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Abstract

Systematic reviews aim to produce repeatable, unbiased, and comprehensive an-

swers to clinical questions. Systematic reviews are an essential component of

modern evidence based medicine, however due to the risks of omitting relevant

research they are highly time consuming to create and are largely conducted man-

ually. This thesis presents a novel framework for partial automation of systematic

review literature searches. We exploit the ubiquitous multi-stage screening pro-

cess by training the classifier using annotations made by reviewers in previous

screening stages. Our approach has the benefit of integrating seamlessly with the

existing screening process, minimising disruption to users.

Ideally, classification models for systematic reviews should be easily inter-

pretable by users. We propose a novel, rule based algorithm for use with our

framework. A new approach for identifying redundant associations when generat-

ing rules is also presented. The proposed approach to redundancy seeks to both

exclude redundant specialisations of existing rules (those with additional terms in

their antecedent), as well as redundant generalisations (those with fewer terms in

their antecedent). We demonstrate the ability of the proposed approach to im-

prove the usability of the generated rules. The proposed rule based algorithm is

evaluated by simulated application to several existing systematic reviews. Work-

load savings of up to 10% are demonstrated.

There is an increasing demand for systematic reviews related to a variety of
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clinical disciplines, such as diagnosis. We examine reviews of diagnosis and con-

trast them against more traditional systematic reviews of treatment. We demon-

strate existing challenges such as target class heterogeneity and high data imbal-

ance are even more pronounced for this class of reviews. The described algorithm

accounts for this by seeking to label subsets of non-relevant studies with high

precision, avoiding the need to generate a high recall model of the minority class.
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Chapter 1

Introduction

Systematic reviews are a key component of modern evidence based medicine. For a

given clinical query, systematic reviews seek to provide a repeatable, unbiased, and

comprehensive answer based on an accumulation of all available, relevant evidence.

Due to the massive volume of published evidence available (for example, as of

2015 PubMed indexes over 25 million studies), medical practitioners are reliant

on systematic reviews to keep abreast of relevant work. However, despite the

importance of systematic reviews the process for conducting them is highly time

consuming and largely manual.

This thesis presents a novel approach for partial automation of the systematic

review process. We demonstrate our approach can provide real workload savings

for reviewers by simulated application to the literature searches for real reviews.

A major benefit of our approach is its seamless integration with both existing

manual screening process. We exploit the current screening process to obtain

training data without and additional labelling phase.

1
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1.1 Motivation

Despite the importance of systematic reviews for modern evidence based medicine,

the process by which they are conducted is largely manual and highly time con-

suming. It is not unusual for a single review to take months, or even years, from

inception to publication (a review conducted by Sampson et al. [87] in 2008 found

an average time of 61 weeks between the start of citation screening and publica-

tion). This can have practical consequences for the currency of the final review.

The ability of practitioners to access important knowledge is also impacted.

It should be quite obvious that increased automation of the literature screening

process through the application of machine learning has the potential to drastically

reduce the burden on already overworked review authors [93]. However, literature

screening for systematic reviews have a number of unique challenges when viewed

as a classification task. For example, due to the high cost of omitting relevant

information there is a need for near perfect recall over relevant studies.

Supervised machine learning requires a human oracle to annotate data, which

is then used to train a classification model. The unique nature of each review

means that a separate classifier must be trained for each new literature search.

While training data could be obtained by randomly selecting a subset of citations

for an initial manual screening, it is worth investigating whether or not such an

approach could be improved.

Systematic review literature searches are typically conducted as a multi-stage

triage process (an introduction to systematic reviews and their literature searches

is given in section 2.2). Reviewers will first screen a large volume of citations based

on title alone, removing any obviously irrelevant studies. Remaining citations are

then screened based on title and abstract, and then again on full text. At each

review stage (with the exception of the first), this implies the reviewers are already

in possession of a number of studies which have been annotated as not relevant to

the topic of the review at hand. To date no research has considered the potential

such excluded studies may have to influence an automated screening algorithm.
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Such an investigation would be highly worthwhile.

Despite the practical challenges in their creation, the number of systematic

reviews being conducted is only increasing. Systematic reviews have traditionally

focused on clinical questions related to treatments. In recent times however, there

has been an increasing demand for reviews from other areas such as diagnosis

and aetiology. For example, in 2007 the Cochrane Collaboration launched the

Cochrane Diagnostic Test Accuracy Working Group to assist in the creation and

dissemination of high quality diagnostic reviews. These areas bring with them

their own unique issues and challenges.

As the volume and breadth of reviews increases, new challenges appear that

effect the literature search process. For example, the US National Library of

Medicines MeSH (Medical Subject Headings) ontology [75] (which is used to in-

dex citations databases such as MEDLINE) contains an entry that can be used

to indicate a study reports a randomised controlled trial. Such a label is useful

when pruning citations for use in a treatment review, as they typically seek to

only include RCTs (Randomised Controlled Trials). However, there is no corre-

sponding label in MeSH for diagnostic test accuracy study. Differences between

traditional and emerging reviews need to be identified and addressed when seeking

to automate the literature screening process.

1.2 Aims

The primary aim of this research is to reduce the workload required in screening

abstracts for systematic reviews. We define workload in terms of number of cita-

tions screened. An inherent part of classification for systematic review literature

screening is the requirement that relevant studies not be missed. We therefore

have the additional requirement that recall on relevant citations must be 1 (or at

worst equivalent to the recall achieved by a human reviewer).

We also aim to address the question of how best to integrate machine learning
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into the systematic review literature screening process. Of particular interest is

the multi-stage triage process used by human reviewers when screening citations.

In order to train a prospective classifier, prior work has sought to generate labels

as the screening process to which the classifier will be applied is already underway.

By utilising the annotations provided in earlier screening stages, we aim to build

the classifier without the need for an initial labelling stage.

The increased prevalence of systematic reviews for clinical fields other than

treatment (for example, diagnosis) is also a motivation. We aim to identify any

differences between review fields with respect to how it effects the classification

task. In particular, we hypothesise that diagnostic reviews require additional

reviewer workload compared to reviews of treatment, as well as having compara-

tively heterogeneous target classes and a lower quality of available meta-data when

searching for relevant studies. This analysis would be conducted to see whether

any unique challenges or properties exist, and whether they could indicate direc-

tions for future work.

1.3 Contributions

� Empirically demonstrate diagnostic reviews contain increased work-

load and target class heterogeneity when compared to treatment

A comparative analysis of diagnostic test accuracy reviews and treatment

reviews was conducted, and it was identified that diagnostic test accuracy

reviews as a group contained higher rates of data imbalance and a broader

target class. In addition to indicating a particularly challenging subset of

reviews for special focus when developing classification algorithms, the prac-

tical demonstration of the difference between review fields is useful for review

authors and research librarians.

� Model for citation classification that excludes irrelevant citations

with high precision
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A classification algorithm for systematic review literature searches was

proposed that focuses on modelling subsets of irrelevant citations with high

precision, rather than modelling the entire set of relevant citations with high

recall. A major benefit of such an approach is that it avoids having to model

the broader target class found in more challenging reviews such as those of

diagnosis.

� Model for automation of systematic review literature searches that

uses annotations from prior screening stages to build the classifier

In contrast to previous work that trains classifiers with annotations ob-

tained at the stage for which the resultant classifier will be applied, we

propose a model where annotations from previous screening stages are used.

In addition to avoiding the need for a dedicated labelling stage, this has the

benefit of complementing alternate classification approaches. Should one

desire, our algorithm could be trained and applied between screening stages

before switching to an existing classification system.

� Initial analysis on real data for recommended parameterisation of

classification models

The algorithm developed in this thesis requires several parameters: namely

a minimum confidence threshold and P-value for valid rules. We perform an

initial sensitivity analysis of these parameters for several real datasets, and

determine initial recommendations for the P-value threshold. While further

work to produce concrete recommendations is required, our analysis provides

a starting point upon which further analysis can be built.

� Alternate definitions for association rule redundancy, with corre-

sponding rule mining algorithm

Classical rule redundancy seeks to exclude rules that fail to improve an

existing, more general rule. We propose an alternate definition of redun-

dancy that is both more permissive in identifying when an improvement is
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made over generalisations, and has the ability to remove general rules which

are redundant with respect to a more specific rule.

� Demonstrated ability for alternate redundancy definitions to im-

prove the interpretability of the rule based literature screening

algorithm

A benefit of rule based classifiers is the ability for users to inspect and un-

derstand the generated model. We demonstrate that the proposed approach

to rule redundancy is able to increase the descriptive power of individual

rules, without significantly impacting classifier performance.

1.4 Outline

The rest of this thesis is organised as follows. Chapter 2 provides an overview

of existing work related to this thesis. This includes an overview of systematic

reviews and the literature search process, as well as supervised learning and rule

mining.

Chapter 3 analyses the literature search process for systematic reviews of di-

agnosis, and compares them against those for more traditional treatment reviews.

Several key differences, including increased target class heterogeneity and data im-

balance for diagnostic reviews, are identified and are used to motivate subsequent

chapters.

Our algorithm for automated citation screening is then presented in chapter 4.

An evaluation by simulated application on real data is presented. We also examine

the algorithms sensitivity to changes in its parameterisation.

Chapter 5 examines the rule mining process, in particular the exclusion of

redundant rules. Deficiencies in existing definitions are noted. An alternate defi-

nition for redundant rules is proposed, and an algorithm is given for mining rules

is given. Chapter 6 then demonstrates the improved descriptive power of clas-

sifiers generated using the proposed rule mining algorithm for systematic review
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screening.

Finally, chapter 7 summarises the work reported in this thesis. Contributions

and limitations are discussed, and directions for future work are proposed.



Chapter 2

Background

In this chapter we will provide an overview of existing knowledge relevant to this

body of research. Like many projects this work touches on a number of different

fields, a full treatment of which is far beyond the scope of this document. As such

we provide here a treatment only of those areas relevant to this research, with

references provided to further information for the interested reader.

A significant part of this work concerns the extraction of association rules from

text. To this end, we provide an overview of association rule mining in section 2.1,

including rule generation, measures of rule quality, and elimination of redundant

rules. This section provides the necessary context for the work on rule generation

and redundancy in chapter 5, although it is also useful throughout the remainder

of the thesis.

The primary motivation for this work concerns the literature search process

for systematic reviews, and methods for its automation. We provide an introduc-

tion to systematic reviews, and analyse prior research aimed at automating the

corresponding literature search process in section 2.2.

8
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2.1 Association Rule Mining

Association rule mining [3, 1] addresses the task of finding interesting associations

between sets of items in transactional data. More formally, assume the existence

of a set of N items Υ = {υ1, υ2, . . . , υN}, and a set of transactions T . Each

transaction t ∈ T is a subset of items in Υ (i.e. t ∈ Υ). The association rule

mining task aims to identify the set ℜ of all interesting rules of the form X ⇒ Y

where X and Y are disjoint sets of items (i.e. X ⊆ Υ, Y ⊆ Υ, X ∩ Y = ∅). By

convention, for such a rule the set of items X is referred to as the antecedent, and

the set Y is referred to as the consequent.

An important part of mining association rules involves defining exactly what

constitutes an interesting rule. Traditionally association rule mining has used sup-

port and confidence to identify rules [3]. We note that alternative interestingness

measures is an active area of research [44, 43, 42, 56, 91], and provide a brief

introduction to the topic in sub-section 2.1.1.

The terminology used above (items and transactions) when defining the associ-

ation rule mining task reflects its origins in the domain of market basket analysis;

the identification of interesting patterns in customer purchase data [3, 2]. It is

however applicable in any domain where the objective is to identify patterns in

binary data. In the nearly two and a half decades since it was first proposed

association rule mining has found application in a wide range of fields including

bioinformatics [68], text mining [7, 45], and medical domains [12, 111]. Adap-

tations have also been made to account for spatial [111, 60], and temporal data

[61].

The number of possible association rules grows exponentially with the number

of attributes. For real data, searching over the space of possible rules can quickly

become intractable. In order to deal with this, efficient search algorithms must

be developed to traverse the search space. We cover rule generation algorithms in

2.1.2.

A central part of the work covered in this thesis concerns the concept of rule
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redundancy. Redundant rules are those that describe knowledge contained in

other rules. Identification and removal of redundant rules is important both to

improve the quality of generated rules, as well as to limit the search space for rule

generation algorithms. We introduce existing approaches to rule redundancy in

section 2.1.3.

We now present a summary of the existing literature relevant to this thesis.

2.1.1 Interestingness Measures

As mentioned in the introduction to this section, association rule mining has

traditionally been conducted using a support and confidence framework. Given a

rule X ⇒ Y and a function m where m(X) is the frequency of X in T , support

and confidence can be defined as follows:

supp(X ⇒ Y ) = m(X ∪ Y )/|T | (2.1)

conf (X ⇒ Y ) = m(X ∪ Y )/m(X) (2.2)

Put another way, support is defined as the percentage of transactions in T con-

taining all items from both X and Y . Confidence is the percentage of transactions

containing the items in X that also contain the items in Y . When mining rules the

user selects a minimum acceptable value for support and confidence, then aims to

identify all rules exceeding this threshold.

An interesting property of the support function is that it is anti-monotonic.

In other words, X ⊂ Y ⇒ supp(X) ≥ supp(Y ). This property is attractive from

a computational standpoint when generating association rules (a point discussed

further in section 2.1.2). However, in addition to support and confidence, asso-

ciation rules can and have been generated using a wide range of interestingness

measures.

For a given rule X ⇒ Y , an interestingness measure considers the partial
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Measure Formula

Support [3] m(X)
M

Confidence [3] m(XY )
m(Y )

Interest [16] M×m(XY )
m(X)m(Y )

Leverage [81] m(XY )
M
− m(X)m(Y )

M2

χ2 M5
×Leverage(X⇒Y )2

m(X)m(¬X)m(Y )m(¬Y )

Fisher’s P
min(m(X¬Y ),m(Y ¬X))

∑

i=0

( m(X)
m(XY )+i

)( x(¬X)
m(¬X¬Y )+i

)
( M

m(Y ))

Table 2.1: Several common interestingness measures for a rule X ⇒ Y expressed
in terms of partial frequency counts.

frequency counts of the co-occurrences ofX and Y in D to determines the strength

of the association between X and Y. Figure 2.1 shows each of the partial counts,

as well as their effect on the strength of the association. Different interestingness

measures do so in different ways; for example confidence measures the conditional

probability of Y given X , while lift measures the ratio of the joint and marginal

probabilities (see Table 2.1 for a summary of several well known interestingness

measures).

Association rules have also been evaluated using measures of statistical sig-

nificance. Such tests are useful in that they provide confidence that discovered

rules will hold in unseen data. This is often a desirable property. To this end, we

evaluate rule quality with statistical significance measures in this work. In line

with much of the literature [40, 99, 106], Fisher’s Exact Test [30] is used. Fisher’s

Exact Test defines an exact statistical significance test of the association between

two categorical variables, under the assumption of fixed margins.

We note that due to computational issues in computing the binomial coeffi-

cients in the formula given in Table 2.1, direct computation of Fishers P can be

difficult. In line with similar literature [40], instead of directly computing P values
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Y ¬Y

X m(XY ) m(X¬Y ) m(X)

¬X m(¬XY ) m(¬X¬Y ) m(¬X)

m(Y ) m(¬Y ) M

Figure 2.1: Table showing the partial frequency counts used when computing
interestingness for a rule X ⇒ Y . Unshaded cells support the rule, unshaded cells
do not.

we instead work with the natural log of Fishers P.

A more detailed treatment of the differences between the various interesting-

ness measures is likely beyond the scope of this work. We note that several com-

prehensive reviews exist [56, 91], and direct the interested reader to the literature

for further information.

2.1.2 Dealing with Combinatorial Complexity

Computational complexity presents a substantial challenge when generating asso-

ciation rules. Given a dataset with N items as well as some minimum threshold

for support and confidence, there are ΣN−1
i=1

(

N

i

)

2N−i possible rules which need to

be evaluated. The majority of association rule mining algorithms address this by

using an approach based on frequent itemsets. Such algorithms generate rules in

a two stage process:

1. Generate all frequent itemsets F (those sets of items which occur in T with

at least some minimum level of support).

2. Compute ℜ by evaluating all rules which can be built using F .
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Perhaps the best known example of this approach is the a-priori algorithm

of Agrawal and Srikant [4]. In order to identify frequent itemsets, the a-priori

algorithm exploits the fact that the support function is anti-monotonic. Put more

explicitly, any subset of a frequent itemset will itself be frequent [4].

The a-priori algorithm is initialised by finding all length 1 frequent itemsets

(individual items whose frequency is above the specified threshold). It then it-

eratively finds potentially frequent itemsets of length n using unions of frequent

itemsets of length n−1. Exact supports are then computed for potentially frequent

itemsets, with the process repeated until no further itemsets can be identified.

For a given frequent itemset F ∈ F , all possible rules X ⇒ Y s.t.X, Y ⊂

F,X ∩ Y = ∅ are checked to find those with the minimum required confidence.

From the definition for confidence in equation 2.2, computing the confidence re-

quires frequencies for the rule X ⇒ Y requires F and X . As F is a frequent

itemset, the monotonicity of the support function implies that X (and Y ) are also

frequent. Hence by indexing computed supports when finding frequent itemsets,

the confidence for all rules can therefore be checked without the need for any

additional frequency calculations.

Since the a-priori algorithm was originally proposed, there has been a substan-

tial body of work addressing the itemset generation process (for example, alternate

algorithms such as ECLAT [114, 113] and FP-growth [37, 38]). Developments such

as frequent closed itemsets (proposed by Pasquier et al. [78]) also allow for a much

smaller number of itemsets to generated, improving the efficiency of rule mining

without reducing the expressive power of the result set.

In section 2.1.1 we noted that interestingness measures such as Fishers P and

χ2 have also been used. These interestingness measures do not obey the anti-

monotonicity assumption employed when mining rules with support. When eval-

uating rules using such measures, it is possible that even very infrequent rules

could be considered interesting. A frequent itemset approach could still be em-

ployed, but it then becomes possible that interesting, infrequent rules could be
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missed.

Work exists on alternate search strategies for identifying association rules in

the case where support based pruning is inappropriate. Hämäläinen [40, 41] em-

ploys a branch and bound strategy using lower bounds on the natural log of Fishers

P to prune the search space in a search for general dependency rules with single

attribute consequents. Each node tracks attributes that could form possible rules

(based on whether a rule with that attribute as consequent could potentially con-

tain a significance value lower than the required threshold). The search is pruned

at nodes where no possible consequent attribute exists. They also employ a novel

method for propagating impossible consequent attributes to unvisited nodes.

2.1.3 Rule Redundancy

The number of interesting rules identified as a result of many association rule min-

ing algorithms is a significant concern. In practice, the number of rules produced

can be prohibitively large, and present a barrier to their interpretation by users

[2, 5, 13, 94, 112, 10, 11].

Much research has focused on the idea of redundant rules [2, 112, 10]. Such

work seeks to remove rules that encode knowledge described in equivalent or better

fashion by other rules. Such rules are often artifacts of independent attributes.

An example of rule redundancy can be seen as follows.

Consider some hypothetical data from which the association Overweight ⇒

Diabetes is mined. Another rule mined might be Overweight · Football Fan ⇒

Diabetes. Although the two associations may hold with equivalent strength in the

data, the addition of the condition Football Fan has no bearing on the strength of

the association between weight and diabetes. The second association only holds

due to the independence of Football Fan and the other two variables. In other

words, Overweight ⇒ Diabetes holds regardless of the presence or otherwise of

Football Fan. The second rule is a redundant specialisation of the first.

Several authors have proposed formal means for defining redundant rules [2,
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112, 10]. Given a non-redundant rule A ⇒ B, Aggarwal [2] sought to exclude as

redundant any rule C ⇒ D that must have equal or lower support and confidence,

independent of any distributional qualities of the data. For example, given the

rule X ⇒ Y Z, it can be shown that the rules XY ⇒ Z and XZ ⇒ Y have

equivalent support but must have equal or lower confidence.

In contrast to redundancy based approaches for eliminating spurious associa-

tions, Webb [104, 105] use the idea of productive rules. A rule X ⇒ Z can be

considered redundant if there exists another rule Y ⇒ Z with equivalent support

where Y ⊂ Z. The productive criterion instead removes rules where no generali-

sation exists with equivalent confidence. More formally:

productive(X ⇒ Z) iff confidence(X ⇒ Z)−max
Y⊂X

confidence(Y ⇒ Z) > 0

Productivity is a stronger criterion than redundancy in that any redundant rule

will contain a generalisation with equivalent confidence. It is however possible for

a rule to have no generalisation with equivalent support, but to have one with

equal or better confidence.

The bulk of work on redundancy for association rules assumes that associations

are mined using a support and confidence framework. Support of an itemset

(or rule) is anti-monotonic with respect to the number of attributes it contains

(supp(X) ≥ supp(Y ) ∀X ⊂ Y ). This property does not hold for many other

interestingness measures, such as statistical tests including Fishers P or χ2.

A definition of redundancy suitable for use with a general goodness measure

(under the assumption of single attribute consequents) was first proposed in 2010

by Hämäläinen [40]. Hämäläinen defines a rule R to be redundant if some more

general rule (i.e. a rule whose antecedent is a subset of the antecedent of R) has

equal or better utility with respect to some goodness measure. The definition is

repeated formally in definition 2.1. More detail on redundancy for generalised

goodness measures is provided in section 5.1.
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Definition 2.1. Classical redundancy Consider two rules X ⇒ Z and XQ⇒

Z where X and Q are disjoint sets of items, and Z is a single item of value a. Let

M(·) be an increasing measure of rule interestingness. Rule XQ⇒ Z is redundant

with respect to rule X ⇒ Z if M(XQ⇒ Z) ≤M(X ⇒ Z).

Hämäläinen also proposes an algorithm (Kingfisher) for use finding non-redundant

general dependency rules using this definition [40]. Kingfisher is the first algorithm

able to efficiently perform such a search. The algorithm uses a branch and bound

search over the space of possible rules, and employs several additional pruning

heuristics to control the size of the search. The work described in section 5 uses

a variant on the Kingfisher algorithm, and more detail on the search process is

given in section 5.3. Detail on the pruning heuristics employed by Kingfisher is

given in section 5.3.1.

We note however that when comparing rules based on some arbitrary goodness

measure, complications can arise due to complex interactions between constituent

attributes. That such interactions can give rise to spurious associations has been

studied [68, 106], however less attention has been payed to how it might obscure

useful relationships. We examine this further in chapter 5, in particular with the

concept of specialisation redundancy.

Most research has looked to remove redundant specialisations that add nothing

over simpler rules. This is not always appropriate, and authors such as Webb [106]

and Liu et al. [62] have looked at models of redundancy that remove spurious

generalisations.

Removing spurious generalisations was first looked at in 2001 by Liu et al.

[62], in their work on non-actionable rules. For a given rule r0 and the set of

its decedents R = {r1, r2, · · · , rN}, they define a r0 to be non-actionable if it is

not interesting over the domain where instances matching at least one antecedent

in R are removed. Essentially, they claim a rule must cover some unique set of

instances (with respect to the set of its specialisations) in which the relationship

described still holds. If a rule does not cover such a set of instances, the rule has
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no utility with respect to the set of its specialisations.

A similar concept to non-actionable rules has been proposed by Webb in his

work on self sufficient itemsets [106]. This work builds upon the concept of an

exclusive domain for a given itemset. Formally, the given an itemset s and its

specialisations S, the exclusive domain of s is defined to the domain of s minus

the union of the domains of all itemsets in S. After generalising the concepts of

redundancy and productivity [104, 105] for use with itemsets, rather than as-

sociation rules, an itemset is defined to be self sufficient if it is productive and

non-redundant both with respect to the entire data and its exclusive domain.

In many respects, self sufficient itemsets can be considered an extension of

non-actionable rules for use in an itemset context. However, it is also notewor-

thy that itemsets must also be productive and non-redundant. This pruning of

both specialised and general itemsets is somewhat similar to our work with ro-

bust redundancy in chapter 5, although it is performed in an itemset context.

As described above, we also examine methods to avoid pruning specialisations

where redundancy is likely to be an artifact of interactions between constituent

attributes.

2.2 Systematic Reviews

An important concept in modern health care is the idea of evidence based medicine:

the requirement that clinical policy and practice should be based on an exami-

nation of all available, relevant knowledge [86]. Systematic reviews form a key

component of evidence based medicine, and are widely regarded as the highest

form of medical evidence [110]. A systematic review is a special type of literature

review (and often meta-analysis), which addresses a specific research question with

the aim of being comprehensive, unbiased, and repeatable [35, 36].

There is much active research into the efficient generation and dissemination

of high quality systematic reviews [26, 34, 46, 53, 55, 70, 90, 96, 98]. Guidelines
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are regularly published to ensure reviews are conducted and reported according to

the highest possible standards [25, 27, 54]. In addition, organisations such as the

Cochrane Collaboration have been created to facilitate creation and maintenance

of systematic reviews, as well as their dissemination through the widely known

Cochrane Library of Reviews [23]. Cochrane also publish their own guidelines for

conducting systematic reviews to be published in the Cochrane Library [35][36].

As evidence based practice relies on high quality systematic reviews, there is

an implication that a substantial cost exists should review authors omit relevant

work. This claim is well established [28]. As a consequence, review authors go to

great lengths to ensure reviews are as comprehensive as possible, and to minimise

errors. Although a number of resources have been developed to facilitate efficient

screening, literature searches for systematic reviews are largely manual and highly

time consuming [87].

In the last decade, there has been increasing interest shown by the machine

learning and information retrieval communities in improving the efficiency of sys-

tematic reviews by addressing the manual nature of their creation [13, 20, 32, 48,

63, 66, 92, 102]. In the remainder of this chapter we provide an introduction the

process of conducting systematic reviews, and summarise existing work concerning

the application of machine learning for the corresponding literature searches. This

section provides context for the motivation behind the work reported in subsequent

chapters.

2.2.1 Systematic Review Process

While the exact process for conducting a systematic review varies according to

the type of clinical question (i.e. diagnosis, intervention, aetiology), all systematic

reviews can be said to follow several major steps [77]. These include question

and inclusion criteria formulation, literature search, literature screening, quality

assessment, and data synthesis, analysis and interpretation.

A comprehensive treatment of the entire systematic review process is beyond
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the scope of this thesis, and would likely obscure the pertinent information re-

quired to provide context for this and later chapters. Hence a summary of the

entire systematic review process will not be presented here. Instead a summary

of the first three stages is presented, which are the sections most relevant to this

work. For a more complete treatment of the quality assessment, meta-analysis,

and reporting stages of systematic reviews the interested reader is directed to lit-

erature such as Wright et al. [110], Tsafnat et al. [98], or resources such as the

Cochrane handbooks for reviews of interventions [35] and DTA (Diagnostic Test

Accuracy) [36].

A summary of the major steps in the systematic review process is given in

Figure 2.2.

2.2.1.1 Question and Inclusion Criteria Formulation

Systematic reviews begin with the formulation of a highly specific research ques-

tions and associated inclusion criteria. For example, one Cochrane Diagnostic Test

Accuracy review [15] obtained from the Diagnostic Test Accuracy Working Group

lists its objectives as:

To compare the diagnostic accuracy of diffusion-weighted MRI (DWI)

and CT for acute ischaemic stroke, and to estimate the diagnostic

accuracy of MRI for acute haemorrhagic stroke.

Inclusion criteria for Cochrane systematic reviews are formulated according to

specific categories that depend on the type of clinical question being answered.

For example, Cochrane reviews of Diagnostic Test Accuracy, separate criteria are

formulated for the type of study, index and comparator tests, target condition

and the desired reference standard [36]. A similar set of criteria (referred to as

the PICO criteria—Population, Intervention, Comparison, Outcome) exists for

questions related to interventions [35].
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Figure 2.2: Overview of the systematic review process.
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2.2.1.2 Literature Search

Once inclusion criteria for the review have been identified, the next step in the

review process is to determine which resources are to be searched. Many resources

exist indexing available medical literature, of which the most commonly used for

Cochrane reviews of diagnostic test accuracy are MEDLINE which is maintained

by the US National Library of Medicine, and EMBASE, which is published by

Elsevier [29]. MEDLINE is available for free online through PubMed, and also via

subscription through providers such as Ovid.

When a citation is indexed in MEDLINE, a medical librarian will manually an-

notate it with several concept headings from the US National Library of Medicines

Medical Subject Headings (MeSH) ontology. The MeSH ontology provides a con-

trolled vocabulary of medical concepts, which a useful for constructing searches

in MEDLINE. As of 2015, MeSH contains 27149 headings organised into a hier-

archy of 12 levels by degree of specificity [75]. An example of this is given in the

MeSH factsheet: “At the most general level of the hierarchical structure are very

broad headings such as ’Anatomy’ or ’Mental Disorders’. More specific headings

are found at more narrow levels of the twelve-level hierarchy, such as ’Ankle’ and

’Conduct Disorder’”. Citations in EMBASE are annotated with concepts from a

similar ontology EMTREE.

Although each of these databases are quite large (as of 2015 MEDLINE indexes

over 19 million references from over 5600 journals [74] and EMBASE indexing over

20 million from 8600 journals [29]) it has been noted that there is a relatively low

degree of overlap between MEDLINE and EMBASE (depending on topic, the

overlap can be anywhere from 10% to 87% [109]). As such it is recommended to

search multiple resources when conducting systematic reviews of diagnostic test

accuracy. For example, for systematic reviews of treatment Cochrane recommend

at a minimum [35]:

� MEDLINE
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� EMBASE

� Cochrane register of randomised controlled trials

A similar Cochrane Register of Diagnostic Test Accuracy Studies is being devel-

oped for reviews of diagnostic test accuracy, however it has not yet been completed

[36].

Literature searches for Cochrane systematic reviews of treatments are con-

ducted by identifying references containing certain relevant MeSH headings and

free text terms. Typically, several sets of terms are identified, and references con-

taining at least one term from each are collected. An example of search terms used

in the review Galactomannan detection for invasive aspergillosis in imumunocom-

promized patients by Leeflang et al. [57] is presented in Figure 2.3 (further detail

on the search for this review can be found in Section 4.5.1. In order to achieve

the very high levels of recall required for systematic reviews, Cochrane reviews

of interventions will usually identify three sets of MeSH headings relating to the

desired index test, the target condition and a methodological filter to limit results

to references describing randomised controlled trials.

Literature searches for systematic reviews of diagnostic test accuracy are sim-

ilar, however the methodological search filter is often omitted [58]. In order to

avoid negatively impacting the results of the search, the filters need to have

near perfect recall while still maintaining sufficient precision to justify their use.

While much research has been done on developing highly sensitive DTA filters

[59, 51, 52, 107, 108, 85, 50], the broader community has yet to develop a consen-

sus on their use in DTA reviews (for example the Cochrane handbook for DTA

reviews recommends against the ”routine use of methodology search filters”)[36].

In addition to MEDLINE and EMBASE a number of specialist databases exist

(e.g. CINAHL, MDEION, DARE, C-EBLM and ARIF) that may be searched as

part of conducting a systematic review. Many authors will also utilise resources

such as personal communications, hand searching potentially relevant journals

and screening grey literature (conference abstracts, unpublished or partial results,
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aspergillosis[MeSH Terms] OR

Aspergillosis[Text Word] OR

aspergillus[MeSH Terms] OR

Aspergillus[Text Word] OR

aspergill*

AND

”Nucleic Acid Amplification Techniques”[MeSH] OR

Polymerase Chain Reaction[tw] OR

PCR[tw] OR

nucleic acid amplification[tw] OR

immunosorbent assay[tw] OR

immunoassay[tw] OR

ELISA[tw] OR

EIA[tw] OR

”immunoassay”[MeSH Terms]

Figure 2.3: Example of Pubmed search query used in the review Galactomannan
detection for invasive aspergillosis in imumunocompromized patients. Note the
logical conjunction of two separate sets of terms.
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theses etc.). In practice the number and type of resources employed is limited

according to the scope of the review and resources available.

2.2.1.3 Literature Screening

References returned by the literature search are then manually screened to deter-

mine if they meed the inclusion criteria for the review. Literature screening for

systematic reviews is a multi-stage process [35, 36]. Depending on the number

of citations returned from the initial search, an author may apply a brief sanity

check, screening all citations based on title and removing those which are obvi-

ously irrelevant to the review [64]. In the next stage two reviewers independently

examine the title and abstract for every citation, with any citations possibly meet-

ing the inclusion criteria are selected. The full text is then obtained for all selected

citations. The full citations are then screened again by both reviewers. In order

to meet the goals of a repeatable and unbiased analysis, the reasons for exclusion

in the second stage are often recorded, and published along with the review. An

example of a typical literature screening process is shown in Figure 2.4.

At this stage of the review, it is commonplace for authors to screen hundreds

or even thousands of citations. Despite this, the number of references included in

the final review is often much smaller, possibly one or two orders of magnitude

smaller than the total number of references screened.

The rationale behind the use of multiple reviewers is to minimise the risk of

error. The need for multiple reviewers, combined with the often very large number

of references to be screened make this process labour intensive and extremely time

consuming. A review conducted by Sampson et al. [87] in 2008 found an average

time of 61 weeks between the start if citation screening and publication. Karimi

et al. [50] note that when screening citations, each individual document may

require several minutes or more to process. It is not difficult to see that even

small reductions in the number of citations viewed could result in a significant

reduction in the time and effort required to complete this step.
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Stage 0 (Title)

Stage 1 (Abstract)

Stage 2 (Full-Text)

Results of Literature Search

Screen TitlesExcluded

Obtain
Abstracts

Reviewer 1
Screens Abstracts

Reviewer 2
Screens Abstracts

Merge AbstractsExcluded

Obtain
Full-Texts

Reviewer 1
Screens Full-Texts

Reviewer 2
Screens Full-Texts

Merge Full-TextsExcluded

Meta-analysis

Exclude

Include

Exclude

Include

Exclude

Include

Figure 2.4: Overview of the literature screening process for systematic reviews.



CHAPTER 2. BACKGROUND 26

2.2.2 Systematic Reviews as a Classification Task

When considered as a classification task, systematic review literature searches

have several defining characteristics. Perhaps most important is the extremely

high cost associated with false negatives (citations that are incorrectly excluded)

[88]. This means that any classifier must have perfect recall on relevant citations

(or at least have recall equal to that of a human reviewer).

In addition to the above restriction on recall, classification for systematic re-

views must deal with highly imbalanced training data. It is not unusual for a

literature search to consider thousands (or even 10’s of thousands) of citations to

identify less than 100 relevant studies [67]. Imbalanced training data is an estab-

lished problem within the machine learning community [69]. The relative lack of

relevant citations with which to train any prospective classifier can have the effect

of biasing the model toward non-relevant studies, which works to directly counter

the requirement for high recall on relevant studies.

In addition, the question of how best to incorporate classification into the

systematic review process must be considered. The traditional supervised classi-

fication paradigm requires a human oracle to annotate a set of training instances

which are then used to build a classifier for use on an unlabelled test set. How-

ever such an approach does not easily fit the existing systematic review literature

screening process outlined in section 2.2.1.3. Ideally, any application of machine

learning techniques to systematic review literature screening should minimise dis-

ruption to the existing process. There has been significant research into various

possible solutions, including active learning [102], ranking query results [50, 49]

and adjusting the process to account for separate training and test phases [32].

We note that in addition to classification of studies as relevant or otherwise

for systematic review literature searches, machine learning has been applied to a

number of other systematic review problems. For example, identification of high

quality citations [8], estimating risk-of-bias [71], and automated assignment of

MeSH headings [97]. In this thesis we focus on the topic of classifying citations as
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relevant or otherwise to a given review, and as such we do not present such work.

The interested reader is directed to the relevant literature for such a summary.

The remainder of this section is divided into three areas. Firstly, a summary of

existing work seeking to address the requirement for near perfect recall under the

conditions of highly imbalanced training data is given. Approaches for including

automated classification into the screening process are then considered, and finally

a summary of methods for evaluating prospective classifiers is given.

2.2.2.1 High Recall Classification with Data Imbalance

Existing literature has typically used standard machine learning algorithms with

slight modifications to allow for tuning to bias toward the minority class. Classi-

fiers such as neural networks [22], support vector machines [102, 17], and Bayesian

classifiers [65] have been modified and evaluated. It is worth noting that without

modification, the above algorithms all struggle to adequately model the target

class, due to the high rates of imbalance and high cost associated with recall when

compared against precision [21].

The first work to directly address the systematic review screening problem

was that of Cohen et al. [22] with their modified voting perceptron algorithm. A

perceptron classifier classifies instances using a linear function of their attributes,

and are typically built by modifying individual feature weights for misclassifica-

tions in the training data. They extend the algorithm proposed by Freund and

Schapire [31] by introducing a learning rate parameter, where errors in training

are penalised differently depending on whether they are false negatives or false

positives. They found that by employing a 20:1 ratio in learning rate between

false positives and false negatives, they could achieve a desired recall of 95%.

Matwin et al. [65] employ a similar approach, but work build upon the naive

Bayesian classifiers rather than voting perceptrions. Their factorised complement

naive Bayes (fCNB) algorithm is an extension on the complement naive Bayes

classifier of Rennie et al. [84]. Complement Naive Bayes classifies using a Bayesian
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framework, building a separate model of each class and then assigning the class

which maximises the posterior probability. The fCNB algorithm of Matwin et al.

[65] introduces a weighting parameter, which is used to bias the classifier toward

the minority class of relevant citations.

Cohen’s voting perceptron and Matwin’s fCNB were both evaluated on the

same 15 reviews. Interestingly, neither classifier was found to consistently outper-

form the other, with both algorithms attaining superior performance on at least

one of the tested reviews [18, 66]. Both algorithms however struggled at extremely

high rates of imbalance.

Although focused on the separate task of work prioritisation, Cohen et al.

[17, 19] also proposed an approach based on support vector machines. Support

vector machines are a widely used class of classification algorithm which classify

instances using a separating hyperplane [24]. They can efficiently handle non-

linear classification boundaries via the use of kernel functions to map instances

into high dimensional features spaces. Cohen et al. [17, 19] built their model

using a linear kernel, and ranked citations by their relevance to the review using

the signed margin distance.

Although intended for the separate task of work prioritisation, the performance

for review classification is evaluated and compared to the above fCNB and voting

perceptron algorithms by Cohen [18]. Similar to the comparison of fCNB and the

voting perceptron, each algorithm outperformed the others on at least one tested

review.

Wallace et al. [102] also employ a SVM based approach, but in contrast to

Cohen et al. [17, 19] who focus on work prioritisation they use an active learning

approach to train and apply their classifier. Rather than generating a separate

training and test set a-priori, active learning instead relies on an iterative process

where the algorithm selects unlabelled instances for annotation by a human or-

acle. Active learning shows much promise as an approach to systematic review



CHAPTER 2. BACKGROUND 29

literature classification, and has been used in several recent works [72]. The al-

gorithm typically selects those instances for which labels would provide the most

information, thus maximising the efficiency of time spent on annotation by human

experts.

The algorithm proposed by Wallace et al. [102, 103] builds upon the SIM-

PLE strategy for selecting unlabelled instances proposed by Tong et al. [95]. The

SIMPLE algorithm selects at each stage those instances closest to the current hy-

perplane; in other words those about which it is most uncertain. Wallace indicates

that such a strategy can be inappropriate for domains such as systematic reviews

where there is a high discrepancy in misclassification cost between classes. This is

due to the algorithms sensitivity to its initialisation, as it then becomes unlikely

that interesting regions far from the initial hyperplane will be identified. Wallace

mitigate for this by first employing a random sampling of instances for labelling

before employing a more traditional active learning approach to refine the decision

boundary.

Within the literature on imbalanced data, a common approach is to resample

the training set to generate a more balanced sample. This has been shown to

improve performance in modelling minority classes, and has been been explored

in the context of systematic reviews [103, 89]. Wallace et al. [103] employ under-

sampling in their active learning approach described above. Due to the high cost

of misclassification for relevant studies, they propose a variant called aggressive

undersampling. Aggressive undersampling instead selects those majority instances

closest to the hyperplane for removal, rather than randomly sampling from the

majority class.

2.2.2.2 Incorporating Classification into the Review Process

Traditional supervised machine learning is based on providing an algorithm with

a set of labelled training instances, which are used to build a mapping function

from unlabelled instances to labels. The systematic review process (in its current
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form) does not easily support such a paradigm, as no source of labelled training

data exists before a review begins. However in order to effectively support the

application of machine learning in systematic reviews, such an approach must be

developed.

Existing literature can be divided into two schools; those which attempt to

modify the annotation process to generate a set of training data, and those which

take a less obtrusive approach based on active learning. In the first case, Frunza

et al. [32] describe an approach based on having authors manually screen some

percentage of all citations, which are then used as training data to build a clas-

sifier to be run on the remaining articles. Given a set of unlabelled abstracts

under consideration for inclusion in the review, two separate authors annotate

some common subset, which is then designated as training data. The trained clas-

sification model is then used in place of one of the authors, reducing the overall

manual workload. A feature of this approach is that all citations are considered by

at least one human reviewer, which helps minimise the potential for error. Such

an approach fits well with the traditional supervised machine learning paradigm,

and provides a way to include work which has been evaluated using the classical

testing set / training set approach (e.g. the work of Cohen et al. [22, 18]).

Wallace et al. [102, 103, 101] describe an active learning approach, where the

classifier is built in an iterative process. Their algorithm has been integrated with

the publicly available Abstrackr annotation tool [101], an online citation screening

tool which has previously been used in systematic reviews [82]. Here the algorithm

particularly selects those citations for which manual annotation would provide the

greatest improvement, until classifications can be made with sufficient confidence.

Although the classification tool is still in beta and not available for public use,

existing evaluations have shown much promise [83], although small error rates do

exist.

Finally, it is worth noting that work exists addressing the similar task of iden-

tifying studies to update existing reviews [22, 20]. The review update task is
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similar to classification for the initial review, however it fits much better with the

traditional classification model in which separate training and test sets are used

(i.e. annotations from the original search can be used to train the classifier for the

update task). It does suffer a separate challenge however of changing vocabularies,

and difficulty modelling ground-breaking research which departs significantly from

studies included in the original version of the review.

2.2.2.3 Evaluating Performance for Systematic Reviews

Traditional machine learning algorithms can be evaluated in terms of metrics such

as precision, recall, or their mean value (f-score). A feature of classification for

systematic reviews is the desire for perfect (or near perfect) recall over the class

of relevant citations. As such there is a much greater value placed on recall over

relevant citations when compared to precision [103, 83]. Due to this, evaluating

using a single measure such as the f-score is inappropriate.

Many researchers take the approach of separately reporting metrics for work-

load saving and recall over relevant citations [83, 103]. This is the approach taken

in our work. Within this framework, many individual metrics are used, such as

precision, workload (analogous to the percentage of citations remaining), burden

[103] (similar to workload but accounting for multiple reviewers), recall, and raw

number of errors [83].

Cohen et al. [22] have also proposed the Work Saved Over Sampling at 95%

metric (WSS95) for use evaluating systematic reviews. Under the assumption that

an acceptable error rate on the class of relevant citations is 5%, they note that

a similar error rate could be achieved by simply randomply sampling 95% of the

citations to be screened. They propose that workload savings (measured in terms

of the number of citations to be screened) should be evaluated with respect to this

baseline. WSS@95 has been used by a number of researchers as an alternative

to reporting raw workload savings [22, 65, 47]. WSS is defined as follows (where

TN, FN, and N are the true negative, false negative, and raw number of citations
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respectively):

WSS@95 = (TN + FN)/N − 0.05

A major issue for evaluating screening algorithms is obtaining data on which

to measure performance. Many authors use private data (for example, Wallace

et al. [103] and [83]). Alternatively, many authors choose to evaluate using a set

of 15 reviews originally used by Cohen et al. [22] which are publicly available for

download.

The Cohen datasets comprise the PubMed ids, along with reviewer annotations

for citations from 15 separate reviews. Reviewer annotations indicate whether or

not a citation survived screening based on abstract, as well as the final triage status

of the study. More detailed reasons for exclusion exist for some studies removed

during later screening stages (for example, wrong population, or not available in

English).

In order to maximise the ability to reproduce results and compare algorithms,

the Cohen datasets include only citations which can be found in the TREC 2004

Genomics Track document corpus (a subset of MEDLINE). Citations that did not

match a PMID in the document corpus were removed. This is important to note,

as were the searches to be rerun and additional citations combined with those

already in the dataset, it would be unclear as to where in the screening process

they were removed.
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Challenges in Literature

Screening for Systematic Reviews

Systematic reviews form a key component of modern evidence based medicine.

For a given clinical question, their purpose is to provide a review and often meta-

analysis that is as unbiased, comprehensive, and repeatable as possible. System-

atic reviews are widely used throughout the medical field to guide policy and

practice, and are widely considered as the highest form of medical evidence [110].

In order to meet the stringent requirements of unbiased, repeatable, and com-

prehensive literature searches, systematic reviews are necessarily very time con-

suming. Potential consequences for omitting relevant studies are severe [88], and

review authors will go to great lengths to avoid such an event. Overwhelmingly,

literature searches for systematic reviews reviewer are still conducted manually,

with authors often screening thousands (if not more) of studies. Timescales of

months or years are not uncommon. More detail on the process of conducting

literature searches for systematic reviews is presented in section 2.2.

In recent times, the machine learning community has shown an increased inter-

est in improving the efficiency of literature searches for systematic reviews. This

is a difficult problem with numerous idiosyncrasies and challenges. When viewed

from the perspective of a machine learning problem, systematic review literature

33
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searches have the following two key characteristics:

� Classifiers must identify relevant studies with perfect (or near perfect) recall.

This is due to the potential consequences should a reviews conclusions be

drawn on incomplete information.

� Highly imbalanced training data. Often thousands of studies will be screened

with only a handful of studies included.

Evidently, satisfying these requirements is no simple task. We provide an

overview of the existing work on classification for systematic review literature

searches in section 2.2.2.

Despite the challenges mentioned above, recent studies have demonstrated that

very high performance is attainable [83, 76]. However it must be noted that

classification for systematic reviews is by no means a solved task, with issues such

as particularly high levels of data imbalance a concern [18, 66, 83].

Traditionally, the majority of systematic reviews have focused on clinical ques-

tions related to interventions. However the last decade has seen a substantial

increase in demand for reviews related to other types of clinical questions (such

are diagnostic test accuracy or prognostic reviews) [79]. The expanding scope of

systematic reviews has created a number of challenges. For example, literature

search and screening for diagnostic reviews are widely considered more challenging

than those of interventions [58].

While the medical community has noted a number of challenges facing authors

of DTA reviews [26, 58], there has been no formal analysis on the differences

between reviews of diagnosis and interventions when considered as a classification

problem. We provide such an analysis in this chapter. We demonstrate that

diagnostic reviews form a particularly challenging subset of the systematic review

classification task. In particular, we hypothesise and obtain evidence for three

specific challenges inherent to DTA reviews when compared against reviews of

interventions:
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� Diagnostic reviews require more citations to be screened.

� Diagnostic reviews have a broader (more heterogeneous) target class.

� The quality of meta-data for diagnostic studies in common databases is

generally lower.

By doing so we aim to demonstrate that classification for diagnostic test ac-

curacy reviews forms a particularly challenging subset of the general systematic

review classification task. These findings are then used as a motivation for work

in later chapters.

3.1 Specific Challenges in the Systematic Re-

view Process

As discussed in section 2.2 the data imbalance problem for systematic review

classification is well established. While efforts have been made to address this

issue, there is still much progress to be made [18, 66]. In particular, attention

needs to be directed at subsets of the systematic review classification problem

with the greatest level of imbalance.

Traditionally, systematic reviews have focused on questions related to medical

interventions, however the last few decades has seen increased demand for reviews

from other areas (i.e. aetiology, diagnosis, prognosis, etc.). In particular, there

has been a substantial increase in demand for reviews of diagnostic test accuracy

(DTA) leading to the formation of the Cochrane diagnostic test accuracy working

group in 2003.

This section outlines our three hypotheses regarding technical challenges in

classification for DTA reviews. These hypotheses relate to differences in the lit-

erature search process between systematic reviews of DTA and treatment (for a

summary of the various literature screening stages see section 2.2.1.3). Hypothesis
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A relates to the screening process as a whole, while Hypotheses B and C relate to

stage 2 and stage 1 screening respectively.

We also describe one or more expected manifestations for each hypothesis.

By testing for the existence of these manifestations in real data, we then obtain

evidence to support the hypothesised challenges.

3.1.0.1 Hypothesis A: Workload

A major practical issue when conducting systematic reviews is the workload gen-

erated by the volume of citations needing to be screened. Most IR research for

systematic reviews has focused specifically on how to deal with the very high rates

of class-imbalance caused by this volume of data. Substantial progress has been

made, however it can by no means be considered a solved problem.

We hypothesise that the number of citations to be screened at each stage of the

literature search process is higher for DTA reviews than for those of the treatment.

This increases the already large class-imbalance between the number of included

and excluded studies, thereby again increasing the difficulty of what was already

very challenging. Assuming this to be true, one could then expect the following

manifestations:

� The mean number of search results to be screened will be higher for DTA

reviews than for those of treatment.

� The mean number of full-text articles to be screened will be higher for DTA

reviews than for those of treatment.

� The number of included studies as a percentage of the number of full-text

articles screened would be lower for DTA reviews than for treatment.

3.1.0.2 Hypothesis B: Target Class Heterogeneity

The relative heterogeneity of what exactly constitutes a DTA study can be prob-

lematic when screening literature for DTA reviews. Quoting from Whiting et al.
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[107], diagnostic test accuracy studies “are heterogeneous, exploring a range of

diagnostic techniques and strategies, and are likely to have been conducted us-

ing a variety of methods”. In addition, there are examples (such as some cohort

studies) where one could derive sensitivity and specificity despite the authors not

having explicitly calculated them. The ideal DTA filter should be highly sensitive

and would include studies such as these.

We hypothesise that due to this increased difficulty, the percentage of irrelevant

citations that cannot be identified on title and abstract alone will be larger for

DTA reviews than for treatment. Assuming this to be true, we can expect the

following manifestations:

� The mean number of full-text articles to be screened will be higher for DTA

reviews than for those of treatment.

� The number of included studies as a percentage of the number of full-text

articles screened would be lower for DTA reviews than for treatment.

Intuitively, if a given study type is more challenging to identify than another,

it can be expected that an author would need to expend greater effort on dis-

cerning similar studies. This increased effort could take the form of additional

time to screen individual citations, or screening more citations in greater detail

(i.e. examining the full-text article). Due to the high cost of false negative clas-

sifications, it is reasonable to assume that any ambiguity in the initial screening

stage would be resolved by obtaining the full-text article rather than putting more

effort on the title and abstract. As such, assuming DTA studies to be inherently

more challenging to identify than randomized controlled trials, we would expect

to observe more full-text articles being screened when conducting DTA reviews.

3.1.0.3 Hypothesis C: Suitability of Metadata

Appropriate use of high quality metadata (i.e. MeSH terms for MEDLINE) in

literature searches is crucial to generate a manageable number of citations while
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still remaining confident that no relevant ones would be omitted. It is common

to identify thousands of citations at this stage. It follows that as the quality of

the available metadata decreases, the total number of citations one would need to

screen to maintain this confidence would increase.

It has been noted within the literature that the metadata in many medical

databases are more suited to describing concepts related to treatment as opposed

to diagnosis [36]. For example, while high quality MeSH terms exist for study

types such as randomized controlled trials, the same cannot be said for studies

of diagnostic test accuracy. From Whiting et al. [107]: “Although MEDLINE

includes a number of medical subject headings (MeSH) that capture outcome

measures used in test accuracy studies (e.g. sensitivity and specificity), these

terms are not specific to test accuracy studies and are inconsistently applied by

indexers”.

We hypothesise that the quality of metadata is typically lower for DTA re-

views than for treatment. Therefore we can expect the following manifestations

in literature searches for systematic reviews:

� The mean number of search results to be screened will be higher for DTA

reviews than for those of treatment.

� The number of full-text articles retrieved as a percentage of the total search

results would be lower for DTA reviews than for treatment.

3.2 Evaluation

We have identified five expected manifestations of the stated hypotheses on the

literature searches for DTA reviews. For clarity, each manifestation and its asso-

ciated hypothesis are shown in Table 3.1. In order to test these claims, summaries

of the literature search and screening stages were extracted from a sample of DTA

and treatment reviews. Data collected included the number of references retrieved

by the original search (SR), the number of references for which full-text papers
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Manifestation Description
Hypothesis
A: Increased
Workload

Hypothesis
B: Increased
Target Class
Heterogeneity

Hypothesis
C: Decreased
Suitability of
Metadata

FT

The mean num-
ber of full-text
articles screened
would be higher
for DTA reviews
than for treat-
ment

Yes - -

SR

The mean num-
ber of search re-
sults would be
higher for DTA
reviews than for
treatment

Yes - Yes

INC/FT

The number of
included studies
as a percentage
of the number
of full-text ar-
ticles screened
would be lower
for DTA re-
views than for
treatment

- Yes -

INC/SR

The number of
included studies
as a percentage
of the total num-
ber of search re-
sults would be
lower for DTA
reviews than for
treatment

Yes - -

FT/SR

The number of
full-text articles
retrieved as a
percentage of
the total search
results would be
lower for DTA
reviews than for
treatment

- - Yes

Table 3.1: List of expected manifestations (differences between DTA and treat-
ment reviews) for all hypotheses.
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were screened (FT), the number of references included in the final meta-analysis

(INC), and the paired ratios between each of the collected statistics.

Systematic reviews can be conducted and reported according to varying stan-

dards of rigour. This could be problematic for the purposes of our evaluation,

as ideally the variation between two samples should be restricted to one re-

view type (i.e. DTA or treatment). For systematic reviews published by the

Cochrane collaboration, authors are required to follow strict guidelines outlined

in the Cochrane handbooks for treatment and DTA reviews [36, 35]. Reviews

published by Cochrane are widely regarded as meeting very high procedural and

reporting standards, and their published guidelines for reviews of DTA and treat-

ment contain a number of shared protocols. As we wish to restrict differences

between the samples to whether the reviews are of treatment or DTA, the analy-

sis reported in this chapter is performed exclusively on a subset of the Cochrane

database.

As of the search date (2013/7/12), Cochrane had published 13 complete sys-

tematic reviews of DTA (one from each of the acute respiratory infections [ARI],

airways, back, bone, joint, and muscle trauma [BJMT], eyes and vision, gynecolog-

ical cancer, pregnancy, renal, and stroke Cochrane review groups [CRG], two from

the infectious diseases CRG, and three from the Back CRG). A copy of each DTA

review was obtained. For each DTA review, 15 non-withdrawn treatment reviews

were selected at random from those published by the corresponding CRG. The

number of treatment reviews was chosen to provide a sufficiently large sample for

statistical analysis while requiring a reasonable time for collection and data extrac-

tion. Stratifying the data in this way was intended to account for any variation in

search procedures across CRGs, as well as the availability of data within each field

generally. A summary of the number of selected treatment reviews for each CRG

is presented in Table 3.3. A list of each selected diagnostic and treatment review

is included in the Appendix A. The desired statistics were then manually scraped

from the values reported in the literature search summary from each review.
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Cochrane review groups DTA reviews Treatment reviews

Acute respiratory infections 1 15

Airways 1 15

Back 3 45

Bone, joint, and muscle trauma 1 15

Eyes and vision 1 15

Gynecological cancer 1 15

Infectious diseases 2 30

Pregnancy 1 15

Renal 1 15

Stroke 1 15

Total 13 195

Table 3.2: Summary of the total number of DTA and treatment reviews randomly
selected for inclusion in our analysis, ordered by CRG.
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It is important to recall that depending on the specific conditions of each

review (DTA or treatment) changes in the search process may be made to find

the desired balance between search sensitivity and reviewer workload. Using the

values reported by the reviewers (as opposed to manually re-running searches,

possibly with the inclusion of more or less sensitive filters) had the added benefit

of taking into account the review authors conclusions for the specific domain of

each review.

Not all reviews reported the number of citations obtained at each stage of

the literature search (e.g. some would report only the number of included and

full-text articles). Where values were missing or unclear, we made an attempt

to contact the review authors by email. If no data could be obtained, a blank

value was recorded and the review would be omitted from analyses involving the

missing statistical data. For computational reasons, extracted values equal to 0

were also omitted. A summary of the number of extracted values for all data

types is given in Table 3.3. For example, of the 195 randomly selected treatment

reviews, the number of full-text articles examined could not be obtained from 62

reviews, hence the number of collected data points for the number of full-text

articles in treatment reviews is 133 (as reported in row 2 of Table 3.3).

Based on prior experience, we expected that the number of reported studies

for the literature searches would be heavily skewed. This expectation is supported

by comparing the mean and median values for each of the statistics from the

collected treatment reviews (see Table 3.4); for 5 out of the 6 statistics the mean

is approximately twice the value of the median. For example, the number of

reported search results collected includes a number of values describing unusually

large literature searches. Such values significantly affect the skewedness of the

collected data, substantially increasing the mean without affecting the median.

In order to compensate for the level of skewness, all reported statistical com-

parisons are performed using an unequal variance t test on ranked data (i.e. as an

approximation to a non-parametric test); each individual data point is replaced
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DTA Treatment

DATAINC 13/13 186/195

DATAFT 12/13 133/195

DATASR 13/13 101/195

DATAINC / FT 12/13 126/195

DATAINC / SR 13/13 95/195

DATAFT / SR 12/13 92/195

Table 3.3: Summary of the sample sizes (number of reviews reporting nonzero
values) for evaluating each of the expected manifestations.

Mean Median Mean / Median

DATAINC 19.56 11.0 1.78

DATAFT 71.89 33.00 2.18

DATASR 1799.04 900.00 2.00

DATAINC / FT 0.394 0.357 1.11

DATAINC / SR 0.033 0.013 2.47

DATAFT / SR 0.099 0.046 2.13

Table 3.4: Ratio between mean and median for collected treatment reviews.
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MeanDTA MeanTreat MeanDTA/ MeanTreat

DATAFT 191.92 (n=13,s=233.51) 71.89 (n=133,s=154.76) 2.67

DATASR 5144.23 (n=13,s=4109.78) 1799.04 (n=101,s=2530.11) 2.86

DATAINC / FT 0.191 (n=13,s=0.11) 0.394 (n=126,s=0.24) 0.49

DATAINC / SR 0.021 (n=13,s=0.036) 0.033 (n=95,s=0.049) 0.63

DATAFT / SR 0.087 (n=13,s=0.124) 0.100 (n=92,s=0.156) 0.87

Table 3.5: Summary of mean values for collected statistics.

MeanDTA MedianDTA MeanTreat MedianTreat

DATAFT 110.67 (n=12,s=27.64) 113.0 68.51 (n=133,s=41.16) 67.0

DATASR 85.54 (n=13,s=27.84) 94.0 52.76 (n=101,s=31.62) 52.0

DATAINC / FT 35.67 (n=12,s=24.69) 29.0 71.63 (n=126,s=39.60) 73.5

DATAINC / SR 40.54 (n=13,s=31.12) 35.0 55.27 (n=95,s=30.76) 56.0

DATAFT / SR 47.5 (n=12,s=30.18) 45.5 52.02 (n=92,s=29.97) 53.5

Table 3.6: Summary of ranked data for collected statistics.

by its index in the sorted set of data. If multiple data points shared a common

value the ranked values were averaged. Summaries of the unranked and ranked

data are presented in Table 3.5 and Table 3.6.

To further illustrate the ranking process, the mean number of search results

obtained (as reported in Table 3.5) was 5144.23 for DTA reviews and 1799.04

for treatment reviews. When the 13 DTA and 101 treatment data points were

combined and sorted however, the mean position for DTA reviews was 85.54 and

that for the treatment reviews was 52.76 (as reported in Table 3.6).
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Hypothesis A: Workload
Hypothesis B: Target class
heterogeneity

Hypothesis C: Suitability of
Metadata

Total
articles
screened

Increase Increase

5144.2DTA > 1799.0TR - 5144.2DTA > 1799.0TR

(P=.002) (P=.002)

Full-text
articles
obtained

Increase
Decreased as a % of total

articles screened

191.9DTA > 71.9TR - 0.087DTA < 0.100TR

(P<.001) (P=.65)

Included
Articles

Decrease as a % of total
articles screened

Decreased as a % of
full-text articles obtained

0.021DTA < 0.033TR 0.191DTA < 0.394TR -

(P=.14) (P<.001)

Table 3.7: Summary linking each hypothesis, expected manifestation, and litera-
ture screening stage.

3.2.1 Results

The results section is divided into one section for each of the three proposed

hypotheses. Summaries of each hypothesis, along with the expected and observed

manifestations are presented in Table 3.7.

3.2.1.1 Hypothesis A: Workload

Comparing the mean absolute number of the search results obtained we observe

a 186% increase for reviews of DTA when compared to reviews of interventions

(5144.2 vs 1799.0). There was strong evidence that this difference was statistically

significant (unequal variance t test on ranked data, P=.002). Similarly for the

mean number of full-text articles obtained we can observe an increase of 167%

(191.9 vs 71.9). Again, there was very strong evidence that this difference was

statistically significant (unequal variance t test on ranked data, P<.001).
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We note not only the statistically significant difference in means, but also the

substantial difference in effect size. The magnitude of the difference supports the

claim that identification of relevant papers is noticeably more complicated for DTA

reviews than for those of treatment, and also that there is an increase in difficulty

both for authors and any prospective IR system.

Considering the number of included studies as a proportion of the total search

results, a decrease of approximately 35% is observed for DTA reviews when com-

pared to reviews of treatment (0.021 vs 0.033). However, despite the large magni-

tude of the difference there is insufficient evidence to claim statistically significance

(unequal variance t test on ranked data, P=.14). However, caution is urged in

concluding that no difference exists (see section 3.2.2).

3.2.1.2 Hypothesis B: Target Class Heterogeneity

Comparing the number of included studies as a percentage of full-text articles

examined, an increase of approximately 106% is observed for DTA reviews when

compared to those for treatment (0.191 vs 0.394). Very strong evidence was ob-

tained that this difference was significant (unequal variance t test on ranked data,

P<.001).

Again, we note the substantial difference in the observed effect size here. Its

magnitude indicates the increased practical difficulty of screening a potentially

relevant article for inclusion in a DTA review.

3.2.1.3 Hypothesis C: Suitability of Metadata

As stated in the results section for Hypothesis A, strong evidence was obtained to

support an increase in the mean absolute number of search results obtained when

comparing reviews of DTA and treatment (unequal variance t test on ranked data,

P=.002). When looking at the number of full-text articles retrieved as a percent-

age of total search results, one can observe a decrease of approximately 13% for

DTA reviews when compared to treatment reviews (0.087 vs 0.100). However,
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there is insufficient evidence to identify a statistically significant difference (un-

equal variance t test on ranked data, P=.65). As with the observed mean number

of included studies as a percentage of search results, the caution is urged in con-

cluding that no difference exists, and discuss possible reasons in section 3.2.2.

3.2.2 Analysis

As observed from the reported P values in Table 3.7, there is very strong evidence

that the number of articles at each stage of the screening process is higher for DTA

reviews than for those of treatment, in support of hypothesis A (and hypothesis

C in the case of an increased number of raw search results). This demonstrates a

significant increase in the required workload for systematic reviews of diagnostic

test accuracy. In addition, very strong evidence is obtained in support of hy-

pothesis B. However, the p-values obtained for both the number of included and

full-text articles retrieved as a percentage of the total search results were insuffi-

cient to ascertain a statistically significant difference between the means for DTA

and treatment reviews.

As reported in Table 3.5 and 3.6, the standard deviation for all results is quite

large. In addition, our analysis is limited in that only 13 completed Cochrane DTA

reviews existed as on the search date. This small sample size, combined with the

large standard deviations results in relatively low power. There is a possibility that

the negative results reported for the included and full-text articles as a percentage

of total search results were type II errors. This possibility is enhanced by the

relatively large magnitude of the differences in sample means (see Table 3.5). Of

course, it is impossible to say for certain until more data is available.

The authors note that while the analysis does not support the claim of sub-

optimal metadata for DTA reviews, such a claim is not new and is supported

by previously published literature. In addition to the lack of a definitive MeSH

term for DTA studies, the Cochrane Handbook for reviews of DTA studies [36]

notes that many index and reference tests employed during DTA studies have no
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corresponding MeSH term. From the handbook: a “database of names used to

describe index tests and reference standards is being built”. However it is not

complete as yet and due to the size of databases like MEDLINE and EMBASE,

it is unlikely to be able to be applied retrospectively.

The reported results (summarized in Table 3.7) combined with the substantial

difference in observed effect sizes lead us to conclude that the analysis supports

the claim that DTA reviews present additional IR challenges. The magnitude of

the difference in effect sizes is of particular importance as it implies a practical

difference in the level of effort required for DTA and treatment reviews. We note

the limitations of the study due to the small sample size of available DTA reviews.

Further analysis needs to be done when more data is available.

It is interesting to note that the expected manifestations of hypothesis B (in-

creased target class heterogeneity) could be said to drive the expected increase in

workload during stage 2 screening described in hypothesis A. Similarly, hypothesis

C (sub-optimal meta-data) could be said to drive the increased workload in stage

1. This provides an interesting guide to any future work on the application of clas-

sifications to diagnostic reviews; by addressing these challenges the comparative

difficulty of DTA reviews can be reduced.

We would also like to note that the hypotheses discussed in this chapter could

have additional manifestations throughout the review in addition to those in the

literature search and screening stages. For example, the increased range of study

designs and analysis methodologies (hypothesis B) could lead to increased diffi-

culty in performing or interpreting any subsequent meta-analysis. As the focus

of this work is the literature search/screening stages of DTA reviews (and due to

the inability to observe such manifestations in our data) we do not consider such

manifestations in our work, however such a study in future may be interesting.
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3.3 Summary

We demonstrate an increase in practical difficulty when screening literature for

DTA reviews as compared to treatment. In addition, some potential causes for

this additional difficulty are presented. Three main conclusions can be drawn from

this study with respect to diagnostic review literature searches:

1. The overall reviewer workload during literature screening is higher for DTA

reviews than for treatment. This is evidenced by the larger number of cita-

tions obtained at each stage of the literature screening process.

2. The target class of studies included in DTA reviews is broader than the

corresponding class for reviews of treatment. This is evidenced by the lower

number of included studies as a percentage of full-text articles screened.

3. We obtain partial statistical evidence to support claims of the relative unsuit-

ability of available meta-data for DTA reviews. We observe a significantly

greater number of studies retrieved for screening, however do not observe

a statistically significant difference when considered as a percentage of in-

cluded studies.

Of particular note is the broader target class for studies of diagnostic test ac-

curacy. As classification for systematic review literature screening requires perfect

recall, it requires the classifier to generate a model encompassing the entire target

class. However, due to the imbalanced data problem any classifier for systematic

reviews will naturally have a tendency to bias toward the non-target class. As

such, methods must be developed that are very robust to a heterogeneous target

class despite imbalanced training data.

Despite specific examples of deficiencies in available meta-data for diagnostic

studies (e.g. the lack of a MeSH term for diagnostic test accuracy studies [107]),

we failed to find sufficient evidence of the corresponding manifestations in the

study data. While we hypothesise that this is likely due to poor statistical power
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caused by the small available sample size, we obviously cannot draw any conclu-

sions without supporting evidence. Such evidence would imply a greater level of

class imbalance when classifying studies for diagnostic reviews when compared to

reviews of interventions. A future analysis with higher statistical power would be

of great interest.

Finally, we would like to highlight the utility of the results reported in this

chapter for fields outside the domain of automated classification. As noted at the

beginning of this chapter, while it is generally accepted that the literature search

and screening stages for diagnostic reviews are more complex than for those of

treatment, to the best of our knowledge this is the first formal study of the effects

on overall workload. Such data could be of interest when authors are planning

reviews, for example to aid in determining appropriate resource allocation to a

project.



Chapter 4

Excluding Irrelevant Studies

using Annotation from Earlier

Screening Stages

Building classifiers for systematic reviews literature screening requires building

extremely high recall classifiers with highly imbalanced training data. Despite this

challenge, existing approaches have shown some promise in correctly identifying

relevant studies [32, 83, 103, 100]. However authors such as Cohen [18] and Matwin

et al. [66] have noted that improvements still need to be made for reviews with

particularly few relevant studies. A recent study in 2015 by Rathbone et al. [83]

evaluating Abstrackr [101, 100] also noted that while performance was generally

very good, errors would still be made with certain reviews.

Imbalanced training data is an acknowledged problem when building classifiers

for systematic review literature screening. In chapter 3, we noted that certain

sub-fields of systematic reviews exist for which the data imbalance problem is

even more pronounced. For one such class (diagnostic test accuracy reviews) we

empirically validated this assertion. Among the causes for this include increased

heterogeneity of the target class of relevant studies (with respect to the more

traditional reviews of interventions), and relatively poor meta-data for studies in

51
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popular databases.

A requirement for any classifier used to screen studies for systematic reviews

is that it achieve perfect (or near perfect) recall on the target class. In the former

case, this amounts to building a highly accurate model of the entire class of relevant

studies. Intuitively, we can see that the difficulty of this task increases with the

heterogeneity of the target class.

This task is further complicated as the number of relevant studies decreases as

a percentage of studies screened (due to the imbalanced training data problem).

This decrease is a direct consequence of the relatively poor quality meta-data.

Indeed, the aforementioned study by Rathbone et al. [83] attributes several stud-

ies misclassified by Abstrackr to high data imbalance. Clearly opportunities for

further improvements exist. As the popularity of diagnostic (or indeed other chal-

lenging fields such as aetiology) reviews increases, automated screening systems

will need to be improved to cope with the additional challenges.

This chapter proposes a novel approach for partial automation of systematic

review literature searches. Rather than focus on the more challenging task of

identifying relevant citations with perfect recall, we instead invert the task and

attempt to identify subsections of irrelevant articles with perfect precision. Our

approach utilises annotations made during an initial title only based screening.

Although not universally applied, many authors choose to perform the additional

screening stage with evidence suggesting it can improve the overall efficiency of

the search [64]. We propose to leverage annotations made during the initial title

based screening to remove additional articles prior to screening based on title and

abstract. This not only integrates seamlessly with existing screening practices,

but is complementary to existing work on automated screening such as that of

Wallace et al. [101, 100]. As the classifier is trained using annotations made

in previous screening stages, it could be applied prior to the application of an

alternate system. To the best of our knowledge, this is the first time classifiers

for systematic reviews have been trained using annotations from prior screening
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stages.

The rest of this chapter is structured as follows. Section 4.1 provides a review of

the systematic review literature search process and requirements for classification

algorithms. The effects of a heterogeneous target class on classification for system-

atic reviews is then discussed in section 4.2, and a recap of the multi-stage triage

process used for literature screening is provided in section 4.3. These sections also

provide proposals for modifying the literature screening process. These propos-

als are combined and a novel algorithm for semi-automated literature screening

is presented and discussed in detail in section 4.4. Finally an evaluation of the

proposed approach on real data is given in section 4.5, and conclusions are drawn

in section 5.5.

4.1 Requirements for Automated Screening

In chapter 2 we discussed systematic reviews and the major issues concerning

the automation of their literature searches. Two major requirements were raised

that need to be considered by any prospective algorithms: the need to guarantee

suitable recall over the class of relevant citations, and how the classifier should be

trained and integrated into the literature screening process.

In the former case, any classification algorithm is required to achieve extremely

high recall on relevant citations. Although potentially mitigated by the process

with which assigned labels are used in excluding citations, there is a high cost

associated with false negatives. This is made even more challenging due to issues

such as imbalanced training data and broadly defined target classes (see chapter

3). Human reviewers are willing to spend substantial effort in manually screening

citations. If a system misses relevant work then reviewers are unlikely to use it

regardless of any expected workload savings [83].
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In practice however, we note that even the best human reviewers make mis-

takes. Typically, this is mitigated by having multiple reviewers screen each indi-

vidual citation. In the event that a prospective classifier were to be used in place

of a single reviewer, then the goal instead becomes to replicate the recall of a

human annotator.

Evaluating the performance of a human reviewer to generate a target recall

is challenging. Reviewer error rates are likely to vary across clinical domain, as

well as by reviewer experience and even individual reviews. We are aware of

no comprehensive study to date which addresses this issue. As such, previous

literature [21, 65] has often used a proxy value of 95%.

As mentioned above, the method with which the classifier will be included

into the screening process can aid in ensuring recall is maximised. Although

using a classifier as an exclusive annotator to screen a subset of citations has

been considered [83], most researchers have considered classification as a potential

replacement for a single reviewer [80, 33].

In addition to reviewer overhead, the method by which training data is obtained

and employed will modify the screening process for reviewers. It is desirable that

as little overhead as possible be required of human reviewers when using any

prospective system. Additional annotation time, or modifications to established

procedures can act as a barrier to practical use. While users would obviously

be motivated to use new systems if sufficient workload savings can be achieved,

minimisation of disruption to existing processes is still desirable.

Similar to the above goal of minimising disruption to existing processes is the

desire for white-box, deterministic classifiers. A white-box classifier is one where

the learned process for assigning labels to instances can be viewed and interpreted

by a human user. A deterministic classifier is one where application of a given

algorithm to identical sets of data will always produce the same result.

That human reviewers are willing to spend literally months to years screening

citations to ensure all relevant work is included is indicative of the importance of
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accurate literature searches. As above, while reviewers can always be persuaded

by sufficiently comprehensive evaluation, reviewers are reluctant to give up manual

control. Again, white-box, deterministic classifiers are desirable.

We can now state a list of criteria against which to measure classification

algorithms for systematic reviews, and which we use as goals in the following

work. The list contains both major and minor criteria; major criteria are those

which must be met, with minor being those which are desirable but not essential.

Major Requirements:

� Perfect (or near perfect) recall over relevant studies must be achieved.

Minor Requirements:

� Classifiers should ideally minimise disruption to the existing process.

� Classifiers should ideally be white-box.

� Classifiers should ideally be deterministic.

4.2 Target-Class Heterogeneity

In chapter 3 we established the existence of sub-classes within the systematic

review literature screening problem for which it is even more difficult than normal

to model the target class of relevant citations. Specifically, diagnostic test accuracy

reviews were found to include a broader range of studies when compared to more

traditional reviews of treatment. Existing challenges such as the data imbalance

problem already complicate accurately modelling relevant studies for systematic

reviews. The increasing prevalence of diagnostic reviews necessitates development

of methods for dealing with these additional challenges.

In this section, we propose to address concerns relating to heterogeneous target

classes by exploiting the relationship between precision and recall for two class

classification problems. Essentially, we recast the problem of modelling relevant
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Figure 4.1: Confusion matrix for two class classification task with labels X and Y.

citations with high recall to instead model irrelevant citations with high precision.

We summarise this relationship in section 4.2.1. We then describe how we apply

it to the problem of systematic review literature screening in section 4.2.2.

4.2.1 Precision vs. Recall for Two Class Classifiers

For two class classification problems, we consider the task of maximising precision

on one class under the constraint of perfect recall. A duality exists between this

task and maximising recall on the second class under the constraint of perfect

precision. This can be seen using the following example.

Figure 4.1 shows a confusion matrix for a two class classifier, where instances

are assigned as a label either X or Y. In this figure, the number of true positives

for class X is denoted a, true negative as d, false positives c, and false negatives

b. The precision and recall for each class can be computed as follows:

precisionX =
a

a + c
(4.1)

recallY =
d

d+ c
(4.2)
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Figure 4.2: Duality between precision and recall for two class classification prob-
lems.

recallX =
a

a + b
(4.3)

precisionY =
d

d+ b
(4.4)

We can see that any errors in the precision for class X or recall for class Y arise

solely from the number of instances in cell c. The requirement that precision for

class X and recall for class Y be equal one is satisfied if and only if the value in

cell c is 0. A similar observation can be made with cell b regarding precision for

class Y and recall for class X.

Maximising precision for one class and recall for the other therefore requires

minimising the same type of error. It follows that a classifier may have perfect

recall on one class if and only if it has perfect precision on the other. Similarly,

with every misclassification that decreases recall on the first class, precision on

the second will also decrease.

We further demonstrate this relationship by considering Figure 4.2. Assume

the existence of some hypothetical data with two underlying classes, represented

by the horizontal rectangle. The left section of the rectangle (coloured blue)

represents those instances whose ground truth label is the target class. The right

section (coloured green) represents those instances belonging to the alternate,
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non-target class.

Our goal is to produce a classifier which models the target class with near-

perfect recall, and maximises precision under this constraint. We can represent

our classifier using a vertical line through the set of non-target instances. All

instances to the right of the line are correctly classified as belonging to the non-

target class. Instances to the left are classified as belonging to the target class.

The perfect classifier in Figure 4.2 is one where the vertical line is positioned

directly over the boundary between target and non-target instances. As the line

moves to the right, our precision over target instances decreases, as does our recall

over non-target instances. If we bring the line back to the left, we increase both

the precision over target instances, and recall over non-target instances. Moving

the line to the left of the ideal boundary violates the requirement for perfect recall

over target instances, and precision over non-target instances.

We note that for many problems the cost of violating the recall constraint on

the target class far outweighs the cost of any decrease in precision. In such a case,

we contend that it is attractive to model the non-target class with high precision.

Under a requirement for perfect recall on the target class, we can see that

modelling the target class with high precision is equivalent to the task of modelling

the non-target class with high recall. Errors in recall will be produced as we

attempt to model the correct boundary between target and non-target instances.

An alternate approach however is to attempt to generate high precision models of

the non-target class by building classifiers for subsets.

Consider the shaded region of the non-target instances in Figure 4.2. This

region is a subset of the non-target class. By modelling such a region, our errors

are likely to fall around the boundary between this subset and other, non-target

instances. False negatives do not impact the recall over the actual target class.

Similarly, false positives are likely to still belong to the non-target class as a whole.

Hence they are also unlikely to violate the condition of perfect recall over the target

class.
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4.2.2 Inverting the Classification Task

The relationship between precision and recall described above allows us to avoid

modelling the entire domain of relevant citations. While modelling all non-relevant

citations is an identical (and equivalently difficult) problem, we can focus instead

on subsets of non-relevant studies. By identifying coherent groups of non-relevant

studies and developing high precision models, we can then effectively and confi-

dently prune citations without the need (or with reduced need) for human inter-

vention.

This approach has some similarity to the idea of clinical queries filters [52,

59, 85], or classifying citations based on quality [8]. A key difference is that such

filters allow a user to identify re-usable classes of studies (for example randomised

controlled trials, diagnostic studies etc.) which are often used in screening for

multiple reviews. Our aim is to develop a methodology for training domain specific

filters for specific reviews. In addition, methodological filters are often used to limit

search results based on requirements for relevant studies, being applied to keep

only those studies meeting some pre-set requirement. As discussed above, our goal

is to model non-relevant, rather than relevant citations.

The question of how to select subsets of irrelevant studies for classification

must now be considered. One possibility would be to apply unsupervised learning

to cluster a set of non-relevant citations, grouping them into conceptually separate

topics for classification. One complication with this approach is that it requires

human intervention to label a sufficiently large set of citations before the algorithm

can be trained and applied. An alternative approach that has no such drawback

is outlined in section 4.3.
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4.3 The Multi-stage Literature Screening Pro-

cess

Literature screening for systematic reviews is typically conducted as a multistage

triage process (see section 2.2.1.3 for a more detailed treatment of the literature

screening process). After a highly sensitive search over multiple databases is con-

ducted, multiple reviewers will first screen all citations on title, then title and

abstract, and finally full-text, removing those which can confidently be considered

as outside the scope of the review at each stage.

The reasons for a study being excluded during screening can vary according

to the stage at which they are removed. A study might be removed based on title

due addressing the wrong population or condition (e.g. allergic aspergillosis as

opposed to invasive aspergillosis). Reasons for removing studies at later stages of

the screening process may include more detailed questions relating to study design

or data reporting.

It is also possible that a study could be removed at a later stage of the review

for reasons commonly applied at an earlier stage. A study may survive screening

based on title due to ambiguity concerning the exact condition under investigation,

but be readily excluded once the abstract is examined. For example, Methley et

al. note that many titles omit important descriptive keywords [70].

The identification of studies which fail to be removed at prior screening stages

is one that can be exploited in combination with our previously stated goal of

modelling non-relevant studies with high precision. The remainder of this section

outlines how annotations from prior literature screening stages can be leveraged

to train a classifier for this purpose.

At the start of a given screening stage (with the exception of the first), we are

in possession of the following data:

1. A set of citations labelled as not relevant to the review

2. A set of as yet unlabelled citations that will be removed for the same reason
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as a study in the previous stage

3. A set of citations that will be removed for other reasons

4. A set of citations which will not be removed

The citations that have been labelled as not relevant were so labelled with less

information than is now available. For example, at the beginning of the abstract

screening stage, all removed citations must have been removed based on title alone.

As discussed above, it is possible that citations in the second set will exist that are

very similar to some of the already excluded citations. Rather than require human

annotators to identify these studies manually, we would like to employ supervised

learning techniques to do so automatically.

Although the labels for excluded citations were applied using title alone, the

classification algorithm need not be bound by such a restriction. We propose

that citations in the second set can be identified by training a classifier based on

the labels applied in the previous stage, and representing citations using features

derived based on title and abstract.

4.4 Classification Rules

This section outlines the algorithm used to generate the rule based classifier used

to exclude irrelevant studies. The algorithm is broken down into three major

steps, each of which is described in detail below. First, titles and abstracts are

obtained for all citations, preprocessing is applied and features are extracted.

Secondly, separate training and evaluation sets are generated. Finally the rule

generation algorithm is applied to the training data to build the classifier. A

graphical summary of this process is presented in Figure 4.3.

At several points in the rule generation process we note multiple possible

choices that exist. These alternate courses of action are summarised in section
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4.4.4. A sensitivity analysis examining the performance of the various approaches

is performed in section 4.5.3, which is used to recommend a single approach.

4.4.1 Selecting the Training Data

In section 4.2 we discussed systematic review classification, and outlined the utility

of inverting the problem and identifying irrelevant citations with high precision.

Section 4.3 noted the failure of existing methods to adequately consider annota-

tions from prior literature screening stages. We now show that these two obser-

vations can be combined to produce a novel approach toward semi-automation of

the systematic review literature screening process.

As discussed in section 4.3, citations removed in a given screening stage can

be divided into two groups. The first covers those citations that are removed

for similar or identical reasons to citations removed in prior stages, but were not

previously removed due to lack of evidence in title. The second is those citations

that will be removed for reasons not previously used to prune citations. In the

latter case, we have no way to identify such citations without input from a human

oracle. In the first case however, we note that due to the annotations made in the

previous stage we are already in possession of a number of citations which have

been labelled as not being relevant to the topic of the review.

We propose to use this labelled data to train a classifier to exclude additional

irrelevant citations. This process will work by training the classifier on the full

set of citations screened in stage 0, with the target class being those citations

that were excluded. However instead of extracting features exclusively from the

titles (similar to the reviewers task in assigning the initial annotations), we extract

features from both the title and abstract. Essentially, we aim to identify studies

excluded for the same reasons as citations in stage 0 where the relevant features

are present in the abstract. A graphical representation of this approach is outlined

in Figure 4.4.

When training the classifier, it is important that the generated rules are not
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Stage 0 Excludes Stage 0 Includes

Segment Documents

Retrieve Abstracts

Metamap

Concept Extraction

MeSH Based Pruning

Select Training Data

Train Model

Apply Classifier

Non-Target Class

Target Class

Figure 4.3: Summary of the rule generation process.
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Stage 0 (Title)

Stage 1 (Abstract)
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Screens Abstracts

Merge AbstractsExcluded
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Include

Exclude
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Figure 4.4: Modified screening process for stage 1 utilising annotations from stage
0.

so specific that they do not match any citations not removed based exclusively on

title. Similarly it is crucial that they are sufficiently specific that they produce

an acceptable error rate. The modified classification pipeline shown in Figure 4.4

requires two sets of citations to be input. The first is the training set, which

consists of two subsets with citations labelled as either irrelevant or potentially

relevant. The second is the test set, which is the citations that are to be screened

by the classifier.

Two possibilities exist to guarantee that appropriate precision is achieved in
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identifying non-relevant citations. The first involves tuning precision as a parame-

ter of the rule mining algorithm. If this approach is taken, then care must be taken

both to select a sufficiently strict setting to avoid erroneously excluding relevant

studies, and to select a sufficiently loose setting so as to produce a non-zero work

saving.

Alternatively, we can train rules on a different set of data, adding more at the

test stage to increase the probability of a match. Rule mining could be performed

based on the title and abstract from excluded citations, but only the titles from

citations which have not yet been excluded. By using this reduced training data

and developing sufficiently precise rules, we would aim to generate a highly accu-

rate model of non-relevant citations which could then be matched based on the

abstracts of as yet unlabelled studies.

We note that removing data when training the classifier has the potential to

negatively impact performance. Without sufficient counter examples, the model

for the target class of non-relevant citations could be overly general. Whether

or not a sufficiently precise model can be trained requires evaluation, which we

perform in section 4.5.3.

4.4.2 Feature Extraction

We now present an overview of the preprocessing steps used to generate descriptive

features from citations. As such, a rule might be created indicating a citation

should be excluded if it contains the words allergic and aspergillosis. Consider the

sample abstract from the Aspergillosis data shown in Figure 4.5 (which a human

author considered relevant to the review). Such a rule would exclude this abstract

as it contains both the terms allergic and aspergillosis. However all occurrences

of aspergillosis co-occur with the term invasive (indicating relevance), and have

no direct link to the single occurrence of the term allergic.

To address this, we consider whether or not citations should be segmented into

individual sentences before features extraction. If we choose to work with citations
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Mycoserological tests in the diagnosis of invasive aspergillosis . [Pol-
ish] Introduction: Long lasting exposure to Aspergillus antigens may
result in allergic diseases and, in immunocompromised persons, in
deep infections. The lack of distinctive symptoms and signs of invasive
aspergillosis as well as doubtful value of culture make mycoserolog-
ical tests essential in the diagnostics of systemic aspergillosis . Ob-
jective: The purpose of this article was: I) a retrospective evaluation
of the results of mycoserological tests performed in patients suspected
of systemic mycosis at our Department in the years 2002-2006. II) a
comparison of various serological methods applied in the laboratory
diagnostics of invasive aspergillosis . Material and methods: A total
of 1086 serum samples from patients suspected of generalized mycosis
were tested using: indirect haemagglutination test (IHA), double dif-
fusion (DD), and latex agglutination (LA). The diagnostic usefulness
of those tests was compared with reported data concerning enzyme
immunoassay (EIA). Results: Antibodies against Aspergillus were de-
tected in 226 positive tests results (20.8%) in IHA (titre >=1:160) and
in 264 positive ones (24.3%) in DD. Circulating fungal antigen galac-
tomannan was detected considerably less frequently than antibodies -
positive LA tests were obtained only in 50 out of 1086 (4.60%) serum
samples. Conclusions: It appears that enzyme immunoassay (EIA) is
the most useful mycoserological method in the early diagnosis of in-
vasive aspergillosis because of its high sensitivity in detecting both
fungal antigen and specific antibody against Aspergillus in serum. Now
that it is not available at our institution, the best solution is simulta-
neous use of IHA, DD and LA. Copyright 2007 Cornetis

Figure 4.5: Sample abstract from the Aspergillosis data. Occurrences of the words
allergic and aspergillosis are highlighted.
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as entire documents, then a single set of features is extracted for a given title and

abstract. When building the classifier this set of features is then presented to the

training algorithm as a single instance. In the case where we segment citations

into sentences, we extract a separate set of features for each sentence in a citation.

Each set of features is then annotated with the label of the citation to which it

belongs, and is presented to the training algorithm as a separate instance. When

applying the complete classifier, a citation is said to match a rule if that rule

matches at least one of its constituent sentences.

To tokenise sentences we use the sent tokenizer method for NLTKs default

tokeniser (nltk.tokenize.sent tokenize). Our data contained several titles which

contained multiple sentences. In this case titles were not tokenised (so all titles

were treated as a single sentence).

Finally, we note that that segmenting citations into sentences will not neces-

sarily guarantee an improvement in performance, and the effect of such a choice

should be evaluated. The effect of segmenting citations into sentences or process-

ing them as entire documents is examined as part of the sensitivity analysis in

section 4.5.3.

4.4.2.1 Concept Extraction and Pruning

Instances (documents or sentences) are then transformed into feature vectors used

to train the classifier. This was accomplished by mapping instances to relevant

concepts from the UMLS ontology [14]. UMLS is a curated vocabulary of medical

terms maintained by the US National Library of Medicine (NLM), containing over

2 million terms for 900,000 concepts.

To map instances to concepts we used the publicly available (under license)

MetaMap tool [9]. Metamap has been widely used within biomedical classification

literature [17, 39, 97]. It provides a highly configurable tool to parse biomedical

text and map concepts into the UMLS ontology. Figure 4.6 shows a sample of

fielded metamap output.



CHAPTER 4. EXCLUDING IRRELEVANT STUDIES 68

00000000—MMI—22.35—diagnosis aspect—C1704338—[qlco]—[”diagnosis”-tx-1-”diagnosis”-noun-0]—TX—67:9—x.x.x.x.x.x.x
00000000—MMI—16.18—Hypersensitivity skin testing—C0037296—[diap]—[”SKIN TESTS”-tx-1-”skin tests”-noun-0]—TX—49:10—E01.370.225.812.871;E05.200.812.871;E05.478.594.890
00000000—MMI—9.75—Lung Diseases, Fungal—C0024116—[dsyn]—[”pulmonary mycoses”-tx-1-”pulmonary mycoses”-noun-0]—TX—80:17—C01.703.534;C08.381.472;C08.730.435

00000000—MMI—3.53—immunological status—C0599818—[lbpr]—[”immunological status”-tx-1-”status immunologic”-noun-0]—TX—12:63̂3:11—
00000000—MMI—3.43—Current (present time)—C0521116—[tmco]—[”CURRENT”-tx-1-”current”-adj-0]—TX—4:7—
00000000—MMI—3.43—Electrical Current—C1705970—[npop]—[”Current”-tx-1-”current”-adj-0]—TX—4:7—
00000000—MMI—3.43—Serologic—C0205473—[ftcn]—[”Serologic”-tx-1-”serologic”-adj-0]—TX—22:9—
00000000—MMI—3.42—Diagnosis—C0011900—[fndg]—[”DIAGNOSIS”-tx-1-”diagnosis”-noun-0]—TX—67:9—E01
00000000—MMI—3.42—Diagnosis Study—C1704656—[resa]—[”DIAGNOSIS”-tx-1-”diagnosis”-noun-0]—TX—67:9—

Figure 4.6: Sample fielded MetaMap indexing output for the sentence ”The current
status of serologic, immunologic and skin tests in the diagnosis of pulmonary
mycoses.”

Aspergillosis Alzheimers

MeSH 3661 22035

UMLS 7158 12107

Table 4.1: Number of features generated using entire UMLS ontology vs. MeSH

UMLS contains concepts from a wide range of vocabularies, some of which are

less useful for classification. Using the full UMLS ontology to generate features

also complicates the rule generation process, as association rule mining generally

scales poorly as the number of features is increased. In order to limit the number

of features to a manageable size, we only use those features which are present

in MeSH (the US NLM’s vocabulary for indexing biomedical literature in MED-

LINE). For two tested datasets (see section 4.5.1) this was found to reduce the

number of generated feature by roughly two thirds. Table 4.1 shows the number

of features computed using MeSH headings vs. the entire UMLS vocabulary.

For a single MeSH concept, it is possible that multiple possible terms could be

used to indicate its relevance to a piece of text. For example, the high level MeSH

code Diagnosis (E01) contains the following additional entry terms:

� Antemortem Diagnosis

� Diagnoses and Examinations

� Examinations and Diagnoses

� Postmortem Diagnosis
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Although organised together as a single conceptual entity in MeSH, each of the

above entry terms constitutes a separate concept in the UMLS metathesaurous.

As we limit our analysis to use those concepts which appear in MeSH, we can

account for the polysemous nature of UMLS concepts by merging entry terms

where possible. However, this has the potential to cause errors where a single

MeSH heading contains two entry terms that describe concepts we with to consider

separately (for example, it may not be appropriate to merge postmortem and

antemortem diagnosis). An evaluation of the effect of merging entry terms is

reported in section 4.5.3.

4.4.3 Training the Model

Once features have been extracted and an appropriate training set created, we

train the classifier. We have elected to use a rule based approach in our work.

This is to meet the desire for a white-box approach as outlined in section 4.1.

We note here that our approach is not specific to any single algorithm however,

and the rule based approach employed in this work could be substituted for an

alternative algorithm to model non-relevant citations if desired.

We identify rules using statistical significance based on Fisher’s Exact Test

as a measure of rule quality. Instances are treated as a bag-of-words over all

extracted features, and association rules are mined between combinations of de-

scriptive features and a label indicating whether a citation was excluded based on

title.

We generate classification rules by applying Hämäläinen’s Kingfisher [41] algo-

rithm with a fixed consequent. The Kingfisher algorithm uses a branch and bound

approach over the search space of possible rules. It computes lower bounds on the

P-value for rules at a given node, and employs an efficient method of propagating

knowledge about when subtrees can be pruned to efficiently generate rules. A

more detailed treatment of rule mining and the Kingfisher algorithm is given in

chapter 5. A modified version of the algorithm is also presented in section 5.3.
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In addition to the P-value threshold parameter, we also modify the Kingfisher

algorithm to utilise a confidence threshold for valid rules. The purpose is to allow

users to tune to rules to guarantee a suitably precise model of excluded citations

is developed. For a given association rule X ⇒ Z, confidence is defined to be

the frequency of combined feature set XZ divided by the frequency of X . For

classification rules, confidence is equivalent to precision. This gives two algorithmic

parameters that require tuning: minimum confidence and the goodness threshold

for rules. Choices for these parameters are discussed further in section 4.5.4.

4.4.4 Summary

This section outlined the preprocessing and rule extraction process used to gener-

ate and apply classification rules to identify irrelevant citations. The approach is

novel both for its focus on excluding irrelevant citations with high precision, and

for its use of reviewer annotations from prior screening stages to inform decisions

later on in the screening process.

Figure 4.7 compares the title and abstract stages of a traditional literature

screening process for systematic reviews against one including the proposed algo-

rithm. It is interesting to note two things, firstly the data and annotations input

to the training algorithm are all generated prior to any abstract based screening

by either reviewer. This is useful in that there appears to be no change in the

process from the perspective of the human reviewers. The only difference is that

reviewer 1 receives a different, smaller set of citations than reviewer 2 for screening

based on abstract.

Secondly, the application of our classifier prior to abstract based screening by

human reviewers suggests that our approach would integrate well with existing

work by authors such as Frunza et al. [32] or [101]. These algorithms rely on

authors annotating a set of abstracts prior to the application of a classifier. Our

algorithm could be used as a preprocessing step to reduce the overall number of

abstracts for screening, after which annotations could be sought as appropriate
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Figure 4.7: Comparison of the traditional and modified screening processes for
stage 0 and 1 screening.

and alternative algorithms applied.

Excluding parameters of the rule generation algorithm, there are three points in

the process where multiple courses of action are available; the level of segmentation

used, choice of features, and the choice of training data. A brief summary of each

is as follows:

Segmentation Level Classification rules for irrelevant citations can either be

extracted at a document or sentence level. If rules are extracted at a docu-

ment level, a rule will be considered to match a citation if all terms in the

rule antecedent appear somewhere in the citation. If rules are extracted at

a sentence level, terms from the antecedent must occur together in a single

sentence. Training data is created by segmenting each citation, and labelling

each sentence with the reviewer annotation of the citation to which it be-

longs. After rules have been generated, a citation is then excluded if at least

one of its sentences match a rule.

Feature Selection Fielded MMI output returns a number of UMLS concepts
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related to the input data. For each concept we are given a preferred name,

along with a set of tree codes for concepts which are also found in MeSH (any

concepts which are not also present in MeSH are pruned). A single MeSH

heading may map to multiple UMLS concepts. Features can be generated

either by using the UMLS concept preferred names, or the tree codes associ-

ated with the relevant MeSH concept. We evaluate document representation

using tree codes versus concept names in our evaluation.

Training Data The rational behind the classification approach presented in this

chapter involves modelling irrelevant citations using abstract data which

was not available to reviewers in the first screening stage. The abstract data

for irrelevant citations should therefore be involved when training the rules,

however it is unclear how to use abstract data for citations which have not

yet been excluded. Including abstract data for all studies when training rules

risks generating rules that are too specific and will not match any additional

studies. Excluding abstract data increases the chance that more citations

will be matched, but may decrease the quality of the generated rules.

As part of the evaluation given in section 4.5, a sensitivity analysis is per-

formed examining the effect of each of the above choices. The result of this is a

recommendation for each, which is then used to evaluate both the parameters of

the rule extraction algorithm and the potential workload savings of the approach

described in this chapter.

4.5 Evaluation

In this section we present an evaluation of the performance of the algorithm de-

scribed earlier in this chapter. We do so by simulating its application on two

real systematic reviews. Details on each review are given in section 4.5.1, and

evaluation metrics are described in section 4.5.2.
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Review Stage
Aspergillosis Alzheimers

# Citations at start # Citations Removed # Citations at start Citations Removed

Stage 0 (Titles only) 4377 3412 (79.0%) 2097 556 (26.5%)

Stage 1 (Abstracts) 965 818 (96.6%) 1541 -

Stage 2 (Full-text) 147 60 (98.0%) - 1393 (92.9%)

Data Extraction 87 40 (99.1%) 148 0 (92.9%)

Table 4.2: Summary of data used for the evaluation in chapter 4.

The algorithm described in section 4.4 has several parameters, including choice

of features, training methodology, and training data. The trade-offs involved with

these parameters are examined in section 4.5.3. Parameters of the rule generation

algorithm (goodness threshold and minimum rule confidence) are examined in

section 4.5.4. The final workload savings are then covered in section 4.5.5.

4.5.1 Data Collection

The systematic review data used in this chapter was drawn from the literature

searches for two Cochrane reviews: Galactomannan detection for invasive as-

pergillosis in imumunocompromized patients by Leeflang et al. [57], and an un-

published review on the accuracy of diagnostic biomarkers for Alzheimers disease.

A list of citations obtained, along with corresponding annotations, during an up-

dated literature search for the above review were kindly provided by the review

authors. Citations were annotated with the final review decision for each stage

(although references were screened by multiple reviewers, individual reviewer an-

notations are not relevant to the methodology described in this chapter).

We refer to the two data sets as Aspergillosis and Alzheimers respectively. The

number of citations retrieved and their movement through the screening process

is summarised in Table 4.2.

The literature search process for the Aspergillosis data covered screening of

citations retrieved from three databases (Medline, Embase, and Web of Knowl-

edge). After duplicates were removed from the combined search results, titles
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were screened by a single author to remove obviously irrelevant citations. Two

authors then screened the remaining abstracts and removed any citations which

they agreed were not relevant to the final review. This process was then repeated

with full texts for the remaining citations. This resulted in 87 citations which were

considered relevant for inclusion in the review.

A further 47 citations were removed during the data extraction process. Rea-

sons for these further exclusions included things like studies reporting insufficient

data, duplicating results from other studies, or analyses that were based on in-

house tests inappropriate for inclusion in the review. For the purposes of simu-

lating the screening process for the analysis reported in this chapter, we consider

such studies to have been included in the review. This is due to the fact that

we aim to identify citations concerning non-relevant topics. The topics covered in

the above 47 citations were considered relevant; the decision to exclude was made

based upon information to which our classifier would not have access.

The literature search process for the Alzheimers data screened citations re-

trieved from both Medline and Embase. However, as we were only able to obtain

annotations for the Medline portion of the studies, we do not consider citations

found exclusively in Embase. In all, the Medline search returned 2097 studies,

with 1541 abstracts retrieved. That 3/4 of citations remained after title based

screening differs substantially from the Aspergillosis data, where the majority of

citations retrieved were removed at the first stage. Abstracts were screened by two

reviewers, and 148 of the 1541 abstracts retrieved were eventually judged relevant

to the review.

A graphical summary (similar to a PRISMA flowchart [73]) for both datasets

is also presented in Figure 4.8.

4.5.2 Metrics

We now outline the evaluation metrics used in this chapter, and how they relate to

the annotated citations described in section 4.5.1. We start by describing the gold
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Figure 4.8: Citation flow diagram for Aspergillosis and Alzheimers literature
search. Only title based screening and final inclusion annotations were available
for the Alzheimers review data, hence no values are reported for other stages.

standard against which the performance of the proposed approach is measured.

As we are using classifiers where the target class is those citations which are not

relevant to a given review, we also explicitly define the terms true positive, false

positive, false negative, and true negative. Note that as we treat non-relevant

citations as the target class (as opposed to relevant citations), the meaning of the

terms positive and negative in this context are inverted with respect to much of

the existing literature.

Gold Standard We define the gold standard annotations according to the com-

bined decisions of the human reviewers. For the aspergillosis data described

in section 4.5.1, this means we have 4377 total annotations with 87 includes

and 4290 excludes. We measure the performance of our approach against its

ability to replicate these annotations.

True Positive (TP) A true positive classification occurs when a citation is ex-

cluded by both the classifier and the gold standard annotations.
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False Positive (FP) A false positive classification occurs when a citation is ex-

cluded by the classifier but included by the gold standard annotations.

False Negative (FN) A false negative classification occurs when a citation is

included by the classifier but excluded by the gold standard annotations.

True Negative (TN) A true negative classification occurs when a citation is

included by both the classifier and the gold standard annotations.

As discussed earlier, the aim of classification for systematic reviews is to exclude

as many irrelevant citations as possible without removing relevant studies (so

maximising the number of true positives conditioned on having nearly zero false

positives). Therefore, based on the above definitions we employ three separate

evaluation metrics in our analysis; reviewer workload, recall, and precision. In the

discussion throughout this thesis, recall is used to refer to the recall over relevant

citations, and precision refers to precision over non-relevant citations. We use

these definitions unless otherwise specified. We define these metrics as follows:

Reviewer Workload We define the reviewer workload as the percentage of ci-

tations requiring screening by a human reviewer. Referring to the proposed

workflow outlined in Figure 4.7, reviewer workload is defined as the number

of abstracts included by the classifier divided by the total number of ab-

stracts obtained TN+FN
N

. This metric directly reflects the practical benefits

in terms of time saved for human reviewers.

Recall We define the recall to be the percentage of actually relevant citations

retained by the classifier. According to the definitions given above, this is

defined as the number of true negatives divided by the combined number

of true negatives and false positives ( FP
TP+FN

). Note that the sensitivity is

analogous to the recall for relevant citations. We use the term sensitivity in

this case to avoid confusion between recall for relevant citations, and recall

for the classifiers target class (non-relevant citations).
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Precision Precision is defined to be the percentage of citations excluded by the

classifier that are genuinely not relevant to the review ( TP
TP+FP

). Similar to

the logic used for sensitivity, we use the term precision when talking about

the classifiers ability to model its target class (non-relevant citations).

Finally, we consider the question of what exactly constitutes appropriate recall

for a prospective classifier. The goal for any classification algorithm should be to

exclude with recall equivalent to an expert human reviewer. Although individual

reviewers will seek to not exclude any relevant studies, in practice this is unlikely

to be achieved. Even among expert human reviewers, disagreements over the

relevance of individual citations will occur.

To our knowledge there has been no comprehensive study to date examining

error rates for human reviewers. As such, we use a recall level of 95% as our target

for acceptable performance. This threshold is in line with previous, comparable

literature [22].

4.5.3 Sensitivity Analysis

In section 4.4 we outlined the algorithm used to process citations and generate

rules to identify non-relevant studies. We noted three points in the algorithm at

which multiple design choices could to be made; namely the data used to train

the classifier, the features extracted from the data, and the level of segmentation

used before feature extraction from citations. We now evaluate the effect that

each design choice has one the resultant classifier.

For each section, results figures report Log P threshold for valid rules is shown

on the x-axis, with a separate figure created for different minimum confidence

thresholds (0.5, 0.9, 0.95, and 0.98 respectively). The major y-axis (corresponding

to the solid lines) reports the remaining reviewer workload, while the minor y-axis

reports the recall over relevant citations. Each value is reported along with the

95% confidence interval, with values for UMLS concepts reported in red and MeSH
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headings reported in blue. Circled data points indicate a statistically significant

improvement (P=.05) over the comparable data point.

4.5.3.1 Feature Selection

We begin by examining the performance of the two different features types pro-

posed for document representation (as outlined in section 4.4.2.1). Figures 4.9,

4.10, 4.11, and 4.12, 4.13, 4.14, 4.15, and 4.16 compare the reviewer workload and

sensitivity obtained using UMLS concepts vs. MeSH tree codes for a range of pa-

rameterisations of the rule extraction process. Each individual figure displays the

performance for all four combinations of the other algorithmic choices examined

in this section (document vs. sentence level segmentation, and reduced vs. full

training data).

From the values reported, it can been seen that there is very little difference

in performance between the two sets of features. For the Aspergillosis data, there

was no statistically significant difference (P=.05) for any points with a minimum

confidence level of 0.9 or 0.95. For the values with minimum confidence of 0.98,

MeSH headings performed better (although the actual difference in performance

was very small) in several cases and never worse than the UMLS concepts. When

training with a minimum confidence of 0.5, recall over relevant studies was im-

proved for concept names with respect to tree codes in one case, with all other

points reporting no statistically significant difference.

For the Alzheimers data, all tested minimum confidence thresholds resulted

in at least several datapoints for which concept names outperformed tree codes.

Points where tree codes outperformed concept names do exist, however are rela-

tively rare (13/128 instances where concept names were better, and 3/128 where

tree codes were better).

Although the magnitude of the difference was not particularly great, concept

names appeared to slightly outperform tree codes over the tested data and param-

eters. The effect of replacing concept names with tree codes is that different entry
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Figure 4.9: Sensitivity analysis (reviewer workload and recall vs. goodness thresh-
old) for tree code features vs. MeSH headings with a minimum confidence of 0.5
on Aspergillosis data. Performance is reported for all combinations of segmenta-
tion level (document vs. sentence) and training data (full vs. irrelevant abstracts
only).

terms for the same concept will be merged into a single feature. That the perfor-

mance of concept names as features was better (but still comparable) to that of

tree codes suggests the occasional benefits of accounting for polysemous features

are not sufficient to support merging MeSH entry terms in general. While MeSH

contains a very large number of terms covering a wide range topics, the context

in which various entry terms can be considered to describe the same concept is

likely to differ between reviews. An example of this can be seen in the Alzheimers

data. The MeSH term Diagnosis (tree code E01) contains several entry terms,

among them Antemortem Diagnosis and Postmortem Diagnosis. While in some

contexts the two entry terms could indicate a common concept, a review examin-

ing diagnostic methods for a given disease is likely to want to distinguish between

the two.
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Figure 4.10: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for tree code features vs. MeSH headings with a minimum confidence
of 0.5 on Alzheimers data. Performance is reported for all combinations of seg-
mentation level (document vs. sentence) and training data (full vs. irrelevant
abstracts only).
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Figure 4.11: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for tree code features vs. MeSH headings with a minimum confidence
of 0.9 on Aspergillosis data. Performance is reported for all combinations of seg-
mentation level (document vs. sentence) and training data (full vs. irrelevant
abstracts only).
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Figure 4.12: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for tree code features vs. MeSH headings with a minimum confidence
of 0.9 on Alzheimers data. Performance is reported for all combinations of seg-
mentation level (document vs. sentence) and training data (full vs. irrelevant
abstracts only).
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Figure 4.13: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for tree code features vs. MeSH headings with a minimum confidence
of 0.95 on Aspergillosis data. Performance is reported for all combinations of
segmentation level (document vs. sentence) and training data (full vs. irrelevant
abstracts only).
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Figure 4.14: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for tree code features vs. MeSH headings with a minimum confidence
of 0.95 on Alzheimers data. Performance is reported for all combinations of seg-
mentation level (document vs. sentence) and training data (full vs. irrelevant
abstracts only).
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Figure 4.15: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for tree code features vs. MeSH headings with a minimum confidence
of 0.98 on Aspergillosis data. Performance is reported for all combinations of
segmentation level (document vs. sentence) and training data (full vs. irrelevant
abstracts only).
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Figure 4.16: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for tree code features vs. MeSH headings with a minimum confidence
of 0.98 on Alzheimers data. Performance is reported for all combinations of seg-
mentation level (document vs. sentence) and training data (full vs. irrelevant
abstracts only).
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4.5.3.2 Training Data

Figures 4.17, 4.18, 4.19, 4.20, 4.21, 4.22, 4.23, and 4.24 compare the recall and

remaining workload for rules built using all available data when training against

rules built using titles from all citations, and abstracts only from citations that

were removed based on title alone. For the analysis reported in this section we

refer to the first method as full, and the latter as absonly.

Observing the results when using absonly with document level segmentation

(the first row of subfigures), we can see that absonly performs poorly. In all cases,

recall with absonly and document level segmentation is unacceptably low, often

below 10%. At the same time we can see the reviewer workload is also extremely

low, indicating that combining the absonly training method with document level

segmentation produces rules that match a very large number of citations.

That absonly training performs poorly with document level segmentation is

not surprising. Citations are excluded if they match at least one rule. If rules

are too general they are likely to match a large number of relevant citation in

addition to non-relevant ones, substantially lowering recall. Rules are generated

from training data by identifying features that co-occur regularly in the target

instances. Avoiding overly general rules therefore requires training data with a

sufficient number of counter examples where features that do not indicate non-

relevance also co-occur in the non-target instances.

When using absonly training, we only consider the title part of the non-target

instances (ignoring the text contained in the abstract). This will reduce the chance

of counter examples for terms co-occurring in the target instances. By also us-

ing sentence level segmentation we require that terms co-occur within individual

sentences, rather than anywhere within a citations. This has the effect of low-

ering the number of feature sets examined, reducing the possibility of a spurious

combination of features being tested.

Performance with absonly training data is much better when used with sen-

tence level segmentation. While recall is generally quite low (around 50%) with
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lower goodness (ln(P)) thresholds, recall appears to improve sharply as the strict-

ness of the threshold is increased. Also of particular interest is the lack of variation

in performance of absonly training with sentence level segmentation as the mini-

mum confidence threshold is changed. This is in contrast to training with full data,

which appears to require an appropriately strict confidence threshold in order to

achieve sufficient recall.

It is interesting to note that training with full data generally varies to a much

greater extent as the minimum confidence threshold is varied. For example, look-

ing at the performance on the Aspergillosis data with a low minimum confidence

threshold (such as in Figure 4.17) we can see that recall with full training data

fails to reach 95% recall. As the minimum confidence is increased to 0.9 and 0.95

in figures 4.19 and 4.21 respectively, recall increases sharply, and is much more

consistently above 0.95.

Finally, we note that although both absonly and full training data approach

full workload as minimum confidence and goodness threshold increase, full training

data tends to approach at a slower rate. For example, comparing the performance

with sentence level segmentation (the second row of sub-figures) with a minimum

confidence of 0.95 on the Aspergillosis data (figures 4.21) we can see workload

approaching 1 for absonly training at roughly the same rate recall approaches 1.

In contrast, non-zero workload savings are achieved with full training data for all

tested confidence thresholds.

Similar observations can be made with the Alzheimers data. Looking at the

performance with a minimum confidence of 0.5 (Figure 4.18), we can see that as

the goodness threshold increases, recall with absonly training is always further

from 1 than reviewer workload. Training with full data however still manages

workload savings of greater than 0.05% even when recall is above 0.95%.

It is important to note that the minimum confidence thresholds required to

obtain acceptable recall for the two data sets differ substantially. For example the

Alzheimers data performed poorly with all tested minimum confidence thresholds
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Figure 4.17: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for training with full data vs. irrelevant abstracts only with a min-
imum confidence of 0.5 on Aspergillosis data. Performance is reported for all
combinations of segmentation level (document vs. sentence) and features (tree
codes vs. MeSH headings).

other than 0.5, with rules either failing to generate appropriate recall or generating

very small workload savings.
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Figure 4.18: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for training with full data vs. irrelevant abstracts only with a minimum
confidence of 0.5 on Alzheimers data. Performance is reported for all combinations
of segmentation level (document vs. sentence) and features (tree codes vs. MeSH
headings).



CHAPTER 4. EXCLUDING IRRELEVANT STUDIES 91

Minconf=0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

-26-24-22-20-18-16-14-12-10-8-6-4

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95
 1

R
e
v
ie

w
e
r 

W
o
rk

lo
a
d

R
e
c
a
ll

ln(P)

docs-mheads

 0

 0.2

 0.4

 0.6

 0.8

 1

-26-24-22-20-18-16-14-12-10-8-6-4

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95
 1

R
e
v
ie

w
e
r 

W
o
rk

lo
a
d

R
e
c
a
ll

ln(P)

docs-trcodes

 0

 0.2

 0.4

 0.6

 0.8

 1

-26-24-22-20-18-16-14-12-10-8-6-4

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95
 1

R
e
v
ie

w
e
r 

W
o
rk

lo
a
d

R
e
c
a
ll

ln(P)

sents-mheads

 0

 0.2

 0.4

 0.6

 0.8

 1

-26-24-22-20-18-16-14-12-10-8-6-4

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9
 0.95
 1

R
e
v
ie

w
e
r 

W
o
rk

lo
a
d

R
e
c
a
ll

ln(P)

sents-trcodes

full-Workload full-Recall absonly-Workload absonly-Recall Significant (P=.95)

Figure 4.19: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for training with full data vs. irrelevant abstracts only with a min-
imum confidence of 0.9 on Aspergillosis data. Performance is reported for all
combinations of segmentation level (document vs. sentence) and features (tree
codes vs. MeSH headings).
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Figure 4.20: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for training with full data vs. irrelevant abstracts only with a minimum
confidence of 0.9 on Alzheimers data. Performance is reported for all combinations
of segmentation level (document vs. sentence) and features (tree codes vs. MeSH
headings).
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Figure 4.21: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for training with full data vs. irrelevant abstracts only with a min-
imum confidence of 0.95 on Aspergillosis data. Performance is reported for all
combinations of segmentation level (document vs. sentence) and features (tree
codes vs. MeSH headings).
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Figure 4.22: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for training with full data vs. irrelevant abstracts only with a min-
imum confidence of 0.95 on Alzheimers data. Performance is reported for all
combinations of segmentation level (document vs. sentence) and features (tree
codes vs. MeSH headings).
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Figure 4.23: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for training with full data vs. irrelevant abstracts only with a min-
imum confidence of 0.98 on Aspergillosis data. Performance is reported for all
combinations of segmentation level (document vs. sentence) and features (tree
codes vs. MeSH headings).
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Figure 4.24: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for training with full data vs. irrelevant abstracts only with a min-
imum confidence of 0.98 on Alzheimers data. Performance is reported for all
combinations of segmentation level (document vs. sentence) and features (tree
codes vs. MeSH headings).



CHAPTER 4. EXCLUDING IRRELEVANT STUDIES 97

4.5.3.3 Segmentation Level

Figures 4.25, 4.26, 4.27, and 4.28, 4.29, 4.30, 4.31, and 4.32 compare the reviewer

workload and recall obtained using sentence and document level segmentation.

While the recall produced using document level segmentation depends heavily on

whether or not full training data is being used, sentence level segmentation is

much more consistent (this was discussed in section 4.5.3.2).

It is interesting to note the difference in performance between the two datasets.

For the Alzheimers data, recall for sentence level segmentation is consistently as

good or better than document level segmentation. For training with full data, this

is more apparent with lower minimum confidence values (0.5 and 0.9). Recall for

both methods approaches 1 with higher thresholds, as does remaining reviewer

workload. Training with full data and document level segmentation performs

poorly for reasons discussed in section 4.5.3.2).

However for the Aspergillosis data, performance is more dependent upon min-

imum confidence threshold. At lower confidence thresholds (and with full training

data), document level segmentation appears to generate better recall than sen-

tence level segmentation. Better workload savings are generated with sentence

level segmentation, although in all cases both document and sentence level seg-

mentation fail to generate recall above 0.95. With higher confidence thresholds

both document and sentence level segmentation generate acceptable recall, how-

ever reviewer workload with sentence level segmentation appears to be slightly

lower.
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Figure 4.25: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for document vs. sentence level segmentation with a minimum con-
fidence of 0.5 on Aspergillosis data. Performance is reported for all combinations
of training data (full data vs. irrelevant abstracts only) and features (tree codes
vs. MeSH headings).
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Figure 4.26: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for document vs. sentence level segmentation with a minimum con-
fidence of 0.5 on Alzheimers data. Performance is reported for all combinations
of training data (full data vs. irrelevant abstracts only) and features (tree codes
vs. MeSH headings).
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Figure 4.27: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for document vs. sentence level segmentation with a minimum con-
fidence of 0.9 on Aspergillosis data. Performance is reported for all combinations
of training data (full data vs. irrelevant abstracts only) and features (tree codes
vs. MeSH headings).
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Figure 4.28: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for document vs. sentence level segmentation with a minimum con-
fidence of 0.9 on Alzheimers data. Performance is reported for all combinations
of training data (full data vs. irrelevant abstracts only) and features (tree codes
vs. MeSH headings).
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Figure 4.29: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for document vs. sentence level segmentation with a minimum con-
fidence of 0.95 on Aspergillosis data. Performance is reported for all combinations
of training data (full data vs. irrelevant abstracts only) and features (tree codes
vs. MeSH headings).
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Figure 4.30: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for document vs. sentence level segmentation with a minimum con-
fidence of 0.95 on Alzheimers data. Performance is reported for all combinations
of training data (full data vs. irrelevant abstracts only) and features (tree codes
vs. MeSH headings).
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Figure 4.31: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for document vs. sentence level segmentation with a minimum con-
fidence of 0.98 on Aspergillosis data. Performance is reported for all combinations
of training data (full data vs. irrelevant abstracts only) and features (tree codes
vs. MeSH headings).
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Figure 4.32: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for document vs. sentence level segmentation with a minimum con-
fidence of 0.98 on Alzheimers data. Performance is reported for all combinations
of training data (full data vs. irrelevant abstracts only) and features (tree codes
vs. MeSH headings).
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4.5.3.4 Summary

In the previous sections we analysed the effects of excluding abstracts for the

non-target class during training, UMLS concepts vs. tree codes as features, and

whether or not to segment citations at a document or sentence level.

Firstly, we were able to see that while excluding abstracts from non-target

citations did occasionally result in good performance (with other appropriate pa-

rameter settings), it tended to produce either unacceptable recall or very low

workload savings. Training using full data was in general more consistent than

excluding non-target abstracts.

In the case of UMLS concepts vs. tree codes, it became apparent that for

the tested data there was little to no benefit from using tree codes as opposed to

UMLS concepts.

Sentence level segmentation also tended to outperform document level segmen-

tation. In the case where non-target abstracts were excluded from training this

was due to an inability to effectively model non-target instances. In the case where

full training data was used, sentence level segmentation tended to produce a more

consistent workload saving once a sufficient level of recall was produced.

4.5.4 Rule Generation Parameterisation

Figures 4.33 and 4.34 compare recall and remaining reviewer workload against

goodness threshold for a range of minimum confidence levels. Figure 4.33 re-

ports results on the Aspergillosis data, while Figure 4.34 reports results for the

Alzheimers data. Rules were generated using full training data with UMLS con-

cepts as features and sentence level segmentation (see section 4.4.4). Results were

generated as the average over 5 runs using a random 70% sample of the data to

generate rules. Rule performance was measured on the full set of citations for

which abstracts were obtained.

For all tested confidence levels, the rate at which recall improved with goodness
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Figure 4.33: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for choice of ln(P) threshold on Aspergillosis data.

threshold drops sharply at the third data point. This corresponds to a goodness

threshold P of 0.00001, or ln(P) of -11.513. Recall with the next strictest goodness

threshold (P = 0.000001, ln(P) = -13.816) did not appear to differ, although in

several cases (e.g. Aspergillosis data with minimum confidence thresholds of 0.9

and 0.95) reviewer workload did slightly rise.

It is interesting to note that for the selected algorithmic choices outlined in

section 4.5.3, rule performance appears to peak at roughly the same goodness

threshold. For this reason, in our following experiments we use ln(P) = -11.513 as

our goodness threshold. It would be interesting to examine whether this threshold

generalised for other reviews. It is likely that the size of the tested data is inversely

proportional to the required threshold (both the Aspergillosis and Alzheimers data

contain in the order of several thousand citations). A more detailed analysis with

additional data would be interesting, but is left for future work.

Although both datasets achieve good performance with similar goodness thresh-

olds, the minimum confidence required is much more data dependent. Figures 4.35
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Figure 4.34: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for choice of ln(P) threshold on Alzheimers data.

and 4.36 show recall and reviewer workload versus minimum confidence threshold

for the Aspergillosis and Alzheimers data respectively. Results are reported with

goodness thresholds of -11.513 and -9.210.

For the Alzheimers data in Figure 4.36 we can see that with a goodness thresh-

old of -11.513, all measured confidence thresholds give an acceptable level of recall.

Remaining reviewer workload drops slightly as minimum confidence is increased,

and achieves its best performance around 0.5.

If the goodness threshold is lowered slightly to -9.210, we observe a similarly

strong level of recall for all tested confidence levels. Of note is that a slight drop

in recall is observed with a minimum confidence of 0.5 when compared to 0.51, al-

though this is likely a statistical anomaly (note the large confidence interval). This

is pleasing to note, as it indicates that performance with low minimum confidence

levels is robust even for weaker goodness thresholds.

However minimum confidence threshold appears to have a much greater impact

on rule performance with the Aspergillosis data. From the results reported in
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Figure 4.35: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for choice of minimum confidence threshold (mc) on Aspergillosis data.

Figure 4.35 we can see that acceptable recall is achieved, but not without a very

strict minimum confidence threshold of 0.97 or higher. Performance is similar as

the strictness of the goodness threshold is lowered, although the mean recall with

a minimum confidence of 0.97 drops slightly below 0.95. While this particular

measurement does have a larger than normal confidence interval with respect to

other runs, it indicates the sensitivity of the Aspergillosis data to the selected

minimum confidence level.

It is not immediately obvious why the Aspergillosis data should have such a

greater recall to the selected minimum confidence level. Unfortunately, with only

two data sets it is hard to speculate as to the cause. Two things are apparent:

firstly, further analysis with additional data would be of interest. Secondly, in the

meantime it is worthwhile examining the effectiveness of rule generation algorithms

to identify one that is as robust as possible as minimum confidence for rules is

varied.
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Figure 4.36: Sensitivity analysis (reviewer workload and recall vs. goodness
threshold) for choice of minimum confidence threshold (mc) on Alzheimers data.

4.5.5 Workload Savings

In sections 4.5.3 and 4.5.4 we analysed parameter choices for both the rule genera-

tion and classification algorithms. Rule generation choices are outlined in section

4.5.3.4. For the classifier, a goodness threshold of ln(P)=-11.513 was found to

perform appropriately for each tested data set. Although minimum confidence

was much more dependent on choice of data, values of 0.51 and 0.97 were chosen

for the Alzheimers and Aspergillosis data respectively.

Table 4.3 shows the recall and workload savings generated using the full data

sets for both the Aspergillosis and Alzheimers data. Results with the selected

minimum confidence levels are highlighted. With the selected parameters, work-

load savings of 10.9% for the Aspergillosis data and 5.6% for the Alzheimers data

are obtained. In both cases a recall over relevant citations of greater than 95% is

achieved.

These savings are significant, and have the potential to be of practical benefit

to reviewers. Of particular note is that the approach outlined in this chapter
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Alzheimers Aspergillosis

Min. Conf. Workload Saving Recall Min. Conf. Workload Saving Recall

0.50 5.6% 0.966 0.90 35.4% 0.701

0.51 5.6% 0.966 0.91 35.1% 0.701

0.52 5.6% 0.966 0.92 28.9% 0.804

0.53 5.6% 0.966 0.93 23.7% 0.862

0.54 5.6% 0.966 0.94 20.6% 0.873

0.55 4.3% 0.966 0.95 19.4% 0.896

0.56 4.3% 0.966 0.96 13.0% 0.942

0.57 4.3% 0.966 0.97 10.9% 0.954

0.58 4.3% 0.966 0.98 5.6% 0.954

Table 4.3: Final workload savings for Aspergillosis and Alzheimers data. High-
lighted cells correspond to pre-selected parameter settings.
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can be used to complement existing research on review automation (for example,

Abstrackr [101, 100]). Our approach could be applied before additional screening

with other algorithms, further reducing the burden on human reviewers.

As discussed in section 4.5.4, it is interesting to note how dependent the results

obtained with two datasets are on the choice of minimum confidence parameter.

Workload saving for the Alzheimers data varies very little as the minimum con-

fidence in increased, and recall does not change. In contrast, if the minimum

confidence is lowered for the Aspergillosis data then a notable decrease in both

recall and workload savings is observed. Further analysis with more data is war-

ranted to understand the cause of this behaviour, and research into algorithmic

changes that improve robustness to changes in minimum confidence are warranted.

4.6 Summary

In this chapter we proposed a method for semi-automated screening of citations

for systematic reviews. Our approach is novel in several ways:

� Our method utilises reviewer annotations made based on title alone to inform

decisions made based on title and abstract. No previous work exists in which

annotations at one stage of a review are used to screen during another.

� Instead of seeking to identify relevant studies with high recall, we seek to

exclude non-relevant studies with high precision. This approach helps to

addresses the increasingly heterogeneous target classes found in modern sys-

tematic reviews.

We demonstrated the effectiveness of our approach on two existing systematic

reviews, obtaining workload savings of between 5 and 10%. In addition to the

above, an additional benefit of our approach is its compatibility with existing work

on automating the literature screening process (for example, Abstrackr [100, 101]).

As training data can be generated automatically from annotation made at prior
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screening stages, it can be applied before continuing the screening process with

other algorithms.

We also presented a sensitivity analysis examining the effect of different param-

eter choices on the performance of the algorithm. Although good recommenda-

tions appear to have been found for most, it was interesting to note the significant

variance in performance with minimum confidence thresholds for different data.

We note that further analysis with additional review would be interesting, both to

discover the cause behind the discrepancy and to mitigate its effect for practical

use of our algorithm.



Chapter 5

Identifying Redundant

Association Rules with Increased

Accuracy

Association rule mining (ARM) is one of the fundamental tasks in data min-

ing. The goal of ARM is to identify interesting relationships between groups of

attributes for some data. More formally, let A = a1, a2, . . . , aN be a set of M at-

tributes. We then define N data D = d1, d2, . . . , dN , where each individual datum

or instance is a subset of A (i.e. di ⊆ A∀di ∈ D). The association rule mining

task seeks to find all interesting rules of the form X ⇒ Y , where X and Y are

disjoint subsets of A. By convention, the sets X and Y are referred to as the

antecedent and consequent.

Within the literature, there are several sub-problems that have been studied.

Approaches have been developed to look for rules such as those with fixed [99], or

single attribute [41] consequents, or negative associations [6, 41] (e.g. rules of the

form X ⇒ ¬Z). In this chapter we focus on the problem of positive rules from

binary data with single attribute consequents.

It is a well known problem that association rule mining algorithms can return

a very large number of rules. The number generated can be so large as to obscure

114
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their interpretation and provide a barrier to practical use of the results [112].

Generated only the most interesting rules is therefore an important task. This

can be broken into two tasks; identification of truly interesting rules, and the

removal of those which are simply redundant artifacts of other rules. Existing

approaches for both are covered in sections 2.1.1 and 2.1.3 respectively.

This chapter addresses the issue of rule redundancy, specifically the fact that

existing approaches to rule redundancy are based on incomplete information.

When comparing two rules X ⇒ Z and XQ ⇒ Z, information on data con-

taining only part of the antecedent is ignored. This is particularly problematic

when dealing with noisy or incomplete data. We present an alternate approach to

redundancy that makes use of this information in section 5.2.

Section 5.4 describes our evaluation and experimental results. Finally, conclu-

sions are drawn in section 5.5.

5.1 Classical Redundancy

A key problem when generating association rules is measuring how interesting a

rule is. Traditionally, this has been done using support and confidence (which are

analogous the sample probability of the rule, and the conditional probability of

Y given X respectively). Rules are then considered interesting if they meet some

minimum thresholds minsup and minconf.

Many alternate approaches for measuring interestingness have been proposed

[16, 81]. Several good reviews on interestingness measures exist [91, 56], so for

brevities sake we do not give a complete coverage here and direct the interested

reader to the literature.

Following the seminal work by Agrawal et al. [4] association rules are typically

generated using a two stage process based on frequent itemsets. Frequent itemsets

are those sets of attributes which have support equal to at least minsup. The

search typically proceeds by first identifying all frequent itemsets, then evaluating
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the interestingness for all rules that can be generated from them.

The search for frequent itemsets is aided by the well known anti-monotonicity

property of the support function. Algorithms are able to ignore all children of

non-frequent itemsets, as it is known that all their descendants will have equal

or lower frequencies. For this reason, searching for rules using a support and

confidence framework is attractive. However using such an approach suffers from

a number of drawbacks, including that infrequent interesting associations will be

missed and no real guarantee that the rules will hold in future data.

A number of researchers have generated rules using statistical significance mea-

sures such as χ2 or Fisher’s P [40, 41, 99, 104]. This both removes the problem

of infrequent interesting associations, and requires only a single, well understood

threshold. The search is complicated however by the fact that statistical signifi-

cance is not monotonic, exponentially increasing the size of the search space.

Prior work has often employed heuristics such as maximum rule lengths, fixed

consequents, frequency thresholds, or other heuristics in order to control the size of

the search space [40]. To our knowledge, only one algorithm exists which is able to

identify all significant, non-redundant rules. Hämäläinen’s Kingfisher algorithm,

first proposed in 2010, uses a tight bound on Fisher’s P to restrict the search

space. We extend this approach in our work (see section 5.2 for further details).

It is well established that the number of rules identified during mining can

often be so large as to hamper their interpretation [2]. In order to control for

this, the concept of redundancy is often used. When mining association rules, we

consider a rule to be redundant if it adds no additional value to existing rules.

The identification and removal of redundant rules is an important task. Pruning

based on redundancy aims to remove these confounding rules, and return only

those representing interesting patterns in the data.

An example of rule redundancy can be seen through the addition of indepen-

dent attributes. Consider a hypothetical study of supermarket transactions which
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identifies that people who buy a soft drink will also buy chips. Further analy-

sis may also identify that people who buy soft drink on Tuesday will buy chips.

However the addition of the requirement that it be Tuesday does not improve the

quality of the association. It is likely that the rule simply exists because the asso-

ciation between people buying soft drink and chips holds regardless of whether it

is Tuesday or not. The association between people buying soft drink on Tuesday

and buying chips is a redundant rule.

In much of the discussion throughout the remainder of this chapter, we use the

concepts of rule generalisations and specialisations. We provide here a definition

for both terms. Let X ⇒ Z be a rule. Rule Y ⇒ Z is a generalisation of X ⇒ Z

if Y is a proper subset of X. Similarly, rule Y ⇒ Z is a specialisation of X ⇒ Z

if Y is a proper superset of X.

A rule is considered redundant if the relationship it describes is adequately

described by one or more of its generalisations. Existing literature typically takes

the view that a more specialised rule adds no value if its interestingness is less

than or equal to that of it’s generalisation. This concept was recast for a general

goodness measure by Hämäläinen [41], which we repeat in definition 5.1.

Definition 5.1. Classical redundancy Consider two rules X ⇒ Z and XQ⇒

Z where X and Q are disjoint sets of items, and Z is a single item of value a. Let

M(·) be an increasing measure of rule interestingness. Rule XQ⇒ Z is redundant

with respect to rule X ⇒ Z if M(XQ⇒ Z) ≤M(X ⇒ Z).

5.2 Robust Redundancy

In section 5.1 we discussed the idea of rule redundancy. A rule is considered redun-

dant when it adds nothing to a simpler rule. When using the classical definition of

redundancy, we define adding nothing by not increasing its interestingness value

(see definition 5.1). However such a comparison is made using incomplete infor-

mation.
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Depending on the interestingness measure M(·) in use, M(X ⇒ Z) is com-

puted using the frequencies XZ, ¬XZ, X¬Z, and ¬X¬Z. We note that compar-

ing rules M(X ⇒ Z) and M(XQ⇒ Z) using their interestingness measures does

not consider transactions including only part of the rule antecedent. Namely, it

does not consider the frequencies X¬QZ, ¬XQZ, X¬Q¬Z, and ¬XQ¬Z.

When performing association rule mining on real data, one must deal with

several issues. Complex relationships between variables and noisy data can act

to confound the analysis. This problem can be further complicated by a lack of

control over the data collection process. Such noise could artificially raise or lower

the measured interestingness value of a rule, which could lead to interesting rules

being erroneously excluded.

We propose to employ such information in an attempt to avoid excluding

interesting rules. In addition, we also propose an approach for identifying sit-

uations where seemingly interesting rules are simply artifacts of groups of their

specialisations. We refer to these approaches as specialisation and generalisation

redundancy respectively, which are outlined in detail throughout the remainder of

this section. Section 5.3 then outlines the approach we take to efficiently compute

the required partial frequencies, and presents the algorithm used to generate rules.

5.2.1 Specialisation Redundancy

We propose an alternate approach to redundancy in definition 5.2. This approach

augments the classical approach given in definition 5.1 by not eliminating a rule

XQ ⇒ Z if the partial frequencies can be used to demonstrate that adding the

attributes in Q add value. This is accomplished by computing the strength of

the association between X and Z conditioned on Q, and comparing it against the

strength of the marginal association. If the conditional association between X and

Z improves over the strength of the previous association, then we have obtained

evidence that the addition of the variables in Q adds value to the existing rule.
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P (X) 0.3
P (Y ) 0.3
P (Z|X, Y ) 0.8
P (Z|X,¬Y ) 0.4
P (Z|¬X, Y ) 0.4
P (Z|¬X,¬Y ) 0.6

Table 5.1: Marginal and conditional probabilities for several combinations of vari-
ables used in the motivating example for robust specialisation redundancy.

Definition 5.2. Robust Specialisation Redundancy Consider two rules X ⇒

Z and XQ ⇒ Z where X and Q are disjoint sets of attributes, and Z is a single

attribute. Let M(·) be an increasing measure of rule interestingness. Rule XQ⇒

Z is specialisation redundant with respect to rule X ⇒ Z if M(XQ ⇒ Z) ≤

M(X ⇒ Z), and M(X ⇒ Z|Q) ≤ M(X ⇒ Z).

Computing the conditional association requires the frequencies for ¬XQZ and

¬XQ¬Z (in addition to the already used frequencies XQZ and XQ¬Z). We

deliberately do not consider to association between X and Z conditioned on ¬Q,

as the rule we are seeking to obtain evidence for is XQ⇒ Z, which contains Q.

5.2.1.1 Example

Consider hypothetical data where each individual datum samples 3 binary vari-

ables (referred to as X, Y, and Z). Assume that there are 1000 data points, and

assume the probabilities expressed in Table 5.1. From these probabilities, it can

be observed that a strong dependency exists between Z and the itemset XY. We

now examine the quality of the rules X ⇒ Z, Y ⇒ Z, and XY ⇒ Z as we vary

the joint probability of variables X and Y.

Figure 5.1 plots the quality of these rules against the conditional probability

of X given Y. We focus on the situation where the conditional probability is less

than the marginal (i.e. the probability of X is lower than the marginal given the

presence of Y). For larger conditional probabilities we can observe that the quality

of the rule XY ⇒ Z is superior to that of rule X ⇒ Z. However as the overlap
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between data containing X and data containing Y decreases, the quality of the

more general rule X ⇒ Z surpasses its specialisation. As a consequence the rule

XY ⇒ Z is removed as redundant, obscuring the true underlying structure of the

data.

Holding the marginal probabilities constant, the number of data containing

both X and Y decreases along with the conditional probability of X given Y. In

order to support the rule XY ⇒ Z, we require data containing both (or neither)

XY and Z. Hence, as the number of data with XY and Z decreases, we decrease

the amount of evidence available to evaluate it. That the general rule X ⇒ Z

surpasses the true rule XY ⇒ Z in quality as the conditional probability decreases

is a reflection of this fact.

When comparing rules X ⇒ Z and XY ⇒ Z using the proposed robust redun-

dancy approach (i.e. including the conditional dependencies), we are able to make

more effective use of available data to evaluate the rules. In the current example,

rule XY ⇒ Z is retained as non-redundant for conditional probabilities greater

than ∼0.045. This is in contrast to classical redundancy, where the threshold for

retaining XY ⇒ Z is ∼0.062. Although in both cases the conditional probability

of X given Y eventually reaches a point where insufficient evidence for the spe-

cialised rule exists, the range of values for which robust redundancy can still retain

XY ⇒ Z is increased.

5.2.2 Generalisation Redundancy

It is possible for general rules to exist that only appear interesting due to the

presence of interesting specialisations. Definition 5.3 outlines a concept we call

Robust Generalisation Redundancy. We note that in contrast to specialisation

redundancy where a rule is made redundant with respect to another rule, general-

isation redundancy requires that a rule is redundant with respect to the entire set

of other rules. A rule X ⇒ Z is generalisation redundant if for all non-redundant

specialisations XQ ⇒ Z, the rule X ⇒ Z|¬Q is uninteresting (has a goodness
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P (X) 0.5
P (Y ) 0.5
P (Z|X, Y ) 0.5
P (Z|X,¬Y ) 0.1
P (Z|¬X, Y ) 0.1
P (Z|¬X,¬Y ) 0.1

Table 5.2: Marginal and conditional probabilities for several combinations of vari-
ables used in the motivating example for robust generalisation redundancy.

value less than the required threshold for interesting rules).

If a rule X¬Q⇒ Z is interesting, we obtain evidence that the generalised rule

is interesting even in the absence of the terms in Q. If, after identifying all other

interesting rules, we cannot find evidence that X ⇒ Z is interesting in the absence

of the additional terms in its specialisations, we consider it redundant. Comput-

ing the conditional association on ¬Q uses the frequencies X¬QZ and X¬Q¬Z.

Therefore, by applying both specialisation and generalisation redundancy we con-

sider all frequencies in the sample data.

Definition 5.3. Robust Generalisation Redundancy Consider a rule X ⇒

Z and the complete set of its non-redundant specialisations R. Let M(·) be an

increasing measure of rule interestingness, and α be the corresponding goodness

threshold. Rule X ⇒ Z is generalisation redundant with respect to R if M(X ⇒

Z|¬Q) ≤ α for all rules XQ⇒ Z in R.

5.2.2.1 Example

Consider hypothetical data recording prescriptions containing combinations drugs

along with a binary patient outcome. Assume that there are two such drugs (X

and Y), which work in combination to produce a positive outcome. Neither drugs

will produce a positive outcome on its own (in which case, a baseline probability

of 0.1 is used). The exact probabilities used in this example can be found in Table

5.2.

It is fairly intuitive to see that when the conditional probability of X given
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Y is 1, the measured quality of the rules X ⇒ Z, Y ⇒ Z, and XY ⇒ Z will

be identical and maximal. As the conditional probability decreases, so will the

quality of each of these rules, with the quality of the general rules decreasing at the

greatest rate. However despite the underlying structure of the data indicating that

neither X or Y alone support a positive outcome, the strength of these associations

is likely to remain quite high.

When comparing the rules X ⇒ Z and XY ⇒ Z, by examining the strength of

the rule X ⇒ Z|¬Y (i.e. conditioned on the absence of the additional terms Y) we

can see that there is no evidence to support the rule X ⇒ Z without also including

the features Y. As XY ⇒ Z is the only identified specialisation of X ⇒ Z, and

there is no evidence to indicate X ⇒ Z is valid without the additional features,

we therefore consider it redundant.

Finally, we acknowledge that such an approach could potentially over-fit and

remove valid general rules. We address this concern in the following section on

redundancy chaining.

5.2.3 Redundancy Chaining

Classical redundancy as defined in definition 5.1 is transitive. If a rule XQY ⇒ Z

is redundant with respect to a generalisation XQ ⇒ Z, and XQ ⇒ Z is also

redundant with respect to X ⇒ Z, then XQY ⇒ Z will be redundant with

respect to X ⇒ Z. This result is straightforward to prove.

Unfortunately the same relation does not hold for the proposed robust redun-

dancy approaches. A proof by example is given for specialisation redundancy in

in lemma 5.1.

Lemma 5.1. Robust specialisation redundancy is not transitive.

Consider three rules A ⇒ D, AB ⇒ D, and ABC ⇒ D generated from the

data in Table 5.3 using the log of Fishers P.

As the interestingness of the rules AB ⇒ D and A⇒ D|B is worse than that

of the rule A⇒ D, AB ⇒ D is redundant w.r.t. A⇒ D.
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Attr. fr
ABCD 10
ABD 10
ACD 10
AD 10
BC 30
BD 10
CD 10
D 10

Rule ln(P)
A⇒ D -19.33
AB ⇒ D -8.10
ABC ⇒ D -3.78
A⇒ D|B -18.75
A⇒ D|BC -20.56
AB ⇒ D|C -7.83

Table 5.3: Sample data and rules for lemma 5.1.

As the interestingness of the rules ABC ⇒ D and AB ⇒ D|C is worse than

that of the rule AB ⇒ D, ABC ⇒ D is redundant w.r.t. AB ⇒ D.

As the interestingness of the rule A ⇒ D|BC is better than that of the rule

A⇒ D, the rule ABC ⇒ D is non-redundant w.r.t. A⇒ D. �

The lack of a transitive definition for specialisation redundancy creates an in-

teresting possibility. Assume the existence of a rule r that is specialisation redun-

dant with respect to one or more generalisations r0, . . . ri. Let those generalisations

r0, . . . ri themselves be redundant with respect to rules ri+1, . . . rn. Despite being

a redundant specialisation of other rules, it could be argued that r should be kept

as it is non-redundant with respect to all non-redundant generalisations.

We take the view that in such a situation, the rule r should be considered

non-redundant. This more permissive approach to rule inclusion is preferable as

it minimises the chance of interesting rules being removed. We also feel it is more

intuitive, as it avoids the possibility that a rule is omitted from the computed rule

set despite being interesting with respect to all other returned rules.

Lemma 5.2. Using redundant rules when evaluating generalisation re-

dundancy allows for additional rules to be included.

Consider three rules A ⇒ D, AB ⇒ D, and ABC ⇒ D generated from the

data in Table 5.4 using the confidence measure with a threshold of 0.6.

According to definition 5.3 and the confidence scores for the above rules, AB ⇒

D|¬C is uninteresting so AB ⇒ D is redundant w.r.t. ABC ⇒ D.
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Attr. fr
ABCD 60
AB 20
ACD 10
AD 10

Rule Conf
A⇒ D 0.90
AB ⇒ D 0.75
ABC ⇒ D 1.00
A⇒ D|¬B 1.00
A⇒ D|¬(BC) 0.50
AB ⇒ D|¬C 0.00

Table 5.4: Sample data and rules for lemma 5.2.

Assume we evaluate generalisation redundancy WITHOUT redundant rules.

Then uninteresting rule A ⇒ D|¬(BC) implies A ⇒ D is redundant and will be

pruned.

Alternately, assume we evaluate generalisation redundancy WITH redundant

rules. As A ⇒ D|¬B is interesting A ⇒ D is non-redundant and will not be

pruned.

We also prove that whether or not redundant attributes are counted effects

generalisation redundancy in lemma 5.2. For similar reasons to specialisation

redundancy, we elect not to allow redundant rules to influence the redundancy of

another rule. In contrast to specialisation redundancy however, this policy will

lead to the exclusion of additional rules (as generalisation redundancy requires a

rule is uninteresting with respect to ALL its specialisations, comparing against

additional rules only raises the chance of inclusion).

Not allowing redundant rules to provide evidence for keeping otherwise redun-

dant generalisations has the potential to produce the following interesting situa-

tion. Assume the existence of a rule r1 : Y ⇒ A where conf(Y ⇒ A) = 1 and

supp(Y ) = supp(A). Then for all rules of the form r1 X ⇒ A where Y = XQ (i.e.

generalisations of Y ⇒ A), the frequency of the set X¬QA will be 0, implying

that the rule X¬Q⇒ A will be uninteresting. By the definition of generalisation

redundancy, r1 is the only possible non-redundant rule with consequent A.

While it may in fact be desirable to keep such a rule, care must be taken

to avoid confounding caused by the addition of frequent, independent attributes.
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We demonstrate how such confounding might occur by providing an extension

of the above example. Consider the rule Y Z ⇒ A for some variable Z where

supp(ZA) = 1. It is simple to see that conf(Y Z ⇒ A) = 1, supp(Y Z) = supp(A),

and freq(Y ¬ZA) = 0. As such, the rule Y ⇒ A will be considered redundant.

By Occam’s razor, we prefer a more general rule over one of its specialisations

unless we can obtain evidence to suggest otherwise. If we apply only generalisation

redundancy, we can violate this principle as no evidence is ever considered to

support Y Z ⇒ A over Y ⇒ A. In the worst case, for a given consequent only

one, highly specific rule will be selected with all others being made redundant.

We therefore suggest that specialisation (or classical) redundancy should usually

be used before generalisation redundancy. This ensures that evidence exists that

each rule improves upon its generalisations. We note however that in some cases

(such as those where we prefer to generate more specific rules), generalisation

redundancy may be applied first.

5.2.3.1 Example

In section 5.2.3, it was proposed that redundant specialisations should be removed

before generalisations. A good example of the potential cost of pruning generali-

sations before specialisations can be observed in the well known Mushroom data

from the UCI Machine Learning Repository (see section 5.4.1 for more detail).

Table 5.9 shows the number average number of rules generated for the Mush-

room data with a range of thresholds. For clarity the relevant parts of that table

are reproduced in Table 5.5. An additional column has been included showing the

number of rules generated when pruning only redundant generalisations.

From the results in Table 5.5, we can see that using only generalisation pruning

for two of the three tested data produces a significantly lower number of rules

than with any other approach. In fact, for all tested thresholds only a handful

of rules remain. This result can be explained by examining the unpruned rules

and observing two things. Firstly, on the vast majority of rules produced contain
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Dataset α No Prune Classic Robust Specialisations Robust Generalisations Robust (Both)

Mushroom

-1250 61767.80 ± 158.39 409.70 ± 5.32 568.70 ± 7.42 19.80 ± 0.37 227.40 ± 2.95

-1375 37501.10 ± 4080.51 308.10 ± 7.70 342.40 ± 10.14 19.90 ± 0.81 166.00 ± 6.38

-1500 22634.50 ± 92.39 229.70 ± 5.67 239.40 ± 5.97 15.20 ± 0.54 125.50 ± 1.67

-1625 22049.80 ± 39.14 191.30 ± 2.54 196.30 ± 2.85 11.50 ± 0.42 114.80 ± 1.77

-1750 19980.00 ± 2498.40 140.70 ± 5.51 141.70 ± 5.51 7.20 ± 0.25 93.30 ± 6.17

-1875 7507.80 ± 78.31 88.60 ± 3.75 89.60 ± 3.75 4.80 ± 0.25 56.70 ± 1.08

-2000 6430.80 ± 522.10 38.90 ± 5.39 39.90 ± 5.39 2.30 ± 0.40 34.70 ± 4.15

Table 5.5: Number of rules generated with different redundancy approaches (in-
cluding pruning only generalisations) for the Mushroom data.

the same consequent (feature #48). Secondly, the unpruned set of rules always

contains the following rule with feature #48 as the consequent.

1 · 24 · 34 · 36 · 38 · 53 · 58 · 85 · 86 · 90 · 94 · 102 · 110⇒ 48

The mushroom data contains no instances with only the antecedent or con-

sequent of the above rule (i.e. the set of instances containing the antecedent is

identical to the set containing the consequent). For a given generalisation X ⇒ A

of this rule, this implies that the frequencies of the sets X¬QA, ¬X¬QA, and

X¬Q¬A will be 0, guaranteeing X ⇒ A|¬Q will be uninteresting. However all

other discovered rules (with antecedent #48) are generalisations of this rule. As

we do not allow redundant specialisations to be used in pruning, this rule renders

every single generalisation redundant.

The presence of these highly specific rules with no violations presents a problem

for generalisation pruning. The justification we use when removing generalisations

is that they are uninteresting in the absence of the additional attributes used in

their specialisations. Although for a given data it may in fact be desirable to keep

such a specialised rule, it is crucial to first test whether or not the addition of the

extra features improves over its generalisations.
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Search
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Figure 5.3: Overview of dependencies between algorithms used in the rule gener-
ation process.

5.3 Rule Generation Algorithm

The algorithm we use is a variant on Hämäläinen’s Kingfisher algorithm [40, 41].

Pseudocode for our algorithm is given in Algorithms 1 to 6. Algorithms 1 to 4 are

similar to Hämäläinen’s Kingfisher [40] excepting that no minimality based prun-

ing is performed. Additionally, bounds in Algorithm 4 are computed in line with

the definition of robust redundancy given in definition 5.2. A diagram showing the

dependencies between algorithms is also given in Figure 5.3. This section describes

the process used, and the differences between our approach and Kingfisher.

We search for all non-redundant rules using the natural log of the Fisher’s

P measure (a decreasing measure). Let D be a dataset with N items over A

attributes. We use a three stage process:

1. All potentially non-redundant rules with some minimum log P-value are

identified.
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Algorithm 1: Search(D, A, M, α)
Search algorithm for non-robust redundant association rules.

input : A set of data D over attributes A, an increasing interestingness
measure M(·), and a corresponding threshold α

output: A set of rules R

// Step 1: Find potentially interesting rules

1 determine minf
2 r ← Level1nodes(D,A,M,α,minf)
3 l ← 2
4 nls ← |r|
5 while nls ≥ l do
6 nls ← 0
7 for i← 1 to |A| do
8 nls ← nls + Bfs(r.children[i],l,0)
9 end

10 l ← l + 1

11 end

// Steps 2 and 3: Prune redundant rules

12 R ← PruneSpecialisations(R)
13 R ← PruneGeneralisations(R, α)

14 return R
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Algorithm 2: BFS(n, l, t)
BFS search for potentially non-redundant rules.

input : Root node n, target search level l, current level t
output: The number of level l nodes remaining in the tree

1 nls ← 0
2 if t = l− 2 then
3 for i← 1 to |n.children| − 1 do
4 Y ← n.children[i].set
5 for j ← i+ 1 to |n.children| do
6 Z ← n.children[j].set
7 X ← Y ∪ Z
8 Create new node child = Node(X)
9 nls ← nls+ 1

10 n.children[i].insert(child)
11 if Checknode(child) = false then
12 delete child
13 nls ← nls− 1
14 for ∀ nodes v = Node(Ym) where X = YmAm do
15 v.possible[m] = false
16 end

17 end
18 delete n.children[|n.children|]

19 end

20 end

21 else
22 for i← 1 to |n.children| do
23 nls ← nls + Bfs(n.children[i],l,t+ 1)
24 end

25 end
26 if |n.children| = 0 then
27 delete node n
28 end
29 return nls
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Algorithm 3: Checknode(vX )
Generate rules from a node and check if it can have valid descendants.
input : Node vX to check
output: Boolean value indicating whether or not children of the vX can

produce interesting, non-redundant rules.

1 for ∀ Y ⊂ X where |Y| = |X| − 1 do
2 ParY ← searchTree(Y)
3 if ParY not found then
4 return false
5 end
6 for i← 1 to |A| do
7 vX .possible[i]← vX .possible[i] & ParY.possible[i]
8 vX .pbest[i]← min(vX .pbest[i],ParY.pbest[i])

9 end
10 if vX .possible = ∅ then
11 return false
12 end

13 end
14 setfreq(X) = calcFreq(X)
15 for ∀ Ai ∈ A do
16 vX .possible[i]← vX .possible[i] & possible(-)
17 if ((Ai ∈ X) and (vX .possible[i])) then
18 val← M(X\{Ai} ⇒ Ai)
19 if val ≤ α then
20 add rule X\{Ai} ⇒ Ai to R
21 vX .pbest[i]← min(val,vX .pbest[i])

22 end

23 end

24 end
25 if vX .possible = ∅ then
26 return false
27 end
28 return true
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Algorithm 4: Possible(vX ,X,A)
Check if rules generated from a node or its descendants with a given conse-
quent can be non-redundant

input : Node vX being checked, set X associated with that node, and
consequent attribute Aj

output: True if rules with consequent A generated using vX or its
descendants can be interesting and non-redundant

1 if |X| < minf then
2 return false
3 end
4 if A /∈ X then
5 if |X| > |A| then
6 bnd = LB1(|A|, |D|)
7 else
8 bnd = LB2(|X|, |A|, |D|)
9 end

10 else
11 bnd← LB3(|X|, |X\{A}|, |A|, |D|)
12 bndonq← LB3(|X|, |X|, |X|, |D| − |X¬A| − |A¬X|)

13 end
14 if bnd > α then
15 return false
16 end
17 if A ∈ X then
18 if bnd ≥ vX .pbest[j] and bndonq ≥ vX .pbest[j] then
19 return false
20 end

21 end
22 return true
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Algorithm 5: PruneSpecialisations(R)
Prune redundant specialisations in R

input : Set of rules R
output: Set of non (specialisation) redundant rules R

1 for ∀ A ∈ A do
2 RA = {R ∈ R s.t. R = X⇒ A}
3 Sort RA in increasing order on length of the antecedent
4 for i← 1→ |RA| − 1 do
5 Let RA[i] = X⇒ A
6 for j ← i+ 1→ |RA| do
7 Let RA[j] = Y ⇒ A
8 Q = Y\X
9 CondM← M(setFreq[XQA], setFreq[XQ], setFreq[QA], setFreq[Q])

10 if X ⊂ Y then
11 if M(R2) ≤ M(R1) and CondM ≤ M(R1) then
12 delete R2

13 end

14 end

15 end

16 end

17 end
18 return R



CHAPTER 5. REDUNDANT RULES WITH INCREASED ACCURACY 135

Algorithm 6: PruneGeneralisations(R, α)
Prune redundant generalisations in R

input : Set of rules R and an interestingness threshold α
output: Set of non (generalisation) redundant rules R

1 for ∀ R ∈ R do
2 Keep(R) = false
3 HasSpec(R) = false

4 end
5 for ∀ A ∈ A do
6 RA = {R ∈ R s.t. R = X⇒ A}
7 Sort RA in decreasing order on length of the antecedent
8 for i← 1→ |RA| − 1 do
9 if Keep(RA[i]) = false and HasSpec(R(A)[i])=true then

10 continue
11 end
12 Let RA[i] = X⇒ A
13 for j ← i+ 1→ |RA| do
14 Let RA[j] = Y ⇒ A
15 Q = Y\X
16 CondM←

M(setFreq[XA¬Q], setFreq[X¬Q], setFreq[A¬Q], setFreq[¬Q])
17 if X ⊂ Y then
18 HasSpec(X) = true
19 if CondM ≤ α then
20 Keep(X) = true
21 end

22 end

23 end

24 end

25 end
26 for ∀ R ∈ R do
27 if Keep(R) = false then
28 delete R
29 end

30 end
31 return R
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2. Rules identified in stage 1 are examined and specialisation redundant rules

are pruned.

3. Remaining rules are examined and generalisation redundant rules are pruned.

The search in stage 1 consists of a bfs over itemsets. For a level k node X

corresponding to attributes {x1, x2, . . . , xk}, the P-values of the k rules X \{xi} ⇒

xi are computed, with those meeting the desired minimum threshold kept. As

each node is considered, the frequency of the set X is calculated, with P-values for

rules being computed using frequencies computed for the parents. The number of

iterations over the dataset is therefore limited to the number of nodes considered.

In order to control the size of the search space, each node maintains a length

|A| bit vector of possible consequents (attributes A where the rule XQ ⇒ A is

possible). These vectors are initialised as the bitwise and of the vectors for a nodes

parents. As the node is processed, lower bounds on the log Fisher’s P value are

then computed for all rules of the form XQ \ {A} ⇒ A for all A in A. If the

bounds for all attributes exceed the relevance threshold (the vector of possible

consequents is 0), the node is removed and no further descendants are generated.

The bounds used were first reported by Hämäläinen [40], and are reproduced here

in Table 5.6.

Each node X also contains a vector with the best previous P-value for rules

with consequent xi ∈ X . Similar to the possible bit vector, these vectors are

merged from parents when the node X is created. As the Kingfisher algorithm

employs classical redundancy, if the bound on P-values for rules with a given

consequent exceeds the corresponding value in this vector that consequent can also

be considered impossible. In order for an attribute to be considered an impossible

consequent with the proposed redundancy in definition 5.2, an additional test must

be applied. We need to test that the bound on the rule XQ⇒ A|Q is also worse

than the previous best value.

The Fishers P-value for rule XQ ⇒ A|Q takes its smallest value when the

number of instances containing sets QA¬X and QX¬A are 0 and QXA and
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bnd1(|A|,N ) =
f(A)!f(¬A)!

N !

bnd2(|X|, |A|,N ) =
f(¬X)!f(A)!

N !(f(A)− f(X))!

bnd3(|XA|, |X|, |A|,N ) =
f(A)!f(¬A)!(N − f(XA))!

N !f(¬A)!f(A¬X)!

Table 5.6: Lower bounds for Fishers P as computed by Hämäläinen [40]. The
function f(·) returns the frequency of its argument in D

Q¬X¬A are as large as possible. This occurs when freq(QXA) = freq(XA),

freq(Q¬X¬A) = freq(¬X¬A). We therefore compute the bound for XQ ⇒

A|Q using bnd3 from Table 5.6 with parameters f(XA) = freq(XA), f(X) =

freq(XA), f(A) = freq(XA), and N = freq(XA) + freq(¬X¬A).

The Kingfisher algorithm employs two additional pruning steps to control the

size of the search space. They are covered in section 5.3.1.

The time and space complexity of the Kingfisher algorithm are exponential

with regard to the number of attributes [40]. The algorithm employed in stage 1

of our search differs from Kingfisher only in the pruning strategies employed, and

as such maintains the same worst case time and space complexity. Although the

less aggressive pruning employed in our work does result in increased complexity,

we note that in practice performance is still reasonable. Section 5.4.4 presents an

empirical evaluation of the speed and memory requirements of our approach on

several datasets.

The running time for the searches in stage 2 and 3 are quadratic in the number

of rules tested (in general this is dwarfed by the initial search in stage 1). When

comparing two rules X ⇒ A and XQ⇒ A, specialisation redundancy requires the

computation of M(X ⇒ A|Q), and generalisation redundancy requires M(X ⇒

A|¬Q). For Fisher’s P, this requires us to obtain the frequencies for Q, ¬Q, AQ,

and A¬Q.
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If the number of rules is sufficiently small, it may be preferable to obtain

these frequencies by iterating over D as required. We note however that for a

rule X ⇒ A to be generated in our search, the node X = {A} (and all its

generalisations) must be considered. Our implementation therefore creates a map

from sets to their frequency as each node is constructed. Obviously, this adds

additional space requirements which may be avoided by computing frequencies as

required.

5.3.1 Pruning the Search Space

As mentioned previously, the Kingfisher algorithm employs two additional pruning

steps to control the size of the search space. The first, referred to as the lapis

philosophorum principle, deals with the case where all rules of the form XQ⇒ A

become impossible at a given node X{A}. In such a case, A is also an impossible

consequence for children of the parent nodeX , and it’s possible consequents vector

can be updated. This greatly improves the efficiency of the search, and is also

applied in our approach.

The latter pruning step is pruning based on minimality. A rule X ⇒ A is

considered minimal iff P (A|X) = 1. It can be proven (Hämäläinen [41]) that for

a given minimal rule X ⇒ A any rule of the form XQ⇒ A or XQA⇒ B will be

either classically redundant or not significant. The Kingfisher algorithm therefore

employs pruning based on minimality to restrict the search space.

Unfortunately, pruning based on minimality cannot be employed when search-

ing for rules with robust redundancy. We now prove that with robust redundancy

it is possible for a specialisation of a minimal rule to be both significant and

non-redundant.

Lemma 5.3. Given data D, an increasing statistical goodness measure

M(·), and a rule X ⇒ A such that P (A|X) = 1, there may exist a rule

XQ⇒ A such that M(X ⇒ A) < M(X ⇒ A|Q).
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That X ⇒ A is minimal implies that the frequency of the set X¬A is 0. The

frequencies of the sets XA, ¬XA, and ¬X¬A are unknown.

Let Q be a set of attributes whose corresponding rows in D exactly match the

sets XA and ¬X¬A. M(X ⇒ A) increases with each occurrence of XA and

¬X¬A, and decreases with each occurrence of ¬XA. It is easy to observe that

freq(XA) = freq(XQA), freq(¬X¬A) = freq(¬XQ¬A), and freq(¬XA) ≥

freq(¬XQA). Assuming D contains at least one occurrence of ¬XA, M(X ⇒

A|Q) will therefore be greater than M(X ⇒ A). �

Lemma 5.4. Given data D, an increasing statistical goodness measure

M(·), and a rule X ⇒ A such that P (A|X) = 1, there may exist a rule

XQA⇒ B such that M(XA⇒ B) < M(XA⇒ B|Q).

That X ⇒ A is minimal implies that the frequency of the set X¬A is 0. This

implies that freq(XA) ≥ freq(XQA). The frequencies of the sets XA, ¬XA,

and ¬X¬A are unknown.

Let Q be a set of attributes whose corresponding rows in D exactly match

the sets CB and ¬C¬B where C = XA. It is easy to observe that freq(C) =

freq(CQ), freq(¬C¬B) = freq(¬CQ¬B), and freq(¬C) ≥ freq(¬CQ). As-

suming D contains at least one occurrence of ¬CB, M(C ⇒ B|Q) will therefore

be greater than M(C ⇒ B) (or M(XA⇒ B|Q) > M(XA⇒ B)). �

As such, we do not employ pruning based on minimality when searching for

rules with robust redundancy.

5.4 Evaluation

We evaluate the performance of the proposed robust pruning with respect to three

characteristics. These are the total number of rules generated, the overall quality

of the rules, and the efficiency of the rule generation process.

Experiments were run on a PC running Ubuntu Linux, with an Intel I7-4500

processor and 8gb RAM. The rule generation algorithm was implemented in C++.
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Performance is also reported for rules generated with the classical definition

of redundancy (definition 5.1). We generate these rules using the Kingfisher al-

gorithm [41]. Baseline performance of rules generated with no redundancy based

pruning is also reported.

We examine the results from three perspectives; the size of the generated rule

set, quality of the generated rules, and the efficiency of the rule generation process.

We first present an overview of the data used in our evaluation.

5.4.1 Data

We perform our evaluation on multiple data sets which we describe below. Most

test collections are standard datasets. We also report results for several additional

domains such as text.

� Mushroom Descriptions of mushrooms originally collected from the 1981

Audobon Society Field Guide to North American Mushrooms. This data is

widely used, and is freely available from the UCI Machine Learning Repos-

itory 1.

� T10I4D100K An artificial dataset representing market basket data. Origi-

nally produced using the now unavailable generator from the IBM Almaden

Quest research group, this data was obtained from the Frequent Itemset

Mining Dataset Repository 2.

� T40I10D100K An artificial dataset representing market basket data. Orig-

inally produced using the now unavailable generator from the IBM Almaden

Quest research group, this data was obtained from the Frequent Itemset

Mining Dataset Repository 2.

� Diabetes Collection of real world data reporting traditional Chinese medical

herbal prescriptions for diabetes. Includes both the herbs prescribed and a

1https://archive.ics.uci.edu/ml/datasets/Mushroom
2http://fimi.ua.ac.be/data/
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Name # Instances # Attributes Agv. Instances Length Avg. Attribute Freq.

Aspergillosis 4377 101 15.93 ± 0.26 680.51 ± 66.05

Mushroom 8124 119 23.00 ± 0.00 1624.80 ± 358.73

Diabetes 1915 204 10.26 ± 0.11 105.21 ± 30.09

Fertility 766 215 15.73 ± 0.32 59.62 ± 14.21

Insomnia 460 112 13.48 ± 0.25 55.38 ± 11.10

T10I4D100K 100000 870 10.10 ± 0.02 1161.18 ± 74.73

T40I10D100K 100000 942 39.61 ± 0.05 4204.36 ± 249.57

Table 5.7: Summary of datasets used in the evaluation.

binary classification of the patient outcome as ’good’ or ’bad’.

� Fertility Collection of real world data reporting traditional Chinese medical

herbal prescriptions for fertility. Includes both the herbs prescribed and a

binary classification of the patient outcome as ’good’ or ’bad’.

� Insomnia Collection of real world data reporting traditional Chinese med-

ical herbal prescriptions for insomnia. Includes both the herbs prescribed

and a binary classification of the patient outcome as ’good’ or ’bad’.

� Aspergillosis Text documents (titles and abstracts) for articles considered

for inclusion in a systematic review on Aspergillosis [58]. Each document is

converted to a binary vector indicating the presence or absence of each of 100

words, as well as a binary variable indicating whether the title and abstract

was potentially relevant to the review. The words selected were those with

the greatest discriminative power when identifying articles relevant to the

review.

Descriptive statistics for each of the data are provided in Table 5.7.

All values reported were obtained as the average of 10 independent exper-

iments. For each experiment, the data were randomly divided into a 50/50
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test/training split. Rules were generated using the training data, and evaluated

on the hold out test set. Results are reported with their 95% confidence interval.

When reporting statistically significant differences, all results are tested with a

P-value of 0.05.

Interestingness for rules is measured using the natural log of P values computed

using Fishers Exact test. This is a decreasing, strictly negative measure (lower

values indicate stronger dependencies). The thresholds for interesting rules were

chosen to strike a balance between permissiveness and execution time, and differ

between data and experiments. Thresholds are reported along with results.

5.4.2 Size of the Rule Set

Tables 5.8 and 5.9 show the number of rules generated for each dataset, pruning

approach, and threshold. For all tested data and thresholds, we can observe that

each pruning approach is able to identify and eliminate a substantial percentage

of rules when compared to generating rules without pruning. We also observe

that for almost all tested data, the number of rules generated with the proposed

robust redundancy is significantly lower than the number generated by the classical

approach (P=.05). For the three exceptions (Insomnia data with thresholds -30

and -35, and Mushroom with threshold -2000), no significant difference in means

is observed.

The cases where no significant difference in the number of non-redundant rules

is observed occur when using the strictest tested thresholds. In addition, the dif-

ference between the mean number of rules generated appears to increase as the

interestingness threshold is relaxed. The number of rules appears to converge as

the bound on interesting rules is tightened, and diverge as it is relaxed. This

supports the conclusion that our proposed approach is able to produce a practi-

cal number of rules from a larger number of potentially interesting associations.

This quality is desirable as it allows the use of relaxed interestingness thresholds,

lowering the risk of missing potentially useful associations.
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Dataset α No Prune Classic Robust Specialisations Robust (Both)

Aspergillosis

-50 29548.60 ± 4461.94 389.40 ± 31.39 391.60 ± 31.48 268.30 ± 21.10

-75 4207.80 ± 352.07 119.20 ± 6.36 120.10 ± 6.41 88.90 ± 2.82

-100 1073.60 ± 124.63 55.90 ± 5.90 56.20 ± 5.87 41.70 ± 3.45

-125 383.10 ± 33.97 26.90 ± 2.55 27.00 ± 2.57 22.20 ± 1.77

-150 163.90 ± 16.29 19.50 ± 1.55 19.50 ± 1.55 16.50 ± 1.28

-175 89.90 ± 6.74 14.60 ± 1.08 14.70 ± 1.04 12.90 ± 1.02

-200 49.40 ± 5.33 10.00 ± 1.04 10.20 ± 1.10 9.20 ± 0.77

Diabetes

-15 34543.20 ± 12832.45 1327.80 ± 99.71 1676.30 ± 235.23 823.60 ± 83.15

-20 11816.40 ± 2574.97 613.00 ± 52.78 699.90 ± 73.42 394.40 ± 38.01

-25 4152.80 ± 227.20 343.40 ± 18.07 365.00 ± 21.57 224.90 ± 10.38

-30 2731.10 ± 229.94 244.50 ± 10.73 248.60 ± 11.75 162.40 ± 9.20

-35 1656.20 ± 102.51 180.80 ± 7.58 183.40 ± 7.73 126.30 ± 5.47

-40 1198.80 ± 86.62 143.60 ± 7.21 145.10 ± 7.38 102.50 ± 4.95

-45 782.30 ± 78.51 107.10 ± 11.24 107.20 ± 11.29 78.80 ± 7.13

Fertility

-15 362405.60 ± 86789.45 595.30 ± 45.95 618.30 ± 48.06 352.80 ± 25.40

-20 141740.50 ± 41787.17 278.00 ± 15.74 283.80 ± 15.80 176.80 ± 12.03

-25 42389.60 ± 11074.22 176.10 ± 5.92 178.20 ± 6.07 111.20 ± 5.71

-30 20686.90 ± 4609.10 132.50 ± 14.70 133.20 ± 15.04 85.00 ± 9.83

-35 12736.90 ± 2347.48 113.60 ± 6.68 114.00 ± 7.06 72.80 ± 4.27

-40 7713.60 ± 1830.05 90.50 ± 7.11 90.80 ± 7.11 62.40 ± 6.12

-45 4718.80 ± 687.50 74.50 ± 10.29 74.60 ± 10.33 48.70 ± 7.68

Insomnia

-15 12812.70 ± 2399.55 624.00 ± 48.35 747.80 ± 64.69 402.10 ± 33.42

-20 3180.50 ± 998.68 243.60 ± 37.06 269.00 ± 40.89 161.20 ± 24.88

-25 876.70 ± 362.33 104.50 ± 15.75 112.50 ± 14.98 72.30 ± 12.27

-30 271.10 ± 36.97 43.60 ± 6.41 46.80 ± 6.78 32.00 ± 4.42

-35 136.40 ± 23.64 24.30 ± 5.93 25.40 ± 5.86 17.40 ± 3.59

-40 59.40 ± 8.13 10.60 ± 1.25 12.40 ± 2.19 8.20 ± 1.20

-45 31.60 ± 7.02 5.20 ± 1.70 6.10 ± 1.93 4.60 ± 1.47

Table 5.8: Average number of rules generated across 10 runs with different re-
dundancy approaches and goodness thresholds for text and herbal prescription
data.
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Dataset α No Prune Classic Robust Specialisations Robust (Both)

Mushroom

-1250 61767.80 ± 158.39 409.70 ± 5.32 568.70 ± 7.42 227.40 ± 2.95

-1375 37501.10 ± 4080.51 308.10 ± 7.70 342.40 ± 10.14 166.00 ± 6.38

-1500 22634.50 ± 92.39 229.70 ± 5.67 239.40 ± 5.97 125.50 ± 1.67

-1625 22049.80 ± 39.14 191.30 ± 2.54 196.30 ± 2.85 114.80 ± 1.77

-1750 19980.00 ± 2498.40 140.70 ± 5.51 141.70 ± 5.51 93.30 ± 6.17

-1875 7507.80 ± 78.31 88.60 ± 3.75 89.60 ± 3.75 56.70 ± 1.08

-2000 6430.80 ± 522.10 38.90 ± 5.39 39.90 ± 5.39 34.70 ± 4.15

T10I4D100K

-500 17287.60 ± 191.08 6114.80 ± 53.65 6114.80 ± 53.65 4302.40 ± 43.14

-750 3484.70 ± 73.63 1568.00 ± 28.03 1568.00 ± 28.03 1217.30 ± 21.15

-1000 750.40 ± 31.17 411.90 ± 12.19 411.90 ± 12.19 353.50 ± 9.51

-1250 169.70 ± 3.67 99.80 ± 2.51 99.80 ± 2.51 85.30 ± 2.30

-1500 76.70 ± 4.39 41.70 ± 2.73 41.70 ± 2.73 36.50 ± 2.47

-1750 28.50 ± 3.82 16.90 ± 1.55 16.90 ± 1.55 15.60 ± 1.31

-2000 2.90 ± 1.53 2.90 ± 1.53 2.90 ± 1.53 2.90 ± 1.53

T40I10D100K

-2000 297056.60 ± 16747.78 5477.00 ± 211.44 5477.00 ± 211.44 3675.70 ± 133.93

-2125 227409.30 ± 30167.75 4165.60 ± 181.86 4165.60 ± 181.86 2874.70 ± 116.69

-2250 80480.40 ± 31503.32 3001.90 ± 159.61 3001.90 ± 159.61 2195.80 ± 93.08

-2375 32533.60 ± 24486.95 1746.40 ± 372.79 1746.40 ± 372.79 1323.10 ± 264.55

-2500 5693.70 ± 611.02 660.20 ± 78.37 660.20 ± 78.37 528.70 ± 69.71

-2625 1933.20 ± 631.18 341.90 ± 58.24 341.90 ± 58.24 282.20 ± 47.46

-2750 615.10 ± 272.55 193.50 ± 57.87 193.50 ± 57.87 172.50 ± 51.47

Table 5.9: Average number of rules generated across 10 runs with different redun-
dancy approaches and goodness thresholds for traditional data.
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We now examine the performance of exclusively removing redundant speciali-

sations. Given a rule X ⇒ Z, the proposed approach for pruning specialisations

given in definition 5.2 uses the conditional association X ⇒ Z|Q to provide an

additional chance to obtain evidence for keeping rule XQ ⇒ Z (with respect to

the classical approach defined in section 5.1). As such, all specialisations that sur-

vive pruning based on classical redundancy will also survive our proposed robust

pruning. Using the robust pruning approach to remove only specialisations will

always return at least as many rules as the classical approach. This is supported

by the results presented in Tables 5.8 and 5.9, where the mean number of rules

generated with with the proposed approach is always greater, or not significantly

different from the number of rules generated with the classical approach.

5.4.3 Rule Quality

Finally, we look at the performance of the generated rules. As evidence has been

given that we should not prune generalisations without first pruning specialisa-

tions, no results are reported for pruning generalisations exclusively. Tables 5.10

and 5.9 shows the average log P-values for each of the tested redundancy methods

and thresholds. Despite the smaller size of the generated rule set, it can be seen

that in all cases the performance of robust pruning is equivalent or slightly better

than for rules generated with classically based pruning.

5.4.4 Efficiency

The expanded search needed to identify rules using robust redundancy increases

the amount of time and space required. The main factor that effects both compu-

tational time and memory requirements is the number of nodes generated during

the search. This can be seen by observing the similarity of the trends for the num-

ber of nodes generated (Figure 5.4) against time (5.5) and memory (5.6). As the

robust specialisation redundancy approach proposed in section 5.2.1 is more per-

missive than classical redundancy, the pruning employed during the search must
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Dataset α No Prune Classic Robust Specialisations Robust (Both)

Aspergillosis

-50 -57.44 ± 3.85 -73.19 ± 2.67 -73.25 ± 2.64 -77.29 ± 2.86

-75 -91.80 ± 3.04 -115.51 ± 2.75 -115.36 ± 2.73 -121.00 ± 2.09

-100 -125.78 ± 5.52 -155.54 ± 9.36 -155.37 ± 9.22 -165.06 ± 7.93

-125 -157.39 ± 5.65 -206.80 ± 10.15 -206.60 ± 10.25 -215.07 ± 9.12

-150 -197.29 ± 8.45 -240.32 ± 7.31 -240.32 ± 7.31 -249.13 ± 7.18

-175 -224.52 ± 6.51 -265.57 ± 7.95 -265.10 ± 7.75 -273.72 ± 8.71

-200 -259.87 ± 11.65 -297.70 ± 13.49 -296.33 ± 14.14 -304.60 ± 11.22

Diabetes

-15 -12.17 ± 1.72 -16.78 ± 0.90 -15.30 ± 1.28 -17.67 ± 1.39

-20 -18.97 ± 2.38 -26.30 ± 1.74 -24.48 ± 1.91 -27.65 ± 2.27

-25 -30.79 ± 1.34 -36.92 ± 1.58 -35.67 ± 1.53 -39.42 ± 1.54

-30 -35.59 ± 2.38 -43.34 ± 2.05 -43.11 ± 2.05 -47.00 ± 2.27

-35 -44.02 ± 1.78 -50.70 ± 1.22 -50.44 ± 1.18 -54.14 ± 1.27

-40 -48.68 ± 2.62 -55.41 ± 2.06 -55.15 ± 2.07 -58.88 ± 1.94

-45 -56.41 ± 3.62 -62.17 ± 4.00 -62.14 ± 4.01 -66.32 ± 4.32

Fertility

-15 -14.63 ± 1.86 -20.65 ± 1.35 -20.18 ± 1.29 -21.54 ± 1.23

-20 -19.21 ± 3.37 -33.41 ± 3.24 -33.00 ± 3.06 -34.13 ± 3.22

-25 -29.80 ± 3.75 -43.14 ± 3.31 -42.84 ± 3.30 -42.72 ± 3.14

-30 -34.94 ± 3.51 -54.64 ± 3.28 -54.49 ± 3.30 -55.67 ± 2.92

-35 -38.45 ± 4.19 -56.66 ± 4.09 -56.55 ± 4.10 -57.15 ± 4.08

-40 -44.74 ± 5.33 -62.70 ± 6.00 -62.55 ± 5.92 -63.21 ± 5.56

-45 -50.15 ± 3.88 -66.96 ± 5.25 -66.92 ± 5.28 -66.96 ± 5.36

Insomnia

-15 -10.67 ± 1.41 -13.27 ± 0.74 -12.83 ± 0.80 -13.05 ± 0.72

-20 -16.50 ± 2.50 -18.77 ± 1.76 -18.68 ± 1.75 -18.61 ± 1.78

-25 -24.19 ± 3.16 -24.32 ± 1.88 -24.58 ± 1.97 -24.39 ± 2.06

-30 -31.51 ± 1.70 -30.45 ± 1.52 -30.45 ± 1.64 -30.64 ± 1.62

-35 -35.02 ± 3.08 -33.93 ± 2.99 -34.37 ± 3.04 -35.13 ± 3.09

-40 -44.25 ± 4.01 -41.28 ± 2.06 -40.81 ± 2.88 -42.70 ± 2.77

-45 -57.66 ± 5.25 -55.98 ± 6.25 -55.34 ± 6.45 -58.16 ± 7.72

Table 5.10: Average rule performance across 10 runs using average log P-values
with different redundancy approaches and goodness thresholds for text and herbal
prescription data.
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Dataset α No Prune Classic Robust Specialisations Robust (Both)

Mushroom

-1250 -1542.40 ± 8.59 -1604.50 ± 9.79 -1535.21 ± 8.13 -1622.80 ± 9.53

-1375 -1674.28 ± 39.12 -1700.65 ± 14.68 -1676.63 ± 14.71 -1733.22 ± 20.36

-1500 -1853.86 ± 17.29 -1793.91 ± 19.56 -1787.94 ± 19.16 -1842.73 ± 17.71

-1625 -1860.36 ± 11.36 -1843.53 ± 10.95 -1840.13 ± 11.21 -1869.33 ± 10.59

-1750 -1886.27 ± 24.84 -1903.90 ± 8.54 -1904.92 ± 8.53 -1915.04 ± 9.57

-1875 -2058.56 ± 15.00 -1996.28 ± 15.97 -1997.05 ± 15.92 -2016.88 ± 13.73

-2000 -2064.61 ± 13.26 -2040.31 ± 15.01 -2040.44 ± 14.65 -2044.43 ± 13.54

T10I4D100K

-500 -654.97 ± 3.75 -677.78 ± 2.91 -677.78 ± 2.91 -691.13 ± 3.47

-750 -901.33 ± 7.01 -923.40 ± 5.67 -923.40 ± 5.67 -934.32 ± 6.11

-1000 -1155.35 ± 11.23 -1171.87 ± 9.15 -1171.87 ± 9.15 -1174.81 ± 8.79

-1250 -1496.84 ± 15.98 -1489.76 ± 14.07 -1489.76 ± 14.07 -1497.53 ± 14.53

-1500 -1679.61 ± 30.62 -1690.91 ± 30.69 -1690.91 ± 30.69 -1702.46 ± 30.36

-1750 -1839.38 ± 44.39 -1865.57 ± 41.17 -1865.57 ± 41.17 -1869.08 ± 40.72

T40I10D100K

-2000 -2205.18 ± 32.30 -2282.00 ± 17.71 -2282.00 ± 17.71 -2302.10 ± 18.75

-2125 -2201.06 ± 42.97 -2339.99 ± 33.51 -2339.99 ± 33.51 -2360.88 ± 33.30

-2250 -2305.75 ± 57.95 -2408.56 ± 28.13 -2408.56 ± 28.13 -2423.45 ± 26.10

-2375 -2410.26 ± 100.15 -2470.00 ± 58.98 -2470.00 ± 58.98 -2481.85 ± 56.55

-2500 -2585.09 ± 42.48 -2621.87 ± 51.48 -2621.87 ± 51.48 -2631.06 ± 52.50

-2625 -2691.38 ± 36.23 -2748.60 ± 26.65 -2748.60 ± 26.65 -2756.40 ± 25.11

-2750 -2686.73 ± 40.39 -2706.56 ± 33.16 -2706.56 ± 33.16 -2710.19 ± 33.49

Table 5.11: Average rule performance across 10 runs using average log P-values
with different redundancy approaches and goodness thresholds for traditional data.
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Figure 5.4: Number of nodes generated vs. goodness threshold during the search
for rules for each data and redundancy approach.

be less aggressive. We now consider the performance of the search space pruning

with robust redundancy.

Figure 5.4 shows the number of nodes generated when searching for each data.

It can be observed that the difference in number of nodes generated when searching

with robust and classical redundancy varies substantially. Some data, such as the

Aspergillosis and T10I4D100K sets differ very little, while the greatest difference

is observed for the Mushroom and T40I10D100K data.

As discussed in section 5.3.1 two main approaches are used when using classical

redundancy to prune the search space; lapis philosophorum, and minimality. Of

those only the lapis philosophorum principle is used when searching with robust

redundancy (in fact it is used for all searches regardless of redundancy approach).

Therefore two factors can contribute to the increased size of the search space; the

lack of minimality based pruning, and the computation of the second bound on
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Figure 5.5: Average search time vs. goodness threshold when searching for rules
for each data and redundancy approach.
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Figure 5.6: Memory usage (kb) vs. goodness threshold when searching for rules
for each data and redundancy approach.
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M(X ⇒ A|Q) in algorithm 4.

In addition to comparing the number of nodes generated when searching with

classical versus robust redundancy, it is interesting to examine the number of nodes

generated when no redundancy based pruning is used. In general, there appears

to be a substantial difference between the number of nodes generated without

pruning when compared against using robust redundancy. This implies that the

bounds computed in algorithm 4 have a reasonable effect on the size of the search

space.

There are three exceptions to the above observation; namely the Aspergillo-

sis, T10I4D100K, and T40I10D100K data. In the case of the Aspergillosis and

T10I4D100K data we note there is also little difference between the number of

nodes generated using robust and classical redundancy. The implication here is

that the majority of the pruning is being done by lapis philosophorum.

However, for the T40I10D100K data there is a substantial difference between

the performance with robust and classical redundancy.

Figure 5.5 reports the time required for all searches (including pruning in

algorithms 5 and 6). In all cases it the required search time was quite manageable.

Even in the case of the T40I10D100K data, all searches completed in less than 30

seconds (all other data completed much quicker). In practice a lack of memory

appears to become an issue long before time required for the search.

5.5 Summary

In this chapter we have proposed a novel approach to identifying and removing

redundant rules, which we refer to as robust redundancy. Previous approaches

compared rules using only the interestingness computed with their respective con-

tingency tables. Such a comparison fails to take into account information included

in instances containing only part of the antecedent. Robust redundancy is able
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to use this information to discover interesting specialisations that would be erro-

neously removed with a classical approach.

We have also proposed to remove rules which are redundant artifacts of their

non-redundant specialisations. Unlike previous approaches [62, 106] that evalu-

ate generalisations based on their exclusive domain with respect to the set of all

specialisations, we base our method on comparisons to individual rules. We also

present the first work using both specialisation and generalisation redundancy in

a rule based context (as opposed to the work of Webb [106] with itemsets). When

combined with the removal of redundant specialisations, we demonstrate for mul-

tiple data that we are able to produce smaller overall rule sets which hold as well

or better in future data.



Chapter 6

Evaluating Classifiers Using

Proposed Redundancy Methods

In chapter 4 we introduced a novel, rule based approach for screening citations

in systematic reviews. We simulated its application to the literature searches for

two real systematic reviews, and demonstrated that it had the potential to pro-

vide significant workload savings without unreasonably reducing recall on relevant

citations. As part of our analysis we looked at recommendations for various pa-

rameter choices when applying the algorithm to real data. It was noted that while

promising performance could be achieved with both tested reviews, the algorithm

was quite sensitive to the minimum confidence parameter for valid classification

rules.

A major requirement for any classification algorithm in systematic review lit-

erature review searches is that the recall over relevant citations must be as high

as possible. If classification rules are built for non-relevant citations, maximising

recall on relevant citations is equivalent to maximising the confidence of generated

rules. By requiring that all rules have at least some given minimum confidence

level, we attempt to prevent the rule mining algorithm from generating overly

general rules, maximising recall.

In section 4.1 we listed additional requirements for systematic review classifiers

153
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including determinism, white-box classifiers, and a training methodology which

minimises disruption for reviewers. The purpose behind these requirements is to

increase user confidence by maximising their ability to inspect and interpret the

resulting classifier. The desire for white-box classifiers was a motivating factor in

our decision to use rule based classifiers in our work. However, an acknowledged

problem within the association rule mining literature is that the number of rules

generated when mining can be impractically large [2, 94, 112, 10, 11]. The number

of rules generated can often be a barrier to interpretation by users.

One method used to eliminate unwanted rules is based on the concept of re-

dundancy. For classification rules X ⇒ Z, the classical notion of rule redundancy

seeks to identify when an otherwise valid rule XY ⇒ Z adds no information to the

rule X ⇒ Z. Rule XY ⇒ Z would be considered redundant with respect to rule

X ⇒ Z. Identifying redundant rules can be useful for facilitating understanding

and interpretation of the rule set, as well as controlling the size of the search space.

Chapter 5 extended the classical approach to rule redundancy. Additional

information was utilised to prevent the incorrect exclusion of more specialised

rules XY ⇒ Z. We demonstrated that instances containing only part of a rule

antecedent (e.g. X¬Y or ¬XY ) could be used to obtain evidence that rule im-

proved over one of its generalisations X ⇒ Z. It was also shown how to identify

cases where it was preferable to keep more specialised rules of the form XY ⇒ Z

and prune the general rules X ⇒ Z.

We show in this chapter that by incorporating the robust specialisation and

generalisation redundancy approaches outlined in chapter 5 we can improve the in-

terpretability of our classifier. Compared to classical redundancy, our approach is

able to identify more specific rules which had previously been discarded as redun-

dant. We are also able to remove shorter rules which are spurious generalisations

of more specific associations. Little to no increase in the size of the overall rule

set is observed, and similar classification performance is achieved.

Recall that a goal of this work is to produce models of non-relevant citations
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that are both interpretable and highly precise. A tendency to produce more spe-

cific rules as opposed to more general associations benefits both of these objectives.

The descriptive power of a rule increases with the number of terms it contains,

allowing the user to better understand the concepts behind each association. Also,

by reducing the number of general associations we aim to produce rules that de-

scribe smaller, more targeted concepts. Using smaller concepts increases the users

ability to evaluate whether or not they are suitable for their intended purpose.

We generally prefer to apply specialisation redundancy prior to the application

of generalisation redundancy. However, as discussed in section 5.2.3 is may be

preferable to simply use generalisation redundancy if the goal is to generate highly

specific rules. As highly precise models of non-relevant citations are the goal of

this work, we also evaluate the performance of generalisation redundancy on its

own.

The rest of this chapter is structured as follows: Firstly, the data used in this

chapter is briefly described in section 6.1. We then examine the performance of

the redundancy approaches outlined in chapter 5 when applied to real review data

in section 6.2. The sensitivity of rule length and overall set size is evaluated in

section 6.3, with the sensitivity for workload and recall evaluated in section 6.4.

Finally, conclusions are drawn in section 6.5.

6.1 Data

Experiments in this chapter were performed on the same systematic review data

used in chapter 4. This data was drawn from the literature searches for two

Cochrane reviews:

� Galactomannan detection for invasive aspergillosis in imumunocompromized

patients by Leeflang et al. [57]

� An unpublished review on the accuracy of diagnostic biomarkers for Alzheimer’s

disease.
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A summary of the number of citations in each review is provided in Table 4.2.

For more information the reader is directed to section 4.5.1.

6.2 Systematic Review Classification with Dif-

ferent Redundancy Approaches

Tables 6.1 and 6.2 show the workload (percentage of citations remaining), recall,

average rule length (number of terms in the antecedent), and number of rules

generated for the three redundancy types on the Aspergillosis data. Tables 6.4

and 6.5 report the same results for the Alzheimer’s data. Rules were generated by

training on the full set of citations using annotations made based on title alone as

labels. Performance was measured on citations for which abstracts were obtained

with final inclusion annotations used as labels.

Before continuing our analysis, we note the difference in rule set size for the

Aspergillosis and Alzheimer’s data. From Table 6.5 we can see that the Alzheimer’s

data tends to produce rule sets with only a handful of rules (between 19 and 26

depending on the type of redundancy used). In contrast, the number of rules

produced with the Alzheimer’s data (Table 6.2) is much higher. Depending on

the type of redundancy used, we generate between 111 and 205 rules.

It is interesting that all three redundancy approaches produced quite different

rule sets (as can be seen from looking at the average length of the rule antecedents

given in Table 6.2 and Table 6.5). In particular, exclusively applying generalisa-

tion redundancy produced rules with substantially larger antecedents than either

robust or classical redundancy. The difference in rule length was reduced between

robust and classical redundancy (particularly on the Aspergillosis data), however

a larger difference was observed with the Alzheimer’s data. Due to the much

smaller number of rules generated for the Alzheimer’s data, it is possible that this

is due to the addition of longer rules having a greater individual impact of the

mean.
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Classic Robust Generalisation Only

Min. Conf. Workload Recall Workload Recall Workload Recall

0.90 0.646 0.701 0.646 0.701 0.650 0.701

0.91 0.649 0.701 0.649 0.701 0.654 0.701

0.92 0.711 0.804 0.711 0.804 0.718 0.804

0.93 0.763 0.862 0.763 0.862 0.770 0.862

0.94 0.794 0.873 0.794 0.873 0.800 0.885

0.95 0.806 0.896 0.806 0.896 0.812 0.896

0.96 0.870 0.942 0.870 0.942 0.876 0.942

0.97 0.891 0.954 0.891 0.954 0.897 0.954

0.98 0.944 0.954 0.945 0.954 0.948 0.954

Table 6.1: Comparison of workload and recall for different redundancy types with
Aspergillosis data. Rules trained using full data. Highlighted cells correspond to
pre-selected parameter settings.
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Classic Robust Generalisation Only

Min. Conf. Ave. Rule Len. # Rules Ave. Rule Len. # Rules Ave. Rule Len. # Rules

0.90 1.02± 0.02 179 1.03± 0.02 180 1.38± 0.08 205

0.91 1.01± 0.02 177 1.03± 0.02 178 1.38± 0.08 203

0.92 1.03± 0.02 174 1.04± 0.02 175 1.39± 0.08 197

0.93 1.04± 0.03 169 1.05± 0.03 170 1.40± 0.08 189

0.94 1.07± 0.04 164 1.07± 0.04 165 1.39± 0.08 181

0.95 1.04± 0.03 156 1.05± 0.03 157 1.39± 0.08 176

0.96 1.02± 0.02 138 1.03± 0.03 139 1.39± 0.09 157

0.97 1.04± 0.03 130 1.04± 0.03 130 1.39± 0.09 145

0.98 1.09± 0.05 112 1.09± 0.06 111 1.38± 0.10 119

Table 6.2: Comparison of number and length of rules for different redundancy
types with Aspergillosis data. Rules trained using full data. Highlighted cells
correspond to pre-selected parameter settings.

We start by observing the effect of substituting robust specialisation redun-

dancy for classical redundancy. Table 6.3 and Table 6.6 compare the number

of rules generated using classical and robust specialisation redundancy. The left

two columns indicate the number of rules generated by exclusively applying these

redundancy approaches. The right two columns give the number of rules after

subsequent pruning of generalisations.

We can see that for 8 of the 9 minimum confidence thresholds with the As-

pergillosis data, specialisation redundancy allows us to generate additional rules

when compared to classical redundancy. Additional rules were generated in all

cases with the Alzheimer’s data.

That specialisation redundancy is able to prevent the exclusion of interest-

ing, more specialised rules that would previously have been considered redundant

is promising. We note however that exclusive application of specialisation redun-

dancy (as opposed to classical redundancy) is not useful for classification purposes.

This is due to the fact that additional rules produced by specialisation redundancy
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Only Specialisations Also Prune Generalisations

Min. Conf. Classic Robust Classic Robust

0.90 179 181 179 180

0.91 177 179 177 178

0.92 174 176 174 175

0.93 169 171 169 170

0.94 164 165 164 165

0.95 156 157 156 157

0.96 138 139 138 139

0.97 130 130 130 130

0.98 112 113 112 111

Table 6.3: Comparison of number of rules generated by classic and robust spe-
cialisation redundancy training with full Aspergillosis data. First pair of columns
prunes only specialisations. Second pair of columns subsequently prunes general-
isations.
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will always match a subset of another, more general rule. While the generation

of the additional specific rules has utility if generalisation redundancy is to be

applied (or if we are producing rules exclusively for exploratory purposes), they

have no use when the goal is to produce a rule set for classification. Therefore we

must perform an additional pruning step based on generalisation redundancy.

Looking at the number of rules reported in the second column of Table 6.3

we can make several observations. Firstly, the number of rules identified when

using classical redundancy is the same regardless of whether or not generalisation

redundancy is applied (we note this will not always be the case, rather it is a

consequence of the training data). Secondly, the application of generalisation re-

dundancy in addition to robust specialisation redundancy is able to prune spurious

general rules for several tested thresholds.

Although the change in rule sets was not particularly large for the Aspergillosis

data, much larger changes were observed with the Alzheimer’s data in Table 6.6.

We can see that initial pruning with classical redundancy followed by generali-

sation redundancy is able to prune one general rule for several tested minimum

confidence thresholds (and no additional rules for other tested thresholds). While

initial pruning with robust specialisation redundancy doesn’t change the final num-

ber of rules, comparing the average rule size for classical and robust redundancy

in Table 6.5 we can see that those for robust redundancy are substantially larger.

This suggests most of the general rules found by classical redundancy are being

replaced by the additional rules generated with robust specialisation redundancy.

This supports the ability of robust redundancy to create longer, more descriptive

rule sets.

We also investigate the exclusive application of generalisation redundancy with

no prior pruning (other than removing rules which do not meet the minimum

threshold for P-value). For the Aspergillosis data, not pruning specialisations

allows the algorithm to consider many additional longer rules. This can be seen

by the difference in average rule length (the second to last column in Table 6.2)
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when compared against either classical or full robust redundancy. Despite this, we

note the total size of the rule set (the last column in Table 6.2) is only marginally

increased, with the increase in the number of generated rules ranging from 6.3%

with a minimum confidence of 0.98 to 14% at 0.91.

Similar results are observed for the Alzheimer’s data in Table 6.5, although

with this data generalisation redundancy contains an interesting property. In

contrast to all other tested redundancy types, the number of rules decreases as

the minimum confidence for rules is raised (from 21 to 19).

When pruning specialised rules, using a minimum confidence threshold makes

it possible that a previously discovered non-redundant rule may not be identified.

As this rule is not discovered, the mining algorithm may instead generate more

specific rules that it would otherwise make redundant. Increasing the minimum

confidence threshold allows the mining algorithm to generate more specific rules

at the expense of general rules. Due to the relatively small size of the rules set,

the number of such rules appears to be larger than the number removed. This

leads to the decreases observed for classic and full robust redundancy.

For generalisation redundancy, as no specialisation based pruning is applied

then the algorithm starts from a point where all rules with suitable P-value are

present. Rules will only be pruned if they are redundant with respect to all their

discovered specialisations. As the minimum confidence threshold is increased, it is

possible that more specialised rules will be removed. In the case that such a rule

rendered one of its generalisations non-redundant, this could lead to the removal

of one or more of these general rules.

Despite the difference in observed rule sets, we also note from Tables 6.1 and 6.4

that very little performance difference exists when testing with the full data. In the

case of the Aspergillosis data, no difference in recall was observed between classical

and robust redundancy for any measured minimum confidence level. A very small

drop in workload (equivalent to a single study) was observed with the strictest

confidence threshold tested (0.98). Applying only generalisation redundancy with
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Classic Robust Generalisation Only

Min. Conf. Workload Recall Workload Recall Workload Recall

0.50 0.054 0.97 0.043 0.97 0.054 0.97

0.51 0.054 0.97 0.043 0.97 0.054 0.97

0.52 0.946 0.97 0.967 0.97 0.946 0.97

0.53 0.946 0.97 0.967 0.97 0.946 0.97

0.54 0.946 0.97 0.967 0.97 0.946 0.97

0.55 0.967 0.97 0.967 0.97 0.967 0.97

0.56 0.967 0.97 0.967 0.97 0.967 0.97

0.57 0.967 0.97 0.967 0.97 0.967 0.97

0.58 0.967 0.97 0.967 0.97 0.967 0.97

Table 6.4: Comparison of workload and recall for different redundancy types with
Alzheimer’s data. Rules trained using full data. Highlighted cells correspond to
pre-selected parameter settings.

no initial specialisation based pruning produced a small spike in recall with a

minimum confidence level of 0.93, however reviewer workload was slightly higher

for all tested values.

For the Alzheimer’s data, no difference in recall was observed for any tested

minimum confidence level or robustness approach. Mining rules with robust re-

dundancy did produce a small increase in workload for minimum confidence levels

of 0.54 or less.

We are interested to know how sensitive the above observations are to varia-

tions in the training data or algorithmic parameters. Essentially, are the observa-

tions significant or simply an artifact of the tested training data. Such an analysis

is of interest as it may also indicate the potential of each approach on future data.
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Classic Robust Generalisation Only

Min. Conf. Ave. Rule Len. # Rules Ave. Rule Len. # Rules Ave. Rule Len. # Rules

0.50 1.55± 0.27 22 2.19± 0.45 21 2.52± 0.53 21

0.51 1.55± 0.27 22 2.19± 0.45 21 2.52± 0.53 21

0.52 1.55± 0.27 22 2.19± 0.45 21 2.52± 0.53 21

0.53 1.55± 0.27 22 2.19± 0.45 21 2.52± 0.53 21

0.54 1.55± 0.27 22 2.19± 0.45 21 2.52± 0.53 21

0.55 1.65± 0.24 26 2.35± 0.38 26 2.63± 0.57 19

0.56 1.65± 0.24 26 2.35± 0.38 26 2.63± 0.57 19

0.57 1.65± 0.24 26 2.35± 0.38 26 2.63± 0.57 19

0.58 1.65± 0.24 26 2.35± 0.38 26 2.63± 0.57 19

Table 6.5: Comparison of number and length of rules for different redundancy
types with Alzheimer’s data. Rules trained using full data. Highlighted cells
correspond to pre-selected parameter settings.

We analyse the sensitivity of the rule length and set size to variations in train-

ing data in section 6.3. An analysis of performance with respect to variations in

minimum confidence is given in section 6.4.
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Only Specialisations Also Prune Generalisations

Min. Conf. Classic Robust Classic Robust

0.50 22 36 21 21

0.51 22 36 21 21

0.52 22 36 21 21

0.53 22 36 21 21

0.54 22 36 21 21

0.55 26 44 26 26

0.56 26 44 26 26

0.57 26 44 26 26

0.58 26 44 26 26

Table 6.6: Comparison of number of rules generated by classic and robust spe-
cialisation redundancy training with full Alzheimer’s data. First pair of columns
prunes only specialisations. Second pair of columns subsequently prunes general-
isations.
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6.3 Sensitivity of Rule Structure to Training Data

This section evaluates the sensitivity of the rule length and set size to variations in

training data. This is accomplished by measuring results as the average for rules

generated using 30 independent samples with 70% of the training data. Values for

rule set size and average rule length for the Aspergillosis and Alzheimer’s data are

reported in Tables 6.7 and 6.8 respectively. Values highlighted in red are larger

than the corresponding values for classical redundancy with statistical significance

using an unequal variance t-test (P=0.05). Smaller values are highlighted in blue.

The first observation we make is that the large difference in rule length ob-

served between classical redundancy and exclusive application of generalisation

redundancy held for all tested data and minimum confidence thresholds. In addi-

tion, the difference in rule set size for the Aspergillosis data was repeated for 8 of

the 9 tested thresholds. The difference in rule set size was slightly smaller than

when training with the entire data, however the decrease was proportional to the

percentage decrease in number of training instances.

The rule set size between generalisation and classical redundancy was much

closer for the Alzheimer’s data. Statistically significant differences were only ob-

served with the three lowest minimum confidence values (0.5, 0.51, and 0.52).

As noted in section 6.2, increasing the minimum confidence threshold for the

Alzheimer’s data tended to lower the number of rules with generalisation redun-

dancy, and raise the number of rules with classical or robust redundancy. That

larger rule sets would be observed with low minimum confidence values, with

rule set size converging as the minimum confidence increased is not particularly

surprising.

More interesting was the difference in rule length and rule set size for robust

redundancy. Despite specialisation redundancy only producing a small number of

additional rules, the mean rule length was greater than for classical redundancy

with 6 of the 9 tested confidence thresholds with the Aspergillosis data. All tested

confidence thresholds with the Alzheimer’s data showed significantly longer rules.
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Classic Robust Generalisation Only

Min. Conf. Ave. Rule Len. # Rules Ave. Rule Len. # Rules Ave. Rule Len. # Rules

0.90 1.00± 0.00 132.4± 1.28 1.01± 0.00 133.87± 1.36 1.30± 0.02 142.07 ± 1.59

0.91 1.01± 0.00 130.87± 1.26 1.02± 0.00 132.47± 1.34 1.31± 0.02 137.33 ± 1.59

0.92 1.02± 0.00 128.53± 1.12 1.03± 0.01 129.07± 1.50 1.32± 0.02 134.67 ± 1.45

0.93 1.02± 0.00 123.83± 2.87 1.03± 0.01 126.8 ± 1.28 1.32± 0.02 131.67 ± 1.56

0.94 1.03± 0.01 119.83± 1.23 1.04± 0.01 119.13± 1.53 1.33± 0.02 127.8 ± 1.54

0.95 1.03± 0.01 113.8± 1.44 1.04± 0.01 113.77± 1.50 1.33± 0.02 120.76 ± 1.25

0.96 1.02± 0.01 103.9± 1.52 1.03± 0.01 102.43± 1.81 1.32± 0.02 109.67 ± 1.34

0.97 1.03± 0.01 91.37± 1.32 1.04± 0.01 92.57± 1.19 1.31± 0.02 97.3 ± 1.58

0.98 1.09± 0.01 79.93± 1.61 1.11± 0.01 79.53± 1.80 1.32± 0.02 79.43± 1.60

Table 6.7: Comparison of number and length of rules for different redundancy
types with Aspergillosis data. Reporting averages over 30 runs training with 70%
of full data. Highlighted cells correspond to pre-selected parameter settings.

Comparing the rule set size, we can see that robust redundancy only produced a

larger rule set in one case: using a minimum confidence threshold of 0.93 with the

Aspergillosis data. In two cases with the Alzheimer’s data (minimum confidence

thresholds of 0.51 and 0.53), we even observe a statistically significant decrease in

rule set size.

The above observations using the sampled data are pleasing, in that they

demonstrate the ability of both generalisation and complete robust redundancy

to increase the descriptive power of the generated rules without unduly increasing

set size. In fact, in the case of robust redundancy we observed a decrease in set

size more often than we observed an increase. Generalisation redundancy was

more consistent in increasing the size of the rule set, however also produced larger

increases in the size of the rules.
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Classic Robust Generalisation Only

Min. Conf. Ave. Rule Len. # Rules Ave. Rule Len. # Rules Ave. Rule Len. # Rules

0.50 1.57± 0.08 9.67± 0.96 2.22± 0.12 8.97± 0.76 2.40± 0.12 10.67± 0.66

0.51 1.52± 0.07 9.7± 0.89 2.16± 0.13 8.17± 0.73 2.37± 0.11 11.13± 0.74

0.52 1.57± 0.07 9.27± 0.84 2.14± 0.12 8.37± 0.77 2.45± 0.12 11.03± 0.71

0.53 1.54± 0.07 9.8± 0.80 2.06± 0.12 8.57± 0.62 2.47± 0.12 10.1± 0.76

0.54 1.49± 0.07 8.93± 0.83 2.23± 0.12 9.17± 0.82 2.48± 0.12 9.97± 0.89

0.55 1.59± 0.07 9.63± 1.10 2.20± 0.11 9.43± 0.75 2.47± 0.12 9.7± 0.62

0.56 1.60± 0.06 9.43± 0.77 2.32± 0.11 10.17± 0.99 2.54± 0.13 9.84± 0.69

0.57 1.67± 0.07 8.9± 0.83 2.24± 0.11 9.87± 0.98 2.53± 0.12 9.9± 0.85

0.58 1.68± 0.06 9.33± 0.92 2.22± 0.11 10.0± 1.01 2.55± 0.13 9.23± 0.81

Table 6.8: Comparison of number and length of rules for different redundancy
types with Alzheimer’s data. Reporting averages over 30 runs training with 70%
of full data. Highlighted cells correspond to pre-selected parameter settings.

6.4 Sensitivity of Performance to Variations in

Minimum Confidence

The two charts in the top row of Figures 6.1 and 6.2 show the performance when

pruning only generalisations (with no initial pruning of specialisations) on the As-

pergillosis and Alzheimer’s data respectively. Results are reported as the average

of 30 runs with rules trained over a random sample of 70% of the training data.

Rule sets were evaluated using the entire set of citations for which abstracts were

obtained.

As the minimum confidence threshold approaches 1, the recall and workload

converge. In chapter 4 we established that 0.97 was a good threshold for the

Aspergillosis data with a goodness threshold ln(P) of -11.513 (see section 4.5.4).

We are interested to find out the relation between performance and the addition of

general rules. This is done by the relaxation of the minimum confidence threshold.

We also wish to see how these relations differ by redundancy approach.

Looking at the performance with the Aspergillosis data reported in Figure
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ln(P) = -11.513
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Figure 6.1: Classical vs. Generalisation and Robust redundancy for choice of
minimum confidence threshold on Aspergillosis data.
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Figure 6.2: Classical vs. Generalisation and Robust redundancy for choice of
minimum confidence threshold on Alzheimer’s data.
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6.1, we can see that as the minimum confidence decreases away from 0.97 the

recall with generalisation redundancy decreases at a slower rate than with clas-

sical redundancy. The difference in performance is most substantial at minimum

confidence level of 0.92, before the recall for both approaches converges. We es-

tablished in previous sections that generalisation redundancy produces rules with

longer antecedents. The increasingly specific rules generate fewer false positives

when identifying non-relevant studies.

It is noteworthy that while recall for generalisation redundancy improves over

classical redundancy, the opposite effect is observed for reviewer workload (i.e.

generalisation redundancy produces a higher reviewer workload). This is unsur-

prising, as the tendency of classical redundancy to prefer more general rules with

lower confidence will produce rules that have a higher chance of matching new

citations. It is important to remember that the goal of classification for system-

atic reviews is to minimise workload under a requirement of sufficient recall. It

is preferable to reduce the rate at which recall decreases, even at the expense of

workload savings.

In contrast to the Aspergillosis data, there is little difference observed in recall

between generalisation and classical redundancy for the Alzheimer’s review data

reported in Figure 6.2. For almost all tested minimum confidence thresholds with

a ln(P) value of -11.513, recall was statistically equivalent. In only one case (gen-

eralisation redundancy only with a minimum confidence threshold of 0.55) was

any difference observed.

The Alzheimer’s review uses an extremely weak minimum confidence threshold

of 0.51. As a result, it can be expected that pretty much all very general rules

will be identified during rule mining. That generalisation redundancy fails to

significantly improve performance indicates that for the Alzheimer’s data general

rules appear to perform quite well on their own.

It is important to note the size of the confidence intervals for performance on

the Alzheimer’s data, which are much larger than for the equivalent tests on the
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Aspergillosis data. Recall from the start of section 6.2 that the average length

of rules for the Alzheimer’s data is quite short (often only 10-20 rules). This

implies that small changes in the rule set will produce a much larger impact in

performance.

The second row of subfigures in Figures 6.1 and 6.2 report the performance of

robust redundancy on the Aspergillosis and Alzheimer’s data respectively. Robust

redundancy produced no significant difference in performance to classical redun-

dancy for the Aspergillosis data, either in terms of recall or workload. Recall was

statistically identical for the Alzheimer’s data, although there was a noted increase

in workload for minimum confidence levels less than 0.55.

We can see by comparing the first two columns in Table 6.6 that robust spe-

cialisation redundancy (without pruning generalisations) produces a significantly

larger number of rules than with classical redundancy. Looking at the fourth col-

umn (as well as the rule set size values in Table 6.8), we can see that many of the

general rules are made redundant by generalisation. The resulting set size is quite

similar to that for both classical redundancy, and exclusive application of gen-

eralisation redundancy. This suggests that full robust redundancy prunes many

of the rules found with the classical approach, which are in turn pruned when

exclusively applying generalisation redundancy without any initial specialisation

based pruning.

The above observation, combined with the increase in workload for full robust

redundancy is interesting to note. Data that produce small rule sets are likely quite

sensitive to the addition or removal of a few rules. In the case of the Alzheimer’s

data, highly specific rules are required to produce appropriate performance.

We hypothesise that for data with very small rule sets, such as the Alzheimer’s

data, it may be worthwhile to skip specialisation based pruning and exclusively ap-

ply generalisation redundancy. However due to the fact we have only two datasets,

we note that further evaluation before drawing such a conclusion is required.
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6.5 Summary

In chapter 4 we proposed a novel classification rule based algorithm for semi-

automation of literature screening for systematic reviews. This chapter evaluated

the ability of the redundancy approaches covered in chapter 5 to improve the

interpretability and performance of that algorithm. We demonstrated that robust

redundancy had the ability to increase the descriptive power of individual rules

without increasing the size of the overall rule set.

We also evaluated pruning redundant generalisations without the prior step to

prune redundant specialisations. Even more substantial increases in descriptive

power were observed for this approach, however increases in the number of overall

rules of up to 14% were observed for one of the tested datasets.

There appeared to be little performance trade off when increasing descriptive

power with the proposed redundancy approaches. Considering performance in

terms of recall and workload, minimal difference was observed between redundancy

approaches. This is positive in that it indicates increased descriptive power is

available without substantial trade off in performance.

One exception to the above claim is the reviewer workload for the Alzheimer’s

data when pruning rules with robust specialisations and generalisations. For sev-

eral minimum confidence thresholds, the Alzheimer’s data saw a substantial drop

off in workload with robust redundancy. We note that no such observation was

made with generalisation redundancy.

The Alzheimer’s data produced very small rule sets, which increases the po-

tential impact of removing individual rules on the classifiers overall coverage. It is

possible that had more highly precise rules been considered, the number used to

replace each general rule could have been increased and the coverage of the overall

rule set improved.

We hypothesise that for very small rule sets, it may be preferable to employ

generalisation redundancy without initial specialisation based pruning. However

we note that further evaluation is required to validate this claim.



Chapter 7

Conclusion

Systematic reviews are a crucial component of modern evidence based medicine.

However despite their importance for clinical policy and practice, they are ex-

tremely difficult to conduct. Literature searches are largely conducted manually,

often over a timescale of months or even years [87].

The past decade has seen the machine learning community increasingly try to

improve the automation and efficiency of the systematic review process. Much

progress has been made, with systems such as Abstrackr [100, 101] showing sig-

nificant promise. Yet room for improvement exists, for example with reviews con-

taining particularly imbalanced data. Despite this progress much work remains;

both in minimising reviewer workload rates without excluding relevant research, as

well as complementary issues such as how best to train and integrate classification

models into the systematic review process.

This thesis set out to investigate ways in which reviewer workload could be re-

duced during the literature screening process for systematic reviews. We proposed

a novel approach for integrating classification into the systematic review process,

and demonstrated its potential to produce real workload savings by simulated

application on real data. To maximise user confidence in our classifier we adopt

white-box, rule based classifiers. We propose an alternate framework in which to

identify and remove redundant rules, and demonstrate its ability to improve the
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descriptive power of the rules produced. Prior to the work reported in this thesis,

there has been little research into how the review process might be exploited to

facilitate automation. We provide such an analysis. We also consider issues re-

lating to the automation of diagnostic test accuracy reviews, and how they differ

from more traditional reviews such as those of treatment.

7.1 Contributions

This thesis provides several contributions to existing knowledge, which we sum-

marise in the following section.

� Empirically demonstrate diagnostic reviews contain increased work-

load and target class heterogeneity when compared to treatment

Chapter 3 presents a comparative analysis of diagnostic test accuracy

and treatment reviews. While systematic reviews have traditionally focused

on questions relating to treatment, reviews from other fields are becoming

increasingly common. Diagnostic reviews are found to contain both a higher

rate of data imbalance (ratio of relevant to non-relevant studies), as well as

a broader target class.

The identification of diagnostic test accuracy reviews as a particularly

challenging subset of the review screening problem, along with several possi-

ble reasons, can assist researchers in improving the performance of classifica-

tion for systematic reviews as a whole. In addition to suggesting diagnostic

reviews as a source of challenging test data for future work, it motivates

research designing classifiers which are robust to a broadly defined target

class.

� Model for citation classification that excludes irrelevant citations

with high precision
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We build upon this work in chapter 4 by proposing a classification model

where subsets of non-relevant citations are labelled with high precision. This

allows us to reduce reviewer workload, while avoiding the need to completely

model the entire target class of relevant citations. Providing a guarantee

for recall on some target class by by inverting the problem and excluding

subsets of the non-target class with high precision is a novel contribution of

this work.

� Model for automation of systematic review literature searches that

uses annotations from prior screening stages to build the classifier

We also address the problem of how to obtain training data for auto-

mated screening during systematic reviews by analysing the existing screen-

ing process for systematic reviews in chapter 4. Systematic reviews typically

screen citations in a multi-stage triage process. Citations are first screened

based on title alone, then title and abstract, and finally on full text, with

citations that can confidently be excluded from the review removed after

each stage. For a classifier which is intended to be applied at a given stage

(for example, title and abstract), all previous research has relied upon labels

applied at this stage to build an appropriate training set. In contrast, we

propose that annotations made at prior screening stages (for example, title

alone) have utility in building a classifier to model non-relevant citations.

Training a classifier using annotations from prior screening stages has

several benefits. Firstly, these labels can be obtained with no additional

modification to the screening process; existing approaches require some mod-

ification to the methodology with which citations are selected for annotation.

Secondly, building a classifier based upon annotations made in prior screen-

ing stages allows for the application of the classifier prior the starting the

next stage. This suggests that not only does the proposed model utilise

additional information which has previously been discarded, but could be
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applied in sequence with existing approaches to produce even greater work-

load savings.

� Initial analysis on real data for performance evaluation and rec-

ommended parameterisation of classification models

Section 4.5 contains an evaluation of the proposed classifier by simulated

application to two real reviews. A sensitivity analysis of the algorithm to its

parameters, feature selection, and training methodology is performed. Initial

recommendations are made with respect to consistently performing choices.

This process can be followed with future reviews to increase confidence in

our conclusions or to obtain evidence to suggest their modification.

� Alternate definitions for association rule redundancy, with corre-

sponding rule mining algorithm

Chapter 5 examines the process of association rule mining, in particular

the issue of rule redundancy. We elected to build our classifier using a white-

box, rule based approach. When mining association rules, redundancy is

important both to restrict the result set to a manageable size, and to prevent

the generation of spurious rules which are simply artifacts of other, more

interesting associations. Traditionally, rules are considered as redundant

when a more general rule can be found that is considered as good or better

with respect to some goodness measure. We extend this definition in two

ways.

Firstly, we propose an approach called specialisation redundancy. Spe-

cialisation redundancy is similar to the traditional definition described above,

however is more permissive in that it requires additional tests to verify that

a rule indeed fails to improve over a generalisation of itself. Generalisa-

tion redundancy is also proposed. In contrast to specialisation redundancy,

generalisation redundancy seeks to remove general rules which fail to add
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anything when compared against the entire set of their non-redundant spe-

cialisations.

� Demonstrated ability for alternate redundancy definitions to im-

prove the interpretability of the rule based literature screening

algorithm

In chapter 6 we reevaluate our rule based algorithm on the two real

reviews and examine the performance of incorporating robust redundancy.

The combination of robust and specialisation redundancy demonstrates the

ability to increase the length of generated rules without increasing the overall

rule set size. Generalisation redundancy is shown to also increase the length

of rules, although in some cases may produce a increase the size of the

generated rule set.

Sections 6.3 and 6.4 examine the performance of the two approaches, and

hypothesise as to when each approach should be preferred. Initial analysis

suggests that exclusive application of generalisation redundancy should be

applied when the rule set is small. Specialisation and generalisation redun-

dancy should be applied together in other cases. We note that due to lack

of data, further analysis is required.

7.2 Limitations and Future Work

A number of limitations of the work reported in this thesis must be discussed, both

to better understand how the work extends existing knowledge and to provide a

guide for future research. One particular limitation concerns the evaluation of

our proposed classification model in chapters 4 and 6. While the potential for our

algorithm to reduce reviewer workload and the utility of training with annotations

from prior stages is established, our analysis is limited in that data for only two

reviews was available. Analysis with additional data would be important, both
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to increase confidence in the conclusions drawn in this work, as well as to better

understand the performance of the algorithm on different reviews.

We also note the sensitivity of the proposed algorithm to the minimum confi-

dence threshold employed while mining classification rules. Ideally, we would like

principled default setting for all parameters, or at least some proposed guidelines

for their selection. Developing such methods with any reasonable certainty has

not been possible given the relatively low number of studies with which we have

to test our approach, and further analysis is certainly warranted.

The comparative analysis of diagnostic and treatment reviews reported in chap-

ter 3 could also be extended. As of the search date, only 13 diagnostic test accuracy

reviews had been published in the Cochrane library. A repetition of the study,

both including reviews published after the initial search date, as well as diagnostic

reviews published by sources other than Cochrane, would be interesting. This

would allow both increased confidence in the conclusions drawn, as well as their

generalisation to non-Cochrane reviews.

The methodology proposed in this thesis utilises annotations made based on

titles to remove additional non-relevant studies. Although developed for system-

atic reviews, it is possible that the approach could be applied more broadly to

other document screening tasks which also follow a multi-stage triage process.

Further work exploring the potential for such generalisation would be of interest.

In particular it would be interesting to determine what, if any, adjustments to the

process modifications outlined in Chapter 4 are required.

Finally, we note that while the utility of annotations from prior stages can

be useful in training classification models for systematic reviews, we have barely

scraped the surface in terms of how they might be applied. For example, active

learning algorithms such as those tested with Abstrackr could utilise such anno-

tations to guide the model initialisation prior to seeking additional labels from a

human oracle. Training with these labels demonstrates a promising new line of

enquiry for automation of systematic review literature screening, and a further
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analysis in future would be highly interesting.
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Appendix A

Selected Reviews for DTA vs.

Treatment Review Experiment

Type CRG Title

diagnosis airways
Galactomannan detection for invasive as-

pergillosis in immunocompromized patients

diagnosis ari

Clinical symptoms and signs for the diagnosis

of Mycoplasma pneumoniae in children and

adolescents with community-acquired pneu-

monia

diagnosis back

Physical examination for lumbar radiculopa-

thy due to disc herniation in patients with

low-back pain

diagnosis back
Red flags to screen for malignancy in patients

with low-back pain

diagnosis back
Red flags to screen for vertebral fracture in

patients presenting with low-back pain
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Type CRG Title

diagnosis eyes

Optical coherence tomography (OCT) for de-

tection of macular oedema in patients with

diabetic retinopathy

diagnosis gynaeca

Human papillomavirus testing versus repeat

cytology for triage of minor cytological cer-

vical lesions

diagnosis infectn

Rapid diagnostic tests for diagnosing uncom-

plicated P. falciparum malaria in endemic

countries

diagnosis infectn
Xpert® MTB/RIF assay for pulmonary tu-

berculosis and rifampicin resistance in adults

diagnosis muskinj

Physical tests for shoulder impingements and

local lesions of bursa, tendon or labrum that

may accompany impingement

diagnosis preg
Second trimester serum tests for Down’s Syn-

drome screening

diagnosis renal
Cardiac testing for coronary artery disease in

potential kidney transplant recipients

diagnosis stroke

Magnetic resonance imaging versus com-

puted tomography for detection of acute

vascular lesions in patients presenting with

stroke symptoms

treatment airways
Anti-histamines for prolonged non-specific

cough in children

treatment airways
Beclomethasone versus placebo for chronic

asthma

treatment airways Caffeine for asthma
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Type CRG Title

treatment airways
Cardioselective beta-blockers for chronic ob-

structive pulmonary disease

treatment airways

Combination fluticasone and salmeterol ver-

sus fixed dose combination budesonide and

formoterol for chronic asthma in adults and

children

treatment airways

Combination inhaled steroid and long-acting

beta2-agonist in addition to tiotropium ver-

sus tiotropium or combination alone for

chronic obstructive pulmonary disease

treatment airways
Continuous versus intermittent beta-agonists

for acute asthma

treatment airways

Gastro-oesophageal reflux treatment for pro-

longed non-specific cough in children and

adults

treatment airways
Gold as an oral corticosteroid sparing agent

in stable asthma

treatment airways
Inhaled cromones for prolonged non-specific

cough in children

treatment airways Inspiratory muscle training for asthma

treatment airways
Intravenous beta2-agonists for acute asthma

in the emergency department

treatment airways Physical training for interstitial lung disease

treatment airways
Singing for children and adults with

bronchiectasis

treatment airways
Troleandomycin as an oral corticosteroid

sparing agent in stable asthma
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Type CRG Title

treatment ari
Acellular vaccines for preventing whooping

cough in children

treatment ari Acupuncture for mumps in children

treatment ari
Acyclovir for treating varicella in otherwise

healthy children and adolescents

treatment ari
Advising patients to increase fluid intake for

treating acute respiratory infections

treatment ari
Antibiotics for preventing complications in

children with measles

treatment ari Chinese medicinal herbs for sore throat

treatment ari Chinese medicinal herbs for the common cold

treatment ari
Corticosteroids for parasitic eosinophilic

meningitis

treatment ari
Intranasal ipratropium bromide for the com-

mon cold

treatment ari Macrolides for diffuse panbronchiolitis

treatment ari

Once or twice daily versus three times daily

amoxicillin with or without clavulanate for

the treatment of acute otitis media

treatment ari
Pre-admission antibiotics for suspected cases

of meningococcal disease

treatment ari

Remediating buildings damaged by damp-

ness and mould for preventing or reducing

respiratory tract symptoms, infections and

asthma

treatment ari

Vaccines for post-exposure prophylaxis

against varicella (chickenpox) in children

and adults
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Type CRG Title

treatment ari
Vitamin C for preventing and treating the

common cold

treatment back
Acupuncture and dry-needling for low back

pain

treatment back Acupuncture for neck disorders

treatment back
Advice to rest in bed versus advice to stay

active for acute low-back pain and sciatica

treatment back
Antidepressants for non-specific low back

pain

treatment back
Arthroplasty versus fusion in single-level cer-

vical degenerative disc disease

treatment back Back schools for non-specific low-back pain.

treatment back
Behavioural treatment for chronic low-back

pain

treatment back
Botulinum toxin for subacute/chronic neck

pain

treatment back
Botulinum toxin injections for low-back pain

and sciatica

treatment back Braces for idiopathic scoliosis in adolescents

treatment back
Chinese herbal medicine for chronic neck

pain due to cervical degenerative disc disease

treatment back
Combined chiropractic interventions for low-

back pain

treatment back Electrotherapy for neck pain

treatment back
Exercise therapy for treatment of non-

specific low back pain

treatment back Exercises for adolescent idiopathic scoliosis

treatment back Exercises for mechanical neck disorders
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Type CRG Title

treatment back
Exercises for prevention of recurrences of

low-back pain

treatment back Herbal medicine for low back pain

treatment back
Individual patient education for low back

pain

treatment back
Injection therapy for subacute and chronic

low-back pain

treatment back
Low level laser therapy for nonspecific low-

back pain

treatment back
Lumbar supports for prevention and treat-

ment of low back pain

treatment back Manipulation or Mobilisation for Neck Pain

treatment back

Manual material handling advice and assis-

tive devices for preventing and treating back

pain in workers

treatment back Massage for low-back pain

treatment back Massage for mechanical neck disorders

treatment back
Mechanical traction for neck pain with or

without radiculopathy

treatment back
Medicinal and injection therapies for me-

chanical neck disorders

treatment back

Multidisciplinary biopsychosocial rehabilita-

tion for neck and shoulder pain among work-

ing age adults

treatment back
Muscle relaxants for non-specific low-back

pain

treatment back
Neuroreflexotherapy for non-specific low-

back pain
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Type CRG Title

treatment back
Non-steroidal anti-inflammatory drugs for

low back pain

treatment back Patient education for neck pain

treatment back
Physical conditioning programs for improv-

ing work outcomes in workers with back pain

treatment back
Prolotherapy injections for chronic low-back

pain

treatment back
Radiofrequency denervation for neck and

back pain

treatment back Rehabilitation after lumbar disc surgery

treatment back

Single or double-level anterior interbody fu-

sion techniques for cervical degenerative disc

disease

treatment back
Spinal manipulative therapy for acute low-

back pain

treatment back Superficial heat or cold for low back pain

treatment back
Surgery for cervical radiculopathy or

myelopathy

treatment back
Surgical interventions for lumbar disc pro-

lapse

treatment back
Total disc replacement for chronic back pain

in the presence of disc degeneration

treatment back

Transcutaneous electrical nerve stimulation

(TENS) versus placebo for chronic low-back

pain

treatment back
Workplace interventions for neck pain in

workers
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Type CRG Title

treatment eyes
Amniotic membrane transplantation for

acute ocular burns

treatment eyes

Anti-vascular endothelial growth factor for

macular edema secondary to central retinal

vein occlusion

treatment eyes
Day care versus in-patient surgery for age-

related cataract

treatment eyes

Environmental and behavioural interven-

tions for reducing physical activity limi-

tation in community-dwelling visually im-

paired older people

treatment eyes
Environmental sanitary interventions for

preventing active trachoma

treatment eyes
Ginkgo biloba extract for age-related macu-

lar degeneration

treatment eyes Interventions for chronic blepharitis

treatment eyes
Interventions for late trabeculectomy bleb

leak

treatment eyes
Interventions for preventing posterior cap-

sule opacification

treatment eyes
Interventions for stimulus deprivation ambly-

opia

treatment eyes Interventions for trachoma trichiasis

treatment eyes
Photodynamic therapy for neovascular age-

related macular degeneration

treatment eyes
Surgery for nonarteritic anterior ischemic op-

tic neuropathy
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Type CRG Title

treatment eyes

Surgical implantation of steroids with antian-

giogenic characteristics for treating neovas-

cular age-related macular degeneration

treatment eyes

Vitrectomy with internal limiting membrane

(ILM) peeling versus vitrectomy with no

peeling for idiopathic full-thickness macular

hole (FTMH)

treatment gynaeca
Adjuvant (post-surgery) chemotherapy for

early stage epithelial ovarian cancer

treatment gynaeca Chemotherapy for high-grade glioma

treatment gynaeca
Concomitant chemotherapy and radiation

therapy for cancer of the uterine cervix

treatment gynaeca

Granulocyte transfusions for preventing in-

fections in patients with neutropenia or neu-

trophil dysfunction

treatment gynaeca

High dose rate versus low dose rate intracav-

ity brachytherapy for locally advanced uter-

ine cervix cancer

treatment gynaeca
Hormonal therapy in advanced or recurrent

endometrial cancer

treatment gynaeca
Hyperbaric oxygenation for tumour sensiti-

sation to radiotherapy

treatment gynaeca

Low molecular weight heparin versus unfrac-

tionated heparin for perioperative thrombo-

prophylaxis in patients with cancer

treatment gynaeca
Music interventions for improving psycholog-

ical and physical outcomes in cancer patients
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Type CRG Title

treatment gynaeca
Nystatin prophylaxis and treatment in

severely immunodepressed patients

treatment gynaeca
Pharmacological treatment of depression in

patients with a primary brain tumour

treatment gynaeca

Retroperitoneal drainage versus no drainage

after pelvic lymphadenectomy for the pre-

vention of lymphocyst formation in patients

with gynaecological malignancies

treatment gynaeca Surgery for cervical intraepithelial neoplasia

treatment gynaeca
Surgical cytoreduction for recurrent epithe-

lial ovarian cancer

treatment gynaeca Topotecan for ovarian cancer

treatment infectn
Antiamoebic drugs for treating amoebic col-

itis

treatment infectn Antibiotics for treating scrub typhus

treatment infectn
Antipyretic measures for treating fever in

malaria

treatment infectn
Artemisinin-based combination therapy for

treating uncomplicated malaria

treatment infectn
Artesunate versus quinine for treating severe

malaria

treatment infectn
Azithromycin for treating uncomplicated

malaria

treatment infectn

Chloroquine or amodiaquine combined with

sulfadoxine-pyrimethamine for treating un-

complicated malaria

treatment infectn
Drugs for preventing malaria in pregnant

women
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Type CRG Title

treatment infectn Drugs for preventing malaria in travellers

treatment infectn
Drugs for treating uncomplicated malaria in

pregnant women

treatment infectn
Electronic mosquito repellents for preventing

mosquito bites and malaria infection

treatment infectn
Indoor residual spraying for preventing

malaria

treatment infectn
Insecticide-treated bed nets and curtains for

preventing malaria

treatment infectn
Insecticide-treated nets for preventing

malaria in pregnancy

treatment infectn
Interventions for preventing reactions to

snake antivenom

treatment infectn Interventions for treating scabies

treatment infectn
Interventions to improve disposal of human

excreta for preventing diarrhoea

treatment infectn
Intramuscular arteether for treating severe

malaria

treatment infectn Iron-chelating agents for treating malaria

treatment infectn
Low level laser therapy for treating tubercu-

losis

treatment infectn Oral vaccines for preventing cholera

treatment infectn
Probiotics for treating persistent diarrhoea

in children

treatment infectn
Regimens of less than six months for treating

tuberculosis

treatment infectn Rotavirus vaccine for preventing diarrhoea

treatment infectn Steroids for treating cerebral malaria
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Type CRG Title

treatment infectn

Sulfadoxine-pyrimethamine plus artesunate

versus sulfadoxine-pyrimethamine plus

amodiaquine for treating uncomplicated

malaria

treatment infectn
Vaccines for preventing malaria (blood-

stage)

treatment infectn
Vaccines for preventing malaria (pre-

erythrocytic)

treatment infectn Vaccines for preventing smallpox

treatment infectn
Vaccines for preventing tick-borne encephali-

tis

treatment muskinj Anaesthesia for hip fracture surgery in adults

treatment muskinj

Conservative interventions for treating dia-

physeal fractures of the forearm bones in chil-

dren

treatment muskinj
Conservative versus operative treatment for

hip fractures in adults

treatment muskinj

Dynamic compression plating versus locked

intramedullary nailing for humeral shaft frac-

tures in adults

treatment muskinj
External fixation versus conservative treat-

ment for distal radial fractures in adults

treatment muskinj

Gamma and other cephalocondylic in-

tramedullary nails versus extramedullary im-

plants for extracapsular hip fractures in

adults

treatment muskinj
Hip protectors for preventing hip fractures in

older people
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Type CRG Title

treatment muskinj
Hyperbaric oxygen therapy for delayed onset

muscle soreness and closed soft tissue injury

treatment muskinj

Hyperbaric oxygen therapy for promoting

fracture healing and treating fracture non-

union

treatment muskinj
Interventions for treating acute elbow dislo-

cations in adults

treatment muskinj
Interventions for treating mallet finger in-

juries

treatment muskinj
Platelet rich therapies for long bone healing

in adults

treatment muskinj
Surgical versus conservative interventions for

anterior cruciate ligament ruptures in adults

treatment muskinj
Surgical versus conservative interventions for

treating ankle fractures in adults

treatment muskinj
Ultrasound and shockwave therapy for acute

fractures in adults

treatment preg Antibiotics for gonorrhoea in pregnancy

treatment preg
Anti-D administration in pregnancy for pre-

venting Rhesus alloimmunisation

treatment preg
Bed rest in hospital for suspected impaired

fetal growth

treatment preg
Duration of treatment for asymptomatic bac-

teriuria during pregnancy

treatment preg
Interventions for promoting smoking cessa-

tion during pregnancy

treatment preg
Intracervical prostaglandins for induction of

labour
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Type CRG Title

treatment preg
Intravenous oxytocin alone for cervical ripen-

ing and induction of labour

treatment preg
Maternal oxygen administration for sus-

pected impaired fetal growth

treatment preg

Oxytocin versus no treatment or delayed

treatment for slow progress in the first stage

of spontaneous labour

treatment preg

Package of care for active management in

labour for reducing caesarean section rates

in low-risk women

treatment preg

Risk scoring systems for predicting preterm

birth with the aim of reducing associated ad-

verse outcomes

treatment preg

Third trimester antiviral prophylaxis for

preventing maternal genital herpes simplex

virus (HSV) recurrences and neonatal infec-

tion

treatment preg
Treatments for iron-deficiency anaemia in

pregnancy

treatment preg

Vibroacoustic stimulation for fetal assess-

ment in labour in the presence of a nonre-

assuring fetal heart rate trace

treatment preg Vitamin C supplementation in pregnancy

treatment renal
Aldosterone antagonists for preventing the

progression of chronic kidney disease
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Type CRG Title

treatment renal

Angiotensin converting enzyme inhibitors

and angiotensin II receptor antagonists for

preventing the progression of diabetic kidney

disease

treatment renal

Antibiotic duration for treating uncompli-

cated, symptomatic lower urinary tract in-

fections in elderly women

treatment renal
Antimicrobial agents for treating uncompli-

cated urinary tract infection in women

treatment renal

Antiviral medications for preventing cy-

tomegalovirus disease in solid organ trans-

plant recipients

treatment renal
Biocompatible hemodialysis membranes for

acute renal failure

treatment renal
Corticosteroid therapy for nephrotic syn-

drome in children

treatment renal

Double bag or Y-set versus standard trans-

fer systems for continuous ambulatory peri-

toneal dialysis in end-stage renal disease

treatment renal Fluids and diuretics for acute ureteric colic

treatment renal
Immunosuppressive agents for treating IgA

nephropathy

treatment renal

Immunosuppressive treatment for idiopathic

membranous nephropathy in adults with

nephrotic syndrome

treatment renal
Non-immunosuppressive treatment for IgA

nephropathy
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Type CRG Title

treatment renal
Pharmacological interventions for preventing

complications in idiopathic hypercalciuria

treatment renal
Tidal versus other forms of peritoneal dialy-

sis for acute kidney injury

treatment renal
Ultrasound use for the placement of

haemodialysis catheters

treatment stroke
Antibiotic therapy for preventing infections

in patients with acute stroke

treatment stroke
Calcium antagonists for acute ischemic

stroke

treatment stroke

Cilostazol versus aspirin for secondary pre-

vention of vascular events after stroke of ar-

terial origin

treatment stroke

Corticosteroids for aneurysmal subarach-

noid haemorrhage and primary intracerebral

haemorrhage

treatment stroke
Fibrinogen depleting agents for acute is-

chaemic stroke

treatment stroke
Force platform feedback for standing balance

training after stroke

treatment stroke

Low-molecular-weight heparins or hepari-

noids versus standard unfractionated heparin

for acute ischaemic stroke

treatment stroke Music therapy for acquired brain injury

treatment stroke

Oral anticoagulants versus antiplatelet ther-

apy for preventing stroke in patients with

non-valvular atrial fibrillation and no history

of stroke or transient ischemic attacks
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Type CRG Title

treatment stroke Puerarin for acute ischaemic stroke

treatment stroke Sonothrombolysis for acute ischaemic stroke

treatment stroke
Therapy-based rehabilitation services for

stroke patients at home

treatment stroke Thrombolysis for acute ischaemic stroke

treatment stroke
Triflusal for preventing serious vascular

events in people at high risk

treatment stroke
Water-based exercises for improving activi-

ties of daily living after stroke

Table A.1: List of collected review used for DTA vs. Treatment experiments in
Chapter 3


