
 

 

 

 

The Effect of El Niño Southern Oscillation 
(ENSO) on World Cereal Production 

 

 

 

 

 

 

 

 

A thesis submitted in partial fulfilment of requirements for the degree of Master of Philosophy in 

the Faculty of Agriculture and Environment at The University of Sydney 

 

 

 

Maryam Abdolrahimi 

May 2016 



ii 

 

Declaration 
This thesis is submitted to the University of Sydney in fulfilment of the requirements 

for the Master of Philosophy. 

This is to certify that to the best of my knowledge, the content of this thesis is my own work. 

This thesis has not been submitted for any degree or other purposes.  

I certify that the intellectual content of this thesis is the product of my own work and that all 

the assistance received in preparing this thesis and sources have been acknowledged.  

 

 

 

 

 

 

Maryam Abdolrahimi 

May 2016  



iii 

 

Thesis Abstract 
El Niño Southern Oscillation (ENSO) anomalies are responsible for medium-frequency 

climate fluctuations across many regions of the world. Not only ENSO induces temperature 

and precipitation variability in the affected regions, but it is also responsible for larger 

magnitude weather anomalies, such as droughts, hurricanes, and tsunamis. All these directly 

impact agricultural production. The overall objective of this research is to determine the 

relationship between ENSO and world major cereal production. While several studies have 

addressed the issue, this research contributes to the literature in a number of directions. 

Firstly, it measures the ENSO effect net of temperature and precipitation. Secondly, it allows 

for the threshold-like effect of ENSO; that is, El Niño effects are not mirror images of La 

Niña effects. Thirdly, it incorporates expected price in the regression setting, thus controlling 

for an important economic variable affecting crop supply. Finally, this study applies the 

largest possible panel of countries, to analyse the region-specific peculiarities of the ENSO–

production relationship, and to best approximate the global production effect of ENSO 

anomalies. 

This study uses a combination of extensive climatic and economic datasets spanning 

the years 1962-2009 to empirically measure the impact of ENSO on wheat, maize and rice 

production, via a threshold regression framework. The results reveal statistically significant 

and economically meaningful ENSO impact on cereal production in many regions, with 

particularly strong effects in Southeast Asian and American countries. Although the expected 

global effect may camouflage the country-specific effects, the research findings suggest that 

El Niño shocks are likely to cause on average a reduction in global production of rice and 

maize. La Niña episodes, on the other hand, are associated with increased global rice and 

decreased global wheat and maize production. 



iv 

 

Although consequences of ENSO shocks on a global scale are sporadic, understanding 

the overall impact of ENSO on major grain production is an important tool for managing 

global food security. Results of this study provide implications for food policy makers, and 

help them develop precautionary economic policies that will take advantage of ENSO signals 

to cope with production shocks and ensure food availability, which is particularly relevant in 

the developing world.  
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Chapter 1. Introduction 
Climate change and anomalous weather conditions have become a major global 

concern in recent decades. Among a wide range of possible consequences of climate 

anomalies, inter-annual variability of agricultural crop yield, hence crop production, is 

particularly noteworthy, as it is directly influenced by weather conditions in all environments. 

This arises from the intrinsic impact of weather on plant generative and vegetative growth 

period. Because agriculture is one of the important economic sectors, links between climate 

variability and agricultural productivity have broader economic implications. A concept that 

has already been emphasized in the writings of the Ancient Greeks (Gates 1967). The idea 

that climatic factors impact on economic performance is sensible, at various stages of product 

supply, marketing (storage and distribution), economic growth, even health, or social unrest 

(Hsiang, Meng et al. 2011, Hsiang and Burke 2014). There is a reasonable causal relationship 

between climatic effect and crops production, and food prices (Bellemare 2015). 

Accordingly, agricultural activity and decision making must consider climate information 

(Sreenivas, Reddy et al. 2008, Das and Stigter 2010) to develop temporary economic policy 

efficiently. Providing storage reserves, cropping pattern variation, crop insurance and tax or 

subsidies policy are some strategies to cope with climate variability risk. 

A plethora of studies suggest that in the course of the ongoing climate change, 

catastrophic weather events are more likely. In turn, extreme weather conditions in many 

parts of the world are associated with a medium–frequency1 climate anomaly known as El 

Niño-Southern Oscillation, or simply ENSO. “The most dramatic, most energetic, and best-

defined pattern of inter-annual variability is the global set of climatic anomalies referred to as 

                                                 

1 i.e., cyclical behaviour that repeats itself every several years. 
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(El Niño and the Southern Oscillation) ENSO” (Hammer, Hansen et al. 2001). ENSO is a 

naturally occurring phenomenon with significant impact on the worldwide climate 

(Ropelewski and Halpert 1987, 1996). ENSO could have positive and negative effects on 

society and environment; meanwhile to a greater extent of disadvantageous impacts (Hilario, 

de Guzman et al. 2009). ENSO related pervasive anomalous weather is one of the most 

critical topics faced by agriculture. The ENSO cycle could affect agriculture via the 

following: (i) effect on crop production due to the influence of ENSO in temperature and 

precipitation (Naylor, Falcon et al. 2002); (ii) pest damage because of providing the 

conditions for the growth of fungi and insects in weather conditions during ENSO event 

(Rosenzweig, Iglesias et al. 2000); (iii) ENSO-induced hazardous weather conditions like 

severe drought, flooding and storms (Changnon 1999).  

The overall objective of this research is to determine the relationship between climate 

extremes, associated with ENSO cycle, and world major grain production. In years when 

severe droughts occur in major food-producing countries, crop losses can affect the global 

food supply. Any deterioration in a staple crop production would acutely have a negative 

effect on food security. Understanding ENSO-induced global production shocks can provide 

beneficial means to improve food security (Gommes, Bakun et al. 1998) and famine deterrent 

policies. 

1.1 El Niño and the Southern Oscillation 
The acronym ENSO is an aggregate of a naturally occurring two-way interaction 

between the ocean (El Niño) and the atmosphere (Southern Oscillation) in the tropical Pacific 

Ocean (Hilario, de Guzman et al. 2009). El Niño is an event with anomalous appearance of 

warm sea surface temperatures (SST) in the central and eastern equatorial Pacific Ocean. 
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Southern Oscillation (SO) is an atmospheric pressure oscillation between the central/eastern 

Pacific and the western Pacific. These two aspects of the same coupled ocean-atmosphere 

phenomenon (Bjerknes 1966, Bjerknes 1969) are highly correlated (Trenberth and Hoar 

1996). In turn, the El Niño-Southern Oscillation is the most significant climate system 

correlated with year-to-year weather variability and violent events (Bouma, Kovats et al. 

1997). This altering re-occurring interaction leads to extensive repartition of key rainfall-

producing system (Rasmusson and Carpenter 1983, Allan 2000). 

ENSO is the second most important source of weather variation which creates 

considerable share of short term climate variation around the world, just following the 

seasonal cycle (Glantz 2001, Rosenzweig, Iglesias et al. 2001, Goddard and Dilley 2005). In 

some regions, ENSO explains almost 50 percent of the total variation in local weather (IRI 

(a)). Among all climate events, ENSO is distinctive for its intensity, predictability and 

universal effect (McPhaden, Zebiak et al. 2006). The most direct influence of ENSO on 

regional climate patterns are observed in the nearest area to the tropical Pacific. However, 

signals of its effect can transform global seasonal temperature and precipitation (Kiladis and 

Diaz 1989, Vedwan and Broad 2003). These shifts, known as teleconnections (Trenberth, 

Branstator et al. 1998), arise from the affection of the upper atmosphere from tropical sea-

surface temperatures (Fedorov and Philander 2000). 

To summarize, ENSO is a climate phenomenon with a genesis region in the Pacific 

Ocean but has far-reaching consequence for worldwide weather, and is particularly linked 

with droughts and floods (Kovats, Bouma et al. 2003). There are three ENSO phases known 

as El Niño (warm tropical Pacific SSTs), La Niña (cold tropical SSTs) and Neutral (non El 

Niño or La Niña) (Chen, McCarl et al. 2001, Hanley, Bourassa et al. 2003). Every episode 

has a dissimilar well-defined character (Trenberth and Stepaniak 2001) that vary from 
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relative strengths, maturity, season inception and ending, duration and spatial extent of SST 

anomalies peak in the tropical Pacific (Lyon and Barnston 2005). El Niño and La Niña 

demonstrate mirror extremes of the ENSO event. During El Niño, global temperature 

increase 0·5ºC on average (Kovats, Bouma et al. 2003), however precipitation variances are 

heterogonous (Ropelewski and Halpert 1987). In general, El Niño (La Niña) phases are 

associated with a warming (cooling) temperatures in the tropical Pacific and Indian Ocean 

that attenuate (intensify) precipitation in the western (eastern) Pacific area (Allan, Lindesay et 

al. 1996). 

A number of severe and prolonged ENSO events have been recorded in the late 20th 

century (Trenberth and Hoar 1996), as well as the two most extreme El Niños (1982-1983, 

1997-1998) and La Niñas (1988-1989, 1973-1974) (Gergis and Fowler 2009). The historical 

incidence of El Niño events indicate that occurrences have been more powerful and repeated 

since the 1980s, a pattern likely connected to global warming (Timmermann, Oberhuber et al. 

1999, Trenberth 1999). ENSO events influence almost every aspect of human society: disease 

outbreaks (Kovats 2000, Kovats, Bouma et al. 2003), natural disasters (Dilley and Heyman 

1995, Ward, Jongman et al. 2014), energy demand (Collins 2007), availability of water 

resources (Kahya and Dracup 1993, Chiew, Piechota et al. 1998, Barton and Ram ı´ rez 

2004), forest fires (Kitzberger, Swetnam et al. 2001, Siegert, Ruecker et al. 2001), animal 

movements (DeLong and Antonelis 1991, Paxton, Cohen et al. 2014), fishery catch 

fluctuations (Johnson 1988, Garcia, Vieira et al. 2003), low and high agricultural yields 

(Selvaraju 2003, Iizumi, Luo et al. 2014), price fluctuations (Keppenne 1995, Ubilava and 

Holt 2013), the economic welfare (Chen, McCarl et al. 2002, Cashin, Mohaddes et al. 2014), 

and many others (Wootton, Power et al. 1996, Aguilar and Vicarelli 2011, Bayer, Danysh et 

al. 2014, Danysh, Gilman et al. 2014). Given the global importance of ENSO, the World 
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Meteorological Organisation (WMO) updates meteorological and oceanographic data on a 

quarterly basis to monitor and forecast ENSO episodes, in association with the International 

Research Institute for Climate and Society (IRI) and about 28 leading centres around the 

world. 

1.1.1 Background of ENSO 

In the 1500s fishermen of Peru and Ecuador begun to observe an unusual warming of 

sea water along the coastal areas around winter time, which would repeat itself every few 

years (O’Brien, Zierden et al. 1999). Normally sea surface temperature off Peru coastal is 

colder than in the equatorial region. This is for the northward-moving Peru current that push 

back the surface water offshore. The upwelling of the nutrient-enriched cold water is an 

appropriate source for fish also a basis of Peruvian anchovy fishery affluence (Ramage 1986). 

At the beginning of each year, a warm southward current modified the cool waters. 

Fishermen usually took benefit of this interval to repair their equipments (Wallace and Vogel 

1994). Every few years, however, this anomalous warming would start earlier than expected, 

extend into early summer (Wallace and Vogel 1994), and lasted over a year (Ramage 1986). 

Unusual warm waters flowing south increased the sea-surface temperature significantly and 

fish population declined due to the undiserable temperature and lower nutrients (Ahrens 

2012). Further, the Peruvian geographers observed the stronger onset of the warm period that 

was parallel to an extraordinary oceanic and climatic occurrence in some years (Wang and 

Picaut 2004, Wang and Fiedler 2006). Since this phenomenon occurred around Christmas, 

the term El Niño (Spanish for "the Christ Child") was coined by fishermen (Wallace and 

Vogel 1994, Trenberth 1997, Glantz 2001) at the end of 19th century (Wang and Picaut 

2004). With the arrival of foreign scientists to Peru in early 20th century, the identification of 

ENSO begun in the world's scientific society (Lobell 1942). Thereafter, they recognized El 
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Niño as a far-reaching event in related to the tropical Pacific ocean warming (Wang and 

Picaut 2004). 

Towards the end of the 19th century, Hildebrandsson realised an osciliation at the 

western and eastern Pacific atmospheric pressure (Holton, Dmowska et al. 1989). Later, 

Lockyer and Lockyer (1902a) declared the duration of 3.8 years for this fluctuation. Using 

data from 95 stations convinced them that fluctuation was almost worldwide (Lockyer and 

Lockyer 1902b, Lockyer and Lockyer 1904). The occurrence of the violent famine during 

1876-1900 caused 25 million fatalities and induced British scientist to investigate the reason 

of the Indian monsoon rainfall failure (Koutavas 2011). In 1904, Sir Gilbert Walker, a British 

mathematician started working with British Colonial Service as a Director General of the 

meteorological observatory. To find out the reason for Asian monsoon oscillations, he 

classified world weather records associated the sea level pressure fluctuations between South 

America and India-Australia. He observed a “transpacific linkage of atmospheric pressure 

systems” (Ramage 1986) which he referred to as a Southern Oscillation (Walker 1924). He 

found that outstanding global climate variations occurs every few years were correlated with 

the Southern Oscillation (Walker 1923). The Southern Oscillation is a large scale see-sawing 

in atmospheric pressure of tropical sea level between the eastern and western sides of the 

Pacific. Additionally, monsoon precipitation variation connection with Southern Oscillation 

was defined by Walker and Bliss (Walker and Bliss 1932). 

Typically, in the south central Pacific, the sea level pressure (SLP) is relatively high 

compared to the Indian Ocean and the Northern Australia region, along with the easterly 

trade winds, a net air movement at low latitude from east to west. Every few years the 

weakening of the sea level pressure difference between east and west caused relaxed trade 

winds, leading to drought conditions in the western Pacific region. Walker determined the 
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Southern Oscillation Index (SOI) to quantify the event. SOI is defined as the difference of sea 

level atmospheric pressures between the western and eastern Pacific (Ramage 1986). 

Barometer data records in this region date back to the 1880's (IRI (b)). 

After 1950-60s scientist became aware that El Niño was not just a coastal phenomenon 

in Peru (Wang and Picaut 2004, Wang and Fiedler 2006). Although the warming originates in 

the tropical Pacific Ocean, progresses westward along the equator (Wang and Fiedler 2006). 

Jacob Bjerknes (1969) acknowledged that El Niño and Southern Oscillation are oceanic and 

atmospheric aspects of the same phenomenon (ENSO) (Rasmusson and Wallace 1983, Wang 

and Picaut 2004, Wang and Fiedler 2006). He revealed the connection of ocean warming and 

Southern Oscillation (Ramage 1986). Primary means of this connection identification was El 

Niño based studies at late 1950s relying on conventional merchant ship data (Rasmusson and 

Wallace 1983). A review of the 1957-1958, 1963-1964, 1965-1966 of El Niño and Southern 

Oscillation data by Bjerknes confirmed the large scale ocean-atmosphere interaction in the 

eastern side of tropical Pacific (Rasmusson and Wallace 1983, Wang and Fiedler 2006). For 

the first time, satellite imagery was applied to determine the central and eastern equatorial 

region, which faced atypical heavy rainfall during warm sea-surface temperature event 

(Rasmusson and Wallace 1983). Bjerknes found that SST anomaly following rainfall 

variation is related to equatorial trade wind transformation. Following Bjerknes, Wyrtki 

(1975) developed a new framework about El Niño onset. He made use of extensive record of 

tide gauges to monitor tropical Pacific sea level (Wyrtki 1961, Wyrtki 1977). Wyrtki 

recognized that El Niño is enforced by sea level heights variation through the expansion of a 

countercurrent (Wyrtki 1977). 

ENSO study was not seriously considered until 1982-83 extreme El Niño. Lack of 

recognition of this severe warm phase up to the full evolution motivated the tropical climate 
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research community to investigate of ENSO identification and forecast (Wang, Deser et al. 

2012). In this regard, the Tropical Ocean Global Atmosphere program (TOGA), as a part of 

the World Climate Research Programme (WCRP), focused on ENSO study from the early 

1980s to mid-1990s. There was a budding interest in ENSO studies during that era and 

significant progress performed, including robust definition of worldwide ENSO-induced 

precipitation (Ropelewski and Halpert 1987, Ropelewski and Halpert 1989) and temperature 

(Halpert and Ropelewski 1992) distribution, determine the first deterministic forecasting 

model to predict an El Niño event (Cane, Zebiak et al. 1986), set up observing system to 

monitor and predict ENSO (Hayes, Mangum et al. 1991, McPhaden, Busalacchi et al. 1998) 

and great improvement in ENSO cycle knowledge and its global teleconnections (Neelin, 

Battisti et al. 1998, Trenberth, Branstator et al. 1998). 

Subsequent to 1997-98 El Niño, which is the most sever in the 20th century (McPhaden 

1999, Hossain, Alam et al. 2000), the world's attention was drawn to this phenomenon and its 

global impact. It was a turning point in studies documented the ENSO. In a way that, more 

than half of the related literatures since 1966 have appertained to 2000-2005 (McPhaden, 

Zebiak et al. 2006). 

1.2 Quantitative evaluation of ENSO anomalies 
Zopf, Short et al. (1978) determine the first quantitative ENSO definition. They 

classified ENSO events according to the strength and onset time as strong, moderate, weak, 

or very weak. The widely used indices that typically applied to categorize El Niño or La Niña 

events consist of: 

• Southern Oscillation Index (SOI) derived from surface atmospheric pressure 

• Sea surface temperature (SST) across the Pacific Ocean. 
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The SOI and SST indices each describe ENSO events in phase and intensity. 

1.2.1 Southern Oscillation Index 

SOI is calculated from the monthly or seasonal fluctuations in the surface air pressure 

between Tahiti and Darwin. Sustained negative (positive) SOI values below (above) -8 (+8) 

indicate an El Niño (La Niña) (Australian Bureau of Meteorology). SOI values and the El 

Niño and La Niña phases are illustrated in Figure 1.1. Since the SOI value can indicate local 

weather anomalies, major phenomenon usually measured using 5-month mean (IRI 2015b). 

Since the SOI measurement is based on two different locations with varying conditions, it is 

considered as a noisy index (Meyers, O'Brien et al. 1999). 

 

Figure 1.1. Southern Oscillation Index (monthly values and five-month weighted mean). 

Source:(Australian Bureau of Meteorology) 

1.2.2 Oceanic index 

The temperature-based index measures the average sea surface temperature anomaly 

(SSTA) over different areas of the Pacific Ocean (Table 1.1 and Figure 1.2). SSTA is the 
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difference between the real SST and the climatological one. The observed SST comes by the 

Tropical Atmosphere Ocean (TAO) array data which is collected from a network of about 70 

deep-ocean buoys in the equatorial Pacific Ocean (Coles 1999). Sea surface and sub-surface 

temperatures transmission, atmospheric status, water currents and wind data are recorded by 

the buoys in the different regions. Values are derived using a real mean standardized anomaly 

of SSTs from a prescribed climatological period. 

Table 1.1. The latitude and longitude ranges of particular region for SST indices  

Index Latitude Longitude 

Niño1+2 0°-10°S 90º-80ºW 

Niño3 5°N-5°S 150º-90ºW 

Niño3.4 5°N-5°S 170º-120ºW 

Niño4 5°N-5°S 160ºE-150ºW 

JMA 4°N-4°S 150º-90ºW 

 

 

Figure 1.2. Areas in the Pacific Ocean over which sea-surface temperatures are averaged for Niño 
indices. 

Source:(NOAA) 
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The Niño1+2 region (along the west coast of South America) is the first to get warm 

(IRI 2015b), which is quick to react to seasonal and El Niño-related variations (Glantz 2001). 

The temperature variation among Niño3 (east Pacific cold tongue) is more than others (IRI 

2015b), while has much less reaction to continental impacts (Hanley, Bourassa et al. 2003). 

SSTs Shift in Niño4 region (West Pacific warm pool) are connected to changes of intense 

east-west temperature gradients along the longitudinal equator (Glantz 2001). The level of 

precipitation in Southeast Asia is explained by Niño4 (IRI 2015b). Niño3.4 (middle of Niño3 

and Niño4) SST index is the most commonly used because of the well-captured SST 

variability and precipitation shift (NOAA, IRI 2015b). Bamston, Chelliah et al. (1997) define 

Niño3.4 as a stronger representative for ENSO event than Niño3 for being more attached 

with SOI. The Niño3.4 index has more explanatory power in describing ENSO evolution 

(Trenberth and Stepaniak 2001) and shows the greatest overlap with event history (Trenberth 

1997). The JMA index was assigned by the Japan Metrological Agency. Hanley, Bourassa et 

al. (2003) Suggest that JMA index should apply in combination with of one of the SOI, 

Niño3.4 or Niño4 indices. 

The El Niño or La Niña classification is based on exceeding SSTAs beyond a threshold 

in the equatorial Pacific appointed region. SSTAs equal to or greater than 0.5°C in the 

Niño3.4 region are stating of ENSO warm phase (El Niño) conditions. Anomalies less than   

–0.5°C are indicative of cool phase (La Niña) conditions (Figure 1.3). This approach of 

NOAA is the objective procedure in this research. ENSO events that are defined using 

Oceanic Niño Index (ONI) follow the five consecutive 3-month running mean SST anomalies 

exceeding the threshold. 
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Figure 1.3. Time series plot of SSTA in Niño3.4 region. 

Values exceeding threshold of ±0.5°C illustrate ENSO event (Pierce 2011). 

1.3 Historical evidences of the relationship between ENSO and 

global food security 
 Agriculture has been described as “the most weather-dependent of all human 

activities” (Oram 1985). Even with recent advances in agricultural technologies, climate and 

weather are still the key elements in determining productivity because solar radiation, 

temperature, and precipitation are the most important factors in crop growth (Rosenzweig, 

Iglesias et al. 2001). Temporal and spatial variance of meteorological conditions and storms 

can affect soil conditions, water availability, agricultural yields and susceptibility to pest and 

pathogen infestations. 

“Variability in agricultural production affects risk on at least five levels: individual 

farms, farming regions within nations, nations, groups of nations, and the global food 

system” (Rosenzweig and Hillel 2008). Food security in different aspects of availability, 

accessibility, utilization and stability affect by climate (Selvaraju 2011). The livelihood and 

subsistence of global rural population, containing over 3.3 billion population (World Bank(a) 

2016), are directly dependent on agriculture. Corollary, they are the most vulnerable to 

climatic events (Selvaraju 2011). Annually 2.2 billion tonnes of cereal production supply a 
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significant part of the required food and feed (FAO 2007). Any meteorological disaster could 

be a significant restricting factor for stable food production.  

The forms and level of ENSO impact depend not purely on the length and strength of 

event, but also on the status, vulnerability and sensibility of affected system, level of 

population and its biotic community (Rosenzweig and Hillel 2008). The 1972 anomalous 

climate had a detrimental impact on global food production and food security. The former 

Soviet Union experienced one of the worst grain production shortfalls due to the intense 

drought. To recover the grain especially wheat and maize, it resorted to great quantities of 

import from the U.S. (Glantz 2001, Rosenzweig and Hillel 2008). This, in turn, exacerbated 

food shortages in the world (Trager 1975). For instance, there was a global shortage of supply 

in grains, particularly wheat and maize, in the world food market. A severe drought during 

summer caused a significant reduction in rice production in Southeast Asia, especially in 

Indonesia, Thailand and the Philippines. Thailand banned rice export and there was no 

international rice market for nine months (Dawe 2012). In addition, the impact of the 1972-73 

El Niño on the Peruvian fish industry deteriorated global food supply. The decline in fish 

catches was a threat for food security. The scarcity of fish meal and its high price in the 

market lead poultry industry to the soymeal as a second best substitute. This enticed U.S. 

farmers to plant soybean instead of wheat. This was done when wheat was in great demand 

and global food crisis was serious (Glantz 2001). As a result of the climatic fluctuation, 

global food production per capita and food reserves collapsed for the first time in more than 

20 years (Glantz 2001).  

The El Niño of 1982–83 was one of the strongest events of the 20th century. It was 

considered the strongest in more than 400 years at the time (Rosenzweig and Hillel 2008), 

which caused at least US$13 billion of loss and 1,500 deaths (Pfaff, Broad et al. 1999). In 
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Peru, “cotton, sugarcane, rice, and potato fields were silted or damaged by erosion” 

(Rosenzweig and Hillel 2008). Rising staple food prices were to the extent that made them 

unaffordable for the poor (Cavledes 1985). During the flooding in Brazil, in total, 1.6 million 

tonnes of crops including maize, soybean, cotton, coffee, potatoes, beans, and rice were 

damaged. El Niño-related storms in 1983 caused about US$200 million damage in 

agricultural production in California. Flooding in Mississippi and Louisiana resulted in 

damage of 120,000 hectares of farmland, 17 percent loss of the cotton crop, death of 100,000 

poultry and 1,000 cattle. Maize production in the central U.S. was as half of the previous year 

that means US$5.5 billion loss. The estimated losses for soybean were US$3.4 billion, for 

sorghum and tobacco were US$500 million and US$1.1 billion, respectively (Rosenzweig 

and Hillel 2008). 

 The 1997–98 El Niño events again shocked the scientific community for their sudden 

onset and large amplitude (McPhaden 1999). The global economic cost of this was about 

US$100 billion, also 110 million people affected (RAO 2008). The fishing industry in Peru 

again disrupted, as well as the transportation systems (Rosenzweig and Hillel 2008). In the 

southeast South America, rich soil moisture related to a typical wet El Niño phase leads to a 

record in Brazil and Argentina for soybean crop, whereas in Central America export 

vegetable production damaged because of drought. The price of national fresh production and 

strawberries rose 8 percent and 100 percent, respectively (Changnon 2000). Heavy rains and 

flooding in California, Florida and Arizona caused losses to fruit, vegetable and cotton 

(Adams, Chen et al. 1999). Estimated El Niño associated total U.S. agricultural losses ranged 

from US$700 million (Changnon 2000) to US$1.7 billion and US$2.2 to US$6.5 billion loss 

for La Niña (Adams, Chen et al. 1999). 
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The El Niño during 1997-98 caused drought in Indonesia which resulted in 3.5 million 

tonnes cereal shortfall (CARE 1998). Extensive forest fires in late 1997 and early 1998 

affected nearly 5.2 million hectares (Siegert and Hoffmann 2000). Rice production reduced as 

a result of harvest area decrease due to water shortage was estimated about 4 percent. Other 

food crops production reduced around 4 percent to 10 percent in 1997 and 1 percent to 6 

percent in 1998 (Irawan 2002). Rice production decreased simultaneously with the economic 

crisis, which caused a 300 percent rise in rice prices (Subbiah, Kishore et al. 2001). In South 

Asia, there was a reduction in coffee and palm oil production which lead to a rise in 

international prices (Changnon 2000). The El Niño induced heavy rains which destroyed 

beans and Irish potato fields in Kenya. Banana and root crops damages were in the lowest 

level (Takaoka 2005). Floods in East and Southern Africa caused large scale crop damage in 

the field and in stores. In addition, the flooding affected sub-region’s infrastructure, like 

inundating roads, rail lines, bridges, and disrupted food and non-food items transportation 

(CARE 1998). 

1.4 The significance and objective of this study 
The overall objective of this thesis is to estimate the relationship between ENSO and 

the major cereal producing regions in the world. This study will measure the effect of ENSO 

on wheat, rice and maize production, in the main producer countries using a regression 

model, then the ENSO effect on the global-mean production of the considered crops has 

quantified. The socio-economic importance of these crops in the world is enormous, as 

cumulatively they account for almost 44 percent of all calories and 37 percent of all protein 

of the worldwide human diet (Reynolds 2010). 
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 From an agricultural and food security point of view, investigating the potential impact of 

ENSO on global cereal crops production is important in these respects: (i) What has been the 

El Niño and La Niña impact on crop production? (ii) Are some countries more vulnerable to 

this impact than others? In the face of climate anomalies, the level of preparation and reaction 

of farmers, regional policy makers, inputs suppliers and insurers could influence farm 

productivity at regional and national levels. The connectivity of the global food system 

provides an interactive condition such that a negative climatic effect in one region can be 

mitigated by other regions. Although, limiting outputs and rising commodities price can make 

a benefit for some regions. 

Research relating to the ENSO influence on agriculture has been done principally on a 

region or country basis and studies about the ENSO impact on global scale are infrequent. 

Regional research could manifest the production variability and the regional impact 

comparison can help provide a broader perspective context. But, a global study can provide a 

clear consistent pattern instead of fragmented elements. Understanding the overall impact of 

ENSO on global production is an important tool for management food security in the world. 

In addition, increasing the regional effectiveness of food security management, and in turn, 

needs a deeper global understanding and international scientific and strategic cooperation. 

This study will demonstrate how ENSO event economic consequences can be evaluated 

by using historical climatological records, including sea-surface temperature, air temperature 

and precipitation. In this study an econometric models applied to estimate the production 

variability caused by the El Niño and La Niña phase on various cereals, which constitute a 

staple food in many diets across the globe. The main feature of this framework is a regression 

model which consists of climatic and economic variables jointly.  
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This study offers a comprehensive analysis of literature on topic of economic 

consequences, and particularly the production impacts of ENSO shocks. Additionally, this 

research contributes to the ENSO-related literature in a number of directions: 

i. Assessing the global effect of ENSO on major crops, net of temperature and 

precipitation (thus potentially measuring the effects of extreme weather conditions 

due to ENSO, which tend to be camouflaged in usual weather variables), 

ii. Examining the nonlinear (asymmetric) effects of ENSO (thus recognizing that El 

Niño effects are not mirror images of La Niña effects, and that large ENSO shocks 

result in disproportionally large production changes, 

iii. Incorporating economic variables in the regression setting, such as expected price, 

(thus controlling for an important economic variable affecting crop supply), 

iv. Including the largest possible panel of countries in the study, to analyse the region-

specific peculiarities of the ENSO-production relationship, and to best approximate 

the global production effect of the ENSO anomalies. 

1.5 Summary 
Climate and agriculture are naturally interdependent. The El Niño Southern Oscillation 

(ENSO) phenomenon is significantly responsible for seasonal climate fluctuations in many 

regions of the world. ENSO-related pervasive anomalous weather is one of the most critical 

issues faced by world economies. The issue is particularly relevant for countries relying on 

agricultural production as well as food imports. The simultaneity of the ENSO impact in 

various parts of the world provides a probability of spatial correlation of related effects. This 

statement is more controversial for leading crops in the western Pacific regional countries and 

Central and South America western coastal regions. From social and economic standpoints, 
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wheat, maize and rice are the most important crops in the world that provide required 

components of more than half of diet of the world’s population.  

The objective of the research is to present a better understanding of the dynamics of 

ENSO in world wheat, maize and rice production. The motivated points to examine the 

impact of ENSO cycle on global cereals production are: (i) the importance of these cereals as 

a main source of food in the world, (ii) the vulnerability of crops to drought, and (iii) 

concentration of the most key producer where most are affected by the ENSO. Despite the 

actual well-evidenced ENSO effects on wheat, maize and rice in some of the key countries, 

there are not many global studies. The effect of ENSO on the economics of cereal production 

is not broadly assessed. Finding the mechanisms by how ENSO impacts cereal production at 

a global scale will be crucial for a comprehensive assessment of global food security.
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Chapter 2. Review of Literature 
The El Niño-Southern Oscillation is the result of the interaction between equatorial sea 

surface temperature and atmosphere, causing broad climate variation. The El Niño-Southern 

Oscillation has been developing climate anomalies, especially in the spatial distribution of 

precipitation. EL Niño phases lead to increased rainfall across the east-central and eastern 

Pacific and drought in the western Pacific. Typically El Niño makes an expansion in drought 

condition in East and South Asia, southern Africa and Australia. The last ten most severe El 

Niños caused widespread drought in China, India, Indonesia, even Brazil and South Africa 

(Berry and Okulicz-Kozaryn 2008). 

Wassmann, Jagadish et al. (2009) demonstrate that drought is a principle climatic 

variable that leads to yield reduction. Drought is a main source of yield and quality reduction 

in cereal crop in many of the world’s cereal producing region (Sheng and Xiuling 2004, 

Bagci, Ekiz et al. 2007, Akanda 2011). Paddy water requirement is high, relative to other 

cereals (Toole 2002), and is therefore more sensitive to drought. The main constraint factor of 

rice production in Asia, especially in rainfed areas, is drought (Pandey, Bhandari et al. 2007 

a). In Asia 23 million hectares of rice-growing land, including subhumid areas, are frequently 

affected by drought (Pandey, Bhandari et al. 2007b). Most of the coastal and delta regions in 

Asia are exclusively allocated to rice cultivation (Wassmann, Jagadish et al. 2009). In 

addition, these regions are susceptible to severe droughts caused by ENSO (Dawe, Moya et 

al. 2009). 

Much of previous research involving the ENSO effect on agricultural production, has 

revolved around five general themes: (1) Detecting the occurrence of ENSO and its impact on 

climate; (2) ENSO-induced effects of inter-annual variation in temperature and precipitation 

on production; (3) ENSO effect on agricultural commodities prices due to shortage or excess 



20 

 

supply; (4) Macroeconomic performance affected by ENSO; and (5) Economic benefits of 

ENSO forecasting. This chapter is designed to provide a review of the relevant literature. 

2.1 El Niño-Southern Oscillation 
In the tropical Pacific region, during normal condition, trade winds regularly blow from 

the eastern Pacific high pressure to the western Pacific low pressure (Figure 2.1). The 

predominant easterly winds tend to push warm surface water from the eastern and central 

equatorial Pacific regions (South America coastal regions) toward west (Asia and Australia) 

and leads to an increase in water temperature due to exposure to the sun. Consequently, the 

warm surface water along the equator provides increase precipitation in the western Pacific 

region. Meanwhile, an upwelling in the eastern Pacific region provides cold and nutrient-rich 

water that supports the fishing industry of South America. In addition, surface water, induced 

by pressure pattern, causes a rise in sea level in the western Pacific. From the thick layer of 

warm water in the western Pacific Ocean, a weak current flow along the equator to South 

America referred to as the “Equatorial Counter Current”.  

 

Figure 2.1. Normal contidion in the equtorial Pacific 

 Source: (Australian Bureau of Meteorology 2012) 

Patterns of atmospheric pressure at sea level change periodically; higher in the western 

Pacific region and lower in the east. This leads to weakened trade winds. During the period of 
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switching between low-and high-pressure systems, westerly winds replace trade winds 

(Figure 2.2). The atmospheric pressure inversion at the both ends of eastern and western 

Pacific is referred to as the “Southern Oscillation”. Westerly winds develop an equatorial 

counter current and push warm water to the eastern and central Pacific regions. This causes 

an elevation in the eastern Pacific surface. This makes eastern and central Pacific sea surface 

temperature (SSTs) warmer, relative to normal condition. Anomalous warming in the 

eastern/central equatorial Pacific sea surface temperature commonly is noted as “El Niño” 

(Philander 1985). The interaction between warmer SSTs and atmosphere, in turn, further 

weakens the trade winds. The simultaneity of both anomalies in sea surface temperature (El 

Niño) and sea level pressure (Southern Oscillation) is the El Niño-Southern Oscillation 

phenomenon (ENSO). Since, El Niño arises with a great anomaly in the Southern Oscillation; 

ENSO is the terminology that describes the joint phenomena (Nicholls 1991).  

 

Figure 2.2. El Niño condition in the tropical Pacific. 

Source: (Australian Bureau of Meteorology 2012). 

The interaction of the alternating warming of sea surface temperature and Southern 

Oscillation is locally known as El Niño along northern Peru and southern Ecuador coastal 

region (Trenberth 1997). The ENSO cycle is comprised of three phases: “warm tropical 
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Pacific SSTs (El Niño), cold tropical Pacific SSTs (La Niña) and near neutral conditions” 

(Hanley, Bourassa et al. 2003). Oscillations leading to warming of the sea surface are known 

as El Niño events; those leading to cooling of the sea surface are known as La Niña events. 

During La Niña (Figure 2.3), the counterpoint of El Niño, intensified trade winds accumulate 

cold surface water in the western coast of South America. The result is colder-than-normal 

SST in the eastern and central Pacific. As a result, a thick layer of warm water and heavy 

rainfall form in the western Pacific regions. 

 

Figure 2.3. La Niña condition in the tropical Pacific. 

Source: (Australian Bureau of Meteorology 2012). 

The transition between a warm and a cold phase happens through a delayed negative 

reaction of ocean dynamic regulation (Neelin, Battisti et al. 1998, An and Kang 2000, An and 

Jin 2001). El Niño cycles typically recur in a time period of two to seven years (Hanley, 

Bourassa et al. 2003, Wang and Fiedler 2006) and persist for about two years (Brunner 2002). 

Timmermann, Oberhuber et al. (1999) estimate that the probability of the occurrence of the 3 

different phases of ENSO is different and is 0.238 for El Niño, 0.250 and 0.512 respectively 

for La Niña and neutral phases. However, global climate change may increase the frequency 

and intensity of ENSO (Timmermann, Oberhuber et al. 1999), between 1976-95 the 

frequency of El Niño increases, unlike La Niña phase (Trenberth and Hoar 1996). ENSO 
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frequency from once per 8 years during 1876-1976, increases to once per 4 years during 

1977-2000 (Irawan 2002). 

ENSO is broadly identified as a key determinant of climatic anomalies in the regions 

adjacent to the Pacific Ocean and even farther regions (Ropelewski and Halpert 1996, Mason 

and Goddard 2001). Despite the occurrence of ENSO in the tropical Pacific, the global 

weather and as a result crop production, commodity price, agricultural income or sectoral 

performance in different part of the world will be affected e.g.(Nicholls 1985, Keppenne 

1995, Adams, Chen et al. 1999, Messina, Hansen et al. 1999, Roberts, Dawe et al. 2009, 

Ubilava and Holt 2013, Liu, Yang et al. 2014). 

2.2 The effect of ENSO on world climate 
The ENSO cycle has been a feature of Earth’s climate for 130,000 years (Sarachik and 

Cane 2010). ENSO is accountable for such historical recorded events like biblical droughts in 

Egypt (Eltahir 1996). El Niño influences the weather near Peru dates back to the year 1525 

(Ortlieb 2000). The interactions between ocean and atmosphere in the tropical Pacific region 

have been linked to climate fluctuations in the world (Ropelewski and Halpert 1987). A great 

number of studies investigate the relationship between ENSO and rainfall. Ropelewski and 

Halpert (1987) conducted the most comprehensive one that applied worldwide data from 

2000 rainfall stations. 

 El Niño-Southern Oscillation event can change the weather patterns in more than 60 

percent of the world (Kandji, Verchot et al. 2006). Some studies indicate that rainfall and 

temperature variance patterns are extremely consistent with ENSO index oscillations (Wang 

and Fiedler 2006, An 2009, Cai and Cowan 2009). Rasmusson and Carpenter (1982) show 

ENSO-related variation in the tropical region and far-reaching effect in the world. The ENSO 
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effects on the tropics are direct and intense, especially in monsoon-affected countries in Asia, 

Australia and Africa (Sikka 1980, Holland 1986, Quinn 1987, Janowiak 1988, Kumar, 

Rajagopalan et al. 1999). In addition, ENSO accounts for a significant proportion of 

precipitation and temperature changes around the world (Hansen, Jones et al. 2001). The 

major global El Niño impact is exceeding the mean temperature anomalies above the trend 

(Salinger 2005). Evidence shows that precipitation in the world is affected by ENSO events, 

although the extent of the effect differs with region (Waddington 1993, Stone, Hammer et al. 

1996). Hsiang and Meng (2015) show +1°C increase in Niño3.4 index results in +0.27°C rise 

in tropics local temperature and -4.6cm rainfall reduction. 

 ENSO strength and the severity of effects are linked, however, it is relatively weaker 

for La Niña events (Lyon and Barnston 2005). El Niño causes an eastward shift in tropical 

rainstorm pattern, so that, higher than normal air pressure expansion and abnormally dry 

conditions or drought arise over northern Australia and Indonesia and drier winters in 

southeastern Africa and northwestern India. Contemporary, in the central and eastern Pacific 

and west coast of South America rainfall level excessively elevate (Salinger 2005). In 

general, droughts in the western Pacific, more than normal rains over equatorial coast of 

South America and the occurrence of storms and hurricane in the central Pacific are an El 

Niño-induced global climate variation (Cashin, Mohaddes et al. 2014). Almost opposite 

patterns happen during La Niña event (Salinger 2005). The global climatological effects of an 

El Niño and La Niña event are summarized in Figures 2.4-2.7.  
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Figure 2.4. Typical rainfall patterns in El Niño events during June through August. 

Source: (NOAA 2014). 

 

Figure 2.5. Typical rainfall patterns in El Niño events during December through February. 

Source: (NOAA 2014). 

Given the important role of rainfall as the primary source of soil moisture (Krishna 

Kumar, Kumar et al. 2004, Sivakumar, Das et al. 2005, Lobell and Burke 2008, Rosenzweig 

and Hillel 2008) and temperature (Wheeler, Craufurd et al. 2000, Luo 2011) in crops 

productivity, the following section will review the ENSO influence on precipitation and 

temperature. Since ENSO-induced rainfall variability is more effective on yield level (Shuai, 

Zhang et al. 2015). Consequently, there is a greater focus on rainfall variation. 
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Figure 2.6. Typical rainfall patterns in La Niña events during June through August. 

Source: (NOAA 2014). 

 

Figure 2.7. Typical rainfall patterns in La Niña events during December through February. 

Source: (NOAA 2014). 

2.2.1 Asia 

In east and south Asia, annual rainfall variations are associated with ENSO (Kinter III, 

Miyakoda et al. 2002, Hu, Wu et al. 2005). Strong El Niño events cause severe drought in 

Southeast Asia (Enfield 2003). Naylor, Falcon et al. (2001) find that May-August SSTAs in 

Niño3.4 region are negatively linked with September–December rainfall in Indonesia. Also, 

Naylor, Falcon et al. (2002) show that Niño3.4 SSTAs variations are highly associated with 

changes in September–December rainfall in Indonesia. Long run time series data from 1830 



27 

 

to 1953 indicate that 93 percent of dry years in Indonesia have coincided with El Niño events 

(Quinn 1987). In the Philippines, El Niño events cause a decline in rainfall (Trenberth 1997), 

versus La Niña events (Harger 1995). Some evidence has demonstrated the ENSO effect on 

rainfall in Sri Lanka (Kane 1998, Punyawardena and Cherry 1999). There is a negative 

association between El Niño and rainfall in one of the two primary rice growing seasons in 

Sri Lanka (Zubair 2002). El Niño and Indian monsoon are highly-correlated (Parthasarathy, 

Munot et al. 1988, Webster and Yang 1992, Webster, Magana et al. 1998), 72 percent of 

drought years of Indian summer monsoon rainfall are linked with El Niño (Varikoden, 

Revadekar et al. 2014). El Niño events are associated with droughts and La Niña with floods 

in India, but with a distinctive spatial distribution (Varikoden, Revadekar et al. 2014). 

Jintrawet and Buddhaboon (2011) find that El Niño events have a negative effect on annual 

rainfall in Thailand. ENSO covers almost half of the rainfall variations of China in 1997 and 

1998 (Lau and Weng 2001). Zhang, Sumi et al. (1999) investigate the effect of ENSO events 

on rainfall in different seasons of China and conclude the impact of ENSO varies in different 

seasons and areas. The results indicate that El Niño in its mature phase affects precipitation 

significantly, in China. The negative impact appears in the southern and northern regions of 

China, and the positive impact is in between. Tao, Yokozawa et al. (2004) declare during La 

Niña years summer mean temperature in northern China increases more than 1ºC, compared 

to normal years. Also, summer rainfall in northwestern China decreases during El Niño, 

whereas, it increases in southern provinces during La Niña events. Nazemosadat and Cordery 

(2000) found the Southern Oscillation and autumn rainfall in Iran are negatively correlated. 

The monsoon rainfall in Nepal, containing 80 percent of the annual rainfall, and SOI are 

highly positive correlated (Shrestha 2000). In Pakistan, monsoon rainfall is lower than normal 

in El Niño years and rainfall reduction is highly significant during July-September. In 

addition, summer monsoon rainfall intensifies in the year immediately after El Niño event 
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(Mahmood, Khan et al. 2004). Analysis of rainfall time series data during 1950-1992 in 

Bangladesh finds a tendency of reduction about 70 percent in El Niño years (Hossain, Alam 

et al. 2000). 

2.2.2 America 

Ropelewski and Halpert (1987) and (1989), were the first, to find the ENSO-induced 

temperature and rainfall variation in southeastern South America (Argentina, Brazil, 

Uruguay). Warm phase of ENSO presents positive rainfall anomalies during November–

February and cold phase causes less than normal rainfall during June-December. Grimm, 

Ferraz et al. (1998) state the anomaly level is larger in Uruguay than Argentina and Brazil. 

There is evidence that ENSO affects rainfall during November–February, in lower extent, and 

during October–December in southern Brazil and Uruguay (Diaz, Studzinski et al. 1998). 

Podesta, Letson et al. (2002) declare Argentina confronts with more rainfall than average 

during El Niño events, unlike La Niña. Wet summer during El Niño years that results in 

soggy fields in Argentina and extremely dry summer causes drought during La Niña years 

(Penalba and Robledo 2005, Pol and Binyamin 2014). El Niño events are associated with 

lower temperature in the southeast U.S. winter (Green, Legler et al. 1997). Izaurralde, 

Rosenberg et al. (1999) show the temperature and rainfall deviation of a moderate and strong 

El Niño event from normal condition in North America. They outline that, winters are 

warmer during both cases of El Niño; apart from the eastern U.S. (in moderate El Niño) and 

tropical Mexico regions (in strong El Niño). Warmer spring and summer seasons happen 

during a moderate and strong El Niño event, but not in subtropical Mexico and the U.S. (just 

in spring of strong El Niño). Except from Canada and Mexico (under moderate El Niño 

phase), temperature decreases in northern America during autumn. There is less than normal 

rainfall in summer in the U.S. and in autumn in Canada during typical El Niño event. Winter 
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rainfall reduces in Canada, subtropical Mexico and the U.S. Corn Belt in moderate El Niño 

event. In spring of a moderate El Niño, rainfall increases in Mexico and decreases in other 

regions. During strong El Niño, spring is wetter than normal years, except for Canada. 

Phillips, Rajagopalan et al. (1999) show summer temperature and rainfall in the U.S. Corn 

Belt are negatively and positively associated with Niño3 index, respectively.  

2.2.3 Africa 

The typical rainfall anomaly due to ENSO is a dipole rainfall pattern over Africa: 

Rainfall in northern and southern Africa is negatively associated with equatorial SSTA, 

whereas rainfall in eastern Africa is positively correlated with equatorial SSTA (Nicholson 

and Kim 1997, Camberlin, Janicot et al. 2001). Rainfall of the second half of the year 

represents the strongest correlation, and April–May season has the lowest correlation 

(Camberlin, Janicot et al. 2001). ENSO-related impact is more intense in eastern equatorial 

and south-eastern Africa (Nicholson and Kim 1997). Much of southern Africa observed drier 

than normal conditions during El Niño event (Mason and Tyson 2000, Mason 2001). Drought 

occurs mostly in December to March duration after El Niño onset (Ropelewski and Halpert 

1987). Also, there is 120 percent increase in the probability of the drought during El Niño 

(Thomson, Abayomi et al. 2003). On the other hand, in east Africa, the equatorial belt, flood 

occurrence is more likelihood during short rainy season (October-December) in warm phase 

of ENSO (Indeje, Semazzi et al. 2000, Philippon, Camberlin et al. 2002). Joly and Voldoire 

(2009) show Sahelian rainfall is statistically impacted by developing phase of ENSO, so that 

it is negatively associated with equatorial Pacific SSTA. El Niño events elevate the 

probability of drought occurrence in Sahel (Rowell 2001). Totally, northeastern and southern 

tropical climate regions in Africa are negatively linked to Niño3 index. This is relevant for 

Sahel rainfall and western Africa (Parts of the Gulf Guinea area). However, it is not 
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significant for northern summer season in last mentioned region (Camberlin, Janicot et al. 

2001). 

Receiving below than normal rainfall region in southern Africa during El Niño events is 

the belt that expands from east in southern/central Mozambique to west in Namibia, also the 

western half of South Africa. Rainfall decrease is more frequently in southern Mozambique, 

northern South Africa, eastern Zimbabwe, northern Namibia, and northern Botswana 

(USAID 2014). In Madagascar, drought and wildfire happen in El Niño years (Philander 

2008), or after El Niño events (Ingram and Dawson 2005). Cane, Eshel et al. (1994) show the 

strong link between rainfall in Zimbabwe and contemporary SSTA in Niño3 region, as well 

as, between a lead time of more than one year. Also, Phillips, Cane et al. (1998) find that 

seasonal rainfall during El Niño phase is less than of, both, normal and La Niña years in 

Zimbabwe. Wang and Fiedler (2006) observe the dry and wet spell frequencies in Zambia 

and Niño3.4 SST index are highly linked. El Niño years increase dry spell over Zambia 

during rainy season (December-February). During La Niña years, Zambia benefits from 

favourable rain. The History of ENSO event during 1972–2002 indicates that 92 percent of El 

Niño years were associated with moderate, extreme or severe drought in Nigeria. Onset and 

termination of rainy season is later and earlier than normal years, respectively (Ati, Iguisi et 

al. 2010). Main rainy seasons (JJAS) in Ethiopia response to El Niño inversely, unlike La 

Niña (Korecha and Barnston 2007). However, the small rainy season in Ethiopia boosts 

during El Niño (Wolde-Georgis, Aweke et al. 2010). South African summer rainfall and 

Niño3 index are linked in an opposite way. However, the spatial linkage of late summer 

rainfall is greater than early rainfall (Kruger 1999). 

In eastern Africa El Niño (La Niña) tends to bring above (below)-normal rainfall 

(Camberlin, Janicot et al. 2001). In Kenya, wetter (drier) conditions compared with normal 
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years observed during warm (cold) phase (Karanja, Mutua et al. 2000). Amissah‐Arthur, 

Jagtap et al. (2002) find that during El Niño years, rainfall on average is 72mm more than 

normal years and is 103mm greater during October-January in Kenya. Generally, during El 

Niño years, eastern Africa receives grater rainfall in October to March than normal years, that 

secondary crop season benefits from. Though, equatorial eastern regions (Kenya, Uganda, the 

United Republic of Tanzania, southern Somalia and southern Ethiopia) tend to have a great 

probability to suffer from floods (FAO 2014). El Niño events in northeastern region of 

southern Africa, including of northern Malawi, eastern Zambia, northern Mozambique, and 

Tanzania cause increase in October-December rainfall (USAID 2014). 

2.2.4 Europe 

The core mechanism of the European climate anomaly and ENSO linkage is not 

obvious (Ineson and Scaife 2009). ENSO impacts on Europe arise from an intermediate step 

between the tropical Pacific. The North Atlantic Oscillation plays a dominant role in shaping 

European weather and climate anomalies (Merkel and Latif 2002). 40 percent of the North 

Atlantic Oscillation variation can be explained by ENSO (Raible, Luksch et al. 2004). El 

Niño events in late winter tend to co-occur with negative North Atlantic Oscillation index, 

downward temperature and rainfall anomalies in Europe (Brönnimann, Xoplaki et al. 2007). 

El Niño-related weakening North Atlantic Oscillation response over Europe is consistent and 

making central Europe and the western Mediterranean wetter, and Scandinavia colder 

(Hurrell and Van Loon 1997, Merkel and Latif 2002). 

Studying European climate during the past 500 years, Brönnimann, Xoplaki et al. 

(2007) confirm a stationary connection between ENSO and late winter during the past 300 

years. In twentieth century, during El Niño late winter temperature anomaly in northeastern 

Europe is negative. Turkey presents positive temperature anomaly. Negative and positive 



32 

 

rainfall anomalies happen in around 45°N and in Norway and the southeastern Mediterranean 

region, respectively. Early winter, late winter and spring show different seasonal anomalies 

respect to ENSO, but the El Niño and La Niña effects are about symmetric. Later, Ineson and 

Scaife (2009) present evidence for El Niño cold and mild conditions of late winters, 

respectively, in northern and southern Europe. Europe tends to confront a relevant increase 

(decrease) of wintertime rainfalls under warm (cold) ENSO events, while the impact of 

ENSO appears to be more coherent in western Europe (Zanchettin, Franks et al. 2008). 

Winter rainfall increase during El Niño covers a wide belt from Central Europe to eastward 

across the Eurasian continent (Ineson and Scaife 2009). ENSO impact on Euro-

Mediterranean rainfall has been stable since the last half of the 20th century. This effect is 

seasonally varying and not as large as tropical anomalies, but it would be considerable for 

such a light rainfall receiving area. The early start to the rainfall season in western 

Mediterranean, during El Niño, causes a 10 percent rise in the autumn rainfall prior to the 

ENSO mature phase. The same amount reduction appears in the spring after a mature phase, 

due to earlier decay. ENSO-induced Euro-Mediterranean rainfall variability is significant 

during winter and spring in central and eastern Europe, as well as, during autumn and spring 

in western Europe and the Mediterranean region (Mariotti, Zeng et al. 2002). Southern 

Mediterranean and northern Europe, during El Niño, face a rainfall decrease (Ineson and 

Scaife 2009). Southern Europe, during summer and autumn, encounter increased rainfall in a 

predominant El Niño condition (Mariotti, Zeng et al. 2002, Park 2004), whereas, converse 

anomalies develop during spring (Shaman and Tziperman 2011). Positive anomalies of 

wintertime precipitation over Germany, Britain and France found by Zanchettin, Franks et al. 

(2008), also negative anomalies over Scandinavia by Zhang, Zhu et al. (2008) and Fraedrich 

(1994). 
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Shaman (2014) finds that the European rainfall receives the largest ENSO impact in 

boreal autumn (October-December). The observational rainfall analysis represents positive 

anomalies over Iberia, western and southern France, northern Italy, the British Isles, and 

southern Scandinavia. ENSO variability is connected to a dipole along the coast of Europe in 

spring (April-June).This causes a statistically significant rainfall increase over France and 

Britain. The negative rainfall anomalies during summer (July-September) over northern 

Europe are marginally connected to El Niño events. Pozo-Vázquez, Esteban-Parra et al. 

(2001) analyse the ENSO-associated winter temperature in Europe during 1973-1995. The 

winter temperature difference between La Niña and normal years is statistically significant, 

but not regionally the same. There is a negative correlation for center and south of the Iberian 

Peninsula regions and positive for northern Britain and southern Scandinavia. The difference 

between El Niño and normal winter temperature is insignificant. 

2.2.5 Australia 

Rainfall in Australia is largely dependent on ENSO and major droughts are associated 

with ENSO events (Nicholls 1991, Chiew, Piechota et al. 1998). Australian rainfall during El 

Niño is significantly less than average rate, especially in northeastern and southeastern 

regions (Taschetto and England 2009, Cai, Van Rensch et al. 2011). More than 60 percent of 

Australia, mostly the eastern, experience drought during September–November (austral 

spring season) (Wang and Hendon 2007). La Niña events, versus El Niño, are parallel with 

rainfall amplification and air temperature reduction.Verdon, Wyatt et al. (2004) show that 50-

100 percent rainfall enhanced during  the cold phase into a warm phase in eastern Australia. 
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2.3 The effect of ENSO on cereal production 
ENSO events are associated with weather patterns and, by corollary, can alter the crop 

production around the world. The ENSO effect on crops yield was established already in the 

1980s (Handler 1984, Nicholls 1985). The strongest ENSO impacts on spring and summer 

crops during the boreal winter result in the most directly influence on spring–summer field 

crops in the southern hemisphere (Royce, Fraisse et al. 2011). ENSO event is generally 

related to drought in the Indian monsoon which results in low grain yield over South Asia and 

Australia and high grain yields over North America (Garnett and Khandekar 1992). 

Generally, crop yield in the western Pacific countries, during La Niña, tends to be more than 

normal, unlike in the eastern Pacific countries (Liu, Yang et al. 2014). 

2.3.1 Wheat  

Shuai, Zhang et al. (2013) investigate the effect of ENSO on the main crops including 

wheat, during the decaying stage of ENSO years, in China. Wheat, exclusively, faces large 

area of yield reduction during El Niño phase that is notable in northern and southeastern 

(mainly due to the increased precipitation) China. A few provinces benefit from El Niño. La 

Niña years are more favourable for wheat yield, compared to El Niño years, especially, in 

southern and southeastern China. Although, in some provinces mostly in northeast and 

southwest slight drop in wheat yield is evident. In La Niña years in most provinces, there are 

opposite responses, apparently due to the almost contrary climate variation from El Niño 

years. Bannayan, Lotfabadi et al. (2011) find a positive significant correlation between 

Niño3.4 (in July, August and December) and wheat yield in a northeastern province in Iran. 

Garnett and Khandekar (1992) and Khandekar (1996) investigate the ENSO effect on Indian 

monsoon and on cereal production and worldwide grain yields, focusing on the different 

areas of South Asia, Australia and the North American prairies. They result that ENSO is 
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associated with low grain yield in Australia and South Asia, unlike the North American 

prairies.  

Wheat in the southeast U.S. typically benefits from increased winter precipitation 

during El Niño. There is a tendency for higher yields during El Niño years, but with little 

difference between the normal and El Niño years. Wheat shows a significant response to 

existing and following ENSO phase. Wheat yields are lower following very strong El Niño 

compared to following other El Niño events. Yield is high following La Niña and low 

following El Niño events (Hansen, Jones et al. 2001). Woli, Ortiz et al. (2015) examine 

ENSO effect on early and late maturity group of winter wheat in the southeastern U.S. 

Results show that ENSO impacts winter wheat depends on region and cultivars. During El 

Niño phase late maturity groups tend to have higher yield than early cultivars in northern 

region. During La Niña phase, early cultivars yield is more than late cultivars in southern 

part. In Mexico, there is a net rise in wheat and maize area planted, during La Niña years. The 

area of wheat planted increases about 8.6 percent but, not significant changes in El Niño 

years. Whereas, the percentage reduction in maize area planted is 5.9. In general, winter 

wheat yield response to El Niño and La Niña phases is negative and positive, respectively 

(Adams, Houston et al. 2003). Pol and Binyamin (2014) find that extremely wet (drought) 

summer of El Niño (La Niña) years both result in reduction in wheat and maize production in 

Argentina.  

 Gimeno, Ribera et al. (2002) evaluate the ENSO and NAO effect on main crops 

including fruits and cereals in Spain. ENSO influence on mean yield is more likely on fruits 

than cereals. The variance of the three ENSO phases is not high for cereals including wheat. 

Wheat yield tends to be low during La Niña years than El Niño years. 
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Rimmington and Nicholls (1993) find wheat yield in Australia is correlated with the 

SOI of the year before planting and concurrent SOI with crop season in a negative and 

positive manner, respectively. Meinke and Stone (1997) evaluate the effect of SOI phase on 

wheat production in Australia and Brazil. Negative SOI has negative significant effect on 

yield in Australia and positive effect in Brazil. Positive index is correlated negatively, but is 

only significant in Brazil. 

2.3.2 Maize 

Handler (1990) demonstrates the relationship between ENSO-induced SST anomalies 

in the equatorial Pacific Ocean and maize yields deviation from long term trends throughout 

the continental U.S. He finds negative correlation with SSTAs for winter prior to growing 

season in southeast northward to the Great Lakes. On the other hand, positive correlation with 

SSTAs for following autumn in Florida and the Upper Midwest corn belt. Hansen, Hodges et 

al. (1998) study the ENSO impact on multiple crops including maize in the southeastern U.S. 

in a 35 years period. They suggest that ENSO events have significant impact on maize yield 

and value. Maize yield increases in La Niña years and decreases in the subsequent years. 

ENSO phases explained an average shift of US$212 million of the value of maize. He 

concludes 26 percent, on average, of the maize value variations determined by ENSO. In the 

U.S. Corn Belt about 15 percent of crop yield variation can be attached to Pacific sea-surface 

temperatures (Phillips, Rajagopalan et al. 1999, Wannebo and Rosenzweig 2003). Phillips, 

Rajagopalan et al. (1999) also, examine the ENSO impacts on maize yield variation in the 

U.S. Corn Belt. Their analysis suggests yield decline during La Niña episodes and yield 

increase during El Niño phase. However, the yield decrease is greater than the average level 

of improvement. The cause of the yield loss is undesirable condition of the heat stress due to 

temperature rise and rainfall cut in La Niña phase (Todey, Carlson et al. 1999). Legler, 
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Bryant et al. (1999) investigate the role of ENSO in seven crops (barley, maize, soybean, 

sorghum and cotton and winter/spring wheat) in the U.S. and find a negative effect on all 

crops except winter wheat in El Niño years and maize in La Niña years. They also report that 

northern areas are more impressible by El Niño and southern areas are similarly impressible 

during La Niña. Podestá, Messina et al. (1999) investigate ENSO effect on several crops 

including maize in Argentina. Maize yield tends to be higher (lower) during warm (cold) 

ENSO events. In addition, the yield decline during La Niña events is, on average, greater and 

more consistent than yield rise during El Niño events. Martinez, Baigorria et al. (2009) 

investigate the connection between some climate anomalies (including ENSO) and maize 

yield in the several states of the U.S. They find a negative link between ENSO and local 

weather and yield. It indicates El Niño–associated cooler and wetter winter and spring 

corollary is related to yield reduction. Podesta, Letson et al. (2002) review maize, soybean 

and sorghum yield variations in the ENSO cold and warm phases in the region of central-

eastern Argentina. Positive (negative) effect on national-level yield of these crops observed 

during warm (cold) ENSO phase. Among all, maize represents the closest relation. Later, 

Travasso, Magrin et al. (2003), using data 1950–94, investigate the correlation of maize yield 

in Buenos Aires province and equatorial SSTA, as well as South Atlantic SSTA. Results 

show the one direction association between equatorial SSTA and maize yield. Pol and 

Binyamin (2014) declare soggy fields during El Niño and droughts during La Niña in Buenos 

Aires summer result in wheat and maize production reduction. In the state of Rio Grande do 

Sul in Brazil, there is a strong tendency for El Niño to provide opportunities to favour maize 

crops, while for La Niña years there is a high frequency of downward yields (Berlato, 

Farenzena et al. 2005). 
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Tao, Yokozawa et al. (2004) analyse the variability of staple crops (maize, wheat and 

rice) in the major agricultural regions of China regarding ENSO event. Among reviewed 

crops, maize production has been more vulnerable to strong ENSO. In such a way that maize 

yield on a national scale decreases about 5 percent in El Niño phase, compared with normal 

years. This reduction in one of the Central provinces is estimated at about 16 percent. Liu, 

Yang et al. (2014) investigate the ENSO-induced variation on winter wheat and summer 

maize in the North China Plain. In this study, agricultural production systems simulator 

model and data of daily temperature, precipitation, and sunshine hours during 1956-2006 has 

been applied. Results state that, in both warm and cold ENSO phases, crops yield is less than 

normal years for rainfall reduction, lower sunshine hours and absence of additional irrigation. 

In addition, maize is most influenced than wheat. Shuai, Zhang et al. (2015) conclude maize 

yield, during El Niño years, increases in most of China, especially northern China. A part of 

southern regions experience yield decrease. During La Niña years, an apparent yield 

reduction happens in the north and northeast regions and a general elevation in the southern 

regions. ENSO-induced rainfall variability in northern and northeastern China during 

growing season is more responsible for maize yield variability, compared to temperature and 

solar radiation. In Indonesia, ENSO events influence the timing of maize production, but 

apparently not the level of production (Naylor, Falcon et al. 2002). Maize planting delay at 

onset of an El Niño year rainy season makes up by a later greater planting in the year. As a 

result, there are nearly no significant associations between annual maize production and 

ENSO. 

Phillips, Cane et al. (1998) find maize yield in Zimbabwe is highly correlated with 

simultaneous SSTA in the Niño3 region during growing season. Surprisingly the correlation 

of Niño3 index and maize yield is stronger than with rainfall (Cane, Eshel et al. 1994). In 
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addition, they show the correlation with observe Niño3 index for about one year in advance 

of growing season. 57 percent of the yields variability refers to SST of a year earlier planting 

(Cane, Eshel et al. 1994). Du Toit and Prinsloo (2001) observe that El Niño events impact on 

South African national maize yield vary from 2100 kg ha−1 (near average) to 875 kg ha−1. 

Milder episodes were correlated with greater national level yields toward the stronger or 

super events. 

2.3.3 Rice  

Intensive droughts associated with the two last considerable El Niño events have led to 

a delay in harvesting rice in Indonesia which were followed by severe problems of food 

supply for poor households (Harger 1995, Amien, Rejekiningrum et al. 1996). Naylor, Falcon 

et al. (2001) quantify the connection between ENSO indices and rice production in Indonesia 

(Java) and observed fluctuations in rice plantings and production. Naylor, Falcon et al. 

(2001), Naylor, Falcon et al. (2002) and Falcon, Naylor et al. (2004) in their investigations in 

Indonesia find that the area harvested is more affected than yield. Naylor, Falcon et al. (2002) 

find that year-to-year August SSTA variations specify almost 50 percent of interannual paddy 

production variability during the wet season. Every 1˚C change in August SSTAs, result in 

1.4 million tonnes fluctuation in Indonesia’s paddy production, on average. In northern 

China, the outbreak of the oriental migratory locust which is a pest of rice and feeds on leaves 

at all growth periods, tend to infest one or two years after El Niño event (Zhang, Sumi et al. 

1999). Changes in precipitation and air temperature are apparently the reason of this 

occurrence. Tao, Yokozawa et al. (2004) suggest that ENSO event does not greatly influence 

on rice production in China. While Zhang, Zhu et al. (2008) find rice yield associated with 

rainfall and temperature varies from ENSO and normal years in China. Tao, Hayashi et al. 

(2008) and Zhang, Zhu et al. (2008) evaluate the ENSO event association with rice yield in 
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north and northwest of China. They find an inconsistent linkage in most provinces at different 

terms of 1960-2004. Before 1980, rice vulnerability can be traced to El Niño events; but not 

afterward. Water supply development in these regions was the main reason for the 

inconsistency. More recently, Deng, Huang et al. (2010) find that Jiangxi is the most affected 

region by ENSO in China. Whilst ENSO is well associated with rainfall, early, middle or late 

rice yield are not significantly correlated with ENSO. Shuai, Zhang et al. (2013) show that 

rice yield in northeastern China increases during El Niño event due to the higher temperature. 

In contrast, it reduces in central regions due to the higher rainfall. Various authors have 

demonstrated that El Niño leads to a postponement of the rice planting in the Philippines 

(Dawe, Moya et al. 2009, Roberts, Dawe et al. 2009). Lansigan (2005); Lansigan, De los 

Santos et al. (2000) examine ENSO effect on rice production in different ecosystems in the 

Philippines and find negative El Niño impact on rainfed rice production. Roberts, Dawe et al. 

(2009) investigate the ENSO impact on rice yield and production in various ecosystems and 

seasons in the Philippines (Luzon) during 1970-2005. They conclude that El Niño has a 

significant effect on both ecosystems and it is greater in a rainfed system. Production during 

the dry season is more affected in El Niño years with a large decrease. The effect on the area 

harvested is more than yield in the both ecosystems. Zubair (2002) finds Maha (October to 

March) rice production in Sri Lanka increases during El Niño phase while Yala (April to 

September) production decreases, whereas opposite results are observed during La Niño 

events. Jintrawet and Buddhaboon (2011) investigate the impact of ENSO on rice production 

in the time period of 1980-2002 in Thailand. Despite the negative impact on rainfall, the 

ENSO phase did not affect rice yield and the planted area because of the sufficient rainfall 

during main growing season. Selvaraju (2003) examines ENSO linkage and production of 

cereals and legumes in India and finds relatively greater impact on rice than others. During El 
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Niño and La Niña events rice production decrease by 7 percent and increase by 3 percent in 

India, respectively. 

Roel and Baethgen (2007) evaluate the impact on (October-December) SSTA in 

Niño3.4 region, in period of 1972-2003, on rice production in Uruguay. The results reveal 

that it is more likely to obtain more yields in the cold phase, regarding normal condition. El 

Niño events cause rice yield reduction in Uruguay. 

2.3.4 The effect of ENSO on global cereal production  

Chen and McCarl (2000) apply stochastic model with global trade model to study 

ENSO effect on wheat, maize, soybean and sorghum in the main crop producing countries. 

Their result show that maize and sorghum productions negatively impact in the both ENSO 

phases. In this regard, different wheat varieties response differently during El Niño events, 

but there is a positive shift in all wheat cultivars production during La Niña event. Chen, 

McCarl et al. (2008) examine the effect of the average and strong (1997/1998 El Niño) ENSO 

on the main rice exporters and importers in the world. Their results indicate that during El 

Niño phase rice production decreases in China, Myanmar, Vietnam, and the U.S., Australia, 

North Korea, the Philippines, Central America and Europe range from 0.2 percent to 5.8 

percent. Rice production during La Niña phase reduces more than El Niño phase. They also 

conclude that an average El Niño or La Niña event, both, make a reduction in global rice 

production, as well as an extreme El Niño event. Iizumi, Luo et al. (2014) globally map 

ENSO impact on the yield of major crops. They quantify the ENSO effect on the global-mean 

yield anomalies of maize, wheat, rice and soybean. Their result suggests that during both 

phases of ENSO the global mean yield of maize, rice and wheat are below than normal phase 

(up to 4 percent reduction). The global mean yield of soybean tends to increase during El 

Niño events, unlike La Niña. 
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2.3.5 Methods used to measure the impact of climate variability on 
agriculture 

ENSO related research arouses a great deal of interest for some reasons: ENSO can be 

modelled, ENSO has worldwide climatic influences (Yokoyama 2002, Yokoyama 2010); 

ENSO predictability (Latif, Anderson et al. 1998, Fedorov, Harper et al. 2003) and a 

temporal lag between atmospheric and oceanic interactions and climatic consequences 

(Klein, Soden et al. 1999). Researches on ENSO mainly can be classified into three 

categories: Research on the mechanism of ENSO (e.g. Collins (2000), Schopf and Burgman 

(2006)), research on economic, social and ecological consequences of ENSO ( e.g. Cashin, 

Mohaddes et al. (2015), Hicks and Maldonado (2015), Acosta-Jamett, Gutiérrez et al. (2015)) 

and research to inform the ENSO adaptation (e.g. Patt and Gwata (2002)). 

This study contributes to the researches on the ENSO impact on global cereal 

production and provides a general discussion on adaptation policy. Two main types of 

methods have been employed to model yield/production variability relating to ENSO: 

• A regression-based framework to directly estimate the ENSO impact on crop 

production using historical data (Roberts, Dawe et al. 2009, Deng, Huang et al. 2010, 

Tack and Ubilava 2013). 

• Assessing the ENSO effect on crop yield/production by comparing the deviations of 

the "anomalous" and "normal" years, applying simulation methods (Phillips, 

Rajagopalan et al. 1999, Amissah‐Arthur, Jagtap et al. 2002, Chen, McCarl et al. 

2002). 

One of the main problems using crop simulation model is the presence of “considerable 

uncertainty about physiological process (functional form) and the many parameters in these 

highly non-linear models” (Schlenker and Roberts 2008). The other problem is “the 
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assumption of exogenous production systems and nutrient applications: there is no account 

for behavioural response on behalf of farmers” (Schlenker and Roberts 2008). In this study, 

the analysis is based on regression approach to evaluate the effect of ENSO on the cereal 

production in the world. 

2.4 El Niño-Southern Oscillation and commodity prices 
It is well documented in the existing literatures that weather anomalies affect 

agricultural production which may result in shortage or excess supply in some area or total of 

the world. In the regions where ENSO influence are strong, commodity prices variation could 

account for increasing or decreasing total agricultural production (Keppenne 1995, Hansen, 

Jones et al. 1999). These changes could potentially result in a shift in world prices of 

agricultural commodities. Naylor, Falcon et al. (2001) state that the absence of compensation 

policies to offset the rice production shortfall during strong ENSO years leads to the 

instability in domestic price that causes severe and negative impact on low income 

households. Seasonal climate predictions on the basis of ENSO indications provides farmers 

the opportunity of prediction and reaction to price fluctuations. Using management practices 

by farmers moderate the direct impact on yield, thereby the indirect effect on farm income 

(Hansen, Jones et al. 1999, Hill, Butler et al. 2001). Management practices influence prices 

through their effect on production and supply. These, in turn, have further impact on 

producers net returns (Hill, Butler et al. 2001).  

Many studies investigate the effect of climatic anomalies on crop productions and 

commodity prices. The two-month delay in rainfall due to ENSO events, postponed plantings 

and subsequent harvest in the main rice producing regions in Indonesia when harvest is 

characteristically paralleled with increasing consumer prices (Mears 1981, Ellis 1993). ENSO 
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direct impact on soybean futures price is through teleconnections in planted regions. But, the 

indirect influence could be through its impact on anchovy catch, since it competes with 

soybean that accounts for a protein source for feed (Rosenzweig and Hillel 2008). Keppenne 

(1995) has examined the relationship between monthly soybean futures price and ENSO 

behaviour, revealing close linkages with the La Niña phase of the ENSO cycle. Letson and 

McCullough (2001), using Granger causality tests to investigate the connection between 

monthly cash prices for soybean, finding an insignificant relationship. Brunner (2002) 

examines the ENSO effect on real non-oil primary commodity prices along with inflation and 

GDP growth in G7 countries. He finds an economically and statistically significant impact on 

real commodity prices and inflation. The analysis reveals that a single standard deviation 

increase in sea-surface temperature results in about 3.5-4 percent rise in real commodity price 

inflation.Temin (2002) provides evidence that barley and mustard prices are correlated with 

the variation in growing condition. Chimeli, De Souza Filho et al. (2008) assess the ENSO 

effect on maize production and price and find positive impact on price and negative effect on 

maize production. There is evidence of the linkage between sharp enhancement for palm oil 

price and El Niño events (Bromokusumo and Meylinah 2009). Dawe, Moya et al. (2009) find 

a large increase in the rice price in the Philippines, following El Niño events (1972-73, 1982-

83, and 1991-92). However, this impact in 1997-98 El Niño was avoided by a policy 

response. Ubilava and Holt (2009) apply smooth transition vector error correction model to 

investigate the ENSO effect on vegetable oil prices; report evidence of increasing price 

during El Niño events and decreasing in La Niña events. In a related study, Ubilava (2012) 

finds ENSO is statistically associated with coffee price in the short run, although different 

varieties for geographical dispersion are affected in a different manner. In addition, Ubilava 

(2014) examines the effect of ENSO on wheat price dynamics of five major exporting regions 
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including the U.S., Canada, Australia, EU, and Argentina. He finds symmetrical positive and 

negative response during La Niña and El Niño events, respectively. 

2.5 Macroeconomic consequences of El Niño-Southern Oscillation  
Aside from the evidence of rainfall and temperature variations on crop yields and 

prices, the study of the connection between large scale medium-frequency climatic anomalies 

and economic factors is noteworthy. Many studies have examined the possible correlation 

between SST anomalies in the central Pacific Ocean and some macroeconomic 

implementations (Brunner 2002, Berry and Okulicz-Kozaryn 2008). 

Adams, Chen et al. (1999) estimate the economic result of the 1997-98 El Niño (the 

most severe one in the world) as well as following La Niña event (1998-99) on U.S. 

agriculture. They consider multiple crops and use stochastic economic model of the U.S. 

agricultural sector. They find economic loss for both phases, equivalently US$1.5-US$1.7 

billion for El Niño phase and US$2.2-US$6.5 billion for La Niña. Selvaraju (2003) analyse 

the ENSO impact on the economy of India and estimate US$773 million loss during El Niño 

phase and US$437 million advantage in La Niña event. Chen, McCarl et al. (2008) 

investigate the impact of medium and severe ENSO event on rice production in 23 Indica rice 

production regions. They report annual welfare compensation of more than US$2800 million 

due to reduced production and trade fluctuations in medium ENSO years. In this respect, an 

extra US$500 to US$600 million welfare loss for extreme ENSO events has been estimated. 

2.6 Economic value of ENSO Forecasts 
Nowadays, predicting ENSO is a key variable in food security (Mjelde, Hill et al. 1998, 

Broad and Agrawala 2000). Pfaff, Broad et al. (1999) recognise ENSO forecasting as a 
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significant factor for food security estimation, especially in the Pacific Ocean rim countries. 

There is a lag of 1 to 12 months in climate variation due to the interaction of sea surface 

temperature with atmospheric pressure in the equatorial Pacific (Montroy, Richman et al. 

1998) and this is a basis for ENSO forecasting (Chen, McCarl et al. 2002). 

Because of the recent advances in knowledge of monitoring the interaction between 

equatorial sea temperatures and the atmosphere, ENSO prediction is now possible at lead 

time of several months to a year (Latif, Anderson et al. 1998, Mason, Goddard et al. 1999). It 

can prepare weather data to inform crop management decision making to mitigate potential 

adverse impacts. This can be applied to improve agricultural management and food security 

(Zubair 2002). Solow, Adams et al. (1998) investigate the economic value of the U.S. 

agricultural sector based on the accuracy of ENSO forecast using simulation methods. They 

estimate the annual expected value of a perfect prediction to be US$323 million. 

Furthermore, modest and high quality predictions contribute US$240 and US$266 million, 

respectively. Messina, Hansen et al. (1999) analyse the economic benefits from the skill of 

land allocation between cereals and oilseeds in Argentina, provided the ENSO prediction. 

They find that land allocation variation among crops to ENSO results in an increase in mean 

farm income up to 20 percent. However, the range of income increase depends on location, 

farmers’ initial wealth and risk aversion. Jones, Hansen et al. (2000) examine the expected 

value of a substitution of soybean, maize, peanut, cotton and wheat response to ENSO in 

Argentina and the southeast U.S. They calculate the value of ENSO forecast in the Coastal 

Plain of the state of Georgia in the U.S. and Pampas region in Argentina. They estimate the 

value of optimal crop management applying ENSO forecast in the southeast U.S. from US$3 

to US$6 per hectare. This value in Argentina due to the stronger impact of ENSO during the 

time of growing summer crops is greater from US$11 to US$35 per hectare. Later, Hansen, 
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Jones et al. (2001) estimate mean value of optimal apply of ENSO phase information in the 

southeast U.S. for wheat and maize at US$4.41 and U$7.00 per hectare in a year. Chen, 

McCarl et al. (2002) find the value of ENSO forecast to agriculture in major crop producing 

countries using multi-commodity, multi-country aggregate modelling. Their results indicate 

that welfare has doubled by using more detailed ENSO definition in terms of forecasting. 

Adams, Houston et al. (2003) evaluate the economic outcome of ENSO–based forecasts in 

Mexican agriculture and estimate the annual economic benefit of an early ENSO warning by 

US$10 million.  
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Chapter 3. Research Design 
The objective of this study is to determine the economic impact of ENSO on world 

grain production by quantifying the relationship between agricultural production and climatic 

and economic variables. The main null hypothesis is that ENSO has no impact on world 

cereal production, beyond its possible links with rainfall and temperature. This hypothesis 

will be tested against an alternative that there is the connection between grain production and 

the Niño3.4 Index, after precipitation, air temperature and expected prices are controlled for. 

The limitations of this study are: (i) the levels of applied fertilizer and chemicals are not 

incorporated in the analysis; (ii) pests, which tend to be affected by temperature and 

precipitation variation are not considered; (iii) instead of local prices (due to their 

unavailability in all considered countries) international prices are used, with the assumption 

that local and global prices are highly correlated. 

3.1 Research Design Outline 
This study applies an economic assessment framework to identify the extent to which 

the ENSO event synchronizes the global cereal production. This model is used to elucidate 

the crop-production effects of ENSO into changes in area harvested, price, air temperature 

and precipitation. The research design in Figure 3.1 shows how the study is integrated. 
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Figure 3.1. Research design flow diagram 
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3.2 Data and research concept 
This research combines the time series of climatic, agronomic and economic data, 

spanning the years 1962-2009. Climatic data include monthly time series of sea-surface 

temperature anomaly, air temperature and precipitation. The air temperature and precipitation 

data are the same as in Villoria (2015). The author constructs the mean temperature and 

precipitation over the months covering the growing season of particular crops in a given 

country. The ENSO signal is defined by the sea-surface temperature anomalies (SSTA) 

observed in the Niño3.4 region of the central Pacific. The monthly time series of SSTAs that 

is derived from the NOAA Extended Reconstructed Sea Surface Temperature V3B 

(ERSST.V3B) is tabulated by the National Weather Service Climate Prediction Centre at 

National Oceanic and Atmospheric Administration (NOAA)2. This study uses the monthly 

means of SSTA values (measured in ℃) over the growing season of an individual crop in a 

specified country, to allow for El Niño and La Niña impact production through vectors 

beyond temperature and precipitation (Tack and Ubilava 2013). For a given year, the mean 

value of SSTA in Niño3.4 region was used to define whether El Niño or La Niña phases were 

present in the period of the growing season of each crop. Although, the timing of the growth 

period varies by country and crop type, two different regimes are defined as below: 

La Niña if  𝑆𝑆𝑇𝐴 < −0.5℃; 

El Niño if  𝑆𝑆𝑇𝐴  ≥ +0.5℃ 

The above definition implies that any average values that exceed +0.5 (-0.5) denotes a 

growing season which was impacted by El Niño (La Niña). 

Country-level production and area harvested for wheat, maize and rice (paddy) are collected 

from FAOSTAT, which were tabulated by the Food and Agriculture Organization of the 
                                                 

2 Available at: ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/ersst3b.nino.mth.81-10.ascii 
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United Nations3. In this study the measurement unit for crops production is tonne and for area 

harvested is hectare. Monthly time series prices were obtained from the historical data at 

World Bank Commodity Price Data (The Pink Sheet)4. All prices are in nominal US dollars 

per tonne. The international price for rice is for the 5% broken white milled Thailand rice. It 

is based on weekly surveys of export transactions, government standard and Free on Board 

(f.o.b.) Bangkok. Maize price defined for U.S. yellow maize, no.2, f.o.b. U.S. Gulf ports. 

Wheat price is based on the hard red winter U.S. wheat, no.1, and ordinary protein also is an 

export price delivered at the U.S. Gulf port for prompt or 30 days shipment. All prices are 

deflated by using the monthly Producer Price Index for all commodities [PPIACO] that 

obtained from Economic Research Federal Reserve Bank of St. Louis5. This research applies 

the real price for one month prior to the onset of the growing season that is converted to the 

natural logarithms form.  

3.3 Main Producers 

According to FAO statistics, there are 125 wheat-growing countries in the world. The 

number of countries producing maize and rice in the world are 169 and 124, respectively. The 

major producers of wheat, maize and rice are defined as the 50 countries with the highest 

mean production in a 20-year period during 1994-2013. After removing the countries that 

don’t have a complete production history, 38 countries for wheat, 45 countries for maize and 

48 countries for rice are included in the analysis sample. Figure 3.2 shows a spatial 

representation of the countries of study6.  

 

                                                 

3 Retrieved from http://faostat3.fao.org/download/Q/QC/E 
4 Retrieved from http://go.worldbank.org/4ROCCIEQ50 
5 Retrieved from: https://research.stlouisfed.org/fred2/series/PPIACO/, 
6 The full directory of the names of each country is shown in the appendix. 
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3.4 Crop growing season 

Crop growing season is specified as the onset of planting to the end of harvesting in a 

way that the beginning of the harvesting season occurs in a given year. In this study, for 

countries where multiple cropping systems (main/secondary, winter/spring) are available, the 

main cropping system, or the system with the highest area harvested, was included. The onset 

of planting and ending of harvesting for wheat, maize and rice in the countries of study 

presents in Figures 3.3 to 3.8. 

This study uses the following sources to define the crops growing season: 

• Global Information and Early Warning System on food and agriculture 

(GIEWS)7 

• Maclean, Hardy et al. (2013) 

• Agricultural Market Information System (AMIS)8 

• Major World Crop Areas and Climate Profiles (MWCAPC) (United States 
Department of Agriculture)9 
 

• Moradi, Koocheki et al. (2014) 
 

                                                 

7 Retrieved from: http://www.fao.org/giews/countrybrief/ 
8Retrieved from: http://www.amis-outlook.org/fileadmin/user_upload/amis/docs/Crop_Calendar/121206-

AMIS-online-crop-calendar_REDUCED3.pdf 
9 Retrieved from: http://www.usda.gov/oce/weather/pubs/Other/MWCACP/index.htm 
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Figure 3.2. The main producers of wheat, maize and rice (countries of study). 
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Figure 3.3. Onset of wheat growing season. 
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Figure 3.4. Ending of wheat growing season. 
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Figure 3.5. Onset of maize growing season. 
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Figure 3.6. Ending of maize growing season. 
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Figure 3.7. Onset of rice growing season. 
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Figure 3.8. Ending of rice growing season. 
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Chapter 4. Methods 
This study develops our understanding of climate impact by investigating the historic 

effect of ENSO on global grain production in a regression-based framework. The reasons that 

validate the use of a regression-based approach originate from the assumption that ENSO 

induces production variability through multiple factors (Phillips, Cane et al. 1998, Liu, Yang 

et al. 2014). First, ENSO-related temperature and precipitation variability (Dai and Wigley 

2000, Barlow, Nigam et al. 2001) allow for a straightforward causal connection. Second, 

ENSO exerts extreme weather condition hazards like drought, flooding, wildfires and storms 

(Bove, O'Brien et al. 1998, Harrison and Meindl 2001, Mo and Schemm 2008, Harris, 

Nicholls et al. 2014, Ward, Jongman et al. 2014). Third, ENSO provides large changes in the 

development of pest and disease rates of major crops (Asian Development Bank 2009). The 

two recent points support incorporation of ENSO variable to control for factors that are not 

captured by temperature and precipitation. 

The approaches of regression-based studies on climate-related production typically 

include one of the followings: 

- Involving temperature and precipitation values as explanatory variables (Schlenker 

and Roberts 2009, Tack and Ubilava 2013). 

- Inclusion of a dummy variable to account for climate variability (Hansen, Hodges et 

al. 1998, Schlenker and Roberts 2009, Deng, Huang et al. 2010, Tack and Ubilava 

2013).   

The current study uses the first approach and expands the second one via applying a 

threshold regression framework. “In threshold regression, event times are modelled by a 

stochastic process reaching a boundary threshold” (Lee, Whitmore et al. 2010). Similarly, the 
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threshold values are located in the SSTA levels that define each ENSO phase. This allows for 

the threshold-like effect of ENSO; that is, the El Niño and La Niña shocks do not result in 

symmetric production responses. The asymmetric impact of El Niño and La Niña on U.S. 

agriculture in both aspects of size and sign has pointed out by Adams, Chen et al. (1999). 

Unlike previous studies linking ENSO to crop production, the approach taken here 

accounts for economic factors, such as price of the considered commodity. In particular, this 

study incorporates the lagged (i.e., planting period) price in the regression specification as a 

proxy of the expected price. Price variability is frequently the leading source of production 

variability. Miao, Khanna et al. (2016) find a statistically significant positive price elasticity 

of maize yield in the United States. Expected price variability of crops could affect the 

farmers productive management practices and corollary crop yield (Kaufmann and Snell 

1997). Following an increase in expected price applying productive management practices by 

farmers, (Feng and Babcock 2010) leads to an increase in yield (Miao, Khanna et al. 2016). 

The increase in expected price could encourage farmers to increase area planted also 

converting crop rotation (land switch from other crops to this crop). Alternatively, expanding 

the planting area to marginal, low quality fields (Feng and Babcock 2010), results in lower 

overall productivity (Miao, Khanna et al. 2016). By controlling for price, this study isolates 

the ENSO impact from the price-related production variability. 

 
In order to isolate the effect of ENSO from weather variables, we also include 

temperature and precipitation variables. Also, we assume a nonlinear, quadratic relationship 

between precipitation and crop production, in a way that production increases almost linearly 

in precipitation up to a point after which additional precipitation quickly becomes 

unfavourable. 
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4.1 Econometric Framework 

To assess the impact of ENSO on world cereal production, this study turns to time 

series data analysis. This applies because climatic variability, including quasi-cyclical 

fluctuation of this climate anomaly, is a function of time. Consider a baseline time series 

model, where crop output is expressed as a function of time: 

 𝑦𝑡 =  𝜇𝑡 +  𝑣𝑡 ; t = 1, 2,…, T         (1) 

Where yt represents the natural logarithm of the crop production in a specific country at 

time t; and vt ~iid(0,σv) is the idiosyncratic shock. µt is the deterministic trend component, 

which controls for technological advances in agricultural production over time, and also a 

possible effect of global climate change, if any.  

Assuming the diminishing nature of technological change, and also the likely adverse 

effect of climate change, the quadratic trend may be appropriate. So, the deterministic trend 

component can be given by: 

 𝜇𝑡 = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡2        (2) 

The linear and quadratic trend, as done by Falcon, Naylor et al. (2004) and Deng, 

Huang et al. (2010) sequester the ENSO impact from other time-varying factors. In other 

words, linear time trend accounts for increased production variability over time due to 

technological changes. Also, the quadratic trend reflects slow progress of technology in the 

last decades (Schlenker and Roberts 2008, Schlenker and Roberts 2009) 

 This study treats ENSO as weakly exogenous variable in the model; with the 

assumption that ENSO contemporaneously impacts production, but not the other way around. 

Moreover, in this study, ENSO variable is treated as a linear function of the sea-surface 

temperature anomaly as follows: 

𝑓(𝑠𝑡) =  𝛽𝑠𝑡          (3) 
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Augment the equation (1) by incorporating equation (3) results in: 

𝑦𝑡 =  𝜇𝑡 + 𝑓(𝑠𝑡) + 𝑣𝑡         (4) 

Where; 𝑠𝑡 is the sea-surface temperature anomaly in the Niño3.4 region of the Pacific 

Ocean, and is measured in ℃. Equation (4) adopts the linear relationship between ENSO and 

the production variable. This assumption could be constraining because the ENSO shocks 

may not have symmetric effect on production, nor is it likely that the ENSO effect is a linear 

function of its magnitude. Put differently, two different ENSO phases, which are anomalous 

deviations from normal condition, can cause a distinct effect on weather conditions, and 

subsequently on production. Strongly emphasized anomalies are more likely to cause 

amplified weather conditions around the globe than small deviations from normal conditions. 

To account for the aforementioned nonlinearities, this study proceeds with the threshold 

regression (TR) analysis. The threshold regression framework, which was originally 

presented in an autoregressive setting by Tong (1983), augments equation (4) as follows: 

𝑦𝑡 = 𝜇𝑖 + ∑ [𝛿𝑘𝑠𝑡𝐼(𝜆𝑘; 𝑠𝑡)]𝐾
𝑘=1 +  𝑣𝑡    𝜆 < 𝜆1 < ⋯ < 𝜆𝑘 < 𝜆  (5) 

Where; 

𝛿𝑘, k = 1,…, K, is the parameter set associated with the ENSO variable; 

 𝜆𝑘 represents the threshold parameter(s) defining the location of a regime change; 

𝑠𝑡 is the transition variable, which is the ENSO variable in the current context; 

𝜆 and 𝜆 are lower and upper bounds of the threshold parameters, where the bounds are 

set to 15th and 85th percentile of the transition variable; 

 I (𝜆𝑘; 𝑠𝑡) denotes an indicator function, taking values of 0 and 1, depending on st and 

λk ; 
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K indicates the total number of regimes. For example, if K=1, model (5) takes on a 

linear (symmetric) connection between 𝑦𝑖 and climate.  Alternatively K=2 imposes the two-

regime model or a single threshold model, etc. 

Here, to account for two different regimes of ENSO, El Niño and La Niña, two thresholds are 

introduced: 𝜆1 = −0.5 and 𝜆2 = 0.5. Moreover, we assume that the ENSO effect is 

insignificant during the neutral regime. This results in the following regression: 

𝑦𝑡 =  𝜇𝑡 + δ1𝑠𝑡𝐼(𝑠𝑡 < −0.5) + 𝛿2𝑠𝑡𝐼(𝑠𝑡 ≥ 0.5) + 𝑣𝑡     (6) 

 or, equivalently: 

 𝑦𝑡 = �𝜇𝑡 + 𝛿1𝑠𝑡 + 𝑣𝑡     if 𝑠𝑡 < −0.5
𝜇𝑡 + 𝛿2𝑠𝑡 + 𝑣𝑡      if 𝑠𝑡 ≥ 0.5         (7) 

Note that equations (6) and (7), in essence, depict three-regime models, where the 

parameter associated with the inner regime is restricted to zero. 

4.2. Empirical model 

Following the discussion above, this section outlines a regression model developed the 

connection of crop production to the climatic, agronomic and economic variables of interest. 

After incorporation the weather (i.e., temperature and precipitation), expected price, and area 

harvested variables in the aforementioned model, that results in the following final 

representation, as below: 

𝑦𝑡 = 𝛼0 + 𝛿1𝑠𝑡𝐼(𝑠𝑡 < ˗0.5) + 𝛿2𝑠𝑡𝐼(𝑠𝑡 ≥ ˖0.5) + 𝛽1𝑡𝑒𝑚𝑝𝑡 + 𝛽2𝑝𝑟𝑒𝑐𝑡 + 𝛽3𝑝𝑟𝑒𝑐𝑡2 +

𝛽4𝑎𝑟𝑒𝑎𝑡 + 𝛽5𝑝𝑟𝑖𝑐𝑒𝑡 + 𝛼1𝑡 + 𝛼2𝑡2 +  𝑣𝑡                                   (8)

       

 Where;  𝑦𝑡, 𝑝𝑟𝑖𝑐𝑒𝑡 and 𝑎𝑟𝑒𝑎𝑡 respectively represent the natural logarithm of the crop 

production, the natural logarithm of lagged price and the natural logarithm of crop area 
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harvested in a given country at time t. The variable 𝑠𝑡 represents the average of SSTA in the 

growing season of each crop in a given country to define different ENSO regimes at time t. 

The variables 𝑡𝑒𝑚𝑝𝑡 and 𝑝𝑟𝑒𝑐𝑡 represent the mean value of temperature and precipitation in 

the growing season of each crop in a given country at time t, respectively. 𝑝𝑟𝑒𝑐𝑡2  represents 

the quadratic term of precipitation at time t. The deterministic trend is applied via t and 𝑡2 

and finally vt ~iid(0,σv). 

Then, equation (8) is estimated, separately, for wheat, maize and rice in each of main 

producer countries. To account for statistical issues associated with heteroscedasticity and 

serial correlation, this research uses Newey-West procedure (Newey and West (1986)) to 

estimate heteroscedasticity and autocorrelation consistent (HAC) standard errors.  
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Chapter 5. Results 
In this chapter, the method outlined in Chapter 4 is applied to the climatic and 

economic data sets. This study estimates country-level equations linking annual changes in 

the natural logarithm of wheat, maize and rice production to the changes in sea surface 

temperature anomalies averaged over the crop growing season. In so doing, we allow for 

asymmetric crop production responses to El Niño and La Niña. In addition, we control for 

higher frequency weather variables by adding country-level mean temperature and 

precipitation over growing season. Moreover, we incorporate area harvested to control for the 

potential yield reduction due to harvesting on a relatively inferior soil. Also trend 

polynomials controls for technological advances and climatic change effects. Finally, this 

study incorporates expected price, in the regression setting to control for the important 

economic variable affecting crop supply. Results reveal that ENSO impact on the production 

differs across crop types, ENSO phases and the geographic areas. This chapter will 

predominantly discuss the countries that show evidence of a statistically significant causal 

relationship between ENSO and production; the complete set of results is available in the 

appendix.  

5.1 Geographical distributions of the effect of ENSO on cereal 

production 

5.1.1 Wheat 

Results show the evidence of a statistically significant relationship between ENSO and 

the individual production response in 39 percent of main wheat producer countries. Figures 

5.1and 5.2 illustrate this relationship. El Niño event was found responsible for wheat 

production variability in Argentina, the United States, Bulgaria and Morocco. During El Niño 
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years, an apparent reduction in production happens in Morocco (26.4 percent) and in Bulgaria 

(13.4 percent). In contrast, El Niño events elevate wheat production in Argentina by 11.1 

percent and in the United States by 4.9 percent. Positive impacts are often associated with 

cooler and wetter conditions in those countries (Iizumi, Luo et al. 2014). The countries 

affected by El Niño are responsible for 16 percent of global wheat production and 18 percent 

of wheat harvested area worldwide. 

Of the two extreme phases of ENSO cycle, La Nina events appear to be more important 

in the ENSO-wheat production relationship. La Niña linkage is evident in Canada, Argentina, 

Spain, Italy, France, Hungary, Denmark, Austria, South Africa, Egypt, Syria and Saudi 

Arabia. Wheat production in the European countries, including Spain, Italy, France, 

Denmark, Hungary and Austria, increases during La Niña event ranges from 3.3 percent to 

10.4 percent. Also, wheat production is enhanced in African countries including Egypt (5.5 

percent) and South Africa (13.6 percent) during La Niña event, which should be a response to 

the wetter conditions in the most regions during this phase. Wheat production in Canada 

decreases by 15.1 percent, likely due to the lower temperature and less soil moisture content 

in La Niña years compared to normal years in Canada (Iizumi, Luo et al. 2014). Syria and 

Saudi Arabia show a tendency of reduced wheat production during La Niña for 14.8 and 8.5 

percent, respectively. Figure 5.3 indicates the predicted effect of El Niño and La Niña on 

wheat production in the main producer countries. The statistically significant impact of La 

Niña on wheat production is found in countries responsible for 22 percent and 18 percent of 

global production and area harvested, respectively.  
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Figure 5.1. El Niño effect on wheat production. 

(*), (**) and (***) indicate the significant impact at 10%, 5% and 1% level of significant, respectively.  

El Niño effect (%) 
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Figure 5.2. La Niña effect on wheat production. 

(*), (**) and (***) indicate the significant impact at 10%, 5% and 1% level of significant, respectively.

La Niña effect (%) 
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Figure 5. 3. Predicted effect of El Niño and La Niña on wheat production. 

(  indicates insignificant effect,  indicates significant effect at 10% significance level ,

  indicates significant effect at 5% significance level,  and indicates significant 

effect at 1% significance level).   
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Figure 5. 3. Continued predicted effect of El Niño and La Niña on wheat production. 

(  indicates insignificant effect,  indicates significant effect at 10% significance level ,

  indicates significant effect at 5% significance level,  and indicates significant 

effect at 1% significance level).   
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5.1.2 Maize 

The analysis indicates that ENSO has statistically significant impact on production of 

27 percent of major maize-producing countries. El Niño signals have significant impact on 

maize production in South Africa, the Philippines, Iran and Congo (Figure 5.4). La Niña 

significant impacts are evident in Brazil, Mexico, Thailand, Malawi, Zambia, Italy, Poland 

and Romania (Figure 5.5). Figure 5.6 indicates the predicted effect of El Niño and La Niña on 

maize production in the main producer countries. 

El Niño positive correlation with maize production is apparent in Iran and Congo. 

Maize production increases by 13.3 percent and 1.7 percent in Iran and Congo, respectively. 

South Africa and the Philippines experience negative effect from the El Niño events. Dry and 

warm conditions in these areas during El Niño phases are often associated with negative 

impacts on maize production. The effect on South Africa is pronounced and is equal to 19.7 

percent. Interestingly, although a large number of countries are affected by El Nino shocks, 

all together these countries account for only 6 percent of world area harvested, and 3 percent 

of world wheat production. 

La Niña events are associated with increasing production in Brazil, Thailand, Malawi, 

Italy and Poland. Among countries which are positively associated with La Niña, the greatest 

impact for 16.1 percent is in Poland, then in Malawi (12.9 percent). La Niña is linked with 

rainfall enhance in Southeast Asia, most of Africa and Brazil. La Niña events likely decrease 

maize production in Zambia (11 percent), Romania (7.2 percent) and Mexico (6 percent). 

Significant impact of La Niña is found in countries that comprise almost 20 percent of global 

maize area harvested and 14 percent of total global production.  
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Figure 5.4. El Niño effect on maize production. 

(*), (**) and (***) indicate the significant impact at 10%, 5% and 1% level of significant, respectively.  

El Niño effect (%) 
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Figure 5.5. La Niña effect on maize production. 

(*), (**) and (***) indicate the significant impact at 10%, 5% and 1% level of significant, respectively.

La Niña effect (%) 
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Figure 5.6. Predicted effect of El Niño and La Niña on maize production. 

(  indicates insignificant effect,  indicates significant effect at 10% significance level ,

 indicates significant effect at 5% significance level,  and indicates significant effect  

at 1% significance level).   



76 

 

 

 

Figure 5.6. Continued predicted effect of El Niño and La Niña on maize production. 

(  indicates insignificant effect,  indicates significant effect at 10% significance level ,

 indicates significant effect at 5% significance level,  and indicates significant effect  

at 1% significance level).   

5.1.3 Rice 

We find evidence of a statistically significant relationship between ENSO and rice 

production in 23 percent of the main producer countries (Figures 5.7 and 5.8). Figure 5.9 

indicates the predicted effect of ENSO on rice production in the major producer countries. 

Not surprisingly, El Niño events are associated with rice production reduction in 

Indonesia (by 3.7 percent) and Bangladesh (by 2.9 percent). El Niño-related warm and dry 

weather shocks result in rice production reduction in South and Southeast Asia. El Niño event 

reduces rice production in Brazil by 4.5 percent. El Niño phase leads to dry and warm 

weather in Brazil which is responsible for rice production reduction. Rice production, also, 
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decreases in North Korea, Spain and Côte d’Ivoire ranges from 2.1 percent to 12.3 percent 

during El Niño events. Nicaragua is the only country that rice production is positively 

affected by El Niño phase (10.7 percent). El Niño events affect countries that totally cover 28 

percent of worldwide rice area harvested and 18 percent of world production. 

The Philippines, Cambodia, Nicaragua and Vietnam are the countries where the 

correlation between rice production and La Niña event is significant. During La Niña years 

rice production in Cambodia increases by 14.7 percent. In Vietnam rice production rises by 

7.2 percent during La Niña events. This production increase is consistent with La Nina-

induced wetter condition in Southeast Asia. La Nina-related negative effect is apparent in the 

Philippines (4.8 percent) and Nicaragua (6.5 percent). Although rainfall increases during the 

ENSO cold phase, this production reduction could be associated with the occurrence of 

floods. The La Niña signal is significant in 9 percent of global rice area harvested that 

producing 9 percent of rice production. 
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Figure 5.7. El Niño effect on rice production. 

(*), (**) and (***) indicate the significant impact at 10%, 5% and 1% level of significant, respectively. 

El Niño effect (%) 
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Figure 5.8. La Niña effect on rice production. 

(*), (**) and (***) indicate the significant impact at 10%, 5% and 1% level of significant, respectively.

La Niña effect (%) 
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Figure 5.9. Predicted effect of El Niño and La Niña on rice production. 

(  indicates insignificant effect,  indicates significant effect at 10% significance 

level,  indicates significant effect at 5% significance level,  and indicates 

significant effect at 1% significance level).   
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Figure 5.9. Continued predicted effect of El Niño and La Niña on rice production. 

 (  indicates insignificant effect,  indicates significant effect at 10% significance 

level,  indicates significant effect at 5% significance level,  and indicates 

significant effect at 1% significance level).   

5.2 The effect of ENSO on world cereal production 
Two key aspects become clear from the foregoing discussion. First of all, ENSO shocks 

impact world cereal production in many regions of the world. Second, these effects are 

largely heterogeneous. The impact of ENSO on global production uses country-level 

parameter estimates associated with the ENSO variables which are weighted by share of the 

production of a particular country in the world. The ENSO impacts on global production vary 

across ENSO phase and crop type. On a global scale, findings suggest that during El Niño 

years, global rice and maize production decreases by approximately 0.09 percent and 0.11 

percent, respectively. On the contrary, wheat production increases by 0.18 percent during El 

Niño event. In contrast, La Niña episodes result in a reduction of wheat production (0.01 

percent) and maize production (0.77 percent) but in an increase of rice production (0.71 

percent). Importantly, these effects are net of precipitation and temperature, which are known 

to vary with ENSO phases. That is, findings of this study suggest that there are effects 

associated with ENSO events above and beyond these weather variables. Such “extreme” 

effects, in turn, may include: (i) ENSO-related hazardous weather conditions like severe 
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drought, flooding, storms and wildfire (Changnon 1999), (ii) ENSO-amplified pest damages 

(insects, bacteria, fungi and nematodes) (Rosenzweig, Iglesias et al. 2000).  
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Chapter 6. Discussion 
Our analyses of ENSO records show that the El Niño effect on cereal production, while 

typically negative, can also be positive in many regions. The southern hemisphere usually 

receives more severe effects. ENSO impacts also differ by geographical area. For instance, 

consider the United States and Brazil; the two countries that expand over large and distinct 

geographical areas. It turns out that they are both affected by ENSO phenomena, though 

effect is in opposite directions. That is, ENSO-induced increase in crop production of one 

country is offset by the crop reduction in another country. Also, ENSO impact varies by crop. 

Tables 6.1 and 6.2 present the production variability in different regions of the world during 

El Niño and La Niña events, respectively. An El Niño event generates wheat production 

increase in East Africa, South Asia, Middle Europe and South America. While in the same 

phase of ENSO, most countries in Africa, East and Southeast Asia, and East America 

experience reduction in maize production. And, rice production reduces in Southeast and 

West Asia, Europe and most countries in South America, during the El Niño phase. 

Accordingly, wheat production change during El Niño years in the world is positive, but 

changes in maize and rice production are negative.  
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Table 6.1. Cereal production variability during El Niño event 

Country /Region 

Wheat Maize Rice 

Total 
Cereal 

Production 
Change 

(000 
tonnes) 

El Niño 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

El Niño 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

El Niño 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

South Asia   111510.8 340.3   20870.1 -426.8   191655.2 -258.7 -345.2 

Afghanistan 4 3202.8 128.1       3.7 459 17 145.1 

Bangladesh -3.3 1252.7 -41.3       -2.9 38970.2 -1130.1 -1171.4 

India 0.4 74026.8 296.1 -4.5 15121.1 -680.4 0.6 135219.1 811.3 427 

Nepal 1.3 1323 17.2 -0.86 1634.3 -14.1 -3.5 4076.8 -142.7 -139.6 

Pakistan -1.3 20336.1 -264.4 2.7 2637.6 71.2 2 7234.5 144.7 -48.5 

Sri Lanka             0.1 3168.3 3.2 3.2 

Iran 1.8 11369.4 204.6 13.3 1477.1 196.5 1.5 2527.3 37.9 439 

Southeast Asia         25393.5 -467.3   168129.8 -2525.2 -2992.5 

Cambodia             1.3 5515.7 71.7 71.7 

Indonesia       0.6 12426.6 74.6 -3.7 56000.9 -2072 -1997.4 

Lao People's 
Democratic Republic             -2.5 2440 -61 -61 

Malaysia             0.5 2277.8 11.4 11.4 

Myanmar             -1.1 24728.5 -272 -272 

Philippines       -4 5454.5 -218.2 -3.2 13938.2 -446 -664.2 

Thailand       -5.1 4381.6 -223.5 -0.71 28820.5 -204.6 -428.1 

Viet Nam       -3.2 3130.8 -100.2 1.3 34408.2 447.3 347.1 

East Asia   106978.4 3209.4   144800.7 -4096.9   210747 2683.5 1796 

China 3 106978.4 3209.4 -2.6 143148.5 -3721.9 1.5 190406.2 2856.1 2343.6 

Democratic People's 
Republic of Korea       -22.7 1652.2 -375 -12.3 2307.1 -283.8 -658.8 

Japan             0.8 11427.7 91.4 91.4 

Republic of Korea             0.3 6606 19.8 19.8 

West Asia   27192.4 -944.7   3195.4 -147   526.5 -8.4 -1100.1 

Iraq -8.7 1859 -161.7             -161.7 

Saudi Arabia 4.5 1878.2 84.5             84.5 

Syrian Arab 
Republic -4.2 3854.7 -161.9             -161.9 

Turkey -3.6 19600.5 -705.6 -4.6 3195.4 -147 -1.6 526.5 -8.4 -861 

South America   18620.4 921.7   69588.9 -995.4   21315.9 -499.9 -573.6 

Argentina 11.1 13201.5 1465.4 -2.8 17586.8 -492.4 5.9 1129.5 66.6 1039.6 

Bolivia             -0.6 355.4 -2.1 -2.1 

Brazil -14.4 3930.3 -566 -1 44866 -448.7 -4.5 11103.4 -499.7 -1514.4 

Chile 1.5 1488.6 22.3 3.4 1132.7 38.5       60.8 

Colombia       -0.4 1379.1 -5.5 6.9 2075.4 143.2 137.7 

Cuba             -8.3 529.9 -44 -44 

Ecuador             -1.2 1423.9 -17.1 -17.1 

Guyana             -2.49 530.4 -13.2 -13.2 

Paraguay       -3.64 1601.5 -58.3       -58.3 
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Table 6.1. Continued cereal production variability during El Niño event 

 

Country /Region Wheat Maize Rice Total 
Cereal 

Production 
Change 

(000 
tonnes 

 

El Niño 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

El Niño 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

El Niño 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

Peru       1.67 1239.9 20.7 -4.5 2156.4 -97 -76.3 

Uruguay             0.3 1142.4 3.4 3.4 

Venezuela       -2.79 1782.9 -49.7 -4.6 869.2 -40 -89.7 

North, Central 
America and the 
Caribbean 

  88010.8 1030.3   303608.1 7638   10379.7 96 8764.3 

Canada  -7 25183.7 -1762.9 2.3 9484.5 218.1       -1544.8 

Dominican 
Republic             4.5 658.5 29.6 29.6 

Guatemala       -1.9 1268.8 -24.1       -24.1 

Mexico -3.5 3396.4 -118.9 0.4 20133.4 80.5 0.54 298.6 1.6 -36.8 

Nicaragua             10.7 298.9 32 32 

United States of 
America  4.9 59430.7 2912.1 2.7 272721.4 7363.5 0.36 9123.7 32.8 10308.4 

Africa   18596.3 -910.4   43076 -3271.3   18489.2 -58.1 -4239.8 

Cote D'Ivoire             -5.1 804.1 -41 -41 

Guinea             0.32 1283.1 4.1 4.1 

Madagascar             1.1 3229.5 35.5 35.5 

Mali             0.9 1123.4 10.1 10.1 

Senegal             -2.7 282.8 -7.6 -7.6 

Sierra Leone             2 625.3 12.5 12.5 

Uganda       -4.4 1496.9 -65.9       -65.9 

Egypt 2.8 7089.2 198.5 1.7 6481.1 110.2 -0.9 5722.3 -51.5 257.2 

Ghana       -0.3 1288.1 -3.9 -6 294.3 -17.7 -21.6 

Nigeria    -7.3 6402.9 -467.4 4.1 3572.8 146.5 -320.9 

United Republic 
of Tanzania       -6 3446.3 -206.8 -12.5 1216.3 -152 -358.8 

Morocco -26.4 4146 -1094.5             -1094.5 

Tunisia 0.2 1229.3 2.5             2.5 

South Africa 6.1 2021 123.3 -19.7 10039.9 -1977.9       -1854.6 

Ethiopia 0.3 1961.7 5.9 -0.9 3585.3 -32.3       -26.4 

Mozambique       6.6 1261.7 83.3       83.3 

Zambia       -14.3 1418.3 -202.8       -202.8 

Zimbabwe       -13.5 1339.5 -180.8       -180.8 

Kenya       -1.8 2783.4 -50.1       -50.1 

Malawi       -12.6 2356 -296.9       -296.9 

Algeria -6.8 2149.1 -146.1             -146.1 

Democratic 
Republic of Congo       1.7 1176.6 20 0.9 335.3 3 23 
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Table 6.1. Continued cereal production variability during El Niño event 

 

Country /Region 

Wheat Maize Rice Total 
Cereal 

Production 
Change 

(000 
tonnes) 

 

El Niño 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

El Niño 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

El Niño 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

Europe   119561.7 -971.1   54833.2 1027.6   2203.3 -44.9 11.6 

Austria 5.9 1435.5 84.7 1 1829.9 18.3       103 

Bulgaria -13.4 3582.6 -480.1 5.5 1502.7 82.6       -397.5 

Denmark  -1 4702.4 -47             -47 

France -0.2 36075.1 -72.2 2.8 14865.6 416.2    344 

Germany -1 21763.2 -217.6 1.2 3754.3 45.1       -172.5 

Greece -8.4 1981.4 -166.4 -1.8 2203.9 -39.7       -206.1 

Hungary 1.5 4418.3 66.3 7.8 6582.9 513.5       579.8 

Italy 2.6 7461.7 194 0.3 9357 28.1 -2 1423.9 -28.5 193.6 

Poland 0.8 8832.8 70.7 5.1 1569.4 80       150.7 

Romania -5.3 5735.5 -304 -2.07 9236.1 -191.2       -495.2 

Spain -2.9 5688.1 -165 1.9 3931.4 74.7 -2.1 779.4 -16.4 -106.7 

United Kingdom 0.8 14626.6 117             117 

Sweden  -4.4 2094.8 -92.2             -92.2 

Netherlands 3.5 1163.7 40.7             40.7 

Oceania   20739 -1742.1         839.7 43.7 -1698.4 

Australia -8.4 20739 -1742.1       5.2 839.7 43.7 -1698.4 

   World   511209.8 933.4   665365.9 -739.1   624286.3 -572 -377.7 
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Table 6.2. Cereal production variability during La Niña event 

Country /Region 

Wheat Maize Rice 

Total 
Cereal 

Production 
Change 

(000 
tonnes) 

La Niña 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

La Niña 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

La Niña 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

South Asia   111510.8 1285.8   20870.1 54.5   191655.2 -725.6 614.7 

Afghanistan -6.5 3202.8 -208.2       -0.3 459 -1.4 -209.6 

Bangladesh -0.04 1252.7 -0.5       -0.6 38970.2 -233.8 -234.3 

India 2.5 74026.8 1850.7 -0.7 15121.1 -105.8 -0.6 135219.1 -811.3 933.6 

Nepal -0.6 1323 -7.9 -0.3 1634.3 -4.9 0.49 4076.8 20 7.2 

Pakistan 0.3 20336.1 61 -0.4 2637.6 -10.6 5.8 7234.5 419.6 470 

Sri Lanka             -3.7 3168.3 -117.2 -117.2 

Iran -3.6 11369.4 -409.3 11.9 1477.1 175.8 -0.06 2527.3 -1.5 -235 

Southeast Asia       25393.5 205   168129.8 3100.7 3305.7 

Cambodia             14.7 5515.7 810.8 810.8 

Indonesia       -1.1 12426.6 -136.7 0.9 56000.9 504 367.3 

Lao People's 
Democratic Republic             3.5 2440 85.4 85.4 

Malaysia             -2 2277.8 -45.6 -45.6 

Myanmar             -2 24728.5 -494.6 -494.6 

Philippines       0.1 5454.5 5.5 -4.8 13938.2 -669 -663.5 

Thailand       5.1 4381.6 223.5 1.5 28820.5 432.3 655.8 

Viet Nam       3.6 3130.8 112.7 7.2 34408.2 2477.4 2590.1 

East Asia   106978.4 -534.9   144800.7 -1647.3   210747 1525.6 -656.6 

China -0.5 106978.4 -534.9 -1.1 143148.5 -1574.6 0.8 190406.2 1523.2 -586.3 

Democratic People's 
Republic of Korea       -4.4 1652.2 -72.7 -3.2 2307.1 -73.8 -146.5 

Japan             0.8 11427.7 91.4 91.4 

Republic of Korea             -0.23 6606 -15.2 -15.2 

West Asia   27192.4 -1616.2   3195.4 79.9   526.5 15.3 -1521 

Iraq -19.2 1859 -356.9             -356.9 

Saudi Arabia -8.5 1878.2 -159.6             -159.6 

Syrian Arab 
Republic -14.8 3854.7 -570.5             -570.5 

Turkey -2.7 19600.5 -529.2 2.5 3195.4 79.9 2.9 526.5 15.3 -434 

South America   18620.4 1372.4   69588.9 774.5   21315.9 468.1 2615 

Argentina 8.5 13201.5 1122.1 -4.6 17586.8 -809 2.4 1129.5 27.1 340.2 

Bolivia             2.8 355.4 10 10 

Brazil 5.8 3930.3 228 3.7 44866 1660 3.6 11103.4 399.7 2287.7 

Chile 1.5 1488.6 22.3 -1.3 1132.7 -14.7       7.6 

Colombia       -1.8 1379.1 -24.8 2.2 2075.4 45.7 20.9 

Cuba             2.6 529.9 13.8 13.8 
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Table 6.2. Continued cereal production variability during La Niña event 

 

 
 
Country /Region 
 
 

Wheat Maize Rice Total 
Cereal 

Production 
Change 

(000 
tonnes) 

La Niña 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

La Niña 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

La Niña 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

Ecuador             -4.8 1423.9 -68.3 -68.3 

Guyana             -3.3 530.4 -17.5 -17.5 

Paraguay       -0.2 1601.5 -3.2       -3.2 

Peru       -2.3 1239.9 -28.5 0.9 2156.4 19.4 -9.1 

Uruguay             3.8 1142.4 43.4 43.4 

Venezuela       -0.3 1782.9 -5.3 -0.6 869.2 -5.2 -10.5 

North, Central 
America and the 
Caribbean 

  88010.8 -3704.2   303608.1 -4776.4   10379.7 5.4 -8475.2 

Canada  -15.1 25183.7 -3802.7 -3.6 9484.5 -341.4       -4144.1 

Dominican Republic             -0.5 658.5 -3.3 -3.3 

Guatemala       3.6 1268.8 45.7       45.7 

Mexico 0.1 3396.4 3.4 -6 20133.4 -1208 -2.8 298.6 -8.4 -1213 

Nicaragua             -6.5 298.9 -19.4 -19.4 

United States of 
America  0.16 59430.7 95.1 -1.2 272721.4 -3272.7 0.4 9123.7 36.5 -3141.1 

Africa   18596.3 -18.1   43076 256.2   18489.2 -11 227.1 

Cote D'Ivoire             -1.6 804.1 -12.9 -12.9 

Guinea             -0.4 1283.1 -5.1 -5.1 

Madagascar             -0.9 3229.5 -29.1 -29.1 

Mali             -2.7 1123.4 -30.3 -30.3 

Senegal             -6.4 282.8 -18.1 -18.1 

Sierra Leone             -2.5 625.3 -15.6 -15.6 

Uganda       10.3 1496.9 154.2       154.2 

Egypt 5.5 7089.2 389.9 0.41 6481.1 26.6 1.5 5722.3 85.8 502.3 

Ghana       -3 1288.1 -38.6 -2.2 294.3 -6.5 -45.1 

Nigeria       5.3 6402.9 339.4 -3.2 3572.8 -114.3 225.1 

United Republic of 
Tanzania       5.2 3446.3 179.2 11.6 1216.3 141.1 320.3 

Morocco -17.1 4146 -709             -709 

Tunisia -3.9 1229.3 -47.9             -47.9 

South Africa 13.6 2021 274.9 -7 10039.9 -702.8       -427.9 

Ethiopia -2.8 1961.7 -54.9 2.5 3585.3 89.6       34.7 

Mozambique       4.1 1261.7 51.7       51.7 

Zambia       -11 1418.3 -156       -156 

Zimbabwe       4.8 1339.5 64.3       64.3 

Kenya       -2.1 2783.4 -58.5       -58.5 

Malawi       12.89 2356 303.7       303.7 

Algeria 6 2149.1 128.9             128.9 

Democratic Republic 
of Congo       0.29 1176.6 3.4 -1.8 335.3 -6 -2.6 
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Table 6.2. Continued cereal production variability during La Niña event 

 
 
Country /Region 
 
 

Wheat Maize Rice Total 
Cereal 
Production 
Change 
(000 
tonnes) 

La Niña 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

La Niña 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

La Niña 
Effect 
(%) 

Mean 
Annual 

Production 
(000 

tonnes) 

Production 
Variability 

(000 
tonnes) 

Europe   119561.7 4028.9   54833.2 -85   2203.3 13 3956.9 

Austria 7.2 1435.5 103.4 0.6 1829.9 11       114.4 

Bulgaria -2.6 3582.6 -93.1 -9.7 1502.7 -145.8       -238.9 

Denmark  3.3 4702.4 155.2             155.2 

France  3.9 36075.1 1406.9 -2.9 14865.6 -431.1       975.8 

Germany 2.5 21763.2 544.1 3.3 3754.3 123.9       668 

Greece 4.8 1981.4 95.1 -3.4 2203.9 -74.9       20.2 

Hungary 7.1 4418.3 313.7 4.6 6582.9 302.8       616.5 

Italy 4.9 7461.7 365.6 4.4 9357 411.7 0.9 1423.9 12.8 790.1 

Poland 3.5 8832.8 309.1 16.1 1569.4 252.7       561.8 

Romania 3.6 5735.5 206.5 -7.2 9236.1 -665       -458.5 

Spain 10.4 5688.1 591.6 3.3 3931.4 129.7 0.02 779.4 0.2 721.5 

United Kingdom -0.4 14626.6 -58.5             -58.5 

Sweden  5.1 2094.8 106.8             106.8 

Netherlands -1.5 1163.7 -17.5             -17.5 

Oceania   20739 -891.8       839.7 30.2 -861.6 

Australia -4.3 20739 -891.8       3.6 839.7 30.2 -861.6 

   World   511209.8 -78.1   665365.9 -5138.6   624286.3 4421.7 -795 

 

As a result, during El Niño phase, the total cereal production change, on global scale, is 

negative. During La Niña events, wheat production in North America, most of Asia, and 

Australia decreases. Also, La Niña results in maize production reduction in most American 

and Asian countries. Rice production tends to show positive responses in La Niña years; most 

apparently in North and South America, most parts of East, Southeast and West Asia, and 

Australia. La Niña phases make rise to global rice production, whereas global wheat and 

maize production decrease during La Niña phases. Global cereal production experiences a 

negative change during La Niña events. Consequently, minimizing the ENSO negative 

effects also getting benefit from the ENSO positive impact on global cereal production could 

be an important tool to ensure food availability during ENSO years. 
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6.1 Comparisons of this study with previous global and regional 

studies 
The results of this study support the general hypothesis that ENSO impacts the 

production of wheat, maize and rice, on both a regional and global basis. Here, we discuss 

our results and compare them with previous similar studies. Tables 6.3 and 6.4 present a 

summary of the comparison between the results of this study and other global and regional 

studies, respectively. Here, the countries that exhibit a statistically significant causal 

relationship between ENSO and production are discussed in more detail. 

A large number of previous studies examine the ENSO impact on cereal production for 

a specific region or country (e.g. Pol and Binyamin (2014), and Roberts, Dawe et al. (2009), 

Royce, Fraisse et al. (2011). However, few studies examine the impact of ENSO on cereal 

production from a global perspective. Chen and McCarl (2000) estimate the ENSO impact on 

crop production in the main producing countries by applying a stochastic model coupled with 

a global trade model. Chen, McCarl et al. (2008) study the ENSO impact on major rice 

producing countries. They apply a regression approach with non-climate-related variables as 

explanatory variables. Their model links total rice production to the planting area and trend 

(technology) variables. To reflect the ENSO effect on rice production, they use the deviations 

from average production that are grouped by ENSO phases. Iizumi, Luo et al. (2014) present 

the global impact of ENSO on the yield of major cereals including wheat, maize and rice. 

They first calculate the percentage yield anomaly, which is calculated as the deviation from a 

normal yield. Then they determine the average of percentage yield anomalies for El Niño, La 

Niña and normal years over the period of 1984–2004. Finally, the percentage yield anomalies 

of particular crops are weighted by the production ratio in each different cropping system. 
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In this study, we first investigate the country-level correlation between the El Niño-

Southern Oscillation (ENSO) and cereal production. Then, the ENSO impact on world cereal 

production is estimated using the country-level ENSO-related effects and the global 

production ratio of a particular crop. The distinctive approaches of this study compared to 

other studies include the following: 

- It applies a regression-based approach to directly estimate the ENSO impact on 

crop production. Also, the threshold regression (TR) analysis allows for asymmetric 

production responses to the warm and cold ENSO phases.  

- It incorporates weather variables, such as temperature and precipitation, in the 

regression setting, to capture the “additional” ENSO effect on crop production, net 

of climatic effect. In so doing, ENSO variable serves as a proxy for natural disasters 

and anomalies, not otherwise captured by average rainfall and temperature 

variables. 

-  It incorporates lagged price (as a proxy for expected price) of the considered 

commodity in the regression setting to control for an important economic variable 

affecting crop supply and to isolate the ENSO impact from the price-related 

production variability. 

- It uses time series data spanning 1962-2009 (48 years), which includes more ENSO 

events than the time series used in majority of previous similar studies.  

Examining the effect of El Niño or La Niña net of all other factors is an important 

distinction of this study, compared to the previous studies, which look at aggregate climate 

effect (including rainfall and temperature) during El Niño and La Niña years. The different 

spatial effect of ENSO between this study and previous ones mainly goes back to the 

procedure of capturing the net effect of ENSO on crop production. Nonetheless, the results of 



92 

 

this study, in terms of the signs of the El Niño or La Niña impacts (positive or negative) 

across the countries and crops, are similar to many of the previous studies. However, one 

example of discrepancy is the ENSO effect on wheat in the U.S. The result of this study 

shows that El Niño causes a positive, significant effect on wheat production. In contrast, 

Iizumi, Luo et al. (2014) show that El Niño causes a negative effect. Iizumi, Luo et al. (2014) 

define the index of ENSO based on the reproductive growth period of wheat, including both 

winter and spring cropping systems. Our study contributes winter wheat crop calendar since it 

is responsible for the highest area harvested. Izaurralde, Rosenberg et al. (1999) find that both 

the positive and negative impacts on wheat yield across different regions in the U.S. Hansen, 

Jones et al. (2001) examine the ENSO effect on wheat yield in a specific region in the U.S. 

The U.S.’s large share of global wheat production, and methodological differences across the 

two studies, is responsible for the discrepancy between our results (which are from a global 

perspective) and the results of Iizumi, Luo et al. (2014). 
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Table 6.3. Comparison in the effect of ENSO on global cereal production/yield between this study and previous studies 

Crop 

This study 
Iizumi, Luo et al. 

(2014) 

Chen, McCarl et al. 

(2008) 

Chen and McCarl 

(2000) 

El Niño 

effect(1) 

 

La Niña 

effect(1) 

 

El Niño 

effect(1) 

 

La Niña 

effect(1) 

 

El Niño 

effect(1) 

 

La Niña 

effect(1) 

 

El Niño 

effect(1) 

 

La Niña 

effect(1) 

 

Wheat + - - - N.A. N.A. +/- + 

Maize - - - - N.A. N.A. - - 

Rice - + - - - - N.A. N.A. 

(1):“+” and “-” indicate the positive and negative impacts on global production, respectively.  

”N.A.” indicates the data are not available from references. 
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Table 6.4. Comparison in the effect of ENSO on crop production/yield between this study and previous studies 

Crop 

This study Previous study 

Country 
El Niño 

effect(1) 

La Niña 

effect(1) 

Country /Region 
El Niño 

effect(1) 

La Niña 

effect(1) 

ENSO Index(2) 

Regression 

estimated(3) 

Data time 

interval 
References 

Wheat Argentina (+) (+) 

Argentina (+)/(-) (+)/(-) ONI ˟ 1982-2006 Iizumi, Luo et al. (2014) 

Buenos Aires (-) (-) SOI ˟ 

1997-1998* 

2007-2008* 

(case study) 

Pol and Binyamin (2014) 

Buenos Aires (+) (-) SSTA Niño3  1950–1994 Travasso, Magrin et al. (2003) 

Argentina + - N.A. ˟ 1972-1993 Chen and McCarl (2000) 

Wheat Australia - - 

Australia (eastern) (-) (-) ONI ˟ 1982-2006 Iizumi, Luo et al. (2014) 

Australia  - - N.A. ˟ 1972-1993 Chen and McCarl (2000) 

Australia (eastern) (-) - SOI ˟ 1886- 1993 Meinke and Stone (1997) 

Australia (-) (+) SOI  1948 -1988 Rimmington and Nicholls (1993) 

Wheat Canada - (-) 

Canada (+)/(-) (-) ONI ˟ 1982-2006 Iizumi, Luo et al. (2014) 

Canada (+)/(-) N.A. JMA ˟ 1968 -1994 
Izaurralde, Rosenberg et al. 

(1999) 

Canada + - N.A. ˟ 1972-1993 Chen and McCarl (2000) 
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Table 6.4. Continued comparison in the effect of ENSO on crop production/yield between this study and previous studies 

Crop 

This study Previous study 

Country 
El Niño 

effect(1) 

La Niña 

effect(1) 

Country /Region 
El Niño 

effect(1) 

La Niña 

effect(1) 

ENSO Index(2) 

Regression 

estimated(3) 

Data time 

interval 
References 

Wheat South Africa + (+) South Africa + (+) ONI ˟ 1982-2006 Iizumi, Luo et al. (2014) 

Wheat Morocco (-) - Morocco (-) (-) ONI ˟ 1982-2006 Iizumi, Luo et al. (2014) 

Wheat Spain - (+) 
Spain - - JMA ˟ 1961-1997 Gimeno, Ribera et al. (2002) 

Western Europe -  N.A. N.A. ˟ 1972-1993 Chen and McCarl (2000) 

Wheat 
United 

States 
(+) + 

United States (-) (-) ONI ˟ 1982-2006 Iizumi, Luo et al. (2014) 

United States 

(Southeastern) 
(-) (+) JMA ˟ 1965 - 1997 Hansen, Jones et al. (2001) 

United States (+)/(-) N.A. JMA ˟ 1960 -1989 Izaurralde, Rosenberg et al. (1999) 

Maize Iran (+) + Iran (+) - ONI ˟ 1982-2006 Iizumi, Luo et al. (2014) 

Maize Mexico + (-) 
Mexico (-) (-) ONI ˟ 1982-2006 Iizumi, Luo et al. (2014) 

Mexico (+)/(-) (+)/(-) JMA ˟ 1960–1989 Adams, Houston et al. (2003) 

Rice Bangladesh (-) - Bangladesh (+) (-) SOI ˟ 1961-1998 Chen, McCarl et al. (2008) 
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Table 6.4. Continued comparison in the effect of ENSO on crop production/yield between this study and previous studies 

Crop 

This study Previous study 

Country 
El Niño 

effect(1) 

La Niña 

effect(1) 

Country /Region 
El Niño 

effect(1) 

La Niña 

effect(1) 

ENSO Index(2) 

Regression 

estimated(3) 

Data time 

interval 
References 

Rice Brazil (-) + 
Brazil (+) +/- ONI ˟ 1982-2006 Iizumi, Luo et al. (2014) 

Brazil (+)/(-) (-) SOI ˟ 1961-1998 Chen, McCarl et al. (2008) 

Rice Indonesia (-) + 

Indonesia (+)/(-) +/- ONI ˟ 1982-2006 Iizumi, Luo et al. (2014) 

Indonesia - + SSTA Niño3.4  1983-2001 Falcon, Naylor et al. (2004) 

Indonesia (-) (-) SOI ˟ 1961-1998 Chen, McCarl et al. (2008) 

Rice Korea DRP (-) - Korea DRP (-) (-) SOI ˟ 1961-1998 Chen, McCarl et al. (2008) 

Rice Philippines - (-) 

Philippines 

(Luzon) 
(-) (+) SSTA Niño3.4  1961–2005 Roberts, Dawe et al. (2009) 

Philippines (-) (-) SOI ˟ 1961-1998 Chen, McCarl et al. (2008) 

Rice Vietnam + (+) Vietnam (-) (+) SOI ˟ 1961-1998 Chen, McCarl et al. (2008) 

 (1) “(+)” and “(-)” indicate the significant positive and negative impacts on production/yield, respectively. “+” “-’’ indicates insignificant positive and negative impact on production/yield, 
respectively. “(+)/ (-)” and “+/-“indicates both significant positive and negative impact and both insignificant positive and negative impact. ”N.A.” indicates the data are not available from 
references.  

(2) ONI: Oceanic Niño Index; SOI: Sothern Oscillation Index; JMA: Japan Meteorological Agency; SSTA Niño3.4/ Niño3: Sea Surface Temperature Anomalies in Niño3.4/ Niño3 region. 

(3) A regression-based framework to directly estimate the ENSO impact on crop production.
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6.2 Policy Recommendations 
The world population reach 9 billion people by 2050 (Lang and Heasman 2015). 

Several studies have suggested that, to meet global food demand, agricultural production will 

need to approximately double by 2050 (Pingali 2007, OECD/FAO 2012). This doubling of 

production will require a 2.2 percent rate of crop production growth annually, including an 

additional one billion tonnes of cereals per year by 2050 (Bruinsma 2009). Consequently, the 

agricultural sector will be challenged to ensure future food security. Despite huge advance in 

the technology and crop yield potential, food production still remains greatly dependent on 

climatic factors (Rosenzweig, Iglesias et al. 2001). Some regions may benefit from a shift in 

climate, others suffer from food supplied reduction, hence, there is a potential for an increase 

in food deprivation.  

This study assumes that farmers, especially in the developing world either have very 

limited information about the ENSO effect, or very limited resources/opportunities to act 

upon the ENSO news. Appropriate national (or regional) policy responses will depend on the 

magnitude of crop production variability resulting from ENSO impacts, the capacity of grain 

storages, and whether the country is a cereal exporter or importer. Linking the potential 

capability of ENSO forecasts with lead times of up to 2 years (Luo, Masson et al. 2008) with 

understanding of the ENSO impact on cereal production is a key advancement for food 

management. Decision-makers (governments, companies, or individuals) may provide 

preparations earlier instead of expecting for initial effects to happen (Magalhaes 2000). 

Avoiding (or minimising) negative ENSO effects, or taking advantage of positive ENSO 

impacts, may be achieved by making decisions for any given crop about choices of planting 

and harvesting date, increased inputs of seeds, fertiliser, and pest control and irrigation 

(Weiher 1999, Sivakumar and Meinke 2007). Incorporating ENSO forecasts into planting 
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decisions in the United States could enhance agricultural output and generate benefits of 

US$323 million for the U.S. economy, annually (Solow, Adams et al. 1998). In addition, 

understanding the different and conflicting ENSO impacts on various crops (for instance, in 

Argentina, El Niño positively impacts on wheat and rice, and negatively impacts on maize) is 

a beneficial tool to implement crop switching strategies. This understanding enables farmers 

to choose the crop that is most suited to the expected temperature and rainfall conditions, to 

mitigate ENSO damage and ensure food availability. Crop insurance policies, based on 

ENSO indices, could cut down the financial losses of ENSO-induced production reduction in 

order to manage risks for smallholder agriculture. Also, adaption policies such as increasing 

storage capacity and reducing trade barriers could mitigate ENSO damage to the international 

markets. Chen, McCarl et al. (2008) find that ENSO damage on international rice market 

partially offset by government mitigation strategies to smooth out price fluctuations. They 

show that both aforementioned policies enhance total social welfare; however lowering 

import tariffs is more effective than expanding storage capacity. 

Findings of this study provide advantageous tool for global trade. When producers are 

able to adapt to the prospect of expected production variability, ENSO impact could be 

attenuated. Our results could help producers around the world to be aware of the supply 

variability and be able to anticipate the price variability. This enables producers to be 

predictive to respond early. When food-producing countries including importers and 

exporters could effectively respond to ENSO-induced production variability by regional trade 

management or stock management the risk of the global food crisis will attenuate.
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 Chapter 7. Conclusions 
The El Niño Southern Oscillation (ENSO) is associated with weather anomalies in 

different parts of the world. Consequently, ENSO-related unfavourable weather conditions 

are likely to substantially impact agricultural production. This, in turn, causes considerable 

socio-economic implications in various parts of the world. An accurate understanding of the 

ENSO-economy relationship is important to elucidate how future weather shocks will affect 

agricultural activity. Then, outline effective macroeconomic policies to mitigate the adverse 

impacts or benefits the positive effects. 

This study identifies the relationship between ENSO and world production of major 

cereal crops, first in the main producing countries, then on a global scale. This study uses the 

country-level annual crop production and ENSO data spanning 1962-2009. An understanding 

of how ENSO events affect food supply in the world is essential to assess the advantage of 

alternative adaption strategies to effectively manage food policies. 

Previous approaches primarily focus on specific region or country to estimate the 

ENSO impact on cereal production. This study contributes to the ENSO-economy literature 

by incorporating the most possible extended geographical peculiarities to measure the ENSO 

effect on cereal production. In addition, it applies a threshold regression framework to 

address the potentially asymmetric nature of the ENSO shocks in production responses. 

Within this framework, it also incorporates an economic variable (i.e., lagged price as a proxy 

of expected price) to control for economic factors affecting supply. Furthermore, it controls 

weather-ENSO interactions by incorporating country-level growing-season average of air 

temperature and precipitation. Therefore, it measures the net effect of ENSO on cereal 

production after removing climatic effect.  
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Results indicate that ENSO affects many major cereal producers, as well as exporters. 

Our analyses of ENSO records show that the El Niño effect on cereal production, while 

typically negative, is indeed positive in many regions. In addition, the simultaneity of the 

ENSO impact in various parts of the world (i.e. spatial correlation of the ENSO-induced 

production variability) is apparent. Consistent with prior research, the results reveal that 

ENSO affects wheat, maize and rice production significantly in many parts of the world, 

particularly Western Pacific regional countries, and Central and South America’s western 

coastal regions. The results show the evidence of a statistically significant relationship 

between ENSO events and individual production responses of countries compromising 34 

percent of global wheat production, 17 percent and 26 percent of global maize and rice 

production, respectively. 

Besides country-level ENSO effects, this study investigates the global cereal production 

responses to ENSO. Findings also point out the importance of ENSO to global cereal 

production. El Niño and La Niña events, both, reduce global cereal production. The 

asymmetries in responses are evident for wheat and rice. Global wheat production increases 

during El Niño events, but global rice production decreases. Global maize production reduces 

under both ENSO phases. 

Our results greatly complement previous studies, and have implications for researchers 

and policy makers in several disciplines, including global production, commodity storage, 

trade, food management, spatial price stabilisation, and civil unrest. The results are beneficial 

for import-dependent countries to manage national trade and storage capacity on the basis of 

the ENSO phase presence. An effective response to ENSO could improve food availability 

and reduce the risk of undernourishment. 
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Appendix  

Table A.1. The full list of the countries of study 

Country /Region Code Country /Region Code 
South Asia 

Afghanistan AFG India IND 
Bangladesh BGD Iran IRN 
Nepal NPL Sri Lanka LKA 
Pakistan PAK   

South East Asia 
Cambodia KHM Myanmar MMR 
Indonesia IDN Philippines PHL 
Lao People's Democratic Republic LAO Thailand THA 
Malaysia MYS Viet Nam VNM 

East Asia 
China CHN Japan JPN 
Republic of Korea KOR Democratic People's Republic of Korea PRK 

West Asia 
Iraq IRQ Syrian Arab Republic SYR 
Saudi Arabia SAU Turkey TUR 

Africa 
Algeria DZA Morocco MAR 
Cote D'Ivoire CIV Mozambique MOZ 
Democratic Republic of Congo COD Nigeria NGA 
Egypt EGY Senegal SEN 
Ethiopia ETH Sierra Leone SLE 
Ghana GHA South Africa ZAF 
Guinea GIN United Republic of Tanzania TZA 
Kenya KEN Tunisia TUN 
Madagascar MDG Uganda UGA 
Malawi MWI Zambia ZMB 
Mali MLI Zimbabwe ZWE 

South America 
Argentina ARG Ecuador ECU 
Bolivia BOL Guyana GUY 
Brazil BRA Paraguay PRY 
Chile CHL Peru PER 
Colombia COL Uruguay URY 
Cuba CUB Venezuela VEN 

North America, central America and Caribbean 
Canada  CAN Mexico MEX 
Dominican Republic DOM Nicaragua NIC 
Guatemala GTM United States of America  USA 

Europe 
Austria AUT Italy ITA 
Bulgaria BGR Netherlands NLD 
Denmark  DNK Poland POL 
France  FRA Romania ROU 
Germany DEU Spain ESP 
Greece GRC Sweden  SWE 
Hungary HUN United Kingdom GBR 

Oceania 
Australia AUS   
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Table A.2. Coefficients estimated by the ENSO effect on wheat production (1) 

Country 
Code El Niño La Niña (2) Temperature Precipitation (Precipitation)

2
 log (Area) log (price) 

IND 0.004   -0.025   -0.024   0.004   -0.00002   1.36 (***) -0.11 (**) 

NPL 0.013   0.006   0.057   0.006   -0.00001   0.72 (***) 0.05   

BGD -0.033   0.0004   0.142   -0.005   0.00001   1.23 (***) 0.102   

PAK -0.013   -0.003   0.015   0.0009   -0.000001   1.5 (***) 0.06 (*) 

AFG 0.04   0.065   0.037   0.063   -0.002   1.21 (***) 0.18   

IRN 0.018   0.036   0.011   0.039 (***) -0.0005 (***) 0.75 (***) -0.05   

CHN 0.03   0.005   -0.024   0.022   -0.0001   1.31 (***) 0.01   

TUR -0.036   0.027   -0.018   -0.015   0.0002   1.15 (**) 0.03   

SYR -0.042   0.148 (*) -0.055   0.011   -0.00004   1.18 (***) -0.07   

SAU 0.045   0.085 (*) 0.076 (*) -0.075   0.004   1.25 (***) 0.2 (**) 

IRQ -0.087   0.192   -0.025   -0.025   0.0008 (**) 0.78 (***) 0.26   

USA 0.049 (**) -0.002   -0.036 (**) 0.024 (**) -0.0002 (**) 1 (***) -0.04   

MEX -0.035   -0.001   -0.063   -0.02   0.0001   0.97 (***) 0.08   

CAN -0.07   0.151 (*) -0.013   0.03 (***) -0.0002 (**) 0.88 (***) 0.05   

BRA -0.144   -0.058   -0.08   0.009   -0.00003   0.89 (***) -0.01   

ARG 0.111 (**) -0.085 (*) -0.011   0.018   -0.0001   1.14 (***) 0.05   

CHL 0.015   -0.015   0.029   -0.005   0.00002   1.32 (***) -0.25 (**) 

EGY 0.028   -0.055 (**) -0.014   0.303   -0.041   1.25 (***) -0.09   

DZA -0.068   -0.06   0.014   -0.007   0.0002 (*) 1.33 (***) -0.24 (**) 

ETH 0.003   0.028   0.062   -0.031 (**) 0.0002 (**) 0.81 (***) 0.03   

TUN 0.002   0.039   -0.011   0.016   -0.0002   1.09 (***) -0.03   

ZAF 0.061   -0.136 (***) -0.02   -0.021   0.00023   0.82 (***) -0.05   

MAR -0.264 (**) 0.171   0.146 (*) 0.003   0.0001   2.33 (***) 0.11   

ESP -0.029   -0.104 (**) -0.036   0.025   -0.0002   0.11   -0.27 (**) 

ITA 0.026   -0.049 (**) -0.055 (**) 0.043 (***) -0.0004 (***) 0.84 (**) -0.06   

AUT 0.059   -0.072 (**) -0.025   0.011   -0.00006   1.2 (***) 0.003   

FRA -0.002   -0.039 (**) -0.028 (**) 0.021 (***) -0.0002 (***) 1.4 (***) -0.05   

DEU -0.01   -0.025   -0.019 (*) 0.027 (***) -0.0002 (***) 0.7 (***) -0.07 (**) 

GRC -0.084   -0.048   -0.055 (**) 0.014   -0.0001   0.88 (***) -0.01   

HUN 0.015   -0.071 (**) -0.067 (**) 0.015   -0.0001   1.55 (***) -0.02   

POL 0.008   -0.035   -0.022   0.004   -0.00003   0.99 (***) 0.06   

ROU -0.053   -0.036   -0.093 (***) 0.018 (**) -0.0001 (**) 1.63 (***) -0.004   
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Table A.2. Continued coefficients estimated by the ENSO effect on wheat production (1) 

Country 
Code El Niño La Niña (2) Temperature Precipitation (Precipitation)

2
 log (Area) log (price) 

GBR 0.008   0.004   -0.041 (**) 0.007   -0.0001   1.51 (***) -0.04  

NLD 0.035   0.015   -0.037 (**) -0.003   0.000003   0.999 (***) -0.04  

SWE -0.044   -0.051   0.019   0.0029   -0.00001   1.09 (***) 0.02  

DNK -0.01   -0.033 (**) 0.005   0.017 (*) -0.0002 (*) 1.11 (***) 0.07   

BGR -0.134 (**) 0.026   -0.058 (*) 0.038 (**) -0.0003 (*) 0.83 (***) 0.08   

AUS -0.084   0.043   -0.07   0.162 (***) -0.002 (***) 0.9 (***) -0.04   

(1) The dependent variable is the natural logarithm of wheat production. 

(2) Since the SSTA during La Niña phase development is negative, to facilitate comparisons in previous chapters the sign of 
the parameters associated with la Niña has been reversed. 

(*), (**) and (***) indicate the significant impact at 10%, 5% and 1% level of significant, respectively. 

The results of this study show that price and crop production are positively correlated in most countries. The positive effects 
may indicate that following an increase in expected price applying productive management practices by farmers (Feng and 
Babcock 2010), leads to an increase in yield (Miao, Khanna et al. 2016). Alternatively, rising prices may encourage farmers 
to increase the planting area and even plant low quality fields, which results in lower overall productivity (Feng and Babcock 
2010, Miao, Khanna et al. 2016). Plant growth increases approximately linearly in temperature and precipitation up to a 
point where additional heat and precipitation become unfavourable (Schlenker and Roberts 2008). Also, the results of this 
study confirm the negative relationships between the quadratic terms of precipitation and crop production in most of the 
countries. The negative relationship between temperature and production may go back to the intervention impact of 
precipitation (Anderson and Finn 2012). This means that when temperature is low, there is a tendency for higher rainfall to 
occur, which partially offsets the unfavourable impact of low temperature. 
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Table A.3. Coefficients estimated by the ENSO effect on maize production (1) 

Country 
Code El Niño La Niña(2) Temperature Precipitation (Precipitation)

2
 log (Area) log (price) 

IDN 0.006   0.011   -0.0003 -0.0003   -0.0000004   1.18 (***) -0.043   

PHL -0.04 (*) -0.001   0.022   0.001   -0.000002   1.05 (***) 0.007   

VNM -0.032   -0.036   0.028   -0.006   0.00001   0.7 (***) -0.059   

THA -0.051   -0.051 (*) -0.043   0.012 (**) -0.00002 (**) 0.54 (***) 0.094   

IND -0.045   0.007   -0.053   -0.006   0.00001   0.64 (***) -0.001   

NPL -0.009   0.003   -0.018   0.0004   -0.000001   1.03 (***) 0.115 (***) 

PAK 0.027   0.004   0.061   0.01 (**) -0.0001 (*) 1.52 (***) 0.278 (***) 

IRN 0.133 (*) -0.119   -0.009   -0.005   0.0002   0.97 (***) 0.026   

CHN -0.026   0.011   -0.007   0.009   -0.00003   0.99 *** 0.008   

PRK -0.227   0.044   -0.021   0.014   -0.00004   3.26 (***) -0.745 (**) 

TUR -0.046   -0.025   -0.109 (***) 0.005   -0.00008   0.46   -0.128   

USA 0.027   0.012   -0.031 (**) 0.029 (***) -0.00013 (**) 1.73 (***) -0.178 (***) 

MEX 0.004   0.06 (**) -0.026   -0.005   0.00001   1.04 (***) -0.048   

CAN 0.023   0.036   0.085 (***) 0.01   -0.00006   0.97 (***) 0.075   

VEN -0.028   0.003   -0.057 (*) 0.01   -0.00003   0.83 (***) -0.18 (***) 

BRA -0.01   -0.037 (**) 0.034   0.02   -0.00004   1.001 (***) -0.001   

ARG -0.028   0.046   -0.072 (**) 0.006   -0.00001   1.16 (***) 0.026   

CHL 0.034   0.013   -0.023   0.05   -0.003   0.97 (***) -0.229 (**) 

PER 0.0167   0.023   -0.055 (*) 0.004   -0.00002   1.33 (***) 0.017   

PRY -0.036   0.002   0.025   0.008 (*) -0.00002   0.92 (***) -0.002   

COL -0.004   0.018   -0.014   0.005   -0.00001   0.75 (***) 0.069   

GTM -0.019   -0.036   0.034   0.003   -0.000004   0.66 (***) 0.189   

EGY 0.017   -0.004   0.036 (*) 0.18   -0.0618   0.28   -0.052   

ETH -0.009   -0.025   0.205 (**) -0.01   0.0001   0.6 (***) -0.063   

NGA -0.073   -0.053   0.02   0.02   -0.00004   0.85 (***) -0.141   

MWI -0.126   -0.129 (*) 0.303 (***) 0.006   -0.000003   0.7 (*) 0.031   

GHA -0.003   0.03   0.004   0.027   -0.00008   0.92 (***) 0.009   

KEN -0.018   0.021   -0.039   0.045 (***) -0.0002 (**) 0.88 (***) -0.116 (*) 

COD 0.017 (*) -0.003   -0.014   0.004   -0.00001   0.93 (***) -0.049   

ZAF -0.197 (**) 0.07   -0.039   0.052 (***) -0.00029 (**) 1.001 (***) 0.373 (**) 

TZA -0.06   -0.052   0.077   0.038 (*) -0.0001 (*) 0.421 (***) -0.154   
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Table A.3. Continued coefficients estimated by the ENSO effect on maize production (1)  

Country 
Code El Niño La Niña (2) Temperature Precipitation (Precipitation)

2
 log (Area) log (price) 

MOZ 0.066   -0.041   0.038   0.028   -0.0001   0.04   0.145   

ZMB -0.143   0.11 (**) -0.062   0.039 (*) -0.0001   0.8 (***) 0.085   

ZWE -0.135   -0.048   0.018   0.042 (***) -0.00015 (***) 0.66 (**) -0.273 (*) 

UGA -0.044   -0.103   0.084   0.002   -0.00001   0.99 (***) 0.109   

ESP 0.019   -0.033   -0.029   -0.0005   -0.00001   1.26 (***) -0.049   

ITA 0.003   -0.044 (*) -0.022   0.012   -0.00006   1.25 (***) 0.048   

AUT 0.01   -0.006   0.024   0.027   -0.00011 (**) 1.19 (***) 0.012   

BGR 0.055   0.097   -0.009   0.034   -0.0001   1.02 (**) -0.01   

FRA 0.028   0.029   0.004   0.021   -0.0001   1.15 (***) -0.052   

DEU 0.012   -0.033   0.018   0.046 (***) -0.0003 (***) 1.08 (***) 0.001   

GRC -0.018   0.034   -0.03   -0.019 (**) 0.0003 (**) 1.5 (***) 0.05   

HUN 0.078   -0.046   -0.044   0.035 (*) -0.0002 (*) 1.21 (***) 0.032   

POL 0.051   -0.161 (***) 0.027   0.015   -0.00008   1.12 (***) 0.169   

ROU -0.021   0.072 (*) -0.024   0.036 (**) -0.0002 (*) 1.14 (**) -0.063   

(1) The dependent variable is the natural logarithm of wheat production. 

(2) Since the SSTA during La Niña phase development is negative, to facilitate comparisons in previous chapters the sign of 
the parameters associated with la Niña has been reversed. 

(*), (**) and (***) indicate the significant impact at 10%, 5% and 1% level of significant, respectively. 

The results of this study show that price and crop production are positively correlated in most countries. The positive effects 
may indicate that following an increase in expected price applying productive management practices by farmers (Feng and 
Babcock 2010), leads to an increase in yield (Miao, Khanna et al. 2016). Alternatively, rising prices may encourage farmers 
to increase the planting area and even plant low quality fields, which results in lower overall productivity (Feng and Babcock 
2010, Miao, Khanna et al. 2016). Plant growth increases approximately linearly in temperature and precipitation up to a 
point where additional heat and precipitation become unfavourable (Schlenker and Roberts 2008). Also, the results of this 
study confirm the negative relationships between the quadratic terms of precipitation and crop production in most of the 
countries. The negative relationship between temperature and production may go back to the intervention impact of 
precipitation (Anderson and Finn 2012). This means that when temperature is low, there is a tendency for higher rainfall to 
occur, which partially offsets the unfavourable impact of low temperature. 
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Table A.4. Coefficients estimated by the ENSO effect on rice production (1) 

Country Code El Niño La Niña (2) Temperature Precipitation (Precipitation)2 log (Area) log (price) 

IDN -0.037 (***) -0.009   0.003   0.00002   -0.000002   1.17 (***) -0.02   

MYS 0.005   0.02   -0.089 (**) 0.001   -0.000001   1.43 (***) 0.08 (***) 

PHL -0.032   0.048 (**) -0.043   -0.001   0.000001   0.78 (***) -0.04   

VNM 0.013   -0.072 (**) 0.021   0.016 (**) -0.00003 (**) 0.91 (***) -0.14 (***) 

KHM 0.013   -0.147 (**) -0.129 (***) 0.006   -0.00002   1.24 (***) 0.06   

THA -0.007   -0.015   -0.011   0.002   -0.000002   0.81 (***) -0.04 (***) 

MMR -0.011   0.02   0.027   0.003   -0.000004   0.64 (*) -0.04   

LAO -0.025   -0.035   0.007   0.011   -0.00002   0.74 (***) -0.07   

LKA 0.001   0.037   0.001   -0.0004   0.0000007   0.98 (***) -0.05   

IND 0.006   0.006   -0.053   0.011 (*) -0.00002 (*) 2.28 (***) -0.07 (***) 

BGD -0.029 (**) 0.006   0.005   0.005 (**) -0.00001 (**) 1.26 (***) -0.03   

NPL -0.035   -0.005   -0.042   -0.003   0.000005   2.5 (***) -0.02   

PAK 0.02   -0.058   0.027   0.001   -0.000009   1.59 (***) 0.04   

AFG 0.037   0.003   0.044 (*) -0.018   0.001 (*) 0.81 (***) 0.2 (***) 

IRN 0.015   0.0006   -0.028   0.006   -0.0001   1.1 (***) -0.02   

JPN 0.008   -0.008   0.047 (***) 0.005 (***) -0.00001 (***) 0.97 (***) 0.04 (**) 

CHN 0.015   -0.008   -0.017   -0.002   0.000005   0.55 (**) -0.02   

KOR 0.003   0.002   0.041   0.0005   -0.000002   1.44 (***) 0.06   

PRK -0.123 (*) 0.032   -0.062   0.016   -0.00004   0.08   0.13   

TUR -0.016   -0.029   -0.057 (**) 0.007   -0.0001   1.02 (***) 0.03   

EGY -0.009   -0.015   0.039 (**) -0.067 (*) 0.011   1.22 (***) -0.07 (***) 

SLE 0.02   0.025   -0.098 (**) -0.011   0.00001   1.04 (***) 0.17 (**) 

NGA 0.041   0.032   0.136 (**) 0.016   -0.00003   0.99 (***) 0.21 (***) 

MDG 0.011   0.009   -0.058   0.002   -0.000004   0.76 (***) 0.06   

GHA -0.06   0.022   -0.077   0.015   -0.00004   0.68 (***) -0.02   

MLI 0.009   0.027   -0.145   0.058 (*) -0.00031 (*) 0.68 (***) 0.02   

COD 0.009   0.018   -0.02   0.006   -0.00001   0.939 (***) 0.02   

GIN 0.003   0.004   -0.015   -0.001   0.0000009   0.87 (***) 0.02 (*) 

TZA -0.125   -0.116   0.076   0.039 (***) -0.00017 (***) 0.68 (***) -0.28 (*) 

CIV -0.051 (**) 0.016   -0.089 (**) 0.012 (**) -0.00003 (*) 0.38 (***) 0.04   

SEN -0.027   0.064   0   0.006   -0.000006   1.05 (***) -0.08   

USA 0.004   -0.004   -0.031 (***) -0.001   0.000008   0.87 (***) -0.04 (**) 

MEX 0.005   0.028   -0.007   -0.002   0.000006   0.9 (***) 0.02   

CUB -0.083   -0.026   -0.021   0.012   -0.00003   0.99 (***) -0.05   
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Table A.4. Continued coefficients estimated by the ENSO effect on rice production (1)   

 

Country Code El Niño La Niña (2) Temperature Precipitation (Precipitation)2 log (Area) log (price) 

NIC 0.107 (**) 0.065 (**) -0.113 (**) 0.007 (*) -0.00001   0.9 (***) 0.04   

DOM 0.045   0.005   -0.07 (**) 0.003   -0.00001   0.64 (***) -0.08   

VEN -0.046   0.006   0.106   0.007   -0.00001   0.76 (***) 0.22 (**) 

BRA -0.045 (**) -0.036   0.01   -0.006   0.00001   0.84 (***) -0.08 (**) 

ARG 0.059   -0.024   0.009   0.001   -0.00001   1.12 (***) -0.003   

BOL -0.006   -0.028   0.043   -0.004   0.00001   0.87 (***) 0.06   

PER -0.045   -0.009   0.004   0.01 (*) -0.0001   1.1 (***) -0.01   

ECU -0.012   0.048   0.001   0.003   -0.00001   0.8 (***) 0.02   

URY 0.003   -0.038   0.088   0.001   -0.00001   0.99 (***) 0.06   

COL 0.069   -0.022   -0.104   0.009   -0.00002   0.74 (***) 0.03   

GUY -0.025   0.033   0.026   -0.002   0.000004   1.06 (***) -0.08   

ESP -0.021 (*) -
0.0002   0.008   -0.001   0.00003   1.16 (***) -0.008   

ITA -0.02   -0.009   0.074 (**) 0.002   -0.000012   0.65 (***) 0.08 (*) 

AUS 0.052   -0.036   0.081 (***) 0.006   -0.0001   1.06 (***) -0.11 (***) 

(1) The dependent variable is the natural logarithm of wheat production. 

(2) Since the SSTA during La Niña phase development is negative, to facilitate comparisons in previous chapters the sign of 
the parameters associated with la Niña has been reversed. 

(*), (**) and (***) indicate the significant impact at 10%, 5% and 1% level of significant, respectively. 

The results of this study show that price and crop production are positively correlated in most countries. The positive effects 
may indicate that following an increase in expected price applying productive management practices by farmers (Feng and 
Babcock 2010), leads to an increase in yield (Miao, Khanna et al. 2016). Alternatively, rising prices may encourage farmers 
to increase the planting area and even plant low quality fields, which results in lower overall productivity (Feng and Babcock 
2010, Miao, Khanna et al. 2016). Plant growth increases approximately linearly in temperature and precipitation up to a 
point where additional heat and precipitation become unfavourable (Schlenker and Roberts 2008). Also, the results of this 
study confirm the negative relationships between the quadratic terms of precipitation and crop production in most of the 
countries. The negative relationship between temperature and production may go back to the intervention impact of 
precipitation (Anderson and Finn 2012). This means that when temperature is low, there is a tendency for higher rainfall to 
occur, which partially offsets the unfavourable impact of low temperature. 
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