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Abstract 41 

Acute kidney injury (AKI) is common following paraquat ingestion. The diagnostic performance of injury 42 

biomarkers was investigated in serial blood and urine samples from patients from 5 Sri Lankan hospitals. Functional 43 

AKI was diagnosed using serum Creatinine (sCr) or serum cystatin C (sCysC). The 95th centile in healthy subjects 44 

defined the urinary biomarker cutoffs for diagnosing structural AKI. 50 poisoned patients provided 2 or more 45 

specimens, 76% developed functional AKI [AKIN stage 1 (n=12), 2 (n=7) or 3 (n=19)]; 19/26 patients with AKIN 46 

stage 2/3 also had functional AKI by sCysC criteria (≥50% increase).  Urinary cystatin C (uCysC), clusterin (uClu) 47 

and NGAL (uNGAL) increased within 24 hours of ingestion compared with NoAKI patients and healthy controls. 48 

Each biomarker demonstrated moderate diagnostic utility [AUC-ROC: uCysC 0.79, uNGAL 0.79, uClu 0.68] for 49 

diagnosis of functional AKI at 16 hours. Death occurred only in subjects with functional AKI. Structural biomarker-50 

based definitions detected more AKI than did sCr or sCysC, but did not independently predict death. Renal injury 51 

biomarkers did not add clinical value to patients who died rapidly due to multi-organ failure. Use of injury biomarkers 52 

within 16-24 hours may guide early intervention for reno-protection in less severe paraquat poisoning.  53 

 54 

1. Introduction 55 

Deliberate self-poisoning with paraquat herbicide is common and has an estimated case fatality of more than 50% 56 

(Dawson et al., 2010), particularly when followed by acute kidney injury (AKI) (Kim et al., 2009; Lee et al., 2002). 57 

Paraquat-induced oxidative stress in the acute phase leads to toxicity in many organs particularly lungs and kidneys 58 

(Dinis-Oliveira et al., 2008; Gawarammana and Buckley, 2011) while paraquat induced AKI may aggravate toxicity 59 

to other organs by decreasing paraquat clearance (Beebeejaun et al., 1971). 60 

 61 

Several studies have shown that the rapid increase in sCr following paraquat poisoning (Gil et al., 2009; Roberts et 62 

al., 2011) cannot be solely driven by the AKI-mediated decrease in glomerular filtration rate (GFR) and hence over-63 

estimates true renal functional loss (Fahim et al., 2013). Therefore, alternative approaches would be useful for early 64 

diagnosis or confirmation of paraquat-induced nephrotoxicity. A panel of seven biomarkers proposed by the 65 

Predictive Safety Testing Consortium (PSTC) was qualified by the Food and Drug Administration (FDA) and 66 

European Medicines Agency (EMEA) for safety assessment in pre-clinical drug development studies (Dieterle et al., 67 

2010; Ferguson et al., 2008). These diagnose AKI early with high specificity and sensitivity depending upon site and 68 

mode of renal injury (Bonventre et al., 2010).  69 

 70 



The clinical utility of most novel urinary biomarkers in detecting AKI has not been explored after paraquat poisoning. 71 

A few small clinical studies have utilised serum cystatin C (sCysC), urinary kidney injury molecule-1 (uKIM-1), 72 

plasma (pNGAL) (neutrophil gelatinase-associated lipocalin) and urinary NGAL (uNGAL) to predict death (Roberts 73 

et al., 2011) and in one study to diagnose AKI, where increases in sCr preceded increases in uNGAL and uKIM-1 74 

(Gil et al., 2009).  In contrast,  urinary KIM-1, urinary cystatin C (uCysC) and albumin (uAlb) were sensitive 75 

biomarkers in predicting paraquat-induced AKI within 16-24 hours in a nephrotoxic rat model as defined by 76 

histopathological change (Wunnapuk et al., 2013). In order to determine the clinical utility of injury biomarkers, we 77 

performed frequent serial biomarker measurements in a prospective patient cohort following paraquat poisoning, 78 

utilising the FDA/EMEA qualified panel of biomarkers plus additional selected novel urinary damage biomarkers.  79 

 80 

We hypothesized that a panel of novel urinary structural damage biomarkers are superior to serum creatinine in 81 

independently detecting paraquat-induced nephrotoxic AKI (ToxAKI) and correlate with specific pathways of renal 82 

injury. The main objective of this study is to evaluate the utility of PSTC biomarkers panel and additional selected 83 

urinary biomarkers in early diagnosis of paraquat-induced ToxAKI and to explore whether increase in specific 84 

biomarker relate to mechanism-specific injury pathways. The other aim of this study is to evaluate whether pre-85 

clinical paraquat ToxAKI rodent model findings translate into clinical practice. 86 

2. Methods 87 

2.1 Study design and data collection  88 

This nested cohort study within an ongoing multi-centre observational study on self-poisoning in Sri Lanka was 89 

approved by the human research ethics committees of both the University of New South Wales (Sydney), Australia 90 

and the University of Peradeniya (Peradeniya, Sri Lanka). Between October 2010 and March 2013, patients admitted 91 

to study hospitals within 24 hours of paraquat ingestion were consented after initial resuscitation and clinical 92 

management using written informed consent from each patient or a relative. Patients who were < 15 years, pregnant, 93 

had co-ingested other toxins, or unable to provide samples were excluded. Paraquat ingestion was confirmed by a 94 

positive urine dithionate test. Demographic and clinical data were collected from consenting patients until discharge.  95 

2.2 Sample collection and biomarker assays 96 

Blood and urine samples were collected at 4, 8, 16 and 24 hours after ingestion where possible, then daily until 97 

discharge or death and at follow-up at one and three months. Blood and urine samples were also collected from 98 

consenting healthy volunteers to establish normal baseline biomarker concentrations. All samples were processed 99 

within 30 minutes of collection. Blood samples were spun at 2000-3000 rpm and serum samples were transferred in 100 



to small cryotubes. Urine samples were immediately centrifuged at 1500-2000 rpm and the supernatant stored. Both 101 

serum and urine aliquots were stored at -20°C  for up to 3 months and then -70°C until batch analysis within 6 months. 102 

 103 

Biomarker assays were conducted batch-wise on samples collected from both patients and healthy controls. Serum 104 

and urine creatinine were measured using the Jaffe method (kinetic method, rate blank and compensated) on a Hitachi 105 

912 automatic analyser (Roche, Japan). Serum CysC was quantified using microparticle enhanced 106 

immunoturbidimetry on a clinical chemistry analyser (KonelabTM, Thermo Fisher, Waltham, MA) following the 107 

manufacturer’s recommendations.  108 

 109 

DuoSet ELISA kits (R&D systems®) were used to assay uKIM-1, and uClu. Urinary IL-18 was measured using the 110 

platinum enzyme-linked immunosorbent assay (Bender MedSystems, Vienna, Austria). Intra- and inter-assay 111 

precision for ELISA was <10%. Six AKI biomarkers [uCysC, uAlb, urinary trefoil factor 3 (uTFF3), osteopontin 112 

(uOstP), beta-2-microglobulin (uβ2M) and uNGAL] were quantified simultaneously using Bio-Plex Pro™ RBM 113 

Human Kidney Toxicity Assays panel 2 on the Bio-Plex 200 system (BIO-RAD, USA). Inter- and intra-assay 114 

precision was <15% and <5% respectively. Serum and urinary paraquat levels were measured at the Therapeutic 115 

Research Centre, University of Queensland, Brisbane, Australia, using LC–MS/MS (Wunnapuk et al., 2011). 116 

Biomarker concentrations were reported as the absolute concentration or normalised to uCr excretion (Ralib et al., 117 

2012; Westhuyzen et al., 2003). The area under the concentration curve (24hrAUC, a measure of the biomarker 118 

concentration integrated over time) at 24 hours for each biomarker was calculated using the trapezoidal rule. Apparent 119 

creatinine clearance was calculated in ml/min from: [urine flow rate (ml/min) * uCr (mg/dl)) / sCr]. 120 

2.3 Outcome measurement 121 

Functional AKI was defined by two approaches based either on an increase in sCr or sCysC. Diagnostic performance 122 

of each urinary biomarker was assessed using both these definitions and compared in sensitivity analysis. Acute 123 

Kidney Injury Network (AKIN) criteria were used to define functional AKI based on sCr (Mehta et al., 2007) and to 124 

categorise patients into severity stages. Despite noted limitations of sCr, AKIN definition was used in this study since 125 

it is widely used definition to assess the performance of novel injury biomarkers in clinical studies (Siew et al., 2011; 126 

Waikar et al., 2012). Further, clinical biomarker studies have used different percentage change in sCr or sCysC to 127 

define functional AKI (Briguori et al., 2010; Nejat et al., 2010; Pickering and Endre, 2014; Siew et al., 2011; Waikar 128 

et al., 2012). Therefore, development of moderate or severe AKI (stage 2 or 3, an increase in sCr of ≥200% or 300% 129 

respectively) was selected as the primary outcome definition (Basu et al., 2014) of functional AKI in this cohort since 130 



rapid increases in serum creatinine within 24 hours of paraquat ingestion does not represent true renal functional loss 131 

(Mohamed et al., 2015). Alternatively, a 50% or greater increase in sCysC (Nejat et al., 2010) was used to diagnose 132 

functional AKI. Ideally, these definitions require a baseline level obtained within the three months prior to renal 133 

injury (Bellomo et al., 2004; KDIGO, 2012), a parameter not available in any of our patients as in many other research 134 

and hospital settings (Gaiao and Cruz, 2010; Hoste et al., 2006). Therefore, we used the lowest sCr or sCysC value 135 

in survivors measured prior to hospital discharge or at follow-up (Chertow et al., 2005; Endre et al., 2010; Lopes et 136 

al., 2008) and the  MDRD75 (Bellomo et al., 2004; Gaiao and Cruz, 2010; Hoste et al., 2006; KDIGO, 2012) and 137 

CKD-EPI75 equations (Inker et al., 2012) to estimate baseline sCr and sCysC in non-survivors if these were lower 138 

than the measured lowest value.  139 

 140 

Defining AKI based on structural (damage) and/or functional biomarker concentrations has been proposed recently 141 

(Murray et al., 2014), although with different approaches to define biomarker cutoff values (Basu et al., 2014; 142 

Pickering and Endre, 2013a, b). Defining AKI based on structural biomarkers may be useful in clinical conditions 143 

where sCr based definition may not be appropriate. We defined structural-AKI when structural damage biomarker 144 

concentration exceeded the 95th centile of the biomarker concentrations in healthy volunteers from a population with 145 

similar demographic characteristics to the patients (Basu et al., 2014). Similar approaches using healthy reference 146 

cutoff values have commonly been used for diagnosis and risk stratification of myocardial injury, utilising cardiac 147 

troponin (Alpert et al., 2000; Morrow et al., 2007). 148 

2.4 Statistical Analysis  149 

Biomarker concentrations were compared with those in healthy controls to identify renal injury at each time point. 150 

The time course for each biomarker was assessed graphically. Continuous and categorical variables were summarised 151 

using median and interquartile range, or mean ± standard error of mean (SEM), and proportions respectively. The 152 

data were compared using the Wilcoxon rank sum and Kruskal-Wallis tests for continuous variables and Fisher’s 153 

exact test for categorical variables. The Spearman coefficient was used to estimate the correlation between 154 

biomarkers. The diagnostic performance of each biomarker at each time point, and the peak biomarker concentration 155 

within 24 hours of ingestion were evaluated by area under the receiver operator characteristic curve (AUC-ROC) and 156 

compared with healthy subject or no-AKI patients as controls. The optimal threshold for each biomarker was selected 157 

based on the Youden index, the cutoff value with the maximum sum of specificity and sensitivity. Statistical analyses 158 

were conducted using GraphPad Prism version 6 (GraphPad Software, San Diego, USA) and STATA IC10 159 

(StataCorp, 2007, TX, USA). 160 



 161 

3 Results 162 

3.1 Patient recruitment 163 

Eighty-five patients with a history of paraquat self-poisoning were admitted to the study hospitals. Four patients 164 

declined to participate (Fig. 1). Since diagnosis of AKI using the AKIN or KDIGO criteria requires at least two sCr 165 

measurements, patients were divided into two groups based on the number of samples available: a cross-sectional 166 

and a longitudinal (main) cohort. The cross-sectional cohort (CSC) comprised patients with fewer than two blood 167 

and/or urine samples within first 7 days after paraquat ingestion (n=31). Patients who provided at least two blood 168 

and urine samples formed the main cohort (n=50) (Fig. 1). 169 

 170 

Fig. 1. Patient recruitment profile 171 

† Cross sectional cohort; these patients consented and provided only one blood and/or urine sample within first 7 172 

days. Of 31 patients in this group, 10 patients died within 48 hours. ‡ All patients in this group provided at least two 173 

blood and urine samples and considered for the main analysis. 174 

 175 

3.2 Longitudinal (main) cohort: AKI and baseline characteristics  176 

Twenty four patients (48%) demonstrated an increase in sCr < 100% (NoAKI=12, AKIN stage 1 =12) while 26 (52%) 177 

increased ≥100% (AKIN stage 2, n=7, or stage 3, n=19) (Fig. 1). Baseline characteristics were similar between these 178 

Total number of patients 
admitted (n=85)

Consented

(n=81)

Eligible patients for 
biomarker analysis 

(n=50) ‡

AKIN 2 & 3

(n= 26, 52%)

Survivors

(n=14, 54%)

Non-survivors

(n=12, 46%)

AKIN 0 & 1

(n=24, 48%)

Non-survivors 

(n=0)

Survivors

(n=24, 100%)

Consent declined 

(n=4, 1 died) 

 

Cross sectional 

cohort  

(n=31, 10 died) † 



two groups except for sCr and maximum 24 hour serum paraquat levels. The latter were higher (p<0.001) for patients 179 

with a sCr increase ≥100% (Table 1) as seen in a different paraquat poisoning cohort (Weng et al., 2012). Twelve of 180 

26 patients who had sCr increase ≥100% died, while no patients with increase <100% died (p=0.0001). 181 

 182 

Table 1. Baseline demographic and clinical characteristics 183 

Baseline characteristics  No-AKI & AKIN1  

(n=24) 

AKIN 2/3 

(n=26) 

p 

Age (years) 25 (19-34) 25 (19-32) 0.77 

Male gender (%) 58 % 50% 0.74 

Weight (kg) 50 (45-59) 50 (40-58) 0.92 

Amount ingested (ml) 20 (10-45) 20 (20-50) 0.08 

Time to admission (hours) 4 (1-6) 3.5 (2-9) 0.37 

Pulse (beats/minutes) 88 (80-88) 80 (76-87) 0.21 

BP systolic (mm Hg) 110 (110-120) 115 (110-120) 0.88 

BP diastolic 70 (70-80) 75 (70-80) 0.93 

sCysC (mg/l) 0.7 (0.6-0.8) 0.7 (0.6-0.9) 0.56 

sCr (mg/dl) 0.73 (0.66-0.87) 1.03 (0.55-1.40) 0.03 

24 hour maximum serum- 

paraquat levels (ng/ml) 

21 (10-212) 663 (97-1430) 0.0004 

Fatal outcome 0 12 (46%) 0.0001 

Number of patients with ≥50 % 

relative increase in sCysC (n) 

0 19 (74%) ‡ - 

Results are shown as median (Inter quartile range) or n (%). ‡ There were 7 patients who had a relative increase of 184 

sCr ≥ 100% but less than 50% increase in sCysC, 3 were diagnosed as AKIN stage 2 and 4 were AKIN stage 3.   185 

An increase of ≥50% in sCysC was seen only in patients with a relative rise in sCr of ≥100% [(n=19, 10 deaths), 186 

Table 1, Fig. 2]. Among 31 patients (death, n=2) with <50% increase in sCysC, 19 had functional AKI by sCr 187 

definition. Increases in sCr occurred earlier in these patients (within 8 hours) compared to sCysC (by 16 hours) (Fig. 188 

2a). In contrast, when lesser increases in both functional biomarkers were observed (sCr <100% and sCysC <50%), 189 

both analytes were increased by 16 hours (Fig. 2b).  190 



 191 

Fig. 2. Temporal profile of relative changes in sCr and sCysC in paraquat poisoning 192 

Relative changes (mean ± SEM) of sCr (black circles) and sCysC (blue squares) are shown. Relative changes in sCr 193 

occurred earlier than sCysC when a relative change in sCr was > 50%. Serum Cr continued to increase in severe 194 

poisoning while sCysC peaked between 24-48 hours and then reached a new steady state. Panel (a) sCr ≥100% & 195 

sCysC≥50%; (b) sCr≥50 % but < 100% and sCysC<50% (c) both sCr and sCysC <50% 196 

 197 

3.3 Biomarkers in the cross sectional and main cohort  198 

Biomarker concentrations measured at 16 hours in the main cohort and maximum biomarker concentrations in 199 

patients from the cross sectional cohort [median age 28 (IQR 19-44) years] are shown in Supplementary Fig1. 200 

Although biomarker concentrations in most cross sectional cohort patients were similar to patients in the main cohort, 201 

very elevated levels were seen in some non-survivors.  202 

 203 

3.4 Urinary biomarker profiles in the main cohort 204 

Both absolute and normalised concentrations of uCysC, uClu and uNGAL increased to above the 75th centile (of 205 

healthy control values) in patients who developed AKI stage 2 or 3, while concentrations remained low in patients 206 

who didn’t develop AKI or had mild AKIN stage 1 (Fig. 3). Normalisation of uCysC, uClu, uNGAL and particularly 207 

uKIM-1 to uCr better separated the AKIN 2/3 group from patients who didn’t develop AKI (Fig. 3). At 16-24 hours, 208 



uCysC, uClu and uNGAL were significantly increased (p<0.01) compared to healthy controls or no-AKI patient 209 

controls (Fig. 3).  210 



 211 
Fig. 3. Biomarker concentration (normalised to urinary creatinine) profiles following paraquat poisoning 212 
Individual patient’s absolute concentrations of sCr, sCysC and normalised biomarker concentrations of uCysC, uClu, uKIM-1 and uNGAL are shown (dashed lines). Blue 213 
dashed lines depict patients who developed AKIN stage 2 and other patients in this group represent AKIN stage 3. The dark bolded line in each graph represents the median 214 
(± IQR) change in each group (green line-No-AKI group; purple line-AKIN stage 1 group, red line-AKI≥2 group). The grey shaded area illustrates the normal range based 215 
on respective biomarkers measured in healthy individuals (dark grey area-5th to 75th centiles; light grey area-75th to 95th centiles of the normal range). 216 



In contrast, concentrations of several other biomarkers (uAlb, uβ2M, uIL-18, uTFF3 and uOstP) were not markedly 217 

increased and did not distinguish between the two groups. Urinary albumin increased in all patients regardless of 218 

AKI (Supplementary Fig. 2). Time-course of absolute urinary biomarker concentrations are presented in 219 

Supplementary Figs 3 and 4.  220 

 221 

3.5 Twenty four hour peak biomarker concentrations (24hrMax) and 24hrAUC  222 

Both absolute and normalised 24hr peak concentrations of uCysC, uClu and uNGAL in patients who developed 223 

AKIN stage 2 or 3 were higher (normalised uCysC, p<0.0001, uClu, p<0.0005, uNGAL, p< 0.005) and correlated 224 

with AKI severity (Supplementary Fig. 5). The total area under the biomarker concentration curve over 24 hours 225 

(24hrAUC, 24hr total biomarker excretion which is a measure of the biomarker concentration integrated over time) 226 

for each biomarker was also higher in patients who developed AKIN 2/3 (normalised uCysC, p<0.005, uClu, p<0.01, 227 

uNGAL, p< 0.05). The gradients observed between the normalised urinary biomarker increases and the maximum 228 

sCr increases are a measure of the enhancement resulting from normalisation to urinary creatinine. Normalisation 229 

has enhanced urinary biomarker diagnostic performance in each case illustrated (Supplementary Fig. 5).  230 

 231 

3.6 Structural and functional AKI 232 

The time course profiles of structural damage biomarkers exhibited increase within the first 24 hours with the duration 233 

of uNGAL increase was being the briefest of these biomarkers (Fig. 4). The 95th centile biomarker concentrations in 234 

sixty-three healthy Sri Lankan volunteers [median age 28 years (IQR: 26-33), 70% male] used to define structural-235 

AKI, were uCysC: 70 ng/mg Cr; uClu: 420 ng/mg Cr; and uNGAL: 120 ng/mg Cr. Table 2 summarises 24 hour peak 236 

concentrations of urinary biomarkers and serum paraquat in patients with or without functional or structural AKI as 237 

per recently proposed AKI definition matrix (Murray et al., 2014). Patients who were structural biomarker positive 238 

based on uCysC or uClu definition but functional negative had similar (Table 2 a) or even higher (Table 2 b) serum 239 

paraquat concentration compare to patients who had functional AKI but no structural AKI. 240 

 241 



 242 

Fig. 4 Biomarker time courses according to definition as functional or structural or combined functional and 243 

structural AKI 244 

In contrast to the other structural markers, the time course of uNGAL appears brief, while those of uCysC and uClu 245 

remain increased for at least 48 hours. The lines are represented as follows; No functional and no structural AKI 246 

(black), Functional AKI but no structural AKI (blue), Structural AKI but no functional AKI (green), Both functional 247 

and structural AKI (red). Sample volume collected was not sufficient in one patient for quantifying uNGAL and 248 

uCysC using the Bioplex assays and hence only uClu was measured. Serum creatinine ≥ 100% (AKI≥2) is defined as 249 

functional AKI while biomarker concentration >95th centile value in healthy volunteers (uCysC: 70 ng/mg Cr; uClu: 250 

420 ng/mg Cr; and uNGAL: 120 ng/mg Cr) were used to define structural AKI. Each cell in the matrix displays 251 

number of patients with number of deaths inside parenthesis. 252 

 253 

 254 

 255 



Table 2 Peak urinary biomarker and serum creatinine concentrations in patients with or without functional and 256 

structural AKI  257 

(a) uCysC definition  258 

 

 

 

No structural-AKI Structural-AKI 

 

No functional-AKI 

 

B 26 (2-50) 

P 13 (10-21) 

[n=15, 31%] 

 

B 135 (97-206) 

P 398 (84-750) 

[n=8, 16%] 

 

Functional-AKI 

 

B 23 (13-38) 

P 461 (62-1076) 

[n=4, 8%)] 

 

B 446 (26-782) 

P 663 (276-3700) 

[n=22, 45%] 

 259 

(b) uClu definition 260 

 

 

 

No structural-AKI Structural-AKI 

 

No functional-AKI 

 

B 90 (45-160) 

P 16 (10-22) 

[n=19, 38%] 

 

B 1457 (1048-4546) 

P 574 (398-750) 

[n=5, 10%] 

 

Functional-AKI 

 

B 94 (21-216) 

P 90 (89-767) 

[n=5, 10%] 

 

B 2337(1212-6298) 

P 992 (498-3700) 

[n=21, 42%] 

 261 

(c) uNGAL definition 262 

 

 

 

No structural-AKI Structural-AKI 

 

No functional-AKI 

 

B 33 (21-48) 

P 13 (11-116) 

[n=20, 41%] 

 

B 220 (122-221) 

P 84 (21-398) 

[n=3, 6%] 

 

Functional-AKI 

 

B 61 (32-84) 

P 832 (276-3700) 

[n=14, 29%] 

 

B 390 (190-706) 

P 555 (90-767) 

[n=12, 24%] 

Definitions: Functional-AKI: AKIN stage 2/3 (≥100% increase in sCr), Structural AKI: uCysC > 70 ng/mg Cr or 263 

uClu > 420 ng/mg Cr or uNGAL 120 ng/mg Cr.  Normalised peak concentrations (in ng/mg Cr) were attained within 264 

24 hours of admission. Biomarker value (first row in each cell represented as ‘B’) and serum paraquat (ng/ml) 265 

concentrations (second row in each cell represented as ‘P’) are presented as median (Inter quartile range). Number 266 

of patients under each spectrum of AKI combination is presented inside parenthesis (third row in each cell). 267 

 268 

Overall 65% of subjects diagnosed with structural AKI with at least one of these biomarkers (Fig. 5) while uCysC 269 

diagnosed the most patients (n=30). Structural-AKI diagnosed by uCysC, uClu and uNGAL occurred in 16% (n=8), 270 



10% (n=5) and 6% (n=3) respectively of patients not diagnosed AKI by changes in sCr ≥100% (Table 2, Figs. 4 & 271 

5). The combination of uClu and uCysC appeared best and diagnosed all but 3 patients who developed functional 272 

AKI (Fig. 5 b & f).  273 

 274 

The same biomarker cutoffs were evaluated to determine the sensitivity and specificity for AKI and death (Table 3).  275 

Urinary CysC had good sensitivity for death (0.92), whereas uNGAL was poor (0.58). However, death occurred only 276 

in subjects with functional AKI [AKIN stage 2/3 (e-h) or >50% increase in sCysC (a-d)] or both functional and 277 

structural AKI (Fig. 4 & 5). Using other cutoffs (97.5th or 99th centile) of normal biomarker concentrations did not 278 

influence these observations.  At 24 hours, sCr revealed an excellent AUC-ROC profile [0.95 (95% CI 0.9-1] to 279 

predict death while sCysC also produced a good prognostic performance [0.8 (0.7-1)]. 280 

  281 



 282 

 283 

Fig. 5 AKI classification according to combination of two or more structural biomarkers 284 

More patients developed structural AKI when uCysC and uClu concentrations were above the cut-off values used for 285 

defining structural AKI. Structural AKI is defined as biomarker concentrations > 95th centiles values obtained from 286 

the healthy volunteers (uCysC: 70 ng/mg Cr; uClu: 420 ng/mg Cr; and uNGAL: 120 ng/mg Cr). Functional AKI in 287 

matrix (a-d) is defined as ≥ 50% increase in sCysC and in matrix (e-h) is based on AKIN definition. Each cell displays 288 

number of patients with number of deaths inside parenthesis. (-): structural biomarkers negative, (+): one structural 289 

biomarker positive. (++): two structural biomarkers positive, (+++): three structural biomarkers positive. 290 



Table 3 Sensitivity and specificity for functional AKI or death based on structural biomarker thresholds 291 

Biomarkers cut-off‡ and 

outcome 

Sensitivity Specificity Positive likelihood 

ratio  

Negative likelihood 

ratio 

Diagnostic odds ratio 

uCysC (>70 ng/mg Cr) 

Functional-AKI 

Death 

 

0.85 (0.66-0.94) 

0.92 (0.65-0.98) 

 

0.65 (0.45-0.81) 

0.49 (0.33-0.64) 

 

2.43 (1.36-4.36) 

1.79 (1.25-2.55) 

 

0.24 (0.09-0.61) 

0.17 (0.02-1.15) 

 

10.31 (2.63-40.5) 

10.42 (1.22-89.13) 

uClu (>420 ng/mg Cr) 

Functional-AKI 

Death 

 

0.81 (0.62-0.91) 

0.83 (0.55-0.95) 

 

0.79 (0.60-0.91) 

0.58 (0.42-0.72) 

 

3.88 (0.60-0.91) 

1.98 (1.26-3.10) 

 

0.24 (0.11-0.55) 

0.29 (0.08-1.05) 

 

15.96 (3.99-63.84) 

6.88 (1.32-35.77) 

uNGAL (>120 ng/mg Cr) 

Functional-AKI 

Death 

 

0.46 (0.29-0.65) 

0.58 (0.32-0.81) 

 

0.87 (0.68-0.95) 

0.78 (0.63-0.0.89) 

 

3.54 (1.14-11.0) 

2.7 (1.24-5.87) 

 

0.62 (0.42-0.91) 

0.53 (0.27-1.06) 

 

5.71 (1.36-20.06) 

5.08 (1.26-20.36) 

Functional AKI: AKIN stage 2/3 (≥100 increase in sCr), ‡ cut-offs are 95th centile values obtained from healthy volunteer data. 292 

  293 



3.7 Correlation of functional and structural biomarkers and among injury biomarkers 294 

A positive correlation (r ≥0.5) was observed between sCr and the structural biomarkers, uCysC, uClu and 295 

uNGAL, 16 hours post ingestion. The correlation with sCysC was notably poor. As expected, the apparent 24 296 

hour creatinine clearance correlated negatively with all of these injury biomarkers at 16 hours (Supplementary 297 

Fig. 6). The urinary injury biomarkers uCysC, uClu and uNGAL were correlated with each other at 16 hours 298 

and these correlations were improved by normalisation to urinary creatinine (Supplementary Fig. 6 and 299 

Supplementary Table 1). 300 

 301 

3.8 Biomarker performance to diagnose functional AKI (AKIN 2/3) compared to healthy controls or 302 

NoAKI patients. 303 

The diagnostic utility of biomarkers in detecting functional AKI (AKIN 2/3) was assessed using ROC analysis 304 

[against biomarker concentrations obtained from the healthy controls (Fig. 6, Supplementary Table 2) or 305 

against no-AKI patients (Supplementary Table 2). At 16-24 hours sCysC, uCysC, uClu and uNGAL revealed 306 

a moderate diagnostic performance to diagnose functional AKI. Both absolute and normalised concentrations 307 

of these four biomarkers at 16-24 hours had AUC-ROC values ≥0.7 (Fig. 6). The 24hrMax (peak) and 308 

24hrAUC concentrations also showed similar diagnostic performance (Fig. 6). Sensitivity, specificity and cut-309 

off values for each of these biomarkers at 16 and 24 hours are shown in Supplementary Table 2.  310 

 311 

 312 

Fig. 6 Biomarker performance to diagnose AKI after paraquat poisoning  313 

AUC (±95% CI) as absolute (red) and normalised (blue) concentrations are shown for detection of AKI at 314 

different time points. The diagnostic performance in detection of functional AKI (AKIN stage ≥2) versus 315 

healthy controls is shown for 8, 16, 24 hours and maximum concentration within 24 hours, for each biomarker. 316 

  317 



 318 

 319 



The remaining biomarkers performed poorly in predicting functional AKI early (Supplementary Fig. 7). None of the 320 

urinary biomarkers distinguished AKIN stage 1 from no-AKI patients after paraquat (AUC≤0.5). 321 

 322 

3.9 Sensitivity analysis 323 

The sCr rise in paraquat poisoning may not be solely GFR related (Mohamed et al., 2015). As biomarker 324 

performances in this study were assessed using the AKIN consensus definition, a sensitivity analysis was conducted 325 

to assess the biomarker performance using an alternative sCysC definition (≥50% increase in sCysC). However, 326 

biomarker performance in detecting AKI based on either definition was similar (Table 4). 327 

 328 

Table Error! No text of specified style in document. Diagnostic performance of structural biomarkers (maximum 329 

concentration within first 24 hours) to diagnose functional AKI defined by sCr vs sCysC  330 

 331 

 

Urinary biomarkers 

AUC-ROC ((± 95% CI) 

AKIN sCr definition for 

functional-AKI† 

CysC definition for functional-

AKI‡ 

uClu 0.80 (0.69-0.96) 0.83 (0.66-0.92) 

uCysC 0.90 (0.80-1.00) 0.91 (0.81-0.99) 

uNGAL 0.84 (0.74-0.95) 0.84 (0.74-0.93) 

uB2M 0.82 (0.67-0.96) 0.82 (0.70-0.82) 

uKIM-1 0.53 (0.38-0.68) 0.53 (0.39-0.67) 

uIL18 0.54 (0.37-.76) 0.56 (0.38-0.78) 

uTFF3 0.75 (0.64-0.92) 0.78 (0.62-0.89) 

uOstP 0.54 (0.44-0.74) 0.60 (0.40-0.68) 

sCysC 0.81 (0.89-1.00) 0.94 (0.69-0.94) 

Diagnostic performance of each biomarker was assessed between biomarker concentrations in functional-AKI group 332 

(patients who developed functional AKI by either definition) versus healthy controls. † represents increase in serum 333 

creatinine (sCr) ≥ 100% (i.e. AKIN definition). ‡ represent increase in serum cystatin C (sCysC) ≥50% (CysC based 334 

AKI definition) 335 

 336 

4. Discussion 337 

This is the first comprehensive multi-centre clinical study to evaluate the diagnostic performance of all seven FDA 338 

and EMEA “qualified” AKI biomarkers as well as uNGAL, uOstP and uIL-18 to diagnose nephrotoxicity after 339 

paraquat poisoning. Uniquely, biomarker diagnostic performance was assessed against two markers of renal function 340 

sCr and sCysC and also independently using thresholds derived from healthy individuals from the same population 341 

groups. Only the biomarkers urinary biomarkers uCysC, uClu, and uNGAL revealed modest diagnostic performance 342 



for early detection of moderate to severe AKI as defined by ≥50% increase in sCysC, although uNGAL was increased 343 

for only 24 hours.  However, added clinical utility of these biomarkers to sCr is limited in moderate to severe paraquat 344 

poisoning where most patients died within 24-48 hours of toxicity and sCr predicted death independent of 345 

nephrotoxicity in this group (AUC-ROC=0.9). Since serum creatinine is readily available and a cost-effective test in 346 

less developed countries where paraquat poisoning is common, it will remain a prognostic marker of poor outcome. 347 

 348 

Poor biomarker performance in various clinical settings may be due to an imperfect gold standard used for defining 349 

AKI (Siew et al., 2011; Waikar et al., 2012).  While histopathological change has been used as the gold standard for 350 

AKI diagnosis in toxicity studies, biomarker performance in clinical studies has usually been assessed against loss 351 

of renal function, as demonstrated by an increase in sCr or sCysC.  In this study, we focussed on functional AKI as 352 

defined by a relative increase in sCr ≥100% sCr as it is widely used definition for assessing the biomarker 353 

performance (Waikar et al., 2012) or based on ≥ 50% sCysC (Nejat et al., 2010). Of patients meeting sCr definition 354 

of AKI (n=26), approximately 2/3 (n=19) showed a ≥50% rise in sCysC. Of 31 patients with <50% increase in sCysC, 355 

19 were classified as AKI based on sCr definition over-estimating AKI mainly due to increase in sCr by non-renal 356 

mechanisms (Mohamed et al., 2015). Defining AKI based on relative increase in sCysC may be more appropriate in 357 

paraquat poisoning (Fahim et al., 2013) and serum CysC is less affected by non-renal factors (Bagshaw and Bellomo, 358 

2010). Nevertheless, using ≥ 50% increase in sCysC to assess the biomarker performance also resulted in similar 359 

moderate diagnostic utility to AKIN definition in sensitivity analysis (Table 4). Validation of either sCr or sCysC as 360 

an appropriate surrogate marker of renal function awaits near real-time measurements of GFR.  361 

 362 

We also examined the use of the recently-proposed matrix definition of AKI, which incorporates both structural and 363 

functional biomarkers (Murray et al., 2014). This requires identification of appropriate biomarker cutoffs (Pickering 364 

and Endre, 2013b). Since such cutoffs are contextual and therefore unavailable in this first major study of AKI 365 

biomarkers in paraquat poisoning, we used structural biomarker cutoffs based on the 95th centile value in healthy 366 

volunteers to define AKI (Basu et al., 2014). While there were differences amongst the best performing urinary 367 

biomarkers (uCysC, uClu, uNGAL), overall this resulted in more patients being diagnosed as having structural (65%) 368 

than functional AKI (Figs. 4 & 5, Table 2). However, only subjects with functional AKI died (Fig. 5).  In the context 369 

of paraquat poisoning, renal damage alone (i.e., structural injury without significant loss of function) was not 370 

associated with death in any subjects. However, patient in this group had similar or higher serum paraquat level 371 

compare to functional AKI alone (i.e., functional AKI without structural injury). Nevertheless, the presence of 372 



functional AKI based on sCr or sCysC definition marked both more severe renal damage and also more severe 373 

systemic events leading to a fatal outcome. This contrasts with the performance of urinary KIM-1 and NGAL in other 374 

AKI settings, such as septic or haemorrhagic AKI, where biomarker positive, creatinine negative subjects are at 375 

comparable risk of mortality and dialysis to creatinine-positive biomarker negative subjects (Haase et al., 2011; 376 

Nickolas et al., 2012). Presumably these differences in predicting risk of serious outcomes reflect the role of the 377 

individual biomarkers in the specific pathways of injury involved. 378 

 379 

Since most renal injury biomarkers increased modestly and serum creatinine increased rapidly within 24 hours 380 

following moderate to severe paraquat poisoning, use of novel injury biomarkers to diagnose paraquat induced 381 

nephrotoxicity within first 2 days may be limited in clinical practice. Most patients in this group died within first 2 382 

days of admission and sCr predicted mortality independent of loss of GFR. Therefore, novel biomarkers may not 383 

offer added diagnostic value to sCr. Early death following paraquat toxicity is mainly due to multi-organ failure with 384 

circulatory collapse (Dinis-Oliveira et al., 2008; Gawarammana and Buckley, 2011). Thus, initiating dialysis or renal 385 

replacement therapy based on sCr level in this group of patients may not be appropriate especially in poor resource 386 

settings. Furthermore, use of haemodialysis or haemofiltration to enhance paraquat elimination is not supported by 387 

clinical evidence in moderate to severe paraquat poisoning (Eddleston et al., 2003; Koo et al., 2002; Suzuki et al., 388 

1993).  389 

 390 

Among dozens of renal biomarkers studied (including FDA and EMEA “qualified” biomarkers) only a few 391 

biomarkers predicted AKI, which suggests the biomarker are specific to an injury pathway.  Notably, uCysC, uClu 392 

and uNGAL were the most useful biomarkers in this study although their clinical significance in addition to sCr may 393 

be limited. Clusterin is expressed by dedifferentiated tubular epithelial cells as a cytoprotective agent following AKI 394 

(Rosenberg and Silkensen, 1995; Schwochau et al., 1998; Silkensen et al., 1997). Clusterin has a protective role 395 

against reactive oxygen species and its levels may increase in response to oxidative stress (Nath et al., 1994; 396 

Schwochau et al., 1998). Clusterin increases are therefore indirect evidence supporting oxidative stress as major 397 

mechanism of paraquat-mediated renal tubular toxicity (Nath et al., 1994; Rosenberg and Silkensen, 1995; 398 

Schwochau et al., 1998). In contrast, increases in uNGAL are indicative of a renal adaptation response to kidney 399 

injury (Mori et al., 2005). Upregulated NGAL may play a key role in preventing epithelial injury by scavenging free 400 

catalytic iron, the latter generating oxidative stress, by an anti-apoptotic effect, or by preserving N-cahedrin 401 

expression. NGAL also appear to upregulate heme oxygenase 1 which has anti-oxidant properties (Bolignano et al., 402 



2008; Mori et al., 2005). Increased levels of cystatin C (Bagshaw and Bellomo, 2010) following exposure to variety 403 

of nephrotoxins suggest that it serve as biomarkers of tubular injury and repairs. 404 

 405 

In a rodent paraquat model of AKI defined by histopathological changes, uKIM-1 and uCysC were the best predictive 406 

biomarkers within 16-24 hours, and uClu performed poorly (Table 5) (Wunnapuk et al., 2013). The results for uClu 407 

and uKIM-1 were reversed in our clinical subjects. Treatment is generally ineffective and unlikely to explain the 408 

difference from animal models since death is rapid and due to fulminant multi-organ failure within hours to days, 409 

and the creatinine rise may be due to predominantly non-renal effects.   The dissimilarities may also be due to 410 

difference in molecular forms of biomarkers between species (for example NGAL). NGAL in biological fluid is 411 

usually appears as monomeric and dimeric forms (Cai et al., 2010). NGAL monomeric form appears to be 412 

significantly correlated with tubular injury (Cai et al., 2010). However, most NGAL assays measure both forms. 413 

Sample handling and assay methods may also influence the results. The discrepancy may also be due to difference 414 

in defining AKI where animal study has used histopathology grading for defining AKI while human studies including 415 

this study uses sCr based AKI definition.  416 

 417 

 418 

Table 5 Comparative biomarker performance in predicting AKI within 24 hours in pre-clinical and clinical 419 

paraquat toxicity (Wunnapuk et al., 2013) 420 

 

Urinary biomarkers 

24 hour AUC-ROC (± 95% CI) 

Pre-clinical model 

(Wunnapuk et al., 2013) 

Clinical setting 

uKIM-1 0.98 (0.93-1.0) 0.63 (0.43-0.83) 

uCysC 0.88 (0.70-1.0) 0.85 (0.72-0.98) 

uNGAL 0.85 (0.72-0.98) 0.85 (0.72-0.98) 

uB2M 0.76 (0.54-0.98) 0.67 (0.47-0.88) 

sCysC 0.60 (0.40-0.80) 0.77 (0.61-0.93) 

uClu 0.54 (0.30-0.80) 0.70 (0.51-0.88) 

uIL18 - 0.68 (0.351-0.81) 

 421 



Subjects who survived beyond 3 days particularly following mild poisoning, urinary biomarkers generally predicted 422 

development of AKI, despite the limitations of the creatinine-based definitions already noted. Since absolute and 423 

normalised urinary CysC, clusterin and NGAL detect nephrotoxicity earlier than creatinine in this group (structural 424 

injury biomarker positive but functional biomarker negative) this may facilitate reno-protective intervention.  The 425 

good biomarker performance in both clinical and pre-clinical studies (Table 5) adds further support for the utility of 426 

uCysC and clusterin (Wunnapuk et al., 2013). Furthermore, patient who survived beyond three days following 427 

paraquat poisoning develop pulmonary fibrosis (Gawarammana and Buckley, 2011) and this group may benefit from 428 

dialysis if started early. Clearly, further studies with long-term follow-up assessment are warranted to explore the 429 

utility of structural injury biomarkers in mild paraquat and its long term effects. 430 

 431 

4.1 Strengths and limitations 432 

Although this study has some notable strengths including being multicentre and of a larger size than previous paraquat 433 

nephrotoxicity studies and the exploration of a broad range of biomarkers at multiple time points, it also has 434 

limitations. These include the absence of direct measurement of GFR and the absence of absolute baseline functional 435 

or damage biomarker levels. Since a sensitivity analysis performed using some of the subjects included in this study 436 

showed that different baseline estimates did not result in under or over reporting of AKI incidence  in paraquat 437 

poisoned patients (Fahim et al., 2013) and baseline sCysC was similar, this limitation is of less concern.  438 

 439 

5. Conclusions 440 

Serum cystatin C, urinary cystatin C, clusterin, and to a lesser extent NGAL showed modest diagnostic performance 441 

in moderate to severe paraquat poisoning.  Since most patients died in this group and sCr predicted mortality 442 

independent of nephrotoxicity, clinical utility of renal injury biomarkers in addition to sCr is limited. Serum cystatin 443 

C should be used to diagnose AKI in paraquat poisoning. Increase in specific injury biomarkers identified mechanistic 444 

pathways of nephrotoxicity in proximal tubules. Use of structural injury biomarkers within 16-24 hours of ingestion 445 

may guide early intervention for reno-protection in mild paraquat poisoning. Point-of-care biomarker detection 446 

should accelerate early intervention in these groups of patients in rural Asia.  447 
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Appendix A. Supplementary data 459 

 460 

 461 
Supplementary Fig. 1. Scatter plots of urinary biomarkers at 16 hours from the main cohort according to 462 
AKIN staging and highest biomarker concentrations in patients from cross sectional cohort (CSC).  463 
Thirty-one patients were excluded from the main cohort as they provided only one blood or urine sample; some only 464 
provided either a blood or urine sample. These graphs show 24-hour maximum biomarker concentration profiles in 465 
CSC were similar to that of patients in the main cohort. The solid blue symbol depicts biomarker concentrations in 466 
patients who died.   467 
 468 
  469 



 470 
Supplementary Fig. 2. Serial biomarker profiles (normalised to urinary creatinine) following paraquat poisoning, 471 
relative to development of AKI 472 
Normalised biomarker concentrations of uAlb, uβ2M, uIL-18, uOstP and uTFF3 are plotted for each patient (dashed 473 
line). Blue dashed lines depict patients who developed AKI stage 2 and other patients in this group represent AKI 474 
stage 3. The dark bolded lines represent median (±IQR) changes in each group (black No-AKI group; green AKI 475 
stage 1 group, red AKI >=2 group). The shaded area illustrates the normal range based on respective biomarker 476 
concentration measurements in healthy individuals (dark grey: 5th to 75th centiles; light grey: 75th to 95th centiles) 477 

 478 



 479 

Supplementary Fig. 3. Absolute biomarker concentration profiles following paraquat poisoning.  480 
Individual patient’s absolute concentrations of uCysC, uClu, uKIM-1 and uNGAL are shown (dashed lines). Blue 481 
dashed lines depict patients who developed AKI stage 2 and other patients in this group represent AKI stage 3. The 482 
dark bolded line in each graph represents the median (± IQR) change in each group (green line-No-AKI group; 483 
purple line-AKI stage 1 group, red line-AKI≥2 group). The grey shaded area illustrates the normal range based on 484 
respective biomarkers measured in healthy individuals (dark grey area-5th to 75th centiles; light grey area-75th to 485 
95th centiles of the normal range). 486 



 487 
Supplementary Fig. 4. Absolute serial biomarker profiles following paraquat poisoning, relative to 488 
development of AKI.  489 
Absolute biomarker concentrations of uAlb, uβ2M, uIL-18, uOstP and uTFF3 are plotted for each patient (dashed 490 
line). Blue dashed lines depict patients who developed AKI stage 2 and other patients in this group represent AKI 491 
stage 3. The dark bolded lines represent median (±IQR) changes in each group (black No-AKI group; green AKI 492 
stage 1 group, red AKI >=2 group). The shaded area illustrates the normal range based on respective biomarker 493 
concentration measurements in healthy individuals (dark grey: 5th to 75th centiles; light grey: 75th to 95th centiles) 494 

 495 



 496 

Supplementary Fig. 5. Peak urine and serum biomarker concentration versus maximum change in sCr 497 

The maximum 24 hour absolute sCysC and both absolute and normalised concentrations of uCysC, uClu and uNGAL 498 

are shown. The scatter plot displays maximum 24 hour peak concentrations of biomarker against 24 hour peak sCr 499 

to baseline sCr ratio. The dotted lines show 95% CI of the slope. The slope of each relationship illustrates the 500 

enhancement associated with normalising each biomarker as a function of relative change in serum creatinine.  501 

 502 

  503 



Supplementary Table 1. Correlations (Spearman) among injury biomarkers after paraquat poisoning  504 
 505 

 Absolute biomarker concentrations Normalised biomarker 

concentrations 

 uClu uCysC uClu uCysC 

16 hour biomarker concentrations 

uCysC 0.89*  0.90*  

uNGAL 0.31 0.46* 0.54* 0.70* 

24hrMax concentrations† 

uCysC 0.76*  0.83*  

uNGAL 0.23 0.58* 0.44* 0.73* 

24hrAUC‡ 

uCysC 0.83*  0.89*  

uNGAL 0.37* 0.61* 0.46* 0.66* 

†Peak biomarker concentration within 24 hours of ingestion. ‡ Total area under the concentration curve at 24 hours. 506 
* p < 0.05 (significant correlation) 507 
  508 



 509 

Supplementary Fig. 6. Correlations amongst injury and functional biomarkers at 16 hours 510 
The correlation (Spearman) plots depict injury biomarkers (uClu, uCysC and uNGAL) vs sCr (Fig. a to d), sCysC 511 
(Fig. e to g) and 24 hour apparent creatinine clearance (Fig. h to k). Positive correlations were obtained for injury 512 
biomarkers compared to sCr; negative correlations were seen with 24 hour creatinine clearance. Serum CysC was 513 
weakly correlated with injury biomarkers. 514 
  515 



Supplementary Table 2: Diagnostic characteristics of biomarkers in early diagnosis of functional-AKI (stage 2/3) in paraquat poisoning.  516 

AKI≥2 versus healthy individuals AKI≥2 versus all non-AKI patient controls 

Biomarker

s 

AUC-ROC 

(95% CI) 

p Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

Cut-off AUC-ROC 

(95% CI) 

P Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

Cut-off 

16 hours post ingestion (absolute concentration) 16 hours post ingestion (absolute concentration) 

sCysC 

(mg/l) 

0.66 

(0.49-0.83) 

<0.05 68 (43-87) 52 (37-66) >0.84  0.76  

(0.59-0.94) 

<0.05 74 (48-91) 78 (40-97) > 0.82  

uClu 

(ng/ml) 

0.69  

(0.49-0.88) 

<0.05 69 (41-89) 60 (43-74) >266  0.79  

(0.61-0.98) 

<0.05 75 (48-93) 71 (29-96) >144  

uCysC 

(ng/ml) 

0.79  

(0.62-0.96) 

<0.001 73 (44-92) 73 (57-86) >46  0.82  

(0.63 -1.00) 

<0.05 73 (45-92) 83 (36-100) > 53  

uNGAL 

(ng/ml) 

0.79  

(0.66-0.9) 

<0.001 80 (52-74) 74 (59-86) >23 0.66  

(0.37-0.94) 

>0.05 67 (38-88) 50 (12-88) > 29  

24 hours post ingestion (absolute concentration) 24 hours post ingestion (absolute concentration) 

sCysC 

(mg/l) 

0.73  

(0.58-0.88) 

<0.01 68 (45-86) 72 (58-84) >0.88 0.77  

(0.61-0.93) 

<0.05 68 (45-86) 70 (35-93) > 0.86  

uClu 

(ng/ml) 

0.61  

(0.45-0.78) 

>0.05 67 (45-84) 67 (50-80) >280 0.70  

(0.51-0.88) 

>0.05 70 (49-87) 70 (35-93) > 194  

uCysC 

(ng/ml) 

0.81  

(0.68-0.93) 

<0.0001 70 (47-87) 70 (54-84) >45 0.85  

(0.72-0.98) 

<0.01 74 (52-90) 70 (35-93) > 41  

uNGAL 

(ng/ml) 

0.78  

(0.65-0.90) 

<0.001 74 (52-90) 74 (58-86) >24 0.85  

(0.72-0.98) 

<0.01 78 (56-92) 70 (35-93) > 15 

Comparisons were made between stage 2/3 (AKI ≥2) vs healthy controls and AKI ≥2 vs no-AKI patient controls. Data are presented only for the best performing 517 
biomarkers to diagnose AKI.518 
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 519 

 520 

Supplementary Fig. 7.  Biomarker performances to diagnose AKI following paraquat poisoning  521 

AUC (±95% CI) as absolute (red) and normalised (blue) concentrations are shown for detection of AKI at 16 522 

and 24 hours. Diagnostic performance was assessed between patients in functional AKI (AKIN stage ≥2) group 523 

and healthy controls at each time point (* p<0.05).  524 

  525 
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