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Abstract	

The	interplay	between	congestion	and	crowding	externalities	in	the	design	of	urban	bus	
systems	 is	 identified	 and	 analysed.	 A	 multimodal	 social	 welfare	 maximisation	 model	
with	 spatially	 disaggregated	 demand	 is	 developed,	 in	 which	 users	 choose	 between	
travelling	by	bus,	car	or	walking	in	a	transport	corridor.	Optimisation	variables	are	bus	
fare,	congestion	toll,	bus	frequency,	bus	size,	fare	collection	system,	bus	boarding	policy	
and	the	number	of	seats	inside	buses.	We	find	that	optimal	bus	frequency	results	from	a	
trade‐off	between	the	level	of	congestion	inside	buses,	i.e.,	passengers’	crowding,	and	the	
level	of	congestion	outside	buses,	i.e.,	the	effect	of	frequency	on	slowing	down	both	buses	
and	cars	in	mixed‐traffic	roads.	A	numerical	application	shows	that	optimal	frequency	is	
quite	 sensitive	 to	 the	 assumptions	 on	 crowding	 costs,	 impact	 of	 buses	 on	 traffic	
congestion,	and	overall	congestion	level.	If	crowding	matters	to	users,	buses	should	have	
as	many	seats	as	possible,	up	to	a	minimum	area	that	must	be	left	free	of	seats.	If	for	any	
other	 reason	 planners	 decide	 to	 have	 buses	 with	 fewer	 seats	 than	 optimal	 (e.g.,	 to	
increase	bus	capacity),	frequency	should	be	increased	to	compensate	for	the	discomfort	
imposed	on	public	 transport	users.	Finally,	 the	consideration	of	crowding	externalities	
(on	both	seating	and	standing)	imposes	a	sizeable	increase	in	the	optimal	bus	fare,	and	
consequently,	a	reduction	of	the	optimal	bus	subsidy.	
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1.	 Introduction	

	
When	 deciding	whether	 or	 not	 to	 undertake	 a	 trip	 by	 public	 transport,	 travellers	 are	
influenced	 by	 a	 number	 of	 characteristics	 or	 attributes	 of	 the	 public	 transport	mode,	
including	 accessibility,	 waiting	 time,	 travel	 time,	 price,	 reliability,	 comfort	 and	 safety.	
Demand	 is	 sensitive	 to	 the	 overall	 quality	 of	 service,	 which	 in	 turn	 depends	 on	 the	
design	 of	 the	 system;	 hence	 understanding	 the	 economic	 nature	 of	 urban	 public	
transport	operations	is	crucial	as	a	means	to	ensure	the	efficiency	of	a	public	transport	
network	 and,	 ultimately,	 the	 sustainability	 of	 the	 entire	 transport	 system.	 From	 a	
transport	 planner’s	 perspective,	 the	 challenge	 associated	 with	 the	 design	 of	 public	
transport	services	lays	in	the	myriad	number	of	trade‐offs	that	need	to	be	considered	at	
once,	 in	 order	 to	 establish	 an	 optimal	 service	 design.	 For	 example:	 increasing	 bus	
frequency	reduces	waiting	time	for	users	but	increases	the	cost	of	operation;	increasing	
the	number	of	bus	stops	reduces	users’	access	time	but	increases	bus	riding	time	for	all‐
stop	services;	and	investing	 in	a	quicker	fare	collection	technology	and	dedicated	road	
infrastructure	 for	 buses	 reduces	 bus	 travel	 time	 (and	 consequently	 may	 reduce	
operating	 cost)	 but	 increases	 capital	 cost.	 In	 this	 paper	 we	 introduce	 two	 trade‐offs	
within	the	microeconomic	modelling	framework	of	optimal	supply	levels	and	pricing	of	
an	urban	bus	 route,	 that	 are	 crucial	 to	 the	 level	 of	 service	 offered	 to	 public	 transport	
users:	(i)	the	interaction	between	road	congestion	and	passenger	crowding	externalities	
when	 setting	 supply	 levels	 of	 public	 transport,	 and	 (ii)	 the	decision	on	 the	number	of	
seats	that	public	transport	vehicles	should	have.		
	

First,	the	influences	of	congestion	and	crowding	on	optimal	bus	service	frequency	have	
been	 treated	 independently	 in	 the	 literature.	 On	 the	 one	 hand,	 Jara‐Díaz	 and	
Gschwender	 (2003)	 show	 that	 passenger	 crowding	 externalities	 push	 optimal	 public	
transport	frequency	up,	with	a	total	cost	minimisation	model	without	road	congestion.	
On	 the	 other	 hand,	 Tirachini	 and	 Hensher	 (2011)	 find	 that	 the	 existence	 of	 bus	
congestion	in	the	form	of	queuing	delays	at	bus	stops	pushes	optimal	frequency	down,	
with	 a	 total	 cost	 minimisation	 model	 that	 ignores	 crowding	 externalities.	 Moreover,	
buses	may	also	slow	cars	down	in	shared	roads.		Therefore,	there	are	possible	counter‐
effects	 of	 congestion	 and	 crowding	 on	 optimal	 frequency	 that	 need	 to	 be	 addressed	
simultaneously.	 In	 this	 paper	 we	 propose	 a	 multimodal	 social	 welfare	 maximisation	
model	that	includes	both	passenger	crowding	and	mixed‐traffic	congestion	externalities,	
and	find	that	optimal	bus	 frequency	 is	 the	result	of	crowding	and	congestion	acting	as	
colliding	forces.	

Second,	going	beyond	microeconomic	models	that	optimise	public	transport	frequency	
and/or	vehicle	size	to	set	supply	levels	(e.g.,	Mohring,	1972;	Jansson,	1980;	Oldfield	and	
Bly,	 1988;	 Chang	 and	 Schonfeld,	 1991),	 we	 look	 at	 the	 internal	 design	 of	 vehicles	 by	
including	 the	number	 of	 bus	 seats	 as	 a	 decision	 variable	 that	 influences	 both	 comfort	
and	capacity.	Different	configurations	of	vehicles	regarding	number	of	seats	and	space	
for	standees	are	relevant	 for	 the	 level	of	crowding	and	standing	externalities	 in	public	
transport	 (Whelan	 and	 Crockett,	 2009).	 This	 is	 a	 key	 insight	 from	 the	 estimation	 of	
crowding	and	standing	disutilities	that	has	not	been	given	attention	in	the	literature	on	
the	 design	 and	 optimisation	 of	 public	 transport	 systems.	 Microeconomic	models	 that	
have	 included	 the	 level	 of	 crowding	 as	 an	 influence	 on	 the	 value	 of	 in‐vehicle	 time	
savings	 do	 not	 distinguish	 between	 passengers	 sitting	 and	 standing	 (Jara‐Díaz	 and	
Gschwender,	2003;	Tirachini	et	al.,	2010);	whereas	Kraus	(1991)	applies	a	premium	on	
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the	value	of	 travel	time	savings	 for	passengers	standing,	but	his	research	 is	concerned	
with	 the	marginal	 cost	 and	pricing	of	 services	 considering	 the	discomfort	 of	 standing,	
rather	 than	 with	 the	 design	 of	 vehicles.	 Thus,	 even	 though	 crowding	 and	 discomfort	
externalities	 have	 been	 analysed	 in	 the	 literature,	 previous	 studies	 always	 assumed	 a	
given	internal	design	or	layout	of	the	vehicles	involved,	i.e.,	a	given	bus	or	train	capacity.	
In	short,	it	is	assumed	that	size	implies	capacity.	However,	reducing	the	number	of	seats	
increases	 bus	 capacity	 by	 allowing	 more	 standees;	 thus	 a	 seat	 implies	 a	 trade‐off	
between	comfort	and	capacity	that	is	allowed	for	in	our	model.	

The	 analytical	 approach	 consists	 of	 a	 social	 welfare	 maximisation	 model	 with	
disaggregated	 origin	 and	 destination	 demand,	 and	 multiple	 travel	 alternatives.	 The	
model	is	applied	to	a	single	transport	corridor	in	Sydney,	Australia,	which	allows	us	to	
obtain	 detailed	 measures	 of	 crowding	 levels	 section	 by	 section.	 In	 contrast	 to	 other	
social	welfare	maximisation	models	(e.g.,	De	Borger	et	al.,	1996;	Proost	and	Van	Dender,	
2004;	Wichiensin	et	al.,	2007;	Ahn,	2009;	Parry	and	Small,	2009;	Jansson,	2010;	Basso	et	
al.,	 2011),	 our	 approach	 provides	 a	more	 comprehensive	modelling	 of	 the	 bus	mode,	
including	bus	frequency,	bus	size,	fare	collection	system,	bus	boarding	policy,	number	of	
bus	seats	and	fare	level	as	decision	variables.	We	also	show	that	the	inclusion	of	a	non‐
motorised	mode	(walking)	as	an	alternative	to	choosing	bus	and	car	for	short	trips	may	
have	 a	 significant	 role	 when	 the	 transport	 system	 is	 optimised	 in	 highly	 congested	
scenarios1.	Results	are	discussed	for	several	scenarios	with	different	demand	levels	and	
modelling	assumptions.		

We	 show	 that	 optimal	 bus	 frequency	 is	 quite	 sensitive	 to	 the	 assumptions	 regarding	
crowding	costs,	impact	of	buses	on	traffic	congestion	and	the	overall	congestion	level.	In	
particular,	 if	 the	 planner	 takes	 into	 account	 that	 crowding	 matters	 to	 users,	 our	
numerical	application	shows	 that	bus	 frequency	should	 increase	(for	a	given	bus	size)	
with	demand	even	under	heavy	congestion,	however	 that	might	not	be	 the	 case	 if	 the	
crowding	 externality	 is	 not	 accounted	 for,	 in	which	 case	 an	 increase	 of	 total	 demand	
might	 be	 met	 by	 a	 decrease	 of	 both	 frequency	 and	 number	 of	 seats	 per	 bus,	 at	 the	
expense	of	crowding	passengers	inside	buses	and	making	more	passengers	stand	while	
travelling.	 Likewise,	 we	 find	 that	 buses	 should	 be	 designed	 with	 as	 many	 passenger	
seats	as	possible	(up	to	a	minimum	area	that	must	be	left	free	of	seats	for	an	aisle,	next	
to	the	driver	and	doors,	for	a	wheelchair	and	other	possible	uses).	If	for	any	other	reason	
planners	 decide	 to	 have	 buses	 with	 fewer	 seats	 than	 optimal	 (e.g.,	 to	 increase	 bus	
capacity),	frequency	should	be	increased	to	compensate	for	the	discomfort	imposed	on	
public	transport	users.	

The	remainder	of	the	paper	is	organised	as	follows.	The	theoretical	model	is	developed	
in	Section	2,	including	assumptions	and	definitions	(Section	2.1),	demand	and	crowding	
modelling	(2.2),	travel	time	and	congestion	(2.3),	internal	bus	layout	(2.4)	and	operator	
cost	 items	 (2.5);	 the	 section	 concludes	 with	 the	 formulation	 of	 the	 social	 welfare	
maximisation	 problem.	 Section	 3	 presents	 the	 numerical	 application	 of	 the	 model	 to	
Sydney	 and	 discussion	 of	 results	 in	 several	 scenarios.	 Conclusions	 are	 provided	 in	
Section	4.	

                                            
1 Excluding non-motorised alternatives, the	 properties	 of	 the	 bimodal	 car‐bus	 competition	 for	 user	
equilibrium	and/or	system	optimum	solutions	are	analysed	in	a	number	of	contributions,	e.g.,	Ahn	(2009),	
Li	 et	 al.	 (2012),	 and	 Gonzales	 and	 Daganzo	 (2012);	 2013).	 The	 influence	 of	 an	 un‐congestible	 non‐
motorised	alternative	on	the	optimal	public	transport	fare	is	analytically	studied	by	Tirachini	and	Hensher	
(2012)	with	a	three‐mode	model.	 
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2.	 Model	set	up	

2.1	 Assumptions	and	definitions		
	
We	 consider	 a	 linear	 bi‐directional	 road	 of	 length	 L 	and	 a	 single	 period	 of	 operation	
with	 directions	 denoted	 as	 1	 and	 2.	 The	 road	 is	 divided	 into	 P 	 zones	 denoted	 as	

 1,...,i P ,	 and	 the	 total	 demand	 ijY per	 origin‐destination	 pair	  ,i j
	 is	 fixed.	 The	

distance	between	zone	 i 	and	zone	 1i  	is	denoted	as	 iL 	such	that	
1

1

P

i
i

L L




  ,	as	shown	in	

Figure	1.	Users	can	choose	to	travel	by	car	(a),	bus	(b)	or	to	walk	(e)2.	Then,	if	 ij
my 	is	the	

travel	demand	for	mode	m 	between	zones	 i 	and	 j ,	it	holds	that:	

ij ij ij ij ij
m a b e

m

Y y y y y    		 	 	 	 	 (1)	

Let	 1
i

af 	be	the	traffic	flow	in	section	i,	between	zone	 i 	and	zone	 1i  (direction	1)	and	 2
i

af 	
be	the	traffic	flow	in	section	i,	between	zone	 1i  	and	zone	 i 	(direction	2).	The	decision	
variables	of	the	problem	are	denoted	as	follows:	

bf 	:	bus	frequency	[bus/h]	

bs 	:	bus	length	[m]	

 	:	fare	collection	technology	and	boarding	policy	(one‐door	or	all‐door	boarding)	

seatn :	number	of	seats	inside	a	bus	

a 	:	car	toll	[$/trip]	

b 	:	bus	fare	[$/trip]	

	

	
	

	

	

	

	

Figure	1:	Transport	corridor	diagram	

	

It	 is	 assumed	 that	 there	 is	 only	 one	 bus	 stop	 per	 zone3	 and	 that	 the	 travel	 distance	
between	 zones	 is	 the	 same	 for	 the	 three	 modes.	 Bus	 frequency	 is	 assumed	 to	 be	

                                            
2	The	model	can	be	easily	extended	to	more	travel	alternatives	such	as	rail.	
3	The	location	of	bus	stops	is	fixed	in	this	model,	which	allows	us	to	know	the	number	of	passengers	that	a	
bus	carries	 in	each	segment	of	 the	route	(between	two	consecutive	zones).	For	a	review	of	models	 that	
optimise	the	spacing	of	bus	stops	see	Tirachini	(2014).	

Zone i Zone P 

Direction 1 

Direction 2 

1
i

af  1
1
P

af
  2

1af  
1
1af  

1
2
P

af
  2

i
af  2

2af  1
2af  

1L  2L  1PL iL

Zone 1 Zone 2 
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continuous,	whereas	options	on	bus	 lengths	are	constrained	by	the	size	of	commercial	
vehicles;	four	sizes	are	considered	in	the	application	of	the	model.	These	are	mini	(8	m.	
long,	1	or	2	doors),	 standard	(12	m.	 long,	2	or	3	doors),	 rigid	 long	(15	m.	 long,	3	or	4	
doors)	 and	 articulated	 (18	m.	 long,	 4	 doors).	 	 The	number	 of	 seats	 seatn 	 can	be	 freely	
chosen	subject	to	lower	and	upper	bounds,	the	former	is	given	by	a	minimum	number	of	
seats	per	bus	that	is	exogenously	decided	in	order	to	provide	a	minimum	level	of	service,	
whereas	the	latter	is	determined	by	a	minimum	area	on	a	bus	that	must	be	clear	of	seats	
(i.e.,	aisle,	doors,	space	for	a	wheelchair,	area	next	to	the	driver).	Following	Tirachini	and	
Hensher	 (2011),	 we	 consider	 four	 alternative	 fare	 collection	 technologies:	 on‐board	
payment	 with	 (i)	 cash,	 (ii)	 magnetic	 strip	 (with	 contact)	 and	 (iii)	 smartcard	
(contactless),	 plus	 (iv)	 off‐board	 payment	 (on	 the	 bus	 stop).	 The	 bus	 boarding	 and	
alighting	 policy	 can	 be	 chosen	 as	well,	 two	 alternatives	 are	 available	 to	 implement	 in	
buses	 with	 more	 than	 one	 door:	 (a)	 simultaneous	 boarding	 and	 alighting,	 in	 which	
boarding	 is	 allowed	 at	 the	 front	 door	 only	 while	 alighting	 takes	 place	 at	 the	 back(s)	
doors,	 and	 (b)	 sequential	 boarding	 and	 alighting,	 in	 which	 boarding	 is	 allowed	 at	 all	
doors	giving	priority	to	passengers	alighting	to	unload	first.	In	principle,	we	assume	that	
cars	and	buses	share	the	right‐of‐way	and	that	bus	stops	do	not	directly	affect	cars,	an	
assumption	that	is	revised	in	Section	3.3.		

	

2.2	 Demand	modelling	and	crowding	
	
Previous	research	has	shown	the	influence	of	crowding	and	standing	on	increasing	the	
value	of	travel	time	savings	(e.g.,	Maunsell	and	Macdonald,	2007;	Whelan	and	Crockett,	
2009;	Hensher	 et	al.,	 2011;	Wardman	 and	Whelan,	 2011).	 In	 this	 paper,	mode	 choice	
models	 that	 include	 the	 proportion	 of	 available	 seats	 and	 the	 density	 of	 standees	 as	
attributes	for	buses	are	estimated.	Data	collected	from	a	stated	choice	survey	conducted	
in	Sydney	in	2009	is	used	to	this	end;	the	experimental	design,	study	area,	sample	size	
and	socioeconomic	characteristics	of	respondents	are	described	at	length	in	Hensher	et	
al.	(2011),	who	estimate	the	crowding	disutility	as	a	function	of	the	proportion	of	users	
seating	 (which	affects	 the	probability	of	getting	a	 seat),	 and	 the	 total	number	of	users	
standing,	 in	order	 to	 estimate	 the	willingness	 to	pay	 to	 get	 a	 seat	 as	 a	 function	of	 the	
number	of	people	sitting	and	standing.	In	this	paper,	we	use	the	density	of	standees	per	
square	 metre,	 instead	 of	 the	 total	 number	 of	 standees,	 to	 represent	 the	 disutility	 of	
crowding,	 in	 order	 to	 have	 a	 common	 base	 for	 the	 application	 of	 the	 model	 with	
different	internal	bus	layouts	regarding	allocation	of	space	for	seating	and	standing.		

Let	 ij
mU 	be	 the	utility	associated	with	 travel	by	mode	 m in	origin‐destination	(OD)	pair	

 ,i j .	 In	 order	 to	 analyse	differences	 in	 optimal	 bus	 service	design	due	 to	 alternative	

assumptions	regarding	user’s	valuations	of	seating,	standing	and	crowding	levels	inside	
buses,	we	propose	 three	different	models	 that	 incorporate	attributes	 representing	 the	
number	of	passengers	seating	and	standing,	 interacting	with	travel	time;	 these	models	
will	be	compared	with	a	specification	that	ignores	any	crowding	or	standing	cost.	 	The	
models,	named	M1	to	M4,	are	described	as	follows:	
	

 M1:	Crowding	is	not	explicitly	considered	as	a	source	of	disutility	 for	users	(eq.	
2).	

 M2:	Only	the	density	of	standees	[pax/m2]	imposes	an	extra	discomfort	cost	(eq.	
3).	
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 M3:	The	density	of	standees	and	the	proportion	of	seats	occupied	are	sources	of	
disutility	(eq.	4).	

 M4:	The	density	of	standees	and	the	proportion	of	seats	occupied	are	squared	in	
the	utility	function	(eq.	5).	

	

Bus	–	M1:					 M1 M1 M1 M1 M1ij i ij
b b a ab h b vb vb c bU t h t          (2)

Bus	–	M2:		 M2 M2 M2 M2 M2 M2ij i ij ij
b b a ab h b vb vb c b den den vbU t h t n t            (3)

Bus	–	M3:		 M3 M3 M3 M3 M3 M3ij i ij ij ij
b b a ab h b vb vb c b den den vb seat seat vbU t h t n t p t              (4)

Bus	–	M4:	 M4 M4 M4 M4 M4 2 2
2 2

ij i ij ij ij
b b a ab h b vb vb c b den den vb seat seat vbU t h t n t p t              (5)

	 	
In	(2)	to	(5),	 i

abt 	is	the	access	time	at	zone	i,	 bh 	is	the	headway	between	two	consecutive	

buses4,	 ij
vbt 	 is	 the	 in‐vehicle	 time	 between	 zones	 i	and	 j,	 b 	 is	 the	 bus	 fare,	 denn 	 is	 the	

density	of	standees	per	square	metre,	 seatp 	is	the	proportion	of	seats	been	used,	 b 	is	a	

modal	constant	(which	will	be	calibrated	to	predict	an	observed	modal	split)	and	 k 	are	
the	 parameters	 associated	 to	 the	 different	 attributes.	 For	 each	 model	 M1	 to	 M4,	 the	
utility	of	the	alternative	modes	(car	and	walk)	have	the	same	specification:	
	

Car:	  M Mij ij ij
a va va c r a rU t c o      (6)

Walk:	 Mij ij
e e ve veU t    (7)

	 	 	 	 	 	 	 	
where	 ij

rc 	 is	the	car	running	cost	to	travel	between	zones	 i	and	 j,	 a 	 is	the	road	charge	

(decision	 variable)	 and	 ro 	 is	 the	 average	 car	 occupancy	 rate	 (therefore	 ij
aU 	 is	 the	

average	 utility	 of	 car	 users).	 In	 expressions	 (2)	 to	 (6),	 bus	 fare	 and	 car	 toll	 are	
independent	of	the	origin	and	destination	of	trips,	an	assumption	that	is	consistent	with	
an	area	charging	scheme;	extensions	to	distance‐based	fares	and	tolls	are	discussed	 in	
Section	4	(Conclusions).	

Assuming	a	multinomial	logit	model	for	the	estimation	of	demand,	the	number	of	trips	
by	mode	m in	OD	pair	  ,i j is	given	by:		

ij
m

ij
n

U
ij ij
m U

n

e
y Y

e



,i j 	 	 	 	 	 	 (8)	

where	 ijY 	 is	the	total	demand	between	zones	 i	and	 j.	The	estimation	of	parameters	for	
models	 M1	 to	 M4	 is	 shown	 and	 discussed	 in	 Appendix	 A1.	 In	 this	 framework,	 the	
consumer	surplus B is	given	by	the	logsum	formula:	

                                            
4 The assumed linearity in the headway attribute as a proxy of waiting time cost is more appropriate in high 
frequency services in which ex-ante schedules do not exist or are not relevant in the departure time decisions of 
users. A situation with low frequency in which passengers follow a schedule is better modelled with the 
inclusion of two or more headway parameters or with a non-linear formulation. The resulting frequencies in 
Table 3 are over 20 veh/h (headways of less than 3 minutes), which is consistent with the assumption of high 
frequency services. 
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0ln
I

ij
m

ij
U

ij mu

Y
B e B   		 	 	 	 	 (9)	

where	 Iu 	 is	 the	 marginal	 utility	 of	 income5,	 equal	 to	 minus	 the	 cost	 parameter	
M
c
 	

estimated	 with	 the	 choice	 models6,	 and	 0B 	 is	 a	 constant	 that	 has	 no	 effect	 on	 the	
solution	of	the	problem,	and	therefore	can	be	set	to	zero.		

	

2.3	 Travel	time,	congestion	and	bus	stop	delay	
	
We	assume	that	buses	and	cars	share	 the	right‐of‐way,	which	 is	subject	 to	congestion.	
Furthermore,	buses	have	to	stop	at	bus	stops	to	load	and	unload	passengers.	Bus	stops	
are	also	subject	to	congestion	in	the	form	of	queuing	delays	when	the	bus	frequency	is	
high	and/or	the	dwell	 time	is	 long.	Taking	direction	1	for	 illustration,	we	model	travel	
time	between	zone	i	and	zone	i+1	by	car	( 1

i
vat )	and	bus	( 1

i
vbt )	as	a	function	of	traffic	flow	

and	bus	frequency	by	using	the	well‐known	Bureau	of	Public	Roads	(BPR)	formula:	

    1

1
1 1 0 0, 1

i
a b bi i i

va a b a
r

f s f
t f f t

K





  
    
   

	 	 	 	 (10)	

    1

1
1 1 0 0 1, 1

i
a b bi i i i

vb a b b s
r

f s f
t f f t t

K





  
    
   

	 	 	 (11)	

	
where	 0

i
at ,	 0

i
bt ,	 0 	and	 1 	are	parameters	( 0

i
at 	and	 0

i
bt 	are	the	free‐flow	travel	times	by	

car	and	bus,	respectively),	 1  	is	the	passenger	car	equivalency	factor	of	a	bus,	which	

depends	on	the	bus	length	 bs ,	and	 rK 	is	the	capacity	of	the	road.	The	travel	time	by	bus	

includes	 the	 delay	 due	 to	 bus	 stops,	 1
i
st ,	 which	 consists	 of	 the	 acceleration	 and	

deceleration	delay	 1
i
act ,	the	average	queuing	time	 1

i
qt and	the	dwell	time	 1

i
dt ,	i.e.,	

1 1 1 1
i i i i
s ac q dt t t t   	 	 	 	 	 (12)	

The	 delay	 in	 the	 process	 of	 accelerating	 and	decelerating	 at	 bus	 stops	 is	modelled	 by	
assuming	uniform	acceleration	and	deceleration;	thus	the	extra	stopping	delay	on	top	of	
the	uniform	travel	time	given	by	the	running	speed	 1

i
bv ,	is	expressed	as	(13).	

1
1

0 1

1 1

2

i
i b
ac

v
t

a a

 
  

 
	 	 	 	 	 	 (13)	

The	 queuing	 time	 1
i
qt 	 is	 a	 measure	 of	 the	 external	 congestion	 caused	 by	 a	 bus	 stop,	

observed	 when	 a	 bus	 arrives	 at	 a	 stop	 and	 all	 berths	 are	 occupied.	 This	 delay	 is	

                                            
5	The	marginal	utility	of	income	is	assumed	constant,	i.e.,	we	ignore	income	effects	on	demand	(Jara‐Díaz	
and	Videla,	1989;	Jara‐Díaz,	2007).	
6	Note	that	

M
c

is	estimated	with	the	choice	of	motorised	modes	only	because	walking	is	for	free. 
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commonly	present	in	high	frequency	services,	but	it	may	also	occur	in	poorly	controlled	
low	 frequency	 services	where	buses	 tend	 to	bunch.	Following	Fernández	et	al.	 (2000)	
and	Tirachini	and	Hensher	(2011),	we	use	the	bus	stop	simulator	IRENE	(Gibson	et	al.,	
1989;	 Fernández	 and	 Planzer,	 2002)	 to	 estimate	 the	 queuing	 delay	 qt 	 [s/bus]	 as	 a	

function	 of	 the	 design	 of	 the	 bus	 stop	 (number	 and	 length	 of	 berths),	 bus	 length,	 bus	
frequency	and	average	dwell	time.	Bus	stops	with	one,	two	and	three	linear	berths	are	
considered.	The	regression	model	for	the	simulated	data	has	the	exponential	form	(14),	
as	developed	in	Tirachini	(2014)	and	explained	in	Appendix	A2:	

   2 4 5 2 6 30.001

0 1 1 2 2 3 30.001 b f l b d d d df b b s b b Z b Z t

q l b d d d dt b b s b b Z b Z t e
            	 	 (14)		

where	 bs [m]	 is	 the	 bus	 length,	 dt [s/bus]	 is	 the	 dwell	 time,	 bf 	 [veh/h]	 is	 the	 bus	

frequency	 and	 0 ,	 1l ,	 2l ,	 1d ,	 2d ,	 3d ,	 4d ,	 5d ,	 6d 	 and	 f are	 estimated	

parameters;	factors	0.001	are	introduced	for	scaling	of	the	parameters	(see	Appendix	A2	
for	further	details).	 2Z 	and	 3Z 	are	dummy	variables	defined	as	follows:	

2

1

0

if bus stop has twoberths
Z

otherwise


 


	

3

1

0

if bus stop has threeberths
Z

otherwise


 


	

Equation	(14)	is	defined	for	bus	stops	with	one,	two	and	three	berths;	therefore	it	allows	
the	 number	 of	 berths	 to	 be	 a	 variable.	 In	 the	 numerical	 application	 of	 Section	 3	 we	
assume	the	existence	of	two	berths	per	bus	stop.	The	estimation	of	the	dwell	 time	per	
stops	requires	the	cases	with	boarding	allowed	at	all	doors	(TnBn)	and	at	the	front	door	
only	 (TnB1)	 to	 be	 addressed	 separately,	 since	 in	 TnBn	 boarding	 and	 alighting	 is	
sequential	 at	 all	 doors,	 whereas	 in	 TnB1	 boarding	 at	 the	 front	 door	 occurs	
simultaneously	 with	 alighting	 at	 the	 rear	 doors.	 These	 two	 cases	 are	 summarised	 in	
expression	(15)	

		
 

( )

max , ( 1)

oc b b a ai
d

oc b a a

c p p if boarding at all doors TnBn
t

c p if boarding at front door only TnB

   

   

 

 

   


			 (15)	

where	 occ 	is	the	time	to	open	and	close	doors,	 a 	and	 b 	are	the	average	alighting	and	

boarding	times	per	passenger,	  	and	  	are	the	number	of	passengers	boarding	and	
alighting	a	bus	at	the	bus	stop	and	factors	 ap 	and	 bp 	are	the	proportion	of	passengers	
boarding	and	alighting	at	the	busiest	door,	which	are	given	in	Appendix	A3	(Table	A3.1).	
Equations	(13),	(14)	and	(15)	conclude	the	derivation	of	the	delay	at	bus	stops	(12).	

	

2.4	 The	choice	of	bus	size	and	internal	layout	

Using	data	from	London,	Jansson	(1980)	finds	a	linear	relationship	between	bus	running	
costs	and	bus	size	measured	as	the	number	of	seats	per	bus,	a	relationship	that	has	been	
used	by	Jansson	and	other	authors	to	find	the	optimal	size	of	buses	in	urban	routes	(e.g.,	
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Jara‐Díaz	 and	 Gschwender,	 2003;	 Tirachini	 and	 Hensher,	 2011)	 under	 the	 implicit	
assumption	that	there	is	a	unique	relationship	between	bus	size	and	capacity,	measured	
as	 number	 of	 seats	 or	 total	 number	 of	 passengers	 that	 can	 be	 carried.	 However,	 the	
number	of	passengers	that	a	bus	can	carry	is	not	only	given	by	the	bus	size,	but	also	by	
the	 internal	 layout	 of	 space	 allocated	 to	 seating	 and	 standing,	 as	 a	 passenger	 sitting	
takes	up	more	space	than	a	passenger	standing.	A	standard	value	for	the	area	needed	for	
a	passenger	sitting	is	0.5	square	metres	(TRB,	2003),	whereas,	depending	on	crowding	
conditions,	passengers	standing	may	have	a	density	of	up	to	five	or	six	passengers	per	
square	metre,	 and	 as	 such	 the	minimum	area	 required	by	 a	 standee	 is	 approximately	
0.17‐0.20	 square	 metres,	 i.e.,	 less	 than	 half	 the	 space	 required	 for	 a	 person	 seated.	
Therefore,	 if	 the	 number	 of	 seats	 inside	 a	 bus	 can	 be	 varied,	 there	 is	 no	 one‐to‐one	
relationship	between	capacity	and	bus	size,	and	the	final	capacity	of	a	bus	is	the	outcome	
of	decisions	on	both	the	bus	 length	and	internal	 layout	regarding	seating	and	standing	
areas.	 In	 this	 context,	 capacity	 is	 not	 an	 absolute	 value,	 but	 rather	 a	 function	 of	 the	
number	 of	 seats	 and	 the	maximum	 density	 of	 standees	 that	 is	 acceptable	 to	 have	 or	
provide,	given	by	policy,	demand	and	cultural	constraints7.		

Several	physical	constraints	need	to	be	considered	when	deciding	the	number	of	seats,	
including	minimum	space	for	aisles,	doors	in	front	of	the	bus	(next	to	the	driver)	and	for	
a	wheelchair,	that	must	be	clear	of	seats.	Let	  bA s be	the	total	area	available	in	a	bus	for	

seating	and	standing,	which	is	a	function	of	the	bus	length	 bs .	If	 sP 	is	the	proportion	of	 A 	

allocated	to	seating,	the	areas	for	seating	 seatA 	and	standing	 standA can	be	formulated	as:	

   ,seat s b s bA P s P A s 		 	 	 	 	 (16)	

     , 1stand s b s bA P s P A s 
		 	 	 	 	 (17)	

If	 seata is	the	area	required	by	one	bus	seat	(m2),	then	the	number	of	seats	 seatn 	per	bus	is	

seat
seat

seat

A
n

a


		 	 	 	 	 	 (18)	

For	the	estimation	of	in‐vehicle	time	costs	it	is	necessary	to	determine	the	proportion	of	
seats	being	occupied	 seatp 	and	the	density	of	standees	 denn 	(if	any)	in	each	segment	of	a	

bus	trip.	Taking	direction	1,	if	 i  	and	 i 

	are	the	number	of	passengers	getting	on	and	

off	a	bus	at	stop	i,	the	number	of	passengers	 iq 	on	board	a	bus	between	stops	i	and	i+1	is	
calculated	recursively:	

0 0q  			 	 	 	 	 	 (19)	

1i i i iq q       		  1, 1i P  
	 	 	 	 (20)	

                                            
7	In	some	crowded	public	transport	systems	around	the	world	(e.g.,	Moscow,	Sao	Paulo,	Santiago	de	Chile,	
Tokyo),	it	is	not	unusual	to	operate	at	crush	capacity,	with	6	passengers	standing	per	square	metre	in	peak	
periods,	however,	such	a	high	density	of	standees	could	not	be	acceptable	in	other	regions.	
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Separating	 iq 	among	passengers	seating	 i
seatq and	standing	 i

standq ,	we	can	obtain	 i
seatp 	and	

i
denn as	follows:	

 min , ii
seati seat

seat
seat seat

n qq
p

n n
 

		 	 	 	 	 (21)
	

i i i
i stand seat
den

stand stand

q q q
n

A A


 

		 	 	 	 	 (22)
	

To	 calculate	 the	 area	 available	 for	 seating	 seatA 	 and	 standing standA ,	 we	 need	 an	
estimation	of	 the	area	occupied	by	seats,	 standees,	doors	and	other	elements.	The	U.S.	
Transportation	Research	Board	recommends	the	following	values	(TRB,	2003):	

Table	1:	Area	occupied	by	passengers	sitting,	standing	and	other	objects			

Situation	 Projected	area	[m2]	
Standing	 0.15‐0.20	
Standing	with	briefcase	 0.25‐0.30	
Standing	with	daypack	 0.30‐0.35	
Standing	with	suitcase	 0.35‐0.55	
Transverse	seating	 0.50	
Longitudinal	seating	 0.40	
Wheelchair	space	 0.95	
Rear	door	 0.80	

	

We	use	Table	1	and	the	following	assumptions	in	order	to	calculate	seating	and	standing	
areas,	feasible	numbers	of	seats	and	total	bus	capacity:			

	(A1)	Buses	have	transverse	seating	only,	therefore	0.5	m2	is	the	value	used	for	the	area	
occupied	by	passengers	sitting.		

(A2)	The	maximum	density	of	standees	 maxd 	is	around	6.7	pax/m2,	equivalent	to	an	area	

of	0.15	m2	per	standee	in	Table	A4.1.	However,	given	the	Sydney	context	 maxd is	set	as	4	
pax/m2	in	the	Military	Road	application	(Section	3).	

(A3)	Buses	are	2.55	metre	wide	(regardless	of	length)		

(A4)	The	front	area	must	be	left	clear	of	passengers,	for	the	driver	and	front	door.	This	
area	is	1.5	metre	long.	

(A5)	Next	to	each	rear	door	there	has	to	be	a	0.8	m2	area	clear	of	standees.	The	number	
of	doors	per	bus	is	denoted	as	 doorsn 	

(A6)	Buses	must	have	a	0.95	m2	area	reserved	for	wheelchairs.	

	

Using	(A3)	to	(A6),	the	total	area	 A 	(m2)	available	for	seating	and	standing	is:		
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   2.55 1.5 0.8 1 0.95sit stand b doorsA A A s n      
		 	 (23)	

	

And	the	capacity	of	a	bus	(maximum	number	of	passengers	that	can	be	accommodated)	
is:		

   , , 1s
b s doors s max

seat

P
K s P n P d A

a

 
   
  		 	 	 (24)

	

Constraints	

(C1)	An	aisle	 is	provided	in	the	centre	of	the	bus,	with	a	minimum	width	of	0.5	metre.		
This	aisle	does	not	necessarily	have	to	cover	the	full	 length	of	the	bus	as	the	back	row	
may	have	a	seat	in	the	middle	(where	the	aisle	ends).	Therefore,	assuming	that	1.5	metre	
is	left	at	the	front	and	0.7	metres	is	used	for	a	seat	at	the	back,	the	minimum	area	that	
has	to	be	reserved	for	the	aisle	is  min 0.5 2.2stand bA s  .	Then,	the	number	of	seats	is	upper	

bounded	by:	

min
max stand

seat seat
seat

A A
n n

a


 

		 	 	 	 (25)
	

(C2)	 A	 minimum	 number	 of	 seats	 must	 be	 provided,	 i.e.,	 the	 proportion	 sP 	 of	 A 	

allocated	to	seating	has	a	lower	bound	 min
sP ,	which	is	arbitrarily	decided	(e.g.,	 min 0.3sP  	

meaning	that	at	least	30	percent	of	the	available	area	must	be	reserved	for	passengers	
sitting).	Therefore,		

min
min s

seat seat
seat

P A
n n

a
 

		 	 	 	 	 (26)
	

	
2.5	Bus	operator	cost	and	problem	formulation	

In	this	section,	we	formulate	bus	operator	costs.	Let	operator	cost	be	divided	into	four	
components:	

1c :	Station	infrastructure	cost	[$/station‐h]	

2c :	Personnel	costs	(crew)	and	vehicle	capital	costs	[$/bus‐h],	and	

3c :	Running	costs	(fuel	consumption,	lubricants,	tyres,	maintenance,	etc.)	[$/bus‐km]	

4c :	 Implementation	 cost	 related	 to	 the	 fare	 payment	 technology	 (e.g.,	 software	
requirements)	[$/h]			
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The	station	cost	 1c 	(eq.		27),	consists	of	two	components:	the	station	infrastructure	cost	

which	depends	on	the	bus	length	i.e.,	  10 bc s ,	and	the	cost	of	fare	vending	machines	and	

fare	collection	readers	(if	validation	is	undertaken	at	the	station	and	not	on	bus),	  11c  ,	

where	the	dependency	on	 	denotes	the	fare	payment	method.		

     1 10 11,b bc s c s c    	 	 	 	 	 (27)	

Second,	the	cost	per	bus‐hour	 2c 	also	has	two	elements:	the	personnel	cost	(wages)	and	
the	 capital	 cost	 of	 a	 vehicle,	 which	 includes	 the	 cost	 of	 the	 fare	 collection	 readers	
(validation	devices)	 installed	 in	buses.	 If	  20 bc s

	 is	 the	 cost	 associated	 to	bus	 size	and	

 21 , bc s 	is	the	cost	of	the	fare	collection	readers	(which	in	turn	depends	on	bus	size	 bs

as	well,	because	for	on‐board	payment	methods,	fare	collection	devices	are	installed	at	
each	boarding	door,	see	Appendix	A4),	the	total	cost	per	bus‐hour	 3c 	is	simply	expressed	
as:	

     2 20 21, ,b b bc s c s c s    	 	 	 	 (28)	

The	third	component	of	operator	cost	 is	the	running	cost	per	vehicle‐kilometre	  3 bc s ,	

which	 includes	 fuel	 consumption,	 lubricants,	 tyres,	maintenance,	 etc.,	 and	 depends	 on	
the	size	of	 the	bus	(the	capital	cost	of	garages,	which	depends	on	bus	and	fleet	size,	 is	
ignored).	 Finally,	  4c  accounts	 for	 the	 cost	 of	 software	 and	 implementation	 of	 the	

alternative	 fare	 collection	 technologies	 and	 boarding	 and	 alighting	 policies.	 The	
estimation	of	parameters	for	the	operator	cost	components	is	given	in	the	Appendix	A4.	
With	this,	the	total	operator	cost	Co	can	be	defined	as:		

         1 2 3 4, , , ,o b b b bC s F c s S c s F c s VF c        	 	 	 (29)	

where	 S 	 is	 the	number	of	bus	stops,	 F 	 is	 the	 fleet	size	and	V 	 is	 the	operating	speed	
(commercial	speed	including	running	and	stops).	The	fleet	size	requirement	is	given	by

b cF f T ,	 in	which	 cT 	 is	 the	 cycle	 or	 round‐trip	 time	 (given	by	 the	 summation	of	 bus	
travel	time	(11)	at	all	sections	and	both	directions,	plus	a	scheduled	slack	time	at	termini	
if	 required).	 Rewriting	 cT 	 as	 2L V ,	 we	 obtain	 that	 the	 third	 term	 in	 (18)	 does	 not	
depend	on	the	operating	speed	and	passenger	demand.	Therefore,	the	final	expression	
for	bus	operator	cost	is	given	by	(30).	

           1 2 3 4, , , , , , 2o b b b b b c b b b bC f s c s S c s f T f s c s L f c         										(30)				

	
Importantly,	we	are	assuming	that	the	number	of	seats	inside	a	bus	(and	consequently,	
the	 number	 of	 passengers)	 has	 no	 effect	 on	 the	 bus	 capital	 cost,	 which	 is	 only	
determined	by	the	bus	size	and	arrangements	regarding	fare	collection	readers	(i.e.,	the	
cost	 of	 seats	 if	 assumed	 negligible	 relative	 to	 the	 cost	 of	 the	 bus).	 After	 obtaining	 an	
expression	for	the	operator	cost	(30),	we	can	formulate	the	social	welfare	maximisation	
problem	as	follows:	

Max						 ln
I

ij
m

ij
U ij ij

a a b b o
ij m ij iju

y
SW e y y C       

	 	 	
	(31)	
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Subject	to		

   1 2max , ,i i
b b b b seat

i
y y f K s n

	 	 	 	 (32a)
	

min max
seat seat seatn n n  	 	 	 	 	 (32b)	

min max
b b bf f f  	 	 	 	 	 (32c)	

 1 4,...,b b bs s s 	 	 	 	 	 (32d)	

 1 6,...,   	 	 	 	 	 (32e)	
ij
m

ij
n

U
ij ij
m U

n

e
y Y

e



,i j 	 	 	 	 	 (32f)	

Inequality	 (32a)	 is	a	capacity	constraint	 that	ensures	 that	 the	bus	 transport	capacity	 (

bf K )	is	large	enough	to	accommodate	the	maximum	bus	load	( 1
i
by and	 2

i
by 	are	the	bus	

demands	on	section	i	in	directions	1	and	2,	respectively;	see	Figure	1);	κ	is	design	factor	
introduced	to	have	spare	capacity	to	absorb	random	variations	in	demand	(for	example,	

0.9  assumes	 a	 system	 in	 which	 capacity	 is	 90	 percent	 of	 the	 maximum	 average	
demand).	 (32b)	 states	 that	 the	 number	 of	 seats	 is	 constrained	 by	 minimum	 and	
maximum	values	(equations	25	and	26).	Frequencies	are	also	constrained	by	a	minimum	
policy	 frequency	 minf 	 (set	 to	 have	 a	 minimum	 level	 of	 service,	 if	 desired)	 and	 the	

maximum	feasible	 frequency	 maxf 	 as	given	 in	expression	(32c).	Expressions	 (32d)	and	

(32e)	establish	that	bus	size	 bs 	and	the	boarding	and	alighting	policy	and	fare	collection	
technology	  	are	taken	from	available	choices.	Finally,	a	set	of	equilibrium	constraints	
is	 necessary	 because	modal	 choice	 depends	 on	 travel	 times,	which	 in	 turn	depend	on	
modal	choice;	inducing	a	fixed‐point	problem	that	is	solved	by	iterating	between	modal	
choice	and	travel	times	until	convergence	is	reached,	using	equations	(32f).	

Contrary	to		simpler	models	in	which	it	is	possible	to	analytically	find	the	optimal	level	
of	variables	such	that	bus	frequency,	size	and	fare	(e.g.,	Mohring,	1972;	 Jansson,	1980;	
Chang	 and	Schonfeld,	 1991;	Tirachini	et	al.,	 2010),	 the	 constrained	 optimisation	 (31)‐
(32)	 requires	 a	 numerical	 approach.	 The	 problem	 is	 solved	 using	 the	 Sequential	
Quadratic	Programming	method	 implemented	 in	 the	 constrained	optimisation	 toolbox	
of	 Matlab	 v7.12.0.	 The	 solution	 procedure	 applied	 considers	 bus	 frequency	 as	 a	
continuous	variable,	while	 the	number	of	seats,	car	 toll	and	bus	 fare	are	discrete	(fare	
and	toll	are	constrained	to	be	a	multiple	of	5	cents).	

		

3.	Application	

3.1	Physical	setting	and	input	parameters	

In	order	to	illustrate	the	effects	of	explicitly	accounting	for	the	crowding	discomfort	 in	
the	design	of	buses	and	the	pricing	structure	of	urban	transport	systems,	we	apply	the	
social	 welfare	 maximisation	 model	 with	 demand	 and	 supply	 data	 from	 a	 specific	
transport	 corridor,	 Military	 Road	 in	 North	 Sydney,	 Australia,	 shown	 in	 Figure	 2.	 The	
section	modelled	comprises	3.44	km	of	road	which	is	divided	in	12	zones	(therefore	the	
average	zone	length	is	286	metres).	The	origin‐destination	matrix	for	car	and	bus	trips	is	
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obtained	 from	a	 traffic	 simulation	study	undertaken	 in	 this	corridor	by	 the	Roads	and	
Traffic	Authority	 (RTA)8.	 In	 order	 to	 add	walking	 trips	 to	 the	matrix	we	use	 Sydney’s	
Household	Travel	Survey	(TDC,	2010)	 to	obtain	 the	city’s	modal	split	by	 trip	distance;	
66.7	percent	of	trips	shorter	that	one	kilometre	are	made	on	foot,	a	figure	that	drops	to	
24.7	percent	for	trips	between	1	and	2	km,	and	5.7	percent	for	trips	between	2	and	5	km	
(considering	car,	bus	and	walk	only).	Then	we	amplify	each	cell	 (bus+car	trips)	by	the	
respective	 percentage	 of	 walking	 trips	 according	 to	 the	 distance	 between	 origin	 and	
destination.	 The	matrix	 obtained	with	 this	 procedure	 is	 presented	 in	 Figure	 3,	with	 a	
total	of	19,231	trips	in	the	morning	peak	(7.30	to	8.30am),	from	which	54.3	percent	are	
from	east	to	west,	towards	the	CBD	(Direction	2	in	Figure	1).	

	

	
Figure	2:	Test	corridor,	Military	Road	

	

	

	

	

	

	

	
                                            
8	This	corridor	is	chosen	because	of	the	availability	of	origin‐destination	demand	data	at	the	level	of	small	
zones.	 The	 estimation	of	 taste	 parameters	 for	 utility	 functions	 (2)	 to	 (5)	 is	 done	with	data	 collected	 in	
adjacent	area	in	Sydney	(the	CBD	and	the	North	West);	we	assume	that	the	estimated	parameters	are	also	
applicable	to	the	Military	Road	area.	

Zone 12 

Zone 1 
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O/D	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	
1	 0	 856	 1324	 54	 23	 8	 74	 99	 419 71	 16	 1405
2	 165	 0	 192	 15	 4	 1	 20	 19	 68	 14	 3	 326	
3	 829	 93	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 50	 12	 0	 0	 0	 0	 1	 3	 13	 1	 0	 91	
5	 146	 0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 11	
6	 235	 9	 3	 0	 0	 0	 0	 3	 9	 0	 0	 17	
7	 87	 13	 4	 0	 0	 0	 0	 12	 48	 12	 0	 187	
8	 18	 1	 0	 0	 0	 0	 0	 0	 3	 9	 0	 8	
9	 396	 22	 5	 1	 1	 3	 24	 9	 0	 27	 3	 763	
10	 7	 0	 0	 0	 0	 0	 0	 0	 0	 0	 12	 1511
11	 119	 11	 1	 0	 0	 0	 12	 0	 3	 123	 0	 1027
12	 1780	 277	 54	 21	 16	 27	 151 65	 207 3763	 1685	 0	

Figure	3:	Origin‐Destination	matrix	

The	 road	 has	 two	 lanes	 per	 direction,	 BPR	 functions	 (10)	 and	 (11)	 are	 assumed	 to	
represent	travel	times	with	commonly	used	parameter	values	 0 0.15  	and	 1 4  ,	and	

a	 capacity 2000 /rK veh h 	 obtained	by	 assuming	 a	60	percent	 for	 effective	 green	 time	
ratio	at	signalised	intersections.	Speed	at	free	flow	is	50	km/h.	With	these	assumptions,	
the	 average	 car	 speed	 is	 26.3	 km/h	 in	 direction	 1	 (outbound)	 and	 21.5	 km/h	 in	 the	
direction	2	(inbound),	similar	to	the	measured	average	speed	of	22	km/h	on	this	road	
(RTA,	2011,	which	only	reports	average	speed	in	the	inbound	direction	in	the	morning	
peak).	 The	 bus	 equivalency	 factors	  bs 	 are	 1.65	 for	 small	 buses	 (8	 m),	 2.19	 for	

standard	buses	(12	m),	2.60	for	rigid	long	buses	(15	m)	and	3.00	for	articulated	buses	
(18	m).	

Users	 can	 choose	 between	 travelling	 by	 car,	 bus	 or	 to	 walk;	 other	 alternatives	 like	
switching	time	period	or	changing	origin	and/or	destination	are	not	considered.	The	car	
operating	cost	 is	14	cents/km	(fuel	consumption)	and	 the	average	car	occupancy	1.45	
pax/car	 (TDC,	2010),	which	we	assume	remains	unchanged	after	pricing	 reforms	 (the	
sensitivity	of	car	occupancy	to	raising	tolls	is	ignored).	Walking	speed	is	assumed	to	be	4	
km/h.	
	
The	parameter	estimates	for	the	utility	functions	(2)	to	(7)	is	presented	in	Table	2.	The	
estimation	 of	 parameters	 is	 explained	 and	 discussed	 in	 the	 Appendix	 A1,	 including	
goodness‐of‐fit	 tests	 and	 t‐ratios.	 The	 constraints	 for	 the	 minimum	 and	 maximum	
number	of	seats	per	bus	are	explained	in	Section	2.4.		
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Table	2:	Parameter	values	

Attribute	 M1	 M2	 M3	 M4	
Access	time	 a 	 ‐0.016	 ‐0.017	 ‐0.017	 ‐0.017	
Headway h 	 ‐0.009	 ‐0.010	 ‐0.010	 ‐0.010	
In‐vehicle	time	bus	( vbt 	)	 vb 	 ‐0.019	 ‐0.013	 ‐0.004	 ‐0.006	
In‐vehicle	time	car	( vat 	)	 va 	 ‐0.016	 ‐0.018	 ‐0.018	 ‐0.018	
Travel	time	walk	 ve 	 ‐0.035	 ‐0.035	 ‐0.035	 ‐0.035	
Cost	 c 	 ‐0.062	 ‐0.064	 ‐0.064	 ‐0.064	
Modal	constant	bus	 b 	 ‐2.080	 ‐2.112	 ‐2.129	 ‐2.134	
Modal	constant	walk	 e 	 ‐0.092	 ‐0.099	 ‐0.099	 ‐0.100	

vbt ×	den	stand den 	 ‐0.004	 ‐0.003	

vbt ×	prop	seat seat 	 ‐0.013	

vbt ×	(den	stand)2 2den 	 ‐0.0005	

vbt ×	(prop	seat)2 2seat 	 ‐0.013	
Note:	Time	in	minutes,	cost	in	$	(AUD).	

	
3.2	Base	results	

Results	with	the	current	OD	matrix	(Figure	3)	for	demand	models	M1	to	M4	are	shown	
in	Table	3.	First,	the	solution	regarding	bus	size,	frequency,	fare,	toll	and	number	of	seats	
is	similar	for	M1	and	M2,	and	for	M3	and	M4.	In	the	case	of	M1	(no	crowding	or	standing	
externality	 internalised)	 it	 is	 optimal	 to	 operate	 with	 mini	 buses	 (8	 m.	 long)	 at	 a	
frequency	of	21.7	veh/h	and	to	charge	a	fare	of	10	cents,	whereas	in	M2	(with	standing	
disutility)	 the	 optimal	 solution	 has	 a	 slightly	 greater	 frequency	 of	 23.7	 veh/h.	 The	
similarity	 of	 results	 is	 because	 at	 this	 level	 of	 bus	 demand	 almost	 all	 passengers	 are	
sitting,	as	shown	by	the	maximum	occupancy	rate	(over	number	of	seats),	which	is	1.08	
for	M1	and	0.98	for	M2	(tenth	row	in	Table	3),	therefore,	due	to	the	absence	of	standees,	
both	models	have	 similar	optimal	outputs.	A	different	 result	 is	 obtained	 if	we	assume	
that	 the	proportion	of	bus	 riders	sitting	 is	also	a	 source	of	disutility,	 either	 in	a	 linear	
(M3)	or	quadratic	(M4)	form;	in	these	cases	the	optimal	solution	comprises	bigger	(12	
m)	and	more	frequent	buses	(between	25.0	and	26.1	veh/h).	 Importantly,	the	external	
marginal	 cost	 of	 crowding	 reflects	 an	 increase	 in	 the	 optimal	 fare	 of	 30	 cents	 per	
passenger;	 as	 in	M1	 and	M2	 the	marginal	 cost	 of	 carrying	 an	 extra	 passenger	 is	 only	
given	by	the	extra	boarding	and	alighting	time,	whereas	for	M3	and	M4	the	optimal	fare	
also	accounts	for	the	discomfort	caused	by	a	passenger	that	reduces	the	number	of	free	
seats	 on	 a	 bus.	 This	 strong	 increase	 in	 optimal	 bus	 fare	 points	 to	 the	 large	 effect	 of	
including	a	crowded	seating	disutility	when	setting	optimal	public	transport	prices.		
	
Next,	regarding	the	optimal	number	of	seats,	in	all	cases	the	optimal	result	is	having	the	
maximum	number	of	seats	that	is	technically	possible	(24	for	8	m.‐long	buses,	39	for	12	
m.‐long	 buses),	 constrained	 by	 the	 minimum	 area	 required	 free	 of	 seats9.	 Out	 of	 the	

                                            
9	Note	 that	bus	utility	 in	M1	 is	 indifferent	 to	 the	number	of	 seats	 inside	buses,	 therefore	as	 long	as	 the	
capacity	constraint	is	not	binding,	any	number	of	seats	would	produce	the	same	level	of	social	welfare.	In	
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available	area	for	seating	and	standing,	80	percent	is	allocated	to	seating	and	20	percent	
to	 standing.	 The	 greater	 frequency	 and	 bus	 size	 of	 models	 M3	 and	 M4	 considerably	
reduces	the	average	occupancy	rate	(as	a	function	of	the	number	of	seats)	from	over	50	
percent	 in	M1	 and	M2,	 to	 30	 percent	 in	M3	 and	M4	 (the	 supply	 of	 seats	 per	 hour	 is	
almost	doubled	from	521	in	M1	to	1,017	in	M3).	The	key	role	of	the	number	of	seats	as	a	
decision	 variable	 is	 unveiled	 in	 Section	 3.3,	 when	 an	 increase	 in	 road	 congestion	
challenges	the	optimality	of	having	the	maximum	number	of	seats	if	the	planner	ignores	
the	external	cost	of	crowding.			
	

Table	3:	Base	case	results	

Optimal	value	 M1	 M2	 M3	 M4	
Bus	length		[m]	 8	 8	 12	 12	
Frequency	[veh/h]	 21.7	 23.7	 26.1	 25.0	
Fare	[$]	 0.1	 0.1	 0.4	 0.4	
Toll	[$]	 2.0	 2.0	 2.0	 2.0	

Number	of	seats	
24	 24	 39	 39	

Bus	capacity	[pax/bus]	
36	 36	 58	 58	

Seating	area/total	bus	area	 0.58	 0.58	 0.63	 0.63	
Seating	area/	(seating	plus	standing	area)	 0.80	 0.80	 0.80	 0.80	
Average	occupancy	rate	(over	number	of	
seats)	 0.57	 0.52	 0.30	 0.31	
Max.	occupancy	rate	(over	number	of	
seats)	 1.08	 0.98	 0.56	 0.58	
Max.	occupancy	rate	(over	total	capacity)	 0.62	 0.56	 0.32	 0.33	
Seat	capacity	bus	route	(seats/h)	 521	 569	 1,017	 975	

Total	capacity		bus	route	(pax/h)	
782	 854	 1,512	 1,450	

Fare	collection	technology	
Off‐
board	

Mag.	
strip	

Mag.	
strip	

Mag.	
strip	

Boarding	regime	
All	

doors	
All	

doors	
All	

doors	
All	

doors	
Social	welfare	[$]	 129,544 122,984	 122,897	 122,801
Consumer	surplus	[$]	 114,290 107,721	 107,454	 107,319
Bus	operator	profit	[$]	 ‐671	 ‐645	 ‐467	 ‐436	
Toll	revenue	[$]	 15,925	 15,908	 15,909	 15,917	
Subsidy/bus	operator	cost	 0.83	 0.83	 0.46	 0.44	
Fleet	size	[buses]	 11	 12	 13	 13	
Modal	split	bus	 7.1%	 7.0%	 7.0%	 7.1%	
Modal	split	car	 60.0%	 59.9%	 60.0%	 60.0%	
Modal	split	walk	 32.9%	 33.1%	 33.0%	 32.9%	

	
	
	

                                                                                                                                        
Table	3	the	capacity	constraint	is	inactive	for	buses	with	the	maximum	number	of	seats	

max
seatn ,	 therefore	

max
seatn

	
is	arbitrarily	chosen	for	M1.		
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The	 outputs	 regarding	 number	 of	 doors,	 bus	 boarding	 policy	 and	 fare	 collection	
technique	are	described	as	follows.	First,	in	all	cases	it	is	optimal	to	have	the	maximum	
number	of	doors	given	by	the	bus	size,	i.e.,	2	doors	for	8	metre	buses	and	3	doors	for	12	
metre	buses,	as	the	more	doors	are	in	place	the	shorter	are	the	boarding	and	alighting	
times10.	 Second,	 sequential	 boarding	 and	 alighting	 at	 all	 doors	 (TnBn	 system)	 is	more	
efficient	than	operating	with	boarding	at	the	front	door	only	(TnB1).	Third,	the	optimal	
fare	collection	technology	is	off‐board	with	M1	and	on‐board	with	a	magnetic	strip	with	
M2	to	M4.		
	
The	consideration	of	a	crowded	seating	disutility	has	a	strong	effect	on	the	financial	state	
of	the	public	transport	provider	and	the	subsidy	required	to	run	the	system:	in	M1	and	
M2	with	an	optimal	fare	of	10	cents	it	is	required	a	subsidy	that	needs	to	cover	83	
percent	of	the	operator	cost,	whereas	if	the	optimal	fare	of	M3	is	charged	(40	cents)	the	
required	subsidy	is	halved11.		In	all	cases	the	toll	revenue	is	more	than	enough	to	cover	
the	bus	operator	deficit	(ignoring	toll	collection	costs).		
	
Since	the	model	includes	disaggregated	origin‐destination	(OD)	demand	information,	we	
are	 able	 to	 compute	marginal	 external	 costs	 of	 crowding	 and	 congestion	per	OD	pair.	
The	marginal	external	costs	are	computed	by	deriving	travel	time	costs	with	respect	to	
modal	 demand	 in	 order	 to	 account	 for	 the	 effect	 of	 an	 extra	 traveller	 resulting	 in	
increasing	 travel	 time	 on	 the	 road	 (i.e.,	 the	 congestion	 externality	 captured	 by	 BPR	
functions	10	and	11)	and	in	increasing	the	proportion	of	seats	occupied	or	the	density	of	
standees	(crowding	externality	captured	in	utility	functions,	equations	3,	4	and	5).	In	all	
cases,	external	time	costs	[min/trip]	are	divided	by	the	marginal	utility	of	cost	( c )	to	
have	 the	 correct	 [$/trip]	 measure.	 For	 illustration,	 marginal	 external	 cost	 curves	 for	
trips	 from	 five	 origins	 are	 depicted	 in	 Figure	 4	 for	model	M3,	 in	which,	 for	 example,	
“crowding	1‐12”	shows	the	marginal	external	crowding	cost	(MECrC,	between	10	and	63	
cents	of	dollar)	of	bus	trips	starting	in	origin	1	with	destination	in	all	zones	between	2	
and	12,	whereas	“crowding	12‐1”	shows	the	MECrC	for	trips	with	origin	in	zone	12	and	
destinations	between	1	and	11	(between	16	and	74	cents	in	the	dollar).	The	two	MECrC	
curves	grow	approximately	linearly	as	a	trip	gets	longer,	and	the	value	is	slightly	larger	
in	Direction	2	(from	12	to	1)	given	the	larger	demand	in	this	direction	(54.3	percent	of	
total).	 Using	 the	 distance	 in	 kilometres	 between	 stops	 as	 explanatory	 variable,	 the	
following	relationship	between	MEcrC	and	trip	length	 kmL can	be	estimated:	
	

2
1 12 0.02 0.16 ( 0.98)kmMECrC L R    		 	 	 	 (33a)	

2
12 1 0.07 0.18 ( 0.96)kmMECrC L R    	 	 	 	 	(33b)	

	
Equations	33(a)	and	(b)	imply	that	for	trips	starting	in	sections	1	and	12,	MECrC	grows	
by	between	16	and	18	cents	of	dollar	for	every	kilometre	that	a	person	is	inside	a	bus.	
On	the	other	hand,	the	marginal	external	congestion	cost	(MECoC)	is	larger	than	MECrC	

                                            
10	 This	 result	 ignores	 that	 the	 time	 to	 open	 and	 close	 doors	 may	 increase	 with	 the	 number	 of	 doors,	
because	drivers	may	spend	more	time	 to	check	 that	all	doors	are	clear	of	passengers	 if	more	doors	are	
provided	in	a	bus.			
11	The	current	operation	of	Sydney	buses	has	a	minimum	 fare	of	$2.10	 for	a	 single	 ticket,	which	 in	our	
model	 would	 produce	 profits,	 however	 the	 current	 system	 has	 to	 be	 subsidised.	 This	 divergence	 is	
explained	by	a	number	of	elements,	including	the	likely	existence	of	a	large	amount	of	fixed	costs	that	is	
not	 considered	 in	 this	 application,	 and	 that	we	 are	 only	modelling	 the	morning	 peak	 period	 (in	which	
demand	is	the	highest)	in	an	area	of	high	demand	density.			
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as	 shown	 in	 Figure	 4.	 The	 relatively	 larger	 level	 of	 the	 curve	 “Congestion	 12‐1”	 is	
derived	from	the	 large	travel	demand	from	section	12	to	sections	11	and	10,	whilst	 in	
comparison,	a	person	starting	his	or	her	trip	in		section	11	(curve	“crowding	11‐1”)	has	a	
much	lower	MECoC.	
	

	
Figure	4:	Marginal	external	crowding	and	congestion	cost	

	
In	 the	next	 sections,	we	analyse	how	 the	bus	 service	and	pricing	 levels	 (fare	and	 toll)	
should	 be	 adapted	when	 faced	with	 an	 increase	 in	 transport	 demand	 (e.g.,	 through	 a	
future	 urban	 densification	 around	 the	 corridor),	 assuming	 that	 it	 is	 not	 possible	 to	
increase	 road	 capacity	 ( 2000 /rK veh h ).	 The	 idea	 is	 to	 analyse	 the	 evolution	 of	 key	
design	variables	when	the	system	is	stressed	and	severe	congestion	arises.	The	trips	by	
origin	and	destination	of	Figure	3	are	uniformly	scaled	in	five	steps,	up	to	a	total	demand	
of	28,850	trips/h	(50	percent	higher	than	the	current	number	of	trips).	The	main	results	
for	 modal	 split,	 bus	 service	 design,	 pricing,	 crowding	 and	 congestion	 are	 discussed.	
Model	M4	is	not	shown	because	it	produces	similar	results	to	those	of	M3.		
	
3.3	 	Optimal	bus	frequency:	The	trade‐off	between	congestion	and	crowding	

The	evolution	of	 the	optimal	bus	 frequency	 is	presented	 in	Figure	5.	 It	 is	 evident	 that	
regardless	 of	 the	 demand	 model	 considered,	 frequency	 does	 not	 vary	 monotonically	
with	demand,	in	particular	optimal	frequency	can	decrease	as	demand	grows,	although	
the	reasons	for	this	result	are	not	the	same	across	the	models.	Focusing	on	M2	(standing	
disutility)	first,	we	observe	that	frequency	is	increasing	up	to	32	veh/h	for	1,900	pax/h,	
but	drops	to	22	veh/h	for	2,100	pax/h;	this	is	because	up	at	1,900	pax/h	the	optimal	bus	
is	mini	(8	metres)	whereas	at	2,100	pax/h	it	becomes	optimal	to	operate	with	standard	
12	metre	buses	with	a	higher	capacity.	Similarly	for	M3,	a	discrete	increase	in	bus	length	
(from	12	 to	15	metres)	also	explains	 the	drop	 in	 frequency	 from	26	 to	24	veh/h	with	
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1,550	pax/h.	However,	if	bus	size	remains	unaltered,	frequency	is	always	an	increasing	
function	of	demand	if	we	assume	that	crowding	and	standing	disutilities	matter	(case	of	
M2	up	to	1,900	pax/h	and	M3	beyond	1,550	pax/h)	which	 is	 in	 line	with	all	 total	cost	
minimisation	models	 that	 optimise	bus	 frequency	 either	 assuming	 a	 fixed	bus	 size,	 or	
that	bus	size	can	be	freely	adjusted	to	meet	demand	once	frequency	has	been	optimised	
(e.g.,	Mohring,	1972;	Jansson,	1980;	Jara‐Díaz	and	Gschwender,	2003).		
	
What	happens	with	the	optimal	frequency	in	the	model	that	is	insensitive	to	crowding	as	
a	 source	of	 disutility	 (M1)	 is	 even	more	noteworthy.	 In	 this	 case	 the	optimal	bus	 size	
does	 not	 change	 across	 the	 whole	 demand	 range	 (mini	 buses)	 and	 in	 spite	 of	 that,	
frequency	slightly	decreases	from	21.7	to	20.8	veh/h	as	demand	increases	from	1,370	to	
2,250	pax/h12.	This	is	because	of	congestion	on	the	road:	as	total	demand	grows	so	does	
the	number	of	people	 that	use	 the	 congestible	 road	 facility	 (the	 actual	 speed	drop	 for	
cars	and	buses	is	shown	in	Figure	6	for	both	directions,	D1	and	D2),	and	given	that	bus	
frequency	adds	to	traffic	congestion,	the	model	tries	to	reduce	the	number	of	buses	on	
the	 street	 at	 the	 expense	 of	 increasing	 crowding	 levels	 inside	 buses,	 which	 in	 M1	 is	
welfare	improving	because	crowding	comes	at	no	comfort	loss.	This	is	a	clear	sign	of	the	
relevance	 of	 including	 crowding	 in	 the	 optimisation	 of	 transport	 corridors	 that	 have	
cross‐congestion	between	buses	and	cars.	

	

Figure	5:	Optimal	frequency	

	

                                            
12	This	 frequency	 reduction	 is	not	necessarily	 in	opposition	of	 traditional	bus	optimisation	models	 that	
predict	bus	frequency	to	increase	with	demand,	such	as	Mohring	(1972).	In	Mohring’s	“square	root	rule”,	
frequency	decreases	with	 the	 cycle	 time,	which	 in	 this	 case	 is	 increasing	with	demand	because	of	 road	
congestion.  
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Figure	6:	Average	speed	M1	

The	examination	of	optimal	frequencies	does	not	provide	a	full	picture	of	the	transport	
supply	 being	 provided	 by	 the	 bus	 operator	 because	 different	 optimal	 bus	 sizes	 are	
chosen	in	Figure	5.	The	total	seat	supply	(frequency	times	number	of	seats	per	bus)	and	
seat	plus	stand	supply	(frequency	times	bus	capacity)	are	shown	in	Figures	7	and	8.	It	is	
clear	 that	 the	 optimal	 capacity	 that	 a	 planner	 would	 choose	 is	 quite	 sensitive	 to	 the	
characterisation	 of	 the	 crowding	 and	 standing	 disutilities.	 M1	 is	 insensitive	 to	 the	
number	 of	 seats	 chosen	 as	 long	 as	 the	 bus	 capacity	 constraint	 (32a)	 is	 not	 binding;	
therefore	we	have	shown	the	maximum	number	of	seats	per	bus	such	that	(32a)	is	not	
active,	which	passes	from	24	seats	per	bus	when	demand	is	1,370	pax/h,	to	11	seats	per	
bus	 when	 demand	 is	 2,250	 pax/h,	 as	 reflected	 in	 Figure	 7	 with	 a	 total	 seat	 supply	
decreasing	for	M1.	In	other	words,	when	confronted	with	an	increase	in	demand,	part	of	
the	(optimal)	increase	in	supply	is	provided	simply	by	reducing	the	number	of	seats	in	
order	to	 increase	the	number	of	passengers	that	can	be	accommodated	 in	a	bus,	at	no	
crowding	 cost	 in	 M113.	 A	 completely	 different	 outcome	 is	 obtained	 if	 crowding	 and	
standing	matter,	 in	which	 case	 the	 number	 of	 seats	 is	 kept	 at	 the	maximum	 possible	
given	constraint	(32b)	and	total	seat	capacity	is	increasing	for	the	whole	demand	range	
on	M2	and	M3,	as	shown	in	Figure	7.		
	
The	fact	that	planners	or	bus	operators	would	choose	to	reduce	the	number	of	seats	per	
bus	if	crowding	and	standing	disutilities	are	not	explicitly	accounted	for	(M1)	does	not	
mean	that	the	total	transport	capacity	(seat	plus	stand)	is	decreasing;	as	Figure	8	shows	
that	with	M1,	 total	 capacity	 is	 actually	 increasing,	 due	 to	 the	 increase	 in	 bus	 capacity	
coupled	with	a	slightly	decreasing	(almost	flat)	bus	frequency	(Figure	5).	
	

                                            
13	Note	that	a	model	in	which	the	number	of	seats	cannot	be	adjusted	would	force	the	frequency	and/or	
bus	size	to	increase	if	the	capacity	constraint	is	binding,	which	comes	at	a	cost	for	the	operator.		
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Figure	7:	Optimal	seat	supply	

	

	
Figure	8:	Optimal	seating+standing	supply	

	
In	 order	 to	 show	 that	 M1’s	 optimal	 frequency	 drop	 (Figure	 5)	 is	 actually	 due	 to	 the	
congestion	interaction	with	cars,	an	alternative	scenario	 in	which	there	 is	an	exclusive	
bus	 lane	 is	modelled,	 and	 therefore,	 bus	 frequency	does	not	 influence	 car	 travel	 time,	
which	 is	only	given	by	 traffic	 flow	(cars	remain	 in	 two	 lanes).	As	depicted	 in	Figure	9,	
when	buses	do	not	affect	cars,	optimal	frequency	has	an	increasing	tendency	along	the	
demand	range.		
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Finally,	it	is	worth	mentioning	that	in	all	scenarios,	bus	frequencies	are	low	enough	not	
to	cause	any	queuing	delay	at	bus	stops	(equation	14),	which	are	assumed	to	have	two	
berths	each.		

	
Figure	9:	Optimal	bus	frequency	on	shared	and	dedicated	right‐of‐way	

	

3.4	Optimal	pricing	and	modal	split	

The	 change	 in	optimal	 toll	 and	bus	 fare	 is	 analysed	 in	 this	 section.	The	optimal	 toll	 is	
largely	insensitive	to	the	specification	of	crowding	in	the	bus	utility	functions,	therefore	
only	one	value	is	presented	in	Figure	10,	which	shows	the	increase	in	the	optimal	toll	as	
total	demand	(an	consequently	road	congestion)	grows.	On	the	other	hand,	the	optimal	
bus	fare	slightly	increases	for	M2	and	M3,	up	to	50	cents	per	ticket,	whereas	in	M1	the	
fare	is	maintained	at	10	cents.		
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Figure	10:	Optimal	toll	and	bus	fare	

	
Next,	modal	shares	are	analysed.	The	predicted	modal	splits	are	almost	identical	under	
the	 four	 models,	 and	 that.	 The	 resulting	 modal	 split	 with	 optimised	 bus	 design	 and	
pricing	structure	is	almost	identical	under	all	demand	models	(Table	3),	thus	only	M2	is	
shown	for	illustration	in	Figure	11.	Compared	to	the	observed	modal	split	(62.5	percent	
car,	31.6	percent	walk	and	5.9	percent),	more	people	decide	 to	walk	 (33	percent)	and	
ride	a	bus	(7	percent),	reducing	the	car	modal	split	to	60	percent.	The	relatively	modest	
increase	in	bus	modal	share	(from	5.9	to	7	percent)	after	optimisation	is	due	to	the	large	
and	negative	value	of	the	bus	modal	constant	(around	‐2.1	in	Table	2),	which	has	been	
calibrated	 to	predict	observed	modal	 shares	 in	 the	base	 situation	 (very	unbalanced	 in	
favour	of	the	car	mode).		

	

The	worsening	 of	 road	 congestion14	 as	 total	 demand	 grows	 encourages	walking.	 This	
results	 in	 a	 car	 modal	 share	 dropping	 from	 60	 to	 54	 percent,	 the	 (assumed	
uncongestable)	 alternative	 of	 walking	 increases	 from	 33	 to	 38	 percent,	 and	 the	 bus	
choice	 grows	 from	 7	 to	 8	 percent	 of	 all	 trips	 (due	 to	 increased	 frequency	 and	 price	
difference	between	toll	and	fare,	see	Figure	10).	Therefore,	if	transport	demand	grows	in	
the	 future	 and	 road	 capacity	 is	 held	 constant,	 the	model	 predicts	 walking	 to	 become	
more	relevant	as	a	travel	alternative,	which	in	this	example	is	supported	by	the	fact	that	
trips	 are	 relatively	 short	 (the	 corridor	 is	 3.4	 km	 long).	 In	 fact,	 Figure	 12	 displays	 the	
modal	split	per	trip	 length	for	trips	starting	 in	Zone	1;	 it	 is	clear	that	there	is	a	 loss	of	
competitiveness	 of	 walking	 as	 an	 alternative	 to	 motorised	 modes	 as	 trip	 length	
increases.	

                                            
14	Shown	in	Figure	5	for	M1;	the	result	for	M2	is	similar.	
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Figure	11:	Modal	split	M2	

	

	
Figure	12:	Modal	split	per	trip	length,	M2	base	case	(total	demand=19,234)		

	

3.5	 The	case	with	increased	bus‐induced	congestion	

In	the	previous	scenario	it	was	assumed	that	passenger	car	equivalency	factor	for	buses	
 bs

	is	solely	given	by	bus	size,	from	1.65	for	mini	buses	(8	metres)	to	3	for	articulated	

buses	(18	metres).	However,	some	authors	such	as	Parry	and	Small	(2009)	assume	that,	
in	mixed	traffic,	buses	should	be	given	a	greater	weight	in	the	congestion	functions	(10)	
and	 (11),	 given	 that	 their	 stops	 to	 load	 and	 unload	 passengers	 have	 an	 effect	 on	 the	
capacity	of	lanes	and	impose	delays	on	other	modes	including	cars	(Koshy	and	Arasan,	
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2005;	 Zhao	 et	 al.,	 2007).	 We	 find	 that	 when	 doubling	 the	 passenger	 car	 equivalency	
factor	(to	between	3.3	and	6)	optimal	bus	frequency	is	reduced,	and	that	the	impact	 is	
stronger	if	no	crowding	externalities	are	explicitly	modelled	(M1,	Figure	13)	than	when	
the	 crowding	 disutility	 is	 accounted	 for,	 in	 which	 case	 the	 crowding	 externality	
dominates	over	the	congestion	externality	(M2,	Figure	14).	In	Figure	13,	the	increase	in	
frequency	 for	 a	 bus	 demand	beyond	1,800	 pax/h	 is	 because	 the	minimum	number	 of	
seats	 min

seatn 	 has	 been	 reached,	 the	 capacity	 constraint	 (26)	 is	 binding	 and	 therefore	 the	
operator	has	no	option	but	increasing	the	bus	frequency	to	meet	demand.	

	
Figure	13:	Optimal	bus	frequency	M1,	double	equivalency	factor	for	buses	

	

	
Figure	14:	Optimal	bus	frequency	M2,	double	equivalency	factor	for	buses	
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3.6	 The	relationship	between	the	number	of	seats	and	optimal	frequency		

In	this	section,	we	study	the	sensitivity	of	the	optimal	bus	frequency	to	alternative	bus	
layouts	regarding	number	of	seats.	As	previously	discussed,	in	all	scenarios	in	which	the	
crowding	externality	is	considered	(M2,	M3	and	M4),	the	optimal	bus	design	comprises	
having	 as	 many	 seats	 as	 possible,	 given	 an	 optimal	 bus	 size,	 in	 order	 to	 reduce	 the	
crowding	effects	of	seating	and	reduce	the	number	of	standees.	In	this	context,	we	study	
what	 happens	 if	 the	 number	 of	 seats	 is	 exogenously	 chosen	 to	 be	 lower	 than	 the	
maximum	(and	therefore	the	bus	capacity	is	increased);	Figure	15	shows	that	for	both	
M2	(mini	buses,	8	m.)	and	M3	(standard	buses,	12	m.)	frequency	should	be	increased	as	
a	response	to	the	users’	discomfort	of	having	fewer	seats.	In	other	words,	the	number	of	
seats	inside	a	bus	does	have	an	effect	on	the	optimal	design	of	a	public	transport	system	
if	the	planner	acknowledges	that	users	dislike	crowding.	

	

Figure	15:	Optimal	bus	frequency	for	suboptimal	numbers	of	seat	
	

3.7	 The	second	best	scenario	

The	preceding	analysis	was	undertaken	by	assuming	that	a	congestion	toll	on	cars	is	in	
place,	as	shown	in	Figure	10.	In	this	section,	the	second	best	case	in	which	there	is	no	car	
toll	 is	 investigated15.	 We	 limit	 the	 analysis	 to	 a	 graphical	 comparison	 of	 relevant	
optimisation	outputs	between	the	first	best	and	second	best	scenarios.		
	
The	second	best	bus	fare	is	negative	across	the	demand	range	tested	and	for	all	utility	
specifications	(M1	to	M4),	i.e.,	the	optimal	decrease	in	bus	fare	to	face	a	zero	toll	policy	is	
larger	than	the	optimal	first	best	bus	fare	(between	10	and	40	cents)16.	More	generally,	
this	result	points	to	the	potential	optimality	of	very	low	public	transport	fares	and	large	
subsidies	if	car	use	is	substantially	under‐priced	(common	in	peak	periods),	in	line	with	

                                            
15	The	principles	behind	first	best	and	second	best	pricing	are	extensively	analysed	in	Small	and	Verhoef	
(2007)	and	Tirachini	and	Hensher	(2012)	among	others.	
16	A	negative	second	best	bus	fare	is	also	obtained	by	Ahn	(2009). 
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earlier	 findings	 (Glaister	 and	 Lewis,	 1978;	 Proost	 and	 Van	 Dender,	 2008;	 Ahn,	 2009;	
Parry	and	Small,	2009)17.			
	
Figure	16	shows	the	difference	between	optimal	toll	and	fare	in	the	first	best	and	second	
best	 scenarios	 for	 demand	 models	 M1,	 M2	 and	 M3	 (therefore,	 in	 the	 second	 best	
scenarios	 the	 curves	 are	 equal	 to	 the	 absolute	 value	 of	 the	 negative	 bus	 fare).	 The	
difference	between	toll	and	 fare	 is	 lower	 in	 the	second	best	scenario,	as	also	 found	by	
Ahn	 (2009).	 In	Ahn	 (2009),	 the	 second	best	bus	 fare	does	not	decrease	 sufficiently	 to	
maintain	 the	difference	between	 fare	and	 toll	 in	 the	 first	best	scenario	because	such	a	
low	 bus	 fare	 would	 produce	 a	 greater	 than	 socially	 optimal	 amount	 of	 total	 trips;	
whereas	in	our	framework	the	amount	of	total	trips	is	fixed	but	the	amount	of	motorised	
trips	is	not,	and	hence	a	low	(negative	in	this	case)	bus	fare	attracts	not	only	car	users	
but	 also	walkers	 to	 public	 transport	 (Kerin,	 1992;	Tirachini	 and	Hensher,	 2012).	 This	
explains	 that	 the	 second	 best	 bus	 fare	 is	 not	 so	 low	 as	 to	maintain	 the	 first	 best	 toll‐
minus‐fare	difference.	
	

	
Figure	16:	Optimal	toll	minus	bus	fare,	first	best	and	second	best	scenarios	

	
Finally,	optimal	bus	frequency	is	 lower	in	the	second	best	scenario	as	shown	in	Figure	
17	(model	M2	is	eliminated	for	easiness	of	exposition),	because	the	underpricing	of	car	
traffic	 generates	 a	 greater	 than	 optimal	 amount	 of	 car	 trips,	 and	 therefore	 increased	
congestion	 for	both	 cars	and	buses.	 in	addition	 to	 the	 rather	unrealistic	 scenario	with	
negative	 bus	 fares,	 in	 Figure	 17	 we	 have	 added	 a	 third	 scenario	 in	 which	 a	 budget	
constraint	is	applied	that	eliminates	the	subsidy	required	for	the	bus	route	in	both	the	
first	and	second	best	scenarios.	In	this	“zero	profit	scenario”,	bus	fares	escalate	to	$0.50‐
0.60	 for	M1	and	 to	 $0.70‐0.75	 for	M3;	 optimal	 frequency	 reduces	 and	 falls	within	 the	

                                            
17	Basso	and	Silva	 (2014)	 show	 that	 the	existence	and	 level	of	optimal	bus	 subsidies	might	be	 strongly	
influenced	by	the	provision	of	dedicated	bus	lanes.	
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range	16‐19	bus/h	for	M1	and	21‐24	bus/h	for	M3.	Both	variables	imply	a	considerable	
loss	of	bus	passengers,	as	shown	in	Figure	17.	This	reduction	in	demand	actually	means	
that	crowding	levels	in	the	zero‐profit	scenario	do	not	significantly	change	with	respect	
to	the	scenarios	without	budget	constraints	(for	example,	when	total	demand	is	28,850	
trips/h,	average	occupancy	rate	of	buses	is	36.9	%	in	the	scenario	“M3	–	Second	best”,	
versus	38.1	%	in	the	scenario	“M3	–	second	best	–	zero	profit”).		

	

Figure	17:	Optimal	bus	frequency,	first	best	and	second	best	scenarios	

4.	 Conclusions	

In	 this	 paper	 we	 have	 introduced	 a	 social	 welfare	 maximisation	 model	 with	
disaggregated	origin	destination	demand	and	multiple	travel	alternatives,	with	the	aim	
of	optimising	the	design	of	urban	bus	routes	including	pricing	decisions	for	both	bus	and	
car.	The	 influence	of	bus	crowding	 is	highlighted	as	we	analyse	 its	 impact	on	both	 the	
design	 of	 the	 bus	 service	 and	 the	 congestion	 level	 on	 the	 road.	 The	 consideration	 of	
crowding	 externalities	 as	 increasing	 the	 discomfort	 of	 public	 transport	 users	 pushes	
towards	 having	 bigger	 and	 more	 frequent	 buses	 (Jara‐Díaz	 and	 Gschwender,	 2003),	
which	in	turn	may	worsen	both	bus	and	traffic	congestion	on	shared	roads.	The	number	
of	 seats	 in	 buses	 is	 introduced	 as	 a	 decision	 variable	 for	 the	 first	 time	 in	 a	
microeconomic	public	transport	model;	the	number	of	seats	is	the	result	of	the	trade‐off	
between	passengers’	comfort	(that	drives	the	number	of	seats	up)	and	vehicle	capacity	
(which	might	be	increased	by	removing	seats).	The	model	is	applied	to	the	Military	Road	
corridor	 in	North	Sydney	and	results	 are	discussed	 in	 several	 scenarios	with	different	
demand	levels	and	modelling	assumptions.	

A	 number	 of	 results	 stand	 out.	 The	 consideration	 of	 crowding	 externalities	 (at	 both	
seating	and	standing)	imposes	a	higher	optimal	bus	fare,	and	consequently,	a	reduction	
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of	the	optimal	bus	subsidy.	Optimal	bus	frequency	results	from	a	trade‐off	between	the	
level	 of	 congestion	 inside	 buses,	 i.e.,	 passengers’	 crowding,	 and	 the	 level	 of	 congestion	
outside	buses,	i.e.,	the	effect	of	frequency	on	slowing	down	both	buses	and	cars	in	mixed‐
traffic.	 In	 particular,	 optimal	 bus	 frequency	 is	 quite	 sensitive	 to	 the	 assumptions	
regarding	 crowding	 costs,	 the	 impact	 of	 buses	 on	 traffic	 congestion	 and	 the	 overall	
congestion	 level,	 as	 the	 crowding	 externality	 puts	 pressure	 on	 operators	 to	 provide	
more	frequent	services,	which	in	turn	may	add	to	both	bus	and	car	congestion.	We	find	
that	 if	 crowding	 matters,	 bus	 frequency	 should	 increase	 (for	 a	 given	 bus	 size)	 with	
demand	 even	 under	 heavy	 congestion,	 however	 that	 might	 not	 be	 the	 case	 if	 the	
crowding	 externality	 is	 not	 accounted	 for,	 in	which	 case	 an	 increase	 of	 total	 demand	
might	 be	 met	 by	 a	 decrease	 of	 both	 frequency	 and	 number	 of	 seats	 per	 bus,	 at	 the	
expense	of	crowding	passengers	inside	buses	and	making	more	passengers	stand	while	
travelling.	
	
We	find	that	 the	existence	of	a	crowding	externality	 implies	that	buses	should	have	as	
many	seats	as	technically	possible,	up	to	a	minimum	area	that	must	be	left	free	of	seats.	
If	for	any	other	reason	planners	decide	to	have	buses	with	fewer	seats	than	optimal	(e.g.,	
to	 increase	 bus	 capacity),	 bus	 frequency	 (and	 the	 number	 of	 buses	 itself)	 should	 be	
increased	 to	 compensate	 for	 discomfort	 imposed	 on	 public	 transport	 users.	 Future	
research	 should	 test	 the	optimality	of	providing	 the	maximum	number	of	 seats	 in	 the	
following	two	cases:	(i)	in	routes	with	high	public	transport	demand,	in	which	an	active	
capacity	constraint	may	push	the	number	of	seats	down,	and	(ii)	if	the	standing	disutility	
is	low	relative	to	sitting,	in	which	case,	in	principle,	it	might	be	optimal	to	provide	less	
seats	than	the	maximum	feasible,	if	the	benefit	of	an	increased	capacity	for	the	operator	
is	larger	than	the	comfort	disbenefit	for	users.		
	
Regarding	the	relevance	of	non‐motorised	modes	in	urban	mobility,	in	a	corridor	of	3.4	
km,	 an	 increase	 in	 total	 transport	demand	worsens	 traffic	 congestion	which	 increases	
the	choice	of	walking	relative	to	its	motorised	alternatives	(with	optimised	bus	service,	
fare	and	toll).	This	suggests	that	at	least	for	short	trips,	improving	the	travel	conditions	
of	non‐motorised	modes	is	a	wise	strategy	to	tackle	worsening	congestion	problems	in	
cities.		
	
Including	bus	riders	sitting	as	a	source	of	disutility	produces	important	changes	in	some	
variables	 (optimal	 bus	 fares,	 bus	 size,	 frequency,	 subsidy).	 However,	 optimising	 the	
transport	 corridors	 under	 different	 assumptions	 on	 the	 relevance	 of	 crowding	
externalities	to	users	produced	similar	values	of	other	outcomes	such	as	social	welfare,	
consumer	surplus	and	modal	splits	across	models	M1	to	M4.	More	research	is	needed	to	
assess	 if	 this	 finding	 holds	 in	 other	 contexts,	 for	 example,	with	 a	 superior	 bus	modal	
share	(over	20	percent).	
	
The	 analytical	 framework	 presented	 in	 the	 paper	 can	 be	 extended	 in	 several	 ways.	
Departure	time	decisions	can	be	included	by	introducing	a	multi‐period	framework	with	
modal	 and	 time‐of‐day	 substitution	 (e.g.,	 Glaister	 and	 Lewis,	 1978;	 De	 Borger	 and	
Wouters,	 1998;	 Proost	 and	 Van	 Dender,	 2008).	 Extensions	 to	 larger	 corridors	 or	
networks	would	make	more	apparent	the	need	to	introduce	distance‐based	tolling	and	
more	 complex	 public	 transport	 fare	 structures	 (by	 section	 or	 origin	 destination	 pair),	
extensions	that	can	be	added	in	the	present	 framework	by	setting	 fares	per	kilometre.	
Note	that	a	differentiation	in	price	by	distance	is	more	attractive	if	destination	choice	is	
included	 as	 well;	 otherwise	 the	 model	 would	 overestimate	 the	 revenue	 from	 long‐
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distance	travellers,	some	of	whom	would	try	to	travel	shorter	distances.	Our	model	also	
ignores	issues	of	income	distribution	(Dodgson	and	Topham,	1987;	Mayeres	and	Proost,	
1997),	 heterogeneity	 in	 the	 value	 of	 time	 savings	 (Verhoef	 and	 Small,	 2004)	 and	 that	
road	capacity	may	also	be	endogenous	(De	Borger	and	Wouters,	1998;	Arnott	and	Yan,	
2000),	all	dimensions	that	are	promising	venues	of	 further	research	for	the	analysis	of	
marginal	 cost	 pricing	 and	 optimal	 public	 transport	 design	 including	 congestion	 and	
crowding	 externalities.	 Finally,	 regarding	 the	 number	 of	 seats	 as	 a	 variable,	 the	 bus	
operator	cost	structure	could	include	differences	in	capital	and	maintenance	costs	due	to	
alternative	standing	and	seating	configurations.		
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Appendices	

A1	 Estimation	of	demand	models	M1	to	M4	

The	 estimation	 of	 parameters	 for	 commuting	 and	 specification	 tests	 are	 presented	 in	
Table	A1.1	(n=1932	observations):	
	
Table	A1.1:		Estimation	of	parameters,	MNL	models	

Parameter	 M1	 M2	 M3	 M4	

Access	time	 a 	
‐0.016	
(‐1.22)	

‐0.017	
(‐1.33)	

‐0.017	
(‐1.33)	

‐0.017	
(‐1.33)	

Headway h 	
‐0.0088	
(‐2.71)	

‐0.010	
(‐3.06)	

‐0.010	
(‐3.07)	

‐0.010	
(‐3.06)	

Travel	time	bus

vb 	
‐0.019	
(‐5.09)	

‐0.013	
(‐3.45)	

‐0.004	
(‐0.58)	

‐0.006	
(‐1.25)	

Egress	time	 e 	
‐0.055	
(‐4.31)	

‐0.058	
(‐4.54)	

‐0.059	
(‐4.59)	

‐0.059	
(‐4.61)	

Travel	time	car	
	

‐0.016	
(‐3.11)	

‐0.018	
(‐3.41)	

‐0.018	
(‐3.37)	

‐0.018	
(‐3.37)	

Cost	 c 	
‐0.062	
(‐5.50)	

‐0.064	
(‐5.63)	

‐0.064	
(‐5.62)	

‐0.064	
(‐5.63)	

MSC	train	 t 	
‐3.393	
(‐5.16)	

‐3.455	
(‐5.24)	

‐3.473	
(‐5.26)	

‐3.476	
(‐5.27)	

MSC	bus	 b 	
‐4.131	
(‐5.67)	

‐4.275	
(‐5.82)	

‐4.313	
(‐5.86)	

‐4.315	
(‐5.86)	

MSC	metro	 m 	
‐2.526	
(‐4.30)	

‐2.444	
(‐4.14)	

‐2.465	
(‐4.17)	

‐2.460	
(‐4.16)	

vmt ×	den	stand den 	 	
‐0.004	
(‐4.48)	

‐0.003	
(‐2.82)	 	

vmt ×	prop	seat seat 	 	 	
‐0.013	
(‐1.70)	 	

vmt ×	(den	stand)2

2den 	 	 	 	
‐0.0005	
(‐2.41)	

vmt ×	(prop	seat)2

2seat 	 	 	 	
‐0.013	
(‐2.46)	

Specification	tests	
Log‐likelihood	 ‐1283.4	 ‐1273.1	 ‐1271.7	 ‐1271.7	
Adjusted	ρ2		
(relative	to	ASCs)	

0.107	
	

0.113	
	

0.113	
	

0.113	
	

Likelihood	ratio	
test	with	respect	
to	M1	 	

20.53	
(	> 1,0.001

=10.83)	

23.39	
(	> 2,0.001

=13.82)	

23.34	
(	> 2,0.001

=13.82)	
Likelihood	ratio	
test	with	respect	
to	M2	 	 	

2.86	
(	< 1,0.05 =3.84)	 	

Note:	t‐tests	in	bracket	below	parameter	estimates.	Time	in	minutes,	cost	in	$	(AUD).	
	

va
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Focusing	on	 the	 goodness‐of‐fit	measures,	 the	 log‐likelihood	 and	adjusted	ρ2	 statistics	
relative	to	a	model	with	alternative	specific	constants	(ASCs)	only,	demonstrate	that	the	
three	crowding	models	(M2‐M4)	outperform	the	model	with	no	crowding	(M1),	but	the	
difference	in	overall	fitness	amongst	the	crowding	models	is	not	significant.	In	fact,	M2,	
M3	and	M4	have	the	same	adjusted	ρ2	value,	and	a	likelihood	ratio	test	indicates	that	M2,	
M3	 and	 M4	 are	 significantly	 superior	 than	 M1	 at	 the	 99.9	 percent	 confidence	 level.	
Models	 M2	 and	 M3	 are	 not	 statistically	 different	 at	 95	 percent	 confidence	 level18,	
nevertheless	 from	 a	 behavioural	 perspective,	 the	 alternative	 crowding	 cost	
specifications	do	provide	differences	on	the	estimation	of	value	of	travel	time	savings19.		
	

Parameters	 for	 the	 utility	 functions	 (2)	 to	 (7)	 are	 taken	 from	 Table	 A1.1,	 with	 the	
exceptions	of	the	time	parameter	for	walking	and	the	mode	specific	constants,	which	are	
estimated	 as	 follows.	 First,	 walking	 as	 a	 travel	 alternative	 was	 not	 considered	 in	 the	
survey	of	the	main	stated	choice	experiment	from	2009	in	Sydney,	described	in	Section	
2.2	(Hensher	et	al.,	2011);	 therefore	a	reasonable	value	for	the	disutility	of	 travel	time	
while	 walking	 has	 to	 be	 supplemented.	 To	 this	 end,	 a	 secondary	 intra‐CBD	 model	
described	in	an	internal	2009	report	by	Hensher	and	Rose	is	used,	in	which	walking	was	
an	alternative	to	public	transport	modes	and	taxi		for	short	CBD	trips;	in	the	intra‐CBD	
model,	it	is	found	that	the	time	parameter	of	walking	( ve )	is	1.86	times	greater	than	the	
in‐vehicle	 time	 parameter	 for	 bus	 ( vb )20.	 Thus,	 we	 assume	 a	 constant	 value	 of	 ve 	
across	models,	equal	to	1.86	times	 vb 	on	M1	(because	the	latter	is	an	average	value	of	

vb 	for	all	crowding	conditions);	therefore, 1.86 0.019 0.035ve      .	
	
Second,	 mode	 specific	 constants	 for	 demand	 models	 M1	 to	 M4	 are	 calibrated	 to	
represent	the	current	Sydney	modal	split	of	trips	shorter	than	5	kilometres:	62.5	percent	
car,	31.6	percent	walk,	and	5.9	percent	bus	(TDC,	2010).	The	current	bus	frequency	of	
16	 bus/h	 in	 the	 morning	 peak	 is	 used,	 with	 a	 fare	 of	 $2.10	 and	 no	 car	 toll.	 The	 car	
specific	constant	is	fixed	at	zero.	With	these	two	considerations	for	the	time	parameter	
for	walking	and	the	mode	specific	constants,	the	estimated	parameters	used	in	Section	3	
are	presented	in	Table	2.	
	
	
A2	 Estimation	of	queuing	delay	function	

To	estimate	the	queuing	delay	of	buses	we	use	the	bus	stop	simulator	IRENE	(Gibson	et	
al.,	 1989;	 Fernández	 and	 Planzer,	 2002).	 A	 total	 of	 265	 simulations	 were	 run	
encompassing	all	bus	sizes	(8‐,	12‐,	15‐	and	18‐metre	long	buses)	and	bus	stop	with	one,	
two	and	three	linear	berths,	for	a	range	of	frequencies	from	20	to	220	bus/h	and	dwell	

                                            
18	This	would	suggest	that	if	we	use	the	density	of	standing	to	characterise	crowding	costs,	the	inclusion	of	
the	 availability	 of	 seats	 as	 a	 variable	 that	 influences	 modal	 choice	 is	 not	 statistically	 relevant	 for	
commuting.	 However,	 the	 occupancy	 level	 that	 triggers	 a	 crowding	 disutility	 is	 usually	 lower	 for	 non‐
commuters	 than	 for	commuters;	 in	 fact,	 some	studies	 find	 that	 the	crowding	disutility	 is	activated	with	
occupancy	levels	as	low	as	40	percent	of	the	seat	capacity	for	leisure	travelers	(for	a	review	see	Wardman	
and	Whelan,	2011).	Therefore,	it	is	relevant	to	include	in	the	analysis	models	in	which	the	availability	of	
seats	is	also	a	source	of	utility.		
19 Models	M2	and	M4	cannot	be	compared	with	a	likelihood	ratio	test	because	they	are	not	nested. 
20	This	figure	is	in	the	order	of	the	values	estimated	by	Jovicic	and	Hansen	(2003)	for	Copenhagen	(1.36	
and	2.32	for	the	ratio	 ve vb  	for	purposes	commuting	and	education,	respectively,	considering	walking	

and	cycling	altogether	as	a	non‐motorised	mode,	and	trips	up	to	30	minutes	long). 



 
 

37 
 

times	 between	 10	 and	 65	 seconds.	 Buses	 are	 assumed	 to	 arrive	 at	 a	 constant	 rate	 at	
stops	 (no	 bus	 bunching)	 and	 bus	 stops	 are	 isolated	 from	 traffic	 lights.	 Estimated	
parameters	are	presented	in	Table	A2.1.	For	more	details	see	Tirachini	(2014).	

Table	A2.1:	Queuing	delay	parameters	

Parameter	 Estimate	 Std.	Error	

0b 	 ‐2.952 0.887

1lb 	 0.061 0.020

1db 	 2.185 0.530

2db 	 ‐1.903 0.495

3db 	 ‐2.044 0.510

fb 	 23.089 0.723

2lb 	 0.361 0.046

4db 	 1.807 0.091

5db 	 ‐0.374 0.093

6db 	 ‐0.627 0.087
2R 	 0.921	

Sample	size	 265	
	

A3	 Dwell	time	estimation	

When	there	are	multiple	doors	to	board	and	alight,	passengers	can	choose	a	door	to	get	
on	and	off	buses,	and	the	spatial	dispersion	of	their	decision	will	determine	how	long	the	
boarding	and	alighting	times	are.	It	seems	unreasonable	to	suppose	that	passengers	will	
distribute	 uniformly	 across	 doors	 if	middle	 or	 back	 doors	 have	 closer	 access	 to	more	
seats	than,	say,	the	front	door.	We	assume	that	the	middle	doors	would	attract	a	number	
of	passengers	that	is	50	percent	higher	than	that	of	the	front	or	back	doors	(for	example,	
for	buses	with	two	doors,	the	rear	door	is	placed	towards	the	centre	of	the	bus,	and	is	
therefore	 assumed	 to	 attract	 60	 percent	 of	 the	 boarding	 demand,	 leaving	 40	 percent	
boarding	 through	 the	 front	 door,	 next	 to	 the	 driver).	 The	 same	 assumption	 is	 made	
regarding	alighting.	With	 this,	 the	proportions	 bp 	 and	 ap 	 of	passengers	boarding	and	
alighting	at	the	busiest	door	(necessary	for	estimation	of	dwell	times	in	equation	15),	is	
given	in	Table	A3.1	

Table	A3.1:	proportion	of	passengers	boarding	and	alighting	at	the	busiest	door	

Number	of	doors	
	

TnBn	

ap  bp 	
TnB1	

ap 	

1	 100%	 	
2	 60%	 100%	
3	 43%	 60%	
4	 30%	 38%	
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Boarding	and	alighting	 times	per	 fare	collection	system	and	boarding	policy	are	 taken	
from	Fernández	et	al.	(2008)	and	Tirachini	(2012):	

Table	A3.2:	Average	boarding	and	alighting	times	per	passenger	
Parameter	 Time	[s/pax]	
Boarding	time	cash		 10.74	
Boarding	time	magnetic	strip 2.94	
Boarding	time	contactless	card		 2.05	
Boarding	time	off‐board	payment		 1.46	
Alighting	time		 1.46	

	

A4	 Operator	cost	

The	station	infrastructure	cost	depends	on	the	amenities	provided,	quality	of	shelter	and	
overall	 design,	 ranging	 from	 $15,000	 for	 a	 simple	 shelter	 to	 $150,000	 or	 more	 for	
stations	 with	 passenger	 enclosure,	 at‐level	 boarding,	 retail	 services	 and	 detailed	
passenger	 information	 (FTA,	 2009).	 In	 this	 paper,	 we	 assume	 that	 the	 cost	 increases	
linearly	with	bus	length:	$50,000	(8	m.	bus),	$75.000	(12	m.	bus),	$100,000	(15	m.	bus)	
and	$125,000	(18	m.	bus),	values	that	are	amplified	by	25	percent	if	off‐board	payment	
is	provided.		

There	are	two	vending	machines	per	station,	and	four	fare	collection	readers	in	case	of	
off‐board	payment.	 Fare	 collection	 costs	 are	 taken	 from	Wright	 and	Hook	 (2007),	 the	
cost	 of	 a	 fare	 collection	 reader	 is	 $750	 (coins),	 $1,750	 (magnetic	 strip)	 and	 $2,500	
(contactless	card),	while	the	cost	per	vending	machine	is	$10,000	(magnetic	strip)	and	
$15,000	(smart	card).	For	on‐board	payment	methods,	 two	 fare	collection	readers	per	
boarding	 door	 are	 considered.	 The	 cost	 of	 software	 is	 $100,000	 for	 coin	 payment,	
$300,000	for	magnetic	strip	and	$500,000	for	contactless	card.	Bus	driving	cost	is	$29.9	
(Hensher,	2010)	and	running	costs	are	0.6,	0.9,	1.0	and	1.1	$/veh‐km	for	8,	12,	15	and	18	
metre	 long	buses,	respectively	(ATC,	2006),	values	that	are	increased	by	21	percent	to	
account	 for	 overhead	 costs.	 The	 cost	 of	 buses	 is	 $160,000	 (8	 m.),	 $370,000	 (12	 m.),	
$520,000	(15	m.)	and	$700,000	(18	m.).	The	estimated	parameters	 in	Tables	A4.1	and	
A4.2	are	adjusted	to	2011	Australian	Dollars	assuming	20	years	of	asset	life	for	buses,	15	
years	for	stations	and	5	years	for	software,	card	readers	and	vending	machines;	one	year	
is	 equivalent	 to	 2947	 peak	 hours	 of	 operation	 for	 a	 typical	 urban	 bus	 service	 in	
Australia.		

Table	A4.1:	Cost	items	related	to	bus	size	

Bus	size	
[m]	

Bus	cost	
[$/bus‐h]	

Driver	cost	
[$/bus‐h]	

Station	cost	
[$/station‐h]	

Operating	
cost	[$/bus‐

km]	
8	 5.1	 37.6	 4.4	 0.9	
12	 11.9	 37.6	 6.5	 1.3	
15	 16.9	 37.6	 8.7	 1.4	
18	 22.0	 37.6	 10.9	 1.6	
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Table	A4.2:	Cost	items	related	to	fare	collection	technology	

Technology	
Software	cost	

[$/h]	
Card	reader	

[$/h]	
Vending	

machine	[$/h]	
Coin	 12.1	 0.1	 0.0	
Magnetic	strip	 36.3	 0.2	 2.4	
Contactless	
card	 60.5	 0.3	 3.6	
Off‐board	 60.5	 0.3	 3.6	

	

	


