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ABSTRACT

In quantum photonics, the requirement for photon pairs with specific quantum states
has led to a demand for a fast, high resolution and accurate characterisation of photon
pair sources. However, current quantum methods of characterisation suffer from limited
accuracy and resolution, and only consist of intensity measurements that prevent access
to phase-sensitive measurement photon pairs. A promising tool that addresses these
challenges, uses the classical analogue of nonlinear processes to stimulate photon gener-
ation, yielding much higher count rates that allows for a higher resolution and accurate
photon pair source characterisation. Furthermore, this classical measurement allows for
an innovative method to perform full phase-sensitive quantum tomography of photon
pair sources that was previous thought to be experimentally challenging to obtain.

This thesis examines and compares the quantum and classical method of characteri-
sation of spectral correlations in χ(3) nonlinear devices; namely two integrated silicon
nanowires, and a highly nonlinear fibre. In the first study, we use stimulated nonlinear
process to confirm the speed-up of characterisation of photon pairs and demonstrate that
additional resolution is gained when compared to the traditional coincidence measure-
ments with no increase in measurement time. By applying this technique with phase-
sensitive amplification to another identical silicon nanowire, the first phase sensitive
measurements are presented showing details that are otherwise hidden in traditional
intensity measurements. Furthermore, phase-sensitive measurement of a highly nonlin-
ear fibre shows that phase-sensitive measurements have excellent sensitivity to small
features when compared to the traditional intensity measurements.
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1
INTRODUCTION

We live in an age where information is a vital resource and our society and econ-

omy is constantly shaped by computation and communication as we rely on

faster and faster information processing. Quantum information is an exciting

field that promises to solve some computational tasks and implement communication pro-

tocols that are not possible with current classical computers and communication systems

[1–3]. The emergence of quantum information technologies in recent years has therefore

led to an ever-growing field that combines the non-classical behaviour of physics with

real-world technological applications. This system consisted of exploiting quantum parti-

cles such as electrons, ions or photons that exhibit non-intuitive behaviours of quantum

mechanics, such as superposition and entanglement, for use in quantum information

technologies. Photons do not strongly interact with matter or with one another and

therefore are well isolated quantum systems that can exhibit stable superposition and

entanglement even at room temperature compared to other quantum systems. Addi-

tionally, they are the only viable choice for quantum communications and can provide a

natural integration between quantum computation and quantum communication.

Prior to early 2000s, optical quantum experiments were performed using table-top

and bulky optical elements that used nonlinear optical processes to provide optical

switching when two or more optical signals are combined [4]. It was soon realised

however, that this approach would become easily unstable and unwieldy to scale up.

Fortunately a solution was proposed in 2001 that uses single photon sources, linear

optical components and single photon detectors for optical switching in the single photon

1



CHAPTER 1. INTRODUCTION

regime [5]. This approach introduced the new field of quantum photonics that aims to

solve many of the challenges of traditional optical quantum computing experiments.

The ability to prepare and precisely control the state of single photons is critical to

the advancement of quantum photonics as we require specific photons states for different

tasks such as quantum computing where non-entangled photons states are required to

exhibit quantum interference. As we are constantly moving towards more integrated and

complex quantum photonic platforms, this has created a demand for fast, high resolution

and accurate source characterisation of single photons.

This thesis presents significant progress towards the manipulation and characterisa-

tion of photon pairs generated in nonlinear media. Chapter 2 starts with the introduction

and background of quantum information science and the use of single photons as quan-

tum systems. The mathematics underlying the characterisation of spectral entanglement

which will be used at several points in the later chapters is also introduced. Chapter 3

begins with traditional methods of characterisation of photon pairs using intensity based

quantum measurements. To address some of the limitations imposed by the quantum

measurements, a new method of photon pair source characterisation that uses classi-

cal stimulated processes is then introduced. In chapter 4, this classical measurement

combined with a novel method is used to perform phase-sensitive measurements of

photon pair sources, a measurement that was previously thought to be experimentally

inaccessible. The experimental investigation of characterisation of photon pairs is crucial

to the future development of complex sources of photon pair states for use in future

quantum photonic technologies.
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2
BACKGROUND OF PHOTONICS

Quantum mechanics provides an elegant method for the description of the motion

and interaction of subatomic particles. The non-intuitive behaviour of quantum

mechanics has had a transforming effect in the field of communication, compu-

tation and metrology where it enables us to go beyond the realm of classical limits. After

a brief introduction to quantum information, this chapter contains:

• Analysis of single photons as a quantum system and application of single photons

in quantum photonics.

• Introduction to nonlinear optics and exploration of the current methods used to

generate single photons.

• In depth analysis of the current method used to characterise and quantify the

degree of spectral correlations of photon pairs generated via nonlinear devices.

2.1 Quantum Information

Quantum mechanics, since its development and maturity into its current form in the late

1920s, is among the most successful and mysterious of scientific theories. Quantum me-

chanics portrays a world that is fundamentally probabilistic, where single fundamental

entities can be at two places at the same time, and also where two fundamental entities

that are light years apart can be instantaneously linked. It is important to note that

3



CHAPTER 2. BACKGROUND OF PHOTONICS

the two fundamental entities cannot send or receive information faster than light and

no local causality is broken. In the decades following the 1920s, physicists have suc-

cessfully applied quantum mechanics to not only the understanding of the fundamental

physical laws but also to the technological advancement of science. However, only in

the last decades, the unintuitive behaviour of quantum mechanics has been applied to

computing and communication [6–8]. In quantum computing, powerful computations

can be performed for specific tasks enabled by the superposition of quantum systems,

while quantum communication takes advantage of the no-cloning theorem - where we

cannot clone an unknown quantum state without destroying it.

In quantum information, one of the key fundamental units is the qubit, the quantum

analogue of the classical bit that can be in a 0 or a 1 state, with the corresponding

wavefunction written in Dirac’s notation as |0〉 and |1〉. In quantum information, a

qubit is commonly expressed as a superposition state of both states at the same time,

represented by

|ψ〉 =α |0〉+β |1〉 (2.1)

where α and β are the probability amplitudes of the qubit such that a measurement of

|ψ〉 will give |0〉 with probability of |α|2 or |1〉 with probability |β|2. As such superposition

state is normalised with total amplitude probability of |α|2 +|β|2 = 1. As the amplitude

probability can be complex, many interesting effects such as quantum interference can

take place.

In quantum information, there are many types of quantum systems whose qubit

degree of freedom can be used in quantum information science. However there exists a few

crucial criteria that these quantum systems must have in order to be successful for use in

quantum information technologies. Generally the criteria requires the quantum system

to contain well characterised quibits, long coherence times after relevant operations

and relatively easy measurement ability of specific quibits. Currently there exists many

quantum systems that meet, to a certain extend, these criteria. Examples of such

platforms include trapped ions [9], electrons [10], superconducting junctions [11] and

photons [12]. However, each platform has its own unique technical challenges and

advantage.

4



2.1. QUANTUM INFORMATION

2.1.1 Single Photons as Quantum Systems

In recent years, photons have emerged as potential quantum systems that can be used

for long-distance quantum communication and quantum computation. The biggest ad-

vantage of photons is that photons do not interact strongly with matter and thus are

a prime candidate for transmitting photons through existing optical fibre communica-

tion networks with low loss for quantum communication. However, this can also be a

disadvantage where we require photons to interact with each other for use in quantum

information technologies. More specifically, strong interaction between photons is re-

quired to perform gate operations. This therefore causes major difficulty and challenges

in the implementation of optical gates in optical circuits in quantum optical technologies.

FIGURE 2.1. An example of a multi-input digital gate that produces a single
output.

In conventional computing, classical logic gates are used for digital circuits where

they switch the output state depending on the input states of the system (see Fig. 2.1).

This system uses voltages that has two nominal values representing logic 0 and logic 1.

In optics however, the property of weak interaction between photons becomes a large

problem for qubit computation.

In 1995, a solution was purposed to use nonlinear optics to allows for photon-photon

interaction [13]. This scheme requires two beams of photons, a control and the target

beam, to interact nonlinearly such that the control beam induces a π phase shift in the

target beam. However in the single photon regime, it is found to be extremely difficult

task to induce a π phase shift by a single photon using the classical scheme of nonlinear

optics [14, 15].

Fortunately, a breakthrough scheme was proposed in 2001 that allows for efficient

photon-photon interaction using linear optical components [5]. This proposal is currently

known as the Knill-Laflamme-Milburn (KLM) scheme that is based on two single photons

to interact in a beam splitter to induce a π phase shift in the target photon, without

the need for nonlinear optics. This interaction in the beam splitter leads to quantum

interference that is critical for the development of quantum computation and processing

5



CHAPTER 2. BACKGROUND OF PHOTONICS

Input Output
C T C T
|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

TABLE 2.1. Truth table of a linear CNOT gate, where C and T are the control
and target qubits respectively.

that use qubit gate operation based on single photons. This scheme has led to the birth of

quantum photonics and thus the development of radical new ways to manipulate photon

states.

In quantum photonics, the quantum analogue of the classical gate, the quantum

gate, is the building block for quantum circuits. An example of a quantum gate is the

controlled NOT (CNOT) gate that is essential for the construction of a quantum computer.

The CNOT gate operates with two input qubits named the controlled and the target (see

Table. 2.1.1). The CNOT gate flips the target qubit if and only if the controlled qubit is

|1〉. This CNOT gate is inherently useful for universal schemes of quantum information

processing that requires two quibit gates [16].

2.1.2 Quantum interference of Single Photons

The non-classical interaction between photons is the key to quantum gates and thus

quantum photonic technologies. However, for this interaction to occur, the photons

require to be in specific quantum states. In general, it is possible to describe a photon in

a quantum system by their degrees of freedom given by

|Ψ〉 = |n,λ,P,T,S〉 , (2.2)

where n is the number of photons, λ is the photon’s central wavelength, P is the photon

polarisation, T is the temporal and S is the spatial mode of the photons. If we have two

photons with identical quantum states as Eq. 2.2, the photons are indistinguishable and

can therefore successfully quantum interfere with each other.

The first quantum interference was performed by Hong, Ou and Mandel in 1987

[17]. This ground-breaking experiment consisted of injecting two photons into each input

path of a 50:50 beam splitter, which is a mirror that has a transitivity and reflectivity

of 50%. Referring to Figure 2.2, when inputting two distinguishable photons that have

6



2.1. QUANTUM INFORMATION

FIGURE 2.2. The four possible paths photons can take when entering a 50 %
reflective mirror (50:50 beam splitter).

different wavelengths, there exists four possible paths that the photons can take; both

photons can transmit (Fig. 2.2 (a)), both can reflect (Fig. 2.2 (b)) or one of the photons

can transmit and the other to reflect ( (Fig. 2.2 (c) and (d)). If we place two photon

detector that are strategically in each of the 50:50 beam splitter output, the probability

of obtaining a coincidence between the two detectors can be determined. If the two

photons that enter the 50:50 beam splitter are distinguishable (as shown in Figure 2.2),

the probability of obtaining a coincidence is given by the sum of the probability of both

photons transmitting, and both photons reflecting. The probability of a coincidence is

therefore

PCoincidence = Pt +Pr (2.3)

where Pt and Pr are the probabilities of both photons transmitting and reflecting respec-

tively. Since the transmitance and reflectivity of such beam splitter is 50%, Eq. 2.3 can

be written as

PCoincidence = | 1p
2
· 1p

2
|2 +| 1p

2
· 1p

2
|2 = 1

2
. (2.4)

This calculation indicates that when two distinguishable photons enter a 50:50 beam

splitter, we expect a coincidence between the two detectors 50% of the time.

Now if we consider quantum mechanics, where two photons can poses the exact

same quantum states and input these two photons into the same 50:50 beam splitter, a

different coincidence probability is calculated. Although the probability of each photon to

transmit through the 50:50 beam splitter is the same for distinguishable photons (the

first term in Eq. 2.5), in the reflected case each photon experiences a π phase change and

thus the total probability of a coincidence is calculated to be

7



CHAPTER 2. BACKGROUND OF PHOTONICS

PCoincidence = | 1p
2
· 1p

2
|2 +| ip

2
· ip

2
|2 = 0 (2.5)

The calculated coincidence probability of zero indicates that if the two photons entering

the 50:50 beam splitter are completely indistinguishable in all their degrees of freedom,

then both photons always exist the same output and thus resulting in no coincidences.

This is the non-classical and unintuitive behaviour of photons known as quantum

interference and arises from quantum mechanics requiring for one to calculate the

probability amplitude of photons undergoing transmission and reflection.

2.2 Nonlinear Optics

The previous section discussed the variety of quantum systems that are currently used

for quantum information science. It also mentioned that photons display many of the

important characteristics needed for use in quantum information technologies. Single

photons may be generated in a variety of methods, each having their own advantages

and disadvantages. In this section we discuss the generation of single photons through

the promising method of nonlinear optics.

2.2.1 Generation of Single Photons

The ideal single photon source for use in quantum photonics , is a source that will

generate single photons on demand with the specific properties that are required by

the user. The properties of the single photons will depend on the photon’s degrees of

freedom which may include specified spatial, temporal, energy and polarisation states.

Additionally, a very desirable property of the single photon source is the ability to

generate photons on demand. This is currently very hard to achieve without increasing

the probability of generating two or more photons at the same time. However, the demand

for the generation of single photons with the desirable states, comes with the requirement

for the ability to accurately characterise these sources of single photons.

Currently there are many active areas of research into the generation of single pho-

tons. The commonly investigated area are atom-like sources such as quantum dots [18],

nitrogen vacancy centers [19] and trapped atoms [20, 21] that are based on exciting the

atom where then a single photon is emitted as it decays to its ground state (see Fig. 2.3).

However the biggest problem with such sources are the capturing techniques of single

photons that are generated. Another challenge is the generation of indistinguishable

8
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FIGURE 2.3. Atom-like source that emits a single photon when the atom decays
from its excited state to it’s ground state.

photons from separate sources. And of course, there is the challenging task of capturing

the photons that are emitted from such sources as they can radiate in any direction.

Another way to generate single photons is the attenuation of a laser source. This

consists on placing an opaque like material in front of a classical pulsed laser source, to

reduce the output from the billions of photons to single photons (see Fig. 2.4). However,

there are many large problems associated with such method. As this method requires

very large attenuation of the classical pulses, most of the time there are no photons

detected at the output. However when there are single photons at the output, more often

than not depending on the attenuation level, two or more photons are detected at the

same time and thus introduce noise to the detection of the photons.

FIGURE 2.4. Schematic illustration of a single photon source by the attenuation
of a laser source.

A promising method of generating single photons is using nonlinear optics. In non-

linear optics, we are able to generate heralded single photons based on the detection

of a photon to determine the presence of the other photon. In this method, we use

a pulsed laser to pump a nonlinear media instead of attenuating the laser like the

previous method. Although in this case we are still bound by the multi-photon events

in the output, what distinguishes this method from the previous method is that with

each photon generated, there exists another photon that is generated simultaneously

9
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through the nonlinear optical process (see Fig. 2.5). The generation of photon pairs in

the nonlinear media allows for extraction of the time information about the creation

of one photon when detecting the other. This is known as heralding and is widely used

in quantum information processing [22–24]. It has been demonstrated that with the

heralding information, probabilistic sources can be multiplexed to near-deterministic

sources [25].

FIGURE 2.5. Schematic illustration of photon pair generation in a nonlinear
medium, allowing for the heralding of the partner photon.

A mature process for the generation of single photons is a third order nonlinear

process called spontaneous four-wave mixing (FWM) that takes place in χ3 nonlinear

mediums. It is important to note that although nonlinear optics offers a great advantage

over the attenuation of laser, the ratio of the generation of single-pair photons to multi-

pair photons are still governed by Poissonian and thermal statistics. However, since

the process of pair generation in nonlinear media must satisfy the energy and phase

matching conditions (explained in detail in Sec. 2.2.3), this disadvantage is negated with

the ability to herald photons.

2.2.2 Photon Statistics and Coincidences

The generation of photon pairs via spontaneous FWM and spontaneous parametric

down-conversion (PDC) have yet to be perfected - in practice, the detection of photon-

pairs is easily degraded before detection, as the result of coupling losses into the device,

propagation losses and detection efficiencies. Therefore, it is necessary to completely

characterise the nonlinear device to understand the exact photon statistics of the photon-

pairs generated. To do this, one can characterise the source using the coincidence to

accidental ratio (CAR) [26].

Referring to Fig. 2.6, consider a scheme where a pulse laser is input into a nonlinear

device, generating a continuous stream of photon pairs. Traditionally the higher energy

10
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FIGURE 2.6. A typical CAR histogram is shown. Inset shows single photon pairs
reaching a pair of single photon detectors. Photon-pair arrival times are
analysed using a TIA which are then used in a CAR histogram.

and lower energy photons are named signal and idler photons respectively. The pair

of signal and idler photons are then detected via two single photon detectors where

the arrival times of each photon is analysed. This is referred to time-tagging and is

made possible with the use of an electronic time interval analyser (TIA). Using the

TIA, a correlated photon pair detection from the same pulse is referred to a coincidence,

C, shown in the inset of Fig. 2.6 via the green dashed oval. Plotting the number of

coincidences in a CAR histogram such as the one in Fig. 2.6, yields a large peak at 0

delay.

If we look at the delay between the signal and idler photons from one or more pump

pulses, we will obtain smaller coincidence peaks in the CAR histogram at different delays.

The delay between the smaller peak and the previous peak corresponds to the delay

between the detection of the signal and idler photons (illustrated by the red dashed

oval in Fig. 2.6). The smaller peaks are named accidental coincidences, A, measured as

a result of multi-pair spontaneous FWM generation, leaked pump photons and single

photon detection in the absence of light (dark counts). The CAR can be mathematically

defined as

CAR = C− A
A

. (2.6)

In quantum photonics, the numerator term C−A, is often defined as the true coincidences

and encompasses coincidences from actual signal and idler pairs that are generated from

11
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the nonlinear device. The CAR is an important measurement in quantum photonics that

gives insight to the photon pair generation statistics of the nonlinear device.

2.2.3 A Brief History of Nonlinear Optics

With the invention of the laser in 1960, it was discovered that the response of atoms

in a high intensity electromagnetic field could no longer be considered to be linear

in the electric field. This finding was named nonlinear optics and can be first traced

back to 1961, with the first observation of the nonlinear optical effect, second harmonic

generation [27]. By pumping a quartz crystal with a ruby laser beam (λ = 694.2 nm),

Franken et al. were able to observe ultraviolet light at twice the frequency (λ= 347.1 nm).

After this discovery soon followed with the breakthrough of a large number of nonlinear

processes including three-wave and four-wave mixing in second and third order nonlinear

media respectively [28, 29].

As the field of nonlinear optics began to grow with improved lasers and refined

metrology, quantum mechanics and the theorised description of quantised light pushed

to the discovery of a new field of science; quantum optics. In 1982 the first demonstration

of correlations of linear polarisation of pair of photons generated via cascaded calcium

atoms were demonstrated [30]. However, it was not until 1992 at the IBM Research

Division that showed it is this property of quantum mechanics that is critical to the

development of quantum communication and cryptography [31].

In quantum optics, the leading method for the generation of single photons is based

not only on spontaneous FWM but spontaneous PDC in χ2 nonlinear media as well.

Currently, the most mature platforms for the generation of entangled photon pairs

include silicon nanowire waveguides and periodically poled lithium niobate (PPLN)

media for spontaneous FWM and PDC respectively. However, silicon continues to be one

of the most investigated platforms due to it’s potential for the generation of correlated

photon pairs on the millimetre scale but efficient fabrication with the current mature

fabrication technologies. Furthermore, as we are moving towards complex quantum optic

technologies, the demand for the generation of photons with specific states continues to

grow exponentially. As such, a big challenge is the characterisation of these photon pair

sources that are generated though these nonlinear devices.

12



2.2. NONLINEAR OPTICS

2.2.4 Four-Wave Mixing

In classical optics, light can be described as the propagation of synchronised oscillation

of electric and magnetic fields which has been very successful in the explanation of the

macroscopic behaviour of light, such as diffraction and interference. The mathematical

description of classical light is given by the Maxwell’s equations of the form

∇·−→D = ρ (2.7)

∇×−→
H − ∂

−→
D
∂t

=−→
J (2.8)

∇×−→
E + ∂

−→
B
∂t

= 0 (2.9)

∇·−→E = 0, (2.10)

where
−→
J and ρ are the free current and charge densities respectively.

−→
H is the magnetic

field,
−→
E is the electric field and

−→
B is the magnetic induction. Finally,

−→
D is the electric

displacement field is related to
−→
E through the polarisation field

−→
P in a medium given by

−→
D =−→

E +−→
P , (2.11)

Most often in optics, the polarisation field is considered to be linearly related to the

incidence electric field via the electric susceptibility χ [27], given by

−→
P = χ−→E . (2.12)

While this consideration is true for low intensity electric fields, in reality at large enough

field strength this equation no longer valid and thus requires a more complicated relation

equation. Therefore, a more accurate can be obtained by expanding the polarisation in

Taylor series [32]

−→
P = χ(1)−→E +χ(2)−→E 2 +χ(3)−→E 3 + ... (2.13)

where the first coefficient, χ(1), is the linear electric susceptibility that was previously

discussed and χ(2) is the second order susceptibility that is responsible for second har-

monic generation, three wave mixing, electro-optic effect and PDC. χ(3) is the previously

mentioned third order susceptibility that is responsible for third harmonic generation,

the optical Kerr effect and FWM.

Because silicon platforms can be cheaply fabricated compared to other nonlinear

platforms and offer the potential for integration with microelectronic chips, in the past
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FIGURE 2.7. Illustration of (a) classically stimulated FWM process and (b)
spontaneous FWM.

few years FWM has been one of the widely investigated nonlinear processes. FWM is

the elastic scattering of two beam of photons into different frequencies. This nonlinear

process can take place in two regimes: non-classically or classically with or without an

input seed together with the pump beam respectively. Referring to Fig. 2.7, both the

classical and non-classical FWM processes must obey energy conservation such that

0=ωs +ωi −2ωp (2.14)

where ωp,ωs and ωi are the pump, signal and idler frequencies respectively. In quantum

photonics, the non-classical (quantum) process is termed spontaneous FWM as it relies

on random vacuum fluctuations of the electromagnetic field to generate photon pairs

[33]. The classical process is termed stimulated FWM and is the high-gain process of the

two, that occurs with an additional classical input field (denoted as the seed) in either

the signal or idler band. In stimulated FWM, the first pair of photons are generated

spontaneously and then act as seeds for the for the sub-harmonic field due to the high

amplification in the device [28]. As such, stimulated FWM is much more efficient than

it’s quantum counterpart; spontaneous FWM. In addition to the conservation of energy,

both FWM processes must also satisfy the conservation equation

0= ks +ki −2kp +2γPp (2.15)

where k j =
ω jn j(ω j )

c for j = p, s, i represents the wave vectors of the pump, signal and idler

frequencies respectively. The term, 2γPp, consists of the nonlinear coefficient γ, and peak

pump power Pp that takes into account the phase mismatch induced by other nonlinear

effects such as self-phase and cross phase modulation in the device. The nonlinear

coefficient γ is given by
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γ= 2πn2

λp Ae f f
(2.16)

where λp is the pump wavelength, Ae f f is the effective mode area and n2 is the nonlinear

refractive index.

2.2.5 Nonlinear Devices

To achieve high FWM efficiency, a suitable χ(3) nonlinear medium that fully satisfies the

energy and phase-matching conditions is required. The nonlinear medium must also

allow for precise control over the generated photon degrees of freedom. In recent years,

there have been many nonlinear mediums that posses high FWM efficiency with control

over the light. Leading examples of such devices include highly nonlinear fibres (HNLF)

[34], As2S3 waveguides [35] and silicon nanowires waveguides [36].

However, as discussed in Section 2.1.1, complex photonic circuits have been realised

by chip-scale integration. Therefore, waveguides posses the best potential candidate

for the future direction of quantum information processing. Waveguides confine light

to a localised spatial mode and therefore allow precise control over the light’s path

and phase. In the previously mentioned nonlinear devices, the HNLF although is very

commonly used due to it’s maturity in fabrication and thus relatively low-cost to other

on-chip waveguide platforms, it is a fibre based platform that requires light to propagate

a considerable amount to achieve nonlinear phase shift. Thus HNLF is not a suitable

candidate for on-chip scale integration. On the other hand, As2S3, although a waveguide,

suffers from large Raman scattering which can introduce unwanted noise and thus

posses a large problem for quantum photonic applications.

However, silicon does not suffer from Raman Scattering and due to its high non-

linearity only requires millimetres to achieve nonlinear phase shift. Silicon have been

around since 2006 with the first demonstration of spontaneous FWM correlated photon

pair generation in a silicon nanowire [37]. Since then, silicon has attracted tremendous

attention as a promising technology in electro-optic integration for quantum computing

and communication. Mainly due to the combination of high intrinsic χ(3) nonlinearity,

the possibility for dense integration, mature fabrication methods using complementary

metal-oxide semiconductor (CMOS) processing technology, low losses and low cost [38–

40], silicon photonics is currently the leading platform for on-chip quantum integrated

circuits. As such, there is significant motivation to use integrated χ3 nonlinear devices
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for generating quantum correlated photon pairs in the telecommunication band and to

develop fast characterisation techniques [41–48].

2.3 Quantum Entanglement

Quantum entanglement is the strange non-classical phenomenon in which two or more

quantum particles are linked together in a way such that the measurement of one

particle’s quantum state instantly determines the possible quantum states of the other

particles. In general, quantum entanglement is a special correlation and superposition

of quantum particles and is one of the most investigated and thus central principles of

quantum mechanics and is the main research area of many scientific groups around the

world. Quantum entanglement between photons has been realised to be a key resource for

exceeding the technological limits imposed by classical physics and thus plays an integral

part in many applications of quantum optics including optical quantum computing [6]

and secure communication over long distances [8]. In this section we explore the principal

of quantum entanglement that exists between photons and explore the quantification of

a specific correlations that arises from spontaneous FWM.

2.3.1 Spectral Correlation

Different quantum information schemes require entangled or non-entangled photons.

This entanglement is a quantum mechanical phenomena which allows correlation and

superposition between two quantum states. If two quantum particles such as photons

are entangled, then a measurement on both photons will reveal the quantum states to be

random but correlated. This random correlation is the key to the many proposed schemes

in quantum information science.

Quantum entanglement between photons can exist in many degrees of freedom in-

cluding polarisation, time domain and energy (or frequency and wavelength) as presented

in Equation 2.2. Going back to the basics, let us imagine two qubits that can each take

the state |0〉 or |1〉. If we represent the two quibits as simple superposition states of two

particles with maximum correlation, we arrive at the Bell states [49] given by

|Ψ±〉 = 1p
2

(|0〉1 |1〉2 ±|1〉1 |0〉2) (2.17)

|Φ±〉 = 1p
2

(|0〉1 |0〉2 ±|1〉1 |1〉2) (2.18)
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where the subscripts represents the quantum particles 1 and 2. These equations repre-

sent correlated states and cannot be divided into separate wavefunctions that describes

each of the sate of particle 1 and 2 individually. In other words, the quantum state of

particle 1 (2) is inherently linked to the state of particle 2 (1).

In the example of quantum states in Equation 2.18 for particles 1 and 2, arbitrary

states of |0〉 or |1〉 were chosen. However the same equations can be written for the

other photons degrees of freedom. In quantum optics, a specific example of a quantum

entanglement is energy (and thus frequency) and time-bin correlations given by [50, 51]

|Ψ±〉 = 1p
2

(|ωi〉1 |ωs〉2 ±|ωi′〉1 |ωs′〉2), (2.19)

|Ψ±〉 = 1p
2

(|E〉1 |E〉2 ±|L〉1 |L〉2), (2.20)

where ωi and ωs are the different angular frequencies of idler and signal photons

respectively, and E is the early and L is the late time-bin of photons 1 and 2. The specific

correlations in Equations. 2.19 and 2.20 are known as spectral correlation that arises

naturally in spontaneous FWM and is the focus of this thesis. As mentioned previously

in section 2.1.2, to perform quantum interference, we require both photons to contain the

exact same degrees of freedom including energy (or conversely frequency) and time-bin

modes. Therefore it is important to understand that photons that are generated in states

that are presented in Equations 2.19 and 2.20 will eliminate the indistinguishability of

photons and therefore does not allow for quantum interference. The focus of this thesis is

the accurate and precise measurement of this spectral correlations of photon pairs that

are generated through spontaneous FWM.

2.3.2 Joint Spectral Intensity and the Schmidt Number

The experimental characterisation of spectral correlations between photons has a been

an on-going task in quantum photonics, where there have been several proven meth-

ods of measuring the spectral correlations of photons. The most popular methods of

characterisations are summarised in the Table. 2.2 below.

However, a established method of characterising the spectral correlations between pho-

tons consists of measuring the joint spectral intensity (JSI). This is a mature technique

that has been used frequently in quantum optics and photonics to determine the joint

spectral state of the signal and idler photons that are generated via spontaneous FWM
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Method Description
Hung Ou Mandel Indistinguishable photons will result in a drop in

coincidences when the photon’s temporal degree of
freedom overlap [52].

Quantum Homodyne Tomography Reconstruction of the complete quantum state of
photon pairs through a series of measurements in
different basis to obtain the density matrix [53].

Joint Spectral Intensity A coincidence based measurement of where the de-
gree of spectral correlations between photon pairs
will give different joint spectral intensity plots [54].

Table 2.2: A summary of current methods used to characterise the spectral correlations
of photon-pairs generated via spontaneous FWM and spontaneous PDC.

and spontaneous PDC [24, 55, 56]. Through the JSI, one is able to quantify the degree of

spectral entanglement by performing what is referred to a Schmidt decomposition.

For a guided-mode co-polarised photon generation via spontaneous FWM, the two-

photon output output squeezed state can be simply expressed as

|Ψs,i〉 =
Ï

A(ωi,ωs) |ωi〉 |ωs〉d(ωi)d(ωs), (2.21)

where |ω〉 = â†
ω |vac〉 is the state containing a single photon in the waveguide mode at ω,

represented by the creation operator acting on the vacuum state. The A(ωi,ωs) term is

known as the joint spectral amplitude (JSA), defined as

A(ωi,ωs)=
∫
α(ω)α(ωi +ωs −ω)φ(ωi,ωs,ω), (2.22)

where the function α(ω) is the complex amplitude of the pump spectrum with centre

frequency ωp and φ(ωi,ωs,ω) is the phase-matching function of the waveguide that

encompasses the waveguide material design and optical properties. The JSA is expanded

more in detail in the next chapter. It should be noted that the square modulus of the

JSA, |A(ωi,ωs)|2, is defined as the JSI where experiments to date have been measuring.

Fig. 2.8(a) illustrates a typical JSI measurement that is a function of the pump and

phase-matching profile of the nonlinear device.

As the JSA is a complex function of two variables, to fully analyse the function, the

JSA must be written in a factorable state. A factorable state is defined as a state from

which the JSA is a product of two functions

A(ωi,ωs)= I(ωi)S(ωs), (2.23)
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FIGURE 2.8. A typical (a) JSI measurement with the centre pump frequency
highlighted and (b) JSI measurement for no correlation (K = 1) and high
correlations (K >>1) between the signal and idler photon pairs.

where the functions I(ωi) and S(ωs) are dependent only on the idler and signal fre-

quencies respectively. Now that the JSA is expressed as two variables, the JSA can be

fully characterised by the Schmidt decomposition, by which it is expressed as a linear

combination of the form

A(ωi,ωs)=
∑√

λn fn(ωi)gn(ωs), (2.24)

where fn(ωi) and gn(ωs) are each a complete set of complete factorable and orthogonal

functions for idler and signal frequencies respectively [57] and λn are the positive real

numbers that are known as the Schmidt magnitudes that must satisfy
∑

nλn = 1. From

this Schmidt magnitudes, one can quantify the degree of spectral correlation of the

photon pairs via the Schmidt number K , defined as

K =∑
n

1
|λ2

n|
, (2.25)

For a completely spectrally uncorrelated photons in the system, the Schmidt magnitude

is 1 for λn=1 = 1, and zero for higher order n terms: λn 6=1 = 0 so that K = 1. However, for

a completely correlated system, the higher order Schmidt magnitudes are nonzero so

that K > 1 (see Fig. 2.8 (b)).

As mentioned earlier, obtaining the full phase dependent JSA for a photon source

is experimentally challenging and thus to date has been virtually inaccessible [58].

Therefore experiments have focused on measuring the JSI for spontaneous FWM and

PDC nonlinear devices. As the Schmidt decomposition given by Equation 2.24 is not
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directly applicable to the JSI, the Schmidt number K is not strictly available from

experiment. One method to solve this is to apply the Schmidt decomposition to the

square root of the measured JSI. However it is easily seen that a measurement of the JSI

results in a loss of phase information when estimating A(ωi,ωs)=
√
|A(ωi,ωs)|2 . As such

when performing Schmidt decomposition to the square root of the JSI, a lower bound

to the Schmidt number must be given [59]. In this thesis, I will refer to the Schmidt

number lower bound (SNLB) with the symbol K̃ .

For a specific set of two-photon states, the Schmidt decomposition is an analytical

method. However, an analytical method cannot be used to determine the degree of

spectral correlation for the experimentally measured JSIs. Hence, another method is

required to determine the degree of spectral entanglement from the experimentally

measured JSIs. Fortunately, there exists a matrix operation known as singular value

decomposition (SVD), which is the matrix analogue of the Schmidt decomposition that

can be computed numerically to determine the degree of spectral correlation. Let the

JSA be written as

M = A ·Φ (2.26)

where A is the matrix corresponding to the pump envelope and Φ is the matrix corre-

sponding to the phase matching function. By performing SVD, M is factorised into three

separate matrices to be called I,D,S. The columns of I and S represent the Schmidt

states related to the idler and signal frequencies respectively with D being the diagonal

matrix containing the Schmidt magnitudes that links two matrices such that

M = I·D·S∗ (2.27)

M =


I1,1 I1,2 · · · I1,k

I2,1 I2,2 · · · I2,k
...

... . . . ...

I j,1 I j,2 · · · I j,k

 ·

p
λ1 0 · · · 0

0
p
λ2 · · · 0

...
... . . . ...

0 0 · · · √
λn

 ·


S1,1 S2,1 · · · S j,1

S1,2 S2,2 · · · S j,2
...

... . . . ...

S1,k S2,k · · · S j,k

 (2.28)

where S∗ is the conjugate transpose of matrix S [60]. From this, one can use Equation

2.25 to calculate the Schmidt number. In the next chapter, we apply SVD to numerical

simulation of the JSI and compare that to experimental measurements.
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3
JOINT SPECTRAL INTENSITY

In the previous chapter, we examined the demand for spectral correlation of photon

pairs in the field of quantum optics and investigated the importance of characteri-

sation of photon pair sources generated through the JSI measurement. In summary,

this chapter consists of

• An in depth look at the theoretically-calculated model of the JSI.

• Detailed investigation of current methods used to measure the JSI in the quantum

regime that is based on temporal and spatial mode separation of photon pairs.

• Introduction to JSI measurement in the classical regime using stimulated pro-

cesses.

• Comparison of JSI measurements between the quantum and classical processes in

an integrated χ(3) nonlinear device.

This chapter is based on the following publication:

I. Jizan, L.G. Helt, C. Xiong, M.J. Collins, D.Y. Choi, C.J. Chae, M. Liscidini, M.J. Steel,

B.J. Eggleton and A.S. Clark, "Bi-photon spectral correlation measurements from a

silicon nanowire in the quantum and classical regimes.", Scientific reports, 5, 12557,

(2015).
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3.1 Theoretical Model

To theoretically model the JSI, we will need to consider and investigate each component

of equation 2.22 individually. In the following section, we will theoretically calculate and

plot the pump and phase matching function for a standard χ(3) device which then are

used to plot the final JSI.

3.1.1 Pump Envelope Function

Generally, the input pump for the generation of signal and idler photon pair often has a

temporal shape that can be approximated with a Gaussian function. Additionally, as all

of our pumps that are used to obtain JSI measurements have a Gaussian profile, we can

therefore approximate the pump envelope function as

a(ω)≈ 1

σ
p

2π
e−

ω2

2σ2 (3.1)

where σ is the standard deviation of the Gaussian pump pulse in angular frequency,

given by

σ= 2
p

ln(2)
T

(3.2)

where T is the pump pulse temporal width at full-width at half maximum (FWHM),

typically in the orders of picoseconds. It is evident from the JSA equation 2.22 in Chapter

2, that the pump function term accepts the sum frequencies of signal and idler photons,

to give a symmetric distribution between the signal and idler frequencies.

By evaluating equation 3.1 for signal and idler frequencies, and for a standard 10 ps

pump pulse temporal width, the pump function is plotted in Fig. 3.1. As expected, a

cross-sectional horizontal or vertical view across Fig. 3.1 will have a Gaussian profile.

One thing to note from equations 3.1 and 3.2 is that an increase in pump pulse temporal

width will result in a decrease in the thickness of the anti-diagonal (-45◦) band in Fig.

3.1.

3.1.2 Phase-Matching Profile

For the separate generation of signal and idler photons, we must consider the nonlinear

properties of the nonlinear devices accordingly. As the phase-matching of the nonlin-

ear device must satisfy certain boundary conditions [61], the natural phase-matching

function in equation 2.22 is described by
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FIGURE 3.1. Normalised theoretically calculated model of the pump function,
for a typical pump pulse width of 10 ps.

φ(ωs,ωi)= 1p
2π

sinc
(∆kL

2

)
ei∆kL/2 (3.3)

where L is the length of propagation of light in the device and ∆k is the phase-mismatch

function around the phase-matched frequencies given by

∆k = ks +ki −2kp +2γPp. (3.4)

This phase-mismatch represents the detuning from the perfect and efficient phase-

matching given by equation 2.15. As ∆k can be expressed as

k(Ω)= ωn(ω)
c0

(3.5)

where n(ω) is the frequency dependent refractive index of the nonlinear device and c0

is the speed of light in vacuum, we can estimate the phase-mismatch, by the Taylor

expansion about the centre frequency, ω

k(Ω)= k0 + dk(ω)
dω

(ωp −ω)+ d2k(ω)
dω2

1
2

(ωp −ω)2 + ... (3.6)

where k0 is the phase velocity. In nonlinear optics, the inverse of the first derivative of

the wavevector with respect to angular frequency is defined as
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dk(ω)
dω

= 1
vg

, (3.7)

where vg is the group velocity of the light in the medium. The second derivative of the

wavevector with respect to angular frequency is defined as

d2k(ω)
dω2 = d

dω

( 1
vg

)
=GV D, (3.8)

where GVD is the group velocity dispersion. GVD describes the phenomenon in which the

group velocity, vg, of light in a medium depends on it’s optical frequencies or wavelengths.

In optical waveguides, the GVD is usually defined as the derivative with respect to

wavelength, λ, expressed as

Dλ =−2πc
λ2 ·GV D, (3.9)

where Dλ is the simply the dispersion of the nonlinear waveguide, usually specified with

units of picoseconds per nanometre-kilometre (ps/(nm-km)). From the previous chapter,

we saw that for FWM to take place, the energy matching condition must be satisfied

such that the sum of the energies of the idler and signal photon must equal to two pump

frequencies. Therefore, the phase-matching function can be thought as a function that

determines how the energy of the pump is to be distributed.

For the simulation of the JSI, we therefore require the the group velocity and GVD (or

dispersion) for use in equation 3.3 to calculate and model the phase matching function.

In Fig. 3.2, we have plotted the phase matching function for a typical waveguide with a

k0 = 9.63×106 vp = 7.02×107 m/s and GV D =−6.03×10−25 s2/m.

3.1.3 Joint Spectral Intensity

Now that we have successfully modelled the pump and phase matching function, we can

now theoretically calculate and simulate the JSI by solving and then squaring equation

2.22.

In Fig. 3.3, we have plotted the JSI for the pump profile and phase-matching parameters

that were used in the separate plots of the pump and phase-matching functions in

the previous sections. It is often useful to think of the JSI plotted in Fig. 3.3 as a

multiplication of Fig. 3.1 and Fig. 3.2. Again, it is important to note that the JSI plot

in Fig. 3.3 is the square of the JSA that is define in equation 2.22. As mentioned in

section 3.1.1, an increase in the temporal width of the pump will result in a narrower
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FIGURE 3.2. The normalised theoretically calculated model of the phase match-
ing function for a waveguide with a k0 = 9.63×106 vp = 7.02×107 m/s and
GV D =−6.03×10−25 s2/m.

anti-diagonal, -45◦ band in Fig. 3.1. As you would predict, this will also result in the final

JSI to contain a narrower anti-diagonal band. In other words, this leads to an increase

in correlations between the signal and idler photons and therefore an increase in the

SNLB, K̃ , as we will see in the next sections.

3.2 Previous Quantum Measurement Schemes

As mentioned in the previous chapter, a JSI measurement is a well established method

of characterising the spectral correlations of photon pairs that are generated via χ(2)

and χ(3) nonlinear devices. Traditionally, this consist of coincidence based measurement

where the correlated photon pairs generated via spontaneous FWM and spontaneous

PDC are directed to photon detectors where they are analysed for coincidences. In general

there exists two experimental approaches for the detection and analysis of coincidences

between the correlated photons pairs as illustrated in Fig. 3.4 and Fig. 3.5.

The most popular method of coincidence based JSI measurement is commonly termed

the temporal dispersion method that relies on dispersion to temporally stretch the single

photon pulses and spectrally resolve them in the time domain [55, 59, 62].
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FIGURE 3.3. The final normalised theoretically calculated model of the JSI for
a pump and phase matching functions given in the previous sub-sections.

FIGURE 3.4. The conventional approach for a JSI measurement consisting of
a highly dispersive fibre that temporally separates the signal and idler
photons. The stream of signal and idler photons are detected and time
tagged using a TIA to build a JSI plot.
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As shown in Fig. 3.4, when the correlated photon pairs are generated via the nonlinear

device, the generated signal and idler photons are directed into a dispersive fibre with

a specific dispersion. Because photons of different wavelengths have different group

velocities in the dispersive fibre, the propagation times of each individual photons

through the dispersive fibre are different. As a result, by using a single photon detector

and a TIA, each individual photon is time-tagged by measuring the transit time in

the dispersive fibre which therefore yields a measure of the photon wavelength. With

each time tag of all the single photons that are detected, post processing allows for the

analysis and calculation of coincidences at each pair of frequency where one is able to

then build a JSI plot. The drawback with this method is resolution of the TIA which that

in turn affects the resolution of the JSI plot. Additionally, the timing jitter of the TIA

and the jitter of the single photon detectors can have a considerable impact when time

tagging the photons and therefore can again limit the obtainable resolution of the JSI.

In principle however, we are able to increase the resolution of the measurement of the

JSI by increasing the fibre length, at the cost of higher photon losses.

FIGURE 3.5. Another approach for a JSI measurement that uses tunable optical
band pass filter to spatially separate the signal and idler photons that are
generated via the nonlinear device. To measure the JSI, the wavelength
of the tunable band pass filter needs to scan the FWM bandwidth of the
nonlinear device.

Another approach to coincidence based measurement of the JSI is very straight

forward method that requires the spatial separation of the individual signal and idler

photon [24, 56]. Referring to Fig. 3.5, unlike the temporal dispersion method that tem-

porally delays the signal and idler photons depending on their frequency, this method

uses a simple tunable optical band-pass filter to separate each photon into different
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spatial modes which are then detected by a pair of single photon detectors. Using the

true coincidences from the CAR measurement as described in section 2.2.2, one is then

able to obtain the number of coincidences between each pair of frequencies and hence

build a JSI plot.

With this approach however, the resolution of the JSI is limited by the tunable optical

band-pass filter. This approach requires the tunable band pass filter to separately scan

the signal and idler bands (the FWM bandwidth of the nonlinear device) and measure

for coincidences at each frequency pair. This can be a experimentally challenging task to

accomplish depending on the stability of the of the nonlinear device. A solution to this

is to automate this process by using a programmable optical band pass filter, to raster

scan the signal and idler frequencies as demonstrated in [54]. Compared to the temporal

dispersion method where coincidences appear randomly across the JSI, this method can

target individual elements of the JSI. However, a disadvantage of this method is that

when measuring a single element of the JSI, photons at the different frequencies are

dropped. Therefore for a full measurement of the JSI, the acquisition time required to

acquire a reasonable amount of coincidences for a pair of frequency can be very large

depending on the efficiency of pair generation of the nonlinear device. Below in Fig. 3.6,

are two JSI measurements of two different nonlinear devices that uses the temporal

dispersion method [55] and spatial separation method [54] to measure for coincidences

of photon pairs generated via spontaneous PDC and FWM respectively.

FIGURE 3.6. Two coincidence measured JSIs of photon pairs in the telecom-
munication band using (a) temporal dispersion method for spontaneous
PDC process with resolution of 1.2 nm and (b) spatial separation method
for spontaneous FWM process with a resolution of 80 pm.
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3.3 An Alternative to Quantum Measurements

To address the limitations faced with quantum measurements of the JSI which requires

measurement of coincidences between photon pairs, Liscidini and Sipe introduced a

technique known as stimulated emission tomography (SET) to reconstruct the JSI by

using the classical analogue of spontaneous photon pair generation; stimulated nonlinear

wave mixing [63]. In the case of FWM discussed in section 2.2.4, stimulated FWM

requires a classical seed field in either the signal or idler band, instead of relying on

vacuum fluctuations to seed the conversion of a pair of pump photons into correlated

signal and idler photons. This approach uses the understanding and observation that

for a given pumping scheme and nonlinear device, the spontaneous and stimulated

frequency conversion response functions can be made mathematically identical.

This was first demonstrated in χ(2) device, namely a AlGaAs ridge waveguide, where

the spontaneous process of PDC was compared to the stimulated process of difference

frequency generation (DFG) [59]. This experiment compared the JSIs obtained from

spontaneous PDC via the temporal dispersion method and stimulated DFG via an

optical spectrum analyser (OSA). The stimulated process using DFG produced a higher

resolution in only a third of the collection time with no use of single photon detectors.

There have also been two demonstrations of the reconstruction of the JSI via stimulated

FWM in a χ(3) nonlinear birefringent optical fibre and a silicon ring-resonator based

photonic chip [64, 65]. The first work compared the JSI obtained from the stimulated

process to that taken by the coincidence measurements on a similar, though not identical

fibre and finding close resemblance. The second work compared the JSI obtained from

the stimulated process to a theoretical model finding good agreement between the two.

In this experiment we applied the stimulated process concept to an integrated χ(3)

nonlinear device, in this case a silicon nanowire (SiNW), and compare the results to

quantum measurements for two different pump pulse widths. In the next sub-sections, we

measure three JSIs, one via coincidence measurements from spontaneous FWM, and two

via stimulated FWM using different detection methods. The classical stimulated FWM

produces fast and reliable results, which can be readily extended to larger frequency

ranges and are directly applicable to many future integrated nonlinear devices. Moreover,

as the JSI is a function of the pump and phase matching profiles, we observe and compare

the change in the spectral correlation of photon pairs generated using two different pump

pulses durations in the nonlinear device.

We demonstrate three distinct methods of obtaining JSIs from a χ(3) SiNW using,
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quantum, singles-based and OSA measurements that provide progressive improvements

to the signal-to-noise ratio (SNR) and measurement efficiency. Firstly, the properties

of the SiNW waveguide is described in detail, describe the experimental setup used for

each of the JSI measurements and then present and discuss the results obtained from

these measurement setups. Furthermore, I will compare our experimental methods for

two different pump pulses and compare the results to the theoretically calculated JSI

models.

3.3.1 The Nonlinear Device

As sketched in Fig. 3.7(a), our nonlinear device is a 3 mm long silicon-on-insulator (SOI),

220 nm high by 460 nm wide buried SiNW, that provides an effective nonlinearity of

approximately γ≈ 236 W−1m−1.

FIGURE 3.7. Schematics of (a) 3 mm Buried silicon nanowire (SiNW), the cross-
sectional dimensions and (c) the simulated |B|2 energy density of the funda-
mental TE mode.

This γ was theoretically calculated via computer simulation of waveguide modes, and

was used to estimate the largest average number of spontaneous FWM pairs generated

on-chip per pulse within the filtering window that we could expect to observe. To ensure

that we were always probing the two-photon component of our output state, the average

number of spontaneous FWM pairs was kept to less than 0.1 in all measurements.

Theoretically, the average number of spontaneous FWM pairs was calculated via
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〈
Npairs

〉= τ∆v(γPL)2 sinc2(
∆kL

2
), (3.10)

where τ is the pump temporal pulse width, ∆v is the filtering of the photon pairs

and L is the length of the light propagation in the nonlinear device. For our brightest

measurement, using the τ = 10 ps with repetition rate of Rrep = 50 MHz laser at a

detuning of Ω = 0.8 THz from the pump, for a ∆v = 10 GHz filtering,
〈
Npairs

〉
= 0.083 per

pulse. Here the peak power P = Pavg
Rrepτ

= 1.58 W, nonlinear device length L = 0.003 m and

phase mismatch ∆k = 729.0 m−1. This value is corroborated by a measured pair collection

rate of Rmeasured
pairs = 1.59 per second when accounting for approximately α = 31.9 dB of

losses per channel including propagation and coupling losses. Comparing this value with

the theoretical pair collection rate, Rtheory
pairs , given by

Rtheory
pairs = 〈

Npairs
〉

Rrep(10−α/10)2 = 1.72, (3.11)

we observe good agreement between theory and experiment. Note that this high peak

power does have a modest effect on the phase matching condition ∆k (see equation 3.4),

but that any quantum time-ordering effects are expected to be quite small as we are not

operating in a nearly frequency uncorrelated regime [66].

To improve waveguide to fibre coupling efficiency, the TE-optimised waveguide was

inverse tapered over a 200 µ m length to a cross section of 220 nm high by 130 nm wide

at the facet (see Fig. 3.7(b)). The SiNW was fabricated from a SOI wafer using standard

photolithography and reactive ion etching, followed by the addition of a 2 µ m silicon

dioxide upper-cladding layer deposited via plasma-enhanced chemical vapour deposition.

The average power in front of the waveguide was 4.9 mW and 790 µW for the 270 ps

(100 MHz) and 10 ps (50 MHz) lasers respectively. These powers were set to generate

the same number of photon pairs per second in the device for the two laser pulse widths

and were below the limit for two-photon absorption [67]. The average seed power in

front of the waveguide was kept constant at 36.5 µW. The TE propagation and coupling

losses of the SiNW were approximately 2-2.5 dB/cm and 2-2.5 dB/facet respectively. The

total loss between the input and output of the SiNW was approximately 4.5 dB for all

measurements.

3.3.2 Quantum Measurements

To perform quantum measurements, we employ the high resolution spatial separation

method as performed in [54], to determine the JSI in the quantum regime by measuring
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the correlated photon pair coincidences from spontaneous FWM. The first pump source

was a pulsed fibre laser (Pritel) centred at 1550 nm (Fig. 3.8(a)) which produced 10 ps

pulses with a repetition rate of 50 MHz and a 70.8 GHz spectral FWHM. The pulses are

passed through a polarisation controller (PC) to select TE polarisation with respect to the

SiNW waveguide. An isolator (ISO) was used to protect the laser in addition to a variable

attenuator (ATT) to tune the input pump power. A narrowband tunable band-pass filter

(TBPF) was used to remove any residual cavity photons from the laser. To monitor the

input power entering the nonlinear SiNW, a 99:1 % fibre beam splitter with 1 % entering

a power meter (PM) was used just before the SiNW.

FIGURE 3.8. The experimental setup for (a) 10 ps, 50 MHz pump and (b)270
ps, 100 MHz pump. See text for a detailed description of the experimental
setup.

The second pump source, shown in Fig 3.8(b), used an external diode laser (ECDL) to

produce pulses with large temporal widths. The first channel of the ECDL centred at

1550 nm was passed through a PC before being pre-amplified by a low noise erbium doped

fiber amplifier (EDFA). The pump was then modulated to 270 ps Gaussian pulses at a

repetition rate of 100 MHz by a lithium niobate intensity modulator (IM, Sumitomo). The

IM was driven by a pulse generator (PG, AVTech) resulting in a 10.4 GHz spectral FWHM.

The pump pulse stream was then amplified by a second EDFA and then subsequently

filtered by two arrayed waveguide gratings (AWGs, JDSU) to remove any amplified

spontaneous emission noise that is produced by the EDFA. A PC was placed in between

the two AWGs to adjust the polarisation such that the pump pulse was TE polarised in

the nonlinear SiNW.

In the detection and analysis of the photon pairs generated by spontaneous FWM

from the two different pumps, the high resolution spatial mode separation method was
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FIGURE 3.9. Schematics of the experimental setup for coincidence measurement
of the JSI using the spatial separation method. See text for details.

used to measure the quantum correlations by coincidence detection. The schematics of

the experimental setup for this method is shown in Fig. 3.9. A 99:1% fibre beam splitter

was used to monitor the 1% output power exiting the SiNW via a PM. The remaining

99% was sent to a multi-output liquid-crystal-on-silicon waveshaper (LCoWSW, Finisar

Waveshaper) that separates the signal and idler photons into two distinct spatial mode

channels. The two channels were then broadband filtered to remove any residual pump

photons that may have leaked into the channels. The signal and idler photons then enter

two PCs before being inserted into two superconducting single photon detectors (SSPD,

Single Quantum) to optimise the detection efficiency of the two channels. Coincidence

measurements were conducted and recorded by a computer via a TIA (SensL). The JSI

spectral resolution obtained was 10 GHz (or 80 pm), limited by the pixel bandwidth of

the LCoSWS. This led to a 40×40 pixel grid for the final JSI.

3.3.3 Stimulated Measurements

For the stimulated measurements of the JSI, we emplyed an additional narrow band

seed laser tuned across the signal band to stimulate classical FWM. We then measure

the spectrum of the generated idler field using a single photon detector. I will refer to

this method as the singles-based approach. For our second stimulated measurement of

the JSI again involves the measurement of the idler field generated via stimulated FWM,

but in this case using a high resolution optical spectrum analyser (OSA). I will refer to

this as the OSA method.

The experimental setup for the stimulated measurement is shown in Fig. 3.10. The

seed laser for the stimulated FWM experiment used the second channel of the ECDL

which was also set to TE polarisation using a PC. This channel of the ECDL was computer

controlled to repeatedly scan the higher-band channel of the FWM bandwidth of the

SiNW over a desired range from the pump. The seed laser was combined with the 10 ps

or 270 ps laser source using a 50:50% combiner and then injected injected into the SiNW
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FIGURE 3.10. The seed laser used the second channel of an ECDL, set to
TE polarisation using a PC and filtered clean using TBPF before being
combined with the 10 ps or 270 ps laser source to stimulate FWM.

at a higher frequency than the pump, corresponding to the measured signal band in

the spontaneous FWM measurements. The generated average power in the idler band

was approximately 1.8 µW. Instead of performing coincidences described in Fig. 3.9, the

generated idler photons was measured using the singles-based method or OSA method.

FIGURE 3.11. The experimental setup for measurement of the idler photons
generated via stimulated FWM using (a) the spatial separation method and
(b) an OSA. See text for details.

In the singles-based method, the generated single count rate of the idler detection

band were recorded by one SSPD (as shown in Fig. 3.11(a)). Both the seed laser frequency

of the ECDL and the idler detection band that is controlled by the LCoSWS were scanned

in 10 GHz units in a raster scanning fashion. Again, the spectral resolution of the JSI

obtained was 10 GHz with the extracted JSI represented on a 40 × 40 pixel grid. As

stimulated FWM is much more efficient than its quantum counter part; spontaneous

FWM, a 20 dB attenuation was applied to the LCoSWS to limit the rate of the idler
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photons being detected by the SSPD and thus avoiding saturation.

The second measurement of the JSI via stimulated FWM, shown in Fig. 3.11(b), is

the OSA method of measurement. In this measurement, the scanning seed laser was left

untouched as in the singles-based measurement, but replaced the LCoSWS, PC, SSPD

and TIA with an OSA (Yenista) that provided a higher resolution of 2.5 GHz (or 20 pm).

The resulting JSI has 16 times higher resolution with a 157×157 pixel grid.

3.4 Joint Spectral Intensity Results

For the simulation of the JSI for the different laser pulses, the dispersion relation

from equation 3.6 was for k0 = 9.63×106 m−1, vp = 7.02×107 m/s and GV D =−6.03×
10−25 s2/m. Using these parameters and the geometry of the SiNW waveguide, equation

2.22 was used to calculate the expected JSI for the two laser pulses. The resulting JSI

distributions are shown in Fig. 3.12.

FIGURE 3.12. The scaled theoretically-calculated model for (a) the 270 ps and
(b) 10 ps pump laser pulses, with dashed box representing the measured
region.

As expected, for pulses increasing in duration towards quasi-continuous wave (CW),

the high SNLB in Fig. 3.12 (a) indicates a more highly spectrally correlated state

compared with Fig. 3.12 (b). This regime of very strong frequency correlations is par-

ticularly important in quantum information applications as many protocols relay on
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time-frequency entanglement for use in, for example quantum cryptography and quan-

tum computation. Note the slight curvature and decrease in brightness of the curves

from top left to bottom right in the ideal modelled JSIs in Fig. 3.12 (a) and (b). As the JSI

is a convolution of the pump profile and the phase matching function (recall equation

2.22), we would expect the JSI to decay to background if we continued to measure it

beyond 1.135 THz from the central frequency of the pump.

Unlike some spontaneous FWM or spontaneous PDC processes where the generated

signal and idler photons are phase-matched far from the pump, the SiNW dispersion does

not allow for measurement of the whole JSI as the pump frequency lies in the centre (see

Fig. 2.8). However in practice, this is not a serious restriction, since this band will also be

inaccessible in any application of such source. This measurement is therefore concerned

with an experimentally accessible portion of the JSI, over a tuning frequency range of

0.745-1.135 THz (5.94-9.15 nm) from the centre frequency of the pump, as shown in Fig.

3.12. The complete theoretical JSI was calculated and SVD was performed on that part

of the spectrum accessible to our measurements.

Pump
Pulse Duration

40 by 40
grid K̃

157 by 157
grid K̃ Ideal K̃

270 ps 39.0 83.5 95.3
10 ps 8.1 8.4 9.9

Table 3.1: Theoretically extracted SNLBs, K̃ , for a 40 by 40, 157 by 157 and ideal JSIs,
for the 270 ps 100 MHz and 10 ps 50 MHz laser pump pulses.

The SNLB associated with this experimentally accessible portion was used to quantify

the accuracy of each measurement. However, the measured values of K̃ are affected by

the available frequency resolution, as well as the noise in each class of experiment. To

understand the impact of limited resolution, and thus separate this from the impact

of noise in the experimental data, for each of the pump pulse lengths, the expected

theoretical values of K̃ was calculated, at each of the available frequency resolution and

a reference value at much finer resolution beyond which K̃ does not change in the 4th

decimal place. Note that in our case, the combination of accessible frequency range and

dispersion strength meant that no difference was found between the value of the SNLB,

K̃ , and the true Schmidt number, K, in the high resolution calculations. This of course

would not be true in general.

The expected impact of limited resolution is shown in Table 3.1. It is clear that for

the narrow-band width 270 ps pump source, the maximum observable value of K̃ is

36



3.4. JOINT SPECTRAL INTENSITY RESULTS

significantly reduced from its ideal value. On the other hand, for the broadband 10 ps

source, even the course resolution of 40×40 grid can represent a K̃ exceeding 80% of the

ideal Schmidt number. The extent to which the measured values fall below these limits

is a measure of the impact of noise of various types.

FIGURE 3.13. The results of the six JSI measurements, for (a) the 270 ps and
(b) 10 ps pump laser pulses: (i) photon pair coincidence measurement, (ii)
stimulated FWM singles-based measurement and (iii) stimulated FWM
OSA measurement. The brightest pixel in each plot (Max of the colour bar)
corresponds to: (a)(i) 105 coincidences, (b)(i) 105 coincidences, (a)(ii) 318,720
counts, (b)(ii) 182,210 counts, (a)(iii) 1716.7 nW/10 GHz, and (b)(iii) 464.1
nW/10 GHz. These maxima all have Poissonian error except those for (a)(iii)
and (b)(iii) which have an inherent error from the OSA. SNLBs are shown
for each plot with errors calculated from Monte Carlo simulations.

With the combination of the two laser pulses and the three detection methods, we

measured a total of six partial JSIs. The three experimental JSI measurements are

shown in Fig. 3.13(a) and (b) for the 270 ps and 10 ps pulses respectively, with their

associated SNLBs, K̃ , estimated by SVD and their respective errors estimated from
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Monte Carlo simulations. These simulations re-sampled each point of each measured

JSI from a Poissonian distribution to create 105 new Poissonian distributed JSIs for

each measured JSI. Then the SNLB was calculated for each of the 105 new JSIs for each

measurement, and the standard deviation of the distribution of the SNLBs were then

used as the error in the SNLBs.

The total time taken to build up the 40 by 40 pixel grid (10 GHz resolution) coin-

cidence JSI plots shown in Fig. 3.13(a)(i) and (b)(i) was approximately 36 hrs and 33

hrs respectively. During this time we continually adjusted the LCoSWS pass band for

each channel across the whole JSI at a rate of 6 pixels per minute, summing the pixels

from each scan until the largest number of recorded coincidence counts in any one pixel

was 105 with a Poissonian error of 10. This repeated sampling process was designed

to minimise the effect of slow fluctuations in laser power and waveguide couplings.

Using this method for coincidence measurements, the high integration times can also

be attributed to the LCoSWS rejecting most of the generated signal and idler photons

that are not captured by pass band. As theoretically predicted, the broader spectral

profile of the 10 ps laser source results in a broader anti-diagonal band, and thus a lower

SNLB, for its associated JSI than that associated with the 270 ps source. As this is a

spontaneous FWM measurement, the impact of accidental coincidences in JSI plots is

large and contributes to a lower extracted SNLB than predicted.

The generated single photon measurements corresponding to the experimental setup

in Fig. 3.11(a) are plotted in Fig. 3.13(a)(ii),(b)(ii). As stimulated FWM leads to a count

rate at a single detector on the order of 105 s−1, very low relative numbers of background

singles are seen when scanning the LCoSWS band pass filter. The counts in the dark

background region are only limited by dark counts from our detectors, which are on

the order of 100 s−1. In this case, a higher SNR in turn results in a higher SNLB being

obtained when compared with the coincidence measurements, evident in the 270 ps

pumped singles measurement in Fig. 3.13(a)(ii). However, a slightly lower SNLB was

obtained for the 10 ps laser pulse in Fig. 3.13(b)(ii) compared with the corresponding

coincidence measurement. This is caused by the non-uniform distribution of singles

across the anti-diagonal band of the plot which occures as a result of small fluctuations

in the laser powers, detector efficiency, and polarisation from scan to scan. Additionally,

the 10 ps pumped coincidence value for the 40×40 grid (K̃ = 8.1) provided the clos-

est agreement to the expected value (K̃ = 9.9) when compared with the singles-based

measurement. Due to the high rate of stimulated FWM idler photon generation, the

integration time for both pump measurements was limited only by the scanning speed of
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the seed laser and the LCoSWS, as well as the speed of the electronic acquisition. Thus

the fastest possible integration time for both measurements was only 1.5 hours. Still,

moving to this singles-based measurement results in a significant decrease in the re-

quired integration time when compared to the coincidence measurement, while providing

comparable SNLBs. The classical OSA measurements shown in Fig. 3.13(a)(iii),(b)(iii)

were completed within 2 hours for each laser pulse width but with 16 times higher

resolution, at the maximum resolution of 2.5 GHz. The horizontal streaks visible in both

JSI plots are a result of the constant change in the noise floor of the OSA with every trace

measurement. In theory, the streaks can be eliminated by averaging multiple traces for

a fixed seed frequency, but not without increasing the total integration time of each JSI

measurement. In principle, using this method we are able to measure the complete JSI

profile of the SiNW, as the OSA is not saturated by the input pump at the powers used

here.

3.4.1 Conclusions

I have presented measurements comparing JSIs from a χ(3) nonlinear device, a SiNW, via

three different experimental methods that can be used to characterise the correlations

between generated photon pairs. This is achieved by employing both quantum corre-

lation measurements and classical stimulated measurements, which makes use of the

relationship between spontaneous FWM and stimulated FWM. For the stimulated FWM

processes, we have shown two techniques, one that uses no further components than

quantum correlations, other than a CW probe laser, and the other using a high resolution

OSA. By successfully measuring the JSI in the quantum and classical regimes for two

different laser pulses, we observed a direct change in the spectral correlation of the

generated photon states, proving the versatility of our characterisation schemes. For the

JSI measurements, we saw by switching from the quantum to classical measurements,

we were able to increase the resolution from 10 GHz using the LCoSWS to 2.5 GHz

using the OSA. However this also resulted in horizontal streaks in the JSI, a problem

attributed to fluctuations in the noise floor of the OSA, and increased the relative error

in the SNLB. In the future this could be overcome by using a lower noise OSA or limiting

measurements to nonlinear devices with a higher FWM conversion efficiency as we

would be operating further from the noise floor of the OSA.

As tabulated in table 3.1 By comparing the SNLBs calculated via SVD of our quantum

and classical measurements with our ideal theoretical model, we conclude that the

OSA provided the most accurate spectral correlation measurement (although half of
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the predicted SNLB) for the long pump pulse. The measured spectral correlation for

the short pump pulse via coincidence measurement provided us with the smallest

deviation from the ideal model however, the measurement obtained via the OSA has

a larger disagreement with the theory as a result of the horizontal streaks in the JSI

measurement. Note that the stimulated FWM method provides the fastest measurement

speed for a given resolution and thus the OSA measurement will consistently provide the

highest resolution for future measurements of JSIs. Overall, the long pump pulse spectral

correlation measurement provided us with the biggest discrepancy when compared to

the ideal model, caused by the discretised JSI measurements having a limited resolution

at the same scale as the pump spectral profile. Although not possible with the LCoSWS

at this time, in theory the measurement resolution could be improved by reducing the

LCoSWS programmable bandpass filter bandwidth. However, if we were able to reduce

the LCoSWS filter bandwidth to the OSA resolution of 2.5 GHz for measurement in

the coincidence counting regime, the measurement time would increase by a factor

of 16, meaning a JSI measurement would take approximately 24 days of continuous

measurements.

In the next chapter, we will investigate a novel method that again uses stimulated

FWM to for the first time measure the JSA of photon pairs for a full quantum tomography

measurement. We will use this novel technique to measure the JSA measurement of

another but identical SiNW and and apply this technique to a HNLF.
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4
PHASE-SENSITIVE JOINT SPECTRAL AMPLITUDE

MEASUREMENT

In the last chapter, we introduced SET, as an alternative method of JSI measurement

in the classical regime. We compared the traditional based coincidence measure-

ment of the photon pairs generated via spontaneous FWM with stimulated FWM

and saw excellent agreement between the two. We concluded that stimulated based mea-

surement of the JSI is the best method for a fast and high resolution characterisation

of photon pair sources that requires no single photon detectors but only an of the shelf

OSA. In this chapter, we extend this classical method of measurement of the JSI, to for

the first time, measure the phase relationship between the signal and idler photon pairs.

We use a novel technique that is fully stabilised to perform full quantum tomogrpahy of

the photon pairs by measuring the JSA. In this chapter we will

• Present a novel method of measuring the JSA in the classical regime using phase

sensitive amplification and SET.

• Perform comparison of JSI and JSA measurements and what a JSA can reveal that

is usually hidden in a JSI measurement for a silicon nanowire.

• Observe hidden artifacts of sinc side lobes as a result of phase-matching, that are

not visible in a JSI measurement.

This chapter is based on the following publication:
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I. Jizan, B. Bell, A.C. Bedoya, C. Xiong and B.J. Eggleton, "Phase-Sensitive Quantum

Tomography of Joint Spectrum Photon Pairs.", In preparation, (2016).

4.1 The Joint Spectral Amplitude

As explained in the previous chapters, the modulus square of the JSA, the JSI can

be measured directly using a coincidence counting setup with single photon detectors

using the temporal dispersion method or spatial separation method involving narrow

filters at the two frequencies of interest. However mapping out the JSI can be very time

consuming and tends to suffer from low-resolution plots as the measurement takes place

in the single photon regime. Furthermore this coincidence measurement of the JSI is

an intensity based measurement that results in the loss of phase information that is

necessary for complete characterisation of the photon pairs, requiring the measurement

of the JSA. Although not impossible, obtaining the full phase sensitive information of

photon pairs in the single photon regime is experimentally very challenging and requires

what is referred to homodyne detection setup.

FIGURE 4.1. Schematics of a homodyne detection setup where the output signal
is split and interfered with itself.

In optics, a homodyne detection is a detection setup where an input signal is mixed

with some other wave, that is often known as a local oscillator, in some nonlinear device

where the resulting mixing product is then detected. A variant of this detection method is

where the local oscillator is derived from the same source of the input signal. A simplified

version of such homodyne detection setup is shown in Fig. 4.1. In the context of homodyne

detection in the single photon regime, it requires the interference of one photon with
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the partner photon. This method has been successfully implemented for phase-space

tomography of a quantum process [68].

However, standard homodyne detection setup for photon pairs measures in the single

photon regime and neglects any spectral correlations. Although not impossible, phase

sensitive measurement of spectrally correlated photon pairs requires a unique homodyne

detection setup that requires the interference of the generated photon with a local

oscillator that is also in the single photon level. As such, phase sensitive measurement

of spectrally correlated photon pairs in the quantum regime is very challenging and

involves a large effort of data processing techniques [58].

The recently proposed method of SET, where the FWM or PDC is stimulated with a

seed laser at one of the two frequencies, allowed for a new method of JSI measurement

with unprecedented resolution and accuracy as we saw in the previous chapter. Although

SET can be thought of as an entirely classical process, the response function of the

nonlinear media for the spontaneous and stimulated process are mathematically identical

and therefore the intensity of emitted light at the unseeded frequency is proportional to

the JSI. Mathematically, we can express this by

ASET(ωi,ωs)= A∗
seed × A(ωi,ωs), (4.1)

where ASET(ωs,ωi) is the stimulated emission amplitude, A∗
seed is the conjugate of

the seed field input amplitude and A(ωi,ωs) is the joint spectral amplitude defined in

equation 2.22. As discussed in Chapter 3, this therefore avoids the need of specialised

detectors and coincidence counting, as it is only necessary to measure the intensity at one

frequency, that is well above the single photon level. This allows one to make a fast, high

resolution classical characterisation of a quantum device using standard photodetectors

or OSAs.

The light emitted in SET already carries the necessary phase as well as intensity

information, requiring only a phase sensitive detection. In this chapter, I will show that

phase sensitive amplification (PSA), with input light at both frequencies is sufficient to

measure the complete JSA. The stimulated mission ASET (ωs,ωi) interferes constructively

or constructively with input light, which acts as a phase reference. We apply this method

of using SET in combination with PSA to two χ(3) devices; a different integrated SiNW

and a HNLF. Using the SiNW, we show that if a frequency chirp is added to the pump

laser pulse, the JSA closely reflects this change and thus increasing the degree of

entanglement generated by the source while no change is seen in the JSI. With the

HNLF, we observe the sinc function related to the phase-matching of the FWM and
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find that our method allows us to detect small features in the JSA with unprecedented

accuracy.

4.2 Measurement of the Joint Spectral Amplitude

Using stimulated FWM to measure the JSI requires a classical seed field in the signal or

idler band in addition to the pump pulse where the generated field is then detected to plot

the JSI. However, one can measure the JSA by measuring the phase of the generated field

by employing a homodyne detection technique. However, unlike the previously mentioned

homodyne detection setup in the single photon regime, this homodyne detection setup

require the classical interference of the generated field a classical local oscillator.

FIGURE 4.2. An illustration of a homodyne detection setup where the generated
field via stimulated FWM is combined with a local oscillator before detection
with a photodetector.

Fig. 4.2 shows a setup where homodyne detection allows for phase sensitive measure-

ment of the JSA. By combining the generated field with a local oscillator, one is then able

to measure the relative phase of the generated field by varying the phase of the local

oscillator. Of course one is able to instead vary the phase of the generated field instead

of the local oscillator. As the generated field and local oscillators combine, the phase

change in the local oscillator will result in constructive and destructive interference

when detected and thus allowing for complete measurement of the JSA. Although it is

experimentally doable, performing this type of measurement at multiple frequencies to

build a JSA will be experimentally challenging. This type of phase-sensitive measure-

ment will suffer from phase instability and mode overlap between the generated field

and local oscillator and therefore will result in large experimental effort, which is not

desirable in the field of quantum photonics.

44



4.2. MEASUREMENT OF THE JOINT SPECTRAL AMPLITUDE

A more effective and convenient method of measuring the JSA is to perform phase

sensitive measurement in the nonlinear device where all input lights follow a common

path, ensuring a high degree of phase-stability and perfect mode overlap. This type of

phase sensitive measurement in the nonlinear device is known as PSA and plays an

important role in signal processing in laser communication systems [69]. In a nutshell,

PSA is a amplification process whose gain depends on the input phase. In χ(3) nonlinear

media, the generated field in stimulated FWM depends on the relative input phase of

the seed or pump fields.

FIGURE 4.3. An illustration of PSA where the generated field via stimulated
FWM is interfered with a reference field resulting in constructive or decon-
structive interference as the phase of the seed field is varied.

Referring to Fig. 4.3, by inputting three fields; seed (ωi), pump (ωp) and a reference

field (ωs) into the nonlinear device, the generated field via FWM in the signal frequency

(ωs) will interfere with the reference field that results in constructive or deconstructive

interference, that is dependent on the input phase of the seed field. Thus by combining

PSA and SET, we are able to perform phase-sensitive tomography and obtain the full

JSA of the source by measuring the spectrum of the reference beam for different phase

shifts in the seed field.

In this work, we apply this method to two χ(3) nonlinear devices; an integrated SiNW

and a HNLF. Using the SiNW, I will show that if a frequency chirp is added to the pump

laser pulse, the JSA closely reflects this change and see an increase in the degree of

spectral entanglement generated by the source while no change is seen the JSI. With the

HNLF, we observe the sinc function related to the phase-matching of FWM, and find that

our method allows us to detect small features in the JSA with unprecedented accuracy.
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4.3 The Experimental Setup

We employed a single broadband laser to provide the three pulses necessary for a PSA

JSA measurement; a pump pulse, a seed pulse to stimulate the FWM and a broadband

phase reference pulse covering the stimulated emission frequencies of interest. Fig. 4.4

shows the experimental setup.

FIGURE 4.4. Schematics of the experimental setups of JSA measurement for 6
mm silicon nanowire (SiNW) and a 200 m highly nonlinear fiber (HNLF).
See text for detailed description.

A mode-locked laser produces pulses of 30 nm bandwidth centred at 1555 nm, with

40 MHz repetition rate. The pulses are then passed through a LCoSWS as used in the

previous chapter, to slice the broadband laser into the pump, seed and reference pulses.

Although not mentioned in the previous chapter, but as well as allowing arbitrary filter

shapes, the LCoSWS can apply any phase shift as a function of wavelength to generate

group delay or dispersion for a pulse. A Gaussian pump is defined near the centre

of the spectrum. The seed is scanned over the available wavelengths longer than the

pump to map out the JSA. The seed has a Gaussian spectrum with 10 GHz bandwidth,

the minimum allowed by the LCoSWS. Ideally, the seed should be a delta function in

wavelength, however this finite bandwidth of 10 GHz limits resolution of the JSA with

respect to the seed wavelength. The broadband reference light is positioned to the short

wavelength side of the pump with a bandwidth greater than 1 THz.

The sliced pulses are passed though an EDFA, to amplify the three pulses. To avoid

FWM inside the EDFA, the pump and the reference light were delayed by +15 ps and
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-15 ps with respect to the seed pulse using the LCoSWS. Additionally, the reference pulse

and the seed were attenuated by 15 dB and 6 dB respectively. Then, a second LCoSWS

was used to delay the pump and reference light by -15ps and +15ps, bringing them back

into overlap with the seed, and vary the relative phase of the seed pulse. The second

LCoSWS also attenuated the seed beam by another 6 dB while simultaneously blocking

any amplified spontaneous emission noise from the EDFA. When required, the second

LCoSWS was also used to induce a chirp in the pump frequency with a chirp rate of

approximately 1.1 GHz/ps.

Before the nonlinear device, a variable attenuator (ATT) was used to tune the input

power, and a polarisation controller (PC) was used to control the polarisation of the input

pulses. The two χ(3) nonlinear devices that were used were a SiNW and HNLF (Fig. 2 (a)

and (b) respectively). The SiNW is a 6 mm long silicon-on-insulator waveguide, 220 nm

high by 460 nm wide, with an effective nonlinearity of approximately γ = 236 W−1m−1,

and grating couplers at the input and output. Single mode fibers were glued to the input

and output, resulting in a relatively high insertion loss of around 19 dB, but ensuring

that the coupling was stable over the course of the measurement. The HNLF is a 200

m dispersion engineered fibre with an effective nonlinearity of approximately γ = 10

W−1m−1. The combined input and output losses were measured to be approximately 0.5

dB. The input and output powers from the nonlinear devices were monitored using two

99:1% couplers, with the 1% being sent to a power meter (PM). Finally, an OSA was used

to measure the PSA output spectrum with a resolution of 30 pm.

For the JSA measurement of the SiNW, the seed field was scanned from 1557-1566

nm with a resolution of 5 GHz. For the JSA measurement of the HNLF, the seed field was

brought much closer to the pump with a scanning range from 1555-1568 nm for the same

step resolution of 5 GHz. Note that unlike some nonlinear devices where spontaneous

PDC and FWM are phase-matched far from the pump, our SiNW and HNLF does not

allow for measurement of the whole JSA as the pump frequency is at the centre as in

Chapter 3. Therefore our measurement is concerned with the accessible portion of the

JSA that is useful in any application of such source. The measurements were completed

within 17 hours, limited only by the scanning speed of the seed pulse from LCoWS and

scanning speed of the OSA.
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4.4 Joint Spectral Intensity Results

The JSA measurement for each seed wavelength consisted of four scans of the spectrum

corresponding to four phase-shifts applied to the seed pulse: θ = 0, π
2 , π, 3π

2 . The change

in θ resulted in constructive and deconstructive between the stimulated emission and

the reference light, with the resulting intensity varying according to

|AseedF(ωs,ωi)|2+|Are f |2+|Aseed×Are f |Re(F(ωs,ωi)cosθ+|Are f ×Aseed|Im(F(ωs,ωi))sinθ.

(4.2)

Taking the difference between two scans removes the first two (phase-insensitive)

terms, and any constant background, leaving the phase-sensitive terms which are propor-

tional to the real and imaginary parts of the JSA. In particular, the real and imaginary

part of the JSA were obtained by subtracting the θ = 0, π scans and the θ = π
2 , 3π

2

scans respectively. For each scan, the seed pulse was also scanned to normalise out the

dependence on |Aseed|, and one scan of the reference spectrum with the seed switched off

was used to normalise out the dependence on |Are f |.

4.4.1 Silicon Nanowire: Un-Chirped Pump

Fig. 4.5(a) (i), (ii), and (iii) contain the result, showing respectively the JSI calculated from

the JSA, the real part of the JSA, and the imaginary part for the frequency un-chirped

pump. For comparison, Fig. 3(b) shows the corresponding results from a theoretical

model, calculated as in Chapter 3.

The experimental JSI shows good agreement with the model, with the FWM contained

in a line at -45◦ such that signal and idler remain equidistant around the pump, as

required by energy-matching, and the width of this line reflects the bandwidth of the

pump. The SiNW is short enough that phase-matching does not affect the JSI over this

range. However, the real and imaginary parts of the experimental JSA show oscillations

along the -45◦ line, while the model predicts a constant phase. This change in phase with

frequency is unlikely to come from the short SiNW, and probably is already present in

the input fields, either because the phase is not constant over the spectrum of the initial

laser pulse, or because of dispersive effects in the EDFA. This could lead to an arbitrary

variation in the phase of the reference light with frequency, or in a change in the seed

phase as it is scanned. Note that these effects lead to separable changes to the phase

and do not affect the level of entanglement in the JSA. In principle, the LCoSWS could

be used to pre-compensate for this phase variation in the input fields.
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FIGURE 4.5. The (a) measured and (b) theoretically modelled plots of (i) JSIs,
and normalised plots of (ii) real and (iii) imaginary parts of the JSA of SiNW
for a frequency un-chirped pump.

In Fig. 4.5, the theoretical model predicts K = K̃ = 12.9 for the JSA - since the

predicted phase is flat over the JSA, there are no additional phase correlations and

the Schmidt number is equal to the lower limit. However, for the experimental result

K̃ = 7.4. Schmidt numbers derived from experimental JSIs often underestimate the value,

because the presence of a flat noise-floor extending over the measured area reduces the

effect of the correlations. On the other hand, the experimental value K = 12.7 is in good

agreement with the model since the background noise in the JSA is centred about zero,

rather than being necessarily positive as in the JSI as it has less of an effect on the

degree of correlation.

4.4.2 Silicon Nanowire: Chirped Pump

By then introducing a frequency a frequency chirp to the pump pulse using the second

LCoSWS, we expect to create correlated phase changes in the JSA, leading to an increase

in K but no change in K̃ . In Fig. 4.6, we have plotted the measured and theoretically

modelled JSI and JSA of the SiNW with the chirped pump. The JSI plots show little

change compared to the un-chirped case in Fig. 4.5, except for an increase in experimental
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noise associated with applying a large chirp, which decreases the experimental SNLB to

K̃ = 6.7.

FIGURE 4.6. The (a) measured and (b) theoretically modelled plots of (i) JSIs,
and normalised plots of (ii) real and (iii) imaginary parts of the JSA of SiNW
for a frequency chirped pump.

In the JSA plots, the phase oscillations associated with the input fields have been

removed, by subtracting the phase of the un-chirped JSA, allowing the effects of the

chirp to be seen clearly. The phase oscillates across the narrow width of the JSA at +45◦ ,

which is particularly apparent in the imaginary part, with good qualitative agreement

between the experiment and the model. The Schmidt numbers of the measured and

modelled JSAs are K = 30.3 and K = 18.9 respectively. As predicted, a higher Schmidt

number is obtained for the JSA with a chirped pump pulse. However, in this case, the

experimental noise leads to a larger Schmidt number than predicted by the model. The

noise appears to have the opposite effect here compared to in the JSIs where sufficient

noise in the JSA can introduce additional correlations. This may be exacerbated here by

the appearance of diagonal ripples in the phase of the noise, for instance in the bottom

left of Fig. 4.5(a) (ii) and (iii), which gives the appearance of phase correlation. Since

no PSA should occur in these areas, this probably originates from imperfections in the

LCoSWS, for instance if the attenuation of noise from the EDFA varies in a systematic

manner when the phase, θ, is adjusted.
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4.4.3 Highly Nonlinear Fibre: Un-Chirped Pump

FIGURE 4.7. The (a) measured and (b) theoretically modelled plots of (i) JSIs,
and normalised plots of (ii) real and (iii) imaginary parts of the JSA of
HNLF for a frequency un-chirped pump.

Fig. 4.7 shows the experimental and modeled JSIs and the real and imaginary parts

of the JSA for the HNLF. Unlike the SiNW, the phase mismatch of the FWM has a

significant effect here, resulting in oscillations and a decrease in intensity as the signal

and idler are moved away from the pump, following a sinc profile function. The measured

results here show a better signal to noise ratio than for the SiNW, due to the lower

insertion loss of the HNLF. In Fig. 4.7(a)(i) and (b)(i), the JSI shows the main peak of

the function and the first oscillation can just be seen. In the measured and modelled

plots of the JSA, the oscillations can be seen extending across the measured region,

demonstrating the sensitivity of our measurement to very small features. The lower

bound Schmidt number for the HNLF JSI was calculated to be K̃ = 2.8 from the ideal

case of K̃ = 3.1. The Schmidt number of the measured and modelled JSAs were calculated

to be K = 3.2 and K = 3.1 respectively, showing good agreement.
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4.5 Conclusions

In conclusion, I have presented classical characterisations of the JSAs of photon-pairs

generated by two χ(3) nonlinear devices, a SiNW and HNLF, via a novel measurement

technique that can be used for full phase-sensitive tomography of photon pair sources.

This is achieved by combining SET with PSA for a coherent and phase-stable detection.

By measuring the JSA of the SiNW for a frequency chirped and un-chirped pump, we are

able to observe a corresponding change in the JSA that would be hidden in standard JSI

measurements. The degree of correlation, quantified by the Schmidt number, increases

as expected for the chirped pump, though the increase is larger than predicted by theory.

This highlights an apparent difference between Schmidt numbers calculated from a JSI

or a JSA and signifies the importance of measuring the JSA instead of the JSI. In the

former case, experimental noise tends to decrease the Schmidt number, whereas in the

latter noise tends to increase it. For the HNLF, we observe the characteristic sinc profile

function dependence on phase mismatch, and find that the direct measurement of the

JSA has excellent sensitivity to small features compared to measurements of the JSI.
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SUMMARY AND CONCLUSIONS

In this thesis, I provided an quick overview of the non-intuitive behaviour of quan-

tum mechanics such as quantum interference and how it has transformed the

field of communication and computing. I discussed the specific advantages of using

single photons as our quantum system compared to other platforms due to their well

characterised states, and their weak interaction with matter. Therefore photons are

prime candidates for transmitting information through existing optical fibre networks.

However, as discussed in Chapter 2, this low weak interaction also posses difficulty in

photon-photon interaction, a necessary requirement for quantum gate operations in

quantum optical technologies. However quantum photonics emerged as a breakthrough

solution, first proposed in 2001 via the KLM scheme that uses linear optics and photon

interference for efficient single photon-photon interaction. The non-classical quantum

interference between photons was discussed in detail for use in quantum circuits. The

possible methods for generating single photons using an atom-like source, attenuated

laser and nonlinear media were examined. From this, the coincidence-to-accidental,

an important measurement of the photon statistics of a photon pair source was also

introduced. A brief history of nonlinear optics and the theory of four-wave mixing in χ(3)

nonlinear media that produce spectrally correlated photons was explored. Subsequently,

an overview of χ(3) nonlinear devices such as silicon nanowire and highly nonlinear fibre

that fully satisfy the energy and phase-matching requirements and thus creating high

spectrally entangled photons pairs were also examined. Common method of character-

ising spectral correlation via coincidence-based measurement of the JSI using spatial
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and temporal mode separation method and their limitations where discussed in details.

To address the limitations with coincidence measurement of the JSI, I introduced SET

where an additional seed filed is used to stimulate the generation of photons with much

higher efficiency.

We applied the the SET method to a SiNW and compared the obtained JSI with the

JSI obtained through coincidence based spatial mode separation of the photon pairs.

This was done so by making use of the relationship between spontaneous FWM and

stimulated FWM. For the stimulated FWM process, we have shown that it uses no

detection components other than an OSA which provided the fastest measurement

speed for a given resolution and most accurate spectral correlation measurement. By

successfully measuring the JSI in the quantum and classical regimes for two different

laser pulses, we observed a direct change in the spectral correlation of the generated

photon states, proving the versatility of the characterisation technique. We have also

presented the first measurement of the JSA (the square root of the JSI) that contains

the phase information of photon pairs, using a novel measurement technique that uses

SET and PSA. We performed these JSA measurements on two χ(3) nonlinear devices,

a SiNW and HNLF. By measuring the JSA of the SiNW for a frequency chirped and

un-chirped pump, we are able to observe a direct change in the JSA that would otherwise

be hidden in standard JSI measurements. JSA measurement of the HNLF revealed sinc

profile lobes as the result of phase-matching that are not normally visible in standard

JSI measurements.

In the future, the methods I presented in this thesis can be applied to other integrated

pair generation devices including ring resonators, and slow-light photonic crystals [43–

48]. Furthermore, the novel technique of measuring the JSA can be applied to any

χ(3) or χ(2) source of photon pairs, though it requires a coherent source of light at the

pump, signal, and idler frequencies of interest, which allows PSA to be carried out.

This may be useful in future attempts to optimise nonlinear devices for pair-photon

generation when either a high degree of spectral entanglement or the absence of spectral

entanglement are desirable. In conclusion, the methods presented here are of substantial

importance for the characterisation of spectrally correlated photon states, particularly

for non-linear devices that require fast, reliable and phase sensitive measurements, and

when large numbers of devices must be characterised for use in future quantum photonic

technologies.
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