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Changes in the distribution of response rates across the CS-US interval:
Evidence that responding switches between two distinct states

Justin A. Harris

University of Sydney, Australia

Two experiments used the peak procedure to examine timing of conditioned responses in a
magazine approach paradigm with rats. A conditioned stimulus (CS) was reinforced with food
on 50% of trials. Food was delivered at a fixed time, either 20 s, 30 s or 40 s into the CS
presentation. Response rates were recorded during non-reinforced CS presentations that
extended well beyond the scheduled time of food delivery. The mean response rate
(averaged over many trials) increased during the CS, peaking at the expected time of
reinforcement, and decreased again. Detailed analyses of the frequency distribution of
response rates showed that responding was described by two distinct distributions,
consistent with the rat being in a low response state on some trials and in a high response
state on other trials. Modeling of these frequency distributions showed that the systematic
rise and fall in response rate across a trial was primarily explained by a change in the
proportion of time that the rat spent in the low versus high response state. However, the
change in responding was also explained in part by a continuous shift in the high response
state, such that responding in that state increased and then decreased gradually across the
trial. These results support accounts that describe response timing as an abrupt change from
low to high responding during the CS, but also provide evidence for a continuous change in
conditioning strength across the duration of the CS. The implications of these findings for
timing and associative theories of conditioning are discussed.
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Introduction

In conditioning preparations, when the
interval between a conditioned stimulus (CS) and
unconditioned stimulus (US) is fixed, the
conditioned response (CR) shows evidence of
timing, with the peak of responding coinciding
with the time of arrival of the US. This timing of
CRs was described by Pavlov (1927) and has been
reported in many conditioning paradigms across
many different species including rats, rabbits,
pigeons and fish (e.g., Davis, Schlesinger, &
Sorenson, 1989; Drew, Zupan, Cooke, Couvillon,
& Balsam, 2005; Kehoe & Joscelyne, 2005; W. A.
Roberts, Cheng, & Cohen, 1989; Smith, 1968;
Williams, Lawson, Cook, Mather, & Johns, 2008).
Timing of CRs is most clearly revealed using the
peak procedure. This procedure intermixes
reinforced trials, in which the CS is followed by
the US after a fixed interval, with non-reinforced
trials in which the CS is presented for an
extended period, longer than the CS-US interval
on reinforced trials. When response rates are
tracked during the long non-reinforced trials,
CRs initially increase in strength or frequency as
elapsed time approaches the expected time of
the US, and then decrease again as time extends
beyond that point (e.g., Church, Meck, & Gibbon,
1994; S. Roberts, 1981; W. A. Roberts et al,,
1989).

Pavlov (1927) proposed that CR timing
involves the acquisition of inhibition to the onset
of the CS which prevents the animal from
responding early in the CS-US interval, but the CR
gradually emerges as the inhibition diminishes
during the trial. While this account does provide
an explanation for the delay in responding prior
to the usual time of US delivery, it does not
explain  why responding characteristically
declines again as the CS extends beyond that
time. More recent accounts have proposed that
information about the CS-US interval itself is
represented within the conditioning process.
One class of theories treats the CS as a sequence
of units or states that are distributed
sequentially in time; the relationship between
each unit and the US (or CR) is represented by a
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continuous one-dimensional variable (e.g.,
Desmond & Moore, 1988; Machado, 1997;
Sutton & Barto, 1981, 1990). In effect, the CS-US
association is a vector of values describing the
strength of an association at each moment in
time. The CS units that coincide closely with the
time of the US acquire the greatest strength, and
other units acquire strength inversely
proportional to their distance from the US.
These more remote units acquire strength either
because the temporal distribution of their
activity overlaps with the time of the US or CR
(Desmond & Moore, 1988; Machado, 1997), or
by a propagation process that spreads
associative strength between neighboring CS
units (Sutton & Barto, 1981, 1990). In short, the
changing pattern of responding within a trial is
taken to reflect a continuous change in the
recruitment of associative strength, which
initially grows across time units during the CS,
peaks at the expected time of the US, and then
falls again.

Another, very different, theoretical approach
has been developed specifically around the
timing of CRs. According to these theories,
conditioning does not rely on graded changes in
a continuous variable such as associative
strength. Rather, when an animal learns about
the relationship between CS and US, it is
encoding the temporal interval between the CS
and US (e.g., Gallistel & Gibbon, 2000; Gibbon,
1977; Guilhardi, Yi, & Church, 2007). On
subsequent trials, the remembered CS-US
interval is compared against the estimate of
currently elapsed time, and the animal begins to
respond when the ratio of these values reaches
a threshold. According to this account,
responding emerges abruptly at a decision point
during the trial. The gradual rise in the mean
response rate, reported in conditioning
experiments that use a fixed CS-US interval, is
argued to be an artifact of averaging over many
trials (Schneider, 1969). It is assumed that the
decision to respond does not occur at exactly the
same time on each trial due to noise in any of the
various components that go into the decision
(e.g., variability in the memory of the CS-US
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interval, variability in measurement of currently
elapsed time, variability in the decision threshold
itself). Therefore, response rates on individual
trials take the form of a step function,
transitioning abruptly from low to high when the
decision threshold is reached, but averaging over
many such step functions produces a
continuously graded function that rises smoothly
over the range of decision times (Gibbon &
Church, 1990).

Evidence supporting an abrupt transition
between two response states has come from
break-run-break analyses that search for
transition points in the response record of
individual trials. For example, in a peak
procedure, each non-reinforced trial is analysed
to identify two time points, such that between
those times the response rate (during the run) is
maximally different from the response rate
during the periods before and after those two
time points (during the breaks, Cheng &
Westwood, 1993; Church et al., 1994). When all
trials are aligned by either of these time points,
the mean response rates show a sharp
discontinuity either side of that point,
transitioning abruptly between a low but
relatively steady rate and a high steady rate. This
pattern of response change is clearly consistent
with the argument that response rates within a
trial change abruptly at a decision point as the
expected time of reinforcement approaches.
However, algorithms that search for break points
in response records can be sensitive to random
fluctuations in response rates within a trial, with
the consequence that they produce artifactual
evidence for discontinuity even when the
underlying process generating the response data
is continuous (Harris, 2011). Indeed, as
described below, this problem exists for
algorithms used to reveal break-run-break
patterns in response records from individual
trials.
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To test the specificity of the algorithm used to
reveal a break-run-break pattern, two different
sets of simulated data were generated (see
Appendix for details). One set was created to
mimic a true low-high-low discontinuous
response pattern, with the probability of
responses transitioning abruptly from low to
high and back to low at variable time points
within each trial. The other set was created with
a continuous change in the probability of
responding across each trial. Figure 1A shows
response rates at consecutive time points within
the trial, average over 1000 simulated trials, for
both the continuous data set and the
discontinuous (2-state) data set. It is clear that,
for both data sets, the averaged response rates
rise and fall smoothly, with a peak at the middle
of the trial. This demonstrates how averaging
across trials will make a discontinuous response
record appear smooth.

Both simulated data sets were then analyzed
using an algorithm designed to find two
transition points, t1 and t2, in each trial (Cheng
& Westwood, 1993; Church et al., 1994, see
Appendix for details). Figure 1 shows the mean
response rates, averaged across all trials, after
trials were aligned by t1 (Figure 1B) or by t2
(Figure 1C). For the 2-state data, there is a very
abrupt transition from a low rate to a high rate
at t1, and an equally abrupt transition from high
to low at t2, with response rates being steady
either side of the transition points. This confirms
that the method is sensitive in identifying change
points in data that contain abrupt transitions in
response probability. However, a very similar
pattern, albeit with a more modest transition, is
also extracted from the continuous data set (see
Figure 1). This shows that the algorithm used to
find transitions between low and high response
states is not necessarily specific, and can
produce false positive evidence for discontinuity
in data where the change in probability of
responding is smooth and continuous.
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Figure 1. Response rates as a function of time in the trial for two simulated sets of data. In the Continuous data set,
the probability of responding increased smoothly across each of the first 25 time bins, and decreased smoothly
across the remaining 25 bins. In the 2-state data set, the response probability on each trial changed abruptly from
zero to high at one randomly selected time during the first 25 time bins, and then decrease abruptly back to zero at
a second randomly selected time in the last 25 bins. The plot in A shows that, despite the differences in the way the
data were generated, there was a smooth increase and decrease in response rates for both data sets when responses
were averaged over 1000 simulated trials. The same averaged data are plotted in B and C after all trials had been
aligned to either the first (t1) or second (t2) break points in each trial. The break points were identified using a
search algorithm that fits three horizontal line segments to response rates in three separate intervals, separated at

t1 and t2, within each trial.

As shown above, averaging response rates
across many trials can produce artifactual
evidence for both smooth and abrupt changes in
response rates during the trial. Therefore, the
mean response rate over trials cannot be used to
distinguish between accounts that describe CRs
as emerging in a graded or abrupt fashion.
However, these descriptions of timed CRs do
differ in what they predict about the distribution
of response rates. If responding emerges in a
graded fashion during each trial, as might be
predicted by theories that identify conditioning
with a continuously graded variable such as
associative strength, then we should expect to
see a single unimodal distribution of response
rates that shifts as time elapses during the trial.
By contrast, if responding steps abruptly
between a low and high state during each trial,
as suggested by timing theories, then the
distribution of response rates should be a

mixture of two distinct  distributions
corresponding to the two underlying response
states. In this case, the continuous change in
response rate (averaged over trials) should be
accompanied by a continuous change in the
relative proportions of the two distributions, but
the means of those distributions themselves
should not change. That is, if one samples
response rates from a time window near the
beginning of a trial, responses on the majority of
trials should fall within the lower distribution of
response rates. If one samples responses from a
later time window, when the likelihood is high
that the subject has already commenced
responding, the majority of trials should fall
within the higher distribution of response rates.

The aim of the present experiments was to
describe the distribution of response rates
during conditioning with a fixed CS-US interval,
and to analyze how this distribution changes as
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time elapses within a trial. Both experiments
trained rats in a magazine approach paradigm
using the peak procedure. Experiment 1 trained
two groups of rats, one with a fixed CS-US
interval of 30 s, the other with a variable CS-US
interval that had a mean of 30 s. For both
groups, responding was measured continuously
across non-reinforced presentations of the CS
that lasted for 60 s. Experiment 2 also compared
two groups, both with fixed CS-US intervals that
were either 20 s or 40 s, and responding was
measured  across  120-s  non-reinforced
presentations of the CS. The goal of both
experiments was to see whether the change in
mean response rate during the CS in the groups
with fixed CS-US intervals reflected the gradual
shift in location of a single response distribution
or a gradual shift in weight between two static
response distributions.

Experiment 1

In Experiment 1, two groups of rats were
trained with a fixed duration (60-s) CS that was
reinforced on 50% of trials with a single food
pellet (the US). The pellet was delivered either
30-s into the CS (Group FT30) or at a variable
time between 1 and 59 s (Group VT30). On the
remaining 50% of trials, the CS was presented for
60 s but no food pellet was delivered. Response
rates were measured during the non-reinforced
trials. (The relatively high proportion of non-
reinforced trials served to increase the data
yield, which was important when attempting to
estimate the full distribution of response counts,
rather than just a single measure of central
tendency.) Rats in Group FT30 should show a
systematic change in their response rate, rising
across the first 30-s of the CS and then declining
again beyond that time (Church et al., 1994). An
interpretation of this pattern in terms of timing
of the CR to the US would be confirmed by
comparing Group FT30 to Group VT30, because
rats in the latter group should maintain a
relatively steady level of responding across the
60-s CS presentation (Harris & Carpenter, 2011;
Harris, Gharaei, & Pincham, 2011). The rats in
both groups were trained for 40 days, and their
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response rates were analyzed from the last 20
days. There were 30 non-reinforced trials per
day, giving a total of 600 trials for the data
analysis. Before describing that experiment in
more detail, | will first describe the analysis
developed here. | will then use the simulated
data described earlier to demonstrate how the
analysis distinguishes between the contrasting
descriptions of timed CRs as emerging in either a
graded or an abrupt fashion.

Data Analysis

All analyses were performed on data from
individual rats. Each non-reinforced trial was
divided into 5-s time bins: a pre-CS bin covering
the final 5-s of the inter-trial interval (of which
the mean length was 90 s), and 12 bins covering
the 60-s CS presentation. Response rates were
calculated for each bin of each trial, and these
were used to generate 13 frequency
distributions of response rates.

In order to compare the two theoretical
positions being investigated, the analysis
combined elements of both positions. It
modeled the frequency distribution of each rat’s
response rate using a Poisson probability density
function (pdf) that shifted as time elapsed during
the CS, reflecting a continuous change in the
underlying conditioning strength. It then
computed a weighted average of this positive
response distribution and a no-response
distribution with a mean and variance equal to
zero. Thus, the analysis assumed that the full
distribution was the composite of occasions
when the rat was in a response state, the
strength of which could change at different time
points in the CS, and occasions when the rat was
in a no-response state. The analysis also
assumed that the two response states were
exhaustive, such that the weights of the
response  distribution and  no-response
distribution summed to one. Accordingly,
frequency distributions of response rates were
analyzed by fitting the function, F(x), shown in
Equation 1.
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F(x)=w-P(lx,u) + (1 —w)-Z(x)
Equation 1

The equation describes the function for values
of x (response counts, 20) as the weighted sum
of a positive response distribution, modeled
using the Poisson pdf, P, with mean , and a zero
function, Z, where Z(x) = 0. The weight
parameter, w (for 02w<1), describes the
probability that the rat is in the response state,
and thus 1-w is the probability that the rat is in
the no-response state. When fitting Equation 1
to response distributions, parameters x and w
were free to vary.

Using a Poisson pdf to model the positive
response distribution assumes that, when the rat
is in the high response state, the probability of
making a response is uniform across time.
Describing the full response distribution as a
mixture of a Poisson pdf and a zero distribution
is similar to other mixture-model approaches
that have successfully described the distribution
of response intervals in instrumental
conditioning paradigms using variable-interval
schedules of reinforcement (e.g., Brackney,
Cheung, Neisewander, & Sanabria, 2011; Shull,
Gaynor, & Grimes, 2001; Shull, Grimes, &
Bennett, 2004). A notable difference between
those approaches and the current one is that
those approaches model behavior as a mixture
of two Poisson processes, one describing high
response rates (during response bouts) and the
other capturing long response intervals (pauses
between bouts). However, the evidence for two
Poisson processes requires measurement of
responding over long time windows in order to
identify the long response intervals associated
with the low frequency Poisson process. This
requirement is incompatible with the present
strategy of segmenting the trial into relatively
short time bins in order to obtain independent
response distributions at multiple time points
within the trial. Moreover, the present approach
of using one Poisson pdf and a zero pdf to model
response distributions has the advantage that it
involves only two parameters, whereas a model
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that uses two Poisson pdfs requires three
parameters (a mean for each Poisson pdf, and
the weighting parameter).

Fitting Equation 1 to the response rates
measured at different time points during the CS
provides a means to test the strength of
evidence for graded versus abrupt changes in
responding within a trial. If responding emerges
in a continuously graded fashion, the mean of
the Poisson pdf should vary across time points
within the CS, and this will account for the
change in mean response rate across the trial. If,
on the other hand, responding emerges
abruptly, the relative weights of the Poisson and
zero distributions will vary systematically over
the trial, and this parameter will account for the
change in mean response rate across the trial.

To assess the sensitivity of the analysis
method described above, it was tested on the
continuous and 2-state sets of simulated data
described in the Appendix. Each simulated trial
was divided into 10 bins, and frequency
distributions of response counts in each bin were
computed across trials. Equation 1 was fitted,
using the method of least squares, to each of the
10 frequency distributions for both data sets.
Figure 2 shows how the mean and weight of the
Poisson change across the 10 bins. When
modeling the continuous data set (Figure 2A),
the mean of the Poisson distribution changed
systematically across time bins, corresponding
closely to the change in response rate in the
same data set, but there was very little change in
the relative weights of the two distributions (the
weight of the Poisson pdf was consistently equal
to 1). When modeling the 2-state data set
(Figure 2B), the weight of the Poisson function
changed systematically across time bins, closely
matching the change in response rate in that
data set. In contrast, the mean of the Poisson
changed very little, and did not match the
change in response rate.
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To quantify the differences in how Equation 1
described the two simulated data sets, two
different versions of the function were fitted to
the same data sets. One version used a single
fixed value for 4, selected to optimize the fit
across all time bins, but allowed w to vary
between time bins. This model assumes that
responding is described by two fixed
distributions—the zero distribution and a
Poisson pdf—and variations in responses across
time can only be accounted for by changes in the
relative weights of these two distributions. The
second version of the function used a single fixed
value for w, selected to optimize the fit across all
time bins, but allowed g to vary across time bins.

Weight
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Figure 2. [LEFT] The plots in A and B show response
rates (black dotted line) as a function of time, for the
same two simulated data sets plotted in Figure 1, but
with trial length compressed into 10 bins. The plots
also show the values obtained for the mean (4,
orange line) and weight (blue line) of the Poisson pdf
when Equation 1 was fitted to the frequency
distributions of response rates in each time bin. For
the Continuous data set (A) the mean of the Poisson
tracked the change in response rate whereas the
weight did not vary across time bins; for the 2-state
data set (B), the weight of the Poisson changed in
close step with the change in response rate whereas
the mean of the Poisson changed very little. C shows
mean goodness of fit (R?) for different versions of
Equation 1 fitted to the frequency distribution of
response rates across time bins. In one function, both
the Poisson mean and weight (w) varied as free
parameters during the fitting operation; in the other
functions, either the mean was fixed and the weight
varied as a free parameter or the weight was fixed
and the mean varied as a free parameter. D shows
the Bayesian Information Criterion (BIC) values
obtained from the same analysis fitting different
versions of Equation 1 to the response distributions.
Note that more negative values for BIC indicate better
evidence for that equation given the data.

This model assumes that changes in responding
across the CS reflect a continuous change in the
mean of the Poisson pdf, and the relative
weighting of this distribution does not account
for systematic changes in response rate. Figure
2C shows the average fit (R?) to the 10 time bins
of the two data sets for each of the three
versions of Equation 1. When modeling the
continuous data set, there was no loss of fit
when fixing wand allowing only the mean of the
Poisson pdf to vary across time bins, compared
with the fit obtained when both z and w varied
for each fit. There was, however, a very
substantial loss of fit when g was fixed and only
w varied. The reverse was true when modeling
the 2-state data set. There was almost no
decrement in fit when u was fixed and w was
free, but there was a large decrement in fit when
w was fixed and was y free.
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Comparing the different models for their fit
(as R?) does not take into account the difference
between them in the number of their free
parameters. This can be done by calculating the
Bayesian Information Criterion (BIC) for each
model (Wagenmakers, 2007), according to the
formula

BIC =n-log,(SSE/n) + k-log.(n)
Equation 2

where n is the total number of data points being
fitted, SSE is the sum of squares of the difference
between the fitted and observed values of each
data point, and % is the number of free
parameters in the model. When comparing two
models, a lower BIC value indicates a better fit to
the data (a smaller SSE). This is also true for
negative BIC values which arise when SSE/n is
much less than 1 (since the log of a fraction less
than 1is negative). To calculate a single BIC value
for all fits to each data set, we pooled the SSE
across fits at each time bin (i.e., for 10 bins x 25
data points, n = 250), and pooled the number of
free parameters across bins. Thus, 2 = 20 (2
parameters x 10 bins) for Equation 1 with two
free parameters; £ = 11 (1x10 + 1) for both
models with one fixed and one free parameter.
The BIC values are shown in Figure 2D; smaller
(in this case, more negative) values signify better
evidence for the model given the data. For the
Continuous data set, the BIC score is 50 units
lower when u was free and w was fixed than
when both x and w were free. Applying the
exponential function, €72, to this difference (x)
gives the odds ratio of the evidence for each of
the two models. In this case, the difference in BIC
equates to very large odds (more than 10%:1)
favoring the fixed-w model over the free-w free-
p# model. The fixed-w model was also 858 units
lower than the fixed-u model, which equates to
extremely large odds (more than 10%:1)
favoring the fixed-w model. The BIC values tell
the opposite story for the 2-state data. Here, the
BIC is 36 units lower when w was free and x was
fixed than when both g and w were free, which
equates to very large odds (more than
50,000,000:1) favoring the fixed-ux model over
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the free-w free-zz model. Not surprisingly, there
is much stronger evidence for the fixed-z model
than for the model that fixes w but varies x. The
difference in these BIC scores is 770, which
equates to extremely large odds (more than
10%7:1) favoring the fixed-u model over the
fixed-w model.

In sum, the analysis developed here is
sensitive to differences in the form of the
frequency distribution of response rates.
Therefore, the approach should allow us to test
between two different descriptions of timed
CRs, those in which responses emerge in a
graded fashion across each trial versus those in
which responding appears abruptly within each
trial.

Methods

Subjects. A total of 24 experimentally naive rats
were run in Experiment 1. The experiment was
first run with 16 male Hooded Wistar rats (8 per
group), 7 to 8 weeks of age at the start of the
experiment, obtained from the Laboratory
Animal Services breeding unit at The University
of Adelaide, South Australia. Due to defective
wiring in three conditioning chambers, six rats
(three per group) did not receive any white noise
stimulus during all or some large part of the
experiment. The data of these rats were omitted
from all analyses. Subsequently, another eight
rats were run (four per group). As a result of
interim changes in the supply of animals, the
new rats were female albino Sprague Dawley
rats, obtained from the Animal Resources
Centre, Perth, Western Australia. Therefore,
usable data were collected from 18 rats, with
each group comprised of five male hooded
Wistar rats and four female Sprague Dawley rats.

During the initial run with 16 male rats, the
rats were housed in groups of eight in large
white plastic boxes, measuring 59 x 37 x 26 cm
(length x width x height). The eight rats run
subsequently were housed in groups of four in
split-level ventilated plastic boxes (Techniplast™
S.p.A., Buguggiate, Italy), measuring 40 x 46 x
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40cm (length x width x height). All rats were
located in the animal colony maintained by the
School of Psychology at the University of Sydney.
They had unrestricted access to water in the
home tubs. Three days prior to commencement
of the experiment, they were placed on a
restricted food schedule. Each day, half an hour
after the end of the daily training session, each
box of rats received a ration of their regular dry
chow (3.4 kcal/g) equal to 5% of the total weight
of all rats in the box. This amount is
approximately equal to their required daily
energy intake (Rogers, 1979), and took at least 2
h to be eaten (but was usually finished within 3
h). This meant that all rats in the tub had access
to food for an extended period, which should
reduce differences between rats in their levels of
hunger.

Apparatus. Rats were trained and tested in 8
Med Associates™ conditioning chambers
measuring 30 x 25 x 28.5 cm (length x depth x
height). The end walls of each chamber were
made of aluminum; the sidewalls and ceiling
were Plexiglas™. The floor of the chamber
consisted of stainless-steel rods, 0.5 cm in
diameter, spaced 1.5 cm apart. Each chamber
had a recessed food magazine in the center of
one end wall, with an infra-red LED and sensor
located just inside the magazine to record
entries by the rat. A small metal cup measuring
3.5 cm in diameter and 0.5-cm deep was fixed on
the floor of each food magazine. Attached to the
food magazine was a dispenser delivering 45-mg
food pellets (purified rodent pellets; Bioserve,
Frenchtown, NJ). Each chamber was enclosed in
a sound- and light-resistant wooden shell.
Throughout all sessions, fans located in the rear
wall provided ventilation; the operation of these
created a background noise level measuring
70dB. Experimental events were controlled and
recorded automatically by computers and relays
located in the same room. White noise (78dB)
was presented from a speaker mounted on the
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wall of each conditioning chamber above and to
the left of the food magazine.

Procedure. Prior to the start of conditioning,
rats received a single 20-min magazine training
session during which 20 food pellets were
presented on a VT 1-min schedule, with no
stimulus presentations. Rats that ate fewer than
half of the pellets were given a second session of
magazine training the following day. After all rats
completed magazine training, they commenced
daily conditioning sessions 5 days per week for a
total of 40 days. Each session contained 60 trials,
in which the noise CS was presented for exactly
60 s. On 30 of these trials, a food pellet was
delivered during the CS presentation; no pellet
was delivered on the remaining 30 trials. These
reinforced and non-reinforced trials were
randomly intermixed, with the constraint that
each block of 12 trials included six reinforced and
six non-reinforced trials. For Group FT30, the
food pellet was delivered midway through the CS
presentation (exactly 30 s after CS onset). For
Group VT30, the pellet was delivered at a
random time between 1s and 59 s after CS onset
(mean = 30 s). The inter-trial interval varied
randomly between 40 s and 140 s (mean =90 s).
Photo-beam interruptions by head entry into the
magazine were recorded during each CS and
each 20-s pre-CS period. A single response was
recorded per beam break, and time stamped at
the first moment that the beam was broken.
Sessions lasted approximately 2.5 h.

Results

Only magazine activity during non-reinforced
trials was analyzed, so that response rates were
not affected by the arrival of the food pellet.
Figure 3A shows response rates during the CS
and the pre-CS period across training days for
both groups. Response rates during the CS rose
quickly, and remained relatively stable over the
second half of the experiment (Days 21 to 40).
Figures 3B and 3C also show how, for each rat,
response rates changed as time elapsed during
the CS presentations, averaged for 5-s time bins
over all non-reinforced trials from Days 21 to 40.
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For Group FT30, response rates increased
steadily over the first 30 s, and then decreased
again, indicative of responses being timed to
coincide with the expected time of the US. For
Group VT30, response rates were elevated from
the start of the CS presentation, and remained
relatively elevated over the 60 s, consistent with
the uniform distribution of reinforcement times
in this group. A mixed-model ANOVA, with
Greenhouse-Geisser corrections to the degrees
of freedom when the data violated assumptions
of sphericity, showed that there was no
significant difference in response rates overall
between the two groups, F(1, 16) = 0.72, p =
.410. However, there was a significant main
effect of Time, F(1.6, 25) = 11.80, p < .001, n% =
0.43 (0.36 to 0.67), and a significant interaction
between Time and Group, F(1.6, 25) =9.81, p =
.001, 0%, = 0.38 (0.31 to 0.71). Trend analyses
showed that there were significant linear and
quadratic trends across time, F(1, 16) = 5.05 and
21.09, ps = .039 and <.001, 1%, = 0.24 and 0.57,
both of which interacted significantly with
Group, F(1, 16) = 7.36 and 14.26, ps = .015 and
.002, n% =0.32 and 0.47. Follow-up ANOVAs on
each group individually showed that there was a
significant quadratic trend, F(1, 8) = 19.16, p =
.002, n% = 0.71, but not linear trend, F(1, 8) =
0.12, p = .743, for Group FT30; whereas, for
Group VT30, there was a significant linear trend,
F(1, 8) = 11.63, p = .009, n% = 0.59, but not
quadratic trend, F(1, 8) =1.93, p = .202.

To obtain frequency distributions of response
rates, the data from each CS presentation for
each rat from Days 21 to 40 were divided into 12
5-s bins. Frequency distributions of pre-CS
response rates were obtained from the final 5-s
bin of the 20-s pre-CS interval of each trial.
Examples of the frequency distribution of pre-CS
response counts, and of response counts from
two time bins during the CS (0-5 s, and 25-30 s),
for one rat (Rat 2) are shown in Figures 3D, 3E
and 3F. For the data from each rat, F(x), as

10

TIMING OF CONDITIONED RESPONDING

defined in Equation 1, was fitted, using the
method of least squares, to the pre-CS response
distributions and the response distributions
from each of the 12 time bins during the CS. The
response distributions were well fitted by F(x);
the average R? across all functions was 0.98 for
Group FT30 and 0.96 for Group VT30. Three
examples of the function, as well as the Poisson
pdf in each case, fitted to data from Rat 2 are
shown in Figures 3D, 3E and 3F. The functions
were used to analyze how the mean and weight
of the Poisson pdf changed across time bins.

Figures 4A and 4B show the mean and weight
of the Poisson pdfs for responding during the lat
5-s of the pre-CS period and each of the 12 5-s
time bins during the CS for Groups FT30 and
VT30. When both parameters of Equation 1
were free to vary, the data fitting operation
identified functions in which both the mean and
the weight of the Poisson varied systematically
across time bins in a manner that tracked the
change in the rats’ response rates. In other
words, this step of the analysis suggested that
both a change in response strength, modeled by
the Poisson mean, and a shift in probability of
being in the response state, modeled by the
weight, jointly accounted for the change in
response rate over time during the CS. To tease
apart these contributions, the same data fitting
analysis was performed again, but in these
analyses one of the two parameters was fixed.
One analysis fixed the mean of the Poisson pdf,
so that any change in response distribution
across time could only be accounted for by a
change in w. That s, while w was allowed to vary
across each of the 13 time bins, the analysis
selected only one value for x that optimized the
fits to the response distribution data across all
time bins. Fixing u in this manner had little
influence on the values obtained for w compared
to those obtained when both xand w were free
to vary in the initial analysis.
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Figure 3. A: Response rates during the CS and pre-CS intervals in each 5-day bin for rats in Group FT30 and VT30 in
Experiment 1. B and C show the response rates, in 5-s bins, across the 60-s non-reinforced presentations of the CS
for each rat in Groups FT30 and VT30, averaged over Days 21 to 40. These plots also show the mean response rates
for each group (thick black lines) and the mean pre-CS response rate (dotted black lines). The six lower plots show
the frequency distributions of response counts for data from two representative rats (Rats 2 and 11, highlighted in
panels B and C) from Days 21 to 40, for 5-s bins during the pre-CS period (D and G), during the first 5 s of the CS (E
and H), and during the peak response interval from 25-30 s after CS onset (F and ). The plots also show the best-
fitting function for Equation 1 (black line), as well as the unweighted Poisson pdf (gray line) from that best-fitting
function.
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Figure 4. A and B show response rates (black dotted lines) as a function of time during the CS for Groups FT30 and
VT30 in Experiment 1. The plots also show the values obtained for the mean (g, orange line) and weight (blue line)
of the Poisson pdf when Equation 1 was fitted to the frequency distributions of response rates in each 5-s time bin.
For both groups, the xzand weight of the Poisson changed over time bins, in close step with the change in response.
C shows the mean Bayesian Information Criterion (BIC) values obtained when four different versions of Equation 1
were fitted to the frequency distribution of response rates across time bins. In one analysis, both z and the weight
(w) varied as free parameters during the fitting operation; in another analysis, 1 was fixed and w varied as a free
parameter; in the other two analyses, w was fixed, either at 1 or at a single value that optimized the fit across all
time bins, while x varied as a free parameter. Note that more negative values for BIC indicate better evidence for
that function given the data. D and E plot, for each rat in Groups FT30 (D) and VT30 (E), the BIC value for the 2-
parameter model (free m, free w) against the BIC values for two of the 1-parameter models (free w, fixed m; and
free m, fixed w). Points above the diagonal indicate that the BIC for the 2-parameter model is more negative than
the BIC for the 1-parameter model.
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Two further analyses were conducted to
assess the unique contribution of the Poisson
mean in accounting for changes in the
distribution of response rates. The first of these
analyses set w to 1, so that any change in
response distribution could only be accounted
for by changes in 4. The second analysis also
fixed w, but selected one value across all time
bins that optimized the fit of the model to the
response distributions. In both of these
analyses, the mean of the Poisson pdf changed
over time bins, but it appeared to track the
change in response rate less well than it had
done when w was free to vary.

BIC values were used to compare each of the
analyses just described. For eachrat, a single BIC
was computed that combined all 13 functions
fitted to the 13 time bins. The mean BICs, across
the 9 rats in each group, are shown in Figure 4C.
Even though the BIC penalizes the initial analysis
most because it has two free parameters, the BIC
values are lower for this analysis than any of the
three analyses in which one parameter was fixed
across time bins. For both groups, the model
with fixed z came closest to the model with free
w and g the difference in mean BIC was 77 for
Group FT30 and 27 for Group VT30.
Nonetheless, these differences equate to large
odds favoring the model with two free
parameters (more than 10%:1 for Group FT30;
more than 700,000:1 for Group VT30)!. Figures
4D and 4E plot each rat’s BIC score for the model
with & and w free against its BIC score for the
model with u fixed (but # 1) and the model with
w fixed. These plots show that, for some rats,
the model with two free parameters and the
model with fixed u (free w) performed
equivalently (and indeed the model with fixed u
was superior for 3 rats), but in the majority of
cases the 2-parameter model was superior. The
plots also show that the 2-parameter model was
superior to the model with fixed w (free u) for

! These odds are calculated on the difference in mean
BIC values, and therefore represent a comparison of
the average evidence for each model per rat. A
comparison of the total amount of evidence for the
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every rat. Therefore, information about the
frequency distribution of response rates is lost
when either w or y is fixed, and therefore both
parameters account for a significant amount of
the data.

It is clear in Figure 4C that the BIC score is
lower (more negative) when the mean of the
Poisson was fixed and w was free compared to
either of the analyses in which w fixed and u
varied. The difference is largest when w was set
to 1: for both groups, the mean BIC score was
more than 290 higher than the BIC score
obtained when u was fixed and only w varied.
Allowing w to be fixed to a value that optimized
the fits to the distributions across all time bins
reduced the BIC scores considerably—by more
than 230 for both groups. This shows that, even
if w itself is not free to vary across time bins,
there is a very substantial gain when it is set
below 1. Therefore, the distribution of response
rates is better accounted for as the sum of two
distributions, one of which has all its mass at
zero, than as a single distribution with mean
greater than one. Nonetheless, even when w
was fixed at a value below 1, the best fit to the
data achieved by varying x was still considerably
worse than when u was fixed but w varied. The
difference in mean BIC scores was 54 for Group
FT30 and 153 for Group VT30, which equate to
odds ratio more than 10'%:1 and 103%:1 in favor
of the model in which w was free. Indeed, the
fixed-x model was superior to the fixed-w model
for almost every rat, as revealed by the
difference in heights of the two sets of symbols
(circles and triangles) in Figures 4D and A4E.
Therefore, it is clear that the data are accounted
for better when the mean of the Poisson is fixed
and changes in response distribution are
accounted for by w alone, than when w is fixed
and the changes in response distribution are
accounted for by z.

whole group would be in the same direction but much
larger (the difference in overall BIC values would be
almost nine time greater than the difference in mean
BIC values).
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The BIC comparisons between models was
repeated but excluding the first 5-s bin of the CS
presentations. This was done in case response
rates in that bin were affected in a particular way
by the CS onset which might distort the analyses
of response distributions. However, the new
analyses, without data from the first bin,
revealed a pattern of BIC scores among the
models that was very similar to the pattern
reported above.

In the analyses described so far, the functions
fitted to the response distributions described the
weighted average of a Poisson pdf and a zero
distribution. This assumes that the rats were
either in a state to produce some measurable
level of responding, captured by a single
distribution, or in a state that produced no
responses. A more complex analysis would
characterize the rats’ responses as comprising a
high response state and a low response state. |
have conducted such an analysis that identifies
the low response state with the baseline
response rate during the inter-trial interval. The
first step of this analysis was to fit Equation 1 to
the frequency distributions of pre-CS response
rates, in order to obtain a function describing
baseline responding. This baseline function, B(x),
was then substituted for Z(x) in Equation 1, and
the new function was fitted to the data from
each time bin during the CS. This analysis
produced marginally better fits to the CS
response data than were obtained from the
previous analyses using the zero distribution, but
did not allow direct comparisons to be made
between pre-CS and CS response distributions.
Nonetheless, when considering the response
distributions during the CS, the results of both
sets of analyses were virtually identical. All
functions in which both x4 and w were free
provided better fits to the response distributions
than functions that fixed one or other
parameter, and functions with free w and fixed
produced better fits than functions with fixed w
and free s
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Discussion

Different patterns of responding were observed
when the CS-US interval was fixed versus when
it varied. A fixed 30-s interval between CS and
US led to accurately timed responding, such that
response rates rose across the first 30 s of the CS,
and then decreased again for the next 30 s. A
variable CS-US interval led to a sharp rise in
responding at CS onset that remained elevated
for the full length of the CS. Both findings
replicate previous demonstrations (Church et al.,
1994; Harris & Carpenter, 2011; Harris et al.,
2011; Smith, 1968; Williams et al., 2008), and
show that conditioned responses track the
expected time of US arrival. Nonetheless, there
was a modest fall in response rate across the CS
in Group VT30, evident in Figure 3C, that has not
been observed in our previous experiments
using variable CS-US intervals. It is likely that the
decline in response rate observed here reflects
the peculiarities of the partial reinforcement
schedule in which the probability that a trial will
be a reinforced one—as opposed to a non-
reinforced trial—decreases as the trial
progresses without reinforcement.

The detailed analyses using Equation 1 to
model the frequency distribution of response
rates show that more information about
response rates is accounted for by changes in the
relative weight of two response distributions
than by a progressive shift in the mean of one
response distribution. In other words, there is
more evidence for a model in which changes in
responding across a trial are attributed to
changes in the probability of being in one of two
response states than for a model in which
changes in responding are attributed to the
strength of responding when in the response
state. However, the most information about the
response distributions was accounted for by a
combination of both the weight and mean of the
response distributions. Therefore, the available
evidence indicates that changes in responding
across a trial are jointly explained by both a
change in the probability of being in one of two
response states and a change in strength of
responding when in the response state.
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In this experiment, 50% of trials were not
reinforced so that response rates could be
measured across the full 60 s of the CS without
the rats’ behavior being contaminated by the
delivery of the food pellet. Using a 50%
reinforcement schedule would have reduced
response rates overall, compared to a 100%
schedule, and may have had the effect of
inflating the proportion of trials in which the rats
did not respond. This raises the possibility that
the shift between the zero response distribution
and the positive response distribution might only
exist in the form found here because of the high
proportion of non-reinforced trials. However,
other evidence indicates that this is unlikely. For
example, | have performed the analysis
described here on data from an experiment in
which rats were trained with a 10-s CS reinforced
on termination of 33% of trials and a 30-s CS
reinforced on termination of 100% of trials
(Group Fixed of Experiment 3 in Harris,
Patterson, & Gharaei, 2015). Both the mean of
the Poisson and the relative weight of the
Poisson versus the zero distribution rose across
5-s bins during both CSs, just as was observed in
the present experiment for time bins before the
expected time of reinforcement. Moreover, the
shift in weight occurred at an earlier time bin for
the partially reinforced CS than for the 100% CS,
although the weights in the final bin of each CS
were very similar. This shows that the changes
in weight and magnitude of the response
distribution are tied to the timing of
reinforcement within a trial rather than the
percent of reinforcement across trials.

Experiment 2

Experiment 1 examined changes in the
distribution of rats’ response rates as time
elapsed within a trial, and compared response
rates conditioned using a single fixed CS-US
interval of 30 s with responses conditioned using
a variable CS-US interval with a mean of 30 s.
The present experiment sought to extend the
analysis by conditioning two groups of rats with
fixed CS-US intervals of either 20 s, for Group
FT20, or 40's, for Group FT40. In these cases, we
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should again expect to see that response rates
rise across the initial portion of each CS
presentation, and then decline again, as we saw
in Group FT30 of Experiment 1. However, if
these changes are accurately tracking the timing
of the US itself, then the time point at which
responses peak should differ in each group—
responding should peak at approximately 20 s
into the CS for Group FT20 and should peak at
approximately 40 s into the CS for Group FT40.
This experiment also differed from Experiment 1
in that each CS presentation was much longer,
lasting 120 s (compared with 60 s in Experiment
1). This provided a greater opportunity for
response rates to return to baseline, in order to
give a more complete picture of how the
distribution of responses changes both as
responding increases from baseline to its peak,
and then decreases again down to that baseline.
To anticipate the results of the experiment,
while response rates did not return completely
to baseline for Group FT40, they did in fact fall
below baseline during the last 60 s of the CS in
Group FT20. This presented an additional
challenge for each theoretical account, to
explain not only the rise and fall in response
rates during the CS but also the suppression of
responding below baseline when rats learned
about the negative correlation between food
and the extended portion of the CS.

Methods

Subjects and apparatus. A total of 16
experimentally-naive female albino Sprague
Dawley rats were run in Experiment 2. They were
obtained from the Animal Resources Centre,
Perth, Western Australia. They were housed in
groups of four in split-level ventilated plastic
boxes (Techniplast™), measuring 40 x 46 x 40cm
(length x width x height), with unrestricted
access to water. All rats were located in the
animal colony maintained by the School of
Psychology at the University of Sydney. Three
days prior to commencement of the experiment,
they were placed on a restricted food schedule
described for Experiment 1. The rats were
trained and tested in 16 Med Associates™
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conditioning chambers, as described for

Experiment 1.

Procedure. The rats were divided into two
groups of eight. Prior to the start of
conditioning, they received a single 20-min
magazine training session during which 20 food
pellets were presented on a VT 1-min schedule,
with no stimulus presentations. Rats that ate
fewer than half of the pellets were given a
second session of magazine training the
following day. After all rats completed magazine
training, they commenced daily conditioning
sessions 5 days per week for a total of 45 days.
Each session contained 40 trials, in which the
noise CS was presented for exactly 120s. On 20
of these trials, a food pellet was delivered during
the CS presentation; no pellet was delivered on
the other 20 trials. These reinforced and non-
reinforced trials were randomly intermixed, with
the constraint that each block of eight trials
included four reinforced and four non-reinforced
trials. For Group FT20, the food pellet was
delivered 20 s after CS onset. For Group FT40,
the pellet was delivered 40 s after CS onset. The
inter-trial interval varied randomly between 40 s
and 120 s (mean = 80 s). Photo-beam
interruptions by head entry into the magazine
were recorded during each CS and each 20-s pre-
CS period. Sessions lasted approximately 2% h.

Results

Only magazine activity during non-reinforced
trials was analyzed, so that response rates were
not affected by the arrival of the food pellet. As
can be seen in Figure 5A, response rates during
the CS (averaged across the full 120-s
presentations) increased and response rates
during the pre-CS period decreased across days.
Response rates within 5-s bins during the CS, and
in the pre-CS period, averaged over the last 20
days of the experiment, are shown in Figures 5B
(Group FT20) and 5C (Group FT40). For both
groups, response rates rose over the initial
portion of the CS presentations, and then
decreased again. The peak of responding was
very close to 20 s for Group FT20, and close to 40
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s for Group FT40. Indeed, the mean response
rate peaked at the fourth bin (15-20 s) for Group
FT20 and peaked at the eighth bin (35-40 s) for
Group FT40. A Mann-Whitney U test confirmed
that the rats in Group FT20 reached their peak
response rate at a significantly earlier time bin
than the rats in Group FT40, z(7) = 3.31, p < .001.

As is evident in Figure 5C, response rates in
Group FT40 did not return fully to baseline (the
pre-CS rate) during the CS presentations. A
paired t-test showed that the average response
rate over the last 60 s of the CS (mean = 0.69
responses per 5-s bin) was significantly greater
than the baseline (mean = 0.45 responses per 5-
s bin), t(7) = 3.40, p = .011, Cohen’s d = 1.20 (95%
confidence intervals: 0.25 to 2.11). By contrast,
response rates in Group FT20 fell below the pre-
CS baseline across the second half of the CS
presentation (Figure 5B). Averaged across this
60-s period, response rates during the CS (mean
= 0.38 responses per 5-s bin) were significantly
below baseline (mean = 0.47 responses per 5-s
bin), t(7) = 3.61, p = .009, Cohen’s d = 1.28 (0.3
to 2.21). Therefore, while rats in Group FT20
learned to respond in anticipation of the food
pellet during the first half of each CS
presentation, they also learned to suppress
responding during the second half of the CS
presentation.

Frequency distributions of response rates for
each rat were obtained by dividing the data from
each non-reinforced CS presentation from Days
26 to 45 into 24 5-s bins. The frequency
distribution for pre-CS response rates was based
on responses during the final 5-s of the 20-s pre-
CS interval from each trial. F(x), as defined in
Equation 1, was fitted to the pre-CS response
distributions and the response distributions
from each of the 24 time bins during the CS.
Figures 6A and 6B show the mean and weight of
the Poisson pdfs for the 25 time bins for Groups
FT20 and FT40. In Group FT20, both the mean
and weight varied systematically over the time
bins, tracking the changes in response rates over
those bins. However, the weight did not rise
across the first four bins of the CS, as response
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rate did, but instead showed a sharp jump from
the pre-CS bin to the first CS bin and then slightly
decreased up to the 5™ bin. The mean and
weight of the Poisson pdfs also varied for Group
FT40, although changes in w seemed to track the
change in response rate better than did the
change in the mean of the Poisson.

As was done for Experiment 1, three
additional analyses fitted Equation 1 to the
response distributions, but one parameter was
fixed across time bins. In one analysis, ¢ was
fixed across time bins; in the other two analyses,
w was fixed—w was set to 1 or was fixed to a
value that optimized the fit across all time bins.
Figure 6C shows the mean BIC scores for these
three analyses, as well as the initial analysis in
which g and w were free when Equation 1 was
fitted to the data. For Group FT20, the three
additional analyses produced poorer fits to the
data, shown as higher (less negative) BIC scores,
compared to the fits obtained when both
parameters varied. The analysis in which w was
free and u was fixed came closest to the model
with both parameters free: the difference in BIC

TIMING OF CONDITIONED RESPONDING

was 252, which equates to odds of more than
10°%:1 favoring the analysis with two free
parameters. As evident in Figure 6D, which plots
BIC scores for the 2-parameter model against the
1-parameter models for each rat, the model with
two free parameters was superior in all but one
rat (shown as the one blue circle below the
diagonal). For Group FT40, the analyses in which
w was fixed and u was free produced poorer fits
to the data compared to the fits obtained when
both parameters varied (the difference in BIC
was at least 200). However, the analysis in which
w was free and u was fixed was almost
indistinguishable from the model with both
parameters free: the difference in their BIC
scores was just 0.58, which equates to odds of
1.34:1 favoring the analysis with two free
parameters. This conclusion is also born out
when comparing the BIC scores of the two
models for each individual rat—as shown in
Figure 6E, where all cases (blue circles) are close
to the diagonal and as many sit below the line as
above it.
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Figure 5. A: Response rates during the CS and pre-CS intervals in each 5-day bin for rats in Group FT20 and FT40 in
Experiment 2. B and C show the response rates, in 5-s bins, across the 120-s non-reinforced presentations of the CS
for each rat in Groups FT20 and FT40, averaged over Days 26 to 45. These plots also show the mean response rates
for each group (thick black lines) and the mean pre-CS response rate (dotted black lines).
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Figure 6. A and B show response rates (black dotted lines) as a function of time during the CS for Groups FT20 and
FT40 in Experiment 2. The plots also show the values obtained for the mean (g, orange line) and weight (blue line)
of the Poisson pdf when Equation 1 was fitted to the frequency distributions of response rates in each 5-s time bin.
For both groups, both the mean and weight of the Poisson changed over time bins, in close step with the change in
response. C shows the mean Bayesian Information Criterion (BIC) values obtained when four different versions of
Equation 1 were fitted to the frequency distribution of response rates across time bins. In one analysis, both zand
the weight (w) varied as free parameters during the fitting operation; in another analysis, 1 was fixed and w varied
as a free parameter; in the other two analyses, w was fixed, either at 1 or at a single value that optimized the fit of
Equation 1 across all time bins, while x varied as a free parameter. Note that more negative values for BIC indicate
better evidence for that function given the data. D and E plot, for each rat in Groups FT20 (D) and FT40 (E), the BIC
value for the 2-parameter model (free m, free w) against the BIC values for two of the 1-parameter models (free w,
fixed m; and free m, fixed w). Points above the diagonal indicate that the BIC for the 2-parameter model is more

negative than the BIC for the 1-parameter model.
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Among the analyses in which one parameter was
fixed, there were sizeable differences in BIC
favoring the model in which w was free and u
was fixed over the analyses in which x was free
and w was fixed. When w was set to 1, the BIC
scores were 315 units higher for Group FT20, and
540 units higher for Group FT40, than when w
was free. These differences equate to very large
odds (more than 10%:1) favoring the analysis in
which w was free. When w was fixed at a value
that optimized the fits to the response
distribution data, the BIC scores were 152
(Group FT20) and 200 (Group FT40) higher than
when w was free. These differences also equate
to very large odds (more than 10%2:1) favoring
the analysis in which w was free. The difference
in BIC scores between the two types of model
can be seen for each individual rat in Figures 6D
and 6E—comparing the height of the orange
triangles and the blue circles shows that the
model with fixed w and free u was superior
(lower) in the majority of cases.

All of the comparisons described above were
repeated using BIC scores calculated from the
same data but excluding the first 5-s bin after CS
onset. This was done in case response rates in
that bin were affected in a specific way by the CS
onset. As in Experiment 1, the pattern of BIC
scores from this new analysis was virtually
identical to that obtained from the full set of
data.

Finally, the data from both groups were re-
analyzed using a function that describes the
weighted average of a high response state and a
baseline (pre-CS) response state. As for
Experiment 1, Equation 1 was first fitted to the
frequency distributions of the pre-CS response
rates. The resultant baseline function, B(x), was
then substituted for Z(x) in Equation 1, before
fitting F(x) to the data from each time bin during
the CS. This analysis produced mostly similar
results to the analyses already described using
Z(x), but with two notable differences. First, for
the data from Group FT40, there was now
stronger evidence for the analysis with free w
but fixed u than for the analysis with free x# and
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free w. For this comparison, the BIC was 17 units
lower when w was free and x4 was fixed than
when both w and u were free. This difference
equates to odds of more than 4,000:1 in favor of
the fixed w analysis. Second, for Group FT20,
there was now weaker evidence for the analysis
with free w but fixed g than for the analysis with
free u but fixed w. In this case, the BIC was 88
units higher when u was fixed and w free than
when w was fixed and g was free, which equates
to odds more than 10%:1 in favor of the latter
model.

Discussion

The analyses presented here are consistent
with the analyses from Experiment 1 in showing
that the response distributions are better
accounted for by changes in the relative weights
of a positive response distribution and a zero
response distribution than by changes in the
mean of the positive response distribution.
Nonetheless, as was also found for Experiment
1, the data provide the strongest support for a
model in which both the weights and the mean
of the response distributions vary when
accounting for changes in responding across a
trial.  Some evidence at odds with these
conclusions was obtained from the final analysis
that used baseline (pre-CS) response
distributions instead of the zero distribution
when modeling the two response states. When
this analysis was applied to the data from Group
FT40, the evidence was strongest for the model
in which all changes in responding across the CS
were accounted for exclusively by a change in
the weight of the two response distributions—
the evidence for this model was even greater
than the evidence for the model in which
changes to both the weight and the mean of the
distributions were used to account for the data.
However, this improvement in the evidence for
the former model in Group FT40 was offset by a
decrease in evidence for that same model in
Group FT20. In that group, the evidence was
weakest for the model in which only the relative
weights of the two response distributions
changed across the trial, weaker even than the
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evidence for the model in which the weight did
not change at all but only the mean of the
response distribution changed. This decrease in
evidence for the free-weight fixed-mean model
can be traced directly to its failure to adequately
account for the very low response rates in the
second half of the CS presentation in Group
FT20. These response rates were below the pre-
CS response rates, and therefore no matter how
much the relative weighting shifted from the
high response distribution to the baseline
response distribution across the trial, the model
could not produce response rates below the pre-
CS rate.

An interesting detail in the present data is that
response rates in Group FT20 fell below the pre-
CS response rate for the later portion of the CS
presentation, beyond the expected time of the
US, suggesting that that portion of the CS had
become inhibitory. Evidence of inhibition is a
notable challenge for timing models, particularly
in cases such as this when the evidence is of both
inhibition and excitation for the same CS (see
also Williams et al., 2008). Moreover, the finding
had very significant implications for the analyses
that used the pre-CS period to model the low
response state (rather than the zero response
distribution). In this case, the model that
performed most poorly was the one that allowed
only the weight parameter to vary while fixing
the mean of the high response distribution.
Indeed, that two-state model could not account
at all for the sub-baseline response pattern
during the later part of the CS because, in such a
model, response rates can only lie within the
range between the baseline rate and the high
response rate. This result highlights complexities
regarding the choice of an appropriate baseline
response state, and argues in favor of using a
zero response distribution for the baseline
response state. Animplication of this is that pre-
CS responding is not a true baseline state but
reflects occasional transitions into a positive
response state, indicative of some weak but
positive predictive value of the pre-CS period.
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General Discussion

The present experiments used the peak
procedure to measure changes in responding
arising from conditioning protocols with fixed or
variable CS-US intervals. Food was delivered
either 20 s (Group FT20, Experiment 2), 30 s
(Group FT30, Experiment 1), 40 s (Group FT40,
Experiment 2), or at a variable time (Group VT30,
Experiment 1) after onset of the CS; response
rates were measured continuously during non-
reinforced presentations of the CS that extended
well beyond the time of food delivery on the
reinforced trials. When food was delivered at
one of the three fixed times, the rats’ response
rates rose steadily during the initial portion of
the CS presentation, peaking at the expected
time of food delivery, and then decreased again
as the CS presentation extended past that time.
This timing of the CR replicates many previous
demonstrations of response timing (Church et
al., 1994; Dauvis et al., 1989; Kehoe & Joscelyne,
2005; S. Roberts, 1981; W. A. Roberts et al.,,
1989; Smith, 1968; Williams et al., 2008), but
contrasts with the pattern of responding
observed when the CS-US interval varied from
trial to trial. In the latter case, response rates
rose sharply at the start of the CS, and remained
elevated as time elapsed during the CS. This
pattern is consistent with the fact that the rats
given training with variable CS-US intervals
cannot learn to anticipate the US at a specific
time, and therefore maintain a uniform level of
responding across the CS (Harris & Carpenter,
2011; Harris et al., 2011).

In addition to measuring how mean response
rates change as time elapses during a trial, the
work presented here examined how the
distribution of response rates changes at
different time points within a trial. The
motivation behind this analysis was to test two
contrasting descriptions of response timing. One
approach assumes that response rates change in
a continuously graded manner during the CS, as
might reflect the continuous change in strength
of an underlying association between the CS and
US (Desmond & Moore, 1988; Sutton & Barto,
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1981, 1990). A simple version of this account
predicts that responding should be described by
a single frequency distribution of response rates
that shifts during a trial, such that, at any time
during the trial, the mean of the frequency
distribution equals the mean response rate.
When the frequency distributions of response
rates were analyzed in the present data, this
model received the least support compared to
other models considered here. In the large
majority of instances, even when response
counts were sampled in the time bin when
responding was at its peak (such as shown in
Figure 3F), the distribution of response counts
did not conform to a single unimodal
distribution. Rather, responses counts were
bimodally distributed, with one mode centred
on zero responses and the other described by a
positive distribution with mean and variance
greater than one.

The bimodal nature of the response
distributions observed here suggest that the
rats’ behavior is best characterized using two
response states, such that rats spend some
proportion of their time in a no-response state
and some proportion of their time in a positive
response state. One such model contends that
the probability of being in each state does not
change across the length of a trial, but the
strength of the positive response state does
change. Changes in the strength of the response
state would produce a systematic shift in the
position of the higher response distribution, and
as such this model often provided good fits to
the observed response distributions.

However, the particular two-state model just
described was consistently outperformed by
another two-state model that made the
opposite assumptions—that the strength of the
positive response state does not change within a
trial, but the probability of being in that state
versus the no-response state does change. This
latter model is in keeping with an abrupt switch
between responding and not responding that is
typically assumed by timing models (Gibbon,
1977; Guilhardi et al., 2007). It is also consistent
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with the assumption made by these models that
the relative weight of each component to the
bimodal frequency distribution changes at
different time points within the trial. Therefore
the results presented here offer more support
for that account of how responses change within
a trial than for an account that explains timing as
a continuous change in associative strength.

The goal of the present work was to compare
descriptions of response timing in terms of
either a shift in the location of a single response
distribution versus a shift in weighting between
two static distributions.  Nonetheless, the
analytic approach used here allowed those two
descriptions to be combined in a hybrid model.
Indeed, the model that received the greatest
support is one that attributes the timing of
responses within the trial to changes in both the
probability of being in the response state and the
strength of that response state. Not only did this
combined model provide better fits to the
response distributions in each group of rats, but
consistently won out when differences in the
Bayesian Information Criterion (BIC) were used
to compare the amount of evidence for each
model. Even for the comparison that produced
the smallest difference in mean BIC values, the
evidence for the combined model was stronger
than either of the alternative models.

The theoretical approaches contrasted here
describe changes in responding during a trial as
either the function of a continuous strength
variable or a binary decision variable, but do not
offer a description of responding that combines
both functions. How might timing theories of
conditioning, or theories based on associative
strength, accommodate the present evidence
that changes in responding during a trial reflect
a shift in both the probability of being in a
response state and the strength of responding in
that state? A combination of these factors has
been incorporated in the modular extension of
packet theory (Guilhardi et al., 2007). In this
theory, bouts of responding are initiated as the
output of a decision process. On any individual
trial, a pattern memory that encodes the time of
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reinforcement relative to CS onset on previous
trials is compared with a subjective
representation of time since CS onset in the
current trial. When this comparison reaches a
threshold, a binary change in response state is
multiplied by a memory strength variable to
produce the decision to initiate responding.
Thus, the decision to respond is the product of
both a binary state, related to the proximity of
anticipated reinforcement, and a continuous
strength variable. However, in this model,
memory strength increases only when the
reinforcer is delivered (according to a learning
rule equivalent to that proposed by Rescorla &
Wagner, 1972), and otherwise decreases within
a trial. Therefore, the theory does not allow the
memory strength variable to contribute to the
continuous rise in responding across a trial
leading up to the anticipated moment of
reinforcement. From the perspective of timing
models, the present results suggest that a
comparison between currently elapsed time in
the trial and the remembered time of
reinforcement affects responding in two ways,
via a binary decision to start/stop responding,
and a continuous shift in response strength as a
function of proximity to the expected time of
reinforcement. That is, when remaining time to
reinforcement reaches a decision threshold, the
animal starts responding, and the vigor of its
response continues to change as the time of
reinforcement approaches.

From the perspective of associative strength
models of conditioning, responding is a function
of a graded strength variable which is itself a
continuous  function of distance from
reinforcement. However, the evidence
presented here indicates that the relationship
between responding and associative strength
must also be subject to a response threshold,
such that responding only starts when
associative strength exceeds a threshold, and
stops when associative strength falls below a
threshold. Arguments for the existence of
response thresholds on conditioning strength go
back to Hull (1943) and Spence (1956) when
accounting for non-linearity in learning curves,
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and could easily be used to account for evidence
of abrupt non-linear changes in responding
within a trial. However, an added complexity for
any account of this sort is the requirement that
the time at which the threshold is exceeded
must vary from trial to trial, otherwise the
average response rate should show a sharp
discontinuity at the regular time when
associative strength exceeds the threshold. This
could be achieved either by assuming stochastic
variation in the threshold value, or variation in
the sequence of units that acquire associative
strength (e.g., Machado, 1997).
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Appendix

Two sets of simulated data were generated,
one mimicking a low-high-low (2-state)
discontinuous response pattern, the other
created with a continuous change in the
probability of responding across each trial. Both
data sets comprised 1000 trials of 500 time
steps, each step could take a value of either 0 (no
response) or 1 (response).

For the Continuous data set, each step on
each trial was initially set to 0 and then randomly
changed to 1 with a probability that varied
continuously across the length of the trial. The
probability of a response at each time step was
described by a normal (Gaussian) probability
density function centered on the middle of the
trial, with a standard deviation of 167, and scaled
so that the minimum probability (at the first and
last time steps) was 0.08, and the peak
probability (at the 250" time step) was 0.25.

For each trial of the 2-state data set, two
transition times, t1 and t2, were selected
randomly from each half of the same normal
probability distribution described for the
Continuous data set. All time steps before t1 and
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after t2 were set to 0; all steps between t1 and
t2 were randomly changed to 1 with a fixed
probability of 0.25.

In both data sets, each trial was compressed
to 50 time steps, with the value at each step
being the sum of 10 consecutive steps binned
from the original 500 steps. Therefore, the
response rate at each of the 50 steps could take
a value between 0 and 10.

Both data sets were analysed using an
algorithm described by Church (1994). The
algorithm performed an exhaustive search of
each trial to find values of t1 and t2 that
maximized the value, d, defined as

d=il(r—r1)+i2(r2 —r) + i3(r —r3)

where il is the interval from the start of a trial to
t1, i2 is the interval between t1 and t2, i3 is the
interval from t2 to the end of the trial, r is the
mean response rate over the whole trial, and r1,
r2 and r3 are the mean response rates during
intervals i1, i2, and i3. This maximizes the
difference between the high response state (r2)
and the low response states (rl and r3), with
each weighted by the time spent in that state.



