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Abstract 

The effectiveness of aerosol drug delivery to the lungs depends on both the drug formulation 

and device.  Currently marketed inhalation drug products often deliver no more than 15 – 

30% of the packaged dose to the lung, either due to losses in the inhaler device, or deposition 

in the patient’s mouth-throat.  This poses a significant challenge in the development of 

inhalation drugs, as it can dictate higher nominal doses in order to compensate for losses, and 

can result in increased systemic exposure for drugs that are orally bioavailable and, in some 

instances, increases in local and systemic side effects (e.g., for inhaled corticosteroids).  In 

addition, large extrathoracic region losses can lead to increased variance in dose delivery to 

the lung.  The goal of this research was to demonstrate that for dry powder inhalers, 

improved targeting to the lungs may be achieved by tailoring the micromeritic properties of 

the particles (e.g., size, density, and rugosity) to reduce deposition in the mouth and throat to 

negligible levels, thereby maximizing the total dose delivered to the lung.  

Spray drying is becoming more widely used in the manufacture of dry powder formulations 

for inhalation, as it provides a way to tailor particle properties so that they are more readily 

dispersed and efficiently delivered to the lung.  One focus of this research was to use co-

solvent spray drying to produce dry powder formulations of insulin (a model compound) 

with varying micromeritic properties, and relate the powder properties to in vitro aerosol 

dose delivery performance with inhaler devices.  It is shown here that insulin particle size 

and density can be modulated by adding small amounts of ethanol (<10% v/v) to the aqueous 

solution feedstock of insulin, together with varying spray drying process parameters such as 

solids content and air-to-liquid ratio (ALR). Spray dried insulin powders covering a range of 
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particle size and density have been tested with dry powder inhalers to identify a particle 

design space where dose delivery to the lung is greatly enhanced.    

A second focus of this research has been to develop an in vitro methodology for comparative 

assessments of the dose delivery performance of inhaled drugs.  The conventional approach 

was to use cascade impactors to measure aerodynamic particle size distributions (APSD) of 

aerosolized drugs, and interpret the size distribution data to draw conclusions about dose 

delivered to the lung.  While the cascade impactor approach is widely used as a “quality 

control” test to differentiate batches of the same product, it is not well suited for comparative 

performance assessments of inhalation drug products of different designs, or under different 

use conditions.  The methodology developed here provides a more direct measure of dose 

delivery performance for such applications.   It uses an idealized anatomical model of an 

adult human mouth and throat (the “Alberta idealized throat”, AIT) to more realistically 

estimate the “total lung dose” (TLD) that is delivered from an inhalation drug product, under 

conditions that are relevant to clinical use.  The utility of the AIT in performance assessment 

of inhalation drug products is demonstrated here by studying the sensitivity of different types 

of dry powder inhalers that includes key patient-use parameters such as peak inspiratory 

flow-rate (PIFR) and ramp-up rate of the inspiratory flow.   

Finally, the AIT approach is also used to assess the dose delivery performance of the 

prototype insulin powders with two types of DPIs.  In vitro test results with the AIT suggest 

that a remarkably high degree of potential lung targeting can be achieved with engineered 

powders, almost completely bypassing deposition in the extrathoracic region.  Under the 

most favorable conditions tested, a TLD of ~96% is achieved, i.e., ~98% of the delivered 

dose in the inhaler is delivered past the mouth and throat and to the lung. 
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Chapter 1 

Introduction 

 

1.1  Aim 

This thesis aims to provide a clear understanding on the design of engineered particles for 

use in inhaled drug products such as dry powder inhalers (DPIs) to control unwanted 

deposition in the extrathoracic region, and enhance targeting of the lung.  Deposition in the 

mouth-throat poses a significant challenge to the effectiveness of an inhaled drug, as it can 

dictate higher nominal doses, and can result in increased systemic exposure for drugs that are 

orally bioavailable and, in some instances, increases in local and systemic side effects (e.g., 

for inhaled corticosteroids).  For inhaled drugs, improved targeting to the lungs may be 

achieved by tailoring the micromeritic properties of the particles (e.g., size, density, rugosity) 

to minimize extrathoracic region deposition and maximize the total lung dose.  Aerosol drug 

deposition in the mouth and throat is governed to a large extent by inertial impaction, and 

depends on a complex interplay between inhaler, formulation, and patient.  For DPI products, 

the ability to fluidize and disperse dry powder agglomerates is dependent on the ratio of 

inter-particle cohesive forces (e.g., van-der Waal’s) to the hydrodynamic forces (e.g., drag 

and lift forces).  The counteraction of hydrodynamic to inter-particle cohesive forces can be 

achieved by engineering particles of low density and large particle size to facilitate powder 

fluidization and dispersion during aerosolization (Dunbar et al., 1998; Geldart, 1973).  

Particles with low density and relatively large geometric diameter change the force balance 

in favor of the hydrodynamic forces over the cohesive forces, enabling easier dispersion of 
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particle agglomerates entrained in the airflow within the inhaler device.  Weers et al. (2007) 

and Edwards et al. (1997 & 1998) have demonstrated that low density and large diameter 

particles prepared by spray drying processes can enhance delivery efficiency for inhaled 

drugs.  However, even for these advanced formulations, despite having low density particles 

(<0.4 g/cm
3
) and large equivalent optical diameter (>2.5 µm), it is estimated that >15% of 

delivered dose is still deposited in the mouth-throat, e.g., for PulmoSphere
™

 powder 

formulations (Ung et al., 2014; Weers et al., 2015).  This thesis explores an alternative spray 

drying approach focused on a particle design space centered around small particle size and 

low density particles.  It is shown that this spray drying approach, wherein the drug is 

processed using a co-solvent solution feedstock, may be used to prepare dry powder 

formulations for inhalation that reduce extrathoracic region losses to negligible levels, and 

greatly improve delivery efficiency to the lung. 

 

1.2  Spray drying 

Spray drying is a continuous process that converts a liquid solution to a dry powder by 

atomizing the solution into a hot and dry environment.  The atomized droplets evaporate in 

the drying chamber, resulting in dry powder particles carried by drying air.  These particles 

are then collected by separating them from the gas stream using collection devices such as a 

cyclone or bag filter.  The ability to process dry heat-sensitive materials is one of the reasons 

that this process has drawn wide acceptance from food to pharmaceutical industries (Snyder 

et al., 2008).  It has been used for producing such goods as instant coffee, dried milk and 
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laundry detergent to pharmaceutical inhaled medicines (Exubera
®
, Pfizer; Tobi

®
, Novartis; 

Aridol
®
, Pharmaxis).   

Figure 1.1 provides an overview illustration of a typical spray drying process used for 

manufacturing inhaled drugs.  A liquid feedstock (solution or emulsion) containing the active 

pharmaceutical ingredient (API) with excipients as needed is pumped through an air-assisted 

atomizer nozzle and is atomized into small liquid droplets.  Particle formation takes place 

when droplets in the heated airflow rapidly evaporated inside the drying chamber.  The dry 

particles pass through a cyclone chamber where the separation of air and particles occurs.  

The exhaust gas carrying ultra-fine particles is filtered through a HEPA filter; while the 

desired dried particles settle downstream of the cyclone into a collector vessel, where they 

form a bulk powder.  The formulated bulk powder manufactured in this manner may be 

further processed, e.g., filled into blisters or capsules for use with delivery devices such as 

dry powder inhalers.   

 

Figure 1.1 Overview schematic layout of a spray drying process. 



 

4 

1.2.1 Pharmaceutical particle engineering by spray drying 

Particle engineering approaches based on spray drying have long been used to affect 

micromeritic properties of particles for pharmaceutical applications, and an excellent review 

of these techniques is presented in Vehring et al. (2007).  These approaches include the use 

of shell forming excipients such as leucine or tri-leucine, or co-solvent feedstock systems, 

which in combination with feedstock composition, atomization, and drying parameters can 

be used to control the surface composition and morphology of the particles, e.g., by 

introducing rugosity (Lechuga-Ballesteros et al., 2008; Vanbever et al., 1999; Chew et al., 

2005).  For small molecules, a spray drying approach based on emulsion-based feedstocks 

has been used to produce porous low density particles and large particle size, with the 

marketed product Tobi
®
 Podhaler

®
 being an example (Geller et al., 2011).  Low density and 

large diameter particles (i.e., >5 µm) of biologics like insulin have been prepared by spray 

drying using an ethanol-water co-solvent based feedstock (Edwards et al., 1997 & 1998; 

Vanbever et al., 1999).  Ethanol-water co-solvent feedstocks have also been used to tailor 

particle morphology by spray drying of small molecules like budesonide (Boraey et al., 

2013).  In these previous studies, feedstocks with relatively large volume fractions of ethanol 

were used (>50% v/v).  In contrast, this thesis explores a co-solvent spray drying approach 

where relatively small amounts of organic solvents added to water can be used to modulate 

particle morphology.  This approach has been used to prepare engineered dry powder 

formulations of insulin (as a model compound) for use in dry powder inhalers.      
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1.3  Dry powder inhalers 

The present work is focused on improving the delivery performance of engineered powder 

formulations intended for use with a class of inhalation delivery devices known as dry 

powder inhaler (DPI).  The commercial introduction of dry powder inhalers began in 1949 

with the launching of the Aerohaler
®
 for the delivery of Norisodrine

®
, isoprenaline sulphate, 

by Abbot Laboratories (Clark, 1995).  DPIs gradually became more commonly available as 

an alternative to other aerosol drug delivery systems (i.e., pressurized metered dose inhaler 

and nebulizer) used for administration of inhalation therapy.  Today, there are more than two 

dozen marketed DPI products for local and systemic delivery (Islam et al., 2008).  Depending 

on the design and functionality, DPIs may be categorized in numerous ways, e.g., active 

versus passive, unit dose versus multi-dose, etc.  Passive DPIs rely on a patient’s breath to 

fluidize and disperse the dry powder formulation.  Such DPIs have a flow resistance that is 

characteristic of their design, and use various design elements coupled with inspiratory 

airflow to fluidize and disperse the bulk powder, and deliver it to the patient’s airway.  Two 

DPIs with different working principles were used to assess the performance of spray dried 

insulin powders investigated in this thesis research.  These are the Simoon, a blister-based 

unit dose inhaler (Maltz et al., 2008; Ung et al., 2012; Weers et al., 2013), and the T-326, a 

capsule-based unit-dose inhaler (Geller, 2011; Maltz et al., 2011).  Figure 1.2 presents 

photographs and schematic drawings of the two DPIs.  In addition, in developing the test 

methodology for assessing dose delivery performance, comparative assessments for several 

other marketed DPI products (Figure 1.3) were also conducted.  The following section 

provides some background on the development of the test methodology. 
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Figure 1.2 (A) Simoon and (B) T-326 inhaler used for in vitro aerosol performance 

evaluation of engineered particles. 

 

Figure 1.3 Marketed DPI products evaluated in this thesis are (A) HandiHaler


, (B) 

Diskus


, (C) Twisthaler


, (D) Breezhaler


, (E) Podhaler


, and (F) Flexhaler


. 
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1.4  In vitro methods for assessing the aerosol dose delivery performance 

of inhaled drugs 

In general, in vitro aerosol performance assessment of inhaled drug products is primarily 

focused on two attributes, i.e., the delivered dose (DD), and the aerodynamic particle size 

distribution (APSD).  The DD test (also known as the emitted dose, ED) measures the 

“quantity” and consistency of aerosol dose delivered from the inhaler.  The APSD is a 

measure of the “quality” of the delivered aerosol dose, as particle size is a key factor 

determining the efficiency of delivery to the lung.  Particles with aerodynamic diameters in 

the range 1 – 5 µm are considered favorable for inhalation drug delivery. 

The test set-up and methodology for measuring the DD and APSD generally follow the 

guidance in the Pharmacopeia (e.g., USP General Chapter <601>).  DD measurements are 

relatively simple to perform and use a filter, typically with a spacer tube (e.g., DUSA) to 

collect and assay the dose emitted by the inhaler.  APSD measurements are performed using 

cascade impactors (e.g., Next Generation Pharmaceutical Impactor), which rely on the 

principle of inertial impaction to classify airborne particles into different aerodynamic size 

fractions. 

Passive DPIs rely on a patient’s breath to fluidize and disperse the dose, and are typically 

tested under standard conditions using a square-wave airflow profile generated with a timer-

controlled vacuum source.  Use studies with DPIs have shown that human subjects can 

generate inhaler pressure drops of 1 – 10 kPa and airflow volumes of 1 – 3 L during an 

inhalation maneuver (Al-Ahowair et al., 2007; Clark et al., 1992).  During testing, the inhaler 

is actuated with airflow at a pre-determined pressure drop and sampled flow volume that are 
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within the range observed in human use (e.g., 4 kPa pressure drop, and 2 L of sampled 

airflow through the inhaler and dose sampling apparatus).  These standardized tests are 

intended primarily for quality control, e.g., for batch release, stability testing, and for 

comparing batch-to-batch variance of a given product under the same test conditions.  While 

the APSD test is essentially a measure of particle size, it is sometimes used to derive 

estimates of dose delivered to the lung.  A widely used approach, for example, is to designate 

the aerosol mass below a certain cut-off size (e.g., fine particle fraction <5 µm) as 

representing the lung dose.   Such an approach is reasonable for rank order comparisons of 

batches of a given inhaled drug product tested under identical conditions.  It is less suited for 

comparing inhaled drug products under different conditions, or when comparing different 

types of products, such as different types of formulations.  For this purpose, a different 

approach is clearly needed, such as considering the process by which the dose emitted by the 

inhaler device is depleted on its way to the lung. 

There are other reasons why the aerodynamic particle size data obtained by cascade 

impactors may not be predictive of the lung dose.  Rader et al. (1985) used computer 

modeling to estimate the effect of ultra-Stokesian drag and particle interception on impaction 

in cascade impactor. They conclude based on their numerical analysis, that the cascade 

impactor approach could under estimate the aerodynamic particle size for large diameter and 

low density particles that are characteristic of certain types of engineered particle 

formulations (e.g., PulmoSphere


 formulations comprised of large, porous, and low density 

particles).  For such formulations, aerosols delivered from a DPI remain agglomerated to a 

certain degree, and therefore are likely to be susceptible to non-ideal impaction effects.   
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As shown by Stahlhofen (1989), depletion of the aerosol dose occurs by deposition in the 

human mouth-throat, and is governed not just by the particle size, but by a parameter 

combining the particle size and flow-rate, i.e., the inertial impaction parameter (𝑑2𝑄) where 

d is the aerodynamic diameter (µm) and Q is volumetric airflow (L/min).  One approach to 

use impactor data for predictive purposes is to factor in the flow-rate as well as particle size, 

e.g., by using a 𝑑2𝑄 cut-off for defining the “fine particle fraction” representative of the lung 

dose.  A simple and potentially more direct approach to estimating lung dose in humans is to 

simulate the deposition in the extrathoracic region using an anatomical throat model.  While 

several such models have been used in the past, one of the best characterized models is an 

idealized replica of the adult human upper-respiratory-tract (URT) known as the Alberta 

Idealized Throat (AIT) model (DeHaan et al., 2001; Stapleton et al., 2000).  This thesis 

demonstrates that a methodology based on the AIT provides a simpler and more direct 

approach to assess product performance, especially when comparing different drug products 

(i.e., device and formulation) and technology platforms (i.e., engineered particles and carrier-

based formulations).   

1.4.1 Method for determining in vitro total lung dose 

In vitro estimates of total lung dose (TLD) were measured using an anatomical throat model, 

i.e., the Alberta Idealized Throat (AIT), which represents the mouth and throat airway of an 

average human adult.  The AIT was developed and characterized by Finlay and coworkers at 

the University of Alberta, Canada.  They combined medical imaging technology (e.g., 

CT/MRI scans) and particle aerodynamics data to construct an idealized upper airway model 

whose aerosol deposition characteristics matched the average in vivo deposition data 

(DeHaan et al., 2001; Stapleton et al., 2000).  For determination of in vitro TLD, the test 
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inhaler was coupled to the inlet of the AIT model, and the dose penetrating through the 

model was collected downstream on a filter.  A suitable wetting agent was used for coating 

the interior walls of the AIT model to prevent particle re-entrainment.  The dose collected on 

the filter was assayed to determine the TLD. 

1.4.2 Method for measuring aerosol emission kinetics 

While the AIT approach is primarily focused on measuring the degree of dispersion of the 

delivered dose, it is often useful to measure the kinetics of powder fluidization and emptying 

of the dose from the DPI.  In the present research, aerosol clearance from the inhaler was 

characterized using a custom designed laser photometer (Figure 1.4) based on a 

commercially available laser sensor (Keyence Corp., model LX2-13W, US), which includes 

a laser sheet generator and an array detector.  The laser photometer is configured as an 

aerosol flow cell whose cross-section is illuminated by the laser sheet.  The presence of 

aerosol causes obscuration of the sheet laser and is detected by a photo-detector.  The photo-

detector’s response is linear with obscuration (i.e., laser intensity).  The intensity of the 

transmitted light is directly proportional to the particle concentration, which is related by 

Beer’s law equation.   

𝐶𝑣  [−𝑙𝑛 (
𝑉

𝑉0
)] 

Where Cv is the aerosol concentration, V is the baseline corrected photo-detector response in 

the presence of the aerosol, and V0 is the corresponding photo-detector response in the 

absence of aerosol.   
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Figure 1.4 Drawing of the laser sensor used for measuring the kinetics of aerosol 

clearance (Keyence model LX2-13(W)), dimension in millimeters.  

 

1.5  Structure of the thesis 

The structure of the thesis is as follows.  Chapter 2 presents an initial exploration of the co-

solvent spray drying approach for tailoring particle properties of insulin particles for 

inhalation.  Several organic solvents were screened for their ability to modulate the density of 

insulin particles, and thereby affect aerosol delivery performance with a T-326 inhaler.   

Based on this pilot study, ethanol was selected as the organic solvent for further study of co-

solvent spray drying of engineered particles, and their performance in DPIs.    

Chapters 3 and 4 are focused on the development of an in vitro methodology that is well 

suited for comparative assessment of aerosol delivery performance of different types of 

inhaled drug products.  The methodology developed is centered on the use of the Alberta 

Idealized Throat model to determine a total lung dose.  The ability of the AIT to assess the 
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performance of inhaled drug products is demonstrated here, by evaluation of different types 

of DPIs, including those based on formulations of engineered particles as well as lactose 

carrier blends. 

Chapter 5 brings together the two primary aspects of this work, i.e., co-solvent spray drying 

of engineered particles and in vitro inhaler performance assessment, to demonstrate that it is 

feasible to tailor the properties of insulin inhalation powders to reduce extrathoracic region 

losses to negligible levels, thereby enhancing dose delivery to the lungs, and enabling a high 

degree of lung targeting.    

Chapter 6 presents concluding remarks and suggestions for further work. A significant 

finding in this thesis is that engineered particles formed by spray-drying can target a 

preferred range of micromeritic properties in order to achieve maximum total lung delivery.  

It is shown here that using small amounts of co-solvent addition to aqueous solution 

feedstock spray dried insulin bulk powder properties can be modulated in a direction more 

favorable for aerosol delivery performance.  However, no attempt has been made to develop 

a theoretical framework to explain these findings, particularly the mixed morphology of 

wrinkled and oval particles associated with the powder samples from co-solvent spray 

drying.  This is partly due to lack of solubility data for insulin in various co-solvent mixtures, 

which is essential to modeling of particle formation. 
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Chapter 2 

Effect of chemical solvent addition to feedstock on the morphology of spray 

dried particles 

 

2.1  Introduction 

Organic co-solvents like ethanol added to aqueous based feedstocks have been used in spray 

drying processes to prepare particles for inhalation drug delivery.  The organic co-solvent is 

often added to facilitate dissolution of API or excipients and modulate particle morphology 

in spray dried particles for inhalation (Boraey et al., 2013; Vanbever et al., 1999).  Low 

density particles with wrinkled or porous morphology obtained with this approach are 

particularly useful for inhalation drug delivery applications.  They also appear to be useful 

for both small molecules as well as biologics such as insulin. The above co-solvent spray 

drying approaches used relatively large fractions of the organic solvent (>50% v/v).  More 

recently ethanol concentrations as low as 20% v/v have been studied for the purposes of 

pharmaceutical particle engineering (Ji et al., 2015).  

One focus of this thesis research is to explore whether smaller amounts of organic solvent 

added to aqueous feedstocks could be used to effect changes in the morphology of spray 

dried particles.  Such co-solvent systems could help influence processing in several ways.  

Co-solvents with different degrees of volatility (e.g., evaporation rates) relative to water may 

result in different mixture compositions within a drying droplet, thereby affecting the relative 

solubility of the API and excipients, and thus the kinetics of particle shell formation.  It is 
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also known that small amounts of alcohols added to water can change feedstock solution 

properties such as viscosity and surface tension (Tanaka et al., 1987; Vázquez et al., 1995), 

which may affect the atomization and droplet formation, and potentially having an effect on 

particle morphology.  Therefore, a screening experimental study with different organic 

solvents was performed to assess the feasibility of the approach and guide the selection of a 

co-solvent for further study.  These experiments were performed using insulin as a model 

compound, and a formulation approach similar to the one developed for the inhaled insulin 

drug product Exubera (White et al., 2005), but with higher insulin content, 85%, compared to 

60% insulin for Exubera. 

 

2.2  Selection of Organic Solvents 

A set of organic solvents for this study were selected based on their compatibility with 

pharmaceutical applications, miscibility with water, and to cover a range of boiling points.   

The intent was to provide feedstocks with varying properties such that a sufficiently wide 

range of processing conditions can be explored.  Table 2.1 lists the solvents selected for this 

study.  Except for methanol, all of the selected organic solvents are considered class III 

solvents (low toxic potential for humans) according to the ICH guidance on residual solvent 

impurities.  Methanol is considered a class II solvent (limited use recommended).  Except for 

1-butanol, all of the solvents are freely miscible with water. The sequence of boiling point 

(from high to low) is 1-butanol > 1-propanol > ethanol > methanol > acetone, however the 

sequence is reverse for saturated vapor pressure.  Given that water has higher heat of 
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evaporation than the other chemical solvents used, it still remains the dominant factor during 

droplet drying kinetics as total aqueous solution only contains <10% of organic solvent. 

Table 2.1 Summary of physical properties of pure liquid and shows an inverse 

relationship for boiling point temperature and saturated vapor pressure.  Water is the 

primary solvent used in the feedstock solution. 

Solute Formula 

Boiling 

Point 

[C] 

Density 

[g/cm
3
] MW 

Solubility 

in Water 

at 25C 

[g/100g] 

Pvap 

at 

40C 

[kPa] 

Diffusivity 

in Air at 

40C 

[cm
2
/s] 

Heat of 

Evaporation 

at 40C 

[j/kg] 

1-butanol C4H10O 117.7 0.81 74.1 9.1 2.53 0.099 692733 

Water H2O 100.0 1.0 18.0 n/a 7.39 0.292 2406863 

1-propanol C3H8O 97.3 0.81 60.1  6.93 0.113 525190 

Ethanol C2H6O 78.4 0.79 46.1  18.01 0.147 900668 

Methanol CH4O 64.7 0.72 32.0  35.43 0.177 1155065 

Acetone C3H6O 56.5 0.72 58.1  56.52 0.117 524130 

 

In considering the droplet drying kinetics in the co-solvent feedstock systems, the 

equilibrium vapor pressure of each component within the binary mixture is of interest, as it 

provides a driving force for evaporation.  Estimates of equilibrium vapor pressure of water 

and organic solvent as a function of binary mixture composition for each of the solvents 

selected in this study were available from unpublished research (Mao, private 

communication, 2007), and are plotted in Figure 2.1, where the composition X1 represents 

the mass fraction of the solvent in a binary mixture with water.  These plots were derived 

from saturated vapor pressures data for pure liquids from Perry’s Chemical Engineering 

Handbook (2008) and estimated activity coefficients for binary mixtures at infinite dilution 
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(Reid et al., 1988).  The methodology was verified by comparing with published 

experimental data for methanol (Green and Perry, 2008).  The plots indicate that for the 

selected set of organic solvents, the relative evaporation rates of organic solvent to water 

vary over a large range. 
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Figure 2.1 Predicted saturated vapor pressures at 40 degrees Celsius for binary liquid 

mixtures of selected organic solvents; (A) 1-butonal, (B) 1-propanol, (C) ethanol, (D) 

methanol, and (E) acetone. 

 

Also of interest is the effect of solvent addition to properties such as surface tension, 

viscosity, and density as the affect droplet atomization.  Figures 2.2 and 2.3 show the effect 

of solvent addition on surface tension and viscosity for selected alcohols (data excerpted 

from Tanaka et al., 1987; Vázquez et al., 1995).  Again, it is seen that a broad range of liquid 

properties can be obtained for the solvents selected in this study. 
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Figure 2.2  Effect of solvent addition on the viscosity of binary mixture of alcohols with 

water (Tanaka et al., 1987). 

 

Figure 2.3  Effect of solvent addition on the surface tension of binary mixture of 

alcohols with water (Vásquez et al., 1995). 
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These solvents were used in co-solvent spray drying experiments to prepare insulin powders.  

Samples of the spray dried bulk powders were characterized, and then filled into capsules for 

aerosol delivery performance assessments with a capsule based inhaler.  The materials and 

methods used in this study are detailed below. 

 

2.3  Materials and Methods 

2.3.1 Feedstock preparation and spray drying  

The study used recombinant human insulin (P/N 10112053, Diabel GmbH & Co KG 

Frankfurt, Germany).  The formulation comprises of 85% insulin, 10% sodium citrate, 4% 

mannitol, and 1% glycine.  Feedstock solutions for spray drying were prepared by dissolving 

insulin and excipients in water or water-solvent mixtures while mixing gently on a magnetic 

stir plate.   

This investigation used a Novartis Spray Dryer (NSD, Novartis Pharmaceuticals Corp, San 

Carlos, CA) a custom-built bench-scale spray drier that is similar in scale to a commercially 

available Büchi 191 mini spray dryer (BṺCHI Labortechnik, AG).  The air-assisted atomizer 

nozzle is a modified version of Büchi 191 atomizer, designed to produce sprays with smaller 

and more uniform droplet size.  The NSD dryer body and cyclone collector are fabricated out 

of stainless steel.  The dryer body is insulated to improve temperature and relative humidity 

control within the process stream. 

Table 2.2 presents an experimental design for spray drying insulin formulations with 

different solvent additions in aqueous solutions.  The proposed 8% w/w of solvent addition 
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added to each feedstock solution will ensure alcohol is completely miscible in water forming 

a homogeneous solution.  The spray drying process parameters were kept constant.  Lot 

EXP-1-01 serves as a control insulin powder as the aqueous solution has no added secondary 

solvent where the particle morphology is primary corrugated raisin-like particles similar to 

Exubera formulation (White et al., 2005). 

Table 2.2 Feedstock preparation for spray drying.  Spray drying process parameters 

were kept constant; atomizer gas flow = 33 L/min, drying gas flow= 600 L/min, liquid 

feed rate= 4.0 mL/min, inlet temperature = 120C. 

Lot No. 

Organic   

Co-Solvent 

Alcohol     

Fraction  

[% w/w] 

Water     

Fraction  

[% w/w] 

Total 

Solids  

[% w/w] 

Insulin 

Fraction 

[% w/w] 

Sodium 

Citrate 

Fraction 

[% w/w] 

Mannitol 

Fraction 

[% w/w]  

Glycine 

Fraction 

[% w/w]  

EXP-1-01 N/A 0 100 1.5 85.0 10.3 3.8 1.0 

EXP-1-02 Ethanol 8 92 1.5 85.0 10.3 3.8 1.0 

EXP-1-03 Methanol 8 92 1.5 85.0 10.3 3.8 1.0 

EXP-1-04 Acetone 8 92 1.5 85.0 10.3 3.8 1.0 

EXP-1-05 1-propanol 8 92 1.5 85.0 10.3 3.8 1.0 

EXP-1-06 1-butanol 8 92 1.5 85.0 10.3 3.8 1.0 

 

2.3.2 Determination of primary particle size of bulk powder 

The primary particle size distribution of spray dried insulin powder was measured with a 

Sympatec HELOS Type BF Model Laser Light Diffraction Analyzer (Sympatec GmbH, 

Germany), the RODOS-M (OASIS) dry powder disperser, and the ASPIROS powder dosing 

unit.  The instrument evaluation mode was set to high resolution laser diffraction (HRLD), 

which returns size distributions based on Fraunhofer diffraction theory.  Powder samples of 5 
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– 15 mg of powder were placed into a 1 mL vial and loaded into the ASPIROS dosing unit 

set at a speed of 25 mm/s.  The injector distance and primary pressure settings for the 

RODOS dry disperser were 4 mm and 4 bar, respectively.  Measurements were performed 

using the R1 lens (R1: 0.1/0.18 – 35 m).  The RODOS settings were selected after 

confirming by experiment that they achieved essentially complete dispersion of the bulk 

powder down to the primary particles.  Three replicate measurements were performed for 

each powder formulation.  Results are reported here in terms of the equivalent optical 

diameter, X50, (mean of three replicates). 

 

2.3.3 Bulk density analysis of bulk powder 

For this study, the measured bulk densities were conducted at a specified level of 

compression by compacting into a 0.0136 cubic centimeter cavity tool using vacuum suction 

at a pressure of 81 kiloPascal.  Excess powder was then doctored off.  The resulting powder 

puck was expelled from the cavity with a burst of compressed air at 35 – 103 kPa, and the 

mass of powder determined on a Mettler Toledo AX206 balance (n = 10 replicates).  The 

resulting bulk densities are lower than the corresponding particle densities, but the trends in 

values are expected to be similar, assuming similar cohesive forces, and packing factor 

across the powders. 

 

2.3.4 Particle morphology by Scanning Electron Microscopy 
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Particle morphology was assessed by scanning electron microscopy.  Powder samples were 

viewed under a Philips XL 30 Environmental Scanning Electron Microscope (ESEM; Philips 

Electron Optics, US).   A thin layer of bulk powder was placed on a 1 cm x 1 cm silicon 

wafer disk (Omnisil, VWR IBSN3961559, US), and the sample was prepared for electron 

microscopy by sputter-coating a thin gold and palladium film (Denton, 21261 Cold 

Sputter/Etch and DTM-100, operated at <100 mTorr and 30 – 42 mA for 100 – 150 seconds).  

The coated samples were then loaded into the ESEM chamber and the filament current and 

accelerating voltage set to 1.6 A and 20 kV, respectively. 

 

2.3.5 In vitro characterization of aerosol dose delivery performance 

In vitro dose delivery performance was investigated using a capsule-based T-326 inhaler that 

is a low to medium resistance device (R  0.08 cm H2O
0.5

/L/min).  T-326 is a breath-

activated unit dose inhaler relying on the mechanical motion associated with precession of 

the capsule to fluidize and disperse the bulk powder into a fine respirable aerosol (Geller, 

2011; Maltz et al., 2011).  Aerosol performance was evaluated using a standard square-wave 

flow profile generated with a timer-controlled vacuum source at pressure drops of 0.5, 1.3, 

and 2.3 kiloPascal (kPa) corresponding to flow-rates of 27, 45, and 60 L/min, respectively.  

Testing T-326 device at 4 kPa (corresponding to 80 L/min) for NGI was not possible due to 

of particle re-suspension in the stages, and therefore 2.3 kPa (or 60 L/min) was selected to 

enable NGI gravimetric analysis.  Test attributes included the delivered dose (DD) and 

aerodynamic particle size distribution (aPSD).   
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The test fixture used for measurement of DD is shown schematically in Figure 2.4.  When 

actuated with flow, the aerosolized dose leaving the inhaler mouthpiece is collected onto an 

81 mm diameter filter (A/E type, Pall Corp., US).  A customized filter holder was designed 

for engineered particles, which allow for gravimetric analyses with the T-326 inhaler.   The 

larger 81 mm diameter filter was used to minimize filter pressure drop for the T-326 inhaler, 

which is a low-medium flow resistance, and therefore a higher airflow during testing.  A 2 L 

sampling volume was maintained for each dose actuation for DD analyses.  The results for 

DD are reported in terms of % of the nominal dose. 

 

Figure 2.4 DD measurement set-up using customized filter holder designed for 

engineered particles. 

 

For determining the aPSD, the NGI (Apparatus 5 in USP General Chapter <601>), was used 

with the Induction Port + NGI Body (Figure 2.5).  To enable gravimetric analysis, the 

gravimetric NGI cups were fitted with 55 mm diameter glass fiber filters (A/E type, Pall 
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Corp, US).  A 2 L sampling volume was maintained for each dose actuation for aPSD 

analyses.   

 

Figure 2.5 APSD measurement set-up. 

 

2.3.6 NGI data analysis 

Aerodynamic particle size distribution results for insulin formulation were expressed in the 

form of a fine particle mass (FPM, % of nominal), which represents the cumulative mass 

deposited on stages 3 to MOC (or filter) of the NGI and normalized to average capsule fill 

mass.  The corresponding airflows and effective cut-off diameters (ECD) are summarized in 

Table 2.3.   
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Table 2.3 Stage cut-off diameters for NGI stage 3  

Pressure Drop 

[kPa] 

Flow-Rate 

[L/min] 

NGI Stage 3
a
 ECD 

[m] 

0.5 27 6.76 

1.3 45 5.18 

2.3 60 4.46 
a Stage cut-off diameter-flow calculation for NGI stage 3 covering flow-rates from 27 - 60 L/min (Marple et al., 

2003), 𝒅𝟓𝟎 = 𝑨 (√
𝟔𝟎

𝑸
)

𝟎.𝟓𝟎

, where d50 represents new stage cut-off diameter-flow, Q, and A is stage cut-off at 60 

L/min. 

 

2.4  Results  

2.4.1 Characterization of bulk powder physical properties  

It is customary to seek correlations between the observed range of particle density and size 

with morphological characteristics of the powders.  Table 2.4 presents the bulk powder 

physical properties for 6 insulin formulations from spray drying runs where volume median 

diameters ranged from 1.23 – 1.51 µm, while bulk densities varied from 0.22 – 0.38 g/cm
3
.  

There is no correlation observed between the co-solvent, bulk density, and particle size.  

EXP-1-01 (Figure 2.6) has no added solvent in the feedstock, bulk particles are mainly of 

corrugated raisin-like morphology that is consistent with other formulations of spray dried 

proteins (Balducci et al., 2015; White et al., 2005), while those with co-solvent spray dried 

formulations (with the exception of EXP-1-06, 1-butanol) showing a mixture of “wrinkled” 

and “balloon” particles, and having lower bulk density (Table 2.4).  In addition, X50 numbers 

are slightly larger with solvent addition spray dried formulations (ranging from 1.47 – 1.51 
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µm) except 1-butanol (EXP-1-06) where particle size of 1.23 µm, which is even smaller than 

EXP-1-01 (1.35 µm) with no solvent addition in the feedstock.  

Table 2.4 Spray dried powder physical properties, (mean, standard deviation shown 

in parenthesis, N = 3 – 10). 

Lot No. 

Organic 

Co-Solvent 

X50 

[m] 

Bulk Density 

[g/cm
3
] 

EXP-1-01 N/A 1.35 (0.02) 0.38 (0.01) 

EXP-1-02 Ethanol 1.51 (0.03) 0.24 (0.01) 

EXP-1-03 Methanol 1.51 (0.02) 0.27 (0.01) 

EXP-1-04 Acetone 1.51 (0.03) 0.23 (0.01) 

EXP-1-05 1-Propanol 1.47 (0.03) 0.22 (0.01) 

EXP-1-06 1-Butanol 1.23 (0.02) 0.31 (0.01) 
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Figure 2.6 Scanning Electron Microscopy images of spray dried insulin particles for 

binary liquid mixtures of organic solvents; (A) water only- control, (B) ethanol, (C) 

methanol, (D) acetone, (E) 1-propanol, and (F) 1-butanol.   
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2.4.2 In vitro aerosol performance analysis 

Having demonstrated the effect of solvent addition by spray drying insulin formulation on 

bulk powder properties, it is of interest to determine if these micromeritic properties can be 

correlated to aerosol dose delivery performance when delivering inhalation powders via dry 

powder inhaler.  To answer this question, six spray dried insulin formulation powders 

covering a range of bulk densities and volume median diameters that varied from 0.22 – 0.38 

g/cm
3
 and 1.23 – 1.51 µm, respectively, were evaluated for in vitro aerosol performance.  

Aerosol performance testing was conducted with the T-326 inhaler at pressure drops of 0.5, 

1.3, and 2.3 kPa, corresponding to flow-rates of 27, 45, and 60 L/min.   

Table 2.5 and Figure 2.7 present the delivered dose (DD) results tested over a range of flow-

rates and correlate to bulk density.  For 27 L/min flow-rate, it is seen as bulk density of the 

particles increases, the mean DD performance trends lower and variability higher.  The DD 

performance is reasonably independent for flow-rate of 45 and 60 L/min.  The drop in DD is 

accompanied by a corresponding increase in the amount of powder retained in the capsule.   
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Table 2.5   Summary of delivery dose (mean, standard deviation in parenthesis, N = 10). 

Lot No. 

 delivered dose (% of nominal) 

27 L/min 45 L/min 60 L/min 

EXP-1-01 61 (9) 72 (5) 76 (2) 

EXP-1-02 69 (5) 78 (3) 80 (2) 

EXP-1-03 66 (6) 75 (4) 79 (3) 

EXP-1-04 70 (6) 77 (3) 81 (2) 

EXP-1-05 70 (3) 78 (3) 79 (2) 

EXP-1-06 58 (8) 71 (5) 75 (5) 

 

 

Figure 2.7 Delivered dose performance as function of bulk density. 

 

A similar observation can also be seen for fine particle mass, where TLD trends lower and 

variability higher, as the bulk density increases.  The results of flow-rate testing are presented 

in Table 2.6 and Figure 2.8.  Table 2.6 summarizes the mean and standard deviation of fine 

particle mass (FPM) tested over a range of 27 – 60 L/min, while Figure 2.8 presents the 
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same results graphically for the T-326 inhaler performance at 3 flow-rates.  Despite the lower 

DD performance at 27 L/min as seen for all spray dried insulin powders, the FPM 

performance remains reasonably flow-rate independent over the range of flow-rate from 27 – 

60 L/min and favors low bulk density powder  0.27 g/cm
3
.   

 

Table 2.6   Summary of fine particle mass (mean, standard deviation in parenthesis, N = 

3). 

Lot No. 

fine particle mass (% of nominal) 

27 L/min 45 L/min 60 L/min 

EXP-1-01 45 (14) 59 (4) 62 (9) 

EXP-1-02 60 (5) 67 (5) 68 (8) 

EXP-1-03 59 (8) 65 (0) 64 (0) 

EXP-1-04 66 (12) 65 (9) 64 (2) 

EXP-1-05 66 (3) 64 (7) 65 (3) 

EXP-1-06 41 (6) 56 (1) 67 (4) 
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Figure 2.8 Fine particle mass performance as function of bulk density.  Presented as 

the mean and standard deviation of five replicates. 

 

2.5  Discussion 

As presented in the introduction above for predicted saturated vapor pressures for binary 

liquid mixtures of selected organic solvents, an increase in vapor pressure will decrease the 

concentration X1 value, indicating the importance of evaporation rate for a secondary solvent 

addition in the solution matrix.  If the added solvent is volatile and likely to evaporate well 

before a solid shell has formed (e.g., acetone), the skin is expected to collapse creating small, 

wrinkled particles.  In the event where the added solvent is less volatile and more likely to be 

trapped in the solid matrix (e.g., 1-butanol), it may act like a blowing agent and result in 

large and porous particles.  However, based on experimental findings, the SEM images of the 

powders show all solvent additions produced a mix of morphologies with both corrugated 

and smooth oval shaped particles resulting in smaller bulk density powders than for EXP-1-
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01, which represents a control powder produced by spray drying an aqueous feedstock with 

no added solvent.  A high boiling point co-solvent such as 1-butanol (BP=117.7C) would 

suggest that it would persist longer in the evaporating droplet, and therefore lead to porous 

and low density particles.  However, that was not the case as SEM image (Figure 2.6, 1-

butanol) shows mainly corrugated particles.  Among the powders from the co-solvent runs, 

the 1-butanol run resulted in the highest bulk powder density and the smallest X50 with these 

properties being the closest to the control insulin powder (EXP-1-01).  This suggests that 

controlling the morphology of the particles (i.e., size, density, and rugosity) should not be 

based solely on manipulation of the solution feedstock alone (i.e., total solids, co-solvent 

fraction), but must also consider process parameters; controlling the initial droplet size, 

drying kinetics and particle shell formation (Snyder et al., 2008; Vehring, 2007). 

 

2.6  Conclusion 

The experiments described above have produced outcomes different from that suggested by 

theory, indicating that further understanding is needed with regards to co-solvent evaporation 

during droplet drying, and interactions with insulin and other excipient compounds.  

However, it is clear that addition of a small amount of solvent to the feedstock solution for 

spray drying can greatly affect the micromeritic properties of the particles.  The bulk density 

of the particles for the co-solvent systems was lower and X50 was mostly larger than those of 

the insulin powder that was spray dried with no added solvent in the aqueous solution.   The 

in vitro aerosol performance using a T-326 inhaler was improved and favored lower bulk 

density insulin powders.  Based on the results from this experiment and early research studies 
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by Edwards et al. (1997 & 1998), ethanol was selected for further investigation and will be 

discussed later in Chapter 5.   
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Chapter 3 

In vitro assessment of dose delivery performance of dry powders for 

inhalation 

(Original article published in Aerosol Sci. & Tech., 2014) 

 
 

3.1  Introduction 

Particle deposition in the mouth and throat pose a great challenge to the dose delivery 

performance of inhaled medications.  The geometry of the human airway is complex and 

variable (DeHaan et al., 2001), deposition is influenced not only by physiological differences 

in size, but also time-dependent changes associated with patient breathing maneuver, and 

factors related to the inhaler, such as the flow resistance, and mouthpiece geometry and 

position (McRobbie et al., 2003; McRobbie et al., 2005; Pritchard et al., 2004).  Other factors 

including aerosol concentration and polydispersity, and environmental conditions such as 

humidity, can also affect the delivery of inhaled medication to the target airways (DeHaan et 

al., 2001).  Understanding the effect of these factors on product performance and prediction 

of delivered lung doses, ahead of clinical trials, is of great utility to product designers and 

developers, and has therefore attracted considerable attention in the past decades. 

Extrathoracic region deposition of inhaled aerosols has been studied in depth by Stahlhofen, 

and more recently by Finlay and others (DeHaan et al., 2001; Delvadia et al., 2012; Golshahi 

et al., 2013; Longest et al., 2008; Olsson et al., 2008; Stahlhofen et al., 1989).  Stahlhofen et 

al. (1989) compiled data from multiple studies showing that extrathoracic region deposition 
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increases with increasing values of 𝑑2𝑄, where d is the aerodynamic particle size and Q the 

volumetric flow-rate.  This relationship indicates that inertial impaction is the dominant 

factor in determining extrathoracic region deposition.  Finlay and coworkers further showed 

that a better correlation of extrathoracic region losses is achieved for pharmaceutical aerosols 

when the characteristic length scales of the inhaler mouthpiece (Finlay et al., 2002) as well as 

the mouth-throat geometry (Grgic et al., 2004) are considered, for example via a 

dimensionless parameter, the Stokes number.  These studies provided justification for the use 

of predictive numerical models of mouth-throat losses based on semi-empirical correlations.  

Inputs to these models included inhalation airflow, inhaler mouthpiece geometry, airway 

geometry, as well as the aerodynamic particle size distribution of the delivered aerosol.     

The aerodynamic particle size distributions (APSD) of inhalation aerosols are typically 

measured using an inertial impactor such as the Next Generation Pharmaceutical Impactor 

(NGI) with induction port and pre-separator per USP General Chapter <601>.   Prediction of 

lung deposition based on stage groupings of APSD data, such as a fine particle dose fraction 

post induction port and pre-separator, is complicated and often poses a challenge, and while 

identifying a suitable fine particle mass (FPM) marker could be justified by correlation with 

in vivo lung deposition, such data is often not available.  Moreover, the size distribution of 

the aerosol delivered from the inhaler is often incompletely characterized, due a significant 

un-sized fraction lost in the induction port.  The incomplete size characterization of the 

delivered dose could potentially bias the estimation of in vitro lung dose.  An alternative 

approach in estimating an in vitro lung dose would be to use a physical model of the 

idealized mouth-throat model.  The benefits of this approach include (i) a simple and direct in 

vitro measurement of lung dose, that is expected to capture the physics of particle transport 
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and deposition in the human mouth-throat and (ii) the ability to measure aerosols generated 

under clinically relevant conditions, via the use of realistic patient flow profiles during 

actuation of an inhaler. Olsson et al. (2013) recently showed good in vitro in vivo correlation 

with the use of an anatomic throat model to assess nine different inhaler products.   

To date, most publications on dry powder inhalers (DPI) have been focused on the delivery 

performance of blend formulations where small drug crystals (<2 µm) are attached to large 

lactose carrier particles with size >50 µm (Podczeck et al., 1998).  There are relatively few 

published studies on engineered powders intended for inhalation.  Such powders are typically 

characterized by low bulk-powder density (<0.2 g/cm
3
) and primary particles having 

equivalent optical diameter 2 µm, respectively (Weers et al., 2007).  It is of interest to 

investigate the dose delivery performance of engineered powders, as exemplified by the low 

density porous particles produced using the PulmoSphere


technology.  Low density 

engineered powders have enabled the development of DPI products capable of delivering 

large lung doses via improvement in powder fluidization and dispersibility. Studies with 

PulmoSphere


 powder formulations have demonstrated that it is possible to achieve high 

lung deposition (>50% of dose) that is largely independent of inspiratory flow-rate (Duddu et 

al., 2002; Hirst et al., 2002; Newhouse et al., 2003).     

The aim of this study was to use the idealized mouth-throat model to characterize the dose 

delivery performance of DPI products based on engineered powder and lactose-blend 

formulations. The idealized mouth-throat model provides an in vitro estimate of the lung 

dose, which is compared to in vitro markers based on semi-empirical models of extrathoracic 

region deposition.  
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3.2  Materials and Methods 

3.2.1 Powder formulations and inhaler systems 

Table 3.1 summarizes different devices and formulations investigated in this study.    

PulmoSphere


 placebo powder formulations were prepared by spray drying an emulsion of 

perflubron (PFOB; Allied, lot #101800, US) in water, stabilized by 

distearoylphosphatidylcholine (DSPC; Lipoid, lot #103605, Germany) and calcium chloride 

(CaCl2; Sigma Alrich, lot #103936, US).  The spray drying process eliminates water and 

PFOB, and produces porous particles of DSPC/CaCl2, representing the key excipients in 

PulmoSphere


 formulations.  The goal was to produce a panel of low-mass density porous 

particles having equivalent optical diameters in the range of 1.5 – 5.0 µm and tap densities of 

0.03 – 0.15 gcm
-3

.  Particle sizes and densities were modulated by varying feedstock 

parameters such as the ratio of PFOB to water (0.04 – 0.87 w/w) and total solids (1.0 – 6.0% 

w/v); and process parameters such as air-to-liquid ratio (5 – 10 w/w) and drying kinetics 

(total gas flow 90 – 160 scfm; dryer outlet temperature maintained at 70C).  The rationale 

for study PulmoSphere


 placebo powders is that they are useful surrogates for studying a 

class of potent active formulations with low drug loading (<10% w/w).  The incorporation of 

such small amounts of drug does not greatly affect the bulk powder properties, and 

consequently the aerosolization behavior.  The PulmoSphere


 placebo powders were all 

filled into foil-foil blisters (fill mass of 2 mg), designed for actuation with the Simoon inhaler 

(Device A).     
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Table 3.1 DPIs and formulations used in the present study 

DPI  

(Resistance)          

[cm H2O
0.5

/L/min] 

Product Name 

(Treatment) 

Drug 

Package 

Label 

Claim 

[µg] 

Formulation 

Platform 

Composition 

Drug/Excipients 

Tapped 

Density 

[g/cm
3
] 

Device A  

Simoon (0.20) 
Placebo 

Unit Dose 

Blister 
N/A 

Emulsion 

Spray dry 
DSPC, CaCl2 <0.2 

Device B 

HandiHaler
®
 (0.16) 

Spiriva
®
 (COPD)

 Unit Dose 

Capsule 
18

a
 Blend TB/Lactose >0.5 

Device C 

Twisthaler
®
 (0.14) 

Asmanex
®
 

(Asthma) 

Multi-dose 

Reservoir 
220

a
 Spheronized MF/Lactose >0.5 

a 
Label claim of marketed product; TB= Tiotropium Bromide; MF= Mometasone Furoate 
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Two marketed DPI products, Spiriva
®
 and Asmanex

®
, were also evaluated in this study as 

products representative of lactose-based formulations.  Asmanex
®
 is an inhaled corticosteroid 

for asthma treatment, in which the micronized drug (mometasone furoate) is combined with 

micronized excipient (lactose) and formulated into large agglomerates to facilitate handling 

in the bulk state (Yang et al., 2001).  The drug is delivered using a Twisthaler multi-dose 

reservoir device, and is available in two strengths, 220 µg and 110 µg of mometasone furoate 

(Patient’s IFU).  The therapeutic agent in Spiriva
®
 is Tiotropium bromide, which is a long-

acting (24-hour) muscarinic receptor antagonist also known as an anti-muscarinic or anti-

cholinergic agent for treatment of reversible airways obstruction or chronic obstructive 

pulmonary disease (COPD).  The inhalable formulation consists of tiotropium bromide 

blended with lactose monohydrate carrier particles (Patient’s IFU; Chodosh et al., 2001). 

Each Spiriva
®
 capsule contains 18 g tiotropium (22.5 g of inhalable tiotropium bromide 

monohydrate).   

 

3.2.2 Determination of primary particle size of bulk powder 

The optical equivalent diameter of the primary particle size distribution of PulmoSphere


 

placebo powder was measured with a Sympatec HELOS Type BF Model Laser Light 

Diffraction Analyzer (Sympatec GmbH, Germany) with the RODOS-M (OASIS) dry 

disperser and the ASPIROS powder dosing unit.  The instrument evaluation mode was set to 

high resolution laser diffraction (HRLD), which returns size distributions based on 

Fraunhofer diffraction theory.  Powder samples of 5 – 15 mg of powder was placed into a 1 

mL vial and loaded into the ASPIROS dosing unit set at a speed of 25 mm/s.  The injector 
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length and primary pressure settings for the RODOS dry disperser were 4 mm and 4 bar, 

respectively.  Measurements were performed using the R2 lens (particle size range of 0.45 – 

87.5 m).  The RODOS settings were selected after verifying that they achieved essentially 

complete dispersion of the PulmoSphere


 powder down to the primary particles formed 

during the spray drying process.  Results are reported here in terms of the mean volume 

median diameter, X50.  Repeatability tests of this method with representative powders (total 9 

lots) have demonstrated relative standard deviation < 3% with triplicate samples. 

 

3.2.3 Tapped density analysis of bulk powder 

The tapped density of the PulmoSphere


 placebo formulations was measured by dispensing 

bulk powder into a 0.59 cm
3
 cylindrical cavity, doctoring off excess powder, and manually 

tapping 3 – 5 times on a hard surface, while adding powder to compensate for powder 

settling.  The cavity is placed onto a weighing pan for gravimetric analysis (Mettler Toledo 

AX206, US).  Assessment of method precision was performed for low (0.04 g/cm
3
), medium 

(0.07 g/cm
3
), and high (0.12 g/cm

3
) density powders with 6 replicates for each lot and the 

relative standard deviations were 2.8%, 6.7% and 4.5%, respectively.  Other powder lots 

were based on duplicate samples.  Results are reported as mean tapped density. 

 

3.2.4 Scanning Electron Microscopy 

Samples of the powder formulations were viewed under a scanning electron microscope 

using a Philips XL 30 Environmental Scanning Electron Microscope (ESEM; Philips 
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Electron Optics, US).   A thin layer of powder was placed on a 1 cm x 1 cm of silicon wafer 

disk (Omnisil, VWR IBSN3961559, US) for engineered particles or on a 12 mm diameter 

carbon adhesive tape for lactose-based powders (Electron Microscopy Sciences, Cat. 

#77825-12, US), and the sample was prepared for electron microscopy by sputter-coating a 

thin gold and palladium film (Denton, 21261 Cold Sputter/Etch and DTM-100, operated at 

<100 mTorr and 30-42 mA for 100-150 seconds).  Samples were then loaded into the ESEM 

chamber and the filament current and accelerating voltage set to 1.6 A and 20 kV, 

respectively.  

 

3.2.5 In vitro mouth-throat model 

The mouth-throat model was used for in vitro measurement of estimate total lung dose for 

devices and formulations listed in Table 3.1.  The mouth-throat model used in this study was 

developed by Finlay and coworkers at the University of Alberta, Canada.  They combined 

medical imaging technology, e.g. CT/MRI scans, and particle aerodynamics data to construct 

an idealized upper airway model whose aerosol deposition characteristics matched the 

average in vivo deposition data (DeHaan et al., 2001; Stapleton et al., 2000).  In the present 

study, the anatomical throat model was fabricated out of aluminum using CAD geometry 

data provided by Professor Finlay.  For ease of use, the model was fabricated in two parts, 

corresponding roughly to the “mouth” and “throat” sections of the airway.  This two-staged 

construction of the throat allows some qualitative assessment of regional deposition in the 

upper airway.  Suitable mouthpiece adapters were designed and customized for each inhaler 
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for attachment to the mouth-throat model, so that the inhalers were oriented approximately 

horizontally with respect to the mouth-throat model.       

 

3.2.6 Semi-empirical correlations for estimating lung dose 

Experimental data from the idealized mouth-throat model were compared to two proposed in 

vitro markers derived from cascade impactor measurements of aerosol size.  The first 

proposed in vitro marker for lung deposition is based on a fine particle mass (FPM) 

corresponding to a selected cut-off value of the inertial impaction parameter, 𝑑2𝑄, where 𝑑,  

is the aerodynamic diameter (µm) and 𝑄,  is volumetric airflow (L/min). 

Thus, an in vitro estimate of lung dose can be obtained from standard cascade impactor 

measurements as 𝐹𝑃𝑀𝑑2𝑄<𝐶, where C is a suitable cut-off value.  Note that this in vitro FPM 

marker factors in both particle size and inhaler flow-rate, and can be used to compare the 

performance of inhalers having different flow resistances (hence tested at different flow-

rate), or of the same inhaler over a range of flow-rates.  A cut-off value of C ~ 1450 µm
2
 

L/min corresponds to a mean extrathoracic region deposition of ~50% according to the 

model of Stahlhofen et al. (1989) and also represents ~50% deposition in the Alberta mouth-

throat model for monodisperse aerosols introduced through a straight tube (DeHaan et al., 

2001).  For convenience, cut-off values in this study are selected based on NGI stage 

groupings, e.g. the mass fraction accumulated on stages 4 to multi-orifice collector (MOC) 

corresponding approximately to 𝐹𝑃𝑀𝑑2𝑄<500, and mass on stages 3 to MOC, corresponding 

approximately to 𝐹𝑃𝑀𝑑2𝑄<1300.  Flow-rate effects on inhaler dose delivery performance are 
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thus assessed on the basis of fixed impactor stage groupings (essentially fixed 𝑑2𝑄), rather 

than a fixed diameter cut-off alone as is customarily and incorrectly done (Clark and 

Hollingworth 1993). 

A second measure of lung dose is derived from a semi-empirical correlation for estimating 

mouth-throat losses proposed by DeHaan and Finlay (2004).  It is based on a Stokes number 

that incorporates the inhaler mouthpiece geometry as a length scale.  The fraction of the 

delivered dose deposited in the mouth and throat is estimated from the following: 

𝑀𝑜𝑢𝑡ℎ & 𝑇ℎ𝑟𝑜𝑎𝑡 𝐿𝑜𝑠𝑠

= [1 −
1

44.5𝑆𝑡1.91 + 1
] + [(

1

44.5𝑆𝑡1.91 + 1
) ∙ (1 −

1

3.5 ∙ 10−8 (𝑑2𝑄)1.7 + 1
)] (1) 

Where St is the Stokes number given by, 

 St = 
𝜌𝑝𝑈0𝑑𝑝

2

18𝜇𝑑𝑚
~𝑑2 𝑄

𝑑𝑚
3  (2) 

 

p is particle density, g/cm
3
 

U0 is fluid velocity, cm/s 

dp is particle diameter, µm 

µ is fluid dynamic/kinematic viscosity, kg/cm/s 

d is aerodynamic diameter with the density of water, µm 

Q is volumetric airflow, L/min 

dm is the inhaler mouthpiece diameter, cm 
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In equation (1), the first term represents losses in the mouth and is significant for inhalers 

having small mouthpiece diameters.  The second term represents laryngeal losses according 

to Stahlhofen et al. (1989).  The above semi-empirical correlation, equation 2, has been 

implemented in the form of an on-line calculator, ARLA Respiratory Deposition Calculator 

(Martin and Finlay 2008).  Note that DeHaan and Finlay (DeHaan et al., 2001 & 2004; 

Finlay et al., 2002) developed their correlation using experimental data with the Alberta 

mouth-throat model, so it is reasonable to compare semi-empirical model predictions with 

results from the Alberta throat for the DPI products tested in this study. 

The fraction of delivered dose deposited in the lung may be evaluated as the fraction 

penetrating through the mouth-throat: 

𝐿𝑢𝑛𝑔 𝑑𝑜𝑠𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  1 −   𝑀𝑜𝑢𝑡ℎ & 𝑇ℎ𝑟𝑜𝑎𝑡 𝑙𝑜𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (3) 

where the mouth-throat loss fraction is obtained from equation (1).  Inputs to the ARLA 

calculator include the inhaler mouthpiece dimensions, the inhaler flow-rate, and the 

corresponding APSD of the delivered aerosol, which is modeled as having a log-normal 

distribution, and specified in terms of the mass median aerodynamic diameter (MMAD) and 

geometric standard deviation (GSD).  For each of the inhalation products investigated, these 

APSD inputs were obtained by in vitro measurement of the delivered aerosol dose using the 

Next Generation Impactor (MSP Corp., US).  Aerosol characterization methods are described 

below. 
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3.2.7 In vitro characterization of aerosol dose delivery performance 

In vitro dose delivery performance was investigated over a range of pressure drops (1 – 6 

kPa) considered representative of the range achievable by asthma and COPD patient 

populations (Al-Ahowair et al., 2007).  Aerosol dose delivery tests were performed using a 

square-wave flow-rate profile generated using a timer-controlled vacuum source.  A single 

inhalation actuation was conducted for each inhaler type.  Test attributes included the (i) 

emitted powder mass (EPM), (ii) in vitro lung dose (LD), and (iii) aerodynamic particle size 

distribution (APSD) using the NGI cascade impactor.  Note that tests (i) and (iii) are standard 

in vitro tests per USP General Chapter <601>.  A 2-liter sampling volume was maintained 

for each dose actuation for EPM and LD analyses.  However, for NGI analysis, a 4-liter 

volume was used to account for the large internal dead volume (2025 mL) of the NGI 

apparatus (Copley et al., 2005), including the induction port, pre-separator and NGI body.   

The test fixture used for EPM measurement is shown schematically in Figure 3.1.  When 

actuated with flow, the aerosolized dose leaving the inhaler mouthpiece was collected onto a 

47 mm diameter filter (A/E type, Pall Corp., US).  A custom filter holder designed for 

gravimetric analysis of engineered powder was used for testing Device A.  Standard DUSA 

tubes were used for collecting doses from Device B and C.  It should be noted that the 

gravimetric analysis approach is not commonly used in aerosol dose delivery testing for 

lactose blend formulations, but is entirely appropriate for engineered powder formulations.   

Engineered powders are reasonably homogeneous in composition, and the distribution of 

drug (when present) closely follows the distribution of powder mass.  The results for EPM 

are reported in terms of % of label claim (devices B, C) or fill mass (device A). 
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For determination of in vitro lung dose fraction analysis, the test inhaler was coupled to the 

inlet of the idealized mouth-throat model, and the dose penetrating through the model was 

collected downstream on a 76 mm diameter filter (A/E type, Pall Corp., US), as shown in 

Figure 3.2.  A polysorbate (EMD Chemicals, Cat. #8170072, US) wetting agent (equal parts 

of Tween 20 and methanol, v/v) was used for coating the interior walls of the cast model to 

prevent particle re-entrainment.  The procedure for applying coating solution to the mouth-

throat model was as follows; (a) ~15 mL of the coating solution was dispensed into the 

mouth-throat model, which was then capped at both ends (b) The solution was allowed to wet 

the internal walls of the mouth-throat model using a rocking or rotary motion to tilt the 

mouth-throat model from side to side; and (c) Excess solution was allowed to drain for 5 

minutes before use.  After five dose actuations, the mouth-throat model was rinsed with 

lukewarm water, air dried, and a fresh coating applied before the next use. 

For determining the APSD, the NGI (Apparatus 5 in USP General Chapter <601>), was used 

with the Induction Port +Pre-Separator + NGI Body.  As noted earlier, due to their 

homogeneous composition, the PulmoSphere


 placebo powders may be assayed using a 

gravimetric approach.  To enable gravimetric analysis, the gravimetric NGI cups were fitted 

with 55 mm diameter glass fiber filters (A/E type, Pall Corp, US) and the pre-separator upper 

and lower compartments were coated 1 and 2 mL, respectively, with a polysorbate wetting 

agent (equal parts of Tween 20 and methanol, v/v).    

For the lactose-based formulations, drug-specific HPLC assays were used to quantitate 

mometasone (with Device C) and tiotropium (with Device B).  The collection substrates of 

the NGI along with the pre-separator were coated with polysorbate solution; 1 mL for small 

cups and 2 mL for pre-separator and large cups.   
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Mometasone content was determined using a Reverse Phase High Performance Liquid 

Chromatograph (RP-HPLC) method on a Dionex Ultimate 3000 system (Thermo Scientific 

Dionex, US) equipped with a photodiode array (PDA) detector set to 238 nm.  Tiotropium 

content was determined on the same system using PDA detector set to 254 nm.  

Chromatographic separation was attained using an YMC-Pack ODS-AQ (50 x 4.6 mm, 3 

µm) column at a flow-rate of 0.6 and 1.0 mL/min (50 and 30 µL injection volume) for 

tiotropium and mometasone, respectively.  Mobile Phase A for tiotropium method was 

composed of 75% v/v water mixed with 25% acetonitrile and 0.1% phosphoric acid, and 

water with 0.1% trifluoroacetic acid for mometasone.  The diluent used to dissolve drug 

samples before HPLC analysis for tiotropium and mometasone were 25% acetonitrile mixed 

with 75% water and 42% acetonitrile mixed with 58% water, respectively.  Drug recoveries 

for both compounds were 97%. 

 

Figure 3.1 Emitted powder mass measurement set-up with a customized emitted dose 

powder collector for Device A and using DUSA tube for Devices B and C. 
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Figure 3.2 Cross-sectional view of the idealized mouth-throat model with an inhaler 

and filter housing attached upstream and downstream, respectively.   

 

3.2.8 NGI data analysis 

Aerodynamic particle size distribution results for all drug products were expressed in the 

form of a fine particle mass (FPM, % of label claim, or fill mass) with cut-off 𝑑2𝑄<500 

m
2
·L/min, which represents the cumulative mass deposited on stages 4 to MOC (or filter) of 

the NGI.  The corresponding airflows and effective cut-off diameters (ECD) are summarized 

in Table 3.2.  Note that APSD results were also used as inputs to the ARLA calculator for 

estimating total lung dose, as described later.     
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Table 3.2 Stage cut-off diameters for NGI stage 3 at test conditions 

Inhaler 

Flow Resistance 

[cmH2O
0.5

/L/min] 

Pressure 

Drop [kPa] 
Flow-Rate 

[L/min] 

NGI Stage 3
a,b

 

ECD [m] 

d
2
Q 

[m
2
L/min] 

Device A 0.20 

1 16 5.39 465 

2 22 4.62 470 

4 32 3.87 484 

6 40 3.47 482 

Device B 0.16 

1 20 N/A 
c
 N/A 

c
 

2 28 4.13 478 

4 39 3.50 478 

6 47 3.18 475 

Device C 0.14 

1 23 N/A 
c
 N/A 

c
 

2 33 3.80 477 

4 47 3.19 478 

6 57 2.89 476 

a 
Based on archival calibration for NGI at 15 L/min (Marple et al., 2004).

 

b 
Stage cut-off diameter-flow calculation for NGI stage 3 covering flow-rate from 30 - 100 L/min (Marple et al., 2003), 

𝒅𝟓𝟎 = 𝑨 (√
𝟔𝟎

𝑸
)

𝟎.𝟓𝟎

, where d50 represents new stage cut-off diameter-flow, Q, and A is stage cut-off diameter at 60 L/min. 

c 
Not reported here as NGI data were not generated at 1 kPa for Device B and C due to steep drop in aerosol dose delivery. 
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3.3  Results and Discussion 

3.3.1  In vitro aerosol data analysis 

Table 3.3 presents the bulk powder properties of spray dried PulmoSphere


 powders. The 

results show the powder properties fall within the target values of 0.03 – 0.15 g/cm
3
 for 

tapped density and 1.5 – 5.0 µm for primary particle size, thus allowing a range sufficiently 

wide to study the effects of these parameters.  As noted earlier, the placebo powders (A – F) 

are useful surrogates for a class of potent active formulations with low drug loading, since 

incorporation of small amounts of drug (<10%) does not greatly affect the bulk powder 

properties or consequently the aerosolization behavior.  An example of this is shown in 

Table 3.3, where active PulmoSphere


 formulations (G, H) with 2% and 6% Indacaterol 

(Novartis AG, Switzerland) had powder properties comparable to that of placebo 

formulations (A - C), which were processed within a similar range of conditions.  It should 

be cautioned that the results for the Placebo powders studied here may not necessarily be 

representative of active formulations with significantly higher drug loading, or of 

performance in other inhalers. 



 

57 

Table 3.3 Bulk powder properties of spray dried PulmoSphere


 formulation  

Powder 

Batch No. 

Drug 

Loading 

[%] 

Tapped 

Density 

[g/cm
3
] 

Primary Particle 

Size, Sympatec X50 

[µm] 

A 0 0.04 2.49 

B 0 0.04 4.20 

C 0 0.04 3.50 

D 0 0.07 2.00 

E 0 0.07 3.16 

F 0 0.12 1.68 

G* 2 0.04 3.05 

H* 6 0.05 2.74 

*PulmoSphere
™

 formulations of Indacaterol (Novartis AG, Switzerland). 

   

Representative photomicrographs from SEM analyses are presented in Figure 3.3 for the 

three formulation types investigated in this study.  SEM images show three distinct particle 

morphologies for the formulation types.  The PulmoSphere


 powder (A) has porous, roughly 

spherical particles, in the respirable size range (1 – 5 m), whereas tiotropium formulation 

(B) with large angular feature and non-respirable particles >20 m in size. 
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Figure 3.3 Three particle morphologies analyzed by Scanning Electron Microscopy; (A) spray dried PulmoSphere


 (Batch A), 

(B) traditional lactose-blend with tiotropium bromide and (C) spheronized mometasone furoate. 
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Figure 3.4 presents a correlation between bulk powder properties and in vitro aerosol 

performance from EPM and NGI data for the six PulmoSphere


 placebo powders (A – F) 

when tested with Device A at a pressure drop of 4 kPa.  Figure 3.4A indicates a strong effect 

of tap density, with smaller tap density resulting in higher emitted powder mass fraction.   

A one-way ANOVA of the 6 PulmoSphere


 powders showed a significant difference in 

EPM among the lots (p < 0.0001).  A post-hoc means comparison test (Tukey-Kramer HSD) 

showed that the three low density powders (A, B, and C) were similar, but significantly 

different from the two medium density powders (D and E), and the high density (F) powder 

batch. 

The effect of primary particle size on the FPM (% of mass recovered from cups) of the 

dispersed aerosol is shown in Figure 3.4B.   The results show that the FPM initially increases 

with X50 and then appears to reach a plateau for X50 ≥2.5 µm, suggesting greater cohesive 

forces with smaller particles.  At first glance, it may appear counter-intuitive for the FPM to 

show an increasing trend with X50.  It should be kept in mind, however, that X50 represents a 

size metric for bulk powder, which is essentially completely dispersed to primary particles 

using compressed air at pressures up to 4 bar.  The FPM, on the other hand is a measure of 

the incompletely de-agglomerated aerosol delivered by the Device A, where the powder is 

dispersed under relatively gentle conditions.  The formation of aerosol agglomerates from the 

bulk powder is determined by the balance between “cohesive” inter-particle forces and the 

“dispersive” fluid hydrodynamic forces, both of which vary with primary particle size in a 

complex manner, resulting in the relationship plotted in Figure 3.4B. 
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Figure 3.4 Effect of tapped density and primary particle size on in vitro aerosol performance; (A) tapped density as function of 

emitted powder mass (N= 10) and (B) primary particle size, X50, as function of fine particle mass (N= 3) accumulated mass from 

stage 3 to MOC.  Presented as the mean and standard deviation of five replicates.
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Table 3.4 summarizes the mass median aerodynamic diameter (MMAD) and geometric 

standard deviation (GSD) derived from the NGI measurement for each inhalation product.  

The MMAD & GSD values were estimated based on the aerosol fraction deposited in the 

stages downstream of the throat and pre-separator.  The drug masses distributed on the stages 

(often termed the impactor sized mass, ISM) were transformed to log probability coordinates, 

and best fit estimates of MMAD and GSD obtained, per USP General Chapter <601>.  The 

MMAD and GSD values so obtained were used as inputs to the ARLA Respiratory 

Deposition Calculator, along with input parameters identified in Table 3.5.  The output from 

the ARLA calculator represents the calculated lung dose, reported here as a fraction of the 

ISM, and also as a fraction of the label claim/fill mass. 

In using these MMAD/GSD estimates to represent the aerosol delivery from the inhaler, it is 

implicitly assumed that the coarse aerosol fraction pre-filtered by the USP induction port + 

Pre-separator is deposited in the mouth-throat, and therefore does not contribute to lung dose.  

This assumption is justified based on experimental data on particle capture efficiency of 

mouth-throat model versus USP induction port, Zhou et al. (2011), and has been verified in a 

sensitivity analysis (not reported here).    

In addition to the aerosol size distribution, the ARLA calculator also requires the diameter of 

the inhaler mouthpiece to be specified as an input.  As seen in Figure 3.5, the inhaler 

mouthpiece exits have a complex shape, and based on the internal geometry, an “effective” 

diameter was estimated for each inhaler and used as an input to the ARLA on-line calculator.  

For example, the effective diameter of Device A was based on the diameter of the internal 

flow passage issuing into the mouthpiece. 
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Table 3.4 NGI analysis data and mean of triplicates 

Inhaler 

Formulation 

Platform 

MP Air Inlet 

Dimension 1 kPa 2 kPa  4 kPa 6 kPa 

 
 

 
MMAD 

[µm] GSD 
c
 

MMAD 

[µm] GSD 
c
 

MMAD 

[µm] GSD 
c
 

MMAD 

[µm] GSD 
c
 

Device 

A 

Emulsion 

Spray dry 
a
 

0.48 
b
 4.3 2.1 3.9 1.8 3.5 1.8 3.2 1.9 

Device 

B 
Blend 0.53 

b
 

Not 

Tested 
d
 

Not 

Tested 
d
 

4.0 1.8 3.9 2.1 3.7 1.9 

Device 

C 
Spheronized 0.53 

b
 

Not 

Tested 
d
 

Not 

Tested 
d
 

2.9 1.9 2.6 1.9 2.4 1.9 

 
a
 Representative PulmoSphere

™
 powder batch A (X50 of 2.49 µm and tapped density 0.04 g/cm

3
) was used for comparison.  

 
b
 Approximate inhaler mouthpiece exit diameter in cm.   

 
c
 = √

𝑑84

𝑑16
 , where d84 and d16 represent the diameters of the aerosol mass at 84 and 16%, respectively. 

 d  
NGI data were not generated at 1 kPa for Device B and C due to steep drop in aerosol dose delivery. 
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Table 3.5 ARLA calculator selection and input parameters.  All others set to default 

mode. 

Parameters Input 1 Input 2 Input 3 Input 4 

Particle Properties Particle density= 1 

gcm
-3

 
Log-normal 

distribution 
MMAD 

(Table 3.4) 
GSD  

(Table 3.4) 

Gas Properties Default -- -- -- 

Age Adult -- -- -- 

Delivery Route Oral -- -- -- 

Breathing Conditions 

Single inhalation 

through 

mouthpiece 

Inhalation 

flow 
(Table 3.2) 

-- -- 

Respiratory Tract 

Geometry 

Diameter of MP 

inhaler (Table 3.4) 
-- -- -- 

Gravity Default -- -- -- 
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Figure 3.5 Photographs of DPI mouthpiece showing internal geometry of aerosol flow path. 
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3.3.2  Idealized mouth-throat model data analysis 

The in vitro lung dose fraction was measured experimentally using the idealized mouth-

throat model at pressure drops ranging from 1 – 6 kPa.  Figure 3.6 presents the measured in 

vitro lung dose fraction as a function of inhaler pressure drop for the six PulmoSphere


 

placebo powder formulations tested using Device A.  For volume median primary particle 

size ≥2.5 µm, the data show consistently a low extrathoracic region deposition (hence higher 

lung deposition) that is independent of primary particle size and flow-rate.  However, for 

particle sizes <2.5 µm, lung deposition is significantly decreased, with greater variability and 

flow-rate dependence of primary particle size.  These results suggest that the optimal 

equivalent optical diameter size range for PulmoSphere


 placebo powders delivered using 

Device A is ≥2.5 µm.  Below this size, inter-particle attractive forces are greater than drag 

and lift forces generated in the inhaler. This negatively impacts powder fluidization and 

dispersion. The data in Figure 3.6 represents the same device with 6 different variants of the 

PulmoSphere


 placebo powder.  The data clearly demonstrate that the properties of the 

PulmoSphere


 powder can be tailored to achieve significant improvements in dose delivery 

for a given device.  

Figure 3.7 summarizes in vitro aerosol performance data from the idealized mouth-throat 

model for the three inhalation powder types studied.   One of the six PulmoSphere


 powders 

(primary particle size of 2.49 µm and tapped density 0.04 g/cm
3
) was used to generate results 

with Device A.   The results show that the in vitro lung dose for this PulmoSphere


 powder 

when delivered with Device A was greater than that of the other two products.  The 

PulmoSphere


 data presented in Figure 3.6 & 3.7 are consistent with recent studies that 



 

66 

suggest that a drug/device combination comprising of PulmoSphere


 powder and blister-

based inhaler enable consistent and high delivery efficiency performance over a range of 

patient inspiratory flow-rates (Weers et al., 2012 & 2013). 

     

Figure 3.6 In vitro lung dose performances as measured from the mouth-throat model 

for PulmoSphere


 delivered by Device A as a function of mean primary particle size, 

tested at 1 – 6 kPa inhaler pressure drops.  Presented as the mean and standard 

deviation of five replicates. 
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Figure 3.7 Mouth-throat model in vitro aerosol data comparing three different powder technology platforms; (A) mouth-throat 

deposition and (B) lung dose fraction.  Presented as the mean and standard deviation of five replicates.
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3.3.4 Comparing extrathoracic region deposition from physical mouth-throat 

model and semi-empirical models  

Table 3.6 is a summary of in vitro markers of lung dose from the idealized mouth-throat 

model and semi-empirical models of mouth-throat deposition accounting for inertial 

impaction due to the effects of airflow (Q), aerodynamic particle size of the dispersed 

powder, and inhaler mouthpiece dimension.  Data are presented as estimated in vitro aerosol 

delivered dose as percent of label claim or fill mass, along with airflows and corresponding 

pressure drops for each formulation and inhaler platform.  The PulmoSphere


 powder shows 

a slight increase in lung dose with increasing airflow, but equation 3 predicts a small drop in 

lung dose across the range of airflow tested.  In contrast, Device B shows strong flow-rate 

dependence across the range of airflows tested.  Measured lung doses using the mouth-throat 

model are significantly higher than the values predicted from the semi-empirical model.  It 

should be noted that the internal flow path geometry within the mouthpiece of many inhalers 

and assumptions regarding the “effective” exit diameter of the inhaler mouthpiece could bias 

prediction of inhaler exit flow velocities and the associated mouth-throat deposition 

(Cardwell et al., 2014).  Despite this, the in vitro mouth-throat model and extrathoracic 

region numerical model predict a similar trend and performance ranking for the different 

aerosol delivery platforms.  The experimentally measured in vitro lung dose (using the 

idealized mouth-throat model) also correlates with the values predicted using the inertial 

impaction parameter, 𝑑2𝑄 (Figure 3.8).  Interestingly, the correlation is better using the 

prediction at 𝑑2𝑄<1300 m
2
·L/min (i.e., NGI stages 3 to MOC) than 𝑑2𝑄<500 m

2
·L/min 

(i.e., NGI stages 4 to MOC). This observation is consistent with the cut-off value of ~1450 
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m
2
·L/min reported for the mouth-throat model for monodisperse aerosols (DeHaan and 

Finlay, 2001).   
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Table 3.6 Mean and standard deviation shown in parenthesis of in vitro aerosol delivered dose for different formulation 

platforms. 

Compound Name 

(Inhaler) 

Powder 

Platform (Lot) 

P / Q  

[kPa / mL/s] 

EPM  

[%LC] 

MT 
a
 

IVLD  

[%LC] 

𝑭𝑷𝑴𝒅𝟐𝑸<𝟓𝟎𝟎  

[%LC] 

𝑭𝑷𝑴𝒅𝟐𝑸<𝟏𝟑𝟎𝟎  

[%LC] 

  Equation 3 

LDF 

[% of ISM] 

  Equation 

3 LDF 

[% of LC] 

Placebo   

(Device A) 

Spray Dried 

PulmoSphere
™

  

(0.04 g/cm
3
,  

2.49 µm) 

1 / 265 85 (3) 70 (4) 44 (3) 58 (3) 52 (2) 34 (1) 

2 / 373 88 (2) 74 (1) 45 (2) 63 (2) 48 (1) 35 (0) 

4 / 530 90 (2) 75 (5) 41(3) 61 (3) 44 (2) 31 (1) 

6 / 660 92 (2) 80 (6) 42 (8) 64 (9) 43 (3) 33 (2) 

Tiotropium 

Bromide  

(Device B) 

Blend  

(002383B) 

1 / 333 No Data 
b
 No Data 

b
 No Data 

b
 No Data 

b
 No Data 

b
 No Data 

b
 

2 / 467 39 (17) 20 (20) 5 (0) 8 (1) 45 (2) 4 (0) 

4 / 650 55 (8) 19 (3) 11 (1) 20 (2) 39 (1) 10 (0) 

6 / 788 49 (6) 16 (3) 9 (3) 17 (5) 36 (2) 8 (0) 

Mometasone 

Furoate  

(Device C) 

Spheronized  

(OJS5) 

1 / 383 67 (3) 12 (5) No Data 
b
 No Data 

b
 No Data 

b
 No Data 

b
 

2 / 550 71 (5) 15 (8) 8 (1) 11 (10 56 (1) 7 (0) 

4 / 783 74 (4) 26 (10) 13 (2) 18 (2) 54 (1) 11 (0) 

6 / 950 77 (6) 32 (2) 15 (1) 21 (1) 52 (1) 13 (0) 

a
 MT- Mouth-throat model 

b
 No data generated due to poor aerosol performance 
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Figure 3.8 Comparison of results from the mouth-throat model, in vitro lung dose (experimental data), and inertial impaction 

parameter model where (A) 𝒅𝟐𝑸<500 and (B) 𝒅𝟐𝑸<1300 m
2
·L/min.  Presented as the mean and standard deviation of five 

replicates.
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3.4  Conclusion 

The idealized mouth-throat model is an effective tool for assessing the design space for 

engineered particles and can be used to tailor engineered powders for a specific DPI system. 

In this study, application of this tool showed that for porous PulmoSphere


 powders 

delivered with Device A, enhanced delivery to the lung is favored by low particle density and 

large particle size.  In addition, the idealized mouth-throat model provides a simple and direct 

method to compare the dose delivery performance among different types of inhalation 

products, covering a broad range of device and powder technologies, and operating over a 

range of inhalation flow-rates.  In this study, the idealized mouth-throat model was used to 

compare the performance of engineered powders with that of lactose-based formulations over 

a clinically relevant range of inhaler pressure drops (1 – 6 kPa).  The results showed that the 

engineered powders ranked higher in in vitro measures of lung dose compared to the lactose-

based products.  These findings are consistent with predictions based on cascade impactor 

data for the same products.  Although the in vitro lung dose derived from the idealized 

mouth-throat model are higher than that predicted from the semi-empirical correlations, the 

results from all the approaches rank-order the products in a similar manner.  Potential 

advantages of the idealized mouth-throat model over standard cascade impactor sizing tools 

(e.g., NGI, ACI) are; (i) direct measurement of in vitro lung dose, (ii) less analytical burden, 

and (iii) allowing the use of realistic breath profiles, which have not been considered in this 

study. 
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Chapter 4 

Effects of ramp-up of inspired airflow on in vitro aerosol dose delivery 

performance for certain dry powder inhalers 

(Original article published in Eur. J. Pharm. Sci., 2016) 
 

   

4.1  Introduction 

There are many inhalation drug products currently available on the market that deliver an 

aerosolized medicine to the lung for treatment of respiratory diseases (e.g., Asthma, COPD, 

and Cystic Fibrosis).  Many of these are passive, breath-actuated dry powder inhalers (DPIs) 

relying on the patient’s inspiratory breathing effort to deliver the drug dose for local or 

systemic effect.  The total dose delivered to the lungs depends on product related factors such 

as the inhaler design and particle formulation characteristics, as well as patient related factors 

such as the airway geometry, and inspiratory flow characteristics (i.e., peak inspiratory flow-

rate, PIF; ramp-up rate of inspired airflow, and inhalation volume) that vary from patient to 

patient.     

DPIs of different designs rely on a variety of working principles to fluidize and disperse bulk 

powder into respirable aerosol agglomerates.  There have been several studies aimed to 

understanding the dose delivery performance of different inhalers as a function of patient 

inspiratory flow parameters.  Most prior studies on this subject have focused on the effect of 

patient PIF on dose delivery performance (Auty et al., 1987; Parry-Billings et al., 2008; 
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Pedersen et al., 1990; Ramsgaard et al., 1989).   There have been comparatively fewer studies 

on the effect of the ramp-up of flow-rate (Beron et al., 2008; Chavan et al., 2000; De Boer et 

al., 1997; Everard et al., 1997).  These studies have shown that for some passive DPIs, the 

ramp-up of airflow can adversely influence powder emptying and the respirable dose fraction 

delivered, especially if the aerosolization event duration is short and occurs within the ramp-

up period.  For some DPIs, such unfavorable airflow conditions could lead to high deposition 

in the mouth-throat, resulting in unwanted oral absorption for some drugs, and in some 

instances may increases in both local and systemic side-effects (Byron, 1986; Grim et al., 

2001; Newman et al., 1983).   

There have been recent attempts by DPI designers to address and mitigate the flow ramp-up 

effect on inhalation drug delivery.  One approach has been to provide the inhaler with a 

breath-actuated-trigger to delay aerosol generation until a threshold flow-rate (or pressure 

drop) is achieved (Kohler, 2004).  An alternative approach is to slow down the aerosol 

emission kinetics, such that the bulk of the aerosol emission occurs when the flow-rate is 

fully developed (Ung et al., 2012).  Indeed, Coates et al. (2006) found that significant 

dispersion reductions may occur when a large amount of powder is released from the 

device before both the turbulence levels and particle impaction velocities were fully 

developed. 

These recent innovations have stimulated an investigation of flow ramp effects in commonly 

available DPIs.  This study investigates several different marketed oral inhalation products to 

assess sensitivity to flow ramp-up (or flow acceleration), and its impact on in vitro aerosol 

delivery performance.  Experiments focused on testing inhaler dose delivery performance 
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under two flow-ramp conditions (i.e., slow and fast ramp), using airflow profiles generated 

by a custom-designed breath-simulator.  Measurements were focused on three dose delivery 

attributes; aerosol emission kinetics as measured by a custom-designed laser photometer, 

delivered dose (DD), and total lung dose (TLD) as measured by an anatomical mouth and 

throat model (the Alberta Idealized Throat model; DeHaan and Finlay, 2001).  Results from 

the laser photometry, DD, and in vitro TLD tests will be used to assess the sensitivity of the 

inhalers to ramp-up of inspired airflow. 

 

4.2  Materials and Methods 

4.2.1 Dry powder inhalers and formulations 

Table 4.1 summarizes the DPIs and formulations investigated in this study.  Except for the 

first, all of the products listed in the table are commercially marketed and will not be 

described in detail here.  The selection of the marketed dry powder inhalers is intended to 

cover different powder dispersion mechanisms, powder formulation technologies (e.g., spray 

dried powders versus micronized blends), drug package types (e.g., capsule, blister, or 

reservoir) and inhaler flow resistances, see Tables 4.1 and 4.2.  The Simoon is a unit-dose, 

blister-based inhaler being developed by Novartis (Maltz et al., 2008; Ung et al., 2012).  The 

development prototype used in this study has a high resistance (R  0.19 cmH2O
0.5

/L/min), 

and relies on inspiratory airflow to fluidize and de-agglomerate the powder (Ung et al., 2012; 

Weers et al., 2013).  In this study, the Simoon device is paired with a dry powder formulation 

of Indacaterol Maleate, prepared using the PulmoSphere


 technology (Weers and Tarara, 
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2014).  PulmoSphere
™

 powder formulations were prepared by spray drying a feedstock 

comprising the drug, either in solution or suspension, along with a perflubron (PFOB) in 

water emulsion, stabilized by distearoylphosphatidylcholine (DSPC) and calcium chloride 

(CaCl2).  The spray drying process eliminated water and PFOB, and produced low density 

porous particles containing drug, DSPC, and CaCl2.  The Indacaterol PulmoSphere
™

 

formulation used in this study contained 8% Indacaterol maleate (QAB149), 86% DSPC, 6% 

CaCl2 and was filled into a foil-foil blisters (fill mass of 2 mg) designed for use with the 

Simoon inhaler.      
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Table 4.1 DPIs and formulations used in the present study. 

DPI 

Product Name 

(Indication) 

Composition 

API/Excipients 

Label Claim 

[µg] 

Formulation 

Platform 

Drug 

Package Source 

Simoon 

(Prototype) 
N/A* 

Indacaterol 

Maleate/DSPC, 

CaCl2 

40 Spray Dried 
Unit Dose 

Blister 
Novartis 

Podhaler
®

 
Tobi

®
     

(CF) 

Tobramycin 

Sulfate/DSPC, 

CaCl2 

27500 Spray Dried 
Unit Dose 

Capsule 
Novartis 

Breezhaler
®

 
OnBrez

®
 

(COPD) 

Indacaterol 

Maleate/ Lactose 
150 

Lactose Carrier 

Blend 

Unit Dose 

Capsule 
Novartis 

Diskus
®

 

Advair
®
 

(Asthma/ 

COPD) 

Fluticasone 

Propionate/ 

Salmeterol/ 

Lactose 

250/50 
Lactose Carrier 

Blend 

Multi-Dose 

Blister Strip 
GSK 

Handihaler
®

 
Spiriva

®
 

(COPD) 

Tiotropium 

Bromide/Lactose 
18 

Lactose Carrier 

Blend 

Unit Dose 

Capsule 
BI/Pfizer 

Flexhaler
®

 
Pulmicort

®
 

(Asthma) 
Budesonide 180 

Soft 

Agglomerates 

Multi-dose 

Reservoir 
Astra Zeneca 

Twisthaler
®

 
Asmanex

®
 

(Asthma) 

Mometasone 

Furoate/ Lactose 
220 

Soft 

Agglomerates 

Multi-dose 

Reservoir 
Merck 

*Not marketed product. 
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4.2.2 Inhalation flow profile simulator 

Inhalers were tested using idealized inhalation flow profiles having two different flow ramp-

up rates, representing “slow” and “fast” ramp-up.  The flow profiles were generated using a 

custom-built inhalation profile simulator (IPS-2, Novartis Corp., US).  The IPS-2 uses 

computer-controlled, proportional solenoid valve connected to a vacuum source to generate 

target flow profiles.  The “slow” ramp profile targeted a ramp-up time of 1 second, while the 

“fast” ramp profile represents the fastest ramp time that was practical for the test system.  

Figure 4.1 presents example flow profiles representing slow and fast ramp-ups for the 

Breezhaler device.  The peak inspiratory flow-rate (PIF) for both profiles is the same (104 

L/min), and corresponds to a pressure drop of 4 kPa across the inhaler.  The test condition of 

4 kPa is used in compendial aerosol test methods and is within the range of inhalation efforts 

that can be achieved by both Asthma and COPD patients (Al-Ahowair et al., 2007).  Note 

that the PIF and pressure drop are related as shown in equation 1 (Clark et al., 1992),  

 𝑅 =
√𝑃

𝑄
  (1) 

where R is the inhaler flow resistance (cmH2O
0.5

/L/min), Q is the volumetric flow-rate 

(L/min), and P is the inhaler pressure drop (centimeter of water).  Q and P are obtained 

through measurements.  Table 4.2 summarizes the inhalation flow profile characteristics 

(peak flow-rate and ramp-up time) for each of the inhalers tested in this study.   The flow 

ramp-up time is specified in terms of T90, which is the total time taken by the IPS-2 breath 

simulator to reach 90% of the PIF.   
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Figure 4.1 Simulated inhalation flow-rate profile for Breezhaler device (A) slow and (B) fast ramp-up. 
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Table 4.2 Flow resistance, flow-rate, and ramp-up time at 4 kPa pressure drop for 

each inhaler.  Presented as the mean and standard deviation shown in parenthesis of 

three replicates. 

DPI 

Flow Resistance 

[cmH20
0.5

/L/min] 

Flow-Rate 

[L/min] 

T90 Slow 

Ramp-up 

[second] 

T90 Fast 

Ramp-up 

[second] 

Simoon 0.19 33 0.84 (0.00) 0.34 (0.00) 

Podhaler
®

 0.08 76 0.85 (0.01) 0.39 (0.22) 

Breezhaler
®

 0.06 103 0.91 (0.01) 0.30 (0.02) 

Diskus
®

 0.08 81 0.84 (0.00) 0.20 (0.00) 

Handihaler
®

 0.16 39 0.95 (0.06) 0.39 (0.12) 

Flexhaler
®

 0.11 58 0.79 (0.01) 0.26 (0.00) 

Twisthaler
®

 0.14 45 0.86 (0.00) 0.27 (0.01) 

 

4.2.3 Laser photometry  

The kinetics of powder emptying from each DPI was characterized using a custom designed 

laser photometer based on a commercially available laser sensor head (Keyence Corp., model 

LX2-13W, US).  Figure 4.2 presents a laser photometer set-up for measuring the aerosol 

pulse exiting the DPI mouthpiece (MP).  The laser photometer comprises an aerosol flow cell 

with a cross-sectional area illuminated by a laser sheet. The presence of aerosol causes 

obscuration of the sheet laser and is detected by a photo-detector.  The photo-detector’s 
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response is linear with obscuration (i.e., laser intensity).  Beer’s law was then used to convert 

the photo-detector response to an aerosol concentration. 

BEER’S LAW 

𝐶𝑣  − 𝑙𝑛 (
𝑉

𝑉0
)  (2) 

Cv is the aerosol concentration, V is the baseline corrected photo-detector response in the 

presence of the aerosol, and V0 is the corresponding photo-detector response in the absence 

of aerosol pulse.  Suitable mouthpiece adapters were developed for each DPI for attachment 

to the laser photometer inlet port.  The IPS-2 breath simulator was used to simulate slow and 

fast ramp-up flow profiles for each DPI.  The laser photometer is also provided with a filter 

to collect the emitted dose downstream of the photo-detector.  Before each measurement, the 

data acquisition software performs a background scan to update the baseline response of the 

system, which shifts gradually over time due to powder residue buildup on the flow-cell 

windows.   

For the tests performed with the laser photometer, the aerosol emission event is observed as a 

pulse (Figure 4.2).  Past characterization with engineered powders at Novartis (unpublished 

research) has shown that the area under the curve (AUC) may be correlated to the emitted 

mass of powder using a suitable calibration procedure.  However, in the case of products 

generating a very high aerosol concentration, (e.g., Tobi
®
 Podhaler

®
 with ~48 mg powder fill 

mass), the transmission of laser light falls to undetectable levels and the detector output is 

considered saturated.  Under these conditions, it is generally observed that the aerosol 

emission pulse “width” is still sharply defined, though the pulse “height” may not always be 
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well defined due to detector saturation at the high powder payloads being delivered.  

Therefore, the steep drop-off of the photo-detector signal at the end of the aerosol emission 

event provides a reliable estimate of the aerosol pulse duration (e.g., aerosol emptying time), 

and largely independent of the pulse height. 
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Figure 4.2 (A) Schematic diagram of test set-up used for assessing the aerosol emission kinetics from a DPI, comprising a laser 

photometer coupled to the inhalation flow profile generator (IPS-2).  (B) Example plot of results showing traces of the flow 

profile and associated aerosol emission.  Average inspiratory flow profiles were obtained from published studies (Ament et al, 

2012 for COPD patients and unpublished study from Novartis for asthma patients). 

 



 

89 

Two methods of determining aerosol pulse duration or aerosol emptying volume were used.  

Under normal conditions, the volume of air (V90) needed to clear 90% of the emitted aerosol 

mass (i.e., AUC) was taken as the estimate of aerosol emptying volume.  This analysis is not 

strictly justified when detector saturation occurs (as in the case for Tobi
®
 Podhaler

®
 with ~48 

mg delivered mass).  Under these circumstances, an alternative approach for estimating of 

aerosol clearance volume was used, that being the volume of air at which the tail of the 

aerosol concentration pulse falls below a pre-specified threshold value (i.e., 2).  For each 

DPI, N= 3 replicate runs were performed to determine aerosol emission characteristics, with 

each inhaler being actuated only once per replicate run. 

 

4.2.4 In vitro characterization of aerosol dose delivery performance 

In vitro aerosol dose measurement was performed at 4 kPa for two ramp-up flows (slow and 

fast) and used the IPS-2 for simulating the two ramp profiles.  Each dose measurement 

represents one inhaler actuation with a constant sampled volume of 2 liters.  Testing 

attributes included measurements of in vitro delivered dose (DD) and total lung dose (TLD), 

the latter measured using an idealized throat model, the Alberta idealized throat (AIT).   

The Alberta idealized throat has been developed to mimic the aerosol deposition 

characteristics of the human mouth and throat, and incorporates essential geometric features 

of the upper respiratory tract and their average dimensions from imaging studies (Finlay et 

al., 2010).  This geometry has been well characterized in a series of published studies 

(DeHaan and Finlay 2001; Finlay et al., 2002; Grgic et al., 2004), which demonstrate that it 
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accurately mimics the mean in vivo deposition in humans.  The AIT enables a direct and 

simple in vitro assessment of the total lung dose delivered by a test inhaler, measured as the 

aerosol drug mass collected downstream of the mouth-throat model.  Figure 4.3A shows the 

AIT model used in this study.  It is based on CAD design data from the University of 

Alberta, and has been fabricated as a two-stage assembly, enabling drug deposition in the 

mouth and throat sections to be assayed separately if needed.  Figure 4.3B shows the test set-

up used in the study.  

The AIT approach provides some advantages over the cascade impactor method often used 

as the in vitro basis for estimating the lung dose for inhalation drug products.  In comparison 

to the USP induction port used in cascade impactor tests, the Alberta idealized throat is 

expected to more realistically simulate the physics of aerosol transport and deposition in the 

human mouth and throat (Zhang et al., 2007; Zhou et al., 2011).  The cascade impactor 

approach relies on fixed flow-rates and in vitro markers such as fine particle mass (FPM) 

cuts or stage groupings, and the selection of these may not be readily apparent, especially 

when comparing or interpreting data across different types of inhalers, each with its own 

characteristic flow resistance and associated range of inspiratory flow-rates during use. In 

contrast, the Alberta idealized throat allows for a relatively straightforward comparison and 

interpretation of lung dose data across different inhalers and flow-rate regimes.  Furthermore, 

while cascade impactors are designed to operate at constant flow-rates, the Alberta idealized 

throat allows for more realistic simulation of human use scenarios during testing, e.g., by 

accommodating the use of realistic, time-varying inspiratory flow profiles that may influence 

the performance of some inhalation drug products.  It is reasonable to expect some degree of 

correlation between AIT and cascade impactor data when fixed flow regimes are employed 
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during testing (Ung et al., 2014).  The approach of using a mouth and throat model to 

estimate lung deposition has been shown to be effective for a wide variety of inhalation drug 

products (Delvadia et al., 2013; Olsson et al., 2013; Weers et al., 2014). 

For the delivered dose (DD) tests, the aerosol emitted from the inhaler mouthpiece was 

collected by a standard dose uniformity sampling apparatus (DUSA, Westech Scientific Inc., 

USA) having a diameter of 47 mm filter (A/E type, Pall Corp. US).  For the Tobi
®
 Podhaler

®
, 

a larger 81 mm diameter filter (Durapore, EMD Millipore, US) housed in a custom filter 

holder was used to collect the large dose (~48 mg powder) without overloading.  For each 

DPI N= 5 replicate determinations were performed, with each inhaler being actuation only 

once per DD determination.  The DD results are presented as a mean value, normalized to the 

nominal dose.   

For the TLD measurements, test DPIs were coupled to the inlet of the AIT model, and the 

dose penetrating through the model was collected downstream on a filter (76 mm diameter, 

A/E type, Pall Corp., US; Durapore, EMD Millipore, US), as shown in Figure 4.3B.  A 

polysorbate (EMD Chemicals, Cat. #8170072, US) wetting agent (equal parts of Tween 20 

and methanol, v/v) was used for coating the interior walls of the AIT model to prevent 

particle re-entrainment.  The procedure for applying coating solution to the AIT was as 

follows; (i) ~15 mL of the coating solution was dispensed into the AIT, which was then 

capped at both ends, (ii) the solution was allowed to wet the internal walls of the AIT using a 

rocking or rotary motion to tilt the AIT from side to side, and (iii) excess solution was 

allowed to drain for 5 minutes before use.  After five dose actuations, the AIT was rinsed 

with lukewarm water, air dried, and a fresh coating applied before the next use.  Note, that 
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for the Tobi
®
 Podhaler

®
, cleaning and re-coating were performed after each dose actuation 

because of high powder mass loading.   The TLD results are reported in terms of percent of 

the nominal dose. 
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Figure 4.3 (A) Drawing of Alberta idealized throat and (B) experimental arrangement for measuring the in vitro TLD using an 

AIT. 
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4.2.5 High performance liquid chromatography (HPLC) analysis 

Table 4.3 presents the HPLC methods used in the study for drug-specific assay of the 

collected dose of each drug compound.  Known volumes of solvents were used for dissolving 

the drug deposits on the various parts of the experimental set-ups.  For Indacaterol and 

Tobramycin PulmoSphere
™

 formulations, an additional sample preparation step was 

employed by using a centrifuge (Eppendorf AG, Centrifuge 5424, US) to separate un-

dissolved DSPC from dissolved drug in solvent solution before injection into the HPLC 

column.  This process ensures the durability of the HPLC column.   
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Table 4.3 Chromatography methods 

Compound Column 

Flow 

[mL/min] 

Injection 

Volume 

[µL] 

Detector and 

Wavelength 

[nm] Mobile Phase Solvent Recovery 

Indacaterol 
YMC-Pack 

ODS-AQ
 a
 

1.5 50 
Diode array, 

254 

H2O/0.1% TFA; 

ACN/0.1% TFA 

50% H2O, 50% 

MeOH 
> 98% 

Indacaterol 
YMC-Pack 

ODS- AQ
 a
 

1.0 50 
Diode array, 

260 

H2O/0.1% TFA; 

ACN/0.1% TFA 

0.5M Acetic 

Acid/H2O 
> 98% 

Tobramycin 
Supelcosil LC-

18-DB
 b

 
1.0 20 365 

74% TRIS, 2% 

SO4, 24% ACN 
H2O > 98% 

Fluticasone 

/Salmeterol 

Zorbax XDB 

C-18
 a
 

1.0 20 225 

50% Na2HPO4 

(0.05M), 35% 

ACN, 15% MeOH 

50% Na2HPO4 

(0.05M), 35% 

ACN, 15% MeOH 

> 97% 

Budesonide 

Waters 

Symmetry C-

18
 c
 

1.5 20 240 
Phosphate Buffer 

Solution, ACN 

70% Phosphate 

Buffer Solution, 

30% ACN 

> 97% 

Tiotropium 
YMC-Pack 

ODS- AQ
 a
 

0.6 50 
Diode array, 

238 

75% H2O, 25% 

ACN, 0.1% H3PO4 

75% H2O, 25% 

ACN 
> 97% 

Mometasone 
YMC-Pack 

ODS- AQ
 a
 

1.0 30 
Diode array, 

254 
H2O, 0.1% TFA 

58% H2O, 42% 

ACN 
> 97% 

H2O- water; MeOH- methanol; TFA- trifluoroacetic acid; ACN- acetonitrile; Na2HPO4- sodium phosphate dibasic; H3PO4- phosphoric acid; SO4- sulfate 

a
3m size and 4.6 x 50 mm 

b
5m size and 4 x 150 mm 

c
3m size and 4.6 x 75 mm 
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4.3  Results and Discussion 

4.3.1 Aerosol powder emission kinetics by laser photometry 

Figure 4.4 presents the applied flow-rate and resulting aerosol emission profiles as a function 

of flow-volume for each DPI for slow and fast ramp-up flows.  In general, PulmoSphere
™

 

formulations (i.e., Simoon – placebo & Tobi
®
 Podhaler

®
) generated a higher aerosol signal 

obscuration than micronized lactose-based carrier formulations (e.g., OnBrez Breezhaler of 

25 mg capsule fill mass) due to their low density (bulk powder density <0.2 g/cm
3
), which 

translates to a larger aerosol volume concentration (i.e., total particle volume per unit volume 

of air), and increased light extinction.  It should also be noted that for micronized lactose-

based carrier formulations, the measured aerosol emission intensities are predominately of 

lactose carriers as the API fraction in the blend is typically small and unlikely to be 

selectively detected by the photo-detector.  For Tobi
®
 Podhaler

®
, the AUC is considered 

unreliable because the high aerosol concentration caused the photo-detector to saturate; 

however the clearance time required to emptying a dose could still be measured.    

Overall, the aerosol clearance for fast ramp-up flow is quicker, showing consistent and 

uniform aerosol emission profiles, and resulted in higher AUC numbers compared to the 

slow ramp-up flow.  In addition, the drug products at the higher end of the fill mass range, 

i.e., Tobi
®
 Podhaler

®
 (48 mg) and OnBrez Breezhaler (25 mg) required larger volumes of air 

(~1500 mL) for aerosol clearance, compared to products with lower fill masses (Figures 4.4 

& 4.5).  As will be discussed in Section 3.2, the delivered dose for these products is not 

sensitive to ramp effect, although more variation is seen for the total lung dose.   
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Figure 4.4 Aerosol release kinetics measured at the inhaler mouthpiece by laser photometry for slow and fast ramp-up flows; 

(A-B) Simoon, (C-D) Podhaler
®
, (E-F) Breezhaler

®
, (G-H) Diskus

®
, (I-J) Handihaler

®
, (K-L) Flexhaler

®
, and (M-N) Twisthaler

®
. 
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*Laser photometer detector saturated due to high powder loading of 48 mg fill mass. 

Figure 4.5 Aerosol clearance (A) volume and (B) time to empty ninety percent of the total delivered dose from the inhaler.  

Presented as the mean and standard deviation of three replicates. 

 

4.3.2 In vitro aerosol performance analysis 

Figure 4.6 summarizes the dose delivery performance for the seven DPIs tested at two ramp-up flows.  The results show that the mean 

DD is relatively insensitive to flow ramp effects, i.e., the mean delivered dose for all DPIs are similar for slow and fast ramp-up flows 
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(Figure 4.6).  The mean delivered dose is >80% of nominal dose for all DPIs, except the Spiriva
®
 Handihaler

®
, which has a lower value 

of ~ 60% consistent with previously published results (Chodosh et al., 2001) 

 

                 

Figure 4.6 Results from in vitro testing: (A) Delivered dose and (B) total lung dose for the DPIs tested where Diskus


 (S) and 

(F) represent Salmeterol and Fluticasone Propionate, respectively.  Presented as the mean and standard deviation of five 

replicates.
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In contrast, the TLD shows more variation with flow ramp as well as DPI type.  The DPI 

with PulmoSphere
™

 formulations had TLD ranging from 57 – 87% of nominal dose, 

significantly higher than that for the other formulations, which had TLD ranging from 7 – 

40% of nominal dose.   The effect of flow ramp on TLD was relatively small for all DPIs, 

except the Asmanex
®
 Twisthaler

®
.  This is seen more clear in Figure 4.7, which presents the 

ratio of DD and TLD for slow and fast ramp-up flows, for each drug product.  The DD ratio 

is close to unity for all DPIs (to within  0.06), indicating that the DD is relatively insensitive 

to the flow ramp-up.  In contrast, the TLD data show more variation, with all DPIs (except 

the Asmanex
®
 Twisthaler

®
) having TLD ratios within the interval 1  0.2.  The TLD ratio for 

Asmanex
®
 Twisthaler

®
 is ~0.28, significantly lower than unity and the TLD ratio values for 

all other DPIs.  Note that the TLD ratio 1 for the Tobi
®
 Podhaler

®
, >1 for the Simoon, 

OnBrez
®
 Breezhaler

®
 and Advair

®
 Diskus

®
, and <1 for the remaining DPIs. 
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Figure 4.7 Ratio of slow to fast ramp-up for DD and TLD, where Diskus


 (S) and (F) 

represent Salmeterol and Fluticasone Propionate, respectively.  

 

The TLD ratios reflect the sensitivity of dose delivery performance to variation in flow-rate 

during aerosolization, and can be considered a measure of flow-rate independence.   The 

slow and fast ramp flow profiles subject dry powder inhalers to different flow-rates during 

aerosolization, with a slow ramp resulting in a lower “effective” flow-rate compared to the 

targeted peak inspiratory flow-rate.  DPIs exhibiting a significant flow-rate effect on TLD 

would therefore be expected to have TLD ratio deviating from 1.  If the TLD increases 

relatively steeply with increasing flow-rate, a TLD ratio <1 would be expected, while a flat 

or decreasing TLD trend with flow-rate would result in TLD ratios >1.  Note that longer 

aerosol emission times help to counter the ramp effect by weighting the flow-rate during 

aerosolization towards higher values, closer to the peak value.  This is seen for the case of the 
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OnBrez Breezhaler, which has an aerosol emission time that is relatively long, coupled with a 

decreasing trend in TLD versus flow-rate (Figure 4.8).  This should result in a TLD ratio 

being close to 1 and the observed value of 1.14 is thus consistent with expectation.  The 

Tobi
®
 Podhaler

®
 also has relatively long aerosol event times, and a previous study (Haynes et 

al., 2014) has shown that the in vitro TLD is essentially invariant with flow-rate.  The 

observed TLD ratio ~1 for the Podhaler
®
 is also consistent with expectation. 

 

Figure 4.8 Total lung dose as a function of DPI flow-rate for indacaterol maleate 

(QAB149) lactose blend delivered via Breezhaler


.  These data were all generated 

under fast ramp conditions.  Presented as the mean and standard deviation of five 

replicates. 

 

In contrast, the TLD ratio <<1 for the Asmanex
®
 Twisthaler

®
 indicates a strong flow ramp 

effect.  Since TLD data at different flow-rates are not available for this inhaler, an alternate 
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metric (i.e., fine particle mass, FPM, measured by cascade impaction) could be considered 

when examining the observed TLD ratio.  Next Generation Impactor (NGI) tests reported in 

a previous study (Ung et al., 2014) has shown that the particle size distribution of the aerosol 

emitted by the Asmanex
®
 Twisthaler

®
 is strongly influenced by flow-rate, with the FPM 

increasing sharply by a factor ~2 when the flow-rate was increased from 33 to 47 L/min (i.e., 

pressure drop increasing from 2 kPa to 4 kPa, respectively).  The observed TLD ratio <<1 is 

therefore consistent with this flow-rate behavior.    

The Pulmicort Flexhaler also exhibits a positive FPM trend with flow-rate, with the FPM 

increasing by 40-50% when the flow rate is increased from 30 L/min to 60 L/min (Label for 

Pulmicort Flexhaler TM 180 mcg), and the TLD ratio <1 could again be attributed to this 

behavior.  Published in vitro data for the Advair


 Diskus


 (Demoly et al., 2014) indicate that 

the fine particle mass is relatively flat over a broad range of flow-rates, which could explain 

the TLD ratio >1 observed for this inhaler product.  Results from this study are consistent 

with early published data for Pulmicort Turbuhaler (Chavan et al., 2000; De Boer et al., 

1997; Everard et al., 1997).      

Implications for in vitro testing of DPIs:  Standard in vitro tests of dose delivery 

performance are conducted using test set-ups that control volumetric flow-rate, but not the 

ramp-up time.  In practice, the flow ramp-up times associated with the test equipment vary 

greatly depending on target flow-rate, and the internal “dead volume” of the dose collection 

apparatus used in the tests (Greguletz et al., 2013).  Also actual patient inspiratory flow 

profiles can exhibit a wide range of ramp-up times.  The potential for flow ramp effects 

should be taken into account when interpreting in vitro product performance data, whether 

for quality control purposes, or for assessing performance during actual use by patients. 
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4.5  Conclusion 

The results show that the effect of flow ramp on delivered dose (DD) is relatively small for 

all DPIs tested in the study.  However, greater variation was observed in the TLD, with the 

Asmanex
®
 Twisthaler

®
 showing the greatest variation as a function of flow ramp.  The flow 

ramp effect on TLD essentially reflect an underlying flow-rate dependence effect, since 

different ramp conditions lead to differences in the “effective” flow-rate during the 

aerosolization event.  Historically, attention has been focused on peak inspiratory flow-rate 

as the flow parameter influencing dose delivery performance.  The results from the present 

study indicate that the ramp-up of flow should also be considered as a factor contributing to 

variation in dose delivery, during in vitro testing, as well as during clinical use of DPIs. 
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Chapter 5 

Design of spray dried insulin microparticles to bypass deposition in the 

extrathoracic region and maximize total lung dose 

(Accepted for publication by Int. J. Pharm., 2016) 
 

 

 

5.1  Introduction 

For medications administered via oral inhalation, improved lung targeting may be achieved, 

in part, by minimizing deposition in the extrathoracic region (i.e., mouth and throat). 

Unwanted deposition in the mouth-throat can lead to an increase in systemic exposure for 

drugs that are orally bioavailable, and in some instances increases in local and systemic side 

effects (e.g., for inhaled corticosteroids). In addition, higher nominal doses might be required 

to compensate for the off-target deposition, which could further exacerbate the problem. 

Deposition in the extrathoracic region is primarily governed by inertial impaction, with 

deposition proportional to the inertial parameter ( Qda

2 ), where 
ad is the aerodynamic 

diameter and Q is the volumetric flow-rate (Stahlhofen et al., 1989). The aerodynamic 

diameter depends both on the geometric diameter (
gd ) and density (

p ) of the particles, viz:  





0

p

ga dd   (1) 
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where 
0

 p  represents the specific gravity of the particle, and  is the dynamic shape factor 

(Shekunov et al., 2006). For a single particle, deposition in the extrathoracic region will be 

reduced with decreases in
ad , 

gd  and
p .  For spray-dried powder formulations, the story is 

more complex as in the bulk state they exist as agglomerates of non-spherical particles that 

need to be dispersed to primary particles, or smaller respirable agglomerates to enable 

efficient delivery to the lungs.  It should also be noted that equation 1 represents a 

simplification for spray dried powder composed of non-spherical, low density particles, and a 

volume equivalent diameter may be used in place of geometric diameter. Furthermore, the 

Cunningham slip correction should not be neglected when dealing with engineered particles 

having small size and low density. 

 

Delivery of dry powder aerosols to the lungs depends on interplay between the powder 

formulation and inhaler device. The ability to effectively fluidize and disperse dry powder 

agglomerates is dependent on the ratio of inter-particle cohesive forces present in the powder, 

to the hydrodynamic forces (e.g., drag and lift forces) generated in the dry powder inhaler. At 

a low relative humidity environment, inter-particle cohesive forces are dominated by van der 

Waals interactions. For perfectly smooth spheres, van der Waals forces ( vd wF ) are directly 

proportional to 
gd and the Hamaker constant ( A ), and inversely proportional to the square of 

the separation distance ( r ), viz: 

224r

Ad
F

g

vdw   (Rigid spheres) (2) 
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In contrast, drag and lift forces scale with
2

gd  (Finlay, 2001). As 
gd decreases into sizes 

required for efficient delivery into the lungs (e.g., aerodynamic diameter ranging from 1 – 5 

m), cohesive forces typically are larger than the hydrodynamic forces resulting in powders 

that are poorly dispersed and total lung deposition of 10 – 30% of the nominal dose.  Note 

that in the case of insulin particles comprised of rugose surfaces (e.g., collapsed hollow or 

wrinkled particles) modified cohesion models, such as that by Rumpf (1990) and Rabinovich 

et al (2000) should be considered. 

Particle engineering may be utilized to minimize inter-particle cohesive forces via control of 

the surface composition and morphology of particles. In this regard, spray drying is a bottom-

up manufacturing process that enables production of micron-sized particles, with control of 

the surface composition and micromeritic properties of the particles (e.g., size, density, and 

rugosity). Spray dried proteins, such as insulin, may adopt a corrugated (i.e., raisin-like) 

particle morphology provided they are dried rapidly (Balducci et al., 2015; White et al., 

2005). The protuberances, called asperities, typically have a small radius of curvature (<0.1 

µm) (Dunbar, 2006). The mean van der Waals force depends strongly on the surface 

structure of the particles, i.e., the size distribution of the asperities and their surface density.  

To calculate the van der Waals force for corrugated particles, it has been proposed to not use 

gd in Eq. 2, but instead to use an effective diameter (
effd ), as defined by the effective 

interaction area (Dunbar, 2006; Rietema, 1991). For corrugated particles with high surface 

asperity densities, 
effd approaches the diameter of the asperities. Under these conditions, the 

van der Waal’s forces can be several orders of magnitude lower than is observed for micron-

sized solid spheres (Weiler et al., 2010).  Indeed, Chew and Chan (Chew et al., 2001) have 

demonstrated significant improvements in respirable fraction (
ad < 5µm) for bovine serum 
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albumin particles, as the morphology is altered to increase surface roughness or corrugation. 

The goal in this paper is to design neat insulin particles that bypass deposition in the 

extrathoracic region and increase delivery efficiency to the lungs. This is accomplished by 

adjustment of the feedstock composition and spray drying parameters to achieve particles 

with a low bulk density and small size.  

Respirable particles of biologics like insulin have previously been prepared by spray drying 

using an ethanol-water co-solvent based feedstock (Edwards et al., 1997 & 1998; Vanbever 

et al., 1999).  Ethanol-water co-solvent feedstocks have also been used to tailor particle 

morphology by spray drying for small molecules like budesonide (Boraey et al., 2013).  In 

these previous studies, feedstocks with relatively large volume fractions of ethanol have been 

used (>70%).  In contrast, this paper explores a co-solvent spray drying approach where 

relatively small amounts of organic solvents added to water can be used to modulate particle 

morphology.  This approach has been used to prepare engineered dry powder formulations of 

insulin (as a model compound) for use in dry powder inhalers. 

 

5.2  Materials and Methods 

5.2.1 Feedstock preparation and spray drying 

Recombinant human insulin was obtained from Diabel GmbH & Co KG (Frankfurt, 

Germany). Feedstock solutions for spray drying were prepared by dissolving insulin powder 

in water or water-ethanol mixtures while mixing gently on a magnetic stir plate. The pH was 

lowered with hydrochloric acid (pH 3.0 – 3.25) to facilitate rapid dissolution of the drug 
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substance, and then adjusted with sodium hydroxide to bring the final solution feedstock 

back to pH 7.5 – 7.9.   

This investigation used a Novartis Spray Dryer (NSD, Novartis Pharmaceuticals Corp, San 

Carlos, CA) a custom-built bench-scale spray drier, that is similar in scale to a commercially 

available Büchi 191 mini spray dryer (BṺCHI Labortechnik, AG). The air-assisted atomizer 

nozzle is a modified version of Büchi 191 atomizer, designed to produce sprays with smaller 

and more uniform droplet size. The NSD dryer body and high efficiency cyclone collector 

are made from stainless steel. The dryer body is insulated to improve temperature and 

relative humidity control within the process train.    

In order to produce engineered particles with varying micromeritic properties (e.g., particle 

density and size), two spray-drying campaigns were conducted to cover the particle design 

space. The experimental matrix for campaign-1 is summarized in Table 1, where particle 

properties were modulated by varying feedstock composition (i.e. the total solids, and 

ethanol-to-water ratio of the solution feedstock), while holding the spray drying parameters 

constant.   
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Table 5.1 Test matrix for spray drying campaign-1, where feedstock composition was 

varied.  Spray drying process parameters were kept constant; atomizer gas flow = 26 

L/min, drying gas flow= 560 L/min, liquid feed rate= 2.6 mL/min, inlet temperature = 

103C.  

Lot No. 

Solids Content 

[% w/w] 

Ethanol Fraction 

[% w/w] 

EXP-C1-01 0.75 0 

EXP-C1-02 0.75 5 

EXP-C1-03 1.50 5 

EXP-C1-04 3.00 5 

EXP-C1-05 1.50 10 

EXP-C1-06 3.00 10 

 

Due to the decreased solubility of insulin in the presence of ethanol in aqueous solutions, it 

was expected that particle shell formation and the resulting particle density would be 

modulated by varying the ethanol-to-water ratio in the feedstock. In the experiments listed in 

Table 5.1, the ethanol-to-water ratio in the feedstock was varied over the range (0 – 10% 

w/w) to vary particle density.  

The experiments in Table 5.1 also aimed to vary the primary particle diameter by varying the 

total solids content in the feedstock, with the expectation that higher total solids would lead 

to larger particles. Thus, total solids content was varied from 0.75 – 3.0% w/w. 

Campaign-2 included the study of the effects of droplet size and drying kinetics on particle 

densities and sizes, by varying additional spray-drying parameters. Droplet size was varied 

by changing the air-to-liquid ratio (ALR) from 2.3 x 10
3
 to 13.9 x 10

3
 g/g, and the total solids 
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from 0.75 to 5.0% w/w. Inlet temperatures were varied between 103 – 115 °C, and drying 

gas flow-rates from 500 – 700 L/min (Table 5.2). As a rule of thumb, increases in total 

solids, decreases in ALR, and more rapid drying (increased inlet temperature, greater drying 

gas flow-rates) would result in larger sized particles.  

Samples of the spray dried powders listed in Tables 5.1 and 5.2 were characterized for bulk 

powder properties (primary particle size, bulk density, and morphology). Although, residual 

water content of the spray dried powders was not measured, based on past experience, it is 

not expected to affect the physical properties of the particles. These powders were also filled 

into hypromellose size 2 capsules (Qualicaps, US) and aluminum foil-foil unit-dose blisters 

for in vitro testing with capsule and blister-based inhalers, as described in a later section. The 

nominal fill mass for capsules and blisters are 5 and 2 mg, respectively. The powder and 

aerosol characterization methods are described below.   

Table 5.2 Test matrix for spray drying campaign-2  

Lot No. 

Ethanol     

Fraction  

[% w/w] 

Atomizer    

Gas Flow 

[L/min] 

Liquid 

Feed Rate  

 [mL/min] 

ALR  

[g/g] 

Inlet 

Temp 

[C] 

Drying 

Gas Flow  

[L/min] 

Solids   

Content  

[% w/w] 

EXP-C2-01 5 15 8.0 2.3 x 10
3
 115 700 5.0 

EXP- C2-02 5 15 4.0 4.6 x 10
3
 110 500 5.0 

EXP- C2-03 0 26 2.3 13.9 x 10
3
 103 560 0.75 

EXP- C2-04 5 26 2.3 13.9 x 10
3
 103 560 0.75 

EXP- C2-05 5 15 8.0 2.3 x 10
3
 115 700 0.75 

EXP- C2-06 5 26 2.3 13.9 x 10
3
 103 560 1.5 

EXP- C2-07 10 26 2.3 13.9 x 10
3
 103 560 3.0 
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5.2.2 Determination of primary particle size of bulk powder 

The primary particle size distribution of inhaled insulin powder was measured with a 

Sympatec HELOS Type BF Model Laser Light Diffraction Analyzer (Sympatec GmbH, 

Germany),  the RODOS-M (OASIS) dry powder disperser, and the ASPIROS powder dosing 

unit. The instrument evaluation mode was set to high resolution laser diffraction (HRLD), 

which measured size distributions is based on Fraunhofer diffraction theory. Powder sample 

(5 – 15 mg) was placed into a 1 mL vial and loaded into the ASPIROS dosing unit set at a 

speed of 25 mm/sec. The injector distance and primary pressure settings for the RODOS dry 

disperser were 4 mm and 4 bar, respectively. The RODOS settings were selected to achieve 

complete dispersion of the bulk powder to primary particles formed during the spray-drying 

process.  Measurements were performed using the R1 lens (R1: 0.1/0.18 – 35 m). Three 

replicate measurements were performed for each powder formulation. Results are reported 

here in terms of the volume weighted median diameter, X50 (mean of three replicates). 

5.2.3 Bulk density analysis of spray dried powder 

No direct measurement of particle densities exists. In this study, we chose to measure bulk 

densities at a specified level of compression using a custom-designed powder dosing wand, 

intended for manual filling of powder doses into capsules or blisters. The dosing wand is 

provided with a cylindrical cavity of known volume (0.0136 cm
3
) at its tip.  The bottom end 

of the cavity is lined with a filter, and can be connected to a vacuum or compressed air line 

via pneumatic actuated valves.  During density measurement, the wand was positioned over a 

bulk powder bed, and vacuum applied at a specified pressure of 81 kPa (25” Hg) to aspirate 

and consolidate bulk powder into the cavity.  Excess powder was then doctored off. The 
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resulting powder puck was expelled from the cavity with a burst of compressed air at 35 – 

103 kPa, and the mass of powder was determined on a Mettler Toledo AX206 balance (n = 3 

– 5 replicates). The resulting bulk densities are lower than the corresponding particle 

densities, but the trends are expected to be similar.  This assumes similar cohesive forces of 

the particle agglomerates. The bulk density determined with this method is relevant to 

powder filling on drum fillers used at Novartis, and is sometimes referred to as the “puck 

density”.  

5.2.4 Particle morphology by Scanning Electron Microscopy 

Particle morphology was assessed by scanning electron microscopy. Powder samples from 

campaign-2 were viewed under a Philips XL 30 Environmental Scanning Electron 

Microscope (ESEM; Philips Electron Optics, US). A thin layer of bulk powder was placed on 

a 1 cm x 1 cm silicon wafer disk (Omnisil, VWR IBSN3961559, US), and the sample was 

prepared for electron microscopy by sputter-coating a thin gold and palladium film of 32 – 

37 nm thickness (Denton, 21261 Cold Sputter/Etch and DTM-100, operated at <100 mTorr 

and 30 – 42 mA for 100 – 150 seconds). The coated samples were then loaded into the 

ESEM chamber and the filament current and accelerating voltage set to 1.6 A and 20 kV, 

respectively. 

5.2.5 In vitro characterization of aerosol dose delivery performance 

In vitro dose delivery performance was investigated using two different DPIs that fluidize 

and disperse powder using different principles. The blister-based Simoon inhaler (Novartis 

Pharmaceuticals Corp, USA) is a high resistance device (R  0.19 cm H2O
0.5

/L/min) that 

utilizes airflow to fluidize and de-agglomerate the powder (Maltz et al., 2008; Ung et al., 
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2012; Weers et al., 2013). In contrast, the capsule-based T-326 inhaler (Novartis 

Pharmaceuticals Corp, USA) is a low-medium resistance device (R  0.08 cm H2O
0.5

/L/min), 

which relies on the mechanical motion associated with precession of the capsule to fluidize 

and disperse the bulk powder into a fine, respirable aerosol (Geller, 2011; Maltz et al., 2011).   

In vitro test attributes included the delivered dose (DD), which represents the total aerosol 

dose discharged from the inhaler; and the total lung dose (TLD), which represents the 

respirable dose, and is measured as the aerosol dose fraction that bypass deposition in an 

idealized anatomical throat model, i.e. the Alberta idealized throat (AIT) model, and deposits 

on a filter downstream. The traditional in vitro approach of estimating the aerosol 

performance is based on using a cascade impactor to measure the aerodynamic size 

distribution of the emitted aerosol, and designating a fine particle fraction less than 5 m as a 

marker for the respirable fraction expected to deposit in the lungs. Anatomical throat models 

provides a rapid and simplified in-vitro approach to estimating TLD, which correlates well 

with estimates from cascade impactor measurements (Ung et al., 2014). Moreover, recent 

studies have demonstrated good in vitro-in vivo correlations (IVIVC) in total lung deposition 

for anatomical throats (Zhang et al., 2007; Delvadia et al., 2013; Olsson et al., 2013; Weers et 

al., 2015). 

Aerosol performance was evaluated using a standard square-wave flow profile generated 

with a timer-controlled vacuum source at pressure drops of 2, 4, and 6 kPa. This pressure 

drop range represents the range of inspiratory efforts achievable by most subjects, including 

healthy volunteers and patients with obstructive lung disease (Al-Ahowair et al., 2007). Clark 

et al. (1993) derived an Eq. for determining the inhaler flow resistance, R = √∆𝑃/𝑄 where 
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P is the inhaler pressure drop (centimeter of water) and Q is the corresponding volumetric 

flow-rate (L/min), which is obtained from measurements.   

Test attributes included the delivered dose (DD) measured gravimetrically for the neat insulin 

powders, and an in vitro measure of total lung dose (TLD) determined with an idealized 

anatomical throat model. The traditional in vitro approach of estimating the aerosol 

performance is based on using a cascade impactor to measure the aerodynamic particle size 

distribution of the emitted aerosol, and designating a fine particle fraction as a marker for the 

respirable fraction expected to deposit in the lungs. The anatomical throat models provide a 

rapid and simplified in vitro approach to estimating TLD, which correlates well with 

estimates from cascade impactor measurements (Ung et al., 2014). Moreover, recent studies 

have demonstrated good in vitro in vivo correlations (IVIVC) in total lung deposition for 

anatomical throats (Delvadia et al., 2013; Olsson et al., 2013; Weers et al., 2015; Zhang et 

al., 2007). 

The test fixture used for measurement of DD is shown schematically in Figure 5.1. When 

actuated with flow, the aerosolized dose leaving the inhaler mouthpiece is deposited onto a 

filter (type A/E, Pall Corp, US), having a diameter of 47 mm (Simoon) or 81 mm (T-326). 

Customized filter holders were designed for engineered particles, which allow for 

gravimetric analyses with both inhaler devices. The larger 81 mm diameter filter was used to 

minimize filter pressure drop for the T-326 device, which has a low flow resistance, and 

therefore a higher airflow during testing. A 2 L sampling volume was maintained for each 

dose actuation for DD and TLD analyses. The results for DD and TLD are reported in terms 

of % of the nominal dose.    



 

123 

In vitro estimates of TLD were obtained using an anatomical throat model, i.e., the Alberta 

Idealized Throat (AIT), which represents the mouth/throat airway of an average human adult. 

The AIT was developed and characterized by Finlay and coworkers at the University of 

Alberta, Canada (DeHaan et al., 2001; Stapleton et al., 2000). The Alberta throat test setup 

used for determination of in vitro TLD is shown in Figure. 5.2. The test inhaler was coupled 

to the inlet of the AIT model using a molded mouthpiece adaptor, and the downstream end of 

the throat was mounted upon the filter housing stage of the Fast Screening Impactor (MSP 

Corporation, USA). For determination of in vitro TLD, the test inhaler was coupled to the 

inlet of the AIT model, and the dose penetrating through the model was collected 

downstream on a 76 mm diameter filter (A/E type, Pall Corp., US), as shown in Figure 5.2. 

A polysorbate (EMD Chemicals, Cat. #8170072, US) wetting agent (equal parts of Tween 20 

and methanol, v/v) was used for coating the interior walls of the AIT model to prevent 

particle re-entrainment. The procedure for applying coating solution to the AIT was as 

follows; (i) ~15 mL of the coating solution was dispensed into the AIT, which was then 

capped at both ends (ii) The solution was allowed to wet the internal walls of the AIT using a 

rocking or rotary motion to tilt the AIT from side to side; and (iii) Excess solution was 

allowed to drain for 5 minutes before use. After five dose actuations, the AIT was rinsed with 

lukewarm water, air dried, and a fresh coating applied prior to the next use. 

The powder dose collected on filters for both DD and TLD tests were measured by 

gravimetric analysis and reported in terms of % of the nominal dose. It should be noted that 

the gravimetric analysis of aerosol dose is not commonly used in aerosol performance testing 

of dry powder inhalers. This is because many DPI formulations e.g. lactose carrier-based 

formulations are inhomogeneous mixtures composed of micronized drug particles and carrier 
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particles, for which drug-specific assays are needed. However the gravimetric approach is 

entirely appropriate for engineered powder formulations prepared by spray drying from a 

solution based feedstock, as the resulting powders are homogeneous in composition to the 

individual particle level, and thus where the distribution of drug closely follows the 

distribution of powder mass (Harper et al., 2007; Ung et al., 2014). To minimize 

environmental effects on gravimetric measurement, all performance testing was conducted in 

a laboratory with controlled temperature (T) and relative humidity (RH) (T= 20 – 25°C; RH= 

40 ± 5%).  DD and TLD measurements were performed by weighing of filters before and 

after device actuation, using a Mettler Toledo AX26 balance (or Mettler Toledo AT20), 

which has a readability of 0.01 mg, and repeatability of 0.006 mg at full load (21 g).   When 

the test procedure was simulated with empty capsules (i.e., no powder deposited on filters), 

the gravimetric analysis of filters was experimentally verified to have a repeatability of 0.03 

mg, which is sufficient measurement precision for this study, considering that most of the 

DD and TLD doses were in the range 1.2 mg or greater. 
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Figure 5.1 Delivered dose measurement set-up with customized filter holders designed 

for engineered particles. 

 

 

Figure 5.2 Test set-up for measurement of total lung dose measurement using the AIT, 

with an inhaler mounted at the inlet, and a filter collector mounted at the outlet.   
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5.2.6 Measurement of aerodynamic diameter 

In vitro measurements of the mass median aerodynamic diameter were conducted for Simoon 

device and selected powder formulations with a Next Generation Impactor (NGI; Apparatus 

5 in USP General Chapter <601>). The NGI was assembled with the induction port/pre-

separator stage and operated at a pressure drop of 4 kPa (i.e., 33 L/min) with a sampled 

volume of 4 L. Drug quantitation was performed gravimetrically. To enable gravimetric 

analysis, the gravimetric NGI cups were fitted with 55-mm diameter glass fiber filters (A/E 

type, Pall Corp, USA) and the pre-separator upper and lower compartments were coated with 

1 mL and 2 mL, respectively, with a polysorbate wetting agent (equal parts of Tween 20 and 

methanol, v/v). For the T-326 device, gravimetric determination of the aerodynamic particle 

size distribution was not possible due to significant particle bounce/re-suspension observed 

in the NGI stages at the test condition of 4 kPa (and corresponding flow-rate of 78 L/min). 

 

5.3  Results 

5.3.1 Characterization of bulk powder physical properties  

The two spray drying campaigns produced 13 batches of neat insulin inhalation powders with 

a broad range of bulk densities and primary particle sizes (Table 5.3). Volume weighted 

median diameters (X50) varied from 1.36 to 2.58 µm, while bulk densities varied from 0.15 to 

0.31 g/cm
3
.  
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Table 5.3 Spray dried powder physical properties, (mean, standard deviation shown 

in parenthesis, N = 3 – 5). 

Lot No. 

Volume Weighted 

Median Diameter, X50 

[m] 

GSD*       

[m] 

Bulk Density 

[g/cm
3
] 

EXP-C1-01 1.36 (0.03) 1.69 (0.01) 0.31 (0.02) 

EXP-C1-02 1.52 (0.01) 1.88 (0.02) 0.21 (0.01) 

EXP-C1-03 1.89 (0.02) 2.20 (0.02) 0.19 (0.00) 

EXP-C1-04 1.84 (0.04) 1.96 (0.02) 0.26 (0.01) 

EXP-C1-05 1.77 (0.02) 2.02 (0.02) 0.20 (0.01) 

EXP-C1-06 1.89 (0.04) 2.05 (0.04) 0.25 (0.01) 

EXP-C2-01 2.46 (0.03) 2.24 (0.01) 0.30 (0.00) 

EXP-C2-02 2.58 (0.04) 2.14 (0.04) 0.30 (0.00) 

EXP-C2-03 1.36 (0.01) 1.65 (0.01) 0.26 (0.02) 

EXP-C2-04 1.40 (0.01) 1.71 (0.01) 0.17 (0.01) 

EXP-C2-05 1.76 (0.05) 2.02 (0.02) 0.15 (0.01) 

EXP-C2-06 1.70 (0.01) 1.88 (0.01) 0.21 (0.00) 

EXP-C2-07 1.74 (0.06) 1.85 (0.01) 0.24 (0.01) 

*Geometric Standard Deviation (GSD) = √
𝑋84

𝑋16
 ,  where X84 and X16 represent the diameters corresponding to 84% and 16%, 

of the cumulative volume, respectively, under the distribution. 

 

Representative SEM images for the powders produced in campaign-2 are presented in 

Figures 5.3 to 5.8.  EXP-C2-03 represents a control powder produced by spray drying an 

aqueous feedstock with no added ethanol. The particles show a corrugated raisin-like 

morphology that is consistent with other formulations of spray dried proteins, e.g., Exubera
®
, 

Pfizer (White et al., 2005). The particles exhibit a relatively high bulk density (0.26 g/cm
3
) 

and a small primary particle size (1.36 m). An attempt was made with EXP-C2-01 to create 
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a lower bulk density powder with the same volume-weighted median diameter as EXP-C2-02 

by lowering the ALR and increasing the total dry gas flow (Table 5.2).  However, the 

outcome failed to achieve the target, and the powder had physical properties similar to EXP-

C2-02 (Table 5.3).  As such, SEM analysis was not performed for EXP-C2-01.  Formulation 

EXP-C2-04 was manufactured with the same total solids, ALR, and drying conditions to the 

control powder, differing only in the composition of the liquid phase with 5% w/w ethanol in 

feedstock. The SEM image shows particle morphologies that are similar to those achieved for 

the control powder. Despite the lack of significant morphological changes, the bulk density 

of the EXP-C2-04 powder is significantly lower (bulk density = 0.17 g/cm
3
, X50 = 1.40 m).  

Formulation EXP-C2-02 was manufactured at a low ALR (4.6 x 10
3
) and high total solids 

loading (5.0%). The low ALR produces relatively large droplets, and the high total solids 

content lead to precipitation of the particles earlier in the drying process. This results in 

larger-sized particles with a higher bulk density (bulk density = 0.30 g/cm
3
, X50 = 2.58 m). 

A mix of morphologies is observed with both corrugated particles and smooth oval shaped 

particles. Spray drying with a low ALR, low total solids (0.75%), and fast drying rates 

(Formulation EXP-C2-05) results in a complex mixture of particle morphologies. 

Interestingly, this formulation exhibits the lowest bulk density of the formulations prepared 

(bulk density = 0.15 g/cm
3
, X50 = 1.76 m). Compared to the control, the EXP-C2-05 

formulation has an X50 that is 0.4 m larger.  

Formulations EXP-C2-06 and EXP-C2-07 were prepared at intermediate total solids contents 

and exhibit physical properties intermediate to those discussed previously. For example, 

formulations EXP-C2-04 and EXP-C2-06 differ only in the total solids content, which 
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increase from 0.75% to 1.5%. This leads to an increase in X50 from 1.40 – 1.70 m and an 

increase in bulk density from 0.17 – 0.21 g/cm
3
. 

 

 

Figure 5.3 Scanning electron microscopy image of spray dried insulin particles from 

campaign-2 for powder lot EXP-C2-03; ethanol= 0%, solids= 0.75%, and ALR= 13.9 x 

10
3
. 
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Figure 5.4 Scanning electron microscopy image of spray dried insulin particles from 

campaign-2 for powder lot EXP-C2-02; ethanol= 5%, solids= 5%, and ALR= 4.6 x 10
3
. 
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Figure 5.5 Scanning electron microscopy image of spray dried insulin particles from 

campaign-2 for powder lot EXP-C2-04; ethanol= 5%, solids= 0.75%, and ALR= 13.9 x 

10
3
. 
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Figure 5.6 Scanning electron microscopy image of spray dried insulin particles from 

campaign-2 for powder lot EXP-C2-05; ethanol= 5%, solids= 0.75%, and ALR= 2.3 x 

10
3
. 
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Figure 5.7 Scanning electron microscopy image of spray dried insulin particles from 

campaign-2 for powder lot EXP-C2-06; ethanol= 5%, solids= 1.5%, and ALR= 13.9 x 

10
3
. 



 

134 

 

 Figure 5.8 Scanning electron microscopy image of spray dried insulin particles from 

campaign-2 for powder lot EXP-C2-07; ethanol= 10%, solids= 3%, and ALR= 13.9 x 

10
3
. 
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5.3.2 In vitro aerosol performance analysis 

Having demonstrated a control of powder properties such as particle size and density, it is of 

interest to determine if these properties can be modulated and optimized for aerosol 

performance in terms of dose delivery via dry powder inhalers. To answer this question, six 

spray dried insulin powders covering a wide range of bulk densities (0.15 – 0.30 g/cm
3
) and 

X50 (1.36 – 2.58 µm) from campaign-2 were selected for in vitro aerosol performance 

analysis. Aerosol performance testing was conducted for these powders across a range of 

pressure drops; 2, 4, and, 6 kPa. All of the six selected powders were tested with the Simoon 

inhaler, and a subset of four was further tested with the T-326 inhaler. 

Figures 5.9 to 5.11 summarize results from aerosol performance testing at 4 kPa pressure 

drop. Figure 5.9 plots the delivered dose (DD) as a function of bulk density for the six 

selected powder batches. Figure 5.9 shows that the DD trends lower with increasing powder 

bulk density, with the Simoon inhaler showing markedly greater sensitivity to powder bulk 

density than the T-326 inhaler.  The observed decreasing trend in DD with density is 

accompanied by a corresponding increase in the amount retained in the blister or capsule. 

The lower variability in fluidization observed for the T-326 inhaler in comparison to the 

Simoon is attributed to the different mechanisms of powder emptying. The T-326 relies on 

capsule spinning and agitation, whereas in the Simoon inhaler, powder fluidization is 

accomplished by a relatively minor airflow passing through the stationary blister, the major 

fraction of the airflow bypasses the blister (Maltz et al., 2008; Ung et al., 2012). A lower 

density powder is expected to fill the blister volume more completely, and thus enables the 

small airflow to be more effective in clearing the powder out of the blister. 
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Figure 5.9 Relationship between aerosol performance and bulk density at a 4 kPa 

pressure drop for delivered dose.  Presented as the mean and standard deviation of five 

replicates.   
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Figure 5.10 Relationship between aerosol performance and bulk density at a 4 kPa 

pressure drop for in vitro total lung dose.  Presented as the mean and standard 

deviation of five replicates. 
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Figure 5.11 Relationship between aerosol performance and bulk density at a 4 kPa 

pressure drop for in vitro total lung dose normalized to delivered dose.  Presented as the 

mean and standard deviation of five replicates. 

 

Figure 5.10 plots the corresponding in vitro TLD as measured by the AIT model for the two 

inhalers. A steep drop in in vitro TLD is observed as powder bulk density increases for both 

inhalers. The drop in the in vitro TLD appears to largely reflect the drop in DD. This is 

further reflected in Figure 5.11, which plots the in vitro TLD as a percentage of the DD. The 

low density powders, exhibit an in vitro TLD for the Simoon and T-326 inhalers that are 

comparable to the DD, i.e., there was negligible deposition in the AIT, for bulk density 0.26 

g/cm
3
. That is, the insulin particles are effectively targeted to the lungs.  
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The effect of flow-rate on dose delivery of insulin inhalation powders was assessed over a 

range of pressure drops from 2 – 6 kPa. The results of flow-rate testing are presented in 

Tables 5.4 and 5.5 and the sequence of bulk density (from low to high) is EXP-C2-05< EXP-

C2-04< EXP-C2-06< EXP-C2-07< EXP-C2-03< EXP-C2-02. The results show that the T-

326 performance is relatively independent of flow-rate over the full range of pressure drops. 

The dose delivery performance of the Simoon inhaler is reasonably independent of flow-rate 

from 2 – 6 kPa, however higher variability was observed for the 2 kPa pressure drop for 

higher bulk density powders. These differences are once again reflective of the different 

mechanisms of powder fluidization and dispersion in the two inhalers. Despite these 

differences, it is clear that for the spray dried insulin inhalation powders studied here, the 

powder bulk density provides a powerful lever to affect the dose delivery performance with 

both inhalers, and that the best dose delivery performance for both inhalers is achieved for 

the insulin powders with the lowest bulk density.   
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Table 5.4 Effect of inhaler pressure drop (P) and corresponding flow-rate (Q) on DD for six insulin inhalation powders, 

when tested with the Simoon and T-326 inhalers.  Presented as the mean and standard deviation shown in parenthesis of five 

replicates.  

Inhaler 

P 

[kPa] 

Q 

[L/min] 

 delivered dose (% nominal) 

EXP-C2-02 EXP-C2-03 EXP-C2-04  EXP-C2-05 EXP-C2-06  EXP-C2-07 

Simoon 

(Blister-

based) 

2 23 65 (6) 61 (13) 80 (35) 96 (3) 88 (6) 80 (7) 

4 33 75 (4) 67 (17) 96 (4) 98 (6) 85 (10) 78 (7) 

6 41 72 (4) 81 (11) 99 (2) 98 (1) 93 (1) 83 (2) 

T-326 

(Capsule

-based) 

2 55 84 (2) 75 (5) 88 (4) Not Tested 85 (5) Not Tested 

4 78 82 (2) 80 (4) 90 (3) Not Tested 85 (1) Not Tested 

6 96 81 (1) 86 (4) 95 (4) Not Tested 86 (3) Not Tested 
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Table 5.5 Effect of inhaler pressure drop (P) and corresponding flow-rate (Q) on in vitro TLD for six insulin inhalation 

powders, when tested with the Simoon and T-326 inhalers.  Presented as the mean and standard deviation shown in parenthesis 

of five replicates.  

Inhaler 

P 

 [kPa] 

Q  

[L/min] 

in vitro TLD (% nominal) 

EXP-C2-02 EXP-C2-03 EXP-C2-04  EXP-C2-05 EXP-C2-06  EXP-C2-07 

Simoon 

(Blister-

based) 

2 23 63 (11) 64 (18) 82 (22) 97 (5) 91 (3) 79 (12) 

4 33 63 (7) 70 (5) 91 (4) 96 (4) 83 (20) 80 (7) 

6 41 69 (3) 76 (4) 94 (4) 94 (9) 87 (4) 82 (5) 

T-326 

(Capsule

-based) 

2 55 74 (3) 74 (5) 90 (1) Not Tested 80 (4) Not Tested 

4 78 65 (3) 78 (2) 92 (4) Not Tested 83 (2) Not Tested 

6 96 65 (3) 79 (3) 91 (3) Not Tested 84 (3) Not Tested 
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The aerodynamic particle size distributions for campaign-2 powders as determined with the 

Simoon inhaler at a pressure drop of 4 kPa are presented in Table 5.6. With the exception of 

the larger sized particles obtained in the EXP-C2-02 batch, the remaining powders have an 

MMAD of about 2 m.  It is worth noting that for batches EXP-C2-04 and EXP-C2-05, 

virtually the entire nominal dose is sampled on the impactor. That is, the DD is high and 

deposition in the induction port is low. While comparable MMAD values are sometimes 

reported for many other pharmaceutical aerosols (Berger and Berger, 2013), the analysis does 

not account for the size of particles that are lost by impaction in the inhaler and induction 

port or pre-separator, which often constitutes the major fraction of the delivered dose.  

 

Table 5.6 NGI data obtained for selected powders in the Simoon inhaler at a pressure 

drop of 4 kPa (33 L/min).  Presented as the mean and standard deviation shown in 

parenthesis of three replicates. 

 

EXP-

C2-02 

EXP-

C2-03  

EXP-

C2-04  

EXP-

C2-05 

EXP-

C2-06 

EXP-

C2-07 

MMAD (µm) 
3.14 

(0.09) 

1.90 

(0.06) 

1.78 

(0.03) 

2.02 

(0.04) 

2.00 

(0.07) 

2.26 

(0.01) 

Fine Particle Fraction <5 m  

(% of nominal) 
49 (2) 69 (1) 82 (3) 85 (1) 79 (4) 68 (3) 

CI Recovery (% of nominal) 
a
 60 (1) 74 (2) 87 (4) 93 (2) 84 (4) 74 (4) 

a
 Cascade impactor (CI) recovery, which defines as sum of total mass from NGI stage 1 to MOC normalized to 

nominal dose. 

 

5.4  Discussion 

As pointed out by Snyder and Lechuga-Ballesteros (2008), “The detailed physics of the 

entire droplet to particle formation process is highly complex and dependent on the coupled 

interplay between the process variables such as initial droplet size, feedstock concentration 
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and evaporation rate, along with the formulation physicochemical properties such as 

solubility, surface tension, viscosity, and the solid mechanical properties of the forming 

particle shell”. This study explored how variations in feedstock composition and spray 

drying parameters impact aerosol performance in neat insulin powders for inhalation.  

Optimal aerosol performance, as assessed by effectively bypassing particle deposition in an 

anatomical throat model, was achieved for neat insulin powders with a bulk density of 0.15 

to 0.17 gcm
-3

 and X50 less than 2 µm.  

The addition of an ethanol co-solvent to an aqueous solution has a significant impact on the 

physicochemical properties of the solvent system. Solubility of insulin in the feedstock is 

expected to decrease in the presence of ethanol, resulting in precipitation of insulin earlier in 

the drying process.  Even at mass fractions as low as 5% w/w the addition of ethanol results 

in significant increases in viscosity and decreases in surface tension, factors that will impact 

atomization, droplet evaporation, and particle buckling (Khattab et al., 2012). Marty and 

Tsapis (2008) studied the buckling threshold for drying colloidal droplets in ethanol/water 

mixtures. The co-solvent mass fraction enabled tuning of the buckling radius and the 

buckling shell thickness. These factors are expected to impact particle morphology and 

interparticle interactions.   

Attempts were made to qualitatively correlate the observed powder properties to spray drying 

process and feedstock parameters. The results presented in Figure 5.12 suggest that bulk 

density can be modulated by varying ethanol to total solids ratio in the solution feedstock. 

Low bulk densities were particularly favored when the ethanol to total solids concentration is 

high.   
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Figure 5.12 Mean powder bulk density scales with ethanol fraction to total solids ratio 

(error bar represents standard deviation, N = 3 – 5).     

 

The diameter of the spray dried particle is expected to scale with solids content and initial 

droplet diameter according to Eq. 3:   

d

p

ss
g d

C
d 3




                                                                 (3) 

where 
dd is the initial diameter of the atomized droplet, 

sC  is total solids in the feedstock, 

s  is the density of the feedstock solution, and 
p is the particle density (Snyder et al., 

2008; Vehring 2007). Besides solid concentration, it is well known that the particle size, X50, 

corresponds to the total gas flow based on the theory of cyclone collection efficiency (Barth, 

1956). Combining formulation and spray drying variables, a dimensionless number termed 
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the Particle Population Density, PPD Eq. (4) was found to correlate with particle diameter of 

spray dried powders. 

T
Q

L
Q

s
C

PPD      (4) 

where LQ is the atomizer liquid flow-rate, and TQ is the total dryer gas flow-rate.  Figure 

5.13 is a plot showing the correlation between X50 and PPD. The correlations based on the 

results from this co-solvent spray drying study with insulin suggest that feedstock and 

process parameters can be modulated to achieve a desired particle density and size to enable 

maximum targeting of aerosol to the lungs.   

 

Figure 5.13 Mean X50 scales with particle population density parameter (error bar 

represents standard deviation, N = 3).     

 



 

146 

As discussed in the introduction, deposition in the mouth-throat is governed by inertial 

impaction and as such depends critically on the inertial impaction parameter, Qd a

2 . 

Stahlhofen et al. (1989) studied the impact of variations in Qd a

2 on regional deposition in the 

respiratory tract for monodisperse liquid aerosols. No deposition in the mouth-throat was 

observed for aerosols with Qd a

2 < 120 µm
2
L/min.  In the present study, nearly 100% of the 

DD bypasses deposition in the AIT for lots EXP-C2-04 and EXP-C2-05. Based on the 

measured MMAD values in TABLE 6 and the test flow-rate (33 L/min), the Qd a

2 values 

were 105 and 135 µm
2
L/min, respectively. A significant reduction of deposition in the AIT 

observed is, therefore, consistent with the results of Stahlhofen et al.  

Borgström et al. (2006) demonstrated that a significant component of the variability in drug 

delivery to the lungs results from anatomical differences in a subject’s mouth-throat. For 

current marketed portable inhalers where mean total lung deposition is on the order of 10 – 

30%, the mean variability in TLD is approximately 30 – 50%. In the limit where particles are 

able to entirely bypass deposition in the extrathoracic region, the variability in TLD would by 

definition, be zero. Hence, significant improvements in dose consistency are anticipated as 

the drug/device combinations are designed to minimize extrathoracic region deposition. This 

may be especially important for drugs with a narrow therapeutic index like insulin, or drugs 

that elicit significant side-effects in the mouth-throat, such as inhaled corticosteroids.  

Finally, the small MMAD noted for these aerosols suggests that a significant fraction of the 

DD will be deposited in the peripheral airways. For proteins like insulin, it has been 

hypothesized that deposition in the lung parenchyma is critical for achieving effective 

absorption into the systemic circulation (Patton and Byron, 2007). 
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5.5  Conclusion 

This study explored a particle design space, covering particle size and density, for spray dried 

insulin microparticles with the aim of enhancing inhalation drug delivery. A co-solvent 

system comprising small amounts of ethanol added to water in the spray drying feedstock 

enabled a broad range of powder properties to be achieved. The results demonstrate that by 

varying the formulation and spray drying parameters it is possible to modulate powder 

properties and thereby the performance of inhalation powders in dry powder inhalers. Bulk 

powder data from 13 spray dried insulin powder lots were used to propose predictive 

correlations relating particle size and density to groupings of feedstock and process variables. 

In vitro dose delivery testing of selected powders with two dry powder inhalers showed that 

the dose delivery performance was strongly influenced by powder bulk density, with delivery 

performance improving with decreasing powder density. The in vitro performance testing 

also identified an insulin particle design space where the emitted aerosol is characterized by 

inertial parameter Qd a

2 < 120 µm
2
L/min, suggesting that spray dried powders provide a 

practical means to achieve efficient targeting of the lung with negligible extrathoracic 

deposition. 
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Chapter 6 

Conclusion 

 

6.1  Summary 

A simple adjustment to the insulin feedstock solution (i.e., total solids and ethanol-to-water 

ratio) is effective at changing the bulk density and size of spray dried insulin particles, which 

in turn improves their aerosol delivery performance when dispersed by passive dry powder 

inhalers.  The in vitro aerosol performance was favored by lower bulk density and smaller 

equivalent optical diameter of the particles, with deposition in the extrathoracic region 

anticipated to be significantly reduced.  Results suggest that total lung dose of up to 95% of 

the delivered dose could be achieved with the engineered particle formulations, significantly 

higher than those for drug products with lactose-based carrier, for which TLD was typically 

<40% of the DD.  The high TLD of the protein microparticles achieved in in vitro tests 

suggest that a remarkably high degree of lung targeting could be achieved with engineered 

powders, almost completely bypassing deposition in the extrathoracic region.   

The selection of ethanol as a co-solvent for spray drying was guided by a screening study 

presented in Chapter 2.  Here 5 different co-solvents were initially studied using spray dried 

insulin particles as a model system.  Small amounts of co-solvent added to the insulin 

aqueous solution feedstock significantly lowered the bulk density of spray dried particles, in 

comparison to those obtained by spray drying without solvent addition.  SEM examination of 

powder samples showed a mixture of oval and corrugated “wrinkled” particles with solvent 

addition, versus only wrinkled particles for the case where no solvent was added.  While the 
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addition of co-solvent and lowering of powder density appeared to be related to the 

appearance of the oval particle morphology, an effort to develop a mechanistic explanation 

for this phenomenon is beyond the scope of this work.  The study focused on correlating 

powder properties with in vitro aerosol performance, and therefore the improved 

performance was favored for low bulk density insulin powders when delivered with a 

capsule-based T-326 dry powder inhaler.  

Chapter 3 discusses why it was necessary to develop an alternative tool (i.e., Alberta 

Idealized Throat model) for assessing inhaled drug performance, rather than relying on 

conventional methods, such as those based on cascade impactors, e.g., Next Generation 

Impactor.  The advantages of the Alberta Idealized Throat (AIT) over standard cascade 

impactors (i.e., NGI, ACI, and MSLI) are (a) direct measurement of in vitro TLD, (b) better 

at capturing the physics of particle transport and deposition in patient airways, (c) allowing 

the use of realistic breath profiles when simulating patient use scenarios, and (d) no airflow 

and volume limitations during testing.  Although the AIT has not been adopted as an industry 

standard, results from in vitro testing comparing the AIT and NGI with a panel of engineered 

powders and 2 marketed products give similar rank order when using the TLD as a metric of 

product performance.     

Several marketed inhalation drug products along with a Novartis prototype inhaler with 

engineered powder formulation were tested in Chapter 4 to investigate the effect of ramp-up 

flow-rate on in vitro aerosol performance.  The AIT was used in the study as it provides the 

most practical means to measure the in vitro aerosol delivery performance for inhalers with 

different flow resistances, and for more complex airflow profiles.  The results show the effect 

of flow ramp on DD is relatively small for all DPIs tested in the study.  However, greater 
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variation was observed in the TLD, with the Asmanex
®
 Twisthaler

®
 showing the greatest 

variation as a function of flow ramp.  The flow ramp effect on TLD essentially reflect an 

underlying flow-rate dependence effect, since different ramp conditions lead to differences in 

the “effective” flow-rate during the aerosolization event.   

Chapter 5 presented a deeper exploration of co-solvent spray drying of inhalable drugs, 

focused on ethanol as the co-solvent, and insulin as the model inhaled drug.  The study 

explored a particle design space covering density and size, by varying parameters such as 

ethanol fraction in the aqueous solution feedstock, solids content, and air-to-liquid ratio, the 

final spray drying campaign with neat insulin was successful in producing powders with bulk 

density ranging from 0.15 – 0.30 g/cm
3
 and particle size ranging from1.36 – 2.58 m, 

respectively.  An Alberta idealized throat model was used to assess total lung dose for each 

powder formulation, when delivered from two different dry powder inhalers.  In vitro test 

results showed that a high TLD >95% of the delivered dose could be achieved, which 

suggested that deposition in the extrathoracic region could be reduced to negligible levels.  In 

summary, the study identified a favorable design space for engineered particles, targeting a 

certain range of micromeritic properties in order to essentially maximize total lung delivery. 

 

6.2  Future work 

This thesis demonstrated co-solvent spray drying with small amount of ethanol addition 

added to the aqueous solution can be used to modulate the bulk density and size of the 

particles.  Results show good correlation between powder properties and in vitro aerosol 

performance of spray dried pure insulin microparticles.  A significant finding in this thesis 
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shows engineered particles could be used to target certain range of micromeritic properties in 

order to achieve maximum total lung delivery, where in vitro TLD was improved and 

favored for powders with low bulk density and small particle size.  Most of the findings here 

were based on in vitro testing using the model throats.  In vivo proof-of-concept studies to 

confirm these findings are beyond the scope of the present work, but are acknowledged as a 

necessary step towards demonstrating the viability of the co-solvent spray drying approach 

for inhaled drugs. 

While this thesis focuses on using ethanol as process aid to control the micromeritic 

properties of the spray dried particles, other factors to engineer the particles (i.e., use of shell-

former excipient or other solvents) should be further explored, as well as application to other 

biological or small molecule compounds.   

Although insulin was a candidate compound used in this research study, the chemical 

stability and biological activity of the drug product post spray drying was not assessed, as the 

research is primarily focusing on physical properties (i.e., particle size and density and in 

vitro aerosol performance) of spray dried formulations.  The focus of this thesis is not to 

develop an inhaled insulin product, but to use insulin as a model compound to study the 

effect of ethanol addition during spray drying of engineered particles, with a view to 

minimize deposition in the extrathoracic region and maximize total lung delivery. 

Other suggestions for future work:  This thesis has shown that small amounts of co-solvent 

addition to aqueous solution feedstock can be used to modulate insulin particle morphology 

in a direction more favorable for aerosol delivery performance.  No attempt has been made to 

develop a theoretical framework to explain these findings, particularly the mixed morphology 
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of wrinkled and oval particles associated with the powder samples from co-solvent spray 

drying.  This is partly due to lack of solubility data for insulin in various co-solvent mixtures, 

which is essential to modeling of particle formation.   


