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Abstract

In the future, residential energy users will seize the full potential of demand response schemes
by using an automated smart home energy management system (SHEMS) to schedule their
distributed energy resources. The underlying optimisation problem facing a SHEMS is a
sequential decision making problem under uncertainty because the states of the devices
depend on the past state. There are two major challenges to optimisation in this domain;
namely, handling uncertainty, and planning over suitably long decision horizons. In more
detail, in order to generate high quality schedules, a SHEMS should consider the stochas-
tic nature of the photovoltaic (PV) generation and energy consumption. In addition, the
SHEMS should accommodate predictable inter-daily variations over several days. Ideally,
the SHEMS should also be able to integrate into an existing smart meter or a similar device
with low computational power. However, extending the decision horizon of existing solution
techniques for sequential stochastic decision making problems is computationally difficult
and moreover, these approaches are only computationally feasible with a limited number of
storage devices and a daily decision horizon. Given this, the research investigates, proposes
and develops fast solution techniques for implementing efficient SHEMSs.

Specifically, three novel methods for overcoming these challenges: a two-stage lookahead
stochastic optimisation framework; an approximate dynamic programming (ADP) approach
with temporal difference learning; and a policy function approximation (PFA) algorithm using
extreme learning machines (ELM) are presented. Throughout the thesis, the performance
of these solution techniques are benchmarked against dynamic programming (DP) and
stochastic mixed-integer linear programming (MILP) using a range of residential PV-storage
(thermal and battery) systems. We use empirical data collected during the Smart Grid
Smart City project in New South Wales, Australia, to estimate the parameters of a Markov
chain model of PV output and electrical demand using an hierarchical approach, which first
cluster empirical data and then learns probability density functions using kernel regression
(Chapter 2).

The two-stage lookahead method uses deterministic MILP to solve a longer decision
horizon, while its end-of-day battery state of charge is used as a constraint for a daily DP
approach (Chapter 4). Here DP is used for the daily horizon as it is shown to provide



x

close-to-optimal solutions when the state, decision and outcome spaces are finely discretised
(Chapter 3). However, DP is computationally difficult because of the dimensionalities of
state, decision and outcome spaces, so we resort to MILP to solve the longer decision
horizon. The two-stage lookahead results in significant financial benefits compared to daily
DP and stochastic MILP approaches (8.54% electricity cost savings for a very suitable house),
however, the benefits decreases as the actual PV output and demand deviates from their
forecast values.

Building on this, ADP is proposed in Chapter 5 to implement a computationally efficient
SHEMS. Here we obtain policies from value function approximations (VFAs) by stepping
forward in time, compared to the value functions obtained by backward induction in DP.
Similar to DP, we can use VFAs generated during the offline planning phase to generate
fast real-time solutions using the Bellman optimality condition, which is computationally
efficient compared to having to solve the entire stochastic MILP problem. The decisions
obtained from VFAs at a given time-step are optimal regardless of what happened in the
previous time-steps. Our results show that ADP computes a solution much faster than both
DP and stochastic MILP, and provides only a slight reduction in quality compared to the
optimal DP solution. In addition, incorporating a thermal energy storage unit using the
proposed ADP-based SHEMS reduces the daily electricity cost by up to 57.27% for a most
suitable home, with low computational burden. Moreover, ADP with a two-day decision
horizon reduces the average yearly electricity cost by a 4.6% over a daily DP method, yet
requires less than half of the computational effort. However, ADP still takes a considerable
amount of time to generate VFAs in the off-line planning phase and require us to estimate
PV and demand models.

Given this, a PFA algorithm that uses ELM is proposed in Chapter 6 to overcome these
difficulties. Here ELM is used to learn models that map input states and output decisions
within seconds, without solving an optimisation problem. This off-line planning process
requires a training data set, which has to be generated by solving the deterministic SHEMS
problem over couple of years. Here we can use a powerful cloud or home computer as it
is only needed once. PFA models can be used to make fast real-time decisions and can
easily be embedded in an existing smart meter or a similar low power device. Moreover, we
can use PFA models over a long period of time without updating the model and still obtain
similar quality solutions. Collectively, ADP and PFA using ELM can overcome challenges of
considering the stochastic variables, extending the decision horizon and integrating multiple
controllable devices using existing smart meters or a device with low computational power,
and represent a significant advancement to the state of the art in this domain.
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Chapter 1

Introduction

Traditional electrical power systems are based on a “supply-following-demand” paradigm,
where electrical power generation follows electrical power demand in real-time. This is
possible because conventional thermal and hydro generation is dispatchable. However, in
recent times, growing concerns about climate change because of CO2 emissions have resulted
in a movement away from fossil-fuel-based generation towards renewable energy sources
(RES), such as wind farms, rooftop photovoltaic (PV) systems, and concentrated solar plants.
In Australia, the aim is to increase the penetration of RES to 50% of the total generation
by 2030, abreast with California, USA [1] and more examples are in Section 1.1. However,
the intermittent nature of the RES means that the requirements to smooth electrical power
fluctuations and balance the supply and demand in real-time will be more challenging. One
technology for achieving this is by using batteries to store excess energy when the power
generation from RES is high, however, batteries are very costly.

Given these insights, in order to accommodate increasing penetration of intermittent
RES, several key reports [2–4] have identified the requirement for future electrical power
systems to shift to a “demand-following-supply” paradigm. Also referred to as the smart
grid, the aim is a more efficient, reliable and green electrical power system. A cornerstone of
achieving this future electrical power grid is demand side management (DSM), which refers
to methods of influencing the energy and peak power use of end-users of electrical power
[3]. Specifically, DSM schemes provide additional capacity to the electrical power system
without costly new infrastructure, which reduces both the price of electricity for end users
and expenditure by network and generation utilities.

In more detail, DSM can be divided into demand response (DR) programs [5–8] and
direct load control (DLC) [9]. In this research we focus on DR, which encourages customers
to reduce loads during periods of critical network congestion (i.e. periods of high energy
costs) or shift it to off-peak periods, as depicted in Fig 1.1, in return reducing their energy
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Fig. 1.1 An example of the effect on aggregated electrical demand with and without DR over a day.

costs. As shown in Fig. 1.1, DR can reduce the electrical demand during the peak periods (2
pm to 8 pm) and shift all or part of it to off peak periods (12 am to 6 am). The DR data was
obtained from New England on 24th June, 2010 [10].

Currently, DR is implemented using small-scale voluntary programs and the same pricing
strategy for all the customers. The main drawback of using the same pricing strategy for
all the customers is the possibility of inducing unwanted peaks in the demand curve as
customers respond to prices. Also, it is not possible for residential and small commercial
users to directly participate in wholesale energy or ancillary services markets because of
the regulatory regimes and computational requirements. As such, DR revolves around the
interaction between an aggregator and customers, as shown in Fig. 1.2. In many cases, the
retailer acts as the aggregator. The aggregator’s task is to construct a scheme that coordinates,
schedules or otherwise controls part of a participating user’s load via interaction with its
energy management system (EMS) [3]. In the context of DR, the aggregator sends control
signals in the form of electricity price signals to the EMS. The EMS then schedules and
coordinates customer’s energy use to minimise energy costs while maintaining a suitable
level of comfort. More details on the customer’s expected benefits from an EMS are in
Section 1.2.2. Given this context, EMSs in residential and commercial buildings will play
a major role in DR programs, and this thesis focuses on energy management in residential
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buildings because roughly 30% of the energy use in Australia is comprised of residential
loads [11] and their diurnal patterns drive daily and seasonal peak loads.

In particular, this research study investigated, proposed and developed fast and efficient
EMSs for smart homes that can be embedded into existing smart meters or a device with low
computational power. Currently used smart meters in Australia allow customers to accurately
access real-time information about their electricity consumption using an in-home display or
a web portal; and can automatically send electricity data (i.e. every 30 minutes) back to the
electricity distribution company for billing and load forecasting. These smart meters have
limited computational power and memory. Given this, Reposit, a company that develops
home EMSs in Australia, uses a Beagle board for installing their home EMSs [12]. In the
future, they are planning to use a slightly higher powered Raspberry Pi board. This can be a
$35 Raspberry Pi Zero with 1 GHz Broadcom BCM2835 ARM11 core processor and 512
MB of LPDDR2 SDRAM, or $69 Raspberry Pi 3 Model B that has a 1 GB RAM and 1.2
GHz Broadcom BCM2837 64-bit ARMv8 quad core processor [13].

This thesis assumes that the exact electricity price signals are available from a DR
aggregator/retailer in the form of time-of-use pricing (ToUP). ToUP is chosen as it is prevalent
in Australia [14, 15], however, the proposed EMSs (details in Section 1.4) will work under
any pricing strategy. Note that this thesis does not focus on the aggregation of smart homes
as it is a different research field. An interested reader can refer to [3].

1.1 Energy Management in Smart Homes

This section is divided into two parts. In the first section, the smart home considered in this
thesis is presented along with the motivation for its choice. The second section discuses
the benefits of a smart home energy management system (SHEMS) and the underlying
optimisation problem.

1.1.1 Smart homes

A smart home is envisioned as an automated residential building that uses distributed energy
resources (DER) for managing energy consumption and providing suitable levels of comfort
to the end-user. The DER in a smart home can consist of:

• Distributed generation (DG) units, such as rooftop PV systems, fuel cells and micro-
turbines;

• Energy storage units, such as a battery storage, electric vehicle (EV) battery storage
and thermal energy storage (TES) units (i.e. hot water tank), and;
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Fig. 1.2 Customers, aggregator and the wholesale electricity market.

• End-user loads, such as cyclical loads (i.e. heating, ventilation and air conditioning
(HVAC) system, refrigerator and hot water heater) and shiftable loads (i.e. washing
machine, dryer and dishwasher).

Specifically, the smart homes considered in this thesis comprise a PV, battery and TES
units, as depicted in Fig. 1.3. In the existing literature, a range of DER have been used to
achieve DR [7, 8, 5, 6, 16–22]. However, our choice stems from increasing penetration of
rooftop PV and battery storage systems in Australia, New Zealand, some parts of USA and
Europe, in response to rising electricity costs, government incentives, decreasing capital
costs, growing concerns about climate change and existing fleet of hot water storage devices.
In more detail:

• In January 2016, Australia reached 5 GW solar PV from residential and commercial
users [23], while global solar PV had increased from 4 GW in 2003 to 128 GW in
2013 [24];

• Tesla Energy’s Powerwall 2 batteries, which were announced in October 2016, provide
a possible solution for storage in residential buildings [25]. A comparison with other
price-competitive batteries is in [26];
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Fig. 1.3 Illustration of electrical and thermal energy flows in a smart home.

• Australian Capital Territory (ACT) government recently opened auctions to provide
financial support for the installation of 36 MW of battery storage that will support
solar PV installed in residential and commercial buildings in ACT [27].

• According to the Australian Energy Market Operator (AEMO), the payback period for
residential PV-storage systems is already below 15 years in South Australia, with the
other states to follow suit in less than a decade [28];

• Residential users with PV-storage systems in the USA have been forecast to reach grid
parity within the next decade [4];

• Vector, a distribution company in New Zealand has a package to install solar panels
with Tesla Energy’s Powerwall batteries in residential buildings. They even offered it
free to 100 residential buildings [29];

• Germany offers incentives to residential users who install PV-storage systems, which
is now extended until 2018 [30].

In a similar vein, Ausgrid, a distribution company in New South Wales (NSW), Australia
and their consortium partners recently completed Smart Grid Smart City (SGSC) project,
which investigated the benefits and costs of implementing a range of smart grid technologies
in Australian households [31]. This involved collecting PV and electrical and thermal demand
data from a range of residential buildings in Sydney, Newcastle, and Central Coast regions of
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NSW. The PV and demand data from data sets collected during this SGSC project [32] are
use to estimate future PV and demand models using an hierarchical approach, in Chapter 2.

1.1.2 Smart home energy management systems (SHEMSs)

An illustration of electrical and thermal energy flows in the smart home considered in this
thesis is depicted in Fig. 1.3. In order to maximise the benefits of PV-storage systems, it
is assumed that residential energy users will use an automated SHEMS to schedule and
coordinate their energy use. This is for the following reasons:

• When the PV generation is higher than the electrical demand, extra electrical power
will be either stored, consumed by shiftable and controllable loads or/and fed back
to the electrical grid. However, in Australia, selling power back to the electrical grid
is uneconomical since retail feed-in tariffs (FiTs) are significantly less than the retail
tariffs paid by the households. In some countries, the FiT for small generators (such
as households) acts as a generation subsidy, rather than a grid export subsidy [33].
Coupled with ever dropping PV costs, there is a strong incentive for PV owners to
self-consume as much locally generated power as possible. Our conjecture is that in
the near future this may happen in other parts of the world too.

• Time varying pricing methods, such as ToUP means that the users will want to operate
the battery and TES in such a way that their state of charge (SOC) is maximised at the
beginning of time periods with peak price signals.

• An automated SHEMS can control the PV-storage system to achieve demand response
[7, 8, 5, 6, 3] or direct load control[3, 9] on behalf of customers but without human
interaction.

The underlying optimisation problem undertaken by the SHEMS can be thought of as
a sequential decision making process under uncertainty. The specific formulation of the
SHEMS problem is detailed in Chapter 2. The problem contains stochastic variables, such
as PV output and electrical and thermal demand. Typical variations of the PV output and
electrical demand from estimates of these variations are shown as error bars in Fig. 1.4. These
variations in the electrical demand depends on the customers’ behaviour, which varies for
different days. Similarly, the variations in the PV output depends on the type of day (i.e
sunny, normal or cloudy). For example on a sunny day there is a higher probability of PV
output decreasing than increasing, and the converse is true for cloudy days. Given this, a
first major focus of this thesis is to consider these stochastic variables, using appropriate
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Fig. 1.4 The PV output and electrical demand over a day (error bars as 10th and 90th percentiles).

probability distributions, which is expected to yield better quality schedules compared to
ones obtained from deterministic optimisations using off-the-shelf solvers [34].

In the literature, the start-of-day and end-of-day battery SOC are often assumed to be
the same [35, 36] and its value is set to 50% of the battery capacity in [36] and 30% in
[35]. On days with a medium to high evening demand, having the minimum battery SOC
at the end of the day gives the best results because the battery can be used to supply the
evening demand and there is no need to charge it back. This means the next day’s electricity
cost can significantly increase if anticipating a high morning demand and low PV output.
Because of such situations, it is beneficial to capture inter-daily variations in consumption
and solar-insolation patterns over several days [37], either by extending the decision horizon
or controlling the end-of-day battery SOC of the SHEMS problem, which is a second major
focus of attention in this thesis.

Against this background, next section explain in detail the requirements of a suitable
solution technique that can be use to implement a SHEMS.

1.2 Requirements

Overall, we need a computationally efficient SHEMS that minimises a household’s energy
costs while maintaining a suitable level of user comfort. Moreover, the SHEMS should be
able to integrate into an existing smart meter or a similar device with low computational power.
This requires a solution technique that can achieve the following with low computational
burden:
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• Integrate additional DER to a PV-battery system, such as a EV battery, TES unit and
controllable loads;

• Incorporate the stochastic nature of the input variables using appropriate probabilistic
models;

• Consider uncertainties over several days by extending the decision horizon of the
SHEMS problem. To illustrate this, consider a few sunny days with low demand
(e.g. a weekend) followed by a few cloudy days with high demand; in anticipation of
this, the SHEMS may adjust the end-of-day battery SOC to reap significant financial
benefits. Note that adjusting the end-of-day battery SOC using an extended decision
horizon and fixing the end-of-day battery SOC of a daily optimisation to capture future
uncertainties are two different approaches investigated in Chapter 5 and Chapter 4,
respectively.

Moreover, the SHEMS problem is highly stochastic in nature (i.e. the actual and estimated
PV output and demand are different most of the time) so we can not always rely on fixed
schedules for the DER obtained before the decision horizon. Instead, the SHEMS needs
to make real-time decisions without having to solve an entire optimisation problem that
is computationally expensive or requires user interaction. Finally, the SHEMS should be
implemented using an anytime optimisation solution technique, so that it always gives a
solution regardless of the constraints and the input parameters, which avoids the necessity
for user interaction. Note that an anytime algorithm is an algorithm that returns a feasible
solution even if it is interrupted prematurely. The quality of the solution, however, improves
if the algorithm is allowed to run until the desired convergence.

Next, a review of the existing solution techniques that can solve this sequential stochastic
decision making problem is presented.

1.3 Solution Techniques

First, a review of the existing solution techniques used to solve the SHEMS problem and
their drawbacks are presented. Second, the four fundamental classes of policies that can be
applied to any stochastic optimisation problem is presented [38].

1.3.1 Existing solution techniques

Currently, proposed methods for implementing a SHEMS include:
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• Mixed-integer linear programming (MILP) [34, 39–46],

• Particle swarm optimisation (PSO) [47, 35, 48–52],

• Dynamic programming (DP) [53–55].

These methods are discussed below. First, MILP optimises a linear objective function
subject to linear constraints with continuous and integer variables. In order to use MILP,
the constraints have to be linearised and the sequential stochastic optimisation problem has
to be formulated as a mathematical programming problem (more details in Chapter 2 and
3). As presented in [39, 40, 45], MILP is widely used in SHEMSs mainly because of the
simplicity associated with off-the-shelf MILP solvers, such as CPLEX, MATLAB, AMPL
and MOSEK. However, MILP does not consider the uncertainties in a household’s energy
use and the intermittent nature of its DG. MILP can incorporate the stochastic variables
by using a scenario-based approach [56]. A comparison of a scenario based stochastic and
deterministic optimisations using MILP is presented in [34]. The paper concluded that
stochastic optimisation has the better quality solutions as it considers the uncertainties in the
household. However, the energy management problem becomes computationally challenging
as the number of scenarios increases. More drawbacks associated with MILP are as follows:

• The whole SHEMS problem is solved at once so the computational time increases
exponentially as the number of decision variables increases. This means:

– The number of controllable devices that we can include is limited;

– The length of the decision horizon is limited to one day in a SHEMS with larger
number of controllable devices, which means we can not consider uncertainties
over several days.

• It is computationally difficult to solve the entire stochastic optimisation problem at
every time-step using existing smart meters. Note that the PV output and electrical
and thermal demand are hard to estimate accurately in real world, so there is a strong
requirement to solve either the entire optimisation problem or a part of it at each
time-step.

• Any non-linear constraints will have to be linearised when using MILP, as depicted
in Fig. 1.5, which results in lower quality schedules (device constraints are listed in
detail in Chapter 2 and comparisons are in Chapter 3). Note that a piecewise linear
approximations of the non-linear constraints will result in further increase in the
computational burden.
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Fig. 1.5 The non-linear inverter efficiency is approximated by a linear function.

• MILP fails to find a solution when the constraints are not satisfied. From our experience,
this often happens when the end-of-day TES SOC is fixed, because the energy out of
the TES unit can not be controlled, which is the thermal demand of the household. We
can overcome this by either removing the end-of-day TES constraint or by having a
range of values. However, this means we end up with a sub-optimal level of TES SOC
at the end-of-day or require user interaction to adjust the end-of-day TES SOC, which
we should avoid in practical applications (more details in Chapter 3).

Second, PSO is a population-based stochastic optimisation technique, which is inspired
by social behaviour of bird flocking or fish schooling [57]. In [47, 35, 48], PSO is used for
robust scheduling of the DERs in a smart home. However, these papers do not consider the
stochastic variables of the SHEMS problem. Robust scheduling of DERs with stochastic
programming using scenario-based PSO is presented in [48], which is computationally
difficult and the accuracy of the results depends on the selection method used for reducing
the number of scenarios. More drawbacks associated with PSO are as follows:

• The PSO approach is a local search heuristic technique so we might end up in the local
optimum instead of the global optimum. This means we can never ascertain the quality
of the solutions.

• Similar to MILP, the number of decision variables increases as the length of the decision
horizon and the number of controllable devices increases. This means the compu-
tational time increases because the number of iterations needed to reach reasonably
quality solutions increases.
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• Similar to MILP, it is computationally difficult to solve the entire stochastic optimisa-
tion problem at every time-step using existing smart meters.

Third, DP is used to implement a SHEMS in [53]. Here the sequential stochastic
optimisation problem is modelled as a Markov decision process (MDP) and solved by
computing a value function using the Bellman optimality condition. A value function
consists of the expected future cost of following a policy from every state (more details are
given in Chapter 3). This approach considers the non-linear constraints and the stochastic
variables of the household. Note that the DP approach gives close-to-optimal solutions when
the state, decision and outcome spaces are finely discretised. More benefits of using DP in
SHEMSs are explained in Section 1.4 and Chapter 3, as a contribution of this thesis. However,
the computational complexity of DP increases exponentially with dimensionalities of state,
outcome and action spaces, making it impractical in large-scale or long-horizon problems.
One way of overcoming this problem is to approximate the value function, while maintaining
the benefits of DP. We can approximate the value functions using approximate dynamic
programming (ADP), which is the special focus of attention in Chapter 5.

Given these insights, the aim is to find a solution technique that is computationally
efficient compared to DP but that returns similar quality solutions.

1.3.2 Four classes of policies

In order to map the space of alternative approaches to SHEMSs, we now review four
fundamental classes of policies for stochastic optimisations. Following [38], there are four
fundamental classes of policies that can be applied to any stochastic optimisation problem
are:

1. Myopic policies,

2. Lookahead policies,

3. Policy function approximations (PFAs),

4. Policies based on value function approximations (VFAs).

These policies are described below. First, myopic policies optimise costs/rewards of the
current time-step without considering the impact on future decisions. One way to improve
myopic policies is to include a tunable parameter to capture the future information. These
are called cost function approximations (CFAs), which are widely used in high dimensional
resource allocation problems where we can get desired behavior by manipulating the cost
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function. This thesis does not consider CFAs as they provide lower quality solutions compared
to the below methods in energy storage problems [38].

Second, lookahead policies make decisions in the current time-step using an approxima-
tion of the future information. The future information can be found by solving a deterministic
optimisation over a longer decision horizon. According to [38], lookahead policies work
best for a time-dependent problem with daily load, energy and price patterns, relatively low
noise and very accurate forecasts [38]. The proposed approach in Chapter 4 is a two-stage
lookahead, which uses a deterministic MILP approach to approximate the end-of-day battery
SOC of a more detail daily DP optimisation. The future uncertainties are captured in the
end-of-day battery SOC.

Third, PFAs are look-up tables, parametric models and non-parametric models that return
a decision for a given state without having to solve an optimisation problem. PFAs are most
suitable for stationary problems with unknown price signals that are variable throughout the
day, relatively low noise and moderately accurate forecasts [38]. Chapter 6 of this thesis
proposes a PFA algorithm, which uses a suitable non-parametric technique to make fast
real-time decisions. The non-parametric learning technique can be extreme learning machines
(ELM), which is developed in [58], artificial neural networks (ANN) [59], support vector
machines (SVM) [60] and fast decorrelated neural network ensembles (FDNNE) [61].

Fourth, VFAs are the policies that are often associated with DP and ADP, and obtained
using the Bellman optimality condition. The VFAs work best in time-dependent problems
with regular load, energy and price patterns, relatively high noise and less accurate forecasts
(errors grow with the horizon) [38]. This thesis implements a DP based SHEMS in Chapter 3
and proposes an ADP approach with temporal difference learning in Chapter 5 to overcome
the computational burden of DP but with similar quality solutions. This ADP approach has
successfully been applied for the control of grid level storage in [62]. Other ADP methods
are better suited to applications with different characteristics [63–73].

The next section presents the details of the three proposed fast solution techniques that
falls into lookahead policies, PFAs and policies based on VFAs. According to [38], VFAs
are the most suited to solve the SHEMS problem, followed by PFAs.

1.4 Contributions and the Scope of the Thesis

As residential PV-storage systems are becoming more popular, this research study investi-
gated, proposed and developed fast solution techniques for energy management in smart
homes. Note that as mentioned before, we need a computationally feasible SHEMS that can
efficiently minimise energy costs while maintaining a suitable level of user comfort, and the
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smart home considered in this thesis comprise of PV, battery and TES units. Given this, the
contributions of this thesis are summarised in Fig. 1.6, and explained in more detail below:

The first contribution is an hierarchical approach to estimate PV and demand models
using empirical data (Chapter 2). In brief, we first cluster empirical data into different day
types and then estimate PV and demand models using kernel regression. The draws from
the kernel estimates within a day type are independent so the clustering is done to capture
inter-daily variations in the PV and demand profiles. The benefits of these estimations are as
follows:

• It conforms with the MDP construction, which is needed to solve the SHEMS problem
using DP and ADP;

• In practical applications user will only need to choose the type of day for demand and
PV output compared to having to estimate the entire days PV and demand profiles
using PV [74] and demand prediction algorithms [75, 76].

The second contribution is a comparison of SHEMSs using a scenario based MILP
approach, which is referred to as stochastic MILP in [56], and DP (Chapter 3) and guidelines
for their practical implementations. In summary, DP approach generates value functions
for every time-step during the offline planning phase. Note that a value function consists
of the expected future cost of following a policy from every state. Once we have the value
functions, we can make faster online solutions using the Bellman optimality condition (more
details in Chapter 3). This idea of making fast on-line solutions using a value function has
significant benefits in practical applications. They are as follows:

• Computationally easy to solve a simple linear problem compared to having to solve an
entire optimisation problem.

• In case of a DR event or high electricity price signal at a certain time-step, the battery
will discharge its maximum possible power to the household. From the next time-
step, battery operation will continue to be optimal regardless of what happened in the
previous time-step.
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• The user will have more flexibility to use controllable loads. In detail, under ToUP,
the controllable loads can be used at any time as long as the user does not exceed the
battery discharge limit during peak periods.

Moreover, we can always obtain a solution with DP regardless of the constraints and the
inputs while MILP fails to find a solution when constraints are violated. However, it
is computationally difficult to extend the decision horizon, consider stochastic nature or
incorporate additional controllable devices with DP as we have to loop around all the possible
combinations of state and outcome spaces. Note that we do not have to loop over all the
possible decisions in our problem, which is achieved using a matrix operation in MATLAB
(evident in Chapter 3).

The third contribution is a multi-stage lookahead stochastic optimisation framework to
explore the benefits of using an extended decision horizon. This is a two-stage lookahead
optimisation, which uses deterministic MILP to solve a longer decision horizon and its end-
of-day one battery SOC is used in a daily DP (Chapter 4) [37]. The two-stage lookahead is
expected to work well only when the forecasts are accurate because we resort to deterministic
MILP. Note that extending the decision horizon is computationally difficult using DP or
stochastic MILP. This means a stochastic optimisation technique that enables us to extend
the decision horizon with less computational burden is needed.

Given these insights, the fourth contribution is an ADP approach with temporal difference
learning to overcome the computational burden of DP but with similar quality solutions
(Chapter 5) [77, 78]. ADP enables us to:

• incorporate stochastic nature of the input variables without a noticeable increase in the
computational burden;

• extend the decision horizon with less computational burden to consider uncertainties
over several days, which results in significant financial benefits;

• enable integration of multiple controllable devices with less computational burden;

• integrate the SHEMS into an existing smart meter as it uses less computer memory
compared to existing methods.

Although ADP is computationally fast compared to DP and stochastic MILP, it still takes a
considerable amount of time to compute value functions.

Given this, the fifth contribution is a PFA algorithm that can use non-parametric learning
techniques, such as ELM, ANN, SVM and FDNNE, to make fast online decisions (Chapter 6).
In the off-line planning phase, the training data is clustered into different day types and then
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a non-parametric learning technique is used to quickly learn a model that maps inputs and
output decisions. These models can be used in real-time to make fast online solutions, which
is approximately the same speed as with making decisions using VFAs. The computational
simplicity of PFAs over VFAs using ADP is only for the off-line planning phase. The PFA
models of different day-types can be used over a longer period of time (i.e. months) without
updating and it will still results in similar quality solutions. The training data set can be
generated by solving the deterministic SHEMS problem over couple of years. A powerful
cloud or home computer can be used for this task as we only have to do it once.

Throughout the thesis, the benefits of PV-storage systems coupled with a SHEMS are
highlighted using real data collected during SGSC project. Specifically, the benefits of a
PV-battery system and PV-battery-TES system are shown separately. Note that the benefits
of a TES unit coupled with a PV-battery system has not been done before using real data.
Furthermore, the comparisons of DP, stochastic MILP and our proposed techniques such
as ADP with temporal difference learning, two-stage lookahead and PFAs using ELM,
ANN, SVM and FDNNE will be helpful in the future when finding a suitable technique to
implement a fast and an efficient SHEMS. A summary of these techniques are in Fig. 1.7.
MATLAB is used to implement all the SHEMS on a computer with a Intel(R) Core(TM)
i5-3470 CPU @3.2 Ghz processor and 16 GB RAM.

The thesis is structured into 7 chapters (see Fig. 1.6) as follows:

• Chapter 2 is divided into two parts. The first part presents a general formulation of a
sequential stochastic optimisation problem and then formulate the smart home energy
management problem as a sequential stochastic optimisation problem. This includes
the state, decision and stochastic variables, constraints and all the simulation parameters
used through out the thesis. The second part estimates the stochastic variable models
using an hierarchical approach that first clusters empirical data and then estimate
probability distributions using kernel regression. These stochastic variables are used in
the subsequent chapters.

• Chapter 3 first explains the implemented SHEMSs using stochastic MILP and DP.
Second, presents comparisons of deterministic and stochastic DP and MILP. These
implemented SHEMS are used in Chapter 4 and as a benchmark in the subsequent
chapters.

• Chapter 4 presents the two-stage lookahead stochastic optimisation framework for
considering uncertainties over a longer decision horizon. The two-stage lookahead
uses deterministic MILP to solve the longer decision horizon and DP to solve the daily
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Fig. 1.7 A summary of ADP, DP, two-stage lookahead, stochastic MILP and PFAs using ELM employed for
implementing a SHEMS.

horizon. Here the two-stage lookahead is benchmarked against a one-stage daily DP
approach.

• Chapter 5 presents the proposed computationally efficient ADP approach with temporal
difference learning and practical guidelines for its implementation. In order to show
the performance of ADP, we use it with a two-day decision horizon over three years
using a rolling horizon approach where the expected electricity cost of each day is
minimised considering the uncertainties over the next day. The daily performance
is benchmarked against DP and stochastic MILP by applying them to three different
scenarios with different electrical and thermal demand patterns and PV outputs. The
three year evaluation is benchmarked against daily DP and stochastic MILP approaches
by applying it to ten smart homes.
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• Chapter 6 first describes the strategies used in PFAs and then explains the ELM
algorithm. The implementation section presents the proposed PFA algorithm, which
can be used in conjunction with any learning method. The simulation results section
compares PFAs using ELM, ANN, SVM and FDNNE with ADP, DP, stochastic MILP
and the two-stage lookahead.

• Chapter 7 summarises the conclusions reached in the thesis.





Chapter 2

Smart Home Energy Management
Problem and Stochastic Variable Models

This chapter presents the SHEMS problem and the inputs to the algorithms derived later. The
chapter is divided into two parts. The first is to present the SHEMS problem for the DER
considered in this thesis, which comprise a PV unit, battery, and TES unit. The second is to
present the hierarchical approach use to estimate the stochastic variable models, such as the
PV output and electrical demand.

In more detail, Chapter 2 is structured as follows: First section describes the general
formulation of the sequential stochastic optimisation problem (Section 2.1). Second section
formulates the stochastic SHEMS problem as a sequential stochastic optimisation problem
(Section 2.2). Third section explains the effects of stochastic variables on the SHEMS
problem and presents the hierarchical approach use to estimate the stochastic variable models
(Section 2.3). Fourth section estimates PV and demand models of eight scenarios, which
consists of four days each for two residential buildings (Section 2.4). These PV and demand
models will be used in later chapters.

2.1 General Sequential Stochastic Optimisation Problem

A sequential stochastic optimisation problem comprises:

• A sequence of time-steps, K = {1 . . .k . . .K}, where k and K denote a particular time-step
and the total number of time-steps in the decision horizon, respectively.

• A set of non-controllable inputs, J = {1 . . . j . . .J}, where each j is represented using:

• A state variable, s j
k ∈ S.
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• A random variable, ω
j

k ∈ Ω, capturing exogenous information or perturbations.

• A set of controllable devices, I = {1 . . . i . . . I}, where each i is represented using:

• A state variable, si
k ∈ S;

• A decision variable, xi
k ∈ X , which is a control action;

• Constraints for the state and control variables;

• A transition function si
k+1 = sM

(
si

k,x
i
k,ω

j
k

)
, describing the evolution of a state

from k to k+ 1, where sM(.) is the system model that consists of controllable
device i’s operational constraints such as power flow limits, efficiencies and
losses.

Given this, let: sk = [ si
k . . .s

I
k,s

j
k . . .s

J
k ]T, xk = [ xi

k . . .x
I
k ]T, and ωk = [ ω

j
k . . .ω

J
k ]T.

The state variables contain the information that is necessary and sufficient to make
the decisions and compute costs, rewards and transitions. The compact form of
the transition functions is given as sk+1 = sM (sk,xk,ωk). Note that in our problem
transition functions are only required for the controllable devices and ωk (without a
superscript) is the combined random variables vector of the non-controllable inputs.

• An objective function:

F = E

{
K

∑
k=1

Ck(sk,xk,ωk)

}
, (2.1)

where Ck(sk,xk,ωk) is the contribution (i.e cost or reward of energy, or a discomfort
penalty) incurred at time-step k, which accumulates over time.

2.2 Instantiation

The objective of the SHEMS is to minimise energy costs over a decision horizon. The
sequential stochastic optimisation problem is solved before the start of each day, using either
a daily or a two day decision horizon. This thesis considers a system consisting of a PV unit,
battery and a hot water system (TES unit), as depicted in Fig. 2.1. A single inverter is used
for both the battery and the PV, which is becoming popular in Australia.

In order to optimise performance, a SHEMS needs to incorporate the variations in
PV output, electrical and thermal demand of the household. Given this, the stochastic
variables are modelled using their mean as state variables and variation as random variables.
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Fig. 2.1 Illustration of electrical and thermal energy flows in a smart home, and the state, decision and random
variables use to formulate the problem.
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Fig. 2.2 The time-of-use electricity tariff over a day for all the scenarios.

This enabled the use of an algorithmic strategy that separates the transition function into
a deterministic term, using the mean, and a random term, using variation (discussed in
Chapter 5). In some cases, electricity prices may be considered as a stochastic variable.
However, this thesis assumes that the exact electricity prices are available before the start
of the decision horizon from an residential DR aggregator/retailer in the form of ToUP
(time-of-use pricing), as shown in Fig. 2.2. Given this, there is no random variable associated
with the electricity tariff.

In more detail, we cast our SHEMS problem as the sequential stochastic optimisation
formulation in Section 2.1 as follows:

• The daily decision horizon is a 24 hour period, divided into K = 48 time-steps with a 30
minutes resolution. We do this similarly for the two day decision horizon. Here 30
minutes time resolution is chosen to match with typical dispatch time lines because
the PV and demand data from the SGSC project [32] are only available at 30 minutes
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intervals. If required, the proposed ADP approach can increase the time resolution
with less computational burden compared to existing methods.

• The non-controllable inputs are the PV output, the electrical and thermal demand, and
electricity tariff, which are represented using:

• State variables for the mean PV output, spv
k , mean electrical demand, sd,e

k , mean
thermal demand, sd,t

k , and electricity tariff, sp
k .

• Random variables for the variations in PV output, ω
pv
k , variations in thermal

demand, ω
d,t
k , and variations in electrical demand, ω

d,e
k . We use empirical data to

estimate the probability distributions associated with the uncertain variables using
kernel regression, which are more realistic than assuming parametric approaches
(discussed in detail in Section 3.3).

• The controllable devices are the battery and the TES, which are represented using:

• State variables for the battery SOC, sb
k , and TES SOC, st

k.

• Control variables for charge and discharge rates of the battery, xb
k and electric

water heater input, xwh
k .

Given this, xk = [xb
k ,x

wh
k ], sk = [sb

k ,s
t
k,s

d,e
k ,spv

k ,sd,t
k ,sp

k ], and ωk = [ω
pv
k ,ωd,e

k ,ωd,t
k ],

are defined for each time-step, k, in the decision horizon, as depicted in Fig. 2.1.

• The energy balance constraint is given by:

sd,e
k +ω

d,e
k + xwh

k = µ
ixi

k + xg
k , (2.2)

where xg
k is the electrical grid power; µ i is the efficiency of the inverter (note that

the efficiency is 1/µ i when the inverter power is negative); and xi
k is the inverter

power at the DC side (positive value means power into the inverter), given by:

xi
k = spv

k +ω
pv
k −µ

bxb
k , (2.3)

where µb ∈
{

µb+,µb-} is the efficiency of the battery action corresponding to
either charging (1/µb+ as power flows into the battery) or discharging. The
charge rate of the battery is constrained by the maximum charge rate xb+

k ≤ γc

and discharge rate of the battery is constrained by the maximum discharge rate
xb−

k ≤ γd . The electric water heater input should never exceed the maximum
possible electric water heater input xwh

k ≤ γwh. In order to satisfy thermal demand
at all time-steps, we make sure that the TES has enough energy at each time-step,
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st,req
k to satisfy thermal demand for the next 2 hours. We do this because there

are no instant hot water systems in practical application. Therefore, the energy
stored in the TES is always within the limits:

st,req ≤ st
k ≤ st,max. (2.4)

The energy stored in the battery should be within the limits sb,min ≤ sb
k ≤ sb,max.

• Transition functions govern how the state variables evolve over time. The battery
SOC, denoted sb

k ∈ [sb,min,sb,max
k ], progresses by:

sb
k+1 =

(
1− lb(sb

k)
)(

sb
k − xb-

k +µ
b+xb+

k

)
, (2.5)

where lb(sb
k) models the self-discharging process of the battery. The TES SOC is

denoted st
k ∈ [st,req,st,max

k ], and evolves according to:

st
k+1 =

(
1− lt(st

k)
)(

st
k − sd,t

k −ω
d,t
k +µ

whxwh
k

)
, (2.6)

where lt(st
k) models the thermal loss of the TES and µwh is the efficiency of the

electric water heater.

The discharge efficiency of the battery, efficiency of the inverter and the maxi-
mum possible charge rate with respect to the battery SOC are non-linear. The
different ways that the stochastic MILP, DP and ADP approaches represent them
are illustrated in Fig 2.3. These indicate that DP and ADP can directly incor-
porate non-linear characteristics, while linear approximations have to be made
with stochastic MILP. The remaining device characteristics for the implemented
SHEMSs in this thesis are as follows: the charging efficiency of the battery is
µb+ = 1; the maximum and minimum battery SOC are 2 kWh and 10 kWh,
respectively; the maximum charge and discharge rates of the battery are 2 kWh;
electric water heater efficiency is µwh = 0.9 while its maximum possible input is
3 kWh; and TES limit is set to 12 kWh. The losses of both the battery and the
TES are 0.01 kWh. All of these parameters are given in Table 2.1.

• The optimal policy, π∗, is a choice of action for each state π : S →X , that minimises the
expected sum of future costs over the decision horizon; that is:

Fπ∗
= min

π∗
E

{
K

∑
k=0

Ck(sk,π(sk),ωk)

}
, (2.7)
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Fig. 2.3 Characteristics of the battery and the inverter.

where Ck(sk,xk,ωk) is the cost incurred at a given time-step, which is given by:

Ck(sk,xk,ωk) = sp
k

(
sd,e

k +ω
d,e
k −µ

ixi
k + xwh

k

)
. (2.8)

Note that we don’t use any specific user comfort criteria in the contribution function.
However, we endeavour to supply the thermal demand at all time-steps without any user
discomfort by penalising undesired states of the TES in DP and ADP, and directly using
the constraint (2.4) in stochastic MILP . The problem is formulated as an optimisation
of the expected contribution because the contribution is generally a random variable due
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Table 2.1 The simulation parameters

Maximum battery charge rate 2 kWh
Maximum battery discharge rate 2 kWh
Maximum electric water heater input 3 kWh
Electric water heater efficiency 90 %
Battery charging efficiency 100 %
Battery losses 0.01 kWh
TES losses 0.01 kWh
Maximum battery capacity 10 kWh
Minimum battery discharge limit 2 kWh
TES capacity 12 kWh

to the effect of ωk. In all the SHEMSs, we obtain the decisions xk = π(sk) = [xb
k ,x

wh
k ],

depending on the state variables sk = [sb
k ,s

t
k,s

d,e
k ,spv

k ,sd,t
k ,sp

k ], and realisations of random
variables ωk = [ω

pv
k ,ωd,e

k ,ωd,t
k ] at each time-step. Note that the electrical demand here

is the aggregated household demand.

Next section explains the effects of stochastic variables on the SHEMS problem and
presents the algorithm use to estimate their probabilistic models.

2.3 Stochastic Variable Models

In order to optimise performance, it is important for a SHEMS to incorporate variations in the
PV output and electrical and thermal demand, and to do so over a horizon of several days. This
requires a stochastic optimisation technique and its benefits over a deterministic optimisation
are discussed in Chapter 3 and 5, and in [34, 48, 35, 53, 56]. Given this, SHEMSs require
the mean PV output and the demand with its appropriate probability distributions before
the start of the decision horizon. This section first discusses the stochastic variables and
their effects on the SHEMS problem and then presents a hierarchical approach based on
clustering and kernel regression used to estimate the stochastic variables models. Note
that the kernel estimator conforms to the MDP construction (i.e. Markov property of the
transition functions), which is needed to solve the problem using DP (Chapter 3 and 4) and
ADP (Chapter 5).
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2.3.1 Stochastic variables

The stochastic variables in the SHEMS problem considered in this thesis are PV output
and electrical and thermal demand. The effects of these random variations on the SHEMS
problem are discussed below:

• PV output depends on solar insolation and cloud coverage, a forecast of which can
be obtained before the horizon starts from weather forecasting services. The solar
insolation can be obtained with a good accuracy as it only depends on the position of
the sun, time of day in the year and geographic coordinates. However, cloud coverage
is much harder to predict, especially for a particular location with a sufficient level of
granularity (e.g. 1/2 hour). PV output is important to the SHEMS problem as it is a
key source of energy and is expected to be closely coupled with the battery storage
profile. Failing to accommodate for variation in PV generation would be expected to
increase costs to the household as more power is imported from the grid.

• Electrical demand of the household depends on the number of occupants and their
behavioural patterns, which is difficult to predict in the real world. In the context of
SHEMSs, electrical demand should be supplied from the DG units, storage units and
the electrical grid. Failure to accommodate variations in electrical demand may result
in additional costs to the household.

• Thermal demand is also difficult to predict in the real world so failure to accommodate
variations in thermal demand may result in user discomfort.

Note that a deterministic optimisation can only use the mean estimated PV output and
demand while a stochastic optimisation can incorporate appropriate probability distributions.
Currently proposed SHEMSs estimate mean PV output using the weather forecast [74] and
the mean electrical demand using a suitable demand prediction algorithm [75, 76]. These
existing approaches have several drawbacks, such as:

• The accuracy of their estimates depends on user inputs or the quality of the user
behaviour prediction algorithm. In detail, in order to improve the accuracy of the
estimated electrical demand profile, the demand prediction algorithms consider all the
individual appliances separately. However, this means the details of each appliance’s
use has to be either predicted from the user behaviour prediction algorithm or input by
the user.

• They are only suitable for certain scenarios, because predicting human behaviour
is difficult in real life. For example, [75] is more appropriate for a family with a
predictable lifestyle compared to students sharing a house.
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• In most cases, the probability distributions associated with the PV output and demand
will have to be obtained as follows:

– Assume prior knowledge as in [48]. In detail, [48] used a occupancy transition
matrix with 3 occupancy states (i.e. all home, some home, and all away) to
incorporate the uncertainty associated with the electrical demand. This is only
practically possible for users with a continuous life style. Note that we can’t
always assume that the users have a prior knowledge.

– Model using parametric approaches, such as Gaussian or skew-Laplace distribu-
tions [53]. However, this does not always represent a real scenario.

Given this, we propose a hierarchical approach, where we first cluster daily empirical
data according to a certain criteria, and then estimate probability distributions within each
cluster using kernel regression. The means that the predictions from the users should only be
accurate enough to identify the type of day and hence the corresponding cluster.

The mean PV output and electrical demand used throughout the thesis are from a data
set collected during SGSC project. The data set [32] consists of PV output and electrical
demand measurements at 30 minutes intervals over 3 years for 50 households. In more detail,
we use this data in two ways: (1) Firstly, as inputs to the SHEMS along with a parametric
or a non-parametric probability distribution; and (2) secondly, for estimating the PV and
demand models using the hierarchical approach described below.

Finally, we construct the magnitudes of the thermal demand and the time they occur
making use of Australian Standard AS4552 [79] and the hot water plug readings in [31]. We
assume a Gaussian distribution for the thermal demand because there is not enough empirical
data to obtain a reasonable distribution using the hierarchical approach described below.

2.3.2 An hierarchical approach

This thesis estimates the probability distributions of PV-output and electrical demand using
an hierarchical approach, where we first cluster daily empirical data according to certain
attributes, and then kernel estimate probability distributions at each time-step within each
cluster. In more detail, we obtain the probability distributions of the PV output, which depend
on the time and type of day (sunny, normal or cloudy days) in two steps.

1. First we separate daily empirical data into seasons and then we cluster them using
a k-means algorithm according to certain attributes to obtain clusters with different
daily PV generations. We compare two attributes: (1) total daily PV output so the
clusters corresponds to sunny, partially sunny, normal, partially cloudy and cloudy



28 Smart Home Energy Management Problem and Stochastic Variable Models

days; and (2) total morning and evening PV output so the clusters corresponds to sunny
morning and cloudy evening etc. We use a genetic algorithm (GA) to optimise the
time that separates morning and the evening. The objective of the GA is to minimise
the mean absolute error (MAE) between the actual and estimated PV output profiles
(more details are in the next section).

2. Second, for each time-step in the corresponding clusters, we estimate a probability
distribution of the PV output using an Epanechnikov kernel estimating technique [80].
The bandwidth of the PV generation kernel estimates are slightly increased from the
default MATLAB values to obtain a smoother distribution in some residential buildings
(more details are in the next section).

Note that the draws from the kernel estimates at each time-step within a day-type are
independent so the Markov property of the transition functions is satisfied. The inter-daily
transition probabilities are captured in the clustering process. The probability distributions
of the electrical demand are obtained in a similar way except the attributes of the k-means
clustering algorithm are for different time periods throughout the day. Similar to the PV
output, we optimise these time periods and the best number of clusters using GA. As a result,
the clusters are according to days with high, normal or low demand levels on different times
of the day. The bandwidth of the kernel estimates vary rapidly so we stick with the default
MATLAB values. It is worthwhile to note that before the start of the decision horizon, the
SHEMS uses the predicted mean PV-output and the electrical demand to determine the type
of day and hence the corresponding probability distribution.

2.4 Results and Discussion

This section first optimises the number of clusters and the time periods of their attributes
using GA for the PV output and electrical demand (Section 2.4.1), and then estimate the PV
and electrical demand models using the optimised number of clusters and their attributes as
well as a benchmark with no clustering (Section 2.4.2). The stochastic variable models are
for four scenarios each for two residential buildings. The two residential buildings are as
follows:

1. Central coast, NSW, Australia based residential building with a 2.22 kWp PV system.

2. Sydney, NSW, Australia based residential building with a 3.78 kWp PV system.

For each residential building we investigate four scenarios corresponding to four different
days: July 15th, 2012; October 10th, 2012; January 5th, 2013; and April 15th, 2013. These
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 6 attributes
 3 am to 5 am
 5 am to 9 am
 9 am to 12 pm
 12 pm to 2.30 pm
 2.30 pm to 8 pm
 8 pm to 12 am (end-of-day) and 12 am 

(start-of-day) to 3 am
Number of clusters = 9

MAE=0.1364

 5 attributes
 2.30 am to 7.30 am
 7.30 am to 9 am
 9 am to 2 pm
 2 pm to 9 pm
 9 pm to 12 am (end-of-day) and 12 am 

(start-of-day) to 2.30 am
Number of clusters = 10

MAE=0.142

 4 attributes
 11 am to 12 pm
 12 pm to 3.30 am
 3.30 am to 7.30 pm
 7.30 pm to 12 am (end-of-day) and 12 

am (start-of-day) to 11 am
Number of clusters = 7

MAE=0.1386

2 attributes
 10 am to 1.30 pm
 1.30 pm to 12 am (end-of-day) and 12 

am (start-of-day) to 10 am
  Number of clusters = 10

MAE=0.1423

 

3 attributes
 8.30 am to 3.30 pm
 3.30 pm to 7.30 pm
 7.30 pm to 12 am (end-of-day) and 12 

am (start-of-day) to 8.30 am
Number of clusters = 10

MAE=0.1431

1 attribute
 Entire day

Number of clusters = 6
MAE=0.1494

Fig. 2.4 The time periods of the six attribute sets used for clustering electrical demand, which are optimised
over a year using GA.

PV and electrical demand models are benchmarked using kernel estimates obtained without
clustering. As mentioned earlier, the PV output and electrical demand data are available
for three years, so the first two years of data are used for learning and the third year for
validation.

2.4.1 Attributes and the number of clusters

The first task is to optimise and compare six attribute sets for the electrical demand and
two attribute sets for the PV output. The GA is use to minimise the MAE of the forecasts
over a year and the maximum number of clusters is set to ten. Here GA is used as it is
computationally intensive to find the exact solutions using other methods and a near optimal
solution is enough for our optimisation problem.

The optimised time periods of the six attribute sets for electrical demand are in Fig. 2.4.
Note that the 6th attribute set has six time periods, which is referred to as having six attributes.
The rest of the attribute sets follow the same pattern. Two attribute sets are used for the PV
output: (1) the total daily PV output and (2) the total morning and evening PV output. The
time-step that separates morning and evening is 12.30 pm, which is optimised using a GA. In
Fig. 2.5, we use the optimised time periods of the attributes and investigate the MAE and
root-mean-square error (RMSE) with respect to the number of clusters that ranges between 1
to 20. We investigate up to 20 clusters to see how RMSE and MAE behave as we continue to
increase the number of clusters, however, we believe a maximum of ten clusters is reasonable
in practical applications.
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Fig. 2.5 MAE and RMSE vs. the number of clusters for (a) PV output and (b) electrical demand. The two
attributes of the PV output are the total daily and total morning and evening PV outputs (separated at 12.30 pm)
while the time periods of the six attributes used for the electrical demand are in Fig. 2.4.

The exact number of clusters and attributes for electrical demand will vary depending on
the inhabitants knowledge in practical applications so we present a range of suitable attributes
and the corresponding number of clusters in Fig. 2.4. However, for the simulation purposes,
we use six attributes and nine clusters as it results in the lowest MAE as depicted in Fig. 2.4
from GA results and in Fig. 2.5. In Fig. 2.5, the RMSE is similar for three to six attributes
because we optimised the time-periods using the MAE. Even though we use six attributes in
the simulations, our results suggest that having two to six attributes and nine or ten clusters
is a good estimate.

This thesis use five clusters for the PV output because the MAE and the RMSE of the
PV output predictions decreases exponentially as the number of clusters increases up to five
and then continues to decrease at a lesser rate as depicted in Fig. 2.5(a). Moreover, having
a large number of clusters is not possible in practical applications as it requires a higher
user interaction. The MAE and the RMSE of the PV output predictions using both of the
attribute sets are approximately the same up to seven clusters and then having two attributes
for morning and evening is slightly better. Given this, the number of attributes has little or no
impact when we are using five clusters.
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2.4.2 PV and electrical demand models

The actual and the predicted values of the PV output and electrical demand obtained from
the proposed hierarchical approach for different scenarios are in Fig. 2.6, Fig. 2.8, Fig. 2.10
and Fig. 2.12 for residential building A; and Fig. 2.14, Fig. 2.16, Fig. 2.18 and Fig. 2.20
for residential building B. The corresponding benchmark profiles without clustering are in
Fig. 2.7, Fig. 2.9, Fig. 2.11 and Fig. 2.13 for residential building A; and Fig. 2.15, Fig. 2.17,
Fig. 2.19 and Fig. 2.21 for residential building B. The predicted values are the median, with
the 10th and 90th percentiles shown as error bars, of the values in the corresponding cluster.
The probability density functions of this variation are estimated using kernel regression.

There are several important observations of our PV and electrical demand models. The
probability density functions of the electrical demand is either a skewed unimodal or a
bimodal distribution with smaller secondary peaks. These secondary peaks are because
of the appliances with different power ratings used at different times of the day. The
kernel estimates of the electrical demand are right-skewed when the median values in the
cluster underestimate the actual values, which means there is a higher probability of demand
increasing than decreasing.

The probability density functions of the PV output follows a skewed unimodal distribution.
The RMSE and MAE of the PV output predictions are minimum for sunny days, such as the
summer day on January 5th, 2013 for two residential buildings (A.3 and B.3), as depicted
in Table 2.2. This means that the PV profiles are smooth, as shown in Fig. 2.10(a) and
Fig. 2.18(a). The converse is seen to be happening for cloudy days. In Fig. 2.18(a) (residential
building B on a summer day), PV panels generate the maximum output for approximately 4
hours between 12 pm to 4 pm. At these time periods, kernel estimates are skewed left and are
limited at the peak, which means there is a probability of going cloudy but zero probability of
increasing the PV output further as the generation capacity is reached. For some time-steps
probability density functions discontinues after a certain point when there are no data points
beyond that point in the corresponding cluster. For example the 8 am PV output probability
density function in Fig. 2.8 discontinues at 0.2 kW because the probability of having a high
PV output early in the morning is zero.

Our estimated models from the hierarchical approach are mostly better than the kernel
estimates that are obtained without clustering, as shown in Table 2.2. However, clustering has
no benefits (sometimes slightly worse predictions) when the demand is very low with less
variation throughout the day. These scenarios are extremely rare and the resulting prediction
error is insignificant compared to the improvements from the other scenarios when clustering.
The probability density functions of the PV output can have bimodal distribution when we
don’t cluster the empirical data, as depicted in Fig. 2.7, Fig. 2.9, Fig. 2.11, Fig. 2.13, Fig. 2.15,
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Fig. 2.17, Fig. 2.19, Fig. 2.21. We can overcome this by increasing the bandwidth of the
Epanechnikov kernel estimation technique. However, having a larger bandwidth means
kernel estimates becomes less accurate. Also, the probability distributions are the same for
every day in a particular season when we don’t cluster empirical data. This only works in
situations where the user behaviour is very regular and predictable.

2.5 Summary

This chapter first presented a general formulation of the sequential stochastic optimisation
problem, and then applied it to the SHEMS problem, which consists of PV-storage systems.
This formulation is used to model the SHEMS problem as an MDP to solve using DP and
ADP in Chapter 3 and 5, respectively; and a mathematical programming problem to solve
using MILP in Chapter 3. The characteristics of the controllable devices and electricity price
signal presented in Section 2.2 are used for all the subsequent chapters.

An hierarchical approach, which involves first clustering empirical data into day types
and second estimating probability distributions using kernel regression, was proposed to
estimate stochastic variables models. The results showed that the accuracy of the estimates
increases as the number of clusters and attributes increases. This is because the draws from
the kernel estimations within a day type are independent so the clustering is needed to capture
inter daily variations. These estimations conforms with the MDP construction in Chapter 3
and 5 and in practical applications the user only needs to choose the correct day type instead
of having to estimate the entire day’s PV output and demand. These stochastic variable
models are used in the subsequent chapters.
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Table 2.2 The total actual and the predicted electrical demand and PV output with their RMSE and MAE for four days each for two residential buildings. Note
that the * corresponds to the benchmark scenarios.

Scenarios
PV output Electrical demand

Actual Predicted RMSE MAE Actual Predicted RMSE MAE
A.1 7.028 7.703 0.0284 0.0141 21.464 14.812 0.3387 0.2174
A.1* 7.028 7.934 0.0393 0.0189 21.464 9.170 0.5365 0.3453
A.2 11.978 13.34 0.06 0.0284 7.435 5.3230 0.1533 0.086
A.2* 11.978 10.52 0.0726 0.0441 7.435 6.2155 0.1555 0.0964
A.3 13.467 13.0915 0.0208 0.0107 5.521 5.352 0.0811 0.0526
A.3* 13.467 9.76 0.1245 0.0775 5.521 5.755 0.0596 0.0434
A.4 5.5533 6.274 0.1087 0.0567 9.35 5.8865 0.1511 0.0971
A.4* 5.5533 6.622 0.1050 0.0521 9.35 7.743 0.1343 0.0875
B.1 8.921 8.415 0.1679 0.0681 62.377 46.338 1.2595 0.822
B.1* 8.921 10.961 0.1657 0.0773 62.377 33.6235 1.3017 0.8005
B.2 26.772 25.055 0.1617 0.0931 18.022 8.9485 0.5502 0.2363
B.2* 26.772 19.373 0.3120 0.1825 18.022 17.7235 0.4914 0.2309
B.3 32.591 31.046 0.0641 0.0338 63.2270 54.733 0.7489 0.4743
B.3* 32.591 18.833 0.4397 0.2866 63.2270 18.376 1.3980 1.0089
B.4 16.034 14.7145 0.1501 0.0772 17.466 17.429 0.2252 0.1612
B.4* 16.034 9.3495 0.2939 0.1441 17.466 20.3295 0.3051 0.2050
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Fig. 2.6 The actual and the prediction along with the probability density functions for (a) PV output and (b) the
electrical demand of residential building A on a winter day 15th July, 2012. The prediction is the median values
of the cluster while its error bars are for the 10th and 90th percentiles (with clustering).
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Fig. 2.7 The actual and the prediction along with the probability density functions for (a) PV output and (b) the
electrical demand of residential building A on a winter day 15th July, 2012. The prediction is the median values
of the cluster while its error bars are for the 10th and 90th percentiles (no clustering).
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Fig. 2.8 The actual and the prediction along with the probability density functions for (a) PV output and (b) the
electrical demand of residential building A on a spring day 10th October, 2012. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (with clustering).
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Fig. 2.9 The actual and the prediction along with the probability density functions for (a) PV output and (b) the
electrical demand of residential building A on a spring day 10th October, 2012. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (no clustering).



36 Smart Home Energy Management Problem and Stochastic Variable Models

2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

Time (hour)

P
V

 o
u
tp

u
t 
(k

W
)

 

 
Actual

Prediction

2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

Time (hour)

E
le

c
tr

ic
a
l 
d
e
m

a
n
d
 (

k
W

)

 

 

Actual

Prediction

0 0.2 0.4
0

0.5

1

Electrical demand (kW)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

 

 

6 am 11 am 4 pm 7 pm 9 pm 11 pm

0 0.2 0.4 0.6 0.8 1
0

0.5

1

PV output (kW)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

 

 

8 am 10 am 11 am 12 pm 2 pm 4 pm

(a) (b)

Fig. 2.10 The actual and the prediction along with the probability density functions for (a) PV output and (b) the
electrical demand of residential building A on a summer day 5th January, 2013. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (with clustering).
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Fig. 2.11 The actual and the prediction along with the probability density functions for (a) PV output and (b) the
electrical demand of residential building A on a summer day 5th January, 2013. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (no clustering).
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Fig. 2.12 The actual and the prediction along with the probability density functions for (a) PV output and (b)
the electrical demand of residential building A on a autumn day 15th April, 2013. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (with clustering).
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Fig. 2.13 The actual and the prediction along with the probability density functions for (a) PV output and (b)
the electrical demand of residential building A on a autumn day 15th April, 2013. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (no clustering).
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Fig. 2.14 The actual and the prediction along with the probability density functions for (a) PV output and (b)
the electrical demand of residential building B on a winter day 15th July, 2012. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (with clustering).
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Fig. 2.15 The actual and the prediction along with the probability density functions for (a) PV output and (b)
the electrical demand of residential building B on a winter day 15th July, 2012. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (no clustering).
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Fig. 2.16 The actual and the prediction along with the probability density functions for (a) PV output and (b)
the electrical demand of residential building B on a spring day 10th October, 2012. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (with clustering).
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Fig. 2.17 The actual and the prediction along with the probability density functions for (a) PV output and (b)
the electrical demand of residential building B on a spring day 10th October, 2012. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (no clustering).
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Fig. 2.18 The actual and the prediction along with the probability density functions for (a) PV output and (b)
the electrical demand of residential building B on a summer day 5th January, 2013. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (with clustering).
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Fig. 2.19 The actual and the prediction along with the probability density functions for (a) PV output and (b)
the electrical demand of residential building B on a summer day 5th January, 2013. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (no clustering).
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Fig. 2.20 The actual and the prediction along with the probability density functions for (a) PV output and (b)
the electrical demand of residential building B on a autumn day 15th April, 2013. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (with clustering).
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Fig. 2.21 The actual and the prediction along with the probability density functions for (a) PV output and (b)
the electrical demand of residential building B on a autumn day 15th April, 2013. The prediction is the median
values of the cluster while its error bars are for the 10th and 90th percentiles (no clustering).





Chapter 3

Comparison of Stochastic MILP and
Dynamic Programming

This chapter presents a comparison of two existing solution techniques that can be used to
solve the stochastic SHEMS problem. The first method is a scenario-based MILP approach,
referred to as stochastic MILP in [56]. This technique requires linearised constraints and
transition functions, as mentioned in Chapter 2, and models the problem as a mathematical
programming problem. The second method is DP, in which the problem is modelled as
a Markov decision process (MDP). Although computationally more intensive than MILP,
DP enables us to incorporate all the non-linear constraints and transition functions with no
additional computational burden over using linear constraints and transition functions.

This chapter is structured as follows: First the deterministic and stochastic versions
of the MILP are presented and then the deterministic and stochastic DP are presented.
The simulation results and discussion section consists of comparisons of deterministic and
stochastic versions of DP and MILP using scenarios with different PV and electrical and
thermal demand patterns. These comparisons are used to show the benefits of stochastic DP
over stochastic MILP when making decisions under uncertainty, which justifies the use of
DP to solve the shorter decision horizon in Chapter 4.

3.1 Stochastic MILP

First describes the deterministic MILP formulation use to solve the SHEMS problem, which
assumes a perfect foresight. Then the scenario-based stochastic MILP approach, which is
used to incorporate the stochastic variables.
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3.1.1 Deterministic MILP

The deterministic version of the SHEMS problem can be solved using a MILP approach,
which optimises a linear objective function subject to linear constraints with continuous
and integer variables [34]. Note that the transition functions presented in Section 2.2 are
considered as constraints in the MILP formulation. The MILP formulation of the optimisation
problem is given by:

min
x

N

∑
k=1

(
sp,buy

k xg+
k − sp,sell

k xg−
k

)
, (3.1)

The decision variables in the MILP formulation consists of both the decision and state
variables of the controllable devices that are mentioned in Chapter 2 and integer variables,
which are used to model power flow directions. Note that the non-controllable inputs such as
PV output and electrical and thermal demand are only represented using state variables (no
separation into state and random variables). The continuous decision variables are:

xg+
k ,xg-

k ,x
b+
k ,xb-

k ,x
bg
k ,xbd

k ,xwh
k ,dpv

k ,sb
k ,s

t
k,∈ R, (3.2)

and the binary decision variables are:

dg
k ,d

b
k . (3.3)

In detail, the decision vector x =
[
xg+

k ,xg-
k ,x

b+
k ,xb-

k ,x
bg
k ,xbd

k ,xwh
k ,dpv

k ,sb
k ,s

t
k,d

g
k ,d

b
k

]
consists of:

• xg+/−
k : electrical power flowing from/to grid,

• xb+/−
k battery charge/discharge power,

• xbg
k power flowing from battery to grid,

• xbd
k power flowing from battery to demand,

• xwh
k electric water heater input,

• dg
k ∈ {0,1} is the direction of grid power flow (0: demand → grid, 1: grid → demand),

• dpv
k ∈ [0,1]: proportion of PV power flow (0: all PV power flows to grid, 1: all PV power

flows to demand),

• db
k ∈ {0,1}: battery charging status (0: discharge, 1: charge),
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• sb
k : battery SOC,

• st
k: TES SOC.

The constraints are separated into equality and inequality constraints. The equality
constraints are:

xg+
k = sd,e

k −µ
i(µb-

k xbd
k +dpv

k spv
k − xb+

k )+ xwh
k , (3.4)

xg−
k = µ

i(µb-
k xbg

k +(1−dpv
k )spv

k ), (3.5)

xb−
k = xbd

k + xbg
k , (3.6)

sb
k = sb

k−1 + xb+
k−1 − xb-

k−1, (3.7)

sb
1 = sb,start

k , (3.8)

sb
K = sb,end

k , (3.9)

st
k = st

k−1 + xwh
k−1 − sd,t

k−1, (3.10)

st
1 = st,start

k , (3.11)

st
K = st,end

k . (3.12)

Inequality constraints are:

xg+
k ≤ γ

gdg
k (3.13)

xg−
k ≤ γ

g(1−dg
k ) (3.14)
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xb+
k ≤ γ

b+db
k (3.15)

xb−
k ≤ γ

b-(1−db
k ) (3.16)

Upper and lower limits of the variables are:

0 ≤ xg+
k ≤ γ

g, (3.17)

0 ≤ xg−
k ≤ γ

g, (3.18)

0 ≤ xb+
k ≤ γ

c, (3.19)

0 ≤ xb−
k ≤ γ

d, (3.20)

0 ≤ xbd
k ≤ γ

d, (3.21)

0 ≤ xbg
k ≤ γ

d, (3.22)

0 ≤ xwh
k ≤ γ

wh, (3.23)

0 ≤ dpv
k ≤ 1 (3.24)

sb,min ≤ sb
k ≤ sb,max, (3.25)

st,req ≤ st
k ≤ st,max, (3.26)

Integer variables are:

dg
k ,d

b
k ∈ {0,1} . (3.27)
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The above formulated optimisation problem is solved for the whole horizon at once
using a standard MILP solver. Here CPLEX is used, however, all commercial solvers gives
similar quality solutions. In general, the solutions are of lower quality because of the linear
approximations made and the inability to incorporate the probability distributions.

3.1.2 Scenario-based approach

The above deterministic MILP approach can be applied to a stochastic optimisation problem
by using a scenario-based approach, which is referred to as stochastic MILP.

This approach is implemented as follows: First a large set of scenarios are generated by
sampling from all combined realisations of the stochastic variables mentioned in Chapter 2.
A larger number of scenarios should improve the solutions generated by better incorporating
the stochastic variables, but this imposes a greater computational burden. Therefore, heuristic
scenario reduction techniques, such as (a) backward scenario reduction and (b) forward
scenario selection are typically employed to obtain a scenario set of size N, which can be
solved within a given time with a reasonable accuracy [48].

In this thesis, the backward scenario reduction technique is used to remove scenarios
with small probabilities that are similar to scenarios with higher probabilities. The detail
steps are described below:

1. Initially N consists of all the scenarios. Let E be the set of deleted scenarios, which is
empty at the start;

2. Compute the distances between all scenario pairs in N;

3. For each scenario s j,n, find the scenario s j,n,c that is closest to it, and calculate the
utility U(s j,n) using:

U(s j,n) = P(s j,n)D(s j,n,s j,n,c), (3.28)

where D(s j,n,s j,n,c) is the distance between them, given by:

D(s j,n,s j,n,c) =

√√√√ K

∑
k=1

(
s j,n

k − s j,n,c
k

)2
. (3.29)

Note that P(s j,n) is the probability that corresponds to scenario s j,n.

4. Remove the scenario s j,n with the smallest utility value from N and add it to E;
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5. Update the probability of the closest scenario s j,n,c using:

P(s j,n,c) = P(s j,n,c)+P(s j,n). (3.30)

6. Repeat steps 3, 4 and 5 until we find the desired number of scenarios, that can quickly
solve the SHEMS problem with a reasonable accuracy.

Given this, a scenario-based stochastic MILP formulation of the problem is described by:

min
N

∑
n=1

Pn(s j,n)
K

∑
k=1

(
sp,buy

k xg+
k − sp,sell

k xg-
k

)
, (3.31)

where Pn(s j,n) is the probability of a particular scenario n corresponding to realizations of
stochastic variables s j, subject to ∑

N
n=1 Pn(s j,n) = 1. These probabilities are from the kernel

estimations in Chapter 2.

The solution time of stochastic MILP grows exponentially with the length of the decision
horizon because the deterministic problem is solved for the whole horizon at once and
the number of scenarios increases as the length of the horizon increases. As such, in the
existing literature, a one day optimisation horizon is typically assumed. Moreover, it is
computationally difficult to solve the SHEMS problem at every time-step using existing
smart meters. Given this, the solutions from stochastic MILP are of lower quality because of
the linear approximations made and the inability to incorporate all the probability distributions
[56]. In response to these limitations, DP is used to solve the SHEMS problem, which is
expected to improve the solution quality.

3.2 Dynamic Programming

DP is an optimisation approach that transforms a complex problem into a sequence of simpler
problems; its essential characteristic is the multi-stage nature of the optimisation problem.
The problem in (2.7) is easily cast as an MDP due to the separable objective function and
Markov property of the transition functions. Given this, DP solves the MDP form of (2.7) by
computing a value function V π(sk). This is the expected future cost of following a policy, π ,
starting in state, sk, and is given by:

V π(sk) = ∑
s′∈S

P(s′|sk,π(sk),ωk)
[
C(sk,π(sk),s′)+V π(s′)

]
. (3.32)
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Algorithm 1 : Value iteration using DP

1: Initialise Vk, k ∈ K,
2: for k = K, . . . ,1 do
3: for b = 1, . . . ,B do
4: Set sk.
5: for r = 1, . . . ,R do
6: Calculate the future value (3.33).
7: end for
8: Compute the expected future value from sk (3.32).
9: end for

10: end for

An optimal policy, π∗, is one that minimises (3.32), and which also satisfies Bellman’s
optimality condition:

V π∗
k (sk) = min

π∗

(
Ck(sk,π(sk))+E

{
V π∗

k+1(s
′)|sk

})
. (3.33)

The expression in (3.33) is typically computed using backward induction, a procedure called
value iteration, and then an optimal policy is extracted from the value function by selecting a
minimum value action for each state. The pseudo-code of the value iteration algorithm is
given in Algorithm 1.

In detail, Algorithm 1 proceeds as follows:

1. Set initial value functions to zero. In order to control the end-of-day states, we have to
penalise all the undesired states or provide a benefit for the desired states in the value
function at K +1 (line 1).

2. Loop over all the possible combinations of the state variables of different controllable
devices, where b is a particular combination of state variables and B is the total (lines
3-9).

3. Loop over all the possible combinations of non-controllable inputs, where r is a
particular combination and R is the total. Calculate the future cost from the state we
are at sk using (3.33). Here the contribution function is calculated using the current
combination of the non-controllable inputs (lines 5-7).

4. Calculate the expected future cost from sk using (3.32). The probabilities are from the
kernel estimations in Chapter 2 (line 8).

An illustration of a deterministic DP using a simplified model of a battery storage is
shown in Fig. 3.1. The difference here from the stochastic problem is that we don’t have to
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Fig. 3.1 A deterministic DP example using a battery storage, where expected future cost is calculated using
(3.33). The instantaneous contributions from the battery decisions are on the edges of the lines while the
expected future cost is below the states. The optimal policy satisfies (2.7), which is obtained using (3.33).

loop over all the possible combinations of the non-controllable inputs, as in Algorithm 1. At
every time-step, there are three battery SOC states (i.e. highest, middle, and lowest) and three
possible battery actions that results in different instantaneous costs. At the last time-step,
k = K, the expected future cost from the desired state, sk= M, is zero, while the other two
states are penalised with a large cost. This is an important step that allows us to control the
end-of-day battery SOC (helpful in Chapter 4). The expected future cost at every possible
state is calculated using (3.33), which is the minimum of the combined instantaneous cost
that results from the decision that we take and the expected future cost from the state we
end up at the next time-step. In Fig 3.1, instantaneous cost is on the edges of the lines while
the expected future cost is below the states. Note that a value function at a given time-step
consists of the expected future cost from all the states.
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Table 3.1 Daily simulation results from deterministic optimisations

Total daily: Scenario 1 Scenario 2
PV output (kWh) 9.27 6.05
Electrical demand (kWh) 24.72 64.75
Thermal demand (kWh) 10.42 19.1
Benchmark ($) 6.13 10.5
DP ($) 3.16 8.04
MILP ($) 3.22 8.14

An optimal policy is extracted from the value functions by selecting a minimum value
action for each state using (3.33). For example, from sb

1, if we take the optimal decision to
go to sb

2= L then the total combined cost of 10 consists of an instantaneous cost of 2 and an
expected future cost of 8. Even though the expected future cost of 7 from sb

2= M is lower
than the expected future cost from sb

2= L, the instantaneous cost that takes us there is 4 so
the total combined cost is 11. Given this, the expected future cost of following the optimal
policy from sb

1 is 10 and at time-step 2 we will be at sb
2= L.

Now we compare deterministic and stochastic optimisations using DP and MILP.

3.3 Simulation Results and Discussion

There are two sets of comparisons. The first is a comparison of deterministic optimisations
using DP and MILP, assuming a perfect foresight for PV output and electrical and thermal
demand. The second is a comparison of stochastic and deterministic optimisations using
DP and MILP under uncertainty. For illustration purposes of each of the comparisons, we
consider two scenarios that are on 2nd July, 2012 and 20th August, 2012 for a residential
building in Central Coast, NSW, Australia with a 2.22 kWp PV system. All the device
parameters are in Fig 2.3 and Table 2.1 of Chapter 2. The ToUP signal is in Fig. 2.2.

3.3.1 Deterministic optimisations using DP and MILP

The schedules from deterministic MILP and DP approaches are shown in Fig. 3.2 and Fig 3.3
for the two scenarios. Here we consider PV, battery, and TES units and assume a perfect
foresight so the actual and the estimated values of the PV output and electrical and thermal
demand are the same. Note that this is difficult to achieve in practice so these simulations are
only carried out to give the reader an understanding of an ideal scenario and to highlight the
benefits of DP over MILP.
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The benchmark electricity cost in Table 3.1 is the combined electricity cost when there
is no PV-battery system (entire electrical demand is supplied by the grid) and the TES is
controlled by a dummy mechanism. The dummy control system always keeps the TES SOC
at the minimum required TES SOC. Note that the TES SOC in both Fig. 3.2 and Fig. 3.3 is
shown after the thermal demand is supplied to the household so the TES SOC can sometimes
be less than the minimum required TES SOC. From the dummy control system, the electric
water heater will have to be used a lot during the peak periods (2.30 pm to 8pm), as shown in
Fig. 3.2(d) and Fig 3.3(d). On the other hand, electric water heater input and the electrical
grid power from DP and MILP based SHEMSs are minimised during peak periods. This is
because the DP and MILP approaches charges the battery and the TES up to a certain level
before the beginning of peak-periods, as depicted in Fig. 3.2(c) and (e) and Fig 3.3(c) and (e),
respectively.

The DP approach results in lower electricity cost for both Scenario 1 and Scenario 2
compared to MILP, as shown in Table 3.1. In more detail, the DP based SHEMS reduces
the total electricity cost by 48.45% and 23.43% for Scenarios 1 and 2, respectively, while
MILP only reduces it by 47.47% and 22.48%. The reason is that DP properly incorporates
non-linear constraints, as explained in Chapter 2, such as the battery discharge and inverter
efficiencies, maximum charge rate of the battery, and battery and TES losses. Note that these
benefits are only over a day so add up to a significant impact on the household’s yearly costs
(see more in Chapter 5 and 6). The deterministic MILP only takes seconds to compute a
solution while DP takes approximately 26 minutes as we have to loop over all the possible
combinations of battery and TES SOC states.

3.3.2 Optimisation under uncertainty

Here we consider a PV-battery system. The PV and electrical demand models are estimated
according to Chapter 2. The yearly optimisation results from stochastic and deterministic DP
and stochastic MILP is given in Table 3.2 for two smart homes:

1. Central coast, NSW, Australia based residential building with a 2.22 kWp PV system;

2. Sydney, NSW, Australia based residential building with a 3.78 kWp PV system.

In practical applications, the accuracy of the estimates depends on the user’s (or the
prediction algorithm’s) ability to correctly determine the PV and electrical demand clusters.
Given this, two sets of comparisons are given for (A) reasonably good estimates (five PV
clusters and nine electrical demand clusters with six attributes); and (B) estimates with
the minimum expected quality (three clusters for PV output and one cluster for electrical
demand).
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Fig. 3.2 A comparison of deterministic DP and MILP for Scenario 1: (a) PV output, electrical and thermal
demand; (b) electrical grid power; (c) TES SOC; (d) electric water heater input; (e) battery SOC; and (f) battery
decisions.

Our results shows that stochastic DP results in better quality solutions for all the cases
followed by deterministic DP and then stochastic MILP. We noticed that for the lower quality
estimates, stochastic DP will result in 5.13% and 3.37% improvement in electrical cost over
deterministic DP for smart homes 1 and 2 respectively. The improvement is only 0.13% and
1.07% for smart homes 1 and 2, respectively, when the estimates are accurate. In summary,
we need to use a stochastic optimisation approach because the estimates of the electrical
demand and PV output are not always accurate as they depend on the user’s ability to choose
the correct cluster. However, the computational time of DP increases exponentially when
we loop over all the possible outcome spaces (i.e. on top of the computational burden from
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Fig. 3.3 A comparison of deterministic DP and MILP for Scenario 2: (a) PV output, electrical and thermal
demand; (b) electrical grid power; (c) TES SOC; (d) electric water heater input; (e) battery SOC; and (f) battery
decisions.

deterministic DP). Given this, our aim is to obtain a solution technique that can consider the
stochastic nature without a noticeable increase in the computational burden (see Chapter 5).

For illustration purposes, we compare the daily schedules from stochastic and determin-
istic DP and stochastic MILP in Fig. 3.4 and Fig. 3.5; and a summary of their results are
in Table 3.3. Important observations are as follows: the stochastic MILP approach charges
the battery unnecessarily in both cases as the expected PV output is higher than the actual
values. On the other hand, both the DP approaches charges battery up to a minimum required
level before the peak period and recharges the battery after 10 pm (off-peak) with the highest
possible charge rate to meet the end-of-day battery SOC constraint. The only difference is
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Fig. 3.4 A comparison of deterministic DP, stochastic DP and stochastic MILP for Scenario 1 (under uncertainty):
(a) battery SOC; (b) electrical grid power; actual and estimated (c) PV output; and (d) electrical demand (3 PV
and 1 demand clusters).
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Fig. 3.5 A comparison of deterministic DP, stochastic DP and stochastic MILP for Scenario 2 (under uncertainty):
(a) battery SOC; (b) electrical grid power; actual and estimated (c) PV output; and (d) electrical demand (3 PV
and 1 demand clusters).

that stochastic DP expects a high demand and have a higher battery SOC at the beginning of
peak periods compared to deterministic DP.
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Table 3.2 Year-long simulation results

Total yearly: Household 1 Household 2
PV output (MWh) 2.91 5.99
Electrical demand (MWh) 4.29 9.82
Benchmark ($) 568.094 1208.3
PV (no storage) ($) 440.52 821.7
Stochastic DP (A) ($) 253.62 546.86
Deterministic DP (A) ($) 253.95 552.75
Stochastic DP (B) ($) 258.59 588.76
Deterministic DP (B) ($) 267.62 620.6
Stochastic MILP ($) 369.8 700.14

Table 3.3 Daily simulation results for two scenarios under uncertainty (PV-battery systems)

Total daily: Scenario 1 Scenario 2
PV output (kWh) 9.27 6.05
Electrical demand (kWh) 24.72 64.75
Benchmark ($) 4.00 7.94
Stochastic DP ($) 2.40 6.81
Deterministic DP 2.49 6.89
MILP ($) 3.01 7.15
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3.4 Summary

This chapter compared stochastic and deterministic versions of the DP and MILP using sce-
narios with different PV and demand profiles. Our simulation results showed that stochastic
DP performs better than both deterministic DP and stochastic MILP. We also noted that
benefits from the stochastic optimisation is higher when the error between the actual and the
kernel estimated PV and electrical demand is high.

There are several reasons to prefer DP over MILP. First, DP produces close-to-optimal
solutions when the value functions obtained during the offline planning phase are from finely
discretised state, action and outcome spaces. Second, in practical applications, the SHEMS
can make real-time decisions using the policy implied by (3.33). This means that at each
time-step, the optimal decision from the current state can be executed. Note that (3.33)
is a simple linear program at each time-step so is computationally feasible using existing
smart meters. This stands in contrast to a stochastic MILP formulation, which would involve
solving the entire stochastic MILP program, which is computationally difficult even for the
offline planning. Third, we can always obtain a solution with DP regardless of the constraints
and the inputs while MILP fails to find a solution when the constraints are not satisfied. From
our experience, MILP fails to find a solution when the end-of-day TES SOC is fixed, because
the energy out of the TES unit can not be controlled, which is the thermal demand of the
household. We can overcome this by either removing the end-of-day TES constraint or by
having a range of values. However, this means we end up with a sub optimal level of TES
SOC at the end of the day or require user interaction to adjust the TES SOC, which we should
avoid in practical applications.

Given these insights, DP is the better solution technique in terms of the solution quality.
However, the required computation to generate value functions using DP grows exponentially
with the size of the state, action and outcome spaces. One way of overcoming this problem
is to approximate the value function, while maintaining the benefits of DP (see proposed
ADP approach in Chapter 5). Before that, Chapter 4, identifies the benefits of extending the
decision horizon by proposing a multi-stage stochastic optimisation framework. This is a
longer-horizon solver using deterministic MILP (computationally fast) and a more detail
shorter-horizon solver using DP (better quality solutions).





Chapter 4

Evaluation of a Multi-stage Stochastic
Optimisation Framework

This chapter identifies the benefits of PV-battery systems coupled with a SHEMS that
considers uncertainties over several days. To illustrate the benefits, consider a few sunny
days with low demand (e.g. a weekend) followed by a few cloudy days with high demand; in
anticipation of this, the SHEMS may adjust the end-of day battery SOC to reap significant
financial benefits. The uncertainties over several days can be considered by extending the
decision horizon of the SHEMS. However, increasing the decision horizon is difficult because
of the computational burden associated with the currently proposed solution techniques such
as DP and stochastic MILP.

Given these insights, this chapter evaluates the benefits of increasing the SHEMS decision
horizon by using a multi-stage stochastic optimisation framework. This is a two-stage
lookahead optimisation, which extracts the end-of-day one battery SOC from a longer-
horizon solver that uses MILP and is used in daily horizon solver that uses DP. In doing
so, this chapter also identifies the benefits of residential PV-battery systems coupled with
an SHEMS. Note that this two-stage lookahead falls into the second of the four classes of
policies explained in Chapter 1.

This chapter is structured as follows: First, implementation details of the two-stage
lookahead is presented. The simulation results section presents comparisons of the two-stage
lookahead and a daily DP method for four households. Finally, the conclusions section
summarises the benefits and the drawbacks of the two-stage lookahead, which is used as a
motivation for the proposed ADP approach in Chapter 5.



60 Evaluation of a Multi-stage Stochastic Optimisation Framework

Longer decision horizon

Shorter decision horizon

K=336

K=48

day 1 day 2 day 3 day 4 day 5 day 6 day 7

hour 24hour 12hour 6 hour 18

0

0

End‐of‐day 
battery SOC

Fig. 4.1 Illustration of a two-stage lookahead optimisation, where the end-of-day battery SOC for the shorter
decision horizon optimisation is extracted from the longer decision horizon optimisation.

4.1 Implementation

The residential building considered in this chapter consists of a PV system and a battery
storage system. A comparison is made of two approaches to optimising the operation of this
PV-battery system: (i) a one-stage daily DP method with a fixed end-of-day SOC constraint,
and (ii) a two-stage method, considering the SHEMS problem over a week-long decision
horizon, which is solved using deterministic MILP, and which is used to set the end-of-day
battery SOC constraint for a daily DP method. In a practical implementation, the longer
decision horizon optimisation is carried out before the start of each day to approximate its
end-of-day battery SOC, which is referred to as a rolling horizon approach. By making
the required battery SOC at the end of the day depend on the PV output and the predicted
demand of future days, the overall system performance should be improved. For both the
one stage and two-stage methods, the daily decision horizon is a 24 hour period, divided
into 30 minutes time-steps, giving a total of K=48 time-steps. For the two-stage method,
the longer decision horizon is a week, divided into 30 minutes time-steps, giving a total of
K=336 time-steps. These are illustrated in Fig 4.1. The SHEMSs using DP and MILP are
implemented according to Chapter 3. To recap, the SHEMS is operating according to the
following:

• The battery is charged with the highest possible charge rate if the power generated
from the PV system is greater than the household demand.

• Send electrical power back to the grid if the power generated by the PV system is
greater than the electrical demand of the household and the highest possible charge
rate of the battery.

Next section compares the two-stage lookahead with a daily DP method.
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Table 4.1 A summary of the weekly optimisation results from one-stage and two-stage optimisations

One-stage
($)

Two-stage
($)

Scenario 1 (Household 3 Week 1) 0.33 0.18
Scenario 2 (Household 3 Week 2) 6.37 6.23
Scenario 3 (Household 3 Week 3) 1.67 1.54
Scenario 4 (Household 3 Week 4) 2.42 2.25
Scenario 5 (Household 4 Week 1) 0.33 0.28
Scenario 6 (Household 4 Week 2) 8.56 8.19
Scenario 7 (Household 4 Week 3) 5.79 5.74
Scenario 8 (Household 4 Week 4) 7.08 6.67

4.2 Simulation Results

The simulations are carried out using the two-stage lookahead and a one-stage daily DP over
a year for four residential buildings:

1. Central coast, NSW, Australia based residential building with a 2.22 kWp PV system;

2. Sydney, NSW, Australia based residential building with a 3.78 kWp PV system;

3. Residential building based in Central coast and has a 2.04 kWp PV system;

4. Residential building based in Sydney and has a 4.04 kWp PV system.

Then the simulation results are given in three sections. The first section illustrates weekly
simulation results for four scenarios each for residential buildings 3 and 4. The second
section presents the simulation results for all four households over a year. The third section
identifies the benefits of extending the decision horizon of a one-stage optimisation using DP.
The stochastic variables are according to Chapter 2; the device characteristics are in Fig 2.3
and Table 2.1; and the ToUP signal is in Fig. 2.2.

4.2.1 Weekly optimisation

The simulation results are illustrated for the following four weeks:

1. The first week of January, 2013;

2. The first week of July, 2012;

3. From 10th to 16th October, 2012;
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4. From April 10th to 16th, 2013.

The Scenarios 1-4 are for residential building 3 and Scenarios 5-8 are for residential building
4. The Fig. 4.3, Fig. 4.4, Fig. 4.5, and Fig. 4.6 show the PV output, electrical demand, battery
SOC and electricity cost for Scenarios 1-4. As expected, the PV output and electrical demand
varies over the week. The start-of-day and end-of-day battery SOC from the one-stage
optimisation are the same (sb

1 = sb
K = 6 kWh) for all the days. In most of the scenarios the

start-of-day battery from the one-stage and two-stage optimisations are not the same because
these illustrations are taken from the yearly optimisation results. This also applies for the
end-of-day battery SOC.

The total electricity cost is reduced by 45%, 2.2%, 7.78%, 7.02%, 15.15%, 4.32%,
0.86%, 5.8% for Scenarios 1 to 8, respectively, by using the two-stage optimisation, as
shown in Table 4.1. This is because the end-of-day battery SOC is controlled using the
two-stage optimisation compared to having a fixed end-of-day battery SOC with one-stage
daily optimisation. The important observations are as follows: In Scenario 1 (Fig. 4.3), for
the first two days, there is an electricity cost from two-stage optimisation compared to having
no cost from the one-stage optimisation. This is because the start-of-day battery SOC is
lower for the two-stage optimisation, which means electricity cost from the previous week
has been reduced significantly. For the rest of the week, electricity cost is lower for the
two-stage optimisation. In Scenario 2 (Fig. 4.4), everyday in the week have a high evening
demand and day 6 also has a high morning demand. The PV output is similar throughout the
week with not much variation (winter week). In response to this, the two-stage minimised
the end-of-day SOC except for the end-of-day SOC of day five as we are expecting a high
morning demand on day 6. In Scenario 3, electricity cost for day one is higher for two-stage
lookahead because the two-stage started the day at 4 kWh and ended at 10 kWh while the
both start and end values for one-stage are 6 kWh. The day two is cloudy and has a high
demand so having the maximum battery at the end of the day is the best thing to do. In
Scenario 4, days 3-5 and 7 are sunny compared to cloudy day 6. In anticipation of this, the
two-stage lookahead gives a higher start-of-day battery SOC and lower end-of-day battery
SOC for day 6 compared to the one-stage optimisation.

4.2.2 Year-long simulation

The summary of the yearly simulation results are given in Table 4.2 for four households. The
results showed that the yearly electricity cost can be saved by 4.16%, 0.93%, 8.54% and
3.88% for Households 1, 2, 3 and 4, respectively by using a two-stage lookahead optimisation.
However, these benefits decreases to 2.1%, -3.9%, 5.78% and 3.06% when the quality of
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the PV output and electrical demand estimates reduces. The reason is that the two-stage
lookahead had to resort to deterministic MILP to solve the longer decision horizon so fixing
the end-of-day battery SOC in the daily horizon estimate begins to have negative influence
when the forecasts becomes inaccurate. For example, if we are expecting a low morning
demand in the next day, the end-of-of day battery SOC of the current day will be minimised,
however, this has negative influence if the next days actual morning demand goes high.
Also, fixing the end-of-day SOC has negative effects if the current day’s actual PV output
and electrical demand deviates from the estimates. Although there are still considerable
amounts of electricity cost savings, they can further decrease if the forecasts become more
inaccurate. Therefore, it is difficult to exactly obtain the end-of-day battery SOC to capture
future variations in PV and demand under uncertainty. Given this, the next section explores
the benefits of extending the decision horizon of a one-stage optimisation using DP. Note
that this is only for simulation purposes as it requires high computational power to solve the
SHEMS problem using DP beyond one day.

4.2.3 Effects of extending the decision horizon

Extending the decision horizon of the one-stage optimisation beyond one day to consider
inter-daily variations in PV output and electrical demand results in significant benefits, as
depicted in Fig. 4.2, which shows the normalised electricity cost vs. length of the decision
horizon. Note that the benefits of extending the decision horizon varies depending on
the household, which is discussed in the next chapter. The results show that increasing the
decision horizon beyond two days has no significant benefits on average. However, increasing
the decision horizon up to one week is beneficial in some situations, e.g. off-the-grid systems
and if there are high variations in PV output and demand. These results are obtained using
a DP based SHEMS for ten households over two months. Here DP is used to obtain the
exact solution, however in practical implementations, extending the decision horizon with
DP is difficult as the computational power is limited in existing smart meters. Given these
insights, the next chapter proposes an ADP approach to extend the decision horizon with low
computational burden.

4.3 Summary

This chapter proposed a two-stage look-ahead optimisation for considering uncertainties
over several days. Here a longer decision horizon solver that uses deterministic MILP is
used to capture future information in the end-of-day battery SOC, which is used to solve a
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Fig. 4.2 The benefits of extending the decision horizon of a one-stege optimisation using DP.

daily optimisation problem using DP. The two-stage optimisation results in financial benefits
compared to a daily DP method with a fixed end-of-day battery SOC constraint. However, the
amount of cost savings depends on the accuracy of the forecasts because the longer decision
horizon is solved using deterministic MILP and the end-of-day SOC of the daily horizon is
fixed regardless of what happened in the current day. Given this, the benefits of extending
the decision horizon is investigated using a one-stage DP based SHEMS. The results showed
that there are significant benefits when considering uncertainties over two-days and beyond
that no significant benefits on average.

Given these findings, when making decisions under uncertainty, the end-of-day battery
SOC has to be flexible and should depend on the future information as well what actually
happened in the current day. Moreover, the length of the decision horizon should be at least
two-days. As such, the aim of Chapter 5 is to propose an ADP approach that can extend the
decision horizon of the SHEMS problem with low computational burden. ADP will always
be used over two-days compared to DP and stochastic MILP. Note that when extending the
decision horizon over two-days, the end-of-day battery SOC will be flexible depending on
what actually happened in the current day.
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Table 4.2 Year-long simulation results from two-stage lookahead and daily DP

Total yearly: Household 1 Household 2 Household 3 Household 4
PV output (MWh) 2.91 5.99 2.87 5.28
Electrical demand (MWh) 4.29 9.82 3.23 5.77
Benchmark ($) 568.094 1208.3 389.4 686.4
PV (no storage) ($) 440.52 821.7 268.54 509.8
One-stage DP (accurate) 238.771 527.51 102.35 271.92
Two-stage lookahead (accurate) 228.83 522.6 93.614 261.37
One-stage DP (less accurate) 253.62 546.86 112.71 284.75
Two-stage lookahead (less accurate) 248.34 567.36 106.195 276.05
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Fig. 4.3 Optimisation results for Scenario 1 from one-stage and two-stage lookahead: (a) PV output; (b)
electrical demand; (c) battery SOC; and (d) electricity cost.
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Fig. 4.4 Optimisation results for Scenario 2 from one-stage and two-stage lookahead: (a) PV output; (b)
electrical demand; (c) battery SOC; and (d) electricity cost.
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Fig. 4.5 Optimisation results for Scenario 3 from one-stage and two-stage lookahead: (a) PV output; (b)
electrical demand; (c) battery SOC; and (d) electricity cost.
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Fig. 4.6 Optimisation results for Scenario 4 from one-stage and two-stage lookahead: (a) PV output; (b)
electrical demand; (c) battery SOC; and (d) electricity cost.





Chapter 5

Approximate Dynamic Programming

This chapter presents an ADP approach with temporal difference learning to implement a
computationally efficient SHEMS. This ADP method produces solutions of a similar quality
to DP but with much less computation. ADP, also known as forward DP, is an algorithmic
strategy for approximating a value function, which steps forward in time, compared to
backward induction used in value iteration. Similar to DP, the VFAs are obtained during
an off-line planning phase, so that fast real-time decisions can be made using the Bellman
optimality condition, which is a simple linear problem. Like DP, ADP also operates on an
MDP formulation of the problem, so all the non-linear constraints and transition functions in
Section 2.2 can be directly incorporated with the same computational burden as modelling
linear transition functions and constraints.

ADP is an anytime optimisation solution technique, which is an algorithm that returns a
feasible solution even if it is interrupted prematurely. The quality of the solution, however,
improves if the algorithm is allowed to run until the desired convergence. Similar to DP, we
can always obtain a solution with ADP regardless of the constraints and the inputs.

Specifically, ADP enables us to:

• incorporate stochastic nature of the input variables with no additional computational
burden;

• extend the decision horizon with less computational burden to consider uncertainties
over several days, which results in significant financial benefits;

• enable integration of multiple controllable devices with less computational burden;

• integrate the SHEMS into an existing smart meter as it needs less computational power
compared to existing methods.
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Algorithm 2 : ADP using Temporal Difference Learning TD(1)

1: Initialize V̄ 0
k , k ∈ K,

2: Set r = 1 and k = 1,
3: Set s1.
4: while r ≤ R do
5: Choose a sample path ωr.
6: for k = 0, . . . ,K do
7: Solve the deterministic problem (5.8).
8: for i = 1, . . . , I do
9: Find right and left marginal contributions (5.9).

10: end for
11: if k < K then
12: Find the post decision states (5.2) and the next pre decision states (5.3).
13: end if
14: end for
15: for k = K, . . . ,0 do
16: Calculate the marginal values (5.10).
17: Update the estimates of the marginal values (5.11).
18: Update the VFAs using CAVE algorithm.
19: Combine value functions of each controllable device (5.7)
20: end for
21: r = r+1.
22: end while
23: Return the value function approximations V̄ R

k ∀k.

This chapter is structured as follows: First, the ADP approach is presented along with the
practical guidelines for its implementation (Section 5.1). The simulation results section
consists of comparisons of the solution quality and computational time of the proposed ADP
approach, DP and stochastic MILP (Section 5.2). Finally the conclusions in Section 5.3.

5.1 ADP using Temporal Difference Learning

ADP generates VFAs while stepping forward in time. Here VFAs are obtained iteratively
and the focus is on approximating the value function around a post decision state vector, sx

k,
which is the state of the system at discrete time, k, soon after making the decisions but before
the realisation of any random variables [65]. This is because approximating the expectation
within the max or min operator in the Bellman optimality condition (5.1) is difficult in large
practical applications as transition probabilities from all the possible states are required. The
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Bellman optimality condition, which is defined in Chapter 3 is:

V π∗
k (sk) = min

π∗

(
Ck(sk,π(sk))+E

{
V π∗

k+1(s
′)|sk

})
. (5.1)

Pseudo-code of the method used to approximate the value function is given in Algorithm 2,
which is a double-pass algorithm referred to as temporal difference learning with a discount
factor λ = 1 or TD(1).

Given this, the original transition function sk+1 = sM (sk,xk,ωk) is divided into a move
to the post-decision state:

sx
k = sM,x (sk,xk) , (5.2)

and then on to the next pre-decision state:

sk+1 = sM,ω (sx
k,ωk) , (5.3)

which are used in line 12 of Algorithm 2.

An example of the new modified MDP is illustrated in Fig. 5.1, which uses the mean and
variation of the stochastic variables to obtain the post-decision and next pre-decision states,
respectively. In more detail, at s1, there are three possible decisions that takes us to three
post-decision states, which correspond to high, middle and lowest states. However, the next
pre decision state s2 depends on the random variables ω1.

Given this, a new form of the value function can be written as:

V̄ π
k (sk) = max

xk

(
Ck(sk,xk)+V̄ π,x

k (sx
k)
)
, (5.4)

where V̄ π,x
k (sx

k) is the value function approximation around the post-decision state sx
k, given

by:

V̄ π,x
k (sx

k) = E
{

V π
k+1(sk+1)|sx

k
}
. (5.5)

This method is computationally feasible because E
{

V π
k+1(sk+1)|sx

k

}
is a function of the

post-decision state sx
k, that is a deterministic function of xk. However, in order to solve

(5.4), we still need to calculate the value functions in (5.5) for every possible state sx
kfor all k.

This can be computationally difficult since sx
k is continuous and multidimensional, so we

approximate (5.5).

Two strategies are employed. First, we construct lookup tables for VFAs in (5.5) that
are concave and piecewise linear in the resource dimension of all the state variables of
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Fig. 5.1 Illustration of the modified Markov decision process, which separates the state variables into post
decision states and pre-decision states.

controllable devices [62]. For example, in the VFA for k = 49, which is depicted in Fig. 5.2(a),
the expected future rewards stay the same after approximately 7 kWh, so if we are at 7 kWh
in the time-step k = 48, charging the battery further will have no future rewards and will
only incur an instantaneous cost if the electricity has to come from the grid. However, if
the electricity price or demand is high then we can probably discharge the battery as the
expected future rewards will only decrease slightly. Given this, we never charge the storage
when there is no marginal value so the slopes of the VFA are always greater than or equal to
zero. Accordingly, the VFA is given by:

V̄ i
k(s

i,x
k ) =

Ak

∑
a=1

v̄kazka, (5.6)

where ∑a zka = si,x
k and 0 ≤ zka ≤ z̄ka for all a. The resource coordinate variable zka for

segment a ∈ (1 . . .Ak), Ak ∈ A, z̄ka is the capacity of the segment and v̄ka is the slope. Other
strategies that could be used for this step are parametric and non-parametric approximations
of the value functions [65]. However, in the context of SHEMSs, these strategies are more
suited for PFAs, which is our focus in Chapter 6.

Second, we handle the multidimensional state space by generating independent VFAs
for each controllable device, which are then combined to obtain the optimum policy. The
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Fig. 5.2 (a) Expected future reward or VFA (5.5) for following the optimal policy vs. state of the battery for
time-steps k = 49 and k = 60, and (b) value of the objective function (i.e. reward) vs. iterations for ADP
approach and the expected value from DP.

separable VFA is given by:

V̄k(sx
k) =

I

∑
i=1

V̄ i
k(s

i,x
k ). (5.7)

It is possible to separate the VFAs for battery and TES because their state transitions are
independent as shown in (2.5) and (2.6), respectively. Instead, the inter-device coupling
between the battery and the TES only arises through their effect on energy costs, so it is done
in the contribution function in (2.8). If the state transition functions of the controllable devices
depend on each other, then the VFAs are not separable and we have to use multidimensional
value functions. In such situations the number of iterations needed for VFA convergence will
increase, and concavity needs to be generalised as well.

In more detail, Algorithm 2 proceeds as follows:

1. Set the initial VFAs to zero (i.e. all the slopes to zero) or to an initial guess to speed
up the convergence (lines 1-3). Estimates for the initial VFAs can be obtained by
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solving the deterministic problem using MILP. The value of the initial starting state si
1

is assumed.

2. For each realisation of random variables, step forward in time by solving the following
deterministic problem (line 7) using the VFA from the previous iteration:

xr
k =arg max

xk∈Xk

(
C(sr

k,xk)+V̄ r−1
k (sx,r

k )
)
,

=arg max
xk∈Xk

C(sr
k,xk)+

Ar−1
k

∑
a=1

v̄r−1
ka zka

 . (5.8)

3. Determine the positive and the negative marginal contributions ĉr,i+
k (sr,i

k ) and ĉr,i−
k (sr,i

k ),
respectively (line 9) for each controllable device, using:

ĉr,i+
k (sr,i

k ) =
cr,i+

k (sr,i+
k ,xr,i+

k )− cr,i
k (sr,i

k ,xr,i
k )

δ s
,

ĉr,i−
k (sr,i

k ) =
cr,i

k (sr,i
k ,xr,i

k )− cr,i−
ki (sr,i−

k ,xr,i−
k )

δ s
, (5.9)

where sr,i+
k =

(
sr,i

k +δ s
)

, xr,i+
k =X π

k

(
sr,i+

k

)
, and δ s is the mesh size of the state space.

We do this similarly for sr,i−
k and xr,i−

k .

4. Find the post-decision and the next pre-decision states using (5.2) and (5.3), respec-
tively. Transition functions of the controllable devices can be non-linear (line 12).

5. Starting from K, step backward in time to compute the slopes, v̂r,i+
k , which are then

used to update the VFA (line 16). Compute v̂r,i+
k :

v̂r,i+
k (sr,i

k ) =


ĉr,i+

K (sr,i
K ), if k = N

ĉr,i+
k (sr,i

k )+

∆
r,i+
k v̂r,i+

k+1(s
r,i
k+1) otherwise

, (5.10)

where ∆
r,i+
k = 1

δ sSM(xr,i
k − xr,i+

k ) is the marginal flow (i.e. whether or not there is a
change in energy in the storage as a result of the perturbation). We do this similarly for
v̂r,i−

k (sr,i
k ). Note that we took the power coming out of the storage as negative.
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6. Update the estimates of the marginal values [63]:

v̄r,i+
k−1(s

x,r,i
k−1) =

(
1−α

r−1) v̄r−1,i+
k−1 (sx,r,i

k−1)+α
r−1v̂r,i+

k , (5.11)

where α is a “stepsize"; α ∈ (0,1], and similarly for v̄r,i−
k−1(s

x,r,i
k−1) (line 17). In this

research, a harmonic step-size formula is used, α = b/(b+ r), where b is a constant.
This step-size formula satisfies conditions ensuring that the values will converge as
r → ∞ [81].

7. Use the concave adaptive value estimation (CAVE) algorithm to update the VFAs [82]
(line 18). Note that v̄r,i+

k−1(s
x,r,i
k−1) is the slope of the VFA at a particular state, and since

this slope is obtained for a given random realization, there is possibility of violating
the concavity of the VFA. Given this, we need to define an interval for the new slope
obtained in (5.11). This is obtained using:

Q =
[
min

{
sx,r,i

k−1 − ε
−,u−

}
,max

{
sx,r,i

k−1 − ε
+,u+

}]
, (5.12)

where ε− and ε+ are tuning parameters in the CAVE algorithm, which is set to 0.01;
u− is the closest state to sx,r,i

k−1 that has a higher slope than v̄r,i−
k−1(s

x,r,i
k−1); and u+ is the

closest state to sx,r,i
k−1 that has a lower slope than v̄r,i+

k−1(s
x,r,i
k−1).

8. Combine value functions of each device using (5.7).

9. Repeat this procedure over R iterations, which are generated randomly according to
the probability distributions of the random variables. We find that R = 500 realisations
is enough for the objective function to come within an acceptable accuracy even for
the worst possible scenario. We investigated a range of scenarios and an example is
given in Fig. 5.2(b).

Note that when solving a deterministic SHEMS problem using ADP, the post decision and
next pre decision states are the same because the random variables will be zero. However, the
remaining steps in Algorithm 2 stay the same. This means, with ADP, there is no noticeable
computational burden for considering variation in the stochastic variables compared to
solving the deterministic problem. On the other hand, with DP we have to loop over all the
possible combinations of realisation of random variables, which significantly increases the
computational burden.
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5.2 Simulation Results and Discussion

The simulation results are used to show the performance of ADP over DP and stochastic MILP.
There are three sets of simulations. The first set consists of discussions about: challenges
of estimating the end-of-day battery SOC; benefits of PV-storage systems; quality of the
solutions from ADP, DP and stochastic MILP; and the benefits of a stochastic optimisation
over a deterministic one (Sections 5.2.1-4). The second set consists of a discussion on the
computational aspects of the three solution techniques (Section 5.2.5). The third set consists
of the year-long optimisation results (Section 5.2.6). The stochastic variables are according
to Chapter 2 and the device characteristics are in Fig 2.3 and Table 2.1. The ToUP signal is in
Fig. 2.2.

5.2.1 Challenges of estimating the end-of-day battery SOC

In the first set of simulations, we discuss the challenges of estimating the end-of-day battery
SOC (Section 5.2.1), benefits of residential PV-storage systems (Section 5.2.2), the perfor-
mance of the three SHEMSs over a day (Section 5.2.3) and the benefits of using a stochastic
optimisation over a deterministic one (Section 5.2.4). Here we consider four scenarios with
PV-battery systems (Scenarios 1-4) and three scenarios with PV, battery and TES units
(Scenarios 1-3). Scenarios 1, 2, 3, and 4 are on August 20th, 2012, July 2nd, 2012, January
1st, 2013 and October 1st, 2012, respectively, for a Central Coast, NSW, Australia, based
residential building shown in Fig. 5.3. The PV system size is 2.2 kWp.

From our preliminary investigations, and as depicted in Fig 5.2(a), the expected future
rewards in the start-of-day two (time-step k = 49) only increases slightly after 6 kWh, which
suggests that using half of the available battery capacity as the start-of-day and end-of-
day battery SOC (sb

1 = sb
K = 6 kWh) in daily optimisations with DP is a valid assumption.

However, we observe that on days with a low morning demand, high PV output and medium-
high evening demand (see Fig. 5.3(c)), sb

1 = sb
K = 2 kWh gives the best results because the

battery can be used to supply the evening demand and there is no need to charge it back.
However, the next day’s electricity cost can significantly increase if we are anticipating a
high morning demand and low-high PV output (see Fig. 5.3(a-b)). Because of such situations,
it is beneficial to control the end-of-day battery SOC by considering uncertainties over
several days, which is our special focus of attention in this chapter. Note that the two-stage
lookahead in Chapter 4 requires us to fix the end-of-day battery SOC so we might end up with
increased costs if the current days actual PV output and demand deviates from the predictions.
The ADP approach is used over a two-day decision horizon because the simulation results
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Fig. 5.3 PV output and electrical and thermal demand for (a) Scenario 1, (b) Scenario 2 and (c) Scenario 3.

in Section 4.3 showed that there are no significant benefits when we increase the decision
horizon beyond two days.

5.2.2 Benefits of PV-storage systems

Residential PV-storage systems with a SHEMS result in significant financial benefits. This is
evident from the electricity cost of the three scenarios in three instances (i.e. benchmark cost
with neither PV or storage, cost with PV but no storage and PV-storage system with SHEMSs)
in Table. 5.1 and Table. 5.2. First the benefits of PV-battery systems under uncertainty given



80 Approximate Dynamic Programming

Table 5.1 The daily optimisation results for four scenarios with PV-battery systems.

Total daily: Scenario 1 Scenario 2 Scenario 2 Scenario 4
PV output (kWh) 9.27 6.05 12.31 10.12
Electrical demand (kWh) 24.72 64.75 10.48 10.88
Benchmark ($) 4.00 7.94 0.94 1.87
With PV ($) 3.74 7.29 0.57 0.93
ADP ($) 2.18 6.16 0 0.12
DP ($) 2.14 6.13 0 0.02
Stochastic MILP ($) 2.30 6.36 0.45 0.90
DP (sb

1 = sb
K = 6) ($) 2.36 6.35 0.15 0.23
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Fig. 5.4 Scenario 1 for a PV-battery system - (a) battery SOC; (b) electrical grid power; and estimated and
actual (c) PV output and (d) electrical demand.

in Table. 5.1 are explained. The daily electricity cost can reduce by 6.5%, 8.19%, 39.36% and
50.27% for Scenarios 1, 2, 3 and 4 respectively, if there is only a PV system. We can further
improve this by having a battery and effectively controlling its battery SOC using a SHEMS
in which the battery is charged to a certain level from solar power and electrical grid before
peak periods. A DP based SHEMS constrained to a 60% start-of-day and end-of-day battery
SOC reduces the total electricity cost by further 34.5%, 11.84%, 44.68% and 37.43% for
Scenarios 1, 2, 3 and 4, respectively. This means a total of 41%, 20%, 84% and 87.7% cost
reduction for Scenarios 1, 2, 3 and 4, respectively, by having a PV-battery system. As shown
in Fig. 5.3, inhabitants are away during the day for Scenarios 1, 3 and 4, so the extra PV
generation is stored in the battery, which shows the benefits of having a storage. In contrast
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Fig. 5.5 Scenario 2 for a PV-battery system - (a) battery SOC; (b) electrical grid power; and estimated and
actual (c) PV output and (d) electrical demand.
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Fig. 5.6 Scenario 3 for a PV-battery system - (a) battery SOC; (b) electrical grid power; and estimated and
actual (c) PV output and (d) electrical demand.

to Scenarios 1, 3 and 4, Scenario 2 electrical demand exceeds PV generation so the benefit of
battery is minimal.

Second, the benefits of a system with PV, battery and TES units is given in Table. 5.2.
The daily electricity cost can reduce by 6.2%, 6.1% and 22.6% for Scenarios 1, 2 and 3,



82 Approximate Dynamic Programming

2 4 6 8 10 12 14 16 18 20 22 24
2

4

6

8

10

Time (hour)

B
a

tt
e

ry
 S

O
C

 (
k
W

h
)

 

 
ADP

DP

DP (s
1

b
=s

K

b
=6 kWh)

Stochastic MILP

2 4 6 8 10 12 14 16 18 20 22 24
−1

0

1

2

Time (hour)

E
le

c
tr

ic
a

l 
g

ri
d

 p
o

w
e

r 
(k

W
)

 

 
ADP

DP

DP (s
1

b
=s

K

b
=6 kWh)

Stochastic MILP

2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

Time (hour)

P
V

 o
u

tp
u

t 
(k

W
)

 

 
Actual

Prediction

2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

Time (hour)

E
le

c
tr

ic
a

l 
d

e
m

a
n

d
 (

k
W

)

 

 
Actual

Prediction

(a)

(c)

(b)

(d)

Fig. 5.7 Scenario 4 for a PV-battery system - (a) battery SOC; (b) electrical grid power; and estimated and
actual (c) PV output and (d) electrical demand.

respectively, if there is only a PV system. These percentages are lower than the above
mentioned percentages (PV-battery) because the total benchmark cost here is higher because
of the thermal demand. A DP based SHEMS constrained to a 60% start-of-day and end-of-
day battery SOC reduces the total electricity cost by further 42.25%, 17.33% and 36.72%
for Scenarios 1, 2, & 3, respectively. That is a total of 48.45%, 23.43% and 59.32% cost
reduction for Scenarios 1, 2 and 3, respectively, by controlling both the battery and TES. The
electricity cost of controlling the TES in Scenarios 1 and 3 are the lowest because the surplus
of solar and battery power is used to charge the TES instead of sending it back to the grid
as FiTs are negligible in Australia. Note that we obtain the benchmark cost of the TES by
assuming a dummy control system, which operates regardless of the electricity price (same
as Chapter 3). The dummy TES control electricity cost varies depending on the time the hot
water is used.

5.2.3 Quality of the solutions from ADP, DP and stochastic MILP

ADP and DP result in better quality solutions than stochastic MILP as they both incorporate
all the stochastic input variables using appropriate probabilistic models and non-linear
constraints [77]. However, ADP results in slightly lower quality schedules compared to the
optimal DP solutions in most scenarios because the value functions used are approximations.
This is evident in Table. 5.1 and Table. 5.2. In some situations, ADP results in better solutions
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Fig. 5.8 Scenario 1 for a PV-storage system - (a) PV output, electrical and thermal demand; (b) electrical grid
power; (c) TES SOC; (d) electric water heater input; (e) battery SOC; and (f) battery decisions.

because we make an approximation to constraint the end-of-day battery SOC using DP. In
more detail, ADP uses the transition functions as it is (2.5 and 2.6) while in order to control
the end-of-day SOC using DP, the battery and TES losses are included in the contribution
function. Note that the DP based SHEMS with two controllable devices (battery and thermal)
is computationally intractable to be use in an existing smart meter, and we only use it to
compare solutions with ADP.

The quality of the schedules from the three solution techniques are also evident from
PV-battery systems’ schedules in Fig. 5.4-7 and PV-battery-TES units’ schedules in Fig. 5.8-
10. First, important observations of the PV-battery systems in Scenarios 1-4 are as follows:
Stochastic MILP sends power back to the grid in Scenarios 3 and 4 because the end-the-day
battery SOC is fixed and the estimated electrical demand is lower than the actual values, so the
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Fig. 5.9 Scenario 2 for a PV-storage system - (a) PV output, electrical and thermal demand; (b) electrical grid
power; (c) TES SOC; (d) electric water heater input; (e) battery SOC; and (f) battery decisions.

battery does not charge to the required level. This can be overcome by solving the problem
at each time-step, however, we would like to avoid this in practical applications because of
the limited computational power and the lack of user interaction (see Chapter 1 and 3). In
Scenarios 1 and 2, the battery SOC from all three solution techniques are maximised at the
beginning of peak periods starting starting at 29th time-step. The DP (sb

1 = sb
K = 6) SHEMS

has a higher electrical grid power at the last few time-steps compared to other schedules
because the battery has to charge back to 6 kWh. Also, note that some times battery SOC
does not reach 6 kWh because the end-of-day battery SOC is the next day’s start-of-day
value.
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Fig. 5.10 Scenario 3 for a PV-storage system - (a) PV output, electrical and thermal demand; (b) electrical grid
power; (c) TES SOC; (d) electric water heater input; (e) battery SOC; and (f) battery decisions.

Second, important observations of the PV-battery-TES systems of Scenarios 1-3 are as
follows: The battery and TES SOC are maximised at the beginning of peak periods from
solar and electrical grid power. Note that compared to the PV-battery systems above, the
solar power is used to charge both the battery and the TES. The dummy control electric water
heater is used during peak periods (similar to Chapter 3). The electric water heater controlled
using the three SHEMS are never used during peak periods in Scenarios 1 and 2. In Scenario
3, the electric water heater is used during peak periods, however, most of the time electricity
came from the battery, which is evident from the zero electric grid power at those time-steps.
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Table 5.2 Daily optimisation results for the three scenarios with PV, battery and TES units.

Total daily: Scenario 1 Scenario 2 Scenario 3

Electrical demand (kWh) 24.72 64.75 10.48

Thermal demand (kWh) 10.42 19.1 8.66

PV generation (kWh) 9.27 6.06 12.31

Benchmark cost ($) 6.13 10.5 1.77

With PV ($) 5.75 9.86 1.37

DP (sb
1 = sb

K = 6) ($) 3.16 8.04 0.72

DP ($) 3.05 7.96 0.59

ADP ($) 3.14 7.79 0.6

Stochastic MILP ($) 3.15 8.11 0.63

Dummy TES control ($) 2.13 2.56 0.83

DP TES control ($) 0.91 1.68 0.58

Marginal value of TES ($) 1.22 0.88 0.25

5.2.4 Benefits of a stochastic optimisation over a deterministic optimi-
sation

In order to evaluate the benefits of a stochastic optimisation over deterministic optimisation,
we investigate the following test cases. The Fig. 5.11 is obtained as follows: first we
obtain VFAs from both the stochastic and deterministic optimisations using ADP. The
stochastic optimisation uses the kernel estimated probability distributions of the PV output
and electrical demand while the deterministic ADP only uses the predicted mean PV output
and the electrical demand (i.e. all the random variables are zero). Second we obtain the total
electricity cost for different possible PV output and demand profiles, which are generated
by adding Gaussian noise with varying standard deviation and zero mean to the actual PV
output and electrical demand. The mean absolute errors of the actual (i.e. zero Gaussian
noise) and predicted mean PV output and demand are 0.238%, 0.696%, and 0.117%, for
Scenarios 1, 2, and 3, respectively, which are the initial points. Note that the forecast errors
associated with residential electrical demand predictions are typically very high and our aim
here is not to minimise forecast errors but to find a suitable stochastic optimisation technique
that performs well under uncertainty.
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Fig. 5.11 The total electricity cost of PV-battery systems of Scenarios 1-3 from deterministic and stochastic
ADP for a range of possible PV output and demand profiles, which are generated by adding Gaussian noise
with varying standard deviation and zero mean to the actual PV output and electrical demand.

A stochastic optimisation performs better over a deterministic one when the PV output
and electrical demand are estimated from the hierarchical approach in Chapter 2, as shown
by the initial points of the Fig. 5.11. An ADP-based stochastic optimisation can reduce the
total electricity cost by 13.62%, 0.16%, and 94.67% for Scenarios 1, 2, and 3, respectively,
in instances without Gaussian noise. ADP achieved these benefits by incorporating the
stochastic input variables without a noticeable increase in the computational effort over
a deterministic ADP. Moreover, stochastic ADP requires less computational effort than
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deterministic DP. Note that the benefits of a stochastic optimisation for Scenario 3 is very
high as a percentage because the stochastic optimisation reduced the electricity cost to almost
zero from $0.21. The benefits from the stochastic optimisation is minimal when the forecast
errors are very high (Scenario 2) or very low, which are highly unlikely. The benefits for
Scenarios 1 and 3 are noticeable and their forecast errors are what we can expect most of the
time [75, 76]. In Scenario 2, the stochastic optimisation gives slightly lower quality results
after 0.2 kW standard deviation of Gaussian noise because both the forecast and kernel
estimation errors are high. However, these scenarios are highly unlikely and the resulting cost
is negligible compared to the benefits from a stochastic optimisation. Moreover, the initial
point of Scenario 2 already has a mean absolute error of 0.696, which is highly unlikely
to increase any further in a practical scenario. In summary, even though the benefits vary
with the scenario and the forecast error, a stochastic optimisation performs better or same as
a deterministic one, and ADP provides these benefits without a noticeable increase in the
computational effort.

5.2.5 Computational aspects

In our second set of simulation results, we discuss the computational performance of the
three solution techniques.

ADP computes a solution much faster than both DP and stochastic MILP and, most
importantly, ADP with a two-day decision horizon computes a solution with less than half
of the computational time of a daily DP, as depicted in Fig. 5.12. A daily and a weekly
optimisation for a residential PV-battery system takes approximately 4 and 28 minutes,
respectively, using ADP while DP approach takes approximately 17.1 minutes and 124
minutes, respectively. The computational time of both SHEMSs using ADP and DP increases
linearly as we increase the decision horizon, however, ADP has a lesser slope. This linear
increase with DP is because the state transitions in this problem are only between two
adjacent time-steps, so time does not contribute to an exponential increase in state space
size. However, the computational time of DP will increase exponentially when more storage
devices are added, where’s ADP will have only a linear increase because the state space is
factorised. The solution time of stochastic MILP grows exponentially with the length of
the horizon because the optimisation problem is solved for the whole horizon at once and
the number of possible scenarios increases as the number of time-steps increases [56]. The
computational burden can be improved at the expense of solution quality by using scenario
reduction techniques. The computational time of ADP with a two-day decision horizon
will only increase by 4 minutes when the TES is added while a finely discretised DP based
SHEMS takes approximately 2.5 hours. Note that ADP is an anytime optimisation solution
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Fig. 5.12 Computational time of ADP, DP and stochastic MILP against the length of the decision horizon.

technique so the computational time will depend on the number of iterations used to achieve
the required quality of the solutions.

In summary, we can see that ADP is computationally efficient with good quality solutions.
Moreover, we can extend the decision horizon beyond a day and add more storage devices
with less computational burden than other approaches. Our simulation results in Chapter 4
indicate that electricity cost can be reduced significantly with a two-day decision horizon, so
next section investigates the yearly benefits using an ADP approach with a two-day decision
horizon.

5.2.6 Year-long optimisation

In our third set of simulation results, we compare the ADP based SHEMS with a two-day
decision horizon to a DP approach with a daily decision horizon over three years for 10
households with PV-battery systems. We omit TES as we already identified its benefits in
Section V-B, and moreover, a yearly optimisation using DP with two controllable devices is
computationally difficult. The time-periods of the three years are: year 1 from July 1st, 2012
to June 31st, 2013, year 2 is from July 1st, 2011 to June 31st, 2012 and year 3 is from July
1st, 2010 to June 31st, 2011. Electricity cost savings for all the households over three years
are given in Fig. 5.13 and in Table 5.3 we demonstrate detailed results of two households in
Central Coast (Household 1) and Sydney (Household 2), in NSW, Australia. The PV sizes of
the Households 1 & 2 are 2.2 kWp and 3.78 kWp, respectively.

The proposed ADP-based SHEMS implemented using a two-day decision horizon that
considers variations in PV output and electrical demand reduces the average yearly electricity
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Fig. 5.13 Electricity cost savings over three years for ten households, where blue lines indicate 25th and 75th

percentiles and the red lines indicate the median.

cost by 4.63% compared to a daily DP based SHEMS, as depicted in Fig 5.13. We also find
that the average yearly savings are 5.12%, 3.89% and 4.95% for years 1-3, respectively. This
is because 2013 was a sunny year compared to 2012 and 2011 so the two day optimisation
has greater benefits. For example: if we are anticipating a sunny weekend with low demand
then we can completely discharge the battery on Friday night. However, if we have a half
charged battery on Friday night then we will be wasting most of the free energy as the storage
capacity is limited. Our results showed that a daily DP results in a significant cost savings of
12.04% ($107.35) and 1.91% ($39.35) for Households 1 and 2, respectively, compared to a
daily stochastic MILP approach. The difference in the savings is because of the following
reasons. In scenarios with high demand (i.e. Household 2), most of the time the battery will
discharge its maximum possible power to the household during peak periods, so the battery
and the inverter will operate in the maximum efficiencies even though MILP solver does
not consider the non-linear constraints. The converse is happening for scenarios with low
demand (i.e. Household 1).

For demonstration purposes we show optimisation results for two households over three
years in Table.2. The average yearly electricity cost for a residential PV-battery system with
the proposed ADP based SHEMS can reduce the total electricity cost over 3 years by 57.27%
and 50.95% for Households 1 and 2, respectively, compared to the 22.80% and 28.60%
improvements by having only a PV system. It is important to note that a DP based SHEMS
over a two-day long decision horizon may result in a slightly better solution. However, it is
computationally difficult and the computational power available will be limited as it won’t
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Table 5.3 Yearly optimisation results for two households over three years

Total: Household 1 Household 2
Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

PV output
(MWh) 2.91 2.82 2.89 5.99 5.56 5.35

Demand
(MWh) 4.29 4.82 4.38 9.82 10.24 12.85

Benchmark
cost ($) 568.09 610.6 558 1208.3 1276 1588.2

With
PV ($) 440.52 482.5 417.1 821.7 891.4 1194.8

PV-battery
DP ($) 248.37 297.55 238.15 534.8 596.25 890.25

PV-battery
ADP ($) 232.25 285.63 224.18 526.2 589.23 882.29

PV-battery
Stochastic
MILP ($)

281.59 333.60 276.23 554.83 599.07 906.75

be worthwhile investing in a specialised equipment to solve this problem given the savings
on offer.

5.3 Summary

This chapter shows the benefits of having a SHEMS and presented an ADP approach for
implementing a computationally efficient SHEMS with similar quality schedules as with DP.
This approach enables us to extend the decision horizon to up to a week with high resolution
while considering multiple devices. Our results indicate that these improvements provide
financial benefits to households employing them in a SHEMS. Moreover, stochastic ADP
performs better over deterministic ADP under uncertainty without a noticeable increase in the
computational effort. In practical applications, we can use VFAs generated from ADP during
offline planning phase to make faster online solutions. This is not possible with stochastic
MILP and generating value functions using DP is computationally difficult.

However, ADP still takes a considerable amount of time to generate VFAs and we need
the daily estimated PV output and demand models. Given this, next, in Chapter 6, we derive
a method that uses historical results to generate models that map states and decisions so
fast online solutions can be made, using learning methods. This proposed approach in
Chapter 6 can generate faster offline models, however, the time that takes to make online
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solutions is similar to making decision using VFAs. Given the benefits outlined in this
chapter, we recommend the use of ADP in SHEMSs when we have enough computational
power available for the offline planning phase.



Chapter 6

Policy Function Approximations

This chapter proposes a PFA algorithm to make fast on-line schedules for a SHEMS problem.
This is the fourth of the four (meta) classes of policies described in Chapter 1. In detail,
PFAs refers to look-up tables, parametric models and/or non-parametric models that return a
decision for a given state (more details in Section 6.1).

Until now, all the methods presented to solve the SHEMS problem, such as DP (Chap-
ter 3), stochastic MILP (Chapter 3) and ADP (Chapter 5) are optimisation techniques, which
require us to estimate the day ahead PV output and electrical demand models. As such, the
quality of the solutions depends on the accuracy of the PV output and electrical demand
estimates. The hierarchical approach in Chapter 2 results in good quality estimates but
rely on the users’ ability to choose the correct day type. Moreover, even though ADP is
computationally efficient compared to other methods, it still takes a considerable amount of
time to compute VFAs during the off-line planning phase. Note that we can also make fast
real-time solutions from VFAs using the Bellman optimality condition.

On the other hand, PFA models can be used over a long period of time (i.e. months)
without having to update it and still obtain similar quality solutions. This is a major advantage
of PFAs, compared to having to solve an optimisation problem before the start of each day
using ADP or DP. However, all the PFA strategies require training data to learn PFA models
during the off-line planning phase. The training data set can be generated using a more
powerful cloud or home computer (details in Section 6.4). Once we have the training data
set, PFA models can be generated within seconds using a low powered device, which can
then be used to make fast real-time decisions over a long period of time. Note that ADP is
still the preferred optimisation technique when no training data is available.

This chapter is structured as follows: First, the strategies used in PFAs is presented in
Section 6.1. This is followed by a review of ELM in Section 6.2 and then the implementation
of our proposed PFA algorithm using ELM in Section 6.3. In Section 6.4, simulation results
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of the proposed PFA method using ELM (extreme learning machines), ANN (artificial neural
networks), FDNNE (fast decorrelated neural network ensembles) and SVM (support vector
machine) are compared with DP (Chapter 3), ADP (Chapter 5), stochastic MILP (Chapter 3)
and two-stage lookahead (Chapter 4). Finally the conclusions are in Section 6.5.

6.1 Strategies for the PFAs

PFAs refers to functions that return a decision for a given state without having to solve the
associated optimisation problem. However, designing specific functions that map a state to a
decision is a challenge, which can be overcome by three strategies:

• Rule-based lookup tables;

• Parametric models;

• Non-parametric statistical representations.

These strategies are described below. The first strategy is to use a rule-based lookup table
with decisions for each state (if in state si

k, then take decision xi
k). Generating a look up table

with decisions to take from every state is computationally challenging in problems that have
a large state space such as our SHEMS problem. Moreover, we are not visiting all the states
when making daily schedules. Therefore, it is not worthwhile to implement such a lookup
table with decisions for each state. Note that in Chapter 5, VFAs obtained using ADP were
stored in a matrix, which is a lookup table with a value for each state.

The second strategy is to use parametric models, which are used to obtain a decision at
each state depending on different conditions. For example: the battery can be charged if
electricity costs are below a certain value and discharge if it is above a certain value. This
method is computationally efficient, however, in our problem multiple devices are coupled
together so we can only design parametric policy models for a particular scenario.

The third strategy is non-parametric statistical representations used to learn decisions for
each state. This is the type of strategy employed in this chapter. The learning methods that
are typically used to solve power engineering applications are SVM and ANN that are trained
using the back propagation (BP) algorithm in conjunction with an optimisation technique
such as gradient descent. Even though these techniques result in good quality solutions, they
face challenging issues such as intensive human intervention, slow learning speed and poor
learning scalability. More details on the drawbacks of the BP algorithm is in [58].

In order to overcome the above difficulties, ELM was proposed in [58] to learn single
hidden layer feedforward networks (SLFNs). According to [58], ELM is computationally
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efficient compared to BP and SVM (i.e. up to thousands of times faster) while obtaining
reasonably quality solutions. Another fast algorithm is proposed in [61], which is referred to
as FDNNE with random weights. However, the solutions are highly sensitive to the value of
the regularizing factor and computational time is high when solving problems that require
a large number of random vector functional-link networks with more hidden neurons [61].
Note that the quality of the solutions, difference in learning speeds and the level of human
input required from different learning methods varies for different application domains.

Given this, in order to find a suitable learning method for our PFAs, we compare PFAs
using ELM, SVM [60], FDNNE and ANN (solved using Levenberg-Marquardt method in
MATLAB) [59] with DP, ADP, stochastic MILP and two-stage lookahead solutions. Note that
we only give implementation details about ELM (Section 6.2) as it is the fastest algorithm and
gives similar quality solutions as FDNNE. The SVM and ANN (using Levenberg-Marquardt)
algorithms are already established techniques that have inbuilt MATLAB functions [60, 59].
The Levenberg-Marquardt method is the fastest training algorithm for feedforward neural
networks in MATLAB, however, this method tends to be less efficient for large networks
with thousands of weights, which is not a concern in this thesis. Our preliminary results
indicate that the BP and Levenberg-Marquardt methods result in similar quality solutions.

6.2 Review of Extreme Learning Machines (ELM)

First, a formulation of a single hidden layer feedforward network (SLFN) with random
hidden nodes is presented. Second, ELM used to solve SLFNs is presented.

6.2.1 SLFNs with random hidden nodes

A SLFN is an ANN wherein the information only flows in one direction from the inputs to
the outputs via a single hidden layer of nodes, as shown in Fig 6.1. In Fig 6.1, there are 4
inputs, Ñ = 4 hidden nodes and 2 outputs. A particular input, hidden node and output is
represented using n, q and m, respectively. Every hidden node is connected to every input
and output by the weights wqn and βqm, respectively. The input and the output data sets for a
given hidden node are yq = [yq1,yq2, . . .yqn] ∈ ℜn and tq = [tq1, tq2, . . . tqm] ∈ ℜm respectively.
The total number of samples used for training and a particular sample is denoted by N
and j, respectively. Given this, the standard SLFNs with the activation function g(y) are
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Fig. 6.1 A single hidden layer neural network with four inputs, four hidden nodes and two outputs.

mathematically formulated as:

Ñ

∑
q=1

βqgq
(
y j
)
=

Ñ

∑
q=1

βqgq
(
wq ·y j +bq

)
= o j,

j = 1, . . . ,N, (6.1)

where; wq = [wq1,wq2, . . .wqn]
T is the weight vector that connects a hidden node q and the

input node n; β q = [βq1,βq2, . . .βqm]
T is the weight vector that connects a hidden node q and

the output node m; bq is the threshold of the hidden node q and; wq ·yq is the inner product
of wq and yq.

The standard SLFNs with Ñ hidden nodes and activation function g(y) can approximate
N samples with zero error, so ∑

N
j=1

∥∥o j − t j
∥∥= 0, which means

Ñ

∑
q=1

βqgq
(
wq ·y j +bq

)
= t j,

j = 1, . . . ,N. (6.2)

Now we can write the compact form of the above N equations as:

Hβ = T, (6.3)
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Algorithm 3 : ELM for learning SLFNs

1: Initialise training set ℘=
{
(yq, tq)|yq ∈ ℜn, tq ∈ ℜm,q = 1, . . . , Ñ

}
, activation function g(y),

and the number of hidden nodes Ñ.
2: Randomly generate wq and the threshold bq,q = 1, . . . , Ñ.
3: Calculate the hidden layer output matrix H in (6.4).
4: Calculate the output weight β (6.5).

where,

H =

 g(w1 ·y1 +b1) · · · g(wÑ ·y1 +bÑ)
... . . . ...

g(w1 ·yN +b1) · · · g(wÑ ·yN +bÑ)


N×Ñ

β =


β T

1
...

β T
Ñ


Ñ×m

, and T =


TT

1
...

TT
Ñ


N×m

(6.4)

In [83, 84], H is called the hidden layer output matrix of the neural network. In more
detail, every column of H corresponds to a particular hidden node output with respect to the
inputs y1,y2, . . . ,yN .

6.2.2 ELM algorithm

The ELM algorithm used to learn the SLFNs is given in Algorithm 3. In detail, Algorithm 3
proceeds as follows:

1. Load the training data set ℘=
{
(yq, tq)|yq ∈ ℜn, tq ∈ ℜm,q = 1, . . . ,N

}
, activation

function g(y), and the number of hidden nodes Ñ. The training data set consists of
inputs (N × n) and the outputs (N ×m). The activation function has to be infinitely
differentiable such as a sigmoidal, sine or hardlim function. If the activation function
is infinitely differentiable, then the required number of hidden nodes is Ñ ≤ N [58]
(line 1).

2. Randomly generate wq and the threshold bq,q = 1, . . . , Ñ (line 2).

3. Calculate the hidden layer output matrix H in (6.4) (line 3).
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Algorithm 4 : PFAs using ELM

1: Separate empirical data into seasons and/or weekdays/weekends.
2: Cluster empirical data into different day types using k-means.
3: Train ELM models for each time-step in every cluster.
4: for k = 1, . . . ,K do
5: Compute the electrical grid power and electric water heater input using the trained ELM

model.
6: Calculate the battery decision that satisfies (2.8).
7: Find the next pre-decision states using (2.5) and (2.6).
8: end for

4. Calculate the output weight β using:

β = H†T (6.5)

where T = [tq, . . . , tN ]
T and H† is the Moore-Penrose generalised inverse of matrix H

(line 4).

6.3 Implementation

This section presents the implementation details of the proposed PFA algorithm using ELM
(Algorithm 4). Here the PFAs are the ELM models that map states (inputs) to decisions
(outputs). We can learn these ELM models from empirical data either off-line or online, as it
is computationally fast. Once we have the ELM models, fast real-time solutions can be made
using the input states while stepping forward in time.

From preliminary simulations, we found that solutions to some scenarios (i.e days) from
PFAs using any of the learning methods can be greatly improved by clustering the training
data into day types. This means we have to decide the type of day before the start of the
decision horizon, which is reasonable compared to having to estimate the entire day’s PV
and demand models when using DP, ADP or stochastic MILP. However, clustering also has a
negative influence on some scenarios if the estimated day types are wrong. This happens
when the PV and demand profiles used to train the ELM model of a particular day type is
totally different form the actual values. In such situations, solutions can be improved by
parametric policy models.

In more detail Algorithm 4 proceeds as follows:

1. Separate empirical data into seasons and weekends/weekdays. This step is only
required when we have a large empirical data set or the number of possible clusters
(i.e different day types) that customers can choose are less (line 1). The empirical data
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Fig. 6.2 ELM models that map inputs and outputs; (a) basic model, (b) PV-battery system and (c) PV, battery
and TES units.

set used to train the ELM model consists of input states, such as battery SOC, TES
SOC, minimum required TES SOC, thermal demand, electrical demand, PV output
and electricity tariff; and output decisions, such as electrical grid power and electric
water heater input, as shown in Fig 6.2.

2. Cluster empirical data into different day types using k-means algorithm. The empirical
data is clustered according to the total daily PV output and electrical demand so
the resulting clusters correspond to different day types, such as sunny day with low
demand, sunny day with high demand, cloudy day with high demand or cloudy day
with low demand etc (line 2).
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3. Train ELM models for every time-step in every cluster. We can train these ELM
models offline or even real time since it is computationally efficient (line 3).

4. In real-time, provide inputs to the trained ELM model to obtain the outputs (line 3).
Note that the ELM model is the output weight matrix β calculated in 6.5 and we find
H using 6.3 in the same way as for the training set. Outputs are the electrical grid
power and the electric water heater input.

5. Calculate the battery decisions that satisfies (2.8). In order to improve the solution
quality that arises from bad estimates of the day types, we constrain the policy to stop
power flow from battery to grid and grid to battery during peak periods (line 4). In the
simulation results section, PFAs with this parametric model is referred to as ELM +
parametric policy.

6. Obtain the next pre decision states of the controllable devices using the transition
functions (2.5 and 2.6) (line 5).

Next section shows the performance of the PFAs using ELM, SVM, ANN and FDNNE
using real-data.

6.4 Simulation Results and Discussion

In this section, we provide simulation results for a PV-battery system. We implement PFAs
using ELM, ELM + parametric policy, SVM, FDNNE and ANN and then compare them
with ADP, two-stage lookahead, stochastic MILP and DP solutions. For the daily simulation
results in Section 6.4.1, we only use DP as a benchmark because we can’t control the end-
of-day SOC using ADP. Note that for a valid comparison over a day, the end-of-day battery
SOC has to be the same from all the solution techniques. We consider four scenarios that
consist of two days each for two residential buildings:

1. Central coast, NSW, Australia based residential building with a 2.22 kWp PV system.

2. Sydney, NSW, Australia based residential building with a 3.78 kWp PV system.

The two days are on: July 29th, 2012 and January 1st, 2013. The year-long simulation results
in Section 6.4.2 is for the above households. As mentioned in Chapter 2, we have PV output
and electrical demand data for three years, so we use the first two years of data to generate the
training data set. The training data set is generated by solving the deterministic optimisation
problem using DP over two-days because we wanted to obtain exact solutions. Note that the
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training data set should have the optimal electrical grid power decisions for the corresponding
battery states under different PV output, electrical demand and price signals in order to obtain
quality ELM models. We can use these ELM models for a long period of time (i.e months)
without updating them and still obtain similar quality solutions, so we can afford to use a
computationally expensive DP to generate the training data set, however, ADP and MILP can
also be used here. The ADP and DP solutions are made in real-time using the value functions
and VFAs that are obtained during the offline planning phase. The PV output and electrical
demand for the off-line planning are according to Chapter 2. The device characteristics are in
Fig 2.3 and Table 2.1. The ToUP signal is in Fig. 2.2.

6.4.1 Quality of the ELM solutions over a day

We first compare the proposed PFAs using ELM (with parametric policy model) with
stochastic DP to illustrate the performance over one day. The battery SOC, electrical grid
power and actual and estimated PV output and electrical demand for Scenarios 1, 2, 3 and
4 are in Fig. 6.3, Fig. 6.4, Fig. 6.5, and Fig. 6.6, respectively. Our aim in this section is
only to compare the performance of the proposed PFA approach over a day with the best
possible solution. The rest of the methods are compared in the year-long simulations section
(Section 6.4.3).

Our results show that PFAs using ELM (with parametric policy model) result in better
quality solutions compared to the stochastic DP solutions when the forecast error is high, as
shown in Table 6.1. This is because the value functions from DP are obtained from the kernel
estimated PV and demand models so the quality of the solutions depends on the accuracy of
the estimates. Note that DP results in close to optimal solutions when the estimates are 100%
accurate. However, when the forecast error is low stochastic DP results in better quality
solutions. The Scenarios 3 and 4 have a MAE (mean-absolute error) above 0.5 for electrical
demand while Scenarios 1 and 2 have a low MAE.

6.4.2 Year-long simulation

In this section, we present simulation results from the proposed PFA approach using ELM,
ELM (with parametric model), ANN, FDNNE and SVM; ADP; two-stage lookahead; stochas-
tic MILP; and DP for two households over a year in Table 6.2. Our simulation results indicate
that ADP using a two-day decision horizon results in the best solutions followed by the DP
solution, which is expected from the simulation results in Chapter 5. However, we have to
estimate the PV and demand models before the decision horizon so the quality of the solu-
tions from ADP and DP depend on the accuracy of the estimates. Our proposed hierarchical
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Table 6.1 Daily simulation results for PFAs using ELM and DP for four scenarios

Total daily: Scenario 1 Scenario 2 Scenario 3 Scenario 4
PV output (kWh) 5.82 13.24 9.9 32.14
MAE PV output 0.039 0.008 0.041 0.026
Electrical demand (kWh) 9.08 9.77 41.91 44.7
MAE electrical demand 0.106 0.093 0.503 0.595
Benchmark ($) 1.54 1.40 5.95 6.91
With PV ($) 1.26 0.42 5.21 3.07
Stochastic DP 0.172 0.02 4.05 1.865
PFAs using ELM
with parametric policy ($) 0.196 0.01 3.865 1.704

Table 6.2 Year-long simulation results for two households

Household 1 Household 2
Electrical demand (MWh) 4.29 9.82
PV output (MWh) 2.91 5.99
Benchmark cost ($) 568.09 1208.3
With PV cost ($) 440.52 821.7
Stochastic DP ($) 253.62 546.86
Deterministic DP
(lower quality prediction) 276.31 598.54

PFA (ELM) ($) 275.41 620.57
PFA ($)
(ELM + parametric model) 267.50 574.36

PFA (no clustering) ($)
(ELM) 337.62 721.35

PFA (no clustering) ($)
(ELM + parametric model) 286.92 648.79

PFA (ANN) ($) 274.73 592.75
PFA (SVM) ($) 292.43 621.17
PFA (FDNNE) ($) 267.41 622.21
Two-stage lookahead ($) 248.34 567.36
Stochastic MILP ($) 371.2 704.39
ADP (two-days) ($) 247.03 542.41
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Fig. 6.3 Scenario 1, residential building A on 29th July, 2012, (a) battery SOC and (b) electrical grid power
from PFA and stochastic DP; and actual and predicted (c) PV output and (d) electrical demand.
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Fig. 6.4 Scenario 2, residential building A on 1st January, 2013, (a) battery SOC and (b) electrical grid power
from PFA and stochastic DP; and actual and predicted (c) PV output and (d) electrical demand.

approach in Chapter 2, results in good quality estimates but still in practical applications
users will have to identify the corresponding clusters before the start of the decision horizon.
Failure to identify the correct clusters for PV and demand may result in increased costs from
ADP and DP.
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Fig. 6.5 Scenario 3, residential building B on 29th July, 2012, (a) battery SOC and (b) electrical grid power
from PFA and stochastic DP; and actual and predicted (c) PV output and (d) electrical demand.
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Fig. 6.6 Scenario 4, residential building B on 1st January, 2013, (a) battery SOC and (b) electrical grid power
from PFA and stochastic DP; and actual and predicted (c) PV output and (d) electrical demand.

The solutions from the PFAs are slightly lower quality because we do not solve an
optimisation problem. However, the training process of the ELM, ANN, FDNNE models are
in the range of seconds. PFAs using ELM is computationally fast compared to PFAs using
ANN but results in lower quality solutions. The error between the solutions are 0.25% and
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5.8% for Households 1 and 2, respectively. The quality of the solutions from ANN depends
on the parameter settings used, such as learning rate and the hidden layer size. However, we
stick with the same default setting for all the scenarios because it is not possible to change
these parameters in practical applications. PFAs using ELM and FDNNE result in similar
quality solutions and speed.

The SHEMS using stochastic DP can reduce the total yearly electricity cost by 55.36%
and 54.74% for Households 1 and 2, respectively while PFAs using ELM (with parametric
model) reduces the total cost by 52.91% and 52.47%. Even though the solutions are slightly
lower quality, the proposed approach is extremely fast and can easily be embedded in existing
smart meters. Moreover, PFAs perform better than stochastic MILP in terms of both the
solution quality and the computational time. The only drawback is that we have to define
the parametric model in order to get the solutions close to the DP solutions, which requires
a prior understanding of the problem structure. For example, in this situation we know the
electricity price is a ToU so we can easily identify the peak electricity price signal.

6.5 Summary

This chapter proposed a PFA algorithm, which can use non-parametric learning methods
such as ELM, SVM, FDNNE and ANN to solve the SHEMS problem. These non-parametric
methods can learn models that map states and decisions at each time-step of different day
types. This process only takes seconds compared to the considerable amount of time that
takes to generate value functions and VFAs using DP and ADP, respectively. Moreover, we
don’t have to estimate day ahead PV and demand models in order to obtain decisions from
PFAs using Algorithm 4. However, the solutions are lower quality compared to the DP and
ADP solutions from good estimates because we don’t solve an optimisation problem.

The real-time decision making process of PFAs using ELM, DP and ADP takes approx-
imately the same time compared to the slightly increased computational time from PFAs
using ANN and SVM. However, ADP and DP require us to store value functions for every
time-step in the smart meter, which requires a higher memory compared to storing ELM or
ANN models. We believe that the proposed PFA algorithm will be beneficial in situations
where the computational power of the smart meters is limited or when it is difficult to estimate
the day ahead PV and demand models. Moreover, we can use the same PFA models for
months without updating and still get similar quality solutions.





Conclusions and Future Work

This thesis has proposed three fast solution techniques for implementing an efficient SHEMS.
That is:

• Two-stage lookahead stochastic optimisation framework;

• ADP approach with temporal difference learning;

• PFA algorithm using ELM, ANN, FDNNE, and SVM.

Throughout the thesis, these methods have been compared with each other and against DP
and stochastic MILP using a range of PV-storage systems. PV-storage (thermal and battery)
systems have been chosen in this thesis because of the Australia’s increasing penetration of
rooftop PV and battery storage systems in response to rising electricity costs, decreasing
technology costs and existing fleet of hot water storage devices.

The main objective of a SHEMS is to minimise energy costs while providing suitable
levels of comfort to the inhabitants. The underlying sequential stochastic decision making
problem has been presented in Chapter 2. The PV output and electrical and thermal demand
data that have been used in this thesis were collected during Smart Grid Smart City project.
The contributions of this thesis are summarised below.

An hierarchical approach has been proposed in Chapter 2 to estimate PV and demand
models, which first cluster empirical data and then learns probability density functions using
kernel regression. This kernel estimator conforms with the MDP construction (i.e. Markov
property of the transition functions). Moreover, in practical applications, the user only has to
choose the type of day, which is reasonable compared to having to estimate entire day’s PV
and demand models.

Deterministic and stochastic SHEMSs using DP and stochastic MILP have been com-
pared with each other in Chapter 3. This chapter has concluded that DP results in better
quality solutions as it considers non-linear constraints and appropriate probability distribu-
tions. Moreover, value functions generated during the off-line planning phase can be used
to make fast real-time solutions using the Bellman optimality condition. However, it is
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computationally difficult to extend the decision horizon, incorporate the stochastic nature
and integrate multiple controllable devices using DP because of dimensionalities of state,
decision and outcome spaces.

Given this, a two-stage lookahead method has been proposed in Chapter 4 to identify
the benefits of extending the decision horizon. In detail, a longer decision horizon solver
that uses deterministic MILP, while its end-of-day battery SOC is used in a daily DP solver.
Our results have showed that considering uncertainties using the two-stage lookahead results
in significant financial benefits compared to a daily DP approach. However, fixing the end-
of-day battery SOC has negative influence when the actual PV output and demand deviates
from the forecasts.

Building on this, an ADP approach using temporal difference learning has been proposed
to implement a computationally efficient SHEMS in Chapter 5. ADP results in better
quality solutions than stochastic MILP as it incorporate stochastic input variables using
appropriate probabilistic models and non-linear constraints. However, the solutions are
lower quality compared to the optimal DP solutions because the value functions used are
approximations. On the other hand, ADP enables us to extend the decision horizon to
up to two days with high resolution while considering multiple devices. Our results have
indicated that these improvements provide financial benefits to households employing them
in a SHEMS. Moreover, stochastic ADP always performs better over deterministic ADP
under uncertainty without a noticeable increase in the computational effort. Even thought
ADP is computationally efficient compared to both DP and stochastic MILP, it still requires
a considerable amount of time to generate VFAs during the off-line planning phase.

A PFA algorithm using ELM has been proposed in Chapter 6 to overcome these chal-
lenges. Here ELM was used to generate models that map input states and output decisions.
Similar to ADP and DP, on-line decisions can be made within seconds, however, storing ELM
models in an existing smart meter is feasible compared to storing VFAs for every time-step.
PFAs generated during the off-line planning phase can be used over a long period of time
without updating and still obtain quality solutions. However, off-line planning phase require
training data, which has to be generated by solving the deterministic SHEMS problem over
couple of years. We can use a more powerful cloud or home computer to do this as it is only
needed once. The decisions from PFAs are lower quality compared to decisions from ADP
and DP because we don’t solve an optimisation problem. However, under high uncertainty
PFAs performs better than both ADP and DP.

The possible future research directions are described below:

• In this research we only focused on fast solution techniques for implementing efficient
SHEMSs. Hence we decided to stick with well established models for battery and
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TES units. Given this, the first possible future work is to include more comprehensive
battery and TES models. The TES model can be modified to include the indoor
household temperature, hot water tank’s temperature and the properties (i.e thermal) of
the material (i.e polypropylene) used to make the hot water tank. The battery model
can include constraints for the battery depreciation and the number of useful life cycles.

• The second possible avenue for future work is to incorporate additional devices to the
household model, such as an EV and a HVAC system. The HVAC system model can
include the thermal inertia of the building with phase changing materials.

• The third possible research direction is to develop an off-grid system for a large
consumer. Here the electrical demand will have to be satisfied by the DG units (i.e PV
system) and the battery. In such situations ADP will be beneficial as we have to plan
over a longer decision horizon (i.e. a week).

• The fourth possible future work is to implement the proposed SHEMSs on a Raspberry
Pi board and then develop a prototype.

In conclusion, the results of this research have shown that PFAs using ELM and ADP
with temporal difference learning can incorporate the stochastic variables, extend the decision
horizon and integrate multiple controllable devices with low computational burden. As such,
SHEMSs implemented using these methods result in significant financial benefits for the
residential users. Given this, we recommend the use of ADP for SHEMSs, when the available
device has enough computational power and PFAs for SHEMSs, when the available device
has low computational power.
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