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1. Introduction

Neural networks especially deep networks [I1], 7] have attracted a lot
of attention recently due to their superior performance in several machine
learning tasks such as face recognition, image understanding and language
interpretation. The applications of neural netowrks go far beyond artificial
intelligence domain, stretching to autonomous driving systems [2, [16], phar-
maceutical research [30), B1], neuroscience [4, 8, 27, B35, 36] among others.
Because of its usefulness and tremendous application potential, some open
source software packages are made available for research such as caffe [15], 29]
and Theano [3]. Furthermore, there are even efforts to build integrated cir-
cuits for neural networks [10} 22} 25].

Evolving from the simplest perceptron [24] to the most sophisticated deep
learning neural networks [17], the basic structure of the most widely used
neural networks remains almost the same, i.e. hierarchical layers of comput-
ing units (called neurons) with feed forward information flow from previous
layer to the next layer [5]. Although there is no restriction on how the neu-
rons should be arranged spatially, traditionally they all line in a row or a
column just like elements in a vector. The benefit of this is apparently the
ease of visualisation of networks as well as the convenience of deduction of
mathematical formulation of information flow. As a consequence, vectors are
naturally the inputs for the neural networks. This special structure requires
the non-vectorial inputs especially matrices (e.g. images) to be converted
into vectors. The usual way of vectorising a matrix or multi mode tensor is
simply concatenating rows or columns into a long vector if it is a matrix or
flatten everything to one dimension if it is a tensor. We are mostly inter-
ested in matrices and therefore we restrict our discussion on matrices from
now on. Unfortunately this process can be problematic. Firstly, the spatial
information among elements of the data may be lost during vectorisation.
Images especially nature images have very strong spatial correlations among
pixels. Any sort of vectorisation will certainly result in the loss of such corre-
lation. Moreover, the interpretability is heavily compromised. This renders
the neural networks as “black boxes” as what is going on inside the network
is not interpretable by human operator as the information encoded in the



parameters or neurons deviates from the form we would normally percept
from the very beginning if we take images as an example. Secondly, the so-
lution space becomes very large which demands very special treatments to
the network parameters. There are many adverse effects. First, the chance
of reaching a meaningful local minimum is reduced due to large domain
for sub-optimum. Second, the success of training relies heavily on human
intervention, pretraining, special initialisation, juggling parameters of opti-
misation algorithms and so on. This situation becomes even worse with the
growth of the depth of the networks. This is the well known model complex-
ity against learning capacity dilemma [33]. Third, if the spatial information
among elements in matrices has to be utilised by the network, one has to
resort to either specially designed connection configuration among neurons
if it is possible or priors on the network parameters as regularisation which
may cripple back prorogation based optimisation because spatial connection
means coupling. For large scale problems e.g. big data, this may not be
viable at all. Fourth, the computational cost is very high which requires
massive computation platforms.

To address the issues discussed above, we propose matrix neural networks
or MatNet for short, which takes matrices directly as inputs. Therefore the
input layer neurons form a matrix, for example, each neuron corresponds to
a pixel in a grey scale image. The upper layers are also but not limited to
matrices. This is an analogy to the neurons in retina sensing visual signal
which are organised in layers of matrix like formation [23]. It is worth of
pointing out that the convolutional neural network (ConvNet) [7, [I8] works
on images (matrices) directly. However, the major difference between Con-
vNet and MatNet is that ConvNet’s input layers are feature extraction layers
consisting of filtering and pooling and its core is still the traditional vector
based neural network. While in MatNet matrices are passing through each
layer without vectorisation at all. To achieve this, each neuron in MatNet
senses summarised information through bilinear mapping from immediate
previous layer units’ outputs plus an offset term. Then the neuron activates
complying with the pre-specified activation function e.g. sigmoid, tanh, and
rectified linear unit (reLU) [19] to generate its output for the next layer. It is
exactly the same way as the classic feed forward neural networks. Obviously
the bilinear mapping is the key to preserve matrix structure. It is also the key
for the application of simple back prorogation to train the network. This will
become very clear after we formulate the MatNet model in the next section.
In order not to disturb the flow, we leave the derivation of the gradients to



appendix where interested readers can find the details.

To demonstrate the usefulness of the proposed MatNet, we will test it
in two image processing tasks, the well-known MNIST handwritten digits
classification and image super resolution. For digits classification, it is just
a direct application MatNet to normalised images with given class labels,
where MatNet acts as a classifier. However, for image super resolution, Mat-
Net needs some adaptation, i.e. an “add-on” to accommodate multimodal
inputs. As we will show in Section |3, this process is straightforward with
great possibility to embrace other modalities such as natural languages for
image understanding [38] and automated caption generation [32]. As shown
in Section 4] MatNet can achieve comparable classification rate as those so-
phisticated deep learning neural networks. We need to point out that MatNet
is not optimised for this task and the choices of the key network parameters
such as the number of layers and neurons are somewhat arbitrary. Surpris-
ingly for super resolution task, MatNet has superior results already in terms
of peak signal to noise ratio (PSNR) compared to the state-of-the-art meth-
ods such as the sparse representation (SR) [37]. Once again, this result can
be further optimised and we will discuss some further developments that will
be carried out in near future in Section Bl

2. Matrix Neural Network Model

The basic model of a layer of MatNet is the following bilinear mapping
Y =o(UXV'+ B)+ E, (2.1)

where U, V, B and E are matrices with compatible dimensions, U and V
are connection weights, B is the offset of current layer, o(+) is the activation
function acting on each element of matrix and F is the error.

2.1. Network Structure

The MatNet consists multiple layers of neurons in the form of . Let
X ¢ R be the matrix variable at layer [ where [ = 1,2,..., L, L + 1.
Layer 1 is the input layer that takes matrices input directly and Layer L+1 is
the output layer. All the other layers are hidden layers. Layer [ is connected
to Layer [ + 1 by

XD = (O x Oy OT 4 pO)y, (2.2)



where BO € Rltrrxdin ) ¢ RIaxh gnd VO € RIer*d forl =1,2, ..., L—
1. For the convenience of explanation, we define

NO = g0 xOyOT 4 g0 (2.3)
forl =1,2,...,L. Hence
XD = g(NO),

The shape of the output layer is determined by the functionality of the net-
work, i.e. regression or classification, which in turn determines the connec-
tions from Layer L. We discuss in the following three cases.

e Case 1: Normal regression network. The output layer is actually a
matrix variable as O = X+Y . The connection between layer L and
the output layer is defined as (2.2]) with [ = L.

e (Case 2: Classification network I. The output layer is a multiple label
(0-1) vector o = (01, ..., 0x ) where K is the number of classes. In o, all
elements are 0 but one 1. The final connection is then defined by

_ exp(up X EvE + thy)

S exp(uy XOVT, 4 thy)’

wherek =1,2,.., K,U = [uf, ..., up]" e Rt and V = [v], ..., vk]" €

REXJL That is both u;, and v, are rows of matrices U and V, respec-

tively. Similar to (2.3]), we denote

N = ukX(L)Vg + tbk (25)

Ok (2.4)

(2.4)) is the softmax that is frequently used in logistic regression [14].
Note that in (2.4]), the matrix form is maintained. However, one can
flatten the matrix for the output layer leading to the third case.

e Case 3: Classification network II. The connection of Layer L to the
output layer can be defined as the following

NP = vee( XNy, + thy (2.6)
L
exp(N;")
K L
S exp(N)
where vec() is the vectorisation operation on matrix and Ty, is a column

vector with compatible length. This makes Case 2 a special case of Case

3.




Assume that we are given a training dataset D = {(X,,,Y,)}_, for re-
gression or D = {(X,,,t,)}_, for classification problems respectively. Then
we define the following loss functions

e (Case 1: Regression problem’s loss function is defined as
1 o1
L=—Y —|v,— X2, 2.8
¥ 25l = Xl (28)

e Cases 2&3: Classification problem’s cross entropy loss function is de-
fined as

L= —% ) tarlog(on). (2.9)

n=1 k=1

Note that the selection of cost function is mainly from the consideration of
the convenience of implementation. Actually, MatNet is open to any other
cost functions as long as the gradient with respect to unknown variables can
be easily obtained.

From Eq. we can see that the matrix form is well preserved in the
information passing right from the input layer. By choosing the shape of U®,
V® and BY accordingly, one can reshape the matrices in hidden layers. In
traditional neural networks with vectors input, Eq. actually becomes

x? = (W Dyec(XD) + bM) (2.10)

where x(® and b® are column vectors with compatible lengths. If we vec-
torise the first hidden layer of MatNet we obtain

vec(X®)) = cr((V(l)T @ UMvec(XW) 4 vec(BW)), (2.11)

where A® B is the Kronecker product between matrix A and B and we used
the identity
vec(AXB) = (BT @ A)vec(X).
It is clear that by choosing W) in traditional neural networks such that

WO = O @ U, it is possible to mimic MatNet and it is also true for
other layers. Therefore, MatNet is a special case of traditional neural net-

works. However, yor ® UW has significantly less degrees of freedom than
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W ie. L I+ Jia Jy ves. I L1 i1 Ji. The reduction of the solution space
brought by the bilinear mapping in Eq. is apparent. The resultant
effects and advantages include less costly training process, less local minima,
easier to handle and most of all, direct and intuitive interpretation. The
first three comes immediately from the shrunk solution space. The improved
interpretability comes from the fact that U® and V® work on the matrices
directly which normally correspond to input images. Therefore, the functions
of UM and V¥ becomes clearer, i.e. the linear transformation applied on ma-
trices. This certainly connects MatNet to matrix or tensor factorisation type
of algorithms such as principal component analysis [13], 21], 9] broadening
the understanding of MatNet.

2.2. Optimisation

We collect all the unknown variables i.e. the network parameters of each
layer here. They are UY, VO B for | = 1,..., L, and T, and tb; for the
output layer. Write the parameters of each layer as ©). From Eq. one
can easily see that the information is passing in the exactly the same way of
the traditional fee forward neural networks. The underlining mechanism is
the bilinear mapping in , which preserves the matrix form throughout
the network. This suggests that the optimisation used in traditional neural
networks, i.e. back propagation (BP) and gradient descent combination can
be used for MatNet. All we need to do is to obtain the derivative of the cost
function w.r.t ©®, which can be passed backwards the network.

Since we proposed both regression and classification network models, the
derivatives differ slightly in these two cases due to different cost functions
while the back propagation is exactly the same. The details about the gradi-
ents and back propagation are in the appendix for better flow of the paper.
Once the gradients are computed, then any gradient descent algorithm such
as the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) [9] can
be readily used to find the sub-optimum given an initialisation. Normally,
the network is initialised by random numbers to break symmetry. When the
number of layers of a MatNet is 3, this strategy is good enough. However,
if MatNet contains many layers, i.e. forming a deep network, then the com-
plexity of the model increases drastically. It requires more training samples.
Meanwhile some constraints will be helpful for faster convergence or better
solution.



2.3. Regularisation

Although MatNet has reduced solution space heavily by using the bilin-
ear mapping in already, some techniques routinely used in traditional
neural networks can still be used to further constrain the solution towards
the desired pattern. The first is the weight decay, i.e. clamping the size
of the weights on the connections, mainly U® and V¥, Normally we use
Frobenius norm of a matrix for this purpose, that is to incorporate

AY (U1 + IVOR),
l

where A is a nonnegative regularisation parameter and the summation of
Frobenius norms includes the output layer as well.

One may immediately think of the sparsity constraint on the weights
to cut off some connections between layers similar to the DropConnect in
[34]. It turns out that it is not trivial to incorporate sparsity constraint
manifested by sparsity encouraging norms such as ¢; norm favourably used
in sparse regressions [28]. The dropping in [34] in implemented by a 0/1
mask sampled from Bernoulli distribution. Here we discuss another type of
sparsity which is much easier to be incorporated into MatNet. This is the
situation when we have an over supply of neurons in hidden layers. In this
case, the neural network may be able to discover interesting structure in the
data with less number of neurons.

Recall that X\ in denotes the activation at hidden unit [ in the
network. let

N
1
70 = N " xW0 2.12
p NnE_l n (2.12)

be the average activations of hidden layer [ (averaged over the training set).
Through (approximately) enforcing the constraint elementwise

_(
Pz(j) =

p?

one can achieve sparsity in reducing the number of neurons [26]. Therefore,
p is called a sparsity parameter, typically a small value close to zero, e.g.
p = 0.05. In words, the constraint requires the average activation of each
hidden neuron to be close to a small given value. To satisfy this constraint,
some hidden units’ activations must be close to 0.



To implement the above equality constraint, we need a penalty term
penalising the elements of p) deviating significantly from p. The deviation
is quantified as the following akin to Kullback-Leibler divergence or entropy
[6]:

1—
R; = sum <plog % +(1—p)log 1_—;)) (2.13)

where sum (M) summing over all the elements in matrix M; log and / are
applied to matrix elementwise. To screen out neurons that are not necessary,
we add the following extra term in the cost function of MatNet

L
B> R
=2

The gradient of this term is detailed in the appendix.

3. Multimodal Matrix Neural Networks

We have the basics of MatNet from above discussion. Now we proceed to
extending MatNet to multimodal case for image super resolution application.
The extension is as straightforward as including more than one input matrix
at the same time at input layer. Conceptually, we have more than one input
layer standing side by side for different modalities and they all send the
information to the shared hidden layers through separate connections [20].
It turns out for super resolution, three layer MatNet is sufficient, i.e., input
layer, hidden layer and output layer, and it works on autoencoder [12] mode
meaning a regression MatNet reproducing the input in output layer. This
requires that the output layer has the same amount of modalities as the
input layer. Although we showcase only a three layer regression multimodal
MatNet, it is not difficult to extend to other type of multimodal MatNet
with multiple hidden layers using the same methodology.

Assume D modalities as matrices in consideration denoted by X7/ €
RE1*Ki2 (j = 1,2,...., D). Similarly there are D output matrix variables
of the same sizes. Denote by X = (X!, ..., XP). In the hidden layer, we only
have one matrix variable H € RX1*X2 The transformation from input layer
to hidden layer is defined by the following multiple bilinear mapping with



the activation function o (sigmoid or any other activation function)

H:aéi%XWf+B) (3.1)

j=1
and from hidden layer to output layer by
X' =a(R;HST +C)), j=1,2,..,D. (3.2)

We call H the encoder for data X. For a given set of training data
D = {X;}Y, with &, = (X},...,XP), the corresponding hidden variable
is denoted by H;. The objective function to be minimised for training an
MatNet autoencoder is defined by

N D
1 . .
L= ﬁZZHXiJ - X/ || (3.3)

i=1 j=1

L is a function of all the parameters W = {U,,V}, R;, S;, C}, B}le.

We leave the derivation of the gradients of multimodal MatNet autoen-
coder to the appendix. It is very similar to those of the original MatNet and
therefore the the same BP scheme can be utilised for optimisation.

4. Experimental Evaluation

In this section, we apply MatNet to MNIST handwritten digits classi-
fication and image super resolution. The network settings are somewhat
arbitrary, or in other words, we did not optimise the number of layers and
neurons in each layer in these tests. For handwritten digits recognition, Mat-
Net was configured as a classification network, i.e. the output layer was a
vector of softmax functions as in Eq. and of length 10 (for 10
digits). For illustration purpose, we selected a simple MatNet. It contained
2 hidden layers, each with 20 x 20 and 16 x 16 neurons. As the numbers of
layers and neurons were very conservative, we turned off sparsity constraint
as well as weights decay. For super resolution task, the only hidden layer was
of size 10 x 10, therefore, only 3 layer MatNet. The activation function in
both networks was sigmoid.
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Figure 1: Weights and bias learnt by MatNet classifier.

4.1. MNIST Handwritten Digits Classification

The MNIST handwritten digits database is available at http://yann.
lecun.com/exdb/mnist/. The entire database contains 60,000 training sam-
ples and 10,000 testing samples, and each digit is a 28 x 28 gray scale image.
We use all training samples for modeling and test on all testing samples.
Figure [1| shows the weights, U® and V¥, and bias B® in hidden layers.
Figure [2| shows the first 100 test digits, and hidden layer outputs. The check
board effects can be seen from the the hidden layer output in Figure [2[(b).
The final test accuracy is 97.3%, i.e. error rate of 2.7%, which is inferior to
the best MNIST performance by DropConnect with error rate 0.21%.

However, as we stated earlier, MatNet has much less computational com-
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(a) First 100 test digits. (b) Hidden layer 1 output. (c) Hidden layer 2 output.

Figure 2: Hidden layer output of MatNet for MNIST dataset.

plexity. To see this clearly, we carried out a comparison between MatNet and
“plain” convolutional neural networks (CNN), i.e. CNN without all sorts of
“add-ons”. The CNN consisted of two convolutional layers of size 20x1x5x5
and 50 x 20 x 5 x 5 one of which is followed by a 2 X 2 max pooling, and then a
hidden layer of 500 and output layer of 10, fully connected. This is the struc-
ture used in Theano [I] demo. The total number of parameters to optimise is
430500, while the total number of parameters in MatNet is 5536. The server
runs a 6-core i7 3.3GHz CPU with 64GB memory and a NVIDIA Tesla K40
GPU card with 12GB memory. We used Theano for CNN which fully utilised
GPU. On contrast, MatNet is implemented with Matlab without using any
parallel computing techniques. The difference of training time is astounding.
It costed the server more than 20 hours for CNN with final test accuracy of
99.07%, whereas less than 2 hours for MatNet with test accuracy of 97.3%,
ie. 1.77% worse. In order to see if MatNet can approach this CNN’s per-
formance in terms of accuracy, we varied the structure of MatNet in both
number of neurons in each layer and number of layers (depth). However, we
limited the depth to the maximum of 6 as we did not consider deep structure
for the time being. Due to the randomness of the stochastic gradient descent
employed in MatNet, we ran through one structure multiple times and col-
lected the test accuracy. Fig. [3| shows the performance of different MatNet
compared against CNN. The model complexity is rendered as the number of
parameters in the model, which is the horizontal axis in the plot. So when
MatNet gets more complex, it approaches CNN steadily. Fig. [] shows some
statistics of all the tested MatNets where the depth is also included. The bar
plots are mainly histograms of given pair of variables. The diagonal panels
are density for corresponding variables such as the right bottom one is the
test accuracy density where it show the majority of MatNets achieved more
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Figure 3: Test accuracy of MatNet vs CNN

than 98% accuracy. The left two bottom panels show the scatter plots of
accuracy against depth and number of parameters. However, the two panels
on the top right summarise these as box plots are more informative. They
show that the most complex models are not necessarily the best models on
average. The best model (with highest test accuracy) is the one with depth
of 4, i.e. two hidden layers, 160 x 160 neurons each and 316160 parameters in
total that achieved 98.48% accuracy, very close to that of CNN despite the
fact that MatNet is not at all optimised in almost every aspect such as opti-
misation strategy. This implies that MatNet has the potential to match the
performance of CNN with more future efforts with foreseeable great savings
in computation.

4.2. Image Super Resolution

For image super resolution, we need to use the multimodal MatNet de-
tailed in Section [3] The training is the following. From a set of high reso-
lution images, we downsample them by bicubic interpolation to the ratio of
1/s where s is the target up-scaling factor. In this experiment, s = 2. From
these down scaled images, we sampled patches, say 15, from their feature
images, i.e. first and second derivatives along x and y direction, 4 feature
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Figure 4: Some statistics of MatNet in this experiment.

images for each. These are the modalities from X? to X°. We also sampled
the same size patches from the original high resolution images as X*'. See
Eq. . These data were fed into multimodal MatNet for training.

To obtain a high resolution image we used the following procedure. First
upscale the image by bicubic interpolation to the ratio of s and convert it to
YCbCr space. The luminance component is then the working image on which
the same size patches are sampled by sliding window as new input X!. Ob-
tain 4 feature images from this working image on which patches are sampled
exactly the same way to form X? to X°. Feed these to a well trained mul-
timodal MatNet to get high resolution image patches from network output.
The high resolution patches are then merged together by averaging pixels in
patches. This gives us the high resolution luminance image, which is in turn
combined with up-scaled, chrominance images, Cb and Cr images, simply by
bicubic interpolation, to form final high resolution image in YCbCr space.
For better display, it is converted to RGB format as final image.

We applied MatNet to the data set used in SR [37], both for training
and testing. There are 69 images for training. The patch size was 15 x 15.
We randomly sampled 10,000 patches altogether from all images for training.
Some additional parameters for MatNet are A = 0.001, p = 0.05 and 8 =
1. So we turned on weight decay and sparsity constraints but left out the
manifold constraint. Figure |5 shows the network parameters learnt from the
data, from which we can observe the scaling changing filters in the weights

14
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Figure 5: Multimodal MatNet weights learnt for super resolution.

for high resolution patches.

Fig. [6] shows the results on two testing images. Multimodal MatNet has
comparable performance as SR, the state-of-the-art super resolution method,
evaluated by PSNR: for Lena image, multimodal MatNet, SR and bicubic
interpolation achieved PSNR 33.966dB, 35.037dB and 32.795dB respectively;
for kingfisher image, they had PSNR 36.056dB, 36.541dB and 34.518dB re-
spectively. We applied to a number of images of similar size (256 x 256)
and we observed similar scenario. Fig. [7] (a) shows the all the test images,
including the two in Fig. [6 and PSNR’s obtained by different methods is
shown in Fig. |f| (b). MatNet is very close to SR in terms of PSNR, especially
for image 5 and 8.

5. Discussion

We proposed a matrix neural network (MatNet) in this paper, which
takes matrices input directly without vectorisation. The most prominent ad-
vantage of MatNet over the traditional vector based neural works is that it
reduces the complexity of the optimisation problem drastically, while man-
ages to obtain comparable performance as the state-of-the-art methods. This
has been demonstrated in applications of MNIST handwritten digits classi-
fication and image super resolution.
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(b) Kingfisher image (256 x 256)

Figure 6: Super resolution on 2 sets of testing images. From left to right: input small size
image, true high resolution image, up-scaled images (2 times) produced by multimodal
MatNet, SR and bicubic interpolation respectively.

m I Bicubic n
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il
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(b) PSNR results

Figure 7: Super resolution results comparison. The images are indexed from left to right,
from top to bottom.
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As we mentioned several times in the text, MatNet was not specially
optimised for the tasks we showed in experiment section. There is a lot of
potentials for further improvement. Many techniques used for deep networks
can be readily applied to MatNet with appropriate adaptation, e.g. reLU
activation function, max-pooling, etc., which certainly become our future
research.
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Backpropagation Algorithm for Regression

We will work out the derivative formulas for all the parameters © =

{UO vO BOYL We use the following useful formulas

vec(AXB) = (BT @ A)vec(X),
OAXB"  Ovec(AXBT)
0X 7 Ovec(X)

— B® A,

where vec(M) transforms a matrix into a column vector along columns of

the

matrix and ® is the Kronecker product operator. Also we will use ®
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to denote the elementwise product of two vectors or two matrices. In the
following derivative formula for matrix valued functions, we use the tradition

24 — [giz](ij’k” € RUXDXEXL) for matrix variables A € R/ and B €
RKXL.

From (2.2, we can see that, for all [ =1,2,..., L
X0 = o(NO),
where n refers to the n-th item corresponding to the training dataset.

We are interested in the derivative of the regression loss function (2.8)

with respect to NS). L is the function of Ny) via its intermediate variable
NV Hence the chain rule gives

oL L  ,ONSTY

afo)) :Vec(aN,S’“)) Ny

vec( (6.1)

Note that
Ny(LHl) — U(l+1)X(l+1)v(l+1)T + B(l+1)
— U(H_I)O-(NT(LI))V(H_I)T + B(H—l)

As the sigmoid function o is applied elementwise to the matrix, it is easy to
show that

3Nr(zl+1) ovec (NT(ZZH))

— = VD o Ui+, (6.2)
do(NY)  vec (0(]\0@))
A direct calculation leads to
do (N
% = diag(vec(o’(ND))). (6.3)
Taking (6.2)) and (6.3)) into (6.1) gives, with a transpose,
_aL : U +1)T +1)T AL
VeC( NS) ) = diag(vec(d’(N;))) (VDT @ yt+1) )vcc(aNy;l))
: oL
= diag(vec(a’(N)))vec (UUH)TWV(ZH))
ONp
10 a7 (D) wyr_ 9L (1+1)
= vec(o'(N,/))vec | U —V
n 8N7(Ll+l)
= vec O_/(N(l)) ® U(H—l)Ta—Lv(l-‘rl) )
n aNy(LH—l)
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Finally we have proved that

a?vj?&“ = (U““)T%W“U) ® o' (NW). (6.4)
From ({2.8) we have
ajav—,[g“ = (o(N") - V,) ® o/ (NP). (6.5)
Hence both and jointly define the backpropagation algorithm.
Let us denote 6% = a?vi”'

Now consider the derivatives with respect to parameters. Take U®) as an

example:
T oar(l)
ONp,
<8U(l ) ZV@C < IND ) oU
T
:ZVGC (8N(l)) (V(lX ®Ifl+1>'
n=1 n
This gives
8_L XN: oL V(l 25(1 l)T (6.6)
ou® < ONY '
Similarly
L &
=> sWTUOX0. (6.7)
oV —
N
)
aB<l Z 60 (6.8)



Then we have the following algorithm, for l =L —1,...,1,

5 = (o(NPY —Y,) © o' (NP).

n n

N
l
S =2 Ve
N
=> sWUhx
ava 2
N

=20

n=

59 (U< DT 5D +D) 6 o' (ND)

n n

o/ (N) = o () - (1 = o(N)) = X{D - (1= X{+)

n n

where U(NT(LZ)) = XY s actually the output of layer [ + 1.

7. Backpropagation Algorithm for Classification

The only difference between regression and classification mnnet is in the
last layer where the output at layer L + 1 is a vector of dimension K. That
is the connection between this output layer and layer L is between a vector

and the matrix Variable X @ of dimensions I, x Jy.

According to , we have the following two cases for calculatlng

Case 1: k=k'. Then

aonk (S enVED) esp(NEE)—exp(N) exp(NE)
(L) (Zﬁ‘?:]e;{pmﬁ)))z
ON,;
Case 2: k 7§ k' Then
(L) (L)
aonk T eXp(]\[nl€ )eXp<Nnk/)

= —OnkOnk’

(ry — 2
ON i (Zgzl exp(Néi)))
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Combining the above cases results in

oL 0
(S(i = = Zt k! lOgO k!
n (L) (L) " "
aNnk aNnk k=1

1 K

- _tnk_onk:(l - Onk) + Z tnk’ OnkOnk!
nk k' £k Onk!

= Onk — tnk

For our convenience, denote
) = Og — Tk = [onk — tuk)ur € RVE,

-1 .

Finally we want to calculate 5 (=1 T where N is a matrix,

i.e., the output before sigmoid in layer L. In other lower layers, the formulas
Wlll be the same as the regression case. From , we have, noting that

N = vee(o (N )T, + thy ([26) and >,
K

oL ) oL OND
vec | ——— | =
(azv#‘” ,; ONE oN{EY

K
:Z(S diag(vec(o’ (NED))).

k=1

For each Ty, we convert it into a matrix, denoted by Uy, according to the
position of _elements XT(LL), and formulate a third-order tensor U such that
U(:,:, k) = Ug. Then
L—1 L 1
s = 6NL1) Z(s o Ty
= (N(L ) © UX367) (7.1)

n

Again, according to both (2.6) and (2.7)), it is easy to see that
Donk —eXp(N,(Lk>)exp((Nék/))vec(XﬁbL))
oy 2
k (Zk, 1exp(]\ffm,)))

= —onkonkxvec(X,(LL)).
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The second case of k = k' is actually

aonk (S en(VED) exp(NEE pvee( X)) —exp(N{E) exp(N () pvee(XE2)

" (B8 oo vD)
= ok (1 — 0”k>veC(Xr(LL))

Hence, for each k =1,2,.... K,

oL 1 Oop
o _;’;t"’“@ oy
= T[St (ou)omevec(XE) 4 st ous (1 — o vee( X4
N K
== Z [— <Z tnk’) Onk + tnr(1 — onk)] VeC(XéL))
n=1 k' £k
N
= - Z [_ (1 - tnk) Onk + tnk(l — Onk)] VeC(XéL))
n=1
N
=3 ok — tar)vecXP)
n=1

If we formulate a matrix U = [0, Us, ..., U], then

0L 0
8__ = ZVGC(Xn )[0711 — tn1,0n2 — ln2y -, Onie — tnK]
U n=1
— XD §L) (7.2)
where X1 = [Vec(XlL)),Vec(XQL)), ...,VeC(X]l\}))] € RULXJL)XN,
Similar to 88]\‘;?’5), we have
nk’
do k do k
n:nl_n d n:_n nk! k k. 7.3
Sy, ~ Ol —one) and s = —omone (kA K). - (7.3)

So it is easy to show

L o 0L
B ;(onk —tnk), ,that is Fre sum(Og — Tk).

The entire backpropagation is to combine (6.10) to (6.14)), and (7.1)) to
(7.3).
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8. Sparsity

We repeat the sparsity penalty R; here.

P 1—p
R, = sum (plog ,ﬁ +(1—p)log 1——ﬁ(l)) (8.1)

where sum (M) means the sum of all the elements of matrix M, and log and
/ are applied to matrix elementwise.
If we applied the sparsity constraints on all the layers excepts for input

and output layers, the objective function (of regression) defined in (2.4) can
be sparsely regularised as

L N L
1
U=L+B) =) SIVa- XV +8)Y R (82)
=2 n=1 =2

Then, by noting that R; (j < [+ 1) is irrelevant to N,

oL’ 0 0

= L + 5 R;) — Ry

oNy Ny ng onm it

oL B
= 8N,(ll) + ﬂa]\/;g) Rl+1

oL’ N+ )
= N0 oy T

oL’

— |:U(l+1)TaN - V”“} ® o' (N +5 (l) Rioy

By using the similar technique, we can prove that

0 P L—p l
—a R = [—_ + = } © o' (N
aNT(Lz) + pD T — 5D

Hence the backpropagation defined in (6.4) can be re-defined as
5 W _ [pemsgoyen 4 g~ 222)] @ O (N(l))

The above can be easily implemented into BP scheme as explained in
previous section.
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9. BP Algorithm for Multimodal MatNet Autoencoder

To train the multimodal MatNet autoencoder, we need to work out the
derivatives of L with respect to all the parameters. First, we define the
derivative of L with respect to the output layer variables

0% = X] - X

Now we back-propagate these derivatives from output layer to the hidden
layer according to the network structure and define

D

5! —ZS (0% © o' (R;Y;ST + Cy))RY =Y RY (6% @ o'(X)))S;
j=1
Then it is not hard to prove that
L 1~ o .
R N;(% © 0o'(X7))S;Y; (9.1)
or _ 1 EN:@? ® (X)) R;Y; (9.2)
asj - N — i o % g
0L 1~ o
G_OJ_N;(%QUQ( ) (9.3)
and
0L 1 &
=== (i 0dV))V;X] (9.4)
oL 1<
= 36 oo ()UK, (9.5)
v, N2 j
0L 1 & ,
BN Z(@l ®©d'(Y;)) (9.6)

The algorithm implementation is straighforward. In the forward sweep-
ing, from the input, we can get all ¥; and X}, then in the backward sweep,

all the ¢’s can be calculated, then all the derivatives can be obtained from
the above formula.
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10. Sparsity in Multimodal MatNet Autoencoder

If we applied the sparsity constraint on the hidden layer, the objective

function defined in (3.3]) becomes

N D
1 ~. A
L' =L+ )R, = ﬁZZHXg — X7|% + BR,. (10.1)
i=1 j=1

As R, is independent of R;, S}, C;, then oL _ OL oL _

OR; — OR;’ 0S;
oL
ac. - We can prove that

8Ry_i B
N

9Y;

D
[S—Y
|
(IS
| I
>
(o0
—
=
—

Then we have

g[i; %Z((@l + B8(p)) © o' (V2))V; X[

gé T ST+ 85(0)) © () UL X,

gLB’ _ % D (8} +86(p)) © o' (¥2))
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(10.2)
(10.3)
(10.4)
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