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Summary: 

 

Recent developments in the study of the structure and function of opioid receptors raise 

significant challenges for the definition of individual receptor types and the development 

of a nomenclature that precisely describes isoforms that may subserve different functions 

in vivo.  Presentations at the 2013 meeting of the INRC in Cairns, Australia, considered 

some of the new discoveries that are now unraveling the complexities of opioid receptor 

signaling. Variable processing of opioid receptor messenger RNAs may lead to the 

presence of several isoforms of the µ receptor.  Each opioid receptor type can function 

either as a monomer or as part of a homo- or heterodimer or higher multimer. 

Additionally, recent evidence points to the existence of agonist bias in the signal 

transduction pathways activated through µ receptors, and to the presence of regulatory 

allosteric sites on the receptors.  This brief review summarizes the recent discoveries that 

raise challenges for receptor definition and the characterization of signal transduction 

pathways activated by specific receptor forms.  
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Almost two decades ago, the International Union of Pharmacology (IUPHAR) 

established a nomenclature committee to standardize the definitions and characterize the 

properties of receptors activated by neurotransmitters, hormones, cytokines and many 

drugs - this committee is known by the acronym NC-IUPHAR.  In turn NC-IUPHAR 

established subcommittees to make recommendations on specific receptors and to 

develop a database defining the receptor systems and drug targets coded by the human 

genome with references to the most appropriate experimental models and the best 

selective radioligands, agonists and antagonists. This database can be found at 

http://www.iuphar-db.org; it is a mine of useful information for almost all receptors and 

ion channels.  

 

The well-established Greek symbol terminology, µ,, and , for the first three types of 

opioid receptors to be identified, was proposed by Bill Martin, Hans Kosterlitz and their 

co-workers (Martin et al, 1976; Gilbert et al, 1976; Lord et al, 1977) in the mid-1970s. In 

1996, an alternative terminology was proposed by an NC-IUPHAR subcommittee 

(Dhawan et al, 1996) but this terminology was not accepted by the field and is no longer 

used.  A reconstituted Opioid Receptor Nomenclature Subcommittee (ORNS) proposed a 

return to the original nomenclature for opioid receptors, and added additional 

recommendations relating to the opioid receptor family and the receptor that is selectively 

activated by the endogenous ligand, nociceptin/orphanin FQ (abbreviated here as 

N/OFQ).  The recommended revised terminology and abbreviations were accepted by 

NC-IUPHAR, and can be found on the NC-IUPHAR website:  http://www.iuphar-

db.org/DATABASE/FamilyIntroductionForward?familyId=50.   The recommended 

nomenclature is briefly summarized in Table 1. 

 

The close structural homologies between the three classic types of opioid receptors, µ, , 

and , and the more recently discovered receptor for N/OFQ have been confirmed by the 

recent reports of the crystal structures of each of these receptors when complexed with 

antagonists (Manglik et al, 2012; Granier et al, 2012; Wu et al, 2012; Thompson et al, 

2012).  They are clearly members of one family of proteins, with the differences between 

the receptor types arising by gene duplication events during evolution. It is thus 

appropriate to group these receptors as a single receptor family.  NC-IUPHAR policy is 

to name receptors after their endogenous ligands, and to require that the abbreviation 

selected to represent a receptor family is two letters when there would be potential for 

confusion with other receptors if a single letter were to be used. Given the existence of 

receptors for oxytocin (OT) and orexins (OX), the family name selected by NC-IUPHAR 

for opioid receptors is OP (i.e., Opioid Peptide receptors).  The Greek symbol 

terminology for the three receptors of the opioid receptor family that were first 

discovered, µ, , and , is retained, so these become the µ receptor, the  receptor and the 

 receptor (or µOP receptor, OP receptor, and OP receptor). Since it is sometimes 

inconvenient or impractical to use the Greek symbols, alternative abbreviations 

recognized by NC-IUPHAR are MOP receptor, DOP receptor, and KOP receptor.  By 

analogy, the fourth member of the family becomes the NOP receptor (for nociceptin 

opioid peptide receptor).  Note that in the NC-IUPHAR system the letter R for receptor is A
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never used as part of the receptor name since this adds no information to the terminology; 

the context usually makes clear that the terminology refers to a receptor. The widely used 

abbreviations MOR, DOR and KOR are therefore inconsistent with the NC-IUPHAR 

standards for receptor nomenclature; the ORNS recommends that these abbreviations 

should not be used to describe opioid receptor types.  A summary of the recommended 

nomenclature and abbreviations for opioid receptors types is presented in Table 1.  

 

Some investigators have questioned whether the NOP receptor should be classified as a 

member of the opioid receptor family, perhaps influenced by Hans Kosterlitz’ dictum, 

frequently repeated by him at INRC meetings during the 1970s and 1980s, that if a 

receptor mediated action is not antagonized by naloxone, then the action should not be 

called an opioid receptor mediated effect. This insistence on a rigid procedural definition 

of an "opioid" was valuable at the time.  For example, it became apparent that the actions 

of drugs at the sigma receptor, originally identified by Bill Martin as an opioid receptor 

(Martin et al, 1976; Gilbert et al, 1976), were not antagonized by naloxone (in contrast to 

Martin’s original claim) and should not be called opioid.  Subsequent studies have 

established that the sigma receptor exists, but as a protein that is very different in 

structure and function from the µ,, and  receptors (Seth et al, 1998). Furthermore, 

many of the ligands that activate this receptor have very different structures from the 

endogenous ligands for the opioid receptors (Hayashi & Su, 2005). Kosterlitz' dictum 

need not be applied to the entire OP receptor family.  The NOP receptor, unlike sigma 

receptors, is very similar in structure and in most functions to the other OP receptors.  

Actions of N/OFQ through the NOP are not antagonized by naloxone, but the amino acid 

sequence of N/OFQ indicates that this peptide is closely related structurally to the 

endogenous opioid peptides, probably derived during evolution by gene duplications 

among the opioid peptide gene family in much the same way as the various OP receptor 

forms diverged by gene duplication during evolution (Nothacker et al, 1996). As noted 

above, the NOP receptor crystal structure closely resembles the crystal structures of the 

µ, , and  receptors and is more similar to these than to other GPCRs. Thus, in contrast 

to sigma receptors, NOP receptors display primary, secondary and tertiary structural 

similarity to other members of the OP receptor family, and are activated by an 

endogenous ligand that has a primary structure that is closely related to that of the 

endogenous ligands for the µ, , and  receptors.  Additionally, the NOP receptor 

employs a repertoire of signal transduction pathways that is very similar to the set of 

pathways activated by the three classic opioid receptors.  These structural and functional 

considerations trump the absence of sensitivity to naloxone antagonism and clearly 

necessitate the assignment of the NOP receptors to the OP receptor family. The NOP 

receptor should be considered a subcategory of the OP receptor family with 

atypical low affinity for the classic opioid peptides (the enkephalins, -endorphin 

and dynorphin) and insensitivity to antagonism by naloxone. 
 

Several issues that have implications for opioid receptor classification and nomenclature 

were discussed during the 2013 INRC meeting.  An area with potential significance for 

OP receptor classification is the growing evidence that the signal transduction pathways 

that are activated by agonists acting at the same receptor type are not always identical.  

Evidence that individual agonist ligands may preferentially direct the functional response A
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elicited by their common receptor to different transduction pathways was the subject of a 

plenary lecture by Arthur Christopoulos on biased agonism at GPCRs.  The main 

emphasis of Christopoulos' talk was on other GPCRs, not specifically on opioid 

receptors, but other speakers addressed biased agonism at OP receptors. Eamonn Kelly 

from Bristol showed unambiguously that certain agonists at MOP receptors bias the 

response towards either G protein- or -arrestin-mediated transduction pathways.  The 

signaling pathway repertoire that can be activated by these transducers is also expanding. 

For example, Wendy Walwyn presented evidence that  and NOP receptors can activate 

cofilin, an actin-modulating protein, via -arrestin, ROCK and LIMK.  Until recently it 

had been assumed that any ligand that could activate a receptor would induce essentially 

the same cellular response, with the major differences in response relating to the relative 

efficacies of different agonists.  Now that biased agonism at OP receptors is an 

established fact, apparent differences in the responses induced by agonists that act at the 

same receptor type do not require the postulation of separate receptor sub-types for each 

agonist; the same receptor may be differentially biased by each agonist to mediate 

different transduction pathways.  

 

Functional studies of OP receptors in the 1980 and 1990s suggested the existence of 

subtypes of the major OP receptor forms; specifically differences in the relative potencies 

of selected agonists at  receptors and their differential sensitivities to certain antagonists 

led to claims of the existence of subtypes of  receptor (see review by Zaki et al, 1996).  

At µ receptors, the actions of some agonists are reported to be more readily antagonized 

by the irreversible antagonist, naloxonazine, than others (Pasternak & Wood, 1988; Paul 

et al, 1989). These observations led to the proposal that there are subclasses of  and µ 

receptor, named 1, 2, µ1 and µ2, but no evidence for the existence of more than one gene 

for the -or µ receptors exists despite careful homology searches of the genome. Knock-

out of the  receptor gene is reported to abolish the activity of ligands preferentially 

acting at both 1 and 2 sites (Filliol et al, 2000). There are also proposals for the 

existence of subtypes of  receptor, based on relative agonist potencies for selected 

actions that appear to be mediated byreceptors (Rothman et al, 1989). However, a 

triple knockout of µ, , and  receptors completely abolishes binding and function of all 

opioid ligands (Clark et al., 2002; Martin et al, 2003), indicating that these ligands require 

at least one of the three receptor members of the OP receptor family for activity.  

 

It is possible that some or all of the data leading to the proposal that there are subtypes of 

µ, , and  receptors might be explained by biased agonism. Agonist potency ratios are 

now only interpretable if the experimental system from which the data is obtained is fully 

defined, including not only the receptor type mediating the actions, but also the cell 

type(s), experimental conditions and the signal transduction systems mediating the 

measured effects.  Examining differences in the relative potencies of a series of agonists 

in different cell or tissue preparations or in vivo was historically an important approach to 

the identification of heterogeneity of many receptor types.  It was this type of evidence 

that was used in part to support the proposed  receptor subtypes (Zaki et al., 1996). 

However, because of the possibility of biased agonism, differential agonist potency or 

efficacy can no longer be regarded as strong enough evidence to postulate the existence A
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of non-identical receptors as the mediators of these actions, although antagonist 

dissociation constants continue to provide more robust evidence of receptor 

heterogeneity. These conclusions have significance for the receptor databases. Agonist 

potency ratios are of value in the context of highly defined experimental systems but 

must be interpreted with caution. The possible existence of opioid receptor subtypes 

should be reexamined in the light of recent studies demonstrating biased agonism at 

opioid receptors 

 

Apparent receptor heterogeneity might also be induced by interactions of receptors with 

interacting proteins or modulating ligands. In 1997, Cvejic & Devi and her colleagues 

reported that OP receptors could form homodimers, and in 1999 they showed the 

formation of functional heterodimers with ligand binding properties that differed from 

those displayed by either of the individual receptor types (Jordan & Devi, 1999). In the 

case of the  receptor heterodimer, the ligand binding properties were found to match 

the properties of the putative 2 subtype (Zukin et al., 1988).  Subsequently many other 

groups have confirmed the existence of opioid receptor dimers and higher-order forms 

(oligomers), and the observation has been extended to many other GPCRs (Milligan, 

2009).  Indeed, several non-opioid GPCRs, including chemokine and serotonin receptors 

have now been reported to form functional heterodimers with opioid receptors (Hebert 

2008; Cussac et al, 2012; Rozenfeld and Devi, 2010). But to date it has not been 

unambiguously demonstrated that the reported µ, , and  receptor heterogeneity can be 

accounted for by receptor heterodimerization.  Towards this end, reagents that allow 

detection and evaluation of the endogenous OP heterodimers are being generated and 

these have begun to show promising results; heterodimer-selective antibodies have 

been useful in revealing morphine-induced upregulation of this heterodimer in the brain 

and in demonstrating heterodimer-directed signal trafficking (Rozenfeld & Devi, 2007). 

Ligands selectively targeting the heterodimer have helped demonstrate allosteric 

modulation of ligand binding and signaling by heterodimerization (Gomes et al, 2011; 

2013) as well as the exploration of the pharmacological properties of heterodimers in vivo 

(Daniels et al, 2005; Milan-Lobo, et al, 2013). Finally, cell-permeable peptides that 

selectively disrupt the heterodimer have helped address the contribution of this 

heterodimer to opioid pharmacology (He et al, 2011).  Reagents such as these will be 

valuable in addressing the extent to which receptor heterogeneity could be attributed to 

opioid receptors heterodimers in biological systems. 

 

Agonist actions at many GPCRs are additionally subject to either positive or negative 

regulation by ligands acting through allosteric regulatory sites on the GPCR.  The 

existence of allosteric modulators of the µ receptor (Burford et al., 2013) was discussed 

at the meeting by Andrew Alt and John Traynor.  Positive and negative allosteric 

compounds binding to a GPCR change receptor conformation to either enhance or inhibit 

orthosteric agonist binding and receptor activation; positive allosteric modulators may 

also show agonist effects, such compounds are allosteric agonists. A key finding is that 

the allosteric modulator-occupied receptor can have differential affinity for some, but not 

all orthosteric ligands, resulting in probe dependence; moreover, the allosteric modulator 

may induce, or change the direction of, signaling bias. Thus differential sensitivity of the 

activation of receptors by diverse agonists to allosteric regulation offers another potential A
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explanation for the apparent differences in the actions of different agonists at the same 

receptor. These observations point to the need for additional research describing more 

completely allosteric modulatory sites on each OP receptor. Because there are changes in 

relative agonist affinity and/or efficacy, and perhaps induction of a signaling bias, the 

allosteric modulator-bound receptor may be considered a novel entity. On the other hand 

allosteric modulators only subtly alter receptor conformation and so an OP receptor 

bound to an allosteric modulator remains an OP receptor, based on the structural and 

functional arguments discussed earlier. Nonetheless, the fact that allosteric modulators 

can differentially change the ability of agonists to bind to and activate the receptor and 

may have agonist actions on their own presents new challenges for OP receptor 

nomenclature, and in particular for opioid ligand nomenclature.  

 

The role of alternative transcription from a single gene as a potential basis for OP 

receptor subtypes is also controversial.  Gavril Pasternak and others have shown that 

there is more than one transcription start site on the µ receptor gene and multiple 

alternative mRNA splicing pathways, resulting in multiple transcripts coding for proteins 

with different primary structures (Abbadie et al, 2000; Koch et al, 2001; Kvam et al, 

2004).  It is suggested that these variant receptor forms can account for the apparent 

functional heterogeneity of µ receptors (Pasternak & Pan, 2013) There are no reports of 

multiple start sites and alternative transcripts for the  and receptor genes. Thus, the 

alternative transcript hypothesis is only plausible as a potential explanation for the 

apparent heterogeneity of µ receptors but, with few exceptions (e.g. Liu et al., 2011), 

there remains much uncertainty about the levels of expression of the variant mRNA 

forms for this receptor, their stability in the cell, and the properties of any proteins 

expressed from these mRNA variants. The presence of functional receptor proteins 

derived from variant transcripts (arising from different transcription start sites or 

alternative mRNA splicing) from a single receptor gene requires further study. If 

confirmed then a consistent nomenclature differentiating the variant forms of a single 

receptor will need to be developed.  

 

Sequence variations within opioid receptor genes might cause the expressed receptors to 

display properties that distinguish these receptors from those of the most frequently 

expressed receptor form. There are numerous single nucleotide polymorphisms (SNPs) in 

human opioid receptor genes, but most are rare and none are known to alter the 

conformations of the expressed receptor (Mague & Blendy, 2010). Only one 

polymorphism in the coding region of human opioid receptor genes is known to occur 

with relatively high frequency (rs 1799971; varying from 40 to 50% is some Asian 

populations to 5% or less in African Americans: Gelernter et al, 1999) and its known 

functional consequences are limited. A change of adenosine to guanosine in position 118 

(A118G) of the coding region (exon 1) of the human µ opioid receptor gene results in the 

expression of a receptor with aspartic acid (Asp) in position 40 instead of asparagine  

(Asn); this change removes a potential glycosylation site. A transgenic mouse line in 

which guanosine is replaced by adenosine in the equivalent position of the mouse µ 

receptor gene (A112G, expressing N38D) resulted in expression of receptors with similar 

ligand binding properties but reduced levels of expression of the receptor mRNA and 

reduced receptor protein levels relative to the wild-type receptor (Mague & Blendy, A
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2009).  This is consistent with other reports that downstream signaling is impaired in the 

variant form relative to the wild-type human µ receptor (Mague & Blendy ,2010; Oertel 

et l 2012). The mechanism for the reduced level of expression may relate to increases in 

methylation of the 118G µ receptor gene.  Oertel et al (2012) report that the degree of 

gene methylation at positions +117 and adjacent downstream methylation sites was 

higher in heroin-using subjects expressing the 118G variant than in 118A expressing 

subjects. In 118G subjects, chronic heroin use was not associated with elevated levels of 

µ receptor expression, but in 118A subjects chronic heroin use induced an upregulation 

of µ receptor expression in the thalamus and a cortical region. Increased receptor 

methylation in the 118G receptor gene may impede receptor up-regulation in response the 

drug exposure, suggesting an epigenetic regulation of the level of expression of µ 

receptors (Oertel et al, 2012).  This work requires confirmation in a larger set of subjects.  

To date however, there are no reports indicating that functional opioid receptors with 

altered ligand binding or signal transduction properties are produced as a result of 

polymorphisms in opioid receptor genes.  

 

Some opioid drugs have been reported to bind to non-opioid receptor proteins such as 

filamin A which interacts directly with µ receptors (Wang HY et al. 2008), or to the toll-

like receptor-4 (TLR-4) (Hutchinson et al., 2011) that does not interact directly with 

opioid receptors. Naturally, the structural requirements for interaction of opioids with 

these proteins are very different from their binding to classical opioid receptors. 

Nonetheless the interactions might be important, e.g., direct actions of opioids on the 

TLR-4 complex have been proposed to activate microglia to mediate many of the adverse 

effects of morphine (Hutchinson et al., 2011). However, this potential mechanism has 

been ruled out in other studies of morphine-induced microglial activation (Ferrini et al., 

2013; Fukugawa et al., 2013) and the affinity of interaction of opioids with TLR-4 

mechanisms is at least several orders of magnitude weaker than their interaction with 

MOPr (Wang et al., 2012), questioning their pharmacological relevance. Thus the 

functional relevance of binding of some opioid drugs to proteins other than the opioid 

receptors is not clearly established.  Since these interactions do not involve direct binding 

to opioid receptors, it is not feasible to define them within the framework of an opioid 

receptor nomenclature, but investigators need to be aware that ligands for opioid 

receptors, like many other receptor ligands, can interact with other proteins with possible 

functional consequences, whether with very high affinity as for filamin A (Wang HY et 

al, 2008) or with low affinity as for TLR4 (Wang X et al, 2012).  

 

 

Concluding comments:    

There has been a growing consensus on use of the recommended opioid receptor 

nomenclature shown in Table 1 since publication of the most recent NC-IUPHAR 

recommendation. If and until the accepted nomenclature for opioid receptors is revised to 

encompass the proposed variant forms of µ, , and  receptors based on more stringent 

criteria that take into account the additional variables in receptor properties outlined 

above, we suggest that the simple classification in Table 1 be used by all authors. 
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Beyond μ, δ, κ and NOP receptors, a description of opioid receptor subtypes such as μ1 or 

μ2 is not recommended unless they are described as putative. We do not consider that the 

evidence for opioid receptors subtypes that has been offered to date provides 

unambiguous evidence of independent functional receptors that are not variant forms of 

the major opioid receptors.  Until a new nomenclature for opioid receptor variants 

encompassing possible alternative transcription start sites or splice sites, receptor homo- 

and hetero-multimers, positive and negative allosteric regulation, and biased agonism is 

established and accepted by the research community, any such proposed variants should 

be fully described. Evidence of activation of signaling pathway(s) not previously 

associated with opioid receptors, the identification of novel allosteric regulatory site(s), 

and the establishment of novel polymeric structures should not be considered sufficient 

justification for modification of the current nomenclature.  

 

 

 

A
cc

ep
te

d 
A

rti
cl

e



 

This article is protected by copyright. All rights reserved. 
10 

 

Table 1.  NC-IUPHAR Approved Nomenclature for Opioid Peptide Receptors 

 

Receptors activated by opiate drugs respond physiologically to endogenous opioid 

peptides; they are therefore Opioid Peptide receptors, the receptor family being 

designated by the two-letter abbreviation OP. 

 

 

Current NC-IUPHAR  Other (non-approved)  Presumed Endogenous 

Approved Nomenclature
1
 Nomenclature   Ligand(s) 

________________________________________________________________________ 

 

µ, mu, or MOP  MOR, OP3   -endorphin (not selective
3
) 

        enkephalins (not selective
3
) 

        endomorphin-1
2
 

        endomorphin-2
2
 

 

 delta, or DOP  DOR, OP1   enkephalins (not selective
3
) 

        -endorphin (not selective
3
) 

 

, kappa, or KOP  KOR, OP2   dynorphin A 

        dynorphin B 

        -neoendorphin 

 

NOP    ORL1, OP4   nociceptin/orphanin FQ  

        (N/OFQ) 

________________________________________________________________________ 

 

Footnotes: 

1. The well-established Greek terminology for opioid receptor types using the descriptors 

µ, , and  is recommended, but where Greek symbols are not permitted or impractical, 

the use of mu, delta or kappa, or MOP, DOP, or KOP is permissible. 

 

2. No mechanism for the endogenous synthesis of endormorphins has been identified; 

their status as endogenous ligands for the µ receptor is tentative.  

 

3. "Not selective" indicates that these ligands are not strongly selective for the specific 

receptor types indicated; they may have sufficient affinity and efficacy at other opioid 

receptors to exert pharmacological effects through the non-preferred site. For example, 

the enkephalins are listed as non-selective ligands for both µ and receptors.  However, 

all ligands in this table have very low affinity and efficacy at non-opioid GPCRs.  
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Table of Abbreviations: 

 

DOP,  receptor, a member of the OP receptor family 

GPCR, G-protein coupled receptor 

INRC, International Narcotics Research Conference 

IUPHAR, International Union of Basic and Clinical Pharmacology 

KOP,  receptor, a member of the OP receptor family 

LIMK, Lim domain kinase 

MOP, µ receptor, a member of the OP receptor family 

NC-IUPHAR, International Union of Basic and Clinical Pharmacology Receptor 

Nomenclature Committee 

N/OFQ, nociception/orphanin FQ 

NOP, N/OFQ receptor, a member of the OP receptor family 

ORNS, Opioid Receptor Nomenclature Subcommittee 

OP, NC-IUPHAR abbreviation for opioid receptor family 

ROCK, Rho-associated protein kinase 
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