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Abstract 

Breath-to-breath variations in breathing can cause image artefacts. Day-to-day 

variations can cause a disagreement of position and volume between planning and 

treatment throughout radiotherapy procedures, requiring a larger treatment margin 

and longer treatment time. An advanced radiotherapy system requires: (1) a fast 

imaging technique for the compensation of breathing variations and/or (2) a 

respiratory motion management technique for the control of breathing variations.  

To achieve the goals of the advanced radiotherapy system, we propose a fast 

imaging technique to directly visualise lung tumours and the use of a respiratory 

guidance to control lung tumour motions. Significant efforts were made to assess the 

fast imaging technique and the use of respiratory guidance throughout the acquisition 

of healthy volunteer and lung cancer patient data in an ethics approved MRI imaging 

study. Fifteen lung cancer patients were scanned from March 2013 to February 2016. 

MRI datasets were obtained with and without audiovisual (AV) biofeedback guidance 

and they were also utilized for MRI reconstruction simulations. 

A novel MRI reconstruction method called ―Dynamic keyhole‖ was proposed as a 

fast imaging technique to reduce acquisition time and simultaneously improve image 

quality by reducing respiratory-related artefacts in the presence of respiratory motion. 

The dynamic keyhole method utilizes a library of previously acquired, peripheral k-

space datasets from the closest respiratory state in conjunction with central k-space 

datasets acquired in real-time. This thesis investigated (1) the concept of this method 

in terms of the improvement in temporal resolution with healthy volunteer MRI 

datasets and (2) the applicability of real-time lung tumour localization in terms of the 

accuracy of tumour motion and shape with lung cancer patient MRI datasets. The 

dynamic keyhole method achieved an increase in imaging frequency by up to a factor 
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of five when compared with full k-space methods whilst achieving sub-millimetre 

tumour motion accuracy and preserving tumour shape within 98%. This method is a 

promising technique for clinical applications such as real-time image-guided cancer 

radiotherapy in thoracic and abdominal regions. 

AV biofeedback respiratory guidance was used for healthy volunteers and lung 

cancer patients. This thesis investigated the impact of AV biofeedback on (1) intra- 

and inter-fraction lung tumour motion using cine-MRI, (2) inter-fraction lung tumour 

position and intra-fraction tumour volume using breath-hold MRI and (3) the 

improvement in image quality and the reduction in scan time using respiratory-gated 

MRI. AV biofeedback respiratory guidance improved intra- and inter-fraction tumour 

motion and position reproducibility, and intra-fraction tumour volume consistency. In 

addition, it was found to improve image quality and reduce scan time. These results 

demonstrated that AV biofeedback can facilitate reproducible tumour motion and 

position, and consistent tumour volume, which is advantageous towards achieving 

more accurate medical imaging and radiation therapy procedures. 

The performance of the dynamic keyhole method and AV biofeedback respiratory 

guidance shown in this thesis illustrates potential advantages of real-time tumour 

imaging and tumour motion management in the course of lung cancer radiotherapy. 
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Chapter 1: Introduction to Thesis 

 

In the field of external beam radiotherapy (EBRT), an external ionizing radiation 

beam is directed at the target (tumour) from multiple angles, overlapping or 

intersecting a certain region for the delivery of radiation dose to the target whilst only 

slightly irradiating the healthy tissue between the beam and the target. Hence, 

accurate radiation delivery is important in order to maximize the delivery to the target 

and minimize the radiation toxicity to the healthy tissue during EBRT. However, 

tumours move considerably, leading to tumour motion uncertainty and resulting in 

mis-targeting and collateral damage to healthy tissues and critical organs. In the case 

of lung cancer patients, the effect can be more severe due to tumour motion variations 

from breath-to-breath (intra-fraction) and fraction-to-fraction (inter-fraction), 

compromising the quality of treatment. To determine the tumour motion uncertainty 

more precisely, two cutting-edge techniques are investigated in this thesis: (1) fast 

tumour imaging and (2) tumour motion management. Fast tumour imaging without 

motion artefacts can provide a better definition of tumour position and volume, and 

tumour motion management can improve the reproducibility of tumour motion 

through the course of radiotherapy. 

In this study our team invented the concept of, and developed the Dynamic 

Keyhole method, a novel method to improve MR images in the presence of 

respiratory motion for real-time MRI. We believe this approach could improve real-

time MR and provide accurate estimation of tumour motion, position and volume for 

image guided radiotherapy (IGRT). In addition, we employed audiovisual (AV) 

biofeedback, an interactive and personalized breathing guidance system to improve 

intra- and inter-fractional breathing reproducibility. These novel techniques have a 
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wide range of applications in medical imaging, treatment planning and treatment 

delivery. Dynamic keyhole and AV biofeedback provide the ability to monitor and 

localize lung tumours in real-time. In addition, they improve lung tumour definition 

in cine-MRI, breath-hold MRI and respiratory-gated MRI. 

The first study of the dynamic keyhole method was a reconstruction simulation of 

sixty cine-MRI datasets acquired from fifteen healthy volunteers. This study 

demonstrated that the dynamic keyhole method achieved 79% faster acquisition 

speed compared with the conventional approach and is promising for real-time 

imaging applications. Further work is needed to evaluate the dynamic keyhole 

method with datasets from lung cancer patients. This study resulted in a publication 

in Medical Physics. 

To evaluate the accuracy of tumour motion and area, tumour motion and area 

were quantified as a function of acceleration factor for the dynamic keyhole method. 

Sixty four cine-MRI datasets from nine lung cancer patients were used in a 

reconstruction simulation. Compared to the ground truth, the dynamic keyhole 

method achieved an average accuracy in tumour motion of 99.6% and average 

accuracy in tumour area of 98.0%, make it promising for real-time lung tumour 

monitoring applications. This study resulted in a publication in Medical Physics. 

AV biofeedback was employed for cine-MRI for lung tumour motion consistency. 

A breathing training session prior to two 3T MRI scans was performed to allow 

patients to become familiar with AV biofeedback. A guiding wave customized for 

each patient based on a reference breathing pattern was utilized across two MRI 

sessions. Compared to free breathing (FB), AV biofeedback improved intra and inter-

fraction tumour motion consistency by 34% and 42% in displacement and by 73% 

and 74% in period, respectively. This demonstrated that AV biofeedback significantly 
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improved intra- and inter-fraction lung tumour motion consistency for lung cancer 

patients. This study resulted in a publication in Int J Radiat Oncol Biol Phys. 

AV biofeedback was employed for breath-hold MRI for lung tumour position 

reproducibility and volume consistency. A breath-hold training session was 

performed to allow patients to become comfortable with AV biofeedback breath-hold 

(AVBH).  Exhale and inhale breath-hold positions were utilized for individual 

patients across two MRI sessions. Compared to conventional breath-hold (CBH) 

utilizing audio-instruction on the MRI scanner, AVBH improved the reproducibility 

of inter-fraction tumour position by 46% and the consistency of intra-fraction tumour 

volume by 70% in breath-hold MRI. This study demonstrated that AVBH can 

improve the reproducibility of breath-hold lung tumour position and volume for 

emerging respiratory-gated lung cancer radiotherapy methods. This study resulted in 

a submission to Radiotherapy and Oncology. 

AV biofeedback was employed for respiratory-gated MRI for scan time reduction 

and image quality improvement. The inhale and exhale 3D images of respiratory-

gated MRI showed more anatomic information such as a clear distinction of 

diaphragm, lung lobes and sharper organ boundaries. Simultaneously, the scan time 

was reduced using AV biofeedback compared to FB. This study demonstrated the 

improvement in image quality and a reduction in scan time for respiratory-gated 3D 

MRI. This study resulted in a publication in Journal of Physics: Conference Series. 

In order to utilize the superior soft-tissue contrast of magnetic resonance imaging 

(MRI) for improving treatment outcome, radiation therapy systems integrated with 

MRI have been proposed for MRI guided radiation therapy (MRIgRT) such as the 

Viewray system, which is currently available for MRI guidance in clinical practice. 

The dynamic keyhole method can reduce the imaging time of MRI for real-time 
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tumour monitoring.  In addition, AV biofeedback can improve the reproducibility of 

lung tumour motion, position and volume through the course of radiation procedures. 

These techniques can be utilized in  treatments of tumours subjected to respiratory 

motion to precise the delivery of radiation more to tumours and less to surrounding 

healthy tissues. 

The structure of this thesis is as follows. Chapter 2: Literature Review 

introduces the workflow of lung cancer radiation therapy, discusses the techniques of 

treating mobile tumours, and provides additional techniques and justification for this 

research. Chapter 3: Dynamic keyhole: A novel method to 

improve MR images in the presence of respiratory 

motion for real-time MRI introduces the crucial works of the proposition 

and concept of the dynamic keyhole method. This includes the reconstructions of MR 

images from healthy volunteers. Chapter 4: Quantifying the accuracy 

of the tumor motion and area as a function of 

acceleration factor for the simulation of the dynamic 

keyhole magnetic resonance imaging method presents the 

assessment of the dynamic keyhole method by quantifying the agreement in lung 

tumour motion and shape on reconstructed MR images from lung cancer patients. 

Chapter 5: Audiovisual Biofeedback Improves Cine-

Magnetic Resonance Imaging Measured Lung Tumor 
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Motion Consistency presents the impact of AV biofeedback on cine-MRI in 

terms of tumour motion consistency. Chapter 6: Audiovisual 

biofeedback guided breath-hold improves lung tumor 

position reproducibility and volume consistency presents the 

impact of AV biofeedback on breath-hold MRI in terms of the reproducibility in 

tumour position and the consistency in tumour volume quantified by the gross tumour 

volume (GTV). Chapter 7: Audiovisual biofeedback improves 

image quality and reduces scan time for respiratory-

gated 3D MRI presents the impact of AV biofeedback on respiratory-gated 

MRI in terms of the reduction in scan time and improvement in image quality. 

Chapter 8: Summary and future work summarizes this thesis and 

discusses future work. 
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Chapter 2: Literature Review 

 

Lung cancer is the 5
th

 most common cancer leading to causes of illness and deaths 

in US
1
 and Australia.

2
 The incidence and mortality rates of lung cancer was 

approximately 14% and 28% in U.S. (Cancer statistics 2015), and 9.4% and 18.9% in 

Australia (Australian Institute of Health and Welfare 2014), respectively.
1, 2

 In 

addition, the survival rate of lung cancer for five years was about 18% from 2004 to 

2010 in U.S. whilst it was about 14% from 2007 to 2011 in Australia. Fortunately, the 

survival rate of lung cancer in both countries increased by 3% per year in U.S.
1
 and 6% 

in the past two decades in Australia.
2
   

EBRT is widely used for current cancer treatment. In 2012, 48.3% of all cancer 

patients in Australia was estimated as an indication for EBRT at least once at some 

time during the course of their illness.
3
 However, accurate treatment of mobile 

tumours subjected to respiratory motion remains a challenge to be overcome for lung 

cancer radiotherapy.
4, 5

  

This literature review addresses four main topics: (1) lung cancer radiotherapy in 

imaging, planning and treatment, (2) methods accounting for tumour motion, (3) 

magnetic resonance imaging and (4) audiovisual biofeedback. The chapter concludes 

with the research motivation and rationale for this thesis. 

  

 

2.1 Lung cancer radiotherapy 
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Recent advancement in imaging during the course of radiotherapy allows 

radiation oncologists to have lung tumour information required for the prescription of 

radiation delivery though treatment planning.
6
  There are three steps for precise the 

outcome of lung cancer radiotherapy: (1) pre-treatment imaging, (2) treatment 

planning and (3) treatment delivery. 

 

2.1.1 Lung tumour imaging 

During the course of radiotherapy, the imaging of dynamic targets has an 

important role for the detection, diagnosis and staging of the disease as well as 

assessing response to radiation delivery and monitoring for tumour recurrence after 

treatment.
7
 Multiple imaging modalities such as computer tomography (CT), positron 

emission tomography (PET), MRI and a single-photon emission computerized 

tomography (SPECT) were utilized to identify lung diseases in lung tumour staging 

depending on tumour-node-metastasis.
7-9

  

 

Computed tomography 

Computed tomography (CT)
10

 is a non-invasive medical imaging technique using 

X-ray equipment to obtain cross-sectional images of the body as shown in Figure 2-1. 

These cross-sectional images are used for various diagnostic and therapeutic 

intentions in the CT imaging system. 
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Figure 2-1. Drawing of CT fan beam and 

patient in a CT system.  

(http://www.fda.gov/Radiation-

EmittingProducts/RadiationEmittingProducts

andProcedures/MedicalImaging/MedicalX-

Rays/, accessed on 17/09/2015). 

CT system works in the five steps: 

(1) A patient couch moves through a circular opening in the CT imaging system. 

(2) An X-ray source (red) and detectors (green blocks) rotate around the patient. 

During rotation the X-ray source produces a fan-shaped beam of X-rays (pink) 

that passes through a cross-section of patient’s body. 

(3) The detectors register the X-ray at the cross-section to create an image. Many 

different images at correspondent angles are obtained during each full rotation 

(light-green circle). 

(4) For each full rotation of the X-ray source and detectors, the image data are 

sent to image reconstruction for multiple cross-sectional images of the internal 

organs and tissues.  

(5) Image reconstruction in CT is a mathematical process that generates images 

from X-ray projection data acquired at many different angles around the 

patient. Image reconstruction has a fundamental impact on image quality and 

therefore on radiation dose. For a given radiation dose it is desirable to 
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reconstruct images with the lowest possible noise without sacrificing image 

accuracy and spatial resolution.  

 

CT images can provide detailed information of patient’s body for diagnosis and 

treatment planning purposes, and in some cases potentially eliminating the need of 

exploratory surgery. However, the exposure to ionizing radiation (i.e. 7 mSv for CT 

chest and 1.5 mSv for lung cancer screening) during CT imaging introduces risks of 

possible secondary cancers.
11, 12

 

 

Positron Emission Tomography 

Positron emission tomography (PET)
7, 13-15

 is a non-invasive medical imaging 

technique using a positron-emitting radioactive material to obtain 2D and 3D images 

of the body as shown in Figure 2-2.  

 

Figure 2-2. Drawing of PET camera 

and patient in a PET system.  

(http://www.iambiomed.com/equipme

nts/pet.php, accessed on 17/09/2015). 

PET system works in the five steps: 

(1) A small amount of a positron-emitting radioactive material (i.e. 

fluorodeoxyglucose (FDG)) is injected.  
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(2) Patients rest for an appropriate amount of time. Cancerous cells use glucose (a 

type of sugar) at a much faster rate than normal cells. 

(3) A PET scanner obtains body images for 15 – 35 minutes whilst detecting 

emissions from the FDG by the camera surrounding a patient at the area being 

examined to identify the cancerous cells. 

(4) PET 2D and 3D images are reconstructed by the computer attached to the 

camera. 

(5) Image reconstruction in PET is to provide cross-sectional images of the 

radiotracer distribution in an object, using the coincidence events detected by 

a scanner. In 2D imaging, the data are only collected in direct and cross 

planes. A direct plane is perpendicular to the scanner axis, and a cross plane 

connects detector elements in two adjacent detector rings. 2D images are 

reconstructed on each of the planes, and are stacked to form an entire image 

volume together (3D). 

 

PET images can provide changes in the metabolism of organs and tissues. Many 

cancers are newly detected using PET imaging. PET scans can also acquire the whole 

body, which is beneficial to the diagnosis or detection of cancers spreading to other 

areas. In addition, PET can be used to distinguish an active tumour from scar tissues. 

Substantial radiation dose and cancer risk should be carefully considered during 

whole-body PET imaging.
16

  

 

Magnetic resonance imaging 

Magnetic resonance imaging (MRI) utilizes strong magnetic fields and radio 

frequency waves to produce cross-sectional images of organs and internal structures 
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as shown in Figure 2-3. An MRI machine detects varying signals depending on the 

materials with water content affected by the magnetic fields at the cross-sectional 

area of the body. 

 

Figure 2-3. Drawing of the cutaway 

and patient in an MRI scanner. 

(http://www.cyberphysics.co.uk/topic

s/medical/MRI.htm, accessed on 

22/09/2015). 

 

MRI system works in three steps: 

(1) An electric current is passed through coiled wires to create a temporary 

magnetic field around a patient’s body. A magnetic field gradient is a 

variation in the magnetic field with respect to position.  

(2) Radio frequency waves are sent from a transmitter and received by a receiver 

in the machine. Slice selection is achieved by applying a one-dimensional, 

linear magnetic field gradient during the period that the RF pulse is applied. 

(3) These signals are used to produce digital images of the area of interest. The 

amplitude of the signal is proportional to the number of spins in a plane 

perpendicular to the gradient. This procedure causes the resonant frequency to 

be proportional to the position of the spin. 
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MRI does not use ionizing radiation, i.e. high-energy radiation that can potentially 

cause damage to deoxyribonucleic acid (DNA) such as x-rays used in CT scans. 

There are no known harmful side-effects associated with temporary exposure to the 

strong magnetic field used in MRI. As MRI forms a core part of the work in this 

thesis, more details on MRI can be found in the section 2.3 Magnetic 

resonance imaging.  

 

Single-Photon Emission Computerized Tomography 

Single Photon Emission Computed Tomography (SPECT) can show blood flows 

of tissues and organs through a type of nuclear imaging as shown in Figure 2-4. A 

SPECT scan combines CT with a radioactive material (tracer) to view blood flows in 

body. The tracer allows doctors to see the blood flows to tissues and organs. 

 

 

Figure 2-4. Drawing of the camera 

and patient in a SPECT scanner.  

(http://medmovie.com/library_id/3255/

topic/ahaw_0224i/, accessed on 

22/09/2015). 

 

SPECT system works in five steps: 
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(1) A chemical radiolabeled for emitting gamma rays is injected to be detected by 

the scanner. The emission of the gamma rays is translated into two-

dimensional cross-sections.  

(2) The radioisotopes are used in SPECT to label tracers and pass safely through 

blood flows detected by the scanner.  

(3) The type of tracers can be dependent on measurement. Radiolabeled glucose 

(FDG) is used to detect metabolized tumour. 

(4) The tracer stays in blood stream, thereby limiting the images to areas where 

blood flows.  

(5) Image reconstruction in SPECT is performed by using a gamma camera to 

acquire multiple projections (2D) from multiple angles. A computer is then 

used to apply a tomographic reconstruction algorithm to the multiple 

projections for an entire image volume (3D).  

 

SPECT scans are safe for most patients but they may experience: (1) bleeding, 

pain or swelling where the needle was inserted in their arm and (2) rarely, an allergic 

reaction to the radioactive tracer.  

 

Pre-treatment lung tumour imaging 

Lung tumours move due to breathing. To ensure that the treatment plan 

encompasses the motion range of the tumour, patient images with motion information 

are required. Four-dimensional (4D) images (i.e. moving 3D images) can be utilized 

to quantify internal anatomy information as a function of the respiratory cycle.
17

 Prior 

to treatment planning, a number of imaging simulations using CT, PET, SPECT and 
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MRI are performed to characterize the 4D motion of tumour and healthy tissue.
6
.
13, 18, 

19
 

 

 

2.1.2 Treatment planning  

EBRT delivers high radiation doses from outside the body to the target cancer. 

This is the type of radiotherapy most frequently used to treat a primary lung cancer or 

other organs. However, radiation affects both healthy tissues and lung tumours.
20

 

The first step of treatment planning of conformal radiotherapy (CRT), intensity 

modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) 

is the definition of the anatomy of the lung tumour, contouring the gross tumour 

volume (GTV), clinical target volume (CTV), internal gross target volume (IGTV), 

internal target volume (ITV), planning target volume (PTV) and critical structures 

using report 50 and 62 of international commission on radiation units and 

measurements (ICRU).
21, 22
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As shown in Figure 2-5, radiation oncologists define the volume of primary 

tumour by delineating GTV on 4D-CT images. An IGTV is anatomically defined 

using the area of encompassing GTVs. Geometrical volumes of ITV and PTV are 

usually extended around the GTV to compensate for positioning uncertainty of lung. 

In addition, normal structures required for the treatment planning are delineated on 

the 4D-CT images.
23

  

 

Treatment planning in radiotherapy involves the following steps. 

(1) The information of the area of the body to be treated is obtained through a CT 

scan. The images of the CT scan feed directly into the treatment planning 

system (TPS). 

(2) The computer program models radiation beams for radiation delivery. The 

motion and shape of lung tumour are encompassed by the targeted region and 

 

Figure 2-5. Lung tumour delineation.  

IGTV, internal gross tumour volume; 

T0, at the end of inspiration; T50, at the 

end of expiration; internal target volume 

(ITV); planning target volume (PTV).  

(http://www.sps.ch/artikel/progresses/m

odern-techniques-in-radiation-oncology-

36/). 
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dose to healthy tissues is minimised as much as possible in order to reduce the 

risk of side effects. 

 

A lung cancer treatment plan includes the information of tumour motion, shape 

and volume from the contoured 4D-CT images which are 3D-CT images typically 

acquired with ten respiratory phases. Encompassing lung tumour motion and volume 

contoured by deformable registration are utilized for 4D treatment plan, allowing 

precise radiation delivery.  

 

2.1.3 Treatment delivery 

Radiotherapy is a highly targeted cancer treatment, leading to technological 

innovations enabling the integration of imaging technology to increase the precision 

and accuracy of treatment delivery.
24

 There are a number of radiotherapy techniques. 

 

3D conformal radiation therapy 

Three-dimensional (3D) conformal radiotherapy (CRT) uses a specialised 

planning CT scan and sometimes other scans, such as PET and MRI scans. This 

allows treatment planning in 3 dimensions of width, height and depth. After the 

planning session patients usually have an appointment for the first fraction within a 

few days or few weeks. Using radiographs and markers (skin and fiducial, and bony 

structures), the centroid of the lung tumour is aligned with the treatment isocenter. 

 

Intensity modulated radiation therapy 

Intensity modulated radiotherapy (IMRT) is a type of conformal radiotherapy. 

Conformal radiotherapy shapes external radiation beams to form the shape of lung 
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tumour using a multileaf collimator (MLC) which is an important tool for radiation 

therapy dose delivery as shown in Figure 2-6.
18, 25

 

 

 

Figure 2-6. Posterior beam views corresponding to PTV shapes of (A) exhale and 

(B) inhale. [Image credit: Keall et al.
20

] 

 

The MLC placed at the end of a linear accelerator (Linac) is utilized for IMRT. 

The MLC is made up of thin leaves which can move individually so the leaves can 

form the beam shapes that conform to the lung tumour. The MLC shapes the 

radiation beam to the projection of the tumour shape at each gantry angle as the 

machine rotates. The result is the lung tumour receiving an intended high dose and 

surrounding normal healthy tissues receiving a minimal dose. Each radiotherapy 

beam is divided into many small beamlets, allowing different radiation doses across 

lung tumour. IMRT avoids high radiation doses to structures that would be damaged 

by the radiotherapy. IMRT can reduce the radiation toxicity of the normal healthy 

tissue, resulted in the minimization of the risk of long term side effects.  
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Volumetric modulated arc therapy 

During volumetric modulated arc therapy (VMAT) treatment,
26

 the radiation 

machine rotates around the patient in single or a series of arcs delivering many small 

beamlets to the cancer. The shape and intensity of the radiation beams are 

continuously changed as the machine rotates. In other words, the beam of radiation 

can come from an infinite number of angles, thereby reducing the dose of radiation to 

normal tissue whilst increasing the dose to lung tumour. In addition, VMAT allows 

radiation delivery at adjacent angles to critical structures in the body. 

 

 

 

 

 

 

2.2 Methods to account for tumour motion 

 

The tumour motion of thoracic and abdominal regions affected by breathing 

varies both intra and inter-fractionally.
5, 27

 Examples of intra and inter-fraction 

tumour motion variations are shown as shown in Figure 2-7.
5
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Figure 2-7. Breath-to-breath and day-to-day variations of lung tumour motions (3-

dimensional displacement) for 4 consecutive treatment days shown in (a) and (b), 

respectively. Data truncated to first 300 seconds per tracking session. [Image credit: 

Shah et al.
5
] 

 

Intra-fraction (breath-to-breath) variation in motion  can cause image artefacts in 

4D-CT images utilized in treatment planning.
17, 28

 This can also lead to blurring in the 

dose distribution along the path of the tumour motion.
29, 30

 An example of four 

common image artefacts in 4D-CT is shown in Figure 2-8.
28
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Inter-fraction (day-to-day) variation in motion can cause a greater discrepancy in 

tumour motion between treatment planning and delivery, and a shift to the dose 

distribution.
5, 31, 32

 Tumour growth and shrinkage resulting in the change in tumour 

motion, position and volume can also be expected throughout the course of 

radiotherapy.
33, 34

 

In order to improve the quality of medical imaging and the outcome of 

radiotherapy, tumour tracking and motion management in the presence of respiratory 

motion are required to compensate temporal anatomic changes and increase motion 

 

Figure 2-8. Example 4D-CT images with schematic diagrams for the four types of 

artefacts: blurring, duplicate structure, overlapping structure, and incomplete 

structure. Corresponding artefacts are indicated by arrows in respective images. Note 

that other artefacts can also be observed in these images. [Image credit: Yamamoto et 

al.
28

] 
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consistency, respectively. This renders more accurate estimates of the tumour 

position and area, thus improving the accuracy of the treatment.
 

 

2.2.1 Real-time position monitoring and adaptation 

In order to account for tumour motion in terms of systematic and random errors,
5, 

31, 32
 the current standard care of radiotherapy adds margins to CTV, resulting in the 

irradiation of a PTV volume larger than necessary.
21, 22

 This causes more healthy 

tissue to be exposed to radiation and increases the normal tissue complication 

probability (NTCP). In addition, irregular tumour motion could cause the beam to 

miss resulting in a lower tumour control probability (TCP). One solution is real-time 

position monitoring before and during treatment and the subsequent adaptation of 

treatment to dynamic tumour position.  

 

Real-time position monitoring 

Real-time position monitoring techniques
32, 35-38

 allow target positions (i.e. 

implanted markers, surrogates or target tumours) to be determined for 

hypofractionated radiation therapy in which the total dose of radiation is divided into 

large doses over fewer fractions.  IGRT techniques have evolved from localising 

target positions for planning, pre- and post-treatment and occasional imaging during 

treatment to high-frequency position monitoring of intra-fraction motion. 

 

The Calypso 4D Localization System utilizes electromagnetic technology 

combined with implanted electromagnetic transponders (beacon) as shown in Figure 

2-9.  
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Figure 2-9. Calypso (right) 4D Localization 

System and Beacon (left circle) 

electromagnetic transponder.  

(http://mms.businesswire.com/bwapps/medias

erver/ViewMedia?mgid=102545&vid=5&do

wnload=1, accessed on 6/10/2015) 

 

This is designed to continuously monitor beacon position corresponding to the 

tumour position, which can provide greater confidence to real-time tumour tracking 

during radiation delivery. In addition, imaging dose from X-ray for tumour 

monitoring is excluded due to the use of Calypso.
5, 36

 

 

The Varian On-Board Imager (OBI) kV imaging system provides an image of 

high resolution using low dose digital imaging system and this is more efficient and 

convenient for IGRT (see Figure 2-10, a kV beam (left) and imager (right) on 

horizontals). The kV imager enables the user to quickly acquire high quality online 

images to identify the differences in patient and tumour (or implanted marker) 

positions between treatment planning and treatment delivery, and correct those 

differences before or during treatments.
39

  

 

Electronic portal imaging using an MV imager is a modality available on most 

present linear accelerators (see Figure 2-10, an MV beam (top) and imager (bottom) 
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on verticals). The MV imager is placed in-line with the MV beam direction on the 

opposite side of the patient and measures the MV beam transmission through the 

patient. MV images have been employed for tracking techniques in pre-clinical and 

clinical trials.
40-42

  

 

 

Figure 2-10.  The Varian On-Board kV 

and MV imagers. A kV beam (left) and 

imager (right) and an MV beam (top) and 

imager (bottom) are placed in the 

orthogonal plane.  

(https://www.varian.com/oncology/product

s/treatment-delivery/clinac-ix, accessed on 

6/10/2015). 

 

An integrated MRI-guided radiation therapy (RT) system provides simultaneous 

MR imaging and radiation delivery. The MRI and radiotherapy systems share an 

identical isocentre, enabling simultaneous and continuous MR image acquisition and 

radiation delivery, and leading to on-couch adaptive and MRI-controlled IMRT at the 

identical isocentre.
43

 The ViewRay System (see Figure 2-11(a))
44

 is the first 

commercially available MRI–guided radiotherapy system and consists of a split 

0.35T MRI with 3×
60

Co heads mounted on a ring gantry, each head equipped with 

independent doubly focused multi-leaf collimators. The Utrecht System (see Figure 

2-11(b))
45

 consists of a fully integrated 1.5T, diagnostic quality, MRI with a 6-MV 
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linear accelerator. The Alberta System (see Figure 2-11(c))
46

 consists of 0.6T MRI 

with 6-MV linear accelerator. The Australian MRI-Linac System (see Figure 2-

11(d))
47

 consists of 1.0T open-bore MRI with 6-MV linear accelerator.  

 

 

Figure 2-11. MRI combined 

with radiation therapy 

systems. (a) ViewRay System 

(US), (b) Utrecht (The 

Netherlands), (c) Alberta 

(Canada) and (d) Australian 

MRI-Linac (Australia). 

 

 

Real-time adaptation 

Real-time tumour position monitoring can be sued to achieve the real-time beam 

adaptation which corrects the difference between the tumour position at planning and 
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the latest determined tumour position. Real-time position monitoring and real-time 

adaptation work in four steps: 

(1) The tumour motion is detected by monitoring real-time tumour position. 

(2) A correction is made for the reaction time comprising the latency of real-time 

position monitoring and the delay in real-time adaptation.  

(3) The treatment is adjusted by real-time adaptation. 

(4) During treatment, the treatment unit irradiates a moving target with planned 

radiation beams. 

 

Real-time adaptation utilizes two types of loop control: (1) closed-loop and (2) 

open-loop. A closed-loop control known as a feedback control is a control system 

which includes one or more feedback loops: some portion of the output is returned 

back to the input to form part of the system excitation (i.e. treatment adaptation 

causes the target to move).  Examples are real-time couch tracking and couch 

gating.
48, 49

 

 

The couch for tracking is continuously moved based on real-time tumour motion 

during treatment. The couch for gating is only moved when a certain motion 

threshold is exceeded.   
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Figure 2-12. The Hexapod, a 6 degree 

of freedom motion correction couch. 

[Image credit: Krilavicius et al.
48

] 

 

An open-loop control system does not include a feedback loop (i.e. treatment 

adaptation does not cause the target to move). Examples are MLC tracking
20

 and 

Cyberknife (a robotic radio-surgery system).
50

 To compensate the latency between 

detecting tumour positions and adapting the latest tumour position, one solution is to 

utilize prediction algorithms for tumour motion. The other is just to reduce the 

latency to an acceptable timescale much smaller than the motion timescale of the 

tumour.  

 

MLC tracking (see Figure 2-6) is available on most modern linacs to shape and 

modulate the beam based on real-time adaptation. One advantage of MLC is that 

highly conformal shapes can be made due to the large number of MLC leaves. MLC 

tracking has been clinically demonstrated with Calypso (see Figure 2-9) as the input 

of real-time tumour position.
36
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Cyberknife is utilized for treating various tumours such as brain, spine, pancreas, 

lung, liver and prostate. It is comprised of a compact linear accelerator and a 

computer-controlled arm as shown in Figure 2-13.  

 

 

Figure 2-13. A compact linear 

accelerator, a computer-controlled 

arm and patient in a Cyberknife 

system.  

(http://www.garber-

online.com/cyberknife.htm, 

accessed on 6/10/2015). 

 

Multiple radiation beams are delivered from many different angles whilst 

considering tumour motion to adjust a high dose of radiation delivery to the target 

tumours. Four fiducial markers are utilized to represent the position and movement of 

the target tumours during Cyberknife treatment.
50

 

 

2.2.2 Tumour motion management techniques 

Breathing management techniques can be utilized to guide and hold respiratory-

induced tumour motion by measuring air volume, compressing the abdomen and 

guiding respiratory motion using internal and external respiratory signals. These 

techniques can reduce respiratory motion artefacts in medical imaging and improve 

tumour motion and position reproducibility in respiratory gating,
51

 training
52

 and 

breath-hold
53

 for lung cancer patients.   
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Active Breathing Coordinator (ABC) system 

Active breathing coordinator (ABC) as a respiratory motion management 

technique provides non-invasive, internal immobilization of lung and abdominal 

anatomies affected by respiratory motion. This is achieved through comfortable, 

simple and efficient involuntary breath-hold.
54

 ABC as shown in Figure 2-14 is 

widely used for the clinical treatment of lung and liver cancers to hold target anatomy 

motion static through imaging, planning and delivery for stereotactic body 

radiotherapy (SBRT) due to the reduction of dose to OARs and efficiencies in 

automated gating and workflow. 

 

Figure 2-14. Active breathing coordinator 

(ABC) constructed 2 pairs of flow monitor 

and scissor valve, each to control the 

inspiration and expiration paths to the 

patient.  

(https://www.elekta.com/radiotherapy/treatm

ent-solutions/motion-management.html, 

accessed on 6/10/2015). 

 

The patient breathes through a mouth-piece connected to the ABC apparatus. The 

respiratory signal is continuously processed and displays the change of lung volume 

in real-time on a personal computer. The radiographer activates ABC at a pre-

determined phase in the respiratory cycle corresponding to the change of lung volume. 

Both valves are then closed to hold respiratory motion.  
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Abdominal Compression 

The use of abdominal compression system as a SBRT solution with a belt or 

pressuring system can provide the reproducibility and immobilization needed for high 

dose and high precision treatments as shown in Figure 2-15.
55-57

 The compression 

system consists of a base plate made of glass fiber for a low density and transparent 

material, and a compression arch (or belt) connected to the base plate fitted on couch 

tops.  

 

Figure 2-15. Abdominal 

compression system using a base 

plate and a compression arch. 

(http://www.orfit.com/en/stereotactic

-body-radiation-therapy-sbrt/, 

accessed on 6/10/2015). 

 

Breath-hold (BH) and deep inspiration breath-hold (DIBH) 

Breath-hold (BH)
58-60

 can hold mobile tumours, minimizing the phase shift of the 

mobile tumours
61

 and system latency between tumour positioning and radiation 

delivery.
44

 In addition, deep inspiration breath-hold (DIBH),
62, 63

 which involves the 

patient holding a deep breath during radiation delivery, can minimize radiation 

exposure to the heart, decreasing the risk of developing heart disease as a long-time 

side effect.
64

 By performing the DIBH, the heart naturally moves away from the 

breast (i.e. women receive radiation for breast cancer) and out of the radiation beam 

path.  
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Figure 2-16. Spirometric Motion 

Management System with DIBH 

for managing thoracic and 

abdominal tumour motion. 

(http://www.oncologyimaging.com

/SDX.asp, accessed on 6/10/2015).  

 

DIBH consists of a modified slow vital capacity (SVC) maneuver followed by a 

deep inspiration breath-hold. The SVC maneuver consists of at least three normal 

(free) breaths followed by deeper inspiration and expiration prior to the maximum 

deep inspiration breath-hold.
62

  

 

 

2.3 Magnetic resonance imaging 

Magnetic resonance imaging (MRI) is an imaging modality used to produce high 

contrast images of internal human body. MRI was first proposed as a tomographic 

imaging technique to obtain microscopic chemical and physical signals about 

molecules using a spectroscopic technique based on nuclear magnetic resonance 

(NMR). MRI can also produce an image of the signals in a thin selection (i.e. slice) 

through the human body and a volume of target regions.  

 

2.3.1 Imaging principles 
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MRI measures spatial variations of NMR signals in the phase and frequency of 

the radio frequency energy being absorbed and emitted by in an object and constructs 

images of the object.   

 

Basic imaging principles 

The principle of MRI is based on the resonance equation, which shows that the 

resonance frequency   of a spin is proportional to the magnetic field it is 

experiencing,   : 

        

A particle with a net spin, placed in a magnetic field of strength    can absorb a 

photon of frequency ( ). The frequency depends on the gyromagnetic ratio ( ) of the 

particle. For example, the gyromagnetic ratio of hydrogen is equal to 42.58 MHz/T 

and thus the resonant frequency for protons in a 1.5 tesla scanner is 63 MHz. 

MR imaging processes are comprised of four steps:  

(1) Slice selection: This is the selection of spins in an imaging plane of the human 

body using the radio frequency (RF) of the pulse of any angles (i.e. a rotation 

angle of between 0 and 90
°
). This leads to rotate spins in a slice selection and 

plane through the human body. 

(2) Magnetic field gradient ( ): The resonance equation of B0 varies in applying 

linear magnetic field gradients along three directions (        ). Spins in a 

slice selection then experience a unique magnetic field, enabling spatial image 

positions to be determined. 

(3) Frequency and phase encoding: The amplitude of the NMR spectrum signal is 

proportional to the ratio of spins in a plane perpendicular to the gradient. This 

encodes the resonance frequency to be proportional to the position of the spins. 
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(4) Signal processing: Signals are called raw data (or k-space data) and used to 

obtain an image of the position of spins. The signals are Fourier transformed 

in the frequency encoding direction (i.e. Horizontal) to acquire the frequency 

information and the phase encoding direction (i.e. Vertical) to acquire phase 

information about their locations.
65, 66

 

 

Fourier transform imaging principles 

The phase encoding gradient of MR imaging is a gradient in the magnetic field    

and it is used to induce a specific phase angle of spins in a slice selection to a 

transverse magnetization vector which depends on the location of the slice selection. 

For example, if a gradient in    is applied along the X direction, the transverse 

magnetization vector will move along the gradient direction applied at frequency 

given by the resonance frequency (ν). 

                              

 

Each transverse magnetization vector has a unique frequency whilst the phase 

encoding gradient is on. Then, each spin vector becomes identical when the X 

gradient is turned off.  There are three distinct angles in X, Y and Z corresponding to 

gradients (         ) to induce the unique frequency of each transverse 

magnetization. Once the phase encoding gradient pulse is turned off, a frequency 

encoding gradient pulse (an optimal direction of phase-encoding) is turned on and a 

signal is recorded in the form of a free induction decay. This pulse sequence of the 

frequency encoding gradient is usually repeated 128 or 256 times to acquire all the 

data, which corresponds to the matrix size of an MR image. 
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The signals of free induction decays are Fourier transformed to obtain an image 

of spins somewhere within the space of a slice selection. The signals are Fourier 

transformed in the frequency encoding direction (X direction) to acquire the unique 

frequency of each transverse magnetization and in the phase encoding direction (Y 

direction) to determine the locations. 

A simple Fourier transform is used to capture a single net magnetization vector 

located somewhere within the space in which the phase and frequency encoding 

gradients are applied. The relation between the signals used to fill k-space data and 

the resultant image processed raw image data is the Fourier transformation. The k-

space is also called the spatial frequency space and it is the conjugate of the image 

space.  

 

Signal intensity and image contrast 

Image contrast is dependent on signal intensity difference among tissues due to 

the different signal relaxation time of various tissues in the body.  Tissue types are 

identified by using T1 relaxation time (longitudinal relaxation) and molecular 

interactions by using T2 relaxation time (transverse relaxation).
67

 The T1 and T2 

constants indicate the time taken for the spinning nuclei to emit their absorbed RF 

energy into the surrounding tissues and spinning protons to lose phase coherence 

among the nuclei spinning perpendicular to the main field, respectively.  

 

The contrast of an MR image is determined by imaging parameters (i.e. TR = 

repetition time, TE = echo time) selected to emphasize certain image contrast 

properties (weighting) in terms of T1 and T2 relaxation. Three types of weighted 

image contrast are shown in Figure 2-17. 



 

34 

 

(1) Proton density (PD)-weighted: PD-weighted imaging measured in short TE 

and long TR is used to differentiate anatomical structures based on their 

proton density. 

(2) T1-weighted: T1-weighted imaging measured in short TE (< 40 ms) and short 

TR (< 750 ms) is mainly on the basis of T1 values to minimize T2 relaxation 

effects. Tissues with high fat content appear bright and with water appear dark. 

(3) T2-weighted: T2-weighted imaging measured in long TE (> 75 ms) and long 

TR (> 1500 ms) is mainly on the basis of T2 values to minimize T1 relaxation 

effects. Tissues filled with water appear bright and with high fat content 

appear dark. 

 

Figure 2-17. Brain images of T1-weighted, T2-weighted and PD-weighted. 

[Image credit: KieranMaher at English Wikibooks] 

 

In addition, T2* (T2 star) is comprised of molecular interactions (T2) and 

magnetic field non-uniformities, caused by the proton precession at slightly different 

frequencies at various tissues. T2* effect leads to a rapid signal loss in coherence and 

transverse magnetization, resulting in less T2* time than T2 time. With spin echo 

imaging no T2* occurs, caused by the 180° refocusing pulse. For this reason, spin 
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echo sequences are more robust against susceptibility artefacts than gradient echo 

sequences. 

 

2.3.2 Basic imaging techniques 

A number of imaging techniques such as gradient-echo and spin-echo have been 

introduced in two streams of MR imaging pulse sequences as shown in Figure 2-18.  

 

Figure 2-18. Pulse sequences in 

terms of MR imaging techniques: 

Gradient recalled echo (GRE) and 

spin echo (SE). 

[Image credit: Kiaran P. M
c
Gee, 

Mayo clinic and foundation]. 

 

Gradient echo imaging 

Gradient recalled echo (GRE) sequence simultaneously utilizes a phase encoding 

gradient and a dephasing frequency encoding gradient to generate echoes as a 

consequence of echo refocusing as shown in Figure 2-19. 
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Figure 2-19. The diagram of gradient 

recalled echo (GRE).  

(https://www.cis.rit.edu/htbooks/mri/chap-

8/images/ps-gr-gs.gif, accessed on 

26/10/2015).  

 

GRE imaging processes are comprised of four steps:  

(1) A slice selection gradient with RF pulse is applied to the body. The RF pulse 

produces a rotation angle of spins between 0
°
 and 90

°
.  

(2) A phase encoding gradient is applied, varying between     and      in 128 

or 256 equal steps depending on the matrix size of an MR image.  

(3) A dephasing frequency encoding gradient is applied at the same time as the 

phase encoding gradient to cause the dephasing of spins at the centre of the 

acquisition period. An echo of the spins is produced when the frequency 

encoding gradient is turned on because this gradient refocuses the dephasing 

which occurred from the dephasing frequency encoding gradient. 

(4) A period called the echo time (TE) is defined as the time from the RF pulse to 

the maximum signal and it is repeated every TR seconds. 

      (     ( 
  

  
))    ( 

  

  
 ) 

Imaging with the GRE sequence is more sensitive to magnetic field 

inhomogeneity due to the use of the refocusing gradient. 
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Spin-echo imaging 

Spin echo (SE), most common pulse sequence in MR imaging utilizes 180° RF 

pulse for echo refocusing as shown in Figure 2-20. 

 

Figure 2-20. The diagram of spin echo 

(SE).  

(https://www.cis.rit.edu/htbooks/mri/cha

p-8/images/ps-se-gp.gif, accessed on 

26/10/2015).  

SE imaging processes are comprised of four steps: 

(1) A slice selection using a 90º RF pulse is applied in conjunction with a slice 

selection gradient. A period of time equal to TE/2 elapses and a 180º slice 

selective 180º pulse is applied in conjunction with the slice selection gradient.  

(2) A phase encoding gradient is applied between the 90º and 180º pulses, 

varying between     and      in 128 or 256 equal steps. This can minimize 

the TE period instead of the phase encoding gradient applied after the 180º 

pulse.   

(3) The frequency encoding gradient is applied after the 180º pulse during the 

time that echo is recorded as a signal. One additional frequency encoding 

gradient is applied between the 90º and 180º pulses along the same direction 

as the frequency encoding gradient, leading to dephasing the spins and 

resulted in rephasing the spins by the centre of the echo.  
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(4) The entire sequence is repeated every TR seconds until all the phase encoding 

steps have been recorded. The signal from a spin echo sequence is as follows. 

      (     ( 
  

  
))    ( 

  

  
) 

 

Imaging with the SE sequence is advantageous to T2 signals which can 

distinguish tissues and pathologies.  

 

2.3.3 Temporal and spatial resolutions 

Resolution is a measure of image quality dependent on field of view (FOV) and 

the number of data points N, across an image. The balance between temporal (i.e. the 

duration of time for the acquisition of a single image) and spatial (i.e. the size of 

image pixels or voxels) resolutions is thus a trade-off to be made for desired image 

capability. A number of imaging techniques use different k-space sampling 

trajectories whilst balancing the image capability between temporal and spatial 

resolutions. 

 

K-space sampling trajectories 

To construct an MR image, a series of k-space data is collected, called acquisition. 

In the acquisition, an RF excitation produces transverse magnetization along a 

particular trajectory in k-space. There are several k-space sampling trajectories to 

acquire 2D and 3D MR images as shown in Figure 2-21.
68
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Figure 2-21. K-space sampling trajectories of 2D (first row) and 3D (second row) 

MR image acquisitions. Cartesian trajectories in sequential lines (first column) and 

skip lines (second column), and non-Cartesian trajectories in radial lines (third 

column) and spiral lines (forth column). [Image credit: Lustig M. et al.
68

]. 

 

The Cartesian k-space sampling is performed by applying a phase encoding 

gradient in one direction and a frequency encoding gradient in the other direction. 

This is the most popular trajectory along which to acquire k-space samples; along 

straight lines in Figure 2-21 (first and second columns).
68

 Most pulse sequences are 

based on the Cartesian k-space sampling used in clinical imaging due to a simple 

reconstruction in inverse fast Fourier transform (FFT) and robustness to many 

sources of system imperfections. Instead of Cartesian trajectories, non-Cartesian 

trajectories are in use, including k-space sampling along radial in Figure 2-21 (third 

column) and spiral trajectories in Figure 2-21 (fourth column).  
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K-space under-sampling 

Sampling a larger k-space in a given amount of time requires k-space under-

sampling, which acquires k-space samples at only a portion of the whole k-space. K-

space under-sampling in terms of Cartesian patterns and resultant image artefacts are 

shown in Figure 2-22.
68

 

 

Figure 2-22. Cartesian k-space under-sampling patterns (first row) and resultant 

image artefacts (second row). Sampling patterns in (a1) full k-space, (a2) central k-

space, (a3) skip k-space and (a4) random k-space. [Image credit: Lustig M. et al.
68

]. 

 

The k-space has strong signals around its centre due to most of the image being 

comprised of low spatial frequencies in Figure 2-22(a2) whilst high spatial 

frequencies around the noise level are at the edge of k-space. For instance, the low 

frequencies form the structure of objects and the high frequencies form the noise or 

motion of objects. Based on conjugate symmetry, theoretically only half of k-space 
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needs to be acquired to reconstruct an MR image without the violation of the Nyquist 

criteria which causes artefacts in linear reconstructions. When the Nyquist criteria are 

not met, the objects will wrap around on the reconstructed image in Figure 2-22(b3).  

Radial acquisitions are less sensitive to susceptibility to motion artefacts than 

Cartesian acquisitions whilst being significantly undersampled,
69

 especially for high 

contrast objects.
70

 Spiral acquisitions make efficient use of encoding gradients and 

are used for fast imaging applications.
71

 However, non-Cartesian trajectories require 

filtered back-projection and/or interpolation schemes for efficient image 

reconstruction.
72

  

The balance between temporal and spatial resolutions can be a trade-off in the 

change of imaging parameters to obtain images with high quality or acquired as fast 

as possible. Changing one affects the others because of the inter-relationship between 

signal-to-noise ratio (SNR), resolution and acquisition time. An important aspect of 

k-space undersampling is to acquire more k-space samples in a given amount of time 

for tracking and gating applications which require good temporal resolution with 

sufficient image quality. We explore a new method of using k-space undersampling 

for accelerating the MRI acquisition speed, more details on the dynamic keyhole 

method can be found in Chapter 3: Dynamic keyhole: A novel 

method to improve MR images in the presence of 

respiratory motion for real-time MRI and Chapter 4: 

Quantifying the accuracy of the tumor motion and area 

as a function of acceleration factor for the simulation of 
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the dynamic keyhole magnetic resonance imaging 

method. 

 

 

2.4 Audiovisual biofeedback 

 

Audiovisual (AV) biofeedback has been employed for reducing the deleterious 

effects of respiratory-induced motion during medical imaging and radiotherapy by 

achieving reproducible breathing motion or breath-hold.
51, 52, 73-78

 AV biofeedback as 

a respiratory guidance can render improved reproducibility in patient breathing 

motion, resulting in better reproducibility in patient anatomy both intra and inter-

fractionally during imaging simulation and treatment.  

The workflow of AV biofeedback is comprised of three steps: 

(1) An individual breathing pattern is obtained using external respiratory signals 

from a real-time position management (RPM) system (Varian, Palo Alto, 

USA), monitoring the marker block on patient’s abdomen.   

(2) The breathing pattern is displayed on the patient’s visual display using 

monitor, goggles, and mirror and screen.  

(3) The patient controls their breathing in inhale and exhale breathing 

displacement and period. 

The experimental setups of AV biofeedback systems are shown in Figure 2-23. 
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Figure 2-23. Audiovisual biofeedback systems designed by (a) Kini (2003), George 

(2006), Venkat (2008), Cui (2011) and Kim (2012). 

Bar model 

The study of Kini (2003) in Figure 2-23 (a),
51

 demonstrated that FB without 

guidance resulted in a variable displacement and period, and an audio-instruction of 

―breathe in‖ or ―breathe out‖ at periodic intervals can improve the reproducibility of 

the period of patient’s breathing cycle and visual feedback shown as a real-time 

respiratory motion using a bar model which moves up (as they inhale) and down (as 

they exhale) can limit the displacement of patient’s breathing displacement. 

Compared with FB and audio-only instruction, the study of George (2006) in Figure 

2-23 (b)
73

 using AV biofeedback combined the audio-instruction and the bar model 

visual biofeedback significantly reduced residual motion. However, baseline drift and 

shift occurred in a session and over sessions, respectively.
73
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Wave model 

A wave model, utilizing a guiding wave of an average of ten individual breathing 

cycles was proposed by Venket (2008) in Figure 2-23 (c).
74

 This study demonstrated 

that the wave model was superior to the bar model for all volunteers in sub-millimetre 

(0.8 mm) and sub-second (0.2 s), and also significantly better than the bar model by 

50% and 70% in terms of respiratory motion reproducibility in displacement and 

period, respectively. A respiratory training system based on AV biofeedback in 

Figure 2-23 (d) was implemented to improve patients’ respiratory regularity during 

4DCT image acquisition.
75

 This is to eliminate the artefacts in 4DCT images caused 

by intra-fraction irregular breathing and improve dose delivery efficiency during 

radiotherapy. AV biofeedback in Figure 2-23 (e) was employed to improve the 

reproducibility of diaphragm motion measured in MRI.
76

 The reproducibility of intra-

fraction diaphragm motion was improved by (1) 38% from 2.6 mm (FB) to 1.6 mm 

(AV biofeedback) in displacement and (2) 82% from 1.7 s (FB) to 0.3 s (AV 

biofeedback) in period.  

 

 

2.5 Research motivation and rationale for this thesis 

 

Magnetic resonance imaging (MRI) is an ideal candidate for medical applications 

owing to the fact that it has excellent soft-tissue contrast and does not expose the 

patient to ionizing radiation. In addition, MRI is also capable of providing both 

anatomical and functional imaging. Radiotherapy systems integrated with MRI have 

been proposed and the Viewray system is currently clinically available for MRI 

guided radiotherapy.
44, 79

 In addition, tumour motion and position using MRI 
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guidance can be directly measured from MR images of tumours without the use of 

surrogates and implanted markers. 

Real-time imaging is necessary for continuous monitoring of patient for 

therapeutic guidance.
80-83

 However, the frame-rate of MRI in thoracic and abdominal 

regions is considerably slower (4 Hz) due to a large FOV, decreasing the prediction 

accuracy of tracking and gating techniques in the presence of system latency from 

target imaging and radiation delivery.
84

  This thesis proposes a novel MRI 

reconstruction method (Dynamic Keyhole) which can (1) improve temporal 

resolution for real-time lung tumour imaging (i.e. imaging frequency greater than 15 

Hz) to compensate the system latency and (2) maintain the accuracy in reconstructed 

tumour motion and area for real-time tumour gating and tracking. 

Respiratory guidance is important tool for improving the regularity of tumour 

motion, position, and volume throughout the course of radiotherapy. The impact of 

AV biofeedback on surrogates’ motion has already been investigated.
85

  However, 

lung tumour motion is independent to tumour size, location and pulmonary 

function.
122

 Thus, it is necessary to investigate the impact of AV biofeedback on 

tumour motion, position and volume using lung tumour information directly 

measured from MR images (no imaging doses). This thesis proposes a novel 

approach of AV biofeedback which improves (1) cine-MRI for tumour motion 

consistency, (2) breath-hold MRI for tumour position reproducibility and volume 

consistency, and (3) respiratory-gated MRI for image quality improvement and scan 

time reduction for improving the quality of lung cancer radiotherapy. 

This thesis presents a novel MRI reconstruction method (Dynamic Keyhole) and 

its assessment. This also presents the impact of AV biofeedback guidance on lung 

tumours across cine-MRI, breath-hold MRI and respiratory-MRI. 
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Chapter 3: Dynamic keyhole: A novel method to 

improve MR images in the presence of respiratory 

motion for real-time MRI 

 

A version of this chapter has been published: Lee D, Pollock S, Whelan B, Keall P, 

Kim T. "Dynamic keyhole: A novel method to improve MR images in the presence of 

respiratory motion for real-time MRI", Medical physics, 41 (7): 072304 (2014). 

http://dx.doi.org/10.1118/1.4883882.  

 

 

ABSTRACT 

Purpose: In this work, we present a novel MRI reconstruction method to improve the 

quality of MR images in the presence of respiratory motion for real-time thoracic 

image-guided radiotherapy.  

Methods: This new reconstruction method is called Dynamic Keyhole and utilizes a 

library of previously acquired, peripheral k-space datasets from the same (or similar) 

respiratory state in conjunction with central k-space datasets acquired in real-time. 

Internal or external respiratory signals are utilized to sort, match, and combine the 

two separate peripheral and central k-space datasets with respect to respiratory 

displacement, thereby reducing acquisition time and improving image quality without 

respiratory-related artifacts. In this study, the dynamic keyhole, conventional 

keyhole, and zero-filling methods were compared to full k-space acquisition (ground 

truth) for sixty coronal datasets acquired from 15 healthy human subjects.  

http://dx.doi.org/10.1118/1.4883882
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Results: For the same image-quality difference from the ground-truth image, the 

dynamic keyhole method reused 79% of the prior peripheral phase-encoding lines, 

while the conventional keyhole reused 73% and zero-filling 63% (p-value < 0.0001), 

corresponding to faster acquisition speed of dynamic keyhole for real-time imaging 

applications.  

Conclusions: This study demonstrates that the dynamic keyhole method is a 

promising technique for clinical applications such as image-guided radiotherapy 

requiring real-time MR monitoring of the thoracic region. Based on the results from 

this study, the dynamic keyhole method could increase the temporal resolution by a 

factor of five compared with full k-space methods. 

Keywords: real-time imaging; thoracic imaging; motion artifacts; respiratory motion; 

radiotherapy guidance 

 

 

3.1 Introduction 

 

There are a number of medical applications in interventional radiology and cancer 

radiotherapy that require real-time patient images to continuously monitor the region 

of interest for therapeutic guidance.
81-83, 86

 Magnetic resonance imaging (MRI) is an 

ideal candidate for these applications; it has excellent soft-tissue contrast, does not 

expose subjects to ionizing radiation,
87

 and is capable of both anatomical and 

functional imaging. Recently, radiotherapy systems integrated with MRI have been 

proposed by Kolling (2013),
88

 Viewray Inc. (2011),
89

 Raaymakers (2009),
79

 and 

Fallone (2009).
90
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In order to be utilized for real-time imaging,
91-93

 a technique offering both fast 

and quasi-continuous image acquisition and reconstruction is required for MR image 

guidance. However, thoracic imaging in conventional MRI often suffers from motion 

artifacts
94

 and long scan times, which are not suitable for image-guided therapeutic 

procedures. Hence, there is a need for methods that can reduce scan times without 

inducing respiratory-related artifacts in the images of the thoracic region. 

One method to speed up MR image acquisition is to exploit the basic structure of 

the raw datasets (digitized MRI signals) in k-space (Fourier transform of the MR 

image). Central (low-frequency) k-space datasets contain the majority of the image 

information, while peripheral (high-frequency) k-space datasets are associated with 

fine image details, such as edge definition and image sharpness. In applications 

requiring real-time imaging, undersampling k-space datasets directly corresponds to a 

reduction in imaging time.
95

  

Conventionally, the unmeasured datasets are simply filled with zeros in a 

technique called zero-filling,
96

 but this results in image blurring, low image resolution 

and contrast. An improvement to zero-filling is the conventional keyhole technique.
95, 

97, 98
 In this case, the missing data are filled with a previously measured single 

peripheral k-space dataset. The conventional keyhole method allows continuous 

motion to be monitored with an acceptable level of image quality in cases where 

motion is negligible. But, in cases in which the range of motion is large, there will be 

a mismatch between the previously obtained peripheral dataset and the central k-

space datasets. This mismatch can result in significant image artifacts, particularly in 

large field of view (FOV) imaging due to longer acquisition times. 

Other undersampling techniques to reduce both acquisition time and motion 

sensitivity are circular,
69

 radial
99

, and spiral
100

 undersampling. In these approaches, 
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unmeasured points can still cause artifacts due to zero-filling, interpolation, and 

oversampling in duplicated data.
101, 102

 The large FOV in thoracic imaging limits 

these undersampling schemes due to the out-of-field object size exceeding the 

diameter of FOV.
69

 The speed of acquisition can be accelerated using compressed 

sensing
103

 in some applications. However, this requires computationally-intensive 

iterative reconstruction
104

, leading to a delay between image acquisition and 

reconstruction which is a barrier to real-time applications. This limits the applicability 

of these undersampling techniques in the thoracic region, in which respiration can 

cause significant organ motion and a large field of view is often required.
105-108

 As 

yet, an effective technique for real-time imaging in these regions has not been 

proposed. 

In this study, we introduced a new reconstruction method called Dynamic 

Keyhole, which utilizes a library of previously acquired prior peripheral k-space 

datasets for the same (or similar) respiratory state in conjunction with the central k-

space datasets. In this method, real-time internal or external respiratory signals were 

utilized to sort, match, and combine the two separate peripheral and central k-space 

datasets with respect to respiratory displacement. In addition, we demonstrated that 

the dynamic keyhole method can reduce MR image acquisition time, as well as 

improve image quality in the presence of respiratory motion in the thoracic region. 

Image reconstruction performance was compared using sixty MRI datasets from 

fifteen healthy human subjects. The dynamic keyhole method was compared with the 

conventional methods: zero-filling and conventional keyhole.  

 

 

3.2 Methods 
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The following sections describe the processes of the dynamic keyhole method, its 

implementation, and a retrospective simulation to test its efficiency compared to the 

zero-filling and conventional keyhole methods. 

 

3.2.1 Dynamic Keyhole Method 

The dynamic keyhole method is an extension of the conventional keyhole 

method.
95

 Instead of using a single prior peripheral k-space dataset, the dynamic 

keyhole method uses a library of prior peripheral k-space datasets, each 

corresponding to a different respiratory displacement. Hence, rather than matching a 

prior peripheral k-space dataset of a particular respiratory displacement to every 

central k-space dataset across a range of respiratory displacements, the dynamic 

keyhole method selects and closely matches peripheral k-space datasets from the 

library, with the central k-space datasets taken in real time and combined with the 

prior k-space datasets by respiratory displacement matching. A comparison between 

the dynamic keyhole method and the conventional keyhole method is shown in 

Figure 3-1. 
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Figure 3-1. The dynamic keyhole method (A) compared to the conventional keyhole 

method (B). The conventional keyhole method uses a single prior peripheral k-space 

dataset while the dynamic keyhole method uses a library of multiple prior peripheral 

k-space datasets across a range of respiratory displacements. 
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The dynamic keyhole method is composed of two processes: (1) Acquiring a 

library of prior peripheral k-space datasets; (2) Acquiring real-time central k-space 

datasets. Respiratory signals are utilized to improve a match of the library of prior 

peripheral k-space datasets with central k-space datasets, resulting in fast MR 

imaging by undersampling k-space, while minimizing respiratory-related artifacts. 

Each of these steps is explained in detail below. 

 

3.2.2 Prior peripheral k-space dataset (library) acquisition 

In this retrospective study using existing datasets, five respiratory cycles of about 

twenty seconds were initially used, based on clinical MRI respiratory-gating 

practice,
109

 to build the library of prior peripheral k-space datasets, using the 

following steps: 

1. In Figure 3-1(1), respiratory signals were continuously acquired. Full k-space 

datasets were synchronized with the respiratory signal, beginning at peak 

inhalation and ending after five respiratory cycles. The synchronized 

respiratory signals and full k-space datasets can be expressed as           , 

where d is respiratory displacement, n is the n
th

 full k-space dataset and N is 

the number of full k-space phase encoding lines (N = 256). 

2. At the end of the five respiratory cycles,    (     ) was sorted with respect 

to unique respiratory displacements            , where m is the m
th

 position 

of the respiratory displacement from the peak inhalation with a millimeter bin 

width, and reconstructed using a 2D Fourier Transform,   (           ). A 

tolerance  , which represents a fraction   of average image intensity 

              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ determined on a pixel-by-pixel basis, was chosen and used as 

a measure of image quality. The tolerance   can be expressed as 
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Tolerance (T) =               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                         (1) 

In this study, we used  =0.1 (10%) of              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for the tolerance, which 

corresponds to the typical image quality achievable by conventional keyhole 

method. Then, the number of prior peripheral k-space phase-encoding lines, 

 , was determined within T in Figure 3-1(2). 

3. In Figure 3-1(3), the library of prior peripheral k-space datasets,             

acquired at the same respiratory displacements from d1 to dm, was 

reconstructed using       lines (            ). Each reconstructed 

image was compared with the image reconstructed using 256 lines, and   was 

increased until the difference between the two images exceeded T. If there 

were more than two k-space datasets with the same respiratory displacement, 

the process was repeated and the average value of   was used to form the 

library. 

 

For the zero-filling and conventional keyhole reconstructions, the k lines of N 

with zeros (zero-filling) or a single dataset taken in the mid-exhalation phase 

(conventional keyhole) was determined using a similar process as described in the 

three steps above. The k lines of zeros (zero-filling) or the k lines of a single dataset 

(conventional keyhole) were increased until the difference of the two images 

exceeded T. 

 

3.2.3 Real-time central k-space dataset acquisition 

The real-time central k-space dataset acquisition began after the library 

acquisition. In this instance, the size of the central k-space datasets (N- k lines) was 
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determined through matching respiratory displacement between a present respiratory 

signal and the matched dataset of the library, shown in Figure 3-1(4). Then, the (N- k 

lines) of central k-space dataset were combined with the k lines of the matched 

dataset in Figure 3-1(5). 

 

3.2.4 Testing the dynamic keyhole method  

In order to investigate the efficacy of the dynamic keyhole method compared to 

the zero-filling and conventional keyhole methods, the three methods were 

implemented in Matlab version 7.13 (The MathWorks, Natick, USA) and tested 

retrospectively using respiratory and MR image datasets acquired in a previous 

study.
76

 Sixty MRI datasets with associated respiratory motion datasets were acquired 

from fifteen healthy human subjects in the supine position using a 3T GE MR scanner 

(GE Healthcare, Waukesha, USA). Each subject had a total of four MRI scans over 

two separate imaging sessions. Each dataset consisted of 512 images in the 2D 

coronal plane acquired approximately every 200 ms using fast gradient recalled echo 

(fGRE) pulse sequence with a field of view (FOV) of 480 × 384 mm
2
 and a 96 × 96 

matrix size per frame across more than twenty respiratory cycles. Each MR image 

was interpolated to a 256 × 256 matrix by the MR scanner. Internal respiratory 

signals (5Hz) were obtained from each MR image at the peak of the right diaphragm 

of the dome of the liver. The Real-time Position Management (RPM) system (Varian 

Medical Systems, Palo Alto, USA) was used to monitor the subjects’ abdominal 

respiratory motion to obtain external respiratory signals (30Hz). Overall, for these 

datasets, the correlation of internal and external signals was found to be very high in a 

previous study, an average Pearson’s R-value of 0.96.
85

 The 30 Hz external signal 

was downsampled to the temporal resolution of 5 Hz for (1) the use of respiratory 
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displacements at the closest acquisition time between respiratory signals and full k-

space datasets in Figure 3-1(3), and (2) the use of the sixty datasets acquired at 5 Hz 

temporal resolution during the acquisition of central k-space datasets in Figure 3-1(4). 

The dynamic keyhole method was compared with the zero-filling and 

conventional keyhole methods in two ways: firstly, by evaluating the acquisition 

speed for the same image quality and secondly, by evaluating the image quality at the 

same acquisition speed
95

. For the first comparison, the acquisition speeds of the 

methods were quantified by using the number of k lines reused by each method to 

achieve the same image quality. For the second comparison, the quality of the images 

reconstructed from the same number of k lines was compared with the quality of the 

original ground-truth image reconstructed from the full k-space datasets by using the 

differences in image intensity. 

The impact of the use of internal or external respiratory signals was also 

investigated. The number of k lines required to achieve the same image quality was 

quantified for both respiratory signals for each of the three methods. Quantitative 

statistical comparison of the performance was determined using the mean, standard 

deviation, and paired Student’s t-test (Excel 2010, Microsoft, Redmond, USA).  

 

 

3.3 Results 

 

The correlation between faster image acquisition and better image quality for the 

zero-filling, conventional keyhole, and dynamic keyhole methods is shown in Figure 

3-2. 
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Figure 3-2. The relationship between faster image acquisition (horizontal arrow) and 

better image quality (vertical arrow) for each of the three methods tested. 

 

The intersections of each of the curves with the tolerance, which is 10% of 

average image intensity (thin, horizontal black line), indicate the number of k lines 

that were reused for each method. The image intensity difference increased when the 

number of k lines was increased in all three methods, but was smallest in the dynamic 

keyhole method. This showed that the dynamic keyhole method can reuse more k 

lines for the same image quality, resulting in faster image acquisition. 

Figure 3-3 shows reconstructed images using the different number of k lines 

required to produce the same image quality compared to original ground truth image. 
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Figure 3-3. Reconstructed images using the different number of k lines required to 

produce the same image quality compared to original ground truth image: (a) original 

image (k = 0 lines), (b) zero-filling reconstructed image (k = 152 lines with zeros), (c) 

conventional keyhole reconstructed image (k = 170 lines) and (d) dynamic keyhole 

reconstructed image (k = 196 lines). 
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The zero-filling method in Figure 3-3(b) reused 152 lines with zeros, the 

conventional keyhole method in Figure 3-3(c) reused 170 lines, and the dynamic 

keyhole method in Figure 3-3(d) reused 196 lines. Compared to the other two 

methods, the dynamic keyhole method reused more k lines to reconstruct the same 

image quality, indicating a faster image acquisition time. 

The performance of the three methods regarding the improvement of image 

quality was also evaluated. To provide a comparison of the image quality, an example 

of reconstructed images with 204 of 256 lines for a library across all the methods is 

shown in Figure 3-4.  

 

Figure 3-4. Reconstructed MR images utilizing (b) zero-filling, (c) conventional 

keyhole and (d) dynamic keyhole, where 204 of 256 lines were reused. (e), (f) and (g) 

display the difference between the original image (a) and the reconstructed images for 

the zero-filling (27%), conventional keyhole (11%), and dynamic keyhole (9%) 

methods, respectively. 
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From the reconstructed images shown in Figure 3-4, it is evident that the image 

quality of the dynamic keyhole method was superior to the zero-filling and 

conventional keyhole methods when 204 of 256 lines were reused. The reconstructed 

images using the zero-filling method in Figure 3-4(b) contained considerable blurring 

image artifacts. The conventional keyhole image in Figure 3-4(c) produced better 

image quality than the zero-filling method, but still contained motion artifacts around 

regions affected by respiratory motion such as the diaphragm, kidneys, and liver. 

However, respiratory-related artifacts were minimized on the reconstructed image by 

the dynamic keyhole method in Figure 3-4(d). 

The average number of k lines from the sixty datasets across the three methods 

using internal or external respiratory signals is shown in Table 3-1.  

 

Table 3-1. Zero-filling, conventional keyhole and dynamic keyhole results of the 

mean and standard deviation (STD) of the number of k lines to achieve the same 

image quality difference compared with the original images for the sixty obtained 

datasets. 

Methods Mean ± STD of k lines 

Zero-filling 162 (63%) ± 8 

Conventional keyhole 188 (73%) ± 14 

Dynamic keyhole (internal respiratory signal) 204 (79%) ± 17 

Dynamic keyhole (external respiratory signal) 202 (78%) ± 17 

 

Across the sixty datasets, the dynamic keyhole method using the internal 

respiratory signals reused an average of 204±17 of 256 (79%) lines compared to 
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162±8 of 256 (63%) lines in the zero-filling method and 188±14 of 256 (73%) lines 

in the conventional keyhole method to achieve the same difference from the ground 

truth image. The difference in the number of k lines between the dynamic keyhole 

method and the zero-filling or conventional keyhole method were statistically 

significant with a p-value < 0.0001 in both cases.  There was a two-line difference in 

the average of k lines between the internal and external respiratory signals in the 

dynamic keyhole method (p-value < 0.0001). However, there was only a 1% 

difference, indicating that either internal or external respiratory signals are suitable 

for the dynamic keyhole method. The dynamic keyhole method required less scan 

time compared to the conventional keyhole method to achieve the same image quality 

during real-time central k-space dataset acquisition. For example, once the library of 

the prior peripheral k-space datasets were acquired, the real-time central k-space 

dataset acquisition of the dynamic keyhole method achieved image acquisition speeds 

of about 40 ms (52 of 256 lines) per image compared to about 53 ms (68 of 256 lines) 

per image for the conventional keyhole.  

The performance of the dynamic keyhole method using the different input signals 

over the intra- and inter-subject variations is shown in Figure 3-5. For the intra- and 

inter-subject variations, sixty datasets were grouped by respiratory signal and subject.  
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Figure 3-5. The number of k lines (of 256) for the dynamic keyhole method to 

achieve a 10% difference with the original image using the internal (red) and external 

(black) respiratory signals over the sixty obtained datasets of 15 subjects (two 

datasets, each with internal and external respiratory signals, over two imaging 

sessions). The subject dataset numbers are labeled by subject-imaging session, e.g. 5-

2 is subject 5, session 2.  

 

The internal respiratory signals compared to the external respiratory signal were 

similar in all of the sixty datasets. The largest difference was observed in subject 3, 

session 1, where eight more k lines were reused using the internal respiratory signals 

than the external signal. A larger difference in k lines was found when there were 

regular internal and relatively irregular external respiratory cycles, for example the 

datasets in subject 3, session 1 and subject 9, session 2. The   lines were lower with 

the internal respiratory signals in only one case, subject 2, session 1,
 
due to irregular 

internal and relatively regular external respiratory signals. 

The average of maximum-to-minimum range of intra-subject variation using 

internal (or external) respiratory signals and the standard deviation of   lines was 
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12±11 lines (or 12±10 lines). The average of maximum-to-minimum range of inter-

subject variation across fifteen subjects and the standard deviation of   lines was 

47±15 lines (or 49±16 lines). 

 

 

3.4 Discussion 

Real-time thoracic imaging often requires a large FOV and includes respiratory 

motion, leading to longer acquisition time and respiratory-related artifacts due to 

organ displacement. In this study, we introduced the dynamic keyhole method, which 

utilizes a library of prior peripheral k-space datasets corresponding to multiple 

respiratory states that are matched to real-time central k-space datasets using internal 

or external respiratory information. Using the dynamic keyhole method, we 

demonstrated fast image acquisition while maintaining image quality.  

We demonstrated that the dynamic keyhole method resulted in a significant 

reduction in the amount of central k-space datasets necessary to acquire an image of 

sufficient quality. For the same amount of central k-space datasets, the dynamic 

keyhole method resulted in improved image quality compared to the zero-filling and 

conventional keyhole methods, as shown in Figure 3-3 and Figure 3-4. The dynamic 

keyhole method reused 79% of prior peripheral k-space datasets to reconstruct 

artifact-free images, 6% more than conventional keyhole, and 16% more than zero-

filling. As a result, the number of phase encoding lines was reduced by up to 79% 

from the full k-space acquisition during the central k-space dataset acquisition. This 

shows that the dynamic keyhole could be a valuable tool for fast MR image 

acquisition, which is required for real-time thoracic imaging in the presence of 

respiratory motion. In addition, the acquisition of full k-space datasets may not be 
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necessary during library acquisition (Figure 3-1(A)(1)) when the same number of 

peripheral phase encoding lines is used. The scan time could be further reduced in 

this stage of the dynamic keyhole method if the k-space is not fully acquired. 

To accelerate image acquisition time, compressed sensing
103, 104

 and parallel 

imaging
110, 111

 have been proposed for improving both acquisition time and quality of 

MR images. However, the delay between image acquisition and reconstruction in 

compressed sensing, due to the iterative reconstruction, and the sensitivity of multi-

receiver coils in parallel imaging lead to residual aliasing and noise enhancement 

artifacts.
101

 The barrier to real-time thoracic or abdominal imaging in compressed 

sensing could be, however, improved using the dynamic keyhole method. In 

compressed sensing, superior image quality of images reconstructed by the dynamic 

keyhole method could reduce iterations. Furthermore, the dynamic keyhole method 

can be combined with other undersampling methods, such as circular
69

, radial
99

, and 

spiral
100

 to improve undersampling schemes for the out-of-field object size exceeding 

the diameter of FOV.
69

  

In the current retrospective study, the internal respiratory signal measured directly 

from obtained images (manual process) was utilized.
76

 This resulted in slightly better 

dynamic keyhole performance than the external respiratory signal in terms of k-line 

reduction. For prospective implementation, an automatically determined diaphragm 

position
82, 105, 112

 is necessary instead of the manual process utilized here, but it 

requires additional internal respiratory signal measurements whilst k-space datasets 

are measured and images reconstructed. Alternatively, the external respiratory signals 

can be easily utilized with only a small penalty in terms of k-line reduction, as there is 

a high internal-external signal correlation for the dataset used in this study (Pearson’s 

R-value = 0.96).
85
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The dynamic keyhole method uses previously acquired full k-space datasets, and 

in an actual implementation, the library of k-space datasets for the prior peripheral k-

space dataset and the central k-space dataset acquisition would be at a different 

frequency. Even though the library may be acquired at a lower temporal resolution, 

the dynamic keyhole method should give improved results over the conventional 

keyhole method because it utilizes multiple prior peripheral datasets matched to 

various respiratory displacements. In an additional study (data not shown), a temporal 

resolution of 800 ms was tested instead of 200 ms. In this case, the match between 

central and peripheral datasets was compromised; the library of a lower temporal 

resolution resulted in six fewer reused k lines on average compared with the 200 ms 

case. However, even in this case, the dynamic keyhole method was superior to the 

conventional keyhole when reusing an average of ten more k lines. Serially acquired 

peripheral dataset acquisitions corresponding to the same dataset magnitude as that 

needed for the real-time central k-space datasets could reduce data mismatch, but it 

would increase the time required to create the library.  

The performance of the proposed dynamic keyhole method is reliant on the 

quality of the library and the ability to match it accurately to the central k-space 

datasets. After an additional simulation to find the optimum amount of datasets for 

the library, we suggest a greater number of breathing cycles when large cycle-to-

cycle variations in respiratory displacement are present. This increase is to better 

account for variability in the subjects’ breathing patterns. In an example from the 

subject 9, session 1, the number of k lines was measured at 186 and 200 lines when a 

single respiratory cycle and five respiratory cycles were used, respectively, due to 

irregular breathing (e.g. baseline drifts, overly deep/shallow breathing) during the 

library acquisition. The major factors leading to improved performance in the 
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dynamic keyhole method were regular breathing
76

 and the coverage of the library in 

respiratory displacements, which resulted in up to an 80% performance improvement 

with the internal respiratory signals and 70% with the external respiratory signals.  

This study has demonstrated that the dynamic keyhole method is a promising MR 

image reconstruction technique applicable for real-time imaging of the thoracic and 

abdominal regions. The dynamic keyhole can be easily applied to a variety of pulse 

sequences and scanners, and can be combined with other fast imaging techniques, 

such as k-space undersampling, and respiratory-gated imaging for real-time image 

guided radiotherapy, such as radiotherapy systems integrated with MRI.
79, 89, 90

 A 

variety of inputs can be utilized for a respiratory signal, such as bellows belts
113

, 

navigator
112

, and ANZAI.
114

 

 

 

3.5 Conclusions 

 

In this study, the dynamic keyhole method utilized respiratory signals to improve 

MR images in the presence of respiratory motion, leading to a 79% reduction in 

central k-space datasets required for real-time MR imaging, while maintaining 

sufficient image quality. In addition, this was the first study in which MR image 

reconstruction utilized respiratory signals for real-time thoracic imaging. Our results 

suggest that the dynamic keyhole method could be a desirable technique for image-

guided radiation therapy and MRI-guided radiotherapy that requires real-time MR 

monitoring in the thoracic region. 
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Chapter 4: Quantifying the accuracy of the tumor 

motion and area as a function of acceleration factor 

for the simulation of the dynamic keyhole magnetic 

resonance imaging method 

 

A version of this chapter has been published: Lee D, Greer B P, Pollock S, Kim T and 

Keall P. "Quantifying the accuracy of the tumor motion and area as a function of 

acceleration factor for the simulation of the dynamic keyhole magnetic resonance 

imaging method", Medical physics, 43 (5): 2639 (2016), 

http://dx.doi.org/10.1118/1.4947508. 

 

 

ABSTRACT 

Purpose: The dynamic keyhole is a new MR image reconstruction method for 

thoracic and abdominal MR imaging. To date, this method has not been investigated 

with cancer patient MRI data. The goal of this study was to assess the dynamic 

keyhole method for the task of lung tumor localization using cine-MR images 

reconstructed in the presence of respiratory motion. 

Methods: The dynamic keyhole method utilizes a previously acquired a library of 

peripheral k-space datasets at similar displacement and phase (where phase is simply 

used to determine whether the breathing is inhale to exhale or exhale to inhale) 

respiratory bins in conjunction with central k-space datasets (keyhole) acquired. 

External respiratory signals drive the process of sorting, matching and combining the 

http://dx.doi.org/10.1118/1.4947508
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two k-space streams for each respiratory bin, thereby achieving faster image 

acquisition without substantial motion artifacts. This study was the first that 

investigates the impact of k-space undersampling on lung tumor motion and area 

assessment across clinically available techniques (zero-filling and conventional 

keyhole). In this study, the dynamic keyhole, conventional keyhole and zero-filling 

methods were compared to full k-space dataset acquisition by quantifying (1) keyhole 

size required for central k-space datasets for constant image quality across sixty four 

cine-MRI datasets from nine lung cancer patients, (2) the intensity difference between 

the original and reconstructed images in a constant keyhole size, and (3) the accuracy 

of tumor motion and area directly measured by tumor auto-contouring. 

Results: For constant image quality, the dynamic keyhole method, conventional 

keyhole and zero-filling methods required 22%, 34% and 49% of the keyhole size (P 

< 0.0001), respectively, compared to the full k-space image acquisition method.  

Compared to the conventional keyhole and zero-filling reconstructed images with the 

keyhole size utilized in the dynamic keyhole method, an average intensity difference 

of the dynamic keyhole reconstructed images (P < 0.0001) was minimal, and resulted 

in the accuracy of tumor motion within 99.6% (P < 0.0001) and the accuracy of 

tumor area within 98.0% (P < 0.0001) for lung tumor monitoring applications. 

Conclusions: This study demonstrates that the dynamic keyhole method is a 

promising technique for clinical applications such as image-guided radiation therapy 

requiring the MR monitoring of thoracic tumors. Based on the results from this study, 

the dynamic keyhole method could increase the imaging frequency by up to a factor 

of five compared with full k-space methods for real-time lung tumor MRI. 

Keywords: lung tumor; real-time imaging; thoracic MRI; image reconstruction; 

MRI-guided; 
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4.1 Introduction 

 

The tumor motion of thoracic and abdominal regions affected by respiration 

varies both breath-to-breath and day-to-day
5, 27

, resulting in an averaging of the dose 

distribution over the path of the tumor motion and a shift of the dose distribution.
115

  

In order to improve the quality of radiation delivery, external respiratory surrogates 

are often used to predict internal tumor motion
84, 116

 but the internal tumor motion 

does not always accurately correlate to the external surrogates due to breathing and 

heartbeat.
117-119

 In addition, tumor growth and shrinkage is expected throughout the 

course of radiation treatment.
34

  

Tumor motion monitoring
27, 32, 35-38

 can provide tumor positions measured from 

implanted markers or surrogates for cancer radiotherapy,
4
 but there is not an 

appropriate method to consider tumor deformation due to the lack of tumor contrast 

required for tumor contouring resulted in the limitation of tumor delineation. In order 

to utilize the superior soft-tissue contrast of magnetic resonance imaging (MRI), 

radiation therapy systems integrated with MRI have been proposed for MRI guided 

radiation therapy
79, 88, 90, 120, 121

 and the Viewray system is commercially available for 

MRI guidance in clinical practice.
121

 MRI-based techniques
81, 121, 122

 monitor 

respiratory-induced lung and abdominal organ motion at a rate of 4 Hz, however this 

is considerably slower for accurate prediction in the system latency (greater than 200 

ms) between target location and radiation delivery,
84

 compared with 25 Hz for 

Cyberknife Synchrony (Accuray Incorporated, Sunnyvale, CA)
32

 and the external 
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surrogate monitoring of 25 to 30 Hz for the real-time position management (RPM) 

system (Varian Medical System Inc, Palo Alto, CA).
123, 124

  

Given the advantages of MRI over other image modalities and tumor monitoring 

techniques and the emerging hybrid MRI-radiotherapy systems, optimizing the 

imaging speed of MRI for continuous, tumor monitoring is a valuable milestone for 

future hybrid radiotherapy systems. Zero-filling (filling unmeasured data points with 

zeros) and conventional keyhole (filling unmeasured data points with a previously 

acquired single full k-space dataset) are current MR image reconstruction methods 

designed to reduce MR image acquisition time, however such techniques often result 

in a compromise of image quality due to intensity loss in the zero-filling method, and 

displacement and phase changes averaged intensity in the conventional keyhole 

method.
95, 96

  Non-Cartesian undersampling such as radial
99

 and spiral
100

 can reduce 

image artifacts from motion sensitivity, but this still causes intensity loss due to 

interpolation at unmeasured points and out-of-field due to the limited diameter for a 

large field of view.
69

 The sensitivity of multi-receiver coils in parallel imaging leads 

to residual aliasing and noise enhancement artifacts
101

 and compressed sensing 

requires an iterative reconstruction
104

, which limits real-time thoracic and abdominal 

MR imaging. Hence, an MR image reconstruction method reducing image acquisition 

time whilst maintaining the image quality of full k-space datasets on reconstructed 

images is desirable for real-time lung tumor monitoring. 

The previous study introduced the concept of the dynamic keyhole method and 

evaluated it using the MR images of healthy volunteers.
125

 This previous study 

imaged healthy volunteers utilizing the peak of liver dome for diaphragm motion 

monitoring, but the position of cine-MR image measurement can vary based on the 

tumor location of each cancer patient.
126, 127

 This study is hence required to assess (1) 
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the dynamic keyhole method which reconstructs lung tumor MR images in the 

presence of respiratory-driven lung tumor motion and (2) the tumor motion difference 

and tumor area similarity between original and reconstructed images for the technical 

improvement of the dynamic keyhole method. 

In this study, we test that the dynamic keyhole method can reduce MR image 

acquisition time and improve image quality compared to currently available MRI 

reconstruction methods (zero-filling and conventional keyhole) in sixty four lung 

tumor datasets acquired from nine lung cancer patients. In addition, we assess the 

accuracy of the tumor motion and area in the reconstructed two-dimensional cine-MR 

images. Lung tumors directly measured by auto-contouring were compared between 

the original and the dynamic keyhole reconstructed images, in addition to the 

conventional keyhole and zero-filling reconstructed images.  

 

 

4.2 Methods 

 

The dynamic keyhole method is comprised of library acquisition (full k-space 

datasets) and central k-space dataset acquisition (central k-space datasets).
125

  A 

keyhole size, the size of the central k-space datasets is determined using the full k-

space datasets (i.e. full k-space datasets = peripheral k-space datasets + central k-

space datasets (keyhole)) at similar respiratory states prior to the central k-space 

dataset acquisition.  Then, the central k-space datasets are obtained to be combined 

with the library of peripheral k-space datasets at the corresponding respiratory state in 

displacement and phase (where phase is simply used to determine whether the 

breathing is inhale to exhale or exhale to inhale). 
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In the previous study,
125

 full k-space datasets were continuously obtained at a set 

acquisition interval (i.e. 200 ms) over five respiratory cycles so that multiple full k-

space datasets could be obtained for each displacement bin. This required extra time 

to process the multiple full k-space datasets acquired during the library acquisition 

phase of the dynamic keyhole method.  However, the current study optimized the 

library acquisition to allow only one full k-space dataset for each respiratory 

displacement bin. The following sections describe lung tumor cine-MRI datasets, the 

optimized library acquisition of the dynamic keyhole method, and a retrospective 

reconstruction simulation to assess the dynamic keyhole method compared to the 

zero-filling and conventional keyhole methods for the task of lung tumor localization. 

 

4.2.1 Lung tumor cine-MRI datasets and external respiratory signals 

Two-dimensional (2D) coronal and sagittal cine-MR images for lung tumors were 

obtained in a 3 Tesla MRI (Skyra, Siemens Healthcare Erlangen, Germany).  For lung 

tumor images, a true-FISP (true fast imaging with steady state free precession) MR 

pulse sequence was used to acquire 512 images, one every 308 ms. Typical MR 

imaging parameters were repetition time (TR)/echo time (TE) = 3.8/1.3 ms, 

acquisition time = 308 ms, flip angle = 45°, field of view = 380 × 380 mm
2
, pixel size 

= 1.48 × 1.48 mm
2
, slice thickness = 4 mm, bandwidth = 1500 Hz and image matrix = 

256 × 256.  The real-time position management (RPM) system (Varian Medical 

Systems, Palo Alto, USA) was used to monitor the subjects’ abdominal respiratory 

motion to obtain external respiratory signals (25Hz). In this study, external 

respiratory signals obtained from the RPM were only utilized for the detection of 

respiratory displacement in a millimeter interval and respiratory phase (the inhalation 

and exhalation phase of each respiratory cycle) because the internal diaphragm 
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visibility is often absent or limited on lung tumor images depending on lung tumor 

location.
 27, 28

 

Sixty four cine-MRI datasets with simultaneous external respiratory signals were 

obtained from nine lung cancer patients with informed consent under a local ethics 

board approved study. Seven patients had two separate imaging sessions on two 

different dates (pre and mid-treatment) and two patients had a single imaging session. 

Four datasets (coronal, sagittal, coronal and sagittal datasets) from the pre-treatment 

MRI session and another four datasets from the mid-treatment MR session were 

obtained. The images from the cine-MRI datasets were then converted to the full k-

space datasets using the Fourier Transform.  

 

4.2.2 Optimized library acquisition and real-time acquisition 

The previous dynamic keyhole study (Lee et al, 2014)
32

 acquired one or more full 

k-space datasets for each displacement bin (a millimeter bin width). However, this 

study simply remove the duplicates from the library but in a way that would mirror an 

online implementation, i.e. keeping the first and removing subsequent full k-space 

datasets that would fit into the bin. The library acquisition of the dynamic keyhole 

method was optimized to obtain the minimum number of full k-space datasets in five 

respiratory cycles. The optimized library acquisition is shown in Figure 4-1. 
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Figure 4-1. The optimized library acquisition of the dynamic keyhole method: (a) 

acquiring only one full k-space dataset at displacement bins (a set at 1 mm 

displacements), (b) sorting full k-space datasets into the displacement bins and (c) 

determining a keyhole size corresponding to the central k-space datasets of the full k-

space datasets for the library. 

 

Continuously obtained external respiratory signals (40 ms) and occasionally 

obtained full k-space datasets corresponding to acquisition intervals (308 ms) were 

utilized in this retrospective simulation. The three key steps are described below. 

Compared to the previous dynamic keyhole study,
32

 Step 1 was modified to only 

allow one full k-space acquisition for each displacement bin and Step 3 was 

consequently simplified by processing one full k-space dataset for each displacement 

bin. 

 

Step 1 (Figure 4-1 (a)): Displacement binning (a set at 1 mm displacements) using 

external respiratory signals (blue wave) was initiated at the first inhalation (or 

exhalation) of respiratory displacement. Then, full k-space datasets were obtained at 

acquisition intervals (horizontal dotted lines) and simultaneously allocated to 

displacement bins (vertical solid lines) where a displacement bin was similar to the 

displacement of the present external respiratory signals (blue wave). Only the first 

full k-space dataset for each displacement bin was obtained and subsequent full k-

space datasets were not acquired to obtain the minimum number of full k-space 

datasets in five respiratory cycles. 

Step 2 (Figure 4-1 (b)): The full k-space datasets were sorted by the displacement 

bins, expressed as   , where  =1,2,…, , and also reconstructed using the 2D Fourier 
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Transform, expressed as   , where  =1,2,…, .  A tolerance   based on the pre-

determined acceptable error fraction ( )
32

 was determined, where   is a fraction ( ) 

of the average pixel value of    on a pixel-by-pixel basis. To minimize the intensity 

variation of pixel values between images, the intensity range of each image is 

equalized to a minimum and maximum range from 0 to 255 for 8-bit images (i.e. 

stretching the histogram of the intensity range so a minimum value is 0 and maximum 

value is 255). 

Step 3 (Figure 4-1 (c)): To determine a keyhole size ( ) for      , where   is the 

size of central k-space datasets ( =1,2,…, ) and   is 256 (the size of   ),    of       

was compared to      determined from                 in a loop of incremental 

 . In this study,    and      represent the present and next respiratory states and the 

difference between the two states indicates the maximum change of respiratory 

motion in a millimeter bin width. A keyhole size ( ) for       was consequently 

determined when the average pixel of the difference (    ) between corresponding 

images of    and      on pixel-by-pixel basis was below  . A small bin width 

obtaining more numbers of library datasets requires a long library acquisition time 

but results in a reconstructed image of better quality in a prospective implementation. 

After this library acquisition, central k-space dataset acquisition began,
125

 and a 

keyhole size central k-space dataset was conjunct with a library through matching the 

similar displacement bin utilizing external respiratory signals. The motion trajectory 

of the tumor is unknown, however the five breathing cycles used to create the library 

will give an array of image from which the most appropriate to match to the image 

can be selected. 

 



 

77 

 

4.3.3. Image reconstruction and quantification 

For the retrospective image reconstruction simulation, sixty four k-space datasets 

were used with three methods: zero-filling, conventional keyhole and dynamic 

keyhole. Prior to central k-space dataset acquisition, the three methods were followed 

by the step 1 and 2 of library acquisition but for the step 3,    of       was compared 

to      determined from               in a loop of incremental  , where 

        was continuously filled with zeros for the zero-filling method instead of 

          until the      is below  . For the conventional keyhole method, 

        was continuously filled with a single k-space dataset from a middle of the 

first respiratory cycle.  

After the retrospective image reconstruction, lung tumors were automatically 

contoured on original and reconstructed images using Otsu’s method
128

 which 

converts a gray scale image to a binary image in normalized intensity value that lies 

in the range [0, 1] and a region growing algorithm on the binary image. A single seed 

point on the tumor region was manually chosen on the first image of each dataset and 

the centroid of tumor contoured was used as a seed point of the next image until all 

images were segmented. The centroid of tumor motion was calculated using the mean 

of row and column positions where binary pixel values were equal to 1. The centroid 

and the area of contoured tumors were used for tumor motion and area, respectively. 

The performance of three methods in real-time central k-space dataset acquisition 

was compared to full k-space dataset acquisition by quantifying (1) keyhole size 

required for central k-space datasets for constant image quality in the tolerance, 

indicating a small number corresponding to faster image acquisition; (2) intensity 

difference (i.e. intensity refers the numerical value of a pixel) in a constant keyhole 

size utilized in the dynamic keyhole method across the two other methods, indicating 
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a small number corresponding to better image quality; and (3) the accuracy of tumor 

motion and area based on the images obtained in analysis (2).  Qualitative outcomes 

were compared using examples of the original and reconstructed images with 

contoured tumors. Quantitative outcomes of keyhole size, intensity difference, tumor 

motion difference using the centroid of tumor contour and tumor area similarity were 

compared using the mean and standard deviation (STD), and a paired Student’s t-test.  

The area similarity was quantified using the Dice index (i.e. 

       |   |  | |  | | ⁄ , where   is the original tumor area and   is the 

reconstructed tumor area).  

 

 

4.3 Results 

 

The performance of three methods measured in real-time dataset acquisition 

simulation varied in image acquisition, image quality and accuracy of tumor motion 

and area. 

 

4.3.1 Image acquisition time with constant image quality 

Figure 4-2 shows reconstructed images using different keyhole sizes across the 

three reconstruction methods to achieve constant image quality from the original 

image in the tolerance. 
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Figure 4-2. Reconstructed images of Patient 5 using different keyhole sizes required 

for constant image quality in the tolerance across three methods: (a) original image 

(256 lines) with full k-space data, (b) zero-filling reconstructed image, (c) 

conventional keyhole reconstructed image, and (d) dynamic keyhole reconstructed 

image.  Lung tumors were contoured on the reconstructed images using different 

colors: (a) original image (yellow), zero-filling (green), conventional keyhole (blue) 

and dynamic keyhole (red). 

 

To maintain the constant image quality from the original image of Patient 5, 

zero-filling, conventional keyhole, and dynamic keyhole required keyhole sizes of 

100, 84, and 30 phase encoding lines, respectively.  

 

Figure 4-3 shows the keyhole size for constant image quality for the sixty four 

datasets across the three methods. 
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Figure 4-3. The keyhole size of three methods measured in central k-space dataset 

acquisition to produce constant image quality from the original image. The keyhole 

size measured in each dataset and over all datasets: (a) zero-filling (ZF, green circle 

and dashed line), conventional keyhole (CK, blue square and dotted line) and 

dynamic keyhole (DK, red diamond and dashed with dotted line). Four datasets 

(coronal, sagittal, coronal and sagittal) from the first MRI sessions in Patient 5 (P5) 

and 8 (P8), and eight datasets from the first and second MRI sessions in the other 

patients. A smaller keyhole size indicates faster image acquisition.   

 

The keyhole size is the smallest in the dynamic keyhole method (red diamond) 

over all datasets and followed by the conventional keyhole method (blue square) and 

the zero-filling method (green circle). The keyhole size of the conventional keyhole 

method sometimes exceeded the keyhole size of the zero-filling method. 

 

Table 4-1 shows the mean and STD of keyhole size from the sixty four datasets 

of coronal and sagittal image orientations across the three methods.   

Table 4-1. The mean ± STD keyhole size (of 256 lines) of zero-filling, conventional 



 

81 

 

keyhole and dynamic keyhole reconstruction methods from nine lung cancer 

patients. 

Methods 
Coronal 

Mean ± STD 

Sagittal 

Mean ± STD 

Average 

Mean ± STD 

Zero-filling 100 ± 1 108 ± 2 104 ± 2 

Conventional keyhole 83 ± 9 88 ± 8 86 ± 9 

Dynamic keyhole 55 ± 12 59 ± 12 57 ± 12 

 

Compared to the original image acquisition, the dynamic keyhole method 

required image acquisition speeds of about 68 ms (22% keyhole size compared to 

full k-space datasets), 104 ms (34%) in the conventional keyhole method and 126 

ms (41%) in the zero-filling method for constant image quality within the tolerance. 

The reduction in the keyhole size between the dynamic keyhole and both the zero-

filling and conventional keyhole methods were statistically significant with a p < 

0.0001 in both cases.  By having a keyhole size of 57 out of 256 lines, the dynamic 

keyhole method can achieve 78% faster image acquisition than original cine-MR 

image acquisition, in addition to being 45% and 33% faster than zero-filling and 

conventional keyhole image acquisition time, respectively.   

 

4.3.2 Varying image quality with constant keyhole size 

MR images of the three different reconstruction methods using a constant 

keyhole size of 30 lines in k-space are shown in Figure 4-4. Three reconstructed 

images were compared to the original image.   



 

82 

 

 

Figure 4-4. Reconstructed MR images of (a) original full k-space image, as well as 

reconstructed MR images with a constant keyhole size of 30 of 256 phase encoding 

lines for (b) zero-filling, (c) conventional keyhole and (d) dynamic keyhole. (e), (f) 

and (g) display the difference (and percentage of difference) between original image 

and the reconstructed zero-filling, conventional keyhole, and dynamic keyhole 

images, respectively. Lung tumors were contoured on the reconstructed images in 

different colors: (a) original image (yellow), zero-filling (green), conventional 

keyhole (blue) and dynamic keyhole (red) methods.  

 

The reconstructed image was entirely blurred in the zero-filling method (see 

Figure 4-4(b)) and it was partially blurred at organ edges, such as diaphragm and 

heart in the conventional keyhole method (see Figure 4-4(c)), however, an image with 

fine and sharp organ edges was reconstructed in the dynamic keyhole method (see 

Figure 4-4 (d))   
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Table 4-2 shows the mean and STD of the intensity difference between the 

original and the reconstructed images from the sixty four datasets.   

Table 4-2. Averaged intensity differences of the MR image and tumor itself 

between the original and the zero-filling, conventional keyhole and dynamic keyhole 

reconstructed images. 

Methods 
Image intensity difference 

Mean ± STD 

Tumor intensity difference 

Mean ± STD 

Zero-filling 14.2 ± 2.9 11.8 ± 4.9 

Conventional keyhole 13.0 ± 2.0 13.1 ± 5.3 

Dynamic keyhole 11.6 ± 2.0 11.6 ± 4.5 

 

Compared to the original MR image, dynamic keyhole improved the image 

intensity difference by 2.6% (p < 0.0001) and 1.4% (p < 0.0001) over zero-filling and 

conventional keyhole respectively. Compared to the original image, dynamic keyhole 

improved the tumor intensity difference by 0.2% (p = 0.53) and 1.5% (p < 0.0001) 

over zero-filling and conventional keyhole respectively.    

 

4.3.3 Accuracy of tumor motion and area with constant keyhole size 

The performance of the three methods using the constant keyhole size of the 

dynamic keyhole method was compared for lung tumor motion and area.  Figure 4-5 

shows examples of tumor motion and differences from Patient 6 who had substantial 

tumor motion. 
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Figure 4-5. The tumor motion of original (black dashed) and reconstructed images 

using a constant keyhole size based on the keyhole size of the dynamic keyhole 

method. (a) Zero-filling (green line), (b) conventional keyhole (blue line) and (c) 

dynamic keyhole (red line), and tumor motion difference (black line) between the 

two tumor motions from the original and reconstructed images.   

 

The dynamic keyhole tumor motion (red line) was visually comparable to the 

original tumor motion (black dashed) in Figure 4-5 (c) but the conventional keyhole 

tumor motion (blue line) was a couple of data points larger in Figure 4-5 (b) and 

several data points larger in the zero-filling tumor motion (green line) in Figure 4-5 

(a).  In terms of tumor motion accuracy, the tumor motion difference (black line), 

was minimal in the dynamic keyhole method compared to the conventional keyhole 

and zero-filling methods. 
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Figure 4-6 illustrates examples of tumor areas contoured on the original and 

reconstructed images using a constant keyhole size based on the keyhole size of the 

dynamic keyhole method from Patient 5. 

 

Figure 4-6. Tumor areas contoured on the original and reconstructed images using 

constant keyhole size: original image (yellow), zero-filling (green), conventional 

keyhole (blue) and dynamic keyhole (red). Image number (#) indicates the sequential 

order of MR images. 

 

The dynamic keyhole tumor areas (red) were visually comparable to the original 

tumor areas (yellow) in all the illustrated images. The zero-filling tumor areas (green) 

were considerably larger than the original tumor areas and the conventional keyhole 

tumor areas were slightly larger than the original tumor areas but it was often 

considerably larger shown in #3 and #9 of coronal images and #5 and #9 of sagittal 

images.  

 



 

86 

 

Table 4-3 gives the overall of tumor motion difference using the centroid of 

tumor contour and area similarity using Dice index in the mean and STD from sixty 

four datasets. 

Table 4-3. The tumor motion difference and area similarity of zero-filling, 

conventional keyhole and dynamic keyhole images from original image in the mean 

and STD from sixty four datasets. 

Methods 

Tumor motion difference 

(mm) 

Mean ± (STD) 

Tumor area difference 

(%) 

Mean ± (STD) 

Zero-filling 2.6 ± 4.7 9.6 ± 3.4 

Conventional keyhole 1.1 ± 2.8 7.2 ± 3.0 

Dynamic keyhole 0.3 ± 1.8 0.2 ± 1.2 

 

Compared to the original tumor motion, dynamic keyhole improved tumor motion 

difference by 2.3 mm (p < 0.0001) and 0.8 mm (p < 0.0001) over zero-filling and 

conventional keyhole, respectively. Compared to the original tumor area, dynamic 

keyhole improved tumor area similarity by 0.52 (p < 0.0001) and 0.76 (p < 0.0001) 

over zero-filling and conventional keyhole, respectively.  Compared to the original 

tumor motion, the accuracy of the dynamic keyhole tumor motion was measured at 

99.6% and the accuracy of the dynamic keyhole tumor area was measured at 98.0%. 

The tumor motion difference and area similarity were minimized in the dynamic 

keyhole method compared to the other two methods. 
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4.4 Discussion 

 

In this study, we evaluated the dynamic keyhole method
125

 which utilizes a 

library of previously acquired peripheral k-space datasets corresponding to multiple 

respiratory states that are combined with  keyhole size central k-space datasets at the 

closest respiratory state using external respiratory information. Using the dynamic 

keyhole method, we demonstrated the accuracy of the tumor motion and area as a 

function of acceleration factor through sixty four lung tumor image dataset 

reconstruction.  

Similar to the previous study of healthy volunteer dataset reconstruction,
125

 the 

dynamic keyhole method achieved 78% faster image acquisition than original image 

acquisition with improved image quality, which is essential for  tumor imaging in the 

presence of respiratory-induced tumor motion. As shown in Figure 4-3, there was 

some variation in keyhole size across image orientations (i.e. coronal and sagittal) 

and the patients; this was due to factors such as patient size, the magnitude of 

breathing motion, and breathing regularity in the dynamic keyhole method. The 

variation of keyhole size can cause different imaging speeds over image orientations 

and patients but this can be a trade-off between temporal and spatial resolution. The 

relationship between keyhole size and image size due to variations of patient size and 

image orientation will be investigated to determine an optimal keyhole size for 

variable image size in a future study. 

This study assessed the intensity difference between original and reconstructed 

images shown in Table 4-2.  An intended average intensity difference was a fraction 

(10%) of the average pixel value but the measured intensity difference of the dynamic 

keyhole method was 1.6% greater than the intended average intensity difference due 
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to the limited coverage of respiratory displacements in the library, which obtained 

from at the beginning of five respiratory cycles. In order to improve the limitation of 

the respiratory displacement coverage, library reacquisition or real-time update could 

be required if the breathing changes with a large breath or baseline shift, where there 

is no corresponding library dataset during treatment. 

The accuracy of tumor motion and area was quantified and analyzed using the 

lung tumors directly measured from reconstructed images using auto-contouring.  A 

consistent tumor auto-contouring condition was used for both original and 

reconstructed images in order to investigate the dependency of reconstructed images 

within intensity difference in Table 4-2.  This study demonstrated that the dynamic 

keyhole tumors compared to the original tumors are consistent with 99.6% accuracy 

for tumor motion and 98% accuracy for tumor area in Table 4-3.  This provides 

evidence that the dynamic keyhole is a promising MR image reconstruction technique 

applicable for tumor imaging in thoracic and abdominal regions. 

Compared to the previous library acquisition of the dynamic keyhole method, the 

new optimized library acquisition reduced the number of full k-space datasets by 72% 

whilst maintaining the reconstruction performance of central k-space dataset 

acquisition in Table 4-1. To optimize the library acquisition of dynamic keyhole 

method in Figure 4-1, a number of full k-space dataset acquisitions were skipped at 

displacement bins in five respiratory cycles, possibly acquiring well-distributed 

library datasets at the displacement bins while controlling a library acquisition time 

and a respiratory bin width, when utilizes a respiratory-triggering technique.
129

 For 

example, more numbers of library datasets in sub-millimeter bin width could be 

acquired for better image quality to consider the size of human subjects and their 

respiratory displacement and period.  
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The relationship between the raw (k-space) data and the resultant image is the 

Fourier transformation which enables to capture (or revert) the measurement of a 

single net magnetization vector located somewhere within the space in which phase 

and frequency encoding gradients are applied. In addition, temporal resolution (i.e. 

the duration of time for the acquisition of a single image) depends on fields of view 

and the number of data points across an image along the frequency (i.e. each 

transverse magnetization) and phase (i.e. location) encoding directions. Thus, this 

study utilized the k-space data (i.e. Fourier transformed MR images) in a 

retrospective reconstruction simulation and the number of k-space data points was 

measured to demonstrate the reduction of imaging speed, corresponding to the 

reduction of data points. However, the dynamic keyhole method should be 

prospectively tested in an experimental implementation prior to clinical uses.  

Real-time tracking
6, 36, 130 

has been developed to account for tumor motion 

variability and this can improve the uncertainty of the tumor motion variability, but 

the real-time tracking using lung tumor MR images
81, 122, 131

 is still under 

investigation due to a considerably long acquisition time. In addition, real-time 

tracking requires measuring tumor positions in near real-time and predicting tumor 

positions to allow for beam repositioning synchronized with a continuously moving 

tumor. However, the response of the beam repositioning to a tumor position cannot 

occur instantaneously.
4
 A prospective implementation of the dynamic keyhole 

method would allow for more accurate motion prediction calculation to mitigate the 

inherent system latency, an accurate tumor position can be predicted in shorter 

intervals due to that accuracy degrades rapidly with longer delay intervals.
84, 116

  

The dynamic keyhole method, compared to iterative reconstruction can neglect 

MR image reconstruction time due to excluded computationally-intensive iterative 

file:///C:/DANNY/DOCS/40%20Papers/00%20Med%20Phys/10%20DynamicKeyhole(Tumor)/ResponseLetter2/Dynamic%20keyhole%20(Tumor)-20160208.docx%23_ENREF_6
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calculations.  Compared to undersampling methods filling zeros at unmeasured 

points,
96, 99, 100

 MR images of full k-space datasets combined central k-space datasets 

with library at an appropriate displacement bin can be utilized to directly measure 

lung tumors on dynamic keyhole reconstructed images in sufficient accuracy of 

tumor motion and area.  The dynamic keyhole method could be applicable for real-

time tumor imaging without an extra piece of equipment in a number of radiotherapy 

systems integrated with MRI.
79, 88, 90, 120, 121

  In addition, this could be applicable for 

real-time 3D and 4D MRI acquisition to overcome the issue of out-of-plane motion in 

2D MRI.  In clinical implementation, the dynamic keyhole method could reduce scan 

times without compromising image quality for real-time thoracic and abdominal 

tumor motion tracking while possibly utilizing a variety of MR compatible 

respiratory sensors such as physiological measurement unit (Siemens Healthcare 

Erlangen, Germany) for cardiac and chest motion, bellows belts (Philips Healthcare, 

Best, The Netherlands) for chest and abdominal motion, and active breathing 

coordinator (Elekta Oncology Systems Ltd, Crawley, West Sussex, UK) for air 

volume. 

The dynamic keyhole method can be applied to MRI-guided tumor tracking 

required that an image of sufficient quality be utilized for real-time tumor imaging, a 

technique offering both fast and quasi-continuous image acquisition for MR image 

guidance. 

 

 

4.5 Conclusions 
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In this study, the dynamic keyhole method utilized respiratory signals to improve 

lung cancer patient MR images in the presence of respiratory-induced tumor motion, 

leading to a 78% reduction of the time required for a full k-space acquisition method 

for lung tumor MR imaging, whilst maintaining image quality. In addition, this was 

the first study in which the dynamic keyhole MR image reconstruction was applied to 

lung tumor imaging. Our results demonstrate the dynamic keyhole method as a useful 

technique for image-guided radiation therapy and MRI-guided radiotherapy that 

requires real-time tumor monitoring in the thoracic and potentially abdominal regions. 
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Chapter 5: Audiovisual Biofeedback Improves Cine-

Magnetic Resonance Imaging Measured Lung Tumor 

Motion Consistency 

 

A version of this chapter has been published: Lee D, Greer B P, Ludbrook J, Arm J, 

Hunter P, Pollock S, Makhija K, O'Brien T R, Kim T and Keall P, "Audiovisual 

Biofeedback Improves Cine-Magnetic Resonance Imaging Measured Lung Tumor 

Motion Consistency" Int J Radiat Oncol Biol Phys, 94 (3): 628 (2016),  

http://dx.doi.org/10.1016/j.ijrobp.2015.11.017.  

 

 

ABSTRACT 

Purpose: To assess the impact of an audiovisual (AV) biofeedback on intra- and 

inter-fraction tumor motion for lung cancer patients. 

Methods and Materials: Lung tumor motion was investigated in nine lung cancer 

patients who underwent a breathing training session with AV biofeedback prior to 

two 3T MRI sessions. The breathing training session was performed to allow patients 

to become familiar with AV biofeedback, which utilizes a guiding wave customized 

for each patient based on a reference breathing pattern. In the first MRI session (pre-

treatment), 2D cine-MR images with (1) free breathing (FB) and (2) AV biofeedback 

were obtained and the second MRI session was repeated within three to six weeks 

(mid-treatment). Lung tumors were directly measured from cine-MR images using an 

auto-segmentation technique; the centroid and outlier motions of the lung tumors 

were measured from the segmented tumors. FB and AV biofeedback were compared 

http://dx.doi.org/10.1016/j.ijrobp.2015.11.017
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using several metrics: intra- and inter-fraction tumor motion consistency in 

displacement and period, and the outlier motion ratio.  

Results: Compared to FB, AV biofeedback improved intra-fraction tumor motion 

consistency by 34% in displacement (p=0.019) and by 73% in period (p<0.001). 

Compared to FB, AV biofeedback improved inter-fraction tumor motion consistency 

by 42% in displacement (p<0.046) and by 74% in period (p=0.005). Compared to FB, 

AV biofeedback reduced the outlier motion ratio by 21% (p<0.001). 

Conclusions: These results demonstrated that audiovisual biofeedback significantly 

improved intra- and inter-fraction lung tumor motion consistency for lung cancer 

patients. These results demonstrate that AV biofeedback can facilitate consistent 

tumor motion, which is advantageous towards achieving more accurate medical 

imaging and radiation therapy procedures. 

 

 

5.1 Introduction 

 

Breathing variations
27, 132-135

 can cause image artifacts in 4-dimensional CT (4D-

CT) images,
136

 utilized in radiotherapy treatment planning and lead to a greater 

variation in tumor motion between treatment planning and treatment delivery.
29, 30

 In 

addition, breath-to-breath (intra-fraction) variations compromises the quality of 

radiation delivery, as it causes an averaging or blurring of dose distribution over the 

path of the tumor motion; whilst day-to-day (inter-fraction) variations cause a shift of 

the dose distribution.
4
 

Breathing management techniques utilizing patient respiratory signals such as 

respiratory gating,
51

 training
52

 and breath-holds
53

 have been developed to address 



 

94 

 

intra-fraction breathing variability. However, inter-fraction variability from the daily 

changes of patient breathing is still prominent
51, 137

 and this variability is larger than 

intra-fraction variability.
27, 132, 133

 Tumor motion tracking has also been developed to 

account for tumor motion variability.  This technique can decrease the uncertainty of 

respiratory-induced tumor motion; however, non-invasive, markerless lung tumor 

tracking is not in widespread use.
5, 50

 

AV biofeedback,
51, 52, 73, 74, 76, 138

 an interactive personalized breathing guidance 

system, has been developed to minimize breathing variability. AV biofeedback 

utilizes an external respiratory signal from a real-time position management (RPM) 

system (Varian, Palo Alto, USA) to track patient breathing in real-time. Previous AV 

biofeedback results have demonstrated that the breathing consistency of external and 

internal surrogates has been improved
10,11,16,76

 whilst maintaining a robust correlation 

between external and internal breathing motion.
139

 However, AV biofeedback results 

on tumor motion have been less conclusive,
78,140

 with additional further investigation 

strongly suggesting that patient compliance and performance with AV biofeedback 

improve with time.
141

 In addition, the variation of lung tumor in outlier motion has 

not been matched to treatment margins. 

In this study, we introduced a novel approach of AV biofeedback for non-small 

cell lung cancer (NSCLC) patients, involving a breathing training session to obtain a 

guiding wave customized for each patient based on a reference breathing pattern with 

AV biofeedback and utilizing the guiding wave over two 3T MRI sessions.  This 

study is the first investigation of the impact of AV biofeedback on lung tumor motion 

consistency, both intra- and inter-fractionally, directly measured from cine-MR 

images.  

 



 

95 

 

 

5.2 Methods and Materials 

 

5.2.1 Patients 

Nine NSCLC patients (age: 25-74) with a stage varying from I to III of any 

histology to be treated using radiotherapy were enrolled in an ethics approved 

protocol. Excluded patients had the presence of metallic objects such as surgical 

clips, surgery metalware and pacemakers.  This study was designed with a breathing 

training session followed by two MRI sessions across different dates (pre- and mid-

treatment).  The breathing training session was scheduled on the same day of the first 

MRI session and the second MRI session was then repeated within three to six weeks 

at approximately the mid-point of the radiation treatment. 

 

5.2.2 Audiovisual biofeedback 

A breathing training session was performed to allow patients to become familiar 

with a guiding wave; an average of 10 breathing cycles was calculated using a 

Fourier Series fit,
74

 customized in the displacement and period of respiratory 

cycles,
142

 and presented to them on the AV biofeedback breathing guide. Figure 5-

1(a) shows the workflow of operation of AV biofeedback. Patient breathing is tracked 

in real-time using RPM, which monitors the up (as they inhale) and down (as they 

exhale) motion of the gray marker-block positioned on the patient’s abdomen. The 

guiding wave was displayed on the patient’s visual display in inhale and exhale 

breathing limits as the gray horizontal lines which frame the blue wave. The patient 
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then adjusts their breathing such that a gray marker-block on their visual display stays 

within the breathing limits and traces the motion of the guiding wave.   

 

Figure 5-1. The workflow of operation and experimental setups of AV biofeedback. 

(a) The workflow of operation, (b) breathing training setup for a breathing training 

session and (c) MRI setup for two MRI sessions.   

Two experimental setups of AV biofeedback for a breathing training session (see 

Figure 5-1(b)) used a ceiling mounted RPM and display goggles. For the MRI setup, 

a mobile RPM and a mirror-display setup overlooking an MR-compatible projection 

screen
76, 138

 (see Figure 5-1(c)) was utilized for the two MRI sessions.   

 

5.2.3 Breathing training session with AV biofeedback 

Prior to MRI sessions, each patient participated in a breathing training session 

with AV biofeedback (no imaging performed) to allow them to become familiar the 
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AV biofeedback breathing guidance and obtain a guiding wave to be used in two 

MRI sessions. 

This session was to allow the patient to practice their breathing for approximately 

30 minutes to an hour, which included the acquisition of up to three guiding waves 

and breathing practices.  Once a guiding wave was acquired, patients were guided by 

AV biofeedback for 5 – 10 minutes in a practice session. After each breathing 

practice, based on a discussion with the patient, the displacement and period of the 

guiding wave was modified to make it more comfortable before allowing the patient 

to practice with the modified guiding wave. This was repeated 2 – 3 times until the 

patients were comfortable using the guiding wave. At the end of a breathing training 

session, the guiding wave the patient was most comfortable with was chosen as was 

used for the subsequent MRI sessions. 

 

5.2.4 Magnetic resonance imaging with AV biofeedback 

Two-dimensional (2D) coronal and sagittal cine-MR images were obtained in a 3 

Tesla MRI (Skyra, Siemens Healthcare Erlangen, Germany). For thoracic imaging, a 

true-FISP (true fast imaging with steady state free precession) MR pulse sequence 

was used to acquire 512 images per 2D cine-MR imaging every 308 ms. Typical MR 

imaging parameters were repetition time (TR)/echo time (TE) = 3.8/1.3 ms, flip angle 

= 45°, field of view = 380 × 380 mm
2
, pixel size = 1.48 × 1.48 mm

2
, slice thickness = 

4 mm, bandwidth = 1500 Hz, and image matrix = 256 × 256.   

Coronal and sagittal images were obtained at different positions (center of the 

tumor region) and times (coronal followed by sagittal) with (1) free breathing (FB) 

and (2) AV biofeedback across the first and second MRI sessions. Hence, tumor 

motion varied between coronal and sagittal image datasets.  At the beginning of an 
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MRI session with AV biofeedback, the guiding wave was loaded to display on a 

patient screen in Figure 1(b).  Eight datasets per patient (two image datasets (coronal 

and sagittal) × two breathing types (FB and AV)) were obtained from two MRI 

sessions; however, only four datasets were obtained from the first MRI session of 

Patient 5 and 8, as the patients withdrew from study before the second MRI session. 

 

5.2.5 Tumor auto-segmentation 

Tumor motion was directly measured from cine-MR images through auto-

segmentation in order to consider the changes in displacement and shape.  The auto-

segmentation was performed in the following steps: 

1. A single seed point on the tumor region was manually chosen on the first 

image of each dataset and an arbitrary image pixel matrix (i.e. 9×9) 

surrounding the single seed point was chosen but a smaller (or bigger) matrix 

size can be used, depending on tumor size.  

2. For the range of image intensity (threshold), an average of three minimum and 

maximum pixel values of the arbitrary image pixel matrix was computed to 

filter tumor image intensity within the threshold.  

3. Otsu’s method
128

 was used to convert a gray scale image to a binary image in 

normalized image intensity value that lies in the range [0, 1].  

4. The tumor was segmented by a region growing algorithm
143

 with the seed 

point on the binary image. The centroid of tumor motion was calculated using 

the mean of row and column positions where binary pixel values were equal 

to 1. In the next image, the tumor was segmented using the present centroid as 

a seed point until all binary images were segmented. All segmented tumors 
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were visually inspected to assess auto-segmentation. If an abrupt motion 

occurred, a new seed point would be chosen again; but this did not happen for 

all datasets.  

An in-house tumor auto-segmentation was implemented in Matlab version 8.2 

(The MathWorks, Natick, USA) and used for 2D coronal and sagittal cine-MR image 

datasets. 

 

5.2.6 Tumor motion consistency 

For the impact of the use of AV biofeedback, tumor motion consistency was 

investigated in (1) intra-fraction tumor motion in each dataset and (2) inter-fraction 

tumor motion over two datasets from the first and second MRI sessions. For the intra-

fraction tumor motion consistency, the centroid of tumor motion was separated into 

individual cycles of a peak to peak (or a trough to trough), excluding incomplete data, 

and the root mean square error (RMSE) of a cycle to cycle in displacement
74

 was 

computed whilst comparing the average cycle of the individual cycles with each 

individual cycle. RMSE in period was also computed from each individual cycle.  

For the inter-fraction tumor motion consistency, RMSE of a session to session in 

displacement and period was computed by comparing two average cycles of the two 

datasets.  In order to match tumor motion variability to outlier motion, each 

segmented tumor was accumulated on a pixel-by-pixel basis over the path of all 

segmented tumors in each dataset and then over two datasets at their center. Then, the 

value of the pixels (frequency), how many times the tumor passed and the number of 

pixels (distribution) where the tumor passed more than once were quantified. For 

example, the frequency of all the pixel values can be the same as the number of 

segmented tumors if no tumor motion and shape changes occur. However, a wide 
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spread distribution in various frequencies, directly connected to treatment margins 

can be expected if a large baseline shift and displacement change of tumor motion 

occurs.
4, 144

 To evaluate outlier motion caused by baseline shifts and irregular 

breathing, we computed the ratio of the distribution in which the tumor was found 5% 

or more of the time to the total distribution encompassed by the tumor motion.  This 

ratio, referred to henceforth as the outlier motion ratio, was computed for all of the 

patient datasets for FB and AV.  Quantitative statistical comparison between AV 

biofeedback and FB was determined using RMSE in displacement and period for 

intra-fraction tumor motion consistency, and RMSE in displacement and period, and 

the outlier motion ratio for inter-fraction tumor motion consistency using a paired 

Student’s t-test.  

 

 

5.3 Results 

 

Figure 5-2 shows the nine lung tumors delineated by auto-segmentation on 

coronal and sagittal cine-MR images. Segmented tumors at the end of exhalation (EE) 

and inhalation (EI) were chosen for each patient. 
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Figure 5-2. The tumor delineation (blue line) of nine lung cancer patients. 

Segmented tumors at EE and EI were chosen for each patient and an orange 

dotted-line highlights the changes in tumor displacement. 

 

The location of the identified tumors (blue line) varied across patients; (1) four 

tumors (Patient 3, 4, 5 and 7) were on the left lung and five (Patient 1, 2, 6, 8 and 9) 

were on the right lung, (2) five (Patient 1, 5, 7, 8 and 9) were on the upper lung and 

four (Patient 2, 3, 4 and 6) were on the middle lung, (3) and three (Patient 1, 4 and 6) 

were isolated from organs but the other six (Patient 2, 3, 5, 7, 8 and 9) were 

connected to (or between) organs. In addition, tumor shape varied on different 

coronal and sagittal image orientations; (1) two (Patient 1 and 4) were mostly the 

same shape on both image orientations but the other seven (Patient 2, 3, 5, 6, 7, 8 and 

9) were considerably different between image orientations.  All tumors moved in the 

direction of respiratory motion apart from Patient 2 where the tumor attached to the 

chest wall moved superiorly during expiration. 

 

5.3.1 Intra-fraction tumor motion consistency 

Figure 5-3 shows a comparison of tumor motion between FB and AV biofeedback.  

Four superior-inferior (SI) tumor displacements indicate the different combinations of 

breathing type and MRI session in Patient 4 and 6.  
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Figure 5-3. SI tumor displacement (cm) of Patient 4 and 6 between FB and AV 

biofeedback measured from coronal image datasets and organized by breathing type 

and MRI session. Extreme displacements were either a function of continuous drift 

with FB in Patient 4 or a drift stable and breath hold with FB in Patient 6.  
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The tumor of Patient 4 moved in a small range of ±0.5 cm, whilst a large range of 

±3 cm was found in Patient 6. In Patient 4, the baseline of tumor displacement 

continuously drifted over the entire FB session 1 and the tumor displacement of FB 

session 2 was more regular but smaller, whilst the regularity of tumor displacement 

was improved over AV biofeedback sessions. In Patient 6, regular tumor 

displacement was found in the AV biofeedback sessions, compared to irregular tumor 

displacement in both FB sessions due to a drift stable and breath hold.  

 

Table 5-1 shows the intra-fraction tumor motion consistency results with FB and 

AV biofeedback in RMSE of displacement and period.   

Table 5-1. Results for intra-fraction tumor motion consistency in RMSE of 

displacement and period. A smaller number of RMSE indicates more consistent 

tumor motion. P: Patient, Cor: Coronal, Sag: Sagittal, S: MRI Session and p: a paired 

Student’s t-test between FB and AV biofeedback (coronal and sagittal together).  

Patients 
RMSE displacement (cm) RMSE period (s) 

FB Cor FB Sag AV Cor AV Sag FB Cor FB Sag AV Cor AV Sag 

P1 
S1 0.25 0.14 0.16 0.10 1.22 0.53 0.66 0.32 

S2 0.08 0.07 0.14 0.12 0.54 0.32 0.33 0.36 

P2 
S1 0.07 0.04 0.07 0.06 0.72 0.95 0.49 1.02 

S2 0.07 0.05 0.09 0.04 0.73 0.76 0.24 0.38 

P3 
S1 0.07 0.06 0.06 0.07 0.50 0.38 0.38 0.53 

S2 0.06 0.09 0.07 0.05 0.26 0.50 0.22 0.28 

P4 
S1 0.18 0.05 0.05 0.03 1.38 1.38 0.22 0.23 

S2 0.04 0.04 0.04 0.03 0.49 0.46 0.21 0.16 

P5 S1 0.05 0.08 0.04 0.03 0.47 0.32 0.36 0.22 

P6 
S1 0.50 0.29 0.23 0.18 1.38 0.96 0.19 0.28 

S2 0.99 0.51 0.45 0.32 1.83 0.48 0.36 0.28 

P7 
S1 0.12 0.08 0.08 0.05 1.23 2.11 0.25 0.26 

S2 0.13 0.16 0.04 0.08 1.33 1.70 0.23 0.26 

P8 S1 0.07 0.03 0.03 0.03 1.42 4.93 0.23 0.33 
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P9 
S1 0.03 0.01 0.03 0.02 1.04 0.53 0.24 0.18 

S2 0.03 0.04 0.03 0.03 1.06 0.67 0.18 0.22 

Average 0.20 0.13 0.12 0.09 0.98 1.34 0.30 0.39 

p = 0.019 < 0.001 

RMSE displacement of intra-fraction tumor motion varied with AV biofeedback 

between 0.02 and 0.45 cm, but it was larger for FB, with RMSE displacement 

between 0.03 and 0.99 cm. Only two patients with AV biofeedback had more than 0.1 

cm in RMSE displacement, compared to four patients with FB.  In addition, RMSE 

period with AV biofeedback was between 0.16 s and 1.02 s, which were smaller than 

FB, with RMSE period between 0.26 s and 4.93 s. Intra-fraction RMSE values were 

significantly reduced by 34% in displacement (p=0.019) and by 73% in period 

(p<0.001) when AV biofeedback was utilized whilst there wasn’t any difference in 

mean displacement and period with FB and AV biofeedback. 

 

5.3.2 Inter-fraction tumor motion consistency 

Table 5-2 shows the inter-fraction tumor motion consistency results with FB and 

AV biofeedback in the RMSE of displacement and outlier motion ratio.  The inter-

fraction tumor motion consistency in period was increased by 74% in period (p = 

0.005). 

Table 5-2. Results for inter-fraction tumor motion consistency in RMSE of 

displacement and outlier motion ratio.  A smaller number indicates more consistent 

tumor motion.  

Patients 
RMSE displacement (cm) Outlier motion ratio (%) 

FB Cor FB Sag AV Cor AV Sag FB Cor FB Sag AV Cor AV Sag 

P1 0.07 0.05 0.06 0.03 40 39 35 31 

P2 0.13 0.09 0.06 0.06 30 31 29 23 
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P3 0.05 0.05 0.02 0.05 32 40 26 42 

P4 0.03 0.03 0.02 0.02 50 38 25 24 

P6 0.44 0.21 0.22 0.11 35 42 25 29 

P7 0.06 0.03 0.05 0.03 39 36 33 35 

P9 0.01 0.01 0.01 0.01 36 42 33 29 

Average 0.11 0.07 0.06 0.04 37 38 29 30 

p = 0.046 < 0.001 

 

RMSE displacement of inter-fraction tumor motion varied with AV biofeedback 

in 0.22 cm but it was larger with FB in 0.44 cm. Only one patient with AV 

biofeedback had more than 0.1 cm in RMSE displacement, compared to two patients 

with FB.  In addition, the outlier motion ratio with AV biofeedback was between 24% 

and 42%, and it was also larger with FB between 31% and 50%.  Inter-fraction 

variation of RMSE using AV biofeedback was reduced by 42% (p=0.046) in 

displacement and the outlier motion ratio was also decreased by 21% (p<0.001).  

 

Figure 5-4 shows the distribution of tumor motion and the outlier motion for 

Patient 4 and 6 with FB and with AV biofeedback. A wide spread outlier motion in 

the same color bar scale indicates more variation of inter-fraction tumor motion.   
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Figure 5-4. The distribution of tumor motion and the outlier motion measured 
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from coronal image datasets for Patients 4 and 6. The color bar scale indicates the 

ratio of the distribution of tumor motion. 

 

A wide spread outlier motion with FB was found due to irregular tumor 

displacement (see FB sessions in Figure 5-3) in both patients whilst the 

comparatively regular tumor displacement (see AV biofeedback sessions in Figure 5-

3) resulted in a smaller outlier motion with AV biofeedback. Subsequently, the color 

bar scale of outlier motion was smaller with AV biofeedback in both patients. The 

results of sagittal image datasets for Patients 4 and 6 are shown in Figure e1 

(available online at www.redjournal.org). 

 

 

5.4 Discussion 

 

Medical imaging and radiation treatment in thoracic and abdominal regions often 

requires tumor motion management due to the variability of tumor motion pattern 

both intra-fractionally and inter-fractionally. In this work, we introduced AV 

biofeedback which utilizes the same guiding wave from the breathing training session 

customized for each patient in displacement and period across repeated MRI sessions 

to reduce intra and inter-fraction tumor motion consistency.  Using AV biofeedback, 

we demonstrated the improvement of tumor motion consistency in intra-fraction 

displacement and period and inter-fraction displacement and period, and outlier 

motion whilst using the segmented tumor directly measured on coronal and sagittal 

cine-MR images.  
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Respiratory-induced thoracic and abdominal tumor motion varies with tumor size, 

location and patients,
127

 and this study also demonstrated independent tumor 

locations and sizes through tumor auto-segmentation.  Tumor motion also varied in 

an MRI session and across two MRI sessions, but it was improved with AV 

biofeedback compared with FB.  In previous studies, intra-fraction regularity in 

displacement was improved by more than 50% (external abdomen)
74

 and 38% 

(internal diaphragm).
76

 This study demonstrated that the intra-fraction tumor motion 

consistency of all patients with AV biofeedback in Table 5-1 was improved by 34% 

and 73% in displacement and period, respectively. In addition, inter-fraction tumor 

motion consistency in Table 5-2 was improved by 42% in displacement and by 74% 

in period. Then, those significant improvements resulted in 21% reduction of the 

outlier motion ratio, directly linked to the minimization of the disagreement between 

planning and treatment resulting in more dose delivered to the tumor itself and less 

dose to the surrounding healthy tissue.
28-30, 145

  Consequently, AV biofeedback can be 

applicable for respiratory motion management techniques, such as respiratory 

gating,
51

 training
52

 and breath-hold,
53

 due to tumor motion consistency.  

The external respiratory signal can be replaced with any respiratory signals such 

as ANZAI (AZ-733V, Anzai Medical Corporation, Tokyo, Japan)
146

 and Bellows-

belt,
113

 and internal respiratory signals such as MR navigator
112

 and electromagnetic 

transponder.
36

 In addition, tumor motion from MR images could be used as the 

respiratory signal input for AV biofeedback. If tumor motion using a faster 

imaging
125

 in MRI integrated with radiotherapy system
79, 88

 is used for lung tumor 

motion management, real-time tumor deformation
147

 can be utilized for image-guided 

AV biofeedback.  
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One of the limitations of the present study was that the inter-fraction changes 

were determined using only two MRI sessions, one before and the other in the middle 

of treatment. Tumor segmentation included manual work to set a seed point on an 

MR image and manual validation of the segmentation method.  

We also skipped three to five images at the beginning of datasets due to the MR 

images being too bright. This study did not consider tumor deformation or out-of-

plane motion. For better quantification of deformed tumor motion compared to only 

rigid motion, deformable image registration could be utilized, as well as 3D tumor 

motion using 3D MRI.
138

  

 

 

5.5 Conclusions 

 

This was the first study to directly evaluate the impact of audiovisual biofeedback 

on lung tumor motion in cine-MRI. By utilizing AV biofeedback, inter-fraction and 

intra-fraction tumor motion consistency was improved across two MRI sessions, 

spaced several weeks apart. AV biofeedback led to a 34% and 73% improvement of 

tumor motion consistency in intra-fraction displacement and period, respectively. AV 

biofeedback also led to an improvement of 42% and 74%, and 21% in inter-fraction 

displacement and period and outlier motion ratio, respectively. These results 

demonstrate that AV biofeedback can facilitate consistent lung tumor motion, which 

could be a desirable technique for achieving more accurate medical imaging and 

radiation therapy procedures. 
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Chapter 6: Audiovisual biofeedback guided breath-

hold improves lung tumor position reproducibility 

and volume consistency 

 

A version of this chapter has been submitted to Radiotherapy Oncology (2016): Lee 

D, Greer B P, Lapuz C, Ludbrook J, Arm J, Hunter P, Pollock S, Makhija K, O'Brien 

T R, Kim T and Keall P, "Audiovisual biofeedback guided breath-hold improves lung 

tumor position reproducibility and volume consistency".   

 

 

ABSTRACT 

Purpose: Respiratory variations can increase the variability of tumor position and 

volume, resulting in larger treatment margins and longer treatment times. Audiovisual 

biofeedback as a breath-hold technique can be utilized to reproduce tumor positions 

at inhalation and exhalation for the radiotherapy of moving lung tumors due to 

respiratory motion. This study assessed the impact of audiovisual biofeedback breath-

hold (AVBH) on inter-fraction lung tumor position reproducibility and volume 

consistency for lung cancer radiotherapy. 

Methods: Lung tumor position and volume were investigated in nine lung cancer 

patients who underwent a breath-hold training session with AVBH prior to two 3 

Tesla (T) MRI sessions. In the first MRI session (pre-treatment), breath-hold MR 

images with (1) conventional breath-hold (CBH) using audio-instructions alone and 

(2) AVBH were acquired. The second MRI session (mid-treatment) was repeated 

within six weeks from the first session. Gross tumor volumes (GTV) were delineated 
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on each dataset. CBH and AVBH were compared in terms of (1) tumor position 

reproducibility assessed by GTV centroid position and position range defined as the 

distance of GTV centroid positions between inhalation and exhalation, and (2) tumor 

volume consistency assessed by GTV between inhalation and exhalation. 

Results: Compared to CBH, AVBH improved the reproducibility of inter-fraction 

GTV centroid position by 52% (p=0.002) from 6.6 mm to 3.2 mm and GTV position 

range by 74% (p=0.001) from 6.4 mm to 1.7 mm. Compared to CBH, AVBH also 

improved the consistency of intra-fraction GTVs by 70% (p=0.023) from 7.8 cm
3
 to 

2.5 cm
3
. 

Conclusions: This study demonstrated that audiovisual biofeedback can be utilized 

for improving the reproducibility and consistency of breath-hold lung tumor position 

and volume, respectively. These results may provide a pathway utilizing breath-hold 

procedures to achieve more accurate lung cancer radiation treatment, in addition to 

improving various medical imaging and treatments.  

 

 

6.1 Introduction 

 

Breath-hold techniques
53, 62, 63, 148-152

 are often used to immobilize the movement 

of lung tumors, leading to reduced motion artifacts in medical imaging, and clinically 

meaningful tumor positions and shapes in respiratory-gated radiation treatment.  In 

addition, the immobilization of lung tumors
148

 can reduce phase shift between tumors 

and surrogates (i.e. chest, abdomen and diaphragm)
61

 and system latency between 

tumor positioning and gating.
44

  Immobilizing the tumor position is advantageous for 

reducing treatment margins and treatment delivery time.
53, 58
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Several breath-hold strategies have been studied and practiced to obtain the same 

level of breathing in repeated breath-holds.  Deep inspiration breath-holds (DIBH) 

improved the reproducibility of intra- and inter-fraction target positions compared 

with free-breathing.
62, 63

  Conventional breath-hold (inhalation and exhalation 

positions of free breathing) using the audio-instructions of a CT scanner (automated 

―Breathe in, breathe out, hold your breath‖ commands) reduced the variation of 

exhalation diaphragm positions compared with free-breathing.
148

  Active breathing 

coordinator (ABC) forcibly suspends patient breathing without automated verbal or 

audio-instruction at pre-determined positions of lung volume. ABC has been 

demonstrated to improve the reproducibility of intra-fraction tumor position but still 

needs to improve large variations in inter-fraction tumor positions greater than 5 

mm.
149, 150

 Quasi-breath-hold (QBH) using successive short breath-holds (3, 5, or 7 

seconds) have demonstrated equivalent or less motion variations while improving 

treatment efficiency.
151, 152

  Visual biofeedback techniques
59, 60, 63, 151, 152

 also reduce 

the uncertainty of target position by improving reproducibility of abdominal and 

chest wall positions, and pancreatic tumors using voluntary breath-hold techniques. 

However, lung tumor position reproducibility and volume consistency with the use of 

audio-visual guidance for inhalation and exhalation breath-holds for precise lung 

cancer radiation therapy has not been studied. 

Audiovisual (AV) biofeedback,
51, 52, 73-76, 138

 an interactive breathing guidance 

system has been employed to improve inhalation and exhalation breath-hold 

reproduciblity.
153

  AV biofeedback consists of (1) tracking the respiratory motion of 

patients’ abdomens using a real-time position management (RPM) system (Varian 

Medical Systems, Palo Alto, CA, USA) to form an individual guiding wave, (2) 

displaying their present breathing position and the guiding wave on a screen which 
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patients can see, and (3) the patient controls their breathing to follow the guiding 

wave and holds their breathing at the inhalation and exhalation positions of the 

guiding wave when instructed. 

Previous AV breath-hold (AVBH) results from healthy volunteers have 

demonstrated that the breath-hold reproducibility of inhalation and exhalation 

abdominal positions was improved whilst reducing image intensity variation over 

multiple breath-holds.
153

  However, previous AVBH investigations have recruited 

healthy volunteers, so the impact of AVBH on tumor position and volume for lung 

cancer patients has not been examined. 

In this study, we introduced a novel approach for AVBH for lung cancer patients, 

involving a breath-hold training session to obtain a guiding wave customized for each 

patient and utilizing the inhalation and exhalation breath-hold positions over two 3T 

MRI sessions.  This study was the first investigation of the impact of AVBH on lung 

tumor position reproducibility and volume consistency, and used the direct 

measurement of gross tumor volume (GTV) from breath-hold high resolution 3D MR 

images. 

 

 

6.2 Methods and Materials 

 

6.2.1 Patients 

Eleven patients who underwent radiation treatment between April 2013 and June 

2015 were enrolled with their consent in an ethics-approved protocol. These patients 

met the following eligibility criteria: 1) Non-small-cell and small-cell lung cancers 
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stage I-IIIB of any histology to be treated using radiation treatment; 2) ≥ 18 years old; 

3) No gender or ethnic restrictions; 4) No pregnant women / mentally impaired 

subjects; and 5) No surgical clips, surgery metalware or pacemakers. The study 

comprised a breath-hold training session and two MRI sessions on different dates 

(pre- and mid-treatment).  The breath-hold training session was scheduled on the 

same day of the first MRI session and the second MRI session was then repeated 

within three to six weeks depending on the duration of radiation treatment.  The nine 

patients who completed the training and two MRI sessions are shown in Table 6-1. 

Two patients were excluded because they withdrew from the study prior to their 

second MRI session.  The patients received a prescription dose of 40 ~ 60 Gy for 

primary lung cancer or for metastatic lung cancer at the isocenter in 15 ~ 30 fractions. 

 

Table 6-1. Patient and disease characteristics.  

Patient 

# 
Gender Age 

Height  

(cm) 

Weight  

(kg) 
Stage PS Location Glasses Gy/fr 

Hearing  

aid 

Breath-

hold (s) 

P01 F 62 170 80 IIIA 0 RUL Y 60/30 N 16 

P02 F 61 158 72 IIA 1 RUL Y 60/30 N 16 

P03 F 66 165 66 IIIB 1 LUL Y 40/15 N 16 

P04 F 26 170 70 IIIA 1 LUL N 50/20 N 16 

P05 M 72 175 114 IIA 1 RLL N 60/30 N 22 

P06 M 54 170 84 IIIA 0 LUL N 60/30 N 16 

P07 M 55 180 69 IIIB 1 RUL N 60/30 N 17 

P08 M 79 168 80 IB 1 RUL N 60/30 Y 16 

P09 M 68 160 76 IIIA 1 LUL Y 50/20 N 17 

Abbreviations: P=Patient; PS = Eastern Cooperative Oncology Group performance status; RUL = 

right upper lobe; LUL = left upper lobe; RLL = right lower lobe;  Gy = Gray; Fx = fractions; 
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6.2.2 Audiovisual biofeedback breath-hold training session 

Each patient participated in a breath-hold training session (no imaging performed) 

in head first supine position to allow them to become comfortable with AVBH 

guidance. The workflow of AVBH is as follows (shown in Figure 6-1 (red arrows)): 

(1) monitor the breathing motion of the patient’s abdomen using RPM to build a 

guiding wave calculated from the average of ten breathing cycles in a Fourier Series 

fit
74

 (shown in Figure 6-1 (blue waves)), (2) display the real-time breathing position 

and the guiding wave on the patient’s screen (shown in Figure 6-1 (visual display)), 

and (3) control their breathing to follow the guiding wave and hold their breath at 

inhalation or exhalation breath-hold position (shown in Figure 6-1 (red lines)) by 

following the verbal-instruction of radiographers.  

Once inhalation and exhalation breath-hold positions were determined, patients 

were guided by AVBH and practiced breath-holds (first inhalation and second 

exhalation), as shown in Figure 6-1 (red lines). After each breath-hold practice, based 

on a consult with the patient, the inhalation and exhalation positions were set for the 

subsequent breath-hold MRI sessions. 
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Figure 6-1. The AVBH setup in MRI. (a) Exhalation and (b) inhalation breath-hold 

positions (red line) of the guiding wave (blue line) for two MRI sessions. 

 

For the AVBH setup in MRI, patients were positioned with an optical marker 

block on their abdomen to monitor their breathing motion. Display goggles for an 

AVBH training session were used and a head mounted mirror overlooking an MR-

compatible projection screen was used (as shown in Figure 6-1) for the two MRI 

sessions. The gray marker block on the screen represents patients’ actual breathing 

position and the red line indicates desired inhalation and exhalation breath-hold 

positions.   

 

6.2.3 Magnetic resonance imaging with AVBH 

High resolution three-dimensional (3D) MR images in head first supine position 

were obtained in a 3 Tesla MRI (Skyra, Siemens Healthcare Erlangen, Germany). For 
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thoracic imaging, a VIBE (volumetric interpolated breath-hold examination) MR 

pulse sequence was used to acquire 160 slices per 3D MRI with an acquisition time 

between 16 and 22 seconds (see Table 6-1). Typical MR imaging parameters were 

repetition time (TR)/echo time (TE) = 2.24/0.88 ms, flip angle = 9°, field of view 

(width × height) = 368 × 380 mm
2
, pixel size = 1.2 × 1.2 mm

2
, slice thickness = 1.2 

mm, bandwidth = 710 Hz, and image matrix = 310 × 320.  For Patient 05 (P05 in 

Table 6-1), repetition time (TR)/echo time (TE) = 2.14/0.83 ms, field of view = 435 × 

450 mm
2
 and

 
pixel size = 1.4 × 1.4 mm

2
 due to the large field of view required. 

In the first MRI session (pre-treatment), (3D exhalation and 3D inhalation) 

breath-hold MR images with (1) CBH and (2) AVBH were acquired, and the second 

MRI session (mid-treatment) was repeated within six weeks of the first session. 

Audio-instruction (MRI: Siemens Skyra) in CBH (i.e. ―Breathe in, breathe out, hold 

your breath‖ or ―Breathe out, breathe in, hold your breath‖) and verbal-instruction 

(radiographers) in AVBH were used. For the verbal-instruction, radiographers 

continuously monitor patient’s breathing on an MR-compatible projection screen that 

displayed the real-time breathing position and the guiding wave, and verbally began 

to provide (1) the exhalation breath-hold instruction once patient’s breath reaches at 

inhalation position (―Breathe out, breathe in, breathe out, hold your breath‖) and (2) 

the inhalation breath-hold instruction once patient’s breath reaches at exhalation 

position (―Breathe in, breathe out, breathe in, hold your breath‖). 

Eight datasets per patient (two image datasets (Inhalation and exhalation) × two 

breath-hold types (CBH and AVBH)) were obtained from two MRI sessions. Seventy 

two breath-hold datasets were obtained from nine lung cancer patients. 
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6.2.4 Lung tumor delineation 

The gross tumor volume (GTV) of the seventy two breath-hold datasets was 

delineated by a radiation oncologist using Eclipse (Varian Medical Systems, Palo 

Alto, CA, USA). Rigid registration based on spinal vertebral anatomy was performed 

between the first and second MRI sessions.  In this study, two rigid registrations were 

included per patient: (1) the exhalation dataset of the first MRI session with CBH to 

the exhalation dataset of the second MRI session with CBH and (2) the exhalation 

dataset of the first MRI session with AVBH to the exhalation dataset of the second 

MRI session with AVBH.  During the rigid registration, the first and the second 

datasets were used for the fixed and moving datasets, respectively.  Inhalation 

datasets were used for the rigid registrations because they were obtained at the 

beginning of the breath-hold image acquisition with CBH and AVBH.  

 

6.2.5 Breath-hold lung tumor position and volume 

For the impact of the use of AVBH on breath-hold lung tumors, (1) inter-fraction 

tumor position reproducibility across the first (S1) and the second (S2) MRI sessions 

was investigated in GTV centroid position and GTV position range, defined as the 

distance between inhalation and exhalation GTV centroids, and (2) intra-fraction 

tumor volume consistency between inhalation and exhalation GTVs in each MRI 

session. 

(1) Inter-fraction tumor position reproducibility along each direction (LR: Left-

Right, AP: Anterior-Posterior and SI: Superior-Inferior) using the following 

two equations and in 3D vector using 3D Euclidean distance. 

-                                                        
               

  . 
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-                                                      
  

       

           
                       

  
                   

  
      ).  

(2) Intra-fraction tumor volume consistency using the following equation. 

-                                            . 

 

Quantitative statistical comparisons between CBH and AVBH were determined 

from the root mean square (RMS) along each direction and the 3D vector using the 

Wilcoxon signed rank test to evaluate the inter-fraction GTV centroid position and 

position range reproducibility, and intra-fraction GTV consistency. 

 

 

6.3 Results 

 

Figure 6-2 shows an example of breath-hold lung tumors with CBH and AVBH 

across two MRI sessions.  
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Figure 6-2. Lung tumors during CBH (left) and AVBH (right). (a) Contoured inhalation 

and exhalation breath-hold lung tumors, (b) corresponding inhalation and exhalation 

GTVs. S1: the first MRI session, S2: the second MRI session. 

 

Table 6-2. The difference in the GTV centroid position with CBH and AVBH from 

seventy two breath-hold datasets across two MRI sessions.  

Patients 

The GTV centroid position difference (mm),            
               

    

CBH AVBH 

BHP LR AP SI 
3D 

vector 
LR AP SI 

3D 

vector 

P01 
E −3.5 1.4 −3.3 5.0 2.5 4.8 3.9 6.6 

I −1.5 14.0 11.1 18.0 2.3 4.9 5.1 7.4 

P02 
E 1.3 −3.2 −6.9 7.7 3.7 2.6 −5.0 6.7 

I 0.5 −2.7 −5.1 5.8 0.7 3.2 −5.7 6.6 

P03 
E −9.7 −2.6 9.9 14.1 −3.1 −4.7 9.5 11.1 

I −7.5 −11.4 6.2 15.0 −3.2 −3.4 6.4 7.9 

P04 
E −2.7 0.0 3.7 4.6 −1.0 −0.6 7.2 7.3 

I −2.7 5.6 6.6 9.0 −1.4 −0.6 1.9 2.5 

P05 
E 5.9 −0.8 −6.2 8.6 2.7 −1.8 −0.2 3.3 

I 0.6 −4.2 −27.8 28.1 1.8 −1.2 1.1 2.5 

P06 
E 6.0 3.0 7.4 10.0 5.0 4.2 2.7 7.1 

I 10.3 11.6 10.3 18.6 4.1 3.8 2.5 6.2 

P07 
E −4.5 4.3 −0.4 6.2 0.7 0.6 1.7 2.0 

I −6.1 2.5 −0.3 6.6 −0.8 2.8 1.2 3.1 

P08 
E −0.2 2.2 −0.4 2.3 1.2 1.6 0.6 2.0 

I −1.5 −9.5 4.1 10.4 1.7 1.9 0.6 2.6 

P09 E 0.6 −2.6 −2.2 3.5 1.4 0.0 −1.5 2.1 
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I −0.5 −6.4 1.2 6.5 2.4 2.8 2.1 4.3 

RMS 4.8 6.3 8.8 11.8 2.5 3.0 4.2 5.7 

Abbreviations: P = Patient; BHP = Breath-hold positions; LR = left-right; AP = anterior-

posterior’ SI = superior-inferior; 3D vector = √           ; E = Exhalation; I = 

Inhalation; RMS = Root mean square. 

 

In Table 6-2, compared with CBH, the reproducibility of the inter-fraction GTV 

centroid position with AVBH was improved by 51.6% (p=0.002) from 6.6 mm (the 

RMS average of each direction) to 3.2 mm and 51.9% (p=0.002) from 11.8 mm (the 

RMS of 3D vector) to 5.7 mm. The GTV centroid position difference in the 3D 

vector greater than 10 mm using CBH was seen in 7/18 GTVs across five patients 

and only 1/18 GTVs using AVBH in one patient. For both CBH and AVBH, the 

largest GTV centroid position difference was found in the SI followed by the AP and 

LR.  In terms of inhalation and exhalation GTV centroid positions, the exhalation 

GTV centroid position difference with CBH was 4.3 mm (the RMS average of each 

direction) and it was 8.2 mm for the inhalation GTV centroid position. For AVBH, 

the differences in the exhalation and inhalation GTV centroid positions were 3.4 mm 

and 3.0 mm respectively, corresponding to an improvement in reproducibility by 21% 

and 63% compared to CBH.  

 

Table 6-3. The difference in the GTV position range across two MRI sessions.  

Patients 

The GTV position range difference (mm), 

            
  

                  
                       

  
       

            
  

      ) 
 

CBH AVBH 

LR AP SI 3D vector LR AP SI 3D vector 

P01 −1.9 −12.0 −14.5 18.9 0.2 −0.1 −1.2 1.2 
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In Table 6-3, compared with CBH, the reproducibility of the inter-fraction GTV 

position range with AVBH was improved by 73.5% (p=0.001) from 6.4 mm (the 

RMS average of each direction) to 1.7 mm, and also 74.4% (p=0.039) from 12.0 mm 

(the RMS of 3D vector) to 3.1 mm.  The GTV position range difference with CBH 

varied between −14.5 mm and 21.6 mm, whilst it was between −3.5 mm and 5.3 mm 

for AVBH.  The GTV position range in the LR and AP had the smallest difference 

for AVBH but it was twice and approximately six times smaller than the LR and AP 

position ranges using CBH, respectively.  The GTV position range difference was 

smaller with AVBH compared to CBH except for P02 and P07 where the position 

range was comparable or slightly larger. 

 

Table 6-4. The difference in inhalation and exhalation GTVs with CBH and AVBH 

in each MRI session. A negative value indicates that the GTV was larger in the 

P02 0.8 −0.5 −1.7 2.0 3.1 −0.6 0.8 3.2 

P03 −2.2 8.8 3.7 9.8 0.0 −1.3 3.1 3.4 

P04 −0.1 −5.6 −2.8 6.2 0.4 0.0 5.3 5.3 

P05 5.3 3.8 21.6 22.6 0.9 −0.6 −1.3 1.7 

P06 −4.3 −8.6 −2.9 10.0 0.8 0.4 0.2 0.9 

P07 1.6 1.8 −0.1 2.4 1.5 −2.2 0.6 2.7 

P08 1.4 11.7 −4.5 12.6 −0.6 −0.3 −0.1 0.6 

P09 1.1 3.7 −3.4 5.2 −1.0 −2.9 −3.5 4.7 

RMS 2.6 7.4 9.1 12.0 1.3 1.3 2.5 3.1 
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inhalation GTV and a positive value indicates that it was smaller.  

Patients Sessions 

Gross tumor volume (cm
3
) 

CBH AVBH 

Exhale Inhale Exhale – Inhale Exhale Inhale Exhale – Inhale 

P01 
S1 23.9 18.7 5.3 22.1 20.6 1.4 

S2 14.4 16.3 -2.0 15.5 14.1 1.4 

P02 
S1 68.7 79.3 -10.5 80.0 83.9 -3.8 

S2 62.1 66.7 -4.6 61.4 64.3 -2.9 

P03 
S1 16.7 17.7 -1.0 20.3 20.0 0.3 

S2 3.5 4.6 -1.1 9.7 8.6 1.2 

P04 
S1 18.6 16.6 2.0 16.9 16.1 0.7 

S2 9.6 9.6 0.0 9.1 9.1 0.0 

P05 
S1 19.8 16.5 3.3 19.9 19.3 0.6 

S2 18.8 24.4 -5.5 18.1 17.7 0.4 

P06 
S1 74.2 69.2 5.0 71.5 75.3 -3.9 

S2 58.9 58.9 0.0 57.5 57.7 -0.2 

P07 
S1 131.0 159.5 -28.6 146.0 138.6 7.4 

S2 100.8 102.9 -2.1 103.9 103.0 0.9 

P08 
S1 78.3 73.5 4.8 79.1 82.3 -3.2 

S2 45.6 46.4 -0.8 44.6 46.2 -1.6 

P09 
S1 56.3 57.8 -1.5 55.6 55.7 -0.1 

S2 42.6 44.2 -1.6 46.6 45.0 1.6 

RMS 57.9 62.4 7.8 60.8 60.6 2.5 

 

In Table 6-4, compared with CBH, the difference in the intra-fraction GTV with 

AVBH was improved by 70% (p=0.023) from 7.8 cm
3
 (CBH) to 2.5 cm

3
 (AVBH). 
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Inhalation GTV with CBH was 4.5 cm
3
 larger than exhalation GTV in 57.9 cm

3
 and 

62.4 cm
3
 but inhalation and exhalation GTVs with AVBH in RMS were almost 

identical in 60.8 cm
3 
and 60.7 cm

3
. Similarly, the decrease of GTV between pre- and 

mid-treatment was 20.4 cm
3
 (p=0.001) in CBH and 20.3 cm

3
 (p<0.001) in AVBH. 

However, using AVBH, inhalation and exhalation GTVs were identical in both S1 

(69.7 cm
3
 and 69.3 cm

3
) and S2 (50.3 cm

3
 and 50.4 cm

3
), whilst using CBH they 

varied in both S1 (65.2 cm
3
 and 71.9 cm

3
) and S2 (49.5 cm

3
 and 51.2 cm

3
).  

 

 

6.4 Discussion 

 

Medical imaging, patient setup,
154

 and radiation treatment
53, 149

 often requires the 

immobilization of lung tumors to reduce the magnitude of errors introduced by 

respiratory motion. In this study, we introduced AVBH which utilized the same 

breath-hold positions from the breath-hold training session across two MRI sessions 

to study lung tumor position and volume. Using AVBH, we demonstrated the 

improvement of inter-fraction lung tumor position reproducibility by 52% and intra-

fraction volume consistency by 70% using GTV directly measured from 3D MR 

images. 

Our current results for CBH can be compared with a previous study by Brock et 

al. measured the inhalation lung tumor position variation with respect to bony 

anatomy using CT scan with ABC breath hold from pre- and mid-treatment.
149

 They 

found the mean of the absolute difference between the tumor positions was 3.6 mm, 

3.5 mm and 5.1 mm in the LR, AP and SI, respectively. These findings are similar to 

our CBH MRI results of 3.6 mm, 4.9 mm and 6.3 mm in the LR, AP and SI, 
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respectively.  With AVBH in our study, the values were significantly reduced to 2.2 

mm, 2.5 mm and 3.2 mm in the LR, AP and SI, respectively. From the similarity of 

the CBH results we can hypothesize that the use of AVBH with CT and ABC would 

yield similar 52% reductions in lung tumor position variations.  

A practical and effective use of breath-hold techniques requires the breath-hold 

training session for patient comfort,
155

 composed of a series of breath-holds at 

inhalation and exhalation positions and customizing the patient’s breath-hold level. 

Consequently, lung tumor position reproducibility using AVBH can be improved 

across breath-hold MRI sessions, led to a consistent reproducibility of inhalation and 

exhalation breath-hold lung tumor positions, and resulted in a consistent decrease of 

inhalation and exhalation GTVs. In addition to a previously reported finding of up to 

40% shrinkage during the course of radiation treatment,
33, 34, 156

 this study found a 40% 

shrinkage of both inhalation and exhalation GTVs with AVBH between pre-treatment 

and mid-treatment. Our results indicate that an accurate lung tumor position with 

AVBH can be observed at the same level of respiration during the course of radiation 

treatment.
155

 

Various internal and external respiratory signals as an input to AVBH can be 

utilized for the tumor motion management of thoracic and abdominal regions
60

 to 

immobilize the target motion during medical imaging and radiation treatment, which 

could lead to the reduction of tumor motion margins,
58

 and therefore the 

corresponding dose to the lung and heart.
53, 157

 Inhalation and exhalation breath-hold 

MRI is an effective technique to determine lung tumor position and volume 

information for patient setup and treatment planning.
44, 158

  

This study has two main limitations. First, that the inter-fraction changes were 

measured using only two MRI sessions, one (pre-treatment) and the other (mid-
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treatment) and therefore we can only hypothesize how generally this can be applied 

to a multi-fraction treatment. Second, the lung tumors were manually contoured by a 

physician so intra-observer errors, known to be a significant error source, may be 

present in our data.   

 

 

6.5 Conclusions 

 

This study was the first to assess the impact of audiovisual biofeedback on breath-

hold lung tumor position and volume in breath-hold MRI. AVBH resulted in an 

improvement of inter-fraction tumor position reproducibility across two MRI sessions 

by an average of 3.4 mm (52%) along each direction and 6.1 mm (52%) in 3D vector, 

and also an improvement of intra-fraction tumor volume consistency by 5.3 cm
3
 

(70%) in each MRI session. These results demonstrate that AVBH can facilitate 

reproducible lung tumor breath-hold position and consistent volume, which could be 

a desirable technique for medical imaging and radiation therapy procedures.   
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Chapter 7: Audiovisual biofeedback improves image 

quality and reduces scan time for respiratory-gated 

3D MRI 

 

A version of this chapter has been published: Lee D, Greer B P, J, Arm J, Kim T and 

Keall P, " Audiovisual biofeedback improves image quality and reduces scan time for 

respiratory-gated 3D MRI.", Journal of Physics: Conference Series, 489 (1), 012033, 

http://dx.doi.org/10.1088/1742-6596/489/1/012033.  

 

 

ABSTRACT  

The purpose of this study was to test the hypothesis that audiovisual (AV) 

biofeedback can improve image quality and reduce scan time for respiratory-gated 3D 

thoracic MRI. For five healthy human subjects respiratory motion guidance in MR 

scans was provided using an AV biofeedback system, utilizing real-time respiratory 

motion signals. To investigate the improvement of respiratory‐gated 3D MR images 

between free breathing (FB) and AV biofeedback (AV), each subject underwent two 

imaging sessions. Respiratory‐related motion artifacts and imaging time were 

qualitatively evaluated in addition to the reproducibility of external (abdominal) 

motion. In the results, 3D MR images in AV biofeedback showed more anatomic 

information such as a clear distinction of diaphragm, lung lobes and sharper organ 

boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-

value 0.36). The root mean square variation of the displacement and period of the 

abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm 

http://dx.doi.org/10.1088/1742-6596/489/1/012033
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and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This 

study demonstrated that audiovisual biofeedback improves image quality and reduces 

scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback 

has the potential to be a useful motion management tool in medical imaging and 

radiation therapy procedures.  

 

 

7.1 Introduction 

 

Respiratory-related motion blurring and ghost artifacts
159

 can be reduced using 

respiratory-gating techniques with RF navigator
160

, respiratory bellows belt
113

, or 

real-time position management system (RPM).
51

 However, variations in cycle-to-

cycle breathing can cause inadequate respiratory-gating in image acquisition, 

resulting in image artifacts and increased scan time.
161

  

Audiovisual (AV) biofeedback was proposed to monitor real-time respiratory 

motion using a marker on the abdomen with feedback to the human subject for 

respiratory motion management.
73, 74, 76, 162

 A number of respiratory cycles are 

acquired at the beginning of AV biofeedback to prepare a guiding waveform for each 

subject and the guiding waveform is displayed. The regular respiration can be 

reproduced in that the subject matches the red ball corresponding to the present 

respiratory position of the subject to the guiding waveform. AV biofeedback has been 

previously demonstrated to improve breathing regularity in 2D MRI
76

 but not in 3D 

MRI. The aim of this study is thus to investigate whether AV biofeedback improves 

image quality and reduces scan time for respiratory-gated 3D MRI. 
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7.2 Methods 

 

7.2.1 AV biofeedback system setup in MRI 

An AV biofeedback system has been employed to provide respiratory guidance 

during MR scans. Figure 7-1 shows the experimental setup of the AV biofeedback 

system for MRI. The respiratory motion signals were obtained using the real-time 

position management (RPM) system (Varian, Palo Alto, USA) consisting of an 

infrared camera and a marker block on the abdomen. 

 

Figure 7-1 AV biofeedback system for respiratory-gated 3D MR imaging in a 

3T Skyra Siemens MRI. 

 

To guide real-time patient breathing in a 3T system (Skyra, Siemens Healthcare 

Erlangen, Germany), the visual display of the guiding waveform and red ball was 

displayed on a screen during MR imaging. An 18-channel body matrix coil for 
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thoracic imaging and a head mounted mirror for the patient’s view of the visual 

display were used. 

 

7.2.2 Respiratory-gated 3D MRI 

The improvement in respiratory-gated 3D MR images using the AV biofeedback 

system combined with thoracic MRI was investigated with five healthy male subjects 

(aged 33 ± 6). For thoracic imaging, T2-weighted 3D SPACE (Sampling Perfection 

with Application optimized Contrast using different angle Evolutions) MR pulse 

sequence with an RF navigator placed on liver dome was employed. Typical 

parameters were TR/TE = 2200/89 ms, flip angle = 170⁰, FOV = 380 × 380 mm
2
, 

voxel size = 1.19 × 1.19 × 4 mm
3
 and image matrix = 320 × 320 × 52. 

In this study, each subject underwent two sessions to assess the image quality and 

gating efficiency with (AV: AV biofeedback) and without (FB: Free breathing). In 

order to reduce the effect of AV training on the FB results, a 15 ‒ 20 minute AV 

training session was performed after the FB session and before the AV session. 

Respiratory-gated 3D MR images were acquired at three gating target positions with 

designated acceptance windows in the MR pulse sequence. The gating target 

positions at 10% (near maximum exhalation), 50% (middle) and 90% (near maximum 

inhalation) were set with a ±2 mm or ±4 mm acceptance window range. 

The improvement of respiratory-gated 3D MR images using the AV biofeedback 

has been evaluated in terms of respiratory-related artifacts. The gating efficiency and 

the 3D MR data acquisition time have been compared. The abdominal motion was 

evaluated using the root mean square error (RMSE) in displacement and period 

obtained from the RPM system. 
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7.3 Results and Discussion 

 

7.3.1 Image quality and gating efficiency improvement 

Using the AV biofeedback system, respiratory-related blurring artifacts have been 

noticeably improved and scan time was considerably reduced as shown in Figure 7-2. 

3D MR images with FB (subject 1 and subject 2) were significantly blurred due to 

the variation of the baseline shift and amplitude in respiration. In contrast, there was 

noticeable reduction of blurring artifacts due to the more regular respiratory motion in 

the same subjects with AV (subject 1 and subject 2). 3D MR images in AV included 

more anatomic information such as a clear distinction of diaphragm and lung lobes. 

In addition, the edge and intersection of organs on 3D images were sharpened.  
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Figure 7-2. An example of improved image quality and total acquisition time (TA) 

when AV biofeedback was employed during gated 3D MR imaging for subject 1 

(top) and subject 2 (bottom). Free-breathing results (left) and AV results (right) are 

shown.  The external respiratory signal, internal diaphragm signal and images are 

shown.  Gating was triggered at 90% of the breathing cycle (near maximum 

inhalation) with ±2 mm (subject 1) and ±4 mm (subject 2) gating thresholds. The 

regular external (abdomen) respiration correlated with the regular internal 
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(diaphragm) respiration, leading to better image quality and shorter scan time. 

 

In addition, regular respiratory motion using AV biofeedback reduced the 

incidence of unsuccessful gating, leading to a reduction of MR scan time. The scan 

time reduced up to 545 s and 36 s during respiratory-gated 3D MRI at 90% 

acceptance window in subject 1 and 2, respectively. A ±2 mm range required 

relatively longer MR scan time, compared to ±4 mm range, to acquire the same 

number of images due to the small range of acceptance window. In other volunteer 

cases, the considerable gating efficiency in AV compared to FB was found at 10% 

and 90% acceptance windows but it was quite similar at 50% acceptance window 

between the two breathing conditions. 

The impact of AV biofeedback for gating target positions corresponding to the 

three acceptance positions is shown in Figure 7-3.  
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Figure 7-3. Improvement of gating target positions corresponding to the three 

acceptance windows in AV compared to FB (subject 1). 

 

A red dashed line at the top of the diaphragm for the 10% gated scan shows only 

small differences in the diaphragm positions for FB, however there is clearer 

evidence of inspiration for the MR scan where the inferior motion of the diaphragm 

with inspiration is apparent.   

 

7.3.2 Scan time and breathing variation 

Scan time was reduced (or similar) at all gating target positions due to the 

improvement of breathing regularity: the reduction of root mean square error (RMSE) 

in displacement and period in Table 7-1.  
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Table 7-1. Scan time and breathing variation of respiratory-gated 3D MRI. 

Session 
Average scan 

time (s) 

RMSE in 

Average variation in 

displacement (cm) 

Average variation in 

Period (s) 

FB 401 ± 21 0.4 ± 0.22 2.8 ± 2.5 

AV 334 ± 94 0.1 ± 0.15 0.9 ± 1.3 

% reduction 

with AV 
17% 75% 68% 

p-values 0.36 <0.01 0.12 

 

An average reduction in scan time was from 401 s in FB to 334 s in AV, coming 

from the reduction of breathing variation in displacement (‒75%) and period (‒68%).  

 

This study demonstrated the improvement of respiratory-gated 3D MR images 

with AV biofeedback due to improved respiratory motion reproducibility, leading to 

regular internal organ displacement. In addition, scan time was simultaneously 

reduced. The images in this study spanned the thorax and abdomen, indicating that 

AV biofeedback can be broadly applicable to imaging sites affected by respiration, 

provided that both a respiratory signal and a patient display system are available. 

A limitation of the current study was that healthy human subject volunteers, and 

not patients, were used. Therefore, without further testing, the application of this 

study can only be extended to patients with similar age and lung function 

characteristics to the volunteers, for example some lymphoma, breast, pancreas and 

kidney cancer patients. In order to investigate the potential benefits of AV 

biofeedback for a quite different population, lung cancer patients, a clinical study has 

been initiated.   
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A potential problem for real-time audiovisual biofeedback is the time delay 

between the patient breathing and the projected signal. Fortunately, using the 30 Hz 

RPM signal the time delay between the patient breathing and the projected signal is 

undetectable to the user. However, with a different respiratory monitor with either a 

lower frame rate and/or using more processing time the projected real-time 

respiratory signal could be delayed or discontinuous. For such systems it is likely that 

further processing algorithms, such as signal prediction or smoothing algorithms 

would be needed. 

 

 

7.4 Conclusions 

 

This study demonstrated, for the first time, that audiovisual biofeedback improves 

image quality and reduces scan time for respiratory-gated 3D MRI. These results 

suggest that AV biofeedback has the potential to be a useful motion management tool 

in medical imaging and radiation therapy procedures. 
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Chapter 8: Summary and future work 

 

Real-time image guidance can reduce variability in lung tumour motion, thus 

improving cancer radiotherapy outcomes for thoracic and abdominal regions. Based 

on the results from this thesis, the dynamic keyhole method could increase the 

temporal resolution by a factor of five, when compared with full k-space methods. 

The increase in temporal resolution can compensate the system latency of tracking 

and gating techniques for clinical applications such as real-time tumour monitoring in 

image-guided radiotherapy.  

Respiratory guidance can control variability in tumour motion, position and 

volume, thus improving cancer radiotherapy outcomes for thoracic and abdominal 

regions.  Based on the results from this thesis, AV biofeedback compared with CBH 

significantly improved (1) intra- and inter-fraction tumour motion consistency, 

resulted in the reduction of the outlier motion ratio, (2) inter-fraction lung tumour 

position reproducibility and intra-fraction lung tumour volume consistency and (3) 

image quality with shorter scan time for 3D thoracic images.  

This thesis has described the achievements of the dynamic keyhole method and 

AV biofeedback respiratory guidance. These results are evident that the dynamic 

keyhole method can provide a pathway to achieve more accurate tumour information 

and AV biofeedback can provide the potential to be a useful motion management tool 

for lung cancer radiotherapy. For further advantages of a technique offering an image 

of sufficient quality, the dynamic keyhole method could be prospectively 

implemented to directly measure real-time tumour motion and shape translation for 

image- and MRI-guided radiotherapy. In addition, AV biofeedback could be utilized 
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for tumour motion guidance required that reproducible tumour motion and consistent 

tumour shape through the course of radiotherapy.  

For future work, the dynamic keyhole method could be clinical implemented to 

achieve a reduction in scan time without compromising image quality for real-time 

tumour information, which could provide clinical benefits to thoracic and abdominal 

cancer patients. 
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