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Abstract Uncertainty of travel times and the impact on travel choice behavior has been recognized 
as an increasingly important research direction in the past decade. This paper proposes an extension 
to the popular scheduling approach to modeling traveler’s departure time choice behavior under 
uncertainty, with the main focus on a richer representation of uncertainty. This more general 
approach incorporates a separate term to reflect the risk aversion associated with uncertainty. 
Recognizing the correlation between expected schedule delay and travel time variability, the 
schedule delay components in the generalized approach are defined in terms of expected travel time, 
which differs from the scheduling approach. This approach is developed based on the analytical 
investigation of the relationship between the expected schedule delay and the mean and standard 
deviation of travel time. An analytical equivalence was found between the scheduling approach and 
the general approach given a departure time t. To investigate the empirical performance of the 
generalized approach, two state preference (SP) data sets are used; one from China with a symmetric 
travel time distribution and the other from Australia with an asymmetric distribution. Both studies 
show empirical evidence of an equivalence in respect of statistical fit between the generalized and 
the scheduling approaches, as found from analytical investigations. The Chinese study gives support 
in the generalized model to including both the mean-variance and the scheduling effects; whereas the 
Australian study finds only the mean-variance specification has statistical merit. Despite the different 
travel contexts, it is noteworthy in both empirical settings, that the parameter estimate for arriving 
earlier than the preferred arrival time (PAT) in the generalized model is positive. This suggests that 
commuters tend to prefer to arrive earlier in order to guarantee he/she will not be late. This paper 
contributes to a better understanding of performances of different reliability measures and their 
relationships. The practical value of the various unreliability measures is provided showing that 
these indicators are easy to obtain for inclusion in project appraisal. 
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1. INTRODUCTION  

In transport networks, travel times and travel costs experienced by travelers within and 
between days are stochastic due to stochastic supply and fluctuating travel demand 
(Emam and Al-Deek 2005; Tu 2008; Tu et al. 2012). The uncertainty and heterogeneity 
in travelers’ behavior (for instance driving behavior) also leads to variations and 
unpredictability in travel times, and in associated travel costs. Travel time uncertainty 
appears to have a significant impact on travelers’ choice behavior; for instance route 
choice, departure time choice and mode choice. Bates et al. (2001) indicated that the 
reason why travel time variability is so important can be explained by at least the 
following sources: the anxiety or stress caused by uncertainty, additional cognitive 
burden associated with planning activities, and sensitivity to the consequences of the 
uncertainty, for instance late arrivals, etc. Modeling travel behavior under uncertainty has 
become an important research direction, gaining increasing attention from many 
researchers (Abdel-Aty et al. 1996; Bates et al. 2001; De Palma and Picard 2005; Batley 
2007; Liu and Polak 2007; Hensher et al. 2015a). In the context of uncertainty, departure 
time adaptation appears to be one of the most important behavioral changes in attempting 
to arrive on time at work and to reduce the probability of arriving late (Li et al. 2009a; 
Siu and Lo 2013). Many studies (Abdel-Aty et al. 1996; Noland et al. 1998; Bogers and 
van Zuylen 2004; Van Amelsfort et al. 2008; Li et al. 2012) have analyzed the impacts of 
travel time variability on travelers’ departure time/route choice behavior and suggested 
ways to model their choice behavior under uncertainty.  
 
These exist a number of theories designed to describe and model human choice behavior 
under uncertainty, such as expected utility theory (Noland and Small 1995), prospect 
theory (Kahneman and Tversky 1979), cumulative prospect theory (Kahneman and 
Tversky 1979; Sumalee et al. 2009; Hensher and Li 2012), and extended prospect theory 
(Van de Kaa 2008), etc. The difference between expected utility theory and other theories 
is that it does not account for the cognitive tasks in traveler’s decision making. However, 
in general expected utility theory is sufficiently widely accepted as useful to deal with 
choices made under uncertainty, and can be extended to incorporate elements of prospect 
theory such as perceptual conditioning (Hensher et al. 2011). In this paper we set out a 
model form to capture uncertainty which aligns with the framework of (expected) utility 
theory. For research on the choice behavior under uncertainty using prospect theory, we 
refer to, for example, Avineri and Prashker (2006), Van de Kaa (2008) and Hensher and 
Li (2012). For a review of different theories for modeling traveler’s choice behavior 
under uncertainty, we refer to, for example (Fujii and Kitamura 2004). 
 
Under the behavioral assumption of utility maximization, various behavioral models have 
been proposed in the literature to model traveler’s choice behavior under uncertainty. In 
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general, there are two common approaches, the mean-variance approach (Jackson and 
Jucker 1981) and the scheduling approach (Small 1982). The relationship and similarities 
between these two approaches have been investigated by several authors (Li et al. 2009b; 
Fosgerau 2010). It has been shown by Fosgerau that the maximal expected utility based 
on the scheduling approach (without the probability of being late) is linear in the mean 
and standard deviation of travel time distribution under the assumption that the travel 
time distribution is independent of departure times. Li et al. (2009b) also found that the 
scheduling approach could be transformed into a linear function of the mean and the 
standard deviation of travel times assuming independence of travel time distributions on 
departure time t. They conclude that the scheduling approach is more general than the 
mean-variance approach in terms of modeling departure time choice behavior. Motivated 
by this conditional equivalence and on a basis of deeper insights into the scheduling 
approach, this paper proposes a generalized approach for departure time choice modeling 
under uncertainty. The link between the scheduling approach and the generalized 
approach will be discussed and then two stated preference studies (in China and Australia) 
will be used to compare the performance of the generalized approach and the scheduling 
approach.  
 
This paper will firstly present an overview of the widely used behavioral models for 
departure time choice behavior under uncertainty. Then the motivation for the 
generalized behavioral model is provided, with a discussion of the relationship between 
the scheduling approach and the generalized approach. Two surveys undertaken out in 
Shanghai and in Brisbane are described followed by the empirical estimates obtained 
from four behavioral models, and the evidence is contrasted. Finally some conclusions 
are drawn and future research is discussed. 
 

2. ALTERNATIVE BEHAVIORAL MODELS  

 
A number of behavioral models have been proposed in the literature as different 
hypotheses on choice behavior that account for uncertainty. de Jong and Bliemer (2015) 
provide an extensive literature review on different behavioral models accounting for the 
impact of unreliability on behavior, and give suggestions on how to include reliability in 
economic appraisal. The model forms differ in the mathematical expressions and 
indicators of uncertainty. For example, a hypothesis of a ‘safety margin’ being selected 
by travelers was specified by Gaver (1968) and Knight (1974), which assumed that 
travelers make their choice decisions by considering the expected travel time and adding 
some extra time budget, the so-called safety margin, to cope with uncertainties.  
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The mean-variance approach was initially proposed by Jackson and Jucker (1981), in 
which the individual utility function is composed of expected travel time and travel time 
variance (or standard deviation of travel time). The variability of travel time is often 
measured by the standard deviation of travel time (Small et al. 1999). However, the 
safety margin based approach and the mean variance approach do not explicitly model 
the effect of travel time variability on scheduling decisions, which turns out to be very 
important in representing travelers’ choice behavior under uncertainty (Small 1982), 
since travel time unreliability causes uncertainty in their arrival time, resulting in 
potential reprimands for commuters on fixed working hours in particular.  
 
The scheduling approach based on expected utility theory (Polak 1987) as originally 
specified by  Small (1982), hypothesizes that scheduling delay cost plays a very 
important role in the timing of departures under uncertainty, formulated as equation (1). 
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p t  denote respectively the individual’s (dis)utility and stochastic travel 
times on route p between OD pair (o, d) departing at time t under uncertainty. 

 od
pE t   denotes the expectation of travelers’ experienced travel times on route p 

between OD pair (o, d) departing at t. PAT is the preferred arrival time. The second and 
the third components are the expected schedule delay costs of being early and late 
respectively. Function (x)+ is equivalent to  max 0, x , since there is either early 
schedule delay or late schedule delay on a specific day. Travelers can never experience 
both delay costs at the same time.  LP t  is the probability of being late when departing 
at time t. ,  1,  2  , and  are parameters associated with travel time, early and late 
schedule delays and probability of being late, respectively. 
 
In most studies, a simplified version is applied by assuming that the parameter of the 
probability of lateness equals zero. In this paper, we name it the simplified scheduling 
approach. It has been shown by Small et al. (1999) that scheduling costs explain the 
aversion to uncertain travel times. They conclude that in models with a fully specified set 
of scheduling costs, it is not necessary to add an additional disutility for unreliability of 
travel time. However it is found that scheduling delay costs cannot capture the travel time 
unreliability completely (Noland and Polak 2002; Van Amelsfort et al. 2008). Besides a 
scheduling effect, travel time unreliability appears to be a separate source of travel 
disutility. Fosgerau and Karlström (2010) and Li et al. (2009b) found that the scheduling 
cost (i.e., the second and the third components in expression (1)) can be transformed into 
a linear function of the mean and the standard deviation of travel times  od

p t  when 
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assuming independence of travel time distributions of departure time t. Li et al. (2009b), 
through their analytical derivations, derived the form in equation (2).  
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This formulation holds for any distribution of travel times. It implies that the scheduling 
cost (i.e., expected scheduling delay early and late) has a large correlation with travel 
time variability. Motivated by the fact that the uncertainty in travel times is only reflected 
in part by the expected scheduling cost, and the linear transformation of the mean and the 
standard deviation (Eqn.(2)), a generalized approach is developed, given as expression 
(3).  
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For a given departure time t, the scheduling approach proposed by Noland and Small 
(1995) is equivalent to the generalized approach, according to Eqn.(2). This model (3) 
accounts for trip travel time on average, the scheduling effects and uncertainty. Th 
standard deviation is incorporated to fully account for uncertainty effects. Recognizing 
the potential correlation between the expected scheduling cost (see the second and the 
third components in Eqn.(1)) and the standard deviation, we define the scheduling effects 
in the proposed generalized model as seen in Eqn.(3) based on the expectation of travel 
times.  
 
This generalized model differs from the scheduling model, not only in the additional 
standard deviation, but also in the treatment of schedule delay. It synthesizes the merits of 
the mean-variance approach and the scheduling approach. It is assumed that travelers, 
based on their experiences and expected travel time, estimate how early or late they will 
be at work.  
 
The mean-variance approach and the scheduling approach have been widely applied to 
modeling traveler’s choice behavior under uncertainty. The scheduling approach turns 
out to be more suitable for modeling departure time choices under uncertainty since the 
schedule cost is directly affected by the travel time variability, which is the major 
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concern of travelers. Under certain conditions, the scheduling approach is a special case 
of the generalized approach. For instance, if a traveler always arrives earlier or always 
arrives later than the PAT, then expression (4) holds. 
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This means that the expected schedule delay equals the schedule delay based on the 
expected travel time. Then besides the utility components in the scheduling approach, 
travel time variability measured by the standard deviation is included in the generalized 
approach. This approach is very plausible since it captures not only the average effects, 
but also the variability in travel times. An illustrative example is given below to 
demonstrate the mechanism of the two approaches under uncertain departure conditions 
as shown by Eqn.(4). 
 
Table 1 presents two situations with different travel time ranges under which the traveler 
always arrives later than PAT. The departure times and arrival times are also given. 
Travel times at situation 2 are more reliable with less variability than that at situation 1. 
According to Eqn.(4), regardless of whether a symmetric or asymmetric travel time 
distribution is assumed or observed, the schedule delay early and late calculated by the 
scheduling approach (Eqn.(1)) is always equal to that calculated by the generalized 
approach respectively. When the travel time distribution is symmetric within the range, 
the two situations give the same average schedule delay late of 10 minutes; that is in both 
situations the traveler on average arrives at 9:10 in the morning. With the scheduling 
approach, the same disutility is derived for the two situations. The impact of the ranges of 
the travel time could not be identified by the scheduling approach (Eqn.(1)). It makes a 
difference for travelers encountering the two situations. Travelers might prefer situation 2 
with a narrow travel time distribution. The evidence in this example and Eqn.(4) together 
imply that the scheduling cost in the scheduling approach capture, in part, the variability 
effect. Comparatively, as shown with this illustrative example, the generalized approach, 
in addition to the scheduling costs, incorporates the travel time variability separately in 
the utility function to reflect a more complete representation of travel time variability and 
its impact on the departure time choice behavior of individuals.  
 
Table 1: Two uncertain departure situations with different travel time ranges 

 Departure time Travel time Arrival time at work 

Situation 1 8:30am 30 – 50min 9:00 – 9:20am 
Situation 2 8:30am 35 – 45min 9:05 – 9:15am 
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Given the preceding reasoning and the analytical analyses (see Eqn.(2)), the proposed 
generalized behavioral model (3) is expected to perform similarly (due to the analytically 
derived equivalence for a given departure time t) to or better than the scheduling model. 
However, empirical evidence is required to demonstrate whether the generalized model 
could be an improved representation of behavior under uncertainty. The main aim is to 
conduct an empirical investigation of the performance of the alternative model forms 
above1, with a focus on the generalized behavioral model. Comparisons among models 
will be undertaken to see how well the generalized behavioral model could represent real 
departure time/route choice behavior under uncertainty. We draw on a new stated 
preference (SP) survey undertaken in Shanghai, China in 2014 focusing on departure 
time choice, and an Australian SP study undertaken in 2008 on the choice of tolled vs. 
free route (Li et al. 2010). The data analyses based on the two surveys are presented in 
the following sections for a comparison among the different behavioral models.  
 

3. STATED PREFERENCE SURVEY IN CHINA 

3.1 Experimental Design  

Stated preference (SP) surveys are increasingly used to investigate the willingness to pay 
for various attributes including travel time and travel time reliability (or variability). We 
have undertaken SP surveys in Shanghai to investigate the departure time choice behavior 
under uncertainty of travelers. The SP experiment aims to capture the effects of travel 
time, schedule delays and variability of travel times on travelers’ departure time choice 
behavior. With regard to presenting reliability to respondents, Li et al. (2010) gives a 
comprehensive overview on different ways of presenting reliability and comparison 
among them. We conducted several pilot studies to test how reliability should be 
presented such that the respondents can understand the questions and provide reliable 
answers. Based on pilot studies, we found that the uncertainty in travel times directly 
determines the uncertainty in arrival times which travelers care most about. We chose to 
give a range of arrival times at work so as to provide respondents with a context 
associated with variability. Two alternative departure times with different travel times 
and variations are presented in each scenario as an unlabeled choice experiment. Table 2 
presents an example of the scenarios for two unlabelled choices with predefined 
PAT=9:00AM. 
 
 

                                                 
1 There are other behavioral models based on different hypotheses on travelers’ departure time/route 
choice behavior under uncertainty, which are not our main interest. For a comprehensive review, see Li et 
al. 2010. 
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Table 2: An example on the unlabelled choice scenarios  
 
Scenario 1 

 
Option A Option B 

Departure time 8:30 8:10 

Average travel time 40min 50min 

Arrival at work within 9:00 – 9:20 8:50 – 9:10 

Your option:   

 
The attributes in the design are selected in order to identify the utility components in the 
scheduling and generalized models. Four attributes were selected for the experimental 
design, namely average travel time, a travel time range, and early and late arrival time 
based on the expected travel time (see Table 3). The attribute levels are selected as given 
in Table 3. Negative values of expected arrival time means arrival on average earlier than 
PAT, and vice versa. In the design, once it is expected that arrival time is earlier, then the 
arrival late will be zero, and vice versa. These two attributes are bounded within a 
constrained design. Although the attribute levels should be realistic, a wide range for an 
attribute is preferred to ensure that statistically significant parameters will be obtained.  
 
Table 3: Attribute levels for all attributes  

Average travel time Expected arrival time Travel time ranges 

30 min -20 10 min 
40 min -10 20 min 
50 min 0 30 min 

 10  
 20  

 
Ngene (ChoiceMetrics 2012) is used to generate the scenarios with a D-efficient design, 
designed to provide utility-balanced alternatives for each scenario and to avoid the 
dominating-alternative situations. This design increases the statistical performance of the 
models with smaller samples than are required for other less-(statistically) efficient 
designs, such as orthogonal designs (Rose et al. 2008). In total, 18 choice scenarios 
(which is larger than the number of parameters that need to be estimated in the models) 
are generated, blocked into three groups. Each respondent faces six choice situations. 
Since we are dealing with unlabelled choices, we switched the positions of the right and 
the left alternatives for each scenario and changed the order of scenarios appearing in 
each choice scenario in order to reduce biases stemming from the designs. Thus, six 
different questionnaires are designed and distributed.  
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In addition to the choice scenario screens, a respondent is required to fill in his/her 
personal information, and current travel information.  
 

3.2 Empirical Analyses 

The China data on commuter’s choice of departure time was collected in 2014 in 
Shanghai. The respondents in general are high-level educated commuters working in 
research centers or transportation-related institutes. 400 surveys were distributed and 357 
returned, with a usable sample of 309. With six choice scenarios, we have 1,854 
observations for model estimation. Figure 1a summarises the gender of the respondents. 
In total, 117 female respondents and 192 male respondents completed the survey. 
Respondents were asked whether they can be late at work and how late they can tolerate. 
Three options were provided with “cannot be late”, “can be late within 10min” and “can 
be late for 10-15min”. Figure 1b presents the number of respondents with different 
degrees of tolerance of being late at work. It can be seen that most commuters have very 
strict work start time and are not willing to be late.  
 

 
Figure 1a: Gender of respondents Figure 1b:Statistics of tolerance of late arrival 

 
  

Figure 1c: Age profile Figure 1d: Personal Income  
Figure 1: Socioeconomic Profile 

 

Female
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Male: 
192

[类别

名称]
150

[类别

名称]
131

[类别

名称]
28

20-25, 37

26-30, 74

31-35, 93

36-40, 47

41-45, 22

46-50, 14 >50, 22 Age

2-5k, 85

5-8k, 
108

8-10k, 
72

10-20k, 
32

>20k, 
12

Monthly Income
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Figure 1c presents the number of respondents in each age group; for example, 74 
respondents are between 26 to 30 years old. Most respondents are young commuters. 
Figure 1d summarizes the monthly salary; for example, 12 respondents have a monthly 
salary higher than 20,000￥ (approximately US$3,200). 
 
Six questionnaires were designed, each representing a block in choice experiment design 
To obtain unbiased parameter estimates, an equal number of surveys from each block are 
required. Figure 2 summarizes the number of returned surveys associated with each block, 
which are reasonably well balanced. 
 

 
Figure 2: Numbers of respondents for each choice experiment block 

 
Multinomial logit (MNL) and mixed logit (ML) models were estimated using Nlogit5, 
with the panel nature of the data taken into account in the mixed logit model estimation. 
Given the unlabeled nature of each choice set, parameters were estimated as generic 
across the alternatives. Table 4 and Table 5 present the estimation results for the MNL 
and ML models respectively. Only the parameter of travel time is estimated as random 
with a constrained triangular distribution when the ML model is estimated, to account for 
the panel nature of the data and to test preference heterogeneity in the sample. 
 
The overall goodness of fit of all but the mean variance model is quite similar. The mean 
variance model is statistically inferior and the expected travel time has a positive sign 
which is intuitively implausible in the both MNL and ML models. Although unclear, this 
may be due to exclusion of other important attributes in the choice scenarios that have 
been excluded from the ‘pure’ mean variance specification. However, the expected travel 
time has a plausible sign in the other models, suggesting that there is no major error in the 
data set that might have led to a consistent implausibility across all model specifications. 
 
The simplified scheduling approach (without probability of being late), the scheduling 
approach (Eqn.(1)) and generalized approach (Eqn.(3)) have quite similar statistical 

57
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48

53
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goodness of fits. The scheduling approach performs best when MNL is applied, while the 
generalized approach slightly outperforms the other two when mixed logit is used. The 
differences in the goodness of fit among the three models are insignificant. Both the 
MNL and ML models suggest that the generalized approach and the scheduling approach 
are more or less equivalent in representing departure time choice behavior under 
uncertainty. It is consistent with our previous finding through the analytical investigation 
on the relationship among these models.  
 
All the parameters have the expected signs, although the sign of schedule delay early 
could be positive or negative. This suggests that commuters tend to prefer to arrive earlier 
in order to guarantee he/she will not be late, which is not an unreasonable finding, like 
the ‘safety margin’ idea. It is consistent with the survey data that most commuters have 
very strict work start times. Almost half of the commuters reported that they cannot be 
late. It is found that the schedule delay early is positive as expected; but marginally 
statistically insignificant. The mean travel time and late schedule delay in all three 
models are statistically significant at the 1% level, which implies that travel time and 
schedule delay late are the most crucial factors influencing travelers’ departure time 
choice decisions under uncertainty. The standard deviation in the generalized approach is 
also statistically significant at the 1% level, suggesting that variability is an important 
property considered by travelers. The probability of being late is not statistically 
significant in the scheduling model, primarily because it is correlated with the expected 
schedule delay. 
 
The generalized approach captures uncertainty, schedule delay and mean travel time, all 
being statistically significant. The empirical equivalence to the popular scheduling 
approach suggests that it could be an alternative model for departure time choice 
behavior of individuals under uncertainty. Given that the mean and standard deviation of 
travel time are easier to be measure in real travel situations than the expected schedule 
delay under the scheduling approach, this has great appeal in project appraisal where 
there is an interest in integrating the wider set of reliability effects.  
 
Table 4: MNL estimation results 
  Mean-variance Simplified Scheduling Scheduling Generalized 

  Coefficient t-ratio Coefficient t-ratio Coefficient t-ratio Coefficient t-ratio 

Expected travel time 0.02514 *** 6.88 -0.05124 *** -9.83 -0.05472 *** -9.65 -0.06221 *** -7.46 

Schedule delay early     0.01081 1.63 0 ns 0.02115 *** 2.99 

Schedule delay late     -0.16266 *** -15.66 -0.14973 *** -11.46 -0.16137 *** -11.81 

Probability of being 
late 

        -0.41939 -1.54   
 

Standard deviation of 0.09747 *** 7.56         -0.04967 ** -2.04 
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travel time 

Final log-likelihood -1243.79   -1046.40   -1045.20   -1048.76   

AIC 2491.6   2098.8   2098.4   2105.5   

No. of Observations 1845   1854   1854   1854   

***, **, * denote Significance at 1%, 5%, 10% level 

 
The travel costs were not included in this survey; hence only the relative importance to 
travel time is calculated. The ratio / SDL TT  is 2.2 indicating that travelers have very 
strict work schedules and are not willing to arrive late at work. In the generalized model 
approach, the reliability ratio of /SD TT   is 0.75. 
 
Table 5: Mixed Logit estimation 
  Mean-variance Simplified Scheduling Scheduling Generalized 

  Coefficient t-ratio Coefficient t-ratio Coefficient t-ratio Coefficient t-ratio 

Random parameter 

Expected 
travel time 
(mean) 

0.13981 *** 4.47 -0.08613 *** -5.13 -0.08734 *** -5.67 -0.09534 *** -7.21 

Expected 
travel time 
(StDev) 

0.13981 *** 4.47 0.08613 5.13 0.08734 *** 5.67 0.09534 *** 7.21 

Nonrandom parameters 

Schedule 
delay early 
(SDE) 

    0.01148 * 1.82 -0.00020 -0.02 0.01928 ** 2.48 

Schedule 
delay late 
(SDL) 

    -0.19144 *** -16.7 -0.17504 *** -11.83 -0.20624 *** -11.11 

Probability of 
being late 

        -0.47282 -1.6   
 

Standard 
deviation (SD) 
of travel time 

0.10215 *** 7.66         -0.07145 ** -2.32 

Final 
log-likelihood 

-1212.47   -998.647   -997.48   -996.44   

AIC 2432.9   2007.3   2007.0   2004.9   

No. of 
Observations 

1854   1854   1854   1854   

***, **, * denote Significance at 1%, 5%, 10% level 
Akaike information criterion: AIC = -2  log-likelihood + 2  K, where K is the number of parameters. The smaller AIC indicates 
a better model fit. Simulations are based on 100 Halton draws with a constrained triangular distribution. 
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4. THE STATED PREFERENCE SURVEY IN AUSTRALIA 

 4.1 Data Collection 

A Stated Choice survey was conducted in 2008 in Australia, in the context of toll versus 
free roads. For each choice scenario, a revealed preference (RP) reference alternative is 
given together with two other stated preference (SP) alternatives that are pivoted around 
the RP alternative. Detailed information about this survey is provided in Li et al. (2012) 
and Hensher and Li (2012). In total, 280 Australia commuters were sampled for this 
study and each commuter has 16 choice scenarios. An illustrative choice scenario (cited 
from Li et al. (2012)) is given in Table 6. 
 
Table 6: An illustrative stated choice scenario screen for the Australian study 

Game 1 
 

Details of your recent 
trip 

Route A Route B 

Average travel time experienced 

Time in free flow traffic (min), tf 25 14 12 

Time slowed down by other traffic (min), ts 20 18 20 

Time in stop/start/crawling traffic (min), tss 35 26 20 

Probability of time of arrival 

Arriving 6 min earlier than expected, te=6 30%, Pe 30% 10% 

Arriving at the time expected, ton 30%, Pon 50% 50% 

Arriving 24 min later than expected, tl=24 40%, Pl 20% 40% 

Trip costs 

Running costs, Cr $2.25 $2.59 $1.69 

Toll costs, Ct $4.00 $2.40 $3.60 

If you make the same trip again, which route would you 
choose? 

 
Current Road

 
Route A

 
Route B 

If you could only choose between the two new routes, which 
route would you choose? 

  
Route A 

 
Route B 

 
Each alternative has three travel scenarios - ‘a quicker travel time than recent trip time’, 
‘a slower time than recent trip time’, and ‘the recent trip time’2. Respondents were 
advised that departure time remains unchanged. Each is associated with a corresponding 
probability3 of occurrence to indicate that travel time is not fixed but varies from time to 
time. For all attributes except the toll cost, minutes for quicker and shorter trips, and the 
probabilities associated with the three trip times, the values for the SC alternatives are 

                                                 
2 The data was not collected specifically to study trip time variability, and hence the limit of three travel 
times, in contrast to the five levels used by Small et al. (1999) and 10 levels used by Bates et al. (2001), 
where the latter studies focused specifically on travel time variability (or reliability). 
3 The probabilities are designed and hence exogenously induced to respondents, similar to other travel time 
variability studies. 
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variations around the values for the most recent trip. Given the lack of exposure to tolls 
for many travelers in the study catchment area, the toll levels are fixed over a range, 
varying from no toll to $4.20, with the upper limit determined by the trip length of the 
sampled trip. The variations used for each attribute are given in Table 7, based on a range 
that we have shown in earlier studies (see Li et al. 2010) to be meaningful to respondents, 
while still delivering sufficient variability to identify attribute preference. 
 

Table 7: Profile of the Attribute range in the SC design 
Attribute  Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 
Free Flow time -40% -30% -20% -10% 0% 10% 20% 30% 
Slowed down time -40% -30% -20% -10% 0% 10% 20% 30%
Stop/Start time -40% -30% -20% -10% 0% 10% 20% 30% 
Quicker trip time -5% -10% -15% -20% - - - - 
Slower trip time 10% 20% 30% 40% - - - - 
Prob. of quicker 
time 

10% 20% 30% 40% - - - - 

Prob. of most 
recent trip time 

20% 30% 40% 50% 60% 70% 80% - 

Prob. of slower trip 
time 

10% 20% 30% 40% - - - - 

Running costs -25% -15% -5% 5% 15% 25% 35% 45% 
Toll costs  $0.00 $0.60 $1.20 $1.80 $2.40 $3.00 $3.60 $4.20 
 
A survey was designed to capture a large number of travel circumstances, to determine 
how each individual trades-off different levels of travel times and trip time variability 
with various levels of proposed tolls and vehicle running costs, in the context of tolled 
and non-tolled roads. Sampling rules were imposed on three trip length segments: 10 to 
30 minutes, 31 to 45 minutes, and more than 45 minutes (capped at 120 minutes). 
Sampling by the time of day that a trip commences was also included, defining the peak4 
as trips beginning during the period 7-9 am or 4.30-6.30pm. All non-peak trips are treated 
as off peak in the internal quota counts. 

 
There are three version of the experimental design depending on the trip length, with 
each version having 32 choice situations (or scenarios) blocked into two subsets of 16 
choice situations each. In generating the designs, the free flow, slowed and stop/start 
times were set to five minutes if the respondent entered zero for their current trip. It is 
important to understand that the distinction between free flow, slowed down and 
stop/start/crawling time is solely to promote the differences in the quality of travel time 
between various routes – especially a tolled route and a non-tolled route, and is separate 
to the influence of total time.  

                                                 
4 The way we handle trips that are partly in the peak: a trip is peak if 60 percent or more of the trip falls 
within the peak period. 
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The experimental design method of D-efficiency is used herein as done in the Chinese 
survey. The socioeconomic profile of the data is given in Table 8, and the descriptive 
overview of choice experiment attributes is given in Table 9. 

 
Table 8: Descriptive socioeconomic statistics 

Purpose Statistic  Gender (1=female) Income  Age 

Commuter 
Mean 0.575 $67,145 42.52 
Std. 
Deviation 0.495 $36,493 14.25 

 

Table 9: Descriptive statistics for costs and times by segment 
 All times of day Peak Off-Peak 
 Mean  Std. Dev. Mean  Std. Dev. Mean  Std. Dev. 
Running costs $3.15 $2.56 $3.58 $3.01 $2.92 $2.26 
Toll costs $1.41 $1.50 $1.40 $1.50 $1.41 $1.51 
Total time 39.29  16.58 36.93 16.25 40.54 16.61 

 

The descriptive statistics for the time and probability variables are given in Table 10. 
 
Table 10: Travel Times and Probabilities of Occurrence (for commuters only) 

Variable Mean Std. Dev. Minimum Maximum 
PS 0.25 0.11 0.1 0.4 
PL 0.25 0.11 0.1 0.4 
PMR 0.50 0.15 0.2 0.8 
X(quicker) 4.80 3.14 0 18 
Y(slower) 9.60 6.28 1 36 
MRT 39.29 16.58 10 119 
ST 34.48 14.98 7 115 
LT 48.89 21.09 11 150 
PTS 8.61 5.61 0.8 40.8 
PTL 12.12 7.68 1.1 56.4 
PTMR 19.69 10.57 2 95.2 

Notes: PS, PL and PMR are probabilities for quicker, slower, and recent trip time, MRT is the most 
recent travel time (the sum of three components: free flow, slowed down and stop/start times), 
X(quicker) and Y(slower) are the amounts of quicker and slower times compared with most recent 
time, which are designed and presented in the experiment. ST is the actual quicker (or shorter) 
travel time (=MRT -X(quicker)); LT is the actual slower (or longer) travel time (=MRT +Y(slower)); 
PTE (=PS * ET), PTL (=PL * LT) and PTMR (=PMR * MRT) are probability weighted values for 
quicker, slower and most recent time respectively. 

 
Our design assumes a fixed level for a shorter or longer trip within each choice scenario. 
However, across the choice scenarios, we vary the probability of a shorter, a longer and a 
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recent trip time, and hence recognize the stochastic nature of the travel time distribution 
(see Table 7 where, for example, the probability of travel time occurrence varies from 10% 
to 40% in the choice experiment). This contrasts with Bates et al. (2001) and Hollander 
(2006) who did not mention occurrence probabilities, implicitly assuming that travel 
times are equally distributed when estimating models. Further details about this survey is 
provided in Li et al. (2012) and Hensher and Li (2012). Given the panel nature of the data 
we used an estimation method that recognized the correlated structure of observations 
drawn from the same individual (see Hensher et al. (2015) for details). 
 

4.2 Empirical Analysis 

The same four model specifications applied to the Chinese data are also estimated using 
the Australian data. The Australian data is more detailed than the Chinese data with the 
mapping of the attributes into the four model forms summarized below (the symbols are 
defined in Table 6): 
 

 od
p f s ssE t t t t       expectation of travel time 

   od
p e eE PAT t t P t

      
  the second item in the scheduling approach 

  od
p l lE t t PAT P t

      
  the third item in the scheduling approach 

     od
p e e l lPAT t E t t P t P

           

the second item in the generalized approach, 

where    min ,0 ,  x x x
   is the 

absolute value of x  

    od
p e e l lt E t PAT t P t P

           the third item in the generalized approach 

   22 2od
p e e l l e e l lStd t P t P t t P t P             standard deviation of travel time 

r tC C C   travel cost 

 
MNL and mixed logit models were estimated and the panel effects were accounted for by 
using mixed logit model with random parameters. A reference constant was included for 
the current route alternative. Except for the parameter of travel cost and the RP reference 
specific constant, all other parameters are estimated as random variables with a 
constrained triangular distribution.  
 
From Table 11 and Table 12, it can be seen that a positive constant is obtained for the 
current route alternative, which implies that, after accounting for the role of the set of 
observed attributes, that there is a bias on average in favor of the experienced alternative. 
The overall goodness of fit of the four models is quite similar. The mean variance 
approach performs much better in this case in contrast to the Shanghai study. The reason, 
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as aforementioned, is that the Australian study is designed in a context of route choice 
modeling with tolling routes. Again, with this comprehensive survey, evidence suggests 
that the generalized approach is empirically equivalent to the scheduling approach in 
performance, as found in the analytical derivation.  
 
This survey includes the travel cost in the trade off with travel times and their occurrence. 
Travel cost and expected travel time are statistically significant at the 1% level in all four 
models. The schedule delay late attribute in the three models has a negative sign as 
expected, while most of them are statistically insignificant except  in the simplified 
scheduling model as it captures uncertainty. In general, the schedule delay early attribute 
is only marginally significant in the simplified scheduling model with MNL estimation, 
while it is statistically insignificant in all three models with ML estimation The schedule 
delay early, based on mean travel time in the generalized approach, has a positive sign as 
also found in the China study, while being statistically insignificant in this Australian 
case study. The probability of being late in the scheduling model is statistically 
significant and of the correct sign, suggesting that this is a stronger influence on choice of 
route than the scheduling influence (late or early). The standard deviation in the 
generalized model is statistically significant at the 1% level. It can be concluded for the 
Australia study that travel cost, average travel time and travel time variability are clearly 
important factors influencing route choices under uncertainty. The scheduling effects 
appear to be not important when modeling route choice behavior under uncertainty. The 
standard deviation, expected schedule delay and the probability of being late are all 
indicators of travel time variability. Only one of these influences however is significant in 
each model. If we were to remove the statistically non-significant parameter estimates in 
the generalized model, it collapses to the mean-variance model. 
 
The product of late schedule delay (SDL) and probability of being late (PL) was included 
in the scheduling model to explore the relationship between SDL and PL. Table 12 shows 
the model estimation results for the scheduling approach with an interaction term 
(SDL*PL). It can be seen that the parameter of the interaction term is -0.47 and is 
significant at the 10% level. The mean of the SDL parameter is

  ( ) 0.47 PLSDL SDLmean PL mean    which implies that the degree of a traveler’s 

aversion to SDL increases with the increasing probability of being late. SDL and PL are 
positively correlated resulting in the stand alone SDL being not statistically significant in 
the scheduling approach while PL preserves its very strong statistical significance. 
 
Table 11: MNL estimation results 
  Mean-variance Simplified Scheduling Scheduling Generalized 

  Coefficient t-ratio Coefficient t-ratio Coefficient t-ratio Coefficient t-ratio 

Expected travel time -0.07164 *** -17.00 -0.07241 *** -17.08 -0.07209 *** -16.99 -0.07182   *** -16.87 

Schedule delay early     -0.08050 * -1.76 -0.06928 -1.51 0.10443 1.33 
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Schedule delay late     -0.13308 *** -5.49 -0.01396 -0.34 -0.01711 -0.55 

Probability of being late         -1.77170 *** -3.53   
 

Standard deviation of 
travel time 

-0.15387 *** -5.45         -0.13436  *** -3.91 

Cost -0.29844 *** -15.32 -0.30074 *** -15.35 -0.29855 *** -15.23 -0.30163  *** -15.4 

Reference constant 0.88613 *** 17.87 0.87967 *** 17.60 0.89003 *** 17.74 0.87998 *** 17.61 

Final log-likelihood -3427.498   -3425.023   -3418.83   -3426.24   

AIC 6863.0   6860.0   6849.7   6864.5   

No. of Observations 4480   4480   4480   4480   

***, **, * denote Significance at 1%, 5%, 10% level 
 

 
Table 12: Mixed logit estimation results 
  Mean-variance Simplified Scheduling Scheduling 

Scheduling + interaction 
term 

Generalized 

 
Coefficient t-ratio Coefficient t-ratio Coefficient t-ratio Coefficient t-ratio Coefficient t-ratio 

 Nonrandom parameters 

Reference constant 0.88109*** 17.07 0.8705 *** 16.74 0.88319 *** 16.88 0.88487 *** 16.88 0.87016*** 16.74 

Cost -0.33021 *** -16.09 -0.33463 *** -16.18 -0.33071 ***-16.01 -0.33146 *** -16.01 -0.33448 *** -16.22 

SDL*PL       -0.46697* -1.74   

 Means of Random parameters 

Expected travel time -0.11815 *** -16.41 -0.1195 *** -16.52 -0.11887 *** -16.44 -0.11874 *** -16.40 -0.11889 *** -16.45 

Schedule delay early
（SDE） 

    -0.06537 -1.34 -0.05247 -1.07 -0.06061 -1.22 0.08801 1.10 

Schedule delay late (SDL)     -0.16494 *** -6.08 -0.03319 -0.71 0.20951 1.56 -0.04472 -1.32 

Probability of being late 
(PL) 

        -1.83439 *** -3.27 -1.87607 *** -3.51 
 

  

Standard deviation of 
travel time 

-0.1804 *** -5.76     
  

    -0.14113 *** -3.71 

 Standard deviations of random parameters 

Expected travel time 0.11815*** 16.41 0.1195 *** 16.52 0.11887 *** 16.44 0.11874 *** 16.40 -0.11889 *** 16.45 

Schedule delay early
（SDE） 

    0.06537 1.34 0.05247 1.07 0.06061 1.22 0.08801 1.10 

Schedule delay late (SDL)     0.16494 *** 6.08 0.03319 0.71 0.20951 1.56 0.04472 1.32 

Probability of being late         1.83439 *** 3.27 1.87607 *** 3.51 
 

  

Standard deviation (SD) of 
travel time 

0.1804 5.76             0.14113 *** 3.71 

Final log-likelihood -3347.12   -3343.25   -3338.06   -3337.305   -3345.38   

Rho-square 0.3199   0.3207   0.3218   0.3219   0.3203   

AIC 6702.2   6696.5   6688.1   6688.6   6702.8   

No. of Observations 4480   4480   4480   4480   4480   

***, **, * denote Significance at 1%, 5%, 10% level 
Simulations are based on 100 Halton draws with a constrained triangular distribution. 

 
The willingness to pay (WTP) estimates are presented in Table 13 for both the MNL and 
ML models. All four models produce values of travel time savings (VTTS) with similar 
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means and standard deviations within each of MNL and ML models. As different utility 
components are included in the four models, values of schedule delay early (SDE) and 
late (SDL) are different. For the simplified scheduling approach, the estimated value of 
SDE is greater than VTTS with MNL, while the opposite is found with ML. . With ML 
estimation, conditional willingness to pay is calculated, instead of unconditional 
estimates. For example, the mean of VTTS with ML is calculated as  cos/ TT tE , 

instead of    cos/ TT tE E , which are not equal to each other. The mean of the 

reliability ratio VOR/VTTS is computed as    / /  SD TTE VOR VTTS E , instead of 

   /E VOR E VTTS . The ratio of SDL/VTTS is about 1.8, indicating a higher relative 

value for late schedule delay compared to VTTS. The value of the standard deviation or 
the value of reliability (VOR) is significantly greater in the generalized model than VTTS, 
with a reliability ratio of about 2 for the mean variance approach and about 1.5 for the 
generalized approach. These differences are large and the selection of a reliability ratio 
and the associated VTTS and VOR will have a noticeable influence of the benefits 
obtained by projects in an economic appraisal. 
 
Table 13: Values of travel time savings, reliability, and scheduling cost ($Aud2008 per person hour) 
  Mean-variance Simplified Scheduling Scheduling Generalized 

  MNL ML MNL ML MNL ML MNL ML 

VTTS (mean) 14.40 19.67 14.45 19.63 14.49 19.75 14.29 19.53 

VTTS (StDev)  7.08  7.09  7.12  7.05 

VOR(mean) 30.93 32.62     26.73 25.29 

VOR(StDev)  2.26      1.38 

VOR/VTTS (mean) 2.15 1.97      1.87 1.55  

VOR/VTTS (StDev)  1.05       0.84  

SDE(mean)   16.06 11.67 13.92 9.49 20.77 -15.75 

SDE(StDev)    0.24  0.18  0.28 

SDL(mean)   26.55 29.42 2.81 5.99 3.40 7.99 

SDL(StDev)    2.09  0.13  0.19 

SDE/VTTS (mean)   1.11 0.71 0.96 0.57 1.45 -0.96 

SDE/VTTS (StDev)    0.38  0.31  0.516 

SDL/VTTS (mean)   1.84 1.79 0.19 0.36 0.24 0.49 

SDL/VTTS (StDev)    0.96  0.19  0.26 

Note: VOR is measured by the standard deviation of travel time. 

 

5. Conclusions 

Using a number of behavioral perspectives on the theoretical relationship between the 
variability of travel time and expected schedule delay, this paper has proposed a more 
general model to recognize influences on trip time variability associated with trip 
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scheduling and uncertainty of travel time. This more general model accounts for the 
scheduling effects and explicitly incorporates a variability measure (standard deviation of 
travel times) to reflect a more complete representation of travelers’ risk averse attitudes 
towards unreliability. Recognizing the potential correlation between the expected 
scheduling delay and standard deviation, the scheduling effects in the generalized 
approach are defined in terms of expected travel time. This generalized model differs 
from the scheduling model, not only through the additional standard deviation of travel 
time term, but also in the representation of schedule delay. This paper shows that the 
expected scheduling delay can only capture, in part, the uncertainty in travel times.  
 
A conditional equivalence of the generalized approach and the scheduling approach was 
found in a previous study with an analytical approach. However, there was no empirical 
evidence. This paper focuses on an empirical investigation of the performance of the 
generalized approach in comparison to the popular scheduling approach using data sets 
from China and Australia.  
 
The two distinct surveys (the China survey was designed by assuming a symmetric travel 
time distribution, while the Australia study with an asymmetric distribution) both 
produced empirical evidence of the equivalence in terms of overall goodness of fit of the 
generalized approach and the scheduling approach, as suggested in the theoretical 
formulations, suggesting that the extended generalized model is an eligible alternative 
specification in future choice modeling. This is an important finding that adds behavioral 
insights into the potential role of additional sources of travel time variability, suggesting 
that future empirical studies should contemplate testing the models presented in this paper 
in order to add support or otherwise for our findings.  
 
This generalized approach brings benefits from two perspectives: 1) it has a mathematical 
formulation that has appeal for analytical analyses and offers a way forward with other 
data sources to undertake further inquiry into the growing role of travel time variability in 
influencing travel behavior; 2) it shows the practical (and feasible) value of the various 
measures of travel time uncertainty that are relatively easy to measure, that can and should 
be incorporated in project appraisal. Standard deviation and mean travel time are easier to 
derive in practice than the expected schedule delay as defined in the scheduling model. In 
the context of project appraisal, de Jong and Bliemer (2015) suggest beginning with 
incorporating the standard deviation as a reliability measure in project appraisal, 
recognizing the complexity of directly incorporating expected scheduling delay. This 
paper promotes incorporation of the standard deviation and scheduling effects into a 
generalized approach, for which standard deviation and expected travel time are 
straightforward to derive.  
 
Further studies are recommended to test the generalized model with other data sets before 
offering a definite position on the relative advantages of each approach. The Chinese study 
gives support in the generalized model to including both the mean-variance and the 



22 
 

scheduling effects; whereas the Australian study finds only the mean-variance 
specification has statistical merit.  
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