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Abstract

This thesis describes a new MRI contrast agent based on hyperpolarized

13C in nanodiamond. Nanodiamonds are readily available, non-toxic, can

be surface functionalized, and have long T1 relaxation times. Electronic

defects in the nanodiamonds are used to hyperpolarize the 13C nuclear spins

through dynamic nuclear polarization, building up large nuclear magnetic

resonance signals that persist for a long time. Enhancements are comparable

to those used in liquid state hyperpolarization experiments, and can be

detected in an MRI scan with low background signal. This imaging modality

encompasses no ionizing radiation, and long imaging windows stemming

from the long T1 relaxation times of solids.

Firstly a major component of this thesis involved the construction of

a polarizer at X-band frequencies for DNP of 1H and 13C at room tem-

perature, based on a horn-mirror cavity and SpinCore NMR console. This

thesis also details a W-band hyperpolarizer (based on a cryostat, probe, and

microwave source on loan from M. Cassidy and C. Marcus) for 13C DNP

in ND with a Redstone NMR console and a B∼ 3 T magnet. A setup for

brute force cryogenic hyperpolarization at millikelvin temperatures using a

dilution refrigerator and hot swap probe is also described.

Data was collected exploring many aspects of the electron and nuclear

spin dynamics across a range of nanodiamonds (NDs) between 18 nm and

2 µm. Nuclear T1 relaxation is dominated by paramagnetic impurities,

and long relaxation times up to 1 hr are measured for 2 µm ND. The T1

relaxation time was found to increase with ND particle size. The main

defects in ND are found to be P1 centres, spin-1/2 defects from the ND

core, and spin-1/2 defects from the ND surface. Surface modification of
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the NDs through air oxidation etches away the ND surface, removing sp2

hybridized carbon and surface spin-1/2 electronic defects.

This thesis reports measurements of nanodiamond particles that are

hyperpolarized via the solid effect mechanism at T = 4 K and B = 3 T, with

moderate polarizations also achieved at T = 77 K and room temperature.

An increase in enhancement, and polarization decay time is observed with

increasing ND particle size. Room temperature hyperpolarization of ND in

the presence of water is also demonstrated, opening the possibility of an in

vivo hyperpolarization modality. Different ND polarization and decay be-

havior is observed when hyperpolarizing using different electronic defects,

with longer T1 relaxation times measured when polarizing via spin-1/2 de-

fects.

Spin-spin interactions in ND are also examined and long stimulated

echo tails are observed when measuring under CPMG conditions, increasing

T2 by two orders of magnitude. An increase in T2 with polarization time

is also observed.

The surface defects in ND are used to polarize adsorbed liquids on

the ND surface at X-band frequencies. Solid effect hyperpolarization of 1H

nuclear spin in a variety of liquids is demonstrated, and T1 relaxation and

hyperpolarization dynamics are examined. Results enable adsorbed and

non-adsorbed liquids to be distinguised based on enhancement and relax-

ation time. NDs are also used as a conventional contrast agent, modifying

the T1 relaxation time of water based upon ND concentration.

Finally hyperpolarized 13C ND MRI in a phantom is demonstrated.
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1

Introduction

Nanoparticles are becoming more common in everyday medicine, being used in the

treatment of cancers [1, 2], the study of autoimmune diseases [3] and cardiovascular

affections [4]. Of particular interest are nanoparticle theranostic agents in personalized

medicine, combining both diagnostic and therapeutic characteristics. The ultimate

goal for these nanoparticle bioagents is to create a platform which integrates imaging,

tracking, and monitoring capabilities with targeted delivery of compounds to tumors,

specific organs or cellular processes [5].

The use of nanoparticles has stemmed from an advance in nanotechnology, which

has allowed for the growth of materials with micro and nano scale tailored properties

for specific applications. In particular, in the emerging field of nanomedicine, the use of

materials such as nanotubes [6, 7], silica [8], polymer nanoparticles [9, 10], and porous

silicon [11,12] is becoming widespread. Micro and nanoparticles are uniquely suited to

act as a targeting bioprobe. Not only does the high surface to volume ratio enable a high

concentration of biofunctionalization, but in addition, the enhanced permeability and

retention effect, due to the high vascular nature of tumors leads to passive nanoparticle

accumulation [13,14].

Of all the available nanoparticle compounds, nanodiamonds (NDs) are emerging

as a leading theranostic platform in nanomedicine. They are non-toxic and have been

found to be compatible with biological environments [15–18]. Their easily adaptable

carbon surface is readily functionalized [19] and allows for precise control over the

surface chemistry [20]. As a result NDs have been conjugated to specific molecules

[21], such as DNA, demonstrating potential for gene therapy treatments for inherited
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disorders [22], chemotherapeutics, allowing for pharmaceutical delivery [18] of water-

insoluble drugs [23] and enhancing the efficiency of chemotherapy by reducing drug

efflux from tumor sites [24], and antigens, to evoke an immune response [25].

Advances in fabrication techniques have allowed affordable production of syn-

thetic diamond with precise control of bulk characteristics. However, as the designs of

the nanoparticle bioprobes become more complex, and the particle shape and surface

chemistry change, the in-vivo behaviour (such as targeting, circulation time, and bio-

compatibility) can alter. Non-invasive detection of the nanoparticles is key to providing

information about their location in a fast and cost effective manner.

Towards this goal the unique optical properties of the NV centre in diamond have

allowed for optical tracking of single nanodiamonds in inter-cellular environments [26].

These properties also provide a means of detecting magnetic fields on the nanoscale

using methods pioneered in controlling quantum devices [27–33]. However, beyond

luminescence-based techniques, approaches to non-invasively detect and image diamond

nanoparticles in-vivo have, to date, been lacking.

In general, fluorescent markers and optical imaging have not found wide use in

in-vivo environments due to photo-bleaching and stability concerns. Other non-invasive

imaging techniques such as computer assisted tomography (CT), and positron emission

tomography (PET) have been used for nanoparticle imaging [34, 35], however, these

methods involve ionizing radiation and there are toxicity concerns about long term use

of these techniques.

Magnetic resonance imaging (MRI) is not well suited to detecting nuclei other

than hydrogen due to its low sensitivity. Although in principle any nucleus with an

unpaired spin can be detected in an MRI scan, the low concentrations, low gyromagnetic

ratios and often low natural abundance of a spinful isotope, mean that the signal is

not sufficient to be seen in an MRI scan. This thesis presents work showing how this

limitation can be overcome by using hyperpolarization techniques, which can boost

signals by 10,000 times [36]. With this increased signal, nanoparticles can be detected

in an MRI scan [37,38].

This new imaging modality is now coming into practice with commercial sterile

hyperpolarizers being developed for in-vivo hyperpolarized MRI studies. Molecules

are polarized in a polarizer (the nuclear magnetic resonance (NMR) signal is boosted

through a number of hyperpolarization techniques such as dynamic nuclear polarization
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(DNP), parahydrogen induced polarization (PHIP) or optical pumping), transferred out

of the polarizer, injected into the patient or animal, allowed to circulate and accumulate

at the targeted areas and then imaged with an MRI scan. Clinical applications for

hyperpolarized MRI have developed, including hyperpolarized noble gases for MRI

lung imaging [39], and hyperpolarized metabolites (such as [1-13C]pyruvate) for disease

diagnosis [40], or assessment of cell function [41] and tumor treatments [37, 42]. The

success of these techniques have led to the first human trials [43].

Both these examples involve imaging processes invisible to conventional MRI,

and while they highlight the improvements that hyperpolarized molecules can make,

there is a limitation. The hyperpolarized nuclear state does not exist indefinitely. It

only exists for the spin lattice T1 relaxation time of the material, which, for the liquid

metabolites mentioned, is typically T1 < 60 s [44]. This limits hyperpolarized liquids

to imaging processes that occur on short time scales.

Solid materials have much longer T1 times, and nanoparticles with bulk char-

acteristics can have long relaxation times, while being small enough to be introduced

into the human body. This idea has been demonstrated using hyperpolarized silicon

nanoparticles to produce real-time MRI images of mice with imaging time frames of

half an hour [38,45]

This thesis presents work towards extending the capabilities of ND as a thera-

nostic platform with imaging through hyperpolarized MRI. Bulk, high-purity diamond

can exhibit 13C T1 times of many hours [46] and the challenge therefore is to maintain

these long spin lifetimes even when diamond is produced in nanoparticle form and in

sufficient quantities to be of clinical relevance. The natural defects in diamond provide

free electrons which can be used for hyperpolarization [47–52]. Of particular interest

in the context of this thesis are the applications of DNP hyperpolarization techniques

to nanodiamonds.

1.1 Outline of this thesis

This thesis details a new type of MRI contrast agent based on 13C in nanodiamond.

The imaging modality encompasses no ionizing radiation, with long imaging windows

from long T1 relaxation times of solids.

Nanodiamonds have been chosen for this work as they are non-toxic and can be
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biofunctionalized. Nanodiamonds are readily available and easy to produce. They have

promising bulk nuclear spin properties leading to long T1 relaxation times, as well as a

large concentration of electronic defects which can be used for hyperpolarization. Their

configurable material properties allow for both tailoring of electron and 13C nuclear

spins through the material growth process.

Tailoring NDs as a new hyperpolarized bioprobe requires a detailed understanding

of particle size effects, the structure of internal crystal defects, contaminants and spin-

relaxation channels that arise from the nanoparticle surface. Spin dynamics in the core

and the surface of the NDs are examined using hyperpolarized states to resolve new

phenomena associated with defects in this versatile material system.

• Chapter 2 outlines basic NMR theory, describing precessing spins in a magnetic

field, how these translate to a macroscopic magnetization, and relaxation path-

ways. Experimental NMR techniques and pulse sequences which are implemented

in this thesis are described.

• Chapter 3 explains hyperpolarization techniques with specific focus on methods

that are used for hyperpolarizing diamonds. Dynamic nuclear polarization is

explained in more detail, with information given on electron-nuclear interactions,

the Overhauser effect, the solid effect, thermal mixing and the cross effect.

• Chapter 4 details the experimental setups used for W-band hyperpolarization

at f ∼ 80 GHz, for X-band hyperpolarization at f ∼ 9 GHz, for polarization

transfer experiments, and brute force hyperpolarization in a dilution refrigerator.

• Chapter 5 gives a brief introduction to the physical characteristics of diamonds,

with focus on electronic defects and impurities. Methods for producing synthetic

diamonds are described. Characterization of various nanodiamonds are detailed,

including SEM images and size distributions, room temperature 13C spin-lattice

relaxation measurements, MAS NMR studies, ESR spectra and Raman studies.

Comparisons are made between different diamond types.

• Chapter 6 details the hyperpolarization experiments performed on 13C in ND

at W-band frequencies at T = 4 K, 77 K and 300 K. Polarization build up times,

polarization decay times, enhancements and spin-spin interactions of hyperpo-

larized nanodiamonds for applications as a magnetic resonance contrast agent
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are examined. ND hyperpolarization in the presence of water simulating in-vivo

environments is also explored.

• Chapter 7 describes experiments performed at X-band frequencies to hyperpo-

larize nanodiamond surfaces. We use intrinsic free electrons on the ND surface

to hyperpolarize molecules adsorbed onto ND, detailing 1H polarization build up,

enhancement, and T1 spin-lattice relaxation. In addition ND is used as a contrast

agent to modify the T1 relaxation time of water based on ND concentration.

• Chapter 8 provides concluding remarks, and the first demonstration of hyper-

polarized 13C ND MRI in a phantom.
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2

Background NMR theory and

NMR experimental methods

Nuclear magnetic resonance (NMR) utilizes the phenomenon of the response of atomic

nuclei to the application of an external magnetic field. NMR was first described by

Rabi in 1938 [53] and extended and refined by Bloch, Bloembergen, Pound and Purcell

[54–57]. NMR was further developed using magnetic field gradients to provide spatial

resolution and 2D images, leading to MRI [58–62].

NMR has now become an important tool in chemistry, biochemistry, medicine

and physics, utilized for example in material characterization, spectroscopy, chemical

structure determination, and disease diagnosis. In this thesis NMR techniques are used

to probe the spin interactions between electron and nuclear spins and to measure the

nuclear magnetization.

This chapter gives a brief description of NMR theory, giving a general treatment

of spins in a magnetic field and details of relaxation mechanisms for nuclei in magnetic

environments. The sections follow the theory provided by Slichter [63], Abragam [64],

Keeler [65], and Corvaja [66]. Experimental measurements of NMR signals are de-

scribed, including pulse sequences for T1 and T2 measurements.
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2.1 Quantum mechanical treatment of a single spin in a

magnetic field

Atomic nucleons and electrons have a fundamental property called spin, described by

the spin quantum number S. Electrons are spin-1/2 particles (S = 1/2) while nuclei

can either have integer or half-integer values of spin. A nucleus has a spin angular

momentum of S > 0 when the number of protons, neutrons, or both is odd. The

associated quantum number, m, can take values between −S and +S in integer steps,

resulting in 2S + 1 allowed values. In a magnetic field B along the z-direction, taken

to be B0, the spin angular momentum gives rise to a magnetic moment, µz, given by:

µz = γSz = γm~ (2.1)

where γ is a constant of proportionality, known as the gyromagnetic ratio and ~ is

Planck’s constant divided by 2π. The gyromagnetic ratios of some commonly used

nuclei in NMR, along with their abundance, are summarized in Table 2.1.

Nucleus Gyromagnetic ratio [MHz/T] Abundance [%] Spin

1H 42.576 99.9885 1/2

13C 10.705 1.07 1/2

129Xe 11.777 26.44 1/2

3He 32.434 0.000137 1/2

15N -4.316 0.367 1/2

17O 5.772 0.038 5/2

19F 40.052 100 1/2

29Si -8.465 4.6832 1/2

31P 17.235 100 1/2

e 28024.95 100 1/2

Table 2.1: Gyromagnetic ratios. Gyromagnetic ratios of nuclei typically used in NMR

experiments.
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2.1 Quantum mechanical treatment of a single spin in a magnetic field

A magnetic moment in a magnetic field produces an interaction energy, described

by the Hamiltonian

Ĥ = −
→
µ •

→
B= −γB0Sz (2.2)

with eigenvalues

Em = −γ~B0m (2.3)

This splitting in energy levels is known as Zeeman splitting and is shown in

Fig. 2.1 for a spin-1/2 system. The spacing between consecutive energy levels is given

by

∆E = ~ω = γ~B0 (2.4)

leading to the condition required for resonance:

ω = γB0 (2.5)

where ω is known as the resonance frequency, or the Larmor frequency.

Similarly, for electrons in a magnetic field, the magnetic moment is given by:

µz =
geµB
~

Sz (2.6)

where ge is the g-factor and µB is the Bohr magnetron. For a free electron
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Figure 2.1: Energy level schematic for a spin-1/2 particle in a magnetic field.

The lower energy state has an energy of E = −γ~B0/2 and the higher energy state has

an energy of E = γ~B0/2. The energy level splitting is given by ∆E = ~ω = γ~B0. This

frequency, ω, is known as the resonance frequency and radiation at this frequency can be

used to drive transitions between energy levels.

ge = 2.0023, however this changes depending on the chemical environment.

In much the same way as for nuclear spins, electron spins are polarized by a static

magnetic field leading to a Zeeman splitting, with energy separation

∆E = gµBB0 (2.7)

2.2 Boltzmann polarization

NMR experiments are performed on bulk samples and a macroscopic number of spins

are measured. Each nuclear spin interacts with the magnetic field and exists in a

Zeeman energy state. A macroscopic magnetization (M) for a spin-1/2 system, is

created by the difference in the number of spins in the spin up and spin down states.

The net magnetization is given by

→
M=

∑ →
µup +

∑ →
µdown (2.8)
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2.2 Boltzmann polarization

where µup and µdown are the magnetic moments parallel and anti-parallel to the

external magnetic field respectively. At thermal equilibrium, the populations of these

energy levels obey Boltzmann statistics, and the population in each state is given by

Ni =
N

Z
gie
−Ei/kBT (2.9)

where Ni is the number of particles in the state with energy Ei, gi is the degener-

acy of the energy level, kB is Boltzmann’s constant, T is the temperature, N is the total

number of particles N =
∑

iNi, and Z is the partition function Z =
∑

i gie
−Ei/kBT .

The polarization, P , of the system is proportional to the magnetization and is

defined as the population difference between the upper (N+) and lower (N−) energy

levels. The polarization is given by

P =
N− −N+

N+ +N−
(2.10)

A spin-1/2 system, with no degeneracy has a polarization given by

P = tanh

(
γ~B0

2kBT

)
(2.11)

The polarization is plotted for varying magnetic fields and temperatures for an

electron, a 13C nucleus and 1H nucleus, see Fig. 2.2. We note polarization increases

with increasing magnetic field (as the Zeeman splitting increases, additional thermal

energy is required to populate the higher energy levels) and polarization increases with

decreasing temperature (there is less thermal energy to excite the particles to the

higher energy levels). The electron spin polarization is much larger than the nuclear

spin polarization, due to the difference in gyromagnetic ratios.

A system that is driven out of thermal equilibrium is typically called hyperpo-

larized, and can have polarizations greater or less than the polarization at thermal

equilibrium.
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Figure 2.2: Boltzmann polarization as a function of magnetic field and tem-

perature. Boltzmann polarization as a function of a) temperature (at B = 3 T) and

b) magnetic field (at T = 300 K) for an electron (blue), a 13C nucleus (green) and a
1H nucleus (red). The polarization increases with decreasing temperature and increasing

magnetic field. The electron has a much larger polarization than the nuclear spins due to

its larger gyromagnetic ratio.
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P = 46 %
E = ~ 84 GHz E = ~ 32 MHz

P = 0.02%

}
electron 13C nucleus

T = 4 K, B = 3 T

}E

E

B0

Figure 2.3: Schematic of a two level energy diagram for an electron spin and

a 13C nuclear spin. The electron spin system is highly polarized while the nuclear

system remains relatively unpolarized at B = 3 T and T = 4 K, conditions typically used

for hyperpolarization. The spin excess, which is proportional to the magnetization, is

highlighted in yellow. The Zeeman energy splitting (E) and polarization (P ) are shown.

A schematic of energy level diagrams for an electron and a 13C nuclear spin

at B = 3 T and T = 4 K (typical conditions under which many hyperpolarization

experiments are performed), with exaggerated populations is shown in Fig. 2.3. The

spin excess which leads to the magnetization is highlighted. The precession of the net

magnetization is the quantity which is detected in an NMR experiment using pulse

sequences and induction coils.

2.3 Rotating frame treatment of spin in a time dependent

magnetic field

The motion of a spin in a magnetic field can also be described in a semi-classical

framework. An external magnetic field B produces a torque on the magnetic momentµ,

given by µ×B. The torque is equated with the change in angular momentum:

dµ

dt
= µ× (γB) (2.12)
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Figure 2.4: Precession of a magnetic moment in a magnetic field. a) Precession

of a magnetic moment (µ) about a magnetic field (B0) applied in the z-direction. The

precession occurs at the resonance frequency ω, governed by the gyromagnetic ratio and

applied field, ω = γB0. b) Precession in the rotating frame about an effective magnetic

field Beff = (ẑ(B0−ω/γ)+ x̂B1). The precession occurs at a frequency of ωeff = γBeff in

a fixed cone about Beff . c) When the resonance condition is met and ω = γB0, precession

occurs in the y′-z′ plane about B1 at a frequency ω1 = γB1.

This equation holds for both time dependent and static magnetic fields. In the

case of a static magnetic field, B0, the magnetic moment precesses at a fixed angle

about B0, see Fig. 2.4a.

A useful approach to studying time dependent applied magnetic fields is to con-

sider the spin system in a frame rotating about the z-axis at an angular velocity Ω.

The torque is then given by

dµ

dt
= µ× (γB + Ω) (2.13)

If this frame in chosen to rotate at the Larmor frequency (Ω = -γB0) then dµ/dt

= 0, and the angular momentum appears static in this frame.

An alternating magnetic field (B1) perpendicular to the static field (considering
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2.3 Rotating frame treatment of spin in a time dependent magnetic field

only components rotating in the direction of the magnetic moments) can be described

as

→
B1= B1(x̂cosωzt+ ŷsinωzt) (2.14)

Applying this field (B1) in conjunction with the static field (B0), gives an equation

of motion for the magnetic moment

dµ

dt
= µ× γ(B0 +B1(t)) (2.15)

In a frame rotating at Ω = ωz about the z-direction (denoted by x′,y′,z′), B1(t)

is static. Additional, near resonance ωz + γB0
∼= 0. Applying these two conditions, we

obtain

dµ

dt
= µ× (ẑ(ωz + γB0) + x̂γB1) = µ× γBeff (2.16)

where Beff = (ẑ(B0 − ω/γ) + x̂B1) (2.17)

The magnetic moment precesses in a cone of fixed angle about Beff (which ap-

pears as a static applied field in the rotating frame) at a frequency ωeff = γBeff , see

Fig 2.4b.

If the resonance condition is met and ω = γB0, then Beff = x̂B1 resulting in

precession in the y′-z′ plane about B1 at a frequency ω1 = γB1, see Fig. 2.4c.
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Figure 2.5: Schematic of NMR tip angles. a) When a π/2 pulse is applied the

magnetization (M) is rotated by 90◦ from the z-direction to the y-direction. b) When

a π pulse is applied the magnetization is flipped (rotated from the z direction to the -z

direction). c) Arbitrary pulse lengths result in a tip angle of θ, with magnetization left in

both the y and z directions.

2.4 NMR pulses and signal detection

If the magnetic field B1 is applied on resonance for a time tw (in the form of a microwave

pulse), the precession of the magnetization in the y′-z′ plane results in a tip by an angle θ

given by

θ = γB1tw (2.18)

When the microwaves are applied for a time and amplitude such that θ = π/2,

the pulse is known as a 90◦ pulse or a π/2 pulse, and the magnetic moment is transferred

from the z-direction to the y-direction, see Fig. 2.5a. When the microwaves are applied

for a time and amplitude such that θ = π the microwave pulse is known as a 180◦ pulse

or a π pulse and the magnetic moment is flipped (transferred from the z direction to

the -z direction), see Fig. 2.5b. Arbitrary pulse lengths result in a tip angle of θ, leaving

some magnetization in both the y and z directions, see Fig. 2.5c.

At the end of the pulse, when B1 is turned off, the magnetic moment precesses
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Figure 2.6: Free induction decay and Fourier transform of an NMR signal.

a) The free induction decay (FID) of 1H spins in an 50:50 H2O:D2O sample at B= 7 T.

The detected NMR signal is mixed with a carrier wave at the same frequency as the applied

microwave B1 resulting in real (red) and imaginary (green) (carrier offset by 90◦) signals.

b) The Fourier transform of the FID shows an NMR peak at the offset frequency from

resonance.

about B0 in the lab frame at a frequency ω = γB0 . This precession results in a flux

through a coil (placed around the spins in the x-y plane), and the resulting electromotive

force (EMF) can be detected. This EMF is called the free induction decay (FID), see

Fig. 2.6a.

The detected NMR signal is mixed with a carrier wave at the same frequency as

the applied microwave B1 resulting in real and imaginary (carrier offset by 90◦) signals.

A Fourier transform (FT) is performed resulting in peaks at the offset frequency from

resonance, see Fig. 2.6b.

The amplitude of the NMR signal depends upon the angle through which the

magnetization has been tipped. A maximum signal is detected after a π/2 pulse, when

the magnetization is in the x-y plane, and a minimum signal is detected after a π pulse.

The detected magnetization, My for example, follows a sinusoidal shape with pulse

time, see Fig 2.7. These oscillations, known as Rabi oscillations, occur at a frequency:

Ωr =
√
ω2
1 + ∆2 (2.19)
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Figure 2.7: NMR Rabi oscillations. a) Rabi oscillations measured on 1H spins in olive

oil at B = 450 mT. The absolute value of the FT NMR signal amplitude (colour scale)

is shown as a function of pulse time and amplitude as a percentage. A maximum signal

is detected after a π/2 pulse when the magnetization is in the x-y plane, and a minimum

signal is detected after a π pulse. b) Cross sections of the colour plot, showing the decrease

in Rabi frequency with decreasing power.
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2.5 Spin-lattice relaxation

where ∆ is the detuning (the offset from resonance frequency), and ω1 is the Rabi

frequency at resonance. The Rabi oscillation frequency increases with pulse amplitude

and detuning.

The induced EMF does not exist indefinitely. The signal decays through two

processes, spin-lattice relaxation (T1 decay) caused by spins returning to thermal equi-

librium after an applied pulse, and spin-spin relaxation (T2 decay) caused by dephasing.

2.5 Spin-lattice relaxation

The spin-lattice relaxation time (T1) is the time constant for the nuclear spin system

to return to thermal equilibrium following a perturbation. The T1 relaxation time can

range between T1 ∼ ms for some liquids, such as oil, to T1 ∼ days for some bulk solids,

such as diamond. In general the magnetization returns to thermal equilibrium following

an exponential curve with time constant T1.

The application of an alternating electromagnetic field at the resonance frequency

will cause the number of particles in each energy level to change. However, only con-

sidering the applied microwave field and the spins in a static field is not enough to

completely describe the system. The nuclei transfer energy and undergo spin flips with

an additional reservoir coupled to the nuclei. In this case, it is the lattice and it is able

to provide and absorb energy in the form of phonons.

Assuming that the lattice is a two level system with the same energy levels as

the nucleus, a conservation of energy argument can be used to explain the allowed

transitions. A transition from the lower to the higher energy level of the nucleus, with

the spin absorbing energy E, occurs with a transition of the lattice from the higher to

the lower energy state via a phonon of energy E and vice versa. Transitions where both

the nucleus and the lattice move from the lower to the higher energy state and vice

versa are forbidden. A schematic of the allowed and forbidden transitions are shown in

Fig. 2.8.

A rate equation for the population difference after a perturbation for a coupled

lattice and nuclear systems is given by:

dn

dt
= N(W↓ −W↑)− n(W↓ +W↑) =

n0 − n
T1

(2.20)
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Figure 2.8: Allowed and forbidden transitions for a nucleus coupled with a

lattice. The nucleus moves between spin up and spin down states emitting or absorbing

energy, which is absorbed or supplied by the lattice as a phonon. a, b) Allowed transitions,

and c, d) forbidden transitions.

with n0 = N
W↓ −W↑
W↓ +W↑

and
1

T1
= W↓ +W↑ (2.21)

where n is the population difference between the two energy states, N is the total

number of spins, W↓ is the probability that a transition from N− to N+ is induced and

W↑ is the probability that a transition from N+ to N− is induced.

The magnetization is proportional to n, as Mz = γ~n/2, which gives us

dMz

dt
=
M0 −Mz

T1
(2.22)

with a solution given by

Mz = M0 +Ae−t/T1 (2.23)
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Figure 2.9: Spin-lattice T1 build up for a sample placed in a magnetic field.

a) Initially there is no net magnetization. b) After a certain time the magnetization along

the z-axis begins to build up. c) When t = T1, 2/3 of the equilibrium magnetization has

built up. d) When t > 5T1 all the magnetization has aligned along the z-axis and the

magnetization has saturated.

where M0 is the thermal equilibrium magnetization, A is a constant and T1 is the

characteristic time associated with the approach to thermal equilibrium. A schematic

of the T1 build up for a macroscopic sample that is placed in an external magnetic field

is shown in Fig. 2.9.

The main source of relaxation for liquids and gasses comes from the tumbling of

molecules and bond rotations, which typically have an energy similar to the Larmor

frequency. Fluctuations of fixed paramagnetic impurities within a solid lattice are the

main source of decay for solids such as ND.

For a system of spins with a homogenous environment a single characteristic time

scale (T1) exists for the system. In a system with spins in inhomogeneous environments,

the T1 of the bulk sample is an average over all the T1 relaxation times in the system. If

there are multiple distinct baths, the return to thermal equilibrium can be described as

a sum of the individual exponential characteristic times for each spin bath, for example

we would expect bi-exponential behavior for a nanoparticle with a surface and a core

structure.

2.6 Measuring T1

Several techniques exist to measure the T1 relaxation time of a material. The two

most common are to invert the magnetization and observe how it returns to thermal
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Figure 2.10: An inversion recovery pulse sequence to measure T1. An NMR

sample is placed in a magnetic field and the spins are allowed to reach thermal equilibrium

(∼ 5T1). A π pulse is applied to invert the magnetization. After a time τ , a π/2 pulse

is applied to tip the magnetization into the x-y plane for detection. The magnetization

follows a build up curve given by Equation 2.24.

equilibrium using an inversion recovery sequence, or to destroy all magnetization and

observe it rise to thermal equilibrium using a saturation recovery pulse sequence.

For inversion recovery the saturated magnetization is flipped with a π pulse and

the return to thermal equilibrium is monitored using a π/2 pulse, after a time τ , to tip

the built up magnetization into the x-y plane for detection, see Fig. 2.10. The built up

magnetization returns from −M0 to +M0 following the equation:

M = M0(1− 2e−τ/T1) (2.24)

This pulse sequence becomes impractical when measuring samples with long

T1 relaxation times as t ∼ 5 T1 must elapse for the system to return to thermal equi-

librium before the magnetization can be flipped again.

For saturation recovery, initial magnetization is destroyed with n x π/2 pulses

(where n is the number of pulses) and the return to thermal equilibrium is monitored

using a π/2 pulse (after a time τ to tip the magnetization into the x-y plane for

detection), see Fig. 2.11. The π/2 saturation pulses are applied at a rate longer than

T∗2 (the time constant of the FID), such that complete dephasing of the spins has

occurred, and much less than T1, such that no polarization build up occurs. The build

up magnetization returns from 0 to M0 following the equation:
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Figure 2.11: A saturation recovery pulse sequence used to measure T1. All

magnetization is destroyed by applying n x π/2. After a time τ , a π/2 pulse is applied to

tip the built up magnetization into the x-y plane for detection. The magnetization follows

a build up curve given by Equation 2.25.
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Figure 2.12: A small tip angle pulse sequence used to measure T1. All magnetiza-

tion is destroyed with n x π/2 pulses. After a time τ , a small tip angle (α) pulse is applied

to tip some of the built up magnetization (M0cosα) into the x-y plane for detection. The

rest (M0sinα) of the magnetization and any more that is built up due to T1 can be detected

in successive pulses. The magnetization follows a build up curve given by Equation 2.26.

M = M0(1− e−τ/T1) (2.25)

In this measurement scheme successive data points or averages can be taken

without waiting for the system to reach thermal equilibrium ∼ 5 T1.

By replacing the readout π/2 pulse with a smaller tip angle (α) pulse, only a

small amount of magnetization tips into the x-y plane (M0cosα) and the rest (M0sinα)

can still be detected with successive pulses, see Fig. 2.12. After the initial saturation m

x α pulses are applied to tip a small amount of the magnetization into the x-y plane for

detection. The magnetization returns to thermal equilibrium following the equation:
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M = M0(1− cos(α)m−1e−t/T1) (2.26)

where m is the pulse number and t = τm. In this sequence the pulse length must

be small and the time between pulses must be sufficiently long such that only a small

amount of polarization is lost due to the measurement.

2.7 Spin-spin relaxation

The spin-spin relaxation time (T2) is the characteristic time for the transverse com-

ponent of the magnetization to dephase and can be thought of as the coherence time

of the spins. This decay is caused by inhomogeneities in the magnetic field, both time

dependent and time independent.

Each nuclear spin experiences a local field which is a combination of the applied

fields and the dipole-dipole fields caused by surrounding spins. Although these fields

average to zero over the bulk sample, variations in the local field lead to differences

in the precession frequency of the nuclei. The result is a fanning out, or dephasing,

of the moments in the x-y plane (assuming applied fields are along the z-axis) and

a reduction of the transverse magnetization vector, see Fig. 2.13. The decay of the

transverse magnetization, given by
→
M⊥= Mxx̂+Myŷ, generally follows an exponential

curve with time constant T2. In the rotating frame:

d

dt

→
M⊥= − 1

T2

→
M⊥ (2.27)

with solution

M⊥(t) = M⊥(0)e−t/T2 (2.28)

where M⊥(0) is the initial magnetization.

Theoretically T2 ≤ 2 T1, however in general spin-spin relaxation is faster than
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Figure 2.13: T2 dephasing for an ensemble of spins. a) After a π/2 pulse to tip

the magnetization, the spins precess in the x-y plane. b) Variation in local magnetic

field experienced by individual spins lead to differences in the precession frequency. This

results in the magnetic moments fanning out in the x-y plane, reducing the transverse

magnetization vector. c) The dephasing continues until there is no magnetization left in

the x-y plane.

spin-lattice relaxation. Typically liquids have the longest T2 relaxation times, rang-

ing between milliseconds and seconds due to motional narrowing. Amorphous and

crystalline solids generally have T2 relaxation times in the range of a few milliseconds.

Experimentally, the largest contribution to dephasing is from static magnetic field

inhomogeneities in B0 resulting in an FID with an envelope given by a time constant T∗2.

Typically T∗2 << T2.

The loss of transverse magnetization due to static field inhomogeneities can be

recovered using spin echo pulse sequences, see Fig. 2.14. After the magnetic moments

have dephased, a πx pulse (a π pulse about the x-axis) is applied at time τ , flipping

the spins in the x-y plane. The spins which precessed faster (and were in front of the

net magnetization vector) are now behind the net magnetization vector and vice versa.

These magnetic moments refocus after time τ after the π pulse (known as the echo time).

Pulse echos can only be used to refocus dephasing processes that occur on a time scale

longer than the echo time. Intrinsic dephasing due to surrounding spins typically occurs

on a faster time scale than the echo time and can not be refocused. The refocusing

sequence is known as a Hahn echo [67]. Additional π pulses can also be used to refocus

the magnetization after it has dephased again until the intrinsic dephasing time of the

material (T2) is obtained. These trains of π pulses will additionally eliminate any time-

dependent dephasing effects occurring on a time scale slower than 1/τ . This sequence
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Figure 2.14: Spin-spin T2 dephasing for an ensemble of spins using a Hahn

echo. a) A π/2 pulse tips the magnetization (red arrow), and the spins precess in the x-y

plane. b) Dephasing of the magnetization occurs due to local magnetic field variations,

leading to differences in the precession frequency of individual spins (grey arrows). c) The

dephasing due to time static field variation can be refocused. A π pulse flips the spins

in the x-y plane, and spins which were precessing faster are now behind spins that were

precessing slower and vice versa. d) A refocusing of the magnetic moment after a time τ

(the time between the π/2 and the π pulse) occurs. e) The magnetic moments continue

to fan out in the x-y plane, leading to a loss of magnetization. Additional π pulses can

be used to continue refocusing the dephased magnetization, extending the coherence time

from T∗2 to T2. Loss of magnetization due to time dependent fluctuations in the magnetic

field, such as from intrinsic spins in the sample, can not be refocused. f) The dephasing

continues until there is no magnetization left in the x-y plane.
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Figure 2.15: A Hahn echo pulse sequence used to measure T2. After the system

has reached thermal equilibrium a π/2 pulse tips the magnetization into the x-y plane. The

dephasing of the spins can be refocused using a π pulse applied after a time period τ , which

results in an echo at a time τ after the π pulse. The decay of transverse magnetization

follows a curve given by Equation 2.29.

is known as a Carr-Purcell sequence [68] and adding an additional phase to counter

pulse length errors results in a Carr-Purcell-Mieboom-Gill (CPMG) sequence [69].

2.8 Measuring T2

For a Hahn echo sequence, an NMR sample is placed in a strong magnetic field and a

π/2 pulse tips the magnetization into the x-y plane. After waiting a time τ , a π pulse

is applied to reverse the magnetization in the x-y plane, which leads to a refocused

signal at a time τ after the π pulse. By varying τ , the decay of the echo peak can be

measured, see Fig. 2.15. The transverse magnetization decays from M0 to 0 following:

M = M0e
−τ/T2 (2.29)

For a CPMG sequence, additional π pulses are applied at intervals of 2τ to refocus

the magnetization, canceling time independent dephasing, see Fig.2.16. The transverse

magnetization decays from M0 to 0 following Equation 2.29.

A CPMG experiment can result in a shorter experimental time than Hahn echo,

as all the echos can be measured in one experiment, however care must be taken to

ensure no accumulation of pulse time errors.
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Figure 2.16: A CPMG sequence used to measure T2. After the magnetization has

been tipped into the x-y plane using a π/2 pulse, a π pulse (at time τ) can be used to refocus

the dephasing due to static field inhomogeneities (at a time τ after the π pulse). Additional

π pulses can be used to refocus the magnetization after it dephases again. Applying the

π pulses along the y axis stops the accumulation in pulse time errors. The decay of the

transverse magnetization follows a curve given by Equation 2.29.

2.9 Summary

In this thesis the NMR techniques outlined in this chapter are used to detect the NMR

signals (and hence polarizations) from 13C and 1H nuclear spins. The spin dynamics of

the systems are probed by measuring T1 and T2 relaxation times. Hyperpolarization

techniques boost the nuclear polarization and result in larger NMR signals.
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3

Hyperpolarization theory

Hyperpolarization is a term encompassing techniques that move a spin system out of

Boltzmann thermal equilibrium. Experimentally, in NMR, hyperpolarization is used to

increase the polarization of nuclear spins, increasing the spin excess and hence the signal

to noise ratio. This allows for measurement of previously undetectable NMR signals,

shorter experimental times, and structural determination of molecules. Outside NMR

hyperpolarization has been used for quantum computation applications, such as state

preparation and extension of coherence times in highly polarized states, and in high

energy physics for preparation of targets, to name two examples.

This chapter gives a brief description of hyperpolarization techniques, with a fo-

cus on methods for polarizing diamonds. More details are given on DNP as the chosen

method of hyperpolarization in this thesis, with brief descriptions of the Overhauser ef-

fect, solid effect, cross effect, and thermal mixing. This chapter follows theory presented

by Wenckebach [70], Abragam [71], Goldman [72,73] and Maly [74].
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3.1 Hyperpolarization techniques

Several methods exist to create a hyperpolarized state. The most common are:

• CIDNP: In CIDNP (chemically induced dynamic nuclear polarization), polariza-

tion transfer is mediated by a chemical reaction. The most well known method

is PHIP (parahydrogen induced polarization) where spin order in parahydrogen

is transferred to other nuclear species (for example 13C) after a chemical reaction

with the hydrogen gas [75]. Another example is photo-CIDNP (photochemical

induced dynamic nuclear polarization), such as in chloroplasts [76].

• Brute force polarization: High magnetic fields and low temperatures are used to

achieve a high Boltzmann polarization in the nuclear spin system. Removal of the

sample to lower fields and higher temperatures results in a boosted NMR signal,

compared to the new thermal equilibrium. The system is considered hyperpolar-

ized until it re-equilibrates.

• Optical pumping: Laser light is used to move electrons from one energy state in an

atom or molecule to another, creating a system out of thermal equilibrium. Opti-

cal pumping has found use in quantum science, where electrons have been moved

to a well defined quantum state, such as a single hyperfine sublevel. An example is

in NV centres, where close to 100% electron polarization can be obtained [77,78].

Another common method is SEOP (spin exchange optical pumping) where cir-

cularly polarized light excites atoms in an alkali metal (such as rubidium) and

the angular momentum can be transferred to nuclear spins in noble gasses such

as 3He and 129Xe through collisions [79]. Hyperpolarized noble gases have found

use in hyperpolarized MRI lung imaging [39].

• DNP: In DNP (dynamic nuclear polarization) the much larger electron spin po-

larization is transferred to the nuclear spins through hyperfine interactions using

microwave radiation. DNP can occur through the solid effect, the cross effect,

thermal mixing and the Overhauser effect. Further explanation of these mecha-

nisms follows.

• Hartmann-Hahn polarization: Spin polarization is transferred from one spin

species to another through a spin locking process. Effective polarization occurs
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when the Hartmann-Hahn condition is met and the two spin species are driven

to precess at the same frequency γ1B1 = γ2B2, where B is the driving microwave

field, and γ is the gyromagnetic ratio of the spin species. Polarization can be

transferred between nuclear species (known as cross polarization), for example

between 1H and 13C, giving an enhancement of γH/γC ∼ 4 [80–82]. Polariza-

tion can also be transferred between electron and nuclear spins, however the

Hartmann-Hahn condition is more difficult to satisfy in an electron-nuclear sys-

tem [83]. Another example is NOVEL (nuclear spin orientation via electron-spin

locking) where electron magnetization can be transferred to the nuclear system

through dipolar interactions if the condition γeB1 = γB0 is met, where B0 is the

external magnetic field, B1 is the spin locking pulse, and γe and γ are the electron

and nuclear gyromagnetic ratios respectively [84].

• Quantum dots: The architecture used to define a quantum dot can be used to

boost spin polarizations, for example gate voltages are able to tune the nuclear

spin polarization [85], or spin blockade and RF radiation can be used to polarize

the nuclear spins surrounding the quantum dots [86,87].

Signal enhancements can also be obtained by using a combination of hyperpo-

larization techniques, which can save experimental time, boost signal enhancements

further and polarize systems that would otherwise be impossible to polarize using only

one technique. For example instead of directly polarizing 13C using DNP (which can

take a long time due to long 13C T1 relaxation times), 1H in the same molecule can

be polarized, and cross polarization can be used to transfer the 1H polarization to the

13C, saving on experimental time [88]. Another example involves polarizing liquids

indirectly using a combination of optical pumping to polarize a gas, and Overhauser

cross relaxation to transfer this polarization to the liquid [89].

3.2 Hyperpolarization in diamond

The unique spin properties of diamond, stemming from the many different paramagnetic

impurities within the diamond crystalline lattice, see Section 5.1.2, have led to the

development of many methods to hyperpolarize diamond.

A number of hyperpolarization techniques rely on the NV centre as a free radical
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for hyperpolarization. A laser preferentially pumps the electron spin to one sublevel

of the spin triplet ground state, leaving a highly polarized electron system. Several

techniques exist to then transfer this NV polarization to the surrounding nuclear spins.

The fluctuations of the polarized NV centre can induce nuclear transitions in a pro-

cess where the nuclear spin bath equilibrates with the cooled dipolar NV centre spin

bath [47]. The polarized NV centre can be driven optically at the nuclear Larmor

frequency, leading to Hartmann-Hahn polarization transfer between the NV and nu-

clear spins around the NV centre [83]. At the NV centre level anti-crossings (LACs)

polarization can be transferred through the hyperfine interactions. At the LACs the

electron resonance frequency approaches the nuclear resonance frequency, allowing for

polarization transfer. Nuclear hyperpolarization has been demonstrated at both the

ground state level anti-crossing (GSLAC at B = 100 mT) [90], and in the excited

state level anti-crossing (ESLAC at B = 50 mT) [48, 91]. At other magnetic fields,

the NV spin polarization can be transferred to nuclear spins using microwave radiation

driving flip-flop transitions in a DNP process [50].

Although these techniques, using NV centre polarization, work well for bulk dia-

mond where the NV centre has a well defined orientation with respect to the static and

driving fields, they do not work when polarizing nanodiamonds due to the random NV

orientations. In particular the random orientations lead to large energy variations in the

electron spin levels that make coherent control of the interactions between NV centres

and surrounding spins very inefficient.

Methods resistant to orientation effects have been proposed for hyperpolarization

using NV centres, and could be applied to NDs. A method involving off resonant MW

double resonance schemes, with the integrated solid effect, and adiabatic variations

of the MW frequency has been proposed and should be resistant to NV orientations

[92, 93]. Another method involves small magnetic fields, with incoherent laser-induced

transitions and coherent microwave transitions to drive electron-nuclear states [49].

Other than NV centre hyperpolarization, methods exist which use spin-1/2 de-

fects to polarize diamonds. Bulk diamonds have been hyperpolarized using spin locking

NOVEL techniques driving the P1 centre electronic defects with MW radiation and

transferring polarization from the electron to the nuclear spin [94]. DNP using mi-

crowave radiation to drive forbidden transitions between intrinsic spin-1/2 impurities

and nuclear spins have been used to polarize diamond. The mechanism governing DNP
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Figure 3.1: Schematic of nuclear enhancement using DNP. Electron polarization

is transferred to the nuclear spins leading to a nuclear enhancement (red arrows). Polar-

izations (P ) are shown at T = 4 K, 77 K and 300 K.

was either the solid effect or thermal mixing, depending on the concentration of free

electrons [95–97]. These techniques have been used for applications such as diamond

characterization using NMR spectroscopy [98, 99], and studying methods for diamond

production, eg. diamond films [100]. These techniques have now been extended to

hyperpolarizing detonation ND [52] and HPHT ND [51].

In this thesis we use DNP and brute force for hyperpolarizing nanodiamond.

DNP was chosen because although it is a well understood method of hyperpolarization,

it had yet to be applied in nanoparticle hyperpolarization for medical applications. A

further description of electron nuclear interactions and the DNP mechanisms which

govern polarization transfer is given.

3.3 Electron-nuclear interactions

DNP makes use of high electron spin polarization and hyperfine interactions to transfer

polarization from electron to nuclear spins. Theoretically a maximum enhancement of

ε = γe/γn can be achieved, (ε = 2600 for 13C and ε = 660 for 1H), see Fig. 3.1.
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Figure 3.2: Energy level diagram for coupled electron and nuclear spin systems.

a) Energy level diagram for a 2 spin system - one electron and one nuclear spin, relevant for

solid effect and Overhauser effect hyperpolarization. b) Energy level diagram for a 3 spin

system - two electron and one nuclear spin, relevant for cross effect hyperpolarization.

Electronic transitions (ESR) are shown in green, nuclear transitions (NMR) are shown in

purple and the zero and double quantum transitions are shown in red and blue.

The Hamiltonian governing an interacting electron-nuclear spin system in an

external magnetic field along the z-direction is given by:

H = He +Hn +Hee +Hnn +Hen

= −ωeSz + ωnIz +Hee +Hnn +Hen

(3.1)

The He and Hn terms in the Hamiltonian represent the Zeeman interactions of

the electrons and nuclei respectively, the Hee and Hnn terms govern spin-spin interac-

tions between the electrons and nuclei respectively (leading to spin diffusion), and the

Hen term represents electron and nuclear hyperfine interactions which govern DNP, see

Fig. 3.2.

The hyperfine interaction consists of an isotropic Fermi contact interaction (Hiso
en )
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and an anisotropic dipolar coupling (Hdip
en ):

Hen = H iso
en +Hdip

en (3.2)

The contact hyperfine interaction is a scalar coupling between an electron and

a nucleus. The strength of the coupling, A, is determined by the overlap between the

electron and nuclear wave functions. The Hamiltonian governing this interaction is:

H iso
en = A(

→
S •

→
I )

= A(SxIx + SyIy + SzIz)

= A(
1

2
(S+I− + S−I+) + SzIz)

(3.3)

where S and I are the electron and nuclear spin operators respectively, and

S+ and S− are the electron raising and lowering operators respectively: S+ = Sx + iSy

and S− = Sx − iSy (I+ and I− are the equivalent nuclear operators).

The hyperfine interaction can lead to flip-flop interactions |↑e↓n〉 ←→ |↓e↑n〉,
where electron and nuclear spins are flipped in opposite directions (indicated by the

raising and lowering terms in the Hamiltonian).

Dipolar coupling arises from an interaction between two spins due to their in-

trinsic magnetic dipoles, where the magnetic moment of one spin generates a magnetic

field at the other. The dipolar Hamiltonian for an electron and nucleus is given by:

Hdip
en =

−µ0
4π

γeγn~
r3

(I • S − 3
(I • r)(S • r)

r2
) (3.4)

where r is the distance between the electron and nucleus, µ0 is the vacuum

permeability and I and S are the nuclear and electron spin operators respectively.

Dipolar interactions allow for flip-flip transitions |↑e↑n〉 ←→ |↓e↓n〉, flipping both

electron and nuclear spins at the same time, and flip-flop transitions, |↑e↓n〉 ←→ |↓e↑n〉,
flipping electron and nuclear spins in opposite directions.
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Figure 3.3: Schematic of direct and spin diffusion mediated hyperpolarization.

Schematic of the hyperpolarization and relaxation mechanisms that dominate in a bulk

sample with a dilute paramagnetic spin system. The electron spin is shown in red. Nuclear

spins within a region d have shifted Zeeman energies and do not contribute of an NMR line.

Spins in the region between d and b are directly polarized and relaxed by the paramagnetic

impurities. Spins further away from the impurity are polarized through spin diffusion.

The hyperfine interaction leads to polarization of nuclear spins close to the para-

magnetic impurity. Bulk nuclear polarization is achieved through spin diffusion, which

transfers this polarization to spins further away. Spin diffusion is mediated through

dipolar spin flip-flops of the nuclear spins in energy conserving transitions [101]. Ad-

ditionally when nuclear T1 relaxation is dominated by paramagnetic impurities, spin

diffusion plays a role in the relaxation of nuclear spins far from the impurity, see Fig. 3.3.

In a diamond lattice, spin diffusion is given by [102]:

∂P

∂t
= D∇2P

D =
(rc−c)

2

50T2n

(3.5)

where P is the polarization, D is the diffusion constant, rc−c is the nearest neigh-
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bor distance and T2n is the nuclear decoherence time. For diamond particles the dis-

tance between 13C atoms is rc−c = 0.58 nm [46].

The magnetic field from a paramagnetic impurity shifts the Zeeman energies of

nearby nuclear spins. These spins will not contribute to an NMR line, and spin diffusion

is suppressed. This spin diffusion barrier occurs at the distance at which the field from

the electron is approximately the same as the width of the NMR line [102]

d = (
γe
γc

~γeB0

2kT
)arc−c, a ∼ 1/3− 1/4 (3.6)

In diamond, at B = 2.89 T and T = 300 K, this distance is d ∼ 1.3 nm.

Direct hyperpolarization between the electron and nuclear spins is affective up to

a distance b from the paramagnetic impurity, which depends upon the transition prob-

abilities of the hyperpolarization mechanisms, and Zeeman relaxation [102]. Further

away from the impurity, spin diffusion dominates over paramagnetic impurity mediated

interactions. Typically this distance is a few nm [95].

3.4 DNP mechanisms

DNP encompasses four hyperpolarization mechanisms: the Overhauser effect, the solid

effect, the cross effect and thermal mixing. In each of these, the larger electron polar-

ization is transferred to nuclear polarization using driving microwave radiation.

All four of these DNP mechanisms can play a role when polarizing a solid. The

dominant mechanism governing DNP depends upon both the electron concentration

and the coupling between the electrons. The efficiency of the DNP process depends on

the hyperpolarization mechanism, the gyromagnetic ratios of the electron and nuclear

spins γe and γn respectively, the magnetic field B0, the driving RF field B1, the spin

lattice relaxation times T1e and T1n, spin diffusion, and the number of nuclear spinsNn.

The Overhauser effect was first proposed in 1953 suggesting a mechanism where

the electron spin system is saturated, and electron polarization is transferred to nuclear

polarization through relaxation via hyperfine interactions [103–105]. This mechanism

is used for hyperpolarizing metals and liquids, and is mediated by the rotation and

motion of the free electrons.
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Figure 3.4: ESR linewidths governing DNP in dielectric solids. DNP occurs

via three different mechanisms, depending on the homogeneous linewidth (δ, red) and

inhomogeneous spectral breadth (∆, black). When both linewidths are smaller then the

nuclear Larmor frequency (ωn, purple) hyperpolarization is governed by the solid effect

(δ,∆ < ωn). If the nuclear Larmor frequency is larger than the homogenous linewidth

while smaller than the spectral breadth (δ < ωn < ∆), then hyperpolarization is governed

by the cross effect. If both the homogenous linewidth and spectral breadth are larger

than the nuclear Larmor frequency (ωn < δ,∆), hyperpolarization is governed by thermal

mixing.

The solid effect is a two spin process between an electron and a nucleus. It is

the dominant hyperpolarization mechanism in materials where electron concentrations

are low, and the interaction between electron spins can be neglected. The solid effect

applies in a material with a homogeneous EPR linewidth δ (the linewidth of a single

electron component or orientation), and an inhomogeneous spectral breadth ∆ (the

full width of the entire EPR line) both smaller than the nuclear Larmor frequency ωn

(δ,∆ < ωn) [106–108], see Fig. 3.4 .

Dielectric solids with a high concentration of electron spins and an inhomoge-

neously broadened ESR line are polarized via the cross effect. The cross effect is a

three spin process between two dipolar coupled electrons and one nuclear spin. It is

the dominant hyperpolarization mechanism in a system with a narrow homogeneous

linewidth but an inhomogeneous spectral breadth broader than the Larmor frequency,

(δ < ωn < ∆) [109–114], see Fig. 3.4.

Finally, highly doped dielectric solids are hyperpolarized via thermal mixing.

Thermal mixing makes use of spin temperature theory of the spin reservoirs in the
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3.5 Overhauser effect

material. The theory considers coupling between the electron dipolar and the electron

Zeeman spin baths [115], and the nuclear Zeeman reservoir [116]. Thermal mixing

dominates when the spectral breadth and homogenous linewidth are both larger than

the nuclear Larmor frequency (ωn < δ,∆) [71,97].

The mechanism governing the DNP experiment depends highly upon the elec-

tron system. The radicals can either be exogenous (such as TEMPO added to a urea

solution) or endogenous (for example free electrons in diamond or silicon). Exoge-

nous radicals can be attached to a matrix [117, 118] attached to nanoparticles [119]

or dissolved in a solvent [120]. The most common exogenous radicals used for hyper-

polarization are: trityl, BDPA, TEMPO, BTnE and TOTAPOL. Trityl and BDPA

have three fold symmetry with narrow EPR lines and usually lead to solid effect DNP.

TEMPO is a nitroxide based radical, resulting in cross effect DNP (or thermal mixing

DNP at high concentrations) within solids and Overhauser effect in liquids. BTnE

and TOTAPOL are biradicals and lead to cross effect DNP in solids and Overhauser

effect DNP in liquids. Endogenous radicals can lead to hyperpolarization by any DNP

mechanism.

Further explanations of the DNP mechanism are given in the following sections.

3.5 Overhauser effect

The Overhauser effect makes use of a relaxation process through dipolar and scalar

hyperfine interactions to build up a nuclear polarization, see Fig. 3.5. Overhauser

enhancement is mediated through the free electrons in metals and through molecular

rotations and motion in liquids. This section details Overhauser enhancement in liquids.

Initially, when placed in a magnetic field, the electron spins are polarized, while

the nuclear spin system remains mainly unpolarized, due to the difference in gyromag-

netic ratios and Boltzmann polarization, see Fig. 3.5c.

Driving the system continuously at f = ωe (ESR transition) saturates the electron

spin system, and the electron polarization approaches zero (the number or spin-up elec-

trons approaches the number of spin-down electrons). The combined electron-nuclear

system can relax back via a combination of three transitions: the electronic transition

(ESR), the zero quantum transition (occurring at rate Γ0) and the double quantum

transition (occurring at rate Γ2). If the relaxation is dominated by dipolar interac-
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Figure 3.5: Schematic of the Overhauser effect. a) Energy level diagram, b) en-

hancement and c) schematic of the Overhauser effect for a coupled electron-nuclear spin

system. After saturation of the ESR transition (green arrows), the system can relax via the

zero (blue) or double (red) quantum transitions (at rates Γ0 and Γ2 respectively). If one

of these occurs at a faster rate (e.g. Γ0 > Γ2) then a nuclear polarization will be built up,

leading to a negative nuclear enhancement. If Γ0 < Γ2 a positive enhancement is obtained.
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3.5 Overhauser effect

tions (Γ0 > Γ2), then the nuclear spin system polarizes, and a negative enhancement

is obtained, see Fig. 3.5b. A positive enhancement is obtained if scalar interactions

dominate and Γ2 > Γ0.

For effective Overhauser enhancement, the rotational correlation time of the elec-

tron (τe) must be smaller than the inverse nuclear frequency:

ωnτe < 1 (3.7)

This leads to a decrease in Overhauser effect with increasing magnetic field.

Theoretically, the maximum Overhauser enhancement is ε = γe/γn (ε = 660

for 1H), however saturation and relaxation rates play a role in the obtained enhance-

ment. Experimentally the enhancement is given by [121]

ε = 1− ρfS γe
γn

(3.8)

where

S =
S0 − Sz
S0

ρ =
Γ2 − Γ0

Γ0 + 2Γ1 + Γ2

f =
Γ2 − Γ0 + 2Γ1

Γ0 + 2Γ1 + Γ2 + Γ0

(3.9)

S is the electron saturation factor, (S = 1 for a completely saturated system,

incomplete ESR saturation can originate from multiple ESR lines or insufficient power),

ρ is the coupling parameter (ρ = −1 or pure scalar coupling and ρ = 0.5 for pure dipolar

coupling), and f is the leakage factor, describing the nuclear relaxation by electrons

(f = 0 when there is no relaxation and f = 1 when all relaxation is mediated by

electrons). Γ0, Γ1, Γ2, Γ0, are the rate of the zero quantum transition, electron T1

relaxation, the double quantum transition and nuclear relaxation respectively.
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Figure 3.6: Schematic of the solid effect. a) Energy level diagram, b) theoretical

enhancement, and c) schematic of solid effect hyperpolarization. Initially the electron

system is highly polarized and the nuclear system is relatively unpolarized. Driving flip-

flip transitions with microwaves at f = ωe + ωn (red), simultaneously flips a nuclear and

electron spin. The system then relaxes through an electronic T1e transition. Continual

pumping of these spin flips results in a negative nuclear polarization. Driving flip-flop

transitions with microwaves at f = ωe − ωn (blue) results in positive nuclear polarization.

3.6 Solid effect

The solid effect is the hyperpolarization mechanism in dielectric solids which domi-

nates when the system has a dilute bath of isolated electronic defects, with a dipolar

interaction between a single electron and nuclear spin, see Fig. 3.6.

At low temperatures and high magnetic fields the electron spins are highly polar-

ized while the nuclear spins remain mainly unpolarized. This leaves the coupled 4-level

energy system populated mainly in the lowest two energy states.

Dipolar interactions between the nuclei and electrons allow simultaneous electron
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3.6 Solid effect

and nuclear flips (flip-flip transition, |↑e↑n〉 ←→ |↓e↓n〉 ) and reversals of the electron

and nuclear spins (flip-flop transitions, |↑e↓n〉 ←→ |↓e↑n〉). In such transitions, the total

energy of the system changes by E = ~(ωe ± ωn). These transitions can be driven by

an external RF field at a frequency of f = ωe ± ωn,

Driving the system at f = ωe + ωn (forced flip-flip transitions), see Fig. 3.6c,

simultaneously flips an electron and a nuclear spin. The system then relaxes through

an electronic T1 transition. The electron is able to undergo spin flips with successive

nuclear spins, building up a negative nuclear polarization, see Fig. 3.6b. Driving the

system at f = ωe − ωn (forced flip-flop transitions) results in a positive enhancement.

Theoretically, the maximum nuclear polarization can approach the electron po-

larization Pn = ± Pe, however the condition

Nn

Ne

T1e
T1n

<< 1 (3.10)

where Ne is the number of impurities and Nn the number of nuclear spins, must

be met to ensure that electron relaxation rates T1e are short enough and the nuclear

relaxation rates T1n are long enough such that hyperpolarization can accumulate.

For solid effect hyperpolarization, as the electronic spin system is dilute, most

nuclear spins are far enough away from an electron that an interaction between the two

is negligible. Bulk nuclear polarization is mediated by spin diffusion, which transfers

polarization from nuclear spins close to the impurity to spins further away. The solid

effect enhancement scales as B−20 , with the enhancement given by

εSE ∝
B2

1

B2
0

Ne

δ
T1n (3.11)

where B1 is the driving microwave power, B0 is the static magnetic field, Ne is

the number of electrons, δ is the homogeneous EPR linewidth and T1n is the nuclear

relaxation time.

If the ESR line is narrow compared with ωn, (ie. δ,∆ << ωn) positive and

negative polarization occur at separate frequencies. This is known as the well resolved
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Figure 3.7: Schematic of the differential and well resolved solid effect.

a) Schematic of the well resolved solid effect. The peak splitting is f = 2ωn. b) Schematic

of the differential solid effect. If the ESR lines are broad, driving flip-flip transitions can also

drive flip-flop transitions, leading to a broader hyperpolarization profile with less enhance-

ment. The peak separation is f > 2ωn. Individual contributions from hyperpolarization

are shown in grey and the sum is shown in black.

solid effect, see Fig. 3.7a, with a separation between positive and negative enhancement

typically given by f = 2ωn. If the ESR line is not narrow compared to the nuclear

Larmor frequency (ie. δ,∆ ∼ ωn), then both the double and zero quantum transitions

can occur simultaneously partially canceling the polarization. This is known as the

differential solid effect, see Fig. 3.7b, and results in a separation between the positive

and negative enhancement with f > 2ωn.

3.7 Cross effect

The cross effect is the dominant hyperpolarization mechanism in a dielectric solid with

a high concentration of electron spins and an inhomogeneously broadened EPR line.

Such a system can be considered as a series of dipolar coupled electron spin packets,

each with a homogenous EPR line smaller than the nuclear Larmor frequency. The

cross effect is a three spin process, using two dipolar coupled electron spins and one

nuclear spin, see Fig. 3.8a.

Effective polarization occurs when the degeneracy condition is met and the fre-
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Figure 3.8: Schematic of the cross effect. a) Energy level diagram, b) schematic,

and c) enhancement for two electron spins coupled to a nuclear spin in a degenerate system

where |↑e1↓e2↑n〉 ←→ |↓e1↑e2↓n〉 (highlighted in grey). Electron transitions are shown in

green, nuclear transition are shown in purple and cross effect transitions (CE1 and CE2)

are shown in red and blue. After saturating one of the electron spins (at f = ωe2) the

system can undergo flip-flop transitions |↑e1↓e2↑n〉 −→ |↓e1↑e2↓n〉, flipping a nuclear spin.

The system then relaxes through an electronic T1e transition, resulting in a net nuclear

polarization. Saturating the other electronic transition results in positive enhancement.

The separation between peaks is f = ωn.
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3. HYPERPOLARIZATION THEORY

quency separation between electron pairs is given by the nuclear Larmor frequency:

|ωe1 − ωe2| = ωn (3.12)

The degeneracy condition means that two electrons can undergo flip-flop transi-

tions providing a fluctuating magnetic field, which can flip a nuclear spin in an energy

conserving process such that |↑e1↓e2↑n〉 ←→ |↓e1↑e2↓n〉.

At low temperatures and high magnetic fields the electron system is polarized

while the nuclear system is relatively unpolarized. Microwave radiation at one of the

ESR transitions (e.g. f = ωe2), saturates that electronic transition, see Fig. 3.8b.

Dipolar flip-flops between electrons can then occur, and if the degeneracy condition

is met, a nuclear spin is flipped. The system then relaxes through an electronic T1e

transition. Driving the system at f = ωe1 leads to a positive enhancement, while driving

the system at f = ωe2 leads to a negative enhancement, with a separation of f =ωn

between the maximum positive and negative enhancement, see Fig. 3.8c. Provided

that electron T1e is faster than the nuclear spin T1n, a significant nuclear polarization

can be built up.

Realistically, the electron spin packets are not isolated from other spin packets,

and the dipolar order can transfer to another pair of spins. This leads to additional

nuclear polarization.

The enhancement due to the cross effect is given by

εCE ∝
γe
γn

B2
1

B0

N2
e

δ2
T1n (3.13)

where B1 is the driving microwave power, B0 is the static magnetic field, Ne is

the number of electrons, δ is the homogeneous EPR linewidth and T1n is the nuclear

relaxation time.

The degeneracy condition is hard to satisfy at high magnetic fields, however the

B−10 dependence means that the cross effect is more efficient at high magnetic fields

than the solid effect.
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Figure 3.9: Schematic of thermal mixing. a,b) Population diagram of the ESR

line. The bands represent two sections of the ESR line and the broadening represents

electron-electron dipolar interactions. In a) the system is in thermal equilibrium and the

dipolar and Zeeman systems are at the same temperature (TD = TZ). b, c) After cooling

with off resonant microwave radiation (e.g. at f = ω1 below the central ESR line), a

non-equilibrium polarization gradient is formed over the EPR line, shifting the ESR line,

equivalent to cooling the dipolar reservoir (TD <TZ) and leading to a positive nuclear

enhancement. Irradiation at f = ω2, above the central ESR line leads to negative nuclear

enhancement. d) Theoretical nuclear polarization after thermal mixing.

3.8 Thermal mixing

Thermal mixing is the dominant hyperpolarization mechanism for solids with high elec-

tron concentrations, for example in highly electron doped materials. Thermal mixing

can be thought of as an interaction between three spin baths - an electron Zeeman, an

electron dipolar and a nuclear Zeeman. The electronic spin-spin interactions can be in

good thermal contact with the distribution of electronic resonance frequencies and the

nuclear Zeeman interactions, with each of the reservoirs at the same temperature, see

Fig. 3.9a. Off resonant microwave radiation results in a polarization gradient across

the EPR line, equivalent to cooling the electron dipolar spin bath, see Fig. 3.9b, c.

Equilibration of the spin baths occurs in a three spin process similar to the cross effect.

The common spin temperature evolves towards a positive or negative value when

the irradiation is below or above the electronic Larmor frequency respectively, leading

to nuclear enhancement, see Fig. 3.9d.
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Figure 3.10: Schematic of brute force hyperpolarization. As the temperature is

lowered to T = 30 mK the 13C polarization increases. Removing the nanodiamonds quickly

leads to a room temperature enhancement.

Thermal mixing scales as

εTM ∝
B2

1

B0

N2
e

δ2
T1nT1e (3.14)

where B1 is the driving microwave power, B0 is the static magnetic field, Ne is

the number of electrons, δ is the homogeneous linewidth, T1n is the nuclear relaxation

time and T1e is the electron relaxation time.

In general thermal mixing is more efficient than the solid effect but less efficient

than the cross effect at high magnetic fields.

3.9 Brute force hyperpolarization

Brute force hyperpolarization makes use of high magnetic fields and low temperatures

to achieve a high Boltzmann polarization. If the NMR sample is transferred to an

environment where the thermal equilibrium polarization is lower, then while the sample

is approaching the new equilibrium it is considered hyperpolarized, see Fig. 3.10.
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3.10 Summary

The sample will equilibrate to the new temperature and magnetic field at the

nuclear spin lattice relaxation time (T1n). Care must be taken during the transfer

process to retain a magnetic field on the NMR sample; if the magnetic field is too low

the Zeeman states can mix, resulting in a complete loss of hyperpolarization. Addi-

tionally the nuclear T1n can be much faster at low magnetic fields, resulting in a rapid

depolarization during the transfer process.

3.10 Summary

In this thesis DNP techniques are used to polarize ND. As ND is a dielectric solid

with a dilute electron spin bath, the solid effect is the dominant hyperpolarization

mechanism, however, there may be contributions from other DNP mechanism. Each of

the mechanisms, along with brute force hyperpolarization, has been explained. In ND,

spin diffusion is largely suppressed, and transfer of polarization to spins further from

the impurity is slow.
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4

Experimental methods

Multiple experimental setups were used for the experiments detailed in this thesis. The

W-band hyperpolarization at a frequency of f = ∼ 80 GHz and a field of B = 2.89 T

is described in Section 4.1. The low field setup used for X-band hyperpolarization in

the magnetic field range B = 150 - 500 mT is described in Section 4.2. The setup used

for measuring polarization transferred between the hyperpolarizer and the detection

magnet, and for measuring brute force hyperpolarization at T ∼ 30 mK cryogenic

temperatures in a dilution refrigerator is detailed in Section 4.3.
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4. EXPERIMENTAL METHODS

4.1 W-band hyperpolarization setup

Direct 13C hyperpolarization in ND was measured in a setup at W-band frequencies at a

magnetic field of B = 2.89 T at temperatures ranging between T = 4 K and 300 K. Mea-

surements included enhancements, polarization build up times and decay times (T1),

decoherence measurements under Hahn echo and CPMG conditions (T2), and signal

enhancement as a function of driving microwave power and frequency. The cryostat

and probe are on loan from Harvard University, and the probe has been modified for

13C and 1H measurements. Additional information about the construction of the probe

and cryostat can be found in Ref. [122]. A schematic of the experimental setup is shown

in Fig. 4.1, and photos of the setup are shown in Figs. 4.2, 4.3, and 4.4.

The magnetic field was provided by a 400 MHz Magnet1 charged to a field of

B = 2.89 T for compatibility with the microwave source. A flow cryostat2 was used to

obtain variable temperatures for hyperpolarization. The cryostat was run in continuous

flow operation at either T = 4 K using liquid helium, or at T = 77 K using liquid

nitrogen. A diaphragm pump3 was attached to the return line of the transfer siphon.

Pumping speed and temperature were controlled using a gas flow controller4. The

cryostat and magnet setup is shown in blue in Fig. 4.1 and on the right in Fig. 4.2.

The NMR measurements of polarization at B = 2.89 T were made using a Red-

stone NMR system5 for pulse generation and data acquisition, and TNMR software

to create the pulse sequences. RF pulses were amplified using a power amplifier6,

and passed through a transducer and λ/4 cable to the NMR probe. The NMR signal

returned through the transducer, was amplified with a pre-amplifier7, filtered, and de-

tected with the Redstone NMR system. Signal processing, such as filter functions and

Fourier transforms were performed using Matlab. Data processing and analysis was

performed in Matlab and IGOR Pro.

A Gunn oscillator8 was used to produce the microwaves for hyperpolarization.

The Gunn oscillator could be mechanically tuned over f = 1 GHz in the frequency range

1Oxford Instruments
2Oxford Instruments
3GAST RAA-V212-EB
4Oxford Instruments VC 31
5Tecmag Redstone
6TOMCO Technologies BT00500-gamma
7MITEQ AU-1114T
8Quinstar Technology QTM-811205AE
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Figure 4.1: Schematic of the W-band hyperpolarizer. The microwave components

used for hyperpolarization are shown in red, the NMR components used for 13C signal

detection are shown in green, the NMR probe and slot antenna are shown in orange, and

the NMR magnet, cryostat and cooling setup are shown in blue.
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f = 80.5 - 81.5 GHz by changing the dimensions of the cavity. Additionally the cavity

was tuned over a frequency of f = 500 MHz by applying a DC bias, using a modulator1

and waveform generator2.

The microwaves were amplified using a pre-amp3 and a P = 2 W power am-

plifier4. An isolator5 was used to prevent reflections damaging the Gunn oscillator.

The microwave components are shown in red in Fig. 4.1 and a photo can be see in in

Fig. 4.3.

The frequency of the microwaves was measured by sampling the microwaves using

a 10 dB directional coupler6, mixing this signal with a 4.9 GHz local oscillator7 through

a 16th Harmonic mixer8, producing a signal in the frequency range f = 1.5 - 3 GHz

which was amplified9 and detected using a frequency counter10.

Any microwave frequency shifts could be accounted for by changing the DC bias

in a feedback loop, ensuring that the frequency stayed constant for the duration of the

experiment.

The microwave radiation incident on the sample was controlled using a TTL

switch11 and a variable attenuator12. The Gunn oscillator was additionally switched

on and off using a TTL voltage.

The waveguide of the microwave components was converted from WR12 to WR19

using a cylindrical waveguide transition and a bulkhead feedthrough with a mica optical

window for a vacuum tight connection between the microwave components and the

waveguide in the hyperpolarizer.

The NMR probe is a cryostat insert consisting of a stainless steel frame wired with

two semi-rigid copper coaxial cables for 1H and 13C NMR detection and a WR19 gold

plated copper waveguide and slot antenna for microwave irradiation. The waveguide

is WR19 to reduce attenuation along the length of the cryostat. The NMR detection

1Quinstar Technology QCR-10MM00
2Agilent 33250A
3Quinstar Technology QPN-80012210-P1
4Quinstar Technology QPN-80013322-S1
5Quinstar Technology QJI-E
6Aerowave 12-3000/10
7HP 8350 B sweep oscillator
8HXI HHM12C04-066
9Mini circuits ZFL-1000LN+
10TTi TF930
11Millitech PSP-12-RIBSN
12Millitech VCA-12-RINSO
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coils are copper saddle coils (offset by 90◦), each tuned and matched by two capacitors1

close to the coil, mounted on a fiberglass former.

Temperature changes can shift the capacitance and inductance of the components

of the NMR probe, resulting in an untuned or unmatched resonant circuit. If the

detection circuit detuned, then it could be externally tuned outside the cryostat using

a tuning capacitor in parallel and a matching capacitor in series.

A slot antenna is used to irradiate the sample with microwaves. The slot antenna

consists of four horizontal λ/2 length slots within the waveguide, with a vertical sep-

aration λ between slots starting a length 2λ from the end of the waveguide. The slot

height is small compared to the wavelength. Matching between the waveguide and the

slot antenna was achieved using a tunable stopper at the bottom of the waveguide. A

schematic of the cryostat insert showing the NMR probe, waveguide and slot antenna

is shown in orange in Fig. 4.1 and a photo is shown in Fig. 4.4.

ND samples could be loaded and removed rapidly from the hyperpolarizer while

cold. This was done by placing the ND sample in a Teflon tube mounted onto the end

of a G10 rod and loading it thorough a sample port at the top of the cryostat. The

cryostat was over-pressurized during the sample exchange to ensure no water vapor

entered the system.

The temperature of the hyperpolarizer was monitored using two temperature

sensors: a Cernox sensor attached to the fiberglass former to measure the temperature

at the sample using a 4 wire measurement and a built in thermometer in the cryostat

connected to a temperature controller2.

4.2 X-band hyperpolarization setup

Low field hyperpolarization was measured with a setup at X-band frequencies at mag-

netic fields ranging between B = 100 mT and 500 mT. This setup was used for mea-

surements performed on liquid-nanodiamond mixtures, using ND surface electrons to

polarize adsorbed liquids. More specifically, measurements included 1H signal enhance-

ments, polarization build up times, hyperpolarization decay times, and the T1 relax-

ation times of liquids containing various ND concentrations.

1Voltronics NMA55HV-E
2Oxford Instruments ITC 5035
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NMR signals were measured using a home-built probe and spectrometer based

on a SpinCore system, and hyperpolarization was achieved by driving electron-nuclear

transitions using microwave radiation and a horn-mirror cavity.

A schematic of the experimental setup is shown in Fig. 4.5 and a photo of the

setup is shown in Fig. 4.6.

The magnetic field was provided by either an electromagnet1 (B = 150 mT -

500 mT) or a permanent magnet2 (B = 458 mT). The electromagnet was set to field

using a power supply3 and a gaussmeter4. The permanent magnet provided a higher

field homogeneity than the electromagnet, however temperature shifts over the course

of the day resulted in magnetic field shifts and loss of the matching condition for

hyperpolarization. A frequency locking algorithm measuring the NMR resonance and

readjusting the local oscillator and hyperpolarization frequency was used to account

for these shifts.

Various NMR probes were constructed for use with X-band hyperpolarization

and low field NMR detection. A schematic is shown in orange in Fig. 4.5 and a photo

can be seen in Fig. 4.6. Probes were constructed from brass as it is non-magnetic

and easy to machine. The NMR detection circuit consists of a doubly spaced solenoid

coil made from copper wire, a tunable capacitor to ground for frequency tuning, and

a tunable capacitor in series to impedance match the resonant circuit to the coaxial

transmission line. The probe also contained a horn antenna5 combined with a reflector

to tune a magnetic field maximum at the sample. A horn reflector cavity was chosen

as the magnetic field maximum covers a large volume, allowing for larger samples to be

polarized. The double spacing of the NMR coil allowed the microwaves to pass through

the coil and penetrate the sample. Any less spacing shielded the sample too much for

effective microwave penetration and hyperpolarization.

NMR pulses were produced by a Spincore NMR system6, amplified using a power

amplifier7, passed through series crossed diodes (protecting the output of the amplifier)

and then passed to the NMR coil. A λ/4 cable combined with diodes to ground, acts

1Lakeshore model EM4-HVA electromagnet
2SpinCore Technologies, Inc.
3Lakeshore model 642 electromagnet power supply
4Lakeshore model 475 DSP gaussmeter
5Pasternack PE-9854-10 and PE-9856-10
6SpinCore Technologies Inc. ispin-NMR-mini
7Tomco Technologies BTM00250-AlphaS
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Figure 4.5: Schematic of the X-band hyperpolarizer. The NMR probe, horn an-

tenna and electromagnet are shown in orange, the microwave components used for hy-

perpolarization are shown in red and the NMR components used to detect increased 1H

polarization are shown in green.
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Figure 4.6: Photo of the X-band hyperpolarizer. Left: The microwave setup used

for hyperpolarization and the NMR spectrometer are shown with the NMR probe in the

electromagnet. Right: The NMR probe with a horn-mirror reflector cavity used for hyper-

polarization. The detection circuit consisted of a doubly spaced solenoid coil and tuning

and matching capacitors (not shown).
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as a fast switch for high power pulses from the amplifier, transforming the short at

the diodes to an open circuit, ensuring the pulses are directed to the NMR coil. NMR

signals are amplified by a pre-amplifier1, filtered, and then acquired by the SpinCore

NMR console. A schematic of the NMR setup is shown in green in Fig. 4.5.

The X-band microwaves (f = 8 − 16 GHz) were produced by a signal generator2,

amplified to a maximum of P = 10 W using a power amplifier3, transferred from coaxial

to waveguide using an adapter and then passed to the horn antenna and sample. A

schematic of the microwave components can be seen in red in Fig. 4.5.

The NMR console and microwave source (frequencies and pulse sequences) were

controlled using an interface in IGOR Pro4. Data analysis and fitting were performed

in IGOR Pro.

4.3 Polarization transfer and brute force hyperpolariza-

tion setup

Brute-force hyperpolarization was achieved using a dilution refrigerator combined with

a hot swap probe. The ND sample was placed in a sample mount attached to a hot

swap probe and placed into a dilution refrigerator. The hot swap probe was thermalized

to each stage of the fridge. Photos of the sample mount, hot-swap probe and dilution

refrigerator are shown in Fig. 4.7a.

The refrigerator was cooled to a temperature of T = 4 K, and then an electro-

magnet mounted on the bottom of the fridge was charged to a field of B = 4 T. The

temperature was then lowered to T = 35 mK. The ND was allowed to equilibrate at

these conditions for 3 days (4 days on the 2nd run). The ND was removed from the

fridge by taking out the hot-swap probe (∼ 30 seconds). The sample was then placed

between two rare earth permanent magnets in a field of B = 600 mT, and transferred

to a B = 7 T magnet for detection (∼ 10 seconds, over a distance of 5 m). A schematic

of the process is shown in Fig. 4.7b.

The 13C NMR spectra of transferred polarization were acquired using an NMR

spectrometer based on a National Instruments system with PXI modular components.

1Miteq AU-1565 and Miteq AU-1447
2Vaunix Lab brick LMS-163
3Quinstar Technology QPJ-06184045
4WaveMetrics
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Figure 4.7: Dilution refrigerator brute force hyperpolarization setup. a) Photo

of the dilution fridge (left) and hot swap probe with sample mount (right) used for brute-

force hyperpolarization. b) Schematic of the process used for brute-force hyperpolariza-

tion to transfer polarization from a sample in a dilution refrigerator at a temperature of

T = 35 mK and magnetic field B = 4 T to an NMR magnet at B = 7 T and T = 300 K.
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Figure 4.8: Schematic of polarization transfer. Schematic of the process used to

transfer polarization from the hyperpolarizer to an NMR magnet.

Software for this spectrometer was based on IGOR Pro. Additional information about

the spectrometer can be found in Ref. [122].

Measurements were made to determine how much polarization was retained dur-

ing transfer between the polarizer and a separate magnet for detection. The NDs were

polarized at a temperature of either T = 4 K or T = 77 K at a frequency f ∼ 80 GHz.

The cryostat was over-pressurized and the ND was removed using the sample exchange

port at the top of the cryostat. The ND was placed between two rare earth magnets

in a field of B = 600 mT, and transferred to a B = 7 T magnet for detection. The

transfer process was over a distance of 3 m and took approx 10 seconds. A schematic of

the process is shown in Fig. 4.8. The NMR signal was acquired using the spectrometer

based on the National Instruments PXI components.
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5

Nanodiamond characterization

Diamond is an interesting and unique material with outstanding mechanical, thermal,

chemical, electrical and optical properties. Perhaps more interesting, however, are the

crystallographic defects and colour centres in diamond which can change the mate-

rial properties, leading to spin and optical properties which have found use in quantum

information technology, high resolution magnetometry and biotechnology. This techno-

logical interest has led to the development of synthesis techniques for artificial diamond

with tailored impurities and properties to fit the application.

This chapter gives a brief overview of properties and defects found in diamonds

with emphasis on nanometer and micrometer sized diamonds. A description is given

on how various synthesis methods can affect impurities and as a result the diamond

properties. This chapter also details the characterization of nanodiamonds using NMR,

ESR, Raman spectroscopy and SEM imaging1.

1This chapter contains data from the supplementary material in Rej, E. et al. Hyperpolarized nanodi-

amond with long spin-relaxation times. Nature Communications 6, 8459 (2015) [123].
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5. NANODIAMOND CHARACTERIZATION

5.1 Diamond

5.1.1 Properties of diamond

Diamond is an allotrope of carbon with sp3 hybridized orbitals. In diamond each carbon

atom has four valence electrons which are equally distributed forming covalent bonds

with neighboring carbon atoms. This makes a periodic structure, tetrahedral in shape,

known as a diamond lattice, where nearest neighbor bonds are 0.154 nm long [124],

see Fig. 5.1. The covalent bonds and tetrahedral arrangement lead to diamond being

the hardest known natural mineral. The diamond lattice is weakly anisotropic (when

properties vary in different crystalline directions) with A = 1.21, where A is the elastic

anisotropy [125].

Several carbon isotopes make up diamond: 12C (98.9%), 13C (1.1%) and trace

amounts of 14C. The 13C is a spin-1/2 particle and can be detected in an NMR or

MRI experiment, the 12C is a spin-0 atom and can not be detected, and the 14C is

a spin-3 atom with a radioactive half life of 5730 years. The 13C nuclear spin has a

gyromagnetic ratio γ = 10.705 MHz/T.

5.1.2 Defects found in diamond

Interesting spin dynamics and changes in the properties of diamond originate from the

defects (or colour centres), either intrinsic of extrinsic, that disrupt the lattice structure.

Over 500 different colour centres and crystallographic defects have been identified in

diamond [127], the most famous being the NV centre [128,129].

Two types of defects exist in diamond: intrinsic defects, where carbon atoms are

displaced from their regular positions, and extrinsic defects, where elements other than

carbon form substitutional or interstitial impurities embedded in the diamond lattice.

Examples of intrinsic and extrinsic defects are shown in Fig. 5.2 on a 2-D plane.

Intrinsic defects include interstitial carbon atoms, where more than one carbon

atom exists at one lattice site [130, 131] (Fig. 5.2a), vacancies [132–138] where carbon

atoms are missing from a lattice site (Fig. 5.2b), dislocations, where broken bonds

exist, platelets of regular arrays of carbon interstitial atoms [139–141] (Fig. 5.2c), and

voidities, which are nanometer sized carbon clusters [142,143]. Intrinsic defects result in

carbon-carbon dangling bonds (a chemical bond associated with a carbon atom, which

does not join another carbon atom in the crystal), which are a spin-1/2 electronic
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a) b)

c)

50 μm 10 μm 

Figure 5.1: Optical images and lattice structure of diamond. a) Optical micro-

scope image of 2 µm ND. b) Optical microscope image of 40 µm ND. c) Schematic of the

tetrahedral diamond lattice structure. Carbon atoms are shown in blue and covalent bonds

are shown in grey. The lattice structure were drawn with Vesta [126].
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d) f)e)

a) c)b)

Figure 5.2: Two dimensional representation of defects found in the diamond

lattice. Intrinsic defects include: a) self interstitial carbon atoms, where more than one

carbon atom exists at one lattice site, b) vacancies, where one or more carbon atoms are

missing from a lattice site, and c) dislocations in the diamond lattice. Extrinsic defects

include: d, e) foreign substitutional atoms (such as nitrogen), either as isolated atoms

or atomic clusters, and f) foreign interstitial atoms. Lattice atoms are shown in blue,

impurities are shown in red, and chemical bonds are shown in grey. Images were drawn

with Vesta [126].
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defect. Carbon dangling bonds are also found on diamond surfaces.

Extrinsic defects can be foreign substitutional atoms (Fig. 5.2d, 5.2e) or foreign

interstitial atoms (Fig. 5.2f) embedded in the carbon lattice. They can be isolated

atoms or small atomic clusters either dispersed through the diamond or artificially

introduced into specific spots, for example by ion implantation or during the diamond

growth process. The most common extrinsic impurity is substitutional nitrogen which

makes up various nitrogen related defects in diamond, however elements including H,

He, Li, B, N, O, Ne, P, Si, As, Ti, Cr, Ni, Co, Zn, Zr, Ag, W, Xe, and Tl [127,135,136,

144,145] have been found as defects in the diamond lattice.

The defects can occur in different charge states, depending upon surrounding

donor and acceptor defects. A typical donor atom is nitrogen, which has one more

electron than carbon, and a typical acceptor atom is boron, which has one less electron

than carbon.

Historically, diamonds were classified based upon their nitrogen defect concentra-

tion, according to their ultraviolet and infrared transmission. Diamonds with nitrogen

concentrations > 20 ppm are classed as type I, while diamond with nitrogen concen-

trations < 20 ppm are classed as type II. Type II diamonds are further classed into

diamond with boron impurities (type IIb) and without boron impurities (type IIa).

Nitrogen defects make up the majority of defects found in diamond, see Fig. 5.3.

The most common defect found in natural diamond is the A-centre, which consists of

two substitutional nearest neighbor nitrogen atoms with a double bond between them,

see Fig. 5.3a. Diamonds containing predominantly A-centre impurities are classified as

type IaA. The B-centre is another nitrogen defect that can occur in diamond, consisting

of four nitrogen atoms surrounding a vacancy, see Fig. 5.3b. Diamonds with predomi-

nant B-centre impurities are classed as type IaB. Diamonds with similar concentrations

of A-centre and B-centre aggregates are classed as type IaAB.

The most common defect in synthetically produced diamond is the C-centre (also

known as the P1 centre) which consists of an electrically neutral substitutional nitrogen

atom in the diamond lattice, see Fig. 5.3c. The P1 centre is an electron paramagnetic

system with electron spin angular momentum S = 1/2 in the ground state [146], orig-

inating from the nitrogen atom having one more electron than the carbon atom that

it substitutes. Diamonds predominantly containing C-centre impurities are classed as

type Ib.
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a) b)

c) d)

A-centre

NV-centreC-centre (P1 centre)

B-centre

Figure 5.3: Schematic of nitrogen defects found in diamond. a) A-centre defect,

consisting of two nitrogen substitutional atoms on adjacent lattice sites. b) B-centre de-

fect, consisting of four nitrogen atoms surrounding a vacancy in the lattice. c) C-centre

(P1 centre) defect, consisting of a single substitutional nitrogen in the lattice. d) NV cen-

tre defect, consisting of a substitutional nitrogen atom next to a vacancy in the lattice.

Carbon atoms are shown in blue, nitrogen atoms are shown in red, vacancies are shown in

grey and chemical bonds are shown as grey sticks. Images were drawn with Vesta [126].
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Probably the best known and most studied nitrogen defect in diamond is the

nitrogen-vacancy centre (or NV centre), which consists of a substitutional nitrogen

atom next to a vacancy in the diamond lattice. The NV centre (in the negative charge

state) is a spin-1 system, which can be polarized optically into the ground state, and

has easily addressable optical and microwave spin states at room temperature [147].

When combined with long spin coherence times [128, 129, 148, 149], NV centres are a

promising system for applications such as magnetometry [27, 28] and quantum infor-

mation [150, 151]. Coherent coupling of NV centres and surrounding spins have led to

selective addressing and manipulation of single spins such as 13C [152], 14N [153] and

other NV centres [154]. Additionally NV centres show florescence and can be used for

biolabelling [26,155–158].

While all these defects exist in the diamonds studied in this work, the predomi-

nant defects are P1 centres and carbon-carbon dangling bonds, both electron spin-1/2

systems, which can be addressed using microwave radiation.

5.1.3 Synthetic production of diamond and nanodiamond

Diamonds are produced naturally in high temperature and high pressure conditions in

the Earth’s crust, and can also be produced synthetically in conditions that mimic the

geological processes.

Three methods exist for manufacturing synthetic diamonds: the high pressure

high temperature (HPHT) technique, the detonation technique and chemical vapor

deposition (CVD).

HPHT mimics the phase transition of graphite to diamonds in carbon containing

materials at high temperatures (T > 1500◦C) and high pressures (P > 5 GPa) [159].

At high temperatures a solvent metal (usually iron, nickel, or both) working as a cata-

lyst, melts and dissolves a high purity carbon source (typically graphite), producing a

supersaturated mixture which precipitates and crystallizes onto diamond seed crystals.

The catalyst significantly lowers the temperature and pressure conditions (provided by

a press [160]) as compared to that needed for natural diamond to form (diamond melts

at a temperature T = 4500 K and the graphite/diamond/liquid triple point occurs

at a temperature of T = 4200 K and a pressure of P = 11 GPA [161]. Temperature

gradients within the vessel are able to lower the operating temperature further [162].

Nitrogen is the most common contaminant, originating from the gas found in
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the press, the carbon source, or the solvent/catalyst, and usually result in P1 centre

impurities [163].

Improvements in the manufacturing process have allowed for the control of im-

purity concentrations and tailored properties of diamond. Nitrogen getters for example

can be used to minimize the nitrogen in the press [163–165], producing type IIa dia-

monds [166]. Impurities can also be added to tailor material properties for example

HPHT diamond has been heavily doped with Boron, producing superconducting dia-

mond for use in electronics [167].

Another way to synthesize diamond is through CVD. A combination of methane

gas (acting as a carbon source) and hydrogen gas is injected into a growth chamber

under controlled temperature and pressure conditions, where it is heated and ionized.

The radicals react and form diamond crystals on a substrate or seed crystals, producing

either single crystal or polycrystalline diamond respectively. The hydrogen plasma

etches away non-diamond carbon during the growth process. As with HPHT diamond

synthesis, impurities can be well controlled in the CVD process. Doping CVD diamond

with nitrogen or phosphorous results in n-type semiconductors and doping with boron

results in p-type semiconductors. The high break down voltages make doped diamond

a well suited material when high frequencies, powers, temperatures or voltages are

required for electrical applications [168].

The third common way to make diamond is using the detonation process. Carbon

containing explosives are detonated in a detonation chamber. The high temperatures

and pressures at the shock front during the detonation process allow for the thermo-

dynamically favorable creation of diamond. Detonation NDs are typically less than

5 nm in size [169], and have an sp3 hybridized core surrounded by an sp2 hybridized

shell [170].

Nanoscale diamonds can be made in a small size distribution with uniform shape

by grinding down larger diamonds, such as natural diamond offcuts, CVD films, or

larger HPHT diamonds. A typical way to do this is to use a ball mill combined with a

centrifuge. A ball mill is a grinder, working with friction and impact forces, consisting

of a rotating hollow cylinder, partially filled with zirconia balls. Size reduction of a

sample fed into the mill occurs as the balls drop from near the top of the rotating

cylinder. The milling process can introduce metal and non-diamond carbon impurities.

Impurities in the core of diamonds can be modified or added in several ways.

72



5.2 Characterization of nanodiamond

Irradiation by ion or electron beams can produce vacancies, which can lead to NV

centres forming after annealing [171]. Ion implantation can also be used to create

defects, for example diamond can be irradiated with N+ ions to form nitrogen defects.

The surface structure of diamond depends strongly on the conditions under which

the diamond was created. NDs that have been created from grinding down larger dia-

monds exhibit the surface structure typical to larger diamonds. Detonation diamonds

usually have many surface functional groups from reactions of dangling bonds and the

gases used in the production [172]. The most characteristic surface groups are carboxyl,

hydroxyl, lactones, anhydrides and ketone functional groups [173].

The ND surface can be controlled through acid cleaning which removes the ma-

jority of non-carbon impurities such as those introduced during ball milling, and can

remove functional groups from the ND surface [174]. Surface functionalization with

molecules such as hydrogen, hydroxyl, carboxyls or ketone groups can then be used to

produce diamonds with specific surface properties, [19, 172]. Specific compounds can

also be attached to a nanodiamond, for example fluorophores for optical tracking, or

doxorubicin, a chemotherapeutic for drug delivery in medicine [24].

5.2 Characterization of nanodiamond

The properties of electron and nuclear spins in diamond are examined through nuclear

magnetic resonance (NMR), electron spin resonance (ESR), Raman spectroscopy and

scanning electron microscope (SEM) studies. Diamonds synthesized using different

techniques and in various sizes were examined and characterized.

5.2.1 Types of diamonds studied

Three types of diamonds are studied in this work:

• HPHT ND: Diamonds produced by the HPHT technique, between 18 nm and

40 µm in size, purchased from Microdiamant1. Throughout this study these

diamonds are referred to as HPHT ND.

• AO ND: HPHT diamonds were air oxidized (AO) to burn off the outer layer of

carbon and to modify the surface electronic defects. The HPHT ND was spread in

1http://www.microdiamant.com
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a thin layer in ceramic crucibles and placed in a furnace1. The furnace was heated

to 550◦C (∼ 1 hr), left at 550◦C for 1 hour and then cooled to room temperature

(∼ 20 min). The NDs are expected to decrease in size by approximately 4− 5 nm

(the etch rate for diamonds is 4 nm/hr at 550◦C and 1 nm/hr at 500◦C [175]).

AO ND in the size range 18 nm to 2 µm were examined. Throughout this study,

these diamonds are referred to as AO ND.

• NAT ND: Natural diamonds in the size range 125 nm - 2 µm were examined.

Throughout this study these diamonds are referred to as NAT ND. These dia-

monds were purchased from Microdiamant.

A list of the ND particles that were used in this study with median particle size

and size range can be found in Appendix A.

5.2.2 SEM studies

Scanning electron microscope2 images of a range of NDs were acquired in scanning

mode to examine the shape, surfaces, and aggregation, and in transmission mode to

analyze the size of the NDs, see Fig. 5.4.

Suspensions of ND in water were shaken and sonicated to break up diamond

aggregates and a drop of the solution was placed on a TEM grid and allowed to dry.

At least 15 images of different regions of each ND were taken.

The images were analyzed using ImageJ3, to confirm the size of the NDs. His-

tograms of the size distributions are shown in Fig. 5.5. ND particle areas were cal-

culated as a number of pixels and converted to particle diameters (shown in dots),

assuming spherical particles. In the case of larger diamonds, which are more angular

than spherical, this assumption can result in an underestimate of the particle diameter

by up to 10%. The size distributions were consistent with that stated by the supplier.

Small NDs (< 50 nm) can be found in the 210 nm, 500 nm and 2 µm diamond

images. It should be noted, that although there are quite a few NDs in this size range,

the volume they take up is much smaller than the volume taken up by the larger NDs.

We observe a size difference between the 25 nm HPHT and 25 nm AO NDs,

consistent with the amount etched away by the air oxidation process.

1Fetlow Melbourne Furnace
2Zeiss Ultra Plus Gemini
3imagej.net
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a) 2 μm HPHT ND

1 μm 4 μm

b) 2 μm NAT ND

1 μm 4 μm

c) 500 nm HPHT ND

400 nm 1 μm

d) 500 nm NAT ND

500 nm 2 μm

e) 210 nm HPHT ND

500 nm

f) 210 nm NAT ND

500 nm 500 nm

g) 125 nm HPHT ND

200 nm 200 nm

h) 50 nm HPHT ND

400 nm 400 nm

i) 25 nm HPHT ND

50 nm 100 nm

j) 25 nm AO ND

100 nm 100 nm

500 nm

Figure 5.4: SEM images of NDs. a) 2 µm HPHT ND, b) 2 µm NAT ND, c) 500 nm

HPHT ND, d) 500 nm NAT ND, e) 210 nm HPHT ND, f) 210 nm NAT ND, g) 125 nm

HPHT ND, h) 50 nm HPHT ND, i) 25 nm HPHT ND, j) 25 nm AO ND.
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Figure 5.5: SEM size distributions of NDs. Histograms of a) 25 nm HPHT ND

(black) and 25 nm AO ND (red), b) 125 nm HPHT ND, c) 210 nm HPHT ND, d) 500 nm

HPHT ND, and e) 2 µm HPHT ND. ND particle areas were measured from SEM micro-

graphs using image analysis software and converted to particle diameters (dots) assuming

spherical particles. The solid line is a guide to the eye. The orange shaded region is the size

range, and the dashed orange line is the median particle size as specified by the supplier.
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5.2.3 NMR studies

The tetrahedral lattice structure in diamond, combined with the low abundance of 13C

(1.1%) within a lattice of non-spinful 12C atoms, leads to a long T1 relaxation time in

bulk diamond. Spin diffusion between the 13C nuclear spins is largely suppressed.

Several authors have considered the problem of spin relaxation of nuclei in a crys-

tal containing paramagnetic impurities, in the case of limited spin diffusion between the

nuclear spins [101, 176–179]. Nuclear relaxation is attributed to the coupling between

the magnetic moment of the paramagnetic ion and the magnetic moment of the nuclei

in the crystal through dipole-dipole interactions. Initially, after the bulk magnetization

is disturbed, any local magnetization of a nuclear spin will be dominated by the nearest

paramagnetic ion and changes will be most rapid close to the paramagnetic impurity.

This leads to a spatial distribution of magnetization [179]. It should be noted, however,

that nuclear spins very close to the paramagnetic ion have shifted Larmor frequencies,

and do not contribute to the NMR line or undergo spin flip-flop transitions with the

remaining nuclei in the bulk diamond. For a system such as diamond, with limited

spin diffusion, the presence of paramagnetic impurities, and a high magnetic field, the

growth of magnetization follows a stretched exponential behavior [176]:

M ∝ e−Atα (5.1)

where M is the magnetization, A is a constant, t is the time and α is a constant

which depends on the concentration and distribution of the paramagnetic centres. The

stretched exponential component α depends upon both the sample space dimension-

ality (D) and whether the individual nuclear spins are affected by many impurities

(homogenous distribution of spins) or one impurity (inhomogeneous distribution of

spins).

For a homogeneous distribution of spins α = D/6 = 1/2, (in this case D = 3 for

a 3D crystal), and the magnetization build up follows:

M/M0 = 1− e−(t/T1)1/2 (5.2)
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5. NANODIAMOND CHARACTERIZATION

where T1 is the spin-lattice relaxation time, and M0 is the equilibrium magneti-

zation.

For an inhomogeneous distribution of spins, the system can be considered as a

series of subsystems packed in the D-dimensional space, each consisting of a paramag-

netic impurity surrounded by nuclei. In this case the dimensionality of the magnetic

moment (d) must be considered and α = (D + d)/6 = 2/3 (in this case d = 1, as all

the magnetic moments are aligned in the direction of the high external magnetic field,

and D = 3 for a 3D crystal). The magnetization build up follows:

M/M0 = 1− e−(t/T1)2/3 (5.3)

The T1 relaxation times can range from many hours in bulk diamond to a few

hundred milliseconds in detonation ND. HPHT and CVD diamonds have T1 relaxation

times in between. The T1 relaxation time has been found to be dependent upon ND

size, the method used for synthesis, type of impurities, the concentration of impurities,

and the concentration of 13C spins in the diamond. A summary of some of the relaxation

times can be found in Table 5.1.

The T1 relaxation times of a range of HPHT nanodiamond samples used in this

study were measured at a magnetic field of B = 7 T using a saturation recovery pulse

sequence. Measurements were made using a Bruker probe and a Redstone Tecmag

NMR system for pulse generation and NMR signal acquisition.

The magnetization build up curves for three representative NDs can be seen

in Fig. 5.6. Small NDs in the size range 18 nm to 350 nm (see Fig 5.6a) are well

described by a stretched exponential magnetization build up with an exponent α = 0.66,

indicating an inhomogeneous distribution of paramagnetic impurities within the ND.

In contrast, NDs larger than 350 nm (see Fig. 5.6b, and Fig. 5.6c) are better fitted

by a double exponential function than a stretched exponential function. We attribute

this to 13C spins on the surface of the ND relaxing quickly and 13C spins in the core

of the ND relaxing on a longer time scale. When fitted with a stretched exponential,

the exponent is α = 0.5, corresponding to a homogenous distribution of spins, where

each nuclear spin is affected by more than one electron spin. The T1 build up times

and stretched exponents α are summarized in Fig. 5.7.
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5.2 Characterization of nanodiamond

ND particle Size T1 reference notes

Gem 600 mg 3.5 days [180]

Gem (IIa) - 10 min [181]

Gem (Ib) - 7.14 min [181]

Gem (Ib) 6.75 mg 300 s [182]

Nat (Ib) 380 mg 40 s [95]

Nat (Ia) 700 mg 11 hrs [183]

Nat (IIa) 680 mg 19 hrs [183]

Semiconducting (IIb) 3.1 g 4 hrs [46]

CVD ∼ 15 µm 67 s [184]

CVD ∼ 15 µm 17 s [184] 50% 13C

CVD ∼ 15 µm 8 s [184] 100% 13C

S.C. 100 - 500 nm 12 - 45 s [185]

HPHT 30 mg 14 - 17 s [186] 99% 13C

HPHT 30 mg up to 5000 s [187] 99% 13C

HPHT ∼ µm 460 s [51]

HPHT 400 - 600 µm 220 s [98]

d-ND 10 - 30 nm 1.8 s [51]

d-ND 5 nm 300 ms [188]

d-ND 5 nm 140 - 170 ms [189]

d-ND 5 nm 370 - 600 ms [51]

d-ND 5 nm < 1 s [170]

d-ND 4.3 nm 22 - 450 ms [190]

Table 5.1: T1 relaxation times of different types of diamonds in the size range

between 12 mm and 5 nm. S.C. are shock compression diamonds, CVD are chemical

vapor deposition thin films, Gem are natural gem cut diamonds, and Nat are natural

diamonds. The type of diamond is given in brackets when specified. Assuming a spherical

diamond: 30 mg diamonds are ∼ 2.5 mm, 650 mg are ∼ 7.0 mm, 6.75 mg are ∼ 1.5 mm,

and 3.1 g are 11.9 mm large.
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Figure 5.6: T1 magnetization build up in ND measured using a saturation

recovery pulse sequence at B = 7 T. a) Comparison between a stretched exponential

fit (solid black line) and exponential fit (grey dashed line) to the magnetization build

up (black dots) of 25 nm HPHT ND. The stretched exponential is a better fit for small

NDs. b, c) Comparison between a double exponential fit (solid black line) and a stretched

exponential fit (grey dashed line) for b) 1 µm HPHT ND and c) 2 µm HPHT ND (black

dots). For larger ND particles the double exponential fit has a smaller variation from the

data than a stretched exponential fit. Errors are smaller than the symbols.
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Figure 5.7: T1 relaxation time and stretched exponential component α for

HPHT NDs. a) The T1 relaxation time (grey crosses) extracted from the best fit to

M/M0 = 1 − exp(−(t/T1)α) for the T1 build up measured using a saturation recovery

sequence for HPHT NDs. Three repetitions were taken for each ND and the average is

shown in black dots. Larger NDs were better fitted by a double exponential with a fast and

a slow component, which we attribute to surface spins and core spins respectively. The two

components of the double exponential are shown in grey crosses and the average is shown

in black squares. b) Stretched exponential component, α, extracted from the best fit to

M/M0 = 1 − exp(−(t/T1)α) of T1 relaxation data of HPHT NDs. Small NDs exhibit a

build up with α = 2/3 (corresponding to an inhomogeneous distribution of spins). When

fitted with a stretched exponential, larger NDs have stretched exponential components of

α = 0.5 (corresponding to impurity mediated relaxation from a homogenous distribution

of spins). Error bars are given by the standard deviation and are shown when they exceed

the size of the data point.
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5. NANODIAMOND CHARACTERIZATION

The T1 relaxation times ranged between T1 = 6 s for 18 nm ND to T1 = 1 hr

for 2 µm ND. The long T1 relaxation times measured in the nanodiamonds, indicate

that the hyperpolarized state, especially in the core of the nanodiamond, may also have

long T1 relaxation times. These T1 build up times also indicate how long it may take

to build up a hyperpolarized nuclear state when driving with microwaves.

5.2.4 Magic angle spinning studies

Magic angle spinning is a technique used to enhance solid state NMR spectroscopy. Line

broadening in solid samples, mainly originating from dipolar interactions, chemical shift

anisotropy and quadrupolar interactions, can result in featureless and very wide lines.

The dipole-dipole interactions in solids are direction dependent and can be averaged

to zero by spinning the sample (at frequencies up to f = 100 kHz), at the magic angle

θ◦ = 54.74 about the magnetic field B0. This narrows the NMR lines, increasing the

resolution and allowing for better analysis of NMR spectra. Magic angle spinning was

first described by Andrew, Bradbury and Eades in 1958 [191], and independently by

Lowe in 1959 [192].

NMR measurements were performed under MAS conditions to examine NMR

linewidths and T1 relaxation times using an MAS probe in a 400 MHz magnet and a

Bruker spectrometer. NDs were spun at f = 13 kHz and NMR measurements were

made using a saturation recovery pulse sequence.

MAS spectra of HPHT NDs are shown in Fig. 5.8. The NMR peak, correspond-

ing to sp3 hybridized carbon (found at 33 ppm), is well described by two lorentzian

components; a broad and a narrow component. No sp2 hybridized carbon (at 120 ppm)

is observed. We attribute the broad Lorentzian component of the NMR line to 13C spins

near the surface of the diamond, and the narrow Lorentzian component of the NMR

line to 13C spins in the core of the diamond.

The line widths of the broad and narrow Lorentzian components stayed approxi-

mately constant over the ND size range measured. No comparison can be made about

the composition of the broad and narrow components as the diamonds have different

T1 relaxation times and the spectra were not measured at maximum magnetization.

A comparison of the NMR peaks of AO ND and HPHT ND shows that while

the narrow Lorentzian component remains constant, the broad Lorentzian component

is narrower and decreases, see Fig. 5.9 and Table 5.2. The air oxidation process burns
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Figure 5.8: MAS NMR spectra of HPHT NDs. From left to right: MAS NMR

spectra of 25 nm HPHT ND, 50 nm HPHT ND, and 210 nm HPHT ND. NMR signals

were acquired after 1000 s of magnetization build up, and have been normalized. Data

is shown in black, a double-Lorentzian best fit to the data is shown in red, and the two

Lorentzians comprising the fit are shown in green (narrow component) and blue (broad

component).

off the outer layer of ND, decreasing the signal from surface 13C spins.

The MAS T1 relaxation time was compared for small HPHT and AO NDs, see

Fig. 5.9. The total magnetization (dots) has been decomposed into the broad (squares)

and narrow (crosses) components of the NMR peak. The T1 build up times for the

AO NDs are slightly shorter than the HPHT NDs, see Table 5.3. We observe a faster

T1 relaxation time for the broad Lorentzian component than the narrow Lorentzian

component.

The broad and narrow components comprising the NMR line were examined for

a medium sized ND, see Fig. 5.10. The widths of the narrow and broad components

do not change with increasing magnetization build up time. Initially 40% of the NMR

signal is made up of the broad Lorentzian component, attributed to surface spins and

60% narrow Lorentzian component, originating from core spins, and after a long po-

larization build up time, 85% of the NMR signal is made up of core spins and 15% of

surface spins, see inset Fig. 5.10b. We observe a double exponential T1 build up for

each of the Lorentzian components, see Table 5.3.

Similarly to results under static conditions, the T1 relaxation time increases with

particle size however the T1 relaxation time measured under MAS conditions are longer
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Figure 5.9: MAS NMR spectra and T1 comparison between small HPHT and

AO NDs. a, b) Comparison of the MAS NMR spectra of HPHT ND (grey) and AO ND

(orange) for a) 25 nm ND, and b) 50 nm ND. The double lorentzian fit is shown in black for

HPHT ND and red for AO ND. The best fit is shown as a solid line, the broad Lorentzian

component is shown as a dotted line, and the narrow Lorentzian component is shown as

a dashed line. The largest difference in the spectra comes from a reduction in the broad

component for AO ND. c, d) Comparison of the T1 MAS magnetization build up for

HPHT ND (black) and AO ND (red) for c) 25 nm ND, and d) 50 nm ND. The total

magnetization is shown in dots, the magnetization of the narrow Lorentzian component is

shown in crosses and the magnetization of the broad component is shown in squares. Lines

are stretched exponential fits to the data. Data has been normalized to one for comparison,

and errors are smaller than the symbols used.
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ND particle Linewidth (narrow) [kHz] Linewidth (broad) [kHz]

25 nm HPHT 0.285 2.50

25 nm AO 0.187 1.96

50 nm HPHT 0.167 1.95

50 nm AO 0.123 1.53

210 nm HPHT 0.290 2.37

Table 5.2: Linewidths of NDs measured under MAS conditions. Line widths

of the broad and narrow Lorentzian components of the 13C NMR signal after 1000 s of

magnetization build up.

ND particle Total Narrow Broad

T1 [s] α T1 [s] α T1 [s] α

25 nm HPHT 24 0.40 29 0.44 5.0 0.27

25 nm AO 19 0.42 15 0.37 34 0.74

50 nm HPHT 190 0.45 220 0.47 65 0.32

50 nm AO 150 0.40 170 0.40 55 0.38

ND particle Total Narrow Broad

τ1 [s] τ2 [s] τ1 [s] τ2 [s] τ1 [s] τ2 [s]

210 nm HPHT 8900 320 9300 350 7400 270

Table 5.3: Summary of the T1 relaxation times measured under MAS condi-

tions. T1 relaxation times for the broad and narrow Lorentzian components and total

magnetization measured under MAS conditions. Stretched exponential curves were fitted

to the 25 nm and 50 nm NDs (T1 and α values tabulated) and a double exponential was

fitted to the 210 nm ND (with two build up times τ1 and τ2 tabulated). We see an increase

of T1 with particle size, a small decrease in the T1 of AO NDs, and a shorter T1 of the

broad component than the narrow component.
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Figure 5.10: MAS NMR spectra and T1 build up of 210 nm HPHT ND. a) NMR

spectra of 210 nm HPHT ND. From left to right: NMR spectrum at 1 s, 100 s, and 30,000 s.

b) MAS T1 build up. Solid lines are double exponential fits to the data. Inset: Percentage

of the total NMR signal that is made up by the broad Lorentzian component and the

narrow Lorentzian component. Errors are smaller than the symbols. Same colour scheme

as in Fig. 5.8.
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than those measured under static conditions. This could be either due to MAS mea-

sured at a higher field (B = 10 T compared to static NMR measured at B = 7 T), or

due to the suppression of spin diffusion under MAS conditions.

The longer T1 relaxation times indicate that while spin diffusion is largely sup-

pressed in the nanodiamond lattice, there is still some transfer of energy through this

pathway. This is important for understanding relaxation mechanisms in hyperpolarized

nanodiamonds, and how spin polarization can be transferred from the impurity to spins

in the core of the diamond.

5.2.5 ESR studies

Electron spin resonance is a spectroscopic technique used to study the free electrons

in atoms and molecules by observing the resonance frequencies of the paramagnetic

species. The concepts behind ESR are analogous to those of NMR. When placed

in a magnetic field, electronic Zeeman splitting occurs, and the paramagnetic species

absorb energy at the resonance frequencies. ESR was first observed independently by

Zavoisky [193] and Bleaney [194] in 1944.

To measure an ESR spectrum, typically a sample is placed in a magnetic field, and

microwaves are applied at a fixed frequency f to probe the energy levels. The magnetic

field is varied, which changes the energy splitting of the Zeeman levels. When the

energy gap matches the microwave frequency, spins are driven between the two energy

levels, and a resonance condition is observed. The change in absorbed microwave

power (measured as a cavity response) as a function of the change in magnetic field is

recorded, and constitutes an ESR spectrum. Integrating the spectrum results in the

power absorbed by the paramagnetic species, and integrating the absorption spectrum

results in the number of spins making up the feature. Most ESR spectra are measured

at X-band frequencies (between f = 9 and 10 GHz) at a magnetic field of approximately

B = 0.35 T.

The width and position of the ESR line yield information about the electron’s

environment and how free the electron is (denoted by the g-factor) respectively. In

particular, for this work, ESR studies yield information about the defects found in

nanodiamonds, and the particular energy and frequency of the electronic transitions

(f = ωe), which in turn yields information about which frequencies can be used to drive

electron-nuclear flip-flop transitions and hyperpolarize the diamond (f = ωe ± ωn).
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5. NANODIAMOND CHARACTERIZATION

Additionally to being the source of hyperpolarization, the defect sites are the primary

source of 13C T1 relaxation, and a detailed understanding of the electronic defects is

important for maximizing hyperpolarization conditions with minimal relaxation.

The ESR measurements were performed on a Bruker EMX-plus X-Band ESR

spectrometer, with a Bruker rectangular cavity at room temperature. Approximately

100 mg of each ND (as a dry powder) was placed in a 4 mm diameter suprasil tube.

The cavity was tuned for each sample, and the Q-factor ranged from Q = 5000 (for

small NDs) to Q = 10000 (for large NDs). The spectrometer frequency ranged between

f = 9.852−9.854 GHz. To ensure no signal distortion or power broadening, spectra were

acquired with parameters: modulation amplitude Bmod = 1 Gs, modulation frequency

fmod = 100 kHz, conversion time t = 15.06 ms, time constant t = 0.01 ms and power

P = 0.25 µW (59 dB attenuation).

All NDs exhibited features at B ∼ 348 mT, B∼ 351.5 mT, and B∼ 355 mT, see

Fig. 5.11. The ESR spectra comprise three components: a broad spin-1/2 lorentzian

component (black), attributed to carbon dangling bonds near the surface of the dia-

mond, a narrow spin-1/2 lorentzian component (yellow), attributed to defects within

the diamond lattice, see Fig. 5.2, and a P1 centre component (green), see Fig. 5.3c.

The P1 centre component has three peaks (the central mI = 0 transition and two

hyperfine transitions mI = ±1) due to the hyperfine coupling between the 14N spin-1

nucleus and the free electron of the substitutional nitrogen atom.

Each component was simulated in Easy Spin [195] and added together to make

the final simulated spectrum (red). The linewidth, g-factor and amplitude, of each

component, were varied and the best fit was found using a least squares analysis. The

g-factors remained constant over all HPHT NDs measured, with gP1 centre = 2.0016,

and gnarrow = gbroad = 2.0023 .

The total number of spins in the NDs decreased as particle size increased, see

Fig. 5.12a. This trend is also seen for the surface spins (broad spin-1/2 component)

and for the defects within the diamond (narrow spin-1/2 component). In contrast the

number of P1 centre defects increases as particle size increases. This can be explained

by smaller diamonds having a higher surface to volume ratio (with more surface spins

and less core spins) than larger diamonds.

The line widths of the three components comprising the ESR spectra, remained

constant across all particle sizes, indicating that all NDs show similar electronic defects,
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Figure 5.11: ESR spectra of HPHT NDs. ESR spectrum of a) 25 nm HPHT ND

b) 210 nm HPHT ND and, c) 2 µm HPHT ND. Data (blue) is simulated (red) with three

components: a broad spin-1/2 component (black) a narrow spin-1/2 component (yellow)

and a P1 centre component (green). Fit parameters are linewidth, relative intensity and

g-factor. The spectrometer frequency was f = 9.853 GHz (25 nm ND, 210 nm ND), or

f = 9.854 GHz (2 µm ND).
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Figure 5.12: ESR spectra simulation results of HPHT NDs. a) Relative number of

spins a function of particle size. Individual components (same colour scheme as in Fig. 5.11)

were integrated to determine the number of spins. The total number of spins, the broad

spin-1/2 component and the narrow spin-1/2 component decreases with increasing particle

size while the number of P1 centres increases as ND particle size increases. Data was

normalized to the highest electron signal (18 nm ND). b) Line widths of the simulated

components of the ESR spectra. The linewidths stay constant over the particle size range

measured. Error bars (shown when larger than the data points) are extracted from the

best fit to the ESR data, and are approximately 10%.
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Figure 5.13: Comparison of ESR spectra of HPHT and AO NDs. ESR spectra of

HPHT ND (black) and AO ND (red) compared for a) 25 nm ND, b) 50 nm ND, c) 210 nm

ND, and d) 2 µm ND. For small NDs, the AO ND ESR spectra are narrower than the

HPHT ND spectra, while for larger NDs there is no difference between the ESR spectra

of HPHT and AO NDs. The spectrometer frequency was f = 9.852 GHz (25 nm ND), or

f = 9.853 GHz (50 nm ND, 210 nm ND, 2µm ND).

see Fig. 5.12b.

The air oxidation process etches away the surface of the nanodiamond, remov-

ing surface spins, reducing the total number of free electrons and narrowing the ESR

spectra, see Fig. 5.13 and Fig. 5.14.

The largest difference in ESR spectra is seen for small NDs, such as the 25 nm

ND, while no difference is seen for large NDs such as the 2 µm ND. For small NDs the

relative amount of broad component is reduced by a factor of 3 in the case of AO ND

compared to HPHT ND. The narrow component decreases slightly, and the P1 centre

component does not change after air oxidation. The change is most evident for small

diamond due to the large surface to volume ratio and abundance of surface spins.
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Figure 5.14: Comparison of the components comprising the ESR spectra of

small HPHT and AO NDs. ESR spectra of a) 25 nm HPHT ND, b) 25 nm AO ND,

c) 50 nm HPHT ND, d) 50 nm AO ND, e) 210 nm HPHT ND, and f) 210 nm AO ND.

Same colour scheme as in Fig. 5.11. The AO process reduced the amount to surface spins

(as can be seen in the decrease of the broad spin-1/2 component). The narrow spin-1/2

component changed only slightly, and the P1 centre component remained unchanged. See

Fig. 5.13 for the spectrometer frequency used.
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ND particle Narrow spin-1/2 Broad spin-1/2 P1 centre

g spins lw [mT] g spins lw [mT] g spins lw [mT]

25 nm HPHT 2.0023 0.14 0.236 2.0023 0.86 0.817 2.0016 0.001 0.041

25 nm AO 2.0024 0.11 0.211 2.0024 0.30 1.08 2.0016 0.002 0.040

50 nm HPHT 2.0023 0.09 0.234 2.0023 0.76 0.951 2.0017 0.005 0.078

50 nm AO 2.0025 0.08 0.215 2.0025 0.24 1.04 2.0017 0.015 0.098

210 nm HPHT 2.0024 0.07 0.270 2.0024 0.42 0.930 2.0017 0.090 0.120

210 nm AO 2.0025 0.06 0.243 2.0025 0.14 1.109 2.0017 0.089 0.116

Table 5.4: Summary of the fit component parameters for AO and HPHT NDs.

A comparison of the g-factor, relative number of spins and linewidth (lw) of the three

components (broad spin-1/2, narrow spin-1/2 and P1 centre) comprising the ESR spectrum

for HPTH and AO NDs.

The linewidths of the three components do not change significantly after air

oxidation, and the g-factors for the broad and narrow spin-1/2 components increased

slightly, see Table 5.4.

An understanding of the ESR spectrum is important for hyperpolarization and

choosing the pumping frequency for negative or positive polarization. Changes in the

ESR spectrum, such as with air oxidation, can result in changes in the hyperpolarization

spectrum of the NDs, and different T1 and T2 relaxation pathways for the 13C spins.

An estimate of the electron T1 relaxation time can be made by measuring the

peak to peak signal amplitude of the ESR line as a function of driving microwave

power [196]. As the ND ESR spectra comprise three components with different g-factors

and linewidths contributing to different parts of the spectra, each component must be

examined separately. The peak to peak signal amplitude for the three components

are shown in Fig. 5.15. Peak to peak signal saturation is not observed for either the

broad or the narrow spin-1/2 components, and we are unable to estimate the electron

T1 relaxation times for any of the spin species. We infer from the saturation curves

that the P1 centre has the longest T1 relaxation time, followed by the narrow spin-1/2

component, and then the broad component. AO NDs require more power for saturation,

indicating that the electrons have shorter relaxation times in AO NDs than in HPHT

NDs, see Fig. 5.15a.
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Figure 5.15: Power saturation of the ESR spectrum of ND. The peak to peak

signal amplitude as a function of microwave power is shown for a) 25 nm HPHT ND (dots)

and 25 nm AO ND (crosses), and b) 210 nm HPHT ND. The total peak to peak amplitude

is shown in red, and the peak to peak signal amplitude of the broad spin-1/2 component,

narrow spin-1/2 component, and P1 centre component are shown in black, yellow and green

respectively. Lines are a guide to the eye. A difference is seen in the saturation behavior

between the AO and HPHT ND. The curves do not reach saturation with the maximum

power available.

An understanding of electron relaxation times can give clues to which DNP mech-

anism will dominate when hyperpolarizing nanodiamonds.

5.2.6 Raman studies

Raman spectroscopy [197] is a spectroscopic technique used to observe vibrational and

rotational modes in a molecule or compound. When a system is subject to monochro-

matic light, the light (usually from a laser) interacts with molecular vibrations, phonons,

or other excitations in the system, resulting in inelastic scattering, and thus shifts in

the laser frequency. These shifts in energy give direct information about the vibrational

modes in the system.

In Raman spectroscopy, a sample is illuminated with laser light, and scattered

light is collected with a lens and monochromator and dispersed onto a detector.

Raman spectroscopy was used to examine the vibrational modes in NDs, in par-
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Figure 5.16: Raman spectroscopy of ND. a) Comparison of 25 nm AO (red) and

25 nm HPHT (blue) ND and b) comparison of 50 nm AO (red) and 50 nm HPHT (blue)

ND. For both the 25 nm ND and 50 nm ND, the AO ND has a much smaller signal from

sp2 hybridized carbon, found on the surface of ND. c) Comparison of 210 nm HPHT

ND (blue) and 210 nm NAT ND (black). d) Raman spectrum of 2 µm HPHT ND. A

baseline subtraction was performed on the spectra to remove signal from the fluorescence

of diamond, and the spectra are normalized to the sp3 hybridized peak at ν̃ ∼ 1330 cm−1.
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5. NANODIAMOND CHARACTERIZATION

ticular to examine the sp2 and sp3 phase composition and surface groups, see Fig. 5.16.

A Renishaw inVia Raman microscope with laser light at an excitation wavelength

λ= 488 nm and power P = 50 µW was used to measure the Raman spectra.

The peaks at ν̃ ∼ 1330 cm−1 and ν̃ ∼1590 cm−1 correspond to sp3 hybridized

(tetrahedral) nanodiamond, and sp2 hybridized nanodiamond respectively [20]. Al-

though there is more sp3 hybridized carbon than sp2, the cross sectional area for sp2

hybridized diamond is larger than that for sp3 hybridized diamond (50-250 times at

λ= 514.5 nm [198–200]), resulting in a more prominent peak.

The ratio of sp2/sp3 hybridized diamond decreases as particle size increases, as

the sp2 hybridized diamond is mainly found on the surface of the ND, and smaller NDs

have a higher surface to volume ratio than larger NDs.

The air oxidation process etches away the diamond surface, removing sp2 hy-

bridized carbon from the diamond surface, see Fig. 5.16a, 5.16b, resulting in more dia-

mond phase in the NDs and a cleaner diamond surface. The amount of sp2 hybridized

carbon dropped by a factor of 15 for 25 nm ND and a factor of 5 for 50 nm ND.

We observe that the NAT ND has a higher sp2/sp3 ratio than HPHT ND, see

Fig. 5.16c, which could be due to surface treatments that were performed on the dia-

monds after the ball-milling size reduction process.

The Raman spectroscopy confirms that the AO process is etching away the surface

of the diamond, while leaving the core of the diamond unchanged. The Raman spectrum

also confirms that we have crystalline diamond in the HPHT, AO and NAT NDs, with

minimal graphitic carbon.

5.3 Summary

NMR, ESR, MAS, SEM and Raman studies were performed to characterize various

NDs. T1 relaxation in ND is dominated by paramagnetic impurities. Small NDs have

a T1 relaxation behavior well described by a stretched exponential, corresponding to

relaxation by an inhomogeneous distribution of defects, while large NDs have a relax-

ation better described by a double exponential. T1 relaxation times of up to 1 hour

are measured. The main defects in NDs are P1 centres, spin-1/2 surface defects and

spin-1/2 core defect. Air oxidation of the ND etches away the surface and removes

surface spin-1/2 defects. MAS studies showed a double Lorentzian line shape to the
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5.3 Summary

NMR peak, attributed to 13C surface spins and 13C core spins. Raman studies showed

sp2 hybridized carbon on the surface of the ND that can be removed with air oxidation.

Understanding the electronic and nuclear characteristics in important for understand-

ing polarization build up and relaxation pathways of the hyperpolarized state, and

hyperpolarization mechanisms.

97



5. NANODIAMOND CHARACTERIZATION

98



6

Hyperpolarized nanodiamond

with long spin-relaxation times

E. Rej, T. Gaebel, T. Boele, D.E.J. Waddington and D. J. Reilly

ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The

University of Sydney, Sydney, NSW 2006, Australia

The use of hyperpolarized agents in magnetic resonance (MR), such as 13C-labeled

compounds, enables powerful new imaging and detection modalities that stem from a

10,000-fold boost in signal. A major challenge for the future of the hyperpolarization

technique is the inherently short spin relaxation times, typically less than 60 seconds

for 13C liquid-state compounds, which limit the time that the signal remains boosted.

Here, we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond

(ND) can be hyperpolarized at cryogenic and room temperature without the use of free-

radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding

1 hour. Combined with the already established applications of NDs in the life-sciences

as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug

delivery, these results extend the theranostic capabilities of nanoscale diamonds into

the domain of hyperpolarized MR1.

1This chapter is adapted from Rej et al. Hyperpolarized nanodiamond with long spin-relaxation times.

Nature Communications 6, 8459 (2015).
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6. HYPERPOLARIZED NANODIAMOND WITH LONG
SPIN-RELAXATION TIMES

6.1 Introduction

Nanoparticles, having found use in the treatment of cancers [1,2], the study of autoim-

mune diseases [3], and cardiovascular affections [4], are currently of interest as thera-

nostic agents needed for the advent of personalised medicine [201]. These nanoscale

systems are expected to integrate imaging, tracking, and monitoring capabilities with

targeted delivery of compounds to tumours, cellular functions and processes, or specific

organs. Especially powerful is the modality established by combining high-resolution

magnetic resonance imaging (MRI) with nanoparticles that have been hyperpolarized to

act as contrast agents, as has been achieved recently using silicon compounds [38,202].

Nanodiamonds (ND) are well-suited to act as theranostic platforms, having demon-

strated an innate compatibility with biological environments and low toxicity in com-

parison to other nanoscale structures [17, 18]. The readily modifiable surface, which

is easily functionalized [19], has enabled NDs to be conjugated to specific molecules

[21], opening a plethora of biomedical applications that include pharmaceutical deliv-

ery [18,23,24,203] and intracellular tracking [26] based on the unique optical properties

of defects in the diamond lattice [21]. A particular defect, the nitrogen-vacancy (NV)

colour centre, has also established a sensitive means of detecting minute magnetic fields

on the nanoscale using methods pioneered in controlling quantum devices [27,28,204].

Beyond luminescence-based techniques however, approaches to non-invasively detect

and image diamond nanoparticles in vivo have to date, been lacking.

Standard MRI modalities (operating at few Tesla magnetic fields) are not well

suited to resolving weak concentrations of ND in vivo since diamond is a dilute spin

system (1.1% 13C) and carbon has a small gyromagnetic ratio. This limitation can,

in principle, be overcome using hyperpolarization techniques [44] which can result in

a 10,000-fold boost in signal over that from typical thermal polarization conditions

[36, 37]. Hyperpolarized molecular compounds such as [1-13C]pyruvate, for example,

have recently been used to study tumour metabolism in humans by first transferring

electron spin polarization to 13C nuclei at cryogenic temperatures [43].

In these liquid-state compounds, hyperpolarized 13C spins typically relax to ther-

mal equilibrium on timescales T1 less than 60 seconds [44]. In contrast, bulk, high-

purity diamond can exhibit 13C T1 times of many hours [46] and recent work using opti-

cal techniques to manipulate NV centres [47–50] has produced significant polarization in
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6.2 ESR spectra and nuclear spin relaxation

large single-crystal samples. The challenge therefore is to maintain these long spin life-

times even when diamond is produced in nanoparticle form and in sufficient quantities

to be of clinical relevance. Addressing this challenge requires a detailed understand-

ing of particle size effects, the structure of internal crystal defects, contaminants, and

spin-relaxation channels that arise from the nanoparticle surface [51,52,189,190]. Bal-

ancing these constraints, the hyperpolarization mechanism also requires the presence

of unpaired electrons which, in the case of liquid 13C compounds are typically added

to the agent in the form of organic free-radicals.

In the present work we extend the opportunity for deploying nanodiamond in

life-science applications by demonstrating its suitability as a MR marker and contrast

agent for MRI. Using electron spin resonance (ESR) we observe that inexpensive com-

mercially available ND, produced via the high pressure high temperature (HPHT) pro-

cess, surprisingly exhibits a suitable balance of paramagnetic centres from defects and

surface dangling bonds to allow both hyperpolarization and the preservation of long

spin relaxation times. In comparison to previous results on detonation ND [189, 190],

the 13C relaxation data reported here exhibits a 1,000-fold extension in T1 together

with signal enhancements that compare favorably with hyperpolarized 13C liquid-state

compounds. Particle size is found to significantly effect both the relaxation time and

amount of achievable hyperpolarization, opening the possibility of selectively detecting

NDs of a particular size distribution.

In addition to showing significant hyperpolarization at T = 4 K, we demonstrate

that a sizeable signal enhancement is also possible at liquid nitrogen (77 K) and room

temperature using dynamic nuclear polarization (DNP), alleviating the need for expen-

sive liquid helium and potentially enabling new in vivo modalities. Finally, we examine

the spin dynamics of the ND core and its surface using hyperpolarized states to resolve

new phenomena associated with defects in this versatile material system.

6.2 ESR spectra and nuclear spin relaxation

Turning to the experimental results, SEM images (see Fig. 6.1a, Fig. 5.4, and Fig. 5.5)

and the ESR spectrum and simulation results (see Fig. 6.1b) for a representative

ND sample are shown. The ESR spectrum, which indicates the predominant types of

defects available for use in hyperpolarization, can be seen to comprise three components
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Figure 6.1: ESR and SEM of nanodiamond. a) Electron micrographs of various

sized NDs used in this work. Top left: scale bar = 2 µm, top right: scale bar = 400 nm,

bottom left: scale bar = 200 nm, bottom right: scale bar = 100 nm. b) ESR spectrum

of 210 nm ND (red). The black line is a simulated spectrum consisting of three compo-

nents: a narrow spin-1/2 component (yellow) a broad spin-1/2 component (blue) and a

P1-centre component (green). Each of the three components were simulated separately

using Easyspin [195] and added together to make the final spectrum.

that sum to produce the black simulation curve in Fig. 6.1b. These are a broad spin-

1/2 Lorentzian component (blue trace) attributed to carbon dangling bonds near the

surface of the ND, a narrow spin-1/2 Lorentzian component (yellow trace) attributed to

defects within the diamond lattice, and a component associated with P1-colour centres

(green trace) which constitutes a substitutional nitrogen atom with the extra electron

hyperfine coupled to the 14N spin-1 nucleus. The number of P1 centre impurities,

which lead to central (mI = 0) and hyperfine transitions (mI = ±1), increases as ND

size increases, while the number of spin-1/2 impurities (broad and narrow spectra)

decreases as ND size increases (see Fig. 5.11 and Fig. 5.12).
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Figure 6.2: Room temperature 13C relaxation times, T1, as a function of dia-

mond particle size at B = 7 T. Relaxation times were measured using the saturation

recovery method with build-up time of magnetization M determined by fitting a stretched

exponential M = M0(1−exp(−(t/T1)α) or double exponential. Small NDs exhibit a buildup

with α = 2/3 (black circles), with larger NDs better fitted by a stretched exponential with

α = 1/2 (grey circles) or double exponential fits with a long and short component shown

as black squares. Error bars are given by the standard deviation and are shown when they

exceed the size of the data point.

These defect sites also provide the primary mechanism for 13C nuclear spin relax-

ation in ND. We find that the T1 relaxation time grows with increasing particle size,

as shown in Fig. 6.2. In determining these T1 times, the spin polarization build-up for

smaller diamonds is well described by models [176,179] in which the dipolar interaction

of nuclear spins with paramagnetic impurities dominates over nuclear spin diffusion,

leading to polarization curves that follow a stretched exponential form [see Section 6.8].

Diamond particles with average diameter approaching 1 µm however, are better char-

acterized by a double exponential in their polarization build-up with time. For 2 µm

diamonds the longer component of the double exponential yields a T1 time of 63 min

(see Section 6.8, Fig. 5.6 and Fig. 5.7).
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Figure 6.3: Brute force hyperpolarization of ND. Enhanced signal following brute-

force hyperpolarization of 2 µm ND at T = 35 mK and B = 4 T for 3 days in a dilution

refrigerator. Following a 40 s transfer in a field of 630 mT, detection is at B = 7 T, via

a π/2-pulse (inset) with decay (T1 ∼ 53 min) measured via a sequence of small tip angles

(main panel).

6.3 Brute-force hyperpolarization

The simplest method of increasing the MR signal from ND is to first cool the system

to low temperatures in a high magnetic field to increase the Boltzmann population

difference in the nuclear spins, a process termed brute-force polarization. If the NDs

are subsequently moved to a different magnetic field and temperature, the spin system

can be considered hyperpolarized until it thermalizes on timescale T1. Using the brute

force method we hyperpolarize 2 µm ND at T = 35 mK and B = 4 T in a dilution

refrigerator fitted with a rapid sample exchange system that allows fast (< 1 min)

transfer of the ND sample to a room temperature B = 7 T spectrometer for detection.

A π/2 pulse applied immediately after transfer produces a signal (see inset Fig. 6.3)

that is enhanced by an order of magnitude when compared to the signal from 2µm ND

at thermal equilibrium and B = 7 T. To measure the relaxation time a series of small

tip-angles is used to destroy the polarization over 0.5 hours, as indicated by the decaying

signal in Fig. 6.3. The decay is a combination of the T1 relaxation of spins in the ND
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Figure 6.4: DNP via the solid effect used to hyperpolarize ND. a) Energy level

diagram for a dipolar coupled electron spin-1/2 and a nuclear spin-1/2 system in a mag-

netic field. The ESR, NMR, flip-flop and flip-flip transitions are shown. Driven flip-flop

transitions (blue) at a frequency f = ωe − ωn involve a mutual electron flip and a nuclear

flop resulting in a positive nuclear polarization, shown in b). Driven flip-flip transitions

(red) result in a negative nuclear polarization.

(T1 ∼ 53 min) and polarization lost from the tipping pulses (see Section 6.8 for details).

6.4 Hyperpolarization via the solid effect

To achieve even higher polarizations and larger signals, DNP [71] can be used to transfer

electron polarization to the 13C nuclear spins in the diamond [46]. As described above,

the source of these unpaired electrons in ND are paramagnetic centres in the lattice,

dipolar coupled to a surrounding nuclear spin bath. Application of a microwave mag-

netic field slightly below the electron spin resonance frequency can drive spin flip-flops

between nuclear and electron spins associated with centres, leading to a net transfer

of spin polarization from the electrons to the nuclei near the impurities in a process

known as the solid effect (see Fig. 6.4).

Turning to the main results of our work, we demonstrate that DNP can be used to

hyperpolarize commercially available NDs, which as we have shown above, also exhibit

long relaxation times. In the case of the largest diameter diamonds (2 µm) a T = 4 K

signal enhancement of ∼ 400 is achieved over thermal equilibrium, corresponding to a

nuclear polarization of ∼ 8 %, as shown in Fig. 6.5. Comparing this hyperpolarized

signal to the thermal signal at room temperature gives an enhancement of 13,500 similar

to what has been demonstrated with isotopically labeled 13C liquid compounds [44]. We
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Figure 6.5: NMR signal of hyperpolarized nanodiamond. a) Hyperpolarized signal

enhancement of 380 times for 2 µm ND at T = 4 K. Inset: Zoom of NMR signal taken

at thermal equilibrium (T = 4 K) with no microwaves. b) NMR free induction decay

of 2µm ND after a π/2-pulse at T = 4 K. Top: Signal after hyperpolarization. Bottom:

Thermal polarization signal.

estimate that for a ND concentration of 1 mg mL−1, this amount of hyperpolarization

leads to a spatial resolution better than 2 mm × 2 mm in a preclinical MRI scanner

(see Section 6.10.1). Note that ND exceeding this concentration has already been used

for therapeutic delivery in vivo [24].

It is possible that by hyperpolarizing the nuclear spin system using DNP, new

relaxation channels are created that shorten the relaxation time. We test this possi-

bility by first polarizing 2 µm ND for 1 hr and then allowing it to decay for 1 hr at

field. The resulting signal, shown in Fig. 6.6a, indicates a T1 comparable to measure-

ments performed at thermal equilibrium. As a further demonstration of the potential

for hyperpolarized ND, we show in Fig. 6.6b that the enhanced polarization can be

maintained during transfer of the sample from a lower field polarizer to a high field MR

detection system (see Section 6.8 for details).

Unlike hyperpolarized molecular compounds, the use of nanoparticles opens a

new modality that links MR signal strength (and relaxation time) to particle size. For

hyperpolarized ND, we determine a significant size dependence to the signal enhance-
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Figure 6.6: Polarization transfer. a) Signal enhancement of 2 µm ND that was

polarized for 1 hr and then allowed to decay at field (B = 3 T) for 1 hr. b) 2 µm ND

signal enhancement after transfer from the polarizer to a B = 7 T magnet for detection.

The 2 µm ND was polarized for 15 min at T = 4 K. The transfer took place in a field of

B = 730 mT and took approximately 15 s.

ment, as shown in Fig. 6.7. This dependence is most prominent for particle sizes

below∼ 300 nm, where the larger rate of spin relaxation competes with the rate at

which hyperpolarization from DNP occurs. We suggest that this dependence on the

diameter of NDs opens a means of selectively tracking particles based on their size

distribution, potentially of use in determining the integrity of permeable barriers and

epithelium membranes.

For potential clinical use of hyperpolarized MRI, a major drawback of the tech-

nique is the need for liquid helium to cool sample agents during the polarization phase.

This drawback is particularly significant for applications that require MR in remote

locations, for instance in battlefield MRI using ultra-low magnetic fields. In the case

of hyperpolarized ND however, we find that sizeable enhancements are possible at liq-

uid nitrogen temperatures (77 K) (see Fig. 6.7), where cryogens are readily available.

Extending this idea, Fig. 6.7 also shows that hyperpolarization is possible at room

temperature, doing away with cryogens altogether.
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Figure 6.7: DNP enhancement of ND. Signal enhancement as a function of particle

size and temperature at T = 4 K (blue), 77 K (yellow) and 300 K (red). The enhancement

is given by the hyperpolarized signal divided by the thermal signal at each temperature.
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Figure 6.8: Room temperature hyperpolarization in the presence of water.

a) The combination of room temperature signal enhancement and long relaxation times

opens the possibility of in vivo hyperpolarization using a magnetic field shuttling technique.

With the ND agents already administered to the bio-system, hyperpolarization is performed

at low-field where microwave heating is reduced. The field is then ramped on a timescale

much shorter than T1 to enable imaging and detection of the hyperpolarized ND. Figure

shows a repeated sequence with radio frequency π/2 -pulses and acquisition window (ACQ).

b) Hyperpolarization in the presence of water, mimicking in vivo conditions. Even at the

high microwave frequency of 80 GHz, we observe an enhanced signal (red) of ∼ 4 times

compared to the thermal polarization (blue).

6.5 Hyperpolarization in the presence of water

Room temperature hyperpolarization, even for modest enhancements, opens the posi-

bility of new modalities that polarize and detect compounds in vivo. The significant

barrier to this technique is the heating of water and surrounding tissue during the ap-

plication of microwaves needed to perform DNP. Polarizing at low magnetic field and

microwave frequency however, can significantly reduce heating but requires sufficiently

long T1 times to enable magnetic field ramping between polarization and high-field de-

tection conditions [205]. Hyperpolarized nanodiamond appears well suited to explore

this modality, since for example, the signal from 350 nm ND (as a dry powder) can be

enhanced by a factor of 40 at room temperature and exhibits a T1 of several minutes

(long enough for field ramping). Since the polarize and detection sequence can be cy-

cled many times in vivo (see Fig. 6.8a), background noise can be averaged well below
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the limits imposed by one-shot polarize and detect methods.

To test this modality we hyperpolarize a slurry of 125 nm ND and water (200µL

water with ∼ 50 mg ND) at room temperature. Even in the presence of ∼ 80 GHz

microwaves, we observe a 4-fold enhancement of 13C MR signal from the diamond with

little discernible heating of the water (see Fig. 6.8b). This enhancement, which corre-

sponds to a halving of the signal relative to the case without water, suggests that such

modalities may be possible for small animals.

6.6 ND impurity selection and surface modification

The results presented so far are for ND samples readily obtained commercially, without

further treatment or surface modification. We now turn to examine the role that surface

impurities play in both hyperpolarization and relaxation, noting that there is significant

scope to tailor the surface chemistry via passivation and treatment [206]. Our approach

is to effectively perform ESR spectroscopy at the magnetic field used for DNP (B∼ 3 T),

by monitoring the NMR signal enhancement as a function of microwave frequency,

see Fig. 6.9a and Fig. 6.10. At room temperature we observe enhancement spectra

consisting of four peaks that are in agreement with the low-field ESR data shown in

Fig. 6.1b. The position of these peaks correspond to DNP processes at f = ωe±ωn. As

the temperature is lowered, these distinct peaks become dipolar broadened. The high

field DNP spectra are similarly broadened as the particle size is increased, as shown in

Fig. 6.9b.

Modifying the defects or the types of defects within the nanodiamonds can change

the DNP spectra, leading to enhanced polarization and longer relaxation times. We find

that burning off the outer layer of ND using air oxidation (AO) processes [175] removes

some of the broad spin-1/2 component associated with impurities near the surface of

the ND. This can be seen in Fig. 6.9c where we compare the hyperpolarization spectra

of 25 nm AO ND (black) with standard 25 nm ND (grey) (see Fig. 6.11 for larger

NDs). The oxidation process leads to a suppression of the two central lines (f2, f3)

in the spectrum, consistent with removing some of the surface impurities that would

otherwise contribute to the signal.

By adjusting the microwave frequency for DNP, we can select different impurity
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Figure 6.9: ND impurity selection and surface modification. a) Hyperpolarized

signal of 2 µm ND as a function of polarization frequency at T = 4 K (black), 77 K

(purple) and 300 K (blue). The arrows indicate the four frequencies at which polarization

build up and decay were examined. The traces were normalized to 1. Note the features

broaden as temperature decreases. b) Normalized hyperpolarized signal of 2 µm ND

(black), 350 nm ND (blue), 125 nm ND (purple), and 25 nm ND (grey) at T = 4 K as a

function of microwave frequency. More features are visible as the particle size decreases.

c) Comparison of the hyperpolarized signal amplitude as a function of frequency for 25 nm

ND and 25 nm AO ND.
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Figure 6.10: Hyperpolarized signal as a function of polarization frequency at

various temperatures. Hyperpolarized spectra of a) 350 nm ND, and b) 125 nm ND

at T = 300 K (red), 77 K (yellow), and 4 K (blue). The traces have been normalized to 1.

The features appear at the same frequencies for all NDs examined. The peaks broaden

with decreasing temperature, and broaden as particle size increases.
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Figure 6.11: Comparison of the hyperpolarization spectrum for small HPHT

and AO NDs. 13C signal amplitude were measured at T = 4 K after 30 seconds of

polarization of HPHT NDs (black) and AO NDs (red). The signals have been normalized

to the peak at f = 80.880 GHz. Differences in the hyperpolarization spectra at the central

transitions (yellow and green) are more pronounced for smaller NDs (18 nm and 25 nm)

and not present for larger diamonds (125 nm ND). Frequency shifts between the spectra

are due to the differing g-factors and concentrations of paramagnetic impurities in the

AO NDs.
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Figure 6.12: Depolarization of the hyperpolarized signal. a) Depolarization of the

hyperpolarized signal of 350 nm ND at T = 4 K using a small tip angle pulse sequence

(θ = 3.5◦, TR = 15 s). The ND was polarized for 180 minutes at the frequencies indicated

by the arrows in Fig. 6.9a. We see a difference in the decay times of the red trace

(f1 = 80.870 GHz, T1 = 12 s, 2.1 s) and the yellow trace (f2 = 80.930 GHz, T1 = 16 s, 2.5 s).

Data has been multiplied by cos(θ)n−1 to take into account the polarization lost due to

the small tip angle. Fits to the data (solid lines) are double-exponential decay curves.

b) Depolarization of the signal from 350 nm ND after hyperpolarization for 15 min at

T = 4 K at the four frequencies indicated by arrows in Fig. 6.9a and transfer to a T = 7 T

magnet for detection. The decay was examined using a small tip angle sequence (θ = 8◦,

TR = 15 s). Data is shown in red (f1 = 80.870 GHz, T1 = 157 s), yellow (f2 = 80.925 GHz,

T1 = 250 s), green (f3 = 80.990 GHz, T1 = 190 s) and blue (f4 = 81.050 GHz, T1 = 157 s).

sites for use in hyperpolarization. Polarization via the P1 centres, for instance, can

be selected by irradiating at the frequencies corresponding to the outer peaks (f1, f4)

in Fig. 6.9a. This is in contrast to irradiating at the inner peaks (f2, f3) which also

comprise both narrow and broad components from spin-1/2 sites (see discussion of

Fig. 6.1b).

Surprisingly, we find that hyperpolarization due to microwave driving at the inner

peaks takes longer to build up and is retained longer than when driving at the outer

peaks associated with the P1 centres. This behaviour is seen in Fig. 6.12a and Fig. 6.13,

where for 350 nm ND, we compare the decay of hyperpolarization established by driving

at peak f1 or peak f2 in Fig. 6.9a (polarization build up at various frequencies can
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Figure 6.13: Depolarization of hyperpolarized nanodiamond. Depolarization time

of the hyperpolarized signal in 350 nm ND at T = 4 K, measured using a small tip angle

pulse sequence (θ = 3.5◦, TR = 15 s) after the ND was polarized for various times at

f1 = 80.87 GHz (red), f2 = 80.93 GHz (yellow) f3 = 80.99 GHz (green) and f4 = 81.05 GHz

(blue). The depolarization data was fitted with a double exponential function, taking

into account polarization lost due to the small tip angle, with the best fit parameters τ1

(squares) and τ2 (circles) plotted. We observe an increase in depolarization time for longer

polarization times.

be seen in Fig. 6.14, Fig. 6.15, Table 6.1 and Table 6.2, and a comparison of ND and

AO ND can be seen in Fig. 6.16). These results suggest that nuclear spin diffusion

is somewhat suppressed in these systems, since relaxation appears dominated by the

particular impurities selected for polarization via the choice of microwave frequency.

Beyond examining the spin dynamics of ND, these results are of practical inter-

est in optimizing conditions for maximum signal enhancement with minimal relaxation.

As an example, we compare the signal from 350 nm ND, initially irradiated with mi-

crowaves at the four distinct frequencies indicated in Fig. 6.9a and then subsequently

transferred to a B = 7 T system for detection. Following sample transfer, the relax-

ation data in Fig. 6.12b show that a larger polarization is maintained if the nuclei were

polarized using the two central spectra peaks (f2 and f3), in comparison to the outer

peaks associated with the P1 centres (f1 and f4).
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Figure 6.14: Hyperpolarization build up in ND at T = 4 K. Enhancement as a

function of polarization time, normalized to the saturated magnetization taken with no

microwave power (insets) in ND. Polarization build up was measured using a saturation

recovery pulse sequence at the four frequencies f1 (red), f2 (yellow), f3 (green), and f4

(blue) indicated by arrows in Fig. 6.9a. Data is shown for a) 2 µm ND, b) 350 nm ND,

c) 125 nm ND, and d) 25 nm ND. Data is shown in dots and double exponential fits to

the data are shown in solid lines. T1 relaxation times are summarized in Table. 6.1.

116



6.6 ND impurity selection and surface modification

Particle size Frequency [GHz] T1,short [min] T1,long [min]

2 µm ND f1 = 80.880 1.3 16

f2 = 80.940 1.9 19

f3 = 81.000 1.9 19

f4 = 81.060 2.0 19

MW off T1 = 14

350 nm ND f1 = 80.870 0.8 5.2

f2 = 80.940 0.7 4.2

f3 = 81.000 1.4 14

f4 = 81.060 1.0 6.0

MW off T1 = 4

125 nm ND f1 = 80.880 0.2 1.6

f2 = 80.945 0.4 2.8

f3 = 81.005 0.48 2.8

f4 = 81.075 0.34 2.2

MW off T1 = 2.2

25 nm ND f1 = 80.880 0.6 9

f2 = 80.955 1.1 22

MW off T1 = 1.0

Table 6.1: Hyperpolarization build up using saturation recovery. Summary of

the fit parameters for hyperpolarization build up in ND at T = 4 K using a saturation

recovery pulse sequence.
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Figure 6.15: Small tip angle hyperpolarization build up in ND. Signal amplitude

as a function of polarization time in a) 2 µm ND at T = 4 K, b) 350 nm ND at T = 4 K,

c) 2µm ND at T = 77 K, and d) 350 nm ND at T = 77 K. Polarization build up was

measured at the four frequencies f1 (red), f2 (yellow), f3 (green), and f4 (blue) indicated

by arrows in Fig. 6.9a. Data is shown in dots and solid lines are fits to the data (see

Section 6.8 for details). T1 relaxation times are summarized in Table. 6.2.

118



6.6 ND impurity selection and surface modification

Particle size Parameters Frequency [GHz] T1,short [min] T1,long [min]

2 µm ND T = 4 K f1 = 80.880 2.0 16

θ = 9◦ f2 = 80.940 2.3 20

TR = 3 min f3 = 81.000 1.9 18

f4 = 81.060 2.1 18

350 nm ND T = 4 K f1 = 80.870 1.5 8.4

θ = 9◦ f2 = 80.940 1.3 7

TR = 3 min f3 = 81.000 1.6 10.2

f4 = 81.060 1.7 10.2

Particle size Parameters Frequency [GHz] T1 [min]

2 µm ND T = 77 K f1 = 80.880 15.2

θ = 11.25◦ f2 = 80.930 13.5

TR = 2 min f3 = 80.990 16.5

f4 = 81.075 12.0

350 nm ND T = 77 K f1 = 80.860 2.1

θ = 4.5◦ f2 = 80.930 2.0

TR = 20 s f3 = 80.993 1.7

f4 = 81.064 3.0

Table 6.2: Hyperpolarization build up using a small tip angle pulse sequence.

Summary of the fit parameters for hyperpolarization build up in ND using a small tip angle

pulse sequence.
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Figure 6.16: Polarization build up comparison for HPHT and AO NDs. The

normalized 13C signal amplitude as a function of polarization time for 25 nm HPHT ND

(solid dots) and 25 nm AO ND (open circles) at f1 = 80.88 GHz (red) and f2 = 80.97 GHz

(yellow). Lines are exponential fits to the data with best fit polarization build up times:

HPHT ND: f1: τ = 4.0 min, f2: τ = 1.5 min, AO ND: f1: τ = 4.6 min, f2: τ = 3.2 min.

We observe no difference when polarizing at the P1-centre hyperfine transition (red) and a

decrease in the signal and longer polarization times when polarizing at a central transition

(yellow) consistent with removing surface impurities from the diamond.

6.7 Discussion

There is significant scope to further enhance the degree of hyperpolarization in ND.

In particular, by adding microwave capability to our brute force hyperpolarizer at mK

temperature (based on a dilution refrigerator), much larger polarizations appear pos-

sible. Eliminating isolated defects via surface passivation techniques [206] will also

likely result in longer relaxation times. Another direction is to work with isotopically

enriched 13C NDs to increase the number of spins that contribute to the signal and

enhance spin diffusion from polarization sites on the surface to the spins in the core.

Finally, we mention the possibility of using NDs for long time storage of nuclear po-

larization that is transferred to the hydrogen nuclei in an aqueous environment using

cross-polarization sequences [207,208]. Although the efficiency for polarization transfer
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is yet to be experimentally explored, this modality may enable life-science applications

in which nanodiamond is tracked and imaged using standard MRI technology [208].

6.8 Methods

Nanodiamonds. The nanodiamonds used in these experiments were HPHT

NDs purchased from Microdiamant. See Appendix A for a list of the NDs used.

Brute force T1 measurements. The decay of brute force hyperpolarization in

Fig. 6.3 (red dots) was measured using a small tip angle detection sequence (θ = 17◦,

TR = 15 s). The solid red line is a fit to M = M0cos(θ)n−1e−(n−1)TR/T1 resulting in

a T1 of 53 min. The decay is a combination of the T1 decay of the particles and the

signal lost due to RF induced polarization loss with tip angle θ where n is the nth pulse

and TR is the repetition time. Every fifth peak is shown in black.

Hyperpolarization measurements. Measurements were made at a field of

B = 2.88 T with a Redstone Tecmag system and a in-house constructed NMR probe

(design details can be found in Section. 4.1 and Ref [122]) inside an Oxford Instruments

flow cryostat. The microwave source was a tuneable Gunn Oscillator (f = 80.5 -

81.5 GHz) combined with a power amplifier. Microwaves were coupled to the sample

using a waveguide. Polarization transfer measurements were determined using an in-

house constructed NMR spectrometer based upon a National Instruments system and

an NMR probe at a field of B = 7 T. Before polarization the signal was saturated

with 64 × π/2 pulses to null any signal. Enhancement: Measurements were made by

hyperpolarizing the ND at f = 80.855 GHz (4 K, 77 K) and 80.85 GHz (300 K) and then

detecting the signal with a π/2 pulse. The hyperpolarized signal was compared to the

NMR signal with no microwaves and the same polarization build up time. Frequency

sweeps: The frequency was swept between 80.78 and 81.12 GHz in discrete steps of

5 MHz and polarization was measured at every point. The 2 µm ND was polarized for

30 s, 3 min and 3 min at T = 4 K, 77 K, and 300 K respectively. The spectra have been

normalized to 1 for easier comparison. Small tip angle polarization build up: At T = 4 K

data was fitted with a double exponential taking into consideration the polarization lost

due to the detection pulses: M = M0cos(θ)n−1(A1e
−(n−1)TR/τ1 + A2e

−(n−1)TR/τ2). At

T = 77 K data was fitted with a single exponential taking into account polarization

lost due to the small tip angle: M = M0cos(θ)n−1e−(n−1)TR/T1 .
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Depolarization. Measurements at B = 7 T: the ND was polarized for 15 min at

four frequencies (f = 80.87, 80.925, 80.99 and 81.05 GHz in successive experiments) and

then transferred to a B = 7 T magnet for detection. The transfer was performed in a

field of B ∼ 0.7 T, created from rare-earth permanent magnets and took ∼ 20 s. A small

tip angle pulse sequence with 8◦ pulses was used to detect the signal. Enhancement is

compared to ND at thermal equilibrium at B = 7 T. Measurements at B = 2.88 T: The

ND was polarized for 180 minutes at two frequencies and the decay was monitored with

small tip angle pulses (every 15 s). Depolarization data was multiplied by cos(α)(n−1)

to take into account RF induced depolarization. The resulting data was fitted with a

double exponential.
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6.10 Additional measurements

6.10.1 Feasibility of imaging with hyperpolarized nanodiamonds

We expect to perform hyperpolarized ND imaging in a preclinical scanner with a small

tip angle 2D fast spin echo (FSE) sequence, with 1H-13C co-registration. Overlaying

13C images of functionalized nanodiamonds on high resolution 1H anatomical images

would provide information in a similar format to those seen in PET/MRI [209]. Here,

we present calculations estimating a pixel signal-to-noise ratio (SNR) of ∼ 11 for a

nanodiamond concentration of 1 mg mL−1. This SNR value is for 2 mm × 2 mm sized
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pixels in a 5 mm slice assuming significant polarization loss during transfer from po-

larizing cryostat to imager. We note that nanodiamond concentrations of 2 mg mL−1

have previously been used in vivo [24].

First, we consider the fundamental limit to MRI resolution set by the observed

transverse coherence time T ∗2 , which is reached when the frequency line-width of the

signal is approximately equal to the frequency separation between each pixel [210]:

dz ∼ 1

γGπT ∗2
(6.1)

where dz is the pixel length, γ the nuclear gyromagnetic ratio and G is the peak

gradient strength. Our nanodiamond samples have T ∗2 ∼ 250 µs, which corresponds

to a fundamental resolution limit of 0.25 mm in a preclinical scanner or 2.5 mm in a

whole body MRI scanner (assuming typical peak gradient strengths for these systems

of G = 500 mT m−1 and G = 50 mT m−1 respectively).

Next, we consider the pixel SNR that would be possible from our hyperpolar-

ized nanodiamond samples in an imaging experiment. Our 2 µm ND samples have a

polarization after DNP at 4 K, PDNP, of ∼ 8%. The thermal polarization, Pthermal, at

B0 = 7 T and T = 300 K, is 0.0006%, as given by the Boltzmann distribution:

P =
hγB0

2kBT
(6.2)

where γ is the gyromagnetic ratio and kB is Boltzmann’s constant. The free

induction decay (FID), after a π/2 pulse, from a 0.1 g, thermally polarized, 2 µm ND

sample was acquired in our 7 T spectroscopic probe under the matched filter condition,

tacq/T
∗
2 = π/2, where tacq is the acquisition time. The Fourier transform of this FID has

SNRπ/2-thermal = 35. Preliminary transfer measurements between the hyperpolarizer

and 7 T detection magnet have shown a sample transfer efficiency, η, of 10%. Hence, we

predict that, after sample transfer of a hyperpolarized sample to our 7 T spectrometer,
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we will have an SNR post transfer, SNRπ/2-PT, of 45,000,

SNRπ/2-PT = η SNRπ/2-thermal PDNP/Pthermal (6.3)

Scaling this SNR value to give an expected sensitivity in a preclinical imaging

experiment is inherently nontrivial due to the difficultly of estimating noise associated

with coil resistance and losses arising from the sample [211–213]. Here we make an SNR

estimate for a preclinical scanner on the assumption that our SNR is limited primarily

by coil resistance, which is generally true at B = 7 T for mouse coils [214].

The SNR of a pickup coil scales as:

SNR ∝ Br

Ir

1√
4kBTRc

(6.4)

where Br

Ir
is the magnetic field strength of the pickup coil per unit current, T is

the coil temperature and Rc is the coil resistance. Br

Ir
at the centre of an optimized

saddle coil is given by:

Br

Ir
=

√
3µ0N

πd

l√
l2 + d2

(6.5)

where N is the number of turns in the coil, µ0 is the permeability of free space,

l is the coil length, and d is its diameter [215]. If all power dissipation occurs in the

coil, then we can estimate the coil resistance from

Q =
ω0Lc

Rc
(6.6)

where Lc is the coil inductance and ω0 is the resonance frequency. Typically Q

is ∼100 at 75 MHz for preclinical imaging and spectroscopic NMR probes. Assuming

a homogeneous field across the saddle coil, we estimate from Faraday’s law that the
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coil’s inductance scales approximately as [215,216]

Ic ∼
Nl2√
l2 + d2

(6.7)

Assuming a 1 turn 40 mm diameter, 60 mm long saddle coil is used for mouse

imaging, the ratio Br

Ir
is reduced by 95% compared to the 2 turn 6 mm diameter, 13 mm

long coil in our spectroscopic NMR probe. Therefore, the expected SNR after DNP

and transfer to the imager is SNRπ/2-imager = 2,100. This result is very similar to that

obtained when the resistance is simply scaled by the ratio of the wire lengths in the

coils.

We envision using a small tip angle 2D FSE sequence, similar to that used in

Ref. [38], to image 13C. When using a CPMG sequence, our nanodiamond samples

have demonstrated T2 values of approximately 100 ms, which would then allow for

many echoes, making a FSE sequence feasible. Based on previous calculations for a

2D gradient-recalled echo (GRE) sequence, we estimate the pixel SNR of a 2D FSE

imaging sequence to be [217,218]

SNRpixel =
N

N2
0

(
SNRπ/2-imager

)
sin θ (6.8)

where N is the number of pixels across an N × N image, N0 is the number of

pixels across the object, θ is the tip angle (setting the acquisition time tacq ∼ T ∗2 ). If

the 0.1 g of ND powder in our sample is uniformly distributed through a 40 mm ×
40 mm × 5 mm phantom there is a ND concentration of 16 mg mL−1. For a 32 × 32

pixel image with 2 mm × 2 mm resolution and 5 mm slice thickness, N = 32, N0 = 20.

For tip angles 10◦ and 90◦, this gives SNRpixel = 30 and SNRpixel = 170 respectively.

Normalizing this value, we predict SNRpixel = 11 at 1 mg mL−1 for a 90◦ tip angle.

Hence, we estimate that there will be sufficient SNR for hyperpolarized nanodia-

mond imaging. In practice, the measured SNR will deviate from these values depending

on the actual sensitivity of the detection coil and polarization lost during sample trans-

fer. We have also not considered the loss of spin coherence due to T2 effects during
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the acquisition sequence. These effects will cause some degradation of the SNR at

higher spatial frequencies. A range of linewidth narrowing sequences developed for

solid imaging may also help to improve image quality [210].

6.10.2 Hyperpolarization build up in ND at off resonant MW fre-

quencies

By adjusting the microwave frequency we can select which impurity is used for hy-

perpolarization. This results in different polarization build up times and decay times,

depending on the driving frequency, see Fig. 6.12, Fig. 6.13, Fig. 6.14, Fig. 6.15,

Table 6.1, and Table 6.2. For example, when polarizing with spin-1/2 impurities, po-

larization takes longer to build up and is retained longer than when polarizing with

P1 centre impurities. Testing this further, the polarization build up time was mea-

sured as a function of microwave frequency over the entire hyperpolarization frequency

spectrum, see Fig. 6.17.

The slowest polarization build up occurs at the hyperpolarization peaks, where

maximum polarization occurs (indicated by arrows in Fig. 6.9a). At intermediate

frequencies, we obtain less polarization, which saturates at a faster rate. This polariza-

tion is attributed to defects making up the broad spin-1/2 ESR component. The broad

spin-1/2 component of the ESR trace is wide enough to drive hyperpolarization over

the entire frequency range measured.

We again observe that the two central frequencies (due to surface and core spin-

1/2 impurities as well as the P1-centre impurity) have build up that occurs at a faster

rate than the build up at the two outer peaks (due to only the P1-centre impurities).

Lastly, we note that although the hyperpolarization off resonance of the main four

hyperpolarization peaks occurs at a faster rate, the amount of polarization is lower,

and there is no net enhancement gain.

6.10.3 Depolarization of the hyperpolarized signal in a stray magnetic

field.

Hyperpolarized MRI involves hyperpolarizing nanoparticles in a polarizer, followed by

transfer to another NMR or MRI magnet for detection. Although this transfer process

is usually fast, the low magnetic fields can lead to significant polarization loss.
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Figure 6.17: 13C polarization build up as a function of microwave frequency.

a) A 3D-plot and b) a surface plot of the 13C signal amplitude of 350 nm ND at T = 77 K,

as a function of driving microwave frequency. The 13C signals were measured using a

small tip angle pulse sequence, (θ = 1.66◦ with detection pulses every 15 sec). c) The

polarization build up time (red dots) when fitted with an exponential function taking into

account polarization lost due to the tip angle. Error bars are from the fit. The frequency

spectrum at 25 min of polarization (blue) is overlayed.
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In our initial polarization transfer measurements, we lost ∼ 90% of the hyperpo-

larized signal, see Fig. 6.3and Fig. 6.12a. Even with this significant signal loss, the

polarizations are still high enough to be detected in an MRI scan, however, any addi-

tional signal would lead to more sensitivity, a higher signal to noise ratio and longer

imaging times.

Here we examine the magnetic field dependence of the polarization loss (in the

stray field of the hyperpolarizer), in order to improve the polarization transfer process,

see Fig. 6.18.

At both T = 300 K and 77 K, there is no significant loss of hyperpolarization

above B ∼ 500 mT. After that there is a steady decrease in the 13C signal and ∼ 90 %

signal is lost at B = 5 mT (the field at the top of the cryostat).

It is possible that at B = 50 mT and B = 100 mT there could be additional

depolarization from the coupling of the NV-centre and 13C spins systems (due to the

LACs at these two fields). However we observe no additional depolarization. This

could be due to the low concentration of NV centres in our NDs, or that the coupling

happens on a longer time scale than the T1 depolarization.

Similarly as for depolarization measurements at high magnetic fields, see Fig. 6.12a,

we see more polarization retained when polarizing at the central peaks (due to P1-centre

and spin-1/2 impurities, shown in yellow) than at the outer peaks (due to only P1-centre

impurities, shown in red), indicated by arrows in Fig. 6.9a.

Although during polarization transfer, the ND was kept in a field of B = 500 mT

made from permanent magnets, the ND was in a low field of B ∼ 5 mT at the top of

the hyperpolarizer and detection magnet. Ideally we would like to keep a magnetic field

B > 200 mT throughout the entire transfer to retain as much polarization as possible.

Such a field could be implemented by constructing a magnetic tunnel [219] between the

polarizer and MRI magnet.

6.10.4 Hyperpolarizing nanodiamond using frequency modulation

All ND hyperpolarization reported involved continuously driving the system at a set

frequency. However, if the ESR linewidths are broad, this only excites a small section

of the spectral breadth, and hence not all electrons take part in hyperpolarization.

Frequency modulation [122, 220, 221] of the driving microwave radiation can excite

multiple sections of the ESR line, leading to additional flip-flop interaction and more

128



6.10 Additional measurements

1.0

0.0

0.2

0.4

0.6

0.8

13
C 

sig
na

l a
m

pl
itu

de
 [A

U
]

1.0

0.0

0.2

0.4

0.6

0.8

13
C 

sig
na

l a
m

pl
itu

de
 [A

U
]

300 K depolarization 

77 K depolarization

0.01 0.1 12 3 4 5 6 75 6 7 2 3 4 5 6 7 2 3

0.01 0.1 12 3 4 5 6 75 6 7 2 3 4 5 6 7 2 3

Magnetic field [T]

Magnetic field [T]

MW f = 80.88 GHz
MW f = 80.95 GHz

MW f = 80.925 GHz
MW f = 80.845 GHz

a)

b)

Figure 6.18: Depolarization of the hyperpolarized signal in a stray magnetic

field. 13C signal amplitude of 2 µm HPHT NDs after 15 min of polarization and 2 sec of

depolarization in the stray field of the B = 3 T magnet at a) T = 300 K and b) T = 77 K.

After depolarization the ND was lowered back to the centre of the magnet for detection.

The microwaves were switched off during detection and depolarization. Signals have been

normalized to the signal with no depolarization. We observe no significant depolarization

above B ∼ 500 mT, and a decrease to 10% of the signal at B = 5 mT. More polarization

is retained when polarizing using spin-1/2 and P1 centre defects (yellow dots) than when

polarizing using only P1 centre defects (red dots).
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Figure 6.19: Hyperpolarizing nanodiamond using frequency modulation. Left:
13C signal from 350 nm ND at T = 300 K as a function of driving microwave frequency,

f , for modulations: f (no modulation) (blue), f ± 66 MHz (red), f ± 47 MHz (black), and

f±20 MHz (green). The ND was polarized for 2 min at a sweep rate of 60 kHz. We observe

no additional hyperpolarization, however we see a broadening of the hyperpolarization

features. Right: Modulating at f ± 66 MHz, as a function of sweep rate. Increasing this

rate did not lead to additional signal enhancement.

hyperpolarization. Here we examine the signal enhancement as a function of the driving

microwave frequency modulation, see Fig. 6.19.

We see no additional signal enhancement with modulation, however we observe

a broadening of the frequency spectrum with increasing modulation, consistent with

exciting a broader section of the ESR line. Increasing the sweep rate of the modulation

did not increase the signal enhancement. This could be due to the combination of

the sweep rate and electron T1 relaxation times being too fast to build up additional

polarization. Decreasing the temperature could result in a decrease of the electron T1,

and hence enhancement through frequency modulation.

6.10.5 Spin-spin interactions in diamond

For MRI using nanoparticles, a thorough understanding of the spin-spin interactions

is necessary, as this limits both pulse sequences and image acquisition windows that

can be used to acquire a hyperpolarized MRI image. While the T2 spin-spin relaxation

time in dilute crystalline lattices is typically very short, (T2 ∼ ms), providing con-
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siderable challenges for acquiring an MRI image, an interesting phenomenon has been

observed, which can extend T2 through multiple spin echoes. Usually the transverse

magnetization decoheres to zero, however when measuring under CPMG conditions,

the decoherence can approach a steady non-zero value [222,223]. This long tail of spin

echoes can be used to increase the MRI imaging acquisition window, boosting the signal

to noise and allowing for MRI images of nanoparticles.

The T2 relaxation times of various NDs were measured under Hahn echo condi-

tions, see Fig. 6.20a. We found that at B = 7 T and T = 300 K the T2 relaxation time

ranged from T2 = 3 ms for small NDs to T2 = 1.5 ms for larger NDs. We attribute the

T2 relaxation to P1 centre defects in the core of the NDs, with larger NDs having more

P1 centre and hence shorter T2 relaxation. We saw no significant difference between

AO NDs and HPHT NDs.

The T2 relaxation time, when measured using a Hahn echo pulse sequence, did

not change after hyperpolarizing, see Fig. 6.20b. The T2 relaxation time at T = 77 K

and B = 3 T stayed at T2 ∼ 1 ms irrespective of the polarization frequency (when

polarizing using P1 centres at f1, or when polarizing using P1 centres and spin-1/2

defects at f2) or polarization time.

When measuring the T2 relaxation time under CPMG conditions, we observe long

tails in the echo trains that persist for a much longer time, similar to those observed

in silicon [122, 222, 223] We see an increase of two orders of magnitude in T2 from

T2∼ 1 ms under Hahn echo to a long tail with T2 ∼ 100 ms under CPMG conditions,

see Fig. 6.21a. We observe an increase in both the amplitude and relaxation time of

the long tail with increasing polarization time, see Fig. 6.21b.

Surprisingly, we observe larger and longer echo tails when polarizing using spin-

1/2 and P1 centre impurities (at one of the central transitions, f2 and f3 in yellow and

green) than when polarizing at a P1 centre transition (f1, f4, in red and blue), the

frequencies indicated by arrows in Fig. 6.9a. Although this phenomenon is not yet

completely understood, several explanations have been proposed.

These long T2 tails are not believed to be a long coherence, but pseudo tails

arising as a consequence of the formation of stimulated echoes, which can exist up to

the spin-lattice relaxation time T1. Although stimulated echoes are not expected in a

CPMG pulse sequence, they can be generated by the pulse angle distribution present

in an inhomogeneously broadened NMR line. Under conditions where inhomogeneities
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Figure 6.20: Spin-spin T2 relaxation in ND measured under Hahn echo con-

ditions. a) T2 relaxation time at B = 7 T and T = 300 K. The relaxation times are

the average of three Hahn echo measurements fitted with an exponential decay. The error

bars are the standard deviation. No difference is seen between HPHT NDs (black) and

AO NDs (grey) over the size range measured. Diamonds were allowed to equilibrate in

the magnetic field before the Hahn echo measurement was taken. We see a decrease in

T2 from T2 = 3 ms for small NDs to T2 = 1.5 ms for larger NDs, which we attribute to

P1 centre defects. b) T2 relaxation time of 2 µm HPHT ND at T = 77 K and B= 3 T for

various polarization times measured using a Hahn echo pulse sequence. T2 relaxation was

measured when polarizing using P1 centres (red) and when polarization using spin-1/2

defects and P1 centres (yellow). The T2 relaxation time did not change and stayed at

T2∼ 1 ms for short polarization times (tpol = 30 s, f1: T2 = 0.74 ms, f2: T2 = 0.8 ms),

medium polarization times (tpol = 3.5 min, f1: T2 = 1.0 ms, f2: T2 = 1.1 ms) and long

polarization times (tpol = 50 min, f1: T2 = 1.3 ms, f2: T2 = 1.1 ms).
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Figure 6.21: Spin-spin T2 relaxation in ND measured under CPMG conditions.

a) Comparison of T2 measured with a Hahn echo sequence (dots) and CMPG sequence

(solid lines) for 2 µm ND at T = 300 K and B = 3 T. NDs were polarized for tpol = 30 s

(for Hahn echo) and for tpol = 2 min (short polarization time) and tpol = 128 min (long

polarization time) (for CPMG) at both the P1 centre (f1, red) and P1 centre and spin-1/2

defects (f2, yellow). When measuring under CPMG conditions we see a long echo tail

which persists out to 400 ms, two orders of magnitude longer than when measuring under

Hahn echo conditions. Inset: Zoom of the short echo times. b) T2 relaxation time as a

function of polarization time when measured under CPMG conditions at T = 300 K and

B= 3 T. The ND was polarized at the four frequencies indicated by arrows in Fig. 6.9a. We

observe an increase in T2 as a function of polarization time at all four frequencies and we

observe a longer tail when polarizing at one of the central transitions due to P1 centres and

spin-1/2 defects (f2, f3) than when polarizing at the outer transitions due to P1 centres

(f1, f4). For the CPMG sequence: π/2 = 8.5 µs, τ = 40 µs, with 5000 echoes.
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produce different tipping angles in different sites of the sample, and in a system with

suppressed spin diffusion, the different tipping angles do not average to a π pulse,

leaving a perpendicular component that behaves like a stimulated echo [224, 225]. We

observe an increase in T1 with polarization time, which could lead to an increase in T2

with polarization time if we have stimulated echoes that exist for a time proportional

to T1. Another explanation involves longer decoherence times due to highly polarized

nuclear states very close to the paramagnetic impurities [226]. Further studies involving

stimulated echoes are needed to understand the cause of the increasing T2 time.
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Hyperpolarized nanodiamond

surfaces

The biological function and application of nanoparticles stem from their surface prop-

erties. Understanding these properties, especially the adsorption and desorption mech-

anisms, is important for the design of nanoparticle systems capable of targeted drug

delivery and triggered release. Characterizing the surface structure of nanoparticles is

challenging due to typical low concentrations of surface functional groups. Here, we

demonstrate that free electrons on the nanodiamond surface can be used to hyper-

polarize adsorbed liquids, giving information about the ND surface. We differentiate

between adsorbed liquids and non-adsorbed liquids through examining spin-lattice re-

laxation and hyperpolarization build up times. These results extend the available

methods of monitoring desorption of chemotherapeutics for targeted delivery1.

1This chapter is adapted from Rej et al. Hyperpolarized nanodiamond surfaces. Submitted to Nano

Letters.
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7.1 Introduction

Bio-functionalized nanoparticles are emerging as highly versatile platforms upon which

to develop the new theranostic and tailored imaging modalities needed in the era of

personalized medicine [1, 2, 201, 227]. These nanoscale agents, comparable in size to

the machinery of the cell, open the prospect of detecting and examining a spectrum of

diseases with enhanced sensitivity, and offer a means of targeting the delivery and con-

trolled release of pharmaceutical payloads. Underpinning these powerful applications

is the need to develop a detailed understanding of the interface between a nanopar-

ticle and its complex environment. The chemistry of the functionalized nanoparticle

surface configures their interaction with, for instance, the extracellular matrix, disease

processes, or tumour microenvironment.

Magnetic resonance (MR) techniques are well-placed for probing bio-chemical re-

actions between a nanoparticle and its environment, but challenging in the limit where

the nanoparticle interfacial surface contributes only a fraction of the signal relative to

the core [228,229]. The difficulty in isolating surface signals has lead to new techniques

based on dynamic nuclear polarization (DNP), to enhance the sensitivity of MR spec-

troscopy, mostly via the use of surface-bound radicals [230–234]. These techniques have

been extended to polarizing liquids surrounding the NPS using both extrinsic [235,236]

and intrinsic defects [202].

Nanodiamonds (NDs) are emerging as a promising carbon nanomaterial for drug

delivery applications [18, 23, 24, 203], as their biocompatible, non-toxic nature [17, 18]

with rich surface chemistry allows for a wide range of small molecules such as proteins,

therapeutics, and antibodies to bind to the surface [19]. NDs can be non-invasively

tracked using optical techniques based on the NV centre fluorescence, providing cellular

imaging [21,26], and magnetic field detection [27,28] and through hyperpolarized MRI

[51,52,123] detecting 13C nuclear signals. As these nanoparticles become more complex,

a thorough understanding of the surface and the interplay with the environment is

important for understanding in-vivo behaviour [237].

Here, we explore how ND surface interactions can be used to enhance the appli-

cations of NDs in-vivo. We demonstrate that naturally occurring defects on the ND

surface can be used as a non-toxic dopant for hyperpolarizing molecules adsorbed on

the ND surface. We observe 1H signal enhancements consistent with the solid effect, for
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a range of magnetic fields at X-band frequencies. At higher magnetic fields we observe

a cross effect contribution to the hyperpolarization mechanism. Enhancements are ob-

served for a wide range of liquids with differing polarities, and we find that enhancement

decreases with ND particle size, consistent with surface defect hyperpolarization.

We are able to distinguish between adsorbed liquid and non-adsorbed liquids

by measuring the T1 relaxation behaviour of the nuclear spins, observing two distinct

spin baths with differing relaxation times. Combined with measurements of the en-

hancement, we are able to monitor when the nanoparticle surface is saturated, and

when adsorption and desorption occur. These techniques could be used to monitor and

examine chemotherapeutic adsorption and desorption on ND surfaces.

Additionally we demonstrate how these surface defects affect the T1 relaxation

time of 1H nuclear spins in solutions surrounding the NDs for T1 weighted imaging,

and contrast in MRI.

7.2 Nanodiamond surfaces

The nanodiamonds used in these experiments are manufactured using the high pressure

high temperature (HPHT) technique and purchased from Microdiamant. A micrograph

of a small ND is shown in Fig. 7.1a. Measurements were made on diamonds in a size

range between 18 nm and 2 µm. Adsorption of the liquids onto the ND surface occurred

passively when diamonds were mixed and sonicated with various liquids.

We observe two phases of carbon in our NDs, sp2 hybridized carbon, attributed

to carbon on the surface of the diamond, at ν= 1580 cm−1, and sp3 hybridized carbon,

attributed to carbon in the core of the diamond, at ν= 1332 cm−1, see Fig. 7.1b. The

sp2 carbon phase results in free electrons and provides a surface for liquid adsorption.

We observe more sp2 hybridized carbon on smaller NDs than for larger NDs, due to

the much higher surface to volume ratio. Air oxidation [175] of the NDs etches away

the ND surface removing sp2 hybridized carbon and surface electrons.

NDs contain intrinsic impurities and free electrons that provide the dominant

pathway for 13C T1 relaxation [176], and 13C hyperpolarization [123]. For small ND,

the dominant electronic defects are surface spins, contributing to a broad spin-1/2

component (black) in an ESR spectrum, attributed to carbon dangling bonds on the

surface of the ND, see Fig. 7.1c. Air oxidation of the NDs removes surface electrons,
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Figure 7.1: SEM, Raman and ESR spectra of small NDs. a) Electron micrograph

of 125 nm ND. b) Comparison of Raman spectra for HPHT ND (black) and AO ND

(red). Raman spectrum show sp2 hybridized carbon from the surface of the diamond

and sp3 hybridized carbon from the core of the diamond. The sp2 Raman cross section

is 150 times larger than the sp3 Raman cross section leading to a comparatively larger

peak. The fluorescence of the diamond has been subtracted using a baseline correction,

and spectra have been normalized to the sp3 hybridized peak. c,d) Comparison of the

ESR spectrum of 25 nm HPHT ND and 25 nm AO ND. The data (red) is simulated

(blue) using three components: a narrow spin-1/2 Lorentzian component (yellow), a broad

spin-1/2 Lorentzian component (black) and a P1 centre component (green).
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Figure 7.2: ND as a 1H T1 contrast agent. The 1H T1 relaxation time of water in

water-ND mixtures as a function of ND size and concentration. Data points are fits to

the 1H T1 build up performed using an inversion recovery sequence at B = 330 mT. The

solid lines are fits to the relaxivity equation [see Section 7.6]. Smaller NDs (25 nm ND,

blue dots, R = 0.17 mg−1mL−1s−1) have a larger effect upon the T1 relaxation time of

water than larger NDs (2 µm ND, purple dots, R = 0.003 mg−1mL−1s−1), where R is the

relaxivity of the ND.

seen as a decrease in the broad spin-1/2 component of the ESR trace, see Fig. 7.1d.

Other components of the ESR spectrum include a narrow spin-1/2 component (yellow),

attributed to defects in the core of the ND and a P1 centre component (green) which

is a substitutional nitrogen atom with the electron hyperfine coupled to the 14N spin.

As the surface to volume ratio decreases with increasing ND particle size, the amount

of broad and narrow spin-1/2 defects decrease, while the number of P1 centre defects

increases, with small NDs having very few P1-centre defects, see Fig. 5.12.

In addition, the intrinsic free electrons on the surface of the NDs interact with

surrounding water, and act as centres for 1H T1 relaxation, see Fig. 7.2, Fig. 7.3, Fig. 7.4

and Fig. 7.5. In much the same way as gadolinium contrast agents add contrast to MRI

by modifying the T1 relaxation of surrounding tissues, the T1 relaxation time of water
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Figure 7.3: ND as a T1 contrast agent at B = 7 T. a) The 1H T1 relaxation time

in water from a water-ND mixture as a function of ND size and concentration for HPHT

ND (solid dots) and NAT ND (empty circles). Data points are fits to the 1H T1 build up.

Lines are fits to the relaxivity equation (solid lines for HPHT ND, and dashed lines for

NAT ND) [see Section 7.6]. We see a similar relaxivity for NAT ND as for HPHT ND,

with NAT ND being a slightly better relaxant than HPHT ND. b) Comparison of the T1

relaxation time of 1H from a ND-water mixture (10 mg ND/mL) for 18 nm ND (black)

and 2 µm HPHT ND (green).
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50 nm HPHT ND (red) at a ND concentration of 5 mg/mL. Data points are exponential
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depends upon the nanodiamond concentration. The relaxivity effect is more prominent

for small NDs, which have a large surface to volume ratio, and more surface spins, and

decreases until there is no effect for 2 µm ND. Although the relaxivity is small when

compared to metal conjugates [238], the effect is large enough to be detected in-vivo,

and could be used as a new way to indirectly detect nanodiamonds.

Measuring the T1 relaxation time of 1H spins in ND-liquid mixtures can also

be used as a method of analyzing surface impurities. Combining this modality with

hyperpolarization techniques using ND surface spins to polarize surrounding liquids,

gives new information about nanoparticle surfaces and the nanoparticle-liquid interface.

7.3 ND as a hyperpolarizing agent

Hyperpolarization can occur via several different mechanisms depending on the electron-

nuclear couplings. Hyperpolarization occurs via the Overhauser effect in liquids, how-

ever in adsorbed liquids, if the primary nuclear relaxation is via the same electrons

used for polarizing [239–241], then hyperpolarization occurs via the solid effect, cross

effect or thermal mixing.

For solid effect hyperpolarization, the combined electron-nuclear dipolar coupled

system, can be driven at one of the two forbidden transitions (f = ωe ± ωn), where ωe

and ωn are the electron and nuclear resonance frequencies respectively, creating positive

nuclear polarization when driven at f = ωe−ωn and negative polarization when driven

at f = ωe + ωn, see Fig. 7.6a, b. The cross effect is a three spin process relying on

energy conserving flip-flops between two electrons separated by f = ωn and one nuclear

spin. The hyperpolarization profile has a characteristic separation of f = ωn between

positive and negative enhancement. The Overhauser effect relies on scalar and dipolar

relaxation pathways to build up a nuclear polarization when driving at f = ωe, resulting

in positive or negative enhancement depending on the electron-nuclear coupling.

Using the natural defects found on the ND surface as the hyperpolarizing agent,

signal enhancements were measured for 1H spins in oil (Sigma O1514) adsorbed onto

the surface of 25 nm ND, see Fig 7.6c. We observed behavior consistent with the solid

effect in the 1H hyperpolarized signal with a positive signal enhancement when driving

at f = ωe − ωn and a negative signal enhancement at f = ωe + ωn. No enhancement

is seen at f = ωe, ruling out any Overhauser effect contribution. We conclude that we
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Figure 7.6: Solid effect enhancement of adsorbed liquids on ND. a,b) Energy

level diagram for a dipolar coupled electron and nuclear spin-1/2 system in a magnetic field.

The ESR (green), NMR (purple), flip-flip (red) and flip-flop (blue) transitions are shown.

Driven flip-flop transitions (blue) at a frequency f = ωe−ωn involve a mutual electron flip

and nuclear flop resulting in a positive nuclear polarization, shown in b. Driven flip-flip

transitions (red) result in a negative nuclear polarization. c) 1H signal enhancement as

a function of driving microwave frequency at B = 458 mT (black dots). The fit to the

data (grey line) is based on the ESR trace linewidths for the broad and narrow spin-1/2

impurities in the ND. The hyperpolarization spectrum is consistent with that given by the

solid effect. Enhancement is given by the hyperpolarized signal divided by the signal with

microwaves off.
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Figure 7.7: 1H enhancement in oil-ND solutions. The 1H NMR enhancement from

an oil-ND mixture at B = 500 mT when polarized at f = ωe−ωn (red) and at f =ωe+ωn

(blue). Enhancement is given as a percentage by comparing to the NMR signal with off-

resonant driving microwaves. Error bars represent the error in the signal amplitude. We see

the largest enhancement for the two smallest nanodiamonds used, moderate enhancement

for nanodiamonds in the range 50 nm - 1000 nm, and no enhancement for 2 µm ND.

are observing adsorbed 1H spins on the surface of the nanoparticle.

We observe a decrease in 1H enhancement as ND particle size increases, with

no enhancement for 2 µm ND, consistent with surface defect hyperpolarization, see

Fig. 7.7. There is no enhancement in liquid solutions without NDs. Similar behavior

for 1H in water-ND mixtures, acetic acid-ND mixtures, and glycerol-ND mixtures is

seen, and we note that although these liquids have different polarities, they are all

adsorbed onto the ND surface, see Fig. 7.8.

The hyperpolarization spectrum was measured at magnetic fields in the range

B= 300 mT - 500 mT, see Fig 7.9a. The position of the hyperpolarization peaks follow

f = ωe − ωn and f = ωe + ωn with a peak splitting of f = 2ωn (black dashed lines)

at low magnetic fields, see Fig. 7.9b. We see a deviation from the predicted value of

the peak splitting at higher magnetic fields, indicating that the cross effect or thermal

mixing mechanism may be contributing to the hyperpolarization, and the solid effect
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Figure 7.8: Solid effect enhancement in liquid-ND mixtures. a) 1H signal en-

hancement as a function of driving microwave frequency and b) polarization build up at

B = 458 mT for 125 nm HPHT ND mixed with oil (blue), acetic acid (red) and glycerol

(yellow), and for 125 nm NAT ND mixed with oil (green). We always observe a posi-

tive enhancement when driving at f =ωe − ωn, a negative enhancement when driving at

f =ωe + ωn, and no enhancement at f = ωe. Polarization build up was measured when

driving at f = ωe−ωn. Solid lines in the hyperpolarization spectrum are double Lorentzian

fits [see Section 7.6], and solids lines in the polarization build-up are exponential fits, with

τ as the fit parameter.
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may not be sufficient to explain the hyperpolarization profile.

Surprisingly we observe that the 1H NMR signal enhancement increases as mag-

netic field increases, see Fig. 7.9c. As the solid effect enhancement has a ε ∝ 1/B2

dependence and thermal mixing and cross effect enhancement have a ε ∝ 1/B depen-

dence, we may expect to see a higher enhancement at lower magnetic fields, however the

cross effect is more efficient than the solid effect at lower powers and may be contribut-

ing more at higher magnetic fields, resulting in increasing enhancement with increasing

magnetic field.

7.4 Adsorption and desorption onto ND

Now we turn to measuring the relaxation behavior of the hyperpolarized liquid, to

determine how much of a liquid has been adsorbed onto the nanodiamond. These

techniques can be used to probe conditions (e.g. pH or temperature) which lead to

chemotherapeutic desorption for targeted delivery. Here we examine two ways that we

can characterize adsorption and desorption on the ND surface.

Firstly we examine the T1 relaxation time of the adsorbed and non adsorbed

liquids. Five 1H T1 relaxation rates can occur within a hyperpolarized sample, see

Fig. 7.10. An inversion recovery experiment (black) affects all the 1H spins in the liquid.

Hyperpolarizing at f = ωe ± ωn for positive (red) or negative (orange) enhancement

and then observing how this polarization returns back to thermal equilibrium examines

the relaxation properties of the 1H spins close to the ND surface. Hyperpolarizing

at f = ωe ± ωn (blue and green), and then inverting the spins reveals information

about how both the polarized spins and the non-polarized spins return back to thermal

equilibrium.

When these T1 relaxation times are examined in a oil-ND mixture, we observe

two distinct spin baths, one of hyperpolarized spins adsorbed onto the ND surface and

one of non-hyperpolarized spins in a liquid surrounding the ND. Limited spin diffusion

or molecular diffusion between the two spin baths is observed for short polarization

times, see Fig. 7.11a.

We observe a single exponential decay with a short relaxation time (τ ∼ 100 ms)

for spins adsorbed on the NDs. When the spins are inverted we observe a double-

exponential return to thermal equilibrium, with a short T1 corresponding to spins
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Figure 7.9: Hyperpolarization behavior at various magnetic fields. a) The hyper-

polarized 1H NMR signal in oil adsorbed onto 25 nm ND as a function of driving microwave

frequency at magnetic fields between B = 300 mT and B = 500 mT (B = 300 mT in green,

340 mT in blue, 370 mT in yellow, 400 mT in red and 500 mT in grey). The solid lines

are bi-Lorentzian fits to the data [see section 7.6]. The positions of the peaks (black dots)

follow the lines f = ωe − ωn and f = ωe + ωn (black dashed lines). We see no hyper-

polarization at f = ωe. The traces have been offset by the magnetic field scaling for

clarity. b) The frequency splitting between the maximum and minimum 1H signal from oil

adsorbed on the ND surface for 18 nm ND (red), 25 nm ND (blue), 50 nm ND (green),

210 nm ND (yellow), and 500 nm ND (grey). The splitting follows the predicted value

for the solid effect of f = 2ωn (dashed lines) at low magnetic fields and deviates at high

magnetic fields. Error bars are 10 % of the Lorentzian fit to the hyperpolarization data.

Traces have been offset for clarity. c) The 1H signal enhancement as a percentage of the

non-polarized signal at magnetic fields between B = 300 mT -B = 500 mT for a 25 nm

ND and oil mixture. Positive enhancement at f = ωe − ωn is shown in red and negative

enhancement at f = ωe + ωn is shown in blue. Data points are the saturation value of an

exponential fit to a polarization build up divided by the signal with detuned microwaves,

and error bars reflect the noise in the signal amplitude.
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Figure 7.10: Schematic of the T1 relaxation in adsorbed hyperpolarized liquids.

Schematic of the five relaxations that are measured in a hyperpolarized liquid sample.

Inversion recovery (black), hyperpolarization at f = ωe +ωn (yellow) or f = ωe−ωn (red)

and relaxation to thermal equilibrium, and hyperpolarization at f = ωe+ωn (green) or f =

ωe − ωn (blue) inversion and then relaxation to thermal equilibrium are shown. Rel stands

for relaxation, π represents a 180◦ inversion pulse and HP stands for hyperpolarization.
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Figure 7.11: T1 relaxation in adsorbed liquids. a) The 1H signal amplitude (dots)

as a function of delay time for an oil-ND mixture for the five relaxation sequences shown

in Fig. 7.10. The solid lines are either exponential fits (red, orange) or double exponential

fits (black, green and blue) to the data (dots) with relaxation times: red: τ = 100 ms,

yellow: τ = 104 ms, blue: τ1 = 90 ms, τ2 = 318 ms, green: τ1 = 85 ms, τ2 = 286 ms,

and black: τ1 = 149 ms, τ2 = 1181 ms. b) The 1H T1 relaxation time in a water-ND

mixture as a function of water concentration. We always observe a short component to

the relaxation (τ1 ∼ 10 ms) and we begin to observe a long component (τ2 ∼ 200 ms) in

inversion experiments after 50 µL of water is added to the ND (dashed line). Data points

are exponential and double exponential fits to the five relaxation experiments outlined in

Fig. 7.10. Error bars are from the uncertainty in the exponential fit. Data points have

been separated horizontally for clarity.
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adsorbed on the ND surface, and a long T1 from spins further away from the ND.

The amount of liquid that can be adsorbed onto the ND can be examined by

measuring the 1H T1 relaxation times of the two spin baths as a function of liquid

added, see Fig. 7.11b. Initially only one spin bath is seen for all five T1 relaxation

experiments. We observe a second spin bath with a longer relaxation time once the NP

surface is saturated.

By examining the relaxation time of the adsorbed liquid, we are able to differen-

tiate between water and oil adsorbed on the ND surface.

Next we explore the liquid adsorbed onto the ND surface by measuring the 1H

hyperpolarized signal amplitude and enhancement of the adsorbed liquid, see Fig. 7.12.

We see that the amount of hyperpolarized signal, S = SMWon−SMWoff (red), initially

increases as oil is added until the ND surface is saturated, after which adding additional

oil does not increase the hyperpolarized signal. The enhancement, ε = SMWon/SMWoff

(blue), decreases steadily as oil is added, as adding additional unpolarized oil decreases

the observed enhancement. We expect this saturation amount to change based upon the

adsorbed liquid and ND particle size. These two techniques could be used to examine

adsorption and desorption onto NDs in biological environments.

Examining hyperpolarized ND surfaces also gives us a tool for examining dynam-

ics of ND-liquid mixtures, including spin diffusion and molecular diffusion.

When measuring the 1H polarization build up in oil-ND mixture, we see different

behaviour based on ND particle size, see Fig. 7.13. We see diffusion in the oil for small

NDs sizes, where we see a continual increase of the 1H signal with polarization time and

no signal saturation, while we see saturation behavior and no diffusion for larger NDs.

The signal increase could either be spin diffusion between adsorbed and non-adsorbed

1H spins, sample diffusion, or hyperpolarized oil desorbing from the ND surface. We

observe this behavior at long polarization times (tpol > 1s) after heating of the ND-oil

mixtures due to the hyperpolarization microwaves. We were unable to polarize longer

than for 5 s due to heating effects on the samples.

7.5 Discussion

The spin dynamics of hyperpolarized molecules adsorbed onto the nanodiamond sur-

face are examined using DNP. Hyperpolarization is mediated by the solid effect, with
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Figure 7.12: Probing adsorption using enhancement. a) Hyperpolarized 1H signal

amplitude (red) and enhancement (blue) for oil-ND mixture as a function of oil concentra-

tion. Saturation of the ND surface occurs after 60 µL of oil is added. The data points are

the saturation values of polarization build up curves (at f = ωe − ωn). The solid red line

is a guide to the eye. b) Schematic demonstrating liquid that is adsorbed onto the ND

surface and hyperpolarized, until the ND surface is saturated. ND is shown in grey, liquid

is shown in blue, and the hyperpolarization radius is indicated in black.
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Figure 7.13: Hyperpolarization dynamics of adsorbed liquids. 1H Polarization

build up at f = ωe − ωn in an oil-ND mixture for 18 nm ND (red), 25 nm ND (yellow),

50 nm ND (green), 75 nm ND (blue), and 125 nm ND (black). Solid lines are either expo-

nential fits (50 nm, 75 nm and 125 nm ND) or double exponential fits (18 nm and 25 nm

ND) to the data. The data has been corrected for heating effects [see Section 7.6]. The

polarization build up times are: 18 nm ND: τ1 = 72 ms, τ2 = 4.7 s; 25 nm ND: τ1 = 72 ms,

τ2 = 4.4 s; 50 nm ND: τ = 46 ms; 75 nm ND: τ = 45 ms; 125 nm ND: τ = 32 ms. Data has

been normalized such that 0 corresponds to the signal with no microwaves, and 1 corre-

sponds to saturation of the fast component of the polarization build-up.

possible contributions from the cross effect at higher magnetic fields. T1 relaxation

times, hyperpolarization build up times and enhancement measurements allow for ad-

sorbed liquids to be differentiated from non-adsorbed liquids surrounding the NDs.

These methods can be used as a probe of adsorption and desorption mechanisms for

nanoparticle bioagents with targeted delivery of chemotherapeutics.

DNP of nanodiamond surfaces could additionally be used as a spectroscopic tech-

nique to determine which compounds are attached to the ND. This method would be

of particular interest in characterizing preferential adsorption.

The same defects on the ND surface have been used to both hyperpolarize 13C

spin in the ND and 1H spins on the ND surface. These electrons may be used to mediate

polarization transfer between 13C and 1H spins. This could enable a modality where

polarization is stored in the 13C spins in the ND and transferred to the 1H spins for

detection.
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7.6 Methods

Nanodiamonds used. The nanodiamonds used in these experiments were pur-

chased from Microdiamant. See Appendix A for a list of the NDs used.

Air Oxidation. HPHT NDs were spread in a thin layer and placed in a furnace

at 550◦C for 1 hr (with 1 hr of heating to reach 550◦C and 20 min to return to room

temperature).

Adsorption. Initially NDs were heated on a hot plate to remove any adsorbed

water. The NDs were mixed with various liquids and sonicated. Adsorption occurred

passively. The ND remained suspended in solution for the duration of the experiments.

Experimental setup. Signals were acquired with a single spaced solenoid coil

in a home built NMR probe in a magnetic field range of B = 300 mT - 500 mT provided

by either a permanent magnet (B = 460 mT ) or an electromagnet. X-band microwave

irradiation was amplified to P = 10 W and coupled to the sample using a horn antenna

and reflector. NMR signals were measured by initially polarizing the sample, then

detecting the polarized signal using either a π/2 pulse or an echo (π/2− τ − π) pulse,

and finally waiting for the polarization to return to thermal equilibrium. Data was

acquired using either a Redstone NMR system (Tecmag) or a Spincore NMR system.

Data processing and fitting was performed using IGOR pro, see Section 4.2.

SEM images. SEM measurements were made using a Zeiss Ultra Plus Gemini

SEM spectrometer working in transmission mode. Suspensions were made of NDs in

water and a small amount of the suspension was placed upon a TEM grid.

ESR measurements. ESR measurements were recorded using a Bruker EMX-

plus X-Band ESR Spectrometer. ESR spectra were taken at 0.25µW, (within the

linear regime of the saturation curves of the impurities) at a modulation amplitude

of 1 Gs, a modulation frequency of 100 kHz, and a Q-factor of 5,000. Each of the

three components were simulated separately using Easyspin [195] and added together

to make the final spectrum. Linewidth, signal amplitude and g-factor were varied. The

best fit to the data was performed using a least squares analysis.

Raman spectra. Raman spectra were acquired with a Renishaw inVia Raman

Microscope at λ = 488 nm and P = 50 µW.

Relaxivity Measurements. The T1 polarization build up curves were fitted

with an exponential fit M/M0 = 1 − 2e−t/T1 , where M is the Magnetization, M0
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is the equilibrium magnetization, T1 is the spin lattice relaxation time and t is the

polarization build up time. Relaxivity data was fitted with the curve for relaxivity

T1 = 1/(1/T1pure + R[C]) where C is the concentration of nanodiamond, T1pure is the

T1 relaxation time of pure (undoped) water and R is the relaxation rate. The water

had a T1 relaxation time of 2.6 s measured at 300 mT.

Hyperpolarization spectra of ND-liquid mixtures. For the ND-oil mix-

tures, approximately 50 mg of ND was mixed with 60 µL of oil. The mixtures were

polarized for 300 ms, at B= 458 mT and for 1 s at other fields in the range B= 300 mT -

500 mT. For the ND-liquid mixtures in Fig. 7.8, 50 mg of ND was mixed with 30 µL

of liquid. Mixtures were polarized for 300 ms. Solid lines are double lorentzian fits to

y = y0 + a1

(x−x1)2+B1
+ a2

(x−x2)2+B2
.

T1 relaxation. ND-oil mixtures: 70 mg of 18 nm ND was mixed with 60 µL of

oil. Mixtures were polarized for 300 ms. ND-water mixtures: 70 mg of 18 nm ND was

mixed with de-ionized water. Mixtures were polarized for 300 ms.

Enhancement as a function of oil concentration. 75 mg of 125 nm ND was

mixed incrementally with oil. Polarization build up was measured out to 1 second and

fitted with an exponential curve. All the curves reached saturation.

Polarization build up. 70 mg of ND was mixed with 40 µL of oil. With

off-resonant microwaves, a signal decrease of 6% due to heating effects was seen after

1 second of polarization. Data with on-resonant microwaves was corrected for this

heating effect.
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7.8 Additional measurements

7.8.1 Hyperpolarization as a function of microwave frequency and

polarization time.

Solid effect behavior is observed in the hyperpolarization spectra of ND-liquid mixtures

at saturated polarization. Here we examine the hyperpolarization spectra to determine

if there is a cross effect or Overhauser effect contribution at shorter polarization times.

Hyperpolarization spectra were acquired for various polarization times ranging between

tpol = 1 µs and tpol = 300 ms, see Fig. 7.14. The solid effect characteristics of a f = 2ωn

splitting between maximum and minimum polarization are present at all polarization

times. A cross effect contribution would result in a narrower splitting, approaching

f = ωn. Additionally we observe no evidence of polarization at f = ωe, ruling out

any Overhauser contribution. We conclude that even for short polarization times, the

hyperpolarization is dominated by the solid effect mechanism.

7.8.2 Polarization build up for various microwave powers.

The polarization build up time of adsorbed liquids was measured as a function of driving

microwave power in order to examine the spin-dynamics of the nuclear spins under low

power hyperpolarization conditions, see Fig. 7.15. The cross effect can be more efficient

than the solid effect at low driving powers, and testing the polarization build up times as

a function of power may determine if this hyperpolarization mechanism is contributing

to the signal enhancement.

We observe no change in polarization build up time over the range of measured

powers spanning two orders of magnitude. We observe heating effects for longer polar-

ization times, and the maximum 1H signal amplitude occurs for medium polarization

times. We see a decrease in enhancement with decreasing power, however the maximum

enhancement does not occur at the maximum power, probably due to heating effects

leading to signal loss at the highest microwave powers. We observe no evidence for an

additional hyperpolarization mechanism other than the solid effect.
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Figure 7.14: Hyperpolarization as a function of microwave frequency and po-

larization time. a) A 3D plot and b) a surface plot of the 1H NMR signal enhancement

from an oil-ND mixture with 125 nm HPHT ND as a function of driving microwave fre-

quency and polarization time at B = 458 mT. Red corresponds to positive enhancement,

green corresponds to no enhancement and blue corresponds to negative enhancement. Data

has been normalized to the signal with no driving microwaves.
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Figure 7.15: Polarization build up as a function of microwave power. a) Polar-

ization build up in an acetic acid-ND mixture with 70 mg of 125 nm ND mixed with 30µL

of acetic acid. Polarization build up was measured at B = 458 mT, driving the system for

positive polarization enhancement at f = ωe − ωn. Solid lines are exponential fits to the

data (dots). b) Polarization build up time and c) enhancements are extracted from an

exponential fit to the polarization build up curves. Enhancement is given by the saturation

value of the exponential divided by the signal with no microwaves. The power stated is

the power at the output of the power amplifier. We expect some loss from propagation

through the waveguide and coupling from the horn antenna.
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7.8.3 Quenching of the 1H signal in a water-ND mixture

The free electrons on the surface of the NDs shift the Zeeman energies of nearby nuclear

spins. These spins will have shifted resonance frequencies and will not contribute to an

NMR line, see Fig. 3.6. This quenching behavior will effect both 13C spins in the ND

and nuclear spins such as 1H in liquids surrounding the NDs. A measure of the amount

of quenched NMR signal from 1H spins surrounding the ND gives an indication of the

amount of impurities on the ND surface.

Quenching of the 1H NMR signal was more evident for small NDs, such as in the

18 nm ND-water mixture where 50 % of the 1H NMR signal was lost, than for large

NDs, such as the 1 µm ND-water mixture where almost no quenching was seen, see

Fig. 7.16.

Small NDs have a larger surface to volume ratio, and more surface spins than

large NDs (see Fig. 5.12a) and as a result more 1H spins will be within the quenching

radius of the small NDs. This difference in surface spins and proximal water for small

and large NDs is illustrated in a schematic in Figs. 7.16c, d.

Adding 10 µL of water to 25 mg of ND was sufficient to saturate the ND surface,

and no additional quenching was seen when more water was added.

The 1H signal lost when adding water to ND as a probe of surface spins is

consistent with ESR and Raman studies, showing that smaller NDs have more surface

impurities, and hence have more of an effect on water than larger NDs.
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Figure 7.16: Quenching of 1H signal in a water-ND mixture. a) The 1H signal

amplitude from water mixed with 25 mg of ND, with 10 µL of water (red dots), 20 µL of

water (blue dots), and 30 µL of water (green dots). The signal from water with no ND is

shown as a dashed line. The quenched NMR signal is shaded in and shown in b). NMR

measurements were acquired at B = 460 mT and each data point is the average of three

measurements. We see more quenching for small NDs and almost no signal loss for large

NDs. c, d) Schematic of ND-water mixtures. ND is shown in grey, the quenching radius

around surface electrons (e) is shown in green and water is shown in blue.
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8

Conclusion and future outlook

When this project started the field of hyperpolarized magnetic resonance imaging was

beginning to emerge. Liquid state metabolites had been polarized [36] and had recently

been used to detect tumor response in a mouse [37]. This field has since grown consid-

erably, and has resulted in the first human trials of hyperpolarized 13C metabolites [43].

Commercial sterile polarizers are now available, making in-vivo hyperpolarization stud-

ies easier and more common place in research institutes around the world.

The idea to use solid nanoparticles with longer relaxation times had just been pro-

posed using 29Si [45], and the first silicon nanoparticle hyperpolarization experiments

were underway [45, 242]. Now, the first in-vivo MRI images of hyperpolarized silicon

nanoparticle have been demonstrated [38], with use in applications such as catheter

tracking [243].

At the time this project started, nanodiamonds were emerging as a new bioagent.

Within the last few years they had been found to be non-toxic [17], had been surface

functionalized [19], and been used for medical applications in-vivo [18]. Bulk diamond

hyperpolarization using DNP techniques, and magnetization relaxation pathways, were

well understood [95], and other bulk diamond hyperpolarization techniques involving

optical pumping had recently been demonstrated [47]. None of these hyperpolarization

techniques had yet to be applied to nanodiamonds. Over the past few years, significant

effort has been made to polarize ND, with demonstrations using DNP techniques [51,52]

and proposals using optical techniques [50,92].

In this thesis we set out to demonstrate ND’s suitability as a contrast agent for

hyperpolarized MRI. This project has been a success with ND demonstrating all the
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Sagittal hyperpolarized 13C ND image
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Figure 8.1: Co-registered 1H/13C MRI image of hyperpolarized ND in a phan-

tom. Sagittal and axial 13C (colour scale) and 1H (black and white scale) images of a

phantom. The phantom consists of a 4 mm tube of hyperpolarized ND surrounded by

a 10 mm tube of water. ND was polarized at T = 4 K for 20 min at f = 80.89 GHz be-

fore being transferred to the MRI imager for signal detection. Imaging capability was

established by David Waddington and Torsten Gaebel. MRI images are courtesy of David

Waddington, Torsten Gaebel and Thomas Boele.

necessary aspects for a suitable bioagent.

We demonstrated that the intrinsic free electrons in ND can be used to drive elec-

tron nuclear flip-flops, producing a 13C nuclear polarization comparable to that used in

liquid state hyperpolarization experiments (ε ∼ 13,500 when compared to room tem-

peratures signals). The NDs have long T1 relaxation times, and as a result the hyper-

polarized state exists for a long time (∼ 1 hr), even when transferred from the polarizer.

These results lay the groundwork for demonstrating 13C ND hyperpolarized MRI. To-

wards this goal, the hyperpolarizer in this thesis has been combined with microimaging

capabilities, and we have demonstrated the first hyperpolarized 13C ND MRI imaging

in a phantom, see Fig. 8.1. Next steps involve demonstrating hyperpolarized 13C ND

MRI in-vivo.

One of the main challenges of solid nanoparticle MRI is ensuring sufficient spatial

resolution, despite the short T2 relaxation times inherent in solids. We found that this

limitation can be overcome in ND by using CPMG, which extends the T2 relaxation
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time, and imaging window for MRI. How hyperpolarization affects these long tails is

not yet understood, and we are continuing measurements to observe this phenomenon,

both for MRI pulse sequence design, and to gain an understanding of the spin-spin

dynamics in the system.

Surprisingly we found that we could still achieve moderate polarization in ND

at room temperature. This opens the possibility of direct in-vivo hyperpolarization.

To demonstrate this new imaging modality, we demonstrated room temperature ND

hyperpolarization in the presence of water, with plans to directly polarize and detect

ND in tissues at low magnetic fields.

Improvements in the hyperpolarization process and the polarization transfer will

lead to larger ND polarizations and hence larger signal amplitudes, and longer imaging

windows for MRI. Using lower temperatures, higher driving microwave powers, mi-

crowave cavities, and frequency modulation can all lead to increased polarization. The

transfer process can be improved using permanent magnet tunnels to keep a high field

on the ND during transfer. Although a significant engineering challenge, incorporating

the hyperpolarization setup with a dilution refrigerator and hot swap probe for DNP

at mK temperatures could lead to significantly larger polarizations.

These experiments were performed using commercially available nanodiamonds,

and it is perhaps surprising that these diamonds have the right concentration of im-

purities to both polarize the nuclear spins, while still retaining long nuclear relaxation

times. There is scope however, to modify both the electron defect concentration and

the 13C/12C ratio. Although increasing the 13C concentration will lead to a larger NMR

signal, T1 and T2 will likely shorten for high 13C concentrations, and the system will

move from one with limited spin diffusion, to one where spin diffusion plays a larger

role in polarization transfer. Decreases in T2 will make imaging applications harder,

and will reduce signal amplitudes. A 13C concentration ’sweet spot’ for T1, T2, and

enhancement, for a certain defect concentration, will exist, and this would be a very

interesting study to perform. Additionally ND could be a good system to study spin

diffusion, hyperpolarization dynamics, and T1 and T2 mechanisms, as a function of

electron defect concentrations.

For nanodiamonds to be an effective bioagent, the nanoparticle characteristics af-

ter functionalization must be controlled and monitored. For this we have examined the

nanodiamond surface through solid effect hyperpolarization of 1H in adsorbed liquids
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using intrinsic electrons on the surface of ND. We can distinguish between molecules

adsorbed onto the ND from surrounding liquid molecules based on hyperpolarization

enhancement, T1 build up and relaxation times. These techniques could aid in char-

acterizing ND surface functionalization and desorption mechanisms for targeted drug

delivery. We also demonstrate how ND can be used as a contrast agent to modify the

T1 relaxation time of water, with ongoing work demonstrating ND as a T1 and T2

contrast agent currently underway.

Over the past ten years, there have been vast advances in both the fields of

hyperpolarized MRI and DNP of nanoparticles. May the next ten show an overlap of

these two very interesting and developing fields.

164



Appendix A

Nanodiamonds used in this thesis

A summary of the NDs used in this study are listed in the following tables. HPHT

and NAT diamonds were purchased from Microdiamant1. AO NDs were HPHT NDs

purchased from Microdiamant, which were air oxidized to remove surface defects.

1http://www.microdiamant.com
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A. NANODIAMONDS USED IN THIS THESIS

ND Size range (µm) Median size (µm) Product

18 nm HPHT 0-0.03 0.018 MSY 0-0.03

25 nm HPHT 0-0.05 0.025 MSY 0-0.05

50 nm HPHT 0-0.1 0.050 MSY 0-0.1

75 nm HPHT 0-0.15 0.075 MSY 0-0.15

90 nm HPHT 0-0.2 0.090 MSY 0-0.2

125 nm HPHT 0-0.25 0.125 MSY 0-0.25

180 nm HPHT 0-0.35 0.180 MSY 0-0.35

210 nm HPHT 0-0.5 0.210 MSY 0-0.5

350 nm HPHT 0.25-0.5 0.350 MSY 0.25-0.5

500 nm HPHT 0.25-0.75 0.500 MSY 0.25-0.75

710 nm HPHT 0.5-1 0.71 MSY 0.5-1

1 µm HPHT 0.75-1.25 1.00 MSY 0.75-1.25

1.19 µm HPHT 1-1.5 1.19 MSY 1-1.5

1.42 µm HPHT 1-2 1.42 MSY 1-2

1.69 µm HPHT 1.25-2.25 1.69 MSY 1.25-2.25

2 µm HPHT 1.5-2.5 2.00 MSY 1.5-2.5

40 µm HPHT 35-45 40.0 MSY 35-45

Table A.1: HPHT NDs. List of HPHT ND powders used in these experiments.
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ND Size range (µm) Median size (µm) Product

18 nm AO 0-0.03 0.018 MSY 0-0.03

25 nm AO 0-0.05 0.025 MSY 0-0.05

50 nm AO 0-0.1 0.050 MSY 0-0.1

90 nm AO 0-0.2 0.090 MSY 0-0.2

125 nm AO 0-0.25 0.125 MSY 0-0.25

180 nm AO 0-0.35 0.180 MSY 0-0.35

210 nm AO 0-0.5 0.210 MSY 0-0.5

350 nm AO 0.25-0.5 0.350 MSY 0.25-0.5

500 nm AO 0.25-0.75 0.500 MSY 0.25-0.75

710 nm AO 0.5-1 0.71 MSY 0.5-1

1 µm AO 0.75-1.25 1.00 MSY 0.75-1.25

1.42 µm AO 1-2 1.42 MSY 1-2

2 µm AO 1.5-2.5 2.00 MSY 1.5-2.5

Table A.2: AO NDs. List of air oxidized ND powders used in these experiments.

ND Size range (µm) Median size (µm) Product

125 nm NAT 0-0.25 0.125 NAT 0-0.25

210 nm NAT 0-0.5 0.210 NAT 0-0.5

500 nm NAT 0.25-0.75 0.500 NAT 0.25-0.75

2 µm NAT 1.5-2.5 2.00 NAT 1.5-2.5

Table A.3: NAT NDs. List of natural ND powders used in these experiments.
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