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Scope of thesis 

 

Ageing is associated with increased prevalence of metabolic syndrome, as well as impaired 

glucose metabolism, hyperinsulinemia and insulin resistance. The mechanism underlying 

these associations is poorly understood and is likely to be complex and multifactorial. The 

liver is the key target for insulin action and while the endothelium has been shown to 

influence insulin activity in muscle and fat, the role of the liver sinusoidal endothelium on the 

action of insulin in the liver is unknown.  

 

The liver sinusoidal endothelium is unique: it is perforated with transcellular pores called 

fenestrations that facilitate unimpeded passage of substrates between blood and hepatocytes. 

A constellation of age-related morphological changes in the liver sinusoidal endothelium 

known as pseudocapillarisation have been described in various species including rats, 

baboons and humans. During ageing, the liver sinusoidal endothelium thickens, there is 

basement membrane deposition, and the fenestrations are significantly reduced in size and 

number (defenestration). Age-related pesudocapillarisation has been shown previously to 

impede the transfer of lipoproteins and medications across the hepatic sinusoidal 

endothelium. 

 

This thesis tests the hypothesis that changes in the ageing liver contribute to age-related 

insulin resistance, with alterations of the liver sinusoidal endothelial cell leading to age-

related impairment of insulin action and insulin resistance/glucose metabolism.  

 

This work aims to improve the understanding of the effects of ageing processes in the liver on 

insulin action and glucose metabolism. It investigates the role of age-related 
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pseudocapillarisation and the acutely induced poloxamer 407 (P407) model of defenestration 

in hepatic disposition of insulin and glucose metabolism. This thesis also investigates the 

effect of P407 on the relationship between membrane rafts and fenestrations in SKHep1 cells, 

a cell line of liver endothelial origin and isolated LSECs. Finally, the effects of dietary 

macronutrients and calorie intake on fenestrations in old age are examined.  

 

The work contained in this thesis aims to examine the role of age-related 

pseudocapillarisation in one of the major causes of age-related disease and disability, insulin 

resistance. In doing so it explores the potential mechanisms involved in these changes and 

how we may alter the progression of ageing through nutritional intervention.  
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 



2 

 

1.1 THE LIVER 

 

1.1.1 Anatomy and function of the liver 

 

The liver is the largest internal organ in the body and is responsible for multiple, dynamic 

functions (Schiff et al., 2007, Cattley and Popp, 2002). As the principle organ for maintaining 

systemic homeostasis, the liver has a major role in the metabolism, synthesis, storage, 

detoxification and secretion of numerous substrates. The liver synthesises plasma proteins such 

as albumin and is involved in the metabolism of lipoproteins and bilirubin, together with bile 

formation and secretion (Higuchi and Gores, 2003). The liver plays a key role in nutrient storage, 

processing and the regulation of plasma glucose. The liver also has a major role in maintaining 

and establishing immune functions such as immune tolerance (Holz et al., 2008) and 

detoxification of endogenous chemicals, drugs and pathogens (Arias et al., 2011). 

 

The liver is located in the upper right quadrant of the abdominal cavity and contributes to 

between 2 and 5% of total body weight, with the average adult human liver weighing 

approximately two kilograms. The liver is functionally divided into four main lobes: left, right, 

median or quadrate, and caudate, surrounded by a fibrous capsule of connective tissue (Glisson’s 

capsule) and further subdivided into 8 segments by divisions of the right, middle and left 

hepatic veins, with each segment receiving blood from its own portal pedicle (Fig. 1.1). The 

histological lobular architecture of the liver is similar in all species (Malarkey et al., 2005). 
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Uniquely, the liver receives its blood supply from two sources and this bi-channel blood flow is 

important when considering liver function and structure. Seventy percent of its blood is from the 

portal vein, which carries deoxygenated blood directly from the splanchnic circulation and 

contains micro and macro nutrients for processing and storage, and pathogens, drugs, and toxins 

for metabolism and/or elimination. The remaining 30% of the blood flow comes via the hepatic 

artery carrying oxygenated blood to the liver. Blood then percolates through the liver sinusoids 

and collects in the central vein, emptying into hepatic veins before completely draining from the 

liver via the inferior vena cava (Malarkey et al., 2005, Cattley and Popp, 2002). The bile 

canaliculus network transfers bile produced in the hepatocytes via the canals of Hering (Saxena 

and Theise, 2004) to the larger bile ducts and then to the gall bladder or duodenum. 

 

The microscopic structure of the liver consists of repetitive functional units known as ‘classic 

lobules (Kiernan, 1833). Lobules are roughly hexagonal in shape and contain a central vein 

surrounded by repeating branches of the portal vein, bile ducts and hepatic artery (known as the 

portal triad, Fig 1.2). Within each lobule, the anatomical zones are classified as: the 

periportal/portal zone; midzonal/midlobular; and centrilobular/central zones, depending on the 

areas proximity to the central veins and portal triads. These zones are depicted in Fig 1.2. 

 

In addition to the classical lobular delineation the liver is divided into acini according to the level 

of oxygenation and nutrient exposure of the cells (Fig 1.2). Zone 1 (periportal) contains the cells 

receiving the most oxygenated and nutrient rich blood located closest to the portal triad while 

zones 2 and 3 respectively contain cells that are exposed to less oxygenated and less nutrient 

rich blood as they are remote from arteriolar blood and located in the microcirculatory 
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periphery of the acinus. Each acinus contains approximately one thousand sinusoids that run 

between the columns of hepatocytes and connect the afferent portal triads to the central vein. 

This provides an extensive surface area for blood and hepatocytes exchange (McCuskey and 

Reilly, 1993, McCuskey, 2000, Le Couteur et al., 2008). 

 

The ‘classic lobule’ is the most widely used model describing the liver anatomical unit, and the 

acinus most commonly used to describe the liver functional unit. Other alternative models of the 

functional and anatomical units of the liver that have been proposed including the ‘portal lobule’ 

defined by the central venules with a portal tract at the centre, and the ‘primary lobule’ 

combining function and anatomy (MacSween et al., 2002, Malarkey et al., 2005, Matsumoto et 

al., 1979, McCuskey, 2008, Teutsch et al., 1999).  
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Figure 1.1: Segmental anatomy of the liver showing eight hepatic segments (Schiff et al., 

2007) 

 

Figure 1.2: A diagrammatic representation of the classic lobule and liver acinus (Cattley and 

Popp, 2002) 
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1.2 ULTRASTRUCTURE OF THE LIVER 

 

The liver vasculature is uniquely structured with the main blood vessels separated by a 

parenchymal mass of cells and connected by the smaller capillaries (sinusoids) at the same time 

(Arias et al., 2011). The liver is composed of parenchymal cells known as hepatocytes, 

cholangiocytes and several varieties of resident non-parenchymal cells namely liver sinusoidal 

endothelial cells (LSEC), hepatic stellate cells, Kupffer cells, natural killer cells and dendritic 

cells, with each cell having a specific morphology and function. All cells are arranged in a matrix, 

allowing a coordination of synthesis, metabolism and clearance of a variety of molecules. Each 

cell type can undergo morphologic or quantitative changes under different disease pathological 

challenges (Wisse et al., 1996, Fraser et al., 1986). 

 

1.2.1 Hepatocytes 

 

Hepatocytes constitute about 80% of the total volume of the liver and 60% of the liver cells 

(Kmiec, 2001). They are polyhedral in shape and arranged into plates of single cells, (hepatocyte 

cords) supported by a fine reticular fibre (collagen III) framework, and are separated by 

continuous sinusoidal networks, allowing the hepatocytes to have a close contact with the blood 

(Cattley and Popp, 2002). The hepatocytic membrane has three regions: the sinusoidal domain, 

the intercellular junction and the bile canalicular surface. The sinusoidal domain/basolateral area 

of the hepatocyte faces the sinusoid and is characterised by abundant microvilli that increase the 

area by six-fold for hepatocyte substrate uptake and exchange and extend into the space of Disse 

(SoD) and even into the sinusoidal lumen through fenestrations (Wisse et al., 1985). The 
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hepatocyte intercellular regions contain junctional complexes for attachment to and 

communication with adjacent hepatocytes (Ross et al., 2003). This membrane extends to the 

sinusoidal lumen and undertakes the extraction of a wide variety of molecules from the blood and 

simultaneous secretion of molecules synthesised by the hepatocytes (Medlock and Haar, 1983). 

The canalicular surface of the hepatocytes has villous projections and exporter pumps including 

the bile salt transporter for biliary excretion (Kullak-Ublick et al., 2000). It is positioned between 

the lateral surfaces that face adjacent hepatocytes and contain tight junctions that seal the bile 

canaliculi, and the adhering junctions that link neighbouring hepatocytes and express gap 

junctions facilitating intercellular communication and exchange (Kuntz and Kuntz, 2009). 

 

The many functions of the hepatocytes include the regulation of carbohydrate, lipid, and amino 

acid metabolism and storage, blood glucose regulation, and bile, cholesterol, and plasma protein 

synthesis namely albumin, carrier proteins, coagulation factors, growth factors and hormones 

(Ghany and Hoofnagle, 2005). They are also the main site of xenobiotic metabolism and 

transamination reactions in the body (Steinberg et al., 1987) and have the capacity for antigen 

presentation and T-cell activation (Warren et al., 2006, Crispe, 2011). 

 

Hepatocytes also contain a high density of cytoplasmic organelles that take up 20-30% of the 

cell volume, and are abundant in mitochondria, smooth and rough endoplasmic reticulum 

(ER), free ribosomes, Golgi apparatus, lysosomes, and peroxisomes (Kuntz and Kuntz, 2009, 

Kmiec, 2001, Blouin et al., 1977). They possess significant regenerative capacity, being able to 

proliferate rapidly in order to replace lost or damaged cells after partial hepatectomy and 

during disease and toxicity (Fausto and Campbell, 2003). 
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1.2.2 Cholangiocytes 

 

The cholangiocytes are cells that line the bile ducts and form 1 % of the liver parenchyma. 

These cells are responsible for the modification of the canalicular bile composition, which 

occurs through a series of secretory and absorptive processes (Strazzabosco, 2004, Masyuk et 

al., 2008). Cholangiocytes also interact with other liver cells such as hepatocytes, LSEC, HSC 

and KC by releasing growth factors, peptides, nucleotides, pro-inflammatory and chemotactic 

cytokines and other signaling molecules (Strazzabosco, 2004). These cells are involved in 

regulation of bile formation, liver inflammatory processes, angiogenesis and fibrogenesis 

because of their interaction with the other liver cells (Masyuk et al., 2008). 

 

1.2.3 Hepatic stellate cells 

 

The hepatic stellate cells (HSC), also known as Ito cells, fat-storing cells, vitamin A-storing cells 

or lipocytes, are located in the SoD and comprise approximately 1.5% of the total liver cell 

population (Wake, 1980, Kmiec, 2001). HSC store 80% of the body’s retinoids as retinyl 

palmitate in cytoplasmic fat droplets. The main physiological function of the stellate cells is 

storage and regulation of retinoids, but also storage of triglycerides, cholesterol and free fatty 

acids. HSC also synthesise and degrade components of extracellular matrix and other proteins 

(Senoo, 2004). 

 

During liver injury, HSC respond to inflammatory cytokines such as IL-6 and TGF-β, become 

activated and acquire a myofibroblast-like phenotype that produces abundant quantities of 
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collagen types I, III and IV stage. They undergo morphological changes, start proliferating and 

become contractile, lose their lipid stores and start to secrete fibrogenic and inflammatory 

cytokines, which can lead to fibrosis (Friedman, 2008). In addition, HSCs are antigen presenting 

cells, eliciting T-cell responses as efficiently as dendritic cells. Their location in the SoD serve as 

an early detection point for any pathogens that have crossed the endothelium (Winau et al., 

2007). 

 

1.2.4 Kupffer cells 

 

Kupffer cells (KC) are endogenous liver macrophages. They account for 80-90% of the body’s 

resident macrophages (Arii and Imamura, 2000) and are located in the lumen of the hepatic 

sinusoids, usually in close proximity to the endothelial cells (Wisse, 1972). KC contribute to host 

defence and tissue homeostasis, and their major function is to clear particulate and foreign 

materials from the portal circulation. Substrates including microorganisms, endotoxin, old and 

foreign cells, complement components and immune complexes can be phagocytosed by the KC 

and broken down by both oxygen dependent and independent mechanisms. KCs also act 

synergistically with pit cells in the killing of tumour cells (Wisse et al., 1997) and are classified 

as potential antigen-presenting cells (Bouwens and Wisse, 1992). KC are located within close 

proximity to the luminal membrane of LSECs, projecting their cytoplasmic processes through 

fenestrations for further anchorage and contact with HSCs and hepatocytes (McCuskey, 2008). 

  



10 

 

1.2.5 Natural killer cells 

 

Hepatic natural killer cells or pit cells are located in the hepatic sinusoidal lumen in portal tracts 

in granuloma-like cellular aggregates. They are often in contact with KCs and are adherent to 

LSECs by pseudopodia (Wisse et al., 1976). They are considered to be more cytotoxic than other 

natural killer variants (Melmed et al., 2011). This has significant implications for the liver’s early 

defence against tumours and microbes/virus- infected cells (Nakatani et al., 2004). The liver-

associated NK cells exert anti-tumour functions through exocytosis of toxic granules, induction 

of apoptosis and production of cytokines that augment the activities of other immune cells. The 

discovery and recognition of the pit cell and their function in the liver helped to establish the 

liver’s early role in the defence against tumour and microbial targets, and the liver as an 

immunological organ (Nakatani et al., 2004). 

 

1.2.6 Dendritic cells and lymphocytes 

 

Dendritic cells are bone marrow-derived professional antigen presenting cells that travel along 

the liver sinusoids, capturing and processing antigens before translocating to the portal 

interstitium and lymphatic vessels (Ohtani et al., 2003). They eventually accumulate in lymph 

nodes to present the antigens to T- and B-cells for initiation of immune response or tolerance 

(Matsunol and Ezaki, 2000). Dendritic cells are structurally long, with thin membrane extensions 

with microvilli for interaction with T-cells (Fisher et al., 2008). Along with LSECs, HSCs, KCs, 

and hepatocytes, dendritic cells present antigens to lymphocytes from the innate and adaptive 

immune systems that are located throughout the liver sinusoids and portal tracts (Crispe, 2009). 
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1.2.7 Liver sinusoidal endothelial cells and fenestrations 

 

The LSECs line the liver sinusoidal capillary wall and are located between the hepatocytes and 

blood vessels. They are flattened and perforated by transcellular holes/pores termed 

fenestrations (Bouwens et al., 1991, Wisse et al., 1996). The sinusoidal endothelium lacks a 

basement membrane, which makes it distinct from all other endothelial cells. They perform a 

large number of specialised functions and are now considered to play a significant role in liver 

function. Through their scavenger receptors LSECs are responsible for the clearance by 

endocytosis of various macromolecules in the sinusoidal blood (Smedsrød et al., 1990). They are 

also essential components of the liver-centred innate immune system that includes Kupffer cells, 

natural killer cells and dendritic cells (Arias et al., 2011). 

The essential role of the LSEC in liver function is the focus of this thesis and will be discussed in 

detail in the following sections.  

 

1.2.7.1 Structure and morphology 

 

The LSECs line the vascular lumen of the terminal capillaries of the liver sinusoids. As described 

above, they lack basement membrane (Bouwens et al., 1991, Wisse et al., 1996) and possess 

fenestrations with diameters ranging from 50 to 200 nm (Wisse et al., 1996). One of the 

earliest electron microscopic descriptions of the fenestrated LSEC was by Wisse (Wisse, 1970). 

This observation described the endothelial cells as containing open fenestrations grouped into 

sieve plates surrounded by the thin extensions of the cytoplasm.  Further studies found that the 

total area covered by the fenestrations is approximately 5-10% of the LSEC surface area 
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(Wisse, 1970). Some studies have shown that the diameter of fenestrations decreases and their 

frequency increases from the periportal (zone 1) to centrilobular zones (zone 3), consistent with 

an increase in porosity from 6 to 8% (Wisse et al., 1985). Vidal-Vanaclocha and co-workers 

observed approximately double the number of sieve plates and number of fenestrations per 

sieve plate in the pericentral sinusoids than the periportal sinusoids (Vidal-Vanaclocha and 

Barbera, 1985). They classified fenestrations into two types, clustered pores, which are more 

prevalent in the pericentral sinusoids, and free pores, which are more prevalent in the periportal 

sinusoids (Vidal-Vanaclocha and Barbera, 1985). Electron microscopy of the sinusoidal 

endothelium is shown in Fig 1.3. 
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Figure 1.3: Scanning electron micrograph of the liver sinusoidal endothelial cells (Le Couteur et 

al., 2001). (a) Scanning electron micrograph showing the luminal surface of the liver sinusoidal 

endothelium. The circular fenestrations that are perforated in the endothelium can be clearly seen 

(→).The sieve plates (SP) which contains the clusters of fenestrations are clearly visible. 

Continuous sheets of these cells form a porous endothelium that filters the blood. (b) 

Transmission electron micrograph showing a cross section through the sinusoids. The thin 

endothelial cytoplasm (E) is clearly seen with fenestrations (→) through the SoD, which is a low 

density matrix. The combination of fenestrations and the lack of basement membrane allow 

direct communication between the sinusoidal lumen and the hepatocytes (H). Hepatic stellate 

cells (SC) can also be seen in the micrograph. 
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Fenestrations and sieve plates are structurally supported and demarcated by cytoskeleton 

elements within the LSEC (Braet et al., 1995). The subendothelial space that lies between the 

sinusoids and hepatocytes is called the SoD, which contains a low-density matrix of basement 

membrane constituents and stellate cells. The LSECs containing fenestrations in sieve plates, and 

the subendothelial SoD, containing extracellular matrix (ECM), together constitute the liver 

sieve. Molecules from the sinusoidal lumen can translocate directly through the fenestrations, to 

the low-density matrix of the SoD, to be in contact with hepatocyte microvilli, and vice versa 

(Wisse et al., 1996, Fraser et al., 1995). Blood constituents that are too large to pass through 

fenestrations, such as erythrocytes and chylomicrons are excluded from the SoD, while smaller 

molecules, such as chylomicron remnants are able to pass directly through the fenestrations 

(Wisse, 1970). 

 

The flow of plasma and macromolecules in and out of the SoD via fenestrations is influenced 

by the passage of blood cells through the sinusoidal lumen and the composition of ECM. 

Blood cells are larger than the diameter of the sinusoid and thus squeeze through the 

luminal space, sometimes modulating their shape to do so. This action has been proposed to 

promote ‘forced sieving’ of substances through fenestrations, and compression of the SoD by 

the movement of larger more rigid white blood cells along the lumens promotes the 

downstream movement of fluid in the SoD (McCuskey et al., 1978, Wisse et al., 1985). This 

creates an ‘endothelial massage’, where erythrocytes and leukocytes may flush plasma through 

the fenestrations in the endothelium (Wisse et al., 1985). Permeation selectivity of different 

molecules is regulated by the fenestration and molecule sizes, and the transport kinetics of the 

molecules relative to steric and frictional properties of the fenestrations (Wisse et al., 1996). 



15 

 

Fenestrations in the LSECs have been described in a very wide range of species with a variation 

in diameter and frequency has been observed between species as shown in Table 1.1. 

Fenestrations are conserved and quite similar in size and distribution in animals and humans. 

All LSECs are fenestrated and these fenestrations are arranged in sieve plates except for rainbow 

trout (Braet and Wisse, 2002). Porosity is the percentage of the surface area of the sinusoid 

covered with fenestrations. The frequency of fenestration refers to the number of fenestrations 

per unit area. 

 

Table 1.1: Inter-species variations in fenestration parameters (Cogger and Le Couteur, 2009) 

 

Species Porosity 

(Area %) 

Diameter 

(nm) 

Frequency 

(per µm
2
) 

Rat (zone 1) 6.0±0.2 111±1 9.1±0.3 

Rat (zone 3) 7.9±0.3 105±0.2 13.3±0.5 

Rat 4.1±2.3 73±1 2.7±1.1 

Mice 4.1±2.2 74±4  

Rabbit 5.2±0.9 60±5 17.3±3.8 

Chicken 3.6±1.6 99±15 3.9±0.9 

Rainbow trout - 123 - 

Gold Fish - 50-200 - 

Dog 6.7 118±2
 

7.2 

Sheep - 60±2
 

- 

Baboon
 

2.6±0.2 50±1 12.1±0.8 

Human (zone 1) 3.4±0.2 170±12 9.8±1.8 

Human (zone 3) 4.0±0.4 160±10 11.2±2.6 
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1.2.7.2 Formation and regulation 

 

There is evidence that LSEC fenestrations are formed by a calcium-calmodulin-actomyosin 

cytoskeleton (Oda et al., 1986, Van Der Smissen et al., 1986). Fenestrations are arranged into 

sieve plates, creating a network with the cytoskeleton (Braet and Wisse, 2002). The calcium-

calmodulin-actomyosin cytoskeleton regulates fenestrations diameter and controls dynamic 

contraction and dilatation of the fenestrations. Maintenance and induction of this unique 

endothelial cell phenotype is regulated via paracrine secretion of vascular endothelial growth 

factor (VEGF) by neighbouring hepatocytes and HSCs, and autocrine production of nitric oxide 

by endogenous nitric oxide synthase (DeLeve et al., 2004). 

 

An alternative hypothesis has been that fenestrations are formed through the static fusion of 

caveolae (Oda et al., 2001). Caveolae are plasmalemmal invaginations, which are implicated in 

endocytosis and transport of substances across the capillary endothelium, signal transduction 

pathways and calcium regulation (Parton, 2003). Calveolin-1 (Oda et al., 2001) and Ca
2+

-

ATPase pump (Fujimoto, 1993) have been observed both in fenestrations and in caveolae. 

However, this hypothesis has been largely discounted because the LSEC of caveolin-1 knockout 

mice are fenestrated and despite the absence of caveolin 1 the fenestrations are arranged in sieve 

plates (Warren et al., 2010). 

 

Recently it has been shown that the properties of the plasma membrane are highly influential in 

the formation of fenestrations (Cogger et al., 2013a). Membrane rafts are highly dynamic sterol 

and sphingolipid enriched lipid-ordered domains of the cell membrane that compartmentalise 
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cellular signaling molecules. Rafts range from 10-200 nm in diameter and may aggregate into 

micrometer sized structures that serve as platforms for signal transduction (Viola and Gupta, 

2007). They are tethered to the actin cytoskeleton, which is essential for the maintenance of 

their structure and integrity. Actin disruptors decrease the presence of membrane rafts and 

increase the number of sieve plates, thus rafts and sieve plates may have an inverse relationship 

in the LSEC cytoplasm (Svistounov et al., 2012). Fenestrations have been observed to form in 

non-raft lipid-disordered regions once the stabilising effects of actin and rafts are depleted, 

and it is possible that fenestrations are created as a result of vesicles that spontaneously form in 

the cell membrane after it is destabilised (Svistounov et al., 2012). Agents or conditions that 

increase fenestration number contract or disrupt F-actin, therefore it is also possible that 

fenestrations spontaneously form in response to stretching and thinning of the cytoplasm 

between the contracted ring of F-actin (Cogger et al., 2010) that is similar to the manufacture 

of expanded film ultrafiltration membrane (Baker, 2004). Areas of cytoplasm containing 

fenestrations are about 50 nm from apical to basolateral surface, approximately half as thick as 

the cytoplasm surrounding the sieve plates (Cogger et al., 2013a). 

 

Fenestration diameter and number can be altered through induction of cytoskeletal changes 

(Braet et al., 1995) using acute and chronic exposure to a number of substances and conditions, 

as shown in Table 1.2. Endothelial fenestration formation has been induced through ‘fenestration 

forming centres’ within minutes of administration of actin disrupting agents such as cytochalasin 

B (Steffan et al., 1987). Other actin-disruptor agents including marine-sponge-derived 

macrolides such as latrunculin A, jasplakinolides, swinholide A and misakinolide A, each with 

its distinct specific actin-disrupting property, have also been used to study LSEC cytoskeletal 
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changes and fenestration dynamics (Braet et al., 1996, Braet et al., 2003, Braet et al., 1998, Braet 

et al., 2002, Spector et al., 1999). Vascular endothelial growth factor receptor expression in 

endothelial cells is reported to enhance caveolae expression, their fission and fusion, and 

formation of fenestrations (Chen et al., 2002). 
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Table 1.2: Modulations of fenestration diameter and number by numerous substances in vivo 

and in vitro (Arias, 1990, O'Reilly et al., 2010, Braet and Wisse, 2002, Cogger et al., 2013a) 

 
Treatment 

Diameter of 
fenestrations 

Number of 
fenestrations/cell 

Actin disruptors   
Cytochalasin B 

and D 
↑↓ ↑ 

Dihydrohalichondra
mide 

↓ ↑ 
Latrunculin A ↓ ↑ 
Misakinolide ↓ ↑ 

Swinholide A ↓ ↑ 
Other                                               Acetylcholine ↑ ? 

Adrenaline ↓ ? 
Bethanechol ↑ ? 

Calmodulin agonist 
W-7 

↑ ? 
Carbon tetrachloride ↑ ↓ 
Cocaine and ethanol ? ↓ 

Collagen IV n.c. ↑ 
Diethyl nitrosamine ? ↓ 

Dimethyl nitrosamine n.c. ↓ 

DOI (2,5-dimethoxy-4-iodoamphetamine) ↑    ↓ 

Endothelin 1 ↓ ↓ 
ETA-R antagonist (BQ123) ↑ ? 

Ethanol acute dose ↑ ↓ 
Ethanol chronic dose ↑↓ ↓ 

Fatty liver ? ↓ 
Hypoxia ↑ ? 

Hepatectomy ↑ ↓ 
Hepatitis C ↓ ↓ 

Ionophore A23187 ↓ ? 
Irradiation ↑ ? 

Isoproterenol ↑ ? 
Jasplakinolide ↓ ↑ 

Laminin n.c. ↓ 
Neuropeptide Y ↓ ? 
Noradrenaline ↓ ? 

Nicotine ↓ ? 
Pantethine ↑ ↑ 
Phalloidin ↑ ? 

Phorbol myristate acetate n.c. ↑
↓ Pressure ↑ ? 

Prostaglandin E1 ↑ ? 
Serotonin ↓ ? 

Temperature 4 ºC ? ↓ 
Thioacetamide ↓ ↓ 

Tumour cells ↓ ↓ 
TNF-α ? ↓ 

Vasoactive intestinal peptide  ↑ ? 
Vascular Endothelial Growth Factor ↑ ↑ 
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1.2.7.3 Functional aspects of sinusoidal endothelial cells 

 

In addition to, but as part of the sieving function that has been discussed previously, LSECs are 

also important for the process of drug clearance. Fenestrations allow the passage of bound and 

unbound drugs to the SoD for uptake and clearance by the hepatocytes (Braet and Wisse, 2002). 

The presence of fenestrations also optimises the oxygen delivery from the sinusoids to the 

hepatocytes (Arias et al., 2011). 

 

The LSECs are the primary scavenger system of the liver and indeed for the entire body. They 

contain numerous coated pits on their surface which creates a cationic surface charge that allows 

for endocytosis of negatively charged molecules. Different types of scavenger receptors such as 

hyaluronan receptors, mannose macrophage receptors and Fc gamma receptors are expressed by 

LSECs, which allow the removal of various macromolecules from the blood such as proteins, 

polysaccharides, lipids and nucleic acids (Elvevold et al., 2008). The LSECs internalise 

macromolecular waste such as extracellular matrix breakdown products (McGary et al., 1989), 

lysosomal enzymes (Magnusson and Berg, 1989), immune complexes (Mousavi et al., 2007), 

advanced glycation end products (AGE) (Tamura et al., 2003), acetylated and oxidised low 

density lipoproteins (Li et al., 2011) and modified proteins (Smedsrød, 2004). There are recent 

studies that suggest that LSECs might be involved in viral clearance (Ganesan et al., 2011, Liu et 

al., 2013).  

 

LSECs also express Stabilin-1, a component of stabilin receptor that mediates endocytosis of 

acetylated LDL (Prevo et al., 2004), secreted protein acidic and rich in cysteine (SPARC) 
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(Kzhyshkowska et al., 2006), placental lactogen (Kzhyshkowska et al., 2008) and 

phosphatidylserine (Park et al., 2009). Stabilin-1 also functions as a bacteria-binding protein and 

modulates angiogenesis (Adachi and Tsujimoto, 2002). It helps in the lymphocyte migration and 

entry of leukocytes to the site of inflammation (Karikoski et al., 2009). 

 

1.3 PATHOLOGY OF THE LIVER SINUSOIDAL ENDOTHELIAL CELL 

 

Under physiological conditions LSECs are a highly efficient ultrafiltration system; therefore the 

influence of fenestrations on liver function is mostly seen in diseases and old age where their 

diameter and frequency are diminished (Cogger and Le Couteur, 2009, Le Couteur et al., 2005, 

Fraser et al., 2012). Pathology of LSECs in many chronic liver diseases such as cirrhosis is 

marked by hepatic sinusoidal capillarisation, where the LSEC becomes defenestrated and 

thickened, resembling the phenotype of a vascular capillary endothelial cell. LSEC 

capillarisation is generally accompanied by an increased deposition of excessive extracellular 

matrix and build up in the subendothelial SoD (DeLeve, 2009) and formation of a continuous 

basement membrane due to deposition of collagen and laminin (Le Bail et al., 1990). 

Defenestration and capillarisation significantly affects liver function, mainly due to impaired 

plasma exchange between the sinusoidal lumen and the SoD (Henriksen et al., 1984). 

Furthermore, it also contributes to hepatocyte hypoxia (DeLeve, 2009, Le Couteur et al., 2005), 

reduced drug clearance (DeLeve, 2007, Le Couteur et al., 2005), hindered hepatocyte-blood 

substance exchange (Fraser et al., 1978, Fraser et al., 1995), vasoconstriction and portal 

hypertension (Iwakiri and Groszmann, 2007), and altered immune function (Iwakiri, 2012, 

Warren et al., 2007). 
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1.3.1 Pathology in liver diseases 

 

Capillarisation of the sinusoids in liver disease was first documented by Popper et al. in 1952 and 

is now well established in many studies (Popper et al., 1952). Capillarisation is associated with 

hypertrophy and defenestration of the endothelial cells, development of basement membrane, 

profuse extracellular matrix deposition in the SoD and alterations in HSC morphology.  

 

In cirrhosis, following sinusoidal capillarisation, bridging fibrosis develops along the portal 

triad-central vein axis, altering blood flow through the liver (Onori et al., 2000). In cases of 

chronic liver injury, a continuous wound-healing (fibrotic) process is activated that progresses to 

hepatic cirrhosis in a large number of diseases and drug induced toxicity (Le Bail et al., 1990, 

Govindarajan and Bonacini, 2003). During cirrhosis, liver function is severely affected as 

capillarisation of sinusoids, vasoconstriction, and anatomical remodelling, leading to increased 

vascular resistance that contributes to portal hypertension and venous thrombosis (Iwakiri, 

2012). Progressive accumulation of extracellular matrix results in areas of permanent fibrous 

scar tissue replacing those areas once filled with hepatocytes and sinusoids, a feature that defines 

cirrhosis (Bosch, 2007, Sánchez-Valle et al., 2012). 

 

Defenestration precedes fibrosis and has been observed in various disease conditions such as 

primary biliary cirrhosis (Mori et al., 1993), hepatitis (Steffan et al., 1995), specific viral 

infection of the LSEC (Xu et al., 2003) and with venous administration of endotoxin (Braet and 

Wisse, 2002, Dobbs et al., 1994). The capillarised LSEC becomes “hypoactive” (Iwakiri and 

Groszmann, 2007) and loses the ability to revert activated HSCs to a quiescent phenotype (Xie 



23 

 

et al., 2012, DeLeve et al., 2008). HSCs subsequently produce large quantities of ECM, 

particularly fibrillar collagens type I and III (Bataller and Brenner, 2009, Benyon and Arthur, 

1998, Burt, 1993, Reeves and Friedman, 2002). At the same time, there is a decrease in 

production of NO and other vasodilators in hypoactive capillarised LSECs, enhancing sinusoidal 

vasoconstriction (Iwakiri, 2012). Fibrosis is also associated with chronic hepatic diseases (Le 

Bail et al., 1990, Sánchez-Valle et al., 2012) and drug toxicity (Cederbaum, 2006, Iwakiri and 

Groszmann, 2007, de Araújo et al., 1993).  

 

Concurrent with morphological changes, progressive deterioration of liver function is seen in 

liver diseases. Impaired exchange and metabolism of substances including lipoproteins and 

medications are observed in experimental models and clinical cases of liver disease such as 

cirrhosis (Clark et al., 1988, Martinez‐Hernandez and Martinez, 1991, Rogers et al., 1992, 

McLean and Morgan, 1991). One explanation for progressive loss of liver function is that 

capillarisation of the sinusoid impedes the passage of substances to the liver parenchyma 

(McLean and Morgan, 1991, Wanless et al., 1996, Le Couteur et al., 2005). 

 

The study of lipoproteins and the liver sieve has provided more evidence for the formation of a 

barrier to substrate transfer in sinusoidal capillarisation. Loss of fenestrations in a rat model of 

cirrhosis inhibits the hepatic uptake of chylomicron remnants, consequently disturbing 

cholesterol and retinol metabolism (Rogers et al., 1992). Increased blood lipids are found in 

alcoholics (Clark et al., 1988), and in adults and children with liver disease (SelimoĞlu et al., 

2002). Chronic effects of alcohol on the liver sieve may explain the hyperlipidemia associated 

with cirrhosis, where a chronic high dose of alcohol decreases the number of fenestrations in the 
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sinusoidal endothelium (Horn et al., 1987). Defenestration may contribute to the hyperlipidemia 

seen in cirrhosis through capillarisation of the sinusoidal endothelium with the presence of 

endothelial basement membrane (Schaffner and Poper, 1963). Capillarisation prevents 

chylomicron remnants from reaching hepatocytes and removes the inhibition of hepatic 

cholesterol synthesis (Clark et al., 1988).  

 

1.3.2 Pathology in ageing  

 

The ageing liver can be observed macroscopically as undergoing ‘brown atrophy’ due to brown 

pigmentation caused by the accumulation of lipofuscin, an end product of lipid peroxidation, in 

hepatocytes (Popper, 1985, Jansen, 2002, Le Couteur and McLean, 1998). It is estimated that the 

liver mass is reduced by 44% with age (McLean and Le Couteur, 2004) and blood flow to the 

ageing liver decreases by up to 53% (Wynne et al., 1989, McLean and Le Couteur, 2004). 

 

On a microscopic level, hepatocytes are seen to increase in size, with increased nuclear 

polyploidy and binucleation (Watanabe et al., 1984). There are also reported changes in 

organelle size with age, for example decreased size of smooth endoplasmic reticulum 

(Schmucker, 1998). The amount of vitamin A that is stored by the liver increases with age 

(Vollmar et al., 2002) and changes in the extracellular matrix in livers of old rats have been 

reported (Andrew, 1969). Fibrosis seen in the ageing liver is reportedly due to a reduction in the 

proteolytic activity of hepatic matrix metalloproteinase (Gagliano et al., 2002). A number of age-

related changes in hepatocyte function have already been identified including reduced drug 
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clearance, changes in enzyme expression and activity and altered transport of drugs across the 

hepatocyte cell membrane (Schmucker, 2005). 

 

Age-related changes in the ultrastructure of the hepatic sinusoids have been thoroughly 

described. It was first reported that the sinusoidal endothelium only undergoes a few changes 

with age (Margreet De Leeuw et al., 1990). Further examinations of the livers of ageing rats with 

electron microscopy and immunohistochemistry have reported a constellation of age-related 

changes that have been named pesudocapillarisation (Le Couteur et al., 2001). These changes 

include reduction in the diameter and density of the fenestrations in the sinusoidal endothelium, 

thickening of the endothelium, and deposition of collagen and basement membrane with 

increasing age. Chronic changes in fenestrations are now well established in ageing and become 

a part of increasingly recognised age-related changes in the liver (Le Couteur and Lakatta, 2010). 

Vascular endothelial markers, such as von Willebrand  factor (vWF) an endothelial glycoprotein 

that mediates attachment of platelets after endothelial injury, which is not expressed by the 

sinusoidal endothelium of young rats, is seen in the sinusoids of old rats. The upregulation of 

vWF in the LSEC is indicative of the pathophysiological state of these cells and has been 

reported in hepatitis and cirrhosis due to numerous causes (Fukutomi et al., 2005, Albornoz et 

al., 1999). Increased vWF expression with age likely represents altered platelet adherence with 

age (Le Couteur et al., 2008).  

 

Pseudocapillarisation is evident across a range of animal models inclusive of rats (Le Couteur et 

al., 2001), humans (McLean et al., 2003), mice (Warren et al., 2005), and baboons (Cogger et al., 

2003) (Table 1.3), an indication that this is a fundamental age-related change. Examples of 
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electron micrographs of young and old rat livers are shown in Fig. 1.4 and 1.5. Similar changes 

have been reported in sinusoidal endothelial cells cultured from livers of older humans and in 

hepatic sinusoidal cells in ageing mice (Ito et al., 2007). 

 

Table 1.3: The effects of old age on porosity (%), fenestration diameter (nm) and thickness (nm) 

of the hepatic sinusoidal endothelium across four species (Warren et al., 2005). Porosity and 

fenestration diameter were elucidated using SEM and endothelial thickness using TEM. Y: 

young, O: old.  

 

Species Rat Baboon Human Mouse 

Y O Y O Y O Y O 

Porosity (%) 

 

4.1±2.3 

 

2.5±1.2 

 

4.2±0.5 

 

2.4±0.4 

 

Not done 

 

4.1±2.2 

 

2.2±3.5 

Fenestrations 

diameter (nm) 

 

73±1 

 

60±1 

 

58±1 

 

70±2 

 

Not done 

 

74±4 

 

58±12 

Endothelial 

thickness (nm) 

 

230±50 

 

320±80 

 

130±8 

 

186±9 

 

165±17 

 

289±9 

 

154±4 

 

245±8 
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Figure 1.4: Scanning electron micrographs of the sinusoidal surface of the endothelium of (a) 

young (6 months) and (b) old (26 months) rat showing defenestration of the endothelium of the 

old rat liver (Le Couteur et al., 2001). Scale bars =1 um.  
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Figure 1.5: Transmission electron micrographs of liver biopsies from a young rat aged 6 months 

(a) and an old rat aged 26 months (b) showing cross sections of sinusoids (S) with age-related 

thickening of the sinusoidal endothelium, (E), decreased fenestrations, (*) and laying down of 

basement membrane in the SoD, (D). H=hepatocytes. (Le Couteur et al., 2001).   
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1.3.3 Functional implications of morphologic changes in the ageing liver 

 

The study of the ageing process of the liver is important as the liver is the main site for 

metabolism of many substrates associated with age-related problems such as diabetes, vascular 

disease, neurotoxicity, xenobiotic detoxification and adverse drug reactions (Le Couteur et al., 

2002, Le Couteur and McLean, 1998) and old age is a major risk factor for many liver diseases.  

 

As discussed above the liver undergoes significant changes with age that contribute to the 

increase risk of the development of disease with age: impaired detoxification and metabolism 

leading to increased systemic exposure and adverse drug reactions (Le Couteur et al., 2004, 

Herrlinger and Klotz, 2001), impaired lipid clearance leading to hyperlipidemia (Cassader et al., 

1996), a significant risk factor for vascular disease (Weintraub et al., 1996, Krasinski et al., 

1990).  

 

The implications of ageing in the liver are also demonstrated by several genetic models of 

premature ageing, for example the Werner progeria syndrome (Lebel, 2001). Mice with this 

syndrome have a premature ageing condition that is associated with LSEC pseudocapillarisation, 

hyperlipidemia (Murata and Nakashima, 1985), and significantly raised levels of serum 

hyaluronan indicative of decreased LSEC endocytotic capability (Tanabe and Goto, 2001). 

Pseudocapillarisation was ameliorated with antioxidant (vitamin C) treatment in this animal 

model of Werner’s syndrome (Massip et al., 2010). There are also animal models with 

ameliorated pseudocapillarisation secondary to caloric restriction, a dietary intervention that 

delays ageing (Jamieson et al., 2007b).  
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1.4 INSULIN RESISTANCE 

 

The hypothesis that fenestrations are involved in hepatic insulin action was recently studied by 

Raines et al (Raines et al., 2011). They studied transgenic mice with partial inactivation of 

platelet derived growth factor-β (PDGF-β). These mice had leaky, disrupted LSECs as measured 

by TEM and in vivo fluorescein isothiocyanate (FITC)-dextran uptake. This enhanced 

transendothelial transport was associated with a dramatic increase in insulin action in the liver, 

with increased hepatic insulin signaling, improved glucose tolerance tests, increased insulin 

clearance and an 80% reduction in circulating insulin levels despite euglycemia. These results 

suggest that insulin and glucose metabolism is also dependent on the LSEC fenestrations, and 

that pseudocapillarisation might contribute to increased susceptibility with age to 

hyperinsulinemia, insulin resistance and diabetes. A key focus of this thesis is to study the role of 

fenestrations on insulin action in the liver, and to determine whether age-related 

pseudocapillarisation provides a novel mechanism for impaired insulin sensitivity in old age. 

 

1.4.1 Insulin  

 

Insulin was discovered by Best and Banting in 1922 while investigating the role of the pancreas in 

diabetes mellitus (Banting et al., 1991). It is a hormone that is essential for regulating energy 

storage and glucose metabolism in the body (Pessin and Saltiel, 2000). Following an increase in the 

plasma concentration of glucose, insulin is released from the pancreas and stimulates the liver, 

muscle, adipose tissues and other insulin target cells to commence glucose uptake. The glucose can 
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be utilised for fuel or stored as glycogen in the liver and muscle. Insulin also reduces glycogenolysis 

and gluconeogenesis in the liver, decreasing hepatic glucose production (Sesti, 2006).  

 

Insulin resistance is an impaired biological response to insulin where cells become resistant to the 

effects of insulin, causing normal physiological insulin levels to be insufficient to regulate glucose 

homeostasis by peripheral target tissues (Petersen and Shulman, 2002). Consequently, a higher 

amount of insulin is needed to achieve an adequate insulin response. Insulin resistance is one of 

the earliest changes in individuals with normal glucose tolerance who are progressing towards 

impaired glucose tolerance and potentially type 2 diabetes. Insulin resistance also has been 

associated with conditions such as cardiovascular disease, hypertension, obesity, and non-alcoholic 

fatty liver disease (Cohn et al., 2005). 

 

To understand the insulin mechanism of action, the following section will discuss the insulin 

network, from insulin secretion, hepatic insulin clearance and insulin signaling. 

 

1.4.1.1 Insulin secretion 

 

Insulin is produced and secreted by β-cells located in the pancreatic islets of Langerhans as a 

polypeptide hormone with a molecular weight of 58 kDa. It is first synthesised as a single 

polypeptide, preproinsulin, and undergoes processing in the endoplasmic reticulum to proinsulin, 

consisting of an α and β chain linked together by disulfide bonds and a C-peptide bridge. After 

being trafficked to the trans-Golgi network, endopeptidases cleave the C-peptide bridge creating 

mature insulin which is packed into granules and stored on the plasma membrane. Upon glucose 
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entry into the pancreatic β-cells through the glucose transporter (GLUT) 2 channels, glucokinase is 

phosphorylated which stimulates insulin release into the circulation via exocytosis (Melmed et al., 

2011). 

 

Impaired insulin secretion can be observed by a reduction in frequency and amplitude of insulin 

release in response to glucose. This is reported in both individuals with normal fasting plasma 

glucose and individuals with impaired glucose tolerance, suggesting it can precede insulin 

resistance and hyperglycaemia (Melmed et al., 2011). Failure of the β-cell to compensate for the 

insulin resistance is considered an early step for development of impaired glucose tolerance and 

type 2 diabetes (Abdul-Ghani et al., 2006, Reaven et al., 1989, Weyer et al., 1999a). 

 

1.4.1.2 Hepatic insulin clearance 

 

The liver plays a major role in extracting insulin from the circulation (Meier et al., 2005). Once 

released from the pancreas, insulin travels to the liver via the hepatic portal vein, followed by 

binding to the insulin receptor and is either degraded or released into the systemic circulation. 

The liver is exposed to the highest insulin concentrations of any tissue, with a range between 

1,000-5,000 pmol/l (Song et al., 2000), while the systemic circulation receives only ~1% insulin 

compared to the liver (Song et al., 2000). In addition, the liver reacts directly to changes in insulin 

concentration by decreasing hepatic insulin clearance when the demand for insulin is increased 

and vice versa. Therefore, insulin clearance by the liver has major consequences for the 

maintenance of normal systemic glucose concentrations (Meier et al., 2005). 
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In general, 80% of total insulin in the body is bound to the insulin receptors in the liver, which 

extracts ~50% of the secreted insulin during first pass transit (Duckworth et al., 1998, Hovorka et 

al., 1993). Two molecules have been identified in insulin internalization and degradation: 

carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1) and insulin degrading 

enzyme (IDE). CEACAM-1 i s  involved in mediating the internalization of the insulin-insulin 

receptor complex (DeAngelis et al., 2008, Najjar, 2002, Poy et al., 2002) and IDE is involved in 

the inactivation and removal of insulin from the circulation. However, the insulin that is 

removed from the circulation is not necessarily degraded. A significant amount of receptor bound 

insulin is released back into the circulation (Hovorka et al., 1993). 

 

Hepatic insulin clearance has been found to be diminished in obesity and type 2 diabetes 

(Bonora et al., 1983, Bonora et al., 1986, Jones et al., 1997, SANDO et al., 1980). Increased 

insulin secretion by the pancreas, leading to hyperinsulinemia is a potential compensatory 

mechanism for maintaining normal blood glucose when hepatic insulin action and clearance is 

impaired (Rudovich et al., 2004). 

 

1.4.1.3 Insulin Signaling 

 

Insulin regulates a wide range of biological processes that are dependent on tissue type. Apart 

from regulating glucose/lipid homeostasis, insulin is also responsible for regulating cell 

growth and differentiation (Dumont et al., 2002). The insulin signaling pathway consists of a 

complex network of proteins that are also involved in regulating signaling pathways initiated by 
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other biological stimuli. Although insulin can elicit many biological outcomes, the most 

important processes are presented as follows and illustrated in Figure 1.6. 

 

a. Insulin receptor 

 

The insulin receptor is the first main component in the insulin signaling pathway. The insulin 

receptor is a member of the receptor tyrosine kinase superfamily (Ullrich and Schlessinger, 

1990),
 
and is present in the form of large heterodimers that consist of two α and β subunits. The 

α-subunit is located in the extracellular matrix and linked to the intracellular β-subunit via 

disulfide bonds. Insulin binding to the α-subunit on the surface of target cells leads to 

conformational changes that induce autophosphorylation of several tyrosine residues on the β-

subunit (Kahn and White, 1988, Kasuga et al., 1982, Roth and Cassell, 1983). 

Autophosphorylation of the β-subunit activates the receptor’s protein tyrosine kinase, which 

activates intracellular substrates responsible for the metabolic consequences of insulin signaling. 

 

b. Insulin receptor substrate (IRS) proteins 

 

The autophosphorylation of tyrosine kinase on insulin receptor activates phosphorylation of the 

insulin receptor substrate (IRS) proteins. There are several intracellular substrates of IRS that 

have been identified (Taniguchi et al., 2006), six of them are structurally similar and have been 

termed insulin receptor substrate proteins 1-6 (IRS1-6) (Cai et al., 2003, Fantin et al., 1999, Lavan 

et al., 1997, Sun et al., 1991, Sun et al., 1995, White, 1998), with IRS-1 and IRS-2 being the main 

IRS involved in insulin-mediated metabolic functions in the liver (Thirone et al., 2006). 
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IRS proteins contain a pleckstrin homology (PH) domain, a protein tyrosine binding domain 

(PTB) and tyrosine residues that can be phosphorylated by the IR tyrosine kinase (White, 

1998). Phosphorylation of IRS tyrosine residues creates docking sites for intracellular molecules 

with a src-homology-2 (SH2) domain-containing protein. Thus, IRS proteins serve as scaffolds 

on which the insulin-signaling complex can be arranged in response to the activation of IR 

(Shaw, 2011, Sun et al., 1993) to facilitate propagation of the insulin signal throughout the cell. 

Following phosphorylation, IRS proteins are responsible for mediating activation of the two main 

pathways in insulin signaling which are the phosphatidylinositol 3-kinase (PI3K)-AKT pathway 

and the Ras-mitogen activated protein kinase (MAPK) pathway (Taniguchi et al., 2006). They 

also interact with other intracellular targets including Shc (Gustafson et al., 1995), Cbl (Baumann 

et al., 2000), p62dok (Wick et al., 2001), and GRB2-associated binding proteins (GAB) (Lehr 

et al., 2000). 

 

Insulin-induced down regulation of IR is a well-established feedback mechanism (Caro and 

Amatruda, 1980, Knutson et al., 1982, Ramos et al., 2006, Youngren, 2007) that regulates the 

strength of insulin signaling and is common in hyperinsulinaemic states (Friedman et al., 1997). 

IRS-1 knockout mice are reported to have glucose intolerance and peripheral insulin resistance 

(Araki et al., 1994, Tamemoto et al., 1994), whereas IRS-2 knockout mice develop diabetes 

because of hepatic insulin resistance and lack of pancreatic β-cell compensatory response 

(Kubota et al., 2000, Withers et al., 1998). 
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c. PI3-K/AKT pathway 

 

PI3-K is an important kinase involved in mediating metabolic outcomes of insulin signaling 

(Shepherd et al., 1998). It consists of a regulatory p85 (Escobedo et al., 1991) and a catalytic 

p110 subunit (Hiles et al., 1992), both of which present in several isoforms (Taniguchi et al., 

2006). The p85 subunit has two SH2 domains that interact with the phosphotyrosine residues 

on IRS-1 (Myers et al., 1992).
 
The PI3-K catalytic subunit is then able to phosphorylate the 

plasma membrane glycolipid phosphatidylinositol-4,5-bisphosphate (PIP2) to 

phosphatidylinositol-3,4,5- triphosphate (PIP3) (Carpenter and Cantley, 1996). The generation 

of PIP3 within the vicinity of the IR/IRS complex allows for the recruitment of protein kinase 

B, also known as AKT, one of the principal mediators of the metabolic effects of insulin 

signaling, via its pleckstrin homology (PH) domain (Franke et al., 1997).  Once localised to the 

plasma membrane by binding to PIP3, AKT can be activated by 3-phosphoinositide-

dependent kinase-1 (PDK1) via phosphorylation of threonine 308 (T308) and serine 473 

(S473) within AKT’s activation loop (Alessi et al., 1997). Following activation, AKT is thought 

to mediate the majority of the hepatic metabolic outcomes stimulated by insulin (Taniguchi et al., 

2006). PDK-1 also activates atypical protein kinase C (aPKC) isoforms ζ and λ for further 

signaling action. 

 

i. PI3-K/AKT-mediated regulation of glycogen synthesis 

 

AKT and PKCs are essential for insulin-stimulated translocation of glucose transporters, such as 

GLUT4 that is expressed mainly in muscle and fat, from intracellular pools to the cell surface 
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(Saltiel and Kahn, 2001). AKT also increases glycogen synthesis by activating glycogen 

synthase (GS) via inhibition of glycogen synthase kinase 3 (GSK-3) and decreasing 

glycogenolysis simultaneously (Cross et al., 1995). Insulin has also been shown to target protein 

phosphatase 1 (PP1) which further increases the dephosphorylation and activation of GSK-3. In 

addition, AKT promotes protein synthesis by reversing GSK-3-induced inactivation of protein 

synthesis, eukaryotic initiation factor (eIF)-2B (Pap and Cooper, 2002). AKT also activates 

mammalian target of rapamycin (mTOR), promoting protein synthesis through p70 ribosomal S6 

kinase (S6K1) and inhibition of eIF-4E binding protein (Liu et al., 2002). 

 

ii. PI3-K/AKT-mediated regulation of hepatic glucose output 

 

Insulin regulates hepatic glucose output through direct effects on gene expression (Pilkis and 

Granner, 1992) and indirect regulation of substrate availability (Saltiel and Kahn, 2001). Insulin 

inhibits transcription of gluconeogenic genes that code for phosphoenolpyruvate carboxy kinase 

(PEPCK) (Hall et al., 2007, Hanson and Reshef, 1997), glucose-6-phosphatase (Nakae et al., 

2001, Nakae et al., 1999) and fructose-1,6-bisphosphatase, while increasing transcription of 

genes that code for glycolytic enzymes such as glucokinase (Barzilai and Rossetti, 1993) and 

pyruvate kinase (Yamada and Noguchi, 1999). Forkhead transcription factor 1 (FOXO-1) (Cheng 

and White, 2011, Nakae et al., 1999) and the transcriptional co-activator PGC-) (Yoon et al., 

2001) are involved in regulating gluconeogenesis in the liver. Specifically, AKT 

phosphorylates FOXO-1 and prevents it from entering the nucleus and activating transcription of 

genes that code for glucose-6-phosphatase and PEPCK, an enzyme that catalyses the rate limiting 

step in gluconeogenesis (Nakae et al., 2001, Puigserver et al., 2003).  
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iii. PI3-K/AKT-mediated regulation of lipid homeostasis 

 

In addition to the regulatory action of glucose homeostasis, insulin also has a critical role in lipid 

homeostasis. Insulin deactivates hormone sensitive lipase (HSL) through the PI3-K/AKT 

pathway thus inhibiting lipolysis in adipose tissue and depriving the liver of fuel from free fatty 

acids for glucose production (Holm et al., 2000). In the liver, insulin promotes lipogenesis by 

increasing transcription of lipogenic genes such as acetyl-CoA carboxylase (Munday and 

Hemingway, 1999). Sterol regulatory element binding protein 1c (SREBP-1c) mediates many of 

insulin’s effects on lipogenesis (Horton et al., 2002). Induction of SREBP-1c transcription 

appears to be dependent both on AKT (Azzout-Marnich et al., 2000, Fleischmann and Iyendjian, 

2000, Matsumoto et al., 2002) and liver X receptor activation (Chen et al., 2004) 

 

iv. Ras/MAPK pathway 

 

The Ras/MAPK pathway is involved in mediating cell growth, differentiation and survival. 

Insulin causes tyrosine phosphorylation of IRS-1, Gab1 and Shc, thus facilitating binding of 

growth factor receptor binding protein-2 (Grb-2) (Ogawa et al., 1998). Grb2 recruits the guanyl 

nucleotide exchange protein, Sos, to the plasma membrane resulting in the activation of G protein 

Ras (Ogawa et al., 1998). Activated Ras induces a phosphorylation cascade that begins with Ras 

and ends with activation of the Mitogen activated protein kinase (MAPK)/ Extracellular signal 

regulated kinases (ERK) pathway. The activated ERKs phosphorylate various intracellular 

substrates and translocate to the nucleus to phosphorylate transcription factors to promote gene 

expression. Studies with Ras or SOS dominant negative mutants and with IRS-1 
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siRNA/antibodies have shown that the Ras/MAPK pathway is important for insulin’s effect on 

cell growth and DNA synthesis (Maassen et al., 1992, RoSE et al., 1994, Sakaue et al., 1995, 

Waters et al., 1993).  

 

This section has described the upstream components of the insulin-signaling pathway, where 

AKT is the pivotal step of the pathway because it ties together insulin’s major roles in 

glucose and lipid metabolism (Leavens and Birnbaum, 2011). A detailed description of insulin 

target tissues following signal transmission will be discussed below. 
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Figure 1.6: Signal transduction in insulin action. The insulin receptor is a tyrosine kinase that 

undergoes autophosphorylation and catalyses the phosphorylation of cellular proteins, such as 

members of the IRS family, Shc and Cbl. Upon tyrosine phosphorylation, these proteins interact 

with signaling molecules through their SH2 domains, resulting in a diverse series of signaling 

pathways. This includes activation of PI (3) K protein kinases, Ras and the MAP kinase cascade, 

and the Cbl/CAP and the activation of TC10. These pathways act in a concerted fashion to 

coordinate the regulation of vesicle trafficking, protein synthesis, enzyme activation and 

inactivation, and gene expression. This results in the regulation of glucose, lipid and protein 

metabolism (Saltiel and Kahn, 2001).  
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1.4.2 Insulin target tissues 

 

Insulin regulates major biological processes including glucose and glycogen metabolism, lipid 

metabolism and protein synthesis. The effect of insulin in maintaining normoglycaemia in the 

setting of variable glucose availability is achieved by regulating glucose uptake and endogenous 

glucose production. The effect of glucose action on target tissues is summarised in Table 1.4.  

 

The three main target tissues of insulin action are liver, muscle and adipose tissue (DeFronzo, 

1988). In the postprandial state, insulin levels rise and inhibit the breakdown of glycogen via 

inhibition of glycogenolysis in muscle and liver tissue as well as inhibiting gluconeogenesis in 

the liver (Kumar and O'Rahilly, 2005). Insulin also stimulates glucose uptake by muscle and 

adipose tissue for storage in a form of glycogen and lipids (DeFronzo, 1988). The liver stores 

both glycogen and lipids, whereas in the normal state the muscle stores only glycogen and the 

adipose tissue only lipids. In fasting conditions the liver releases glucose via glycogenolysis and 

gluconeogenesis.  

 

Insulin also has indirect effects on glucose metabolism by decreasing the release of 

gluconeogenic precursors through regulation of lipid metabolism and protein turnover. Insulin 

inhibition of lipolysis in adipose tissue reduces the release of free fatty acids and glycerol used 

for hepatic glucose production. Likewise, insulin inhibition of proteolysis in  muscle tissue 

decreases the release of amino acids necessary for gluconeogenesis (Lewis et al., 1996, Rebrin et 

al., 1995). 
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Table 1.4: Classical and non-classical target organs for insulin-regulated glucose metabolism.  

A direct effect of insulin on glucose metabolism is defined as an insulin-stimulated change in the 

flux of glucose through a specific metabolic pathway that is initiated by the insulin receptor in 

the same tissue. An indirect effect is the regulation of glucose metabolism in one organ resulting 

from the effect of insulin on other micronutrients (such as lipids) or in other organs (Kumar and 

O'Rahilly, 2005). 

Organ/tissue 

Main effect of insulin on glucose metabolism 

Direct Indirect 

Classical targets 

Skeletal and cardiac muscle ↑ Glucose uptake ↓ NEFA availability and 

oxidation 

 ↑ Glucose oxidation  

 ↑ Glycogen synthesis  

Liver ↓Glucose output 

- ↓Glycogenolysis 

- ↓ Gluconeogenesis 

↓ NEFA availability and 

oxidation 

 ↑ Glycogen synthesis  

 ↑ Glycolysis  

 ↑ Lipogenesis  

Adipose tissue ↑ Glucose uptake Regulation of adipokines 

synthesis and/or secretion 

 ↑ Lipogenesis ↓ Lipolysis 

Non-classical targets   

Pancreatic beta cells ? Permissive effect on glucose-

stimulated insulin secretion 

(phase 1 release) 

Brain ? ↓ Food intake 

Vascular cells ? ↑ Blood flow 

  ↑ Capillary recruitment 

  ↑ NO secretion 
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Apart from nutrient metabolism, insulin also has effects on non-target tissues such as the central 

nervous system and vascular cells (DeFronzo, 2009). Insulin signaling in the brain is reported to 

be involved in appetite suppression (Plum et al., 2006, Schwartz et al., 2000), and has been 

shown to be reduced in obese, insulin-resistant, normal glucose tolerant individuals (Matsuda et 

al., 1999). The brain also plays an important role in the physiological control of hepatic glucose 

production as well as hepatic glucose uptake in response to insulin that usually gives a direct effect 

on hepatocytes (Rojas and Schwartz, 2014). In vascular cells, insulin is thought to stimulate 

vasodilatation and capillary recruitment thus enhancing glucose delivery and increasing muscle 

glucose uptake (Clark et al., 2003). 

 

1.4.3 Development of insulin resistance 

 

Insulin resistance is defined as a reduced biological effect for any given concentration of insulin 

(Wallace and Matthews, 2002). The characteristics of insulin resistance has been established as 

the main component in a cluster of abnormalities termed as Syndrome X or metabolic syndrome, 

that includes type 2 diabetes, obesity, hypertension, dyslipidaemia and cardiovascular disease 

(Reaven, 1995).  

 

1.4.3.1 Hepatic insulin resistance 

 

Among the three major insulin target tissues, the liver is the primary organ that directly regulates 

metabolic homeostasis, maintains normoglycaemia during fasting conditions and controls 

systemic insulin levels via hepatic insulin clearance (Cherrington and Lecture, 1999). Insulin 
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resistance in the liver is characterised by the inability of insulin to suppress glucose production. 

Uncontrolled hepatic gluconeogenesis has been shown to contribute to the fasting and overnight 

hyperglycaemia seen in individuals with type 2 diabetes (Consoli et al., 1989, DeFronzo et al., 

1989, Magnusson et al., 1992, Perriello et al., 1997, Weyer et al., 1999b). 

 

Insulin’s role in regulating lipid homeostasis is also impaired in hepatic insulin resistance. The 

overstimulation of lipogenesis by the liver due to hyperinsulinaemic conditions is thought to be a 

critical component of the overproduction of VLDL particles seen in type 2 diabetes (Adeli et al., 

2001).
 
The dyslipidaemia that is often present in individuals with type 2 diabetes is characterised 

by hypertriglyceridaemia, raised LDL-cholesterol and a low HDL cholesterol profile (Krauss, 

2004).
 
Consequently, the abnormal fat storage and ectopic fat deposition in other insulin target 

tissues has been suggested to have a role in the progressive nature of insulin resistance (Lewis et 

al., 2002). 

 

1.4.3.2 Peripheral insulin resistance 

 

Insulin resistance in peripheral tissues is characterised by the inability of tissues to take up 

glucose in response to insulin, affecting glucose disposal and lipolysis. Muscle insulin resistance 

is present when insulin-mediated glucose disposal through the GLUT4 channel is reduced to 

the lowest quartile of control subjects (Beck-Nielsen et al., 2005).
 

The progressive 

hyperinsulinaemia required to overcome the insulin resistance at the muscle is also thought to 

play a role in the development of metabolic syndrome (Vaag et al., 1995). Furthermore, insulin 
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resistance in adipose tissue leads to unregulated lipolysis and an increase in circulating free fatty 

acids, which contributes to increased hepatic glucose output (Groop et al., 1989). 

 

1.4.4 Measurement of insulin resistance 

 

Identification of insulin resistance is an important step in the diagnosis and management of 

symptoms of metabolic syndrome, especially diabetes. Quantitative measurement of biological 

action of insulin is used to determine insulin resistance. This is thought to be equal to insulin 

sensitivity that is reciprocal to insulin resistance (Bergman et al., 1985). Measurement is divided 

into two groups: non dynamic and dynamic methods (Wallace and Matthews, 2002) 
 

 

Non-dynamic methods are assessed during steady state using only glucose and insulin 

measurements. An example for this method is Homeostasis model assessment (HOMA), a 

mathematical model that calculates insulin sensitivity from fasting plasma glucose and insulin 

concentrations (Matthews et al., 1985, McAuley et al., 2001).
 

The principle of HOMA is 

based on the basic understanding of a feedback loop between the liver and the pancreas in the 

fasting state, where normoglycaemia is regulated by hepatic glucose output. HOMA-IR 

values of less than or equal to 2.4 have been shown to be reflect normal glucose tolerance and 

insulin sensitivity (Braatvedt et al., 2006, Geloneze et al., 2009). 

 

Dynamic methods are assessed by makeshift disturbance of the steady state and evaluation 

upon returning to the steady state. An example of this method is the euglycaemic clamp 

technique (Wallace and Matthews, 2002). Glucose levels are constantly maintained using an 
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intravenous infusion and insulin levels are elevated using a constant intravenous of insulin 

infusion. Once the glucose levels are fixed or ‘clamped’ at the desired concentration, insulin 

resistance is inversely related to the glucose infusion rate necessary to maintain the required 

glucose concentration (Davis et al., 1992). This method is considered a gold standard in 

measuring insulin sensitivity in vivo (Wallace and Matthews, 2002). 

 

Among these two methods, HOMA is more commonly used to determine insulin resistance due 

to the tests robustness, while euglycaemic clamp is considered to be more invasive, time 

consuming and a labor intensive procedure (Bergman et al., 1985, Matthews et al., 1985). 

 

1.4.5 Animal models of insulin resistance  

 

Techniques of transgenesis and mutagenesis in rodents have enabled researchers to understand the 

complex pathogenesis of insulin resistance. Various animal models have been developed to test 

the hypotheses for insulin resistance, involving transgenic and knockout mice with mutations in 

genes involved in insulin action and secretion (NANDI et al., 2004). Focus has been targeted at 

specific insulin target tissue that is created by removal of the insulin receptor using Cre-loxP 

system (Gu et al., 1994) as shown in Table 1.5. 

 

 

 

 

 



47 

 

Table 1.5: Insulin specific target tissue models of insulin resistance 

 

Insulin 

Receptor 

knockout 

Insulin 

secretion 

Insulin 

action 

Glucose 

tolerance 

Glucose 

homeostasis 

Lipid 

homeostasis 

Muscle 

(MIRKO) 

Normal Normal Normal Normal 
↑ FFA 

↑ Triglycerides 

Fat 

(FIRKO) 

Normal Improved insulin 

sensitivity 

Improved Normal ↓Triglycerides 

Liver 

(LIRKO) 

Increased Markedly insulin 

resistant 

Severely 

Impaired 

Hyperglycemia 

↓ FFA 

↓Triglycerides 

  

The Muscle insulin receptor knockout mouse (MIRKO) was the first insulin specific target 

tissue model to study insulin resistance because it was thought that the muscle is the most 

important tissue for glucose uptake (Brüning et al., 1998). However, while MIRKO mice have 

elevated plasma triglycerides and free fatty acids there is no impairment of glucose 

homeostasis. It is reported that although muscle was not able not perform glucose uptake, this 

is compensated by adipose tissue, resulting in increased adiposity and weight gain.  

 

In parallel, fat insulin receptor knockout mice (FIRKO) (Bluher et al., 2002) showed normal 

glucose homeostasis with improved insulin sensitivity. The mice were surprisingly protected 

against obesity-induced glucose intolerance and had increased longevity.  

 

The Liver insulin receptor knockout mouse (LIRKO) (Michael et al., 2000) is the only insulin 

specific target tissue model that exhibited glucose intolerance and insulin resistance. The animal 
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had both fasting and postprandial hyperglycemia as a result of the liver’s inability to inhibit 

hepatic glucose production. They also had increased insulin secretion and impaired hepatic 

insulin clearance resulting in marked hyperinsulinaemia with progression to secondary whole 

body insulin resistance. This indicates that liver is the most relevant tissue in the pathogenesis 

of insulin resistance compared to muscle and adipose tissue. 

 

Apart from transgenic models, insulin resistance is also studied using high fat diet-induced 

insulin resistance animals. This model induces primarily hepatic insulin resistance at week 6 and 

by week 12 there is insulin resistance in the adipose tissue, without effects on the skeletal muscle 

at any point (Kleemann et al., 2010). This is consistent with LIRKO mice where hepatic insulin 

resistance precedes systemic insulin resistance. 

 

Studies using the tissue specific insulin receptor animal models and diet-induced models are 

valuable in studying the pathogenesis of insulin resistance, however complete insulin resistance 

conditions can only be seen in rare genetic diseases like leprechaunism and type A insulin 

resistance syndrome (Kahn et al., 1976). 

 

1.4.6 Insulin resistance and the metabolic syndrome 

 

The metabolic syndrome is characterised as a cluster of abnormalities that includes obesity, 

dyslipidaemia, hypertension and hyperglycemia (Alberti et al., 2005). The pathogenesis of 

metabolic syndrome is heterogeneous, with central obesity and insulin resistance considered to 

be the most important causative factors (Anderson et al., 2001). The terms metabolic syndrome 
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and insulin resistance syndrome have often been used interchangeably, but each term indicates 

different underlying concepts and observations. The clinical syndromes associated with insulin 

resistance include, but are not limited to, type 2 diabetes and cardiovascular diseases, 

hypertension, polycystic ovary syndrome, non-alcoholic fatty liver disease, sleep apnoea and 

certain cancers (Alberti et al., 2006). The World Health Organization (WHO) has stressed the 

importance of insulin resistance in the diagnosis of the metabolic syndrome and individuals who 

are at risk of getting diabetes and cardiovascular diseases (Alberti and Zimmet, 1998).
 

 

1.4.7 Insulin resistance and diabetes 

 

There are two types of diabetes mellitus that are generally described: type 1 (T1DM) and type 2 

(T2DM). T1DM is characterised by a lack of insulin due to destruction of the insulin-secreting β-

cells of the pancreas. Treatment requires regular subcutaneous insulin administration to replace 

the insulin that would normally be secreted by the pancreas several times a day in order to 

prevent life threatening hyperglycemia (Sibal et al., 2006). T1DM is usually diagnosed in 

childhood and the major cause is reported to be from various auto-immune factors and genetic 

predisposition (Dahlquist, 1993). 

 

T2DM is characterised by hyperglycemia, insulin resistance, and decreased β-cell number and 

secretory function (Harris et al., 1998, Haslam and James, 2005, Wild et al., 2004). It progresses 

from an early ‘pre-diabetes’ stage, which is often asymptomatic, with insulin resistance, to a 

relatively mild postprandial hyperglycemia, before developing into classic symptomatic diabetes, 

requiring treatment with insulin and/or oral hypoglycaemic medications. T2DM has mostly been 
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associated with older age but its prevalence in young people and children is rapidly increasing. 

There are multiple risk factors for the development of T2DM including age, obesity, family 

history, lack of exercise and a high calorie diet. T2DM increases susceptibility to multiple 

microvascular problems such as diabetic retinopathy, diabetic nephropathy and peripheral 

vascular disease (Hartz et al., 2006). 

 

1.4.8 Liver, insulin resistance and diabetes mellitus 

 

Our understanding of the liver’s contribution to the development of insulin resistance has largely 

focussed on the role of the hepatocyte. For example, it is known that LIRKO mice, which lack 

the insulin receptor in hepatocytes, exhibit dramatic insulin resistance, severe glucose intolerance 

and failure of insulin to regulate hepatic gene expression and to suppress hepatic glucose output 

(Michael et al., 2000). In vitro studies have shown that insulin resistance is induced by 

interleukin-6 in primary hepatocytes and in human hepatocarcinoma cell line, HepG2 causing a 

decrease in tyrosine phosphorylation of IRS-1 in response to physiologic insulin levels and 

inhibition of insulin-dependent activation of AKT, that facilitates downstream insulin metabolic 

actions (Klover et al., 2002). 

 

However, prior to interaction with the insulin receptor on the hepatocyte, insulin must first cross 

the LSEC and SoD. The endothelium has been shown to be the rate limiting step for the uptake 

of insulin in most other tissues such as muscle and fat, however the role of the sinusoidal 

endothelium in hepatic insulin action has not been specifically investigated (Takamura et al., 

2012). Limited evidence has shown that in the normal liver, insulin from the portal vein will be 
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bound to the hepatocyte insulin receptor within three minutes (Bergeron et al., 1979). The LSEC 

has limited affinity for insulin and it has been shown that LSECs will only pinocytose insulin in 

situation of hepatocellular receptor saturation (Bergeron et al., 1979). Abnormalities in liver 

microcirculatory function, particularly changes in the transfer of insulin from blood to the 

hepatocytes, may be a critical factor in the development of insulin resistance. However, this 

possibility largely remains under investigated.  

 

Endothelial dysfunction in metabolic syndrome has been discussed as the cause (Baumgartner-

Parzer and Waldhausl, 2001) or the consequence (Avogaro et al., 1997) of insulin resistance. 

Evidence that endothelial damage occurs before insulin resistance has been shown in offspring 

and relatives of insulin resistant people with impaired endothelial responses (Jörneskog et al., 

2005). Hypertension is commonly associated with both vascular impairment and insulin 

resistance, hence supporting the important role of the vasculature in insulin sensitivity. A rat 

model of metabolic syndrome and insulin resistance, with features of NAFLD is shown to have 

higher in vivo hepatic vascular resistance than control, with increased portal perfusion pressure 

and decreased endothelium-dependent vasodilation. This occurs before the development of 

fibrosis or inflammation (Pasarín et al., 2012).  

 

Many liver conditions associated with defenestration and other structural changes in the LSEC 

are also associated with insulin resistance. This has been ascribed to shunts, hepatocellular 

failure and reduced hepatic insulin clearance (Takamura et al., 2012). A study in a mouse 

transgenic model with partial loss of PDGF-beta function, which is responsible for the formation 

of pericytes showed increased permeability of the LSEC and increased fenestrations. This model 
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was also associated with a dramatic increase in insulin action in the liver, including increased 

insulin signaling, improved glucose tolerance test, increased insulin clearance and reduction in 

circulating insulin levels. Tsuchiya and Accili (2013) examined the effect of knockout of FoxO 

in mouse endothelium and found that standard chow–fed mice were glucose intolerant and had 

reduced insulin sensitivity. The defect in insulin action was identified as being in the liver.  

 

With regard to the effect of diabetes on the LSEC and hepatocytes, there are well described 

changes in the liver in both forms of diabetes mellitus. Diabetes mellitus results in a lipid 

accumulation in hepatocytes termed fatty liver or hepatosteatosis. Inflammatory cells can 

infiltrate into the liver causing non-alcoholic steatohepatitis (NASH) and this is associated with 

mild elevation in liver function tests including the transaminases and alkaline phosphatase 

(Kalyan et al., 2006). Diabetes is also characterised by a reduction in hepatic insulin sensitivity 

and decreased insulin mediated suppression of lipolysis in the liver (Marchesini et al., 2001). 

Excess free fatty acids that occur in diabetes have a toxic effect on hepatocytes, mitochondria 

and cell membrane (Kaplowitz, 2001). There is also an increase in pro-inflammatory cytokines 

in the insulin resistant state, such as tumour necrosis factor alpha (TNF-α) which probably 

contributes to hepatocellular injury (Zhang et al., 2009) 

 

The microvascular complications of diabetes mellitus has been well established in several organs 

(Singleton et al., 2003), but relatively few studies have reported on the effect of diabetes on liver 

microvasculature. Bernuau et al. (1982) studied liver biopsies of 12 insulin dependent diabetic 

patients and found that there is a moderate increase in collagen and basal lamina deposition in 

the SoD. Some subjects have fatty liver and increased perisinusoidal Masson trichrome staining. 
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Two other studies (Harrison et al., 2006, Latry et al., 1987) also reported an increase in 

deposition of collagen and basal lamina in human diabetic liver biopsy samples.  

 

Inaba et al. (1984) examined livers from diabetic patients and found that there was a thickening 

of endothelium, reduced SoD width and the proliferation of collagen fibres in the SoD. They also 

reported “obscure pores in the endothelium”, which are presumably fenestrations. However this 

is not quantified and the detection of fenestrations may be below the resolution of the techniques 

used. A retrospective study of T1DM and T2DM diabetic patients who had undergone liver 

biopsy has been carried out, reporting an extensive perisinusoidal fibrosis and deposition of basal 

lamina, termed as ‘diabetic hepatosclerosis’ (Harrison et al., 2006). 

 

In rats, streptozotocin-induced T1DM rats had increased fenestrations frequency and diameter 

after five weeks, followed by decreased frequency after 8 weeks, when defenestration is thought 

to be starting to develop (Jamieson et al., 1999, Jamieson et al., 2001). In diabetic baboons, 

marked changes in the fenestrations were observed including a decrease in the diameter and the 

frequency of the fenestrations, leading to a reduction in porosity (Jamieson et al., 2007a). There 

was also a thicker endothelium compared to control with increased extracellular matrix in the 

SoD. Fibrosis was observed with increased staining of Masson trichrome and collagen IV 

immunohistochemistry. This indicates that diabetes accelerated the age-related loss of 

fenestrations (Jamieson et al., 2007a).  
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1.5 Scope and aims of this thesis 

 

This chapter has focused on describing hepatic microvasculature and its major, but largely 

unrecognised, role in liver function. There is now clinical and experimental evidence of 

diminishing liver function with ageing, while ultrastructural changes have been described in 

ageing livers that provide a mechanism for these functional changes. Pseudocapillarisation of the 

hepatic sinusoidal endothelium creates a barrier to the transfer of lipoproteins and drugs from the 

sinusoidal lumen to the hepatocyte, a barrier that is not present in healthy and young livers. 

Recent findings have indicated an important role of fenestrations in insulin and glucose 

metabolism (Raines et al., 2011) which raises the possibility that age-related 

pseudocapillarisation might contribute to hepatic insulin resistance that is common in old age. 

 

The most consistent age-related change in glucose metabolism is insulin resistance, which is a 

significant risk factor for diabetes and vascular disease in older people. Although much research 

on hepatic glucose metabolism has focused on hepatocytes, the role of LSEC, particularly 

fenestrations has been largely overlooked. This thesis investigates the effect of ultrastructural 

changes in the ageing liver on insulin resistance. 

 

Chapter 3 examines the effect of age-related pseudocapillarisation on the development of insulin 

resistance. It is well established that ageing accelerates the development of insulin resistance. It 

was hypothesised that pseudocapillarisation leads to impaired hepatic disposition of insulin and 

glucose, leading to impaired systemic glucose homeostasis. To probe this hypothesis the 

experiments in this chapter examine insulin and glucose action in the liver of young and old mice 
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and rats in addition to glucose uptake in target tissues and gene and protein expression related to 

insulin signaling.  

 

Given the significant impact of ageing on insulin and glucose metabolism found in the 

experiments outlined in Chapter 3, the experiments carried out and presented in Chapter 4 were 

designed to investigate the impact on glucose and insulin transfer and action in the liver in the 

absence of other age-related changes. Chapter 4 investigates the effect of P407 induced 

defenestration on the development of insulin resistance. P407 is a surfactant that is known to 

selectively target the liver, causing acute and reversible defenestration with severe 

hyperlipidemia. Here we hypothesised that defenestration, in the absence of any concomitant 

ageing changes interferes with hepatic disposition of glucose and insulin in the liver, leading to 

impaired systemic glucose and insulin metabolism. Similar experimental techniques including 

MID, radiolabeled glucose tolerance test, scanning electron microscopy, real time PCR, 

immunoblotting and proteomic analysis were used in both Chapters 3 and 4. 

 

Chapter 4 focusses on the implications of loss of fenestrations induced by P407 on insulin action 

in the liver. Chapter 5 then investigates the mechanisms underlying the loss of fenestrations 

induced by P407. In vitro studies on fenestration modulation are pivotal in elucidating the exact 

mechanism of fenestration control. The sieve-raft theory states that membrane lipid rafts are 

associated with the regulation of fenestrations (Cogger et al., 2013a). To further confirm this, 

Chapter 5 investigates the relationship between membrane rafts and fenestrations using the 

potent defenestrating agent used in Chapter 4, P407, in both SKHep1 cells, a cell line of 

endothelial origin and isolated LSECs. It was hypothesised that P407 induces defenestration by 
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depleting non-raft region of the cell membrane. Scanning electron and light deconvolution 

microscopy were used to observe the interaction following P407 treatment.  

 

Finally, because fenestrations are known to adapt and change depending on their exposure to 

nutrients and other substances Chapter 6 examines the role of lifelong macronutrient and caloric 

intake on fenestrations and insulin and glucose metabolism. In this study, nutritional geometry 

was used to observe the effects of energy and macronutrients diets on fenestration morphology 

into older age. Liver biopsies and serum analysis were used to assess the impact of 

macronutrients and caloric intake on LSEC health at 15 months of age. 

 

The specific hypotheses are: 

1. Fenestrations in the LSEC influence the action of insulin in the liver, 

2. Age-related pseudocapillarisation of the LSEC contributes to insulin resistance in old 

age, 

3. Loss of fenestrations induced by P407 impairs insulin action in the liver, 

4. P407 influences fenestrations by its effects on lipid rafts, 

5. Dietary macronutrients influence fenestrations and the development of 

pseudocapillarisation in old age, with implications for age-related insulin resistance. 
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CHAPTER 2: METHODOLOGY 
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2.1 MULTIPLE INDICATOR DILUTION METHOD 

 

This method is also known as tracer dilution method and can be used to measure multiple 

parameters such as microvascular exchange, transport and metabolism in the liver (Goresky, 

1963, Goresky et al., 1973). This is the definitive method to assess the transfer of substrates such 

as insulin/glucose across the liver endothelium and hepatocellular membrane as described in 

mice and rats previously (Cogger et al., 2006, Hilmer et al., 2005, Mitchell et al., 2012).  

 

2.1.1 Liver perfusion  

 

Rats were weighed and then anaesthetised by an intraperitoneal (i.p.) injection of 2 ml/kg 

ketamine (60 mg/ml) and xylazine (6 mg/ml). A midline laparotomy incision was performed 

and the intestines pushed aside to reveal the portal vein. The portal vein was cannulated with an 

18 gauge intravenous cannula (Optiva K, Livingstone, Rosebery, Australia) and the thoracic 

inferior vena cava was cannulated with a 10 cm length of polyethylene tubing. A single pass 

perfusion was performed using Krebs-Henseleit bicarbonate buffer (10 mM glucose, saturated 

with 95 % O2/5 % CO2, 2 % bovine serum albumin at 37 ºC) and the perfusate flow rate was 

maintained at approximately 1 ml/minutes/g of liver using a peristaltic pump (Masterflex L/S, 

Cole-Palmer, Boronia Australia). Portal venous pressure was measured in centimetres of H2O 

according to a manometer connected to the inflow cannula of the portal vein. 
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2.1.2 Multiple indicator dilution  

 

This step involves 2 separate tracers: (1) 
3
H-sucrose and 

14
C-insulin; (2) 

3
H-sucrose and 

14
C-

glucose (American Radiolabeled Chemicals Inc, St. Louise USA) separately. In some 

experiments Evans Blue (Sigma Aldrich, Castle Hill Australia) was also added to the injectate. 

After administration of each injectate (100 µl in volume) through the portal vein, 60 outflow 

samples were collected using a universal fraction collector (Extech Equipment, Boronia, 

Australia) at two second intervals, followed by collection at 3 minutes and 5 minutes. Analysis 

for 
14

C and 
3
H specific activity in each outflow sample was performed using a liquid scintillation 

counter (Packard 1600TR, Australia) by adding 100 µl of outflow to 8 ml of scintillation fluid 

(UltimaGold, Perkin Elmer, Australia). Radioactivity was measured via disintegration per minute 

(DPM). A spectrophotometer (BMG Labtech FLUOstar optima microplate reader, Life 

Technologies, Wembley Australia) was used to quantify the concentration of Evans Blue in the 

outflow samples.  

 

2.1.3 Data analysis 

 

All outflow data collected was used to generate dose-normalised outflow curves. The hepatic 

outflow concentrations were expressed as a fraction of the injected dose per ml of outflow. The 

area under the curve (AUC) and area under the moment of the curve (AUMC) are calculated 

using the following equations: 
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*t is the sample collection time in seconds. 

 

The mean transit time (MTT) was estimated from the ratio of the AUMC and AUC using the 

following equation: 

 

The value was corrected for the catheter and non-exchanging vessel transit time (t0), which was 

estimated from the first appearance of radioactivity above the background levels (Goresky and 

Silverman, 1964). 

 

The volume of distribution (V) for each substrate was determined from the MTT and the flow 

rate (Q) using the following equation: 

 

Hepatic extraction (E) and substrate recovery (R) from the experiment were determined from the 

AUC and flow rate (Q) by the following calculation: 
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2.2 LSEC ISOLATION 

 

2.2.1 Liver perfusion and digestion 

 

LSEC were isolated by perfusing the liver with Collagenase I (Roche, Basel, Switzerland), 

followed by removal of non-parenchymal cells and Kupffer cells as described previously 

(Svistounov et al., 2012). Rats were anaesthetised by an intraperitoneal (i.p.) injection of 2 

ml/kg ketamine (60 mg/ml) and xylazine (6 mg/ml). After laparotomy, the portal vein was 

cannulated with an 18 gauge cannula (Optiva K, Livingstone, Rosebery, Australia). Krebs-

Henseleit bicarbonate buffer (10 mM glucose, saturated with 95 % O2/5 % CO2, 2 % bovine 

serum albumin at 37 ºC) was perfused through the liver at a steady flow rate to remove the 

blood from the sinusoids. Livers were perfused with 100 ml collagenase (0.05 % 

collagenase in PBS) at approximately 5 ml per minutes or until the liver became soft. The 

liver was then carefully removed and placed in a sterile petri dish with perfusion buffer. 

Glisson’s capsule and major vessels were removed using sterile forceps, with subsequent 

gentle mincing of the liver into a paste. The cell suspension was filtered through a cell strainer 

(BD Biosciences, North Ryde, Australia) to remove any undigested tissue then centrifuged in a 

falcon tube at 100 g for 5 minutes at 20 ºC sedimenting most of the hepatocytes into a pellet at 

the bottom of the tube.  
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2.2.2 Cell isolation and culture 

 

The supernatant (containing a mixture of sinusoidal liver cells) was removed and centrifuged at 

350 g for 10 minutes, sedimenting LSECs into a pellet. The pellet was then resuspended in 

50 ml PBS and centrifuged for 10 minutes at 350 g. The resulting pellet was resuspended in 20 

ml PBS. Two 2-step Percoll gradients were made with 15 ml 50 % stock Percoll (in PBS) on 

the bottom layer, and 20 ml 25 % stock Percoll (in PBS) (Sigma Aldrich, Castle Hill Australia)  

on the layer above. 10 ml of the cell suspension was carefully added on top of each of the 

Percoll gradients and centrifuged for 30 minutes at 900 g. The resulting intermediate zone 

enriched in LSECs was carefully removed and diluted with an equal volume of PBS, then 

centrifuged again at 900 g for 10 minutes. The pellet was resuspended in 10 ml complete 

RPMI-1640 medium (Gibco Grand Island, NY). The cell suspension was then pipetted into 

uncoated sterile dishes and incubated for 10 minutes (37 ºC, 5 % CO2) to allow the selective 

attachment of Kupffer cells to plastic wells, enhancing LSEC purity. LSECs were then collected 

by firmly washing the dishes with complete RPMI-1640 to maximise the yield. After automated 

cell counting (Biorad, Gladesville, Australia), LSECs were cultivated at 1.0 × 10
6 

cells per ml in 

24-multiwell plates and on collagen-coated Thermanox coverslips for scanning electron 

microscopy. LSECs were cultured for 3 hours (37 ºC/5 % CO2) in 1 ml complete RPMI-1640 

per well/coverslip. Cells were rinsed in warm PBS prior to treatment. 
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2.3 ELECTRON MICROSCOPY 

 

The scanning electron microscope (SEM) has a resolving power of 2.5 nm and provides a three 

dimensional surface image of a specimen such as a cell or block of hepatic tissue. A focused 

electron beam is scanned across the surface of a prepared specimen under a vacuum. 

Morphological detail is collected as the electrons hit the specimen surface causing secondary 

electrons to be released from the specimen (inelastic collisions) and then collected by a detector. 

An image of the specimen is created according to the secondary electrons’ energy, number, and 

angle of their path. The image is then sent to a computer screen for viewing (Slayter, 1992). 

 

2.3.1 Tissue fixation 

 

To view the integrity of the liver endothelium in the animal models used, livers were prepared 

for scanning electron microscopy. At the completion of the multiple indicator dilution 

experiments, the livers were perfused-fixed via the portal vein with 2.5 % glutaraldehyde (EM 

grade)/2 % formaldehyde in sodium cacodylate buffer (0.1 M sodium cacodylate, 10 mM 

CaCl2, 1 % sucrose, pH 7.4, 440 mOsmol) as described previously (Cogger et al., 2006). 

Fixative was perfused through the liver continuously for approximately 5 minutes or until the 

liver was hardened, indicated by both pale colouration and tissue stiffness. Following fixation, 

the liver was excised and cut into 1 mm
3
 blocks. These blocks were placed in a specimen jar with 

fresh fixative and left overnight at 4 
o
C prior to subsequent processing.  
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2.3.2 Tissue preparation and processing 

 

Ten randomly selected blocks per liver were washed 3 times in 0.1 M sodium cacodylate buffer 

to remove any traces of fixative before incubation in 1 % tannic acid in 0.15 M sodium 

cacodylate buffer with 1 % sucrose for 1 hour. Blocks were then washed 3 times in sodium 

cacodylate buffer and post-fixed in 1 % osmium tetroxide in 0.1 M sodium cacodylate buffer 

(pH 7.4 with 1 % sucrose for 2 hours). The benefit of this step is twofold - osmium tetroxide 

provides superior lipid fixation to aldehyde fixatives and it saturates the tissue with heavy metal 

for better interaction with the electron beam. Following incubation, specimens were washed 3 

× 10 minutes each in sodium cacodylate buffer and then dehydrated in a series of increasing 

ethanol gradients: 3 × 50 % (5 minutes each), 3 × 70 % (5 minutes each), 3 × 95 % (5 minutes 

each), 2 × 100 % (10 minutes each) ethanol and finally 2 × 100 % ethanol (molecular sieve, 10 

minutes each). Specimens were treated with hexamethyldisilazane (Sigma Aldrich, Castle Hill 

Australia) for 10 minutes for complete drying of the tissue. Specimens were left in the fume 

hood for 10 minutes to remove remaining hexamethyldisilazane and placed in a desiccator 

overnight. Specimen blocks were then mounted onto SEM stubs using double sided carbon tape, 

and platinum coated with an autofine coater (JFC 1600, JEOL, Akishima-Shi, Japan), under 

argon (45 secs at 40 mV).  

 

2.3.3 Tissue visualisation 

 

Images of the sinusoidal endothelium were observed at 15000 × magnification for visualization 

of fenestrations. Fig. 2.1 shows an example LSEC image with fenestrations. Ten random images 
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were taken for analysis using ImageJ software (http://rsb.info.nih.gov/ij/) to determine 

endothelial porosity, average fenestration diameter and frequency. Endothelial porosity (area of 

the endothelial surface covered with fenestrations) is calculated by dividing the total area of the 

individual fenestrations in the selected field divided by the total area of the field examined. 

Fenestration frequency is the total number of fenestrations in the total area of the field examined 

(Cogger et al., 2014).  

 

 

 

Figure 2.1: An example of image of the fenestrated LSEC taken using JEOL JSM-6380 

scanning electron microscope for porosity analysis 

 

http://rsb.info.nih.gov/ij/)
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2.4 LIGHT MICROSCOPY 

 

Light microscopy was performed to ensure overall tissue integrity and the absence of liver 

pathologies in all animals used for the experiments contained in this thesis. 

 

2.4.1 Tissue fixation and preparation 

 

At the completion of each experiment, pieces of liver were fixed in 4 % paraformaldehyde 

buffered saline overnight, dehydrated with ethanol, cleared in xylene and finally embedded in 

paraffin for light microscopy. Paraffin embedded liver specimens were cut at 4 µm, mounted 

on glass slides, then subjected to the staining technique of interest as discussed below. 

 

2.4.2 Tissue staining 

 

For staining slide mounted sections were cleared of paraffin and rehydrated to allow affinity for 

specific dyes. Following staining, they were again dehydrated with ethanol and cleared with 

xylene before mounted with mounting media (Pertex, Histolab AB, Canning Vale Australia). 2 

stains were used in the experiments as follows: 
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Hematoxylin and eosin 

 

Hematoxylin and eosin (H & E) is a stain routinely used to view the general pathology of the 

specimen. Hematoxylin stains cell nuclei (chromatin) blue, and eosin stains the cytoplasm and 

connective tissues different shades of pink, orange, and red, and red blood cells intensely red. 

 

Periodic acid-Schiff 

 

The periodic acid-Schiff (PAS) reaction is used to visualise glycogen, basement membranes, 

and neutral mucosubstances. Oxidation with periodic acid exposes the aldehyde groups in 

sugars that subsequently react with the chromophores in Schiff’s reagent, producing a bright 

pink colour. A basic stain such as Harris’ Hematoxylin is used as a counterstain to stain the cells 

blue. 

 

2.4.3 Tissue observation 

 

Once mounting media had completely dried, slides were viewed using EVOS FL Imaging system 

(Life Technologies, Wembley Australia) using bright field illumination. Pictures were taken at 

40 × magnification.  
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2.5 FLUORESCENCE MICROSCOPY 

 

Fluorescent labelling was used to visualise cell membranes and lipid rafts (Cogger et al., 2010, 

Svistounov et al., 2012). It is not able to be used to assess fenestrations because there are no 

fluorescent markers of fenestrations, and the pores are too small to be resolved by standard light 

microscopy. 

 

2.5.1 Cell fixation 

 

Following culture and treatment, cells were washed with PBS and fixed in 4 % 

paraformaldehyde buffered saline for 2 hours and then kept in PBS prior to staining.  

  

2.5.2 Cell staining and observation 

 

Cells on coverslips were stained with Cell-Mask Orange (Life Technologies, Wembley 

Australia), a non-specific cell membrane stain (554/567 nm), and Bodipy FL C5 ganglioside 

GM1 (505/511 nm) (Life Technologies, Wembley Australia) which stains ordered lipid 

microdomains of membranes, also known as lipid rafts. Cells were washed and fixed with 4 % 

fresh paraformaldehyde in PBS. The coverslip were mounted using Prolonged-Gold (Life 

Technologies, Wembley Australia) to preserve fluorescent signal. The cells were then imaged 

with red and green channels predetermined for each staining and convolved using Zeiss Wide-

field fluorescence deconvolution microscope/Sen Software package. Experiments were 

performed in triplicate. 
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2.6 PROTEIN ANALYSIS 

 

Levels of proteins and phosphorylated proteins associated with insulin signaling pathways was 

assessed using mass spectrometry performed at the Charles Perkins Centre by the laboratory of 

Professor David James and western blotting.  

 

2.6.1 Proteomic analysis via mass spectrophotometry 

 

Rat liver tissue was collected following the MID procedure was solubilised in SDS/Tris buffer in 

the presence of phosphatase and kinase inhibitors prior to protein precipitation. Following tryptic 

digestion, 250 µg of peptide was labelled with one of four isobaric tags (iTRAQ, Sciex) prior to 

phosphoproteomic enrichment (Jensen et al., 2009, Engholm-Keller et al., 2012). This 

enrichment generated three peptide populations, singly and multiply phosphorylated peptides (11 

fractions); and non-modified peptides (16 fractions). Identification and quantitation of 

phosphorylated and non-phosphorylated peptides was performed on an Orbitrap Velos Pro mass 

spectrometer in data dependent acquisition (DDA) mode. All experiments were performed in 

duplicate. Data was analysed using Proteome Discoverer (Version 1.4; Thermo) and searched 

using an in-house MASCOT server against the UniProt mus musculus database with the 

following parameters; 2 missed cleavages; 20 ppm mass error (MS) and 0.2 Da mass error 

(MS/MS); iTRAQ searched as a static modification; carbamidomethyl (Cys), oxidation (Met), 

acetylation (Protein N-term) and cyclization (Glu and Asp) as dynamic modifications. A false 

discovery rate of 0.05 was applied to phosphopeptides, with a stricter 0.01 FDR applied to the 

non-modified cohort. For analysis of MS data, normalization of iTRAQ reporter ions was 
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calculated using the sum all intensities approach combining both phosphorylated and non-

phosphorylated peptide spectral matches (PSM), prior to ratio calculations using young as the 

denominator for old. Log2 ratios and z-scores were calculated for each PSM, with z-scores 

determined using a sliding scale based on MS signal intensity (a measure of MS/MS data 

quality). Median z-scores were calculated with weighted average used to compare medians 

across experiments for each phosphosite (phosphoproteome enriched), peptide and protein (non-

phosphorylated only). To be deemed significantly altered, median z-scores were required to be 

greater than 1.00 or less than -1.00 for phosphosites. Median z-scores for each non-

phosphorylated peptide were calculated preceding determination of protein z-scores. For a 

protein to be deemed significantly altered, median z-scores >1.96 or <-1.96, equivalent to p 

values of <0.05 were required. Bioinformatic analysis was performed to reveal pathways 

associated with ageing using STRING (Jensen et al., 2009, Franceschini et al., 2013, Szklarczyk 

et al., 2011) and KEGG (Kanehisa and Goto, 2000, Kanehisa et al., 2014) pathway analysis.  

 

2.6.2 Western blotting 

 

Protein immunoblotting is a method used to measure relative amounts of proteins of interest 

between samples. Frozen liver tissue samples collected after the MID procedure were 

homogenised (Qiagen TissueLyser, Chadstone Australia) in RIPA buffer containing Tris-HCl, 

NaCl, Triton x-100, Na-deoxycholate, SDS (Sigma Aldrich, Castle Hill Australia) and protease 

inhibitor tablets (cOmplete, EDTA-free Protease Inhibitor Cocktail, Roche, Castle Hill 

Australia). Protein concentrations were determined using the BCA method (Pierce BCA Protein 

Assay Kit, Thermo Scientific, Scoresby Australia). 20 µg of protein was separated on 4-15 % 



71 

 

gradient mini-protean TGX gels (Bio-Rad, Gladesville Australia) and transferred to a 

nitrocellulose membrane (Trans-Blot Turbo, BioRad, Gladesville Australia). The membranes 

were blocked for 1 hour (5 % skim milk in TBS), washed in TBS 0.1 % Tween-20 and incubated 

overnight in primary antibody solution (5 % BSA, TBS 0.1 % Tween 20). Washed membranes 

were incubated for one hour in secondary antibody solution (5 % skim milk in TBS 0.1 % 

Tween, 0.01 % SDS). Probed membranes were analysed on a Licor odyssey system (Millenium 

Science, Mulgrave Australia) and densitometry analysis was measured using Licor software 

(Version 3.1).  

 

Antibodies against the following proteins were used: phospho-IRS-1 (Ser612, Cat#2386), IRS-1 

(Cat#2382), phospho-AKT (Ser473, Cat#9271), AKT (Cat#4691), and α-tubulin as 

housekeeping protein (Cat#2144) (Cell Signaling Technology, Arundel, Australia).  

 

2.7 METABOLIC VARIABLES 

 

2.7.1 Blood analysis 

 

Prior to liver perfusion, approximately 1 ml blood was taken from the inferior vena cava (IVC) 

and transferred into an EDTA tube. Blood was spun at 1500 rpm for 10 minutes at 4 
o
C. The 

plasma was transferred into a clean tube and stored at -20 ˚C. Analysis of lipid and liver function 

tests was performed by the Biochemistry Department, Diagnostic Pathology Unit, Concord RG 

Hospital, using the automated Roche Diagnostics Modular Analytics Serum Work Area (F. 

Hoffman-La Roche Ltd, Hawthorn Australia).  
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2.7.2 Glucose tolerance and tracer uptake  

 

This method was performed as described previously with modifications (Cooney et al., 2004). 

Animals were fasted for 6 hours, followed by administration of glucose (2 g/kg i.v.) spiked with 

10 µCi 
14

C-glucose for assessment of insulin storage action in liver, fat and muscle and 10 µCi 

3
H-2-deoxyglucose for assessment of glucose uptake in fat and muscle. This procedure was done 

under anaesthesia for rats and using restrainer for mice. It should be noted that 
3
H 2-

deoxyglucose is not a substrate for liver uptake and metabolism. After 15, 30, 45, 60 and 90 

minutes, glucose levels were measured with a handheld glucose meter (Accu-Check Performa, 

Roche, Hawthorn Australia). At 90 minutes, animals were sacrificed and liver, adipose tissue and 

quadriceps muscle were excised, weighed and either snap frozen in liquid nitrogen or placed in 4 

% phosphate buffered paraformaldehyde, dehydrated and embedded in paraffin for histology. 

Blood was collected at 0 (fasted) and 90 minutes (fed) to determine insulin levels (Rat 

Ultrasensitive Insulin ELISA, Alpco Diagnostics, Kurnell Australia), c-peptide levels (Rat C-

peptide ELISA, Alpco Diagnostics, Kurnell Australia) and glucagon levels (Sigma Aldrich, 

Castle Hill , Australia). This procedure was done under anaesthesia for rats and using restrainer 

for mice. 

 

2.7.3 Insulin uptake 

 

Whole body insulin extraction was performed in another batch of rats, where 
14

C-insulin (1 

µCi/g) was injected via the inferior vena cava of anesthetised animals. Five minutes later the 
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animals were exsanguinated by cardiac puncture and in addition to the blood, the liver, white 

adipose tissue (WAT) and muscle tissue were collected for measurement of 
14

C-insulin.  

 

2.7.4 Tissue processing for tracer uptake 

 

To determine the incorporation of 
14

C-labelled glucose to glycogen, liver, muscle and adipose 

tissue were digested in potassium hydroxide (KOH) (Sigma Aldrich, Castle Hill , Australia) at 70 

ºC, followed by addition of saturated NaSO4 (Sigma Aldrich, Castle Hill , Australia) and 

precipitated with 95 % ethanol for liquid scintillation counting. The amount of 
14

C glucose 

incorporated into glycogen was calculated by correcting for the area under the curve for 
14

C-

glucose during GTT and for the weight of the tissue sample used. Tissue 
3
H-2-deoxyglucose 

uptake was determined by homogenizing in 0.5 % perchloric acid (PCA) (Sigma Aldrich, Castle 

Hill, Australia) and homogenates were centrifuged and neutralised with KOH. One aliquot was 

counted directly to determine total radioactivity
 
(

3
H-2-deoxyglucose and 

3
H-2-deoxyglucose-6-

phosphate). A second aliquot was treated with barium hydroxide (BaOH) and zinc sulfate 

(ZnSO4) (Sigma Aldrich, Castle Hill , Australia) to remove 
3
H-2-deoxyglucose-6-phosphate and 

any tracer incorporated into glycogen, and then was counted to determine 
3
H-2-deoxyglucose 

radioactivity. Total 
3
H-2-deoxyglucose-6-phosphate is the difference between the two aliquots 

and normalised to tissue weight. Blood samples were deproteinised using BaOH and ZnSO4 to 

quantify plasma radioactivity by liquid scintillation counting. Tissue specific glucose uptake 

index, Rg was calculated using the following equation: 
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2.7.5 Insulin tolerance 

 

Insulin tolerance tests were performed after a 3 hours fast. Insulin (1.5 IU kg
-1

 body weight) 

(Sigma Aldrich, Castle Hill , Australia) was administered via i.p. injection and blood glucose 

levels were read using a handheld glucose meter (Accu-Check Performa, Roche, Hawthorn 

Australia) through tail bleeds at 0, 15, 30, 60 and 90 minutes.  

 

2.7.6 Pyruvate tolerance 

 

Animals were fasted for 6 hours prior to an i.p injection of pyruvate (2 g/kg; Sigma Aldrich, 

Castle Hill, Australia) and glucose levels were read using a handheld glucose meter (Accu-Check 

Performa, Roche, Hawthorn Australia) through tail bleeds at 0, 15, 30, 60 and 90 minutes. Total 

AUC was calculated using the trapezoidal formula. 

 

2.8 REVERSE TRANSCRIPTION AND QUALITATIVE REAL TIME PCR ARRAY 

ANALYSIS 

 

Total RNA was isolated from frozen liver tissue samples using RNeasy Plus Mini Kit (Qiagen 

Pty Ltd, Chadstone, Australia) according to the manufacturer’s instruction, with DNase treatment 

included. RNA quantification was performed using a Nanodrop  (Thermofischer, Wilmington, 

DE, USA) and samples with OD>2.0 were selected for subsequent step. Reverse transcription of 

1 µg of total RNA was carried out using RT
2
 First strand kit (Qiagen Pty Ltd, Chadstone, 

Australia). The cDNA was then added to the RT
2
 SYBR green qPCR mastermix, loaded onto 96-
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well RT
2
 Profiler PCR array plate (PARN-030-ZD, Qiagen Pty Ltd, Chadstone, Australia) and 

amplified on Biorad CFX Connect Real Time PCR Detection system (Roche Diagnostics, 

Hawthorn Australia) for 40 cycles. PCR array data was analysed according to the manufacturer’s 

instructions. Relative gene expression was determined using the ∆∆Ct method normalised against 

five housekeeping genes (Actb, B2m, Hprt1, Ldha and Rplp1) and changes in gene expression 

were shown as a fold increase or decrease compared to control group.  

 

2.9 STATISTICAL ANALYSIS  

 

All statistical analysis was performed using SigmaStat Statistics Software (Sigmaplot v12.5, 

Systat Software, Germany) unless specifically stated. Data are presented as the mean ± standard 

error of the mean (SEM). Statistical significance for the differences between two groups (e.g. 

young and old) was calculated using two-tailed Students T test. Correlations between two 

measures were calculated using the Pearsons Product Moment correlation coefficient. Statistical 

significance was assumed at p<0.05. 
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CHAPTER 3: AGE-RELATED DEFENESTRATION AND HEPATIC INSULIN AND 

GLUCOSE DISPOSITION 

 

Chapters 3 and 4 have been combined for the following publication: 

Mohamad, M., S. J. Mitchell, L. E. Wu, M. Y. White, S. J. Cordwell, J. Mach, S. M. Solon-Biet, 

D. Boyer, D. Nines, A. Das, S. Y. Catherine Li, A. Warren, S. N. Hilmer, R. Fraser, D. A. 

Sinclair, S. J. Simpson, R. de Cabo, D. G. Le Couteur and V. C. Cogger (2016). "Ultrastructure 

of the liver microcirculation influences hepatic and systemic insulin activity and provides a 

mechanism for age-related insulin resistance." Aging Cell 15(4): 706-715. 
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3.1 INTRODUCTION 

 

Insulin resistance, characterised by elevated basal and stimulated levels of insulin, is inextricably 

associated with older age (Fink et al., 1983, Oya et al., 2014). The liver is the key target organ 

for insulin activity and under normal physiological conditions the entire output of endogenous 

insulin from the pancreas travels through the liver vasculature before entering the systemic 

circulation (Izzo and Bartlett, 1969). Once it has entered the liver parenchyma, most likely 

through the liver sinusoidal endothelial cells (LSEC) fenestrations, insulin regulates a myriad of 

metabolic processes such as glycogen storage, gluconeogenesis and fatty acid synthesis. The 

primary role of the liver in the development of insulin resistance is demonstrated by the fact that 

insulin resistance occurs in liver-specific insulin receptor knockout mice (Fisher and Kahn, 

2003), but not in muscle-(Brüning et al., 1998) or fat-(Bluher et al., 2002) specific insulin 

receptor knockout mice. Further evidence comes from the observation that glucose intolerance 

that occurs during the early stages of high fat feeding is due to the development of insulin 

resistance in the liver before other tissues develop metabolic changes (Turner et al., 2013). 

Hyperinsulinemia and insulin resistance are common conditions associated with altered liver 

function, particularly those associated with structural changes in the liver endothelium such as 

old age and liver disease (Chai et al., 2014, Kotronen et al., 2007, Takamura et al., 2012, 

Kawaguchi et al., 2011, Fink et al., 1983, Bose and Ray, 2014, Taguchi et al., 2014, Muller et al., 

1992). 

 

The transfer of insulin across the endothelium is the rate limiting step for the uptake and action 

of insulin in muscle and fat (Majumdar et al., 2012, Sandqvist et al., 2011). Despite its important 
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impact on the disposition of many other substrates, the effect of the endothelium on insulin 

activity in the liver has largely been overlooked (Fraser et al., 1995, Cogger et al., 2006, Cogger 

and Le Couteur, 2009). As discussed in Chapter 1, the main endothelial cells in the liver are the 

LSECs, which are specialised endothelial cells that line the wall of the hepatic sinusoid. The thin 

cytoplasmic extensions of LSECs are perforated with fenestrations that are non-diaphragmed, 

transcellular pores 50-150 nm in diameter. Between 2-20% of the surface of the LSECs are 

covered by fenestrations clustered into groups called liver sieve plates (Cogger and Le Couteur, 

2009, Fraser et al., 1995, Wisse et al., 1985). These ultrastructural features facilitate transfer of 

plasma and small particulate substrates between the blood and the hepatocytes. Under normal 

conditions, LSECs are a highly efficient ultrafiltration system; therefore the influence of 

fenestrations on liver function is mostly seen in diseases and old age where their diameter and 

frequency are diminished (Cogger and Le Couteur, 2009, Cogger et al., 2006, Fraser et al., 

2012).We propose that fenestrations also provide a portal for the hepatic uptake, and subsequent 

clearance and activity of insulin, and that the loss of fenestrations, such as that which occurs with 

old age, provides a novel mechanism for hepatic insulin resistance. Such a discovery would have 

considerable clinical significance as it provides a novel mechanism for the insulin resistance seen 

in ageing and with liver diseases where there is a reduction in fenestrations (Le Couteur et al., 

2001, Cogger et al., 2006, Furrer et al., 2011). 

 

In this study the role of age-related pseudocapillarisation in hepatic insulin resistance has been 

examined; in particular the effects of loss of fenestrations on the disposition and activity of 

insulin in the liver and systemically. Defenestration seen in old age has been shown to impair the 

transendothelial transfer and hepatic clearance of several substrates including lipoproteins, 
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acetaminophen and diazepam (Cogger et al., 2006, Mitchell et al., 2010, Mitchell et al., 2012, 

Mitchell et al., 2011). Therefore, the aim of this study was to investigate the role of LSEC 

fenestrations in the hepatic disposition and action of insulin.  
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3.2 METHODS 

 

3.2.1 Animals 

 

Male Fischer 344 rats (for MID methodologies) and male C57/Bl6 mice (for metabolic 

parameter assessments) aged 3 months (young) and 24-27 months (old) were obtained from the 

National Institutes of Ageing (Baltimore, MD). Due to limited availability of older rats and the 

technical limitations of the liver perfusion studies are, rats were prioritised for the MID studies 

and mice were used for the remaining in vivo studies. The animals were allowed free access to 

water and standard chow. All animals were treated in accordance with Animal Care guidelines. 

This study was approved by the Animal Care and Users Committee of the National Institute on 

Ageing, National Institutes of Health (protocol number: 429-TGB-2017).  

 

3.2.2 Liver perfusion and multiple indicator dilution method 

 

This procedure was performed as described in Sections 2.3.2 and 2.3.3. Briefly the young and 

old F344 rats were weighed and anaesthetised and liver was perfused with Krebs buffer followed 

by a tracer injectates of either: (1) 
3
H-sucrose and 

14
C-insulin or (2) 

3
H-sucrose and 

14
C-glucose. 

Analysis for 
14

C and 
3
H specific activity from outflow samples was performed in a Packard 

1600TR liquid scintillation counter and data were used to generate dose-normalised outflow 

curves. The area under the curve (AUC), area under the moment of the curve (AUMC), mean 

transit time (MTT) and recovery of each indicator were determined. 
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3.2.3 Scanning electron microscopy 

 

At the completion of MID experiments, liver specimens were perfusion-fixed with 3 % 

glutaraldehyde/2 % paraformaldehyde in 0.1 M sodium cacodylate buffer and processed for 

scanning electron microscopy as described in Section 2.4.5. Fenestrations of the liver 

endothelium were examined using a Jeol 6380 Scanning electron microscope at 15000X 

magnification. Ten random images of sinusoids per sample were taken for each liver at 15000X 

for analysis of fenestration diameter and porosity using ImageJ software (1.41 NIH, USA) as 

described in Section 2.4.5.4. 

 

3.2.4 Metabolic parameters 

 

3.2.4.1 Glucose tolerance and tracer uptake 

 

Young and old C57/Bl6 mice were fasted for 6 hrs, followed by administration of glucose (2 

g/kg i.v.) spiked with 10 µCi 
14

C-glucose for assessment of insulin action in liver, fat and muscle 

and 10 µCi 
3
H-2-deoxyglucose for assessment of glucose uptake in fat and muscle as described 

in Section 2.6.2. 
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3.2.4.2 Insulin uptake 

 

Whole body insulin extraction was performed in another group of young and old mice, where 

14
C-insulin (1 µCi/g) was injected via the inferior vena cava of anesthetised animals as described 

in Section 2.6.3.  

 

3.2.4.3 Tissue processing for tracer uptake 

 

Incorporation of radiolabelled glucose to glycogen, 
3
H-2-deoxyglucose uptake and 

14
C-insulin 

uptake were determined using the mice liver from Sections 3.2.4.1 and 3.2.4.2 according to 

methods as described in Section 2.6.4.  

 

3.2.4.4 Insulin tolerance 

 

Young and old C57/Bl6 mice were fasted for 3 hrs followed by insulin injection (1.5 IU/kg i.p.) 

and glucose levels were read using a handheld glucose meter as described in Section 2.6.5.  

 

3.2.4.5 Pyruvate tolerance 

 

A fourth cohort of young and old C57/Bl6 mice were fasted for 6 hours prior to an i.p injection 

of pyruvate (2 g/kg; Sigma Aldrich) and glucose levels were read using a handheld glucose 

meter as described in Section 2.6.6.  



83 

 

3.2.5 Histology 

 

Liver tissue from mice described in Section 3.2.4.1 was fixed in 4% paraformaldehyde, paraffin 

embedded, sectioned and subjected to H&E and PAS staining, followed by observation as 

described in Section 2.3.2. 

 

3.2.6 Reverse transcription and quantitative real time-PCR array analysis 

 

Total RNA was isolated from frozen rat liver tissue samples using a RNeasy Plus Mini Kit 

(Qiagen Pty Ltd, Chadstone, Australia), followed by subsequent reverse transcription and real 

time-PCR as described in Section 2.8.  

 

3.2.7 Proteomic studies 

 

3.2.7.1 Mass Spectrometry 

 

This procedure was performed as described in Sections 2.6.1. Briefly rat liver tissue from the 

MID procedure was solubilised in SDS/Tris buffer in the presence of phosphatase and kinase 

inhibitors prior to protein precipitation. Following tryptic digestion, 250 µg of peptide was 

labeled with one of four isobaric tags (iTRAQ, Sciex) prior to phosphoproteomic enrichment 

(Jensen et al., 2009, Engholm-Keller et al., 2012). Identification and quantitation of 

phosphorylated and non-phosphorylated peptides was performed on an Orbitrap Velos Pro mass 

spectrometer in data dependent acquisition (DDA) mode. All experiments were performed in 
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duplicate. Data was analysed using Proteome Discoverer (Version 1.4; Thermo) and searched 

using an in-house MASCOT server against the UniProt mus musculus database, which is the 

closest one to rat available.  For analysis of MS data, normalization of iTRAQ reporter ions was 

calculated using the sum all intensities approach combining both phosphorylated and non-

phosphorylated peptide spectral matches (PSM), prior to ratio calculations using young as the 

denominator for old. Bioinformatic analysis was performed to reveal pathways associated with 

ageing using STRING (Jensen et al., 2009, Franceschini et al., 2013, Szklarczyk et al., 2011) and 

KEGG (Kanehisa and Goto, 2000, Kanehisa et al., 2014) pathway analysis.  

 

3.2.7.2 Western Blots 

 

This procedure was performed as described in Sections 2.6.1. Briefly frozen liver tissue samples 

collected after the MID procedure were homogenised in RIPA buffer containing Tris-HCl, NaCl, 

Triton X-100, Na-deoxycholate, SDS (Sigma Aldrich) and protease inhibitor tablets. Protein 

concentrations were determined using the BCA method (Pierce BCA Protein Assay Kit, Thermo 

Scientific). The protein extract were subjected to immunoblotting according to protocol as 

described previously (Hoehn et al., 2008). Antibodies against the following proteins were used: 

phospho-AKT (Ser473, Cat#9271), AKT (Cat#4691) and α-tubulin (Cat#2144) (Cell Signaling 

Technology, Arundel, Australia).  
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3.2.8 Data analysis 

 

Data analysis was performed using Microsoft Excel. All values are expressed as the mean ± 

SEM. Statistical significance was calculated using two-tailed Students T-test and Pearson’s 

Product Moment correlation coefficient (Sigmaplot v11, Systat Software, Germany). 

 



86 

 

3.3 RESULTS 

 

3.3.1 Histology and Electron Microscopy 

 

Post mortem examination of the whole animal and haematoxylin and eosin staining of liver 

sections from the old and young animals confirmed all animals included in the study were free of 

gross and liver pathology (Fig. 3.1). 

 

Figure 3.1: Haematoxylin and Eosin staining of young (a) and old (b) Fischer F344 rats. No 

signs of pathology were found in both liver groups. 

 

Scanning electron microscopy (Fig. 3.2) was performed to confirm age-related defenestration of 

the LSEC that has been described previously in many species including rats, mice and humans. 

LSEC morphology was analysed as described in Table 3.1 and an age-related reduction in 

porosity was found. These findings are consistent with previous studies (Le Couteur et al., 2001, 

Le Couteur et al., 2008a). 
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Figure 3.2: Representative Scanning electron micrographs of the perfused LSEC in young (a) 

and old (b) Fischer F344 rats. Fenestrations are indicated by an *. Significant defenestration is 

observed with age. Original micrographs taken at 15000 × magnification. 

 

Table 3.1: Quantification of the fenestrations in LSECs. There is a significant decrease in liver 

porosity (P=0.006), but no change in the fenestration diameter in the old group. Data is presented 

as mean ± SEM. 

 

Animal group n Porosity (%) Diameter (nm) Frequency 

(per um
2
) 

Young 5 4.88±0.5 96.4±0.6 4.72±0.4 

Old 5 2.64±0.2* 73.2±0.4 4.03±0.2 
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3.3.2 Age-related pseudocapillarisation impairs the access of insulin, but not glucose to the 

extracellular space of the liver 

 

To establish a causal relationship between age, age-related defenestration of the liver 

endothelium and insulin resistance, MIDs were performed in young and old rats. Outflow insulin 

curves from the MID experiments are shown in Fig. 3.3.  

 

Figure 3.3: MID outflow curves for insulin and the extracellular marker sucrose (n=9 young and 

n=9 old). Insulin exits the liver after sucrose in young rats (a) whereas the order is reversed in the 

old animals (b) indicating restricted access to the entire extracellular space with age-related 

defenestration. 

 



89 

 

In young animals, the insulin curve overlaps the sucrose curve (Fig 3.3a), indicating that insulin 

has unimpeded access to the entire extracellular (‘sucrose’) space. However in old animals, the 

insulin curve appears earlier than the sucrose curve (Fig 3.3b), indicating that insulin has a 

smaller volume of distribution than sucrose. The recovery and apparent volume of distribution of 

insulin and tracers are shown in Table 3.2. There was no difference in the recovery of Evans 

Blue or sucrose between the age groups.  

 

Table 3.2: The effect of age on recovery and volume of distribution (Vd) of Evans blue, insulin 

and sucrose. 

 

 

  Young (n=9) Old (n=9) 

Fractional recovery   

Evans blue 0.97±0.03 0.88±0.06 

Insulin 0.68±0.05 0.68±0.06 

Sucrose 0.73±0.05 0.76±0.05 

Vd (ml/g)   

Evans blue 0.26±0.04 0.28±0.02 

Insulin 0.28±0.04 0.28±0.01 

Sucrose 0.26±0.04 0.30±0.02 

Ratio   

Insulin/Evans blue 1.09±0.08 1.03±0.04 

Insulin/Sucrose 1.10±0.07 0.95±0.02 
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Analysis of the curves showed that old age was associated with a statistically significant 

reduction in the volume of distribution of insulin normalised to the extracellular marker sucrose 

volume of about 20 % (P=0.01, Fig. 3.4). 

 

 

Figure 3.4: Volume of distribution of insulin as a percentage of extracellular volume. There is a 

20 % reduction in the fractional volume of distribution of insulin with age (n = 9 young and 9 old 

F344 rats, P=0.01). 

 

Contrary to insulin, there was no difference in the appearance of the glucose and sucrose curves 

for young and old, indicating a similar distribution (Fig 3.5a-b). Analysis of the curves for 

recovery and volume of distribution are shown in Table 3.3. There was no difference in the 

recovery of Evans Blue, glucose or sucrose between both groups. The ratio of volume of 
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distribution of glucose compared to Evans Blue and sucrose was not influenced by age (p=0.07, 

Fig 3.6). 

 

 

 

Figure 3.5: Average MID outflow curves for glucose and the extracellular marker sucrose. Both 

the young (a) and old (b) glucose curves are delayed compared to sucrose, consistent with its 

access to extracellular and intrahepatocytic spaces; however there was no difference in the 

glucose appearance between young and old groups.  
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Figure 3.6: Volume of distribution of glucose as a percentage of extracellular volume. There 

were no differences in the fractional volume of distribution of glucose with age, (n = 9 young 

and n = 10 old F344 rats). 
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Table 3.3: The effect of age on recovery and volume of distribution (Vd) of Evans blue, glucose 

and sucrose 

 

  Young (n=9) Old (n=9) 

Fractional recovery   

Evans blue 1.00±0.03 0.88±0.10 

Glucose 0.70±0.03 0.76±0.07 

Sucrose 0.85±0.04 0.79±0.08 

Vd (ml/g)   

Evans blue 0.36±0.04 0.32±0.05 

Glucose 0.58±0.08 0.55±0.07 

Sucrose 0.40±0.05 0.34±0.04 

Ratio   

Glucose/Evans blue 1.57±0.16 1.86±0.26 

Glucose/Sucrose 1.41±0.05 1.65±0.22 
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3.3.3 Metabolic parameters 

 

3.3.3.1 Insulin levels and systemic metabolism 

 

As a consequence of reduced hepatic uptake of insulin, the basal insulin concentrations were 

significantly increased in the old mice, both in the fasted and fed states when compared to their 

younger counterparts (Fig 3.7a). C-peptide levels were unchanged in the old group during the 

fasted state (Fig. 3.7b), indicating that hyperinsulinemia is established through reduced clearance 

of insulin by the liver rather than increased pancreatic insulin secretion. In the fed state, C-

peptide levels increased significantly with age, suggesting that increased insulin secretion is 

required to maintain glucose tolerance with age. Glucagon levels were significantly lower in the 

old, compared to the young mice, when fasting (Fig. 3.7c).  

 

To determine if age is associated with only impaired liver insulin uptake hepatic, systemic 

insulin uptake was also measured using an intravenous dose of 
14

C-insulin. Although 

intraperitoneal insulin tolerance performance was similar between groups (Appendix 1), insulin 

uptake by the liver was reduced by about 30 % in 24 month old C57/Bl6 mice, but unchanged in 

fat and muscle (Fig. 3.7d).  
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Figure 3.7: (a) Fasting and fed insulin levels were significantly elevated with age in C57/Bl6 

mice (n = 6 young and 5 old C57/Bl6 mice, P < 0.05). (b) C-peptide levels were significantly 

elevated with age in the fed state (n = 4 young and 5 old C57/Bl6 mice, P = 0.02) and (c) 

Glucagon levels were supressed in the fasting state in old mice (n = 6 young and 5old C57/Bl6 

mice, P = 0.02). (d) 
14

C labelled insulin uptake by the liver was significantly reduced with age, 

but remained constant in muscle and fat (n = 10 young and 10 old C57/Bl6 mice, P < 0.05). 
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3.3.3.2 Glucose tolerance and tracer uptake 

 

Despite impaired hepatic insulin uptake associated with defenestration, glucose tolerance tests 

conducted on the 3 month and 24 month old mice showed no impairment with age and in fact 

tended to be lower (Fig. 3.8a).  

 

However, because of the very high insulin levels, the homeostatic model assessment index for 

insulin resistance (HOMA-IR), which is calculated from the fasting glucose-insulin product, was 

increased by more than two-fold in the old mice, indicating insulin resistance (Fig. 3.8b). 

 

To further determine which tissues were contributing to the insulin resistance, 
14

C-glucose and 

3
H-2-deoxyglucose and were administered during glucose tolerance tests and the uptake 

measured in muscle, white adipose tissue (WAT) and liver. The clearance of 
14

C-glucose into 

glycogen was significantly reduced in liver but this was associated with a trend for an increase in 

muscle clearance (Fig 3.9a). In addition, there was significant increase in 
3
H 2-deoxyglucose 

uptake, which is not a substrate for liver uptake and metabolism, in both muscle and fat with age 

(Fig 3.9b). The data indicate that the reduction in hepatic glucose uptake and hyperinsulinemia is 

associated with a compensatory age-related increase in glucose uptake in muscle and fat (as well 

as depleted glycogen stores, see below), thereby normalising the glucose tolerance test.  
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Figure 3.8: (a) Glucose tolerance was maintained in the hyperinsulinemic state seen with age in 

the C57/Bl6 mice (n = 8 young and 5 old C57/Bl6 mice). (b) The HOMA index was significantly 

increased with age reflecting the high insulin levels required with age to maintain glucose 

homeostasis (n = 6 young and 5 old C57/Bl6 mice, P = 0.03).  
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Figure 3.9: (a) There is a significant reduction in incorporation of 
14

C labelled glucose into 

glycogen (P < 0.05) and a trend towards increased incorporation into glycogen by muscle and fat 

with age (n = 8 young and n = 5 old C57/Bl6 mice). (b) 
3
H-2-deoxyglucose uptake into fat and 

muscle was significantly increased with age (n = 8 young and n = 5 old C57/Bl6 mice, P < 0.05). 

 

Consistent with the selective impact of age-related defenestration on hepatic insulin sensitivity, 

hepatic glycogen storage measured by PAS staining showed a marked reduction in glycogen in 

the old animals (Fig. 3.10).  
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Figure 3.10: PAS staining of the liver in young (a) and old (b) mice showing significantly 

reduced glycogen storage with age (n = 8 young and n = 5 old mice). 

 

3.3.3.3 Pyruvate tolerance 

 

We also performed a pyruvate tolerance test (Fig. 3.11) to examine the impact of age on insulin-

mediated inhibition of gluconeogenesis. Old age was associated showed a lower conversion of 

pyruvate to glucose. Although initially surprising, this is consistent with the observation that in 

rodents, some of the effects of insulin on hepatic gluconeogenesis are mediated via the brain, 

rather than a direct effect on hepatocytes (Rojas and Schwartz, 2014). Therefore age-related 

hyperinsulinemia will drive brain-mediated inhibition of gluconeogenesis even though its direct 

hepatic activity is reduced. 
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Figure 3.11: Pyruvate tolerance tests revealed impaired gluconeogenesis in the hyperinsulinemic 

setting seen with age (n = 8 young and n = 8 old C57/Bl6 mice, P = 0.003). 

 

3.3.4 Reverse transcription and quantitative real time-PCR array analysis 

 

To identify gene expression that might be altered by ageing, a quantitative RT-PCR (qRT-PCR) 

screening array for 84 key genes in the insulin signaling pathway was conducted (Appendix 2). 

Gene expression profiles showed no changes in insulin signaling pathway genes with age. Fatty 

acid synthase, a protein responsible for fatty acid synthesis was the only gene in this panel shown 

to be downregulated with age in the liver (p=0.02). 
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3.3.5 Proteomic studies 

 

Western blot analysis revealed that phosphorylation of the hepatocellular insulin receptor 

substrate AKT was reduced in the old mice (Fig. 3a-b). To  further probe phosphoprotein 

changes we utilised a large-scale, unbiased phosphoproteomic approach and liquid 

chromatography coupled to tandem mass spectrometry (LC-MS/MS) to identify changes in 

protein and phosphopeptide abundances, which enabled signal pathway mapping in liver tissues 

from young and old mice. LC-MS/MS of phosphopeptide-enriched samples identified 7,208 sites 

of phosphorylation (n=5,156 phosphopeptides from n=2,400 proteins), of which 1,580 were 

statistically significantly altered in abundance (z-score <-1.00 or >+1.00; Appendix 3). Non-

phosphorylated peptides from the same samples were also identified and revealed only 281 

proteins (z-score <-1.96 or >+1.96; Appendix 3) that were significantly altered in abundance, 

confirming that the major changes at the biochemical level between young and old mouse livers 

were those associated with signaling. We next specifically examined the set of altered 

phosphopeptides and used functional cluster analysis to identify Kyoto Encyclopaedia of Genes 

and Genomes (KEGG) pathways associated with ageing in the liver. Functional clusters 

contained within this dataset were compared against the mouse genome to determine their over-

representation compared to background. The most over-represented KEGG pathways were ErbB 

(p-value 9.77 e
-9

), neurotrophin (4.10 e
-7

), GnRH (4.27 e
-7

), MAPK (7.96 e
-7

) and insulin (1.05 e
-

6
) signaling. The diversity of these pathways reflects the likely multifactorial nature of ageing, 

however changes associated with insulin signaling are consistent with reduced access of insulin 

to hepatocytes in old age. We next performed site-specific analysis of the phosphopeptides that 

were statistically significantly altered in aged livers by performing kinase recognition motif 
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analysis using MotifX. These data showed that the Akt recognition motifs R-X-R-X-X-pS and R-

S-X-pS were enriched 11.5-fold and 10-fold respectively, compared with background in the 

dataset of peptides displaying reduced phosphorylation with ageing (Fig. 3.12c), which is 

consistent with the AKT Western blot data (Fig. 3.12a-b), and confirms a significant reduction in 

AKT signaling in aged livers. Motifs containing acidic residues, consistent with casein kinase 2 

(CK2) activation were also enriched, however these were found in both the up- and down-

regulated phosphopeptide datasets.  
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Figure 3.12: (a) Representative western blots of p-AKT and AKT showing significantly 

decreased phosphorylation of AKT in insulin stimulated old rat livers compared to young. (b) 

Densitometry analysis of phosphorylated: total AKT from western blots (n = 6 young and n = 6 

old F344 rats, P = 0.002). (c) Fold over-representation of kinase recognition sequences from 

phosphoproteome analysis of young versus aged livers. Reduced Akt signaling is indicated by 

the prevalence of Akt recognition sequences * = ‘R-x-R-x-x-pS’ (11.5-fold) and ** = ‘R-S-x-pS’ 

(10-fold) in the set of phosphopeptides with reduced abundance in aged livers. Dotted line 

indicates cut-off for significant fold-change (>4-fold). 
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3.4 DISCUSSION 

 

This study demonstrates that age-related defenestration of the LSEC restricts insulin access to 

the insulin receptor on the hepatocyte membrane through impaired transendothelial transfer. This 

resulted in hyperinsulinemia, impaired hepatic insulin signaling, depleted glycogen stores, 

compensatory increases in muscle and fat uptake of insulin and glucose and dysregulated 

gluconeogenesis. In fat and muscle, the blood vessels are the rate limiting step for the uptake of 

insulin (Majumdar et al., 2012, Sandqvist et al., 2011) The data show that under physiological 

conditions, the liver endothelium does not provide a barrier for the uptake of insulin which 

attests to its remarkable role in facilitating the transfer of substrates between blood and liver cells 

(Le Couteur et al., 2005) However, in conditions associated with structural changes in the 

LSECs, the liver blood vessels become a barrier for the transfer of insulin. This is a significant 

development in our understanding of insulin resistance seen with age and liver disease.  

 

As we have previously reported, ageing is associated with significant defenestration of the 

LSECs (Cogger et al., 2006, Warren et al., 2011, Mitchell et al., 2010). Using the multiple 

indicator dilution methodology we have determined the disposition of insulin in perfused livers, 

and shown that ageing restricts access of insulin to the extravascular space. My laboratory has 

previously shown that defenestration associated with old age is mechanistically linked to reduced 

transendothelial transfer of other substrates including lipoproteins (Hilmer et al., 2005, Cogger et 

al., 2006) and both albumin-bound and dissolved medications (Mitchell et al., 2010, Le Couteur 

et al., 2005). Fenestration loss is also known to occur in streptozotocin-induced diabetic baboon 

and in rat models (McMahon et al., 2013, Jamieson et al., 2007a). Fenestrations appear to be an 
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important portal for the efficient transfer of many xeno- and endo-biotics (Cogger and Le 

Couteur, 2009). There was no change seen in glucose transfer across the LSEC with age, 

suggesting fenestrations are not a rate limiting step in glucose transfer across the endothelium to 

the hepatocellular membrane. 

 

Accompanying the impaired transendothelial access of insulin to the hepatocytes, there were 

significant systemic changes including reduced hepatic insulin uptake and clearance, and 

increased insulin levels and insulin resistance. This was associated with insulin resistance as 

assessed by the HOMA-IR calculation, but surprisingly the glucose tolerance test was normal, or 

actually slightly improved in the aged mice. We propose that this might be secondary to the long 

term age-related compensatory effects on glucose uptake in muscle and fat, and the reduction in 

hepatic glycogen storage. 

 

Despite elevated circulating insulin levels, ageing was associated with impairment of hepatic 

insulin signaling as measured by a full hepatic proteome screen using LCMS/MS and glycogen 

stores. The full proteome screen showed that the most age-related changes observed in the liver 

are at the biochemical level rather than due to protein expression changes. Western blot 

confirmed this with no change detected in protein levels but significant reductions seen in 

hepatic AKT phosphorylation in insulin-stimulated livers. 

 

No age-related changes were found in the expression of genes associated with the insulin 

signaling pathway as measured by qRT-PCR. This further supports the suggestion that all 
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changes we are seeing in hepatic insulin signaling with age are occurring post translationally, 

which we propose is secondary to defenestration.  

 

It has recently been postulated that the LSEC plays a significant role in insulin action in the liver. 

Tsuchiya et al. (2013) proposed a causal relationship for insulin resistance through LSEC 

mediated nitric oxide pathways (Tsuchiya and Accili, 2013). Raines et al. 2011 reported the 

effects of LSEC structure on insulin activity in a murine transgenic model with partial loss of 

platelet-derived growth factor-beta (PDGF-β) function. These mice developed highly permeable, 

disrupted LSECs as measured by transmission electron microscopy and in vivo FITC-dextran 

uptake (Raines et al., 2011). Such changes in the LSEC were associated with a dramatic increase 

in insulin action in the liver, evidenced by increased insulin signaling in liver, improved glucose 

tolerance tests, increased insulin clearance and an 80% reduction in circulating insulin levels 

despite euglycemia (Raines et al., 2011). 

 

While this work clearly indicates that patent fenestrations are essential for efficient hepatic 

insulin uptake, clearance and signaling, there are some limitations in the study which require 

further investigation. Ageing is a multifactorial process during which the entire body undergoes 

significant adaptations and changes which all could play a role in overall metabolic homeostasis, 

but are not within the scope of this project. Further investigation of the role of LSEC 

defenestration in the absence of all other systemic age-related adaptations will further 

substantiate the key role of fenestrations in hepatic insulin transfer, which will be addressed in 

Chapter 4. A further limitation is the use of mixed rodent models. Australia does not presently 

hold an ageing rat or mouse facility, all animals used were acquired through the National 
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Institutes of Ageing, USA. The combination of rats for the MIDs and proteomics and mice for all 

of the metabolic parameters was a decision made to allow the most rigorous probing of the role 

of fenestrations in hepatic insulin uptake. Ageing rats are considerably more expensive and more 

difficult to obtain than ageing mice but are essential for technically sound MID experiments, 

animal usage was prioritised on the grounds of these considerations. The combination of rats and 

mice was well considered and this is not thought to reduce the novelty or validity of the findings. 

Furthermore, defenestration as a result of ageing is well established in both the mouse and rat 

models used within this study, thus we believe that our results are valid despite this limitation. 

 

In conclusion, defenestration of the LSECs provides a novel mechanism that contributes to 

insulin resistance associated with advanced age and potentially other conditions associated with 

loss of fenestrations such as chronic liver disease. Maintaining the structural integrity of the 

LSECs is a potential therapeutic target for insulin resistance in old age. 
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CHAPTER 4: P407 INDUCED DEFENESTRATION AND HEPATIC INSULIN AND 

GLUCOSE DISPOSITION 
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4.1 INTRODUCTION 

 

It is recognised clinically and experimentally that many conditions associated with impaired 

hepatic microcirculation such as ageing, cirrhosis, non-alcoholic fatty liver disease are also 

associated with impaired insulin handling by the liver (Chai et al., 2014, Fink et al., 1983, 

Kawaguchi et al., 2011, Muller et al., 1992). One of the hallmark changes of the liver 

microcirculatory system in ageing and cirrhosis is the loss of liver sinusoidal endothelial cell 

(LSEC) integrity with defenestration, endothelial thickening and deposition of basal lamina (Le 

Couteur et al., 2001, McLean et al., 2003). The importance of the impacts of these changes on 

substrate exchange between the blood and hepatocyte is gaining recognition (Furrer et al., 2011, 

Lesurtel and Clavien, 2014). 

 

In Chapter 3 it was shown that age-related defenestration is causally associated with impaired 

hepatic insulin transfer and subsequent signaling and control. The results in Chapter 3 strongly 

supported the key role of fenestrations in insulin transfer from the sinusoidal blood vessels to the 

hepatocellular membrane and the insulin receptor. However, it is recognised that ageing is a 

multifactorial process where many fundamental cellular processes are affected and considerable 

adaptations develop overtime to support metabolic homeostasis. 

 

Given the complexity of ageing, testing the role of LSEC fenestrations in insulin transfer in a 

singular model of defenestration is important. One model for testing the acute effects of loss of 

fenestrations (‘defenestration’) on liver function is poloxamer 407 (P407). This is a non-ionic 

surfactant that causes marked defenestration of the LSEC without the development of fibrosis 
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(Warren et al., 2011, Cogger et al., 2006). Defenestration induced by P407 has been shown to 

impair the transendothelial transfer and hepatic clearance of several substrates including 

lipoproteins, acetaminophen and diazepam (Cogger et al., 2006, Mitchell et al., 2010, Mitchell et 

al., 2012). Here P407 was used to determine whether acute defenestration interferes with the 

hepatic disposition and action of insulin and whether this has any systemic implications. This 

would also provide further evidence that defenestration is a mechanism for the development of 

hepatic insulin resistance and hyperinsulinemia. 
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4.2 METHODS 

 

4.2.1 Animals and P407 treatment 

 

Male Fischer 344 rats aged 8-10 weeks and weighing 200 g were obtained from Animal 

Research Centre (Perth, Australia). The animals were allowed free access to water and standard 

chow. The treatment group received an intraperitoneal injection (i.p.) of P407 (1 g/kg, BASF 

Ltd, Southbank, Australia) 24 hrs prior to liver perfusion, prepared by mixing with normal saline 

and kept in liquid form at 4 ºC. Control animals included those that received a volume-matched 

i.p. injection of normal saline or were untreated. There were no differences between control 

animals given saline or no treatment, therefore their data were pooled. All animals were treated 

in accordance with Animal Care guidelines. This study was approved by the Sydney Local 

Health District Animal Welfare Committee (AWC Protocol #2012/005A).  

 

4.2.2 Liver perfusion and multiple indicator dilution method 

 

This procedure is described in detail in sections 2.3.2, 2.3.3 and 3.2.2. 

 

4.2.3 Blood analysis 

 

Prior to liver perfusion, approximately 1 ml blood was taken from the inferior vena cava (IVC) 

during surgery and transferred into an EDTA tube, followed by processing and analysis as 

described in section 2.7.1.  
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4.2.4 Scanning electron microscopy 

 

Liver tissue was perfused for scanning electron microscopy for measurement of intact 

endothelial fenestrations as described in 2.2.2.  

 

4.2.5 Metabolic parameters 

 

4.2.5.1 Glucose tolerance and tracer uptake 

 

Animals were fasted for 6 hrs, followed by administration of glucose (2 g/kg i.v.) spiked with 10 

µCi 
14

C-glucose for assessment of insulin action in liver, fat and muscle and 10 µCi 
3
H-2-

deoxyglucose for assessment of glucose uptake in fat and muscle as described in 2.6.2. 

 

4.2.5.2 Insulin uptake 

 

Whole body insulin extraction was performed in another batch of rats, where 
14

C-insulin (1 

µCi/g) was injected via the inferior vena cava of anesthetised animals as described in 2.6.3.  

 

4.2.5.3 Pyruvate tolerance 

 

A third cohort of P407 and control animals were fasted for 6 hours prior to an i.p injection of 

pyruvate (2 g/kg; Sigma Aldrich, Castle Hill Australia) and glucose levels were read using a 

handheld glucose meter as described in section 2.6.6.  
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4.2.6 Histology 

 

Liver tissue was fixed in 4 % paraformaldehyde, paraffin embedded, sectioned and subjected to 

H&E and PAS staining, followed by observation as described in section 2.3.2. 

 

4.2.7 Reverse transcription and quantitative real time-PCR array analysis 

 

Total RNA was isolated from liver tissue samples using a RNeasy Plus Mini Kit (Qiagen Pty 

Ltd, Chadstone, Australia), followed by subsequent reverse transcription and real time-PCR as 

described in section 2.8.  

 

4.2.8 Proteomic studies 

 

4.2.8.1 Mass Spectrometry 

 

Mass Spectrometry was performed as described in Section 2.6.1. Bioinformatic analysis was 

performed to reveal pathways associated with P407 treatment using STRING (Jensen et al., 

2009, Franceschini et al., 2013, Szklarczyk et al., 2011) and KEGG (Kanehisa and Goto, 2000, 

Kanehisa et al., 2014) pathway analysis.  
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4.2.8.2 Western Blots 

 

Frozen liver tissue samples were processed as described in section 2.6.2. The protein extract 

were subjected to immunoblotting according to protocol as described previously (Hoehn et al., 

2008). Antibodies against the following proteins were used: phospho-IRS-1 (Ser612, Cat#2386), 

IRS-1 (Cat#2382), phospho-mTOR (Ser2448, Cat#2971), mTOR (Cat#2972), IRS-2 (Cat#4502) 

and α-tubulin (Cat#2144) (Cell Signaling Technology, Arundel, Australia).  

 

4.2.9 Data analysis 

 

Data analysis was performed using Microsoft Excel. All values are expressed as the mean ± 

SEM. Statistical significance was calculated using two-tailed Student’s T test and Pearson’s 

Product Moment correlation coefficient (Sigmaplot v11, Systat Software, Germany). 
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4.3 RESULTS 

 

4.3.1 Histology, blood analysis and Electron Microscopy 

 

At 24 hr following P407 treatment, blood samples were observed to be lipemic. Blood analysis 

showed a significantly higher serum cholesterol and triglycerides in the treated group compared 

to control (Fig. 4.1a) with no difference in aspartate transaminase (AST) and alanine 

transaminase (ALT) levels between groups (Fig. 4.1b). Post mortem examination of the whole 

animal and haematoxylin and eosin staining of liver sections from the control and P407 animals 

confirmed all animals included in the study were free of gross and liver pathology (Fig. 4.2).  

 

Scanning electron microscopy (Fig. 4.3) was performed to confirm P407 induced defenestration 

of the LSEC that has previously been described (Mitchell et al., 2012, Warren et al., 2011, 

Cogger et al., 2006). LSEC morphology was analysed as described in Table 4.1. P407 

administration led to reduced fenestration diameter and porosity. These findings are consistent 

with previous studies (Warren et al., 2011, Cogger et al., 2006). 
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Figure 4.1: Blood analysis of serum (a) lipid and (b) liver function parameters for control and 

P407 treated rats. Blood cholesterol and triglycerides were markedly increased 24 hours after 

P407 administration (* P<0.001) while serum ALT and AST is similar between groups. Data is 

presented as mean ± SEM, n = 5 control and n=5 P407 treated F344 rats. 

 

Figure 4.2: Representative Haematoxylin and Eosin staining of (a) control and (b) P407 F344 

rats. No signs of pathology were found. 
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Figure 4.3: Representative Scanning electron micrographs of the perfused the LSEC in (a) 

control and (b) P407 F344 rats. Significant defenestration is observed with P407 administration. 

Original micrographs taken at 15000 × magnification. 

 

Table 4.1: Quantification of the LSEC fenestrations. There is decreased liver porosity in P407 

treated group (P=0.02). Data is presented as mean ± SEM. 

 

Animal group n Porosity (%) Diameter (nm) Frequency 

(per um
2
) 

Control 

n = 10 

5 5.44±0.5 104.5±3.5 3.68±0.2 

P407-treated 

n = 11 

5 3.64±0.5* 85±4.3 4.04±0.3 
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4.3.2 P407 induced defenestration impairs the access of insulin and glucose to the 

extracellular space of the liver 

 

To further probe the relationship between defenestration of the liver endothelium and insulin 

resistance, MIDs were performed on livers from rats treated with P407 and their matched 

controls. Outflow insulin curves from the MID experiments are shown in Fig. 4.4.  

 

 

Figure 4.4: Average MID outflow curves for insulin and the extracellular marker sucrose (n=12 

control and n=8 P407). Insulin exits the liver after sucrose in (a) control rats whereas the order is 

reversed in the (b) P407 animals indicating restricted access to the extracellular space with acute 

defenestration. 

 

In control animals, the insulin curve overlaps the sucrose curve (Fig. 4.4a), indicating that insulin 

has unimpeded access to the entire extracellular (‘sucrose’) space. Following P407 treatment, the 
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insulin curve appears earlier than the sucrose curve (Fig. 4.4b), indicating that insulin has a 

smaller volume of distribution than sucrose. The recovery and apparent volume of distribution of 

insulin and tracers are shown in Table 4.2. There was no difference in the recovery of Evans 

Blue or sucrose between groups. Analysis of the curves showed that P407 was associated with a 

significant reduction in the volume of distribution of insulin, normalised to sucrose volume, of 

about 20 % (Fig. 4.5, P<0.05). P407 induced defenestration was associated with a trend towards 

higher recovery of insulin (75 ± 10% controls vs 86 ± 4% P407-treated). 

 

 

Figure 4.5: There was a 20 % reduction in the fractional volume of distribution of insulin with 

acute defenestration (n = 12 control and n= 8 P407 F344 rats, P = 0.01). 
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Table 4.2: The effect of P407 on recovery and volume of distribution (Vd) of Evans blue, insulin 

and sucrose. * P<0.05. 

 

 

There was a similar trend seen with the glucose outflow curves (Fig 4.6). In control animals the 

glucose curves were delayed compared with the sucrose curves (Fig. 4.6a), indicating that in 

normal livers, glucose has access to the entire extracellular space and enters the hepatocytes as 

well. Following P407 treatment, the glucose curves appear earlier than seen in the control 

experiments (Fig. 4.6b), indicating a reduction in its volume of distribution. Analysis of the 

curves for recovery and volume of distribution are shown in Table 4.3. There was no difference 

in the recovery of Evans Blue, glucose or sucrose between both groups. The ratio of volume of 

  Control (n=12) P407 (n=8) 

Fractional recovery value value 

Evans blue 0.83±0.08 0.77±0.07 

Insulin 0.78±0.07 0.83±0.05 

Sucrose 0.93±0.06 0.83±0.05 

Vd (ml/g)    

Evans blue 0.25±0.02 0.23±0.03 

Insulin 0.27±0.03 0.23±0.03 

Sucrose 0.26±0.03 0.29±0.04 

Ratio    

Insulin/Evans blue 1.07±0.09 0.97±0.05 

Insulin/Sucrose 1.02±0.07 0.81±0.04* 
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distribution of glucose compared to Evans Blue was not influenced by P407. However, there was 

a reduction in the volume of distribution of glucose compared to sucrose. Analysis of the curves 

showed that P407 was associated with a significant reduction in the volume of distribution of 

glucose, normalised to sucrose volume, of about 24 % (Fig. 4.7, P<0.05). 

 

Figure 4.6: Average MID outflow curves for glucose and the extracellular marker sucrose. 

Glucose exits the liver after sucrose for both a. control and b. P407 rats, with P407 rats shows an 

earlier appearance of glucose compared to control. 

  



122 

 

 

Figure 4.7: There was a 24 % reduction in the fractional volume of distribution of glucose with 

acute defenestration (n = 12 control and n= 8 P407 F344 rats, P = 0.01). 
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Table 4.3: The effect of P407 on recovery and volume of distribution (Vd) of Evans blue, 

glucose and sucrose 

 

  Control (n=12) P407 (n=8) 

Fractional recovery   

Evans blue 0.87±0.07 0.73±0.09 

Glucose 0.82±0.05 0.71±0.09 

Sucrose 0.89±0.04 0.82±0.1 

Vd (ml/g)    

Evans blue 0.24±0.02 0.22±0.03 

Glucose 0.37±0.04 0.31±0.05 

Sucrose 0.25±0.02 0.29±0.06 

Ratio   

Glucose/Evans blue 1.56±0.06 1.34±0.10 

Glucose/Sucrose 1.50±0.06 1.10±0.10* 
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4.3.3 Metabolic parameters 

 

4.3.3.1 Insulin levels and systemic metabolism 

 

Impaired hepatic uptake of insulin due to P407 induced defenestration led to significantly 

elevated basal and fed insulin levels in the P407 rats when compared to their control counterparts 

(Fig. 4.8a).  

 

The elevated circulating insulin was not due to increased insulin secretion by the pancreas as 

shown in Fig. 4.8b. C-peptide levels were unchanged in the P407 group during the fasted state, 

indicating that hyperinsulinemia is established through reduced clearance of insulin by the liver 

rather than increased pancreatic insulin secretion. In the fed state, C-peptide levels increased in 

the control animals while remaining steady in the P407 animals, reflecting impaired secretion of 

insulin in the acutely defenestrated animal. Glucagon levels were significantly lower in the P407 

compared to the control mice when fasting (Fig. 4.8c).  

 

Whole body insulin handling assessed by intravenous injection of 
14

C-insulin revealed that 

insulin uptake by the liver was reduced by 20% in P407-treated animals (Fig. 4.8d P=0.04), but 

was unchanged in muscle and fat. 
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Figure 4.8: (a) Fasting and fed insulin levels were significantly elevated following P407 induced 

defenestration (n = 6 control and 6 P407 F344 rats, fasting P < 0.05, fed P = 0.005). (b) C-

peptide levels were significantly decreased with P407 induced defenestration in the fed state (n = 

5 control and 5 P407 F344 rats, P = 0.03) and (c) Glucagon levels were supressed in the fasting 

and fed states in P407 treated rats (n = 4 control and 4 P407 F344 rats, fasting P = 0.02, fed, P = 

0.16). (d) 
14

C labelled insulin uptake by the liver was significantly reduced with defenestration, 

but remained constant in muscle and fat (n = 6 control and 6 P407 F344 rats P = 0.04). 

 



126 

 

4.3.3.2 Glucose tolerance and tracer uptake 

 

To determine whether altered hepatic disposition of insulin had any effect on systemic glucose 

metabolism, we performed glucose tolerance tests. The incremental area under the curve (iAUC), 

calculated from the glucose tolerance curve (Fig. 4.9a, n=13 controls n=10, P=0.04). indicated 

impaired glucose tolerance in the P407 animals Further, because of the very high insulin levels, 

the homeostatic model assessment index for insulin resistance (HOMA-IR), which is calculated 

from the fasting glucose-insulin product, was increased by more than two-fold in the P407 mice, 

indicating insulin resistance (Fig.. 4.9b). 

 

 

Figure 4.9: (a) Glucose tolerance curve of control and P407 rats. The iAUC calculated the curve 

was increased by P407-induced defenestration (n = 10 control and 8 P407 F344 rats). (b) The 

HOMA-IR index was significantly increased by P407 induced defenestration (n = 6 control and 6 

P407 F344 rats, P = 0.002) 
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To further determine which tissues were contributing to the insulin resistance, 
14

C-glucose and 

3
H-2-deoxyglucose and were administered during glucose tolerance tests and the uptake 

measured in muscle, WAT and liver. The incorporation of 
14

C-glucose into glycogen was 

significantly reduced in liver of P407 treated rats with no change in WAT or muscle 

incorporation (Fig. 4.10a). There was no change in 
3
H 2-deoxyglucose uptake, which is not a 

substrate for liver uptake and metabolism, in both muscle and fat with P407 treatment (Fig. 

4.10b). The data indicate that the reduction in hepatic glucose incorporation into glycogen and 

hyperinsulinemia lead to abnormal glucose tolerance in acutely defenestrated rats.  

 

 

Figure 4.10: (a) There was a significant reduction in hepatic incorporation of 
14

C labelled 

glucose into glycogen, with no change in muscle and fat incorporation (n = 10 control and 8 

P407 F344 rats, P < 0.05). (b) 
3
H-2-deoxyglucose uptake into fat and muscle was unchanged 

following P407 treatment, although muscle uptake was more pronounced in P407 but it is not 

significant (n = 10 control and 8 P407 F344 rats, P = 0.06). 
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Consistent with the significant impact of acute defenestration on hepatic insulin sensitivity and 

glucose homeostasis hepatic glycogen storage measured by PAS staining showed a marked 

reduction in glycogen in the P407 animals (Fig. 4.11). 

 

Figure 4.11: PAS staining of the liver in (a) control and (b) P407 treated rats showing 

significantly reduced glycogen storage with defenestration (n = 10 control and 8 P407 F344 rats). 

  

4.3.3.3 Pyruvate tolerance 

 

The pyruvate tolerance test demonstrated a paradoxical reduction in gluconeogenesis in P407 

rats upon injection of pyruvate as a substrate for gluconeogenesis (Fig. 4.12). MID experiments 

were further conducted and the results showed that pyruvate disposition was not restricted by 

loss of fenestrations (Appendix 4, Vd: 1.64 ± 0.1 ml/g n=6 controls vs 1.58 ± 0.1 ml/g n=6 P407 

treated). This indicates that reduced gluconeogenesis associated with P407 is not caused by the 

effects of defenestration on pyruvate uptake. 
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Figure 4.12: Pyruvate tolerance tests revealed impaired gluconeogenesis in the hyperinsulinemic 

setting (n = 13 control and 9 P407 F344 rats, P < 0.05). 

 

 

4.3.4 Reverse transcription and quantitative real time-PCR array analysis 

 

To identify gene expression that might be altered by reduced transendothelial access of insulin to 

the hepatocyte insulin receptor, a qRT-PCR screening array for 84 key genes in the rat insulin 

signaling pathways was conducted (Appendix 5). As outlined in Table 4.4 gene expression 

profiles showed that IRS-2 was upregulated (1.76-fold; p=0.02) and thyroglobulin, which has a 

role as secondary effector target genes for insulin signaling was downregulated (1.88-fold; 

p=0.01, Table 4.4). There was also upregulation of leptin coding gene Cebpa that is a primary 

target gene for insulin signaling (6.08-fold) and downregulation of G6pc gene involved in 

glucose and glycogen metabolism (3.53-fold), but this was not significant.  
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Table 4.4: Significant changes in PCR array profiles with following administration of P407 in 

rats. 

Symbol Gene name Up or down 

regulation 

p value 

Irs2 Insulin receptor substrate 2 1.76 0.02* 

Tg Thyroglobulin -1.88 0.018* 

Cebpa CCAAT/enhancer binding protein (C/EBP), 

alpha 

6.08 0.95 

G6pc Glucose-6-phosphatase, catalytic subunit -3.53 0.84 
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4.3.5 Proteomic studies 

 

Western blot analysis revealed that phosphorylation of IRS-1, the phosphorylation target of the 

activated insulin receptor, was significantly reduced by over 50% in P407 rats as compared to 

controls (0.98 ± 0.3 n=9 controls vs 0.4 ± 0.10 n=10 P407-treated, P<0.05). Conversely, the 

expression of total IRS-2 protein was increased in the P407 rats (0.21 ± 0.03 n=4 controls vs 0.78 

± 0.06 n=4 P407-treated, P<0.05). There is no difference in the phosphorylation of mTOR which 

is involved in downstream insulin signaling (Fig 4.13a-c). 

 

We again utilised large-scale phosphoproteomics to determine the effects of P407 on hepatic cell 

signaling pathways, which further highlighted loss of fenestration-specific effects without the 

multi-factorial processes involved in ageing. LC-MS/MS identified 1,480 sites of 

phosphorylation that were statistically significantly altered in abundance (z-score <-1.00 or > 

+1.00; Appendix 3). Analysis of non-phosphorylated peptides revealed only 189 proteins that 

were significantly altered in abundance, and these contained no discernible functional or spatial 

pattern. Proteins containing significantly altered phosphopeptides were subjected to functional 

cluster analysis and compared against the mouse genome as background. The most over-

represented KEGG functional pathway was the insulin signaling pathway (p-value 9.24 e
-10

). 

Site-specific analysis using MotifX again showed an 11-fold over-representation of the Akt 

recognition sequence (R-X-R-X-X-pS) in the set of phosphopeptides significantly reduced by 

P407 treatment (Fig. 4.14), which is consistent with the data observed for aged liver tissue.  
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Comparison of significantly altered phosphoproteins between the ageing and P407-related 

samples revealed that 396 and 481 non-redundant gene products were unique to P407 and ageing 

respectively, with 530 common to both comparisons. The sets of phosphoproteins unique to 

P407 and ageing showed no statistically significant over-represented KEGG functional 

pathways, however proteins contained in the overlapping set with phosphopeptides altered in 

abundance by both P407 and ageing were functionally most typically associated with insulin 

signaling (p-value 1.83 e
-8

). We next took the large-scale data and performed phosphosite level 

interrogation using PhosphoSite Plus (www.phosphosite.org) to specifically examine changes to 

known insulin-regulated sites from proteins within the KEGG insulin signaling pathway in aged 

and P407-treated liver. In total, we identified 49 phosphopeptides containing known insulin-

regulated sites from 23 insulin signal pathway proteins. In aged liver, 39/49 phosphopeptides 

were significantly altered and 34 of these were reduced in phosphorylation (from IRS-1, SHC-1, 

Sos1, Raf1, Erk1/2, PI3K, Foxo1, Gys1, Trip10, Acaca, PP1, Rps6 and Eif4ebp1; Appendix 3), 

which is consistent with reduced insulin signaling. Fifteen of these phosphopeptides also showed 

reduced phosphorylation in P407-treated livers (from IRS-1, SHC-1, Erk1/2, PI3K, Foxo1, Gys1, 

PP1 and Trip10). Four phosphopeptides were elevated in abundance in both aged and P407-

treated liver (from Akt1, PP1 and IRS-2). Seven phosphopeptides containing known insulin-

regulated sites (from BAD, TSC1/2, mToR and p70S6K) were unaltered by either ageing or 

P407. While we did not observe the IRS-1 tyrosine sites targeted by the insulin receptor (Fig. 

14), we did observe the phosphorylation target of the insulin receptor on SHC-1 (Tyr423), which 

was significantly reduced in abundance in both aged and P407-treated livers (Appendix 3). These 

data confirm that defenestration leads to altered hepatic insulin signaling that strongly correlates 

with the effects of ageing on this pathway.  



133 

 

 

 

Figure 4.13: (a) Representative Western Blots of p-IRS-1, IRS-1, p-mTOR, mTOR and IRS-2 

from control (n=6) and P407 livers (n=6). (b) Densitometry showing significantly decreased 

phosphorylation of IRS-1 in insulin stimulated P407 livers compared to control (P=0.002) while 

there are no changes in mTOR phosphorylation as a downstream target protein. (c) Densitometry 

showing significantly increased total IRS-2 protein in P407 livers compared to control 

(P<0.001), probably as a compensatory mechanism due to decreased IRS-1 activation.  
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Figure 4.14: Fold over-representation of kinase recognition sequences from phosphoproteome 

analysis of control versus P407-treated livers. Reduced Akt signaling is indicated by the 

prevalence of Akt recognition sequence *= ‘R-x-R-x-x-pS’ (11-fold) in the set of 

phosphopeptides with reduced abundance in P407-treated livers. Dotted line indicates cut-off for 

significant fold-change (>4-fold). 
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4.4 DISCUSSION 

 

This study assesses the effect of acute defenestration of the LSEC, induced by the synthetic 

surfactant, P407, on hepatic disposition of insulin and glucose. In addition, it examines the 

implications of these changes in hepatic glucose and insulin disposition for whole body glucose 

homeostasis.  

 

As previously reported, within 24 hours of a single injection of P407 there was a marked 

hyperlipidaemia with normal liver function (Johnston, 2004, Palmer et al., 1998, Cogger et al., 

2006, Mitchell et al., 2010, Mitchell et al., 2012, Warren et al., 2011, Johnston and Palmer, 1993, 

Dumortier et al., 2006). P407 is a ubiquitous block co-polymer surfactant that has been widely 

studied as a model for hyperlipidaemia (Johnston, 2004) and also used as a vehicle for 

nanoparticle drug delivery (Kabanov et al., 2002, Moghimi, 1999). The hyperlipidaemic 

response to P407 has been linked to altered activity of enzymes involved in lipoprotein 

metabolism, in which hypertriglyceridemia is caused by lipoprotein lipase inhibition and 

hypercholesterolemia by indirect effects on HMG CoA reductase activity (Johnston, 2004). It is 

reported that this condition is also caused by inhibition of lipid metabolizing enzyme activities 

(Wasan et al., 2003). However, P407 also induces defenestration of the LSEC which has been 

shown to impair the chylomicron passage into the hepatocytes, thus providing an additional 

explanation for hyperlipidaemia (Cogger et al., 2006).  

 

P407 targets the liver after intraperitoneal injection (Li et al., 1996) and the observation of 

lipemic blood is an indicator that it has successfully enter blood circulation (Wout et al., 1992). 
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Apart from causing hyperlipidaemia, P407 is regarded as a non-toxic substance and is widely 

used in pharmaceutical preparations (Dumortier et al., 2006). P407 is used for the study of 

pharmacokinetics and pharmacodynamics of various medications used to treat hyperlipidaemia 

(Shayeganpour et al., 2008, Lee et al., 2012).  

 

Scanning electron microscopy of the LSEC revealed ultrastructural changes of defenestration as 

previously reported (Cogger et al., 2006, Mitchell et al., 2010, Mitchell et al., 2012, Warren et 

al., 2011). P407 significantly defenestrates LSECs within 12 - 36 hours after injection in mice in 

association with a 10 fold increase in plasma lipids (Cogger et al., 2006). Transmission electron 

microscopy analysis of mouse livers one day after P407 injection showed that LSECs developed 

large vacuoles full of lipids and/or P407 micelles in conjunction with LSEC defenestration and 

swelling observed on scanning electron microscopy, as a response to remove excess lipid and 

P407 from the blood (Warren et al., 2011). Mitochondria and ATP production are not affected by 

P407, therefore it is most likely that it interacts directly with the cell membrane (Cogger et al., 

2006).  

 

Using multiple indicator dilution methodology, the disposition of insulin and glucose was 

studied in perfused livers. These studies showed that P407-induced defenestration was associated 

with restricted access of insulin and glucose to the extracellular space. In control animals, both 

substrates had access to the entire sucrose space (extracellular and vascular space) but following 

P407, this was reduced by approximately about 20% for insulin and glucose as compared to the 

sucrose space (equivalent to the vascular space). Defenestration associated with P407 has been 

reported to be associated with restricted access of substrates transiting from the sinusoidal lumen 
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across into the SoD. These substrates include lipoproteins (Cogger et al., 2006) and medicines 

such as acetaminophen and diazepam (Mitchell et al., 2010, Mitchell et al., 2012). It is of note 

that the hepatic clearance of several other medicines has been found to be reduced following 

P407 (Lee et al., 2012), but in these reports, the effect on endothelium and transfer across the 

endothelium were not specifically investigated.  

 

Systemically, P407 was associated with relatively normal glucose levels, but impaired glucose 

tolerance, increased insulin levels and insulin resistance (as assessed by the fasting insulin-

glucose product, HOMA-IR). The hyperinsulinemic condition of the P407-treated animals was 

not secondary to increased insulin secretion by the pancreas because there was suppression of C-

peptide levels. Instead, it can be inferred from the data that hyperinsulinemia was caused by 

reduced hepatic insulin clearance; a conclusion also supported by decreased liver insulin uptake 

in the whole body insulin uptake experiments. Glucagon levels were also significantly lower in 

P407-treated animals, which is possibly a response to the serum high insulin levels measured in 

the study.  

 

Despite elevated circulating insulin levels, glycogen content of the livers as shown by PAS 

staining was significantly diminished in P407-treated animals. This is again consistent with 

reduced activation of insulin signaling pathways in the liver. Insulin resistance has been shown 

to decrease glycogen synthetase activity and glycogen content in skeletal muscle (Cline et al., 

1999) and the liver (Kusunoki et al., 2002) as a result of impaired insulin action.  
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Following P407, there was reduced gluconeogenesis in the pyruvate tolerance test which is 

consistent, paradoxically, with increased insulin activity. This was not secondary to impaired 

pyruvate transfer across the endothelium as determined by multiple indicator dilution study. This 

is most likely caused by hyperinsulinemia acting via brain control of hepatic glucose metabolism 

(Rojas and Schwartz, 2014) and parallels the changes seen in old age.  

 

After establishing that defenestration reduces the hepatic volume of distribution of insulin and 

glucose, the impact of this reduced transfer of hepatocyte insulin signaling was examined using 

large scale proteomics and western blots. Large scale proteomics showed that in the acute 

defenestration, the most significantly affected pathway is insulin signaling. Western blots 

showed P407-induced defenestration were associated with reduced hepatic IRS-1 

phosphorylation consistent with reduced access of insulin to the hepatocellular membrane.  

However, consistent with the exponential nature of signaling pathways and with previous work 

(Hoehn et al., 2008), alteration at the level of IRS-1 signaling was insufficient to cause changes 

in the expression of downstream signaling intermediates proteins such as mTOR. 

 

Interestingly, there was an increase in total IRS-2 expression with P407 treatment. A similar 

finding was observed in the liver insulin stimulated-LIRKO mice, where there was a 5-fold 

increase in IRS-2 expression in the liver due to loss of insulin signaling (Michael et al., 2000). 

IRS-2 is reported to have a predominant role in β-cell development and compensation of 

peripheral insulin resistance, working with IGF-1 to maintain glucose homeostasis (Withers et 

al., 1999) and the increase in IRS-2 expression is likely to be a compensatory response to the 

reduction in IRS-1 phosphorylation. 
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In agreement with the protein expression findings PCR array analysis of gene expression profiles 

showed that IRS-2 gene expression was upregulated, in parallel with increased total IRS-2 

protein expression from western blotting. Increased IRS-2 expression is also associated with 

steatohepatitis and altered lipid and insulin metabolism in humans (Rametta et al., 2013). The 

pattern of downregulation in G6pc gene expression observed is subsequently reflected by 

decreased gluconeogenesis in P407 during the pyruvate tolerance test. 

 

It is of note that repeated administration of P407 has recently been reported to induce type 2 

diabetes mellitus in rats, with sustained hyperglycemia occurring after several weeks of daily 

treatment (Bharti et al., 2013). In another study, a single dose of P407 did not influence glucose 

or insulin, however a smaller dose (0.5 g/kg) was used in mice rather than rats (Johnston and 

Waxman, 2008). In this study of rats, a single dose of P407 (1 g/kg) induced insulin resistance 

with elevated insulin levels and impaired glucose tolerance, although the glucose levels were still 

within the normal range. Our data indicate that this is mediated, at least in part, by defenestration 

of the LSEC. 

 

In conclusion, defenestration of the LSEC induced by P407 reduced the transfer of insulin and 

glucose from the sinusoid into the extracellular space and reduced insulin action in hepatocytes 

with an impact on glucose homeostasis. This was associated with hyperinsulinaemia, glucose 

intolerance and deranged glucose metabolism in the liver. These results are in agreement with 

previous reports showing that defenestration of the LSEC leads to impaired transendothelial 

transfer of various other substances such as lipoproteins and medications into the liver (Hilmer et 

al., 2005, Mitchell et al., 2012, Mitchell et al., 2011). Therefore the endothelium in the liver, as 



140 

 

in other tissues, can have a significant impact on insulin action. Moreover, the results suggest a 

novel mechanism linking defenestration associated with liver diseases and ageing with insulin 

resistance and possibly diabetes mellitus. 
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CHAPTER 5: THE RELATIONSHIP OF FENESTRATIONS AND LIPID RAFTS IN 

VITRO 
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5.1 INTRODUCTION 

 

LSECs have a unique phenotype compared to the endothelial cells of other organs. They are 

highly differentiated cells with attenuated cytoplasmic extensions approximately 100 nm thick 

that are perforated by non-diaphragmed transcellular fenestrations and have no associated 

basement membrane. The fenestrations which cover approximately 5-20 % of the LSEC surface 

area function as a filter for substrate transfer between blood and hepatocytes. Individual 

fenestration diameter ranges from 50-150 nm and the majority are arranged into groups known as 

sieve plates. As discussed previously the size and number of the fenestrations is important for the 

passage of selective substrates, such as insulin across the LSEC (Wisse et al., 1985). 

 

Due to their small size, fenestrations are below the optical resolution limit and their observation 

has been significantly performed by electron microscopy (Cogger and Le Couteur, 2009). This 

technical limitation has hampered the use of living cells or fluorescent probes to investigate the 

distinctive biological structure of LSECs (Braet et al., 2007). While the details of fenestration 

ultrastructure have been observed and documented many times, there remains no specific cell 

surface protein that can reliably differentiate fenestrations from the non-fenestrated membrane 

sections of the LSEC or that assists in probing the exact spatial and temporal events of 

fenestration formation and loss.  

 

Advancement in microscopy has recently provided opportunities that overcome the diffraction 

limit of optical resolution. Fenestrations are now able to be resolved using three-dimensional 

structured illumination microscopy (3D-SIM), an ultra-high resolution light microscopy that uses 
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interference patterns to convert structures below the resolution limit of light microscopy into 

observable construct by generating difference frequency called moiré fringes (Cogger et al., 

2010). The three dimensional structure of fenestrations has been successfully resolved using Cell 

Mask Orange membrane stain, where fenestrations are seen clustered in sieve plates, similar to 

observation with scanning electron microscopy. Additional structures were observed intercalated 

with between the sieve plates, postulated as membrane rafts, highly dynamic sterol and 

sphingolipid enriched lipid-ordered domains of the cell membrane that compartmentalise 

cellular signaling molecules.  

 

To confirm this hypothesis, studies were undertaken in our laboratory on the relationship 

between fenestrations, actin and lipid rafts have been conducted using 3D-SIM, TIRFM and 

SEM (Svistounov et al., 2012). It was found that fenestrations form in non-rafts regions of LSEC 

once the membrane-stabilizing effects of actin cytoskeleton and membrane rafts are diminished. 

The inverse relationship between fenestrations and membrane rafts has raised the hypothesis of 

sieve-raft theory for the regulation of fenestrations (Cogger et al., 2013a) whereby lipid rafts 

regulate the formation of fenestrations in sieve plates.  

  

The mechanisms for the loss of fenestrations induced by P407 such as seen in Chapter 4 have not 

been investigated. P407 has previously been shown to cause loss of fenestrations by examination 

with scanning electron microscopy (Cogger et al., 2006), but the effects of P407 on the lipid rafts 

of the LSEC membranes are unknown. The objective of this study is to investigate the effect of 

P407 on the relationship between membrane rafts and fenestrations in SKHep1 cells (a cell line 
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of liver endothelial origin) and isolated LSECs. It is proposed that P407 induces defenestration 

by depleting non-raft region of the cell membrane (Cogger et al., 2008).  
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5.2 METHODS 

 

5.2.1 Animals 

 

Male Fischer 344 rats aged 8-10 weeks and weighing 200 g were obtained from Animal 

Research Centre (Perth, Australia). The animals were allowed free access to water and standard 

chow. All animals were treated in accordance with Animal Care guidelines. This study was 

approved by the Sydney Local Health District Animal Welfare Committee (AWC Protocol 

#2012/005A).  

 

5.2.2 SKHep1 cell culture and treatment  

 

SKHep1 cells were obtained from the American Type Tissue Culture Collection (ATCC, VA). 

Cells were cultured in a humidified 5 % CO2 incubator at 37 ºC and grown in DMEM 

supplemented with 10 % fetal calf serum and antibiotics. Cells were grown on Thermanox 

coverslip for SEM and collagen coated glass coverslip for fluorescent microscopy. Once cells 

were 75 % confluent, cells were treated with normal saline or 0.5 mg/ml P407. After 1 hr of 

treatment, cells were rinsed 3 times with PBS and fixed as described in section 5.2.4 and 5.2.5. 

 

5.2.3 LSEC isolation and treatment 

 

This procedure is described in detail in sections 2.3.2 and 2.3.3. Briefly the animals were 

weighed and anaesthetised and liver was perfused with Collagenase solution. Cell suspension 
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was centrifuged and the supernatant was layered on a two-step Percoll gradient for the removal 

of non-parenchymal cells other than LSECs. LSEC purity was enhanced by selective adherence 

of Kupffer cells to plastic. LSECs were quantified and seeded on Thermanox coverslips for SEM 

and collagen coated glass coverslips for fluorescence microscopy in serum free RPMI-1640 

media. After 3 hours, cells were treated with normal saline or 0.5 mg/ml P407. Following 1 hr of 

treatment, cells were rinsed 3 times with PBS and fixed as described in section 5.2.4 and 5.2.5. 

 

5.2.4 Cell fixation, processing and imaging for SEM 

 

Following treatment, Thermanox-mounted SKHep1 cells and isolated LSECs were fixed for 

scanning electron microscopy in 2.5 % glutaraldehyde in 0.1 M Cacodylate buffer (0.1 M 

sodium cacodylate buffer with 1 % sucrose pH 7.4) for 1 hour. Cells were washed, filtered and 1 

% Tannic acid in 0.1 M Cacodylate buffer (pH 7.4) was added to cells for 1 hour and rinsed 

thoroughly. Cells were osmicated (1 % OsO4/0.1 M Cacodylate buffer pH 7.4 for 1 hour) and 

dehydrated in an ethanol gradient. After treatment with hexamethyldisilazane, coverslips were 

left to dry in a desiccator. Coverslips were then mounted on stubs using double-sided tape, 

coated with platinum in a sputter coater and examined using a Jeol 6380 Scanning Electron 

Microscope. Experiments were performed in triplicate. 

 

5.2.5 Cell fixation, processing and imaging for fluorescence microscopy 

 

Following treatment, cells, SKHep1 cells and isolated LSECs on glass coverslips were fixed with 

4 % paraformaldehyde in PBS overnight. Cells were washed and stained with Cell Mask Orange, 
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a cell membrane marker and Bodipy FL C5 ganglioside GM1 (Life Technologies, Wembley 

Australia) which is a marker of membrane rafts. The cells were then fixed and mounted with 

Prolong Gold (Invitrogen, Scoresby Australia). Imaging was performed using Zeiss Wide-field 

fluorescence deconvolution microscope and images were convolved using Sen Software package 

(Carl Zeiss AG, Hamburg Germany). Experiments were performed in triplicate. 
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5.3 RESULTS 

 

5.3.1 Loss of fenestrations is observed in P407 treated SKHep1 cells and isolated LSECs  

 

Scanning electron microscopy of the untreated SKHep1 cells showed numerous pores similar to 

fenestrations (Fig. 5.1). Some of the pores are grouped evenly representing a sieve plate. 

Following one hour treatment with P407, there is a reduction of pore size and number as 

compared to saline treated cells (Fig. 5.1).  

 

LSECs were successfully isolated and grown in RPMI culture. Fenestrations clustered in sieve 

plates are seen on scanning electron microscopy (Fig. 5.2a-b). Treatment with P407 reduced the 

size and number of fenestrations in isolated LSECs (Fig. 5.2c-d) as reported previously (Cogger 

et al., 2006). The sieve plates of the treated cells are smaller compared to saline treated cells. 

The presence of gaps in the cytoplasm is an artefact caused by isolation and culture of the 

LSECs.  
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Figure 5.1: Scanning electron microscopy of saline-treated SKHep1 cells showing numerous 

pores on the cell membrane (a). Following treatment with P407 (b) cells showed a reduced 

number of fenestrations.  

  

b a 
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Figure 5.2: Scanning electron microscopy of saline-treated isolated LSECs in lower (a) and 

higher (b) magnification, showing numerous fenestrations clustered into sieve plates. Following 

treatment with P407, lower magnifications showed a smaller cell diameter (c) and higher 

magnification showed loss of fenestrations and smaller sieve plates (d) of LSECs. 
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5.3.2 Lipid rafts are increased in P407 treated SKHep1 cells and isolated LSECs 

 

In order to determine whether P407 induces defenestration by depleting the non-raft component 

of the LSEC membranes, both cells were stained with the cell membrane marker Cell Mask 

Orange and the specific raft marker Bodipy FL C5 ganglioside GM1. SKHep1 cells showed a 

capillary-like structure under fluorescence microscopy with 95 % confluency (Fig. 5.3a). The 

cells have a consistent distribution of rafts along the perimeter of the cells. Following P407 

treatment SKHep1 cells exhibited a strong staining of lipid rafts seen as clusters at the 

perinuclear region (Fig. 5.3b). This indicates a marked change in the distribution and intensity of 

lipid rafts compared to control. 

 

Low magnification fluorescence microscopy of the isolated LSECs revealed the cells were 

growing in a monolayer with about 50 % confluency (Fig. 5.4). Higher magnification of 

individual LSECs revealed multiple unresolvable regions representing sieve plates in the 

peripheral regions of the cell (Fig. 5.5a). As reported previously sieve plates are present in 

attenuated areas of the cell membrane. These regions can be less than 100nm in thickness which 

renders them unresolvable under conventional confocal microscopy. Lipid rafts can be seen 

localised to the perinuclear region of the saline treated LSEC. There was a marked increase in 

raft staining following treatment with P407 indicating depletion of non-raft cell membrane areas 

(Fig. 5.5b). A very thin and discontinuous cytoplasm is seen in between sieve plates as a result of 

disordered cell membrane. As revealed by the merged images (Fig. 5.5) after P407 treatment the 

LSEC membrane is predominantly characterised by Bodipy positive membranes, indicating a 

predominance of raft microdomains. 
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Figure 5.3: Fluorescent image of SKHep1 cells stained with cell membrane and lipid raft marker 

showing low distribution of lipid raft in saline-treated cells (a) Following treatment with P407, 

there was an increase green staining, at the perinuclear region of the cells (b) with inverse 

distribution of cell membrane. 
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Figure 5.4: Low magnification (20X) of the isolated LSECs showing cells growing in a 

monolayer with about 50 % confluency. 
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Figure 5.5: Fluorescent image of isolated LSECs stained with cell membrane and lipid raft 

marker showing a minimal lipid raft distribution at the perinuclear region in saline-treated cells 

(a). Following treatment with P407, there was an increase green staining at the perinuclear and 

peripheral region of the cells (b) consistent with depletion of non-lipid raft membrane.  
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5.4 DISCUSSION 

 

This study assesses the relationship between membrane rafts, fenestrations and defenestration 

following P407 treatment in SKHep1 and isolated LSECs.  

 

Concordant with its in vivo effect, this study has shown that P407 induced significant loss of 

fenestrations in isolated LSECs. While this has previously been reported, here it was also found 

that P407 treatment leads to an increase in fluorescent staining for lipid raft membranes (Bodipy 

FL C5 ganglioside GM1) in SKHep1 cells and isolated LSECs, consistent with the sieve-raft 

theory. Although deconvolution microscopy is not able to visualise individual fenestrations, the 

distribution of the fluorescent raft stains confirmed the findings from 3D-SIM, where rafts are 

preferentially distributed in the perinuclear regions of LSECs and are inversely distributed with 

respect to sieve plates (Svistounov et al., 2012). Utilizing deconvolution microscopy, isolated 

LSECs are seen to be growing intact on the coverslip in a monolayer. The lace-like network of 

the sieve plates are identified by their F-actin stress fibres via 3D-SIM (Cogger et al., 2010) and 

the membrane of these F-actin fibres can be seen in these studies (Fig. 5.4). The net-like 

structure of LSEC has also been reported to be formed by clathrin heavy chain coated vesicles 

via fluorescent microscopy. This is a unique feature of LSEC compared to other cell types that 

show a well-known punctate staining pattern representing the clathrin-coated vesicles 

(Falkowska-Hansen et al., 2007).  

 

In previous studies using Triton X, another non-ionic detergent that is known to deplete non-raft 

regions of the cell membrane, LSEC porosity was reduced by ~90% (Svistounov et al., 2012) 



156 

 

and it is plausible that P407 induced defenestration is triggered by the same mechanism. Millar 

et al. (2005) has compared Triton WR-1339 and P407 in the determination of triglyceride and 

lipoprotein metabolism and concluded that P407 is equivalent to Triton WR-1339 in triglyceride 

production but without the unwanted side effects of Triton (Millar et al., 2005). It is interesting 

to note that Poloxamer 188, a related polymer has been shown to insert into fluid phase lipid 

membranes and act as a stabiliser of these domains (Maskarinec et al., 2002) while this process 

does not extract lipids from non-raft regions of membranes it acts to increase raft regions of 

membranes through stabilisation. 

 

As supported by the data presented here defenestration by P407 most likely occurs by a direct 

mechanism on the cell membranes of the target cell without influence from other residents cells 

of the liver such as Kupffer cells, stellate cells or hepatocytes (Cogger et al., 2006). 

 

Multiple studies on the regulation of fenestrations have reported that the actin cytoskeleton plays 

a role in the maintenance of fenestrations (Vermijlen et al., 2002, Nagai et al., 2004, Van Der 

Smissen et al., 1986), and VEGF has the ability to increase fenestration via retraction of the actin 

cytoskeleton (Cogger et al., 2008, Funyu et al., 2001, Yokomori et al., 2003). It has been shown 

that membrane fusion and pore formation is restricted by dynamic resistance of the actin network 

in experimental membrane fusion models (McGuire et al., 1992), and in the generation of 

membrane vesicles, which are also associated with increased lipid-disordered, non- raft 

microdomains (Owen et al., 2010). This suggests that the formation of fenestrations requires 

retraction and/ or rearrangement of the normal sub-membrane actin cytoskeleton, while 

stabilisation of the membrane requires actin support. 
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Lipid rafts have been associated with numerous physiological and pathological conditions in 

individual types of liver cells (Dolganiuc, 2011). Beyond the reciprocal relationship between 

fenestration and lipid rafts described here, the more proximal details of fenestration formation in 

LSECs are not known. In other endothelial cells of vascular system, lipid rafts play a major role 

in functionality where disruptions of lipid rafts causes loss of cell viability and altered cell 

morphology (Bao et al., 2010, Kline et al., 2010). Membrane lipid rafts have been studied using 

fluorescent microscopy, showing higher lipid order for the areas of the membrane associated 

with active signaling and adhesive events (Owen et al., 2006). Various agents have been applied 

to isolate raft or non-raft membranes including 7-ketocholesterol which disorders membrane 

rafts (Kahn et al., 2011). Treatment of isolated LSECs with 7-ketocholesterol causes a marked 

increase in the number and size of sieve plates associated with the increase in disordered non-raft 

membranes (Svistounov et al., 2012). In hepatocytes lipid rafts have also been associated with 

the triggering of calcium waves, which regulate fluid and electrolyte secretion and exocytosis 

(Ito et al., 1997, Kasai and Augustine, 1990). Immunofluorescence studies in isolated 

hepatocytes showed that the disruption of lipid rafts impairs accumulation of the inositol 1,4,5-

triphosphate receptor responsible for calcium wave polarization (Nagata et al., 2007).  

 

Research on LSECs has been limited by multiple factors. In vivo experiments are restricted to a 

single treatment for each animal (Cogger et al., 2008). In vitro work is limited because isolation 

of LSECs involves lengthy, complicated procedures that yields only sufficient LSEC for 6-12 

single experimental samples and the in vitro viability of the differentiated cells is limited to less 

than 12 hours (DeLeve et al., 2006, Elvevold et al., 2008). To overcome low yields of LSEC, 

Gerlach (2001) developed a method of isolation from pig livers but this not feasible in most 
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animal facilities due to ethical considerations, complicated equipment needs and procedures 

(Gerlach et al., 2001). The M1 (MILEC) cell line has been established as an immortal LSEC cell 

line, but observation with electron microscopy revealed it is not fenestrated unless treated with 

actin disruptors and co-cultured with other cells (Saito et al., 2004). While this is the first 

observation of P407 effect on SKHep1 cells, previous studies have utilised this cell to study 

fenestrations. SKHep1 cells are catalogued as immortalised cell lines derived from the ascetic 

fluid of a 52 year old male with hepatic adenocarcinoma. It is described as a hepatoma origin but 

various results have shown that this cell is actually an endothelial origin (Heffelfinger et al., 

1992, Kawai et al., 2001, Seow et al., 2001). This is further confirmed by observation of pores 

and thin cytoplasmic extension via SEM (Cogger et al., 2008). VEGF has shown to increase 

SKHep1 porosity and diameter, observed by contraction of actin cytoskeleton and attachment of 

caveolin-1 towards the nucleus via fluorescent microscopy. This makes SKHep1 cells a good 

model for LSEC research, similar to the use of HepG2 cells to study hepatocytes (Javitt, 1990). 

 

The establishment of fluorescent microscopy for the study for fenestrations has continued to 

evolve with a recent, promising study using direct stochastic optical reconstruction (dSTORM). 

This work further resolved LSECs to a spatial resolution of ~20nm by using a dSTORM add on 

to an Olympus IX71 microscope (Mönkemöller et al., 2014). The characteristics of LSEC were 

readily identified including the very thin membranes that divide individual fenestrations. This 

improved technical capacity will potentially expand the LSEC field and allow dynamic and 

greater probing of fenestration biology without the technical limitations of electron microscopy. 
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The important physiological role of the LSEC has become increasingly recognised in normal and 

various pathological conditions of liver, as well as ageing. While these studies are not able to 

address how defenestration occurs in ageing it will be interesting to observe the cell membrane 

of LSECs isolated from old animals to see if there are increased raft membranes in these cells 

with age. This would provide a plausible mechanism for age-related defenestration and would be 

in line with the observations of other studies that have reported detrimental lipid raft changes in 

ageing (Marquet-de Rouge et al., 2013, Eckert et al., 2003). Future studies will be aimed at 

addressing these questions in an ageing LSEC model. 

 

In conclusion, loss of fenestrations by P407 is caused by the depletion of the non-raft areas in 

LSEC membrane, inhibiting the formation of fenestrations. Fluorescence imaging has been used 

to observe the increased raft area and defenestration has been confirmed by SEM. This finding 

has strengthened the sieve-raft hypothesis and further facilitates the study of fenestration biology 

as the changes can be detected by fluorescence rather than electron microscopy. As there is 

increased recognition of the role of LSECs in liver pathology, an understanding of the 

mechanisms that regulate fenestrations is essential for the development of therapies directed to 

the management of diseases and old age where there is reduction in fenestrations.  
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CHAPTER 6: DIETARY MACRONUTRIENTS AND THE AGEING LIVER 

SINUSOIDAL ENDOTHELIAL CELL 

 

A manuscript version of Chapter 6 has been published in the following publication: 

Cogger, V. C., M. Mohamad, S. Solon-Biet, A. M. Senior, A. Warren, J. N. O'Reilly, B. T. Tung, 

D. Svistounov, A. McMahon, R. Fraser, D. Raubenheimer, A. J. Holmes, S. Simpson and D. G. 

Le Couteur (2016). "Dietary macronutrients and the aging liver sinusoidal endothelial cell." 

American Journal of Physiology - Heart and Circulatory Physiology 
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6.1 INTRODUCTION 

 

Liver sinusoidal endothelial cells (LSEC) have key physiological roles in endocytosis, immune 

function and the transfer of substrates between blood and hepatocytes via patent pores called 

fenestrations (Sorensen et al., 2008, Sorensen et al., 2012, Fraser et al., 2012). With ageing, there 

are significant ultrastructural changes in the LSEC that have been termed pseudocapillarisation 

(Le Couteur et al., 2001, Le Couteur et al., 2008a). These include a marked reduction in 

fenestration porosity, diameter and frequency, associated with increased endothelial thickness 

and altered expression of several endothelial and extracellular matrix proteins including von 

Willebrand factor and collagen. Pseudocapillarisation has been detected in old age in mice, rats, 

non-human primates and humans (Le Couteur et al., 2001, Le Couteur et al., 2008a) and has 

been documented in premature ageing syndromes in mice (Cogger et al., 2013b, Gregg et al., 

2011). Fenestrations are dynamic, non-diaphragmed, transcellular pores that allow the free 

passage of substrates between the sinusoidal blood and hepatocytes (Fraser et al., 2012). 

Therefore loss of fenestrations with pseudocapillarisation contributes to impaired hepatic 

clearance of substrates such as lipoproteins and medications in old age (Hilmer et al., 2005, Le 

Couteur et al., 2005). 

 

Caloric restriction (CR) has been known as the most robust, non-genetic intervention that for 

increasing lifespan and reducing disease (Everitt et al., 2005), including age-related loss of liver 

function, is associated with increased LSEC porosity, reduced extracellular matrix deposition 

and significantly attenuated LSEC thickening into very old age (Jamieson et al., 2007b). CR also 

improves blood lipoprotein profiles and delays the development of vascular disease in animal 
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models function (Zhu et al., 2004). Given our understanding of the role of fenestrations in 

lipoprotein uptake by the liver it can be hypothesised that improved LSEC morphology into old 

age through CR is at least partially responsible for CR mediated improvements in liver function 

and blood lipid profiles. Fenestration number and size are altered with fasting (O'Reilly et al., 

2010), caloric restriction (Jamieson et al., 2007b) and following systemic exposure to any 

bioactive molecule of gut bacterial origin, which are delivered via the portal vein directly to the 

liver (Dobbs et al., 1994, Cheluvappa et al., 2008). These properties suggest that fenestrations are 

regulated by diet perhaps via the effects of diet on the composition of the gut microbiome. 

Therefore, in this study we determined the effects of dietary macronutrients and calorie intake on 

fenestrations in old age. Livers were studied from a large cohort of 15 month old mice that had 

been ad libitum-fed one of 25 diets varying in the amounts of protein, fat, carbohydrate and 

energy density in order to study the relationship between energy intake, macronutrients, ageing 

and lifespan (Solon-Biet et al., 2014, Solon-Biet et al., 2015, Le Couteur et al., 2014). In addition 

to the direct role of individual macronutrients on fenestrations we were able to explore the 

potential effect of different populations of gut-derived bacteria on the structural integrity of the 

LSEC. 
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6.2 METHODS 

 

6.2.1 Animals and Husbandry  

 

C57/Bl6 male and female mice (3 weeks old; n = 858) (Animal Resources Centre, WA, 

Australia) were housed three per cage in standard approved cages (Technoplast, Varese, Italy) in 

the Molecular Physiology Unit of the ANZAC Research Institute, a specific pathogen-free 

facility designed for housing transgenic mice. A custom-designed two-chamber Perspex insert, 

designed to collect food spillage (Sorensen et al., 2008), was placed beneath the food hopper of 

each cage to collect food waste for quantification. Mice were maintained at 24 ºC-26 ºC and 

44%-46% humidity under a 12 hr light:12 hr dark photoperiod, with lights on at 0600hrs. All 

protocols were approved by the Sydney Local Health District Animal Welfare Committee 

(Protocol No. 2009/003). 

 

25 experimental diet treatments were custom-designed and manufactured in dry, pelleted form 

by Gordon’s Specialty Feeds, Sydney, Australia (Solon-Biet et al., 2014). The diet treatments 

were adequate in terms of addressed both nutritional quantity and quality. To manipulate diet 

quantity, indigestible cellulose was added to diet treatments, yielding 3 total energy (caloric) 

density regimes fixed at 8, 13 and 17 kJ g
-1

 (referred to as low, medium and high energy).  

 

Mice were provided ad libitum access throughout their lifetime to 1 of 25 diets varying in 

content of protein, carbohydrate, and fat and overall energy density. Food intake was closely 

monitored throughout life to accurately determine food intake. Mice were checked daily, and 
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body weight measurements were recorded to correspond with food intake measurements. 

Animals losing more than 20% body weight were excluded from the study. 

 

6.2.2 Tissue and blood collection 

 

At 15 months of age, one-third of the animals were anaesthetised using ketamine and xylazine (1:1) 

via i.p injection. Animals were culled, blood was collected via cardiac puncture and tissues 

harvested for a variety of analyses. Liver samples were obtained and perfused-fixed for 1 minute 

with electron microscope fixative solution ( 3% glutaraldehyde, 2% paraformaldehyde, 2 mM 

calcium chloride, 1% sucrose in 0.1 M sodium cacodylate buffer). Following fixation, 1 mm
3 

samples were taken, post-fixed, washed and then stored in 0.1M sodium cacodylate buffer at 4 °C 

as previously described (Cogger et al., 2014). 

 

6.2.3 Blood parameters 

 

Blood parameters were all measured in the fasting state. Blood glucose levels were determined 

using tail bleeds and a handheld glucometer (Accu-Check Performa, Roche, Hawthorn 

Australia). Blood was analysed for insulin and leptin by ELISA (ALPCO Diagnostics, Kurnell 

Australia). Circulating amino acid determinations were analysed at the Australian Proteome 

Analysis Facility, Macquarie University, using the Waters AccQ-Tag Ultra Chemistry Kit 

(Waters Corporation, Rydalmere, Australia). Free fatty acids were analysed by Metabolomics 

Australia. 
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6.2.4 Tissue processing and observation 

 

This procedure is described in section 2.3.2 and 2.3.3 in Chapter 2: Methodology. Briefly, fixed 

liver blocks were treated with 1% osmium tetroxide in 0.1M sodium cacodylate buffer for two 

hours, followed by dehydration in an increasing ethanol gradient and final critical point drying 

with hexamethyldisilazane. Samples were mounted on stub and sputter coated with platinum, 

followed by observation using JEOL JSM-6380 scanning electron microscope (SEM). Ten 

random sinusoids pictures were taken at 15000x magnification for analysis using ImageJ for liver 

porosity, fenestrations diameter and fenestrations frequency per surface area. Samples were 

analysed in random order and category was blinded during analysis. In addition to electron 

microscopy haematoxylin and eosin staining was undertaken to ensure the livers were free of 

pathology. 

 

6.2.5 Gut microbiome 

 

The cecum contents were collected, metagenomic DNA recovered and the microbial community 

sampled by 454 sequencing of the 3’ end of the 16S ribosomal RNA (907-1492) using primers 

specific for the domain Bacteria. Sequence reads were assigned to OTUs at 97% identity and then 

classified using both QIIME and Mothur. 
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6.2.6 Statistical analysis 

 

The effects of macronutrients on fenestrations were analysed according to the Geometric 

Framework approach, with response variables fitted as response surfaces onto macronutrient 

intake (protein, carbohydrate and fat) arrays, using thin-plate spline procedures in R, 

accompanied by Generalised Additive Modelling (GAMs) to test the main and interactive effects 

of the three macronutrients. These methods are described elsewhere (Solon-Biet et al., 2014, 

Solon-Biet et al., 2015, Le Couteur et al., 2014).  

 

To explore the relationship between fenestrations, dietary macronutrients and the gut 

microbiome correlations with fenestrations were performed using the Spearman’s test in 

SigmaPlot (SPSS Version 12.5) were performed in the first instance (data presented are mean ± 

SD and P<0.05 considered significant). To further explore these relationships we then tested 

whether abundance of circulating metabolites (fatty acids and amino acids) and bacterial families 

correlated with fenestration morphology using an information theoretic, model averaging 

approach with linear models (LMs) (Burnham & Anderson, 2002). We assessed whether dietary 

correlates affected three aspects of fenestrations: 1) percent porosity (converted to a proportion 

and logit transformed to normalise; (Warton and Hui, 2010)), 2) diameter of the fenestration and 

3) fenestration frequency (+0.5 and log transformed to normalise;(Yamamura, 1999)). LMs were 

fitted using the ‘lm’ function in the base package of R (R-Development-Core-Team, 2015 ), and 

model averaging was performed using the package MuMIn (Bartoń, 2015). These analyses were 

undertaken by Dr Alistair Senior in the laboratory of Professor Simpson at the Charles Perkins 

Centre, University of Sydney. 
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6.3 RESULTS 

 

6.3.1 Geometric framework analysis of the relationship between macronutrients and LSEC 

fenestrations. 

 

Response surfaces showing the relationship between macronutrients, dietary energy and 

fenestration morphology are shown in Fig. 6.1 (n=129 mice) and representative scanning 

electron micrographs are shown in Fig. 6.2. Fenestration porosity was influenced by dietary fat 

intake (P=0.016, for GAMs tables see Table 6.1), with low to intermediate fat intakes (around 20 

kJ/mouse/day) associated with highest porosity, and porosity falling both as fat intake increased 

or decreased to very low levels indicating a non-linear effect (quadratic). There was no 

statistically significant impact of the intake of energy, protein or carbohydrate on porosity. The 

response of fenestration frequency was similar to that of porosity, being associated only with fat 

intake (P=0.001). On the other hand, fenestration frequency was inversely associated with 

protein and carbohydrate intakes (P=0.028 and P=0.006, respectively). Low carbohydrate or low 

protein intake were both associated with increased fenestration diameter. However, there were no 

interactions between protein and carbohydrate, and their impact on diameter was not sufficient to 

translate into a change in total porosity. 
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Figure 6.1: Geometric Framework analysis showing relationship between macronutrients and 

fenestration porosity (a) and diameter (b). In each surface the blue represents the lowest value 

while the red represents the highest value. Each graph represents a slice through the median 

value of the third macronutrient (value provided in parenthesis below the x-axis label). Three 

graphs are provided demonstrating the interactions between protein and carbohydrate, protein 

and fat, and carbohydrate and fat. The regions with the highest fenestration diameter porosity or 

diameter are encircled in red, while those with the lowest are encircled with blue. Fat had a 

significant effect on porosity (P=0.016) while protein and carbohydrate had significant effects on 

diameter (P=0.028 and P=0.006, respectively). 
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Table 6.1: Generalised Additive Modelling (GAMs) for Figure 6.1. 

 edf Degrees of 

freedom 

F p-value 

Porosity (Fig. 1a)     

Protein eaten 5.447e-05 8 0.000 0.5569 

Carbohydrate eaten 5.508e-01 8 0.153 0.1218 

Fat eaten  1.874 8 0.698 0.0157 * 

Protein, carbohydrate eaten 1.595e-05 3 0.000 0.7683 

Protein, fat eaten 8.597e-01 3 0.538 0.1076 

Carbohydrate, fat eaten 5.143e-05 3 0.000 0.5844 

Frequency (Fig. 1b)     

Protein eaten 7.904e-01 8 0.000 0.02760* 

Carbohydrate eaten 8.628e-01 8 0.000 0.00633** 

Fat eaten  6.362e-05 8 0.000 0.38350 

Protein, carbohydrate eaten 2.451e-06 3 0.000 0.89405 

Protein, fat eaten 4.171e-06 3 0.000 0.73794 

Carbohydrate, fat eaten 7.106e-06 3 0.000 0.88118 

 

Fig. 1a: R sq. (adj.) = 0.0942. Deviance explained = 11.7%. REML = 234.77. Scale est. = 

2.1008; n = 129. Fig 1b: R sq.(adj.) = 0.052. Deviance explained = 6.42%. REML = 272.02. 

Scale est. = 3.8373; n = 129. GAMs, generalized additive modelling; edf, estimated degrees of 

freedom; REM, restricted maximal likelihood. *P < 0.05; **P < 0.01. 
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Figure 6.2: Scanning electron micrographs of the luminal surface of the liver sinusoidal 

endothelial cells. Some fenestrations are indicated with an arrow. (a). Increased fenestration 

diameter induced by diets low in carbohydrate or protein. (b) fenestration diameter is decreased 

in diets high in carbohydrates or protein, (c) Increased porosity induced by fat intake of 

approximately 20 kJ/mouse/day and (d) Diets high in fat lead to reduced endothelial porosity 

through loss of fenestrations (Original magnification 15000 ×). 
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6.3.2 Relationship between fenestrations and gut microbiome. 

 

There were 78 mice where a complete dataset was available for both electron microscopy of the 

LSEC and gut microbiome analysis. In this cohort of samples the most abundant taxa were the 

Firmicutes and Bacteroidetes phyla, followed by Clostridia, Bacillae, Erysipelotrichia, 

Deferribacteres, Verrucomicrobia, Lachnospiraceae, Clostridiaceae, Ruminococcaceae, 

Eubacteriaceae, Rikenellaceae, and Bacteroidaceae. There were significant positive 

relationships between fenestration porosity and diameter with the abundance of the Firmicutes 

phylum (Fig. 6.3, P=0.046 and P=0.0057 respectively). There was a significant negative 

relationship between fenestration diameter and the abundance of the Bacteroidetes phylum 

(P=0.045) and a non-significant negative trend with fenestration porosity and Bacteroidetes (Fig. 

6.3, P=0.087).  

 

Model averaging of lower taxonomic orders suggested no bacterial families were particularly 

good predictors of fenestration diameter or porosity (all families had a relative importance < 0.6), 

and for both responses the top model sets included the null models (see Supplementary Tables 2, 

3, 4 and 5). However, in concordance with the relationships suggested above, model averaging 

suggested that increasing Bacteroidaceae abundance (a member of the Bacteroidetes Phylum) 

was associated with a decreasing frequency of fenestrations (LM Est. [LCI to UCI] = -0.603 [-

0.954 to -0.252]; Supplementary Table 6) and increasing abundance of Lachnospiraceae (a 

member of the Firmicutes phylum) was associated with an increase in fenestrations (LM Est. 

[LCI to UCI] = 0.422 [0.063 to 0.781]; Supplementary Table 7). 
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Figure 6.3: The relationship between fenestrations (diameter, porosity) and gut microbiome 

phyla (Firmicutes, Bacteroidetes). There was a significant positive relationship between 

fenestration porosity and diameter with Firmicutes abundance (a, b, Spearmans correlation, 

P=0.046 and P=0.0057 respectively). There was a significant negative relationship between 

fenestration diameter and Bacteroidetes abundance (d, P=0.045) and a non-significant negative 

trend with fenestration porosity and Bacteroidetes (c, P=0.087) 
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6.3.3 Relationship between fenestrations and circulating metabolites and other substrates 

influenced by diet. 

 

Correlative analysis of individual free fatty acids found negative relationships between C16:0 

(palmitic acid) and C20:4 (arachidonic acid) with fenestration porosity (P=0.027 and P=0.037, 

respectively, n=95 mice), while C19:0 (nonadecanoic acid) had negative associations with 

fenestration diameter (P=0.020, Fig. 6.4), as well as frequency (P=0.048, Appendix 6). However, 

model averaging of free fatty acid groups showed that despite the strong influence that dietary fat 

intake has on fenestration morphology, circulating levels of fatty acids are not good predictors of 

fenestration responses, in all cases the relative importance of predictors was less than 0.45, and 

for all three responses the top model set contained the null model (see Supplementary Tables 8, 

9, 10, 11, 12 and 13 in Appendix 6). In addition there were no associations between fenestrations 

and other measures that reflect metabolic health including blood glucose, insulin, triglycerides, 

cholesterol or leptin, although there was a non-significant trend towards a negative relationship 

between fenestration diameter and fasting insulin. 

 

There were no significant relationships between fenestration porosity, diameter or frequency 

with circulating levels of total amino acids, total branched chain amino acids or any of the 

individual amino acids except phenylalanine which had a negative relationship with porosity 

(P=0.037, n=94 mice, Fig. 6.4) and aspartic acid which had a negative relationship with diameter 

(P=0.047). Model averaging of more complex models also indicated that the concentration of 

circulating amino acids were not a good predictor of fenestration diameter or frequency; in both 

cases the top model sets contained the null models (see Supplementary Tables 14, 15, 16 and 17 



174 

 

in Appendix 6). The best predictor was abundance of hydroxyl and sulfur selenium amino acids, 

which had a relative importance of 0.832 for the fenestration diameter response, and was 

estimated to have a positive effect but with very poor precision (LM Est. [LCI to UCI] = 11.779 

[-1.075 to 24.633]; Supplementary Table 15). For fenestration porosity, abundance of aliphatic 

amino acids had a relative importance of 1, appearing in all models in the top model set 

(Supplementary Tables 18 and 19). Model averaged estimates indicate that increases in aliphatic 

amino acids were associated with decreases in the porosity of fenestrations (LM Est. [LCI to 

UCI] = -0.431 [-0.799 to 0.063]; Supplementary Table 19).  
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Figure 6.4: The relationship between phenylalanine, and the fatty acids C16:0, C19:0 and C20:4. 

There were significant correlations between porosity and circulating phenylalanine (P=0.037), 

C16:0 (P=0.027) and C20:4 (P=0.037) and between fenestration diameter and C19:0 (P=0.020). 
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6.4 DISCUSSION 

 

In previous studies, fenestrations have been reported to be influenced by reduced intake of food 

and dietary energy. In one study, my laboratory showed that a 48 hour period of fasting in rats 

was associated with increased fenestration diameter of about 10%(O'Reilly et al., 2010). In 

another study from my laboratory it was found that caloric restriction over a lifetime in rats was 

associated with increased fenestration frequency and porosity of about 60% in old age (Jamieson 

et al., 2007b). These studies indicate that fenestrations are dynamic structures that are influenced 

by dietary manipulation. However, such studies where only one nutritional dimension, energy, is 

manipulated cannot determine whether the outcome is a result of a reduction in total energy or 

one of the individual macronutrient components of the diet (Simpson et al., 2015). One of the 

key advantages of using the Geometric Framework is that the different components of the diet – 

energy, protein, carbohydrates and fat plus their interactions – can be evaluated across a 

nutritional landscape (Simpson and Raubenheimer, 2012). The results of this study have revealed 

that the main dietary component that influences fenestration porosity is fat, such that higher fat 

intakes are associated with reduced fenestration frequency and overall porosity. A low fat intake 

of approximately 20 kJ/mouse/day was associated with maximum porosity below which porosity 

decreased again slightly. According to the phenotype response surfaces, porosity varied between 

about 2.8% and 4.4% depending upon the dietary fat intake. Fat intake had its main impact on 

fenestration frequency while protein and carbohydrate intakes influenced fenestration diameter, 

although this was not sufficient to alter total porosity.  
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A number of nutritional interventions have been found to influence ageing and lifespan. The 

most widely studied is caloric restriction. We have previously shown that caloric restriction is 

associated with increased fenestrations in old age (Jamieson et al., 2007b). The results in our 

current study suggest that this might be secondary to a reduction in each of the macronutrients 

acting via different mechanisms: the reduction in fat intake leads to increased fenestration 

diameter, the reduction in protein and carbohydrate intake leads to increased fenestration 

frequency. On the other hand, our studies in insects (Lee et al., 2008) and mice (Solon-Biet et al., 

2014) have indicated that low protein, high carbohydrate diets are linked with longer lifespan 

and improved latelife health. We did not find any direct beneficial impact of low protein, high 

carbohydrate diets on fenestrations, perhaps as a consequence of the opposing effects of low 

protein and high carbohydrate on fenestration diameter. 

 

Having established that macronutrients influence fenestrations we then sought to elucidate 

possible mechanisms that could link diet with LSEC ultrastructure. We performed analysis of gut 

microbiome and circulating fatty acids and amino acids. Analysis of the gut microbiome data 

showed that there was a positive relationship between fenestrations and diet-induced changes in 

the Firmicutes phylum and a negative relationship and/or trend with the Bacteroidetes phylum. 

Firmicutes and Bacteroidetes make up the most abundant phyla within the gut microbiome. 

Although the abundances of Firmicutes and Bacteroidetes have been linked to various health 

states, these phyla include a broad diversity of different taxa of bacteria, thus analysis limited to 

Firmicutes and Bacteroidetes can only be considered to be a blunt interpretation of gut 

microbiota (Jandhyala et al., 2015, Ha et al., 2014). It is interesting that the abundance of 

Firmicutes declines with age while Bacteroidetes increases (Jandhyala et al., 2015, Mariat et al., 
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2009). Ageing is associated with a reduction in fenestrations which is a key part of age-related 

pseudocapillarisation of the hepatic sinusoid (Le Couteur et al., 2008a, Le Couteur et al., 2001) 

which might therefore be mechanistically linked with age-related changes in the relative 

abundances of Firmicutes and Bacteroidetes. There has also been a growing focus on the role of 

the gut microbiome in the pathogenesis of hepatic diseases including in particular hepatosteatosis 

and cirrhosis (Wieland et al., 2015). This is in part because the liver receives the majority of its 

blood supply from the intestinal portal circulation, and is therefore exposed to a diverse array of 

microbial toxins and metabolites. Hepatosteatosis has been reported to be associated with 

reduced Firmicutes and increased Bacteroidetes, while various liver diseases are associated with 

leaky gut with subsequent increased exposure of the liver to bacterial toxins and bacteria 

(Wieland et al., 2015, Paolella et al., 2014, Dobbs et al., 1994). With respect to the LSEC, we 

have shown that defenestration can be caused by direct exposure to two bacterial toxins: 

lipopolysaccharide endotoxin (Dobbs et al., 1994) and pseudomonal pyocyanin (Cheluvappa et 

al., 2007).  

 

We then investigated the relationship between circulating substrates that might reflect changes in 

dietary intake of macronutrients. Our previous studies have demonstrated that fenestrations form 

in the non-lipid raft segments of the LSEC cell membrane (Svistounov et al., 2012). Moreover, 

interventions that disrupted lipid rafts and the non-raft membranes had significant effects on 

fenestrations and porosity. We concluded that one of the factors regulating fenestrations were 

lipid rafts (Svistounov et al., 2012, Cogger et al., 2013a). Lipid rafts are potentially influenced by 

diet, in particular dietary fatty acids (Pike, 2009). The lipid rafts contain a high proportion of 

saturated fatty acids while long chain polyunsaturated fatty acids increase the clustering of 
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proteins within lipid rafts (Pike, 2009). A number of different fatty acids, including arachidonic 

acid (C20:4) partition rapidly into cell membranes and perturb lipid rafts (Catalá, 2012). Further 

it has been demonstrated that metabolites of arachidonic acid have been shown to contribute to 

LSEC dysfunction in the setting of portal hypertension (Bosch et al., 2010). Therefore it is of 

note that circulating levels of the saturated fatty acids, C16:0, C19:0 and the polyunsaturated 

fatty acid, C20:4 were associated with fenestrations. However, more complex models could not 

find substantial correlations between fatty acid groups and fenestrations. 

 

In the Geometric Framework study of the effects of macronutrients on ageing, it was found that 

branched chain amino acids appeared to mediate some of the benefits of a low protein high 

carbohydrate diet on age-related health and lifespan (Solon-Biet et al., 2014). Here we did not 

find any association between branched chain amino acids and fenestrations. Examination of the 

other amino acids revealed an inverse association between porosity and phenylalanine 

concentrations Although this could be a chance finding, it is of note that an elevated level of 

phenylalanine is a risk factor for hypertriglyceridemia (Mook-Kanamori et al., 2014), while 

defenestration is a mechanism for hyperlipidemia through impaired hepatic uptake of 

chylomicron remnants (Hilmer et al., 2005). 

 

In conclusion, macronutrients had complex effects on LSEC fenestrations. Overall, reduced 

intake of macronutrients was associated with increased measures of fenestration frequency 

and/or diameter, with fat having the dominant influence on porosity mediated by its effect on the 

frequency of fenestrations. There was an association between microbiome (Firmicutes, 
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Bacteroidetes) and free fatty acids with fenestrations which might provide mechanistic links 

between dietary macronutrients and LSEC ultrastructure in old age.  
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CHAPTER 7: GENERAL DISCUSSION 
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The liver is the main organ in the body responsible for a wide variety of biological processes 

regulated by insulin such as glucose homeostasis and hepatic insulin clearance. Glucose 

metabolism is significantly impaired with ageing (Fink et al., 1983) and impaired insulin action 

with age contributes to disease and morbidity.  

 

Age-related changes in the liver have been established in a variety of species. In addition to a 

reduction in both liver size and blood flow, the endothelial changes of pseudocapillarisation- 

decreased porosity, increased thickness and increased basal lamina - have been reported. These 

alterations have contributed to reduced hepatic clearance of many substrates with age. My 

laboratory has previously demonstrated that ageing is associated with an impaired clearance of 

chylomicron remnant secondary to defenestration in ageing, contributing to the development of 

atherosclerosis. Similarly it has been shown here that age- and disease related loss of 

fenestrations may form a barrier for insulin action, contributing to insulin resistance in ageing.  

 

The majority of previous liver studies examining insulin action focus on the hepatocyte, however 

as postulated here the cells of the hepatic sinusoid are also crucial to liver function. The work of 

this thesis focuses on the vital role of the LSEC on insulin action and glucose homeostasis in the 

liver during health, ageing and also toxicity (P407).  

 

In Chapter 3, the impact of age-related pseudocapillarisation of the liver sinusoidal endothelium 

has shown, for what we believe is the first time, that fenestrations are essential for efficient 

insulin transfer across the liver sinusoidal endothelium and subsequent insulin and glucose 

homeostasis. Mechanistically, we have demonstrated defenestration such as occurs in ageing and 
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liver disease, restricts insulin access to the hepatocellular membrane through impaired trans- 

endothelial transfer, resulting in hyperinsulinemia, impaired hepatic insulin signaling, reduced 

glycogen storage, compensatory muscle and fat uptake of insulin and glucose and dysregulated 

gluconeogenesis. Future studies showing a correlation between insulin transfer and consequent 

signaling events are needed to obtain a full picture of the LSEC role in metabolism homeostasis.  

 

However, as it is recognised that ageing is a multifactorial process where many fundamental 

cellular processes are affected and considerable adaptations develop overtime to support 

metabolic homeostasis, testing the role of LSEC fenestrations in insulin transfer in a singular 

model of defenestration is important. Chapter 4 used P407 induced defenestration to explore the 

impact of acute defenestration on insulin and glucose transfer. This work showed that 

defenestration alone reduced the transfer of insulin and glucose from the sinusoid into the 

extracellular space and reduced insulin action in hepatocytes with an impact on glucose 

homeostasis. This was associated with hyperinsulinaemia, glucose intolerance and deranged 

glucose metabolism in the liver. While not all of the ageing changes in the liver are recapitulated 

by P407 these results are in agreement with the findings in Chapter 3, and are also in parallel 

with a previous study showing that defenestration of the LSEC in ageing leads to impaired 

transendothelial transfer of various other substances such as lipoproteins and medications into 

the liver (Hilmer et al., 2005, Mitchell et al., 2012, Mitchell et al., 2011).  

 

Following up on the loss of fenestrations in vivo by P407 in Chapter 4, an in vitro analysis of 

isolated LSECS treated with P407 was performed in Chapter 5. This work explored the 

mechanism for defenestration in this model and demonstrates that loss of fenestrations is caused 
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by the depletion of the non-lipid raft domains in the LSEC membrane, inhibiting the formation of 

fenestrations. . Further studies will need to be performed to further support this work and should 

include observations of these changes via live-cell imaging or with additional treatment of 

insulin to add to the results obtained in vivo. This finding has strengthened the sieve-raft 

hypothesis and further facilitated the study of fenestration biology as the changes can be detected 

by fluorescence rather than electron microscopy. As there is increased recognition of the role of 

LSECs in liver pathology, it is important that the mechanisms that regulate fenestrations are 

elucidated so we can enhance understanding of the risk factors for LSEC changes and potentially 

target these mechanisms for development of therapies for the management of diseases and old 

age. Future studies examining the cellular mechanisms behind age- and disease-related 

defenestration are required, however extrapolating from these and other related studies suggest 

that examining the lipid properties of the cell membranes would be beneficial. 

 

Chapter 6 investigates the effects of macronutrient intake on the ageing vasculature of the liver 

and its association with gut microbiome and circulating fatty acids. Reduced intake of 

macronutrients was associated with increased fenestration frequency and/or diameter, with fat 

having the dominant influence on porosity mediated by its effect on the frequency of 

fenestrations. There was an association between microbiome (Firmicutes, Bacteroidetes) and 

free fatty acids with fenestrations which might provide mechanistic links between dietary 

macronutrients and LSEC ultrastructure in old age. This indicates that the rate of development of 

changes in LSEC is influenced not only by ageing but also by dietary manipulation, and possibly 

that pseudocapillarisation may be attenuated or indeed prevented by diet. 
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The studies in this thesis have shed light on the importance of the endothelium in the liver, as 

similarly in other tissues, in the maintenance of normal function and regulation of metabolic 

homeostasis. This establishes not only the importance of the fenestrated endothelium for the 

transfer of insulin in the liver, but also further validates the poloxamer 407 model for examining 

substrate transfer across the ageing sinusoidal endothelium. The role of pseudocapillarisation in 

age-related insulin resistance could be further established using experimental models that 

defenestrate the normal LSEC and/or regenerate fenestrations in aged-related 

pseudocapillarisation. Future studies are needed to understand fenestration biology and the 

mechanism that underlies loss of fenestrations. This understanding may allow the prevention of 

pseudocapillarisation and initiate the development of therapies to attenuate age-related structural 

changes. Such interventions are important for the prevention and management of impaired 

metabolic homeostasis such as insulin resistance and hyperlipidemia in older people.  

 

In conclusion, the integrity of the liver microvasculature is essential for the lifelong maintenance 

of insulin and glucose homeostasis. The morphology of the liver sinusoidal endothelial cell is 

dependent on the properties of the cell membranes, which can be altered through diet and 

exposure to circulating macronutrients and gut microbiome-derived factors. These results 

suggest interesting avenues to pursue for the treatment and prevention of age-related 

defenestration and the diseases and morbidities associated with age. Future research should focus 

on therapeutic agents that maintain the ultrastructure of the LSEC in old age as a potential 

therapy for the treatment and prevention of insulin resistant and diabetes in older people 
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APPENDIX 1 

Supplementary information for Chapter 3: Insulin tolerance test showing similar performance 

between young and old group. 
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APPENDIX 2 

Supplementary information for Chapter 3: RT-PCR data for insulin signaling pathway in young 

vs old livers 

Symbol Well 

AVG ΔCt               
(Ct (GOI) - Ave Ct 

(HKG)) 
2^-ΔCt 

Fold 
Change 

T-TEST 
Fold Up- or 

Down-
Regulation 

OLD YOUNG OLD YOUNG 
OLD 

/YOUNG 
p value 

OLD 
/YOUNG 

Acaca A01 3.11 2.33 1.2E-01 2.0E-01 0.58 0.294059 -1.71 

Acox1 A02 5.05 6.38 3.0E-02 1.2E-02 2.52 0.965517 2.52 

Adra1d A03 9.45 10.32 1.4E-03 7.8E-04 1.83 0.342633 1.83 

Aebp1 A04 7.88 6.60 4.2E-03 1.0E-02 0.41 0.402924 -2.42 

Akt1 A05 4.15 4.00 5.6E-02 6.3E-02 0.90 0.814608 -1.11 

Akt2 A06 6.83 8.03 8.8E-03 3.8E-03 2.30 0.863440 2.30 

Akt3 A07 7.14 7.38 7.1E-03 6.0E-03 1.18 0.600176 1.18 

Araf A08 2.64 2.74 1.6E-01 1.5E-01 1.08 0.685440 1.08 

Bcl2l1 A09 6.30 5.66 1.3E-02 2.0E-02 0.64 0.511245 -1.55 

Braf A10 5.00 5.19 3.1E-02 2.7E-02 1.14 0.961619 1.14 

Cap1 A11 2.44 3.16 1.8E-01 1.1E-01 1.65 0.322493 1.65 

Cbl A12 7.53 7.76 5.4E-03 4.6E-03 1.17 0.952396 1.17 

Cebpa B01 2.33 2.18 2.0E-01 2.2E-01 0.91 0.732909 -1.10 

Cebpb B02 6.27 7.75 1.3E-02 4.6E-03 2.80 0.996637 2.80 

Cfd B03 7.67 8.33 4.9E-03 3.1E-03 1.58 0.539415 1.58 

Dok1 B04 9.19 10.19 1.7E-03 8.5E-04 2.01 0.341850 2.01 

Dok2 B05 9.17 9.79 1.7E-03 1.1E-03 1.53 0.394094 1.53 

Dok3 B06 9.31 9.86 1.6E-03 1.1E-03 1.46 0.421388 1.46 

Dusp14 B07 8.27 7.45 3.2E-03 5.7E-03 0.57 0.780596 -1.76 

Eif2b1 B08 4.71 4.08 3.8E-02 5.9E-02 0.64 0.272332 -1.55 

Eif4ebp1 B09 1.85 1.24 2.8E-01 4.2E-01 0.66 0.306678 -1.53 

Ercc1 B10 7.74 9.01 4.7E-03 1.9E-03 2.42 0.801794 2.42 

Fasn B11 3.80 -0.91 7.2E-02 1.9E+00 0.04 0.022161 -26.22 

Fbp1 B12 8.02 8.14 3.9E-03 3.5E-03 1.09 0.859602 1.09 

Fos C01 7.14 8.67 7.1E-03 2.5E-03 2.90 0.789263 2.90 

Frs2 C02 6.62 6.94 1.0E-02 8.1E-03 1.25 0.505022 1.25 

Frs3 C03 5.82 7.04 1.8E-02 7.6E-03 2.33 0.711226 2.33 

G6pc C04 7.95 6.89 4.0E-03 8.4E-03 0.48 0.672318 -2.08 

Gab1 C05 5.29 5.70 2.6E-02 1.9E-02 1.32 0.796305 1.32 

Gcg C06 6.57 7.70 1.1E-02 4.8E-03 2.18 0.659937 2.18 
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Symbol Well 
AVG ΔCt               

(Ct (GOI) - Ave Ct 
(HKG)) 

2^-ΔCt 
Fold 

Change 
T-TEST 

Fold Up- or 
Down-

Regulation 

  OLD YOUNG OLD YOUNG 
OLD 

/YOUNG 
p value 

OLD 
/YOUNG 

Gck C07 6.22 6.58 1.3E-02 1.0E-02 1.28 0.789675 1.28 

Gpd1 C08 7.75 7.34 4.6E-03 6.2E-03 0.75 0.542770 -1.33 

Grb10 C09 6.06 6.65 1.5E-02 1.0E-02 1.51 0.698559 1.51 

Grb2 C10 6.82 8.10 8.8E-03 3.7E-03 2.42 0.753414 2.42 

Gsk3b C11 8.84 10.07 2.2E-03 9.3E-04 2.34 0.324282 2.34 

Hk2 C12 6.37 7.40 1.2E-02 5.9E-03 2.04 0.594500 2.04 

Hras D01 5.97 6.82 1.6E-02 8.9E-03 1.80 0.448238 1.80 

Igf1r D02 9.29 8.83 1.6E-03 2.2E-03 0.73 0.928575 -1.37 

Igf2 D03 4.72 6.40 3.8E-02 1.2E-02 3.21 0.822011 3.21 

Igfbp1 D04 9.45 9.57 1.4E-03 1.3E-03 1.09 0.477142 1.09 

Ins1 D05 9.45 10.32 1.4E-03 7.8E-04 1.83 0.342633 1.83 

Ins2 D06 7.44 9.41 5.8E-03 1.5E-03 3.93 0.196303 3.93 

Insl3 D07 6.61 8.45 1.0E-02 2.9E-03 3.60 0.598694 3.60 

Insr D08 2.46 2.86 1.8E-01 1.4E-01 1.32 0.813029 1.32 

Irs1 D09 3.77 3.50 7.3E-02 8.9E-02 0.83 0.845756 -1.21 

Irs2 D10 4.55 5.13 4.3E-02 2.8E-02 1.50 0.363243 1.50 

Jun D11 3.66 2.75 7.9E-02 1.5E-01 0.53 0.247933 -1.87 

Klf10 D12 7.21 6.06 6.7E-03 1.5E-02 0.45 0.531329 -2.23 

Kras E01 4.77 4.76 3.7E-02 3.7E-02 0.99 0.756316 -1.01 

Ldlr E02 6.48 7.70 1.1E-02 4.8E-03 2.33 0.728540 2.33 

Lep E03 7.17 8.40 6.9E-03 3.0E-03 2.34 0.817543 2.34 

Map2k1 E04 3.11 3.09 1.2E-01 1.2E-01 0.99 0.728693 -1.01 

Mapk1 E05 4.74 4.46 3.7E-02 4.6E-02 0.82 0.748205 -1.22 

Mtor E06 9.45 10.32 1.4E-03 7.8E-04 1.83 0.342633 1.83 

Nos2 E07 7.70 8.94 4.8E-03 2.0E-03 2.36 0.898031 2.36 

Npy E08 7.33 8.50 6.2E-03 2.8E-03 2.26 0.880665 2.26 

Pck2 E09 6.22 5.92 1.3E-02 1.7E-02 0.81 0.712001 -1.23 

Pdpk1 E10 4.94 4.86 3.3E-02 3.4E-02 0.94 0.950127 -1.06 

Pik3ca E11 6.87 8.17 8.5E-03 3.5E-03 2.47 0.846339 2.47 

Pik3cb E12 8.86 10.32 2.1E-03 7.8E-04 2.74 0.296042 2.74 

Pik3r1 F01 3.18 3.15 1.1E-01 1.1E-01 0.98 0.692093 -1.02 

Pik3r2 F02 5.97 5.30 1.6E-02 2.5E-02 0.63 0.464881 -1.59 

Pklr F03 6.24 4.80 1.3E-02 3.6E-02 0.37 0.464414 -2.71 

Pparg F04 9.45 9.94 1.4E-03 1.0E-03 1.41 0.404963 1.41 

Ppp1ca F05 2.65 2.72 1.6E-01 1.5E-01 1.05 0.961231 1.05 

Prkcg F06 7.51 8.98 5.5E-03 2.0E-03 2.78 0.660055 2.78 

Prkcz F07 7.05 6.57 7.5E-03 1.0E-02 0.72 0.980219 -1.39 

Prl F08 7.20 8.70 6.8E-03 2.4E-03 2.82 0.811913 2.82 
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Symbol Well 
AVG ΔCt               

(Ct (GOI) - Ave Ct 
(HKG)) 

2^-ΔCt 
Fold 

Change 
T-TEST 

Fold Up- or 
Down-

Regulation 

  OLD YOUNG OLD YOUNG 
OLD 

/YOUNG 
p value 

OLD 
/YOUNG 

Ptpn1 F09 6.93 8.58 8.2E-03 2.6E-03 3.14 0.713847 3.14 

Raf1 F10 1.89 2.55 2.7E-01 1.7E-01 1.58 0.363834 1.58 

Retn F11 9.45 10.32 1.4E-03 7.8E-04 1.83 0.342633 1.83 

Rps6ka1 F12 7.87 9.15 4.3E-03 1.8E-03 2.43 0.661146 2.43 

Rras G01 4.90 4.07 3.4E-02 6.0E-02 0.56 0.477690 -1.78 

Rras2 G02 3.97 4.70 6.4E-02 3.9E-02 1.66 0.329842 1.66 

Serpine1 G03 5.59 5.51 2.1E-02 2.2E-02 0.94 0.806348 -1.06 

Shc1 G04 5.09 5.11 2.9E-02 2.9E-02 1.01 0.729800 1.01 

Slc27a4 G05 7.29 8.70 6.4E-03 2.4E-03 2.66 0.899783 2.66 

Slc2a1 G06 7.26 8.72 6.5E-03 2.4E-03 2.76 0.835286 2.76 

Slc2a4 G07 6.46 7.41 1.1E-02 5.9E-03 1.93 0.922519 1.93 

Sos1 G08 6.28 5.85 1.3E-02 1.7E-02 0.74 0.568297 -1.34 

Srebf1 G09 1.82 1.09 2.8E-01 4.7E-01 0.60 0.291791 -1.66 

Tg G10 9.45 10.21 1.4E-03 8.4E-04 1.70 0.355179 1.70 

Ucp1 G11 9.26 10.32 1.6E-03 7.8E-04 2.08 0.333236 2.08 

Vegfa G12 6.48 7.75 1.1E-02 4.6E-03 2.42 0.782530 2.42 

Actb H01 -1.03 -1.43 2.0E+00 2.7E+00 0.76 0.658113 -1.31 

B2m H02 2.82 1.90 1.4E-01 2.7E-01 0.53 0.769787 -1.89 

Hprt1 H03 -0.84 0.20 1.8E+00 8.7E-01 2.06 0.922424 2.06 

Ldha H04 0.42 0.03 7.5E-01 9.8E-01 0.77 0.809575 -1.30 

Rplp1 H05 -1.36 -0.71 2.6E+00 1.6E+00 1.57 0.388136 1.57 
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APPENDIX 3: 

Supplementary information for Chapters 3 & 4:  Quantitative phosphoproteomics of 47 peptides 

containing insulin-regulated sites from the KEGG insulin signaling pathway for old vs young 

and control vs P407 group. Z-scores of >+/-1.0 were considered significant. Log2 values are 

provided to show statistical variation. 
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APPENDIX 4 

Supplementary information for Chapter 4: Average MID outflow curves for pyruvate and the 

extracellular marker sucrose for (a) control and (b) P407 rats. There are no changes in the 

volume of distribution of pyruvate for both groups. 
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APPENDIX 5 

Supplementary information for Chapter 4: RT-PCR data for insulin signaling pathway in Control 

vs P407 livers 

Symbol Well 

AVG ΔCt               
(Ct (GOI) - Ave 

Ct (HKG)) 
2^-ΔCt 

Fold 
Change 

T-TEST 
Fold Up- 
or Down-

Regulation 

P407 Saline P407 Saline 
P407 

/Saline 
p value 

P407 
/Saline 

Acaca A01 5.57 5.30 2.1E-02 2.5E-02 0.83 0.883138 -1.20 

Acox1 A02 2.79 2.10 1.4E-01 2.3E-01 0.62 N/A -1.62 

Adra1d A03 14.67 N/A 3.8E-05 N/A N/A N/A N/A 

Aebp1 A04 10.31 10.92 7.9E-04 5.2E-04 1.53 0.168876 1.53 

Akt1 A05 5.86 6.12 1.7E-02 1.4E-02 1.20 0.555182 1.20 

Akt2 A06 5.04 5.27 3.0E-02 2.6E-02 1.18 0.605222 1.18 

Akt3 A07 9.65 9.65 1.2E-03 1.2E-03 1.00 0.917337 -1.00 

Araf A08 4.09 3.69 5.9E-02 7.7E-02 0.76 N/A -1.31 

Bcl2l1 A09 5.98 5.40 1.6E-02 2.4E-02 0.67 0.168497 -1.49 

Braf A10 7.66 7.80 4.9E-03 4.5E-03 1.10 0.511738 1.10 

Cap1 A11 5.01 5.07 3.1E-02 3.0E-02 1.05 0.732696 1.05 

Cbl A12 9.68 10.05 1.2E-03 9.4E-04 1.30 0.407195 1.30 

Cebpa B01 3.67 6.27 7.9E-02 1.3E-02 6.08 0.950302 6.08 

Cebpb B02 12.79 12.65 1.4E-04 1.6E-04 0.90 N/A -1.11 

Cfd B03 4.32 4.13 5.0E-02 5.7E-02 0.88 0.706524 -1.14 

Dok1 B04 10.94 10.94 5.1E-04 5.1E-04 1.00 0.607590 1.00 

Dok2 B05 12.17 12.12 2.2E-04 2.2E-04 0.97 0.722672 -1.03 

Dok3 B06 10.00 11.15 9.7E-04 4.4E-04 2.21 0.083272 2.21 

Dusp14 B07 9.72 9.60 1.2E-03 1.3E-03 0.92 0.577725 -1.08 

Eif2b1 B08 7.00 7.31 7.8E-03 6.3E-03 1.24 N/A 1.24 

Eif4ebp1 B09 4.97 4.98 3.2E-02 3.2E-02 1.00 0.966788 1.00 

Ercc1 B10 11.91 11.99 2.6E-04 2.5E-04 1.06 0.874044 1.06 

Fasn B11 3.81 4.29 7.1E-02 5.1E-02 1.40 N/A 1.40 
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Symbol Well 
AVG ΔCt               

(Ct (GOI) - Ave 
Ct (HKG)) 

2^-ΔCt 
Fold 

Change 
T-TEST 

Fold Up- 
or Down-

Regulation 

  P407 Saline P407 Saline 
P407 

/Saline 
p value 

P407 
/Saline 

Fbp1 B12 1.80 1.47 2.9E-01 3.6E-01 0.80 0.502627 -1.26 

Fos C01 10.57 10.77 6.6E-04 5.7E-04 1.15 0.745289 1.15 

Frs2 C02 7.57 7.39 5.3E-03 5.9E-03 0.89 0.419211 -1.13 

Frs3 C03 12.21 12.40 2.1E-04 1.8E-04 1.14 0.509824 1.14 

G6pc C04 4.98 3.17 3.2E-02 1.1E-01 0.28 0.841671 -3.53 

Gab1 C05 8.92 8.99 2.1E-03 2.0E-03 1.05 0.909824 1.05 

Gcg C06 14.67 N/A 3.8E-05 N/A N/A N/A N/A 

Gck C07 6.55 5.77 1.1E-02 1.8E-02 0.58 N/A -1.72 

Gpd1 C08 3.87 3.46 6.8E-02 9.1E-02 0.75 0.553015 -1.33 

Grb10 C09 12.21 12.34 2.1E-04 1.9E-04 1.09 0.605081 1.09 

Grb2 C10 3.71 3.83 7.6E-02 7.0E-02 1.09 N/A 1.09 

Gsk3b C11 6.79 6.93 9.1E-03 8.2E-03 1.11 0.726290 1.11 

Hk2 C12 12.22 12.62 2.1E-04 1.6E-04 1.33 0.380887 1.33 

Hras D01 3.37 3.25 9.7E-02 1.1E-01 0.92 0.813262 -1.09 

Igf1r D02 11.65 11.63 3.1E-04 3.2E-04 0.98 0.863731 -1.02 

Igf2 D03 12.16 12.28 2.2E-04 2.0E-04 1.09 0.576069 1.09 

Igfbp1 D04 2.69 2.49 1.5E-01 1.8E-01 0.87 0.931905 -1.15 

Ins1 D05 11.76 13.16 2.9E-04 1.1E-04 2.63 N/A 2.63 

Ins2 D06 12.79 13.16 1.4E-04 1.1E-04 1.29 N/A 1.29 

Insl3 D07 11.97 12.65 2.5E-04 1.6E-04 1.60 N/A 1.60 

Insr D08 5.44 5.88 2.3E-02 1.7E-02 1.35 0.227271 1.35 

Irs1 D09 5.58 5.47 2.1E-02 2.3E-02 0.92 0.655403 -1.09 

Irs2 D10 8.80 9.62 2.2E-03 1.3E-03 1.76 0.026492 1.76 

Jun D11 6.91 7.43 8.3E-03 5.8E-03 1.44 0.441436 1.44 

Klf10 D12 7.66 7.78 4.9E-03 4.6E-03 1.08 0.663021 1.08 

Kras E01 7.66 7.48 4.9E-03 5.6E-03 0.88 0.310540 -1.13 

Ldlr E02 5.63 6.27 2.0E-02 1.3E-02 1.55 0.278261 1.55 

Lep E03 14.67 N/A 3.8E-05 N/A N/A N/A N/A 

Map2k1 E04 6.25 6.31 1.3E-02 1.3E-02 1.05 0.967957 1.05 
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Symbol Well 
AVG ΔCt               

(Ct (GOI) - Ave 
Ct (HKG)) 

2^-ΔCt 
Fold 

Change 
T-TEST 

Fold Up- 
or Down-

Regulation 

  P407 Saline P407 Saline 
P407 

/Saline 
p value 

P407 
/Saline 

Mapk1 E05 3.93 3.98 6.6E-02 6.3E-02 1.03 0.755070 1.03 

Mtor E06 7.07 7.00 7.5E-03 7.8E-03 0.95 0.748041 -1.05 

Nos2 E07 13.20 12.65 1.1E-04 1.6E-04 0.68 N/A -1.46 

Npy E08 7.95 7.37 4.1E-03 6.0E-03 0.67 0.380978 -1.49 

Pck2 E09 4.99 5.84 3.1E-02 1.8E-02 1.79 0.184082 1.79 

Pdpk1 E10 6.53 6.55 1.1E-02 1.1E-02 1.01 N/A 1.01 

Pik3ca E11 6.84 6.98 8.7E-03 7.9E-03 1.10 0.689183 1.10 

Pik3cb E12 6.91 7.01 8.3E-03 7.8E-03 1.07 0.798322 1.07 

Pik3r1 F01 6.65 5.81 1.0E-02 1.8E-02 0.56 0.188509 -1.79 

Pik3r2 F02 8.40 8.53 3.0E-03 2.7E-03 1.09 0.804854 1.09 

Pklr F03 3.86 2.86 6.9E-02 1.4E-01 0.50 0.477493 -2.00 

Pparg F04 10.40 10.21 7.4E-04 8.5E-04 0.88 0.749064 -1.14 

Ppp1ca F05 3.57 3.67 8.4E-02 7.9E-02 1.07 0.633707 1.07 

Prkcg F06 12.43 12.62 1.8E-04 1.6E-04 1.14 0.587596 1.14 

Prkcz F07 8.73 8.95 2.4E-03 2.0E-03 1.16 0.775432 1.16 

Prl F08 12.79 12.62 1.4E-04 1.6E-04 0.89 0.757958 -1.13 

Ptpn1 F09 7.38 7.69 6.0E-03 4.8E-03 1.24 0.562210 1.24 

Raf1 F10 3.73 3.92 7.5E-02 6.6E-02 1.14 0.453272 1.14 

Retn F11 14.67 13.16 3.8E-05 1.1E-04 0.35 N/A -2.85 

Rps6ka1 F12 7.12 7.18 7.2E-03 6.9E-03 1.04 0.944111 1.04 

Rras G01 5.37 5.85 2.4E-02 1.7E-02 1.39 0.235829 1.39 

Rras2 G02 5.35 6.16 2.4E-02 1.4E-02 1.75 N/A 1.75 

Serpine1 G03 11.18 11.67 4.3E-04 3.1E-04 1.40 0.765379 1.40 

Shc1 G04 5.22 5.56 2.7E-02 2.1E-02 1.27 0.643608 1.27 

Slc27a4 G05 7.79 7.78 4.5E-03 4.6E-03 0.99 0.956394 -1.01 

Slc2a1 G06 11.55 10.78 3.3E-04 5.7E-04 0.59 0.262772 -1.70 

Slc2a4 G07 12.79 13.16 1.4E-04 1.1E-04 1.29 N/A 1.29 

Sos1 G08 6.78 6.66 9.1E-03 9.9E-03 0.92 0.898960 -1.09 

Srebf1 G09 9.09 9.58 1.8E-03 1.3E-03 1.41 N/A 1.41 
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Symbol Well 
AVG ΔCt               

(Ct (GOI) - Ave 
Ct (HKG)) 

2^-ΔCt 
Fold 

Change 
T-TEST 

Fold Up- 
or Down-

Regulation 

  P407 Saline P407 Saline 
P407 

/Saline 
p value 

P407 
/Saline 

Tg G10 11.90 10.99 2.6E-04 4.9E-04 0.53 0.010198 -1.88 

Ucp1 G11 13.22 12.14 1.1E-04 2.2E-04 0.47 N/A -2.11 

Vegfa G12 4.95 4.90 3.2E-02 3.4E-02 0.96 0.857308 -1.04 

Actb H01 0.68 0.92 6.3E-01 5.3E-01 1.19 0.551329 1.19 

B2m H02 -2.55 -2.89 5.8E+00 7.4E+00 0.79 0.059386 -1.27 

Hprt1 H03 1.68 0.98 3.1E-01 5.1E-01 0.62 0.239562 -1.63 

Ldha H04 0.34 0.88 7.9E-01 5.4E-01 1.46 0.108750 1.46 

Rplp1 H05 -0.15 0.10 1.1E+00 9.3E-01 1.19 0.175467 1.19 
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APPENDIX 6 

Supplementary Information for Chapter 6 

 

Supplementary Fig. 1 Circulating C19 levels and LSEC fenestration frequency 
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Supplementary Table 1. 

Top model set based on Akaike Information Criterion corrected for small sample size (AICc) for 

the effects of bacterial abundance on fenestration diameter. Given for each model is the model 

form, degrees of freedom (df), models log likelihood (logLik), AICc, change in AICc from the 

top model (AICc) and model weight (1 indicates the intercept). 

 

Model Form df logLik AICc AICc weight 

z.Bacteroidaceae + 1 3 -341.329 688.988 0 0.204 

z.Rikenellaceae + 1 3 -341.541 689.412 0.424 0.165 

z.Bacteroidaceae + z.Clostridiaceae + 1 4 -340.868 690.291 1.303 0.106 

z.Clostridiaceae + z.Rikenellaceae + 1 4 -340.946 690.448 1.46 0.098 

1 2 -343.203 690.568 1.581 0.093 

z.Bacteroidaceae + z.Rikenellaceae + 1 4 -341.032 690.62 1.632 0.09 

z.Lachnospiraceae + z.Rikenellaceae + 1 4 -341.12 690.795 1.808 0.083 

z.Bacteroidaceae + z.Eubacteriaceae + 1 4 -341.148 690.853 1.865 0.08 

z.Bacteroidaceae + z.Lachnospiraceae + 1 4 -341.151 690.857 1.869 0.08 
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Supplementary Table 2. 

The Relative Importance (RI) of abundance of bacterial families in explaining fenestration diameter. Model averaged coefficient (Coef.) 

estimates (Est.), their Standard Error (SE), and Lower to Upper 95% Confidence Interval (LCI and UCI) are given. Also given are model 

averaged coefficients Est. with shrinkage. 

 

 

Coef. RI Est. SE LCI UCI Est. (Shrinkage) 

(Intercept) NA 87.545 2.399 82.843 92.247 87.545 

z.Bacteroidaceae 0.561 -9.174 5.442 -19.84 1.492 -5.149 

z.Rikenellaceae 0.436 -8.849 5.935 -20.482 2.784 -3.862 

z.Clostridiaceae 0.205 -5.451 5.517 -16.264 5.362 -1.116 

z.Lachnospiraceae 0.163 3.777 5.188 -6.391 13.945 0.615 

z.Eubacteriaceae 0.08 2.81 4.838 -6.672 12.292 0.226 
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Supplementary Table 3. 

Top model set based on Akaike Information Criterion corrected for small sample size (AICc) for the effects of bacterial abundance on 

percentage porosity of fenestration (proportion logit-transformed). Given for each model is the model form, degrees of freedom (df), models log 

likelihood (logLik), AICc, change in AICc from the top model (AICc) and model weight (1 indicates the intercept). 

 

Model Form df logLik AICc AICc weight 

1 2 -46.384 96.931 0 0.128 

z.Ruminococcaceae + 1 3 -45.307 96.944 0.013 0.127 

z.Eubacteriaceae + 1 3 -45.71 97.748 0.817 0.085 

z.Lachnospiraceae + 1 3 -45.71 97.748 0.818 0.085 

z.Lachnospiraceae + z.Rikenellaceae + 1 4 -44.624 97.803 0.873 0.083 

z.Clostridiaceae + z.Rikenellaceae + 1 4 -44.656 97.867 0.937 0.08 

z.Rikenellaceae + z.Ruminococcaceae + 1 4 -44.794 98.143 1.212 0.07 

z.Clostridiaceae + 1 3 -45.954 98.237 1.306 0.066 

z.Rikenellaceae + 1 3 -45.989 98.306 1.375 0.064 

z.Lachnospiraceae + z.Ruminococcaceae + 1 4 -44.97 98.496 1.566 0.058 

z.Bacteroidaceae + 1 3 -46.174 98.677 1.747 0.053 

z.Lachnospiraceae + z.Rikenellaceae + z.Ruminococcaceae + 1 5 -43.918 98.682 1.751 0.053 

z.Bacteroidaceae + z.Ruminococcaceae + 1 4 -45.156 98.868 1.937 0.048 
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Supplementary Table 4. 

The Relative Importance (RI) of abundance of bacterial families in explaining percentage porosity of fenestration (proportion logit-transformed). 

Model averaged coefficient (Coef.) estimates (Est.), their Standard Error (SE), and Lower to Upper 95% Confidence Interval (LCI and UCI) are 

given. Also given are model averaged coefficients Est. with shrinkage. 

 

Coef. RI Est. SE LCI UCI Est. (Shrinkage) 

(Intercept) NA -3.281 0.051 -3.381 -3.181 -3.281 

z.Ruminococcaceae 0.356 0.141 0.105 -0.065 0.347 0.05 

z.Eubacteriaceae 0.085 0.117 0.104 -0.087 0.321 0.01 

z.Lachnospiraceae 0.279 0.134 0.114 -0.089 0.357 0.037 

z.Rikenellaceae 0.349 -0.141 0.117 -0.37 0.088 -0.049 

z.Clostridiaceae 0.146 -0.147 0.123 -0.388 0.094 -0.021 

z.Bacteroidaceae 0.102 -0.061 0.104 -0.265 0.143 -0.006 
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Supplementary Table 5. 

Top model set based on Akaike Information Criterion corrected for small sample size (AICc) for the effects of bacterial abundance on 

fenestration frequency (log + 0.5). Given for each model is the model form, degrees of freedom (df), models log likelihood (logLik), AICc, 

change in AICc from the top model (AICc) and model weight (1 indicates the intercept). 

 

Model Form df logLik AICc AICc weight 

z.Bacteroidaceae + z.Lachnospiraceae + 1 4 -84.532 177.619 0 0.476 

z.Bacteroidaceae + z.Lachnospiraceae + z.Ruminococcaceae + 1 5 -83.865 178.575 0.957 0.295 

z.Bacteroidaceae + z.Eubacteriaceae + z.Lachnospiraceae + 1 5 -84.12 179.084 1.466 0.229 
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Supplementary Table 6. 

The Relative Importance (RI) of abundance of bacterial families in explaining fenestration frequency (log + 0.5). Model averaged coefficient 

(Coef.) estimates (Est.), their Standard Error (SE), and Lower to Upper 95% Confidence Interval (LCI and UCI) are given. Also given are model 

averaged coefficients Est. with shrinkage. 

 

Coef. RI Est. SE LCI UCI Est. (Shrinkage) 

(Intercept) NA 1.33 0.086 1.161 1.499 1.33 

z.Bacteroidaceae 1 -0.603 0.179 -0.954 -0.252 -0.603 

z.Lachnospiraceae 1 0.422 0.183 0.063 0.781 0.422 

z.Ruminococcaceae 0.295 -0.2 0.18 -0.553 0.153 -0.059 

z.Eubacteriaceae 0.229 -0.157 0.18 -0.51 0.196 -0.036 
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Supplementary Table 7. 

Top model set based on Akaike Information Criterion corrected for small sample size (AICc) for the effects of fatty acids on fenestration 

diameter. Given for each model is the model form, degrees of freedom (df), models log likelihood (logLik), AICc, change in AICc from the top 

model (AICc) and model weight (1 indicates the intercept). 

 

Model Form df logLik AICc AICc weight 

z.Very.long + 1 3 -421.656 849.576 0 0.164 

z.Saturated + 1 3 -422.219 850.702 1.126 0.093 

1 2 -423.29 850.711 1.135 0.093 

z.Medium.chain + z.Very.long + 1 4 -421.207 850.859 1.283 0.086 

z.Long + z.Very.long + 1 4 -421.293 851.031 1.455 0.079 

z.Medium.chain + z.Saturated + 1 4 -421.344 851.132 1.556 0.075 

z.Medium.chain + z.Saturated + z.Very.long + 1 5 -420.241 851.156 1.58 0.074 

z.Unsaturated + z.Very.long + 1 4 -421.41 851.265 1.69 0.07 

z.Saturated + z.Very.long + 1 4 -421.418 851.28 1.704 0.07 

z.Long + 1 3 -422.558 851.379 1.804 0.066 

z.Essential.FA + z.Very.long + 1 4 -421.486 851.416 1.84 0.065 

z.Long + z.Medium.chain + z.Very.long + 1 5 -420.399 851.472 1.896 0.063 
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Supplementary Table 8. 

The Relative Importance (RI) of each fatty acid group in explaining fenestration diameter. Model averaged coefficient (Coef.) estimates (Est.), 

their Standard Error (SE), and Lower to Upper 95% Confidence Interval (LCI and UCI) are given. Also given are model averaged coefficients 

Est. with shrinkage. 

 

Coef. RI Est. SE LCI UCI Est. (Shrinkage) 

(Intercept) NA 85.998 2.158 81.768 90.228 85.998 

z.Very.long 0.672 -7.779 4.672 -16.936 1.378 -5.229 

z.Saturated 0.313 -6.981 5.692 -18.137 4.175 -2.182 

z.Medium.chain 0.299 6.422 5.355 -4.074 16.918 1.921 

z.Long 0.209 -4.809 4.597 -13.819 4.201 -1.005 

z.Unsaturated 0.07 -2.964 4.349 -11.488 5.56 -0.209 

z.Essential.FA 0.065 -2.49 4.391 -11.096 6.116 -0.162 
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Supplementary Table 9. 

Top model set based on Akaike Information Criterion corrected for small sample size (AICc) for the effects of fatty acids on fenestration 

frequency (log + 0.5). Given for each model is the model form, degrees of freedom (df), models log likelihood (logLik), AICc, change in AICc 

from the top model (AICc) and model weight (1 indicates the intercept). 

 

Model Form df logLik AICc AICc weight 

z.Medium.chain + 1 3 -122.869 252.001 0 0.122 

1 2 -124.052 252.234 0.233 0.109 

z.Saturated + 1 3 -123.126 252.516 0.515 0.094 

z.Long + 1 3 -123.295 252.853 0.852 0.08 

z.Essential.FA + 1 3 -123.441 253.146 1.145 0.069 

z.Medium.chain + z.Very.long + 1 4 -122.465 253.375 1.375 0.061 

z.Essential.FA + z.Medium.chain + 1 4 -122.467 253.378 1.377 0.061 

z.Unsaturated + 1 3 -123.691 253.645 1.644 0.054 

z.Saturated + z.Very.long + 1 4 -122.623 253.691 1.69 0.052 

z.Essential.FA + z.Long + z.Saturated + 1 5 -121.513 253.7 1.699 0.052 

z.Long + z.Medium.chain + 1 4 -122.637 253.719 1.718 0.052 

z.Medium.chain + z.Unsaturated + 1 4 -122.682 253.808 1.807 0.049 

z.Essential.FA + z.Medium.chain + z.Unsaturated + 1 5 -121.567 253.808 1.807 0.049 

z.Medium.chain + z.Saturated + 1 4 -122.72 253.884 1.883 0.048 

z.Essential.FA + z.Unsaturated + 1 4 -122.748 253.94 1.939 0.046 
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Supplementary Table 10. 

The Relative Importance (RI) of each fatty acid group in explaining fenestration frequency (log + 0.5). Model averaged coefficient (Coef.) 

estimates (Est.), their Standard Error (SE), and Lower to Upper 95% Confidence Interval (LCI and UCI) are given. Also given are model 

averaged coefficients Est. with shrinkage. 

 

Coef. RI Est. SE LCI UCI Est. (Shrinkage) 

(Intercept) NA 1.199 0.093 1.017 1.381 1.199 

z.Medium.chain 0.443 0.271 0.201 -0.123 0.665 0.12 

z.Saturated 0.247 0.535 0.717 -0.87 1.94 0.132 

z.Long 0.184 -0.553 1.423 -3.342 2.236 -0.102 

z.Essential.FA 0.278 0.828 0.916 -0.967 2.623 0.23 

z.Very.long 0.114 -0.191 0.208 -0.599 0.217 -0.022 

z.Unsaturated 0.199 -0.486 0.93 -2.309 1.337 -0.097 
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Supplementary Table 11. 

Top model set based on Akaike Information Criterion corrected for small sample size (AICc) for the effects of fatty acids on percentage porosity 

of fenestration (proportion logit-transformed). Given for each model is the model form, degrees of freedom (df), models log likelihood (logLik), 

AICc, change in AICc from the top model (AICc) and model weight (1 indicates the intercept). 

 

Model Form df logLik AICc AICc weight 

z.Saturated + 1 3 -57.756 121.776 0 0.134 

z.Long + 1 3 -57.832 121.927 0.151 0.124 

z.Medium.chain + z.Saturated + 1 4 -56.743 121.93 0.155 0.124 

1 2 -58.905 121.941 0.165 0.123 

z.Saturated + I (z.Saturated^2) + 1 4 -57.23 122.905 1.129 0.076 

z.Essential.FA + z.Long + 1 4 -57.278 123.001 1.225 0.072 

z.Unsaturated + 1 3 -58.479 123.223 1.447 0.065 

z.Essential.FA + z.Long + z.Medium.chain + 1 5 -56.334 123.342 1.566 0.061 

z.Long + z.Medium.chain + 1 4 -57.457 123.359 1.583 0.061 

z.Long + z.Unsaturated + 1 4 -57.565 123.575 1.799 0.054 

z.Very.long + 1 3 -58.674 123.611 1.835 0.053 

z.Essential.FA + 1 3 -58.683 123.63 1.855 0.053 
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Supplementary Table 12. 

The Relative Importance (RI) of each fatty acid group in explaining percentage porosity of fenestration (proportion logit-transformed). Model 

averaged coefficient (Coef.) estimates (Est.), their Standard Error (SE), and Lower to Upper 95% Confidence Interval (LCI and UCI) are given. 

Also given are model averaged coefficients Est. with shrinkage. 

 

Coef. RI Est. SE LCI UCI Est. (Shrinkage) 

(Intercept) NA -3.386 0.047 -3.478 -3.294 -3.386 

z.Saturated 0.333 -0.2 0.124 -0.443 0.043 -0.067 

z.Long 0.372 -0.235 0.182 -0.592 0.122 -0.087 

z.Medium.chain 0.245 0.14 0.116 -0.087 0.367 0.034 

I (z.Saturated^2) 0.076 0.078 0.078 -0.075 0.231 0.006 

z.Essential.FA 0.186 0.141 0.209 -0.269 0.551 0.026 

z.Unsaturated 0.119 0.016 0.185 -0.347 0.379 0.002 

z.Very.long 0.053 -0.063 0.095 -0.249 0.123 -0.003 
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Supplementary Table 13 

Top model set based on Akaike Information Criterion corrected for small sample size (AICc) for the effects of amino acids on fenestration 

diameter. Given for each model is the model form, degrees of freedom (df), models log likelihood (logLik), AICc, change in AICc from the top 

model (AICc) and model weight (1 indicates the intercept). 

 

Model Form df logLik AICc AICc weight 

z.Aliphatic + z.Hydroxyl.or.Sulfur.Selenium + 1 4 -413.077 834.604 0 0.324 

z.Hydroxyl.or.Sulfur.Selenium + 1 3 -414.456 835.179 0.575 0.243 

1 2 -415.897 835.926 1.322 0.168 

z.Essential + z.Hydroxyl.or.Sulfur.Selenium + 1 4 -413.952 836.353 1.749 0.135 

z.Acidic.and.their.Amide + z.Aliphatic + z.Hydroxyl.or.Sulfur.Selenium + 1 5 -412.88 836.442 1.838 0.129 
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Supplementary Table 14. 

The Relative Importance (RI) of each amino acid group in explaining fenestration diameter. Model averaged coefficient (Coef.) estimates (Est.), 

their Standard Error (SE), and Lower to Upper 95% Confidence Interval (LCI and UCI) are given. Also given are model averaged coefficients 

Est. with shrinkage. 

 

 

Coef. RI Est. SE LCI UCI Est. (Shrinkage) 

(Intercept) NA 86.115 2.097 82.005 90.225 86.115 

z.Aliphatic 0.454 -10.536 6.402 -23.084 2.012 -4.781 

z.Hydroxyl.or.Sulfur.Selenium 0.832 11.779 6.558 -1.075 24.633 9.805 

z.Essential 0.135 -6.007 6.144 -18.049 6.035 -0.813 

z.Acidic.and.their.Amide 0.129 3.137 5.167 -6.99 13.264 0.406 
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Supplementary Table 15. 

Top model set based on Akaike Information Criterion corrected for small sample size (AICc) for the effects of amino acids on fenestration 

frequency (log + 0.5). Given for each model is the model form, degrees of freedom (df), models log likelihood (logLik), AICc, change in AICc 

from the top model (AICc) and model weight (1 indicates the intercept). 

 

Model Form df logLik AICc AICc weight 

1 2 -126.953 258.039 0 0.219 

z.Aliphatic + z.Basic + 1 4 -125.26 258.97 0.931 0.137 

z.Basic + 1 3 -126.384 259.034 0.995 0.133 

z.Aromatic + 1 3 -126.391 259.048 1.009 0.132 

z.Aromatic + z.Basic + 1 4 -125.504 259.458 1.42 0.108 

z.Aliphatic + z.Essential + 1 4 -125.595 259.639 1.6 0.098 

z.Aliphatic + 1 3 -126.773 259.812 1.773 0.09 

z.Hydroxyl.or.Sulfur.Selenium + 1 3 -126.863 259.992 1.953 0.082 
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Supplementary Table 16. 

The Relative Importance (RI) of each amino acid group in explaining fenestration frequency (log + 0.5). Model averaged coefficient (Coef.) 

estimates (Est.), their Standard Error (SE), and Lower to Upper 95% Confidence Interval (LCI and UCI) are given. Also given are model 

averaged coefficients Est. with shrinkage. 

 

Coef. RI Est. SE LCI UCI Est. (Shrinkage) 

(Intercept) NA 1.155 0.098 0.963 1.347 1.155 

z.Aliphatic 0.326 -0.345 0.313 -0.958 0.268 -0.112 

z.Basic 0.378 0.295 0.232 -0.16 0.75 0.112 

z.Aromatic 0.24 -0.23 0.201 -0.624 0.164 -0.055 

z.Essential 0.098 0.521 0.348 -0.161 1.203 0.051 

z.Hydroxyl.or.Sulfur.Selenium 0.082 0.083 0.198 -0.305 0.471 0.007 
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Supplementary Table 17. 

Top model set based on Akaike Information Criterion corrected for small sample size (AICc) for the effects of amino acids on percentage 

porosity of fenestration (proportion logit-transformed). Given for each model is the model form, degrees of freedom (df), models log likelihood 

(logLik), AICc, change in AICc from the top model (AICc) and model weight (1 indicates the intercept). 

 

Model Form df logLik AICc AICc weight 

z.Aliphatic + z.Aromatic + z.Essential + 1 5 -52.651 115.983 0 0.177 

z.Aliphatic + z.Essential + 1 4 -54.176 116.801 0.818 0.118 

z.Aliphatic + z.Aromatic + z.Essential + z.Non.essential + 1 6 -51.964 116.894 0.911 0.112 

z.Aliphatic + z.Basic + 1 4 -54.28 117.01 1.027 0.106 

z.Acidic.and.their.Amide + z.Aliphatic + z.Aromatic + z.Essential + 1 6 -52.122 117.21 1.227 0.096 

z.Aliphatic + z.Aromatic + z.Essential + z.Hydroxyl.or.Sulfur.Selenium + 1 6 -52.16 117.285 1.302 0.093 

z.Aliphatic + z.Essential + z.Hydroxyl.or.Sulfur.Selenium + 1 5 -53.44 117.562 1.579 0.081 

z.Aliphatic + z.Hydroxyl.or.Sulfur.Selenium + 1 4 -54.6 117.65 1.667 0.077 

z.Aliphatic + z.Aromatic + z.Basic + 1 5 -53.526 117.734 1.751 0.074 

z.Aliphatic + z.Aromatic + z.Basic + z.Essential + 1 6 -52.496 117.958 1.975 0.066 
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Supplementary Table 18. 

The Relative Importance (RI) of each amino acid group in explaining percentage porosity of 

fenestration (proportion logit-transformed). Model averaged coefficient (Coef.) estimates (Est.), 

their Standard Error (SE), and Lower to Upper 95% Confidence Interval (LCI and UCI) are 

given. Also given are model averaged coefficients Est. with shrinkage. 

 

Coef. RI Est. SE LCI UCI Est. 

(Shrinkage) 

(Intercept) NA -3.407 0.046 -3.497 -3.317 -3.407 

z.Aliphatic 1 -0.431 0.188 -0.799 -0.063 -0.431 

z.Aromatic 0.618 -0.175 0.107 -0.385 0.035 -0.108 

z.Essential 0.743 0.352 0.182 -0.005 0.709 0.261 

z.Non.essential 0.112 0.174 0.154 -0.128 0.476 0.02 

z.Basic 0.246 0.175 0.136 -0.092 0.442 0.043 

z.Acidic.and.their.Amide 0.096 0.118 0.119 -0.115 0.351 0.011 

z.Hydroxyl.or.Sulfur.Selenium 0.25 0.177 0.147 -0.111 0.465 0.044 

 

 

 


