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Summary 

 The first modern soil science studies involving the measurement of soil properties 

such as those made by Professor Von Liebig, focused on the quantification of pure 

mineral elements present in the soil matrix. As the first half of the 20th century passed, the 

first works in the area of soil spectroscopy took place and the number of measurable soil 

attributes went from less than ten to many thousands. As an inmediate consequence, the 

use of multivariate methodologies and computer-based analysis became indispensable. 

Today, we are witnessing a moment in history where the amount of soil information 

available probably exceeds our analytic capabilities; therefore the need for transforming 

this raw data into useful information for final users is a continuous challenge. 

 

This thesis embodies a collection of novel studies related to the use of multivariate 

information provided by spectroscopic tools such as Visible and Near Infrared (Vis-NIR) 

spectrometers to represent soil variation. The thesis general structure is organized to 

follow the increasing levels of soil complexity, starting from the characterization of soil 

aggregates and the identification of soil colloids, to the recognition of soil horizons and 

their boundaries in the soil profile, to finally the depiction of soil type’s distribution in the 

landscape. 

 

It is shown, as the complexity of the soil target attribute increases (soil colloids < soil 

aggregates < soil horizons < soil types), the use of the multivariate information needs to 

be adapted as well, starting from recognition of individual soil properties (identification 

of individual soil colloids represented in a single spectrum in  Chapter 2) to the use of the 
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full variation contained in the spectroscopic information (creation of multidimensional 

indices in Chapter 5). 

 

Briefly, Chapter 1 is written as a rationale, presenting the need for up-to-date 

methodologies for making effective use of the increasing amount of soil information 

produced worldwide. It gives examples of the existing types of soil information and 

suggests the use of soil spectroscopy and multivariate analyses techniques as candidates 

for the study of key aspects of soil at different scales and levels of complexity. 

  

Accordingly, starting from the micro-scale and the analysis of individual soil properties, 

Chapter 2 presents a newly developed methodology for the measure of soil aggregate 

stability and the further use of spectroscopic information to predict its values. The new 

methodology makes use of an image recognition algorithm that allows measurement of 

the slaking of soil aggregates in water over time. The resulting increase of area in time 

was fitted to a function and three “slaking” coefficients were obtained. Coefficient a, was 

related to the highest possible area increase due to slaking in time. Coefficient b was 

associated with the initial time of slaking and finally coefficient c was linked to the rate of 

area increase in time. It was found that these coefficients were related with known soil 

properties, for example, coefficient a was positively related with exchangeable sodium 

(cmol(+) kg-1) and negatively related to exchangeable calcium–exchangeable magnesium 

ratio (Ca Mg-1). On the other hand, coefficients b and c were related with percentage of 

total carbon (%TC) and percentage of total nitrogen (%N).  
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The second part of this chapter presents the use of different types of spectroscopic 

instruments, namely Vis-NIR and Middle Infrared (MIR) both portable and bench 

spectrometers, for the prediction of the slaking coefficient a. The regions of the 

electromagnetic spectra identified as important, were associated with Fe oxides and Fe 

bearing minerals, organic carbon and presence of kaolinite bearing materials. This chapter 

also presents the possibility of predicting slaking values using Vis-NIR and MIR 

information, showing that if an appropriate calibration dataset is used, the predictions are 

moderately acceptable (R2 = 0.6).  

 

Following the same line of research, in terms of the prediction of individual soil 

properties by using Vis-NIR spectroscopy, Chapter 3 demonstrates the use of selected 

state-of-the-art spectroscopic modelling techniques and large spectral libraries. The 

example presented in this chapter, involves the use of two large spectral libraries 

containing soil samples from the conterminous United States for the prediction of %TC in 

samples of a certain region of U.S. or “local samples”. The results of this chapter put 

special emphasis on the large amount of variability that Vis-NIR information could 

contain and on the importance of a properly selected set of soil samples to create Vis-NIR 

models. Even though all the modelling approaches were successful (R2 > 0.9), the 

important effect of similar composition regarding their geographic similarity which 

significantly affected the final bias of the models was noticeable (0.8 vs 0.02 %TC).  

 

As the complexity of the target soil feature increases (soil colloids < soil aggregates < soil 

horizons), it is observed that rather than using multivariate information to predict separate 

soil properties, this information can be directly used to describe soil variation. In this 

sense Chapter 4 details the development of a new method for the identification of soil 
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horizons and their boundaries using fuzzy clustering of Vis-NIR spectra. The results of 

this chapter showed that the newly identified horizons (spectrally derived horizons), bear 

a resemblance to those described by pedologists. 

 

Chapter 5 follows the same essential concepts of Chapter 4 in terms of using the raw 

information contained in the Vis-NIR region of the spectra to characterize the soil profile 

rather than using individual soil attributes. This chapter expands into a new way of 

measuring the diversity of soils in the landscape. It presents two new indices for 

measuring soil functional diversity or “Functional Pedodiversity” inspired by previous 

studies in Functional Ecology where individuals are characterized in a multidimensional 

space composed by several continuous properties. The new “Functional pedodiversity 

indices” are then calculated using information from the whole Vis-NIR spectra and then 

are compared with the conventional approaches or “Taxonomic pedodiversity indices” 

which use previously classified soil taxonomic orders. The results of this chapter show 

the close connection between soil attribute variation and soil taxonomic units. This 

chapter offers a new perspective on the measurement of pedodiversity and represents the 

first study that assesses pedodiversity by spectral means. 

 

Finally Chapter 6 discusses the main findings of this thesis and foresees issues, challenges 

and opportunities in the area of spectroscopy and multivariate soil data analysis.  
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1.1 Soil information and soil variation 

 During the last decade we have seen an increase in the global awareness of 

the importance of the soil resource, noted by The Food and Agriculture Organization of 

the United Nations (FAO) as “the medium for preservation and advancement of life on 

earth” (Omuto et al., 2013) and also by United Nations (UN) in its resolution 

A/RES/68/232 adopted by the general assembly as “The foundation for agricultural 

development, essential ecosystem functions and food security and hence key to sustaining 

life on Earth” (United Nations, 2014). These statements seem to agree with the increasing 

number of publications related to soil science and the renewed interest in the specialty, as 

Hartemink and McBratney (2008) state, we are witnessing a “Soil science renaissance”, 

where high quality and up-to-date information is becoming a necessary asset. In order to 

fully understand this statement, it is necessary to first define what is understood by soil 

information. 

 

In a few words, soil information can be considered as the qualitative or quantitative 

representation of the soil condition in a determined area or volume. Now, the assessment 

of this condition would not be necessary if soil was totally homogenous, but it is not. 

Since soil is one of the most variable natural resources on earth we indeed require soil 

information to describe its variation in space and time. 

 

As an example, soil condition in an area of interest can be assessed using a number of 

methodologies, depending on the aspect that needs to be described e.g., content of 

Nitrogen in a determined location is commonly assessed by Kjeldahl method (Bremner, 
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1960) and is expressed as a numerical result in a continuous scale (e.g., mg N g soil-1) 

which allows comparison with other locations and thus efficiently describes its state. 

 

Following the same example, to describe how nitrogen content varies in space, it will be 

required to assess it with the same methodology in another place, and ideally at many 

different locations. If the previous exercise is performed at regular intervals we can 

describe systematically its variation in space using the variogram (Matheron, 1965), or 

the average variance3 of any two points within a finite area separated by a given distance 

and direction, and possibly predicting with this the nitrogen content at unsampled 

locations. 

 

The soil can be characterized by multiple attributes e.g., colour, clay content, number of 

horizons in a pedon, etc. All of these attributes contributing with a certain amount of 

information that helps in characterizing it as a whole. However, when trying to describe 

different aspects of soil, we find that not all the information that is produced comes in the 

same format. As an example, a common way to describe the soil structure in the field is 

by visually describing the grade of soil aggregates e.g., massive or structureless, 

moderate, strong, etc. Yet, in laboratory conditions it is possible to describe it in another 

more precise but time consuming way e.g., mean weight diameter (Van Bavel, 1950). 

 

Each of the previously mentioned methods has its own benefits and limitations, so if our 

intention is to describe the soil variation in the best possible way, first it is needed to 

determine what kind of soil information can be considered strategically important to 

efficiently assess the soil condition. From this statement we can formulate two simple 
                                                 
3 Referred to its statistical meaning, defined as the average of the squared differences from the mean. 
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questions: what kind of information do we have and what kind of information do we 

need. 

1.2 Information that we have 

1.2.1 Soil quantitative information 

 In answering the first question, we immediately can make a clear distinction 

in what has been probably one of the paradigm shifts in soil science of the last 50 years, 

the creation of a formal term for the use of quantitative methodologies applied to soil 

science i.e., Pedometrics. 

 

Interestingly, the use of the first recognized pedometric technique was the variogram, 

which came from the same field of science (Geology), from which many years ago soil 

science was formed in the Russia of the 19th century. Accordingly, the first area of soil 

science which saw a big influence of this new paradigm was the one of modern 

geostatistics applied to soil science and the study of its spatial autocorrelation (Mercer 

and Hall, 1911). From that time until now, the use of geostatistical methods applied to the 

mapping and prediction of soil attributes in the landscape or Digital Soil Mapping (DSM) 

has been the most prolific of all. However this success was not only due to the high 

expertise of the DSM community, but to a conjunction of factors which led to its success 

namely, the production of vast amounts of data of different sources (mainly remote 

Sensing e.g., aerial photography or hyperspectral imagery), the use of global navigation 

satellite systems (e.g. GPS), and to the creation of new methodologies to make good use 

of all this information. 
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Some examples of good use of remote sensing information are the already mentioned 

variogram, the use of an empirical approach of Jenny’s soil forming factors (i.e., The 

scorpan-SSPFe model (McBratney et al., 2003)) to efficiently predict soil properties in 

the landscape, and the integration of deterministic and stochastic modelling like 

regression kriging procedures (Odeh et al., 1995), among others. However as Webster 

(1994) explained when he was told of the term Pedometrics, the original meaning was 

thought as a whole quantitative approach and especially relevant to observations made in 

the field, which take us to another source of soil information, this is Proximal soil 

sensing.  

1.2.2 Proximal soil sensing and soil spectroscopy 

 Historically, and within its very core, soil science has been linked with the 

needs of society, and just like economic cycles (Kondratiev, 1925), it observes cycles of 

high and low demand. The previous observed “peak” occurred  after the Second World 

War as commented upon by Tinker (1985). Today, as some authors have noticed (So and 

Lal, 2002; Hartemink and McBratney, 2008; Churchman, 2010) a new “peak” has started, 

but this time the trigger is not only hunger alleviation, but a whole set of society needs, 

such as, inter alia, economic growth, maintaining biodiversity, improving water 

availability, reducing desertification and land degradation and also to provide food 

security (United Nations, 2014). In other words, a very large number of issues drives a 

reason to start working on fast, scalable solutions to provide soil information in an 

effective and efficient way to final users and policy makers (Bouma, 2010; Bouma and 

McBratney, 2013). 
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As mentioned in section 1.2.1 an effective and also efficient way to provide soil 

information has been through the increasing use of remote sensing technologies resulting 

in a change of perspective of soil research from farm scale to a global extent (Jensen, 

2009). In the same line of thinking, as the development of GPS and satellite observation 

is to remote sensing, the use of soil spectroscopy has been pivotal to proximal soil 

sensing.  

 

The term spectroscopy groups all the related research involving the direct or indirect use  

of the different parts of the electromagnetic spectrum for describing soil variation (See 

Fig 1 in McBratney et al. (2003)). Likewise, the use of spectroscopy is not exclusive to 

field observations neither to soil science. A little bit of history tells us that the first 

recognized works in the field of spectroscopy date to 1648 in the book written by Marcus 

Marci of Kronland (1595 - 1667) entitled “Thaumantias liber de arcu coelesti deque 

colorum apparentium natura… ” and the first researcher regarded to apply the word 

“spectrum” as it is used today was Isaac Newton, even though he was apparently  

influenced by the previously used term “iris” coined by Robert Boyle as reviewed by 

Burns (1987). 

 

In the case of soil science, the first formal work using spectroscopy techniques as we see 

today was most probably the one of Bowers and Hanks (1965)4, where they observed the 

influence of moisture, organic matter and particle size on the absorbance of the 

wavelengths ranging from 500 to 2500 nm (Figure 1-1). 

                                                 
4 There are other previous works like the one of Carter (1931), however his work was not conclusive 
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Figure 1-1 Percent reflectance vs. wavelength of incident radiation at various moisture contents (moisture 
contents indicated directly above each curve). Extracted from Bowers and Hanks (1965). 

Later, further research using multivariate techniques (Krishnan et al., 1980; Dalal and 

Henry, 1986; Ben-Dor and Banin, 1995) led to what soil spectroscopy now mainly 

focuses upon, an alternative to traditional methods of wet chemistry to measure common 

soil properties e.g. organic carbon, clay percentage, pH, etc. (Nocita et al., 2015). 

 

One of the most useful attributes of soil spectral information resides in its high 

dimensionality, allowing the prediction of multiple attributes at the same time from a 

single observation or spectrum (Ben-Dor and Banin, 1995). From all the regions of the 

electromagnetic spectrum currently under study, the one that has received more attention 

is that which includes the visible, middle and near infrared regions of the electromagnetic 

spectrum or those wavelengths ranging from 400 to 25.000 nm. 

 

Chabrillat et al. (2013) described the state of the art methods in the previously mentioned 

area of soil spectroscopy, highlighting its use in prediction of carbon content (McDowell 
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et al., 2012), the effect of raindrop energy on the water infiltration in relation to soil 

surface spectral reflectance (Goldshleger et al., 2012) and to the detection of total 

petroleum hydrocarbons in the soil (Schwartz et al., 2012). Naturally, and mainly because 

of its simplicity and speed in obtaining the measurements, the current  spectroscopy 

studies have been rapidly moved to field conditions (Hedley et al., 2014; Ackerson et al., 

2015).  

 

Accordingly, and as noticed by Hartemink and Minasny (2014), the use of spectroscopic 

tools in the field has revolutionized the way soil scientists are perceiving and describing 

the soil profile, and it has occupied a place in a whole sub-discipline recently recognized 

as one of the newest IUSS working groups named “Digital soil morphometrics”. This 

reflects the continuous renewal of the soil science “toolbox”, by using new methods for 

describing the variation of the strategically important attributes of soil, which leads us to 

our second question, what information do we need? 

1.3 Information that we need 

 Even though historically soil science has being divided into sub-disciplines i.e., 

pedology, soil physics, chemistry, biology, mineralogy and fertility among others, in a 

review of the key elements that define soil studies, Churchman (2010) identifies three 

aspects that can be considered as exclusive to the study of soils as a whole. These are i) 

the formation and properties of soil horizons, ii) the occurrence and properties of 

aggregates in soil and iii) the occurrence and behaviour of soil colloids.  
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These three soil science areas that may appear unconnected share one key element, they 

are the result of the interactions of multiple soil attributes and their study requires the 

analysis of many factors acting at the same time. Even more, they seem to relay on each 

other as Churchman (2010) also noticed:  “…Further, it is likely that improvements in 

descriptions of the aggregates could in turn help to contribute to improvements in 

characterisations of soil profiles and their constituent horizons, even if the most complete 

description of these latter is most likely to be given at a larger scale than that of the 

aggregates...” 

 

From here, it would be possible to generalize this idea and imply that the study of soil 

involves the study of interactions of multiple attributes at not only different scales but 

different “organization levels” as understood by Wimsatt (1994), where “each level of 

organization is organized by part-whole relations, in which wholes at one level function 

as parts in the next (and all the higher) levels”. 

 

Following this line of thinking it can be hypothesized that, if we have an idea of the 

content of “idealized” soil colloids, let’s say kaolinite and goethite in a soil sample, it will 

be possible to look for relations between those attributes, and with this, describing the 

process of aggregation. Further and as mentioned before, if the information related to 

those colloids and the interaction between them resulting in soil aggregates is identified, 

our understanding about soil horizons could be improved, since now we will have an idea 

of the mineralogical composition of soils and also of the process of aggregation which is 

known for direct influence with other more complex physical properties such as hydraulic 

conductivity, which in the end will determine soil horizonation processes.  
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And from here we can continue, if we consider that soil horizons are a prerequisite for 

classifying soil types e.g. soil orders, then all the information of the previous levels will 

govern the taxonomic output. A final step in this pyramid-like structure can be 

highlighted, this is the distribution of soil types in the landscape or the concept known as 

“Pedodiversity”, briefly described as the systematic study of the richness of different soil 

types and their relative distribution in the landscape (McBratney, 1992; Huston, 1994; 

Ibáñez and Bockheim, 2013). 

 

Based on the previous and under the assumption that pedological studies possess “levels” 

of organization, a simple hierarchical structure can be schematized in (Figure 1-2). 

 

Figure 1-2 Theoretic hierarchical organization of pedological studies. 
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1.4 How can we get that information? 

 It has been showed that pedological studies are in general terms connected by a 

hierarchical thread, and each level in this structure relies on the preceding. From the 

previous it is possible to see that by obtaining information from each level, we are 

partially acquiring knowledge for the next level and so on, however, how can we relate 

the information from one level with the next one? To do this, the information needs to be 

expressed in the same format. As it was commented in earlier sections, an efficient way to 

express soil information is on a continuous scale i.e., quantitative information. 

 

As commented earlier, soil spectroscopy can provide in fine detail, information related to 

the physico-chemical composition of soils in a continuous scale. Even though there are a 

number of studies that use a spectroscopic approach to assess the soil condition at the 

previously defined levels of soil organization (Figure 1-2), as seen in the next sections, 

the use of spectroscopic tools in most of the before mentioned areas is still considered as 

experimental.   

1.4.1 Soil colloids 

 The area of soil colloids is most probably the one that has more research using 

spectroscopic related methodologies. The reason is because of the implicit need for 

computer based analyses to measure clay minerals or organic colloids due to their small 

size. Even more, the first studies involving formal spectroscopy methodologies applied to 

soil science were related with the occurrence of soil colloids detected by X-Ray 
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diffraction, in the landscape and in depth (Wilson and Cradwick, 1972; Herbillon et al., 

1981; Chipera and Bish, 2001).  

 

The use of spectroscopy in these studies involved the detection of “peaks” in the spectra 

by analysing pure minerals and later detecting those peaks in another sample to finally 

asses its composition (Figure 1-3). 

 

 

Figure 1-3 X-Ray diffraction patterns. Extracted from Chipera and Bish (2001). 

The techniques in these former studies evolved with the application of current 

technologies (proximal and remote sensing) into continental studies like the one of 

Viscarra Rossel (2011) published as a map of the occurrence of clay minerals in Australia 

also using spectroscopic techniques. The recognition of idealized soil colloids in this 

study did not changed considerably from previous works, as the protocol for  identifying 

colloids and their relative abundance, consisted in measuring the differences between 
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reference clay minerals and soil samples reflectance values at selected wavelengths 

(Figure 1-4). 

 

Figure 1-4 Diagnostic absorptions of (a) smectite (1912 nm), (b) kaolinite (2165 nm) and (c) illite (2345 
nm). The plots show the spectrum of each of the reference clay minerals (thicker gray line) and the spectra 
of the 5th, 6th, 50th, 84th and 95th percentiles of the soil samples (thinner black lines). Extracted from 
Viscarra Rossel (2011). 

1.4.2 Soil aggregation 

 As the complexity of the soil attribute increases, paradoxically the use of new 

spectroscopy techniques appears to be even less common. In the case of soil aggregation 

studies, only a few make use of new approaches, for example those involving soil micro 

aggregation and X-ray tomography (Moran et al., 1989; Ma et al., 2015). These types of 

methodologies use the absorbance values of a sample after the interaction with a light 

source within the X-ray part of the electromagnetic spectrum (~ 10 nm – 10 pm) to create 

images or “slices” of a soil aggregate repeatedly. This technique allows the creation of a 

pseudo-tridimensional image, where each image or “slice” is then analysed with an image 
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segmentation algorithm to extract the areas and resultant volume of the soil porous 

system (Figure 1-5). 

 

Figure 1-5 Pseudo three-dimensional pore structure of two soil samples at different wetting-drying cycles 
obtained from X-ray micro-tomography analysis. Extracted from Ma et al. (2015).  

Despite the existence of more sophisticated methodologies and mainly because of their 

inherent cost, the commonly used methods for the characterization of the soil aggregation 

(mainly macroaggregation ~ >250 μm) date to the first part of the 20th century (Yoder, 

1936). Just recently some works have explored the possibility of using Vis-NIR 

spectroscopy as indicators of soil aggregate stability (Cañasveras et al., 2010; Askari et 

al., 2015). These studies make use of the soil absorbance values within the Vis-NIR and 

MIR regions of the spectra and multivariate analyses like partial least squares regression, 

to predict soil aggregation coefficients measured by conventional methods i.e., (Yoder, 

1936). 
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1.4.3 Soil morphological horizons  

 Soil morphological horizons and their identification in the profile takes place in 

the very centre of any pedological study, however, there are only a few works that apply 

new methodologies, other than the traditional methods of pedon morphological 

descriptions for their assessment e.g., Schoeneberger (2002) or Isbell (2002).  

 

They can be grouped based on the aspect of soil horizonation in study, namely a) the 

systematic use of soil sensing methods for the allocation of different soil types in the 

landscape based on their horizonation and b) the identification of soil horizons in a pedon 

using proximal sensing techniques. 

 

Some noteworthy examples for the first case are Chaplot et al. (2001) mapping 

hydromorphic horizons with a radio magnetotelluric resistivity instrument. They used the 

known relation between horizons of different compositions and their respective electric 

resistivity, and tested a radio magnotelluric-resistivity instrument to identify poorly 

drained horizons in the landscape. 

 

Another example is the work of Odgers et al. (2011a) where they investigated the use of 

continuous soil “layers” created by using the properties predicted from their MIR spectra 

as analogues for the commonly described soil morphological horizons but with a 

continuous approach, where each observation can belong to a soil layer and at the same 

time, since the layers creation is based on a continuous scale, a relative distance to 
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another layer can be calculated without the implicit bias produced by human-made soil 

descriptions.  

 

For the second case, i.e., the identification of soil horizons in a pedon, Weindorf et al. 

(2012) studied the possibility of assessing horizonation with a portable X-ray device 

(Figure 1-6). They found a close relation between changes in concentrations of elements 

quantified using X-ray fluorescence with depth and the boundaries of soil morphological 

horizons. 

 

Figure 1-6 Field horizonation and calculated differences between layers for a pedon in Louisiana: (a) 
differences of clay, (b) differences of laboratory analysis, (c) elemental differences of portable X-ray 
fluorescence spectrometry (PXRF) readings on bulk density samples, (d) elemental differences of PXRF 
readings under field conditions, (e) elemental differences of PXRF readings on samples under laboratory 
conditions, and (f) elemental differences of PXRF readings on monolith.  Extracted from Weindorf et al. 
(2012). 

Similar works are provided by  Ben-Dor et al. (2008) and Demattê et al. (2012), where 

they observed that commonly described soil morphological horizons had a distinctive 

“spectral signature” in the Vis-NIR range of the electromagnetic spectrum highlighting its 

possible use in discrimination and further classification. 
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1.4.4 Pedodiversity 

 So far it can be seen that there are studies that have already attempted to describe 

the variation observed on the different levels of soil organization by spectral means, 

however the complexity in the analysis has to increase as the scale and degree of 

organization increases e.g., soil colloids to soil horizons. 

It has been shown that colloids relate with specific regions of the electromagnetic spectra 

and can be efficiently identified by systematically detecting peaks in the spectrum. 

Further, aggregates require a more sophisticated analysis and involve for example, 

multivariate calibrations which make use of several peaks and structural attributes that 

could be derived using spectral means. Soil horizons instead, require not only a 

multivariate approach like those studies that have attempted to predict soil aggregation 

parameters e.g., (Cañasveras et al., 2010), but the use of the multivariate information 

contained in a single observation plus the variation of that multivariate information over 

depth e.g., multiple samples analysed with a Vis-NIR spectra like those studies of Ben-

Dor et al. (2008) or Odgers et al. (2011a). 

  

This phenomenon can imply that a higher hierarchy level can be also analysed by spectral 

means following the same schema, which is by using the multivariate information of a 

single sample i.e., Vis-NIR spectrum from one scan; plus the variation from these 

measurements with depth i.e., soil horizon and finally, plus the variation in the landscape.  

Despite this, pedodiversity studies are the ones that have experienced the lowest use of 

spectroscopic techniques. 

 



Mario Fajardo P. - Novel applications of spectroscopy to characterize soil variation 
  

18 | P a g e  
 

Based on the latest publications related with pedodiversity, it is worthy to note that they 

still depend on the discretization of the soil information i.e., Soil classes (McBratney and 

Minasny, 2007; Ibáñez and Bockheim, 2013; Costantini and L'Abate, 2015; Kooch et al., 

2015). This may be one important reason for the lack of use of soil sensing 

instrumentation like spectroscopy, which intrinsically provides continuous information. 

 

Toomanian and Esfandiarpoor (2010), in a review of the challenges in the area of 

pedodiversity, observed the connection that soil property variation and pedodiversity 

have, and the importance of considering multiple soil attributes simultaneously in order to 

describe the pedodiversity of soils in an efficient way. 

 

Considering the great value of spectroscopic techniques as an input to multivariate soil 

information, it is easy to anticipate the great potential for its use in pedodiversity studies, 

however there is no literature related with the use of spectroscopy applied to 

pedodiversity so far.  

 

Having briefly summarized the great value of the soil information that can be obtained by 

using spectroscopic techniques and also understanding the inherent hierarchic 

organization of soil, starting from the colloidal fraction to the organization of different 

soil types in the landscape, it is possible to hypothesize that the soil variation contained at 

different levels of organization i.e., soil colloids to pedodiversity, can be effectively 

described by spectral means.  

 

Finally, the objectives of the present thesis can be summarized as follows: 
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1.5 Thesis objectives 

• To develop and test a methodology to measure soil aggregate stability and to 

explore the possibility of predicting its values with Visible, Near and Middle 

Infrared spectroscopy. 

 

• To test the use of large spectral libraries and state-of-the-art spectroscopy 

techniques for the prediction of soil properties at a local scale.  

 

• To develop and test a numerical approach based on the use of Visible and Near 

Infrared spectroscopy for the identification of morphological horizons in soil 

profiles. 

 

• To develop and test new pedodiversity indices based on continuous information 

and to use Visible and near infrared spectroscopy information for assessing the 

new pedodiversity indices at different scales.  
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2.1 Summary 

 We have developed a new methodology for the assessment of soil slaking in fast 

wetting conditions. We applied an image recognition algorithm to a set of digital images 

of soil aggregates immersed in water taken at regular intervals. The kinetics of the slaking 

process were captured by measuring the projected area change over time. The 

methodology was tested in a dataset covering a great part of the agro-ecological 

variability of New South Wales (NSW), Australia. An empirical model which captures 

the rapid and slow slaking process was fitted to the data and three new slaking 

coefficients (a, b and c) were obtained and related to selected soil properties and land-use. 

The coefficient a, equivalent with the maximum slaking potential of the samples, was 

linearly related to exchangeable sodium, pH, clay percentage, calcium/magnesium and 

total carbon/nitrogen, and non-linearly related with total carbon. The coefficients b and c, 

equivalent with the initial slaking and the rate of change respectively, were found to be 

linearly related to nitrogen and total carbon. The coefficient a, was significantly lower in 

the natural sites reflecting a higher aggregate stability in those soils. The methodology is 

fast, inexpensive and simple; furthermore, it provides a new perspective in soil aggregate 

stability experiments, since it considers the slaking dynamics during the entire 

disaggregation process. 
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2.2 Introduction 

 An aggregate is a group of primary particles that cohere to each other and their 

stability is a function of the binding forces between them that withstand after an applied 

disruptive event (Kemper and Rosenau, 1986). As reviewed by many authors e.g., 

(Tisdall and Oades, 1982; Kemper and Rosenau, 1986; Field et al., 1997; Amézketa, 

1999; Dıaz-Zorita et al., 2002; Bronick and Lal, 2005), aggregate stability is an important 

soil physical property which influences a wide range of biological and chemical processes 

in natural and agricultural environments. The stability of aggregates in water is an 

essential property for maintaining soil productivity by helping in minimizing soil erosion, 

environmental pollution and further degradation. 

 

Notwithstanding its importance, many soil studies do not consider the analysis of this 

physical property, due to the time needed for the analysis, the instrumentation specificity 

used in each observation and the lack of accessible (in terms of cost and/or availability) 

private services to outsource its evaluation. 

 

There are many methods that can be used for measuring soil stability in water, namely a) 

end-over-end shaking methods (Middleton, 1930; Quirk, 1950), b) wet sieving techniques 

(Yoder, 1936; Perfect et al., 1992), c) raindrop impact or rainfall simulation techniques 

(Young, 1984), d) immersion methods (Loveday and Pyle, 1973; Field et al., 1997) and e) 

ultrasonic dispersion (Edwards and Bremner, 1967).   

Among these previously mentioned, the usually preferred method to measure and present 

the results of aggregate stability in water, is in the form of a Mean Weight Diameter 
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(MWD) after wet sieving of soil aggregates (Van Bavel, 1950; Youker and McGuinness, 

1957; Henin et al., 1958; Kemper and Rosenau, 1986; Le Bissonnais, 1996). This method 

is simple and intuitive, the basic idea behind it is that resultant bigger aggregates after 

sieving are related with greater stability (Nimmo and Perkins, 2002), however it requires 

specialized equipment e.g., wet sieving apparatus, and the time required in the analysis is 

a limiting factor in processing a large dataset, due to the need of post-processing i.e., 

oven-drying and weighting of resultant soil fractions. 

 

On the other hand, a more practical and faster approach developed specifically for in-field 

assessment of sodicity problems, is the immersion method presented by Field et al. (1997) 

called ASWAT (Aggregate Stability in Water). This method uses a qualitative scale, or 

ASWAT scores, to rank the degree of slaking/dispersion of a sample, with 0 equivalent to 

non-disruption and 16 to full dispersion.  

 

Inspired by the simplicity of this method in terms of reduced sample preparation and fast 

results, we foresaw the possibility to automate it by using an image recognition algorithm 

and by doing this, providing a continuous index which reflects the slaking area increase 

after the immersion of soil aggregates in water. There is extensive literature related to the 

applicability of image recognition procedures applied to soil structure studies and it has 

been shown that they are especially useful in terms of accuracy, speed and replicability 

e.g., (O'Callaghan and Loveday, 1973; Ringrose-Voase and Bullock, 1984; Moran et al., 

1989; Vogel, 1997; Pagliai et al., 2004). 

 



Mario Fajardo P. - Novel applications of spectroscopy to characterize soil variation 
  

28 | P a g e  
 

This newly developed methodology measures the projected area of soil aggregates while 

disaggregating in water over time, using a digital camera coupled with an image 

recognition algorithm. The benefits of this new method reside in its simplicity, 

objectivity, continuous scale and its ability to visualize the dynamics of disaggregation.  

 

As a part of major project which is exploring the relationships among soil properties and 

microbial communities at a large scale (State of NSW, Australia), the need for a fast and 

simple methodology for assessing soil structure stability on a continuous scale was a key 

element in relating soil biological and physical properties, therefore, we developed and 

employed the methodology on the before mentioned dataset which covers a great part of 

the agro-ecological variability in NSW, Australia. 

 

The aim of the study is a) to describe the method development and performance under a 

considerable range of soil conditions and b) to explore its relations with basic chemical 

and physical properties in order to characterize their influences over soil aggregate 

stability. 

2.3 Materials and Methods 

2.3.1 Dataset 

 The area of study is located in New South Wales (NSW), Australia, following a 

survey of two transects. The first transect encompasses 27 paired sampled sites in native 

vegetation and nearby agricultural sites separated by a distance of approximately 50 km 

(see Appendix 1) at two depths, 0 to 5 and 5 to 10 cm. The transect covers a total length 
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of 900 km from North to South following the same precipitation regime (550 mm isohyet) 

from the border with the state of Queensland in the north, to the border with the state of 

Victoria in the south (Figure 2-1). 

 

Figure 2-1 Area of study, NSW, Australia. 

 

The second transect comprises 22 paired sites with the same sampling protocol in a 930 

km long East-West transect perpendicular to the North-South transect from the city of 

Coffs Harbour on the east coast, to the town of Wanaaring in western NSW (rainfall 

gradient from >1500mm to <300mm) (Figure 2-1). 

2.3.2 Sample preparation and complementary analyses 

 Basic soil chemical analyses were performed on all samples: Total Carbon content 

(%TC)  and  Nitrogen content (%N) by dry combustion (LECO instrument, CSBP 

laboratory Ltd., Western Australia), Extractable Phosphorus (P) and Potassium (K) 
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expressed in mg kg-1 (Colwell, 1963), Ammonium (NH4) and Nitrate (NO3) expressed in 

mg kg-1 (Rayment and Higginson, 1992),  Exchangeable cations (Ca, Mg, Na, K, Al) 

expressed in cmol(+) kg-1 (Rayment and Higginson, 1992), Cation Exchange Capacity 

(CEC) expressed in cmol(+) kg-1 (Rayment and Higginson, 1992), Electric conductivity 

expressed in dS m-1, pH in water and particle size analysis expressed in % using the 

hydrometer method (Bouyoucos, 1962), all the analyses excepting particle size analysis 

were performed by CSBP Laboratory Ltd., Western Australia. 

2.3.3 Digital single lens reflex (DSLR) camera images 

 Soil aggregates were air-dried for three days and a set of 5 aggregates ranging 

between 3 to 10 mm diameter from each site were placed in an empty Petri dish over a 

white workbench where a first picture was taken (Figure 2-2). The aggregates were 

removed and the Petri dish was filled with water followed by the immersion of the five 

soil aggregates at the same time. 

 

 

 

 

 

 

 

 

Figure 2-2 Aggregates and camera setup. 
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A Digital single lens reflex (DSLR) camera was set at a vertical distance of 

approximately 30 cm. The study was performed in a laboratory with halogen lights and 

no extra illumination was added e.g., camera flash. A set of pictures was taken every 

second from the first contact with water until 120 seconds elapsed, then a set of 12 

pictures was taken every 20 seconds and finally 12 more pictures were taken at an 

interval of 10 minutes until 2 hours approx. (117 min) making a total of 145 pictures per 

sample (Figure 2-3 and Figure 2-4). 

 

 

Figure 2-3 Aggregates before water immersion; Note the high brightness of the picture is due to high 
exposure settings. 
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Figure 2-4 Aggregates after 5 seconds of water immersion. 

 

Each picture was set to a high exposure level in order to reduce image noise (e.g., 

eventual floating particles in water or soil aggregates shade). The camera model and 

settings are specified in Table 2-1. 

 

Table 2-1  DSLR camera settings. 

Setting Value 
Camera  model NIKON D5300 
Dimensions  2992 x 2000 pixels 

ISO-speed  640 

Exposure bias  +4 step 

Focal length  46 mm 

Exposure time 1/250 sec. 1/250 sec. 

Dots per inch (DPI) 300 

Bit depth 24 

F-stop  f/8 
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2.3.4 Image processing and segmentation procedure 

An example with the image recognition R code is presented in Appendix 2 . Each of the 

145 images was imported into R (R Core Team, 2013) using function “readImage” of the 

R package EBImage  (Pau et al., 2014). The resulting object is a 2 slots S4 object, the first 

one an array of dim1 x dim2 x RGB bands where dim1 and 2 are the dimensions of the 

picture and RGB bands are the respective values ranging from 0 to 1 for each pixel in a 

coordinate RGBdim1,dim2. The second slot contains the respective “colormode” for internal 

use of the EBImage package. 

Out of the three colour bands (Figure 2-5, Figure 2-6 and Figure 2-7), the blue band was 

selected for the next process of segmentation and identification of each aggregate after 

testing the segmentation.  

 

 

Figure 2-5 Red band of soil aggregates image. 
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Figure 2-6 Green band of soil aggregates image. 

 

 

Figure 2-7 Blue band of soil aggregates image. 

A binary matrix was created where a value of 1 was assigned to blue band values higher 

than 0.9 and 0 to the rest; this threshold was established empirically based on visual 

inspection of soil aggregates discrimination from the background after testing the 

segmentation procedure for red, green and blue bands with different thresholds. It is 

important to note that other bands and threshold values can also be used. The band and 
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threshold used in this study were set, based on the variability of our dataset and it may be 

affected by the colour of the soil aggregates, in our case the Munsell colours ranged from 

Black (N 1/0) to Greyish red (10R 4/2) with most of the samples with Brown colours with 

Hue values between 10YR to 5YR, Chromas of 2 to 4 and Values of 4 to 5.  

 

Finally, a two-step image filter was applied using the function “closing” which involves a 

dilation followed by an erosion filter, removing the eventual background values inside the 

aggregate, usually produced by air bubbles in the sample (Figure 2-8). 

 

 

Figure 2-8 Detail of image processing of a single aggregate. 

Once the binary matrices were produced, the function “bwlabel” was employed which 

applies a segmentation algorithm implemented by Pau et al. (2014) and assigns an 

identification number to each group of pixels with same adjacent values, in this way, 

every group of pixels was labelled with a single number. We selected those 5 labelled 

objects which contain the maximum amount of pixels (i.e., 5 soil aggregates). In this way, 

every other smaller labelled object was assigned to a value of 0 i.e. background (Figure 

2-9). 
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Figure 2-9 Detail of a two aggregates image segmentation process, different colours represent different 
labels. 

Finally, the function “computeFeatures.shape” was applied  to calculate the area, 

perimeter, mean radius, standard deviation of the mean radius, the maximum and 

minimum radius of the 5 labelled objects (in pixels). 

2.3.5  Statistical analyses 

 Using the area values for each of the five aggregates at time 0 (initial size) and the 

areas for the subsequent time frames, a Slaking Index (SI) was calculated as follows 

(Equation 1): 

𝑺𝑺𝑺𝑺𝒕𝒕 =  
𝑨𝑨𝒕𝒕 −  𝑨𝑨𝒕𝒕𝒕𝒕
𝑨𝑨𝒕𝒕𝒕𝒕

 ( 1 ) 

 

where At equals the projected area at time t, using this approach SIt0 will be always 0, and  

SIt = 1, means that the aggregate area at t is twice as big as at t0. The SI value for each 

site was calculated as the arithmetic mean of the five aggregate SI. 

 

Of the 196 Site-depth-system combinations, 148 were analysed i.e. 37 out of 49 sites. The 

reason for not measuring the index at the remaining 12 sites was either a lack of stable 
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aggregates (e.g., too sandy) or the hydrophobicity of aggregates due to high organic 

matter content. 

2.4 Results and Discussion 

2.4.1 Segmentation performance 

 The segmentation and shape analyses were automated for each of the 145 images 

for each soil sample (a total of 148 samples). The computer processing time per sample 

was approximately 5 to 6 minutes using an 8 cores computer (i7-2600 CPU @ 3.40 GHz) 

with 5 to 6 GB of physical memory used in the process depending on the size and shapes 

of the aggregates. It is important to mention that the resolution of the images impacts 

directly in the total time of analysis, and can be a limiting factor in images processing 

(see Table 2-1). After the image recognition, it was observed that the disaggregation 

process was very homogeneous within samples i.e., the behaviour of 5 different 

aggregates was similar within a sample, even with different sized soil aggregates (Figure 

2-10). This was reflected in the low standard deviation of SI values in relation with 

traditional soil aggregate stability methods (Pulido Moncada et al., 2013) (Figure 2-11). 
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Figure 2-10 Area (pixels) of 5 aggregates as a function of time. 

 

Figure 2-11 Slaking index of soil aggregates with time of a single soil sample. The dots represent the mean 
value, and the grey area represents the envelope within ± 1standard deviation. 
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2.4.2 Soil disaggregation dynamics 

 One of the advantages of the method was the ability to observe the dynamics of 

the disaggregation process (Figure 2-11). As observed by Yoder (1936) the initial process 

of trapped air release was evident during the first 20 seconds, contributing significantly to 

the final SI values. This same pattern was identified in all the samples, whereby a first 

rapid increase in area was followed by an almost linear increment in SI values. 

 

The few studies that have modelled the dynamics of the disaggregation process as a 

function of time have used an exponential function (Russell and Feng, 1947; Zanini et al., 

1998; Braudeau and Mohtar, 2006). At first examination, the dynamics seemed to follow 

this exponential behaviour; however the exponential function did not model the dynamics 

satisfactorily, as we observed 2 types of kinetics with time, one faster at the beginning 

and one slower at longer times. Due to this, a model with 3 parameters (a, b and c) was 

employed based on the theoretical hierarchical organization of aggregates (Oades and 

Waters, 1991) and in the observed disaggregation process, as follows (Equation 2) : 

 

𝑺𝑺𝑺𝑺𝒕𝒕 =  𝒂𝒂 𝒆𝒆(−𝒃𝒃 𝒆𝒆(−𝒄𝒄 𝒍𝒍𝒍𝒍𝒍𝒍(𝒕𝒕))) ( 2 ) 

 

where the SI value measured on a log scale time is equal to a log-scaled Gompertz 

function (Gompertz, 1825), with an initial fast area increase due to bigger aggregates 

imbibing water, followed by a slower area increase due to medium and smaller aggregates 

disaggregation. The parameter b represents the initial time of fast slaking and a the 

asymptotic SI value or maximum possible slaking, which is conditioned ultimately by the 
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smaller aggregates, elemental particles and the conditions of the medium e.g., electrical 

conductivity of water. The parameter c is the increase rate, which is highly correlated 

with parameter b (Figure 2-12 and Figure 2-13). 

 

 

Figure 2-12 Dynamics of contrasting disaggregation patterns and the respective Gompertz function model. 

The advantage of a Gompertz function over an exponential function approach is that it 

models two different processes i.e., rapid and gradual disaggregation. The function was 

fitted to all the samples based on the non-linear least-squares algorithm. It was observed 

that low slaking samples had low R2 values, this was mainly due to the known influence 

of the range of values over the R2 parameter (Davies and Fearn, 2006). Nevertheless, it 

was observed that the Gompertz function fitted all data quite well. The fitted Gompertz 

parameters were then related to the measured soil properties as described in the following 

section. 
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2.4.3 Relationships with soil properties 

 Le Bissonnais (1996) presented the factors that must be considered by any soil 

aggregate stability test. These factors are the ones usually occurring in natural processes 

such as rain events or soil saturation-drying cycles. They are breakdown caused by air 

release during initial wetting, by differential swelling, by raindrops impact and by 

physicochemical dispersion due to osmotic stress. This new methodology allowed clear 

identification of the initial fast disaggregation due to the release of entrapped-air, and it 

was observed that this behaviour was more significant in some samples while in others it 

did not occur or was too small to be measured. 

 

In order to identify the relationship between the SI parameters and the measured soil 

physico-chemical properties (Table 2-2), a principal component analysis was performed 

(Figure 2-13). 
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Table 2-2 Measured soil properties of the dataset. 

Property Min 1st Quartile. Median Mean 3rd Quartile. Max 

NH4 (mg kg-1) 0.1 2.0 4.0 5.9 7.0 53.0 
NO3 (mg kg-1) 1.0 3.0 11.0 22.4 24.5 202.0 
P (mg kg-1) 3.0 15.5 30.0 39.0 48.5 273.0 
K (mg kg-1) 74.0 310.0 450.0 475.1 572.5 1232.0 
EC (dS m-1) 0.0 0.0 0.1 0.1 0.1 0.5 
pH H2O  4.8 6.0 6.6 6.7 7.5 8.6 
Exc. Al (cmol(+) kg-1) 0.0 0.0 0.1 0.1 0.1 1.8 
Exc. Ca (cmol(+) kg-1) 0.3 5.0 9.5 11.1 17.0 30.6 
Exc. Mg (cmol(+) kg-1) 0.3 1.5 2.9 4.2 6.8 13.1 
Exc. K (cmol(+) kg-1) 0.2 0.7 1.1 1.2 1.4 3.0 
Exc. Na (cmol(+) kg-1) 0.0 0.0 0.2 0.4 0.6 3.9 
TC (%) 0.1 1.0 1.5 2.2 2.5 17.8 

N (%) 0.0 0.1 0.1 0.2 0.2 1.2 
CEC (cmol(+) kg-1) 1.7 7.4 13.5 17.0 27.5 38.3 
Clay (%) 1.7 13.2 20.0 26.6 43.8 65.1 

 

As shown in Figure 2-13, the coefficient a, or the maximum theoretical SI value was 

highly (positively) correlated with pH and exchangeable sodium, equating with poorly 

aggregated soils. Clay percentage was positively related with the coefficient a, this may 

imply a relation between clay content and higher micro-aggregation, considering micro 

aggregates as the resultant particles of the slaking process and so with the maximum area 

increase or coefficient a (See Table 2 in Le Bissonnais (1996)). The Ca/Mg ratio was 

negatively correlated with coefficient a, known for its influence in aggregate stabilization 

(Rengasamy et al., 1986) and also negatively related to C/N which is associated with 

microbial activity as hinted by Tisdall and Oades (1982) in terms of lower potential 

oxidation rates by microorganisms i.e., the more the soil aggregate stability the higher the 

C/N relation. 
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Figure 2-13 Biplot of SI values and measured properties on all the samples. 

Both coefficient b or the displacement along the x-axis, which could be interpreted as the 

initial time of fast slaking, and coefficient c interpreted as the rate of disaggregation were 

highly correlated with N and TC. Oades and Waters (1991) observed that 

macroaggregates (> 250 μm) are usually held together by roots and hyphae, which may 

explain the direct relation between these two elements (N and TC) and the delay in the 

rupture of macro aggregates and their rate of disaggregation i.e., coefficients b and c. 

 

An interesting result was the different correlation between coefficients a and b with TC 

and C/N respectively, reflecting the importance of carbon as a binding agent and 

protecting against immediate disruptive forces (Coefficient b) and the final effect 

(Coefficient a) of high C/N values related with a lower potential oxidation rate by 

microbes (Tisdall and Oades, 1982); Further research will be conducted into these 

specific matters, as microbial community information will be also considered adding an 

extra level of complexity. 
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Finally, despite the lack of linear correlation noticed in the principal component analysis, 

we plotted the relation between the coefficient a and %TC, finding that the slaking index 

coefficient a decreases exponentially as the %TC increases (Figure 2-14). This relation 

was also observed by Kemper and Rosenau (1986) were they found a logarithmic relation 

between Organic Carbon and MWD in North American soils.  

 

 

Figure 2-14 The relationship between Total C content (%TC) and coefficient a. 

2.4.4 Relationships with land-use 

 During the last 80 years, several authors have revised the influence of land-use on 

different aggregate stability measures (Yoder, 1936; Tisdall and Oades, 1982; Saygin et 

al., 2012), highlighting the detrimental effect of arable cropping on aggregation stability. 

This new methodology detected a similar effect, which was reflected in the values of the 

coefficient a, with significant differences (p-value< 0.05), however coefficient b and c did 

not have such differences (Figure 2-15, Figure 2-16 and Figure 2-17). 
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Figure 2-15 Boxplot of coefficient a values by land use. Dots correspond to values outside 95% of 
observations. 

 

Figure 2-16 Boxplot of coefficient b values by land use. Dots correspond to values outside 95% of 
observations. 

 

Figure 2-17 Boxplot of coefficient c values by land use. Dots correspond to values outside 95% of 
observations. 
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2.5 Discussion 

 Having presented the methodology, some important points are worth highlighting: 

First, the simplicity of the method, once the images are acquired (the process can also be 

automated), the area detection is calculated in a matter of minutes and the results are 

readily available. Further, due to the excellent fit of a model, it is possible to elucidate the 

dynamics behind the disaggregation process. Second, its scalability, having observed that 

the final SI values are by themselves a good indicator of aggregation stability, it is 

possible to use just the initial and last value of the curve to calculate an index comparable 

with the MWD method but without its measurement complexity.  

 

Finally, this new information which describes the entire disaggregation process with time, 

gives new evidence for the different mechanisms behind the slaking behaviour of soil 

aggregates highlighting the importance of TC and N in the initial part of the 

disaggregation process (coefficients b and c) and of pH, Exc. Na, Ca/Mg and C/N in the 

final slaking values (coefficient a). 

2.6 Conclusions 

 A new methodology for assessing soil aggregate stability has been presented. The 

method is fast, inexpensive and simple and provides valuable information in terms of 

slaking patterns in soil aggregates under fast wetting treatments. We observed that the 

entire slaking process was successfully fitted with an empirical model, resulting in new 

coefficients which can be used to compare with other soil properties or between 
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treatments. Further research will focus on different interactions between the 

disaggregation process and other factors e.g., microbial communities. 
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2.7 Summary 

 Different modelling approaches using soil reflectance values from the Visible, 

Near (Vis-NIR) and Middle infrared (MIR) regions of the electromagnetic spectrum were 

employed to predict Slaking index coefficient a (SIa). The first approach considered raw 

information from the spectrum and the second considered a pedotransfer function (PTF), 

where common soil properties e.g. pH, where first predicted from raw spectra to be used 

later for the prediction of SIa. Finally the performance of each method is compared. 

 

Two datasets were used, the first dataset was the same dataset presented in the first part of 

this chapter, while the second considered external samples with contrasting spectral 

signature i.e. different Vis-NIR-MIR reflectance values. It was observed that model 

accuracy in the first dataset increased as different regions of the spectra were added, 

while in the second dataset, the predictability was always poor. In the first dataset, the 

results showed a low predictability (R2 0.3 to 0.36) using only the Vis-NIR region of the 

spectra, where only Soil Organic Carbon (SOC) and Fe oxides spectral regions were 

identified as main predictors (~ 2000 – 2100 nm and ~ 700 – 900 nm). As MIR regions 

were added, the modelling performance improved (R2 0.45 to 0.60) where SOC and 

kaolinite related regions were identified as important predictors (4700 – 4900 cm-1, 3500 

– 3700 cm-1 or ~ 2000 – 2100 nm and ~ 2700-2850 nm respectively).  

 

The modelling approach considering soil properties predicted from MIR spectra and a 

PTF considering exchangeable calcium, exchangeable magnesium, pH, clay and cation 

exchange capacity, had a slightly inferior performance compared with the best spectral 

models (R2 0.54). 
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Since the uncertainty related with the spectroscopic models in the first dataset was 

relatively low (1.1 slaking index units) it was concluded that is possible to use the current 

spectroscopic models as a prospecting tool for predicting SIa, however the spectral 

similarity of the samples needs to be verified first, due to the low predictability in samples 

with a different spectral signature. 
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2.8 Introduction 

 The conventional methods for the evaluation of soil aggregate stability require 

considerable time, work and are also expensive to outsource to commercial laboratories. 

The first part of this chapter presented a new methodology for assessing soil slaking that 

proved to be faster and less expensive; furthermore it provided three new indices that are 

related with key processes of slaking of soil aggregates.  

 

It was shown that the new indices of soil slaking are closely related with known soil 

properties; therefore it should be possible to create predictive models by considering 

those existing relations. As commented in the rationale, different authors have used the 

benefits of Vis-NIR and MIR spectroscopy for the prediction of soil properties since has 

shown to contain comprehensive information about the soil composition (Ben-Dor and 

Banin, 1995; Stenberg et al., 2010b; Soriano-Disla et al., 2014). Its use requires minimum 

sample preparation and when employed with multivariate analytical methods, a number 

of soil properties can be simultaneously assessed from a single spectrum. Soil properties 

like total and organic carbon or clay percentage can be determined from a single scan, as 

well as physicochemical parameters such as pH, conductivity or redox potential (Armenta 

and de la Guardia, 2014). 

 

Nevertheless, only a few studies have attempted to predict more complex soil properties 

which depend on a combination of factors, for example Minasny et al. (2008) explored 

the possibility of predicting physical properties dependant on pore structure like bulk 

density and hydraulic conductivity, finding that they should not be predicted directly, 

since spectroscopic methods only provides information of the surface composition. If a 
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prediction of a volume dependant property is intended, a two stepped prediction needs to 

be performed. First, predict basic properties e.g., organic carbon, and second use PTF 

(Bouma, 1989), to finally predict the more complex property. Despite this, Minasny et al. 

(2008) foresaw a possible direct use in predicting other complex properties like Atterberg 

limits (Casagrande, 1932) or swelling behaviour.  

 

As the Slaking index (SI) is a complex property not completely understood and highly 

dependent on chemical and physical properties as shown in the previous part of this 

chapter, it is possible to postulate that rather than being a function of the porous structure 

as reported by previous studies (Hallett et al., 1995; Ma et al., 2015) it could to be the 

opposite, and the soil porous structure may be a function of soil aggregate stability. 

 

The aims of this work are first, to assess the predictability of SI coefficient a (SIa) 

directly from Vis-NIR and MIR spectra and to identify the specific spectral features 

related with the slaking process. Second, to test the performance of a two stepped 

prediction (Minasny et al., 2008) of the SIa by using Vis-NIR and MIR spectroscopy plus 

a PTF and finally to compare the proposed methods performance.  
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2.9 Materials and Methods 

2.9.1 Datasets 

 Two datasets were used, the first one is the same dataset presented in part 1 of 

Chapter 2. The second dataset comprised samples from a Vertosol (Isbell, 2002), taken 

from 6 sites in a cereal cropping field in northern NSW. This dataset was used as an 

external validation. The second dataset was chosen to explore the influence of soil 

properties which could be related to a significantly different observed cereal yields and 

they formed part of a different study. From that dataset, a total of 9 soil cores were 

extracted in the site and each soil core was sliced into 0-30, 30-90 and greater than 90 cm 

depth increments.  

2.9.2 Sample preparation and soil analyses 

 Basic chemical analyses were performed on both datasets. The analyses 

considered in the first dataset were Extractable Phosphorus (P) and Potassium (K) 

expressed in mg kg-1 (Colwell, 1963), Ammonium (NH4) and Nitrate (NO3) expressed in 

mg kg-1 (Rayment and Higginson, 1992), % Total Carbon (TC) by dry combustion 

(LECO instrument, CSBP laboratory Ltd., Western Australia), electric conductivity (EC) 

expressed in dS m-1, pH level (CaCl2), pH level (H2O), Exchangeable cations (Ca, Mg, 

Na, K, Al) expressed in cmol(+) kg-1 (Rayment and Higginson, 1992), Cation Exchange 

Capacity (CEC) expressed in cmol(+) kg-1 (Rayment and Higginson, 1992) and % clay 

(Bouyoucos, 1962). For the second dataset clay percentage was analysed using MIR 

spectrometry, and organic carbon was measured instead of total carbon. All the analyses 

excepting particle size were performed by CSBP Laboratory Ltd., Western Australia. 
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A set of aggregates between 0.3 to 1.1 cm of diameter per sample (from the two datasets) 

were selected, air dried and the SIa of five of them was measured following Fajardo et al. 

(2016b) methodology (see Chapter 2, part 1). The rest of each sample’s soil aggregates 

were ground and passed through a 2 mm sieve for portable the MIR and Vis-NIR 

measurements, finally a subsample of the previously sieved soil was ground and passed 

through a 100 µm sieve for laboratory MIR measurement. 

 

MIR spectra in the laboratory, was measured by a FT-IR Spectrometer TENSOR 37 with 

a HTS-XT Microplate Reader (400-4000 cm-1) Bruker®. Also, MIR was measured by a 

portable spectrometer Argilent 4100 ExoScan FTIR (400-6000 cm-1) Argilent 

Technologies® and finally, Vis-NIR spectrum was measured with an ASP 350-2500 

(4000-25000 cm-1) AgriSpec, with a Spectralon® panel as absolute white.  

2.9.3 Spectral treatments and statistical analyses 

 The first dataset was used to create SIa spectral models, with a training dataset of 

80% of total samples selected using a Latin hypercube algorithm on the first 5 principal 

components of the spectra (Minasny and McBratney, 2006; Roudier, 2011), leaving the 

remaining 20% as an independent validation dataset. The second dataset was used as an 

external validation dataset and it was not included in the training samples. 

 

A Cubist algorithm with 5 committees was used to create the spectral models (Quinlan, 

1992; Kuhn et al., 2014). In order to optimize the predictions, different spectral pre-

processing treatments were tested as described in Table 2-3. 
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Table 2-3 Spectral pre-treatments. S-G filt1 and S-G filt2:  Second order Savitsky-golay filter with none and 
first derivative output respectively; Strip5 and Strip10: Selection of every 5th and 10th wavelength 
respectively; Trim: Elimination of the extreme wavelengths prone to high noise to signal ratio; SNV: 
Standard normal variate transformation; ChBLC: Convex hull baseline correction; Det: Detrending 
algorithm as specified in Stevens and Ramirez-Lopez (2013). 

Spectral 
range Treatment 1 Treatment 2 Treatment 3 Treatment 4 

MIR lab 
S-G filt1 
Strip10 

SNV 

S-G filt2 
Strip10 

SNV 

S-G fil1 
Strip10 
ChBLC 

S-G filt1 
Strip10 

Det 

MIR portable  
S-G filt1 
Strip10 

SNV 

S-G filt2 
Strip10 

SNV 

S-G filt1 
Strip10 
ChBLC 

S-G filt1 
Strip10 

Det 

NIR part of 
Portable 

MIR 

S-G filt1 
Strip5 
SNV 

S-G filt2 
Strip5 
SNV 

S-G filt1 
Strip5 

ChBLC 
 

Visible NIR 
S-G filt1 

Trim 
SNV 

S-G filt2 
Trim 
SNV 

S-G filt1 
Trim 

ChBLC 
 

 

For each treatment 100 different models were created using a 95% random sample (with 

resample) of the training dataset, using the mean of those 100 predictions to calculate the 

performance of the models against the validation set and the external validation dataset. 

 

Out of the 100 modelling iterations for each treatment, kernel density plots were created 

with the usage of all the models in terms of the wavelengths and wavenumbers considered 

as important predictors, in order to identify recognizable spectrum zones that may be 

related with slaking behaviour in soil samples. 
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A PTF for predicting SIa was created with a multiple linear regression (R Core Team, 

2013), using the chemical properties with the highest MIR predictability from the training 

dataset as input. The resulting PTF was used in a two-step approach (Minasny et al., 

2008), using first spectral models to predict the parameters of the PTF and with this the 

SIa, from now on named as the “two-step model”.  

 

The performance parameters for spectral, PTF and two-step models were calculated for 

the independent validation and the external validation datasets. The calculated 

coefficients were: Coefficient of determination (R2), Root mean square error (RMSE), 

and bias i.e. bias = mean predicted values – mean observed values. All the analyses were 

implemented in R (R Core Team, 2013).  
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2.10 Results and discussion 

2.10.1 Measured soil properties 

 Appendix 3 shows the summary of all the measured properties for training, 

validation and external validation datasets. It was noticeable that the training dataset 

covered most of the variability of both validation datasets. However, properties that have 

proven to be influential over SIa, such as pH, Exc. Mg., Exc. K. and Exc. Na. had 

significantly higher maxima in the external validation; consequentially SIa values were 

higher in the external validation dataset. 

2.10.2 Spectral information 

 The three different types of measured spectra i.e. Vis-NIR and MIR, for the three 

datasets (training, independent validation and external validation) were projected into 

principal component space previous Standard Normal Variate transformation (SNV) 

(Barnes et al., 1989), where it is possible to see that the independent validation dataset 

was well covered by the training dataset. But as mentioned before, the external validation 

dataset appeared different, now in terms of its spectral signature, especially in the MIR 

range of the spectra (Figure 2-18, Figure 2-19 and Figure 2-20). 
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Figure 2-18. Vis-NIR spectra convex hulls for three datasets. 

 

 

Figure 2-19. Portable MIR spectra convex hulls for three datasets. 
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Figure 2-20. Lab MIR spectra convex hulls for three datasets. 

2.10.3 Spectral model performance 

 Table 2-4 shows the performance of the spectral models against the independent 

and external validation datasets. 

Table 2-4 Spectral models performance on independent and external dataset. 

MODEL Independent 

 

 

External 
 R2 RMSE BIAS R2 RMSE BIAS 

MIR_lab_T1 0.51 1.12 0.11 0.05 3.35 -0.82 
MIR_lab_T2 0.49 1.16 0.17 0.00 3.53 -1.63 
MIR_lab_T3 0.45 1.19 0.13 0.00 4.07 -2.60 
MIR_lab_T4 0.57 1.06 0.17 0.07 3.40 -1.13 
MIR_portable_T1 0.51 1.14 0.07 0.00 3.58 -1.84 
MIR_portable_T2 0.54 1.13 0.04 0.07 3.68 -2.14 
MIR_ portable_T3 0.60 1.04 0.05 0.00 3.73 -2.10 
MIR_ portable_T4 0.52 1.14 0.03 0.00 3.71 -1.99 
MIR_NIR_T1 0.48 1.18 0.05 0.00 3.76 -2.17 
MIR_NIR_T2 0.42 1.24 0.06 0.01 3.94 -2.39 
MIR_NIR_T3 0.50 1.14 0.07 0.00 3.52 -1.70 
NIR_T1 0.30 1.34 0.11 0.02 3.77 -2.09 
NIR_T2 0.35 1.30 0.17 0.00 3.82 -2.27 
NIR_T3 0.36 1.29 0.19 0.14 3.41 -1.65 
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In general terms, model performance on the independent dataset was similar to that 

observed by Sarathjith et al. (2014) whom predicted Geometric mean weight (GMD) 

parameters by spectral means (Vis-NIR) in Indian soils. Despite the successful modelling 

on independent samples, the models did not predict in the external dataset, observing a 

large underestimation of the SIa reflected in a high RMSE and a negative bias consistent 

with the lower mean SIa values of the training datasets compared with the external 

validation dataset. 

2.10.4 Model usage 

2.10.4.1 Vis-NIR part of the spectra 

 Kernel density plots with the models usage were created i.e., main wavelengths in 

the case of Vis-NIR, or wavenumbers in the case of MIR instruments, for determining 

which parts of the Vis-NIR spectra, in terms of physicochemical composition were the 

most important when predicting SIa (Figure 2-21 to Figure 2-22). 

 

 

Figure 2-21 Wavelengths usage of Vis-NIR models. 
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Figure 2-21 shows the main wavelengths used in 100 different Vis-NIR models predicting 

SIa values. It can be seen that the dominant spectral regions are in the range of 700 – 900 

nm corresponding to Fe-bearing minerals e.g. hematite, as observed by Sarathjith et al. 

(2014) and in the range of 2000 – 2100 nm which has been identified as an important 

zone for predicting soil organic carbon (SOC), as reviewed by Stenberg et al. (2010a).  

 

These results are consistent with those of Duiker et al. (2003) where a close relation 

between MWD values and Fe oxides was found. The same authors reported that Schahabi 

and Schwertmann (1970) and Rhoton et al. (1998) obtained similar results.   

 

The same peaks related to SOC, were recognized as important in the NIR part of the 

portable MIR instrument (Figure 2-22) in the range of 4700 – 4900 cm-1 (~ 2000 - 2100 

nm) and in the range of 4100 to 4200 cm-1 (~ 2380 – 2440 nm) as reviewed by Soriano-

Disla et al. (2013); Soriano-Disla et al. (2014). 

 

 

Figure 2-22 Main wavenumbers of MIR-NIR models (NIR part of portable MIR). 
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Gomez et al. (2013) studied the possibility of predicting MWD indices from Vis-NIR 

spectra in Mediterranean soils. They found similar results when using “spectrotransfert” 

functions (spectral models in our case), however they stated that no specific spectral 

response was related to MWD indices. Our study results showed a clear distinction in the 

selection of specific Vis-NIR spectral features.  

2.10.4.2 Vis-NIR + MIR part of the spectra 

 As with the portable MIR models (NIR + MIR), the region between wavenumbers 

3500 – 3700 cm-1 (~ 2700 – 2850 nm) related with kaolinite (Soriano-Disla et al., 2014),  

was  used as a predictor, and also the region of the 4700 cm-1 (~ 2120 nm) or SOC related 

peaks as with previous models (Figure 2-23). These findings are consistent with the 

results presented by Oades and Waters (1991) on a study based on transmission electron 

microscopy thin sections of soil micro aggregates (TEM). They proposed an idealised 

clay aggregate structure which contained as the elemental structure, small (1 to 2 μm) 

assemblages of kaolinite which where presumably held together by oxides. 

 

Figure 2-23 Main wavenumbers of portable MIR models. 
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The before mentioned results were corroborated by the usage of the MIR (laboratory) 

models, where the wavelengths between 3500 – 3700 cm-1 (~ 2700 – 2850 nm) related to 

kaolinite had the highest importance Figure 2-24. 

 

 

Figure 2-24 Main wavenumbers of laboratory MIR models. 

 

Cañasveras et al. (2010) found good predictability of MWD using Vis-NIR and MIR 

spectroscopy models and their results showed similarity with this study in terms of the 

importance of Fe bearing minerals in the NIR region e.g., hematite, however this study 

showed also a higher importance given to kaolinite in the MIR region. 

 

A closer look to Cañasveras et al. (2010) work shows that their samples had also a high 

amount of Ca carbonates (see Table 1 in Cañasveras et al. (2010)), consequentially 

several peaks related to calcites were found as the most important spectral features in the 

MIR region (see Figure 5 b in Cañasveras et al. (2010). In this regard, even though 

regions between 3500-3700 cm-1 (~ 2700 – 2850 nm or kaolinite-related) were 
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categorized as important in their study, they seemed to have a secondary role in the 

aggregation process.  

2.10.5 Two-step modelling 

 Equation 3 shows the PTF created using measured properties from the training 

dataset as specified in section 2.9.3. 

 

𝑺𝑺𝑺𝑺𝒂𝒂 =  −𝟐𝟐. 𝟏𝟏𝟏𝟏𝒕𝒕𝟏𝟏 − 𝒕𝒕. 𝟓𝟓𝒕𝒕𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓𝒄𝒄.𝑪𝑪𝒂𝒂 − 𝒕𝒕. 𝟏𝟏𝟑𝟑𝟑𝟑𝟐𝟐𝟓𝟓𝟓𝟓𝒄𝒄.𝑴𝑴𝒍𝒍 + 𝒕𝒕. 𝟓𝟓𝟓𝟓𝟏𝟏𝟑𝟑𝟓𝟓𝟓𝟓 + 𝒕𝒕. 𝒕𝒕𝟑𝟑𝟐𝟐𝟏𝟏𝑪𝑪𝒍𝒍𝒂𝒂𝟎𝟎 + 𝒕𝒕. 𝟑𝟑𝟏𝟏𝟒𝟒𝟒𝟒𝑪𝑪𝟓𝟓𝑪𝑪 ( 3 ) 

 

After predicting each of the required parameters1 for the PTF function on each of the 

validation datasets, it was found that the performance in the validation dataset was 

slightly inferior compared to the direct method with Vis-NIR-MIR spectra (Figure 2-25), 

most probably because the absence of those properties known to affect directly to the SI 

in the PTF e.g. Fe oxides, or simply due to more complex relations captured in the full 

spectra and not in separate properties.  

                                                 
1 R2 values for Ex.Ca., Exc.Mg., pH, Clay and CEC  spectral models were 0.69, 0.73, 0.61, 0.62 and 0.72 
respectively in independent dataset. 
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Figure 2-25 Observed vs. predicted values of Two-step model procedure in two validation datasets. 

Table 2-5 Performance parameters of Two-step model procedure in two validation datasets. 

 MODEL Independent 

 

 

External 
 R2 RMSE BIAS R2 RMSE BIAS 

Two steps model 0.54 1.18 -0.14 0.00 4.00 -2.59 
 

The use of two-step models for predicting MWD was also employed by Gomez et al. 

(2013). They found that, while it is a good approach, the success will depend on the 

ability of spectral information to predict soil properties highly correlated with MWD. 

 

The results of this study showed that as information from a wider range of the 

electromagnetic spectrum was added (MIR part of the spectra), the predictability 

increased, due to the addition of spectral information related to other components as 

observed by previous studies in spectroscopy (Viscarra Rossel et al., 2006). Therefore, if 

a PTF is used for predicting SIa, a first assessment of the specific spectral features 

considered as important through data mining of spectral models seems to be a useful 

approach (Viscarra Rossel and Behrens, 2010). 
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Finally, the performance in the external dataset was again very poor, reflecting the need 

of a more representative training dataset or a better generalization in the modelling 

process, these issues will be revised in the next chapter. 
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2.11 Uncertainty of predictive models and general 

discussion of the chapter 

 So far, different approaches for the calculation of the SIa have been presented, 

namely the use of image recognition, and models developed with Vis-NIR and MIR 

information. It has been shown that the first methodology presented is fast and accurate, 

based on the standard deviation of the SIa values of a set of 5 soil aggregates (see Figure 

2-11). 

 

Notwithstanding these positive results, the created models using Vis-NIR and MIR 

information (even though their predictions were not accurate in an external dataset), could 

represent in the future an alternative for characterizing SIa, considering a scenario where 

a successful model is created (adequate training dataset). For this reason it would 

desirable to have a notion of the performance in terms of time and cost of the 

spectroscopic models vs the image recognition methodology.   

 

In order to compare the methodologies, it is possible to use for example, their uncertainty 

and cost/time used in the analysis. First the uncertainty related to the image recognition 

algorithm can be represented by the standard deviation (σ) of the calculated SIa of 5 soil 

aggregates in a sample. For the case of the spectroscopic models, an analogue is the root 

mean squared error (RMSE) of the predictions of SIa values per sample, since both are 

expressed in the units of the target property. 
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Second, the time employed on the sample preparation plus the time used in the analysis 

can be measured equally for all the methodologies as well as the associated cost e.g., time 

used by an operator per 100 samples. Table 2-6 shows the time used for the measurement 

of the SIa per 100 samples, the cost associated to the operator and the respective 

uncertainty calculated for 100 randomly selected samples.   

Table 2-6 Time-cost-uncertainty of SI methodologies. The time used in the image recognition analysis 
considered the use of five digital cameras working in parallel. Cost was calculated assuming an average 
salary of $AUD 21 per hour for a laboratory assistant. 

Method 

Time in sample 

preparation (hours 

per 100 samples) 

Time used in 

analysis (hours 

per 100 samples) 

Cost per 100 

samples 

($AUD) 

Uncertainty  

Image recognition 1 47 1,008 0.60  

Vis-NIR 12 2 294 1.13 

MIR laboratory 24 2 546 1.06 

MIR portable 12 2 294 1.10 

 

In the previous exercise, the time of analysis involved the time spent from the beginning 

of the experiment until obtaining the final result, leaving the time spent for air drying as 

constant for the four methods. 

 

It can be seen from the table that even though the image recognition algorithm is almost 

twice more precise, the cost is considerably higher with the current design i.e., 5 digital 

cameras running in parallel. Also, the uncertainty values of the spectroscopic models can 

be considered acceptable since the uncertainty is close to 1 SI unit and SIa values range 

commonly from 0 to 10. 
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On the other hand, the image recognition methodology is a newly developed method, and 

still has a great space for improvement. Since the images are recognized by a computer 

and each soil aggregate can be measured separately, it would be possible for example to 

analyse more samples with just one camera (data not presented showed the possibility to 

analyse up to 10 soil aggregates within 1 image), and with this reducing the time and cost 

in the analysis to at least half of the current price. 

 

Despite of the previous, and based on the current methodologies performance, it would be 

possible to use spectroscopic models as a prospecting tool if no extra information is 

available, since once the models are created, the time required in the analysis is still less. 

It is important to highlight however, that if a prediction is intended, the created models 

need to cover the variability of the samples to predict, as commented in section 2.10.3, 

where it was shown that the current models cannot predict in samples with a different 

composition i.e., different spectral signature.  

 

Finally, an important factor that needs to be assessed (if the slaking index method is 

adopted by the soil science community) is the practical meaning of the index. So far, the 

values obtained by the methodology have demonstrated to have a direct relation with key 

soil properties. However, the establishment of thresholds of SI values over for example, 

agricultural productivity and/or soil erosion, is a task that at needs to be evaluated in order 

to justify a possible reduction of the operational uncertainty in any method to be utilized 

in the future. 
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2.12 Conclusions 

 The importance of Fe oxides or Fe-bearing clays was found a key component in 

slaking behaviour, similar results were found by Schahabi and Schwertmann (1970), 

Rhoton et al. (1998) and Duiker et al. (2003) in aggregate stability measured by wet 

sieving.  It was observed an important influence of wavenumbers ranging from 3500 – 

3700 cm-1 (~ 2700-2850 nm) related with kaolinite presence over the SIa values. The 

performance of the models increased accordingly when adding this information, reflected 

in more accurate models. 

 

It was found that a two-step approach can be successfully implemented; nevertheless 

special attention should be put in the PTF creation, as complex properties (like SIa), are 

dependant of a combination of factors reflected in the better predictability when using the 

whole spectra. Additionally, the assessment of specific spectral features through data 

mining seems to be an effective method to identify key properties for the creation of 

PTFs. 

 

The spectroscopic models uncertainty was relatively low (1.1 SIa units) considering the 

range of values that SIa can have more than 10 SIa units , therefore it is possible to use 

the current models as a prospection tool if the samples to be predicted have similar 

composition and are spectrally similar. 

 

The fact that the external validation was not successfully predicted is an important issue 

when trying to calculate SIa by spectral means. There are several techniques for dealing 
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with spectral libraries incompatibility, namely global spectral databases (Brown et al., 

2006) or spiking procedures (Guerrero et al., 2010), however, their use will be analysed in 

Chapter 3. 

 

Further work needs to assess for example, the agronomical value of the Slaking Index, in 

order to establish practical thresholds and have a real notion of the implications of the 

high or low uncertainty inherent to the methodology.  
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3.1 Summary 

 Two large spectral libraries from the United States with a total of 7,781 (Rapid 

Assessment of U.S. Soil Carbon (RaCA) Training) and 19,837 (Legacy dataset) valid 

samples were used to predict % of Total Carbon (TC) in a local area (state wide) of the 

U.S. using Visible and Near Infrared (Vis-NIR) spectroscopy. The target area was used as 

a validation dataset and considered samples from South Central U.S. within the area 

identified as ‘LUGR’ region 9 (acronym was designated after Land Use-Land Cover plus 

Soil Group combination, see Soil Survey Staff (2013)) defined in the RaCA project. The 

aims of this work were to assess the influence of spectral variability in predictive 

modelling by using a set of state-of-the-art spectroscopic strategies for the prediction of 

%TC and different spectral libraries, namely the use of i) Legacy libraries, ii) Legacy 

libraries in spectral hull , iii) Spiked in hull legacy libraries, iv) Latin hypercube legacy 

libraries, v) Spiked latin hypercube legacy libraries, vi) RaCA libraries, vii) RaCA in 

spectral hull libraries, viii) RaCA local libraries , ix) RaCA in hull local libraries and x) 

only spike libraries.  

 

All the approaches excepting the one using only samples from a spike, produced excellent 

results, comparable with previous works i.e., (Sequeira et al., 2014; Viscarra Rossel et al., 

2016). A closer look to the models showed that the factors that most influenced the results 

where the geographic location, the number of samples in the training dataset, the covered 

range in the target variable (%TC) and the similarity in terms of spectral characteristics 

between training and validation datasets. Legacy and Legacy in-hull approaches had the 

best R2 of 0.95 and RMSE of 3.7% respectively. RaCA library models were slightly less 

accurate due to the unbalanced sampling design (R2 of 0.94 and bias of -0.72) showing 
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the importance of a well distributed training dataset. RaCA local libraries produced the 

least biased models (0.02) with a slightly inferior R2 (0.92) showing the importance of 

good geographic coverage. The effect of spiking produced an improvement in terms of 

R2, RMSE and bias; however a closer look at the model developed with only the spike 

samples, showed an addition of positive bias to the final predictions.  
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3.2 Introduction 

 A major concern when developing any kind of predictive model is its ability to 

produce an accurate result in an external sample, in other words, to be able to generalize. 

A frequently used rule of thumb in predictive modelling tells us that a higher model 

complexity will most probably result in lower predictability (overtfitting), as Occam’s 

razor states “Nuncquam ponenda et pluralitas sin necesitate”. However as the target 

variable increases its complexity, there is an implicit trade-off, as the need for a more 

specific and complex model will usually produce a more accurate result (Domingos, 

1998). 

 

The main problem for soil properties modelling is that, as has been described earlier in 

this thesis, soil is in fact a very complex entity, and if the intention is to predict the many 

properties using hypervariate information like Vis-NIR spectra, suddenly to generalize 

becomes a big problem. A second key element is, as it was observed in Chapter 2, the 

spectral similarity of the training samples compared with any external validation dataset. 

3.2.1 Spectral libraries 

  Considering that the performance of a predictive model is closely related with the 

spectral variability in the training dataset, the creation of large spectral libraries covering 

an important range of soils has being a common strategy used by several authors and 

organizations (Shepherd and Walsh, 2002; Stevens et al., 2006; Brown, 2007; Viscarra 

Rossel, 2009; Viscarra Rossel, 2011; Knadel et al., 2012; Viscarra Rossel et al., 2016).  
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Despite the effectiveness of this method, as Stevens et al. (2013b) reviews, there are 

important drawbacks in the creation and use of large spectral libraries, since they are 

usually compiled following different sampling protocols and additional variability 

introduced by methodological factors is introduced in the dataset e.g., temperature at the 

moment of the observation (Figure 3-1), changing reference protocols and different nature 

of the soil spectra in terms of its origin and composition among many others. 

 

Figure 3-1 Effect of different parameters on absorbance at 1915 nm, extracted from Stevens et al. (2013b). 

As a result, the use of large spectral libraries is not a simple task and involves a deeper 

analysis of the factors that may influence the final predictions. Based on the challenging 

creation of successful predictive models by using spectral libraries, many other 

alternatives have been devised, all of them trying to deliver accurate predictions of soil 

properties in soil samples with different composition and from different geographic 

locations. 

 

Some of the latest modelling approaches involve the stratification of datasets by external 

metadata e.g., location, depth, land-use or type of spectra (Araújo et al., 2014; Viscarra 
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Rossel et al., 2016). Others, include the creation of mixed models with spectra plus extra 

predictors or “auxiliary predictors” like measured soil properties (Stevens et al., 2013a). 

And lately some of them including or “spiking” a comparatively small representative 

subsample of the external dataset into the training sample in order to add the variability of 

the prediction dataset  in the model (Guerrero et al., 2010; Guerrero et al., 2016). 

3.2.2 Case scenario: RaCA dataset 

 In 2010, the United States Department of Agriculture (USDA) and the National 

Resources Conservation Service (NRCS) started an initiative named Rapid Assessment of 

U.S. Soil Carbon or RaCA, which intended ultimately to estimate the amount and 

distribution of carbon stocks by means of Vis-NIR information from 144,833 samples 

taken up to a depth of 100 cm and strategically distributed in the conterminous U.S. 

(Soil Survey Staff, 2013). 

 

In addition to the previous, the NRCS also has stored an increasing amount of soil 

samples from different dates and locations in the U.S. All of these samples have also 

being carefully archived and Vis-NIR scanned, forming an even bigger but more 

heterogeneous dataset. This type of dataset is commonly called a “Legacy” dataset. 

 

As commented by Viscarra Rossel et al. (2016), there is a need for more research on how 

to optimally use large and heterogeneous soil spectral databases for local predictions. 

Also, and as it was discussed in the rationale, a key characteristic of soil spectral 

information is its transportability, in terms of predicting soil properties in new samples. 

Therefore inspired by the need of more research related to the use of large scale spectral 
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databases and with the aim of elucidating the role of soil spectral similarities in the 

modelling process, this chapter will assess the performance of the use of large spectral 

libraries and state-of-the-art spectral modelling techniques for the prediction of 

percentage of total carbon (%TC) in soil samples from a particular Region of U.S. (Local 

samples). The target site covers part of the states of Texas, New Mexico, Oklahoma and 

Louisiana.  

 

The objectives of this chapter are first to test how different modelling techniques perform 

with large libraries, both with homogeneous sampling and analysis protocol (RaCA 

dataset) and a more heterogeneous one (Legacy dataset) and second, to observe how the 

spectral variability and geographic location affects the spectral modelling procedure. 
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3.3 Materials and methods 

3.3.1 Datasets 

 The first dataset was generated by the NRCS and several entities under the 

National Cooperative Soil Survey Data (NCSS) scheme with a total of 19,837 archived 

samples from different locations, depths and dates in the conterminous U.S. scanned in 

NRCS laboratories. The dataset considers Vis-NIR spectra and %TC and it will be 

referred to the “Legacy dataset”.  

 

The second dataset was generated by the NRCS and university contributors in the NCSS 

for the RaCA project as specified in Soil Survey Staff (2013) with a total of 7,781 valid 

observations with spectra and %TC, referred to as the “RaCA dataset”. 

3.3.2 Area of study 

 In order to test the methodologies in a local (state wide) area, LUGR region 

number 9 was selected from the RaCA dataset (Figure 3-2, Figure 3-3 and Figure 3-4). As 

a reference, the target region comprises a succession of Aridisols, Mollisols, Alfisols and 

Vertisol from north-west to south-east in logical relation with its physiographic 

subdivisions namely High plains, Plateaus (e.g., Edwards plateau) and Coastal prairies 

which respectively range between 2300 to 0 m.a.s.l. (Wermund, 1996; 

National soil survey center staff, 2013; Soil Survey Staff, 2013). 
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Figure 3-2 RaCA LUGR regions of RaCA project, extracted from Soil Survey Staff (2013). 

 

Figure 3-3 Dominant U.S. Soil taxonomy soil orders, extracted from National soil survey center staff 
(2013).  
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Figure 3-4 Physiographic map of Texas, extracted from Wermund (1996). 
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3.3.3 Spectral pre-treatments 

 All spectra undertook a Savitzky-Golay Filter (Savitzky and Golay, 1964) with a 

2nd order polynomial and a window size of 11 observations, every 5th wavelength between 

500 and 2,450 nm, followed by a Standard Normal Variate (SNV) transformation (Barnes 

et al., 1989). The outliers of the Legacy dataset were removed with a 5 component PLS 

model and a chi-square interval with a value of 0.9 (Filzmoser et al., 2005). 

3.3.4 Spectral modelling methodologies 

 As commented in the introduction, a set of different modelling approaches was 

used for the prediction of target samples in the selected area of study. First, in order to 

compare all the different methods, a 75% Latin hypercube sample (Minasny and 

McBratney, 2006; Roudier, 2011) from the RaCA dataset samples within the geographic 

extent of the target site (274 samples in LUGR 9) was selected i.e., 205 samples, and it 

was called “RaCA local training dataset”, and the remaining 25% was left aside as an 

independent validation dataset (69 samples) and called “RaCA validation dataset” which 

was used for testing the performance of all the modelling approaches.  

 

A Cubist algorithm with 5 committees was used to create the spectral models (Kuhn et 

al., 2014) and with the purpose of providing a range of predictions (uncertainty), 20 

iterations were performed for each of the modelling approaches. 

Each of the iterations was made using a 90% random sample from the respective dataset, 

and by doing this, each iteration will produce a different model, hence a range of 

predictions. 
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3.3.4.1 Legacy approach 

 The first approach involved the use of a totally external dataset for the training of 

the predictive models, in this case the legacy dataset, with a total of 17,854 samples was 

used as training (Figure 3-5). 

 

 

Figure 3-5 Legacy approach scheme. A is Legacy dataset and B is Validation dataset. 

3.3.4.2 Legacy in-hull approach 

 The second approach involved the use of only legacy samples within the RaCA 

validation dataset convex hull spectral space as a training dataset (i.e., convex hull of two 

first principal components of the projected datasets), with a total of 11,857 samples. It is 

important to note that more than half of the samples of the legacy dataset were inside the 

convex hull of the RaCA validation dataset, reflecting the high spectral diversity of the 

selected validation area (Figure 3-6). 
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Figure 3-6 Legacy in-hull approach scheme. A is Legacy dataset and B is Validation dataset, section in red 
corresponds as the in-hull dataset used as training. 

3.3.4.3 Legacy in-hull plus spike approach 

 The third approach involved the use of legacy samples within the RaCA validation 

dataset spectral convex hull plus a spike of size equal to 10% Latin hypercube sample of 

RaCA training dataset within the geographical extent of LUGR 9, making a total of 

11,877 samples (spike of 20 samples from LUGR 9) (Figure 3-7). 

 

Figure 3-7 Spiked legacy dataset within RaCA convex hull scheme. A is Legacy dataset and B is Validation 
dataset, area filled in red correspond to in-hull dataset and circles in green to RaCA spike. 
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3.3.4.4 Legacy Latin hypercube sample within convex hull 

approach 

 In order to test how a smaller and more balanced set of samples performed; a 10% 

Latin hypercube sample of the legacy dataset within the convex hull of the RaCA 

validation dataset was used with a total of 1,187 samples as presented in Figure 3-8.  

 

Figure 3-8 Latin hypercube sample within RaCA convex hull scheme. A is Legacy dataset and B is 
Validation dataset, circles filled in red correspond to the Latin hypercube in-hull dataset used as training. 

 

3.3.4.5 Legacy Latin hypercube within convex hull sample plus a 

spike approach 

 The spike sample presented in section 3.3.4.3 was added to the previous dataset, 

with a total of 1,207 samples. The reason for using a smaller sample from the legacy 

dataset was to increase the relation spike/legacy as suggested by Guerrero et al. (2010). 
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Figure 3-9 Latin hypercube spike of RaCA plus legacy scheme. A is Legacy dataset and B is Validation 
dataset, circles filled in green correspond to the latin hypercube spike dataset added to the legacy training. 

3.3.4.6 RaCA model approach 

 With the purpose of testing how the RaCA dataset performed as a Global library 

by itself, RaCA training dataset (with a total of 6,941 samples) was used to predict the 

target samples. 

3.3.4.7 RaCA in-hull model approach 

 The seventh approach, included RaCA training within the RaCA validation 

datasets spectral space i.e., convex hull, and this dataset contained 5,807 samples.  

3.3.4.8 RaCA local model approach 

 With the purpose of testing how the RaCA dataset performed as a geographically 

local library, RaCA training samples in LUGR 9 (a total of 205 samples) were used to 

predict the RaCA validation dataset. 
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3.3.4.9 RaCA local in-hull model approach 

 The ninth approach used RaCA training data within the target sites geographical 

extent and also spectral space i.e., within LUGR 9 and also convex hull, with a total of 

163 samples. 

3.3.4.10 Model developed with only information from a spike 

 Finally, a model using just the samples from the spike was built i.e., 20 samples 

from the RaCA training dataset within LUGR 9 and within the target sites convex hull. 

This approach was used to observe the effect of the spike by itself in the overall model 

performance. 
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3.4 Results and Discussion 

3.4.1 TC in the datasets 

 An unusually highly left skewed distribution of TC values in the RaCA training 

dataset was observed. The explanation for this uncommon distribution resided in the low 

predictability of previously made Vis-NIR models (NRCS team) in organic samples, 

reason why the sampling effort was biased towards organic samples, with the final 

purpose to have real values in those samples, accordingly, the validation dataset was 

highly left skewed as well Figure 3-10. 

 

 

Figure 3-10 Kernel density distribution for Total Carbon % values of datasets. 

  

In respect to the legacy dataset, a double peaked distribution was observed, due to 

different sampling campaigns. It is common to find mixed distributions in large spectral 
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libraries (Viscarra Rossel et al., 2016). The first pattern responded to a commonly 

observed distribution with a median centred in lower values (between 1 to 5% of TC) and 

the second peak (centred in 40 to 70% of TC) related with a sampling campaign expected 

to cover a bigger proportion of organic horizons; since the metadata information of the 

legacy dataset was limited only to a few variables, it was technically impossible to 

accurately determine the reason for this double distribution.  

3.4.2 Spectral similarity of the datasets 

 Figure 3-11 shows the three convex hull regions of the legacy, training and 

validation datasets, where both legacy and training covered the variability (in terms of the 

first two principal components explanation i.e. 77%) of the validation dataset. It was also 

visible that the skewness of the RaCA training dataset was evident even in the spectral 

space compared with the legacy dataset. 

 

Figure 3-11 Convex hull of first the 2 Principal components of the used datasets. 
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3.4.3 Overall model performance 

 Table 3-1 shows three performance parameters i.e., R2, RSME and bias for all the 

treatments ordered by their respective RMSE values. In general terms, all the models 

were accurate and behave as expected from other large scale studies (Stevens et al., 

2013b; Viscarra Rossel et al., 2016). It was also evident the effect of spectral similarity 

i.e., convex hull, where in most models showed improved predictions  in terms of R2 and 

bias values, when the samples were spectrally closer.  

Table 3-1 Different model approaches performance for the mean predictions of 20 iterations ordered by 
lower to higher RMSE values. LH: Latin hypercube sample. 

Model R2 RMSE BIAS 
Spiked legacy in hull 0.96 3.69 -0.38 
Legacy 0.96 3.73 -0.54 
Legacy in hull 0.95 3.76 -0.41 
RaCA in hull 0.94 4.24 -0.72 
Spiked LH legacy in hull 0.94 4.44 -0.59 
LH legacy in hull 0.94 4.46 -0.78 
RaCA 0.93 4.55 -0.83 
RaCA Local 0.92 5.02 0.02 
RaCA Local in hull 0.90 5.52 -0.06 
Spike 0.79 9.46 2.90 
 

The benefits of spectral similarity have been reviewed by several authors and such studies 

have been critical for the development of accurate spectral distance methodologies 

(Chang, 1999; Islam et al., 2005; Van der Meer, 2006; Ramirez-Lopez et al., 2013).  

 

With respect of the previous, the latest modelling approaches involving a large spectral 

variability e.g.,Viscarra Rossel et al. (2016) have revised the improvement in different 
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soil properties predictions from Vis-NIR, after a pre-classification of samples based on 

the variability explained on their principal components. 

3.4.4 Legacy approaches 

 Among all the models, the ones involving the Legacy dataset (coincidently with 

the largest amount of samples) were the ones that produced the best R2 and RMSE values 

(0.9 and 3.7 respectively). The previously mentioned effect of spectral similarity reduced 

the bias, consequently Legacy in hull models bias was of 0.41 vs 0.54 in the Legacy 

models, and the effect of spiking reduced both bias and RMSE values.  

 

Despite the improvement in performance after spiking, a closer look at the model created 

with only samples from the spike (20 samples from LUGR 9 and in RaCA validation 

convex hull) showed a strong positive bias, which possibly caused a “masked” 

improvement in the results by adding samples that caused consistent over predictions 

(Figure 3-12 and Table 3-1). 
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Figure 3-12 Observed vs predicted values (%TC) of model using spike as training. Continuous line 
represents 1:1 observed - predicted ratio and dashed line represents linear regression of predictions.   

 

In respect of how to select an appropriate Vis-NIR spike, Guerrero et al. (2014) 

recommended the use of samples evenly distributed in the spectral space, which is the 

reason why a Latin hypercube algorithm was used for selecting the spike in this study 

(Minasny and McBratney, 2006).  

 

Nevertheless, due to the skewness of the validation dataset, the Latin hypercube spike 

sample used here, inherited this behaviour, consequentially producing over-estimations 

on %TC. It is clear though, how the addition of a minimal amount of samples can produce 

such a considerable impact in the final result, a fact that makes the use of spikes a delicate 

task if the prediction of total stocks in large datasets is intended or if the total variability 

of the target site is not well represented. 
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In relation to the influence of the legacy samples geographic location, it must be said that 

a large amount of observations were not geo-referenced, which is why a geographical 

analysis was not performed to the legacy dataset, in order to avoid misinterpretations. 

3.4.5 RaCA approaches 

 The performance of RaCA as a “Global library” was slightly inferior to the 

Legacy approaches with higher RMSE and negative bias values. From Figure 3-13 it is 

possible to see that the bias values in RaCA and RaCA in hull models was related to the 

high geographical dispersion in both datasets. 

 

Figure 3-13 RaCA dataset (Light yellow asterisks), RaCA in hull (red circles), RaCA local (black circles) 
and RaCA local in hull (red over black circles) sampling locations. 
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The bias values were related to a slight under prediction between 5 to 20% and a bigger 

one in values higher than 40% TC (Figure 3-14). Nevertheless the models performed 

reasonably good and comparable to other global approaches e.g., (Guerrero et al., 2010; 

Guerrero et al., 2016) and to the legacy approaches presented in the previous section. 

 

Figure 3-14 Observed vs predicted values of model using RaCA training. Continuous line represents 1:1 
observed - predicted ratio and dashed line represents linear regression of predictions.  

3.4.6 RaCA local approaches 

 Among all the models, the ones created with the RaCA dataset from local sites 

(LUGR 9) were the only ones that produced a significant reduction in bias (Figure 3-15) 

as expected from their geographic locations (Figure 3-13) and subsequently similar 

distribution of %TC in training and validation datasets (Figure 3-16). 
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Figure 3-15 Bias values for all the approaches. Boxes represent the values of twenty iterations 

 

 

Figure 3-16 TC% for RaCA local, RaCA local in hull and validation dataset. 
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In a revision of various studies involving the prediction of local samples using large 

spectral libraries, Stenberg et al. (2010b) noticed the importance of the geographical scale 

of the calibration, highlighting the influence of the overall variation of the training 

dataset, implying with this that a large library will produce a less precise outcome. 

 

Despites the benefits of low bias and even though the models were considered very good, 

their average performance, in terms of R2 and RMSE, was inferior to the previous 

approaches. A possible explanation for this slightly lower performance could be due the 

limited number of samples in relation with the geographical area of the target site (LUGR 

9) i.e., 163 and 205 for RaCA local and RaCA local in hull respectively vs more than 

15,000 observations in legacy approach for a total area of more than 800,000 km2.  

3.4.7  Spectral variability considerations and discussion 

 In general, the importance of a spectrally and geographically similar dataset for an 

accurate prediction of %TC was observed. Also, the fact that a minimal number of 

samples (spike of 20 samples) could produce a substantial effect over final results, makes 

the selection of an appropriate spike a critical task which could both benefit or add error 

to a final result if the target area is not properly characterized e.g., skewed dataset in 

target area. 

 

This effect can be explained by the fact that when a spectrally different sample is merged 

into a dataset, the total variance of the spectral space of the training dataset is modified, or 

in a more intuitive way, the projected convex hull area will change, as observed in Figure 

3-17.  
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Figure 3-17 Example of change in convex hull in legacy in hull dataset after addition of a 20 samples spike. 
Note that legacy in hull dataset (in red) had almost 12,000 samples.   

Further, a possible inconvenience with the addition of large variability into a training 

dataset just from a few samples resides in the possibility of introducing a large error, if 

the spike samples contain a big proportion of outliers, because the relative weight of each 

sample is incremented as they capture variability not considered in the training dataset.  

 

Shepherd and Walsh (2002) observed a similar effect in models predictability when 

spectrally different samples were introduced to the training dataset (Figure 3-18). They 

found that when outliers of the local datasets where introduced (equivalent to the 

boundary samples of local dataset convex hull) in the calibration dataset, the range of the 

calibration was expanded, and even more when these plus an extra random sample of the 

local dataset was added, the improvement was more significant. They did not analyse 

though, the effect in bias that this approach could produce, which was observed in this 

chapter. 
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Figure 3-18 Logical scheme for use of reflectance spectral libraries in a risk-based approach to prediction of 
soil functional attributes. Extracted from (Shepherd and Walsh, 2002). 

On the other hand, the process of adding a complete dataset or “updating” datasets has 

being studied by Sequeira et al. (2014) and recently by Viscarra Rossel et al. (2016) and it 

has the advantage of easily identifying samples that could introduce undesired error since 

the variability of the foreign dataset is well represented.  

  

Finally, the results showed that a good geographic coverage will drastically reduce the 

bias as observed in the RaCA local approaches. In relation with this, Sudduth and 
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Hummel (1996) and Wetterlind and Stenberg (2010) had similar conclusions. Wetterlind 

and Stenberg (2010) reported that models developed from a local dataset, produced better 

results for six different properties (pH, SOC, clay, sand, silt and ammonium acetate 

lactate-extractable P) compared with models developed with a spiked national dataset, 

even if the local dataset had as little as 25 samples. 

 

3.5    Conclusions 

 Large Vis-NIR spectral libraries in terms of the number of samples, spectral and 

geographical extent were used for predict TC% on samples from a particular area in the 

U.S. Even though all the models (except the one created with just 20 samples from the 

spike) performed good, the results showed that models which considered the larger 

number of samples and also were spectrally closer i.e., legacy library, legacy within 

convex hull and spiked legacy within convex hull, produced the best R2 and RMSE 

values. The models that included RaCA dataset as a global library were successful, 

however due to the skewness of the dataset, they produced biased results. Models 

including RaCA samples from the target site i.e. RaCA local and local in hull were the 

ones that produced the least bias, due to the geographic and spectral similarity. Finally 

even though the benefits of spiking have been shown in other similar studies e.g., (Guy et 

al., 2015; Guerrero et al., 2016), in this work, the improvement on predictions of the 

spiking procedure was related to an addition of positive bias. 
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Fuzzy clustering of Vis–NIR spectra for the objective 

recognition of soil morphological horizons in soil profiles 

 
 

“I take a pride in probing all your secret moves 

my tearless retina takes pictures that can prove” 

Judas Priest, 1982 
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4.1 Summary 

 In the past decades the use of Visible and Near Infrared (Vis–NIR) spectra 

information applied to soil science studies has seen an exponential growth, especially in 

predicting commonly used soil properties. We used the ability of Vis–NIR for detecting 

physico-chemical characteristics along with fuzzy clustering techniques to discriminate 

spectrally homogeneous zones in soil cores and applied a Digital Gradient  (DG) to define 

its boundaries i.e., Spectrally derived horizon (SPD hor). We tested this methodology in 

59 air dried soil cores varying between 85 and 130 cm depth from the Hunter Wine 

Country Private Irrigation District (HWCPID), New South Wales (NSW), Australia. We 

observed that SPD hor had great similarity with traditional horizons. The SPD hor were 

more homogeneous in terms of Vis–NIR spectral variability and also offered more 

information about the relationship between the different spectral classes. Because of the 

intrinsic characteristics of the methodology it can be easily applicable with or in 

conjunction with other proximal sensing devices which can add further detail when 

recognizing soil morphological horizons. 
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4.2 Introduction 

 It has been almost 100 years since Professor Curtis Marbut stated that soil studies 

would not thrive as a science until a generally accepted classification system was 

developed, suggesting with this, the use of soil horizons as a key element of it (Bockheim 

et al., 2005; Hartemink and Minasny, 2014). Diagnostic soil horizons have been 

commonly accepted since then, however it is of common knowledge in the soil science 

community that the identification of soil horizons and their boundaries could in many 

situations be inaccurate or biased due to varying description criteria. Furthermore, to 

classify a diagnostic horizon could require additional laboratory analysis (Weindorf et al., 

2012) and given analytical procedures may change in time, this could eventually lead to 

biased observations (Ciampalini et al., 2013) and in the end misleading interpretations. 

 

For these reasons there is a general challenge in homogenizing soil description criteria 

and a considerable amount of resources exclusively assigned for this purpose worldwide 

e.g., Soil Taxonomy, World Reference Base for Soil Resources, Australian Soil 

Classification, and German Soil Classification, among others (Schoeneberger, 2002; Ad-

Hoc-AG, 2005; Jahn et al., 2006; CSIRO, 2009). 

 

As noted by Hartemink and Minasny (2014) soil science is witnessing a historic moment, 

where a vast amount of new technologies, Vis–NIR stands as one of the most widely used 

in both remote sensing and proximal sensing. 
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One of the biggest advantages in using Vis–NIR is that it can easily capture a great part of 

the physico-chemical variability of the sample which can be used later when comparing 

between different types of materials. 

 

The objective of the present work is to use Vis–NIR to recognize different materials in 

soil profiles and to apply a methodology for detecting their relative patterns in depth, to 

finally establish in a quantitative way, boundaries between homogeneous groups of those 

materials i.e., soil horizons. Previous studies have used quantitative approaches to 

distinguish between different soil materials and/or soil horizons (Rooney and Lowery, 

2000; Grunwald et al., 2001; Ben-Dor et al., 2008; Weindorf et al., 2012). The main 

contribution of the present work resides in the creation of a semi-automated soil 

morphological description procedure where the final SPD hor are comparable with others 

through their membership to global spectral classes which themselves work as a basic 

example of a classification system.  

4.3 Materials and Methods 

4.3.1 Study area 

The area of study was located approximately 140 km north of Sydney in the 

HWCPID in the lower Hunter Valley (Figure 4-1). Geologically the area is situated in the 

Sydney basin, a depositional area formed by both Permian and Triassic materials with 

thick successions of mainly siliciclastic rocks demonstrating a rhythmic pattern of 

sedimentation followed by uncommon volcanic units and carbonate rocks in a few areas 

(Percival, 2012). The dominant soil types according to the Australian Soil Classification 
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(Isbell, 2002) are Red and Brown Dermosols (Depending in the base saturation value, 

equivalent to some Udults, Udalfs and Udepts in Soil Taxonomy) and on some hill 

summits Red Calcarosols (equivalent to some Typic Calciudepts in Soil Taxonomy) 

(Odgers et al., 2011b). 

 

Figure 4-1 Lower Hunter valley study area and sample locations. 

 

 

4.3.2 Sampling Design 

The dataset consisted of 59 soil cores varying between 85 and 130 cm depth taken 

50m away from a previous soil survey which followed a Latin hypercube sampling design 

where compound topographic index, parent material and normalized difference vegetation 
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index were used as environmental variates, in order the maximize the variability of the 

samples (Minasny and McBratney, 2006). The cores were air dried and scanned with an 

ASD Agrispec 350-2500 spectrometer using a Spectralon® panel as a reference, every 2 

cm resulting in a datasets of 3190 separate soil scans, additionally the soil cores were 

morphologically described following CSIRO (2009) specifications (Figure 4-1). 

4.3.3 Processing of Vis-NIR spectra for SPD hor 

detection 

The following treatments were employed on the dataset in the order below. 

 

1. Step correction between Vis-NIR sensors overlap in bands 1000 nm and 1800 nm. 

2. Selection of spectral region between 500 nm and 2450 nm. 

3. Conversion to absorbance from raw reflectance data. 

4. A second order Savitzky-Golay filter with a smoothing window of 11 bands to 

each spectrum. 

5. Based on the fact that soil spectral features change smoothly with depth we used a 

running median smoother on each wavelength of the spectrum depth-wise using a 

smoothing filter described in Hardle and Steiger (1995) and implemented by 

Martin Maechler in R language (R Core Team, 2013). The smoother basically 

works as a moving window of variable size throughout the series of numbers i.e., 

the values of each band through the soil profile. The selected size of the window 

was 10cm (5 observations every 2cm) after considering the observed spectral 

variation in the sampled soil cores and the different windows size tested. 
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6. Selection of every 10th band in order to reduce correlation between variables and 

high dimensionality. 

7. Standard Normal Variate transformation of the spectra. 

8. Outlier detection using a Mahalanobis distance criterion (Filzmoser et al., 2005), 

cores with more than 10 outliers were excluded from the following analyses. 

 

A Principal Component analysis was performed to each processed spectrum and the first 

5 components were used (> 95 % of variance explained) for the next stage of fuzzy 

classification. 

4.3.4 Fuzzy clustering 

A Fuzzy clustering algorithm (Maechler et al., 2014) was performed to the entire 

dataset. The algorithm aims to minimize the objective function (Equation 4) 

 

�
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( 4 ) 

 

where μik and μjk are the memberships of samples i and j to class k, n is the number of 

observations, c is the total number of classes, r is the membership exponent and  d(i,j) is 

the dissimilarity between observations i and j. Note that if r tends to 1 it gives 



Mario Fajardo P. - Novel applications of spectroscopy to characterize soil variation 
  

116 | P a g e  
 

increasingly crisper clustering whereas r tends to infinite it leads to complete fuzziness as 

specified in Maechler et al. (2014). 

4.3.5 Classification performance assessment 

In order to measure the quality of the fuzzy clustering we used two different 

metrics. A Fuzzyness Performance Index (FPI) which is a measure of the degree of 

fuzziness of the final classification for an increasing number of classes (Equation 5). 

 

𝑭𝑭𝑭𝑭𝑺𝑺 = 𝟏𝟏 −
𝒄𝒄
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𝑺𝑺=𝟏𝟏
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� ( 5 ) 

 

and a Confusion index (CI) which is the ratio between the second and the highest 

membership class μmax, which measures the degree of uncertainty of the final 

classification  (Burrough et al., 1997) , having values closer to 0 as a result of classes 

totally separated and closer to 1 a membership spread between classes or “high 

confusion” (Equation 6). 

 

𝑪𝑪𝑺𝑺 = 𝟏𝟏 − (𝝁𝝁𝒎𝒎𝒂𝒂𝟓𝟓 − 𝝁𝝁𝒎𝒎𝒂𝒂𝟓𝟓−𝟏𝟏)  ( 6 ) 
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4.3.6 Digital gradients for horizon boundary detection 

After performing the fuzzy clustering classification we used a modification of a 

DG first presented in (Powell et al., 1991). The original approach uses the mean squared 

differences of the fuzzy memberships of two contiguous points, whereas the modified 

approach uses the membership’s average of points within a window of size λ (Equation 7) 
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with C equals number of classes, λ equals to the size of the window for comparing μ 

memberships of class i at depth k with 𝐾𝐾 =  {𝑘𝑘1 = 1𝜆𝜆,𝑘𝑘2 = 2𝜆𝜆,𝑘𝑘3 = 3𝜆𝜆, . . . ,𝑘𝑘𝑘𝑘 = 𝑘𝑘𝜆𝜆}. 

Small values of DG suggest points of stasis while numbers closer to 1 sharp changes, i.e., 

soil boundaries. In those cases where 𝐷𝐷/𝜆𝜆 ∋   ℕ ⇒   𝑘𝑘𝑘𝑘  =  𝐷𝐷 – 𝜆𝜆 ∧  𝜆𝜆𝑘𝑘  =  𝐷𝐷 −  𝑘𝑘𝑘𝑘  

with D equal to maximum depth of the soil profile. For consecutive points in the profile 

with high DG values we choose a conservative approach, i.e., the last point with a value 

over the threshold was chosen, leaving the previous one as part of a transitional zone. 

4.3.7 Spectrally derived horizon identification 

performance 

In order to measure the performance in terms of spectral homogeneity of the new 

SPD hor using the DG, we used an Interclass Correlation Coefficient (ICC) (Wolak et al., 
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2012) first presented by Fisher (1925), which measures the proportion of variance of a 

given outcome variable i.e., the absorbance values of each wavelength, explained by a 

factor of interest i.e., the observed and the SPD hor, measuring the relative homogeneity 

within groups (Equation 8 ). 

 

𝑺𝑺𝑪𝑪𝑪𝑪 =
𝝈𝝈𝟐𝟐𝒃𝒃

𝝈𝝈𝟐𝟐𝒃𝒃 + 𝝈𝝈𝟐𝟐𝒘𝒘
 ( 8 ) 

 

where σ2b is the variance between groups and σ2w the variance within groups, from this 

equation we can deduce that low variance within groups i.e., spectrally homogeneous 

horizons, will result in higher ICC values and vice-versa. 

  

After calculating the ICC on every wavelength of the spectra grouped by traditional 

horizons and SPD hor respectively, we took the mean value of ICC by profile i.e., mean 

of all ICC values by wavelength for both types of classification i.e., spectrally derived 

and traditional, and finally the distribution of ICC values was compared. 

4.4 Results and discussion 

4.4.1 Smoothing by wavelength to capture spectral 

features 

 The absorbance values in the different wavelengths changed smoothly down the 

profile, reflecting the continuous distribution of soil materials. In order to test this 
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assumption we re-scanned the soil cores again, but this time the cores were split at the 

same interval (2cm), ground, sieved to 2mm and scanned three times each. After this 

procedure we compared the original scans with the ground sample scans and with the 

smoothed scans as seen in Figure 4-2. 

 

Figure 4-2 Spectral variation of intact, processed cores and smoothing procedure. 

It is important to mention that the smoothing process does not replace the grinding 

process. As we can see in the residuals obtained when subtracting the absorbance values 

of intact and ground samples, the ground sample absorbs more in the initial part (500 to 

1000nm) of the spectrum and less in the final part (2000 to 2450nm). The results were 

consistent in the 59 soil cores (data not presented). The main effect of the applied filter 

was to reduce the spectral variation or noise in depth, resulting in clearer spectral patterns 

along the soil profile, which helps in the following stages of horizon identification. 
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4.4.2 Relations between horizons and Vis-NIR values 

Generally only A horizons formed a defined group as seen in Figure 4-3 

illustrating the difference in composition of these horizons compared with lower depths. 

In the lower part of the profile there is a mixture of soil materials rather than separate 

classes, reflecting gradational transitions with depth. 

 

As noted Ben-Dor et al. (2008), the larger absorption at 2200 nm related to increasing 

clay content, helped when distinguishing between A horizons and subsequent illuviation 

horizons. Also, as expected, the visible part of the spectra (390–700 nm) played an 

important role when distinguishing types of materials (Figure 4-3). 

 

 

4.4.3 Clustering the dataset: global classes in the soil 

core 

After morphologically describing the soil cores, only 5% of total horizons 

boundaries were abrupt (5mm to 2cm), 40% were clear (2 - 5cm), 43% gradual (5 - 10cm) 

Figure 4-3 left and center, Relations between horizons origin and associated spectra; right showing A1 
horizons in the ellipse. 
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and 12% were diffuse. Based on this and in the fact that soil materials change gradually 

along the soil core, we attempted to imitate this slightly skewed distribution towards a 

gradual change of materials, using a membership exponent of 1.4 and dividing the entire 

dataset in 12 fuzzy classes, based on the first local minima of the FPI values for 2 to 20 

classes (Figure 4-4 and Figure 4-5) 

 

Figure 4-4 Chosen number of fuzzy classes. 

 

Figure 4-5 Effect of membership exponent in overall confusion index values. 



Mario Fajardo P. - Novel applications of spectroscopy to characterize soil variation 
  

122 | P a g e  
 

 

 

After classifying the dataset into 12 fuzzy classes, 3 out of the 12 classes (classes a, b, c) 

contained almost all of the near-surface observations i.e. A1-A2-A2e-B1 horizons and 

only a few in B2w horizons (Figure 4-6) Classes d, e and f included the rest of the near 

surface horizons but also some B2 and B3 and B2w horizons. Classes g, h, i and j were 

coincident with the highest proportion of B2w horizons. 

Classes belonging to C horizons had a larger percentage in classes k and l, however they 

were also present in almost every horizon reflecting rather a high within horizons 

variability in C horizons compared with A horizons or a misclassification commonly 

observed in clayey soils with redoximorphic features that can be easily confounded with 

parent material to the naked eye, or simply, materials that are indeed present in most 

horizons e.g., parent material in different stages of weathering.  

Figure 4-6. Distribution of classes by type of horizon. 
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Figure 4-7 Fuzzy classes centroids. Left, Spectra of Centroids; Right, Euclidean distance between centroids. 

The Euclidean distance between the centroids showed that there was a clear cut between 

near surface horizon materials i.e., classes a, b, c and d and the materials found at depth 

(Figure 4-7)  and also an evident organization in the centroids by depth confirming the 

observed occurrences by horizons. 

  

Despite the clear organization between surface and subsurface materials (fuzzy classes) 

and horizons, to be able to differentiate between sub-surface horizons we need to analyse 

the relative changes in composition in depth i.e., relative membership to different classes.  

 

It is important to highlight that in the first step of clustering, we are classifying materials, 

not horizons. In the present study the methodology explicitly grouped materials (spectra) 

in a gradual way reflected as an example in the smooth change in the 1400 and 1900 nm 

peaks' transition related to different O–H bounds in the soil adsorbed water and also 

correlated to the content of the clay fraction (Ben-Dor et al., 2002; Demattê et al., 2012) 

(Figure 4-8), in this sense, a single material can be present in two completely different 

horizons, however two different horizons will always have at least one material exclusive 

to that horizon. 
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Figure 4-8 Detailed spectra of centroids selected regions. 

In order to discriminate between sub-surface horizons e.g., B and C horizons, a different 

analysis is required, this is to measure the relative composition and homogeneity of that 

combination of classes in depth, this is reviewed in the following section. 

4.4.4 SPD hor detection 

 In the previous sections we discussed the ability of the fuzzy clustering to detect 

different types of materials and how they occur along the profile, in the present section 

we discuss the usage of the DG to delimit boundaries between groups of materials i.e., 

discriminate between horizons and their distinctness. 

 

Figure 4-9 shows a soil core with two evident contrasting horizons with a clear to gradual 

boundary distinctness.  
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Figure 4-9 Digital gradients in a soil core. The value of the DG comparison window λ was set to 4 cm. 
Boundaries distinctness is relative to the thickness of the boundary. 
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As expected the DG was useful when detecting changes of membership gradients along 

the soil core, with the fuzzy membership values acting as indicators of the proportional 

composition of each material within the SPD hor limits e.g., in the example, the 

composition in terms of membership to the 12 global fuzzy classes of each SPD hor is 

shown in Table 4-1. 

 

Table 4-1 Example of class percentages in one soil profile. 

 SPD hor1 SPD hor2 SPD hor3 SPD hor4 

 (0-8 cm) (8-32 cm) (32-52 cm) (52-90 cm) 

a 77.40 63.80 6.20 0.80 

b 2.70 3.30 1.00 0.50 

c 9.10 8.50 1.40 0.50 

d 8.70 21.00 12.80 1.40 

e 1.00 1.80 12.20 2.70 

f 0.50 0.80 15.20 4.30 

g 0.10 0.10 4.40 32.90 

h 0.10 0.10 6.60 17.20 

i 0.20 0.40 22.40 10.50 

j 0.20 0.20 15.20 16.20 

k 0.00 0.00 0.90 4.60 

l 0.10 0.10 1.70 8.40 

 

From Table 4-1 and Figure 4-9 we can easily describe 4 SPD hor. The first one with a 

higher membership to class a, mainly present in surface horizons, a second SPD hor with 

a 21% of membership to class d present in B3 horizons (Figure 4-6) and the two final 

SPD hor showing a different composition in terms of classes memberships.  
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We also were able to determine the boundary distinctness. Our methodology was able to 

detect the more evident change between horizons i.e., between A1 and B3 at 32cm and 

also to establish an extra boundary in the horizon B3 where the differences in the 

membership values of classes d, e, f and g where particularly high (Table 4-1) but hardly 

visible to the bare eye. 

 

The comparison window λ used in the DG calculations was of 4cm. The DG threshold 

values were empirically set to 0.5 for clear boundaries, to 0.4 for gradual and 0.3 for 

diffuse boundaries based on the values of the observed cores. These were used to set a 

comparison with traditional descriptions and are not intended to be used as a standard, 

since DG values are continuous.  

4.4.5 Overall performance 

Out of 56 soil cores, 20 (35%) had similar horizon distributions compared with the 

traditional descriptions, 27 (48%) were different mainly because of a greater number of 

SPD hor (horizon subdivisions) and 9 (16%) did not have a match with traditional 

descriptions (examples in Appendix 4 and Appendix 5). 

 

The ICC distribution for the two types of horizon designation i.e., spectrally derived 

horizon recognition and traditional description, showed a higher spectral homogeneity in 

the SPD hor compared with the traditional description (Figure 4-10). This result is 

important, because many modern soil surveys use properties estimated by Vis–NIR 
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spectroscopy calibration models and their training samples often comprise a composite 

sample taken within individual traditional horizons. 

 

Figure 4-10 Distribution of ICC values for 56 described soil cores (after outlier removal) of traditional 
horizons designation and SPD hor. 
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4.5 Final considerations 

 This study has presented a numerical procedure for identifying spectrally 

homogeneous zones within a soil core and also created a basic classification system i.e., 

global Vis–NIR fuzzy classes that help to identify each SPD hor and also to create a 

baseline when distinguishing between horizons of different soil cores. 

 

The calculated centroids plus the DG proved their usefulness in splitting homogeneous 

zones in a soil core i.e., soil morphological horizons, however, since they are based on an 

unsupervised clustering algorithm they don't necessarily constitute an ideal classification. 

 

In order to create more representative (and functional) centroids it may be necessary to 

build a global spectral database i.e., a higher spectral variability in the database, and also 

to measure related key soil properties for potential inclusion in the clustering process. 

 

The methodology can eventually be used with, or in addition to, other variables e.g., X-

ray fluorescence, penetrometer resistance values or others like measured chemical or 

structural properties, furthermore, the process may be automated, once the set of fuzzy 

classes is established, the DG values are calculated for each core in few seconds and the 

boundaries are set automatically; For example, the required time of calculations of all the 

boundaries for the 56 analysed soil cores was less than a minute. 

Further research is needed to address the variability in key soil properties within each SD 

hor (e.g., Clay content, pH, ECEC, Carbon, etc.) as well as lateral variation and in-situ 

conditions.  
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4.6 Conclusions 

• A new methodology for detection of soil morphological horizons and their 

boundaries has been devised. This approach offers more information than the 

traditional description and avoids observer bias when describing a soil core. 

However it depends on various parameters that influence the final result e.g., 

number of classes, fuzziness of the groups, size of the window and threshold for 

the DG calculation. 

• To achieve the best results, the measurement resolution should be equal or less 

than 2cm in order to completely capture the soil changes necessary to establish 

differences. 

• Despites the success of the smoothing by wavelength to reduce spectral noise, it is 

recommended to add replicates to each scan in conjunction with the smoothing 

procedure to improve the results and reduce the need for spectral pre-treatments as 

much as possible.   

• The procedure represents a promising and reasonably easy replicable 

methodology, that can be used in conjunction with observations with other 

proximal sensing devices e.g., penetrometer resistance values, X-ray fluorescence, 

which would add greater detail i.e., structure, and in the end result in more 

effective and informative horizon recognition. 
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Chapter 5 Pedodiversity 

 

 

 

 

Use of spectral information and new indices to quantify 

pedodiversity 

 

“…El bosque precede al hombre, pero lo sigue el desierto…” 

Patricio Manns y Horacio Salinas 
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Fajardo, M., McBratney, Minasny, B., 2016. Measuring functional pedodiversity using 

spectroscopic information. Catena. 
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5.1 Summary 

 Pedodiversity studies greatly depend on the discretization of the soil continuum 

via various soil classification standards. Soil taxonomic systems are constructed 

considering soil properties and their organization in the soil profile. Therefore, it seems 

logical that the pedodiversity of an area could be calculated by considering the 

simultaneous variation of multiple soil properties within that area. With the aim of 

creating a bridge between these two lines of thinking, this study presents the development 

of two new indices of pedodiversity (HULLdiv and EIGENdiv) which consider 

continuous variables as input. The soil input information tested was a) Visible and Near 

Infrared (Vis-NIR) reflectance values and b) values of five soil properties predicted from 

Vis-NIR spectra. Both indices were employed to measure the pedodiversity at different 

extents in two perpendicular transects containing 27 (North to South) and 22 (East to 

West) locations respectively in New South Wales (NSW), Australia. Each location 

considered natural and intervened land use. The indices successfully represented the 

pedodiversity of the area of study, however they were different depending on the input 

soil information i.e., raw Vis-NIR and predicted properties. HULLdiv was affected by 

extreme soil observations and as a result its discrimination power between areas with 

different soil diversity was inferior. On the other hand, EIGENdiv represented well the 

pedodiversity of an area, despite the extreme observations. The results showed good 

agreement with conventional methods for assessing pedodiversity i.e., Shannon’s and 

Simpson’s indices. However, the new indices were more discriminating by being able to 

better represent the landuse effect. This study represents the first attempt to measure 

pedodiversity in a continuous way using Vis-NIR information. 
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5.2 Introduction  

 The basis of every type of diversity measurement resides in describing the 

composition of a community or more specifically the abundance of its individual units 

i.e., how many of them are, the richness  in terms of the amount of different units 

contained in the community and finally their relative distribution or their evenness 

(Whittaker, 1972; Orlóci et al., 2002; Pavoine and Bonsall, 2011). For soil sciences this 

concepts applies in the same way, if we consider the soil resource as the sum of separate 

soil entities or soil types. 

 

The first works that focused in the concept behind pedodiversity or diversity of soil, 

described the composition of discrete soil entities in the landscape (Fridland, 1974; 

Jacuchno, 1976; Linkeš et al., 1983). Since then, studies in pedodiversity have followed a 

similar outline. 

 

Traditional methodologies for describing pedodiversity usually make use of methods 

employed in the fields of Ecology and Biology. Simply, the concept of pedodiversity 

involves the quantification of the different soil types in a determined area. From the 

previous, it can be seen that the calculation of the pedodiversity on a particular area will 

require first a previous classification of soils in order to quantify their distribution. 

Nevertheless, McBratney and Minasny (2007) observed that conventional diversity 

measures only contemplate the relative abundance of soil classes, producing a limited 

representation of the pedodiversity of an area thus, recommending the use of a taxonomic 

distance in the calculations; in other words, to consider the unique properties of each soil 

when calculating the pedodiversity of an area. Despite of the previous, the idea that the 
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pedodiversity of an area is associated with the inherent variability of soil properties is still 

a controversial concept (Jie et al., 2001). 

 

Conversely, Toomanian and Esfandiarpoor (2010) observed that the reason of the 

apparent lack of correlation between pedodiversity and variation of soil properties was 

that, the geostatistical methods used in the pedodiversity studies trying to establish a link 

between them, dealt with simple vectors i.e., separate soil properties. Suggesting with this 

that pedodiversity analyses will require the use of a big matrix of interrelated variables, 

which takes us to a possible solution. If a link between pedodiversity and soil properties 

variability is intended, then the use of multivariate information may well be required. 

 

The use of multivariate and continuous information for describing diversity is not 

completely new, and there are several methods to describe species in multidimensional 

spaces e.g., (Petchey and Gaston, 2006; Maire et al., 2015); Furthermore, Tilman (2001) 

described “Functional diversity” as a branch or a subset  of biological diversity, that deals 

with the components that influence how an ecosystem operates and functions, and that 

can be measured by the values (and ranges in the values), of the organismal “traits” that 

influence one or more aspects of the functioning of an ecosystem. In simpler words, the 

analysis of the multiple properties or “traits” that makes a particular species to function in 

a determined way. The term functional pedodiversity has been previously referred by 

Ibáñez (1996) as a way to measure “what the soil does”, also called land versatility or 

land variability, however its study seems to be underdeveloped compared with its 

counterpart in Ecology i.e., functional diversity. 
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With the intention to describe soil properties variability or “functional pedodiversity” as 

understood by its connotation in functional ecology, the objectives of this work are a) to 

use Vis-NIR spectroscopy to characterize soil in fine detail by analysing soil profiles 

scanned with a Vis-NIR spectrometer with a vertical spacing of 2 cm, to measure its 

functional diversity at different depths and scales. b) to observe the performance of this 

new way of measuring pedodiversity in discriminating between sites with different land 

uses, and finally c) to explore the relations between this new way of describing 

pedodiversity and conventional methods or “taxonomic pedodiversity” (Bockheim and 

Haus, 2013). 
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5.3 Materials and Methods 

5.3.1 Dataset 

 The dataset used in the present chapter considers 98 soil cores of 1 m depth 

extracted at the same locations of the dataset described in Chapter 2. Each soil core was 

air dried and scanned with an ASD Agrispec 350-2500 spectrometer using a Spectralon® 

panel as a reference in three different parts of the soil core every 2cm, resulting in 14,040 

single observations as shown in Figure 5-1, it is worthy to mention that previous to each 

observation the surface of the soil core that was in direct contact with the extraction tube 

(corer) was scraped with a clean knife in order to reduce the presence of material from 

other depths.  
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Figure 5-1 Vis-NIR soil scans by core. Left: First 60cm of 1m core, Right: Schema of Vis-NIR 
observations. 
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5.3.2 Pedodiversity measurements 

5.3.2.1 In-hull diversity 

 The use of the area of the convex hull defined in a multidimensional variable 

space i.e., Principal component space, to estimate soil variability has being previously 

used by other authors e.g., (Islam et al., 2005; Petersen et al., 2010).  Islam et al. (2005) 

concluded that the area of the convex hull was directly related with the variation of soil 

materials, hence, the convex hull area formed by the extreme samples projected in the two 

first principal components (usually explaining more than 85% of the variance when 

dealing with Vis-NIR spectra), was used as an index of pedodiversity from now will be 

known as “HULLdiv”. 

 

Two different principal component scores were used.  First, the whole spectra was used 

for the calculation of the principal components, and second, 5 soil properties i.e., TC (%), 

CEC (cmol(+) kg -1), pH, EC (dS m-1) and Clay (%), predicted from the spectra 

(calibration models were built using samples from the same sites) were used for creating 

the principal components. Finally, the convex hull areas were measured using the R 

package “tripack” (Renka et al., 2015). 
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5.3.2.2 Eigenvalue diversity 

 The second measure of pedodiversity from now to be known as EIGENdiv 

(Eigenvalue diversity) also considered multiple soil attributes (raw Vis-NIR spectra and 

properties predicted from spectra) in a soil observation. Again, a principal component 

analysis was performed using both spectra and properties (same five properties used in 

the previous measure) and the score matrices were used as follows. 

 

Let xi,j be the score or the coordinate of observation i in a principal component j within a 

scores matrix explaining more than 95% of the variance of the original data. The 

EIGENdiv can be calculated as follows in Equation 9: 

 

𝟓𝟓𝑺𝑺𝑫𝑫𝟓𝟓𝑬𝑬𝒅𝒅𝑺𝑺𝑬𝑬 =
𝟏𝟏

𝒏𝒏 − 𝟏𝟏
���𝟓𝟓𝑺𝑺,𝒋𝒋 − 𝟓𝟓�𝒋𝒋�

𝟐𝟐
𝒏𝒏

𝑺𝑺=𝟏𝟏

𝒊𝒊

𝒋𝒋=𝟏𝟏

 (9) 

 

with x̄ equals to the mean value or “centroid” of principal component j and k equals the 

number of principal components that explain at least 95% of the variance of the original 

dataset. Note that if the original data is in the same scale i.e., spectra, the score matrix 

resulting from the principal component analysis is performed based on the correlation 

matrix of the original dataset, on the other hand, if the units of the original data are 

different e.g., a matrix with rows as observations and columns as soil variables, the 

covariance matrix is used instead. 

 



Mario Fajardo P. - Novel applications of spectroscopy to characterize soil variation 
  

142 | P a g e  
 

It can be seen from the previous, that the value of EIGENdiv of a sampling area with 

observations i,i+1,i+2,…,n will be the sum of all the score sample variances (or 

eigenvalue) of those locations, and will represent the variance from the original data, 

explained by the selected observations in a multidimensional space.  

5.3.2.3 Conventional diversity indices 

 In order to assess the correspondence of the newly proposed pedodiversity indices 

with known pedodiversity measures, two commonly indices used in Ecology and 

pedodiversity studies were used, these are a) Shannon index (Shannon (1948) as follows 

in Equation 10:    

𝟓𝟓𝒄𝒄𝒍𝒍  = −�𝟓𝟓𝑺𝑺𝒄𝒄𝒍𝒍 𝐥𝐥𝐥𝐥 𝟓𝟓𝑺𝑺𝒄𝒄𝒍𝒍

𝒊𝒊

𝑺𝑺=𝟏𝟏

 (10) 

  

with picl as the proportional abundance of soil types at site i relative to the total amount of 

soil categories c of taxonomic level l found, with l equals to soil orders, sub-orders, 

families and so on. 

 

Intuitively, this formula will produce a higher number as the soil classes in a determined 

area increase. In other words a large Shannon’s index indicates the “pedodiversity” in that 

area is large. 

 

Another measure is the Simpson index or “Simpson’s index of diversity” (Simpson 

(1949), as shown in Equation 11:  



 Chapter 5 Pedodiversity 
 

143 | P a g e  
 

𝑫𝑫𝒄𝒄𝒍𝒍  = 𝟏𝟏 −�𝟓𝟓𝑺𝑺𝒄𝒄𝒍𝒍
𝟐𝟐

𝒊𝒊

𝑺𝑺=𝟏𝟏

 (11) 

 

with picl as the proportional abundance of soil classes c of level l,  at site i relative to the 

total amount of soil types found. 

 

Both conventional diversity indices were calculated using the R package “vegan” 

(Oksanen et al., 2014). The category used for these indices was the Australian Soil 

Classification soil order of each site as classified by ABARES et al. (2014). Further 

studies will include sub-levels i.e., sub-orders, families, etc., as they will add more 

complexity to the analysis. 
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5.3.3 Area‒pedodiversity relationships 

The pedodiversity indices were calculated both at point (by site) and large scale (by 

increasing areas i.e., more than one site) as specified in the next subsections. 

5.3.3.1  Point scale pedodiversity 

5.3.3.1.1  Soil surface, 0 to10 cm 

 Point scale pedodiversity from only the first 10 centimetres was first calculated, 

this procedure was used for testing the performance of the new pedodiversity indices only 

at surface (i.e., 9 scans contained at that depth) and with this, to observe a possible land-

use effect over pedodiversity. 

5.3.3.1.2 Soil profile, 0 to 100 cm 

 Second, an analysis of the entire profile depth i.e., ~150 scans in a profile was 

performed, by doing this, each site will be characterized in a more representative way. 

5.3.3.2 Large scale pedodiversity 

 A further analysis involved calculating the indices by increasing areas i.e., number 

of locations, from 50 to 500 km over the two transects and by land-use, respectively. By 

following this procedure the result of each index calculated at each separation distance 

was the mean of all the observations in a transect included in that distance e.g., in a 

separation equals to 100 km the result of EIGENdiv will be equal to: Mean {EIGENdiv 

(Site1+ Site2+ Site3), EIGENdiv (Site2+ Site3+ Site4), EIGENdiv (Site3+ Site4+ 

Site5)…}, where each site is separated by approximately 50 km (Figure 5-2)  
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Figure 5-2 Schema of area-pedodiversity calculations, N represents the number of sites considered. 

As with the point scale pedodiversity, the indices for large scale were calculated for 

surface and whole profile observations. 

5.4 Results and Discussion 

5.4.1 Point scale pedodiversity: Soil surface 

 In order to highlight the efficacy of the new indices in quantifying soil surface’s 

diversity, the first analysis was performed only on those observations contained within 

the first 10 centimetres of the core i.e., 9 surface soil scans per site-land use combination. 

Figure 5-3 shows a graphical example of three sites with two land uses respectively, 

projected in a principal component space using the information of the entire spectra. The 

polygons from the same site are closer to each other according to their geographical 

distances i.e., in this example each site is separated by 50 km. 
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Figure 5-3 Three sites example of convex hulls created using a score matrix with spectra as input (First 10 
cm observations). The three selected samples are separated by approximately 50km each. 

It was also possible to see in HULLdiv (visually equivalent to polygons areas in Figure 

5-3 and Figure 5-4) that depending on the principal component (PC) scores used, different 

area values were obtained and also their distribution in the multidimensional space 

changed. 

  

Figure 5-4 Three sites example of convex hulls created using PC scores of five properties (First 10 cm 
observations). The three selected samples are separated by approximately 50km each. 
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These results were also observed by Islam et al. (2005), where they observed different 

values of convex hull areas per site, both in PC scores from the spectra and observed 

properties (pH, %Clay and %OC). In their work, they concluded that more variability 

attributed to mineral composition was added by using the PC scores of the Vis-NIR 

spectra. 

 

The effect in this study was an apparent higher discrimination when using just the 

selected soil properties (Figure 5-4), suggesting that as more information was introduced 

in the analysis (Vis-NIR spectrum), also more information common to the different 

samples could have been added as well e.g., same parent material, same colour, etc. 

resulting in “closer” samples in a multidimensional space. 

 

In the case of EIGENdiv the effect was similar, since this index uses the same two first 

principal components (which have the highest variance explained). It was also noticeable 

that in both indices, when the PC scores created with the spectra were used, they had 

smaller values compared with the indices calculated with PC scores calculated from soil 

properties, confirming the higher discrimination when using soil properties for the 

creation of the input scores matrix (Table 5-1). 
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Table 5-1 Example of pedodiversity indices for three selected samples using the first 2 PC scores of the 
spectra and soil properties. 

 HULLdiv EIGENdiv 

Site  Spectra Properties Spectra Properties 

5 CROP 0.33 14.49 0.96 8.30 

5 NAT 2.85 33.04 4.34 20.13 

6 CROP 2.29 14.60 3.81 15.72 

6 NAT 4.35 7.76 4.48 7.00 

7 CROP 0.72 1.61 0.84 0.84 

7 NAT 1.41 2.48 1.67 2.45 

5.4.2 Point scale pedodiversity: Profile 

 The same procedure previously analysed was performed using the whole set of 

observations i.e., 14,040 separate soil scans, with each soil profile enclosing between 100 

to 150 soil observations depending on their depth.  

5.4.2.1 Within-sample variation 

 Figure 5-5  shows the corresponding Vis-NIR scans of a single profile projected in 

principal component space and coloured by depth. As observed by other authors (Demattê 

et al., 2012; Hartemink and Minasny, 2014; Vasques et al., 2014; Fajardo et al., 2016a) 

there is a strong relation between depth and spectral behaviour. 
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Figure 5-5 Convex hull created using PC scores of spectra as input for one site (Profile). 

Also, and as observed in previous section, the distance between the points projected in a 

principal component space was higher for the case of the scores matrix calculated with 

properties (see Y and X axis in Figure 5-6 compared with Figure 5-5). Despite of the 

previous, the discrimination between samples from different horizons was similar, 

reflecting the continuous variation of soil with depth, as revised in other studies (Ponce-

Hernandez et al., 1986; Bishop et al., 1999; Malone et al., 2009). 

 

 

Figure 5-6 Convex hull created using a score matrix with properties as input for one site (Profile). 
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5.4.2.2 Between-samples variation 

 Figure 5-7 and Figure 5-8 show the same three sites example shown in section 

5.4.1, where the same behaviour can be observed, relative to the different PC scores used. 

That is, those samples projected using the whole Vis-NIR information had a higher 

overlap compared to those projected using the properties PC scores. 

 

Figure 5-7 Convex hulls created using with the first 2 PC scores of the spectra for three sites (Profile). The 
three selected samples are separated by approximately 50km each. 



 Chapter 5 Pedodiversity 
 

151 | P a g e  
 

 

Figure 5-8 An example of convex hulls for 3 sites created using PC scores of five soil properties (Profile). 
The three selected samples are separated by approximately 50km each. 

It is also evident that the area of the convex hulls was now bigger due to the higher 

internal variability. There is great value in these results, since they clearly show the 

relations within and between profiles, picturing soil attributes variation and pedodiversity 

in a detail that has not been observed before. 

5.4.3 Large-scale pedodiversity: Topsoil 

 Even though the results of the indices were useful when describing differences 

between sites using information of a very small area (first 10 cm of soil surface and about 

2 cm in surface area), a multi-scale analysis creates a better picture of the overall 

performance of the indices; this is the behaviour of the pedodiversity indices over 

increasing areas, as presented by other authors (Guo et al., 2003; Saldaña and Ibáñez, 

2004; Ibáñez and Gómez, 2016). 
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From studies of diversity, particularly biodiversity, there is a common pattern between 

diversity and area of sampling or “sampling effort” usually following a power function 

shape (Preston, 1962; Harte et al., 2009). 

 

By examining the variability of some of the soil formation factors in the area of study i.e., 

temperature, relief and precipitation (Figure 5-9, Figure 5-10 and the previously shown 

Figure 2-1 in chapter 2), it is possible to anticipate a probable result in terms of the 

different soil types in the region. The transect East-West presents a higher total variation, 

especially in the precipitation. In the case of the North-South transect, precipitation was 

intentionally kept as a constant (Figure 2-1 in chapter 2). 

 

Figure 5-9 Mean annual temperature map of NSW. Source: (ABARES et al., 2014). 



 Chapter 5 Pedodiversity 
 

153 | P a g e  
 

 

Figure 5-10 Elevation map of NSW. Source: (ABARES et al., 2014). 

Accordingly, Figure 5-11 presents the different soil types of NSW, where it is evident the 

greater richness of different soil types in the East-West transect compared with the North-

South transect. 

 

Figure 5-11 Australian soil classification soil types of NSW. Source: (ABARES et al., 2014). 
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After calculating HULLdiv for surface observations at increasing scales, three 

recognizable patterns were noticeable. First, when using the entire spectra, the calculated 

indices were significantly smaller than those calculated with the five selected soil 

properties as input (see Y axis in Figure 5-12 and Figure 5-13).  

 

Second, and as expected from the pedodiversity at local scale, the discrimination power 

between the different transects was evidently amplified when using only five properties 

instead of the entire spectra (see differences of E-W transect from N-S transect in Figure 

5-12 and Figure 5-13), where redundant information is added as other authors have 

noticed, mainly when using spectra as predictor for soil properties e.g., (Vohland et al., 

2014). 

 

Figure 5-12 HULLdiv index calculated using Vis-NIR spectra at different scales across the two transects. 
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Figure 5-13 HULLdiv index calculated using 5 soil properties at different scales for the two transects. 

 

And third, despite the lower discrimination power between transects when using the 

whole spectra as a source of soil variation (Figure 5-12), HULLdiv with spectra and 

properties, identified lower soil diversity in the North-South cropping systems when 

compared against natural conditions. These results are consistent with the land use history 

of the area, considered as the most intensively cropped area in Australia (Cox et al., 2001) 

confirming the human triggered detrimental effect on pedodiversity in croplands (Lo Papa 

et al., 2011). 

 

In the case of EIGENdiv, the two sources of information i.e., spectra and properties, 

resulted in an evident discrimination between transects and also land-use (greater 

discrimination between land-use in Figure 5-14 and between transects in Figure 5-15). 
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Figure 5-14 EIGENdiv index calculated using Vis-NIR spectra at different scales for the two transects. 

 

Figure 5-15 EIGENdiv index calculated using predicted properties at different scales for the two transects. 

 

These results compare with those obtained by Maire et al. (2015) in their work on 

assessing the quality of a multidimensional space on functional ecology, where fish 

communities (in our cases soil observations) are characterized with a defined number of 

“traits”, (in our case soil properties or selected Vis-NIR wavelengths). They found that a 
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good “multidimensional functional space” in our case a scores matrix built with spectra or 

selected properties, has to allow a proper discrimination between different functional 

strategies (in our case landuse or transects). Following their ideas, it is clear that the 

selected properties represent good discriminators between transects, but on the other 

hand, when using the whole Vis-NIR spectra, there is a clearer discrimination between 

land use. 

5.4.4 Large scale pedodiversity: Profile 

 When analysing the different pedodiversity indices at different scales it was 

observable that in the profile, the effect of land use was masked by the whole profile 

variability (Figure 5-16), which makes absolute sense, when considering that the 

variability within a single sample can exceed the variability of soil profiles separated by 

50 km as previously shown in Figure 5-8. This masking effect was especially evident in 

HULLdiv, most probably due to the fact that this index considers a projected area and 

does not consider the distribution of soil observations within that area, depending in the 

last instance, on the extreme values (or rare specimens in biodiversity terminology) e.g., 

Surface samples and parent material as soil sciences analogues (Figure 5-16 and Figure 

5-17) 
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Figure 5-16 HULLdiv index calculated using Vis-NIR spectra at different scales for the two transects 
(Profile). 

 

Figure 5-17 HULLdiv index calculated using soil properties at different scales across the two transects 
(Profile). 

For the case of EIGENdiv the discrimination between transects and also between different 

land use was successful, and followed the same pattern presented at the analysis of 

surface. That is, when using a whole Vis-NIR as input, the discrimination between land 

uses was exacerbated, and when using properties the discrimination between transects 
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was better assessed suggesting that there is information pertaining to land management 

within the Vis-NIR range which is not captured by the revised five properties (Figure 

5-18 and Figure 5-19).  

 

The differences between both indices i.e., HULLdiv and EIGENdiv, can be explained by 

the greater influence of the distribution of soil observations with different characteristics 

within a profile, since for example EIGENdiv measures the overall dispersion of all the 

soil observations from a hypothetical centroid (see Equation 9) and gives less importance 

to outlier or extreme values compared with HULLdiv. 

 

 

Figure 5-18 EIGENdiv index calculated using Vis-NIR spectra at different scales for the two transects 
(Profile). 
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Figure 5-19 EIGENdiv index calculated using predicted properties at different scales for the two transects 
(Profile). 

5.4.5 Large scale pedodiversity: Conventional Indices 

 Finally, after calculating Shannon’s and Simpson’s indices it was evident that a 

higher pedodiversity was maintained in the East-West transect even at a 50km scale as 

may be expected by simple observation of the stronger variations of the selected soil 

formation factors (temperature, rainfall and relief). The values for different land use were 

almost identical, basically due to the same soil order denomination on managed and 

natural sites caused by the pixel resolution of the map used (Figure 5-20 and Figure 5-21). 

 



 Chapter 5 Pedodiversity 
 

161 | P a g e  
 

 

Figure 5-20 Shannon index calculated using Australian Soil Classification orders for two transects and land 
uses. 

 

 

Figure 5-21 Simpson index calculated using Australian Soil Classification orders for two transects and 
landuse. 
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5.4.6 Functional and taxonomic pedodiversity 

 A final comparison between EIGENdiv measured with the spectra of whole profile 

observations (0 to 100cm) and conventional indices (Simpson’s index) calculated at 

different scales (same than previous section), shows evident linear relations for both 

transects and land-uses (Figure 5-22). These results are expectable for a simple reason, 

because every soil taxonomy system is based on soils characteristics or functionality. 

       

Figure 5-22 Functional vs Taxonomic pedodiversity. Note that values were standardized in order to show 
the results in the same scale. 

 

Finally, this study has shown that there are linear relations between taxonomical diversity 

and the variation of soil properties when they are considered as a group by means of a 

multidimensional index e.g., EIGENdiv. 



 Chapter 5 Pedodiversity 
 

163 | P a g e  
 

5.5 Conclusions 
 After reviewing the performance of the newly developed continuous indices of 

pedodiversity in two transects in NSW with different taxonomic pedodiversity indices, it 

is possible to highlight some interesting results.  

 

The newly developed indices were effective in identifying pedodiversity; however they 

performed in a different way depending on the characteristics of the input variables. It 

was observed that, when using the entire Vis-NIR spectrum as input, the discriminative 

power between land uses was enhanced, these results suggest that human influence is 

related with an homogenization of the soil characteristics detected by Vis-NIR reflectance 

and that this change involves more than just the 5 selected soil properties. 

 

On the other hand, when using five selected soil properties as input, the discrimination 

between transects was superior, the explanation for this behaviour can be difficult to 

interpret and remains as an open question since it is possible that this discrimination could 

be even higher by the addition of other properties. 

 

It was also recognizable that HULLdiv was greatly influenced by soil observations with 

extreme behaviour, basically due the nature of the index, which is based on a polygon that 

is determined by its extreme values or rare specimens. This phenomenon was exacerbated 

when using all the information contained in the whole soil profile. EIGENdiv was more 

discriminative both in surface and in depth, mainly because it reflects the overall 

behaviour of an area giving less importance to outliers. It is also good to remark on the 
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high value of using Vis-NIR spectroscopy. Since, it provided the means for analysing in 

great detail the soil diversity. 

 

Finally, the results of this study showed linear relations between soil properties variation 

or functional pedodiversity and taxonomical diversity.  
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6.1 Studying soil complexity  

 It has been shown that the study of soils is a complex task, from the micro-scale 

(e.g., colloidal composition of a soil aggregate of 2mm in Chapter 2), to the site scale 

(e.g., by distinguishing two horizons in a meter of depth in Chapter 4), and finally to state 

wide and even continental scale in Chapter 3 and Chapter 5 looking for an efficient way 

to compare observations or looking for geographical patterns in samples separated by 

hundreds of kilometres. 

 

So far, there is a plethora of methods that can successfully characterize the different 

aspects of soil, like soil structure or morphology and others. However, it has been shown 

in the current work, that the study of these sub-disciplines (and probably many others) 

share something in common, this is that they study the interaction of multiple soil 

properties that need to be considered simultaneously.  

 

By following this line of thought, it is possible to foresee an optimistic horizon in the use 

of methodologies that deal with the inherent multi-variability of soils. This thesis has 

presented some of the possibilities for an increasingly studied area of soil sciences: the 

use of soil spectroscopy or more specifically the soil variation captured by measuring the 

reflectance in the visible, near and middle infrared part of the electromagnetic spectrum.   
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6.2 Electromagnetic spectrum 

 As reviewed by Kaniu and Angeyo (2015), the use of spectroscopy in soil science 

holds great potential for the assessment of the soil condition. However, the study of the 

regions within the Vis-NIR and MIR part of the electromagnetic spectrum is only a 

fraction of what could be characterized by spectral means. 

 

For example, as was observed in Chapter 4, when spectrally derived soil horizons were 

identified. Even though they resembled with traditional soil morphological horizons, they 

were not exactly the same, and this was due the different information that was used for 

discriminating between soil horizons e.g., human senses like sight and touch vs the 

information contained in the Vis-NIR regions of the electromagnetic spectrum. 

 

Following this idea, the same chapter emphasized the possibility of adding more 

information to the algorithm e.g., X-Ray fluorescence (XRF) and with this, adding 

variability previously not considered. 

 

In the same way, Part 2 of Chapter 2, revealed that, as more information was used by 

spectral models to predict Slaking Index coefficient a (SIa) values, other regions of the 

spectra were considered as important (i.e., MIR, see section 2.10.4.2). 

 

The same effect was discussed in Chapter 5, where the success in discriminating between 

different land-uses pedodiversity was affected by the different source of variation (spectra 

vs selected soil properties, see section 5.4.4). 
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Current methodologies of spectroscopy not studied in this thesis, and that have proven to 

have great potential in characterizing soils, are for example the use of the previously 

mentioned XRF for the identification of heavy metals or soil contaminants (Horta et al., 

2015), Laser induced breakdown (LIBS) and Laser induced fluorescence (LIF) (Hilbk-

Kortenbruck et al., 2001) or Raman spectroscopy (Luna et al., 2014)  among other 

methodologies which consider other regions of the electromagnetic spectrum. 

 

The value of this thesis is that each of the methodologies presented can be implemented 

considering other spectral regions, increasing with this, our capability of analysing soils 

in their inherent multivariate nature.  

6.3 Getting the big picture 

 As the latest studies in soil spectroscopy have shown e.g.,(Viscarra Rossel et al., 

2016), the use of spectroscopic tools is mainly used for the prediction of particular soil 

properties. This phenomenon is comprehensible, since the study of separate soil 

properties have proven to have great influence over major issues, like soil nitrogen 

content over wheat yields, or the soil organic carbon by reducing the risk of erosion in 

large areas, among many others. 

 

After reviewing the different methodologies here presented, it can be seen that for 

example Chapter 2 and Chapter 3 followed the same schema that other authors have used 

when dealing with spectroscopic tools.  
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Chapter 2  identifies those specific features of the spectra and relate those with a target 

feature, in this thesis case, the hypothetical maximum slaking of a soil sample submerged 

in water or SIa. Following this idea, it can be said that this chapter focuses in detecting 

those known soil attributes e.g., pH, that influence the soil aggregation and once they are 

detected, they could be modified and with this it could be possible to “control” the slaking 

behaviour of soils. Furthermore, Chapter 3 deepens in the use of spectroscopy as a tool 

for prediction of a certain soil property (%TC) at a local scale and revises the 

applicability of some of the existing methods for the use of large spectral libraries. 

 

On the other hand if the intention is to discriminate between horizons or between soil 

types, the single property approach appears to be inadequate. Consequently, Chapter 4 

and Chapter 5 follow a different approach, this is to use all the information contained in 

the spectra as a source of variation or at least a variety of strategic soil properties at the 

same time. 

Based on the results of Chapter 4, it can be said that there is still much to learn about how 

to effectively characterize the soil profile. Even though our conventional morphological 

descriptions are useful in describing a soil profile and in communicating that information, 

it has been shown that our known soil morphological horizons are designated based only 

on what we can see plus the soil properties that our methods can detect e.g., percentage of 

organic matter, exchangeable aluminium, etc. However, if those soil attributes that cannot 

be perceived by traditional methods are included, e.g., the information that is contained in 

the NIR part of the spectra, somewhat different soil horizons or “spectrally derived soil 

horizons” could be detected. 
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Interestingly, having observed that conventional soil horizons and spectrally derived 

horizons are slightly different, one would expect in Chapter 5 that the variation of soil 

orders in the landscape or “Taxonomic pedodiversity”, which is based on described soil 

morphological horizons and the variation of spectra in space or the “Functional 

pedodiversity”, would not be similar or at least show some disagreement. This was not 

the case, as linear relations between different soil types in the landscape and their 

respective spectral attributes were found. These are the first studies that bring these 

questions, and with them different research opportunities can be anticipated in the short 

and the long term. 
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6.4 General conclusions   

 Regarding the main hypothesis of this thesis it can be concluded that it was 

possible to measure and represent in a practical, objective and replicable way, the 

variation of different hierarchical levels of soil organization by using spectroscopic 

information. 

 

From the colloidal and microaggregation level, Chapter 2 presented a new methodology 

for describing and measuring the slaking of soil aggregates submerged in water expressed 

in a Slaking Index (SI). It was shown that is possible to characterize and predict the 

values of the SI methodology by spectral means. The results were coherent with previous 

research on soil aggregation, showing the effect of known colloidal fractions involved in 

the soil aggregation recognized in this study by spectral means. Also, it was shown that 

there was an improvement in the characterization of the slaking process by adding more 

information from different parts of the electromagnetic spectrum.  

 

Regarding the use of spectroscopic modelling techniques and large spectral libraries for 

the prediction of a single property in a determined area, it was observed that the use of 

this type of spectral libraries holds great potential, however it was revealed that it is 

greatly influenced by the variability or range of the spectra used for training models. Due 

to the previous, it is possible to introduce a large amount of variation with a 

comparatively small amount of samples which can result in a possible addition of error. 
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Regarding the use of spectroscopy for the characterization of a higher level of 

organization, e.g., soil morphological horizons, it was shown that is possible to describe 

the variation contained in the soil horizons by spectral means and also to establish in an 

objective way, their dividing boundaries. In order to use a spectroscopic approach for 

describing soil horizons, a specific framework needs to be followed. First, the profile is 

described at regular intervals by using the multivariate information contained on each 

observation. Second, those observations can be grouped by their respective spectral 

similarity and third, by examining their variation in depth, the soil horizon boundaries can 

be effectively established. 

 

Finally, it was shown that the use of the multivariate information contained in the Vis-

NIR region of the spectra, efficiently described the variation of the different soil types 

from the point-scale to a large-scale. The new indices of pedodiversity represent a 

contribution towards the characterization of the soil as a continuous, showing that its use 

can provide results attuned with the conventional methods of describing pedodiversity by 

discretising soil types but without its inherent bias.   
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6.5 Opportunities and future work 

 Each of the research chapters in this thesis has shown that is possible to 

effectively describe by spectral means the soil variation contained at different levels of 

soil organization. In the same way, it was shown that there was still room for 

improvement, which can be summarized as follows. 

6.5.1 Practical significance of the Slaking Index 

 The first part of Chapter 2 presented a new method for assessing soil aggregates 

stability in fast wetting conditions and also was able to describe the kinetics of slaking of 

soil aggregates immersed in water. It was shown that the method represented a 

considerable improvement in terms of cost and time compared to conventional methods 

like measurement of Mean Weight Diameter (MWD) with a wet sieving apparatus. 

Despite this, it was shown in the second part of the chapter that the methodology is still 

time consuming in comparison with even faster methodologies like the use of Vis-NIR or 

portable MIR spectroscopic. 

 

In respect to the previous, and based on the uncertainty related to each of the 

methodologies (image recognition and spectroscopy) a key question arises, which is what 

is the practical threshold e.g., agronomical significance, for the new soil slaking index, 

consequently, further research in this area will need to address this question. 

For example, in a scenario where the agronomical significance of a soil with a Slaking 

Index (SI) of 1 does not differ substantially from another with a SI of 3, the spectroscopic 

method should be preferred, considering first, the spectral similarity of the samples where 
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the prediction is intended, since as it was shown, the uncertainty of the spectroscopic 

approach was not bigger than 2 SI units. 

6.5.2 Spectral information related to soil slaking    

 The second part of the same chapter showed that as other regions of the 

electromagnetic spectrum were added to the predictive models, their performance 

improved considerably. As also mentioned before, there are many other methodologies 

which represent compositional changes by using other parts of the spectra.  In this regard, 

observing which parts of the electromagnetic spectrum are good predictors of SI could 

give a better understanding of the soil slaking process. Even more, considering that only 

the asymptotic value of the slaking process was predicted (Coefficient a), then the other 

coefficients i.e., Coefficient b, related with macro aggregation and Coefficient c with the 

rate of slaking, can be also analysed by spectral means.  

6.5.3 Large spectral databases 

 Viscarra Rossel et al. (2016), remarked on the need for more research to optimally 

use large spectroscopic databases for local predictions of soil attributes. With respect to 

this, Chapter 3 analysed the use of state-of-the-art spectroscopy techniques for the 

prediction of an important soil property (TC %) of samples from a certain geographic 

region. 

 

The results showed the importance of the spectral variability of soil samples and the high 

impact that a few samples with a different spectral behaviour can produce in a predictive 

model i.e., spike sample. In this regard, it was shown that the inclusion of spectrally 
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different samples can be a “double edged tool”, since this procedure “expands” the 

predictive space of the models and it was seen that if the distribution of values of included 

samples is biased, this will be also inherited by the predictive models.   

 

It was also shown the high influence of a geographically closer sample over the final 

prediction bias on local samples. The results of this study have shown that, as other 

authors have concluded e.g., (Guerrero et al., 2016), the creation of large spectral libraries 

is still a challenge.  

6.5.4 Soil morphological horizons 

 Chapter 4 showed that the framework presented in the Rationale (Chapter 1) was 

adequate for the analysis of soil horizons. This chapter showed that as the complexity of 

soil organization increased, i.e., soil colloids < soil aggregates < soil horizons, the 

approach for describing the variation within soil horizons had to involve the analysis of 

the vertical variation of multiple properties (represented by the spectral information of a 

single scan).  

 

The fact that the spectrally derived horizons (SPD hor) were somehow different to the 

ones described by a pedologist, showed that the delineation of soil horizon boundaries is 

indeed subject of the variation perceived, therefore it makes sense that if the soil 

information used in the discrimination of soil horizons is different e.g., human senses vs 

Vis-NIR, the resultant soil morphological horizon boundaries will be different as well. 
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It was shown that it is possible to discriminate between horizons, however there is still an 

open question, which is the possibility of allocating those already identified soil horizons 

to a certain class or as conventional taxonomy describes “soil diagnostic horizons”. The 

challenge and opportunity of further studies, involves the analysis of the type of spectra 

(or a spectral range) that could serve as a proxy for possible “spectrally derived diagnostic 

horizons” contributing with this to a more objective soil classification. In this regard 

Triantafilis et al. (2001), Odgers et al. (2011a) and recently Hughes et al. (2014) have 

shown that is possible to create representative classes or “centroids” considering multiple 

soil properties and they can be successfully used for classification purposes. 

6.5.5 Pedodiversity 

 It was observed that the multivariate information contained in the soil spectrum 

was as hypothesized, useful in describing the variation of soil types in the landscape. The 

results in this chapter are very promising, if we consider that at the moment, many 

authors and organizations are specially interested in the creation of large Vis-NIR spectral 

libraries (as commented in Chapter 3). The presented indices can be straightforwardly 

applied in those global spectral libraries and with this, the soil diversity of local areas, 

countries, continents and the current global pedodiversity can be calculated if it’s desired. 

This idea was also noted by Viscarra Rossel et al. (2016) for a possible use of the newly 

created Global spectral library in their statement: “We showed that the information it 

contains can be used to characterize soil and its variability and diversity globally ”. 

 

Because of the high influence of the input information i.e., soil properties or Vis-NIR 

spectra, on the final pedodiversity results, more research on identifying those properties 
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or spectral regions, that contribute to discriminate between different “soil types” is 

crucial. The research needed in this regard, is intrinsically related with the one mentioned 

on previous section, considering an efficient discrimination between classes that could 

represent in a practical way the current soil resource. 

   

As a final conclusion, it was shown that the soil variation can be efficiently described by 

spectral means, since this type of information captures the intrinsic multi-variability of 

soils. Furthermore, as the complexity of the soil attribute increases, it was shown that it is 

also possible to use the same spectral information in addition to other statistical 

techniques like spectral modelling or fuzzy clustering, to describe the soil variation in 

depth and in the landscape and with this, creating a complete representation of soil 

variation from the micro-scale to the global-scale.  
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Appendices 

  



 

 
 

Transec

 

# 

 

Land-use 

 

Land cover obs. Detailed obs. 
NS 0 nat River shore 

 

High density river shore grassland medium density of small to medium trees and 

  
NS 0 crop Cereal Low density dry wheat cane on clayey soil. 

NS 1 nat Woodland  Regular density of small to medium trees. Medium to low shrubs. 

NS 1 crop Fallow Fallow bare cracked soil chickpeas were the last crop. 

NS 2 nat Woodland Regular density small to medium trees, broad areas of medium and long very green 

 NS 2 crop Cereal Regular density dry wheat cane with clover 

NS 3 nat Shrub land High to medium density shrubs (mostly young acacias). 

NS 3 crop Cereal Regular density dry wheat cane. 

NS 4 nat Woodland Medium density of tall trees with low grass. 

NS 4 crop Fallow  Fallow  

NS 5 nat Woodland Low density medium trees regular to low density medium dry/green grass. 

NS 5 crop Cereal Low density dry wheat cane. 

NS 6 nat Woodland High density Pilliga scrub and Acacia cypress. 

NS 6 crop Ploughed Ploughed. 

NS 7 nat Forest High density tall casuarina trees with high density tall grass 

NS 7 crop Ploughed  Ploughed land  

NS 8 nat Woodland Low to medium density tall trees regular low grass. 

NS 8 crop Cereal Regular density dry barley cane harvested rotated with lupine for 15yrs. 

NS 9 nat Woodland Regular density medium to tall trees high density tall grass 

NS 9 crop Pasture High density tall grass pasture premier digit grass 
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NS 10 nat Forest High density tall trees high density leaf litter medium to short grass 

NS 10 crop Pasture High density medium grass pasture natural growth 

NS 11 nat Forest High density tall casuarina trees medium density short green grass 

NS 11 crop Cereal Regular to high density wheat in anthesis. 2.3 ton calc. carbonate. Changing to 

 NS 12 nat Woodland  Regular to high density medium to tall trees regular density short grass 

NS 12 crop Alfalfa  Regular density alfalfa in flowering period rotated with canola lupine 

NS 13 nat Woodland Low density _ravine vegetation high density medium to tall grass 

NS 13 crop Cereal High density dry wheat cane 

NS 14 nat Woodland Regular density tall trees, high density medium to tall grass 

NS 14 crop Cereal High density fresh wheat cane mixed with clove. 

NS 15 nat Woodland Regular density tall trees, high density medium to tall grass. 

NS 15 crop Cereal Regular density dry canola cane harvested. 

NS 16 nat Woodland Low to Regular density medium trees low density short grass. 

NS 16 crop Cereal Low density fresh wheat cane harvested remaining stubble.  

NS 17 nat Forest Regular density tall trees low to medium density short grass . 

NS 17 crop Cereal Medium density wheat cane harvested in the season . 

NS 18 nat Woodland Regular density medium to tall trees, high density medium to tall grass. 

NS 18 crop Cereal High density fresh wheat cane harvested. Crop of only two years. 

NS 19 nat Forest High density tall trees with leaf litter and low density tall grass. 

NS 19 crop Cereal Low density dry wheat cane harvested years ago remaining stubble.  

NS 20 nat Grassland High density tall natural grass. 
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NS 20 crop Cereal Regular density dry wheat cane harvested years ago mixed with short natural grass. 

NS 21 nat Woodland Regular density tall trees with leaf litter and tall grass. 

NS 21 crop Pasture Regular density short grass pasture. 

NS 22 nat Woodland  Low density medium trees and shrubs, high density tall grass 

NS 22 crop Cereal High density fresh wheat non-harvested. 

NS 23 nat Forest High density tall trees ,regular density leaf litter, high density tall grass 

NS 23 crop Pasture High density medium to tall grass pasture natural growth. 

NS 24 nat Woodland Low density medium trees and scattered shrubs high density tall grass. 

NS 24 crop Cereal Regular density fresh wheat cane harvested in the season. 

NS 25 nat Woodland Low to regular density medium tree, high density medium grass . 

NS 25 crop Cereal High density fresh wheat cane harvested years ago (remaining stubble).  

NS 26 nat Forest High density tall trees and shrubs, high density grass. 

NS 26 crop Cereal High density fresh wheat cane harvested remaining stubble and cow faeces. 

EW 27 nat Grassland High density tall natural grass. 

EW 27 crop Bananas High density banana (>2m). 

EW 28 nat Forest High density tall trees high density leaf litter no grass 

EW 28 crop Pasture High density short grass improved pasture.  

EW 29 nat Woodland Regular density tall trees, regular density short grass. 

EW 29 crop Pasture High density short grass improved pasture.  

EW 30 nat Woodland Regular to high density medium to tall trees, regular density short grass. 

EW 30 crop Pasture High density short to medium grass improved pasture.  
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EW 31 nat Woodland Regular density medium to tall trees, regular density short to medium grass. 

EW 31 crop Pasture Low density short grass pasture. Rill erosion. 

EW 32 nat Forest High density tall trees, high density tall grass and leaf litter. 

EW 32 crop Pasture High density short to medium pasture. 

EW 33 nat Woodland Low density medium trees high density medium grass.  

EW 33 crop Ploughed Ploughed land with improved pasture (Pilliga 3 years ago) 

EW 34 nat Woodland Regular density tall trees, regular density short  to medium grass. 

EW 34 crop Pasture Regular to high density short to medium grass 

EW 35 nat Forest High density tall young trees high density tall grass and leaf litter 

EW 35 crop Ploughed Ploughed land 

EW 36 nat Woodland High density tall trees high density leaf litter. 

EW 36 crop Fallow Fallow bare cracked soil. 

EW 37 nat Woodland Low density small trees regular density young shrub low density tall grass.  

EW 37 crop Cereal Regular to low density wheat in cracked soil. 

EW 38 nat Woodland Low density_small trees_regular density tall grass  cracked soil 

EW 38 crop Cereal Regular density dry wheat cane harvested (remaining stubble). 

EW 39 nat Woodland Low density medium trees, regular density tall grass. Cracked soil.  

EW 39 crop Fallow Fallow bare cracked soil wheat stubble. Cracked soil 

EW 40 nat Woodland Low density small trees, regular density tall grass. 

EW 40 crop Cereal Regular to low density wheat. Cracked soil 

EW 41 nat Woodland Low to regular density medium trees regular density tall grass. Cracked soil 
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EW 41 crop Fallow Fallow bare in cracked soil, low density remaining wheat stubble 

EW 42 nat Grassland High density tall natural grass. 

EW 42 crop Fallow Fallow bare cracked soil, low density wheat stubble. 

EW 43 nat Woodland Regular to low density medium trees low density leaf litter and grass. 

EW 43 crop Cereal Regular density oats in silty soil 

EW 44 nat Woodland Regular density medium trees regular density small shrubs. 

EW 44 crop Dryland No cover. 

EW 45 nat Woodland Low density medium trees low density leaf litter and grass 

EW 45 crop Pasture High density tall grass 

EW 46 nat Woodland Low density shrub with apparent sodic conditions. 

EW 46 crop Dryland No cover. 

EW 47 nat Woodland low density medium trees low density leaf litter and grass 

EW 47 crop Human intervention Poor drainage. 

EW 48 nat Dryland No cover. 

EW 48 crop Woodland Low density medium trees. 

Appendix 1. Land use details of NSW transect sites.  



 

 
 

1 #run if packages are not present# 

2 # source("https://bioconductor.org/biocLite.R") 

3 # biocLite("EBImage") 

4 # install.packages('plyr',dependencies = T) 

5  

6 require(EBImage) 

7 require(plyr) 

8  

9 ########INITIAL PARAMETERS####### 

10 Sample_id <- 'Example_Image.JPG' 

11 threshold <- .9  

12 num_agregates <- 5 

13 band <- 3 #blue band 

14 cutting_area<-list(c(1000:2000),c(800:1600)) 

15 ################################# 

16 Initial_image<-readImage(Sample_id) 

17 Cutted_image<-

!Initial_image[cutting_area[[1]],cutting_area[[2]],3]>threshold 

18  

19 #Apply filters for taking the '0' values inside the aggregate# 

20 Filtered_image <- closing(Cutted_image, makeBrush(5, shape='disc')) 

21  

22 ## Recognize and label each aggregate as a different object## 

23 Labelled_image <- bwlabel(Filtered_image) 

24 colored_image <- colorLabels(Labelled_image) 

25 display(colored_image,method = 'raster') 

26     

27 ######Select bigger aggregates###### 

28 agregates_id<-names(sort(table(colored_image@.Data[,,3]),decreasing = 

T))[0:num_agregates+1] 

29 Ag_count <-

Image(colored_image@.Data[,,3]*(matrix(colored_image@.Data[,,3]%in%c(agre

gates_id),ncol=dim(colored_image)[2])),colormode = 2) 

30 result<-list() 

31 result$Ag_count_colored <- bwlabel(Ag_count) 

32 result$original <- Initial_image 

33  

34 #check# 

35 display(result$original,method = 'raster') 

36 display(colorLabels(result$Ag_count_colored),method = 'raster') 

37 computeFeatures.shape(result$Ag_count_colored)[,1] #Final areas(in 

pixels) of 5 aggregates 

38 #end# 

Appendix 2. Example of R code for image recognition of 5 soil aggregates. 



 

 
 

Property Training (n = 118) Independent Validation (n = 30) External Validation (n = 23) 

 Min 1Q. Median Mean 3Q. Max Min 1Q. Median Mean 3Q. Max Min 1Q. Median Mean 3Q Max 

NH4 (mg kg-1) 0.1 2.0 4.0 6.0 7.0 53.0 0.1 3.0 4.0 6.3 6.8 40.0 1.0 1.0 1.0 1.6 2.0 3.0 

NO3 (mg kg-1) 1.0 3.0 9.5 20.5 20.0 137.0 1.0 7.8 21.5 30.6 40.5 202.0 1.0 1.0 1.0 2.1 1.0 10.0 

P (mg kg-1) 3.0 13.8 29.5 39.7 49.3 273.0 6.0 23.5 38.5 39.1 48.5 94.0 3.0 5.0 10.0 12.2 17.5 32.0 

K (mg kg-1) 74.0 287.5 442.5 462.6 571.2 1232.0 132.0 321.0 483.0 479.1 563.8 995.0 81.0 148.5 176.0 179.0 213.5 301.0 

EC (dS m-1) 0.0 0.0 0.1 0.1 0.1 0.3 0.0 0.1 0.1 0.1 0.1 0.5 0.0 0.1 0.1 0.1 0.2 0.5 

pH CaCl2 4.0 5.0 5.9 5.9 6.6 7.8 4.3 4.9 5.8 6.0 6.9 7.6 6.3 6.9 7.7 7.4 8.0 8.3 

pH H2O 4.8 5.9 6.5 6.7 7.4 8.6 5.1 6.0 6.4 6.7 7.8 8.6 7.4 8.1 8.9 8.6 9.1 9.4 

Exc. Al (cmol(+) kg-1) 0.0 0.0 0.1 0.1 0.1 1.8 0.0 0.0 0.1 0.1 0.1 1.0 0.1 0.1 0.1 0.1 0.2 0.2 

Exc. Ca (cmol(+) kg-1) 0.3 4.5 8.3 10.5 16.7 30.6 0.9 5.1 9.5 12.0 20.0 25.5 9.1 11.4 13.6 13.5 15.1 19.8 

Exc. Mg (cmol(+) kg-1) 0.3 1.3 2.9 4.1 6.7 13.1 0.5 1.5 2.6 4.0 7.1 9.7 10.8 12.6 14.2 14.7 16.4 20.0 

Exc. K (cmol(+) kg-1) 0.2 0.7 1.1 1.1 1.5 3.0 0.3 0.8 1.2 1.2 1.4 2.2 0.2 0.4 0.5 0.5 0.6 0.8 

Exc. Na (cmol(+) kg-1) 0.0 0.0 0.2 0.4 0.5 3.9 0.0 0.0 0.2 0.4 0.5 2.6 0.8 1.5 2.2 3.3 4.6 8.2 

TC (%) 0.1 0.9 1.6 2.1 2.3 17.8 0.5 1.2 1.6 2.2 2.4 9.3 0.1 0.3 0.4 0.5 0.7 1.0 

CEC (cmol(+) kg-1) 1.7 7.0 12.2 16.2 26.6 38.3 3.8 8.0 12.2 17.8 30.5 35.0 21.9 27.5 32.2 32.0 36.5 42.0 

Clay (%) 1.7 11.9 21.1 26.0 41.9 65.1 6.5 13.7 19.2 27.2 46.5 53.6 23.0 28.5 31.0 30.5 33.0 38.0 

Slaking Index 0.0 1.0 2.5 2.5 3.8 10.6 0.0 0.8 2.4 2.4 3.9 6.3 1.1 3.8 5.1 5.9 7.6 15.4 

Appendix 3. Descriptive statistics for all the measured properties. 



 

 
 

 

 

Appendix 4 Example of SD hor. Boundaries distinctness is relative to the thickness of the boundary. 



 

 
 

 

 

Appendix 5. Examples of SD hor. Boundaries distinctness is relative to the thickness. 
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