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Abstract 

Opioids, local anaesthetics, anticonvulsant drugs, antidepressants and non-steroidal anti-

inflammatory drugs (NSAIDs) are used to provide pain relief, but they do not provide 

adequate pain relief in a large proportion of chronic pain patients and are often associated 

with unacceptable side effects. Inhibitory glycinergic neurotransmission is impaired in 

chronic pain states, which provides a novel target for drug development. Inhibitors of the 

glycine transporter 2 (GlyT2) enhance inhibitory neurotransmission and show particular 

promise for the treatment of neuropathic pain. N-Arachidonyl-glycine is an endogenous lipid 

that inhibits glycine transport by GlyT2 and also shows potential as an analgesic, which may 

be further exploited in drug development. In this review we will discuss the role of glycine 

neurotransmission in chronic pain and the future prospects for the use of glycine transport 

inhibitors in the treatment of pain.   

 

Glycine Neurotransmission and Chronic Pain 

A normal response to peripheral tissue injury or inflammation involves activation of 

nociceptive (pain) neurons that produce pain. Acute, reversible, adaptive changes in the 

sensory nervous system also lead to sensory hypersensitivity that serves a protective 

function while the damaged tissue is healing. However, nerve injury in the peripheral or 

central nervous system (CNS) can lead to chronic pain that persists well beyond the period 

of tissue damage, lasting for more than 3-6 months and is characterized by spontaneous 

pain, hyperalgesia (an exaggerated response to noxious stimuli), and allodynia in thermal 

and mechanical modalities (the perception of normally innocuous stimuli such as mild 

cooling or light touch as painful) [1].  Although currently available analgesics effectively treat 

many acute nociceptive and inflammatory pain conditions, chronic pain symptoms are very 
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difficult to manage. A large body of evidence in animal models and humans suggest that 

chronic pain states involve persistent pathological adaptations in excitatory 

neurotransmission, neuron-glial interactions and inhibitory neurotransmission (reviewed by 

[1]).  Drugs that can enhance inhibitory neurotransmission, such as inhibitors of the glycine 

transporters (GlyTs), reverse signs of chronic pain in animal models, strongly suggesting 

potential efficacy for managing chronic pain.  

 

Glycine is an inhibitory neurotransmitter in the spinal cord and brain stem where it binds 

and activates glycine receptors (GlyRs) to cause hyperpolarization [2, 3]. Glycine is also an 

excitatory neurotransmitter throughout the CNS where it acts as a co-agonist with 

glutamate at the N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors 

to cause depolarization [4]. There are two types of GlyTs which regulate synaptic glycine 

concentrations to control GlyR and NMDAR activity [5-7]. The GlyT1 subtype of transporters 

is expressed by astroctyes at both inhibitory and excitatory synapses as well as a subset of 

glutamatergic neurons, whereas the expression of GlyT2 is predominantly expressed in 

presynaptic terminals of inhibitory glycinergic neurons [6-8] (Figure 1). 

 

Inhibitory glycinergic neurons and receptors are found throughout the CNS, but are most 

abundant in the dorsal horn of the spinal cord, particularly in lamina III [9-11]. GlyT1, GlyT2 

and GlyRs are also abundant in the dorsal horn, with GlyT2 most strongly enriched in lamina 

III [6, 12, 13]. These glycinergic neurons contribute to inhibition of nociceptive signalling and 

have important roles in segregating nociceptive and non-noxious information pathways [1, 

11]  (see Figure 2).  Dysfunctions of glycinergic systems, together with GABAergic systems 

[14-19], contribute to neuropathic and inflammatory pain. 
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Inhibition of glycine receptors in the spinal cord with strychnine has long been established 

to induce mechanical hyperalgesia and allodynia at lower doses than those that influence 

thermal pain [19].  Conversely, enhancing glycinergic neurotransmission in the spinal cord 

with GlyT1 or GlyT2 inhibitors reduces mechanical pain (see below for more details).  As 

outlined in Figure 2, lamina III glycinergic neurons prevent non-nociceptive, mechanical 

information from reaching pain projection neurons in lamina I of the dorsal horn [14, 18].  

Impairment of this inhibitory mechanism has been directly demonstrated in neuropathic 

pain models [14], which is likely to contribute to mechanical hyperalgesia and allodynia, and 

perhaps spontaneous pain states [14, 18]. The ability of GlyT2 inhibitors to reverse 

mechanical allodynia is likely to be due, at least in part, to restoration of these inhibitory 

mechanisms. 

 

The second major source of glycinergic innervation of the dorsal spinal cord arises from 

supraspinal areas.  Stimulation of these descending inhibitory networks inhibits nociception 

[20]. Anatomical tracing methods combined with immunohistochemistry have established 

that a large proportion of neurons in the rostral ventromedial medulla (RVM) that project to 

lamina I-IIo and IV-V of the spinal cord are GABAergic/glycinergic [21, 22].  Kato et al. [23] 

used in vivo patch recording to demonstrate that partially overlapping, monosynaptic 

GABAergic and glycinergic pathways from RVM to lamina II inhibit mechanical nociceptive 

responses. There is strong evidence that these descending inhibitory mechanisms are 

suppressed in chronic pain states, which may contribute to various symptoms of chronic 

pain [1, 20]. GlyT2 inhibitors could relieve many aspects of chronic pain by elevating 

synaptic glycine concentrations and thereby restoring glycinergic descending inhibition. 
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Compromised glycinergic neurotransmission has been reported in specific regions of the 

dorsal horn in both inflammatory and neuropathic pain. In an inflammatory pain model, 

prostaglandin type E2 (PGE2) selectively blocks glycinergic transmission through activation of 

Protein Kinase A [24]. Inhibition of the α3β subtypes of GlyRs by PGE2 has also been shown 

to occur in inflammatory pain states and this modulation is likely to contribute to 

mechanical hypersensitivity [25]. These processes contribute to pain pathology by 

increasing excitability in nociceptive pathways that project to the brain. In trigeminal 

mechanical allodynia induced by strychnine microinfusion, glycine signalling is decreased 

through a local PKCγ-mediated excitatory NMDA circuit [26].  This was further studied in 

lumbar dorsal horn neurons in a neuropathic pain model [14], which revealed suppression 

of a feed-forward glycinergic circuit that gates mechanical allodynia (Figure  2). Additionally, 

in neuropathic pain, a shift in the anion gradient develops exclusively in dorsal horn lamina I 

pain transmission neurons [27]. This is due to a reduction in the activity of the potassium 

chloride co-transporter (KCC2) [27] that leads to an increase in intracellular chloride, so 

activation of GABA or glycine receptors causes depolarization and a pronociceptive 

excitation of these pain transmission neurons. However, GlyT inhibitors would not be 

expected to strongly exacerbate this pronociceptive adaptation because inhibitory 

neurotransmission in lamina I of the dorsal horn is predominantly GABAergic [28] and GlyT2 

expression is relatively sparse in this region [9-11].  

 

These studies provide compelling evidence that reduced glycinergic signalling produces 

mechanical hyperalgesia and allodynia, and failure of glycinergic signalling in the dorsal horn 

develops in chronic neuropathic and inflammatory pain states. Increasing glycinergic 
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transmission is therefore likely to be a good therapeutic strategy for treating pain. One way 

of increasing available glycine is to inhibit glycine transporters. This increases glycine 

concentrations in the synaptic cleft and enhances neurotransmission through GlyR in the 

spinal cord, reducing pain signals.  

 

The Roles of GlyTs in Regulating Glycinergic Neurotransmission 

The two glycine transporters, GlyT1 and GlyT2, differ in their functional properties, which 

have a direct bearing on their concentrating capacities and their influence on glycine 

neurotransmission.  Glycine transport by GlyT1 is coupled to the co-transport of 2 Na+ ions 

and 1 Cl- ion, whereas glycine transport by GlyT2 is coupled to the co-transport of 3 Na+ ions 

and 1 Cl- ion [29, 30] (see Box 1 for more details). The extra Na+ ion coupled to transport by 

GlyT2 creates a more powerful transporter and allows it to operate over a wider glycine 

concentration range than GlyT1, which serves two purposes at inhibitory synapses. First, the 

transporter is able to reduce the synaptic glycine concentration to the low nM range, under 

equilibrium conditions, to prevent low level GlyR activity, and second, the extra 

concentrating capacity allows the transporter to maintain the intracellular glycine 

concentration at approximately 10-20 mM, which is necessary to provide sufficient glycine 

for transport into synaptic vesicles via the vesicular inhibitory amino acid transporter 

(VIAAT) [30] (Box 1). VIAAT is non-selective for glycine over GABA and it will accumulate 

either neurotransmitter which is partly dependent on the neurotransmitter concentration in 

the presynaptic terminal [31]. Thus, for a glycinergic neuron it is important for the 

intracellular glycine concentration to be maintained at levels that allow glycine loading of 

vesicles [31].  In interneurones of the spinal cord, both glycine and GABA can be present in 

the same synaptic vesicles, which is presumably due to the presence of both GlyT2 and a 
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GABA transporter capable of maintaining the intracellular GABA concentration at similar 

levels as glycine [31, 32]. However, segregation of GABAergic and glycinergic 

neurotransmission in dorsal spinal cord is extensive [11, 19, 28], with GABAergic synapses 

dominating in laminae I and IIo, and glycinergic transmission dominating in laminae Iii and 

III. This selectivity is presumably generated by cell type selective expression of GlyT2, GABA 

transporters and subsynaptic receptor types [11]. In the spinal cord, GlyT1 is expressed by 

astrocytes and neurons [6-8] and serves different purposes at inhibitory and excitatory 

synapses (Figure 1). At inhibitory synapses, GlyT1, together with GlyT2, contributes to the 

clearance of glycine after presynaptic release to terminate glycine transmission. At 

excitatory synapses, glycine is not released from presynaptic vesicles, but rather glycine 

concentrations are maintained at a relatively steady state in the mid-high nM range [30]. 

The higher resting glycine concentration at excitatory synapses is due to the lower 

concentrating capacity of GlyT1 compared to GlyT2, and the transporter operates close to 

its equilibrium capacity. Mid-high nM glycine is sufficient for partial occupancy of the glycine 

binding site of NMDAR [30, 33], whilst keeping the intracellular glycine concentration at 

approximately 1-2 mM [30]. It has been suggested that small fluctuations in the driving 

forces for glycine transport, such as a reduction in the electrochemical gradient across the 

membrane that may occur with AMPA receptor activation, will be sufficient to allow reverse 

glycine transport leading to an elevation in synaptic glycine concentrations and stimulation 

of NMDAR activity [30, 34]. It is important to note that the stoichiometry of ion flux coupling 

determines the equilibrium glycine concentration gradient (see Box 1), whereas the rate at 

which equilibrium is attained is determined by the number of transporters and the kinetics 

of the transport mechanism. Therefore, if an inhibitor acts by reducing the number of 

available transporters, this will slow down the rate at which equilibrium can be attained, but 
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not the final gradient achieved. This is an important distinction for understanding the effects 

of GlyT inhibitors on the dynamics of neurotransmission and also the loading capacity of the 

transporters. For example, 50% inhibition of GlyT2 may slow the clearance of glycine from 

the synapse and prolong the time course of synaptic transmission but it should not influence 

the equilibrium or resting intracellular glycine concentration and loading of presynaptic 

vesicles.  

 

GlyT knockouts and knockdowns reveal different roles for GlyT1 and GlyT2.  

GlyT1 and GlyT2 knockouts have been generated and they show quite different phenotypes 

[5, 35, 36]. At birth, both knockout mice appear to be relatively normal, but analysis of 

inhibitory glycinergic neurotransmission shows distinct differences. In recordings of 

hypoglossal motor neurons of the brain stem of GlyT1 knockout mice, larger chloride 

conductances are observed that are consistent with elevated glycine levels leading to 

greater GlyR activity. This suggests that the remaining glycine transporter, GlyT2, cannot 

fully compensate for the lack of GlyT1 and is unable to clear sufficient glycine to regulate 

synaptic transmission. Thus, it may be concluded that GlyT1 plays an important role in 

regulating synaptic glycine concentrations. In contrast, the GlyT2 knockout mice show 

greatly diminished inhibitory glycine neurotransmission. The absence of GlyT2 prevents the 

accumulation of intracellular glycine and loading of synaptic vesicles and thus glycine cannot 

be released for neurotransmission. The lack of inhibitory glycinergic neurotransmission 

leads to motor disturbances and death shortly after birth. The phenotypes of these 

knockout mice initially deterred the development of GlyT2 selective inhibitors as analgesics 

because of the expectation of considerable side effects, such as loss of motor control. 

However, GlyT knockdowns, with incomplete knockdown of the transporter, show more 
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promising results and suggest that GlyT2 inhibitors have considerable potential as 

treatments of chronic pain. GlyT2 knockdowns, generated using siRNAs in a sciatic nerve 

injury model for neuropathic pain, show reduced allodynia with a time course that 

correlates with reductions in GlyT2 immunoreactivity, suggesting that reduced GlyT2 activity 

may alleviate pain [37, 38]. Furthermore, the GlyT2 knockdown mice show no adverse 

motor or respiratory effects, alleviating concerns that GlyT2 inhibitors may generate 

adverse side effects. Similarly, GlyT1 knockdown mice also show similar reductions in 

allodynia without any overt behavioural changes. Importantly, the partial reductions in 

GlyT1 and GlyT2 expression generated by the siRNAs (25% of normal) appears to be 

sufficient to slow the clearance of glycine from synapses and thereby enhance glycinergic 

inhibitory tone, but still allow sufficient re-uptake of glycine into presynaptic terminals for 

repackaging into synaptic vesicles to maintain glycine neurotransmission. Presumably, for 

the GlyT1 knockdowns, the remaining GlyT1 is also sufficient to allow adequate regulation of 

glycine concentrations at excitatory synapses. These GlyT knockdown studies provide a 

rational basis for the application of GlyT inhibitors for the treatment of pain.  

 

GlyT2 Inhibitors 

Two GlyT2 inhibitors, ALX1393 and ORG25543 (Figure 3), have been the most extensively 

studied and in the following section we will review research highlighting their effectiveness 

and also some limitations in their use. We will also discuss the actions of some lipid 

compounds that inhibit GlyT2 and show promise as analgesics for the treatment of chronic 

pain.  
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ALX1393  

ALX1393 has been studied in animal models of pain using either intravenous or intrathecal 

injections [38-42]. Although intrathecal ALX1393 inhibits acute thermal and mechanical pain 

responses, it is considerably more potent against sensitized responses (tonic phase of the 

formalin test) [38, 40, 42]. A single intravenous injection of 0.01 mg/kg ALX1393 reduces 

mechanical allodynia over a 4 hour period in a neuropathic pain model. These effects 

remain for up to 24 hours and then return to pre-drug injection levels over the course of 4 

days. Intrathecal injections of 10 ng of ALX1393 show similar reductions in mechanical 

allodynia caused by nerve ligation injury, the streptozotocin-induced diabetic pain model, 

and also the Complete Freud’s Adjuvant model for inflammatory pain. These effects last for 

48-72 hours and can be reversed by intrathecal strychnine injections to block glycine 

receptors [38]. Furthermore, no effects on locomotor activity, motor behaviour in the 

rotorod test, or the righting reflex were observed in these studies [38]. ALX1393 has also 

been studied in a mouse model of allodynia caused by herpetic and postherpetic pain 

induced by infection with herpes simplex virus [41]. Intrathecal ALX1393 injections alleviate 

allodynia within 60 minutes after injection, but return to baseline pain states after 24 hours.  

 

In a more recent study, Mingorance Le-Meur et al. [40] found that only 5% of ALX1393 

crossed the blood-brain barrier after 60 minutes when given intravenously, and 

furthermore, that ALX1393 was only 40-fold selective for GlyT2 over GlyT1. Although 

ALX1393 demonstrates clear analgesic effects and minimal side effects, this 

pharmacokinetic and selectivity profile may limit its usefulness as a therapy for chronic pain. 
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Chronic exposure of cultured glycinergic neurons to ALX1393 alters the ratio of glycinergic 

and GABAergic neurotransmission [42]. Presumably this arises due to complete and 

prolonged block of GlyT2 causing reduced cytoplasmic glycine concentrations and thereby 

allowing preferential loading of synaptic vesicles with GABA instead of glycine (see 

discussion above). This observation is in apparent contradiction to that of Morita and 

colleagues [38], whose results suggest that repeated injections of GlyT2 inhibitors enhance 

glycine neurotransmission rather than cause a switch to GABAergic neurotransmission. A 

possible explanation for the apparent discrepancy is that the intrathecal injections of GlyT2 

inhibitors may not lead to complete inhibition of glycine transport compared to the cell 

culture experiments where the high concentrations of ALX1393 would completely block 

transport. Partial inhibition due to limited brain uptake may be sufficient to enhance glycine 

neurotransmission, but also allow for sufficient re-uptake into presynaptic boutons to 

provide glycine for transport into synaptic vesicles via the VIAAT.  

 

ORG25543 and related compounds 

In general, the analgesic actions of ORG25543 are similar to ALX1393 [38]. Intrathecal and 

intravenous injections of ORG25543 reduce allodynia associated with nerve ligation injury, 

streptozotocin-induced diabetic pain model, and CFA-induced inflammatory pain. The acute 

actions of high doses of ORG25543 in lamina X neurons of mouse spinal cord slices show 

clear changes in the dynamics of glycinergic neurotransmission [43]. Exposure of slices to 10 

μM ORG25543 initially caused a reduction in baseline current and increase in current noise, 

due to elevation of glycine concentrations and stimulation of glycine receptors. 

Furthermore, ORG25543 caused a three-fold increase in the decay constant of miniature 

inhibitory postsynaptic currents (IPSCs) and electrically evoked IPSCs without affecting the 
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amplitude of the currents. These observations suggest that ORG25543 inhibits the GlyT2-

mediated clearance of glycine from the synapse. However, after 10 minutes exposure to the 

high concentration of ORG25543, glycinergic IPSCs were greatly diminished [43]. These 

observations are consistent with the proposal that prolonged complete inhibition of GlyT2 

will initially enhance glycine neurotransmission, but subsequently cause depletion of 

cytosolic glycine concentrations and prevent glycine loading of presynaptic vesicles. This 

phenotype correlates closely with the GlyT2 knockout mice [36]. ORG25543 differs from 

ALX1393 in its mechanism of inhibition of GlyT2. In contrast to ALX1393, ORG25543 is an 

irreversible inhibitor of GlyT2 [40] and it was hypothesized that this may make this inhibitor 

more prone to generating side effects with prolonged exposure. An irreversible GlyT2 

inhibitor will have greater propensity to cause long term changes in cytosolic glycine 

concentrations and greater potential for motor side effects, which is analogous to the 

phenotype of GlyT2 knockouts. A modified version of ORG25543 has been developed by 

Mingorance Le-Meur et al. [40] (Figure 3), which has lower affinity for GlyT2 but is also 

reversible. This new compound shows similar blood-brain penetration as ORG25543 and 

analgesic properties, but fewer motor side effects at high transporter occupancy.  

 

N-Arachidonyl Glycine – An endogenous analgesic? 

N-Arachidonyl glycine (NAGly) is an endogenous fatty acid that is found in highest 

concentrations in the spinal cord and lower concentrations in many other organs [44, 45]. 

NAGly is structurally related to the endocannabinoid, anandamide (Figure 3), which 

prompted investigations into its in vivo effects and its potential for modulating 

neurotransmission.  
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In animal models of formalin-induced pain, co-injection of NAGly with formalin suppresses 

the tonic pain phase [44]. Furthermore, intrathecal injection of NAGly reduces both 

mechanical allodynia and thermal hyperalgesia in a model of inflammatory pain [46] and 

reduces mechanical allodynia in a nerve-injury induced animal model of neuropathic pain 

[47]. The synthetic cannabinoid receptor agonist, HU-210, also alleviates pain, but in 

contrast to NAGly, the actions of HU-210 are blocked by cannabinoid receptor antagonists 

[46, 47]. Thus, the analgesic actions of NAGly are unlikely to be mediated by cannabinoid 

receptors. The dose dependence of NAGly activity and the lack of effect by the degradation 

products, glycine and arachidonic acid, imply that the analgesic activity of NAGly is mediated 

by modulation of a specific protein.  

 

Our group has tested the effects of NAGly on glycine and GABA transporters and found that 

NAGly selectively inhibits GlyT2 over GlyT1 and the GABA transporter, GAT1 [48]. Other 

reported actions of NAGly include: both stimulation and inhibition of glycine receptors [49]; 

inhibition of cyclooxygenase-2 [50]; inhibition of fatty acid amide hydrolase [44, 51]; and 

stimulation of the orphan G-protein coupled receptors GPR18, GPR92 [52, 53]. Most of 

these effects of NAGly are apparent in the low μM range. The effects of NAGly on glycinergic 

synaptic neurotransmission have also been investigated [47]. In lamina II neurons of the 

superficial dorsal horn, NAGly prolongs the time course of glycine-evoked currents. β-

alanine is an alternate GlyR agonist, but is not a substrate of GlyTs and in contrast to glycine, 

the time course of β-alanine-evoked currents is insensitive to NAGly, which suggests that 

NAGly mediates its effects at glycinergic synapses by inhibiting GlyTs. In this study, synaptic 

currents were also investigated, and although miniature inhibitory post-synaptic currents 

(IPSCs) were insensitive to NAGly, responses to trains of electrical impulses, to generate 
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multi-vesicular release of glycine, were enhanced by NAGly.  The actions of NAGly are 

mimicked by the synthetic GlyT2 selective inhibitor, ALX-1393 [47], but not by the GlyT1 

selective inhibitor N[3-(4’-fluorophenyl)-3-(4’-phenylphenoxy)propyl]sarcosine (NFPS or 

ALX5407) [47, 54, 55]. Thus, NAGly enhances inhibitory glycinergic synaptic transmission by 

inhibiting GlyT2.  

 

Structure Activity Studies of NAGly and potential for further drug development 

A limited structure-activity profile of lipid inhibitors of GlyT2 has been conducted, which 

demonstrates that both the lipid head group and the hydrocarbon tail influence potency, 

reversibility, and the degree of maximal inhibition [48, 56-58]. Oleoyl-L-carnitine (Figure 3) is 

the most potent of the lipid inhibitors identified, but it also shows irreversible inhibition. N-

Oleoyl-glycine is a more potent inhibitor than NAGly and it is also reversible. Another 

important feature of these lipid inhibitors is the critical micelle concentration. Many lipids 

have the capacity to form micelles and once in this form it is difficult to estimate the free 

concentration of the lipid that may access an inhibitory lipid binding site [56]. This 

physiochemical feature may also influence the degree of occupancy and level of inhibition 

that may be achieved. It may provide a mechanism to ensure that such compounds can only 

attain partial inhibition of transport and thus prevent unwanted “on-target” side effects 

associated with complete and prolonged inhibition.  

 

GlyT1 Inhibitors 

The GlyT1 inhibitors, ORG25935 and ALX5407 (NFPS), and the GlyT1 substrate, sarcosine 

have also been tested in mouse models of neuropathic pain [38, 54, 55, 59]. Reduction in 

GlyT1 activity would be expected to increase the activity of both GlyRs and NMDARs and 
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thus influence both inhibitory and excitatory neurotransmission. Both ORG25935 and 

sarcosine provide anti-allodynia effects, but in contrast to the GlyT2 inhibitors, a lag time of 

up to 4 days is observed before before anti-allodynia effects are observed [38]. The NMDA 

receptor antagonist L-701,324 was able to abolish this lag time, suggesting that the lag 

effect was due to transient activation of NMDA receptors induced by elevated levels of 

glycine generated by GlyT1 inhibition. No such lags are apparent for the GlyT2 inhibitor 

ALX1393 ([38], see above).  ALX5407 also generates anti-allodynia effects in neuropathic 

pain, but it shows an unusual biphasic dose response. Low and high doses of ALX5407 

provide analgesia, but medium doses exacerbate nociception, which may be related to 

elevations of glycine in both inhibitory and excitatory synapses. Activation of NMDA 

receptors might be expected to worsen pain symptoms because they are involved in spinal 

sensitization mechanisms in chronic pain states [1] and for these reasons further 

development of GlyT1 inhibitors for the treatment of pain may be limited. 

 

Concluding Remarks  

The use of GlyT2 inhibitors for the treatment of pain shows considerable potential. There is 

evidence that they reduce acute mechanical and thermal pain in animal models of chronic 

pain, and their mechanisms of action in the spinal cord suggest they may be particularly 

useful for managing allodynia associated with neuropathic pain. However, there are 

concerns with their use which must be appreciated and overcome if these inhibitors are to 

realize their potential. The comparison between GlyT2 knockouts and GlyT2 knockdowns 

provides an excellent illustration of both the potential and the problems of GlyT2 inhibitors. 

GlyT2 knockouts are lethal in the first week after birth, with greatly diminished glycine 

neurotransmission, whereas GlyT2 knockdowns show no overt adverse effects and are less 
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sensitive to pain. The key to further development of this field will be to understand the 

conditions that can lead to partial inhibition of GlyT2 to elevate glycine concentrations but 

not compromise filling of synaptic vesicles with glycine. Studies of the synaptic physiology of 

glycinergic synapses under both normal and pain states and how GlyT2 inhibitors influence 

the dynamics of glycine neurotransmission will be required if the goal of reliable, partial 

inhibition is to become an effective treatment for pain. 

 

There are no high resolution crystal structures of glycine transporters available, but the 

structures of a growing number of related transporters in the SLC6 family of transporters 

have been determined, including a dopamine transporter from Drosophila melanogaster 

(dDAT) [60], a bacterial leucine transporter (LeuT) [61] and a bacterial betaine transporter 

(BetP) [62]. The various crystal structures represent different functional states of the 

transporters, and from these, it has been possible to develop structural models for the 

various conformational changes required for the transport process and to identify potential 

drug binding sites (Figure 4).  The transporters consist of 12 TM α-helical domains arranged 

in a “shallow shot glass” like structure with the substrate and ion binding sites located 

halfway across the membrane at the bottom of an extracellular-facing cavity. The protein 

oscillates such that the substrate and ion binding sites are exposed to either the 

extracellular surface or the intracellular surface as part of the alternating access mechanism 

for transport [63, 64]. The crystal structure of the dopamine transporter of Drosophila 

melanogaster has been determined with the tricyclic antidepressant, nortriptyline, bound. 

Nortriptyline binds to the primary substrate binding site preventing substrate binding and 

also prevents the external cavity from closing (Figure 4), which is necessary for the transport 

process. This inhibitor bound complex may provide clues for how ALX1393 or ORG25543 
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bind to GlyT2, which may be investigated by molecular modeling and site directed 

mutagenesis studies to establish GlyT2 inhibitor binding sites on GlyT2. 

 

Preliminary structure activity profiles of NAGly and OLCarn inhibition of GlyT2 have been 

conduced [57, 58]. Using chimeric transporters derived from GlyT2 and the closely related 

but lipid-insensitive GlyT1 transporter, extracellular loop 4 (EL4) appears to play a key role in 

determining sensitivity toward both NAGly and OLCarn. EL4 moves into the extracellular 

vestibule during the transport process [65], and it is possible that NAGly and OLCarn 

influence the movement of EL4 [57, 58] and indirectly regulate the rate of glycine transport. 

Further structure activity studies will be required to elucidate the structural basis for how 

NAGly, OLCarn and other lipids bind and inhibit GlyT2. It is also interesting to note that a 

cholesterol molecule is bound to the dDAT on an external membrane-exposed surface 

formed by TM5, TM7 and TM1a [60], (Figure 4). It has been demonstrated that cholesterol 

can stabilize the outward conformation of human DAT and thereby increase cocaine binding 

capacity. It has been postulated that cholesterol may bind to this membrane exposed 

surface and inhibit the conformational transitions required for transport. Thus, the 

cholesterol binding site may also provide clues as to how lipid-based inhibitors, such as 

NAGly, may bind and inhibit GlyT2.  

 

GlyT2 inhibitors show considerable promise for the treatment of neuropathic pain, but 

there these is scope for further refinement of compounds required to optimize activity that 

will enhance glycine neurotransmission without motor side effects that may result from 

complete and prolonged inhibition. There is also further work required to better understand 
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how synaptic neurotransmission in the dorsal horn is disturbed in neuropathic pain states 

and how GlyT2 inhibitors may help to restore normal signaling.    
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BOX 1 

Stoichometry of Ion Flux Coupling of Glycine Transporters 

For a secondary active electrogenic transporter, the direction of transport can be driven by 

both the electrical potential across the membrane and the gradients of the coupled ions. For 

a glycine transporter that is coupled to n Na+ ions and m Cl- ions the membrane potential at 

which the transport reverses direction (Erev) is given by: 

 

     
     

(   ) 
   ([  ] 

 [  ] 
 [   ]  )  ([  ] 

 [  ] 
 [   ] ) 

 

Where R, T and F have their usual meanings, [Na]e and [Na]i are the extracellular and 

intracellular Na+ concentrations and similarly for Cl- concentrations. For GlyT1, n=2 and m=1 

and for GlyT2, n=3 and m=1. Insertion of these values and ion concentrations into the 

equations will give a ratio of extracellular/intracellular glycine concentrations supported by 

the transporter. If equilibrium is reached, the neuronal GlyT2 will be able to support a 

concentration gradient of 6 orders of magnitude, such that if the extracellular [gly] is 10-20 

nM, the intracellular [gly] will be ~10-20 mM. For astrocytes expressing GlyT1, a 

concentration gradient of only 4 orders of magnitude can be maintained, such that if the 

extracellular [gly] is 100-200 nM, the intracellular [gly] will be 1-2 mM[29, 30]. 

 

GLOSSARY BOX   
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Allodynia: the perception of normally innocuous stimuli such as mild cooling or light touch 

as painful 

GlyR: Inhibitory glycine receptor. Consist of 5 subunits usually with 3 α subunits and 2 β 

subunits. Three different α subtypes have been described. 

GlyT1: glycine transporter subtype 1 that is predominantly expressed by astrocytes 

GlyT2: glycine transporter subtype 2 that is predominantly expressed glycinergic neurons 

Hyperalgesia: an exaggerated response to noxious stimuli 

NAGly: N-arachidonyl-glycine is a glycine conjugate of arachidonic acid that is produced in 

highest concentrations in the spinal cord and has analgesic properties 

Neuropathic pain: Pain that is caused by damage or diseases that affect the sensory system. 

It may have continuous and/or episodic components. Common qualities include burning or 

coldness, “pins and needles” 

NMDAR: N-methyl D-aspartate subtype of ionotropic glutamate receptors 

Nociception: stimulation of sensory neurons called nociceptors, or pain receptors 

OLCarn: Oleoyl-L-Carnitine (an endogenous lipid molecule) 

streptozotocin-induced diabetic pain: Streptozocin (STZ) is toxic to insulin producing β cells 

of the pancreas and produces animal models of diabetes and the associated pain. 
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Figure Legends 

Figure 1: Schematic diagram of glycine neurotransmission at inhibitory and excitatory 

synapses. At inhibitory synapses, high cytosolic glycine concentrations are maintained by 

the presynaptic glycine transporter, GlyT2. Upon stimulation of an inhibitory glycinergic 

neuron, glycine is released into the synapse and will activate postsynaptic GlyR. Glycine is 

then cleared from the synapses by a combination of diffusion, and uptake by GlyT1 

expressed on surrounding astrocytes and GlyT2 in the presynaptic terminal [6, 7]. At 

excitatory synapses, glycine is not released in the classical presynaptic mechanism, but 

rather glycine levels are maintained close to an equilibrium concentration that is set by the 

activity of the glycine transporter, GlyT1. GlyT1 is expressed by both astrocytes and in some 

glutamatergic neurones [6-8], and will influence NMDA receptor activity. Glycine may also 

diffuse from inhibitory glycinergic synapses. 

 

Figure 2. Nociceptive and non-noxious pathways in the dorsal horn of the spinal cord. 

In normal physiological states, excitatory Aβ (light touch) sensory inputs converge onto 

excitatory interneurons (green cells; E, some of which are PKCγ-positive) in lamina II of 

superficial dorsal horn, as well as glycinergic neurons in lamina III (blue cells; Gly) [1, 11, 14, 

19]. Coincident activation of these glycinergic interneurons produces strong feed-forward 

inhibition of lamina II excitatory interneurons  (green; E) that prevents non-noxious sensory 

information from invading pain transmission neurons in lamina I (red cell; NK1 receptor 

positive) [14, 19]. This feed-forward inhibition is suppressed following peripheral nerve 

injury, or pharmacological glycine receptor inhibition, allowing non-noxious information to 

invade lamina I neurons [14, 16-19]. Thus non-noxious light touch information is perceived 
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as painful (allodynia). Descending inputs from the brain also utilise GABA/glycine to produce 

ongoing modulation of nociception [20-22]. There is good evidence that descending 

inhibition is blunted in chronic pain states but the precise dysfunction of glycinergic 

projections is uncertain [18].  

 

Figure 3: Chemical structures of GlyT2 inhibitors: ALX1393, ORG25543, Compound 1 from 

Mingorance Le-Meur et al (2013), NAGly and OLCarn. 

 

Figure 4: Structure of the Drosophila melanogaster dopamine transporter, dDAT. dDAT (PDB 

4M48) is shown in cartoon representation and viewed in the plane of the membrane.  The 

anti-depressant Nortriptyline (cyan) and cholesterol (yellow) are shown in sphere 

representation. Nortriptyline is shown bound to the primary binding site while cholesterol is 

bound at the protein:lipid interface. Extracellular loop 4 (EL4) is shown in dark blue and lines 

the external vestibule which is indicated by a red circle. Bound Na1 (purple) and Cl (green) 

are also shown as spheres. TM6a has been removed for viewing the substrate binding site 

and Na2 is not visible in this orientation. Figure was made and rendered using PyMol [66]. 
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