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Thesis Summary 

Spatially continuous and quantitative soil information is an integral component of most 

management decisions on agriculture and the environment. This is of particular importance 

in resource-poor countries, especially in sub-Saharan Africa (SSA) mostly plagued by 

poverty, hunger and land degradation. However, quantitative soil information is not readily 

available in the right format. Digital soil mapping (DSM) has been a viable approach to 

providing spatial soil information but its adoption in most resource-poor countries, 

especially at the national scale is limited by inadequate or low spread of data. Therefore, 

the focus of this thesis is on developing and/or optimizing existing DSM techniques for the 

densification of spatially-sparse legacy soil data at the national scale. The specific research 

objectives include to: (a) determine the appropriate prediction model for digital mapping of 

key soil properties at a national scale, (b) estimate total carbon and carbon sequestration 

potential of soils at a broad scale, (c) develop and/or calibrate pedotransfer functions 

appropriate in a data-scarce situation and (d) assess irrigation suitability for national 

agricultural planning using DSM products. In executing the set objectives, legacy soil data 

for Nigeria was utilized as the main dataset for model building and application. 

 

First, the robustness of Random Forest model (RFM) was tested in predicting soil particle-

size fractions (PSFs) using legacy soil data and covariates. To improve PSFs prediction, 

soil sampling depth was introduced as predictor variable while additive log-ratio (ALR) 

transformation technique was applied to ensure that predicted PSFs some up to a constant 

value of 100. Results indicated good prediction accuracy with RFM while the inclusion of 

sampling depth as a predictor substantially improved prediction accuracy, especially at the 

lower depth intervals. Nigerian soils are predominantly coarse-textured especially in the 

northern region of the country. Soil texture ranges from sand (4.2 x 10
6
 ha) to sandy loam 

(5.3x10
7
ha) in the surface layers and from sandy clay loam (5.2 x 10

7
 ha) to clay (6.9 x 10

6
 

ha) in the subsoils. 

 

Second, in order to quantify the carbon sequestration capacity of soils, soil organic carbon 

(SOC) and bulk density (BD) were predicted using legacy soil data from which SOC 

density and stock were calculated. SOC density was then overlaid with land use land cover 



 

ii 

 

(LULC), agro-ecological zone (AEZ) and predominant soil maps to quantify the carbon 

sequestration of soils and their variation across and within the different AEZs. Results 

showed that about 6.5 Pg C with an average density of 71.60 Mg C ha
–1

 abound in the top 

1 m soil depth while soils in the Derived and Sahel Savannahs have the largest capacity to 

sequester additional carbon. 

 

Furthermore, to improve the performance of BD and exchangeable cation exchange 

capacity (ECEC) pedotransfer functions (PTFs), the combination of soil and environmental 

data was explored. Input datasets were first divided into topsoils and subsoils according to 

soil horizon depth while MLR and RFM were then fitted to estimate BD and ECEC 

respectively. Results showed that subdividing the input data based on soil depth 

significantly improved the accuracy of PTFs in estimating BD and ECEC. However, the 

combination soil and environmental data only improves BD estimation. Important 

predictors of BD include sand, silt, elevation, rainfall and temperature for estimation at 

topsoil while EVI, elevation, temperature and clay are the most important BD predictors in 

the subsoil. Also, clay, sand, pH, rainfall and SOC are the most important predictors of 

ECEC in the topsoil while pH, sand, clay, temperature and rainfall are the most important 

predictors of ECEC in the subsoil. 

 

Finally, to support informed decision making and national agricultural planning, the 

application of Choquet fuzzy integral (CI) aggregation technique in irrigation suitability 

assessment was assessed. This was achieved through multi-criteria analysis of potential 

evaluation criteria including soil, climatic and landscape attributes. Results indicate that CI 

is a better aggregation operator compared to the classical weighted mean. A total of 3.34 x 

10
6 

ha (approximately 4% of total land area) is suitable for surface irrigation in Nigeria 

while major limitations are due to topographic and soil attributes. Also, majority of current 

irrigation projects are situated in moderate to marginally irrrigation suitable areas. 

 

In conclusion, this work has revealed how relatively sparse national soil database can be 

populated to support decisions on national agricultural and environmental planning. The 

thesis examined appropriate DSM techniques applicable to sparse-data conditions.  This is 

the first systematic study on operational DSM at the national scale especially in the Sub-
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Saharan Africa (SSA). The findings of this research will provide quantitative basis for 

framing appropriate policies on sustainable food production and environmental 

management in the SSA and other resource-poor countries of the world.
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1.1 Background  

Soil resources are integral part of human existence and need to be carefully managed 

to ensure their security and sustainable development (Arrouays et al., 2014; 

McBratney et al., 2014). As such, knowledge of soil is prerequisite to meaningful 

management decisions on food production and environmental quality. Soil 

information is required for any viable soil-related agro-technology transfer, 

environmental modelling and monitoring, urban planning and developmental 

policies. However, soil information is not readily available in the required format 

(Greve et al 2012). One promising approach to quick delivery of required soil 

information is the use of quantitative soil modelling techniques such as digital soil 

mapping (Hartemink and McBratney, 2008). 

 

Digital soil mapping (DSM) is a timely, reliable and cost effective way to acquiring 

continuous soil information. Basically, DSM involves establishing a relationship 

between a target soil attribute (sampled at sparse locations) and the so-called scorpan 

factors or environmental variables (Minasny et al., 2013; Minasny and McBratney, 

2016). Prediction is thereafter made at unobserved (dense) locations using the grids 

of readily available environmental variables at those locations along with the 

associated prediction error (Nelson et al., 2011). The interpolation of soil properties 

at unvisited location is made possible through the use of advanced numerical models, 

most of which are spatially explicit and data-driven. However, in many instances, 

there is often not enough soil data to form statistical structure for high resolution 

spatial prediction using these models. This has hindered the practicality of DSM in 

many countries of the world. 

 

As spatially explicit soil data are integral part of DSM operations the success of any 

DSM campaigns will depend on available funds or investments for additional soil 

survey and sampling (Hartemink et al., 2013). While this poses little or no problem 

in most rich or developed countries like the United States, Australia and countries of 

Europe, it is a major hindrance in many data-poor countries. Even more worrisome is 
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the fact that there is a greater and more pressing need for quantitative soil 

information in these data-poor countries than in their developed counterparts. In 

addition, there is no likelihood of future investments on soil surveying and mapping 

in most of these countries (Cambule et al., 2015). Therefore, considering the 

prohibitive cost requirements of any new soil survey scheme, legacy soil data will be 

an integral part of most DSM operations especially in the developing parts of the 

world.  

 

Fortunately, many countries in the developing parts of the world, especially in the 

sub-Saharan Africa (SSA) are covered by legacy soil surveys (Odeh et al., 2012). 

However, most of these soil surveys differ in spatial scale, coverage, objectives, age 

and quality. As such, legacy data obtained from these surveys have inherent 

peculiarities and uncertainties that may negate their use in DSM. These include 

uneven data spread, missing and/ or incomplete data, and mixture of data types, 

among others. The challenge therefore is on how to transform this useful but often 

inadequate soil data to support national developmental planning. To achieve this will 

require the development of new and/or optimization of existing DSM techniques to 

make them suitable for legacy soil data especially in sparse data conditions. 

 

The basis of this study is to explore the use of modern DSM techniques for the 

densification of sparse legacy soil data to support national scale developmental 

planning. It provides the first comprehensive study on operational digital soil 

mapping at national scale with a broader application in the developing parts of the 

world, especially in the SSA. The study was undertaken using legacy soil data from 

Nigeria. Nigeria which is the most populous country in SSA has a rich history of soil 

survey (Odeh et al., 2012). Despite boosting an estimated 71.2 million hectares of 

arable land (Ayoola, 2009); Nigeria is currently faced with a daunting challenge of 

ensuring national food security as well as combating land degradation and desert 

encroachment. Tackling these challenges will require adequate information on the 

soil resources to support sustainable agricultural intensification and environmental 

management. 
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1.2 The purpose of this study 

Specifically, the objectives of this study include: 

1. To determine the appropriate prediction model for digital mapping of key soil 

properties at a national scale. 

2. To estimate total carbon stock and sequestration potential of soils at a broad 

scale. 

3. To develop and/or calibrate pedotransfer functions appropriate for a data-

scarce situation. 

4. To assess irrigation suitability for national agricultural planning using digital 

soil mapping products. 

 

1.3 The scope of study 

The organization of this thesis is such that each chapter is focused on tackling an 

aspect of value-addition to sparse legacy soil data to meeting modern needs for soil 

information. Chapter 2 is a literature review, covering such issues as the need for 

DSM and soil information, especially in the developing country, the challenges of 

DSM in the absence of dense soil samples as well as the pressing need for legacy soil 

data. It further highlighted the challenges posed by legacy soil data and discussed 

different DSM techniques that may be relevant under sparse data conditions.  

 

Following on from the literature review, Chapter 3 deals with prediction of particle-

size fractions as a compositional data using random forest model (RFM). Then 

Chapter 4 covers a crucial aspect of national environmental planning; estimation of 

carbon stock and sequestration potential of soils under different land use and agro-

ecological zones. In Chapter 5, two different techniques in the form of combination 

of soil and environmental data and input data grouping based on soil depth were 

evaluated for their enhancement of pedotransfer functions (PTFs)’s performances on 

sparse datasets for bulk desity and effective cation exchange capaciry estimation at 

national scale. In Chapter 6 the robustness of Choquet integral multi-criteria 

aggregation techniques was tested for irrigation suitability assessment using some of 
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the soil and environmental data derived in Chapter 3. Finally, Chapter 7 presents the 

key research findings from this thesis and a pointer to future research. 

 

The research chapters (Chapters 3-6) presented here are formatted as either published 

articles or submitted manuscript. Therefore, some sections covering background 

information in these chapters appear to be unavoidably overlapped; these are not 

deliberate repetitions. Also, the reference style of the first paper (Chapter 3) has been 

adopted throughout the thesis to ensure consistency. 
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2.1 Introduction 

There are numerous inherent challenges associated with the use of legacy soil data 

for digital soil mapping operations (Minasny et al., 2013). These include sparse 

distribution of data points, differing quality and data age, different sampling schemes 

and analytical techniques. Therefore, this chapter is aimed to provide general insights 

into the various DSM approaches suitable for predicting the spatial distribution of 

soil attributes using legacy soil data. Firstly, the needs for soil information, 

particularly in the SSA were highlighted. Thereafter, the underlying principle of 

DSM and the various techniques at the disposal of digital soil mapping scientists 

were reviewed with the purpose of elucidating appriopriate models applicable to 

legacy soil data.  

 

In addressing the challenge of sparse distribution or limited data point associated 

with legacy data, this chapter provides an overview of PTFs as well as techniques 

used in improving the performance of PTFs. Finally, in a way of utilizing DSM 

products for decision-making on national developmental projects, the multi-criteria 

decision-making approaches were reviewed in the light of finding more robust 

approach to land suitability assessment. Such suitability assessment could provide 

the basis for sound management decision-making in the implementation of better soil 

management strategies to support sustainable agricultural intensification especially in 

the developing countries. 

 

2.2 The need for soil information in developing countries 

As shown in Fig. 2.1 below, soils provide many fundamental ecosystem goods and 

services such as food security, biodiversity protection, climate change adaptation and 

environmental regulation (Grunwald et al., 2015). As such, there has been a renewed 

interest in detailed, accurate and spatially continuous soil information for the purpose 

of management decisions regarding these goods and services (Arrouays et al., 2014). 

Soil information is required for developing recommendations on best management 

practices to improve soil productivity, increase crop yield through selection of 
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appropriate crop variety and irrigation water needs of crops (Omuto et al., 2013; 

Grealish et al., 2015). Unfortunately, the existing soil databases in most countries are 

neither exhaustive nor accurate enough for promoting a credible use of the soil 

information for the purpose of these management decisions especially at the national 

scale. This is particularly overwhelming in most resource-poor countries, particularly 

in the SSA. 

 

 

Figure 2.1 Importance and interaction of soil with human needs. 

Adapted and modified from Omuto et al 2013. 

 

In SSA, agriculture is the dominant economic activity, providing source of livelihood 

to about 60-80 % of the teeming population. According to FAO (2009) agricultural 

production in SSA is below optimum production level and will need to increase 

significantly to meet the food needs of its population that is expected to double by 

2050. However, only about 20 % of the expected production increase may arise from 
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possible land expansion (FAO, 2009). This is in sharp contrast to previous reports 

that the increase in agricultural production in the SSA in the last 50 years was 

achieved through expansion of arable lands. Therefore, meeting up with the future 

demands from agriculture in the SSA will require well-informed decisions on 

selection of agricultural lands through strategic development of areas with more 

productive soils. In the context of this strategic selection of agricultural lands, soil 

mapping will play a vital role in planning and implementation of enterprises to 

increase agricultural production in the SSA (Omuto et al., 2013). Additionally, soil 

information is needed for impact assessments of current land use and management on 

soil functioning (Lal, 2008; Northcliff, 2009) so as to combat land degradation 

problems that is prevalent in most part of the region. 

 

2.3 The need for digital soil mapping in sub-Saharan Africa. 

As mentioned in the previous section, soil information is very important for 

sustainable agricultural development in most countries of the SSA. Identifying the 

importance of soil information, particularly in the context of food and fibre 

production and sustainable development (Hartemink et al., 2013), soil surveys at 

various spatial extents and scales have been carried out in SSA (see Table 2.1). 

These surveys were predominantly carried out using traditional soil mapping 

approaches and in the instances of past colonial masters and/or foreign 

developmental aid organizations (Odeh et al., 2012). A typical example of such 

survey efforts include the USDA initiated and assisted national soil inventory project 

for Nigeria that led to the production of soil map of the country (at the scale of 

1:650,000) in the late 80s (FDALR, 1990; Odeh et al., 2012). Another example is the 

Rwanda’s conventional national soil survey (at a scale of 1:50,000) carried out 

between 1981 and 1994 (Van Ranst et al., 2010).  

 

Generally, these previous soil survey efforts vary in their objectives and as such were 

not designed to cover large extents using statistical sampling schemes. Thus, they are 

not representative of the overall condition of soils in SSA. These surveys however, 
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provide a wealth of legacy soil data and information which can be enhanced for 

effective guide in agricultural land use development. The challenge however, is that 

in their current state these legacy soil data cannot adequately meet modern demands 

for quantitative soil information. Therefore there is need to transform them to meet 

modern soil information needs through quantitative soil-landscape modelling 

approach such as DSM.  

 

Despite the obvious need for DSM in SSA, the adoption of DSM in this region is still 

at the juvenile stage especially for national scale applications. DSM efforts made so 

far in the SSA are largely through international aid support and individual 

contributions. Examples include the digital soil map of Africa (Hengl et al., 2015), 

digital SOC map of Southeastern Kenya (Alejandra Mora-Vallejo et al., 2008), 

digital SOC map of the Senegalese Peanut Basin (Stoorvogel, et al., 2009) and more 

recently the SOC map of Limpopo national park in Mozambique (Cambule et al., 

2014). Among these studies only Hengl et al. (2015) at continental scale and 

Cambule et al. (2014) at the field scale have utilized legacy soil data. To meet the 

increased soil information demand in sub-Saharan Africa, a regional project called 

Africa Soil Information Service (AfSIS) was launched in 2009 under the guidance of 

the GlobalSoilMap.Net consortium (Sanchez et al., 2009). One of the key activities 

of AfSIS is to set standards for soil data collection and soil evaluation in the SSA and 

to coordinate the gathering of legacy soil data for DSM activities in the region. 
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Table 2.1 National soil survey coverage in 21 African countries (Modified from Van 

Ranst et al., 2010). 

Country 

Small scale 

1:500,000 - ± 100,000 

(%) 

Medium scale 

1:100,000 - ± 50,000 

(%) 

Large scale 

<1:25,000 

(%) 

Algeria - 5 5 

Benin 100 10 2 

Botwana 40 5 - 

Burkina Faso 100 25 - 

Burundi 100 - - 

Cameroon 30 5 1 

DR Congo 10 5 - 

Egypt 100 10 10 

Gabon 30 - - 

Gambia 100 - 100 

Ghana 95 - - 

Kenya 100 25 - 

Mali 50 - - 

Morocco - 40 20 

Nigeria 70 35 0.6 

Rwanda 100 100 - 

South Africa 70 - - 

Swaziland 100 10 5 

Tanzania 50 - - 

Togo 80 20 - 

Uganda 100 - 1 

 

2.4 Data requirements for digital soil mapping  

Data required for digital soil mapping include geo-referenced soil data and 

environmental variables or covariates (Minansy et al., 2008). The geo-referenced soil 

data are used to establish the variation of soil attributes across a particular landscape 

while the covariates are required to support the application of predictions of that 

variation across the entire area of interest (MacMillan, 2008). Soil data could be 

sourced from existing soil maps, auger point observation or through the use of 

proximal and remote sensing techniques. However, due to time and budget 

constraints, legacy soil data could be the most widely used soil data for DSM 
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(Minasny et al., 2013). Depending on the purpose of the DSM operation, soil data 

could be observations on soil bulk density, pH, soil organic carbon (SOC), effective 

cation exchange capacity (ECEC), particle size fractions (clay, silt, sand), water 

holding capacity, and hydraulic conductivity, among others (Arrouays et al., 2014). 

Generally, the density of soil data points geographically and the resolution of the 

outputs of DSM are determined by the extent of the mapping area, the purpose of 

required soil information and availability of adequate budget.  

 

A key approach to enhancing the use of legacy soil data in DSM, especially those in 

data-sparse countries, is the use of covariates. Past studies suggested that the most 

popular covariates include geology or lithology, digital elevation model and its 

derivatives such as slope gradient, aspect, curvatures, compound topographical 

index, quasi-dynamic wetness index, stream power index, multi-resolution index of 

valley bottom flatness (MRVBF), etc. Increasingly, other covariates include the 

gamma radiometric products (K, U, Th), electromagnetic induction (EM) data, multi-

temporal satellite images or bands and their derivatives such as enhanced vegetation 

index (EVI), normalized difference vegetation index (NDVI), soil-adjusted 

vegetation index, among others (McBratney et al., 2000; 2003; Minansy et al., 2008, 

Schmidt et al., 2014). Although there are no standard thresholds for optimum number 

of covariates in DSM, their intensity depends on the target soil attribute, the choice 

of prediction model used as well as the pedogenesis of the area to be mapped (Yang 

et al., 2011). On a general note, covariates for DSM are chosen on the basis of data 

availability and the researcher's expert knowledge (Miller et al., 2015). According to 

Minansy et al. (2013), terrain attributes and remote sensing data in their various 

forms are the most widely used covariates in DSM operation. 

 

2.5 The challenges of using legacy soil data for DSM 

As alluded to above, in many countries of the world particularly in the SSA, legacy 

soil data is the primary source of data available for DSM. However, the use of legacy 

soil data can be very challenging due to inherent inadequacies in them. Legacy soil 



Chapter 2   Review of literatures 

 

13 

 

data are products of traditional soil survey that were mostly carried out without 

proper statistical sampling design. As such, there are inherent biases in legacy data so 

much that they may not be representative of the geographical landscape. One of such 

biases is the issue of low density or uneven spread of data. This sparse coverage of 

quantitative observations could introduce considerable spatial uncertainty. This is of 

particular concern with soil attributes such as SOC that are highly dynamic over 

short range (Powers et al., 2011). In Africa, reduced number of data has been 

reported to limit the use of most reconnaissance maps (Mora-Vallejo et al., 2008; 

Stoorvogel et al., 2009). Another inherent bias in legacy soil data is the issue of 

varying data age. Legacy soil data are collected at different times and for different 

purposes thereby resulting in data with wide differences in currency. This could limit 

their use for soil monitoring purposes.  

 

Locational inaccuracy of legacy soil data poses another challenge in DSM. The 

inaccuracy may be due to the fact that the pre-1990 soil surveys were carried out in 

pre-GPS era and as such were not properly geo-referenced. Improperly geo-

referenced input data in DSM could increase positional error which is usually 

transmitted to the overall uncertainty of the predictive maps. This could be due to 

data points being assigned to the wrong covariate values (Grimm and Behrens, 

2010). Other limitations of using legacy soil data for DSM include missing or 

incomplete information, mixture of both categorical and numerical data as well as 

varying soil layer (horizon) interval and soil profile depth. In using legacy data for 

DSM, it is therefore important to understand these limitations. Some knowledge of 

the purpose and methods of the soil surveys as sources of the legacy data could 

indicate the quality and any bias in the spread of the samples. 
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2.6 DSM techniques suitable to sparse legacy soil data condition. 

2.6.1 Harmonization of varying legacy soil profile depth interval 

In traditional soil survey, soil samples are often collected by genetic horizon with the 

assumption that the horizon value of a given soil attribute represents its mean value 

for the depth interval of that horizon (Odgers et al., 2012). However, in 

environmental modelling, most models require soil information at specified depth 

ranges rather than the pedogenetic horizons (Adhikari et al., 2013). In a typical 

legacy soil database, it is not uncommon to have different survey reports with data 

for different combinations of horizons and depths. To circumvent the challenge 

posed by varying horizon depth, DSM techniques using continuous depth functions 

or splines have been developed to map soil properties at specified depth intervals 

(Bishop et al., 1999; Malone et al., 2009). A mass-preserving or equal area quadratic 

spline consists of a series of quadratic polynomials that join at the “knots” located at 

the horizon boundaries (Bishop et al., 1999). It passes through each soil horizon, and 

thus maintains the average value of the soil attributes. The “knots” are linear between 

horizons but quadratic within the horizons; giving a linear-quadratic smoothing 

spline. Detailed background knowledge of spline has been elaborated by Bishop et 

al. (1999) and Malone et al. (2009). However, for the sake of brevity, a summary of 

the mass-preserving spline algorithm following Malone et al. (2009) is provided 

here. 

 

For a given soil profile and a given soil property, the boundaries of the n horizons are 

denoted by 𝑥0 < 𝑥1, … < 𝑥𝑛. The soil property values, 𝑦𝑖 (𝑖 = 1…n) could be 

modelled mathematically as: 

 

𝑦𝑖 =  𝑓𝑖̅ +  𝑒𝑖                                                                                                      [2.1] 

 

where 𝑓𝑖̅ is the mean value of 𝑓(𝑥) over the interval (𝑥𝑖−1, 𝑥), and 𝑒𝑖 represents the 

measurement error with mean 0 and variance 𝜎2. Finally 𝑓(𝑥) is the spline function, 

which is found by minimizing: 
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1

𝑛
∑ (𝑦𝑖 − 𝑓𝑖̅)

2𝑛
𝑖=1 + 𝜆 ∫ 𝑓́

𝑥𝑛

𝑥0
(𝑥2)𝑑𝑥                                                [2.2] 

 

The first term in Eq.2.2 represents the fit of the spline to the data while the second 

term is the roughness of the function𝑓(𝑥). The lambda (𝜆) controls the trade-off 

between the fit and the roughness of the spline. Several (𝜆)  values have been tested 

for various soil attributes but the value of 0.1 has been reported to give good results 

for a number of soil attributes (Bishop et al., 1999, Odgers et al., 2012; Adhikari et 

al., 2013). Spline function are limited in their capacity to estimate soil attribute under 

abrupt changes in the soil properties, especially in the case of interpolating the 

particle-size fractions of texture contrast or duplex soils and change from topsoil  to 

subsoil OC values of  peat soils. In such conditions it has been recommended to 

introduce a quasi or pseudo horizon to the existing profile data (Odgers et al., 2012; 

Adhikari et al., 2013). 

 

2.6.2 The use of appropriate prediction model 

DSM employs several modelling techniques for spatial prediction of soil class and 

attributes. These techniques can be broadly grouped into two major categories (i) 

spatial prediction models including geostatistical models (e.g. kigring), statistical 

models (e.g multiple linear regression) and their hybrids (e.g. regression kriging), 

and (ii) data mining tools such as regression or decision trees, neural networks, 

boosting machines and fuzzy systems. Generally the spatial prediction models are 

suitable for data-rich situations while the data mining tools or machine learning 

models are suitable for sparse data and/or complex situations (Hastie et al., 2009). 

Since there have been a fair bit of seminar review works on most of these DSM 

models (McBratney et al., 2000, McBratney et al., 2003, Scull et al., 2003), the focus 

of discussions here is on selected techniques that are suitable to sparse legacy data 

condition. 
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2.6.2.1 Data mining tools or machine learning models 

There is an increasing use of data-mining or machine learning prediction techniques 

for spatial soil prediction (Brungard et al., 2015; Taghizadeh-Mehrjardi et al., 2015; 

Talaab et al., 2015a). Data-mining tools were designed to explore patterns in 

complex data and generate models fitted with many parameters (Hastie et al., 2009). 

In general, their strength is the ability to use continuous and categorical predictors, 

and the fact that they are very robust relative to predictor specifications. These 

techniques are capable of catering for relatively complex structure in legacy soil data 

that may be difficult to detect with many conventional geostatistical tools. In 

addition, data mining models do not require the a priori specifications of a model to 

relate explanatory with dependent variables, but rather use an algorithm to learn the 

form of those relationships (Breiman, 2001). In the following sub-sections, an 

overview of some of the data mining models that could accommodate the inherent 

complexity in legacy soil data especially in sparse conditions is provided. 

 

2.6.2.1.1 Classification and regression tree 

Originally developed in the early 1980s, the classification and regression tree 

(CART) algorithm (Breiman et al. 1984) was first applied to predictive soil mapping 

in the early 90s (Lagacherie, 1992). Since then various studies have highlighted the 

efficiency of CART for spatial prediction of soil properties at various scales 

(McKenzie and Ryan 1999; Moran and Bui, 2002; Henderson et al. 2005; Scull et al., 

2005; Barthold et al., 2008; Vasques et al., 2008; Stoorvogel et al., 2009). One of the 

most interesting features of CART for DSM is that it gives quantitative insight into 

the input data using explicit splitting rules. In addition, it can uncover relatively 

important predictor variables by counting the times the variables were used in the 

tree nodes (Bui et al., 2006). CART has several advantages over classical linear 

regression models that make them a better suit for legacy soil data: it is non-sensitive 

to missing data, perform automatic variable subset selection, and can handle both 

quantitative and categorical data. However, CART has been criticized for overfitting 
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in model derivation, especially in the presence of noise or outliers (Lagacherie and 

Holmes, 1997; McKenzie and Ryan 1999).  

 

2.6.2.1.2 Artificial neural networks  

In contrast to CART, artificial neural networks (ANNs) are non-parametric data 

mining tools which are analogous to neural networks of the human brain (Venables 

and Ripley, 1994). ANNs can be used to model complex relationships between 

inputs and outputs or to find hidden patterns in a given data set (Tveito, 2010). One 

important feature of ANNs is their adaptive nature through “learning” during the 

classification or prediction process. This makes them a powerful and popular 

modelling technique for solving complex and non-linear processes. ANNs can 

achieve linearization of the predicted outputs by weighting the network inputs with 

non-linear sigmoid or logistic functions and summing them to derive the non-linear 

response. In spite of these advantages, ANNs are criticized as being “black-box” 

models and require higher computational power than most prediction models. As part 

of DSM techniques, the ANNs have been predominantly used for predicting soil 

class and deriving pedotransfer functions (Minasny et al., 2002; Botula et al., 2015). 

 

2.6.2.1.3 Boosted regression trees  

Boosted regression trees (BRT) belong to the gradient boosting modelling (GBM) 

family of statistical algorithms (Collard et al., 2014). They employ CART 

approaches to make prediction of a target variable. However, BRT improve 

prediction accuracy compared with CART by minimizing the risk of over-fitting and 

thus improves prediction power (Schapire et al., 1998; Lawrence et al., 2004). 

Boosting techniques are generally applied to increase performance of a given 

estimation method by generating instances of the method iteratively from a training 

data set and additively combining them in a forward “stagewise” procedure (Elith et 

al., 2008). Like most data mining prediction models BRT has the inherent ability to 

represent interactions among predictor variables without a priori knowledge of their 
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distribution. Additionally, BRT is resistant to the effects of outliers, missing data and 

autocorrelation among variables (Jalabert et al., 2010) and more importantly like 

CART, it can work with both qualitative and quantitative variables (Friedman and 

Meulman, 2003). Two main parameters are required for the fitting of BRT: the 

learning rate and the tree size or interaction depth. BRT has been employed in soil 

science for soil organic carbon prediction (Martin et al., 2011; 2014; Collard, et al., 

2014). 

 

2.6.2.1.4 Random Forest 

The Random Forest (RF) was developed as an extension of RTM to improve its 

prediction accuracy (Breiman 2001; Liaw and Wiener, 2002) and like BRT, to 

reduce model overfitting. RF is an assemblage of a number of classification or 

regression trees using two levels of randomization for every tree in the forest 

(Breiman, 2001). RF has several advantages over other prediction models: i) 

insensitivity to noise or weak prediction variables as it selects the most important 

variable at each node split (Okun and Priisalu, 2007), and ii) reasonable predictive 

performance with noisy predictive variables (Diaz-Uriarte and de Andres, 2006). In 

addition, RF trees are insensitive to missing values or outliers in a given dataset 

(Craig and Huettmann, 2008), a common feature with most legacy soil data. RF’s 

major strength lies in its two randomization procedures of bootrapping and random 

input selection (Sequeira et al., 2014) and subsequent bagging of the predictions. RF 

has been vastly employed in remote sensing studies (Gislason et al., 2006; Lawrence 

et al., 2006) with substantial usage in ecology (Peters et al., 2008; Prasad et al., 2006) 

and genetics (Wu et al., 2009). However, there is a dearth of information on its 

application in soil science studies (Grimm et al., 2008, Viscara Rosel and Brehens, 

2010). Several studies have demonstrated the superiority of RF to commonly 

available geostatistical and data mining prediction models in environmental research 

(Prasad et al., 2006; Li and Heap, 2008). In Soil Science, Ließ et al. (2012) reported 

a better performance of RF models than CART in predicting soil texture of the 

surface horizon.  
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2.6.2.1.5 Bayesian network models 

Bayesian networks (BNs) are graphical probabilistic models developed in the 1980s 

from the branch of mathematics known as probabilistic reasoning (Peal, 1988). BNs 

apply probabilities derived from either measured data or expert opinion in making 

predictions. They present cause-effect relationships (one event leading to another) 

through several connections in a system of networks (Hough et al., 2010) and differ 

from common network based methods, such as ANNs, by allowing the integration of 

qualitative experts knowledge into the model structure. In this context, soil experts 

are allowed to judge whether the fitted model makes some pedogenic senses (Taalab 

et al., 2015a). BNs have several advantages over other regularly used modelling 

techniques in DSM (Taalab et al., 2015a; 2015b Brungard et al., 2015). Unlike 

purely deterministic models, BNs offer a structured method of handling the 

uncertainty associated with soil predictions by expressing the existing relationships 

between soil attributes or class and the covariates as a probability function (Dlamini, 

2010).  

 

Another major appeal of BNs is that, the integration of experts’ knowledge in the 

model structure can be used to either supplement measured data or solely define soil-

landscape relationships (Finke, 2012). This is an ideal way of addressing problems of 

limited data availability (Kuhnert et al., 2010, Kuhnert, 2011). BNs have been 

optimally applied to environmental studies such as ecology and natural resource 

management (McCann et al., 2006; Kuhnert et al., 2010), landscape conservation 

(McCloskey et al., 2011), habitat mapping (Smith et al., 2007), erosion risk mapping 

(Aalders et al., 2011) and wildfire risk mapping (Dlamini, 2010). However Bayesian 

modelling approaches have only been recently used in soil mapping (Mayr et al., 

2010; Brungard et al., 2015; Lorenzetti et al., 2015; Taalab et al., 2015a; 2015b; 

Xiong et al., 2015; Yang et al., 2015).  

 

 

http://www.sciencedirect.com.ezproxy2.library.usyd.edu.au/science/article/pii/S0016706115001688#bb0215
http://www.sciencedirect.com.ezproxy2.library.usyd.edu.au/science/article/pii/S0016706115001688#bb0110
http://www.sciencedirect.com.ezproxy2.library.usyd.edu.au/science/article/pii/S0016706115001688#bb0110
http://www.sciencedirect.com.ezproxy2.library.usyd.edu.au/science/article/pii/S0016706115001688#bb0320
http://www.sciencedirect.com.ezproxy2.library.usyd.edu.au/science/article/pii/S0016706115001688#bb0325
http://www.sciencedirect.com.ezproxy2.library.usyd.edu.au/science/article/pii/S0016706115001688#bb0400
http://www.sciencedirect.com.ezproxy2.library.usyd.edu.au/science/article/pii/S0016706115001688#bb0110
http://www.sciencedirect.com.ezproxy2.library.usyd.edu.au/science/article/pii/S0016706115001688#bb0305
http://www.sciencedirect.com.ezproxy2.library.usyd.edu.au/science/article/pii/S0016706115001688#bb0305
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2.6.2.2 Regression kriging 

Regression kriging (RK) is a hybrid prediction technique that combines a regression 

(either simple or multiple-linear) of the target soil attribute on covariates with 

ordinary, or simple, kriging of the regression residuals (Odeh et al., 1995; Goovaerts, 

1997; Hengl et al., 2007). In RK the assumption is that the deterministic component 

of the target soil attribute is accounted for through the regression model, while the 

model residuals represent the spatially varying but dependent component. Several 

variants of RK have been proposed and used in different studies (Odeh et al., 1994; 

Odeh et al., 1995; Knotters et al., 1995; Hengl et al., 2007) with slight modifications 

depending on the task at hand.  

 

Regression-kriging is increasingly popular because it achieves lower prediction 

errors at the control points and to the relative availability of less espensive 

covariates. Several studies have demonstrated the superiority of regression kriging 

over other methods of interpolation such as ordinary kriging, universal kriging, 

multiple-linear regression and cokriging especially in soil studies (Odeh et al., 1995; 

Odeh and McBratney, 2000; Hengl et al., 2007; Li and Heap, 2008). Recently, it has 

been demonstrated that combination of machine learning methods like random forest 

with OK using RK approach can improve prediction accuracy significantly (Li et al., 

2011). One major limitation of regression kriging is that the way in which the 

explanatory variables appear in the trend is highly empirical and thus may not reflect 

the actual physical processes (Odeh and McBratney, 2000). There is also the high 

computational demand as the analyst will have to carry various steps in different 

software within statistical and GIS environments (Hengl et al., 2007). 

 

2.6.2.3 Fuzzy expert systems 

In addition to the aforementioned data mining and hybrid models, other quantitative 

modelling techniques that have been employed in the use of legacy soil data for 

DSM are those based on the fuzzy set theory or fuzzy expert systems (Zhu et al., 

2001). Fuzzy set theory is a generalization of the traditional set theory in that it 
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modified the classical concept of belonging to a set to allow partial degrees of 

membership of a set i.e any values within a continuum range of 0 and 1 (McBratney 

and Odeh, 1997; Torbert et al., 2008). Fuzzy set theory is also a generalization of 

Boolean algebra more suitable to situations where there are zones of gradual 

transition compared to the conventional crisp boundaries used in dividing classes 

(Burrough et al., 1992). Originally formulated by Zadeh (1965), the fuzzy set theory 

builds on the traditional crisp two-valued theory of binary membership functions of 

TRUE or FALSE by adding intermediate values or partial membership. It is a 

mathematical method of quantifying ambiguity and vagueness such that data that do 

not have sharply defined boundaries are grouped into membership classes. Fuzzy 

expert systems have been applied in a variety of studies such as in remote sensing 

(Wang, 1990), soil pollution management (Amini et al., 2005), salinity study (Malins 

and Metternicht, 2006), soil classification (Odeh et al., 1992; Zhu et al., 1996; Qi et 

al., 2006) and land evaluation (Burrough et al., 1992; Davidson et al., 1994; Braimoh 

et al, 2004). 

 

The development of fuzzy logic-based digital soil mapping techniques is due to its 

ability to represent the continuous nature of soil spatial variation (Zhu et al., 2001; 

Yang et al., 2005). Generally, in fuzzy expert system approaches, soil spatial 

parameters are expressed in terms of membership functions of different soil classes 

(McBratney et al., 2000). This is then used to produce conventional soil class maps 

or to forecast spatial parameters of specific soil properties (Zhu et al., 1996). 

Lagacherie (2005) proposed a procedure based on fuzzy pattern matching to translate 

soil class descriptions in soil database into a set of membership functions. Qi et al. 

(2006) developed a fuzzy soil mapping approach to represent soil-environment 

knowledge as fuzzy membership functions. Later Qi et al. (2008) developed a data 

mining method using the Expectation Maximization (EM) algorithm to define 

membership functions based on the information extracted from conventional soil 

class maps. One advantage of fuzzy approach to DSM is its low data requirement.  
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Fuzzy expert systems can sometimes be employed in conjunction with geostatistical 

spatial prediction techniques such as kriging to produce fuzzy soil maps of 

continuous classes (McBratney and De Gruijter, 1992; Odeh et al., 1992). The 

underlying process of fuzzy soil mapping involves using the fuzzy k-means classifier 

to the classify the soil surface and kriging the matrix of membership grades into a 

continuous soil surface classes which represents the different soil mapping units 

(SMU). There are no rigid boundaries demarcating these SMUs or geographical soil 

entities (Scull et al., 2003) hence, any individual location can belong to more than 

one class. 

 

2.7 Pedotransfer functions for DSM of functional properties at national scale 

Pedotransfer functions (PTFs) are viable alternatives to bridging the gap between 

available soil data and required data and could complement DSM efforts especially 

in developing countries (Minasny and Hartemink, 2011). PTFs are“predictive 

functions of certain soil properties derived from other easily measured properties” 

(Bouma, 1989). As such, the main focus of PTFs is to estimate, relatively difficult to 

measure functional properties (e.g. soil water holding capacity (SWHC), hydraulic 

conductivity (Ks), soil erodibility index, bulk density and pH-buffering capacity) 

from primary soil properties (e.g. particle-size fractions, organic carbon, and pH). 

The estimated functional soil properties are highly desirable but often not available 

in most national soil databases.  

 

2.7.1 Development of pedotransfer functions 

One of the most commonly used modelling techniques in the development of PTFs is 

multiple linear regression (MLR). In MLR, all readily available predictor variables 

are linearly related to the target soil data (Abbasi et al., 2011) to estimate the target 

data. In addition to the MLR, more complex techniques have also been developed as 

PTFs. These include artificial neural networks (Minasny and McBratney, 2002; 

Merdun et al., 2006), support vector machines (Lamorski et al., 2008; Twarakavi et 
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al., 2009; Jafarzadeh et al., 2015), genetic programming (Padarian et al., 2014), 

group method of data handling (Nemes et al., 2005; Ungaro et al., 2005; Nemes and 

Rawls, 2006., Vereecken et al., 2010) and nonparametric nearest neighbor (Nemes et 

al., 2006; 2010). Other relatively new approaches include boosted regression trees 

(Martin et al.,2009; Jalabert et al.,2010; Ghehi et al., 2012, Jordan et al., 2015), ) and 

random forest (Sequeira et al., 2014). Several studies have employed one or more of 

these techniques to develop PTFs with varying level of performance. 

 

Minansy et al. (1999) compared both parametric and point estimates of water 

retention curves using PTFs developed from multiple linear regression (MLR), 

extended nonlinear regression (ENR) and artificial neural network (ANN). They 

reported that ENR out performed MLR and ANN in parametric PTF prediction. 

However, when the number of input parameters is greater than three, ANNs usually 

perform better than regression techniques, particularly under low uncertainty 

conditions (Baker and Ellison, 2008; Minansy et al., 2004). Lake et al. (2009), in a 

different study, also reported the superiority of ANN models over MLR models 

which they attributed to the ability of ANN to establish a non-linear relationship 

between the dependent and independent variables. Botula et al. (2015) also reported 

a better performance of kNN PTFs over MLR. In contrast, Merdun et al. (2006) 

reported no significance differences between the accuracy of MLR and ANN models 

in point estimate of soil hydraulic conductivity. However, they opined that MLR 

predicted point and parametric variables of soil hydraulic parameters are intuitively 

better than those of ANN.  

 

2.7.2 Limitations of pedotransfer functions for digital soil mapping 

As discussed previously, several studies in the soil science and hydrology 

community have been involved in developing PTFs from available soil databases 

around the world. Nonetheless, the reliability of many of these PTFs is dependent on 

the size and structure of the input data (Romano and Chirico, 2004; Haghverdi
 
et al., 

2012). For instance, in a relatively small area, with low spatial soil variability and 

http://www.sciencedirect.com/science/article/pii/S0022169412002466
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homogenous terrain, high reliability could be obtained from a reasonably few 

number of soil samples (Ghehi et al., 2012). However, in a given large and 

heterogeneous landscape characterized by high soil spatial variability, reliability of 

PTFs may be impacted by the size and spread of the soil samplings.  

 

Another major limitation of PTFs in DSM is their requirement of independent 

observations and no spatial autocorrelation (Brus and de Gruijter, 1997). 

Consequently, there is need to carefully evaluate the class domain of new datasets 

with the aim to calibrate the datasets before any attempt to extrapolate PTFs beyond 

their original statistical training limits and geographical area (Ungaro et al., 2005). 

For example, Medina et al. (2002) reported that water retention PTFs developed for 

soils in the USA and Europe cannot be used for Ferralsols in Cuba. Bell and van 

Keulen (1996) found that field capacity data from disturbed soil samples 

overestimates in-situ field capacity for all soils except for coarser textured soil. 

Hence they cautioned the use of field capacity data derived from disturbed samples.  

 

In contrast to the above opinions on transferability of PTFs, Cresswell et al. (2006) 

reported a good transferability of soil water retention capacity PTFs developed from 

Australia soil data to French soils. Similarly, Manyame et al. (2007) also found that 

Campbell's PTFs for water retention and hydraulic conductivity function could be 

applied for sandy soils in Niger but with a rather modest accuracy. As such there is 

no universal validity of any particular PTF (Bastet et al., 1999); therefore new PTFs 

should be validated with new data sets in the domain of the calibration datasets (Rab 

et al., 2011). To facilitate PTFs validation on new datasets, McBratney et al. (2011) 

recommended that three tables containing information and statistics of the calibration 

data, predicted variables and the validation data should accompany any published 

PTFs to enhance effective usage.  
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2.7.3 Enhancing the performance of pedotransfer functions for scarce 

data condition 

The reliability or performance of PTFs is dependent on the size and structure of the 

input data which is a major concern in many cases. However, to improve the 

performance of PTFs, several techniques have been employed prior to fitting PTFs 

with varying level of success. These include stratification of measured data based on 

soil taxonomy (Manrique & Jones, 1991; Heuscher et al., 2005) or by soil horizons 

and the incorporation of additional variables such as soil physiographic and 

morphological properties such as soil consistence and structure (Calhoun et al., 

2001), horizon designation (Jalabert et al., 2010), etc. The concern however, is that 

most of these soil morphological properties (e.g. soil consistence and structure), are 

not always available from soil survey data (Manrique & Jones, 1991; Calhoun et al., 

2001; Heuscher et al., 2005).  

 

Other studies have reported improvement of PTFS following the incorporation of 

environmental data such as topography and vegetation attributes to primary soil 

properties (Pachepsky et al., 2001; Leij et al., 2004; Sharma et al., 2006; Jana and 

Mohanty, 2011; Wang et al., 2014). For instance, Pachepsky et al. (2001) used a 

combination of different topographical attributes and soil physical data to develop 

PTFs in predicting soil hydraulic properties for hill-slope soils in the USA using 

linear regression models. Their results showed significant improvement in the 

performance of PTFs in predicting soil hydraulic properties. Leij et al. (2004) also 

corroborated their reports in a similar study conducted in Italy. Similarly, Sharma et 

al. (2006) reported the incorporation of different combinations of topographic, 

vegetative and soil attributes into PTFs as reliable methods to estimating soil 

moisture contents. Recently, Wang et al. (2014) used the combination of soil basic 

properties and terrain attributes to develop a PTF for estimating bulk density (BD) 

across the Loess Plateau in China. They concluded that the addition of slope gradient 

to soil physical properties could estimate BD with reasonable accuracy. 
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2.8 Prediction of Soil particle size fraction as a compositional data 

The relative soil composition of sand, silt and clay fractions (particle size fraction) 

which determines the texture is inarguably the most important soil physical property 

that controls most physical, chemical and biological processes in the soil (Adhikari et 

al., 2013, Safari et al., 2013). For instance the particle-size distribution of soil can 

greatly influence the soil water retention capacity (Botula et al., 2012), plant nutrient 

retention capacity (Kettler et al., 2001), leaching and erosion potential of soils 

(Thompson et al., 2012), soil organic matter dynamics as well as the distribution and 

density of soil microbes (Kong et al., 2009). Several efforts have been made towards 

the spatial prediction of particle size fraction (PSFs). Nemes et al., (1999) used four 

different interpolation techniques (Loglinear, Gompetz curve, non-parametric spline 

function and similarity indices) to study the spatial distribution patterns of PSFs. 

Scull et al., (2005b) compared the use of several statistical and geostatistical models 

to predict PSFs. Santra et al., (2008) also studied the spatial variation of PSFs using 

ordinary kriging. More recently, Adhikari et al (2013) employed regression tree 

approach to predict the PSFs for Denmark with the use of covariates such as DEM, 

land use, parent material, etc. Although all these studies clearly showed the 

significance of soil PSFs, none of these studies considered the compositional nature 

of PSFs. 

 

One major challenge in operational DSM is the spatial prediction of soil particle size 

fractions as compositional data (Buchanan et al., 2012), such that the three 

component fractions have to sum to a constant, with distributions that are curtailed at 

the limits of 0 and 100. According De Gruijter et al. (1997) composition data must 

meet the following criteria: 

 

a. Each of the components of the composition must be non-negative 

𝑍 ∗ 𝑖𝑗(𝑥) ≥ 0       [2.3] 

where 𝑍 ∗ 𝑖𝑗(𝑥) is the estimate of a compositional regionalized variable, of     
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𝑗th component at 𝑖th location. 

b. At each location, the components must sum to a constant  

∑ 𝑍 ∗ 𝑖𝑗(𝑥)𝑛
𝑗=1 =  ∅, and ∅=constant.            [2.4] 

c. Estimates of the composition should be unbiased 

            𝑍∗
𝑖𝑗(𝑥) = ∑ 𝜆𝑖𝑍𝑖𝑗(𝑥) ∑ 𝜆𝑖 = 1; 𝑗 = 1, … , 𝑘.𝑛

𝑖=1
𝑛
𝑖=1            [2.5] 

Out of 𝑘 components in the composition, 𝑍∗
𝑖𝑗(𝑥) represents the estimate of a 

compositional regionalized variable, of the 𝑗𝑡ℎ component at the 𝑖𝑡ℎ location. 

 

For the interpretation of regionalized compositions the sample space is a positive 

(𝑆𝑑) and not a multidimensional space (𝑅𝑑) (Aitchison, 1990). A d-part simplex is 

thus defined as: 

 

𝑆𝑑 = {𝑥 = [𝑥1, 𝑥2, … . . , 𝑥𝑑]; 𝑥𝑖  > 0, 𝑖 = 1,2, … … . . , 𝑑; ∑ 𝑥𝑖
𝑑
𝑖=1 = 𝑘 }          [2.6] 

 

where 𝑆𝑑 represent row vectors of d-part compositions; k is a constant, which is the 

sum of vectorial compositions which could be 100 (if composition is a percentage) or 

1. The transformation of this simplex 𝑆𝑑 to the real space 𝑅𝑑, can be achieved using 

three (3) different approaches; additive log-ratio (Aitchison, 1990), centred log-ratio 

(Aitchison, 2003) and isometric log-ratio (Egozcue et al., 2003). According to 

Aitchison (1990) the additive log-ratio (ALR) can be expressed as: 

 

𝑦𝑖𝑗(𝑥) = 𝑙𝑛
𝑧𝑖𝑗(𝑥)

𝑧𝑖𝑘  (𝑥)
      𝑘 = 𝑑 + 1    𝑖 = 1, … . , 𝑛            [2.7] 

where 𝑦𝑖𝑗  is the log ratio transformation of 𝑧𝑖𝑗. 

 

The inverse transformation of the above equation is: 

 

𝑧𝑖𝑗(𝑥) =  
exp 𝑦𝑖𝑗(𝑥)

∑ exp 𝑦𝑘(𝑥)𝑘
𝑗=1

           [2.8] 
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This compensates for the closure effect and subsequently through perturbation, the 

transformed data may fit a normal distribution, making the data suited to classical 

analysis such as MLR (Odeh et al., 2003).  

 

One major criticism for the use of ALR has been the choice of an arbitrary 

component of the composition as a divisor. This, according to earlier critics, is 

problematic in the sense that, the distances between points in the transformed space 

are not the same for different divisors. However, it has been proven that linear 

statistical methods with compositional data as the dependent variable are invariant to 

the choice of divisor as the implicit linear transformations between different 

representations cancel out in any F ratio of quadratic or bilinear forms (Aitchison et 

al., 2000). Moreover, of the three log-ratio transformation methods, ALR has gained 

more usage in scientific research communities because of its ease of interpretation. It 

has been used in Soil Science studies for prediction of particle size fractions (PSFs) 

with predicted PSFs satisfying the criterion for compositional data analysis (Odeh et 

al., 2003, Buchanan et al., 2012; Li et al., 2012 Arrouays et al., 2011; Huang et al., 

2014; Sun et al., 2014). 

 

2.9 Estimation of total soil carbon stock 

Since total carbon stock is one of the key functional properties derived in chapter 4 

of this thesis it will be nice to review available approaches to soil carbon stock 

estimation. Generally, there are two major techniques used for estimating SOC 

stocks. These include the DSM and the measure-and-multiply (MM) (Mishra et al., 

2010; Thompson and Kolka, 2005). The DSM approach estimates the spatial 

variability of SOC stocks in relation to variations in a set of environmental covariates 

(Mishra et al., 2010, Cambule et al., 2014; Were et al., 2015). Thereafter, predicted 

SOC stocks at the various grid cells are summed up to the total area (Gessler et al., 

2000; Thompson et al., 2001). The use of dense spatial attributes accrued the DSM 

approach an advantage of relatively lower estimation error at each prediction location 
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than the MM approach. Several studies have used DSM approach to estimate SOC 

stock (Florinsky et al., 2002; Ziadat, 2005; Ungaro et al., 2010; Adhikari et al., 2014; 

Cambule et al., 2014; Dorji et al., 2014; Were et al., 2015). However, many of these 

studies cover only small areas of about 100 hectares and only Adhikari et al. (2014) 

covers national scale application.  

 

On the other hand, the MM approach begins with stratification of the entire study 

area after which point SOC stock estimates per stratum are averaged and multiplied 

by the area of each stratum (Thompson and Kolka, 2005; Guo et al., 2006; Tan et al., 

2009). This approach has been applied to a numerous SOC stock studies ranging 

from regional to global scales (Amichev and Galbraith, 2004; Tan et al., 2004; 

Thompson and Kolka, 2005; Batjes, 2008). It has an advantage of simplicity and ease 

of use compared to the SLM approach. However, it is criticized by the possibility of 

high estimate error due to high within-stratum SOC variability (Thompson and 

Kolka, 2005; Mishra et al., 2010).  

 

2.10 Deriving additional value from DSM products for National planning 

purposes 

As an economic product, soil information has little or no value until it is interpreted 

and applied in such a way as to support decision making process (Grealish et al., 

2015). In this context, primary DSM products can be used in quantitative land 

suitability assessment for crop production, irrigation needs and scheduling as well as 

land degradation assessment (Omuto et al., 2013). The outputs of such assessments 

are integral components of national agricultural and environmental planning; 

informing farmers and policy makers on where is best for the production of a 

particular crop or whether land could be allocated for alternative uses. 

 

 

 



Chapter 2   Review of literatures 

 

30 

 

2.10.1 Land suitability assessment 

Land suitability assessment involves the use of various soil parameters (such as soil 

texture, water retention capacity, exchangeable cation), along with other climate and 

terrain data, to identify suitable areas for various agricultural enterprises such as 

irrigation agriculture. Land suitability assessment is an integral component of 

developmental planning in most developing parts of the world, especially in the SSA 

where there is high demand for food and fibre. Basically, there are two major 

approaches in land suitability assessment. These include qualitative assessment 

which is based on expert judgment and quantitative assessment based on parametric 

method and process-oriented simulation models (Van Lanen, 1991; Bouma et al., 

1993). In both approaches, the results are usually presented as maps where the class 

limits are based on rigid and exact data models (Burrough, 1992; McBratney and 

Odeh, 1997; Triantafilis et al., 2001) with the assumption that the structure and the 

parameters of the model are known with high certainty of occurrence (Zimmermann, 

1992). However, according to Zadeh’s (1965) report on theory of fuzzy sets, almost 

all classes of objects encountered in the real physical world do not have precise 

criteria of membership. As discussed above in section 2.6.2.2, fuzzy set approach can 

be considered as an alternative method to crisp models in land evaluation 

(McBratney and Odeh, 1997). The main advantage of fuzzy sets is their capability to 

express gradual transitions from membership to non-membership and vice versa 

(Klir, 1995). However, the performance of fuzzy set methods depends mainly on 

membership function information (Zimmermann, 1992).  

 

Whether a fuzzy or crisp approach is used, land suitability assessment involves 

complex interactions of biophysical, chemical and climatic processes with 

socioeconomic factors. These processes and factors are in most cases heterogeneous, 

interdependent and conflicting in nature. While the biophysical elements tend to be 

relatively stable, socio-economic factors are dynamic and dependent on the 

prevailing social, economic and political conditions of an area (Triantafilis et al., 

2001; Keshavarzi et al., 2010). Therefore aggregating such heterogeneous criteria for 
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decision making poses a major challenge for suitability assessment. To overcome 

these challenges, fuzzy decision making uses several aggregation operators on fuzzy 

sets for obtaining different types of decision functions.  

 

2.10.2 Aggregation methods for fuzzy land suitability assessment 

Decisions on suitability of land for a particular use, like most real life decision 

making, borders on making decisions under multiple attributes or evaluation criteria 

and multiple objective optimization. These are usually achieved through aggregating 

preferences, obtained from different decision makers on a given set of alternatives. 

Therefore, fuzzy decision making uses several aggregation operators on fuzzy sets to 

obtain different types of decision functions. When an array of evaluation criteria and 

the corresponding weight matrix for a particular decision are determined, information 

about the evaluation criteria is combined through an aggregation function to 

determine the overall suitability (Soasa and kaymak, 2002). The aggregation function 

may consist of a single aggregation operator or a combination of operators. 

 

Zaheh (1965) introduced the first standard fuzzy operators; union (Max), intersection 

(Min), and complement which extensions of OR, AND, and NOT logical Boolean 

operations, respectively. However these standard aggregators do not express 

satisfactorily, the degree of compensation common to human aggregate criteria 

(Peneva, 2003). Therefore in fuzzy decision making other types of aggregations that 

are commonly used include conjunctive, disjunctive and compensatory aggregations 

(Soasa and Kaymuc, 2002). Conjunctive aggregation of criteria (t-norms) implies 

simultaneous satisfaction of all decision criteria, while the disjunctive aggregation (t-

conorms) implies full compensation amongst the criteria. The compensatory 

aggregation (averaging operators such as OWA) is more suitable for dealing with 

conflicting criteria common with human aggregation behavior. However, it does not 

capture well enough the degree of compensation common to human aggregation 

ability in the presence of conflicting criteria. 
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Among the family of aggregation operators, fuzzy integrals are known to be one of 

the most robust aggregation functions that allow the fusion of information from 

several conflicting criteria (Torra and Narukawa, 2006). Fuzzy integral is based on 

the concept of fuzzy measure, which is a generalization of specific types of 

averaging aggregation operators (Grabisch et al., 2008). There are several fuzzy 

integrals: Choquet integral (Choquet, 1954), Sugeno integral (Sugeno, 1974), t-

conorm integral (Murofushi and Sugeno, 1991) and twofold integral (Torra, 2003). 

Among these integrals, Choquet integral (CI) is one of the most commonly used for 

suitability analysis (Wang et al., 2006; Grabisch et al., 2008). It is non-linear, flexible 

based on either non-additive (Rowley et al., 2015) and/or additive measure. One 

important feature of CI is the capacity to recognize the vagueness of the decision 

environment and to account for the interactions among conflicting and correlated 

criteria (Yang, 2005). CI also considers the degree of satisfaction and/or 

dissatisfaction of alternatives for each criterion with the help of intuitionistic fuzzy 

values. Despite the important features of CI, it has been rarely used in soil suitability 

assessment (Odeh and Crawford, 2009; Chakan et al., 2012). 

 

2.11 Application of DSM products for National scale planning 

DSM products such as SOC and stock maps are useful components of national 

environmental monitoring programs (Minasny et al., 2013). Digital SOC and stock 

maps can be used in modelling spatio-temporal trends of soil processes in response to 

land use change. Such information will help national policy makers to develop plans 

on alternative land-management techniques. For instance, Milne et al. (2007) used 

SOC data in the Global Environment Facility Soil Organic Carbon modelling system 

to map future SOC stock changes in Brazilian Amazon (Cerri et al., 2007), the Indo-

Gangetic plains (Bhattacharyya et al., 2007), and Jordan (Al-Adamat et al., 2007). 

Another application of DSM products for national planning is in the area of irrigation 

development planning. Irrigation development is a capital intensive project and as 

such, quantitative irrigation suitability maps which are derivatives of DSM products 
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and landscape attributes can help guide national policy decisions-making on effective 

and economically viable irrigation establishment. Furthermore value-added DSM 

products such as soil fertility index, phosphorus retention capacity, pH buffering 

capacity are useful for national agricultural planning in terms of crop suitability. 

However, in most developing countries, particularly in the SSA, the lack of 

quantitative soil data has hampered application of soil information as described 

above for national planning.  

 

2.12 Examples of operational DSM using legacy soil data  

As previously stated, legacy soil data form the foundation or building blocks for 

most DSM operations (McBratney et al., 2003; Onuto et al 2013), especially in data-

scarce countries. This is because of the need in such a situation to reduce the cost and 

difficulties in obtaining new samples for DSM. Thus legacy soil data can be used for 

model building and testing to produce soil information on previously unmapped 

areas (Hengl et al., 2015), for establishing areas of high uncertainty where new 

samples will be required to fill the gaps (Grimm and Brehens, 2010) and as baseline 

for studying change in soil properties over time (Karunaratne et al 2014). Another 

application of legacy soil data in DSM includes updating older soil survey 

information (Bui et al 2003; Kempen et al., 2015; Sun et al., 2015). Despite the 

availability of legacy soil data, only a few operational DSM studies at at the National 

and continental scales have utilized this useful source of data. Hong et al. (2009) 

mapped soil carbon storage and water capacity for Korea using legacy soil data from 

the Korean soil information system. Odgers et al. (2012) employed the weighted 

average approach to developing SOC map for the United States. Hengl et al. (2015) 

utilized the Africa soil database to map soil properties in the SSA. While these 

studies have succeeded in mapping basic soil properties at the different scales, none 

attempted adding value to the predicted soil attributes to support decision making 

and developmental planning especially at the national level. 
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2.13 Conclusion 

There is a dire need for soil information to support increased production of food and 

fibres for a rapidly growing world population. This is particularly important in the 

SSA which is experiencing a continual increase in population that require more food, 

fibre and energy to be produced; against the background of the changing climate 

conditions and decline in land productivity in this region. However, soil information 

is very difficult to obtain, especially at more refined levels of detail. In addition, 

substantial financial investment is often required to obtain soil data because most soil 

properties exhibit high variability over short distances, so much that the skills and 

expertise necessary to accurately record, measure and map such changes are 

prohibitive in terms of time and labour. DSM can substantially help in providing soil 

information at the required format and scale in developing countries, particularly in 

SSA. However the practicability of DSM in these countries is limited by absence of 

dense spatial soil data.  

 

There are several techniques such as data mining tools and hybrid models that are 

amendable to sparse legacy soil data. Currently, not much work has been done to 

apply these techniques to DSM in SSA especially at the national scale. Furthermore, 

most DSM operations are committed to producing digital maps or information on 

primary soil attributes. Such maps in themselves have very little or no value unless 

they are interpreted and applied to a particular question to support a decision-making 

process. One practical way of using primary soil attributes in planning and decision-

making process, particularly at the national scale, is by incorporating them into 

multi-criteria suitability analysis for different land uses such as irrigation and 

plantation agriculture. Despite the established need for soil information especially in 

combating the major global issues, there has not been much effort to add additional 

value to DSM products to allow their effective utilization in decision making and 

planning at the national level.  
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Abstract 

There is a growing need for spatially continuous and quantitative soil information for 

environmental modeling and management especially at the national scale. This study 

was aimed at predicting soil particle-size fractions (PSF) for Nigeria using random 

forest model (RFM). Equal-area quadratic splines were fitted to Nigerian legacy soil 

profile data to estimate PSFs at six standard soil depths (0–5, 5–15, 15–30, 30–60, 

60–100, and 100–200 cm) using the GlobalSoilMap project specification. We 

applied an additive log-ratio (ALR) transformation of the PSFs. There was a better 

prediction performance (based on 33% model validation) in the upper depth intervals 

than the lower depth intervals (e.g., R
2
 of 0.53; RMSE of 13.59 g kg

1
for clay at 0–5 

cm and R
2
 of 0.16; RMSE of 15.60 g kg

1
 at 100–200 cm). Overall, the PSFs show 

marked variations across the entire Nigeria with a higher sand content compared with 

silt and clay contents and increasing clay content with soil depth. The variation in 

soil texture (ST) shows a progressive transition from a coarse texture (sand) along 

the fringes of northern Nigeria (e.g., upper part of Maiduguri and Sokoto), to finer 

texture (loam to clay loam) toward the western part of the Niger Delta region in the 

south. The inclusion of depth as a predictor variable significantly improved the 

prediction accuracy of RFM especially at lower depth intervals. These results could 

be used for producing soil function maps for national agricultural planning and in 

assessments of environmental sustainability. 

 

Abbreviations: AfSIS, African soil information service; ALR, additive log-ratio; COK, compositional ordinary 

kriging; DEM, digital elevation model; DSM, digital soil mapping; EVI, enhanced vegetation index; GLM, 

generalized linear model; mALR, modified additive log-ratio; ME, mean error; MLR, multiple linear regression; 

MODIS, moderate resolution imaging spectroradiometer; NASA, national aeronautics and space administration; 

NDVI, normalized difference vegetation index; PSFs, particle size fractions; PTF, pedo-transfer function; RFM, 

random forest model; RK, regression kriging; RMSE, root mean square error; RTM, regression tree model; 

SRTM; shuttle radar topography mission; USDA, United State department of agriculture. 
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3.1 Introduction 

There is a growing need for spatially continuous and quantitative soil information for 

environmental modelling and management (Minasny et al., 2008), especially at the 

national and supranational scale. Soil information is essential for global 

environmental challenges including climate change, food and water shortage, land 

degradation, and loss of biodiversity (Hartemink and McBratney, 2008). Such 

information is not always available at the required scale and coverage and in the right 

format (McBratney et al., 2003; Greve et al., 2012a). This is of concern in data-

scarce countries where efforts for adequate soil data collection are often hampered by 

economic and logistic constraints.  

 

The texture of the soil is one of its most important characteristics. It strongly affects 

water and nutrient retention, infiltration, drainage, aeration, SOC content, pH 

buffering and porosity and that affects many soil functions and mechanical 

properties. Soil texture is used at all levels in classification systems and in Soil 

Taxonomy it distinguishes soil orders (e.g. Vertisols or Alfisols) and is used all the 

way to the family level of particle size classes (Soil Survey Staff, 2010). Soil texture 

is used in the diagnosis of some key epipedons but particularly for argillic, natric, 

kandic horizons (Bockheim and Hartemink, 2013)  Soil texture also determines the 

suitability of the soil for a particular use and management, waste disposal, and water 

management (Thompson et al., 2012). The capacity of soils to maintain organic 

carbon is influenced by its clay and silt content (Hassink, 1997; Bationo et al., 2007). 

PSFs are inputs in most hydrological, ecological, climatic and environmental risk 

assessment models (Ließ et al., 2012). The proportions of clay and sand particles 

have been used to create pedotransfer functions to estimate difficult-to-measure soil 

properties such as bulk density, hydraulic conductivity, water holding capacity, 

among others (Minasny and Hartemink, 2011).  
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Despite the importance, there is a dearth of information on soil texture (Scull et al., 

2005), especially the PSFs at the resolution required for environmental modelling. In 

modeling, quantitative and continuous soil attributes rather than taxonomic soil 

classes are required (Gessler et al., 1996). However, most soil maps are produced as 

discrete class surface maps without considering the continuous variability of soil 

attributes with depth (Adhikari et al., 2013) and across space. Consequently, such 

soil maps lack quantitative information about the spatial distribution of very 

important soil physical attributes as required for effective environmental modelling, 

monitoring and management (Scull et al., 2005). 

 

Digital soil mapping (DSM) offers a promising approach to spatial prediction of soil 

attributes. McBratney et al. (2003) formalized DSM in the now widely used scorpan 

model in which S, a set of soil attributes (Sa) or classes (Sc), is considered a function 

of other known soil attributes or classes (s), climate (c), organisms (o), relief (r), 

parent materials (p), age or time (a), and spatial location or position (n). All digital 

soil mapping (DSM) techniques involve establishing a relationship between the soil 

and environmental variables (representing the various soil forming factors) based on 

statistical and geostatistical models. Prediction is made at unobserved locations using 

the environmental variables at those locations and a soil property can be predicted 

using its interrelationships with the environmental covariates such as digital 

elevation models (DEMs) (McBratney et al., 2000), remotely sensed data (Odeh and 

McBratney, 2000), chemical and physical attributes obtained through laboratory 

analysis of soil sample or from legacy soil maps (Mayr, 2008).  

 

Several applications of DSM techniques for predicting soil properties especially 

PSFs, using various statistical models, have been reported (Scull et al., 2005; Bishop 

and Minasny, 2006; Odeh et al.; 1995, 2007; Buchanan, et al., 2012; Greve et al., 

2012b and Ließ et al., 2012). The models used in these studies are often based on 
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compositional ordinary kriging (COK), regression kriging (RK), multiple linear 

regression (MLR), generalized linear model (GLM), regression tree model (RTM) 

and recently Random Forests (RF) with varying scale from the field to national level. 

However, very few DSM studies have been conducted in Sub-Sahara Africa where 

there is an urgent need for up to date spatial soil information (Sanchez et al. 2009). 

The objective of this study is to produce a fine resolution digital soil particle-size 

fractions map for Nigeria. We have used existing soil information (legacy data) and 

the latest DSM technologies to predict PSFs across the whole country.  

 

3.2 Materials and methods 

3.2.1 Study Area 

Nigeria is located within latitudes 4° and 14° North, and longitudes 2° and 15° East, 

with a total area of about 923,768 km
2
. The climate is humid in the south and semi-

arid in the north. Seasonal rainfall distribution varies from 500 m to 4000 mm yr
-1

 

with unimodal pattern in high rainfall areas close to the equator, low rainfall areas in 

the north, and bi-modal rainfall of between 1250 and 1500 mm (FAO, 1984). 

Temperatures throughout the year are in the range of 22-33
o
C and rarely below 18

o
C 

in any month. Vegetation ranges from evergreen forest in the southern part through 

moist Guinea savannas in the centre to the Sahel savanna in the northeastern part of 

the country. 

 

Nigeria is comprised of inselbergs and sediments-filled basins derived through cycles 

of erosion from the cretaceous to the Pleistocene periods (Ojanuga, 2006). The 

country can be divided into highland and lowland areas (Iloeje, 2001). The highlands 

extend from the Jos plateau in the centre to the eastern border and the hills in some 

parts of the west. The lowlands are in the central part northward and southwards 

through Niger and Benue rivers and the coastal border (Udo, 1970). Nigeria is 

http://en.wikipedia.org/wiki/4th_parallel_north
http://en.wikipedia.org/wiki/14th_parallel_north
http://en.wikipedia.org/wiki/2nd_meridian_east
http://en.wikipedia.org/wiki/15th_meridian_east
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overlain by the Precambrian basement complex rocks mainly of igneous origin and 

sedimentary formations of Upper Cretaceous to recent age (Adejumo et al., 2012).  

 

The major soils are Alfisols, Entisols, Ultisols, Inceptisols, Oxisols and Vertisols, 

(Soil Survey Staff, 2006; FDALR, 1990). According to FDALR (1990) Entisols 

dominates the soils of both the northern and southern fringes of the country with 

mostly Psamment and Aquent suborders. The central part of Nigeria is 

predominantly Alfisols and Ultisols with Ustalfs and Udults dominating the 

suborders. Nigeria has about 80 million hectares of arable land, of which 32 million 

hectares are cultivated. Major crops produced include beans, sesame, cashew nuts, 

cassava, cocoa , groundnuts, kolanut, maize, millet, palm tree, plantains, rice, rubber, 

sorghum, soybeans and yams. 

 

3.2.2 Data processing 

3.2.2.1 Soil data  

Legacy soil profile data with PSF were obtained from the Africa Soil Profiles 

Database that was collated from reports of many decades of soil surveys and research 

conducted in Nigeria (Odeh et al., 2012; Leenaars, 2012). The data in the Africa Soil 

Profiles Database are from different periods. As soil texture is not a rapidly changing 

property compared to for example pH or SOC, we have not taken into account the 

year when the samples were taken. In the Nigerian soil survey reports the data are 

presented separately from genetic horizons for each profile. The samples were air-

dried at room temperature, passed through a 2-mm sieve, and the fine-earth material 

was analyzed for PSFs using hydrometer and pipette methods. A number of particle-

size fractions (coarse sand, fine sand, coarse silt, fine silt, sand, silt and clay) have 

also been reported by different soil surveyors. The size fractions were standardized 

into three fractions: clay (<2 µm), silt (2-50 µm) and sand 50-2000 µm) The PSFs 

http://en.wikipedia.org/wiki/Beans
http://en.wikipedia.org/wiki/Sesame
http://en.wikipedia.org/wiki/Cashew_nuts
http://en.wikipedia.org/wiki/Cassava
http://en.wikipedia.org/wiki/Cocoa_beans
http://en.wikipedia.org/wiki/Bambara_groundnut
http://en.wikipedia.org/wiki/Maize
http://en.wikipedia.org/wiki/Millet
http://en.wikipedia.org/wiki/Plantain_(cooking)
http://en.wikipedia.org/wiki/Rice
http://en.wikipedia.org/wiki/Rubber
http://en.wikipedia.org/wiki/Sorghum
http://en.wikipedia.org/wiki/Soybeans
http://en.wikipedia.org/wiki/Yam_(vegetable)
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were converted to g kg
-1

 as specified by GlobalSoilMap (Arrouays et al. 2014). In 

total the soil textural data from 978 soil profiles and 4568 layers (Table 3.1).was 

used in this study  

 

Table 3.1 Summary statistics of Particle-size fraction profile data 

Attribute Profile Layers Min Max Mean SD 

 

ISRIC Database 

Sand, % 1120 5034 0.0 100.0 58.0 24.0 

Silt, % 1120 5034 0.0 89.0 16.3 12.3 

Clay, % 1120 5034 0.0 88.1 25.4 18.6 

 

This study 

Sand, % 978 4568 0.0 100.0 57.9 24.3 

Silt, % 978 4568 0.0 80.0 16.8 12.3 

Clay, % 978 4568 0.0 88.1 25.3 18.8 

Soil depth, cm 978   30.5 440.0 155.1 47.1 

†Min, minimum; Max, maximum; SD, standard deviation 

 

3.2.2.2 Fitting of mass-preserving profile spline function  

In environmental modelling soil information is required at specified depth ranges 

rather than pedogenetic horizons. In this study, we fitted mass-preserving splines  

(Bishop et al., 1999)  to the legacy soil profiles (n=978) to generate continuous PSF 

data at standard depth intervals (0-5, 5-15, 15-30, 30-60, 60-100, 100-200 cm) as 

following the GlobalSoilMap specifications (Arrouays et al., 2014). From the fitted 

splines of the raw data, the mean value of each PSF was derived for the six depths.  
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3.2.2.3 Additive log-ratio transformation 

For the spatial prediction of compositional data, such as PSF, components have to 

sum to a constant, with distributions that are curtailed at the limits of 0 and 100 (De 

Gruijter et al. (1997). Therefore composition data must meet the following criteria: 

 

d. Each of the components of the composition must be non-negative 

Z ∗ ij(x) ≥ 0        [3.1] 

where Z ∗ ij(x) is the estimate of a compositional regionalized variable, of jth 

component at ith location. 

e. At each location, the components must sum to a constant  

∑ Z ∗ ij(x)n
j=1 =  ∅, and ∅=constant.     [3.2] 

f. Estimates of the composition should be unbiased 

            Z∗
ij(x) = ∑ λiZij(x) ∑ λi = 1; j = 1, … , k.n

i=1
n
i=1     [3.3] 

 

Out of k components in the composition, Z∗
ij(x) represents the estimate of a 

compositional regionalized variable, of the jth component at the ith location. 

For the interpretation of regionalized compositions the sample space is a positive 

(Sd) and not a multidimensional space (Rd) (Aitchison, 1990). A d-part simplex is 

thus defined as: 

 

Sd = {x = [x1, x2, … . . , xd]; xi  > 0, i = 1,2, … … . . , d; ∑ xi
d
i=1 = k }  [3.4] 

 

where Sd represent row vectors of d-part compositions; k is a constant, the sum of 

vectorial compositions which could be 100 (if composition is a percentage) or 1. The 

additive log-ratio (ALR), which allows transformation of the simplex Sd to the real 

space Rd, is expressed as 
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yij(x) = ln
zij(x)

zik  (x)
      k = d + 1    i = 1, … . , n     [3.5] 

where yij is the log ratio transformation of zij. 

 

The inverse transformation of the above equation is: 

 

zij(x) =  
exp yij(x)

∑ exp yk(x)k
j=1

        [3.6] 

 

The results are that closure effect is removed, and subsequently through perturbation, 

the transformed data may fit a normal distribution, making the data suited to classical 

analysis such as MLR (Odeh et al., 2003).  

 

We implemented a modified additive log-ratio (mALR) transformation (Odeh et al., 

2003) of the spline-fitted PSFS dataset in R environment using the alr function of the 

compositions package (van den Boogaart and Tolosana-Delgado, 2008). Before this, 

a value of 0.001 was added to the three PSFs at each standard depth to remove the 

effect of zero values. The output of the transformation was two ALR-transformed 

variables (clay and sand) which were then used for predictive modelling. The 

predicted variates were later back-transformed using ALRInv function to three size 

fractions (clay, sand and silt) which were then used to determine the soil textural 

classes.  

 

3.2.2.4 Environmental covariates  

DEM tiles were obtained from the NASA SRTM data and mosaicked using the 

ArcGIS10 Data Management Toolbox. First and second derivatives like slope, 

aspect, curvatures (profile and plan), flow accumulation and compound topographic 
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indices such as wetness index, stream power index were derived from the DEM 

using the ArcGIS10 Geomorphometry Toolbox (Reuter and Nelson, 2009). 

Landform classifications (Iwahashi and Hammond) based on algorithms developed 

by Iwahashi and Pike (2007) and Dikau et al. (1991) were also derived for Nigeria. 

Other covariates used were: global physiographic regions clipped for Nigeria (similar 

to Iwahashi-Pike landform), land cover map for year 2009, enhanced vegetation 

index (derived by Tor from MODIS on Terra), bands 1, 2, 3, 4 and 7 of Landsat 7-

ETM+ coverage of Nigeria (obtained from Landsat GeoCover ETM+ 2000 edition) 

as well as digitized generalized geology and soil type maps of Nigeria. Average 

annual temperature and precipitation were interpolated from the 8-km grid coverage. 

The Normalized difference Vegetation Index (NDVI) was obtained from AfSIS 

website and clipped for Nigeria (AfSIS, 2012).  

 

All the data layers were brought to the same projection and resampled to 1,000 m 

resolution using the nearest neighbour technique in ArcGIS10 Sample Toolbox. A 

total of 23 predictor variables were used in this study (Table 3.2). The environmental 

covariates were intersected to the six depths from the spline function. The dataset 

was randomly split into two sets: 67% for calibration (n=655) and 33% for validation 

(n=323). Prior to splitting, the entire dataset were first subset into the six 

geographical zones (northcentral, northeast, northwest, southeast, southsouth, 

southwest) and then combined to ensure uniform distribution of calibration and 

validation datasets. 
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Table 3.2 Description of environmental covariates 

Variables Data source Original scale and resolution Type Mean (Range) 

Slope Aspect DEM 90 m Q 180 (0-360) 

Slope gradient DEM 90 m Q 1.11 (0-37.6) 

Elevation DEM 90 m Q 328 (0-2360.8)    

Wetness index DEM 90 m Q 6.26 (0.3-26.7)   

Stream power index DEM 90 m Q 3.10 (-18-7.38) 

Flow Accumulation DEM 90 m Q 43 (0-78402) 

Plan curvature DEM 90 m Q 4.2x104 (-0.18-0.27) 

Profile curvature DEM 90 m Q 4.2x104 (-0.23-0.21)  

NDVI MODIS vegetation indices 500m Q 4386.5 (-1607-8225) 

EVI MODIS vegetation indices 500 m Q 3147 (-967-6193)                            

Band 1 Landsat 30 m Q 1289.5 (133-4463) 

Band 2 Landsat 30 m Q 3071.2 (117-5555) 

Band 3 Landsat 30 m Q 762.2 (1-4749) 

Band 4 Landsat 30 m Q 137.4 (0-255) 

Band 7 Landsat 30 m Q 98.3 (0-255) 

Precipitation Interpolated long-term mean precipitation 8 km Q 1120 (272-2746)          

Temperature Interpolated long-term mean temperature 8 km Q 268.2 (206-291.6) 

Physiographic region DEM 90 m C 7 classes 

Iwahashi DEM 90 m C 16 classes 

Hammond DEM 90 m C 13 classes 

Geology Scanned and digitized geological map 1:5,000,000 C 14 classes 

Soil types FDALR 1:650,000 C 58 classes 

Landuse MODIS land cover map 500 m C 15 classes 

†C, categorical; DEM, digital elevation model; EVI, enhanced vegetation index; FDALR, Federal department of agriculture and land resources; NDVI, normalized difference vegetation index; Q, quantitative. 
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3.2.3 Spatial prediction of PSFs  

3.2.3.1 Random Forest Model 

Random Forest model (RFM) is developed as an extension of regression tree model 

(RTM) to improve the prediction accuracy (Breiman 2001a; Liaw and Wiener, 2002) 

and reduce model over-fitting. It is an assemblage of a number of classification and 

regression trees using two levels of randomization for every tree in the forest 

(Breiman, 2001b). RFM has advantages over many other prediction models because 

it is insensitive to noise or weak prediction variables as it selects the most important 

variable at each node split (Okun and Priisalu, 2007), has reasonable prediction 

performance even with noisy predictor variables (Diaz-Uriarte and de Andres, 2006), 

and insensitive to missing values or outliers in a given dataset. In this study we 

employed the randomForest 4.6 package (Liaw and M. Wiener, 2002) in R 

environment to predict the PSFs. The Random Forest regression algorithm can be 

described following Liaw and Wiener (2002) and Hastie et al. (2009):  

1. For j=1,…., n; draw a bootstrap sample Z∗ of size ntree from the original data 

then  

2. Grow a random-forest tree Tjto Z, by recursively repeating the following 

steps at each terminal node of the tree, until the minimum node size nminis 

reached. 

a. Select Mtree variables at random from the predictors,p. 

b. Choose the best variable at random/split-point amongm. 

c. Split the node into two daughter nodes but before each split, select m ≤ p of 

the input variables at random as candidates for splitting.  

3. Finally, output the ensemble of trees{Tj}1

n
 and predict new data by averaging 

the predictions of the ntree trees 
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The RFM regression prediction at a new point x after n trees {T(x;  θj)}
1

n
 are grown 

is expressed as:  

 

f̂rf
n(x) =

1

n
∑ T(x;  θj)

n
j=1        [3.7] 

 

where θjdescribes the jth random forest tree at each node and terminal-node values in 

terms of split variables. 

 

Three parameters control the fitting of Random Forest models: (i) the number of 

trees (ntree), (ii) the minimum number of samples in the terminal node nmin, and (iii) 

and the number of predictors to be used for the fitting of each tree (Mtry) (Grimm et 

al., 2008). The Mtry is a crucial parameter as it defines the strength of each individual 

tree and the correlation between any two tree in the RF model. Normally for 

regression, the default value for Mtry is p/3 and  nmin  is 5 (Hastie et al., 2009). We 

used the “train” function of the “caret” R package to determine optimum Mtryvalue 

for modelling at each depth interval. The “train” function tunes various models by 

selecting a combination of sensitive parameters that are associated with the optimal 

resampling statistics of held-out samples. These are used to fit the final model with 

the entire training dataset. The relative importance of the predictor variables in 

modelling PSFs for Nigeria was assessed using the “importance” function in the 

“randomForest” R package. 

 

3.2.3.2 Soil sampling depth as a predictor variable 

The inclusion of soil sampling depth as a predictor variable to estimate soil 

properties (especially bulk density) by pedo-transfer functions (PTFs) is well-

established (Tamminen & Starr, 1994; et al., 2010; Minasny and Hartemink, 2011). 

Here we evaluate the contribution of sampling depth in modelling PSFs. We first 



Chapter 3  Prediction of soil particle-size fractions at a national scale 

 

67 

 

added vectors of mean of the various depth intervals (e.g. 2.5, 5, 10, 22.5, 45, 80 and 

150 for 0-5, 5-15, 15-30, 30-60, 60-100, and 100-200) to the set of predictor 

variables for each depth. Thereafter we stacked datasets of the six depth intervals 

together to obtain one single data set which was used to fit a single model. The 

predicted values were subset into the six standard depths for model assessment and 

validation. The single model produced was then used to make predictions onto the 

entire study area at the six different depths. To account for soil sampling depth in the 

grids, the mean value of each depth interval (e.g 2.5 for 0-5 cm depth) was populated 

in the grid used in predicting for that particular depth.  

 

3.2.3.3 Model Accuracy  

To evaluate the prediction performance by the three models, we divided the dataset 

into two separate subsets by a random selection process using the sample function in 

R prior to modelling. In using the sample function, approximately 2/3 (n=655) were 

earmarked for model calibration while the remaining 1/3 (n=323) was used for cross 

validation. The following four parameters were computed on the validation subset, 

using the R statistical software package (R Core Development, 2013). 

a. Coefficient of determination (R
2
) a measure of the percentage of variation 

explained by each model: 

           R2 =
∑ (pi−o̅i)2n

i=1

∑ (oi−o̅i)2n
i=1

      [3.8] 

 

where n denotes data points, oi and pi are observed and predicted PSFs values at the 

ith point, o̅i and p̅itheir respective means, respectively. 

 

b. Mean error (ME) a measure of model’s prediction bias: 

ME =
1

n
∑ (oi − pi)

n
i=1       [3.9] 

c. Root-mean-squared-error (RMSE) a measure of model accuracy: 
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        RMSE = √1

n
∑ (oi − pi)

n
i=1

2
      [3.10] 

 

d. Lin’s concordance correlation coefficient (CCC), a measure of the strength of 

the agreement between the observed and predicted PSF values: 

 

              ρc =
2ρσoσp

σo
2+σp

2 +(μo−μp)
2      [3.11] 

where ρc is the estimated CCC, μo and μp are the means for the raw and predicted 

PSFs while σo
2 and σp

2 are the corresponding variance and ρ the Pearson correlation 

coefficient between the raw and predicted PSFs. Generally, a good model will have 

R
2
 and ρc close to 1 and ME and RMSE close to 0. 

 

3.3 Results and discussion 

3.3.1 Soil Legacy data 

3.3.1.1 Spatial distribution of soil profiles and covariates 

The spatial distribution pattern of the 978 soil profiles used in this study is presented 

in Fig. 3.1. There is fair spread of the soil profiles across the country but some areas 

in the northeast (NE) and southwest (SW) have higher density of sampled profiles. In 

the northcentral and southeast there were fewer pedons. Most of the early soil survey 

projects in Nigeria were guided by interests in food and cash crop production (Odeh 

et al., 2012) regions with high production capacity for cash crops (e.g cocoa in the 

SW) and food crops (cereal grains in the NE) were densely surveyed and sampled. 

Also, areas with agricultural research institutions have larger number of pedons such 

as the Jos-Kaduna-Zaria axis hosting the Institute for Agricultural Research (IAR) 

and areas around Ibadan that host of the International Institute of Tropical 

Agriculture (IITA) and the Institute for Agricultural Research and Training 

(IAR&T). 
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Figure 3.1 The distribution of legacy soil profile (n=978) in Nigeria. 

 

The distribution patterns of environmental covariates in the grid and sample locations 

are comparable around the mean, but the extreme values of most covariates were not 

well covered by the legacy profile points (Table 3.3). This could affect validity of 

our predictions as we are most likely predicting outside the range of values upon 

which the model was built. As shown in Fig. 3.1, future sampling in areas of sparse 

data like the Sokoto axis of the northwestern region, as well as the northcentral and 

southeastern region, could help overcome this challenge.  
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Table 3.3 Summary statistics of environmental covariates at legacy soil profile 

locations and grids  

 

Elevation 

 

Aspect 

 

EVI 

 

Rainfall 

 

Slope 

 

 

Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid 

Min 6.7 0 0.5 0 556 -943 286.1 272.2 0 0 

Q1 186.2 177 82.8 90.2 2426 2406 764.5 767.8 0.2 0.3 

Median 289.2 304.8 182.4 179.6 3046 3076 1159.8 1108.3 0.7 0.6 

Mean 338.7 328.6 179.7 180.7 3081 3091 1085.3 1120.8 0.9 1.1 

Q3 390.8 428.7 275.9 272.7 3715 3627 1238.9 1285.8 1.1 1.1 

Max 1371.7 2279.2 359.8 360 5291 5776 2692.2 2743.6 21 35.9 

†Max, maximum; Min, Minimum; Q1, first quartile; Q3, second quartile 

 

3.3.1.2 Summary statistics of spline-fitted particle-size fractions at continuous depth 

intervals. 

A summary of the predicted PSFs from the equal-area quadratic splines is presented 

in Table 3.4. The frequency distributions of the PSF data are typical given that clay 

and silt are positively skewed whereas sand is skewed slightly negative. Similar 

observations have been reported elsewhere (Adhikari et al., 2013). The sand fraction 

has a higher variation (SD 22 to 26 gkg
-1

) compared to clay (SD 16 to 19 g kg
-1

) and 

silt (11 to 14 g kg
-1

) as was found by Buchanan et al. (2012) and Adhikari et al. 

(2013) but it is in contrast to Odeh et al. (2003) and Oku et al. (2010) who reported a 

higher variability in clay content compared to sand and silt. The variation is 

relatively high but considering the heterogeneity of the landscape as well as the large 

extent of our study area, such is expected.  

 

The clay content increases from the top 30 cm depth with a peak at the 60-100 cm 

likely caused by clay illuviation (Osei and Okusami, 1994; Ayuba et al., 2007; Sharu 

et al., 2013). The increase in clay content (>20%) with depth is diagnostic of the 

major soil types (Alfisols, Ultisols) in Nigeria (Osei and Okusami, 1994; Amhakhian 
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and Achimugu, 2011). The mean sand content is higher than the clay and silt 

contents for each depth which is commonly found in the soils of West Africa (with 

exception of Vertisols) (Jones and Wild, 1975).  

 

3.3.2 Performance of RFM in predicting particle-size fractions 

The model performance parameters (Eq. [3.8]-[3.11]), were used to assess the quality 

of prediction of PSFs (Table 3.5). Results showed that the combination of the various 

predictor variables can explain 16 to 53%, 21 to 48% and 21 to 26% of the variation 

in clay, sand and silt contents respectively. This is within the range reported for clay 

and sand contents in other studies using similar prediction models (Ließ et al., 2012; 

Adhikari et al., 2013) but outside the range reported for silt content. In Nigeria, low 

R
2
 has been reported for prediction of silt content (Ugbaje and Reuter, 2013) but our 

predictions show an improvement over their report. This could be attributed to the 

effect of ALR as Odeh et al (2003) reported an improved prediction accuracy when 

PSFs are transformed using ALR before fitting predictive models. 

 

The model performed significantly better at the top 30 cm (0-5, 5-15 and 15-30 cm) 

compared to the lower layers (30-60, 60-100 and 10-200 cm). Similar results have 

been reported by several others (Henderson et al., 2005; Minasny et al., 2006; 

Malone et al., 2009; Vasques et al., 2010; Kempen et al., 2011; Adhikari et al., 2013; 

Ugbaje and Reuter, 2013). This could be attributed to the nature of the environmental 

variables used (Adhikari et al., 2013) and effect of lower data density with depth. 

Most environmental covariates used in this study are based on land surface 

characteristics and are likely to have stronger relationship with topsoil than subsoil 

properties. The prediction performance for the lower depths could be improved by 

inclusion of covariates such as Gamma-radiometric (K, Th, U) or electromagnetic 

induction (EM) (Cooke, 1996; Rawlins et al., 2009; Priori et al., 2014). However 

considering the extent of Nigeria the cost of acquiring this data may be too exorbitant 

to off the extra benefit. 



Chapter 3  Prediction of soil particle-size fractions at a national scale 

 

72 

 

Table 3.4 Summary statistics of spline-fitted particle-size fractions (%) at six 

standard depth intervals. 

PSF Statistics Depth(cm) 

  

       0-5   5-15  15-30  30-60    60-100     100-200 

        

Clay Max 84.3 84.2 87.6 88.2 86.5 85.7 

 

Min 0 0 0 0 0 0 

 

Mean 19.0 20.0 22.9 27.7 29.9 27.8 

 

SD 19.39 19.22 19.21 19.18 17.46 16.04 

 

SEM 0.621 0.615 0.615 0.614 0.559 0.513 

 

Skewness 1.63 1.54 1.25 0.80 0.52 0.47 

 

Kurtosis 4.88 4.65 3.91 2.98 2.72 2.98 

 

       

Sand Max 100 100 98 97.3 99.1 100 

 

Min 0.7 1 0.5 0.2 0.2 0.2 

 

Mean 62.4 61.7 59.4 55.2 53.5 56.2 

 

SD 25.56 25.43 25.32 24.62 22.8 21.56 

 

SEM 0.818 0.814 0.81 0.788 0.73 0.69 

 

Skewness -0.75 -0.7 -0.57 -0.38 -0.23 -0.15 

 

Kurtosis 2.37 2.28 2.12 2.03 2.12 2.36 

 

       

Silt Max 79.5 77.5 74.4 70.7 64.4 59.1 

 

Min 0 0 0 0 0 0 

 

Mean 18.5 18.3 17.7 17.1 16.6 16.0 

 

SD 13.6 13.26 12.65 11.65 11.12 10.97 

 

SEM 0.435 0.424 0.405 0.373 0.356 0.351 

 

Skewness 1.08 1.07 1.09 1.07 0.88 0.77 

 

Kurtosis 3.93 3.94 4.07 3.99 3.33 3.07 

 

       

†SD, standard deviation; SEM, standard error of mean; Max, maximum; Min, 

Minimum. 

 

In terms of prediction accuracy, sand content had the highest RMSE values across all 

depths whereas the lowest RMSE was associated with the prediction of silt at all 

depth intervals. This trend corroborates the reports of other studies using similar 

modelling approaches (Buchanan et al., 2012; Niang et al., 2013) but slightly 

different from the report of Odeh et a.l (2003). The lower RMSE of the silt content in 

this study is expected since silt was not used in modelling and it was a product of the 

back-transformation of the initial ALR variates.  
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RFd significantly improved the model performance especially at the lower depths 

(Table 3.5). With RFd there is similar model performance for the various PSFs. The 

inclusion of soil sampling depth improves the performance of RFM by 67-100% (R
2 

values). This supports the inclusion of soil depth as a predictor variable to improve 

prediction of soil attributes.  

 

3.3.3 Predictor variables for predicting soil particle-size fractions 

A key advantage of RFM in comparison with classical multiple regression models is 

that the latter involves feature selection through stepwise and criterion-based 

procedures in which one or two of the highly correlated predictor variables are 

typically retained with the rest discarded. In contrast, RFM “spreads” the importance 

of predictors in the model across all the predictor variables (Cutler et al., 2007). RFM 

estimates the relative importance of the predictor variables, based on how worse the 

prediction would be if the data for a particular variable were permuted randomly 

(Prasad et al., 2006). This approach guards against the elimination of good predictors 

variables which may be pedologically important, although are highly correlated with 

each other. We used the “importance” function in the “randomForest” package to 

assess the importance of predictor variables used to predict PSFs. 

 

The predictor variables showed a varying level of importance in the model (Fig. 3.2). 

There was a large influence of climatic elements (precipitation, temperature), 

vegetative indices (EVI, NDVI), terrain attributes (elevation, stream power index and 

slope), soil types, geology and Landsat bands on the spatial distribution of PSFs. 

However, the relative importance of these variables varies with depth and from one 

fraction to another. Other studies have also reported the relationship between terrain 

attributes and soil properties especially PSFs (Moore et al., 1993; Odeh et al., 1995; 

Thompson et al., 2006; Greve et al., 2012a; 2012b; Ließ et al., 2012) with terrain 

attributes explaining between 20% and 88% of the variation in soil properties 
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(Thompson et al., 2006). This could be attributed to their impact on vertical and 

lateral movement of soil particles through erosion and disposition. In Nigeria the 

influence of geology and soil types on the spatial distribution soil texture has been 

documented in previous studies (Osei and Okusami, 1994; Law-Ogbomo and 

Nwachokor, 2010). 

 

  

Figure 3.2 Illustration of variable importance derived from random forest models of 

soil particle size fractions for Nigeria. Abbreviations: evi; enhance vegetation index, 

spi; stream power index, ndvi; normalized difference vegetation index, wi; wetness 

index, profilec; profile curvature, planc; plan curvature. 

 

 

 

 

 

Clay Sand 
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Table 3.5 Performance of Random Forest and Random Forest with inclusion of depth 

as a predictor in modelling Particle size fractions 

    RFM   RFd 

PSF Depth   ME RMSE    R
2
  pc    ME RMSE R

2
 pc 

 cm % %    % %   

Clay 0-5 3.53 13.59 0.53 0.65 

 

-0.4 6.48 0.89 0.94 

 

5-15 3.4 13.11 0.56 0.69 

 

0.35 5.71 0.91 0.95 

           

 

15-30 2.95 13.38 0.54 0.68 

 

2.26 6.93 0.89 0.94 

 

30-60 2.6 14.98 0.42 0.62 

 

-0.23 10.04 0.72 0.85 

 

60-100 4.01 15.7 0.29 0.46 

 

1.58 10.56 0.68 0.82 

 

100-200 4.21 15.6 0.16 0.3 

 

1.18 12.63 0.43 0.64 

           Sand 0-5 -6.51 19.67 0.48 0.6 

 

0.03 7.7 0.91 0.95 

 

5-15 -6.03 19.26 0.49 0.63 

 

-0.42 7.05 0.92 0.96 

 

15-30 -5.26 18.79 0.49 0.63 

 

-1.97 7.26 0.92 0.96 

 

30-60 -4.14 18.81 0.43 0.61 

 

-0.74 9.55 0.85 0.92 

 

60-100 -5.71 19.48 0.33 0.5 

 

-2.09 11.52 0.76 0.87 

 

100-200 -6.67 19.86 0.21 0.36 

 

-1.91 15.85 0.51 0.7 

           Silt 0-5 2.99 12.22 0.26 0.39 

 

0.37 4.44 0.88 0.94 

 

5-15 2.63 11.72 0.27 0.42 

 

0.08 4.14 0.9 0.95 

 

15-30 2.31 10.96 0.25 0.39 

 

-0.29 3.43 0.91 0.95 

 

30-60 1.54 9.82 0.24 0.41 

 

0.97 5.17 0.82 0.89 

 

60-100 1.69 9.73 0.24 0.4 

 

0.51 5.66 0.76 0.85 

  100-200 2.46 10.06 0.21 0.35   0.74 7.15 0.59 0.74 

†PSF; Particle size fractions, ME; Mean error, RFd; Random Forest using soil depth 

as a predictor, RMSE; Root mean square error, pc; Lin’s concordance correlation 

coefficient. 

 

3.3.4 Spatial prediction of particle-size fractions 

The descriptive statistics of sand, silt, and clay fractions predicted for various depth 

intervals is presented in Table 3.6. The distribution of the predicted PSFs by RF and 

RFd follow a similar pattern as the spline-fitted data. The RFd slightly reduced mean 

values of predicted PSFs and predicted PSFs show lesser variability than the spline-

fitted data. This could be attributed to the smoothening out of outliers as prediction 
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models tend to have smoothening effect (Odeh et al., 1995). In addition, RF grows a 

large number of unpruned trees and makes final prediction using the average 

prediction of the entire trees and as such tends to overcome model overfitting that is 

common among prediction models.  

 

Figs. 3.3-3.5 show the maps of predicted PSFs. There is an increase in the clay 

content with depth especially in the southern part of the country (see Fig. 3.3). The 

magnitude of this vertical increase in clay content differs (Fig 3.3). At some locations 

this is steady and gradual while it is abrupt in others; giving rise to a bulge of clay 

with depth. The gradual increase of clay content with depth has also been reported 

for Nigeria (Moberg and Esu, 1991; Olowolafe, 2002; Ayuba et al., 2007, Sharu et 

al., 2013). Fig. 3.3 reveals an increase of clay content with depth in the southern part 

of the country compared to the northern part. This supports the work of Vine (1987) 

who reported an increase in clay content with depth in soils of southern Nigeria 

except those in valley bottoms. This pattern is the result of vertical clay movement 

(eluviation/illuviation), faunal perturbation (Oyodele et al., 2006; Sharu et al., 2013) 

and movement of clay particles due to soil erosion (Amusan et al., 2005; Salako et 

al., 2006). According to Vine (1987) these factors affect pedogenetic processes 

through the incorporation of dust, in addition to mixing of coarser and finer layers of 

sediments.  
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Table 3.6 Summary statistics of predicted particle-size fractions. 

PSF 

Depth        

(cm) Max Min Mean 

RF 

SD Skewness Kurtosis Max Min Mean 

RFd 

SD Skewness Kurtosis 

 

                 

Clay 0-5 70.4 0.4 15.5 5.77 1.74 7.17 99.2 0 15.8 10.37 2.29 7.78   

 5-15 74.6 0.1 16.2 7.47 1.34 4.38 99.2 0 16.2 10.54 2.22 7.37   

 15-30 79.3 2.0 20.8 6.92 1.32 4.01 99.1 0 18.1 11.16 1.93 5.69   

 30-60 98.2 0.2 25.3 9.16 1.51 5.75 98.8 0 25.3 11.34 1.08 3.28   

 60-100 74.9 0.6 29.8 8.73 -0.50 1.04 98.8 0 26.5 11.18 0.78 2.83   

 100-200 65.2 1.4 28.4 7.69 -0.76 0.98 98.7 0 26.4 10.72 0.45 2.07   

 

Sand 0-5 97.3 10.1 67.4 9.69 -0.92  2.08 100 0.4 66.9 15.45 -1.08 2.31 

 

 

 5-15 99.7 6.3 67.1 12.67 -0.51 1.10 100 0.4 66.5 15.47 -1.07 2.28   

 

15-30 91.6 8.2 63.6 10.11 -1.02 1.75 100 0.4 64.9 15.70 -0.98 1.90   

 30-60 91.2 1.4 58.9 11.01 -0.95 1.79 100 0.2 59.1 15.59 -0.51 1.36   

 60-100 98.6 8.7 54.3 11.94 0.50 0.77 100 0.2 58.3 15.31 -0.26 1.26   

 100-200 94.0 15.9 55.6 10.2 0.79 0.29 100 0.3 58.5 14.92 -0.02 0.87   

 

Silt 0-5 46.3 0.6 17.2 5.38 0.32 0.29 75.3 0 17.4 7.87 0.51 1.09 

 

 

 

5-15 46.3 0 16.7 6.42 0.09 0.09 76.7 0 17.3 7.73 0.53 1.21   

 15-30 42.0 0.6 15.6 4.79 0.45 0.52 79.3 0 16.9 7.38 0.53 1.29   

 30-60 45.2 0.1 15.8 4.80 0.50 0.88 74.7 0 15.6 6.32 0.44 1.58   

 

60-100 39.6 0.1 15.9 4.73 -0.04 0.54 72.3 0 15.3 6.10 0.29 1.28   

 

100-200 37.2 0.7 16.0 4.50 -0.01 -0.23 48.6 0 15.1 6.01 0.10 0.60   

†SD, standard deviation; Max, maximum; Min, Minimum; RF, Random Forest; RFd; Random Forest using soil depth as a predictor. 
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There are also patches of high-to-medium clay content around the Lake Chad, Biu, 

Jos and Mambilla plateaus as well as the coastal Niger delta area which was also 

found by previous studies (Lombin and Esu, 1988; Moberg and Esu, 1991, 

Olowolafe, 2002). The Lake Chad and Niger-Delta areas receive colluvium materials 

and lacustrine deposits which explains the high to medium clay content. The 

prevalence of Quaternary volcanic rocks (basalt, lava flows and ash deposits) 

accounts for the high clay content around Jos and Mambilla plateaus (Olowolafe, 

2002). The relatively high clay content in the subsurface layer of soils around Lagos 

and Enugu (Fig. 3.3) seems anomalous considering that these areas are overlain by 

Tertiary and Upper Cretaceous sandstones. The high clay content around these areas 

has been reported (Vine, 1987) and was attributed to sporadic clay beds in the 

sandstones which accumulated overtime while the sandy surface was gradually lost 

by soil erosion. 

 

The sand content (Fig. 3.4) of soils in Nigeria is relatively high compared to clay and 

silt across the entire country. This can be attributed to variation in parent material 

and partly due to Aeolian deposition of sands from the Sahara desert. About 50% of 

Nigeria’s landmass is underlain by sandstones of Cretaceous age (Adeleye and 

Dessauvagie, 1970; Hassan, 2010). According to Ogunwale et al (1975) soils derived 

from sandstones cover about 18% (160,000 km
2
) of the surface area of Nigeria.  
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Figure 3.3 Spatial distribution of predicted clay content using random forest in 

Nigeria. 

 

There is an area of soils with high-to-medium sand content at the border of northern 

Nigeria (Fig. 3.4) which is caused by deposition of sand from the Sahara desert 

(Sombroek and Zonneveld, 1971; McTainsh, 1984) during the Pleistocene when the 

Sahara desert extended further southward (Grove, 1958). Accompanying the 

southern extension of aridity is the building and migration of sand-dunes with 

deposition of windblown sands in the direction of north-east to south-west (Chartres, 

1982). The sand content however decreased gradually southwards and with depth 

supporting the work of Omoregie (1998). The soils are moderately sandy in the south 

west and south-eastern part of the country that could be attributed to the coarse 

nature of the predominant parent materials in these regions. They are overlain by 

weathered sandstones of Palaeocene/Pleistocene age and gneiss of the Precambrian 

basement complex (Smyth and Montgometry, 1962; Igwe et al., 2009).  
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Figure 3.4 Spatial distribution of predicted sand content using random forest in 

Nigeria. 

 

The silt content of the soils in Nigeria is relatively low (Fig. 3.5) and has been 

reported previously (Ojanuga, 1975; Igwe, 2005). However, soils with medium silt 

content occur around Zaria-Funtua-Kano axis and in the Niger-Delta areas as 

reported in previous studies (Bennett, 1980; Morberg and Esu, 1991). Most soils of 

the Kano plains are silty fine sands derived from wind-sorted desert sands (Lawes, 

1962) or Aeolian drifts (Tomlinson, 1961; Higgins, 1963; Klinkenberg and Higgins, 

1968). Maniyunda et al. (2013) reported high silt content in soils from Funtua and 

Katsina area. Relatively high silt content has also been reported for inland valley 

bottom soils in the coastal southern part of the country (Ogban and Babalola, 2003).  
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Figure 3.5 Spatial distribution of predicted silt content using random forest in 

Nigeria.  

 

3.3.5 Spatial distribution of soil texture 

We present here the patterns of soil texture for the six layers, as predicted by RFM 

(Fig. 3.6). The variation in soil texture shows a progressive transition from a coarse-

texture (sand) along the fringes of northern Nigeria (e.g upper part of Maiduguri and 

Sokoto), to finer texture (loam to clay loam) towards the western part of the Niger 

delta in the south. The orientation of this transition in soil texture, especially the top 

30 cm layers, suggests the direction of the prevailing north-easterly wind which 

deposit Aeolian sediments. Generally, the soils are mainly sandy-loam, loamy-sand, 

sandy clay-loam, clay-loam, sandy-clay and clayey with the soils becoming more 

clayey and less sandy with depth (Fig. 3.7). This is typical of the major soil types 

present in the study area: Alfisols, Ultisols, Oxisols and Entisols (Soil Survey Staff, 



Chapter 3  Prediction of soil particle-size fractions at a national scale 

 

82 

 

2006) as was reported by Igwe, 2005; Sharu et al., 2013; Maniyunda et al. (2013). 

On area basis, soil texture of Nigeria ranges from sand (4.2 x 10
6
 ha) to sandy loam 

(5.3x10
7
ha) in the surface layers and from sandy clay loam (5.2 x 10

7
 ha) to clay (6.9 

x 10
6
 ha) in the subsoils respectively. 

 

The general pattern of soil texture in Nigeria has been attributed to the influence of 

the combination of the differences in parent material (Akamigbo and Asadu, 1983), 

pedogenetic processes involving clay movement (Hassan, 2010), in addition to 

contributions from Aeolian dust (Vine, 1987; Morberg and Esu, 1991; Kparmwang, 

1993). In Nigeria, parent materials vary from very coarse pegmatite to fine grained 

schist, and from acid quartzite to basic rocks consisting largely of amphibolites 

(Smyth and Montgomery, 1962; Hekstra and Andriesse, 1983). Law-Ogbomo and 

Nwachokor (2010) reported that soils developed on basalt exhibits fine texture 

(sandy clay loam to clay) with those from sandstone having medium texture (sandy 

loam to sandy clay loam) and soils from coastal plain sands very coarse texture 

(loamy sand to sand). They observed that soils developed on basement complex rock 

and shale exhibit similar textures ranging from loamy sand to sandy clay loam.  

 

3.4 Conclusions 

Developing DSM models by correlating soil and predictor variables is an efficient 

but challenging quantitative spatial prediction approach, especially is a situation with 

sparse soil profile data. This study provides an example where a geodatabase of 

important soil attributes can be populated from a limited soil dataset. We 

demonstrate the robustness of RFM to predict soil particle-size fraction as 

compositional data for Nigeria using legacy soil data. Considering the dearth of soil 

profile data used in this study the results presented here are a good first 

approximation of digital mapping of these soil attributes for Nigeria. No doubt, work 

will continue to improve on this first approximation as more data becomes available. 
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Figure 3.6 Spatial distribution of predicted soil texture using random forest in 

Nigeria. 

 

Generally, from this study the following salient points are adduced: 

1. Nigerian soils are predominantly coarse-textured with texture gradually 

becoming finer southwards; the Northern region of the country having a 

higher sand content.  

2. Soil texture ranges from sand (4.2 x 10
6
 ha) to sandy loam (5.3x10

7
ha) in the 

surface layers and from sandy clay loam (5.2 x 10
7
 ha) to clay (6.9 x 10

6
 ha) 

in the subsoils 

3. RFM is robust in predicting PSFs while the inclusion of soil depth as 

predictor significantly improved the model accuracy.  

4. In modelling PSFs for Nigeria, terrain attributes (elevation, stream power 

index, and slope), soil types, vegetative indices, as well as climatic variables 

(especially precipitation and temperature) are the most important predictors. 
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These results could be used for producing soil function maps (e.g. water holding 

capacity) or for national agricultural irrigation planning and for assessing for 

environmental sustainability 

 

 

Figure 3.7 Predicted soil texture classes as a percentage of total area of Nigeria using 

RFM. Abbreviations: C, clay; CL, clay loam; L, loam; LS, loamy sand; SC, sandy clay; SCL, sandy clay loam; 

S, sand; SL, sandy loam; Si, silt; SiC, silty clay; SiCL, silty caly loam; SiL, silty loam. 

 

Acknowledgements 

The authors wish to thank the University of Sydney for providing a scholarship 

through her International Scholarships program and Ahmadu Bello University Zaria 

for given a study fellowship to the first author. We also acknowledge the efforts of 

Soil Scientists in Nigeria that carried out various soil surveys, which were the 

original sources of data used for this work; we thus thank ISRIC in the Netherlands 

and other institutions as custodians of the soil survey legacy data used in this study. 

The authors also appreciate the editorial comments by the editor and anonymous 

reviewers which went a long way to improving the quality of the paper. 



Chapter 3  Prediction of soil particle-size fractions at a national scale 

 

85 

 

References 

Adejumo, T. W., Alhasan, M., & Boiko, I. L. 2012. Physico-mechanical properties of some 

major weak soils in Nigeria. Electronic Journal of Geotechnical Engineering, 17, 

2435-2441.  

Adeleye D.R. & Dessauvagie. T. 1970. Stratigraphy of Nigeria embayment near Bida, 

Nigeria. In: Dessaubvagie, T.F.J. and D.R. (Eds.). Conference of African Geology 

proceedings, University of Ibadan, Nigeria p 7-14. 

Adhikari, K., Kheir, R. B., Greve, M. B., Bøcher, P. K., Malone, B. P., Minasny, B., 

McBratney, A.B. & Greve, M.H. 2013. High-Resolution 3-D mapping of soil texture 

in Denmark. Soil Science Society of America Journal, 77(3), 860-876. doi: 

2136/sssaj2012.0275. 

Africa Soil Information Service (AfSIS). 2012. AfSIS MODIS Data Sets: Normalized 

Difference Vegetation Index (NDVI) Long Term and Monthly Averages. Palisades, 

NY: Center for International Earth Science Information Network  (CIESIN), 

Columbia University. http://www.africasoils.net/data/datasets (Accessed 

13/02/2013). 

Aitchison, J. 1990. Relative variation diagrams for describing patterns of compositional  

variability. Mathematical Geology, 22, 487–511. 

Akamigbo F.O.R & Asadu, C.L.A. 1983. Influence of parent material on the soils of 

southeastern Nigeria.  East Africa Agricultural and Forestry Journal, 48, 81-91. 

Amhakhian, S.O & Achimugu, S 2011. Characteristics of soil on toposequence in Egume, 

Dekina Local Government Area of Kogi State. Production Agriculture and 

Technology, 7, 29-36. 

Amusan, A. A., Olayinka, A., & Oyedele, D. J. 2005. Genesis, classification, and 

management requirements of soils formed in windblown material in the Guinea 

Savanna area of Nigeria. Communications in soil science and plant analysis, 36(15-

16), 2015-2031. 

Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G. B., Hong, S.  

Y., Lagacherie, P., Lelyk, G., McBratney, A.B., McKenzie, N.J. Mendonça Santos,  

M.L., Minasny, B., Montanarella, L., Odeh, I.O.A., Sanchez, P.A., Thompson, J.A.,  

& Zhang, G. L. 2014. Chapter Three-GlobalSoilMap: Toward a Fine-Resolution  

Global Grid of Soil Properties. Advances in Agronomy, 125, 93-134. 

Ayuba, S.A., Akamigbo, F.O.R. & Itsegha, S.A. 2007. Properties of soils in River Katsina- 

http://www.africasoils.net/data/datasets


Chapter 3  Prediction of soil particle-size fractions at a national scale 

 

86 

 

Ala catchments area, Benue State, Nigeria. Nigerian Journal of Soil Science  

17(1):24-29 

Bationo, A., Kihara, J., Vanlauwe, B., Waswa, B., & Kimetu, J. 2007. Soil organic carbon 

dynamics, functions and management in West African agro-ecosystems. 

Agricultural systems, 94(1), 13-25. 

Bennett, J.G.1980. Aeolian Deposition and soil parent materials in northern Nigeria.  

Geoderma: 24: 241-255. 

Bishop, T.F.A., A.B. McBratney and G.M Laslett. 1999. Modelling soil attribute depth 

functions with equal-area quadratic smoothing splines. Geoderma, 91, 27–45, 

http://dx.doi.org/10.1016/S0016-7061(99)00003-8. 

Bishop, T. F. A., McBratney, A. B., & Laslett, G. M. 2006. Digital soil-terrain modeling: the  

predictive potential and uncertainty.  In: Grunwald, S. (Ed.) Environmental Soil- 

Landscape Modeling, CRC Press, Boca Raton, FL, USA. p. 185–213. 

Bockheim, J.G. & Hartemink, A.E. 2013. Distribution and classification of soils with 

taxonomically defined clay-enriched horizons in the USA: a Review. Geoderma, 

209, 153-160. 

Breiman, L. 2001a. Random forests. Machine Learning, 45(1), 5–32. 

Breiman, L. 2001b. Statistical modeling: The two cultures. Statistical Science, 16, 199-215. 

Buchanan, S., Triantafilis, J., Odeh, I., & Subansinghe, R. 2012. Digital soil mapping of 

compositional particle-size fractions using proximal and remotely sensed ancillary 

data. Geophysics, 77(4), 201-211. 

Chartres, C.J. 1982. The use of landform-soil associations in irrigation soil surveys in 

northern Nigeria. Journal of Soil Science, 33, 317-328. 

Cook, S. E., Corner, R. J., Groves, P. R., & Grealish, G. J. 1996. Use of airborne gamma  

radiometric data for soil mapping. Soil Research, 34(1), 183-194.  

Cutler, D. R., Edwards Jr, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J. &. Lawler,  

J.J. 2007. Random forests for classification in ecology. Ecology, 88(11), 2783-2792. 

De Gruijter, J. J., Walvoort, D. J. J., & Van Gams, P. F. M. 1997. Continuous soil maps—a 

fuzzy set approach to bridge the gap between aggregation levels of process and 

distribution models. Geoderma, 77(2), 169-195.  

Dikau, R., Brabb, E.E. & Mark, R.M. 1991. Landform classification of New Mexico by 

computer. Open File Rep. 91-634. USGS, Denver, CO. 

Diaz-Uriarte, R. & de Andres, S.A. 2006. Gene selection and classification of microarray  

http://dx.doi.org/10.1016/S0016-7061(99)00003-8


Chapter 3  Prediction of soil particle-size fractions at a national scale 

 

87 

 

data using random forest. BMC Bioinformatics 7, 3. 

Federal Department of Agricultural Land Resources (FDALR) 1990. The reconnaissance soil 

survey of Nigeria. Volumes I-IV. FDALR, Nigeria. 

Food and Agriculture Organization (FAO) 1984. Improved production system as an 

alternative to shifting cultivation. Soils Bulletin 53, FAO, Rome, Italy. 

Gessler, P.E., McKenzie, N.J. & Hutchison, M.F. 1996. Progress in soil-landscape modelling 

and spatial prediction of soil attributes for environmental model. In: Proceedings, 

Third International Conference/Workshop on Integrating GIS and Environmental 

Modeling, Santa Barbara, CA, National Centre for Geographic Information and 

Analysis. January 21-26. 

Greve, M.H., Bou Kheir, R.., Greve, M.B. & Bøcher, P.K. 2012a. Using digital elevation 

models as an environmental predictor for soil clay contents. Soil Science. Society of 

American Journal, 76, 2116–2127. doi:10.2136/sssaj2010.0354 

Greve, M.H., Bou Kheir, R.., Greve, M.B. & Bøcher, P.K. 2012b. Quantifying the ability of 

environmental parameters to predict soil texture fractions using regression-tree 

model with GIS and LIDAR data: The case study of Denmark. Ecological 

Indicators, 18, 1–10. doi:10.1016/j.ecolind.2011.10.006. 

Grimm, R., Behrens, T., Märker, M., & Elsenbeer, H. 2008. Soil organic carbon 

concentrations and stocks on Barro Colorado Island — digital soil mapping using 

Random Forests analysis. Geoderma, 146 (1–2), 102–113. 

Grove, A.T. 1958. The ancient erg of Hausaland and similar formations on the south side of 

the Sahara. Geographical Journal, 124:528-533. 

Hartemink, A.E. & McBratney, A.B. 2008.  A soil science renaissance. Geoderma, 148, 123-

129. 

Hassan, A.M. 2010. Genesis, classification and agricultural potential of the soils derived 

from Kerrikerri sandstone formation in northern Nigeria. Continental Journal of 

Agricultural Science, 4, 7-19. 

Hassink, J. 1997. The capacity of soils to preserve organic C and N by their association with 

clay and silt particles. Plant and soil 191(1), 77-87. 

Hastie, T., Tibshirani, R. & Friedman, J. 2009. The elements of statistical learning. Data 

Mining, Inference, and Prediction.  Second edition. New York: Springer. 745p 

Henderson, B. L., Bui, E. N., Moran, C. J., & Simon, D. A. P. 2005. Australia-wide  

predictions of soil properties using decision trees. Geoderma, 124(3), 383-398.  



Chapter 3  Prediction of soil particle-size fractions at a national scale 

 

88 

 

Hekstra, P. & Andriesse, W. 1983. Wetland utilization research project, West Africa.  

Phase 1. The inventory. Volume II: Physical aspects. International Land  

Reclamation and Improvemnet (ILRI), Wageningen, The Netherlands. 78p 

Higgins, G.M. 1963. Upland soils of Samaru and Kano plains. (Unnumbered Soil Survey.  

Report.). Institute for Agricultural .Research, Samaru, Nigeria. 

Igwe C.A. 2005. Soil physical properties under different management systems and organic 

matter effects on soil moisture along soil catena in southeastern Nigeria. Tropical. 

Subtropical. Agroecosystems, 5, 57-66. 

Igwe, C. A., Zarei, M.  & Stahr, K. 2009. Mineralogy and geochemical properties of some  

upland soils from different sedimentary formations in south-eastern Nigeria. Soil  

Research, 47 (4), 423-432. 

Iloeje, N.P. 2001. A new geography of Nigeria. New Revised edition. Longman  

Nigeria Plc. Lagos, Nigeria. 200p 

Iwahashi, J., & Pike, R.J. 2007. Automated classifications of topography from DEMs by an 

unsupervised nested-means algorithm and a three-part geometric signature. 

Geomorphology, 86, 409–440. doi:10.1016/j.geomorph. 2006.09.012. 

Jalabert, S. S. M., Martin, M. P., Renaud, J. P., Boulonne, L., Jolivet, C., Montanarella, L., & 

Arrouays, D. 2010. Estimating forest soil bulk density using boosted regression 

modelling. Soil Use and Management, 26(4), 516-528.  

Jones, M.J., & Wild, A. 1975. Soils of the West African Savanna: The maintenance and 

improvement of their fertility. Commonwealth Agricultural Bureau, Farnham Royal, 

UK. 218p. 

Kempen, B., Brus, D. & Stoorvogel, J.J. 2011. Three-dimensional mapping of soil organic 

matter content using soil type–specific depth functions. Geoderma, 162, 107–123 

 doi:10.1016/j.geoderma.2011.01.010. 

Klinkenberg, K. & Higgins, G.M. 1968. An outline of Northern Nigerian soils. Nigerian  

Journal of Science, 2(2), 91-115. 

Kparmwang, T. 1993. Characterization and classification of basaltic soils in the Northern 

Guinea Savanna zone of Nigeria. Unpublished Ph.D thesis. Ahmadu Bello 

University, Zaria. 176p.  

Law-Ogbomo, K.E. & Nwachokor, M.A. 2010. Variability in selected soil physic-chemical 

properties of five soils formed on different parent materials in southeastern Nigeria. 

Research Journal of Agriculture and Biological Sciences, 6(1), 14-19. 



Chapter 3  Prediction of soil particle-size fractions at a national scale 

 

89 

 

Lawes, D.A. 1962. The influence of rainfall conservation on the fertility of the loess plain  

soil of northern Nigeria. Nigerian Geography Journal. 5. 

Leenaars, J.G.B. 2012. Africa Soil Profiles Database, version 1.0.: A compilation of 

georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with 

dataset). ISRIC Rep. 3. ISRIC-World Soil Information, Wageningen, The 

Netherlands. 

Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R news 

volume 2(3):  18-21. 

Ließ, M., Glaser, B., & Huwe, B. 2012. Uncertainty in the spatial prediction of soil texture: 

Comparison of regression tree and Random Forest models.Geoderma, 170, 70-79. 

Lombin, G., & Esu, I. 1988. Characteristics and management problems of Vertisols in the 

Nigerian savannah. Management of Vertisols in Sub-Saharan Africa, Proceedings of 

a Conference held at ILCA, 31 Aug. to 4 Sep., 1987.Addis Ababa, Ethiopia. 

Malone, B. P., McBratney, A. B., Minasny, B., & Laslett, G. M. 2009. Mapping continuous 

depth functions of soil carbon storage and available water capacity. Geoderma, 

154(1), 138-152.  

Maniyunda, L. M., Raji, B. A. & Gwari, M. G. 2013. Variability of Some Soil 

Physicochemical Properties on Lithosequence in Funtua, North-Western Nigeria. 

International Journal of Science and Research, 2(9), 174-180. 

Mayr, T.R., Palmer, R.C., & Cooke, H.J. 2008. Digital soil mapping using legacy data in the 

Eden valley, UK. In: Hartemink, A.E., McBratney, A.B., Mendonça Santos, M.d.L. 

(Eds.), Digital Soil Mapping with Limited Data. Springer Science+Business Media, 

pp. 291–301. 

McBratney, A. B., Odeh, I. O., Bishop, T. F., Dunbar, M. S., & Shatar, T. M. 2000. An 

overview of pedometric techniques for use in soil survey.Geoderma, 97(3), 293-327. 

McBratney, A. B., Santos, M. M., & Minasny, B. 2003. On digital soil mapping. Geoderma, 

117(1), 3-52.  

McTainsh, G.H. 1984. The nature and origin of the Aeolian mantles of central northern 

Nigeria. Geoderma, 33, 13-37. 

Minasny, B., McBratney, A. B., Mendonça-Santos, M. L., Odeh, I. O. A., & Guyon, B. 

2006. Prediction and digital mapping of soil carbon storage in the Lower Namoi 

Valley. Soil Research, 44(3), 233-244.  



Chapter 3  Prediction of soil particle-size fractions at a national scale 

 

90 

 

Minasny, B., McBratney, A.B., & Lark, R. M. 2008. Digital soil mapping technologies for 

countries with sparse data infrastructures. In: Hartemink, A.E., McBratney, A.B., 

Mendonça Santos, M.d.L. (Eds.), Digital Soil Mapping with Limited Data. Springer 

Science+Business Media, p 15-30. 

Minasny, B., & Hartemink, A.E. 2011. Predicting soil properties in the tropics. Earth 

Science Revolution, 106, 52–62.  doi:10.1016/j.earscirev.2011.01.005. 

Møberg, J., & Esu, I. 1991. Characteristics and composition of some savannah soils in 

Nigeria. Geoderma, 48, 113–129. doi:10.1016/0016-7061(91)90011-H. 

Moore, I.D., Gessler, P.E., Nielsen, G.A. & Peterson, G.A., 1993. Soil attributes prediction 

using terrain analysis. Soil Science Society of America Journal, 57, 443–452. 

Niang, M. A., Nolin, M. C., Jégo, G., & Perron, I. 2014. Digital Mapping of Soil Texture 

Using RADARSAT-2 Polarimetric Synthetic Aperture Radar Data. Soil Science 

Society of America Journal, 78(2), 673-684. 

Odeh, I. O. A., McBratney, A.B. & Chittleborough, D.J. 1995. Further results on prediction 

of soil properties from terrain attributes: heterotopic cokriging and regression-

kriging. Geoderma, 67, 215-226. 

Odeh, I.O.A., & McBratney, A.B. 2000 Using AVHRR images for spatial prediction of clay 

content in the lower Namoi valley of eastern Australia. Geoderma, 97, 237-254. 

Odeh, I. O. A., Todd, A. J. & Triantafilis, J. 2003. Spatial prediction of soil particle-size 

fractions as compositional data: Soil Science, 168, 501–515. 

Odeh, I.O.A., Crawford, M & McBratney, A.B. 2007. Digital mapping of soil attributes for  

regional and catchment modelling, using ancillary covariates, statistical and  

geostatistical techniques. In: Lagacherie, P., A.B. McBratney & M.Voltz (eds).  

Digital soil mapping: An introductory perspective. Development in Soil Science,  

31, 437-453. 

Odeh, I.O.A., Leenaars, J.G.B., Hartemink, A. & Amapu, I. 2012.  The challenges of 

collating legacy data for digital mapping of Nigerian soils. In: Minasny,B., Malone, 

B.P., McBratney,A. (eds). Digital Soil Assessments and Beyond. Taylor & Francis 

Group, London, p 453-458. 

Ogban, P.I. & Babalola, O. 2003. Soil characteristics and contsraints to crop production in 

inland valley bottoms in southwestern Nigeria. Agricultural Water Management, 61, 

13-28. 

Ogunwale, J. A., Ashaye, T.I., Odu, C.T.I. & Fayemi, A.A.A. 1975. Characterization of  



Chapter 3  Prediction of soil particle-size fractions at a national scale 

 

91 

 

selected sandstone-derived soils in the ecological zones of Nigeria. Geoderma 13,  

331-347. 

Ojanuga, A.G. 1975. Morphological, physical and chemical characteristics of soils of Ife and  

Ondo areas. Nigerian Journal of Science, 9, 225-256. 

Ojanuga, A.G. 2006. Agroecological zones of Nigeria manual. National Special Programme 

for Food Security and FAO, Abuja, Nigeria.124p. 

Oku, E., Essoka, A. & Thomas, E. 2010. Variability in soil properties along an Udalf 

toposequence in the humid forest zone of Nigeria. Kasetsart Journal.of Natural 

Science, 44, 564-573. 

Okun, O. & Priisalu, H. 2007. .Random forest for gene expression based cancer  

classification: overlooked issues. In: Martı ,́ J., J.M. Benedı´, A.M. Mendonc and J.  

Serrat, (Eds.).  Pattern Recognition and Image Analysis: Third Iberian Conference,  

Lecture Notes in Computer Science, Springer Berlin Heidelberg, p 483-490.  

Olowolafe, E.O. 2002. Soil parent materials and soil properties in two separate catchment 

areas on the Jos Plateau, Nigeria. GeoJournal, 56, 2001-212. 

Omoregie, A.U.1998. Selected physico‐chemical characteristics of soils from the sub‐humid  

and semi‐arid zones of Nigeria, Communications in Soil Science and Plant Analysis,  

29, 15-16, 2505-2513, DOI: 10.1080/00103629809370128 

Osei, B. A., & Okusami, T. A. 1994. Classification of soils derived from amphibolite parent 

material in south-western Nigeria. Ghana Journal of Agricultural Science, 24(1), 

123-132. 

Oyedele, D. J., Schjønning, P & Amusan, A. A. 2006. Physicochemical properties of 

earthworm casts and uningested parent soil from selected sites in southwestern 

Nigeria. Ecological Engineering, 28(2), 106-113. 

Prasad, A. M., Iverson, L. R. & Liaw, A. 2006. Newer classification and regression tree 

techniques: bagging and random forests for ecological prediction. Ecosystems, 9, 

181-199.  

Priori, S., Bianconi, N. & Costantini, E.A. 2014. Can γ-radiometrics predict soil textural data 

and stoniness in different parent materials? A comparison of two machine-learning 

methods. Geoderma, 226, 354-364. 

R Development Core Team 2013. R: A language and environment for statistical  

computing, R version 2.15.3. R Foundation for Statistical Computing, Vienna,  

Austria.  



Chapter 3  Prediction of soil particle-size fractions at a national scale 

 

92 

 

Rawlins, B. G., Marchant, B. P., Smyth, D., Scheib, C., Lark, R. M., & Jordan, C. 2009. 

Airborne radiometric survey data and a DTM as covariates for regional scale 

mapping of soil organic carbon across Northern Ireland. European Journal of Soil 

Science, 60(1), 44-54.  

Reuter, H.I., & Nelson, A. 2009. Geomorphometry in ESRI Packages. In: Hengl T. and H.I.  

Reuter (Eds), Geomorphometry: Concepts, software, applications, Dev. Soil Sci. 33. 

Elsevier, New York. p 269-291. 

Salako, F. K., Tian, G., Kirchhof, G., & Akinbola, G. E. 2006. Soil particles in agricultural  

landscapes of a derived savanna in southwestern Nigeria and implications for  

selected soil properties. Geoderma, 137(1), 90-99.  

Sanchez, P.A., Ahamed, S., Carre, F., Hartemink, A.E., Hempel, J., Huising, J., Lagacherie,  

P., McBratney, A.B., McKenzie, N.J., Mendonca-Santos, M.D., Minasny, B.,  

Montanarella, L., Okoth, P., Palm, C.A., Sachs, J.D., Shepherd, K.D., Vagen, T.G.,  

Vanlauwe, B., Walsh, M.G., Winowiecki, L.A., & Zhang, G.L., 2009. Digital soil  

map of the world. Science, 325, 680-681. 

Scull, P., Okin, G., Chadwick, O. A. & Franklin, J. 2005. "A comparison of methods to 

predict soil surface texture in an alluvial basin. The Professional Geographer, 57(3), 

423-437. 

Sharu, M. B., Yakubu, M., Noma, S. S., & Tsafe, A. I. 2013. Land Evaluation of an 

Agricultural Landscape in Dingyadi District, Sokoto State, Nigeria.Nigerian Journal 

of Basic and Applied Sciences, 21(2), 148-156.  

Smyth, A.J. and R.F. Montgometry. 1962. Soils and land use in central western Nigeria. 

Government of Western Nigeria Press, Ibadan, Nigeria. 265p.  

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. NRCS, Washington, DC.  

Soil Survey Staff. 2010. Keys to Soil Taxonomy (eleventh ed.)USDA-Natural Resources  

Conservation Service, Washington, DC  

Sombroek, W.G. & Zonneveld, I.S. 1971. Ancient dune fields and fluviatile deposits in the  

Rima-Sokoto river basin soil survey Paper. 5. Netherlands. Soil Survey  

Institute, Wageningen.  

Tamminen, P. & Starr, M. 1994. Bulk density of forested mineral soils. Silva Fennica, 28, 

53–60. 



Chapter 3  Prediction of soil particle-size fractions at a national scale 

 

93 

 

Thompson, J. A., Pena-Yewtukhiw, E. M. & Grove, J. H. 2006. "Soil–landscape modeling 

across a physiographic region: Topographic patterns and model transportability." 

Geoderma, 133(1), 57-70. 

Thompson, J. A., Roecker, S., Grunwald, S. & Owens, P. R. 2012. Digital soil mapping: 

Interactions with and applications for Hydropedology. In: Lin, H. (Ed.). 

Hydopedology, First edition, Elsevier. p 665-709. 

Tomlinson, P.R. 1961. Report on the detailed soil survey of the Livestock Investigation  

Centre, Katsina, and the reconnaissance survey of the surrounding area. Soil Surv.  

Publ. 11. Institute for Agricultural Research, Samaru, Nigeria.  

Udo, R. K. 1970. Geographical regions of Nigeria. Heinemann, London. 212p. 

Ugbaje, S.U. & Reuter, H.I. 2013. Functional digital soil mapping for the prediction of 

available water capacity in Nigeria using legacy data. Vadoze Zone Journal:  

doi:10.2136/vzj2013.07.0140. 

van den Boogaart, K. G. & Tolosana-Delgado, R. 2008. “Compositions”: a unified R 

package to analyze compositional data. Computers & Geosciences, 34(4), 320-338. 

Vasques, G. M., Grunwald, S., Comerford, N. B., & Sickman, J. O. 2010. Regional 

modelling of soil carbon at multiple depths within a subtropical watershed. 

Geoderma, 156(3), 326-336.  

Vine, H. 1987. Wind-blown materials and W African Soils: an explanation of the ‘ferrallitic 

soil over loose sandy sediments’ profile. Geological Society, London, Special 

Publications 35, 171-183. Doi: 10.1144/GSL.SP.1987.035.01.12. 

 

 

 

 

 

 

 

 

 



 

 

Published: Akpa, S. I.C., I.O.A. Odeh, T.F.A. Bishop, A.E. Hartemink, & I.Y. Amapu 2016. Total soil organic carbon and 

carbon sequestration potential in Nigeria. Geoderma, 271, 202-215. 

 
94 

  Chapter 4.

Total soil organic carbon and carbon sequestration potential in Nigeria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4   Soil organic carbon and carbon sequestration potential of soils 

 

95 

 

Abstract 

This study aimed to quantify SOC stocks and potential C sequestration for Nigeria 

using legacy soil data. Mass preserving splines were fitted to legacy SOC and bulk 

density (BD) pedon data based on GlobalSoilmap soil depths. SOC concentrations (g 

kg
-1

) were predicted using Random Forest Model (RFM), Cubist and Boosted 

Regression Tree (BRT). Thereafter, the soil carbon density (Mg C ha
-1

) was 

calculated from the SOC concentration and BD (Mg m
-3

). The information was 

combined with land use/land cover (LULC) map and agro-ecological zone (AEZ) 

digital maps to estimate SOC sequestration. The mean SOC concentration ranged 

between 4.2 and 23.7 g kg
-1

 in the top 30 cm and between 2.6 and 9.2 g kg
-1 

at the 

lower soil depth. Total SOC stock in the top 1 m was 6.5 Pg with an average density 

of 71.60 Mg C ha
–1

. Almost half of the SOC stock was found in the 0-30 cm layer. 

SOC stocks decreased from the southwest to the northeast of Nigeria, and increased 

from Sahel to Humid forest AEZs. Restoration of the various land use types has the 

potential to sequester about 0.2 to 30.8 Mg C ha
-1

 depending on the AEZ. The 

Derived Guinea Savannah presents a potential hotspot for targeted carbon 

sequestration projects in Nigeria. Knowledge of SOC stock and sequestration is vital 

for framing appropriate management regimes to increase soil carbon stocks and for C 

accounting purposes.  

 

Key words 

Digital soil mapping, Legacy data, Soil organic carbon, Random Forest, Cubist, 

Nigeria. 
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4.1 Introduction 

There is a growing concern over the contribution of agricultural sector to the 

increasing global warming (IPCC, 2011). This concern has heightened demand for 

information on spatial patterns of soil organic carbon (SOC) stocks in relation to 

agricultural land uses and land use/cover (LULC) change. LULC change and the 

management of agro-ecosystems have the potential to release considerable amount of 

SOC stored in the soil through tillage, cropping systems, irrigation, fertilization and 

other agricultural operations (Bruce et al. 1999; Lal, 2005). The soil carbon pool 

constitutes about two-third of the total terrestrial carbon pool, which is three times 

the amount of atmospheric carbon (Smith, 2012). Thus it is important to decipher the 

spatial distribution of soil carbon stock to identify where anthropogenic factors are 

contributing significantly to carbon-dioxide (CO2) emissions into the atmosphere  

 

SOC is sensitive to changes in land use (Poeplau and Don, 2013) and a change from 

natural or semi-natural LULC to agricultural ecosystems often leads to significant 

changes in SOC content (Post and Kwon, 2000; Guo and Gifford, 2002; Wilson et 

al., 2008). According to Powers et al. (2011) the conversion of forests to shifting 

cultivation or permanent crops can reduce SOC stocks by an average of almost 20% 

over a period of time. Other studies have estimated the loss of SOC after cultivation 

of virgin land to be between 20% and 50% (Post & Kwon 2000; Guo & Gifford 

2002; Murty et al. 2002; Gregorich et al. 2005). Overall, long-term agricultural land 

use change could decrease soil C content by 48% in the top 10 cm (Don et al., 2011; 

Poeplau et al., 2011) with a concomitant increase in atmospheric C. 

 

In contrast to land clearing, land management can preserve the SOC pool or even 

lead to increased C sequestration and thus reduced atmospheric CO2 concentration 

(Jenny 1980; Post et al., 1998; Metting et al., 1999). Additionally, increased carbon 

storage could be achieved through afforestation where low biomass LULC types 

such as grasslands or croplands are converted to forests and plantations (Roshetko et 

al., 2007; Nave et al., 2013). Besides sequestration of C in the soil  through C input, 

afforestation causes increased stabilization of old C as fine fractions protected by 
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micro-aggregates (Del Galdo et al., 2003; Mulugeta et al., 2005; Bekele et al., 2006). 

Other studies have demonstrated that the conversion of forest to well-managed 

pastures can enhance SOC storage compared to SOC storage under native forest 

(Powers et al. 2011). Increased SOC storage following the conversion of cropland to 

grassland has also been reported (Su et al., 2009; Fang et al., 2012; Poeplau and Don 

2013). 

 

The capacity of soils to store more C following restoration of various land uses to 

their pristine ecosystem, depends on several factors such as vegetation (Jobbagy and 

Jackson, 2000), climatic conditions (Dixon et al., 1994), soil texture (Six et al., 2002) 

and topography (Rosenbloom et al., 2006). Climatic elements affect SOC storage 

through alteration of decomposition rate of SOC as well as changes in the quantity 

and quality of C cycled through the ecosystem. Vegetation often determines the 

vertical distribution of SOC through root biomass differences with depth (Jobbagy 

and Jackson, 2000; Dorji et al., 2014). In addition to climate and vegetation, soil 

properties, such as texture, play important role in C storage through their stabilizing 

effects on SOC (Jobbagy and Jackson, 2000). Also, topography affects SOC stock 

through its influence on soil moisture regime as well as redistribution of soil particles 

(Gulledge and Schimel, 2000).  

 

Although several studies have shown that LULC changes affect SOC content and 

sequestration of soils (Post and Kwon, 2000; Albaladejo, et al., 2013), the magnitude 

and dynamics of these changes in different ecosystems have not been extensively 

studied. In Nigeria, for example, natural ecosystems have been degraded following 

deforestation, overgrazing, nutrient mining, soil erosion, and loss of bio-diversity 

(UNEP, 2007). These degraded lands have great potential to sequester C in the soils 

(Follett et al., 2001). In addition, most soils in Nigeria are highly weathered with low 

activity clays (FMANR, 1990) that have small mineral surfaces to allow physical 

protection and stabilization of SOC. Such soils are more susceptible to perturbations 

associated with LULC changes, leading to SOC decline. Several studies on the 

influence of land use on SOC storage have been reported for various ecosystems in 
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Nigeria (Raji and Ogunwole, 2006; Anikwe, 2010; Obalum et al., 2012). These 

studies are localized based on small datasets and no information on SOC storage up 

to 1m soil depth has been covered. This presents uncertainties in the understanding 

of the impacts of LULC change on the C cycle and the sustainability of agricultural 

systems (Meersmans et al., 2009; Wiesmeier et al., 2012). This study therefore aims 

to (i) estimate the total SOC stock and (ii) determine the potential carbon 

sequestration of soils under different land use types across agro-ecological zones of 

Nigeria.  

 

4.2 Materials and methods 

4.2.1 Study Area 

Nigeria, with a total area of about 923,768 km
2
, extends across a broad geographical 

area characterised by a large climatic range with two major biomes: the tropical 

humid forest in the south, and the savannah in the north (Keay, 1959). The savannah 

comprises Southern Guinea, Northern Guinea, Sudan, and Sahel zones respectively 

(Adegbehin and Igboanugo, 1990). An addition to the two vegetation types is the 

derived savannah which is a transition zone between the rainforest and savannah 

caused by significant loss of forest by clearance. These climatic and vegetative 

variations, combined with the soil, constitute the agro-ecological zones (AEZs) 

shown in Table 4.1 (IITA, 1992). The environmental and anthropogenic factors 

across these AEZs give rise to a somewhat north-south gradient in LULC across 

Nigeria (see Fig. 4.1). LULC ranges from sparse vegetation and grassland in the 

fringes of the northern region, through cropland/savannah/shrubland mosaics in the 

middle belt region to cropland/shrubland/forest mosaics in the coastal southern 

region. The LULC distribution includes cropland (31 %), Savanna (36%), grassland 

(18%), forest (11%), shrubland (1%) and others (3%). 

 

Farming systems in Nigeria are heterogeneous depending on the agro-ecological and 

socio-economic environments. This is exacerbated by the variability in farmers’ land 
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holdings and farm management (Giller et al., 2011). Farming systems range from 

shifting cultivation and perennial tree cropping in the humid forest AEZ to crop–

livestock farming in the savannah (Dixon et al., 2001). Smallholder farming systems 

are variable with farm size ranging from 0.2 to less than 2 ha. 

 

Table 4.1 Description of the major agro-ecological zones (AEZ) in Nigeria. 

Agro-ecological 

Zones 

Annual 

rainfall 

(mm) 

Annual 

Temperature 

(
o
C) 

Days of 

growing 

period 

Pristine 

vegetation 

Dominant soils 

(WRB) 

Humid Forest 2000-3000 25-27 270-360 Forest Ferralsols, Acrisols 

Derived Guinea 

Savannah 
1500-2000 26-28 211-270 Forest 

Ferralsols, Luvisols, 

Arenosols, Nitosols 

Southern Guinea  

Savannah 
1200-1500 26-29 181-210 Savannah 

Luvisol, Ferralsols, 

Acrisols, Lithosols 

Northern Guinea 

Savannah 
900-1200 27-29 151-180 Savannah 

Luvisols, Vertisols, 

Lithosols,Ferralsols 

Sudan Savannah 500-900 25-30 91-150 Savannah 
Lixisols, Luvisols, 

Regosols 

Sahel Savannah 250-500 21-32 ≤90 Grassland Aridisols, Regosols 

Montane/High 

Altitude 
1100-1500 20-23 160-200 Savannah 

Luvisols,  Lithosols, 

Ferralsols 

†Adapted and Modified from Sowunmi & Akintola. (2010) and Jagtap, 1995.  

 

4.2.2 Data sources and processing 

4.2.2.1 Soil data 

The major SOC and BD profile data used in this study were taken from the ISRIC 

compilation of Africa Soil Profiles Database obtained from soil survey reports and 

field research conducted in Nigeria (Leenaars, 2012; Odeh et al., 2012). The 

procedures for the determination of these properties were already described by 

Leenaars (2012). Bulk of the SOC contents data were measured by wet 

oxidation/digestion using either the Walkley Black (WB) method or the modified 

WB method of Nelson and Sommers (1996), while a few were measured using the 

dry combustion method. However, data obtained from these two methods were 
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harmonized to the dry combustion method (Leenaars, 2012). The BD data were 

determined using the core sampling method. The SOC concentrations were originally 

reported in percentage mass unit but were converted to g kg
-1

 following the 

GlobalSoilMap specifications (Arrouays et al., 2014). We also calculated mass-

preserving splines (Bishop et al., 1999) to convert the soil profile data to standard 

depth intervals (0-5, 5-15, 15-30, 30-60, 60-100, 100-200 cm) in accordance with the 

GlobalSoilMap specifications (Arrouays et al., 2014). Overall, SOC data from 711 

soil profiles and BD data from 222 profiles were used in this study after data pre-

processing. The distribution of the SOC profile data across the various AEZs in 

Nigeria is shown in Fig. 4.2. 

 

4.2.2.2 Predictor variables 

In this study, 23 predictor variables were used in the SCORPAN model (McBratney 

et al., 2003) as the predictors of SOC and BD- both of which are fundamental to 

SOC stock estimation (see Table 4.2). The predictors include SRTM 90 m digital 

elevation model (DEM) (USGS, 2006) from which other predictors, such as slope 

gradient, aspect, profile and plan curvatures, flow accumulation, topographic wetness 

index (TWI), stream power index (SPI), were derived following Reuter and Nelson. 

(2009). Related predictors used include landform classifications based on algorithms 

by Iwahashi (Iwahashi and Pike, 2007) and Hammond (Dikau et al., 1991), 

physiographic regions map derived from DEM (Akpa et al 2014), MODIS enhanced 

vegetation index (EVI) and Normalized difference Vegetation Index (NDVI) maps 

(obtained from https://lpdaac.usgs.gov), and bands 1, 2, 3, 4 and 7 of Landsat 7-

ETM+ coverage obtained from Landsat GeoCover ETM+ 2000 edition (MDA 

Federal, 2004). To complete the picture, SCORPAN predictor variables of mean 

annual rainfall and temperature data acquired from the 1km global climate data 

(Hijmans et al., 2005) soil map of Nigeria (FMANR, 1990) and generalized geology 

map of Nigeria digitized from the UNESCO geology map of Africa (UNESCO-

ASGA, 1963) were included. All these data layers were first transformed to a 

common projection (UTM WGS84 Zone 32N) and then resampled to 1000m 
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resolution using the nearest neighbour technique in ArcGIS10.1 prior to further 

analysis. 

 

 

Figure 4.1. Generalized Land use/land cover map of Nigeria Reclassified from 

MODIS Global land cover (Friedl et al., 2010). 
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Figure 4.2. SOC legacy profile distribution across the various Agro-ecological zones 

in Nigeria (AEZ map adapted from IITA, 1992 and Jagtap, 1994). 

 

4.2.3 Modelling and spatial prediction 

4.2.3.1 Prediction models 

We employed three non-parametric prediction models (Random forest, Cubist and 

Boosted regression tree) for the spatial prediction of SOC and BD. Prior to fitting 

each of the three prediction models, the “train” function of the “caret” R package was 

used to obtain optimal parameter settings for each of the models at each depth 

interval. The train function has the capacity to fine tune various models by selecting 

a combination of sensitive parameters that are associated with the optimal resampling 

statistics of the held-out samples (Akpa et al., 2014). 
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Table 4.2. Predictor variables used to predict SOC and Bulk density for Nigeria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

†FMANR; Federal department of agriculture and land resources, DEM; digital elevation model, NDVI; normalized difference vegetation index, EVI; enhanced vegetation index, 

MODIS;  moderate resolution imaging spectroradiometer, SRTM; shuttle radar topography mission 

Variables                                   Data source                                     Original Scale/Resolution                      References 

Topography 

Slope Aspect                               SRTM DEM                                                     90 m                                        USGS (2006) 

Slope gradient                             SRTM DEM                                                     90 m                                        USGS (2006) 

Elevation                                     SRTM DEM                                                     90 m                                        USGS (2006) 

Wetness index                             SRTM DEM                                                     90 m                                        USGS (2006) 

Stream power index                    SRTM DEM                                                      90 m                                       USGS (2006) 

Flow Accumulation                    SRTM DEM                                                      90 m                                        USGS (2006) 

Plan curvature                             SRTM DEM                                                      90 m                                        USGS (2006) 

Profile curvature                         SRTM DEM                                                      90 m                                        USGS (2006) 

Physiographic region                  SRTM DEM                                                      90 m                                        Akpa et al. (2014) 

Iwahashi                                      SRTM DEM                                                      90 m                                        Akpa et al. (2014) 

Hammond                                    SRTM DEM                                                      90 m                                        Akpa et al. (2014) 

Vegetation/Anthropogenic factors 

Landuse                                        MODIS                                                           500 m                                   https://lpdaac.usgs.gov 

NDVI                                            MODIS                                                           250 m                                   https://lpdaac.usgs.gov 

EVI                                               MODIS                                                           250 m                                   https://lpdaac.usgs.gov 

Band 1                                           Landsat                                                           30 m                                       MDA Federal, 2004 

Band 2                                           Landsat                                                           30 m                                       MDA Federal, 2004 

Band 3                                           Landsat                                                           30 m                                       MDA Federal, 2004 

Band 4                                           Landsat                                                           30 m                                       MDA Federal, 2004 

Band 7                                           Landsat                                                           30 m                                       MDA Federal, 2004 

Climate 

Precipitation                         WorldClim data                                                       1 km                                       Hijmans et al. (2005) 

Temperature                         WorldClim data                                                       1 km                                       Hijmans et al. (2005) 

Parent Material 

Geology                          Scanned and digitized geological map                      1:5,000,000                            UNESCO-ASGA, 1963 

Soil types                                     FMANR                                                        1:650,000                                   FMANR, 1990 
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4.2.3.1.1 Random Forest model 

Random forest model (RFM0 is a tree-based, robust prediction technique which was 

developed by Breiman (2001) but only recently employed in digital soil mapping 

(DSM) studies (Grimm et al., 2008). RFM has been successfully used in spatial 

prediction of SOC stocks because the underlying tree models can accommodate non-

linearity in the response-predictor relationship, and interactions between the 

predictors (Grimm et al., 2008; Wiesmeier et al., 2011; Vågen et al., 2013). The 

model’s strength lies in its two randomization procedures of bootrapping and random 

input selection. In addition, RFM carries out bagging of predictions which 

subsequently improves predictions of the individual tree models (Suuster et al., 2012; 

Vaysse and Lagacherie, 2015). We implemented RFM in spatial prediction of both 

SOC and BD using the randomForest 4.6 package in R environment (R 

Development Core Team, 2014).  

 

4.2.3.1.2 Cubist 

Cubist is a rule based model that is an extension of Quinlan's M5 model tree 

(Quinlan, 1993). The approach used in Cubist for tree growing is similar to those 

used in classical regression tree models such as classification and regression trees 

(CART). However, unlike CART the terminal tree leaves contain linear regression 

models instead of discrete class labels (Minasny and McBratney, 2008). In Cubist, 

regression trees are further reduced to a set of comprehensible rules, with each rule 

based on some conditions so that different linear models are able to capture local 

linearity in the predictor variable space, thus leading to smaller trees and better 

prediction accuracy when compared with CART (Quinlan, 1993). Cubist has gained 

wide application in DSM recently especially in SOC stock modelling (Bui et al., 

2009; Miklos et al., 2010; Stevens et al., 2013; Adhikari et al., 2014; Lacoste et al., 

2014; Mulder et al., 2016). We carried out Cubist modelling of SOC and BD using 

the Cubist package in R environment (Kuhn et al., 2013).  
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4.2.3.1.3 Boosted Regression Tree 

Boosted regression trees (BRT) belong to the gradient boosting modelling family of 

statistical algorithms (Collard et al., 2014). Like CART, it builds regression trees to 

make prediction of a target variable but improve prediction accuracy by minimizing 

the risk of over-fitting through boosting technique (Lawrence et al., 2004). Boosting 

techniques are generally applied to increase performance of a given estimation 

method by generating instances of the method iteratively from a training data set and 

additively combining them in a forward “stage-wise” procedure (Elith et al., 2008). 

Like most data mining prediction models BRT has an inherent ability to represent 

interactions among predictor variables without a priori knowledge of their 

distribution. Additionally, BRT is robust to the effects of outliers, missing data and 

autocorrelation among variables (Jalabert et al., 2010). Two main parameters are 

required for the fitting of BRT: the learning rate and the tree size or interaction depth. 

We applied BRT in modelling SOC and BD using the “gbm” package in the R 

statistical environment. 

 

4.2.3.2 Model evaluation 

The performance of the aforementioned three models in predicting SOC and BD was 

tested by cross-validation, with 80% of the data used for model calibration while the 

remaining 20% for model validation. To ensure stability and increase reliability, 

model calibration was based on 100 iterations or runs. Each run involved random 

sampling of the subsets for calibration and validation after which the performance of 

each model was evaluated using the difference between measured and predicted 

response variable. In doing this, three statistical indices: root mean square error 

(RMSE), coefficient of determination (R
2
) and Lin’s concordant correlation 

coefficient (Pc), were computed.  

 

RMSE, which is a measure of model accuracy, was computedas: 
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        RMSE = √1

n
∑ (oi − pi)

n
i=1

2
    [4.1] 

where, n denotes data points, oi and pi are observed and predicted SOC 

concentration and BD values at the ith point. 

 

The coefficient of determination (R
2
), which is the percentage of variation explained 

by each model, was calculated as: 

           𝑅2 =
∑ (𝑝𝑖−μo)2𝑛

𝑖=1

∑ (𝑜𝑖−μo)2𝑛
𝑖=1

      [4.2] 

Where, μo and μp are the means for the raw and predicted SOC and BD as the case 

may be. 

 

The Lin’s concordance correlation coefficient (ρc), a measure of the strength of the 

agreement between the observed and predicted PSF values, was computed as: 

 

              ρc =
2ρσoσp

σo
2+σp

2 +(μo−μp)
2    [4.3] 

 

where, ρc is the estimated Lin’s concordance correlation coefficient, μo and μp are 

the means for the raw and predicted SOC and BD while σo
2 and σp

2 are the 

corresponding variance and ρ the Pearson correlation coefficient between the raw 

and predicted SOC and BD. A good model will have a ρc close to 1 and RMSE of 

almost 0. 
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4.2.3.3 Prediction uncertainty  

One of the strengths of DSM is the quantification of the uncertainty inherent in 

spatial prediction. Since models are representations of reality (Luoto and Hjort, 

2005), prediction of soil attributes have a level of uncertainty that can be quantified. 

This is important for guiding decision-making processes (Goovaerts, 2001). We 

therefore estimated the uncertainty of our predictions by calculating 95% prediction 

intervals from the individual bootstrap predictions of the numerous trees or rules 

generated by the different models for both SOC and BD at each of the five depth 

intervals. The 95% prediction intervals for SOC and BD were then used to calculate 

uncertainty in our SOC stock estimation. 

 

4.2.4 Estimation of SOC density and stocks 

SOC density (SOCD), which is the SOC mass per unit area for a given depth, was 

estimated for each depth interval as the product of SOC concentration, thickness of 

the layer interval and the bulk density using equation (4.4) below: 

 

10*** DBDSOCSOCD c       [4.4] 

 

where, SOCD  is SOC density (Mg ha
-1

), cSOC  is SOC concentration (g kg
-1

) in 

oven-dry basis, BD is bulk density (Mg m
-3

) and D is depth interval thickness (m).  

 

SOC stock (SOCS) is the actual SOC mass for a given soil depth and area. It was 

calculated by summing up the product of SOC density and area of the grid cell size 

as: 

 

  6

1

10/*



n

i

ii ASOCDSOCS        [4.5] 
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where, SOCS is the SOC stock (Tg), n is the number of grid cells, iSOCD  is SOC 

density (Mg ha
-1

) per grid cell for a given depth interval, 𝐴𝑖 is the area of grid cell 

(ha) and 10
6
 is the conversion factor from Mg to Tg.  

 

4.2.5 Potential carbon sequestration  

To estimate potential carbon sequestration, we calculated the difference between the 

mean total SOC of soils in the different LULC types and the respective pristine 

vegetation of a given AEZ. The assumption here is that, this will indicate the amount 

of C that could be sequestered when any of the other land use types is converted back 

to the pristine vegetation. This is can be represented as: 

 
















n

j

jjseq SOCDuSOCDnC
1

      [4.6] 

 

Where, Cseq is the potential C sequestration (Mg C ha
-1

), 


jSOCDn  is mean SOCD 

(Mg C ha
-1

) for native vegetation in a given AEZ and 


jSOCDu  is the mean SOCD 

(Mg C ha
-1

) for any other land use type within the same AEZ. 

 

4.3 Results 

4.3.1 Modelling of SOC concentration and bulk density 

4.3.1.1 Performance of prediction models 

The performances of RFM, Cubist and BRT in predicting soil organic carbon and 

bulk density based on average values of 100 model runs cross-validation are shown 

in Table 4.3. In terms of R
2
 and ρc, RFM and Cubist model exhibited similar 

performance although each out-performed BRT in predicting SOC especially the 

topsoil SOC. However, while RFM performed slightly better than Cubist model in 
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terms of prediction error, Cubist performance is slightly better than RFM in terms of 

R
2
 and ρc in predicting BD especially of the subsoil. The RFM captured 18 to 34% 

of the variation in SOC concentration and 25 to 48% of the variation in bulk density. 

This was higher in the top 15cm soil depth for SOC than the lower depth intervals. 

The RMSE ranged from 2.29 g C kg
-1

 to 7.96 g C kg
-1

 for SOC and 0.13 Mg m
-3

 to 

0.16 Mg m
-3

 for the BD. Lin's concordance coefficients ( Pc ) range from 0.30 to 0.47 

for SOC and from 0.35 to 0.57 for BD.  

 

Each of the three models showed that soil type, climate, vegetation indices and 

terrain attributes are important predictors of SOC (see Fig 4.3) while soil type, 

climate, terrain attributes and soil surface reflectance indices are important predictors 

of BD in this study (see Fig. 4.4).  

 

4.3.1.2 SOC concentration and bulk density 

The summary of the spline-fitted and predicted SOC and BD for the three models is 

presented in Table 4. SOC contents are relatively low with mean ranging from 3.2 to 

10.9 g C kg
-1

 (Spline fitted values) and are highly variable within the profile (SD of 

2.5 to 9.7 g C kg
-1

) especially for the 0-30 cm soil depth. SOC ranged from 0.6 to 

102.7 g C kg
-1

 in the topsoil (0-30 cm) and from 0.1 to 42.8 g C kg
-1

 in the subsoil. 

Generally mean SOC contents decreased with depth. The predicted SOC by the three 

models show similar trend as the spline fitted data. However, the mean values of 

SOC predicted by RFM and Cubist are closer to the spline fitted data than the SOC 

predicted by BRT, with the latter over predicting values. 
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Table 4.3. Performance models in predicting soil organic carbon and bulk density. 

  RFM   Cubist   BRT 

Depth 

(cm) RMSE R
2
 ρc   RMSE R

2
 ρc   RMSE R

2
 ρc 

Soil organic carbon (g kg
-1

) 

0-5 7.96 0.34 0.47 

 

8.24 0.32 0.48 

 

8.52 0.25 0.32 

5-15 6.71 0.30 0.43 

 

7.32 0.26 0.42 

 

7.39 0.20 0.29 

15-30 5.57 0.20 0.30 

 

5.90 0.16 0.26 

 

5.57 0.11 0.20 

30-60 3.20 0.20 0.30 

 

3.45 0.13 0.22 

 

3.46 0.09 0.15 

60-100 2.29 0.18 0.30 

 

2.40 0.11 0.21 

 

2.34 0.07 0.13 

Bulk density (Mg m
-3

) 

0-5 0.16 0.25 0.35 

 

0.16 0.20 0.36 

 

0.17 0.17 0.17 

5-15 0.14 0.29 0.39 

 

0.15 0.24 0.40 

 

0.15 0.21 0.21 

15-30 0.13 0.36 0.46 

 

0.14 0.32 0.49 

 

0.14 0.29 0.28 

30-60 0.13 0.44 0.54 

 

0.13 0.43 0.60 

 

0.15 0.35 0.36 

60-100 0.14 0.48 0.57   0.14 0.48 0.65   0.15 0.42 0.44 

† BRT, Boosted regression trees, ρc; Lin’s concordance correlation coefficient, RFM; Random forest model,  

RMSE; Root mean square error 



Chapter 4   Soil organic carbon and carbon sequestration potential of soils 

 

111 

 

                 

Figure  4.3. Importance of predictor variables in predicting SOC at the top 15 cm soil depth based on Random forest model (A), Cubist (B) 

and Boosted regression tree (C). Abbreviations: EVI; enhanced vegetation index, SPI; stream power index, NDVI; normalized difference vegetation index, 

TWI; topographic wetness index, Profile C; profile curvature, Plan C; plan curvature. 

A B C 
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Figure  4.4. Importance of predictor variables in predicting bulk density at the top 15 cm soil depth based on Random forest (A), Cubist (B) 

and Boosted regression tree (C). Abbreviations: EVI; enhanced vegetation index, SPI; stream power index, NDVI; normalized difference vegetation index, 

TWI; topographic wetness index, Profile C; profile curvature, Plan C; plan curvature 

A B C 
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Table 4.4. Summary statistics of spline-fitted and predicted soil organic carbon (g kg-1) and bulk density (Mg m-3) based on Random 

forest, Cubist and Boosted regression trees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

†BRT; Boosted regression trees, Max; maximum, Min; Minimum, SD; standard deviation, RFM; Random forest model. 

 

 

RFM Cubist model BRT Spline   

Depth 

(cm) 

   

max min mean SD     max min mean SD     max min mean SD     max min mean SD 

Soil organic carbon  

0-5 47.0 3.40 11.0 5.30 70.6 0.62 10.5 6.50 47.1 13.3 18.3 2.50 93.3 0.70 10.9 9.70 

5-15 44.4 3.10 9.80 4.30 81.2 0.44 9.40 5.70 45.2 8.50 17.7 2.60 102.7 1.00 9.60 8.30 

15-30 31.8 2.40 7.40 2.70 115.8 0.43 6.90 3.90 29.0 8.00 14.3 0.90 94.6 0.60 7.00 6.10 

30-60 18.9 1.80 4.80 1.50 50.6 0.82 4.60 2.00 17.0 5.50 9.20 0.60 42.8 0.30 4.50 3.60 

60-100 11.2 1.20 3.40 0.90 25.2 -0.66 3.30 1.70 13.1 5.20 8.30 0.90 26.1 0.20 3.20 2.50 

Bulk density 

0-5 1.55 1.06 1.31 0.07 2.95 0.64 1.35 0.17 1.45 1.22 1.29 0.02 1.84 0.73 1.30 0.18 

5-15 1.55 1.08 1.32 0.07 2.55 0.72 1.34 0.16 1.37 1.17 1.22 0.01 1.83 0.74 1.31 0.17 

15-30 1.52 1.11 1.33 0.07 2.30 0.47 1.35 0.16 1.40 1.17 1.22 0.02 1.80 0.78 1.32 0.16 

30-60 1.57 1.11 1.33 0.08 2.38 0.63 1.36 0.16 1.34 1.16 1.22 0.01 1.84 0.86 1.33 0.17 

60-100 1.58 1.03 1.31 0.10 2.33 0.51 1.34 0.15 1.47 1.17 1.29 0.04 1.81 0.87 1.31 0.19 



Chapter 4   Soil organic carbon and carbon sequestration potential of soils 

 

    114 

 

The BD shows a low variability (SD range of 0.16 to 0.19 Mg m
-3

) within the profile 

(spline fitted values). BD values ranged from 0.73 to 1.84 Mg m
-3

 in the surface 

layers and from 0.86 to 1.84 Mg m
-3

 in the subsurface layers. The mean BD is 

relatively uniform, ranging from 1.31 to 1.33 g Mg m
-3

 across all soil depth intervals. 

Among the three models RFM predicted more similar values of BD with the raw data 

compared to Cubist and BRT. Cubist over-predicted BD while BRT under-predicted 

BD. 

 

4.3.2 SOC concentration of land use types 

The vertical distribution of SOC content under different land use types based on 

RFM and Cubist is presented in Fig. 4.5. The models predicted SOC similar to the 

spline-fitted data except for model smoothing effect. Mean SOC predicted by both 

models is slightly lower in soils under forest (FL) and shrubland (SL) than spline-

fitted SOC data especially at the top 30 cm depth while Cubist tends to under-predict 

SOC under grassland especially at the topsoil. The trend of SOC distribution across 

the various LULC types for bot model follows the order forestland > cropland > 

shrubland > savanna > grassland in the top 15cm depth. However, Shrubland and 

savanna have a higher SOC concentration compared to cropland below 30 cm soil 

depth. Overall, SOC content ranges from 1.8-47.0 g C kg
-1

 (FL), 2.0-31.3 g kg
-1

 

(SL), 1.3-44.4 g kg
-1

 (S), 1.5-33.4 g kg
-1 

(GL), and 1.7-44.2 g kg
-1 

(CL).  

 

4.3.3 SOC density and stock for Nigeria 

The spatial distribution patterns of the total SOC density (SOCD) based on RFM and 

Cubist are shown in Fig. 4.6. RFM and Cubist yielded a similar trend in spatial 

distribution of SOCD. Generally, SOCD vary greatly across the study area; 

decreasing from the southwest to the northeast, and increasing from Sahel Savannah 

to Humid Forest agro-ecological zones. An average density of 71.60 Mg C ha
–1
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accumulated in the top 1 m of the soils in Nigeria. Expectedly, SOCS shows spatial 

distribution as SOCD across the entire country. About 6.5 Pg of SOC is stored in the 

top 1 m of the soils in Nigeria. In addition, about 48%, 27% and 25% of the total 

SOC stock in the Nigerian soils is found at 0-30 cm, 30-60cm and 60-100cm depth 

respectively (See Table 4.5). For the sake of brevity, further presentation of results 

on SOCD and SOCS focuses only on the best prediction model (RFM). 

 

4.3.4 SOC density and total stock under various land use types 

Mean SOCD and total SOCS differs in soils under different land use. Soils under FL 

have a higher SOCD (99.2 Mg C ha
-1

) while soils under grassland have the lowest 

SOCD (51.0 Mg C ha
-1

(see Table 4.5). In the top 30 cm, soils under savannah and 

cropland presents similar mean SOCD. However, soils under savannas LULC have a 

higher SOCD below 30 cm soil depth. SOCS values ranged from 4.2 Tg to 662 Tg 

with highest storage in the 30-60 cm soil layer (Table 4.5). SOCS distribution across 

the various land use types followed a slightly different trend as SOCD (Fig. 4.8) with 

SOCS distributing deeper in soils of the savannas (38 %) and shallower in soils of 

shrublands (1.1%). The distribution of the SOCS considering the percent total 

storage follow the trend S (38.4 %) > CL (30.5%) > FL (16.1%) > GL (13.3%) >SL 

(1.1%). This trend varied from one AEZ to another (see Fig. 4.9). Except for the SDS 

and SHS AEZs, savannas, forestlands and croplands ranked top in terms of total SOC 

stored across the study area.  
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Figure 4.5. Vertical distribution of SOC concentration (grams per kilogram) in the soil profile under different land use types as predicted by spline 

functions (A), Random Forest model (B) and Cubist Model (C). 

C A B 
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Table 4.5. Mean and standard deviation of SOC density and total SOC stock in each land use type and agro-ecological zone. 

    SOC Stock (Mg ha
-1

) Total SOC storage (Tg) 

 
Area 

(10
6
 m

2
) 

Depth (cm) 

Landuse 0-5 5-15 15-30 30-60 60-100 0-5 5-15 15-30 30-60 60-100 

Forest 102996 10.9±4.5 18.9±7.5 20.1±7.3 25.7±9.0 23.5±7.5 113.2 194.6 207.0 264.4 242.3 

Shrubland 8576 6.3±2.5 11.5±4.6 13.6±4.9 18.4±5.5 18.8±4.8 5.4 9.9 11.6 15.8 16.1 

Savanna 326279 7.3±2.4 13.4±4.2 15.3±4.4 19.7±4.9 18.2±4.6 239.7 435.9 500.0 642.3 594.3 

Grassland 166359 4.4±1.3 8.7±2.4 10.1±2.5 14.1±2.9 14.2±2.6 73.2 135.9 168.5 234.0 236.4 

Cropland 290970 6.9±2.7 12.4±4.7 14.1±4.3 18.5±4.6 17.5±4.0 201 361.7 409.2 538.1 508.7 

Agro-ecological zone 

           Humid Forest 106184 13.3±2.9 23.1±5.3 23.7±5.8 30.2±7.0 27.1±6.2 141.7 245.7 252.1 320.8 287.9 

Derived Savannah 258200 8.1±2.7 14.6±4.5 16.5±4.7 20.8±4.9 18.9±4.7 208.2 375.6 427.3 536.8 486.9 

Southern Guinea Savannah 144622 6.2±1.3 11.3±2.3 13.2±2.7 17.6±3.2 16.9±3.2 89.0 163.2 191.4 254.0 244.0 

Northern Guinea Savannah 113377 6.2±1.0 11.1±1.7 12.8±1.8 17.0±2.1 16.5±2.3 69.8 125.6 145.3 191.4 187.0 

Sudan Savannah 174997 5.0±0.9 9.3±1.5 11.3±1.6 15.4±1.9 115.0±1.9 88.1 162.0 197.9 268.8 261.8 

Sahel Savannah 90987 3.9±1.2 7.3±2.0 9.1±2.1 13.14±2.5 14.0±3.1 35.7 66.0 82.8 118.8 127.2 

Mid High Altitude 20436 7.4±1.5 13.0±2.6 14.8±3.1 19.8±3.4 19.2±3.0 15.1 26.6 30.2 40.5 39.3 
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Figure 4.6. Spatial distribution of the mean SOC density (Mg ha-1) in the top 1m of soil as predicted by Random forest model (A) and Cubist 

(B). 

A B 
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4.3.5 SOC density and total stock across AEZs 

SOCD varied significantly across the AEZs (Table 4.5). It ranged between 47.3 and 

117.6 Mg C ha
-1

. There was more SOCD in soils under HF than in other AEZs. 

Overall, SOCD in the 1m depth across the various AEZs includes HF (117.6 Mg C 

ha
-1

), DS (78.8 Mg C ha
-1

), MA (74.2 Mg C ha
-1

), SGS (65.1 Mg C ha
-1

), NGS (63.6 

Mg C ha
-1

), SDS (55.9 Mg C ha
-1

) and SHS (47.3 Mg C ha
-1

). Also, the distribution 

of total SOC stored in soils under the various AEZs followed the sequence DS 

(31.7%) > HF (18.3%) > DS (15.2%) > SGS (14.6%) > NGS (11.1%) > SHS (6.7%) 

> MA (2.4%) (see Fig 4.8). 

 

4.3.6 SOC density and total stock under various soil types 

Mean SOCD differs across the various soil types (see Table 4.6) with values ranging 

from 4.8 to 25.9 Mg C ha
-1

. In the top 30 cm, Ferralsols showed slightly higher 

SOCD than other soil types. However, Gleysols have the highest SOCD below 30 

cm. Ferralsols and Gleysols collectively have higher Mean SOCD (109 Mg C ha
-1

) at 

the top 1m soil depth while Arenosols have the lowest mean SOCD (53.8 Mg C ha
-1

). 

In terms of total SOC storage to 1 m depth, Lixisols (1510.6 Tg) show the highest 

while Phaeozems (22.40 Tg) show the lowest total SOC stock (Table 4.7). 
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Figure 4.7 Spatial distribution of predicted mean SOC stock (Mg) based on Random forest model (A) and the associated 95% prediction 

interval (B) in the top 1m of soil. 

A B 
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Table 4.6. Mean and standard deviation of SOC density and total SOC stock of major WRB soil groups. 

    SOC Stock (Mg ha
-1

) Total SOC storage (Tg) 

  

Area 

 (10
6
 m

2
) Depth (cm) 

Soils   0-5 5-15 15-30 30-60 60-100 0-5 5-15 15-30 30-60 60-100 

Acrisols 40241 7.8±2.7 13.9±4.5 15.8±4.8 20.2±5.2 18.5±4.5 76.1 31.2 55.9 63.5 74.4 

Arenosols 151599 4.8±1.9 8.8±3.5 10.9±3.6 14.8±3.9 14.6±3.4 53.8 72.1 133.7 164.5 221.0 

Cambisols 3662 7.1±1.8 12.6±3.1 14.4±2.7 18.6±3.1 18.0±2.5 70.8 2.6 4.6 5.3 6.6 

Ferralsols 13132 12.6±2.4 21.9±4.3 21.8±4.7 28.6±5.2 24.9±4.9 109.8 16.6 28.7 28.6 32.7 

Fluvisols 62323 6.7±4.0 12.2±7.1 14.4±7.4 19.2±8.7 18.3±7.2 70.8 41.9 76.3 89.6 114.3 

Gleysols 30865 11.9±5.3 21.0±9.1 21.7±8.8 28.6±11.5 25.9±9.0 109.0 36.7 64.8 66.9 79.8 

Leptosols 113962 7.2±2.5 13.0±4.3 15.0±4.7 19.4±4.9 18.4±4.4 72.9 82.1 147.8 170.6 209.4 

Lixisols 217529 6.9±2.1 12.4±3.4 14.2±3.5 18.5±3.9 17.4±3.7 69.4 149.6 269.2 309.3 379.1 

Luvisols 48442 6.2±1.0 11.5±1.8 13.6±2.1 17.8±2.9 16.5±3.4 65.6 30.2 55.7 65.7 79.8 

Nitisols 129900 9.5±3.8 16.7±6.3 17.8±6.0 22.4±6.5 20.8±5.6 87.2 123.3 216.2 231.5 270.5 

Phaeozems 2920 7.3±1.1 13.1±2.0 15.2±2.1 20.4±2.9 20.7±3.0 76.7 2.1 3.8 4.4 6.0 

Plinthosols 49074 6.2±1.3 11.3±2.3 13.3±2.6 17.2±2.7 15.4±2.5 63.4 30.2 55.5 65.2 75.6 

Solonchaks 5038 5.6±0.9 10.1±1.6 12.0±1.7 16.3±1.7 17.3±2.2 61.3 2.8 5.1 6.1 8.7 

Vertisols 14678 5.6±1.7 10.5±3.2 12.6±2.9 17.6±2.4 17.8±2.5 64.0 8.3 15.3 18.4 26.1 
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Figure 4.8. Percentage of SOC stored at 1 meter soil layer under different land use 

types (A) and agro-ecological zones (B) in Nigeria. 

A 

B 
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4.3.7 Uncertainty in Total SOC stock estimation 

The results of the 95% prediction interval of SOC stock estimated based on RFM is 

presented in Fig. 4.7 while Table 4.7 shows the distribution of total SOC stock and 

their associated uncertainty across the various LULC, AEZ and soil groups. A closer 

look at Fig. 4.7 will reveal a wide prediction interval around the Delta areas in the 

southern fringes of the country, the borders of the north-eastern region as well as the 

north-central region. Among the various land use, there is a wider uncertainty in the 

estimated SOCS under the Savanna (±6.00) than other land use types. Also, the DS 

agro-ecological zone shows the widest range of uncertainty (±4.91 Tg) while there is 

higher uncertainty in our SOCS estimation for Lixisols (±3.46 Tg) compared to other 

soil groups (Table 4.7). 

 

4.3.8 Potential soil carbon sequestration 

The potential soil C sequestration under different LULC types across the various 

AEZs of Nigeria is presented in Fig. 4.10. On average the potential to sequester SOC 

ranges from -17.0 and 30.8 Mg C ha
-1

 depending on the LULC change and AEZ (See 

Fig. 4.10a). The DS, which is transitional between rainforest and savannas, has the 

highest capacity to store  C (19.0 to 30.8 Mg C ha
-1

) especially with the restoration of 

shrublands to forests (30.8 Mg C ha
-1

) while the Southern Guinea Savannah (0.4 to 

2.3 Mg C ha
-1

) has the least capacity to store additional C. With the exception of the 

HF and DS zones, soils under grasslands show the highest potential to sequester C. 

This is followed by shrublands and croplands. In the HF zone, C sequestration 

ranged from 3.8 to 22.8 Mg C ha
-1

 with an average of 16.9 Mg C ha
-1

. The 

restoration of shrublands, croplands, grasslands, and savannas to the pristine 

vegetation in this AEZ has the potential of storing additional 3.8, 19.9 Mg C ha
-1

, 

21.1 Mg C ha
-1

 and 22.8 Mg C ha
-1

 respectively. These values represent a change of 

about 3.1%, 18.6%, 19.9% and 21.9% between the SOC in the current land use and 

the native vegetation (see Fig. 4.10b).  
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In the DS AEZ, the restoration of the various land use types gave soil C sequestration 

in the range of 19.0 to 30.8 Mg Cha
-1

 with an average of 25.5 Mg C ha
-1

. The 

restoration of various LULC types to forest has the potential of storing additional 

30.8 Mg C ha
-1

 (shrublands), 29.2 Mg C ha
-1

 (grasslands), 23.1 Mg C ha
-1

 (savannas) 

and 19.0 Mg C ha
-1

 (croplands). These reflect a change of about 44.8%, 41.5%, 

30.2% and 23.5 % between SOC under these land use types and forest vegetation in 

the DS agro-ecosystem. 

 

Across the various Savannah AEZs, C sequestration potential under the different 

land use types is as follows SHS (-17.0 to 19.0 Mg C ha
-1

) > SDS (0.4 to 6.9 Mg C 

ha
-1

) > NGS. (0.2 to 3.4 Mg C ha
-1

) > SGS (0.4 to 2.3 Mg C ha
-1

). The restoration of 

grasslands has the highest potential to sequester additional C (1.6 to 19.0 Mg C ha
-
1) 

compared to other land use types these AEZs. However, the restoration of forestlands 

in the SHS leads to a reduction in C sequestration (-17.0 Mg C ha
-1

) and is indicative 

of a loss of C from the system. This could be explained by the high biomass C input 

from exotic forest plantations in some parts of the SHS agro-ecosystem. These are in 

the form of shelterbelt or agroforestry projects. 
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Table 4.7. Mean SOC Stocks, their uncertainty and Total SOC stocks in the top 1 m. 

  

Mean  

(Mg ha
-1

) 

SD  

(Mg ha
-1

) 

Total SOC  

Stock (Tg) 

95% 

Confident 

 limit (Tg) 

Soils         

Acrisols 76.1 9.9 306.2 ±0.78 

Arenosols 53.8 7.4 815.6 ±2.21 

Cambisols 70.8 6 25.9 ±0.06 

Ferralsols 109.8 9.9 144.1 ±0.42 

Fluvisols 70.8 15.8 441.5 ±1.15 

Gleysols 109 20.1 336.4 ±1.06 

Leptosols 72.9 9.5 830.9 ±2.15 

Lixisols 69.4 7.5 1510.6 ±3.46 

Luvisols 65.6 5.4 317.5 ±0.75 

Nitisols 87.2 12.8 1132.6 ±2.84 

Phaeozems 76.7 5.3 22.4 ±0.06 

Plinthosols 63.4 5.3 311 ±0.73 

Solonchaks 61.3 3.8 30.9 ±0.08 

Vertisols 64 5.8 94 ±0.21 

Landuse 

    Forest 99.2 16.3 1021.5 ±2.96 

Shrubland 68.6 10.2 58.8 ±0.17 

Savanna 73.9 9.4 2412.2 ±6.00 

Grassland 51 5.3 847.9 ±2.26 

Cropland 69.4 9.2 2018.6 ±4.95 

Agro-ecological zone 

    Humid Forest 117.6 12.6 1248.2 ±3.8 

Derived Savannah 78.8 9.8 2034.7 ±4.91 

Southern Guinea Savannah 65.1 5.9 941.7 ±2.33 

Northern Guinea Savannah 63.6 4.1 720.6 ±1.63 

Sudan Savannah 55.9 3.6 978.6 ±2.72 

Sahel Savannah 47.3 5.1 430.4 ±1.09 

Mid High Altitude 74.2 6.3 151.7 ±0.35 
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Figure 4.9. Total SOC (Tg) stored in 1 m soil depth under different land use types 

across various agro-ecological zones of Nigeria. Abbreviations: HF; Humid forest, 

DS; Derived savannah,  SGS; Southern Guinea savannah, NGS; Northern Guinea 

savannah,  SDS; Sudan savannah, SHS; Sahel savannah, MA;  Mid-High Altitude. 
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Figure 4.10. Potential Carbon Sequestrability (A) and percentage change in SOC (A) 

of selected land use types across various agro-ecological zones. Abbreviations: HF; 

Humid forest, DS; Derived savanna,  SGS; Southern Guinea savanna, NGS; Northern Guinea 

savanna,  SDS; Sudan savanna, SHS; Sahel savanna, MA; Mid-High Altitude. 

 

A 

B 
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4.4 Discussion 

4.4.1 Modelling SOC concentration  

Our results indicate that RFM and Cubist exhibited similar but better performance 

than BRT in predicting SOC and bulk density (Table 4.3). This is in contrasts to the 

reports of Yang et al (2016) who compared the performances of RFM and BRT in 

predicting SOC. Our reported Ρc based on the three models used for SOC prediction 

is relatively low (0.15 to 0.48), indicating a low to moderate agreement between the 

predicted and measured SOC, with the strongest agreement obtained for the upper 0–

15 cm soil depth. The agreement weakens as we go down the profile with increasing 

systematic deviations from the 45° line exhibited by layers below 30cm depth. This 

is expected since soil is less variable at the lower depth, which corresponds with a 

more natural state of the soil than the surface layer. SOC is sensitive to soil 

perturbations and as such has a higher variability in the soil surface than the sub-

surface. Our reported Ρc values for RFM (Table 4.3), which was the best performing 

model, are comparable to those reported by Malone et al. (2009) but better than the 

values reported by Lacoste et al. (2014) and Mulder et al. (2016). In contrast, Yang et 

al (2016) reported a better performance by RFM for SOC predicted in an alpine 

ecosystem using similar approaches. These dissimilar performances could be 

attributed to the difference in the sources of data, scale of prediction and types of 

predictors (Miller et al., 2015). The better performance of RFM in terms of RMSE 

could be ascribed to its better capabilities in dealing with non-linear and hierarchical 

relationships between SOC and environmental variables. 

 

Our study revealed that soil type, climate, vegetation indices and terrain attributes are 

important predictors of SOC. This corroborates reports from previous studies 

(Jobbagy and Jackson, 2000; Albaladejo et al., 2013). Several studies have 

highlighted the importance of climate in predicting SOC contents at the regional, 

national and continental scales (Wynn et al., 2006; Rusco et al., 2001; Martin et al., 

2011; Meersmans et al., 2011; 2012; Adhikari et al., 2014). At the supra-national to 

continental scale, Rusco et al. (2001) reported that SOC is positively correlated with 
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precipitation amount and negatively correlated with average temperature. This was 

also found by Martin et al. (2011) and Meersmans et al. (2011) who highlighted a 

stronger correlation between SOC and precipitation than with temperature. 

Precipitation plays a key role in biomass productivity which determines litter input to 

the soil (Chaplot et al., 2010) while temperature influences the decomposition of 

litter in the soil as well as C mineralization rate.  

 

4.4.2 SOC density and stock 

The average SOC density reported in this study is within the predicted range of SOC 

density reported for Senegal but slightly above the value for other soils in West 

African (Batjes, 2001). It is however below the range of 7.6-7.7 kg C m
-2

 reported for 

soils in the warm savannah region of Central Africa (Batjes, 2008). The total SOC 

stock of 6.5 Pg reported in this study represents 4% of the estimate of total SOC 

stock at 0-100cm soil depth for the entire Africa and is slightly above the 5.1 Pg 

estimated by Henry et al. (2009) for the same study area. This study revealed that 

about 48%, 27% and 25% of the SOC storage is in the 0-30 cm, 30-60 cm and 60-

100 cm depth intervals respectively. This is lower than the 70% C reported by 

Albaladejo et al. (2013) in the top 40 cm of soils in semi-arid areas of Spain but 

consistent with the 45% C reported by Batjes (2008) in the top 30 cm of soils in 

Central Africa. Our results also corroborate recent work by Mulder et al. (2016) 

using a similar approach.  

 

The SOC density and stock results showed a gradual increase with depth. This is 

consistent with previous studies (Adhikari et al., 2014; Dorji et al., 2014; Bonfatti et 

al., 2016; Mulder et al., 2016) and is partly due to the effect of the depth interval (e.g. 

40 cm for the 60-100cm interval compared to 5cm for the 0-5cm depth interval). 

Although there were higher SOC concentrations in the surface layers than sub-

surface, the differences in the width of depth intervals is enough to offset it. Also, the 

difference between the trend in SOC density and stock across the AEZs could be 

attributed to the variations in land area covered by the various AEZs. The observed 
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trends in the spatial distribution of SOCD and SOCS could be attributed to a variety 

of factors especially precipitation, soil texture and temperature. In Nigeria, annual 

rainfall decreases from about 2500 mm in the south-western areas bordering the 

Atlantic Ocean to about 500 mm in the north-eastern areas bordering Lake Chad 

(Akpa et al., 2014). Previous studies have shown a significant relationship between 

SOC stock and precipitation (Post et al., 1982; Dixon et al., 1994), soil texture 

(Borchers and Perry, 1992) as well as temperature (Nishina et al., 2014). Borchers 

and Perry (1992) reported a lower SOC concentration with coarser soils than fine 

textured soils. Moreso, Burke et al. (1995) reported that organic C increased with 

precipitation and clay content, and decreased with temperature.  

 

4.4.3 Influence of land use on SOC 

Our SOC concentrations decreased with depth and vary significantly across all land 

use types. This difference among land use types could be attributed to differences in 

the proportion of SOC contributed by the biomass of the various vegetation types 

(Young et al., 2005; Obalum et al., 2012) and the varying level of soil perturbation 

associated with the different LULC types (Six et al., 2002). The higher SOC 

concentration in the forests and shrublands compared to grasslands could be 

attributed to the higher aboveground biomass under these land uses compared to 

grasslands (Martin et al., 2010; Dorji et al., 2014; Wasige et al., 2014). Higher 

aboveground organic material input and relatively low rates of decomposition have 

been associated with increased SOC levels in forests compared to grasslands 

(Jobbágy and Jackson, 2000; Guo and Gifford, 2002; Don et al., 2011; Bonfatti et al., 

2015).The higher SOC concentration of croplands compared to grasslands in our 

study area could be attributed to effect of overgrazing and burning of grasslands by 

pastoralist in the northern part of the country which has large grasslands coverage. 

Burning is a common practice by pastoral farmers in Nigeria especially during the 

dry harmattan season to allow regeneration of grasses for animal feeds. The resultant 

increase in soil temperature can reduce SOC due to increased soil organic matter 

mineralization (Ando et al., 2014) while the loss of vegetation cover due to incessant 
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burning will further result in low SOC through soil erosion. Although the net SOC 

loss through soil erosion across the entire country is negligible due to the balance 

effect of soil redistribution (Ritchie et al., 2007), at the various agro-ecological zone 

where there is relatively uniform soil type, landform, cropping system, and climatic 

factors favouring erosion, soil erosion is an important process controlling the levels 

of C in the soil (Gregorich et al., 1998). 

 

4.4.4 Uncertainty in SOC stock estimation  

There is a wide range of uncertainty in our estimation of SOCS which could be 

attributed to the below optimal profile datasets used in this study as well as inherent 

uncertainties in the sources of data used. In this study we have used legacy soil data. 

Although legacy data generally presents opportunities for DSM in data-scarce 

countries of the world (Mayr et al., 2008), the use of such legacy data poses serious 

challenges due to uneven spread and age of the data (Krol, 2008). The uneven spread 

of data across Nigeria (Fig. 4.2) could be responsible for the wide prediction interval 

of the estimated SOC stock reported here (Fig. 4.7). Similarly, in the case of each of 

the land use types and AEZ, the uneven distribution of data could have impacted on 

the accuracy of the predicted variables as the some of the prediction values could be 

outside the range of values of the training subset. Future sampling scheme will need 

to target those areas with wide prediction uncertainty to improve upon the accuracy 

of our prediction. 

 

4.4.5 Potential soil carbon sequestration  

There is potential for SOC sequestration in the study area considering the differences 

in SOC stock across the prevailing land use types and AEZ (Fig. 4.9). The DS has 

the highest capacity to store more C especially with the restoration of shrublands and 

grasslands to forest plantation (Fig. 4.10). This could be explained by the high rate of 

human interference in the native forests of this zone manifested by indiscriminate 

tree logging for farming, housing and energy. In Nigeria, annual loss of forest has 
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been put at approximately 3,500 km2 (Ravilious et al., 2010). Most of these losses 

occur in the densely populated southern part of the country where this AEZ is 

located. SOC content is dependent upon soil organic matter inputs from plant 

biomass and root turnover, thus the destruction of vegetation will reduce biomass 

inputs, leading to the exposure of soil surface and increased SOC decomposition. 

 

The relatively high C sequestration capacity of soils under the SHS is a reflection of 

the degraded nature of soils under this AEZ (Raji and Ogunwole, 2006). Both 

environmental and anthropological factors including; low precipitation rate, 

increased soil temperature due to incessant vegetation burning, heavy grazing and 

coarse nature of soils have effect on C accumulation in soils. Low rainfall and 

reduced length of growing period could result in poor biomass yield and low 

accumulation of soil densities especially in semi-arid areas (Sreenivas et al., 2014). 

Heavy grazing has been reported to have a damaging effect on shrubs and trees, and 

grasslands (McIvor et al., 1995). Howden et al. (1999) reported a large difference in 

carbon sequestration between an ungrazed-never burnt and a grazing-annual burning 

grasslands in Australia. This was attributed to the negative effect of burning on 

woody biomass. The restoration of forestlands in the SHS could lead to a reduction 

in C sequestration (-17.0 Mg C ha
-1

) and is indicative of C loss from the system. This 

could be explained by the high biomass C input from the increasing extent of exotic 

tree plantations in the form shelter belts from desert encroachment mitigation 

projects (Adegbehin and Igboanugo, 1990; Adegbehin et al., 1990; Verinumbe, 

1991). Another reason could be that the number of SOC data in this AEZ was not 

enough to capture the C variation between the pristine vegetation and forest land use. 

 

4.5 Conclusions 

We estimated the total soil organic carbon and stocks for soils under different land 

use types across different agro-ecological zones of Nigeria. Based on the overall 

analysis, the following conclusions can be drawn: 

 



Chapter 4   Soil organic carbon and carbon sequestration potential of soils 

 

    133 

 

 Soil type, climate, vegetation indices and terrain attributes are important 

predictors of SOC for Nigeria. 

 Mean SOC concentration ranged between 7.4 and 11.0 g C kg
-1

 in the topsoil (0-

30cm depth) and between 2.8 and 4.8 g C kg
-1

 in the subsoil (30-100cm depth) 

 Forest LULC, Humid Forest AEZ and Ferralsols have the highest SOC density 

while grasslands, Sahel Savannah and Arenosols have the lowest SOC density. 

 Total SOC stored in the top 1 m in Nigeria was 6.5 Pg with an average density 

of 71.60 Mg C ha
–1

. This represents 4% of the estimated total SOC stock in the 

top 0-100cm soil reported previously for the entire Africa. 

 SOC density and stock varies greatly across the study area; decreasing from the 

southwest to the northeast, and increasing from Sahel Savannah to Humid Forest 

agro-ecological zones.  

 Restoration of the various land use types to their natural ecosystem has the 

potential to sequester about 0.2 to 30.8 Mg C ha
-1 

depending on the LULC and 

AEZ.  

 The Derived Guinea Savannah presents a potential hotspot for targeted carbon 

sequestration projects in Nigeria. 
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Abstract 

Soil bulk density (BD) and effective cation exchange capacity (ECEC) are among the 

most important soil properties required for crop growth and environmental 

management. This study aimed to explore the combination of soil and environmental 

data in developing pedo-transfer functions (PTFs) for BD and ECEC. Multiple linear 

regression (MLR) and Random forest model (RFM) were employed in developing 

PTFs using three different datasets: soil data (PTF-1), environmental data (PTF-2) 

and the combination of soil and environmental data (PTF-3). In developing the PTFs, 

three depth increments were also considered: all depth, topsoil (< 0.40 m) and subsoil 

(> 0.40 m). Results showed that PTF-3 (R
2
; 0.29 to 0.69) outperformed both PTF-1 

(R
2
; 0.11 to 0.18) and PTF-2 (R

2
; 0.22 to 0.59) in BD estimation. However, for 

ECEC estimation, PTF-3 (R
2
; 0.61 to 0.86) performed comparably as PTF-1 (R

2
; 

0.58 to 0.76) with both PTFs out-performing PTF-2 (R
2
; 0.30 to 0.71). Also, 

grouping of data into different soil depth increments improves the estimation of BD 

with PTFs (especially PTF-2 and PTF-3) performing better at subsoils than topsoils. 

Generally, the most important predictors of BD are sand, silt, elevation, rainfall, 

temperature for estimation at topsoil while while EVI, elevation, temperature and 

clay are the most important BD predictors in the subsoil. Also, clay, sand, pH, 

rainfall and SOC are the most important predictors of ECEC in the topsoil while pH, 

sand, clay, temperature and rainfall are the most important predictors of ECEC in the 

subsoil. Findings are important for overcoming the challenges of building national 

soil databases for large scale modelling in most data-scarce countries, especially in 

the Sub-Saharan Africa (SSA). 

 

Keywords:  

Pedotransfer function, digital soil mapping, predictive modelling, Multiple linear 

regression, Random forest, Nigeria. 
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5.1 Introduction 

Soil bulk density (BD) and effective cation exchange capacity (ECEC) are among the 

most important soil properties required in national soil databases (Arrouays et al., 

2014). This can be attributed to their relevance in decision making on crop growth, 

soil use and environmental management. BD influences water and solute movement 

through the soil. It is vital for the estimation of soil carbon stocks and soil hydraulic 

properties which are important input parameters of process-based models for 

simulating the flux of water, nutrients and greenhouse gases (Bellamy et al., 2005; 

Ungaro et al., 2010; Ghehi et al., 2012). ECEC on the other hand is relevant in many 

soil, crop and environmental risk assessment models (Liao et al., 2014). It is a 

measure of the fertility, nutrient retention and pH buffering capacity of soils as well 

as the capacity of soils to protect groundwater from cation contamination (Noble et 

al., 2000; Akbarzadeh et al., 2009). 

 

Despite their importance, adequate information on these two soil properties is usually 

lacking in the national soil databases of most data-sparse countries especially in Sub-

Saharan Africa (SSA). This is owing to the fact that direct determination of these soil 

attributes is cumbersome and prohibitive, especially when required over relatively 

large land areas. Pedotransfer functions (PTFs), defined as predictive functions of 

certain soil properties derived from other easily measured properties (Bouma, 1989), 

has proven to be a useful and quick way of estimating scarce but very important soil 

properties from more easily obtainable soil data.  

 

Several studies have been conducted to develop PTFs for predicting soil properties 

from basic soil data using various modelling techniques (Suuster et al., 2011; Ghehi 

et al., 2012; Haghverdi
 
et al., 2012; Sequeira et al., 2014). Nonetheless, the reliability 

of many of these PTFs is largely dependent on the amount (data size) and structure 

(range) of the input parameters (Romano and Chirico, 2004; Ghehi et al., 2012; 

Haghverdi
 

et al., 2012). For instance, in a relatively small area, with fairly 

http://www.sciencedirect.com/science/article/pii/S0022169412002466
http://www.sciencedirect.com/science/article/pii/S0022169412002466
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homogeneous soil properties and topography, high reliability could be obtained from 

a reasonably few number of soil samples (Ghehi et al., 2012). However, in large and 

heterogeneous landscape with high spatial soil variability, reliability of PTFs is 

greatly impacted by the size and spread of soil sampling points. Considering this at 

the national scale, developing PTFs will require extensive soil sampling to capture 

the spatial variability of the target soil properties. This could be a herculean task as it 

involves huge investment in terms of man power and finance.  

 

Thus, to improve the performance of PTFs, several techniques have been employed 

prior to fitting PTFs including, grouping of input data based on soil taxonomy 

(Heuscher et al., 2005) and the incorporation of soil physiographic and 

morphological attributes such as consistence and structure (Calhoun et al., 2001) and 

horizon designation (Jalabert et al., 2010). However, one major challenge is that 

most of these soil morphological attributes are not always available in soil survey 

reports. Other studies have reported improvement of PTFs following the combination 

of soil data (e.g sand, silt, clay, SOC) with environmental data such as percent slope, 

annual rainfall amount and vegetation indices (Leij et al. 2004; Sharma et al., 2006; 

Jana and Mohanty, 2011; Wang et al., 2014). For instance, Leij et al. (2004) used a 

combination of aspect, elevation, slope, potential solar radiation) and soil data (e.g. 

sand, silt, SOC) to develop PTFs for predicting soil hydraulic properties of soils in 

Basilicata, Italy. Their results showed significant improvement over the use of only 

soil data as inputs. Similarly, Sharma et al. (2006) reported that the combination of 

topographic indices (elevation, slope, aspect, and flow accumulation), vegetation 

indices (NDVI) and soil data (sand, clay, silt, SOC) in PTFs is a more reliable 

approach to estimating soil moisture contents. Recently, Wang et al. (2014) used the 

combination of clay, SOC, slope gradient and altitude to develop PTFs for estimating 

BD across the Loess Plateau in China. Although these studies have demonstrated 

improvement in the performance of PTFs using the combination of soil and 

environmental data over the use of only soil data, many of these studies were carried 

out at the field scale and mainly for moisture content prediction. It would be 
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pertinent therefore to investigate the inclusion of environmental data in PTFs to 

predict other very important soil properties such as BD and ECEC, especially at the 

national level, which more often than not, is characterised by scarce soil data that are 

unevenly distributed. Hence, the objectives of this study are to (i) examine the 

performance of PTFs developed by combining soil and environmental data for the 

estimation of BD and ECEC at a national scale and (ii) examine the impact of data 

groupings on the performance of PTFs using MLR and RFM. 

 

5.2 Materials and Methods 

5.2.1 Description of the study area and soil profile distribution 

This study was carried out using legacy soil data for Nigeria. Nigeria is located 

within latitudes 4° and 14° North, and longitudes 2° and 15° East, with a total area of 

about 923,768 km
2
 (356,667 sq mi). The climate is tropical with two marked climatic 

contrasts: humid in the south (annual precipitation of 1250 to 4000 mm) and semi-

arid in the north (annual precipitation of 500 to 1250 mm). According to the FAO 

soil taxonomy, major soils in Nigeria include Lixisols (24%), Arenosols (17%), 

Leptosols (13%), Fluvisols (7%), Plinthosols (5.5%), Luvisols (5%), Acrisols 

(4.5%), Gleysols (3.4%), Vertisols (1.6%), Ferralsols (1.5%) and Regosols (1.5 %). 

The spatial distribution of the soil profiles used in this study is shown in Fig. 5.1. 

Data on measured BD (for at least 3 soil layers) were available for 260 soil profiles 

and 1161 soil layers. Also, data on ECEC were available from 627 profiles 

comprising of 2124 layers. BD data are sparsely distributed across the country with 

denser distribution around the central, western and eastern regions. However, there is 

a good representation of the major soils in the BD data (Fig. 5.2a). ECEC data on the 

other hand is somewhat evenly distributed across the country with greater 

representation of major soils compared to BD data (Fig. 5.2b). 

http://en.wikipedia.org/wiki/4th_parallel_north
http://en.wikipedia.org/wiki/14th_parallel_north
http://en.wikipedia.org/wiki/2nd_meridian_east
http://en.wikipedia.org/wiki/15th_meridian_east
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Figure 5.1. Spatial distribution of legacy soil profiles for Bulk density and Effective 

cation exchange capacity in Nigeria. 

 

5.2.2 Predictor variables 

5.2.2.1 Soil data 

In this study, soil data such as soil organic carbon (SOC), pH, particle size fractions 

(sand, silt, clay) were selected as potential predictors of BD and ECEC. Soil data for 

Nigeria was extracted from the ISRIC African soil profile database version 1.0 

(Leenaars, 2012) which were compiled from an array of soil surveys in Nigeria 

between 1960 and 2010. About 1141 soil profiles covering most part of the country 

were described and analysed in the database. In obtaining data for the database, 

ECEC was determined using cation summation of all the measured cations while BD 

was determined by core sampling and subsequent oven-drying. For details on 
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laboratory methods and procedures in obtaining the soil data used in this study, 

readers are referred to Leenaars (2012) and Akpa et al. (2014; 2016). 

 

 

Figure 5.2. Boxplot of Bulk density (Mg m
-3

) (A) and Effective cation exchange 

capacity (cmol kg
-1

) (B) based on soils of Nigeria. Abbreviations: AC, Acrisols; AR, 

Arenosols; CM, Cambisols; FL, Fluvisols; FR, Ferralsols; GL, Gleysols; LP, 

Leptosols; LV, Luvisols; LX, Lixisols; NI, Nitisols; PH, Phaeozems; PL, Planosols; 

PT, Plinthosols; VR, Vertisols. 

B 

A 
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5.2.2.2 Environmental data 

Environmental data selected as potential predictors of BD and ECEC in this study 

include topographic indices such as elevation, slope gradient, aspect, profile and plan 

curvatures, flow accumulation, topographic wetness index (TWI), stream power 

index (SPI). These were derived from SRTM 3 arc (90 m) digital elevation model 

(DEM) following Reuter and Nelson (2009). For further details on the topographic 

indices, see Moore et al. (1993) and Wilson and Gallant (2000). Other environmental 

data include 30 arc-second (1km) global mean annual rainfall and mean annual 

temperature data obtained from WorldClim (Hijmans, et al., 2005) as well as MODIS 

enhance vegetation index (EVI) and normalized vegetation index (NDVI) data. The 

summary statistics of the soil and environmental data used in developing PTFs for 

BD and ECEC in this study are shown in Table 5.1 and Table 5.2. 

 

5.2.3 Data combinations and groupings 

In this study, three different combinations of the various predictors mentioned in 

Section 5.2.2 above were used in developing PTFs for BD and ECEC: soil data 

(PTF-1), environmental data (PTF-2) and combination of soil and environmental data 

(PTF-3). Prior to deriving the PTF for BD and ECEC, we first grouped the entire 

dataset into three 3 different categories based on soil sampling depth: all data, topsoil 

(< 0.40 m) and subsoil (> 0.40 m) data. These groupings were based on the definition 

reported by Ghehi et al. (2012). Topsoil data have lower limits of their horizon layer 

≤30cm, while subsoil data have upper limit of their horizon layer >30cm. However, 

when there is an overlap due to wide range of depth intervals, the separation between 

topsoil and subsoil was set at an upper limit of 40cm (Brahim et al. 2012). One 

obvious reason for the stratification of data by sampling depth is to account for the 

effect of soil management and anthropological activities on soil properties of surface 

and subsurface samples (Benites et al., 2007). 
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Table 5.1. Summary statistics of selected predictors of Bulk density. 

Attribute 

All data Topsoil Subsoil 

max min mean SD max min mean SD max min mean SD 

BD (Mg m
-3

) 2.03 0.73 1.32 0.19 1.84 0.73 1.31 0.16 2.03 0.77 1.32 0.20 

Sand (%) 100.00 6.20 55.22 22.95 96.00 8.40 61.10 21.90 100.00 6.20 52.12 22.9 

Silt (%) 80.00 0.00 18.06 13.32 80.00 0.00 18.80 15.31 75.40 0.00 17.68 12.13 

Clay (%) 84.00 0.00 26.72 16.78 69.00 0.00 20.10 14.67 84.00 0.00 30.21 16.78 

TWI 13.40 3.01 6.16 2.00 13.40 3.01 6.02 1.94 13.40 3.01 6.24 2.03 

Temp (
o
 K) 282.61 235.1 264.54 9.71 282.61 235.10 263.81 9.53 282.61 235.10 264.92 9.78 

SPI 3.99 -8.42 -3.03 1.85 3.99 -8.42 -3.05 1.81 3.99 -8.42 -3.02 1.87 

Slope (%) 6.97 0.01 0.88 0.81 6.97 0.01 0.92 0.81 6.97 0.01 0.86 0.8 

ProfC 0.02 -0.02 3.21x10
-4

 3.66x10
-3

 0.02 -0.02 3.00x10
-4

 4.21x10
-3

 0.02 -0.02 3.60x10
-4

 3.34x10
-3

 

PlanC 0.02 -0.02 5.37x10
-4

 3.92x10
-3

 0.02 -0.02 5.30x10
-4

 4.14x10
-3

 0.02 -0.02 3.82x10
-4

 3.79x10
-3

 

Rainfall (mm) 2377.98 445.52 1237.71 328.42 2377.98 445.52 1274.68 333.6 2276.24 445.52 1218.24 324.21 

FLACC 5978.00 0.00 59.33 427.89 5978.00 0.00 60.72 457.03 5978.00 0.00 58.60 412.05 

EVI 0.50 0.15 0.33 0.07 0.50 0.15 0.33 0.07 0.5 0.15 0.33 0.07 

Elevation (m) 931.16 15.12 331.46 243.50 931.16 15.12 339.19 251.93 931.16 19.77 327.39 239.02 

Aspect (
o
) 353.60 5.71 196.29 92.16 353.60 5.71 195.53 93.17 353.6 5.71 196.69 91.68 

NDVI 0.66 0.21 0.46 0.08 0.66 0.21 0.46 0.08 0.66 0.21 0.46 0.08 

†BD, Bulk density; EVI, Enhanced vegetation index; FLACC, flow accumulation; Max; maximun; Min; minimum; NDVI, Normalized 

difference vegetation index; ProfC, profile curvature; PlanC, plan curvature; Temp, Temperature; TWI, Topographic wetness index; SD; 

standard deviation; SPI, Stream power index. 
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Table 5.2. Summary statistics of selected predictors of Effective cation exchange capacity. 

Attribute 

All Data Topsoil Subsoil 

max min mean SD max min mean SD max min mean SD 

ECEC (cmolc kg
-1

) 60.00 0.00 10.07 11.34 60.00 0.75 11.97 13.53 54.00 0.00 9.05 9.83 

pH 10.10 4.10 6.43 1.11 9.30 4.10 6.40 0.96 10.10 4.20 6.44 1.18 

Sand (%) 100.00 0.20 54.67 24.07 100.00 0.40 56.28 26.77 100.00 0.20 53.81 22.46 

Clay (%) 88.10 0.00 26.59 19.20 88.10 0.00 23.17 20.89 87.50 0.00 28.43 17.98 

Temp (
o
 K) 286.03 251.42 269.66 6.70 286.03 251.42 270.30 7.06 286.03 251.42 269.32 6.48 

Rainfall (mm) 2692.18 286.06 1172.63 559.14 2692.18 286.06 1172.38 630.08 2692.18 286.06 1172.76 517.48 

Silt (%) 80.00 0.00 18.73 13.09 80.00 0.00 20.46 14.81 75.40 0.00 17.79 11.96 

Elevation (m) 1098.27 7.78 273.79 156.55 1098.27 7.78 270.81 153.55 1098.27 7.78 275.38 158.2 

NDVI 0.67 0.08 0.44 0.12 0.67 0.08 0.43 0.13 0.67 0.08 0.45 0.12 

SOC (g kg
-1

) 111.00 0.00 5.48 7.52 111.00 0.20 10.18 10.44 49.6 0.00 2.97 3.22 

EVI 0.53 0.06 0.33 0.10 0.53 0.06 0.32 0.10 0.51 0.06 0.33 0.09 

Slope (%) 14.03 0.00 1.03 1.66 14.03 0.00 0.95 1.63 14.03 0.02 1.07 1.67 

Aspect (
o
) 359.64 0.48 184.08 106.58 359.64 0.48 175.33 108.24 359.64 1.94 188.76 105.45 

SPI 3.30 -10.72 -3.26 2.13 3.30 -10.72 -3.61 2.21 3.30 -7.69 -3.07 2.06 

TWI 14.37 2.59 6.28 2.02 14.37 2.59 6.35 2.11 13.87 2.59 6.24 1.97 

ProfC 0.03 -0.02 4.16x10
-4

 4.27x10
-3

 0.03 -0.02 3.72x10
-4

 4.28x10
-3

 0.03 -0.02 4.39x10
-4

 4.27x10
-3

 

PlanC 0.05 -0.01 4.84x10
-4

 5.43x10
-3

 0.05 -0.01 5.43x10
-4

 4.93x10
-3

 0.05 -0.01 4.52x10
-4

 5.68x10
-3

 

FLACC 4282.00 0.00 58.23 350.14 4282.00 0.00 52.69 340.89 4282.00 0.00 61.20 355.15 

†ECEC, Effective cation exchange capacity; EVI, Enhanced vegetation index; FLACC, flow accumulation; Max; maximun; Min; 

minimum; NDVI, Normalized difference vegetation index; ProfC, profile curvature; PlanC, plan curvature; Temp, Temperature; TWI, 

Topographic wetness index; SD; standard deviation; SPI, Stream power index. 
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5.2.4 Deriving the Pedotransfer functions 

Pedotransfer functions were derived using two prediction techniques: multiple linear 

regression (MLR) and Random forest model (RFM). 

 

5.2.4.1 Multiple Linear Regression 

MLR is a regression technique that explores a possible functional linear relationship 

between a primary variable and explanatory variables that are easy to measure 

(Burrough and McDonnell, 1998). MLR assumes that the data are independent of 

each other, normally distributed and homogeneous in variance. MLR is the most 

commonly used prediction techniques in PTF studies (Hollis et al., 2012) owing to its 

simplicity and ease of reproducibility. We employed MLR in this study through a 

stepwise linear regression (SLR) to develop PTFs of BD and ECEC using the 

aforementioned data combination and groupings. SLR was fitted so as to reduce the 

interference of redundant predictors with the performance of PTFs (Chan et al., 

2011). Prior to fitting SLR model, preliminary checks in the form of descriptive 

statistics, scatter plots, correlation matrix, boxplot, residual plots etc. were carried 

out on the predictor variables to ensure they met standard criteria for fitting linear 

models.  

 

5.2.4.2 Random Forest Model 

RFM is a tree-based, robust prediction technique which was developed by Breiman 

(2001). RFM strength lies in its two randomization procedures of bootrapping and 

random input selection (Sequeira et al., 2014) and subsequent bagging of the 

predictions. Unlike MLR, the underlying tree of RFM can accommodate non-linear 

relationship between the response and predictor variables as well as interactions 

among the predictors (Akpa et al., 2016). Another major advantage of RFM over 

classical regression models such as MLR is in the determination of important 

predictors. While MLR uses stepwise and criterion-based procedures to select 

important predictors, RFM estimates the relative importance of the predictor 
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variables, based on how worse the prediction would be if the data for a particular 

variable were permuted randomly (Prasad et al., 2006; Akpa et al., 2014). We 

implemented the RFM approach in R environment using the randomForest 4.6 

package (R Core Team, 2014). Also, the ‘importance” function in the random forest 

package was used to assess the relative importance of predictors in the various PTFs. 

Readers may contact the first author for a copy of the R script used in fitting RFM in 

this study. 

 

5.2.5 Evaluation of the Pedotransfer functions. 

The accuracy performance of the PTFs was tested by fitting the model on the 

calibration dataset and cross-validating the model using the validation dataset. To 

ensure stability and increase reliability of the PTFs, model calibration was done 

using 100 runs. At each run, the calibration and validation datasets were sampled at 

random using the ratio of 80:20 after which the performance of the models was 

evaluated using the difference between measured and estimated response variable. In 

doing this, three statistical indices based on mean absolute error (MAE), root mean 

square error (RMSE), coefficient of determination (R
2
) and Lin’s concordant 

correlation coefficient (Pc) were computed. The averages of the outputs from the 100 

model runs were used as the final basis for comparison of different PTFs generated 

by the two prediction models. The following equations were used in computed the 

evaluation indices: 
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where, jM , jM


 and jP are the measured, mean of measured and predicted response 

variables, 𝜇𝑜 and 𝜇𝑝 are the means of the measured and predicted response variable 

while 2

m  and 2

p  are the corresponding variance and 𝜌 the Pearson correlation 

coefficient between the raw and predicted variables. For good reliability or 

performance of the PTFs, MAE and RMSE should be as low as possible (i.e. close to 

zero) while Pc  and R
2
 should be high as possible (i.e. close to one). 

 

5.3 Results  

5.3.1 Relationship between predictor and target soil properties 

The relationship between pairs of all potential predictors of BD and ECEC is shown 

in Table 5.3 and Table 5.4. There is a significant (p < 0.05) but relatively weak 

relationship between BD and most of the predictor variables, with the strongest 

relationship existing between BD and temperature (r = 0.35), elevation (r = 0.31) and 

sand (r = 0.28). This implies that these variables will be good candidates for 

predicting BD, especially in using the MLR model. In the case of ECEC, there is a 

stronger relationship with soil attributes and vegetation indices than topographic 

attributes. Clay content showed the strongest positive (p < 0.01) relationship (r = 

0.57) with ECEC while sand content displayed the strongest negative correlation (r = 

-0.56) with ECEC. This is closely followed by pH (r = 0.49), EVI (r = - 0.49) and 
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NDVI (r = -0.46). In addition, SPI (r = -0.30) and rainfall (r = -0.40) showed a 

moderate relationship with ECEC.  

 

5.3.2 Performance of PTFs 

The summary of the model reliability indices for the BD PTFs developed based on 

the different data groupings is presented in Table 5.5 while the results of the ECEC 

PTFs are summarized in Table 5.6 respectively.  

 

5.3.2.1 Bulk density 

Generally, the prediction performances of PTFs used in estimating BD are 

appreciably low, especially with the use of MLR (Table 5.5). The RMSE values for 

MLR range from 0.14 to 0.19 Mg m
-3

 while the Pc ranged from 0.19 to 0.50 

respectively. However grouping the model input data sets based on soil depth 

increment produced slightly better prediction performances at the subsoil (Pc of  0.23 

to 0.50) compared to the topsoil (Pc of 0.26 to 0.43) or all profile data (Pc of 0.19 to 

0.45). Considering the use of different combinations of predictors, the PTFs 

prediction performance and accuracy were better with the combination of soil 

environmental data (PTF-3) than either soil data (PTF-1) or environmental data 

(PTF-2). In all cases, PTF-1 gave higher prediction errors (RMSE; 0.149 to 0.182 

Mg m
-3

) than PTF-2 (RMSE; 0.11 to 0.13 Mg m
-3

). Generally, RFM performed better 

than MLR with a RMSE in the range of 0.11 to 0.18 Mg m
-3

 and Pc values of 0.38 to 

0.84. 
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Table 5.3. Pearson’s correlation coefficient between Bulk density and predictors. 

  BD Sand Silt Clay TWI Temp SPI Slope ProfC PlanC Rainfall Flacc EVI Elevation Aspect NDVI logsilt logslope logFLACC logelev 

BD 1.000 
                   

Sand 0.283 1.000 

                  
Silt -0.182 -0.691 1.000 

                 
Clay -0.242 -0.819 0.152 1.000 

                
TWI 0.052 -0.146 0.177 0.060 1.000 

               
Temp 0.347 0.191 -0.103 -0.179 0.190 1.000 

              
SPI -0.215 0.164 -0.145 -0.109 0.350 -0.223 1.000 

             
Slope -0.036 0.285 -0.298 -0.153 -0.482 -0.053 0.353 1.000 

            
ProfC -0.017 -0.039 0.035 0.025 0.275 -0.021 0.274 -0.019 1.000 

           
PlanC 0.092 0.083 -0.107 -0.029 -0.576 -0.001 -0.383 0.292 -0.494 1.000 

          
Rainfall 0.020 0.154 -0.187 -0.062 -0.315 -0.217 0.230 0.265 -0.116 0.121 1.000 

         
FLACC -0.013 0.040 -0.058 -0.009 0.412 0.036 0.383 -0.068 0.081 -0.095 0.009 1.000 

        
EVI -0.008 0.216 -0.278 -0.076 -0.274 -0.020 0.349 0.365 -0.022 0.068 0.629 0.069 1.000 

       
Elevation -0.313 -0.222 0.164 0.173 -0.096 -0.707 -0.009 -0.052 0.020 0.007 -0.302 -0.097 -0.335 1.000 

      
Aspect -0.105 -0.019 0.035 -0.002 0.023 -0.053 0.057 -0.011 0.023 0.008 -0.057 0.080 -0.110 0.115 1.000 

     
NDVI -0.124 0.195 -0.246 -0.071 -0.304 -0.142 0.393 0.395 0.012 0.041 0.606 0.086 0.940 -0.211 -0.052 1.000 

    
logsilt -0.210 -0.360 0.591 0.023 0.132 -0.093 -0.030 -0.194 0.034 -0.127 -0.329 -0.014 -0.100 0.211 0.099 -0.033 1.000 

   
logslope -0.228 0.271 -0.283 -0.146 -0.616 -0.360 0.522 0.735 -0.020 0.202 0.480 -0.053 0.543 0.080 0.027 0.607 -0.146 1.000 

  
logFLACC -0.106 -0.029 0.027 0.019 0.578 -0.002 0.676 0.006 0.291 -0.508 -0.080 0.261 0.024 -0.027 -0.097 0.032 0.076 0.041 1.000 

 
logELevation -0.334 -0.107 0.059 0.099 -0.100 -0.556 0.031 0.034 0.019 0.010 -0.432 -0.108 -0.322 0.909 0.125 -0.198 0.206 0.117 0.005 1.000 

†BD, Bulk density;nEVI, Enhanced vegetation index; FLACC, flow accumulation; NDVI, Normalized difference vegetation index; ProfC, profile curvature; PlanC, plan curvature; Temp, 

Temperature; TWI, Topographic wetness index; SPI, Stream power index. 
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Table 5.4. Pearson’s correlation coefficient between Effective cation exchange capacity and predictors. 

 
ECEC pH Sand Clay Temp Rainfall Silt Elevation NDVI SOC EVI Slope Aspect SPI TWI ProfC PlanC  Flacc 

ECEC 1.000 

                 pH 0.491 1.000 

                Sand -0.563 -0.032 1.000 

               Clay 0.568 0.004 -0.841 1.000 

              Temp 0.143 0.248 0.029 -0.009 1.000 

             Rainfall -0.396 -0.646 0.077 -0.034 -0.296 1.000 

            Silt 0.202 0.051 -0.607 0.081 -0.041 -0.091 1.000 

           Elevation 0.108 0.295 -0.054 0.008 0.003 -0.509 0.09 1.000 

          NDVI -0.461 -0.595 0.165 -0.078 -0.265 0.760 -0.19 -0.252 1.000 

         SOC 0.104 -0.115 -0.123 0.117 -0.101 0.280 0.053 -0.123 0.167 1.000 

        EVI -0.491 -0.584 0.197 -0.113 -0.281 0.765 -0.199 -0.293 0.967 0.157 1.000 

       Slope -0.198 -0.206 0.095 -0.076 -0.174 0.188 -0.061 0.252 0.297 0.024 0.268 1.000 

      Aspect -0.107 -0.013 0.087 -0.061 0.075 -0.036 -0.071 -0.066 -0.028 -0.071 -0.007 -0.033 1.000 

     SPI -0.302 -0.278 0.162 -0.147 -0.312 0.276 -0.081 0.106 0.382 0.066 0.369 0.425 0.001 1.000 

    TWI 0.243 0.171 -0.167 0.085 0.247 -0.224 0.183 -0.028 -0.311 0.006 -0.287 -0.417 0.052 0.144 1.000 

   ProfC -0.069 -0.116 0.048 -0.062 -0.088 0.237 0.001 -0.105 0.151 0.003 0.168 0.128 -0.167 0.168 0.053 1.000 

  PlanC  -0.018 0.036 0.021 -0.028 -0.012 -0.046 0.004 0.173 0.058 -0.026 0.033 0.586 0.056 -0.141 -0.471 -0.085 1.000 

 FLACC -0.057 -0.034 0.034 -0.102 -0.016 -0.032 0.087 -0.001 -0.031 -0.006 -0.008 -0.057 -0.039 0.393 0.479 0.012 -0.173 1.000 

†ECEC, Effective cation exchange capacity; EVI, Enhanced vegetation index; FLACC, flow accumulation; NDVI, Normalized difference vegetation index;  ProfC, profile curvature; 

PlanC, plan curvature; Temp, Temperature; TWI, Topographic wetness index; SPI, Stream power index. 
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5.3.2.2 Effective Exchangeable cation exchange capacity 

Table 5.6 presents the performance indices of ECEC PTFs using both MLR and 

RFM. Generally, the prediction performances of PTFs used in estimating ECEC are 

within medium to high range, especially with the use of RFM. MLR yielded RMSE 

values for the various PTFs in the range of 6.56 to 7.55 cmol kg
-1

 (PTF-1), 6.45 to 

7.06 cmol kg
-1

 (PTF-3), and 8.79 to 10.54 cmol kg
-1

 (PTF-2), while RFM gave 

RMSE values in the range of 4.63 to 5.59 cmol kg
-1

 (PTF-1), 4.43 to 4.91 cmol kg
-1

 

(PTF-2) and 5.69 to 8.38 cmol kg
-1

 (PTF-3), respectively. Comparing the Pc values 

of both prediction techniques, MLR derived PTFs for ECEC gave Pc values in the 

range of 0.72 to 0.81 (PTF-1), 0.73 to 0.82 (PTF-3), and 0.37 to 0.57 (PTF-2) while 

RFM produced Pc values in the range of 0.80 to 0.90 (PTF-1), 0.87 to 0.92 (PTF-3),  

and 0.75 to 0.83 (PTF-2).  

 

Table 5.5. Model validation indices for predicting Bulk density. 

Model 

MLR RFM 

MAE RMSE R
2
 Pc MAE RMSE R

2
 Pc 

All data 

PTF-1 0.140 0.179 0.109 0.185 0.135 0.176 0.182 0.380 

PTF-2 0.132 0.167 0.220 0.366 0.092 0.122 0.588 0.751 

PTF-3 0.122 0.161 0.294 0.451 0.077 0.107 0.689 0.800 

Topsoil 

PTF-1 0.116 0.152 0.161 0.255 0.114 0.149 0.207 0.398 

PTF-2 0.118 0.149 0.183 0.306 0.100 0.133 0.348 0.501 

PTF-3 0.108 0.141 0.280 0.431 0.087 0.118 0.489 0.608 

Subsoil 

PTF-1 0.151 0.189 0.139 0.23 0.140 0.182 0.221 0.421 

PTF-2 0.138 0.174 0.250 0.404 0.081 0.110 0.703 0.822 

PTF-3 0.128 0.166 0.327 0.496 0.073 0.102 0.754 0.839 

† PTF-1, Pedotransfer functions using only soil data as predictors; PTF-2, 

Pedotransfer functions using only environmental data as predictors; PTF-3, 

Pedotransfer functions using the combination of soil and environmental data as 

predictors; MAE, mean absolute error; RMSE, root mean square error; R
2
, 

coefficient of determination; Pc, Lin’s concordance correlation coefficient. 
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5.3.3 Relative importance of predictors 

The importance of each predictor in model performance is presented in Fig 5.3 and 

Fig. 5.4. The most important predictors of BD are sand, silt, elevation, rainfall, EVI, 

and temperature (Fig. 5.3). In the case of ECEC, the top five important predictors 

include pH, sand, clay, EVI and silt (Fig. 5.4). Together these attributes contributes 

to about 33% increase in prediction accuracy of ECEC PTFs (Fig. 5.4a). Dividing the 

input datasets into subsoil and topsoil significantly affected the relative important of 

these predictors. For example, sand and silt greatly influenced the prediction of BD 

at the topsoil (Fig. 5.3b) but their influence was masked by other attributes in the 

subsoil (Fig. 5.3c). Also, SOC and silt were very important predictors of ECEC at the 

topsoil (Fig. 5.4b) but their influence decreased with soil depth (Fig. 5.4c).  

 

Table 5.6. Model validation indices for predicting Effective cation exchange 

capacity. 

Model 

MLR RFM 

MAE RMSE R
2
 Pc MAE RMSE R

2
 Pc 

All data 

PTF-1 5.278 7.420 0.577 0.730 3.521 5.523 0.762 0.857 

PTF-2 6.916 9.513 0.298 0.459 3.707 6.125 0.708 0.823 

PTF-3 5.081 7.011 0.611 0.759 2.728 4.445 0.853 0.909 

Topsoil 

PTF-1 5.393 7.532 0.691 0.812 3.563 5.446 0.835 0.907 

PTF-2 7.909 10.543 0.388 0.559 5.679 8.388 0.622 0.751 

PTF-3 5.346 7.397 0.702 0.821 3.303 5.134 0.860 0.913 

Subsoil 

PTF-1 4.487 6.437 0.566 0.721 3.085 4.627 0.801 0.879 

PTF-2 6.177 8.572 0.229 0.373 3.300 5.594 0.680 0.798 

PTF-3 4.494 6.394 0.583 0.732 2.712 4.469 0.805 0.870 

†PTF-1, Pedotransfer functions using only soil data as predictors; PTF-2, 

Pedotransfer functions using only environmental data as predictors; PTF-3, 

Pedotransfer functions using the combination of soil and environmental data as 

predictors; MAE, mean absolute error; RMSE, root mean square error; R
2
, 

coefficient of determination; Pc, Lin’s concordance correlation coefficient. 
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Figure 5.3. Importance of predictor variables PTF of BD as derived by Random Forest based on three sampling depths. Abbreviations: BD, Bulk 

density;nEVI, Enhanced vegetation index; FLACC, flow accumulation; NDVI, Normalized difference vegetation index; ProfC, profile curvature; PlanC, 

plan curvature; Temp, Temperature; TWI, Topographic wetness index; SPI, Stream power index 
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Figure 5.4. Importance of predictor variables for PTF of Effective Cation Exchange Capacity (ECEC) as derived by Random Forest based on three 

sampling depths. Abbreviations: ECEC, Effective cation exchange capacity; EVI, Enhanced vegetation index; FLACC, flow accumulation; NDVI, 

Normalized difference vegetation index;  ProfC, profile curvature; PlanC, plan curvature; Temp, Temperature; TWI, Topographic wetness index; SPI, 

Stream power index. 
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5.4 Discussion 

5.4.1 Performance of PTF models 

Our reported RMSE and R
2
 values are within acceptable and reported ranges for soils 

with similar properties (Benites, et al., 2007; Ghehi et al., 2012; Botula et al., 2015).  

For instance, our RMSE for RFM PTFs is within the range reported by Ghehi et al. 

(2012) for BD PTFs in Rwanda using k-NN but it is slightly better than the 

performance of PTFs derived using BRT. However, our MLR PTFs performed 

slightly poorer than those reported for highly weathered soils in Central Africa 

(Botula et al., 2015). The difference between our result and those of Botula et al. 

(2015) could be attributed to the difference in the datasets used, the varying extent of 

both studies as well as the weaker correlation between BD and predictors used in this 

study (Table 5.3) compared to theirs. There is more variation in our dataset since we 

have used legacy data which is a combination of data from disparate sources. In 

addition Botula et al. (2015) used a combination of five (5) soil physico-chemical 

data for BD PTF while we have used particle size fraction (sand, silt, clay) in this 

study. The superiority of RFM over MLR (Tables 5.5 and Table 5.6) could be 

attributed to the fact that RFM being non-parametric was able to capture, the 

complex relationships existing between the multivariable predictors used in this 

study. According to Merdun (2010), the relationship between soil properties and 

environmental attributes is complex and nonlinear. Notwithstanding the superiority 

of RFM PTFs, MLR derived PTFs are easier to reproduce as shown by the equations 

in Appendix 5.1 and Appendix 5.2. 

 

5.4.2 Data groupings and reliability of PTFs 

Our results show that irrespective of the prediction technique used, PTFs performed 

better on subsoil than the topsoil data (Table 5.4 and Table 5.5), especially with BD 

PTFs. This is in contrast to previous reports that grouping model input data by soil 

depth does not improve the prediction of BD in tropical soils (Botula et al., 2015 and 

Vos et al., 2005). The differences in our results may be due to the differences in the 
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range of the datasets used and the level of disturbance of the topsoils in the study 

areas and (Hollis et al., 2012). Surface horizons undergo significant changes over 

time due to disturbances emanating from land use and trafficking. Therefore, 

physical soil properties such as BD are more stable in the subsoil than in the topsoil.  

 

5.4.3 Inclusion of environmental data and the performance of PTFs  

Our study shows a better performance of BD PTFs using combination of soil and 

environmental data compared to either soil or environmental data. This is consistent 

with the report of Wang et al. (2014). However, the performance of PTFs developed 

using RFM in this study is slightly better than those reported by Wang et al. (2014) 

using ANN. In contrast, MLR PTFs in their study is better. This could be attributed 

largely to differences in the sources as well as the density of data used in both 

studies. While we used low dense legacy BD data with its inherent limitations, they 

have sampled their BD data. This is further evident in the relative higher relationship 

between BD and other soil data in their study compared to ours (Table 5.3). Our 

study also reveals a superior performance of PTF-2 over PTF-1 in predicting BD. 

This suggests that environmental attributes are good alternatives to particle size 

fractions (clay, silt and sand) in BD prediction, especially in data-scarce situation. 

However, it is noteworthy that since we have used only 3 soil data (clay, silt and 

sands content), the poor performance of PTF-1 should not be overgeneralized as the 

addition of other soil data with higher explanatory power such as SOC and  

dithionite–citrate–bicarbonate-extractable Fe (DCB-Fe) and Al (DCB-Al) could 

significantly improve PTF-1. For ECEC, PTF-1 performs comparably with PTF-3 

but slightly better than PTF-2. This suggests the adequacy of soil data in predicting 

soil ECEC in our study area. 

 

5.4.4 Importance of predictor variables 

Our result showed that important predictors of BD are sand, silt, elevation, rainfall, 

EVI, and temperature (Fig. 5.3) which is consistent with previous reports (Akpa et 
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al., 2016). Elevation, in combination with climatic variables, influences the 

redistribution of particles during pedogenic processes (Adhikari et al., 2014; Akpa et 

al., 2014) and thereby could better explain variability in the BD of soils. Also, pH, 

sand, clay, SOC, silt, rainfall, temperature and elevation were identified as important 

predictors for ECEC (Fig. 4). This corroborates previous reports that more than 50% 

of the variation of cation exchange capacity could be explained by the variation in 

clay content, SOC as well as pH (Bell and Keulen, 1995; Krogh et al., 2000). Our 

results also showed that dividing the input datasets based on soil layer can affect the 

relative important of the predictor variables (Figs. 5.3 and 5.4). This is consistent 

with the report of Suuster et al. (2011) that the importance of predictor variables will 

vary based on the prediction condition and modelling criteria. The lesser influence of 

SOC on the variation of ECEC at the subsoil relative to topsoil (Fig. 5.4) has been 

previously reported (Asadu and Akamigbo, 1990) and could be attributed to the low 

accumulation of soil organic matter in the subsoil compared to topsoil.  

 

5.5 Conclusions 

This study demonstrates an effort at predicting soil attributes, over a relatively large 

extent under data-sparse situation using a combination of soil and environmental data 

as predictors.  Across all data groupings, the combination of soil and environmental 

data gave higher prediction accuracy for BD. However, the incorporation of 

environmental data show no significant improvement in the prediction of ECEC over 

the use of only soil attributes. Generally, the use of soil data gave a better prediction 

of ECEC than the use of only environmental data. This study showed that in Nigeria, 

sand, silt, temperature, rainfall and elevation, NDVI and EVI are the most important 

predictors of BD at the topsoil while EVI, elevation, temperature and clay are the 

most important BD predictors in the subsoil. Also, clay, sand, pH, rainfall and SOC 

are the most important predictors of ECEC in the topsoil while pH, sand, clay, 

temperature and rainfall are the most important predictors of ECEC in the subsoil. 

Findings from this study are important in overcoming the daunting challenges of 
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building national soil databases for large scale modelling in most data-scarce 

countries, especially in the Sub-Saharan Africa (SSA). 
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Abstract 

In the context of ensuring global and regional food security as well as increasing 

food production to support the growing world population, irrigation suitability 

assessment is of paramount importance. This study aims to evaluate the robustness of 

the Choquet integral (CI) in multi-criteria assessment of surface irrigation suitability 

for Nigeria. Digital soil mapping products were combined with other landscape data 

and used for irrigation suitability assessment. Evaluation criteria used include 

available water capacity (AWC), soil texture, elevation, slope gradient, potential 

evapotranspiration (PET), aridity index (AI), proximity to perennial water source, 

proximity to paved roads and proximity to urban markets. Fuzzy membership 

functions (FMF) were fitted to the criteria values to enable continuous evaluation. 

The FMF values and weights of the criteria were aggregated using the CI and the 

weighted sum (WS) aggregation methods to obtain a single irrigation suitability 

index. Results show that CI is a better aggregator for irrigation suitability assessment 

than WS. About 3.34 x 10
6 

ha (approximately 4%) of Nigeria is potentially suitable 

for surface water irrigation. Major limitations are due to topographic and soil 

attributes. This study indicates a substantial potential to satisfy the significantly 

increasing demand for food and agricultural products in Nigeria through irrigation 

agriculture. 

 

 

Keywords: Irrigation agriculture, Choquet integrals, Fuzzy measures, Food  

security, Nigeria. 
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6.1 Introduction  

Ensuring global and regional food security as well as increasing food production to 

support the growing world population rank top among the numerous global 

challenges in the next quarter century (FAO, 2014). These challenges are 

overwhelming, especially in SSA, where it is estimated that population level will 

double by 2050 (FAO, 2009; UN, 2011; Ricker-Gilbert et al., 2014). In the face of 

enormous food security challenges, agriculture in the SSA will need to undergo a 

significant transformation in order to match production with increasing food demand 

amidst the threats posed by climate change (Thornton et al., 2009). To achieve this 

will require well-coordinated and targeted policies on agricultural intensification 

through, among others, large and small scale irrigation development (Altchenko and 

Villholth, 2014). In this light, irrigation suitability assessment and mapping will be 

pivotal to optimal location of new irrigation developments. 

 

Irrigation suitability assessment involves complex interactions of biophysical, 

chemical and climatic processes with socioeconomic factors. These processes and 

factors are in most cases heterogeneous, interdependent and conflicting in nature. 

Whereas, the biophysical elements tend to be relatively stable, socio-economic 

factors are dynamic and dependent on the prevailing social, economic and political 

conditions of an area (Triantafilis et al., 2001; Keshavarzi et al., 2010). Decision-

making using such multiple or conflicting criteria can be very subjective and success 

of such decision-making is to a larger extent dependent on the judgement and 

expertise of the decision maker (Doumps and Zopounidis, 2011). In many instances 

these judgements will involve evaluation of an array of alternatives after a careful 

ranking, sorting or description of decision problems (Roy, 2010). In such situations, 

where conflicting and disproportionate criteria or choices have to be taken into 

consideration concurrently, multi-criteria decision evaluation (MCDE) techniques 

provide a powerful and very robust tool in the hands of decision makers (Mustapha 

et al., 2011). 
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Several MCDE techniques have been previously employed in suitability analysis. 

These techniques are based on simple additive scoring (SAS), weighted average or 

sum, multi-attribute value technique (MAVT), multi-attribute utility technique 

(MAUT), ordered weighted average (OWA), fuzzy set theory, and analytic hierarchy 

process (AHP) (Joerin et al., 2001; Malczewski, 2006; Chen et al., 2010; Zhang and 

Achari, 2010). Among these approaches, the weighted averaging techniques are the 

most widely used in suitability analysis (Kordi & Brandt, 2012; Lust and Rolland, 

2013) owing to their simplicity and ease of use. However, practical application of 

these approaches in making decisions involving complex interdisciplinary factors as 

required for irrigation suitability assessment is limited by their assumption of 

independency of judgement criteria (Kordi & Brandt, 2012; Mosadeghi et al., 2013; 

2015). Such assumption disregards the uncertainty that is usually inherent in human 

judgements. In addition, they did not allow for interaction among decision criteria 

and alternatives involved with the aggregation process. In this context, fuzzy set 

theory techniques have been reported as better alternative methods to deal with these 

shortcomings, especially in land suitability assessment (Borrough, 1992; McBratney 

and Odeh, 1997).  

 

Several studies have shown that fuzzy set theory is powerful and very flexible in 

dealing with the complexities and uncertainties embedded in land suitability 

assessment (Braimoh et al., 2004; Sicat et al., 2005; Joss et al., 2008; Odeh and 

Crawford, 2009; Chakan et al., 2012). The performance of fuzzy set techniques in 

decision making depends largely on the types of membership functions 

(Zimmermann, 1992). Fuzzy decision-making involves several fuzzy aggregation 

operators to obtain different types of decision functions. When the array of 

evaluation criteria and the corresponding weight matrix required for particular 

decisions are determined, information about the criteria is fused by an aggregation 

function to determine the overall suitability rating (Soasa and Kaymuc, 2002). 

Following this approach, conventional fuzzy operators such as t-norms، t-conorms 

and averaging operators have been employed in soil suitability studies to combine 

decision criteria into overall suitability index (Chakan et al., 2012). While these 



Chapter 6 Multi-criteria evaluation of irrigation suitability at national scale 

 

 

 
176 

aggregation operators can account for the uncertainty involved in human judgement, 

they do not capture well enough the degree of compensation common to human 

aggregation ability in the presence of conflicting criteria. 

 

These conflicting criteria present a case where the concept of fuzzy integrals may be 

appropriate. Among the family of aggregation operators, fuzzy integrals are known 

to be one of the most robust aggregation functions that allow the fusion of 

information from several conflicting criteria (Torra and Narukawa, 2006). Fuzzy 

integral is based on the concept of fuzzy measure, which is a generalization of 

specific types of averaging aggregation operators (Grabisch et al., 2008). There are 

several fuzzy integrals: Choquet integral (Choquet, 1954), Sugeno integral (Sugeno, 

1974), t-conorm integral (Murofushi and Sugeno, 1991), twofold integral (Torra, 

2003), etc. Among these integrals, Choquet integral (CI) is one of the most 

commonly used for suitability analysis (Wang et al., 2006; Grabisch et al., 2008). It 

is non-linear, flexible based on either non-additive (Rowley et al., 2015) and/or 

additive measure. One important feature of CI is the capacity to recognize the 

vagueness of the decision environment and to account for the interactions among 

conflicting and correlated criteria (Yang, 2005). CI also considers the degree of 

satisfaction and/or dissatisfaction of alternatives for each criterion with the help of 

intuitionistic fuzzy values. In addition, CI allows the quantification of the uncertainty 

in the aggregation of criteria through sensitivity analysis. CI has been used 

extensively for MCDE in the field of Engineering, Information Science, Marketing, 

among others. However, to the best of our knowledge there is dearth of research on 

the application of CI in irrigation suitability assessment. This study therefore aimed 

to (i) explore the use of the combination of soil information and landscape attributes 

for surface irrigation suitability assessment, (ii) evaluate the robustness of Choquet 

fuzzy integral in a multi-criteria assessment of irrigation suitability assessment at a 

national scale and (iii) assess the suitability of past decisions on irrigation projects 

in Nigeria. 
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6.2 Materials and Methods 

6.2.1 Case study 

This study is focussed on Nigeria, which is the most populous country in SSA. In 

Nigeria, despite the high demand for food and raw materials, only about 50 percent 

of the estimated 71.2 million hectares of arable land is currently being utilized 

(Ayoola, 2009). Although a lot of land is available for agricultural production, the 

availability of water constitutes a major constraint, especially in the Guinea, Sudan 

and Sahel Savannah agro-ecological zones of the country (Takeshima and Adesugba, 

2014). The over dependency on rain-fed agriculture in Nigeria especially in the semi-

humid and semiarid regions and the characteristic erratic rainfall necessitates the 

practice of irrigation agricultural production where appropriate. In this context, 

irrigation suitability assessment and mapping would play an important role in 

ensuring optimal and sustainable agricultural productivity in Nigeria.  

 

6.2.2 Background on fuzzy measures and Choquet integral 

6.2.2.1 Fuzzy measures 

Before proceeding to the practical aspect of CI, let us look at its theory. The theory 

of CI found its genesis in the concept of fuzzy integrals which are themselves based 

on fuzzy measures or capacities interpreted as the generalization of specific 

weighting vectors as used in the computation of weighted sums (Grabisch et al., 

2008). In defining fuzzy measure, let 𝑋 = {𝑥1, 𝑥2 , … , 𝑥𝑛  } be a finite set of decision 

alternatives and let 𝑃(𝑋) denote the power set of 𝑋, or a set of all subsets of 𝑋. A 

fuzzy measure 𝑔 defined on 𝑋 is a function: 𝑔: 𝑃(𝑋) → [0, 1] such that: 

𝑔(∅) = 0, 𝑔(𝑋) = 1.      (6.1) 

If )(, XPBA   and BA , then )()( BgAg  .   (6.2) 
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If eq (2) is not satisfied, 𝑔 is called a non-monotonic fuzzy measure. Sugeno 

introduced the so called 𝜆 fuzzy measure satisfying the following additional 

property: for all 𝐴, 𝐵 ⊂ 𝑋 with 𝐴 ∩ 𝐵 = ∅, 

𝑔(𝐴 ∪ 𝐵) = 𝑔(𝐴) + 𝑔(𝐵) + 𝜆𝑔(𝐴)𝑔(𝐵), for some fixed 𝜆 > −1.  (6.3) 

The value of 𝜆 can be found from𝑔(𝑋) = 1, which is equivalent to solving equation: 

𝜆 + 1 = ∏ (1 +𝑛
𝑖=1 𝜆𝑔𝑖).     (6.4) 

Let 𝐴 = {𝑥𝑖, 𝑥𝑖+1 , … , 𝑥𝑛  }. If 𝑞 is a 𝜆 fuzzy measure, the value of 𝑔(𝐴𝑖) can be 

computed recursively as: 

𝑔(𝐴𝑛) = 𝑔({𝑥𝑛}) = 𝑔𝑛,      (6.5) 

𝑔(𝐴𝑖) =  𝑔𝑖 + 𝑔(𝐴𝑖+1) +  𝜆𝑔𝑖𝑔(𝐴𝑖+1)  for 1 ≤ 𝑖 < 𝑛.  (6.6) 

In multi-criteria decision making, 𝑔(𝐴𝑖) can be viewed as the importance of the 

criterion or expert set 𝐴. Thus, in addition to the usual weights on the experts and on 

the criteria taken separately, weights on any combination of the criteria and the 

experts are also defined. 

 

6.2.2.2 Choquet fuzzy integral 

The CI is a fuzzy integral based on 𝜆 fuzzy measure that provides alternative 

computational scheme for aggregation information. To define CI we assume 

ℎ(𝑥1), ℎ(𝑥2), … , ℎ(𝑥𝑛) are a collection of input resources of ℎ , and if 𝑔 is a 𝜆 fuzzy 

measure, then we can construct a CI as: 

   xgxh
x

        [6.7] 

Alternatively, assuming 𝑋 is a finite and discrete set, the Choquet fuzzy integral can 

be computed as follows: 

𝐸𝑔(ℎ) = ∑ [ℎ(𝑥𝑖) − ℎ(𝑥𝑖−1)]𝑛
𝑖=1 𝑔(𝐴𝑖)     [6.8] 
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where ℎ(𝑥1) ≤ ℎ(𝑥2) ≤ ⋯ ≤ ℎ(𝑥𝑛), and ℎ(𝑥0) = 0. Another computation formula 

for the finite set case can also be represented by 

𝐸𝑔(ℎ) = ∑ ℎ(𝑥𝑖)[𝑔(𝐴𝑖) − 𝑔(𝐴𝑖+1)]𝑛
𝑖=1      [6.9] 

 

6.2.2.2.1 Importance index of evaluation criteria. 

One important attribute of CI is the ability to gauge the importance of each 

evaluation criterion as well as the combination of criteria for the decision process. 

This is achieved using the concept of Shapley index (Shapley, 1953).  Again, let g  

be a fuzzy measure and },...,,{ 21 nxxxX  be the set of evaluating criteria. Then the 

Shapley index i  for every input Xxi   can be defined as: 

 
 

 
    AgxAg

n

AAn
i ixXAg

i




 
}{

!

|!!|1||
/

    [6.10] 

The Shapley index i can be interpreted somewhat in two ways: (i) as the average 

value of the contribution of criteria ix  in all coalitions of criteria and (ii) as the true 

representation of the sharing of the total amount  Xg  since it must satisfy the 

condition   1
1




i
n

i

g  i.e., the sum of importance degrees of all coalitions is a 

constant.  

 

6.2.2.2.2 Interaction index of evaluating criteria. 

Another important capability of CI that differentiates it from the other aggregators is 

its ability to cater for interactions among the evaluating criteria through the 

interaction indices. For instance, given a set of evaluating criteria },...,,{ 21 nxxxX  , 

the interaction index for every individual set Xxi  can be defined as: 
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 
 

 
   CBg

An

BABn
AI

CA

ACAXBg 



  

|/|

/
1

!1||

|!!|||||
  [6.11] 

 

This measure is true for all coalitions of evaluation criteria whereby    .1,1AI g  . 

For easier interpretation, the interaction index  ijI g for each pair of criteria 

 
ji xxA ,  is commonly used. A pair of criteria ix  and jx  is said to have a positive 

interaction (complement) if  ijI g > 0. This implies that the satisfaction of both 

criteria is necessary for an overall satisfaction of the decision process. On the 

contrary, a negative interaction (correlation) exists between ix  and jx  if  ijI g < 0. 

This implies that both criteria are substitutive and it is therefore sufficient to satisfy 

either of them to get overall satisfaction. If  ijI g = 0, then ix  and jx  are said to 

have little or no interaction (independence) existing between them. 

 

6.2.3 Selection and processing of evaluation criteria 

Several parameters are required for surface water irrigation suitability assessment, 

particularly those related to the properties that govern irrigation water availability, 

erosion or sedimentation, drainage, salinity, market outlets and accessibility, length 

of growing season, among others. For the purpose of this study, five main decision 

criteria, namely: topography, climate, soil properties, socioeconomic and hydrology, 

were selected. Based on these decision criteria, nine evaluation criteria were selected 

for potential irrigation suitability assessment. The selection of the evaluation criteria 

was largely limited by data availability as well as maximum evaluation input for the 

CI software used for this study (Takahagi, 2005b). 
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6.2.3.1 Climatic variables 

Climatic variables are among the major factors that determine the potential irrigation 

suitability of an area. Because of their systemic variations across a given landscape, 

climatic variables will decide the regional irrigation needs. For instance, there will be 

greater need for irrigation to complement crop water needs in drier arid or semi-arid 

regions than in humid regions. Climatic variables used in this study include Aridity 

Index (AI) and annual Potential Evapo-Transpiration (PET). The Aridity index is 

mostly expressed as a generalized function of precipitation, temperature, and/or PET 

(UNEP, 1997) while PET measures the ability of the atmosphere to remove water 

from the earth surface through Evapo-Transpiration (ET) processes. Both attributes 

can give an indication of the level of water deficit as well as the dryness of the 

climate of a particular area (Kumbhar et al., 2014). AI values for instance increase in 

humid conditions, and decrease in arid conditions. Global AI and global PET geo-

spatial datasets were obtained from the Consortium for Spatial Information (CGIAR-

CSI) GeoPortal (Trabucco and Zomer, 2009) and clipped for Nigeria. The global AI 

and PET were modelled at 1km resolution using the “WorldClim” global climate 

data (Hijmans et al. 2005) as input parameters.  

 

6.2.3.2 Topographic indices 

Suitability of a land for surface water irrigation depends largely on its topography. 

Topographic features generally affect irrigation efficiency, drainage pattern, erosion 

intensity and cost of land development (Ali, 2010). Topography is also a good proxy 

for representing subsurface water flow paths as well as soil–water storage dynamics 

of a given area (Lanni et al., 2011). Therefore, in this study two major topographic 

indices (elevation and slope) were included in the evaluation criteria. Elevation data 

was obtained for our study area using the SRTM 3 arc (90 m) digital elevation model 

(DEM) while slope gradient was derived from the DEM using the Spatial Analyst 

Toolbox in ArcGIS 10.2 (Reuter and Nelson, 2009).  

 

 

http://csi.cgiar.org/
http://csi.cgiar.org/
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6.2.3.3 Soil attributes 

Soil attributes are important factors to be considered in decisions on irrigation 

development (Frenken and Faurès, 1997) in that they affect the crop growth as well 

as drainage of a particular area. Soil available water capacity (AWC) and clay 

content were the soil parameters considered for this study. Clay content was obtained 

from previous digital soil mapping study of the area (Akpa et al., 2014) while AWC 

was estimated for Nigeria using the pedotransfer (PTF) of Minasny and Hartemink 

(2011) thus: 

 

)34.049.75.56((%)33 SandBDkpa       [6.12] 

2

1500 )7.37(*004.0*4.0*86.095.7(%)  ClayClayOCkpa   [6.13] 

kpakpaAWC 150033           [6.14] 

 

where, AWC is soil available water capacity, BD is soil bulk density in mass per unit 

volume, Clay is clay content in percent mass, Sand is sand (particles 50–2000 μm) 

content in percent mass, OC is organic carbon content in percent mass while kpa33  

and kpa1500  are soil moisture content at field capacity and permanent wilting point 

respectively. The input variables used in the above PTFs were obtained from 

previous chapters in this thesis: BD and OC (chapter 4) while clay and sand contents 

were from chapter 3. 

 

6.2.3.4 Proximity to river and road networks 

The shapefiles of stream network and road network of the study area were obtained 

from Diva_GIS website (http://www.diva-gis.org/gdata). These shapefiles were 

overlaid by the DEM map and the proximity of each pixel to the nearest river and 

road was determined separately using the Analysis Toolbox in ArcGIS 10.2. 

 

 

http://www.diva-gis.org/gdata
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6.2.3.5 Proximity to urban market  

Proximity of market outlets for agricultural crops is an important factor for 

agricultural planning and irrigation development. Generally, crops of high market 

value and high transportation costs are grown nearest to the market while less 

perishable crops with lower production and transportation costs are grown farther 

away. For the purpose of this study, potential market outlets were determined using 

the location information of major towns with a population of at least 50,000 

according to the 2006 population census data of Nigeria following Worqlul et al. 

(2015). Using the DEM map, the proximity of each location was determined the 

Analysis Toolbox in ArcGIS 10.2. 

 

6.2.4 Derivation of fuzzy membership functions on the primary input 

variables 

Decision criteria used in MCDE are usually from different domain and with different 

scale of measurement. Therefore one very crucial step in MCDE is the 

standardization of evaluation criteria. Scales of 0 to 1, 0 to 5, 0 to 10, 0 to 100, 

among others are usually used for standardization. However, standardization is 

achieved in CI aggregation technique via the fitting of fuzzy membership functions 

(FMF) to input variables. FMF is an extension of the classic binary logic, with the 

capability of defining sets without sharp boundaries and allowing for partial degree 

of membership (Borrough, 1993). FMF transforms the input data to the real unit 

interval of 0 to 1 based on the possibility of being a member of a specified set. The 

value 0 means non-membership of the fuzzy set; the value 1 means full membership 

of the fuzzy set. Any value between 0 and 1 characterize a partial membership of the 

set.  

 

During the “fuzzification” of the evaluation criteria, the choice of the FMF was 

guided by expert knowledge and based on the strength of each input in the decision 

process. McBratney and Odeh (1997) discussed a range of possible membership 

function applicable to soil suitability assessment. For the purpose of this study, FMFs 
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were established for each evaluation criterion discussed in Section 6.2.3 above using 

the fuzzy membership tool of the Spatial Toolbox in ArcGIS 10.2. The fuzzy “MS 

large” and fuzzy “MS small” functions which implement the sigmoid FMF algorithm 

were used in the fuzzification of input rasters. Fuzzy “MS large” function defines a 

fuzzy membership based on the mean and standard deviation, with the larger values 

having a membership closer to 1. “MS small” function, uses similar approach but 

with smaller values having a membership close to 1 as shown in Fig. 6.1. 

 

6.2.5 Weighting of evaluation criteria  

The determination of weights of evaluation criteria is a crucial step in every multi-

criteria analysis ((Feizizadeh and Blaschke, 2013). Therefore, in this study weights 

of the selected evaluation criteria were assigned using the pairwise comparisons 

approach provided in a CI interface developed by Takahagi (2005b). In the light of 

the pairwise comparison, each criterion was matched head-to-head based on the 

relative contribution to the overall irrigation suitability index, to obtain a comparison 

matrix. The head-to-head rating of the decision criteria was done using local expert 

opinions on their relative importance to surface irrigation development. Based on 

expert opinions, a scale of importance in the range of 1 to 9 (see Table 6.1) were 

assigned to each criterion with the value of 9 corresponding to absolute importance 

and 1 representing equal importance. Since human judgement is subjective, a 

consistency index (CR), which is a reflection of how consistent the decision maker is 

in placing importance on the evaluation criteria was obtained for each pairwise 

comparison matrix.  



Chapter 6 Multi-criteria evaluation of irrigation suitability at national scale 

 

 

 
185 

 

  

Figure 6.1 Examples of fitted membership grades of evaluation criteria using sigmoid membership functions. 

 

A B
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Table 6.1 Fundamental scale used in pairwise comparison based on Saaty (2008) 

Intensity of Importance Qualitative Definition Explanation 

1 Equal importance Two factors contribute equally to the objective 

3 Somewhat more important Experience and judgement slightly favour one item over the other 

5 Much more important Experience and judgement strongly favour one item over the other. 

7 Very much more important 

Experience and judgement very strongly favour one item over the other. Its 

importance is demonstrated in practice. 

9 Absolutely more important 

The evidence favouring one item over the other is of the highest possible 

validity. 

2,4,6,8 Intermediate values When a compromise is needed 

Reciprocals of above 

If item i has one of the 

above non-zero numbers 

assigned to it when 

compared with item j, then j 

has the reciprocal value 

when compared with i A reasonable assumption 
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6.2.6 Irrigation suitability assessment 

The surface irrigation potential of our study area was determined by weighting the 

evaluation criteria as discussed previously and aggregating each using two 

aggregation methods: CI and weighted sum (WS). As shown in Fig.6.2 and following 

Eqs.[6.1-6.11], the required inputs for the use of CI to aggregate suitability indicators 

into a single suitability index are the degrees of memberships of the evaluating 

criteria or suitability indicators (ℎ) and the relative importance of their weights (𝑔), 

the choice of interaction index and the identification standard methods. We 

envisaged that the choice of parameters required in fitting CI based on the steps 

illustrated in Fig 6.2 will have varying effect on the outputs. Therefore a sensitivity 

analysis was done to evaluate the robustness of the suitability index to changes in the 

parameter settings.  

 

Prior to fitting of the CI, 1000 sample locations were randomly selected using 

conditioned Latin hypercube sampling (cLHS) scheme (Minasny and McBratney 

2006) based on five covariates; DEM, slope, aspect, mean annual rainfall, and land 

use. Fuzzy membership values (FMVs) of the criteria were then extracted at these 

locations and aggregated using CI to obtain a single suitability index at each point. 

The CI was implemented using the CI interface developed by Takahagi (2005b). The 

outputs of the analysis, which are the suitability indices at the 1000 locations, were 

then interpolated across Nigeria using Random Forest Model in R environment (R 

Development Core Team, 2014). For the spatial interpolation we used covariates 

such as topographic wetness index, stream power index, flow accumulation, 

elevation, slope and topsoil sand content that exhibit significant correlations with 

suitability indices obtained at the 100 locations. The weighted sum technique was 

carried out in ArcGIS environment by aggregating the map layers of the “fuzzified” 

evaluation criteria using the map overlay tool. 
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Figure 6.2 Schematic illustration of the application of Choquet integral with λ fuzzy 

measure in suitability assessment. Adopted and modified from Takahagi 2005a 

 

6.2.7 Estimation of most suitable irrigation areas across different regions 

Each of the suitability index maps computed using the two aggregating approaches 

of CI and WS described above, was then multiplied by a restriction map. Restriction 

areas are those areas considered permanently non-suitable for irrigation and usually 

comprise of water bodies, built-up areas, forestlands and existing road networks 

which (Worqqlul et al., 2015). The final irrigation suitability maps were then 

classified into four irrigation suitability classes following FAO (1976). A user 

defined threshold value of 0.69 was employed in choosing highly suitable areas. The 

raster maps of highly suitable areas for surface irrigation were then converted to 

polygons in ArcGIS environment. Number of continuous areas (based on the 

polygons) suitable for small, medium and large irrigation across the various agro-

ecological and geopolitical zones in the study area were then determined following 

(Worqlul et al., 2015). We included geopolitical zones in this analysis because most 

of the national agricultural developmental policies in Nigeria are currently carried 

out along the various geopolitical zones. 

 



Chapter 6 Multi-criteria evaluation of irrigation suitability at national scale 

 

 

 
189 

6.3 Results  

6.3.1 Spatial distribution and interaction among evaluation criteria 

The spatial distribution of the evaluation criteria used for the multi-criteria 

assessment of our study area is presented in Fig. 6.3. There is a systemic variation of 

Aridity index and PET from the coast towards the inland of Nigeria. Aridity index 

decreased gradually from the southern region northward, with a slight increase 

around the Jos Plateau in the central coast. In contrast, PET increased gradually from 

the south coast to the northern part of the country. The northern part of Nigeria is 

dryer than the southern region as indicated by their aridity index and PET. In terms 

of topographic indices, the landscape of the study area is relatively low lying with 

flat slope in the southern coastal region and around the fringes of the northern region. 

However, highlands with steep slope gradients interspersed the western, eastern 

borders and middle belt regions. Generally, soils of the study area are characterised 

by relatively coarse texture with a concomitant low to medium water holding 

capacity.  

 

The Pearson product moment correlation coefficient matrix of both the raw values 

and fuzzy grades of the evaluation criteria are shown in Tables [6.2 to 6.3]. The 

correlation coefficient matrix indicates a moderate to strong correlation among the 

evaluation criteria. For instance, Aridity index is negatively correlated with almost 

all the other factors. In contrast, PET is positively correlated with most factors with 

the exception of Aridity index and clay content. As expected, there is a strong 

negative correlation between aridity index and PET. Also, elevation shows a strong 

positive correlation with slope, proximity to road and proximity to urban markets.  

 

6.3.2 Weighting of evaluation criteria for irrigation suitability 

The result of the pairwise comparisons matrix for the nine evaluation criteria based 

on Table 6.1 is presented in Table 6.4. It is evident that proximity to the river with a 

weight of 26% is the most important criteria for surface irrigation suitability 
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assessment in the area. This is followed closely by elevation with 21 % weight and 

slope gradient with 14.4 % weight. In addition, soil attributes and climatic variables 

were considered of moderate important proximity to market outlet with 3% weight is 

the least important. As mentioned in the previous section, the head-to-head weighting 

of the decision criteria was done using literature search and local expert opinions on 

their relative importance to decisions on surface irrigation development. In this 

study, the CR for the pairwise comparisons matrix used in criteria weighting is 0.06. 

 

6.3.3 Effect of parameter settings on Choquet integral suitability index  

We evaluated the effect of different interaction indices (ξ and λ values) on the output 

of CI aggregation (results not shown here for lack of space). At a low interaction 

index (ξ =0.2, λ=15), that is when the decision maker places importance strongly on 

the balance among evaluation criteria (Takahagi, 2005b), there is very large 

distribution of low to marginal irrigation suitability across the study area. At high 

interaction index (ξ =0.8, λ=-9375), that is when the decision maker do not place 

importance strongly on the balance among evaluation criteria (Takahagi, 2005b), the 

distribution of suitability index narrowly ranged and predominantly on the high side 

of irrigation suitability. However, when there is moderate interaction index (ξ =0.49, 

λ=0.05), that is when the decision maker places weak importance on the balance 

among evaluation criteria; there is a wider distribution of the suitability index. 

Therefore the optimum interaction degree is about when the interaction index, ξ 

equals 0.49 and λ equals 0.05.  

 



  

 

 
191 

 

(a) Aridity Index     (b) Available water capacity    (c) Clay content 

 

(d) Elevation      (e) Market proximity     (f) Potential Evapo-Transpiration 
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(g) River proximity     (h) Road proximity     (i) Slope gradient 

Figure 6.3 Evaluation criteria (a-i) used for irrigation suitability assessment. 
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Table 6.2 Pearson correlation coefficient matrix of evaluation criteria used in irrigation suitability assessment. 

 

 

 

 

 

 

 

 

*, p value<0.05; **, p value<0.01; ***, p value<0.0001; 
NS

, Not significant; AWC, available water capacity; Aridity_I, aridity 

index; PET, potential evapo-transpiration; Road_P, road proximity; River_P, river proximity; Market_P, market proximity. 

 

 

 

 

 

 

 

  AWC Clay Slope Aridity_I PET elevation Road_P River_P Market_P 

AWC 1.000 

        Clay 0.171
***

  1.000 

       Slope -0.180
***

 0.034
NS

 1.000 

      Aridity_I -0.156
***

 0.290
***

 0.127
***

 1.000 

     PET 0.124
***

 -0.205
***

 -0.190
***

 -0.906
***

 1.000 

    elevation 0.192
***

 0.124
***

 0.347
***

 -0.287
***

 0.191
***

 1.000 

   Road_P   0.067
*
 0.047

NS
 0.135

***
 -0.077

**
 0.089

**
 0.245

***
 1.000 

  River_P -0.123
***

 -0.026
NS

 -0.038
NS

 -0.235
***

 0.266
***

 0.005
NS

 0.056
NS

  1.000 

 Market_P 0.130
***

 0.052
NS

 0.196
***

 -0.165
***

 0.195
***

 0.333
***

 0.571
***

 0.032
NS

 1.000 
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Table 6.3 Pearson correlation coefficient matrix of fuzzy grades of evaluation criteria used in irrigation suitability assessment. 

  AWC Clay slope Aridity PET Elevation Road_P River_P Market_P 

AWC  1.000 

        Clay 0.188
*** 

1.000 

       slope 0.238
***

 -0.066
*
 1.000 

      Aridity -0.181
***

 0.293
***

 -0.091
*
  1.000 

     PET -0.169
***

 -0.055
NS 

0.250
***

 -0.514
***

 1.000 

    Elevation -0.237
***

 -0.228
***

 0.370
***

 0.123
***

 0.114
***

  1.000 

   Road_P -0.009
NS 

-0.058
NS 

0.110
***

 0.066
*
 -0.065

*
 0.121

***
 1.000 

  River_P -0.133
***

 -0.043
NS 

0.143
***

 0.054
NS

 0.115
***

 0.355
***

 0.169
***

 1.000 

 Market_P -0.051
NS 

-0.060
NS 

0.176
***

 0.140
***

 -0.065
*
 0.195

***
 0.475

***
 0.162

***
 1 

*, p value<0.05; **, p value<0.01; ***, p value<0.0001; 
NS

, Not significant; AWC, available water capacity; Aridity_I, aridity 

index; PET, potential evapo-transpiration; Road_P, road proximity; River_P, river proximity; Market_P, market proximity. 
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Table 6.4 Pairwise comparison matrix and weights of evaluation criteria.  

  

Consistency index = 0.06; AWC; available water capacity, Aridity_I; aridity 

index, PET; potential evapo-transpiration, N_Road; road proximity, N_River; 

river proximity, N_Market; 

 

6.3.4 Spatial distribution patterns of potential surface irrigation 

suitability. 

The spatial distribution of the potential surface irrigation suitability areas based on 

the outcome of CI and WS is presented in Fig. 6.4. Comparing the effect of equal 

and varying weights of evaluation criteria on suitability index, it could be seen 

that assigning equal weights to all the evaluation criteria results in low to marginal 

suitability index across the study area regardless of whether CI or WS is employed 

(Figs. 6.4a and 6.4c). However, the allocation of varying importance to the 

different evaluation criteria results in a moderate to high suitability index (Figs. 

6.4b and 6.4d). The suitability index estimated by WS ranged from 0.22 to 0.88 

(mean = 0.64, SD = 0.065) while those of CI ranged between 0.35 and 0.82 (mean 

= 0.65, SD = 0.054). CI results in smaller areas with low suitability index (less 

than 0.45) compared to WS. On a closer look at Fig. 6.4d, one could see that there 

is an undue interference of extreme values of evaluation criteria, especially river 

proximity on the outcome of WS aggregation technique. In contrast, CI looks 

more robust as it averages out the impact of these extreme values. Additionally, 

  AWC Clay Aridity_I N_River N_Market N_Road PET Elevation Slope Weights 

AWC 1 2 4 1/2 5 4 4 1/3 1/2 0.132 

Clay 1/2 1 3 1/3 4 3 3 1/3 1/2 0.094 

Aridity_I 1/4 1/3 1 1/5 3 2 1 1/4 1/4 0.049 

N_River 2 3 5 1 7 6 4 2 3 0.262 

N_Market 1/5 1/4 1/3 1/7 1 1 1/2 1/5 1/4 0.028 

N_Road 1/4 1/3 1/2 1/6 1 1 1/3 1/4 1/4 0.031 

PET 1/4 1/3 1 1/4 2 3 1 1/5 1/4 0.048 

Elevation 3 3 4 1/2 5 4 5 1 2 0.212 

Slope 2 2 3 1/3 4 4 4 1/2 1 0.144 
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CI better captured the higher irrigation suitability in the vicinity of major rivers 

(see Fig. 6.4c) than captured by WS (see Fig. 6.4d). Intuitively, CI performed 

better than WS in the study area. Therefore, we shall limit our reports on other 

results and discussions to only the output of CI analysis. 

 

6.3.5 Regional variation of potential surface irrigation suitability  

The potential surface irrigation suitability map based on the best aggregator (CI) 

was multiplied by the restriction map of the study area as discussed earlier and 

then further optimized using a user defined threshold value of 0.68 to capture best 

suitable areas for irrigation. The optimized suitability maps were used to estimate 

parcels of suitable irrigation lands across the various regions in the study area (see 

Table 6.5). Overall, about 3.34 x 10
6
 ha of land is physically suitable for surface 

irrigation development in Nigeria. The northern region (comprising of 

northcentral, northeast and northwest zones) collectively gave a significantly 

higher proportion of suitable areas (about 76% of the entire area) than the 

southern region (southeast, southsouth and southwest) with only about 24% 

suitability. Looking at irrigation suitability of the individual zones, the 

northcentral zone has the largest proportion of suitability areas, constituting about 

29 % suitability of the entire country. This is followed closely by the northeast 

zone (25.5%) and the northwest zone (21.9 %). The relative proportion of suitable 

areas in the south east, southsouth and southwest regions, with respect to the 

suitability of entire country, is about 6.2, 12.4 and 5.2 percent respectively.  
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A. B.  

C.  D  

Figure 6.4 Irrigation suitability using equal and varying weights based on Choquet integral (A-B) and weighted sum (C-D). 
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Table 6.5 Potentially suitable areas for surface irrigation across the various geopolitical zones of Nigeria based on Choquet Integral. 

Regions 

Most Suitable 

area (ha) 

Number of areas suitable for 

large scale surface irrigation 

(>3000 ha) 

Number of areas suitable for medium 

scale surface irrigation  

(>200 and <3000 ha) 

Number of areas suitable for 

small scale surface irrigation 

(<200 ha) 

Percentage of 

potentially suitable 

area (%) 

Geopolitical zones 

Northcentral 963500 37 366 2800 28.8 

Northeast 851700 33 314 1796 25.5 

Northwest 733100 28 435 2105 21.9 

Southeast 208540 7 106 534 6.2 

Southsouth 414700 21 200 816 12.4 

Southwest 169800 5 109 523 5.2 

Total 3341600 131 1530 8574 100 

Proportion  

of total (%) 

 

1.3 14.9 83.8 

 Agro-ecological zones 

SHS 358700 11 102 590 10.7 

SDS 121500 2 93 483 3.7 

NGS 73000 2 32 451 2.2 

SGS 438400 22 187 1233 13.1 

DS 1233000 44 518 3135 36.9 

HF 1117000 48 622 2787 33.4 

Total 3341600 129 1554 8679 100 

Proportion  

of total (%)   1.2 15 83.8   

DS, Derived Savannah; HF, Humid Forest; NGS, Northern Guinea Savannah; SDS, Sudan Savannah; SGS, Southern Guinea Savannah; SHS, 

Sahel Savannah 
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Figure 6.5 Suitability of existing public irrigation sites in Nigeria. 

 

6.3.6 Evaluating past decisions on irrigation projects in Nigeria. 

To evaluate past decisions regarding the siting of irrigation projects we obtained 

location coordintates of the existing irrigation dams in Nigeria from the AQUASTAT 

database (Frenken, 2005). These were overlaid on the optimized irrigation suitability 

map as described in previous session to assess whether previous irrigation projects 

were properly situated (see Fig.6.5). Results indicate that only a very few of the 

existing public irrigation dams were sited in highly suitable surface irrigation areas.  

Notable of these are irrigation projects within the Sokoto rima basin of the 

northwestern part of the country: Goronye dam, Swashi and Kubil Dam. Others are 
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Kiri and Doma dams in northeast and northcentral regions of Nigeria. 

Notwithstanding, a good number of past irrigation dams were located in the 

moderately suitable irrigation areas. In addition, almost 50% of irrigation dams under 

the Hadeija Jama’are river basin development authority are in the marginally suitable 

areas. Furthermore, a few irrigation dams like the Jibiya dam in the border area of 

Nigeria and Niger, Bokkos dam on the central plateau and Ero dam in mid-western 

part of Nuigeria are somewhat located in currently not suitable areas. 

 

6.3.7 Sensitivity analysis of irrigation suitability index 

The sensitivity analysis of computed suitability index at selected sample locations 

based on different interaction indices is shown in Fig. 6.5. On a closer look, one 

could see that location 200 is the most suitable for surface irrigation when ξ (xi 

values) > 0.35, that is, if the decision maker do not place importance strongly on the 

balance among evaluation criteria (Takahagi, 2005b). In contrast, when ξ (xi values) 

< 0.2, that is, if the decision maker places importance strongly on the balance among 

evaluation criteria (Takahagi, 2005b), location 5 is the most suitable for surface 

water irrigation. Locations 50 and 150 show equal suitability when ξ >0.45 while 

location 50 is the most suitable among the two locations when ξ <0.45. At all ξ 

values, location 450 is the least suitable for surface water irrigation among the 

selected locations. Overall, there is a clearer distinction between the suitability index 

of the selected locations at ξ <0.5 compared to higher ξ values. This is an indication 

that the best ξ for CI suitability index evaluation in the study area is most likely to be 

a little below 0.50. 
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Figure 6.6 Sensitivity analysis of irrigation suitability index at selected sample 

locations. 

 

6.4 Discussion 

6.4.1 Distribution and interrelationship among criteria 

There is a systemic variation of both the aridity index and PET across the study area 

compared to other variables. This implies that these two variables will influence 

decisions on the regional irrigation needs across the study area while the other factors 

may influence decisions on local irrigation needs. The northern region of the study 

area is significantly dryer than the southern region as indicated by lower aridity index 

and higher PET. This is justified by the shorter length of rainy season as well as high 

evaporative demand in the northern region compared to south coast. Variability in 
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rainfall regimes and atmospheric evaporative demands have been reported as the 

most prominent environmental factors responsible for the temporal dominance of 

drier soils in the semi-arid environment than the sub-humid areas (Lauenroth and 

Bradford, 2006; 2009). The dryness of the northern region implies a greater need for 

irrigation to support agricultural development in this area compared to its southern 

counterpart. 

 

The topography of the study area is relatively uniform to a large extent except for 

steep slope gradients along the eastern borders, mid-western and around Jos Plateau 

in the middle belt region. This implies that the development of surface irrigation 

scheme in our study area will be cost-effective to some extent, since topography 

significantly influences the initial cost of surface irrigation development (Ali, 2010). 

Generally, the coarse texture of soils in most part of the northern Nigeria suggests 

that drainage may not pose much challenge to surface irrigation in that area. 

However, low nutrient availability may constitute major challenge to irrigation 

agriculture in the long run. In addition, the denser distribution of urban markets in 

most part of the southern regions than their northern counterpart implies that while 

the north may have higher potential for irrigation farming, most of the crop produce 

will need to be conveyed to the southern region where there are larger market outlets 

for them. 

 

The significant correlation among the selected evaluation criteria is an indication of 

possible interaction in the form of synergy or redundancy between these criteria 

when used for multi-criteria analysis. However, these interactions can only be mild 

considering that there only exist a weak to moderate relationship among most criteria 

except for between elevation and slope, elevation and market proximity, PET and AI, 

road and market proximities. The existence of interaction among the evaluation 



Chapter 6 Multi-criteria evaluation of irrigation suitability at national scale 

 

 

 
203 

criteria used in this study (although not too strong in many cases) lends credence to 

the robustness of CI for criteria aggregation in this study.  

 

6.4.2 Weighting of evaluation criteria for irrigation suitability 

The result of our pairwise comparisons matrix for the nine evaluation criteria is 

relatively consistent, in that our reported CR of 0.06 is below the acceptable 

threshold of 0.1 (Chen et al., 2013). Also, the trend of the assigned weights is similar 

to that reported by Worglul et al. (2015) for similar irrigation study in the Lake Tana 

Basin of Ethiopia. However, our results are invariant with theirs in terms of the 

second most important criteria as they have reported proximity to road as the second 

most important criteria for surface water irrigation development. This could be 

attributed to the smaller coverage of their study area compare to ours. Moreso, in 

Nigeria, farming activities are usually carried out in the rural areas with little or no 

paved road network. Therefore, road proximity will be of little significance when 

considering surface irrigation suitability in these areas. The top ranking of elevation 

and slope gradients is expected since they collectively contribute the bulk of the 

establishment cost of surface irrigation through land preparation, labour cost, 

equipment installation as well as irrigation efficiency (Ali, 2010). 

 

6.4.3 Potential surface irrigation suitable areas. 

This study shows that the total surface irrigation suitable area in Nigeria is about 3.34 

million hectares which is larger than previously reported estimates for Nigeria (FAO, 

2012; You et al., 2011). However, the distribution of suitable areas across the entire 

country and the various regions compares well with previous reports (FAO, 2012). 

The higher suitability reported in this study than previous estimates could be due to 

the robustness of CI applied and more detailed analysis compared to previous studies 

which were mostly carried out at the continental scale with primary focus on the 

major river basins. The higher suitability of the northern region compared to the 
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southern counterpart could be attributed to the relatively drier environments of the 

north as a result of harsh weather condition and the relatively flat landscape. 

Furthermore, the northern region hosts a larger portion of the major river basins in 

Nigeria (FAO, 2012).  

 

The narrow distribution of CI suitability index around the mean indicates the 

robustness of CI to extreme values of decision criteria and the weights associated 

with them (Lee and Hu, 2013; Krishnan et al., 2015). CI has the capacity to capture 

not only the importance but also the interaction among evaluation criteria in the 

decision aggregation process (Grabisch et al., 2008; Chakan et al., 2012). Therefore, 

the overall suitability index cannot be disproportionately influenced by any 

individual criterion. Fitting a generalized fuzzy membership function across the 

study area may have had an undue negative effect on irrigation suitability of some 

areas, especially around the Jos and Mambilla plateaus. Although these areas are on 

relatively high altitude, irrigation activity is still possible on some relatively flat spots 

at the peak of the plateau. Fitting a local membership function may have captured 

well the local variations across the study area. 

 

Furthermore, the location of most current irrigation sites in moderate to marginally 

suitable areas is a reflection of the absence of quantitative approach to previous 

irrigation suitability assessments. Also, the absence of quantitative soil information 

in previous suitatbility assessment projects was obvious in this study as the majority 

of existing irrigation dams sited on marginally to non-suitable areas are within areas 

known for high sand content, especially around the Hadejia Jama’are river basin. The 

location of Bokkos irrigation dam is obviously on marginal to non-suitable area. This 

could be attributed to the limitation posed by the steep slope gradient and high 

elevation of the plateau as mentioned earlier. In sharp contrasts to the 

aforementioned irrigation locations, the Benue and Niger River basins depict highly 

suitable areas for surface water irrigation and presents a great opportunity for future 
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irrigation projects in the country. If properly harness these two river basins have the 

capacity to serve as food hub of Nigeria. 

 

Considering that over 70% of the total cropped area of Nigeria is in the northern 

region with low rainfall amount marked with shorter growing season, and rapid 

population growth, irrigation is an essential factor in any food security strategy for 

the country. Nigeria has a very wide range of agro-ecology that could support the 

growing of diverse crop. Therefore, with irrigation and proper crop management 

practices, farmers in this country can engage in all-year round farming activities for 

sustainable production of staples food such as rice, millet, maize as well as 

vegetables and cash crops.  

 

6.5 Conclusion 

Given the global water demand accentuated by adverse impact of climate change, 

assessment of irrigation potential is of prime importance for national planning 

towards sustainable agricultural production especially areas with unfavourable 

climatic conditions. In this study we have successfully applied Choquet integral 

function to irrigation suitability criteria and model the suitability index. Overall, 

about 3.34 x 10
6
 ha of land in Nigeria is potentially suitable for surface water 

irrigation development. Out of the total suitable areas for surface water irrigation in 

Nigeria, only about 1% is suitable for large scale irrigation while about 15% and 

84% is suitable for medium and small scale irrigation respectively. Major physical 

limitations are due to topography, slope and soil properties. This study demonstrates 

that the combination of the evaluation criteria by Choquet integral function and the 

modelling of their interaction degrees by fuzzy measures improved aggregation 

outputs. This study further confirms that Choquet fuzzy integral is a credible and 

robust approach for the multi-criteria assessment of data from different domains and 

sources to delineate areas that are suitable for surface water irrigation. The outputs of 

this study will be useful to researchers and policy makers at national and regional 

levels for projects aiming at sustainable agricultural development in Nigeria.  
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7.1 General discussions 

Globally there is a rising need of spatially explicit soil information to support 

targeted and specific decisions on global and regional challenges posed by climate 

change, food and water shortage, land degradation, and loss of biodiversity 

(Arrouays et al., 2014; Grunwald et al., 2015). This is of particular importance in 

most developing countries, especially in sub-Saharan Africa which is currently 

plagued by poverty, hunger and land degradation. In the light of the scarcity of 

quantitative soil information in SSA, there is need to optimize the use of legacy soil 

data to meet modern soil information needs. Before now, there is it not much work 

done in this regards in the SSA, especially at the national scale.  

This thesis demonstrates how sparse legacy soil data could be used to populate 

national geodatabase with relevant soil information that will support national and 

regional planning. In Chapter 1 the general background of the thesis and outline of 

each research chapters were presented. In Chapter 2 a review of the need for digital 

soil mapping and soil information in developing countries highlighting on how best 

to utilize sparse legacy soil data to deliver soil information that are relevant for 

national scale planning. Further reviews were on the various techniques at the 

disposal of digital soil mapping scientists, especially those amenable to complex and 

sparse data condition. From the review it was clear that data mining models (because 

of their capacity to exploit complex data structure) are most robust for scarce data 

and complex conditions. However, not much has been done previously to optimize 

the enormous potentials in these modelling tools for DSM in data-sparse region, 

particulary in the SSA. It was also revealed that there has not been much DSM work 

on the prediction of PSFs as compositional data and none of the few reported works 

in this regard predicted PSFs beyond the soil surface depth (Odeh et al., 2003; 

Buchanan et al., 2012; Niang et al., 2014). Another research gap found from the 
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review was the fact that not much has been done to add extra value to DSM primary 

products to support national and regional scale planning. 

 

In addressing one of the research gaps identified in Chapter 2, the focus of Chapter 3 

was to predict PSFs as a compositional data at national scale. In doing this the 

robustness of Random Forest model (RFM) was tested in comparison with Cubist 

models and the popular multiple linear regression (MLR). First, mass preserving 

spline functions, which has exhibited the capacity to estimate soil properties at 

predetermined soil depth were fitted to PSFs data to output values at the six standard 

depth intervals (Arrouays et al., 2014). Further, additive log-ratio (ALR) 

transformation technique (Aitchison et al., 2000) was employed prior to model 

prediction to ensure that predicted PSFs some up to a constant value of 100 as 

expected. Random forest model (RFM) turns out to predict PSFs in the study area 

better than MLR and Cubist. Inclusion of sampling depth as a predictor substantially 

improved prediction accuracy of RFM, especially at the lower depth intervals.  

 

The predicted PSFs are useful inputs in hydrological models for soil erosion and 

climate modellings, as well as decision criteria in various soil and land suitability 

assessments as demonstrated in Chapter 6. Another important use of the predicted 

PSFs is in the development and/or calibration of pedotransfer functions to estimate 

difficult-to-measure soil properties such as soil hydraulic (Rajkai et al., 1996; Arya et 

al., 1999; Wagner et al., 2001), soil moisture retention capacity (Botula et al., 2012; 

2013), CEC and bulk density as demonstrated in Chapter 5 of this thesis. All these 

derivatives of PSFs will be vital input in national soil and environmental monitoring 

programmes and to guide decisions on environmental risk managements.  

 

The need for additional sequestration of carbon (C) in the terrestrial agro-ecosystems 

has dominated discussions among scientists and policy makers around the globe in 
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recent time. While several studies have shown that land use change can affect carbon 

content and sequestration of soils, the magnitude and dynamics of these changes in 

different ecosystems especially in the SSA have not been extensively studied. 

Chapter 4 bordered on the estimation of total SOC and carbon sequestration of soils 

in Nigeria and their variation across and within different agro-ecological zones 

(AEZ). The soil-landscape modelling approach was used to estimate SOC and carbon 

stock for the entire country. Therafter, the mean SOC density of the different land 

use/land cover (LULC) types across the various AEZ were estimated. These were 

then used to calculate the difference between the prevailing LULC types and the 

pristine LULC types in each zone. The assumption was that the difference between 

the mean SOC density of any LULC type and the pristine LULC in a particular AEZ 

is the amount of SOC that soils could sequester by restorating the target land use. 

Results indicate that soils in the Derived Savannah (DS) and Sahel Savannah (SHS) 

show the greatest capacity to sequester additional C while about 6.5 Pg C with an 

average density of 71.60 Mg C ha
–1

 abound in the top 1 m of soil depth of the entire 

Nigeria. Restoration of the various landuse types to their natural ecosystem, has the 

potential to sequester about 0.2 to 30.8 Mg C ha
-1

 depending on the LULC and AEZ.  

 

Although one may favourably argue that the assumption used to estimate carbon 

sequestration potential in this study may not be feasible considering the high food 

demand and the need to put more land into cultivation. However, if only a faction of 

the potential carbon sequestration is attained it will go a very long way in the current 

fight against land degreadtion and global warming. Furthermore, this kind of national 

scale study can elucidate hotspots for future carbon accounting or land use 

restoration programmes. Another strong argument against the output of this 

particular research may be the varying age of the legacy SOC data used in estimating 

the SOC stocks. Notwithtanding, the estimated total SOC stock is still useful and 

could form a baseline for future SOC studies (Bui et al., 2009) or input in future 
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ecosystem monitoring programmes in the country. The sparse nature of the SOC 

dataset used in this study conferred the wide prediction interval observed for the 

estimated SOC stocks. This may also impact negatively on the reliability of this 

output. High uncertainty in SOC stock prediction has been reported for studies in the 

Limpopo park of Mozambique (Cambule et al., 2014). 

 

As disussed earlier in Chapter 2, legacy soil data are usually characterized by 

inconsistency as well as incompleteness and as such it is not uncommon to see most 

difficult to measure but very important soil attributes missing in national soil 

database. The use of pedotransfer functions has been salvaging this issue especially 

at the field or catchment scale for several decades now. However, despite the 

enormous gains in the use of pedotransfer functions to remedying the problem of 

incomplete soil database, the application of most PTFs in national scale studies 

especially in developing countries is hampered by the amount and structure of input 

data. Chapter 5 covered the use of different data grouping techniques and 

combination of soil and environmental attributes to enhance the performance of PTFs 

for national-scale studies in scarce data condition. Subdividing the input data into 

different groups based on soil depth and incorporating environmental data such as 

climate, topography and vegetation attributes resulted in more accurate BD 

predictions. However, results did not show any advantage of combining soil and 

environmental data for ECEC prediction. The reasonable prediction accuracy from 

bulk density PTFs using only particle-size fractions in this study could reduce the 

extra cost from the use SOC data in existing PTFs for bulk density. Also the findings 

of this research will help relief modellers and hydologists the burden of acquiring 

soil bulk density for large scale studies. 

 

Agriculture intensification through irrigation expansion has been proffered as a sure 

way out of the lingering food crisis in SSA and most developing countries, most 
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especially with the unpredictable and erratic nature of rainfall in most of these 

countries. Therefore, in the context of digital soil assessment (Carré et al., 2007), 

additional steps were taken in Chapter 6 to add values to some of the primary DSM 

products obtained in the previous Chapters. This is to make them more relevant for 

national and regional developmental planning. Here, Choquet fuzzy integral (CI) 

aggregation technique was employed in mapping suitability for surface irrigation in 

Nigeria. This was achieved through multi-criteria assessment of potential evaluation 

criteria comprising of some of the soil and environmental attributes obtained in 

Chapter 3 and some selected socio-economic variables. Results indicate that CI is a 

better aggregation operator than the classical weighted mean operator. This is in line 

with previous studies that have shown that fuzzy set theory is powerful and very 

flexible in dealing with the complexities and uncertainties embedded in land 

suitability assessment (Braimoh et al., 2004; Sicat et al., 2005; Joss et al., 2008; 

Odeh and Crawford, 2009; Chakan et al., 2012).  

 

About 3.4 million hectares of land out of the total landmass of Nigeria is suitable for 

irrigation, while the northern region with over 80% suitability is the most viable 

hotspot for irrigation development in the country. Furthermore, substantial potential 

of small-scale irrigation expansion exists in Nigeria for dry-season/high value crop 

production. Output of this research will form an integral part of decisions making for 

cultivation of specialized crops such as wheat, cotton, sugarcane, rice among other 

high water demanding crops. Well planned irrigation project will not only boost the 

food bank of most countries in SSA but will also increase the income and of the 

populace since agriuculture is the highest employer of labour in the SSA.  
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7.2 General conclusions 

This study provides an example of how a geodatabase of important soil attributes can 

be populated from a limited soil data set. All potential models are as good as the 

quality of the input datasets. Therefore, outputs of this research are good first 

approximations of digital mapping of soil attributes under the sparse data condition. 

No doubt, there is a need to continue to improve on these first approximations as 

more data becomes available. From the studies presented in this thesis, the following 

salient points could be highlighted: 

1. DSM is an efficient but challenging quantitative spatial prediction approach, 

especially in a data-scarce situation. We have demonstrated the robustness of 

RFM to predict soil functional properties in such condition. 

2. The combination of environmental attributes with soil properties is a sure 

way to developing PTFs for a national scale and under sparse legacy data data 

condition. 

3. Derived savannah and Sahel savannah agroeclogical zones in Nigeria are 

potential hotspots for any future carbon accounting or ecosystem monitoring 

programme in the country. 

4. Choquet integral is effective aggregator in irrigation suitability assessment 

using multi-criteria approach. About 3.4 million hactares of land is potentially 

suitable for irrigation agriculture in Nigeria. This presents a viable option to 

increased agricultural production to meet the food demands of the growing 

population of Nigeria. 

 

7.3 Future research 

1. In this work, some gaps in data coverage and spread in Nigeria were identified. 

Although there is currently no hope of any new national soil survey project in the 
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nearest future, additional soil profile data could be sourced from private surveys 

by researchers and students of the various educational and research institutions in 

Nigeria. 

2. The uncertainties associated with prediction models used in this study were 

exemplified for SOC. However, there is a need for an extensive uncertainty 

analysis for all other predicted soil properties and to propagate these uncertainties 

through subsequent products derived from the primary soil attributes. There is also 

the need to evaluate other sources of uncertainty apart from the model uncertainty 

as demonstrated by Nelson et al. (2011).  

3. In this study, few PTFs were developed for soil bulk density and cation exchange 

capacity with an enhancement to suit data scarce situations. There is a need for 

further development of PTFs to estimate other key functional properties like 

hydraulic conductivity, available water capacity, phosphorus retention capacity 

and soil erodibility index, among others. 

4. Although the soil data used for the PTFs developed in this study were from 

Nigeria. It will be nice to evaluate the transferability of the developed PTFs to 

other neighbouring Africa countries with peculiar soil data problems and related 

soil conditions. In the same way, it will also be nice to test the applicability of 

PTFs developed in other countries within similar soil domain as Nigeria, 

especially for those functional properties not covered in this thesis. 

5. Following from point number 4 above, there is need to demonstrate the robustness 

of the multi-criteria approach to irrigation suitability analysis employed in this 

study in smaller scale studies such as at the catchment or field level and perhaps to 

other countries in the SSA. Also, the concept of crop versatility which 

encompasses the productivity of various crops need to be incorporated into the 

irrigation suitability assessment especially for economic or cash crops like cocoa, 
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rice, palm tree, sugar cane, etc. In addition there is need to consider the economic 

viability of agricultural intensification through irrigation development. One way to 

go about this will be to incorporate hydrological models like SWAT to quantify 

the actual water available for irrigation vis-à-vis the potential irrigation suitability. 

The net economic gain from possible adoption of irrigation agriculture could also 

be quantified using the economic models by incorporating crop yield and market 

price data. 
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Appendix 3.1 Performance of RFM, Cubist and MLR in modelling Particle-size fractions 

  

Random Forest Cubist MLR 

PSF Depth         ME RMSE    R
2
      pc        ME  RMSE   R

2
      pc         ME  RMSE   R

2
       pc 

Clay 0-5 3.53 13.59 0.53 0.65 2.52 13.98 0.48 0.66 3.07 14.44 0.45 0.63 

 

5-15 3.40 13.11 0.56 0.69 2.23 13.35 0.53 0.70 2.97 14.64 0.44 0.63 

 

15-30 2.95 13.38 0.54 0.68 1.28 15.61 0.39 0.62 2.45 14.93 0.42 0.62 

 

30-60 2.60 14.98 0.42 0.62 2.18 16.32 0.35 0.57 3.34 15.99 0.35 0.55 

 

60-100 4.01 15.70 0.29 0.46 2.18 18.12 0.16 0.39 3.80 16.74 0.21 0.41 

 

100-200 4.21 15.60 0.16 0.30 2.18 18.71 0.04 0.19 3.69 16.5 0.07 0.21 

Sand 0-5 -6.51 19.67 0.48 0.60 -4.36 19.69 0.44 0.63 -6.16 20.52 0.42 0.59 

 

5-15 -6.03 19.26 0.49 0.63 -4.33 19.43 0.47 0.66 -5.96 20.33 0.43 0.60 

 

15-30 -5.26 18.79 0.49 0.63 -2.73 20.72 0.39 0.62 -4.95 19.78 0.44 0.62 

 

30-60 -4.14 18.81 0.43 0.61 -2.96 16.32 0.35 0.58 -4.98 19.5 0.41 0.59 

 

60-100 -5.71 19.48 0.33 0.50 -3.00 21.55 0.21 0.44 -6.02 20.09 0.30 0.47 

 

100-200 -6.67 19.86 0.21 0.36 -4.37 21.89 0.08 0.24 -6.39 20.65 0.14 0.29 

Silt 0-5 2.99 12.22 0.26 0.39 1.84 12.5 0.23 0.43 3.09 13.79 0.10 0.26 

 

5-15 2.63 11.72 0.27 0.42 2.10 12.03 0.23 0.42 2.98 13.22 0.11 0.26 

 

15-30 2.31 10.96 0.25 0.39 1.44 11.33 0.22 0.44 2.50 12.1 0.12 0.28 

 

30-60 1.54 9.82 0.24 0.41 0.78 10.59 0.19 0.42 1.64 10.49 0.15 0.32 

 

60-100 1.69 9.73 0.24 0.40 0.82 9.83 0.24 0.44 2.17 16.74 0.12 0.26 

 

100-200 2.46 10.06 0.21 0.35 2.19 9.92 0.22 0.36 2.70 11.03 0.09 0.22 

†PSF; Particle size fractions, ME; Mean error, RMSE; Root mean square error, pc, Lin’s concordance correlation coefficient
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Appendix 3.2 Performance of RMF, Cubist and MLR in modelling particle-size fractions with the inclusion of soil depth as a predictor 

 

  

Random Forest Cubist MLR 

PSF Depth  ME RMSE  R
2   

        pc          ME  RMSE    R
2
       pc       ME  RMSE   R

2
       pc 

Clay 0-5 -0.40 6.48 0.89 0.94 -0.32 5.92 0.91 0.95 0.15 15.23 0.41 0.56 

 

5-15 0.35 5.71 0.91 0.95 0.01 5.47 0.91 0.96 0.66 13.2 0.52 0.62 

 

15-30 2.26 6.93 0.89 0.94 1.33 6.05 0.91 0.95 3.04 14.98 0.45 0.57 

 

30-60 -0.23 10.04 0.72 0.85 1.29 9.35 0.77 0.87 6.25 17.16 0.3 0.46 

 

60-100 1.58 10.56 0.68 0.82 2.31 11.24 0.66 0.81 6.10 17.58 0.25 0.45 

 

100-200 1.18 12.63 0.43 0.64 -0.66 13.47 0.41 0.63 -1.89 19.01 0.04 0.2 

Sand 0-5 0.03 7.70 0.91 0.95 0.10 6.15 0.94 0.97 -2.05 19.97 0.39 0.58 

 

5-15 -0.42 7.05 0.92 0.96 -0.12 6.38 0.94 0.97 -2.00 18.77 0.45 0.6 

 

15-30 -1.97 7.26 0.92 0.96 -1.21 6.70 0.93 0.96 -2.85 19.81 0.38 0.57 

 

30-60 -0.74 9.55 0.85 0.92 -1.83 9.35 0.85 0.92 -8.45 21.25 0.37 0.52 

 

60-100 -2.09 11.52 0.76 0.87 -2.41 12.12 0.76 0.87 -7.46 21.82 0.28 0.48 

 

100-200 -1.91 15.85 0.51 0.70 0.27 15.51 0.55 0.74 -0.90 24.52 0.05 0.22 

Silt 0-5 0.37 4.44 0.88 0.94 0.22 3.45 0.93 0.96 1.90 12.33 0.15 0.33 

 

5-15 0.08 4.14 0.90 0.95 0.11 3.53 0.93 0.96 1.34 12.33 0.15 0.32 

 

15-30 -0.29 3.43 0.91 0.95 -0.12 2.97 0.94 0.97 -0.19 11.95 0.07 0.23 

 

30-60 0.97 5.17 0.82 0.89 0.54 4.64 0.85 0.92 2.20 11.27 0.17 0.33 

 

60-100 0.51 5.66 0.76 0.85 0.10 5.19 0.79 0.89 1.37 17.58 0.14 0.31 

 

100-200 0.74 7.15 0.59 0.74 0.39 6.80 0.63 0.79 2.79 11.26 0.07 0.19 

†PSF; Particle size fractions, ME; Mean error, RMSE; Root mean square error, pc, Lin’s concordance correlation coefficient 
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Appendix 3.3 Spatial distribution of predicted soil texture at the 5-15cm and 60-100 depth interval based on RFM (A & D), Cubist (B & E) and MLR (C & F). 
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Appendix 5.1. Pedotransfer functions for predicting Bulk density for Nigeria.  

Model Equation 

All Data 

PTF-1 BD=1.177+0.00263Sand-0.0439logSilt+0.00208Silt 

PTF-2 BD=0.903+0.00283-0.0958LogEL-0.00184SPI-1.355NDVI+1.451EVI-0.0251logFLACC+0.00853TWI-0.00014Asp 

PTF-3 BD=1.440+0.000499Temp+0.00256Sand-0.0714logSL-0.112logEL-0.0174logFlACC-0.00011Asp-1.331NDVI+1.429EVI+3.330ProfC-0.00331SPI 

Topsoil 

PTF-1 BD=1.172+0.00250Sand-0.0341logSilt+0.000877Silt 

PTF-2 BD=0.885+0.0077TWI+0.00277Temp+0.0486logSL-0.0246logFLACC-0.0370logEL+1.444EVI-1.604NDVI 

PTF-3 BD=-35.0793+0.00296Sand-1.271NDVI-4.517SPI+1.0774EVI-0.0346logEL-0.0174logSilt+4.507TWI+20.718logSL 

Subsoil 

PTF-1 BD=1.512-0.00322Clay-0.0865logSilt 

PTF-2 BD=-36.814-0.1340logEL+21.486logSL-0.0251logFLACC-0.00021Asp+1.523EVI-1.267NDVI+0.00261Temp+4.68TWI-4.674SPI 

PTF-3 BD=-15.203+0.00322Sand-1.0301NDVI-2.0518SPI+0.817EVI-0.0195logEL-0.0191logSilt+2.0422TWI+9.347logSL 

Asp, aspect; BD, Bulk density; EL, elevation; EVI, Enhanced vegetation index; FLACC, flow accumulation; NDVI, Normalized difference 

vegetation index; ProfC, profile curvature; Temp, Temperature; TWI, Topographic wetness index; SL; slope gradient; SPI, Stream power index. 
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Appendix 5.2. Pedotransfer functions for predicting Effective cation exchange capacity for Nigeria.  

Model Equation 

All Data 

PTF-1 ECEC=-15.681+0.118Clay+4.097pH-0.124Sand+0.0887SOC 

PTF-2 ECEC=19.231-77.282EVI-4.474logSL+36.553NDVI-0.00872Asp-0.0033FLACC-0.00176Rainfall+0.395TWI 

PTF-3 ECEC=-12.130+0.223Clay+3.929pH-45.789EVI+0.157SOC-1.955logSL-0.0733Sand+21.436NDVI-0.00334EL 

Topsoil 

PTF-1 ECEC=-22.612+0.212Clay+5.0295pH-0.110Sand+0.136SOC 

PTF-2 ECEC=7.829-7.835logSL-84.369EVI+37.620+0.0412Temp-0.00257-0.164SPI 

PTF-3 ECEC=-23.250+0.414Clay+4.614pH+0.0547Silt-0.520SPI-13.775EVI-0.0306SOC+0.141logSL-0.00794EL 

Subsoil 

PTF-1 ECEC=-19.820+4.744pH-0.119Sand+0.137Clay+0.279SOC 

PTF-2 ECEC=127.406-85.233EVI-5.942logSL+37.179NDVI-0.359Temp-0.0104Asp-0.00412Rainfall-0.00387FLACC+0.826SPI+145.637PlanC 

PTF-3 ECEC=-24.453+0.413Clay+4.741pH+0.0557Silt-0.510SPI-11.873EVI-0.0365SOC+0.0885logSL-0.00858EL 

Asp, aspect; ECEC, Effective cation exchange capacity; EL, elevation; EVI, Enhanced vegetation index; FLACC, flow accumulation; NDVI, 

Normalized difference vegetation index; PlanC, plan curvature; Temp, Temperature; SPI, Stream power index. 
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Appendix 6.1. Irrigation suitability maps based on different interaction indices (A; λ=0.35, B; λ=0.5, C; λ=0.65) 

 

 


