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Abstract
The analysis of data often models random components as a sum of in-

dependent random variables (RVs). These RVs are often assumed to be
lattice-valued, either implied by the problem or for computational efficiency.
Thus, such analysis typically requires computing, or, more commonly, ap-
proximating a portion of the distribution of that sum.

Computing the underlying distribution without approximations falls un-
der the area of exact tests. These are becoming more popular with continuing
increases in both computing power and the size of data sets. For the RVs
above, exactly computing the underlying distribution is done via a convolu-
tion of their probability mass functions, which reduces to convolving pairs
of non-negative vectors.

This is conceptually simple, but practical implementations must care-
fully consider both speed and accuracy. Such implementations fall prey to
the round-off error inherent to floating point arithmetic, risking large rela-
tive errors in computed results. There are two main existing algorithms for
computing convolutions of vectors: naive convolution (NC) has small bounds
on the relative error of each element of the result but has quadratic runtime;
while Fast Fourier Transform-based convolution (FFT-C) has almost linear
runtime but does not control the relative error of each element, due to the
accumulation of round-off error.

This essay introduces two novel algorithms for these problems: aFFT-C
for computing convolution of two non-negative vectors, and sisFFT for com-
puting p-values of sums of independent and identically-distributed lattice-
valued RVs. Through a rigorous analysis of round-off error and its accumula-
tion, both aFFT-C and sisFFT provide control of the relative error similar to
NC, but are typically closer in speed to FFT-C by careful use of FFT-based
convolutions and by aggressively discarding irrelevant values. Both accuracy
and performance are demonstrated empirically with a variety of examples.
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Introduction
Scientific analysis routinely requires performing statistical tests to deter-

mine the significance of conclusions drawn from observed data. Deriving
accurate outcomes from such tests is important, as such testing and its con-
sequences are near unavoidable in the modern world. This is only becoming
even more true, especially in computational biology, as increasing amounts
of biological data are being collected and analysed.

There is a large variety of possible tests and techniques, with many of
them essentially computing a significance level by considering the likelihood
of the observed data assuming a certain null hypothesis about the under-
lying distribution. These tests come in two broad classes: the first uses
asymptotic approximations of the underlying distribution and thus gener-
ally perform best with large sample sizes and non-extreme observed data,
while the second class, exact testing, avoids such approximations by working
with the underlying distribution directly to allow obtaining accuracy in all
circumstances.

The significance level for the tests is often exactly the tail probability of
some random variable X, calculating the probability P of X being larger
than some threshold s0 derived from observed data, that is, P = P (X ≥ s0).

Non-exact tests will approximate the distribution of X and hence P
with some other function that can be computed easily. One example is
approximating the distribution of the likelihood ratio statistic G2 by the
distribution of χ2(n), which can be calculated efficiently [Din92].

On the other hand, an exact test must work with the distribution of
X directly, often by computing its probability mass function (pmf). This
cannot easily be done for an arbitrary random variable X, but there are
certain classes of random variables for which there is a shared approach. One
such class often encountered in practice occurs when the random variable X
can be expressed as X = ∑L

i=1 Xi, for random variables X1, . . . , XL, where
the Xi are lattice valued and independent and identically distributed (iid).
This class is of particular note because one can use the well-understood
convolution operation to compute the pmf of a random variable U + V from
the pmfs of the independent random variables U and V . This thus allows us
to express the pmf q of X as the convolution of the identical pmfs p of the
Xi,

q = p ∗ . . . ∗ p︸ ︷︷ ︸
L times

= p∗L.

One example of this is that explored by Keich in [Kei05] and further by
Nagarajan, Jones and Keich in [NJK05]. In the setting of computational
biology, one may wish to find significant locations and a sequence motif, or
a set of similar substrings, within a large set of observed sequences drawn
from some alphabet consisting of A letters. This can be done by computing

viii



Introduction ix

a series of potential alignments of substrings, and calculating an alignment
quality score called the entropy score I for each of those possibilities. The
significance of the alignment is estimated by computing a p-value for this
score based on the null hypothesis that each of the L elements of the aligned
substrings are drawn independently from some multinomial distribution. De-
fined as such, it turns out that the exact null distribution of I is given by
the L-fold convolution p∗L for a certain pmf p.

This example is interesting because it is amenable to alternate strategies,
relying on large deviation theory as well as asymptotic approximations. For
example, it can be shown that 2I → χ2(L(A − 1)) in distribution, as the
number of aligned substrings approaches ∞ (e.g. [Ric95]). However, this
asymptotic result breaks down particularly for test scores near the maximum
value, which is precisely the region that is of most interest in this context.
As [NJK05] discusses, other approximation schemes break down similarly,
so even widely cited and used software designed for the problem, such as
MEME [BE94], can compute p-values that are orders of magnitude smaller
than the exact value.

This is just one example of why exact tests, and hence exact computations
of pmfs, are of interest, but there are many others, both academic [Hir05]
and commercial [MP92].

Applying exact tests in practice requires additional care, beyond under-
standing their theoretical properties. Computers generally manipulate real
numbers as approximate floating point numbers, and significant errors in
algorithms can be caused by round-off, destroying guarantees of accuracy
unless controlled carefully. Convolutions are a good example of this: there
are two main choices for computing x ∗ y for non-negative vectors x, y:
the slow, accurate naive convolution (NC), and the faster, but potentially
inaccurate Fast Fourier Transform-based convolution (FFT-C).

Consideration of these practical concerns is particularly relevant to fields
like bioinformatics, where large data sets means one may perform very many
tests, requiring large multiple testing corrections. This requires that even
very small p-values be computed accurately, e.g. [BFT04; NJK05; KN06],
and thus making direct use of the efficient FFT-C inappropriate in such
cases: FFT-C computed approximations of small p-values can be many times
larger than the true values. However, one can still create accurate algorithms
benefiting from its speed, by understanding its error. The entropy score
example above again serves as a demonstration: [NJK05] introduces a novel
algorithm for computing the significance of such scores that has guarantees
about its accuracy despite being based on FFT-C.

This essay

This essay is divided into 5 chapters, each of which builds on the previ-
ous ones, working through computing convolutions accurately to finish with
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calculating accurate p-values. The results try to be general without sacrific-
ing clarity: where sensible, complex vectors are preferred over non-negative
ones, and these are preferred over pmfs.

Chapter 1 reviews the computational basics required for the rest of the
thesis, including floating point numbers, asymptotic notation and the Fast
Fourier Transform (FFT).

Chapter 2 reviews and analyses the error in existing algorithms, NC
and FFT-C, for computing convolutions x ∗ y. This chapter also reviews
Keich’s sFFT algorithm [Kei05] for computing p-values of iterated convolu-
tions, since the concepts there are vital for later work. This second chapter
is broadly a refinement of the work previously performed in [Kei05].

Chapter 3 introduces the novel aFFT-C algorithm for efficiently and ac-
curately computing a pairwise convolution p ∗ q of non-negative p and q.
This algorithm achieves the best of both FFT-C and NC to ensure accuracy
and maintain maximal performance. This chapter also includes an analysis
of two ways to incorporate a lower bound into the computation: some appli-
cations can tolerate the inaccurate computation of very small values, which
can be handled in two ways. This possibility allows doing considerably less
work in certain cases.

Chapter 4 is the last chapter focusing on computing convolutions them-
selves. This chapter builds on the lower bound considerations of the previous
chapter to analyse an algorithm for computing approximations to the iter-
ated convolution p∗L. The algorithm is initially designed to work with any
method for computing p∗q with the appropriate guarantees. This algorithm
is then made more concrete by applying the aFFT-C algorithm also from the
previous chapter, which allows us to explore and justify the choices made in
that initial design.

Chapter 5 uses the iterated convolution algorithm of the previous chapter
to allow computing approximations to a tail probability P = ∑

s≥s0 p∗L(s).
As mentioned above, this tail probability is exactly the p-value of a sum
of L independent lattice-valued random variables, for pmf p. As is the
standard in this essay, these approximations come with guaranteed bounds
on their accuracy. This algorithm is designed to work with arbitrary pmfs p,
addressing issues with existing algorithms such as sFFT, which only works
well for log-concave pmfs.

The majority of the ideas of Section 2.2.1 and Chapter 3, with the notable
exception of the details of Section 3.4, have been published as [WK16]. The
core analysis of Chapter 4 and all of Chapter 5 have been improved slightly
and submitted as [WK].

The code

The new algorithms aFFT-C and sisFFT introduced in this thesis have
been implemented in Python [Ros95] and R [R C15]. The code is available for
download at https://github.com/huonw/sisfft-py and https://github.

https://github.com/huonw/sisfft-py
https://github.com/huonw/sisfft
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com/huonw/sisfft, and has been published as sisfft on PyPI, a package
repository for Python.
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Notation
The notation used often in this essay is listed here for clarity. Let v, w

be vectors.

v Bold font indicates a vector.
rel(x, y) The relative error of x as an approximation for y,

see (1.1.3).
x̃ The value of x as computed via floating point.
ε The machine epsilon of the floating point type in

use, see Definition 1.2.5.
f = O(g), f = Ω(g) f is asymptotically bounded above (resp. below) by

g, see Section 1.4.
D, D−1 The discrete Fourier transform operator (1.5.1) and

its inverse (1.5.2).
v ∗w The convolution of v and w, see (2.0.1).
v ∗N w The cyclic convolution of v and w, when both have

length N , see Definition 2.2.1.
v∗L The L-fold convolution of v with itself, v ∗ . . . ∗ v︸ ︷︷ ︸

L times

.

v ⊙w The element-wise product of v and w, that is, (v⊙
w)(i) = v(i)w(i), when v and w have the same
length.

v⊙x The element-wise exponentiation of v with by x,
that is, (v⊙x)(i) = v(i)x.

min+v The smallest positive value in v, see Section 3.1.3.
filtv,w(x) Filtering x as an FFT-C approximation for v ∗ w,

see (3.1.4).
1f , 1v The indicator function/vector for the function

f/vector v.
supp f , supp v The support of the function f/vector v.
v<B, v≥B The vectors truncated above or below some bound

B, that is, v ⊙ 1v<B and v ⊙ 1v≥B. See Defini-
tion 3.4.1.
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Chapter 1

Computational Background
1.1. Errors

One of the key parts of working with and analysing numeric algorithms
is understanding the error that they introduce, that is, the distance between
the exact answer and the value computed. A perfect algorithm will compute
the exact answer, but this is often either impossible or requires too much
time or memory, and so one is usually working with approximations, and
thus controlling or at least knowing the degree of approximation is very
important.

For scalars there are two common measures of errors.

Definition 1.1.1. Let x̃ be an approximation to x ∈ C. The absolute error
is

|x̃− x| , (1.1.2)
and the relative error is

rel(x̃, x) =


∣∣∣ x̃−x

x

∣∣∣ if x ̸= 0
0 if x = 0 and x̃ = 0
∞ if x = 0 and x̃ ̸= 0.

(1.1.3)

Measuring the error in an approximation of a vector is more complicated.
For many applications, using the ℓp absolute and relative errors, for some
p ≥ 1, is sufficient and desirable. These are defined by simply replacing the
absolute values in the scalar definition of absolute and relative error by the
vector’s p-norm, such as

∥x̃− x∥p

∥x∥p

. (1.1.4)

Typical choices are p = 2 or p =∞.
However, these measures tend to summarise the error in the vector based

on the largest values of x, and there can be arbitrarily large relative errors
in the approximation x̃ of the smallest elements of x.

Example 1.1.5. Consider the vector x = (1000, 0) and an approximation
x̃ = (1000, 1), the approximation has an ℓp relative error of just 1/1000 for
all p ≥ 1, but the (scalar) relative error in the second element is ∞. □

In some applications we are only interested in parts of the computed
vectors, for example, when computing tail probabilities, a special case of
which is computing a p-value. These regions often do not include the large
values that have the most influence over the ℓp error, and thus a small value
for a measure like (1.1.4) does not necessarily correspond to fine control over

1



2 1. Computational Background

the error in the final computation. For such applications, the relative error
in the individual elements is more useful, as it ensures that small values
that are of interest are still computed accurately. In other words, controlling
something like the following quantity is desirable,

max
k

rel(x̃(k), x(k)).

In practice, the exact condition may be more precise, for instance, maybe
the relative error only needs to be controlled for k such that x(k) ≥ B for
some bound B, or maybe only for k ≥ k0, for some minimum index k0.

Focusing on the relative error of elements automatically gives some mea-
sure of control over the ℓp error. Specifically, if rel(x̃(k), x(k)) ≤ β for all k,
then, it is easy to see that

∥x̃− x∥p ≤ β ∥x∥p . (1.1.6)
However, in many cases, including the algorithms introduced in this essay,
the relative error in the largest elements of x is much smaller than that in the
smallest ones, and so the actual ℓp errors can be much smaller than (1.1.6)
implies.

There are two main classes of the cause of errors in numerical algorithms:
• truncation error or algorithmic error : error introduced by differences

between the algorithm and the true mathematical result, for instance,
approximating an infinite sum with a finite truncation: ∑∞

i f(i) ≈∑N
i f(i).

• rounding error or round-off error : error introduced by rounding in-
termediate results.

Truncation error is very specific to the algorithm in question, while round-
ing error is pervasive, typically caused by the use of limited precision floating
point numbers to approximate the full precision value, a subject we will dwell
on next.

1.2. Floating Point

A computer is inherently limited: it can only store a finite amount of
information in memory, and it can only do finitely many operations to process
that information. Hence sets like N, Z and R cannot be represented perfectly
in their entirety, forcing us to resort to digital approximations of these sets,
each with their own benefits, limitations and trade-offs.

One of the most common digital representation of a real number is
floating-point, and, most usually, the binary32 and binary64 types1 of the
IEEE754-2008 standard [IEE08]. These types have widespread support in
hardware and hence can be assumed to offer high performance. Addition-
ally, the standard provides mathematically rigorous definitions of its types,
so we can prove theorems about algorithms which apply to useful real-world

1binary32 is also known as single or just float, and binary64 as double in previous
versions of the IEEE754 standard, and in many programming languages.



1.2. Floating Point 3

implementations running on most platforms. We will briefly look at the rele-
vant properties of these formats, referring the reader to [Gol91], [BZ10] and
[MBdD+10] for more detailed treatments.

Floating point formats use the idea behind “scientific notation”: fix a
base B ∈ R+ and write x ∈ R as

x = s ·m ·Be (1.2.1)

for s ∈ {−1, 1}, m ∈ R+ and e ∈ Z.
As written, this encoding has problems: it is not unique, and allowing

m ∈ R arbitrary requires a way to represent real numbers, which is exactly
the problem we are trying to solve. For x ̸= 0, these can be resolved by,
respectively, restricting m to [1, B), and quantising it with some precision
p ∈ N+ via the approximation m ≈ m′B−p+1 with m′ ∈ N satisfying Bp−1 ≤
m′ < Bp. The case x = 0 needs to be considered separately due to the
m ∈ [1, B) restriction.

Definition 1.2.2. Fix some B ∈ R+ and p ∈ N with p ≥ 2, if x = s·m·Be ̸=
0 ∈ R is approximated as a floating-point number x̃ = s ·m′B−p+1 ·Be, then

• B is the radix (sometimes base),
• p is the precision,
• s ∈ {−1, 1} is the sign of x,
• m ∈ [1, B) is the infinitely precise significand of x,
• m′ ∈ N satisfying Bp−1 ≤ m′ < Bp is the integral significand, and

m′B−p+1 is the significand (sometimes mantissa) of x̃,
• e ∈ Z is the exponent of x.

Since computers and silicon circuits work in binary most easily, the radix
is most commonly B = 2 (as in binary32 and binary64). Beyond this, the
radix is almost always either power of 2 or a power of 10 (IEEE754-2008 also
specifies radix-10 types like decimal32). This thesis will focus on the B = 2
case.

For an arbitrary x ∈ R the floating point quantised form x̃ will only be
an approximation, but the error in the approximation can be controlled.

Proposition 1.2.3. Fix a radix B and precision p, then for any x ̸= 0 ∈ R
there exists a floating point number x̃ = s·m′B−p+1 ·Be as in Definition 1.2.2
with relative error bounded by B−p+1/2, that is,∣∣∣∣ x̃− x

x

∣∣∣∣ ≤ B−p+1

2

Proof. Write x = s ·m ·Be for some m ∈ [1, B), let m∗ = mBp−1 and denote
[m∗] the closest integer to m∗. This integer satisfies Bp−1 ≤ [m∗] ≤ Bp. The
precise direction of rounding when m∗ is a half-integer is not important, since
any choice will satisfy |m∗ − [m∗]| ≤ 1

2 .



4 1. Computational Background

If [m∗] < Bp, choose m′ = [m∗], that is, define x̃ = s · [m∗]B−p+1 · Be,
and hence∣∣∣∣ x̃− x

x

∣∣∣∣ = 1
m

∣∣∣[m∗]B−p+1 −m
∣∣∣ = 1

m
|[m∗]−m∗|B−p+1 ≤ B−p+1

2

If [m∗] = Bp, then taking m′ = [m∗] is not valid, so we instead choose
m′ = Bp−1 and use a larger exponent, that is

x̃ = s ·Bp−1B−p+1 ·Be+1

In this case, we have∣∣∣∣ x̃− x

x

∣∣∣∣ = 1
m
|m′B −m∗|B−p+1 = 1

m
|[m∗]−m∗|B−p+1

and the inequality above still applies. □

With an exact representation of 0, one can thus represent all x ∈ R with
bounded relative error, and some can even be represented exactly.

Example 1.2.4. Fix the radix B = 10 and the precision p = 5, the closest
floating point number to x = exp(π) = 23.14069 . . . is

x̃ = 23.141
= 1 · 2.3141 · 101

= 1 · 23141 · 10−4 · 101.

That is, the sign is 1, the significand is 2.3141 and the exponent is 1. This
x̃ approximates x with relative error less than 1

210−4 (indeed, the actual
relative error is approximately 1.3 · 10−5). □

The error bound is core to guarantees about floating point values, and
features in most theorems manipulating them.

Definition 1.2.5. The quantity ε = B−p+1

2 is the machine epsilon2 or unit
round-off of the floating point system.

The binary32 format has precision p = 24 and hence ε = 2−24, while the
format we usually use, binary64, has p = 53 and thus ε = 2−53 ≈ 10−16.

Unfortunately, there are limitations to this result: it relies on the expo-
nent e being unbounded, which is impossible in reality; and, it only applies
for a single approximation step. If one is performing a series of operations
where each returns a floating point approximation to the actual result, there
is no guarantee that the overall result will be close to the true value of the
computation performed with infinite precision. We will look at these two
deficiencies, starting with the second.

2In some domains, the “machine epsilon” term and ε symbol refer to the quantity 2ε,
that is, B−p+1. This essay uses only ε = B−p+1/2.
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1.2.1. Round-off errors and catastrophic cancellation

Floating point formats have finite precision, and hence, as quantified
by Proposition 1.2.3, information is lost as they are processed. This loss
is inevitable, but it has unfortunate consequences for floating point as a
model of R: addition and multiplication are not associative, and errors can
compound over the course of a computation, possibly resulting in arbitrarily
large error.

Definition 1.2.6. Round-off error occurs when the result of operation per-
formed with finite-precision numbers differs to the result of the same opera-
tion performed in R (i.e. with infinite precision).

Round-off error can occur even on primitive operations like addition and
multiplication. For instance, if two numbers have different exponents, some
information in the significand of that with the smallest exponent may be lost
when they are added.

Example 1.2.7. Take the floating point system with B = 2 and p = 2, and
compute (1 + 16) − 16. First 1 + 16 = 17 = 1.001 · 24, which rounds to
1.0 · 24 = 16, and hence the result as computed via floating point is 0, which
has 100% relative error from the true answer of 1. □

This example demonstrates round-off error in the addition and also cata-
strophic cancellation in the subtraction. The latter happens when two num-
bers with very similar values are subtracted (or divided), which can dra-
matically amplify the relative error of any previous round-off error that has
occurred.

Round-off error is unfortunate, but it is an unavoidable consequence of
computers’ finite precision. However, if one understands the behaviour of a
floating point system, this source of error can be controlled and accounted
for, allowing algorithms to compute approximate results with floating point
while guaranteeing a bound on the error of these approximations.

The IEEE754 standard tackles this by specifying exactly how informa-
tion is lost for the basic operations like arithmetic. Let f : Rn → R be the
infinitely precise version of any of these operations. For floating point num-
bers x̃1, . . . , x̃n the IEEE754 approximation f̃ to f is defined as the closest
representable floating point number to f(x̃1, . . . , x̃n).

Example 1.2.7 demonstrates floating point approximations to f(x, y) =
x + y and g(x, y) = x − y, with the application of the former requiring
rounding, and that of the latter being exact. It is worth noting that the
operation was computed as g̃(f̃(1, 16), 16), with the intermediate rounding
of f̃ meaning the overall result is not the same as the closest floating point
number to g(f(1, 16), 1).

For many functions, we can efficiently compute the closest number to
the infinitely precise result assuming their input is error-free or perfectly
representable. Indeed, with only a small amount of extra precision over that
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of the input, it is generally straight-forward to deduce the correctly rounded
result of arithmetic operations and even more complicated ones like square
roots. Unfortunately, this ease does not translate to all common functions.
For example, there are no tight bounds on the extra precision required for
correctly rounding floating point approximations to functions like exp and
log, a fact called the Table-Maker’s Dilemma [Kah04]. The interested reader
should refer to [MBdD+10] or [BZ10] for more details on this aspect of
floating point arithmetic.

1.2.2. Underflow and Overflow

The other problem with applying Proposition 1.2.3 in practice is that it
relies on the exponent e being unbounded, which is of course impossible to
implement on real hardware. Hence, floating point formats will limit the
exponent to some interval emin ≤ e ≤ emax. If the format has radix B and
precision p, these bounds on e mean Proposition 1.2.3 is only guaranteed to
hold for real numbers x such that

min := Bemin ≤ |x| ≤ (B −B−p+1)Bemax =: max.

If |x| < min, the approximation may underflow to x̃ = 0, with relative
error 1. If |x| > max, the approximation may overflow giving the special
value x̃ = ±∞ as appropriate, with infinite relative error. Floating point
formats include the values∞ and −∞ for this purpose, to have a somewhat
reasonable interpretation of calculations that get too large.

Example 1.2.8. Consider a floating point format with B = 2, p = 2 and
limits −5 ≤ e ≤ 5. If x = 1.0 · 2−3 and y = −1.0 · 23, then

x̃/y = ˜−1.0 · 2−6 = 0,

ỹ/x = −̃1.0 · 26 = −∞. □

One can extend the region of representable values closer to zero by re-
laxing the definition of a floating point format for small values. Specifi-
cally, by allowing the integral significand to be less than Bp−1 when e =
emin, the format can represent values as small as Be−p+1 while still ensur-
ing that each representable value has a unique representation. These are
called subnormal values, in contrast to the normal values in the regions
[−max,−min]∪ [min, max]. However, the existence of these subnormal val-
ues does not guarantee Proposition 1.2.3 applies for all x as small as Be−p+1,
and furthermore, they are typically not suitable for practical applications:
they are much slower to compute with than normal values, and are some-
times just truncated to zero.

For the types specified by IEEE754-2008 the corresponding bounds are:
emax = −126 and emax = 127 for binary32, and emin = −1022 and emax =
1023 for binary64. Hence, the magnitudes of the corresponding normal
values vary between 10−38 to 1038 and 10−308 to 10308 respectively.
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If either underflow or overflow occurs during an operation, the relative
error dramatically increases to 1 or∞ instead of, typically, some small poly-
nomial of ε. As such, most results involving floating point either explicitly or
implicitly include an assumption that underflow and overflow does not occur.
All theorems in Chapters 2 to 4 make the assumption that the floating point
numbers involved are all sufficiently moderate.

This is a reasonable assumption to make in most cases, especially for
binary64: 10−308 and 10308 are far more extreme than most numbers en-
countered in reality. However, at times we need to process more extreme
values, and hence mitigations become important.

One way to postpone underflow and overflow is to move to a type with
a larger exponent range, however this typically only delays the issue slightly.
Moving from binary32 to binary64 or binary128 only increases the expo-
nent from 8 bits to 11 or 15, respectively. This small increase means that
calculations that underflow or overflow in one format are likely to quickly
do the same in a larger format, especially as extreme values typically occur
when performing multiplications or computing exponentials. For example,
let x = 3.403 · 1038, this is just larger than the largest value in the binary32
format and hence overflows in that format, so that x̃ = ∞. On the other
hand, x does not overflow in the binary64 format, but it only takes eight
further multiplications to exceed the largest value, that is, x̃8 = ∞. For-
tunately, domains that require extreme range often have extra assumptions
that can inform a choice of an alternative representation.

1.3. Log space

A commonly occurring scenario is that inputs and outputs to an algo-
rithm will be non-negative, which allows for representing numbers in log
space: an x ≥ 0 ∈ R is stored as a floating point approximation to X = logb x
for some base b, with x = 0 of course represented by −∞. This gives much
larger range: if binary64 is used to store the natural logarithm, then x > 0
can range from approximately 10−7·10307 to 107·10307 . This range comes at
the expense of some operations becoming much more time consuming, and
offering less precision at the extremes.

Manipulating these values can be somewhat non-trivial, as simply re-
versing the logarithm may underflow or overflow. For whatever base b is
chosen, arithmetic can be performed on these values in a way that avoids
catastrophic underflow and overflow. Suppose x, y ≥ 0 and X = logb x,
Y = logb y, then

• Addition: x ≥ y, logb(x + y) = X + logb(1 + bY −X)
• Subtraction: x ≥ y, logb(x− y) = X + logb(1− bY −X)
• Multiplication: logb(x · y) = X + Y
• Division: logb(x/y) = X − Y

Underflow or overflow in multiplication or division represents the true
value xy or x/y exceeding the bounds of the log space representation, which
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is unfortunate but unavoidable. The addition and subtraction formula factor
out the largest term from the naive definition

logb(x + y) = logb

(
bX + bY

)
= logb

[
bX
(
1 + bY −X

)]
,

which ensures that the intermediate results never overflow or underflow in a
catastrophic way. There may be underflow when computing bY −X , but, as
long as the exponent range is sufficiently large, this can only occur when y
is so much smaller than x that the finite precision means x̃ + y = x anyway.

1.4. Asymptotic notation & computational complexity

When analysing algorithms, understanding their accuracy is not the only
factor of importance: as mentioned above, some exact algorithms are very
expensive, often to the point of being prohibitively so for everything but very
small instances of a problem. Being able to quantify the performance of an
algorithm is thus also useful.

This is typically done via asymptotic notation, which captures the num-
ber of operations (or some other proxy of resource demand, such as memory
use rather than time) required by the algorithm as the parameters of the
problem increase.

Definition 1.4.1. Given functions f : R → R and g : R → R, we say
f = O(g) if

lim sup
x→∞

f(x)
g(x)

<∞ (1.4.2)

and f = Ω(g) if g = O(f).

In less precise terms, f = O(g) when f does not grow faster than some
constant multiple of g, and f = Ω(g) when f grows at least as fast as some
constant multiple g. For instance, let f(x) = 3x2 + 2, then f = O(x2), and
f = O(x3), and even f = O(ex), however f ̸= O(x) nor f ̸= O(log x). As
just demonstrated, we will typically write the function g implicitly.

In computational terms, algorithms with resource cost linear in the size of
the problem n, that is, O(n), are highly desirable: anything much more than
this, even simply quadratic O(n2), can quickly require infeasible amounts
of resources as the problem size increases. Unfortunately, many problems
either have no known linear algorithm or, worse, are known to have no
linear algorithm. Not all is lost, as some of these problems can be solved
by algorithms with complexity O(n(log n)c) for some constant c, typically
c = 1. Such algorithms are sufficiently efficient for most purposes, and are
thus often described as “almost linear”.

The f = O(g) notation is sometimes reused for small values of the pa-
rameter to f and g, where the limit is changed to approach 0,

lim sup
x→0

f(x)
g(x)

<∞
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The target of the limit should be understood from context, based on whether
the parameter is large or small. For instance, O(ε) often appears, eliding
terms like ε + ε2, when they are considered to be so small as to be irrelevant.

1.5. Fast Fourier transform (FFT)

The discrete Fourier transform (DFT) D and its inverse D−1 are linear
operators CN → CN that decompose a complex vector into a Fourier series,
or reconstruct it from its Fourier series. These operators (and their continu-
ous versions) are the cornerstones of many theoretical results and practical
applications, from differential equations and quantum mechanics to arbitrary
precision arithmetic and photo manipulation.

There are several definitions of the DFT, differing in if/where the vectors
are normalised. This essay uses a common definition, given by

(Dv)(k) =
N−1∑
j=0

v(j)e−2iπkj/N (1.5.1)

(D−1w)(k) = 1
N

N−1∑
j=0

w(j)e2iπkj/N (1.5.2)

where k = 0, . . . , N − 1.
A major reason for the widespread use of the DFT is that it can be

evaluated in almost linear time, making it the building block for efficient
versions of other algorithms.

More precisely, evaluating the definitions of the operators as written
above takes O(N2) operations, but they can also be computed via the Fast
Fourier Transform (FFT). The FFT takes only O(N log N) operations, which
makes it applicable and usable even for large N . For instance, the FFTW3
library [FJ05] can perform a DFT of length 225 ≈ 34 · 106 in less than a
second on a modern CPU3.

The FFT was first demonstrated by Gauss [HJB85], but it only became
widely known and popular much later. That popularity was driven by Cooley
and Tukey [CT65] who demonstrated a general purpose Fast Fourier Trans-
form designed for calculation with a computer and which was applicable
vectors with lengths factoring into only small prime factors.

3An Intel i7-4900MQ.



Chapter 2

Existing Convolution Algorithms
The convolution operation is an important component of many theoreti-

cal results and practical applications, and thus algorithms to compute it are
valuable. The convolution of two vectors v and w is defined as the vector
v ∗w where

(v ∗w)(k) =
∑

i+j=k

v(i)w(j) =
k∑

i=0
v(i)w(k − i) (2.0.1)

with v(i) = 0 and similarly w(j) = 0 if the index is out of bounds. If v has
length m and w has length n, v ∗w has length m + n− 1.

We will examine the two common ways to compute v ∗w in this section,
starting with naive convolution and then looking at a Fourier transform
based version.

2.1. Naive Convolution

One way to compute a convolution is to use the definition directly: each
element is a sum across two input vectors. An implementation of this naive
convolution (NC) is shown in Algorithm 2.1.

Algorithm 2.1 An algorithm to convolve via naive convolution vectors v
and w with length m and n respectively.

1: procedure NC(v, w)
2: N ← m + n− 1
3: r ← (0, 0, . . . , 0) where there are N zeros
4: for k ← 0, N − 1 do
5: for i← max(0, k −m + 1), min(n− 1, k) do
6: r(k)← r(k) + v(i)w(k − i)
7: end for
8: end for
9: return r.

10: end procedure

Unfortunately, computing v ∗ w in this manner involves O(nm) oper-
ations: (2.0.1) demonstrates that each element of v is multiplied by each
element of w, with subsets of these products summed. The quadratic be-
haviour of this algorithm makes naive convolution infeasibly slow for many
problems that require the convolution of large vectors.

10
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2.1.1. Error analysis

The main advantage of NC is that it is guaranteed to compute the entries
of a convolution of non-negative vectors with controlled, small relative error.

For a real vector p, we let p̃ denote the floating point approximation of
p, where p̃(k) is the closest floating point value to p(k) (with ties assumed
to be broken by the ties-to-even rule of IEEE754-2008). More generally,
throughout this essay, we denote ˜f(p, q, . . .) a machine approximation of
f(p, q, . . .), where the exact method by which the approximation is computed
is either explicitly stated or clear from context.

We are typically interested in analysing the accuracy of each step of the
computation and do so by assuming that the input is exactly representable,
that is, p = p̃ and q = q̃. This is indeed the setup for our first theorem.

Theorem 2.1.1. Suppose p and q are non-negative vectors of length m and
n respectively such that p̃ = p and q̃ = q. Let N = m + n− 1 be the length
of the convolution c = p ∗ q and let c̃ = p̃ ∗ q as computed by NC, then

rel(c̃(k), c(k)) ≤ (N + 1)ε(1 + Nε) (2.1.2)

for each k.

Proof. By definition, we have

c(k) =
∑

i+j=k

p(i)q(j), c̃(k) =
˜∑

i+j=k

˜p(i)q(j).

Hence, [Kei05, Lemma 2] implies that

|c̃(k)− c(k)| ≤ c(k) · (nk + 1)ε(1 + nkε)

where nk is number of entries in the NC sum where both 0 ≤ i, j ≤ N − 1.
The proof is completed by noticing nk ≤ N , and that the inequality implies
c̃(k) = 0 if c(k) = 0. □

In other words, using binary64 (or anything equally or more precise),
NC is highly accurate for all vectors for which it can reasonably be used:
the quadratic complexity means that it would take unreasonably long to use
NC to convolve vectors where the result has length a significant fraction of
1/ε = 253.

We saw previously in (1.1.6) that a bound of β on the relative error of
elements translates into the same bound on the relative error of an ℓp norm.
Hence, for NC, we have∥∥∥p̃ ∗ q − p ∗ q

∥∥∥
p
≤ (N + 1)ε(1 + Nε) ∥p ∗ q∥p . (2.1.3)

Example 2.1.4. Consider the vector p = (0, a, b, c) with a = 1 − b − c,
b = 10−5 and c = 10−20. The convolution p ∗p can be computed exactly via
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NC with rational arithmetic, with the following approximation:
p ∗ p = (0, 0, a2, 2ab, 2ac + b2, 2bc, c2)

≈ (0, 0, 1, 2 · 10−5, 10−10, 2 · 10−25, 10−40).
The values of the convolution as computed by NC using the binary64 and
binary128 floating point formats are close to the exact values: the vectors
of relative error for each entry, rNC,b, where b is the size of the floating point
format, are

rNC,64 = (0, 0, 2 · 10−16, 1 · 10−20, 2 · 10−16, 1 · 10−16, 3 · 10−17),
rNC,128 = (0, 0, 2 · 10−35, 3 · 10−35, 3 · 10−35, 3 · 10−35, 4 · 10−35).

These values are of course less than the bound (2.1.2), which is 5.5 · 10−16

and 4.8 · 10−34 respectively for the two formats. □

2.2. Direct FFT

Stockham [Sto66] demonstrated that one can compute a convolution far
more quickly via a Fourier Transform, leveraging the so-called convolution
theorem. This theorem does not quite compute the convolution, but rather
the variant defined as follows.

Definition 2.2.1. If v, w ∈ CQ, then the cyclic convolution v ∗Q w ∈ CQ

is defined as

(v ∗Q w)(k) =
Q−1∑
i=0

v(i)w((k − i) mod Q) (2.2.2)

where 0 ≤ x mod Q < Q is the positive remainder of dividing x by Q.

The DFT can be used to compute this convolution directly, efficiently.

Theorem 2.2.3. Given vectors v, w ∈ CQ, then
v ∗Q w = D−1(Dv ⊙Dw) (2.2.4)

where ⊙ is the pointwise product of two vectors of equal length.

As we saw in Section 1.5, the fast Fourier transform allows one to compute
D and D−1 of Q-dimensional complex vectors in O(Q log Q) time. Hence,
since (2.2.4) performs three such operations, along with the O(Q) pointwise
product, the overall run time is O(Q log Q). However, this cyclic convolution
is not the exact vector we require.

Fortunately, the cyclic convolution can be used to deduce the conven-
tional convolution by extending vectors with a suffix of zeros. Suppose
v ∈ Cm and w ∈ Cn, where m, n ≥ 1, and let N = m + n− 1 be the length
of the convolution v ∗w. For any Q ≥ N , define two vectors vQ, wQ ∈ CQ

by

vQ(k) =

v(k) if k < m

0 otherwise
(2.2.5)
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and similarly for wQ in terms of w and n. It is a standard result that
the cyclic convolution (2.2.2) of these extended vectors is essentially the
conventional convolution (2.0.1). In particular, we have, via (2.2.4),

v ∗w = trunc(vQ ∗Q wQ) = trunc(D−1(DvQ ⊙DwQ)), (2.2.6)

where trunc : CQ → CN is the projection of a vector in CQ onto CN that
consists of just taking the vector’s first N coordinates. In fact, those trailing
elements have exact value zero, so some applications may be better served by
omitting the trunc operation. Algorithm 2.2 lists FFT-C, which implements
this procedure.

Algorithm 2.2 An algorithm to compute a convolution via FFT of vectors
v and w of length m and n respectively.

1: procedure FFT-C(v, w)
2: Set N ← m + n− 1 and choose some Q ≥ N .
3: Extend v, w to vQ, wQ ∈ CQ by padding with zeros.
4: return D−1(DvQ ⊙DwQ), truncated to length N .
5: end procedure

We use the length Q ≥ N rather than N directly because Fourier trans-
forms can typically be performed with a smaller constant factor in the almost
linear complexity when the length of the vectors is composed of only small
prime factors, for example, Q = 2a3b5c. Even if Q is restricted to just hav-
ing form Q = 2a, there is such a Q satisfying N ≤ Q < 2N , and hence
the complexity of (2.2.6) is O((n + m) log(n + m)) with this choice. This
almost-linear complexity implies that we can apply FFT-based convolution
to vectors far longer than we can when using NC.

Fourier transform based convolutions do have guarantees about their
accuracy, and indeed can be more accurate than the naive method in some
senses. For instance, quoting [GO77], Schatzman [Sch96] writes “Transform
methods normally give no appreciable amplification of roundoff errors. In
fact, the evaluation of convolution-like sums using FFTs often gives results
with much smaller roundoff error than would be obtained if the convolution
sums were evaluated directly”.

However, these analyses focus on the accuracy of the vector as a whole,
via ℓp norms, which means there is not much regard to the accuracy of
individual elements of a transform and/or convolution. In particular, there
are no guarantees about the relative accuracy of the elements, as there are
for NC.

For example, Figure 2.1 demonstrates the computation of a convolution
via FFT-C, contrasting it with the NC-computed accurate value. The FFT-
C convolution is only accurate for values larger than approximately 10−16,
once the exact convolution falls below this level, the numeric noise generated
by catastrophic cancellation is much larger than the true values. Indeed, the
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Figure 2.1 – The values of the pmf p∗p (solid line) as computed via FFT-C of
Algorithm 2.2, are compared with the values computed via naive-convolution
(dotted line). Here p(k) = A exp

(
1
60k(10− k)

)
for k = 0, 1, . . . , 127, where A

guarantees p is a pmf, that is, ∥p∥1 = 1. In the context of this essay, interest
in convolutions is motivated by computing p-values, and in this case, the p-
value of k0 = 215, that is, the sum of the shaded region, P =

∑
k≥k0(p ∗p)(k)

is computed to be P̃ ≈ 3 · 10−16 when the convolution is performed via FFT-
C, which is more than 138 orders of magnitude larger than the true value of
P ≈ 6 · 10−154.

value of the smallest element of the convolution as computed via FFT-C is
approximately 10200 times larger than the exact value.

Example 2.2.7. Let us return to Example 2.1.4, and do the same convo-
lutions with FFT-C instead of NC. We used the FFTW3 library [FJ05] for
the transforms with both binary64 and binary128, but any implementation
would similarly have relative errors much larger than those of NC:

rFFT-C,64 = (0,∞, 4 · 10−17, 5 · 10−12, 2 · 10−7, 3 · 108, 8 · 1022),
rFFT-C,128 = (∞,∞, 4 · 10−17, 1 · 10−20, 1 · 10−16, 7 · 10−12, 3 · 105). □

FFT-C with fixed-precision floating point formats will always suffer from
such catastrophic cancellation, when operating on vectors with sufficiently
large dynamic range.

2.2.1. Error Analysis

The first step to having guarantees on the precision of an algorithm is
understanding the error it introduces. We now analyse the round-off error in-
troduced by performing convolution with a Fourier transform and its inverse
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implemented with floating-point arithmetic. Denote these approximations
to D and D−1 as D̃ and D̃−1 respectively.

The goal of this section is to prove the following theorem and hence its
corollary. For this purpose, we suppose that we are working with a floating
point system with machine precision ε < 2−5 with the rounding mode set to
round to nearest (rounding ties to even).
Theorem 2.2.8. Suppose v, w ∈ CQ are vectors of length Q = 2K such that
ṽ = v and w̃ = w, and ṽ ∗Q w is an approximation to the cyclic convolution
v ∗Q w computed via (2.2.4) with D̃ and D̃−1 in place of D and D−1, then∥∥∥ṽ ∗Q w − v ∗Q w

∥∥∥
∞

< cKε ∥v∥2 ∥w∥2 (1 + O(ε)) (2.2.9)

where c = 15 for K ≥ 1 and c = 13.5 for K ≥ 5.

Our main goal is to understand conventional, not cyclic, convolutions,
and so it is really the following result that is most interesting. It follows di-
rectly from (2.2.6), which demonstrates that the elements of the convolution
are a subset of the elements of a cyclic convolution.
Corollary 2.2.10. Suppose x ∈ Cm and y ∈ Cn such that x = x̃ and
y = ỹ. Let Q = 2K ≥ m + n− 1, and let x̃ ∗ y be an approximation to the
convolution x ∗ y computed via (2.2.6) by padding to length Q with D̃ and
D̃−1 in place of D and D−1, then∥∥∥x̃ ∗ y − x ∗ y

∥∥∥
∞

< cKε ∥x∥2 ∥y∥2 (1 + O(ε))

where c = 15 for K ≥ 1 and c = 13.5 for K ≥ 5.

Let v = Dv and ṽ = D̃v, and similarly w and w̃ for w. Our line of
attack to prove Theorem 2.2.8 is to focus on the the left-hand side of (2.2.9)∥∥∥ṽ ∗Q w − v ∗Q w

∥∥∥
∞

=
∥∥∥∥D̃−1(˜̃v ⊙ w̃)−D−1(v ⊙w)

∥∥∥∥
∞

and bound it by working through how the transforms interact with norms.
Thus, we first detail some preliminary results in this area.

Let x, y ∈ C and x ∈ CQ be such that x̃ = x, ỹ = y and x̃ = x. Under
the assumptions of the behaviour of the floating point system we have made,
[BPZ07] proved that

|x̃y − xy| <
√

5ε |xy| . (2.2.11)
In [Kei05, Lemma 4], Keich proves the following bound on the error of a

transform: ∥∥∥(D − D̃)x
∥∥∥

∞
≤ ((µ + 2)K + O(ε))ε ∥x∥1 (2.2.12)∥∥∥(D−1 − D̃−1)x

∥∥∥
∞
≤ (µ + 2)K + O(ε)

Q
ε ∥x∥1 (2.2.13)

for µ = 3. This constant µ is derived from a less precise analysis in the
manner of (2.2.11), which only deduced 3ε |xy| as the bound, hence, we can
take µ =

√
5 here.
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Theorem 4.1 of [TZ01] shows a similar bound on the ℓ2-norm of the error
of D̃ ∥∥∥(D̃ −D)x

∥∥∥
2

< ((µ + 2)K + O(ε))
√

Qε ∥x∥2 . (2.2.14)

We also need the following standard results about vector norms and
the Fourier transform. Let x, y ∈ CQ be arbitrary. The Cauchy-Schwartz
inequality states

∥x⊙ y∥1 ≤ ∥x∥2 ∥y∥2 , (2.2.15)

and Parseval’s theorem states

∥Dx∥2 =
√

Q ∥x∥2 ,
∥∥∥D−1y

∥∥∥
2

= 1√
Q
∥y∥2 . (2.2.16)

Lemma 2.2.17. For arbitrary x, y ∈ CQ,

∥Dx∥∞ ≤ ∥x∥1 , (2.2.18)∥∥∥D−1y
∥∥∥

∞
≤ 1

Q
∥y∥1 , (2.2.19)

∥∥∥D−1(x⊙ y)
∥∥∥

∞
≤ ∥x∥2√

Q

∥y∥2√
Q

. (2.2.20)

Proof. It follows from the definition that

∥Dx∥∞ = max
k

∣∣∣∣∣∣
∑

j

x(j)e−2πijk

∣∣∣∣∣∣ ≤ ∥x∥1 ,

proving (2.2.18). Identical reasoning proves (2.2.19), just needing to match
the definition of D−1 by negating the −2π to 2π and including the additional
factor of 1

Q
.

The Cauchy-Schwartz inequality and (2.2.19) imply (2.2.20). □

Lemma 2.2.21. For arbitrary x, y ∈ CQ,∥∥∥x̃∥∥∥
2
≤ (1 + O(ε)) ∥x∥2 , (2.2.22)∥∥∥∥˜̃x⊙ ỹ − x⊙ y

∥∥∥∥
1
≤ (2(µ + 2)K + µ + O(ε))ε ∥x∥2 ∥y∥2 , (2.2.23)∥∥∥∥˜̃x⊙ ỹ

∥∥∥∥
1
≤ (1 + O(ε)) ∥x∥2 ∥y∥2 . (2.2.24)

Proof. Deducing (2.2.22) is immediate from the reverse triangle inequality
applied to (2.2.14).
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We break (2.2.23) into parts,∥∥∥∥˜̃x⊙ ỹ − x⊙ y
∥∥∥∥

1
=
∥∥∥∥˜̃x⊙ ỹ − x̃⊙ ỹ + x̃⊙ ỹ − x̃⊙ y + x̃⊙ y − x⊙ y

∥∥∥∥
1

≤
∥∥∥∥˜̃x⊙ ỹ − x̃⊙ ỹ

∥∥∥∥
1︸ ︷︷ ︸

γ1

+
∥∥∥x̃⊙ ỹ − x̃⊙ y

∥∥∥
1︸ ︷︷ ︸

γ2

+
∥∥∥x̃⊙ y − x⊙ y

∥∥∥
1︸ ︷︷ ︸

γ3

Together, (2.2.11), the Cauchy-Schwartz inequality (2.2.15), and (2.2.22)
imply that

γ1 ≤ µε
∥∥∥x̃⊙ ỹ

∥∥∥
1

≤ µε
∥∥∥x̃∥∥∥

2

∥∥∥ỹ∥∥∥
2

≤ µε(1 + O(ε)) ∥x∥2 ∥y∥2

Using (2.2.16) and both the Cauchy-Schwartz inequality and (2.2.14) again
we can see

γ2 =
∥∥∥x̃⊙ (ỹ − y)

∥∥∥
1

≤
∥∥∥x̃∥∥∥

2

∥∥∥ỹ − y
∥∥∥

2

≤ (1 + O(ε)) ∥x∥2 ((µ + 2)K + O(ε))ε
√

Q ∥y∥2

= ((µ + 2)K + O(ε))ε ∥x∥2 ∥y∥2

Similarly γ3 ≤ ((µ + 2)K + O(ε))ε ∥x∥2 ∥y∥2, and combining these three
bounds yields (2.2.23).

Finally, (2.2.24) follows from (2.2.23) and (2.2.15):∥∥∥∥˜̃x⊙ ỹ

∥∥∥∥
1
≤
∥∥∥∥˜̃x⊙ ỹ − x⊙ y

∥∥∥∥
1

+ ∥x⊙ y∥1

≤ O(ε) ∥x∥2 ∥y∥2 + ∥x∥2 ∥y∥2

= (1 + O(ε)) ∥x∥2 ∥y∥2 □

We can now complete the analysis.

Proof of Theorem 2.2.8. We write the left-hand side of (2.2.9) as,∥∥∥ṽ ∗Q w − v ∗Q w
∥∥∥

∞
=
∥∥∥∥D̃−1(˜̃v ⊙ w̃)−D−1(v ⊙w)

∥∥∥∥
∞

≤
∥∥∥∥D−1(˜̃v ⊙ w̃ − v ⊙w)

∥∥∥∥
∞︸ ︷︷ ︸

α

+
∥∥∥∥(D̃−1 −D−1)˜̃v ⊙ w̃

∥∥∥∥
∞︸ ︷︷ ︸

β
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The first term α can be bounded by the combination of (2.2.19), (2.2.23)
and Parseval’s theorem (2.2.16),

α ≤ 1
Q

∥∥∥∥˜̃v ⊙ w̃ − v ⊙w

∥∥∥∥
1

≤ 1
Q

(2(µ + 2) + µ + O(ε))ε ∥v∥2 ∥w∥2

= (2(µ + 2) + µ + O(ε))ε ∥v∥2 ∥w∥2

This leaves β, which falls to (2.2.13), (2.2.24) and Parseval’s theorem
again,

β ≤ (µ + 2)K + O(ε)
Q

ε
∥∥∥∥˜̃v ⊙ w̃

∥∥∥∥
1

≤ (µ + 2)K + O(ε)
Q

ε ∥v∥2 ∥w∥2

= ((µ + 2)K + O(ε))ε ∥v∥2 ∥w∥2 .

Hence, bringing the parts together gives∥∥∥ṽ ∗Q w − v ∗Q w
∥∥∥

∞
≤ (3(µ + 2)K + µ + O(ε))ε ∥v∥2 ∥w∥2 ,

and the constants mentioned in Theorem 2.2.8 follow from µ =
√

5. □

2.3. Shifted FFT

Keich [Kei05] introduced the sFFT algorithm (shifted FFT) that guaran-
tees the accuracy of the tail sum of certain FFT-based convolutions. Specifi-
cally, given a log concave non-negative pmf p, sFFT allows one to accurately
compute a region of the repeated self-convolution p∗L around some index s0.
The algorithm uses this to accurately compute the tail sum of p∗L from s0
to the end of the vector,

P =
∑
s≥s0

p∗L(s). (2.3.1)

The values near s0 will typically dominate that sum, so one can retrieve an
accurate estimate of P without knowing the complete value of the convolu-
tion p∗L.

The motivation for sFFT is calculating small p-values for performing
exact tests: p∗L is the pmf of the random variable X = ∑L Xi where the
Xi are independent and identically distributed (iid) lattice-valued random
variables with pmf p, and thus P is exactly the p-value of s0. sFFT gives
an efficient way to compute an approximation to P , with guarantees on its
accuracy.

Like FFT-C, sFFT relies on the convolution theorem, which for a pmf p
of length n, in this case has the form

p∗L = D−1
(
(Dp)⊙L

)
, (2.3.2)
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where (v⊙L)(k) = v(k)L and D and D−1 are Q ≥ L(n− 1) + 1 dimensional
operators. As before, the vector p must first be extended with zeros to have
length Q to account for the DFT naturally computing a cyclic convolution.
The FFT allows D and D−1 to be computed in O(Q log Q) time, and hence
the run time complexity of this algorithm is O(Ln log Ln).

Of course, as with FFT-C, implementing (2.3.2) with the finite precision
operators D̃ and D̃−1 means small values of p∗L will be calculated with very
high relative error, and the extra operations implied by the exponentiation
by L only exacerbates this problem.

The key to sFFT guaranteeing accuracy is performing an exponential
shift of the vector p. The statistical literature often refers to this as “expo-
nential tilting” (for instance, [BC89]), and it is the procedure that underlies
saddlepoint approximations. Conceptually, the shift acts as a rotation of
log p, to ensure that values in the area of interest are large enough to be
computed accurately via FFT-C.

Specifically, given some factor θ one can compute the shifted pθ defined
by

pθ(k) = p(k)eθk/Mp(θ), (2.3.3)
where Mp(θ) = ∑

k p(k)ekθ is the moment-generating function that ensures
that pθ is also normalised to be a pmf. Ignoring the normalisation, which is
multiplication of the vector by a constant and hence easy to compensate for,
this operation commutes with convolution:

(pθ ∗ qθ)(k) =
∑

i+j=k

p(i)q(j)e(i+j)θ = (p ∗ q)(k)eθk. (2.3.4)

In other words, (pθ ∗ qθ) = (p ∗ q)θ.
The θ by which p should be shifted is chosen based on an index s0 selected

ahead of time, so that, heuristically, the maximum of p∗L
θ lies at or very close

to index s0. Specifically, with the choice
θ0 = arg minθ log Mp(θ)− θs0/L, (2.3.5)

the expectation of pL
θ is s0, and, moreover, this choice minimizes the following

bound on the approximation error of the tail sum P [Kei05, Section 4.5],∣∣∣P − P̃θ

∣∣∣ ≤ γe−θs0+L log Mp(θ) (2.3.6)

where γ is a factor that does not depend on θ, and P̃θ represents P with the
convolution p∗L computed via sFFT with a fixed exponential shift of θ.

The log concavity assumption on p guarantees that the largest values
of p∗L

θ0 will lie around s0, and thus will be accurately computed by FFT-C.
Once the shift is inverted, these accurately computed elements near s0 will
be the largest elements p∗L

θ0 (s) for s ≥ s0, and hence the largest contributors
to the tail sum P .

The remaining piece of the algorithm is ensuring that inaccurate calcu-
lation of the smaller values does not influence the final result. As we saw
above, FFT-C may calculate values many orders of magnitude larger than
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the true value when the true value is very small. Thus, to avoid this some-
what uncontrolled noise being incorrectly included in the sum, sFFT will
zero any elements that are likely to be miscomputed. It does this by an
analysis of the error in (2.3.2), the conclusion of which is setting the entry
p̃∗L(s) to zero if it is such that

p̃∗L(s) < LcKε, (2.3.7)
where c is a small universal constant, and Q = 2K was the dimension of the
Fourier transform operators. This bound is justified by [Kei05, Lemma 5],
which we look at in more detail below.

Algorithm 2.3 lists the sFFT algorithm as defined by [Kei05], which
computes an approximation to the tail sum P . Two plots showing the various
vectors computed in the process of sFFT are displayed in Figure 2.2. The
first demonstrates how sFFT resolves the problem in Figure 2.1 and hence
correctly computes the p-value, while the second gives an example where
sFFT fails to compute an accurate approximation to the p-value, due to a
non-log-concave pmf.

Algorithm 2.3 The sFFT algorithm, for computing the region of p∗L

around some index s0, where p is a log concave pmf, with length n.
1: procedure sFFT(p, L, s0)
2: Choose θ0 via (2.3.5), and set M ← ∑

k p(k)ekθ0 .
3: Shift p to pθ0 via pθ0(k)← p(k)ekθ0/M .
4: Choose K such that 2K ≥ (n− 1)L + 1.
5: Pad pθ0 with zeros so that it has length 2K .
6: Compute p̃∗L

θ0
via (2.3.2).

7: Zero any element of p̃∗L
θ0

below the error threshold LcKε (see
Lemma 2.3.8).

8: Deduce p̃∗L by inverting the shift p̃∗L(k)← p̃∗L
θ0

(k)e−kθ0ML.
9: return ∑

s≥s0 p̃∗L(s).
10: end procedure

2.3.1. Error analysis

The analysis of the error in sFFT in [Kei05] gives two key results, quoted
here with the assumption that the quantity cδ defined in [Kei05] is zero, since
we are not performing any lattice approximations, which cδ quantifies.

The first result focuses on the actual error in a convolution computed via
(2.3.2), under the assumption that the length of the final result is Q = 2K .
This gives the bound (2.3.7) for filtering p̃∗L

θ0
.

Lemma 2.3.8 ([Kei05, Lemma 5]). Let p ∈ Rn be a pmf (i.e., p(k) ≥ 0 and
∥p∥1 = 1), and let p̃∗L be computed via (2.3.2) with floating point, then∥∥∥p̃∗L − p∗L

∥∥∥
∞
≤ LcKε
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Figure 2.2 – A breakdown of the sFFT algorithm when used to compute
an approximation P̃ to P =

∑
s≥s0 p∗L(s) for s0 = 215 and L = 2 with two

different pmfs p. The first plot uses p from Figure 2.1, while the second has
p(s) = A exp

(
1
60s(s− 256)

)
for s = 0, . . . , 127, with A such that ∥p∥1 = 1.

Both show the vectors computed at each stage of the algorithm: the dotted
lines show exact values of the convolutions, solid lines show the values com-
puted by sFFT after filtering errors out, and the dashed purple line shows
the noise in the FFT-C computation that was removed. As can be seen, the
solid red line matches the exact value of p ∗ p very closely around s0 in the
first example, and, indeed, rel(P̃ , P ) < 10−13. The second one demonstrates
how sFFT can fail with non-log-concave pmfs: the region around s0, which
contributes most to P , is still small in the shifted pmf and hence is not calcu-
lated accurately by FFT-C. This results in P̃ ≈ 2 · 10−234 with the true value
P ≈ 1 · 10−225 many times larger.
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where c is a small universal constant, Q = 2K is the size of the Fourier
transforms used, and Q ≥ (n− 1)L + 1, the length of p∗L.

The second result is the error in the result of sFFT as an approximation
to P , and implies the bound (2.3.6) that supports (2.3.5) for choosing θ0.

Lemma 2.3.9 ([Kei05, Claim 2]). Let P be the tail sum (2.3.1), and P̃θ

be the approximation to it computed via sFFT with fixed θ0 = θ instead of
computing it via (2.3.5), then∣∣∣P − P̃θ

∣∣∣ ≤ LcKε
∑
s≥s0

e−θs+L log M(θ),

where c and K are as in Lemma 2.3.8.



Chapter 3

Accurate FFT Convolutions
Now that we understand the error in an FFT-based convolution, we can

try to control and manipulate it, to design FFT-based convolution algorithms
that have guarantees about the values of individual elements.

3.1. Checked FFT-C

Our first step toward accurate FFT-based computation of a convolution
is the identification of values that are or can be accurately computed via
FFT-C. Given some vectors v and w and the approximation ṽ ∗w to v ∗w,
identifying accurately computed values can be done in two ways: either by
examining the computed values (ṽ ∗w)(k) to retroactively find those that
are possibly inaccurate, or instead, by reasoning about the exact v ∗w. The
practicality of the latter approach is not so obvious, because the convolution
v∗w is exactly what we want to compute, but one can still prove theoretical
results about it and hence deduce practical conditions.

For this section, unless otherwise stated, v ∈ Cm and w ∈ Cn are complex
vectors with v = ṽ and w = w̃. Further assume that ṽ ∗w is computed
via FFT-C, with Q = 2K ≥ m + n− 1 and c referring to the values used in
Corollary 2.2.10.

3.1.1. Guaranteeing FFT-C accuracy retroactively

Corollary 2.2.10 gave bounds on the maximal absolute error of elements of
a convolution computed via FFT-C, which can be used to bound the relative
error of sufficiently large elements, as described in the following corollary of
Corollary 2.2.10.

Lemma 3.1.1. Suppose α ≥ 2, then if the index k is such that∣∣∣(ṽ ∗w)(k)
∣∣∣ ≥ (α + 1) · cKε ∥v∥2 ∥w∥2 , (3.1.2)

the computed value at k has bounded relative error,

rel((ṽ ∗w)(k), (v ∗w)(k)) <
1
α

.

Proof. Let x = (v∗w)(k) and x̃ = (ṽ ∗w)(k), then Corollary 2.2.10 implies

|x̃− x| ≤ cKε ∥v∥2 ∥w∥2 ,

which, combined with the reverse triangle inequality, gives,

|x| > |x̃| − cKε ∥v∥2 ∥w∥2

≥ α · cKε ∥v∥2 ∥w∥2 .

23
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Putting them together completes the proof

rel(x̃, x) = |x̃− x|
|x|

<
cKε ∥v∥2 ∥w∥2

α · cKε ∥v∥2 ∥w∥2
= 1

α
. □

This result allows for retroactively evaluating which values of an FFT-C
convolution are guaranteed to be accurate, to any chosen level of accuracy.
This theorem has the notable practical quality of only needing knowledge
of the computed convolution ṽ ∗w, that is, the approximation, rather than
the (unknown) exact value v ∗w.

3.1.2. Guaranteeing FFT-C accuracy prospectively

Corollary 2.2.10 implies that, if (v ∗ w)(k) = 0, the FFT-C computed
value (ṽ ∗w)(k) may be as large as cKε ∥v∥2 ∥w∥2. By setting to zero
computed values that are smaller than this bound, we can guarantee that
we compute the zeros of a convolution accurately. Note that some of those
values set to zero may in fact be non-zero, however ensuring that zeros are
computed accurately in this manner reduces the maximum possible relative
error in an estimate from ∞ to 1, or even further, as we will see below.

Definition 3.1.3. Given a vector z̃ ∈ Cm+n−1 taken as an approximation
to v ∗w, the filtering function filtv,w : Cm+n−1 → Cm+n−1 is defined as

filtv,w(z̃)(k) =

z̃(k) if |z̃(k)| ≥ cKε ∥v∥2 ∥w∥2
0 otherwise.

(3.1.4)

We will usually write just filt without its subscripts, when they are clear
from context.

The control in relative error that this function gives can be quantified as
follows.

Lemma 3.1.5. Suppose α ≥ 2, and, an index k is such that either|(v ∗w)(k)| ≥ α · cKε ∥v∥2 ∥w∥2 , or
(v ∗w)(k) = 0,

(3.1.6)

where c is that defined in Corollary 2.2.10, then the approximation ṽ ∗w
computed via FFT-C satisfies,

rel(filt(ṽ ∗w)(k), (v ∗w)(k)) <
1
α

. (3.1.7)

Proof. Let x = (v ∗w)(k), x̃ = (ṽ ∗w)(k) and x̃′ = filt(v ∗w)(k). There
are two choices, either |x| > αcKε ∥v∥2 ∥w∥2 or |x| = 0. For both cases

|x̃− x| < cKε ∥v∥2 ∥w∥2 . (3.1.8)

In the former case, we have

|x̃| > |x| − cKε ∥v∥2 ∥w∥2 ≥ cKε ∥v∥2 ∥w∥2 ,
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and hence x̃′ = x̃ ̸= 0. In this case,

rel(x̃′, x) = |x̃− x|
|x|

<
cKε ∥v∥2 ∥w∥2

α · cKε ∥v∥2 ∥w∥2
= 1

α
.

In the latter case, x = 0, and hence (3.1.8) implies x̃′ = 0, giving
rel(x̃′, x) = 0. □

Unlike Lemma 3.1.1, this result relies on the values of the exact convolu-
tion v ∗w and so cannot be used directly to retroactively verify the values
of a convolution ṽ ∗w. However, its utility will become clearer in the next
sections as it is the critical building block.

3.1.3. Support of a convolution

As we next argue, Lemma 3.1.5 implies that it is possible to efficiently
calculate the support of convolutions of even very long non-negative vectors,
and hence, all the zeros of the convolution can be guaranteed to be computed
accurately.

This result is best given in terms of the smallest non-zero element of a
convolution, which we denote min+X = min {x ∈ X | x > 0}. This allows us
to phrase it more clearly by focusing on the first case of (3.1.6). We hence
have the following corollary of Lemma 3.1.5, with c and K as in that lemma.

Corollary 3.1.9. If (3.1.6) holds with α = 2 for all k, that is, if
min

k
+ |(v ∗w)(k)| ≥ 2 · cKε ∥v∥2 ∥w∥2 , (3.1.10)

then the support of the vectors filt(ṽ ∗w) and v ∗w are identical.

Proof. Since (3.1.6) holds, the conclusion of Lemma 3.1.5 applies to every
index k. That is, for all k, we have

rel(filt(ṽ ∗w)(k), (v ∗w)(k)) <
1
2

.

If (v ∗ w)(k) = 0, this forces filt(ṽ ∗w)(k) = 0. On the other hand, if
(v ∗ w)(k) ̸= 0, then rel(0, (v ∗ w)(k)) = 1 ≥ 1/2, and thus we must have
filt(ṽ ∗w)(k) ̸= 0. □

Given non-negative and non-zero vectors p and q with convolution p ∗ q
of length Q, define v = 1p>0 and w = 1q>0. The vectors are non-negative,
so the support of the exactly computed p ∗q, supp(p ∗q), is identical to the
support of the convolution of the supports, supp(v ∗w).

We have ∥v∥2 ≤
√

Q and similarly for ∥w∥2, and, since every element of
v and w is either 1 or 0,

min
k

+ |(v ∗w)(k)| = 1.

Hence, as long as QK = Q log2 Q ≤ (2cε)−1 we have
2 · cKε ∥v∥2 ∥w∥2 ≤ 2cKεQ ≤ 1,
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and thus it follows from Corollary 3.1.9 that

supp(filt(ṽ ∗w)) = supp(v ∗w) = supp(p ∗ q).

This allows computing the support of all practice convolutions: for the
ε = 2−53 of binary64, the condition Q log2 Q ≤ (2cε)−1 is satisfied by

Q ≤ 7 · 1012 =: Qmax. (3.1.11)

Such long vectors would rarely be encountered in practice: even just storing
a vector of 7 · 1012 binary64s requires 56 terabytes of memory. One could
store a very sparse vector of this length in much less space, but, anyhow,
other convolution algorithms are likely to be better suited to this class of
vectors, even when Q is much smaller.

3.1.4. The algorithm

By combining this reasoning about the support and Lemma 3.1.1, we cre-
ate Checked FFT-C, listed in Algorithm 3.1, that can accurately compute
some convolutions of non-negative vectors, even when there are zeros in the
final convolution. More generally, Checked FFT-C can identify elements
that are possibly inaccurate when the convolution is not guaranteed to be
accurate. Note that (p ∗ q)(k) = 0 can only happen for some k if at least
one of p and q contains a zero.

Algorithm 3.1 The Checked FFT-C algorithm. Given non-negative vec-
tors p and q and α ≥ 2, Checked FFT-C returns p̃ ∗ q as computed by
FFT-C, and a set I of indices for which the relative error may be larger than
1/α.

1: procedure Checked FFT-C(p, q, α)
2: Compute p̃ ∗ q via FFT-C, and note the Q of Corollary 2.2.10 that

was used.
3: Let I be the set of indices for which (3.1.2) does not hold.
4: if I ̸= ∅ and Q ≤ Qmax (see (3.1.11)) and p(k) = 0 or q(k) = 0 for

some k then
5: Use FFT-C to compute the support of p ∗ q via Corollary 3.1.9,

Isup = supp(p ∗ q) = supp(filt( ˜1p>0 ∗ 1q>0)).
6: Zero any entry (p̃ ∗ q)(i) with i /∈ Isup.
7: Set I ← I ∩ Isup.
8: end if
9: return p̃ ∗ q, I.

10: end procedure

3.1.5. Complexity

Let p ∈ Rm and q ∈ Rn be vectors, and Q ≥ m + n − 1 such that
Q = O(n + m). Checked FFT-C runs in O(Q log Q) time: it consists of
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one or two FFT-C computations, each taking O(Q log Q) time, along with
checking (3.1.2), searching p and q for a zero, zeroing some entries of p̃ ∗ q
and computing a set intersection, all of which can be performed in O(Q)
time.

3.2. psFFT-C

What happens when Checked FFT-C cannot guarantee that all the
values of the convolution are computed accurately? One way to fill in the
gaps where FFT-C is not guaranteed to be accurate is to use NC to re-
compute (p̃ ∗ q)(i) for each i ∈ I. However for cases when FFT-C fails to
accurately compute a significant number of elements this approach has the
same quadratic asymptotic cost as a direct NC itself, and thus is undesirable
as a general strategy.

Example 3.2.1. Define a vector p of length n + 1,
p = (1, ε, ε, . . . , ε︸ ︷︷ ︸

n copies

).

The exact convolution p ∗ p has length 2n + 1, and value
p ∗ p =

(
1, 2ε, 2ε + ε2, . . . , 2ε + (n− 1)ε2, nε2, . . . , 2ε2, ε2

)
Choose some α ≥ 2, then, since most entries are so small, they will not
satisfy (3.1.2), and Checked FFT-C(p, p, α) will compute

p̃ ∗ p = (1 + O(ε), O(ε), . . . , O(ε))
I = {1, 2, . . . , 2n}

That is, every entry other than the 1 + O(ε) at index 0 will not be guaran-
teed to have relative accuracy 1/α, and hence NC will have to be used to
recompute 2n entries, with an average cost for each of O(n). □

3.2.1. Partitioning

An alternative strategy that uses FFT-C to try to maintain good as-
ymptotic run time performance is hinted by Lemma 3.1.5. As long as the
non-zero elements of v ∗ w are sufficiently large, FFT-C will compute a
convolution accurately, so if a convolution v ∗w can be converted into one
or more convolutions that are guaranteed to satisfy (3.1.6), then it can be
computed via the efficient FFT-C.

Convolution is a bilinear operator, so one conversion strategy is simple:
for non-negative vectors p and q of length m and n respectively, write

p =
np∑
i=1

pi and q =
nq∑

j=1
qj

for some vectors pi and qj. The convolution p ∗ q can then be written

p ∗ q =
np∑
i=1

nq∑
j=1

pi ∗ qj. (3.2.2)
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In a practice, each term pi ∗ qj can of course only be approximated
by some vector p̃i ∗ qj, which could be computed via NC, or FFT-C, or
maybe some alternate strategy. However, guarantees about the error in
these approximations translates into guarantees of the error in the overall
approximation

p̃ ∗ q =
˜np∑

i=1

nq∑
j=1

p̃i ∗ qj. (3.2.3)

Of course, we wish to perform each p̃i ∗ qj via FFT-C to benefit from
its almost linear performance. Thus to have assurances about the error we
should select pi and qj such that Lemma 3.1.5 holds for each pi ∗ qj. The
asymptotic cost of this strategy is O(npnq(m + n) log(m + n)). When npnq

is small, as is typical, this can be much less than the O(mn) cost of NC,
representing a significant speed-up.

There is one major unresolved question with the strategy outlined above:
how does one guarantee (3.1.6) for every pi and qj pair, without knowing
the exact value of each pi ∗ qj? Furthermore, to be usable in an algorithm
that replaces NC, it must be possible to compute the pi and qj efficiently,
that is, in time less than O(mn).

One way to answer that question for a convolution v ∗w is to guarantee
(3.1.6) holds for the entire convolution by a conservative approximation of
its first condition. In particular, the extended dynamic range R(v) and R(w)
should not be too large, where R(v) is defined for non-negative v as

R(v) = log ∥v∥2
min+v

. (3.2.4)

Note that R(v) is a variant of the conventional dynamic range, which uses
the ℓ∞ norm in place of the ℓ2 norm. Also, note that the logarithm can be
computed to any base, as long as that base is used consistently.

Controlling this R quantity gives the following corollary of Lemma 3.1.5.

Corollary 3.2.5. Suppose v and w are non-negative vectors and α ≥ 2, if
R(v) + R(w) ≤ − log(αcKε) (3.2.6)

then (3.1.6) holds, and hence so does the conclusion of Lemma 3.1.5.

Proof. The condition (3.2.6) can be rearranged into
min+v ·min+w ≥ αcKε ∥v∥2 ∥w∥2 ,

and by non-negativity, min+(v ∗w) ≥ min+v ·min+w. □

As stated above, (3.2.6) is a conservative condition, since min+(v ∗w) =
min+v min+w typically only occurs if v and w both have a minimal value at
the same end, or if the vectors are sparse. In other cases, the smallest positive
value may be significantly larger than that computed from the estimate.
Unfortunately, this means that some convolutions that do satisfy (3.1.6) are
incorrectly flagged as invalid, possibly forcing more work than necessary.
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Example 3.2.7. Take any x ∈ (0, 1/2) and consider the vector of length 3,
p = (1, x, 1).

We have min+(p ∗p) = 2x, but (min+p)2 = x2, underestimation by a factor
of 2/x, which can be arbitrarily large. □

However, despite being conservative in some cases, this condition is very
useful, since, by design, it does not require knowing the true value p ∗ q.

Almost all the necessary pieces are laid out, except the choice of pi and
qj needs to guarantee that (3.2.6) holds for all pairs of pi and qj. The easiest
way to guarantee this is to consider each of p and q in isolation, and choose
the vectors pi and qj such that

R(pi) ≤ −
1
2

log(αcKε) R(qj) ≤ −
1
2

log(αcKε). (3.2.8)

This can mean the vectors chosen are even more conservative than necessary,
but, as we will see, it does allow for an efficient method to find vectors that
will satisfy (3.2.6).

Example 3.2.9. Choose K = 2, so Q = 4 and choose α ≥ 2 such that
x =

√
2αcε/2 < 1. Define vectors of length 2 as p = (1, x) and q = (1, 1).

We have

R(p) = log(
√

1 + x2/x) ≈ −1
2

log(2αcε) + log 2

R(q) = 1
2

log 2

and hence p and q satisfy (3.2.6) as long as αcε is sufficiently small, meaning
p∗q can be computed accurately via FFT-C. On the other hand, p does not
satisfy (3.2.8) in isolation, and hence p will be partitioned into, for instance,
(1, 0) and (0, x), each of which does satisfy (3.2.8). Note however that this
example is handled efficiently via Checked FFT-C. □

The conditions (3.2.8) can be evaluated efficiently, as (3.2.4) can be com-
puted in linear time, much less than the quadratic complexity of NC. Fur-
thermore, it can be evaluated in an incremental fashion: if v′ differs to v
at one known entry, then R(v′) can be computed in O(1) time from R(v).
This hints that it is an permissible strategy to build the splits pi and qi in
an iterative fashion.

The PITS (partition into thin stripes) procedure listed in Algorithm 3.2
uses condition (3.2.8) to partition a non-negative vector p into horizontal
stripes that can be used to compute a convolution p ∗ · using FFT with
relative accuracy α.

Specifically, given p of length n, it uses a greedy algorithm to compute
a sequence [b1, . . . , bnp ] of boundaries for partitions pi which satisfy

pi(k) =

p(k) if bi+1 < p(k) ≤ bi,
0 otherwise,

(3.2.10)
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Algorithm 3.2 The PITS (Partition Into Thin Stripes) algorithm. It takes
a pmf p of length n and returns a sequence of breakpoints bi for partitions
pi defined by (3.2.10), each satisfying (3.2.8).

1: procedure PITS(p, α)
2: Find a permutation π so that p ◦ π is non-increasing (sorted from

largest to smallest).
3: Set i← 1, s1 ← p(π(1))2, b1 ← p(π(1)).
4: for j ← 2 : n do
5: Set x← p(π(j)).
6: if log(

√
si + x2/x) ≤ −1/2 log(αcKε) per (3.2.8) then

7: Update si ← si + x2.
8: else ▷ pi can not be extended and still

satisfy (3.2.8).
9: Update i← i + 1.

10: Set si ← x2, bi ← x.
11: end if
12: end for
13: Set np ← i.
14: return [b1, . . . , bnp ].
15: end procedure

where bnp+1 = 0.
The algorithm builds these partitions progressively. At any given iter-

ation of the loop on line 4, the index i represents some partition pi un-
der consideration. Each partition starts as pi = 0, and the condition on
line 6 is deciding whether to set pi(π(j)) = p(π(j)). If this modified pi

is denoted as p′
i, then the condition is checking if p′

i satisfies (3.2.8): by
induction, it is clear that si = ∥pi∥2

2, and the non-increasing nature of the
sequence of p(π(j)) means that x ≤ min+pi, and hence ∥p′

i∥2 =
√

si + x2

and min+p′
i = x.

If the condition fails, that is p′
i does not satisfy (3.2.8), then the partition

pi is frozen, and the loop starts to build a new partition pi+1, starting with
pi+1(π(j)) = p(π(j)). Again, by the non-increasing nature of the sequence
of elements of p, this value will be the largest in pi+1, and hence serves as
boundary bi+1.

The partitions are treated abstractly in PITS, as this ensures it can
run, and, in particular, the number of partitions np can be computed, in
almost linear time for all vectors p. If the partition vectors pi were built
concretely as the loop executes, then vectors with very large dynamic range
would require creating many sparse splits, which, if each split pi is stored
in its entirety, requires O(n) time to initialize to 0. Alternate strategies for
storage may allow reducing this, but, as we will see later in aFFT-C, it is
valuable to keep the cost of determining np as small as possible.
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The pi defined by (3.2.10) satisfy p = ∑
i pi as required to apply (3.2.3),

and the supports of the pi are pairwise disjoint, that is, supp pi∩supp pj = ∅
for all i ̸= j.

3.2.2. Shifting

As discussed, the complexity of computing a convolution p∗q via (3.2.3)
is highly dependent on the product npnq, and minimising that product can
result in large improvements to the performance of an algorithm based on
partitioning.

The sFFT algorithm of [Kei05], discussed in Section 2.3, uses an expo-
nential shift (2.3.3) for a similar purpose, and it applies equally well here:
instead of splitting p and q and using them to compute p̃ ∗ q, one can in-
stead perform an exponential shift with a factor θ, and split the resulting pθ

and qθ into partitions pθ,i and qθ,j. These partitions can be used in (3.2.3)
to give ˜(p ∗ q)θ, and deducing an approximation to the true convolution just
requires inverting the exponential shift.

In the context of general non-negative vectors p, the normalisation of
(2.3.3) by the moment-generating function of p (as if it were a pmf) is not
strictly needed. However, as we will see later, working with vectors such that
∥v∥1 = 1 makes things simpler, and so performing the normalisation helps
there.

It is desirable to choose a θ that minimises the number of partitions
required. One possibility would be to minimise the left hand side of (3.2.6),
that is,

θ0 = arg minθ R(pθ) + R(qθ). (3.2.11)

However, we found empirically that the number of partitions np is roughly
proportional to R(p) and hence

θ0 = arg minθ R(pθ) ·R(qθ) (3.2.12)

generally results in a smaller npnq implying a shorter run time.
The effect of the shifting is demonstrated visually in Figure 3.1. This

shows the division of partitions computed by PITS for a pmf p, and then
for the shifted pmf pθ0 with θ0 from (3.2.12). The reduction from 18 to just
6 corresponds to doing 9 times fewer FFT-C convolutions in (3.2.3).

For a more exhaustive examination we took a variety of pmfs p and
calculated the number of partitions computed by PITS for the unshifted p,
and then for pθ0 with θ0 computed both by (3.2.11) and for (3.2.12). A
summary of the results is shown in Table 3.1, indicating that (3.2.12) works
better in practice.

3.2.3. Computing the convolution

The final psFFT-C algorithm is listed in Algorithm 3.3. Given a desired
relative accuracy 1/α, psFFT-C takes the output of PITS applied to two
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Figure 3.1 – The figures demonstrate the outcome of PITS applied to the
same pmf p from Figure 2.1. The left plot shows the 18 components pi, each
satisfying (3.2.8), that sum up to the original pmf p. The plot on the right
shows that, in contrast, when PITS is applied to pθ with θ determined from
(3.2.12) (to optimize computing p ∗ p) it yields only 6 components pθ,i each
satisfying (3.2.8).

Minimization Median Mean Maximum
No shifting 72 112 1156

(3.2.11) 65 110 756
(3.2.12) 60 87 424

Table 3.1 – Comparison of the number of partitions computed by PITS with
no shifting and when shifting by θ0 computed via (3.2.11) or (3.2.12) for the
examples described in Section 3.5 of length n = 4096.

vectors p and q shifted by θ0 in the manner of (2.3.3), and uses them to
compute p̃ ∗ q accurately.

psFFT-C does not bring together all its parts into a single procedure,
because it can be far more efficient to combine psFFT-C with Checked
FFT-C, which is best done by interleaving the choice of θ0, the splitting
of p and q via PITS and the final call to psFFT-C with other calculations,
which will be carried out in detail below.

3.2.4. Complexity

Suppose psFFT-C is applied to p and q with lengths m and n respectively,
and let N = m + n− 1 be the length of p ∗ q with Q ≥ N the length of the
Fourier transforms used in FFT-C. The components of psFFT-C together
have complexity O(npnqQ log Q). There are three parts to analyse: the
choice of θ0, PITS (Algorithm 3.2) and psFFT-C listed in Algorithm 3.3.

The selection of θ0 is performed via the one-dimensional optimisation
problem (3.2.12), which typically requires only a few evaluations of the prod-
uct R(pθ)R(qθ), each of which takes O(Q) time.
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Algorithm 3.3 The psFFT-C (partitioned shifted FFT-C) algorithm. It
takes two pmfs p ∈ (R+)m and q ∈ (R+)n that have had an exponential
shift by θ0 and have been partitioned via PITS, and computes a machine
approximation to p ∗ q via FFT-C.

1: procedure psFFT-C(θ0, pθ0 , [bp,i]np

i=1, qθ0 , [bq,j]nq

j=1, α)
2: Slice pθ0,i and qθ0,j per (3.2.10), based on the boundaries bp,i and bq,j

respectively.
3: For each i, j, compute ˜pθ0,i ∗ qθ0,j via FFT-C.
4: Compute

˜(p ∗ q)θ0 =
np∑
i=1

nq∑
j=1

filt( ˜pθ0,i ∗ qθ0,j).

5: return p̃ ∗ q, deduced by undoing the θ0 shift,

(p̃ ∗ q)(k) = ˜(p ∗ q)θ0(k)e−kθ0Mp(θ0)Mq(θ0).
6: end procedure

An invocation of PITS on p consists of two parts: finding the permuta-
tion π (that is, sorting p), which takes time O(Q log Q), and iterating over
p to find the boundaries of the np stripes pi, which takes time O(Q): each
of the Q iterations of the loop is O(1). Therefore the overall complexity of
invoking PITS on both pθ0 and qθ0 is O(Q log Q).

The final component is of course psFFT-C in Algorithm 3.3. This first
requires splitting the vectors into pθ0,i and qθ0,j, requiring O(Q(np + nq))
operations. It then performs npnq FFT-C computations, each of which is
O(Q log Q), followed by npnq vector summations (each is O(Q)) and one shift
inversion (O(Q)). The complexity of psFFT-C is hence O(npnqQ log Q).

3.3. aFFT-C

Using psFFT-C directly can be quite expensive, since npnq can be large.
Unfortunately, it can even have non-trivial overhead over a direct invocation
of FFT-C when the latter is accurate, since the choice of the stripes pi

and qj via PITS is conservative. Fortunately, there is a middle ground
for computing a convolution accurately, combining Checked FFT-C with
both NC and psFFT-C to try to retain the performance of FFT-C when it is
accurate, but still handling cases when it fails to deliver the desired accuracy
as efficiently as possible.

An algorithm performing this balancing act, aFFT-C (accurate FFT-C),
is listed in Algorithm 3.4. It takes two non-negative vectors p and q and
computes an approximation p̃ ∗ q to p∗q, such that all entries have a relative
accuracy of 1/α or better.

As mentioned above, the three components of psFFT-C are interleaved
with other computations. Specifically, they are interleaved with calls to
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Algorithm 3.4 The aFFT-C (accurate FFT convolution) algorithm. It
takes two non-negative vectors p and q of length m and n respectively,
and some α ≥ 2, and computes an approximation c = p̃ ∗ q, such that
rel(c(k), (p ∗ q)(k)) < 1/α for each k. It builds on psFFT-C, but incorpo-
rates several fast paths based on Checked FFT-C (Algorithm 3.1) to try
to ensure maximal performance.

1: procedure aFFT-C(p, q, α)
2: Set N = m + n− 1 and choose Q = 2K ≥ N .
3: Compute c1, I1 ← Checked FFT-C(p, q, α).
4: if 2CQ log Q ≥ N |I1| then ▷ Direct FFT-C is accurate for

sufficiently many entries.
5: Recompute the entries c1(i) via NC, for each i ∈ I1.
6: return c1.
7: end if
8: Compute θ0 via (3.2.12) and then pθ0 and qθ0 as in (2.3.3).
9: Compute c2, I2 ← Checked FFT-C(pθ0 , qθ0 , α).

10: if 2CQ log Q ≥ N |I2| then ▷ FFT-C with a shift is accurate
for sufficiently many entries.

11: Recompute the entries c2(i) via NC, for each i ∈ I2.
12: Deduce p̃ ∗ q by undoing the θ0 shift of ˜(p ∗ q)θ0 = c2 like

psFFT-C.
13: else
14: Compute the boundaries [bp,i]np

i=1 ← PITS(pθ0 , α) and [bq,j]nq

j=1 ←
PITS(qθ0 , α).

15: if CnpnqQ log Q ≥ N |I2| then ▷ NC estimated to be faster.
16: Recompute the entries c2(i) via NC, for each i ∈ I2.
17: Deduce p̃ ∗ q from ˜(p ∗ q)θ0 = c2 as above.
18: else
19: p̃ ∗ q = psFFT-C(θ0, pθ0 , [bp,i], qθ0 , [bq,j], α).
20: end if
21: end if
22: return p̃ ∗ q.
23: end procedure

Checked FFT-C and decision points about whether it is more efficient
to use NC to recompute any potentially inaccurate entries of that FFT-C
convolution, or to press ahead and finally end up in psFFT-C itself.

Both psFFT-C and the combination of Checked FFT-C and NC are
able to accurately compute a convolution p ∗ q, and so their performance is
the main reason to choose between them. Therefore, the decisions are driven
by estimating the cost of the two options (NC or psFFT-C) and choosing the
fastest one. This is most easily done via the asymptotic behaviour of the two
algorithms: O(Nℓ) for NC to recompute the ℓ potentially inaccurate entries
compared to O(npnqQ log Q) for psFFT-C with np, nq stripes. Since the
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asymptotic behaviour notation ignores constant factors, we must empirically
estimate a constant of proportionality C, the ratio of the constant factors,
and thus compare CnpnqQ log Q to Nℓ.

The aFFT-C algorithm calls Checked FFT-C twice, first to ensure
there is minimal overhead over FFT-C in cases when it is accurate, and then
again to take advantage of the reduced dynamic range of the shift.

The first call to Checked FFT-C on line 3 is designed to handle the
case when p and q have sufficiently small dynamic range or happen to have
their values arranged such that direct FFT-C is accurate almost everywhere.
This is the first non-trivial operation performed by aFFT-C, so that there
is minimal overhead of aFFT-C over FFT-C in this case. In particular, the
true value npnq has not yet been computed, and so a lower bound of 2 is used.
This bound is motivated by the reasoning that if both Checked FFT-C
invocations fail (I1, I2 ̸= ∅ for x = 1, 2), then PITS will partition at least
one of the pmfs at least once, making np ≥ 2 or nq ≥ 2. This allows for a
cheap decision on line 4 about whether sufficiently few entries |I1| will need
to be recomputed via NC.

The second call to Checked FFT-C uses the exponential-shifted vec-
tors pθ0 and qθ0 . The shift is likely to decrease the dynamic range of the
vectors, and so Checked FFT-C is more likely to be successful. The same
estimation of npnq is used as in the previous part, giving the same easily
computed heuristic for determining if |I2| is sufficiently small on line 10.

Note that in rare cases it may be that PITS would compute npnq = 1,
as splitting is not truly guaranteed when the two Checked FFT-C calls
do not compute all entries accurately: the retroactive analysis needs an
error threshold that is larger by a factor of (α + 1)/α than the more precise
prospective bound (3.1.6) used by psFFT-C. However, this factor is typically
small (it has a maximum value of 3/2) and the approximations used to
guarantee (3.1.6) are conservative, meaning splits will be required more often
than strictly necessary.

If falling back to NC is still estimated to be more expensive than psFFT-C
with npnq = 2, the boundaries of stripes pθ0,i and qθ0,j are finally computed
via PITS. This gives the exact values of npnq and hence a more accurate
comparison of the cost of completing the psFFT-C calculation or filling in
any missing values with NC. This final decision occurs on line 15.

We can take advantage of this condition to further reduce the work
required in some cases, since it means the complete partitioning is only
needed if the condition on line 15 chooses psFFT-C over NC. Let M =
N |I2| /(CQ log Q), and then if npnq > M we can be sure that the output of
PITS is not used. Thus, we can pass this M to PITS to allow it to abort
when npnq > M , passing the baton straight to NC. When PITS is applied
first to p we conservatively estimate nq = 1, but for the application to q we
know np exactly. The estimation of the product npnq can be improved in
some cases, such as when computing p ∗ p: it is guaranteed that np = nq
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and hence a limit of n2
p < M works. Notably, this case also only needs to

invoke PITS once, since all the partitions will be identical.

3.3.1. Complexity

Suppose the vector p has length m and the vector q has length n, and
the FFT-C convolutions are performed on vectors of length Q ≥ m + n −
1. As a whole, computing p̃ ∗ q via aFFT-C has complexity approximately
O(min(npnqQ log Q, Q2)).

Firstly, all of the operations up to and including the invocations of PITS
have complexity O(Q log Q) or less. We saw before, in Section 3.1.5, that
the calls to Checked FFT-C have almost linear run time, O(Q log Q).
Estimating the relative run times of the two algorithms is efficient, possibly
as low as O(1) but certainly no more O(Q), depending on the representation
of the sets Ix for x ∈ {1, 2}.

Computing the shift θ0 requires some unknown number of computations
of R(pθ) and R(qθ), which take O(Q) time. This is not easy to bound directly,
for arbitrary p and q, but efficient algorithms such as Brent’s method [Bre73],
as implemented under the name fminbound in SciPy [JOP+01] or optimize
in R, mean that in practice we have never seen this take a noticeable fraction
of the overall run time.

The remaining code up to the invocations of PITS are first the fallback
to NC when it is estimated to be more efficient, and then the call to PITS
itself. The former only occur if the number of missing elements satisfies |Ix| ≤
C log Q, for either x = 1, 2, and hence the time required to recompute these
missing elements is bounded by O(Q log Q). We saw in Section 3.2.4 that
PITS also has complexity O(m log m) for p and O(n log n) for q, making the
two invocations O(Q log Q). Summing all of these gives the stated O(Q log Q)
cost.

This just leaves the cost of the computations that depend on the number
of partitions reported by PITS: the two possibilities are the O(Q2) cost of
NC, or the O(npnqQ log Q) cost of psFFT-C, based on which is estimated
to be the least expensive. This separation gives the overall complexity men-
tioned above.

3.4. Convolving with a lower bound

In some situations, such as computing p-values in the manner of sFFT,
one is only interested in the “larger” values of the convolution p ∗ q. The
precise way in which “large” is defined can differ, so we look at two. The
first, “trim then convolve” (TtC), is the easiest to implement and as we
will see in Section 4.3.1, works well as a component of algorithms that may
do several pairwise convolutions. The second, “convolve then trim” (CtT),
gives a result that is more intuitive when one is performing a single pairwise
convolution, since, unlike TtC, it directly guarantees the accuracy of all
values that are sufficiently large.
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Before analysing these two options, we introduce a useful piece of nota-
tion.

Definition 3.4.1. Let v ∈ RN be a vector, then define

v≥∆ = v ⊙ 1v≥∆,

v<∆ = v ⊙ 1v<∆.

These are truncations of v, and satisfy v = v≥∆ + v<∆.

3.4.1. Trim then convolve

One way to avoid computing small values of p ∗ q is to approximate it
by computing something like p≥∆ ∗ q≥∆ for some lower bound ∆, that is,
trimming the two vectors before performing the convolution.

Definition 3.4.2. Let p and q be non-negative vectors, and take some α ≥ 2
and ∆ ≥ 0, then an approximation c is said to have the trim then convolve
(TtC) guarantee if it satisfies(

1− 1
α

)
(p≥∆ ∗ q≥∆)(k) ≤ c(k) ≤

(
1 + 1

α

)
(p ∗ q)(k). (3.4.3)

for all k.

This does not ensure that c accurately approximates every element such
that (p ∗ q)(k) > ∆: the trimming may mean that values close to ∆ are
computed very inaccurately.

Example 3.4.4. Fix some ∆ ∈ (0, 1) and integer n ≥ 1, define x = ∆ − δ
for some small 0 < δ < ∆/2 and

p = (1, x, . . . , x︸ ︷︷ ︸
n copies

).

We have p≥∆ = (1, 0, . . . , 0), since x < ∆, and hence

p ∗ p = (1, 2x, 2x + x2, . . . , 2x + (n− 1)x2, nx2, . . . , x2)
p≥∆ ∗ p≥∆ = (1, 0, . . . , 0).

There are at least n elements larger than ∆ in the true convolution that are
computed as zero in the truncated one, and thus have a relative error of 1,
and, ignoring terms of order δ, the absolute error is as large as 2x+(n−1)x2 ≈
2∆ + (n− 1)∆2. □

Fortunately, the lost mass can be quantified.

Lemma 3.4.5. Given non-negative vectors p and q, and a lower bound
∆ ≥ 0, we have

0 ≤ (p ∗ q)(k)− (p≥∆ ∗ q≥∆)(k) ≤ ∆(∥p∥1 + ∥q∥1) (3.4.6)

for all k.
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Proof. Since the vectors are non-negative and no element of the vectors p≥∆
and q≥∆ is larger than the corresponding element of p and q respectively,
the left hand inequality of (3.4.6) is clear.

We have p = p≥∆ + p<∆ and similarly for q, and hence
∥p ∗ q − p≥∆ ∗ q≥∆∥∞ = ∥p<∆ ∗ q≥∆ + p≥∆ ∗ q<∆ + p<∆ ∗ q<∆∥∞

= ∥p<∆ ∗ q + p≥∆ ∗ q<∆∥∞

≤ ∥p<∆∥∞ ∥q∥1 + ∥p≥∆∥1 ∥q<∆∥∞

≤ ∆(∥p∥1 + ∥q∥1)
where we used ∥x ∗ y∥∞ ≤ ∥x∥∞ ∥y∥1. This proves the right hand side of
(3.4.6). □

This lemma is fairly precise, as indicated by Example 3.4.4: in that
example, ∥p∥1 ≈ 1 + n∆, and hence the lemma implies p≥∆ ∗ p≥∆ may
underestimate p ∗p by at most ∆(2 + 2n∆), which differs from the quantity
observed in that example by only (n + 1)∆2.

As we have seen before, in FFT-C, a bound like this on the absolute error
can be translated into a bound on the relative accuracy.

Corollary 3.4.7. Suppose p, q and ∆ are as in Lemma 3.4.5 and α ≥ 1,
then any element k such that

(p ∗ q)(k) ≥ α∆(∥p∥1 + ∥q∥1)
satisfies

rel ((p≥∆ ∗ q≥∆)(k), (p ∗ q)(k)) ≤ 1
α

.

Proof. Let x = (p≥∆ ∗ q≥∆)(k) and y = (p ∗ q)(k), then

rel(x, y) = |x− y|
y

≤ ∆(∥p∥1 + ∥q∥1)
α∆(∥p∥1 + ∥q∥1)

= 1
α

,

as desired. □

This result can be extended to give bounds on the relative error in an
approximation to p ∗ q in a manner similar to Lemma 3.1.1.

Corollary 3.4.8. Suppose p, q and ∆ are as in Lemma 3.4.5, and α, α′ ≥ 2
and c is a vector that satisfies (3.4.3) with coefficients α and ∆, then any
element k such that

(p ∗ q)(k) ≥ α′∆(∥p∥1 + ∥q∥1)
satisfies

rel(c(k), (p ∗ q)(k)) ≤ 1
α

+ 1
α′ −

1
αα′ <

1
α

+ 1
α′

Proof. For our k, Corollary 3.4.7 implies (3.4.3) can be rewritten to(
1− 1

α

)(
1− 1

α′

)
(p ∗ q)(k) ≤ c(k) ≤

(
1 + 1

α

)
(p ∗ q)(k).
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This gives

rel(c(k), (p ∗ q)(k)) ≤ max
(∣∣∣∣(1− 1

α

)(
1− 1

α′

)
− 1

∣∣∣∣ , 1
α

)
= 1

α
+ 1

α′ −
1

αα′ . □

This is a theoretical analysis of TtC, but how can it be implemented in
practice? Both the Checked FFT-C and psFFT-C components of aFFT-C
benefit from having a lower bound.

One way to compute a vector c satisfying (3.4.3) with psFFT-C is to liter-
ally compute ˜p≥∆ ∗ q≥∆, by replacing the input p and q with their trimmed
versions. The guarantees of psFFT-C ensure that the computed approx-
imation has relative error less than 1/α, ensuring that it satisfies (3.4.3).
These vectors have smaller dynamic range and fewer non-zero elements, and
so PITS may be able to perform fewer splits, making psFFT-C and hence
aFFT-C faster.

On the other hand, handling a lower bound in Checked FFT-C can
be a little more subtle. One possibility, Bounded Checked FFT-C, for
doing so is listed in Algorithm 3.5. The original Checked FFT-C gives a
vector c and a set of indices I where c is not guaranteed to be accurate, and
Bounded Checked FFT-C is similar. It guarantees that (3.4.3) holds for
c(k) such that k /∈ I.

Algorithm 3.5 The Bounded Checked FFT-C algorithm with the TtC
guarantee. Given non-negative vectors p and q and scalars α ≥ 2 and ∆ ≥ 0,
Bounded Checked FFT-C returns a vector c = p̃ ∗ q as computed by
FFT-C and a set I of indices such that (3.4.3) holds for c for all k /∈ I.

1: procedure Bounded Checked FFT-C(p, q, α, ∆)
2: Compute p̃ ∗ q via FFT-C, and note the Q of Corollary 2.2.10 that

was used.
3: Let I be the set of indices for which (3.1.2) does not hold.
4: if I ̸= ∅ and Q ≤ Qmax and p(i) < ∆ or q(i) < ∆ for some i then
5: Use FFT-C to compute the support of p≥∆ ∗ q≥∆

Isup = supp(p≥∆ ∗ q≥∆) = supp(filt( ˜1p≥∆ ∗ 1q≥∆)).
6: Zero any entry (p̃ ∗ q)(i) with i /∈ Isup.
7: Set I ← I ∩ Isup.
8: end if
9: return p̃ ∗ q, I.

10: end procedure

One way to use a lower bound in Checked FFT-C is to trim the vectors
before doing any other work, effectively computing

Checked FFT-C(p≥∆, q≥∆, α).
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However, doing this can be unhelpful for the comparison with (3.1.2). The
trimming removes mass from the vectors and will hence result in smaller
computed values, and making it possible that, for some k,

( ˜p≥∆ ∗ q≥∆)(k) < (α + 1)cKε ∥p≥∆∥2 ∥q≥∆∥2

< (α + 1)cKε ∥p∥2 ∥q∥2 ≤ (p̃ ∗ q)(k).
That is, FFT-C applied to the untrimmed vectors satisfies (3.1.2), but does
not when applied to the trimmed one. This argues in favour of just using
Checked FFT-C on p and q themselves, which will satisfy (3.4.3).

On the other hand, trimming may reduce the support of the convolution,
since the trimmed vectors will have smaller support: supp(p≥∆ ∗ q≥∆) ⊆
supp(p ∗ q). Decreasing that support means that we can identify more
elements that satisfy (3.4.3), since we can efficiently compute exactly the
k for which (p≥∆ ∗ q≥∆)(k) = 0, and the bound will hence be satisfied
by setting corresponding element c(k) = 0 in the computed approximation.
This has the consequence of reducing the size of the set I of indices with
unknown accuracy, and hence decreases how much of the vector may need
to be computed via NC.

In summary, there are some benefits with using p ∗ q, and benefits with
p≥∆ ∗q≥∆. Fortunately, there are no trade-offs needed, since we still achieve
the goal by using the former when it is best (for finding the values of the
convolution), and the latter when it is best (for finding the support).

Example 3.4.9. Assume ε = 2−53 as for binary64. Define p = (1, 1/2, 1/4),
and choose α = 1014 and ∆ = 1/2.

We will see that the choice to use both p and p≥∆ at different times
will give Bounded Checked FFT-C(p, p, α, ∆) = (c, ∅), for some c ≈
(1, 1, 3/4, 0, 0), whereas using p everywhere or p≥∆ everywhere would result
in a non-empty set of potentially inaccurate indices.

We of course have p≥∆ = (1, 1/2, 0), and hence
c1 = p ∗ p = (1, 1, 3/4, 1/4, 1/16)

c2 = p≥∆ ∗ p≥∆ = (1, 1, 1/4, 0, 0),
with the corresponding FFT-C approximations c̃1 and c̃2. Including the
trailing zeros, these convolutions are of length 5, and hence our transforms
can be of length 8 = 23, giving K = 3 and c = 15 in Lemma 3.1.1. The
error bounds of FFT-C for computing these two convolutions are therefore,
respectively,

E1 = 15 · 3 · 2−53 · ∥p∥2
2 ≈ 6.6 · 10−15

E2 = 15 · 3 · 2−53 · ∥p≥∆∥2
2 ≈ 6.2 · 10−15,

and hence the bounds for (3.1.2) are
B1 = (1014 + 1)E1 ≈ 0.66
B2 = (1014 + 1)E2 ≈ 0.62.
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Since the Ei are sufficiently small, we are guaranteed to have c̃1(k) ≥ B1 for
k = 0, 1, 2 and c̃1(k) < B1 elsewhere, and at the same time c̃2(k) ≥ B2 for
only k = 0, 1 with c̃2(k) < B2 for the remaining k = 2, 3, 4. In other words,
the set of indices for which (3.1.2) does not guarantee accuracy is I1 = {3, 4}
for the first convolution but I2 = {2, 3, 4} for the second, demonstrating that
using the untrimmed vector p is better.

The first convolution has full support Isup,1 = supp c1 = {0, . . . , 4}, but
the trimmed one does not, specifically, Isup,2 = supp c2 = {0, 1, 2}. Note
that I1 ∩ Isup,2 = ∅, guaranteeing that (3.4.3) holds for all k = 0, . . . , 4. □

There is one additional complication: performing an exponential shift to
reduce dynamic range will disturb the comparison. In general, if θ ̸= 0, then
clearly neither (pθ)≥∆ = p≥∆ nor (pθ)≥∆ = (p≥∆)θ hold. Thus, convolutions
with a lower bound must be careful to either not perform a shift, or to first
handle the lower bound by trimming, and only after that perform the shift.

All of these parts can be drawn together to create Bounded aFFT-C,
listed in Algorithm 3.6.

Algorithm 3.6 The Bounded aFFT-C algorithm, a version of aFFT-C
that gives the TtC guarantee. It takes two non-negative vectors p and q
of length m and n respectively, and some α ≥ 2 and a bound ∆ ≥ 0, and
computes an approximation c = p̃ ∗ q, such that (3.4.3) holds. It is very
similar to the original aFFT-C, listed in Algorithm 3.4, with the notable
removal of the exponential shift.

1: procedure Bounded aFFT-C(p, q, α, ∆)
2: Set N = m + n− 1 and choose Q = 2K ≥ N .
3: Compute c1, I1 ← Bounded Checked FFT-C(p, q, α, ∆).
4: if 2CQ log Q ≥ N |I1| then ▷ Direct FFT-C is accurate for

sufficiently many entries.
5: Recompute the entries c1(i) via NC, for each i ∈ I1.
6: return c1.
7: end if
8: Compute the boundaries [bp,i]np

i=1 ← PITS(p≥∆, α) and [bq,j]nq

j=1 ←
PITS(q≥∆, α).

9: if CnpnqQ log Q ≥ N |I2| then ▷ NC estimated to be faster.
10: Recompute the entries c2(i) via NC, for each i ∈ I2.
11: return c2.
12: else
13: p̃ ∗ q = psFFT-C(0, p≥∆, [bp,i], q≥∆, [bq,j], α).
14: return p̃ ∗ q.
15: end if
16: end procedure
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3.4.2. Convolve then trim

As discussed briefly earlier, the condition (3.4.3) is often not the most
useful constraint on the accuracy of a convolution with a bound. It may be
that one wishes to compute a convolution such that all elements larger than
some ∆ ≥ 0 are computed accurately, and smaller ones are either irrelevant
or, for instance, only need to be guaranteed to not be larger than their
true value. As usual, due to floating point calculations, these assurances of
accuracy have to be considered as bounded relative error.

Definition 3.4.10. Let p and q be non-negative vectors, and take some
α ≥ 2 and ∆ ≥ 0, then an approximation c is said to have the convolve then
trim (CtT) guarantee if it satisfies(

1− 1
α

)
(p ∗ q)≥∆(k) ≤ c(k) ≤

(
1 + 1

α

)
(p ∗ q)(k) (3.4.11)

for all k.

This is similar to Definition 3.4.2, except it uses (p ∗ q)≥∆ instead of
p≥∆ ∗ q≥∆ in the lower bound. This has the consequence that rel(c(k), (p ∗
q)(k)) ≤ 1/α for k such that (p ∗ q)(k) ≥ ∆, but is slightly stronger than
just that condition, as it still controls the computed value of small elements:
an element with true value x < ∆ is never computed to be larger than
(1 + 1/α)x.

Neither (3.4.3) nor (3.4.11) imply the other for fixed α and ∆, but the
former can be used to get the latter guarantee by choosing coefficients α′

and ∆′ for (3.4.3) appropriately smaller than α and ∆.

Lemma 3.4.12. Suppose p and q are non-negative vectors, α ≥ 2 and
∆ ≥ 0. Let S = ∥p∥1 + ∥q∥1 and

α′ ≥ 2α (3.4.13)

∆′ ≤ ∆
α′S

, (3.4.14)

then any vector c that satisfies (3.4.3) with coefficients α′ and ∆′ will also
satisfy (3.4.11) with coefficients α and ∆.

Proof. Let k be an arbitrary index and take x = c(k) and y = (p ∗ q)(k).
The condition (3.4.11) can be broken down into requiring one of two separate
conditions: rel(x, y) ≤ 1

α
if y ≥ ∆

0 ≤ x ≤
(
1 + 1

α

)
y if y < ∆

If y lies in the first case, then y ≥ ∆ ≥ α′∆′S, and so Corollary 3.4.8 implies
that

rel(x, y) ≤ 2
α′ ≤

1
α

,

as desired. The second case is implied directly by (3.4.3) and the non-
negativity of p and q. □
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In other words, getting results of p ∗q accurate down to the level ∆ may
require elements in p and q smaller than ∆ by a factor of 2Sα, and requires
each element to be computed with half the relative error to make up for any
lost mass.

There is not much that can be done to make psFFT-C satisfy CtT, other
than the technique just explored, building on the TtC guarantee. This of
course will make psFFT-C slower to execute, since both the lower bound
and the desired relative error are more stringent.

Algorithm 3.7 The Bounded Checked FFT-C algorithm that convolves
then trims. Given non-negative vectors p and q and scalars α ≥ 2 and ∆ ≥ 0,
Bounded Checked FFT-C returns a vector c = p̃ ∗ q as computed by
FFT-C and a set I of indices such that (3.4.11) holds for c for all k /∈ I.

1: procedure Bounded Checked FFT-C(p, q, α, ∆)
2: Compute p̃ ∗ q via FFT-C, and note the Q = 2K of Corollary 2.2.10

that was used.
3: Zero any entry (p̃ ∗ q)(k) smaller than ∆− cKε ∥p∥2 ∥q∥2.
4: Let I be the set of any other indices for which (3.1.2) does not hold.
5: Set ∆′ = ∆/(2α(∥p∥1 + ∥q∥1)).
6: if I ̸= ∅ and Q ≤ Qmax and p(i) < ∆′ or q(i) < ∆′ for some i then
7: Use FFT-C to compute the support of p≥∆′ ∗ q≥∆′ .

Isup = supp(p≥∆′ ∗ q≥∆′) = supp(filt( ˜1p≥∆′ ∗ 1q≥∆′)).
8: Zero any entry (p̃ ∗ q)(i) with i /∈ Isup.
9: Set I ← I ∩ Isup.

10: end if
11: return p̃ ∗ q, I.
12: end procedure

On the other hand, the CtT guarantee can be achieved with Checked
FFT-C in a slightly more aggressive way, as demonstrated by Bounded
Checked FFT-C listed in Algorithm 3.7. This version can utilise the
idea explored in the previous section of using FFT-C to compute p ∗ q
but computing the support of p≥∆′ ∗ q≥∆′ for some lower bound ∆′. An
appropriate value of ∆′ can be chosen via Lemma 3.4.12.

The algorithm only needs to ensure (3.1.2) holds for indices i such that

(p̃ ∗ q)(i) ≥ ∆− cKε ∥p∥2 ∥q∥2 . (3.4.15)

Any other index is guaranteed to have (p ∗ q)(i) < ∆ by Corollary 2.2.10,
and hence can be set to zero, to ensure that it is not larger than the right
hand side of (3.4.11). Unfortunately, this is only useful when ∆ is sufficiently
large, or else the right hand side of (3.4.15) will be less than the bound of
(3.1.2), making the comparison vacuous.
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3.5. Empirical Results

We now look into the behavior of an implementation of aFFT-C com-
pared to existing algorithms, supporting our assertion that it enjoys the
best of both NC and FFT-C, ensuring accuracy with higher performance
than NC. The implementation examined here is in Python, using the high
performance NumPy array library [vWCV11] as much as possible. We used
binary64 and log space so that the algorithms are applicable to cases where
overflow or underflow may be encountered.

3.5.1. Accuracy

In the previous chapter we introduced a vector p in Example 2.1.4, which
was used to demonstrate the accuracy of NC and inaccuracy of FFT-C. Let
raFFT−C,α represent the relative errors of each element of the convolution
p∗p as computed via aFFT-C guaranteeing a relative accuracy of 1/α, then

raFFT−C,103 = (0, 0, 1 · 10−7, 4 · 10−12, 2 · 10−15, 4 · 10−12, 1 · 10−7).
raFFT−C,109 = (0, 0, 8 · 10−15, 4 · 10−12, 2 · 10−15, 4 · 10−12, 1 · 10−14).

Even in such a small example, the adaptive nature of the aFFT-C can be
seen: when less accuracy is requested, the computed values may be less
accurate.

Another example we saw previously was the demonstration of the cata-
strophic cancellation of FFT-C in Figure 2.1, where some elements of p̃ ∗ p
as computed by FFT-C were hundreds of orders of magnitude larger than
the true value. As one can see in Figure 3.2, aFFT-C handles this case
perfectly, computing all elements with relative error less than the requested
bound 1/α = 10−3.

Figure 3.2 also hints at the shifting and splitting strategy used by aFFT-
C: the almost-parabolic region in the center is the convolution of the split
containing the largest values of the shifted vector with itself ˜pθ0,1 ∗ pθ0,1,
and the smaller sloping regions on either side are artifacts of the various

˜pθ0,i ∗ pθ0,j terms.
For evaluating the accuracy of the algorithms in a more exhaustive way,

we created many random instances of several classes of vectors of several
different lengths. Since the applications we have in mind are in statistics,
we normalised each vector to be a pmf.

In the examples below n ≥ 2 denotes the length of the vectors p(k). The
values a(k), b(k), c(k) ∼ U(0, 1) are independent, and fixed for each p(k) but
vary between them, and u

(k)
i ∼ U(0, 1) are independent, for each entry p(k)(i).

Finally, A(k) is the normalising constant such that
∥∥∥p(k)

∥∥∥
1

= 1.

a) constant, p(k)(i) ≡ A(k)

b) random, p(k)(i) = A(k) exp(−40u
(k)
i ).
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Figure 3.2 – The relative accuracy of aFFT-C vs. NC and FFT-C vs. NC
for computing each entry of q := p ∗ p with the pmf p from Figure 2.1
and α = 103 for aFFT-C. The plot shows rel(q̃aFFT-C(s), q̃NC(s)) and sim-
ilarly for q̃FFT-C where q̃x(s) = q̃(s) as computed by algorithm x, with
x = NC, aFFT-C, FFT-C. The FFT-C plot is truncated because its relative
error quickly increases.

aFFT-C (α = 109) aFFT-C (α = 103) FFT-C
n Median Maximum Median Maximum Median Maximum
8 1 · 10−13 7 · 10−11 1 · 10−8 7 · 10−5 7 · 1062 4 · 10303

16 2 · 10−12 9 · 10−11 4 · 10−7 9 · 10−5 3 · 1062 2 · 10303

32 4 · 10−12 6 · 10−11 1 · 10−6 7 · 10−5 1 · 1066 overflow
64 5 · 10−12 7 · 10−11 2 · 10−6 6 · 10−5 7 · 1065 overflow
128 8 · 10−12 5 · 10−11 2 · 10−6 4 · 10−5 2 · 1069 overflow
256 6 · 10−12 5 · 10−11 2 · 10−6 4 · 10−5 1 · 1068 overflow
512 6 · 10−12 5 · 10−11 1 · 10−6 2 · 10−5 5 · 1070 overflow
1024 4 · 10−12 5 · 10−11 8 · 10−7 5 · 10−5 2 · 1070 overflow
2048 3 · 10−12 5 · 10−11 4 · 10−7 2 · 10−5 3 · 1068 overflow
4096 2 · 10−12 5 · 10−11 2 · 10−7 3 · 10−5 3 · 1069 overflow
8192 1 · 10−12 5 · 10−11 2 · 10−7 3 · 10−5 1 · 1069 overflow

Table 3.2 – The maximum and median of the maximum relative error of the
elements of q̃(j,k) = ˜p(j) ∗ p(k) as computed by aFFT-C and FFT-C where the
p(j) and p(k) are selected exhaustively from 100 random instances of classes
of the pmfs described in Section 3.5, and n is their length. That is, the third
column is maxj,k maxs rel(q̃(j,k)

aFFT-C(s), q̃
(j,k)
NC (s)) where q̃

(j,k)
x (s) is q̃(j,k)(s) as

computed by algorithm x with x = NC, aFFT-C (α = 109). The second
column is identical, just with the median in place of the outer max. The
fourth and fifth use aFFT-C with α = 103. The last two columns use FFT-C
in place of aFFT-C and the entries of “overflow” indicate that the largest
relative error is larger than 1.8 · 10308, the largest binary64 value. The same
pmfs p(j) and p(k) were used for every column.
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c) quadratic, p(k)(i) = A(k) exp(−30(a(k) + 1)xi
2 + 20(2b(k) − 1)xi +

20(2c(k) − 1)) where the xi are evenly spaced in [0, 1] with the first
element x0 = 0, and the last xn−1 = 1.

d) sinusoid, p(k)(i) = A(k) exp(10(3a(k) + 1) sin(xi + b(k)/10) + 10(5c(k)−
4)xi) where xi are evenly spaced in [0, 3π] with x0 = 0 and xn−1 = 3π
similar to above.

e) “multi-scaled I”, a random fifth (rounded down) of the p(k)(i) are of
the form A(k) exp(−30u

(k)
i ) and the remaining entries are of the form

A(k) exp(−100(u(k)
i + 1)).

f) “multi-scaled II”, a random third (rounded down) of the p(k)(i) are
of the form A(k) exp(−15(2a(k) +1)u(k)

i ) and the remaining entries are
of the form A(k) exp[−50((2a(k) + 1)u(k)

i + 2b(k) + 1)].

For each length n ∈ {23, 24, . . . , 213}, we generated 100 instances of each
class of vector (other than the constant vectors, where there is exactly one
such vector), giving k = 1, 2, . . . , 501. We then computed all pairwise convo-
lutions ˜p(j) ∗ p(k) with both aFFT-C and FFT-C, recording the relative error
of each element of the convolution with respect to the convolution computed
with NC. The results of this are summarised in Table 3.2, which shows that
aFFT-C is accurate in all cases with error less than the requested 1/α for
both a very large and smaller values of α. In contrast, FFT-C can be wildly
incorrect, as expected.

3.5.2. Run time

Accuracy is not the only aspect of aFFT-C that is interesting: it must
also be fast, and indeed we devoted several paragraphs above to this topic,
which we should justify with some measurements.

An emphasised point above was that aFFT-C is never significantly slower
than FFT-C in cases when FFT-C is guaranteed to be accurate, a point
demonstrated by Figure 3.3. This figure shows a summary of the time taken
for computing convolutions of vectors with elements chosen independently as
U(0, 1), plotted against the length of those vectors. Such vectors are unlikely
to be inaccurate when computed by FFT-C, and the plot demonstrates that
aFFT-C accounts for this, with little overhead over direct FFT-C. Both
aFFT-C and FFT-C are approximately 5 · 104 times faster than NC for
vectors of length 220.

Examples for which Lemma 3.1.1 does not guarantee the accuracy of
FFT-C do not see aFFT-C being quite so much faster than NC, but aFFT-
C is still offers a large decrease in run time. Figure 3.4 shows the time taken
for one example convolution to be performed with NC and with aFFT-C at
several different accuracy levels α. In one case we used Algorithm 3.5, the
variant of aFFT-C that satisfies the TtC guarantee. As can be seen, aFFT-
C has some overhead over NC for small convolutions, but grows much less
slowly, so that a convolution of size 220 can be performed approximately 150
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Figure 3.3 – Summary of the absolute and relative timings of a log-space im-
plementation of aFFT-C vs. a log-space implementation of naive convolution
vs. a direct FFT-C computations for many random examples of pmfs. The left
plot shows the execution time of the convolution for each length n = 2⌊k/4⌋

which has the largest ratio between the run times of aFFT-C and FFT-C,
to demonstrate the worst case for aFFT-C. Each convolution is of the form
p

(n)
2i ∗ p

(n)
2i+1 with i = 1, . . . , 100, where each p

(n)
j is a vector of n iid U(0, 1)

entries normalised so that
∥∥∥p(n)

j

∥∥∥ = 1. The right plot shows that maximum
ratio, and also the median ratio. None of the instances tested required splits,
demonstrating that aFFT-C suffers from little overhead compared with di-
rect FFT-C in cases where FFT-C is guaranteed to be accurate. The relative
timing only shows aFFT-C vs. FFT-C because NC is orders of magnitude
slower.

times faster with aFFT-C than with NC, and about 550 times faster when
using a bound of ∆ = 10−30.

Changing the accuracy level α influenced the time required, but was
only highly significantly in the more extreme case α = 107. The change
from α = 101 to α = 103 resulted in a slow-down of approximately 1.7 times,
while α = 107 is more than 4 times slower than α = 103 for longer vectors.

One could consider applying FFT-C to these convolutions, but they are
wildly inaccurate. Performing the convolutions with FFT-C results in rela-
tive errors larger than 10100. Furthermore, while we can identify when some
values of the FFT-C computation are accurate, we can only do so for the
largest ones, certainly ones that are larger than ε = 2−53. These elements
form a very small subset of the entire convolution in Figure 3.4.
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Figure 3.4 – The absolute and relative timings of a log-space implementation
of aFFT-C vs. a log-space implementation of naive convolution for computing
p(n) ∗p(n), where p(n) is given by p(n)(k) = A exp(60 sin sk−10sk) and s0 = 0,
sn−1 = 3π with the remaining n − 2 values of sk evenly spaced between
them. The upper three pairs of panels show the time taken for each algorithm
(left) as well as the ratio of that time (right) for aFFT-C without a bound
(represented as ∆ = 0), for several different values of α. The lower pair of
panels give the same information for the same convolutions performed via
Algorithm 3.6, satisfying (3.4.3) with ∆ = 10−30 and α = 103. We chose
n = ⌊2k/4⌋ for k ∈ {12, 13, . . . , 79, 80, 84, 88, 92}. The steps after each power
of two are caused by rounding up to Q = 2K for the FFT-C calculations.



Chapter 4

Accurate Iterated FFT Convolutions
A common use of convolution in statistical settings is computing the pmf

of sums of independent random variables defined on lattices. A special case
that often occurs in practice is sums of the form

X =
L∑

i=1
Xi

where Xi are iid. If p is the pmf of each Xi, then p∗L is the pmf of X.

4.1. FFT-C for iterated convolutions

The convolution p∗L can be performed via (2.3.2), restated here:

p∗L = D−1
(
(Dp)⊙L

)
, (4.1.1)

where the transforms are performed with length at least as large as the length
of the final result, with p padded with zeros to this length.

This suffers from the same potentially catastrophic errors as FFT-C,
quantified in Lemma 2.3.8. The sFFT algorithm of Section 2.3 is designed to
compensate for this case, but with limitations: it is focusing on computing
a p-value of an observed value of X, rather than computing its entire pmf,
and its accuracy is typically compromised if the pmf of X is not log-concave.

4.1.1. Error analysis

Iterated convolution via FFT-C is an integral part of sFFT, and thus
analysis of the error in sFFT also included analysis of (4.1.1). The results
of this are listed in Section 2.3.1 in this essay, and the result of particular
interest is quoted as Lemma 2.3.8. However, the previous analysis built
on a less precise version of Corollary 2.2.10. Hence, we have the following
extension of Lemma 5 of [Kei05] which applies to arbitrary complex vectors,
rather than just pmfs, and also quantifies the constant c.

Theorem 4.1.2. Let n, L ≥ 2 be natural numbers, v ∈ Cn be a vector with
ṽ = v and ṽ∗L be an approximation to v∗L as computed via (4.1.1). Define
N = (n− 1)L + 1, the length of v∗L, and choose Q = 2K ≥ N , then∥∥∥ṽ∗L − v∗L

∥∥∥
∞
≤ LcKε ∥v∥L

1 (4.1.3)

where c = 5 if L ≥ 10 and K ≥ 6, and c = 7 otherwise.

Proof. This proof is similar to the proof of Theorem 2.2.8, and hence we use
the same notation, specifically: let x denote Dx, x̃ denote D̃x and µ denote
the coefficient of ε in a bound on the relative error in complex multiplication,
such as the

√
5 of (2.2.11).

49



50 4. Accurate Iterated FFT Convolutions

The core difference between this proof and the proof of Theorem 2.2.8 is
Lemma 2.2.21. The relevant equivalent results for this case are, for arbitrary
x ∈ CQ,

∥∥∥∥ ˜̃x⊙L − x⊙L

∥∥∥∥
1
≤ (L(µ + 2)K + (L− 1)µ + O(ε))ε

∥∥∥x⊙L
∥∥∥

1
(4.1.4)∥∥∥∥ ˜̃x⊙L

∥∥∥∥
1
≤ (1 + O(ε))

∥∥∥x⊙L
∥∥∥

1
(4.1.5)

The second follows from (4.1.4) and the triangle inequality. Hence, we only
need to focus on (4.1.4), which we do by breaking it into parts:

∥∥∥∥ ˜̃x⊙L − x⊙L

∥∥∥∥
1

=
∥∥∥∥ ˜̃x⊙L − x̃

⊙L + x̃
⊙L − x⊙L

∥∥∥∥
1

≤
∥∥∥∥ ˜̃x⊙L − x̃

⊙L
∥∥∥∥

1︸ ︷︷ ︸
γ1

+
∥∥∥x̃⊙L − x⊙L

∥∥∥
1︸ ︷︷ ︸

γ2

Computing
˜̃
x

⊙L can possibly be done in a way that rounds to the closest
floating point complex number, which bounds γ1 ≤

√
2ε
∥∥∥x̃⊙L

∥∥∥
1
, or, if not

the closest, some bounded distance away, replacing
√

2. However this can
be inefficient, and so a more flexible bound that still works for our purposes
can be deduced simply from the direct algorithm of repeated pointwise mul-
tiplications of x̃ with itself. For some element x̃ = x̃(i), it is easy to see by
induction that

rel(˜̃xk, x̃k) ≤ ((k − 1)µ + O(ε))ε.

This gives a bound

γ1 ≤ ((L− 1)µ + O(ε))ε
∥∥∥x̃⊙L

∥∥∥
1

. (4.1.6)

Both of the powers in γ2 are exact, and hence just inflate the existing
error (2.2.12), implying,

γ2 ≤ L((µ + 2)K + O(ε))ε
∥∥∥x⊙L

∥∥∥
1

.

This gives
∥∥∥x̃⊙L

∥∥∥
1
≤ (1 + O(ε))

∥∥∥x⊙L
∥∥∥

1
, and, hence, returning to (4.1.6) we

have a version using x instead of x̃,

γ1 ≤ ((L− 1)µ + O(ε))ε(1 + O(ε))
∥∥∥x⊙L

∥∥∥
1

,

and thus we have proved (4.1.4).
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The quantity
∥∥∥x⊙L

∥∥∥
1

can be broken down with the combination of the
convolution theorem, (2.2.18) and the Young inequality,∥∥∥x⊙L

∥∥∥
1
≤ Q

∥∥∥x⊙L
∥∥∥

∞

= Q
∥∥∥D(x∗L)

∥∥∥
∞

≤ Q
∥∥∥x∗L

∥∥∥
1

≤ Q ∥x∥L
1 . (4.1.7)

Returning to (4.1.3), the left hand side can also be separated into parts:∥∥∥ṽ∗L − v∗L
∥∥∥

∞
=
∥∥∥∥D̃−1 ˜̃v⊙L −D−1v⊙L

∥∥∥∥
∞

≤
∥∥∥∥D−1(

˜̃
v

⊙L − v⊙L)
∥∥∥∥

∞︸ ︷︷ ︸
α

+
∥∥∥∥(D̃−1 −D)

˜̃
v

⊙L
∥∥∥∥

∞︸ ︷︷ ︸
β

First, α can be bounded, by (2.2.19), (4.1.4) and (4.1.7),

α ≤ 1
Q

∥∥∥∥ ˜̃v⊙L − v⊙L

∥∥∥∥
1

≤ 1
Q

(L(µ + 2)K + (L− 1)µ + O(ε))ε
∥∥∥v⊙L

∥∥∥
1

≤ (L(µ + 2)K + (L− 1)µ + O(ε))ε ∥v∥L
1

To finish, β, bounded by (2.2.13), (4.1.7) and (4.1.5),

β ≤ (µ + 2)K + O(ε)
Q

ε

∥∥∥∥ ˜̃v⊙L
∥∥∥∥

1

≤ (µ + 2)K + O(ε)
Q

ε(1 + O(ε))Q ∥v∥L
1

= ((µ + 2)K + O(ε))ε ∥v∥L
1 .

Bringing α and β together gives∥∥∥ṽ∗L − v∗L
∥∥∥

∞
≤ ((L + 1)(µ + 2)K + (L− 1)µ + O(ε))ε ∥v∥L

1 .

The values of c stated in the theorem follow from this, since the assumption
on n and L ensures K ≥ 2. □

4.2. Convolution by squaring

An alternative to the direct FFT of (4.1.1) is to compute p∗L with
O(log L) pairwise convolutions, via a squaring procedure based on the fact
that x∗K ∗x∗L = x∗(K+L). This is inspired by the “exponentiation by squar-
ing” algorithms often used for computing xn, see, for instance, [Gor98].

Algorithm 4.1 lists one way to compute v∗L for arbitrary vectors v and
L ∈ N in terms of pairwise convolutions, with any algorithm for computing
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them. The goal is to break the computation down as

v∗L = v∗2i1 ∗ v∗2i2 ∗ . . . ∗ v∗2iℓ (4.2.1)

where 0 ≤ i1 < . . . < iℓ ≤ ⌊log2 L⌋ correspond to the ℓ = ∑
i bi bits with

value 1 in the binary expansion of L:

L =
⌊log2 L⌋∑

i=0
bi2i =

∑
ij :bij

=1
2ij (4.2.2)

where bi ∈ {0, 1}. The xi = v∗2i can be computed iteratively, via xi+1 =
xi ∗ xi.

Algorithm 4.1 Compute v∗L for an arbitrary vector v with O(log L) pair-
wise convolutions.

1: procedure Squaring-C(v, L)
2: Set w ← (1) and x0 = v.
3: Consider L in binary as in (4.2.2), L = ∑

i bi2i.
4: for i← 0 : ⌊log2 L⌋ do
5: if bi = 1 then
6: Set w ← w ∗ xi.
7: end if
8: Compute xi+1 ← xi ∗ xi.
9: end for

10: return w.
11: end procedure

This algorithm will of course give an exact answer when computed using
infinite precision, but it needs a careful consideration when the pairwise
convolutions w ∗ xi on line 6 and xi ∗ xi on line 8 are computed with finite
precision floating point. Those lines instead become approximations to the
convolutions of approximate vectors:

w̃ ← ˜̃w ∗ x̃i,

x̃i+1 ← ˜̃xi ∗ x̃i.

The error in the approximations w̃ and x̃i compounds with the error
introduced by the finite-precision convolution ·̃ ∗ ·, even with a precise algo-
rithm such as NC or aFFT-C. Getting guarantees about the accuracy of the
result requires quantifying and managing these sources of error.

4.2.1. Error Analysis (TtC)

We will analyse Squaring-C for computing p∗L where p is non-negative,
and, without loss of generality, ∥p∥1 = 1 (that is, p is a pmf). Choose α ≥ 2
and ∆ ≥ 0, we assume that one is using a convolution algorithm Cα,∆ that
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trims then convolves, in the manner of Definition 3.4.2. That is, Cα,∆ will
compute an approximation to v ∗w such that(

1− 1
α

)
(v≥∆ ∗w≥∆)(k) ≤ Cα,∆(v, w)(k) ≤

(
1 + 1

α

)
(v ∗w)(k), (4.2.3)

for all k.
By having the accuracy being conditional on the ∆ term we can apply

this analysis to situations such as the p-value computation in Chapter 5
where one can tolerate some lost mass in the computed vector. In that case,
one can precompute some approximation to the exact p-value that allows
working out just how much of the final convolution p̃∗L is needed to get
an accurate estimate of the tail sum. This allows the convolution to be
computed much more efficiently as values that are known to be unimportant
can be discarded.

The following theorem provides bounds on how error propagates through
Squaring-C. This will allow us to deduce an α and ∆ that achieve a desired
overall accuracy in computing the convolution p̃∗L.

Theorem 4.2.4. Suppose p is a pmf such that p̃ = p, L ≥ 2 is an integer,
α ≥ 2 and ∆ ∈ [0, 1). Write L in binary, that is, L = ∑

i bi2i and let
ℓ = ∑

i bi and 0 < i1 < . . . < iℓ = ⌊log2 L⌋ the indices i such that bi = 1.
Finally, denote β = 1/α. Define

Lj =
j∑

k=1
bik

2ik (4.2.5)

ri = (1 + β)2i−1 − 1 (4.2.6)
r̄j = (1 + β)Lj−1 − 1 (4.2.7)

δi = ∆
i−1∑
k=0

2i−k(1 + rk) (4.2.8)

δ̄j =
j∑

k=1
δik

+ ∆
j−1∑
k=1

(
2 + r̄k + rik+1

)
(4.2.9)

If p̃∗L is computed via Squaring-C with a TtC convolution algorithm Cα,∆
as in (4.2.3), then

− r̄ℓp
∗L(k)− δ̄ℓ ≤ p̃∗L(k)− p∗L(k) ≤ r̄ℓp

∗L(k) (4.2.10)
for all k.

Note that Lℓ = L and hence r̄ℓ = (1 + β)L − 1.
Proving this has three main steps:

(1) analyse ˜̃v ∗ w̃ as an approximation to v ∗w,
(2) use this to quantify the error in squaring, that is, in ṽi+1 = ˜̃vi ∗ ṽi as

an approximation to vi+1 = vi ∗ vi,
(3) join both parts to deduce the error in p̃∗L.



54 4. Accurate Iterated FFT Convolutions

The separation of the last two steps is in fact visible in four of the se-
quences: ri & δi come from step (2) and r̄j & δ̄j come from step (3).

Step (1). The first step is to start with quantified approximations to
two pmfs, and use these to derive a quantification of an approximation to
their convolution.

Lemma 4.2.11. Suppose v and w are pmfs and ṽ and w̃ are non-negative
approximations such that, for each k,

(1− e1)v(k)− ε1 ≤ ṽ(k) ≤ (1 + e1)v(k)
(1− e2)w(k)− ε2 ≤ w̃(k) ≤ (1 + e2)w(k)

where ei, εi ∈ [0, 1). Then, for each k,

Cα,∆(ṽ, w̃)(k) ≤ (1 + β)(1 + e1)(1 + e2)(v ∗w)(k) (4.2.12)
Cα,∆(ṽ, w̃)(k) ≥ (1− β)(1− e1)(1− e2)(v ∗w)(k)−

(ε1 + ε2 + ∆(2 + e1 + e2)) (4.2.13)

where β = 1/α.

Proof. Since the vectors v and w are non-negative, we have

Cα,∆(ṽ, w̃)(k) ≤ (1 + β)(ṽ ∗ w̃)(k) ≤ (1 + β)(1 + e1)(1 + e2)(v ∗w)(k)

for each k, proving (4.2.12).
Define the vector ε′

1 by

ε′
1(k) = min((1− e1)v(k), ε1) (4.2.14)

and similarly define ε′
2 in terms of w, e2 and ε2. Since ṽ is non-negative, we

have ṽ(k) ≥ (1− e1)v(k)− ε′
1(k) and similarly for w̃. Therefore,

(ṽ ∗ w̃)(k) ≥ (1− e1)(1− e2)(v ∗w)(k)− (1− e1)(v ∗ ε′
2)(k)−

(1− e2)(ε′
1 ∗w)(k) + (ε′

1 ∗ ε′
2)(k)

≥ (1− e1)(1− e2)(v ∗w)(k)− (v ∗ ε′
2)(k)− (ε′

1 ∗w)(k)
(4.2.15)

Looking at the subtracted terms, we can bound them from above:

(v ∗ ε′
2)(k) ≤ ∥v∥1 ∥ε

′
2∥∞ ≤ 1 · ε2

(ε′
1 ∗w)(k) ≤ ∥ε′

1∥∞ ∥w∥1 ≤ ε1 · 1

By the assumption (4.2.3), any entry Cα,∆(ṽ, w̃)(k) may be as small as
the corresponding entry (1−β)(ṽ≥∆∗w̃≥∆)(k), a relationship which is better
written as

Cα,∆(ṽ, w̃)(k) ≥ (1− β)(ṽ ∗ w̃ + ṽ≥∆ ∗ w̃≥∆ − ṽ ∗ w̃︸ ︷︷ ︸
γ

)(k) (4.2.16)
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The term γ can be bounded via Lemma 3.4.5, which implies that
γ(k) = (ṽ≥∆ ∗ w̃≥∆ − ṽ ∗ w̃)(k) ≥ −∆(∥ṽ∥1 + ∥w̃∥1)

≥ −∆ [(1 + e1) ∥v∥1 + (1 + e2) ∥w∥1]
= −∆(2 + e1 + e2).

Bringing together this and (4.2.15) allows us to complete the reasoning
of (4.2.16),

Cα,∆(ṽ, w̃)(k) ≥ (1− β) [(ṽ ∗ w̃)(k)−∆(2 + e1 + e2)]
≥ (1− β) [(1− e1)(1− e2)(v ∗w)(k)−

(ε1 + ε2 + ∆(2 + e1 + e2))]
≥ (1− β)(1− e1)(1− e2)(v ∗w)(k)−

[ε1 + ε2 + ∆(2 + e1 + e2)]
which is exactly (4.2.13). □

These bounds are almost in the form that allows iterated use of the result;
the only problem is that the lower and upper bound on Cα,∆(ṽ, w̃)(k) do
not have matching coefficients. However, it is easy to see that

(1− β)(1− e1)(1− e2)− 1 ≥ 1− (1 + β)(1 + e1)(1 + e2),
giving the following result.

Corollary 4.2.17. Suppose v and w are pmfs with approximations ṽ and
w̃ as in Lemma 4.2.11, then with

e3 = (1 + β)(1 + e1)(1 + e2)− 1 (4.2.18)
ε3 = ε1 + ε2 + ∆(2 + e1 + e2) (4.2.19)

we have
(1− e3)(v ∗w)(k)− ε3 ≤ Cα,∆(ṽ, w̃)(k)

≤ (1 + e3)(v ∗w)(k).
(4.2.20)

Specifically, e3 and ε3 are coefficients for Cα,∆(ṽ, w̃) as an approximation to
v ∗w in the form required to use as an input to Lemma 4.2.11.

Step (2). For the vector p define the sequence of convolutions
x̃0 = p x̃i = Cα,∆(x̃i−1, x̃i−1) (4.2.21)

The x̃i are approximations to xi = p∗2i , but how approximate are they?

Lemma 4.2.22. Take ri from (4.2.6) and δi from (4.2.8), then, for each k,
− rixi(k)− δi ≤ x̃i(k)− xi(k) ≤ rixi(k) (4.2.23)

Proof. We prove the result by induction on i using Corollary 4.2.17. The
relation (4.2.23) is clearly true for i = 0.

If the result is true for some i, then we can take v = w = xi. and
ṽ = w̃ = x̃i in Corollary 4.2.17, which, by definition, satisfy v ∗w = xi+1
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and Cα,∆(ṽ, w̃) = x̃i+1. This gives coefficients e1 = e2 = ri and ε1 = ε2 = δi.
It is easy to check that the e3 and ε3 of the corollary are exactly ri+1 and
δi+1 respectively, that is,

e3 = ri+1 = (1 + β)(1 + ri)(1 + ri)− 1
ε3 = δi+1 = δi + δi + ∆(2 + ri + ri). (4.2.24)

The proof is completed by substituting into (4.2.20). □

Step (3). Recall that we represented L using its binary expansion L =∑
i bi2i and denoted the ℓ indices i of the bi such that bi = 1 as i1 < i2 <

. . . < iℓ and that Lk = ∑k
j=1 bij

2ij is the truncation of the binary expansion
after the kth 1.

Define a recurrence of vectors as follows:
ṽ1 = x̃i1 ṽj = Cα,∆(x̃ij

, ṽj−1). (4.2.25)
Each ṽj is the approximation to the vj = p∗Lj which are computed itera-
tively by Squaring-C, and so the approximation p̃∗L which is the focus of
Theorem 4.2.4 is exactly ṽℓ.

Lemma 4.2.26. Take r̄j from (4.2.7) and δ̄j from (4.2.9), then, for each k,
− r̄jvj(k)− δ̄j ≤ ṽj(k)− vj(k) ≤ r̄jvj(k) (4.2.27)

Proof. This follows by induction using Corollary 4.2.17, in a similar manner
to the proof of Lemma 4.2.22. We in fact fact use that lemma for the error
in the x̃ij

. Since 2i1 = L1, it follows that r̄1 = (1+β)2i1 −1 = ri1 and similarly
δ̄1 = δi1 , thus Lemma 4.2.22 implies that (4.2.27) holds for j = 1.

The inductive step hinges on noticing that
r̄j+1 = (1 + β)(1 + r̄j)(1 + rij+1)− 1
δ̄j+1 = δ̄j + δij+1 + ∆(2 + r̄j + rij+1) (4.2.28)

are the coefficients e3 and ε3 in Corollary 4.2.17. □

This last lemma is precisely what is needed to complete the proof.

Proof of Theorem 4.2.4. Set j = ℓ in Lemma 4.2.26, then ṽℓ = p̃∗L and
so (4.2.10) is exactly (4.2.27). □

4.2.2. Error Analysis (CtT)

In Section 3.4, we also analysed convolutions Cα,∆ that convolve then
trim. Specifically, with the guarantee of Definition 3.4.10: for α ≥ 2 and
∆ ≥ 0, Cα,∆ satisfies(

1− 1
α

)
(v ∗w)≥∆(k) ≤ Cα,∆(v, w)(k) ≤

(
1 + 1

α

)
(v ∗w)(k), (4.2.29)

for all k.
This class of convolution algorithms gives a very similar result for iterated

convolutions to Theorem 4.2.4, although with simpler bounds.
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Theorem 4.2.30. Suppose p is a pmf, L ≥ 2 is an integer, α ≥ 2 and
∆ ∈ [0, 1). Let r̄ℓ = (1 + β)L−1 − 1 and δ̄ℓ = ∆(L − 1). If p̃∗L is computed
via Squaring-C with a CtT convolution algorithm Cα,∆, then

− r̄ℓp
∗L(k)− δ̄ℓ ≤ p̃∗L(k)− p∗L(k) ≤ r̄ℓp

∗L(k) (4.2.31)

for all k.

Notably, the quantity r̄ℓ is the same in both Theorem 4.2.30 and Theo-
rem 4.2.4. The proof of this theorem is essentially identical to that of that
previous theorem, and can be deduced by following through the consequences
of a change to Lemma 4.2.11, which allows the multiplicative and subtractive
error coefficients to be independent.

Lemma 4.2.32. Suppose v and w are pmfs and ṽ and w̃ are non-negative
approximations such that, for each k,

(1− e1)v(k)− ε1 ≤ ṽ(k) ≤ (1 + e1)v(k)
(1− e2)w(k)− ε2 ≤ w̃(k) ≤ (1 + e2)w(k)

where ei, εi ∈ [0, 1). Then, for each k,

Cα,∆(ṽ, w̃)(k) ≤ (1 + β)(1 + e1)(1 + e2)(v ∗w)(k) (4.2.33)
Cα,∆(ṽ, w̃)(k) ≥ (1− β)(1− e1)(1− e2)(v ∗w)(k)− (ε1 + ε2 + ∆)

(4.2.34)

where β = 1/α.

In particular, the ∆(2 + e1 + e2) term of (4.2.13) can be reduced to ∆
in (4.2.34). This makes the equivalent recurrences to (4.2.24) and (4.2.28)
become, respectively,

δi+1 = ∆ + 2δi,

δ̄j+1 = ∆ + δij+1 + δ̄j,

and hence the sequences of coefficients that appear in the statement of The-
orem 4.2.4 simplify under this alternate scheme to just

δi = ∆(2i − 1),
δ̄j = ∆(Lj − 1).

4.2.3. Choosing the accuracy parameters

The behaviour and propagation of errors through Squaring-C is now
understood, so Theorem 4.2.4 and similarly Theorem 4.2.30 allow deducing
parameters required for computing an iterated convolution with a certain de-
sired accuracy. This is straightforward for both analyses, since the equations
defining the coefficients r̄ℓ and δ̄ℓ are easily manipulated, as shown next.

Suppose Cα,∆ is a convolution algorithm that satisfies either (4.2.3) or
(4.2.29), and is used in Algorithm 4.1 to compute p̃∗L, an approximation to
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the L-fold convolution p∗L. Both Theorem 4.2.4 and Theorem 4.2.30 state
that

− r̄ℓp
∗L(k)− δ̄ℓ ≤

(
p̃∗L − p∗L

)
(k) ≤ r̄ℓp

∗L(k) (4.2.35)

for some coefficients r̄ℓ and δ̄ℓ, for all k.
The coefficient r̄ℓ = (1+β)L−1−1 in both cases. The two versions of the

coefficient δ̄ℓ are not equal, but they has the same form: δ̄ℓ = ∆M for some
M independent of ∆,

M =


ℓ∑

k=1

ik−1∑
j=0

2ik−j(1 + rj) +
ℓ−1∑
k=1

2 + r̄k + rik+1 if Cα,∆ satisfies (4.2.3)

L− 1 if Cα,∆ satisfies (4.2.29)
(4.2.36)

where ℓ, ik, ri and r̄j are from the statement of Theorem 4.2.4.

Corollary 4.2.37. Given a pmf p, an integer L ≥ 2, a desired accuracy
parameter α ≥ 2 and a desired lower bound ∆ ∈ [0, 1), let

α′ ≥
((

1 + 1
α

)1/(L−1)
− 1

)−1

(4.2.38)

∆′ ≤ ∆
M

, (4.2.39)

where M is defined in (4.2.36). Then, using a convolution algorithm Cα′,∆′

that satisfies either (4.2.3) or (4.2.29) in Squaring-C, we can compute an
approximation p̃∗L to p∗L such that

− 1
α

p∗L(k)−∆ ≤ p̃∗L(k)− p∗L(k) ≤ 1
α

p∗L(k) (4.2.40)

for each k.

In practice, one simply chooses α′ and ∆′ to be equal to the right hand
side of their inequality.

4.2.4. Choosing the order of convolutions

A reasonable question to ask is if the order in which the x̃j are combined
with Cα,∆ influences the accuracy of the result. It might be that, say, com-
puting p̃∗L by starting with the highest power x̃iℓ

and working downward to
end with x̃i1 gives a more accurate result than the reverse order of starting
from the smallest power, which is the scheme described in (4.2.25) and used
to prove Lemma 4.2.26.

It turns out that the order has no influence if the convolution algorithm
Cα,∆ satisfies CtT, but the error bound is affected by changing the order of
operations with a TtC convolution algorithm. We will focus on the latter
first.

Suppose Cα,∆ is a convolution TtC algorithm with lower bound ∆, and
u, v and w are vectors with approximations ũ, ṽ and w̃ that satisfy the
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conditions of Lemma 4.2.11 with coefficients eu and εu, and similarly for
v and w. Without loss of generality, suppose eu ≤ ev ≤ ew. We are
interested in both c1 = Cα,∆(Cα,∆(ũ, ṽ), w̃) and c2 = Cα,∆(ũ, Cα,∆(ṽ, w̃))
as approximations to u ∗ v ∗w. Two applications of Corollary 4.2.17 allow
us to derive error coefficients e1 and ε1 for a bound in the manner of that
corollary on the error in c1,

e1 = (1 + β)2(1 + eu)(1 + ev)(1 + ew)− 1
ε1 = ∆ [3 + eu + ev + ew + (1 + β)(1 + eu)(1 + ev)] + εu + εv + εw,

and similarly coefficients e2 and ε2 for c2,

e2 = (1 + β)2(1 + eu)(1 + ev)(1 + ew)− 1
ε2 = ∆ [3 + eu + ev + ew + (1 + β)(1 + ev)(1 + ew)] + εu + εv + εw,

We have e1 = e2, but ε1 ̸= ε2, and hence the order of convolutions does
influence the error bound. We have

ε2 − ε1 = ∆(1 + β)(1 + ev)(ew − eu) ≥ 0,

and thus c1 has a smaller bound on its error than c2. In other words, an
approximation to a sequence of convolutions will have the smallest error
bound if it is computed by starting from the most accurate vectors. The
order used in Lemma 4.2.26 is close to this, as the error in the x̃i increases
with i. That said, the difference is on the order of ∆(ew − eu) and is hence
typically negligible.

The assertion above about the case when Cα,∆ has the CtT guarantee
follows from noticing that ε1 = ε2 = 2∆ + εu + εv + εw.

4.2.5. Complexity

As usual, we analyse the complexity of Squaring-C. Let C(n, m) rep-
resent the cost of performing a convolution of vectors of length n and m,
with short-hand C(n) = C(n, n). For FFT-C, the cost is C(n, m) = O((n +
m) log(n + m)), and we analyse this specific case.

Denote n the length of the pmf p, and, as usual, let L = ∑
i bi2i have

ℓ = ∑
i bi set bits, with indices 0 ≤ i1 < . . . < iℓ = ⌊log2 L⌋, and denote

Lj = ∑j
k=1 bik

2ik the truncation of the binary expansion of L at j. The
iterated convolution p∗M has length M(n− 1) + 1.

There are two classes of convolutions performed by Squaring-C: the x̃i

of (4.2.21), and the ṽj of (4.2.25).
Computing the b = ⌊log2 L⌋ convolutions of the first class requires com-

puting Cα,∆(x̃i, x̃i) for i = 0, 1, . . . , b− 1. Each x̃i has length 2i(n− 1) + 1,
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and so the total time required is
b−1∑
i=0

C
(
2i(n− 1) + 1

)
=

b−1∑
i=0

O(2i+1n log(2i+1n))

≤
b−1∑
i=0

O(2i+1n log(2bn))

= O(2bn log(2bn)).

The second class requires ℓ − 1 convolutions. If these are performed in
the order of (4.2.39), then each ṽj has length Lj(n−1)+1, and so computing
ṽj+1 = Cα,∆(ṽj, x̃ij+1) for j = 1, . . . , ℓ− 1 has cost

Cj = C
(
Lj(n− 1) + 1, 2ij+1(n− 1) + 1

)
= O(Lj+1n log(Lj+1n))

giving a total cost of
ℓ−1∑
j=1

Cj ≤ O(Lℓn log(Lℓn)).

Thus, combining these, we see that the complexity of Squaring-C with
an almost linear pairwise convolution algorithm such as FFT-C is

O(2bn log(2bn)) + O(Lℓn log(Lℓn)) = O(Ln log(Ln)).
This is, in fact, the same complexity as using FFT-C directly in the manner
of (4.1.1), but, as we know, both forms of FFT-C are inaccurate, especially
so with the compounding nature of errors with Squaring-C.

For the C(n, m) = O(nm) cost of the accurate NC, one can show in a
similar manner that the complexity is O(L2n2).

With aFFT-C, the complexity will lie somewhere between these two ex-
tremes, depending on the values of p, and, more specifically, its dynamic
range.

4.3. Squaring aFFT-C

The Squaring-C was more of an algorithm template than an actual
algorithm, since the method of convolution and even the guarantees needed
for it were left unspecified. One could choose any of the three pairwise
convolution algorithms discussed so far: NC, FFT-C or aFFT-C, with the
latter of the most interest.

4.3.1. Choosing the accuracy guarantee

As we saw in Algorithm 3.6, the aFFT-C algorithm can be easily modified
to do less computation while still having the TtC guarantee assumed by
Theorem 4.2.4, and as such it is an appropriate choice of Cα,∆ for that
theorem. Lemma 3.4.12 also demonstrated that this guarantee could be
used to give the CtT guarantee assumed by Theorem 4.2.30 by choosing
smaller parameters, and thus aFFT-C can also be used as the Cα,∆ for this
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second theorem. We proved that both TtC and CtT algorithms can be used
to get similar guarantees of accuracy, so the choice between them is one of
performance: aFFT-C runs faster with a larger lower bound, so which of the
two gives the largest bound for each pairwise convolution?

The optimal choice is not necessarily immediately obvious: the use of
Lemma 3.4.12 in Theorem 4.2.30 means each pairwise convolution must in-
crease its accuracy and decrease its own lower bound, but the propagated
errors are larger in Theorem 4.2.4. Intuitively, the latter should be better,
since it is the natural setting of aFFT-C and so the analysis under that as-
sumption captures the behaviour of the algorithm more closely, and, indeed,
that is what we will see from inspecting the bounds required for each.

Choose a pmf p, an integer L ≥ 2, and some accuracy parameters α ≥ 2
and ∆ ∈ [0, 1), and recall Corollary 4.2.37. Let β′ = 1/α′, and assume that
it is small, so that we can ignore terms of order O(β′2). This assumption is
reasonable for purposes of this analysis, especially because α′ ≈ (L − 1)α,
and thus, since L ̸= 2 typically, it is usually larger than the original α.

If we are using aFFT-C to obtain the CtT guarantee, then we require
each pairwise convolution to be computed with relative accuracy α′ defined
by (4.2.38), to a lower bound of ∆/(L− 1). Combined with Lemma 3.4.12,
we find that each invocation of aFFT-C needs the TtC guarantee with a
bound of at most

∆CtT = ∆
2(L− 1)α′′ = ∆

4(L− 1)α′ , (4.3.1)

where α′′ is derived from α′ via (3.4.13).
On the other hand, if we use aFFT-C to get the TtC guarantee, then

each pairwise convolution needs to use a bound of ∆TtC = ∆/M , with the
M defined in (4.2.36). Using (1 + β′)n = 1 + nβ′ + O(β′2) ≈ 1 + nβ′ we can
estimate an upper bound on the quantity M , to understand ∆TtC,

M =
ℓ∑

k=1

ik−1∑
j=0

2ik−j(1 + rj) +
ℓ−1∑
k=1

(2 + r̄k + rik+1)

=
ℓ∑

k=1

ik−1∑
j=0

2ik−j(1 + β′)2j−1 +
ℓ−1∑
k=1

(
(1 + β′)Lk−1 + (1 + β′)2ik+1 −1

)

≈
ℓ∑

k=1

ik−1∑
j=0

2ik−j(1 + (2j − 1)β′) +
ℓ−1∑
k=1

(
2 + (Lk + 2ik+1 − 2)β′

)

=
ℓ∑

k=1

ik−1∑
j=0

(
2ik−j + 2ik−j(2j − 1)β′

)
+

ℓ−1∑
k=1

(2 + (Lk+1 − 2)β′)

We have ℓ ≤ log2 L, and hence we can bound it by 2(ℓ − 1), as well as
omitting the subtractive terms,

≤
ℓ∑

k=1

ik−1∑
j=0

(
2ik−j + 2ikβ′

)
+ 2 log2 L +

ℓ−1∑
k=1

Lk+1β
′
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We can extend the second sum to include the k = 0 term, and relabel the
summation variable to simplify that sum,

≈ 2 log2 L +
ℓ∑

k=1
2ik

ik−1∑
j=0

(2−j + β′) +
ℓ∑

k=1
Lkβ′

≤ 2 log2 L +
ℓ∑

k=1

(
2ik(2 + log2 Lβ′) + Lkβ′

)
Finally, we have by definition L = ∑ℓ

k=1 2ik and Lk ≤ L, giving
≤ 2(L + log2 L) + 2L log2 Lβ′.

Thus, we can estimate ∆TtC ≥ ∆
2L+...

. This is larger than ∆CtT by a factor
of approximately 2α′.

In conclusion, in addition to not requiring each convolution to be per-
formed with higher accuracy, the use of Theorem 4.2.4 for pairwise convo-
lution algorithms like aFFT-C that only guarantee (4.2.3) allows the use of
a better lower bound for each pairwise convolution than the combination of
Theorem 4.2.30 and Lemma 3.4.12.

4.3.2. Empirical Results

A typical use of iterated convolution where small values are vital is for
computing p-values. As such, we chose to investigate this algorithm in the
context of computing p-values in the next chapter, which gives us additional
benefits, such as being able to compute lower bounds and perform exponen-
tial shifts that reduce execution time.



Chapter 5

Computing Accurate P-values
One major application of convolution and particularly iterated convolu-

tions is computing p-values. Given X = ∑L
i=1 Xi with Xi iid lattice-valued

random variables, the p-value P = P (X ≥ s0) of an observed value s0 is
often of interest. If p is the pmf of Xi, then

P =
∑
s≥s0

p∗L(s). (5.0.1)

The sFFT algorithm of [Kei05], described in detail in Section 2.3 allows
efficient FFT-based computation of an approximation to P with guarantees
about the relative accuracy, but it is generally only useful when p is log-
concave. As we saw in Figure 2.2, if p is not log-concave, sFFT often fails
to guarantee reasonable accuracy, leaving one to either use approximations
without concrete guarantees such as saddlepoint methods [But07], or com-
puting p∗L using the significantly slower method of NC.

5.1. The sisFFT algorithm

A better way to compute p∗L is to use Squaring-C with the newly de-
signed aFFT-C as the pairwise convolution algorithm. This would ensure
that the convolution could be calculated accurately and thus P can be cal-
culated accurately via (5.0.1). Moreover, as we have argued here, aFFT-C is
typically significantly faster than NC. However we can further improve the
efficiency by noticing it is often not necessary to compute the full p∗L con-
volution. Indeed, as exploited by sFFT, getting an accurate estimate of P
typically only requires the largest values p∗L(s) with s ≥ s0: neither indices
s < s0, nor negligible values relative to P are required to be accurately com-
puted. This observation is the driving force behind our segmented iterated
shifted FFT (sisFFT) algorithm.

The goals of sisFFT and sFFT are identical, and hence it is not surprising
that they share two of the same core techniques: introducing an exponential
shift to reduce the dynamic range of the pmf, and reasoning about a lower
bound on the p-value P .

5.1.1. Shifting

As mentioned above and explored in earlier sections, performing an ex-
ponential shift on a pmf flattens it, particularly around the chosen s0. This
allows focusing effort on just the region of interest s ≥ s0, especially when
combined with some lower bound.

Recall that sFFT relies on the exponential shift (2.3.3):
pθ(s) = p(s)eθs/Mp(θ),

63
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where Mp(θ) = E[eθX ] = ∑
s p(s)esθ is the moment-generating function of X.

Normalising by Mp(θ) ensures that pθ is a pmf. This operation commutes
with convolution, up to multiplication by a known constant, and hence is
easy to invert after performing an L-fold convolution:

p∗L(s) = p∗L
θ (s)e−sθMp(θ)L. (5.1.1)

In sFFT, θ is chosen as
θ0 = arg minθ κ(θ)− θs0/L, (5.1.2)

where κ(θ) = log Mp(θ) is the cumulant generating function of X.
As explained in Section 2.3, this is the canonical choice of θ in large

deviation studies, and is motivated by the fact that E(Xθ0) = s0 where Xθ0

is the random variable with pmf p∗L
θ0 . We also saw in that section that it

is the θ that minimises an explicit bound on the relative error in the sFFT-
computed p-value, which provided further motivation for this choice.

5.1.2. Lower bound

After shifting, the second way to reduce the work performed is to only
accurately compute the largest values in the sum (5.0.1), since the smaller
elements contribute little to P . This can be done by deducing a lower bound
in the manner of Corollary 4.2.37: the nature of the bound 1/α on the relative
error and the lower bound ∆ in that result guarantee that large values are
accurately computed, and avoids the problems of FFT-C of significantly
overestimating small values. To be useful, this lower bound must apply even
in the presence of an exponential shift θ.

Suppose p has length n, and, for any integer ℓ, define Nℓ = ℓ(n− 1) + 1,
which is the length of p∗ℓ.

The main component of computing a lower bound is motivated by sFFT:
the largest values of an iterated convolution can be computed efficiently and
accurately via FFT-C. In general, however, just knowing the largest values
will not give a tight lower bound on the p-value: we saw an example of this
in Figure 2.2, where sFFT computed a p-value many times smaller than
the true one. This failure comes from the combination of FFT-C and the
exponential shift: FFT-C can only compute the largest values of the shifted
result accurately, leaving gaps that may become significant when the shift is
reversed. We can derive a more accurate lower bound by using FFT-C for
most of a convolution, but filling in the gaps that it may leave.

The easiest way to do this is by noticing that the output of a convolution
is most influenced by the largest values of the inputs. We can apply this
observation by writing p∗L = p∗(L−1) ∗ p: a single pairwise convolution of
the largest values of p∗(L−1) with the full p will generally give an estimate
of p∗L without sizable gaps. FFT-C truncates its result in a way compatible
with this observation, and thus we can approximate p∗L via

p̃∗L =
˜̃

p∗(L−1) ∗ p (5.1.3)
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where the (L − 1)-fold convolution is computed and filtered in the manner
of sFFT, and the pairwise convolution is computed with some accurate al-
gorithm.

For our use case, we have three additional considerations: we need a
lower bound, rather than an estimate; we only need a lower bound for the
sum P = ∑

s≥s0 p∗L(s), not the full vector; and, it is most beneficial for the
p∗(L−1) convolution to be performed on a shifted pθ vector, to benefit from
the manner in which a shift emphasises the relevant part of the pmf.

Not needing the full vector is particularly important for performance: if
one wished to compute (5.1.3) as written, NC would require O(Ln2) time,
while aFFT-C would offer asymptotic performance somewhere between that
O(Ln2) and the almost linear O(Ln log Ln). As we will see below, only

needing a tail sum allows the pairwise convolution between p̃
∗(L−1)
θ and pθ

to be computed via NC in O(Ln) time and computing the (L − 1)-fold
convolution via FFT-C takes only O(Ln log Ln) time, making the latter the
overall complexity of deducing a lower bound for P .

The following result is the formalisation of the above, driven in particular
by its introduction of the vector p of tail sums of p. The result also resolves
the other two factors above, ensuring that we are guaranteed to have a lower
bound, and taking into account the possibility of an exponential shift by
some θ.

Lemma 5.1.4. Let ṽ′
θ = p̃

∗(L−1)
θ as computed via (4.1.1) and take the Q =

2K ≥ NL−1 used as the dimension of the DFTs performed. Let E = (L− 1) ·
cKε where c is defined in Theorem 4.1.2. Define

ṽθ(k) =

ṽ′
θ(k)− E if ṽ′

θ(k) > E

0 otherwise
(5.1.5)

and p(k) = ∑
j≥k p(j). Then,

PB = PB(θ) =
∑
k≥0

ṽθ(k)e−kθ+(L−1)κ(θ)p(s0 − k) ≤ P. (5.1.6)

where, for any vector x, we take x(i) = 0 when i < 0 or i ≥ length(x),
which ensures the sums defining both p and PB are finite.

Proof. By Theorem 4.1.2, we have∥∥∥ṽ′
θ − p

∗(L−1)
θ

∥∥∥
∞
≤ E ∥pθ∥L−1 = E

and hence ṽθ(k) ≤ p
∗(L−1)
θ (k) for all k.

The sum defining PB has two core terms. The first is reverting the θ shift
of ṽθ as an approximation to p

∗(L−1)
θ , as follows

ṽθ(k)e−kθ+(L−1)κ(θ) ≤ p
∗(L−1)
θ (k)e−kθ+(L−1)κ(θ) = p∗(L−1)(k)
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by (5.1.1). The second is of course the tail sum

p(s0 − k) =
∑

j≥s0−k

p(j).

Thus, (5.1.6) can be bounded by reordering the terms of the sums to reach
the tail sum that defines P :

PB ≤
∑
k≥0

∑
j≥s0−k

p∗(L−1)(k)p(j)

=
∑
k≥0

∑
i≥s0

p∗(L−1)(k)p(i− k)

=
∑
i≥s0

∑
k≥0

p∗(L−1)(k)p(i− k)

=
∑
i≥s0

p∗L(i) = P □

Notably, this last step demonstrates how only needing a tail sum allows
us to use NC efficiently by not computing the entirety of (5.1.3). The key
is that a tail sum of a convolution can be written as nested summation and
reordering terms allows extracting common factors in the form of p.

This PB is a lower bound for the final quantity we aim to compute, but it
is not tuned for the exponential shift. In particular, we wish to compute p∗L

θ ,
not p∗L itself, and so we need to translate this lower bound into the shifted
domain to ensure that it is in fact a lower bound and, more commonly, to
avoid using a bound smaller than necessary.

Theorem 5.1.7. Choose an accuracy level 0 < β ≤ 1/2, and fix θ ∈ R.
Take PB = PB(θ) from Lemma 5.1.4 and define the lower bound,

Bθ = PB(θ)

NL−1∑
s=s0

e−sθ+Lκ(θ)

−1

= PBeθs0−Lκ(θ) 1− e−θ

1− e−(NL−s0)θ .

(5.1.8)

Let p̃∗L
θ be an approximation of p∗L

θ computed according to Corollary 4.2.37
with accuracy parameters α = 2/β and ∆ = Bθβ/2. Define the approxima-
tion

P̃ =
∑
s≥s0

p̃∗L
θ (s)e−θs+Lκ(θ),

then
rel(P̃ , P ) ≤ β.

Proof. The exact p-value P can be written in terms of the shifted pmf pθ

via (5.1.1):
P =

∑
s≥s0

p∗L
θ (s)e−sθ+Lκ(θ)
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and hence the difference P̃ − P can be expressed as

P̃ − P =
∑
s≥s0

(
p̃∗L

θ (s)− p∗L
θ (s)

)
e−sθ+Lκ(θ).

Therefore, by Corollary 4.2.37 and our choice of α and ∆ for it,

P̃ − P ≤
∑
s≥s0

β

2
p∗L

θ (s)e−sθ+Lκ(θ) = β

2
P.

At the same time, using Corollary 4.2.37 again, along with (5.1.8) and
(5.1.6), we have

P̃ − P ≥
∑
s≥s0

(
−β

2
p∗L

θ (s)− β

2
Bθ

)
e−sθ+Lκ(θ)

= −β

2

P + PB

NL−1∑
s=s0

e−sθ+Lκ(θ)

−1
NL−1∑
s=s0

e−sθ+Lκ(θ)


= −β

2
(P + PB) ≥ −βP

Thus,

−βP ≤ P̃ − P ≤ β

2
P

and so the result is proved. □

5.1.3. The algorithm

Pseudo-code describing sisFFT is listed in Algorithm 5.1. This imple-
mentation brings together all the elements of Sections 5.1.1 and 5.1.2. The
results of the latter work with any θ, but, as discussed in the former, there
is a clear choice θ0.

5.1.4. Complexity

For computing ∑s≥s0 p∗L(s), where p has length n, this procedure has
complexity O(Ln log Ln + C), where C is the complexity of Squaring-C.

As with aFFT-C, the parameter θ0 used for performing the exponential
shift can be computed by a numeric minimisation procedure, such as Brent’s
method. Each evaluation of the expression κ(θ)−θs0/L requires O(n) time to
compute κ(θ). A typical invocation will not require many such evaluations
to find an appropriate θ0 to a useful tolerance: in practice, we have not
observed any case where computing θ0 took a non-trivial amount of time.

The only non-trivial operation performed other than Squaring-C itself
is computing PB, which also takes O(Ln log Ln) time: the computation of
v′ takes O(Ln log Ln), followed by the O(Ln) operations to compute v, and
O(NL−1 − s0) = O(Ln) to compute the sum defining PB. The vector p can
be computed in O(n) time by the relation p(k) = p(k) + p(k + 1).
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Algorithm 5.1 The segmented iterated shifted FFT (sisFFT) algorithm.
Given a pmf p, an index s0, integer L and accuracy parameter β ∈ (0, 1/2],
sisFFT computes an approximation P̃ to the tail sum P = ∑

s≥s0 p∗L(s) such
that rel(P̃ , P ) ≤ β.

1: procedure sisFFT(p, s0, L, β)
2: Compute θ0 = arg minθ κ(θ) − θs0/L, where κ(θ) is the cumulant

generating function of p.
3: Shift p to pθ0 via (2.3.3).

4: Use (4.1.1) to compute v′ = p̃
∗(L−1)
θ0

, and hence v defined by (5.1.5).
5: Let p(k) = ∑

j≥k p(j), and use this to compute PB(θ0) per (5.1.6)
and hence a lower bound Bθ0 per (5.1.8).

6: Compute an approximation p̃∗L
θ0

via Corollary 4.2.37 with α = 2/β
and ∆ = Bβ/2.

7: return P̃ = ∑
s≥s0 p̃∗L

θ (s)e−θs+Lκ(θ).
8: end procedure

Once the convolution p̃∗L
θ has been computed, it takes O(NL − s0) =

O(Ln) time to invert the shift and sum to retrieve P̃ .
For Squaring-C using aFFT-C, its complexity is often also approxi-

mately C = O(Ln log Ln), especially so with the lower bound that restricts
the dynamic range of the vectors. This allows us to heuristically estimate
that the overall complexity of sisFFT is often O(Ln log Ln).

5.2. Empirical Results

As with aFFT-C we now look at the empirical behaviour of our imple-
mentation of sisFFT. As before, there are two aspects of this to examine:
accuracy and run time.

5.2.1. Accuracy

As with aFFT-C, we analysed the accuracy of sisFFT with a series of
random tests. However, before looking at more exhaustive tests like that,
we return to Figures 2.1 and 2.2.

Figure 2.1 and the upper panel of Figure 2.2 both computed the p-value P
of s0 = 215 in p∗2, where p(s) = Ae

1
60 s(10−s) for s = {0, 1, . . . , 127}. We saw

there the exact p-value is approximately 6 · 10−154. Figure 2.1 mentions that
FFT-C, which in this case is equivalent to the iterated version (4.1.1) with
L = 2, calculated a vector that gave a p-value more than 10138 times larger
than that, while Figure 2.2 showed that sFFT gives an accurate value. As
one would expect, sisFFT is similar to sFFT in that it successfully computes
an accurate value: with β = 10−3, the approximation P̃ satisfies rel(P̃ , P ) <
10−13.
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The lower panel of Figure 2.2 shows a more interesting example: com-
puting the p-value P of s0 = 215 in p∗2 again, but for the pmf p(s) =
A exp

(
1
60s(s− 256)

)
for s = 0, . . . , 127, with A such that ∥p∥1 = 1. This

pmf p is not log concave, and sFFT fails: it computes P̃ ≈ 2 · 10−234

while the true value is P ≈ 1 · 10−225. On the other hand, sisFFT handles
this case flawlessly, with β = 10−3 as above, the approximation P̃ satisfies
rel(P̃ , P ) < 10−11. Figure 5.1 shows how sisFFT computes the approxima-
tion for this example and the previous one, similar to Figure 2.2.

Table 5.1 lists the results of the exhaustive tests of sisFFT. For a variety
of lengths n, we generated 100 instances of the same classes of vectors as
listed in Section 3.5.1, and computed approximations to ∑s≥s0 p∗L(s) for a
several different convolution counts L and indices s0. The former was chosen
up to L = 256, via

L ∈
{
2k
∣∣∣ 3 ≤ k ≤ 8

}
∪
{
⌊1.5k⌋

∣∣∣ 2 ≤ k ≤ 13
}

(5.2.1)

where, for x ∈ R, ⌊x⌋ is the largest integer not greater than x. The value of
s0 was chosen as a fraction of the length NL = L(n− 1) + 1 of p∗L, as

s0 ∈ {⌊rNL⌋ | r ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 0.99}} . (5.2.2)

As can be seen from the summary statistics in Table 5.1, the p-values
computed via sisFFT always have a relative error less than the requested
bound of β, validating our analysis. Furthermore, the adaptive nature of the
algorithm is demonstrated by comparing the results with the extreme value
of β = 10−9 with the far more moderate value of β = 10−3.

5.2.2. Run time

We also looked at the run time of sisFFT. The lower bound and shift
combine to make it run efficiently, even as it still gives guaranteed accuracy.
This is in contrast to the other method with guarantees of accuracy: comput-
ing the entire p∗L via Squaring-C with NC, and computing the relevant
tail sum.

Figure 5.2 returns to the pmf used in Figure 3.4, and demonstrates the
run time of sisFFT for computing an estimate to P = ∑

s≥s0 p∗L(s), with
several different levels of accuracy and values of L. As can be seen, in all
cases, sisFFT is never slower than NC, even for the smallest case of L = 2,
and the margin progressively decreases until sisFFT is more than 20,000
faster for β = 10−1 and L = 215, and still more than 2000 faster times at
this L for both β = 10−3 and β = 10−7.

Additionally, as decreasing relative plot especially indicates, the sisFFT
algorithm appears to be asymptotically faster than NC as L increases.
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Figure 5.1 – A breakdown of the sisFFT algorithm when used to compute
an approximation P̃ to P =

∑
s≥s0 p∗L(s) for the two problems in Figure 2.2.

As in that figure, the dotted lines indicate exact values and the solid lines are
the values computed by sisFFT. One can see in the first plot that sisFFT has
a large lower bound, only needed to compute a very small region around s0.
The jagged line of the second shows that the lower bound was large enough
that the smallest values of pθ0 could be ignored when partitioning pθ0 inside
aFFT-C. As designed, the computed values p̃∗L(s) match the largest of the
exact values p∗L(s) closely in the shaded region s ≥ s0, and thus, as discussed
in Section 5.2.1, the p-values P̃ are computed accurately.
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β = 10−9 β = 10−3

n Median Maximum Median Maximum
8 1 · 10−13 3 · 10−10 6 · 10−12 3 · 10−4

16 1 · 10−13 3 · 10−10 8 · 10−9 3 · 10−4

32 2 · 10−13 3 · 10−10 2 · 10−7 2 · 10−4

64 2 · 10−13 5 · 10−10 1 · 10−6 2 · 10−4

128 3 · 10−13 5 · 10−10 1 · 10−6 1 · 10−4

256 4 · 10−13 7 · 10−10 1 · 10−6 3 · 10−4

512 4 · 10−13 5 · 10−10 1 · 10−6 1 · 10−4

1024 4 · 10−13 5 · 10−10 1 · 10−6 2 · 10−4

2048 3 · 10−13 6 · 10−10 1 · 10−6 6 · 10−5

4096 3 · 10−13 3 · 10−11 8 · 10−7 4 · 10−5

8192 3 · 10−13 2 · 10−11 5 · 10−7 3 · 10−5

Table 5.1 – The accuracy of sisFFT. As with the similar Table 3.2 for aFFT-C,
we performed many tests of pmfs described in Section 5.2.1 of different lengths.
For each pmf p with length n, we computed the tail sum

∑
s≥s0 p∗L(s) with

L per (5.2.1) and s0 per (5.2.2). This tail sum was computed via sisFFT with
β = 10−9 and β = 10−3, and by computing p∗L with Squaring-C using
NC, with no trimming, for pairwise convolutions and summing the relevant
values. For each length n, the table lists summary statistics of the relative
error of each of the sisFFT-computed values as compared to the corresponding
NC-computed value.
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Figure 5.2 – A plot of the time required to compute an estimate to
P =

∑
s≥s0 p∗L(s) for p from Figure 3.4 with length n = 128, by sisFFT

and by computing p∗L via Squaring-C using NC for the pairwise convo-
lutions. Both were implemented in log-space. We chose L = ⌊2k/5⌋ for
k ∈ {5, 6, . . . , 39, 40, 45, . . . , 65}, and s0 = ⌊0.95NL⌋ where NL = L(n− 1) + 1
is the length of p∗L. Each plot shows both the time required to compute an
estimate of P using NC as described above and the time required for sisFFT.
The sisFFT computation is shown for three different accuracy thresholds β.



Conclusion
This essay introduces two novel algorithms that offer significant improve-

ments over current methods for computing convolutions. The first algorithm,
aFFT-C, is designed to accurately compute p∗q with non-negative vectors p
and q. The computation guarantees the accuracy of all computed values to
the user-specified level of relative precision. The second algorithm, sisFFT,
is similarly designed to guarantee the accuracy of tail sums ∑s≥s0 p∗L(s) with
p a pmf vector.

Based on rigorous mathematical analysis accompanied by careful algo-
rithmic considerations, both algorithms maintain the desired accuracy level
by accounting for the accumulated effect of floating point round-off errors.
They are designed to ensure that a user need not worry about inaccuracy,
much like when using NC, while retaining most of the speed of FFT-based
convolutions in most circumstances.

This essay develops the mathematical theory on which these new al-
gorithms are based. It goes further to analyse the performance of both
algorithms theoretically, and contrasts this analysis with empirical anal-
ysis of their accuracy and runtime performance. Importantly, we imple-
mented both algorithms in both Python and R, and made them available at
https://github.com/huonw/sisfft-py and https://github.com/huonw/
sisfft respectively.

As mentioned, the aFFT-C algorithm introduced as Algorithm 3.4 in
Chapter 3 allows the user to select the appropriate precision for their task,
trading performance for accuracy. Based on a novel analysis of the accumu-
lation of round-off error in FFT-C, this algorithm is also designed to detect
many cases when FFT-C is sufficiently accurate. In such cases, aFFT-C has
minimal overhead over FFT-C, giving it almost-linear performance; in other
cases, it is designed to never be significantly slower than a direct application
of NC, and is usually much faster.

We extend aFFT-C to allow incorporating a lower bound in two ways.
Using a lower bound allows the algorithm to be faster, by ignoring values
that are considered uninteresting while still retaining its accuracy guarantees
for all sufficiently large values of the result. The first method, trim then con-
volve, is later shown to be well-suited for the iterated convolutions required
by sisFFT, with the modified algorithm listed as Algorithm 3.6. The second,
convolve then trim, is designed to be more intuitive for single pairwise con-
volutions. As before, the accuracy as well as the lower bound can be selected
by the user of the algorithm.

The sisFFT algorithm is designed for computing a p-value of a sum of
lattice-valued iid random variables. It builds on aFFT-C and its ability
to use a lower bound to do this efficiently. As part of this, we describe
and, importantly, analyse errors in so-called “convolution by squaring”, for
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computing iterated convolutions p∗L, as well as refining our earlier analysis
of the round-off errors in FFT-C to apply to iterated convolutions more
directly. The analysis of the former is careful to handle propagation of error,
and incorporates consideration of a lower bound. Both iterated aFFT-C and
iterated FFT-C are used as part of sisFFT, with FFT-C used to estimate a
lower bound that allows aFFT-C to automatically discard irrelevant values.

Importantly, the techniques developed here to create aFFT-C and espe-
cially sisFFT can potentially be used for accelerating exact solutions to other
problems, such as evaluating the significance of the Pearson χ2 multinomial
goodness-of-fit test.
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