various stream programming languages and generates a unified AST.

Scala [25] is a multi-paradigm programming language that embraces functional pro-

gramming and object-oriented programming. We suppose the functionality of Scala lan-

guage design is fairly close to the design of stream programming language. Scala also

provide a strong library for programming language parsing, called Scala parser com-

binator, which facilitate development of parsers in Scala. In addition, we assume the

parser will enable researches on statement level optimizations of stream programs, such

as code level prefetching of data by rearrangement of data access patterns in stream

programs to minimize data access latency.

Synchronization cost aware orchestration From in-depth investigations on perfor-

mance of stream programs, we recognized that synchronization overhead accompanied

by each steady-state iteration is another significant performance bottleneck of stream

programming languages.

One of standard ways to synchronize a steady-state iteration running on parallel pro-

cessors is to use global synchronization methods such as barrier, causing constant syn-

chronization overhead per steady-state iteration. Even worse, the synchronization over-

head increases in proportion to the number of processors to utilize, which becomes a

huge scalability drawback. More fine-grained synchronization methods such as mutex

can be potential alternatives to global synchronization methods. But implementation of

fine-grained synchronization methods requires not only a sound understanding of un-

derlying hardware and operating system but also a scheduling algorithm which is aware

of the synchronization overhead.

Deploying on many-core computing infrastructure Stream computing is becoming

the most efficient way of obtaining useful knowledge from Big Data [63]. Big Data

input streams arise in external environments such as sensors, web-browsers and the

mobile Internet. Streams of events are pushed to servers to be processed in real-time.

Because a large volume of data is arriving at such systems, the information cannot be

112

processed anymore in real-time by a centralized solution. A new computing paradigm,

called Big Data Stream Computing (BDSC), has emerged to facilitate such large-scale

real-time analytics computations on Big Data streams [52, 73]. Few resesarch bodies

have explored BDSC already. Google’s Map-Reduce [23] is established as a program-

ming model for batch processing on large data-sets. Batch-processing does not match

an on-line streaming setting, because streams change frequently over time and the lat-

est data is the most valuable one. There is no single well-established processing model

yet for BDSC. Given the exponential growth of devices connected to the Internet, the

demand for large-scale stream processing can be expected to grow significantly in the

coming years.

113

Appendices

Appendix A

An Optimal, ILP-based Solution

for the Min-MAX AP Problem

The following integer program corresponds to the min-max APP problem in Sec-

tion 6.3. Let G(V,E) be a stream graph where V is the set of actors and E ⊆ V × V

is the set of channels. Let, further, P be the set of processors. The objective is to par-

tition V into i = |P | disjoint sets such that the maximum makespan across all i sets is

minimized, i.e., min maxiri (Equation 6.1):

min. Π

s.t.
∑

(u,v)∈E

1

2
c(u, v) · xup · (1− xvp) +

∑
u∈V

t(u) · xup ≤ Π ∀p ∈ P (A.1a)

∑
p∈P

xup = 1 ∀u ∈ V (A.1b)

xup ∈ {0, 1} ∀u ∈ V, p ∈ P (A.1c)

In the above model, we introduce 0-1 decision variables xup that model a function V →

P for mapping actors to processing elements, where:

xup =

 1, if actor u is assigned to processor p

0, otherwise

The communication costs between actors u, v ∈ V are represented by parameter

Table A.1: Comparison of the objective function values of the ILP (OPT) and the linear

relaxation (LR) for two processors.

Benchmark LR OPT

MergeSort 2.277 2.529

ChanVocoder7 155.185 157.495

MatrixMult 81.64 87.289

FFT2 33.872 34.284

FMRadio 8.272 N/A

BeamFormer 13.499 13.723

DCT 8.294 8.633

TDE 3183.437 3183.749

RadixSort 7.952 7.952

BitonicSort 3.056 3.25

DES 137.461 N/A

Serpent 384.727 N/A

MPEG 68.793 70.172

SAR 43290.162 45438.718

FilterBankNew 22.519 22.889

c(u, v). We consider both directions for communication; if there is a communication

channel between u and v, then we incur a double communication cost since there is

also a channel between v and u. Thus we take a half of the objective function value.

Parameter t(u), ∀u ∈ V denotes the execution time of actor u and Π is the makespan

variable.

Constraint (A.1b) ensures that variables xup represent a sound mapping, such that

a single operation u ∈ V is mapped to exactly one processor, while the integral con-

straint (A.1c) guarantees that there are no fractional mappings. Note that we relax the

uniformity of processors; an actor can be scheduled on any available processor and it

takes exactly the same time to execute independently of the chosen processor.

116

The linear relaxation of Equation A.1 that was used to derive a lower bound on the

objective function value is given below:

min. Π

s.t.
∑

(u,v)∈E

1

2
c(u, v) · yuvp +

∑
u∈V

t(u) · xup ≤ Π ∀p ∈ P

∑
p∈P

xup = 1 ∀u ∈ V

where we replace the quadratic term xup · (1 − xvp) by yuvp which corresponds to the

absolute value |xup − xvp|:

yuvp ≥ xup − xvp,∀p ∈ P

yuvp ≥ xvp − xup,∀p ∈ P

Table A.1 provides a measure of the quality of relaxed linear program compared to

the optimal solution obtained with the ILP for two processors. We only present the two-

processor case for the comparison due to the ILP program becoming intractable with

increased number of processors (see Section 6.7).

117

Bibliography

[1] LaminarIR website. http://LaminarIR.github.io.

[2] Lightweight performance counter tools (LIKWID) website. https://code.

google.com/p/likwid/. Accessed: 2014-09-30.

[3] StreamIt website. http://groups.csail.mit.edu/cag/streamit/

index.shtml. Accessed: 2014-09-30.

[4] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,

W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik.

The design of the Borealis stream processing engine. In Second Biennial Confer-

ence on Innovative Data Systems Research, CIDR ’05, pages 277–289, Asilomar,

CA, 2005.

[5] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-

niques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2006.

[6] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in

programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’88, pages 1–11, New York, NY,

USA, 1988. ACM.

[7] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic

foundations and query execution. The VLDB Journal, 15(2):121–142, June 2006.

[8] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah. Lime: A Java-compatible

and synthesizable language for heterogeneous architectures. In Proceedings of the

http://LaminarIR.github.io
https://code.google.com/p/likwid/
https://code.google.com/p/likwid/
http://groups.csail.mit.edu/cag/streamit/index.shtml
http://groups.csail.mit.edu/cag/streamit/index.shtml

ACM International Conference on Object Oriented Programming Systems Lan-

guages and Applications, OOPSLA ’10, pages 89–108, New York, NY, USA,

2010. ACM.

[9] G. Balakrishnan, S. Sankaranarayanan, F. Ivančić, and A. Gupta. Refining the

control structure of loops using static analysis. In Proceedings of the Seventh

ACM International Conference on Embedded Software, EMSOFT ’09, pages 49–

58, New York, NY, USA, 2009. ACM.

[10] G. Balakrishnan, S. Sankaranarayanan, F. Ivančić, O. Wei, and A. Gupta. SLR:

Path-sensitive analysis through infeasible-path detection and syntactic language

refinement. In Proceedings of the 15th International Symposium on Static Analy-

sis, SAS ’08, pages 238–254, Berlin, Heidelberg, 2008. Springer-Verlag.

[11] S. S. Battacharyya, E. A. Lee, and P. K. Murthy. Software Synthesis from Dataflow

Graphs. Kluwer Academic Publishers, Norwell, MA, USA, 1996.

[12] S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee. Generating compact code

from dataflow specifications of multirate signal processing algorithms. IEEE

Trans. on Circuits and Systems — I: Fundamental Theory and Applications,

42:138–150, March 1995.

[13] J. C. Bier, E. E. Goei, W. H. Ho, P. D. Lapsley, M. P. O’Reilly, G. C. Sih, and E. A.

Lee. Gabriel: A design environment for DSP. IEEE Micro, 10(5):28–45, Sept.

1990.

[14] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. A static analyzer for large safety-critical software. In Proceedings

of the ACM SIGPLAN 2003 Conference on Programming Language Design and

Implementation, PLDI ’03, pages 196–207, New York, NY, USA, 2003. ACM.

[15] J. Bosboom, S. Rajadurai, W.-F. Wong, and S. Amarasinghe. StreamJIT: A com-

mensal compiler for high-performance stream programming. In Proceedings of

119

the 2014 ACM International Conference on Object Oriented Programming Sys-

tems Languages & Applications, OOPSLA ’14, pages 177–195, New York, NY,

USA, 2014. ACM.

[16] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming

interface for performance evaluation on modern processors. Int. J. High Perform.

Comput. Appl., 14(3):189–204, Aug. 2000.

[17] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-

rahan. Brook for GPUs: Stream computing on graphics hardware. ACM Trans.

Graph., 23(3):777–786, 2004.

[18] P. M. Carpenter, A. Ramirez, and E. Ayguade. Mapping stream programs onto

heterogeneous multiprocessor systems. In CASES ’09: Proceedings of the 2009

International Conference on Compilers, Architecture, and Synthesis for Embedded

Systems, pages 57–66. ACM, 2009.

[19] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju. Shangri-La:

Achieving high performance from compiled network applications while enabling

ease of programming. In Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’05, pages 224–236,

New York, NY, USA, 2005. ACM.

[20] A. Cortesi and M. Zanioli. Widening and narrowing operators for abstract inter-

pretation. Comput. Lang. Syst. Struct., 37(1):24–42, Apr. 2011.

[21] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs.

J. Log. Program., 13(2-3):103–179, July 1992.

[22] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Log. Comput.,

2(4):511–547, 1992.

[23] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clus-

ters. Commun. ACM, 51(1):107–113, Jan. 2008.

120

[24] J. B. Dennis. First version of a data flow procedure language. In Program-

ming Symposium, Proceedings Colloque sur la Programmation, pages 362–376.

Springer-Verlag, 1974.

[25] M. O. et. al. An Overview of the Scala Programming Language. Technical Report

IC/2004/64, EPFL, Lausanne, Switzerland, 2004.

[26] S. M. Farhad, Y. Ko, B. Burgstaller, and B. Scholz. Orchestration by approxima-

tion: Mapping stream programs onto multicore architectures. In Proceedings of

the Sixteenth International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XVI, pages 357–368, New York,

NY, USA, 2011. ACM.

[27] S. M. Farhad, Y. Ko, B. Burgstaller, and B. Scholz. Profile-guided deploy-

ment of stream programs on multicores. In Proceedings of the 13th ACM SIG-

PLAN/SIGBED International Conference on Languages, Compilers, Tools and

Theory for Embedded Systems, LCTES ’12, pages 79–88, New York, NY, USA,

2012. ACM.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1995.

[29] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[30] M. I. Gordon. Compiler techniques for scalable performance of stream programs

on multicore architectures. PhD thesis, Cambridge, MA, USA, 2010.

[31] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task,

data, and pipeline parallelism in stream programs. In Proceedings of the 12th

International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS XII, pages 151–162, New York, NY, USA, 2006.

ACM.

121

[32] T. Goubier, R. Sirdey, S. Louise, and V. David. Algorithms and Architectures

for Parallel Processing: 11th International Conference, ICA3PP, Melbourne, Aus-

tralia, October 24-26, 2011, Proceedings, Part I, chapter ΣC: A Programming

Model and Language for Embedded Manycores, pages 385–394. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2011.

[33] J. Gummaraju and M. Rosenblum. Stream programming on general-purpose pro-

cessors. In MICRO 38: Proceedings of the 38th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 343–354. IEEE Computer Society, 2005.

[34] N. Halbwachs. About synchronous programming and abstract interpretation. Sci-

ence of Computer Programming, 31(1):75 – 89, 1998. Selected Papers of the First

International Static Analysis Symposium.

[35] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A catalog of stream

processing optimizations. ACM Comput. Surv., 46(4):46:1–46:34, Mar. 2014.

[36] H. P. Hofstee. Power efficient processor architecture and the Cell proces-

sor. In HPCA ’05: Proceedings of the 2005 International Symposium on High-

Performance Computer Architecture, volume 0, pages 258–262. IEEE Computer

Society, 2005.

[37] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and S. Mahlke. Flex-

tream: Adaptive compilation of streaming applications for heterogeneous archi-

tectures. In Proceedings of the 2009 18th International Conference on Parallel

Architectures and Compilation Techniques, PACT ’09, pages 214–223, Washing-

ton, DC, USA, 2009. IEEE Computer Society.

[38] IBM Corporation. IBM ILOG AMPL Version 12.2 USer’s Guide. May 2010.

[39] IBM Corporation. IBM ILOG CPLEX Optimization Studio CPLEX USer’s Man-

ual. 2015.

[40] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer Manuals.

January 2015.

122

[41] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Man-

ual. January 2016.

[42] W. M. Johnston, J. R. Pual, and R. J. Millar. Advances in dataflow programming

languages. ACM Comput. Surv., 36(1):1–34, Mar. 2004.

[43] G. Kahn. The semantics of a simple language for parallel processing. Proc IFIP

Congress, pages 471–475, 1974.

[44] M. Karczmarek, W. Thies, and S. Amarasinghe. Phased scheduling of stream pro-

grams. LCTES ’03: Proceedings of the 2003 ACM SIGPLAN/SIGBED Conference

on Languages, Compilers, and Tools for Embedded Systems, 38(7):1235–1245,

2003.

[45] Y. Ko, B. Burgstaller, and B. Scholz. Laminarir: Compile-time queues for struc-

tured streams. In Proceedings of the 36th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI 2015, pages 121–130, New

York, NY, USA, 2015. ACM.

[46] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on

multicore platforms. In Proceedings of the 2008 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’08, pages 114–124,

New York, NY, USA, 2008. ACM.

[47] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on

multicore platforms. In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. ACM, 2008.

[48] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,

K. Ramasamy, and S. Taneja. Twitter Heron: Stream processing at scale. In Pro-

ceedings of the 2015 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’15, pages 239–250. ACM, 2015.

123

[49] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow

programs for digital signal processing. IEEE Trans. Comput., 36(1):24–35, Jan.

1987.

[50] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow

programs for digital signal processing. IEEE Transactions on Computers, 36:24–

35, 1987.

[51] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the

IEEE, 75(9):1235–1245, 1987.

[52] K.-C. Li, H. Jiang, L. T. Yang, and A. Cuzzocrea. Big Data: Algorithms, Analytics,

and Applications. Chapman & Hall/CRC, 1st edition, 2015.

[53] B. M. Maggs, G. L. Miller, O. Parekh, R. Ravi, and S. L. M. Woo. Solving

symmetric diagonally-dominant systems by preconditioning. Technical report,

IN PROCEEDINGS. 38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF

COMPUTER SCIENCE, 2002.

[54] A. Malik and D. Gregg. Heuristics on reachability trees for bicriteria scheduling of

stream graphs on heterogeneous multiprocessor architectures. ACM Trans. Embed.

Comput. Syst., 14(2):23:1–23:26, Feb. 2015.

[55] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: A system for

programming graphics hardware in a C-like language. In ACM SIGGRAPH 2003,

SIGGRAPH ’03, pages 896–907, New York, NY, USA, 2003. ACM.

[56] L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based

static analyzers. In Proceedings of the 14th European Conference on Program-

ming Languages and Systems, ESOP’05, pages 5–20, Berlin, Heidelberg, 2005.

Springer-Verlag.

[57] E. W. Michael, M. Taylor, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch,

S. Devabhaktuni, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring it

all to software: The raw machine. IEEE Computer, 30:86–93, 1997.

124

[58] C. Min and Y. I. Eom. DANBI: Dynamic scheduling of irregular stream programs

for many-core systems. In Proceedings of the 22Nd International Conference on

Parallel Architectures and Compilation Techniques, PACT ’13, pages 189–200,

Piscataway, NJ, USA, 2013. IEEE Press.

[59] P. K. Murthy. Scheduling Techniques for Synchronous and Multidimensional Syn-

chronous Dataflow. PhD thesis, EECS Department, University of California,

Berkeley, 1996.

[60] P. K. Murthy and S. S. Bhattacharyya. Buffer merging—a powerful technique

for reducing memory requirements of synchronous dataflow specifications. ACM

Trans. Des. Autom. Electron. Syst., 9(2):212–237, Apr. 2004.

[61] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee. Joint minimization of code and

data for synchronous dataflow programs. Form. Methods Syst. Des., 11(1):41–70,

July 1997.

[62] D. Nguyen and J. Lee. Communication-aware mapping of stream graphs for multi-

GPU platforms. In Proceedings of the 2016 International Symposium on Code

Generation and Optimization, CGO 2016, pages 94–104. ACM, 2016.

[63] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and Z. Zhang.

Timestream: Reliable stream computation in the cloud. In Proceedings of the 8th

ACM European Conference on Computer Systems, EuroSys ’13, pages 1–14, New

York, NY, USA, 2013. ACM.

[64] R. Reiter. Scheduling parallel computations. J. ACM, 15(4):590–599, 1968.

[65] S. Ritz, M. Pankert, V. Zivojinovic, and H. Meyr. Optimum vectorization of

scalable synchronous dataflow graphs. In Application-Specific Array Processors,

1993. Proceedings., International Conference on, pages 285–296, 1993.

[66] S. Ritz, M. Willems, and H. Meyr. Scheduling for optimum data memory com-

paction in block diagram oriented software synthesis. In Acoustics, Speech, and

125

Signal Processing, 1995. ICASSP-95., 1995 International Conference on, vol-

ume 4, pages 2651–2654, 1995.

[67] S. Robert. A survey of stream processing. Acta Informatica, 34(7):491–541, 1997.

[68] S. Sankaranarayanan, F. Ivančić, I. Shlyakhter, and A. Gupta. Static Analysis:

13th International Symposium, SAS 2006, Seoul, Korea, August 29-31, 2006. Pro-

ceedings, chapter Static Analysis in Disjunctive Numerical Domains, pages 3–17.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[69] J. Sermulins, W. Thies, R. Rabbah, and S. Amarasinghe. Cache aware optimiza-

tion of stream programs. In Proceedings of the 2005 ACM SIGPLAN/SIGBED

Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES

’05, pages 115–126, New York, NY, USA, 2005. ACM.

[70] R. Soulé, M. I. Gordon, S. Amarasinghe, R. Grimm, and M. Hirzel. Dynamic

expressivity with static optimization for streaming languages. In Proceedings of

the 7th ACM International Conference on Distributed Event-based Systems, DEBS

’13, pages 159–170, New York, NY, USA, 2013. ACM.

[71] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. StreamFlex: High-throughput

stream programming in Java. pages 211–228, 2007.

[72] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming standard for

heterogeneous computing systems. Computing in Science and Engineering, 12,

2010.

[73] D. Sun, G. Zhang, W. Zheng, and K. Li. Key technologies for Big Data stream

computing. In K.-C. Li, H. Jiang, L. T. Yang, and A. Cuzzocrea, editors, Big

Data: Algorithms, Analytics, and Applications. Chapman and Hall/CRC, 2015.

[74] W. Sung, J. Kim, and S. Ha. Memory efficient software synthesis from dataflow

graph. In Proceedings of the 11th International Symposium on System Synthesis,

pages 137–144. IEEE, 1998.

126

[75] W. Thies. Language and Compiler Support for Stream Programs. PhD thesis,

Massachusetts Institute of Technology, USA, 2009.

[76] W. Thies and S. Amarasinghe. An empirical characterization of stream programs

and its implications for language and compiler design. In Proceedings of the 19th

International Conference on Parallel Architectures and Compilation Techniques,

PACT ’10, pages 365–376, New York, NY, USA, 2010. ACM.

[77] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language for

streaming applications. In Proceedings of the 11th International Conference on

Compiler Construction, CC ’02, pages 179–196, London, UK, 2002. Springer-

Verlag.

[78] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software pipelined exe-

cution of stream programs on GPUs. In CGO ’09: Proceedings of the 7th Annual

IEEE/ACM International Symposium on Code Generation and Optimization. IEEE

Computer Society, 2009.

[79] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Synergistic execution of

stream programs on multicores with accelerators. LCTES ’09: Proceedings of the

2009 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools

for Embedded Systems, 44(7), 2009.

[80] H. Wei, J. Yu, H. Yu, and G. R. Gao. Minimizing communication in rate-

optimal software pipelining for stream programs. In Proceedings of the 8th Annual

IEEE/ACM International Symposium on Code Generation and Optimization, CGO

’10, pages 210–217, New York, NY, USA, 2010. ACM.

[81] R. Wilhelm and D. Maurer. Compiler design. Addison-Wesley, 1995.

[82] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.

Cambridge University Press, Apr. 2011.

127

[83] M. Wipliez and M. Raulet. Classification of dataflow actors with satisfiability and

abstract interpretation. Int. J. Embed. Real-Time Commun. Syst., 3(1):49–69, Jan.

2012.

[84] D. Zhang, Q. J. Li, R. Rabbah, and S. Amarasinghe. A lightweight streaming layer

for multicore execution. SIGARCH Comput. Archit. News, 36(2):18–27, 2008.

[85] D. Zhang, Z.-Z. Li, H. Song, and L. Liu. A programming model for an embedded

media processing architecture. In Embedded Computer Systems: Architectures,

Modeling, and Simulation, volume 3553 of Lecture Notes in Computer Science,

pages 251–261. Springer Berlin Heidelberg, 2005.

128

	Abstract

	Acknowledgments
	List of Figures
	List of Tables
	Listings
	Algorithms
	Introduction
	Stream Programming Paradigm
	Thesis Contributions
	Thesis Organization

	Background
	Synchronous Dataflow (SDF)
	Scheduling of SDF programs
	Steady-state Scheduling
	Pre-steady-state Scheduling
	Steady-state Scheduling of SDF Graphs with Cycles

	SDF Code Optimization

	Overview: LaminarIR Compiler Framework
	Frontend
	Orchestration
	Backend
	Run-time Support for Performance Evaluation

	LaminarIR
	FIFO Queue Overhead with Stream Programs
	Motivating Example
	LaminarIR
	Local Direct Access Transformation

	Global Direct Access Transformation
	Background and Notation
	Concrete SDF Semantics
	Auxiliary Semantics

	Experimental Results
	Performance
	Communication Elimination
	LLVM Optimization Statistics

	Abstract Interpretation-based Static Analysis to Resolve FIFO Queue Access Overhead
	Complex Control-flow and Direct Memory Access of Stream Programs
	Motivating Example
	SDF Program Analysis
	Determining Queue Positions by Abstract Interpretation
	Derivation of Loop Bounds by Partial Constant Propagation
	Narrowing Operator

	Program Transformation
	AST Transformation
	Inspector
	Local Direct Access Transformation

	Experimental Results
	Performance Evaluation
	Case Studies

	Communication Cost Aware Orchestration
	Communication Overhead of Stream Programs from Parallelization
	Motivating Example
	Actor Placement Problem (APP)
	NP-hardness of APP

	Approximation
	Dynamic Program for PackP Subroutine
	Structured Stream Graphs
	Dynamic Programming Model
	Reduced Stream Graphs for LaminarIR

	Time Complexity
	Experimental Results

	Related Work
	Compiler Optimizations to Overcome FIFO Queue Overhead
	Static Analysis of Stream Programs
	SDF Scheduling Algorithms for Parallelization

	Conclusion
	Summary
	Opportunities for Future Work

	Appendices
	An Optimal, ILP-based Solution for the Min-Max AP Problem
	Bibliography

